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Summary

In this dissertation, we study two von Neumann algebras generated by
regular representations of infinite-dimensional groups BN

0 and BZ
0 . Regular

representations for general infinite-dimensional groups were defined in 1985
by Alexander Kosyak, in his Ph.D. dissertation ([Kos85]). BN

0 and BZ
0 are

the groups of finite, but of infinite order upper triangular matrices with units
on the diagonal. Both groups are direct limits of finite-dimensional nilpotent
groups of upper triangular matrices, corresponding to two different embed-
dings. In [Kos92] and [Kos01], Alexander Kosyak studied right and left
regular representations for these groups. These representations act on the
space L2(BN, dµb) (resp. L2(BZ, dµb)), where BN (resp. BZ) is the space
of arbitrary upper triangular matrices and µb is a quasi-invariant Gaussian
measure, depending on a set of weights b. Kosyak found sufficient (and in
the first case necessary) conditions on the measure µb for the right repre-
sentations to be irreducible. Moreover, examples of measures that give rise
to both reducible and irreducible regular representations for the two groups
were given.

Next, we consider von Neumann algebras AR,b (and AL,b), generated
by the right (and left) regular representation. If the right representation
is reducible, the corresponding von Neumann algebra AR,b is a non-type I
algebra (according to the Murray-von Neumann classification). Kosyak also
studied the conditions on the measure, when AL,b is the commutant of AR,b.
We prove that, in this case, the constant function 1 is cyclic and separating
for these algebras. The corresponding modular operator and conjugation
are well defined, similarly as in the case of locally compact groups. Our
main theorem says that if the condition for the right von Neumann algebra
to be the commutant of the left one holds, both von Neumann algebras are
type III1 factors, according to the classification of Alain Connes. In the case
of BN

0 , we show this by proving the triviality of the fixed point algebra of
AR,b w.r.t. the modular evolution.

To prove the type III1 factor property for the von Neumann algebra
generated by the regular representations of the group BZ

0 , we consider the
crossed product (denoted by N ), of AR,b with R, w.r.t. the modular group
σ. The latter crossed product is an invariant of type III factors, called the
non-commutative flow of weights (its center is called the flow of weights)
and was defined by Connes and Takesaki. Moreover, a theorem of the same
authors implies that, if N is a factor, then the algebra AR,b (and hence
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vi SUMMARY

also its commutant AL,b) is a type III1 factor. In the last chapter of this
dissertation we prove that the center of N is trivial and hence the type III1

factor property of AR,b and AL,b.
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CHAPTER 1

Preliminaries

1. Introduction

This dissertation deals with certain analogues of group von Neumann
algebras for two infinite-dimensional groups. A von Neumann group algebra
of a locally compact group is generated by regular representations of this
group. Regular representations play an important role in the representation
theory of locally compact groups. The decomposition of a regular represen-
tation into irreducible ones contains all the irreducible representations for
finite and compact groups and many irreducible representations of locally
compact Lie groups. In the case of locally compact groups a regular repre-
sentation is always reducible, since along with a right regular representation
there exists a left regular representation, commuting with it. Moreover, the
commutant of a right regular representation is generated by operators of
the left regular representation ([Dix69b]). Since the beginning of the six-
ties, regular representation for infinite-dimensional groups have been studied
(see e.g. [AHKTV83, AHK78, Kos92, Kos94, Kos01]). For general
infinite-dimensional groups they were defined in 1985 in the Ph.D. disserta-
tion of Alexander Kosyak. For a review of regular representations of infinite-
dimensional groups we refer to e.g. [Kos94]. In this case, the situation can
be completely different from the locally compact case. The right regular
representations can for example be irreducible.

In this dissertation we shall consider two infinite dimensional groups.
They are the groups of finite, but of infinite order upper triangular matrices
with units on the diagonal. In other words, inductive limits of nilpotent
groups of upper triangular matrices, where by a nilpotent Lie group we
mean a Lie group with a nilpotent Lie algebra. The first limit, denoted
BN

0 , is obtained by considering the embedding which extends the matrix
with a row and a column in one direction, where as the second limit, BZ

0 ,
uses the two-sided embedding, and thus the matrices can also have negative
indices. In [Kos92] and [Kos01], Alexander Kosyak studied analogues of
right and left regular representations for these groups. They depend on a
quasi-invariant Gaussian measure. Kosyak found sufficient (and in the first
case necessary) conditions on the measure for the right representations to be
irreducible. Moreover, examples of measures that give rise to both reducible
and irreducible regular representations for the two groups were given.

1



2 1. PRELIMINARIES

Von Neumann group algebras were already studied in the famous papers,
on rings of operators, by Murray and von Neumann ([MvN36, MvN37,
vN40, MvN43]). There, the authors introduced the example of a von
Neumann algebra of a discrete countable i.c.c. group (see later), they proved
that this was a type II1 factor, according to their classification. A von
Neumann algebra is called a factor when its center is trivial. The latter
subdivided the class of factors into five types, type In, type I∞, type II1,
type II∞ and type III. The type III case was the most mysterious at that
time and it was not before the early seventies that Alain Connes found a
finer classification of type III factors ([Con73]). In the next section of this
chapter we shall discuss some basics of von Neumann algebra theory and
classification of factors.

In general, a theorem Connes ([Con76]) says that a von Neumann group
algebra of a locally compact connected separable group can be at most of
type II∞, and hence cannot be of type III. It is known that for infinite-
dimensional groups von Neumann algebras generated by regular representa-
tions can be of type III. The first example of such a type III von Neumann
algebra was studied in [AHKTV83]. It is the factor generated by the en-
ergy representations of the (infinite-dimensional) group of smooth mapping
from R into SU(2). In this dissertation, we provide other examples of type
III factors generated by regular representations.

After defining the regular representations for BN
0 and BZ

0 , we consider
von Neumann algebras, generated by them. Since the regular representa-
tions depend on the measure, so do the von Neumann algebras. In case of
an irreducible representation, the corresponding von Neumann algebra is a
factor of type I∞. However, it is certainly not clear which type of von Neu-
mann algebra is generated by a reducible regular representation and when
it is a factor. In this dissertation we give an answer to these questions.
Kosyak found a condition on the measure (E(b) <∞1) for the left von Neu-
mann algebra to be the commutant of the right. Moreover A. Kosyak and
R. Zekri ([KZ00, KZ01]) found sufficient conditions for the algebras to be
factors. In the current work we prove that if E(b) < ∞, then the algebras
are factors. Hence, the conditions of Kosyak and Zekri are not necessary.
Furthermore, these factors are hyperfinite (i.e. generated by a family of ma-
trix algebras) and of type III1 according to the classification of A. Connes
([Con73]). This also means that they are all mutually isomorphic (due to
a theorem of Haagerup, [Haa87]).

The structure of this work is as follows. In the first chapter, we introduce
some background. We start by reviewing basic theory of von Neumann
algebras, in particular classification of factors. Then, we discuss some basics
of Gaussian measures on infinite dimensional spaces.

1see Chapters 1 and 2 for the definition



2. VON NEUMANN ALGEBRAS 3

In the second chapter we consider the group BN
0 together with its regular

representations, and prove the above results. A parallel study of this case
was carried out recently in [Kos].

Finally, the last chapter deals with the group BZ
0 . As mentioned above,

we prove that the von Neumann algebras generated by reducible right and
left regular representations are type III1 factors. These results will appear
in [DK]

2. Von Neumann algebras

After their discovery by von Neumann in the thirties, von Neumann
algebras have become a major mathematical area. In what follows we shall
review some basic facts about von Neumann algebras and the classification
of factors. A detailed exposition can be found in among others [KR83,
KR86, Tak02, Tak03a, Tak03b] and [Con94]. Furthermore, the reader
should be familiar with the basic theory of Hilbert spaces and operators (see
e.g. [KR83]).

Let H be a Hilbert space (in this work we shall only consider the separa-
ble case). We denote by B(H), the algebra of all bounded linear operators
on H.

Definition 1.1. A von Neumann algebra is a *-subalgebraM of B(H)
such that

M′′ =M,

where M′ := {a ∈ B(H); am = ma, ∀m ∈M} is the commutant of M.
The von Neumann algebra CM =M∩M′ is called the center of M. A

von Neumann algebra with a trivial center, i.e. CM = C.1, is called a factor.

With a von Neumann algebra is associated its dual, M∗, which is the
set of all continuous linear functionals onM. The predual ofM is a Banach
subspaceM∗ ofM∗ of all σ-weakly continuous linear functionals (Appendix
A). The positive functionals in M∗ are called normal. The following holds:

(M∗)∗ =M

([KR86], Theorem 7.4.2). Now we define a state.

Definition 1.2. A state on a von Neumann algebraM is a linear func-
tional φ ∈ M∗ such that φ(aa∗) ≥ 0, ∀a ∈ M (positivity) and φ(1) = 1. A
state φ is called normal if φ ∈M∗.

A slightly more general notion is that of a weight.

Definition 1.3. A weight on a von Neumann algebra M is a mapping
ρ : M+ 7→ [0,∞], where M+ is the set of positive elements of M (i.e.
elements of the form aa∗, a ∈M), such that:

ρ(a+ b) = ρ(a) + ρ(b), a, b ∈M+

ρ(λa) = λρ(a), λ ∈ R+.



4 1. PRELIMINARIES

A weight (or a state) is called tracial (or simply a trace) if

ρ(a∗a) = ρ(aa∗), ∀a ∈M.

We adopt the notation:

Nρ := {a ∈M; ρ(a∗a) <∞},
Nρ := {a ∈M; ρ(a∗a) = 0},
Fρ := {a ∈M+; ρ(a) <∞}.

When Nρ = {0}, we say that ρ is faithful. We say that ρ is semi-finite if the
linear span of Fρ is weakly dense in M. Finally, we say that ρ is normal if
there exists a family {ρi; i ∈ I} of positive normal functionals on M such
that ρ(a) =

∑
i∈I ρi(a), for each a ∈M+

We also need the following definition.

Definition 1.4. A closed (generally unbounded) densely defined oper-
ator A with domain D(A) is said to be affiliated to a von Neumann algebra
M (write AηM) if for all unitaries u in M′

uD(A) ⊂ D(A),
uAu∗ξ = Aξ,∀ξ ∈ D(A).

Equivalently, AηM if all spectral projections of |A| lie in M . If A is self-
adjoint, then AηM iff the one-parameter group generated by A lies in M
(see [Dix69a]). The following theorem states that the operators affiliated
to an abelian von Neumann algebra form a *-algebra.

Theorem 1.5. [KR83] If M is an abelian von Neumann algebra and
A,B are operators affiliated to M, then:

(1) Each finite set of operators affiliated to M have a common dense
core.

(2) A + B is densely defined and closable and its closure A+̂B :=
A+BηM,

(3) AB is densely defined and closable and its closure A.̂B := ABηM,
(4) A.̂B = B.̂A and A∗.A = A.A∗ (= A.̂A∗),
(5) if A ⊆ B, then A = B; if A is symmetric, then A is self-adjoint.

One of the big problems in von Neumann algebra theory is their clas-
sification. The decomposition theory of von Neumann algebras (see e.g.
[KR86] Chapter 14) states that a von Neumann algebra can be decom-
posed as a direct integral of factors. In general, an abelian von Neumann
algebra can be seen as the L∞(X, dµ) space for some measure space (X,µ).
The decomposition in factors is then the direct integral over (X,µ). When
a von Neumann algebra M is non-commutative, one considers a direct in-
tegral of factors Mx, labeled by x, where x varies within the center of M,
which is an abelian von Neumann algebra. Hence, factors can be regarded
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as building blocks of von Neumann algebras. Unfortunately, a detailed dis-
cussion of this theory would go beyond the scope of this dissertation. Thus,
a classification of factors is sufficient to classify von Neumann algebras.
The first classification was carried out by Murray and von Neumann in
[MvN36, MvN37, vN40, MvN43]. We briefly discuss this theory (the
details can be found in e.g. [KR86]).

Let M be a factor. Then there is a unique (up to a constant) tracial
weight τ on M. Denote by D the restriction of τ to the projections in M
(i.e. e ∈M such that e2 = e and e∗ = e). That is,

(1) D := τ|ProjM : ProjM 7→ [0,∞].

The set of projections can be equipped with an equivalence relation ∼:

(2) p1 ∼ p2 ⇔ ∃u ∈M such that p1 = u∗u, p2 = uu∗,

where p1, p2 are projections in M and u is a partial isometry. The function
D fulfills the following properties:

p1 ∼ p2 ⇔ D(p1) = D(p2),
p1p2 = 0 ⇒ D(p1 + p2) = D(p1) +D(p2),

p is finite ⇔ D(p) <∞.
For a projection p to be finite means that p ∼ q and q ≤ p imply p = q.
The function D is called the dimension function and is an invariant of the
factor M. In the table below we list the possible types of factors according
the the range of D (after normalization), together with some examples.

=mD Type Example
{1, ..., n} In Mn(C)
{1, ...,∞} I∞ B(H)

[0, 1] II1 W ∗(G), G is countable i.c.c. group
[0,∞] II∞ W ∗(G)⊗B(H)
{0,∞} III R∞

The type In factors are the only finite dimensional von Neumann algebras.
They are all isomorphic to matrix algebras. The infinite type I factors are
isomorphic to the algebra of all bounded operators on some Hilbert space.
The factors for which D takes only finite values are called finite, whereas
all the other are called infinite. The above example of a type II1 factor is
the von Neumann algebra generated by the left regular representation of
an infinite, discrete i.c.c. group. The latter are groups, where all the non-
trivial conjugacy classes C(g) := {hgh−1;h ∈ G}, g 6= e are infinite. One
can obtain an infinite type II factor by just tensoring W ∗(G) with B(H) (⊗
means the von Neumann algebra tensor product, see [KR86]). The factor
R∞ is the unique hyperfinite type III1 factor (see later) discovered by Araki
and Woods ([AW69], also see example below). The factors, generated by
regular representations of BN

0 and BZ
0 in this dissertation, are all isomorphic

to R∞.
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Definition 1.6. A von Neumann algebra which admits a semi-finite
faithful normal trace is called semi-finite. Otherwise it is called properly-
infinite

Hence, the only properly-infinite factors are the type III factors. The
main tool for the classification of type III factors by Alain Connes ([Con73])
is the modular theory of Tomita and Takesaki, which we introduce below.

3. Tomita-Takesaki Modular Theory

The main theorem of Tomita-Takesaki theory ([Tak70]) proves that,
given a von Neumann algebra together with a faithful normal semi-finite
weight, there is a canonical one-parameter group of automorphisms of the
algebra (which can be regarded as a time evolution). Furthermore, the
theory provides a canonical conjugation, which maps the algebra into its
commutant, by the adjoint action. Here we shall review the Tomita-Takesaki
theory for states, since this is sufficient for the purposes of this dissertation.
For the more general version for weights and left-Hilbert algebras, we refer
to [Tak70, Tak03a].

Recall that to a closed operator T one can associate a polar decomposi-
tion,

T = J |T |,
where J is an anti-unitary operator and |T | =

√
T ∗T is a positive self-adjoint

operator. This decomposition is unique.
Let M be a von Neumann algebra and φ a faithful normal state on

M. The GNS construction ([KR83], Theorem 4.5.2) provides us with a
representation πφ of M on a Hilbert space Hφ, and a cyclic and separating
vector ηφ ∈ Hφ. The cyclic property means that the set πφ(M)ηφ is dense
in Hφ. We say that ηφ is separating for πφ(M) if it is cyclic for M′ (or
equivalently, if πφ(a)ηφ = 0 implies a = 0 for all a ∈ M). From now on we
assume thatM is already in its GNS representation and omit the subscript
φ in the notation. We define the following operator:

(3) S :Mη → H, aη 7→ a∗η.

This operator is closable ([KR86], Lemma 9.2.1) and we denote its closure
by the same symbol. We consider the polar decomposition of S:

(4) S = J∆1/2.

Now we can state the theorem of Tomita and Takesaki (for states).

Theorem 1.7. LetM be a von Neumann algebra together with a faithful
normal state φ. Let S, J and ∆ be the operators defined above. Then

JMJ = M′

∆itM∆−it = M, ∀t ∈ R.

Now we define the canonical automorphism group associated to (M, φ).
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Definition 1.8. The one-parameter automorphism group defined by

(5) σt(a) := ∆ita∆−it, ∀t ∈ R,
is called the modular automorphism group of associated to (M, φ).

One of the first consequences of Theorem 1.7 is the modular condition. It
is a special case of the KMS2-condition from quantum statistical mechanics
([HHW67]). Let (M, α,R) be a W ∗-dynamical system, i.e. a von Neumann
algebra together with a strongly continuous one-parameter automorphism
group αt of M. Define the following strip in the complex plain.

Dβ := {z ∈ C; 0 < =z < β},
where β ≥ 0 a positive real number.

Definition 1.9. A normal state φ is called a KMSβ-state w.r.t. the
one-parameter group αt if for any pair of operators a, b ∈ M there exists a
complex function Fa,b, which is analytic in D, and bounded and continuous
in D , such that

Fa,b(t) = φ(aαt(b)),(6)
Fa,b(t+ iβ) = φ(αt(b)a),(7)

for all t ∈ R.

An equivalent condition is the following. A normal state φ on M is a
KMSβ state w.r.t. a time evolution αt, if the following twisted commutation
rule holds for all elements a, b in a norm dense α-invariant subalgebra ofMα

(the algebra of analytic elements, see [BR79] section 2.5.3).

(8) φ(aαiβ(b)) = φ(ba)

The theory of KMS states on dynamical systems is a topic on its own and
we refer to [BR02] for a detailed discussion.

The KMS-condition comes into play in Tomita-Takesaki theory as fol-
lows. Let (M, φ) be a von Neumann algebra and a faithful normal state
and let J,∆ be the corresponding modular data. Then φ fulfills the KMS-
condition at β = 1 for the time evolution αt := σ−t. Later we shall use this
condition in the proof that the fixed point algebra of a von Neumann alge-
bra being trivial implies the type III1 factor property of the von Neumann
algebra.

4. Connes’ Classification of Type III factors

Although the version of Tomita-Takesaki theorem we presented in the
previous section is in the context of states, there exists a more general theory,
where instead of a state one considers a weight on the algebra (in general one
works with the so-called left Hilbert algebras, see [Tak03a], Chapter VI).
Instead of a faithful normal state one considers a semi-finite faithful normal

2after Kubo, Martin and Schwinger
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weight ψ. Then there is a one-parameter group of automorphisms of the
algebra implemented by the operator ∆it

ψ, associated to the weight. Now,
to what extend do those groups depend on the weight? The answer to this
question is given by the non-commutative version of the Radon-Nikodym
theorem ([Con73]).

Theorem 1.10. Let M be a von Neumann algebra let φ be a faith-
ful semi-finite normal weight on M, and let U be the unitary group of M
equipped with the σ-weak operator topology. For every faithful semi-finite
normal weight ψ on M there exists a unique continuous mapping u of R
into U such that:

(1)

ut+s = utσ
φ
t (us), ∀t, s ∈ R,

σψt (x) = utσ
φ
t (x)u∗t , ∀t ∈ R, x ∈M,

ψ(x) = φ(u∗−i/2xu−i/2), x ∈M.

This is expressed by writing ut = (Dψ : Dφ)t.
(2) Conversely, let t 7→ ut be a continuous mapping of R into U such

that
ut+s = utσ

φ
t (us), ∀t, s ∈ R

Then there exists a unique faithful normal semi-finite weight ψ on
M such that (Dψ : Dφ) = u.

Hence the class of modular groups does not vary with the weight, modulo
inner automorphisms. Another question is when the modular group is inner.
The following theorem of J. Dixmier and M. Takesaki gives the answer:

Theorem 1.11 ([Tak03a], Theorem VIII.3.14). For a von Neumann
algebra M, the following are equivalent:

(1) M is semi-finite.
(2) There exists a semi-finite faithful normal weight for which its mod-

ular automorphism group is inner.
(3) The modular automorphism group of every semi-finite normal faith-

ful weight is inner.

In general, Connes defined the following set ([Con73]), which is equal
to R if and only if M is semi-finite:

T (M) := {T0;σφT0
is an inner automorphism for some weight φ}

Let M be a factor. The classification of Connes relies on the following
invariant of M ([Con73]):

(9) S(M) :=
⋂
φ

{Sp∆φ;φ is a semi-finite faithful normal weight on M}

The above set is called the modular spectrum of M. Now we can define the
different type III factors.
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Definition 1.12 ([Con73]). Let M be a factor of type III. Then M
can be of the following type according the invariant S(M):

S(M) Type
R III1

{λn;n ∈ Z} ∪ {0}, 0 < λ < 1 IIIλ
{0, 1} III0

It seems a lot of work to compute the spectra of all the modular operators
above. However, there is another set which is usually more easy to compute,
called Connes’ spectrum. Let φ be a semi-faithful normal weight of M and
we define the centralizer of φ as the fixed point algebra of M w.r.t. the
modular group:

Mφ := {a ∈M;σφt (a) = a,∀t ∈ R}
Then, Connes’ spectrum of σφ is defined as follows ([Con73]):

(10) Γ(σφ) :=
⋂
{Sp(∆φe); e ∈ Proj(Mφ), e 6= 0},

where φe is the reduced weight on the reduced von Neumann algebraMe =
eMe, and φe(a) = φ(a) for all a ∈ eMe. Then by [Con73], Théorème
3.2.1.,

(11) S(M) ∩ R∗+ = Γ(σφ) =: Γ(M),

for some semi-finite faithful normal weight φ.

5. Crossed Products and Duality

Given a W ∗-dynamical system (M, α,G) on the Hilbert space H, where
G is a locally compact group and α a continuous homomorphism of G into
Aut(M), one can associate to it a new dynamical system on the Hilbert
space H̃ := L2(G,H), called the crossed product of M with G w.r.t. α. Let
us give the definition. Consider the following two representations, πα and
λG of M and G on H̃:

(πα(a)ξ)(s) := αs−1(a)ξ(s), a ∈M, s ∈ G,(12)
(λG(t)ξ)(s) := ξ(t−1s), t, s ∈ G,(13)

where we assume that the Haar measure on G is left invariant. The repre-
sentation {πα, λG} is covariant, that is it fulfills the following identity:

(14) πα(αs(a)) = λG(s)πα(a)λG(s)∗.

Then we define

Definition 1.13. Let (M, α,G) be a W ∗-dynamical system on H and
πα and λG defined as above. Than the von Neumann algebra

(15) M̂ =Moα G := (πα(M) ∪ λG(G))′′

is called the crossed product of M and G, w.r.t. α.
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We can also define the crossed product for a covariant representation
{ρ, V,K} of M:

(16)
(ρα(a)ξ)(s) := ρ(αs−1(a))ξ(s), ξ ∈ L2(G,K),
(λK(t)ξ)(s) := ξ(t−1s), t, s ∈ G,

Nρ,K := (ρα(M) ∪ λK(G))′′

The crossed product is, however, independent (up to a cocycle permutation)
of the representation M ([Tak03a], Theorem X.1.7).

The notion of crossed product for algebras is an analogue (or rather
generalization) of the notion of semi-direct product in groups.
Example: Let G and H be two countable discrete groups and α : G →
Aut(H) is a homomorphism. Recall that the semi-direct product, which we
shall denote by H oαG, is a group K whose underlying set is H ×G, where
group-multiplication is given by

(h1, g1)(h2, g2) = (h1αg1(h2), g1g2);

It is not difficult to prove (see e.g. [Sun87]), that the group von Neumann
algebra of H oα G, i.e. the von Neumann algebra W ∗(H oα G), generated
by the left regular representation of H oα G, is isomorphic to the crossed
product of W ∗(H) with G w.r.t. an action α̃ induced by α:

ugξ(h) := ξ(αg−1(h)), g ∈ G, h ∈ H,
α̃g(a) := ugau

−1
g , and hence

W ∗(H oα G) ∼= W ∗(H) oα̃ G.

Now we state a theorem, which will be important later. It gives a convenient
description of the commutant of the crossed product N of M with G. For
a proof we refer to [Tak03a], Theorem X.1.21.

Theorem 1.14. Consider a W ∗-dynamical system (M, G, α) over a lo-
cally compact group G, represented by a covariant representation {ρ, V,K}.
Define

(Wξ)(s) = V (s)∗ξ(s), ξ ∈ L2(G,K).
Then

Nρ,K = (Wρ(M)W ∗ ∪Rl(G))′′ ,

N ′ρ,K =
(
ρ(M)′ ∪WRr(G)W ∗

)′′
,

where Nρ,K is defined by (16) and Rl (resp. Rr) is the right (resp. left) von
Neumann algebra of G.

The next topic in the theory of crossed product we shall discuss is
the duality theory. It was discovered by Connes ([Con73]) and Takesaki
([Tak73]). From now on we assume that G is abelian. Let Ĝ be the dual
group of G. On the Hilbert space L2(G) we define

(λG(s)ξ)(r) := ξ(r − s), ξ ∈ L2(G), r, s ∈ G,
(µG(p)ξ)(r) := 〈r, p〉ξ(r), p ∈ Ĝ.
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It then follows that with U(s) = λG(s) and V (p) = µG(p), s ∈ G, p ∈ Ĝ, U
and V satisfy the following relation:

(17) U(s)V (p)U(s)∗V (p)∗ = 〈s, p〉.

Definition 1.15. In general, a pair of unitary representations U of G
and V of Ĝ on the same Hilbert space H is said to be covariant if the
commutation relation (17) is satisfied. The commutation relation (17) is
called the Weyl-Heisenberg commutation relation.

The following result will play a crucial role in the poof of our main
theorems.

Proposition 1.16. [[Tak03a], Proposition 2.2] The covariant represen-
tation {λG, µG} generates the factor B(L2(G)) of all bounded operators. If
{U, V,H} is a covariant representation, there exists a Hilbert space H0 such
that

{λG ⊗ 1, µG ⊗ 1, L2(G)⊗H0} ∼= {U, V,H}.
The dimension of H0 is called the multiplicity of H.

Proof. Due to the importance of this theorem we include the proof of
the first part here, for the second part we refer to [Tak03a], Proposition
2.2. For each f ∈ L1(Ĝ), we define

V (f) :=
∫
Ĝ
f(p)V (p)dp.

Then V is a *-representation of L1(Ĝ), so that it can be extended to the
enveloping C∗-algebra C0(G) (the algebra of continuous functions vanishing
at infinity3). We shall denote the extended representation of C0(G) by V
again. In the case when V = µG, we have that µG(f) is the multiplication
by f on L2(G) (f ∈ C0(G)). Hence the von Neumann algebra A generated
by {µG(f); f ∈ C0(G)} is the multiplication algebra L∞(G) on L2(G). So
it is maximal abelian (i.e. L∞(G)′ = L∞(G)). Now, we have

λG(s)µG(f)λG(s)∗ = µG(λsf), s ∈ G, f ∈ L∞(G),

where (λsf)(r) = f(r−s). Hence the operators of A commuting with λG(G)
are only scalars (the Haar measure dr is ergodic). Therefore,

{λG(G), µG(Ĝ)}′ = C,
so that {λG, µG} is irreducible. �

Now we again consider the W ∗-dynamical system (M, α,G). Let λG be
the representation (12) on L2(G,H). Analogously to the previous case we
define

(18) (µG(p)ξ)(s) = 〈s, p〉ξ(s), p ∈ Ĝ.

3A function f on G is said to vanish at infinity if given any ε > 0, there is a compact
subset of G such that |f(x)| < ε for x outside this subset
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We define the following action of Ĝ on Moα G:

(19) α̂p(x) = µG(p)xµG(p)∗, x ∈Moα G, p ∈ Ĝ.

Definition 1.17. The representation µG of Ĝ on L2(G,H) defined above
is called the dual representation to λG. The action α̂ of Ĝ on the crossed
product M̂ =MoαG is called the dual action and the resulting dynamical
system (M̃, α̂, Ĝ), we call the dual system.

The above definition is justified by the following duality theorem.

Theorem 1.18 ([Con73, Tak73]). Let (M, α,G) and (M̂, α̂, Ĝ) be as
above. Then we have

(20) (Moα G) oα̂ Ĝ ∼=M⊗B(L2(G)).

Although we discussed the general case of the above theory, from now on
we will consider only the case G = R = Ĝ. For convenience we shall denote
a dynamical system by only the von Neumann algebra and the action of R.

Now we state the main theorem of the structure of type III von Neumann
algebras. Recall that a von Neumann algebra is called properly infinite, if
there is no semi-finite faithful normal trace on it.

Theorem 1.19 ([Tak73, CT77]). (1) Let (N , θ) be a W ∗-dynamical
system such that
• N admits a faithful semi-finite normal trace τ ;
• θ transforms in such a way that

τ ◦ θs = e−sτ, s ∈ R.

Then the crossed product M = N oθ R is properly infinite and the
center CM is precisely the fixed point algebra CθN of the center of
N under the canonical embedding of N into M (the representa-
tion πθ). Furthermore, M is of type III (i.e. all the factors in
the decomposition of M are of type III) if and only if the central
dynamical system (CN , θ) does not contain an invariant subalgebra
A, such that the subsystem (A, θ) is isomorphic to L∞(R) together
with the translation action of R. In the case that M is of type III,
N is necessarily of type II∞ (i.e. τ(1) =∞).

(2) If M is a von Neumann algebra of type III, then there exists a
unique, up to conjugacy, covariant system (N , θ) satisfying the con-
ditions of (1).

An immediate consequence of the above Theorem is that M is a factor
if and only if (N , θ) is centrally ergodic. Also, we see that the system (N , θ)
is an invariant for the algebraic type of M.

Definition 1.20 ([Con73, Tak73]). The dynamical system (N , θ) as-
sociated toM is called the non-commutative flow of weights ofM, whereas
the central system (CN , θ) is called the flow of weights of M.
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The flow of weights turns out to be an invariant, which gives us the same
types as the modular spectrum.

Theorem 1.21 ([CT77]). Let M be a factor of type III. The the fol-
lowing holds:

(1) M is of type IIIλ, 0 < λ < 1, if and only if the flow of weights has
a period T , with λ = e−T ,

(2) M is of type III0 if the flow of weights has no period,
(3) M is of type III1 if the flow of weights is trivial, i.e. N is a factor.
(4) p ∈ T (M) if and only if there exists u ∈ U(CN ) with θs(u) = eipsu.

Although the invariants S(M) and (CM, θ) provide a finer classification
of factors, they are not complete (i.e. classify the factors up to isomorphism).
However, there is an important class of factors which has been classified
completely ([Con76, Haa87]). These are the hyperfinite or injective factors
(other names are amenable and AFD4). The definitions of each of the terms
are different, but they were proven to be equivalent ([Con76]).

6. Classification of Hyperfinite Factors

Definition 1.22. A von Neumann algebra with a separable predual
is called hyperfinite if it is generated by an increasing family of finite-
dimensional subalgebras.

Now we shall, very briefly, review the full classification of the hyperfinite
factors, which was carried out by Connes, up to one case, in [Con76]. The
remaining, type III1 case was solved by Haagerup ([Haa87]).

The type I case is of course trivial. The type II situation is the following.

Theorem 1.23 ([Con76]). (1) Any amenable (hyperfinite) factor
of type II1 is isomorphic to the Murray von Neumann hyperfinite
factor R, where R ∼= W ∗(G), G countable discrete i.c.c. group.

(2) Let F be a type I∞ factor. There exists up to isomorphism, only
one amenable factor of type II∞, namely R0,1 = R⊗F .

An important corollary is that von Neumann algebras of connected sep-
arable locally compact groups can have at most type II∞ factors in their
decomposition.

Corollary 1.24 ([Con76]). Let G be a connected separable locally com-
pact group and let λ be the left regular representation of G in L2(G). Then
W ∗(G) := (λ(G))′′ is a direct integral of factors which are either of type I
or isomorphic to R0,1.

As already mentioned in the introduction, von Neumann algebras gen-
erated by regular representations of infinite-dimensional groups which are
inductive limits of connected locally compact groups, can be of type III.

4Approximately finite dimensional
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In order to explain the type III case we have to mention infinite tensor
products of von Neumann algebras. Let (Mν , φν)ν be a sequence of pairs
(matrix algebras, faithful state). Let A be the inductive limit of the C∗-
algebras (for the precise definition we refer to [Tak03b], Chapter XIV)

Aν =M1 ⊗M2 ⊗ ...⊗Mν ,

where the embedding Aν ⊂ Aν+1 is by means of the mapping x 7→ x ⊗ 1.
On A, which is a C∗-algebra with unit one defines a state φ :=

⊗∞
ν=1 φν by

the equality

φ(x1 ⊗ x2 ⊗ ...⊗ xν ⊗ 1⊗ ...) := φ1(x1)φ2(x2)...φν(xν).

Then the infinite tensor product (M, φ) of (Mν , φν) is defined as

(M, φ) := πφ(A).

Example 1: The following construction was discovered by R. T. Powers in
1967 ([Pow67]). Let (Mν , φν) be a sequence of factors and states, where
Mν are all equal to M2(C) and the states are given by

φν((aij)) := αa11 + (1− α)a22.

Define Rλ :=
⊗∞

ν=1(Mν , φν), where λ = α
α−1 . Then Rλ are mutually non-

isomorphic factors ([Pow67]). Moreover, Rλ is of type IIIλ, 0 < λ < 1
([Con73]).

Theorem 1.25 ([Con76]). For each 0 < λ < 1, there exists up to
isomorphism only one hyperfinite factor of type IIIλ, the Powers factor Rλ.

After Powers discovered the above factors, Araki and Woods made a
classification of factors which are infinite tensor products of matrix alge-
bras in the above sense, called ITPFI factors ([AW69]). They defined two
invariants

r∞(M) := {λ ∈]0, 1[;M⊗Rλ ∼=M},(21)
ρ(M) := {λ ∈]0, 1[;M⊗Rλ ∼= Rλ}.(22)

Later, Connes proved ([Con73]) that r∞(M) = S(M) and T (M) = 2π
Logρ(M) .

The above example can be obtained in a different way, using the so-called
group measure space construction, already introduced in [MvN36, vN40].
We give another example, which shows a procedure to obtain hyperfinite
factors from ergodic theory.

Example 2: Let X0 = {1, 2, ...N} be a finite set and let µ0 be a proba-
bility measure defined on the subsets of X0. such that µ0({j}) = pj > 0 for
1 ≤ j ≤ N and

∑
pj = 1. Let X = XN

0 = {ω : N→ X0}. Equip X with the
product σ-algebra F and the product measure

µ :=
∞⊗
n=1

µn,
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with µn = µ0 for all n. By a cylinder set in X (see also next section), we
shall mean a set of the form {ω ∈ X; (ω(1), ω(2), ..., ω(n)) ∈ En, }, where
En is any subset of

Xn
0 := X0 × ...×X0,

where this is an n-fold product. Thus F is the σ-algebra generated by
cylinder sets. By a elementary cylinder set we shall mean a set of the form
{ω ∈ X : ω(n) = j0} for some n in N and j0 ∈ X0.

For each permutation σ of {1, ..., N} and k in N, let Tσ,k : X → X be
defined by

(Tσ,kω)(m) := ω(m), if m 6= k,
σ(ω(k)), if m = k.

Since pj > 0 for all j, it is clear that each Tσ,k is a automorphism of
(X,F , µ). Let G be the group generated by {Tσ,k;σ ∈ CN , k ∈ N}, where
CN is the cyclic subgroup of SN generated by a full cycle, say (12...N).

Now consider the algebra M := L∞(X,F , µ) associated to the above
dynamical system. We define the action on M, induced by the action of G
on X, as

αg(f) := f ◦ g−1.

Definition 1.26. We define the von Neumann algebra associated with
(X,F , µ,G) by

R(X,F , µ,G) := L∞(X,F , µ) oα G.

We say that the action of G on (X,F , µ) is free if for any g ∈ G and
for any set E ∈ F , µ(E) > 0, there exists a set F ∈ F such that F ⊆ E,
µ(F ) > 0 and F ∩ gF = ∅. We say that the action α is ergodic if the only
invariant sets are trivial (measure 0 or full measure). On the algebra level
this is equivalent to the fixed point algebra w.r.t. the induced action α being
trivial. For the following Theorem we refer to [Tak03b], Theorem 1.5 and
Corollary 1.6.

Theorem 1.27. (1) The action of G on (X,F , µ) is free ⇔M =
L∞(X,F , µ) is maximal abelian in R(X,F , µ,G).

(2) R(X,F , µ,G) is a factor ⇔ α is ergodic.

For the above example one can prove that the action of G on (X,F , µ)
is free and ergodic (see e.g. [Sun87], Ex. 4.3.6, 4.3.7). W. Krieger proved
([Kri70]) that a system such as the one above induces an ITPFI factor in
the sense of Araki and Woods. Moreover, he showed that every ITPFI factor
can be obtained in this way. He introduced an invariant r(M), called the
asymptotic ratio set, which is equivalent to the r∞(M) of Araki-Woods:

r(G) := {λ ∈ [0,+∞);∀ε > 0, ∀A ⊂ X,µ(A) > 0,
∃B ⊂ A,µ(B) > 0, and g ∈ G such that

gB ⊂ A and
∣∣∣∣dµ(gx)
µ(x)

− λ
∣∣∣∣ ≤ ε, ∀x ∈ B}
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If we set X0 = {1, 2} and p1 = 1/(1 + λ), p2 = λ/(1 + λ) in example
2, one can prove that r(R(X,F , µ,G)) = {λn;n ∈ Z} ∪ {0} and hence we
obtain the type IIIλ factor Rλ defined above. For X0 = {1, 2, 3} and

p1 =
1

1 + λ1 + λ2
, p2 =

λ1

1 + λ1 + λ2
, p3 =

λ2

1 + λ1 + λ2
,

we obtain a hyperfinite type III1 factor (for a general proof see e.g. [Sun87]
Lemma 4.3.8). Let us call this factor R∞.

Theorem 1.28 ([Haa87]). There is, up to isomorphism, only one hy-
perfinite type III1 factor, namely the factor R∞.

In fact, W. Krieger studied the so-called weak equivalence of dynamical
systems (X,R, µ, T ), where T is an ergodic transformation and µ is quasi-
invariant under T and obtained certain factors (of which the above is an
example), which we now call Krieger’s factors. He proved that two trans-
formations are weakly equivalent if and only if the corresponding Krieger
factors are isomorphic. A detailed discussion, however, would go beyond the
scope of this dissertation. We refer to [Kri69, Kri70, Tak03b] for more
details. Krieger also proved that two Krieger’s factors are isomorphic if and
only if their flows if weights are isomorphic ([Kri76]). Moreover, Connes
proved that

Theorem 1.29 ([Con76]). Any hyperfinite type III0 factor is a Krieger
factor.

This also concludes the classification of hyperfinite factors. From the
above discussion it follows that there is an equivalence of categories, which
is implied by in the following diagram:
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Flow of Weight
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Ergodic Transformation Groups

Weak Equivalence

Krieger’s Construction

__?????????????????????????????

Associated flowsoo
Ergodic Flows

Conjugations

7. Gaussian measures on infinite-dimensional vector spaces

In this last section of this chapter, we shall review some basic facts,
needed in the following chapters, on Gaussian measures. We start by recall-
ing the definition of a Gaussian measure on R1.

Definition 1.30. (1) A Borel probability measure γ on R1 is called
Gaussian, if it is either the Dirac measure δa at a point or has den-
sity

p(., a, σ2) : t 7→ 1
σ
√

2π
exp

(
−(t− a)2

2σ2

)
with respect to the Lebesgue measure. In the latter case the mea-
sure γ is called non-degenerate. The measure is called centered if
a = 0 in the above definition.

(2) A Borel measure γ on Rn is called Gaussian if for every functional
f on Rn, the induced measure γ ◦ f−1 is Gaussian.

Recall that the Fourier transform µ̃ of a finite Borel measure µ on Rn is
defined by the formula

µ̃ : Rn → C1, µ̃(y) =
∫

Rn
exp(i(y, x))dµ(x),
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and that measures on Rn are uniquely determined by their Fourier trans-
forms.

Proposition 1.31 ([Bog91], Proposition 1.2.2.). A measure γ on Rn

is Gaussian if and only if its Fourier transform has the form

γ̃(y) = exp
(
i(y, a)− 1

2
(Ky, y)

)
,

where a is a vector in Rn and K is a non-negative, matrix. It has a density
if K is non-degenerate, in which case it is given by

x 7→ 1√
(2π)n detK

exp
(
−1

2
(K−1(x− a), x− a)

)
For a Gaussian measure γ, a basis of L2(Rn, dγ) is given by the so-called

Hermite polynomials (see [Bog91] Section 1.3.):

Hα(x1, x2, ..., xn) := Hk1Hk2 ...Hkn ,

where α is a multi index and Hk is a Hermite polynomial on R1, defined by

(23) Hk(x) :=
(−1)k√
k!

exp
(
x2

2

)
dk

dxk
exp

(
−x2

2

)
.

Now we turn to Gaussian measures on infinite-dimensional spaces. The
first thing to do is to define the σ-algebra on an infinite dimensional space.
Already in the last section we mentioned the definition of cylindrical sets.
We repeat it in a more general context:

Definition 1.32. Let X be a locally convex space with dual X∗. The
sets of the following form are called cylindrical sets:

C = {x ∈ X; (l1(x), l2(x), ...ln(x)) ∈ C0}, li ∈ X∗,

where C0 ∈ B(Rn) is called the base of C.

We denote by F(X) the σ-algebra generated by cylindrical subsets of
X.

Lemma 1.33. The sets of the form

{x ∈ R∞; (x1, ..., xn ∈ B}, B ∈ B(Rn), n ∈ N,

generate B(R∞) = F(R∞).

Now we define the Gaussian measure.

Definition 1.34. Let X be a locally convex space. A probability mea-
sure on γ on the σ-algebra F(X), is called Gaussian if, for any f ∈ X∗,
the induced measure γ ◦ f−1 on R1 is Gaussian. The measure γ is called
centered if all the measures γ ◦ f−1 are centered.
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Theorem 1.35 ([Bog91], Theorem 2.2.4). A measure γ on a locally
convex space X is Gaussian if and only if its Fourier transform has the
form

γ̃(f) = exp
(
iL(f)− 1

2
B(f, f)

)
,

where L is a linear function on X∗ and B is a symmetric bilinear form on
X∗ such that the quadratic form f 7→ B(f, f) is non-negative.

A Gaussian measure is centered if L = 0. If X is a Hilbert space then we
can identify X∗ with X, by Riesz’ theorem. Then L(x) = (a, x), B(x, x) =
(Kx, x), for some vector a ∈ X and a bounded self-adjoint operator K on
X ([Bog91], Theorem 2.3.1).

Let (Xn,Fn, µn) be a sequence of measure spaces. Than the σ-algebra
on Π∞n=1Xn is generated by cylindrical sets of the form

C = B1 ×B2 × ...×Bn ×Xn+1 × ..., Bi ∈ Fi.
The measure defined by

µ(C) := µ1(B1)...µn(Bn)

is called the product measure and denoted by

µ =
∞⊗
n=1

µn.

This measure is well defined, since it is countably additive and extends to
the product σ-algebra. A product of Gaussian measures is also a Gaussian
measure.

Next we turn to the question of singularity or equivalence of two Gauss-
ian measures. Recall that two measures are equivalent (denoted by ∼) if
their null sets coincide. A measure µ is called quasi-invariant w.r.t. a trans-
formation T if the transformed measure µT defined by

µT (A) = µ(T−1(A))

is equivalent to µ. Of course we assume that T maps measurable sets into
measurable sets (i.e. a measurable transformation). Two measures are said
to be mutually singular (denoted by ⊥), if they are supported on different
subsets. The following theorem of Hajec and Feldman is important for our
work.

Theorem 1.36 ([Bog91], Theorem 2.7.2). Any two Gaussian measures
on the same locally convex space are either equivalent or mutually singular.

Let µ and ν be two probability measures on a measure space (X,F) and
let λ be a measure such that µ << λ and ν << λ (i.e. the µ and ν-null sets
are also λ-null sets). Then we define the Hellinger integral:

H(µ, ν) :=
∫ √

dµ

dλ

√
dν

dλ
dλ.
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It does not depend on the choice of λ ([Bog91], Proposition 2.12.6) and the
following holds:

0 ≤ H(µ, ν) ≤ 1.
Moreover, µ ∼ ν implies H(µ, ν) > 0 (and the converse is true for Gaussian
measures), H(µ, ν) = 0 iff µ ⊥ ν and H(µ, ν) = 1 iff µ = ν. In fact, the
above Theorem holds in general for product measures.

Theorem 1.37 ([Kak48]). For two product-measures µ = ⊗∞n=1µn and
ν = ⊗∞n=1νn, where µn ∼ νn for all n, the following alternative holds: either
µ ∼ ν or µ ⊥ ν. In addition, µ ∼ ν precisely when the following product
converges:

Π∞n=1

∫
√
ρndνn,

where ρn is the density of µn w.r.t. νn.

The above integral is nothing else than the Hellinger integral H(µ, ν).
Now we shortly discuss measures on groups. In the theory of locally

compact groups we know that such a group has a Haar measure, which is
unique up to constant. Moreover, the following theorem of Weil holds.

Theorem 1.38 ([Wei65]). A group admits a left (or right) invariant
measure if and only if it is locally compact.

Moreover, a similar result, by Xia Dao-Xing, holds for quasi-invariance
of measures.

Theorem 1.39 ([DX72], Corollary 3.1.14). Let G be a topological group
of the second category. Then, the local compactness of G is a necessary and
sufficient condition for the existence of a regular measure space (G,F , µ)
which is left (and right) quasi-invariant under G.

According to the above theorem it is impossible to find a G-quasi-
invariant measure on an infinite-dimensional group G. However, in certain
cases, one can find a topological group G̃ in which G is dense and con-
struct a measure µ on G̃ which is G-quasi-invariant. For non-abelian G a
general framework was proposed in the PhD dissertation of Kosyak in 1985
([Kos85]). In the case when G is a Hilbert space and µ the standard Gauss-
ian measure, the problem of defining the appropriate G̃ was solved by Gross
in 1965 ([Gro65]). In the next Chapters we shall consider the special cases,
where G = BN

0 (resp. BZ
0 ), G̃ = BN (resp. BZ) and µ is a Gaussian measure.



CHAPTER 2

Type III1 factors generated by regular
representations of the group BN

0

1. Regular representations

Let us consider the group G̃ = BN of all upper-triangular real matrices
of infinite order with units on the diagonal

G̃ = BN = {I + x | x =
∑

1≤k<n
xknEkn},

and its subgroup

G = BN
0 = {I + x ∈ BN | x is finite},

where Ekn is an infinite-dimensional matrix with 1 at the place k, n ∈ N
and zeros elsewhere, x = (xkn)k<n is finite means that xkn = 0 for all (k, n)
except for a finite number of indices k, n ∈ N.

1 x12 x13 x14 · · ·
0 1 x23 x24 · · ·
0 0 1 x34 · · ·
0 0 0 1 · · ·

. . .


Obviously, BN

0 = lim−→n
B(n,R) is the inductive limit of the group B(n,R) of

real upper-triangular matrices with units on the principal diagonal

B(n,R) = {I +
∑

1≤k<r≤n
xkrEkr | xkr ∈ R}

with respect to the embedding B(n,R) 3 x 7→ x+ En+1n+1 ∈ B(n+ 1,R).
We define the Gaussian measure µb on the group BN in the following

way

(24) dµb(x) =
⊗

1≤k<n
(bkn/π)1/2 exp(−bknx2

kn)dxkn =
⊗
k<n

dµbkn(xkn),

where b = (bkn)k<n is some set of positive numbers.
Let us denote by R and L the right and the left action of the group

BN on itself: Rs(t) = ts−1, Ls(t) = st, s, t ∈ BN and by Φ : BN 7→
BN, Φ(I + x) := (I + x)−1 the inverse mapping. It is known [Kos92] that

Lemma 2.1. µRtb ∼ µb ∀t ∈ B
N
0 for any set b = (bkn)k<n.

21
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Lemma 2.2. µLtb ∼ µb ∀t ∈ BN
0 if and only if SLkn(b) < ∞, ∀k < n,

where

SLkn(b) =
∞∑

m=n+1

bkm
bnm

.

Lemma 2.3. µLtb ⊥ µb ∀t ∈ B
N
0 \{e} ⇔ SLkn(b) =∞ ∀k < n.

Lemma 2.4. [Kos00] If E(b) =
∑

k<n S
L
kn(b)(bkn)−1 < ∞, then µΦ

b ∼
µb.

Lemma 2.5. [Kos00] The measure µb on BN is BN
0 ergodic with respect

to the right action.

Let α : G → Aut(X) be a measurable action of a group G on the
measurable space X. We recall that a measure µ on the space X is G-
ergodic if f(αt(x)) = f(x) ∀t ∈ G implies f(x) = const µ a.e. for all
functions f ∈ L1(X,µ).

Remark 2.6. [KZ00] If µΦ
b ∼ µb then µLtb ∼ µb ∀t ∈ B

N
0 .

Proof. This follows from the fact that the inversion Φ interchanges the
right and the left action: Rt ◦ Φ = Φ ◦ Lt ∀t ∈ BN. Indeed, if we denote
µf (·) = µ(f−1(·)) we have (µf )g = µf◦g. Hence

µb ∼ µRtb ∼ (µRtb )Φ = µRt◦Φb = µΦ◦Lt
b = (µΦ

b )Lt ∼ µLtb .
�

If µRtb ∼ µb and µLtb ∼ µb ∀t ∈ B
N
0 , one can define in a natural way (see

[Kos92]), an analogue of the right TR,b and left TL,b regular representation
of the group BN

0 in the Hilbert space Hb = L2(BN, dµb)

TR,b, TL,b : BN
0 → U(Hb = L2(BN, dµb)),

(TR,bt f)(x) = (dµb(xt)/dµb(x))1/2f(xt),

(TL,bs f)(x) = (dµb(s−1x)/dµb(x))1/2f(s−1x).

2. Von Neumann algebras generated by the regular
representations

Let AR,b = (TR,bt | t ∈ BN
0 )′′ (resp. AL,b = (TL,bs | s ∈ BN

0 )′′) be the von
Neumann algebras generated by the right TR,b (resp. the left TL,b) regular
representation of the group BN

0 .

Theorem 2.7. [Kos00] If E(b) <∞ then µΦ
b ∼ µb. In this case the left

regular representation is well defined and the commutation theorem holds:

(25) (AR,b)′ = AL,b.

Moreover, the operator Jµb given by

(26) (Jµbf)(x) = (dµb(x−1)/dµb(x))1/2f(x−1)
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is an intertwining operator:

TL,bt = JµbT
R,b
t Jµb , t ∈ B

N
0 and JµbA

R,bJµb = AL,b.

If µLtb ⊥ µb ∀t ∈ B
N
0 \{e} one can’t define the left regular representation

of the group BN
0 . Moreover the following theorem holds ([Kos92])

Theorem 2.8. The right regular representation TR,b : BN
0 → U(Hb) is

irreducible if and only if µLsb ⊥ µb ∀s ∈ B
N
0 \{0}.

Corollary 2.9. The von Neumann algebra AR,b is a type I∞ factor if
µLsb ⊥ µb ∀s ∈ B

N
0 \{0}.

Let us assume now that µLtb ∼ µb ∀t ∈ BN
0 \{e}. In this case the right

regular representation and the left regular representation of the group BN
0

are well defined.
In this Chapter we shall prove that if E(b) < ∞, the von Neumann

algebras AR,b and AL,b are always factors. This is implied by the triviality
of the centralizer of our algebras w.r.t. the vector 1 ∈ L2(BN, dµ), which is
the main step in proving the type III1 property.

Until now there existed sufficient conditions on the measure µb, for the
factor property ([KZ00]). We give a short review.

Since TL,bt ∈ (AR,b)′ ∀t ∈ BN
0 , we have AL,b ⊂ (AR,b)′, hence

(27) AR,b ∩ (AR,b)′ ⊂ (AL,b)′ ∩ (AR,b)′ = (AR,b ∪ AL,b)′.

The last relation shows that AR,b is factor if the representation

BN
0 ×BN

0 3 (t, s) 7→ TR,bt TL,bs ∈ U(Hb)

is irreducible.
Let us denote by AR,L,b the the von Neumann algebras generated by the

right TR,b and the left TL,b regular representations of the group BN
0 :

AR,L,b = (TR,bt , TL,bs | t, s ∈ BN
0 )′′ = (AR,b ∪ AL,b)′′.

Let us denote

(28) SR,Lkn (b) =
∞∑

m=n+1

bkm
SLnm(b)

, k < n.

Theorem 2.10. [KZ00] The representation

BN
0 ×BN

0 3 (t, s) 7→ TR,bt TL,bs ∈ U(Hb)

is irreducible if SR,Lkn (b) =∞, ∀k < n.

Corollary 2.11. The von Neumann algebra AR,b is a factor if SR,Lkn (b)=
∞∀k<n.
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3. Modular operator

In this section we review the construction of the modular operator for
locally compact groups and extend it to the case of inductive limits of such
groups. First we establish that the constant function 1 is cyclic and separat-
ing for AR,b and AL,b (assuming E(b) <∞). We prove this by showing that
set AR,b1 contains all the polynomials, in the variables xkn, k < n ∈ N, which
is dense in Hb. Using the intertwining operator Jb, we show that the same
holds for the commutant of AR,b, which implies the separating property.

Lemma 2.12. Assume that E(b) <∞. Then the function 1 ∈ L2(BN, µb)
is cyclic and separating for AR,b.

Proof. (1) First we prove the cyclic property. Consider the one-
parameter groups in BN

0 ,

(29) Gkn(t) := {1 + tEkn, t ∈ R}.

The corresponding one parameter groups TR,bkn (t) := {TR,bu ;u ∈
Gkn(t)} have generators (see [Kos92], here for convenience, we
omit the superscript b)

(30) ARkn =
k−1∑
r=1

xrkDrn +Dkn,

where Dpq = ∂pq − bpqxpq and ∂pq = ∂
∂xpq

.
Suppose that f ∈ L2(BN, dµb) and

(31) (f, TR,bt 1) =
∫
f(x)TR,bt 1(x)dµb(x) = 0, ∀t ∈ BN

0 .

We want to prove that f = 0, which implies that the linear span
of the set {TR,bt 1; t ∈ BN

0 } is dense in L2(BN, dµb), since we chose
f arbitrarily. We shall prove that (31) implies

(32) (f, P ) = 0,

where P (x) are polynomials of finite order in the variables xkn.
Since the set P of polynomials P is dense in L2(BN, dµb) (for exam-
ple by the fact that the Hermite Polynomials (23) span L2(BN, dµb)),
this proves that f = 0.

Now we shall prove the above property. First of all from (31)
follows that

(f,
∏

TR,bkini
(ti,αj )1) = (f,

∏
e

(
Pmi
j=1 tkiniαj )ARkini1) = 0,

for some finite product of TR,bkn (t), where the index αj varies ac-
cording to the multiplicity of i. Since TR,bkn (t) are strongly continu-
ous one-parameter groups with generators ARkn and P(⊃ {1}) is a
common dense domain of these generators ([Kos01]), we conclude
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(after taking derivatives in all the parameters and setting them to
0) that

(f,
p∏
i=1

(ARkini)
mi1) = 0,

for all finite products of different ARkini .
Now we show that the set 〈ARkn; k < n ∈ N〉1, where 〈ARkn; k <

n ∈ N〉 is the algebraic linear span generated by the generators
ARkn, contains all the polynomials of finite order in the independent
variables xkn. We make use of multiple nested inductions as follows.
The main induction is the following:
(a) We prove that the span of

{xα1
1n1
...xαk1nk

; 1 ≤ k, αi ∈ N, i = 1..k},

where all the indices ni are mutually different, is contained in
〈ARkn; k < n ∈ N〉1.

(b) The second step is to prove that the span of

{xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

; 1 ≤ k, l, αi, βj ∈ N, i = 1..k, j = 1..l},

is contained in 〈ARkn; k < n ∈ N〉1

(c) Now comes the induction step. Assume that the span of

{xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

;

1 ≤ k, l, r, αµ, βν , γη ∈ N, µ = 1..k, ν = 1..l, η = 1..r}

is contained in 〈ARkn; k < n ∈ N〉1 for some p > 2. Then we
prove that the span of

{xδ1ps1 ...x
δu
psu ...x

β1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

;

1 ≤ k, l, u, αµ, βν , δη ∈ N, µ = 1..k, ν = 1..l, η = 1..u}

is also contained in 〈ARkn; k < n ∈ N〉1. This implies that any
polynomial of finite order is in the latter set.

(1a) We prove the first step. Again we use induction, this time
on the number of factors in the monomials.
• xα1

1n1
∈ 〈ARkn; k < n ∈ N〉1. Indeed (again we use induction),

AR1n1
1 = −b1n1x1n1 .

Furthermore, assume that Span{xα1−1
1n1
} ⊂ 〈ARkn; k < n ∈ N〉1,

then also the desired property holds, since

AR1n1
xα1−1

1n1
= D1n1x

α1−1
1n1

= (α1 − 1)xα1−2
1n1

− b1n1x
α1
1n1
.
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• The induction step is as follows. Assume that xαk−1

1nk−1
x
αk−2

1nk−2
...xα1

1n1
∈

〈ARkn; k < n ∈ N〉1. The following equations show (using in-
duction on αk), that also

xαk1nk
x
αk−1

1nk−1
...xα1

1n1
∈ 〈ARkn; k < n ∈ N〉1 :

AR1nkx
αk−1

1nk−1
x
αk−2

1nk−2
...xα1

1n1
= −b1nkx1nkx

αk−1

1nk−1
x
αk−2

1nk−2
...xα1

1n1
,

AR1nkx
αk−1
1nk

x
αk−1

1nk−1
x
αk−2

1nk−2
...xα1

1n1
= (αk − 1)xαk−2

1nk
...xα1

1n1

−b1nkx
αk
1nk

x
αk−1

1nk−1
x
αk−2

1nk−2
...xα1

1n1

(1b) Now we continue with the second step of the main induction.
• Consider the following equation:

AR2m1
1 = (x12D1m1 +D2m1) 1 = −b1m1x12x1m1 − b2m1x2m1 .

Since the first term is in 〈ARkn; k < n ∈ N〉1, so is the second
term. It is also easy to see that

xβ1
2m1

xαk1nk
x
αk−1

1nk−1
x
αk−2

1nk−2
...xα1

1n1
∈ 〈ARkn; k < n ∈ N〉1

and

x
βl−1

2ml−1
...xβ1

2m1
xαk1nk

...xα1
1n1
∈ 〈ARkn; k < n ∈ N〉1

for some l. This is proved in the same way as the previous
case.
• Now suppose that

xβl−1
2ml

...xβ1
2m1

xαk1nk
...xα1

1n1
∈ 〈ARkn; k < n ∈ N〉1

Then
AR2mlx

βl−1
2ml−1

...xβ1
2m1

xαk1nk
...xα1

1n1

= x12(∂1ml − b1mlx1ml)x
βl−1
2ml−1

...xβ1
2m1

xαk1nk
...xα1

1n1

+(∂2ml − b2mlx2ml)x
βl−1
2ml−1

...xβ1
2m1

xαk1nk
...xα1

1n1
.

The first term in the right hand side contains only monomials
of order lower than βl in the variable x2ml and in the second
term we see the monomials

xβl2ml
...xβ1

2m1
xαk1nk

...xα1
1n1
.

(1c) Finally we turn to the main induction step. So assume that

Span{xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

;

1 ≤ k, l, r, αµ, βν , γη ∈ N, µ = 1..k, ν = 1..l, η = 1..r}

is contained in 〈ARkn; k < n ∈ N〉1 for some p > 2.
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• Again we see that

ARpu1
xγ1p−1s1

...xγrp−1sr
...xβ1

2m1
...xβl2ml

xα1
1n1
...xαk1nk

= (
∑p−1

i=1 xip(∂iu1 − biu1xiu1))xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

+(∂pu1 − bpu1xpu1)xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

.

The summation in the first term gives rise only to monomials
containing xin for i < p, which are in 〈ARkn; k < n ∈ N〉1 by
the induction hypothesis. Thus the latter set also contains the
second term and hence

xpu1x
γ1
p−1s1

...xγrp−1sr
...xβ1

2m1
...xβl2ml

xα1
1n1
...xαk1nk

.

The same holds for

xδ1pu1
xγ1p−1s1

...xγrp−1sr
...xβ1

2m1
...xβl2ml

xα1
1n1
...xαk1nk

.

• Finally suppose that also

xδv−1
puv ...xδ1pu1

xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

is in 〈ARkn; k < n ∈ N〉1. We calculate

ARpuvx
δv−1
puv ...xδ1pu1

xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

= (
∑p−1

i=1 xip(∂iuv − biuvxiuv))xδv−1
puv ...xδ1pu1

xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

+(∂puv − bpuvxpuv)xδv−1
puv ...xδ1pu1

xγ1p−1s1
...xγrp−1sr

...xβ1
2m1

...xβl2ml
xα1

1n1
...xαk1nk

.

Again, the summation in the first term gives rise to a polyno-
mial of order smaller than δv in the xpuv variable, which by
the last induction hypothesis is contained in our span of gen-
erators acting on 1. So does the first monomial in the second
term (after expanding the brackets). The last monomial gives
us the final statement:

xδvpuv ...x
δ1
pu1
xγ1p−1s1

...xγrp−1sr
...xβ1

2m1
...xβl2ml

xα1
1n1
...xαk1nk

∈ 〈ARkn; k < n ∈ N〉1,

for any of the parameters p, δi, γi, βi, αi ∈ N and v, r, l, k ∈ N.

It follows that the set 〈ARkn, k < n〉 acting on 1 generates
the set P of all possible polynomials in the independent variables
xkn. Thus equation (32) holds for the function f . P is dense in
L2(BN, dµb) and hence f must be equal to 0. Since f ∈ L2(BN, dµb)
was arbitrary and the equation (31) holds for all t ∈ BN

0 , the span
of {TR,bt 1; t ∈ BN

0 } must be dense in L2(BN, dµb) and hence 1 is
cyclic for AR,b.
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(2) Now we turn to the separating property. In this case we have to
prove that 1 is cyclic for (AR,b)′ = AL,b. Thus, again consider
f ∈ L2(BN, dµb) and assume

(33) (f, b1) = 0,∀b ∈ AL,b.

Recall that E(b) < ∞ implies the existence of the intertwining
operator J , which is anti-unitary. Then the following calculation
holds:

(f, TR,bt 1) = (JTR,bt 1, Jf)

=
∫ √

dµb(x−1)
dµb(x)

√
dµb((xt)−1)
dµb(x−1)

√
dµb(x−1)
dµb(x)

f(x−1)dµb(x)

=
∫ √

dµb(t−1x−1)
dµb(x−1)

f(x−1)dµ(x−1).

If we replace x−1 by x in the above integral we obtain (f, TR,bt 1) =
(f, TL,bt 1) for all t ∈ BN

0 . From (1) we know that (f, TR,bt 1) = 0 for
all t ∈ BN

0 implies that f = 0. Hence (f, TL,bt 1) = 0 for all t ∈ BN
0

also implies that f = 0 and hence 1 is cyclic for AL,b, since we chose
f arbitrarily.

�

We recall how to find the modular operator and the operator of canonical
conjugation for the von Neumann algebra A

ρ
G, generated by the right regular

representation ρ of a locally compact Lie group G. Let h be a right invariant
Haar measure on G and

ρ, λ : G 7→ U(L2(G, h))

be the right and the left regular representations of the group G defined by

(ρtf)(x) = f(xt), (λtf)(x) = (dh(t−1x)/dh(x))−1/2f(t−1x).

To define the right Hilbert algebra onG we can proceed as follows. LetM(G)
be algebra of all probability measures on G with convolution determined by∫

fdµ ∗ ν =
∫ ∫

f(st)dµ(s)dν(t).

We define the homomorphism

M(G) 3 µ 7→ ρµ =
∫
G
ρtdµ(t) ∈ B(L2(G, h)).

We have ρµρν = ρµ∗ν , indeed

ρµρν =
∫
G
ρtdµ(t)

∫
G
ρsdν(s) =

∫
G

∫
G
ρtsdµ(t)ν(s) =

∫
G
ρtd(µ∗ν)(t) = ρµ∗ν .
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Let us consider a subalgebra Mh(G) := (ν ∈ M(G) | ν ∼ h) of the algebra
M(G) In the case when µ ∈ Mh(G) we can associate with the measure µ
its Rodon-Nikodim derivative dν(t)/dh(t) = f(t). When f ∈ C∞0 (G) or
f ∈ L1(G) we can write

ρf =
∫
G
f(t)ρtdh(t),

hence we can replace the algebra Mh(G) by its subalgebra identified with
algebra of functions C∞0 (G) or L1(G, h) with convolutions. If we replace
the Haar measure h with some measure µ ∈ Mh(G) we obtain the isomor-
phic image TR,µ of the right regular representation ρ in the space L2(G,µ):
TR,µt = UρtU

−1 where U : L2(G, h) 7→ L2(G,µ) defined by (Uf)(x) =(
dh(x)
dµ(x)

)1/2
f(x). We have

(TR,µt f)(x) =
(
dµ(xt)
dµ(x)

)1/2

f(xt),

and
T f =

∫
G
f(t)TR,µt dµ(t).

We have (see [Con94], p.462) (we shall write Tt instead of TR,µt )

S(T f ) := (T f )∗ =
∫
G
f(t)Tt−1dµ(t) =

∫
G
f(t)Tt−1

dµ(t)
dµ(t−1)

dµ(t−1)∫
G

dµ(t−1)
dµ(t)

f(t−1)Ttdµ(t).

Hence

(Sf)(t) =
dµ(t−1)
dµ(t)

f(t−1).

To calculate S∗ we use the fact that S is anti-linear so (Sf, g) = (S∗g, f).
We have

(Sf, g) =
∫
G

dµ(t−1)
dµ(t)

f(t−1)g(t)dµ(t) =
∫
G
f(t−1)g(t)dµ(t−1) =∫

G
g(t−1)f(t)dµ(t) = (S∗g, f),

hence (S∗g)(t) = g(t−1). Finally the modular operator ∆ defined by ∆ =
S∗S has the following form (∆f)(t) = dµ(t)

dµ(t−1)
f(t). Indeed we have

f(t) S7→ dµ(t−1)
dµ(t)

f(t−1) S∗7→ dµ(t)
dµ(t−1)

f(t).

Finally, since J = S∆−1/2 (see [Con94] p.462) we get

f(t) ∆−1/2

7→
(
dµ(t−1)
dµ(t)

)1/2

f(t) J7→ dµ(t−1)
dµ(t)

(
dµ(t)
dµ(t−1)

)1/2

f(t−1)
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=
(
dµ(t−1)
dµ(t)

)1/2

f(t−1).

Hence

(Jf)(t) =
(
dµ(t−1)
dµ(t)

)1/2

f(t−1), and (∆f)(t) =
dµ(t)
dµ(t−1)

f(t).

To prove that JTR,µt J = TL,µt we get

f(t) J7→
(
dµ(x−1)
dµ(x)

)1/2

f(x−1)
TR,µt7→

(
dµ(xt)
dµ(x)

)1/2(dµ((xt)−1)
dµ(xt)

)1/2

f((xt)−1) =

(
dµ(t−1x−1)
dµ(x)

)1/2

f(t−1x−1) J7→
(
dµ(x−1)
dµ(x)

)1/2(
dµ(t−1x)
dµ(x−1)

)1/2

f(t−1x) =(
dµ(t−1x)
dµ(x)

)1/2

f(t−1x) = (TL,µt f)(x).

Remark 2.13. The representation TR,b is the inductive limit of the
representations TR,µ

m
b of the group B(m,R) where the measure µmb is the

projection of the measure µb onto subgroup B(m,R). Obviously µmb is equiv-
alent with the Haar measure hm on B(m,R).

Hence, we conclude that the modular operator of (AR,b, 1) is defined by

(34) ∆(f)(x) =
dµb(x)
dµb(x−1)

f(x).

4. Examples

We still need to verify whether the von Neumann algebras AR,b and AL,b

exist. Here we give an example of a measure µb for which the conditions
SLkn(b) <∞, for all k < n ∈ N and E(b) <∞ are fulfilled.

In the example 1 below for the particular case bkn = (ak)n we give some
sufficient conditions on the sequence an.

Example 1. Let us take bkn = (ak)n, k, n ∈ N.
We have

(35)

SLkn(b) =
∞∑

m=n+1

(
ak
an

)m
=
(
ak
an

)n+1 ∞∑
m=0

(
ak
an

)m
=
(
ak
an

)n+1 1
1− ak

an

<∞.

For E(b) holds:

E(b) =
∞∑
k=1

∞∑
n=k+1

SLkn(b)
bkn

=
∞∑
k=1

∞∑
n=k+1

(
ak
an

)n+1 1
1− ak

an

1
ank

=

∞∑
k=1

ak

∞∑
n=k+1

(
1
an

)n+1 1
1− ak

an

<

∞∑
k=1

ak
1− ak

ak+1

∞∑
n=k+1

(
1
an

)n+1
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<
∞∑
k=1

ak
1− ak

ak+1

∞∑
n=k+1

(
1

ak+1

)n+1

=
∞∑
k=1

ak
1− ak

ak+1

(
1

ak+1

)k+2 1
1− 1

ak+1

=

∞∑
k=1

ak
ak+1(

1− ak
ak+1

)2

(
1

ak+1

)k+1

.

Example 2. Let us take bkn = (ak)n, k, n ∈ N where ak = sk, k ∈ N
with s > 1.

Conditions (35) hold for ak = sk. We have

SLkn(b) =
(
ak
an

)n+1 1
1− ak

an

=
(

1
sn−k

)n+1 1
1− 1

sn−k

∼
(

1
sn−k

)n+1

<∞

Using the latter equivalence we conclude that E(b) <∞. Indeed we have

E(b) =
∞∑
k=1

∞∑
n=k+1

SLkn(b)
bkn

∼
∞∑
k=1

∞∑
n=k+1

1
s(n−k)(n+1)

1
skn

=
∞∑
k=1

sk
∞∑

n=k+1

1
sn(n−1)

=
∞∑
k=1

sk
∞∑
n=0

1
s(n+k+1)(n+k+2)

<

∞∑
k=1

sk
1

s(k+1)(k+2)

∞∑
n=0

1
sn

=
1

1− 1
s

∞∑
k=1

1
s(k+1)2+1

<∞.

5. The type III1 factors

Let AR,b and AL,b be the von Neumann algebras defined in Section 2
and assume that E(b) < ∞. In this section we prove that AL,b (and hence
AR,b) are type III1 factors, with no further assumptions. The main step is to
prove that the fixed point algebra of AL,b w.r.t. the modular group is trivial.
From the last section follows that the state φ(.) = (1, .1) is a faithful normal
state on AL,b (and AR,b). Note that in this case, Mφ = Mσφ , where σφ is
the modular group of φ and Mφ is the centralizer of M w.r.t. φ ([BR02],
Prop. 5.3.28). We want to prove that Mφ = C.1 implies that M is of type
III1.

Lemma 2.14 ([Bau95]). Let M be a von Neumann algebra on H and η
a cyclic and separating vector for M, with σ its associated modular group.
Assume that σ is inner, i.e. σt(a) = U(t)aU(t)∗, with a one-parameter
group U(t) ∈M for all t ∈ R. Then U(t) ∈Mσ for all t ∈ R.

Proof. The state φ(a) := (η, aη) is invariant w.r.t. σ (follows for exam-
ple from the modular condition, see Chapter 1). Thus (η, U(t)aU(−t)η) =
(η, aη). Since U(t) ∈M we can replace a by aU(t) and obtain

(η, U(t)aη) = (η, aU(t)η), a ∈M.

Since Mφ =Mσ, we have proven the result. �
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Assume now thatMσ = C.1. First of all we note that CM ⊆Mφ = C1,
which follows from the definition. Thus in this case M is a factor. It also
follows that if M is semi-finite and hence σ is inner (Theorem 1.11 from
Chapter 1), that σt(a) = a, since σ is implemented by a scaling operator.
Thus C1 = Mσ = M. Hence a non-trivial von Neumann algebra with an
ergodic modular automorphism group must be type III factor. In fact, by
the following theorem, it is a type III1 factor!

Theorem 2.15. [Bau95] Let M be a von Neumann algebra (M 6= C.1)
and φ a faithful normal state. Assume that the centralizer of φ is trivial,
i.e.

Mφ := {a ∈M;φ(ab) = φ(ba), ∀b ∈M} = C.1.
Then M is a type III1 factor.

Proof. The strategy of the proof is to exclude the other cases. Recall
the definition (11) of Connes spectrum Γ(M).

(1) We assert that Γ = {1} is impossible. If Sp∆\{0} = {1} then either
Sp∆ = {1} or Sp∆ = {1, 0}. Sp∆ = {1} means that ∆ = 1, which
implies M = Mφ = C.1, and this is not the case. Sp∆ = {1, 0}
means that 0 is an isolated point of Sp∆, therefore the eigenpro-
jection of the point 0 does not vanish, hence there is a vector e 6= 0
with ∆e = 0 which is impossible since ∆ is invertible.

(2) We assert that Γ = λZ, 0 < λ < 1 is impossible. On the contrary, let
Sp∆\{0} = λZ. This implies, among other things, that 0 < λ < 1 is
an isolated point of Sp∆. Then lnλ is an isolated point of Sp ln ∆.
Now we use some results from spectral analysis of automorphism
groups (see Appendix B). Since Sp ln ∆ = Spσφ, we have lnλ ∈
Spσφ and lnλ is isolated. Now, by Corollary B.2 from Appendix
B, there is an 0 6= a ∈M, such that

(36) ∆ita∆−it = λita.

Now we use the KMS condition (see Chapter 1) to obtain a con-
tradiction. Let b ∈M and define the functions

Fa,b(t) = φ(σφt (a)b) = λitφ(ab),

Fa,b(t+ i) = φ(bσφt (a)) = λit(ba).

On the other hand, Fa,b(t+ i) = λi(t+i)φ(ab). It follows that

(37) φ(ab) = λφ(ba).

Now we use (36), in the adjoint form:

∆ita∗∆−it = λ−ita∗.

This implies, using the automorphism property,

∆ita∗a∆−it = a∗a,
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i.e. a∗a ∈ C.1 and even a∗a = µ1, µ > 0, because a 6= 0. The same
argument holds for aa∗, which yields aa∗ = κ1, κ > 0. Now, we
can normalize a such that a∗a = 1, then aa∗ is a projection, hence
aa∗ = 1 follows and a is unitary. But if we put b := a∗ in equation
(37), we obtain

φ(aa∗) = λφ(a∗a),

or λ = 1 which is a contradiction.

�

From Section 3 we know that the state φ(.) := (1, .1) (here we consider
it on AL,b) is faithful, since 1 is cyclic and separating for AR,b and AL,b and
that its modular group is defined by

σφ(a) := Ad∆it(a), a ∈ AL,b,

∆(f)(x) =
dµb(x)
dµb(x−1)

f(x), f ∈ L2(BN, dµb).

Now we state the first main theorem.

Theorem 2.16. Consider the von Neumann algebra AL,b generated by
the left regular representation TL,b of BN

0 . Assume that E(b) < ∞. Let
φ(a) = (1, a1) be the faithful normal state associated to the cyclic and sepa-
rating vector 1 and ∆ the corresponding modular operator. Then A

L,b
φ = C.1

and hence AL,b is a type III1 factor. The same holds for AR,b.

We need some intermediate results.

Lemma 2.17. Let g be a multiplication on L2(BN, dµb) by a measurable
function g on BN, then

(TR,bt gTR,b
t−1 f)(x) = g(xt)f(x), ∀x ∈ BN, t ∈ BN

0 , f ∈ L2(BN, dµb).

Proof. Let f ∈ L2(BN, dµb). The following calculation holds:

(TR,bt gTR,b
t−1 f)(x) =

√
dµb(xt)
dµb(x)

(gTR,b
t−1 f)(xt)

=

√
dµb(xt)
dµb(x)

g(xt)

√
dµb(x)
dµb(xt)

f(x)

= g(xt)f(x).

�

Proposition 2.18. LetM be a von Neumann algebra on Hb = L2(BN, dµb).
If eisxkn ∈ M′, k < n, TR,bt ∈ M′,∀t ∈ BN

0 , s ∈ R and the measure µb is
ergodic, then M = C.1.



34 2. TYPE III1 FACTORS ASSOCIATED TO BN
0

Proof. From Chapter 1, Proposition 1.16 we know that if Hb were
L2(R, dµb), then the result would hold. The space L2(BN, dµb) is isomor-
phic to L2(R∞, dµb) = ⊗k<n∈NL

2(R1, dµbkn). Since the variables xkn are
independent, the condition eixkns ∈ M′, for all k < n and s ∈ R, means
that L∞(R, dµbkn) ⊂M′ for all k < n. This implies that the von Neumann
algebra generated by (L∞(R, dµbkn))k<n is contained in M′. The latter
is isomorphic to L∞(BN, dµb), which is maximally abelian. Hence, M ⊂
L∞(BN, dµb)′ = L∞(BN, dµb). Moreover, since we assume that TR,bt ∈ M′
for all t ∈ BN

0 , all functions in M are BN
0 -right invariant, by Lemma 2.17.

By the ergodicity of the measure, they are constant µb.a.e. �

Let M := A
L,b
φ . Then

M′ = (AL,b ∩ {∆is; s ∈ R}′)′ = {TR,bt ,∆is; t ∈ BN
0 , s ∈ R}′′.

Lemma 2.19. Let Qknf(x) := xknf(x), where f ∈ L2(BN, dµb). Then

Qkn η M′, ∀k < n ∈ N,
which is equivalent to eiQkns ∈M′ for all s ∈ R (by Chapter 1, Section 2).

Proof. We shall give two possible methods to prove the Lemma. How-
ever, only one of them will lead to a rigorous proof.

Some useful formulas[Kos02]
Let us denote by X−1 the inverse matrix to the upper triangular matrix

X = I + x = I +
∑

k<n xknEkn ∈ BN

X−1 = (I + x)−1 = I +
∑
k<n

x−1
knEkn ∈ B

N.

We have by definition X−1X = XX−1 = I hence
(38)(

XX−1
)
kn

=
n∑
r=k

XkrX
−1
rn = δkn =

n∑
r=k

X−1
kr Xrn =

(
X−1X

)
kn
, k ≤ n,

hence

x−1
kn +

n−1∑
r=k+1

xkrx
−1
rn + xkn = 0 = xkn +

n−1∑
r=k+1

xkrx
−1
rn + x−1

kn , k < n,

and

(39) x−1
kn = −xkn −

n−1∑
r=k+1

xkrx
−1
rn = −xkn −

n−1∑
r=k+1

x−1
kr xrn.

From x−1
kk+1 = −xkk+1, by induction follows

(40)

x−1
kn = −xkn +

n−k−1∑
r=1

(−1)r+1
∑

k≤i1<i2<...<ir≤n
xki1xi1i2 ...xirn, k < n− 1.
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Remark 2.20. Using (40) we see that x−1
kn depends only on xrs with

k ≤ r < s ≤ n.

We have

(41) x−1
kn + xkn = −

n−1∑
r=k+1

xkrx
−1
rn , x−1

kn − xkn = 2xkn −
n−1∑
r=k+1

xkrx
−1
rn .

Let us denote

wkn := wkn(x) := (xkn + x−1
kn )(xkn − x−1

kn ).

Using (63) we get

(42) ∆(x) =
dµb(x)
dµb(x−1)

= exp

 ∑
k,n∈N, k<n

bkn
(
(x−1
kn )2 − x2

kn

) .
− ln ∆(x) =

∑
k,n∈N, k<n

bkn
[
x2
kn − (x−1

kn )2
]

=
∑

k,n∈N, k<n
bkn(xkn+x−1

kn )(xkn−x−1
kn )

∑
k,n∈N, k<n

bkn(xkn + x−1
kn )[2xkn − (xkn + x−1

kn )] =
∑

k,n∈N, k<n
bknwkn(x).

Method 1: Consider the one-parameter groups in BN
0 ,

(43) Gkn(t) := {1 + tEkn, t ∈ R}.

Recall that the corresponding one parameter groups TR,bkn (t) := {TR,bu ;u ∈
Gkn(t)} have generators

(44) ARkn =
k−1∑
r=1

xrkDrn +Dkn,

where Dpq = ∂
∂xpq
−bpqxpq. Hence we have two types of generators, affiliated

to M′ at our disposal, namely ARkn and i ln ∆. Using certain commutator
relations involving these operators, we shall obtain the independent variables
xkn. This suggests that these variables are also affiliated to M′, since this
would certainly be true if ARkn and ln ∆ were bounded. However, since we
are dealing with unbounded operators, a more rigorous argument is needed
in order to prove the Lemma.

First, we study the commutators of ARkn on ln ∆. In order to do this we
need to know the action of Dpq on x−1

kn .

Lemma 2.21. We have
(45)

[Dpq, x
−1
kn ] =

{
−x−1

kp x
−1
qn − δkpx−1

qn − δqnx−1
kp − δkpδqn, if k ≤ p < q ≤ n,

0, otherwise .
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Proof. We prove (45) by induction in n− k, such that k ≤ p < q ≤ n.
Since x−1

kn = −xkn, when n− k = 1,

[Dpq, xkn] = −δpkδqn
in this case. Next we consider the induction step.

Let us suppose that (45) holds for all (p, q) with r ≤ p < q ≤ n, k < r.
We prove that then (45) holds also for (p, q), k ≤ p < q ≤ n. Indeed we
have

[Dpq, x
−1
kn ] = −[Dpq, xkn+

n−1∑
r=k+1

xkrx
−1
rn ] = −δkpδpn−δkpx−1

kn−
n−1∑
r=k+1

xkr[Dsq, x
−1
rn ]

By induction, the last term equals to
n−1∑
r=k+1

xkr(x−1
rp x

−1
qn + δprx

−1
qn + δqnx

−1
jp + δprδqn)

Hence, by (39) [Dpq, xkn−1 ] =

−δkpδpn− δkpx−1
kn − (x−1

kp x
−1
qn +xkpx

−1
qn ) +xkpx

−1
qn −x−1

kp δqn−xkpδqn +xkpδqn,

which reduces to the desired result. �

Using (45) we get
(46)

[Dpq, xkn + x−1
kn ] =

{
−x−1

kp x
−1
qn − δkpx−1

qn − δqnx−1
kp , if k ≤ p < q ≤ n,

0, otherwise .

Using (46) we have [Dpq, (xkn + x−1
kn )(xkn − x−1

kn )] =
(47)

2x−1
kp x

−1
qn x

−1
kn + 2 δkpx−1

qn x
−1
kn + 2 δqnx−1

kp x
−1
kn , if k ≤ p < q ≤ n, (p, q) 6= (k, n),

2(xkn + x−1
kn ), if (p, q) = (k, n),

0, otherwise .

Indeed, if k ≤ p < q ≤ n, (p, q) 6= (k, n) we have

[Dpq, (xkn + x−1
kn )(xkn − x−1

kn )] = [Dpq, (xkn + x−1
kn )(2xkn − (xkn + x−1

kn ))]

= [Dpq, (xkn + x−1
kn )](2xkn − (xkn + x−1

kn ))− (xkn + x−1
kn )[Dpq, (xkn + x−1

kn )] =

−2x−1
kn [Dpq, (xkn + x−1

kn )]
(46)
= 2x−1

kp x
−1
qn x

−1
kn + 2δkpx−1

qn x
−1
kn + 2δqnx−1

kp x
−1
kn .

Lemma 2.22. We have

(48) [ARpq, wkn] =



0, if k < n ≤ p,
2xkpxkq, if n = q, k ≤ p− 1,
0, if 1 ≤ k ≤ m− 1, m+ 1 < n,
2x−1

pn x
−1
qn , if k = p, n ≥ q + 1,

0, if q ≤ k < n.
2(xpq + x−1

pq ), if k = p, q = n.
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hence

(49) − [ARpq, ln ∆(x)] = 2
p−1∑
r=1

brqxrpxrq + 2
∞∑

n=q+1

bpnx
−1
pn x

−1
qn + 2(xpq +x−1

pq ).

Proof. Since

ARpq =
p−1∑
r=1

xrpDrq +Dpq

and wkn, k < n ≤ p does not depend on xrq, 1 ≤ r ≤ q we conclude that
[ARpq, wkn] = 0 for k < n ≤ p and q ≤ k < n.

Let n = q, since [Drq, wkq] = 0 for 1 < r < k we get

[ARpq, wkq] =
p−1∑
r=k

xrp[Drq, wkq] + [Dpq, wkq] =

2

(
xkp(xkq + x−1

kq ) +
p−1∑
r=k+1

xrpx
−1
kr x

−1
kq + x−1

kp x
−1
kq

)
=

2

(
xkpxkq +

(
xkp +

p−1∑
r=k+1

x−1
kr xrp + x−1

kp

)
x−1
kq

)
(39)
= 2xkpxkq.

Similarly, for 1 ≤ k ≤ p− 1, q < n we get

[ARpq, wkn] =
p−1∑
r=k

xrp[Drq, wkn] + [Dpq, wkn] =

2

(
xkpx

−1
qn +

p−1∑
r=k+1

xrpx
−1
kr x

−1
qn + x−1

kp x
−1
qn

)

2

(
xkp +

p−1∑
r=k+1

xrpx
−1
kr + x−1

kp

)
x−1
qn

(39)
= 0.

If k = p and n ≥ q + 1 we have as before

[ARpq, wpn] = [Dpq, wpn]
(47)
= 2x−1

pn x
−1
qn .

Finally if (p, q) = (k, n),

[ARpq, wpq] = 2(xpq + x−1
pq )

�

For p = m, q = m + 1 the last term of equation (49) vanishes, and we
obtain the following formula.

(50) − [ARmm+1, ln ∆] = 2
m−1∑
r=1

brm+1xrmxrm+1 + 2
∞∑

n=m+2

bmnx
−1
mnx

−1
m+1n.
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Next, we shall use induction to obtain the independent variables. First, we
want to act with ARm−1,m+1 and ARm−1m on the above formula. From (45)
we conclude that the terms involving components of x−1 vanish. The action
of ARpq on xkn is easily computed:

(51) [ARpq, xkn] =
p−1∑
r=1

xrp[Drq, xkn] + [Dpq, xkn] = (xkp + δkp)δqn.

We get the following formulas:

(52)

[ARm−1m+1, [A
R
mm+1, ln ∆]] =

−2
∑m−2

r=1 brm+1xrm−1xrm − 2bm−1m+1xm−1m,

[ARm−1m, [A
R
mm+1, ln ∆]] =

−2
∑m−2

r=1 brm+1xrm−1xrm+1 − 2bm−1m+1xm−1m+1

To get x1m we compute

[AR1m−1, [A
R
m−1m+1, [A

R
mm+1, ln ∆]]] = −2b1m+1x1m.

Next we consider the induction step. Suppose that we have obtained all
variables xrn, r < p < m−1 for some p. The variables xm−1m and xm−1m+1

are deduced from (52). To get xpm+1, p < m− 1 we compute

[ARpm−1, [A
R
m−1m+1, [A

R
mm+1, ln ∆]]] = −2

p−1∑
r=1

brm+1xrpxrm−1−2bpm+1xpm+1.

This method looks nice at the first glance, and it would lead to a rigorous
proof if we were to find a common invariant domain for the operators ARkn
and ln ∆. Indeed, suppose that D is such a domain and A and B are two
operators on D, affiliated to M′. Than, by Definition 1.4, uD ⊆ D, u ∈M
and

u[A,B]u∗ξ = (uAu∗uBu∗ − uBu∗uAu∗)ξ
= (uAu∗B − uBu∗A)ξ
= [A,B]ξ,

since Aξ,Bξ ∈ D. Hence the closure of [A,B] is also affiliated to M′.
A possible candidate for a common invariant domain for ARpq and ln ∆

is the set of functions

〈ARpq, ln ∆; p < q ∈ N〉1,

where 〈.〉 denotes the linear algebraic span (we already know that the above
set contains the set P of polynomials). However, proving that the above
functions are indeed in L2(BN, dµb) is a very difficult task and hence another
approach seems to be more plausible. The second method, which we describe
below, will give us the solution.
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Method 2: In this method we circumvent the problem of dealing with
unbounded operators, by directly working with elements in M′. By certain
combinations of elements in M′ we would like to obtain the one-parameter
groups generated by the multiplication operators Qkn, k < n ∈ N. First
we consider a special case, which leads to a better understanding of the
situation. Consider the restriction of the group BN to the first two lines.
That is, let X(2) be the space

X(2) := {1 + x;x =
∞∑
n=2

x1nE1n +
∞∑
n=3

x2nE2n}

X(2) =
(

1 x12 x13 x14 · · ·
0 1 x23 x24 · · ·

)
We restrict the action of BN

0 to X(2) and keep the previous notation for
the restricted operators TR,bt . We get the following generators of the groups
{TR,bt ; t ∈ Gkn(t)}:

AR,21n = D1n = ∂1n − b1nx1n,

AR,22n = x12D1n +D2n,

AR,2kn = x1kD1n + x2kD2n.

Define the restriction of the measure µb on X(2) by

µ2
b :=

⊗
k=1,2;n>k

µbkn .

The formulas for the inverse matrix are the following:

x−1
1n = −x1n + x12x2n,

x−1
2n = −x2n.

Furthermore, the modular operator has the following form. Note that the
terms with w12 and wkn for k > 1 vanish in this case.
(53)

ln ∆(x) =
∞∑
n=3

b1n(x−1
1n−x1n)(x−1

1n+x1n) =
∞∑
n=3

b1n((x12)2(x2n)2−2x12x1nx2n).

Let A
L,b
2 be the von Neumann algebra on L2(X(2), dµ2

b) defined by:

A
L,b
2 := {TL,bt ; t ∈ BN

0 }′′.

We remind that also in this case the centralizer of A
L,b
2 w.r.t. the vector 1

is given by
M2 = {TR,bt ,∆is; t ∈ BN

0 , s ∈ R}′.
Now we want to prove that the one-parameter groups generated by the
multiplication operators Q12, Q13, ... and Q23, Q24, ..., are contained in M′2.
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First we try to obtain Q12. Let X ′ = XG23(s), where X = 1 + x. We
calculate the following expression, where we use Lemma 2.17:

(54) ∆it(x)TR,b23 (s)∆−it(x)TR,b23 (−s) = ∆it(x)∆−it(x′) = eit(ln ∆(x)−ln ∆(x′))

Note that only x13 and x23 change under the above transformation. We
formally compute ln ∆(x′):

ln ∆(x′) = b13

(
(x′12)2(x′23)2 − 2x′12x

′
13x
′
23

)
+
∞∑
n=4

b1n
(
(x12)2(x2n)2 − 2x12x1nx2n

)
= b13{(x12)2(x23)2 + 2s(x12)2x23 + s2(x12)2

−2x12x13x23 − 2s((x12)2x23 + x12x23)− 2s2(x12)2}

+
∞∑
n=4

b1n
(
(x12)2(x2n)2 − 2x12x1nx2n

)
= −b13(2sx12x13 + s2(x12)2) + ln ∆(x).

Hence, expression (54) becomes

U23(s, t)(x) := eit{b13(2sx12x13+s2(x12)2)}

Remark 2.23. It is important to say that the exponentials of infinite
sums such as the ones above are well defined, since functional calculus in
multiple variables applies to the set of commuting operators {Qkn}. Indeed,
the above formulas with infinite sums (and all formulas in this dissertation,
involving sums of functions in the variables xkn) consist of terms, which act
as multiplication operators on mutually independent Hilbert spaces in the
decomposition

L2(BN, dµb) =
⊗
k<n

L2(R1, dµbkn).

Hence we do not need to verify any convergence properties.

It follows that the multiplication operator of the function U23(s, t)(x) is
in M′2 for all s, t ∈ R. Let now X ′ = XG13(s′). To obtain x12 we compute:

TR,b13 (s′)U23(1, 1)(x)TR,b13 (−s′) = eib13(2x12x′13+(x12)2)

= eib13(2x12x13+(x12)2+2s′x12)

Upon multiplying the above expression by U23(1,−1) we obtain the one pa-
rameter group e2b13s′Q12 , s′ ∈ R. Similarly, we can obtain the one-parameter
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groups generated by the operators Q1m, m > 2. In order to do this we
compute

Umm+1(s, t) = ∆it(x)TR,bmm+1(s)∆−it(x)TR,bmm+1(−s)

instead of U23. Again only the term of ln ∆(x), (53) with n = m+1 changes
under the above transformation and we extract
(55)
Umm+1(s, t)(x) := eit{b1m+1(2sx1mx1m+1+s2(x1m)2)+b2m+1(2sx2mx2m+1+s2(x2m)2)}

and hence we obtain x1m analogously to x12, by transforming the x1m+1

term and subtracting the initial part.
In order to obtain the operators Q2m, we operate in a similar way. Again

consider formula (55). Now substitute X ′ = XG2m+1(s) for X and subtract
the initial part:

(56)
Umm+1(1,−1)TR,b2m+1(s′)Umm+1(1, 1)(x)TR,b2m+1(−s′) =

e2is′(b1m+1x1mx12+b2m+1x2m).

We already proved that the one-parameter groups generated by the self-
adjoint operators Q1n are in M′2. From Chapter 1 we know that this is
equivalent toQ1n ηM′2. According to Theorem 1.5 in Chapter 1, this implies
that also closure of products and sums of these operators are affiliated to
the abelian von Neumann algebra generated by Q1n, which is contained in
M′2. Equation (56) then implies that also Q2m η M′2. Hence we obtained
Qkn η M′2 for k = 1, 2, n > k.

Now we generalize the above discussion to the case (BN
0 , B

N).

Lemma 2.24. Fix an m ∈ N and let

Umm+1(s, t) := ∆itTR,bmm+1(s)∆−itTR,bmm+1(−s) ∈M′ for s, t ∈ R.

Then (Umm+1(s, t)f)(x) =

(57)
exp(it

∑m−1
k=1 bkm+1

(
2sxkmxkm+1 + s2(xkm)2

)
+it

∑∞
n=m+2 bmn

(
2sx−1

mnx
−1
m+1n − s2(x−1

m+1n)2
)
)f(x)

Furthermore, the following identities hold for all s′ ∈ R and p < m:
(58)(
Umm+1(1,−1)TR1m+1(s′)Umm+1(1, 1)TR1m+1(−s′)f

)
(x) = exp(2is′b1m+1x1m)f(x),

(59)

(
Umm+1(1,−1)TRpm+1(s′)Umm+1(1, 1)TRpm+1(−s′)f

)
(x) =

exp
(

2is′(
∑p−1

r=1 brm+1xrmxrp + bpm+1xpm)
)
f(x).
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Proof. First of all, we would like to know the right action of Gpq(t)
(43) on x ∈ BN and on x−1.

(60) x′kn = (XGpq(t))kn =
n∑
i=k

Xki(δin + tδpiδqn) = xkn + δqn(txkp + tδkp)

Note that only the qth column of x is affected by this transformation.

XGpq(t) =


1 x12 x13 x14 · · · x1q + tx1p · · ·
0 1 x23 x24 · · · x2q + tx2p · · ·
...

...
...

...
...

...
...

0 0 · · · 1 · · · xpq + t · · ·
. . .


From (60) we now can deduce the inverse of x′. In order to do this we

note the following:

x′−1
kn = (XGpq(t))−1

kn = (Gpq(−t)X−1)kn.

Hence we compute: x′−1
kn =

n∑
j=k

(Gpq(−t))kjX−1
jn =

n∑
j=k

(δkj − tδpkδjq)(x−1
jn + δjn) = x−1

kn − tδkp(x
−1
qn + δqn),

where of course x′ depends on t ∈ R.
To prove the formula (57), we set X ′ = XGmm+1(s). We note that the

following identity holds:

(Umm+1(s, t)f) (x) = ∆it(x)∆−it(x′)f(x).

Hence we have to formally compute − ln ∆(x′). From the above discussion
follows that ln ∆ can be written as the sum of three different terms:

− ln ∆ =
∑

1≤k<m,n>m+1

bknwkn(x)+
∑
k<m

bkm+1wkm+1(x′)+
∑

n>m+1

bmnwmn(x′)

Note that the term with k = m,n = m+1 vanishes, because wmm+1(x) = 0.
First we consider the second term:

∑
k<m bkm+1wkm+1(x′) =

(61)∑
k<m bkm+1(x′km+1 − x

′−1
km+1)(x′km+1 + x′−1

km+1) =∑
k<m bkm+1(xkm+1 + sxkm − x−1

km+1)(xkm+1 + sxkm + x−1
km+1) =∑

k<m bkm+1wkm+1(x) +
∑

k<m bkm+1

(
2sxkmxkm+1 + s2(xkm)2

)
.
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The third term is as follows:
∑

n>m+1 bmnwmn(x′) =
(62)∑

n>m+1 bmn(x′mn − x′−1
mn)(x′mn + x′−1

mn) =∑
n>m+1 bmn(xmn − x−1

mn + sx−1
m+1n)(xmn + x−1

mn − sx−1
m+1n) =∑

n>m+1 bmnwmn(x) +
∑

n>m+1 bmn
(
2sx−1

mnx
−1
m+1n − s2(x−1

m+1n)2
)
.

After adding up the three terms we see formula (57) appear.
In order to get formulas (58) and (59) we note that multiplication from

the right by Gpm+1(s′) does not affect the formulas in (62). Hence only
the first term in (57) is transformed and namely (we set s = 1, t = 1, x′′ =
x′G1m+1(s′)):

i
∑

k<m bkm+1

(
2x′′kmx

′′
km+1 + (x′′km)2

)
=

i
∑

k<m bkm+1

(
2xkmxkm+1 + (xkm)2

)
+ 2is′b1m+1x1m,

and finally setting x′′ = xGpm+1(s′), 1 < p < m, we obtain

i
∑

k<m bkm+1

(
2x′′kmx

′′
km+1 + (x′′km)2

)
=

i
∑

k<m bkm+1

(
2xkmxkm+1 + (xkm)2

)
+ 2is′

(∑p−1
r=1 brm+1xrmxrp + bpm+1xpm

)
.

By subtracting the first term in each of the above formulas and expo-
nentiating the outcome, we can deduce (58) and (59), and conclude the
proof. �

To finish the proof of Lemma 2.19 we use induction. From equation
(58), we conclude that Q1mηM′ for any 1 < m. We proceed with the
induction step. Assume that QrmηM′, for 1 ≤ r < p. By Theorem 1.5 we
conclude that also 2i

∑p−1
r=1 brm+1Qrm .̂QrpηM′ (the sum being interpreted

as +̂). To be more precise, we consider the abelian algebra generated by
spectral projections of the operators Qrm, which is contained inM′. Hence
M′ contains one parameter groups

exp

(
−2is′(

p−1∑
r=1

brm+1Qrm .̂Qrp)

)
,

where p < m and hence, by multiplying with (59), we conclude that (after
rescaling the parameter) also exp(isQpm) ∈M′ for all s ∈ R. It follows that
QpmηM′. This proves Lemma 2.19. �

Since, TR,bt ∈M′ for all t ∈ BN
0 and the measure µb is ergodic, it follows

from Proposition 2.18 thatM is trivial. Finally, Theorem 2.15 implies that
AL,b and hence AR,b are type III1 factors. The interesting fact is that this
property does not depend on any further conditions of the measure µb other
than SLkn(b) < ∞ for all k < n ∈ N and E(b) < ∞. This also shows that
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the previously known sufficient conditions (28) (see Theorem 2.10), for AR,b

and AL,b to be factors, are not necessary.

6. Uniqueness of the constructed factor

Theorem 2.25. The von Neumann algebras AR,b and AL,b are hyperfi-
nite type III1 factors and hence isomorphic to the factor R∞ of Araki and
Woods.

Proof. Let G be a solvable separable locally compact group or a con-
nected locally compact group. Then any representation π of G in a Hilbert
space generates a hyperfinite von Neumann algebra (see Chapter 1, Corol-
lary 1.24).
The group BN

0 is the inductive limit of groups of finite dimensional upper-
triangular matrices (with units on the diagonal), which are of course solvable,
connected locally compact groups. Hence their group algebras are hyperfi-
nite (and by a theorem of Dixmier ([Dix59]) even type I algebras). Thus
the von Neumann algebra AR,b is the inductive limit of hyperfinite von Neu-
mann algebras and hence itself hyperfinite. From the theorem of Haagerup
(Chapter 1 Theorem 1.28) follows that AR,b and AL,b are all isomorphic to
the Araki-Woods factor R∞ (and hence are also Krieger factors). �



CHAPTER 3

Type III1 factors generated by regular
representations of the group BZ

0

The second group that we investigate here is similar to the group BN
0 ,

with the difference that the matrices can also have negative indices and
their limits go not only into the +∞ direction but also to −∞. This causes
additional problems in the proofs, which sometimes have to be solved with
different methods. In this chapter, we shall also prove that the corresponding
von Neumann algebras are type III1 factors. However, the method from the
previous Chapter, using the centralizer, does not work that well anymore
and we have to come up with another approach. Indeed, since we are dealing
with matrices which can also have negative indices, the sum in the formula
(57), will go down to k = −∞, instead of k = 1. This implies that the
operators (58) and (59) have infinite sums in the exponentials and can not
be used to extract the independent variables. To circumvent this problem, in
this Chapter rely on another invariant, namely the flow of weights invariant
from Definition 1.20 and prove that it is trivial for the von Neumann algebras
associated to the new group. Theorems 1.19 and 1.21 in Chapter 1 then
imply that AR,b and AL,b are type III1 factors.

1. Regular representations

Let us consider the group G̃ = BZ of all upper-triangular real matrices
of infinite order with units on the diagonal

G̃ = BZ = {I + x | x =
∑

k,n∈Z k<n
xknEkn},

and its subgroup

G = BZ
0 = {I + x ∈ BZ | x is finite},

where Ekn is an infinite-dimensional matrix with 1 at the place k, n ∈ Z
and zeros elsewhere, x = (xkn)k<n is finite means that xkn = 0 for all (k, n)

45
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except for a finite number of indices k, n ∈ Z.

. . .

1 x01 x02 x03 · · ·
0 1 x12 x13 · · ·
0 0 1 x23 · · ·
0 0 0 1 · · ·

. . .


Obviously, BZ

0 = lim−→n
B(2n−1,R) is the inductive limit of the group B(2n−

1,R) of real upper-triangular matrices with units on the principal diagonal
realized in the following form

B(2n− 1,R) = {I +
∑

−n+1≤k<r≤n−1

xkrEkr | xkr ∈ R} n ∈ N

with respect to the embedding B(2n − 1,R) 3 x 7→ x + E−n,−n + Enn ∈
B(2n+ 1,R).

We define the Gaussian measure µb on the group BZ in the following
way
(63)
dµb(x) =

⊗
k,n∈Z, k<n

(bkn/π)1/2 exp(−bknx2
kn)dxkn =

⊗
k,n∈Z, k<n

dµbkn(xkn),

where b = (bkn)k<n is some set of positive numbers bkn > 0, k, n ∈ Z.
Let us denote by R and L the right and the left action of the group

BZ on itself: Rt(s) = st−1, Lt(s) = ts, s, t ∈ BZ and by Φ : BZ 7→
BZ, Φ(I + x) := (I + x)−1 the inverse mapping. It is known [Kos01] that

Lemma 3.1. µRtb ∼ µb ∀t ∈ BZ
0 if and only if SRkn(b) < ∞, ∀k, n ∈

Z, k < n where

SRkn(b) =
k−1∑
r=−∞

brn
brk

.

Lemma 3.2. µLtb ∼ µb ∀t ∈ BZ
0 if and only if SLkn(b) < ∞, ∀k, n ∈

Z, k < n, where

SLkn(b) =
∞∑

m=n+1

bkm
bnm

.

Lemma 3.3. µ
LI+tEkn
b ⊥ µb ∀t ∈ R\{0} ⇔ SLkn(b) = ∞, k, n ∈ Z, k <

n.

Let us denote

(64) E(b) =
∑

k<n<r

bkr
bknbnr

, Em(b) =
∑

k<n<r≤m

bkr
bknbnr

, m ∈ Z.

Lemma 3.4. [KZ00] If E(b) <∞, then µΦ
b ∼ µb.
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Remark 3.5. [KZ00] If µΦ
b ∼ µb then µLtb ∼ µb ⇔ µRtb ∼ µb ∀t ∈ B

Z
0 .

Proof. This follows from the fact that the inversion Φ interchanges the
right and the left action: Rt ◦ Φ = Φ ◦ Lt ∀t ∈ BZ. Indeed, if we denote
µf (·) = µ(f−1(·)) we have (µf )g = µf◦g. Hence

µb ∼ µRtb ∼ (µRtb )Φ = µRt◦Φb = µΦ◦Lt
b = (µΦ

b )Lt ∼ µLtb , ∀t ∈ B
Z
0 .

�

Remark 3.6. We have

(65) E(b) =
∑
k<n

SLkn(b)
bkn

=
∑
k<n

SRkn(b)
bkn

, Em(b) =
∑

k<n≤m

SRkn(b)
bkn

.

Indeed ∑
k<n

SLkn(b)
bkn

=
∑
k<n

∞∑
r=n+1

bkr
bknbnr

=
∑

k<n<r

bkr
bknbnr

= E(b)

=
∑
n<r

1
bnr

n−1∑
k=−∞

bkr
bkn

=
∑
n<r

SRnr(b)
bnr

.

If µRtb ∼ µb and µLtb ∼ µb ∀t ∈ BZ
0 , one can define in a natural way (see

[Kos92]), an analogue of the right TR,b and the left TL,b regular represen-
tations of the group BZ

0 in the Hilbert space Hb = L2(BZ, µb)

TR,b, TL,b : BZ
0 → U(Hb = L2(BZ, µb)),

(TR,bt f)(x) = (dµb(xt)/dµb(x))1/2f(xt),

(TL,bs f)(x) = (dµb(s−1x)/dµb(x))1/2f(s−1x).

2. Von Neuman algebras generated by regular representations

Let AR,b = (TR,bt | t ∈ BZ
0 )′′ (resp. AL,b = (TL,bs | s ∈ BZ

0 )′′) be the von
Neumann algebras generated by the right TR,b (resp. the left TL,b) regular
representation of the group BZ

0 .

Theorem 3.7. [Kos01] If E(b) <∞ then µΦ
b ∼ µb. In this case the right

and the left regular representations are well defined and the commutation
theorem holds:

(66) (AR,b)′ = AL,b.

Moreover, the operator Jµb given by

(67) (Jµbf)(x) = (dµb(x−1)/dµb(x))1/2f(x−1)

is an intertwining operator:

TL,bt = JµbT
R,b
t Jµb , t ∈ B

Z
0 and JµbA

R,bJµb = AL,b.
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If µRtb ∼ µb ∀t ∈ BZ
0 but µLtb ⊥ µb ∀t ∈ BZ

0 \{e} one can’t define the
left regular representation of the group BZ

0 . Moreover the following theorem
holds

Theorem 3.8. [Kos01] The right regular representation TR,b : BZ
0 →

U(Hb) is irreducible if
1) µLsb ⊥ µb ∀s ∈ B

Z
0 \{0},

2) the measure µb is BZ
0 right-ergodic.

3) σkn(b) =∞, ∀k < n, k, n ∈ Z where

σkn(b) =
∞∑

m=n+1

b2km
[SRkm(b) + bkm][SRnm(b) + bnm]

.

Remark 3.9. We do not know whether the Ismagilov conjecture holds
in this case, namely, whether conditions 1) and 2) of the theorem are the
criteria of the irreducibility of the representation TR,b of the group BZ

0 as
holds for example for the group BN

0 (see [Kos92]).

Remark 3.10. We do not know the criterion of the BZ
0 -ergodicity of the

measure µb on the space BZ. Sufficient conditions are Em(b) <∞, ∀m ∈ Z
([Kos01]).

Corollary 3.11. The von Neumann algebra AR,b is a type I∞ factor
if the conditions of Theorem 3.8 are valid.

Let us assume now that µLtb ∼ µb ∼ µRtb ∀t ∈ B
Z
0 . In this case the right

regular representation and the left regular representation of the group BZ
0

are well defined.
In the case when the representation TR,b is reducible, we shall prove

in this Chapter that all the corresponding algebras are also factors (in the
case that E(b) < ∞). Until now there existed only sufficient conditions on
the measure for the factor property to hold ([KZ00]). Let us review them
briefly.

Since TL,bt ∈ (AR,b)′ ∀t ∈ BZ
0 , we have AL,b ⊂ (AR,b)′, hence

(68) AR,b ∩ (AR,b)′ ⊂ (AL,b)′ ∩ (AR,b)′ = (AR,b ∪ AL,b)′.

The last relation shows that AR,b is factor if the representation

BZ
0 ×BZ

0 3 (t, s)→ TR,bt TL,bs ∈ U(Hb)
is irreducible. Let us denote

SR,Lkn (b) =
∞∑

m=n+1

b2km
[SRkm(b) + bkm][SLnm(b) + SRnm(b)]

, k < n.

Theorem 3.12. [KZ00] The representation

BZ
0 ×BZ

0 3 (t, s)→ TR,bt TL,bs ∈ U(Hb)

is irreducible if SR,Lkn (b) = ∞, ∀k < n and the measure µb is BZ
0 right-

ergodic.
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Corollary 3.13. The von Neumann algebra AR,b is a factor if SR,Lkn (b) =
∞∀k < n and the measure µb is BZ

0 right-ergodic.

3. Examples

In this section we give an example of a measure µb, b = (bkn)k<n for
which the the representations TR,b and TL,b are reducible and the von Neu-
mann algebras AR,b and AL,b are well defined.

We show that the set b = (bkn)k<n for which

(69) SRkn(b) <∞, SLkn(b) <∞, E(b) <∞, k < n,

where

SRkn(b) =
k−1∑
r=−∞

brn
brk

, SLkn(b) =
∞∑

m=n+1

bkm
bnm

, E(b) =
∑
k<n

SLkn(b)
bkn

,

is not empty.
In the example 1 below for the particular case bkn = (ak)n we give some

sufficient conditions on the sequence an implying conditions (69).
Example 1. Let us take bkn = (ak)n, k, n ∈ Z.
We have

(70) SRkn(b) =
k−1∑
r=−∞

brn
brk

=
k−1∑
r=−∞

an−kr <∞ if
0∑

r=−∞
ar <∞,

(71)

SLkn(b) =
∞∑

m=n+1

(
ak
an

)m
=
(
ak
an

)n+1 ∞∑
m=0

(
ak
an

)m
=
(
ak
an

)n+1 1
1− ak

an

<∞,

iff ak < ak+1, k ∈ Z. Finally we get

E(b) =
∞∑

k=−∞

∞∑
n=k+1

SLkn(b)
bkn

=
∞∑

k=−∞

∞∑
n=k+1

(
ak
an

)n+1 1
1− ak

an

1
ank

=

∞∑
k=−∞

ak

∞∑
n=k+1

(
1
an

)n+1 1
1− ak

an

<
∞∑

k=−∞

ak
1− ak

ak+1

∞∑
n=k+1

(
1
an

)n+1

<

∞∑
k=−∞

ak
1− ak

ak+1

∞∑
n=k+1

(
1

ak+1

)n+1

=
∞∑

k=−∞

ak
1− ak

ak+1

(
1

ak+1

)k+2 1
1− 1

ak+1

=

∞∑
k=−∞

ak
ak+1(

1− ak
ak+1

)2

(
1

ak+1

)k+1

.

Example 2. Let us take bkn = (ak)n, k, n ∈ Z where ak = sk, k ∈ Z
with s > 1.
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Conditions (69) hold for ak = sk. By (70) and (71) we have

SLkn(b) =
(
ak
an

)n+1 1
1− ak

an

=
(

1
sn−k

)n+1 1
1− 1

sn−k

∼
(

1
sn−k

)n+1

,

SRkn(b) =
k−1∑
r=−∞

an−kr =
k−1∑
r=−∞

sr(n−k) =
∞∑

r=1−k

1
sr(n−k)

=

(
1

sn−k

)1−k 1
1− 1

sn−k

∼ s(n−k)(k−1),

since
1 <

1
1− 1

sn−k

<
1

1− 1
s

.

Using the latter equivalence we conclude that E(b) <∞. Indeed we have

E(b) =
∞∑

k=−∞

∞∑
n=k+1

SLkn(b)
bkn

∼
∞∑

k=−∞

∞∑
n=k+1

1
s(n−k)(n+1)

1
skn

=
∞∑

k=−∞
sk

∞∑
n=k+1

1
sn(n−1)

=
∞∑

k=−∞
sk
∞∑
n=0

1
s(n+k+1)(n+k+2)

<
∞∑

k=−∞
sk

1
s(k+1)(k+2)

∞∑
n=0

1
sn

=
1

1− 1
s

∞∑
k=−∞

1
s(k+1)2+1

<∞.

4. The type III1 factors

Let AR,b (resp. AL,b) be the von Neumann algebra generated by the
right regular representation TR,b (resp. the left regular representation TL,b)
of BZ

0 . Moreover, assume that the conditions (69) hold. In this section we
want again to prove that AR,b and AL,b are type III1 factors.

Lemma 3.14. Assume E(b) <∞. The constant function 1 ∈ L2(BZ, dµb)
is cyclic and separating for AR,b and AL,b.

Proof. First we note that if 1 is cyclic for one of the algebras it is
necessarily cyclic for its commutant, since E(b) <∞ (by the same argument
as in Lemma 2.12 in Chapter 2). Now we prove that 1 is cyclic for AR,b. We
use a method similar to the one in the proof of the ergodicity of the measure
µb in [Kos01], Lemma 4.

For any m ∈ Z we define the subgroups Bm and B(m) of the group BZ

as follows:
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Bm := {1 + x ∈ BZ;x =
∑

k<n≤m
xknEkn},



. . .
...

...
...

...
...

... . .
.

1 xm−3m−2 xm−3m−1 xm−3m 0 0 · · ·
0 1 xm−2m−1 xm−2m 0 0 · · ·
0 0 1 xm−1m 0 0 · · ·
0 0 0 1 0 0 · · ·
0 0 0 0 1 0 · · ·

. . .


B(m) := {1 + x ∈ BZ;x =

∑
k<n,n>m

xknEkn}.



. . .
...

...
...

...
...

... . .
.

1 0 0 xm−2m+1 xm−2m+2 xm−2m+3 · · ·
0 1 0 xm−1m+1 xm−1m+2 xm−1m+3 · · ·
0 0 1 xmm+1 xmm+2 xmm+3 · · ·
0 0 0 1 xm+1m+2 xm+1m+3 · · ·
0 0 0 0 1 xm+2m+3 · · ·

. . .


Obviously, BZ is a semi-direct product of the two groups above (B(m) is a
normal subgroup of BZ) for any m:

BZ = B(m) oBm.

Let µb,(m), µ
m
b be the projections of the measure µb on the above groups:

µmb :=
⊗

k<n≤m µbkn , µb,(m) :=
⊗

k<n,n>m µbkn .

Furthermore let B0,(m), B
m
0 be the intersection of the above groups with BZ

0 .
Now, fix an m ∈ Z and consider a function f ∈ L2(BZ, dµb). Further,

suppose that

(72) (f, a1) = 0, ∀a ∈ AR,b.

First we note that the points of B(m) are invariant under the right action
Rt for all t ∈ Bm

0 . Indeed, we have for t ∈ Bm
0

(xt)kn =
n−1∑
j=k+1

xkjtjn = xkn, n > m,

since tkn = δkn for n > m.
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We have for t ∈ Bm
0

0 = (f, TR,bt 1)

=
∫ ∫

f(yx)TR,bt 1(yx)dµb,(m)(y)dµm(x)

=
∫
Bm

fm(x)TR,bt 1(x)dµm(x),

where

fm(x) :=
∫
B(m)

f(yx)dµb,(m)(y).

We have

(73) (fm, T
R,b
t 1)m = 0, ∀t ∈ Bm

0 ,

where (., .)m denotes the restriction of the inner product (., .) to L2(Bm, dµmb ).
Next, we define a bijection Ψ : Bm 7→ Bm, where Bm is the group

Bm := {1 + x;x =
∑

m≤k<n
xknEkn} ∼= BN,

x′kn = (Ψ(x))kn := x2m−n2m−k.

Note that Ψ are reflections around the axis k = −n + m and if m = 0,
x′kn = x−n−k. Now we continue with the equation (73):

0 = (fm, T
R,b
t 1)m

=
∫
Bm

fm(x)

√
dµmb (xt)
dµmb (x)

dµmb (x)

=
∫
Bm

fΨ
m(x′)

√√√√dµm,Ψb (t′x′)

dµm,Ψb (x′)
dµm,Ψb (x′),

where fΨ
m := fm ◦ Ψ and µm,Ψb (I) = µmb (Ψ(I)) for each Borel set I. Since

this holds for all t ∈ Bm
0 and hence all t′ ∈ B0,m and Bm ∼= BN,

0 =
∫
BN
fΨ
m(x)TL,bt 1dµb(x) = (fΨ, TL,bt 1)N,

where more precisely, fΨ
m is interpreted as its image under the isomorphism

form Bm to BN and (., .)N is the inner product on L2(BN, dµb). It also
follows (after taking the linear span and weak limits) that

(fΨ
m, a1)N = 0, ∀a ∈ AL,b,N,

where AL,b,N are the algebras from the previous Chapter. But 1 is cyclic for
AL,b,N, by Lemma 2.12 in Chapter 2 and hence fΨ

m(x′) = 0 for all x′ ∈ Bm.
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Since Ψ is a bijection, also fm = 0 follows. This holds for all m ∈ Z, because
we chose m arbitrarily.

From the definition of fm follows that fm → f , when m → ∞ in
L2(BZ, dµb) (see [Kos01], Corollary 1). Thus fm = 0 for all m ∈ Z im-
plies f = 0. Since f was arbitrary, from equation (72) follows that the set
AR,b1 is dense in L2(BZ, dµb) and hence 1 is cyclic for AR,b.

�

Thus we can define the modular operator and conjugation using the
method in Chapter 2, Section 3:

∆(f)(x) =
dµb(x)
dµb(x−1)

f(x),

(Jf)(x) =

√
dµb(x−1)
dµb(x)

f(x−1),

for f ∈ L2(BZ, dµb). Now we state the main theorem of this section.

Theorem 3.15. Consider the von Neumann algebra AR,b generated by
the right regular representation TR,b of BZ

0 . Assume that E(b) < ∞. Let
φ(a) = (1, a1) be the faithful normal state on AR,b, associated to the cyclic
and separating vector 1, and ∆ the corresponding modular operator. Then
AR,b is a type III1 factor. The same holds for AL,b.

First we note that we can not, strait forwardly, implement the method
used for the BN

0 case. Of course we can consider the centralizer A
L,b
φ which

will be equal to
{∆is, TR,bt ; s ∈ R, t ∈ BZ

0 }′.
However, since we are dealing with matrices which can also have negative
indices, the sum in the formula (57), will go down to k = −∞, instead of
k = 1. This will imply that the operators (58) and (59) will have infinite
sums in the exponential and can not be used to extract the independent
variables. Hence we have to find another method in order to prove the
above theorem. Luckily, there is another approach to the classification of
type III factors, namely using the flow of weights invariant introduced in
Chapter 1, definition 1.20.

We define N to be the crossed product of AR,b with R, w.r.t. the mod-
ular evolution σt. Note that it acts on the Hilbert space L2(BZ, dµb) ⊗
L2(R, dm) = L2(BZ × R, dµb ⊗ dm), where m is the Lebesgue measure on
R. Then the non-commutative flow of weights is given by the pair (N , σ̂)
where σ̂ is the dual action of the modular group σ (Chapter 1, Definition
1.17).

In what follows, we shall prove that the flow of weights (CN , θ) is trivial.
This implies that N is a factor. First of all, since CAR,b = CθN , where θ = σ̂

(Theorem 1.19 in Chapter 1), the triviality of CN implies that AR,b (and
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hence also AL,b) is a factor. Moreover, by Theorem 1.21 in Chapter 1, AR,b

and AL,b are of type III1.

Remark 3.16. To be more precise, the factor property of N implies that
the factor AR,b⊗B(L2(R)) is of type III1. Indeed, from the definition of N
above and the duality theorem of Connes and Takesaki stated in Chapter 1
(theorem 1.18), follows that N oθ R ∼= AR,b⊗B(L2(R)). However, the same
must hold for AR,b as well, since a type III factor can not be obtained from
a non-type III by tensoring it with a type I factor.

Let W be the operator defined by

(74) Wf(x, t) = ∆−it(x)f(x, t).

Then πσ(AR,b) = WAR,bW ∗ and πσ(ρ) = WρW ∗. Therefore

N := AR,b oσ R = (WAR,bW ∗ ∪ λ(R))′′.

By Theorem 1.14 in Chapter 1 (here we set {ρ, V,K} = {1,∆it,H}), and
since CN = N ∩N ′ = (N ′ ∪N )′, we have:

(75) C′N = (πσ(AR,b) ∪ AL,b ∪ λ(R) ∪ πσ(ρ(R)))′′

Again, we would like to prove the triviality of CN by showing that the
independent variables xkn and now also t, in the space L2(BZ×R, dµb⊗dm),
are affiliated to C′N . This, by Proposition 2.18, would imply the triviality of
CN .

Lemma 3.17. Let Qkn and Qt be the multiplication operators

(Qknf)(x, t) := xknf(x, t),

(Qtf)(x, t) := tf(x, t), f ∈ L2(BZ × R, dµb ⊗mt).

Then
eiQkns, eiQts ∈ C′N ,

for all s ∈ R, k < n ∈ Z.

Proof. From (75) we see that C′N contains the following set of elements:

(76)
(
WTR,bu W ∗, TL,bu , λ(s),Wρ(s)W ∗;u ∈ BZ

0 , s ∈ R
)
.

Now again there are two possible methods to prove the Lemma. As already
discussed in the proof of Lemma 2.19 from Chapter 2, using generators of
one-parameter groups and their commutators needs extra attention when
it comes to dealing with domains of unbounded operators. Hence we shall
use the second approach for the proof of the Lemma. First, we shall prove
some intermediate results. Denote TL,bpq (s) := TL,b1+sEpq

, TR,bpq (s) := TR,b1+sEpq

and Vpq(s) := WTR,b1+sEpq
W ∗.
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Lemma 3.18. Let Urm(s) ∈ C′N be the operators defined by

(Urm(s)f) (x, t) :=
(
TL,brm+1(−1)V R,b

mm+1(s)TL,brm+1(1)V R,b
mm+1(−s)f

)
(x, t),

where f ∈ L2(BZ × R, dµb ⊗ dm) and s ∈ R. Then

(Urm(s)f) (x, t) = exp (istxrm) f(x, t),∀t, s ∈ R, x ∈ BZ.

Thus, by applying Urm(−s)Adλ(1) and Urm(−s)Ad
TL,brm (1)

to Urm(s) one ob-
tains one-parameter groups generated by the independent variables t and
xrm, r < m ∈ Z, where AdT (X) = TXT−1.

Proof. We begin by showing that Urm(s) only involves transforms of
∆it. Fix s ∈ R and define:

x′ := x(1 + sEmm+1),
′x := (1 + Erm+1)x,
′x′ := (1 + Erm+1)x(1 + sEmm+1).

We have (Urm(s)f)(x, t) =(
TL,brm+1(−1)WTR,bmm+1(s)W ∗TL,brm+1(1)WTR,bmm+1W

∗f
)

(x, t)

=
√

dµb(′x)
dµb(x) ∆−it(′x)

√
dµb(′x′)
dµb(′x) ∆it(′x′)

√
dµb(x′)
dµb(′x′)

∆−it(x′)
√

dµb(x)
dµb(x′)

∆it(x)f(x, t)

= ∆−it(′x)∆it(′x′)∆−it(x′)∆it(x)f(x, t).

Recall that
− ln ∆(x) =

∑
k,n∈Z,k<n

bknwkn(x).

The formal computation of ∆−it(x′) is the same as in Lemma 2.24 in Chapter
2, except that the sums here are also infinite in the negative direction. Hence

(77)

∆it(x)∆−it(x′) =

exp
(
it
∑m−1

k=−∞ bkm+1(2sxkmxkm+1 + s2(xkm)2
)

+it
∑∞

n=m+2 bmn
(
2sx−1

mnx
−1
m+1n − s2(x−1

m+1n)2
)

The next step is to compute ∆−it(′x)∆it(′x′). Hence we have to compute the
left action of the one-parameter groups Gpq(s), s ∈ R on X ∈ BZ, X = 1+x.
(78)

(Gpq(s)X)kn =
n−1∑
r=k+1

(δkn + sδpkδqr) (xrn + δrn) = xkn + sδkp (xqn + δqn) .

In order to caculate (′x)−1 we note that (Gpq(s)X)−1 = X−1Gpq(−s) (Gpq(s)
are one-parameter groups). Thus

(79) (′x)−1
kn = x−1

kn − sδqn(x−1
kp + δkp)
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In order to get ∆−it(′x)∆it(′x′), we have to substitute ′x for x and −t for
t in formula (77). According to equation (78) only the row with number r
of x is affected by the left Grm+1(1)-action. Moreover, (Gpq(s)X)kn = Xkn,
for q > n. Similarly, only the column with number m + 1 of the inverse of
Grm+1(1)X is affected. Hence we obtain

∆−it(′x)∆it(′x′) =

exp{−it
∑m−1

k=−∞ bkm+1(2s(′x)km(′x)km+1 + s2((′x)km)2)

−it
∑∞

n=m+2 bmn(2s(′x)−1
mn(′x)−1

m+1n − s2((′x)−1
m+1n)2} =

exp{−it
∑m−1

k=−∞ bkm+1(2sxkmxkm+1 + s2(xkm)2)

−it
∑∞

n=m+2 bmn(2sx−1
mnx

−1
m+1n − s2(x−1

m+1n)2)

−2isbrm+1txrm}.
Therefore

(Urm(s)f) (x, t) = e−2ibrm+1stxrmf(x, t).
Since the left regular representation of R, λ(s), is in C′N for all s ∈ R

we can translate the operator Urm(s) by 1 and obtain the variables xrm.
Similarly, we can use TL,brm (1) to get the variable t:

(80) (Urm(s)λ(1)Urm(−s)λ(−1)f) (x, t) = eisbrm+1xrmf(x, t),

(81)
(
Urm(s)TL,brm (1)Urm(−s)TL,brm (−1)f

)
(x, t) = eisbrm+1tf(x, t).

�

From the equations above we see that (after rescaling the parameter)
the one-parameters groups generated by multiplications with the indepen-
dent variables xrm, r,m ∈ Z, r < m and t are contained in C′N . Hence
Qrm, Qt η C′N , which proves Lemma 3.17. �

Again, we note that TL,bt ∈ C′N for all t ∈ BZ
0 and that the measure µb

is ergodic (this is implied by the condition E(b) < ∞, see Remark 3.10).
From Lemma 3.17 above and Proposition 2.18 in Chapter 2 follows that
CN = C.1. Hence AR,b and AL,b are type III1 factors.

5. Uniqueness of the constructed factor

Theorem 3.19. The von Neumann algebras AR,b and AL,b are hyperfi-
nite type III1 factors and hence isomorphic to the factor R∞ of Araki and
Woods.

Proof. See Theorem 2.25 from Chapter 2 (and replace BN
0 by BZ

0

there). �



APPENDIX A

Locally convex Topologies on B(H)

In this appendix we give a quick review of different locally convex topolo-
gies on B(H). For more details and proofs we refer to e.g. [BR79]. Recall
that a locally convex topology on a vector space X is defined in terms of a
family of semi-norms, that are real valued functions p on X satisfying

p(a+ b) ≤ p(a) + p(b), a, b ∈ X,
p(λa) = λp(a), λ ≥ 0

Let {pi} be a family of semi-norms. Then the neighborhoods of zero that
define the locally convex topology are give by

N(p1, ..., pn; 0) := {x ∈ X; pi(x) < 1, i = 1, ..., n}.

The existence of continuous functionals in such a topology is guaranteed by
the well-known Hahn-Banach theorem (e.g. [Rud73], Theorem 3.2).

Theorem A.1 (Hahn-Banach). Let X be a real vector space and p a
semi-norm. Further, let Y be a subspace of X and f a real-valued functional
on Y satisfying

f(a) ≤ p(a), a ∈ Y
It follows that f has a real linear extension F to X such that

F (a) ≤ p(a), a ∈ X.

Now we define a number of locally convex topologies on B(H). They
are the strong, σ-strong, weak, σ-weak and the uniform topologies. The
uniform topology is of course the norm topology defined by the norm ‖a‖ =
sup‖ξ‖=1 ‖aξ‖. We shall discuss these topologies from a practical point of
view needed to study von Neumann algebras. There is a beautiful theory of
locally convex topologies on vector spaces, a treatise of which can be found
in [Gro73].

Strong and σ-strong topologies. If ξ is in H then pξ : a 7→ ‖aξ‖ is
a semi-norm on B(H). The family of semi-norms {pξ}ξ∈H defines a locally
convex topology called the strong topology on B(H).

Now consider the function

(82) pξn : a 7→

(∑
n

‖aξn‖2
)1/2

,

57
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where {ξn} ∈ l2(H). The topology defined by {pξn} is called the σ-strong
topology. The latter topology is finer than the strong one, but they coincide
on the unit sphere of B(H).

Weak and σ-weak topologies. To define the next two topologies we
consider on one hand pairs of vectors (η, ξ) and on the other hand sequences
({ηn}, {ξn}), where η, ξ ∈ H and {ηn}, {ξn} ∈ l2(H). Then we define the
weak and σ-weak topologies by the semi-norms:

Weak: pη,ξ(a) = (η, aξ)

σ-weak: pηn,ξn(a) =
∑
n

|(ηn, aξn)|

Again, the σ-weak topology is finer than the weak, but they coincide on
the unit sphere, which is then compact in these topologies. Moreover, the
mappings a 7→ ab, a 7→ ba and a 7→ a∗ are continuous in the weak topology,
but the multiplication is not jointly continuous (for H infinite-dimensional).

If we consider a locally convex space X, there is a dual space X∗ as-
sociated to it. We can then introduce a topology on X∗ coming from the
X topology. In such a way we define the weak∗ topology on X∗ by the
neighborhoods of a point ω ∈ X∗

N(ω, a1, ..., an, ε) := {ω′ ∈ X∗; |ω′(ai)− ω(ai)| < ε, i = 1, 2, ..., n},
for a1, a2, ..., an ∈ X and ε > 0.

One can prove the following duality result:

Theorem A.2 ([BR79]). Let Tr be the usual trace on B(H), and let
B1(H) be the Banach space of trace-class operators on H equipped with the
norm ‖.‖Tr : t 7→ Tr(|t|). Then it follows that B(H) is the dual B1(H)∗ of
B1(H) by the duality

a× t ∈ B(H)×B1(H) 7→ Tr(at).

The weak∗ topology on B(H) arising from this duality is just the σ-weak
topology.

Definition A.3. The space B1(H) is called the predual of B(H) and
is denoted by B(H)∗. By the above theorem it is the space of all σ-weakly
continuous functionals. Moreover, (B(H)∗)∗ = B(H).

Although, the definitions of the above topologies are different, they give
rise to the same closures of ∗-subalgebras of B(H) (except the uniform topol-
ogy). A ∗-subalgebra of B(H), closed in the uniform topology, is called a
(concrete) C∗-algebra. A weakly closed ∗-subalgebra of B(H) is called a von
Neumann algebra. Moreover the following theorem, also refered to as the
von Neumann bicommutant theorem, holds:

Theorem A.4. Let M be a ∗-subalgerba of B(H). Then the following
are equivalent

(1) M′′ =M,
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(2) M is weakly closed,
(3) M is strongly closed,
(4) M is σ-weakly closed,
(5) M is σ-strongly closed,

where M′ := {a ∈ B(H); am = ma,∀m ∈M} is the commutant of M.

The theorem above allows us to give an algebraic definition of a von
Neumann algebra, namely a ∗-subalgebraM of B(H) which is closed under
taking the double commutant:

M′′ =M.





APPENDIX B

Spectral theory of Automorphism Groups

In this Appendix we review some Spectral theory of automorphism
groups, which is needed for this dissertation. A detailed discussion can
be found in e.g. [Tak03a] Chapter XI. The following discussion is mainly
based on [Bau95], Section 1.8 .

First we define the spectrum of a unitary representation of a locally
compact group, also called the Arveson spectrum. LetG be a locally compact
group, M a von Neumann algebra on H and α an automorphic action of G
on M. Then we define the Arveson spectrum as follows:

Sp(αG) := {ξ ∈ Ĝ; if α(f) = 0 then f̂(χ) = 0,∀f ∈ L1(G)},
where

f̂(χ) :=
∫
G
f(g)χ(g)dg,

α(f) :=
∫
f(g)αgdg

Hence, α(f)(a) =
∫
f(g)αg(a)dg, a ∈M and α(f) = 0 means that α(f)(a) =

0 for all a ∈M.
Assume that α is implemented by unitary operators U(g). Let η ∈ H be

cyclic and separating w.r.t. M and assume U(g)η = η for all g ∈ G. In this
case the definition of the spectrum above becomes that of the spectrum of
U(G), which is just the support of the spectral measure E(.) of U(G) where

U(g) :=
∫
Ĝ
χ(g)E(dχ).

Moreover Sp(αG) has also the following properties:
(1) j ∈ Sp(αG), where j is the unit character of G, j(g) = 1 for all

g ∈ G,
(2) Sp(αG) = (Sp(αG))−1.

Assume now that we are dealing with the group G = R and α is the modular
automorphism group of M w.r.t. a cylic and separating vector η. We
introduce two new concepts, which are important for the study of Arveson
spectrum of αR. They are respectively the spectrum of an element of M
w.r.t. α and that of spectral subspaces in M w.r.t. α and depending on a
Borel set in R:

Spα(m) := {λ ∈ R;α(f) = 0⇒ f̂(λ) = 0, f ∈ L1(R, dt)}, m ∈M
M(α, I) := {m ∈M;Spα(m) ⊆ I}, I ⊂ R.
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Spα(m) has the following properties:
(1) For each m ∈M, Spα(m) = supp(mη,E(.)mη),
(2) Sp(α) = {∪m∈MSpα(m)}
(3) One has Spα(m) = Spα(αt(m)) for all t ∈ R,

where E(.) is the projection valued spectral measure of ∆it.
We recall the concept of spectral subspaces E(I)H of a unitary group

U(R) depending on a Borel set I ⊂ R. The spectral subspaces in a von
Neumann algebra defined above are closely related to the latter:

(83) M(α, I) = {m ∈M;mη ∈ E(I)H}.

Indeed, we have

m ∈M(α, I) ⇔ supp(mη,E(.)mη) ⊆ I

⇔
∫

R\I
(mη, dE(λ)mη) = 0

⇔ ‖(1− E(I))mη‖2 = 0.

Thus, E(I)mη = mη and this means mη ∈ E(I)H.
The spectral subspaces of α are related to the spectrum of α as follows:

Lemma B.1. The following holds: λ ∈ Sp(α) if and only if {0} (
M(α, V (λ)) for each open neighborhood V (λ) of λ.

For a set I ⊂ R that does not intersect Sp(α), M(α, I) = {0} holds.
Indeed, in the this case E(I) = 0 and hence (mη,E(I)mη) = 0 for all
m ∈M and hence there is no m 6= 0 such that supp(mη,E(.)mη) ⊆ I.

Moreover, for a single point λ in Sp(α), which is isolated {0} ( M(α, {λ})
still holds. This follows from the fact that {λ} is the intersection of all the
open sets containing it, equation (83) and the lemma above. Finally we
establish the following corollary.

Corollary B.2. If λ is an isolated point of Sp(α), there is 0 6= m ∈M
such that

αt(m) := ∆itm∆−it = eitλm, t ∈ R

Proof. By the above considerations we have that {0} ( M(α, {λ}),
i.e. there is an 0 6= m ∈ M such that mη ∈ E({λ})H. But E({λ})H is the
subspace of all eigenvectors of ln ∆, w.r.t. λ. Hence

∆itm∆−itη = ∆itmη = eitλmη.

Now, ∆itm∆−it ∈ M for all t ∈ R and since η is separating for M (which
is equivalent to aη = o⇒ a = 0), the proof is concluded. �

To conclude this Appendix we mention a sufficient condition for the
additivity of Sp(α) (which is an important fact for the classification of type
III factors).
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Theorem B.3. Let (M, η) be as above and α an automorphic action of
R on M. Assume that α acts ergodically on M, i.e. Mα = C.1. Then
Sp(α) is additive, i.e. λ1, λ2 ∈ Sp(α) implies λ1 + λ2 ∈ Sp(α).
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