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Introduction

Concordance model of cosmology

Recent years have brought rapid progress in observational cosmology, establishing it
as a precision science where cosmological parameters can be determined to a high
accuracy. The reason for this dramatic improvement is twofold: on the one hand,
advances in observational techniques have produced a wealth of data and, on the other
hand, cosmologists have developed a consistent theoretical framework to interpret
them over the last decades. As a result, the combination of measurements from type
Ia supernovae (SN), cosmic microwave background (CMB) anisotropies and baryon
acoustic oscillations (BAO) leads to the current paradigm of an accelerating flat ACDM
model in which the Universe is composed of 5% baryons, 23% dark matter and 72%
dark energy [47]. In spite of these successes, the current cosmological model raises a
number of issues: we have only limited knowledge of the physical nature of the two dark
components, which together account for 95% of the energy content of the Universe.
Whereas particle physicists came up with several possible dark matter candidates, we
literally grope in the dark with an explanation for dark energy. Is it a cosmological
constant, is it a new kind of field that evolves dynamically with the expansion of the
Universe or is a new law of gravity needed? Apart from these fundamental physical
questions, we need to refine our current theory for the origin and evolution of cosmic
structure. Are the initial perturbations indeed randomly distributed as suggested by
standard inflationary models, how can we explain the diversity of galaxies and the
complex processes involved in their formation and how does gravitational clustering
work on small scales?

Large-scale structure

One way to tackle these problems is to investigate the large scale distribution of
(dark) matter in the Universe in more detail. It contains valuable information about
fundamental cosmological parameters, the properties of dark matter and the formation
processes of structure. If we study the distribution of matter at different redshifts,
we can learn more about the nature of dark energy e.g. through the way it affects
the growth of structure. The most promising way to retrieve this information from
large-scale structure is to use a statistical approach and consider quantities such as
the matter density and velocity as random fields. The present Universe can then
be interpreted as one realization of this matter random field whose properties are
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Figure 0.1: Strong lensing effects in the galaxy cluster Abell 2218 as seen by the Hubble
Space Telescope (HST). (Source: NASA, A. Fruchter and the ERO team)

characterized by its moments. The most important moment in cosmology is the second
order moment or - transformed to Fourier space - the power spectrum, as it contains
all the information for Gaussian fields and matter is assumed to be initially Gaussian
distributed. Since the processes that lead to the formation of structure are non-
linear, they inevitably produce non-Gaussianities in the matter density field. In order
to use the encoded information in the non-Gaussianities to constrain cosmological
parameters, we need to measure higher-order moments and have a good theoretical
understanding of the underlying mechanisms that lead to them.

Cosmic shear

An important tool to probe the large-scale structure of the Universe and to estimate
cosmological parameters is provided by weak gravitational lensing. It describes the
coherent distortion of light coming from distant galaxies caused by matter inhomo-
geneities on very large cosmological scales. Since gravitational light deflection occurs
independent of the specific type of matter, weak lensing provides a unique tool to
study dark matter and the distribution of large-scale structure in the Universe. For
cosmological purposes, the most important effect of gravitational light deflection is
that it causes distortions in the original shape of distant galaxies. These are typically
much smaller than the intrinsic ellipticity of a galaxy and cannot be determined from
a single galaxy image. Visible effects such as arcs (see Fig. 0.1) occur only in the
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Figure 0.2: FEzample of a projected mass distribution and the cosmic shear field induced
as obtained from ray-tracing through the Millennium Run simulation (Source: S. Hilbert, J.
Hartlap). The white sticks are a measure of the magnitude and direction of the local shear.
Note the alignment of the shear to the foreground mass overdensities (green areas).

strong lensing regime, when very massive objects as e.g. galaxy clusters are involved.
To quantify the weak lensing effect nevertheless, cosmologists use high-quality images
of a large number of distant galaxies and average over their shapes. The observational
signal of interest has become known as cosmic shear and was first detected in 2000
by four independent groups (Bacon et al. [3], Kaiser et al. [42], Van Waerbeke et al.
[85], Wittman et al. [89]). Since the intrinsic galaxy ellipticities are expected to vanish
on average, the result is a direct measure of the projected mass density distribution in
the observed patch of sky. This allows us to find constraints on cosmological parame-
ters that are independent of and complementary to those found by other measurements
such as CMB anisotropies, SN type Ia or galaxy surveys. Due to its sensitivity on
the matter distribution on large scales it provides valuable constraints on the amount
of matter in the Universe and the dark matter power spectrum normalization. If one
determines the cosmic shear for source galaxies at different redshifts, it can be used
to probe dark energy as well. This is due to two factors: on the one hand dark energy
affects the cosmic shear geometrically in the sense that the amount of dark energy
determines the distance to the observed galaxies, on the other hand it influences the
growth of structure which can be seen in the evolution of the matter power spectrum.

Higher-order moments

So far, cosmic shear has been used to measure the convergence power spectrum and
parameter constraints have been based on the Gaussian approximation of the power
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spectrum covariance. The next generation of surveys will allow much more precise
measurements of weak lensing effects, which will enable cosmologists to determine
higher-order moments of the matter density field. For this reason, it is important to
have a good understanding of the underlying physics and the expected errors. In this
thesis, we focus on the fourth-order correlation function and its Fourier counterpart,
the trispectrum, since it allows us to study the non-Gaussianities of the matter density
field. Furthermore, it enables us to study the expected error in the power spectrum,
since we can use the trispectrum to calculate the full non-Gaussian covariance of the
power spectrum. In order to find an analytical expression for the trispectrum, we
apply the semi-analytic halo model [17, 74]. Tt assumes that all dark matter in the
Universe is bound in spherical halos and makes use of results from numerical N-body
simulations to characterize halo properties as their profile, abundance and clustering
behavior. The results we find from investigating the full non-Gaussian covariance of
the projected power spectrum within the halo model approach are finally compared
to the results found with numerical N-body simulations.

Overview

The calculation of the non-Gaussian covariance requires detailed background knowl-
edge of structure formation in a ACDM Universe. The topics which are most impor-
tant for this thesis are reviewed in the first four chapters. New results can be found
in Chapters 5 and 6. The thesis is organized as follows:

e Chapter 1 gives an overview of the standard Hot Big-Bang model and its short-
comings and summarizes the most important equations that are necessary for
describing structure formation in a ACDM Universe.

e Chapter 2 outlines how the equations of motion in structure formation can be
solved analytically using linear and weakly non-linear perturbation theory.

e Chapter 3 introduces the formalism of random fields and considers the prop-
erties of homogeneous, isotropic and Gaussian random fields. Additionally, we
consider how one obtains an estimate of a statistical quantity from a sample of
measurements and the accuracy one can expect.

e Chapter 4 provides a detailed overview of the halo model description of matter
in the Universe which allows one to calculate moments of arbitrary order.

e In Chapter 5, we calculate the full non-Gaussian power spectrum covariance
in the three-dimensional and projected cases using the halo model approach.
Subsequently, we analyze different approximations for the covariances in order
to minimize the computational effort and investigate the impact of scatter in the
halo concentration-mass relation.

e Chapter 6 compares the results found in the previous chapter with different
numerical simulations. At first for the convergence power spectrum, then for the
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corresponding covariance and finally for the non-Gaussian-to-Gaussian ratio of
the power spectrum covariance.

The thesis concludes with a short summary and an outlook.



INTRODUCTION




Chapter 1

Standard cosmology

From observations we know that our Universe is homogeneous and isotropic on scales
larger than ~ 200 k! Mpc, i.e. matter and radiation are uniformly distributed and
without any privileged direction. This is often referred to in the literature as the
Cosmological Principle. Together with Einstein’s discovery of general relativity this
allows us to come up with a consistent, testable theory of our Universe. Combining
our theoretical knowledge with astronomical observations, the picture of an expanding
Universe emerges, which was once much denser and hotter. This idea of a Universe
which evolved from an initial singularity is called the Hot Big-Bang model and relies
on three fundamental observations: the recession of galaxies increasing with distance
from which we can infer the expansion of the Universe, the light element abundance
indicating that this has been the case since an early era in which the Universe was
hot and dense and the cosmic microwave background which is observed at present
times and interpreted as the relic radiation originating from the decoupling of the
photon-electron plasma at early times.

Recent observations confirm the Hot Big-Bang model, but hint that a more detailed
description of the Universe beyond the standard model is needed. Measurements of
rotation curves from galaxies which probe their gravitational field show a mismatch
between observed and predicted mass. The only explanation seems to be that a
large fraction of matter in the Universe is dark, i.e. nonbaryonic and only weakly
interacting. Furthermore, investigations of cluster abundances indicate that roughly
one third of the Universe consists of matter at all. In addition, we learn from cosmic
microwave background observations that our Universe is close to a flat geometry. In
order to explain both results we need an additional contribution which comes up for
the missing ~ 2/3 of the energy content of the Universe and does not cluster. Even
more surprising were the results from observations of distant supernovae. Against
the prevailing opinion at that time the data clearly favor a Universe which undergoes
a phase of recent acceleration. Combining the results with the data obtained from
cosmic microwave background and cluster measurements, one sees the necessity of a
form of dark energy which repulses the gravitational attraction.

Sect. 1.1 gives an overview of the standard hot Big-Bang model and the equations
necessary for studying structure formation in an accelerating ACDM Universe, whereas
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Sect. 1.2 deals with the most important issues beyond the standard model. For a
comprehensive overview of these topics see e.g. the book by Kolb and Turner [46],
Peacock [61] or Dodelson [18].

1.1 The homogeneous and isotropic Universe

1.1.1 Einstein’s field equations

Of the four known fundamental forces in nature — gravity, electromagnetic force, strong
and weak interaction — only the former two are long range forces and can act on
cosmic scales. As we assume our Universe to be almost charge-neutral, gravity is the
dominant force which governs its dynamics and evolution. The fundamental theory
describing gravity is the General Theory of Relativity as formulated by Einstein in
1916. It models gravity as a property of space-time which can be described as a four-
dimensional Riemannian manifold. As a consequence, the corresponding metric g,
includes time dependencies as well and the line-element of four space-time dimensions
has the form

ds? = g dat'da”, v =20,...,3 (1.1)

where — following Einstein’s sum convention — we have to sum over multiple indices.
Note that the 0 index is always reserved for the time-like coordinate, while the other
three are applied for the spatial coordinates. The advantage of a metric including
gravity is that particles in a gravitational field can be considered as moving freely
on the geodesics of a curved space-time, whereas in Newtonian physics one has to
include gravity as an external force which then alters the particles trajectory. Before
considering the metric of an expanding Universe in more detail in the next section, we
first study the actual relation between space-time geometry and matter. It is described
by the famous Finstein’s field equations

1 87TGN
R/,LV — —g“l/R = C—4

5 Tow — Ao (1.2)

where the Ricci tensor Ry, = R}, and the Ricci scalar R = Ry are contractions of the
Riemann tensor R, p which describes the curvature of the manifold, Gy is Newton’s
constant and 7T, denotes the energy-momentum tensor which describes the matter

content of the Universe.

In order to allow for static solutions of the field equations, Einstein introduced a
cosmological constant term o< Ag,, in Eq. (1.2) to counterbalance the gravitational
attraction of matter. The physical interpretation of this term is still unclear, but a
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non-zero cosmological constant in Einstein’s field equations provides up to now the
simplest explanation for a recently accelerating Universe (see Sect. 1.2.6).

1.1.2 The Robertson-Walker metric

Einstein’s field equations can only be solved by making further assumptions on the
energy content of the Universe and its metric. In case of a homogeneous and isotropic
Universe one has a situation that explicitly allows to determine the time-dependence
of Eq. (1.2). The most general metric for an expanding, homogeneous and isotropic
Universe is the Robertson- Walker (RW) metric with the line element

ds* = g datds” = Adt® — a?(t) [dw® + fi(w) (d0” + sin® ¥ dp?) ] (1.3)

where (w, ¥, p) are denoted as comoving coordinates, a(t) as the scale factor (normal-
ized to a(ty) = 1 today) and fx(w) is the comoving angular diameter distance. The
scale factor is a relative length which varies according to the expansion or contraction
of the Universe, whereas the comoving angular diameter distance can take — depending
on the underlying geometry of the Universe — the following forms:

K12 sin(K'Y?w) for K >0,
fr(w) =< w for K =0, (1.4)
(—K)"Y2sinh((—K)Y?2w) for K <O0.

The parameter K determines the curvature of the three-dimensional surface defined
by the spatial part of the Robertson-Walker metric: for K > 0 it corresponds to a
3-sphere, for K = 0 one has a flat Euclidian space and K < 0 yields a hyperbolic,
open space.

1.1.3 Light rays and cosmic redshift

An important consequence of an expanding Universe is the shift in wavelength ex-
perienced by propagating photons. To quantify this effect, we consider a photon of
wavelength \; that is emitted from a source at a time t; and arrives at a telescope
at a time to with a wavelength \g. Without loss of generality, we assume the photon
to travel along a radial trajectory which satisfies d = dp = 0. Since the photon is
massless, it propagates along a null geodesics, which fulfills ds = 0. From the RW
metric (see Eq. 1.3) it follows that in this case

cdt = —a(t)dw, (1.5)
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where the minus sign appears since we consider the backwards light cone of the ob-
server. From this we can calculate the radial distance at which the photon is observed
today by integrating Eq. (1.5) and obtain

o cdt
w = / e — (1.6)
t1 a<t)

Differentiating with respect to ¢; yields

dto . a(to)
& et (1.7)

This time-dilation is responsible for a shift in wavelength and frequency of photons
and defines a cosmological redshift

a(to) 1%} )\0
— A gy, 1.8
a(tl) IZ0) )\1 ( )

Since a(tp) = 1 by definition and 0 < a(¢;) < 1 in an expanding Universe, this shift
corresponds to an increase of the photon wavelength. In the visible spectrum this
means a shift towards red wavelength which gives the redshift its name.

The recession of galaxies was already discovered by Slipher in 1912 and interpreted as
cosmological Doppler effect. A systematic analysis of galaxy velocities in the 1920s by
Hubble revealed that the recession of galaxies is proportional to their distance. This
observation was later explained with the expansion of the Universe.

1.1.4 The Friedmann equations

Inserting the RW metric (1.3) into Einstein’s field equations (1.2), constrains the
matter content to the form of a perfect fluid, i.e. with no viscosity or heat flow. In
this case the energy-momentum tensor reduces to

Tul/ - diag(pc2, -p, =D _p) : (19)

where p = p(t) and p = p(t) are the time-dependent, homogeneous pressure and energy
density. With this choice for the energy-momentum tensor and the RW metric, one
recovers from Einstein’s field equations two independent equations which have become
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known as Friedmann equations and describe the evolution of an expanding Universe:

N2
a e K A
2] = — — 1.1
(&) -F-Tr 45 (1.10)
a 4Gy 3p A
= = — 11
- 5 (p+ 02> + 5 (1.11)

where the dots denote derivatives with respect to t. These equations indicate that the
precise evolution of the scale factor is determined by the content of the Universe, i.e. p
and p. In general, the energy density p is a sum of contributions from different species,
e.g. from matter, radiation or exotic particles but does not include the cosmological
constant. Nevertheless, one can use the Friedmann equations without the explicit
occurrence of A and define a contribution from a cosmological constant which enters

then in the energy density as
A

87TGN ’

It is useful to characterize the expansion rate of the Universe by introducing the Hubble
parameter H = a/a. Its present value Hy = H (ty) is denoted as Hubble constant and
is often parametrized as

pA = (1.12)

Hy = 100 hkm s~ ! Mpc™ (1.13)

with h taking into account the observational uncertainty. The combination of distance
measurements from Type la supernovae (SN) and baryon acoustic oscillations (BAO)
with the WMAP data find an estimate of h = 0.701 £ 0.013 (see Komatsu et al. [47]).

The different contributions to the contents of the Universe are commonly given in
terms of relative energy densities. For this reason, one defines the critical density
3H?
8T GN ’

Dot = (1.14)

which corresponds to the Friedmann equation (1.10) for a flat Universe (i.e. with
K =0). Its value today can be determined via the Hubble constant and is

_ 33

Perit,0 = 87TGN

= 1.879 x 107*h*g cm™? (1.15)

where the subscript 0 indicates present day values. The relative contribution of a
single species to the total energy density pe;; is customarily given in terms of the ratio

=" (1.16)

)
pcrit

where the sum of all species in the Universe defines the total energy density parameter
Q2. Introducing this quantity allows to rewrite the Friedmann equation (1.10) as:
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K

In this way, the complete energy content of the Universe is directly related to its
underlying geometry. A density parameter 2 = 1 identifies a flat Universe with K = 0.
Accordingly, €2 < 1 corresponds to an open geometry, while €2 > 1 characterizes a
closed geometry. If one now defines

Kc?
for the curvature, the density parameters must satisfy the consistency relation
Qe +0Q=1. (119)

1.1.5 Solutions to the Friedmann equations

Assuming a flat Universe the Friedmann equations (1.10) and (1.11) can be solved

explicitly. For this it is useful to characterize different species by their equations of
state 5

= 1.20

W= (1.20)

where the index ¢ refers to the considered species and w; is usually independent of

time (see Tab. 1.1). Combining the Friedmann equations (1.10) and (1.11) for a flat

Universe with the previous definition (1.20) yields

p=-3H(1+w)p. (1.21)

To guarantee the uniqueness of the solution, one assumes the Universe to have a single
dominant species (i.e. p; >~ p). Then equation (1.21) is solved by

poca 30T (1.22)
Accordingly, we find for the scale factor the following solutions:

a o ¢7Tw forw # -1, (1.23)

a o< et forw=-1. (1.24)

For the most standard species we have summarized the results in Tab. 1.1. From the
scale factor dependence we see that the energy density of matter decreases more slowly
than the one of radiation as the Universe expands. This indicates that the radiation
was dominant in the past and has been overtaken by the matter energy density at a
certain redshift which we denote as matter-radiation equality z.,. For the same reason
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Table 1.1: Equation of state and scale factor for the most standard components.

| lwlp | p [ a |
Radiation s | 8| xa?t | x t2
Matter 0] 0] xa? | xts
Vacuum Energy | —1 | —p | o const | oc e’

a cosmological constant will finally dominate over matter and radiation as the Universe
expands.

Among these three species, only the vacuum energy density can be responsible for an
accelerating Universe. In general, combining equations (1.11) and (1.20) yields

a 47TGN

S= s (L4 3w)p (1.25)

and only if there is a dominant component with an equation of state w < —%, a
becomes positive and the Universe accelerates.

With the derived equations, one can finally rewrite the first Friedmann equation (1.10)
in terms of the density parameters:

H\?2 g\ ~30w:) 0\ 2
() —Egi(a—ﬁ ra (X)) (1.26)

where the sum goes over all species ¢ contributing to the total density parameter at the
considered time a and the subscript 0 indicates present day values of the quantities.
Combined measurements from BAO, SN and WMAP [47] find the following values for

the present density parameters:
e Baryons: (2, = 0.0462 £ 0.0015 ,
e Dark matter: Q49 = 0.233 £0.013
e Dark energy: Qo =0.721 £0.015 ,

which are consistent with a flat ACDM Universe. A contribution from radiation at
the present time is usually neglected, since €, 9 ~ 5 x 107°. It is common to define a
matter density parameter 2, 0 = Q40 + 0.

1.1.6 Distance measures

In a curved space-time, where physical lengths change according to the scale factor,
distance measures are not unique. A central quantity from which all relevant measures
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can be obtained is the comoving distance between a source at redshift z; and an
observer situated at z; < z:

2 cdd
U)(Zl, 22) = TZ/) . (127)

21

It corresponds to the distance of a radial light ray propagating along the null-geodesics,
where ds = 0. In a flat ACDM Universe the comoving distance takes the form:

w(z1, 22) = — " 4 a0 + aty] 2 1.28
1,22)—H0 ) CL[(Z mta A] . ( )
a(zo

Of particular importance is the comoving distance that light could have traveled since
the beginning of the Universe at z = oo:

* cdy

H()

dH<Z) =

z

(1.29)

Regions with a separation larger than this distance are causally disconnected, which
is why dy is also known as horizon distance (see also Sect. 1.2.2). In specific cases,
one can express the horizon distance in terms of the scale factor: in a radiation-
dominated Universe we obtain dy(a) o a, whereas in a matter-dominated Universe
we have dy(a) o a'/? instead.

In order to construct consistent distance measures for observations, cosmologists gen-
eralize the classic measures to an expanding Universe. Usually a distance to an object
can be defined from its known physical size [ and its apparent angular diameter 6
according to d4 = /6. In an expanding Universe the object has a comoving size of [ /a
and the comoving angular distance out to this object is given by fx(w(z)) as defined
in Eq. (1.4). The apparent angular diameter is then 6§ = ({/a)/fx(w(2)) so that the
angular diameter distance is given by

da(z) = afx(w(z)). (1.30)

This result assumes the observer to be situated at z = 0. We can generalize it further
to a situation of an object at redshift z which is seen by an observer at z; < z5. The
angular distance is then

da(z1,22) = a(22) fr|w(z1) — w(z2)], (1.31)

where in general d4 (21, 22) # da(z2, 21).
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Another way of inferring distances in cosmology is by measuring the flux F' of an
object with known luminosity L. If we were in a Euclidian Universe, the distance
would be given by

L

d; =4/ ——
L ArF’

(1.32)

since the total luminosity through a spherical shell with area 4772 is constant. Again,
we need to consider what happens to the measured quantities in an expanding Uni-
verse. The luminosity of the source at a time a decreases in an expanding Universe to
La? due to two effects: the photons loose energy on their way to the observer and the
photons arrive less frequently at the telescope. With the comoving radial distance to
that source being fx (w(z)) the flux changes to

La?
F=— 1.33
T (0(9) (1:3)
Comparing this with Eq. (1.32), the luminosity distance is defined as
w(z
dp(z) = w = (14 2)fr(w(z)). (1.34)

Between the angular diameter and the luminosity distance exists the following relation

dp(2) = (14 2)2ds = (1 + 2) fre (w). (1.35)

1.1.7 Big-Bang nucleosynthesis

An essential part of the standard model is the Big-Bang nucleosynthesis (BBN) the
theory which predicts the light element abundance in the Universe. As the production
of nuclei requires high energies, nucleosynthesis began in the early radiation-dominated
era of the Universe. More specifically, the essential processes to form light elements
started at temperatures 7' < 1 MeV which corresponds to a time ¢ 2 1s after the
Big-Bang. At these temperatures neutrinos decouple from the rest of the Universe
and weak interactions occur only slowly with respect to the expansion of the Universe.
As weak interactions are responsible for converting nucleons into each other, the ratio
of neutron to proton number density stays approximately constant at a value

n 1
Mo o=QITe o~ (1.36)
Np

(@)
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where ) = 1.293 MeV is the neutron-proton mass difference which is responsible for
the larger abundance of protons and Tt ~ 1 MeV is the neutrino freeze-out tempera-
ture. As neutrons have a finite lifetime they gradually decay into protons and leptons.
When the temperature reaches a value around 7" ~ 100 keV, the number of photons
per nucleon is finally small enough that nuclei can form without immediately being
photo-dissociated. At this time the neutron to proton ratio is approximately 1/7.
Since the most stable light element is *He almost all free neutrons at this time are
converted into it. Thus a good estimate of the primordial *He-abundance is

2n 2(ng/ny)

Y - ’
n+p 1+ny/n,

p

(1.37)

where n and p are the number of available neutrons and protons at this time. Ad-
ditionally, small amounts of other light elements are produced. Specified in number
per protons, nuclear reactions generate D and *He (~ 107°) and small traces of 7Li
(~ 1077). Heavier nuclei do not form during Big-Bang nucleosynthesis due to the lack
of stable nuclei with mass numbers 5 or 8.

All rates of the nuclear processes leading to the aforementioned elements, depend
essentially on one parameter, namely the baryon-to-photon ratio

n=-_2 (1.38)

Ty

where ng corresponds to the baryon number density and n. denotes photon number
density. To be consistent with the primordial abundances of D and *He the baryon-
to-photon ratio has to be in the range 2.6 x 107 < 7 < 6.2 x 107 [90].

1.1.8 Cosmic microwave background

At a temperature around 7" ~ 3000 K, corresponding to a time 380 000 years after the
Big-Bang, the ionized photon-electron plasma decouples. As a consequence, electrons
and protons combine to form hydrogen and the Universe becomes neutral with photons
propagating freely. Following the cosmic expansion, these photons are redshifted and
their temperature drops with 7" oc a~!. Since before the decoupling matter was in
approximate thermal equilibrium, the photons formed at early times a blackbody
radiation spectrum. As its form is not altered with the expansion we can still observe
a perfect black body radiation today at a redshifted temperature around T ~ 2.7
K. This relic radiation better known as cosmic microwave background (CMB) was
discovered by Penzias and Wilson in 1965. Its existence is one of the strongest proofs

supporting the Hot Big-Bang model.

As it turned out the CMB is almost perfectly isotropic. Its temperature deviates from
isotropy at the level of one part in 10°. These tiny fluctuations are a conserved imprint
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of the initial conditions at that time and serve as seeds for structure formation in the
Universe. They originate from the time of decoupling when photons were released from
different regions in space with slightly different gravitational potentials. Since photons
redshift when they climb out of these potentials, temperature anisotropies emerged
which reflect the initial distribution of density perturbations. Additionally, these
perturbations gave rise to acoustic waves in the primordial electron-photon plasma
which are still imprinted on the CMB today. The largest possible wavelength of these
oscillations is given by the sound horizon which has a physical length of dg(zgec). It
provides us with a ruler on the sky and the corresponding angular scale depends then
on the underlying geometry of the Universe. For a flat Universe, we expect the peak
of this acoustic wave at a wave-number [ ~ 220 which is in perfect agreement with
observations.

1.2 Beyond the standard model

1.2.1 Flatness problem

In Sect. 1.1.4 we showed that the Friedmann equation can be rewritten in terms of
the density parameter as

Kc?

Q-1=—rs.

(1.39)

If the Universe is flat, i.e. K = 0, we can deduce from Eq. (1.39) that this will
remain for all times. Otherwise the density parameter evolves according to the domi-
nant species in the Universe. In a matter-dominated Universe the density parameter
changes with |2 — 1| o t?/3, whereas in a radiation-dominated Universe we have
|2 — 1] o< t. Thus, during most of the cosmic evolution, it is a function increasing
with time. Since at the present time the Universe is close to a flat geometry this im-
plies that the density parameter must have been extremely close to 1 at early times.
As almost all initial conditions lead either to a closed or an open geometry, these
fine-tuned initial conditions seem extremely unlikely. To understand the severeness of
this flatness problem, one can consider for example the Universe around the time of
nucleosynthesis where t,,. = 1s. Eq. (1.39) requires then that

1Q(taue) — 1] £ 10710, (1.40)

At earlier times, the total density parameter must be even closer to 1.
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1.2.2 Horizon problem

The distance how far photons could have traveled during the lifetime of the Universe
is given by the horizon distance as defined in Eq. (1.29). In terms of the Hubble scale
factor, it can be rewritten as

cda’

dir(a) :/0 pesrios (1.41)

Depending on how a?H (a) evolves this distance can be infinite or take a finite value.
In order to find out about the horizon distance today, let us simplify the consideration
by assuming a matter-dominated Universe with K = A = 0. As this is true during
most of the time our Universe exists, we can find in this way a good estimate for the
real horizon distance. In this case, Eq. (1.41) becomes

¢ cdd 2¢y/a
dy(a) = - , 1.42
(@) 0o VaQnHy  /QnHy (1.42)

where we made use of H = Hya~2/3\/Q, (use Eq. (1.26) and set K = 0). The distance
found is equivalent to the physical size of the horizon distance since ag = 1 today. As
the result is finite, light signals can only propagate a finite distance between the Big
Bang and the present and thus information can only be passed along this distance.
If we consider the explicit example of the horizon size at the formation time of the
cosmic microwave background at zge. ~ 1100, we find

Q
Bace = dHEfd“> =/ RV (1.43)
Zdec

A

where 0. is the apparent angular diameter at decoupling. Thus regions which are
separated by more than ~ 2° are causally disconnected. The question arises then
why we see on the sky almost the same temperature. Due to the consideration above
regions on the opposite side of the sky never had the chance to get into causal contact.
This is known as the horizon problem.

1.2.3 Relic particle abundances

Another problem with the Hot Big Bang model arises from modern particle physics.
Grand Unified Theories (GUT) which aim in unifying the fundamental forces, predict
a high abundance of magnetic monopoles in the early Universe. As they are produced
at very high energies, they are predicted to be very massive (around 10*® GeV). Such
particles would be non-relativistic during most of the evolution of the Universe and
thus have plenty of time to dominate over radiation. Since so far not a single magnetic
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monopole has been observed, theories predicting them are in contradiction with the
standard model. Recent particle physics models propose the existence of other such
relic particles as e.g. gravitinos or moduli fields and have to deal with the same
abundance problem.

1.2.4 Inflation

Especially the horizon problem provides a severe problem of the standard model as it
concerns causality. A solution to most of the problems addressed here was proposed
by Alan Guth in 1981 and became famous under the name of inflation. The basic idea
of inflationary models is to assume that the early Universe had undergone a phase
of accelerated expansion where @ > 0. The effect of this acceleration is that the size
of the Universe is hugely increased and its geometry is flattened leading to K =~ 0.
Additionally, the horizon size is extremely increased such that a much larger region of
the Universe was in causal contact and the unwanted relics as e.g. magnetic monopoles
are extremely diluted. As a bonus, these models also predict a scale-free spectrum of
density perturbations which are required to form structure in the Universe.

In order to achieve a phase of accelerated expansion, Eq. (1.25) demands a dominant
species of negative pressure which fulfills

2
pc 1

<—— S w< ——. 1.44

P 3 w 3 ( )

The easiest way to construct such a model is by considering a Universe in which a
cosmological constant is dominant at early times. It is characterized by a pressure
p = —pc? and leads to a scale factor increasing exponentially in time

a(t) = exp <\/A_/3t> . (1.45)

After a certain amount of time, the inflationary expansion must come to an end and
the energy of the cosmological constant has to be converted into radiation and matter.
The usual picture here is that the particles which act as a cosmological constant decay
into ordinary particles. This phase is referred to as reheating. Thereafter, the Universe
can evolve according to the standard Big Bang model.

Up to now, a lot of different models of inflation have emerged. The most prominent
class of models describes matter in the early Universe by one or more real scalar fields
¢; which are characterized by their potentials V;(¢;). The particles corresponding to
such field are called inflatons and have not been detected yet.

If we specialize to a flat Universe with one dominant, homogeneous scalar field ¢, the
scalar field behaves as a perfect fluid with
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1

po=50"+V(9), (1.46)
po= 5~ V(6). (147

The equation of motion for the scalar field is given by

. .dv
3H — =0 1.48
which corresponds to an oscillator equation for a scalar field experiencing a friction
due to the Hubble expansion of the Universe (¢-term). If the scalar field is dominant,
the Friedmann equation is

B 87TGN
3

H2

5oV (1.49)

The accelerated phase in these models occurs if the potential energy of the scalar
field becomes much larger than its kinetic energy, i.e. ¢ < V(¢). In this case the
density and the pressure are dominated by the potential energy and the equation of
state becomes ps ~ —p,. As this behavior corresponds approximately to that of a
cosmological constant, the expansion is accelerated. This scenario can be thought of
as a scalar field slowly rolling down its potential. A more detailed description of the
mechanism of inflation and specific examples are considered e.g. in Liddle and Lyth
[48].

1.2.5 Dark matter

First hints for the existence of a dark matter component in the Universe were already
found by Zwicky in 1933. He discovered that the orbital velocities of galaxies in the
Coma Cluster were on average close to 1000 kms~'. This requires a cluster mass much
larger than that from all the stars and gas contained in the Coma Cluster. A similar
discrepancy between luminous and predicted mass was revealed in the rotation curves
of spiral galaxies by Rubin and Ford in 1970. If the mass of the galaxy were to follow
the observed light, one would expect a o< 1/4/r Kepler decline in the rotation curves.
Instead Rubin and Ford found the velocity to be constant up to the largest observable
radii. The only explanation is the existence of a non-luminous and non-baryonic form
of dark matter which forms a dark halo around galaxies and alters the rotation curves.
Independent observations of other luminous objects as stars or globular clusters find
the same discrepancy between luminous and predicted mass.

Although their has been no direct detection of dark matter up to now, particle physi-
cists have several possible candidates for dark matter. In order to qualify as dark
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matter, these candidates have to satisfy several conditions: they must interact very
weakly with electromagnetic radiation in order to be non-luminous, they have to be
stable on cosmic time-scales and they need the right relic density to explain the present
dark matter abundance in the Universe. Possible candidates which fulfill these con-
straints are primordial black holes, axions and weakly interacting massive particles

(WIMPs).

1.2.6 Cosmological constant problem(s)

Since Hubble, cosmologists had been trying to measure the slow-down of the Universe’s
expansion due to gravitational attraction. In 1998, two teams studying distant type Ia
supernovae discovered independently that instead the opposite is true: the Universe
is currently undergoing a phase of accelerated expansion. In order to explain this,
we need a form of energy that ‘counteracts gravity’. General relativity allows for the
presence of such an energy with a sufficiently negative pressure. The simplest form for
this energy is provided by a cosmological constant term that can be added to Einstein’s
equations. In this case it is important to notice that the effective energy of the ground
state really is of importance. This is due to the fact that gravity couples directly to
the vacuum energy. In most other physical contexts, we are mainly interested in the
potential differences as e.g. in case of a falling object which loses potential energy.

A cosmological constant model is consistent with observations of the CMB and the
clusters. Thus, it would seem natural to accept the presence of a cosmological constant.
On the other hand, a contribution from the vacuum to the content of the Universe has
to be explained judiciously from the theoretical point of view. There is even more a
need for a good explanation since the measured value of {1, o and the Hubble constant
H, fix a possible vacuum energy contribution to

Puac = 10720ME = (3 x 1072 eV)* . (1.50)

While, at the classical level, one can arbitrarily choose the value of the vacuum energy,
one must remember that this value will receive new contributions considering quantum
effects. The question is why all these contributions — which are of the order of typical
fundamental scales in particle physics — should add up to this small value. If for

example supersymmetry (SUSY) is broken at the TeV scale, one would expect pyac ~
(1TeV)*.

Because of this big gap between the scales, a fine-tuning of the parameters is required
to explain the non-zero vacuum expectation value (VEV). This is known as the cos-
mological constant problem (see e.g. Weinberg [87], Witten [88], Carroll et al. [14]).

A second problem associated with a cosmological constant is the so-called coincidence
problem. The question is why matter and vacuum energy density are of the same
order today. While the vacuum energy stays constant the other contributions decrease
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rapidly during the whole evolution of the Universe. Therefore, their initial values have
to be extraordinarily fine-tuned in order to have the energy densities at the same
order today. Moreover, the fine-tuning required increases if the initial redshift of the
Universe increases. This problem is also known as the fine-tuning problem of the initial
values.

1.2.7 Dark energy

The simplest approach to ‘solve’ the fine-tuning problem of the initial values is to
impose the vacuum energy to be exactly zero. Usually this is done by using a symmetry
argument. One example would be unbroken supersymmetry (SUSY). However, since
SUSY is broken, it can of course not help us in this specific case. We can be less
demanding, simply assuming py,c = 0 and then explaining the observed acceleration
by some other form of dark energy. One possibility is to consider the dynamics of
a sufficiently slowly rolling scalar field which mimics the behavior of a cosmological
constant at the present time. This type of model is often referred to as quintessence and
explains the present accelerating expansion of the Universe with the same mechanism
as inflation . Such fields are motivated theoretically in models where supersymmetry
is dynamically broken by gaugino condensation. Since the VEV of the condensate
depends on the value of the dilaton field, it could mimic a quintessential potential.



Chapter 2
Perturbation theory

The cosmological principle holds only on scales larger than approximately 200 h~! Mpc.
Below this scale, astronomers find the Universe to be inhomogeneous which shows in
the richness of structure such as galaxies, galaxy clusters or filaments. According to
the current paradigm of structure formation, the objects we observe originate from
the gravitational collapse of small perturbations in a homogeneous, expanding Uni-
verse. The perturbations themselves were generated from quantum fluctuations of the
inflaton field and are in the simplest inflationary models predicted to be adiabatic and
Gaussian. Mainly due to gravitational instabilities, they started to grow in amplitude
and form structure. The earliest traces of the primordial inhomogeneities are visible
in the temperature anisotropies of the CMB in consistency with the prevailing theory.

In order to understand structure formation in more detail, we need a theory that
describes the evolution of the underlying physical fields as e.g. the mass density
p(x,t), the velocity v(x,t) or the gravitational potential field ¢(x,t), which is valid
for the matter density in the Universe. In this chapter, we focus mainly on pressureless,
dark matter perturbations since they are the most important ingredient for forming
bound objects. The effect of baryonic and radiation perturbations is only considered
qualitatively. Since the resulting set of equations cannot be solved in general, we
additionally restrict the consideration to perturbations on scales where the Newtonian
theory of gravity can still be applied. After summarizing the equations of motions
which govern the evolution of dark matter in Sect. 2.1, we solve them in the linear
approximation in Sect. 2.2. This allows us to introduce the growth factor in Sect. 2.3
which describes the evolution of dark matter perturbations in terms of the scale factor.
Using a perturbative approach for the density field, Sect. 2.4 deals with the non-linear
solutions of the equations of motions and expands their validity to general ACDM
cosmologies in Sect. 2.5. After a qualitative discussion of radiation perturbations and
the suppression of perturbation growth due to pressure in Sect. 2.6, we summarize in
Sect. 2.7 the effects on different scales in the transfer function. The results found can
then be used to describe the power spectrum on large scales which we consider in the
next chapter. A more detailed presentation of perturbation theory can be found in
Peebles [65] or in the review by Bernardeau et al. [6].
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2.1 The fluid equations

In the following, we study the evolution of the dark matter density p = pq(x,t) in
an expanding Universe. Furthermore, we restrict our consideration to the matter-
dominated era such that we can neglect pressure. Pressure effects are only important
for dark matter perturbations in the very early Universe where radiation dominates,
and at the final stage of object formation when they counteract gravitational forces.
Additionally, we consider scales, well below the Hubble radius dy = ¢H . This allows
to apply a non-relativistic Newtonian approach [65]. With these assumptions the dark
matter content of the Universe can be treated as an ideal fluid where particles interact
without friction and can be described completely by the stress energy-tensor T}, (see
also Sect. 1.1.4). A more general derivation of the equations governing the evolution
of dark matter can be found by solving the collisionless Boltzmann equation for the
single stream approximation, which applies on large scales and for early times [18].
Nevertheless, one obtains in either of the considerations three coupled equations, which
describe the evolution a pressureless fluid:

1
e Continuity equation: p+3Hp+ -V -(pv) =0, (2.1)
a
1 1
e Euler equation: v+ Hv+ —(vV) - v=—--V¢, (2.2)
a a
e Poisson equation: 4G ypa* + 3ai — Aa® = Ao, (2.3)

where the dot denotes a time-derivative, V is the gradient and A the Laplace operator
with respect to comoving coordinates. These evolution equations are highly non-linear
and describe the evolution of the dark matter density p = p(x,t), the gravitational
potential ¢ = ¢(x,t) and the peculiar velocity field v = wv(x,t) in an expanding
Universe in terms of comoving coordinates. The peculiar velocity field is related to
the proper velocity w = u(r,t) in physical (Eulerian) coordinates r by

v=u—Hx, (2.4)

where the second term corresponds to the Hubble flow. Although the evolution equa-
tions (2.1)-(2.3) are approximate due to the assumptions made, they apply for the
most important situations in an expanding Universe.

For a perturbative consideration it is necessary to rewrite the evolution equations in
terms of the density contrast §(a,t). It is defined as the relative deviation of the local
dark matter density field p(x,t) from the average density of the Universe p(t):

5@, 1) = W, (2.5)
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where we omit in the following the dependencies in & and t¢ for notational conve-
nience. The mean density contrast is by definition 0 and we can expand all equations
around the unperturbed, homogeneous Universe. In terms of the density contrast, the
continuity equation becomes

5+év [(1+0)v] =0, (2.6)

and the Poisson equation can be rewritten using the second Friedmann equation (1.11)
as

 3H2Q,

Ad 2a

5. (2.7)

Note that with the transformation to the density contrast the explicit dependence
on a cosmological constant vanishes. Even so, a cosmological constant influences the
growth of density perturbations since it enters the evolution equations via the Hubble
parameter.

2.2 Linear solution

The set of evolution equations (2.2), (2.6) and (2.7) cannot be solved analytically. In
order to solve them we have to restrict our consideration to small perturbations of the
homogeneous and isotropic background cosmology, i.e. we assume |0| < 1. In this

way, it is possible to linearize the Euler equation (2.2) and the continuity equation
(2.6) which yields

- 1
5+EV"UEO, (2.8)

1
0+ Ho+-Vo=0. (2.9)

Combining these two equations with the already linear Poisson equation (2.7), one
obtains a second-order linear differential equation for the linear density contrast

3H2O,,

S+ 2HS — -
a

§=0. (2.10)

Note that in this equation only derivatives with respect to time appear. Hence, the
solutions can be factorized into a spatial and a time-dependent part. A general solution
to Eq. (2.10) can then be constructed from two linearly independent solutions such
that
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5(x,t) = Do ()Ay(z) + D_(HA_ (). (2.11)

To understand the physical meaning of these solutions, it is useful to solve the differ-
ential equation (2.10) for a specific cosmology. Choosing an Einstein-de Sitter (EdS)
model, where Q,, = 1 and 2, = 0, as underlying model, we find

D.(t) =a(t), (2.12)
D_(t) = a 33(t). (2.13)

The explicit dependence on the scale factor reveals that the first solution is increasing
with the expansion of the Universe, while the second decays with an evolving scale
factor. For this reason, the solutions are also known as growing mode D, (t) and
decaying mode D_(t). As the decaying mode fades away quickly, it is not important
for structure formation and we focus in the following on the growing mode.

2.3 Growth factor

For a general cosmology it is more difficult to obtain the two solutions for the corre-
sponding second-order differential equation of the density contrast. Nevertheless, one
finds in analogy to the EdS consideration still one growing and one decaying mode.
In case of a ACDM Universe one can show that the growing mode takes the form

Do, ) o 2D [l an (L 21) 40 (’2—1) o (2.14)
+{@, 8om, dip ) X HO o a m o A\O . .

In order to remove the missing proportionality constant, one normalizes by the growing
mode today, such that

D(a) = %. (2.15)

The resulting quantity is referred to as growth factor. The density contrast at an
arbitrary time a(t) is then related to the present-day density contrast at ag = a(tg) by

5(a, ) = D(a)d(ao, ). (2.16)

Explicit expressions for the growth factor in ACDM cosmologies can be found in
Hamilton [29]. In the following, we will omit the dependence on €, and 4.
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2.4 Non-linear solution

In order to determine the non-linear evolution of the dark matter density field J and
the velocity field v in perturbation theory, one expands the fields around their linear
solutions and assumes a curl free velocity field, i.e. V x v = 0. We define a new
quantity for the divergence of the field # = Vwv. This will allow us to find a self-
consistent description of the evolution equations in Fourier space. The ansatz for an
expansion of the non-linear fields can then be chosen according to

S(m,a)=> bu(x.a),  O@,a)=> Ou(za), (2.17)

where n denotes the order in perturbation theory of the corresponding field. Note that
the perturbative approach implies that §; and 6; are linear in the initial density field,
09 and #, are quadratic in the initial field, etc.

2.4.1 Fourier representation

On large scales, different Fourier modes evolve independently from each other and
thus conserve the primordial statistics of the perturbations. It is therefore convenient
to work in Fourier space and Fourier transform the fields as well as the non-linear
equations of motions (2.2), (2.6) and (2.7). With the Fourier conventions as defined
in Sect. 3.3, the non-linear continuity equation (2.6) takes the form:

ad(k,a) +0(k,a) = — /d3x *?V (vd)(x, a), (2.18)

where the tilde sign indicates Fourier transformed quantities. Using integration by
parts and rewriting v and ¢ as Fourier integrals, the right-hand side of Eq. (2.18)
becomes

5 ik — Pk [ Pho bk o)k P o= k—ki-k2) (919
adlh.a) +6(k.a) == [ s | Ggrys KOk a)lka,a) e -+ (2.19)

Transforming the last integral into Dirac’s delta distribution and making use of v(k;)
k1, which is valid for velocities exhibiting only a divergence part [6], one finds

ad(k,a)+0(k, a) = —/ g;f)lg/d3k25D(k—k1—k2)a(k1,kQ)é(kl,a)S(kzg,a), (2.20)
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where

ki, k) = U‘”*}ﬁ# (2.21)
1
Analogously, transforming the Euler equation (2.2) into Fourier space yields
~ 3H2Q ~ :
af(k,a) + 2#@5(16, a) = —/d?’xelw‘k V- (vV)v](x,a), (2.22)

if one combines it with the Fourier transformed expression of the Poisson equation
(2.7). After some algebra, similar to the derivation of Eq. (2.20), one ends up with

. 2 _ 3 ~ ~
ae(k,a)+3H20§2m5(k:,a) = —/ (C;,::)l?’ /d3k:25D(k:—k:1—k2)ﬁ(k:1,kg)@(kzl,a)@(k:g,a),
(2.23)

where

. |k1 + k2|2(k1 . k?2)

= . 2.24
Bller, kz) 2k3k3 22

The functions a(kq, k) and ((kq, ko) appear because of the non-linear terms in the
continuity (2.6) and Euler equation (2.2) and encode the non-linear evolution of the
density and velocity field. For this reason, they are also known as fundamental mode
coupling functions. In order to solve Eqs. (2.20) and (2.23), one has to take into
account all pairs of wave-vectors (k1, k) whose sum is k as imposed by Dirac’s delta
distribution. This reflects the properties of a spatially homogeneous Universe.

2.4.2 EdS cosmology

The non-linear equations of motions (2.20) and (2.23), which we derived in the previous
section, cannot be solved analytically for an arbitrary cosmology. Restricting to an
EdS Universe, we outline how these equations can be solved. The advantage of this
choice is that we can remove the time-dependence from the equations.

In order to solve the equations of motions, one uses the following ansatz for the density
and velocity field, in analogy to Eq. (2.17):

0(k,a) =Y Du(a)o,(k),  O(k,a)=—a) Dy(a)d,(k), (2.25)
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where n denotes the order of the fields and the growth factor. Note that D,, scales as
a", while 6, scales with the initial density field as (6;)"™. The choice for this ansatz was
made such that the dependence of the linear density field on the scale factor for n = 1
is reproduced. The extra factor a appears in order to fulfill the requirement o = 51,
which is imposed by the linear Continuity equation (2.8). In particular, this implies
that in the linear approximation, the initial perturbations are described completely
by the initial density field d;.

2.4.3 Coupling functions

If one inserts this ansatz into the equations of motions (2.20) and (2.23) and compares
equal powers of the scale factor a, one recovers the following solution for the n-th
order of the density and the divergence of the velocity [6]:

5 Baodie, - - - d3q,
(2.26)

~ d3ad3aq, - - - d3 n N N
6n<k) = / QI(27qT2)n_1 4 5D (k_ql e _qn) Gn<q177qn)51(q1)51<qn)7

(2.27)

where the functions F), and G,, are the n-th order coupling functions. Starting with
the initial values F; = 1 and G; = 1, one recovers from Egs. (2.26) and (2.27) the
following recursion relations [26, 34]:

— Gnlqy, ...,
Fn(qlv ) qn) = Z (277[(_7_13)(” _q7711§ [(2n + 1>&(k17 kQ)anm<qm+1’ s 7qn>
m=1
+ 25(1617 k2)G?’L*m(qm+17 s 7qn)]7 (228>
= Gulqy,. ..,
Gn(qh ey qn) - Z (271(—7-13)(71 _qTI; [3a(k17 k2>Fn—m(qm+17 te 7qn)
m=1
+ nﬁ(kla k2>Gn—m(qm+17 cee 7qn)] (229)

where we used ky =¢q, +...+q,, and k; = q,,,, + ...+ q, to shorten the notation.
a(kq, ko) and [(kq, ky) are the fundamental mode coupling functions as defined in
Egs. (2.21, 2.24).

Since Egs. (2.26) and (2.27) integrate over all possible ¢,, we can equivalently study
the symmetrized versions of the coupling functions:
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s 1
FT(L )(QD ey qn) = ﬁ Z Fn(qﬂ,(l), . 7q7r(n))7 (230)
s 1
ng)(qla SRR qn) = E Z Gn(qﬂ-(l)7 S 7q7r(n))v (2'31)
where the sum is taken over all possible permutations of the set {1,...,n}. In this

way, subsequent calculations will simplify. For the symmetrized second and third
order coupling functions as derived from the recursion relations in Egs. (2.26, 2.27),
we obtain

5 2(q1-9.)% lai-a (@i @
FOqq) =2+ 2D 148 (0 @) 2.32
5 (41,92) 7Ty q%q% 2 q1qs e ¢ ( )
3 4(q1-q))? lai-a (e @
g q) =>4l B) 1400 ® 2.33
2 (41, 42) T 7 @¢ 2 12 \ 2 @ ( )

and

S 7 S S
F?E )((ha d-, (IB) = Q[O‘(QU q; + (I3)F2( )((I27 (I3) +a(qy, q; + (I3)F2( )(‘Ip q3)

+ 04(‘137 q, + Q2)F2(8)(Q17 ‘b)]
4 . s

+ 5—4[6(111, @5+ 43)GS (@, @3) + B(a2, a1 + 4G (g1, q5)
+ 0(a5, 41 + 42)G5) (a1, )]

7 S S
+ 5—4[a(q1 +4,05)G5) (a1, a) + g, + a3, 4,)G (a1, q5)

+ (g + €3, 0G5 (25, 05)) (2.34)

Since in the following we make only use of the symmetrized version of the coupling
functions, we drop the superscript from now on. The unsymmetrized fourth-order
coupling function can be found in Goroff et al. [26].

2.5 ACDM cosmologies

For general cosmologies, finding a perturbative ansatz is more complicated as one
cannot expect the solutions at each order to be separable functions in k and a. In
particular, the n-th order growing mode does not necessarily scale as D;(a) (or a"(t)
as for EdS cosmologies). However, it is possible to show that a simple approximation
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to the Fourier space equations of motions for general ACDM cosmologies leads to
separable solutions for arbitrary orders. The ansatz used in this case is

0(k.a) = Dy(a)é,(k). (2.35)
O(k,a) = —af(Qm, Q) Y En(a)fu(k), (2.36)

where f(,, Q) takes into account the cosmology dependence of the solutions and
E,(a) is a function depending on the growth factor. Astonishingly, the system of
equations becomes separable if one chooses f({, 2y) = QL% and D, = E, = (Dy)".
For 2, = 1 and 2, = 0, one recovers indeed the same recursion relations (2.26), (2.27)
as for the EdS case [71]. As a consequence, all information on the cosmological infor-
mation is then encoded in the linear growth factor Dj(a) and the function f(Q,, Q).

2.6 Growth suppression

So far, we have only considered the growth of cold dark matter perturbations in a
matter dominated background and extended the consideration to general ACDM cos-
mologies. This suffices to describe the late Universe but shortly after the Big-Bang
when the Universe is radiation dominated the growth factor must have evolved differ-
ently. Apart from this, we neglected pressure effects completely which are important
for radiation and baryonic matter perturbations and only considered perturbations on
length scales smaller than the Hubble radius dy = ¢H~!. In the following, we give a
qualitative overview of the additional effects which occur in more general scenarios. A
more detailed treatment of these topics can be found e.g. in Peacock [61] or Dodelson
[18].

We consider first the case of a cold dark matter perturbation of length scale A\. If
A > dy, a relativistic consideration predicts that perturbations grow with 6 oc a?
independent of the background cosmology. Once the length scale of the perturbation
‘enters’ the horizon, i.e. A < dg, one has to distinguish between different epochs.
If this happens during the radiation dominated phase of the Universe, the growth
of cold dark matter perturbations stalls, i.e. d =~ const, due to the expansion rate
in this epoch (Meszaros effect). As soon as a > aeq, the perturbation continues its
growth with 0 oc a. Thus, in contrast to perturbations which enter the horizon after
matter-radiation equality, the growth is suppressed by a factor (@epter/deq)?-

The situation becomes more complicated for baryonic perturbations of the same length
scale A. On superhorizon scales, where A > dy, the perturbations grow like collisionless
fluctuations with § o< a?. Once the perturbations enter the horizon, i.e. A < dy, it
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becomes important whether they are below a critical length scale called the Jeans
length Ay, which is the minimal length at which gravity exceeds the opposing pressure
gradient. For A\j < A < Ay, gravity still dominates over pressure but the growth
is suppressed. For length scales smaller than the Jeans length, pressure exceeds the
gravitational force and the baryonic perturbations begin to behave like acoustic waves,
i.e. they oscillate due to the pressure in the coupled baryon-photon fluid. After
recombination this process stops as baryons and photons decouple and the baryonic
perturbations grow in a similar way than dark matter with § o a.

2.7 Transfer function

Although most of the scenarios discussed in the previous section can be treated ana-
lytically when they are considered isolated, it becomes difficult when one combines the
effects on all scales. Additionally, a realistic treatment would require to consider the
growth behavior of all components at once. All these effects are accounted for in the
transfer function T(k) which can be defined in the following way: consider a density
perturbation d(k, a;) at a very early time a; where all perturbations of interest are well
outside the horizon. Additionally, choose a large-scale perturbation with wave-number
ks = 2m/)s such that this fluctuation never suffered a period where the growth was
inhibited. If we now compare the ratio of an arbitrary fluctuation (k) to a large scale
fluctuation d(ks) at early times with the same ratio today, we can define

d(k,a=1)

S(ha = (2.37)

Thus the transfer function 7'(k) accounts for the change in this ratio and is inde-
pendent for all relevant scales on the initial behavior of the fluctuations. From the
discussion in the previous section, we can infer the qualitative behavior of the transfer
function for cold dark matter. For large-scale perturbations, i.e. small wave-numbers
k the transfer function should approach 1, since fluctuations larger than the hori-
zon grow unhindered. The Hubble radius at matter-radiation equality a., defines a
characteristic length scale Aoq ~ 16(2,2?)~* A~ Mpc at which the transfer function
decreases significantly. Perturbations smaller than this scale are suppressed by a factor
(@enter/@eq)?. This results in a behavior T'(k) oc k=2 for scales smaller than Ao

As it is complicated to calculate the transfer function directly, there are fitting formulae
available in the literature which cover the most important combinations of components.
The one most commonly used is the fitting formula of Bardeen et al. [4], which is valid
for cold dark matter perturbations

In(1+2.34¢)
2.34q

1/4

T(k) = [1+3.89¢+ (16.1¢)* + (5.469)° + (6.71¢)*] (2.38)
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with ¢ = k/(I' hMpc™!). The shape parameter I' was originally set to

T =Quh. (2.39)

Peacock and Dodds extended the validity of the transfer function to small baryonic
contributions by setting I' = Qhexp(—2Q,). In this case, the overall shape of the
transfer function is conserved but the amplitude is reduced at a certain length scale.
General models with €2, # 1 can be described as well if one uses

I' = Quhexp[—Qy(1 + V2h/Q)] (2.40)

as discussed in Sugiyama [83]. If one seeks a more precise treatment of the baryonic
content, one should make use of the fitting formula by Eisenstein and Hu [22]. They
also include the oscillations of the photon-baryon plasma before decoupling. In order
to obtain a transfer function for an arbitrary choice of cosmological parameters, one
can make use of the publicly available code CMBFAST developed by Zaldarriaga and
Seljak [91].

2.8 Power spectrum

With the ingredients of the forgoing sections, we can finally find a description of
the density perturbation power spectrum in the linear regime. The only information
missing is the actual form of the initial power spectrum. Supported by inflationary
scenarios, one assumes the form of a power law, i.e.

P(k) o< Ak™ (2.41)

where ng is the spectral index. Most models prefer a choice ng < 1. For ng = 1
the spectrum is scale-invariant, since all density fluctuations which enter the horizon
have the same amplitude independent of the expansion rate. This is also known as
Harrison-Zel’dovich spectrum and has been predicted more than three decades ago.

The amplitude A of the initial power spectrum has to be determined from observations.

If we multiply the initial power spectrum with the transfer function squared, we find
the linear power spectrum today

P(k) = Ak™T?(k). (2.42)

Combining this result with the linear growth factor, we obtain for the evolution of the
power spectrum in the linear approximation
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P(k,a) = Ak™T?(k)D3(a), (2.43)

which is valid for arbitrary times a.



Chapter 3

Cosmological random fields

Cosmology deals with understanding the formation and evolution of structure on large
scales. Since such a model has to cover the enormous size and time-scale of the whole
Universe, it cannot be expected to predict the exact configuration of the Universe at
any given time. Instead cosmologists try to find a statistical description of the Universe
in terms of a set of continuous random fields. These random fields behave stochastic
in the sense that we assume that our Universe represents one particular realization
from an ensemble of (all possible) Universes. They are characterized by a probability
density function, which cosmologists seek to estimate. Since observing one realization
of the Universe is not sufficient to determine the statistical properties of a random field,
one makes use of the Frgodic Theorem. It states that for well-behaved fields, ensemble
averages are equivalent to local volume averages if the number of independent regions
of space is large enough (see Adler [2]). The ergodicity assumption is usually justified
for cosmological fields, since measurements are taken in disconnected regions of the sky
that can be assumed statistically independent (Fair Sample Hypothesis, Peebles [65]).
As the Universe is described by a background geometry that assumes homogeneity and
isotropy of the (dark) matter distribution on large scales, it is important to consider
these properties for the corresponding fields, too. In this way the statistical quantities
simplify considerably.

Of particular interest in cosmology are Gaussian random fields, since inflationary
models predict the initial matter density field to be distributed randomly. Additionally,
the importance of Gaussian fields is originated in the Central Limit Theorem, which
states that any linear combination of a large number of independent random variables
forms a Gaussian distribution independent of the probability distribution describing
the single variable, as long as all variables contribute to the overall sum (Kendall and
Stuart [44]).

In the following we will give a brief overview of the most important definitions for the
statistics of random fields, consider the case of homogeneity, isotropy and Gaussianity
for such fields and apply these properties to the dark matter density field of the
Universe. A mathematical treatment of random fields is given in Adler [2], whereas a
very detailed derivation of the statistical quantities is provided in Kendall and Stuart
[44]. Applications for this to cosmology can be found in Martinez and Saar [49].
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3.1 Basic definitions

Definition 3.1.1. A random variable g(x) is an assignment of a real value to an ele-
ment € R™ that follows a probability density function (p.d.f.) Plg(x)]. Plg(x)|dg(x)
corresponds to the probability that the assigned value lies in the infinitesimal cube
between g(x) and g(x) + dg(x).

Definition 3.1.2. A random field g is a set of random variables g(x;) for &; € R”
with a joint probability density function

Plg(z1), g(x2), ..., g(xn)] YN € N. (3.1)

One specific assignment of values for the random variables g(x;) is referred to as a
realization of the random field g.

Definition 3.1.3. If the joint probability density function factorizes to

Plg(®1), 9(x2), ..., 9(@n)] = Plg(®1)]Plg(x2)] - - - Plg(n)], (3.2)

the random variables g(x;) are called independent.

Definition 3.1.4. The raw moments of a random field g with p.d.f. P are defined as
expectations over products of field evaluations, if the integration is finite:

(911957 ... g3) = /dgldgz---dgwg?1932 9 Ploi, 92,5 9n] (3.3)

where g; is the short notation of g(x;). The sum over the powers m = ) n; is the
order of the moment. The brackets (...) are often referred to as ensemble average.

The statistical properties of a random field g are described completely, if all its m-
order moments are known for all m € N. The most common statistical quantities are
the first two moments, which are associated with specific names.

Definition 3.1.5. The mean or ezpectation value of a random field g(x) is:

() = (g(x)) = /dg(w)g(w)P[Q(fB)] - (3-4)

Definition 3.1.6. The n-th order central moment is defined as n-th order raw moment
around the mean p:

((g(®) = {9(2)))") = {(9(x) — p())") I/dg(w)(g(w) — u(®))"Pl(g(x))].  (3.5)

In the later sections we consider only random fields with zero-mean, i.e. (g(x)) = 0.
This can be done without loss of generality, since every field g can be written as
g=¢ + (g), where (¢') = 0 and (g) is a deterministic function.
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Definition 3.1.7. The second-order central moment or variance of a random field
g(x) is:

o,(x) = {(9(x) — p(=))*) = /dg(w) (9(x) — n(@))*Plg(a)]. (3.6)
Its square root o4(x) is denoted as standard deviation.

Definition 3.1.8. If one considers the second-order central moment of a random field
g at two locations x,y € R", the corresponding quantity is called the covariance

((g(z) = (g(=)))(9(y) — (9(y)))) (3.7)
= /dg(fv)dg(y) (9(x) — p(x))(9(y) — u(y)) Plg(z), 9(y)]

Covlg(z), g(y)]

and is a measure of the dependency between g(x) and g(y). Likewise one can define
the covariance of two different random fields.

Definition 3.1.9. The dimensionless measure of the dependency of g(x) and g(y) is
given by the correlation coefficient

) (3-8)

where o,(x) and 0,(y) denote the corresponding standard deviations. It can be shown
that —1 < p(@,y) < 1 is valid, where a positive value indicates a correlation of the
variables and a negative value describes an anti-correlation. From the definition it
follows that p(x,x) = p(y,y) = 1.

An alternative way of describing the statistical properties of a random field is by its
connected moments:

Definition 3.1.10. The n-th connected moment of a field ¢ is defined recursively by

(g1)e = (91) (3.9)
(9192 -+ - gn) — (g1)(g2)c - - - (gN)e

—(g1)e(92 - - - gn)e + perms

—(9192)¢(93 - - - gn)c + perms

—
N
=
N
S
Ne)
2
~
o

Il

—{g1-.-9gn-1)c{gn)c + perms, (3.10)

where ‘perms’ indicates a cyclic permutation of indices.
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Definition 3.1.11. In cosmology it is common to denote the n-th order connected
moment as n-point correlation function (NPCF) with the special symbols:

(1, z2) = (g(z1)g(x2))e, (3.11)
C(x1, @2, 23) = (g9(x1)g9(x2)9(23))eC (3.12)
n(x1, o, 3, 4) = (g(x1)g(x2)9(T3)9(T4))C - (3.13)

)

Definition 3.1.12. If we consider the recursion relation (3.9) for the particular case
that all points are situated at the same location, we can easily calculate the first few
moments:

e = {9),
<92>c = o’

> =

)

(9)
(9)e —3(g)2 — 6(g*)c9)? — (9)e (3.14)

where the connected moments (¢"). are referred to as cumulants. If g is a mean-zero
random field, the above equations simplify considerably.

(
c:<

A powerful quantity for calculating statistical moments is provided by the character-
istic function ¢.

Definition 3.1.13. The characteristic function of a random field ¢ is defined as the
mean of the exponentiated random field:

6,(t) = (exp itg)) = [ Pla)cdyg. (.15

It is also referred to as moment-generating function.

Theorem 1 (Inversion Theorem). If the characteristic function ¢4 of a random field
g is known, it uniquely determines its probability density functions and vice versa.

A proof of this statement can be found in [44].

The n-th moment of a p.d.f can now be generated by calculating the n-th derivative
of ¢(t) at the point ¢t = 0:

95"(0) = [%1 T (3.16)

which follows from the power series expansion of the characteristic function ¢,(t) =
Zoo (it)"< n>

n=0 n! g
In a similar way, we can also generate the cumulants with the help of the characteristic
function via the expansion
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o), = U

rs (3.17)

A proof can be found in Kendall and Stuart [44].

3.2 Homogeneous and isotropic random fields

Definition 3.2.1. A random field g is homogeneous if all joint p.d.f.s are invariant
under a common spatial translation, i.e.

Plg(zy +7),9(xe +7),...,9(xn + )] = Plg(x1), g(z2), ..., g(xN)] (3.18)

for all » € R™.

Note that if a random field is homogeneous this property is also true for all its moments.
This implies that e.g. the 2PCF depends only on the difference between the locations,

ie. {(x1, @) = {(T1 — 2).

Definition 3.2.2. A random field g is isotropic if all joint p.d.f.s are invariant under
the same spatial rotation in all locations, i.e.

Plg(Rx1), g(Rx2),...,9(Rxyn)] = Plg(x1), g(x2), ..., 9(xN)] (3.19)

for all rotation matrices R.

Again, this property holds for all the moments of a random field. If a random field g
is both homogeneous and isotropic, the 2PCF simplifies to {(x, @ + ) = £(|r|).

3.3 Fourier description for random fields

It is useful to study the properties of random fields in Fourier space. Throughout this
work we use the following definition for the Fourier transformations!:

Definition 3.3.1. The forward transformation F of a function g : R” — R is defined
as

Flo(e)] = §(k) = / 'z g(x) o (3.20)

n

!This convention can be remembered easily by interpreting d"k/(2m)" as the volume element in
Fourier space.
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Definition 3.3.2. Analogously, the inverse transformation F~! of a function g :
R™ — C is given by

Falh)) = o(a) = | Gty e, (3.21)

Functions g(x) and g(k) that fulfill these definitions (3.20) and (3.21) are referred to
as Fourier pairs. In the following, we will also write g(k) instead of g(k), where no
confusion arises.

The advantage of working in Fourier space are the properties of its transformations.
The following ones can be applied for all functions f,¢g : R® — R with a defined
Fourier transformation:

e The Fourier transformation is linear, i.e.

Flaf(x) +bg(x)] = aF[f(2)] + bF[g(x)] . (3.22)

e The Fourier transformation of a convolution transforms into a pointwise product
Flf (@) = g(x)] = F[f ()] - Flg(z)]. (3.23)

e The Fourier transformation of the n-th derivative of a function f simplifies to

FIF " (@))(k) = (2mik)" FIf ()] (k) . (3.24)

Since the Dirac delta-distribution is used frequently in this thesis, we will summarize
its most important properties briefly.

Definition 3.3.3. We define Dirac’s delta-distribution via its fundamental property

/ &'z f(a) 6p (z — a) = f(a). (3.25)

Definition 3.3.4. Making use of Eq. (3.25) the formal forward Fourier transformation
of Dirac’s delta-distribution yields

Flop ()] = / 4 6y (@) oF® = 1, (3.26)

whereas its inverse Fourier transformation results in

F o ()] = [ < o () e =

R (3.27)

We will therefore treat dp (k) and 1/(27)", as well as dp (x) and 1, as Fourier pairs.
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As in real space (see Sect. 3.1) it is also possible to consider statistical moments in
Fourier space.

Definition 3.3.5. The most important one is the power spectrum P,(k), which can
be defined for any complex, homogeneous random field g as

(9(k)g"(K')) = (2m)"0p (k — K') Py(k) , (3.28)
where 0p (k) denotes the n-dimensional Dirac delta distribution.
Its occurrence is a direct consequence of the homogeneity of the random field and
means that different Fourier modes are uncorrelated. Note that one can show easily

that the power spectrum is always real-valued, if one calculates the complex conjugate
of Eq. (3.28) and exchanges k and k'.

Theorem 2 (Wiener-Khienchin). The 2PCF or auto-correlation function of a random
field g is related to the power spectrum in the following way:

Py(k) = / A’y e*¥e(y) (3.29)

if we restrict our consideration to homogeneous random fields g in three-dimensional

space. In other words the power spectrum is the (forward) Fourier transformation of
the 2PCF.

Proof. Applying the forward Fourier transformation as defined in Eq. (3.20) to the
2PCF yields

GRGK) = [ dre® / S o e — )

— /d3l’ 1w(k+k)/d3ye—ik’.y§(y)

= (2n)°op (k+ k') P,(k), (3.30)
where y = & — &’ and since (§(k)g(k')) = (27)*dp (k + k') P,(k) holds for real-valued
fields g(x). O

For the inverse transformation, the corresponding equation is valid, i.e.

1 3, —iky
£ly) = (QW)S/d ke VP (k). (3.31)

If one assumes additionally isotropy of the random field g, P,(k) = P,(|k|) and {(y) =
¢(|lyl) are valid.

This calculation can be extended to any order of n-spectra. Omitting the details, we
summarize the results for the third- and fourth-order moments.
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Definition 3.3.6. For any real, homogeneous random field g, we define the bispectrum
By(ky, ko, k3) and the trispectrum T,(kq, ko, k3, k4) as

(G(k1)d(k2)g(ks))e = (27)° 6p (K123) By(ky, ko, ks)
(G(k1)d(k2)g(ks)g(ka))e = (2m)° Op (K2sa) Ty(ky, ko, ks, k) | (3.32)

where dp (k) denotes the three-dimensional delta-distribution and k; _; = k;+- - -+ k;.
The delta-distribution appears due to the homogeneity of the field and causes that
only closed configurations in Fourier space contribute.

Definition 3.3.7. In analogy to Eq. (3.29) the bi- and the trispectrum are related to
their real space counterparts by the following equations:

By (ky, ko, ks) — / B dPy e™i® Ry (i y)

Ty(ky, ko ks, ks) = / P’z d’y d’ze®® v iz p(x, y, 2) (3.33)

where @ = x1—x9, y = T3—x5 and z = x4 —ax3. The additional assumption of isotropy
for the fields would make the correlation functions depend only on the magnitude of
the defined differences, i.e. ((x,y) = ((z,y, ¢sy) and n(x,y, 2) = N(x, Y, 2, Puy, Py=),
respectively.

3.4 Gaussian random fields

Definition 3.4.1. A mean-zero random field g is called multivariate Gaussian if the
joint probability distribution function follows a multivariate Gaussian distribution of
the form

eXp [_% Zij gz‘q’;lgj]
(2m)N det C

Plg1,g2,...,9n)dg1dgs ... dgn = dgrdgs...dgny,  (3.34)

where we used for convenience the notation g; = g(x;). C;; is denoted as the covariance
matriz of g, which can be identified with C;; = (g;g;)-

Definition 3.4.2. If each variable g; of a multivariate Gaussian random field g is
independent, then the covariance matrix Cj; is diagonal, i.e. C;; = 51'3'(7,2 holds. In this
case Eq. (3.34) is the product of the p.d.f.s of N Gaussian distributions

S exp (—g7/20;)
PlgilPlga] - - - Plgn] dgidgs ... dgn = H 550

=1 i

dg1dgs ... dgn . (3.35)
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An alternative characterization of a Gaussian random field ¢ is provided by the fol-
lowing theorem.

Theorem 3 (Wick Theorem). A random field g is multivariate Gaussian, if the mo-
ments of its elements g; decompose to:

Z (9192)e(g394)c = -+ -+ (G2p-192p)e »

all perms.

(91,925, Gopr1) = 0 (3.36)

and vice versa. In other words, for Gaussian random fields any even correlation func-
tion can be expressed in terms of a product of all permutations of 2PCFs, whereas the
odd correlation functions vanish.

<917927 S 79217)

A direct consequence of the theorem (3.36) is that all higher-order connected moments
(apart from N = 2) are equal to zero for Gaussian fields.

Example 3.4.3. Consider a zero-mean random variable g with a Gaussian p.d.f.

1
= exp (—¢°/207) dg
A /27T0'g

Plg]dg = (3.37)

and let us calculate its first few moments. This can be done easily with the help of
the characteristic function as defined in Eq. (3.15):

bq(t) = / dg — exp(—g2/203) exp (itg)
o To;

> 1 1
Rt G U
1 t*og > 1 22
- Voo exp <_T> /_OO dg exp {27‘3(9 — itoy) ]
t*o?
= exp (— 29) : (3.38)

The n-th raw moment can now be determined by evaluating the nth-derivative of the
characteristic function at ¢ = 0 (see Eq. (3.16)). In this way, we obtain the following
results:

(99 = 0,
(g*) = o]
(") 30,
(") = 0, (3-39)

which is consistent with the prediction of Wick’s theorem (3.36).
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Example 3.4.4. Consider zero-mean random variables ¢; for ¢ = 1,...,4 with a
Gaussian p.d.f.. The 4-th moments are then

(91929394) = (9192)(9394) + (9193)(9294) + (9194)(gg3)

(91929394)c = (91929394) — (9192)(9394) — (9193)(9294) — (9194)(g293)
= 0. (3.40)

Gaussian distributions exhibit several appealing properties, which makes their consid-
eration important:

e If the random fields f and g are independent and normally distributed, any
linear combination h = af + bg of the two also follows a Gaussian distribution
for a,b € R.

e The Fourier transformation of a Gaussian p.d.f. P is again of a Gaussian shape,
2

since F[P(g)] = [dg P(g)e* = ¢,4(k) = exp (—k2;9> according to Eq. (3.38).

e A Gaussian mean-zero random field is completely determined by its power spec-
trum.

Theorem 4 (Central Limit Theorem). If the random fields fi, ..., f, are independent
and distributed according to any p.d.f. with finite mean and variance, then the sum
g =1 fn will have a p.d.f. that converges to a Gaussian for large n.

A proof of this can be found in [2] or [44].

3.5 The density contrast field

The central quantity for analyzing galaxy and mass clustering statistically is the den-
sity contrast or density perturbation field 6(x,t) of dark matter. It is defined as the
relative deviation of the local dark matter density field p(«, t) from the average density
of the Universe p(t):

t) — p(t
Y (CR.0)

p(t)
where the t-dependence is usually omitted. In this way, the mean density contrast

is by definition zero and we can make use of the properties for mean-zero Gaussian
random fields if we consider the density contrast at early times.

, (3.41)

Its connected moments are used to describe and measure the statistical properties of
structure in the Universe. For our consideration we need all orders up to the fourth
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moment, namely the power-, bi- and trispectrum:

(5(k1)) =0,

(0(F1)0(k2))e = (2)° 0p (k12) P(k1)
(5(F1)0(K2)d(ks))e = (2)° Op (K123) B(ky, koo, ks) |
(0(k1)0(k2)d(k3)d(Kka))e = (21)° p (K1osa) Tk, ko, ks, ky) | (3.42)

where 0p (k) denotes the three-dimensional Dirac delta-distribution and k; ; = k; +
...+ k;. If one considers moments of the energy density p(k) instead, one can obtain

them from the density contrast moments, as can be seen for the example of the real
space 2PCF:

E(re,mp) = <5(ra)(5(rb)>
= ((p(ra) = D)(p(ry) = p)/5")
= (p(ra)p(rs))/p" = 1. (3.43)

Since the power spectrum determines a Gaussian p.d.f. completely, it is one of the most
important quantities to measure in cosmology. Due to the homogeneity and isotropy
of the Universe, the power spectrum depends only on the magnitude of the wave-vector
k and allows one to perform the angular integration in Eq. (3.31) immediately, so that

() = (2;3 / dk4wk2p<k)%. (3.44)

With this equation it is possible to obtain a useful expression for the variance of the
fluctuation field §(x) in real space:

0% = (d(z)*) = £(0)
(2;)3 / 4rk?P(k)dk

= ﬁ / Ank*P(k)dInk . (3.45)

It is used to determine the dimensionless power spectrum A?(k), which is defined as
the variance per logarithmic wave-number (A?(k) = do?/dInk):
2 K
A*(k) = =—P(k). 3.46
() = 5= P(F) (3.46)
In this way A%(k) = 1 obtains a clear interpretation®. It means that there are order
unity density fluctuations from modes in the logarithmic bin around wave-number k
(see e.g. Peacock [60]).

2In the literature there are two conventions used for the Fourier transformations (3.20), (3.21)
leading to different relations between P(k) and A(k): Our definition leads to a factor k®/27?
following the book by Peebles [65], whereas the alternative one has a factor 47k3 as e.g. used in
Bernardeau et al. [6].



46 CHAP. 3: COSMOLOGICAL RANDOM FIELDS

3.5.1 Smoothed density contrast field

If we want to apply the formalism for random fields to real objects, we have to take into
account the finite size of the observed objects. This means that we are not interested in
the behavior of the density field at scales smaller than a typical length R. A common
practice in cosmology is therefore to consider the smoothed perturbation field

Sn(a) = / o' Wl — 2)5(2) | (3.47)

which is defined as the convolution of the original field §(x) with some filter function
Wr(z). Typically, two different types of filter are used: Either the top-hat filter

3 for r <R,

Wat(r) = {W ’ (3.48)

0, otherwise ,

which smooths over a finite spherical volume of radius R or the Gaussian filter

1

Wg(r) = W

exp (—1?/2R?). (3.49)

Note that both filters are normalized such, that [ d*rWg(r) =1 holds.

The Fourier transformation of the smoothed perturbation field is related to the unfil-
tered field according to

On(k) = Wa(k)d(k), (3.50)

where the Fourier counterparts of the top-hat and Gaussian filter are calculated to be

Wyt (k)

= = [sin(kR) — kR cos(kR)] (3.51)

and
WS (k) = exp(—k*R?/2) (3.52)

respectively. With the above considerations it is now possible to find an expression
for the smoothed variance:

o%(r) = /A2(k)|WR(k)|2d1nk : (3.53)

3.5.2 Bispectrum

With the ingredients from perturbation theory (see Chapter 2), we can calculate ar-
bitrary moments of the density field in the linear approximation. This description
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is only valid on large scales, where the linear density contrast d;(k) follows the ini-
tial Gaussian distribution. The basic procedure is to expand the non-linear density
contrast field at the considered location according to

d(k) = 01(k) + d2(k) + ..., (3.54)

where the 6, (k) are coupled to the n-th power of the linear density contrast d,(k) via
the integral equation (2.26). If one calculates a specific moment of the density contrast,
one has to find the non-vanishing contribution of lowest order in the 4,(k) to that
moment. This order is also known as tree-level contribution. A detailed description
of this construction can be found in Fry [25]. In the following, we will derive the
perturbation theory expressions of the bi- and trispectrum expressions explicitly.

The lowest non-vanishing order of the perturbation theory bispectrum has the form
(010102)., since the contribution (d101d1). is 0 for Gaussian random fields due to Wick’s
theorem (see Eq. 3.36). Thus, we have to expand the density field to second-order to
find the tree-level bispectrum:

(27)° Op (K123) Bpy (K1, ka, ks) = (6(k1)0(k2)0(ks3))iree
= ([61(K1) + d2(K1)][01(k2) + da(k2)]
x [01(k3) + d2(k3)])
=~ (01(k1)61(Kk2)da(ks3)) + (01(k1)02(k2)d1(K3))
+ (92(k1)01(k2)d1(k3)) , (3.55)

where we neglect higher-order contributions in the third step. To relate the second-
order density field to the linear one, we use integral equation (2.26) in the form

62(’6):/(2:)1 /d3Qz5D (k—q, — q2) F>(q,,45)01(q,)01(q5) , (3.56)

where F5 denotes the second-order coupling function as defined in Sect. 2.4.3. Inserting
this into Eq. (3.55), we finally find

Boi(ke1, ko, k3) = 2 [Fa(ky, ko) Pk ) P(ks) + Fo(ko, ks) P(ks) P(ks)
+ Fy(ks, k1) P(k3) P (k1)]
= 2F2(k1, kg)P(l{Zl P(kQ) + 2 perms. , (357)

where the permutations are considered with respect to the wave-vectors k; and P(k;)
denotes the linear power spectrum as defined in Eq. (2.42).
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3.5.3 Trispectrum

For the lowest non-vanishing order of the perturbation theory trispectrum we have
to expand the density contrast up to third-order, since (9;d10101). is 0 for Gaussian
random fields due to Wick’s theorem (see Eq. 3.36). The tree-level trispectrum splits
into two types of terms (d1010202). and (1019103). and one finds:

(27)3 Op (K193a) Tpi (K1, ko, k3, ky) = (0(k1)0(k2)d(k3)d(Ka)) tree

= ([01(K1) + d2(k1) + d3(Kk1)][01(K2) + 02(k2) + d5(k2)]
X [(51 (kg) —+ (52(’4?3) —+ (53(k3)]>
(01(k1)01(k2)0o(ks3)da(ks)) + 5 perms.

+ (01(k1)01(k2)01(k3)03(ky)) + 3perms., (3.58)

2

where ‘n perms.” denotes that we have to consider n permutations of the forgoing
expression. In case of the first term the permutations are with respect to d,, in the
second they are with respect to d3. Substituting all non-linear densities with the
integral equation (2.26), one obtains after some algebra for the perturbation theory
trispectrum

Toi(ky, ko, ks, k) = 4T, + 61, (3.59)
with
T, = P(k1)P(k2) [P(ki3) Fa(k1, —ki3) Fa(ko, ki3) + P(kia) Fao(ky, —k1a) Fo(ka, k1g)]
+ P(ky)P(k3) [P(ki2) Fo(k1, —k12) Fo(ks, k12) + P(k14) Fa(kq1, —k14) Fo(k3, k14)]
+ P(k1)P(ky) [P(k12) Fo(k1, —k12) Fo(ka, k12) + P(ki3) Fo(k1, —k13) Fo(ky, k14)]
+ P(ka)P(k3) [P(ko1) Fo(ka, —ko1) Fo(ks, ka1) + P(koa) Fo(ko, —koa) Fo(ks, kos)]
+ P(ko)P(ky) [P(ko1) Fo(ko, —ka1) Fa(ky, ko) + P(kos) Fa(ko, —ko3) Fo(ka, ka3)]
+ P(k3)P(ky) [P(ks1)Fa(ks, —ks1) Fa(ky, k1) + P(ksp) Fa(ks, —ksp) Fo(ky, ks2)]

where we use the short form k;; = k; + k; and

T, = Fy(ky, ko, ks) P(ky) P(ks) P(ks) + Fy(ka, ks, ka) P (k) P(ks) P (ky)
+ Fy(ks, ki, k1) P(ks)P(ks) P (ki) + Fy(ka, kv, ko) P(ka) P(ky) P(ks) .

Note that F, and Fj are the mode coupling functions as defined in Sect. 2.4.3 and
P(k;) denotes the linear power spectrum (see Eq. 2.42). For notational convenience
we use in the following for the tree-level trispectrum the short form
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T, = P(k1)P(ka) [P(k13) Fa(k1, —k13) Fa(ka, k13)
+ P(ki)Fa(ky, —k14) Fo(ko, k14)] + 5 perms. (3.60)

and

Tb = Fg(kl, kg, kig)P(kl)P(kQ)P(k}g) -+ 3perms. . (361)

3.6 The projected density field

In weak lensing we are usually not interested in the three-dimensional polyspectra,
but in their two-dimensional projection on the sky. For this reason we consider the
projection of the density contrast é(x) along the backwards directed light cone of the
observer. If we choose our coordinate system such that @ = (fx(w)@,w), where 0
resembles a two-dimensional vector on the sky and the comoving distance w gives the
depth along the line of sight of the observation, the projected field is defined as

4:(8) = /0 ™ dw g ()3 fre ()0, w) | (3.62)

where ¢;(w) is a weight function, which varies only slowly with w and wy is the
comoving distance of the horizon.

For weak lensing applications the weight functions are usually of the form:

o) =5 (%) s [ e D ) = Glolfelw) . (369

where p(w) denotes the distribution function of observed source galaxies. For this
work, we make use of two types of distributions: the first type resembles a realistic
redshift distribution

e — (s — — B (2 g,
p(w)dw = p(z)d S YEYE) (zo) dz, (3.64)

as suggested by Brainerd et al. [12], where I" denotes Euler’s gamma function. The
parameter (3 specifies how fast the distribution falls off towards high redshifts, while z
is related to the mean redshift z of the distribution. A common choice is § = 1.5 and
Z =~ 1.5z5. The second type assumes that all observed galaxies are located at a single
redshift plane at z;. This corresponds to setting the galaxy distribution in Eq. (3.63)
to a Dirac delta-distribution, which is the typical choice for ray-tracing simulations.
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A detailed derivation of the weak lensing weight function in Eq. (3.63) can be found
in Bartelmann and Schneider [5]. If we insert this weight function into Eq. (3.62), we
obtain an expression for the projected density contrast field or effective convergence

5(6) — /0 ™ dw G w) fre ()5 fre ()8, w) (3.65)

As for the three-dimensional case (see Sect. 3.5), we can calculate the first few moments
of the convergence field in Fourier space:

(k(l1)) =0,
((l)K(l2))e = (27m) 6p (lia) Pu(ly) ,
(k(l)r(l2)K(l3))e = (271')2 op (l123) Bi(ly,15,13)
(k1)KL k(Ls) k(L))o = (27)7 Op (Lisa) Te(ly, b, U3, L) | (3.66)

where 0p () denotes the two-dimensional delta-distribution and I; ; =1, +... +1,.

If one performs the projection as described in Eq. (3.65) of the density contrast 6(x)
and calculates the Fourier transformation of (k(6;)k(02)), one obtains the effective
convergence power spectrum

P.(l) = /OwH dw G*(w) Ps <fz<iw)’w) : (3.67)

which relates the 2PCF of the projected field to that of the three-dimensional field.
This important result is one form of the Limber equation. A detailed calculation of
this can be found e.g. in Bartelmann and Schneider [5] or Kaiser [41].

Similarly, the projected versions of the bi- and trispectrum can be derived:

YH duw ll lg l3 )
B.(l,15,13) = — G3(w)B <—,—,—,w , 3.68
ilads) = ) o GBs {70205 (3.68)
WH L L, I3 Uy )
T.(ly, 15, 13,1,) = —GMw)T, (—,—,—,—,w : 3.69
e A Wl (3.69)

where fx = fx(w) denotes the angular diameter distance and Bs; and Ts the three-
dimensional matter bi- and trispectrum as defined in Eqgs. (3.42).

In analogy to the three-dimensional case in Eq. (3.46), we define the dimension-
less convergence power spectrum A?(I) as the variance per logarithmic wave-number
(A%(1) = do?/d1Inl):
12
A() = —P.(). 3.70
() = - Pull) (3.70)

This quantity is convenient for displaying the convergence power spectrum in Sect. 6.2.
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3.7 Moment Estimation

In the previous sections, we gave an introduction to the theory of cosmological random
fields. Observables such as the density contrast can be understood as a set of random
variables assigned with a joint probability function. The nature of the probability
function itself can be determined with the help of all the moments of the random
variable. We now estimate some of these moments from measurements.

3.7.1 Properties of estimators

Definition 3.7.1. Let 2!, 22, ..., 2" be N measurements of a random variable z and
let its p.d.f. P = P(z', 2% ...,2";0) depend additionally on some unknown parameter
. An estimator Oy = On(zt,2?%,...,2") is a function of the observed data, whose

value is a guess of the unknown parameter 6. Estimators are in the following denoted
with a hat, while the number of measurements N in the index is usually omitted.

There is no unique way on how to construct an estimator for a specific parameter. But
it is important that the estimator inhibits certain properties. The most important ones
are: consistency, unbiasedness, efficiency and robustness, which will be defined in the
subsequent definitions.

Definition 3.7.2. An estimator fy is said to be consistent, if its value converges
in probability to the true value 6 as the number of measurements N increases. More
formally, it means that any estimator 0 determined from N measurements is consistent,
if for all ¢ > 0 and n > 0 there is some n such that the probability that

Oy — 0] < € (3.71)
is greater than 1 — n for all N > n.

Definition 3.7.3. The difference between the expectation value of On and its true
value 0 is called the bias b of an estimator, i.e. (fy) —0 =b. If b = 0, the estimator
Ay is said to be unbiased.

Example 3.7.4. Let us consider the sample mean

1 N
= le (3.72)

where N is the number of observed data points. Eq. (3.72) is an example of an unbiased
estimator of the true mean g, since (i) = + SV (@) = (z) = p.

Example 3.7.5. A biased estimator for the variance o2 is given by

N
o2 = %Z (' — )", (3.73)
i=1
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where fi is the sample mean as defined in Eq. (3.72). By calculating the mean of o2
to be N1 N1

(0%) = —— (%) = (@)%) = =—<—0", (3.74)
where we considered different data points z* to be independent, we find that the bias
is b = 0?/N. Multiplying Eq. (3.73) with a factor N/(N — 1) yields an unbiased
estimator for the variance, which we refer to as sample variance.

Definition 3.7.6. If the sample variance of an estimator Oy is lower than the one of
some other estimator of the same parameter, it is called more efficient. If a minimum
variance unbiased estimator o2 exists, the efficiency of an estimator 8y is defined as

min
~ g

2
eff(Oy) = -2 (3.75)

2
o*
0

where 03 denotes the variance of the estimator. The estimator 6 is said to be efficient,
if eff (Ay) = 1.

Remark. Under certain regularity conditions (see [43] for details) the minimum vari-
ance of a biased estimator is given by the Cramér-Rao-bound:

o2<ol = (1+ —b 2 /1(9) (3.76)
) — “min 50 ) :
where

1(6) = <<%ilnp(xi;9)>2> (3.77)

is the Fisher information, b the bias and P(z; ) the p.d.f. of the data point z’. For
unbiased estimators the nominator in Eq. (3.76) is one.

3.7.2 Estimation of covariance matrices

Lemma 3.7.7. Let x,y be two random variables, which have been measured N times
in independent pairs (z*,y") and let fi,, fi, be their estimated sample means as defined
in Eq. (3.72). We define now two different estimators for the covariance of the random
variables x and y. The mazimum likelihood estimator is defined as

Corle vhae = D0 = ) — i) (3.78)

i=1

and is biased, whereas the sample covariance estimator is given by

1

N
Covlz, ylse = @ = )y — ) (3.79)
=1

and is unbiased.
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Proof. We calculate the expected value of SN (2% — ji,)(y" — fi,):

N
(3@ =) (v = i) )
Z;1 N 1 N A 1 N 1 N i
- <;(“/“$N;y“yﬁ;“ﬁ;%;y>>

= (N =1) ((zy) = (x)(y)) = (N — 1) Cov[z, y]. (3.80)

Multiplying Eq. (3.80) with 1/N gives the biased estimator for the covariance (Eq. (3.78)),
whereas with 1/(N — 1) results in the unbiased estimator of Eq. (3.79). Note that in
the limit of large NV both estimators yield the same result. O

3.7.3 Errors of estimators

We are now interested in the expected error when we estimate the mean and variance
of a random variable x from samples.

Definition 3.7.8. We measure the performance of an estimator 0 by its mean square
error

MSE = ((6 — 0)?) = o7 + V%, (3.81)

which combines the uncertainty due to variance and bias.

Lemma 3.7.9. Let i be the sample mean of some random variable x that has been
determined from N measurements. The standard deviation of f is called sample error
of the mean and is given by

Ox

o =
SEM \/N )

(3.82)

where o, is the standard deviation of the random variable x.
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Proof.
&%EM = 0,%1:</1:2¢>_</3r>2

1en ;1 )

— <N;xﬁj2_;x>—u

I R R N TR g ,

— Ay <N;$><ﬁ;($)>_“
1 L, o 2

= OV = 1)) + (2% — p
1 2 2 _03;

= 7 (@) @) =+ (3.83)

0

Lemma 3.7.10. Let 62 be the sample variance of some random variable x, which
has been determined from N independent measurements. The sample error of the
variance is then given by

) 1 N—3 )\ Y2

where my is the fourth central moment of the random variable x as defined in Eq. (3.5)
and o, its standard deviation.

For a proof see e.g. Kendall and Stuart [44].
Remark. In the limit of large N, Eq. (3.84) becomes

(ma— o)™ (3.85)
If the random variable x follows a Gaussian distribution, Eq. (3.84) simplifies to

Tepy = ——t 3.86
SEY 2(N — 1) (3:86)

since my = 302 holds due to Eq. (3.38).



Chapter 4

Halo model description of dark matter

In the previous chapters we introduced the notion of random fields and how to describe
the statistical properties of the dark matter density field with their help. As long as
we are in the linear regime, where |§| < 1, perturbation theory provides a reliable
basis to derive analytical expressions for the N-point correlation functions (N-PCF).
However, a lot of interesting phenomena in cosmology, such as gravitational clustering,
occur on highly non-linear scales, where the perturbative description long since broke
down. In order to explore the statistics of the density field in the non-linear regime,
we can make use of numerical N-body simulations. Although simulations give us
some important insight into structure formation, their disadvantage is that they are
computationally very costly and do not offer a physical understanding of the results
found. An alternative way to investigate the non-linear regime is provided by the
semi-analytic halo model, which gained a lot of interest in the literature recently [17,
51, 74]. It assumes that all dark matter in the Universe is bound in virialized halos.
If one has an appropriate description of these halos, it is possible to find an analytic
expression for the N-point correlation function of dark matter. This approach suggests
a separate treatment on different scales: on small scales the statistics is dominated by
the spatial distribution of dark matter within the halos and one makes use of results
from numerical simulations yielding typical halo mass profiles. On large scales the
statistics depends on the abundance of the halos and their clustering properties and is
described by perturbation theory. As a consequence, the power spectrum splits into
two terms

P(k) = Pin(k) + Pan(k),

which indicate the different behavior in the two regimes as illustrated in Fig. 4.1. On
small scales the power spectrum is dominated by the 1-halo-term Pjy,, which describes
correlations of dark matter within one halo, whereas on large scales the largest contri-
bution comes from the 2-halo-term Py, which accounts for correlations between two
halos.

This chapter is organized in the following way: section 4.1 covers the analytic treat-
ment of the halo model and provides a recipe to calculate any N-PCF for a continu-
ous mass distribution of halos. This consideration is completely general in the sense
that the specific description of the halos can be included afterwards. It is known as
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Figure 4.1: Dimensionless power spectrum A2(k) = k3/27%2P(k) against wave-number
k as calculated with the halo model. The complete power spectrum (black line) has two
contributions: One from the 1-halo-term (green line), which contributes mainly on small
scales and another from the 2-halo-term (blue line), which is dominant on large scales. The
linear power spectrum, (red line) is appropriate only for wave-numbers below k = 0.1 h Mpc 1.
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Bertschinger-Scherrer-formalism [69]. The subsequent sections address the various
ingredients of the halo model, such as the mass function of halos (Sect. 4.3), the
halo bias (Sect. 4.4) or the halo profile (Sect. 4.5). Since the description of these
ingredients is not unique, their choice has to be adjusted judiciously according to the
addressed problem. The theoretical background for describing analytically when a
bound object has formed is provided by the spherical collapse model, which we review
in section 4.2. Its main result consists of two quantities, the linear density contrast of
a virialized halo d¢. and the non-linear counterpart A,;,. The linear density contrast is
used to approximate the time-evolution of a collapsing object from a small overdensity
to a virialized object. It is important for defining a mass function of how frequent
halos of a specific mass are and for the halo bias consideration. The non-linear den-
sity contrast gives the actual density contrast of an object that has just formed and
is used to parametrize the halo profile. After considering the different ingredients of
the halo model, we will define in section 4.6 a building block to simplify the notation
for the N-PCF's considerably. Finally, in section 4.7, we will summarize the choice of
ingredients used for this thesis.

4.1 Statistics for halo density fields

In the following, we will derive a general formalism to calculate the N-PCF of dark
matter for continuous density fields. The treatment will be completely general. All
specific properties of halos, such as their profile, abundance or spatial distribution can
be incorporated into the description later. A detailed discussion of the choice of ingre-
dients for the halo model is the main topic of the subsequent sections. Historically, this
formalism goes back to Neyman and Scott [58] who analyzed the spatial distribution
of galaxies in 1952. Their original description was only valid for discrete density fields
and was formulated entirely in terms of real space coordinates. Additionally, they
used a model for halo clustering which turned out to be not very realistic. The first to
provide a general formalism to characterize the statistical properties of random fields
were Scherrer and Bertschinger [69] in 1991. In contrast to Neyman and Scott, they
considered the correlation functions also in Fourier space which simplifies the involved
convolutions considerably. Furthermore, their formalism allows to incorporate more
realistic halo-halo correlations into the model.

4.1.1 Average mass density

The basic assumption of the halo model is that all dark matter is bound in spherical
halos which implies that the average density of the Universe is

5= (plx)) = / " dmmn(m), (4.1)
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where n(m) is the comoving halo mass function denoting the abundance of halos
with mass m (see Sect. 4.3 for a detailed consideration) and the brackets denote the
ensemble average as defined in section 3.1. Additionally, this means that the density
field at an arbitrary position is given as a superposition of all halo density profiles in
the Universe at this point:

plx) = Zf(m,, r—x;) = Zmi u(m;,  — ;) , (4.2)

where f(m;, x — x;) denotes the density profile of the i-th halo with center of mass at
x; and u = f/m; is the normalized profile, which fulfills

/ &ru(m, @ — 1) = 1. (4.3)

By parameterizing the halo profile in this way, we assume that its shape at a position
@ depends only on the halo mass and distance to the center (see Sect. 4.5). Since we
are seeking a description for continuous variables, we rewrite Eq. (4.2) with Dirac’s
delta distribution such that

p(a:) = /dm1 dSZL'l Z (5]:) (m1 — mz) 5D (CL’l — 331) mq u(ml, r — 331) . (44)

Equipped with these equations, we check whether averaging over the mass density, as
given in Eq. (4.4), really results in the mean density of the Universe:

{o())

< Zi:miu(mi, T — 33@)>
_ </dm1 d3ay 2513 (my —m;) 0p (21 — ;) myu(my, © — w1)>

7

= /dm1m1< ZéD (my —m;)op (x1 — ;) > /d3SE1 u(my, & — )
= /dm1m1< Z dp (my —m;) op (1 — ;) > : (4.5)

Comparing this result with Eq. (4.1), we find that (p(x)) = p holds, if we identify

n(m) = <Z dp (m —m;) dp (& — x;) > (4.6)

as the halo mass function. Note that the ensemble average goes of the position & and
thus the halo mass function is only mass-dependent.
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4.1.2 2-point correlation function

With the formalism developed in the foregoing section, we can calculate the 2-point
correlation function (2PCF) of the halo density contrast £(r,, 75) as defined in section
3.5. Since we worked so far in terms of the mass density, we will calculate first the
2PCF of the mass density in the halo model approach and then transform the resulting
expression to a 2PCF in terms of the density contrast:

<p(’ra)p(rb)> = /dm1 dPriu(my, vy — ) /dm2 d®zou(msy, 1y — x9)

X <Z 5o (1 — ma) Op (€1 — ;) Op (M — my) Op (@3 — ;) > . (4.7)

,J

where we applied Eq. (4.4) twice. In order to simplify the expression, we distinguish
between two cases. If i = j, we consider correlations within the same halo and obtain
for the brackets in the last line of Eq. (4.7)

<Z(5D (mq — my) op (1 — ;) Op (Mo — m;) Op (x2 — ;) >

)

= <Z dp (m1 — m;) dp (me — my) dp (X1 — ;) Ip (T2 — X1) >

(2

= dp (mg —m1) dp (T2 — 1) <Z5D (1 —m;) dp (21 — @) >

= 0p (my —my) Op (T2 — 1) n(my), (4.8)

where we used the properties of Dirac’s delta distribution to rearrange the indices in
the second step and Eq. (4.6) to obtain the final result.

The case 7 # j corresponds to correlations between different halos, which leads to the
definition of the halo seed function &un(my, me, Ty, x2):

< Z(SD (m1 - mz) op (331 - iBz) dp (m2 - mj) op (5’32 - wj) >
i#]
= n(my)n(msz) (1 + &un(my, ma, &1, x2)) . (4.9)

If halos are independently distributed, then &,;, = 0. Otherwise it measures the excess
due to the clustering of halos. An explicit form of the halo seed function can be derived
in the frame of a model for halo clustering and is discussed in Sect. 4.4.
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By inserting the results of the two cases, i.e. Eq. (4.8) and Eq. (4.9), into Eq. (4.7) and
transforming them to the 2PCF of halo density contrasts making use of &(r,,7,) =

(p(ra)p(ry))/p* — 1, one obtains

1
En(Ta,Tp) = ? / dmy dgzvlm%n(ml)u(ml, re — x1)u(my, ry — x1) (4.10)

1
on(Ta, ) = ?/dml dmy d*zy d*zamyman(ma)n(me)

X u(mi, rq — 1) u(me, 1y — T2) Enn(ma, ma, 1, x2) . (4.11)

Note that the 1/p? factor appears due to the change of variables from mass density
to density contrast. The 1 of the previous Equation cancels with the first term of
Eq. (4.9), which then only contains the seeded halo term. The two equations above
are denoted the I1-halo and the 2-halo term of the 2PCF, since they are associated
with correlations within one halo or between two halos, respectively and sum up to
the complete 2PCF":

§(ra,mp) = & (Ta; 7o) + Eom(Ta, 1) - (4.12)

4.1.3 Power spectrum

It is possible to simplify the derived expressions further by transforming them to
Fourier space, resulting in

E(Ta, ) = / (;jlﬂl;:g P(k)e ik (ra=ms) (4.13)

The kernel can be identified with the power spectrum, since £(r) and P(r) are a
Fourier pair (see Sect. 3.3). One way to find the expression (4.13) is by starting with
the decomposition (4.12) of the 2PCF. We first calculate the 1-halo term of the power
spectrum Py, explicitly, starting from Eq. (4.10):
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1
En(Ta, ) = _—Q/dm dErym*n(m)u(r, — x)u(ry, — x1)
p

_ / dm (%)Qn(m) / P u(@hu(@ — ro+ 1)

:/dm (%)Qnm)/dgr&) (ra— 7y — 1)

/d3x u(x)u(x — )

_ / dm <_) / &r / T

/d?’x u(x)u(x — )

= /dm (%)2n(m)/ (;:;3 o ik (ra—m)

x / dBr ek / Baulz)v(r — ), (4.14)

where we dropped the mass dependency of the profile and performed a coordinate
transformation in the second step. In the final step, we substituted v(r—x) := u(x—7r)
in order to obtain the convolution (u *v)(r) = [ d*zu(x)v(r — «). The last line of
equation (4.14) can now be simplified with the convolution theorem to

/d?’reik"'/d?’xu(a:)v(r—a:) = /dgre“” u*v)(r)

u ;
= u(k,m)u(—k,m) = |u(k,m)|", (4.15)

where F and the tilde sign both denote the forward Fourier transform as defined in
Sect. 3.3. With the result of Eq. (4.15), we can continue our calculation of the 2PCF
and arrive at

£(ravm) = [ dm (%)znm) / (jw’j e O, )
— / (;1:;3 / dm (%)2n(m)|&(k,m)|2e_ik'(“_’°b). (4.16)

From Eq. (4.13) we can deduce the 1-halo term of the power spectrum to be
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f@my:%/hmmmwﬁmmmMQ (4.17)

Analogously, we can derive the Fourier transformation of the 2-halo term, so that we
obtain the full power spectrum

P(k) = Pi(k) + Pan(k), (4.18)

where equations (4.10) and (4.11) are Fourier transformed to

fmm:l/mn)2m@mﬁ (4.19)

Py, (k /dml/dmg min(my) man(ms)
ki ml) (k mg) Phh(ki ml,mg) (420)

where Py, (k,mi, ms) is the Fourier transform of the halo seeds correlation function
&un and 4(k, m) is the Fourier transform of the halo density profile w.

4.1.4 Bispectrum

In a similar way, one can derive expressions for the 3-point correlation function (3PCF)
and its Fourier transformation, the bispectrum. Since working in Fourier space is more
convenient, we will only summarize the Fourier expressions. Analogous calculations
as in the previous subsections show that the dark matter bispectrum splits into three
terms

B(kq, ko, k3) = Bin(k1, ke, k3) + Boyn(k1, ko, k3) + Bsy(ky, ko, k3) , (4.21)
where each term is given as

3
1 -
Blh(k17 kg, k3) = E /dm1 m:l)’ n(ml) H u(kz, ml) s (422)

i=1
1 - -
th(khkg,kﬁ?,) = ;/dml ma n(ml)u(kl,ml)/dmg mgn(mg)u(kg,mg),

X a(kig, 777,3) Phh(ml, ma, kl) + 2 perms. (423)

3
1 -
B3h(k17k2,k3) = E [H/dmz miu(ki7mi) thh(klak%k&mhm%m?))a (4-24)
i=1
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where B, (K1, ke, k3, m1, mg, m3) is the Fourier transformed excess for three halos
in analogy to Py and ‘2 perms.” means that additionally two permutations of the
forgoing expression have to be considered. An explicit expression for By, will be
derived in Sect. 4.4.3.

4.1.5 Trispectrum

Since this thesis deals with higher-order correlation functions and more specifically
with the covariance of the power spectrum, we finally want to list the terms of the
trispectrum, which is the Fourier transform of the 4PCF (see Sect. 3.5). It can be
written as the sum of four terms

T(k1, ko, ks, ka) = Tin + Ton + Ton + T, (4.25)

where we dropped the k-dependency of the halo terms for the sake of readability, and
each term is

4
T, = —/dml min(m, H (k;,m;) (4.26)

1 N -
Ty, = g [/dml mq n(my) a(ky, m) /dm2 m% n(ms)u(ks, ms)

X (ks, m3) u(ky, myg)Pan(k1, m1, ms) | + 3 perms.
1 N N N N
+ % /dm1 mf n(my)u(ky, my) a(kse, mo) /dm2 m% n(ms)u(ks, ms) w(kq, my)

X Phh(|k1 + k2|, my, mz) +2 perms. (427)

1 - -
Tsn = E [/dml myn(my) @k, mq) /dm2 ma n(ms) t(ka, mso)
X /dm3 mg n(TTL3) ﬂ(kg, mg)ﬂ(k4, m4)thh(k1, kig, k3 + k4> +5 perms.
(4.28)

Thnnn (K1, k2, k3, k4, my, mo, ms, my) + 3 perms. ,

1
T4h — ﬁ_ [H/dml m;u (k:’umz)

(4.29)
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where Ty (K1, K2, k3, K4, My, ma, mg, my, ) is the Fourier transformed excess for four
halos. An explicit expression for this is derived in Sect. 4.4.3.

4.1.6 Polyspectra

Even higher-order terms can be constructed, but their expressions are tedious to obtain
and to write down. Instead, a good approximation is given by considering only the
1-halo and the n-halo terms, which have the largest contributions on large and on
small scales, respectively:

T"(ky, ... ko) >~ Th + Ty, (4.30)
where
1 n
T = — /dml mY n(m;) Hﬂ(ki, m;) (4.31)
P i=1
mn 1 & ~ n
nh — p_” [H/dmz m; U(kz; mz) Tnh(kl’ kg, C ,kn, mi,mo,... ,mn) , (432)
i=1
where T (k1, ko, ..., kn,m1,ma,...,m,) denotes the Fourier transformed excess be-

tween all n halos.

4.2 The spherical collapse model

The difficulty of finding an analytic model for the statistics of dark matter halos
is that it has to deal with highly non-linear objects. The usual approach is to use
numerical simulations in order to describe the formation of halos. However, there
exists a special case, in which the non-linear evolution of the density contrast can
be solved explicitly. If one considers the evolution of a spherical matter overdensity
embedded in a homogeneous Universe, it is possible to calculate the density contrast,
at which an object can be considered as virialized. This description is referred to as
spherical collapse model and was studied first by Gunn and Gott [28] in 1972, who
considered the collapse from an initially top-hat density perturbation. In addition to
estimating the value for the virial density contrast, the spherical collapse model in the
linear regime is used to determine a characteristic time-scale, at which bound objects
form. In the following, we will derive the two important quantities of the spherical
collapse model, namely the virial density contrast A,; and the linear density contrast
of a collapsed object dg.

We consider the evolution of an overdense spherical perturbation of comoving scale
R in a matter-dominated Universe. The evolution of the overdense sphere will oc-
cur independently of the rest of the Universe. At some initial time ¢; the spherical
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perturbation of radius R; will have the average density

p(Ri,t;) = p[1+0(Ri t;)] (4.33)
where 6(R;, t;) = 25 [ dR R?6(R,t;) is the average density contrast within the volume
V; and p is the comoving background density of the Universe. The dynamics of the

collapse is governed by the mass M enclosed in the sphere, which is conserved as long
as different spheres do not cross each other?, i.e.

4

M(R,t) = M(R;,t;) = 3

TRIP[L+ 0(Ri, ;)] (4.34)
If one additionally assumes 6(R;) < 1, one finds a simple relation between the initial
Lagrangian radius of the sphere R; and the evolved Eulerian radius R:

(%)3 — (1 +3(R)). (4.35)

Eq. (4.35) will be used, when we want to relate the linear density contrast to the non-
linear one and whenever a transformation from Langrangian to Eulerian coordinates is
performed. Note that in the following we will denote the density contrast §(R) simply
by ¢ for notational convenience.

Changing to physical coordinates, the dynamics of a gravitating sphere with radius R
and mass M can be described with Newtonian physics and thus follows

d’R GM
TR (4.36)

where we restrict ourselves to one dimension due to the spherical symmetry of the
problem. The total energy of the sphere determines its actual fate and is found by
integrating the above equation:

1 (dR\?

For £ > 0 the shell will expand forever, whereas for £ < 0 it will first expand until
it reaches a maximal radius Rny.x and then collapse?. Since we are interested in the
formation of objects, we restrict our calculation to £ < 0. In this case, Eq. (4.36) has
the following parametric solution:

"'Within the spherical collapse model one assumes that shell crossing happens only after the actual
collapse

2This consideration is also valid for the whole Universe and provides a way to derive the Friedmann
equations in the Newtonian limit.
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R=A(1—cosb), (4.38)
t=B(0—sinb) , (4.39)

where A® = GM B? and 6 parametrizes the evolution in time. With the parametric
solution, it is possible to relate 8 to the corresponding radius R and time ¢ for each
stage of the evolution. At the beginning of the process, one has #; = 0 and R; = 0. At
turnaround, where the sphere reaches its maximal radius R,,.x, one has 6y, = m, and
the sphere is collapsed completely, when 0.,y = 27. An overview can be found in tab.
4.1.

4.2.1 Linear regime

In the initial stage, where # < 1, we can expand the parametric solution, i.e. Egs.
(4.38) and (4.39), into a power series of 6:

A 62

R~ 07 (1 - E) , (4.40)
2

t A %93 (1 - 3—0) . (4.41)

Combining Eqgs. (4.40) and (4.41) and neglecting higher-order terms, the radius be-
comes

A [6t\** 1 [6t\*?
ro~4(®)" -5 (%], wa
whereas the mean density of the perturbation is
2/3
pl) = 41]\123 ~ 67r1Gt2 * 2% (%) | (4.43)
For an EdS-Universe, the background density of the Universe is
_ 1
P= (4.44)

thus, from p = p (1 + §), we can identify

2/3
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Table 4.1: Three stages of the spherical collapse of a perturbation with their characteristic
values for the linear and non-linear density contrast.

’ Stage \ 0 \ r \ t \ Olin \ Ap ‘
Initial time | 0 | O 0 0 00
Turnaround | 7 | 2A | 7B | 1.06 | 972/16
Collapse 2r | 0 | 27B | 1.686 00

as the linear density contrast of a spherical object. The scaling t*? of the density
contrast is exactly what one would expect in case of an EdS-Universe. Although the
linear solution is a poor approximation for the real density contrast as soon as 6 2> 1
(see Fig. 4.2), its value at collapse can be used to define a characteristic time-scale
for virialized objects. This becomes e.g. important when deriving the halo abundance
at different redshifts in section 4.3. The exact value for the linear density contrast is
obtained by inserting the time of collapse t.o; = 27 B into Eq. (4.45):

3
bse = — (12m)** ~ 1.686, (4.46)
20
where we the use the subscript ‘sc¢’ in order to indicate the origin from the spherical
collapse model.

The redshift dependence of the density contrast can also be incorporated into the
consideration. If one assumes e.g. that an object has formed in the recent past, one
can set the present time for the collapse epoch and calculate the initial linear density
contrast at redshift z with the help of the growth factor according to

1.686

550(2) - G(Z) 550(20011 - O) - 1+ 2 s

(4.47)

where the last equality is only valid for an EdS-Universe.

4.2.2 Non-linear regime

As stated in the beginning, the evolution of a gravitating sphere can also be solved
analytically in the non-linear regime by Eqs. (4.38) and (4.39). In analogy to the
linear case, one can use these solutions to determine the average density and density
contrast:

3M 3 (6-—sin0)?
pu(t) = 47 R3 (¢) C 4ArGH? (1 — cos 9)3 ’ (4.48)
Sult) = {1 + () = OOy (4.49)

2 (1 —cosh)®
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where p denotes the background density in an EdS cosmology as given in Eq. (4.44).
We can now reconsider the most important stages of a collapsing sphere and focus on
how the non-linear density contrast evolves with respect to the background density of
the Universe. At first the spherical perturbation expands from a zero radius until it
reaches a maximum at Ry,. The turnaround marks the point of time, where the actual
collapse begins. At this moment, the ratio of the density of the sphere to that of the
background density is

p(ta) 97
Ay, = I 5552, 4.50
© pt) 16 (450)

which can be derived using the non-linear density as given in Eq. (4.48). For the time of
the actual collapse, non-linear theory predicts the sphere to have a radius R.,; = 0 and
an infinite density contrast, whereas the linear consideration approximates ds. ~ 1.686.
In reality the spherical perturbation will not become singular, since this occurs only
if the collapse is exactly symmetric. Instead the perturbation virializes in a process of
violent relaxation to a finite radius. With the help of the virial theorem, one finds the
radius of the relaxed state to be Ry, = Rya/2. Thus, the sphere is in a virialized state
if the radius reaches half of the maximum expansion at turnaround, which results in
a density

3M 3M

plti) 4rGR3,, 847TGR§’a Bplta) (4.51)

Numerical simulations of the process suggest instead that the relaxation occurs at
about the time of collapse. Assuming this time-scale, one finds

plteir) = (67Gte) ™" = p(tea) /4. (4.52)

Combing these last two equations determined for the time of virialization with the
result in Eq. (4.50), one finds the virial density contrast to be

/)<tta)

Avir = 5vir +1=32 —
p<tta)

= 1872 ~ 177.7 (4.53)

in the non-linear regime. Note that this consideration is only valid for an EdS-Universe
and the collapse of spherical objects. A more realistic treatment would assume an
elliptical mass distribution of gravitating perturbation instead. Consequences of an
elliptical collapse are discussed in detail e.g. in [8, 53, 78|. Fitting formulae for other
cosmologies can be found in [23, 31, 55, 60].
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4.2.3 Relating the linear to the non-linear density

The advantage of the spherical collapse model is that it provides a relation between
the initial, linear density contrast ¢, and the evolved, non-linear density contrast ¢.
In order to derive this relation, one has to rewrite the original parametric solution of
into

R(z) 3 1—cos#f

R, 10 |6

1 3x 62/3 (6 — sin §)%/3
_'_

1

as has been done by Peebles [65]. This solution holds for §; > 0. For §; < 0 one has to
substitute the trigonometric functions by their hyperbolic counterparts. Without loss
of generality one can now choose z = 0 as the point of time of our consideration. In
this case, the initial density contrast J; depends only on the present density contrast,
since 0 = (R/R;)® — 1 holds, as we have shown earlier in this section. For § < 1, we
can expand ¢;(J) into a power series

17 . 341 55805
5 = 5’“—5——52 iy S il SR 4.54
Z @ 5670 1300770 T (4.54)

where ag = 0. A derivation of the inverse power series 6(d;) can be found in [68].

4.3 Halo mass function

The halo model approach assumes that all dark matter is distributed in spherical
halos. An essential ingredient to understand the statistics of halos is therefore the
halo mass function, which specifies how frequent halos of a certain mass are. More
precisely, the halo mass function, which we denote in the following by?

dN(m, z)

dm

n(m, z) , (4.55)
is defined as the comoving number density of halos with a mass between m and m-+dm,
which are collapsed at a redshift z. The original formalism for calculating the mass
function was provided by Press and Schechter [66] in 1974 and will be summarized
in the following, since it is the basis for most of the recent considerations of halo
clustering.

3Note that in the literature n(m, z) and dn(m, z)/dm are often used interchangeably.
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Figure 4.2: Comparison of the linear with the non-linear density contrast. Around 6 =~ 1
the linear approximation breaks down. The blue line marks the threshold dsc = 1.686, when
an object is considered as collapsed in the linear regime.

4.3.1 Press-Schechter formalism

Let us consider some early time t; at which the density field d(x, ;) can still be
described as a Gaussian random field. The smoothed density field dg(x, t;) as defined
in Eq. (3.47) follows then a Gaussian distribution as well, since a convolution is a
linear operation. Accordingly, the probability density of observing a value of dg(x, t;)
between dg and dr + ddg is given by a Gaussian distribution:

1
P(0p,ti; R) ddgp = —————rexp [~0%/20%(m, ;)] dog, (4.56)
2no?(m, t;)

where 0%(m, t;) = (0%(x, t;)) is the variance of the initial density field smoothed with
a filter function Wx(k) as defined in Eq. (3.53). The comoving smoothing scale R
is determined by the mass enclosed in the volume of the filter function. In case of a
top-hat filter it is related to the mass through m = (47/3) pR*. From these equations,
one can see that R, 02(m,t;) and m are equivalent variables for specifying an object
or region in a given cosmology.
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According to the Press and Schechter (PS) formalism, an object of some mass m will
collapse if the smoothed density contrast exceeds a threshold d,. Consequently, the
cumulative probability for a region of scale R to have a smoothed density contrast
above the threshold is

F(m) = /500 P(6g,t;; R)dég = %erfc(u/\/ﬁ), (4.57)

where erfc(x) is the complementary error function and v = d./o(m) the height of the
threshold in units of the smoothed variance. In other words, the fraction of virialized
objects today with a mass larger than m is F'(m).

In order to determine the threshold 9, for objects to be virialized, PS use the results
from the spherical collapse model in the linear regime (see Sect. 4.2) and set J, = .
For an EdS-Universe, we calculated ds. = 1.686. Within the frame of this specific
cosmology, it is now possible to find the characteristic scale collapsing today. It can
be determined by setting o (m.) = ds, which yields m, ~ 10¥ M. This is in agreement
with the observation that objects with masses above this threshold are rare.

Calculating F(0) in Eq. (4.57) should give the fraction of all mass that is contained in
virialized objects. Since we consider a hierarchical model of structure formation, im-
plying that o(m) — oo if R — 0, this fraction is F(0) = 1 erfc(0) = 3. Astonishingly,
this means that, in the framework of the considered formalism, only half of the mass
in the Universe is in virialized objects. This led Press and Schechter to introduce in
the literature the famous fudge factor of 2.

4.3.2 Extended Press-Schechter theory

Subsequent studies revealed that the problem of the PS approach is that the correspon-
dence between smoothing scale and threshold height is not unique. In other words, a
region below the threshold ¢, on a particular scale, can be above the threshold on a
larger scale. Including this effect would increase the fraction of virialized objects in
the Universe. In the literature, it was shown independently by Peacock and Heavens
[63] and Bond et al. [9] that this effect compensates the original discrepancy. They
derived the factor of 2 formally by computing the largest value of the smoothing scale
R at which the threshold is exceeded.

If we continue with the extra factor of 2 in Eq. (4.57), we can finally derive an expres-
sion for the halo mass function. The fraction of halos with a mass m between m and
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m + dm is given by

do?

dm

dF 1 s

dm ~ \/2xo? o?

exp(—5§C/20'2)

2| do 9 9
- \/; 0_2 dm exp( 5sc/20- )
24 |dIno 9 9
B \/; ol dm )eXp(_(SSC/QJ )

2 dl
= \/;1/ d:lny exp(—1?/2),

where we made use of dlno = —dInv in the last step and omitted the dependencies
of the variables to focus on the calculation. Formally, we can now define the comoving
number density of halos through the fraction of halos with masses between m and
m + dm, which we just calculated, to be

(4.58)

dN _ p|dF(m)

dm  ml dm

, (4.59)

where p/m = V! is the inverse of the comoving volume associated with the mass
inside the comoving smoothing scale R. Analytic mass functions are often compared
to numerical simulations by considering the fraction of collapsed objects of mass m
per logarithmic interval in v. In this way they can be compared without referring to a
specific initial power spectrum or cosmological model. For the cumulative probability
found by Press and Schechter this is

dF 2 9
= =4/— —v°/2). 4.

)= 3 espioipo (4.60)
For small masses, i.e. m < m,, the mass function behaves as vf(v) o v, whereas for
m 2 m, it is exponentially cut-off with v f(v) oc exp(—v?/2).
4.3.3 Sheth-Tormen mass function
Numerical simulations have shown [77] that the PS mass function (with factor 2),
overestimates the number density of halos with high masses and underestimates the

abundance of halos with low masses, as illustrated in Fig. 4.3. As an alternative, Sheth
and Tormen (ST) proposed a mass function of the form

vf(v)=Ap) (1+ (@*)7?) \/?V exp (—qv?/2) (4.61)
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where the parameters that fit numerical simulations best are p ~ 0.3 and ¢ = 0.707.
The constant

A(p) = [L+277D(1/2 - p)/v/a] (4.62)
is defined such that it normalizes
o 1 [ dn
deV:—/ —mdm =1, 4.63
| rwaw— [ (4.63)

which, in case of the best fit parameters, yields A(0.3) ~ 0.322. If the parameters in
Eq. (4.61) are set to p = 0, ¢ = 1 and A(0) = 1/2, one obtains the standard Press-
Schechter form of equation (4.60). For v < 1, equation (4.61) scales as v f(v) oc v =%,
whereas for v > 1 it has an exponential cut-off, i.e. vf(v) o exp (—qv?/2).

In a later work, it was possible to derive the ST mass function from ellipsoidal col-
lapse in the excursion set approach (see Sheth et al. [78]). In contrast to the original
formulation, the threshold height is then not constant, but depends on the ellipticity
distribution of the halos. There are several other fitting formulae for f(v) in the litera-
ture available (Jenkins et al. [37], Reed et al. [67]), but due to the good correspondence
to numerical simulations we will use the ST mass function for our implementation of
the halo model.

4.3.4 Redshift dependency of the mass function

So far, we considered the comoving mass function only at some early time ¢;, where the
density contrast can be considered as a Gaussian random field. Perturbation theory
allows us to extrapolate the initial density contrast and its smoothed variance to their
values today

a*(m,to) = D2 (to)o”(m,t;) (4.64)
d(to) = D (t0)d(t:) (4.65)

where D (ty) denotes the linear growth factor as defined in Sect. 2.3. This means that
0 and o grow in the same manner and that the mass functions keep the same form in
linear perturbation. To determine the mass function of halos that already collapsed
at a redshift z, we have to replace the threshold d4. by

)
=2 = 1 4.
or. D(2) dsc(1+ 2), (4.66)

where d;. = 1.686. Note that the second equality is only valid for an EdS-Universe.
The difference to Eq. (4.47) is the redshift at which an object is considered to be

collapsed. Whereas in Eq. (4.47), the time of collapse is today, in Eq. (4.66) the
object already virialized at redshift z.
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Figure 4.3: Fraction of collapsed halos per logarithmic mass interval in v (plot from Zent-
ner [92]). The solid line represents the extended Press-Schechter mass function as given
in Eq. (4.60). The dashed line corresponds to the Sheth-Tormen mass function defined in
Eq. (4.61), whereas the dotted line corresponds to the Jenkins fitting formula [37]. The points
illustrate N-body simulations from J. L. Tinker.
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4.4 Halo bias

In order to describe the large-scale behavior of halos, we need to understand the
way halos are correlated. For this reason, we have to determine how the clustering
properties of dark matter halos differ from that of dark matter. The different behavior
in clustering is usually assumed to be of the form

On(m,z) =b(m, z)o(m, z) . (4.67)

where 9}, denotes the halo density contrast, 0 the matter density contrast and b(m, z)
the linear bias. In the following we omit the dependencies where no confusion arises.
If b =1, halos are said to be exact or unbiased tracers of the underlying dark matter.
In contrast to finding the average abundance of halos in the previous section, we
now want to determine how the mass function changes, if the halos are embedded in
an over- or underdense region. A powerful tool for modeling the clustering process
is provided by the excursion set theory (see Zentner [92] for a review), which is an
extension of the Press-Schechter formalism (see Sect. 4.3) for the halo mass function.
The first to calculate the amount of bias within the framework of the excursion set
theory were Mo and White in 1996 [51]. Before outlining their derivation, we will first
discuss the peak-background split approach (see [15, 21, 40]), which provides a more
intuitive understanding of the halo clustering problem and leads to a similar result as
Mo and White’s consideration.

4.4.1 Peak-background split

Let us suppose that one can split the density field into two independent random
fields 6 = 0, + 0,. The decomposition is constructed such that ¢, corresponds to
a smooth background density field, which describes a long wavelength component;
and 0, corresponds to a short wavelength component, namely the peaks, which will
eventually form halos*. If we consider the superposition of the two density fields, as
sketched in Figure 4.4, one can see that halos form more easily, when they are close
to peaks of the background density component. In this case the halos are more biased
with respect to the underlying dark matter. Analogously, they are less biased, if one
is close to a region in the trough of the background field. A simple way to account for
this effect is to shift the density threshold required to form an object according to the
background density to d, = dsc — d. The peak density ¢, has now to reach the new
threshold 9, to collapse. Accordingly, the threshold height v changes then to

650 - 51)

: (4.68)

4Note that background density refers in this case to the long wavelength component of the considered
region and not to the background density of the Universe.
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Figure 4.4: Illustration of the biasing in the peak-background-split model (from [61]). The
sketch shows the decomposition of the density field into a long wavelength component &
(dashed line) and a short wavelength component 6, (black, oscillating line). The straight,
solid line is the threshold . a dense region has to exceed in order to form a virialized halo.

where ds. denotes the density contrast of a collapsed halo derived from the spherical
collapse model. The simplest form one can assume for the new mass function, is then
the Press-Schechter form, i.e.

dN
n(d) = T X exp(—v;/2), (4.69)

with a threshold altered according to Eq. (4.68). We can now derive an expression
for the bias by Taylor expanding the mass function to first order in §, around the
unaltered threshold:

dn(éb)
doy

5. (4.70)

5,=0

It makes sense to perform first a derivation with respect to v:

dn(d) _ (1 B Vb) n(3)) (4.71)

dl/b 143

and use then du,/dd, = —1/0(m) to obtain

dn(dy)  dn(dp) du i —1
= T <Vba(m)) n(8) . (4.72)

If we insert this expression into Eq. (4.70), we find
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n(8,) ~ (1 + &) n(0) (4.73)

where n(d, = 0) can be identified as the average mass function of halos. Making use
of

(%) — n(0)
ohp=—"""—""° 4.74
" n(0) (474)
the bias of halos relative to the underlying dark matter is
(Sh V2 —1
bl =2 = 4.75
(m) 5b 5SC ) ( )

where we are still in the initial Langrangian space, since the background density con-
trast stayed constant. As we will show in detail later (see Sect. 4.4.2) there is a simple
relation for transforming the bias to real, Eulerian space

V2 —1

5SC

bE(m) =1+ b"(m) =1+ (4.76)

This means in particular that halos with a characteristic mass m,, are unbiased tracers,
since v(m,) = 1. Accordingly, if halos have a mass m > m, they are biased, i.e. b > 1,
with respect to the underlying dark matter, whereas if halos have a mass m < m,
they are anti-biased, i.e. b < 1.

4.4.2 Results from excursion set theory
Conditional mass function

A more thorough derivation of the halo bias is offered by Mo and White [51] and
is reproduced very detailed in the review of Zentner [92]. In order to describe the
clustering in an overdense regions, Mo and White needed a formula which relates halo
abundances to the underlying density field on large scales. For their consideration,
they were able to make use of the results by Bower [11] and Bond et al. [9]. These
authors extended the Press-Schechter theory (see subsection 4.3.1) to find the de-
sired conditional mass function, which gives the number density of halos assuming an
overdense background density. In the following, we will briefly summarize the most
important results.

Let us consider a region of comoving scale R; at a redshift z; characterized by a
smoothed density contrast dg,(x) and a smoothed variance o?(R;). This region is
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enclosed in a larger region of comoving scale Ry defined by g, (x) and o%(Ry). If we use
a top-hat window as filter function, the average mass contained in a scale R is m(R) =
(47 /3)pR3 = V p, which implies for the considered regions that m; < mg. Assuming
that the density contrasts of these regions were initially Gaussian distributed, Bower
and Bond et al. [9, 11] extended the results from the Press-Schechter formalism and
found the conditional probability of attaining a density ¢ between ¢ and § 4+ dé given
a background density Jy to be

1

2m(0? — 0})

(6 — dp)?

2(c2 — 0d)

P(5]60) d6 =

exp {_ } ds (4.77)

where we use here and in the following §; = dg.(x) and 0; = o(R;) to shorten the
notation. As before, we assume that an object is collapsed, if its density contrast
exceeds a threshold d.. The fraction of mass in bound halos contained in a region of
mass my is then obtained by integrating the conditional probability density according
to

F(mq|dg, 00) = / P(6|09)do = 1erf(: [L&J)] : (4.78)
65(:

2 2(0t — o3

where erfc(x) denotes the complementary error function. If the density of the sur-
rounding region increases, the fraction F' of masses in bound halos increases as well.
In the case that dg — dg., one has F' — 1 and the entire region will be interpreted as
one collapsed object. The fraction of mass in halos with mass in the range m; and
mq + dmy is then

2
doy

dm1

dF(m1|50, 0'0) d . 1 5sc - 6()
T VR (0 )R

exp {—M} dmi.  (4.79)

dmy 2(0% — 0d)

In the limit 69 — 0, when the surrounding region has the same smoothed density as
the Universe, we obtain the unconditional solution from Eq. (4.58), remembering that
o1 > 0g. According to Mo et al. [52] the average comoving number density of halos in
a region of mass my can then be defined as

1 mo dF(m1|50, 0'0)

n(m1|(50, O'O)dml = VO Ed—ynl dml 3
N
_ N(ldo, 00) 4 (4.80)
Vo

This expression is interpreted as the conditional mass function in a dense region with
smoothed density contrast Jy for masses in a range m, and my + dm; at a redshift z,
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while N (81|09, 0¢) denotes the average number of halos with masses between m; and
mq + dmy.

Transformation from Lagrangian to Eulerian space

With the conditional mass function we define the halo density contrast as

n(maildo, o9) —n(mi)  n(maldy, 0o)

on(my) =

~1, (4.81)

n(m,) ~ n(ma)

where n(m) denotes the unconditional mass function as defined in Eq. (4.59) that
corresponds to the average number density of halos. Up to now, we used only co-
moving coordinates for our consideration and ignored the dynamical evolution of the
region Ry. To calculate the Eulerian bias relation, we need an expression for the halo
density contrast in terms of the gravitationally evolved region R. The corresponding
conditional mass function is then defined as

N(51\50, O'(])

nE(m1|50700)dm1 = v

dmy (4.82)

where we distinguish between Eulerian and comoving Lagrangian conditional mass
function by introducing the superscripts ‘E’ and ‘L’. In order to proceed, we need a
relation between the initial region of scale Ry and the gravitationally collapsed region
R. This is provided by the spherical collapse model (see Sect. 4.2). Since the mass
within a region about to collapse is assumed to be conserved in this model, the evolved
volume of the region V' is related to its initial volume Vj according to Vo ~ V(1 + §)
for small initial overdensities. Additionally, the spherical collapse model provides a
relation between the initial and evolved matter density of the form § = §(dp). In the
limit of small initial overdensities it yields 0 ~ ;. With these relations at hand, we
can transform the desired quantities from Lagrangian to Eulerian space. Starting with
the Eulerian conditional mass function of Eq. (4.82), we find

N((Sl‘do, O'D)

V
N (61|,
:w(l—l—&dml

= n"(m1do, mo) (1 + 6) dmy (4.83)

dm1

nE(m1|50, og)dml =

where n'(m;|dy, mg) denotes the conditional mass function as defined in Eq. (4.79).
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Making use of this, the Eulerian density contrast transforms into

nE(ml\éo, O'0>

6p = -1,

n(m)
- ) (1) -
= +1)(1+06) -1

=0p(1+0)+96.
Remembering the bias relation §" = b*d, and that § ~ &y on small scales, we obtain
6~ (B 4 1), (4.84)

where we only kept terms of first-order in § and dy. Thus, Lagrangian and Eulerian
bias are related to each other according to b® = b + 1 for small density contrasts.

Press-Schechter bias

The introduced quantities allow us to calculate the bias relation for the Press-Schechter
mass function in a perturbative approach. Following Mo, Jing, and White [52], we
restrict the consideration to large scales in Eulerian space and assume that the halo
density can be described by a smooth function F () that depends only on the matter
density. If the function is finite for § around 0, we can expand F in a Taylor series
around ¢, such that

)
oh=F(0)=>_ k—’j 5" (4.85)
k=0

where by, are the bias parameters and 0 the non-linear matter density. The bias
relation from Eq. (4.67) corresponds then to the first-order approximation of F and
the linear bias we introduced there is now equivalent to b;. Since we remain during
the subsequent considerations in Eulerian space, we omit the superscript ‘E’ here and
in the following.

In order to find explicit expressions for the bias parameters b;, we expand in the
definition of the halo density (Eq. 4.81), the conditional mass function around the
matter density dy of the surrounding region and compare equal orders in dy to the
Taylor expansion of F(d). Since ¢ denotes the non-linear density, we additionally have
to use the expansion §(dy) as found from the spherical collapse model.

To determine the first order or linear bias by, we have to calculate the first derivative
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of the conditional mass function with respect to the density, since

1 dn(m1|50,00)

O =~ oo(1+90)—1
b n(ml) d60 50=0 0 ( + )
1 dn(m1](50, 0'0)
~ 4.
n(my) ddo 50:050 (4.86)

Combining Eq. (4.80) and (4.79), we obtain for the conditional Press Schechter mass
function on large scales

(i, 00) = L= (1+4) dF(TréﬁfO’ ) 41my (4.88)
1 1
p 1 (51 — (50 dO’% (51 - (50)2
~ " _30 %) 4.
(18 o= dml\ exp | =S LA, (189)

where we assume Ry > R; and thus have of > of in hierarchical structure formation.
From this we can calculate the first derivative of the conditional mass function with
respect to ¢ at the background density which gives two terms:

dn(m1|50,00) . ﬁ 1 dO'% 1 [(51 — 50)2 _ 1:| exp |:_ (51 — 50)2:| '

2 2072

= 4.90
ddy my 21 dmy o} o3 ( )

Inserting this result into Eq. (4.86) and evaluating the found expression, we obtain
finally the linear Eulerian bias

(4.91)

in the extended Press-Schechter formalism, where 4 = §;/07. This result is equiva-
lent to equation (4.76) that we obtained in the peak-background split consideration.
Higher-orders are found in a similar way, but require tedious calculations, since the
higher-order derivatives in the mass function have more terms and one additionally
has to apply the expansion dy(6) = >, axd® (see Eq. 4.54). For this work, we need
the first four orders of the bias expansion in Eulerian space which are
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bp =0, (4.92)
2
—1
by—1+4+ 22 (4.93)
01
vi—1 % 9
bg = 2(1 + CLQ) —I— - (l/l — 3) s (494)
01 01

2

1 2
by = 6(as + az) ”15 +3(1 + 2a) (%) (V2 —3)

1

2 4 2
v\ vy —vi+3
- — 4.
w(p) e (4.95)

where v; = §1 /07 and ay = —17/21 and a3 = 341/567 are coefficients of the expansion

5o(8) = 3=, axd®.

Sheth-Tormen mass function

The same consideration can be made for the Sheth-Tormen mass function, where one
has to use the corresponding conditional mass function to calculate the different orders
of the Taylor expansion. From the Sheth-Tormen mass function [76, 77], one finds the
following fraction of halos with masses between m and m 4 dm in a background with
density do:

dF(mado, 00) _ (%)1/214(19) (1 + {q (612_ 50)2} p) ( o §§3/2

dmy o2 — of o] — 0,
52
4(01 = %0)° 50))} , (4.96)

2(0f — 0§

X exp {—
where p, ¢, A(p) denote the constants that we already defined for the average Sheth-
Tormen mass function in Sect. 4.3.3. In the large scale limit, where 0% > o2, this
becomes

dm, 2m oh o}

dF (%, 00) _ (o )I/ZA(p) (1 + [q & _250)2} _p> o (4.97)

Expanding the mass function in a Taylor series as in the case of the Press-Schechter
formalism in the previous section, the Eulerian density contrast can be approximated.
The first four orders give according to [73] the following bias parameters
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by =0, (4.98)
bl =1 + € + E1 y (499)
b2 = 2(1—|—a2)(61 —|—E1) —|—€2—|—E2, (4100)
bg = 6(@2 + (13)(61 + E1> + 3(1 + 2(12)(62 + Eg) s (4101)
where
2 2
qui — 1 qu
€ = }T . €= 65201 (qv? —3), (4.102)
_ q_V12 2.4 o2
€= 53 (¢°vy — 6qvi +3), (4.103)
2p/dsc o 1+ 2p
El=—— — = —4+2 4.104
Ui B\ ) 4104

Ey 02,

By [4(p® - 1) + 6pgr?
By _ [40" = 1) +6pqv +3e§1 , (4.105)

where 11 = §1 /01 and ay = —17/21 and a3 = 341/567 are coefficients of the expansion
60(8) = >, axd” (see Eq. (4.54)). If one sets p = 0 and ¢ = 1, the bias parameters
reduce to the Press-Schechter bias as summarized in Sect. 4.4.2. In this case the FE,,
parameters are 0. If not stated otherwise, we will use the best fit parameters as found
by Sheth and Tormen [77], i.e. the values p = 0.3 and ¢ = 0.707.

4.4.3 Halo correlation functions

Equipped with a formalism that relates the halo density to the underlying matter
density via a Taylor series F(9) = %(5’“, we can finally find expressions for the correla-
tion functions of halo densities. For higher-order correlations the calculations become
lengthy, since we have to expand the non-linear density 0 as well. As the consideration
is valid on large scales, we can apply a perturbative approach and make use of the
results from Sect. 3.5.

Power spectrum

The halo-halo correlation function of two halos with mass m; and my, we only require
the linear bias parameter and find:

Enn(ma, ma, 1) = (On(ma, )0n(me,  + 1))
= b1(m1)b1(m2)(6(x)d(x + 7))
~ by (mq)by(m2)&in(r) , (4.106)
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Figure 4.5: Bias against v (plot from Zentner [92]). The solid line is the extended Press-
Schechter bias as calculated in Eq. (4.60). The dashed line corresponds to the Sheth-Tormen
bias given in Eq. (4.61), whereas the dotted line corresponds to a fitting formula by Seljak
and Warren [15]. The points illustrate results from N-body simulations of J. L. Tinker.
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where the last step holds for large scales. Fourier transforming the equation gives the
halo-halo power spectrum:

Pun(my,mo, k) = b(mq)b(ms) Pin(k) . (4.107)

Bispectrum

For the halo bispectrum correlating three halos with masses my, ms and mg, we have
to expand F(8) to second-order, such that d&y(m, k) =~ b1d + byd%. As a result, one
obtains

(27)° 0p (K123) Bunn = (0n(my, k1)0n(ma, k2)on(ms, k3)) iree
= ([b1(m1)d(k1) + ba(ma)d(k1)][b1(m2)d(ka) + ba(mz)d (k)]
X [b1(m3)0(ks3) + ba(m3)0(k3)])tree
2 by (ma)b1(ma2)bi(m3)(0(k1)0(k2)d(ks3))
+ b1 (mq)b1(ma)be(ms)(0(k1)d(k2)d(ks)) + 2 perms. .

Considering the lowest order non-vanishing contribution in the density, one finds

Bypn = by (ml)bl(m2)bl(m3)Bpt<k17 ks, ks)
+ bl (ml)bl (mg)bg(mg)Plin(lﬁ)P]in(kg) + 2 perms. , (4108)

where By denotes the lowest-order non-vanishing contribution from perturbation the-
ory to the bispectrum and is defined in Sect. 3.5.2.

Trispectrum

Accordingly the trispectrum takes into account correlations of four halos in Fourier
space and we need to expand the halo density up to the third order, such that
On(m, k) 2 b1 + by0% + b363. In a similar way as for the bispectrum we find

<(5h(m1, k1)5h(m2, k2)5h(m37 k3)5h(m47 k4)>tree
= (b1 (m1)6(k1)bi(m2)d(k2)bi(m3)0(k3)bi (ma)d(Ka))
+ (by(m1)6(Kk1)by(m2)8(ka)by(ms3)d(ks)bs(my)d® (ky)) + 3 perms.

and obtain
Thnnn = b1(mq)b1(ma)by (ms)by (ma) T (kq, ke, ks, k1)
—+ b1 (ml)bl (mg)bl(M3>b3<m4)Phn(]€1).Phn(k2).P]in(k3> + 3 perms. , (4109)

where T}y denotes the lowest-order non-vanishing contribution from perturbation the-
ory to the trispectrum and is defined in Sect. 3.5.3.
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4.5 Halo density profile

The last ingredient we need for our halo model of dark matter is an accurate description
of the inner structure of the halo, namely the halo density profile. Recent studies of
numerical simulations seem to show (see Navarro et al. [56]) that the density profile
of virialized halos on galaxy, group and cluster scale follows a universal function,
depending only on the mass of the considered object. Furthermore, these simulations
suggest more massive halos to be less peaked in the center region than less massive
halos. Such profiles seem to be well described by functions of the form

p(r,m) = OIE (i’l T (4.110)
P (4.111)

Prm) = ol + ()]

where ry = r¢(m) is the scale radius, which denotes the break between inner and
outer core profile and p; = ps(m) is the amplitude of the density profile’. The most
prominent choice of parameters are («, ) = (1,2) in Eq. (4.110) for the Navarro-
Frenk-White (NFW) profile [56] and («, 5) = (3/2,3/2) in Eq. (4.111) for the Moore
(M99) profile [54]. Both profiles differ on small scales for r < g, but agree that the
profile scales according to p(r,m) oc r~3 on large scales. Up to the present day, it is
still unclear which of them provides the better description for virialized halos. One
reason probably is that numerical simulations still cannot resolve the inner core of the
halos to a high enough accuracy and that the power-law description in this region is
too simplistic. A compromise between the two offers the Hernquist profile [32], which
uses (o, #) = (1,2) in Eq. (4.110).

Although the density profile seems to dependent — apart from the halo mass — on the
two quantities ps and rg, in practice it is only mass dependent. This can be seen if one
parametrizes the profiles in Eq. (4.110) and (4.111) in an alternative way. The mass
of a halo is defined as the mass within the virial radius r.;., which leads to

m= / dr 4mr?p(r,m) (4.112)
0

assuming as usual a spherical form of the halo. The mass cut-off at ry; is done to
be consistent with the description of the spherical collapse model in section 4.2. An
object is considered to be collapsed if

®Note that in general ps # p(rs). In case of the NFW-profile one has ps = 4p(r,), whereas for the
M99-profile one obtains ps = 2p(rs).
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p(rvir) = Avie (4.113)

which defines the mass of a bound object to be m = 47/3r3, A, p in the halo model

description. Since for an EdS-Universe A,;, ~ 200, the virial radius is often denoted
in the literature as r999. Changing the integration variable in Eq. (4.112) to x = r/ry;
yields

p(ryi) = 3/0 dz 2°p(z), (4.114)

where we additionally made use of m = 47 /313 p(r.;,). If we consider the special case
of an NFW-profile (Eq. (4.110) with («, 5) = (1,2)) and introduce the concentration
parameter

c= i (4.115)
Eq. (4.114) can be rewritten as
1 2
x
o(rvir) = 3ps | do ———.
plru) = 3p /0 ze (1 + zc)?
Performing the integration and solving for ps, we find

_ﬁ(rvir) c?
A T Y s s (4.116)

For the M99-profile (Eq. (4.111) with («, 8) = (3/2,3/2)), the analogous calculation
yields

. 4.11
2 In(1+4 3?) (4.117)

This means that the profile can be parametrized by 7., which is equivalent to the
mass m of the halo, and the concentration parameter c. Since simulations show that
the concentration parameter depends strongly on the halo mass, it seems that the
halo density profile is mainly determined by its mass. In spite of these results from
numerical simulations, there is no analytical explanation for the existence of such a
universal density profile. But there are successful models that find a mass dependence
of the concentration parameter. Typically, they are of the form

c(m,z) = — <ﬁ>_a, (4.118)

1+ 2z \m,

where m, = m,(z = 0) is the characteristic mass scale as introduced in section 4.3.1.
For the NFW profile, Bullock et al. [13] find ¢, = 9 and o = 0.13 from numerical
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simulations. A more recent analysis from Takada and Jain [84] finds ¢, = 10 and
a = 0.2 instead, which we use for our halo model implementation. From Eq. (4.118),
we can see that low mass halos tend to be more centrally concentrated on average
than massive halos. Simulations show that the concentration parameters for halos of
the same mass m scatter and that they follow a log-normal distribution

(Inc —Inc)?

2
201n c

ple)de = ———— exp [— ] dlne (4.119)

according to Jing [38] with the average concentration parameter ¢ following Eq. (4.118).

For our considerations it is important to transform the normalized profile to Fourier
space. For a virialized halo of mass m we define

d3zp(x, m)e ke
a(k,m) = by, ol m) (4.120)
fr<rvir d3x,0(m, m)
In case of a spherically symmetric profile, this simplifies to
Tvir 3 k
u(k,m) = / dr 42 2250 plr,m) : (4.121)
0 kr m

where the integration is truncated at r.;., as most of the mass is enclosed within this
radius. Since we use in our implementation of the halo model mainly the NFW profile,
we give an analytic expression for its Fourier transformation:

u(k,m) = 47”%{ sin(kry) [Si([1 + c]kry) — Si(krs)]
sin(ckry) . '
~ T i, Costh) [Ci([L + lfrs) — Cikry)] b (4.122)

where we use the notation

* cost *sint

Ci(z) :—/ Tdt and Si(z) :/0 Tdt, (4.123)

for the sine- and cosine integrals.
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4.6 Building blocks for correlation functions

With the ingredients of the forgoing sections, it is possible to define a building block,
which simplifies the notation for the correlation functions and spectra significantly:

m

M;j(k, ... kjim) = /dm n(m) (E) bi(m)[a(ki,m) - ... -a(k;,m)],  (4.124)

where n(m) is the halo mass function, b;(m) the halo bias parameter, u(k, m) the
normalized halo profile and p the comoving energy density of the Universe. For con-
sistency reasons, we set by = 1. If we want to take into account the variation of the
concentration parameter ¢ for a fixed halo mass m as well, we have to perform an
additional integration and the building block changes to

m

M;i(ky, ... kjlm,c) = /dm den(m) p(c) (;) bi(m)[u(ki,m,c) - ... a(k;, n(zcl)ié)

where p(c) is the probability distribution function for ¢ as defined in Equation (4.119).
Including additionally a redshift dependence, we would have to consider b = b(m, z)
and n = n(m, z) instead.

Power spectrum

The power spectrum consists in the halo model approach of two terms

P(k) = Pin(k) + P (k) (4.126)
which are defined as

Pi(k) = Moa(k, k), (4.127)

Pon(k) = [Mi1(k))* Pin (k) (4.128)

and denote correlations within one halo and between two halos.

Bispectrum

The bispectrum is defined as the connected third order moment in Fourier space and
decomposes into three terms

B == Blh + th + th y (4129)
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where we omit the (ki, ks, k3) dependency and define
Blh = M()g(k‘l, ]{52, ]{?3) (4130)
as the one-halo term,
Bon = My (k1) Mo (ke, ks) Pin (k1)
+ M1 (k3) Mo (ky, k2) Pin(k3)
+ MH(]{?Q)MH(]{?37 kl)-l:)lin(kQ) (4131)
as the two-halo term,
Bay, = My (k1) My (ko) My (ks) By (kq, ko, k3)
+ My (k1) My (ko) Moy (k3) Pin (k1) Prin (k2)
+ Mn(k’s) 11(k’1) 21(1432)P1m(k?3)P1m(kl)
( (

+ M1 (ko) My (ks) Mar (k1) Pin(k2) Bin (ks3) (4.132)

as the three-halo term, which describes correlations between three halos.

Trispectrum

The trispectrum is defined as the connected fourth order moment in Fourier space and
splits in the halo model approach into four terms

T =T+ Ton + Tan + T, (4.133)

where we omit the (k1, ko, k3, ky) dependency and define
Ty = Moa(ky, ko, k3, ks) (4.134)
as the one-halo term,

Top = Tor +T57, (4.135)
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as the two-halo term, which is further subdivided into T3, corresponding to correla-
tions of three points in one halo and a fourth point in a second halo and T%2, describing
correlations of two points in one and another two points in the second halo:

Tiy = Mas(ka, ks, ka) My (k1) Pin (K1) |

+ Mys(ky, ko, ks) My (ky) Bin(Ks)

+ Mz (K, k1, ko) My (k) Bin(K3)

+ Mas(ks, ka, k1) M1 (ko) Bin (k2) (4.136)
T52 = Maa(ku, ko) Mia(ks, ka) Pin(| k1 + k2|)

+ Mo (K1, k3) Mo (kz, ka) Bin (|1 + K3))

+ Myg(ky, ka) Mia(ke, ks) Pin (|1 + Ka) (4.137)

(4.138)
the three-halo term is given by

Ty, = Mo (ks, ka) Myi(ky) My (ko) Bye (K1, k2, ks + k4) + 5 perms.
+ Moo (ks, ka) My1 (k1) Mi1(ka) Pin (k1) Pin(k2) + 5 perms. (4.139)

the four-halo term is

Ty, = Mll(kl)Mll(kZ)Mll(k?))Mll<k4)Tpt(k1> ko, ks, k4)
+ Mll(lﬁ)Mll(kQ)Mll(kS)Mﬂ(k4)Bin(k1)Plin(kQ)Plin(k2> + 3 perms. (4~140>

which describes correlations between points of four halos.

4.7 Summary

The basic assumption of the halo model is that all dark matter in the Universe is
distributed in units of virialized halos. This suggests a scale-dependent consideration.
On small scales, the correlation of dark matter is governed by the mass profile of
the halo, whereas on large scales the halo clustering determines the nature of the
correlation. As there are a multitude of models to describe the behavior on different
scales and an even larger amount of parameters one has to set judiciously, there exists
no such thing as a unique halo model. In order to have reproducible results, it is
therefore necessary to specify ones choice of parameters. For this work, we will adopt
the following parameters for the halo models. Deviations from this choice will be
stated in the sections concerned:
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. The average mass of a halo is defined as the mass within a sphere of virial

radius ry, as m = (47/3)r3 Ay p. In our implementation we use dy. and Ay, as
calculated from the spherical collapse for a ACDM-Universe as given in Eq. (B.6)
and (B.7).

. N-body simulations suggest that the mass profile of a halo follows a universal

function. As the NFW profile is in good agreement with numerical results and
has an analytical Fourier transform, we use

_ s
P m) = o+ )P

(4.141)

with (a, ) = (1,2) as our standard profile.

. Essential for the form of the halo profile is the concentration parameter, which is

defined as ¢ = 7y, /rs. From N-body simulations one can find that ¢ is a function
of the halo mass and follows

c(m,z) = — ( o )_a , (4.142)

:1—1—2 M

where m, = m,(z = 0) is the characteristic mass as defined within the Press-
Schechter formalism. In the following we will use the values ¢, = 10 and a = 0.2
as proposed by Takada and Jain [84]. For the Millennium Run we will adopt the
values ¢, = 11 and a = 0.1 as found recently by Neto et al. [57]. This implies
that more massive halos are less centrally concentrated than less massive ones.

. The abundance of halos depends on the mass m and is in our implementation

equivalent to the Sheth and Tormen mass function

vf(v) = A(p) (1 + (qu2)_p) \/?Vexp (—qv?/2), (4.143)

with the parameters p = 0.3, ¢ = 0.707 and A(0.3) = 0.322, which is a modifi-
cation of the original Press-Schechter formulation.

. As the spatial distribution of halos is biased, an important ingredient are the

bias functions, which relate the dark matter density field to the halo density. It
is derived on the basis of the Sheth-Tormen mass function above. For the linear
bias one obtains then

qu — 1 n 2p
5SC 6SC|:1 —"_ (ql/)p] 7

bi(v) =1+ (4.144)

where p and ¢ match the values of the above mass function.

. To obtain the final correlation function, one has to perform a mass integration,

which goes formally from 0 to oo. In practice, we use the mass limits mpy;, =
103Mg and mpyax = 101 M.
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7. Due to the mass-cutoff the consistency relation

/ " Ay n()b(v) = 1 (4.145)

Mmin

does not hold any longer. To cure this problem we introduce a normalization
factor byorm(2), which ensures that Eq. (4.145) is fulfilled. It has to be included
for every appearance of the linear bias factor by (v).
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Chapter 5

Covariance of the power spectrum
estimator

Weak gravitational lensing is an important tool to probe the large-scale structure of
the Universe and to estimate cosmological parameters. The constraints it provides
are independent of and complementary to those found by other measurements such as
CMB anisotropies, SN type Ia or galaxy surveys. As the next generation of surveys
will allow much more precise measurements of weak lensing effects, it is important to
have a good understanding of the underlying physics and the expected errors. The
quantity of main interest is the cosmic shear field. It quantifies the distortion of faint
galaxy images by gravitational light deflection and depends directly on the projected
mass density of the matter density. So far, mainly the convergence power spectrum has
been measured and parameter constraints are based on the Gaussian approximation
of the power spectrum covariance estimator. A more realistic analysis would imply
the consideration of the non-Gaussian part of the covariance as well. In this chapter,
we will investigate the non-Gaussianities in detail and determine the full covariance
within the halo model approach. It continues and extends the work of Scoccimarro
et al. [72] and Cooray and Hu [16].

Starting from a canonical estimator for the dark matter power spectrum, we derive
in Sect. 5.1 its covariance for different k-modes and extend our consideration to the
projected power spectrum estimator and the corresponding covariance in Sect. 5.2. As
the evaluation of the covariance requires in both cases the calculation of trispectrum
configurations where the wave-vectors form a parallelogram, we apply in Sect. 5.3 the
halo model approach to find an analytic expression. In order to minimize the com-
putational effort for the covariance, Sect. 5.3.2 addresses different approximations to
the trispectrum and studies their validity for different configurations of the trispec-
trum wave-vectors. They are later applied to the actual covariance in Sect. 5.3.3 and
used throughout this work. Sect. 5.4 covers the effect of a log-normal distribution for
the concentration parameter in the power and trispectrum. To understand the origin
of cross-correlations in the power spectrum covariance, Sect. 5.5 examines how the
form and amplitude of the trispectrum depends on the angle between the trispectrum
wave-vectors. Finally, in Sect. 5.6, we check the amount of non-Gaussianity on dif-
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ferent scales for the case of the three-dimensional and the projected power spectrum
covariance.

5.1 Covariance of the dark matter power spectrum
estimator

We are interested in the statistical properties of the dark matter density field é(x)
and its Fourier modes

i(k) = /dgx 6(x) e*® (5.1)

where & € R3. More precisely, we want to determine the power spectrum of §(zx) and
the corresponding covariance for wave-vectors of different length k. As we will see
later, this requires considering moments up to fourth order. Let us assume for our
analysis that a survey (or simulation) of volume V' is given from which d(k) can be
estimated. In Fourier space the volume can be divided into k-bins of shell width Ak.
Following Scoccimarro et al. [72], we choose

Pl = [ 3o R5-R) (52)

as an estimator for the power spectrum, where the integration is performed along
the i-th shell of volume V;(k;) (the subscript ‘s’ stands for shell). The estimator is
constructed such that it is unbiased in the limit of infinitely small shells, which can
be seen by calculating its expectation value

~ / d% (27T)35D(0):P(k;). (5.3)

Note that we used the definition of the power spectrum in the second step (see Eq. 3.42)
and the identity dp (0) = V/(27)® (use Eq. 3.27 and consider k = 0). The last
approximation is only valid for small bin-sizes, since the variation of P(k) within
Vi(k;) is then negligible. We can also calculate the covariance of the power spectrum
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estimator (5.2) for small shells:
C;; = Cov (P(k:i), P(kj))
= (P(ki)P(k;)) — (P (ki) {P(k;))
= [ v [ i O3k (k)3
— ((k1)0(—k1))(0(k2)d(—k2))]
- / ) de’;l) / ) ;12:]2) [(6(k1)0(—k1 )0 (k)3 (k).
+(6(k1)0(k2))(6(—F1)d(—k2)) + (6(k1)d(—k2)){(0(—k1)d(k2))]

(27T>3/ A’k / A3k,
- ——{5p (0)T(ky, k1, ko, —k 4
/2 Sk ‘/s(kz> ok, ‘/s(k]) { D( ) ( 1, 1, k2, 2) (5 )

+ (27T)3P2(/€1) [(SD (kl + kig) 5]) (—kl - kg) + 5]) (kil - kg) (SD (—kil + kz)]}

9 6 dSk 1 -
_ &) / e 2P2(k1)0p (0) 83y + o Tk, —ko, ko, —k)
s,k

V2 ok Va(ka) Vi(k;) %
1| @2, _
v | Vi 2 Ko + T (5.5)
where Tj; is the bin-averaged three-dimensional matter trispectrum
_ _ A3k d3ky
T, =T (ki k;) = T(ky, —ki, ko, —ko). 5.6
=Tk = [ Sy Tk kGO

For the derivation of Eq. (5.5), we made use of the definition of the trispectrum (see
Eq. 3.42) and again of dp (0) = V/(27)?. The approximation in the last step relies on
the assumption that the power spectrum is almost constant over the shell integration.
The resulting equation (5.5) consists of two terms: a Gaussian part which scales as
the power spectrum squared and only gives a contribution to the diagonal of the
covariance matrix, and a non-Gaussian part which introduces correlations between
the wave-vectors of different shells. Both terms are inversely proportional to the
survey volume V', but have a different behavior with respect to the shell volume
Vi(k;). While the Gaussian term decreases with the size of the shell, the non-Gaussian
term is independent of the binning, since the volumes of the shells cancel out with the
integration.

If we choose the coordinate system for the wave-vectors such that the integration
shells are placed concentrically to its origin the problem becomes rotation-symmetric.
This suggests to parametrize the three-dimensional trispectrum with three quantities,
namely the length of the two wave-vectors which we denote with k; and k; and the
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cosine of the angle between them = = (k; - k2)/k1ks = cosf. Accordingly, we use for
the three-dimensional trispectrum the subsequent parametrization

T(kl, k’g, ZL‘) = T(kl, —kl, kg, —k2> . (57)

The appropriate choice of the coordinate system allows us then to reduce the number
of integrations in Eq. (5.6) from six to three, resulting in

872

1
TZ--:— dk, k2 dka/dik . 5.8
I Vi) / 1 / 2k [ doTiky ke, ) (5:8)

1 yvg

Note that for the calculation of the above equation we only have to consider parallel-
ogram configurations of the trispectrum wave-vectors.

If we choose a linear binning for £; and k;, such that they are centered in the integration
interval, the shells have a volume

ki+4E

3
Vi(k;) = 47r/ dk k? = 4n (kak + (AF) ) : (5.9)
ki— 4k

12

which is approximately V;(k;) ~ 4nk?Ak for small bin-sizes Ak. Equation (5.8) has
in this case the form

3 1 1 ki—‘r% ) kj—l-% ) 1
Ej = 5(}{71]{:]—Ak)2\/k;_%k dkl kl /kj_AQk dkg ]{32 /_1 dlET(kl,kQ,.T). (510)

For a logarithmic binning, Egs. (5.9) and (5.10) would have to be modified, because

5.2 Covariance of the lensing power spectrum
estimator

In the same way as for the dark matter power spectrum one can find an expression for
the two-dimensional case of the convergence power spectrum covariance (see Sect. 3.6).
Instead of the density field §(k), we now consider the statistics of the projected density
field

WH
5(0) = / dw W (w) 5 frc ()0, w] (5.11)
0
where wy denotes the comoving distance to the horizon and its Fourier counterpart

k(1) = / 420 655(8) (5.12)
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For our considerations, we will assume that all background sources are situated at a
comoving distance ws, such that the weight function has the form

Hg fre(ws —w)

n e (o) (5.13)

W(w) = gﬂ

Analogously to the three-dimensional case, we are interested in estimating the power
spectrum and the corresponding covariance for wave-vectors of different length [;. The
power spectrum estimator for the convergence field is constructed as

Pull) = / R, (5.14)

which is also unbiased in the limit of infinitely small shells, since (pﬁ(ll» = P.(l;).
Here A = 47 fq, denotes the survey area or the solid angle in steradian', where fg, is
the fractional sky coverage and the integration is performed along a two-dimensional
annulus of volume A, (l;) (the subscript ‘v’ stands for ring).

With the estimator from Eq. (5.14), the evaluation of the covariance results in an
expression analogous to the three-dimensional case

Ci; = Cov <15,@(li)v pﬁ(li)> B % {%

with the bin-averaged convergence trispectrum

2P2(13)0s5 + Tu(1;, 1) (5.15)

TN:T(LZ-)—/ / & 4% T (ly, =1y, 1y, —1y) (5.16)
i — Ltr\bby) — ot S, Ar(ll) Ar(l]) rk\l1, 1,02, 2)- .

Again, the covariance consists of two contributions: a Gaussian part proportional
to the convergence power spectrum squared and a non-Gaussian part in which the
trispectrum dependence enters. The convergence power spectrum P, (l) and the con-
vergence trispectrum T (11, —l, ls, —13) are the projections of the corresponding three-
dimensional spectra along the comoving distance convolved with the weight function
W(w) of Eq. (5.13) as defined in Sect. 3.6.

If we choose an appropriate coordinate system for the integration over the wave-
vectors, the problem becomes rotation-symmetric and we can parametrize the conver-
gence trispectrum by three quantities as well, namely the length of the wave-vectors [y
and [y and the cosine of the angle between them = = (I; -13)/l;ly = cos ¢. Analogously
to the three-dimensional case we define

Tn<l1,12,$) = Tn(ll,—ll,lg,—lg). (517)

N 2
'Multiplication with (%) converts it to square degrees.
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Making use of the symmetry properties of this problem, one angular integration be-
comes trivial and the integration in Eq. (5.16) simplifies to

= 271' 2
= amaay ), dh [ dil do T(l1, s, . 5.18
ij Ar(li)Ar(Zj) /r,li 1 1/% 2 2/0 @ (1 2 COSgp) ( )

If the bins are spaced linearly and [; is placed in the arithmetic mean of the integration
interval the shell area is

li+Al/2
A(l) = 27 / dly 1yl = 27lAL. (5.19)
li—Al/2

In this case, the averaged trispectrum becomes

B 1 Li+AlL/2 1+Al/2 o
T = ———— diy 1 diy 1 dpT,.(l1, 1, ) 2
2wl (Al)? /li—Al/Q ' 1/lj—Al/2 ’ 2/0 # Tl bz, cos ) (5:20)

If the bin-width is sufficiently small, we can make use of the mean value theorem and
approximate integral (5.20) in the following way:

_ 1 27
Ty ~ 2—/ dp T,.(l;, 1, cos p) . (5.21)
T Jo

Since the 1-halo term of the trispectrum (Eq. 4.134) is in fact independent of the angle
©, an approximation of the covariance can be calculated without having to perform
an integration at all.

5.3 Calculating the covariance in the halo model
approach

We have seen that the covariance of the power spectrum estimator consists of two
terms: a Gaussian part, which is proportional to the power spectrum squared and a
non-Gaussian part, which is the bin-averaged trispectrum. To model the non-linear
power spectrum one can make use of different fitting formulae (see e.g. Peacock
and Dodds [62], Smith et al. [79]), but for the trispectrum there exists currently no
reliable prediction. For this reason, we use the halo model approach to describe the
trispectrum. To be consistent, the same halo model is also applied to calculate the
power spectrum. In the following, we will summarize the halo model terms in the
form we need them for our covariance consideration and analyze which of them are
required for a consistent description on different scales. Finally, we will show the
numerical results of the power spectrum covariance as calculated with our halo model
implementation.
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5.3.1 Trispectrum

From the analytic results of the power spectrum covariance (Eq. 5.4) and the lensing
power spectrum covariance (Eq. 5.15), we know that only parallelogram configurations
of the trispectrum wave-vectors contribute to the non-Gaussian terms. Instead of four
arbitrary wave-vectors (k1, ko, k3, k4), we now only have to consider (ky, —k1, ko, —k2)
configurations, where the two opposing wave-vectors are of the same length. Restrict-
ing our calculations to these configurations, the four different halo terms which add
to the total trispectrum (see also Sect. 4.6) simplify. In order to shorten the resulting
expressions, we make use of the M;; building blocks as defined in Sect. 4.6. Neglecting
the k-dependencies where no confusion arises, the trispectrum contributions in the
halo model description take the following form:

The 1-halo term becomes

Tin = Moa(kr, —k1, k2, —k2) (5.22)
the 2-halo term is

Ton = Ty + T2, (5.23)

which consists of Tl corresponding to correlations of three points within one halo
and a fourth point in a second halo and T3?, describing correlations of two points in
one and another two points in the second halo:

T;’ﬁ = 2M13(k1, ko, k1)M11(/€1)Plin(/€1) )
+ 2Mi3(ka, k1, ko) My (k2) Pin (k2) (5.24)
T5e = M7 (1, ks) [Pin (|1 + k2|) + Pin(Jk1 — kal)] - (5.25)

The three-halo term is given by

Ty, = 2Myo(ky, ko) M1 (k1) Mg (k)
- [Bpt(k1, ko, —k1 — ko) + Bpi(k1, —ko, —k1 + ko)
+ Mo (K1, kl)M121(k52)P1?n(k2)
+ Moy (ka, ko) M7, (ky) P, ()
+ 4 Moy (k1 ko) My (k1) Miy (ko) Pin (K1) Pin(k2) (5.26)

and the four-halo term is

T = M (k) M (ko) T (K1, — k1, o, —kso)
+ 2M7y (k) My (ko) Moy (ko) Pin (k1) Py (K2)
+ 2M7y (ko) My (ky) Moy (k) Pin (k2) Py (K1) (5.27)

which describes correlations of points between four different halos. By, and T} de-
note the lowest order, non-vanishing perturbation theory contribution to the bi- and
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trispectrum as derived in Sect. 2. For parallelogram configurations of the trispec-
trum wave-vectors, we have to consider the following perturbation theory bispectrum
dependencies

Byt (K1, ko, —ky1 £ ko) = 2F5(kq, k2) Pin (k1) Pin (k2)
+ 2Fy(ke, —k1 £ ko) Pin(k2) Pin(] — k1 £ ks|)
+ 2F5(—ky £ ko, k1) Pin(| — k1 £ ka|) Bin (k1) (5.28)

where the Fy(+,-) kernels denote the symmetrized second-order coupling function (see
Sect. 2.4.3). The perturbation theory trispectrum simplifies in comparison to the one
for arbitrary wave-vector configurations (see Eq. 3.59) to the following expression:

Tor = AP (k1) {[Fa(k1, —k1 — k2)]*P(|k1 + k2l)
+ [Fa(key, ko — k1) PP (Jky — kal) }
+ 4P (ko) {[Fa(ka, k1 — k2)]?P(|ky + ko)
+ [Fy(kea, k1 — ko) PP (|ky — kal) }
4 8P(k)) P(ks) [Fo(k1, —k1 — ko) Fy(Ko, — k1 — ko) P([k1 + ko)
+ Fy(kyi, ko — k1) Fy(ke, k1 — ko) P(|k1 — ka)]
+ 12 P2 (k) P(ko) Fs(ky, —k1, ko) + 12 P? (ko) P(k1) Fs(k1, ko, —ks),  (5.29)

where we dropped the (ki, —k1, k2, —k2) dependency in T, and F3(-, -, ) denotes the
third-order coupling function as defined in Sect. 2.4.3. The full trispectrum is the sum
of the four halo terms such that

T(kl, ]{72, :L‘) = Tlh + TQh + T3h + T4h . (530)

A detailed derivation of equations (5.22) — (5.29) can be found in appendix A. To
display the trispectrum graphically, it is convenient to parametrize an arbitrary par-
allelogram configuration in terms of the ratio of the wave-numbers k; and ko, the
angle between the corresponding vectors and the length of one wave-vector k;. In
this way, one can fix the values for the ratio and the angle and plot the trispectrum
against a varying wave-length ki. If we set |k;| = a|ks|, the dimensionless dark matter
trispectrum becomes

k3
A (ki a,z) = 2—;2 TY3(ky, ko, ) (5.31)

where the subscript ‘pc’ indicates that we consider parallelogram configurations. The
same notation can be used for the projected case. If we have |l;| = a|ly|, the dimen-
sionless lensing trispectrum is



5.3 Calculating the covariance in the halo model approach

103

8% ,.(K)

k [h/Mpc]
10° ¢

8%,

o L
10° 10*
|

10°

Figure 5.1:

Hllustration of the different contributions to the dimensionless trispectrum
against the wave-vector for a parallelogram configuration with a = 10 and x = \/2/2 (see

text for further explanations). The upper plot displays the three-dimensional case, whereas
the lower plot shows the projected lensing trispectrum.
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Table 5.1: Cosmological parameters used for calculating the trispectrum in the halo model
approach. The parameters chosen match the cosmology of the Millennium Run simulation
[82]. In order to set up the initial power spectrum the Eisenstein-Hu (EH) transfer function
was used [22].

| Simulation | Qu [ Qa [ B | @ Jos|ng | T |2 ][T(k)]
| Millennium [| 0.25 [ 0.75 | 0.73 [ 0.045 ] 0.9 [ 1.0 [ 0.14 | 1 | EH |

l2
Aic(lha?l‘) = iTKI/E}(Zlalan) ) (532)

where T,/ 3(ll, ls, ) denotes the projected version of the trispectrum. As an example,
we calculate the different halo terms of a trispectrum configuration with a = 10
and x = V2 /2. For our halo model implementation we use the same WMAP3-like
cosmological parameters as for the Millennium Run simulation (see Tab. 5.1), which
is applied throughout this chapter, if not stated otherwise. Fig. 5.1 illustrates the
resulting trispectra for the three-dimensional (upper panel) and projected case (lower
panel) against the corresponding wave-number k or . As expected, in both cases the
1-halo term (red line) which accounts for dark matter correlations within one halo
is dominant on small scales. Analogously, the 4-halo term (pink line) corresponding
to correlations of dark matter between four different halos has the largest influence
on large scales. For this configuration the 2-halo term (green line) has the largest
contribution to the total trispectrum on intermediate scales and the 3-halo term (blue
line) is of minor importance throughout the displayed scales. By construction the
4-halo term (turquoise line) equals the perturbation theory trispectrum on very large
scales.

5.3.2 Contributions of the individual halo terms

As the calculation of the non-Gaussian covariance requires at least three integrations,
it is useful to find approximations of the total trispectrum on different scales such
that the computation-time is minimized. For this reason, we aim at quantifying the
contributions of the individual halo terms to the overall trispectrum. From Fig. 5.1
we can rate the importance of the different halo terms. This suggests to examine the
following approximations for different trispectrum configurations more closely:

T, =T, (5.33)
Ty =T + Ton, (5.34)
T3 = T, + Ton + Tin, (5.35)
Ty =T+ Ton + The - (5.36)

where we additionally set Ty, ~ T, since the perturbation theory trispectrum equals
by construction the 4-halo term on very large scales and requires less computational
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effort. Subsequently, we investigate these approximations to the total trispectrum 7" in
two ways: first by calculating the ratio 7; /T and plotting it against the corresponding
wave-number and second by analyzing the trispectrum configuration dependence of
these approximations in order to generalize the results found. Note that the total
trispectrum corresponds either to the three-dimensional trispectrum of Eq. (4.133) or
to the corresponding projected version depending on the case considered. Furthermore,
we choose a parametrization (k,a,x) or (I,a,x) for the trispectra as described in the
previous section.

Quality of the different approximations

Fig. 5.2 illustrates the different approximations 7; compared with the overall trispec-
trum 7T for a parallelogram configuration with a = 10 and z = /2 /2. More precisely,
we calculate the ratio 7;/T for each of the approximations defined (see Eqgs. 5.33-5.36)
and plot it against the corresponding wave-number. In this way, values close or equal
to 1 mean good or perfect agreement with the total trispectrum, whereas low or high
values indicate a poor resemblance. In the following, we say that an approximation is
in good agreement with the total trispectrum if the error |7; /7T — 1| < 10%. As we are
interested in the three-dimensional as well as the projected trispectrum, the different
configurations are plotted and analyzed for both cases.

The upper panel of Fig. 5.2 illustrates the quality of the four different approximations
for the three-dimensional trispectrum in a range 10722 Mpc ™ < k < 102 h Mpc ™.
The 77 approximation (pink line) which consists only of the 1-halo term of the trispec-
trum provides the worst approximation. Only for wave-numbers larger than k& 2>
30 h Mpc ! the approximation deviates less than 10% from the total trispectrum. 75
(blue line) and 73 (green line) already provide a better approximation and can be ap-
plied safely on scales smaller than k ~ 0.2 h Mpc™!. Since both approximations are of
similar quality, including the 3-halo term in the approximation is of minor importance
for this trispectrum configuration. The best agreement with the total trispectrum is
achieved for the 7 -approximation (red line). It should be used if a good resemblance
on very large scales is required.

Analogously, the lower panel of Fig. 5.2 compares the same approximations to the
total convergence trispectrum. For our consideration we chose a range 10 < [ < 10,
As one can see, the qualitative behavior of the approximations is identical to the
three-dimensional case. The 7;-approximation (pink line) is only applicable on scales
smaller than [ ~ 3000, whereas the other approximations can already be used on scales
smaller than [ ~ 200. Again, 73 (green line) does not improve the estimate of 75 (blue
line) by much. If a good agreement on large scales is necessary, the 7;-approximation
(red line) should be preferred over the others.
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Figure 5.2: [llustration of the different approximations of the trispectrum divided by the
total trispectrum T; /T (k) against the corresponding wave-number. The upper panel displays
the three-dimensional case, while the lower panel shows the projected case for a parallelo-
gram configuration, with ratio a = 10 and x = \/2/2. Ty provides in both cases the best
approximation to the total trispectrum, whereas Ty is only applicable on small scales. A good
compromise between the two approzimations is given by Ta (see text for a detailed discussion).
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Configuration dependence of the approximations

As the calculation of the power spectrum requires to average over all possible con-
figurations of the trispectrum, we are interested to see if the results of the previous
section hold as well for arbitrary configurations of the trispectrum. For this purpose,
we investigate the validity of the approximations for four different configurations of
the trispectrum. As before, we parametrize the parallelogram configurations by the
length of one wave-vector ki or li, the ratio a between both wave-vectors and the
cosine of the angle between them x. We focus on three configurations with fixed ratio
a specified by

a=1, =0, (5.37)
a=10, z=+2/2, (5.38)
a=100, =0, (5.39)

where in the three-dimensional case one wave-vector is varied in the range 1072 A Mpc™*

ki < 10> hMpc! and in the projected case one wave-vector is varied in the range
10 < I, < 10*. Additionally, we consider one configuration where the ratio a varies
specified by

1 <a<1000, z=+72/2. (5.40)

In this case, one wave-vector has a fixed value. For the three-dimensional consideration
it is set to ko = 0.1 A Mpc™!, for the projected case we set o = 100. The first parallel-
ogram configuration (5.37) corresponds geometrically to the special case of a square
configuration. As the wave-vectors have the same length, this configuration only con-
tributes to the diagonal part of the covariance matrix. The next two configurations
(5.38, 5.39) are parallelogram configurations with different ratio and angle between
the wave-vectors and correspond to off-diagonal entries of the covariance matrix. The
larger the ratio a, the larger the separation from the diagonal of the covariance. Finally,
the last configuration with varying ratio a probes the border region of the covariance
matrix where one wave-length is fixed to a small value. In the following, we consider
the validity of the 7; and 7, approximations for the four parallelogram configurations
specified. Fig. 5.3 displays the results for the three-dimensional trispectrum, while
Fig. 5.4 shows the results for the convergence trispectrum.

Results

The upper panel of Fig. 5.3 summarizes the results for the 7; approximation of the
trispectrum in the three-dimensional case. For all configurations except (5.40), 73
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Figure 5.3: [llustration of the different approximations of the three-dimensional trispec-
trum 7I; divided by the total one against the wave-number k for four different parallelogram
configurations. The upper plot displays the Ti-approximation which considers only the 1-halo
term contribution. The lower plot shows the results of the Ta-approzimations, which consists
of 1-halo and 2-halo term. The trispectrum configurations are specified by the ratio a of the
wave-length k1 and ko and the cosine of the angle x between the wave-vectors k1 and ko.
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Figure 5.4: lllustration of the different approximations of the projected trispectrum 7;
divided by the total one against the wave-number | for four different parallelogram configu-
rations. The upper plot displays the Ti-approximation which considers only the 1-halo term
contribution. The lower plot shows the results of the Ta-approximations, which consists of
1-halo and 2-halo term. The trispectrum configurations are specified by the ratio a of the
wave-length |1 and lo and the cosine of the angle x between the wave-vectors l1 and ls.
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approximates the total trispectrum well for wave-length larger than k ~ 20 h Mpc™'.

Configuration (5.40) was chosen to probe the border region of the covariance ma-
trix. As we can see from Fig. 5.3, 7; fails to approximate the total trispectrum. It
deviates over the considered range by more than 80%. Considering the four configu-
rations in combination with the 75 approximation shows a significant improvement.
On scales smaller than & ~ 0.3 hMpc™', 75 resembles the total trispectrum well for
all configurations except (5.40). In case of the off-diagonal configuration (5.39) the
7, approximation even provides an accurate approximation of the whole range con-
sidered. Hence in regions further away from the diagonal of the covariance the 3-halo
and 4-halo term are of minor importance and can be safely neglected.

Fig. 5.4 shows the same type of plots for the projected trispectrum configurations.
Again, the qualitative behavior of the configurations is similar to the three-dimensional
case. The 77 approximation deviates 10% or less from the total trispectrum 7" on scales
smaller than [ ~ 3000 for all configurations considered except (5.40). The deviation
in case of configuration (5.40) is less severe than in the three-dimensional case but
is still larger than 50% on the scales considered. The lower panel of Fig. 5.4 shows
the situation of the four parallelogram configurations for the 75 approximation of the
total trispectrum. As for the three-dimensional case, there is a significant improvement
in the quality of the approximations. All parallelogram configurations considered are
approximated accurately by 75 on scales smaller than [ ~ 3000. If one is only interested
in approximating configurations which are further away from the covariance diagonal,
7T, already provides an accurate approximation for wave-length larger than [ 2> 200.
For a square configuration, 75 resembles the total trispectrum very well on all scales
from 200 < [ < 10%.

From this analysis, we can draw the following conclusions: the 1-halo term (77 ap-
proximation) is sufficient to describe the total trispectrum on small scales as long as
the configurations considered deviate not too much from a square configuration. To
describe intermediate scales accurately, one has to consider the 2-halo contribution as
well (73 approximation). For degenerate parallelogram configurations where one wave-
number is very small, one has to consider the 3- or 4-halo term as well. The projection
of the three-dimensional trispectrum along the redshift-axis has no significant effect
on the qualitative behavior of the approximations considered. The results from this
section valid for the large majority of trispectrum configurations are summarized in
Tab. 5.2 and apply for a standard ACDM cosmology as given in Tab. 5.1. The three-
dimensional trispectrum is considered at z = 0. For the convergence trispectrum we
applied a single source redshift plane at z, = 1.

5.3.3 Lensing power spectrum covariance

With the results of the previous sections, we can finally calculate the covariance of
the lensing power spectrum C;; in the halo model description. As shown in Sect. 5.2
it consists of a Gaussian part which depends on the square of the convergence power
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Table 5.2: Validity range of the Ty and T3 approximations for the three-dimensional (3D)
and projected (2D) trispectrum. For larger wave-numbers than the ones stated the corre-
sponding approximation deviates less than 10% from the total trispectrum. The results apply

for the majority of parallelogram configurations of the trispectrum wave-vectors in a standard
ACDM cosmology (see Tab. 5.1).

Approximation | 3D trispectrum | 2D trispectrum
k[ hMpc™!] [ [rad™!]
T >3 23000
T > 0.3 2300

spectrum and a non-Gaussian part consisting of the bin-averaged convergence trispec-
trum. The term bin-averaged here describes the averaging over all possible trispectrum
configurations which can be found for wave-vectors within two annuli. In contrast to
calculating the ‘pure’ trispectrum, for the covariance we have to specify the survey
size and the bin-width that define the width of the annuli to be averaged over. We
focus here on the projected case of the covariance as it has more relevance for obser-
vations in weak lensing. After considering the covariance for a specific example, we
will apply the results of the different trispectrum approximations from Sect. 5.3.2 to
the lensing power spectrum covariance and explore their relevance for upcoming weak
lensing surveys.

Covariance for a standard ACDM cosmology

As illustrative example, we consider the covariance of the projected power spectrum
estimator with cosmological parameters matching a standard ACDM cosmology (see
Tab. 5.1). We adopt the same survey size A = 25 deg® and the same linear binning
scheme with Al = 72 starting from [y = 144 up to lyg = 3024 as used for the ray-tracing
through the Millennium Run, which we will consider in the following chapter. The
resulting covariance matrix is presented in Fig. 5.5 on a logarithmic scale. Typically,
the covariance matrix has a maximum amplitude on large scales, i.e. for small wave-
numbers [ (red region) and decreases towards larger wave-numbers (dark blue region).
The largest values can be found along the diagonal, corresponding to the variance
of the power spectrum estimator. Under the Gaussian assumption, only a fraction
of this diagonal is used for the error analysis. The non-Gaussian contribution to the
diagonal and the non-Gaussian off-diagonals of the covariance matrix are neglected.
In a subsequent section, we will analyze the amount of non-Gaussianity in comparison
to the Gaussian contribution for the diagonal of the covariance in more detail.
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Figure 5.5: Logarithmic convergence power spectrum covariance log(C(l;,1;)) against wave-
numbers (1;,1;) as calculated with the halo model. Survey area and cosmological parameters
match the Millennium Run simulation. The binning scheme is linear with o width Al = 72
ranging from lg = 144 up to lyy = 3024. The upper plot shows a three-dimensional visual-
ization of the lensing covariance, whereas the lower plot depicts the corresponding contour
representation. As can be seen from the contours the diagonal marks the highest amplitude
of the total covariance.
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Approximations for the covariance

From the results of the trispectrum analysis in the previous section, we expect the 1-
halo and the 2-halo term of the bin-averaged trispectrum to be the major contributions
to the overall covariance. In order to analyze this issue further, we define analogous
covariance approximations as for the trispectrum. The quality of these approximations
is then visualized in contour plots.

For the considerations, it is convenient to decompose the covariance of the lensing
power spectrum estimator into the Gaussian part and the four halo terms of the bin-
averaged trispectrum

Cyj =Cg +C)©
=CS+Cih e eyl (5.41)

ij

where the components are defined as

1 (2m)?
1 d?l d?l
e == ! ST, L), n=1,2,3,4. (5.43)

A S Al Sy Acl)

As already discussed in Sect. 5.2, these terms generally depend on the survey size A
and the binning scheme since A,(l) oc All. Since the Gaussian part is well described
by applying the standard fitting formulae for the power spectrum and its computation
can be performed quickly, we focus in the following on the four halo terms of the
bin-averaged trispectrum. In analogy to the analysis of the trispectrum in Sect. 5.3.2,
the following four approximations are investigated further:

C, =C"™, (5.44)
Co=C" ™, (5.45)
Cs=C"+C™ 4, (5.46)
Cy=C™ 4 C* ™, (5.47)

where we omit the subscripts ¢ and j for notational convenience. The different approx-
imations C; are visualized in four contour plots in Fig. 5.6. Each plot shows a different
approximation divided by the total lensing covariance C versus wave-numbers (I;, ;).
As one can see, the Ci-approximation works well on small scales. For wave-numbers
larger than [ 2 2500, the deviation from the total trispectrum is 6% or less except
along the diagonal. Here and close to the left and lower borders of the covariance
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matrix where one wave-number is fixed to a small value the error is 12% or less. Using
the Co-approximation the deviation to the total covariance along the borders and the
diagonal decreases significantly. For wave-numbers larger than [ ~ 1000 the error is
3% or less. If one desires a smaller deviation on large scales more halo-terms must be
considered, since for [ < 500 the discrepancy to the total covariance is 13% or more.
If a high precision is required, one should choose the Cs-approximation. For wave-
numbers [ 2 300, the deviation is 6% or less. In contrast to Co the Cs-approximation
improves the boundary region of the covariance matrix but is less accurate than the
Cs-approximation. A summary of this analysis can be found in Tab. 5.3, which is valid
for a standard ACDM cosmology as given in Tab. 5.1. As we consider the ratio of
the approximations to the total covariance, the results found are independent of the
survey size. For small bin-width, they are also independent of the binning scheme
and can be applied to all weak lensing surveys with source redshift planes situated at
zs = 1.

Table 5.3: Validity range of the approximations for the covariance of the lensing power
spectrum as defined in Eqs. (5.44)-(5.47). For values larger than the wave-numbers stated
the error is less than 12% or less than 6% depending on the column considered. The results
apply to a standard ACDM cosmology (see Tab. 5.1) and source redshift planes situated at
zs = 1.

Approximation | Error < 12% | Error < 6%
[ [rad™!] [ [rad™!]
C, >1200 >92500
C, >200 > 500
Cs >100 >200
C, =100 =300

5.4 Effect of a concentration parameter distribution

In Sect. 4.5 we saw that the density profile of a halo can be parametrized by its
virial radius r;, and the concentration parameter c¢. Up to now, we assumed that the
concentration parameter in our halo model implementation is described by a simple
mass-redshift dependency of the form

c(m,z) = —= (m)_a (5.48)

e

with m, = m.(z = 0). Recent numerical results [13, 38] indicate that this relation
holds only for the average halo concentration, i.e. there is a scatter in the concentration
parameter for halos of the same mass. Furthermore, Jing [38] proposes that the
underlying concentration distribution is better described by a log-normal distribution
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Figure 5.6: Contour plots of the approximated to total lensing covariance Cy/C against
the wave-numbers (1;,1;) as calculated with the halo model. FEach panel depicts a different
approximation. In reading order these are: Cy, Ca, C3 and Cy as defined in Eqs. (5.44)-(5.47).
To have an error smaller than 6% for wavenumbers larger than 600 one requires at least the
1-halo and 2-halo terms of the bin-averaged trispectrum.
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2
2o-ln c

1 [_M] dlne, (5.49)

with the mean ¢ following the original relation (5.48). Typical values for the concen-
tration dispersion range from oy, = 0.18 to o1, = 0.32 [38, 86]. This variation of
the halo concentration can be explained by the different merger histories of the halos
(see Wechsler et al. [86]). Studying the concentration of halos with different formation
redshifts z¢, they found a fitting formula

c(zr) = co(1 + 2), (5.50)

where ¢y = 4.1 corresponds to the typical concentration of halos forming at the present
time. This implies that, for a fixed mass m, halos forming at earlier epochs have
a larger concentration than halos forming at later epochs which reflects the higher
density of the Universe at earlier times.

In the following, we analyze the impact of a scatter in the halo concentration on the
1- and 2-halo terms of the power and trispectrum. To avoid confusion, we refer to
the original concentration-mass relation in Eq. (5.48) as the deterministic concen-
tration relation, since the probability distribution can be described by a Dirac delta
distribution as

p(c)de =ép (¢ —¢)cdlne (5.51)

and denote the log-normal concentration distribution of Eq. (5.49) as probabilistic
concentration relation.

5.4.1 Three-dimensional spectra

Since the concentration parameter characterizes the halo profile (see Sect. 4.5), we
expect the change from a deterministic to a probabilistic concentration relation to have
the strongest effect on small scales. Thus in our halo model description of structure, the
1-halo term and possibly the 2-halo term of the spectrum considered should be most
sensitive to a scatter in the concentration. Since our main interest in this work is the
power spectrum covariance, we analyze in the following the impact of a probabilistic
concentration on the 1- and 2-halo term of the power and trispectrum for the three-
dimensional and for the projected case.

Fig. 5.7 illustrates the results for the 1-halo terms of the three-dimensional power
spectrum (upper panel) and the trispectrum (lower panel) for different dispersions
ome ={0.1,0.2,0.3,0.4} and the deterministic concentration denoted by oy,. = 0. In
order to show the effect more clearly we display in the plots the ratio of the 1-halo
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term contribution as a function of the concentration dispersion to the 1-halo term
contribution from the deterministic concentration relation A%(k; oy,.)/A?(k; o1 = 0)
against k. Additionally, we consider for the trispectrum only square configurations,
where k1 = ko = k and x = 0. One can clearly see that a probabilistic concentration
raises the amplitude of the 1-halo terms significantly on small scales with respect to the
original deterministic concentration. The larger the dispersion oy, ., the stronger the
deviation from the original deterministic concentration relation as given in Eq. (5.48).
Note that the impact of the probabilistic concentration distribution is stronger on the
trispectrum than the power spectrum. This is not surprising as the evaluation of the
trispectrum requires to average over the fourth power of the halo profile, whereas to
derive the power spectrum one averages merely over the squared halo profile.

The upper panel of Fig. 5.8 displays the results for the 2-halo term of the three-
dimensional trispectrum for different dispersions o1, = {0.1,0.2,0.3,0.4} and the
deterministic concentration denoted by o1, = 0 in the same way as for the 1-halo term.
In the following, we do not consider the influence of a probabilistic concentration on the
2-halo term of the power spectrum, as it is vanishingly small (less than 1% deviation
from the zero dispersion result). Similar to the 1-halo term consideration, the plot
indicates that a larger concentration dispersion for the 2-halo term results in a stronger
deviation from the 2-halo term with a deterministic concentration. In comparison to
the 1-halo term of the trispectrum, the influence of the concentration distribution on
the 2-halo term is less pronounced, but still noticeable. This is in agreement with the
weaker dependence of the 2-halo term on the halo profile. For wave-numbers around
k ~ 103 hMpc™! the deviation from the deterministic concentration varies between
10% (for o1, = 0.1) and 50% (for oy, = 0.4).

5.4.2 Projected spectra

As the probabilistic concentration has a strong effect on small scales of the three-
dimensional spectra, we are also interested its impact on the projected spectra. For
this reason, we consider in Fig. 5.9 the influence of a concentration dispersion on
the 1-halo term of the convergence power and trispectrum. Additionally, the lower
panel of Fig. 5.8 depicts the same dispersions in the 2-halo term of the projected
trispectrum. In analogy to the three-dimensional case we plot the ratio of the cor-
responding halo term contribution as a function of the concentration dispersion to
the corresponding halo term contribution from the deterministic concentration rela-
tion A2(I; o1,¢)/A2(1; 01n = 0) against . Again, we consider for the trispectrum only
square configurations, where [y =l = [ and x = 0. The plotted results show the same
behavior as in the three-dimensional case. But in contrast to the three-dimensional
counterparts, the effect of a concentration dispersion is diminished in the projected
spectra. This is a result of the projection along the redshift axis. In case of the 1-halo
term of the power spectrum with oy, . = 0.3 (upper panel, blue line) this means a devi-
ation from a deterministic concentration relation of about 1% — 2% for wave-numbers
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Figure 5.7: Ratio of the 1-halo term contribution as a function of the concentration disper-
sion to the 1-halo term contribution from the deterministic concentration relation of different
three-dimensional spectra against wave-number k. The curves show the ratio for four dif-
ferent dispersions of the halo concentration oy, . = {0.1,0.2,0.3,0.4} and the deterministic
concentration denoted by o, = 0. The upper plot displays different concentration disper-
sions of the power spectrum, whereas the lower panel shows the same dispersions for the
trispectrum. As one can see the dispersion has a strong effect on small scales. For the
trispectrum the effect is more pronounced than for the power spectrum.
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Figure 5.8: Ratio of the 2-halo term contribution as a function of the concentration dis-
persion to the 2-halo term contribution from the deterministic concentration relation of the
three-dimensional (upper panel) and the convergence trispectrum (lower panel) against wave-
number [. The curves show the ratio for four different dispersions of the halo concentration
Olme = {0.1,0.2,0.3,0.4} and the deterministic concentration denoted by oy, = 0. The effect
of the concentration dispersion on the 2-halo term is less pronounced than for the 1-halo
term, but still important to consider for large wave-numbers. Around | ~ 10* the deviation
from a deterministic concentration relation can amount up to 10%.
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larger than [ ~ 10% and for the 1-halo term of the trispectrum (lower panel, blue line)
a deviation in the order of 10% — 15% in the same [-range. Thus, when considering
the diagonal part of the covariance, one should take into account the concentration
dispersion in the 1-halo term of the trispectrum but can safely neglect it for the power
spectrum. It might be useful to apply the dispersion as well on the 2-halo term of
the trispectrum. For a large dispersion and on small scales it can raise the amplitude
of the 2-halo term up to 10% in comparison to the same 2-halo contribution with a
deterministic concentration.

5.4.3 Projected power spectrum covariance

From the results above, we expect the strongest effect of a concentration distribu-
tion on the non-Gaussian part of the covariance since it depends on the bin-averaged
trispectrum. To understand the influence of a concentration distribution on the co-
variance better, we calculate the 1-halo contribution of the non-Gaussian covariance
C'" (see Eq. (5.43)) for four different concentration dispersions oy,. with our halo
model implementation and divide it by non-Gaussian covariance C'* with a determin-
istic concentration relation. The cosmological parameters and survey characteristics
are chosen such that they match the Millennium Run simulation. The considered
wave-number range is from [, = 144 to lyg = 3672. Fig. 5.10 displays the results
for o = {0.1,0.2,0.3,0.4} in four contour plots. In consistency with the previous
results, the largest impact of the concentration dispersion occurs for wave-numbers
larger than /; ~ [; ~ 2000. For oy,. = 0.1 we have only a small deviation of the
non-Gaussian covariance C'"* from the original deterministic concentration relation of
about 1% — 2%. The effect is already stronger for o1,. = 0.2, where C'* deviates on
small scales (I; ~ I; 2 3300) around 6% from a deterministic concentration and is
non-negligible for oy, . = 0.3, where we find a deviation from 3% (for {; ~ {; 2 1000)
to 12% (for I; ~ [; 2 3300). For oy, = 0.4 the largest deviation is about 25% for
li = 1; 2 4000. N-body simulations suggest that concentration dispersions up to
ome = 0.3 can be expected whereas the last scenario with oy, . = 0.4 is rather unlikely.

5.5 Mode coupling in the power spectrum covariance

In the previous sections we found that the non-Gaussian part of the power spectrum
covariance can be described as the bin-averaged trispectrum. In other words, to obtain
the entry CNY(1;,1;) we average for a parallelogram configuration of the trispectrum
with fixed wave-numbers (I;, [;) over all possible angles between the wave-vectors l; and
l5 (see Eq. 5.18). In order to understand the origin of the cross-correlations or mode
coupling in the power spectrum covariance, we analyze parallelogram configurations
of the three-dimensional trispectrum with a fixed ratio of the wave-vectors such that
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Figure 5.9: Ratio of the 1-halo term contribution as a function of the concentration disper-
sion to the 1-halo term contribution from the deterministic concentration relation of differ-
ent convergence spectra against wave-number l. The curves show the ratio for four different
dispersions of the halo concentration oy, = {0.1,0.2,0.3,0.4} and the deterministic con-
centration denoted by o, = 0. The upper plot displays different concentration dispersions
for the projected power spectrum, whereas the lower panel shows the same dispersions for
the projected trispectrum. The projection along the redshift-axis diminishes the effect of the
concentration dispersion in both spectra. The strongest deviation from a deterministic con-
centration relation occurs for large wave-numbers. For the projected power spectrum, one
can expect a deviation up to 6%, while for the projected trispectrum it differs up to 30%.
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Figure 5.10: Contour plots of the ratio of the covariance 1-halo term contribution with
different concentration dispersions to that with a deterministic concentration against wave-
numbers (1;,1;). Each panel displays the ratio for a different concentration dispersion: for
the upper left panel we use oy, . = 0.1, for the upper right panel oy, . = 0.2, for the lower left
panel o = 0.3, while the lower right panel considers oy, = 0.4. The binning scheme is

linear from ly = 144 to ly9 = 3672.
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a = ki /ky for different angles x = cos ¢. A convenient way to illustrate this dependence
is by normalizing the three-dimensional trispectrum according to

T(k’l, k’g, .CL')

b 2) = (o Pk o7

where P(k;) denotes the three-dimensional power spectrum, which is calculated with
the halo model as well. In this way we expect to eliminate the T'(k, k,x) o< P3(k)
scaling on large scales, which is predicted by perturbation theory (see Sect. 3.5.3).
Accordingly, we normalize the convergence trispectrum as

Tm(lh lo, IE)

By, lo, ) = Pl Pl 72 (5.52)

where P, (l;) denotes the convergence power spectrum. Since the 1-halo term depends
only on the length of the wave-vectors (see Eq. 5.22) and the angular dependence of
the 2-halo term is expected to be small as it only enters in the linear power spectrum
(see Eq. 5.23), we concentrate on large scales, i.e. small wave-numbers k. In this
regime the angular dependent 4-halo term dominates and we expect to see a strong
mode coupling. To verify this behavior, we decompose in the upper plot of Fig. 5.11
the trispectrum for a configuration with k& = 0.1 A Mpc™" and ky = 0.2 Mpc™ into
the individual halo terms and consider their angular dependence. As expected the
largest correlations arise from the perturbation theory trispectrum or 4-halo term,
whereas the 1-halo and 2-halo term stay roughly constant. The maximum correlation
is obtained for colinear configurations (¢ = 0) and the smallest contribution comes
from perpendicular modes (¢ = 7/2).

In the lower plot of Fig. 5.11 we display the angular dependence of the full normalized
trispectrum for five different configurations. It shows that the amount of correlation
at a specific angle depends on the actual lengths of the modes and not only on the
wave-number ratio. As we will see later, the behavior of the normalized convergence
trispectrum is similar.

5.6 Testing the amount of non-Gaussianity

One reason for considering the full covariance of the power spectrum is to take into
account the non-Gaussian terms in form of the trispectrum, which are expected to
have a large contribution on small scales according to our understanding of structure
formation. For this reason, we determine and analyze the ratio of non-Gaussian to
Gaussian contributions to the covariance. Since the off-diagonal entries of the covari-
ance matrix are of purely non-Gaussian origin, we determine the ratio only for the
diagonal entries.
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Figure 5.11: Normalized trispectrum (12(ki1,k2,0) against angle 0 in terms of m (see
text for the exact definition). The upper panel depicts a normalized trispectrum with
ki = 0.1hMpc~! and ky = 0.2hMpc™! decomposed into the different halo terms, whereas
the lower panel shows the full normalized trispectrum for different configurations as denoted
i the key.
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5.6.1 Three-dimensional case

For the three-dimensional power spectrum covariance of dark matter, we define the
ratio of non-Gaussian to Gaussian contribution

O Tk, k) Valk)
=66 = 9Py 2mp (5:53)
where 1@ )3 1
G % m 2P%*(k) and CN¢ = VT(k,k)- (5.54)

Note that the ratio is independent of the actual survey size V', whereas it is propor-
tional to the bin-width Ak leading to

T(k, k)

e~ o pai

Ak -k, (5.55)

where we neglect higher order terms in Ak. In order to analyze the ‘amount of
non-Gaussianity’, one has to choose a fixed binning before comparing e.g. results
from different simulations. The upper panel of Fig. 5.12 displays the ratio Ry for a
linear binning scheme and a bin-size Ak = 27/10hMpc ™. As expected, the non-
Gaussian contribution increases towards smaller scales. On very large scales, the ratio
deviates from the expected behavior: perturbation theory predicts the ratio to behave
as Ry o< P(k)k? for small wave-numbers k, since T'(k, k) oc k*. Since P(k) o< k on
large scales, one would expect the ratio to increase with R;, oc k*. For the two smaller
bin-width (green and blue lines) the ratio instead decreases rapidly. This effect has to

be analyzed further in future work.

5.6.2 Projected case

In case of the projected power spectrum covariance (see Eq. 5.15), the ratio is

_ NS T Al
=5 —2P2(]) (27)2 (5.56)
where (o
1 (27 1 -
¢ _ 1 2 NG _
= A A0 2PZ(l) and C I T.(1,1). (5.57)

Again the ratio is independent of the actual survey size A, but proportional to the
chosen bin width Al, leading to

T.(1,1)

&:m%@

Al-1 (5.58)
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for a linear binning scheme. The lower panel of Fig. 5.12 displays the ratio R; for
a bin-size Al = 72. For small wave-numbers the non-Gaussian contribution becomes
less important. Contrary to our expectations the non-Gaussian contribution drops
also towards larger [ with a maximal value around [ = 800.

In order to understand the shape of the curves, we construct an approximation for the
non-Gaussian to Gaussian ratio, based on two simplifying assumptions: we estimate
the projected power spectra as defined in Eq. (3.67) by

P.(l) ~ Aw G*(w,) P(l/ fx(w,),w,), (5.59)
and the bin-averaged, projected trispectrum by

G (w.)

[.(1,—1) ~ A
T.(l, 1) wff((w*)

T/ fr(w.), =1/ frc(w), w.) (5.60)

where we made use of Eq. (5.16) and T' denotes the three-dimensional trispectrum
as defined in Eq. (4.133). This corresponds to assuming that the lenses are mainly
distributed in the interval w, + Aw, where w, is comoving distance to the peak of the
lensing window function G(w). Additionally, we neglect the configuration dependence
of the trispectrum such that the non-Gaussian contribution is CN¢ o T. Combining
these, Eq. (5.56) is approximated by

Aw fi(w.) P(1/ fre(w.))

One can interpret this as a substitution of the bin-averaged, projected spectra by their
three-dimensional counterparts divided by an effective volume Aw f%(w,). For large
scales perturbation theory then predicts R; o I3. Applying hierarchical clustering on
small scales, we expect R; oc [71. This corresponds indeed roughly to the behavior of
the curves in the lower plot in Fig. 5.12.

Ry Al-1. (5.61)

5.7 A fitting formula for the lensing power spectrum
covariance

A suitable quantity for a fitting formula to the lensing power spectrum covariance as
predicted in the halo model approach is the bin-averaged version of the normalized
trispectrum [, (l1,ls) that we defined in Sect. 5.5. As one can see in Fig. 5.13, it
steeply decreases towards large scales, but is well behaved on scales smaller than
[ ~ 1000. Additionally this quantity is independent of the binning scheme chosen for
the observation. Since the Gaussian contribution is bin-dependent instead and only
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Figure 5.12: Ratio R of non-Gaussian to Gaussian contribution of the power spectrum
covariance against wave-number for different bin-sizes and a linear binning scheme. In the
three-dimensional case (upper plot) the non-Gaussian term increases as expected, whereas in

the projected case (lower plot) the ratio has a mazimum around [ ~ 800.
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Table 5.4: Fiducial cosmological model as used for the fitting formula for the bin-averaged,
normalized trispectrum B(ly,lz). The parameter oy, . denotes the dispersion in the halo con-
centration distribution as defined in Sect. 5.4. In order to set up the initial power spectrum
the Eisenstein-Hu (EH) transfer function was used [22].

(O [ [ h | D [ os [ |ome | [TH)]
1028 ]0.72]0.73]0.045[0.82[1.0] 0.3 | 1 [ EH |

contributes to the diagonal part of the covariance, we neglect it in our fitting formula.
The contribution can be easily added on top of the fitting results as it depends only
on the squared convergence power spectrum. As fitting function we choose a second
order polynom in the dimensionless power spectrum, such that

B(lla l2)

o2 = ag + a1A2 + CLQAQ

min max

+ CL3A4 + CZ4A2 AQ + CL5A4 (562)

min min~—max max ?

where A% = max(A%(l;), A%(ly)) and A2, = min(A2(l;), A%(l5)) denote the dimen-
sionless convergence power spectra. This construction allows us to model the inner
‘square shape’ (see lower panel of Fig. 5.13) of the normalized trispectrum accurately
in the range 1000 < [ < 5000. This choice of a second order polynom with six free
parameters for a fixed cosmological model is a compromise between expressive power

and the danger of overfitting.

In order to provide a fitting formula which is valid for different cosmologies, we treat
the six fitting parameters as cosmology dependent on €2, and og. These are the
parameters of special interest for applications in weak lensing. To achieve this with a
minimal set of new fitting parameter, we Taylor expand a;/ald to first order around
a fiducial model, such that

(i, 08) = af? (L4 bp(Qm — Q) + (05 — 0§h)) , for k=0,....5 (5.63)

where by, and ¢, take into account the cosmology dependence in 2, and oy, respectively.
As fiducial cosmological model we choose a standard flat ACDM model with values
that are in agreement with the latest WMAP results [47]. The total amount of fitting
parameter thus becomes 18 and consists of a4, ... ald by, ... b5, co,...,cp. Fig. 5.15
shows that this linear approximation is justified.

The fitting procedure is performed in the following way. We first apply a least square
fit to the polynom in Eq. (5.62) for the fiducial model and determine the six parameters
alid. With a second least square fit to equation (5.63), we find the best fit parameters
br and ¢, for different cosmologies varying in the (2, 0s) parameter space. To model
the bin-averaged and normalized trispectrum 3(ly, 1), we choose a halo model with
parameters as described in Sect. 4.7. It takes into account the corresponding 1-halo
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Figure 5.13: Bin-averaged, normalized convergence trispectrum (B(l1,ls) against wave-
numbers (l1,l2) as calculated with the halo model for our fiducial ACDM cosmology with
parameters as summarized in Tab. 5.4. The wave-number bins range from lg
to l34 = 5040. The upper plot shows a three-dimensional visualization of the bin-averaged
trispectrum, whereas the lower plot depicts the corresponding contour representation. As can
be seen, (3 decreases steeply towards large scales, but is well behaved on scales smaller than

[ ~1000.
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Table 5.5: Best-fit parameters for ai‘d, by, cr as obtained when fitting the bin-averaged,
normalized convergence trispectrum calculated in the halo model approach to a second order
polynom in the dimensionless convergence power spectrum.

kJ o0 [ 1 ] 2 3 | 4 | 5
o [ 4.96 107 | —5.54- 10" | —5.59- 10" | 2.50 - 10 | 0.996 - 10 | —1.02 - 10%°
b | 102 | —162 9138 913 | 26 ~36.6
o | =10 33 183 6.0 54 ~102.0

and 2-halo terms and includes a stochastic concentration-mass relation with oy, = 0.3
for the 1-halo term of the trispectrum. In order to obtain reasonable values for the
fitting formula, we calculate the bin-averaged, normalized trispectrum for 25 different
cosmological models where €2, € [0.26,0.30] and og € [0.80,0.84]. This covers more
than a 30 deviation from the standard WMAP results. The other parameters are fixed
to the fiducial cosmology as summarized in Tab. 5.4. The best-fit parameters as found
with this method are listed in Tab. 5.5.

In order to check the performance of the fitting formula, we calculate the relative
deviation between fitting formula and halo model results

A _ Bﬁt(lla lQ)

A == _ 1
b= g D)

(5.64)

for every wave-number pair (l1,l3). Fig. 5.14 shows the deviation for two different
cosmologies. The upper panel depicts the results for our fiducial cosmological model,
whereas the lower panel displays the results for a cosmology with 2, = 0.26 and
og = 0.84. Both models are in good agreement with the halo model results. In the
fitting region between 1000 < [ < 5000 the deviation amounts less than 10%. Only
the diagonal differs on small scales up to 15% from the halo model prediction.
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Figure 5.14: Relative deviation A between fitting formula and halo model prediction
against wave-numbers (1;,1;). The upper panel considers the deviation of the fiducial cosmo-
logical model to the halo model; the lower panel is compared to a cosmology which deviates
from the fiducial model about 10% in Q, and os.
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Figure 5.15: Cosmology dependence of the fitting parameters ay. The upper panel shows
the ratio ak/azd against 2y, whereas the lower panel shows the same ratio against og. The
bins correspond to the results obtained from the 25 different cosmologies and justify a linear
approzimation of the cosmology dependence in the considered parameters.



Chapter 6
Comparison with N-body simulations

Since the perturbation theory description of structure formation breaks down as soon
as the density contrast becomes comparable to 1 (see Sect. 2), numerical N-body sim-
ulations have become the theoretical tool of choice to analyze the growth of structure
well into the non-linear regime. The underlying idea of these numerical simulations is
to discretize the dark matter distribution by considering a sample of Np,, particles and
follow their dynamics in an expanding Universe. Having started with small N-body
simulations of only few hundred particles in the 60s and 70s to understand cluster
formation [1, 64], current state-of-the-art simulations master the equations of motions
of about 10'Y particles [82]. However, although there has been dramatic improvements
in computational efficiency and speed over the last decades, numerical simulations are
still very time-consuming and suffer from discreteness effects due to limited mass res-
olution of the particles used and finite box size. Capturing the evolution of structure
formation in an accurate analytic model would allow much more flexibility in inves-
tigating observations from large-scale galaxy clustering or weak gravitational lensing.
As we have seen in the previous chapters, a promising candidate for such a theoretical
description of large-scale structure is provided by the halo model. It offers a good
alternative to the available fitting formulae for the power spectrum and is currently
tested against higher-order correlation functions from observations and simulations
(16, 24, 70, 84].

This chapter aims at comparing the results for the non-Gaussian power spectrum
covariance as calculated using the halo model description with that estimated from
different types of numerical N-body simulations. In Sect. 6.1, we discuss the basics of
N-body simulations and consider their limitations due to discreteness effects. Further-
more, this section summarizes the characteristic parameters of simulations and gives
an overview of the different simulations used for this analysis. The actual analysis
starts in Sect. 6.2 with a comparison of the convergence power spectrum as predicted
from the halo model against the simulations. Sect. 6.3 extends the comparison to the
lensing power spectrum covariance. Finally, in Sect. 6.4, we investigate and compare
the non-Gaussian-to-Gaussian ratio of the theoretical power spectrum variance with
the simulations.
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6.1 Basics of N-body simulations

6.1.1 Dynamics of collisionless CDM particles

The most important ingredient for understanding structure formation in an expand-
ing Universe is dark matter. Although the nature of dark matter has not yet been
fully understood, observations indicate that they are CDM particles with extremely
light masses in comparison to the mass scale of typical galaxies [46]. As we have
already seen in Sect. 2, the standard approach to describe the interaction between
these particles is by considering them as a pressureless and non-relativistic species.
In the analytical approach of perturbation theory, one solves the corresponding set
of equations — consisting of Continuity, Euler and Poisson equation Eq. (2.1)-(2.3) -
directly for the density and velocity fields of a dark matter fluid. In contrast to this,
numerical simulations consider the phase-space distribution function

of dark matter, where x is the comoving position and p = ma?s is the momentum
and solve the combination of collisionless Boltzmann and Poisson equation instead.
The mass density

p(x,t) = /f(w,'p, t)d’p (6.2)

can be inferred by integrating the distribution function over the momentum. Since the
set of equations poses a high-dimensional problem, N-body simulations solve them by
discretizing phase-space with a finite number of N, tracer particles. Starting from
initial conditions obtained from linear perturbation theory, numerical simulations fol-
low the trajectory of each particle in phase-space. The most time-consuming part of
N-body simulations is the calculation of the gravitational force acting on each particle
as it depends on the positions of all particles. The technique applied determines the
actual speed and accuracy of a simulation. The simplest and most accurate method
is a pairwise force summation over all particles to find the acceleration on one par-
ticle (particle-particle (PP) method). Modern simulations use more effective ways of
solving the N-body problem such as tree algorithms, particle-mesh (PM) methods or
a combination of both.

The outcome of numerical simulations are three-dimensional distributions of NV, par-
ticles in cubic boxes over a range of redshift values. In order to compare the results
e.g. with weak lensing observations, one makes use of the multiple-lens-plane ray-
tracing algorithm (see e.g. [30, 35]). The basic idea is to introduce a series of lens
planes perpendicular to the central line-of-sight of the observer’s backward light cone.
The matter distribution within the light cone is sliced by this and can be projected
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Figure 6.1: Ezample of an effective convergence map as obtained from ray-tracing through
the Millennium Run simulation (Source: S. Hilbert, J. Hartlap). Dark areas correspond to
overdense regions, whereas light areas correspond to slightly underdense regions.

on the corresponding lens plane. By computing the deflection of light rays and its
derivatives at each lens-plane, one simulates the photon trajectory from the observer
to the source and also keeps track of the distortions of ray bundles. In this way, the
continuous deflection of light rays experienced while propagating through the mat-
ter inhomogeneities in the light cone is approximated. As a result, one obtains the
Jacobian matrix for the lens mapping from source to observer and can construct so-
called effective convergence maps (k-maps) as illustrated in Fig. 6.1. Comprehensive
reviews on numerical simulations and the most common techniques to calculate parti-
cle accelerations efficiently are e.g. provided by Bertschinger [7], Klypin [45] or Dolag
et al. [19]. A detailed description of the ray-tracing technique can be found in Hartlap
[30], Jain et al. [35].

6.1.2 Summary of important parameters

Apart from the actual technique used to calculate the gravitational force acting on
each dark matter particle (see e.g. Hockney and Eastwood [33]), the outcome of each
N-body simulation depends on a number of parameters. We distinguish between three
types of quantities:
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e Cosmological parameters: They consist of the usual set of parameters that

determine a cosmological model: Q.,, Q4, y,, h, 0g, ng and I'. Together with
the transfer function 7T'(k) they determine the initial power spectrum used to set
up the initial Gaussian distribution of dark matter particles in the simulations
(see Chapter 1 for a discussion of these parameters).

Simulation parameters: The number of dark matter particles Ny, and the
side length Ly of the volume modeled determine the basic setup of an N-body
simulation. In order to consider a representative sample of the Universe the side
length of the cube should be at least 100 — 200 A~ *Mpec. Above these scales
no structure has been observed which could interact with structure on smaller
length-scales, i.e. in a usual ACDM Universe we expect no significant power on
scales larger than this. Typically, the choice for the size of the box simulated
and the number of particles are limited by the computer’s memory and the
computation time available.

Ray-tracing parameters: They are important to obtain the effective conver-
gence maps (k-maps), which we use to estimate the projected power spectrum.
First of all we need to know how the sources are distributed along the line-of-sight
to the observer to perform the actual projection along the redshift-axis. This is
specified by a weight function W (ws) and the redshift z; where the majority of
sources is situated (see Sect. 3.6). In order to process the ray-tracing data one
introduces a grid with N2 points. This discretization restricts wave-numbers
to integer multiples of the Nyquist frequency

- (6.3)

where Az = Lyjap/Npin is the mesh spacing and Ly, the length of the con-
vergence map. Wave-numbers smaller than the Nyquist frequency cannot be
resolved properly by the grid under consideration. Additionally, one expects
numerical smoothing effects on scales of the order of twice the mesh spacing.
This affects the power spectrum on scales smaller than [ ~ 10%, as was shown by
Jain et al. [35]. If the ray-tracing is done along different light cones, one obtains
Nmaps different effective convergence maps. These can be considered as quasi-
independent from each other, since each light cone considers usually a fractional
part of the simulation volume. Averaging over the estimates obtained from the
different xk-maps allows one to find a better estimate for the power spectrum
with a reduced variance. For a detailed description of the ray-tracing technique
see e.g. Hartlap [30].
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6.1.3 Limitations

N-body simulations model the evolution of the collisionless dark matter fluid in the
Universe with a set of discrete point particles in a periodic box. Obviously, this is only
a coarse approximation of reality and results in a number of discreteness effects one has
to take into account when comparing the results with observations and interpreting
them. The most important limitations are listed in the following.

Mass resolution

The comoving side length Ly, of the simulation box and the number of particles Ny,
determine the actual mass of each particle, i.e. the mass resolution of the simulation.
It is then fixed to

e — PLY o (6.4)
P Npar ’ '
where p = Qupeie is the comoving average mass density of the Universe. Typically,
the mass resolution varies from 10° h=! M, up to 10*° h=! M, depending on the size of
objects one wants to consider. Furthermore, this sets the mass limit when objects can
be considered as sufficiently resolved. Assuming that 100 particles are necessary for
resolving a halo accurately, only objects larger than M, ~ 100 mp,, are considered
to have a sufficiently high resolution.

Sampling variance

The side length of the cubical simulation box is equivalent to the maximum wavelength
a simulation can consider. As a consequence, modes with wavelengths comparable to
the box side length Ly, are only poorly represented. This results in a large sampling
variance on the corresponding length scales. The sampling variance corresponds to
the cosmic variance considered for surveys. In Fourier space this limitation sets the
smallest wave-number one can consider. The resulting fundamental mode is then given

by

2

kmin = I )
box

(6.5)

which corresponds to the Fourier counterpart of Lyy.

Shot noise

The discreteness of the mass particles leads to shot noise P.o, which is especially
severe when only few particles describe a region of interest. When estimating the power
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spectrum this effect can be mitigated by subtracting a constant term Py = 1/7,
where 7 denotes the mean number density of particles in the box [30].

Force softening

N-body simulations represent the dark matter fluid as a discrete number of very
massive particles. As a result Newton’s law predicts strong collisions between particles
more frequently than for less massive particles which produces undesirable artifacts
in the simulations. Increasing the number of particles would decrease the abundance
of strong collisions, but is usually not possible to the extent needed due to limited
computer capacity. Thus, in order to correct for the artifacts produced by strong
collisions, one modifies Newton’s force equation below a certain length-scale, which is
called the softening length ls.g. If the separation between the particles corresponds
to the softening length Newton’s force goes to 0. On length-scales below [y, this
modification results in a deviation from the actual oc 1/r?-behavior of the gravitational
force. Structure formation below this scale is inhibited and results from simulations
are not reliable below 2 — 3ls,¢. The actual choice for the softening length depends on
other simulation parameters, mainly the number of particles NV,,, and the time-step
for the integration over the equations-of-motion [33]. In general, a larger number of
particles requires a smaller softening length.

6.1.4 Overview of the simulations

In order to have representative results for our comparison of the halo model with
N-body simulations and to understand the effect of the simulation and ray-tracing
parameters, we cover a wide spectrum of simulations with different box sizes, number
of particles and number of available convergence maps. All simulations consider cos-
mologies close to the standard ACDM model consistent with the WMAP observation
[80] and assume single redshift sources, unless stated otherwise.

In the following, we briefly summarize the properties of the simulations used for the
subsequent analysis. The relevant parameters for each simulation are listed in Tab.
6.1 and 6.2.

e Virgo (1997): This simulation was carried out by the Virgo-Consortium for a
ACDM cosmology with Np,, = 256 particles in a periodic box of side length
Lyox = 141.3h7 ' Mpec. It uses the PP-/PM-code HYDRA, which places sub-
grids of higher resolution in highly clustered regions. Structures on scales larger
than 2l ~ 40h~'kpc can be considered as well resolved. Details about the
simulation and results are published in Jenkins et al. [36].

e VLS (2001): The Very Large N-body simulation (VLS) was carried out by the
Virgo-Consortium and performed using a parallel P2M-code [33]. Tt employs 5123
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dark matter particles in a box of side length Ly = 479 h~'Mpc. Structure on
scales larger than 2l ~ 30h~'kpc are well resolved. Details on the ray-tracing
techniques used to produce the convergence maps can be found in Ménard et al.

[50].

e Borgani (2004): This hydrodynamical simulation of a standard ACDM cosmol-
ogy uses the GADGET-2 code. The side length of the box is Lo = 1927~ Mpc
and the simulation is performed with 480% dark matter particles and the same
number of gas particles. The gravitational softening is set to l,n = 7.5 h~ ! kpc.
Details about the simulation and results are published in Borgani et al. [10] and
Pace et al. [59].

e Millennium Run (2005): The Millennium Run simulation is the largest N-
body simulation performed up to the present day with N, = 2160 particles
and a box side length Ly, = 5002~ Mpc (Springel et al. [82]). Tt uses a spe-
cially customized version of the GAGDET-2 code (Springel [81]) and applies the
TreePM method to evaluate gravitational forces. The calculation was performed
on 512 processors of an IBM p690 parallel computer and produced in 28 days an
amount of 20 TB data. The particle resolution is mp,, = 8.6 x 10%A~' M, and
structures down to 2l.r ~ 10h~tkpc are well resolved in high density regions.

e Grossi (2007): This simulation was set up to investigate the effect of deviations
from non-Gaussian initial conditions in a ACDM cosmology (Grossi et al. [27]).
It uses the GADGET-2 code in a cubic box of side length Ly, = 500 h~'Mpc
with 800% dark matter particles. The softening length is 2l ~ 40h~'kpc.

e Gems (2007): The setup of this simulation is a cubic volume of side length
Lyox = 150h~'Mpc with 256% particles. The cosmology chosen reflects the
WMAPS results [47] and thus has a slightly smaller value for og than the
other simulations. It uses the GADGET-2 code and has a softening length
of 2l ~ 30h~'kpe.

All simulations were provided in form of convergence power spectra. For the Borgani
and Millennium Run simulations, we additionally obtained s-maps.

6.2 Projected power spectrum

As a first test of how well the halo model approach describes the non-linear evolution of
dark matter, we compare the projected power spectra predicted by the halo approach
to the ones found from numerical N-body simulations and to the fitting formulae by
Peacock and Dodds [62] and Smith et al. [79].
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Table 6.1: Parameters used for generating the simulations and producing the resulting
convergence maps. A description of these parameters can be found in Sect. 6.1.2. More
details on the simulations used for this work are given in Sect. 6.1.4.

’ Simulation H Liox/ ™! Mpc ‘ Npar ‘ Mpar/ b1 Mg, ‘ Ninap ‘ Apap/ (deg)? ‘
Virgo 141.3 2563 1.4 x 10%° 200 0.25
Gems 150.0 2563 1.4 x 10%° 220 16.00

Borgani 192 4803 6.6 x10° 60 13.10
VLS 479.0 5123 6.9 x 10%° 36 11.62
Grossi 500.0 8003 | 2.033 x 10%° 60 34.57
Millennium 500.0 2160° 8.6 x 10° 20 25.00

Table 6.2: Cosmological parameters used to set up the initial power spectrum, which deter-
mines how the simulation particles are distributed initially. The simulations employ either
the BBKS or the FEisenstein-Hu (EH) transfer function. For the Borgani et al. simula-
tion the CMBFAST programme was applied to find a transfer function. See Sect. 2.7 for a
description of the different transfer functions.

| Simulation | Qu [ Qa | A | @ | o5 [n, | T | 2 | Tk |
Virgo | 0.3 | 0.7 | 0.7 | 00 | 09 |1.0|021|1(2)| BBKS
Gems || 0.25 | 0.75| 0.7 | 0.04 | 0.78 | 1.0 | 0.14 | 1 (2) EH
Borgani 0307107 ] 004 |08 |10]017] 1.5 BBKS
VLS 03| 07| 071|004 | 09 |1.0]0.17| 0.97 | CMBFAST
Grossi 03|07 1] 071|004 |09 |10]0.17 4 BBKS

Millennium || 0.25 | 0.75 | 0.73 | 0.045 | 0.9 | 1.0 | 0.14 | 1 (2) EH
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6.2.1 Estimating the power spectrum from simulations

The output of N-body simulations are cubical volumes of discrete matter particles
distributed in a way that reflects the dark matter distribution of the Universe at a
certain redshift z. With the help of ray-tracing techniques it is possible to project the
matter between observer and distant sources along the line of sight. As a result, one
obtains a two-dimensional discrete convergence map of side length Ly, on a Ny X Npin
grid as illustrated in Fig. 6.1. To estimate the convergence power spectrum from this
map, we transform the continuous estimator from Eq. (5.14) into its discrete version
applying the following procedure:

1. Perform a two-dimensional discrete Fourier decomposition of the convergence

map such that
1 .
x(0) = > wet?, (6.6)
Amap 1

where the summation runs over the combination of integers (n,,n,) for I =
Linin (N, 1) With Iy, = 27/ Lypap corresponding to the fundamental mode.!

2. Calculate the squared absolute value of %; at each coordinate (n,n,).

3. Sort the squared & according to their wave-number length |I| given as

I = y/n2+n2 lni. (6.7)

All squared Fourier modes with a length [ — Al/2 < |l| <1+ Al/2 are combined
to form one wave-number band [, of width Al. In this way, one obtains a
reasonable number of Fourier modes to average over for the estimate at each
wave-number [. Geometrically, this is equivalent to partitioning the Fourier
transformed convergence maps into (quarter) annuli of bin-width Al.

4. Average over all Fourier modes belonging to one wave-number band [, such that

- 1
Pull) = ———= Y iy (6.8)
Amap Ny (1) LIEl,

where N,(I) denotes the number of modes in each band [, to be averaged over.
The result is the desired estimate of the power spectrum from a given convergence

map.

Usually a certain number of convergence maps Npaps are available from one simulation
and the described procedure is applied to each of them. In order to obtain a less noisy
estimate for the power spectrum, one averages afterwards for each bin over all Npaps.
Since the k-maps are usually non-periodic, the estimator is on small scales additionally
affected by aliasing [33, 39].

IThe fastest way to perform the transformation to Fourier space is by using a Fast Fourier Trans-
formation (FFT), which we apply for our calculation.
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6.2.2 Results

In Figures 6.2-6.6 we illustrate the comparison of the lensing power spectra as pre-
dicted by the halo model approach (black lines) with the ones found from N-body
simulations (red lines with errorbars). Additionally, we compare both results to the
standard fitting formulae of Peacock and Dodds [62] and Smith et al. [79] (green and
blue lines). The plots show the results for the different simulations as described in
Sect. 6.1.4 with sources situated at single redshift planes between z; = 1 — 4. In order
to see the deviations from the simulations more clearly, we use for our comparison the
dimensionless convergence power spectrum as defined in Eq. (3.70). The error bars
correspond to the dispersion due to averaging over the Ny,,, power spectrum estimates
from the convergence maps and increase on large scales due to the sampling variance
(see Sect. 6.1.3). Since numerical artifacts from smoothing on the lens planes, alias-
ing and shot noise become the dominant effect on scales smaller than [ ~ 10* — 10°
[30, 35|, we compare the halo model prediction with the numerical results only for
wave-numbers up to Iy = 10%. Above this wave-number, the ray-tracing simulations
at hand cannot be considered as reliable [35].

Comparison with the Halo Model

Altogether, the plots illustrate a good agreement between the halo model and N-
body simulation convergence power spectra. Comparing the agreement of the same
simulation for different source redshifts z; with the halo prediction indicates a better
correspondence for low redshifts (see e.g. Fig. 6.6). Deviations of the halo model
approach to the simulations can either be found on large scales for the Borgani et al.
and Grossi et al. simulations (see Fig. 6.4), where the sampling variance of the simu-
lations is very large or, for most simulations, on small scales, where numerical effects
as shot noise or force softening become important (see Sect. 6.1.3). The deviation on
small scales are strongest for the Borgani and Grossi simulations. Since the drop in
power occurs rather abruptly at a wave-number around [ ~ 7- 103, it is likely that for
these simulations the numerical effects become important earlier. The overall good
correspondence of the results is not too surprising since ingredients of the halo model
as the mass function and the halo profile were adopted from N-body simulations and
tuned to fit the simulation power spectrum.

Concentration-mass relation

Since recent numerical simulations suggest a scatter of the concentration parameter
for halos of the same mass [38, 86], we additionally consider a dispersion in the concen-
tration parameter (o1, = 0.3) for the 1-halo term of the power spectrum and compare
it with the simulations (see also Sect. 5.4). The corresponding halo model prediction
for the convergence power spectrum is denoted by HM2 in Figs. 6.2-6.6. The plots
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show that the prediction of the halo model with a probabilistic halo concentration
deviates from our fiducial halo model (HM), as expected, only on small scales. In gen-
eral the deviation is rather small and occurs on scales where numerical effects become
important. So there is currently no reason to prefer, in case of the convergence power
spectrum, a probabilistic concentration relation over a deterministic one. Neverthe-
less, we expect that this effect is important for the consideration of the non-Gaussian
part of the power spectrum covariance, since the largest contribution to this term
comes from the 1-halo term of the trispectrum.

For the deterministic concentration-mass relation, we have applied so far a parametriza-
tion as suggested by Takada and Jain [84] with ¢, = 10 and a = 0.2 in Eq. (4.118).
Recent studies of the Millennium Run simulations confirm the monotonic decline of
the concentration parameter with mass but suggest a different choice of parameters
where ¢, = 11 and a = 0.1 (see Neto et al. [57]). For this reason, we compare for
the Millennium Run simulation (Fig. 6.6) the Takada and Jain choice of parameters
(denoted by HM) with the choice of Neto et al. (denoted by HM3). Obviously, the
new choice of parameters for the concentration-mass relation describes the numerical
simulation much better. In the following we therefore adopt the choice of parameters
as suggested by Neto et al., i.e. ¢, =11 and o = 0.1.

Comparison with fitting formulae

The comparison of the simulation with the fitting formulae clearly favor the Smith et
al. predictions (Smith, green line) over the one from Peacock and Dodds (PD, dark
blue line). In most cases, the Smith et al. estimate is tantamount to the halo model
prediction, whereas the PD estimate has — especially on smaller scales — often too little
power. In case of the Gems and the Grossi simulation, the Smith et al. prediction
is better on intermediate scales which hints that the halo model has a problem on
these scales. Indeed the strongest deviation between the Smith et al. fitting formula
and the halo model occurs around the scale where the 1-halo and 2-halo term of the
power spectrum are of the same size. So the halo model may provide an inaccurate
description of the intermediate scales, at the transition between small and large-scale
behavior.

6.3 Projected power spectrum covariance

The good resemblance of the simulation and halo model power spectrum was to some
extent expected. The real challenge for the halo model is a good description of higher-
order correlations. It proposes the actual test of how well the halo model describes
the underlying physics of structure formation. Since we are interested in estimating
the error of the power spectrum and using it for parameter estimates, we focus in this
section on the covariance of the projected power spectrum.
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Figure 6.2: Dimensionless convergence power spectrum against wave-number l. Both plots
display the estimates obtained for the Virgo simulation. For the upper panel we considered
the results for a single source redshift plane at zs = 1, whereas the lower panel illustrates
the results for z¢ = 2. In both plots the red lines with errorbars correspond to the results as
obtained from the numerical simulations. They are compared with the corresponding fitting
formulae from Smith et al. (Smith, green line) and Peacock-Dodds (PD, blue line) and
the halo model predictions for a deterministic halo concentration (HM, black line) and a
concentration dispersion with oy, . = 0.3 (HM2, turquoise line).
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Figure 6.3: Dimensionless convergence power spectrum against wave-number [. Both plots
display the estimates obtained for the Gems simulation. For the upper panel we considered
the results for a single source redshift plane at zs = 1, whereas the lower panel illustrates
the results for z¢ = 2. In both plots the red lines with errorbars correspond to the results as
obtained from the numerical simulations. They are compared with the corresponding fitting
formulae from Smith et al. (Smith, green line) and Peacock-Dodds (PD, blue line) and
the halo model predictions for a deterministic halo concentration (HM, black line) and a
concentration dispersion with oy, . = 0.3 (HM2, turquoise line).
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Figure 6.4: Dimensionless convergence power spectrum against wave-number . The upper
panel displays the results as obtained from the analysis of the Borgani et al. simulation for
a single source redshift plane zs = 1.5, whereas the lower panel illustrates the convergence
power spectrum estimate of the Grossi et al. simulation for zg = 4. In both plots the red
lines with errorbars correspond to the results as obtained from the numerical simulations.
They are compared with the corresponding fitting formulae from Smith et al. (Smith, green
line) and Peacock-Dodds (PD, blue line) and the halo model predictions for a deterministic
halo concentration (HM, black line) and a concentration dispersion with oy, . = 0.3 (HM2,
turquoise line).
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Figure 6.5: Dimensionless convergence power spectrum against wave-number . The plot
illustrates the resulting estimate for the VLS simulation for sources situated at zs = 1 (red
lines with errorbars). It is compared with the corresponding fitting formulae from Smith et
al. (Smith, green line) and Peacock-Dodds (PD, blue line) and the halo model predictions
for a deterministic halo concentration (HM, black line) and a concentration dispersion with
Olne = 0.3 (HM2, turquoise line).
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Figure 6.6: Dimensionless convergence power spectrum against wave-number l. Both plots
display the obtained estimates for the Millennium Run simulation. For the upper panel
we considered the results for a single source redshift plane at zs = 1, whereas the lower
panel illustrates the results for zs = 2. In both plots the red lines with errorbars correspond
to the results as obtained from the numerical simulations. They are compared with the
corresponding fitting formulae from Smith et al. (Smith, green line) and Peacock-Dodds
(PD, blue line) and the three different halo model predictions. The black line (HM) shows
the halo model prediction for a deterministic halo concentration with ¢, = 11 and o = 0.2,
whereas the turquoise line (HM2) displays a probabilistic concentration-mass relation with
Ome = 0.3. The halo model prediction for the Takada and Jain concentration relation is
illustrated by the yellow line (HM3).
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6.3.1 Estimating the covariance from simulations

For the comparison with the halo model prediction, we need an appropriate estimator
to find the power spectrum covariance for each simulation. In the last section we
saw how to find an estimate for the power spectrum from a x-map of the simula-
tion. As each simulation provides Ny, different xk-maps and thus realizations for the
power spectrum, we can apply the unbiased sample covariance estimator as defined in
Eq. (3.79). For our purpose it has the form:

where P(k)(li) is the projected power spectrum estimate of the k-th effective conver-
gence map at a wave-number [;. The resulting quantity is then a measure of the
coupling between the power at different wave-numbers. If the underlying density field
were purely Gaussian, the off-diagonal entries would vanish as we saw in Sect. 3.4. The
covariance matrix obtained in this way is then compared to the halo model prediction
of the covariance estimate (see Eq. 5.15). For each simulation we derive a theoretical
prediction of the covariance with the corresponding cosmological and simulation pa-
rameters as listed in Tabs. 6.1 and 6.2. The ingredients used for the halo model are
as stated in Sect. 4.7.

To get a qualitative impression of how the results from N-body simulations match the
theoretical halo model prediction we consider the covariances found for two different
types of simulations in Fig. 6.7. Since the covariance estimator depends directly on
the simulation parameters as the considered area and the binning scheme, we chose
simulations that differ strongly in the two quantities. The upper panels illustrate
covariances for the Borgani et al. simulation which uses a standard ACDM cosmology.
They chose a linear binning scheme with a bin-width Al = 140 from [y = 84 to
lzo = 9744. In the lower panels, we consider covariances for the Virgo simulation
with a similar cosmology. The binning scheme is also linear but coarser with a bin
width Al = 720 going from [y = 720 to lyy = 4400. Both simulations have a similar
box size, but differ in their mass resolution and number of available k-maps (see
Tab. 6.1). Fig. 6.7 shows that the covariance matrix typically exhibits the largest
values along the diagonal which is due to the contributions from a Gaussian and a non-
Gaussian term (see Eq. 5.15). Towards smaller wave-numbers the covariance values
become smaller. The left plots in Fig. 6.7 correspond to the theoretical predictions,
whereas the right plots are the covariance estimates from the simulations. As one can
see, the amplitude and overall shape of the covariances are in good agreement but
the simulation covariances are noisier. This effect is much stronger for the Borgani
simulation than for the Virgo simulation, which has two reasons: the different bin
width and the number of available xk-maps to average over. Both arguments favor the



150 CHAP. 6: COMPARISON WITH N-BODY SIMULATIONS

Virgo simulation as it uses a coarser binning scheme and offers a larger number of
rk-maps. As a result, this simulation has much more estimates for each bin to average
over which makes the resulting covariance apparently smoother.

6.3.2 Stability of the covariance
Relative deviation

Fig. 6.7 suggests that we should not only consider the absolute value but also the
relative error of the covariance estimator. We study this effect for the Gems simulation
for which the largest number of convergence maps is available (Nyap, = 220). For this
purpose, we split the convergence maps into ten subsets of equal number and find a
covariance estimate for each subset. Four of the ten covariances found are displayed
in Fig. 6.8 and show how strong the estimate can vary. To quantify the amount of
variation we average over the ten covariance matrices found and calculate the standard
variance Var(C) for each pair of bins (I;,1;). The upper plot of Fig. 6.9 illustrates the
resulting relative deviation matrix for the ten Gems covariance estimates, which we
define for this purpose as

Around the borders where one wave-number [ is small the deviation is largest and can
vary by more than 100%. The inner part of the covariance matrix still has a relative
deviation of 65% and even the diagonal entries deviate by approximately 40%. This
means that we should consider the results from simulations carefully, especially if only
few tens of k-maps are available to average over.

Bootstrap

Splitting the available effective convergence maps into smaller subsamples increases
the variance of the estimator and is therefore likely to overestimate the relative error.
A more realistic estimate of the deviation from the true covariance could be found if we
had several covariance estimates that were averaged over the same number of kK-maps
as our actual estimate. A method which allows us to estimate this is the so-called
bootstrap method which was invented by Efron in 1979 (see e.g. [20]). It provides
a way to construct bootstrap samples of the complete set of k-maps from which one
can obtain new covariance estimates. A bootstrap sample of size N, is obtained
by drawing repeatedly Ny, k-maps from the original sample with replacement. In
this way one can produce the desired number of bootstrap samples Np,ot — and thus
covariance estimates — to average over. The relative error found should be smaller the
larger the bootstrap sample size Ngy,e. For our purpose it is useful to find bootstrap
samples of the same size as the original sample in order to determine the impact of
the sample size on the relative error.
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Figure 6.7: Convergence power spectrum covariance logC;; against wave-numbers (;,1;)
for the Borgani (upper plots) and Virgo simulation (lower plots). The left plots correspond
to the theoretical predictions as derived with the halo model, whereas the right plots display
the simulation estimates for the power spectrum covariance. The finer binning of Borgani is
more prone to noise than the coarser binning of the Virgo simulation.



152 CHAP. 6: COMPARISON WITH N-BODY SIMULATIONS

2000 4000 6000 8000 2000 4000 6000 8000
I I

-16

8000

6000

4000

2000

8000

6000

4000

2000

Figure 6.8: Convergence power spectrum covariance log(Cij) against wave-numbers (I;,1;)
for the Gems simulation. After splitting the Nyaps = 220 available k-maps into ten subsets
of equal size, we found ten estimates for the Gems covariance. The plots display four of
them, illustrating that the estimates vary strongly.



6.3 Projected power spectrum covariance 153

8000

6000

2000

2000 4000 6000 8000

8000

6000

4000

2000

2000 4000 6000 8000

Figure 6.9: Relative error of the Gems covariance ACi; as defined in Eq. (6.10) against
wave-numbers (1;,1;). The upper plot displays the relative error as found from the ten differ-
ent estimates obtained from Nmap = 22 convergence maps. The lower plot shows the relative
error obtained from 50 bootstrap subsamples of size Npoot = 219, which corresponds to the
original sample size. For the bootstrap method the overall mean standard deviation is about
20%, whereas for the subsample method we find a mean standard deviation of about 40%.
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In order to determine a more realistic standard error for the covariance mean of the
Gems simulation, we produce 50 bootstrap subsamples of size Npoot = 219 which
correspond to the size of the original sample. The resulting standard deviation is
presented in the lower plot of Fig. 6.9 against the wave-numbers (/;,[;). In comparison
to the former method where we found covariance estimates from subsets of the available
k-maps (upper plot) the error as determined with the bootstrap method decreased to
approximately one-third of the previous values. Along the diagonal entries the mean
standard deviation is around 10%, the overall mean standard deviation is 20%. Varying
the number of bootstrap subsamples shows that this result is stable.

6.3.3 Comparing the covariances

Considering the covariances directly allows only a qualitative comparison between
halo model and simulation prediction. For a more quantitative analysis, it is useful to
consider their relative difference which we define as

ij ij

Acij _ Chalo 1_ Csim 7 (611)

Caim

where C/_ denotes the halo model prediction of the covariance as given by Eq. (5.15)
and C7_is the corresponding simulation estimate we defined in Sect. 6.3.1. We assume
that the resulting covariance from simulation is more reliable than the halo model
prediction and put it in the denominator. Nevertheless, one should be aware that
there is some scatter in the simulation covariances as we have seen in the previous
section. This effect is most severe along the border of the covariance, i.e. in areas
where one wave-number has a small value and the second wave-number can take

arbitrary values.

The theoretical predictions are calculated as described in Sect. 5.3 and include the
1-halo, 2-halo and Gaussian contributions. Furthermore, we use our fiducial halo
model as summarized in Sect. 4.7 and apply different cosmological parameters for
each simulation as given in Tab. 6.2. The simulation estimate of the covariance is
found as described earlier in this section.

The resulting plots in Figs. 6.10-6.14 clearly show that the theoretical halo model
predictions underestimate the covariance estimates from simulations in general. The
deviation is larger towards smaller scales. In the worst case the halo model covariance
differs from the simulation covariance by a factor of 2. The best results are achieved on
large scales and for the diagonal entries, where the halo model predictions differ around
10% from the simulation estimates. Including a scatter in the halo concentration
parameter (see Sect. 5.4) increases the amount of correlation on small scales and thus
decreases the relative difference between simulation and theoretical prediction. In the
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following, we analyze the figures for the different simulations in detail. The scales
considered for each simulation are listed in Tab. 6.3.

Table 6.3: Binning scheme and wave-number ranges of the simulations.

’ Simulation \ {min \ {max \ Al ‘
Virgo 720 | 14400 | 720
Gems 90 | 9000 | 90

Borgani 84 | 9884 | 140
VLS 109 | 10441 | 211
Grossi 52 | 5244 | 88

Millennium Run | 144 | 3672 | 72

Virgo

Fig. 6.10 compares the halo model prediction of the lensing power spectrum covariance
with that from the Virgo simulation (23 = 1) by plotting the relative covariance
difference AC;; against the wave-numbers (I;,1;). The binning scheme is linear with
Al = 720 going from [y = 720 to l19 = 14400. The upper plots illustrate the relative
error for a deterministic relation between halo concentration and mass as described
in Sect. 5.4. The left panel shows the full covariance, whereas the right panel shows
a zoom of the lower right corner up to l5 = 4320. On small scales, for wave-numbers
larger than [y = 7920, the halo model underestimates the results from the simulation
up to 70% — 80%, whereas on large scales, for wave-numbers smaller than I3 = 2160, it
overestimates the simulation results by about 50%. The best agreement is achieved on
intermediate scales for [ between 2200 and 4500 with a relative difference smaller or
equal to 30%. The lower plots of Fig. 6.10 show that this can be improved significantly
by considering a dispersion in the concentration parameter as defined in Eq. (5.49).
Since we showed in Sect. 6.2.2 that the effect of a concentration dispersion is rather
small for the projected power spectrum on the scales considered, we neglect this effect
here and in the following in the Gaussian contribution of the covariance. For the halo
model prediction of the covariance in the left panel we chose oy, = 0.2; for the right
panel we used oy, . = 0.3. In both cases the relative difference between the covariances
is lowered significantly, in particular along the borders. For oy,. = 0.3 the region
with a deviation smaller than 30% extends up to [ = 10*. For wave-numbers smaller
than [ ~ 5000 the error becomes 20% or less, which is within the uncertainty of the
simulation. We obtain very similar results for sources at a redshift z; = 2, as shown
in Fig. 6.11.
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Gems

In Fig. 6.12 we illustrate the relative covariance difference between the halo model
prediction and the Gems simulation (z; = 1). In contrast to the Virgo simulation the
binning is much finer with a bin-width Al = 90. The upper plots display the halo
model prediction for the deterministic concentration-mass relation. The left panel
shows the complete range of bins, whereas the right panel shows a zoom of the region
with [ < 1800. Again the simulation covariance is underestimated by the halo model up
to 80% for wave-numbers larger than [ ~ 6300. The best agreement with AC;; < 30%
is found on large scales, where [ < 1000, and along the diagonal, where AC;; < 50%.
Including a scatter in the concentration of oy,. = 0.2 (lower left panel) and oy,. =
0.3 (lower right panel) decreases the relative difference significantly. In case of a
concentration dispersion oy, = 0.3 the region up to [ ~ 3600 differs about 50% or less
from the simulation results. In contrast to the Virgo simulation the halo model never
overestimates the simulation.

Borgani

Fig. 6.13 displays the relative covariance difference between the halo model prediction
and the Borgani simulation (z; = 1). The comparison covers a range from Iy = 84 to
l7o = 8840 using a bin-width Al = 140. As one can see, this simulation is strongly
affected by noise around the covariance border. The reason for this is twofold: all small
wave-numbers have a large sampling variance and this simulation has only Ny, = 60
k-maps to average over. The foregoing two simulations had both around Ny., ~
200 and thus much fewer problems with noise. However, the overall impression of
the quantitative analysis is very similar. The best agreement between theoretical
prediction and simulation is along the diagonal entries and for wave-numbers smaller
than [ ~ 3000. In this regions the deviation is approximately 50%. Considering an
additional scatter in the concentration parameter improves the result only slightly.

Millennium Run

In Fig. 6.14 which depicts the quantitative difference of halo model to Millennium
Run simulation covariance the effect of noise is even more severe: The first eight bins
are too noisy to make a quantitative analysis. This is due to the finer binning with
Al = 72 and even more importantly due to the very small number of k-maps available
which amounts to Nyap = 20. As a result the resemblance from theory to simulation
is seldom better than 50%.
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Figure 6.10: Relative error AC;; of the theoretical halo model prediction for the projected
power spectrum covariance in comparison with the results from the Virgo simulation (zs = 1)
against wave-numbers (1;,1;). The binning scheme is linear with Al = 720 going from lop =
720 to lyg = 14400. The upper plots illustrate the relative error as found when considering
the 1-halo, 2-halo and Gaussian term with oy, . = 0 for the halo model. Left and right plot
differ only in the number of considered bins. In the lower left panel, we consider oy, = 0.2
and the lower right panel displays a variance oy, . = 0.3.
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Figure 6.11: Relative error AC;; of the theoretical halo model prediction for the projected
power spectrum covariance in comparison with the results from the Virgo simulation (zs = 2)
against wave-numbers (1;,1;). The binning scheme is linear with Al = 720 going from ly =
720 to lyg = 14400. The upper plots illustrate the relative error as found when considering
the 1-halo, 2-halo and Gaussian term with oy . = 0 for the halo model. The right plot is a
zoom into the left plot. In the lower left panel, we consider oy, = 0.2 and the lower right
panel displays a variance oy, . = 0.3.
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Figure 6.12: Relative error AC;; of the theoretical halo model prediction for the projected
power spectrum covariance in comparison with the results from the Gems simulation (zs = 1)
against wave-numbers (1;,1;). The binning scheme is linear with Al = 90 going from ly = 90
to logg = 9000. The upper plots illustrate the relative error as found when considering the
1-halo, 2-halo and Gaussian term with oy, . = 0 for the halo model. The right plot is a zoom
into the left plot. In the lower left panel, we consider oy, . = 0.2 and the lower right panel
displays a variance oy, . = 0.4.
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Figure 6.13: Relative error AC;; of the theoretical halo model prediction for the projected
power spectrum covariance in comparison with the results from the Borgani simulation (zs =
1) against wave-numbers (l;,1;). The binning scheme is linear with Al = 140 going from
lo = 84 to lyg = 9884. The upper plots illustrate the relative error as found when considering
the 1-halo, 2-halo and Gaussian term with o, . = 0 for the halo model. The right plot is
a zoom into the left plot. In the lower left panel, we consider oy, = 0.2 and the lower
right panel displays a variance oy, . = 0.3. The simulation shows a lot of noise close to the

covariance borders.
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Figure 6.14: Relative error AC;; of the theoretical halo model prediction for the projected
power spectrum covariance in comparison with the results from the Millennium Run simula-
tion (zs = 1) against wave-numbers (1;,1;). The binning scheme is linear with Al = 72 going
from lg = 144 to lyg = 3672. The upper plots illustrate the relative error as found when
considering the 1-halo, 2-halo and Gaussian term with oy. = 0 for the halo model. The
right plot is a zoom into the left plot. In the lower left panel, we consider oy, . = 0.2 and the
lower right panel displays a variance oy, = 0.4. The simulation shows a lot of noise close
to the covariance borders.
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6.4 Non-Gaussian to Gaussian ratio

In order to understand how the non-Gaussian contribution scales with respect to the
Gaussian part of the convergence covariance, we focus in this section on the ratio
between the two

_CNG(LD) (L)
M=oy ~eoqn (6.12)

where CNG denotes the non-Gaussian and C% the Gaussian contribution of the covari-
ance as defined in Sect. 5.3.3. Note that only one wave-number [ occurs, since the
Gaussian part contributes only to the diagonal of the covariance. In the halo model
approach we can calculate this ratio as

T
~ 4nP2(])

! Al-1, (6.13)

where T}, (I,1) is the bin-averaged convergence trispectrum, P, (l) the convergence power
spectrum and Al the bin-width of the simulation (see Sect. 5.6.2). In the following,
we will compare this with estimates obtained from simulations.

6.4.1 Estimating the ratio from simulations

The simplest way to find an estimator for Eq. (6.12) is to formulate separate estimators
for each contribution, i.e. for the complete convergence covariance C and the Gaussian
contribution C%. The first part is straightforward, as we can make use of the covariance
estimator from Sect. 6.3.1:

C(1.1) = Cov[Py(1), Pu(1)] = Var[ P (D)] (6.14)

For the Gaussian covariance contribution we construct the estimator in the following
way:

C5(1,1) = BIBL(1)?) = B(VarlP,(1)] + (B.(1))?). (6.15)

where B = % % as defined in Eq. (5.57). This choice has the advantage that we can
reuse the results for the convergence covariance and power spectrum estimators of the
previous sections. Putting together Egs. (6.14) and (6.15), the estimator for the ratio

1S
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R = E(l’l) — 1= — @[p“(l)] . —1. (6.16)
CG(1,1) B(Var[P.(1)]) + (P.(1))?)

As the power spectrum variance is much smaller than the average power spectrum
squared, we approximate the denominator and obtain

Rl ~ @[ A/{(l)]
B(P,

—1. 6.17
(0)? (10

6.4.2 Results

Figs. 6.15 and 6.16 show the estimates obtained from different N-body simulations
and compare them to the halo model prediction. From the plots one can see that
both estimates are of similar magnitude, but differ in the behavior on small scales.
For the Virgo and the Gems simulations the constructed estimator from Eq. (6.17) is
too noisy for a reliable comparison. One factor for this might be that the estimator
is constructed from two other estimators which suffer from noise effects as well. The
VLS and Millennium Run simulations show an increasing amount of non-Gaussianity
on small scales contrary to the decreasing slope predicted by the halo model. This
behavior is most likely the result of discreteness effects as the amount of increase is
very steep. This is presumedly due to three effects: shot noise and force softening (see
Sect. 6.1.3) become important for wave-numbers larger than [ ~ 10*. Additionally,
aliasing might occur on small scales causing a decrease of the power spectrum estimate
[39]. As the power spectrum is inversely proportional to the ratio this can explain
the rise of the ratio on small scales. The overall impression is that the halo model
prediction and the simulation estimates do not coincide well. Currently, one cannot say
whether this is because the halo model misinterprets the non-Gaussian contribution
or because the present simulations are not reliable enough on small scales.
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Figure 6.15: Ratio of non-Gaussian to Gaussian contribution of the convergence power
spectrum covariance R; against wave-number . The halo model (HM, black line) predicts
a reduction of non-Gaussianity on small scales. The Virgo and Gems simulation estimates

(red points) are very noisy and do not show a clear behavior.
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Figure 6.16: Ratio of non-Gaussian to Gaussian contribution of the convergence power
spectrum covariance Ry against wave-number . The halo model (HM, black line) predicts
a reduction of non-Gaussianity on small scales. The VLS and Millennium Run simulation
estimates (red points) predict the opposite behavior.
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Summary and conclusions

The motivation behind this thesis was to provide an analytical treatment of higher-
order correlation functions in the cosmic matter density field and to compare the
results obtained with numerical N-body simulations. As the perturbative description
holds only for densities of the order |§]| ~ 1, the tool of choice was a semi-analytic halo
model which combines results from both perturbation theory and numerical simula-
tions. In this work, we focused on the fourth-order correlation function and its Fourier
counterpart, the trispectrum, since it allows us to study the non-Gaussianities of the
matter field and to calculate the full non-Gaussian covariance of the power spectrum.
This provides a way to estimate the error and mode coupling in the matter power
spectrum to higher accuracy than has been previously.

To calculate the trispectrum and, subsequently, the full non-Gaussian covariance of the
convergence power spectrum in the halo model approach, we had to combine results
from different areas in mathematics, physics and cosmology. We have summarized
the most important ones in the first chapters of this thesis. This includes a detailed
overview of the standard model of cosmology, perturbation theory and the properties
of cosmological random fields. Additionally, Chapter 4 gives a comprehensive overview
of the halo model description of dark matter and its ingredients such as the halo mass
abundance, halo profile and clustering of halos.

With the halo model at hand, one has a recipe to calculate matter correlation functions
of arbitrary order. We used the halo model to find the expectation value both for the
three-dimensional and the convergence power spectrum covariance and confirmed the
analytical results of Cooray and Hu [16] and Scoccimarro et al. [72]. In order to find
a fast way to calculate the full non-Gaussian covariance, we studied the accuracy of
different approximations to the complete trispectrum in the halo model approach.
As a result, we found that the combination of 1-halo and 2-halo contributions of
the trispectrum yields an error smaller than 10% on intermediate and large scales.
More precisely, in the three-dimensional case this approximation is accurate for k 2
0.3hMpc™! and in the projected case for I > 300 and 2z, = 1 for our fiducial ACDM
model. Furthermore, we extended this result to the non-Gaussian contribution of the
covariance. The aforementioned approximation yields for the same wave-numbers a
comparable error to the total trispectrum. Thus a combination of 1-halo and 2-halo
terms of the bin-averaged trispectrum together with the Gaussian contribution of the
covariance provides an accurate and efficient approximation to the full non-Gaussian
covariance of the matter power spectrum.
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Since recent results from numerical N-body simulations suggest that the concentration-
mass relation is probabilistic [38], i.e. there is scatter in the concentration parameter
for a fixed mass m, we investigated the impact of this on the 1- and 2-halo term
contributions to the power spectrum and trispectrum. In the three-dimensional case,
we found a significant deviation from a deterministic concentration relation on scales
smaller than k ~ 5hMpc™!, which is less pronounced for the power spectrum. Addi-
tionally, we were able to show that this effect is also present in the projected versions
of the spectra on scales smaller than [ ~ 2000. In contrast to the three-dimensional
case, the increase in the small scale tails of the spectra is diminished, but alters the
covariance on small scales up to 12% for reasonable concentration dispersions.

In order to understand how different wave-number modes in the power spectrum co-
variance couple, we analyzed the angular dependence of the normalized trispectrum for
each halo term. We found the strongest mode coupling in the 4-halo term for colinear
configurations of the trispectrum wave-vectors. Towards orthogonal configurations the
angular dependence vanishes and there is almost no coupling visible. We discovered
a similar but less pronounced behavior for the 3-halo term. The 2-halo and 1-halo
terms show no visible angular dependence of the modes. Furthermore, we studied the
mode coupling for trispectrum configurations with different wave-vector length. This
revealed a dependence on both the length of the wave-vectors and their ratio. The
minimum wave-length, in particular, affects the amplitude of the trispectrum.

Studying the non-Gaussian-to-Gaussian ratio of the covariance, we found an increase of
non-Gaussianity towards small scales for the three-dimensional case. In the projected
case, the non-Gaussian contribution reaches a maximum amplitude around [ ~ 800
and decreases on small scales.

With the results from the halo model consideration, we developed a fitting formula for
the non-Gaussian contribution of the convergence power spectrum covariance. The
fitting formula is valid in a range 1000 < [ < 5000 and provides on average a 10%
accuracy to the corresponding halo model prediction. For the diagonal of the non-
Gaussian covariance we achieve in this way a 15% accuracy.

An additional aspect of this thesis was the comparison of the halo model to results
from simulations. For this we calculated the power spectrum and covariance from six
different numerical N-body simulations that spanned a wide range of possible designs.
Our comparison with the halo model revealed a good correspondence with the power
spectra. However, the convergence power spectrum covariance with a determinis-
tic concentration parameter consistently underestimates the covariance estimate from
simulations on small scales. This effect is mitigated if we include in the halo model
prediction a probabilistic concentration relation with a dispersion oy,. = 0.2 — 0.3 in
the logarithmic halo concentration. Nevertheless, the halo model prediction of the
covariance underestimates still the simulation estimate on small scales. This discrep-
ancy hints that the halo model description does not reflect well enough the underlying
physics of higher-order correlations on small scales. One also has to be aware that the
limited size and resolution of simulations can lead to high noise and unreliable predic-
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tions as well. This was particularly visible in our analysis of the ratio of non-Gaussian-
to-Gaussian contributions to the convergence power spectrum covariance. While the
halo model predicted a decrease towards small scales, the simulations showed an in-
crease. A final conclusion whether the halo model has to be corrected for this will
require future simulations of improved quality.
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Appendix A

Halo model trispectrum

In Sect. 5 we showed that for the calculation of the power spectrum covariance in the
halo model description, we only have to consider parallelogram configurations of the
trispectrum wave-vectors. The restriction to these configurations allows us to simplify
the expressions for the terms of the trispectrum. In the following, we perform this
calculation in detail after summarizing the most important properties of the second
order coupling functions.

A.1 Second-order coupling functions

From the recursion relations (2.26) and (2.27) for the n-th order density contrast o,
and divergence velocity field 6#,, that solve in a perturbative approach the collision-
less Boltzmann equation for an ideal dark matter fluid, we find for the second-order
coupling functions the following expressions:

5 2
F(q,,q,) = ?a(kl,k2)+?ﬁ(k1,k2), (A1)

5 2
GQ(q17q2> = ?O‘<k17k2) + ?6(’6171{32) ) (A2)

where )
ki + k) -k k% (k- k
alky, ko) = (1]{:# and [k, k) = %, (A.3)
1 1K

denote the mode coupling functions (see Sect. 2.4.3). The symmetrized versions of the
second-order coupling functions are:

5 2(q,-9.)%  lai-qy (a1 @
F(S)q,q _24 2 )t (B ) A4
> Q@) =747 a3 2 12 \ @ @ (A4)
3. 4(q1-9))7 lai-a (a1 @
G(gq) =2+ 220 4 “A Al B A5
2 (@) =7 %7 a3 2 12 \ @ @ (A.5)
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Since these expressions play an important role for the subsequent calculation of the
trispectrum in the halo model description, we summarize their properties which follow
immediately from their definitions [26]:

F (a1, —-q)) = Gy (a1, —a,) = 0,
. F(S (@, q1) =G (g, q) =2,
o Y(q1,0)) = BV (~q1,—q5) .
° G(S (g,,9,) = ( q,,—4q) ;
.

HW@W%@z@MKMMFﬁmM¥HW-
€|—0 €|—0 €|—0

A.2 Third-order coupling functions

In order to calculate the lowest non-vanishing order contribution to the perturbation
theory trispectrum, we need to determine the symmetrized third-order coupling func-
tion F3(S) as imposed by the recursion relation (2.26). The unsymmetrized third-order
coupling function is then given by

2
— B(q1, 9 + q3)G2(q9, q3)

a(qy,q; + q3)Fa(qy, q3) + 18

F3(q17q27q3) = E

+ G2(q1,qs) {1 3 B(a; +aqs,q3)| - (A.6)

(g, + g5, q3) + 13

18

Note that it is not necessary to derive the corresponding expression for G, as we are
only interested in the dark matter trispectrum. Symmetrizing Eq. (A.6) yields

F{(q1,95.45) = 514 [ (@1, 95 + @) F5” (@5, q5) + (g5, 41 + 43) F57 (a1, q5)
+ algs, q, + 45) 37, qg):
+ ;4 3(a1, a2+ 4G5 (02, 45) + Bla2 a1 + 42)GE (a1, 5)
+ 3as a0, + 42)G5 (41, 0)]
+ 514 [ (@1 + 5. 45)GS (a1, 0) + gy + a5,3,)G5 (a1, q5)
+ olq, + g5, 41)G5 (g, qg)] (A.7)

From the symmetry properties of the F5 and G5 kernels and the mode coupling func-
tions, we find F?ES)<Q1, d2: q3) = FS(S)(_qla —qy, —q3).
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Since we are only interested in parallelogram configurations of the trispectrum, we
have to consider the situation ko = —k;. In this case Fés) simplifies to

(a1, @, — @) P (—a1, @5) + a(—ay, a4, + @) By (a1, @)
4
5

[ (g — (I1>(I1)G( )( q:,q) + alq, +qy, — (I1)G58)(Q17QQ)]
(A.8)

F gy, —qy, q5) =

ﬂl\l

—[6(a1,a5 — 4))GY (—q1, @2) + B(—a1, a4, + 42)G5) (a1, 05)]

EI\I +
..;;

+

since for each square brace in Eq. (A.7) the third term vanishes.

A.3 Perturbative Bispectrum

The lowest order, non-vanishing contribution to the perturbation theory bispectrum
is

Byi(k1, ko, k3) = 2 [Fa(ky, ko) P(k1)P(ka) + Fo(ke, ks) P (k) P(ks)
+ Fy(ks, k1) P(ks) P(k1)] -
= 2Fy(ky, ko) P(k1)P(ks) + 2 perms. , (A.9)

where the permutations are considered with respect to the wave-vectors k;. For the
calculation of parallelogram configurations of the trispectrum wave-vectors, we have
to consider the case lim. .o By (ki, —k;, €) and check what happens with the infrared
divergences, which arise in the second-order coupling functions for 11_1}(1) Fy(k;, €) (see

Sect. A.1). From the tree-level bispectrum (A.9), we find

Bpt(ki,—kuﬁ):ZFz(k' - ) ( )
+ 2[Fa(ky, €) + Fo(—ki, €)|P(k;) P(e)

_o ll—f s 21 k%z) } P(k)P(e), (A.10)

where the first term is 0, since Fy(k;, —k;) = 0 and the terms responsible for the
infrared divergencies cancel each other. In the limit ¢ — 0, Eq. (A.10) vanishes, since
the factor in front of the power spectra is finite and the P(€) goes to 0 in the considered
limit.
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A.4 Perturbative Trispectrum

Using a perturbative approach as described in Sect. 3.5.2, we found for the trispectrum
the following result:

Toi(ky, ko, ks, ky) =4 X | Fy(ky, —ki2) Fy(ks, ki2) PLPia Py
+  Fy(ky, —ki2) Fa(k4, k12) PL P12 Py
+  Fy(ky, —k12) Fo(ks, ki2) Py PraPs
+ Fy(ky, —k12) Fo(ks, k12) Py Pra Py
+  Fy(ky, —ki3) Fo(k2, ki3) PLPis Py
+ Fy(ky, —ki3)Fo(ks, ki3) PLPis Py
+  Fy(ks, —ki3) Fy(k2, ki3) PsPis Py
+  Fy(ks, —ki3) Fa(k4, k13) PsPis Py
+ Fy(ky, —k14) Fo(k2, kig) PL PPy
+ Fy(ky, —ki4) Fo(ks3, kig) PLP1yPs
+  Fy(ky, —k14) Fy(ko, k14) Py P14 Py
+  Fy(ky, —k14) Fo(k3, k1a) Py Py Ps)
+ 6 X [F3(ky, ko, ks3) P PPy
+ Fi(ky, ke, ky) P PPy
+ Fs(ky, ks, kq) P P3Py
+ (ko ks, ky) PP Py).

For the subsequent consideration, it is convenient to use the following short notation:

Ty, ko, ks, k) = AT, + 6T}, (A.11)

where

Ty = P(k1)P(ky) [P(ki3) Fo(ky1, —k13) Fa(k2, ki3)
+ P(k?14)F2(k1, —k14)F2(k2, k14)] + 5perms. s (A12)
Tb = Fg(kil, kg, kg)P(k)l)P(kg)P(kg) + 3perms. . (Alg)

If we consider only parallelogram configurations of the trispectrum wave-vectors, we
can restrict our calculations to the case where ks = —k; and ks = —ks. As a
consequence, making use of the properties of the coupling functions, one finds
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T(ki,—k1, ke, —ks) =4 X | [Fy(ky, —(ky + ko)) PEP(|ky + ks))
+ 2Fy(ky, — (k1 + ko)) Fy (kg, (k1 + k2)) P P(|k1 + kao|) Py
+  [Foky, — (k1 + kz))] S P(|ky + kal)
+ [Fa(ky, — (k1 — ko)) P PLP(|ky — ko)
+  2Fy(ky, — (k1 — ko)) Fa(—ka, — (k1 — k2)) PLP(|k1 — ko) P
+ [Fo(—ko, — (k1 — k2))* Py P(|k1 — Ka)]
6 % [Fy(ki, Ky, ko) PP,
+ Fy(ky, —ki, —ky) PP,
+ Fy(ky, kg, —ky) PPy
+ Fy(—ky, by, —ks) PP

A.5 1-halo term

The 1-halo term in the parallelogram configuration is trivial as it consists of only
one building block term depending only on the length of the wave-vectors. If we set
kg = —kl and k4 = —kg, we find

Tlh = M04(k17 kla k27 k2> . (A14)

Note that we dropped the wave-vector dependencies on the left hand side, which we
will continue to do for the subsequent halo terms as well.

A.6 2-halo term

The 2-halo term can be further subdivided into T3, corresponding to correlations
of three points in one halo and a fourth point in a second halo and T32, describing
correlations of two points in one and another two points in the second halo such that

Ton = Ty + T3 (A.15)

where
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and

Ty = Mys(ka, ks, kg) My (ky) Pin (k1)
+ Mys(ky, kg, ks) My (ky) Bin(K4)
+ Mz (ky, k1, ko) My (k) Bin(K3)
+ M3 (ks, ka, k1) Miy (ko) Bin(K2)

To = Myo(ky, ko) Mia(ks, ky) Pin(|k1 + k2
+ Mio(ky, ks) Mia(ke, ki) Pin (k1 + Es3))

+ Mio(ky, ka) Mio(ko, ks) Pin (k1 + Ka4l) -

(A.16)

(A.17)

If we consider parallelogram configurations of the trispectrum where k3 = —k; and
k4 = —ko, the 2-halo terms simplify, since the 4 terms of Eq. (A.16) merge into 2

and one term of Eq. (A.17) vanishes in the limit

T23hl - 2M13(k1, k’27 k2)M11(k1)Hin(k1)
+ 2M3(ky, kv, ko) Mi1 (ko) Pin (k2)

3——k1

Tor = Miy(ky, ka) [Pin (k1 + k2|) + Pin(|k1 — k2l)] -

A.7 3-halo term

The 3-halo term splits into two types of terms

where

T = Ty, + Ty,

—

o
T

=
T

H

[\
o

&
o

hm P(|k1 + ks|) —

)Bpt(ko, ka4, k1 + k3
(K1, ka) Byy (K, ks, ki + ke
(ka, k3)Bpi (K1, ka, ko + ks

12(k2, k) Bt (K1, ks, ko + Ky
( 1) Bpi (K1, ko, ks + ky

(A.18)

(A.19)
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with By as defined in Eq. (3.57) and

1 2) Flin(F1 2)
+ Moo (kg ka) My (k1) My (k) Bin (k1) Pin (k3)
+ Moy (Ko, kg) M1 (k1) M1 (ks) Bin (K1) Pin (Fa)
+ Moo (ky, ka) My (ko) My (k) Bin (k2) Pin (k3)
+ Moo (ky, ks) My (ko) My (k) Bin (F2) Pin (k)
+ Moo (K1, ko) M1 (ks) M1 (ks) Pin(k3) Pin (Fa) - (A.20)
If we consider parallelogram configurations of the trispectrum where ks = —k; and
k, = —k,, the 3-halo terms simplify in the following way:
Ty = 2My1 (k1) My (ko) My (K, ko) Byt (k1. ko, —k1 — k2)
+ 2M1 (k1) M1 (ko) Mao(ky, ko) Bpy(— k1, ko, k1 — ko) (A.21)
and
T3, = Moo (ky, k) M7, (ko) Pi, (K2)
+ 4 Moo (K, ko) My (Ky) My (K2) Bin (k1) Piin (k2)
+ Mas(ka, ko) M7, (k1) Pi, (Ka) (A.22)

where two terms of T31h vanish in the limits k3 — k; and k; — ko, since liH(l) By (ki, —ki, e) —
€E—>

0 and we made use of the symmetry properties of B, to merge the terms.

A.8 4-halo term

The 4-halo term describes correlations between points in four different halos and is
given by

, (A.23)
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where T}; denotes the lowest order non-vanishing contributions to the perturbation
theory trispectrum as denoted in Eq. (A.11). If we consider parallelogram configura-
tions of the trispectrum where ks = —k; and k; = —k», the 4-halo term simplifies in
the following way:

T4h - Mfl(kl)Mfl(kQ)Tpt(kla k27 _k17 _kQ)
+ 2M7y (ky) My (ko) Moy (ko) Py (K1) Pin (K2)
+ 207, (ko) M (k) Man (k1) B, (k2) Pin (1) (A.24)

where T}, is for this configuration given by Eq. (3.59).



Appendix B

Cosmology-dependent parameters

This section summarizes the cosmology dependence of the collapse density ., the
virial density Ay, the linear growth factor D; and the luminosity distance dy,. Equa-
tions for the corresponding quantities in a Universe with open cosmology can be found
in Henry [31].

B.1 Einstein-de Sitter ({2, = 1)

3(12m)2/3

Avir(2) = 1872 ~ 177.7, (B.2)
Di) = — (B.3)
1\%) = 1 +Z’
C
du(z) =2 <1—|—z—\/1+z) , (B.4)
0

B.2 Flat models (2, + Q = 1)

_ (9, 1)
x = 5. (B.5)
12 2/3
bse(2) = % [1—0.01231log(1 + 2%)] , (B.6)

Ayir(2) = 1872(1 + 0.40932%7572) | (B.7)



180 CHAP. B: COSMOLOGY-DEPENDENT PARAMETERS

1
Dy(z) = J%\/l + :1:'3/0 dy (1+ x3y6/5) : (B.8)

_ e [ dy
dL(Z)_Ho e )/o V(T + )P+ (1= Q)
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