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Chapter 1

Introduction

1.1 Galaxies: giants and dwarfs in our Universe

Our Universe is populated by an immense number of galaxies of various morphological
types and a large range of masses. Based on their appearance, probably the most impres-
sive ones are the large, gas-rich spiral galaxies, which are also the most abundant class
of the large galaxies in the Universe. The other major class of galaxies are ellipticals, the
most massive ones being typically found in the central regions of galaxy clusters. Much
more numerous are, however, the less massive, so called dwarf galaxies. To understand
the growth and evolution of the structure in the Universe galaxies are probably the most
important probes, as they contain most of the ordinary matter emitting detectable radia-
tion. The analysis of the dynamics of galaxies in clusters, for example, led Zwicky (1933)
to conclude that there must be some kind of undetectable matter – nowadays called “dark
matter” – that gravitationally holds together the galaxies in a cluster.

Great observational progress in the research of the distribution of visible matter has
been made in the recent years due to large galaxy surveys, in particular the Sloan Digital
Sky Survey and the 2-degree Field Galaxy Redshift Survey (York et al. 2000; Colless et al.
2001). Together with other measurements, for example of the fluctuations in the cosmic
microwave background radiation (Spergel et al. 2007), these observations contributed to the
manifestation of a “cosmological standard model” that is believed to be our currently best
prescription for the evolution of the Universe. In this theory, the cosmos is not dominated
by gas, stars, and galaxies, but by the mysterious dark matter and an even more mysteri-
ous dark energy (Peebles & Ratra 2003). Since the early 80s it has also become possible to
numerically simulate the growth of cosmic structure with continuously increasing resolu-
tion (for example Springel et al. 2005), due to the enormous development of computational
power and storage capacity. Starting from some reasonable initial conditions, the motion of
dark matter particles that interact merely gravitationally is integrated forward in time. This
class of simulations was entitled “cold dark matter” simulations, because the particles have
small initial velocities, and velocity is associated with temperature akin to thermodynamics.
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Introduction

1.1.1 Galaxies in the context of CDM

According to cold dark matter (CDM) simulations of the large-scale pattern in the Universe,
the growth of structure proceeds via a hierarchical sequence of condensations and collapses
driven by gravity. Instabilities, perturbations, and torques in the accretion process generate
filamentary-like networks that agree remarkably well with the observed distribution of
galaxies from large-scale redshift surveys, the “cosmic web”. Initially small dark matter
haloes, formed at early epochs, subsequently merge to constitute more massive haloes. An
allegory for this process is the “merger tree” as shown in Figure 1.1. In the centres of the
massive haloes, luminous galaxies are located, surrounded by subhaloes that survived the
disruptive effects during the in-fall onto their host halo.

The formation of galaxies has been a key issue in extragalactic and theoretical astron-
omy for several decades now, and different models for their origin have been proposed,
see for example Eggen, Lynden-Bell, & Sandage (1962), Searle (1977), and White & Rees
(1978). With the advent of dark matter N-body simulations in an expanding Universe, the
origin of galaxies has been related to the structure formation of dark matter. If enough
gas is captured in the potential well of the dark matter haloes, star formation sets in to
eventually form the galaxies we see today. In modern high resolution CDM simulations,
baryonic physics is accounted for by different methods, like semi-analytic galaxy forma-
tion models or smooth particle hydrodynamic codes. Such simulations reproduce the large
scale structure of the Universe very well, for example, in galaxy clusters. These models
phenomenologically describe the dark matter – luminous matter offset, and allow for dissi-
pative gas-dynamical effects, but do by no means have sufficient detail to model individual
molecular clouds or star clusters.

On smaller scales there remain, however, some inconsistencies with CDM predictions
that are difficult to address today. CDM simulations predict that the dwarf galaxies should
be some of the most dark matter dominated objects, and that they should have cuspy
density profiles, i.e. steeply rising mass densities in the central regions of dark matter
haloes, whereas the profiles inferred of well-observed dwarf spheroidal galaxies and the
rotation curves of low surface brightness galaxies show them to have flat inner density
profiles (van den Bosch et al. 2000; Palma et al. 2003; Wilkinson et al. 2006). Independent
evidence comes from the persistence of globular clusters belonging to the Fornax dwarf
galaxy (Goerdt et al. 2006). Recent observational constraints imply that perhaps warm dark
matter may need to be considered as a viable alternative to explain these findings (Gilmore
et al. 2007). The small number of observed dwarf galaxies is likewise difficult to account for
in the CDM picture. There appears to be a lack of dwarf galaxies in the void regions that are
enclosed by the high density filamentary network structures (Peebles 1989), and the number
of observed satellite galaxies around the Milky Way and Andromeda, about two dozen,
and other large galaxies is significantly smaller than the number of dark matter subhaloes
expected, about 500, as predicted by models (Klypin et al. 1999; Moore et al. 1999). The
latter, so-called “missing satellite problem”, is usually addressed by invoking small-scale
baryonic processes that suppress star formation in low mass subhaloes (Kazantzidis et al.
2004a, and references therein). In recent years, a lot of effort has been made to push the
limits of CDM simulations to make better predictions of luminous CDM sub-structures
within Milky Way sized host-haloes (Moore et al. 2006; Mashchenko et al. 2007) and to

2
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Figure 1.1: Schematic drawing of a cosmological dark matter dominated “merger tree”, reproduced
after Lacey & Cole (1993). Time increases from top to bottom. As dark matter structures merge they
subsequently form more massive haloes – masses are represented by the width of the branches –
until they reach the final mass of today, which is at the root of the tree.

address the small scale phenomena, but resolution on galaxy-size scales is still poor. Galaxy
formation models must therefore be tuned by hand to match with observations (Springel
et al. 2006), since the formation process is way to complex to be understood in its entirety,
and to be fully modelled from basic physical assumptions alone.

1.1.2 Dwarf galaxies in the Local Group

The Local Group, first pointed out by Hubble in 1936 as “a typical, small group of nebulæ”,
is an exceptional place to study the properties of galaxies and their environment in detail
(see Mateo 1998; van den Bergh 1999). It is an ordinary, loose collection of two large spiral
galaxies, the Milky Way and its “sister” the Andromeda galaxy, as well as of the smaller
spiral Messier 33, and of about 50 dwarf galaxies in total. While the Magellanic Clouds
are visible by the unaided eye in the southern hemisphere, most of the dwarf galaxies were
detected on photographic plates (Shapley 1938; Wilson 1955), since they are typically faint
and extended objects. For an example see the Ursa Minor dwarf galaxy in Figure 1.2. The
total number of known dwarf galaxies in the Local Group has significantly increased in the
last three years: about one dozen very faint, diffuse dwarf spheroidal galaxies were discov-
ered with help of the Sloan Digital Sky Survey catalogue data to surround the Milky Way.
Similarly a number of dwarf spheroidals were discovered in the vicinity of Andromeda
(e.g. Belokurov et al. 2006; Majewski et al. 2007, and references therein).

Local Group dwarf galaxies are unique laboratories to study galaxies in detail, since
they are close enough to resolve their stars individually. They are massive enough to have
possibly kept back gas in the past for a long time, fuelling star formation processes, and
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Figure 1.2: A sky image in the direction of the Ursa Minor dwarf galaxy. The galaxy appears as a
weak over-density of stars in the left half of the image. Credits: Mischa Schirmer.

they are old enough to learn something about galaxy formation processes in the early
Universe and their evolution over a Hubble time(a). Because of the proximity, it is possible
to precisely explore their internal properties, like radial density- and velocity profiles, star-
formation histories, or the chemical enrichment of stars. In addition one can determine
their distribution in space not only in projection, as is the case for distant galaxies (e.g.,
Holmberg 1969), but good data about their three-dimensional distribution are available.
For almost all of the galaxies radial velocities are available, and for some, proper motion
measurements have been achieved.

The spatial distribution of those dwarf galaxies that are believed to be gravitationally
bound to the Milky Way, the satellite galaxies of the Milky Way, has long been known to
be anisotropic. Based on spatial alignments it was postulated that some dwarf galaxies,
along with several globular clusters, belong to one or two streams of co-moving objects
(Kunkel & Demers 1976; Lynden-Bell 1976). Lynden-Bell (1983) first suggested that these
co-moving galaxies might be tidally torn off a common progenitor galaxy, an interpretation
that was later constrained incorporating radial velocity and proper motion data (Lynden-
Bell & Lynden-Bell 1995; Palma et al. 2002). With the advent of large cosmological sim-
ulations the idea of Lynden-Bell was, however, often overlooked, since the dwarf galaxies
were naturally identified with accreted cosmological sub-structures. Kroupa, Theis, & Boily
(2005) highlighted this issue again, pointing out that the spatial alignment of the satellite
galaxies can be best represented by a great plane, highly inclined to the Milky Way’s stellar

(a)The inverse of the Hubble constant H0 provides an estimate for the age of the Universe; H0 =
75 km s−1 Mpc−1 ⇒ tH0 ≈ 1.3× 1010 yrs, 13 billion years.
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disc. They deemed this to be incompatible with dark matter dominated satellites. This
work led to several direct replies attempting to explain the great plane within the picture
of the dwarf galaxies being dark matter dominated sub-structures (e.g. Kang et al. 2005;
Zentner et al. 2005; Libeskind et al. 2005).

Similarly to the Milky Way satellite galaxy system, the companions of Andromeda ap-
pear to be anisotropically distributed as well (Hartwick 2000), and there are indications
for a plane-like structure of a subsample of dwarf elliptical and dwarf spheroidal galaxies
(Grebel et al. 1999; Koch & Grebel 2006). It has also been shown that the satellite system as
a whole is skewed in the direction of the barycentre of the Local Group, a finding for which
no plausible solution emerges today. Possible streams of galaxies were identified too, most
of them are likely to be unreal but just chance alignments (McConnachie & Irwin 2006b).

1.1.3 Possible origin of dwarf galaxies

There are two fundamentally different origins of dwarf galaxies. As aforementioned, in
the context of CDM theory, dwarf galaxies are often thought of to reside in the centres
of dark matter haloes formed in the early Universe. As such they would be cosmological
building blocks, subhaloes that have not yet merged but survived as leftovers of the early
halo formation process until the present. Within this scenario, the anisotropic appearance
of the Milky Way satellite galaxies might be directly related to a prolate shape of the Milky
Way dark matter halo (Hartwick 2000), but there are also other contradicting findings for
the halo shape (e.g. Ibata et al. 2001b; Helmi 2004b; Fellhauer et al. 2006). An anisotropy
can also emerge because of preferred mass accretion along filaments. If the orientation of
the halo is governed by the direction of preferred mass accretion, this leads to an alignment
of the subhalo distribution with the major axis of the parent halo (Knebe et al. 2004), and
there might be a correlation to the surrounding larger-scale filamentary matter distribution,
the super-galactic plane (de Vaucouleurs et al. 1991).

A very different possible origin for dwarf galaxies arises from fundamental physical
principles, conservation of energy and angular momentum. As already pointed out by
Zwicky (1956), galaxies can be anti-hierarchically formed: interacting gas-rich galaxies
throw out long, thin tidal arms of gaseous and stellar material which fragments, collapses,
and forms new bound stellar systems, so-called tidal dwarf galaxies (TDG, Mirabel et al.
1992), as is for example shown in Figure 1.3. This process is observed to occur in the lo-
cal and in the distant Universe (Hunsberger et al. 1996; Duc & Mirabel 1998; Weilbacher
et al. 2000; Straughn et al. 2006), whereby the efficiency of the production of TDGs is ex-
pected to be higher in the early Universe due to a larger gas content. High resolution
images show young tidal dwarf galaxy candidates to consist of star-cluster complexes, a
star formation mode typical for intense starbursts (Whitmore et al. 2005; Jarrett et al. 2006).
Such star-cluster complexes generally survive the first few hundred Myr, and can evolve
into dwarf spheroidal like galaxies (Kroupa 1997, 1998; Fellhauer & Kroupa 2002b, 2005).
TDGs may significantly contribute to dwarf galaxy populations in different environments:
it has been suggested that half, or even all of the dwarf galaxies could be of tidal origin un-
der standard cosmological structure formation conditions (Hunsberger et al. 1996; Okazaki
& Taniguchi 2000). Notably, because the tidal tail is located within the orbital plane of the
interaction event, tidal dwarf galaxies born in one single event are expected to be anisotrop-
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Figure 1.3: The Tadpole galaxy (UGC 10214). Tidal arms are drawn out of the galaxy due to an
interaction process. The two panels on the right side show enlargments of star forming regions in
the tidal arms. Credit: NASA, H. Ford (JHU), G. Illingworth (UCSC/LO), M.Clampin (STScI), G.
Hartig (STScI), the ACS Science Team, and ESA.

ically distributed in space. An anisotropy might persist for a long time if the orbits do not
substantially precess, or are significantly perturbed by external interactions.

The formation of tidal dwarf galaxies is evident in simulations of gas-rich galaxy en-
counters as well (Barnes & Hernquist 1992; Bournaud & Duc 2006; Wetzstein et al. 2007).
In these computer models it is found that tidal dwarf galaxies have a large fraction of gas,
leading to a prolonged star-formation, but they are basically devoid of dark matter. Even
so tidal dwarf galaxies do not reside in the deep potential well of a dark matter halo, the
gas is not inevitably removed immediately with the onset of feedback processes from mas-
sive stars and supernovae (Recchi et al. 2007). Unfortunately, very little is de facto known
about the longterm evolution and fate of tidal dwarf galaxies. Computations have demon-
strated the possible existence of long-lived TDGs on orbits about the main, merged galaxy
(Bournaud & Duc 2006). These particular simulations did, however, not have good enough
resolution to examine properties of lower mass objects or objects that dropped below a
mass limit, 108 M�, which is in comparison with the Local Group of the order of ∼ 100
times more massive than a typical dwarf spheroidal galaxy. Thus, the longterm evolution
currently needs to be studied separately. In this way it has been found that in the vicinity
of a massive galaxy, after several orbits, dark matter free dwarf galaxies may be found to
be out of dynamical equilibrium, and being significantly perturbed instead (Kroupa 1997;
Fleck & Kuhn 2003).

6



1.2 Motivation and aim of this work

1.2 Motivation and aim of this work

These studies presented here were motivated by the idea to use the Local Group satellite
galaxies as probes of dwarf galaxy formation processes within the framework of the hier-
archical structure formation theory. As the Local Group dwarf galaxies are not unambigu-
ously verified to be dark matter dominated, their three-dimensional and global kinematic
properties are a part of the evidence to discriminate the two building mechanisms of dwarf
galaxies described above: cosmological building blocks or tidal dwarf galaxies? The work
presented here aims at performing a thorough study of observed spatial, kinematic, and
dynamic properties of the Milky Way and Andromeda satellite galaxies in comparison to
theoretical models.

The spatial distribution of the satellite galaxies is studied in Chapter 2. A statistical
method is presented that allows to test the hypothesis of the three-dimensional distribu-
tion of the satellite galaxies being drawn randomly from a given parent distribution. The
method is applied to the Milky Way and Andromeda satellite galaxy system. Until now, the
Milky Way and Andromeda have been studied separately only. This is the first consistent
analysis of both systems using the same statistical methods.

Given that the satellite galaxies are not isotropically distributed, we address in Chapter 3
the question whether this anisotropy is a signature of a correlated motion of the satellites.
For eight Milky Way satellite galaxies proper motion measurements are available that allow
us to study their orbital properties. Such an analysis is not possible for the Andromeda
system, but its different observing geometry allows us to restrict the possible orbits of its
satellite galaxies, which in turn makes it possible to draw conclusions on possible correla-
tions of the orbits.

Both aspects, the spatial distribution and the orbital properties, are tested in Chapter 3
for the outcome of a recent cold dark matter simulation that incorporated a galaxy for-
mation model and was tailored specifically to solve the Milky Way satellite problem. The
results are compared to the properties of the Milky Way satellite galaxy system.

Finally we address the question whether observed quantities, internal dynamical and
structural properties, of the satellite galaxies can be explained by dark matter free galaxy
models in Chapter 4. For this purpose we analyse internal properties of model galaxies,
initially set up to resemble tidal dwarf galaxies that orbit in the gravitational potential of a
host galaxy.

A new program, Superbox++, was developed as described in Chapter 5. This software
can be used to study problems of collisionless galactic dynamics such as the long-term
evolution of tidal dwarfs galaxies. An emphasis was made to optimise the code for modern
computer architectures, while at the same time keeping it portable for various operating
systems.
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Chapter 2

Analysis of the spatial distribution of
satellite galaxies

The three-dimensional distribution of the Milky Way (MW) satellite galaxies has long been
known to show asymmetric patterns (Kunkel & Demers 1976; Lynden-Bell 1976; Majewski
1994; Hartwick 2000; Kroupa, Theis, & Boily 2005). The degree of this anisotropy is es-
teemed very differently: being an effect of small number statistics, showing signs of the
underlying dark matter distribution, or being incompatible with CDM substructures. Simi-
larly, the satellite galaxies of Andromeda (M31) seem to have an anisotropic distribution as
well (Grebel et al. 1999; Hartwick 2000; Koch & Grebel 2006).

In the following the spatial distribution of both major Local Group galaxies, the Milky
Way and Andromeda, is investigated using the same analysis methods, allowing a direct
comparison of the properties of their satellite distribution. The mathematical methods used
to fit a plane are described (§2.1.1), and we discuss the problematic nature of methods that
quantify a plane-fit based on some measure of its “thickness” alone (§2.1.2). A method to
analyse the data based on bootstrapping (§2.1.3) is introduced. In order to study the three-
dimensional distribution of the M31 satellite galaxies a transformation to an Andromeda-
centric coordinate system is given in the most general way (§2.1.4). These methods are
finally applied to analyse the data for the Milky Way (§2.2) and Andromeda (§2.3) satellite
galaxy systems in a consistent manner, and we derive the statistical significance of disc-like
distributions of satellite galaxies (§2.4).

2.1 Methods for the analysis of spatial data

2.1.1 Plane fitting algorithms

One method to fit a plane to spatial data is known as an algebraic least-squares (ALS)
estimator method (see, e.g. Chojnacki et al. 2000), and is similar to the algorithm used by
other authors (e.g. Dubinski & Carlberg 1991; Hartwick 2000; Libeskind et al. 2005). The
ALS fitting method is an unweighted fitting algorithm. First the centroid of the data points,
m0, with components (x0, y0, z0), is calculated. Next an eigenvalue analysis of the matrix T0

9
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defined as

T0 = M0
TM0 , (2.1)

with

M0 =


x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0
...

...
...

xN − x0 yN − y0 zN − z0

 (2.2)

is performed. Here (xi, yi, zi) are the components of a vector pointing from the host galaxy
centre to the ith satellite, N is the number of satellites. T0 is sometimes called the moment
of inertia tensor. The eigenvector corresponding to the smallest eigenvalue of T0 is the
normal of the plane and the plane contains the centroid m0. Incorporating the centroid of
the data ensures that we really find the plane that has the minimum orthogonal distance
to the satellites. Not considering the centroid results in forcing the plane to pass through
the coordinate origin instead, i.e. a great plane or great circle fit is performed. The latter is
done by most authors when calculating the moment of inertia tensor.

Since the ALS method is an unweighted fitting routine, distance uncertainties are ac-
counted for by a Monte-Carlo method, which we refer to as the applied error (AE) method
in the following: all satellites are individually randomly shifted along their line-of-sight
with a normal distribution function as the probability function of the magnitude of the shift.
The variance of the normal distribution used for the shifting is derived from the distance
uncertainty of the measurements. The random shifting is repeated a large number (104) of
times. For the analysis of the distribution of derived normals of the fitted planes, the same
analysis techniques as described below (§2.1.3) for the bootstrap re-sampling method are
employed. We note that there are schemes to introduce a weighting in ALS (e.g., Hartwick
2000; Zentner et al. 2005), but as a drawback this also influences the direct interpretation of
the derived axis-ratios (see below).

As our second method to fit planes we have implemented a weighted fitting rou-
tine based on the orthogonal distance regression (ODR) package provided by Netlib
(http://www.netlib.org/odrpack). An unweighted fit with the ODR method (i.e. setting
all uncertainties equals zero) provides the same result as the (much faster) ALS method.
The weights are distance uncertainties in our application. This algorithm is a little bit sub-
tle since it also tries to estimate the errors of the fitted parameters. Even though the fitting
parameters converge, the error estimate may not, which can be understood as having weak
constraints on the fitting parameters. This only happened in special cases and never when
applied to the satellites of the Milky Way or Andromeda directly. Further, the solution pro-
vided by ODR is strongly dependent on the weights used. The Cartesian variances σ2

x , σ2
y ,

and σ2
z derived from the distance uncertainty σr are not independent. Using the variances

only leads to a different fit than using the full covariance matrix. Thus, we always use the
full covariance matrix, accounting for correlations of the components.

As an example we give the covariance matrix C as derived for Sagittarius and the re-

10
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sulting weight matrices W = C−1, (a) with and (b) without covariances:

(a) C =

3.73 0 0
0 0.04 0
0 0 0.24

 → W =

0.27 0 0
0 27.9 0
0 0 4.21


(b) C =

 3.73 −0.12 0.31
−0.12 0.04 0.03
0.31 0.03 0.24

 → W =

 0.40 2.05 −0.79
2.05 41.9 −8.13
−0.79 −8.13 6.32

 .

To demonstrate the influence of the covariances, plane-fits using the ODR method were
performed for M31, with and without considering the covariances for various subsets of
satellite galaxies. This led to differences in the directions of the normals of the fitted planes
typically of the order of 3◦ to 5◦, but up to 17◦.

These two fitting algorithms, ALS and ODR, are used because the method described
in Kroupa et al. (2005) based on a least-squares linear regression is suboptimal in finding
the plane with minimal orthogonal root-mean-square height of the satellites, which does,
however, not affect the basic argumentation by Kroupa et al. (see also Feigelson & Babu
1992, who discuss the possibly very different results for various linear regression fitting
methods).

Koch & Grebel (2006) also used an algorithm based on the ODR method, performing
a great-circle fit rather than a plane fitting, i.e. forcing the fitted plane to pass through the
centre of the host galaxy as can also be done for the ALS method. They stated that they
found a scatter of 5◦ – 10◦ between the directions of the normals when rotating their data-set
about pairs of random angles compared to the input angles. This is incomprehensible since
a plane-fitting algorithm should not be dependent on the spatial orientation of the data
points; the fits should be invariant under rotation. We can only conjecture about possible
reasons for their finding.

2.1.2 Flatness parameter

One measure of the planarity of the distribution of satellite galaxies is the flattening-
parameter ∆/rcut as given in Kroupa et al. (2005). ∆ is the root-mean-square (rms) height
of the disc and rcut is the furthest distance to the Galactic Centre in the satellite sample.
The alternative flattening-parameter ∆/rmed as suggested by Zentner et al. (2005) is also
a measure of the planarity, where rmed is the median distance to the Galactic Centre of a
sample. Kang et al. (2005) gave a formula to calculate the flattening-parameter ∆/rcut for
an analytic r−q, q ∈ R, distribution (their equation 1): ∆/rcut = (3− q)/(3(5− q)). This
formula is correct under two conditions only: first the analytic formula describes a spheri-
cal spatial density distribution (see below) and second the power-law index q is < 3. Here,
we derive a more general formula for the rms-height.

The radial distance distribution of the Milky Way satellite galaxies is found to follow a
linear power-law density distribution, ρ(r) dV ∝ r−p, dV = dx dy dz, with an index p ≈ 2
(Kroupa et al. 2005), where r is the distance from the Galactic Centre. This definition can
lead to confusion, since most people describe radial satellite distributions as spatial density
distributions in spherical coordinates ρsph(r) dV, dV = r2 sin θ dφ dθ dr, as Kang et al. 2005

11



Analysis of the spatial distribution of satellite galaxies

did. Therefore we need to perform a coordinate transformation:

ρsph(r) = ρ(r)r−2 ∝ r−(p+2) . (2.3)

For clarity the spherical spatial density function is labelled by the subscript ‘sph’. Equa-
tion (2.3) is the usual coordinate transformation from Cartesian to spherical coordinates
dV = dx dy dz = r2 sin θ dφ dθ dr. In general, the root-mean-square of a distribution f (x) of
a continuous variant x is given by

R(x) =

√∫
f (x)x2dx∫
f (x)dx

. (2.4)

Plugging ρsph (Eqn. 2.3) in and substituting q = p + 2 we find for the rms in the z-direction

∆ =

√√√√∫ 2π
0

∫ π
0

∫ rcut
r0

ρsph(r)r−qz2r2 sin ϑ drdϑdφ∫ 2π
0

∫ π
0

∫ rcut
r0

ρsph(r)r−qr2 sin ϑ drdϑdφ
, (2.5)

where we can substitute z2 = r2 cos2 ϑ. Solving the integrals we find:

∆ =



√
3−q

3(5−q)
r5−q

cut −r5−q
0

r3−q
cut −r3−q

0

: q 6= 3, 5√
1

3(5−q)
r5−q

cut −r5−q
0

ln |rcut|−ln |r0| : q = 3√
3−q

3
ln |rcut|−ln |r0|

r3−q
cut −r3−q

0

: q = 5

(2.6)

For limr0→0 this converges to 0 for q ≥ 3:

lim
r0→0

∆ = lim
r0→0

√√√√ 3− q
3(5− q)

r5−q
cut − r5−q

0

r3−q
cut − r3−q

0

= lim
r0→0

√
3− q

3(5− q)

√√√√const− r5−q
0

const− r3−q
0

q>3
= 0

For q < 3 we can set r0 = 0 and find the formula as given by Kang et al. (2005).
Kroupa et al. (2005) derived a linear probability distribution ρ(r) ∝ r−p, 1.8 ≤ p ≤ 2.6 for

the Milky Way (see also Koch & Grebel 2006 for Andromeda, 1.6 ≤ p ≤ 2.3), such that the
spherical volume density is ρsph(r) ∝ r−q, 3.8 ≤ q ≤ 4.6. Kang et al. (2005) argued that the
formally measured flattening ∆/rcut of a plane with infinite number of particles following a
power-law distribution decreases with power-law index q and converges to zero for q→ 3.
Indeed ∆ always converges to zero for r0 → 0, q ≥ 3. ∆ decreases with power-law index q,
but more importantly, ∆ is strongly dependent on the minimum radius r0. This will also
influence any test that is based on the measured height alone. Nevertheless, the argument by
Kang et al. (2005) that a disc-like distribution may be mimicked if the satellite distribution
is centrally concentrated with one or two outliers is valid (see also Zentner et al. 2005),
requiring more robust statistical methods to be launched, this being one important aim of
our study.
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2.1 Methods for the analysis of spatial data

For the ALS plane fitting method one can derive the axis-ratios c/a and b/a of the
square-roots of the eigenvalues (τ1 ≤ τ2 ≤ τ3) of the moment of inertia tensor: c =

√
τ1,

b =
√

τ2, a =
√

τ3. The values (a, b, c) are proportional to the root-mean-square deviation
relative to the eigenvectors of T0. Specifically, c ∝ ∆, where ∆ is given as above. In addition
we use the ratio c/b which indicates whether the triaxial distribution is more oblate (c/b <

b/a) or more prolate (c/b > b/a). Note that this definition of “triaxial, more oblate” and
“triaxial, more prolate” is different to the definition based on the triaxiality parameter as
given, for example, by Franx et al. (1991). The ratio c/a is a better measurement than ∆/rcut

and ∆/rmed in terms of providing the ratio of the rms height in the direction of the smallest
and largest extent, but can only be calculated for the ALS method. However, for a small
sample, such as in the dwarf satellite application, quantities like ∆ or the ratio c/a may not
be a robust measure at all because of small number statistics.

2.1.3 The distribution of normal vectors of bootstrapped samples

In previous works (Hartwick 2000; Kroupa et al. 2005; Kang et al. 2005; Libeskind et al.
2005; Zentner et al. 2005; Koch & Grebel 2006) the planarity of the satellite distribution was
quantified based on the ‘thickness’ of the distribution in relation to some measure of the
total spatial extent: ∆/rcut, ∆/rmed, or c/a. This is of course a basic requirement to call a
distribution “disc-like”. However, if we think of a centrally concentrated distribution, any
small number of outliers will determine the orientation of the plane and we will always
end up with an apparently “thin” disc as discussed in Sect. 2.1.2 (see also Kang et al. 2005;
Zentner et al. 2005). Consequently additional information about the robustness of a disc-
like distribution is needed to draw some statistically significant conclusions. This can be
achieved using a re-sampling technique.

There are two (re-)sampling methods widely used: jackknife and bootstrap. A jackknife
sample is created by leaving out one observation at a time. This is not the best method
for our analysis because other outliers would still define the disc. And, because of the
small number of satellites, we would have a weak statistics. Hence we use the bootstrap
re-sampling method. A bootstrap sample is created by drawing with replacement n obser-
vations from the original sample of size n. This means that a particular bootstrap sample
of n = 15 may, e.g., consist of five different satellites plus ten times the same satellite. This
gives a large number of possible different bootstrap samples for n� 1,

Ntot =
(

2n− 1
n

)
,

e.g. Ntot = 77 558 760 for n = 15.
To perform a plane fitting we need at least three different objects in a sample, which

results in a smaller but still very large number of possible bootstrap samples. To correctly
calculate the total number of possible distinct bootstrap samples for our application, we
generally formulate this as the following question:

What is the number of ways of picking k unordered outcomes with replacement from n
possibilities under the condition that at least l are different?
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Without the additional condition that at least l are different, the total number is given
by

Ntot =
(

n + k− 1
k

)
. (2.7)

We start by calculating the number of ways of picking exactly m = l different outcomes.
This is given by the number of ways of picking m unordered outcomes without replacement
from n possibilities times the number of ways of picking k−m unordered outcomes with
replacement from m possibilities,

Nm=l =
(

n
m

)(
m + (k−m)− 1

k−m

)
=
(

n
m

)(
k− 1
k−m

)
. (2.8)

This can be understood as follows:

k︷ ︸︸ ︷
zj1 , zj2 , . . . , zjm︸ ︷︷ ︸

m

, zi1 , zi2 , . . . , zik−m︸ ︷︷ ︸
k−m

, il ∈ {j1, j2, . . . , jm}.

We first choose exactly m different outcomes from all n possibilities z1, z2, . . . , zn without
replacement (we want all m to be different). The number of possible outcomes is (n

m). Since
we wanted exactly m different outcomes we now can only choose from those m outcomes
that have been chosen in the first step (so now the number of possibilities is m). The number
of outcomes is iteratively calculated using Eqn. (2.8) for m = l + 1, m = l + 2, . . . , m = n
and summed up:

l Ntot =
k∑

m=l

(
n
m

)(
k− 1
k−m

)
. (2.9)

With k = n, and l = 3 in our application, we get 3Ntot =
∑n

m=3 (n
m)( n−1

n−m) = 77 557 275 < Ntot

for n = 15. Since the total number of possible distinct outcomes is typically way to large
to be fully sampled, a sufficiently large sample is drawn as is the standard approach in
bootstrapping.

Note that bootstrapping is different to the sampling method Koch & Grebel (2006)
employed, while misleadingly referring to it as bootstrap. These authors fitted a plane
through every possible combination of 3, 4, . . . , n objects, an approach that is related to the
jackknife method. The different sampling method may have biased their results.

The bootstrapping method allows an estimate of the robustness of a disc-like distribu-
tion. The fitting to the re-sampled data is done using the unweighted ALS method. If the
satellites are not distributed in a well-defined planar-like sheet, the normals of the fitted
planes should show a large scatter. The amount of scatter of the directions of fitted normals to the
bootstrapped samples is the quantity we use to determine the statistical significance of a plane-like
distribution. To test the robustness of a best fitting plane to a set of data-points we quantify
the spread of distributions of normals obtained from the large number, e.g. 10 000, boot-
strapping samples. A well-defined plane or disc of data points (satellites) will lead to a tight
clustering of normals on the Galactic sky, while a weak disc will yield normals scattered
over a large fraction of the sky.
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2.1 Methods for the analysis of spatial data

For detailed analysis of the bootstrapped data we follow methods described in Fisher,
Lewis, & Embleton (1987), see also Mardia & Jupp (2000). The methods described below
are only valid for a sample of unit vectors representing axial data, i.e. undirected data. For
the present purpose the orientation of the normal of a plane is arbitrary that is, the normal
vector n represents the direction of an axis. A matrix U is defined as

U =


x̂1 ŷ1 ẑ1

x̂2 ŷ2 ẑ2
...

...
...

x̂m ŷm ẑm

 , (2.10)

where (x̂i, ŷi, ẑi) are the cartesian components of unit vectors n̂i, m is the number of unit
vectors. An eigenvalue analysis of the matrix

V = UTU (2.11)

is performed. The eigenvector corresponding to the largest eigenvalue ν3 of V (ν1 ≤ ν2 ≤ ν3)
is the (estimated) principal axis a0 of the input unit vectors, the normal vectors n̂i, and the
principal axis corresponds approximately to the mean direction of the normal vectors. In
our application, a0 is the principal axis of the distribution of normals of fitted planes to the
bootstrapped sample and we derive its direction on the Galactic sky. The shape parameter
γ is defined as

γ =
ln (ν3/ν2)
ln (ν2/ν1)

, (2.12)

and the strength parameter ζ is defined as

ζ = ln (ν3/ν1) (2.13)

(Fisher et al. 1987; Mardia & Jupp 2000). These two quantities can be used to characterise
a distribution of axial data on a sphere. γ describes the ‘clusteriness’ of the distribution.
γ = 1 indicates the transition between clustered (γ > 1) and girdled (γ < 1) distributions.
ζ is a continuous parameter indicating the strength of concentration: the larger ζ the more
concentrated a distribution is (being clustered or girdled), a uniform spherical distribution
has ζ = 0.

In addition the spherical standard distance,

∆sph =

√∑
m [arccos (|a0 · n̂i|)]2

m
, (2.14)

is calculated where ‘·’ denotes the scalar product of vectors. This is the analogue to the
linear root-mean-square distance on the sphere. Since we deal with axial data we have to
take the absolute value of the scalar product in Equation (2.14). The spherical standard
distance implies rotational symmetry but can be considered as an estimate of the upper
limit of the opening angle of a sample of normal vectors for non rotational-symmetric
distributions.
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Figure 2.1: An artist’s view showing the orientation of the normal vector n to the equatorial plane
of a distant galaxy, for example Andromeda, which is used to calculate positions in the extrasolar
coordinate system. er is the direction from the Sun to the centre of the galaxy, ep is parallel to the
celestial equator, pointing towards east, and eq is pointing towards the North Celestial Pole. The
inclination i is the angle between the normal of the equatorial plane of the galaxy and the line-of-
sight, given by er. The position angle θ is the angle between the projected major axis of the stellar
disc of the galaxy and the direction to the North Celestial Pole, conveniently measured from north
through east.

2.1.4 Extrasolar celestial coordinate systems

In order to study the three-dimensional distribution and kinematics of satellite galaxies
or any other object in a distant galaxy, for example Andromeda or the LMC, it is most
convenient to transform their position and velocity vectors relative to the observer into a
coordinate system centred on this distant galaxy. The transformation is described in the
most general way, using vector and matrix operations, to allow for an as wide as possible
range of applications. A mathematically equivalent, but to us less intuitive approach, is to
perform all transformations using spherical geometry (see, for example, van der Marel &
Cioni 2001; McConnachie & Irwin 2006b).

The basis for the transformation may be any celestial coordinate system. The origin and
orientation of the target coordinate system must be given as, or transformed to (i) positional
coordinates, (ii) inclination of the target system with respect to the line-of-sight, and (iii)
position angle measured from north through east. The basic geometry is illustrated in
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2.1 Methods for the analysis of spatial data

Figure 2.1. The transformation is exemplified by transforming into an Andromeda-centric
coordinate system, but the algorithm is applicable to any other target system, for example
an extrasolar planetary system or any other distant galaxy.

An Andromeda-centric coordinate system

Let
(

eM31
x , eM31

y , eM31
z

)
be the basis of a Cartesian coordinate system centred on Andromeda

similar to the galactocentric coordinate system with basis vectors
(

eMW
x , eMW

y , eMW
z

)
. We define

the coordinate system such that eM31
x is the direction of the normal to the stellar disc of An-

dromeda, eM31
z is the projected direction from the Galactic Centre to the centre of M31 onto

the disc of Andromeda (this implies that the M31 longitudinal coordinate of the Galactic
Centre is lM31 = 180◦), and eM31

y = eM31
z × eM31

x .
Equatorial coordinates can be calculated as

l = arctan
(y

x

)
, (2.15)

b = arcsin
( z

x

)
, (2.16)

r =
√

x2 + y2 + z2 , (2.17)

where x, y, z are the Cartesian components of a vector given in the galactocentric or the
Andromeda-centric coordinate system. It is important to note that if we give galactocentric
coordinates (lMW, bMW), the centre of the coordinate system is the Galactic Centre whereas
the centre of the standard Galactic coordinate system (l, b) is the Sun.

The reverse transformation from equatorial to Cartesian coordinates is given by

x = r cos b cos l , (2.18)

y = r cos b sin l , (2.19)

z = r sin b . (2.20)

To calculate the Cartesian components of a vector in the Andromeda-centric coordinate
system, the heliocentric position vector x is shifted to the centre of M31 and rotated to the
Andromeda-centric coordinate system,

rM31 = RM31 (r− r(M31)) . (2.21)

r(M31) is the heliocentric position vector of Andromeda and RM31 is the appropriate rota-
tionmatrix which is derived next.

The first step is to calculate the rotationmatrix that rotates the ‘normal trial’ (Murray
1983) parallel to the axes of the Cartesian coordinate system. This is given by the matrix
Rrpq, where the columns are the triad of unit-vectors er, ep, and eq:

Rrpq(α, δ) =
(
er ep eq

)
=

cos δ cos α − sin α − sin δ cos α

cos δ sin α cos α − sin δ sin α

sin δ 0 cos δ

 . (2.22)
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er is pointing in the direction with equatorial coordinates (α, δ), ep is parallel to the celestial
equator, positive towards the east, and eq is pointing to the North Celestial Pole (NCP), see
for example Murray (1983). Here

(
er ep eq

)
is the normal triad of the coordinates of M31

(αM31, δM31).
We can now construct a preliminary rotation matrix

R′M31 = Ry(90◦ − i)Rx(90◦ − θ)Rrpq(αM31, δM31) , (2.23)

where Rx/y/z(γ) are the matrices which perform a counter-clockwise rotation about the
Cartesian coordinate axes by an angle γ:

Rx(γ) =

1 0 0
0 cos γ sin γ

0 − sin γ cos γ

 ,

Ry(γ) =

cos γ 0 − sin γ

0 1 0
sin γ 0 cos γ

 ,

Rz(γ) =

 cos γ sin γ 0
− sin γ cos γ 0

0 0 1

 .

Rx(90◦ − θ) corrects for the position angle (see Figure 2.1). After applying this rotation
the vector pointing towards the north, eq is aligned with the projection of the normal vector
onto the (ep, eq) plane, which is the local approximation of the surface of the celestial
sphere at the position (α, δ). Ry(90◦ − i) corrects for the inclination of Andromeda. The
rotation given in Equation (2.23) is preliminary because it performs a transformation such
that the Sun is located at l′M31 = 180◦, but we defined the Galactic Centre to be located at
lM31 = 180◦. Therefore an additional rotation has to be performed, which is of the order
arctan (8.5 kpc/785 kpc) = 0.6◦.

The procedure to calculate this angle is as follows: (i) transform the vector pointing
from Andromeda to the Galactic Centre to the preliminary system

r′(GC) = R′M31 (r(M31)− r(GC)) , (2.24)

(ii) project this vector onto the plane of Andromeda,

r′xy(GC) = eM31
x (eM31

x · r′(GC)) + eM31
y (eM31

y · r′(GC)) , (2.25)

and (iii) calculate the angle β between this vector and the preliminary eM31
x -axis

β = arccos

r′xy(GC) · eM31
x∣∣∣r′xy(GC)
∣∣∣
 . (2.26)

The direction of the necessary rotation about the eM31
z -axis can be calculated by projecting

on the eM31
y -axis:

sz =
r′xy(GC) · eM31

y

|r′xy(GC) · eM31
y |

= ±1 . (2.27)
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Now we can calculate the full transformation matrix:

RM31 = Rsz
z (β)Ry(90◦ − i)Rx(90◦ − θ)Rrpq(αM31, δM31) (2.28)

=

+0.7703 +0.3244 +0.5490
−0.6321 +0.5017 +0.5905
−0.0839 −0.8019 +0.5915

 . (2.29)

Note that R−1
z (β) = Rz(−β). We use an inclination i = 77.5◦ and a position angle θ = 37.7◦

(de Vaucouleurs 1958). To calculate the angle β and the matrix Rrpq(αM31, δM31) in Eqn. (2.29)
we use a distance of 785 kpc and coordinates αM31 = 00h42m44.3, δM31 = +41◦16′09.4′′ for
M31, and we employ a distance 8.5 kpc of the Sun from the Galactic Centre.

We need to define a “north” direction for the Andromeda-centric coordinate system. In
analogy to the definition of the Galactic North Pole, which is the direction of the normal
to the Galactic disc lying in the northern celestial hemisphere, we also define the north
direction of Andromeda to be the direction of the normal of its stellar disc that lies in the
northern celestial hemisphere(a). Furthermore it is essential to know the actual direction
of the inclination for the transformation (whereas this might not be important for other
applications): Is the normal vector of the disc pointing towards or away from us? For
Andromeda, in Figure 2.2 it can clearly be seen that the bulge of Andromeda is obscured
in the northern-west region of the disc, so this part must be in front of the bulge and the
normal vector is pointing away from us, as also schematically indicated in Figure 2.1.

The coordinate transformation as given in Koch & Grebel (2006) must be incorrect as
the orientation of the triad at the position of Andromeda was ignored, just shifting to the
centre of M31. The offset of the directions of the NCP and the NGP was also not correctly
calculated. This offset is by chance very small at the position of Andromeda on the ce-
lestial sky (compare to McConnachie & Irwin 2006b). According to their transformation,
Andromeda would have an inclination of i = 66◦ and a position angle of θ = −16◦. How-
ever, since they performed only orthogonal transformations, translation and rotation, the
relative orientations of the satellites are preserved.

General transformation

Equation (2.21) is the transformation equation performing the necessary linear operations,
translation and rotation, respectively. Generally this becomes

rT = RB→T (rB − rB(OT )) , (2.30)

where rB is the Cartesian vector of any object picked to be transformed to the target system
T , rB(OT ) is the vector of the origin of the target system T , both vectors given in the basis
coordinate system B. The appropriate rotation matrix RB→T can be calculated as given in
Eqn. (2.23) or (2.28). Equation (2.23) gives the rotation matrix for which the Sun is located
at longitude 180◦. Equations (2.24) – (2.28) show how to derive the rotation matrix such
that the Galactic Centre is at longitude 180◦. rT is the Cartesian vector of the object given
in the target coordinate system. Equatorial coordinates follow from Eqs. (2.15) – (2.17).

(a)Note that the angular momentum vector of the Milky Way is the Galactic South Pole, and with our defini-
tion the same is true for Andromeda.
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Example Transformation

We give here an example of how to transform the coordinates of a companion galaxy into
the Andromeda-centric coordinate system. We apply the transformation to M33 with co-
ordinates α = 01h33m51, δ = 30◦39′36′′, and a distance D = 809 kpc from the Sun, for
Andromeda, α = 00h42m44.3, δ = +41◦16′09.4′′, with a distance D = 785 kpc. First we
need to calculate the Cartesian coordinates of M31 and M33 in the heliocentric coordinate
system (Murray 1983):

r(M31) =

579.791
109.391
517.785

 kpc,

r(M33) =

638.372
277.075
412.543

 kpc.

Next we apply Eqn. (2.21) using the matrix RM31 as given in Eqn. (2.29):

rM31 = RM31(r(M33)− r(M31)) ,

=

 41.737
−15.051
−201.635

 kpc.

Finally we calculate the Galactic coordinates in the Andromeda-centric coordinate system
(Eqs. 2.15 – 2.17):

lM31 = 340.2◦ ,

bM31 = −77.6◦ ,

rM31 = 206.5 kpc.

20



2.1 Methods for the analysis of spatial data

Figure 2.2: An optical image of Andromeda from the second Palomar Sky Survey (POSS II) taken in
the J-band. The bulge of Andromeda is obscured by the dust layer of the disc in the northern-west
region showing that this side of the disc must be in front of the bulge.
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2.2 The Milky Way satellite galaxies

For the Milky Way satellite system we use the data as given in Kroupa et al. (2005, their
table 1), supplementing it with the newly discovered companions from the SDSS which
subsequently were reported during this research work. A listing with the data for the
satellites is given in Table 2.1. Most of the newly discovered dSph satellite galaxies are
named after the constellation in which they are found. Only for some of these follow-
up observations are available, and most distances and absolute luminosities have to be
considered as uncertain, especially for those satellites without deep photometric follow-up
observations.
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Figure 2.3: An Aitoff projection of the positions for the innermost satellites within 254 kpc of the
Milky Way as they would appear from the Galactic Centre (compare to Figs. 2.8 and 2.9 for M31).
The Magellanic Clouds are marked by the diamond symbols, the dSph satellites by circles where
smaller symbols mark the newly discovered satellites from the SDSS. The position of Andromeda is
marked by the triangle. In this projection, the Sun is located at lMW = 180◦. The grey shaded area
is the full sky-coverage region of the SDSS. A projection holds, however, no information about the
true spatial distribution of the satellite galaxies, which is shown in Figures 2.4, 2.5, and 2.7.

2.2.1 The classical Milky Way satellite galaxies

First the data of the “classical Milky Way satellite galaxies” is analysed (as also done by
Kroupa et al. 2005). These are the most luminous satellites, comprising a complete census
of satellites within the virial radius of the Milky Way and brighter than Mtot,V = −8.8 mag,
LV = 2.6 × 105 L� (Mateo 1998). We fit a plane for the innermost eleven satellites out
to Leo I with a Galacto-centric distance of 254 kpc. For the ALS method, the direction
of the normal of the fitted plane is (lMW = 157.3◦, bMW = −12.7◦) and the distance of the
plane from the Galactic Centre is DP = 8.3 kpc, which appears to be quite large but is
still well within the optical disc of the Milky Way. An edge-on view and a view rotated
by 90◦ about the polar axis of the Galaxy is shown in Figure 2.4, as well as a face-on view
onto the fitted disc. The rms-height is ∆ = 18.5 kpc, resulting in flattening ∆/rcut = 0.07
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2.2 The Milky Way satellite galaxies

and ∆/rmed = 0.23. So the distance of the fitted plane from the Galactic Centre is a factor
of two smaller than the rms-height of the plane. Note that Kroupa et al. (2005) found
∆/rcut = 0.10, and Zentner et al. (2005) found ∆/rmed ≈ 0.3 for the same data, both values
being larger than those found here. This is an indication that the ALS method provides a
better result in the sense that the orthogonal rms is minimized. The derived axis ratios are
c/a = 0.18 and b/a = 0.53, resulting in c/b = 0.34 < b/a, a triaxial, oblate distribution of
satellites. Libeskind et al. (2005) gave values of c/a ≈ 0.3, b/a ≈ 0.5 for the MW in their
figure 3, which would mean c/b = 0.6 > b/a, i.e. a triaxial, slightly prolate distribution.
They based most of their argumentation on these values which we could not reproduce in
any case.

Next, the applied error (AE) Monte-Carlo method is applied, randomly shifting the
position of all satellites along their line-of-sight vector with a normal distribution function
as the probability function of the magnitude of the shift, repeating this 10 000 times. The
principal axis of the resulting distribution of the normals is located at (lMW = 157.4◦, bMW =
−12.6◦) with a spherical standard distance ∆sph = 1.2◦. The derived principal axis is in
good agreement with the single fit above and the scatter as quantified by ∆sph is remarkably
small about the principal axis.

Using the ODR fitting routine, the pole is located at (lMW = 158.2◦, bMW = −29.0◦)
with a distance DP = 3.4 kpc of the plane from the Galactic Centre. The result is shown
in Figure 2.5. The rms-height is ∆ = 32.6 kpc, resulting in flattening ∆/rcut = 0.13 and
∆/rmed = 0.41. This is an interesting finding that needs to be further explored: The lon-
gitude of the derived pole is very similar for the ALS and the ODR method, whereas the
latitudes deviate by ≈ 16◦. This can be understood by looking edge-on onto the fitted plane
(Figs. 2.4 & 2.5, left panels). Since we are basically sitting in the plane of the satellites, most
of the distance uncertainties, which are considered in the ODR method, are along the radius
of the plane. As can be seen in Figs. 2.4 and 2.5, for the distant satellites the components of
the distance uncertainties along the polar-axis (the ordinate) are the largest. This forces the
ODR algorithm to weight positions along the polar-axis down, which results in a different
latitude of the pole whereas the longitude of the fitted normal is not affected. This outcome is
an indication that, while the ODR method is robust against single outliers, it can be biased strongly
by a systematic alignment of the provided distance uncertainties. Later we show that this aspect
affects the fitting for the Andromeda satellites even more.

To investigate the robustness of the disc-like feature, 10 000 bootstrap re-samplings for
the eleven innermost satellites of the Milky Way (3Ntot = 352 155 for n = 11, see Eqn.
2.9) are performed with the ALS method. In Fig. 2.6 a smoothed (lMW, bMW) scatter plot
of the locations of the normals of the bootstrap samples is shown in grey-scale, white
corresponding to zero density. The smoothing kernel is a Fisher function with smoothing
parameter κ = 100 (Fisher et al. 1987)(b). In addition the contour lines for the density
estimate of 0.5, 0.75 and 0.9 are plotted. The plot is centred on the principal axis of the
distribution which is located at (lMW = 158.2◦, bMW = −11.9◦) and thus is in good agreement
with the results of the single fit above. The shape parameter γ = 3.8 and the strength
parameter ζ = 4.3 show that the distribution is strongly clustered around its principal axis,

(b)The Fisher function is the equivalent of the Gaussian on a sphere. The larger the smoothing parameter κ is
chosen the narrower the smoothing kernel gets.
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Analysis of the spatial distribution of satellite galaxies

and well outside the distribution of (γ, ζ) values for an intrinsically isotropic distribution
of satellites (Fig. 2.17). The resulting spherical standard distance is ∆sph = 13.0◦.

The spherical standard distance ∆sph found for the AE test is only a tenth of that found
with bootstrapping. This shows that the systematic error caused by the distance uncertain-
ties of the Milky Way satellites is significantly smaller than the intrinsic scatter determined
with the bootstrapping. So the disc-like feature is not affected much by the distance uncer-
tainties of the Milky Way satellites.

2.2.2 Newly discovered dSphs from the SDSS, and YH globular clusters

We repeat the analysis, now consecutively including the Ursa Major (UMa) and Canes
Venatici (CVn) dwarf galaxies, of which the discovery was reported in the course of this
research. The results from the single fits, the AE analysis, and the bootstrap analysis are
given in Tables 2.2 – 2.4. In the new fits the locations of the poles are only marginally
affected by adding the new satellites, since both dSphs are located close to the former fitted
disc (see Fig. 2.7). At a distance of ≈ 220 kpc CVn is in fact the second furthest satellite
galaxy in our sample. For the unweighted ALS method, the orientation of the fitted disc is
mostly determined by the outer satellites, nevertheless the orientation is not affected much.
Including these two new satellite galaxies, the spherical standard distance ∆sph found for
the AE test remains an order of magnitude smaller than the one for the bootstrapping,
showing that the distance uncertainties do not systematically affect our results. Finally
we added all those newly discovered dSphs that were reported very recently. These
are marked by small circles in the Figures 2.3 and 2.7. The projection was chosen as in
Figure 2.4, without adapting the fitting parameters to the new data. Apparently all are
close to the DoS, except for one: the Hercules (Her) dwarf, the left-most data-point in the
top-left panel of Figure 2.7, is 88± 8 kpc off the fitted disc. Without the Hercules dSphs,
the fitting results are basically identical to the original fit to the eleven classical satellites:
lMW = 156.2◦, bMW = −8.0◦, DP = 6.0 kpc, and ∆ = 23.5 kpc.

With the finding that the dwarf satellite galaxies of the Milky Way are aligned in a plane-
like structure, one can ask about the properties of other halo objects, namely the globular
clusters. Hartwick (2000) analysed the distribution of a sample of the outermost globular
clusters of the Milky Way, and a low-metallicity sample. For both samples a spatial distribu-
tion was found different from that for the satellite galaxies. Here we use the latest available
data of the Harris (1996) catalogue(c), but chose a different selection criterion: globular clus-
ters were selected that are classified as “young halo” (YH) globular clusters according to
Mackey & van den Bergh (2005). This selection is different from the low-metallicity cut
applied by Hartwick (2000). Young halo clusters are believed to be formed in, or together
with satellite galaxies, since their chemical properties are similar to those belonging to the
MW dwarf galaxies (Mackey & Gilmore 2004). In total, 30 globular clusters are classified as
YH clusters according to Mackey & van den Bergh (2005). Performing the plane fitting rou-
tine for this sample, we find the direction of the normal to be (lMW = 144.1◦, bMW = −4.3◦),
the derived axis-ratios are c/a = 0.35 and b/a = 0.76, an oblate triaxial distribution. The

(c)http://www.physics.mcmaster.ca/resources/globular.html
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2.2 The Milky Way satellite galaxies

direction of the normal is only 15.5◦ off the normal of the plane fitted using the classical
eleven Milky Way satellite galaxies. We interpret this as an indication that the oblate, plane-
like distribution of the YH globular clusters might be related to the DoS of the Milky Way
satellite galaxies.
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Table 2.1: The positions of the Milky Way satellite galaxies within the approximate virial radius
of 254 kpc. In the first column we give a running number, in the second and third the name and
abbreviation, in the forth and fifth longitude and latitude in galactocentric coordinates, and in the
sixth the distance with 1σ errors from the Galactic Centre. In the seventh column the absolute
luminosity in the V-band of the galaxies is given, taken from the referenced publications. The
additional horizontal line marks the row where the list of newly discovered dSph satellites found in
the SDSS starts, sorted by their galactocentric distance.

No Name Abbrev. lMW bMW rMW LV

[◦] [◦] [kpc] [106 L�]
1 Sagittarius Sgr 8.8 −21.5 16.0± 2.0 5.1 (i)

2 Large Magellanic Cloud LMC 269.0 −33.3 50.2± 2.2 2090 (ii)

3 Small Magellanic Cloud SMC 292.2 −47.1 56.9± 2.2 575 (ii)

4 Ursa Minor UMi 114.5 43.1 68.1± 3.0 0.29 (iii)

5 Sculptor Scu 237.5 −82.3 79.2± 4.0 2.15 (iii)

6 Draco Dra 93.6 34.7 82.0± 6.0 0.26 (iii)

7 Sextans Sex 237.1 40.5 89.2± 4.0 0.50 (iii)

8 Carina Car 255.1 −21.8 102.7± 5.0 0.43 (iii)

9 Fornax For 230.5 −63.8 140.1± 8.0 15.5 (iii)

10 Leo II Leo II 216.5 65.5 207.7± 12.0 0.58 (iii)

11 Leo I Leo I 223.9 48.1 254.0± 30.0 4.79 (iii)

12 Ursa Major II Uma II 159.6 30.0 36.5± − 0.003 (iv)

13 Willman1 Wil I 164.7 47.7 43.0± 6.9 0.001 (v)

14 Coma Berenices CBe 201.8 75.1 45.2± 3.9 0.002 (vi)

15 Boötes II Boo II 348.1 78.4 47.6± − 0.001 (vii)

16 Boötes Boo 356.6 77.5 57.6± 11.9 0.02 (viii)

17 Ursa Major UMa 162.0 50.8 104.9± 20.0 0.04 (ix)

18 Hercules Her 30.9 38.8 134.2± 13.0 0.022 (vi)

19 Canes Venatici II CVn II 132.7 80.9 150.7± 15.0 0.007 (vi)

20 Leo IV Leo IV 260.0 56.2 160.6± 15.0 0.009 (vi)

21 Canes Venatici CVn 86.9 80.2 219.8± 25.0 0.12 (x)

References: (i) Lee & Kim (2000); (ii) van den Bergh (1999); (iii) Mateo (1998); (iv) Zucker et al. (2006a);
(v) Willman et al. (2005a); (vi) Belokurov et al. (2007); (vii) Walsh et al. (2007b); (viii) Belokurov et al. (2006);
(ix) Willman et al. (2005b); (x) Zucker et al. (2006b)
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2.2 The Milky Way satellite galaxies

Figure 2.4: Positions of the “classical” Milky Way satellites within the virial radius as seen from
infinity. Results of the fitting using the unweighted ALS method are shown. In the top-left panel an
edge-on view onto the fitted plane is shown, in the top-right panel a view rotated by 90◦ about the
polar-axis of the Galaxy. The Milky Way is located at the origin and its disc is seen edge-on in these
two panels, as is indicated by the thick black line. In the bottom-right panel, a face-on view onto
the fitted DoS is shown, the Milky Way’s disc is indicated as a black ellipse. The red circles mark
the positions of the dSph satellite galaxies, and the green diamonds the two irregular satellites LMC
and SMC, respectively. The distance uncertainties along the line-of-sight are indicated by the grey
sticks. The grey-shaded area shows the regions of b = ±5◦ and b = ±15◦, which may be affected
by obscuration through the Milky Way disc, and the dashed lines indicate the region of b = ±30◦,
possibly affected by MW foreground crowding.
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Figure 2.5: As Figure 2.4, now showing the results derived with the ODR fitting method.
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2.2 The Milky Way satellite galaxies

l=180°

b=0°

Figure 2.6: A smoothed (lMW, bMW) scatter plot of the distribution of normals of planes fitted to each
of 10 000 bootstrap samples for the eleven innermost, “classical” Milky Way satellites. A spherical
density estimate is shown using a Fisher density for the kernel function (κ = 100, Fisher et al. 1987)
plotted in grey-scales, white corresponds to 0. In addition the contour lines for the density estimate
of 0.5, 0.75 and 0.9 in units of the central density are plotted. The principal axis of the distribution
is located at (lMW = 158.2◦, bMW = −11.9◦).
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Figure 2.7: As Figure 2.4, now adding the newly discovered dSphs from the SDSS, shown by smaller
red symbols.The orientation of the plot was not adapted by a new plane fit, but was kept at the same
values as in Figure 2.4. In this plot the projected northern full sky coverage region of the SDSS is
indicated by the coloured area. The detection biasing due to the SDSS coverage region towards the
Galactic North-pole region is evident.
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2.2 The Milky Way satellite galaxies

Table 2.2: Results from the single plane fits for the innermost satellite galaxies of the Milky Way
within the approximate virial radius for the two fitting methods: ALS and ODR. Results for the
“classical” satellites, and for the data-sets including the UMa and the CVn dwarf galaxies are given.
For Andromeda the results for both data-sets, MI and KG (§2.3), as well as for a morphologically
(mss8, §2.3.1) and a kinematically motivated (kss8, §2.3.2) subsample of eight satellites, are tabulated.
Results are given in galactocentric and Andromeda-centric coordinates, respectively.

method lMW [◦] bMW [◦] DP [kpc] ∆ [kpc] ∆/rcut ∆/rmed c/a b/a
Milky Way: classical

ALS 157.3 −12.7 8.3 18.5 0.07 0.23 0.18 0.58
ODR 158.2 −29.0 3.4 32.6 0.13 0.41

Milky Way: classical + UMa
ALS 160.5 −14.6 12.5 20.3 0.08 0.25 0.21 0.54
ODR 158.1 −29.1 3.4 31.7 0.12 0.39

Milky Way: classical + UMa + CVn
ALS 153.8 −10.2 7.8 22.8 0.09 0.27 0.22 0.55
ODR 157.4 −29.2 2.9 40.9 0.16 0.48

lM31 [◦] bM31 [◦]
Andromeda, MI-data

ALS 73.4 −31.5 1.0 45.9 0.17 0.42 0.36 0.46
ODR 23.8 −12.5 45.0 54.4 0.20 0.50
ALS mss8 177.0 −24.1 34.9 29.2 0.11 0.39 0.27 0.67
ODR mss8 177.9 −20.4 37.7 29.5 0.11 0.39
ALS kss8 69.9 −35.2 1.8 16.5 0.06 0.11 0.12 0.50
ODR kss8 57.9 −28.6 12.8 22.7 0.08 0.16

Andromeda, KG-data
ALS 83.5 −31.0 7.5 46.1 0.16 0.46 0.41 0.68
ODR 27.6 −31.1 32.5 68.2 0.24 0.68
ALS mss8 168.0 −26.7 1.6 9.4 0.04 0.14 0.09 0.68
ODR mss8 168.5 −29.4 1.9 10.2 0.04 0.15
ALS kss8 73.6 −35.0 3.9 17.9 0.06 0.18 0.15 0.71
ODR kss8 52.9 −35.5 13.7 31.3 0.11 0.31
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Table 2.3: Results from the applied error test for satellite galaxies of the Milky Way and Andromeda.
The longitudes and latitudes of the derived principal axis and the spherical standard distance of the
distributions for the classical Milky Way satellite galaxies are listed. The recently discovered dSph
galaxies in Ursa Major and Canes Venatici are included. The results for the two data-sets used for
Andromeda, as well as for two subsamples (§2.3.1 & §2.3.2) of M31 satellites, are given.

Data-set lMW [◦] bMW [◦] ∆sph [◦]
Milky Way classical 157.4 −12.6 1.2

+UMa 160.6 −14.6 1.5
+UMa+CVn 153.9 −10.2 1.5

lM31 [◦] bM31 [◦]
Andromeda MI 75.1 −31.7 13.2

mss8 176.6 −24.9 12.5
kss8 70.5 −35.2 2.4

Andromeda KG 82.9 −31.1 8.0
mss8 165.2 −30.9 21.5
kss8 74.2 −35.2 1.6

Table 2.4: Results from the bootstrap re-sampling method for the satellite galaxies of the Milky Way
and Andromeda. The same quantities as in Table 2.3 are provided and in addition in columns five
and six the shape parameter γ and the strength parameter ζ of the distribution of normals of the
fitted planes are tabulated.

Data-set lMW [◦] bMW [◦] ∆sph [◦] γ ζ

MW classical 158.2 −11.9 13.0 3.8 4.3
+UMa 161.8 −14.9 12.0 4.0 4.4

+UMa+CVn 156.7 −10.6 12.4 2.8 4.6
lM31 [◦] bM31 [◦]

M31 MI 75.5 −31.9 38.6 0.6 3.1
mss8 178.3 −28.5 32.7 1.1 2.7
kss8 69.5 −34.2 9.8 5.9 4.7

M31 KG 83.1 −30.0 27.9 2.9 2.6
mss8 167.1 −29.6 11.8 5.3 1.9
kss8 72.4 −33.8 11.5 14.9 4.2
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2.3 The Andromeda satellite galaxies

In order to study the three-dimensional distribution of the satellite system of Andromeda
it is most convenient to transform their position vectors relative to the observer into an
Andromeda-centric coordinate system (see also McConnachie & Irwin 2006b). A detailed
description of the transformation is given in Section 2.1.4 in the most general way. Two
different data-sets for the distances of Andromeda and its satellites were incorporated: the
first data-set as published by McConnachie & Irwin (2006b, MI data-set, see their table 1)
where most of the distances were derived using the tip of the red giant branch method
using ground based telescopes (McConnachie et al. 2005). This data-set can be considered
as homogeneous data. The other data-set as given by Koch & Grebel (2006, KG data-set,
see their table 1): they compiled a list of HST-based distance measurements. The data are
given in Table 2.5 for both data-sets converted to Andromeda-centric coordinates.

Figs. 2.8 and 2.9 show an Aitoff projection of the satellite distribution on the Andromeda
sky similar to Fig. 2.3 for the Milky Way. The projected error bars due to the combined
uncertainties in the distance measurement of the satellites and Andromeda are shown,
which are given by

σ =
√

σ2
M31 + cos2(β) σ2

sat , (2.31)

where σM31, σsat are the distance uncertainties of Andromeda and its satellite, respectively,
and β is the angle between the lines-of-site to Andromeda and its companion. In each
figure, the positions derived from the other data-set are shown with small open symbols
for comparison. Note the voids in the regions lM31 < 180◦, bM31 < 0◦ and lM31 > 180◦,
bM31 > 0◦ in both figures. As shown by McConnachie & Irwin (2006b), these regions are
only marginally obscured by the Milky Way disc (see their figure 1), the region of maximum
obscuration is near IC 10 at (lM31 = 103◦, bM31 = 45◦).

Similar to the case of the Milky Way, more faint dwarf galaxies probably remain to be
found for Andromeda within the next few years. One of these discoveries was reported by
Zucker et al. (2007): the dSph And X is comparable in luminosity to And IX, however the
distance determination was difficult. Zucker et al. (2007) gave a distance of 667± 30 kpc
to 738 ± 35 kpc. Three satellites, And XI – XIII, were reported in another recent paper
by Martin et al. (2006). No distances could be determined for the individual galaxies, but
combining their colour-magnitude diagrams and assuming all to have the same distance,
Martin et al. (2006) derived a combined distance of 740 – 955 kpc. Next, Majewski et al.
(2007) reported the discovery of a dSph in the vicinity of Andromeda, named And XIV.
They estimated a heliocentric distance of 630 – 850 kpc. Two further dSphs were reported
by Ibata et al. (2007), And XV and And XVI, and most recently the discovery of And XVII
was reported by Irwin et al. (2008). Given the large distance uncertainties for all these
recently discovered dwarf galaxies, we do not include these in our analysis but discuss
them later.
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-60◦

-30◦

30◦

60◦

0◦ 60◦ 120◦ 180◦ 240◦ 300◦ 360◦

Figure 2.8: The Aitoff projection of the locations of the M31 satellites in the Andromeda-centric
coordinate system for the MI data-set. Symbols are chosen as in the previous section: red circles
mark dSphs, green diamonds dIrrs. Blue hexagons now mark dE/cE galaxies, and the location of
M33 is shown by the blue pentagram. The small open circle mark the corresponding positions for
the KG data-set. The projected distance errors due to the combined uncertainties in the distance
measurement of the satellites and M31 are shown. The position of the Milky Way is indicated by
the triangle.

-60◦

-30◦

30◦

60◦

0◦ 60◦ 120◦ 180◦ 240◦ 300◦ 360◦

Figure 2.9: As Figure 2.8 for the KG data-set, small open circles now showing the corresponding
positions for the MI data.
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2.3 The Andromeda satellite galaxies

The innermost twelve satellites of Andromeda (without counting M33) lie within ≈
269 kpc, the approximate virial radius of Andromeda, rvir, which is approximately of the
same order as that of the Milky Way. We assume LGS 3 to be the twelfth satellite, although
for the KG data-set And VI is actually closer to the centre. This will be addressed later
(this Section and §3.3.2). The results of the fits are given in Table 2.2. For the MI-data the
distribution is triaxial and more prolate, while for the KG data-set the distribution is found
to be triaxial and more oblate, which is reflected in the further analysis, too. Figs. 2.10
and 2.11 show an edge-on view of the fitted planes and a view rotated by 90◦ about the
polar axis of Andromeda, as well as a face-on view onto the fitted disc for the two data-sets
(compare to Fig. 2.4 for the Milky Way). As can be seen the recently discovered dSph And X
that was not incorporated in the fitting (marked by a smaller symbol near the centre of the
plots), is located close to the fitted plane. If we just recalculate the rms-heights of the fitted
disc, now including And X, it increases only slightly to ∆ = 46.6 kpc for the MI data-set,
∆ = 47.2 kpc for the KG data-set. Interestingly, also the three very recently discovered
satellites And XI – And XIII (Martin et al. 2006) all lie very close (≈ 10 kpc for the MI
data, ≈ 30 kpc for the KG data) to the fitted disc when using a mean combined distance of
847.5 kpc albeit with large uncertainties.

For the applied error method (Table 2.3) the distance of Andromeda is not varied. This
would only affect the distance of the plane from the origin. Compared to the spherical
standard distance derived for the Milky Way, it is a factor of ten larger for the M31 system,
which is not surprising given the much larger uncertainties in the relative distances M31 –
satellite. The principal axes come out in good agreement with the poles of the single fits.

However, the ODR method yields poles that are far away from the poles found with
the ALS method (Table 2.2). The difference is totally dominated by the large distance
uncertainties, which are here not aligned within the fitted plane as in the case of the Milky
Way. Instead they are systematically aligned along the line-of-sight from the Milky Way to
Andromeda. The components in the direction to the Milky Way are weighted down and
the fitted plane appears to be nearly perpendicular to the direction from the MW to M31, a
result of the systematic dependencies of the covariances.

McConnachie et al. (2005) showed that the satellite distribution is significantly offset
towards the direction of the Milky Way. This offset is also visible in Fig. 2.10, right panels.
The offset is reflected by the large distance from the centre of Andromeda along the di-
rection of the normal for the fitted planes when using the ODR method, due to the nearly
face-on orientation of the fitted disc. In contrast, the disc-like distribution found with the
ALS method is more edge-on, i.e. the systematic offset as identified by McConnachie et al.
is within the plane.

As for the Milky Way, 10 000 bootstrap re-samplings for both data-sets of M31 are
performed to test the robustness of the plane. The principal axis of the distribution is
(lM31 = 75.5◦, bM31 = −31.9◦) [(83.1◦, −30.0◦)], being in good agreement with the original
fit. We derive a shape parameter γ = 0.6 [2.9] and a strength parameter ζ = 3.1 [2.6],
the spherical standard distance is ∆sph = 38.6◦ [27.9◦] (numbers for the MI[KG] data-sets).
While for the KG data-set the distribution of the directions of fitted normals for the boot-
strapped sample is found to be clustered (γ > 1), for the MI-data it is found to be a girdled
distribution (γ < 1). Fig. 2.12 shows a smoothed (lM31, bM31) scatter plot of the distribution
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of the fitted normals for the MI data-set: there is a distinct peak about the principal axis
and a second, weak over-density can be seen nearly 90◦ off, being the origin of the girdled
distribution. The KG data-set does not show a secondary maximum.

And VI has approximately the same distance from Andromeda as LGS 3, both lying
close to the approximate virial radius. Including And VI in the fitting routine for the KG-
data, where it is actually closer to the centre of M31 than LGS 3, dramatically changes the
picture. The pole of the fitted normals is clearly offset from the fits without And VI, the
distance of the fitted plane is significantly offset from the centre of Andromeda, and the axis
ratios do change significantly: b/a = 0.63 and c/a = 0.57. More importantly the clustering
found for the bootstrapping without And VI for the KG-data disappears completely. If the
satellite was within a planar-like distribution, the bootstrapped distribution should become
similarly or even more tightly concentrated, as it did when including the UMa dwarf galaxy
for the Milky Way. Instead, it gets very weak: γ = 0.3 and ζ = 1.7. Therefore we treat
And VI as an outlier.

In contrast to the Milky Way satellite system, for Andromeda the spherical standard
distance derived with the applied error method is of the same order as for the bootstrap
method which is a result of the large distance uncertainties for M31 and its satellites. So the
results may well be affected by the still too large distance uncertainties for both, Andromeda
and its satellite galaxies.

2.3.1 Morphological motivated subsample of Andromeda satellites

Koch & Grebel (2006) found a very pronounced polar disc-like feature for a morphologically
motivated subsample of early-type dwarf galaxies. Their procedure was as follows: they
first fitted a plane to all seven dSph galaxies in their data-set and then excluded And II (at
a distance of rM31 = 160 kpc < rvir) as an outlier because of its large distance to the fitted
plane. This disc-like feature of six dSphs was found to be statistically highly significant,
albeit we argue that their derived statistical significance is not unbiased (Sects. 2.1.2, 2.1.3,
& 2.4.3). Next they included all other morphologically similar galaxies, three dEs and one
cE (M32), again finding a disc-like feature with high statistical significance. In a last step
they excluded two of the three dEs, but included one transitional type object, the dIrr/dSph
Peg DIG at a distance of 410 kpc > rvir, because of its close proximity to the disc-like feature
found before(d). They also found that smaller spiral galaxy M33 is comprised by the plane
of their sub-subsample, though not included in the fitting.

Indeed we confirm an amazingly thin configuration in the KG data when using this
sub-subsample consisting of M32, And I, And III, NGC 147, And V, And VII, And VI,
And IX, and Peg DIG. In Tables 2.2 – 2.4 we refer to the sub-subsample without Peg DIG
as mss8 (morphological subsample of eight satellites). We exclude Peg DIG because it is
well outside the approximate virial radius of M31. The fitted configuration is shown in
Fig. 2.14. As can be seen, M33 is indeed located very closely to the fitted plane. For the KG
data-set the pole of the fitted plane is (lM31 = 168.0◦, bM31 = −26.7◦), with a distance from
the centre DP = 1.6 kpc, an rms-height ∆ = 9.4 kpc, and with axis ratios c/a = 0.09 and

(d)However, also note the different scaling of the axes in their figure 3 which makes the distributions appear
more planar-like than they truly are.
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2.3 The Andromeda satellite galaxies

b/a = 0.68. For the weighted ODR method the results are very similar (see Table 2.2). M33
is located very closely to this fitted plane. Including Peg DIG for completeness results in
(lM31 = 163.0◦, bM31 = −27.3◦), with a distance from the centre DP = 1.2 kpc, an rms-height
∆ = 13.1 kpc, and with axis ratios c/a = 0.09 and b/a = 0.45. But, this distribution (bM31 =
−27.3◦) is not as polar aligned as claimed by Koch & Grebel (2006) due to the incorrect
transformation to the Andromeda-centric coordinate system used by them (§ 2.1.4). Also
note that, from the Milky Way, we are basically looking face-on onto this fitted plane, which
is an important clue as we will show later.

Using the MI data-set without Peg DIG (MI mss8) leads to (lM31 = 177.0◦, bM31 = −24.1◦),
DP = 34.9 kpc, and ∆ = 29.2 kpc (Fig. 2.13); including Peg DIG we find (lM31 = 182.4◦,
bM31 = −23.2◦), DP = 35.1 kpc, and ∆ = 29.1 kpc. For this data-set the fitted plane is not
as thin as for the KG data, and the offset from the centre of M31 is remarkably larger than
the rms-height of the fitted plane. As can be seen in Fig. 2.13, there is now another dE
(NGC 147, marked by the blue hexagon to the right of the plane) remarkably offset from
the fitted plane.

Further insight comes from the AE test (Table 2.3). When applied to the morphological
sub-subsample, the derived spherical standard distance is ∆sph = 21.5◦. This is a very large
uncertainty in the location of the poles of the fitted normals, a factor three larger than for
the full set of twelve satellites within the approximate virial radius used before. For the MI
data-set, ∆sph = 12.5◦ is of the same order as for the full data-set.

In order to test the robustness of the results, a bootstrap analysis for the sub-subsample
without Peg DIG is performed, now using 5 000 re-samplings accounting for the smaller
number of possible distinct bootstrap samples (3Ntot = 6 231 for n = 8). The results are
given in Table 2.4. The principal axes are in agreement with the individual fits. The dis-
tribution of directions of bootstrapped normals is marginally clustered and concentrated.
However the spherical standard distance for the bootstrapped sample is remarkably smaller
than for the AE test. This indicates that the systematic uncertainties of the distances are larger
than the intrinsic scatter of the fitted disc for the KG data. For the MI data-set the bootstrapped
distribution is found not to be clustered but of transitional type. The spherical standard
distance is significantly larger than for the KG data-set.

The recently discovered dSph And X is also found to be off the disc-like structure of the
mss8 subsample for the KG data-set. For a heliocentric distance of 702.5 kpc its distance
from the fitted disc is ≈ 87 kpc (> 9σ; And II, excluded as an outlier by Koch & Grebel,
is ≈ 127 kpc away). To be within ±10 kpc from the disc, And X would have to be at a
heliocentric distance of ≈ 786 – 808 kpc. For the MI data-set And X’s distance to the fitted
disc is ≈ 32.7 kpc. And X is located on the near side of M31 to the Milky Way, thus adding
to the systematic offset of the M31 satellite system towards the barycentre of the Local
Group (McConnachie & Irwin 2006b).

We thus find that the apparent disc-like configuration of the dSph/dE satellite sub-
subsample for Andromeda as proposed by Koch & Grebel (2006) is present for their data-
set only and cannot be reproduced using the MI data-set. The nearly face-on alignment
relative to the Milky Way results in distance uncertainties basically perpendicular to the fit-
ted plane (Figs. 2.13 & 2.14). The thin configuration disappears when shifting the satellites
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along their line-of-sight in accord with the distance uncertainties as done in the AE test.
Comparing the results for the AE test and the bootstrapping suggests that the systematic
uncertainties caused by the distance-measurement errors are larger than the intrinsic scat-
ter of the distribution. Thus the thin disc-like configuration found may be just a chance
alignment for the KG data-set, but its existence is not completely ruled out.

2.3.2 Kinematical motivated subsample of Andromeda satellites

In Section 3.3.2 we identify a subsample of Andromeda satellite galaxies that might have
a common stream motion based on the intersection of their orbital poles (cf. also Lynden-
Bell & Lynden-Bell 1995, Palma et al. 2002, and McConnachie & Irwin 2006b). Apply-
ing ALS to fit a plane for this kinematically motivated subsample of nine satellites (M32,
NGC 205, And I, NGC 147, And II, NGC 185, IC 10, LGS 3, and IC 1613), but for the time
being excluding IC 1613, the pole comes out to be located at (lM31 = 69.9◦, bM31 = −35.2◦)
[(lM31 = 73.6◦, bM31 = −35.0◦)] (MI[KG]-data-set), with axis ratios c/a = 0.12 and b/a = 0.50
[c/a = 0.15 and b/a = 0.71], i.e., a highly oblate (disc-like) configuration in both data-sets
(Table 2.2). The pole is very close to the pole found for the full sample of twelve satellites
within the approximate virial radius. In Figs. 2.15 and 2.16 it is clearly visible that also
some satellites are excluded here, shown by open symbols, which lie spatially close to the
initially fitted plane. Including the very distant (and possibly bound) satellite IC 1613 out-
side the approximate virial radius of Andromeda, we find the pole of the fitted normal to
be located at (lM31 = 74.4◦, bM31 = −40.5◦) [(lM31 = 74.7◦, bM31 = −40.6◦)], with axis ratios
c/a = 0.10 and b/a = 0.35 [c/a = 0.11 and b/a = 0.43]. The latter axis ratio, leading to a
more prolate configuration, is totally dominated by this one very distant satellite (IC 1613).
We concentrate our further analysis on the sample of eight satellites without IC 1613, be-
cause it is located outside the approximate virial radius of Andromeda. We refer to this
subsample in Tables 2.2 – 2.4 as kss8 (kinematic subsample of eight satellites).

Applying the AE test to the kss8 subsample, the direction of the principal axis is
(lM31 = 70.5◦, bM31 = −35.2◦) [(lM31 = 74.2◦, bM31 = −35.2◦)], with a spherical standard
distance ∆sph = 2.4◦ [∆sph = 1.6◦] (KG [MI] data). The location of the principal axis is in
good agreement with the individual fits above, and ∆sph is for both data-sets significantly
smaller than for the full data-sets, and also an order of magnitude smaller than for the mss8

subsample (§ 2.3.1).
Performing the bootstrap analysis with 5 000 re-samplings for the kinematically moti-

vated subsample yields shape parameter γ = 5.9 and strength parameter ζ = 4.7 [γ = 14.9,
ζ = 4.2]. For both data-sets the distribution of the directions of the fitted planes of the
bootstrapped data are strongly concentrated and clustered. The derived spherical standard
distance is ∆sph = 9.8 [∆sph = 11.5], indicating that the systematic effects caused by the
distance uncertainties are smaller than the internal scatter as derived by the bootstrapping.

Even though the morphologically motivated subsample (§ 2.3.1) has a smaller rms-
height ∆ than the kinematically motivated subsample for the KG-data, and thus appears
as a ‘thinner’ disc, the bootstrap analysis shows that the latter one has a more pronounced
planar-like feature. The strong clustering is found in both data-sets. We have therefore
uncovered a sample of eight M31 satellites (nine if IC 1613 was included) which span a
very pronounced disc-of-satellites that is probably rotationally supported.
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2.3 The Andromeda satellite galaxies

Figure 2.10: The Andromeda satellite system as seen from infinity for the MI data. An edge-on
view (top-left panel), and a view rotated by 90◦ about the polar axis (top-right panel), as well as a
face-on view (bottom-right panel) onto the fitted plane, derived using the ALS method, are shown
as in Fig. 2.4 for the MW system. The recently discovered dwarf spheroidals And X – And XVII are
marked by smaller symbols; these were not incorporated in the fitting. M33, which was also not
incorporated in the fitting, is marked by the star. The other symbols are chosen as in Fig. 2.8. The
distance uncertainties along the line-of-sight are indicated by the grey sticks. In addition, the grey
shaded area indicates the projected region where potentially some satellite galaxy detections may
be hindered by foreground MW structures (see also McConnachie & Irwin 2006b, their figure 1).
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Figure 2.11: As Figure 2.10, plane-fit (ALS) for the KG data.
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2.3 The Andromeda satellite galaxies

l=180°

b=0°

l=90°

Figure 2.12: A smoothed (lM31, bM31) scatter plot of 10 000 bootstrap samples for the innermost twelve
Andromeda satellites for the MI data-set ranging out to LGS 3 as Fig. 2.6. The principal axis of the
distribution is located at (lM31 = 75.5◦, bM31 = −31.9◦). The plot is shown 30◦ off-centre from the
principal axis. An additional contour line for the density estimate of 0.25 indicates a weak secondary
maximum.
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Figure 2.13: Plot as before for the MI data, now showing the results of the fitting for a morphologi-
cally motivated sub-subsample (mss8) as proposed by Koch & Grebel. Satellites not incorporated in
the fitting are marked with open symbols.
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Figure 2.14: As Figure 2.13, plane-fit to the mss8 subsample for the KG data.
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Figure 2.15: Plot as before for the MI data, now showing the results of the fitting for a kinematically
motivated sub-subsample kss8. Satellites not incorporated in the fitting are marked with open
symbols.
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Figure 2.16: As Figure 2.15, plane-fit to the kss8 subsample for the KG data.
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2.4 Statistical significance of disc-like distributions

In order to study the possible physical nature of the Milky Way and Andromeda satellite
system, the statistical significance of the observed anisotropy, given a parent distribution,
needs to be quantified. According to the null-hypothesis, the parent distribution ought
to be a dark matter subhalo distribution, which may be spherical, oblate, prolate, or tri-
axial, and the positions of the satellite galaxies are randomly drawn from this parent dis-
tribution. To evaluate the significance of planar distributed satellite systems we compare
the bootstrapped samples of the observed distribution with bootstrapped data of random
samples from the parent distribution. For this we first create spherically isotropic distri-
butions, where the radial linear probability density is proportional to ρ(r) ∝ r−p, p = 2
(⇒ ρsph(r, ϑ, φ) ∝ r−q, q = 4), consistent with the radial distribution found for the Milky
Way (Kroupa et al. 2005) and Andromeda (Koch & Grebel 2006). Random oblate, prolate,
or triaxial ellipsoidal distributions with axis ratios c/a and b/a are then constructed by
scaling the components of the random spatial position vectors while keeping the volume of
the ellipsoid invariant, x′

y′

z′

 = fV

 x
b
a y
c
a z

 , (2.32)

where the normalisation factor fV is given by

fV = 3

√
a2

b c
. (2.33)

As shown in Eqn. (2.6), the formally expected relative height of a spherical distribution is
dependent on the minimum and maximum radii. Therefore the random samples are set-up
with the minimum and maximum radii as found for the Milky Way (see Table 2.1). For
ellipsoidally distributed random samples the initial values are scaled such that the final
distribution has the expected minimum and maximum radii.

As for the observed data, each random sample is bootstrapped 10 000 times and we
calculate the shape parameter γ and the strength parameter ζ of the resulting distribution
of fitted normal vectors. Fig. 2.17 (central panel) shows a contour-plot ζ vs. γ derived for
100 000 random samples from an isotropic distribution (a = b = c) each consisting of eleven
model satellites, bootstrapped 10 000 times. As can be seen from the coloured regions,
which show the density distribution, the distribution of normal vectors of bootstrapped
random samples is not expected to be randomly distributed in (γ, ζ)-space. They are typi-
cally found to be girdled or transitional (γ . 1) and marginally concentrated (ζ < 3), while
there is also some fraction of clustered (γ > 1) distributions. For oblate parent configura-
tions (Fig. 2.17, upper panel) much more clustered distributions (γ > 1) result which are
typically also more concentrated (ζ & 3). On the other hand, for prolate parent configu-
rations (Fig. 2.17, bottom panel) typically a much higher fraction of girdled distributions
(γ < 1) results, but also with higher concentration parameter (ζ & 3). Small concentration
parameters are mostly found for an isotropic distribution.

To calculate the significance of an observed distribution, the joint distribution function
D(γ, ζ) is computed and the percentile of bootstrapped random samples is derived for
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Figure 2.17: A contour-plot of strength parameter ζ versus shape parameter γ for 100 000 random
samples, each consisting of eleven model satellites with an isotropic (central panel), oblate (c/a =
0.5, b/a = 1.0, top panel), and prolate (c/a = b/a = 0.5, bottom panel) parent distribution, each
individually bootstrapped 10 000 times. The coloured contours show the density distribution of the
derived parameters, dark red being high density. The contour lines show the enclosed values with
significance levels as labelled. The star marks the parameters derived for the Milky Way.
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which both the shape parameter and the strength parameter are larger than found for
an observed satellite distribution, e.g. of the Milky Way (Fig. 2.17, solid contour lines).
For each parameter pair of initial values c/a and b/a we create 100 000 random satellite
samples each consisting of eleven satellites. Each of these samples is individually analysed
using the bootstrap method with 10 000 re-samplings. This required a large amount of
CPU time and we ran the simulation on the computer system of the Argelander-Institute
and the CIP-pool(e) of the physics department. The full run took about 7 500 CPU-hours
running simultaneously on up to 30 PCs from 500 MHz class to 3 GHz class CPUs using a
distributed computing technique.

2.4.1 The Milky Way

The percentile of models found to have bootstrapped distributions more concentrated than
for the Milky Way are listed in Table 2.6. Approximate contour lines for a 1, 2, and 5 per
cent probability that the Milky Way satellites (the classical data-set) are drawn randomly
from a parent distribution with initial axis-ratios c/a and b/a are shown in Fig. 2.18. The
values typically obtained for Milky Way sized dark matter haloes (see, e.g., Libeskind et al.
2005) are shown by the grey shaded region.

The same analysis for a sample of twelve satellites is repeated with 20 000 random
samples, and the derived shape parameters are compared with those found for the Milky
Way satellites including the UMa dwarf galaxy. The resulting fractions are listed in the
bottom part of Table 2.6. Including the recently discovered dSph in Canes Venatici, we ran
only one test with 13 satellites and 20 000 random samples for a spherical setup. For this
run we find 0.3 per cent of the random samples more concentrated than for the Milky Way
sample.

The null-hypothesis that the Milky Way satellites are drawn randomly from a spherical
or mildly triaxial parent population as it is typically found in cosmological dark matter
simulations can be excluded at very high statistical significance, ≥ 99.5 per cent, confirming
the results of Kroupa et al. (2005). With increasing triaxiality, the probability increases
for more oblate configurations (which are marked with a grey background in Table 2.6).
Prolate configurations are basically excluded, except for configurations nearly perfectly
triaxial, e.g., for c/a = 0.5 and b/a = 0.7, where the probability may be of order 1 per
cent. Including the UMa dwarf galaxy increases the significance of this result (reduces the
propability).

2.4.2 Andromeda

For Andromeda, using an appropriate setup, the percentile values for the case that the satel-
lite distribution within the approximate virial radius is drawn randomly from a spherically
isotropic parent distribution is already 12 per cent for the KG-data. This reflects the fact
that we find the bootstrapped normals of the M31 satellite system to be much less clustered
than for the Milky Way. The distribution of bootstrapped normals for the MI data-set are
even less clustered and the percentile value is thus larger. So the hypothesis that the full

(e)http://cip.physik.uni-bonn.de
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2.4 Statistical significance of disc-like distributions

Table 2.6: Percentile of bootstrapped random samples for which the shape parameter and the
strength parameter indicate a distribution of the normals of bootstrapped satellites more concen-
trated than found for the Milky Way satellite system. Different setup distributions are used with
axis ratios c/a (along rows) and b/a (along columns). The top table gives the percentile for the
innermost eleven satellites, the bottom table for the innermost twelve satellites including the UMa
dwarf satellite candidate. Parameter combinations for which c/b < b/a, i.e., which are triaxial and
more oblate, are highlighted by a light grey background colour.

b/a
c/a 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0 0.5
0.9 0.5 0.5
0.8 0.6 0.6 0.6
0.7 0.6 0.7 0.8 1.0
0.6 0.7 0.8 1.1 1.5 2.0
0.5 0.7 0.9 1.5 2.4 3.3 4.1
0.4 0.5 0.9 2.1 4.1 6.3
0.3 0.2 0.8 2.7 6.9 12.2
1.0 0.3
0.9 0.3 0.4
0.8 0.4 0.3 0.5
0.7 0.5 0.4 0.6 0.6
0.6 0.5 0.5 0.8 1.1 1.5
0.5 0.4 0.7 1.1 2.0 2.7 3.6
0.4 0.3 0.7 1.6 5.4 3.2
0.3 0.1 0.6 2.2 6.2 11.6

M31 satellite system is drawn randomly from a spherically isotropic parent distribution can
not be rejected at present, using the available data.

2.4.3 Statistical significance of M31 subsamples

Performing the analysis as described above for the morphologically (§2.3.1) and kinemat-
ically (§2.3.2) motivated subsamples would not yield the correct significance levels: the
null-hypothesis for deriving the statistical significance is that all satellite galaxies within a
certain radius trace a parent distribution, i.e., one assumes all satellite galaxies to be of the
same origin, namely luminous DM sub-structures. But performing the analysis as above
would imply that the eight satellites selected by the morphological or kinematical criterion
are luminous dark matter sub-structures, randomly drawn, and the excluded ones are of
another origin. Even in the case of the morphologically motivated subsample, where one
may argue that all dSphs/dEs have been build due to the same mechanism, some were
excluded because of their large distance from the fitted plane. But, they should have been
included to derive the significance, because otherwise one implies a different origin of the
excluded satellites. Koch & Grebel (2006) did not take this into account.

To derive the significance correctly, the procedure is to set up twelve model satellites
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Figure 2.18: Approximate contour lines of the 1, 2.5, and 5 per cent confidence levels for boot-
strapped random samples with initial axis-ratios c/a and b/a being representative for the distribu-
tion of the eleven innermost MW satellite galaxies. The grey shaded region shows the range of axis
ratios typically found for CDM haloes in numerical simulations.

within the appropriate distance range from M31 and then select all combinations of eight
model galaxies out of the full sample. For each of these individual subsamples, 495 in total,
a full bootstrap analysis has to be performed. Then the fraction of random samples that
have subsamples of eight model satellites with a more pronounced disc-like distribution
than the observed sample needs to be calculated.

Practically, this analysis can only be performed for a few specific set-ups because the
runs take a large amount of CPU time. We performed one run for each of the data-sets,
MI and KG, respectively, using an isotropic parent distribution. The differences between
both random runs are the minimum and maximum radii, chosen to match the values of
the corresponding observed data-sets. We setup 10 000 random samples. The full run took
about 20 000 CPU hours, running simultaneously on more than 30 standard PCs.

The percentile value for the case that the morphologically motivated subsample is picked
from samples that are randomly drawn from an isotropic distribution is 100 per cent for the
MI data-set and 95 per cent for the KG data-set. The percentile value for the kinematically
motivated subsample is 17 per cent for the MI data-set and 10 per cent for the KG data-set.
Even though appearing as a ‘thin’ disc-of-satellites, we conclude that the morphologically
motivated subsample is just a chance alignment of galaxies and fully consistent with being
randomly drawn from an isotropic distribution. For the kss8 subsample we can also not
reject the hypothesis that the satellites are picked from a random sample, but the percentile
value is much lower (< 17%) for both data-sets.
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2.5 Discussion

The statistical methods to analyse the spatial distribution of the satellite galaxies of the
Milky Way and Andromeda is not based on the “thickness” of a planar-like distribution
alone, as this is not sufficient to characterise the distribution (Kang et al. 2005; Zentner
et al. 2005). The bootstrap method is used to derive the distribution of poles of fitted
planes which are analysed using methods based on the statistical analysis of spherical data.
These methods quantify the robustness of a planar-like distribution. Thus, a population of
satellites that is not planar-like will in our analysis be robustly identified as an unstable
distribution of poles.

2.5.1 The Milky Way system

Applying two methods (ALS and ODR) to fit planes, the Milky Way satellite system within
254 kpc is found to be highly anisotropical. All “classical” companion galaxies are aligned
in a disc-like structure with an rms-height of only ∆ = 18.5 kpc (Table 2.2). This disc-of-
satellites is highly inclined with respect to the Milky Way’s stellar disc, |bMW| ≈ 12◦, passing
the Galactic plane close to the Galactic Centre, DP ≈ 8 kpc < ∆. The statistical methods,
applied to the satellite system of the Milky Way, show that the hypothesis that the Milky
Way satellites are drawn randomly from an isotropic distribution can be excluded at a high
statistical significance level (≥ 99.5 per cent). It can also be excluded that the distribu-
tion is drawn randomly from a triaxial or prolate parent distribution as typically found
in cosmological simulations of Milky Way sized haloes (e.g., Jing & Suto 2002; Bullock
2002; Libeskind et al. 2005; Zentner et al. 2005), Diemand et al. (2005a) specifically argued
that the distribution of haloes formed early is even more elongated, i.e. more prolate than
the smooth host dark matter halo. The null-hypothesis that the satellite system is drawn
randomly from a dark matter parent distribution cannot be rejected only if the parent distri-
bution is highly triaxial and oblate, i.e. if the parent distribution is already flattened. In this
case, and as long as no host-galaxy formation is included in large scale CDM simulations,
the disc of the Milky Way has to be postulated to be nearly perpendicularly oriented to the
oblate host halo, because we find the disc-like structure of satellite galaxies to have a polar
alignment. Even so, the required highly triaxial oblate DM-host shape is only marginally
consistent with the results of modern CDM structure formation simulations. Furthermore,
recent measurements of the shape of the Milky Way potential using the Sagittarius stream
indicate it to be almost spherical within about 60 kpc (Fellhauer et al. 2006, see also §6.2).

The discoveries of two additional faint Milky Way companions that were included in
the full analysis, increases the confidence in the above statements. Indeed, all the recently
detected dSphs lie close to the DoS, except for the Hercules dwarf. It can not be excluded
that the Hercules dwarf has been scattered into its current orbit (compare Sales et al. 2007a).
However, since the SDSS (York et al. 2000) mostly covers the north pole region of the Galac-
tic sky (Figs. 2.3 and 2.7) the detection is biased towards this region. But there are remark-
ably large portions of the sky that are way off the DoS – but no satellite galaxies are reported
there. To get an answer beyond the possible sky-coverage bias it will be crucial to extend
the search for Milky Way companions over a larger area of the sky and particularly at lower
Galactic latitudes, as it is planned by the Stromlo Missing Satellite (SMS) survey (Jerjen et
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al., in preparation) using the new ANU SkyMapper telescope (Schmidt et al. 2005). We
note though that if additional very faint dwarf galaxies are discovered to not lie within
the disc-of-satellites as quantified here, as for example the Hercules dwarf appears to be
(Table 2.1), we are nevertheless left with the fact that the eleven most luminous Milky Way
satellite galaxies are aligned in the disc.

For the Milky Way a significant fraction of dwarf galaxies may be invisible in the optical
due to obscuration by the Galactic disc at low Galactic latitudes (e.g., Mateo 1998). Within
the virial radius of the Milky Way about half of the total volume has latitude b ≤ 30◦.
Andromeda is in that sense a better probe since it’s halo is not that much affected by
obscuration (McConnachie & Irwin 2006b). A simple estimate for the Milky Way, assuming
that all undetected satellites are homogeneously distributed over the whole sky, and further
assuming that all satellites with b ≤ 15◦ are undetected, 50 per cent of all satellites with
15◦ < b ≤ 30◦ are undetected, we find that about 35 per cent of all satellites with b ≤
30◦ may be found more than 1σ = ∆ off, and about 30 per cent more than 3σ off the
fitted disc-of-satellites. This is a very conservative estimate for the Milky Way obscuration.
McConnachie & Irwin (2006b) estimated that only regions within |b| < 15◦ are affected by
obscuration, and those with |b| < 5◦ to be the most strongly affected regions.

2.5.2 The Andromeda system

For the Andromeda satellite system it cannot be excluded that it has been drawn randomly
from a spherical isotropic parent distribution. However, we do find the Andromeda satellite
system to be anisotropic (left panels in Figures 2.10, 2.11, 2.15 & 2.16), but the details
depend on the distance data used. The fitted disc-like structure for all satellites within the
approximate virial radius is not as polar-aligned as for the Milky Way (|bM31| ≈ 30◦) and it
is approximately twice as ‘thick’ as found for the Milky Way (Table 2.2).

Two incompatible subsamples of satellite galaxies which have a disc-like distribution can
be identified: one morphologically motivated, as proposed by Koch & Grebel (2006), and
one kinematically motivated (§2.3.2). Since the disc-like satellite system of the Milky Way
is dominated by dSph galaxies, one can speculate about a common building mechanism for
all the dSphs in the Local Group that is also the cause for a plane-like alignment of satellite
galaxies. If this mechanism was the break-up of a large, gas-rich galaxy or the formation of
tidal dwarf galaxies (TDGs) in an early major-merger event, one expects the dSphs to have
initially correlated directions of their angular momentum vectors, supporting a disc-like
structure. This would favour the morphologically motivated subsample since it is initially
composed of dSphs only. However, at least two of the Andromeda dwarf spheroidals
within the virial radius do not fit into this picture and were excluded by Koch & Grebel
(2006) because of their apparently large distance from the plane. Also only one out of
three morphologically similar dEs is found close to the disc. On the other hand we cannot
exclude the possibility that some massive TDGs may retain their interstellar medium to
appear today as dIrr galaxies (Hunter et al. 2000; Recchi et al. 2007).

The disc-like distribution of the morphologically motivated subsample of dSph/dE
galaxies (mss8) around Andromeda is present for the KG data-set only, but cannot be iden-
tified for the MI data-set. Comparing the results of the AE and the bootstrap test it follows
that even in the KG data-set the systematic errors caused by the distance uncertainties are
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larger than the intrinsic scatter as quantified by the bootstrapping. Furthermore, the high
significance of the morphologically motivated disc as derived by Koch & Grebel (2006)
must be incorrect because of three reasons: firstly they derived their significance based on
the thickness of the disc alone, secondly they used the ODR fitting method that is affected
by the systematic alignments of the distance uncertainties of the M31 satellites, and thirdly,
most importantly, they did not use the correct null-hypothesis to derive the significance. We
find the distribution of the morphologically motivated subsample of Andromeda satellite
galaxies to be fully consistent with being picked from a random distribution.

The kinematically motivated subsample of eight Andromeda satellites forms a pro-
nounced thin disc with inclination of ≈ 31◦ away from a polar alignment, and that holds
true for both data-sets, MI and KG. The kss8 subsample is found to have a much more
pronounced disc-like distribution than the morphologically motivated one, although its
apparent thickness, as quantified by ∆, is larger. Even though the kinematically motivated
subsample has a much higher statistical significance than the morphologically motivated
one, we can also not exclude the possibility that this sample is picked from a random
distribution.

Interestingly, also all the newly discovered satellite galaxies of Andromeda lie close
to its DoS as derived for the whole satellite population and the kinematically motivated
subsample (Figs. 2.8, 2.9 and Figs. 2.15, 2.16). This is in particular remarkable given that the
Andromeda system is much less affected by obscuration. Majewski et al. (2007) noted that
along a radial vector from the centre of M31, connecting NGC 147 and And XIV, in total
six satellite galaxies are located in projection, and Irwin et al. (2008) found that And XVII
is also on that line. We demonstrated that the new dSphs lie on a straight line not only in
projection, but taking their full 3D data into account, we find that they belong to the same
disc-of-satellite as previously derived. This holds true despite large distance uncertainties.

2.5.3 The Milky Way versus Andromeda

There is no obvious evidence for a spatial association of the disc-of-satellites of the Milky
Way and the Andromeda galaxy or its satellites (but see Sawa & Fujimoto 2005). If An-
dromeda, located at lMW = 121.7◦, bMW = −21.5◦, and its satellites were associated with the
disc-of-satellites of the Milky Way, M31 ought to be close to the fitted disc-like structure,
and the fitted planes ought to be aligned. Instead, M31 is ≈ 55◦ off the fitted plane of the
Milky Way satellites. Similarly, the angle between the normals of the fitted satellite planes
of the MW and M31 is ≈ 50◦ – 60◦, but would be 0◦ if they were perfectly aligned.

Fig. 2.19 shows the directions of the spin-poles (SP) of the stellar discs of the Milky Way
and Andromeda in supergalactic coordinates (de Vaucouleurs et al. 1991), as well as the
spin-poles of the smaller Local Group galaxies LMC and M33 (van der Marel & Cioni 2001;
Corbelli & Schneider 1997). Additionally, the directions of the normals of the fitted disc-like
structures of the satellite distributions of the MW and M31 are shown. It follows that the
spin-axis of the Milky Way lies very close to the supergalactic plane, within about 6◦, and
the normal of the Milky Way DoS is likewise close to the supergalactic plane, but almost
90◦ off the spin-axis of the Milky Way. The spin-axis of the stellar disc of Andromeda
and the normal of its fitted DoS are both about 30◦ off the supergalactic pole. If both
discs-of-satellites were build up by the individual accretion of galaxies, preferentially from
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Figure 2.19: A Lambert projection – left for negative and right for positive latitudes – of the di-
rections of the spin poles (SP) of the stellar discs of Milky Way and Andromeda in supergalactic
coordinates, marked by filled circles, as well as of the smaller Local Group galaxies LMC and M33,
marked by open circles. The directions of the normals of the fitted plane of all satellites of the
MW and M31 within their virial radii are marked by squares and triangles, respectively (MI data:
triangles pointing downwards, KG data: triangles pointing upwards). The dark square marks the
direction of the normal of the Milky Way DoS that is its probable orbital pole as shown later in
Section 3.2

the direction of the supergalactic plane, i.e. from the direction of the medium-scale (a few
Mpc) matter distribution, then the normals of the discs-of-satellites should be close to the
supergalactic pole. The orientation of the Milky Way DoS and the mutual miss-alignment
of the discs-of-satellites contradict this notion.

The highly-inclined orientation of the stellar disc of the Milky Way relative to the
supergalactic plane can be understood either as being a result of tidal torquing (Navarro
et al. 2004) or resulting from the perpendicular collapse of matter onto the supergalactic
plane (Doroshkevich 1973; see also Hu et al. 1998). If tidal torquing is responsible for
the orientation of the Galactic disc, this begs the question as to why the other discs were
not affected, and how tidal torquing affects the discs-of-satellites – one is highly inclined,
the other is not. Alternatively, it would appear more natural or intuitive to understand a
disc-of-satellites as being the result of stochastically occurring mergers which leave popu-
lations of related tidal dwarf galaxies. Such populations would remain visible for highly
inclined events relative to the host discs, because populations of TDGs in low-inclination
orbits would precess apart and possibly end up merging altogether with their host discs
(Peñarrubia et al. 2002) or being more quickly destroyed than on polar orbits.

It appears implausible that for both systems the disc-of-satellites is present due to ob-
servational biases only. That would be a very strange coincidence. Rather, these findings
strengthen the case that the discs-of-satellites for both, the Milky Way and Andromeda, are
signs of a spatial correlation of the satellite galaxies.
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Chapter 3

Analysis of orbital properties of
satellite galaxies

To constrain the possible origin of the satellite galaxies in the Local Group that were found
to be highly flattened for the Milky Way as we showed in the last Chapter, we now study
their orbital properties. Based on spatial alignments, Kunkel & Demers (1976), Lynden-
Bell (1976), and Lynden-Bell (1982) postulated that some of the dSph galaxies, along with
the Magellanic clouds and several globular clusters (GC), belong to one or two streams
of co-moving objects. Incorporating radial velocity measurements, Lynden-Bell & Lynden-
Bell (1995) further constrained possible streams of satellite galaxies and GCs: they used
the great circles of possible locations of angular momenta to identify possible “ghostly
streams”. Palma et al. (2002) extended the analysis of these so called “polar-paths” by
using available proper motion measurements to confine the location of directions of the
angular momenta of satellite galaxies to arc-segments of the polar-paths.

Meanwhile further proper motion measurements, especially for more distant Milky Way
dSph companions, have become available. In a series of papers Piatek et al. (2003, 2005,
2006, 2007) measured the proper motions of the dwarf spheroidal galaxies Carina, Ursa
Minor, Sculptor, and Fornax, respectively, with the Hubble Space Telescope (HST). Here we
follow Palma et al.: we incorporate the Piatek et al. measurements to construct new arc-
segments of polar-paths for the Milky Way satellite galaxies (§3.2.1). The data is compared
to a recent set of CDM simulated luminous subhaloes in MW-like host-haloes that were
kindly provided by Noam Libeskind, also analysing their spatial properties (§3.2.2). For
both, observations and CDM simulations, we construct a “pole-distance” distribution that
is statistically analysed (§3.2.3).

In the second part of this Chapter (§3.3.1), we outline a method how to set restrictions
on the possible orbital poles of Andromeda satellites. This information is used to search
for possible streams of M31 satellite galaxies and allows us to confine a subsample of them
that might share similar orbital properties (§3.3.2, see also §2.3.2).
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3.1 Methods for the analysis of orbital properties

3.1.1 Galactocentric velocity vectors and their covariances

In astrometry, velocity measurements are usually expressed as proper motion in right as-
cension corrected for the declination, µα∗ = µα cos δ, and proper motion in declination,
µδ, in units of arcsec yr−1 or mas yr−1. Heliocentric radial velocities are usually given in
units of km s−1. The cartesian space-velocity components (in units of km s−1) in Galactic
coordinates are given by the equation

v =

U
V
W

 = B

 vr

(k r) µα∗
(k r) µδ

 , (3.1)

where k = 4.74057, the equivalent of one astronomical unit in one siderial year in km s−1.
Distances are given in units of 1/′′ = pc, and proper motion in units of ′′ yr−1. U is the
velocity component in the direction of the Galactic centre, V the component in the direction
of Galactic rotation, and W is the velocity towards the Northern Galactic Pole. The rotation
matrix B is given by

B = Re 7→gRrpq (3.2)

where Rrpq is the coordinate triad (Murray 1983) for coordinates (α, δ) as given in Equa-
tion (2.22), and Re 7→g is the transformation matrix from equatorial to Galactic coordinates

Re 7→g =

cos θ0 sin θ0 0
sin θ0 − cos θ0 0

0 0 1

− sin δN 0 cos δN

0 1 0
cos δN 0 sin δN

cos αN sin αN 0
sin αN − cos αN 0

0 0 1

 (3.3)

(c.f. Johnson & Soderblom 1987). αN = 192.85948◦ and δN = 27.12825◦ are the equatorial
coordinates of the North Galactic Pole, and θ0 = 122.93192◦ is the position angle of the
North Celestial Pole relative to the great circle passing through the North Galactic Pole and
zero Galactic latitude (ESA 1997, Vol. 1, Sect. 1.5).

The derived velocity components are given in heliocentric coordinates, i.e. in the rest-
frame of the Sun, and need to be corrected for the motion of the Sun in the Galaxy to get
velocities in the rest-frame of the Galaxy. This is done by correcting for the circular motion
of the local standard of rest (LSR) about the Galactic Centre using the IAU recommended
value of V0 = 220 km s−1 circular velocity (Kerr & Lynden-Bell 1986), as well as for the
peculiar motion of the Sun with respect to the LSR using the velocity components as given
by Dehnen & Binney (1998).

In the simplest case we calculate the uncertainties in the velocity components in Galactic
coordinates according to the error propagation theorem, assuming that the measurements
of the distance, the radial velocity, and the two proper motion components are independent:σ2

U
σ2

V
σ2

W

 = C

 σ2
vr

k2 [(rσµα∗)2 + (µα∗σr)2]
k2 [(rσµδ

)2 + (µδσr)2]
+ 2µα∗µδk2σ2

r

b12 b13

b22 b23

b32 b33

 . (3.4)
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bi j are the components of the matrix B, and the elements of the matrix C are the squares
of the elements of the matrix B, i.e. cij = b2

ij. The cross term arises since the velocity
components V and W not only depend on the measured proper motion, but also on the
distance r. Equation (3.4) is equivalent to equation (2) as given in Johnson & Soderblom
(1987), except that we are using distances in parsec instead of parallaxes used by them.

The variances σ of the component U, V and W are, however, not uncorrelated. We
calculate the Jacobi matrix:

J =


∂U
∂vr

∂U
∂µα∗

∂U
∂µδ

∂U
∂r

∂V
∂vr

∂V
∂µα∗

∂V
∂µδ

∂V
∂r

∂W
∂vr

∂W
∂µα∗

∂W
∂µδ

∂W
∂r


=

b11 b12(kr) b13(kr) k(b12µα∗ + b13µδ)
b21 b22(kr) b23(kr) k(b22µα∗ + b23µδ)
b31 b32(kr) b33(kr) k(b32µα∗ + b33µδ)

 (3.5)

and find for the correlation matrix CUVW :

CUVW = J Cvrµαµδr JT , (3.6)

where the covariance matrix Cvrµαµδr is given by:

Cvrµαµδr =


σ2

vr
0 0 0

0 σ2
µα∗ 0 0

0 0 σ2
µδ

0
0 0 0 σ2

r

 . (3.7)

With equation (3.6) we find that the diagonal elements of CUVW are the variances as given
in Equation (3.4). We give as an example the covariance matrix for the measured proper
motion of the Sagittarius dwarf galaxy:

CUVW =

 48.0 −118.8 144.0
−118.8 374.3 −325.2
144.0 −325.2 444.2

 (3.8)

The covariance matrix, CUVW , is not affected by the transformation from heliocentric
space velocities to galactocentric space velocities as long as the circular velocity of the LSR
and the peculiar motion of the Sun with respect to the LSR have no, or negligibly small,
uncertainties compared to the uncertainties of the velocity itself.

Having both, the covariance matrices of the galactocentric position vector r (cf. 2.1.1) and
the velocity vector v, one can in principal calculate the uncertainties of the galactocentric
angular momentum vector l = r × v. As we will describe later in Sect. 3.2.1, we were only
interested in the uncertainties of the direction of the angular momenta projected onto the
Galactic sky. For this we only considered the proper-motion uncertainties (Appendix A)
and derived the projected uncertainties geometrically for simplicity. This projection results
in arc-segments on the Galactic sky (compare to Palma et al. 2002). If we had also included
uncertainties in the positional vectors, the projection would have resulted in a banana-
shaped, very narrow region aligned with the arc-segments.
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3.2 Orbital properties of the Milky Way satellite galaxies

Figure 3.1: An image of the sky in the direction of the Sculptor dSph, taken from Piatek et al. (2006,
their figure 1), the horizontal axis showing the direction of right-ascension, the vertical axis the
direction of declination. The dashed ellipse indicates the core radius of Sculptor. The two squares
mark the fields observed with the Hubble Space Telescope to determine the proper motion of the
Sculptor dwarf. We over-plot two arrows, indicating for each field individually the direction and
magnitude of the derived proper motion in arbitrary units.

3.2.1 The Milky Way satellite galaxies

A listing of available proper motion measurements for the satellite galaxies of the Milky
Way was collected from the literature, and is given in Table 3.1. We do not give a com-
plete list of all available measurements for the LMC and SMC here, but only the most
recent ones. The directions of the angular momenta are not significantly affected by this
choice. Multiple measurements of the dSph satellite galaxies are presented where avail-
able, however each individual measurement is less precise than the most recent LMC/SMC
values. We also indicate whether proper motions were determined using ground based
techniques (typically based on old photographic plates with long baselines) or using the
Hubble Space Telescope (HST). The published proper motion value for Carina (Piatek et al.
2003) was derived without the advanced charge transfer inefficiency (CTI) correction for the
STIS camera (Bristow et al. 2005; see also Reif et al. 2004 for an analysis of the time depen-
dentce of the charge transfer efficiency under outer space conditions). Bristow et al. (2005)
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Table 3.1: Absolute proper motions of the satellite galaxies of the Milky Way used for the analysis.
Positional information of the satellites are provided in Table 2.1. The forth column indicates whether
values were measured using ground based telescopes (GND) or the HST. Weighted mean values
(MEAN) are indicated as well.

Name µα cos δ µδ Reference(
mas yr−1) (

mas yr−1)
Sgr −2.65± 0.08 −0.88± 0.08 GND Ibata et al. (1997)

−2.83± 0.20 −1.33± 0.20 GND Dinescu et al. (2005)
LMC +2.03± 0.08 +0.44± 0.05 HST Kallivayalil et al. (2006b)
SMC +1.16± 0.18 −1.17± 0.18 HST Kallivayalil et al. (2006a)
UMi +0.5± 0.8 +1.2± 0.5 GND Scholz & Irwin (1994)

+0.056± 0.078 +0.074± 0.099 GND Schweitzer et al. (1997)
−0.50± 0.17 +0.22± 0.16 HST Piatek et al. (2005)
−0.04± 0.07 0.13± 0.07 MEAN

Scu +0.72± 0.22 −0.06± 0.25 GND Schweitzer et al. (1995)
+0.09± 0.13 +0.02± 0.13 HST Piatek et al. (2006)
+0.25± 0.11 0.00± 0.12 MEAN

Dra +0.6± 0.4 +1.1± 0.5 GND Scholz & Irwin (1994)
Car (+0.22± 0.09 +0.15± 0.09) HST Piatek et al. (2003)(i)

+0.22± 0.13 +0.24± 0.11 HST Piatek (2007, priv. comm)
For +0.59± 0.16 −0.15± 0.16 GND Dinescu et al. (2004)

+0.476± 0.046 −0.36± 0.041 HST Piatek et al. (2007)
+0.485± 0.044 −0.354± 0.028 MEAN

(i) Proper motion measurement without advanced CTI correction for HST/STIS.
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Figure 3.2: Orbital poles of Milky Way satellite galaxies as derived from their measured proper
motion and radial velocities. The directions are shown in an Aitoff projection in galactocentric
coordinates. The solid lines give the projected arc-segments derived from the uncertainties of the
measured proper motions. Different symbols mark data derived by different methods: circles HST,
diamonds ground-based measurements, and hexagons the weighted mean values from Table 3.1.
The star symbol marks the mean spherical direction l of the directions of the angular momenta
of the satellites excluding Sagittarius and Sculptor, and the solid loop gives the spherical standard
deviation of this sample. The dashed loops show regions with 15◦ and 30◦ from the direction of the
normal to the plane fitted to the 11 classical Milky Way satellites (the DoS pole). Note the proximity
of l to the normal of the DoS.
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note that their advanced correction is not applicable to the Wide-Field Planetary Camera 2
(WFPC2) aboard the Hubble Space Telescope. Since this instrument is on orbit three years
longer than the STIS camera, results derived with WFPC2 might even be more affected by
a suboptimal CTI correction. A re-derived proper motion value for Carina is given in the
table. For the satellites Ursa Minor, Sculptor, and Fornax a weighted mean proper motion
using all available measurements was calculated, taking into account all independent sin-
gle measurements with HST. These mean proper motion values were used in the following
analysis.

In Figure 3.1 an image of the sky in the direction of Sculptor is shown as an illustration
for HST-derived proper motions. The two fields used to determine the proper motion with
HST are marked by squares (Piatek et al. 2006), and we indicate the directions and magni-
tudes of the proper motion derived in each of the two fields independently. As can be seen,
while the µα∗ components are approximately of the same order for both measurements, the
µδ components deviate and point to opposite directions on the sky. The fields are also very
small compared to the total extent of Sculptor. All this suggests that the systematic errors,
which are typically not given, might be of the same order as the formal measurement un-
certainties. Nevertheless, this is the best data we have at hand at the current stage until
results from the SIM(a) of Gaia

(b) missions become available.
Heliocentric space velocities were calculated (§3.1.1) from the proper motions and radial

velocities from the literature, and corrected for the circular motion of the local standard of
rest (LSR) about the Galactic Centre using the IAU recommended value of V0 = 220 km s−1

circular velocity (Kerr & Lynden-Bell 1986), as well as for the peculiar motion of the Sun
with respect to the LSR using the velocity components as given by Dehnen & Binney (1998).
Positions of the satellite galaxies were transformed to a galactocentric coordinate system
(see Table 2.1). Having galactocentric positions and velocities, the directions of the angular
momenta or “orbital poles” of the satellite galaxies of the Milky Way were calculated.

The given uncertainties of the proper motion measurements were used to calculate un-
certainties of the derived angular momenta (§3.1.1). We did not, however, incorporate
uncertainties of any other measured quantity: distance and position of satellite galaxies,
their radial velocities, the distance of the Sun from the Galactic centre, the circular velocity
of the LSR, and the peculiar motion with respect to the LSR. All these uncertainties are
typically negligible since they do not contribute much to the total uncertainty of the direc-
tions of the angular momenta (cf. Appendix A). It is though very important to perform a
thorough error propagation analysis using the full covariance matrix as done here. Finally,
the uncertainties in the direction of the angular momenta were projected onto a unit sphere
to derive the arc-segments representing the projected 1σ uncertainties of the directions of
the angular momenta (see also Palma et al. 2002, and figure 3 therein).

The different proper motion measurements from the literature given in Table 3.1 some-
times differ by more than 1σ. This is an inevitable weakness of currently available data.
Most orbital poles are however not overly affected. Sagittarius is on a perpendicular orbit
to the DoS for both µδ values given in the Table. Likewise, Sculptor is on a counter-rotating
orbit for both measurements, ground based and HST, respectively. Only UMi’s orbital pole

(a)http://planetquest.jpl.nasa.gov/SIM/
(b)http://sci.esa.int/gaia/
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changes when incorporating the independent data, albeit then with very large projected
uncertainties. If we take the weighted values for the two HST fields only, its pole-distance
is 87.3◦ +31.2◦

−31.0◦ , compared to 37.1◦ +8.7◦
−7.7◦ for the mean weighted proper motion of all mea-

surements. Note that the arc-segments are projected uncertainties. While the given proper
motion uncertainty for Car is about three times smaller compared to Dra, the projected
uncertainty is actually two times larger. Therefore, a large proper motion uncertainty does
not necessarily result in a large uncertainty of the location of the orbital pole.

The orbital poles of the Milky Way’s satellites and their corresponding arc-segments
are shown in Fig. 3.2 by the filled symbols and solid lines, respectively. Different symbols
mark data derived from proper motions measured with HST (bluish circles), ground based
instruments (greenish diamonds), or mean weighted proper motions from different data
(reddish hexagons). The dashed loops show regions with 15◦ and 30◦ distance from the
direction of the fitted pole of the DoS for the eleven classical Milky Way satellite galaxies
(lMW = 157.3◦, bMW = −12.7◦; Sect. 2.2). From this figure one can directly identify two
satellite galaxies which cannot belong to a possible common stream of satellite galaxies:
Sagittarius and Sculptor, both having also been excluded by Palma et al. (2002) as possible
stream members. Sagittarius is very close to the Galactic disc and may have precessed suffi-
ciently in the non-spherical potential induced by the Galactic disc, thus being far away from
the direction of its initial orbit. Sculptor, however, is more distant and unlikely to be affected
much by precession. Compared to the other satellites Sculptor is on a counter-rotating but
nearly co-planar orbit about the Milky Way. The star symbol in Fig. 3.2 marks the mean
spherical direction l of the angular momenta of the other possible stream members: LMC,
SMC, UMi, Dra, Car, and For, (lMW = 177.0◦, bMW = −9.4◦). The solid loop gives the region
with a distance corresponding to the spherical standard distance (Eqn. 2.14), ∆sph = 35.4◦,
from the mean spherical direction of the sample. The coincidence of l and the normal of
the DoS provides strong evidence for rotational support.

3.2.2 CDM simulations

In the recent search for an explanation of the DoS in terms of CDM substructures, many
teams have proposed solutions with varying degrees of means. One of the most recent
works claims to be able to arrive at the DoS for all MW-like host haloes (Libeskind et al.
2005). For comparison to the Milky Way satellites this set of simulated systems of luminous
satellite haloes in a MW-type dark matter host halo is analysed. The simulations and galaxy
formation models are described in that work and references therein. In short, selected
host haloes in a large cosmological dark matter simulation were re-simulated with high-
resolution, and galaxy formation was treated by a semi-analytical galaxy formation model
(Cole et al. 2000, as extended by Benson et al. 2002). Our data differs slightly from the
data used in Libeskind et al. due to an improved semi-analytic galaxy formation model.
We analyse a set of eleven dark matter subhaloes containing the most luminous galaxies in
each of the six simulated MW-type host haloes. This is a somewhat artificial cut and was
chosen by Libeskind et al. (2005) to match the number of the “classical satellite galaxies”
of the Milky Way. Only final positions and motions of the subhaloes within their hosts are
used for the analysis. It is, however, neither sure that the host galaxy is a disc galaxy, nor
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gh1 gh2

gh3 gh6

gh7 gh10

Figure 3.3: An Aitoff projection of the locations of the angular momentum vectors from the six
simulations. The projection is centred on the potential rotational axis – the normal of the fitted
plane – if the formally fitted discs-of-satellites were rotationally supported for the simulated data
(see text for details). The dashed loops give the same regions as in Fig. 3.2, the star symbol indicates
the spherical mean direction of the angular momenta. Note that this is in no case closer than ≈ 30◦
to the normal of the fitted planes.
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Table 3.2: Shape parameter γ and strength parameter ζ of the distribution of directions of normal
vectors, fitted to 10 000 bootstrap samples of the simulated CDM satellite galaxies. The first column
gives an identifier of the simulated haloes. For comparison, the values for the Milky Way are given
in the last row.

shape parameter γ strength parameter ζ

gh1 0.5 3.2
gh2 2.3 4.2
gh3 0.3 3.5
gh6 1.2 3.0
gh7 3.9 2.6
gh10 1.5 2.8
MW 3.85 4.29

how this would be oriented with respect to the host halo. To be a system comparable to
the Milky Way (or Andromeda) both attributes have to be postulated to match with those
of the Milky Way.

In a first step the bootstrapping analysis as described in Sect. 2.1.3 was applied to
the data, to compare the properties of the spatial distributions. The resulting shape- and
strength-parameters are listed in Table 3.2. None of the simulated sets has as high values
as the Milky Way data (γ = 3.85, ζ = 4.29): The simulation gh7 has a slightly larger shape
parameter than the Milky Way data, but the strength parameter is significantly smaller,
which means that the distribution of directions of normals fitted to the bootstrapped data
is significantly more widespread than found for the Milky Way. Simulation gh2 has a
similar strength parameter but a significantly smaller shape parameter; the bootstrapped
normals are less circular or show a multi-modal distribution. The other two data-sets with
clustered distributions, gh6 and gh10, are smaller in both parameters, while gh1 and gh3
have significantly smaller shape parameters. The shape- and strength parameter were also
compared to the random isotropic sample as described in Section 2.4. At a significance
level of (1− α) = 99% we can not exclude the hypothesis that the individual samples are
drawn from a spherical isotropic parent distribution. Thus none of the simulated Milky
Way galaxy haloes appears to reproduce both the shape and strength parameters of the
Milky Way’s DoS, but are consistent with being randomly drawn instead.

To gain further insights we compare the distributions of the orbital poles of the satellites.
Figure 3.3 shows the directions of the angular momenta of all six simulations. In contrast
to Fig. 3.2 for the Milky Way data, the coordinate system can be arbitrarily chosen, since
no galactic disc is comprised in the simulated data, which would naturally define one axis,
the polar axis, of the coordinate system. Therefore a coordinate system has been chosen
such that its axes are aligned with the formally fitted spheroid of the spatial distribution
of the simulated satellite galaxies. The projection is chosen such that (i) it is centred on
the normal, n, of the fitted disc - which would be the mean rotational axis if the fitted
plane was rotationally supported - and (ii) it was chosen such that the plot is centred on
the hemisphere that contains the mean spherical direction of the orbital poles l, which is
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marked by a star symbol. So the plots are centred on the direction

nl = sgn(n · l) n (3.9)

where sgn(x) = x |x|−1.
The choice of the projection for Fig. 3.3 makes the plots also easily comparable with

Fig. 3.2: If the fitted plane is rotationally supported all, or at least most, angular momenta
should lie close to the pole of the fitted plane. For comparison the same regions as in
Fig. 3.2 are marked by the dashed loops. A strong clustering in or close to this region is not
present in the simulations, and the spherical mean direction, even for selected sub-samples,
is in no case close to the plane’s pole.

For the simulation gh1 there are at least five angular momenta within or very close to
the 30◦ region about the fitted pole. Closer inspection reveals, however, that this sample
consists of two spatially distinct sub-groups as is shown in Figure 3.4. Four of the values
close to the pole belong to one sub-group of subhaloes at about 200 kpc from the host’s
centre that have an approximately common stream motion. This motion may be interpreted
as an infalling or bypassing group of subhaloes that has not yet disbanded, a mechanism
that has been recently addressed by Li & Helmi (2008). The remaining seven subhaloes are
all found very close to the centre of the host halo in a more or less spherical distribution,
and the directions of their angular momenta are widely spread. Another interesting case
is the simulation gh3: while there is no clustering of directions of angular momenta about
the normal of the fitted disc, we do find an aggregation of angular momenta about 75◦

off, almost perfectly lined up like beads on a string of about 60◦ length. The fact that
these angular momenta are not pointing in the same direction as the normal of their fitted
disc-of-satellites indicates that their DoS is either transient or it may indicate tumbling.
Closer inspection (Fig. 3.4) in fact shows this population to be a relatively thin tube and
not a disc, as is also evident from analysis of the shape- and strength-parameters. This
system is therefore not a model of the Milky Way satellites. Additionally the observations
of the proper motions of the Milky Way’s satellites presented in Fig. 3.2 rule out a tumbling
DoS. Nevertheless, this system shows that a clustering of the angular momenta of satellite
galaxies, while surely not a generic feature of CDM simulations, can appear within the
CDM paradigm.

3.2.3 The Pole-distance distribution

For the Milky Way, as well as for the simulated data, a reference direction nl (Eqn. 3.9) is
given. This would be the approximate orbital pole under the hypothesis that the disc-like
structure is rotationally supported, a hypothesis borne out for the Milky Way as we have
seen. We construct a pole-distance distribution (PDD) by measuring the angular distances
of the orbital poles from this reference direction. If the disc is rotationally supported, a
significant excess of small pole-distances over a random distribution is expected.

In Fig. 3.5 the cumulative pole-distance distribution for the measured angular momenta
of the Milky Way is plotted. For the simulations we show the sum of all individual pole-
distance distributions. The cumulative pole-distance function expected for a random dis-
tribution,

DPDD(φ) =
1
2
(1− cos φ) , 0 < φ < π , (3.10)
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Figure 3.4: Detailed plots of the simulations gh1 (left) and gh3 (right). The top panels show an Aitoff
projection of the directions of the angular momentum vectors as in Fig. 3.3. The bottom panels show
the three-dimensional distribution of the subhaloes, in the left an edge-on view of the fitted disc,
and in the right panel a face-on view, respectively. Different symbols are chosen to identify data
in both projections. For the simulation gh1 (left), the group of subhaloes at ≈ 200 kpc is clearly
distinct from the rest of the subhaloes, and its common group motion is reflected by the clustering
of angular momenta in the orbital-pole plot. For the simulation gh3 (right), a star-symbol now
shows the mean spherical direction of those angular momenta marked by the dots, and the solid
loop indicates the spherical standard distance of this sample. In the lower panels it can be seen that
a disc is not present, but rather a tube-like structure that apparently is transient.
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Figure 3.5: Cumulative distribution function of the pole-distance function determined for the Milky
Way (red circles) and the CDM simulated (blue circles) satellite galaxies. The continuous curve gives
the expected measured PDD for 8 (MW), 11 (CDM), as well as for an infinite number of random
directions as given by Equation (3.11).
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is shown by the dotted line. Eqn. (3.10) can be derived analytically: given a fixed reference
direction on a unit-sphere, the probability to find a random direction within an angular
separation ≤ φ from that direction is given by the surface area of a spherical cap with
opening angle φ divided by the total surface area of the unitsphere: 2π(1− cos φ)/(4π).

Equation (3.10) gives, however, not the true parent random distribution for a measured
PDD, since the measured PDD is biased: we have chosen that direction of the normal of
the fitted plane as the reference pole that is the presumable rotation-pole (§3.2.1, §3.2.2).
Therefore a biased PDD was constructed by a Monte-Carlo method: N random directions
are created and the mean spherical direction r of these is determined. As the reference
directions the x, y, and z axes are chosen. The pole-distance is measured from +x if
the x-component of r is positive, from −x otherwise. The same is done for the y and
z components. The cumulative biased random pole-distance distribution, created by the
Monte-Carlo method, can be fitted(c) by

DPDD(φ, N) =
1
2

(1− cos φ) +
0.35√

N
sin2 φ (3.11)

for N ≥ 5, 0 < φ < π (see Figure 3.6), and the probability function is given by

PPDD(φ, N) =
1
2

sin φ +
0.7√

N
sin φ cos φ . (3.12)

Only in the limiting case, limN→∞, Eqn. (3.11) goes over into DPDD(φ) = 1
2 (1− cos φ). The

cumulative biased random PDD is shown in Fig. 3.5 by solid curves for N = 11 (CDM) and
N = 8 (MW), respectively.

The PDDs were tested against the biased random pole-distance distribution using a
Kuiper statistic V and a Watson statistic U2 (Stephens 1974). Both statistics were originally
used for distributions on a circle and are thus useable for the PDD. For both statistics and
at a significance level (1− α) = 99% we cannot exclude that the PDD for each individual
CDM simulated subhalo system is drawn from a random biased PDD (N = 11), nor can we
exclude that the co-added PDD for all simulated systems is drawn from a random biased
PDD. The null-hypothesis can also not be excluded for the Milky Way (N = 8), but given the
very large uncertainties and possible systematics this is not a very strong restriction. Within
the uncertainties of the measurements we find the directions of the angular momenta of Dra
and Car close to the spherical mean direction (< ∆sph). If we take that case, we can exclude
at a very high significance level (1− α) = 99% that the Milky Way PDD is drawn from a
random biased PDD.

The CDM simulated systems show an excess of pole-distances at ∼ 90◦, which implies
that the fitted disc-like structure tends to disperse. In contrast, we do find an over-density
of small pole-distances for the Milky Way, suggesting that the Milky Way DoS is rotationally
supported. Note also that we did not choose a reference direction that minimises the pole-
distances for the Milky Way. If we had chosen the spherical mean direction, the over-density
of small pole-distances would have been more pronounced.

(c)The nice and simple expression found in Eqn. (3.11) suggests that there might also be an analytic way to
derive this formula, but we did not find the right approach to solve this yet.
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Figure 3.6: In the top panel the differences between a biased PDD constructed with a Monte-Carlo
method for 1 000 samplings, DMC(φ, N), and the unbiased PDD, DPDD(φ), as given in Eqn. (3.10)
for different numbers of random directions (N=3, 5, 10) are shown. The dashed lines show the fitted
difference-function of the form a · sin2 φ. For N < 5 we could, in principle, also derive reasonable
fits by simultaneously also fitting the exponent, b, of the term a · sinb φ. For N ≥ 5 the exponent
is basically constant b = 2. In the bottom panel the 1/

√
N behaviour of the fitting parameter a is

shown for a fixed value b = 2, N ≥ 5, in black for the Monte-Carlo simulations and in red for the
fitting function.
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3.3 Orbital properties of Andromeda satellite galaxies

For the Milky Way, proper motions of some of the satellite galaxies are available – for the
Magellanic Clouds and Sagittarius even with a relatively high accuracy – which makes a
detailed study of the orbital properties of the satellites possible. When going beyond the
Milky Way system to Andromeda, the situation to study orbital properties is much worse.
Until now, only for two Andromeda companion galaxies proper motion measurements are
available (Brunthaler et al. 2005, 2007). Even having proper motion values at hand, one has
to make some assumptions on the relative motion of Andromeda itself with respect to the
Milky Way, since this is not known, to get information on the relative motion of a satellite
with respect to its host. In the following section we describe, to our knowledge for the first
time, a method how to set some constraints on the possible orbits of Andromeda satellite
galaxies.

3.3.1 Restricted polar paths

Based on geometrical arguments, Lynden-Bell & Lynden-Bell (1995) constructed a diagram
of so-called ‘polar paths’ for the Milky Way satellite galaxies and globular clusters. The
direction of every possible pole of a satellite orbit must be located at a right angle to its
direction from the Galactic Centre. Regions in the sky where three or more polar paths
(nearly) intersect define the poles of possible streams of satellites. Palma et al. (2002) used
proper motion measurements to restrict the possible orbits, which resulted in arc segments
of possible poles rather than great circles, as is also done in Sect. 3.2.1. McConnachie &
Irwin (2006b) applied the technique of constructing polar paths and used the available
three-dimensional spatial data for the Andromeda satellites to construct polar paths for
Andromeda. They identified several possible stream candidates of satellite galaxies.

The observer’s view of the Andromeda satellite system is very different from that of the
Milky Way. While the MW satellites are basically seen from the Galactic Centre, the M31
satellite system is almost seen from infinity. Together with the spatial information relative to
Andromeda it is therefore possible to decompose the observed line-of-sight (LOS) velocities
into radial and perpendicular components relative to Andromeda. These are, however, only
lower limits of their total velocities since only the LOS velocities can be measured.

Fig. 3.7 illustrates how the measured line-of-sight velocity of an Andromeda satellite
breaks up into radial and perpendicular components relative to M31. The top panel shows
the measured heliocentric velocity vectors vLOS and vLOS(M31). In the bottom panel the
same velocity vectors as in the top panel are shown but now corrected for the LOS velocity
of M31, i.e., in the rest-frame of Andromeda, assuming no considerable perpendicular
velocity (proper motion) for Andromeda (Kahn & Woltjer 1959; Einasto & Lynden-Bell
1982), although there are arguments which allow for a significant proper motion component
of M31 (Loeb et al. 2005; van der Marel & Guhathakurta 2007). The velocity component
vT,LOS perpendicular to the line-of-sight of a satellite galaxy is unknown. Therefore a whole
family of velocity vectors is possible for the satellite, illustrated by dotted vectors.

The transformation of velocity vectors into the Andromeda-centric rest-frame is calcu-
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Figure 3.7: Geometrical illustration how to calculate radial and perpendicular velocity components
of the measured line-of-sight (LOS) velocity of an Andromeda satellite. In the top panel we show the
measured vectors in the rest-frame of the Sun. The velocity perpendicular to the line-of-sight, vT,LOS,
is unknown, i.e. there is a family of possible total velocity vectors, indicated by dotted arrows. In the
bottom panel we show the velocities corrected for the LOS velocity of Andromeda. The corrected
LOS velocity of a satellite can be split into a radial component vr and a perpendicular component
vt relative to M31.

lated by taking the time derivative of Eqn. (2.21):

vM31 = RM31 (v− v(M31)) . (3.13)

Upon setting v(M31) ≡ vLOS(M31) the line-of-sight velocity vectors of the satellites are cal-
culated in the Andromeda-centric coordinate system. The LOS velocity vector of the satel-
lite can now be split into a radial and a perpendicular component, vr and vt, respectively.
The values of the radial and perpendicular velocity components relative to Andromeda are
given in Table 2.5 (§2.3) for the M31 satellites, negative radial velocity meaning that the
component is pointing towards Andromeda, positive that it is pointing away.

This information is used next to set some limits on the possible poles of the orbits
of the M31 satellites. In the example shown in Fig. 3.7 without an additional velocity
component perpendicular to the line-of-sight, the sense of rotation about M31 would be
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counterclockwise (within the MW–M31–satellite plane as shown). Only a large enough
velocity component v1 perpendicular to the LOS and within the MW–M31–satellite plane
can reverse the sense of rotation. Any component vT,LOS perpendicular to the MW–M31–
satellite plane cannot reverse the sense of rotation, but can only displace the direction of
the angular momentum vector along the polar path by a maximum ±90◦, for vT,LOS = ∞,
from the direction derived assuming no perpendicular velocity.

We have to make some additional assumptions about the maximum allowed velocities
of the satellites. We assume the satellites are bound to a spherical, isothermal dark matter
halo of M31 with circular velocity vc ≈ 250 km s−1, truncated at rc = 250 kpc, which
corresponds to a total mass of the Andromda halo of 3.68 · 1012 M�. The escape velocity is
then given by(d)

ve(r) =

{ √
2 vc
√

1 + ln rc − ln r : r < rc√
2 vc
√

rc/r : r ≥ rc
. (3.14)

A velocity component perpendicular to the LOS in the plane of the MW, M31, and the
satellite can either contribute to the perpendicular velocity (giving a total velocity vector v2)
or counteract (v1). We calculate the maximum possible velocity vectors v1,max and v2,max

in the M31 rest-frame with absolute values of the velocities |v1,max| = |v2,max| = ve(rs)
(Eqn. 3.14), where rs is the distance of a satellite from the centre of M31. The direction of
the orbit of a satellite can now be restricted if the perpendicular components of v1 and v2

both point in the same direction, i.e. if

sv =
v1,max · vt

|v1,max||vt|
v2,max · vt

|v2,max||vt| ≡ +1 (3.15)

where ‘·’ denotes the scalar product of vectors. This allows us the restriction of the polar
paths to at least arcs of 180◦ which we call “restricted polar paths” (RPPs), i.e. the orienta-
tion of the orbit about M31 can be inferred.

3.3.2 Application of restricted polar paths

Restricted polar paths are calculated using heliocentric radial velocities as given in Mc-
Connachie & Irwin (2006b, their table 1) for both data-sets. In Table 2.5 we mark the data
for those satellites with an asterisk for which we can restrict the poles by the RPP method
described above. Only for And VI the poles can be restricted for both data-sets. The polar
paths and the resulting RPPs are plotted in Fig. 3.8 for the MI data and in Fig. 3.9 for the
KG data (see Sect. 2.3 for details about the two data-sets). Data for the different satellites
are plotted in different colours. The polar paths for those satellites which were used for
fitting the plane in Sect. 2.3 are plotted with solid lines (satellites 1 – 12 in Table 2.5), for
satellites not used in the fitting with dashed lines. The position of the angular momentum
vectors of M33 and IC 10 as derived from the measured radial velocities and proper mo-
tions (Brunthaler et al. 2005, 2007) are marked by a star, assuming no proper motion for
Andromeda. A considerable proper motion component of M31 would shift the direction of
the angular momentum vector of M33 and IC 10 along their polar path in Figs. 3.8 and 3.9

(d)Note that McConnachie et al. (2005) used ve =
√

2vc in their figure 2 as an approximation for the escape
velocity of an isothermal sphere.
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Figure 3.8: Polar paths and restricted polar paths (marked with thicker lines) of the Andromeda
satellite galaxies for the MI data-set. An overall view is shown using an Aitoff-projection. Solid
paths are for the innermost dozen satellites entering the plane-fitting (§ 2.3) while dashed paths are
the polar paths for those satellites not used. The direction of the angular momentum vectors of M33
and IC 10, as derived from measured radial velocities and proper motions, is marked by the star
symbols. Regions of 15◦ and 30◦ distance from the fitted pole (Table 2.2, entry ‘ALS’) are indicated
by the closed solid loops.
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Figure 3.9: As Fig. 3.8, for the KG data-set.
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since the measured velocity of M33 is transformed to the rest-frame of M31. In addition
we plot loops with distances of 15◦ and 30◦ from the pole of the fitted plane using the ALS
method for all satellites within the approximate virial radius of M31 (§2.3). Since the direc-
tion of the normal is arbitrary for the fitted plane, two regions appear on opposite sides of
the sphere.

There is a strong clustering of intersection points of polar paths near the pole of the
fitted plane, both in the northern and southern hemisphere. Those satellites whose polar
paths intersect there are candidates for kinematic streams. In particular these are: NGC 205,
And I, NGC 147, NGC 185, IC 10, LGS 3, and IC 1613 (though the latter was not included
in fitting the plane) within 15◦ from the pole for both data-sets. Within the 30◦ region, we
additionally identify M32 and And II. For the MI data, And II is also found within the
15◦ region. Both data-sets, MI and KG, thus suggest the same satellites to be members of
a possible stream, based on the intersection of their possible kinematical poles coinciding
with the direction of the normal to the fitted plane. If this clustering is real, the satellite
disc would be rotationally supported. It is this sample of nine galaxies, consisting of M32,
NGC 205, And I, And II, NGC 147, NGC 185, IC 10, LGS 3, and IC 1613, that was used
in Section 2.3.2 to analyse the spatial properties of the kinematically motivated subsample
of Andromeda satellite galaxies. These satellites are exactly those which McConnachie &
Irwin (2006b) identified as members of the possible candidate streams, namely iii, iv, and v
in their paper. In total they identified five further possible streams. However, the distance
uncertainties for Andromeda and its satellite galaxies are so large that an identification of
possible streams based on the intersection-points alone may not be sufficient. With the
additional argument of a spatially plane-like distributed satellite sample a stronger hint for
possible streams emerges.

And VI, which was excluded from the plane fitting as an outlier, is the only satellite
for which the polar paths can be restricted in both data-sets. The resulting RPP is nearly
perfectly a meridian at lM31 ≈ 170◦. Thus, for And VI the pole of the angular momentum
vector is far off the pole of the fitted plane, and the orbit of the satellite cannot be located
within the plane. For the MI data-set the orbit of And V can also be restricted and the
resulting RPP is very close to that of And VI. This may be an indication for a close proximity
of the angular momentum vectors of And V and VI.

M33 and IC 10 are the only Andromeda companions for which a measured proper
motion is available (Brunthaler et al. 2005, 2007). While M33 is located spatially close to
the disc of the morphological subsample (mss8, §2.3.1, Figs. 2.13 and 2.14), as noted by
Koch & Grebel (2006), it cannot orbit within this disc: if this disc is rotationally supported,
then the common direction of all orbital angular momentum vectors must point either
approximately towards lM31 = 177◦, bM31 = −25◦, or lM31 = 357◦, bM31 = +25◦, depending
on the sense of rotation. From the RPPs we deduce that the kinematical pole of And VI,
which is a member of the mss8 subsample, cannot be close to the latter possible pole. This
is evident for both data-sets. For the MI data, the same conclusion can be drawn for And V,
also a mss8 subsample member. Thus, the orbital pole of a possible common stream of the
mss8 subsample must be located close to lM31 = 177◦, bM31 = −25◦, while the derived orbital
pole of M33 is lM31 = 283◦, bM31 = 10◦. These two poles lie ≈ 110◦ apart. From this finding
we conclude that M33 and the mss8 subsample cannot have a common orbital plane.
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As a caveat we note that the RPP criterion applied above to the polar paths depends
on two uncertain matters: the relative distance uncertainties and the true proper motion of
Andromeda. Thus we can only treat the restriction criterion as a hint for more plausible
regions of polar paths. Also note that a plane fitting algorithm and the appearance of a
clustering of intersection points are not independent. The intersection point of the polar
paths of two satellites is the direction of the normal of the plane containing these two
satellites and the coordinate origin.

3.4 Discussion

3.4.1 The Milky Way system

The derived pole-distance distribution of Milky Way satellite galaxies, which is still affected
by large measurement uncertainties, shows an excess of small pole-distances, implying
the DoS to be rotationally supported. Within the uncertainties, the two possible stream
satellites with the most deviating directions of the angular momenta, Draco and Carina,
are consistent with being found close to the suggested orbital pole of the disc-of-satellites
(< ∆sph, Fig. 3.2). That case would be highly inconsistent with a random sample (> 99%).
In order to be able to draw strong conclusions based on the PDD alone we need to await
more, and more-accurate proper motion measurements. Measurement campaigns of proper
motions with HST are ongoing (for Sextans and Draco, Pryor 2007, priv. comm.; also Wyse
2007, priv. comm.), and forthcoming satellite missions, specifically SIM and Gaia, will
certainly achieve a better precision than currently possible. For two satellites, Draco and
Carina, currently only one single measurement is available and their projected uncertainties
are very large. Even for those satellite galaxies where multiple measurements are available,
these often differ, sometimes by more than 1σ, see for example Sculptor (Table 3.1). Until
now, only the Magellanic Clouds seem to have reasonably well constrained proper motions
that are consistent for multiple independent measurements.

A further argument for a rotationally supported DoS is that the unweighted disc-fitting
algorithm (§2.1.1) is most strongly affected by the spatial location of the outermost satellite
galaxies. We do find, however, a clear alignment of the angular momenta of the innermost
satellite galaxies with this fitted disc, most strongly for the Large and Small Magellanic
Clouds, whose orbital poles are fairly well constrained. The only exception is Sagittar-
ius. But its observed orbit might already significantly deviate from the initial orbit due to
precession or scattering processes (Zhao 1998). It would, however, be rather curious to find a
disc-like structure where only the inner satellites orbit within the disc while the outer ones, which
mostly define the disc, do not.

For the CDM simulations, the analysis of the pole-distance distributions shows that
none of the theoretical sub-structure systems seems to be a rotationally supported structure
as the Milky Way satellite system. The angular momenta of all simulated systems of sub-
haloes are consistent with being drawn from a random distribution. Instead, the claimed
“disc” of simulated subhaloes even tends to disperse rather than being supported by rota-
tion. The CDM subhalo “disc” is therefore a pressure supported flattened tri-axial spheroid
rather than a rotation-supported disc. Furthermore, Libeskind et al. (2007) showed that the
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mean angular momentum of another simulated satellite system, using a smooth particle hy-
drodynamic code, is not co-aligned with the normal of a fitted plane to these satellites but
instead tends to be perpendicular to the long axis of the fitted triaxial ellipsoid. Note how-
ever that Libeskind et al. (2007) were only able to resolve galaxies brighter than MV ≈ −12
which complicates direct comparisons with the Milky Way satellite populations since, with
the exception of the LMC, the SMC, Sgr, and For, the remaining known satellite galaxies
are up to four orders of magnitudes fainter than their limit.

3.4.2 The Andromeda system

The observational situation for the Andromeda satellite system is much worse than for
the Milky Way. With current technology it is not possible to do anything comparable to
the analysis for our own Galaxy. Nevertheless, with some reasonable assumptions about
the Andromeda system, we were able to at least restrict possible orbits of some satellite
galaxies. Using radial velocity measurements we created restricted polar paths, showing
that at least the direction of the angular momentum vector of And VI can be restricted
to an arc segment of 180◦ in both data-sets, i.e. the sense of rotation of the orbit around
Andromeda can be determined. For six of the M31 satellites the possible poles can only be
restricted for one of the data-sets. Restricted polar paths hint to more plausible regions of
the locations of angular momentum vectors on the Andromeda sky.

Combining the polar-paths of the Andromeda satellites with the fitted plane it follows
that there may be a kinematic association of some of the M31 satellites: M32, NGC 205,
And I, NGC 147, And II, NGC 185, IC 10, LGS 3, and probably, though due to its large
distance unlikely being a bound satellite of Andromeda, IC 1613. These satellite galaxies
were also identified as possible stream members by McConnachie & Irwin (2006b), while
these authors also identified other possible streams which now seem to be less likely. This
subsample of eight Andromeda companion galaxies was found to form a very pronounced
disc-of-satellites (the kss8 subsample, Section 2.3.2) for the two distance data-sets used.

For the second, morphologically motivated subsample of Andromeda satellite galaxies
that was considered in the analysis of the spatial distribution in Section 2.3.1, M33 was
found to be encompassed by the fitted plane. We argue that this close proximity of M33
to the disc of the morphologically motivated subsample is a pure chance alignment since
the direction of its angular momentum vector, lM31 ≈ 283◦, bM31 ≈ 10◦, can not be correlated
with the possible common orbital direction of the mss8 subsample members, lM31 ≈ 177◦,
bM31 ≈ −25◦. We note, however, that the direction of the orbital pole of M33 is derived
under the assumption that Andromeda has a negligible proper motion. A considerable
perpendicular motion of M31 would cause the orbital pole of M33 to move along its orbital
paths in Figs. 3.8 and 3.9. In contrast, a common orbital pole of satellite galaxies that is
defined by the intersection of their polar paths is independent of the motion since it is
defined by the relative spatial locations only.

79



Analysis of orbital properties of satellite galaxies

80



Chapter 4

Internal properties of satellite galaxies

In the last two chapters the spatial distribution of the satellite galaxies in the haloes of the
Milky Way and Andromeda, and their orbital properties were examined. The very flat,
disc-like configuration of the Milky Way satellites, and the fact that this flattened structure
appears to be rotationally supported poses a question on their origin. Since both features
appear incompatible with the dSph’s being luminous CDM sub-structure, dark matter free
tidal dwarfs are a possible alternative. One important question that remains is whether the
observed properties of the Local Group dwarf galaxies, such as total luminosities or mass-
to-light ratios, are consistent with them being initially dark matter free dwarf galaxies that
have orbited the Milky Way several times. This question is addressed in the following
section.

4.1 Dark-matter free satellite galaxies

4.1.1 The layout: Satellite galaxy models

We analysed simulations that were carried out in an analog manner as described in Kroupa
(1997): satellite galaxies were set-up as Plummer-spheres, having masses of 107 M� without
dark matter and initial absolute magnitudes MV = −11.5 mag, being represented by 3×
105 particles. These values correspond to a true mass-to-light ratio (M/L)true = 3 for
each particle, and the models represent tidal dwarf galaxies that have blown out their gas
within the first Gyr after their formation (Recchi et al. 2006). The models were allowed
to relax before being injected into the host halo with an isothermal profile of total mass
of 2.85 × 1012 M�, core-radius 5 kpc, and cutoff radius 250 kpc with circular velocity
vc = 220 km s−1. The satellite galaxies started at a distance of 60 kpc and 100 kpc from
the centre of the host halo and were given different initial velocities leading to different
eccentricities of their orbits (see Table 4.1). The evolution was followed in a live halo.
Every satellite evolves by periodically losing matter at its peri-galactic passages (Piatek &
Pryor 1995) until a stage is reached when the original satellite is nearly disrupted and has
evolved into a quasi-stable remnant. For a detailed description of the initial set-ups of
the satellite galaxies and the host halo see Kroupa (1997). The integration was done using
the particle-mesh code Superbox (Fellhauer et al. 2000). Properties of the satellite galaxies
were compared with a direct N-body code (Klessen & Kroupa 1998; cf. also Fellhauer et al.
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2007a), showing that the results agree well. Figure 4.1 shows an all-sky surface brightness
plot of a similar, more recent simulation of a dark matter free satellite galaxy (see also § 5.2).

Observational parameters for the modelled satellite galaxies are derived in an auto-
mated manner as a virtual observer located in the disc would do: member stars are pho-
tometrically selected based on their projected position on the virtual sky. The line-of-sight
velocity dispersion is derived within the half-light radius from which an apparent mass-to-
light ratio (M/L)obs is calculated under the assumption that the satellite galaxy is in virial
equilibrium (Binney & Tremaine 1994). Statistical routines from Beers, Flynn, & Gebhardt
(1990) were employed to ensure that velocity outliers are removed from these calculations.
The absolute magnitudes MV,rbin and MV,r1/2 are determined within a fixed projected dis-
tance rbin = 1.5 kpc and within the projected half-light radius, respectively. For a complete
description and a detailed analysis of individual parameters see Kroupa (1997).

4.1.2 Comparison with Local Group satellite galaxies

During their evolution the satellite galaxies change their apparent properties as determined
by an observer. In Figure 4.2 the time evolution of the half-light radii and the apparent
absolute magnitudes of two simulated satellites, RS1-5 and RS1-113, are shown. In the
middle panel we additionally show the galactocentric distance of the satellites. Four snap-
shots, marked by the star symbols in Figure 4.2 for the two simulations shown there, were
taken for each simulation at random time-steps during the last two complete orbits of each
simulation for each of the eight simulations. This choice ensures that we are not biased
in the selection of the snapshots since the probability to ‘observe’ a satellite at a particu-
lar evolutionary phase (after the disruption) is proportional to the life-time of this phase.
As Kroupa (1997) already noted, after the disruption of the satellite galaxies, a significant
fraction of stars contributing to MV,rbin of the quasi-stable remnant are ‘extra-tidal’ stars.
As such MV,rbin is most likely over-estimated. Therefore we also plot the absolute magni-
tudes within the half-light radii, MV,r1/2 , marked by asterisk symbols in the lower panel of
Figure 4.2, which may be considered as the lower limit for the absolute luminosities.

In Figure 4.3 the absolute magnitude versus the half-light radius is shown for obser-
vational data: Milky Way (circles) and Andromeda (squares) dSph satellite galaxies. The
same data are used as in Belokurov et al. (2007), their figure 8 (Zucker, priv. comm.). For
the four snapshots of each simulated satellite we show the two extreme values of the abso-
lute magnitudes, MV,rbin (dark blue star symbols) and MV,r1/2 (light blue asterisk symbols),
respectively. The corresponding values are connected by a thin solid line in the lower panel.
For the dSph in Boötes (Boo: Belokurov et al. 2006) two values for the absolute magnitude
are given, connected by a thick, dashed line. The second, more luminous value is taken
from Muñoz et al. (2006a) which was inferred from a comparison of Boötes’ properties
with the UMa dSph galaxy. In addition the development tracks of two simulated satellites,
RS1-5 and RS1-113, are shown in the lower panel. The tracks start at the upper-left and
evolve to the lower-right direction as the satellites become more extended and less lumi-
nous. It follows that all models evolve to the parameter region occupied by the observed
satellites.

Figure 4.4 shows mass-to-light ratio (in solar units) versus absolute magnitude MV of
the observed Local Group dSph satellite galaxies and for the snapshots of the simulated
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Figure 4.1: In the top panel, an all-sky surface-brightness plot of a simulated dark matter free
satellite galaxy, similar to the simulations analysed in this Section, is shown. The contours show
the surface brightness in mag/arcsec2 as indicated by the colourbar. This particular simulation was
done with the advanced program Superbox++, described later in Section 5.1. The snapshot shows a
satellite galaxy with initial mass 107 M�, after 3.5 Gyr of evolution and three peri-galactic passages,
now close to its apo-centre. In the lower panel a zoom-in of a region around the satellite is pictured,
also showing the grid used to generate the surface-brightness plot as grey dots. Note that the tails
visible in this plot are likely not detectable with the observational facilities of the current all sky
mapping programs like the SDSS (see also Muñoz et al. 2007).
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Figure 4.2: The time evolution of half-light radius r1/2, galactocentric distance RGC, and absolute
magnitude MV,rbin of two simulated satellite galaxies, models RS1-5 (red dotted) and RS1-113 (blue
solid). The symbols mark snapshot values derived at random time-steps during the last two com-
pletely simulated orbits. For the snapshots of MV,rbin , additionally the absolute magnitudes within
the half-light radius, MV,r1/2 , are given, marked by the asterisk symbols. The corresponding values
are connected by the thin grey lines for clarity.
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Figure 4.3: Absolute magnitude versus half-light radius for globular clusters (pentagrams), ultra
compact dwarf galaxies (diamonds), Milky Way (circles) and Andromeda (squares) dSph satellite
galaxies, and simulated satellite galaxies (stars and asterisks). For the observational data of the
MW and M31, the red symbols mark the recent additions to the known list of companions from the
SDSS, while yellow symbols mark the longer-known dSph’s. For the MW dSph galaxy in Boötes
two values for the absolute magnitude are given (see text), the values are connected by a thick,
dashed line. For the simulated data absolute magnitudes derived within a fixed projected distance
rbin (dark stars) and within the variable distance r1/2 (light asterisks) are shown. In the lower panel,
the region in the top panel marked by the dashed rectangle is enlarged. Corresponding absolute
magnitude values for the simulated satellites are connected by light solid lines. The evolutionary
tracks of the models RS1-5 (solid curve) and RS1-113 (dotted curve) are shown.
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Figure 4.4: Dynamically derived mass-to-light ratio versus absolute magnitude for Milky Way and
Andromeda dSph satellite galaxies, for references see Table 4.2; symbols are as in Figure 4.3. For
the Milky Way satellites, the data marked with smaller light circles were taken from Mateo (1998),
others from more recent studies. The tidal dwarf models are shown as star symbols using the same
symbols as in the previous figures. The dashed lines show the expected mass-to-light ratio if stars
were in virial equilibrium, embedded in dark matter haloes of masses 1× 107 M� and 4× 107 M�,
respectively. The evolutionary tracks shown here for the simulated satellites start at the lower-right
end. In the course of time (as indicated by the arrow) the model satellites get fainter and more
disturbed, leading to an increase in the apparent (M/L)obs while the particle value is constant over
time, (M/L)true = 3 (M/L)�.
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satellites (MV,rbin), symbols being as in Figure 4.3. For the Milky Way dSphs smaller symbols
mark data taken from Mateo (1998) that were determined from central velocity dispersions.
The larger symbols mark more recent values as given in Table 4.2; for Boo symbols are
taken as in Figure 4.3. The dashed lines show the expected mass-to-light ratio if stars were
embedded in dark matter haloes of masses 1× 107 M� and 4× 107 M�, respectively (see
also Mateo 1998). The evolutionary tracks shown here for the simulated satellites now start
at the lower-right end. In the course of time the satellites get fainter and more disturbed,
leading to an increase in the apparent (M/L)obs while the particle value is constant over
time, (M/L)true = 3 (M/L)�.

4.2 Discussion

In Figures 4.3 & 4.4 it can be seen that dwarf satellite galaxies without dark matter orbiting
in massive host haloes span a wide range of observed properties. Energy is pumped into
the satellite during peri-galactic passages caused by the interaction with the Galactic tidal
field leading to an expansion of the satellite. After the disruption of the initial galaxy,
a quasi-stable remnant remains that matches many of the observed properties of today’s
dSph satellite galaxies of the Milky Way and Andromeda (Kroupa 1997). While initially
being identical objects, after several orbits the remnants can appear as objects having very
different observed properties, depending on the eccentricities and peri-galactic distances of
their orbits. Also during their life-time individual satellites may appear as having different
properties during disruptive and subsequent relaxation phases. It is noteworthy that the
extreme observable properties are not short-lived states due to projection effects that last
for only special states of a satellite’s orbits.

Figure 4.3 shows that the simulated satellite galaxies have similar half-light radii and
absolute magnitudes MV,rbin as the Local Group dSph satellites, but they are about one
or two magnitudes too bright compared to the latest additions from the SDSS. The lumi-
nosity within the fixed radius rbin of the simulated satellites is likely to be overestimated
compared to the luminosity an observer would deduce, since many extra-tidal stars are
included which a real observer would not take into account. The value of the radius rbin is
a priori fixed to a specific value, whereas an observer would determine members belonging
to the satellite based on the observed surface distribution of stars, and he would therefore
determine a somewhat lower absolute luminosity than MV,rbin . In addition, of the very faint
satellites, only the relatively poorly populated tip of the red-giant branches can be used to
estimate their luminosities (see for example figure 2 in Muñoz et al. 2006a). Thus it is not
clear whether the observed absolute luminosities of some of the very recently discovered
dSph companions of the Milky Way are not underestimated. Muñoz et al. (2006a), for ex-
ample, compared the colour-magnitude diagrams of Boo and UMa, concluding that Boo
must be at least twice as bright as UMa. This clearly shows that there is also a consid-
erable systematic uncertainty in the determination of the absolute magnitudes (and other
properties) of the observed very faint companion satellite galaxies.

For the first few orbits, the satellites disperse only slowly, getting fainter, until they
approach the state of near disruption. Then the deduced mass-to-light ratio (M/L)obs
increases very rapidly since the satellite galaxy is no longer in dynamical equilibrium,
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Table 4.1: Properties of simulations: in the first column an identifier is given. The second column
lists the total integration time after which simulations were stopped. In the third the initial galacto-
centric distance is given, and in the forth and fifth columns the mean peri-galactic distance and the
mean eccentricity of the orbits are given, respectively.

simulation t rinit rperi ecc
[Gyr] [kpc] [kpc]

RS1-4 8.8 100 15.9 0.72
RS1-5 10.7 100 24.6 0.59
RS1-32 5.5 100 3.9 0.92
RS1-64 5.0 100 4.1 0.92
RS1-109 8.8 60 9.1 0.74
RS1-113 6.6 60 22.4 0.46
RS1-24-32 11.0 60 25.6 0.40
RS1-24-64 8.2 60 22.8 0.44

Table 4.2: Observational properties of Local Group dSph galaxies. Where available in the literature
we also give error estimates. References for MV and (M/L)� are given in the last column, if two
references are given, the first one is for the absolute magnitude and the second for the mass-to-light
ratio (see Figure 4.4).

Name D [kpc] MV [mag] (M/L)�
UMi 50.2 -8.9 250 a,g

Boo 57.6 -7.5 130
-5.8 610 b

Scl 79.2 -11.1 3 a

Dra 82.0 -8.8 440 a,h

Sex 89.2 -9.5 39 a

Car 102.7 -9.3 41+40
−25

c

UMa 104.9 -6.75 550 d

For 140.1 -13.2 4.4 a

Leo II 207.7 -9.6 17 a

Leo I 254.0 -12.3 5.3+1.6
−1.6

e

And IX 42 -8.3 93+120
−50

f

And II 185 -11.3 21+14
−10

g

References: a Mateo (1998); b Muñoz et al. (2006a);
c Muñoz et al. (2006b); d Kleyna et al. (2005); e Sohn

et al. (2007); f Chapman et al. (2005); g Côté et al. (1999);
h Evans et al. (2005)
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whereas the true mass-to-light ratio (M/L)true is fixed. Interestingly, the models qualita-
tively reproduce the trend interpreted to be a signature of an universal 107 M� dark halo
for all dSph satellites, indicated by the dashed lines in Figure 4.4. However, about half of
the snapshot values lie significantly above the trend-lines. This can be understood since
our automated, virtual observer is kind of naive. A thorough observer will carefully se-
lect the stars belonging to a satellite galaxy, which will reduce unrealistic values (M/L)obs
to a more realistic regime (see e.g. Muñoz et al. 2006b), but will still end up at too high
(M/L)obs ratios compared to the real mass-to-light ratio, (M/L)true.

In Figure 4.4 one can also identify a group of snapshot data-points at MV,rbin ≈ −10 mag
that have much too large (M/L)obs ratios, marked by lighter star symbols. These snapshots
belong to the simulations RS1-32 and RS1-64 (while the darker symbols belong to the other
six simulations), both having nearly pure radial orbits. This brings the satellites very close
to the galactic disc. A disc component is not considered in the simulations presented
here, and in particular no gas is included. The additional highly non-spherical potential
and effects of disc shocking will considerably affect the properties of the satellites, also
depending on the impact angle with the disc. These effects need to be studied in much
more detail in the future (see §5.2.2).

The work presented here details the evolution of gas and dark matter free satellite
galaxies. But it has to be clarified in more detail how these objects can form and how many
of them can condense in tidal arms, which is beyond the scope of this study. Wetzstein et al.
(2007) identified at least five very massive objects in their SPH simulation, the largest one, at
the tip of the tidal tail, has a mass corresponding to ≈ 3.5× 108 M� if the progenitor galaxy
is scaled to the size of the Milky Way. Bournaud & Duc (2006) found a mean production
rate of somewhat more than six massive substructures (> 108 M�) formed in the tidal
tails in their simulations. 20 per cent of these objects survive for more than 2 Gyr. Of
the non-surviving ones about two-third fall back onto their host galaxies. The other one-
third was considered in their simulation as destroyed because they dropped below a mass
threshold of 108 M�. We argue that these objects should not be considered a priori as being
completely destroyed. Instead, we have shown here that satellite galaxies of much lower
mass may be identified on the sky and appear similar to today’s known dSph galaxies of the
Milky Way. This leaves room for a number of tidal dwarf remnants, even for a low number
of major interaction events. However, as Bournaud & Duc noted, they did not account for
the larger gas fraction of galaxies in the early universe, whereas Wetzstein et al. used a gas
fraction of 30 per cent. This is, despite the different treatment of the gas (sticky particles
vs. smoothed particle hydrodynamics), a further major difference in the two models. A
higher gas fraction may well enhance the efficiency of TDG production. From the current
simulations it is also unclear how many lower mass (< 108 M�) TDG candidates form,
but observations show that even today’s interactions can form of the order of a dozen tidal
dwarf galaxies in a single encounter, for example in AM 1353–272, show in Figure 4.5.
(Weilbacher et al. 2000)

If some of the dSph galaxies of the Milky Way were of tidal origin, their genesis must
have happened at an early time. In all well-studied dwarf spheroidals an old stellar pop-
ulation is present (e.g. Grebel & Gallagher 2004; Tolstoy et al. 2004), they do follow a
metallicity-luminosity relation (e.g. Mateo 1998; van den Bergh 1999; Grebel, Gallagher,
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Figure 4.5: An image of an interacting galaxy pair (AM 1353–272, taken from Weilbacher et al.
2000, their figure 21). Within this single interaction-event about one dozen TDG candidates can be
identified.

& Harbeck 2003), and they are typically found to have extended star formation histories
(e.g. Grebel 2000; Ikuta & Arimoto 2002). The latter two findings require that the galaxies
maintained a considerable amount of gas for some time to continue star formation or later
turn it on again, and to retain the produced metals. Indeed, Recchi et al. (2007) have shown
that dwarf galaxies without a dark matter halo can have star-formation episodes of several
hundred Myr without necessarily being quickly destroyed due to stellar winds, radiation
pressure, or supernova feedback. Today, the dSphs are almost gas free (Gallagher & Wyse
1994) and do not show ongoing star formation. As such they must have developed from
gas-rich galaxies to today’s dSph (Mayer et al. 2001; Pasetto et al. 2003, but see also Grebel
et al. 2003). For a given metallicity, dSph galaxies have a luminosity 10 to 100 times lower
than dIrr galaxies (Grebel et al. 2003), being consistent with initial TDGs that form from
pre-enriched material losing over 90 per cent of their mass as a result of tidal forces.

A common ancient stellar population in satellite galaxies of tidal origin can be explained
by considering that tidal dwarfs do not solely consist of stars born in star formation events
during and after their genesis, but additionally also of old stars from the progenitor galaxy.
Elmegreen et al. (1993) argued that a newly born tidal dwarf galaxy consists of about
40 per cent old stars. Similarly, Wetzstein et al. (2007) found that about 30 per cent of
the mass of their most massive TDG candidate is in old stars, while being basically void
of dark matter. Very recently Helmi et al. (2006) compared the metal-poor tails of the
metallicity distribution of the Milky Way’s halo and of four of its dSph satellites. While the
distributions were compatible among the dSph galaxies, they significantly differ compared
to the Milky Way halo. Helmi et al. (2006) conclude that the Milky Way and the dSphs
must have had different progenitors, since the dSphs are lacking very metal poor stars. If
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dSphs were of tidal origin, their oldest stellar population would consist of stars already
pre-enriched in the progenitor galaxy.

It is also remarkable that a number of the dSph galaxies show internal structure or
off-centred and twisted isophotes (e.g. Palma et al. 2003; Walcher et al. 2003; Cioni &
Habing 2005) which is not expected if they are shielded by a massive dark matter halo. A
further challenge of the notion of the suggested universal minimum mass of some 107 M�
(Mateo 1998; Gilmore et al. 2006) would be the significant mass loss from the dark matter
halo due to the Milky Way tides. Given the distorted inner morphology of most of the
dSph satellites, why do they still have the same dark matter halo? Tidal mass-loss has
been shown to be significant for such satellites (Read et al. 2006a). However, this may not
be a robust argument because the minimum halo-mass concerns only the mass within the
observed optical light: nothing outside the kinematic data is used; so original total masses
might not be that relevant (Gilmore priv. comm., see also Peñarrubia et al. 2008). On the
other hand, a TDG population may very naturally show very different evolution histories
and internal structures, even if they were born in the same environment (Figures 4.2 – 4.4),
as they are not shielded by a massive dark matter halo.

As a final remark, we found an interesting correlation that, to our knowledge, has not
been studied yet, in a plot of the half-light radii versus the Galactocentric distance, as
shown in Figure 4.6. One group of dSphs seems to have a more or less constant half-light
radius, independent of Galactocentric distance, whereas a second group has larger half-
light radii that are probably correlated with Galactocentric distance. The peculiar stellar
systems Coma Berenices, Boötes II, and Willman 1, all at RGC ≈ 50 kpc, have remark-
ably smaller half-light radii. There is an ongoing discussion whether these three have to
be classified as dSphs or as globular clusters (Belokurov et al. 2007; Gilmore et al. 2007;
Siegel et al. 2008). The correlation is only evident for the Milky Way dSphs. On the other
hand, the Andromeda companions, for which data is also plotted in Figure 4.6, appear to
have systematically larger radii at a given absolute magnitude MV (McConnachie & Irwin
2006a, their figure 5) as can be seen in Figure 4.3. McConnachie & Irwin ascribed this to a
difference in the mass of the two hosts: Oh, Lin, & Aarseth (1995) found a prescription(a)

for the tidal radius of a dwarf galaxy orbiting in an isothermal host halo. McConnachie &
Irwin noted that there is a degeneracy of parameters, but if the dSphs of the Milky Way
and Andromeda are not a priory fundamentally very different, they argued that the host
halo mass is the parameter that most likely affects the difference of the tidal radii, and thus
also of the more robust half-light radii (see also Peñarrubia et al. 2007). An extraordinary
combination of parameters would be needed to explain the more or less constant half-light
radius over a wide range of Galactocentric distances as seen in Figure 4.6. On the other
hand, it is also not clear how dark matter free tidal dwarfs could account for this finding.
And also, why would the Andromeda dSphs be systematically larger? The models anal-
ysed in this Chapter do not cover a large enough parameter space to address this question.
So it will be important to improve and extend the models.

(a)For completeness the relation is: rt = a
h“

M
MH

”
(1− e)2

i1/3 h“ (1+e)2

2e

”
ln
“

1+e
1−e

”
+ 1
i−1/3

. M is the mass of
a dwarf galaxy, MH is the total mass of the host halo, and e is the eccentricity of the orbit with semimajor axis a.
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Figure 4.6: Half-light radius, r1/2, versus Galactocentric distance, RGC, for the Milky Way dSph
satellite galaxies and the snapshot data of the models, the latter marked by the star symbols. For
comparison, we also plot the half-light radii for Andromeda satellite galaxies as derived by Mc-
Connachie & Irwin (2006a) with triangles. There appears to be a dichotomy of Milky Way satellites:
one group of dSphs seems to have very similar half-light radii independent of distance, with mean
value r1/2 = 130± 17 pc, shown by the dashed line and the shaded region. The satellites of a second
group (Boo, Sex, UMa, Her, For, & CVn) have significantly larger half-light radii, and their half-light
radii appear to be larger the more distant a satellite is. The two dotted lines show linear fits for all
of these six satellites, and for Sex, UMa, Her, & For only, to indicate the possible relation with Galac-
tocentric distance. The model data cover Galactocentric distances up to 100 kpc only, but appear
to better match the properties of the second group rather than being able to reproduce a constant
half-light radius. The peculiar stellar systems CBe, Boo II, and Wil1 all have obviously smaller r1/2
(their classification is not definite: dSphs or globular clusters; Belokurov et al. 2007; Gilmore et al.
2007).
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Chapter 5

A new numerical code to compute the
satellite dynamics

The model galaxies analysed in the last section (§4.1) were numerically evolved with the
particle-mesh code Superbox (Bien et al. 1991; Fellhauer et al. 2000). Since these simulations
were limited in some parameters, for example the number of particles and the number of
satellites per simulation, we intended to repeat the same kind of studies with a wider scope
of application. To this end we first re-implemented the code as described in the next section.

5.1 Superbox++

5.1.1 The Superbox code

Superbox is a particle-mesh code for collisionless galactic simulations (Sellwood 1987), de-
veloped at the Astronomisches Recheninsitut (ARI) in Heidelberg in the late 1980s and
early 1990s (Bien et al. 1991). The different ansatz of the Superbox code compared to other
particle-mesh codes is to use high resolution sub-grids that are co-moving with places of
special interest in an N-body simulation. Such special places are for example satellite galax-
ies that are evolving in the vicinity of their parent galaxy. The technique used in Superbox

differs from adaptive-refinement mesh codes in that the sizes and dimensions of the grids
are fixed at the start-time of the program and are not adaptively changing at runtime, but
can only be changed manually. This leads to a very rapid computation per time-step. For
a detailed description of the principle of Superbox we refer to Fellhauer et al. (2000) and
references therein.

Briefly, Poissons’s equation, ∇2φ = 4πρ, is solved for the mass density, ρijk, on a grid
(Figure 5.1, left panels). The density is determined by counting the number of particles in
each grid-cell. This is a so called “nearest grid point” algorithm. The high-density regions
are kept track off by two nested sub-grids for each galaxy individually: one to resolve a
galaxy as a whole, the “outer grid”, and one to resolve the very dense inner region of a
galaxy, the “core grid”. The full simulation region, the “system” or “local universe” (LU)
grid, is covered by a grid that is common amongst all galaxies in the simulation. The
grid based potential, φijk, (Figure 5.1, right panels) is then arrived at by (i) calculating
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Figure 5.1: On the left, a mass-density distribution is shown in arbitrary units of a randomly set-up
model galaxy. In the top-left panel, contour lines of equal mass across a grid boundary are shown.
The 32 × 32 grid is indicated by light dotted lines. In the lower-left panel a cut along the grid
boundary, as indicated by the dashed line in the top panel, is shown. On the right, the resulting
potential in arbitrary units is shown.

the Fourier transform of the density grid, (ii) multiplying it with the Fourier transformed
Greens function cell by cell, and (iii) transforming back to real space by an inverse Fourier
transformation. Accelerations for each particle are calculated by numerically differentiating
the potential. To be compatible with the existing Superbox program, it is possible to add a
static potential to account for the gravitational potential of the Galaxy. Currently, a three-
component model is implemented (see Binney & Tremaine 1994): the halo is modelled by a
logarithmic potential,

Φhalo(x, y, z) =
1
2

v2
c ln

(
r2 + r2

h
)

, (5.1)

the disc by a Plummer-Kuzmin model,

Φdisc(x, y, z) = − G md√
R2 +

(
ad +

√
z2 + b2

d

) , (5.2)

and the bulge by a Hernquist bulge potential,

Φbulge(x, y, z) = − G mb

r + ab
. (5.3)

G is the gravitational constant, r2 = x2 + y2 + z2 and R2 = x2 + y2. The parameters vc,
rh, md, ad, bd, mb, and ab have to be appropriately chosen, for example as derived from
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observations. Other models can be adapted as well. Particles are finally evolved forward
in time using a leapfrog scheme.

The original Superbox code is written in the Fortran 77 (F77) programming language.
While code written in Fortran is believed to execute generally very fast, this particular
code has also some disadvantages. There is no way in Fortran 77 to dynamically allocate
memory, which implies that one has to recompile the source code of Superbox every time
one wants to simulate a larger number of particles. The same is the case for the number
of grid cells. Superbox is limited to grids with fixed dimension (N × N × N), N = 2M,
M a positive integer, which is equal for all grids and sub-grids, and the side-lengths of
the grids are the same in each dimension. However, to accurately simulate a disc-galaxy it
might be useful to reduce the side-length in one dimension to get a higher resolution in the
polar direction of the disc. Another desirable feature is to use different grid dimensions for
different co-moving sub-grids or the grid representing the “local universe”.

Nevertheless, Superbox has, beyond any doubt, advantages: the code is highly opti-
mised in the sense that it uses almost as little memory as possible, making it possible to
run the code with many particles even on machines with only a small amount of mem-
ory. This advantage is nowadays less important since memory gets cheaper and cheaper
every month. Even standard desktop PCs have nowadays 1 GB or more of RAM, which
makes it possible to simulate some 10 millions of particles. One side effect of the mem-
ory optimisation is that Superbox performs most operations with single precision floating
point variables, except for some critical sections where single precision variables are casted
to double precision and backwards after the critical code section. Single precision opera-
tions can, in principal, be executed faster than double precision operations, and modern
compilers can even optimise the code such that multiple single precision operations are
simultaneously executed in floating-point pipelines (SIMD: “Single Instruction, Multiple
Data”), which results in a decreasing runtime.

5.1.2 The Superbox++ code

Reasons to re-implement the Superbox in the C++ programming language code were: to
improve the performance by avoiding some bottlenecks, re-write the source to be able to
use new features of modern PC architectures, and to have advanced features and the ability
to easily extend the feature list, while also keeping memory consumption at a reasonable
level. Another core issue was to write the software such that it can easily be integrated
in other software projects or, for example, be controlled by an external script. Finally we
also wanted to keep the portability of the code, i.e. the code should be usable on different
microcode architectures and under different operation systems.

The actual simulation code is designed as a software library called libHyperbox. This
library has some simple interfaces to load and store data, initialise parameters, and start and
control the simulation. The program Superbox++ that links libHyperbox to an executable
program, is written in a Superbox compatible manner, i.e. it behaves almost exactly as
the original Superbox program. This makes it straightforward to run exactly the same
simulation with both programs.
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Despite minor performance “tweaks” in the Superbox++ code that enhance the perfor-
mance of the program compared to Superbox (see Appendix B), there are some conspic-
uous peculiarities in Superbox which unnecessarily slow down the code, and that can be
avoided. We elaborate some of these in the following. To calculate the values of the grav-
itational potential at each vertex of a grid, for each individual grid one forward and one
backward complex 3D-FFT transformation has to be performed. Since the FFT is a very
time intensive transformation it is a good ansatz to optimise the FFT code. In Superbox++

we use a portable, yet very fast implementation of the FFT algorithm, provided by the li-
brary fftw (Frigo & Johnson 2005, http://www.fftw.org). Just using this FFT code already
results in a significant performance gain.

Furthermore, multi-threading techniques are used frequently in Superbox++. Multi-
threading, or more general “parallel computing”, is a way to make usage of multiple
CPU cores integrated in modern processor architectures like the AMD Athlon64TM X2 (see
Fig. 5.2) or the Intel R© CoreTM 2 Duo processors. For software that needs lots of computa-
tional power it is essential to utilise these multi-core CPUs. The development of CPUs has
moved away from faster and faster clocked CPUs (which also waste lots of electric energy)
to CPUs which inherit multiple CPU cores that independently can execute program code
in parallel(a). This development is independent of processor architecture or manufacturers,
like AMD X86_64, Intel IA-64, IBM PowerPC and Cell, or Sun Ultrasparc to name only
some. Multi-threading programs utilise multiple CPU cores by separating independent
parts of the code and executing them separately in so-called “threads”. If two indepen-
dent threads are initiated at the same time, each single thread can be executed on one of
the two (or more) CPU-cores. In an ideal scenario this results in a performance gain of
a factor 2. In reality some data has to be synchronised between the threads, which re-
duces the effective performance benefit. In Superbox++ threads are directly initiated, and
also the fftw library uses multiple threads. The MPI library (Message Passing Interface,
http://www.mpi-forum.org), which is typically used to write parallel code for computer
clusters, can also be used on multi-core systems. And some modern compilers (e.g., the
GNU compiler since version 4.2) support a kind of automated multi-threading provided
by the OpenMP API (Open Multi-Processing, http://www.openmp.org). Despite this opti-
misation for multi-core CPU designs, Superbox++ is portable and not limited to a specific
hardware or operating system.

5.1.3 Comparison with Superbox

The differences in the implementation of the algorithm in the codes influence the results de-
rived when performing simulations with Superbox++ compared to the original Superbox.
Superbox++ consistently uses double precision floating point operations, while Superbox

mostly uses single precision operations, especially for the FFT. Also Superbox++ uses a dif-
ferent FFT implementation, namely the code of the fftw library compared to the Numerical
recipes (Press et al. 1992) code in Superbox. At first it might sound a little bit odd that the
FFT code can influence the result, since the FFT algorithm is exactly defined. But different

(a)“If your program is not fast enough today, it will never be.” (Mark Harris, AstroGPU 2007, an allusion to
the new demands necessary, to make programs more efficient and ready for future hardware developments.)
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Figure 5.2: Schematic drawing to illustrate the architecture of a modern multi-processor, multi-core
workstation as used at the AIfA. Each CPU is equipped with two CPU cores, which can run code in
parallel, and a CPU has its own “local” memory. Two (or more) of these CPUs are installed in the
same machine, communicating and sharing memory via a fast interconnect.

implementations of the FFT use different concrete ways to implement the algorithm, e.g.,
using a different order of execution of commands within the code. Such differences can
lead to different rounding effects which in the end can influence the result. It is, for exam-
ple, not guaranteed that executing (a + b) ∗ c gives numerically exactly the same result as
(a ∗ c + b ∗ c), while both are mathematically identical(b).

So it is important to compare the results derived with Superbox and Superbox++. We
consider the results derived with Superbox as reference results for the comparison. In the
following, data derived when running a test configuration, twoiso, are compared. twoiso

consists of two identical, unrelaxed isothermal spheres with 100 000 particles each, rota-
tional velocity 150 km s−1, and a cut-off radius of 200 kpc. The two galaxies were set
to the positions x = +30,−30 kpc and each was given a small “kick-off” velocity of
vy = +10,−10 km s−1, respectively. A grid-dimension of 323 was chosen with core-, outer-,
and system-radii of 16 kpc, 64 kpc, and 348 kpc, respectively. We refer to the latter grid
as the “local universe” grid. The time-step was chosen to ∆t = 1 Myr. According to the
criterion of Power et al. (2003), results are convergent for radii & 5 kpc from the centres
of the haloes with this choice for a total integration time of t0 = 2 Gyr. In particular the
innermost Lagrange radius is larger than this value and thus not expected to be affected by
the choice of the finite time-step. The tracking of the co-moving grids was chosen to follow
the centre-of-density. This test-setup is in no way a physical meaningful configuration, but
it allows us to check several different properties of the code: The grids overlap to a large
amount, so the mutual influence of the grids can be tested. The relatively small number of

(b)See also http://www.fftw.org/accuracy/ for comments on that topic.
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particles and the small grid dimension amplify possible differences due to particle noise,
grid-effects, or undesired effects due to coding differences.

The output of a test-script testhead.py is given for the 500th integration step for the
first of the two galaxies in the test configuration in Output 1. This script displays the main
values derived during the simulations, like positions of the galaxies, energies, and angular
momenta. All values are given in physical units: time in Myr, positions in kpc, velocities in
km s−1, energies in M� km2 s−2, and angular momenta in M� kpc km s−1. All results are
in agreement within a few percent.

The evolution of some parameters are studied in detail. In Figure 5.3 the time-evolution
of the Lagrange radii is shown for 2 000 integration steps (2 Gyr in total). Values from
Superbox are shown as dashed lines and values from Superbox++ as solid lines. As the
data are barely distinguishable we additionally plot the relative differences ∆ri = (rsbpp

i −
rsb

i )/
(

1/2(rsbpp
i + rsb

i )
)

of the Lagrange radii in Fig. 5.4. There is one curve in Fig. 5.4 that
shows a significantly larger scatter than the others. This is the line for the 10% Lagrange
radius, which is the innermost Lagrange radius. A larger scatter is expected since relative
differences are plotted. The Lagrange radii also depend on the location of the tracking-
centre which differs for the runs (Fig. 5.5). The relative influence of the tracking-centre on
the innermost Lagrange radius is the largest. Nevertheless, all values scatter about the radii
determined with Superbox with typically < 0.5% difference, and even for the innermost
radius we typically find differences / 1.5%.

In Figure 5.5, left panel, the motion of the centres-of-density (cod) and the centres-of-
mass (com) of both galaxies are shown, as well as the motion of the centre-of-mass in the
local universe in Fig. 5.5, right panel, for the test configuration twoiso. The motions of the
cod and com agree well for the individual galaxies. However, the motion of the centre-
of-mass in the local universe volume, which is the centre-of-mass of all particles, shows a
significantly different behaviour on a smaller scale. For Superbox++ the com in the local
universe nearly linearly moves away from the origin, i.e. it constantly drifts in one direction
due to not perfectly isotropic setup conditions. This is the expected behaviour if the setup
is somewhat anisotropic. For Superbox we see, however that the com lurches around about
the origin similar to a Brownian motion. At some point in time the track even kinks by
about 90◦ which indicates some discontinuities in the Superbox code. These are most likely
caused by the single-precision only accuracy of the computations.

We also checked that the derived energies of the system, the kinetic and potential en-
ergies, are in good agreement, as are the angular momenta. In general, energies are better
conserved in Superbox++ than in Superbox, again, most likely due to the double precision
computations.

5.1.4 Future development

The code basis of Superbox++, specifically, the library libHyperbox, was designed to be
as flexible as possible. This allows for easy future implementations of new features. It
might, for example, be desirable to include a “sticky particle” scheme to treat for the dis-
sipative effects of gas in galaxies (see, for example, Vollmer et al. 2001; Bournaud & Duc
2006). Another possible extension is to use variable grid dimensions, (N ×M× K), which
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sb++ Superbox

------------------------------------------------------------

stepnumber: 500 500

dt : 1.00 1.00

time : 500.00 500.00

centre of mass

x : 6.873838 6.892486

y : 1.547523 1.563747

z : 0.003357 0.002694

vx : -30.687130 -30.953545

vy : -2.751011 -2.650033

vz : 0.133671 0.175620

centre of density

x : 1.705151 1.876294

y : 0.453548 0.491313

z : -0.274598 -0.278354

vx : -22.032600 -22.876480

vy : 0.501682 0.229618

vz : 0.008505 0.193319

centre of simulation

x : 0.007550 -0.002938

y : -0.024086 -0.012662

z : -0.010504 -0.009885

vx : 0.054343 0.005372

vy : -0.143957 -0.028488

vz : -0.067604 -0.067051

#stars : 100000 100000

#bound : 85739 85894

ekin : 5.3597e+04 5.3333e+04

epot : -4.8647e+04 -4.8488e+04

internal angular momentum

lx : 1.0817e+05 1.0767e+05

ly : -1.9337e+05 -1.9281e+05

lz : 2.6081e+13 2.6165e+13

total angular momentum

lx : 1.9423e+10 -1.4547e+11

ly : 2.8078e+14 2.7868e+14

lz : 5.4037e+13 5.3964e+13

Output 1: Output of the program testhead.py for the test configuration twoiso at the 500th inte-
gration step for the first “galaxy”.
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Figure 5.3: Evolution of the 10%, 20%, . . . 90% Lagrange radii for the galaxy number 1 in the test
configuration twoiso. The dashed lines show the radii as derived with Superbox, the solid lines
as derived with Superbox++. The “bumps” occur when the two galaxies pass through each other,
while the large-scale decrease and later increase of the outer Lagrange radii, for example of the 90%
radius, is a signature of the violent relaxation process of the initially unrelaxed isothermal models.
For a better discernibility, relative differences for the two codes are shown in Fig. 5.4.
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Figure 5.4: Relative difference of the Lagrange radii as shown in Fig. 5.3 from a comparison of results
of Superbox with Superbox++. Different radii are shown in different colours. The red coloured curve
with the larges amplitude shows the relative difference of the 10% Lagrange radii.
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Figure 5.5: In the left panel, the motion of the centres-of-mass (solid lines) and the centres-of-density
(dotted lines) for both galaxies of the test configuration twoiso in the x-y-plane are shown. The data
for Superbox are shown in red and magenta, the data for Superbox++ in blue and cyan colours.
Note the very different scalings of the x- and y-axis in the left panel, and also the very different
scalings of the axes in the left and right panels. In the right panel, the motion of the centre-of-mass
in the “local universe”-grid in the x-y-plane is shown. The behaviour of the motion of the centre-
of-mass differs significantly: the centre-of-mass basically moves constantly in one direction for the
simulation performed with Superbox++ – which is the expected behaviour – whereas it lurches
around for the run performed with Superbox, a behaviour that is similar to a Brownian motion.
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might even have different scaling-lengths, a feature that is already partly implemented.
One possible application of this is to use a grid that is squeezed in the z-direction for a
spiral galaxy with its galactic plane in the x-y-plane. Another possible future extension of
Superbox++ might be to have grids that have different orientations in space. Such a feature
is not needed as long as the grids are cubical, i.e., N × N × N with identical edge length,
but having asymmetric grids at hand it might be a very helpful tool. And, as another very
different modification of the code, one can try to adapt the scheme described in Tiret &
Combes (2007), to modify the code such that it can solve the Poisson Equation in Modified
Newtonian Dynamics (MOND, see §6.5).

Superbox++ is under active development. There are parts of the code that can be op-
timised further. We expect to be able to enhance the performance of Superbox++ (cf. Ap-
pendix B) even more in future versions by optimising the code. We are also elaborating on
the possibility to use, for time-critical parts like the FFT, algorithms that can be run on mod-
ern graphics processor units (GPU) to speed up calculations significantly. General-purpose
computation on GPUs (GPGPU, see http://www.gpgpu.org) is a very promising technique
to accelerate calculations. While current GPUs are limited to single precision floating-point
operations (which can however be extended to double precision algorithmically, see Dekker
1971), future GPUs will support double precision floating-point operations intrinsically and
may well outperform other special purpose hardware like GRAPE cards.

5.1.5 A final remark

A lot of time and men power of today’s research is invested in the development of algo-
rithms and code implementation in some fields of research. This was also the case in this
thesis. The software to analyse the spatial distribution of the satellite galaxies, for example,
comprises about 17 500 lines of source code in total, and the full analysis of the statistical
significance (§2.4) is based on more than 3 years of CPU-time. Time for the development
of algorithms and their coding in inevitable – it can only be more or less productive, de-
pending on the skills of the application developer. But what is very important is to write
efficient software when the task the computer has to solve gets complex. Moore’s Law(c),
which is sometimes laxly formulated as “computer performance doubles every two years”,
is applicable since 40 years now. But today, computer performance does not mean faster
clock speed, it means more CPU cores per processor. As explained in this Chapter, there are
multiple techniques to use these multi-core CPUs: direct multi-threading programming, the
MPI programming interface, or semi-automatic optimisation techniques like OpenMP. All
these techniques will become more important in the future and it is essential to use them,
along with the possibilities to distribute computational tasks via a network (distributed or
grid computing) as done for the bootstrapping analysis.

(c)Named after Gordon E. Moore (1965), a co-founder of a famous semiconductor company.
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5.2 A first application of Superbox++

5.2.1 Modelling dark matter free dSphs

Having the advanced program Superbox++ at hand, as a first application we performed
new modelling of dark matter free dSph galaxies orbiting within the (dark) halo of a Milky
Way like galaxy, similar to Kroupa (1997). The halo is represented by an isothermal sphere
with total mass of 2.85× 1012 M�, cut-off radius 250 kpc, and an initial circular velocity
of vc = 220 km s−1. The halo model was allowed to relax after the initial set-up. Initial
models for dark matter free satellite galaxies are set-up as Plummer spheres (Plummer
1911). We generated one very lightweight satellite with initial mass 2.85× 106 M� with
285 000 particles (S1), one intermediate mass model with 107 M� with 106 particles (S2),
similar to the models analysed in Section 4.1.The latter model represent typical tidal dwarf
galaxies after losing its gas, whereas the model S1 might represent one of the least massive
TDGs probably being formed. The Plummer-radius for the set-up is rp = 300 pc, and the
cut-off radius rc = 1.5 kpc in all cases. The model satellites are placed in the halo at a
position x, y, z = 0, 0, 100 kpc, and are given an initial velocity of vx = 180 km s−1 < vc,
resulting in peri-galactic passages at a distances of ≈ 41 kpc.

Figure 5.6 shows an allsky surface-brightness plot of satellite S1 as an observer located
in the plane of the Milky Way would deduce if he could identify all stars that originally
belonged to the satellite galaxy, see also Figure 4.1 for the model S2. For these plots a
mass-to-light ratio of (M/L)� = 1 was assumed for the particles in the simulation. The
allsky surface-brightness plot was constructed as follows: a uniform grid was generated
on the unit-sphere, where all grid-points have the same spherical distance to their direct
neighbouring grid-points. This grid is constructed iteratively by starting with the vertices
of a regular icosahedron, which are located on the surface of a unit sphere (cf. for example
Tegmark 1996). The faces of a regular icosahedron consist of 20 equilateral triangles, and
it has 12 vertices. All edges are bisect, the bisected edges of one triangle are connected to
form 4 new equilateral triangles, and the new vertices are projected onto the unit sphere.
This first iterative step results in a grid with 42 grid-points uniformly distributed on the
sphere. Further iterations result in ngrid = 162, 642, . . . , 10 · 4d + 2 grid-points, where d
is the number of iteration steps. A luminosity Lp = f L� mp{(M/L)�}−1 is assigned to
each particle in the simulation, where L� is the absolute luminosity of the Sun, (M/L)�
is the assumed mass-to-light ratio in solar units, mp is the mass of one particle in solar-
masses, and the factor f = Nt/Ns is the fraction of the total number of particles, Nt, to the
number of particles, Ns, written to the snapshot file that is analysed. The luminosity of
each particle is scaled by the distance of a particle to the observer, and then assigned to
the closest grid-point on the sky. Finally the cumulative luminosities at the grid-points are
divided by the area of the portion of the sky assigned to each grid-point, which is given
by a = (360 ∗ 60 ∗ 60 ′′)2/π/ngrid, where ngrid is the number of grid-points as given above.
Thus a is the resolution of the projection, for example, a ≈ 4 deg2 for a projection grid-size
of 10 242. Luminosities are finally converted to magnitudes.
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5.2.2 Future advances of the models

There are certain aspects of the dark matter free satellite models that were not addressed
in the analysis in Section 4.1, and some are also not or only partly addressed in other
published work. One important aspect of the models is to include a realistic model of the
stellar disc and the bulge of the Milky Way, which can be done with the code Magalie

(Boily, Kroupa, & Peñarrubia-Garrido 2001). The presence of a disc component can lead
to shocking, and the non-spherical gravitational potential to a precession of the orbits.
Furthermore, the decay of satellite orbits might be influenced by the presence of a disc
(Peñarrubia et al. 2002), and also their destruction is expected to be influenced.

Another task is to perform a more complete parameter scan for various variants, like:
the mass and concentration of the initial models; orbital eccentricity; orbital inclination
with respect to the disc. With our advanced program Superbox++ we also seek to study
the effects of mutual interactions of the satellite galaxies. How do the orbits of multiple
satellite galaxies on co-rotating orbits behave? These kinds of studies require to run a large
number of simulations to cover a wide parameter space, and have now become feasible:
the Superbox++ code is very efficient, allowing to run one such simulation within about one
day with ∼ 106 – 107 particles and grids with 1283 cells.
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Figure 5.6: Allsky surface-brightness plot of a simulated dark matter free satellite galaxy (S1) with
total mass 2.85× 106 M� and an assumed mass-to-light ratio of 1, being injected into a Milky Way-
like host halo. The trace of the projected orbit is plotted as black dotted line and as solid line for
the last Gyr. The surface brightness in mag/arcsec2 is colour-coded as indicated by the colour-bar,
the resolution of the projection is 0.25 deg2. The satellite is shown after 500 Myr of evolution in the
top panel. At that point the satellite is at a galactocentric distance of ≈ 43 kpc, shortly before its
first peri-galactic passage. After 4.4 Gyr of evolution and four peri-galactic passages (lower panel),
the satellite is close to its apo-centre at a galacto-centric distance of ≈ 99 kpc. The satellite is now
strongly distorted and elongated along its orbital path. This initially low-mass satellite galaxy is
hardly detectable any more for an observer located on Earth.
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Chapter 6

Concluding discussion, remarks &
an outlook

“But if history teaches us anything it is that the next important clues will come from a surprising
direction. Some observation or calculation will be made that will reorient our inquiries and, if this
happens as has happened so often in the past, we will realize that the important evidence has been
sitting unnoticed under our noses for decades.”

Ostriker & Steinhardt (2003) in a Science review article “New Light on Dark Matter”.

6.1 The Local Group satellite galaxies

We have to distinguish two types of satellite galaxies of the Milky Way: first the “classical”
ones, the eleven brightest satellite galaxies of the Milky Way within its virial radius of
∼ 250 kpc. They can be considered as a complete census of dwarf galaxies brighter than
about LV = 2.5 × 105 L� (Mateo 1998, but see below). These galaxies consist of two
irregular galaxies, the Magellanic clouds, and nine dwarf spheroidals. Their properties
are being studied since the middle of the last century (for example Shapley 1938; Wilson
1955; Baade 1956), and their structural parameters are now fairly well constrained (Irwin
& Hatzidimitriou 1995; Mateo 1998; van den Bergh 1999; van der Marel et al. 2002). In
recent years, data sets of radial velocities of hundreds of individual stars became available
(Koch et al. 2007a,b; Muñoz et al. 2005, 2006b; Sohn et al. 2007; Tolstoy et al. 2004; Walker
et al. 2006a,b; Westfall et al. 2006; Wilkinson et al. 2004), that allow to more accurately fit
models (King models are commonly used; King 1962; Hodge 1971) to the data and derive,
for example, the mass-to-light ratio of the nearby dSph galaxies (see Gilmore et al. 2007,
and references therein) under the assumption that they are in virial equilibrium. This
model fitting led to the conclusion that the dSphs must be some of the most dark matter
dominated objects in the Universe (Figure 6.1). It is this sample of dwarf galaxies (plus the
other long known Local Group members; Mateo 1998; van den Bergh 1999) that is mostly
used when CDM simulations are compared to observational data (e.g. Benson et al. 2002;
Kang et al. 2005; Libeskind et al. 2005, 2007; Read et al. 2006a; Zentner et al. 2005).

The second class are the satellite galaxies that were discovered over the last few years

107



Concluding discussion, remarks & an outlook

with help of the SDSS catalogue data. They are very faint and extended, having low surface-
brightnesses (Willman et al. 2005b; Sakamoto & Hasegawa 2006; Zucker et al. 2006a,b; Be-
lokurov et al. 2006, 2007; Walsh et al. 2007a)(a). It was only possible to discover these “fluffy”
systems by systematically applying data-mining algorithms to the catalogue data, scanning
the parameter space for inconspicuous stellar overdensities. Even though discovered in
the database, it is hardly possible to determine their properties like absolute luminosity,
radius, or distance accurately from the SDSS data alone, but follow-up observations are
needed (see for example Zucker et al. 2006a; Walsh et al. 2007b)(b). Even then, the parame-
ters are sometimes only poorly constrained, as the discussion by Muñoz et al. (2006a) about
the Boötes dSph indicates. For another companion discovered in the Boötes constellation,
Boo II, there is also some debate whether it is a galaxy or rather a globular cluster, probably
belonging to the Sagittarius tidal stream (Lee et al. 2007; Walsh et al. 2007b). The latter
issue, the question whether a discovered stellar overdensity is to be classified as a globular
cluster, possibly in a late disrupting stage, or as a dwarf galaxy is of importance for other
objects as well, Willman 1, Seque 1, or Coma Berenices (Willman et al. 2005b; van den Bergh
2006; Belokurov et al. 2007; Gilmore et al. 2007; Siegel et al. 2008), and an active matter of
discussion and research.

Regarding the three dimensional space coverage, Andromeda is a better probe since its
halo is, compared to the Milky Way, not that much affected by obscuration, either by its
own disc or the stellar disc of the Milky Way (McConnachie & Irwin 2006a). As for the
Milky Way, new companions of Andromeda were discovered in the past few years (Martin
et al. 2006; Zucker et al. 2007; Majewski et al. 2007; Ibata et al. 2007; Irwin et al. 2008). Thus
only the faint end of the M31 satellite galaxy luminosity function remains to be explored.
One major difficulty is the determination of the three-dimensional location of the satellite
galaxies with respect to Andromeda. At a distance of ∼ 800 kpc, the distance measurement
uncertainties are of the order of 20 – 30 kpc, i.e. the relative differences to Andromeda are
determinable with about 30 – 40 kpc accuracy only, one order of magnitude worse than
for the Milky Way satellites. Using different distance data-sets can lead to different results,
as we have seen in Section 2.3, even though each data-set individually can be considered
as being internally consistent. The second difficulty is to determine proper motions of
Andromeda and its satellites directly, which was up to now only possible for two galaxies,
M33 and IC 10 (Brunthaler et al. 2005, 2007). The transverse velocity of M31 has only been
estimated based on very different arguments, like assumptions about the motion of the MW
and M31 with respect to the barycentre of the Local Group (Einasto & Lynden-Bell 1982),
the survival of the stellar disc of M33 (Loeb et al. 2005), or the statistical average of the
motion of Andromeda’s satellite galaxies (van der Marel & Guhathakurta 2007). Finally it
is more difficult to determine the structural parameters of the Andromeda satellite galaxies.

We point out that the completeness-bias is a two-fold problem: First, there are regions in
the sky, those very close to the plane of the Milky Way, |b| . 5◦, especially in the direction
of the Galactic Centre, where further galaxies might be hidden by the Galactic disc and the

(a)The discovery of the CVn II dSph was reported twice, first by Sakamoto & Hasegawa in the issue 653 of
ApJ as a letter, and in the subsequent issue of ApJ by Belokurov et al.

(b)We knew about the discovery of the Boötes II stellar overdensity before publication, and intended to con-
tribute photometric follow-up observational data derived with the 1m telescope at the Hoher List observatory.
Unfortunately, the weather conditions did not allow us to obtain any data.
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bulge as we discussed in Section 2.5.1. This does, however, not only affect the Milky Way,
but the Local Group as a total. Loeb & Narayan (2007), for example, hypothesised that there
might be a galaxy comparable in mass to Andromeda hidden behind the Galactic bulge at
a distance of ∼ 1 Mpc. This would also mean that almost all its satellites within the virial
radius were likely undetectable, since a virial radius of 250 kpc at that distance transforms
into an angular radius of 14◦ on the sky. But it might be possible to more easily detect
companions at farther distances. The second bias concerns the sky coverage region of the
SDSS that is shown in Figure 2.3. This region was chosen to primarily cover a northern
Galactic cap with Galactic latitude b > 30◦. Consequently, we miss the opportunity to
detect galaxies at lower Galactic latitudes – despite possible detection problems due to
crowding effects – just due to this sky coverage bias. The Apache Point Observatory, where
the SDSS telescopes are located, is on the northern hemisphere of the Earth. A similar
search campaign is planed for the southern hemisphere, using the new ANU SkyMapper
telescope (Schmidt et al. 2005) located at Siding Spring, Australia: the Stromlo Missing
Satellite Survey (Jerjen et al., in preparation). Unlike the SDSS, this survey is planed to
cover the whole observable sky, and is expected to obtain about 1 mag deeper photometric
data than the SDSS. Most likely, about the same number of dwarf galaxies or more will be
discovered by this survey, possibly also at latitudes close to the Galactic equator.

6.2 Dwarf satellites: are they CDM subhaloes?

The “standard” picture

As aforementioned, the dwarf satellite galaxies are mostly believed to be the dark matter
dominated building blocks of early structure formation processes in the Universe, that
survived until the present as separate entities, not yet merged to form larger galaxies (White
& Rees 1978). There are many findings that are interpreted as supporting this notion (see
Introduction). The well observed dSph satellite galaxies of the Milky Way seem to be
the most dark matter dominated objects we know off in the Universe (Aaronson 1983;
Wilkinson et al. 2002; Kleyna et al. 2003; Gilmore et al. 2007). The large velocity dispersion
of ∼ 10 km s−1 found in all dSph satellites is interpreted as a signature of a large mass-
to-light ratio (Figs. 4.4 & 6.1). This result relies on solving the Jeans equation under the
explicit assumption that the galaxies are in virial equilibrium (but see also Klimentowski
et al. 2007; Muñoz et al. 2007). A large M/L ratio implies that most of the mass of the
galaxies is in invisible matter, i.e. cold dark matter is the matter of choice. Interestingly,
the dSphs are total outliers when one compares their mass-to-light ratios derived from the
virial theorem with those of other spheroidal stellar systems like globular clusters, galactic
bulges, or elliptical galaxies (Figure 6.1).

The “missing satellite problem”, that was pointed out a few years ago (Klypin et al.
1999; Moore et al. 1999), is today usually solved by invoking small scale, subgrid baryonic
processes(c) (Kazantzidis et al. 2004a, and references therein) that suppress star formation

(c)Physical effects, happening on scales much smaller than the resolution of a simulation. They have to be
approximated by making assumptions about their average influence over a large volume. One example are
semi-analytic galaxy formation models: star formation, gas-heating and -cooling are averaged over a large
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in low mass haloes. Within the CDM paradigm, the suppression of star formation is usu-
ally empirically explained, either by supernova feedback processes that heat the halo gas
(Kauffmann et al. 1993), or the epoch of reionization after the Big Bang, which inhibits
the formation of small satellites not already seeded (Benson et al. 2002; Kravtsov et al.
2004; Moore et al. 2006). But the central density profiles of the CDM substructure remain
cuspy, despite tidal heating and destruction of the haloes (Kazantzidis et al. 2004b; Die-
mand et al. 2005b). Even extreme baryon removal cannot evolve a cusp into a core (Gnedin
& Zhao 2002). Nevertheless, a lot of effort has recently been made to push the limits of
CDM simulations, at least locally, to make predictions of luminous CDM sub-structures
within Milky Way sized host haloes (e.g. Libeskind et al. 2005, 2007). Performing hierarchi-
cal structure-formation simulations and combining them with algorithms describing dark
matter – luminous matter biases, like semi-analytic galaxy formation models (e.g. Kauff-
mann et al. 1993; Cole et al. 2000), dark matter subhaloes are generated that appear to
resemble the dSph satellite galaxies of the Milky Way(d). One common ansatz is to perform
a two-stepped simulation: first a low resolution simulation of the growth of large scale
structures is performed, and then, in the second step, regions of particular interest are re-
simulated with a larger number of particles, i.e. with a higher resolution (Frenk et al. 1996).
But even the highest resolution simulations are barely able to account for dwarf galaxies.
Libeskind et al. (2007), for example, ran an N-body/SPH simulation with a mass resolution
of ∼ 2.6× 106 M� and ∼ 1.7× 107 M� for gas and dark matter particles, respectively.
In a very high resolution simulation, Diemand et al. (2005b) achieved a mass resolution of
down to 3× 105 M� in dark matter, only. So, even in these “high resolution” simulations,
one particle is as massive as a typical dSph galaxy. It has also to be kept in mind, that a
“particle” in such a simulation is only a proxy – a test particle in phase-space, discrete in
mass, space, and in its motion. The high-resolution simulations are still several orders of
magnitude away from resolving individual gas- and molecular-clouds, or star clusters.

Another complicating factor is that in the literature different studies use different criteria
in the pairing of subhaloes with satellite galaxies, depending on which criteria are chosen to
match with. Stoehr et al. (2002) found an “excellent agreement” of the Milky Way satellite
galaxies with the most massive subhaloes, whereas Libeskind et al. (2005) argued that the
dSph satellites reside in the most massive progenitors of luminous subhaloes, and Strigari
et al. (2007) found alternatively also an agreement with the earliest forming haloes. In
contrast, Sales et al. (2007b) argued for low mass systems that were accreted very recently,
and Li & Helmi (2008) connected the satellite galaxies to haloes that were grouped before
accretion (see also Lake & D’Onghia 2008). Not all of these possibilities mutually exclude
each other, but it appears to be very controversial within the CDM community which are
the main characteristics that make dark matter subhaloes luminous.

The host dark matter halo of the Milky Way as a whole is also not well constrained yet.
In recent cosmological simulations, Milky Way sized dark haloes are found to be triaxial,
typically more prolate than oblate (e.g. Bullock 2002; Jing & Suto 2002; Diemand et al.

volume and described by analytic functions, whose free parameters are tuned to match with observations. The
astrophysical processes generating the feedback are neither well understood nor constrained on these scales.

(d)As an aside, we note that in current numerical cosmological simulations the formation of spiral galaxies,
the most abundant class of large galaxies, is also an open problem that is not consistently solved (Mayer et al.
2008).
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2005a; Libeskind et al. 2005; Zentner et al. 2005). But the findings for the shape of the
Milky Way halo differ rather substantially. They span the whole range from halo models
that are triaxial (Newberg & Yanny 2004), prolate (Hartwick 2000; Helmi 2004b), spherical
(Ibata et al. 2001b; Fellhauer et al. 2006), or oblate (Helmi 2004a; Johnston et al. 2005), all
consistent with observed data. As the situation is so ambiguous, it might probably only
clear up with forthcoming data from new satellite missions like Gaia or SIM. Such data may
also shed light on the question about the lumpiness of the Milky Way dark halo (Johnston
et al. 2002; Majewski et al. 2005).

Problems with the “standard” picture

Based on the spatial arrangement of the Milky Way satellite galaxies, we argue that their
three-dimensional distribution is incompatible with being drawn randomly from a CDM
subhalo population. The 11 classical satellite galaxies are arranged in a very pronounced,
thin disc-of-satellites (DoS), almost perfectly on a great plane that is highly inclined with
respect to the stellar disc of the Milky Way, as we have shown in Section 2.2 (cf. also
Kroupa et al. 2005). We have explicitly demonstrated (§2.1.2) that it is not a more centrally
concentrated distribution of subhaloes compared to the dark matter host halo that explains
the “thin” configuration of the disc-of-satellites of the Milky Way, as has been argued by
Kang et al. (2005) and Zentner et al. (2005). Libeskind et al. (2005) showed that the overall
distribution of dark matter subhaloes is comparable in shape to the dark matter host halo,
Diemand et al. (2005a) argued that it is even more elongate, i.e. more prolate. It is this
prolate distribution that is the parent distribution of the Milky Way satellite galaxies if they
were dark matter dominated substructures. As we have shown (§2.4.1), it can be excluded
at a 99% confidence level, that the satellite galaxies of the Milky Way are drawn randomly
from a spherical or prolate parent distribution. Only if the parent distribution were oblate,
c/a ≈ 0.5, it can not be excluded that the satellite distribution is drawn randomly from the
parent distribution. But such a realisation is improbable to be found in CDM simulations,
and would stand in contrast to the results of Diemand et al. (2005a). In this case the stellar
disc would have to be oriented perpendicularly to the host halo of the Milky Way. For most
proposed solutions to the Milky Way satellite problem derived from CDM simulations, this
has to be postulated as no disc-formation is included (Kang et al. 2005; Zentner et al. 2005;
Libeskind et al. 2005; Li & Helmi 2008; Lake & D’Onghia 2008). Applying the bootstrapping
analysis (§3.2.2) to a set of satellite galaxies in six CDM simulated Milky Way like haloes that
were claimed to reproduce the DoS (Libeskind et al. 2005), all were found to be consistent
with being randomly drawn from a spherical parent distribution, and to be incompatible
with the distribution of the Milky Way satellites. The currently best solution proposed
within the CDM substructure concept thus fails to account for the Milky Way dSph satellite
galaxies.

Further evidence for an incompatibility of CDM substructures being the observed dSph
satellites comes from our finding that indicates that the Milky Way’s DoS is a rotationally
supported structure (§3.2) rather than a pressure supported, flattened tri-axial spheroid as
found in CDM simulations (Libeskind et al. 2007). The orbital poles derived from recent
proper motion measurements of Milky Way satellite galaxies indicate a common pole of the
orbits of the Large and Small Magellanic Cloud, Ursa Minor, Draco, Carina, and Fornax.
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Their mean orbital pole direction is very close to the direction of the normal of the fitted disc
to the classical satellites. The Milky Way pole-distance distribution (PDD, §3.2.3), which is
still affected by large projected measurement uncertainties, shows an excess of small pole-
distances, implying the DoS to be rotationally supported. Within the uncertainties, the
two probable DoS satellites with the most deviating pole distances, Draco and Carina, are
consistent with being found close to the suggested pole of the disc-of-satellites (< ∆sph,
Figure 3.2). In order to draw strong conclusions based on the PDD alone we need to await
more and more-accurate proper motion measurements. For the two satellites Draco and
Carina, only a single measurement is currently available and their projected uncertainties
are very large. For three of the classical dSph satellite galaxies, Sextans, Leo I, and Leo II,
no proper motion data are available yet.

Another fact substantiates the claim of a rotationally supported DoS: the unweighted
disc-fitting algorithm (§2.1.1 & §2.2.1) is most strongly affected by the spatial location of the
outermost satellite galaxies. We do find, however, a clear alignment of the angular momenta
of the innermost satellite galaxies with this fitted disc, most strongly for the Magellanic
clouds. The only exception is Sagittarius whose orbit might, however, already significantly
deviate from its initial orbit (Zhao 1998). It would be rather curious to find a disc-like
structure where only the inner satellites orbit within the disc, whereas the outer ones which
mostly define the disc don’t. It is the combination of these findings, together with the results
showing that evolved dark matter free galaxies resemble dSphs (§4.1; Kroupa 1997), that strengthen
our notion that the dSph satellite galaxies may not have originated from CDM sub-structures.

In contrast to the Milky Way, the orbital poles of all analysed theoretical sub-structure
systems (§3.2.2) indicate that they can not be rotationally supported: they are all consistent
with being randomly drawn from an isotropic distribution, and instead rather show
evidence of dispersing with time. This would mean that the formally derived normal
of the plane is tumbling. This finding is supported by Libeskind et al. (2007), who
showed that the mean angular momentum of a different set of simulated satellites, using
a smooth particle hydrodynamic code, is not co-aligned with the minor-axis of a fitted
triaxial ellipsoidal dark matter host halo. Although our sample of theoretical sub-structure
systems is limited to six simulated galaxy haloes, we nevertheless have demonstrated an
incompatibility between the distribution of the Milky Way satellites and a set of most
recent CDM simulations, tailored specifically to solve the Milky Way satellite problem.

For the Andromeda satellite galaxies, the situation is unfortunately uncertain. There is
the main difficulty that the distances to Andromeda and its satellite galaxies are only rela-
tively poorly constrained, at least poorly for our application. Therefore we analysed in Sec-
tions 2.3 and 3.3 two distinct distance data-sets, one derived with ground based telescopes
(McConnachie et al. 2005; McConnachie & Irwin 2006b) and the other a collection of various
HST measurements from the literature (Koch & Grebel 2006). For both, the null-hypothesis
that the satellite galaxy distribution has been drawn randomly from a spherical parent dis-
tribution can not be excluded, although the satellite distribution is highly anisotropic and
disc-like (Figs. 2.10 & 2.15). Nor can we exclude the null-hypothesis for the morphological
(mss8, as proposed by Koch & Grebel 2006) and the kinematical subsamples (kss8, §2.3.2) of
satellite galaxies within the virial radius to be drawn randomly from a spherical parent dis-

112



6.2 Dwarf satellites: are they CDM subhaloes?

tribution. The latter result is important as this conflicts with the high statistical significance
claimed by Koch & Grebel (2006) for the morphological subsample. Instead, we find that
the mss8 subsample is likely a chance alignment in their data-set, and can not be verified
using the second data-set analysed here. The kinematically motivated disc-like subsample,
in contrast, is evident in both data-sets, and this disc has virtually the same orientation as
the disc derived for the whole M31 satellite sample. It is also excluded that M33 can orbit
within the disc of the mss8 subsample, while being located very close to it. This follows
from the incompatibility of the RPPs (§3.3.1) of And V and And VI on the one hand, and
the measured proper motion of M33 on the other hand. It is noteworthy that all newly
reported dSphs are found close to the disc of the kss8 subsample, but mostly far off the disc
of the mss8 subsample (see below).

The kinematically motivated subsample of satellite galaxies is substantiated by the “re-
stricted polar path” method introduced in Section 3.3.1. To our knowledge, this is the first
direct method to confine the possible orbits of Andromeda satellite galaxies (except from
direct measurements, of course) and it arises from simple geometrical considerations. The
method is extendable in that a different halo model can be adopted, for example the one
derived for Andromeda by Seigar et al. (2006). The halo model assumed in Section 3.3.1, an
isothermal halo with a circular velocity of 250 km s−1, is a very conservative assumption.
The escape velocity at the approximate virial radius of Andromeda is ve ≈ 350 km s−1 for
that halo model, whereas the escape velocity derived from the mass model of Seigar et al.
(2006) is less than 200 km s−1 (see Majewski et al. 2007, their figure 5). As we assumed that
a satellite’s velocity is at maximum equal to the escape velocity, and confined its orbit if its
direction is fixed at that velocity only, a lower escape velocity results in more likely positive
restriction criteria (Eqn. 3.15). On the other hand, we assumed a zero transverse velocity
for Andromeda (Kahn & Woltjer 1959; Einasto & Lynden-Bell 1982), whereas the results
of Loeb et al. (2005) and van der Marel & Guhathakurta (2007) suggest that a non-zero
velocity is also possible. This result can also be included in the RPP method. The restricted
polar path methods shows that the direction of the orbital pole of And VI can be restricted
in both data-sets. For six of the M31 satellite galaxies the possible orbital poles can only
be restricted for one of the data-sets. RPPs hint to more likely regions of the locations of
angular momentum vectors on the Andromeda sky.

The current CDM simulations of Milky Way like host haloes do not resemble the Milky
Way satellite galaxies, their spatial distribution and their orbital properties. It is important
to test future revised CDM models and compare them to the Milky Way and Andromeda
satellite systems. As this was one important concern of this work, we made the statistical
tests available to the community, including our software, available at http://www.astro.
uni-bonn.de/downloads for further applications, released under an open source licence.

The internal properties of dSph satellites as CDM subhaloes

There are other observational findings that question the approach to interpret the dSphs as
ancient, dark matter dominated building blocks. Helmi et al. (2006) found a significant lack
of very metal poor stars, [Fe/H] . −3 dex, in four observed Galactic dSph satellites (Scu,
Sex, For, and Car). This indicates that the gas, out of which the stars in these galaxies were
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formed, had been homogeneously enriched prior to the formation of the stars. In contrast,
stars in the halo of the Milky Way do show a long tail of very metal poor stars (Frebel
et al. 2005; Helmi et al. 2006). The stellar population in the halo is believed to be in large
parts made up of stars from the dissolved building blocks of the Galaxy. This implies that
the progenitors of the Milky Way’s dSphs must have been fundamentally different from
the cosmological building blocks of the Galaxy. CDM subhaloes that were similar to the
present-day dwarf spheroidal satellite galaxies of the Milky Way can therefore not have
significantly contributed to the stellar population of the Galactic halo (Unavane et al. 1996;
Shetrone et al. 2001; Venn et al. 2004; Helmi et al. 2006).

Gilmore et al. (2007) studied photometric and radial velocity data of a sample of Milky
Way satellite galaxies. They interpreted the data as an indication that dark matter does
not provide cusped inner mass-density profiles, but cored haloes instead, with a core scale
length larger than ∼ 100 pc. They suggested this to be due to a possibly different nature of
the dark matter particles, such as warm dark matter particles, for example sterile neutrinos
(see Biermann & Munyaneza 2007; Biermann et al. 2008), as a viable alternative.

Dwarf spheroidal galaxies – apparently simple stellar systems – seem to be more compli-
cated than was thought. The persistence of sub-structure appears to be a relatively common
feature in Milky Way (and Andromeda) dwarf spheroidal galaxies (Cioni & Habing 2005;
Coleman et al. 2007; Kleyna et al. 2003; Martínez-Delgado et al. 2001; McConnachie et al.
2007a; Palma et al. 2003; Wilkinson et al. 2004, 2005). If the dark halo of a dSph had a cusped
inner profile, any substructure should smear out within a few 100 Myr, whereas it has been
found that substructure can persist for up to 12 Gyr in a cored halo potenial (Kleyna et al.
2003; Wilkinson et al. 2005). Recent observations also indicate that the substructure arises
not solely from a projected spatial overdensity of stars. Moreover it also has a different
kinematic property. Wilkinson et al. (2005) concluded that the presence of kinematical cold
substructures in dSphs is consistent with the picture that the dwarf spheroidals buildup
via the merging of star clusters (Fellhauer & Kroupa 2002b). Rotation curves of low surface
brightness galaxies (van den Bosch et al. 2000; de Blok et al. 2001), and the survival of glob-
ular clusters (GC) bound to the Fornax dwarf galaxy (Goerdt et al. 2006; Sánchez-Salcedo
et al. 2006) also indicate rather flat inner matter density profiles. The GCs belonging to
Fornax, the most luminous dSph satellite of the Milky Way (Table 2.1), would have sunken
to its centre and coalesced with the galaxy, if the halo of Fornax had a cusped profile.

An attempt to learn about the internal dynamical properties of the stellar and the dark
matter components of dSph satellites in the context of CDM is to model one particular
satellite galaxy, or general properties of satellite galaxies, by simulating individual galaxies
orbiting the Milky Way (for example Fellhauer et al. 2006, 2007b, 2008; Peñarrubia et al.
2002, 2007, 2008; Read et al. 2006b), similar to the models discussed in this thesis in Sec-
tions 4.1 and 5.2. In these kinds of models, either a static or a live dark matter halo is
assumed: “static” means that the gravitational potential is described by an analytic for-
mula, that can include not only a description for the MW dark matter halo component,
but also one for the baryonic disc and bulge components of the Galaxy (e.g. Johnston et al.
1999). A “live” halo model, in contrast, is build up of dark matter particles that are evolved
forward in time as are the dwarf galaxy models (§5.2). The latter halo models thus can
react on the motion of the satellite, and a satellite might for example suffer a deceleration
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due to dynamical friction (cf. Peñarrubia et al. 2002). Both models have in common that
no major mass accretion to the halo is assumed. This is a reasonable assumption for the
last ∼ 8 Gyr that is consistent with results from large scale simulations, where it is found
that the main epoch of accretion is finished by z = 1 (Diemand et al. 2007)(e). Furthermore,
initial conditions for the satellite galaxy have to be adopted. For their dark matter halos
the choice of these are motivated by the more or less scale-free behaviour found in CDM
simulations (Moore et al. 1999). The subhaloes, in which the galaxies reside, are modelled
like the host halo, but with a lower total mass. The mass of the subhaloes is chosen with
some reasonable assumptions, but can in general span a large range of masses, varying
from some ∼ 106 M� to ∼ 109 M� (e.g. Read et al. 2006a; Fellhauer et al. 2008; Peñar-
rubia et al. 2008), typically favouring larger masses to populate the high-mass end of the
CDM subhalo mass range. The “tricky part” is the modelling of the stellar component
within the subhalo. The main question is whether stars are initially distributed as the dark
matter component or not. In recent studies often two component models were used (e.g.
Read et al. 2006a; McConnachie et al. 2007b; Peñarrubia et al. 2008), that comprise an ex-
tended dark halo and a compact stellar component. These models assume that the dwarf
spheroidals are in virial equilibrium, and they are explicitly set up to have a high total
mass-to-light ratio. Some data suggest, that even the stellar population itself is not ho-
mogeneously distributed, but consists of distinct components with different radial density
profiles, which are then also set up as distinct populations in the models (McConnachie
et al. 2007a,b).

The various CDM motivated models of dSph galaxies, that depend on two assumed
initial properties, the dark matter content and the properties of the stellar component, are
interpreted to account for different observed properties. These simulations are used to
analyse and explain a wide range of observed features in and around the satellite galaxies
of the Milky Way and Andromeda, like their radial density and velocity dispersion profiles
(e.g. Read et al. 2006a; McConnachie et al. 2007a; Fellhauer et al. 2008), or properties of
stellar streams in the halo possibly being stripped from a satellite galaxy (e.g. Ibata &
Lewis 1998; Johnston et al. 1995, 1999; Fellhauer et al. 2006, 2007b). Indirectly, these models
can also be used to constrain the dark matter halo of the Milky Way. Fellhauer et al.
(2006) for exampled argued, that the observed bifurcation of the Sagittarius stream can
only be understood if the host dark halo is close to spherical. Very recently Binney (2008)
developed an algorithm that directly allows to fit orbits of stellar streams and to constrain
the gravitational potential of the Milky Way directly.

The internal properties of dSphs as dark matter free satellites

The models analysed in this thesis, as described in Section 4.1, differ substantially from
those discussed above in that they do not include any dark matter component. This was, at

(e)Time before now or lookback time, ∆te, is in cosmological research often expressed in terms of “redshift”
z, since redshift is a direct measurable quantity. Depending on the cosmological model parameters assumed,
the lookback time, and thus the time since the Big Bang, can be calculated from the redshift z. For example,
for the standard model with Ωm = 0.3, ΩΛ = 0.7, and h = 0.7 we find: z = 1→ ∆te ≈ 7.7 Gyr, z = 2→ ∆te ≈
10.3 Gyrs, at an age of the Universe of 13.5 Gyrs.
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Figure 6.1: Dynamically derived mass-to-light ratio versus absolute magnitude as in Figure 4.4.
Additionally to the dSph satellites of the Milky Way and Andromeda, we also plot data for globular
clusters, ultra compact dwarf galaxies, dwarf and giant ellipticals, and bulges of spiral galaxies (the
additional data were taken from Dabringhausen et al. 2008). The two horizontal lines indicate a
constant mass-to-light ratio of 1 and 3 in Solar units, respectively. Compared to the other spheroidal
stellar systems, dSph galaxies stand out with extraordinary high dynamical mass-to-light ratios.
These are derived from radial velocity dispersion measurements under the assumption that the
stellar systems are in virial equilibrium, an assumption that may not be valid at all for the dSph
satellite galaxies as we have shown in Section 4.1. Note that all spheroidal, i.e. pressure supported,
systems have (M/L)obs ≤ 10(M/L)�, apart from the dSph objects.

first, nothing more than an assumption that was made, without any further statement about
the origin of those stellar systems (but see below). Indeed, such systems have already been
studied by various authors (e.g. Kuhn & Miller 1989; Kuhn 1993; Kroupa 1997; Klessen &
Kroupa 1998; Fleck & Kuhn 2003; Read et al. 2006a, whereby Kroupa saw the progenitors
of today’s dSph satellites as being formed in tidal tails). A key feature of these models is
that the stellar systems are not “shielded” from tidal forces by a dark matter halo, such that
tides become more important than for dark matter dominated satellite galaxies.

Dark matter free galaxies were placed into a Milky Way like host dark matter halo on
orbits with various eccentricities (§4.1). Although their initial properties differ from those
of today’s dSphs, after a Hubble time they appear very similar to the dSph satellites of the
Milky Way for a variety of different initial orbits. During perigalactic(f) passages, energy is
pumped into the satellites leading to an expansion and loss of outer stars. The remaining
quasi-stable remnant matches many of the observed properties, like half-light radii, abso-

(f)Perigalacticon: point of closest approach to the Galactic Centre.
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lute luminosities, and dynamically determined mass-to-light ratios. The observed proper-
ties of individual model satellites can, though, vary substantially, depending on the phase
of their orbit. In their evolved states, initially identical objects can have, for example, half-
light radii of r1/2 ∼ 125 – 400 pc, a range that matches the values observed for Local Group
dSphs, even though their initial half-light radii were smaller than 100 pc. The tidal evo-
lution might also be an explanation why virtually no stellar systems are found in a “gap
region” between r1/2 ≈ 25 pc and r1/2 ≈ 100 pc as noted by some authors (Belokurov et al.
2007; Gilmore et al. 2007, see also top panel in Figure 4.3, and Figure 4.6), but this has
to be studied in more detail. It is also very interesting that the dark matter free models
qualitatively reproduce the trend to have higher dynamical mass-to-light ratios with lower
luminosities as plotted in Figure 4.4. This trend is commonly interpreted to be a signature
of an approximately universal halo mass of ∼ 107 M� (Mateo 1998). Our models suggest
that it might instead be a trend of the increasing impact of tidal heating the lower the stellar
mass of a system gets.

Of course, there has been a good motivation to use the dark matter free galaxy models
as analysed in Section 4.1 and for the choice of their initial properties: that is the existence
of tidal dwarf galaxies. Such objects, observed to form in the local and distant Universe,
are discussed in more detail in the next Section.

6.3 Dwarf satellites: are they tidal dwarf galaxies?

A fundamentally different possible origin for low mass galaxies is that they were formed
as tidal dwarf galaxies (TDG, Mirabel et al. 1992) in an anti-hierarchical process already
pointed out by Zwicky in the middle of the last century (Zwicky 1956, and references
therein). The formation of TDGs is observed to occur in the local and very distance Universe
(Schweizer 1978; Hunsberger et al. 1996; Duc & Mirabel 1998; Weilbacher et al. 2003; Walter
et al. 2006; Straughn et al. 2006). Interacting gas-rich galaxies throw out long, thin tidal
arms full of gaseous and stellar material expelled from the discs of the interacting galaxies
(Toomre & Toomre 1972). Over-dense regions in the tidal arms fragment, become self-
gravitating, and collapse. Star formation sets in in these new born tidal dwarf candidates(g)

as is for example observed in the “Antennae” galaxies, NGC 4038/39 (Whitmore et al.
2005), the “Tadpole” galaxy, UGC 10214 (Jarrett et al. 2006), or the “Mice”, NGC 4676
(Chien et al. 2007). From observations it is evident that even those interactions taking place
in the local Universe, i.e. with a disc gas fraction similar to that of the MW or M31, can
form of the order of a dozen TDGs in a single encounter (Elmegreen et al. 1993; Weilbacher
et al. 2000, see also Figure 4.5). The production rate is expected to have been higher in the
past given the larger gas-fraction in early galaxies (Wetzstein et al. 2007). Monreal-Ibero
et al. (2007) found in a classical radius-velocity dispersion plot (Terlevich & Melnick 1981),
that observed properties of young TDG candidates fall in a region of the plot that strongly
suggests that they are gravitationally bound entities, and they show similarities to other
dwarf galaxies. Some tidal dwarfs might become detached from their hosts, appearing as

(g)The term “tidal dwarf candidate” is often used as a precaution, as it is not always evident from single
observational data that an over-density in a tidal arm will later form a separate galaxy or whether it becomes
unbound and disperses, probably being captured by one of the host galaxies.
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ordinary isolated dIrr or dSph galaxies (Elmegreen et al. 1993; Hunter et al. 2000). Tidal
dwarf galaxies may significantly contribute to dwarf galaxy populations: Hunsberger et al.
(1996) suggested that about half of the current dwarf galaxy population in compact groups
could be of tidal origin, and Okazaki & Taniguchi (2000) argued that if only 1 – 2 long-lived
TDGs form per wet encounter, the number of dwarf ellipticals can be explained as being
tidal dwarfs under standard cosmological structure formation conditions. This number
of TDGs per encounter is deduced independently by Delgado-Donate et al. (2003) from
direct observations in the local Universe strengthening the case for TDGs being a major
contributor to the dwarf galaxy population.

The formation of tidal dwarf galaxies is evident in simulations as well (Barnes & Hern-
quist 1992; Elmegreen et al. 1993; Duc et al. 2004; Bournaud & Duc 2006; Wetzstein et al.
2007). Recently, Bournaud & Duc (2006) studied the formation and survival of tidal dwarf
galaxies produced in encounters of colliding galaxies with gas content typical for galaxies
in the local Universe, that is a low disc gas fraction of the order of 10 per cent. In their
code the gaseous component was represented by sticky particles, a scheme that is also a
possible extension for our Superbox++ code (§5.1.4). They found that about one quarter
of their TDGs were “long-lived” objects: they still persisted when the simulations were
stopped after 2 Gyr. These “long-lived” tidal dwarfs were predominately formed in the
outer regions of the tidal tails (see also Duc et al. 2004), whereas TDGs formed in the inner
regions, close to the hosts, fall back and, according to their understanding, merge again
with the host galaxies on short time-scales. Wetzstein et al. (2007) used an N-Body/SPH
code and showed that tidal dwarfs are dominated by gas; dissipational hydrodynamics is
crucial for their formation: about 70 per cent of the mass of a TDG is in gas, whereas they
are free of non-baryonic dark matter. More TDGs were formed in models with a larger gas
fraction of 30 per cent, indicating that the number of TDGs produced per encounter in the
early Universe must have been higher than is observed in the local Universe. To our knowl-
edge, the production of tidal dwarf galaxies has been studied in computer simulations for
parabolic orbits only, where the two progenitors merge within a short timescale, but not
for hyperbolic orbits which do not lead to a merger. The numbers, masses, kinematics,
and other properties of TDGs might differ for hyperbolic interactions, which certainly take
place in nature.

The current computer models (Bournaud & Duc 2006; Wetzstein et al. 2007) only cover
the upper end of the possible mass range of stellar systems formed in the tails, & 108 M�.
Many more low-mass objects are expected to be produced, as is evident from observations
(Whitmore et al. 2005), that are not resolved in current simulations. It is important to
study also their evolution and fate. They may evolve into spheroidal dwarf galaxies via the
merging of star-cluster complexes (Kroupa 1998; Fellhauer & Kroupa 2002a), a process that
occurs on a relatively short timescale of a few tens to a hundred Myr. Such objects are also
known to survive explosive residual-gas removals (Fellhauer & Kroupa 2005).

Notably, an additional anti-hierarchical formation mode for dwarf galaxies has been
proposed recently: Kronberger et al. (2008) simulated the effects of the motion of a spiral
galaxy through a constant temperature and pressure gas that is similar to the intercluster
medium. They found that DM free galaxies can also form from the material stripped off
the galaxy due to ram pressure – they termed them “stripped baryonic dwarf” galaxies.
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The chemical evolution of young tidal dwarf galaxies has been theoretically studied
by Recchi et al. (2007), suggesting that long lasting star-formation episodes, which have
been deduced for the Milky Way satellites (Grebel 2001), can be understood in dark matter
free galaxies. A small galaxy can be relatively stable against the feedback of ongoing star
formation (Hensler et al. 2004), and Recchi et al. (2007) conclude that gas dynamics in the
centre of a dwarf galaxy is more strongly influenced by the gas-density and its distribution
than by the depth of the potential well. Once gas is removed from the galaxy centre, it
can later be re-accreted, replenishing the gas reservoir for further star formation epochs (cf.
Recchi & Hensler 2006). Work has been started to study the chemical evolution of young
TDGs in more detail (Recchi et al. 2007; Marcolini et al., in preparation). Once TDGs have
formed, their chemical evolution is decoupled from each other, which can lead to very
different individual chemical evolutions (Calura et al. 2008), also depending on their orbits
about the host galaxy.

Tidal dwarfs as progenitors of the Milky Way dSph companions

All simulations of tidal dwarf formation predict a low true mass-to-light ratio(h), which is
also evident from observations (Walter et al. 2006). But the observational data for Milky
Way dSph satellites indicate them to be dark matter dominated objects, having large M/L
ratios. The dark matter free models (§4.1), however, clearly show that an apparently high
M/L ratio can be caused by tidal physics. In conclusion, this means that, when deriving the
dynamical mass-to-light ratio from radial velocity dispersion measurements, the assumption
made that the dwarf spheroidal satellites are in virial equilibrium, is not valid. Instead, the dSphs
may be significantly perturbed. Extratidal features, that are expected to be present if a
satellite galaxy is indeed affected by tides, are observed for many satellites, for example
also for the remote satellite Leo I at a galactocentric distance of 254 kpc (Sohn et al. 2007),
though not for all. While the tidal stream of Sagittarius is very prominent (Ibata et al. 2001a;
Majewski et al. 2003), these features are likely overlooked for the distant satellite galaxies,
as the stream would contain only very few bright stars that are easily observable (Muñoz
et al. 2007), and the surface-brightness of the stream is very low (see also Fig. 4.1 and §5.2).

If an interaction of a gas-rich galaxy with the proto-Milky Way took place in the early
Universe, a large number of tidal dwarfs would have likely been produced, being natu-
rally arranged in a disc-like structure: due to the conservation of angular momentum, their
orbital poles are determined by the plane of the interaction. Lynden-Bell (1983) already
suggested that Milky Way satellite galaxies might be tidally torn-off a common progenitor
galaxy. If the orientation of this plane is persistent, which is expected for an almost spheri-
cal halo, the satellite galaxies we see today are naturally found in a disc-of-satellites. Only
if satellite galaxies are strongly influenced by the non-spherical gravitational potential of
the Milky Way’s disc, or scatter with another dwarf galaxy, their orbital planes may signif-
icantly change (Zhao 1998; Peñarrubia et al. 2002; Sales et al. 2007a). It has, for example,
been proposed that Sagittarius was deflected by the Magellanic Clouds (Zhao 1998) into its
current orbit which is not within the DoS.

(h)The “true mass-to-light ratio” is the ratio that is derived when summing up all the physical masses of
the luminous and non-luminous baryonic, and the non-baryonic matter, and setting it in relation to the total
luminosity in the visual V-band. This is typically expressed in units of the solar mass-to-light ratio, (M/L)�.

119



Concluding discussion, remarks & an outlook

tim
e

Figure 6.2: The “baryonic mangrove tree”. Time increases from top to bottom. As gas-rich structures
– the galaxies – merge, they form more massive galaxies, but contemporary with the merging, new
sub-structures – tidal dwarf galaxies – are build that survive until the present. Compare this drawing
to the merger tree allegory, Figure 1.1, for a dark matter model.

As we have shown, the spatial distribution of the Milky Way satellites is incompatible
with being randomly drawn from a spherical or prolate parent distribution (§2.4). Instead,
the disc-of-satellites appears to be a rotationally supported structure (§3.2), though the
proper motion measurement uncertainties are still large. This is not only consistent with
the hypothesis that the dwarf spheroidals were formed as tidal dwarf galaxies, it is a natural
outcome. For the Andromeda galaxy, its DoS is not statistically significant, but the satellite
galaxies are nevertheless anisotropically distributed (Figs. 2.10 & 2.11). When adding the
dSph galaxies discovered during the last three years to surround the MW and M31, we find
that they all lie close to both discs-of-satellites. This is very remarkable and not expected
if they were isotropically distributed. Despite some bias due to the sky coverage region
of the SDSS (Figs. 2.3 & 2.7), there are large portions of the sky within the virial radius
that are off the DoS, where no satellite galaxies are reported. The same is the case for
the Andromeda system, only marginally influenced by obscuration (McConnachie & Irwin
2006b): no satellite galaxies are reported that are far off the DoS. Majewski et al. (2007)
noted that along a radial vector from the centre of M31, connecting NGC 147 and And XIV,
in total six satellite galaxies are located in projection, and Irwin et al. (2008) found that
And XVII is also on that line. We demonstrated that the new dSphs lie on a straight line
not only in projection, but taking their full three-dimensional data into account, we find that
they belong to the same disc-of-satellite as previously proposed. This holds true despite
large distance uncertainties.

If the Milky Way’s dwarf spheroidal satellite galaxies are of tidal origin formed in an
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interaction in the early Universe, they would share many properties with dark matter dom-
inated cosmological building blocks that need careful inspection to unambiguously distin-
guish the two scenarios: evolved TDGs would contain old stars (Elmegreen et al. 1993;
Wetzstein et al. 2007), may have had long lasting star formation epochs (Hunter et al. 2000;
Recchi et al. 2007) probably being replenished by previously expelled gas (Recchi & Hensler
2006), and appear very similar as today’s dSph satellite galaxies (Kroupa 1997 and this the-
sis, Chapter 4). Looking for strong correlations of satellite orbits (Lynden-Bell 1976, 1983;
Palma et al. 2002) is an entirely independent line-of-evidence for tidal dwarfs as discussed
in Chapters 2 and 3.

One observation that would exclude a satellite galaxy to be of tidal origin would be a
direct detection of dark matter in the galaxy. In theoretical particle physics there exists a
rich zoo of more or less good candidates for non-baryonic dark matter particles (Bertone
et al. 2005), for example neutralinos or WIMPs, and these particles are expected to produce
a significant flux in γ-rays due to their decay. While a non-detection is of course no proof
for non-existence (it is dependent on the sensitivity of the detectors), until now there is no
detection of a high energy γ-ray signal in dwarf galaxies that are thought to be the most
dark matter dominated objects, for example in the direction of the Sagittarius dwarf galaxy
(Aharonian et al. 2008). So a direct proof for the existence of dark matter particles has to
be awaiting.

6.4 A concluding remark

The theory that satellite galaxies are evolved tidal dwarfs is an alternative to the hypothesis
that they are dark matter dominated dwarf galaxies. Notably, the tidal dwarf theory works
within the standard cosmological framework.

But – the theory that the satellite galaxies are of tidal origin resulting from an interaction
of gas rich galaxies in the early Universe is the only one that accounts for the vast majority
of satellite galaxy features discussed here self-consistently. The tidal dwarfs would be
arranged in the plane of the interaction (§2), and the resulting disc-of-satellites would be a
rotationally supported structure (§3). They would contain an ancient stellar population and
appear pre-enriched with stellar populations that need not reflect the metallicities of halo
population II stars. And they can have long lasting star-formation episodes. The internal
dynamics of satellite galaxies are strongly influenced by the tidal interaction with the host
galaxy leading to an increased velocity dispersion that can be explained by dark matter free
dwarf galaxy models that account for other properties as well, as discussed in Chapter 4.

In accordance with the dark matter merger tree, as shown in the Introduction, if we
seek to illustrate the idea that satellite galaxies are born as tidal dwarf galaxies a “baryonic
mangrove tree”, as shown in Figure 6.2, appears to be a good allegory. Large gas-rich
galaxies merge to form more massive ones – and at the same time a number of tidal dwarfs
are spawned some of which may remain in the vicinity of their hosts as satellite galaxies.
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6.5 Dwarf satellites: how about MOND?

One aspect of the TDG-origin theory for dSph satellites is that while most of their ob-
servable features can be accounted for, as shown above, the observed velocity dispersions
are remarkably similar, σv ∼ 10 km s−1. The dark matter free galaxy models (§4) lead to
dSph-like solutions with a larger scatter, 2 . σv . 25 kms, although this requires further
numerical affirmation. This possible discrepancy, which is the only one emerging in the
TDG theory, may hint at the possibility that gravitation is non-Newtonian. It is therefore
interesting to reconsider the satellite galaxies and the tidal dwarf scenario in the context of
Modified Newtonian Gravity (MOND, Milgrom 1983). According to this theory, Newton’s
law of gravity is only valid in the case of a strong acceleration, as is the case on Earth or in
the Solar system, but has to be modified in the case of a weak gravitational field. In MOND
this is written as

gN = µ

(
a
a0

)
a , (6.1)

where gN is the Newtonian gravitational acceleration, a is the modified, true acceleration
acting on a test particle, and µ(x) is an interpolation function. a0 ∼ 1.2× 10−10 km s−1 is
the critical acceleration of MOND, the value at which the transition from the Newtonian to
the MONDian regime of the gravitational law takes place. µ(x) is a smooth function that
has to fulfil the following limiting conditions:

µ(x) ≈
{

1 : x � 1
x : x � 1

, (6.2)

but can otherwise be arbitrarily chosen, e.g. one can adopt µ(x) = x/
√

1 + x2 as proposed
by Bekenstein & Milgrom (1984). In recent years, more studies considered MOND as a se-
rious alternative to the dark matter hypothesis, in particular after a relativistic formulation
of MOND was introduced (TeVeS, Bekenstein 2004). Only with the relativistic theory it is
possible to understand the bending of light as observed by gravitational lensing.

MOND has been originally introduced to fit the rotation curves of spiral galaxies with-
out invoking any kind of non-baryonic dark matter, and has been shown to be applicable
from dwarf galaxy to galaxy cluster size scales (Sanders & McGaugh 2002). It has to be
mentioned that there are observations that are interpreted to contradict MOND, as they
indicate direct evidence for the existence of invisible mass. One of the most famous re-
cent examples of such an observation is the galaxy cluster 1E 0657-56, the “bullet cluster”
(Markevitch et al. 2006; Clowe et al. 2006, 2007). This cluster is an interacting system of
two galaxy clusters that seem to have passed through each other. X-ray observations of
the intracluster gas indicate a very high shock velocity of ∼ 4 700 km s−1. The gas is seen
as bow-shock fronts, but the bow-shocks lag behind the centres-of-mass as determined by
gravitational lensing measurements. The mass distribution is interpreted as the distribution
of the dissipationless dark matter haloes, and many groups modelled and interpreted this
system in the context of cold dark matter (Clowe et al. 2006; Mastropietro & Burkert 2007;
Milosavljević et al. 2007; Springel & Farrar 2007; Nusser 2008). On the other hand, there are
claims that this cluster can not be fully understood in CDM, MOND not being ruled out
(Zhao 2007; Angus & McGaugh 2008).
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6.5 Dwarf satellites: how about MOND?

Tidal dwarf galaxies have also been recently addressed with the MOND theory. Bour-
naud et al. (2007) studied rotation curves of three TDGs around NGC 5291, and found that
a large amount of unseen material must be present in these galaxies, about a factor of two
more massive than the visible matter. They concluded that within the standard CDM the-
ory this undetected mass is most likely cold, molecular gas – baryonic dark matter. Soon
after, Milgrom (2007) and Gentile et al. (2007) showed that the observed rotation curves can
be naturally explained without any free parameters within the MOND framework. The
MOND theory also accounts for the observed velocity dispersion seen among Milky Way
dSphs (Łokas 2001), whereby tidal and projection effects would play an important role just
as in Newtonian dynamics (§4.1). On the other hand, in MOND the in-spiralling time-scales
of globular clusters in dSph galaxies get shorter (Ciotti & Binney 2004; Nipoti et al. 2008),
posing a challenge to explain the persistence of GCs in Fornax (Sánchez-Salcedo et al. 2006)
but this persistence is also a problem for CDM.

One way to study dynamics of stellar systems in MOND is to perform N-body compu-
tations, as done in Newtonian dynamics. The main difficulty is that MOND is a non-linear
theory. Poisson’s equation in MOND,

∇
{

µ

( |∇φ|
a0

)
∇φ

}
= 4πGρ , (6.3)

has to be numerically solved at each time-step of a simulation. There are currently two
software codes developed we know off that solve Equation (6.3) numerically (Nipoti et al.
2007; Tiret & Combes 2007). We are elaborating the possibility to modify the Superbox++

code (§5.1) to also solve Poissons equation in the MOND theory. If this is feasible, it will
easily be possible to calculate models of dwarf galaxies as done in Section 5.2 within the
MOND framework, and to compare the data with the results derived under the assumption
of Newtonian gravity plus dark matter, and with the observations.

It is noteworthy that as long as the internal acceleration of a satellite galaxy is in the
Newtonian regime, i.e. the internal acceleration is significantly larger than a0, the results
derived for the models analysed in Section 4.1 would not change. Only if the internal
acceleration drops below a0 due to the continuous mass-loss, would the modification of
the gravitational law come into play. It is hard to forecast the consequences in detail, but
the main effect would be that the galaxies start to appear as if they were dark matter
dominated. This is expected to only affect the late stage of the models, when the satellite
is almost disrupted and has lost almost all of its mass. The consequence would be that the
satellites are more strongly bound during the late stage than the current Newtonian models
suggest. This does not necessarily mean that the velocity dispersion drops significantly, but
rather that the escape velocity from the galaxy gets larger. Moreover, if MOND is indeed
correct and no non-baryonic dark matter exists, there would be no difference between a
cosmological building block and a tidal dwarf galaxy in terms of non-baryonic dark matter
content – there is none. Gravitationally, both types of galaxies would behave in an equal
manner. There might be, however, a difference in initial properties like chemical abundance
of gaseous material, radial extent, and initial mass density profiles.
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Concluding discussion, remarks & an outlook

6.6 Outlook

The next years will be exciting: new satellite galaxies of the Milky Way and Andromeda are
expected to be discovered by upcoming search campaigns. If the new faint satellite galaxies
turn out to be isotropically distributed we would be left with the uncomfortable fact that the
most luminous satellite galaxies are concentrated towards the disc-of-satellites, whereas the
rest would be isotropically distributed. A biasing with luminosity towards the DoS would
then have to be explained, as it is not predicted by current standard models. If they turn
out to be located within the disc-of-satellites, this would substantiate the suggested strong
correlation of the satellite galaxies, and it would become more challenging to explain them
as luminous, dark matter dominated sub-structures.

The other main step forward will be when new proper motion measurements become
available. Some measurements have already been started to derive proper motions for
dSphs satellites of the Milky Way with the Hubble Space Telescope, but the main improve-
ment will take place with more accurate measurements from forthcoming space missions,
such as NASA’s SIM mission and the ESA mission Gaia, dedicated to measure accurate
positions and proper motions of stars. These proper motions will allow to better constrain
or exclude the proposed possible common motion of the dSphs within the disc-of-satellites
of the Milky Way.

From the theoretical side it is very important to study the dSphs in more detail: models
of dark matter free satellite galaxies, motivated by the tidal dwarf theory, are an important
part of the puzzle concerning the origin of dSph satellite galaxies. Tidal dwarf galaxies are
observed to form in galaxy encounters, and thus must be an inherent part of any cosmo-
logical model. But current large-scale hierarchical structure formation simulations do not
account for tidal dwarf galaxies. Computer models that are used to study the formation
of tidal dwarfs do not account for their long-term evolution and only cover the upper end
of the possible mass-range of bound stellar systems. Detailed chemo-dynamical models
are way to complex to be included in full scale simulations, thus being currently limited
to single dwarf galaxy models. And detailed star-formation models are basically limited to
single star-formation regions.

Computer models as described in this thesis can be run for a large range of parameters
with our Superbox++ code, to fill the gap between the very large-scale structure formation
and the very small-scale star-formation simulations. As in the last years deep photometric
data and radial velocity measurements for hundreds of stars became available, it is now
possible to compare the models with observations in more detail. This allows to better
constrain the possible parameter space of dark matter free satellites. But it is also important
to distinguish between “what is theoretically observable” in the models and “what is really
observable” in nature. Here the automated analysis software – the virtual observer – has
to be advanced, for example by including models of foreground contamination due to the
Galaxy.
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Chapter 7

Summary

This thesis presents a detailed study of the phase-space distribution of dwarf satellite galax-
ies in the Local Group, belonging to the two large spiral galaxies, the Milky Way and An-
dromeda, within the framework of hierarchical structure formation, and a critical test of
the most recent CDM solutions. A theoretical model of dark matter free dSph satellites is
presented, and a code, Superbox++, is developed for future dynamical studies of the Local
Group satellite galaxies.

In Chapter 2, a statistical method is presented that can be used to test the robustness of a
plane-fit to the distribution of satellite galaxies. This method is based on the bootstrapping
technique and statistical methods for the analysis of spherical data. We show that a central
concentration of satellite galaxies that mimics a “thin” distribution can not explain the ap-
parent presence of a disc-of-satellites (DoS) of the Milky Way. This DoS is highly inclined
with respect to the stellar disc of the Milky Way. We find that it can be excluded with high
significance that the three-dimensional distribution of the satellite galaxies is drawn ran-
domly from a spherical or prolate parent distribution as found in CDM structure formation
simulations. The Milky Way disc-of-satellites is not found to be related to the Andromeda
system, or the intermediate scale structure, the supergalactic plane, contradicting the no-
tion that the DoS was build up by the individual accretion of galaxies preferentially from
the direction of the supergalactic plane.

The satellite galaxies of M31, the Andromeda galaxy, are also addressed. Therefore, first
a coordinate system centred and co-aligned with the stellar disc of Andromeda is defined
in the most general way. The Andromeda system is much more affected by the distance
measurement uncertainties to the galaxies. To reduce possible biasses, two independent
distance data-sets are analysed. It is found that the satellite galaxies are anisotropically
distributed as well, also arranged in a disc-of-satellites. Two subsamples of satellite galax-
ies are analysed: one as previously proposed that was based on a morphological selection
criterion, and one as proposed in this thesis, based on a kinematic selection criterion. Us-
ing a Monte Carlo method we show that the plane-like appearance of the morphologically
motived subsample is most likely a chance alignment in one of the data-sets, and is system-
atically affected by the large distance uncertainties. In contrast, the kinematically motivated
DoS is found to be unaffected by systematics, and is co-aligned with the DoS of the whole
sample of M31 companions.
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Summary

We also showed that those satellite galaxies that were discovered over the last few years
for both large spirals, the Milky Way and Andromeda, are found close to the discs-of-
satellites. This is remarkable as it is not expected if they were isotropically distributed,
even if the sky coverage region of the SDSS is constrained towards the Galactic North Pole.
Also Andromeda’s recently announced companions fall on its DoS. It appears implausible
that for both systems the disc-of-satellites is present due to observational biases only. That
would be a very strange coincidence.

In Chapter 3 the orbital properties of the satellite galaxies are analysed. New proper
motion measurements of Milky Way satellite galaxies became available over the last years.
The proper motions were used to calculate the orbital poles and their projected uncertainties
for the satellites. A pole-distance distribution (PDD) is derived. As this distribution is
biased for a small numbers of directions, we determined the measured random PDD using
a Monte Carlo method, and derived an analytic fitting formula for the PDD that can be used
to test a given distribution for randomness. For a set of six CDM realisations of a MW-like
host galaxy we found that their satellite galaxies are consistent with being randomly drawn
from an isotropic distribution. Their mean orbital poles point away from the minor axes
of their spatial distribution. These pressure supported flattened tri-axial spheroids tend to
disperse with time, and are found to be incompatible with the Milky Way satellites. In
contrast, the Milky Way PDD shows an excess of small pole distances, which indicates
that their orbits are correlated. The co-alignment of the mean orbital pole of six Milky
Way satellite galaxies with the normal of the fitted disc-of-satellite implies the DoS to be a
rotationally supported structure.

For the Andromeda galaxy it is not possible to directly constrain the orbital poles of its
satellite galaxies. Only for two of the satellite galaxies in the M31 system proper motion
measurements are available. But taking advantage of the different observational geometry,
we presented a method that, to our knowledge for the first time, can be used to confine the
possible orbits of M31 companions to so-called “restricted polar paths”. The method is not
limited to satellite galaxies, but may also be applied to globular clusters in the halo of An-
dromeda. This restriction criterion allowed us to constrain possible correlated orbital poles.

Finally, we addressed the question whether observed structural parameters of dSph
galaxies can be accounted for by models of dark matter free, i.e. tidal dwarf satellite galax-
ies in Chapter 4. A set of such models was analysed that has been numerically evolved,
orbiting in a MW-like dark matter host halo. It is found that after a Hubble time of evolu-
tion such stellar systems can seemingly have large dynamically derived mass-to-light ratios
in agreement with the observed values for Milky Way and Andromeda satellite galaxies.
Also other properties, such as the half-light radii and absolute magnitudes, fall in the range
of values that are observed. It seems that the actually observed dSph galaxies can perfectly
exist without containing dark matter.

To further study the properties of dark matter free satellite galaxies we implemented a
high-performance code in C++ for galactic dynamics, Superbox++, as described in Chapter 5.
The software extensively uses multi-core capabilities of modern CPUs, and is very flexible
and extensible, but at the same time very portable. This code was tested and compared to
a widely used software, Superbox, and is found to behave equivalently.
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Appendix A

Uncertainties of the orbital poles

In Section 3.2, we calculate the orbital poles of the satellite galaxies from their three dimen-
sional positions, proper motion, and radial velocities, as well as their projected uncertain-
ties, which are plotted in Figure 3.2. These uncertainties were calculated incorporating the
proper motion uncertainties only, as these contribute mostly to the total uncertainties. Here
we give an estimation, why none of the other measurement uncertainties contribute signif-
icantly to the uncertainties of the specific angular momentum vectors. We repeat Eqn. (3.4)
here for clarity:σ2

U
σ2

V
σ2

W

 = C

 σ2
vr

k2 [(rσµα∗)2 + (µα∗σr)2]
k2 [(rσµδ

)2 + (µδσr)2]
+ 2µα∗µδk2σ2

r

b12 b13

b22 b23

b32 b33

 .

First, we consider the velocity vector in Galactic coordinates. From Equa-
tion (3.4) we find for the second and third component of the vector of the first term:(
k2 [(rσµ)2 + (µσr)2]). With σµ ∼ 0.1µ and r � σr, typical values are σr ∼ 0.01r, we get

k2µ2(0.01r2 + 0.0001r2) ≈ k2σ2
µr2 ,

which results in a velocity uncertainty of the order of ∼ 25 km s−1 for each component at a
distance of 50 kpc. For the second term in Equation (3.4), the cross term, with µα∗ ≈ µδ it
follows

2k2µ2σ2
r � k2σ2

µr2 .

Furthermore, for the rotation matrix B we find that bij bik ≤ 1, so it is reasonable to neglect
the distance uncertainties.

The radial velocity uncertainties are typically of the order of 5 km s−1, compared to
∼ 25 km s−1 for the two transverse velocity components as estimated above. The total
absolute value of the velocity uncertainty is then estimated to be of the order

|σv| =
√

2 · (25 km s−1)2 + (5 km s−1)2

≈
√

2 · (25 km s−1)2 ≈ 35 km s−1 ,

or ≈ 20 km s−1 for each component individually, assuming equipartition. Moreover, as we
calculate the specific angular momentum vector given by l = r × v, the contribution to the
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Uncertainties of the orbital poles

vector v from the radial velocity is almost parallel to the vector r. The angle is at maximum
of the order arctan(8.5 kpc/50 kpc) ≈ 10◦, so the radial velocity uncertainty contributes
only little to the total uncertainty of the direction of the specific angular momentum vector.

Three measurement uncertainties contribute to the total variance of the position vector
in Galactic Coordinates. The distance uncertainty to the satellite, the transverse position
uncertainty in the direction of right ascension and declination, and the uncertainty of the
distance to the Galactic centre. For the following estimation we consider a typical distance
of a satellite galaxy of 50 kpc and assume equipartition of the individual components, i.e.
|ri| ∼

√
502/3 kpc ≈ 30 kpc, i = 1, 2, 3. Furthermore, we assume a typical distance uncer-

tainty of the order 3 kpc at that distance (see Table 2.1), so that |σi| ∼
√

32/3 kpc ≈ 1.7 kpc.
For the distance to the Galactic Centre we use the IAU recommended value 8.5 kpc,
while some authors prefer a value of 8 kpc (e.g. Eisenhauer et al. 2003), so we assume
the uncertainty to be 0.5 kpc. It follows that the maximum component of the distance
uncertainty is of the order

√
1.32 + 0.52 kpc ≈ 1.8 kpc. The variance of a component of

the specific angular momentum vector is given by σli =
(

r2
j σ2

vk
+ v2

kσ2
rj

)
+
(

r2
kσ2

vj
+ v2

j σ2
rk

)
,

i, j, k ∈ {1, 2, 3}; i 6= j 6= k. The contribution due to the estimated velocity uncertainty
to this sum is of the order 2 · (30 kpc)2 (20 km s−1)2 = 720 000

(
kpc km s−1)2,while

the estimated position uncertainties contribute with less than a tens of this value,
2 · (100 km s−1)2 (1.7 kpc)2 = 57 800

(
kpc km s−1)2, i.e. the velocity uncertainty is the dom-

inating contribution to the total sum. The transverse position uncertainties in the direction
of right ascension and declination are much smaller than the distance uncertainties. At
a typical distance of a satellite galaxy of the order of 50 kpc, a position uncertainty of 1′

transforms into a spatial uncertainty of ≈ 15 pc, which is about two orders of magnitudes
smaller than a typical distance uncertainty of 2 kpc.

For the motion of the LSR about the Galactic Centre we used the IAU recommended
value of 220 km s−1 (Kerr & Lynden-Bell 1986; cf. also Xue et al. 2008). The uncertainty of
this value is of the order 20 km s−1. We checked that the results do not change significantly
by once using 200 km s−1 and once 240 km s−1 for the circular motion. The uncertainties
of the peculiar motion of the Sun with respect to the LSR as given by Dehnen & Binney
(1998) are of the order of 0.5 km s−1, much smaller than the other contributions and can be
neglected.

The calculation done above assumed a typical distance of a satellite galaxy of 50 kpc or
more. Sagittarius is much closer to the Sun, only about 24 kpc, but its geometric location
is very special. It is located almost directly behind the Galactic Centre, i.e. r‖vr. More-
over, Sagittarius is anyway not co-rotating with the DoS because of its spatial location with
respect to the disc-of-satellites.
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Appendix B

Superbox++ performance

It is interesting to know how Superbox++ “performs” compared to Superbox. Both pro-
grams were run on a workstation with 2 AMD OpteronTM 265 (1.8 GHz) processors (4 CPU
cores in total) and 4 GB RAM (cf. Fig. 5.2) to measure the runtime. Different (artificial) test
scenarios were set-up to show the influence of some factors that determine the speed of the
integration steps: the number of particles per sub-grid Np, the number of co-moving sub-
grids Ng, and the dimensions of the grids. For the test-runs models similar to the twoiso

setup (§5.1.3) were used. Isothermal spheres were set-up with the following parameters:
150 km s−1 rotational velocity and 200 kpc cut-off radius. The radii of the grids were chosen
to be rsystem = 400 kpc, router = 64 kpc, and rcore = 16 kpc, and the co-moving grids are
tracking the centre-of-density. Each test was run with the same number of time-steps of
1 Myr each. The timing measurements(a) were done with an external script. From these
timing measurements a “gain factor” was computed, g = Tsb/Tsb++, where Tsb, Tsb++ are the
measured execution times in seconds. Factors larger than 1 show that the performance in
integration steps per seconds of Superbox++ is higher than for Superbox, factors smaller
than 1 that it is lower – or in other words: Superbox++ performs the same simulation a
factor of g times faster. Results are shown in Fig. B.1 for some runs. The vertical dashed
line indicates the break-even gain factor of 1. For values below this line Superbox is faster
than Superbox++, which is never the case. Indeed, Superbox++ is typically a factor of > 2.5
times faster than Superbox

(b).
The larger the grid-size is chosen, the more important the efficiency of the code gets

that calculates the values of the potential on the grid-cells, as the total number of grid-cells
scales with N3. We also performed some preliminary tests to do this particular calculation
on a graphics card, including the relatively slow memory transfers to the graphics card.
The calculations were run for a grid-size of 1283 cells on an NVIDIA GeForce 8800GT
with a G80 GPU and 1GB of total graphic memory, and compared to the results done on
a dual-core host (AMD Athlon 64 X2 with 2GHz). It is found that the calculation on the

(a)A preliminary version of Superbox++ from November 2007 was used for the performance measurements.
(b)As a side note to understand how much the performance is really increased, it is important to know that

Superbox has an intrinsic performance gain compared to Superbox++ just because mostly single precision
operations are used: (i) single precision variables need less memory and (ii) single precision operations can
efficiently be packed automatically by the compiler to be executed in parallel (SIMD). Using single precision
operations can almost double the speed.
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Superbox++ performance
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Figure B.1: Performance gain factor of Superbox++ compared to Superbox as a function of particle
number. Runs with different grid-dimensions were performed as labelled in the figure. The hori-
zontal dashed line shows the break even point, when both programs have equal execution time per
integration step.

graphics card is a factor of 14 faster if only one of the hosts CPU-cores is used, and a factor
of 9 faster if both CPU-cores are utilised for the FFT on the host.
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