
Tessellation and rendering of trimmed
NURBS models in scene graph systems

Dissertation

zur Erlangung des Doktorgrades (Dr. rer. nat.)
der

Mathematisch-Naturwissenschaftlichen Fakultät
der Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von

Dipl.-Inform. Ákos Balázs
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Abstract

Today scene graphs are ubiquitous in computer graphics: since they provide both
a well suited data structure and an abstraction layer, almost all modern graphics ap-
plications employ some sort of scene graph. Unfortunately most scene graphs do not
support higher order primitives (such as trimmed NURBS) adequately, even though in
Computer Aided Design (CAD) systems the de facto standard surface representation is
trimmed NURBS surfaces.

This thesis describes how the trimmed NURBS representation can be seamlessly in-
tegrated into a scene graph system.

For rendering purposes, geometries in the trimmed NURBS representation are almost
always transformed into a polygonal representation. However, since this process is quite
complicated if trimming is involved, creating a robust implementation is not straightfor-
ward. Another related problem is that when exporting complex NURBS models from
CAD/CAM systems the topology information is sometimes lost and is usually very
hard to reconstruct. This may result in annoying rendering artifacts when two adjacent
surfaces do not join seamlessly.

If rendering is fillrate-limited (e.g. because of the usage of expensive fragment sha-
ders) overdraw can also become a significant problem. One solution for example is to
use the occlusion culling capabilities of modern graphics hardware. However, due to
the fact that occlusion queries require a complete pipeline flush using too many such
queries can even slow down rendering, if the depth complexity of the scene is low.

This thesis focuses on these problems: First a robust tessellation method for individual
trimmed NURBS surfaces is presented which guarantees a geometric error threshold
between the polygonal representation and the original analytic surface. For dealing
with the rendering artifacts caused by incompatible patch boundaries two methods are
presented: the first method is based on reconstructing the topological information using
the guaranteed geometric tolerance of the tessellation method, and sewing the adjacent
surfaces together, producing a watertight (but possibly non-manifold) mesh. The second
presented method avoids rendering artifacts between adjacent surfaces by rendering
small billboards at surface boundaries using programmable graphics hardware. This
method keeps the scene graph hierarchy intact and allows further modifications, but
does not produce a single watertight mesh. To deal with the overdraw problem an
occlusion culling method is presented, which performs well even in extremely low depth
complexity situations and performs at least on par with state of the art occlusion culling
methods for high depth complexity scenes. Finally an overview is given on how the
most widely used scene graphs support high level primitives (e.g. trimmed NURBS)
and the integration into the OpenSG scene graph is discussed.
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2.2.3 Bézier Tensor Surfaces . . . . . . . . . . . . . . . . . . . . . . 7
2.2.4 B-Spline Curves . . . . . . . . . . . . . . . . . . . . . . . . . 8

Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.5 Rational B-Spline Curves . . . . . . . . . . . . . . . . . . . . 9
2.2.6 B-Spline Tensor Surfaces . . . . . . . . . . . . . . . . . . . . . 10
2.2.7 Trimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.8 Data Interoperability . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Visibility Culling Algorithms . . . . . . . . . . . . . . . . . . . . . . . 12

II Tessellation 15

3 Previous Work 16
3.1 Direct NURBS Rendering . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Tessellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3 Sewing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

VIII



CONTENTS CONTENTS

4 Tessellation 20
4.1 Algorithm Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Surface approximation using a quad tree . . . . . . . . . . . . . . . . . 21
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Chapter 1

Motivation

Essentially all modern graphics applications from 3D computer games to Computer
Aided Design (CAD) systems and Virtual Reality/Augmented Reality (VR/AR) appli-
cations employ some sort of scene graph. Of course different kinds of applications use
very different kinds of scene graphs, for example most VR/AR applications use an off
the shelf (either commercial or open source) scene graph, while others, e.g. computer
games and Computer Aided Design (CAD) systems typically use custom scene graphs.
A significant number of VR/AR applications (such as virtual prototyping or product
visualization) usually deal with data that originates from a CAD/CAM system and is
therefore in an analytical representation, most often as trimmed NURBS surfaces. How-
ever, the main geometry representation in essentially all scene graph systems is triangle
based and even if higher order primitives (such as subdivision surfaces or parametric
surfaces) are supported, often this support is not adequate. For example, a typical weak
point in almost all scene graphs is the conversion (“tessellation”) of the analytical sur-
face representation (e.g. trimmed NURBS surfaces) to a piecewise linear representation
for rendering. One more critical point is the handling of the topologies of complex
models. If topology information is ignored during the tessellation process, adjacent
surfaces may have incompatible boundaries and thus do not join smoothly. If topology
information is either known a priori or can be reconstructed adjacent surfaces can be
sewn together either during tessellation or in a post processing step. However, sewing
is not always possible and might produce non-manifold meshes, which is undesirable.
Another problem is that sewing requires a global data structure which contradicts the
hierarchical nature of the scene graph. The resulting mesh also enforces a fixed finest
level-of-detail and makes further editing practically impossible: these constraints are
not acceptable in a general purpose scene graph. Despite these problems, when the tes-
sellated representation must be exported for further processing, such a sewing operation
is essential. However, if the resulting polygonal representation is only used for render-
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CHAPTER 1. MOTIVATION

ing inside the scene graph system, rendering artifacts may be dealt with by drawing
appropriately shaded fat lines that fill the gaps between neighbouring patches. These fat
lines can be generated on the fly using modern graphics hardware.

Nevertheless, even if a high quality tessellation module is available, integrating it into
a scene graph system is not straightforward. First of all, the high level geometry repre-
sentation has to coexist with other geometry representations (e.g. the polygonal repre-
sentation used for rendering). The module may also be used as a standalone tessellation
library in which case access to the tessellated geometry is necessary, and if the result-
ing mesh is to be exported from the scene graph a correct topological representation is
desirable even though it may conflict with the scene graph structure.

As scene graphs also define a spatial hierarchy which is traversed during the rendering
of the scene, most scene graphs employ visibility culling during this traversal since prac-
tically all such algorithms greatly benefit from a spatial hierarchy, many of them even
require such a hierarchy in order to be applicable at all. Occlusion culling is a relatively
new visibility culling algorithm, which has become feasible with the general availability
of hardware accelerated occlusion queries. Even though in many cases these techniques
can considerably improve performance, they may still reduce efficiency compared to
simple view frustum culling, especially in the case of low depth complexity. This pre-
vents the broad use of occlusion culling in most commercial applications. In low depth
complexity situations many queries may be wasted (issued on objects that are not oc-
cluded and thus must be drawn) and these are the reason for the reduction in rendering
speed. This can be dealt with by using a statistical model which describes the occlusion
probability for each occlusion query thereby avoiding the majority of wasted queries.
Combining this occlusion query probability estimation with an abstract parameterized
model for the graphics hardware performance allows near optimal scheduling of the
occlusion queries.

To address all of these problems, this thesis is organised with respect to the pipeline
shown in Figure 1.1.

3



CHAPTER 1. MOTIVATION

Export module

CAD/CAM system

Surface Tessellator module
 

tessellate()

Mesh

render()export()

Render  module

Sewing module Culling module

Application

Fig. 1.1: Processing pipeline. The parts that are not discussed in this thesis are shown in dashed
boxes.
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Chapter 2

Basics
This Chapter first gives a brief introduction to scene graphs. This is followed by the
definition of Non-Uniform Rational B-Splines (NURBS) curves and surfaces. Finally a
short overview is given on visibility culling algorithms.

2.1 Scene Graph Systems
Ever since their invention in the late 1980s [53] scene graphs have proven to be a useful
data structure for graphics applications considering that the logical and spatial repre-
sentation of an arbitrary graphical scene can be effectively arranged in such a graph.
Their popularity is ever increasing and today virtually all graphics applications employ
a scene graph of some sort. Mainly due to this popularity, it is not straightforward to
exactly define what makes up a scene graph precisely since most programmers who
implement highly application specific scene graphs (particularly in the games industry)
usually tailor the basic ideas to suit their specific needs.

Most scene graphs however, share a number of common characteristics. Each node
in a scene graph can represent a geometry, a property, or a grouping object. The logical
and spatial hierarchies are created via the usage of such group nodes. Scene graphs are
directed acyclic graphs which can be either connected or disconnected. Usually each
connected component has exactly one topmost node which is referred to as the root
node. Essentially all widely used current scene graph implementations allow a node to
have multiple parents in order to make geometry instancing possible.

Operations on scene graphs (such as rendering, picking or bounding volume calcu-
lation) are usually performed via traversals. The traversal usually (but not necessarily)
starts at the root node, and depending on the particular scene graph semantics can either
be depth-first or breadth-first.

5



CHAPTER 2. BASICS 2.2. TRIMMED NURBS SURFACES

2.2 Trimmed NURBS Surfaces
Non-Uniform Rational B-Splines (NURBS) curves can be considered as generalizations
of Bézier curves [13, 14]. Similarly, NURBS surfaces may be considered as generaliza-
tions of Bézier surfaces which are in turn defined on the basis of tensor product surfaces.
Therefore both are introduced briefly.

2.2.1 Bézier Curves
A Bézier curve C(t) of nth-degree is defined as

C(t) =
∑n

i=0 Bn
i (t)Pi 0 ≤ t ≤ 1,

where Pi are the control points and Bn
i (t) are the blending functions, which are the nth

degree Bernstein polynomials [12], that can be defined by

Bn
i (t) =

n!

i!(n− i)!
ti(1− t)n−i.

2.2.2 Rational Bézier Curves
Bézier curves provide an intuitive tool for interactive shape design and they are also ef-
ficient to calculate and numerically stable. However, there exists a number of important
curve and surface types which cannot be represented exactly using polynomial Bézier
curves and surfaces (such as circles, cylinders, spheres, etc.) [87] but can be represented
by using rational functions, which are defined as the ratio of two polynomials. The n-th
degree rational Bézier curve can be defined as:

C(t) =
∑n

i=0 Bn
i (t)wiPi∑n

i=0 Bn
i (t)wi

0 ≤ t ≤ 1.

The control points Pi and the blending functions Bn
i (t) are the same as in the polyno-

mial case, and wi are scalars called the weights. Usually it is assumed that wi > 0
for all i, however, in some cases zero weights can be useful. In the case of hav-
ing zero weight, a control point is said to be infinite. There also exists an apt ge-
ometric interpretation for rational Bézier curves, which provides efficient processing
and compact data storage. The idea is to use homogeneous coordinates to represent
the rational curve in n dimensional space as a polynomial curve in n + 1 dimen-
sional space. In the 3D case, for a given set of control points, Pi and corresponding
weights wi the homogeneous control points Pw

i are constructed in the following way:

6



CHAPTER 2. BASICS 2.2. TRIMMED NURBS SURFACES

Pw
i = (wixi, wiyi, wizi, wi) = (X, Y, Z, W ). Then the polynomial Bézier curve in four

dimensional space can defined:

Cw(t) =

n∑
i=0

Bn
i (t)Pw

i .

Usually rational curves are processed in four-dimensional space, and the results are
located in three dimensional space by mapping Cw(t) from the origin to the hyperplane
W = 1.

2.2.3 Bézier Tensor Surfaces
Tensor product surfaces are essentially based on a bidirectional curve scheme. Similarly
to curves, basis functions and geometric coefficients are used. The basis functions are
bivariate functions of u and v, and are constructed as products of univariate basis func-
tions. The geometric coefficients are topologically arranged in a bidirectional n × m
net. A general tensor product surface therefore has the form:

S(u, v) = (x(u, v), y(u, v), z(u, v)) =

n∑
i=0

m∑
j=0

fi(u)gj(v)bij

where bij = (xij, yij, zij) are the control points. From this it follows that polynomial
Bézier tensor surfaces can be obtained by taking a bidirectional net of control points
and products of the univariate Bernstein polynomials:

S(u, v) =
∑n

i=0

∑m
j=0 Bn

i (u)Bm
j (v)Pij 0 ≤ u, v ≤ 1.

A rational Bézier surface can also be defined analogously:

S(u, v) =

∑n
i=0

∑m
j=0 Bn

i (u)Bm
j (v)wijPij∑n

i=0

∑m
j=0 Bn

i (u)Bm
j (v)wij

Similarly to rational Bézier curves, a rational Bézier surface S(u, v) is also the perspec-
tive projection of a four dimensional polynomial Bézier surface Sw(u, v):

Sw(u, v) =

n∑
i=0

m∑
j=0

Bn
i (u)Bm

j (v)Pw
ij

Note that S(u, v) is not a tensor product surface, but Sw(u, v) is. As with curves, most
implementations work with Sw(u, v) and project the results into Euclidean space.

7
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2.2.4 B-Spline Curves

Curves that consist of only a single segment (either polynomial or rational), such as
Bézier curves, while providing a powerful design tool are deficient for some design
tasks. For example a high degree is required to satisfy a large number of constraints or
to fit a complex shape. However, having a high degree curve (or surface) is undesirable
since such curves are numerically unstable and can be expensive to process. Therefore
complex curves and surfaces can better be modeled by curves that are piecewise poly-
nomial or piecewise rational. B-Splines can be defined as a piecewise composition of
Bézier curves.

Storing and processing the individual polynomial or rational segments of a piecewise
polynomial or rational curve is not effective. First, if at least C1 continuity is desired
redundant data must be stored. Second, if the segments are in Bézier form, their conti-
nuity depends on the positions of the control points which means that the flexibility of
positioning control points is very limited if continuity is to be maintained. For exam-
ple, let C(u) be a cubic curve with three segments Ci(u), 1 ≤ i ≤ 3. If a designer is
satisfied with the segments C1(u) and C3(u) and at the same time also wants to main-
tain at least C1 continuity then the shape of C2(u) cannot be changed anymore. Third,
determining the continuity of such a composite curve requires significant processing.
A more suitable representation would be one which is similar to the Bézier curve rep-
resentation using suitable basis functions as blending functions and control points as
geometric coefficients, that is a representation in the form:

C(t) =

n∑
i=0

fi(t)Pi,

where fi(t) are piecewise polynomial functions forming a basis for the vector space
of all piecewise polynomial functions of the desired degree and continuity. Since the
continuity is defined by these basis functions, the control points may be freely modified
without altering the continuity of the curve. Further desirable properties of the basis
functions fi(t) are that they have the same analytic properties as e.g. the Bernstein
polynomials, but as opposed to the Bernstein polynomials (which have global support)
they should have only local support which means that each fi is nonzero only only in a
limited number of subintervals, not in the entire domain. Since Pi is only multiplied by
fi(t) moving Pi only affects the shape of the curve inside the subintervals where fi(t)
is nonzero.

8
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Basis Functions

Such a basis function that satisfies the above properties can be defined in the following
way. First, let T = {t0, . . . , tn} be a nondecreasing sequence of real numbers. Then T
is called the knot vector and the ti are called the knots. The ith B-Spline basis function
of degree d (order d + 1) for this knot vector then defined as

Bi,0(t) =

{
1 if ti ≤ t ≤ ti+1

0 otherwise

Bi,d(t) =
t− ti

ti+d − ti
Bi,d−1(t) +

ti+d+1 − t

ti+d+1 − ti+1
Bi+1,d−1(t)

The knot vector determines the continuity between the curve segments since the con-
tinuity between two knot intervals [ti, ti+1[ and [tj, tj+1[ with ti < ti+1 = tj < tj+1 is
at least Cd−m, where m is the multiplicity of the knot tj , i.e. j + 1− i. A knot vector is
said to be clamped (or nonperiodic or open) if the first and last knots have multiplicity
of d+1. A knot vector of the form T = {t0, . . . , tn} is said to be uniform if there exists
a real number k, for which k = ti+1 − ti, d ≤ i ≤ n − d − 1 holds. If there is no such
k, the knot vector is nonuniform.

Using the basis functions introduced above, a B-Spline curve of degree d is defined
by:

C(t) =

n∑
i=0

Bi,d(t)Pi.

The basis functions Bi,d are defined on the nonperiodic (and possibly nonuniform) knot
vector T .

2.2.5 Rational B-Spline Curves

While B-Spline curves correct some inefficiencies of Bézier curves, however, they are
still unable to exactly represent important curve and surface types which can be repre-
sented with rational functions (including rational Bézier curves), so rational B-Spline
curves are necessary. A rational B-Spline curve defined on a nonuniform knot vector is
called a Non-Uniform Rational B-Spline (NURBS) curve. A NURBS curve of degree
d is defined by:

C(t) =
∑n

i=0 Bi,d(t)wiPi∑n
i=0 Bi,d(t)wi

a ≤ t ≤ b

9
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Analogously to Bézier curves, a NURBS curve may also be represented using homoge-
neous control points Pw

i :

Cw(t) =

n∑
i=0

Bi,d(t)P
w
i .

Just as with rational Bézier curves, NURBS curves are usually processed in four-dimen-
sional space, and the results are projected into Euclidean space.

2.2.6 B-Spline Tensor Surfaces
Similarly to the Bézier tensor surface, a B-Spline tensor surface is acquired by taking
two knot vectors, a bidirectional net of control points and the products of the univariate
B-Spline basis functions:

S(u, v) =

n∑
i=0

m∑
j=0

Bi,du(u)Bj,dv(v)Pij

where du and dv are the degrees in the u and v direction respectively and both knot
vectors are again assumed to be clamped.

Of course a NURBS surface can also be defined correspondingly:

S(u, v) =

∑n
i=0

∑m
j=0 Bi,duBj,dvwijPij∑n

i=0

∑m
j=0 Bi,duBj,dvwij

S(u, v) can also be defined to be the perspective projection of a four dimensional poly-
nomial B-Spline surface Sw(u, v):

Sw(u, v) =

n∑
i=0

m∑
j=0

Bi,du(u)Bj,dv(v)Pw
ij

where Pw
ij = (wijxij, wijyij, wijzij, wij). Note that while Sw(u, v) is a tensor product,

piecewise polynomial surface in four-dimensional space, S(u, v) is a piecewise rational
surface in Euclidean space but is not a tensor product surface.

2.2.7 Trimming
Trimming a surface essentially means discarding regions of its parameter domain, for
example to create a surface with a hole (e.g. to define a T-joint intersection of pipes).

10
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Another example when trimmed surfaces are very useful is when a blending surface
(sometimes referred to as a ”patch” surface) is used to smoothly join two surfaces. In
this case the parts of the joining surfaces covered by the patch surface are trimmed
away. The regions to be trimmed away are specified via placing 2D NURBS curves in
the parameter domain of the surface. These curves form closed loops that define the
regions to be trimmed away. Deciding which side of a trim loop should be discarded is
arbitrary, most systems however, keep part of the domain to the left of the trim loop and
discard the part to the right. In other words, trimming curves that make up an outer trim
loop should be oriented counterclockwise, and trimming curves that make up an inner
trim loop should be oriented clockwise.

u

v

Fig. 2.1: Trimming of a NURBS surface

Figure 2.1 shows a trimmed surface. The left part shows an elliptical trimming curve
in the parameter domain of the surface, while the right part shows the resulting trimmed
NURBS surface.

2.2.8 Data Interoperability
Since trimmed NURBS surfaces have become the most important surface representa-
tion in CAD/CAM systems it is hardly surprising that data interoperability as well as
archiving have been considered as an important problem. The first attempt to define
a neutral data format in order to facilitate the digital exchange of information among
CAD systems was the Initial Graphics Exchange Specification (IGES) [77, 90]. Even
though IGES was later followed by Standard for the Exchange of Product Model Data
(STEP) [55] which was supposed to supersede it, IGES is still widely used today [109]
partially because of a huge number of legacy models only available in IGES format
and partially because it is well supported by practically all major CAD/CAM systems.
Trimmed NURBS surface support is also present in the PHIGS PLUS extension [111]
of the PHIGS (Programmer’s Hierarchical Interactive Graphics System) system.

11
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The Open Inventor [114] file format also proved to be a popular exchange format
in the scientific community. It has the additional advantage of also supporting textured
NURBS surfaces. Although the Virtual Reality Modeling Language (VRML) [56] stan-
dard was largely based on the Open Inventor file format, NURBS support was not in-
cluded. However, it was later added as an extension [38, 57] which even supported
simple animations via the interpolation of control points, but these extensions never
gained widespread usage.

Recently the VRML standard (commonly referred to as VRML 97) was superseded
by the Extensible 3D (X3D) standard [58] which provides full support for trimmed
NURBS surfaces, including texturing. The openNURBS Initiative [82] is also a recent
open file format based on the file format used in the Rhino commercial modeler, which
has gained some popularity.

2.3 Visibility Culling Algorithms
Nowadays practically all real-time rendering systems use the z-buffer algorithm to de-
termine which surfaces are visible, since this is a fairly simple algorithm which is well
supported in graphics hardware. However, this algorithm requires that all scene prim-
itives be processed on a per pixel basis. If there is significant overdraw, that is every
pixel in the final image is drawn several times while processing different primitives, a
lot of computations are wasted. The goal of visibility culling algorithms is therefore to
quickly determine which primitives are either definitely invisible or probably visible.
Since the exact set of visible primitives is very expensive to calculate, most visibil-
ity algorithms try to quickly determine a so-called potentially visible set (PVS) which
contains all primitives that may be visible.

There exists three fundamental methods to determine the visibility of primitives, of
which the first two are employed by essentially all real-time rendering systems, while
the third is not always applicable. Possibly the most used visibility algorithm is view
frustum culling which simply removes all primitives outside the view frustum. If the
scene is hierarchically organized, depending on the view point potentially a very large
part of the scene can be discarded as invisible without any processing. In the hierarchy
usually bounding boxes or spheres are used, but more complex bounding volumes (such
as k-dops) can be used aswell. The second widespread algorithm is backface culling
which removes primitives that face away from the camera based on the fact that most
planar primitives are only visible from one side.

In contrast to the first two algorithms which operate on a per primitive basis (even
though they can substantially benefit from a hierarchy) and thus can be considered as
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local operations, occlusion culling tries to identify which primitives are occluded by
other primitives and therefore do not contribute to the final image. Since occlusion
culling is based on the interaction between different primitives, it is therefore a global
operation on a per scene level which unfortunately prevents efficient and simple imple-
mentation. Another deficiency of occlusion culling is while it is supported by current
graphics hardware, the required overhead may even reduce rendering performance if the
rendered scene has low depth complexity and therefore low occlusion. Since hardware
assisted occlusion culling is based on occlusion queries, the scheduling of such queries
are vital to achieving a performance improvement via occlusion culling.
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Part II

Tessellation
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Chapter 3

Previous Work
While CAD/CAM systems manipulate and export NURBS models in their native repre-
sentation – as sets of control points and knot vectors, with optional trimming specified
as 2D B-Spline curves in the parameter domain of the surface –, almost all real-time ren-
dering systems (including scene graphs that support the rendering of trimmed NURBS
models) use a polygonal representation of the original analytical model. There ex-
ists some methods however, that render the native analytical representation. Another
important problem is handling the topological relationships between adjacent NURBS
surfaces that belong to the same boundary representation (B-rep) in order to avoid ren-
dering artifacts either by assuming that the topology is known a priori or by trying to
reconstruct it based on topological tolerances.

In the remainder of this Chapter, a brief overview is given of the state of the art
in direct trimmed NURBS rendering, tessellation into a polygonal representation which
can be rendered by practically all real-time systems and the sewing of adjacent surfaces.

3.1 Direct NURBS Rendering

One of the earliest approaches to render trimmed NURBS patches non-interactively was
decomposing the surfaces into Bézier representation and ray-tracing the Bézier patches
using numerical methods to solve the ray/patch intersection problem. Toth [110] uses
interval Newton iteration, and the method works robustly on any parametric surface for
which bounds on the surface and its first derivatives are available. Sweeney and Bartels
[106] refine the control mesh using the Oslo algorithm until the mesh approximates
the surface closely enough. Then the intersection between the mesh and the ray is
computed, and this intersection point is used as a starting point for Newton iteration.
Nishita et al. [78] introduced Bézier clipping which uses the convex hull property of
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Bézier curves and surfaces to determine parameter ranges that are guaranteed not to
include intersection points, thus allowing faster convergence. All these methods have
in common, that they use numerical methods to solve the ray/patch interaction and use
ray-tracing for the final rendering and are therefore too slow for interactive or real-
time systems. It could be argued that most of these methods were published over a
decade ago and since then available computing power has grown enormously, however,
as model complexity has also increased immensely such numerical methods are still
too slow to be applicable in real-time or even in interactive scenarios. Abi-Ezzi and
Subramanian [1] proposed an additional adaptive tessellation unit at the front of the
rendering pipeline for NURBS, however, the actual hardware was never built.

Another recent approach is to render NURBS directly on the GPU [44, 45]. This
method approximates the NURBS patches with a bi-cubic hierarchy of Bézier patches
on the CPU and then these bi-cubic patches are trimmed and tessellated on the GPU.
While this is a very promising concept, it has the drawback of being heavily GPU lim-
ited (thus making it difficult to combine with expensive shaders) and working without
creating an explicit mesh which is desired in some applications. Moreover, since the
bi-cubic hierarchy must fit on the limited GPU memory, rendering of extremely large
models is problematic.

3.2 Tessellation

Currently the most popular approach is converting the analytical surface representation
into a polygonal (typically triangular) representation. This conversion process is usually
referred to as tessellation. The main reason is the fact that current graphics hardware is
heavily geared towards polygonal rendering: current GPUs make it possible to render
even very complex models (such as a complete car model) in real-time, as well as using
various shaders on the mesh in order to achieve near photorealistic quality. The other
reason is that many applications (e.g. collision detection, simulation systems) require a
polygonal mesh. Tessellation algorithms can be divided into two categories: uniform
subdivision (e.g. [48, 70, 94, 97]), where the surface is tessellated using a regular grid
in parameter space and fully adaptive subdivision (e.g. [34, 66]), where an error mea-
sure is evaluated before each hierarchical subdivision step. On a multiprocessor system
these triangulated models can be rendered at interactive or real-time rates [10], but this
requires large amounts of memory for storing the hierarchical static levels of detail,
since every vertex of the finest triangulation needs approximately 65 bytes of memory
(including vertex normals) using an optimized progressive mesh like in [33].
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None of the above tessellation algorithms guarantee a geometric error in Euclidean
space, since they calculate the linear approximation of the trimming curves in the pa-
rameter domain of the surface they are being applied to. Such a tessellation that guar-
antees that the tessellated trimming curves in 3D Euclidean space do not deviate from
the analytical representation more than a prescribed error threshold, has the advantage
of making it possible to conduct a sewing between surfaces using this error as sewing
tolerance. If it can be guaranteed that these boundaries are sewn together, it also be-
comes possible to use standard mesh simplification methods for LOD (Level of Detail
representations) generation.

Another common problem with most implementations of the various tessellation met-
hods is robustness. The data exported from CAD/CAM systems is often erroneous,
e.g. trimming curves leave the parameter domain, cross each other or the trimming loops
are not closed properly. This can be due to roundoff errors, different tolerances or even
errors during data translation: for example, many systems implement standards such as
IGES and STEP very differently. Many implementations however, do not handle well
such erroneous data. This can result e.g. in missing or incorrectly trimmed surfaces.
Usually these errors are corrected in a manual healing step, which is both very costly and
time consuming. In order to avoid, or at least minimize this step, the implementation of
the tessellation algorithm should be robust and be able to correct obvious errors during
tessellation.

Therefore a tessellation algorithm and its robust implementation is presented in Chap-
ter 4 that ensures that the vertices on the boundary polygons are in a given proximity
to the original trimming curve in space. An improved version of this algorithm is pre-
sented in Chapter 5, which produces less triangles while guaranteeing the same error
bounds.

Since accurate tessellations of complex NURBS models easily contain millions of
triangles, another recent approach of rendering highly complex NURBS models is to
generate a very fine and high quality tessellation (possibly involving the manual healing
of the tessellated mesh) as a preprocessing step and apply state-of-the-art, distributed
real-time ray-tracing (RTRT) techniques for the actual rendering [112]. However, since
raytracing is obviously fillrate limited it is usually not applicable to high resolution
immersive display systems such as powerwalls and CAVEs. Another drawback of this
method is that interactive editing of the models is not possible due to the required and
computationally intensive preprocessing step.
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3.3 Sewing
Whereas the first tessellation approaches dealt with individual curves or surfaces and
usually made little or no attempt to overcome the problems caused by individual treat-
ment of patches, the resulting meshes contained gaps between neighbouring NURBS
patches. To generate a consistent model these cracks had to be closed using mesh repair
tools. Various techniques exist to repair such CAD models by e.g. converting them into
a volumetric representation, subsequently removing the topological noise by morpho-
logical open and close operations and finally reconstructing the mesh from the implicit
function defined by the volumetric representation as in [79].

More recent tessellation approaches are able to render trimmed NURBS surfaces at
interactive frame rates by combining several patches to so-called super-surfaces. An
example for this group of algorithms is the work of Kumar et al. [71], which introduced
the notion of super-surfaces. Based on a priori known connectivity information sets of
trimmed NURBS patches are clustered into such super-surfaces. An individual view-
dependent triangulation is generated at run-time for each super-surface and in a final
step these view-dependent triangulations are sewn together in order to avoid cracks.
The computationally complex sewing part is parallelized to achieve real-time frame
rates for more complex models. However, since the method requires a priori topological
knowledge it has limited applicability. Barequet and Kumar [9] determine correspond-
ing edges of different patches and then sew them together, but the algorithm can only
guarantee an approximate error bound since it works in parametric space. Stöger and
Kurka [103] present a fast method to generate watertight meshes, however, their ap-
proach relies on a priori topology information. Chhugani and Kumar [20] also rely on a
common representation of the trimming curves on both sides of adjacent patches being
given, in this case they are able to generate an individual view-dependent triangulation
at run-time using the same sampling frequency on both patches to avoid cracks, how-
ever, the availability of such a common representation implies that topology information
is present.

In Chapter 6 a sewing method is presented that is able to generate watertight meshes
by sewing together adjacent surfaces based on guaranteed tessellation tolerances, with-
out needing any topological information.
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Chapter 4

Tessellation
In this Chapter a tessellation algorithm is presented that guarantees that the resulting
polygonal approximation in Euclidean space deviates at most a prescribed error from
the analytical surface, making the resulting mesh suitable for e.g. sewing of connected
parts and generation of Level of Detail representations. The implementation is based
on a state machine which makes it robust even in the case of erroneously specified
input. The algorithm presented here was first published in [60] and later a more detailed
description was published in [61].

4.1 Algorithm Overview
A short overview of the presented method is as follows:

1. Conversion of the surface and its trimming curves from B-Spline into Bézier
representation.

2. Error controlled approximation of the surface using a quad tree based hierarchical
2D grid in the parameter space.

3. Tracking along the trimming curves and their subdivision until none of the curve
segments intersect boundaries of cells corresponding to quad tree leaves. In other
words, curves crossing cell boundaries will be subdivided to have the respective
end points on the cell border. As explained in Section 4.4, this step facilitates
the correct error estimation of the approximation of trimming curves in the 3D
Euclidean space.

4. Trimming of surfaces and triangulation.
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Note that since it is possible to access the analytical description of the surface, a num-
ber of mesh processing methods may efficiently and robustly be applied to the output
of the algorithm. For instance, having the possibility to compute the exact normal vec-
tors on the analytical surface, enables the robust extraction of features [113] (e.g. edges,
corners, etc.), which in turn facilitates the reliable realization of feature preserving sim-
plification.

4.2 Surface approximation using a quad tree
A quad tree is used to triangulate the NURBS surface within a prescribed error thresh-
old. The initial leaves of the quad tree are the Bézier patches converted from the original
NURBS using knot-insertion. The patches are approximated by two triangles laid on
the corner points of the Bézier surfaces. The approximation error is determined for each
patch, and in case this error is greater than a given ε threshold, a midpoint subdivision
is carried out on the Bézier surface. The midpoint subdivision is done recursively until
all approximation errors are smaller than ε. The mesh data structure used for surface
approximation contains a function which subdivides rectangular faces while automat-
ically preserving the neighbourhood information of the subdivided patches. With the
help of this method, the surface approximation algorithm becomes very simple:

foreach Bezier patch B
while approximation error(B) > ε

midPointSubdivision(B)
computeBilinearNorm(B)

The approximation error of the triangulation of a Bézier patch is computed using the
following lemmas:

Lemma 1. Four points are given: b00, b01, b10, b11. If a bilinear surface f(u, v) =∑1
i=0

∑1
j=0 bijB

1
i (u)B1

j (v) over [0, 1]2 is approximated through two piece-wise linear
functions over two triangles:
∆((0, 0), (1, 0), (1, 1)) and ∆((0, 0), (1, 1), (0, 1)) or
∆((0, 0), (1, 0), (0, 1)) and ∆((1, 0), (1, 1), (0, 1)), then the resulting error is indepen-
dent of the selection of triangles and its value is

ε =
1

4
‖b00 − b01 + b11 − b10‖∞. (4.1)

Lemma 2. Let f(u, v) =
∑m

i=0

∑n
j=0 bijB

m
i (u)Bn

j (v) be a Bézier patch with control
points bij ∈ Rd and let g(u, v) =

∑1
i=0

∑1
j=0 bin,jmB1

i (u)B1
j (v) be a bilinear interpo-

lation surface of the corners b00, b0m, bn0, bnm, then the following can be stated:
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‖f − g‖∞ = sup0≤u,v≤1 ‖f(u, v)− g(u, v)‖∞ ≤
≤ maxi=0,...,m,j=0,...,n ‖cij‖∞,

(4.2)

where
cij = bij − ( (m−i)(n−j)

mn b00 + (m−i)j
mn b0m+

+ i(n−j)
mn bn0 + ij

mnbnm).

From the previous lemmas it follows that an upper bound of the approximation error
for a Bézier patch can be computed by summing the errors yielded by Equations 4.1
and 4.2. A similar lemma holds for the rational case:

Lemma 3. Let f(u, v) =
∑m

i=0

∑n
j=0 bijwijB

m
i (u)Bn

j (v)∑m
i=0

∑n
j=0 wijBm

i (u)Bn
j (v)

be a rational Bézier patch with

control points bij ∈ Rd and weights wij ∈ R over [0, 1]2 with w00 = w0m = wn0 =
wnm = 1 and let T be a triangulation over [0, 1]2 with two triangles ∆1 and ∆2 and
let l : [0, 1]2 7→ Rd ∈ S1

0(T) be a piecewise linear approximation of f with l(0, 0) =
f(0, 0), l(0, 1) = f(0, 1), l(1, 0) = f(1, 0) and l(1, 1) = f(1, 1), then the following can
be stated:

‖f − g‖∞ ≤
1

4
‖b00 − b0m + bnm − bn0‖∞ + max

i=0,...,m,j=0,...,n
‖aij

cij
‖∞ (4.3)

where
aij = wij((m + 1− i)(n + 1− j)bij − (m− i)(n− j)b00)+

wij−1j((m + 1− i)bij−1 − (m− i)b0n)+
wi−1ji((n + 1− j)bi−1j − (n− j)bm0)+
wi−1j−1ij(bi−1j−1 − bmn)

cij = (m + 1− i)(n + 1− j)wij + (m + 1− i)jwij−1+
i(n + 1− j)wi−1j + ijwi−1j−1

Formal proof of the lemmas is given in [62].
The compute bilinear norm() function calculates an approximation of the norm of the

bilinear function which transforms the rectangle in the parameter space of the original
NURBS surface corresponding to the appropriate Bézier patch to the 3D Euclidean
space. This norm is needed for the computation of the allowed approximation error of
the trimming curves over the quad tree leaves. If bl : R2 7→ R3 is a bilinear function
and Pi, i = 1...4, are the four corners of the transformed parameter space in R3 with P1

corresponding to (0,0) and P3 to (1,1), the norm can be estimated:

‖bl‖ = max {‖P2 − P1‖∞,
‖P3 − P1‖∞√

2
, ‖P4 − P1‖∞}, (4.4)
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In other words, the norm is measured based on how much the unit square stretches
during transformation.

4.3 Intersection of Bézier curves and straight lines
In order to approximate the trimming Bézier curves with the given error, the approx-
imation has to be performed individually for each quad tree leaf. Thus, the trimming
curves have to be subdivided, since they do not generally end or begin exactly on the
borders of quad tree leaves.

To achieve this, the intersection points of a Bézier curve and a straight line (in the
parameter space of the Bézier curve) must be found. This is done in two steps. Given a
Bézier curve C with control points Ci and an arbitrary line (L) the Bézier curve is first
converted into the ”explicit” (or ”non-parametric”) form

D(u) =

n∑
i=0

DiB
n
i (u), (4.5)

where Di = (ui, di) are the Bézier control points of the new (”explicit”) curve, with
evenly spaced control points ui = i

n and signed distances di from the ith original control
point to L. This form has the following important property: the new Bézier curve
crosses the x axis at the same parameter values as the original Bézier curve crosses the
line. This conversion process is presented in detail in [78].

Having this new form, recursive subdivision is simply applied at t = 0.5 for each new
curve, either until the curve is completely below or above the x axis (this can be checked
very efficiently), or the area of the curve’s bounding box is smaller than a predefined
ε value. In this case a hit is recorder at the current parameter value. Note that this
way finding all intersections can be guaranteed (which is not possible using the simple
Bézier clipping method presented in [78]). A more detailed description of recursive
subdivision is given in [29], [30].

4.4 Guaranteeing a given error along the trimming
curves in 3D space

As already stated, the algorithm must guarantee that no tessellated vertices along the
trimming borders deviate farther than a given error threshold from the analytical trim-
ming curve boundaries.
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4.4.1 Estimation of trimming curve approximation error
Let f be a Bézier tensor product surface, c a Bézier curve and l a linear approximation
of c in the parameter plane. Now ‖f ◦ c − f ◦ l‖∞ denotes the parametric distance if l
instead of c is substituted into the Bézier tensor product surface (c.f . Figure 4.1).
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Fig. 4.1: Linear approximation of a Bézier curve on a Bézier tensor product surface.

Denoting the bilinear approximation of f with bl, this error can be estimated as fol-
lows:

‖f ◦ c− f ◦ l‖∞ ≤ ‖f ◦ c− bl ◦ c‖∞ + ‖bl ◦ c− bl ◦ l‖∞ + ‖bl ◦ l − f ◦ l‖∞ (4.6)

If ‖f − bl‖ ≤ ε then ‖f ◦ c− bl ◦ c‖∞ ≤ ε and ‖bl ◦ l − f ◦ l‖∞ ≤ ε. Note that this
assumption can be guaranteed by using the quad tree algorithm with an error of ε.

Factoring out bl and using the notation δ := ‖c − l‖∞ the following holds: ‖bl ◦ c −
bl ◦ l‖∞ ≤ ‖bl‖∞δ.

As ‖bl‖∞ cannot be changed, the only way to control the error is to decrease δ, i.e.
generally, over each of the quad tree leaves (the Bézier patches) the trimming curve
must be approximated with different errors, based on the bilinear norm of that patch.

Guaranteeing a κ error on the boundaries, can be achieved by choosing a general ε =
κ
3 for the quad tree algorithm and an appropriate δ = κ−2ε

‖bl‖∞ for a linear approximation
(e.g. using midpoint subdivision) of the trimming curves over each quad tree leaf.

4.4.2 Main Contribution
To be able to apply the described method two problems have to be solved:
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• As Bézier curves are needed, the original B-Spline curves must be converted into
chains of Bézier curves. This can easily be done using knot insertion.

• In order to be able to calculate the δ values, each curve must be restricted to lie
over just one quad tree leaf, as it cannot be guaranteed that the created Bézier
curves do not cross quad tree leaf borders.

This restriction of the trimming curves is realized by tracking each chain. If a curve
is found which crosses a leaf border, it is cut into two Bézier curves at the correspond-
ing intersection point. The tracking is realized via a state machine with two states:
OVER FACE and IN VERTEX (see Figure 4.2). These names indicate whether the
current tracking state is over a face of the mesh (quad tree) or the tracking state is in a
vertex of the mesh during the tracking along the Bézier chains.

IN_VERTEXOVER_FACE

1

2

3 4

Fig. 4.2: The state machine, which implements the Bézier chain tracking over the mesh.

The next state depends on the actual state and on the currently tracked Bézier curve
B. If the algorithm begins to follow a new chain of curves, its state is initialized based
on the first control point of the first curve of the new chain. The state transitions can be
described as follows:

1. State transition 1 happens when B intersects one side of the current face (only the
intersection with the smallest parameter value is of interest). If this intersection
point is not already a vertex in the mesh, a new vertex is created (via SplitEdge
operation). This vertex will be the current vertex. B is subdivided into two
curves, the first part of B will be stored to the left face and the second part will
be the current B. If the curve end coincides with the face border, is interpreted as
a ”subdivision” at t = 1 and B is the next Bézier curve of the tracked chain.

2. B leaves the current vertex over a face (in contrast to transition 4). This face will
be the current face.

3. B ends over the current face. B is stored into the current face and the next Bézier
curve of the tracked chain becomes B.
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4. B leaves the current vertex along an edge of the mesh. If B ends before it reaches
the next vertex along the edge, a new vertex is created at the end point, this will
be the current vertex and the next Bézier curve of the tracked chain becomes B. If
B reaches the next vertex along the edge, it is subdivided, its first part is deleted
and the other part becomes B. The edge between the previous and the current
vertex will be oriented according to the trimming curve as it went over it.

To summarize what has been achieved until now: the appropriate parts of the trim-
ming curves were stored in Bézier form inside the quad tree leaves (the faces of the
mesh). This allows their approximation in the parameter plane guaranteeing an error
in 3D Euclidean space under the given threshold. New vertices were inserted into the
edges of the mesh (on quad tree leaf borders) where the trimming curves intersected
them. The edges which were coincident with parts of the trimming curves have been
oriented correctly with respect to the orientation of the coincident trimming curves.
Figure 4.3 shows an example quad tree. The black border is the parameter domain of
the surface, the dotted lines denote the quad tree leaves and the trimming curves are
shown in different colors. The colors show how the original trimming curves have been
subdivided, so that all of them are restricted to a single quad tree leaf. This means that
curves having the same color can be approximated with the same error.

Fig. 4.3: Example quad tree. 12 initial leaves from the Bézier patches, one is subdivided near
the bottom right corner.
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4.5 Trimming and Triangulation
By inserting the approximation of trimming curves into the mesh as directed edges (the
orientation is the same as the direction of the trimming curve) and by deleting all the
faces from the mesh a semi-directed graph is created. The non-directed edges of the
graph are the edges of the quad tree mesh, while the directed edges are the polyline
approximation of the trimming curves. The nodes of the graph are the vertices of the
quad tree mesh and the vertices of the polyline trimming curve approximation.

Although in theory trimming curves should never intersect, in practice due to mod-
eling or other errors they often do, intersecting or self-intersecting trimming curves is
one of the most common problems in exported CAD data [86]. To handle such models
a correction step for the trimming loops has to be added. The algorithm works similarly
to the line sweep algorithm [11]. At each intersection an intermediate point is inserted
and intersection free trimming loops are built from this directed graph.

The trimming is performed by traveling along these directed edges. The pseudo-code
of the traversal is:

findDirectedEdge()
while there are directed edges left

while there is a valid edge
store start node
handleEdge()
getNextEdge()
if traversal back at the start node

handleEdge()
triangulate()
getOutGoingEdge()

findDirectedEdge()

The functions used in the pseudo code are the following:

• findDirectedEdge() Find a directed edge in the graph.

• handleEdge() If this edge was directed, delete it from the graph. Otherwise, make
it a directed edge, with opposite orientation in which this edge was traversed.

• triangulate() Given a sequence of nodes defining a polygon, triangulate it. (See
below.)

• getNextEdge() Given a node and an edge, find the leftmost edge which is not
equal to the given edge.
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• getOutGoingEdge() Given a node, find the outgoing edge: that is, the edge which
is directed and pointing out of this node. Note that the construction of the graph
guarantees that there can be at most one such edge.

Trimming that is contained inside a single mesh face (e.g. small holes) represents a
special case: if such trimming loops are present, they break up the graph to unconnected
components, and these parts will not be traversed. Therefore first each clockwise trim-
ming loop is checked if it is contained completely inside a leaf cell. If this is the case,
the cell is further subdivided ensuring that the graph is connected.

Whenever the graph traversal algorithm finds a closed polygon, it must be triangu-
lated. The polygon may be non-convex, but it must be closed. The triangulation pro-
duced is a constrained Delaunay [88] triangulation. The following pseudo-code illus-
trates the algorithm used:

foreach edge of the polygon
Find a third point so that the triangle
made up of these 3 points satisfies
the Delaunay criteria.
if there exists such a point

Record this triangle.
Subdivide the polygon into two
new polygons to the left and
to the right of this new triangle,
and call the triangulator recursively
with these two new polygons.

else Take the next edge.

Note that it is guaranteed that there exists at least one such edge for which a suitable
third point can be found. More details and a proof can be found in [62].
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Chapter 5

Improving Tessellation
Efficiency
While the tessellation method presented in Chapter 4 satisfies the criteria of producing
such a triangulation that deviates less than a prescribed geometric error threshold from
the original analytic surface, it uses a very conservative estimate for the error thus in
many cases produced too many triangles. Figure 5.1 shows such an example, in this
case the trimming curve is on the left side of the parameter domain, where the error
coming from the elevation into 3D space is much smaller than at the right side of the
domain, however, the algorithm takes into account the largest error over the parameter
domain, instead of the actual error at the trimming curve.

supee<<

Fig. 5.1: Too conservative error estimation: the trimming curve is approximated according to
the maximum possible error over the Bézier patch.

As mentioned previously, both sewing (see Chapter 6) and the Fat Borders method
(presented in Chapter 8) require knowledge of the exact approximation error along the
trimming curves, but they do not require such an exact error over the surface itself. How-
ever, it may still be required in a subsequent step of the processing pipeline. Therefore,
such a tessellation algorithm that guarantees a specific error for the trimming curves but
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optionally only gives an approximate error over the surface in exchange for needing sig-
nificantly less triangles would be favorable. This improved algorithm should also use
a less conservative estimate for the approximation of the trimming curves in order to
reduce the number of triangles. In this Chapter such an improved tessellation algorithm
is presented: the new method drastically reduces the amount of triangles needed to ap-
proximate the NURBS surface with a given specific error bound and is significantly
faster than the original algorithm. It always guarantees exact approximation error along
the trimming curves, but it is also able to optionally produce a tessellation that may
deviate more than the given approximation error over the surface itself, but consists of
considerably fewer triangles. This improved tessellation algorithm was first presented
in [7]. Later an enhanced version which also takes the shading error into account was
developed which was published in [42]. The algorithm presented in this Chapter was
also used in the Real Reflect project [65].

The improved tessellation algorithm works as follows:

• The trimming curves are converted into sequences of 3D Bézier curves (Sec-
tion 5.1).

• The 3D trimming loops are approximated with piecewise linear segments (Sec-
tion 5.2.1).

• The surface is approximated using hierarchical subdivision of bilinear patches
(Section 5.2.2).

• The surface approximation is cut with the approximated trimming loops (Sec-
tion 5.3).

• The resulting polygons are triangulated (Section 5.4).

• The surface is evaluated at generated mesh vertices (Section 5.5).

5.1 Conversion of Trimming
In order to be able to guarantee an error in Euclidian space the Hausdorff distance
between the 3D trimming curve and the current approximation has to be measured.
The amount of triangles needed to approximate the trimming curves (and thus the
NURBS surface itself) with a given error bound is drastically reduced compared to the
method presented in Chapter 4 by directly elevating the trimming curves into Euclidean
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space and performing the linear approximation in 3D space. To achieve this, the trim-
ming curves are first converted into This is achieved by first converting the trimming
their Bézier representation which is then degree reduced by the following algorithm
from [29]:

• Calculate new control points with:
←−
P 0 = P0

←−
P i =

nPi+1 − (n− i)
←−
P i+1

n− 1
; i = 1, . . . , n− 1

−→
P n−1 = Pn

−→
P i =

nPi+1 − i
−→
P i+1

n− 1
; i = n− 2, . . . , 0

• If
←−
P i ≈

−→
P i for all 0 ≤ i < n then the curve was losslessly degree reducible and

the process is repeated with the new control points P̃i = λi
←−
P i + (1−λi)

−→
P i with

λi = 0 for i < n
2 , λ = 1

2 for i = n
2 and λ = 1 for i > n

2 .

Since the elevation of a Bézier curve onto a surface [29] results in a 3D Bézier curve
only if it lies completely on a single Bézier tensor product surface, the Bézier trim-
ming loops are cut at the spans of the NURBS surface in order to restrict them to one
Bézier surface patch. The degree of a 3D Bézier curve which is constructed by ele-
vating a 2D Bézier curve of degree d2d with a Bézier tensor product surface can be at
most d3d = d2d(du + dv), where du and dv are the degrees of the surface in the u and v-
direction. A basis is formed by three polynomials of degree n for the vector space of 3D
Bézier curves of degree n, therefore such a Bézier curve is uniquely defined by n+1 ar-
bitrary points on the curve together with their parameter values. For numerical stability
the 3D curve is constructed by evaluating d3d + 1 equally distributed parameter values
(0, 1

d3d
, 2

d3d
, . . . , d3d−1

d3d
, 1) on the trimming curve and then calculating the Bézier curve

defined by these points. This leads to a linear system of equations with a nonsingular
matrix [87]:  Bn

0

(
0
n

)
· · · Bn

n

(
0
n

)
... . . . ...

Bn
0

(
n
n

)
· · · Bn

n

(
n
n

)
 P0

...
Pn

 =

 C
(

0
n

)
...

C
(

n
n

)
 ,

where Bi are the basis functions, Pi the unknown control points of the 3D Bézier curve,
and C(i) are the evaluated points of the curve sampled at the regularly distributed pa-
rameter values. Note that if the curve and/or the surface elevating the curve are rational,
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the same linear system of equations still holds, but are one extra sampling point is
needed per weight [87]. In order to achieve numerical stability singular value decom-
position [89] can be used to find the solution. Since the complexity of the SVD for
an n × n matrix is O(n2 log n), using a maximum degree (e.g. of 20) is reasonable to
achieve good performance.

Finally the resulting 3D Bézier curve is degree reduced using the above described
algorithm and stored along with its corresponding (cut) 2D trimming curve. To per-
form lossless degree reduction only a very small epsilon – in the order of magnitude of
the numerical error – is allowed when checking the control points of the reduced curve
with

←−
P i ≈

−→
P i for all 0 ≤ i < n. Note, that the generated 3D Bézier curves exactly

match the original trimming curves – except for numerical inaccuracy – and are not an
approximation. Therefore, this conversion does not introduce an additional approxima-
tion error and only needs to be performed once for each surface unless the surface or its
trimming loops are modified.

5.2 Approximation

The construction of 3D/2D trimming curve pairs allows the independent approximation
of the trimming curves and the untrimmed surface. This dual approximation technique
reduces the total number of triangles generated for a given error bound.

5.2.1 Trimming Loops

Since each trimming curve segment is restricted to one surface span, subsequent curve
segments (or curves) may be collinear in Euclidian space. In order to avoid redundant
vertices a standard line simplification algorithm – guaranteeing a given Hausdorff dis-
tance between the original and the simplified line segments – is applied to each approx-
imated trimming loop. Since this introduces an additional error, the trimming curves
are approximated with a fixed portion γ of the desired error and then each complete
trimming loop is simplified with 1 − γ of the error as maximum Hausdorff distance.
Several experiments have shown, that a good tradeoff between runtime and number of
edges is γ = 3

4 .
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For the approximation the convex hull property of the 3D Bézier curve is used which
leads to the following error bound:

εline ≤
(

1− 1

2n−2

)
n−1
max
i=1

(‖(Pi − P0)− λ(Pn − P0)‖)

λ = max

(
0, min

(
1,

(Pi − P0) · (Pn − P0)

‖Pn − P0‖2

))
If an approximation by a line is not sufficient either the control point Pj that has the

largest distance to the linear approximation can be used to subdivide at tsubdiv = j
n or

a midpoint subdivision can be applied to the curve. Using control point subdivision
would potentially reduce the number of points required to approximate the trimming
curve with a given error (see Figure 5.2), however, experimental evaluation showed that
using midpoint subdivision produces slightly less trimming edges. This is due to the
fact that subdivision at control points only is not fine grained enough and all such points
may be farther apart from the ideal subdivision point than the midpoint.

 

Fig. 5.2: Curve approximation with midpoint (top) and control point (bottom) subdivision

5.2.2 NURBS Surfaces
Previous runtime tessellation algorithms either used a grid or a quadtree to subdivide the
surface for approximation. Since the quadtree always subdivides the parameter space
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to four subparts, it is not completely adaptive (c.f . Figure 5.3), a new approximation
algorithm based on kd-tree subdivision was developed. The approximation error for the
current subdivision can be calculated using the distance between the control points and
the bilinear surface approximation. Since the two triangles that would be generated for
this tree node cannot resemble a bilinear quad patch an additional approximation error
needs to be taken into account which leads to the same estimated error as in Chapter 4:

εconvervative ≤ εbilin +
1

4
‖P00 − Pm0 − P0n + Pmn‖ , with

εbilin ≤
i≤m,j≤n
max

i=0,j=0

∥∥∥∥Pij − S̃

(
i

m
,
j

n

)∥∥∥∥ , where

S̃(a, b) = (1− b)((1− a)P00 + aPan) + b((1− a)Pm0 + Pmn)

Since this error measure is still a (sometimes significant) overestimation, an approx-
imate error measure can also be used if the approximation inside a patch has not to
be guaranteed. In order to calculate this approximate error the above equations are still
used, but the control point Pij is replaced with S(αi, βj), where αi and βj are the param-
eter values corresponding to the control point Pij . If the estimated approximation error
exceeds the desired error for this NURBS surface the tree node needs to be subdivided.

If a quadtree is used, the node is split at the midpoint in the parameter domain. On
surfaces with high curvature in one direction of the parameter domain and low curva-
ture in the other direction (e.g. a cylindrical surface) this leads to an unnecessary high
subdivision in the low curvature direction. As shown in Figure 5.3, using a binary sub-
division solves this problem, but the problem that unnecessary subdivisions are applied
if the curvature of the surface is highly variant remains.

 

Fig. 5.3: Quadtree and binary subdivision on a cylindrical surface.

This can be solved by using an optimized subdivision of the surface. Since a NURBS
surface can only be subdivided either in the u or in the v direction, this leads to a kd-
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tree subdivision. The surface is subdivided at the parameter value
(

k
m , l

n

)
, for which the

following holds:∥∥∥∥S( k

m
,
l

n

)
− S̃

(
k

m
,
l

n

)∥∥∥∥ =
i≤m,j≤n
max

i=0,j=0

∥∥∥∥Pij − S̃

(
i

m
,
j

n

)∥∥∥∥ ,

where 0 ≤ k ≤ m, 0 ≤ l ≤ n and S̃ is the bilinear approximation of S. While this
method does not guarantee that the surface will be subdivided at the point of largest
distance to S̃, it is very quick to calculate (in contrast to finding this point e.g. via a
numerical method) and in practice works well. For the direction of the subdivision that
one is chosen, for which the line subdividing the kd-tree node is closer to S

(
k
m , l

n

)
(see

Figure 5.4).

 

worst point 

approximations 

Fig. 5.4: Finding the subdivision direction and parameter for the kd-tree.

Since an appropriate approximation for the trimming loops of the surface has already
been constructed, the number of unnecessary subdivisions can be reduced by restrict-
ing the parameter domain to the bounding box of the trimming loop approximation in
parameter space before approximating the surface.

5.3 Trimming
Trimming is done using the same graph traversal algorithm presented in Chapter 4.

5.4 Triangulation
As the constrained triangulation of point clouds is a non-trivial problem, practically all
NURBS tessellation algorithms generate the final triangulation in the parameter domain
of the surface. This is reasonable as long as the surface does not deform the polygon
too much, which using this algorithm cannot happen due to the geometric error control.
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Polygons that are formed by kd-tree or octree cells are rectangles with possibly addi-
tional vertices inserted along the edges therefore they are always convex, consequently
a simple O(n) time triangulation algorithm can be used:

• Find the upper left vertex of the remaining polygon and build a triangle with the
left and right neighboring vertices.

• Iteratively take the current edge and build a triangle with the upper left of the two
adjacent vertices.

However, polygons containing trimming curve segments may be non-convex, which
has to be checked before triangulation. Since a polygon is non-convex if at least one
angle is greater than 180 degrees, a simple check that has the complexity of O(n) can
be performed. If the polygon is convex the above triangulation algorithm can be applied
as well. If this is not the case, the O(n log n) algorithm developed by Garey et al. [37]
is used to triangulate the current polygon. To decide whether a polygon contains a
part of the trimming curve, all trimming half-edges are marked in the directed edge
graph during construction. During triangulation it is just checked if the current polygon
contains at least two marked edges and thus may be non-convex.

5.5 Evaluation
There are a number of algorithms for the evaluation of a NURBS surface S at a given
parametric sample point (a, b).

S(a, b) =

spanu(a)+du+1∑
i=spanu(a)

Bu,i(a)

spanv(b)+dv+1∑
j=spanv(b)

Bv,j(b)Pij


The evaluation of the surface in its NURBS representation can either be performed
directly by calculating the Basis functions using the Horner Scheme and multiplying
them with the control points [87] or by using the de Boor algorithm based on knot
insertion (e.g. [23]). Furthermore, it is possible to convert the surface into piecewise
Bézier representation and then perform the evaluation on the Bézier patches.

By simply estimating the total number of operations it is clear that the direct evalua-
tion is faster than using knot insertion. As the conversion into Bézier form requires even
more knot insertion steps besides the actual evaluation step, it is also clear that it will be
even slower. The direct evaluation algorithm can be further improved by exploiting the
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coherence between mesh vertices. If a vertex to be evaluated has the same u or v coordi-
nate as the previous, the corresponding basis function does not have to be recalculated.
If the v coordinate does not change and the u coordinate lies in the same span as for the
previous vertex all inner sums in the evaluation equation can be reused. All together
this reduces the complexity from O(d2

u + d2
v) to O(d2

u + dudv) if the v basis functions
can be reused and to O(d2

u) if additionally the u span does not change and therefore,
the u sums can be reused. Since the vertices are already lexicographically sorted by
(v, u) no additional overhead is required. If du > dv the surface is reparameterized by
substituting u′ = v and v′ = −u. Note that this optimization also works for regular grid
tessellations with even better results since the v sums can be reused more often.

5.6 Results
To test the improvements made to the NURBS tessellation algorithm, different combi-
nations of the optimizations are compared with the original quadtree based algorithm.
The computation times were obtained using an Athlon 3000+ with 1 GB memory. Ta-
ble 5.1 gives an overview of the models used to compare the optimized algorithm with
the previous approach. The tessellated models are shown in Figure 5.5.

Golf vent. con. Beetle
#NURBS 8, 036 4, 419 31, 040
εapprox 0.2mm 0.2mm 0.2mm

Tab. 5.1: Models used for evaluation

Fig. 5.5: Volkswagen Golf, Mercedes ventilation-console, and Volkswagen Beetle

The different algorithms which can convert the NURBS trimming curves into poly-
lines are compared in Table 5.2. The superiority of the 3D Bézier curves with midpoint
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subdivision and line distance error measure is clearly visible. Although the subsequent
simplification slightly increases the approximation time, the number of generated edges
is drastically reduced which leads to faster triangulation and rendering. The control
point based subdivision performs slightly worse than midpoint subdivision, as men-
tioned previously this is due to the fact that constraining to control points is not flexible
enough and may be farther to the optimal subdivision point than the midpoint. In Ta-
ble 5.2 εpoint refers to the approximation method used in the original tessellation method
described in Chapter 4 for approximating the 3D trimming curves, while εline refers to
the improved method, with the optional simplification step added. The top line refers
to the original approximation method used in Chapter 4 which tries to approximate the
trimming curves in parameter space, while also taking into account the distortion that
comes from the elevation into Euclidian space. Since this method sums up partial errors
the overestimation is usually large which explains the huge number of generated edges.

conversion approx. #edges
2d Bézier 1.2sec 77.3sec 824, 791

3D Bézier curves, midpoint subdivision
εpoint 23.9sec 4.4sec 178, 475
εline 23.9sec 4.4sec 170, 484
εline + simpl. 23.9sec 5.9sec 151, 234

3D Bézier curves, control point subdivision
εpoint 23.9sec 4.5sec 181, 280
εline 23.9sec 4.6sec 172, 925
εline + simpl. 23.9sec 6.2sec 153, 680

Tab. 5.2: Comparison of trimming curve approximation algorithms (Golf model)

Table 5.3 gives a comparison between the different surface approximation algorithms:
ε1 refers to the guaranteed geometric approximation error, while ε2 refers to the approx-
imate error. This table also shows the superiority of the kd-tree based approach. Al-
though the computation time for the approximate error measure is slightly higher, this
method generates far less triangles and thus the higher computation time is compensated
in the subsequent steps by a lower triangulation and evaluation time.

Finally, the completely optimized algorithm is compared to the quadtree based tech-
nique from Chapter 4 (Table 5.4). All three models show both a significant speedup of
tessellation time and a great reduction in the number of generated triangles and bound-
ary edges.
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total time with coherence #triangles
quadtree

ε1 183.6sec 175.2sec 1, 511, 056
ε2 191.7sec 184.6sec 1, 008, 457

kd-tree
ε1 100.1sec 96.9sec 796, 438
ε2 101.3sec 97.3sec 464, 354

Tab. 5.3: Comparison of surface approximation algorithms (Golf model)

The resulting tessellations with 0.2mm accuracy for the models using the optimized
algorithm are shown in Figure 5.6. A comparison between to the tessellation generated
by the quadtree based algorithm is shown in Figure 5.7.

Golf vent. con. Beetle
original quadtree based algorithm

Time 348.3sec 64.9sec 547.3sec
#triangles 2, 058, 739 562, 949 3, 153, 954
#edges 824, 791 562, 434 2, 888, 198

improved kd-tree based algorithm
Time 97.3sec 11.6sec 152.9sec
#triangles 464, 354 29, 113 593, 652
#edges 151, 234 34, 054 385, 767

Tab. 5.4: Comparison of the quadtree method with the kd-tree algorithm for different models
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Fig. 5.6: Tessellation of the Golf car body and of the Beetle interior

Fig. 5.7: Tessellation of the ventilation-console with the optimized and the quadtree based algo-
rithm
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Chapter 6

Sewing of Multiple Tessellated
Surfaces
The tessellation methods presented in the previous Chapters 4 and 5 were only con-
cerned with the tessellation of independent trimmed NURBS surfaces. If a complex
model is tessellated using these methods, the resulting mesh will not be watertight
since it will contain a separate mesh for each surface. While this can be sufficient
for rendering purposes provided the gaps between adjacent surfaces are either simply
neglected or somehow dealt with during rendering (c.f . Chapter 8 for such a method),
many applications (e.g. physical simulation systems, finite element analysis or texture
parametrization) either require or significantly benefit from watertight meshes. Produc-
ing a watertight mesh is relatively straightforward if topology information is present in
the model: for example, since adjacent trimming curves are known they can be tessel-
lated in such a way that their polygonal representation is identical, and vertices closer
to each other than a small tolerance value can be merged [103, 20].

However, if no topology information is available producing a watertight tessellation
becomes significantly harder, since first the topology must be reconstructed. Recon-
structing the topology of a CAD model which consists of trimmed NURBS patches is
especially hard, since the boundary trimming curves of adjacent patches which describe
the same curve in 3D space can have arbitrary representations in object space, i.e. they
may be partially overlapping or one curve may contain the other entirely while having
different parametrisation.

The sewing algorithm presented in this Chapter (and first published in [60] and in [61]
where it was described in more detail compared to the first publication) exploits the fact
that the tessellation algorithms presented in Chapters 4 and 5 both guarantee a geomet-
ric error along the surface boundaries. This geometric error can be used as a sewing
tolerance for the tessellated model. Reconstructing the topology and producing a wa-
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tertight mesh from the polygonal representation has the advantage of being independent
of the original ambiguous geometric representations of common boundaries since their
tessellations must be closer to each other than this error on the common part. Essen-
tially sewing connects appropriate parts of the different mesh borders if these borders
are closer to each other than the sewing distance ds. As the tessellation methods are
able to guarantee κ error along the boundaries, the natural choice for ds is 2κ.

Before describing the algorithm it should be noted that the distance of each boundary
vertex to each boundary edge must be calculated. This means that with a naı̈ve approach∑#B

i=1

∑#B
j=1 #Vi#Vj operations must be carried out, where #B denotes the number of

boundaries and #Vk the number of vertices in the kth boundary. To handle this large
number of operations, a 3D grid is used as an acceleration structure; the boundary edges
are scan-converted into this grid, so the distance of a boundary vertex is calculated only
to the edges in the grid cell of the vertex and neighbouring cells.

6.1 The Sewing Algorithm
The data structures used in the sewing algorithm are:

vertex {
mesh ID m;
boundary ID b;
bool original;
sew to list {vertex v, ...};

}

Here the ’mesh ID’ field contains the information about to which mesh this vertex be-
longs to; the ’boundary ID’ field identifies the boundary (see below) the vertex belongs
to; the ’original’ field is true if the vertex is from a mesh and false when the vertex is
inserted into the a boundary during the sewing; finally the tuplets of the ’sew to list’
contains the closest vertex ’v’ (on boundary ’boundary ID’ of v ) if ’v’ is closer to the
vertex than ds.

The input of the sewing algorithm are the boundaries extracted from the meshes of
each surface:

boundary {
vertex list {vertex ID v, ...};

}
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B

v v_new

B

v v_new

Fig. 6.1: Examples for findOrInsertClosestVertex(). In the example on the left vNEW is not created,
because it was already a vertex of B. In the example on the right vNEW is created and inserted
into B.

The ’vertex list’ is an ordered list of identifiers of the vertices of the boundary. The
ordering is based on how the vertices follow each other along the border. During the
boundary extraction, the ’mesh’ field of all vertices is set appropriately, the ’original’
flags are set to true and their ’sew to list’ lists are cleared.

The output are to sew data structures. A to sew data structure holds the following
information:

to sew {
along list {[v IDB1

start, v IDB2
start],

...
[v IDB1

end, v IDB2
end]};

}

The field ’along list’ contains which vertex of B1 should be sewn to which vertex of
B2 and is ordered according to the traversal of the vertices along the boundaries. B1
and B2 are implicitly stored by storing the vertices in the ’along list’. Note that the
’along list’ can contain vertices which have not been part of the original mesh, but were
created during the sewing process.

The following functions are used within the sewing:

• findOrInsertClosestVertex( vertex v, boundary b ): This function projects v onto
each edge of b (see the note about using a 3D grid at the beginning of this section)
and calculates the distance of this projection, i.e. the Euclidean distance of v to
the base point vBP of the projection. If no dP < ds is found, the function returns.
Otherwise the vBP with the smallest dP is inserted into b, preserving the ordering
of b. If v projects onto an already existing vertex of b, no vertex duplication
occurs. The newly created (or already existing) vertex is referred to as vNEW .
The following operations are carried out on v and vNEW (see Figure 6.1):
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– vNEW .original is set to false, if it was newly created, otherwise it is not
changed

– the ID of v is inserted into vNEW .sew to list

– the ID of vNEW is inserted into v.sew to list

• getPreliminaryToSewList( boundary B ): This function iterates through the ver-
tices of B and examines their sew to list fields. If it finds that at vertex vSTART

B gets close to another boundary (its distance to the other boundary becomes
less than ds), it begins to track that proximity until the borders move away (the
distance of the currently examined vertex to the other boundary becomes greater
than ds) from each other at vertex vEND of B. The function is capable of tracking
multiple proximities at the same time (this can happen when 3 or more surface
are to be sewn); for each proximity it finds, the function creates a to sew structure
and fills in the along list with the corresponding vertices (they will be the tuplets
of along list). The corresponding vertices’ reference to each other is erased from
the sew to lists of both vertices to avoid duplicated detection of proximity seg-
ments when processing the neighbouring boundary. The function returns all the
to sew structures it creates. These are called preliminary to sew lists, as foldings
can happen. Such a case is depicted in Figure 6.2 a). No distinction is made
between original and newly created vertices in this function.

• processFoldings( to sew preTS ): This function resolves the folding problems at
the start and at the end of preTS created with the previous function. Note that
- as later the common border parts will be reparametrized to have a common
parametrization (see below) - the folding vertices within the common borders do
not have taken care of, just at the start and end of the common interval.

The folding is detected by running along both boundaries and registering where
the common part is left. These ”leaving vertices” will be valid corresponding start
and end vertices of the mutual boundaries. This means determining the longest
possible extent along the common boundaries.

Figure 6.2 b) shows an example of this operation. Finally the function sets the
’original’ field of the valid start and end vertices to true and deletes all vertices
with false ’original’ value from both boundaries of preTS.

• reparametrize( to sew TS ): Since the two polylines that make up the boundaries
of the common border segment in TS may have completely different lengths, the
relative positions of their vertices along the polyline must be matched to each
other to have all vertices from both polylines at the correct position in the final

44



CHAPTER 6. SEWING OF MULTIPLE TESSELLATED SURFACES 6.1. THE SEWING ALGORITHM

sewn border. This is achieved by creating a common parametrization for both
polylines. The boundary parts of the mutual interval stored in TS are referred to
as B1 and B2 (note that the temporarily created vNEW vertices are not contained
in B1 and B2, as they were deleted in the last step of process foldings). The
lengths of both border parts are calculated by simply summing up the length of
the border edges, then, scaling these lengths to 1, the T1 = {t11, ..., t1m} and
T2 = {t21, ..., t2n} parameter values are computed for the m and n vertices of
B1 and B2. T1 and T2 are merged in T = T1 ∪ T2. Processing the t ∈ T
in increasing order, a new vertex is inserted into either B1 or B2 if this vertex
does not already exists (this avoids duplicating vertices). Having completed this
vertex insertion, both B1 and B2 will have less than m + n− 1 vertices (vertices
at t = 0 and t = 1 are always present in both borders) and these vertices will be
in a 1 : 1 correspondence to each other. Based on these known correspondences
the tuplets of TS.along list are filled appropriately. In Figure 6.2 c) a simple
reparametrization is shown, where (t12) is inserted into B2 as a new vertex. The
thick line shows that the border vertices are moved to the middle points of the
connecting segments of the corresponding vertices.

With the help of the above functions, the pseudo-code of sewing is as follows:

foreach boundary B
foreach vertex v of B

foreach boundary Bother 6= B
findOrInsertClosestVertex( v, Bother)

tsl = createEmptyToSewList()
foreach boundary B

tsl.addToList(getPreliminaryToSewList(B))
foreach to sew TS in tsl

processFoldings( TS )
foreach to sew TS in tsl

reparametrize( TS )

After this code is executed, ’tsl’ will contain to sew structures describing the correct
mutual border parts with 1 : 1 vertex correspondences. Of course, for all new vertices
in the borders, appropriate face split operations should be carried out on the meshes,
introducing new triangles. Having completed these face splits the border edges of the
meshes can be moved to their new positions and in a next step the actual sewing can be
executed by incrementally adding the meshes to a continuously growing ”super” mesh.
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Fig. 6.2: a) examples for folding in the preliminary to sew lists can be seen. b) shows the result of
calling processFoldings on the same common boundary, the vertices indicated with black circles
are the valid start and end points of the common border, the arrows show the correspondences.
c) reparametrization

6.2 Results
Figure 6.3 shows a tessellated and sewn car body. This model originally had more than
1700 individual surfaces. After sewing, the number of compound parts is less than 10.
This figure also shows that the sewing algorithm allows the classification of the model
into different logical parts by using modeling tolerances, even if such classification
information was not present in the original model. Note that such classification was not
possible with previous methods.

Figure 6.4 depicts the effect of using the sewing algorithm for a simple example of a
wheel cap, where the major features of the method are demonstrated.
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Fig. 6.3: Tessellation and sewing results. Note how the sewing classifies the different parts of the
model (shown in various shades of grey).

a)

b)

c)

d)

e)

f)

Fig. 6.4: The results of the presented method for a wheel cap model. a), b) The patches are
tessellated separately, about 40000 triangles. c), d) The meshes are simplified without taking
the boundaries into account, the surface patches break up. About 4200 triangles. e), f) The
sewn simplified surfaces, about 3000 triangles, the surface does not break up, nevertheless a
considerable simplification could be achieved.
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Part III

Rendering
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Chapter 7

Previous Work
In computer graphics the term rendering refers to the process in which a scene descrip-
tion is transformed into a 2D image corresponding to an observer’s view of the scene.
Clearly this makes rendering one of the major topics in computer graphics, although in
order to produce the final image it must be connected to other topics such as modeling,
which produces the scene description to be rendered. Nevertheless, it should hardly
come as a surprise that there has been extensive research in the field of rendering, both
in real time and offline rendering. Reviewing this large amount of related work, even if
the review would be restricted to e.g. real time rendering only, is beyond the scope of
this thesis and would easily fill books by itself (c.f . [3, 31]). Consequently the discus-
sion of previous work here will be limited to reviewing previous work that is directly
related to the contributions of Chapters 8 and 9 namely view dependent rendering of
triangle meshes and occlusion culling.

7.1 View Dependent Rendering of Triangle Meshes

The recent developments in 3D acquisition systems and computer-aided design tech-
nologies steadily increase the size of geometric models. The enormous size of these
models calls for sophisticated rendering techniques that support view-dependent level
of detail (LOD), culling techniques and efficient memory management. There are es-
sentially three types of algorithms dealing with this problem:

1. One approach to deal with this problem is to subdivide the models hierarchi-
cally into subparts which are simplified and rendered independently. This results in
simple yet efficient algorithms. Unfortunately, subdividing models and processing the
subparts individually introduces disturbing artifacts due to gaps along the cuts during
view-dependent rendering, even if the gaps are less than half a pixel wide. The reason
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Fig. 7.1: The light gray grid denotes the pixels of the display hardware. The original boundary
curve is shown in red, the tessellations of the neighboring patches are denoted by green and
brown triangles respectively, and the pixels that remain in background are drawn in black.

for this is that the graphics hardware samples the geometry in the midpoint of the dis-
crete pixels, as it is shown in Figure 7.1 which depicts the gaps between two adjacent
NURBS surfaces that are tessellated independently. This remains a problem, even if
subsampling is used and several discrete points are sampled instead of the midpoint –
in this case the background color is merely replaced by an interpolated color. This also
causes flickering in animations, since the exact locations of such gaps keep changing
from frame to frame.

2. Continuous LOD approaches employ complex and memory intensive data-structu-
res to manage connected triangle meshes over all LODs. Due to the elaborate depen-
dencies of data in these hierarchical data-structures the design and implementation of
really fast algorithms remain a challenging task. Furthermore, to handle the memory
requirements special out-of-core techniques have to be devised. They also have the dis-
advantage of treating the model as one single object. Therefore, most culling techniques
are applicable only at the polygon level.

3. Some recent approaches try to overcome the problems of continuous LODs by
subdividing the whole object into independent subparts with individual LOD hierar-
chies. During rendering time appropriate LODs are selected for each subpart and these
subparts are geometrically stitched together. This makes it possible to employ culling
techniques, but requires a priori connectivity information between the subparts. This
connectivity information is usually not present in the model and thus has to be com-
puted in a preprocessing step. Even if this information is already present, the use of
dynamic scenes where the connectivity information changes at runtime is not possible,
since the computation of connectivity information is too expensive.

Such view dependent level of detail hierarchies are generated using different simpli-
fication strategies, therefore a brief overview of mesh simplification methods as well as
approaches to view dependent rendering of the resulting LOD hierarchies is given here.
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The approaches presented in [27], [119], [120], [50],[51], [84] are based on a binary
vertex hierarchy derived from iteratively simplifying the input mesh by edge collapse
operations [49]. The main difference between these approaches are the different data
structures used to represent the hierarchy. De Floriani et al. [32] describe a method that
is based on simple vertex insertion and removal operations which can easily be extended
to edge collapse hierarchies as well. Generalized view-dependent rendering frameworks
based on arbitrary vertex hierarchies are presented in [73] and [98]. While not optimized
for storage cost or rendering performance, these generic approaches support a wide
range of simplification operations.

El Sana and Chiang [26] presented the first method for out-of-core triangle mesh sim-
plification and view-dependent rendering with different LODs from external memory.
They introduce a new spanned sub-meshes simplification technique to subdivide the
original mesh into smaller parts which can be loaded into memory at runtime while pre-
serving the correct edge collapsing order which is necessary to guarantee the run-time
image quality. Special meta-node trees facilitate the run-time level-of-detail rendering.
De Coro and Pajarola [24] present an improved approach with respect to memory re-
quirements by partitioning the in-memory data structure used in [84] into detail blocks
that can be efficiently stored and loaded from external memory.

All these methods for view-dependent rendering of large triangle meshes assure that
the mesh remains connected during the view-dependent refinement process, however,
at the cost of tremendous additional storage requirements, complex data structures and
elaborate algorithms. In the context of digital elevation data the natural parametriza-
tion of the height fields over a rectangular grid can be exploited to cut the data into
smaller pieces with nearly no storage overhead and to devise much simpler and more ef-
ficient out-of-core algorithms. Specialized view-dependent terrain triangulations based
on height-field models are presented in [25], [63], [72], [51] and [85]. In addition to the
natural parametrization these approaches take advantage of the regular grid structure to
process the data.

Baxter et al. [10] introduce a similar cutting algorithm to render gigabyte sized, ar-
bitrary triangle meshes. Their algorithm cuts the original data into small initial grid-
aligned cells that are combined hierarchically as suggested in [28] but neglect the gaps
between the static LODs introduced by the cutting. Based on this hierarchy they pro-
posed a simple, easy to parallelize yet very efficient view-dependent rendering algo-
rithm, however, at the expense of sacrificing high visual quality. Note, that by including
the fat border technique introduced here, this algorithm can easily be modified to guar-
antee high visual fidelity of the output at nearly no costs and additional programming
efforts.
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Recently there has been some work concerning the rendering of silhouette edges in
connection with non-photo-realistic rendering (NPR) [92, 91]. The “fat triangles” ap-
proach first presented in [92] concentrates on silhouette edges and uses them to enhance
the visual appearance of interactive NPR applications. In [91] this approach is further
investigated in the context of rendering special features such as silhuettes, ridges and
ravines, especially on programmable graphics hardware. This approach however puts
the emphasis on NPR of special features whereas the aim in the context of rendering
models with different levels of detail is to hide simplification artifacts between uncon-
nected subparts. In this approach the thickness of the lines in model-space has to be
controlled precisely which is of no importance in NPR.

The method introduced in Chapter 8 is based on subdividing the whole object into
independent subparts with individual LOD hierarchies, but these different subparts are
not stiched together. Instead, the gaps are eliminated by drawing appropriately shaded
fat borders along the boundaries of subparts using a vertex program running on state
of the art graphics hardware. The only requirement imposed is the knowledge of the
approximation error along the boundaries and access to the boundary polylines of the
subparts. Neither is knowledge assumed about the representation of the subparts nor
about their adjacency. Since no care must be taken of shared triangulations of the sub-
part borders, a simple but efficient view-dependent level of detail rendering algorithm
can be devised. Since topology information or preprocessing is not required either, the
method presented in Chapter 8 is also applicable to dynamic models where connectivity
between the independent subparts may change every frame.

7.2 Occlusion Culling

In many graphics applications, such as first-person computer games and architectural
walkthroughs, the user navigates through a complex virtual environment. Often the
user can only see a relatively small fraction of the scene. Since practically all real-time
rendering systems use the z-buffer algorithm to determine which surfaces are visible, all
scene primitives must be processed. The exact set of visible surfaces is referred to as the
exact visibility set (EVS). Determining the EVS for a given viewpoint is possible, but as
this operation has a complexity of Ω(n2) [22, 101] it is prohibitively expensive for real-
time applications. Therefore, the goal of visibility algorithms is to quickly determine
a so-called potentially visible set (PVS), which is a superset of the EVS. One such
algorithm is the relatively simple view frustum culling, which only removes geometry
that is projected outside the viewport on a per primitive level. Hierarchical versions [59]
try to avoid performing separate per primitive tests. Another simple visibility algorithm
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is backface culling which exploits the fact that planar primitives are often only visible
from one side and thus primitives that face away from the camera can be removed.
Provided that the orientation of primitives is consistent, this can be decided easily by
checking the normal of the primitive and this operation has been supported by graphics
hardware and APIs for well over a decade.

Occlusion culling techniques try to identify geometry that is occluded and therefore
does not contribute to the final image. In contrast to view frustum and backface culling
which can be calculated on a per primitive basis (and thus can be considered as local
problems), occlusion culling is a global problem, since it involves the interaction of
primitives belonging to different objects.

If scenes with high depth complexity are rendered, removing invisible geometry can
significantly increase the rendering performance. On the other hand, if the depth com-
plexity is moderate as in Figure 7.2 or even lower, most occlusion culling techniques
need more time to determine visibility than what can be saved by not rendering oc-
cluded geometry. This problem prevented the broad use of occlusion culling techniques
in most consumer applications so far since it often leads to a significant performance
loss in such situations. The only exception are precomputed visibility methods but
these are restricted to static closed environments and thus their usability is limited. To
come up with a solution that takes advantage of occlusion culling in case of high depth
complexity and avoids culling in situations with low depth complexity, an adaptable
algorithm is needed.

The most common approach for efficient occlusion culling with hardware based oc-
clusion queries is to organize the scene in a spatial hierarchy. For rendering, this hi-
erarchy is traversed in a front to back manner. During the traversal a decision has to
be made for each node whether to test for occlusion or not. Current GPUs also allow
to perform occlusion queries parallel to the traversal. In this case a second decision is
required whether to wait for the result of the query, or to directly continue traversing.
To optimize the rendering performance, the algorithm has to adapt to the current depth
complexity and graphics hardware for both decisions.

With the demand for rendering scenes of ever increasing complexity, there have been
a number of visibility culling methods developed in the last decade. A comprehensive
survey of visibility culling methods was presented by Cohen-Or et al. [22]. Another
recent survey of Bittner and Wonka [17] discusses visibility culling in a broader con-
text of other visibility problems. According to the domain of visibility computation,
the different methods can be categorized into from-point and from-region visibility al-
gorithms. From-region algorithms (e.g. cells and portals [108]) compute a PVS in an
offline preprocessing step, while from-point algorithms are applied online for each par-
ticular viewpoint [39, 52, 121, 15, 117, 67]. While a variant of hierarchical z-buffers
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Fig. 7.2: Left to right and top to bottom: a) Moderately occluded view of the power plant model;
b) bounding boxes of successful (green) and wasted (red) occlusion queries using [16]; c) the
presented method on a GeForce 5900; and d) on a Radeon 9800. Leaves rendered without
queries are blue.

[39] is used inside recent graphics cards to reduce the internal memory transfer, hard-
ware occlusion queries [80] are supported via the graphics API to allow applications
to determine how many fragments of a rendering operation pass the z-buffer test. To
decide if an object is occluded, the application can render its bounding box with an
occlusion query and without frame buffer writing. If the number of fragments returned
by the query is zero, the bounding box is not visible and thus the object is occluded.

7.2.1 Hardware occlusion queries

The main advantage of hardware occlusion queries is their generality and the fact that
they do not require any precomputations. However, due to the required read-back of
information from the graphics card and the long graphics pipeline, the queries intro-
duce a high latency if the application waits for the result. This latency can be hidden
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by exploiting the possibility of issuing several occlusion queries in parallel and using
their results later. During traversal two decisions have to be made for each node: first,
whether to issue a query and second, if a query is issued, to wait for the result before
continuing traversal or to traverse the subtree immediately. If a query is issued for each
node of the hierarchy and the traversal algorithm waits for the results before traversing
the subtree, the method degenerates into a breadth-first traversal, as almost certainly all
queries of a level can be issued before the first one is finished and thus many occlusion
queries are performed before anything is rendered. In order to avoid such problems
Bittner et al. [16] proposed to use temporal coherence to guide these two decisions. A
query is issued either if the node was not visible in the last frame or is a leaf node in
order to determine its visibility for the next frame. If a query is issued for a previously
invisible node, traversal of the subtree is delayed until the result is available. Previously
visible leaf nodes are immediately rendered. In this scheme, occlusion queries are only
performed along a front of termination nodes in the hierarchy consisting of previously
invisible inner nodes and visible leaf nodes.

Although a significant speedup was achieved compared to the naı̈ve approach, two
major problems were not solved. The first problem is that each occlusion query needs
some time, so if too many of them are wasted, the performance is reduced compared to
view frustum culling alone. The main source of wasted queries is the fact that all visible
leaf nodes need to be queried to determine the visibility state of all nodes in the hierar-
chy. In addition, many queries that are performed for inner nodes which were frustum
culled in the previous frame are wasted as well. Assuming that these nodes are visible
is however even worse, since then all of their leaves would be rendered with an addi-
tional query for each. The second problem is that the performance gain of occlusions is
delayed by one frame, since previously visible leaf nodes are directly rendered and the
query results are only used in the next frame. The first problem was already partially
addressed by Staneker et al. [102] who proposed a method to save queries for objects
that are certainly visible. A variety of software tests, like occupancy maps or software
occlusion tests with reduced resolution, are used to determine if the object covers screen
areas that are still empty. However, when using current graphics hardware these rela-
tively costly software tests are unfortunately almost always slower than the hardware
occlusion query itself. Another possibility is to use the occlusion history of the nodes
[68], but it needs manual tweaking for each scene and speed of movement. Further-
more, it practically always degenerates to querying each node every n-th frame and
thus increases the delay when nodes become occluded. This can significantly reduce
the performance, especially if temporal coherence is low.
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7.2.2 Graphics hardware parametrization
To achieve a given constant frame rate in scenes with highly varying complexity, several
methods to estimate the rendering time have been proposed starting with the work of
Funkhouser and Séquin [35]. Considering the fact that an upper bound of the rendering
time is required for a constant frame rate, Wimmer and Wonka [116] modified this
method and also adapted it to the characteristics of current graphics hardware. Although
their method is very efficient in achieving a constant frame rate, it cannot be used to
guide the decision of whether rendering with occlusion culling is better than rendering
without occlusion culling, as in this case an approximate time is required rather than an
upper bound. In addition, neither of the above mentioned two algorithms is able to give
time estimations for hardware occlusion queries which are different from those for the
rendering of the bounding box.
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Chapter 8

Fat Borders

One of the long standing problems of rendering tessellated NURBS models is the ren-
dering artifacts which can appear when two adjacent surfaces do not join seamlessly.
This can be avoided when complete topology information is available, however, such
information is sometimes lost when the model is exported from the CAD/CAM system
and it is usually very hard to reconstruct. Some systems try to overcome this problem
by simply relying on connectivity information to be supplied (e.g. [71]) or by sewing
the disconnected meshes based on tessellation tolerances (e.g. the sewing algorithm
presented in Chapter 6 or the enhanced version in [47]

While such a sewing algorithm produces a watertight mesh without requiring a priori
connectivity information, it has a number of drawbacks. First of all, it requires signifi-
cant preprocessing time and may produce non-manifold meshes, which is undesirable.
The resulting mesh also implicitly defines a fixed finest level of detail – if finer tessel-
lation is required in some parts of the model or some parts need to be edited further
usually the entire sewing procedure most be redone. Since it connects separate compo-
nents into a single mesh it also needs a global data structure (e.g. a seamgraph as in [47]
which can result in ignoring any hierarchical information possibly present in the model.
This global data structure also contradicts the hierarchical structure of scene graphs
limiting the use of sewing methods in such systems. Considering that the above ap-
proaches require either significant preprocessing time or connectivity information to be
supplied means that neither of the above algorithms are suitable for deformable models
or models with dynamic neighborhood relations.

In this Chapter a novel solution is presented to the gap problem. Vertex programs
are used to generate appropriately shaded fat lines that fill the gaps between neighbour-
ing patches. Since the method does not need either a priori topology information or
preprocessing, it makes the rendering of dynamic models with unconnected parts pos-
sible without visual artifacts. While the method was first developed for the rendering

58
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of trimmed NURBS models, it is also applicable to different models, e.g. out of core
rendering of polygonal models [46]. The method presented here was first published as
a technical report in [6], and later an improved version was published in [8].

8.1 The Gap Filling Algorithm
In this gap filling algorithm the gaps between adjacent patches introduced by indepen-
dent triangulations are filled with appropriately shaded fat borders. These fat borders
consist of several triangles with predefined connectivity. Their orientation and width
as well as their colors are view-dependent and calculated in each frame using a vertex
program.

The input for the gap filling algorithm consist of an arbitrary number N of LOD-sets
Hi = {M̂i = Mni, . . . ,M0i}, i = 1, . . . , N, of independent patches M̂i with border.
The only requirement on these LOD-sets is, that for each patch M̂i it is always possible
to choose a LOD Mki such that the distance between the approximate surface Mki and
the original surface M̂i, when projected onto the screen, is everywhere less than εimg

pixel, especially along the border of the patch.
As described in [64] this can be achieved by guaranteeing that the condition
H(M̂i, Mki) ≤ r holds for the Hausdorff distance H, where r is chosen in such a way
that the screen-space projection of the sphere with radius r is less than εimg pixels.

Note that the way in which the different LODs are represented and generated is ir-
relevant as long as the above conditions are satisfied. This implies the current LOD
can be gathered directly by tessellating a NURBS patch guaranteeing the required error
tolerance, by using a progressive mesh representation [49], by loading a static level of
detail of the patch from disk or even by using a geometry image [40] with appropriate
resolution to represent the LOD of the patch.

8.2 Fat Border Construction
The required input for this algorithm is a set of polylines each representing a boundary
curve. For each line segment l a small surfaces sj perpendicular to the current viewing
direction is created by extending the line segment in such a way that the projection of
l onto image space extends the projected line segment by εimg pixel in each direction,
as shown in Figure 8.1. In order to shade the newly introduced triangles exactly like
the adjacent surfaces the shading parameters of the original vertices on the borderline is
utilized for the newly generated vertices.
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Fig. 8.1: Concept of the vertex program. Vertices are moved to build a fat border.

This leads to the following algorithm, where iterating through the vertices of poly-
lines, each polyline is processed in the following manner:

1. Calculate the normalized orientation si−1 and si of the respective previous and
the following line segment at the current vertex vi along with their negated coun-
terparts si−1 = −si−1 and si = −si, respectively (see Figure 8.1).

2. Calculate the normalized tangent ti = si−1+si

||si−1+si|| of the poly line at the current
vertex, and its negated counterpart ti = −ti.

3. Generate six new vertices by displacing vi perpendicular to each of the directions
computed in the above steps and the viewing direction di = c−vi

||c−vi|| (see Figure
8.1), where c is the location of the camera:

vi1 = ε
(si × di)

||(si × di)||

vi2 = ε
(ti × di)

||(ti × di)||

vi3 = ε
(si−1 × di)

||(si−1 × di)||

vi4 = ε
(si × di)

||(si × di)||

vi5 = ε
(ti × di)

||(ti × di)||

vi6 = ε
(si−1 × di)

||(si−1 × di)||
,
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where ε is the object space geometric error guaranteeing a screen space error of
εimg pixel.

4. Push the newly generated vertices away from the viewer along the viewing direc-
tion again by ε.

5. Generate new triangles by connecting the resulting vertices as shown in figure 8.1.
Note, that due to the simple structure of the fat borders a single quad strip can be
defined for each boundary curve.

6. Calculate the color of each of the new vertices by assigning the shading param-
eters of the original border vertices. Note, that the orientation of the fat borders
serves to fill the gaps, however they do not influence the actual shading which is
computed based on the original boundary vertex normals.

Because the viewing direction changes from frame to frame, the position of the new
vertices has to be updated continuously. This can easily be achieved using the vertex
shader function shown in Figure 8.2. The only prerequisite for this is to provide six
dummy vertices and their connectivity for each border vertex. The vertex program
should be executed only for the border vertices. Therefore, its execution is disabled
while rendering the patch itself. The whole process is shown in Figure 8.3.

uniform vec3 length;

vec4 construct fat border()
{

vec3 view, offset;
vec4 pos;

view = normalize(vec3(-1,-1,-1) * gl NormalMatrix[2]);
pos = gl Position;
offset = normalize(cross(view,gl MultiTexCoord0.xyz));
offset += gl MultiTexCoord0.xyz;
pos.xyz += length * offset;

return pos;
}

Fig. 8.2: Vertex program to render fat borders. The tangent vectors are stored as texture coor-
dinates and the approximation error is given as local program parameter.
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Fig. 8.3: a) Part of the wheel rim model rendered without fat borders (note the gaps). b) The
same part rendered with the fat borders superimposed. c) Result: the fat borders cover up the
gaps.

8.2.1 Optimization

Note, that although six points are required to ensure the correct extend of the borders
even at sharp corners, in practice using only 4 or even 2 new vertices delivers good
results (only minor visible artifacts) and can have a huge impact on the rendering per-
formance since only one or two thirds of the fat border triangles have to be rendered.
The corresponding fat border generation schemes for 6, 4 and 2 vertices are illustrated
in Figure 8.4. If 4 vertices are used, the vertices vi2 and vi5 are left out, and if 2 vertices
are used only vi2 and vi5 are generated.
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Fig. 8.4: Different fat border generation algorithms. From left to right 6, 4, 2 new vertices. The
thick polyline is the boundary, and the polygons around it represent the generated fat borders.
Note how the fat borders become thinner from left to right.
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Also note, that as long as the tessellation itself is static (the LOD does not change)
the fat borders do not change either except for their orientation. This property can be
utilized to encapsulate the fat borders in a display list and thus eliminate the need for
sending this information over to the graphics hardware in each frame. Therefore, the
bandwidth requirement of the fat borders is practically negligible.

When a screen space error of 0.5 pixel can be guaranteed, the fat border width would
be one pixel. In this case it is also possible to a simple line strip along each trimming
loop instead with little loss of quality. For higher screen space errors this would also
be possible using an appropriate line width, but the loss of quality quickly becomes
unacceptable.

8.2.2 Problems

Unfortunately, the fat borders of neighboring patches might intersect each other. This
does not cause any problems if their shading results in the same color. But if their colors
are different, for example due to different materials or normals, aliasing artifacts occur
as in Figure 8.5. This artifact is greatly reduced if the fat borders are pushed away from
the viewer as shown in Figure 8.6. After this push operation the fat borders are only
visible through the gap. Since this is by LOD construction less than εimg the aliasing
artifacts are less noticeable.

Fig. 8.5: Left: Aliasing artifact due to partly intersecting fat borders. Right: Pushing back the
fat borders reduces the artifact.

Fig. 8.6: Fat border intersection artifact.
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A further problem is shown in Figure 8.7, where at sharp angles of the geometry a
fat border intersects a neighboring patch. This artifact cannot be avoided by reposi-
tioning the fat border since no information about the location of the neighboring patch
is available. Fortunately, the size of the visible spike through is always less than εimg

pixels.

Fig. 8.7: The spike through artifact.

Both artifacts introduced by this method are restricted to at most εimg pixel in width.
They become apparent since the hardware does discrete point sampling introducing
aliasing artifacts. Thus they can be reduced by using standard super sampling. Using
6× super sampling, the artifacts are hardly perceivable. The gaps however would still
be visible as darker or brighter lines between adjacent patches. In practice the artifacts
introduced by using fat borders are much less disturbing than the artifacts caused by
gaps.

A further problem is that for semi-transparent surfaces, the fat borders introduces
more artifacts than they remove, since some pixels become much darker than they
should be. Therefore, no fat borders are generated for semi-transparent patches in the
current implementation.

8.3 NURBS Rendering
An important issue in rendering trimmed NURBS models is that errors caused by er-
roneous modeling should be visible and not be concealed by the visualization method.
The gap filling method works well considering this aspect. As shown in Figure 8.8
modeling errors can be easily detected, as the width of the fat borders becomes smaller
compared to the modeling error in case of a closeup.

In order to ensure interactive frame rates the time available for re-tessellation is re-
stricted to a short period (e.g. 10ms) per frame. This implies that there will possibly not
be enough time to re-tessellate every patch. To overcome this problem, first the number
of patches considered is reduced by taking into account only those patches that were
rendered in the last frame. In addition the remaining patches are inserted into a priority
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Fig. 8.8: Classic modelling error: wrongly specified trimming curves, still very visible!

queue according to the following weight function:

w =

{
(εact/εc)

2, εc < εact

εc/εact, εc > εact

where εact is the current error, and εc is the desired error.
This means patches for which the current error is higher than the desired error (and

thus are likely to cause visible artifacts) will have a much higher priority than those for
which the error is too low and they should only be re-tessellated to conserve memory
and rendering time. The experimental results show that the screen-space error converges
to one pixel with only a short delay. It usually takes less than 3-4 seconds to have no
noticeable visibility errors on screen after fixing the camera parameters. Nevertheless,
even in this case where the screen-space error is relatively large (3-5 pixels) the method
works with εimg set to the known screen-space error and thus no gaps are visible as
shown in Figure 8.9.

8.4 Out of core and GPU-based NURBS rendering
Although the motivation behind the Fat Borders method described in this Chapter was
to render trimmed NURBS models, it was also used in other contexts. In [46] out of core
polygonal models were rendered using this method. The models were clustered into dif-
ferent subparts using an octree as spatial hierarchy. Hierarchical LODs were generated
for the individual subparts, and the subparts were then rendered independently from
each other. The cracks generated by the simplification algorithm were filled using the
Fat Borders method. The method itself did not have to be changed at all, which shows
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Fig. 8.9: 3 pixel screen-space error. Left: without fat borders. Right: with fat borders.

its flexibility. A similar approach was used to render out of core trimmed NURBS mod-
els in [43], where the individual NURBS patches were tessellated independently. The
LODs were created by tessellating the patches with different error tolerances using the
tessellation algorithm presented in Chapter 5. The resulting polygons were also placed
in an octree spatial hierarchy, however, large NURBS patches were allowed to cross
octree borders in order to avoid having to store them in all octree cells that they span,
creating a spatial subdivision referred to as a “lazy octree” structure. Figure 8.10 shows
a parking lot of 16 cars, which together consist of 1.08M trimmed NURBS surfaces.

In [44] a new method to render trimmed NURBS models directly on the GPU was
presented and in [45] this method was enhanced to take into account shading errors
besides the geometric error. Both of these approaches use a simplified version of the
Fat Borders technique, which only draws lines with constant width between the patches,
resulting in negligible overhead for crack prevention. However, since the GPU-based
method is able to guarantee a constant 0.5 pixel screen space error even this simplified
method works well.

8.5 Results

While the presented method is general enough to be applicable to other rendering tasks
besides the rendering of incore tessellated NURBS models, in the context of this thesis
this function is the most relevant one and therefore the discussion of results will be
limited to this area.
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Fig. 8.10: Parking lot with 16 cars, 1.08M surfaces.

The implementation used for evaluation generates 2 vertices for each boundary vertex
during the fat border generation, as described in Section 8.2.1. The desired screen space
error εimg is set to 0.5 pixels which means the gaps between patches can be at most one
pixel wide. Nevertheless the method still provides a considerable improvement in image
quality.

Since it is very hard to compare the approach to others using static LODs or applying
runtime stitching on clusters it is only compared with simply rendering the different
patches independently and not preventing cracks in the model at all. As shown in Ta-
ble 8.1 the performance penalty using fat borders is low.

Without fat borders With fat borders
Average FPS 16.23 14.37
Maximum triangles 55,366 149,235
Minimum triangles 17,592 58,122
Average triangles 37,626 107,117

Tab. 8.1: Summary of results.
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In Figure 8.11 an example of a car model consisting of 8036 trimmed NURBS patches
is shown. The individual patches are tessellated independently on the fly, resulting in
frame rates of about 14 frames per second on an Athlon XP 3000+ with 1024 MB
memory and an ATI Radeon 9700 Pro without any visible artifacts. For comparison
a camera path around the car model was generated. The relatively high number of fat
border triangles is due to the high number of separate objects (NURBS patches) many of
which have no interior triangles meaning all vertices lie on the border and thus generate
at least two additional fat border triangles. Note that stitching the patches together (as in
previous methods) would introduce on average one additional triangle per border vertex
for closed objects. Since most of the boundary vertices of the car model would need to
be stitched the number of added triangles would roughly be half of those generated by
the fat border method. Although almost three times the number of triangles is required
using fat borders, the frame rate does not change much. The reason is that for each
separate object there is one API call and therefore the large number of separate objects
decreases the rendering performance more than the total number of triangles.

Fig. 8.11: View-dependent rendering of a car model without fat borders (left) and with fat bor-
ders (right).

The second example is an implosion animation of a wheel rim (Figure 8.12). In this
example the neighborhood changes dynamically while the model is assembled. No
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precomputation was performed to ensure crack free tessellations, and still no artifacts
become visible which is hardly achievable with previous methods. In this example the
frame rate is about 25 frames per second on the same PC as above. In this case the
retessellation of the individual patches is the bottleneck. Since the number of separate
objects is much smaller and most of these have interior triangles the maximum number
of fat border triangles (7444) is much less than of surface triangles (12012).

Fig. 8.12: Snap shot of an implosion of a wheel rim. The neighborhood information changes
dynamically. Nevertheless, no cracks are visible using fat borders.
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Chapter 9

Occlusion Culling
As previously established, current occlusion culling methods issue too many occlusion
queries for non-occluded geometry which is problematic in low depth complexity situ-
ations since this can lead to slower rendering than without using occlusion culling and
suboptimal performance even in high depth complexity situations.

In this Chapter a new occlusion culling method is presented that optimizes the use
of hardware occlusion queries based on the performance characteristics of the currently
used graphics hardware and an analytical model for the probable outcome of each query.
Using these models, if a query is likely to be wasted (e.g. because only a small portion
of the screen is filled by geometries rendered so far or if simply rendering the actual ge-
ometry would be faster), the query is not issued, therefore an almost optimal scheduling
of occlusion queries can be achieved. The method presented here was first published in
[41].

9.1 Analytical Models
To achieve a near optimal scheduling of occlusion queries, both the outcome of each
query and the times required for rendering and for performing the query itself must be
estimated. This estimation is based on two analytical models which are derived in the
following using the definitions in Table 9.1 and 9.2 respectively.

9.1.1 Occlusion probability
For a set of objects {Oi}0≤i<n ordered with increasing distance from the viewer, a
probability function pcov(Oi) is defined that describes the chance of the object Oi to be
completely covered. The probability function is based on the fraction of screen pixels
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poccl(Oi) probability of Oi being occluded
pcov(Oi) probability of Oi being covered
cscr(Oi) fraction of pixels covered by all objects clo-

ser to the viewer than Oi

c(Oi) fraction of pixels covered by Oi

cbb(Oi) fraction of pixels covered by the bounding
box of Oi

Tab. 9.1: Symbols used for the probability estimation.

cscr(Oi) covered by all objects closer to the viewer than Oi, which is the fraction of
pixels in front of the current object Oi. Note that this function does not exploit temporal
coherence yet, which will be addressed later. Since the probability estimation should not
become the bottleneck of the algorithm, pcov(Oi) is derived from this single coverage
value and Oi is assumed to be randomly placed on the screen. A theoretically better
solution would be the usage of a grid, but in practice the overhead for this proved to
be too high already at very low grid resolutions. Let cscr(Oi) be known, c(Oi) the
screen fraction covered by Oi, then the average fraction of visible pixels of Oi is (1 −
cscr(Oi))c(Oi). This gives an expected value for cscr(Oi+1) of

cscr(Oi+1) = cscr(Oi) + (1− cscr(Oi)) c(Oi).

Since calculating the exact value of c(Oi) would require an occlusion query by itself,
an approximation is used which is based on the fraction of pixels cbb(Oi) covered by the
bounding box of Oi, which can be calculated efficiently. Let Rcov(Oi) be the average
ratio of cbb(Oi) to c(Oi), then c(Oi) can be approximated as

c(Oi) ≈ Rcov(Oi)cbb(Oi).

Let Abb(Oi) be the surface area of the bounding box, d(Oi) the distance between the
bounding box of Oi and the viewer, w and h the width and height of the screen in
pixels, and θ the vertical field of view. Then the screen fraction cbb(Oi) covered by the
bounding box is approximated by:

cbb ≈

(
1

d(Oi)
√

w
h 2 tan θ

2

)2
Abb(Oi)

6
.

To estimate the ratio Rcov(Oi), it is assumed that Oi is sphere-like. Given the surface
area, the radius of the sphere is r2 = 1/4π A(Oi). After projection, the covered area
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Aproj(Oi) of the object is πr2 = 1/4 A(Oi). If it is also assumed that the bounding box
is viewed from the front, it covers the area of 1/6 Abb after projection, which means that

Rcov(Oi) ≈
3

2

A(Oi)

Abb(Oi)
.

Based on cscr(Oi), a model is derived for the probability pcov(Oi) that all pixels of Oi

are already covered. For this model it is assumed that both the pixels covered by Oi and
those covered by O0 to Oi−1 form rectangles with the screen aspect ratio, as shown in
Figure 9.1.

( )scr ic O

( )bb ic O
( )bb ic O

( )scr ic O

Fig. 9.1: Model used to estimate the coverage probability.

Again, let Oi have a random position on screen leading to

pcov(Oi) =

{(√
cscr(Oi)−

√
cbb(Oi)

)2

:cbb(Oi) < cscr(Oi)

0 :cbb(Oi)≥ cscr(Oi)
.

Figure 9.2 shows how well the estimated probability fits to a measured distribution for
randomly placed objects. The measurement was performed by drawing 10,000 random
ellipsoids distributed in the view frustum. This was repeated 100 times to obtain the
average visibility probability. Note that the noise is due to the low number of samples
for some combinations of cscr(Oi) and cbb(Oi), as especially large bounding boxes with
high screen coverage are rare in this setting.

In addition to the coverage probability pcov(Oi), temporal coherence is exploited by
using the occlusion status of Oi in the last frame to estimate the occlusion probability
poccl(Oi) in the current frame. First of all, if Oi was occluded, it is assumed that it will
be occluded again. Second, if Oi was visible, the probability that it will be occluded
for two consecutive frames (pcov(Oi)

2
) need to be considered in order to to exploit

coherence. In addition, visible objects tend to remain visible and thus poccl(Oi) will be
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Fig. 9.2: Comparison of estimated (left) and measured (right) pcov(Oi) against estimated cscr(Oi)
and cbb(Oi).

lower than pcov(Oi). Finally, if Oi was frustum culled, coherency cannot be exploited
so pcov(Oi) is used directly. Therefore, the occlusion probability is:

poccl(Oi) =


1
2pcov(Oi)

2
: prev. visible

pcov(Oi) : prev. outside view frustum
1 : prev. occluded

9.1.2 Render and query time
In addition to po(Oi), the times required for rendering tr(Oi) and for the query to(Oi)
need to be known.

Parameterizing the hardware

The rendering pipeline of today’s hardware is basically divided into three parallel stages,
the setup stage, the vertex stage and the pixel/fragment stage. When several paral-
lel rendering calls are issued, the slowest of these stages determines the performance,
i.e. tr(Oi) = max(tsr(Oi), tvr(Oi), tfr (Oi)). Note that this formula is a combination of
the ones used by Funkhouser and Séquin [35] and by Wimmer and Wonka [116], since
Funkhouser and Séquin considered the pipelining but of course not the architectural
changes of graphics hardware in the last decade. Wimmer and Wonka neglected the
pipelining as they required a reliable upper bound for the rendering time and the intro-
duced overestimation increased the robustness of their method.

To estimate the rendering and occlusion query times, the time required for each of the
three graphics pipeline stages needs to be estimated. Since tvr(Oi) depends linearly on
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the number of triangles N4(Oi) and tfr (Oi) linearly on the number of processed frag-
ments f(Oi), the time required for processing Oi during these stages can be calculated
from the material dependent times per triangle T4

r (mj) and per fragment T f
r (mj) with

tvr(Oi) = N4(Oi)T
4
r (mj) and tfr (Oi) = fo(Oi)T

f
r (mj). For occlusion queries, the es-

timation of tvo(Oi) is not required, since the bounding volumes have a constant low
number of triangles which can be accounted for within T s

o . Instead of the number of
fragments f(Oi) covered by the object, the number of fragments fbb(Oi) covered by the
bounding box of Oi is required to estimate tfo(Oi). As it is also possible to issue a query
along with the rendering itself to use the occlusion status of Oi in the next frame, the
overhead T o

o compared to rendering without a query must also be measured. Table 9.2
summarizes the constant characteristic times required for the rendering and occlusion
time estimations.

T s
r (mj) setup time per rendering call

T4r (mj) time per rendered triangle
T f

r (mj) time per shaded fragment
T s

o setup time per occlusion query
T f

o time per fragment during occlusion query
T l

o maximum occlusion query latency
T o

o overhead time for a query during rendering

Tab. 9.2: Hardware dependent parameters required for rendering and occlusion time estimation.

While N4(Oi) is constant, f(Oi) and fbb(Oi) change with every frame. As f(Oi)
cannot be calculated exactly without the rasterization of Oi, it is derived from co(Oi).
To account for the possible overdraw during rasterization, two fragments per pixel are
presmed and thus f(Oi) = 2wh · co(Oi) and fbb(Oi) = wh · cbb(Oi).

Parameter measurement

To measure these characteristic times two triangle meshes are used: one with a high
number of triangles (O+) to determine T4

r (mj), and one with a low number (O−) to
measure T s

r (mj) and T f
r (mj). For T4

r (mj) and T s
r (mj), O+ and O− are rendered pixel-

sized and for the per fragment performance, O− is rendered filling the whole screen.
The setup and per fragment times for the occlusion query are measured analogously.
These measurements are required for each material, but materials can be clustered into
groups of similar shader complexity and thus the total number of such groups is usually
very low in practice.
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9.2 Rendering Algorithm

Since all occlusion culling techniques are based on exploiting spatial coherence, first a
hierarchy must be generated for a given scene. The type of hierarchy depends on the
requirements of the application, e.g. whether the scene is mainly static or fully dynamic.
In the sample implementation the p-HBVO algorithm [74] was used since the models
used for testing were static. As required for any hardware occlusion culling technique,
this scene hierarchy is traversed in a front to back order, while issuing occlusion queries.

Note that sorting and traversal do not slow down rendering, since they are performed
on the otherwise almost idle CPU.

In contrast to Bittner et al. [16] the characteristics of the graphics hardware are also
considered and a cost/benefit balancing is performed to amortize the cost of wasted
queries over time.

In addition, queries are not only issued for termination nodes, but nodes on all levels
of the hierarchy are considered to find the optimal balance between query time and
expected speedup. This also means that unlike the CHC method multiple queries can
be issued for a subtree in case previous queries did not succeed but subsequent queries
are still reasonable according to the heuristic.

Additionally it also allows the usage of the query result for a performance gain already
in the current frame. Figure 9.3 shows the pseudo-code for the traversal algorithm.

The test whether an occlusion query is reasonable now depends on two factors: a) the
performance tradeoff between query cost and expected benefit (Section 9.2.1); b) the
cost and benefit of the current node compared to that of its children (Section 9.2.2). If a
query for an inner node is issued, the query latency must be considered in the decision
whether the child nodes are added to the traversal queue immediately or only when the
current node is found to be visible (Section 9.2.3).

9.2.1 Performance tradeoff

Issuing an occlusion query for a node Hi is clearly not reasonable if rendering the node
is faster, i.e. tr(Hi) < to(Hi), so queries are never issued for such nodes. While nodes
that were previously occluded are always queried, an additional cost/benefit balancing
is performed for nodes that were previously visible by issuing an occlusion query only
after the node has been rendered without querying for n frames, such that the cost C(Hi)
for the occlusion query is compensated by the benefit B(Hi) of a possible occlusion.
This leads to the condition, that C(Hi) ≤ nB(Hi).
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DistanceQueue.Insert(Root);
while( ¬DistanceQueue.Empty() ∨ ¬QueryQueue.Empty() )

while( ¬QueryQueue.Empty() ∧ FirstQueryFinished() )
Node = QueryQueue.Pop();
Node.SetVisible(GetQueryResult(Node));
if( Node.IsVisible() )

if( Node.IsLeaf() )
SetParentsVisible(Node);

if( Node.WaitForResult() )
Process(Node);

else if( ¬Node.WaitForResult() )
QueryQueue.Remove(Node.Children());
DistanceQueue.Remove(Node.Children());

if( ¬DistanceQueue.Empty() )
Node = DistanceQueue.Pop();
Node.SetVisible(false);
if( InsideViewFrustum(Node) )

if( QueryReasonable(Node) )
IssueQuery(Node);
QueryQueue.Insert(Node);
if( ¬Node.WaitForResult() )

Process(Node);
else

Process(Node);

Process(NodeType Node)
if( Node.IsLeaf() )

Render(Node);
else

DistanceQueue.Insert(Node.Children());

Fig. 9.3: Pseudo-code of the traversal method. Differences to the CHC algorithm are empha-
sized.

Since the benefit is accumulated over all levels of the hierarchy while the cost is per
level, the benefit needs to be evenly distributed among all levels by dividing it with the
depth of the hierarchy.
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Given the total number of hierarchy nodes Nh,

C(Hi) = to(Hi)
B(Hi) = po(Hi)(tr(Hi)− to(Hi))/ log2(Nh + 1).

is obtained.
If Hi was removed by the view frustum culling in the last frame, the estimated pro-

cessing time te(Hi) including an occlusion query is

te(Hi) = to(Hi) + (1− po(Hi))tr(Hi).

If te(Hi) < tr(Hi), a query is issued, otherwise Hi is treated as if it was tested and
found visible in the current frame.

9.2.2 Granularity
Let Hj0, ..., Hjn ∈ S(Hi) be the children of the currently processed node, Hi. Since
during traversal the view frustum culling and distance calculation are also performed for
Hjk

, tr(Hjk
) and to(Hjk

) can be estimated as well. This possibility is used to evaluate
if
∑

k C(Hjk
) < C(Hi) holds, which is the case for example if there exists at least one

k for which Hjk
is view frustum culled or

∑
k cbb(Hjk

) � cbb(Hi) holds. In this case
no query is issued for Hi since it is cheaper to query the child nodes. Analogously a
query is only issued, if the benefit for the current node is higher than for its children
and thus B(Hi) >

∑
k B(Hjk

). Now let Nl(Hi) denote the number of leaves in the
subtree for which the root node is Hi. In order to issue a query for Hi it is also required
that T o

o Nl(Hi) > to(Hi) holds, as otherwise querying the leaf nodes during rendering
is cheaper. The only exception to the last two rules is, if there is at least one k for
which tr(Hjk

) < to(Hjk
) holds meaning that the current node is the last one for which

the complete subtree will be queried. Together with the performance tradeoff, these
conditions define the test if a query is reasonable, which is shown in Figure 9.4 as
pseudo-code.

9.2.3 Latency
Let S(Hi) denote the set of nodes which are the child nodes of Hi. Due to the latency
introduced by the query, a choice has to be made to either insert S(Hi) into the traversal
queue immediately (and remove them again later if Hi was occluded), or to only insert
them later when Hi is found to be visible. If S(Hi) are inserted only after the occlusion
query failed, the one frame delay of the CHC algorithm is eliminated, but the front to
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if( (Node.RenderTime() < Node.QueryTime())
∨ (
∑

ChildChild.Cost() < Node.Cost()) )
return false;

if( Node.WasOccluded() )
return true;

if( Node.Cost() > Node.FramesSinceLastQry() · Node.Benefit() )
return false;

forall Child ∈ Node.Children()
if( Child.RenderTime() < Child.QueryTime() )

return true;
if( (Node.Benefit() >

∑
ChildChild.Benefit())

∧ (T o
o · Node.NumLeaves() > Node.QueryTime()) )

return true;
return false;

Fig. 9.4: Pseudo-code of reasonability test.

back traversal is not maintained anymore and nodes occluded by S(Hi) can erroneously
found to be visible. If S(Hi) are directly inserted however, the time spent to process
them is wasted if the occlusion query for Hi succeeds and the effect of the delay is
only reduced. This problem is addressed slightly differently than the CHC algorithm
by directly inserting S(Hi) if Hi was previously visible or view frustum culled, and
only delaying the insertion of S(Hi) if Hi was previously occluded whereas CHC only
inserts Hi directly if it was previously visible.

In addition, a synchronization between CPU and GPU is performed in order to mini-
mize both out-of-order and unnecessary processing. This can be accomplished by using
the graphics API synchronization (e.g. glFlush()) that waits until the last issued com-
mand starts executing if supported by the driver. If this is not the case – which is
identified during the measurements – another possibility to synchronize is to calculate
the maximum number of possible parallel queries Nq and assume that the first query is
finished when the number of active queries reaches Nq. Given the maximum query la-
tency T l

o which is also measured along with the other hardware dependent characteristic
times, Nq can be obtained as:

Nq =

⌈
T l

o

min(T s
o , T o

o + mini T s
r (mi))

⌉
+ 1.

If the synchronization is supported by the API, both are used to minimize the negative
effects. Otherwise only the maximum number of parallel queries is used. The synchro-
nization is performed when the algorithm checks if the first query is already finished.
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The test based on Nq is free, while the API provided one is only used when it is reason-
ably fast and thus the cost of the CPU/GPU synchronization is negligible.

9.3 Results
The presented method has been integrated into a simple OpenGL-based scene graph and
benchmark tests have been performed on four different scene types shown in Figure 9.5
– the vertex transform limited Power Plant model, the fragment shading limited Vienna,
the low depth complexity Dragon model, and the moderate depth complexity C-Class
model – with different graphics cards and quality settings.

Fig. 9.5: Models used for measurements.

Table 9.3 shows the number of triangles and hierarchy nodes for all models. Since the
Dragon and some objects in the Power Plant model consist of several hundred thousand
triangles, first all objects are subdivided recursively until each object contains at most
1,000 triangles also using the p-HBVO algorithm. This extra subdivision improves the
performance of all methods.
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Power Plant Vienna Dragon C-Class
#triangles 12,748,510 892,920 871,414 1,861,466
#nodes 38,867 20,021 2,535 5,775

Tab. 9.3: Model statistics.

Radeon 9800XT GeForce 5900Ultra GeForce 7800GTX
method perf. quality perf. quality perf. quality

Power Plant
VFC 16.52/143.45 19.96/2580.62 12.51/152.86 18.88/224.16 6.28/103.09 7.86/128.21
CHC 7.07/ 41.53 10.64/ 135.27 6.29/ 46.91 11.21/ 86.27 2.64/ 22.73 3.98/ 36.90
NOHC 6.87/ 34.22 10.37/ 92.01 4.84/ 40.01 9.45/ 69.48 1.88/ 22.03 3.11/ 35.59
opt. 6.31/ 23.97 8.71/ 81.21 3.77/ 27.41 7.01/ 47.24 1.59/ 20.04 2.62/ 25.51

Vienna
VFC 26.65/86.62 26.68/86.72 16.31/60.26 21.80/63.62 8.90/39.37 11.91/39.53
CHC 8.67/66.86 10.12/78.90 5.74/62.95 11.66/64.92 2.40/29.67 5.51/35.34
NOHC 7.67/53.75 9.67/59.15 3.37/45.83 9.21/51.12 1.84/26.32 4.07/26.60
opt. 7.35/41.44 8.95/48.91 2.98/29.96 7.85/40.23 1.60/17.30 3.92/18.66

Dragon
VFC 10.05/10.13 10.26/10.71 12.13/12.35 13.33/14.07 7.12/7.25 7.15/7.31
CHC 8.79/11.38 9.12/11.68 11.42/14.83 12.43/14.95 6.24/7.53 6.81/7.62
NOHC 6.94/ 8.24 7.20/ 9.12 8.17/10.04 9.59/11.63 3.59/4.36 3.86/4.60
opt. 6.15/ 7.81 7.01/ 8.92 7.59/ 9.38 8.97/11.04 3.43/4.30 3.72/4.53

C-Class
VFC 26.32/27.31 26.93/28.88 31.81/33.27 32.97/34.15 18.62/19.55 18.83/19.65
CHC 15.17/17.66 15.66/18.04 19.63/22.98 24.43/28.02 10.74/11.64 13.37/14.29
NOHC 12.96/14.08 13.47/15.56 15.27/17.11 16.35/19.05 6.75/ 7.42 6.95/ 7.95
opt. 10.47/11.92 11.94/13.65 12.94/14.38 15.41/17.04 5.84/ 6.57 6.37/ 6.96

Tab. 9.4: Comparison of average/maximum frame time in milliseconds for different culling tech-
niques, graphics cards, and driver performance/quality settings.

9.3.1 Overall performance comparison
Table 9.4 shows the average and minimum frame rates achieved when using view frus-
tum culling only (VFC), coherent hierarchical culling (CHC) [16], the presented method
(NOHC) and the theoretically optimal algorithm that only queries occluded nodes for
which issuing a query is faster than simply rendering them. In addition, a node is not
queried if querying the children is faster. Comparing to this theoretical algorithm gives
the overhead required for the wasted queries using the CHC algorithm and thus shows
how much it is reduced with the presented approach.

In addition to using different graphics cards, the method was also tested using two
driver performance/quality settings, where the maximum performance setting means
no anti-aliasing, no anisotropic filtering and only bilinear texture filtering (no mip-
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mapping) and the high quality setting refers to maximum anti-aliasing, maximum a-
nisotropic filtering and trilinear texture filtering between mip-map levels. From this
comparison it is already visible that the presented method reduces the maximum frame
time compared to previous culling techniques, independently of the used graphics hard-
ware, quality setting and type of model. Note that in cases when the CHC algorithm is
close to the optimum (e.g. the Power Plant model on the GeForce 7800GTX card) the
improvement is minor. However, when the overhead introduced by the CHC method is
high (e.g. on the GeForce 5900Ultra card), the improvement is significant. In addition
to the reduced maximum frame time, the average frame time is also improved. Here
the improvement however depends on the temporal coherence of occlusions and is thus
more distinct for the Vienna, Dragon, and C-Class models – since they are more or less
closed surfaces – than for the Power Plant model.

9.3.2 Detailed analysis
Since the shortcomings of the CHC method are most apparent on the GeForce 5900
with high performance settings, this configuration is analyzed more extensively.

Figure 9.6 shows a frame time comparison for a part of the Vienna walkthrough with
high depth complexity. In this case view frustum culling would trivially perform much
worse than occlusion culling, therefore comparison to view frustum culling is omitted.
The overhead due to failed occlusion queries is significantly reduced compared to the
CHC algorithm, almost doubling the performance on average. The spikes around the
8th sec and 16th sec are due to sudden viewpoint changes, which obviously do not
influence the optimal algorithm.

In low depth complexity situations however, occlusion culling might degrade perfor-
mance so comparison to view frustum culling is important. Figure 9.7 shows a compar-
ison during a period of low depth complexity in the middle of the Vienna walkthrough.
In contrast to the CHC algorithm the performance of the presented method is always su-
perior to view frustum culling alone. This shows how well this method adapts to these
worst case situations while also improving both the average and best case performance.

On the other hand, the graph also shows the limitations of the approach due to inaccu-
rate estimation of the occlusion probability. When the probability is estimated too high
(e.g. from the 34.5th sec to the 35th sec in the Vienna walkthrough), still some unneces-
sary queries are issued and the improvement over the CHC algorithm is reduced. When
the probability is estimated too low, the rendering time only gradually approaches the
optimum (e.g. shortly after the 38th sec in the Vienna walkthrough). The second effect
is however less noticeable, if the temporal and spatial coherence of occlusions is high.
Therefore, it does not degrade the performance for the Dragon and C-Class model. In

81



CHAPTER 9. OCCLUSION CULLING 9.3. RESULTS

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20
time (sec)

fra
m

e 
tim

e 
(m

s)

CHC

NOHC

opt.

Fig. 9.6: Frame time comparison for the Vienna model with high depth complexity on a GeForce
5900Ultra at maximum performance driver settings.
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Fig. 9.7: Frame time comparison for the Vienna model with low depth complexity on a GeForce
5900Ultra at maximum performance driver settings.

general, even if the assumptions made for the analytical models do not hold in a par-
ticular situation, the method still performs at least on par with (and usually better than)
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view frustum culling and practically always has a much smaller overhead than the CHC
algorithm.
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Part IV

Scene graph systems
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Chapter 10

Previous Work
Since scene graphs have established themselves as a very useful data structure and ab-
straction layer in the last decades it is hardly surprising that there have been quite many
very different scene graph implementations. However, the actual number of scene graph
implementations that are available as (either commercial or open source) libraries and
are general enough to be widely used in various graphics applications is much lower.
The discussion here is further limited to such scene graphs that directly support trimmed
NURBS surfaces as built in primitives.

10.1 PHIGS PLUS

The PHIGS library [53] was one of the first widely used standard graphics APIs. In
contrast to later APIs (e.g. OpenGL, Direct3D) which were fairly low level, it had sup-
port for the hierarchical organization of graphics data, much like modern scene graphs.
However, it lacked higher order primitives, material properties as well as support for
lighting and shading [19]. Therefore, even though work on defining basic PHIGS was
still ongoing, a new project was initiated to address its shortcomings. This new project
was entitled PHIGS Plus Lumière Und Surfaces or PHIGS PLUS [111]. The result was
another official standard, ISO 9592-4 [5]. Once standardized, implementations were
provided by the major workstation vendors.

However, even though in the early 1990s PHIGS PLUS was already a formal stan-
dard, as commercial applications began to use PHIGS and PHIGS PLUS further need
for improvement of the provided functionality became clear. This was addressed in a
series of amendments, nevertheless, instead of publishing the amendments separately,
the entire PHIGS (and PHIGS PLUS) specification would be republished only after the
approval of all amendments. This was only done in 1997 [19], and is referred to as ”Full
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PHIGS”. Full PHIGS was published too late though: no Full PHIGS implementations
were ever provided. By this time it was also clear that PHIGS was a legacy standard,
it has been obsoleted by OpenGL [118]. One major reason for this was that the stan-
dardization process simply did not allow reaction to the needs of the industry in a timely
fashion. Even though PHIGS PLUS provided exhaustive features, the fact that language
bindings were available for Fortran-77, Pascal, Ada and C [54] forbade the use of an
object oriented interface which made the usage of the more complex features (includ-
ing trimmed NURBS surfaces) awkward. Another reason was that OpenGL, while only
providing a more low level approach modeled the graphics hardware much more closely
and had important performance advantages over PHIGS and PEX (PHIGS Extension to
X). OpenGL also had more rendering functionality and stricter conformation rules than
PHIGS and PEX [4].

In addition to this, around this time both OpenGL GLU [21], which provided some
higher level functionality (e.g. mipmap generation, parametric surfaces and quadrics) to
augment the OpenGL API as well as Open Inventor [114], which provided an easy to
use scene graph API became available.

These circumstances meant that the trimmed NURBS support present in PHIGS PLUS
was never used widely and can be considered completely obsolete for well over a decade
together with the entire library.

10.2 GLU
The GL Utilities (GLU) library is not a scene graph in itself, but an add-on library for
OpenGL to augment the low level functions of OpenGL with higher level functionality.
The latest version is GLU 1.3, released in November 1998 [21]. Since GLU is used
in some scene graph implementations as a trimmed NURBS tessellation library, a brief
discussion is given here. Among other things, GLU provides support for mipmapping,
matrix manipulation, concave polygon tessellation, quadrics and NURBS. Mipmapping
routines include image scaling and automatic mipmap generation. Various matrix ma-
nipulation functions assist in building projection and viewing matrices as well as in
projecting vertices from one coordinate system to another. The polygon tessellation
routines convert concave polygons (which are not allowed in OpenGL) into triangles.
Quadrics support renders a few basic quadrics such as spheres, cylinders and disks.

The trimmed NURBS functions allow both rendering and tessellation. In rendering
mode these are converted to a sequence of OpenGL evaluators and directly sent to the
OpenGL pipeline for immediate mode rendering. In tessellation mode, surfaces are
converted to a sequence of triangles and triangle strips and returned back to the applica-
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tion via callbacks for further processing. However, the decomposition algorithms used
for rendering and for tessellation are not guaranteed to produce identical results. The
interface provides fine control over how the surface should be tessellated. It is possi-
ble to specify either screen space or object space tolerances for the tessellation, as well
as the number or sample points taken. However, the tessellator is not very robust in
case of wrongly specified surfaces and/or trimming curves (which is quite common in
industrial CAD-exported models). See Figure 10.1 for a comparison between different
tessellation libraries, including GLU.

10.3 Open Inventor
Open Inventor [114] is one of the oldest and still used scene graph systems, it was
based on Iris Inventor [104]. Open Inventor is one of the first scene graphs to offer a
C++ API and has a strongly object oriented API. Open Inventor is still quite popular,
there are both open source and commercial implementations available and it is still used
in many different projects worldwide. One of its main features is the powerful set of
tools for rapid prototyping which makes building interactive applications possible very
quickly. The original implementation from SGI has been open sourced [99] under the
GPL license in 2000 and practically abandoned. The Coin3D implementation from SIM
[107] is available under both a professional license and under the GPL license. Mercury
Computer Systems market their own version (formerly known as TGS Inventor) which
is based on the original SGI implementation, but has been substantially improved and
ported to various platforms.

The Open Inventor API supports trimmed NURBS with specific NURBS surface and
trimming curve nodes. However, the API only provides implicit control over the tessel-
lation error via the SoComplexity node, whose semantics are left implementation depen-
dent. The API provides no notion of topology and there is no way to reduce rendering
artifacts between neighbouring NURBS patches.

The original SGI implementation included its own tessellation library, which is better
than the one in GLU but also has that problem that it is not very robust when dealing
with wrongly specified surfaces and/or trimming curves. See Figure 10.1 for a compar-
ison between different tessellation libraries.

Since TGS Inventor is based on the original source code from SGI, it originally used
the same tessellation library. However, the tessellation library was later improved to be
more tolerant with wrongly specified surfaces as well as to handle topology informa-
tion. The original API was extended with various nodes to allow explicit control over
the tessellation, as well as specifying topology information. However, there is no sup-
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port for the reconstruction of topology, all topological information must be manually
specified which is often unfeasible in practice.

Coin3D is a clean room implementation of the original Open Inventor API with some
extensions by Systems in Motion AS. It uses the tessellation library in GLU, but apart
from that the NURBS related parts of the API are the same as the original Inventor API.

10.4 OpenGL Performer
OpenGL Performer (formerly IRIS Performer) [95] is almost as old as Open Inventor,
and was partially designed by the same team. However, while Inventor was meant to be
an easy to use strictly object oriented toolkit for quickly developing graphics applica-
tions, the principal design goal of Performer was to allow applications obtain maximal
performance on high end SGI graphics workstations. The main focus was on virtual
reality and visual simulation applications and in these areas Performer still has a strong
position. Performer was also the first system to support multiple threads (the APP-
CULL-DRAW metaphor) as well as multiple graphics pipes. While it included sup-
port for LODs and geometric morphing, it only supported polygonal geometric prim-
itives. However, after OpenGL Optimizer was officially retired all higher-order geo-
metric primitives (including trimmed NURBS and subdivision surfaces) were ported to
Performer in Release 3.2. Since these features are essentially the same as in Optimizer,
they will be discussed in detail in Section 10.5.

Performer is still supported and sold, but its long term viability is questionable. How-
ever, an even larger problem with Performer is the lack of flexibility: the roles of its
processes are fixed and changing them or adding a new one is not trivial if not impos-
sible. Besides adding new graphics hardware features (without extending the library
itself) is limited to callbacks during the DRAW phase and since adding callbacks dis-
ables the state sorting it can have a severe impact on performance. Mainly due to these
reasons many users migrate to either Open Scene Graph [18] or OpenSG [93].

10.5 OpenGL Optimizer
Originally introduced in 1997, OpenGL Optimizer [100] was marketed as a next gen-
eration scene graph API geared towards large model visualization, especially towards
visualization of CAD datasets. Besides having high level functionality to facilitate large
model visualization (e.g. contribution and occlusion culling, polygonal simplification)
it also has various geometry optimization features (e.g. spatialization, triangle strip-
per, spatial and graphics state combiners) as well as support for multiple windows and
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multiprocessing. Optimizer has also extensive support for higher order geometry repre-
sentations, including trimmed parametric surfaces (including NURBS) and subdivision
surfaces. It was also the first scene graph to include support for specifying topologies
in the graph. It can also generate topology automatically in case topology-free analytic
models are imported. Despite being almost a decade old, the tessellators included as
well as the topology builder can be considered state-of-the-art in scene graph systems.
There also exists a high quality translator for importing CATIA models into Optimizer.
Due to these reasons Optimizer and its binary fileformat (.csb) are still the de facto
standard in the german automotive industry.

Despite being still widely used Optimizer has some serious drawbacks. First of all,
it has been retired and no further bugfixes or new features will be developed since it
is proprietary software and no party has source licenses. Even though the higher level
functionality has been integrated into OpenGL Performer, in practice the ported func-
tionality is not as stable as it was in Optimizer. Furthermore, the future of Performer is
also uncertain. After the initial porting of Optimizer 1.3 functionality, no new features
were added to it in Performer (even though there have been new releases of Performer
since) which makes the long term viability of this port even more doubtful.

Another problem is that while the tessellator is very robust and produces tessellations
with a relatively low polygon count, the automatic topology reconstruction often fails
to recognize adjacent patches. This is true even if there is a separate topology build-
ing pass before the tessellation pass. The topology builder also needs to be manually
given a topology tolerance, which can be difficult to determine. Furthermore, since this
tolerance is global within a topology sometimes correct reconstruction is simply not
possible. Figure 10.2 shows the problems with the topology reconstruction in the case
of the Golf wheel rim model. Figure 10.3 shows a belt tensioner model which is tes-
sellated incorrectly: the grey springs are undertessellated irrespectively of the specified
chordal tolerance and the blue suspension section is trimmed incorrectly so it partially
intrudes into the pipe in the middle. The topology is well reconstructed for the most
part, however some segments of the springs are connected incorrectly which is also
visible in the figure.

10.6 Summary

Given the popularity and usefulness of the scene graph metaphor as well as trimmed
NURBS being the de facto standard for representing higher order geometries in CAD
applications, it is hardly surprising that there have been many scene graphs which had
supported trimmed NURBS to some extent. However, all existing scene graphs have
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some shortcomings in this regard. As shown in Figure 10.1, both GLU and Open In-
ventor fail on a lot of surfaces resulting in missing surfaces which makes these libraries
practically unusable. This is very visible on the wheel rim model. In the case of the belt
tensioner model, GLU was not able to produce a tessellation at all.

Even though OpenGL Optimizer has a very robust tessellator and is able to produce
good quality tessellations for almost all surfaces, in some cases it can produce undertes-
sellated or wrongly trimmed surfaces (see Figure 10.3). While the automatic topology
reconstruction works very well in some cases (e.g. it can almost completely reconstruct
the topology of the belt tensioner model) it fails quite often, e.g. in the case of the
wheel rim model most of the topology is either not reconstructed or is reconstructed
wrongly. This means that no matter which scene graph performs the tessellation, for
high-quality rendering e.g. in a VR setting manual healing of the tessellated geometry
must be performed, which is usually both expensive and time-consuming.

The trimmed NURBS implementation in OpenSG tries to overcome these problems
with a robust, yet efficient tessellator (described in Chapters 4 and 5) which is able to
tessellate practically all surfaces (it is the only tessellator which was able to correctly
tessellate e.g. the belt tensioner model). Instead of trying to reconstruct the topology,
the Fat Borders method (see Chapter 8) is used to hide gaps during rendering, which
also makes runtime retessellation possible in case higher precision is required. The
integration into OpenSG is described in Chapter 11.
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n.a.

Fig. 10.1: Different tessellations of the wheel rim (upper two rows) and the belt tensioner (lower
two rows) models. From left to right, top to bottom: a) OpenGL GLU b) Open Inventor (SGI)
c) OpenGL Optimizer d) OpenSG. In the case of OpenSG the Fat Border method was used to
avoid gaps.
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Fig. 10.2: Detail of the Golf wheel rim model showing incorrectly reconstructed topology: some
adjacent surfaces are not recognized and non-adjacent surfaces are connected.

Fig. 10.3: Detail of the belt tensioner model showing incorrect trimming, wrong topology recon-
struction and undertessellated surfaces.
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OpenSG
In the second half of the 1990s there have been many announcements for a ”next gen-
eration” scene graph system, which would rectify the issues with current scene graphs
and provide a solid, future proof foundation for a wide range of applications. The
first such announcement was Cosmo3D as a joint effort between SGI and Sun, but the
project failed and led to the separation of Sun and SGI’s efforts. Sun’s effort later be-
came Java3D [105] while SGI’s results were partially packaged as the Cosmo Suite
applications and partially become the basis for OpenGL Optimizer. The next such an-
nouncement was OpenGL++, which was to be more flexible version of Cosmo3D and
would be developed by SGI, IBM and Intel. However, OpenGL++ was also cancelled
before anything was finished [81]. The next in line would have been Fahrenheit [115],
a joint effort between SGI, HP and Microsoft which would contain a low level graph-
ics library as well as a scene graph layer and extensions for large model visualization,
however, it was also cancelled in 1999.

In practice this series of failed attempts meant that most VR developers were still
forced to use OpenGL Performer, despite its many shortcomings. This was the main
motivation behind forming the OpenSG Forum [83] whose purpose was to oversee the
creation of an open source and freely available next generation scene graph.

11.1 Basic Design Ideas

While the subpar high level geometry support of existing scene graphs is a serious prob-
lem in itself, they have other deficiencies aswell. This is mainly due to the fact that the
demands placed on scene graphs have changed considerably in the last decade. Mul-
ticore CPUs have become commonplace, the performance improvements of GPUs ex-
ceed even Moore’s law [75], the traditionally fixed graphics pipeline has become freely
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programmable, high-end visualization systems are built out of standard PC clusters. Es-
sentially these developments mean that a modern scene graph has to be portable, must
support full multithreading, has to be able to drive multiple graphics pipes and clusters
and has to be flexible enough to accomodate unforeseen future changes.

Efficient multithreading is probably the hardest from the above requirements to achie-
ve. However, this is a very important feature since in a typical VR/AR system there can
be many independent tasks, for example the handling of optical tracker input [2, 76],
possibly other user input (e.g. a spacemouse), collision detection, calculation of phys-
ical simulations and of course rendering (possibly on many GPUs). These tasks have
fundamentally different requirements regarding processing power and thus run at drasti-
cally different frame rates (e.g. the input from optical trackers may be updated at 60Hz,
while a physical simulation might only be updated once per second or even rarer) there-
fore they must be running asynchronously and accordingly have asynchronous access
to the scene graph data.

Parallel asynchronous access to the scene graph data is only possible if the data is
either replicated or the graph is locked for a long time practically losing almost all the
performance gained from parallelisation. OpenSG therefore uses the data replication
model. Data is replicated at the field container level, which allows cache coherent
storage of field data and makes it possible to cause pointers to be valid in every thread
(of course the pointer must be offsetted depending on the thread accessing the data, but
this can be done in the field container access methods transparently).

In order to ease the extension of the system, field container implementations (in the
various Base classes) are generated automatically from an XML description of the fields
inside the container ensuring the consistency of typing information, proper initialisa-
tion during runtime and consistent field access methods. This also means that every
field container class actually exists of two classes, the Base class (which is generated
automatically) and the fieldcontainer class itself, which is derived from the Base class.
Fields inside a field container can only be changed between calls to beginEditCP
and endEditCP since the system must know exactly which fields have changed and
when are the fields in a consistent state. By default the system assumes that all fields
are changed, but both functions take a field mask argument which allows applications
to exactly specify the changed fields. Convenience classes such as CPEditor make
this process semi-automatic.

Object instances are created using a combination of the factory and prototype design
patterns [36].

Having efficient (both runtime and memory-wise) replication of data while necessary
for asynchronous operation, it is not sufficient. The data between the different threads
must also be synchronized. In OpenSG all synchronization is done via global change
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lists, which record the containers that changed and their fields. As typical VR/AR
scenes are mostly static in practice such a change list tends to be rather short [93]. The
information present in the change lists also forms the basis for distributing changes in
the scene graph in a cluster environment [96].

Most scene graph systems allow a node to have multiple parents in order to facilitate
data (typically geometry) sharing. In contrast to this, OpenSG solves the multiple par-
ents problem by splitting nodes into two parts: Node and NodeCore. The Node part
keeps the information which is needed to define the tree structure while the Core part
keeps the information that is specific to the node type (e.g. geometry or material data).
The node has only a single parent pointer and thus can only be used once in a graph (re-
stricting the graph to be a tree), while the core can be used by multiple nodes and thus
permits data sharing. This approach has multiple benefits, e.g. pointers to nodes as well
as named nodes are unique and thus can be used to identify a node. Figure 11.1 shows
an OpenSG scene graph with the classic example of a car consisting of a body, an en-
gine and four wheels, where the wheel geometry is shared. Empty nodes (that is, nodes
without a core) are not allowed. Even for nodes that only define the graph structure a
core must be present, this is usually a simple group core. To ease graph construction a
templated convenience function was added to OpenSG after version 1.2, which creates
a node and a core together.

Modern graphics hardware is heavily pipelined and these pipelines execute drawing
commands in parallel. Since usually there are a lot of these pipelines state changes
must be synchronized. Implementing such a synchronization mechanism in hardware
can be very complicated, therefore GPUs usually just flush the pipelines when the state
is changed. This means that state changes (e.g. color or texture changes) can be very
expensive. Since each node in a scene graph can specify an arbitrary state, such a
traversal would be desired which minimizes the number of necessary state changes yet
renders each node correctly. Finding such a traversal is analogous to the traveling sales-
man problem which is known to be NP-complete. One possible approach to deal with
this problem is employing heuristics to reduce the number of state changes (e.g. [69]).
OpenSG groups related state variables (e.g. texture coordinates or light source parame-
ters) into larger chunks thereby reducing the problem space. A set of such chunks then
define a given state. Surface properties are also defined by adding these state chunks
to a given basic material which wraps the standard OpenGL properties. The actual
rendering is done using the draw tree, a specialized version of the scene graph which
is reconstructed in every frame. The draw tree handles multipass rendering as well as
state change minimization based on the state chunks.
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Fig. 11.1: Example scene graph showing the node/core separation used in OpenSG.

11.2 Surface Node Core
The most important node type in a scene graph is the geometry node, which specifies all
geometric data that is finally rendered. Some scene graphs provide more than one type
of geometry node in order to support different geometry (e.g. polygonal, parametric or
volumetric) representations. Usually there also exists a common base class, from which
these geometry classes are derived. In OpenSG, this is the Drawable class. Polygonal
primitives that are directly drawable by OpenGL such as triangles, quads, lines, etc.
are handled by the Geometry class. Figure 11.2 shows the inheritance diagram for the
geometry classes derived from Drawable. Base classes are omitted.

The Surface class itself is derived from Geometry. This makes it possible to keep
both the high level descriptions and the polygonal tessellation in the same node. It
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MaterialDrawable

Particles SlicesGeometry

DVRGeometry Surface

Fig. 11.2: Simplified class diagram of drawable node cores in OpenSG.

also enables the use of the various geometry iterators present in OpenSG, in case the
application is only interested in the generated triangle mesh, for example when the
tessellation needs to be processed further.

OpenSG uses clamped knot vectors, that is the multiplicity of the first and last knot in
every knot vector must be d+1 where d is the dimension in the direction corresponding
to the knot vector. The number of control points (c) in this direction must be c =
k−d−1, where k is the length of the knot vector. Similarly to the OpenGL GLU library
and Open Inventor, in OpenSG rational control points must be specified in homogeneous
coordinates rather than in Euclidean coordinates. Negative weights are not allowed, if
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a surface or a trimming curve has negative weights the behaviour of the tessellator is
undefined. Zero weights are allowed, but only for inner control points. That is, the
first and last control points of a trimming curve (or the four corner control points of a
surface) must all have positive weights.

Surface Property Type Cardinality
U dimension UInt32 Single
V dimension UInt32 Single

Knot vector in U Real32 Multi
Knot vector in V Real32 Multi

Control points GeoPositionsPtr Single
Texture Coordinates GeoPositionsPtr Single
Approximation error Real32 Single

Delaunay triangulation bool Single
Dirty mask bool Single

Surface GL Id Int32 Single

Tab. 11.1: Mapping the surface properties to Field Containers. Type names follow the OpenSG
convention.

The high level descriptions for a trimmed NURBS surface can be logically split into
two parts: the surface itself and the trimming curves. Mapping the surface into existing
field types is fairly straightforward, since it is uniquely defined by its dimensions and
knotvectors in U and V and its control points. Table 11.1 shows the exact mapping. The
first part of the table lists the fields that describe the NURBS surface mathematically, the
second part the fields that influence how the tessellation is performed, while the last part
lists internal fields. The control points are stored as a single GeoPositionsPtr in
order to have a generic interface which supports both polynomial (GeoPositions3f)
and rational (GeoPositions4f) control points. The matrix of control points is stored
in column (V ) major order.

Curve Property Type Cardinality
Lengths of knot vectors UInt32 Multi

Dimensions UInt32 Multi
Curve control points Pnt3f Multi

Knot vectors Real32 Multi
Number of curves per loop UInt32 Multi

Tab. 11.2: Mapping trimming curve properties to Field Containers. Type names follow the
OpenSG convention.
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Number of curves per loop: 4 1 2

Dimensions: 1 2 21 1 1 1

Lengths of knot vectors: 47124 4 4 4

                 Knot vectors: 0 0 1 1 0 0 0...
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Fig. 11.3: Packing trimming curve attributes into multi fields. The knot vectors and control
points are only given for the two dashed curves.

Mapping the trimming curves is slightly less straightforward since there may be mul-
tiple curve loops each of which can consist of multiple curves. Each individual curve
has a dimension, a knot vector and 2D or 3D control points (depending on whether
the curve is polynomial or rational). Since polynomial and rational curves may be var-
ied even inside a curve loop, internally all curve control points are stored as 3D. All
trimming curves are organized in multi fields for each curve property (see Table 11.2).
Figure 11.3 shows an example of a single surface trimmed by 3 curve loops consisting
of 7 (4+1+2) trimming curves and how they would be represented.

Specifying trimming curves this way and updating all related fields can be very de-
manding so the Surface class provides utility functions for easy specification of trim-
ming curves, e.g. addCurve() which takes a B-Spline curve specified by its knot vec-
tor, dimension and control points (2D or 3D) and adds it to the list of trimming curves
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belonging to the surface. Besides the curve parameters, a boolean value is passed to this
function which defines if the curve continues the current loop or starts a new one.

Since applications are required to use beginEditCP and endEditCPwhen chang-
ing the fields of a field container and the changed method of the field container class
is called from endEditCP, the Surface node core automatically knows that fields have
been changed and the NURBS surface may need to be tessellated. The convenience field
masks CurveFieldMask and SurfaceFieldMask refer to all trimming curve and
surface related fields respectively. When the application signals finishing changing the
fields, the need to tessellate the NURBS surface is flagged, and before the object would
be rendered it gets tessellated creating the polygonal geometry which actually gets ren-
dered. However, this might cause problems in a cluster environment as surfaces may
get tessellated more than once (e.g. on the server and on each client) which is obviously
inefficient since tessellation is a very expensive operation. The solution is to turn off the
automatic tessellation by calling the forceTessellate method of the Surface node
core. This performs the tessellation immediately and sets up the flags so that automatic
tessellation will not be called again.

This method also allows OpenSG to be used as an external tessellation library as the
application can import all NURBS data into Surface node cores, call forceTessel-
late and extract the tessellated geometry either via the geometry iterators provided by
OpenSG or simply by accessing the fields that hold the tessellated geometry.

The tessellation algorithm used is the one described in Chapters 4 and 5. The tessel-
lated geometry is therefore always a triangle mesh with consistent orientation.

Although topology information is not maintained or reconstructed between Surface
node cores, rendering artifacts between adjacent surfaces can be avoided by using the
Fat Borders method described in Chapter 8. Fat Borders are implemented as a state
chunk and thus can be attached to any material. After the tessellation is done, the
Surface node core checks if a fat border chunk is attached to the material of the core.
If a fat border chunk is present, the additional vertices that make up the fat borders are
generated along the tessellated trimming curves. The displacement vectors for these
extra vertices are passed in texture coordinates.

Since field containers can be effectively serialized to binary files this provides a sim-
ple file cache for tessellated geometries. While tessellation is an expensive operation,
loading and saving of these files is very quick.

While not strictly the main task of a scene graph, the Surface node core also provides
some features that are useful for basic modeling or importing tasks, such as a reverse
operation that reverses the direction of the normal vectors of a surface, preserving any
trimming present.
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11.3 Summary
Despite many announcements in the 1990s no single company was able to come up with
a scene graph system that would fulfill the ever changing demands placed on a general
purpose modern scene graph. Therefore the development of OpenSG followed a differ-
ent path: it was available under an open source license from the beginning and the de-
velopment was coordinated by a non-profit organization, the OpenSG forum. OpenSG
provides a stable scene graph basis for VR application development since it is highly
extensible, portable and has good performance. Moreover, it offers full thread safety
and very good support for clusters. It also supports different geometry representations,
including full support for trimmed NURBS surfaces. As shown in Chapter 10 the tes-
sellator present in OpenSG performs on par with (or in some cases even better than)
available commercial systems. Gap free rendering is achieved by integrating the Fat
Borders method presented in Chapter 8. Since the state chunk representing Fat Borders
can be attached to any material and thus consequently to any Geometry node core, it
can also be used to render arbitrary geometry hierarchies for which boundaries between
the subparts can be defined with sufficient error control. In particular, OpenSG and the
Fat Borders chunk have been also used in the context of out of core polygonal rendering
[46].
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Conclusion and Future Work

103



Chapter 12

Conclusions

The major focus of this thesis is to bridge the gap between the widespread usage of
trimmed NURBS models in CAD systems and the use of such models in VR/AR appli-
cations which are typically based on scene graph systems. While there is considerable
demand on these systems to support the tessellation and rendering of trimmed NURBS
models (and various other higher order geometry representations) better, unfortunately
existing scene graphs fall short of this requirement. Therefore multiple solutions for
producing high quality tessellations either directly for rendering or for postprocessing
in various applications (e.g. physical simulation systems) were described, as well as
their integration into the OpenSG scene graph system. In the following the main results
of this thesis are briefly reviewed.

In Chapters 4 and 5 a new tessellation method and an improved version which pro-
duces less triangles and is generally faster than the original one were described. Both
the original and the improved tessellation algorithm are able guarantee a maximal geo-
metric error between the tessellated mesh and the original analytical surface description.
In Chapter 6 a sewing algorithm was described that takes advantage of this guaranteed
geometric error to produce a watertight mesh of the independently tessellated surfaces,
by sewing adjacent surfaces together along their common boundaries. The resulting
mesh is suitable for further processing.

In Chapter 8 a method was described that hides the cracks between adjacent surfaces
or level of detail hierarchies during rendering using modern graphics hardware. The
introduced method does not need any preprocessing, making it well suited to the ren-
dering of dynamic models. While the method was originally developed for the rendering
of trimmed NURBS models, it was also successfully applied to the rendering of out of
core polygonal models with view dependent LODs. Using the OpenSG scene graph
system rendering both out of core polygonal and out of core trimmed NURBS models
were demonstrated to work seamlessly in a distributed rendering environment, driving
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a cluster of 7 PCs that rendered on a 3 segment powerwall with a total resolution of
3008x768 pixels. A simplified version of the Fat Borders method was also used in a
GPU-based NURBS rendering method.

In Chapter 9 a novel occlusion culling method was presented that is based on a prob-
ability model which takes into account the probability of the success of each issued oc-
clusion query, as well as the characteristics of the underlying graphics hardware. This
probability model makes it possible to issue almost no unsuccessful occlusion queries
and thus make the usage of occlusion culling possible even in scenes with low depth
complexity where previous occlusion culling methods could even slow down rendering
due to the relatively large number of unnecessary queries.

In Chapter 11 integration of the improved tessellation algorithm as well as the Fat
Border method into the OpenSG scene graph was discussed. It was also shown that the
tessellation algorithm performs on par with or better than the tessellation algorithms in
existing scene graph systems. This is the first time that a trimmed NURBS tessellator
which rivals commercial systems is available as open source and free of charge as part
of the OpenSG scene graph system.
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Future Work

While the integration of the presented tessellation algorithm and the Fat Borders method
into the OpenSG scene graph system is a major step towards full trimmed NURBS
support in all VR/AR applications, there is no doubt that many challenges still remain.
An obvious point that needs to be further explored is parallel tessellation, which is not
done by any current system, but has great potential since it is virtually impossible to buy
a CPU today that has less than two cores and four or even eight core CPUs are becoming
commonplace. The tessellation algorithm itself can work independently on multiple
surfaces and thus should be easy to parallelize, however, devising a parallel version
of the presented sewing algorithm is far from trivial. It would also be worthwhile to
devise a topology representation that keeps the scene graph hierarchy and yet provides a
watertight mesh for rendering and/or further processing and at the same time is possible
to implement effectively.

The view dependent renderer based on the Fat Borders method could be extended
to handle other kinds of model representations (e.g. subdivision surfaces, isosurfaces)
which would provide better support for rendering higher order geometry representations
in OpenSG.

Integrating the presented occlusion culling method into a scene graph system is also
not straightforward since it needs its own spatial hierarchy to work effectively, which
contradicts the semantic hierarchy that most scene graphs have. Keeping and updating
both hierarchies is clearly not an optimal solution, so further research is needed in this
direction, e.g. if it is possible to effectively generate the spatial hierarchy on demand.
The method would also benefit from more accurate, yet not much more complex, an-
alytical models for the occlusion probability and the rendering/query time estimation,
e.g. that recalibrate themselves during rendering. During measurements it was also ob-
served that moderately increasing the number of triangles of the bounding volumes does
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not affect the query time. Therefore, tighter bounding volumes (e.g. k-dops) could also
be used from which all hardware accelerated occlusion culling methods would benefit.
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[61] Ferenc Kahlesz, Ákos Balázs, and Reinhard Klein. Multiresolution rendering by sewing
trimmed nurbs surfaces. In K. Lee and N. M. Patrikalakis, editors, The 7th ACM Symposium
on Solid Modeling and Applications, pages 281–288, June 2002. 20, 41

[62] Reinhard Klein. Netzgenerierung impliziter und parametrisierter Kurven und Flächen in einem
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