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ZUSAMMENFASSUNG 
 
Die Fähigkeit von B Zellen Antigene zu präsentieren und Antikörper zu produzieren ist die 

notwendige Voraussetzung um die Adaptive Immunantwort auszulösen. Andere Schlüssel-

Mediatoren des adaptiven Systems sind regulatorische T Zellen (Treg), die sowohl die T- als 

auch die B-Zell-Reaktionen modulieren. Derzeit gibt es drei verschiedene Treg Populationen. 

Zum einen gibt es natürliche regulatorische T Zellen (nTreg), die durch ihre Expression des IL-2 

Rezeptors (CD25) und des Transkriptionsfaktors Foxp3 charakterisiert sind. Zum anderen gibt es 

Tr-1 und Th3 Zellen, die durch die Sekretion von IL-10 und TGF-β charakterisiert sind. Es ist 

festgestellt worden, daß IL-10 produzierende T Zellen das adaptive Immunsystem regulieren, 

indem sie B Zellen zur Sekretion von IgG4 anregen. Diese Induktion von IgG4 ist Zell Kontakt 

abhängig. Der Vorteil einer solchen nicht-entzündlichen B Zell-Antwort zeigt sich am hypo-

responsiven Zustand von Patienten mit Allergien oder Helminth Infektionen wie Onchozerkose. 

Das Ziel der vorliegenden Dissertation war die Analyse der molekularen Mechanismen, die IL-

10 produzierende T Zellen dazu befähigen die Produktion von IgG4 durch B Zellen zu 

induzieren. Für diese Untersuchungen wurden regulatorische T Zell Klone (Tr-TCC) aus Human 

PBMC generiert. 

Der erste Ergebnis-Abschnitt dieser Arbeit gibt einen Überblick über die verschiedenen Aspekte 

von Antigen-spezifischer Tr-TCC-Generierung. Die Antigen-Spezifität wurde durch wiederholte 

Stimulation mit dem Tetanus-Toxoid (oder Onchocerca Volvulus Extrakt) allein, oder in 

Kombination mit Dexamethason und Vitamin D3 (DD3) induziert. Die Ergebnisse zeigen, daß 

die so generierten T Zellen die Fähigkeit haben die Proliferation von Tetanus-spezifischen nicht 

regulatorischen T Zellen zu unterdrücken. Diese Unterdrückung war Zell-Kontakt unabhängig 

und wird durch Zytokine wie IL-10 vermittelt. Die so erzeugten Tr-TCC wurden dann auf die 

Expression von regulatorischen T Zell Markern, wie CD25 und Foxp3, hin untersucht und mit 

nTregs verglichen. Interessanterweise wiesen die Phänotypen der Tr-TCC und nTreg Zellen 

einige Ähnlichkeiten zueinander auf.  

Mit B:T-Zell-Co-Kultur-Assays konnte dargestellt werden, daß die generierten Tr-TCCs, 

abhängig vom Zell-Kontakt, B Zellen zur Sekretion von IgG4 induzieren. Weitere Experimente 

haben verdeutlicht, daß sowohl memory und als auch naive B Zellen erforderlich sind, um eine 

signifikante Menge an IgG4 zu produzieren. Es konnte gezeigt werden, daß Moleküle wie GITR, 

GITR-L, TGF-β, IL-10 und Foxp3 eine wichtige Rolle bei der Induktion von diesem 
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Immunglobulin spielen. Weiterhin wurde nachgewiesen, daß die Blockierung von GITR 

Molekülen selektiv die IgG4 Produktion verhindert, wie es auch bei neutralisierenden 

Antikörpern gegen GITR-L, IL-10 und TGF-β der Fall ist. Interessanterweise konnte die vom 

anti-GITR Antikörper induzierte IgG4 Blockade durch einen Überschuß an rekombinanten IL-

10, nicht aber durch rTGF-β rückgängig gemacht werden.  

Der Bedarf an Foxp3 bei diesem Prozeß war sehr überraschend, da Tr-1 Zellen Foxp3 nicht 

konstitutiv exprimieren und über eine aktive funktionelle Rolle dieses Transkriptionsfaktors 

bislang nichts bekannt ist. Um dies zu untersuchen wurde die Menge an Foxp3 während des Tr-

TCC-Generierungs Prozesses gemessen. Hierbei wurde festgestellt, daß die Menge an 

konstitutiven Foxp3 nach jeder Stimulationsrunde zunimmt und mit der Fähigkeit von T Zellen 

korreliert IgG4 zu induzieren. Der funktionelle Bedarf dieses Transkriptionsfaktors konnte 

außerdem durch Ausschalten mit spezifische siRNAs nachgewiesen werden. Diese Tr-TCC 

Zellen induzierten IgG2 anstelle des IgG4.  

Weiterhin konnte mit Hilfe von isolierten nTreg von unbehandelten gesunden Spendern IgG4 

induziert werde, jedoch in geringerer Mengen als durch Tr-TCC. In weiterer Übereinstimmung 

war die IgG4 Induktion durch nTreg (CD4+CD25+) ebenfalls GITR und IL-10 abhängig. Isolierte 

CD4+CD25- Effektor T Zellen induzierten die Produktion von IgG2, ein Ergebnis das gut mit 

dem „silencing“ von Foxp3 in Tr-TCC korreliert. In den letzten Experimenten konnte gezeigt 

werden, daß die B Zell-Aktivierung durch Toll-like-Rezeptoren die Fähigkeit von Tr-TCC 

beeinträchtigt IgG4 zu induzieren. Diese Ergebnisse bieten eine Hypothese, warum die 

Onchozerca Infektionen unterschiedlich verlaufen können: Hypo-Responsiv (hohes IgG4 und 

niedrige Pathologie) gegenüber dem Hyper-Responsiv (niedriges IgG4, hohes IgE und schwere 

Erkrankung). 
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SUMMARY 
 
The ability of B cells to present antigen and produce antibodies has established their absolute 

requirement in mediating adaptive immune responses. Other key mediators of the adaptive 

system are regulatory T-cells (Treg) which modulate both T and B cell responses. There are 

currently three different Treg populations: naturally-occurring regulatory populations (nTreg) 

designated by the expression of the IL-2 receptor (CD25) and the transcription factor Foxp3. 

Alternatively there are Tr-1 and Th3 cells which are characterised by the secretion of IL-10 and 

TGF-β respectively. IL-10 producing T cells have been shown to regulate the adaptive immune 

system by inducing B cells to secrete IgG4 in a cell-contact dependent manner. The benefit of 

such non-inflammatory B cell responses is apparent in the hypo-responsive state of patients with 

allergy or helminth infections such as Onchocerciasis. The present thesis was aimed at analyzing 

the molecular mechanisms underlying the ability of IL-10 producing T cells to induce the 

production of the IgG4 by B cells. For these investigations, regulatory T cell clones (Tr-TCC) 

were generated from human PBMC. 

The initial results section provides an overview regarding the different aspects of antigen-specific 

Tr-TCC generation. Antigen-specificity was induced via repeated rounds of stimulation with 

tetanus toxoid (or Onchocerca Volvulus extract) alone or on combination with dexamethasone 

and vitamin D3 (DD3). The results show the ability of Tr-TCC to suppress tetanus-specific 

reactive T cells in a cell-contact independent but IL-10-dependent manner. Generated Tr-TCC 

were then characterised for their expression of regulatory T cell markers such as CD25 and 

Foxp3 and compared with isolated nTreg: interestingly the cells had overlapping phenotypes. 

Using B:T cell co-culture assays, generated Tr-TCC were then shown to preferentially induce B 

cells to secrete IgG4 and required cell-contact. Experiments also demonstrated that both memory 

and naïve B cells were required to produce significant levels of IgG4. Mechanistically, molecules 

like GITR, GITR-L, TGF-β, IL-10 and Foxp3 were shown to play an important role in the 

induction of this immunoglobulin. It could be shown that blocking GITR molecules selectively 

prevented IgG4 production as did neutralizing Abs to GITR-L, IL-10 and TGF-β. Furthermore, 

the prevention of IgG4 induction by anti-GITR Abs was reversed by excess rIL-10 but not rTGF-

β indicating a complex relationship. The requirement of Foxp3 in this process was surprising 

since Tr-1 cells do not constitutively express Foxp3 and an active functional role was not 

previously reported. To investigate this point further, the levels of Foxp3 were measured during 

the generation process; here it could be shown that levels of constitutive Foxp3 increased after 
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each round of stimulation and correlated with the ability of T cell lines to induce IgG4 in B cells. 

The functional requirement of this transcription factor was further shown after silencing Foxp3 in 

Tr-TCC using specific siRNA since Tr-TCC induced IgG2 instead of IgG4. IgG4 production was 

also shown using isolated nTreg from healthy untreated donors albeit weaker than Tr-TCC. In 

further correlation, IgG4 induction by nTreg was also GITR and IL-10 dependant. More 

interestingly, under the same conditions, isolated CD4+CD25- effector T cells induced the 

production of IgG2, a result correlating with Foxp3 silenced Tr-TCC. In the final experiments, B 

cell activation using Toll-like receptor stimuli affected the ability of Tr-TCC to induce IgG4 in B 

cells. These preliminary findings provide a hypothesis for the mechanism into how the different 

outcomes of Onchocerca infection occur: hypo-responsive (high IgG4 and low pathology) versus 

hyper-responsiveness (low IgG4, high IgE and debilitating pathology).  
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Ab      antibody 
ADCC     antibody dependent cellular cytotoxicity 
Ag      antigen 
APC     allophycocyanine 
APCs      antigen presenting cells 
αCD3      anti CD3 
αCD28     anti CD28 
BCP     boro-chloro-phenol 
BCR     b cell receptor 
bp      base pair 
BSA      bovine serum albumin 
CD      cluster of differentiation 
cDNA      complementary deoxyribonucleic acid 
CFSE     carboxy fluoroscein succinimidyl ester 
CTLA     cytotoxic T lymphocyte antigen 
DC      dendritic cell 
DD3     vitamin D3 and dexamethasone 
DEPC      diethylpyrocarbonate 
DMSO     dimethyl sulfoxide 
dNTP      deoxyribonucleic triphosphate 
EDTA      ethylenediamine-tetraacetic acid 
ELISA     enzyme linked immunosorbent assay 
Fab     fragment antigen binding 
FACS     fluorescence activated cell sorting  
FADH2    flavin adenine dinucleotide reduced form 
Fc     fragment crystallizable 
FCS     foetal calf serum 
FITC      fluoresceine isothiocyanate 
FMNH2    flavin mononucleotide reduced form 
Foxp3     fork head box protein3 
GATA3    GATA binding protein 3  
GITR     glucocorticoid-induced tumor necrosis factor receptor 
ICOS     inducible co-stimulator 
IL      interleukin 
IFN      interferon 
Ig      immunoglobulin 
LPS      lipopolysaccharide 
µg      microgram 
MACS     magnetic activated cell sorting 
mg      milligram 
MgCl2     magnesium chloride 
mM      millimolar 
mAb      monoclonal antibody 
MHC      major histocompatibility complex 
mRNA     messenger ribonucleic acid 
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NADH     nicotinamide adenine dinucleotide 
NADPH    nicotinamide adenine dinucleotide phosphate 
ng      nanogram 
NK     natural killer cell 
NKT     natural killer T cell 
nTreg     natural occurring regulatory T cells 
OD      optical density 
O.v     Onchocerca volvulus 
PBS      phosphate buffered saline solution 
PCR      polymerase chain reaction 
PE     phycoerythrin 
PerCP      peridinin chlorophyll protein 
PFA     paraformaldehyde 
pg      picogram 
PHA     phytohemagglutinin 
PMA     phorbol 12-myristate 13-acetate 
PMSF     Phenylmethylsulfonylfluorid 
rpm      rotation per minute 
RAG      recombination activating gene 
RORγt     retinoid-related orphan receptor gamma-t   
RT      room temperature 
SB     specific buffy-coat 
si RNA    small interfering RNA 
SOC medium    super optimal culture medium 
TBE      Tris-borate-EDTA 
T-bet     T-box transcription factor 
Tc     cytotoxic T cell 
TCC     T cell clone 
TCR     T cell receptor 
Th      T helper 
TGF     transforming growth factor 
TLR     toll like receptor 
TNF      tumor necrosis factor 
Treg     regulatory T cells 
Tr-TCC    T- regulatory T cell clone 
Tris      2-amino-2-hydroxymethyl-propan-1,3-diol 
TT     tetanus toxoid 
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1 INTRODUCTION 
 

1.1 AN OVERVIEW OF THE IMMUNE SYSTEM 
 

The immune system is an association of organs, tissues and cells that coordinate their actions to 

prevent, clear or control infections elicited by pathogens such as bacteria, viruses, parasites, or 

other potential threats[1]. However, our environment contains many other harmless organisms 

which can actually activate the immune system in a positive protective manner. In addition, the 

immune system must be able to differentiate between “self” and “non-self” to avoid 

autoreactivity. Therefore, a balance between tolerance to harmless and “self” antigens and 

immunity against pathogens must be maintained [2-4]. There are two main components, of the 

immune system. The first, the innate system is composed of mucous membranes, phagocytes and 

killer cells which provide non-specific first line defence mechanisms against pathogens[5]. Cells 

of innate immunity are activated through receptors such as toll like receptors (TLR) that 

recognize genetically encoded pathogen-associated molecular patterns (PAMPs). These PAMPs 

are specific conserved structures, such as lipopolysaccharide from Gram-positive bacteria, which 

are released by infected cells, or components of pathogens that do not normally exist in the host. 

Signalling through TLR for example induces so-called “danger signals”, which ultimately leads 

to rapid clearance of the infection[6]. Pathogens that overcome this initial immune response are 

confronted by a second more specific line of defence termed the adaptive immune system[7]. In 

contrast to the innate immune system, the adaptive immune response is highly antigen-specific, 

and requires more time to provide a protective response. The adaptive immune system is 

composed of different cell types including: B cells, CD8+ T cells, CD4+ T helper (Th) cells, 

naturally-occurring and adaptive regulatory T cells (Tregs), NKT cells[6, 7]... One of the main 

weapons of the adaptive immune system is its ability to produce antibodies that can specifically 

target epitopes located on pathogens. B cells are the immune components that produce antibodies 
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and this antibody production is highly modulated by the ongoing cytokine milieu and other 

factors produced by activated T cells[8, 9]. 

 

1.2 B CELLS 
 
B cells are lymphocytes that develop from lymphoid progenitor cells in the bone marrow[10]. 

Lymphoid progenitor cells receive signals from bone marrow stromal cells to begin B cell 

development[11]. During the early stages of their development B cells express one important 

receptor molecule called the pre-B-cell receptor (pre-BCR) which regulates B cell development. 

The pre-BCR is a heterodimer composed of an immunoglobulin (Ig) heavy chain molecule (H 

chain) covalently associated with an immunoglobulin light chain-like molecule usually called the 

surrogate light chain[12-14]. When B cells develop from their precursors they initiate a complex 

series of differentiation and selection program which leads to rearrangements of the H chain gene 

segments[15]. A successful rearrangement of the heavy chain is a prerequisite for the 

rearrangement of the light chain. After rearrangement of both light and heavy chains, if the two 

chains form a viable immunoglobulin, then this complex directs the cell to stop rearranging to 

ensure that only a single specificity is produced. Correspondingly, the developing B cells which 

fail to make a productive rearrangement undergo apoptosis [16, 17]. There are also mechanisms for 

ensuring the destruction of any new B cell whose antibody reacts too strongly with self-proteins 

on the surface of host cells[17]. Immature B cells emerge from the bone marrow to the periphery 

and migrate into the spleen for their final maturation step[18]. After this final maturation step, B 

cells become responsive to antigens and are able to produce antibodies. 

 

1.3 B CELL ACTIVATION AND ANTIBODY PRODUCTION 
 

B cells can be activated in either T cell dependant or independent manners. In order to initiate 

antibody activation in the former, protein antigens must be simultaneously presented and 

recognized by the B cell and T cell receptors, whereas in the latter, non-protein antigens can 

activate B cells directly without the additional T cell receptor recognition. 
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1.3.1 T-DEPENDANT B CELL ACTIVATION 

 

B cells become activated by T cells by acting as antigen presenting cells. Helper T cells 

recognize peptide fragments associated with MHC class II molecules on the surface of B cells. T 

cells then stimulate B cells by releasing lymphokines which act as growth and differentiation 

factors for the B cells, and also by providing cell contact dependant additional signals such as 

CD40-CD40L and CD28-B7 ligation[19]. The initial interaction occurs in the T cell area of 

secondary lymphoid tissues, where antigen-specific helper T cells and B cells are trapped as a 

consequence of antigen-specific binding. Further interactions between T cells and B cells occur 

after migration into the B-cell zone or follicle of secondary lymph organs and form a germinal 

center [6]. T cells help promote B cell clonal expansion and can direct the differentiation of the 

clonally expanded naive B cells into either, antibody-secreting plasma cells or memory B cells[6, 

20, 21]. During B cell differentiation and according to the cytokine milieu generated by the helper 

T cell-B cell interactions, the antibody isotype can be re-directed. Furthermore, the properties of 

antibodies produced by B cells can be modified by somatic hypermutation of the V-region gene 

(variable region gene). Somatic hypermutation and selection for high-affinity binding antibodies 

occurs in the germinal centers. Helper T cells control these processes by selectively activating 

cells that have retained their specificity for the antigen and by inducing proliferation and 

differentiation into plasma cells and memory B cells[6, 21].  

 

1.3.2 T-INDEPENDENT B CELL ACTIVATION 

 

Non-protein antigens such as polysaccharides can stimulate B cells in the absence of helper T 

cells. This T independent B cell activation involves the antigen-mediated cross-linking of surface 

Ig (sIg) receptors on the B cell themselves[22]. T independent activation does not lead to the 

production of memory B cells and induces only limited isotype switching. However, responses to 

these types of antigens, for example lipopolysaccahride (LPS) play a critical role in host defence 

against pathogens whose surface antigens cannot elicit peptide-specific T-cell responses[6]. 

 

1.4 ANTIBODIES 
 

The main function of B cells is to present antigens to circulating T cells and produce antibodies 

which in turn bind antigens. Once produced, antibodies are exported by exocytose and reside 



1 Introduction                                                                                                                            4 

 

 

 

within the plasma membrane whereas others are secreted[23]. Antibodies are found in the plasma 

and also bound to specific receptors on the invariant (Fc) region of immunoglobulins. They are 

also found in secretory fluids such as mucus, milk and sweat[23-25]. All antibodies have a similar 

overall structure with two light and two heavy chains which are linked by both covalent 

(disulphide bridges) and non-covalent forces. They are made up of a series of domains of related 

amino acid sequence which possess common secondary and tertiary structures. These conserved 

structures are frequently found in proteins involved in cell-cell interactions and are especially 

important when studying immunology[26, 27].  

 

1.4.1 ANTIBODY CLASSES 

 

There are five main antibody classes in mice[28, 29] and humans[30, 31]. The different types of 

known antibody are: IgM, IgG, IgA, IgD, and IgE[30]. Certain classes are further divided into 

subclasses. For example, in humans IgG has four subtypes; G1, G2, G3, G4 whereas IgA has 

two: A1 and A2. In mice there are four IgG subclasses G1, G2a, G2b and G3. In contrast to 

humans there is no mouse IgG4. Members of each subclass have the same isotype and depend on 

the structure of the adopted heavy chain. The heavy chain is described by Greek letters (mu, 

gamma, alpha, delta, and epsilon). Antibodies of each isotype have different properties in terms 

of complement fixation and their ability to bind to immunoglobulin (Ig) receptors. There are two 

light chain isotypes kappa and lambda; and each B cell expresses only one light chain isotype. 

Table 1 depicts the different types of antibody, their serum levels, their ability elicit opsonization 

and to activate complement, NK and mast cells. 

 

 IgM IgG1 IgG2 IgG3 IgG4 IgA1/2 IgE IgD 

Form Pentamer Monomer Monomer Monomer Monomer Dimer Monomer Monomer 
Serum level 
(mg/ml) 1.5 9.0 3.0 1.0 0.5 2.5 3x10-5 0.04 

Complement 
activation Strong Strong Low Strong No No No No 

NK cell 
sensitization No Yes No Yes No No No No 

Mast cell 
sensitization No Low No Low No No Strong No 

Opsonization Low Strong - Middle Low Middle No No 

Neutralization Low Middle Middle Middle Middle Middle No No 

Table 1.1: The different types of human immunoglobulin and their functions[6]. 
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1.4.2 IMMUNOGLOBULIN G SUBCLASSES 

 

IgGs represent one of the most important immunoglobulin classes; they are secreted late on in the 

ensuing immune response once B cells have gone through affinity maturation. Affinity 

maturation is the consistent improvement or specificity of the antibody to the antigen; this allows 

a greater affinity of antibodies during persistent antigen exposure. IgGs are also secreted by 

memory B cells during secondary immune responses. IgGs have two antigen binding sites which 

have very high affinity for the same antigen. Earlier studies using specific polyclonal rabbit anti-

serum against human IgG myeloma proteins revealed the existence of the four human IgG 

subclasses: IgG1, IgG2, IgG3 and IgG4[32-34]. The relative serum concentrations of human IgG 

subclasses in clinically healthy subjects are as follows: IgG1 > IgG2 > IgG3 = IgG4[35, 36]. 

Variations in IgG subclasses are an indication of clinical perturbations. A reduction in just one 

IgG subclass indicates that there is a defect in humoral immunity, whereas increases show a 

potential ongoing infection.  

 

The four subclasses show more than 95% homology in the amino acid sequence of the constant 

domains of the γ-heavy chains. The four IgG subclasses show the most differences in their amino 

acid composition and structure of the 'hinge region', which is the part of the molecule that 

contains disulfide bonds between the heavy chains. This region, between the Fab (Fragment 

antigen binding) arms and the two carboxy-terminal domains CH2 and CH3) of both heavy 

chains, determines the flexibility of the molecule[37]. However, the most important difference 

between IgG subclasses is their function: activation of complement (IgG1>IgG2>IgG3) or 

induction of ADCC (IgG1 and IgG3). IgG1 and 2 are the most potent pro-inflammatory 

immunoglobulins and have a high affinity to complement. In contrast, IgG3 has a lower affinity 

for complement and IgG4 is unique since it is unable to fix complement (Table 1). 

 

1.4.3 ANTIBODY FUNCTIONS 

 

Antibodies play diverse roles in controlling an ongoing infection. This section briefly describes 

some of these functions.  
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1.4.3.1 Agglutination  
Antibodies are able to induce agglutination of pathogen: bacteria and viruses. IgM, because of its 

particular tetramer structure and its ability to change its tri-dimensional conformation is 

particularly suitable for this process. 

 

1.4.3.2 Opsonization 
Antibodies (especially IgG) and complement elements like C3b are able to “tag” microorganisms 

for destruction, this process is termed opsonization. IgG antibodies bind to the antigens with their 

Fab end so that phagocytes with their Fc gamma receptors can bind to the coated particles and 

internalize them[38]. 

 

1.4.3.3 Neutralization 
Antibodies can also neutralize targets directly by binding to a vital part of the pathogen or to it 

released toxins. For example, the human monoclonal antibody called 53-2-3 binds to the tetanus 

toxin with a high affinity and reduces its toxicity with an efficiency of more than 99% [39]. 

 

1.4.3.4 Antibody dependent cellular cyto-toxicity (ADCC) 
Neutrophils, eosinophils, phagocytes and NK cells all mediate ADCC and activation of the lytic 

machinery only occurs after ligation of the low affinity Fc gamma RIII molecule, CD16[40, 41]. 

ADCC is a vital mechanism against viral and bacterial infections. 

 

1.4.3.5  Immediate (type I) hypersensitivity  
Immediate (type I) hypersensitivity is mediated through IgE antibodies. Ligation of the Fc 

epsilonR1 receptor on mast cells and basophiles leads to the production of inflammatory and 

vasoactive mediators (histamine), lipid derived mediators (leukotrienes, prostaglandins, platelet 

activating factor) and cytokines. This phenomenon manifests as allergy but is clearly of benefit in 

clearance of extracellular parasites.  

 

1.5 T-LYMPHOCYTES  
 

T cells are lymphocytes that originate from the bone marrow like B cells but mature in the 

thymus[8] and play a central role in adaptive immune responses[42]. They serve as crucial effector 

cells through antigen-specific cyto-toxic activity and production of soluble mediators called 
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lymphokines[43]. T lymphocytes have several classes and the two most distinguishable groups are 

the cyto-toxic or killer T cells[44] that express the surface marker CD8 and the helper T cell (Th) 

recognized by surface marker CD4. Both T cell groups originate from the same progenitor that 

develops into a class of double positive thymocytes CD4+CD8+ T cells that can further 

differentiate into “single” positive CD4+ helper T cells or CD8+ cyto-toxic T cells[45]. Despite 

their common origin these two groups of T cells play completely different roles in the course of 

an immune reaction[46].  

 

1.5.1 CYTOTOXIC T CELLS  

 

Cytotoxic T cells or CD8+ T cells are activated by antigens (virus peptides for example) within 

MHC class I molecules and are thus licensed to kill infected cells. Tc cells play an important role 

in the destruction of cells that have been infected or altered. They are key players in cell 

mediated immune responses[47]. 

  

1.5.2 HELPER T CELLS 

 

CD4+ helper T cells are activated by antigens presented within MHC class II molecules[47] and 

upon activation secrete B cell activation factors and cytokines that support B cells activation and 

in turn antibody production. In addition, T cells also recruit other T cells into the site of infection 

and begin to proliferate themselves.  

Th1 and Th2 are the main helper T cell subsets. The two Th subsets are morphologically 

identical expressing the TCR and displaying the same T cells markers on their surface[48, 49]. 

However, upon activation they produce completely different cytokines and play different roles in 

the course of an immune reaction. In brief, Th1 cells produce high amounts of IL-2 and IFN-γ 

and are particularly important in cell-mediated immune responses. In contrast, the Th2 subset is 

very important in activating and supporting B cell responses through cytokines like IL-4, IL-5 

and IL-6[48, 50-52].  

 

1.5.2.1  Th cell activation  
T cell activation is similar for both Th and Tc cells[53]. After being released from the thymus, Th 

cells go into the blood stream and lymphatic circulation. When Th cells infiltrate a lymph node, 

they get the opportunity to interact with antigen presenting cells (APCs) such as B cells, 
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macrophages, and DCs. T cells interact through their TCR with antigen presented in association 

with MHC molecules on APCs as described above. The alpha and beta chains of the TCR are 

associated with a group of five proteins called CD3. The CD3 chains sense the ligation of peptide 

antigen to the alpha-beta chains and activate a group of ten immunoreceptor tyrosine activation 

motifs (ITAMs), residing within the CD3 chains, which activate the T cell and begin the immune 

response[54]. TCR only recognize antigens presented on the surface of APCs in association with 

MHC molecules[55]. The recognition of MHC restricted antigens by the TCR-CD3 complex does 

not require any other molecules, however, accessory signals provided by co-stimulatory 

molecules on APCs such as CD80 and CD86, which bind to CD28, and the inducible co-

stimulator (ICOS), which binds to ICOS ligand (ICOS-L) are necessary to obtain full T cell 

activation[56, 57]. As a result of activation, Th cells produce cytokines like IL-2, up-regulate 

surface proteins (such as CD25, CTLA-4 and amongst others CD69) and begin to proliferate[58]. 

According to the cytokine milieu, Th cells can differentiate into different subclasses: Th1, Th2, 

Th17 or regulatory T cells. 

 

1.5.2.2  Helper T cell differentiation: 
There are four major differentiation pathways for CD4+ T cells, specifically: Th1, Th2, Th17, and 

Treg. The decision to undergo one differentiation pathway is tightly associated with the type of 

antigen being presented, the co stimulatory factors and the cytokine milieu generated by the 

APCs and the innate immune system. Th cells activated in the presence of IL-12 or interferon 

gamma (IFN-γ) for example differentiate into Th1 cells and express the transcription factor T-

bet[59-61]. T-bet induces expression of IFN-γ, and up-regulates the IL-12 receptor β (IL-12Rβ). 

Generally, Th1 cells secrete IFN-γ, promote cyto-toxic T cell responses, and induce protective 

immune responses against intracellular pathogens. Interestingly, the Th1 cytokines IL-12 and 

IFN-γ inhibit other Th cell subsets by essentially blocking the expression of the critical Th2 

transcription factor, GATA binding protein 3 (GATA3)[62] and by promoting IFN-γ production, 

which is known to inhibit the differentiation of Th17 cells[63-65]. Th17 cells are a relatively new 

Th subclass and have been shown to promote inflammation. Recent data have also suggested a 

role for these cells in eliciting autoimmune pathology. In contrast to Th2 cells which produce IL-

4, IL-5 and Th1 cells characterized by their secretion of IL-12 and IFN-γ, Th17 cells secrete IL-

17 and TNF-α. They are further characterized by the expression of the retinoic acid-related 

orphan receptor γt (RORγt)[66]. 
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As mentioned above, upon T cell activation through TCR ligation, in the presence of co-

stimulatory molecules, CD4+ T cells proliferate and differentiate according to the cytokine 

microenvironment. When CD4+ T cells are activated in the presence of high concentrations of 

IL-12 they usually differentiate into Th1 cells and produce IL-2, IFN-γ and TNF. In contrast, 

naïve CD4+ T cells activated in a microenvironment with low IL-12 but simultaneous high levels 

of IL-4, differentiate into Th2 T cells and produce IL-4, IL-5, IL-10 and IL-13. The recently 

discovered Th17 lineage develops from naïve T cells after activation in the presence of TGF-β 

and IL-6[67-70]. Tregs can be induced by stimulating CD4+ T cells with TGF-β during 

activation[67-70]. Tregs produce IL-10 and TGF-β and can suppress in either cell-contact 

dependent or independent manners. Transcription factor T-bet is essential for Th1 cells whereas 

GATA3 is a critical Th2 transcription factor. RORγt has been shown to be an important Th17 

marker[66] and Foxp3 has become the main marker for Tregs. 

 

 

 

 

 Figure 1.1: Different pathways for Th cell differentiation(adapted from[71]).  
There are four different pathways for the differentiation of naïve T cells. I)Under influence of proinflammatory 
cytokines like IL-12, naïve T cells differentiate into Th1 cells that express the transcription factor T-bet and 
produce cytokines like IL-2, IFN-γ, and TNF. Th1 responses provide protection against intracellular infections but 
can also induce autoimmunity. II) The second pathway is governed by the combination of IL-6 and TGF-β and lead 
to the development of Th17 cells. Th17 cells are characterized by the expression of the retinoic acid orphan 
receptor RoRγt; they trigger inflammation by producing cytokines like IL-17, IL-22 and IFN-γ and are known to 
participate in the development of autoimmunity. III) The third pathway conduces to the development of Th2 cells. 
Th2 cells secrete IL-4, IL-5, IL-10, IL-13, express the transcription factor GATA3 and are known to provide 
protection against extracellular and parasitic infections. However, Th2 responses through the induction of 
antibodies like IgE can also cause allergy).IV) The last pathway is mainly governed by the presence of TGF-β (or 
other regulatory signals). Here naïve T cells are committed into cells with regulatory properties that are 
characterized by the expression of Foxp3, the production of cytokines like IL-10 and TGF-β and which function is 
to suppress excessive effector responses. Regulatory T cells can however promote infection and tumor growth. 
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1.5.3 REGULATORY T CELLS 

 

In contrast to Th1, Th2, and Th17 cells that all induce pro-inflammatory effects and elicit the 

activation of other T cell subpopulations, the regulatory T cells dampen responses by inducing 

anti-inflammatory signals. In 1971, the concept of regulatory or “suppressor” T cells was 

suggested by the work of Gershon and Kondo who showed in adoptive transfer experiments the 

possibility to transfer antigen-specific tolerance to naive animals[72]. However this concept 

quickly lost credibility[73]. The reasons for this were the inability to identify specific surface 

markers associated with these suppressor T cells. In addition, due to advances in molecular 

technology and thus elucidation of T-cell receptor (TCR) genes, it appeared that suppressor T 

cells did not have functional gene rearrangements. Finally, suppressor T cells were thought to be 

governed in their activity by the murine I-J locus, which was supposed to code for soluble 

suppressor factors. The use of hybrid DNA technology to analyze this locus in the early 1980s, 

gave a lethal challenge to the suppressor T cell theory as it showed that the putative I-J region 

just did not exist. Although the whole concept of suppressive T cells was discredited and 

described as an artefact, many experimental observations remained difficult to interpret without 

postulating some form of active down-regulation of the immune response[73, 74]. More than 20 

years later, in 1995, after the global shame on the suppressor T cell theory, a phenotypic 

characterization of one class of regulatory T cell was finally described by the group of Shimon 

Sakaguchi[75]. Since then, the existence of CD4+CD25+ regulatory T cells (Treg) cells, which 

arise naturally from the thymus is widely approved and tremendously investigated in both rodent 

models[76-80] and man[81-85]. These studies have demonstrated that the cells are essential for 

controlling autoimmune responses[76, 86, 87].  

 

1.5.3.1  Subclasses of regulatory T cells (Treg) 
Two main groups of T cells with regulatory activity have been described in mouse and man. 

Naturally occurring CD4+ Tregs (nTregs) represent the most described subset. nTregs are 

generated in the thymus and constitutively express CD25 and Foxp3[87] and are mainly restricted 

to auto-antigen recognition and control responses to “self”. However, their depletion also leads to 

stronger effector responses against foreign antigens[88, 89] highlighting their role as general 

regulators of the immune system. The molecular mechanisms of immunosuppression by nTreg 

have been investigated and the most important requirements appear to be direct cell-cell contact 

with the target cells as well as TGF-β and IL-10[82, 90]. The second group of Treg named 
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“induced" Treg can be specific for both “self” and “non-self „antigens. Their immunosuppressive 

activities are often associated with the production of soluble factors like IL-10 or TGF-β[91-95]. 

Different subgroups of induced Treg have been described using diverse experimental setups. One 

important group, Tr-1, is characterized by their ability to produce large amounts of IL-10. These 

cells are interesting for therapeutic purposes since they can be induced in vitro. Groux et al., 

described in 1997 the generation of IL-10 producing T cells called Tr-1 cells in both human and 

rodent models using chronic activation of CD4+ T cells in the presence of interleukin IL-10. The 

obtained CD4+ T cells displayed high levels of IL-10 but low proliferation, low levels of IL-2 

and no IL-4. In addition, these cells were antigen-specific and could suppress the proliferation 

and immune responses of antigen-specific effector CD4+ T cells in response to antigen both in 

vitro and in vivo. Moreover, these cells could actively down regulate ongoing pathology[96]. 

In 2002, Barrat et al., proposed a protocol using the combination of the immunosuppressive 

drugs vitamin D3 and dexamethasone to induce both human and mouse naive CD4+ T cells to 

differentiate in vitro into IL-10 producing regulatory T cells. In contrast to the previously 

described in vitro derived CD4+ T cells, these cells produced IL-10 but no IL-5 and IFN-γ and 

furthermore, retained strong proliferative capacity[97, 98]. Different methods have been described 

to expand CD25+Foxp3+ regulatory T cells in vitro using a combination of anti-CD3/anti-CD28 

and IL-2[99]. Recent publications indicate that CD25+ Tregs not only develop in the thymus, but 

can also differentiate from naive T cells in the periphery[100]. A protocol using TGF-β was 

recently proposed to generate in vitro TGF-β-induced Tregs (Ti-Tregs). The resulting in vitro-

induced regulatory T cells express markers of conventional Treg such as CD25 and the genetic 

program committing transcription factor Foxp3[100]. Functionally, these Ti-Tregs suppress T-cell 

activation and proliferation and are able to control inflammation in different animal models[100]. 

 

1.5.3.2 Suppressive mechanisms 
Although it is now well established that regulatory T cells suppress immune responses, the 

mechanisms used for this suppression are not completely elucidated. Two main groups of 

mechanisms have been described including cell contact dependant and cytokine mediated 

suppression. Cell contact mechanisms are mediated mostly by surface TGF-β and CTLA-4[101-

104], whereas secreted TGF-β and IL-10 mediate cell contact independent mechanisms[105]. 

Natural Tregs expressing CD25 and Foxp3 are believed to use contact dependent mechanisms in 

contrast to antigen-induced IL-10 positive regulatory T cells suppression is mediated through 

soluble factors like IL-10 and TGF-β[105]. 
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1.5.3.3 Regulatory T cells in infection 
Whereas Treg are desired for the inhibition of auto-immunity, they have been shown to have a 

negative role during certain infections. Several pathogens that lead to chronic infection have been 

found to induce Treg both in vitro and in vivo. This phenomenon has been well examined using 

Bordetella pertussis infection. Survival of the bacteria has been shown to be enhanced by the 

induction of specific Treg to the bacteria’s filament-associated haemagglutinine (FHA). Similar 

situations using adaptive Treg which benefit both host and invading parasite or virus have been 

identified during infections with Candida[106, 107],Hepatitis C virus[108, 109], Leishmania[110], 

Filaria[111, 112] and malaria[44, 113, 114]. In the latter parasitic infection it was recently shown that the 

increase in CD25+ Treg in infected patients corresponded with malaria parasite growth and such 

evidence indicates that the parasites, bacteria or viruses manipulate the suppressive T cell 

responses for their own advantage[44]. In filarial helminth infections, it has been reported that in 

situations of immune hypo-responsiveness, functional antigen-specific Treg have been identified 

which constitutively express CTLA-4 and produce high levels of IL-10 or IL-10 and TGF-β[115, 

116]. This phenomenon is described in more detail in the following section. 

 

1.5.3.4 Regulation of the humoral immune responses: IgG4 production in infectious and allergic diseases 
As mentioned above the Tregs are known to prevent the development of autoimmune diseases 

and are also involved in prevention of sensitization to allergens[77, 87, 117, 118]. A possible use of 

Tregs to cure or prevent allergic diseases is a currently discussed issue[77]. Th2 responses to 

allergens are known to be suppressed by CD4+CD25+ Tregs or IL-10 producing Tr-1 cells [119, 

120]. In animal models, Tregs could be induced using high doses of antigen and the induction of 

such Tregs prevented subsequent development of allergen sensitization and airway inflammation 

in inhaled challenge models[121-124]. For many years, allergen-injection immunotherapy has been 

used for the treatment of allergic disease, and this therapy is thought to induce protective IL-10 

Tr-1 cells which suppress Th2 responses and induce a switch from IgE to IgG4 antibody 

production[125, 126]. Figure 1.2 illustrates the course of such a deviation of the immune response 

due to the induction of IL-10 producing Tr-1 cells. Furthermore, it could be demonstrated that 

peripheral blood mononuclear cells (PBMC) of allergic patients, that were successfully 

hyposensitized, produced more IL-10 in response to these allergens and in addition higher 

production of IgG4[124, 127-130]. 

Thus in allergy therapy, IgG4 antibody production induces protection against a given antigen 

whereas IgE antibodies are linked to ongoing allergic responses[131].  
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 Figure1.2: Potential mechanisms of conventional allergen immunotherapy. 

Natural environmental exposure to allergens induces the activation or maintenance of atopic Th2 T cell responses 
leading to allergy (blue arrows). High-dose allergen exposure during immunotherapy leads to immune deviation of 
Th2 responses in favor of a Th1 response and the generation of IL-10 and TGF-β–producing Tregs. The cytokines 
produced by Tregs induce preferential switching of B cell responses in favor of IgG4 antibodies. IgGs and especially 
IgG4 competes with IgE for the circulating allergen which subsequently down regulates IgE-dependent Th2 
responses. Furthermore, Treg may directly inhibit Th2 and Th1 T cell proliferation (red blocked lines). Blue arrows 
represent immune response pathway to natural exposure (low-doses antigen and IgE); dotted lines represent possible 
means of action not yet fully understood[130] 

 

 

Interestingly aspects of nematode filarial infections also correlate with the observations found 

during allergic responses. In Onchocerciasis for example, there are two possible outcomes in the 

development of infection: the generalized onchocerciasis, where infected individuals with high 

parasitemia and microfilaria present few clinical symptoms and the hyper responsive 

onchocerciasis where individuals demonstrate low parasitemia and few microfilaria but intense 

dermal pathology (also termed sowda form). In the latter form, dermal and ocular complications, 

including blindness are caused by the reaction of the host's immune system to the parasite, 

particularly the microfilaria[132, 133]. Interestingly, persons with the generalized form exhibit 

significantly higher ratios of IgG4 to IgG1 and IgG4 to IgE[134]. Prominent IgG4 levels in hypo-

responsive patients positively correlate with worm load[135, 136]. 
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In addition, a high parasite load correlates with IL-10 which stems from CD4+ T cells and 

possibly macrophages. These IL-10 producing T cells have been shown to elicit the production of 

the non complement fixing immunoglobulin IgG4 by B cells. This IgG4 production is one of the 

suspected mechanisms involved in the development of generalized onchocerciasis. In contrast, 

worm specific IgE antibody levels correlate positively with microfilaria clearance but also to 

immunopathology[137, 138] and such, low parasite loads were found in hyper responsive patients 

with high levels of IL-4 and IL-5[139, 140]. 

Furthermore, it has been reported that adaptive regulatory T cells induced by filarial antigens can 

down-regulate both Th1 and Th2 effector cells responses in addition to inducing IgG4 production 

by B cells. These regulatory mechanisms encouraged the development of the generalized form of 

onchocerciasis, characterized by low pro-inflammatory reaction[141] by inhibiting 

proinflammatory signals that may lead to hypersensitivity. Figure 1.3 illustrates this key role of 

regulatory T cells in avoiding the development of the hyper reactive form of onchocerciasis. 

 

 

 

 

 Figure 1.3: Network of interaction in the immunomodulation during filarial infection.  

The polar forms of host reactivity in human onchocerciasis: generalized onchocerciasis vs. Sowda (hyper-reactive 
onchocerciasis). Red lines represent pathways conducing to parasite clearance and hypersensitivity (Sowda form) 
including Th1 and Th2 effector cytokines and blue lines represent tolerogenic pathways including regulatory T cells 
immunosuppressive cytokine, IL-10 and TGF-β, as well as the production of IgG4 by B cells, conducing to parasite 
tolerance (Generalized onchocerciasis)[141]. 

 

 

1.6 AIM OF THIS THESIS 
 

Previous studies have identified that regulatory cytokines like IL-10 and TGF-β were responsible 

for the antigen-specific cellular hypo-responsiveness in chronic human helminth infections[142]. 

Furthermore, T cell clones (TCC) with regulatory properties, characterized by IL-10highIL-
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4lowIFN-γlow and generated using a combination of tetanus toxoid antigen and IL-10 were 

demonstrated in direct T-B co-culture to be able to induce IgG4 production from B cells. This 

IgG4 induction was cell-contact dependant and IL-10 was an absolute requirement for this 

response[143]. More recently in patients with autoimmune pancreatitis, CD4+CD25high Tregs, were 

associated with high levels of serum IgG4 and to be involved in shifting B cells into IgG4-

producing plasma cells[144]. 

The present work was aimed at analyzing the components required by regulatory T cells to 

induce IgG4 secretion from B cells. The first task was to generate T cell lines (TCL) using 

tetanus toxoid or O.v extract and DD3 (vitamin D3 and dexamethasone) which enhances IL-10 

producing cells in vitro. After multiple rounds of antigen-specific stimulation, IL-10 producing 

TCL were then cloned and characterized to decipher whether they possessed a Th1 (non Tr-

TCC), Th2 or regulatory T cell (Tr-TCC) profile. Upon generation of IL-10highIL-4lowIFN-γlow Tr-

TCC, the ability of these cells to suppress both antigen-specific and non-specific Th1 cells was 

tested using a variety of specific assays. Suppressive Tr-TCC were then analyzed for their ability 

to induce different IgG subclasses in vitro using a T:B cell co-culture assay. Tr-TCC with the 

ability to preferentially drive IgG4 were then used to decipher the mechanisms and components 

thereof, that were involve in this IgG class switch. Investigations that were performed in order to 

elucidate these mechanisms included 1) neutralization experiments with antibodies to GITR, 

GITRL, CTLA-4, ICOS, IL-10 and TGF-β, 2) silencing Foxp3 with specific siRNA using 

nucleofection techniques and 3) PCR of T cell transcription factors. In addition, the phenotypic 

characteristics and functional activity of Tr-TCC was compared with nTreg (CD4+CD25+) that 

were directly isolated from healthy PBMC. These experiments were performed to determine 

whether the mechanism involved in IgG4 induction was restricted to IL-10 producing Tr-TCC or 

were perhaps a common feature for all Treg. Finally, it was investigated whether simultaneous 

TLR activation on the B cells or the Tr-TCC themselves could influence the outcome of IgG 

responses.  
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2 MATERIALS AND METHODS 
 

To describe the materials and methods used throughout this work, this chapter is divided into 

five sections. In section 2.1, there is a general summary of the necessary materials. This section 

is followed by detailed accounts regarding cell culture 2.2, cell immunology assays 2.3, and 

molecular biology procedures 2.4. Chapter subsections which are of particular interest to this 

work are the protocols used to generate the regulatory T cell clones (2.3.3), the techniques used 

to identify the suppressive capacity of these clones (2.3.2) and the co-culture assays performed to 

detect the ability of those clones to induce B cells to produce IgG4 (2.3.7) The protocols for the 

various buffers and solutions referred to in this chapter are described in appendices A-E.  

 

2.1 MATERIALS 
 

This section covers the variety of materials that were used throughout the study, beginning with 

clarification about the different blood samples obtained from the University blood bank and 

continuing with accounts of the plastic ware and the required antibodies. Finally, there is a 

description about how the different antigens were prepared. 

 

2.1.1 BLOOD SAMPLES, PBMCS, APCS / FEEDER CELLS 

 

Blood samples used in this study were collected from healthy European donors and were kindly 

provided by the Institute for Experimental Haematology and Transfusion Medicine, University 

Clinic Bonn, Germany. The only selection criteria were the willingness of the donors to 

participate in the study. The study was approved by the University Clinic Bonn ethic committee 

(“Ethikkommission der Medizinischen Fakultät der Rheinischen Friedrich-Wilhelms-Universität 

Bonn”). PBMCs were separated from citrate venous blood by gradient centrifugation on Ficoll-
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Plaque (density 1.077; PAA, Germany). The isolated PBMC were either immediately used or 

cryo-preserved (see section 2.2.3). The HLA type of the donors was characterized by PCR 

(kindly performed by the Department of Clinical Medicine Bonn) to ensure that no allogenic 

responses could occur in cell cultures in which no autologous APCs or B cells were available. 

Twenty donors were consistently used throughout this study. Table 2.1 below shows the patients 

numbers and the corresponding information about their haplotypes. 

 
PATIENT HLA-A HLA-B DRB PATIENT HLA-A HLA-B DRB 

SB1 02  03 07  15 11/15 (3*5*) SB11 01  68 07  08 03/07 (3*4*) 

SB2 01  02 07  08 03/15 (3*5*) SB12 01  24 08  15 03/14 (-*3*) 

SB3 02  26 07  56 03/07 (3*4*) SB13 01  02 08  44 03/04 (3*4*) 

SB4 03  26 35  38 07/15 (4*5*) SB14 01  24 08  40 03/11 (3*/-*) 

SB5 03  29 18  45 03/04 /3*4*) SB15 02  /-- 38  44 11/- (3*/-*) 

SB6 02  /--   13  39 04/13 (4*3*) SB16 03  31 07  18 03/15 (3*5*) 

SB7 26  66 14  27 01/04 (4*5*) SB17 24  26 07  /-- 04/15 (4*5*) 

SB8 01  24 35  37 13/15 (4*5*) SB18 02  24 07  39 08/11 (-*3*) 

SB9 02  /--   27  40 03/15 (3*5*) SB19 01  68 07  14 03/15 (3*5*) 

SB10 02  /--   27  44 01/14 (-*5*) SB20 11  24 40  51 11/15 (3*5*) 

Table 2.1 Donor patient number and information about their haplotypes. 

 

2.1.2 PLASTIC AND GLASSWARE 

 

All plastic and glassware equipment was supplied by one of the following firms: Eppendorf, 

Hamburg, Germany, Becton Dickinson, Heidelberg, Germany, or Greiner, Friekenhausen 

Germany.  

 

2.1.3 ANTIBODIES AND MICROBEADS 

 

Anti-GITR-APC, blocking anti-GITR, anti-IL-10, anti-TGF-β antibodies and their corresponding 

isotype controls were obtained from R&D systems, (Wiesbaden, Germany). PE-conjugated anti-

Foxp3, anti-ICOS and blocking anti-ICOS antibody were from eBioscience (San Diego USA). 

All other antibodies used for cell culture, flow cytometry or ELISA were purchased from BD 
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Biosciences (Heidelberg, Germany). Anti CD3/CD28 T cell expansion beads as well as magnetic 

cell sorting beads were purchased from Dynal/Invitrogen GmbH (Karlsruhe, Germany). 

 

2.1.4 ANTIGENS AND RECOMBINANT PROTEINS 

 

2.1.4.1 Onchocerca volvulus extract 

Aqueous soluble Onchocerca volvulus extracts were prepared from adult female worms that were 

isolated from Onchocerca nodules from infected patients. Worms were isolated after collagenase 

digestion of the nodules and then shock frozen in liquid nitrogen[145]. For antigen preparation, 

mortar and pestle were first placed on ice and pre-cooled by filling the mortar with liquid 

nitrogen. The eluting buffer which contained E64 (10 µM, PMSF, 500 µM, Benzamidin 6.4 mM, 

in PBS pH7.4) was freshly prepared and chilled on ice. The worms were then pulverized in liquid 

nitrogen and the powder was collected in a chilled falcon tube. Then 1 ml per worm of the 

eluting buffer was added and the solution was mixed. The lysate was incubated overnight at 4°C 

under gentle rotation and then centrifuged at 4°C for 1hour 30 minutes at 150,000xg. The 

supernatant containing the soluble proteins was double filtered through a 4.5 µm filter in order to 

remove large debris and then through a 0.2 µm sterile filter. The protein concentration was 

determined by Bradford assay and Coomassie solutions and the antigens were stored at -80°C 

until use. 

 

2.1.4.2 Tetanus toxoid 
Tetanus toxoid was kindly provided by Dr. C. Hungerer (Chiron Behring, Marburg, Germany).  

 

2.1.4.3 Recombinant proteins 
Several recombinant proteins were throughout this study; as ELISA standard (rIL-2, rIL-4, rIL-

10, rTGF-β and rIFN-γ) or as cell culture supplement or source of exogenous active proteins 

(rIL-2, rIL-10, rTGF-β rGITR and rGITRL). All recombinant proteins used in this study were 

purchased from BD Biosciences (Heidelberg, Germany).  
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2.2 CELL CULTURE PROCEDURES 
 

2.2.1 ISOLATION OF PBMCS 

 

Peripheral blood mononuclear cells (PBMCs) or PBLs for peripheral blood lymphocytes were 

isolated from heparanized whole blood using a ficoll based density gradient separation 

method[146, 147]. The entire isolation procedure was carried out on ice. The heparanized blood was 

diluted 1:2 in RPMI medium supplemented with 2 mM L-glutamine and 50 µg/ml gentamycin 

and penicillin (RPMI+++). The diluted blood sample was then gently pipetted onto 15ml of 

Ficoll that was already within in a 50 ml falcon tube. The suspension was then centrifuged for 20 

minutes at 4°C, 800g without brake. The white layer containing the leukocytes was then carefully 

collected into a new tube using a 2 ml-pipette and washed twice with RPMI+++ to remove the 

remaining ficoll. For washing, 20 ml of RPMI+++ was added to the cell pellet, gently mixed and 

centrifuged for 8 minutes at 4°C and 400g. The supernatant was discarded and the washing step 

was repeated again. 

 

2.2.2 CELL VIABILITY AND COUNTING 

 

The number of the living cells was determined using a trypan blue based exclusion method and 

was expressed in number of cells per ml. The cell suspension was diluted 1:2 or 1:5 with a 

solution of 0.4% trypan blue. 10µl of the mixed solution was then loaded onto a cell counting 

chamber or haematocytometer, (Neubauer, Assistent, Germany), and the living cells (non-

coloured) were counted. PBMCs were not used when more than 5% of the cells were dead (blue 

coloured). 

 

2.2.3 FREEZING OF ISOLATED CELLS 

 

Cell suspensions were adjusted to a concentration of 2-3 x 107 cells/ml, depending on whether 

PBLs, feeder cells, lymphocytes lines or T-cell clones were to be frozen. The freezing medium, 

pre-cooled on ice, was slowly added drop by drop to the same volume of suspended cells, with 

intermittent mixing, and quickly frozen in a Nunc cryotube (2 ml/tube) at –80°C for at least 24 

hours and then in liquid nitrogen. 
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2.2.4 FREEZING OF CULTURED CELLS 

 

At the end of the stimulation cycle, cultured cells were cryo-conserved by freezing up to 2-5 x 

106cells/tube. For this purpose, 100-150µl of supernatant per well was removed from the cultures 

wells and pooled in a 15 ml falcon tube. After centrifugation at 1300 rpm for 8 min at 4°C, the 

pellet was re-suspended in 1ml RPMI 1640 medium containing 10% FCS. The cell concentration 

was adjusted to 2-5 x 106 cells/ml and the cells were frozen as described above. 

 

2.2.5 THAWING OF FROZEN CELLS 

 

As with freezing, all thawing procedures were fulfilled on ice. The cryotubes were removed from 

liquid nitrogen or from -80°C, and quickly thawed in 2-3 minutes between the palms of both 

hands. The content of the cryotube was poured into a 15ml falcon tube and 10ml of pre-cooled 

culture medium was slowly added over a 5-10 minute period with frequent mixing. After 

centrifugation at 1300 rpm for 8 minutes at 4°C, to wash away the freezing medium which is 

toxic for the cells, cells were washed once again with 10ml culture medium, re-suspended in 1 

ml, adjusted to the appropriate concentration and used in stimulation assays. 

 

2.3 CELL IMMUNOLOGY PROCEDURES 
 

2.3.1 IRRADIATION OF PBMCS FOR USE AS FEEDER CELLS OR APCS 

 

After isolation of the living cells, PBMCs destined for use as APCs or feeder cells were γ-

irradiated for 15 minute at 4000rads using a Gamma cell irradiator (Atomic Energy of Canada). 

This rendered them unable to proliferate but did not affect their ability to present antigen and 

thus suitable as APCs and or feeder cells since there could be no interference with target cell 

proliferation. Irradiated cells were adjusted to 1x107cells/ml and frozen until used. 

 

2.3.2  ASSESSMENT OF CELL ACTIVATION AND PROLIFERATION 

 

During the characterisation phase of the generated clones several different techniques were used 

to assess cell activation and proliferation. 
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2.3.2.1 Tritium incorporation 
Cells undergoing proliferation increase their rate of protein and DNA synthesis. The increase in 

DNA synthesis can be measured by adding 3[H] thymidine, a radioisotope-labelled DNA 

precursor, to the cell culture medium. The amount of tritium taken up by the dividing cells is 

proportional to the level of cell proliferation. In short, cells were cultured in the presence or 

absence of antigen presenting cells and specific antigens, inhibiting cells or controls for 72 hours. 

For the last 18 hours, 25 µl/well of 0.2 µCi 3[H]-thymidine was added to the wells. The cells 

were then lysed by freezing at -20°C. Thereafter, the supernatant was filtrated with a 5% 

polyethyleneimine-treated Whatman GF/B filter paper under vacuum. The filters were then dried 

at 37°C. 10ml/filter of Fisher Scintisafe 30% Liquid Scintillation Cocktail was then added and 

the filters are sealed and the trapped radioactivity was analyzed using a Beckman Coulter LS 

6500 liquid scintillation counter. Proliferation was expressed as counts per minute (cpm). 

 

2.3.2.2 CFSE based assays 
Another method for the determination of cell proliferation was the use of Carboxy Fluoroscein 

Succinimidyl Ester (CFSE). CFSE is a dye which in moderate concentrations is not harmful to 

cells. Upon entering cells, it undergoes esterase cleavage and diffuses throughout the cytoplasm. 

As cells divide, the CFSE is split equally between the daughter cells resulting in diminished 

CFSE signal detection[148, 149] which can be observed by flow cytometry. Thus the amount of cell 

division made by the labelled cells can be determined. In this work we used this property of in 

vitro labelling of CFSE to T cells to quantify their proliferation after antigen or mitogenic 

stimulation or their ability to inhibit other cell types. In brief, 1x105 conventional CD4+CD25- 

effector T cells or antigen-specific effector T cell lines or clones with a Th1 phenotype were used 

as reporter cells. These cells were incubated with generated Tr-TCC (1x105) that were previously 

labelled with 2.5 µM of CFSE. The reporter cells were then stimulated with either anti 

CD3/CD28 expansion beads (0.125µl beads/200µl) or with APCs loaded with antigen. Following 

stimulation, the reduction of CFSE was measured on days 3 and 7 using the FACS CantoTM flow 

cytometry machine and data were analyzed using the FACS Canto DivaTM software.  

 

2.3.2.3 Alamar-Blue based assay 
Alamar-Blue is an indicator dye that can quantitatively measure the proliferation of a variety of 

human or animal cells. The dye is a sensitive oxidation-reduction (REDOX) indicator that 
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undergoes colorimetric changes (from blue to pink) as well as changes in fluorescent signal in 

response to metabolic activities (reduction).  

 

In some experiments the reduction of Alamar-Blue due to cellular activity was used to assess the 

proliferation of T cells. 10% v/v of Alamar-Blue was added to 1x105 activated T cells and 

controls and the colour change was assessed after 24-72 incubation at 37°C. Alamar-Blue is 

reduced by FMNH2, FADH2, NADH, NADPH, all components of cellular metabolism that are 

upregulated during proliferation. Upon reduction the dye originally blue, changes it colour and 

fluorescence and becomes pink. These changes can be measured using the spectrophotometer at 

565 and 595 nm 

 

2.3.2.4 Activation assay: CD69 up-regulation 
The CD69 (Leu-23) is a phosphorylated 28 to 32-kDa disulfide-linked homodimer protein that is 

rapidly induced after lymphocyte activation. CD69 is not present on the surface of resting T cells 

but appears on their surface after activation[150]. In this work the levels of CD69 before and after 

stimulation were assessed 24 hours following TCR ligation with anti-CD3 or antigen stimulation 

by FACS analysis and its up-regulation was used as an indication for T cell activation. 1x105 T 

cells were incubated with antigen and 1x105 APCs or anti-CD3/CD28 for 24 hours. Cells were 

then harvested and stained with fluorescently-labelled antibodies to detect CD4 or CD3 T cell 

populations and their levels of CD69. Controls of non-stimulated T cells as well as T cells 

stimulated with non-specific antigens were also examined.  

 

2.3.3 GENERATION AND CHARACTERIZATION OF REGULATORY T CELL LINES (TCL) AND T 

CELL CLONES (TCC)  

 

2.3.3.1 Successive stimulation of PBMC in the presence of antigen and dexamethasone plus vitamin D3 (DD3) 
For the generation of TCL, isolated PBMC were stimulated in a 96-well round bottom well plate 

at a concentration of 1x105 cells with 10 µg/ml tetanus toxoid or 10µg/ml O.v antigen. Some 

cells were also stimulated with a combination of antigen and vitamin D3 (15ng/ml) and 

dexamethasone (12ng/ml). The culture medium was composed of RPMI+++supplemented with 

10 % FCS. After 10 days, cells underwent another round of stimulation with the same antigens 

with or without DD3 and in the presence of irradiated autologous APCs (1x105cells/well). This 

step was repeated again 10 days thereafter. After the last stimulation TCL were directly used, 

frozen or pre-stimulated with PHA (1µg/ml) for T cell cloning. 
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2.3.3.2 T cell cloning  
Cells were pre-stimulated with PHA (1µg/ml) for 72 h in the presence of recombinant human IL-

2 (100 U/ml) and autologous feeder cells. The pre-stimulated cells were then harvested, counted 

and diluted to obtain a stock solution of 10,000 cells per ml. This cell suspension was then used 

to create serial dilutions so that different concentrations of cells were plated per well (20µl) 

(Scheme 2.1): 30 cells/well, 10 cells/well, 3 cells/well and 1/well in Terasaki plates (Greiner). 

Cells were plated with irradiated PBMCs (1x104/well) used as feeder cells with 1µg/ml PHA and 

200U/ml IL-2. Plates were then incubated for 10 days at 37°C in 5% CO2 in boxes containing 

distilled water to ensure the small volume of medium in the wells did not dry out.  

 
 

 Scheme 2.1: Generation of antigen-specific T cell clones. 

TCL were pre-stimulated with PHA (1µg/ml) for 72 h in the presence of recombinant IL-2 (100 U/ml) and 
autologous feeder cells. Pre-stimulated cells were then harvested and stock solution of 1x104 cells/well was 
prepared. This stock was then used to prepare different concentrations of cells. Cells were plated to obtain 30, 
10, 3 and 1 cell/well on Terasaki plates (Greiner). Cells were stimulated with 1µg/ml PHA and 100U/ml IL-2 in 
presence of 106 Cells/ml irradiated PBMCs used as feeder cells. Plates were then incubated for 10 days at 37°C 
in 5% CO2. After 10 days, proliferated were selected. T cell clones were preferentially harvested from plates 
with 1 cell per well.  

 

 

At day 9 after cloning, the wells were screened using a Leica inversed microscope and positive 

clones which had visibly proliferated were selected and picked the following day. T cell clones 
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were preferentially harvested from plates with less than 10% positive clones. Picked cells were 

then transferred onto 96-wells plates in a total volume of 200µl with 1µg/ml PHA and 100 U/ml 

IL-2 in RPMI/10%FCS and cultured at 37°C for 24 hours. The medium was then changed to 

dilute the PHA concentration and cells were incubated for further 9 days.  

 

2.3.3.3 Expansion of T-cell clones 
After the first 10 days of stimulation with PHA, the picked T cell clones were further re-

stimulated with anti-CD3/CD28 (0.125µl/well) T cell expansion Dynal beads in the presence of 

100U/ml IL-2. Expander beads allowed the clones to grow without contaminating them with 

feeder cells and antigen so that they could then be used “pure” in further assays.  

 

2.3.3.4 Antigen specificity and cytokine analysis of the T cell clones 
To find out whether the generated T cell clones were specific to tetanus toxoid or O.v antigens 

they were subjected to a proliferation test with the appropriate antigen. Matched feeder cells were 

used as antigen presenting cells (APCs) as follows: 1x105APCs/well in culture medium 

supplemented with 10% FCS were incubated either in medium alone or with O.v antigen 

(25µg/ml) or tetanus toxoid antigen (10µg/ml). The T cell clones were washed in culture medium 

and then added at a concentration of 5-10x104/well. After 72 hours, 100µl of supernatant was 

collected for cytokine analysis using ELISA. The proliferation rate was then determined after a 

further 18 h incubation in presence of 3[H] thymidine (see section 2.3.2.1).  

 

2.3.4 CYTOKINE ELISA  

After T cell culture, supernatants were collected after 24 h for IL-2 and IL-4 and 72 hours for IL-

10, IFN-γ and TGF-β measurement. Cytokines were quantified using cytokine-specific sandwich 

ELISA. ELISA-plates were coated with 50 µl /well of the appropriate anti-cytokine mAb (2 

µg/ml; 8D4-8, JES3- 9D7, and NIB42 Becton Dickinson; for IL-4, IL-10, TGF-β and IFN-γ, 

respectively) diluted in 0.1 M NaHCO3-Na2HCO3 buffer. Plates were incubated overnight at 4°C 

(or alternatively at 37°C for 2 hours). After incubation, plates were washed four times with PBS 

containing 0.05 % Tween-20 and blocked for 1 h at 37°C with 200 µl of 1 % BSA/ PBS per well. 

Supernatants or recombinant cytokine standards (all from Becton Dickinson) were then diluted 

1:2 and added at a volume of 50µl/well. Plates were incubated overnight at 4°C (or 2 hours at 

37°C), then washed, and the corresponding biotinylated secondary antibody (1µg/ml) was added 

at 100 µl / well. Plates were then incubated for 2 h at room temperature and washed four times 
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with 1x PBS containing 0.05% Tween-20. Streptavidin-peroxidase complex (1:10,000) was then 

added to each well at 100µl/well. After 1 h of incubation at room temperature, plates were 

developed by adding 100 µl/ well of substrate solution containing 0.3 mg/ml of TMB and 10-3 

ml/ml of H2O2 (Roth, Karlsruhe, Germany) in substrate buffer (0.2M Na2HPO4). After 15 

minutes of incubation at room temperature, the reaction was stopped by adding 25 µl of 4N 

H2SO4 /well and plates were measured at 450 nm using an ELISA plate reader (Molecular 

Devices, Sunnyvale USA).  

 

2.3.5 FLOW CYTOMETRY ANALYSIS 

 

2.3.5.1 Surface markers 
For surface markers (CD4, CD19, GITR, ICOS, CD69), 5x104 cells were re-suspended in 100 µl 

of PBS and blocked with 2µl of human Fc-block (Sigma Aldrich). 8µl/5x104 cells of the 

indicated antibodies or appropriate isotype controls were added, gently mixed by vortexing and 

incubated at 4°C for 30 min. Cells were washed twice with 1x PBS, fixed in 4% PFA and 

analysed using the FACSCanto® flow cytometer (BD Biosciences). Lymphocyte populations 

were gated based on forward and side scatter and at least 30,000 events were acquired for each 

experiment. Data were then analyzed with FACS Diva® software (Becton Dickinson).  

 

2.3.5.2 Intracellular Foxp3 staining 
Intracellular Foxp3 staining was performed according to the manufacturers’ protocol 

(eBioscience). In brief, pre-surface stained cells were permeabilized using the fix/perm buffer 

provided by the supplier. The cells were then washed and blocked for 15 minutes with 2µL of rat 

serum in a total volume of 100 µL. Immediately after, Foxp3-PE (PCH 101) was added for a 

further 30 minutes. After two additional washing steps, the cells were acquired using the 

FACSCanto® flow cytometer. T lymphocyte populations were gated based on forward and side 

scatter. At least 30,000 events were acquired for the analysis of Foxp3+ cells. Data was then 

analyzed with FACS Diva® software. 

 

2.3.5.3 Intracellular cytokines staining 
1x105 cells were stimulated with PMA-ionomycin (50ng/ml PMA and 1µM ionomycin) for 

either 3h-4h for IFN-γ, 5h for IL-10 and 8-10h for TGF-β. Protein secretion was blocked for the 

last 3 hours of the incubation using 100ng/ml of monesin (Golgi stop) solution (BD Biosciences) 
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according to the manufacturer’s protocol. Cells were then stained for surface proteins such as 

CD4, CD3 CD19, and GITR and then permeabilized using the eBioscience permeabilization 

reagent for 30 minutes. After a washing step, cells were stained using 5µl of the corresponding 

antibody towards IFN-γ, IL-10, TGF-β, IL-4 or their isotype controls after 30 minutes. Cells 

were then washed twice and acquired using the FACSCanto® flow cytometer. T lymphocyte 

populations were gated based on forward and side scatter. At least 30,000 events were acquired 

for the analysis of cells. Data were then analyzed with FACS Diva® software. 

 

2.3.6 MAGNETIC CELLS SORTING 

 

2.3.6.1 Isolation of CD19+ B cells  
Dynabeads® CD19 (111.03), CD19 detachabeads® (125.06), and Dynabeads CD4 (113.03) were 

all purchased from Dynal/Invitrogen (Karlsruhe, Germany) and were routinely used to isolate 

CD19+ B cells and CD4+ T cells according to the manufacturer’s protocols. Briefly, 200µl of 

specific dynabeads were added to a 15 ml tube and washed twice with 5 ml of 2 % FCS/PBS 

using the Dynal MPC® (Dynal magnetic particle concentrator). Thereafter, beads were re-

suspended in RPMI 1640 medium containing 10% FCS. Approximately, 1x105 PBMC were 

added to the CD19+ Dynabeads and incubated for 20 min at 4°C under gentle vortexing. The 

rosetted cells were then washed four times with 2% FCS/PBS and re-suspended in 500µl of 

RPMI 1640 medium with 10 % FCS. CD19 detachabeads (100µl) were then added and incubated 

for 45 min at room temperature under gentle rotation. The suspension containing the detached 

beads was collected and the detached beads were washed twice. To analyse the purity of the 

isolated cells, small fractions were double stained before and after isolation with APC-labelled 

anti-CD20 and PE-labelled anti-CD45 antibody. Fluorescence was measured using a 

FACSCanto® flow cytometer and analysis was performed using the FACS Diva software. 

Analysis was performed in accordance with classical lymphocyte gates (Fig 2.1). 
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 (A)  

 

(B) 

 

(C) 

 

 

 Figure 2.1: FACS controls for B cells isolation.  

A classic lymphocyte gate was use for analysis (A). Total PBMC contains approximately 20% CD20+B cells (B). 
The isolated B cells had a purity of approximately 98% (C). The purity of the isolations of B cells using Dynabeads 
and detachabeads was routinely > 98% in each experiment.  

 

 

2.3.6.2 Isolation of CD4+ T cells 
CD4+ T cells were isolated using the positive CD4+ isolation kit from Dynal/Invitrogen in 

accordance with manufacturer’s instructions. Briefly, 200 µl of CD4+ dynabeads were added to a 

15 ml tube and washed twice with 5 ml of 2 % FCS/PBS using the Dynal MPC®. Beads were 

then re-suspended in 10% FCS containing RPMI 1640 medium. Approximately, 1x105 PBMC 

were added to the CD4+ dynal beads and incubated for 20 min at 4°C under gentle vortexing. The 

rosetted cells were then washed four times with 2% FCS/PBS and re-suspended in 500 µl of 

medium. 100µl of detach-beads was then added; the suspension was mixed by inversion and 

incubated for 45 min at room temperature. The tube containing the suspension of the detached 

beads and the free CD4+ cells was then decanted on the magnet and the solution containing the 

CD4+ cells was collected in a new tube.  

 

To analyse the purity of the isolated cells, small fractions were double stained before and after 

isolation with APC-labelled anti-CD4 and PE-labelled anti-CD45 antibody. Fluorescence was 

measured using a FACSCanto® flow cytometer and analysis was performed using the FACS 

Diva software. The purity of the isolation was routinely > 99%.  

 

2.3.6.3 Isolation of CD4+CD25+ regulatory T cells 
CD4+CD25+ double positive regulatory T cells were isolated using the CD4+CD25+ regulatory T 

cell isolation kit from Miltenyi Biotech according to the manufacturer's protocol. Briefly, CD4 T 

cells were first isolated by negative selection and then incubated with CD25 microbeads. Positive 

cells were then enriched by positive selection. CD4+ CD25+ T cells were run over a second 

magnetic column to increase the purity. The purity in all assays was routinely > 90%.  
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The expression of Foxp3 in the isolated cells was controlled per FACS analysis and was always 

around 90%. 

 

2.3.6.4 Isolation of naive and memory CD19+ B cells 
Naive and memory B cells were isolated using the CD27+ B cell isolation kit from Miltenyi 

Biotech according to the manufacturer's instructions. Briefly, CD19+ B cells were isolated as 

described in section 2.3.7.1 and subsequently incubated with CD27 microbeads and separated by 

positive selection from the CD27- B cells. The CD27- fraction was used as naïve B cells. 

 

2.3.7 IN VITRO IMMUNOGLOBULIN PRODUCTION ASSAY 

  

T cells affect many aspects of B cell development and function[151]. T cell derived lymphokines 

and growth factors (B cell growth Factors (BCGF) as well as isotype differentiation factors 

initiate and control B cell maturation and immunoglobulin production[152-161]. Furthermore, 

membrane bound ligands on T cells play a critical role in B cell differentiation and antibody 

production. Signals received through CD27[162], OX40[163] and TNF-R1[164], CD40 or BAFF-R (B 

cell Activator Factor of TNF Family Receptor)[165] all having their ligand on T cell, promote B 

cell survival, proliferation, and immunonoglobulin secretion. In this work, an assay was designed 

to assess T-B cell reactions during co-culture. T cells were activated with anti-CD3/CD28 

(10µg/ml/2.5µg/ml), to produce soluble factors and activate membrane associated ligands which 

could induce B cells to secrete immunoglobulins. The culture medium was composed of 

supplemented RPMI 1640 and 10% FCS. B cells were isolated as described in section 2.3.7. 

Neutralizing antibodies in pre-titrated concentrations or corresponding isotype controls was 

added to specifically block the function of proteins of interest in the co-culture systems. B and T 

cells were then co-cultivated in a ratio of 1:2 (5x104 B cells: 1x105 T cells) for 14 days at 37°C to 

allow full B cell differentiation and immunoglobulin secretion. IgG1, 2, 3 and 4 levels were then 

measured in supernatants using IgG subclass kits (PeliClass kit, Sanquin, Amsterdam, 

Netherlands) according to the manufacturer’s instructions. Detection ranges were 6-89 ng/ml for 

IgG1, 25-400 ng/ml for IgG2, 3-48 ng/ml for IgG3 and 4-64 ng/ml for IgG4, respectively. 

 

2.3.8 TRANSWELL ASSAYS 

To test the necessity of cell-contact in immunoglobulin productions, transwell assays were used 

in which different T and B cells were co-cultivated as described in 2.3.7, but within 24-well cell 
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culture plates and separated with a tissue culture insert (8 µm; Nunc). Generated Tr-TCC (2.5 x 

105/well) were co-cultured in the upper chamber with 1.25 x 105 CD19+ B cells/well in the lower 

chamber. Tr-TCC cells were then stimulated with anti-CD3/CD28 (10µg/ml/2.5µg/ml) and 

cultured for 14 days). B cells were left either alone in the lower chamber or were incubated with 

an autologous non-regulatory T cell clones (non-Tr-TCC). Supernatant in the lower wells was 

then measured for IgG subclass production using the PeliClass kit.  

The same type of transwell experiment was performed to test the necessity of cell-contact in the 

inhibition of effector T cell proliferation. Here, 2.5 x 105/well of Tr-TCC were co-cultured in the 

upper chamber with 2.5 x 105/well CFSE labelled (or alamar Blue stained) non Tr-TCC in the 

lower compartment. Both T cell types were stimulated with anti-CD3/CD28 (10µg/ml/2.5µg/ml) 

and cultured for 2 to 3 days. And the dilution of CFSE or the reduction of Alamar-Blue was 

accessed either by FACS analysis or spectrophotometric measurements using respectively 

FACSCanto® flow cytometer or a Molecular Devices ELISA plate reader.  

 

2.4 MOLECULAR BIOLOGY PROCEDURES 
 

2.4.1 RNA ISOLATION  

 

RNA isolation was performed using the Trizol reagent from Invitrogen and a four step protocol 

which was modified from the version provided by the manufacturer: 

 

2.4.1.1 Homogenization 
Cells were collected from culture plates and pelleted by centrifugation. The supernatant was 

discarded and the cells lysed in TRIzol-Reagent by repetitive pipetting. 1 ml of the reagent was 

used per 10×106cells. The homogenate was then centrifuged at 12,000g for 10 minutes at 4°C. 

The supernatant containing RNA was then collected. 

 

2.4.1.2  Separation 
200µl of BCP (boro-chloro-phenol) per 1 ml of TRIzol Reagent was added to the collected 

supernatant. Samples were mixed vigorously for 15 seconds and incubated at 20°C for 3 minutes. 

Samples were then centrifuged at 12,000g for 15 minutes at 4°C.  
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2.4.1.3 Precipitation 
The aqueous phase was then transferred to a fresh tube and RNA was precipitated from this 

phase with 500µl of isopropyl alcohol per 1 ml of TRIzol. Samples were incubated for 10 

minutes at room temperature and re-centrifuged at 12,000g for 10 minutes at 4°C. 

 

2.4.1.4  RNA Wash 
The supernatant was discarded and the RNA pellet washed with 75% ethanol using 1 ml of 75% 

ethanol per 1 ml of TRIzol Reagent. Samples were mixed by vortexing and centrifuged at 7,500g 

for 5 minutes at 4°C. The RNA pellet was then air-dried for 5 minutes and the RNA dissolved in 

RNAse free water and conserved at -80°C or directly transcribed into cDNA. The purity of the 

isolated mRNA was assessed using a spectrophotometer at 260/280 nm, the ratio was routinely 

between 1.6-1.9. For reverse transcription and real time PCR an additional genomic DNA 

digestion was performed by incubating RNA samples in genomic deoxyribonucleic acid (DNA) 

Wipeout Buffer (Qiagen) at 42°C for 2 minutes.  

 

2.4.2 REVERSE TRANSCRIPTION AND PCR 

 

2.4.2.1 Reverse transcription 
1 µg of total RNA was reverse transcribed with the Omniscript RT Kit (Qiagen, Hilden, 

Germany) according to the manufacturer’s instructions with oligo-d(T) primer (Roche, Manheim, 

Germany). The latter binds to the poly-A tail of mRNA and leads to selective transcription. In 

brief, reagents listed below (Table 2.2) were combined and vortexed for 5 sec. The RNA 

template was then added to the pre-prepared mix and vortexed for a further 5 sec. This was 

followed by a 60 min incubation at 37°C to reverse transcribe the template RNA into cDNA. The 

cDNA was then stored at –20°C or directly used for PCR. 

 

Component Volume Final concentration 
10 x RT-buffer 2.0 µl 1x 
dNTP mix 2.0 µl 0.5 mM (each dNTP) 
Oligo-dT primer (10 µM) 2.0 µl 1 µM 
Rnase inhibitor (10 units/µl) 1.0 µl 10 units 
Omniscript Reverse Transcriptase 1.0 µl 4 units 
Rnase-free water Variable  
Template RNA Variable  
Total reaction volume 20 µl  

Table 2.2: Reaction mix for reverse transcription. 
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2.4.2.2 Real Time PCR  
1µL of cDNA were used in the PCR reactions. The “master mix” was prepared according to the 

recipe depicted in Table 2.3. According to the number of samples to be tested, a master mix 

without cDNA was first prepared and this was then aliquoted into 100µL rotor gene adapted real 

time PCR STRIP tubes (Corbett research, Sydney, Australia). The corresponding cDNA were 

then added to the PCR master mix. Real Time PCR was performed in a total volume of 20µl. 

 

Component Volume Final concentration 

10 x buffer 2.0 µl 1x 
MgCl2 2.4 µl 3.0 mM 
dNTP 0.1 µl  
Primer 1 (forward) 1.2 µl 300mM 
Primer 2 (reverse) 1.2 µl 300nM 
SybrGreen 0.2µl  
Hot start Taq Polymerase (250 U/µl) 0.1µl  
DNA Variable 50ng 
Rnase free water Variable  
Total reaction volume 20 µl  

Table 2.3: Reaction mix for real-time-PCR reaction. 

 

Reaction conditions performed in a Rotorgene (Corbett research) were 15 min at 95°C, followed 

by 45 cycles of 15s at 94°C, 20s at 58°C and 20s at 72°C. Temperature change rates were 20°C/s. 

Copy numbers were determined using a plasmid standard and normalized to expression of the 

housekeeping gene β-actin that is known to be expressed constitutively. Primers used are given in 

Table 2.4. Primers were designed using the Primer 3 online program.  

 

PCR Primers List 
β-actin FW GAT GAG ATT GGC ATG GCT TTA 
β-actin RV AAC CGA CTG CTG TCA CCT TC 
Tbet-FW CAC CTG TTG TGG TCC AAG TTT 
Tbet-RV AAC ATC CTG TAG TGG CTG GTG 
GATA3-FW CCC GGT CCA GCA CAG AAG 
GATA3-RV CGG TCC AGC ACA GGC AG 

Table 2.4: Sequences of primers used in this study of primers. 
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2.4.3 AGAROSE GEL AND ELECTROPHORESIS 

 

1g of agarose powder was mixed with 50 ml of TBE 1x buffer and then heated in a microwave 

oven until completely dissolved. 1µl of ethidium bromide (Biomol) was then added to the gel 

(final concentration 0.5 µg/ml) to facilitate visualization of DNA after electrophoresis. After 

cooling the solution to about 60°C, the gel was poured into a casting tray containing a sample 

comb and allowed to solidify at room temperature under a chemical vertical flow fume hood. 

After the gel had solidified, the comb was removed; the gel was then inserted horizontally into 

the electrophoresis chamber and covered with buffer. Samples containing PCR products mixed 

with 2µl 6x loading buffer were then pipetted into the wells. The samples were then allowed to 

migrate to the cathode end using 100V (250mA) for 1h. The bands were revealed using a UV 

transilluminator and a picture of the gel was taken for analysis.  

 

2.4.4 PREPARATION OF PLASMIDS FOR REAL TIME PCR NORMALIZATION.  

 

To design plasmids for normalization of mRNA, PCR products were cloned into TOPO Cloning 

vectors (Invitrogene, Groningen, Netherlands) according to the manufacturer’s instructions. 4 µl 

of the PCR product, 1 µl salt solution and 1 µl TOPO vector was mixed gently and incubated for 

5 min at RT. The mix was then placed on ice and 2 µl of this reaction mix was added to 

competent Escherichia coli bacteria. The suspension was then mixed gently and incubated for 5 

min on ice then heated for 0.5 min at 42°C and immediately transferred on ice. Finally, 250 µl of 

SOC medium (super optimal culture medium) was added. 50µl of this solution was then spread 

on a pre-warmed selection plate and incubated overnight at 37°C. Transformed colonies, which 

could be distinguished from non-transformed colonies because they were white and not blue 

were then picked and cultured overnight in LB medium. Alkaline lysis was performed to isolate 

the plasmids from bacteria suspension using the NucleoSpin Plasmid kit (BD Biosciences, 

Heidelberg, Germany) according to the manufacturer´s instructions.  

 

2.4.5 SMALL-INTERFERRING RNA (SIRNA) NUCLEOFECTION 

 

To study the function and necessity of Foxp3 in the generated regulatory T cell clones, 

nucleofection assays were performed using Foxp3 specific small interfering RNA (siRNA). 

Specific siRNA, siRNA controls (Table 2.5) and transfection reagents used in this study were 

provided by Qiagen and were used according to the manufacturer indications.  
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DESIGNATION TARGET SEQUENCES 

Hs_Foxp3_1 CCAGCAGGTGTTCCAACCCTA 

Hs_Foxp3_2 CCACAACATGGACTAACTTCAA 

Hs_Foxp3_3 CACGCATGTTTGCCTTCTTCA 

Hs_Foxp3_4 CAGGCCACATTTCATGCACCA 

Control MAPK-1 AATGCTGACTCCAAAGCTCTG 

Negative control None 

Table 2.5 siRNA used in this study and their target sequences. 

 

In short, 2x105 cells were seeded onto a 24 well plate in RPMI/10%FCS medium and returned to 

37°C until transfection. 375ng of designated siRNA in 100µl medium was diluted in 6µl 

HiPerFect solution and incubated for 10 mins at 37°C (Qiagen, Germany). This step allowed the 

formation of transfection complexes. The siRNA transfection mix was added drop wise to the 

cells, mixed gently and incubated for 6 hours at 37°C. An additional 400µl medium was then 

added to the cells and incubated for a further 72 hours. Transfection efficiency was monitored 

using flow cytometric analysis. Tr-TCC and B cells co-cultures were then performed as 

described above in section 2.3.8. 
 



3 Results                                                                                                                                       34 

 

 

 

 

 

 

 

 

 

3 RESULTS 
 

This chapter is divided in five main parts. The first sections present different aspects of the 

generation of antigen induced regulatory T cell clones (Tr-TCC) using the combination of 

vitamin D3 and dexamethasone (DD3). These aspects include the induction of IL-10 in DD3 

treated T cell lines (TCL) (3.1.1), the antigen specificity and cell-contact independent 

suppressive properties of the generated Tr-TCC (3.1.6 and 3.1.7). The next series of sections 

(3.2) describes the results of different experiments designed to decipher the mechanisms used by 

the generated Tr-TCC to induce B cells to preferentially secrete the immune regulatory antibody 

IgG4. Data presented in this section demonstrate the necessity of contact between Tr-TCC and B 

cells (3.2.2) and the key roles play by molecules like GITR, GITRL (3.2.3), TGF-β, IL-10 (3.2.4) 

and Foxp3 (3.2.8) in this Tr-TCC dependant IgG4 induction. Data presented in the third sections 

show that IgG4 induction is not exclusive for IL-10 producing regulatory T cells (Tr-TCC) by 

demonstrating that also isolated CD4+CD25+Foxp3+ regulatory T cells from healthy untreated 

patients can direct B cells to produce IgG4 albeit weaker than Tr-TCC (3.3). Further sections 

also demonstrate that both memory and naïve B cells are required within the co-culture system to 

produce significant levels of IgG4 (3.4). In the final section (3.5) the research focuses on the role 

of TLR and demonstrates that whereas TLR on Tr-TCC themselves are redundant for the 

induction of IgG4; activation of TLR on the B cell population elicits pro inflammatory 

immunoglobulin production rather than IgG4. 

 

3.1  GENERATION AND CHARACTERIZATION OF REGULATORY T CELL LINES 

(TCL) AND CLONES (TCC) 
 

Within this results section, several aspects regarding the generation of regulatory T cell clones 

(Tr-TCC) are described. The first part deals with the initial generation and characterization of 

these regulatory T cells. In brief, it is demonstrated how the addition of dexamethasone and 
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vitamin D3 can drive T cells into an IL-10 producing phenotype whereas without dexamethasone 

they remain as strong Th1-like T cells. In addition the generated Tr-TCC possess characteristics 

of Tr-1-like cells but in addition display Foxp3 aswell.  

 

To generate the T cell clones, Peripheral Blood Mononuclear Cells (PBMCs) were isolated from 

buffy coats obtained from known haplotype healthy donors (see section 2.1.1). Total PBMCs 

were then stimulated with tetanus toxoid (TT) in presence or absence of vitamin D3 and 

dexamethasone (DD3) for 10 days. Cells were then re-stimulated twice for 10 days with the same 

antigen (TT) alone or together with DD3 in the presence of irradiated PBL acting as antigen 

presenting cells (APCs). T cell lines produce high levels of IL-10 (Fig 3.1 and 3.2) and display 

characteristic regulatory T cell markers such as GITR, TGF-β, Foxp3 and are anergic in the 

absence of IL-2 and present significant suppressive properties (data not shown). In order to 

characterize the generated regulatory T cells, the T cell lines generated with O.v or TT were 

cloned by limiting dilution (see section 2.3.4) and single T cell clones were used for the rest of 

the work. The clones were analyzed for their specificity to antigen by a proliferation assay (Fig 

3.9). They were also analyzed for cytokine production after stimulation through the T cell 

receptor (TCR) using anti-CD3 and anti-CD28 antibodies (Fig 3.3).  

 

3.1.1  VITAMIN D3 AND DEXAMETHASONE (DD3) ELICIT IL­10 PRODUCING CELLS.  
 

The predisposition of DD3 to drive IL-10 producing cells is well-established[97]. In the studies 

described here, DD3 was used to bias the generation of tetanus toxoid specific IL-10 producing T 

cells. After incubation with antigen and DD3 for 10 days, cell cultures were examined for their 

Th propensity by intracellular staining. In brief, cell cultures were re-stimulated with PMA and 

ionomycin for 3 hours for IFN-γ and 5 hours for IL-10 in presence of Golgi stop solution as 

described in section 2.3.5.3. Thereafter cells were surface stained with anti-CD4 Ab and 

intracellularly with fluorescently labelled antibodies to IL-10 and IFN-γ.  

The dot-plot diagrams depicted in figure 3.1, display a representative picture of induced T cell 

lines from a specific donor (designated SB1, see section 2.1.1). As can be clearly seen, the 

presence DD3 in the cell cultures elicits strong IL-10 producing cells even in the presence of 

prominent Th1-inducing cytokines such as tetanus toxoid.  
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 Figure 3.1: DD3 induce IL-10 producing T cells.  
Freshly isolated PBMCs (1x105/ml) were plated in RPMI medium containing 10% FCS. Cells were then left 
unstimulated (Med), stimulated with either tetanus toxoid antigen alone (TT) or with TT and DD3 (TT+DD3). After 
10 days of culture, cells were analyzed with flow cytometric techniques for their intracellular levels of IL-10 and/or 
IFN-γ after re-stimulation with PMA/ionomycin. The displayed dot plots show the levels of IFN-γ (upper panel) and 
IL-10 (lower panel) within the CD4+ T cell population. Graphs represent the percentage of IFN-γ (red bars) and IL-
10 (green bars) positive CD4+ T cells in PBMC stained with isotype controls (control) or PBMC stained with anti-
IL-10-PE or anti IFN-γ-FITC after treatment with medium (med) TT antigen alone (TT) or TT and vitamin D3 + 
Dexamethasone (TT+DD3). 
 

3.1.2  CYTOKINE PROFILE DURING THE GENERATION OF TCL 

 

As shown above, exposure of cells to the combination of vitamin D3 and dexamethasone 

generates high levels of IL-10 producing cells. Previous studies have generated IL-10 producing 

regulatory cells from patients inflicted with the parasite helminth Onchocerca volvulus[111]. In 

order to mimic an ongoing infection in vitro, PBMCs isolated from healthy donors were 

subjected to multiple rounds of antigen-specific stimulation. Following each round of 

stimulation, the culture supernatants were tested for the presence of different cytokines.  
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To find out the role of Th1, Th2 and Tr-1 polarising cytokines respectively IFN-γ, IL-4 and IL-

10 in the DD3 induced IL-10+ cell development, neutralizing antibodies against these cytokines 

was added to the cultures.  
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 Figure 3.2: PBMC cultured with antigen and DD3 produce higher amounts of IL-10. 
Following each round of stimulation, the cell culture supernatant was tested for the presence of IL-10, IFN-γ and 
IL-4 by ELISA (A-C respectively). Each symbol depicts the levels of cytokine found in the supernatant 3 days 
after the first re-stimulation in which cultures received fresh APCs (irradiated) and renewed antigen source in the 
presence or absence of DD3. Graphs A-C show the accumulated data from cell cultures derived from 12 different 
donors. Graphs D, E and F represent the IL-10 production of 2x105 cells/well of PBMCs from three different 
patients stimulated in the presence of medium alone, TT or TT + DD3 in the presence (+) or absence (-) of 
10µg/ml of neutralizing antibodies against IL-10, IL-4 or IFN-γ respectively. Bars represent means ± SD of three 
independent experiments. Asterisks indicate significant differences between the groups indicated by brackets, *p< 
0.05, ***p< 0.001. 
 

 

 

As shown in figure 3.2, PBMC cultures re-stimulated with antigen and DD3 show a higher 

propensity to produce IL-10+ cells than those cultured in the presence of antigen alone. In 

correlation, those cells that were stimulated with antigen alone retained their Th1-type phenotype 

(Fig 3.2 A-C). Furthermore, neutralizing antibodies against IL-10 as expected completely 

inhibited the development of IL-10 producing cells (Fig 3.2 D) whereas blocking IL-4 or IFN-γ 

did not significantly affect the levels of IL-10 secreted by the TCL (Fig 3.2 E, F)  
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3.1.3  CLONING STRATEGY TO OBTAIN TR-TCC 

 

To obtain homogenous T cell populations that could be used for further experiments, we 

performed a cloning per serial dilution. Using the data obtained in section 3.1.2, prominent IL-10 

but low IL-4 and IFN-γ producing TCL were first pre-stimulated with PHA for three days to 

allow generalized T cell expansion through proliferation. Cells were then cloned per serial 

dilution in Terasaki plates as described in section 2.3.3. Ten days after cloning, culture wells that 

contained stably growing clones were transferred to 96-well culture plates and allowed to expand 

further in the presence of IL-2 and anti-CD3/anti-CD28 expander beads.  

 

 TT TT/DD3 O.v O.v/DD3 αCD3 αCD3/ DD3 

Generated TCL 112 145 55 120 82 120 

Nr. generated TCC 220 760 52 14 15 95 

Nr. Ag-specific TCC 63 22 8 3 - - 

Nr. IL-10+ TCC 1 6 1 2 2 2 

Nr. of TCC capable of 
inducing IgG4 0 6 1 3 0 2 

Table 3.1. Total number of generated TCL and the derived numbers of TCC and Tr-TCC. 

 

Table 3.1 shows the total numbers of TCL that were generated using either TT or O.v antigen or 

αCD3 stimulation. From this overview it is also clear that in comparison to O.v antigen, TT and 

DD3 stimulation allows for a more positive generation of TCC. However, it is also interesting to 

note that within these 760 TCC, only ≈3% were Ag specific and ultimately only 11 clones 

produced abundant IL-10 upon antigen specific stimulation.  

This cytokine propensity was only tested after a sufficient amount of clone was obtained after the 

cloning step. The TCC profile was judged upon their cytokine expulsion after both antigen-

specific and non-antigen-specific stimulation. In brief, TCC were co-incubated with either TT or 

αCD3/αCD28 in the presence of irradiated autologous APCs for 4 days. Culture supernatant was 

removed after 48 and 96 hours for cytokine assessment using ELISA. Figure 3.3 shows the 

cytokine profile of the generated Tr-TCC after αCD3/αCD28 (Fig 3.3 A) and tetanus toxoid 

stimulation (Fig 3.3 B) respectively. In addition to their prominent IL-10 response to αCD3 

stimulation, the generated Tr-TCC also responded in a similar manner to their specific antigen, 
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namely tetanus toxoid. As observed in the two figures, only a portion of the generated Tr-TCC 

produced IL-10 upon re-stimulation. The TCC which did not produce any IFN-γ and IL-4 were 

used in further experiments. Those which showed a non-regulatory phenotype, that is, produced 

specifically IFN-γ were designated as non-Tr-TCC and used as control cells in the experiments 

described in the following sections.  
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 Figure 3.3: Generated Tr-TCC secrete IL-10 upon stimulation antigen-specific or αCD3/αCD28 stimulation. 
(A) 1x105 Tr-TCC were cultured with irradiated syngenic feeder cells (1x105) and stimulated with αCD3/αCD28 
(10/2.5 µg/ml) for 3 days. Bars represent the mean and SD of 6 tested TCC. Thereafter, culture supernatant was 
removed and tested for levels of IL-10, IFN-γ and IL-4 by ELISA. (B) 2x105 Tr-TCC were co-cultured with 1x105 
irradiated APCs and TT antigen (10µg/ml) for 96 hours. Symbols represent the cytokine secretions produced by 10 
tested Tr-TCC and 7 non Tr-TCC. Cell culture supernatant was removed and tested for IL-4 (48 hours) and IL-10, 
TGF-β and IFN-γ (96 hours). Cytokine levels were quantified using Molecular Devices ELISA plate reader and 
softmax pro software. Statistical analysis was performed using Student’s t test (* p<0.05).  
 

 

 

3.1.4  EXPRESSION OF REGULATORY T CELL MARKERS 

 

Naturally occurring regulatory T cells are characterized through their expression of distinct 

surface markers including CD25, GITR and CTLA-4. These thymus derived Tregs also express 

the transcription factor Foxp3 which has become the pre-requisite marker for their identification. 

As mentioned in the introduction, there are other distinct populations of Treg cells such as Tr-1 

and Th3 cells. The phenotypic characterization of these populations is not as clear cut as natural 

Tregs. Tr-1 cells are actually defined by their ability to produce large quantities of IL-10 and to 

suppress proliferation of effector T ells in a cell contact independent manner in opposition to 

natural Tregs that apparently need cell contact. Since the Tr-TCC described here were selected 

on the basis of their ability to secrete IL-10 upon stimulation, we were interested to determine 

whether these Tr-TCC expressed Treg-specific markers. Thus, using flow cytometric techniques, 
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Tr-TCC (and non Tr-TCC as controls) were stained for distinct Treg cell surface markers and 

intracellularly for levels of Foxp3. As a further comparison we also included nTreg in this 

assessment. These cells were obtained from healthy donors and were isolated using CD25+ Treg 

isolation kit from Miltenyi Biotech (see section 2.3.6.3). Figure 3.4 shows the mean fluorescence 

intensity, minus the intensity measured on cells stained with the corresponding isotype controls, 

of the different Treg markers (CD25, CD127, Foxp3, GITR, CTLA-4, and ICOS) on resting cell 

populations.  
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 Figure 3.4: Resting Tr-TCC express Foxp3, GITR and other Treg markers. 
1x105 resting cells were stained with APC-labelled anti-CD4 antibody and either: 1) PE-labelled anti-CD25 
antibody 2) PE-labelled anti-CD127 antibody 3) PE-labelled anti-GITR antibody, 4) PE-labelled anti-CTLA-4 
antibody and 5) PE-labelled anti-ICOS antibody. After staining with anti-CD4, some cells underwent intracellular 
staining with PE-labelled anti-Foxp3 antibody. Following acquisition with the FACS CantoTM the mean 
fluorescence intensity (MFI) of the cell populations was determined using FACS Diva software. Bars represent the 
mean ± SD of MFI on nTreg (yellow bars), non-Tr-TCC (red bars) and Tr-TCC (green bars) after deduction of MFI 
on cells after isotype control staining. Asterisks indicate significant differences between the groups indicated by 
brackets,*p< 0.05. 

 

 

One can clearly see from figure 3.4 that resting Tr-TCC express approximately the same levels of 

CTLA-4, GITR and Foxp3 as isolated nTreg cells. In contrast they show a higher expression of 

CD127 but lower levels of ICOS and CD25. Interestingly Tr-TCC express almost the same levels 

of CD25 and CD127 as non-Tr-TCC. MFI for ICOS expression levels were not exceptionally 

elevated in any of the analyzed cells types. These data clearly reflect that categorisation of Tr-

TCC is not a simple matter. Although they possess characteristics of Tr-1-like cells they also 

have common features to nTreg such as elevated Foxp3 levels.  
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3.1.5  DD3 TREATMENT REDUCES EXPRESSION OF BOTH TBET AND GATA3.  

 

The TCC which are generated upon activation with tetanus toxoid and DD3 produce significant 

levels of IL-10 but low levels of IFN-γ and IL-4. Since these cytokines are characteristic markers 

for Th1 and Th2 type cells and are governed by key transcription factors such as Tbet for Th1 

cells and GATA-3 for Th2 cells, we decided to investigate whether the presence of DD3 

influenced the expression of these transcription factors. In brief, bulk PBMC isolated from 

healthy blood spenders were cultured for 72 hours with TT in the presence or absence of DD3. 

Thereafter, total RNA was prepared and quantitative PCR was performed using primers specific 

for GATA3 and Tbet. The results show that the treatment with DD3 down regulates the 

expression of both Tbet and GATA3 (Fig 3.5) during the first round of TCL generation.  
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 Figure 3.5: DD3 treatment reduced both Tbet and GATA3 expression in human PBMCs  
Human PBMCs (1x105) were cultured in either medium alone (white bars), with tetanus toxoid antigen (red bars) 
or with tetanus toxoid in the presence of DD3 (green bars). The cells were harvested after 5 days of culture. 
Thereafter, 1ng of total mRNA was revers transcribed and analyzed by real-time PCR for Tbet and GATA3. Bars 
show the mean ± SD of three independent experiments. Asterisks indicate significant differences between the 
groups indicated by brackets,*p< 0.05. 

 

 

However, after T cell cloning, the Tr-TCC expressed significantly higher levels of Tbet 

compared to GATA3 upon stimulation with αCD3/αCD28 expander beads (Fig 3.6). This 

justifies the expression of some IFN-γ but no IL-4 in the generated Tr-TCC (Figs 3.3 and 3.4).  
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 Figure 3.6: Tr-TCCs express Tbet rather than GATA3 
1x105 Tr-TCC were activated with CD3/CD28 beads in vitro. The T cells were harvested after 5 days of stimulation 
and RNA was prepared. mRNA levels of Tbet and GATA3 were quantified by real-time PCR. Data represent the 
results of 3 independent experiments using 5 different T cell clones. Asterisks indicate significant differences 
between the groups indicated by brackets,*p< 0.05. 
. 

 

 

3.1.6  ANTIGEN SPECIFICITY 

 

Upon establishing that the generated Tr-TCC produced high quantities of IL-10 and reflected a 

regulatory phenotype in their surface marker expression and Foxp3, the following section 

demonstrates the ability of these cells to respond in an immunologically positive manner. 

Tetanus-toxoid derived TCC for example were tested for their response to tetanus using several 

parameters. First, they showed an up-regulation of CD69 when exposed to tetanus antigen but 

not O.v antigen (Fig. 3.7A). They also showed a weak increase in proliferation upon antigen re-

stimulation (Fig. 3.7B). Similar results was obtained using O.v generated Tr-TCC. 

 

Most interestingly, Tr-TCC respond to their specific antigen by secreting high levels of IL-10 

(Fig 3.7C). An increase in IFN-γ was also detectable upon antigen stimulation but was not 

significant when compared to the non-stimulated values. Increased levels of IL-4 were not 

detectable and although there a small increase in TGF-β production upon antigen recognition it is 

obviously not the dominant cytokine when one compares it to the IL-10 response. 
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 Figure 3.7: Tr-TCC specifically upregulate CD69, proliferate and produce IL-10 and IFN-γ upon antigen 
stimulation. 
2x105 tetanus-toxoid specific TCC were stimulated with TT or O.v antigen (A). After 24 hours, the expression of 
CD69 was measured on the CD4+ T cell population using the FACS CantoTM. 2x105 tetanus-toxoid specific TCC 
were co-cultured with 1x105 irradiated APC and stimulated with TT for 96 hours (B). 3[H] thymidine was added 
for the last 18 hours of culture. Bars represent means ±SD Tr-TCC activity in three independent experiments using 
6 different TCC. Asterisks indicate significant differences between the groups indicated by brackets, ***p< 0.001. 

 

 

3.1.7  SUPPRESSIVE PROPERTIES  

 

Regulatory T cells are renowned for their ability to suppress effector T cell responses or B cell 

activation[166-168]. Since the generated regulatory T cell clones here were slightly different to both 

nTreg cells and Tr-1-like cells we assessed their suppressive capacity using four different 

methods. These methods included; 1) their capacity to suppress the proliferation of CFSE-

labelled non regulatory T cell clones (or PBMCs) after αCD3/αCD28 stimulation; 2) their ability 

to inhibit tritium incorporation in co-culture with activated non regulatory TCC 3) their capacity 

to hinder cytokine production from activated Th1 cells as measured by ELISA and 4) T cell 

suppression measured using Alamar Blue. These methods allowed the measurement of Tr-TCC 

suppressive capacity in both antigen-specific and non-specific settings. For antigen-specific 

suppression; Tr-TCC were co-cultured in a 1:1 ratio with autologous CFSE-labelled TT specific 

non-Tr-TCC in the presence of TT antigen and irradiated APCs. After 72 hours, the proliferation 

of the CFSE labelled non-Tr-TCC was measured according to the dilution of CFSE staining. The 

same experimental settings were used in the presence of neutralizing antibodies against IL-10 

and TGF-β to determine the role of these cytokines in the putative suppressive functions of Tr-

TCC.  
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 Figure 3.8: In vitro suppressive capacity of Tr-TCC. 
5x104 Tr-TCC were co-cultured with 1x105 CFSE labelled autologous non Tr-TCC (reporter) generated from the 
same donor using only tetanus toxoid antigen. Cells have been stimulated with 10µl/ml TT antigen as previously 
described. In some cultures 10µg/ml of either anti-IL-10 or anti-TGF-β was added to the cultures to determine the 
role of these cytokines. The dilution of CFSE was assessed via FACS analysis 3 days after stimulation. Numbers on 
the histograms represent the percentage of cells that have proliferated according to the control at day 0. Data are 
representative of three different experiments performed in triplicate. 

 

 

As expected, CFSE labelled non-Tr-TCC (+ non labelled non Tr-TCC) proliferated strongly 

when stimulated with TT (upper panel left). Upon addition of Tr-TCC, this proliferation was 

drastically reduced (upper panel right) and this suppressive nature of the Tr-TCC was reversed 

with the addition of anti-IL-10 to the culture (lower panel left) and moderately by anti-TGF-β 

(lower panel right). In control experiments, in which non-Tr-TCC were added instead of Tr-TCC, 

blocking IL-10 Ab increased the amount of proliferation of CFSE-labelled non-Tr-TCC activated 

with TT antigen (not shown). The same tendencies were observed when the cells are stimulated 

with αCD3/αCD28 proliferation beads (data not shown). These results show that IL-10 is 

essential for the suppressive activities of Tr-TCC on other T cells.  

 

Interestingly, the Tr-TCC were also able to dampen αCD3/αCD28-induced proliferation of a Th1 

clone (S1 TCC) derived from a patient infected with the filarial nematode Onchocerca volvulus 

(Fig 3.9) demonstrating that the suppressive cells could also function in an Ag-non-specific 

setting. Within this experimental setup, the same inhibition levels could also be achieved by 

adding supernatant from activated Tr-TCC to the proliferating cultures (data not shown), 

indicating that it is the cytokine milieu, most likely IL-10 according to the data obtained in figure 

3.8 that mediates suppression.  
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 Figure 3.9: In vitro suppressive capacity of Tr-TCC using tritium incorporation (non-specific inhibition). 
5x104 Tr-TCC or non-Tr-TCC (5x104) were co-cultured with a Th1-clone (S1-TCC) derived from an Onchocerca 
volvulus-infected patient and stimulated with αCD3 for 72 hours. During the last 18 hours 3[H]-thymidine-
incorporation was added and proliferation measured by liquid scintillation. Bars represent mean ± SD of three 
pooled experiments. Asterisks indicate significant differences between the groups indicated by brackets, *p<0.05.  
 

 

 
In a T-T co-culture system, it was further examined whether Tr-TCC could also suppress 

cytokine expression from activated non Tr-TCC cells. In brief, 1x105 non Tr-TCC were co-

stimulated with irradiated APC (1x105) and stimulated with tetanus antigen for 72 hours. In some 

cultures, 1x105 Tr-TCC were also applied. Figure 3.9 shows the results of three independent 

assays using 3 different Tr-TCC. As can be observed, the IFN-γ secreted by non-Tr-TCC (red 

bars) can be significantly suppressed with the addition of Tr-TCC (green bars).  

 

Medium TT TT+Tr-TCC
0

1000

2000

3000

TT- specific non regulatory TCL

**

IF
N

- γ
 (p

g/
m

l)

 

 

 

 Figure 3.9: Tr-TCC are capable of suppressing IFN-γ producing T cell lines. 
1x105 non-Tr-TCC were stimulated with tetanus (TT) antigen (10µg/ml) in the presence of irradiated APC (3x105) 
and in some cultures, 1x105 Tr-TCC aswell. After 72 hours the culture supernatant was removed and tested for IFN-γ 
by ELISA. Bars represent the mean ± SD of three independent assays using 3 different Tr-TCC. Asterisks indicate 
significant differences between the groups indicated by brackets,*p< 0.05 
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In the final method, it was investigated whether there was a reduction in the percentage of 

Alamar Blue positive cells using a transwell co-culture system described in section 2.3.8. In the 

assay performed here, non-Tr-TCC were stimulated with anti CD3/CD28 in the presence or 

absence of Tr-TCC in the upper transwell. After 24 hours, the reduction of Alamar Blue was then 

determined. As shown in figure 3.10 activated non-Tr-TCC cells show a significantly greater 

amount of Alamar blue reaction showing that these cells have proliferated. In contrast, the 

reduction of Alamar blue is lower when co-cultured with Tr-TCC indicating the suppression of 

activated Th1 cells. In further experiments in which the Tr-TCC cells were placed in the upper 

chamber, it can be seen that Th1 cells are still suppressed demonstrating that the ability of Tr-

TCC to suppress Th1 cells is not cell-contact dependent. Furthermore, addition of neutralizing 

antibody against IL-10 was able reverse the suppression of Th1 cells proliferation by Tr-TCC. 

The blockade of TGF-β did also but only partially reverse the suppressive capacities of Tr-TCC 

(Fig 3.10). 
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 Figure 3.10: In vitro suppressive capacity of Tr-TCC on non Th1 cells.  
Non Tr-TCC with Th1 profile (high IFN-γ) and IL-10 producing Tr-TCC were used in a transwell assay. Both T cell 
populations were previously activated with αCD3/αCD28, non-Tr-TCC were cultured in the lower chamber. Tr-TCC 
were placed in the upper chamber. 10% of AlamarBlue was added to the cultures and the reduction of Alamar blue 
was measured 72h after stimulation using a spectrophotometer. Bars represent the mean ± SD of the percentage of 
reduction of AlamarBlue in three independent experiments calculated according to a control without T cells. 
Asterisks indicate significant differences between the groups indicated by brackets, *p< 0.05, **p<0.01. 
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From the above transwell experiments it became clear that the ability of Tr-TCC to suppress Th1 

cell proliferation was cell-contact independent and indicated that suppression is mediated through 

cytokines like IL-10 and TGF-β.  

 

3.2 ANTIGEN-SPECIFIC REGULATORY T CELLS INDUCE AUTOLOGOUS B CELLS 

TO PRODUCE IGG4 
 

As mentioned in the introduction, IgG4 behave differently to other IgG subclasses, in that it does 

not fix complement and cannot initiate ADCC. IgG4 is found in conditions where IL-10 is 

increased as, for example, in allergic diseases after immunotherapy[127-129] or chronic helminth 

infections[135]. IL-10 producing Tr-1 or Tr-1-like cells have been implicated in the induction of 

IgG4 from B cells[143]. However the mechanisms associated with IgG4 production are not well 

characterized. Within this work, a model was established to elicit IgG4 from B cell in vitro. In 

brief, activated IL-10 producing cell clones, with a regulatory phenotype (Tr-TCC) were co-

cultured in the presence of autologous B cells for 14 days. Thereafter, the supernatant was 

measured for levels of immunoglobulins. To decipher molecules that were involved in this 

induction, different blocking and/or recombinant antibodies where added to the cultures.  

 

3.2.1 PREFERENTIAL IGG4 INDUCTION BY TR-TCC 

 

Upon activation, B cells can differentiate and produce antibodies. The type and amount of 

antibodies produced is dependent on the disease or infection and is tightly controlled by activated 

T cells. As mentioned above, to access the molecular components associated between IgG4-

induction, B cells and regulatory T cells various assays using an in vitro model were performed. 

In brief, CD19+ B cells were separated from an autologous donor and co-cultured in 1:3 ratio 

with Tr-TCC stimulated with αCD3/αCD28. After 14 days of culture the concentration of IgG1, 

2, 3 and 4 was measured with a specific ELISA kit. 
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 Figure 3.11: B cells preferentially secrete IgG4 when co-cultured with activated Tr-TCC.  

3x104 CD19+ B cells were co-cultivated with autologous Tr-TCC (1x105) or non Tr-TCC (1x105). Cultures were 
then stimulated with αCD3/αCD28 (10µg/ml/2.5µg/ml). After 14 days of culture the concentration of IgG1, 2, 3 and 
4 was measured per ELISA. Bars shows means ± SD of IgG levels in three independent experiments. Asterisks 
indicate significant differences between the groups indicated by brackets, *P<0.05, **P<0.01. 

 

 

To identify the specific nature of the Tr-TCC, control cultures containing non-Tr-TCC were also 

included in the assay. The results in figure 3.11 show that B cells produce only moderate levels 

of immunoglobulin when cultured alone (white bars). With non Tr-TCC (red bars), B cells 

produced no IgG4, high levels of IgG1 and IgG2 and some IgG3. In contrast, activated Tr-TCC 

preferentially produced IgG4 and no IgG3 (green bars). B cells in these cultures also produced 

IgG1 and IgG2 albeit less than that induced by non-Tr-TCC.  

 
3.2.2 IGG INDUCTION IN THE CO-CULTURE SYSTEM IS CELL CONTACT DEPENDANT 

 

From section 3.1.7, it was observed that the suppressive capacity of Tr-TCC was cell-contact 

independent. Thus, in deciphering the mechanism through which Tr-TCC could induce B cells to 

produce IgG4, a transwell system was employed to investigate whether it was necessary to have 

cell contact or not. Surprisingly, and in contrast to what was observed with their suppressive 

properties on T cells, the separation of Tr-TCC and B cells led to the abrogation of IgG4 

production (Fig 3.12D) suggesting the necessity of cell-cell contact in this process. However, this 

abrogation was not exclusive for IgG4 production since the separation of regulatory T cells and B 
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cells by the membrane also led to reductions in IgG1 and IgG2 aswell. In additional experimental 

cultures, non Tr-TCC were added to the lower part of the transwell assay, that is, in contact with 

B cells. In correlation to the results shown in the previous section (3.2.1), non-Tr-TCC were not 

able to elicit IgG4 production from B cells but could induce IgG1 and IgG2 (Fig 3.12 A and B 

respectively). The direct necessity of Tr-TCC was then further shown by the recovery of IgG4 

production in cultures of non Tr-TCC and B cells and Tr-TCC in the upper chamber (Fig 3.12 

bar 5). Thus, it appears that factors released from the Tr-TCC such as cytokines in association 

with cell contact mechanisms that can also be provided by non Tr-TCC were critical for the 

induction of IgG4. To substantiate this hypothesis section 3.1.4 shows the critical requirement of 

IL-10.  

Most interestingly, the production of both IgG1 and 2 (Fig 3.12 A and B) induced by non Tr-

TCC (in contact with the B cells) is slightly reduced by the addition of Tr-TCC in the upper 

compartment. Suggesting that these soluble factors secreted by Tr-TCC are also able to dampen 

IgG1 and 2 induction by non Tr-TCC. However this reduction was not statistically significant. 
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 Figure 3.12: IgG4 induction by Tr-TCC is cell contact dependant. 
3x104 CD19+ B cells were co-cultivated with autologous Tr-TCC (1x105) or non Tr-TCC (1x105). Cultures were then 
stimulated with αCD3/αCD28 (10µg/ml/2.5µg/ml). Transwell systems were established using Nuncs tissue culture 
inserts containing 0.2µm nanopore membranes. B cells were cultivated alone or with non Tr-TCC in the lower 
compartment. Tr-TCC were added to the upper compartment. After 14 days of culture the concentration of IgG1-4 
(A-D respectively) was measured per ELISA. Bars show means ± SD of IgGs in three independent experiments. 
Asterisks indicate significant differences between the groups indicated by brackets,**p< 0.01. 
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3.2.3 IGG4 INDUCTION REQUIRES FUNCTIONAL GITR-GITRL INTERACTION. 

From the above experiments it became apparent that surface molecules, in addition to soluble 

secretions released from activated Tr-TCC, played a key role in the production of IgG4. Since 

our generated T cell clones express high levels of GITR (Fig 3.4) and B cells are known to 

express the ligand of GITR (GITRL) on their surface[169], we hypothesized that this surface 

molecules may play a role during the induction of IgG4. To characterize this hypothetical role of 

GITR and GITRL, we used specific GITR or GITRL neutralizing antibodies in the T-B co-

culture experiments.  
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 Figure 3.13: GITR-GITRL interactions control the ability of Tr cells to induce B cells to preferentially secrete 
IgG4.  
1x105 Tr-TCC were incubated with 3x104 CD19+ autologous B cells and stimulated with αCD3/αCD28 in presence 
or absence of neutralizing antibodies against GITR, GITRL or isotype controls. After 14 days the culture supernatant 
was analysed for the production of IgG subtypes using ELISA. Scatter plots represent levels of IgG induced by 10 
different O.v and TT specific Tr-TCC.  
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Once again co-cultures of T cells and B cells could not elicit production of IgG3 above baseline 

values (B cells alone) and these levels were not particularly affected by the addition of anti-GITR 

or anti-GITRL (Fig 3.13 C). Data from these experiments also revealed that blocking GITR or it 

ligand in the co-cultures significantly increased IgG2 production by B cells but did not affect 

IgG1 production (Fig 3.13 B and A respectively). Interestingly, using blocking antibodies to 

GITR or its ligand completely inhibited the IgG4 production by B cells (Fig 3.13 D), this effect 

was not seen with the isotype control. 

 

3.2.4 THE RELEVANCE OF OTHER MOLECULES EXPRESSED ON TR-TCC 

 

To investigate the role of other molecules expressed by Tr-TCC such as IL-10, TGF-β, CTLA-4 

and ICOS, we performed additional in vitro co-culture assays. In brief, Tr-TCC and B cells were 

stimulated with αCD3/αCD28 in the presence or absence of neutralizing antibodies to the above 

mentioned molecules. IgG4 levels in the culture supernatant were once again measured after 14 

days.  
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 Figure 3.14: IL-10 and TGF-β are also vital components in the IgG4 inductive capacity of Tr-TCC. 
1x105 Tr-TCC were incubated with 3x104 CD19+ autologous B cells and stimulated with αCD3/αCD28 
(10µg/2.5µg/ml) in the presence or absence of neutralizing antibodies against GITR (2µg/ml), GITRL (15µg/ml) 
CTLA-4 (25µg/ml), IL-10 (10µg/ml). TGF-β (10µg/ml), ICOS (5µg/ml) or isotype controls. After 14 days the 
culture supernatant was analysed for the production of IgG4 using ELISA. Bars represent mean ± SD of three 
independent experiments using a total of 3 Tr-TCC. Asterisks indicate significant differences between the indicated 
bars and the isotype control, *p <0.05. 
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Data presented in figure 3.14 clearly show that activated Tr-TCC can induce B cells to produce 

IgG4 and that this ability is completely abrogated by the addition of GITR or GITRL blocking 

antibodies (c.f. bars 1 to 2 and 3). Upon testing other regulatory T cell molecules the results also 

reveal a necessity for IL-10 and TGF-β aswell since blocking these cytokines also reduced IgG4 

levels (c.f. bars 1 to 5 and 6). Interestingly, and despite its high constitutive expression of this 

molecule on Tr-TCC (Fig 3.4), the addition of blocking antibodies to CTLA-4 had only minor 

effects on the induction of IgG4 (bar 4). Antibodies against ICOS seem to not affect the ability of 

Tr-TCC to induce IgG4 at all. Since blocking CTLA-4 showed some influence on the ability of 

Tr-TCC to induce IgG4 production by B cells, we performed additional dose response assays 

using the neutralising antibodies to both ICOS and CTLA-4. Figure 3.15 demonstrates that high 

levels of antibody in the culture wells did not significantly affect the capacity or Tr-TCC to 

induce IgG4. In contrast, whereas only partial effects could be seen with 25µg/ml of anti-CTLA-

4, complete abrogation of IgG4 production could be achieved with just 2µg/ml of anti-GITR 

antibody.  
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 Figure 3.15: Increasing anti-ICOS and anti-CTLA-4 antibodies did not affect the ability of Tr-TCC to induce 
IgG4 
1x105 Tr-TCC were incubated with 3x104 CD19+ autologous B cells and stimulated with αCD3/αCD28 
(10/2.5µg/ml) in the presence or absence of anti-GITR (2µg/ml) or increasing concentrations of neutralizing 
antibodies against CTLA-4 or ICOS (25 and 50 µg/ml). After 14 days the culture supernatant was analysed for the 
production of IgG4 using ELISA. Bars represent mean ± SD of three independent experiments using a total of 3 Tr-
TCC. Asterisks indicate significant differences between the groups indicated by brackets,***p< 0.001. 
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3.2.5 CONNECTIONS BETWEEN IL-10, TGF-β AND GITR IN THE INDUCTION OF IGG4  

 

To further characterize the mechanisms that lead to the expression of IgG4 by B cells in the 

presence of Tr-TCC, we co-cultured Tr-TCC and autologous B cells with anti-GITR antibody in 

the presence or absence of recombinant IL-10 or TGF-β. As expected, anti-GITR monoclonal 

antibody was able to inhibit the production of IgG4 (Fig 3.16 c.f. bars 1 and 2). Interestingly this 

IgG4 production could be recovered by recombinant IL-10 (Fig 3.16 bars 3). Surprisingly, 

recombinant TGF-β could not release the inhibition of IgG4 by anti-GITR (bar 4) and rIL-10 

failed to recover IgG4 in the presence of αTGF-β (bar 5). These results indicate that 

GITR/GITRL interaction modulates IgG4 induction using an IL-10-dependent pathway that leads 

to preferential production of IgG4 by Tr-TCC. Furthermore, since intracellular and membrane-

bound TGF-β could be measured on Tr-TCC (data not shown) we also conclude that endogenous 

TGF-β expression is essential for the induction of IgG4 (Fig 3.16 cf. bars 5). This might explain 

why anti-TGF-β prohibited the induction of IgG4 despite the presence of rIL-10 but exogenous 

rTGF-β failed to increase IgG4 (Fig 3.16 cf. bars 5 and 6).  
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 Figure 3.16: Recombinant IL-10 but not TGF-β recovers IgG4 production after GITR blockade. 
1x105 Tr-TCC were incubated with 3x104 CD19+ autologous B cells and stimulated with αCD3/αCD28 
(10/2.5µg/ml) in presence or absence of neutralizing antibodies against GITR, TGF-β or IL-10 and in combination 
with recombinant IL-10 or TGF-β. After 14 days the culture supernatant was analysed for the production of IgG4 
using ELISA. Bars represent mean ± SD of three independent experiments using a total of 6 Tr-TCC. Asterisks 
indicate significant differences between the groups indicated by brackets,*p< 0.05. 
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3.2.6 GITR OR GITRL INTERACTIONS POSITIVELY CONTROL THE EXPRESSION OF IL-10 BY 

TR-TCC 

 

The data obtained in section 3.2.5 strongly suggested that IgG4 production by B cells upon 

regulatory T cells activation was dependent on GITR/GITRL interactions which were in turn 

dependent on IL-10. Using flow cytometric analysis to further characterize the relationship 

between IL-10 and GITR/GITRL signalling, we measured the percentage of IL-10 producing Tr-

TCC after co-culture with B cells in the presence or absence of anti-GITR antibody. In 

unstimulated controls, resting Tr-TCC produce only nominal amounts of IL-10 (Fig 3.17 A). 

Upon activation there is a strong release of this cytokine figure (3.17 B). The number of IL-10 

producing Tr-TCC was significantly decreased in the presence of either anti-GITR or anti-

GITRL antibodies (Fig 3.17 C and D respectively) suggesting that GITR/GITRL interactions 

induces IL-10 release by Tr-TCC. This phenomenon was only detected with the cytokine IL-10 

since levels of TGF-β were not altered in the presence of blocking antibodies against GITR (data 

not shown).  

 

 

 

 

 Figure 3.17: αGITR and αGITRL antibodies inhibit IL-10 production from Tr-TCC.  
Tr-TCC were co-cultured with CD19+ B cells (1x105) and stimulated with αCD3/αCD28 (10µg/2.5µg/ml) either 
alone or in the presence of α-GITR (1-2 µg/ml) or α-GITRL (15µg/ml) for 36 hours. Thereafter, cells were stained 
with PerCP-labelled CD4 antibody and intracellularly stained for IL-10 (A-D). Cytokine levels were measured 
using flow cytometry and depicted images represent data found with 4-6 clones. 
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Since non-Tr-TCC do not produce IL-10, similar experiments were performed as described 

above but instead of measuring IL-10, we measured IFN-γ instead. In these experiments, levels 

of this Th1 cytokine, in the presence of either blocking antibody were not altered showing that 

the GITR/GITRL interaction was only affecting the Tr-TCC (data not shown).  
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 Figure 3.18: GITR ligation by its natural ligand (GITRL) increases IL-10 secretion by Tr-TCC.  
Tr-TCC (2x105) were activated with 10µg/ml αCD3 and cultured in the presence of recombinant GITRL (20µg/ml) 
or neutralizing antibodies against GITR (αGITR) or control isotype. The production of IL-10 in culture supernatants 
was then measured after 72 hours incubation at 37°C using ELISA. Bars represent mean ± SD of three independent 
experiments using a total of 3 Tr-TCC. Asterisks indicate significant differences between the groups indicated by 
brackets,*p< 0.05. 

 

 

To show a direct connection between GITR/GITRL interaction and IL-10 up-regulation in Tr-

TCC further experiments were performed using Tr-TCC alone (Fig 3.18). Here, IL-10 levels 

were analysed in the culture supernatants of activated Tr-TCC in the presence of recombinant 

GITRL. As can be seen from the data, stimulation of GITR by its natural ligand GITRL 

instigates the production of IL-10 by these cells and in association with the other data presented 

in figures 3.14, 3.17 and 3.18, clearly indicates that the GITR signalling pathway and IL-10 are 

necessary components for the induction of IgG4 by B cells. In further assays, we then 

investigated the action of different concentrations of recombinant GITR or GITRL on the 

capacity of Tr-TCC to induce IgG4. 

 

The data in figure 3.19 suggest a dose dependant increase of IgG4 production by recombinant 

GITR and/or GITRL with an optimum at 40µg/ml and 20 µg/ml respectively. The addition of 

either rGITR or rGITRL, led to an increase in IgG4 production with extra GITRL having the 

more drastic effect on IgG4 production. Interestingly, addition of recombinant proteins over 
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30ng/ml actually resulted in an inhibition of IgG4 production: the reason for this remains unclear 

from the present data. Nevertheless, these results do confirm the important role of GITR/GITRL 

in the specific regulation of IgG4.  
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 Figure 3.19: A dose-dependant IgG4 regulation by rGITR and rGITRL.  
1x105 Tr-TCC were incubated with 3x104 CD19+ autologous B cells and stimulated with αCD3/αCD28 
(10/2.5µg/ml) in presence of increasing concentrations of either rGITR or rGITRL for 14 days. Thereafter, levels 
of IgG4 were measured by ELISA. The dotted line indicates IgG4 levels without recombinant proteins. Bars 
represent mean ± SD of IgG4 levels found in three independent experiments using 3-5 Tr-TCC. Asterisks indicate 
significant differences between the group indicated by the brackets, **p<0.01; *** p<0.001. 

 

 

Thus we demonstrate that GITR and GITRL signalling together with IL-10 are tightly associated 

with the ability of Tr-TCC to induce autologous B cells to preferentially produce IgG4. However, 

it remains unclear whether GITR molecules on the Tr-TCC (Fig 3.5) directly activated its ligand 

on the B cells to induce IgG4, or whether GITRL on the B cells stimulates its receptor on T cells 

to increase IL-10 (as shown in figures 3.17, 3.18 and 3.19). The present data do not rule out the 

possibility that other factors may also be part of the induction of the IgG4 production by B cells 

or class switching of B cells to produce this immunoglobulin. 
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3.2.7 NO ROLE FOR A DIRECT REVERSE SIGNALLING THROUGH GITRL DURING IGG4 

INDUCTION 

 

It is hypothesized that regulatory T cells can inhibit the activation, differentiation and survival of 

pathogenic T cells through bidirectional communication (reverse signalling) between members of 

the TNF family on T lymphocytes and DC. This pathway is regulated through tryptophan 

catabolism which is initiated by the enzyme indoleamine 2,3-dioxygenase (IDO) and can be 

influenced by reverse signalling through GITRL. Since B cells are also APCs expressing GITRL 

and secrete IgG4, we postulated that a role for reverse signalling could be attributed through 

GITRL in the production of IgG4. To investigate this putative function of GITRL we established 

an in vitro system in which B cells, without T cells, were stimulated with CD40L/IgM and 

additional components believed to be implicated in the induction (rIL-10, rTGF-β) of IgG4 such 

as GITR, IL-10 and TGF-β). The results in figure 3.20 show that IgG4 production was not 

significant in presence of rGITR, IL-10 and TGF-β indicating that the IgG4 induction is 

intimately associated with the presence of T cells, at least in our in vitro system. 
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 Figure 3.20: No role for reverse signalling through GITRL during IgG4 induction  
B cells (1x105) were activated with 5µg/ml CD40L/IgM and rGITR, TGF-β, IL-10, have been added alone or in 
combination to the B cells. The cells were incubated at 37°C for 14 days and thereafter levels of IgG subclasses 
were then measured in the supernatants by ELISA. Bars represent means ± SD of IgG2 and IgG4 concentration in 
the supernatants from B cell cultures from 6 different donors.  
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3.2.8 IMPLICATION OF FOXP3 IN IGG4 EXPRESSION 

 

As mentioned above (section 3.1), Tr-TCC were generated after multiple rounds of stimulation 

with TT-Ag/DD3 and a cloning procedure. Since the transcription factor Foxp3 was expressed by 

our generated Tr-TCC we tried to evaluate its functional relevance for these regulatory T cells, 

especially in the induction of IgG4. In addition, we were interested to know both the phenotype 

and functional activities of the TCL during their generation. In order to do this, we measured the 

levels of Foxp3 within the TCL after each round of stimulation and compared this to the levels of 

IgG subclass these cells could induce in our in vitro culture assays. Figure 3.21A-D shows the 

capacity of non-Tr-TCL (TT) and Tr-TCC (TT/DD3) in inducing IgG subclasses in autologous B 

cells. Interestingly, the induced IgG subclass altered after each round of stimulation and the 

subclass was dependent upon the stimulation type. In short, cell lines stimulated with TT alone 

induced increasing amounts of IgG3 (Fig. 3.21B) whereas those subjected to TT and DD3 

predominantly induced IgG4 instead (Fig. 3.21D). Interestingly, the high levels of IgG1 are 

significantly reduced following the rounds of stimulation with TT/DD3 showing a reduction of 

this subclass as the cells become more specific for inducing IgG2 or 4. We also found that IgG4 

was subjected to a similar modulation by GITR, IL-10 and TGF-β since production was 

significantly reduced when blocking Abs were applied (data not shown). Foxp3 expression 

within the re-stimulated Tr-TCL cultures (Fig. 3.21E) was also enhanced with increasing rounds 

of TT-Ag/DD3 stimulation and correlated with the induced levels of IgG2 and IgG4 (Fig. 3.21C 

and D). Interestingly, the phenotype of Foxp3 expressing Tr-TCL significantly correlated with 

the amount of IgG4 (Fig. 3.21F, R=0.98770) induced in T:B-cell cultures. In correlation, IgG1 

levels decreased (Fig. 3.21A) with increasing Foxp3 expression in the Tr-TCL. These results 

show that upon continual activation in an Ag-specific manner, Tr-TCL up-regulated Foxp3 

expression indicating a directed functional response. 

Nevertheless, although there was a definite correlation between the levels of Foxp3 in the TCL 

and their increasing ability to induce IgG4 production in B cell co-culture assays, this did not 

confirm a functional role of Foxp3 in this process. 

To investigate whether the expression of Foxp3 does play a direct role in the ability of Tr-TCC to 

produce IgG4, we used the technique of siRNA nucleofection to silence Foxp3 at the mRNA 

level in the Tr-TCC. The following sections describe the technical procedure and the results. 
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 Figure 3.21: Regulatory T cell lines (Tr-TCL) express increasing levels of Foxp3, which correlates with the 
amount of induced IgG4  
After each round of stimulation (TT-Ag alone or TT-Ag/DD3), TCL (1x105) were activated with αCD3/αCD28 
(10µg/2.5µg/ml) and assessed for their ability to induce (A) IgG1, (B) IgG3, (C) IgG2 and (D) IgG4 from co-
cultured autologous CD19+ B cells (5x105) after 14 days of culture. Bars represent mean ± SD of three pooled TCL 
generation experiments with 5-8 TT-Ag or TT-Ag/DD3 TCC per experiment. (E) The amount of CD4+Foxp3+ T 
cells within the two different TCL was also measured after each round of stimulation. In brief, TCL were activated 
with αCD3/αCD28 (10µg/2.5µg/ml) for 24 hours and measured for levels of intracellular Foxp3 using flow 
cytometric methods. Bars represent mean ± SD of Foxp3 levels in TT-Ag (18) vs. TT-Ag/DD3 (18) after each 
stimulation round. (F) Comparison of IgG4 levels induced by Tr-TCL after each round of stimulation (Fig. 5D) with 
the percentage of Foxp3+ cells in the TT-Ag/DD3 generated TCL population (grey bars in E).  
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Selection of siRNA for the assay.  

The first task for these experiments was to select from a pool of four Foxp3 specific siRNA 

provided by Qiagen the most suitable siRNA to continue our experiments. The silencing 

experiments were carried out using Tr-TCC that expressed significant levels of Foxp3 (section 

2.4.5). To verify that nucleofection had occurred, three different controls were used: a control of 

non-treated Tr-TCC, these cells were simply cultivated in medium as normal, a control treated 

with siRNA with no specificity to a known gene, and third control with Tr-TCC that had been 

treated with siRNA specific to MAPK.  
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 Figure 3.22: Selection of Foxp3 specific siRNA for nucleofection studies. 
siRNA and transfection reagents from Qiagen were used to inhibit the expression of Foxp3 within Tr-TCC cultures 
growing in the presence of IL-2. (A) The expression of Foxp3 was assessed after 3 days. Bars represent the mean 
fluorescence intensities (MFI) of Foxp3-PE in the CD4+ T cell population gates minus the MFIs in isotypes 
controls. The control NT (non-treated) represents the Foxp3 expression in cells without any treatment. Control 
MAPK and neg contl. represent the Foxp3 expression in cells treated siRNA targeting MAPK a non-specific 
siRNA respectively. siFoxp3-1 to 4 represents cells transfected with 4 different siRNA targeting Foxp3 mRNA. 
“all” shows the levels of Foxp3 expression after T cells were treated with a combination of all 4 siRNA. These data 
are representative of 3 independent experiments. (B) Suppression of Foxp3 using specific siRNA in 6 independent 
assays using active siRNA. Asterisks indicate significant differences between the indicated groups and the 
corresponding controls,* p<0.05. 

 

 

Figure 3.22 shows the ability of the 4 different Foxp3 specific siRNA to inhibit Foxp3 in Tr-

TCC. As one can see, the transfection procedure using the non-specific siRNA (neg ctlr) and 

transfection with MAPK (control MAPK) did not alter the levels of measurable Foxp3 in the 

cells: compare to levels of Foxp3 found in cultured Tr-TCC (control NT). In contrast, levels of 

Foxp3 in the cells were reduced after nucleofection with the specific siRNA to Foxp3 (Fig 3.22 

bars 3-6). Some siRNA were better than others, for example, a more significant decrease in 
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Foxp3 was observed with siRNA 1 and 3 but the best reduction was achieved using all four 

siRNA together (Fig 3.22 bar 8). 

 

However, although Foxp3 levels could be consistently reduced using siRNA, the same levels of 

reduction were not always highly reproducible using the same single siRNA. For example, our 

designated siRNA1 significantly suppressed levels of Foxp3 in 2 of 3 assays, whereas siRNA2 

worked only once in two assays. This may be due to the instability of siRNA during the 

experiments or dependent on the levels of Foxp3 and thus the cell cycle of the growing Tr-TCC 

at the time of transfection. Since the combination of all siRNA demonstrated a more consistant 

inhibition, we used all four siRNA for the following described experiments. Finally, levels of 

TNF-α were measured in the culture supernatant of these above described assays after 24 hours. 

The principle of this task was to identify whether there were fundamental changes to the way in 

which the transfected cells behaved upon stimulation. However, some minor differences in TNF-

production could be observed between the control untreated and the siRNA treated cells; 

indicating the existence of possible target off effects induced by the siRNA treatment (data not 

shown. 

 

Foxp3, cytokines and regulatory properties 

As mentioned above in section 3.1.2, the Tr-TCC generated in this work were selected on their 

ability to secrete high levels of IL-10. Following siRNA transfection, individual clones with 

specific and stable down regulation of Foxp3 expression were tested for their cytokine 

expression. Figure 3.23 shows the percentage of Foxp3 present within the cells at the onset of the 

experiment. Levels of Foxp3 in non-transfected (NT) cells were 68% and this value correlated to 

the cells transfected with non-specific siRNA (control si) and the cells transfected with MAPK 

(data not shown). However, when all siRNA (siFoxp3) were used levels of Foxp3 were 

dramatically reduced. Interestingly, in this experiment, siRNA nucleofection with siRNAFoxp3-

1 and 2 did not alter the levels of Foxp3 in the cells whereas siRNAFoxp3-3 and 4 reduced 

Foxp3 levels by 40 and 20% respectively (data not shown). This correlates to the data described 

in the previous section which demonstrated that using all siRNA to Foxp3 produced the most 

consistent results. Following assessment of Foxp3 levels, nucleofected cells were re-stimulated 

with antiCD3/CD28 and their cytokine profiles were determined three days later. Figure 3.23 

shows a representative experiment of cytokine levels in siRNA transfected cells. Surprisingly, 

successfully Foxp3-silenced Tr-TCC showed no reduction in their production of IL-10. Levels of 
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IFN-γ however were elevated. For example, levels of IFN-γ in non-transfected cells and non-

specific siRNA were approximately equal. Whereas those in Foxp3 silenced cells were 

dramatically increased. TGF-β was also measured in these assays but not detectable levels could 

be observed (data not shown).  
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 Figure 3.23: Foxp3 inhibition does not affect IL-10 production by transfected Tr-TCC. 
Tr-TCC (1x105) were left either non-transfected (NT), or transfected with non-specific siRNA (control si), or Foxp3 
specific siRNA (siFoxp3). After 3 days, levels of IL-10 (blue bars) or IFN-γ (green bars)  were measured in the 
supernatant by ELISA. Data represents one of three independent experiments. Numbers in white boxes represent the 
percentage of Foxp3+ T cells in Tr-TCC used in each experiment. Asterisks indicate significant differences between 
the groups indicated by the brackets,* p<0.05. 

 

 

Due to the elevated status of IFN-γ in the siRNA Foxp3 Tr-TCC, we also tested whether these 

cells had lost their suppressive properties on effector T cells. Figure 3.24 shows that whereas 

non-transfected clones were able to reduce the proliferation of reporter T cells (c.f. bars 1 and 4), 

Tr-TCC with silenced Foxp3 failed to do so (c.f. bars 1 and 2). To demonstrate that this was an 

effect of the silenced Foxp3 gene, we also tested Tr-TCC which had been transfected with the 

non-specific siRNA, here Tr-TCC were still able to suppress effector T cells proliferation (bar 3). 

These results, suggest that the balance between pro-inflammatory cytokines (IFN-γ) and anti-

inflammatory cytokines (IL-10) may play a role in the ability of Tr-TCC to suppress the 

proliferation of autologous non Tr-TCC and moreover, that this balance could be controlled by 

functional Foxp3. 
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 Figure 3.24: si Foxp3 transfected Tr-TCC are no longer able to suppress non Tr-TCC proliferation. 
1x104 Tr-TCC or siRNA-or control-transfected Tr-TCC were cultured in presence of 1x105 CFSE labelled 
autologous non Tr-TCC. Cells were then stimulated with αCD3/CD28 expansion beads (Dynal). The dilution of 
CFSE was assessed by flow cytometry 3 days after stimulation. Percentage of proliferation was calculated according 
to the proliferation in the reporter cells alone stimulated with anti-CD3/CD28. Bars represent means ±SD of 3 
independent experiments. 

 

 

IgGs induction by Foxp3 silenced Tr-TCC 

In the final set of experiments, we tested whether Tr-TCC with silenced Foxp3 could still induce 

B cells to preferentially produce IgG4. Using the same experimental setup as described for the 

other in vitro co-culture assays (section 2.3.7) we incubated CD19+ B cells with the different 

transfected Tr-TCC for 14 days. Thereafter levels of IgG subclasses were measured in the 

supernatant. Figure 3.25 shows the data obtained for all four IgG subclasses and one can 

immediately see that Tr-TCC with silenced Foxp3 were no longer able to induce IgG4 

production (Fig 3.25D). This finding correlates to their changes in cytokine profile (Fig 3.23) and 

lack of suppressive activity on effector T cells (Fig 3.24). Interestingly, instead of inducing IgG4, 

these Foxp3-silenced T cells induced IgG2 (Fig 3.25B). There were no alterations in the pattern 

of IgG1 and IgG3 (Fig 3.25 A and C respectively). Tr-TCC that had been transfected with 

control siRNA showed the same profile as those cells which were not transfected at all: 

preferential IgG4 production.  
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 Figure 3.25: Blocking Foxp3 does not affect IgG1 but reduced IgG4 and simultaneously increases IgG2. 
5x104 CD19+ MACS sorted B cells were co-cultured with 1x105Foxp3-silenced anti-CD3 (10µg/ml) activated Tr-
TCC: red bars(si Foxp3). As controls, Tr-TCC with functional Foxp3: green bars (NT) or a Tr-TCC that had 
undergone a transfection with a non-specific siRNA grey: bars (siCTRL) were also included. Levels of IgG 
subclasses were measured after 14 days of culture with ELISA. Bars represent the mean ± SD of each IgG subclass. 
Data are a representative of three independent experiments. Asterisks indicate significant differences between the 
indicated groups,** p<0.01.  

 

 

3.3 ARE NATURAL OCCURRING REGULATORY T CELLS ALSO ABLE TO INDUCE 

IgG4 EXPRESSION BY B CELLS? 
 

3.3.1  ISOLATION AND CHARACTERIZATION OF NATURALLY OCCURRING REGULATORY T 

CELLS 

 

Since nTreg constitutively express Foxp3 and GITR, we assessed whether nTreg were also 

capable of inducing IgG4. In brief, nTreg (CD4+CD25+ T cells) were isolated via magnetic cell 

sorting from 6 healthy donors and placed in culture with appropriate stimulation and autologous 

B-cells. After 14 days, the levels of IgG2 and IgG4 were measured by ELISA. Interestingly, co-
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cultures of nTreg and B cells enhanced IgG4 but not IgG2 (c.f. bar 3 on Figures 3.26A and B). 

Cultures were further subjected to anti-GITR or anti-IL-10 treatment. Similar to Tr-TCC (Fig 

3.13), IgG4 induction by nTreg could also be reduced to background levels upon addition of 

αGITR or αIL-10. 
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 Figure 3.26: A role for GITR in the induction of IgG4 by nTreg.  

nTreg (CD4+CD25+) or CD4+CD25- T cells were isolated from 6 healthy individuals. 1x105 nTreg or CD4+CD25- 
T cells were co-cultured with autologous CD19+ B-cells (3-5x105) and αCD3/αCD28 for 14 days. Thereafter, the 
levels of IgG2 (A) and IgG4 (B) were measured by ELISA. As depicted, cultures were also subjected to αGITR or 
αIL-10 antibody treatment. Bars represent the mean and SD of 6 independent results.  

 

 

For comparison, populations of effector T cells (CD4+CD25-) were also tested for their ability to 

induce IgG2 or IgG4. CD4+CD25- T cells were unable to induce IgG4 but could induce IgG2 and 

the latter IgG response was not affected by the addition of either αGITR or αIL-10. No 

differences in the levels of IgG1 or IgG3 could be observed (data not shown). In the same co-
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culture system we compared the ability of CD4+CD25+ natural occurring regulatory T cells to 

elicit IgG4 production from autologous B cells with Tr-TCC (Fig 3.27). However, as clearly 

shown in figure 3.27, the amounts of IgG4 were much lower than those that we have observed 

with our high IL-10 producing Tr-TCC. Nevertheless, nTreg can also induce IgG4, and in 

addition preferentially to IgG2. Moreover, effector T cells (comparable to non-Tr-TCC) 

produced no IgG4 at all and were unaffected by the addition of blocking antibodies. This data 

also reflects the findings using siRNA in Tr-TCC since there, IgG4 production was abolished and 

Tr-TCC reverted to inducing IgG2 from B cells instead. Collectively, there is strong evidence 

from this work that IgG4 induction is specifically induced by IL-10 producing regulatory T cells 

through GITR/GITRL interactions and in addition these cells have overlapping characteristics 

with naturally occurring T cells.  
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 Figure 3.27: Naturally occurring Tregs induce IgG4 by B cells albeit weaker than Tr-TCC. 
Comparison between naturally occurring Treg cells and Tr-TCC in their ability to induce IgG4. In brief, 1x105 
nTreg (CD4+CD25+) or Tr-TCC were incubated with autologous CD19+ B-cells (3-5x105) and αCD3/αCD28 for 14 
days. Thereafter, the levels of IgG4 were measured by ELISA. Bars represent the mean ± SD of 6 independent 
results. Asterisks indicate significant differences between the indicated groups **p<0.01; ***p<0.001.  

 

 

3.4 NAÏVE OR MEMORY B CELLS ARE PRODUCER OF IgG4?  
 

Naïve B cells have been shown to induce the generation of regulatory T cells[32]. In our system, 

although we had an established IgG4 induction from B cells by activated Tr-TCC, it remained 

unclear whether this secretion originated from already differentiated memory B cells or whether 

Tr-TCC specifically induced the IgG4 switch in naïve B cells. Thus, to find out the B cell 

subpopulation responsible for the IgG4 production, we compared the IgG4 expression in co-

culture of Tr-TCC and populations of B cells that had been separated according to their 

expression of the CD27 marker. CD27 is considered to be expressed on most memory B cells but 
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not on naïve populations. Using 6 individual donors, we found that the proportion of naïve 

(CD27-) and memory (CD27+) B cells within the total (CD19+) B cell fraction was 61.2% ± 9.8% 

and 38.8% ± 9.8% respectively. Figure 3.28 below shows both the flow cytometry images of 

isolated B cells stained with anti-FITC-labelled CD27 antibody and the proportions of naïve and 

memory B cells from healthy donors.  

 

 

  

 

 

 

 

 

  

 Figure 3.28 proportion of naïve and memory B cells in bulk B cells populations. 
CD19+ B cells were isolated microbeads and MACS technology. Thereafter, cells were stained with FITC-labelled 
anti-CD27 antibody. Naïve and memory B cell populations were then analyzed using FACS Diva Software. 

 

 

After 14 days of co-culture with activated Tr-TCC, the preferential secretion of IgG-isotype by 

total, naïve or memory B cell fractions was analyzed. Here, we found that the most IgG4 is 

produced with all CD19+ B cells and that naïve B cells produced slightly more IgG4 but much 

less IgG1 than memory B cells (Fig 3.29). Interestingly, upon comparison of IgG4/IgG1 ratio 

(Fig 3.29) we found that unlike memory cells, naïve B cells were comparable to the bulk cell 

population but it appears that both subsets are required for a complete response.  
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 Figure 3.29 Tr-TCC induced IgG4 production by B cells requires both naïve and memory B cell populations. 
αCD3/αCD28 stimulated Tr-TCC (1x105) were cultured with either whole populations of autologous purified (> 98 %) 
CD19+ B cells (total), or isolated subsets of naïve or memory (CD27+) B cells. After 14 days of culture, levels of IgG 
subsets 1 and 4 were measured by ELISA. The ratio of IgG4/IgG1 was calculated by the amount of IgG subclass 
produced by the B cell subtypes. Bars represent the mean and SD of IgG subclass induction by B cells in two 
independent experiments using different Tr-TCC. Asterisks indicate significant differences between the indicated 
groups, *p<0.05.  
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3.5 ROLE FOR TLRS 
 

TLR are known to initiate the innate immune response and to participate in the fine regulation of 

the adaptive immune response by influencing the maturation of antigen presenting cells. Also 

TLRs are known to be expressed on Treg and studies have shown that stimulation through the 

TLR can modulate their regulatory properties. However, since one member of this family of 

receptors, TLR2, has been shown to control expansion and function of regulatory T cells[170-172] 

we decided to investigate whether TLR stimulation affected the ability of our generated Tr-TCC 

to preferentially induce IgG4. Using our above described co-culture system (section 2.3.7) we 

primarily focused on two specific questions: does prior TLR stimulation on Tr-TCC affect their 

ability to induce IgG4 production in B cells and vice-versa, that is, does TLR stimulation of B 

cells over-ride the signals from Tr-TCC.  

 

3.5.1. TR AND B CELLS EXPRESS TLRS 

 

Before starting the co-culture experiments, we investigated the expression of different TLRs on 

Tr-TCC, B cells and for comparison on non-Tr-TCC control cells and natural-occurring Treg 

(CD4+CD25+ T cells). The data collected after FACS analysis showed that TLR are more 

prominently expressed on CD40L activated B cells (TLR2, 3, 4 and 9). In terms of regulatory T 

cells phenotypes, nTreg expressed high levels of TLR2 and TLR4 whereas Tr-TCC and Th1 cells 

display approximately the same TLR profiles (Fig 3.30).  
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 Figure 3.30 TLR expression on B cells, Tr-TCC, non Tr-TCC and nTreg 
B cells, isolated nTreg, Tr-TCC and non Tr-TCC were analysed by FACS for their expression of TLR2, 3, 4 and 9 
24 hours after stimulation with αCD3 (10µg/ml) and CD40L (5µg/ml). Bars represent the percentage of TLR+ cells 
in two independent experiments using 5 different healthy PBMC preparations.  
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Surprisingly known intracellular TLRs like TLR3 were found to be expressed on Tr-TCC surface 

(Fig 3.30 and data not shown). However they were almost no intracellular TLRs expression in 

the intracellular compartments of all T cell types. In contrast, B cells displayed significant levels 

of intracellular TLR3 and TLR9 after permeabilization of the cellular membranes. 

 

3.5.2 TLRS STIMULATION ON B AND T CELLS MODULATE IGGS EXPRESSION 

 

Upon analysis of TLR distribution on the different cell populations we then evaluated the 

influence of TLR activation on the induction of IgG subclasses. In the first experiments, we 

cultured Tr-TCC with TLR stimulation for 5 hours, washed the cells and incubated them with B 

cells. No differences in expression patterns of IgG subclasses could be observed after 14 days of 

culture (data not shown).  
 
In the second experiments we used the reverse approach. In short, B cells were pre-stimulated 

with LPS (TLR4), Pam3Cys (TLR2) or CpG (TLR9) for 24 hours. Thereafter, cells were washed 

and added to be cultured with activated Tr-TCC for a further 14 days. Levels of IgG1, IgG2, 

IgG3 and IgG4 were then analysed using ELISA (Fig 3.31). As expected and in correlation to the 

experiments described in the previous sections, activated Tr-TCC preferentially induced IgG4 in 

B cells. However, if the B cells had been prior stimulated with LPS or CpG, levels of this 

immunoglobulin were reduced to concentrations found with B cells alone. Interestingly, 

stimulation with the TLR2 activator Pam3Cys had no influence on the IgG4 production. 

Pam3Cys however, dramatically increased levels of IgG1 and IgG2 production and here, this 

stimulus correlated with the effects seen with CpG. LPS moderately up-regulated levels of IgG1 

but appeared to have no effect on amounts of IgG2. In all of our previous experiments using this 

co-culture system, levels of IgG3 never exceeded background quantities. Surprisingly, addition 

of LPS or Pam3Cys to the B cell cultures strongly up-regulated this class of immunoglobulin. 

TLR9 ligation on the other hand failed to alter the induction pattern of IgG3. 
 



3 Results                                                                                                                                       71 

 

 

 

 

0

100

200

300

400

B   +      +       +       +   +       +   +      +
Tr-TCC     -       -    -         -   +         +   +      +
LPS    -      +        -        -       -        +       -      -
Pam3C    -      -        +         -       -        -       +      -
CpG    -       -        -        +       -        -        -      +

Ig
G

1 
(n

g/
m

l)
*

*

0

20

40

60

B   +      +       +       +   +       +   +      +
Tr-TCC     -       -    -         -   +         +   +      +
LPS    -      +        -        -       -        +       -      -
Pam3C    -      -        +         -       -        -       +      -
CpG    -       -        -        +       -        -        -      +

Ig
G

2 
(n

g/
m

l)

*

0

50

100

150

B   +      +       +       +   +       +   +      +
Tr-TCC     -       -    -         -   +         +   +      +
LPS    -      +        -        -       -        +       -      -
Pam3C    -      -        +         -       -        -       +      -
CpG    -       -        -        +       -        -        -      +

Ig
G

3 
(n

g/
m

l) *

*

0

50

100

150

B   +      +       +       +   +       +   +      +
Tr-TCC     -       -    -         -   +         +   +      +
LPS    -      +        -        -       -        +       -      -
Pam3C    -      -        +         -       -        -       +      -
CpG    -       -        -        +       -        -        -      +

Ig
G

4 
ng

/m
l

*
*

(A) (B)

(D)(C)

 

 

 Figure 3.31: Effect of TLRL on IgGs production in T-B co-cultures. 
B cells pre-stimulated with LPS (TLR4), Pam3Cys (TLR2) or CpG (TLR9) for 24 hours have been co-cultivated 
with αCD3/αCD28 activated Tr-TCC for 14 days as described previously. Thereafter, the levels of IgG1 (A), IgG2 
(B), 3 (C) and 4 (D) were measured by ELISA. Bars represent the mean ± SD of 3 independent experiments. 
Asterisks indicate significant differences between the indicated groups *p<0.01. 
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4 DISCUSSION 
 

The Th1-Th2 paradigm has been useful in explaining the mechanisms of immunity during 

infection[173-175]. Th1 cells through cytokines like IFN-γ, IL-12 and IL-6 have been shown to 

promote the clearance of intracellular pathogens but can also induce autoimmunity. In 

contrast, Th2 cells are responsible for the induction of the humoral immunity by using cytokines 

such as IL-4 and IL-5 to activate B cells which produce antibodies. This pathway can also lead 

to allergy due to B cells production of IgE. The reciprocal control of Th1 and Th2[174, 176] cells 

was believed to maintain the necessary balance for immune homeostasis. Disruption to this 

Th1-Th2 balance has provided an explanation for several immune pathologies like 

autoimmunity and allergy[177]. However, nowadays this paradigm is under intense revision[178] 

due to the discovery of “new” subtypes of T cells. In addition to Th1 cells, Th17 cells have 

recently been shown to trigger inflammation and autoimmunity[179, 180]. Furthermore, intense 

research into naturally-occurring regulatory T cells (nTreg) has confirmed their ability to 

control immune responses to self-antigens and thus preventing autoimmunity[180, 181]. Both 

adaptive and naturally-occurring Treg cells have also been shown to play an important role in 

limiting collateral damages during immune responses to pathogens[181]. In the regulation of 

humoral immune responses, one of the mechanisms proposed to explain control by Treg cells is 

the ability of these cells to induce of a preferential switch of antibody production in B cells to 

the non (or less) inflammatory immunoglobulin IgG4[143]. In this chapter, the findings presented 

in the chapter 3, will be related to important currently discussed topics like the in vitro 

generation of antigen-specific regulatory T cells (4.1), the identification of markers for 

regulatory T cells (4.2), the relevance of regulatory T cells in allergy and parasitic diseases 

(4.3 and 4.4) and the influence of TLRs on regulatory T cells functions (4.5). 
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4.1 IN VITRO GENERATION OF REGULATORY T CELLS  
 

In vitro generation of regulatory T cells is a promising potential immunotherapy for fighting 

autoimmune disorders, allergic diseases and for prevention of allograph rejection. In this study, 

IL-10-producing regulatory T cells have been generated as previously described[97] using a 

repetitive stimulation with tetanus or O.v antigen and in combination with two immune 

suppressive drugs: dexamethasone and vitamin D3 (DD3). The active form of vitamin D3, 1,25-

Dihydroxyvitamin D3 [1,25(OH)2D3], is a secosteroid hormone that binds to the vitamin D 

receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid 

hormones and retinoic acid. VDR ligands are known to regulate calcium and bone metabolism 

but also known to control cell proliferation and differentiation, and exert immunoregulatory 

activities[182]. The combination of vitamin D3 and dexamethasone (DD3) has been demonstrated 

to have a synergistic effect on the maturation of DCs. Monocyte-derived DCs cultured with 

DD3 during LPS-induced maturation were shown to have low stimulatory effects on allogeneic 

T cells, a phenomenon comparable with that observed with immature DCs. However, in 

contrast to immature DCs, DD3 exposed DCs secrete IL-10 and show upregulation of the Ig-

like inhibitory receptor (ILT4). Thus, DD3 is an effective immunosuppressive drug combination 

for the induction of APCs capable of eliciting effector T cell hypo-responsiveness[183] and 

expansion of regulatory T cells[97]. As previously described, our generated T cells were distinct 

from Th1 and Th2 cells since they produced low IFN-γ, no IL-4 and were able to suppress the 

proliferation of activated non-regulatory T cell clones in vitro in a IL-10 dependant manner 

(Figs 3.8 and 3.9). These characteristics were similar to those described for Tr-1-like T cells 

whose differentiation was driven by IL-10[96]. This T cell population was obtained after 

antigenic stimulation of PBMCs with DD3. Interestingly, these studies further showed that 

using these drugs individually did not allow for the generation of such regulatory T cells. It is 

also of interest to mention that blocking Th1 (IFN-γ) or Th2 (IL-4, IL-5) polarising cytokines 

did not influence the generation of these Treg cells, a finding that is in contrast with previous 

reports[184]. In confirmation of these findings, experiments performed here in the presence of 

neutralizing antibodies against IFN-γ or IL-4 did not significantly increase the IL-10 production 

in the DD3-cultured TCLs (Fig 3.2). Also in accordance with other studies[97], the data 

presented within this work also suggests that treatment with DD3 down regulates the expression 

of key transcription factors associated with Th1 and Th2 T cell differentiation: T-bet and 

GATA3 respectively[97] (Fig 3.5). However, after T cell cloning and further re-stimulation with 
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anti-CD3/CD28 in the presence of IL-2, the Tr-TCC recovered substantial Tbet expression 

which could be associated with their increased levels of IFN-γ (Fig 3.6). GATA3 levels on the 

other hand remained low in all tested Tr-TCC, suggesting only a minor role for this 

transcription factor in the differentiation of IL-10 producing regulatory T cells.  

From the studies performed in this work, we now hypothesise that the presence of DD3 during 

naive T cell priming lowers the “danger” signal and in turns alters the direction of maturation 

towards a regulatory T cell phenotype. In essence, mimicking the events that normally occur 

when auto-reactive T cells encounter “self” antigen in the periphery under tolerogenic 

conditions. Furthermore, known APCs like macrophages have been shown to be able to 

synthesize vitamin D3 after activation in the presence of IFN-γ and LPS[185, 186] suggesting that 

upon triggering of APCs by microbial factors vitamin D3 can be synthesized and may constitute 

a potential mechanism for the generation of IL-10 producing cells in vivo. Furthermore, 

glucocorticoids released by the adrenal glands have been shown to profoundly dampen immune 

responses[187] confirming the role of glucocorticoids in immune suppression and in regulatory T 

cell generation in vivo. 

 

4.2 CHARACTERISATION OF REGULATORY T CELLS  
 

The identification of markers for regulatory T cells is of great interest. The IL-2 receptor alpha 

or CD25 has been associated with nTreg following the first description of CD4+CD25+ T cells 

by Sakaguchi[75]. However, the fact that activated effector T cells also transiently express 

significant levels of CD25 makes the use of this marker insufficient for the general 

characterization of Tregs. Other constitutively expressed markers such as GITR, αΕβ7 and 

CTLA-4 have also been proposed. Nowadays, the transcription factor Foxp3 is well accepted as 

the main marker for Tregs. However, certain subsets of regulatory T cells do not express Foxp3. 

Moreover, in humans, activated effector T cells were shown to also up regulate Foxp3 upon 

TCR engagement[188]. Despite these controversial aspects, the characterization of Tregs is 

possible and probably more accurate, by using all the known Treg makers together with 

cytokine profiles and in vitro or in vivo suppressive properties of the T cell population in 

question. In the second part of this work, we have used the expression of CD25, CD127, Foxp3, 

GITR, CTLA-4, IL-10 and TGF-β to characterize the DD3 generated Tr-TCC. Table 4.1 

compares the expression different T cells markers on our generated Tr-TCC and other subset of 

T cells. 
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 Th1/2 Natural Tregs Tr-1 Th3 
Suppression mode 0 0 1 1 

Resting Foxp3 0 1 0 ? 
CD25 high 0 0 1 ? 

CD127 1 0 ? ? 
CTLA-4 0 1 1 1 

IL-10 0 0 1 0 
TGF-beta 0 0 1 1 

GITR 0 1 1 ? 
Proliferation/energy 0 0 1 0 
     

Tr-TCC score 1 3 7 3 
Table 4.1: Comparison of Tr-TCC with other T cells subtypes. 
 

According to their expression of GITR, CTLA-4 and IL-10, Tr-TCC resemble to the well 

characterized Tr-1 cells but are simultaneously distinct from these cells because of their high 

levels of Foxp3 expression that makes them similar to natural Tregs. In addition, Tr-TCC are 

distinct from natural occurring Tregs because of their constitutively low expression of CD25. 

According to our scoring method, our generated Tr-TCC aligned most with Tr-1 cells. 

However, in opposition to previously described studies with glucocorticoid-derived IL-10 

producing regulatory T cells our cells did not exclusively produce IL-10 since some IFN-γ was 

detectable aswell[189]. 

 

We show here that IL-10 producing CD4+ T cells, generated in the presence of DD3, change 

their phenotype after limiting dilution cloning and re-stimulation in the absence of DD3 and 

produce significant levels of IFN-γ, described previously to be distinct from Tr-1 cells 

generated using IL-10[97]. This data suggests that the primary effect of DD3 was to down 

regulate IL-4 and IFN-γ production but after re-stimulation either with antigen or anti-CD3 in 

the absence of DD3, IFN-γ production was renewed and seems to play a role in their ability to 

retain significant proliferation capacities despite their regulatory properties and IL-10 

production (Fig 3.3). Most interestingly, excess recombinant Th1 and Th2 polarizing cytokines 

where able to down regulate the number of IL-10–producing regulatory T in the presence of 

DD3 providing evidence that regulatory T cell development and function can be influenced by 

ongoing activities of Th1 and Th2 cells and may have significant implications for the 

physiological balance between these T cell subset during the course of an immune response. 
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The ratio of Treg to T effector and T effector cytokines (IFN-γ, IL-4, IL-5, IL-6) to regulatory 

cytokines (IL-10, TGF-β) may also contribute to the outcome of the ensuing immune response. 

 

Our present findings describing the generation and cloning of populations of IL-10–producing 

regulatory T cells has allowed us to determine that there are more similarities between these 

cells and other regulatory T cell populations. Furthermore, it has also demonstrated that these 

previously described distinct populations are not completely defined populations and that there 

is considerable overlap between regulatory subsets[190]. In addition, these data have provided us 

with an insight on how better to understand the mechanisms underlying IL-10 positive Treg 

development. Our data also show similarities of the generated Tr-TCC to natural regulatory T 

cells in terms of the expression of surface or intracellular markers.  

 

4.2.1 CD25, CD127, FOXP3  

 

Regulatory T cells are distinguished from other T cell subsets by their expression levels of 

specific surface and intracellular markers. For example, natural occurring regulatory T cells are 

defined by their constitutive expression of the IL-2 receptor alpha (CD25) and the transcription 

factor Foxp3; both markers have been shown to play a critical role in their development as well 

as in their function[191]. However these markers are not exclusive for regulatory T cells. 

Activated effector T cells for example also up-regulate and express significant levels of both 

CD25 and Foxp3[188]. Thus only constitutive high CD25 expression and constitutive Foxp3 

expression seem to be specific for regulatory T cells. A more controversial point is that not all 

regulatory T cell populations express these markers. High CD25 expression for example has 

been shown to be not relevant for IL-10 producing regulatory T cells (Tr-1). In both rodent and 

human studies, Foxp3 expression was not found in these Tr-1 cells on the protein or mRNA 

level[192]. Nevertheless, whether Tr-1 and IL-10 producing regulatory T cells express Foxp3 

remains a controversial point especially when other reports have attested to up-regulation of 

Foxp3 upon activation[193]. Taken together, these considerations make the use of these markers 

to characterise regulatory T cells problematic. Recently, the expression of the IL-7 receptor 

(CD127) has been described to discriminate regulatory T cells from effector T cells[194]. 

Regulatory T cells have been shown to express lower levels of CD127 in comparison to effector 

T cells. Thus, levels of CD127 and CD25 can distinguish CD4+CD25+ regulatory T cells from 

activated effector T cells that also express significant levels of CD25. 
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During the generation of the Tr-TCC used in this study, it became apparent that after each round 

of stimulation there was an increase in the level of intracellular Foxp3 (Fig 3.21). Moreover, 

this induction of a natural regulatory T cell phenotype also corresponded with their ability to 

induce IgG4 in B cells. After cloning, and dependent on the individual Tr-TCC, these generated 

clones possessed not only the classical Tr-1 phenotype but displayed high levels of Foxp3 in 

their resting state. An explanation for the constitutive and high levels of IL-10 and Foxp3 in the 

generated Tr-TCC is that, unlike freshly isolated PBMCs which possess perhaps “non-primed” 

IL-10 producing Tr-1 cells, the cells described here are “directed” into becoming more antigen-

specific and in addition to retaining their IL-10 phenotype adopt features of classical natural 

Treg. Further studies would have to be performed to elucidate whether Tr-1 cells in the 

periphery can be driven towards a classical regulatory phenotype upon repetitive antigen 

stimulation. Despite the Foxp3 expression, the generated Tr-TCC are further associated with Tr-

1 like cells since they retain their ability to suppress effector cells in a cell contact independent 

manner: probably due to their IL-10 production (Figs 3.2.and 3.8). Moreover, whereas one-time 

stimulated cells induced hardly any IgG4 from B cells, multiple-stimulated cells or clones 

elicited predominantly IgG4.  

 

In this study, the regulatory T cells that we have generated express intermediary levels of Foxp3 

when compared to CD25-high nTreg isolated for PBMCs (Fig 3.4) and in concordance to what 

has been previously described, high levels of CD25 was expressed only upon activation. More 

surprisingly, our generated Tr-TCC express significant levels of the IL-7 receptor 

differentiating them from the natural or antigen-induced Foxp3+ regulatory T cells[194] that 

express lower levels of CD127. Taken together these observations lead us to conclude that the 

Tr-TCC generated in this study were phenotypically different from the well-known CD25high 

Foxp3+ regulatory T cells. We also investigated the expression of other additional markers 

which are used to characterise regulatory T cells and the findings of these results are described 

in the following sections. 

 

4.2.2 GITR, CTLA-4 AND ICOS 

 

The glucocorticoid-induced tumor necrosis factor receptor family-related gene (GITR), also 

known as Tumor Necrosis Factor Receptor Super Family member protein 18 (TNFRSF18) or 

AITR (Activation-inducible TNFR family receptor )[195, 196], is a type I transmembrane protein 
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with high homology to other members of the family, like 4-1BB, CD27, and OX40[197]. As with 

most of the members of this superfamily GITR is known to regulate diverse biological 

functions, including cell proliferation, differentiation, and survival. In both human and murine 

models stimulation of T cells through GITR is shown to induce NF B activation through a 

TRAF2–NIK signalling pathway[196]. Nevertheless, it is well acknowledged that GITR is 

constitutively expressed on regulatory T cells[198, 199] even though its actual function remains 

undetermined[200]. The regulatory T cells we generated here constitutively expressed GITR and 

up-regulated its expression upon TCR ligation suggesting a functional meaning for the 

expression of this protein on these regulatory T cells. However, as mentioned above, GITR is 

not exclusive for regulatory T cells since it is also found on effector T cells, and its stimulation 

renders the latter resistant to regulatory T cell activity[200]. Apart from GITR, Foxp3 and CD25, 

Treg cells express high levels of other markers that have also been shown to be important for 

their function. CTLA-4 for example is known play a role in terminating effector T-cell 

responses and is important in the induction of self-tolerance[201]. The inducible co-stimulator 

ICOS is not a specific Treg marker but is thought to modulate the function of regulatory T 

cells[202].  

 

4.2.3 ANTIGEN SPECIFICITY OF THE GENERATED T CELL CLONES 

 

Despite their critical role in the control of inflammatory and autoimmune diseases, a potential 

exploitation of natural Treg in immunotherapy is limited by their lack of “known” antigen 

specificity. In contrast, antigen induced regulatory T cells get activated only when they 

encounter the appropriate antigen presented by APCs[201]. The Tr-TCC we generated were 

activated upon antigen-specific stimulation but not following incubation with non-specific 

antigen as shown by their differential upregulation of CD69 after specific and non specific 

antigen challenge (Fig 3.7 A). However the Tr-TCC proliferate only mildly upon antigen 

stimulation and depending on individual TCC. This lack of proliferation could be do to the high 

levels of immunoregulatory cytokine IL-10 produced after stimulation in presence of APCs 

loaded with their specific antigen(Fig 3.7 B and C) 

 

 

 



4 Discussion                                                                                                                              79 

 

 

 

4.3 LIMITING DILUTION T CELL CLONING  
 

The limiting dilution microculture T-cell cloning technique was developed by Keystone et al., 

in 1993 and allows one to obtain single growing T cell clones from a polyclonal population. The 

principle consists of making a serial dilution from a known cell suspension to theoretically 

obtain 1 cell per well and to let this cell proliferate after stimulation. Although the principle is 

intuitive, the method is time consuming and there is no guarantee of single cell clones as shown 

in several studies[203]. However it is one of the best available methods to obtain and study 

homogenous cell populations. Here we used a modification of this technique to generate 

antigen-specific T-cell lines and antigen-specific regulatory T cell clones (Tr-TCC). 

 

4.4 MOLECULAR MECHANISMS OF IGG4 INDUCTION BY TR-TCC 
 

One of the mechanisms used by adaptive type-1 regulatory T cells to control an excessive 

immune response in allergy and chronic infections is the induction of non-inflammatory 

immune responses through IgG4 production. The aim of this study has been to decipher the 

molecular mechanisms that are involved in IgG4 induction.  

 

Using a combination of tetanus toxoid or Onchocerca volvulus antigens with DD3 we 

continually stimulated PBMCs so that they would develop a Tr-1 like phenotype. After cloning, 

we employed this “antigen-primed or TCR-activated” Tr-TCC to explore the requirements of 

regulatory T cells to induce IgG4 production from B cells. We found that specific IgG4 

responses from B cells after Tr-TCC activation were completely abolished upon neutralization 

of IL-10 and TGF-β. The same outcome occurred when GITR was blocked on the Tr-TCC. 

Further investigations showed that α-GITRL antibody had the same effect on IgG4 production 

but addition of recombinant GITR and GITRL to the system actually enhanced the levels of 

produced IgG4. GITR has been shown to be a regulator of immune responses by co-stimulating 

T-effector cells and abrogating the suppressive effects of Treg cells. As mentioned previously, 

nTreg cells and Tr-1 cells display a panel of specific surface markers which are now well-

established with the regulatory T cell phenotype. However, the absolute necessity of these 

markers, especially during infection, remains unclear. It is hypothesised that Treg cells can 

inhibit the activation, differentiation and survival of pathogenic T cells through bidirectional 

communication (reverse signalling) between members of the TNF family on T lymphocytes and 
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DC. This pathway is regulated through tryptophan catabolism which is initiated by the enzyme 

indoleamine 2,3-dioxygenase (IDO). Although initially described for CTLA-4 and B7 

molecules[204], Grohmann et al., have now demonstrated that GITR/GITRL pathways are also 

influenced by this pathway. This study showed that reverse signalling through GITRL in pDCs 

resulted in non-canonical NF-kB activation and the onset of IDO-dependent immune regulation. 

We showed here that during each round of stimulation, the Tr-TCL have an increasing 

propensity to induce IgG4 production from B cells but this is entirely dependent on the presence 

of dexamethasone since its absence initiated IgG3 induction instead. In addition, blocking GITR 

or IL-10 prevented the production of this IgG subclass. Thus, we now hypothesize that in the 

initial stimulation of PBMCs, the steroid has synergistic effects on GITR/GITRL interactions 

which may modulate IDO activation. Repetitive stimulation then directs the IL-10 producing 

cells to develop a Tr-1 phenotype. Since the pDCs non-canonical NF-kB and IDO function have 

already been associated in controlling inflammatory pathology and allergy we conclude that this 

mechanism could also induce Tr-1 cells which have the ability to induce IgG4, and thus control 

arising immunopathology. In support of this theory, an experimental model of allergic 

bronchopulmonary aspergillosis has demonstrated that Treg cells, pDC and tryptophan 

catabolism are all required to mediate protection[205, 206]. Studies using this model showed that 

application of dexamethasone inhibited Th2 responses but enhanced Foxp3 expression in the 

CD4+ T cells. Furthermore, although IgG4 levels were not measured, blockade of IDO in this 

model enhanced both IgE/IL-5 levels but significantly decreased IL-10 and TGF-β[206].  

 

These data also suggest a possible signal through GITRL working as a receptor and activated by 

GITR acting in this model as ligand. Since these two molecules are also implicated in the model 

proposed in this thesis, we tested the possibility of a direct role for a signal through GITRL 

expressed on the B cells that could lead to IgG4 induction. For this purpose, we used a T-

independent system in which B cells were stimulated with 5µg/ml CD40L/IgM.(BD 

pharmingen) In this system, addition of recombinant GITR with or without the presence of 

recombinant IL-10 and/or TGF-β did not induce B cells to significantly increase IgG4 

production. These results indicate that T cells (Tr-TCC) are absolutely required in the system 

and suggest a critical role for a signal through GITR molecules on the Tr-TCC in their ability to 

induce IgG4 production by B cells.  
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In other studies the presence of induced IgG4 appears to be associated with reduced pathology 

and protection. Just recently, studies using venom immunotherapy showed an expansion of 

circulating regulatory T cells (Foxp3+) which significantly correlated with the increased 

allergen-specific IgG4 and reduced IgE levels[207]. In association with that study, studies from 

patients with paediatric asthma showed a significant increase in CD25hiCD4+ T cells after 

corticotherapy both in the peripheral blood and in the bronchoalveolar lavage fluid[208]. 

Classically, both allergic and parasitic diseases induce a strong Th2 response with dominant IgE 

levels. It is now well-established that in several chronic infections such as helminth infections, a 

regulatory T cell response is generated, which may permit parasite survival within the immune-

competent host[209-211]. Patients that develop a more regulatory response to parasite antigens also 

possess regulatory T cells which secrete IL-10 and TGF-β[211]. All of these features are currently 

assumed to explain the absence of Th2-related autoimmune disease in patients suffering from 

parasite infections. In onchocerciasis, the hypo-responsive form of the infection is characterized 

by a strong prevalence of IgG4, low IgE and elevated Treg numbers. This phenotype is of 

course much better for the host, but how it actually arises and is maintained remains unclear. 

Taken together, these data highlight the connection between glucocorticoids, Treg and IgG4 in 

maintaining immunologic tolerance and implicate that therapeutic approaches aimed at boosting 

this population should be explored as a strategy to control allergic and parasitic diseases. 

 

4.4.1 THE ROLE OF FOXP3 

 

We show here a novel function for Foxp3. Since our Tr-TCC express significant levels of 

Foxp3 in resting as well as in activated stages, we supposed that this molecule may play a key 

role in their function and we could show that the Foxp3 expression is tightly correlated with the 

ability of the Tr-TCC cells to induce B cells to specifically produce IgG4. We could also block 

the expression of Foxp3 in already differentiated Tr-TCC at the mRNA level using siRNA 

technology. However the method was not fully reproducible and most of the T cells do not 

survive transfection. The few Tr-TCC that were successfully transfected display after inhibition 

of Foxp3 a completely different and relatively stable profile: they up-regulate their IFN-γ 

expression without significantly changing their expression of IL-10, IL-4 was not measurable 

and the cells loose their ability to induce B cells to specifically induce IgG4. They elicit IgG2 

production instead. The loss of IgG4 capacity seems to be due to the up-regulation of the other 

cytokines, suggesting that a balance in the expression of the cytokine milieu is critical for the 
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signals that lead to IgG4 production. These data were however in contrast to previous studies on 

the expression and function of Foxp3 in glucocorticoid induced IL-10 producing regulatory T 

cells: that is, the absence of this transcription factor and lack of functional role[97]. Our data 

reveal a new role for Foxp3 in the stability of the regulatory functions of IL-10 producing 

regulatory T cells. Foxp3 seems also to play a functional role through the control of the 

cytokines expressed by the T cells.  

 

4.4.2 THE LOOP GITR, IL-10, TGF-β AND CTLA4 

 

Signalling through GITR on regulatory T cells has been described to inhibit their suppressive 

effect and to induce development of autoimmunity presumably due to immunoregulatory T cell 

inhibition[199, 212]. However, Igarashi et al., recently showed that GITRL engagement increases 

proliferation and IL-10 production in regulatory T cell populations during CD3 stimulation and 

in the presence of exogenous IL-2. This is concordant to our data showing an increase of IL-10 

production by Tr-TCC after engagement of GITR with its natural ligand[200]. We postulate that 

this is one of the most important signals necessary for the induction of IgG4, and we could 

block IgG4 production by B cells using neutralizing GITR antibody which in turn could be 

reversed by the addition of excess recombinant IL-10. However, other signals also seem to be 

necessary, the blockade of TGF-β in our co-culture system for example completely reverses the 

production of IgG4 suggesting a key role for this molecule in this process. Nevertheless an 

excess of recombinant TGF-β could not recover the IgG4 expression after GITR blockade 

suggesting an independent but additional and indispensable role for TGF-β in the signals 

leading to IgG4 production. Our data also suggests that the TGF-β implicated in this process 

may be membrane bound since it was not possible to measure TGF-β in culture supernatants, 

and furthermore, using flow cytometry it was possible to detect TGF-β on the Tr-TCC, without 

permeabilization. Our data are in correlation with the fact that TGF-β and IL-10 often cooperate 

in anti-inflammatory processes[213]. 

 

4.4.3 NAÏVE AND MEMORY B CELLS 

 

Surprisingly, the use of isolated naïve (CD27-) or memory (CD27+) B cells separately in co-

culture with Tr-TCC showed completely different results to that obtained using bulk B cells 

populations. Naïve B cells alone produced more IgG4 than the memory ones. Moreover, the 
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collective amount of IgG4 produced by naïve and memory B cells separately was also much 

lower than that the one produced by bulk B cells, suggesting a possible cooperation between the 

two B cell populations in this process. However, memory B cells produce higher amount of 

total IgG in comparison to naive B cells. These findings corroborate with observations showing 

that subpopulations of CD27+ B cells produce larger amounts of immunoglobulin than CD27- B 

cells in presence of activated CD4+ T cells[214]. These differences were shown to be due to the 

interaction of CD27 on the B cells with the CD27L (CD70) on the T cells[214, 215]. Furthermore, 

triggering of CD27 on B cells by CD70 was shown to induce an increase in the number of 

plasma cells in the presence of stimuli such as IL-10[162] and IL-4 plus CD40 signalling[216]. On 

the other hand, a preferential differentiation of CD27− B cells into IgG4 capable plasma cells 

could justify the higher amount of IgG4 produced by CD27− B cells in the Tr-TCC-B cells co-

culture system. However there is no confirmation of collaboration between naïve and memory 

B cells in the literature, our data are in favor of a direct or indirect cooperation between the two 

B cell subpopulations at least in the Tr-TCC dependant IgG4 production (Fig 4.1).  

   

 Figure 4.1: Hypothetical cooperation of memory and naïve B cells.  
Tr-TCC induce signals through GITR-GITRL, IL-10 and TGF-β in association to additional signals from Tr-TCC 
(Tr help) stimulate both naive and memory B cells. Naive and memory B cells in the presence of these regulatory 
signals might then collaborate to preferentially secrete IgG4. This collaboration might be through direct B-B-cell 
interactions and/or cytokines produce by B and/or T cells present in the system. 
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4.5 TLR AND IGG4 PRODUCTION 
 

TLRs are used by cells of the innate immunity to recognize invading pathogens. Signalling 

through TLRs induces the so-called “danger” signal, which ultimately leads to rapid clearance 

of infection[6]. TLRs are known to influence the outcome of the adaptive immune responses.  

 

Regulatory T cell function has also been shown to be modulated through TLR activation[170, 172]. 

In the studies described in section flow cytometric analysis of PBMCs revealed that there was 

generally a high expression of TLRs on B cells. In addition, natural Treg expressed significantly 

higher levels of TLR2 than Tr-TCC and Th1 cells. In fact, generated Tr-TCC and Th1 cells 

displayed approximately the same TLR profile in terms of TLR expression (Fig 3.30). 

Surprisingly, known intracellular TLRs like TLR3 were found to be expressed on the surface of 

Tr-TCC. However, there was almost no TLR expression in the intracellular compartments of all 

T cell types. In contrast, B cells displayed significant levels of intracellular TLR3 and TLR9 

after permeabilization of the cellular membranes.  

 

We could show that Pam3Cys, CpG and LPS stimulations promote the induction of IgG1 and 3 

by acting directly on the B cells. In contrast, the production of IgG4 was inhibited by the 

presence of either LPS or CpG. Pam3Cys stimulation however did not significantly affect IgG4 

induction by Tr-TCC. Thus, TLRs stimulation redirects the IgG expression in the direction of a 

pro-inflammatory antibody production. This showed that, in case of an additional bacterial 

infection, B cells can overcome the control by Treg cells and redirect the IgG production to 

clear infection. These observations could explain the different pathological outcomes during 

parasitic infection. In Onchocerciasis for example, there are two possible immunopathological 

consequences during the development of infection: the generalized onchocerciasis usually 

associated with parasitemia, high IL-10 levels and IgG4 expression and the hyper-responsive 

form or “sowda” which shows few microfilariae but intense dermal pathology. In the latter case, 

additional bacterial infection such as LPS could initiate the development of the latter form due 

to too strongly stimulated B cells and the consequent production of other more inflammatory Ig 

molecules such IgG1, 2, 3 or IgE. Helminth antigens which are known to elicit IgG4[141] 

production can dampen TLR expression on dendritic cells[217]. Our data show that TLR 

stimulation in counterpart can also modulate the immunoregulatory effect of regulatory T cells. 
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Furthermore, vitamin D3 was shown to down-regulate monocyte TLR expression and triggers 

hypo-responsiveness to pathogen-associated molecular patterns[218]. All together, TLR pathways 

and immune regulatory mechanisms seem to be tightly interconnected.  

 

4.6 NATURAL TREGS AND IgG4 INDUCTION 
 

In experiments performed using isolated nTreg (CD4+CD25+ T cells) we were also able to show 

that these cells preferentially induce IgG4 in B cells whereas CD25- effector T cells do not, the 

latter actually induced IgG2 instead. These observations correlate with the data obtained using 

Tr-TCC and additionally to the experiments using Foxp3-silenced Tr-TCC since the latter could 

no longer induce IgG4 in B cells but elicited IgG2 instead. Therefore, it appears that Foxp3 is a 

vital component in directing B cells. Furthermore, IgG4 production induced by isolated nTreg 

cells was also dependent on GITR since adding αGITR to the co-cultures dampened the ability 

of those cells to make IgG4. Since we have shown that IL-10, TGF-β and Foxp3 play a critical 

role in the IgG4 induction and nTreg express all these markers, it was predictable that their 

effect on B cells were similar to the ones observed with Tr-TCC. However, the total amount of 

IgG subclasses induced by isolated CD4+CD25+ Tregs was much lower than the levels induced 

by Tr-TCC. These differences are certainly due to the activation status of the T cells and their 

levels of cytokines. For example, Tr-TCC produce much larger amounts of cytokines (chiefly 

IL-10) than CD4+CD25+ T cells and due to the multiple rounds of antigen-specific stimulation 

these cells are possible more “active” in their actions. In summary, the data suggest that 

CD4+CD25+ Tregs and IL-10 producing antigen-specific regulatory T cells use the same GITR 

dependant mechanism to induce IgG4 production by B cells. 

 

4.7 CONCLUDING REMARKS 
 

The data accumulated during this thesis procure one working hypothesis where at least three 

signals are indispensable for Tr-TCC to induce preferential IgG4 production by B cells (Fig 

4.2.A). The first signal might go through the TGF-β receptors on B cells and provide the first 

instruction to B cells for a switch in favor of IgG4. In support of this aspect, blocking this signal 

using neutralizing antibodies against TGF-β in Tr-TCC:B cell co-culture assays abrogated the 

secretion of IgG4 (Fig 4.2B). The second signal may then be provided through GITR on the Tr-

TCC that could be activated by connecting to GITRL expressed on the B cells. Blocking this 
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signal in Tr-TCC-B cells co-culture experiments, reduced the number of IL-10 producing T 

cells and thus the secretion of IgG4 (Fig 4.2C) indicating a link between IL-10 production, 

GITR-GITRL signalling and IgG4 induction. Tr-TCC:B cell co-cultures in an IL-10 deficient 

environment (anti-IL-10 mAb) failed to produce IgG4 (Fig 4.2D) and the excess addition of IL-

10 recovered IgG4 production even when GITR signalling was blocked. Thus, confirming the 

key role of IL-10 which constitutes the third most direct signal necessary for IgG4 production. 

In addition, the TGF-β pathway might be independent from the GITR-GITRL-IL-10 signalling 

since addition of recombinant TGF- β did not recover IgG4 production when GITR is blocked 

(see section 3.2.5). 

 

 
 

 

 

  

 

 Figure4.2: Three signals are indispensable for the IgG4 induction by IL-10 producing regulatory T cells. 
Three signals seem to be indispensable for Tr-TCC to induce preferential IgG4 production by B cells. The first 
signal is mediated by TGF-β and provides the first instruction to B cells for a switch in favor of IgG4 (A). Blocking 
this signal with mAbs against TGF-β in Tr-TCC:B cell co-cultures abrogated the secretion of IgG4 (B). The second 
signal is provided through GITR-GITRL interaction respectively expressed on Tr-TCC and B cells. This second 
signal elicits IL-10 production (C) that in turn provides the third and more direct signal necessary to induce IgG4 
secretion. In Tr-TCC:B cells co-culture experiments, blocking GITR or GITRL reduce the number of IL-10 
producing T cells and thus the secretion of IgG4 (C) indicating a link between IL-10 production and GITR-GITRL 
signaling. The key role of IL-10 is confirmed by the fact Tr-TCC:B cell co-cultures in an IL-10 deficient 
environment failed to produce IgG4 (D) and that addition of IL-10 recovers IgG4 production when GITR signaling 
is blocked.  

 

 

According to our data and the literature, we can propose a mechanism that leads to IgG4 

production where the three signals described above are provided by a specialised T cell 

population expressing Foxp3 and IL-10. Although the data reported in this thesis provide 

(A) (B) 

(C) (D) 
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evidence that IgG4 is induced by Foxp3+ IL-10+ Tr-1 like cells, this IgG class switching is 

probably also modulated by additional signals given by conventional Tregs that may play a 

positive role in the system. In contrast, this pathway might be negatively controlled by activated 

effector Th1 cells through pro-inflammatory cytokines like IFN-γ and inflammatory responses 

from TLR-activated innate cells. These strong pro-inflammatory responses would then initiate 

other immunoglobulins in detriment of IgG4. Understanding the mechanisms that lead to the 

production of IgG4 may provide useful information for understanding and in addition the 

treatment of parasitic, autoimmune and allergic diseases.  
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APPENDIX A: EQUIPMENT 
 

Automatic pipettes (10-1000µl) Eppendorf AG, Hamburg, Germany 

BD FACSCanto™ flow cytometer BD™ Biosciences, Heidelberg, Germany 

BD FACS Diva™ flow cytometer   BD™ Biosciences, Heidelberg, Germany 

Casy® TT Cell Counter   Schärfe Systems, Reutlingen, Germany 

Centrifuge (Eppendorf 5415 R) Eppendorf AG, Hamburg, Germany 

Centrifuge (Multifuge 4KR)  Heraeus Holding GmbH, Hanau, Germany 

ELISA Plate reader (Spectra Max 340pc384) Molecular Devices, Sunnyvale, USA 

Freezer (-20°C)   Bosch GmbH; Stuttgart, Germany 

Freezer (-80°C)   Heraeus Holding GmbH, Hanau, Germny  

Fridge     Bosch GmbH; Stuttgart, Germany 

Gamma Cell irradiator                      Atomic Energie of Canada, Ottawa, Canada 

Glass pipettes (1-20ml)  Brand GmbH & Co.KG, Wertheim, Germany 

Glassware    Schott AG, Mainz, Germany 

Ice machine (Scotsman AF 80) Gastro Handel GmbH, Wien, Austria 

Incubator    Binder GmbH, Tuttlingen, Germany 

Liquid scintillation counter(LS6500) Beckman Coulter Inc, California, USA 

Microscope (Leica DM IL)  Leica Microsystems GmbH, Wetzlar, Germany 

Neubauer counting chamber            LOLaboroptik GmbH, Friedrichsdorf, Germany 

PH meter    Mettler Toldo GmbH, Giessen, Germany 

Pipetboy (pipetus®-akku)  Hirschmann Laborgeräte, Eberstadt, Germany 

Rotorgene PCR machine  Corbett research, Sydney, Australia 

Strip PCR tubes 0.1ml  Corbett research, Sydney, Australia 

Thermo magnetic stirrer  IKA® GmbH & Co.KG, Staufen, Germany 

Vortex mixer (Minishaker)  IKA® GmbH & Co.KG, Staufen, Germany 

Water bath    VWR Lab Shop, Batavia, USA 

Weighing machine   Sartorius AG, Goettingen, Germany 
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APPENDIX B: CHEMICAL AND REAGENTS 
 

Advanced Protein Assay™  Cytoskeleton, Inc., Denver, USA 

Alamar Blue    Sigma-Aldrich GmbH, Munich, Germany 

Ammonium chloride    Merck KGaA, Darmstadt, Germany 

BSA     Sigma-Aldrich GmbH, Munich, Germany 

CD25+ Treg isolation kit  Miltenyi Biotech, Bergisch Gladbach, Germany 
CpG     Sigma-Aldrich GmbH, Munich, Germany 

Dexamethasone   Sigma-Aldrich GmbH, Munich, Germany 

Disodium hydrogen phosphate Merck KGaA, Darmstadt, Germany 

DMSO     Merck KGaA, Darmstadt, Germany 

EDTA     Merck KGaA, Darmstadt, Germany 

Ethidium Bromide   Biomol GmbH, Hamburg, Germany 

Ethanol    Merck KGaA, Darmstadt, Germany 

FCS      PAA Laboratories GmbH, Pasching, Austria 

Fc Block (anti-human CD16/32) eBiosciences, Inc., San Diego, USA 

Ficoll, density 1.077    Seromed Biochrom KG, Berlin, Germany 

Hydrogen peroxide (H2O2)  Sigma-Aldrich GmbH, Munich, Germany 

Ionomycin    BD Biosciences, Heidelberg, Germany 

Liquid scintillator cocktail   Fisher Scientific, Pennsylvania, USA 

Liquid nitrogen   University Clinic Bonn 

LPS      Sigma-Aldrich GmbH, Munich, Germany 

Monosodium phosphate  Merck KGaA, Darmstadt, Germany 

Pam3Cys    Sigma-Aldrich GmbH, Munich, Germany 

Paraformaldehyde   Merck KGaA, Darmstadt, Germany 

PHA      Remel Europe, Dartford, United Kingdom  

PBS (endotoxin free)   PAA Laboratories GmbH, Pasching, Austria 

PMA     BD Biosciences, Heidelberg, Germany 

PMSF     Merck KGaA, Darmstadt, Germany 

Potassium chloride (KCl)  Merck KGaA, Darmstadt, Germany 

Potassium dihydrogen phosphate Merck KGaA, Darmstadt, Germany 

Recombinant human IL-2   eBiosciences, San Diego, USA 

Recombinant human TGF-β  eBiosciences, San Diego, USA 
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RPMI-1640    PAA Laboratories GmbH, Pasching, Austria 

siRNA starter kit   Qiagen, Hilden, Germany 

Sodium chloride (NaCl)  Merck KGaA, Darmstadt, Germany 

TMB     Sigma-Aldrich GmbH, Munich, Germany 

Tris     Merck KGaA, Darmstadt, Germany 

Trypan Blue    Sigma-Aldrich GmbH, Munich, Germany 

Tween 20    Sigma-Aldrich GmbH, Munich, Germany 

Vitamin D3    Sigma-Aldrich GmbH, Munich, Germany 
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APPENDIX C: BUFFERS, MEDIA AND SOLUTIONS 
 

20x phosphate buffer saline (PBS):  

360g NaCl 

8.0g KCl 

46.4g Na2HPO4 

8.0g KH2PO4 

Volume was then adjusted to 1 liter of distilled water. 

For 1x phosphate buffer saline (PBS): 50 ml of 20x PBS solution was diluted in 900 ml distilled 

water. The pH was adjusted to 7.3 and the solution was topped up to 1 liter and autoclaved. 

 

T cell culture medium (TCM)  

T cell culture medium was prepared using: 

10% FCS 

100 Unit/ml IL-2 

2.5% amphotericinB 

RPMI 1640 qsp 50ml 

 

SOC medium  

Bacto-tryptone 20g 

Bacto-yeast extract  5g 

NaCl   0.5g 

1M KCl  2.5ml 

ddH2O qsp  1L 

adjust pH to 7.0 with 10N NaOH, autoclave to sterilize, add 20 ml of sterile 1 M glucose 

immediately before use 

 

FCS: Fetal calf serum, (PAA)  

FCS used for medium supplementations was heated for 30 minutes at 56°C to inactivate the 

complement factors. Aliquots were then stored at -20°C until required.  

 

ELISAs Solutions and buffers: 

Coating solution: 0.1 M NaHCO3, pH 9.6 
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Washing buffer: PBS-0.05% Tween 20 (Sigma) 

Blocking solution: PBS-1%BSA 

Substrate buffer: 0.1 M NaH2PO4.2H2O, pH 5.5 

Substrate: 3,3’, 5,5’ Tetramethylbenzidine (Roth, Karlsruhe, Germany), dissolved to a 

concentration of 6 mg/ml in DMSO (Sigma) 

Substrate solution: 12 ml substrate buffer 

200 µl substrate 

1,2 µl 30% H2O2 (Sigma) 

Stop solution: 4N H2SO4(Merck, Hohenbrunn, Germany) 

 

Cells culture reagents 

Freezing medium: 80% FCS, 20% Dimethylsulfoxid (DMSO), Sigma 

 

Loading dye (6x) 

0.25 % bromophenole blue 

0.25 % xylencyanole FF 

15 % ficoll 

in ddH2O 

 

TBE (Tris-borate-EDTA) 

108 g Tris-base 

55 g borate acid 

9.3 g Na2EDTA 

in 1000 ml ddH2O 

Working solution: 0.5 x stock solution 
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APPENDIX D: SUPPLEMENTS 
 

DMSO    PAA Laboratories GmbH, Pasching, Austria 

FCS    PAA Laboratories GmbH, Pasching, Austria 

GMCSF   PAA Laboratories GmbH, Pasching, Austria 

L-glutamine   PAA Laboratories GmbH, Pasching, Austria 

Penicillin/streptomycin PAA Laboratories GmbH, Pasching, Austria 

Gentamicin Sulfate  BioWitttaker®, Walkersville, USA 

 

 
APPENDIX E: SOFTWARE 
 

BD FACSDiva™ software 

Flow cytometry software obtained from BD™ Biosciences, Heidelberg, Germany. 

GraphPad Prism 4 

Analyze, Graph and Organize Software obtained from GraphPad Software, Inc., La Jolla, USA. 

SoftMax Pro  

Microplate Data Acquisition and Analysis Software obtained from Molecular Devices, 

Sunnyvale, USA 
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