
Proliferation and differentiation of periodontal ligament cells following 

short term tooth movement in the rat using different regimes of loading. 
 

 
 
 
 
 
 
 
 
 

 
 

Inaugural-Dissertation 
zur Erlangung des Doktorgrades 

der Hohen Medizinischen Fakultät 
Rheinische Friedrich-Wilhelms-Universität 

Bonn 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Dimitrios Pavlidis 
 

aus Florina/Griechenland 
 

2008 
 



 
 
 
Anfertigung mit Genehmigung der 
 
Medizinischen Fakultät der Universität Bonn 
 
 

 
 
 
 
1. Gutachter: Prof. Dr. A. Jäger 
2.  Gutachter: PD Dr J. Deschner 

 
 
 
 
 Tag der Mündlichen Prüfung: 27.10.2008 
 
 
 
 
 

Aus der Poliklinik fur Kieferorthopädie 
 
des Zentrums fur Zahn-, Mund-, und Kieferheilkunde 
 
der Universität Bonn 
 
Direktor: Professor Dr. A. Jäger 
 
 
 
 

    
 
 
 
Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn 
http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   meinen lieben Eltern 
 
   Giorgos und Tasula 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 



5 
 
    
 
  Inhaltsverzeichnis         5 
 

 

 

1 Zusammenfassung         7 

   

 

2 Introduction          9 

 
 
 
3 Materials and methods       11 
 
- Animals          11 

- Experimental Protocol        11 

- Histology          15 

- Immunohistochemistry        15 

- Morphometry         19 

- List of the chemicals        20 

- List of the reactors        21 

- List of the instruments        22 

 

 
 
4 Results          23 
 
- Histology          23 

- Immunohistochemistry and morphometry     23 

- Results for pERK1/2        23 

- Results for Runx2        27 



6 
 
    
-Results for PCNA         31 

 

 
 
 
5 Discussion         37  
            
 

 

6 Summary          41 

 

        

 
7 Literature         42 

 
 
 
 
8 Acknowledgements        47 

 
 
 
 
9 Curriculum Vitae        48 

 
 
 
 
 
 
 
 
 
 
 
 
 



7 
 
    
 
Zusammenfassung 
 
ZIEL: Frühere Studien haben gezeigt, dass parodontale Ligamentzellen osteogenes 

Potential besitzen und die Fähigkeit zur osteoblastären Differenzierung durch 

mechanische Stimulation in vitro und in vivo über den ERK 

Signaltransduktionsweg. Ziel dieser Studie war es, diese regulatorischen Prozesse 

in einem tierexperimentellen Ansatz in der Ratte weiter zu untersuchen. 

 

  

MATERIAL UND METHODE: Der rechte obere erste Molar von 25 

anästhetisierten Ratten wurde mit einer Kraft belastet, um den Zahn mesial zu 

bewegen. Konstante Kräfte von 0.25 N und 0.5 N wurden über 4 Stunden an 5 

Versuchstieren verwendet. Weiterhin wurden konstante Kräfte von 0.1 N über 2 

Stunden in 10 weiteren Tieren angewandt und im Anschluß wurde der erste und 

zweite Molar permanent separiert mit Kunstoff. In diesen Tieren, wurde der 

Antagonist beschliffen und fünf Ratten aus der Gruppe wurden nach 1 Tag und fünf 

weitere nach 2 Tagen geopfert. Im letzten Versuchsansatz wurden intermittierende 

Kräfte von 0.1 N und 0.25 Hz in 5 verschiedenen Tieren über 4 Stunden appliziert. 

Die unbehandelte kontralaterale Seite wurde als Kontrolle verwendet. Paraffin 

eingebettete Schnitte wurden quantitativ immunhistochemisch auf die Faktoren 

PCNA, Runx2/Cbfa-1 und phosphorylierte ERK1/2 untersucht. 

 

ERGEBNISSE UND DISKUSSION: In ausgewählten Abschnitten der 

Zugregionen war der Anteil von pERK1/2 positiven Zellen vergrößert verglichen 

mit den Abschnitten der Kontrollzähne in den verschiedenen Gruppen,  dahingegen 

waren in ausgewählten Abschnitten der Druckzonen die Anteile nur dort 

vergrößert, in denen intermittierende Kräfte angewendet wurden. In representativen 
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Gebieten, in Druck und Zugzonen waren die Anteile Runx2 positiver Zellen 

vermindert nach Applikation konstanter Kräfte. Nach der Applikation konstanter 

Kräfte über 4 Stunden waren die Anteile PCNA positiver Zellen in der Zug und 

Druckzone geringer als in der Kontrollgruppe. 

 

ZUSAMMENFASSUNG: pERK1/2, Runx2/Cbfa-1 and PCNA sind an der 

osteoblastären Differenzierung parodontaler Ligamentzellen unter verschiedener 

mechanischen Belastung beteiligt.  
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Introduction 

 

 

Periodontal ligament (PDL) cells are highly specialised cells that reside between 

tooth and alveolar bone and can differentiate into cementoblasts to synthesize 

alveolar tooth cementum or osteoblasts to synthesize alveolar bone for skeletal 

support of the tooth. In response to applied mechanical forces, osteoblast-like PDL 

cells perceive mechanical signals and respond to them via cellular events such as 

cell proliferation, differentiation, matrix synthesis and matrix degradation (Long et 

al., 2002; Davidovitch, 1991). These events, in turn, are controlled by sequential 

synthesis of neurotransmitters, cytokines, growth factors and arachidonic acid 

metabolites that regulate bone resorption at compression sites and bone synthesis at 

tensions sites (Krishnan and Davidovitch, 2006; Saito et al., 1991). 

 In vitro studies of cell cultures of different osteoblastic cell lines have 

demonstrated that the initial reaction of these cells to mechanical stress is partly 

mediated by deformation of the cytoskeleton (Sandy et al., 1993) via physical 

interaction of collagen type 1 and receptors of the integrin family (Calvalho et al., 

1996). A key link between these membrane-bound receptors and changes in the 

pattern of gene expression has been shown to be the mitogen-activated protein 

(MAP) kinase pathways (Matsuda et al., 1998;  Xiao et al., 2000). 

Extra cellular signal-regulated kinases (ERKs), members of the MAPK family, 

have been shown to participate in diverse arrays of cell programs in a cell-type-

specific mode. Mechanical stimuli have been shown to activate ERK1/2 in 

osteoblastic cells in vitro. In detail, the ERK1/2 signal pathway is involved in 

different cellular responses such as collagen synthesis (Chaudhary and Avioli, 

2000), cyclo-oxygenase expression (Wadhwa et al., 2002) and osteopontin 

production (You et al., 2001). Ziros et al., (2002) have shown, that mechanical 
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stimuli led to increased expression of runt-related transcription factor 2 

(Runx2/Cbfa1), a transcription factor that it is a pivotal regulator of osteoblast 

differentiation, via the ERK1/2 pathway. Runx2 binds to the osteoblast-specific cis-

acting element 2 (OSE2), which is found in the promoter regions of many 

osteoblast-specific genes (i.e. osteocalcin, collagen type 1, bone sialoprotein, 

osteopontin, alkaline phosphatase and collagenase-3) and controls their expression 

(Ducy et al., 1997; Harada et al., 1999). Conceivably, Runx2 expression plays a key 

role during osteoblast differentiation and skeletogenesis (Karsenty et al., 1999). 

Kawarizadeh et al., (2005) have shown, that in the rat a short-term mechanical 

stimulus up-regulated Runx2 and that this regulation may be achieved via the ERK 

pathway. 

The aim of this study was to expand previous in vitro and in vivo results by 

experiments applying various load regimes to the upper first molars of rats, and by 

quantitative analysis of immunohistochemical detection of ERK1/2 and Runx2 in 

regions representing the classic tension and pressure zones around the mesial root. 

In addition, we examined the relationship between cell differentiation and cell 

proliferation in the periodontal ligament during the early phase of tooth movement.  
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Materials and methods 
 
 
Animals 

 
Twenty-five 12 weeks old male Wistar rats, weighing 300-350 gr each (Harlan 

Winkelmann, Borchen, Germany) were used as experimental animals. They were 

provided with food and water ad libitum. The animal use protocol was reviewed 

and approved by the Institutional Animal Care and Use Committee of the local 

district government and the Animal Care Commissioner of the University of Bonn 

(Germany). 

 

Experimental Protocol 
 
According to the experimental protocol of Kawarizadeh et al. (2005), the rats were 

anesthetized with 0.01 ml Rompun (Bayer, Leverkusen, Germany) and 0.24 ml 

Ketavet (Pharmacia & Upjohn, Erlangen, Germany). The animals were clamped 

onto a head-holding device and the occlusal surface  of the maxillary right first 

molar was prepared by grinding of a small hole with a dental diamond bur. The 

tooth surface was then treated with self-etching bonding material (Xeno III, 

Dentsply DeTrey, Konstanz, Germany) for 60 seconds. An orthodontic appliance 

consisting of a T-loop (0.016 x 0.022-inch stainless steel wire, Ormco Corp., 

Glendora, CA, USA) was placed between the molar and a high-resolution 3D 

force/torque transducer (ATI, Industrial Automation, Garner, NC, USA), which had 

a resolution of 0.0125 N for force and 0.0625 Nmm for torque. The T-loop was 

fixed to the occlusal surface of the molar with light-curing composite (Tetric, 

Vivadent, Schaan, Liechtenstein). (Fig.1,2,3). 
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Figure 1: Experimental procedure for the application of the orthodontic force system. The rats 
were clamped onto a head holding device, in order to place an orthodontic appliance 
consisting of a T-Loop. 
 

 

Figure 2: Placement of the appliance in the oral cavity of the rat. 



13 
 
    

Figure 3: Experimental set up: Diagrammatic representation of the experimental procedure 
for the application of the orthodontic force system. The force system was applied and measured 
by a 3D force/torque transducer, and mounted onto a 6-axis-positioning table. By moving the 
transducer, we applied loads to the first molar.  
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In a first group of animals, constant forces for 4 hours of 0.25 N and 0.5 N were 

applied in 5 animals each in order to move the molars mesially. In the second 

group, constant forces of 0.1 N were applied for 2 hours in 10 animals. Afterwards, 

the first and second molars were passively separated with composite and the 

occlusal contacts were eliminated by slicing the antagonistic lower molars. Five 

rats were killed after 1 day and five after 2 days. Finally, intermittent forces of 0.1 

N and 0.25 Hz were  applied for 4 hours in 5 animals. The applied forces were 

recorded continuously for the time of the experiment (Fig.4). The untreated 

contralateral molars in 5 rats served as controls. 

Figure 4: Presentation of a typical load-diagram: The measured force curves in the x-
direction indicate a constant loading of the rat molar. The forces in the other directions were 
close to zero 
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Histology 

 
Upon completion of the experiments, the anesthetized animals were killed by an 

intravenous application of 2 ml T61 (embutramid mebezonium iodide; Intervet, 

Unterschleissheim, Germany) and decapitated. The maxillae were removed and 

dissected into right and left halves. The soft tissues around the jaw bone, except for 

the gingiva, were removed. The specimens were fixed in 4% paraformaldehyde in 

0.1 M phosphate buffer for 24 hours and decalcified in 10% ethylene diamine 

tetraacetic acid (EDTA) at room temperature for 6 weeks. After being dehydrated 

in ascending grades of alcohol, cleared in xylene, and paraffin-embedded, 5-µm 

serial sections were cut parasagittally on a microtome (HM 355 s; Microm Int., 

Walldorf, Germany) and mounted on glass slides (K. Roth, Karlsruhe, Germany). 

Selected sections were stained with haematoxylin-eosin.  

 

 

Immunohistochemistry 

 
Immunohistochemical staining was carried out with anti-PCNA mouse monoclonal 

antibody (diluted at 1:500, ZYMED Laboratories, South San Francisco CA, USA), 

Runx2 goat polyclonal antibody (diluted at 1:50, Santa Cruz Biotechnology, Santa 

Cruz, CA, USA) and pERK1/2 mouse monoclonal antibody (diluted at 1:50, US 

Biological, Swampscott, MA, USA). The sections were deparaffinized and 

rehydrated, rinsed with tris-hydroxymethyl aminomethane-buffered saline solution 

(TBS) at pH 7.4 for 10 minutes and then soaked in methanol/H2O2 for 20 minutes 

in the dark to block endogenous peroxidase activity. 
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In details the sections were treated with the following sequence: 

 

1. xylol        10 min. 

 

2. xylol        10 min. 

 

3. 100% alcohol         5 min. 

 

4. 100% alcohol                  5 min 

 

5.  90% alcohol         5 min 

 

6. 70%alcohol         5 min 

 

7. aqua dest                    5 min 

 

8. TBS        10 min 

 

9. methanol/H2O2       20 min   

 

  

       

 Anti-PCNA, Runx2 and pERK1/2 antibodies were used in TBS-BSA (4% bovine 

serum albumin) at 4°C overnight, diluted in a humidity chamber. Subsequently, 

sections were washed in TBS and incubated with suitable Envision+/HRP anti-

mouse or anti-goat immune globulin/HRP (DakoCytomation, Hamburg, Germany) 

as secondary antibodies for 30 minutes in a humidity chamber at room temperature. 
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Antibody complexes were visualized using diaminobenzidine (DAB) for 10 

minutes yielding a brown staining product. Thereafter, slides were rinsed, 

counterstained with Mayer’s hematoxylin for 5 seconds, rinsed again, and mounted. 

 

Again in details the mentioned sequence: 

 

10. primary antibodies:      overnight 

       anti-PCNA mouse monoclonal antibody 1:500 

       pERK1/2 mouse monoclonal antibody 1:50  

       Runx2 goat polyclonal antibody              1:50 

 

 

11. TBS             10 min. 

 

 

12. secondary antibodies           30 min 

      Envision+/HRP anti-mouse or 

      anti-goat immune globulin/HRP 

 

13. TBS             10 min 

 

 

14. Diaminobenzidine (DAB)                   10 min 

 

 

15.     TBS             10 min 
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16.    Mayer’s hematoxylin          1 sec 

 

 

17.     100% alcohol           2 min 

 

 

18.     100% alcohol           2 min 

 

 

19.       xylol                      2 min 

 

 

20.       xylol                      2 min      

            

 

Negative controls were prepared by omission of the primary antibodies from the 

staining procedures. The specifity of the used antibodies had been confirmed before 

by immunoblotting analysis (Ogata et al., 1985) and by the manufacturer (US 

Biological, Swampscott, MA, USA), respectively. 

 

 

 

 

 

 

 



19 
 
    

Morphometry 

 
To establish representative regions of the periodontium and the adjacent alveolar 

bone, those sections were chosen that showed the third root of the right upper first 

molar in maximal length and with complete radicular pulp. From these, three 

sections at 30 µm intervals were taken for each quantitative analysis. Sections were 

scanned by means of a scanner camera (Axio Cam MRC; Zeiss, Göttingen, 

Germany) mounted on a light microscope (Axiophot 2; Zeiss, Göttingen, 

Germany), and viewed with imaging software (Axiovision; Zeiss, Göttingen, 

Germany) on a personal computer. Counting of the percentage of immuno-

histochemically positive PDL cells was performed in two separate predefined areas 

of 750 x 375 µm each in every selected section. These areas were located mesio-

coronally and disto-coronally of the mesial root. Counts were performed at a 

magnification of x 400. Means and standard deviations were calculated for each 

group of 5 animals and for the different regions. For statistical analysis, Student’s t 

tests to determine differences between groups and with regard to the localization of 

counted positive cells were performed. The level of statistical significance was set 

at p<0.05. To evaluate the accuracy of the method, an intraobserver error of 3.9% 

(CV) was maximally calculated after the double-counting 30 randomly chosen 

sections. 
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List of the chemicals 

 
Acetone     co.Otto Fischer,Saarbrücken,Germany 
Alcohol (70-100%)   co.Merck,Münster,Germany 

Embedding medium DePex  co.Serra,Heidelbrg,Germany 

3,3-diaminobenzidin(DAB)  co.Sigma,Steinheim,Germany 

Ethylene diamine tetraacetic  

acid (EDTA)    co.Calbiochem,Darmstadt,germany 

Eosin solution 1%    co.Merck,Darmstadt,Germany 

Formic acid     co.Merck,Darmstadt,Germany 

Formol 40%     co.Merck,Darmstadt,Germany 

Hematoxylin    co.Merck,Darmstadt,Germany 

Methanol     co.Merck,Darmstadt,Germany 

Sodiumchloride    co.Merck,Darmstadt,Germany 

Sodiumsulfate solution   co.Merck,Darmstadt,Germany 

Paraffin-Histo-comp   co.Vogel,Giessen,Germany 

Hydrochloride 2 mol/l   co.Merck,Darmstadt,Germany 

Serumalbumin from bovine           co.Paesel and Lor,Frankfurt,Germany 

Tris      co.ICN Biomedicals,Ohio,USA 

Xylol original    co.Merck,Darmstadt,Germany 

Xylol substitute XEM-200  co.Vogel,Giessen,Germany  
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List of the reactors 

 
TBS-solution: 

 

-9.0 gr NaCl 

-6.0 gr Tris 

-1000 ml aqua dest. + 2 ml HCl    pH 7.6 

 

 

TBS-BSA-solution: 

 

-0.1 gr serumalbumin from bovine 

-10 ml TBS-solution 

 

 

 

EDTA: 

 

-200 gr EDTA 

-68 gr Tris 

-2000 ml aqua dest 
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List of the instruments 

 
Analysis scale      co.Sartorius,Göttingen,Germany 

Thermo-cupboard      co.Memmert,Schwabach,Germany 

Cover-glass       co.Engelbrecht,Edermunde,Germany 

Digital-pH-Meter 197     co.WTW,Vienna,Austria 

Eppendorf-pipettes      co.Eppendorf,Hamburg,Germany 

Light microscope Axioskop 2    co.Zeiss,Jena,Germany 

Practica Scan      co.Schneider,Feinwerktech.,Dresden 

Rotation microtome HM 3559              co.Microtom,Walldorf,Germany 

Superfrost plus slides               co.Menzel,Braunschweig,Germany 

Warm plate        co.Medax Nagel,Kiel,Germany  
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Results 
 
Histology 
 
Orthodontic loading of the upper first molars resulted in a stretching of the 

periodontal fibers on the disto-coronal aspects of the mesial root and compression 

of the ligament on the mesio-coronal ones. Hence, zones of pressure and tension 

were formed (Ogata et al., 1985; Kawarizadeh et al., 2004) and could be clearly 

identified. In the pressure zone, obvious structural disturbance of PDL fibers was 

observed indicating initiation of hyalinization. Many fibroblasts showed pyknosis. 

In addition, vessel damage and extravasation was observed. In the areas under 

tension, the typical morphology with stretched PDL fibers was visible. 

The morphological picture of the periodontal tissues was still characterized by the 

physiological distal drift of the molars in the rat. Apposition of bone on the mesial 

surfaces of the alveolar septa and of cementum on the distal root surfaces was seen. 

These surfaces were mostly covered by osteoblasts or cementoblasts, respectively.  

 

Immunohistichemistry and morphometry 

 

Results for pERK1/2 

 

In the selected areas under tension the proportion of pERK1/2 positive cells was 

higher than in control teeth in all types of loading, whereas these proportions in 

selected areas under pressure were increased after the application of the intermittent 

forces (p<0.05; Fig.5,6,7,8). In addition, we observed only in the tension zones a 

higher number of pERK1/2 positive cells within the same time interval after the 

application of higher constant forces (0.5 N) compared with the lower force (0.25 

N) (p<0.01; Fig.5,7). There was no statistical difference concerning pERK1/2 
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positive cells between the tension and the pressure zones except for the third group, 

where constant forces for 2 hours of 0.1 N were applied and the animals were killed 

after 1 day (p<0.05). 

 
 

Figure 5: (A,B) Immunolocalization of pERK1/2  on the disto-coronal (A) (tension side) and 
mesio-coronal (B) (pressure side) aspects  of the mesial root in the PDL after 4 hrs with 
application of a force of 0.5N. The immunostained cells appear brown (arrows). The labelled 
cells are regularly distributed in the periodontal ligament. Magnification  400; scale bars = 50 
µm; AB, alveolar bone; PDL, periodontal ligament; RS, root surface; arrows, immunopositive 
cells. 

B 
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Figure 6: (A,B) Representative views of immunolabelling in control of pERK1/2  on the disto-
coronal (A) (tension side) and mesio-coronal (B) (pressure side) aspects  of the mesial root in 
the PDL. The immunostained cells appear brown (arrows). The labelled cells are regularly 
distributed in the periodontal ligament. Magnification 400; scale bars = 50 µm; AB, alveolar 
bone; PDL, periodontal ligament; RS, root surface; arrows, immunopositive cells. 

BA 
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Figure 7: Quantification of pERK1/2 -positive cells disto-coronal. Each column represents a 
group of five animals treated with the mentioned loading regimes. The immunopositive cells 
were counted as percentages of the total number of cells. Results are representative of 3 
sections of each animal. For each of the 5 specimens, a total of 2 fields in 3 sections was 
analysed. The results are expressed as means and standard deviations. The asterisks indicate 
significant differences (*P<0.05, **P<0.01 and ***P<0.001).  
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Figure 8: Quantification of pERK1/2 -positive cells mesio-coronal. Each column represents a 
group of five animals treated with the mentioned loading regimes. The immunopositive cells 
were counted as percentages of the total number of cells. Results are representative of 3 
sections of each animal. For each of the 5 specimens, a total of 2 fields in 3 sections was 
analysed. The results are expressed as means and standard deviations. The asterisks indicate 
significant differences (*P<0.05, **P<0.01 and ***P<0.001).  

 

 
Results for Runx2 

 
In the representative areas, both under tension and pressure, the proportion of 

Runx2 positive cells decreased after the application of constant forces (p<0.05; 

Fig.9,10,11,12). Interestingly, in the same way as with pERK1/2 there was not any 

statistical difference with respect to Runx2 positive cells.  
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Figure 9: (A,B) Immunolocalization of cbfa-1 on the disto-coronal (A) (tension side) and 
mesio-coronal (B) (pressure side) aspects  of the mesial root in the PDL after 4 hrs with 
application of force of 0.5N. The positive cells are immunostained and appear brown. The 
labelled cells are regular distributed in the periodontal ligament. Magnification 400; scale 
bars = 50 µm; AB, alveolar bone; PDL, periodontal ligament; RS, root surface; arrows, 
immunopositive cells. 

BA 
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Figure 10: (A,B) Representative views of immunolabeling in control of cbfa-1 on the disto-
coronal (A) (tension side) and mesio-coronal (B) (pressure side) aspects  of the mesial root in 
the PDL. The positive immunostained cells appear brown (arrows). The labelled cells are 
regularly distributed in the periodontal ligament. Magnification 400; scale bars = 50 µm; AB, 
alveolar bone; PDL, periodontal ligament; RS, root surface; arrows, immunopositive cells. 

PDL 

 

BA 
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Figure 11: Quantification of Runx-2-positive cells distocoronal. Each column represents a 
group of five animals treated with the mentiond loading regimes. The immunopositive cells 
were counted as percentages of the total number of cells. Results are representative of 3 
sections of each animal. For each of the 5 specimens, a total of 2 fields in 3 sections was 
analysed. The results are expressed as means and standard deviations. The asterisks indicate 
significant differences (*P<0.05, **P<0.01 and ***P<0.001). 
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Figure 12: Quantification of Runx-2-positive cells mesiocoronal. Each column represents a 
group of five animals treated with the mentioned loading regimes. The immunopositive cells 
were counted as percentages of the total number of cells. Results are representative of 3 
sections of each animal. For each of the 5 specimens, a total of 2 fields in 3 sections was 
analysed. The results are expressed as means and standard deviations. The asterisks indicate 
significant differences (*P<0.05, **P<0.01 and ***P<0.001). 

 

 

Results for PCNA 
 

In the selected areas, both under tension and pressure, the proportion of PCNA 

positive cells after the application of constant forces for 4 hours was lower than that 

in control teeth (p<0.01; Fig.13,14,15,16). In the fourth group, where constant 

forces for 2 hours of 0.1 N were applied and the animals were killed after 2 days, 

the proportion of PCNA positive cells under pressure was lower than on the tension 

side (p<0.01) and also lower than that in control teeth (p<0.001; Fig.16). 
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Figure 13: (A,B) Immunolocalization of PCNA on the disto-coronal (A) (tension side) and 
mesio-coronal (B) (pressure side) aspects  of the mesial root in the PDL after 4 hrs with 
application of a force of 0.5N. The  immunostained cells  appear brown (arrows). The labelled 
cells are regular distributed in the periodontal ligament. Magnification 400; scale bars = 50 
µm; AB, alveolar bone; PDL, periodontal ligament; RS, root surface; arrows, immunopositive 
cells. 

BA 
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Figure 14: (A,B) Representative views of immunolabeling in control of PCNA on the disto-
coronal (A) (tension side) and mesio-coronal (B) (pressure side) aspects  of the mesial root in 
the PDL. The positive immunostained cells appear brown (arrows). The labelled cells are 
regular distributed in the periodontal ligament. Magnification 400; scale bars = 50 µm; AB, 
alveolar bone; PDL, periodontal ligament; RS, root surface; arrows, immunopositive cells. 

B A 
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Figure 15: Quantification of PCNA-positive cells distocoronal. Each column represents a 
group of five animals treated with the mentioned loading regimes. The immunopositive cells 
were counted as percentages of the total number of cells. Results are representative of 3 
sections of each animal. For each of the 5 specimens, a total of 2 fields in 3 sections was 
analysed. The results are expressed as means and standard deviations. The asterisks indicate 
significant differences (*P<0.05, **P<0.01 and ***P<0.001). 
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Figure 16: Quantification of PCNA-positive cells mesiocoronal. Each column represents a 
group of five animals treated with the mentioned loading regimes. The immunopositive cells 
were counted as percentages of the total number of cells. Results are representative of 3 
sections of each animal. For each of the 5 specimens, a total of 2 fields in 3 sections was 
analysed. The results are expressed as means and standard deviations. The asterisks indicate 
significant differences (*P<0.05, **P<0.01 and ***P<0.001). 
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 4hrs 

/0.25N 
4hrs 
/0,5N 

1d 
/0.1N 

2d 
/O.1N 

Intermittent 
Forces 
 

 
pERK1/2 
 
 

 
 

  
 

 
 

 

 
Runx2 
 
 

 
n. s 

 
n. s 

 
n. s 

 
n. s 

 
n. s 

 
PCNA 

   
n. s 

 
n. s 

 
n. s 

 
Table 1: Summary of the modifications of the investigated factors after the different 
 regimes of loading  on the tension side; n.s, not significant.  
  
 
 
 
 
 4hrs 

/0.25N 
4hrs 
/0,5N 

1d 
/0.1N 

2d 
/O.1N 

Intermittent 
Forces 
 

 
pERK1/2 
 
 

 
n. s 

 
n. s 

 
n. s 

 
n. s 

 

 
Runx2 
 
 

 
n. s 

 
n. s 

 
n. s 

 
n. s 

 
n. s 

 
PCNA 

   
n. s 

  
n. s 

 
Table 2: Summary of the modifications of the investigated factors after the different 
 regimes of loading on the pressure side; n.s, not significant. 
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Discussion 
 

Orthodontic tooth movement is induced by mechanical stimuli and realised by 

remodelling of the alveolar bone. Specifically, periodontal ligament cells bear the 

phenotypic characteristics of osteoblast-like cells and play a pivotal role in 

remodelling and repair (Meikle, 2006), but the exact sequence of events that take 

place during these processes remains an unresolved issue. 

We performed the present study to investigate the responses of periodontal 

ligament cells to various mechanical loading. We applied constant forces of varying 

amount for different time periods. Moreover, it is the first time that intermittent 

forces were applied in a well-controlled animal model. We demonstrated that 

application of precise loading modifies the transcription of ERK1/2, Runx2 and 

PCNA, respectively. 

Continuous mechanical stretching of human periodontal ligament cells in vitro has 

been shown to enhance ERK activity and increase the activator protein 1 (AP-1), a 

transcription factor that plays a pivotal role in controlling gene expression in 

osteoblast differentiation (Peverali et al., 2001). There are complex mechanisms for 

the interaction between AP-1 and Runx-2, including direct physical interactions 

(Franceschi and Xiao, 2003). In accordance with that, Ziros et al., (2002) have 

demonstrated in cell culture experiments that after mechanical stretching of human 

periodontal ligament cells, Runx2 was activated by means of ERK phosphorylation. 

These findings strongly implicate the ERK cascades in the stretch-elicited up-

regulation of Runx2 activity. 

Kawarizadeh et al., (2005) investigated short-term orthodontic loading in vivo in 

rats. The authors demonstrated that application of precise short-term loading 

activates ERK 1/2 and Runx2, respectively. In detail, they showed that in 

representative areas under tension, the proportions of Runx2- positive and pERK 

1/2-positive cells increased within 8 hours of loading, whereas these proportions in 
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representative areas under pressure were significantly reduced in comparison with 

those in control teeth. These findings suggested that periodontal ligament cells 

undergo osteoblastic differentiation via the ERK pathway in the zones under 

tension. 

In this study, rat molars were loaded orthodontically in the same way as 

Kawarizadeh et al., (2005) with a high-resolution 3D force/torque transducer for 

exact periods of time. Different force levels were applied and the animals were 

killed after 4 hours, 1 day and 2 days. An increased proportion of  pERK1/2 

positive cells in comparison with the control teeth in the tensions zones was found. 

This increase occurred in a force-dependent manner. In other words, the increase of 

the applied force from 0.25 N to 0.5 N during a constant time of 4 hours produced 

an increase of the pERK1/2 positive cells in comparison with the untreated animals. 

Conversely, after an experimental time increase of 1 on 2 days under a constant 

force of 0.1 N no statistically significant increase of pERK1/2 appeared in the 

tension zones. Respectively, in the pressures zones only the intermittent forces 

produced a higher proportion of pERK1/2 positive cells in comparison with the 

controls. On the other hand, differences between the tension and the pressure sides 

were not proven to be significant, which could be explained by the fact that there 

was already an obvious difference in the amount of positive cells between the 

tension and the pressure zone in the control teeth. 

The proportion of Runx2 positive cells decreased after the application of constant 

forces in most of the teeth under investigation. This decrease on the pressure as 

well as on the tension side occurred in a time and force-dependent manner. 

Finally, both under tension and pressure, the proportion of PCNA positive cells 

after the application of constant forces for 4 hours was lower than those in controls. 

This study, in comparison with the study of Kawarizadeh et al., (2005), provides 

novel information concerning tooth movement. In detail, it was shown that the 
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expression of the involved factors was dependent on the amount of force that was 

applied. Thus, while there was a force dependent increase of the expression of 

pERK1/2 on the tension side, the opposite relationship was demonstrated for the 

expression of Runx2 on the pressure side. Kawarizadeh et al., (2005) showed 

similar results but in a time dependent manner. The reason for this discrepancy 

might be differences in the experimental protocol. First, we used the same amount 

of forces for a much longer period time and second Kawarizadeh et al. were used 

higher forces for the same time. This might also explain the insignificant 

differences between the tension and pressure sides, which are in contrast with the 

findings of Kawarizadeh et al., (2005). 

In addition, a time dependent decrease was observed for the expression of Runx2 

on both sides as well as for PCNA on the pressure side. Regarding PCNA, in vitro 

studies have shown that mechanical stress induces DNA synthesis in human 

periodontal ligament cells following 6 hours of stretching (Kletsas et al., 1998). In 

our study, in accordance with Kawarizadeh et al., (2005), an obvious increase in 

proliferation could not be observed. Thus, in vitro and in vivo findings are to be 

compared with caution. At last, intermittent forces resulted in a clear up-regulation 

of pERK1/2, showing that this stimulus can especially initiate differentiation of the 

PDL-cells. 

Altogether, the findings of this study show that a mechanical stimulus induces 

differentiation of periodontal ligament cells toward osteoblasts via the ERK 

cascade, verifying the hypothesis of Roberts et al., (1982), that new osteoblasts are 

derived from periodontal ligament cells during orthodontically induced 

osteogenesis and also the report of Camilleri and McDonald, (2006), that the Runx2 

gene is involved in the remodelling process of the alveolar bone. 

A number of studies have identified other agents to effect bone remodelling and 

tooth movement. Increased immunoreactivity of Substance P has been 
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demonstrated in the PDL in the early phases of tooth movement (Davidovitch et al., 

1988). This neuropeptide has been shown to cause vasodilation and increased 

vascular permeability, contributing to increased local blood flow that accompanies 

inflammation.   

Cytokines and especially interleukin IL-1β and tumour necrosis factor-alpha (TNF-

α) were found to affect bone metabolism by stimulating osteoclast development and 

activity. Systemic application of soluble receptors to IL-1 and TNF-a following 

experimental induction of tooth movement in the rat reduced the number of 

osteoclasts (Jäger et al., 2005).  

In addition, the role of components of the RANKL/RANK/OPG system and that of 

NO in inducing bone remodelling was recently demonstrated (Ogasawara et al., 

2004; Shirazi et al., 2002). RANKL is a regulator of osteoclast formation and 

activation, through which many hormones and cytocines produce their 

osteoresorptive effect. OPG is a decoy receptor produced by osteoblastic cells, 

which compete with RANK for RANKL binding.  

Clinical and animal studies by various authors have identified the role of 

prostaglandins (PGE1 and PGE2) in stimulating bone resorption. Lee et al., 1990 

have reported a direct action of prostaglandins on osteoclasts in increasing their 

numbers and their capacity to form a ruffled border and effect bone resorption. 

Altogether, there is still need to further analyse the regulatory factors mentioned 

above for elucidating our understanding of remodelling processes following 

orthodontic tooth movement.         
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Summary 

 
 Previous studies have indicated that periodontal ligament cells demonstrate 

osteogenic potential and osteoblastic differentiation via the ERK pathway under 

mechanical stress in vitro and in vivo. This study aimed to further analyse this 

regulatory process experimentally in the rat. 

 The right upper first molars of 25 anesthetised rats were loaded with forces in 

order to be moved mesially. Constant forces for 4 hours of 0.25 N and 0.5 N were 

applied in 5 animals each. Furthermore, constant forces for 2 hours of 0.1 N were 

applied in 10 animals and afterwards, the first and second molars were permanently 

separated with composite. In these animals, the antagonists were sliced and five rats 

were killed after 1 day and five ones after 2 days. At last, intermittent forces of 0.1 

N and O.25 Hz were  applied in 5 different animals for 4 hours. Untreated 

contralateral sides served as control. Parafin-embedded sections were analyzed 

quantitatively after immunohistochemistry for proliferating cell nuclear antigen 

(PCNA), runt-related transcription factor 2 (Runx2/Cbfa1) and phosphorylated 

extracellular signal-regulated kinase 1/2 (pERK1/2). 

 In selected areas under tension the proportion of pERK1/2 positive cells was 

increased compared with those in control teeth in all types of loading, whereas 

these proportions in selected areas under pressure were increased only after the 

application of intermittent forces. In representative areas, both, under tension and 

pressure the proportion of Runx2 positive cells decreased after the application of 

constant forces. After the application of constant forces for 4 hours in 

representative areas, both under tension and pressure the proportion of PCNA 

positive cells was lower than that in control teeth. 

 The involvement of pERK1/2, Runx2/cbfa-1 and PCNA in the reaction of 

periodontal ligament cells to different load regimes was verified. 
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