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Distribution and molecular characterization of aflatoxin-producing and non-producing 
isolates of Aspergillus section Flavi for biological control of aflatoxin contamination in 

maize in Nigeria 

Fungal communities in soils of Nigerian maize fields were examined to determine 
distributions of aflatoxin-producing fungi and to identify endemic atoxigenic strains of 
potential value as biological control agents for limiting aflatoxin contamination in West 
African crops.  Over 1,000 isolates belonging to Aspergillus section Flavi were collected from 
soil of 55 Nigerian maize fields located in three agroecological zones by dilution plating onto 
modified Rose Bengal agar.  The most common member of Aspergillus section Flavi (85% of 
isolates) was the A. flavus L-strain followed by the unnamed taxon known as strain SBG (8%), 
A. tamarii (6%) and A. parasiticus (1%).  The highest incidence of SBG was in the Zaria 
district, and the lowest was in the Ogbomosho and Ado-Ekiti districts.  Only 44% of 492 A. 
flavus isolates produced aflatoxins (limit of detection 5 ng g-1).  All SBG and A. parasiticus 
isolates produced both B and G aflatoxins and greater than 300 µg g-1 total aflatoxins.  Thirty 
two percent of the A. flavus isolates produced >1 µg g-1 total aflatoxins but no A. flavus isolate 
produced G aflatoxins. The most important aflatoxin producers varied by region.  However, 
all regions had atoxigenic strains of potential value as biological control agents. 

In addition, this study focused on 18 atoxigenic A. flavus Vegetative Compatibility 
Groups (VCGs) collected from naturally infected maize.  Loci across the 68 kb aflatoxin 
biosynthesis gene cluster were compared among the 18 atoxigenic VCGs, an atoxigenic strain 
used commercially in North America to manage aflatoxins, and several aflatoxin producers.  
Five of the VCGs from Nigeria had large deletions (37kb to 65kb) extending from the 
telomeric side of the aflatoxin biosynthesis cluster.  In one case (isolate AV0222), the deletion 
extended through the cluster to the adjacent sugar cluster.  The remaining 12 atoxigenic 
VCGs, including the VCG used for aflatoxin management in North America contained all 
genes of the aflatoxin pathway.  Comparison of pathway genes revealed more changes in 
atoxigenic than in aflatoxin-producing VCGs and several non-synonymous changes that are 
unique to atoxigenics. However, for some atoxigenic VCGs, additional sequencing and 
experimentation will be required to determine precise causes of atoxigenicity. 

Finally, a set of atoxigenic and toxigenic A. flavus L-strains from each soil sample 
were analyzed to determine their morphological, physiological, and genetic characters. 
Isolates that produced high levels of toxin in liquid fermentation produced proportionally less 
spores and had a higher sclerotia mass on Czapeks agar (31°C, 25days), while isolates with 
high spore mass and less sclerotia mass produced less aflatoxin.  Portions of the aflatoxin 
biosynthetic pathway genes, aflR, as well as genes from the Aspergillus flavus genome (taka 
amylase and pecA) were amplified by PCR and sequenced.  Phylogenetic analysis of all three 
genes confirmed that the high B+G aflatoxin producing SBG strain of West Africa did not 
belong to A. minisclerotigenes or Group II as previously assumed.  A. parasiticus isolates of 
Nigeria were phylogenetically separated from those of other regions in the world.  Within the 
A. flavus isolates, differences between toxigenic and atoxigenic L-strains were found in two of 
three analyzed genes.   



 

 

Die Verteilung und molekulare Charaterisierung von aflatoxin produzierenden und nicht-

produzierenden Aspergillus Isolaten für die Entwicklung einer biologischen 

Bekämpfungsmassnahme von aflatoxin kontaminierten Mais in Nigeria. 

Die Verteilung von aflatoxinbildenden und nicht-aflatoxinbildende Aspergillus Stämmen aus 
nigerianischen Böden wurde bestimmt mit dem Ziel mögliche natürlich vorkommende nicht-
aflatoxinbildenden Aspergillus Isolate als biologische Kontrolmaßnahme verwenden zu können. 
Aus insgesamt 55 Bodenproben nigerianischer Maisfelder, die über 3 agroecologische Zonen 
verteilt waren, wurden über 1000 Aspergillus Isolate auf Rose Bengal Agar isoliert. Der am 
häufigsten vorkommende Vertreter der Gattung Aspergillus war A. flavus L-Stamm (85%), gefolgt 
von dem namenlosen Taxon, bekannt als SBG-Stamm (8%), A. tamarii (6%) und A. parasiticus 
(1%). Das höchste Aufkommen von SBG Isolaten wurde im Bezirk Zaria ermittelt und das niedrigste 
in den Bezirken Ogobomosho und Ado-Ekiti.  Nur 44% von 492 A. flavus Isolaten produzierten 
Aflatoxin bei einer Nachweisgrenze von 5 ng g-1. Alle SBG Isolate sowie A. parasiticus Isolate 
produzierten B- und G-Aflatoxine mit mehr als 300 µg g-1 total Aflatoxin. Von den A. flavus 
Isolaten produzierten 32% mehr als 1 µg g-1 total Aflatoxin und keiner der A. flavus Isolaten 
produzierte G-Aflatoxine. In allen Regionen wurden nicht-aflatoxinbildende Aspergillus Stämme 
gefunden.  Diese A. flavus Isolate wurden auf ihre Tauglichkeit als biologische Kontrollmaßnahme 
weiter untersucht.  

Desweiteren wurden 18 von Mais isolierte nicht-aflatoxinbildende A. flavus Vegetative 
Compatibility Groups (VCGs) untersucht. Verschiedene Genabschnitte von dem 68 kb grossen 
Gencluster des aflatoxin Biosyntheseweges wurden mit den 18 nicht-aflatoxinbildenden VCGs, 
einem gewerblich genutzten nicht-aflatoxinbildenden Stamm aus Nord Amerika und mehreren 
aflatoxinbildenden Stämmen verglichen. Von der telomerischen Seite ausgehend zeigten fünf VCGs 
fehlende Genabschnitte im Gencluster des aflatoxin Biosynthesewege von der Grösse von 37 bis 
65kb. Dem Isolat AV0222 fehlte das komplette Gencluster des aflatoxin Biosyntheseweges bis zum 
angrenzenden Zuckergencluster. Für die restlichen nicht-aflatoxinbildenden VCGs, sowie das nicht-
aflatoxinbildenden Isolat aus Nord Amerika wurden alle Gene des aflatoxin Biosyntheseweges 
nachgewiesen. Der direkte Vergleich der Genesequencen zeigte mehr Punktmutationen in nicht-
aflatoxinbildenden Isolaten als in aflatoxinbildenden Isolaten, die zum Teil eine Änderung der 
Aminosäure zur Folge hatte. Mehr Forschungsarbeit ist notwendig, um zu ermitteln, warum einige 
Aspergillus Stämme kein Aflatoxin synthetisierten. 

Letztendlich wurden nicht-aflatoxinbildende und aflatoxinbildende A. flavus L-Stämme auf 
deren morphologischen, physiologischen und genetischen Charateristika untersucht. Isolate, die in 
Flüssigfermentation einen hohen Anteil an Aflatoxin produzierten, zeigten proportional weniger 
Sporenwachstum und hatten ein höheres Sclerotiagewicht auf Czapeks Agar (31°C, 25 Tage). 
Hingegen produzierten Isolate mit hohem Sporenwachstum und niedrigem Sclerotiagewicht, 
weniger Aflatoxin. Genabschnitte des aflatoxin Biosyntheseweges aflR, sowie Gene des Aspergillus 
Genome (Taka Amylase und PecA) von verschiedenen Aspergillus Isolaten aus Nigeria und 
Weltweit wurden mittels PCR amplifiziert und sequenziert. Die phylogenetische Analyse von allen 
Genabschnitten bestätigte, dass anders als vorher angenommen, der B+G aflatoxinbildende SBG-
Stamm aus West Afrika weder der Art A. minisclerotigenes noch der Group II angehört. A. 
parasiticus Isolate Nigerias unterschieden sich phylogenetisch von denen aus anderen Regionen der 
Welt.  Aflatoxinbildende und nicht-aflatoxinbildende A. flavus Isolate unterschieden sich 
phylogenetisch in zwei von drei analysierten Genen.  
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 CHAPTER ONE 

 GENERAL INTRODUCTION 

1 BACKROUND OF THE RESEARCH TOPIC 

Maize has been in the diet of West Africans for centuries (Iken et al., 2004).  In Nigeria it 

has become the staple cereal due to its taste, cooking properties and potential to produce high yields.  

The rapid population growth over the past years in developing countries in West Africa has led to an 

ever increasing demand for food.  In turn, the production of maize has steadily increased.  Alone in 

Nigeria, the production of maize has risen nearly 10-fold in the last 25 years from 465,000 ha in 

1980 to 4,466,000 ha in 2004 (FAOSTAT, data 2006).  In West Africa the consumption frequency 

of maize is stable across socioeconomic lines and is consumed at a comparable frequency by rich 

and poor, educated and illiterate (Cardwell et al., 2006).  Subsistence farmers in the savanna of 

Africa consume locally grown maize on average virtually everyday of the week (Cardwell et al., 

2006).   

Maize in West Africa is frequently contaminated with aflatoxins. Aflatoxins are toxic 

metabolites produced by fungi, mainly Aspergillus flavus and A. parasiticus.  One of the most potent 

carcinogens produced in nature is aflatoxin B1 and is therefore listed as a group I carcinogen by the 

International Agency for Research on Cancer (IARC, 1993).  The aflatoxin exposure in West Africa 

is mainly associated with the consumption of maize products (Egal et al., 2005; Bandyopadhyay, 

2007).  Therefore it is not surprising that human exposure to aflatoxin in West Africa is extremely 

high.  Over 99% of the population in many regions have had long term exposure (Gong et al., 2002).  

As a result of this, many West Africans suffer from tremendous health problems such as immune 

system deficiency, liver cancer, impaired child development and other illnesses (Wild et al., 1992b; 

Wild et al., 1992a; Gong et al., 2004; Williams et al., 2004).   

 

Over the years countries with known specific aflatoxin regulations have increased from 33 in 

1981 (Schuller et al., 1983) to 77 in 1995 (F.A.O., 1997) and 100 in 2003 (F.A.O., 2004).  However, 

more regulations regarding the amount of allowed aflatoxin in grain are still necessary.  In the 

European Union, regulations limit the total amount of aflatoxin to 4 ng g-1, whereas the regulations 

in some developing countries and the US limit the total aflatoxins to more than 20 ng g-1 in 
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foodstuffs intended for human consumption (F.A.O., 2004).  In Nigeria regulations do exist and  

were set at 20 ng g-1 as the maximum permissible limit for total aflatoxin in foodstuff by the 

National Agency for Food, Drug Administration and Control (F.A.O., 2004).  Nevertheless, these 

regulations are difficult to enforce.  In Nigeria agricultural products are mostly produced from field 

to mouth by small-scale farmers or products are sold through local markets where “caveat emptor” 

remains the basic rule (Bandyopadhyay, 2007).  Since these products rarely enter official channels, 

practical monitoring of aflatoxin seldom happens.  Therefore, much of the food that is produced and 

consumed in Nigeria is often contaminated with high levels of aflatoxin.  

 

Biological control strategies directed at utilizing non-aflatoxin (atoxigenic), strains to limit 

aflatoxin contamination on crops have been pursued for almost two decades (Cole et al., 1990; 

Dorner, 2004).  These strategies seek to give atoxigenic strains a competitive edge and exclude their 

aflatoxin producing relatives, therefore decreasing the potential for contamination in crops and the 

environment.  Successful strategies have been accomplished by using native non-aflatoxin 

producing strains such as A. flavus. (Cotty et al., 2006).  In a joint project with the IITA, Africa, the 

University of Bonn, and the University of Arizona, research is being conducted on the potential for 

using native atoxigenic Aspergillus flavus strains to suppress aflatoxin producing fungi that infect 

maize in Nigeria.  Initial efforts focused on identifying the ecology of the aflatoxin producing strains 

and potential biological control isolates of A. flavus in Nigeria.   

 

2 THE GENUS ASPERGILLUS 

The genus Aspergillus, a member of the phylum Ascomycota, includes over 185 known 

species.  Several members of Aspergillus section Flavi produce aflatoxin.  These includes 

Aspergillus flavus and Aspergillus parasiticus, as well as several less common taxa including 

Aspergillus nomius, A. tamarii, A. pseudotamarii, A. minisclerotigenes and A. bombycis (Klich et 

al., 1988; Cotty et al., 1994b).  Aspergillus species classified outside of section Flavi can also 

produce aflatoxins.  For example, Aspergillus ochraceoroseus from section Ochraceorosei, SCRR 

1468, morphological resembling members of section Circumdati, and the ascomycete Emericella 

astellata and E. venezuelensis (Aspergillus section Nidulantes, Cary et al., 2005) also produce 

aflatoxin.  The group of aflatoxin producing species is more complex than previously thought.  One 
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example of this is a West Africa strain of an unnamed taxon which may soon be described as a new 

important aflatoxin producer (Cotty et al., 1999).  

3 POPULATION DYNAMICS 

3.1 Life cycle  

The fungi of Aspergillus section Flavi are one of the most abundant and widely distributed 

soil-borne molds and can be found anywhere on earth (Yu et al., 2005).  A. flavus is a saprophytic 

fungus that is capable of surviving on many organic nutrient sources like plant debris, tree leaves, 

decaying wood, animal fodder, cotton, compost piles, dead insects and animal carcasses, outdoor 

and indoor air environments, stored grains, and even on live humans and animals (Klich, 1998).   

The life cycle in agriculture fields can be divided into two stages: (1) colonization of plant 

debris in soil and (2) invasion of seeds and grain in actively growing crop plants (Figure 1) (Horn, 

2007).  Soil serves as a reservoir for primary inoculum of A. flavus and A. parasiticus (Horn et al., 

1995; Payne, 1998).  A. parasiticus appears to be more adapted to a soil environment, being 

prominent in peanuts, whereas A. flavus seems adapted to the aerial and foliar environment, being 

dominant in corn, cottonseed, and treenuts (Diener et al., 1987).  

 

Figure 1 Life cycle of Aspergillus flavus and A. parasiticus in agricultural ecosystems (Horn, 2007) 
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Under adverse conditions such as dry and poor nutrition, the mycelium congregates to form 

resistant structures called sclerotia (Yu et al., 2005).  Sclerotia are pigmented, compacted aggregates 

of hyphae, which resist unfavorable environmental conditions and are capable of remaining dormant 

for long periods (Wicklow et al., 1983; Cotty, 1988; Rollins et al., 1998).  The fungus overwinters 

either as mycelium in plant debris and litter on the soil, on insects or as sclerotia in the soil (Diener 

et al., 1987).  When the growth conditions are favorable the sclerotia either germinate to produce 

additional hyphae or they produce conidia (asexual spores), which can be further dispersed in the 

soil and air (Bennett et al., 1986; Cotty, 1988).  The fungus mostly exists in the form of mycelium or 

asexual conidia spores.   

 

 

Figure 2 Diagram of the pre-harvest infection of cotton, corn, and peanuts by Aspergillus flavus. Sclerotia and conidia 
produced by A. flavus growing on crop debris and in the soil serve as primary inoculum for young plants in the 
spring. Later in the growing season, conidia produced on crop debris or on infected plants provide high levels of 
secondary inoculum when environmental conditions are conducive for disease development. (Copyright Marcel 
Dekker Inc.) (Scheidegger et al., 2003)  

3.2 Phases of infection  

Aflatoxin contamination can be divided into two distinct phases with the infection of the 

developing crop in the first phase and increase in contamination after maturation in the second phase 

(Cotty, 2001).  Both phases contribute to many contamination events (Cotty et al., 2007).  Weather 
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influences the two phases of contamination differently.  During the first phase of contamination 

infections by A. flavus and A. parasiticus of susceptible crops are promoted due to wounding of 

developing crops by birds, mammals, insects, mechanically (e.g. hail) or drought stress and elevated 

temperatures (Figure 2) (Dowd, 1998; Payne, 1998; Guo et al., 2002).  Its ability to attack seeds of 

both monocots and dicots, and to infect seeds produced both above and below the ground, 

demonstrates that this fungus has evolved a battery of mechanisms to breach the host’s resistance 

(Yu et al., 2005).  Conidia of plant, insect, and human derived strains of A. flavus rapidly colonize 

leaves, kernels, and insects injured during inoculation but do not affect uninjured plant or insect 

material (St. Leger et al., 2000).   

3.3 Infection of crops  

A. flavus causes diseases of various agricultural crops such as maize, cotton, groundnuts, 

peanuts, as well as tree nuts such as Brazil nuts, pecans, pistachios, and walnuts.  In West Africa the 

most vulnerable crops are maize (Zea mays), groundnut (Arachid hypogaea), and tree nuts 

(Cardwell et al., 2006).   

 

Maize has been studied most intensively with respect to infection by primary inoculum in 

soil (Horn, 2007).  Aflatoxin contamination of corn occurs worldwide (Payne, 1992).  The 

occurrence of A. flavus in field maize was first reported in 1920 (Taubenhaus, 1920).  Aflatoxins can 

be produced in preharvest as well as in stored maize (Marsh et al., 1984; Hell et al., 2003). 

Infections of maize by A. flavus are complex and include colonization of silks as well as wounding 

of kernels by insects (Marsh et al., 1984; Brown et al., 1993).  In nature, A. flavus can directly infect 

maize kernels under drought stress and high temperatures (32 to 36°C) known to compromise the 

host’s physiological defense systems as well as cause cracks in the seed (Marsh et al., 1984; Payne 

et al., 1988; Smart et al., 1990).  Nitidulids beetles (Nitidulidae) are known as major vectors that 

carry A. flavus from colonized crop debris in soil to developing maize ears (Lussenhop et al., 1990).  

Colonized waste maize kernels and cobs that overwinter following harvest also serve as important 

sources of maize infections due to wind dispersed conidia (Olanya et al., 1997; Jaime-Garcia et al., 

2004).  The effectiveness of primary inoculum in infecting crops has been most convincingly 

demonstrated in peanuts, maize and cotton seed with biological control in which strains of A. flavus 

and A. parasiticus are applied to the soil surface in form of inoculated grain (Dorner et al., 2007; 

Atehnkeng et al., 2008a; Cotty et al., 2008).   
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3.4 Aspergillus section Flavi species 

Populations of section Flavi species are diverse and comprise individuals that differ greatly 

in phenotype, including characters such as conidial color, sclerotium production, presence of 

diffusible pigments and growth rate (Raper et al., 1965; Christensen, 1981; Horn et al., 1996).  On 

the basis of physiological and morphological criteria, A. flavus can be divided into two types of 

strains (Cotty, 1989).  The S-type isolates of A. flavus produce numerous small sclerotia (average 

diameter <400 µm) and fewer conidia than other A. flavus isolates (Figure 3) (Saito et al., 1986; 

Cotty, 1989).  The S strain was originally described as A. flavus var. parvisclerotigenus, based on a 

type strain that produced on average much greater quantities of only B aflatoxins (Cotty, 1989; Saito 

et al., 1993).  The L-type isolates of A. flavus produce larger and fewer sclerotia and is designated as 

“typical” isolates of A. flavus (Figure 4) (Saito et al., 1986).  Strains resembling the S-type but 

having different physiological criteria have been reported in different regions of the world.  These 

strains can also produce aflatoxin G and were found in Argentina, Thailand, Australia and West 

Africa (Saito et al., 1993; Geiser et al., 1998; Cotty et al., 1999; Fernandez Pinto et al., 2001).  

Recent studies designated most of these isolates to the A. minisclerotigenes (Pildain et al., 2008), 

however, the exact taxonomic affiliation of SBG commonly found in West Africa remains unclear 

(Cotty et al., 1999; Atehnkeng et al., 2008b).   

 

               

          

 

Figure 3 Macroscopic features of 
Aspergillus flavus SBG-strain on 
Czapek’s agar. 

 Figure 4 Macroscopic features of Aspergillus 
flavus L-strain on Czapek’s agar. 
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4 AFLATOXINS 

Aflatoxins are a group of structurally related toxic secondary metabolites produced mainly 

by certain strains of A. flavus and A. parasiticus.  A. flavus, in particular, is a common contaminate 

in agriculture (Bhatnagar et al., 2001; Bennett et al., 2003).  Aspergillus bombysis, Aspergillus 

ochraceoroseus, Aspergillus nomius, A. minisclerotigenes, Aspergillus pseudotamari and the strain 

SBG are also aflatoxin-producing species but occur less frequently (Goto et al., 1996; Cotty et al., 

1999; Klich et al., 2000; Peterson et al., 2001; Pildain et al., 2008).  The four major aflatoxins are 

called B1, B2, G1, and G2 based on their fluorescence under UV light (blue or green) and relative 

chromatographic mobility during thin-layer chromatography (Bennett et al., 2003). 

 

 
Figure 5 Chemical stuctures of aflatoxins B1, B2, G1, G2. (Bhatnagar et al., 1993) 

 

Aflatoxins were first identified in the early 1960s and compose a family of toxic compounds 

(Wild et al., 2002).  Aflatoxin B1 is predominant and the most toxic and potent hepato-carcinogenic 

natural compound ever characterized (Squire, 1981; Bhatnagar et al., 2001).  The conditions 

favoring formation of the aflatoxins have been described, as has their metabolism, toxicity, DNA 

adduct formation, mutagenic, and carcinogenic activity (Eaton et al., 1994).  The immuno-

suppressive properties of aflatoxin B1, particularly on cell-mediated immunity, have been 

demonstrated in various animal models (Ali et al., 1994; Neiger et al., 1994; Pestka et al., 1994).  A 

major metabolic of aflatoxin B1 is aflatoxin M1 which is usually excreted in the milk and urine of 

dairy cattle and other mammalian species that have consumed aflatoxin contaminated food or feed 

(Gourama et al., 1995). 
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4.1 Aflatoxin producing species within Aspergillus Section Flavi 

Variability in production of aflatoxins, especially among A. flavus isolates, has often been 

reported (Cotty et al., 1994a; Mahoney et al., 1996; Orum et al., 1997).  For example, only half of A. 

flavus strains produce aflatoxins, however, many of these strains  produce more than 106 µg/kg 

(Klich et al., 1988; Cotty et al., 1994b).  A. flavus only produces aflatoxins B1 and B2, whereas A. 

parasiticus and the West African SBG strains in addition produce aflatoxins G1 and G2 (Cotty et al., 

1994b; Cotty et al., 1999; Bennett et al., 2003).  The S-type A. flavus produces high levels of B-

aflatoxins, whereas the L-type produces on average less B-aflatoxins (Cotty, 1989; Cotty, 1997).  A. 

parasiticus and the SBG generally produce high levels of aflatoxins and  populations are considerably 

less diverse in aflatoxin production than the A. flavus L strain (Horn et al., 1996; Cotty et al., 1999).  

Therefore, A. parasiticus isolates are typically toxigenic.  The percent of naturally occurring A. 

parasiticus isolates not producing aflatoxins has been reported to range from 3 to 6% (Horn et al., 

1996; Vaamonde et al., 2003; Barros et al., 2006).   

4.2 Aflatoxin biosynthetic pathway 

The aflatoxin pathway (Figure 6) represents one of the best-studied pathways of fungal 

secondary metabolism (Cleveland et al., 1990; Minto et al., 1997; Payne et al., 1998; Ehrlich et al., 

2005).  Aflatoxins are polyketides with characteristic dihydro- (B1 and G1) or tetrahydro- (B2 and 

G2) bisfuran rings (Bhatnagar et al., 1992; Minto et al., 1997) (Figure 5).  The production of 

aflatoxin involves a complex biosynthetic pathway consisting of at least 25 genes (Yabe et al., 1999; 

Bhatnagar et al., 2003).  All of the identified genes related to the biosynthesis are located within a 

75kb DNA region in both A. parasiticus and A. flavus, and their relative positions in the cluster of 

both fungal species are similar (Yu et al., 2000b; Ehrlich et al., 2005).   

 

Most of genes within the biosynthetic pathway are regulated by a single Zn2Cys6-type 

transcription factor, aflR, which is encoded by one of the genes in the cluster (Yu et al., 1997).  The 

gene aflJ, adjacent to the aflR, is also involved in the regulation of transcription (Meyers et al., 

1998; Chang, 2003).  Aflatoxins are polyketide-derived secondary metabolites produced via the 

following conversion path: acetate → polyketide → anthraquinones→ xanthones → aflatoxins (Yu 

et al., 2004b). The steps of the aflatoxin pathway are summarized in Figure 6.  
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Figure 6 Clustered genes (left) and the aflatoxin biosynthetic pathway (right). The generally accepted pathway for aflatoxin 
biosynthesis is presented. The clustered genes with their new and old names are shown on the left. The vertical line 
represents the 82 kb aflatoxin biosynthetic pathway gene cluster plus sugar utilization gene cluster in A. parasiticus 
and A. flavus. The new gene names are given on the left of the vertical line and the old gene names are given on 
the right. Arrows along the vertical line indicate the direction of gene transcription. The ruler on the far left 
indicates the relative sizes of these genes in kilobase pairs. Arrows indicate the connections from the genes to the 
enzymes they encode, from the enzymes to the bioconversion steps they are involved in, and from the 
intermediates to the products in the aflatoxin bioconversion steps. Abbreviations: NOR, norsolorinic acid; AVN, 
averantin; HAVN, 5’-hydroxy-averantin; OAVN, oxoaverantin; AVNN, averufanin; AVF, averufin; VHA, 
versiconal hemiacetal acetate; VAL, versiconal; VERB, versicolorin B; VERA, versicolorin A; DMST, 
demethylsterigmatocystin; DHDMST, dihydrodemethylsterigmatocystin; ST, sterigmatocystin; DHST, 
dihydrosterigmatocystin; OMST, O-methylsterigmatocystin; DHOMST, dihydro-O-methylsterigmatocystin; 
AFB1, aflatoxin B1; AFB2, aflatoxin B2; AFG1, aflatoxin G1; and AFG2, aflatoxin G2. (Yabe et al., 1999) 
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 CHAPTER TWO 

 GENERAL MATERIAL AND METHODS  

1 CULTURE MEDIA AND REAGENTS  

 
a5ml Chloramphenicol stock solution added before autoclaving, 10ml Dichloran stock solution and 5ml Streptomycin 

stock solution added after autoclaving. 

5/2 Agar 

Ingredients Amounts

V-8Juice 50 ml

Agar-Agar 15 g

Deionized distille water 950 ml

pH 5.2

Modified Rose Bengal - Mediaa

Ingredients Amounts

Sucrose 3g
NaNO3 3 g
KH2PO4 0.75g
K2HPO4 0.25g
MgSO4*7H2O 0.5g

KCL 0.5g

NaCL 10g

Micronutrients 1ml

Rose Bengal 5m

Bacto Agar 10g

Deionized distille water 1000ml

pH 6.5
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CZ-Media (Czapeks)

Ingredients  Amounts

Sucrose 30g
NaNO3 3g
KH2PO4 0.5g
K2HPO4 0.5g
MgSO4*7H2O 0.5g

KCL 0.5g

Micronutrients 1ml

Bacto Agar 20g

Deionized distille water 1000ml

pH 6.0

AFPA-Media

Ingredients Amounts

Yeast Extract 20g

Bacto Peptone 10g

Ferric Ammonium Citrate 0.5g

Bacto Agar 20g

Deionized distille water 1000ml

pH 5.0
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Stock solutions 

 
Dichloran  
250mg Dichloran dissolved in 50ml Aceton 

QS to 250ml with 100% Ethanol 

Stored at room temperature  

 

Streptomycin 
1g Streptomycin Sulfate 

QS to 100ml with deionized distilled water and filter sterilized into sterile culture tubes. 

Stored in freezer 

 

Rose Bengal  
500mg Rose Bengal 

30ml Ethanol 

QS to 100ml with deionized distilled water  

Stored at room temperature 

 

Chloramphenicol  
5g Chloramphenicol 

QS to 500ml with 100% Ethanol 

Stored at room temperature 
 

A&M Micronutrients 

Ingredients Amounts 

Na2B4O7*10 H2O  

(NH4)6Mo7O24*4H2 

Fe2(SO4)3*6 H2O  

CuSO4*5H2O  

MNSO4*H2O 

ZnSO4*7H2O 

0.7g 

0.5g 

10g 

0.3g 

0.11g 

17.6g 

QS to 1000ml with deionized distilled water 
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2 SILICA GEL STORAGE 

The isolates were inoculated on 5/2 agar and incubated for 5 to 10 days at room temperature.  

Deionized water was used to prepare 3% skim milk (Difco dehydrated skim milk).  The milk was 

autoclaved for 12 min. and was cooled  immediately after autoclaving.  Vials (Wheaton, 12ml) were 

filled with silica gel (Silica gel, EM Science Grade H, Type II 6-12 mesh) to approximately 1/3 of 

the vial volume.  The caps were autoclaved for 20 minutes and the vials were sterilized in a 

preheated oven at 180°C for 105 minutes.  Aseptically, 700μl sterile skim milk was piped into 7ml 

sterile polystyrene tubes. Vials containing silica gel and tubes containing milk were placed on ice 

for approximately  5 minutes.  The spores were swabbed off the plate by using sterile cotton 

applicators and transferred to the 3% skim milk. The tubes were capped, shaken, vortexed 

vigorously and cooled on ice.  The spore suspensions were transferred to silica vials, vortexed, and 

cooled on ice.  The isolates on silica were stored in a refrigerator at 12°C. 

 



Chapter 3   

 14   

 CHAPTER THREE 

 DISTRIBUTION OF ASPERGILLUS SECTION FLAVI IN SOILS OF MAIZE FIELDS 

IN THREE AGROECOLOGICAL ZONES OF NIGERIA 

1 INTRODUCTION 

Crops often become contaminated by aflatoxins, toxic fungal metabolites, in warm 

production areas throughout the world (WHO, 1979).  Causal agents of these contamination 

events belong to Aspergillus section Flavi (Cotty et al., 1994b) and the species most frequently 

implicated in contamination are A. flavus and A. parasiticus (Cotty et al., 1994b).  Fungi in 

Aspergillus section Flavi exist in complex communities composed of individuals that vary widely 

in aflatoxin-producing ability (Cotty, 2006).  Individuals that do not produce aflatoxins, called 

atoxigenic, are common in A. flavus (Joffe et al., 1969; Schroeder et al., 1973; Lisker et al., 1993; 

Cotty, 1997).  Based on morphological, genetic and physiological criteria, A. flavus can be 

divided into two morphotypes, commonly called strains (Cotty, 1994b).  The most common 

strains are the S and L strains.  The S-strain produces numerous, small sclerotia (average 

diameter <400 µm) and high levels of B-aflatoxins, while the L-type strain produces fewer, larger 

sclerotia, and on average, less B-aflatoxins (Garber et al., 1997).  All A. flavus isolates produce 

only B-aflatoxins as a result of a 0.8 to 1.5kb deletion in the aflatoxin biosynthesis gene cluster 

(Ehrlich et al. 2004).  Two common aflatoxin-producers, A. parasiticus and A. nomius, produce 

both B- and G-aflatoxins (Ehrlich et al., 2003).  In the West African country of Benin, another 

less frequently identified producer of B- and G-aflatoxins is common (Saito et al., 1986; Cotty et 

al., 1999).  This unnamed taxon (Egel, et. al. 1994) has been known as strain SBG.  SBG has 

sclerotial morphology similar to the S-strain of A. flavus.  However, SBG is phylogenetically 

ancestral to both A. flavus and A. parasiticus (Egel et al., 1994; Ehrlich et al., 2003).  Isolates that 

share traits with SBG have been reported from Thailand, Argentina, and Australia (Saito et al., 

1993; Geiser et al., 1998; Cotty et al., 1999; Fernandez Pinto et al., 2001) and several species 

have recently been described with characteristics similar to SBG (Pildain et al., 2008).  However, 

the exact taxonomic affiliation of SBG remains unclear.  Two other common aflatoxin-producing 

species, A. parasiticus and A. nomius, produce both B- and G-aflatoxins (Ehrlich et al., 2003).   
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Maize is an important staple food throughout most of Africa.  In West Africa, many 

children rely exclusively on maize for nutrition after being weaned off mother’s milk (Nwokolo 

et al., 1978; Adebajo et al., 1994).  Maize is especially vulnerable to infection by mycotoxin-

producing fungi in tropical and subtropical countries (Klich, 2002).  In Nigeria official 

monitoring of the mycotoxins is sparse to non-existent, nevertheless, high concentrations of 

aflatoxin have been found in pre- and postharvest maize (Udoh et al., 2000; Bankole et al., 

2003a; Kpodo et al., 2008).  In West Africa, aflatoxin contaminated food is consumed daily by 

populations unaware that associated health risks include liver cancer and impaired child 

development (Jiang et al., 2005; Cardwell et al., 2006).  

 
Interest in the distribution of species within Aspergillus section Flavi across Nigeria has 

increased because of recent attempts to utilize isolates of A. flavus that do not produce aflatoxins 

(atoxigenic strains) to reduce aflatoxin contamination (Atehnkeng et al., 2008b).  Several 

atoxigenic strains of A. flavus are used commercially to reduce aflatoxin contamination in the 

USA (Antilla et al., 2002; Cleveland et al., 2003).  To minimize human exposure to aflatoxins, 

aflatoxigenic strains may be displaced from crop environments by applying atoxigenic strains of 

A. flavus to soil of developing crops.  Fungal communities resident in various locations differ 

widely in aflatoxin-producing potential (Schroeder et al., 1973; Lisker et al., 1993; Cotty, 1997).  

The structure and aflatoxin-producing potential of communities of Aspergillus section Flavi in 

Nigerian soil is previously unexplored.  Knowledge of variability among fungal communities and 

the impact of agroecological zones on average aflatoxin-producing potential could be critical to 

selecting native, safe, and efficacious atoxigenic strains of A. flavus for use in biological control 

of aflatoxins in Nigeria.  

 
The current study sought to assess distributions of species and strains within Aspergillus 

section Flavi across the three agroecological zones where most maize is produced in Nigeria.  

The results provide a clear picture of both how the average aflatoxin-producing potential of 

fungal communities varies across regions and which fungi have the greatest potential to 

contaminate crops in Nigeria.  During the process, a large resource of atoxigenic Aspergillus 

flavus isolates of potential value as biocontrol agents was compiled from throughout the major 

maize producing regions of Nigeria. 
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2 MATERIAL AND METHODS  

2.1 Survey sites  

Soil samples were collected from fields where maize was planted in three agroecological 

zones (Figure 7).  Nigeria is located in the tropical zone between latitude 4° and 14° N, and 

longitude 2° and 14° E.  A vast portion of Nigeria has savanna vegetation which is classified into 

3 agroecological zones: the Derived Savannah (DS); the Southern Guinea Savannah (SGS); and 

the Northern Guinea Savannah (NGS) (Cardwell et al., 2006).  Over 2 million ha of maize is 

produced in Nigeria almost entirely within these zones.  Growing periods vary among the zones 

from 151-180 days for NGS to 181-210 days for the SGS, and 211-270 days for the DS.  A 

bimodal rainfall distribution occurs in both the DS (130 to 150 cm year-1) and SGS (100 to 130 

cm year-1).  Maximum temperatures range from 25 to 35°C in the DS and from 26 to 39°C in the 

SGS.  The NGS has a unimodal rainfall distribution (90 to 100 cm year-1) with maximum 

temperatures varying from 28 to 40°C.  In general, temperature increases and rainfall decreases 

with increased latitude in this region. 

2.2 Survey methods 

A total of 11 districts in the three agroecological zones were selected for sampling:  Five 

districts from the SGS (Mokwa, Bida, Minna, Abuja, and Akwanga); Five districts from the DS 

(Ogbomosho, Lafia, Markurdi, Lokoja, and Ado-Ekiti) and one district in the NGS (Zaria) 

(Figure 7).  In each district soils were collected from five maize fields, 0.2 to 0.3 ha in size.  

Sampled fields were separated by at least 20 km.  A single composite sample (50 to 60g) was 

collected from each field by collecting multiple sub-samples at three random locations to a depth 

of 4 cm.  
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Figure 7 Map of Nigeria showing districts in three agro-ecological zones from which soil samples were collected to 
determine distribution of Aspergillus section Flavi strains and other fungal species. 

 

2.3 Strain isolation  

Soil samples were dried in a forced air oven at 48 to 50°C for 48 hours, placed inside 

plastic bags, hammered to remove clods, and homogenized by hand-mixing.  Isolates belonging 

to Aspergillus section Flavi were isolated by dilution plate technique on Modified Rose Bengal 

Agar (MRBA, Cotty, 1994a).  In 7-ml sterile polystyrene tubes 1g of soil was suspended in 3 ml 

sterile water, mixed for 20 min on a Roto-Shake Genie (Scientific Industries, Bohemia, NY) and 

plated on MRBA at appropriate dilutions to allow collection of isolates from plates with fewer 

than 10 colonies.  Plates were incubated in the dark for 3 days at 31°C.  Colonies of Aspergillus 

section Flavi were identified by colony morphology.  No more than 8 isolates were collected 

from each isolation and 17-20 isolates per sample were transferred to 5/2 agar (5% V-8 juice, and 

2% agar, pH 5.2) for further characterization.  After 5 days unilluminated at 31°C, isolates were 

classified on the basis of colony characteristics and conidial morphology (400X).  Isolates with 

abundant small sclerotia (average diameter <400 µm) were initially classified as strain SBG (Cotty 
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et al., 1999).  Isolates with smooth conidia and large sclerotia (average diameter over 400 µm) 

were classified as the L strain of A. flavus (Cotty, 1989).  A. tamarii and A. parasiticus were 

initially identified by colony and spore morphology (Klich et al., 1988) and identifications were 

confirmed by color reaction on AFPA (A. flavus and A. parasiticus agar, Pitt et al., 1983).  

Quantities of Aspergillus section Flavi in soils were calculated as colony forming units (CFU) per 

gram.  A total of 1,089 total cultures were maintained as agar plugs in 4 ml vials containing 2 ml 

sterile distilled water at 4°C.  

2.4 Aflatoxin production by isolated fungi 

Aflatoxin-producing ability was quantified for Aspergillus section Flavi isolated strains 

randomly selected from each of the collected soil samples in order to determine both the fungi 

that produce the greatest quantities of aflatoxins and the frequency of occurrence of non-aflatoxin 

producers across Nigeria.  Isolates belonged to Aspergillus flavus L-strain (492), A. parasiticus 

(7), A. tamarii (38) and to the strain SBG (65).  Isolates were fermented in Adye and Matales 

medium (A&M, Mateles et al., 1965) with 22.4 mM urea as the sole nitrogen source and adjusted 

to pH 4.7 prior to autoclaving (Cotty et al., 1999).  Vials (15 ml containing 5 ml A&M) were 

seeded with approximately 2×103 conidia suspended in 100 μl water.  After incubation (32°C, 

dark, 5 days) medium pH was measured, 3 ml acetone was added, and the contents were mixed 

by inverting.  Vials were allowed to set for 1 h to allow lyses of fungal cells and extraction of 

aflatoxins from mycelia and conidia.  Subsequently, the mycelia was collected on Whatman No. 

4 filter paper, dried in a forced air oven (48°C, 3 days), and weighed to quantify fungal biomass.  

The filtrate was diluted as appropriate, spotted along side standards of aflatoxin B1, B2, G1 and G2 

(Supelco, Bellefonte, PA, USA), and separated on thin-layer chromatography plates (silica gel 

60, 20 mm) with the development solvent diethyl ether-methanol-water (96:3:1) (Cotty, 1997).  

Aflatoxin was quantified directly on TLC plates with a scanning densitometer (Camag TLC 

Scanner 3 with winCATS 1.4.2 software).  In order to concentrate the aflatoxins potentially in 

extracts initially showing no detectable aflatoxin, these extracts were diluted with an equal 

volume of water and extracted with 3 ml methylene chloride.  Aflatoxins partitioned into the 

methylene chloride fractions which were dried and the residues dissolved in 100 μl methylene 

chloride and subjected to thin-layer chromatography according to the above procedure.  
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2.5 Data analysis 

Analyses were preformed with SAS (version 9.1.3, SAS Institute Inc., Cary, NC).  

Analysis of variance was performed on all data with the general linear model (GLM), suitable for 

unbalanced data.  The GLM of SAS uses the least squares method to fit data to a general linear 

model.  Tukey`s honestly significant difference (HSD) test was performed to compare treatment 

means at the 5% level.  Analyses for percentage values, CFU g-1, and aflatoxin concentrations 

were preformed with data transformed, using the arcsine of the square root, the natural logarithm 

(log), and the log (count +1), respectively.  Districts and the agroecological zones were treated as 

class variables.  Pearson`s correlations coefficients were generated to assess relationships 

between ecological and biological variables. 

3 RESULTS 

3.1 Distribution of Aspergillus section Flavi across Nigeria  

In all 55 soil samples collected in Nigeria, Aspergillus section Flavi was detected.  In 

total, 1,089 isolates belonging to the Aspergillus section Flavi were collected with 100 isolates 

from each district except for district Abuja with 89 (Table 1).  The A. flavus L-strain was the 

most commonly isolated member of section Flavi (85%) across the three examined 

agroecological zones with L strain incidence exceeding 57% in all districts and reaching 99% in 

Ogbomosho.  A. tamarii, with an average incidence of 6%, was found in 8 districts and in all 

three agroecological zones.  A. parasiticus made up only 1% of section Flavi isolates collected 

and only occurred in 5 fields dispersed across the DS and SGS zones.  Within A. flavus only L-

strain isolates were detected.  All isolates with sclerotial morphology similar to the S-strain 

produced both B- and G-aflatoxin and, as a result, were classified as the SBG previously described 

from Benin, West Africa (Cotty et al., 1999; Ehrlich et al., 2003).  SBG was the second most 

commonly isolated member of section Flavi (8%) and was found in 10 districts and in all three 

agroecological zones studied (Table 1).  The highest incidence of this strain was found in Zaria 

district (31%). 

 

The SBG isolates were significantly (P>0.05) more frequent in northern latitudes, while A. 

flavus was significantly more common in southern latitudes (Table 2 and 3).  Incidences of the 

SBG strain had a significant positive correlation with the longitude (r = 0.29, P = 0.03) and the 
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latitude (r = 0.36, P = 0.007), whereas incidences of the A. flavus L-strain had a significant 

negative correlation with longitude (r = -0.38, P = 0.004) and latitude (r = -0.43, P = 0.0009).  

There were significant negative correlations between the incidences of the SBG and the L-strain 

(r= -0.84, P < 0.0001) (Table 3).  Isolates of A. tamarii were significantly more frequent in the 

NGS and SGS than in the DS (Table 2) and incidence of A. tamarii was positively correlated with 

longitude  (r = 0.33, P = 0.02), and latitude (r = 0.39, P = 0.004) but negatively correlated with 

the L-strain (r = -0.49, P = 0.0002) (Table 3).  A. parasiticus was not significantly associated with 

any particular zone (Table 2).  

 

The mean CFU of Aspergillus colonies per gram soil was extremely variable among the 

districts, ranging from 55 to 3,736.  CFU counts were significantly different between the districts, 

however, not between the zones (Table 1 and 2). Only the incidences of A. tamarii had a 

significant negative correlation with the CFU g-1 (r = -0.38, P = 0.004) (Table 3).  

Although soil pH varied significantly among districts, ranging from an average of 5.9 in 

Abuja to 7.3 in Akwanga, between the zones the soil pH was not significantly different. 
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Table 1 Soil pH, proportion of Aspergillus section Flavi composed of major taxa, and colony forming units (CFU) in 
maize field soil from districts across three agroecological zones (AEZ) in Nigeriaa 

AEZb District 

A. flavus    SBG A. tamarii A. parasiticus
Number 
isolated 

Soil pH CFU g-1 soil 

(%) (%) (%) (%) Range mean range mean 

DS Ogbomosho 99 a 0 b 1 b 0 a 100 6.04 - 6.99 6.4 ab 502 -5,761  2,661 a  

 Ado-Ekiti 92 ab 1 ab 2 ab 5 a 100 5.99 - 7.3 6.5 ab 24 -668  178 abc  

 Lafia 78 ab 19 ab 3 ab 0 a 100 5.85 - 7.1 6.3 ab 40 - 3,512  900 abc  

 Makurdi 91 ab 3 ab 4 ab 2 a 100 5.13 - 7.01 6.1 ab 2 - 145  79 bc  

 Lokoja 91 ab 9 ab 0 b 0 a 100 6.1 - 6.56 6.3 ab 22 - 4,781  1,946 ab 

           

SGS Mokwa 94 ab 5 ab 0 b 1 a 100 5.99 - 7.71 7.0 ab 50 -16,661  3,736 ab 

 Bida 90 ab 3 ab 7 ab 0 a 100 6.06 - 7.91 6.8 ab 49 - 1,238  381 abc  

 Minna 87 ab 2 ab 11 a 0 a 100 5.52 - 6.59 5.9 ab 80 - 956  531 abc  

 Abuja 70 ab 12 ab 17 a 1 a 89 5.40 - 6.34 5.9 b 2 - 160  55 c  

 Akwanga 89 ab 3 ab 7 ab 1 a 100 5.66 - 8.7 7.3 a 242 - 2,411  1,131 ab 

           

NGS Zaria 57 b 31 a  12 ab 0 a 100 5.75 - 6.95 6.5 ab 92 - 958  454 abc  
 

a Percent data were arcsine square root and CFU data were log transformed prior to the analysis. Averages with a 

common letter in a column do not differ significantly by Tukey`s HSD test (α = 0.05). 

 
b NGS = Northern Guinea Savannah, SGS = Southern Guinea Savannah, and DS =Derived Savannah 
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Table 2 Variation among agroecological zones of Nigeria for soil pH, colony forming units (CFU) of Aspergillus section 
Flavi in soils, and total aflatoxin concentrationa 

AEZb 

No. 

of 

fields Soil pH CFU/g soil % SBG
c % Afc % Atc %Apc 

No. of 

tested 

isolates 

Aflatoxin B1 

(ng g-1)d 

DS 25 6.58 a 1,153 a 6.4 b 90.4 a 1.8 b 1.4 a 288 278,976 b 

SGS 25 6.33 a 1,167 a 4.7 b 86.0 a 8.7 a 0.6 a 266 133,568 c 

NGS 5 6.53 a 396 a 31.0 a 57.0 b 12.0 a 0 a 50 335,517 a 

 
a CFU g-1 and the total aflatoxin concentration were log (value +1) transformed for the analysis and percent data were 

arcsine square root transformed prior to statistical analysis. Means within a column followed by a different letter are 

significantly different (Tukey’s HSD, α = 0.05).  

 
b AEZ = agroecological zone; DS = Derived Savannah, SGS = Southern Guinea Savannah, and NGS = Northern 

Guinea Savannah. 

 
c Proportion of Aspergillus section Flavi belonging to various taxa. %SBG = unnamed Taxon; %Af = Aspergillus 

flavus; %At = A. tamarii; %Ap = A. parasiticus. 

 
d Mean aflatoxin of all aflatoxin producing taxa. 
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Table 3 Pearson`s correlationa coefficients of relationships among the quantity of Aspergillus section Flavi in soil (CFU 
g-1)b, soil pH, longitude (LON), latitude (LAT), the proportions of isolates that are either the unnamed taxon 
SBG, A. flavus (Af), A. tamarii (At), A. parasiticus (Ap), aflatoxin producing (Tox), or atoxigenic (Atox) and the 
average aflatoxin-producing abilityc 

 CFU pH LON LAT %SBG %Af %At %Ap %Tox %Atox Toxin 

CFU  1.00           

pH  0.24  1.00          

Lon -0.24 -0.08  1.00         

Lat  0.06  0.10  0.13 1.00        

%SBG  0.05 -0.10  0.29*  0.36**  1.00       

%Af  0.18  0.15 -0.38** -0.43** -0.84***  1.00      

%At -0.38** -0.13  0.33*  0.39**  0.07 -0.49**  1.00     

%Ap -0.26  0.02  0.00 -0.17 -0.11 -0.12 -0.07  1.00    

%Tox  0.04  0.00  0.11 -0.17  0.13 -0.04 -0.18  0.13  1.00   

%Atox -0.05 -0.06 -0.14 -0.01 -0.08  0.02  0.15 -0.11 -0.84***  1.00  

Toxin -0.04  0.04  0.30* -0.01  0.34** -0.27* -0.04  0.21  0.45** -0.54*** 1.00 

 
a Correlation significance P < 0.0001 = ***, 0.0001 ≥ P < 0.01 = **, 0.01 ≥ P < 0.05 = *; n = 55 

 
b CFU and the aflatoxin concentration were log (value +1) transformed prior to analyses. 

 
c Percent data were arcsine square root transformed prior to analyses.  
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3.2 Distribution of aflatoxin-producing and atoxigenic A. flavus L-strains 

Frequencies of aflatoxin production within A. flavus L-strain isolates varied among the 

districts (Figure 11) and agroecological zones of Nigeria.  Overall, 56% of the tested isolates 

showed no detectable aflatoxin and were classified as atoxigenic.  Significantly (P<0.05) greater 

proportions of A. flavus produced aflatoxins in NGS (61%) than in SGS (31%) (Figure 8).  

Incidences of atoxigenic and toxigenic A. flavus isolates were nearly balanced in the DS zone.  

Atoxigenic isolates made up significantly (P<0.05) greater proportions of the A. flavus 

communities than toxigenic in the districts Bida, Minna, Abuja, and Ado-Ekiti.  In Lafia, 

Makurdi, and Zaria aflatoxin producers were significantly (P<0.05) more common than 

atoxigenics (Figure 9).  In all the remaining districts, no significant differences were observed 

between incidences of toxigenic and atoxigenic strains.  Across districts, the lowest and highest 

incidences of aflatoxin producers were observed in Bida (21%) and Lafia (65%), respectively 

(Figure 9). 
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Figure 8 Distribution of aflatoxin-producing and atoxigenic isolates of the Aspergillus flavus L-strain among three 
agroecological zones in Nigeria. For each bar, vertical lines represent the standard error of the mean. DS = 
Derived Savannah, SGS = Southern Guinea Savannah, and NGS = Northern Guinea Savannah. Means not 
sharing a common letter are significantly different according to Tukey’s HSD test (α = 0.05) 
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Figure 9 Incidence of aflatoxin-producing and atoxigenic isolates of the Aspergillus flavus L-strain isolated from soil 
samples of maize growing locations in Nigeria. Values shown are based on a mean of five locations within a 
district. Incidence values are based on the following numbers of isolates for each district Ogbomosho (56), 
Ado-Ekiti (50), Lafia (43), Makurdi (45), Lokoja (53), Mokwa (49), Bida (48), Minna (40), Abuja (36), 
Akwanga (46), and Zaria (26). For each bar, vertical lines represent the standard errors of the mean. 

3.3 Aflatoxin Quantification  

Aflatoxin-producing potential varied among isolates, species, districts, and agroecological 

zones (Table 4).  All tested A. tamarii isolates produced no detectable aflatoxins.  A. flavus 

isolates produced only B-aflatoxins and averaged 4.25×104 ng g-1 total aflatoxins (ranged = 0 to 

2.46×106 ng g-1).  The strain SBG averaged 1.56×106 ng g-1 total aflatoxins (ranged = 1.69×103 ng 

g-1 to 6.07×106 ng g-1).  All isolates of both SBG and A. parasiticus produced both B- and G-

aflatoxins.  Isolates of A. parasiticus averaged 1.18×106 ng g-1 total aflatoxin (ranged = 9.04×104 

ng g-1 to 2.72×106 ng g-1).  

 
SBG made the greatest contribution to the aflatoxin-producing potential of fungal 

communities within seven districts (Figure 10).  A. flavus contributed the most to the average 

aflatoxin-producing potential in fungal communities resident in soils in the districts Ogbomosho, 

Makurdi, and Akwanga (Figure 10).  A. parasiticus was the greatest contributor to the average 

aflatoxin-producing potential only in Ado-Ekiti (Figure 10).  According to Pearson`s correlation 

analysis, there was a significant positive correlation between the average aflatoxin-producing 

potential of fungal communities and percentage SBG (r = 0.34, P = 0.01) while there was a 
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negative significant correlation with A. flavus (r = -0.26, P = 0.05) (Table 3).  There was also a 

weak significant correlation between the district average aflatoxin-producing potential and 

latitude (r = 0.3, P = 0.02). 

 
The average aflatoxin-producing potential varied widely among the districts.  The highest 

average aflatoxin concentration was in the district of Lafia (6.94×105 ng g-1), while the least was 

in the district Ogbomosho (9.00×103 ng g-1) (Table 4).  Average aflatoxin-producing potential of 

Aspergillus section Flavi isolates resident in the NGS (3.36×105 ng g-1) was significantly greater 

than for isolates resident in the SGS (1.33×105 ng g-1), which was significantly lower than those 

in DS (2.79×105 ng g-1).  

 
Although A. flavus isolates in the NGS (average = 6.20×104 ng g-1) produced significantly 

more aflatoxin than isolates in the SGS (average = 1.90×104 ng g-1), the SBG isolates produced 

significantly less aflatoxin in the NGS (average = 8.88×105 ng g-1) than in the DS (average = 

1.92×106 ng g-1) (Table 4).  Of all aflatoxin producing A. flavus isolates, 62% produced more 

than 1,000 ng g-1 aflatoxin B1 (Figure 11). 

DistrictsOgb
om

os
ho

Ado
-E

kit
i

La
fia

Mak
ur

di

Lo
ko

ja

Mok
wa

Bida
Minn

a
Abu

ja

Akw
an

ga
Za

ria
 

Af
la

to
xi

n 
pr

od
uc

in
g-

po
te

nt
ia

l (
%

)

0

20

40

60

80

100

120

SBG
L 
P 

 

Figure 10 Contribution of Aspergillus species and strains to the average aflatoxin-producing potential of Aspergillus 
section Flavi communities resident in the 11 sampled Nigerian districts. Proportion of average aflatoxin-
producing potential attributed to the species and strains = (Sum aflatoxin B1

species or strain) / (Sum aflatoxin B1
all 

isolates) * 100 
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Table 4 Mean aflatoxin quantities produced by three aflatoxin-producing taxa across three agroecological zones of 
Nigeria in liquid fermentation 

      Aflatoxin (µg g-1)c 

      A. flavus unnamed taxon SBG A. parasiticus 
average 
toxind 

AEZa Districts Nb    B1 Nb B1 G1 Nb B1 G1 B1 

DS Ogbomosho 56 mean  9 abcd 0 -- -- -- -- -- 9 dc 

      range 0 - 175   -- --   -- -- 0 - 175 

  Ado-Ekiti 50 mean  16 bcd 1 31 c 21 b 3 532 559 ab 43 dc 

      range 0 - 236   -- --   405 - 704 393 – 805 0 - 704 

  Lafia 43 mean  92 a 18 2,169 a 2,261 a 0 -- -- 694 a 

      range 0 - 1,086   1,043 - 6,071 352 - 5,084   -- -- 0 - 6,071 

  Makurdi 44 mean  26 ab 3 1,997 a 2,736 a 2 2,092 3,450 a 336 abc 

      range 0 - 614   1,637 - 2,676 1,919 - 3,944 1,467 - 2,717 1,942 - 4,957 0 - 6131 

  Lokoja 53 mean  85 abcd 8 1,551 a 2,158 a 0 -- -- 278 abc 

      range 0 - 2,339   782 - 2,051 1,263 - 2,952  --  -- 0 - 2,339 

  total 246 mean  45 ab 30 1,915 a 2,102 a 5 1,156 1,715 a 279 b 

      range 0 - 2,339   30 - 6,071 21 - 5,084   405 - 2,717 393 - 4,957 0 - 6,071 

SGS Mokwa 49 mean  21 abc 4 1,751 a 1,751 ab 0 -- -- 151 abc 

      range 0 - 335   381 - 3,768 198 - 3,258   -- -- 0 - 3768 

  Bida 48 mean  4 d 2 178 abc 230 ab 0 -- -- 10 d 

      range 0 - 65   27 - 329 58 -403   -- -- 0 - 329 

  Minna 40 mean  1 d 1 817 ab 1,746 a 0 -- -- 17 d 

      range 0 - 20   -- --   -- -- 0 – 817 

  Abuja 36 mean  6 dc 9 2,293 a 2,434 a 1 90 99 b 403 bcd 

      range 0 - 152   1,144 - 3,425 494 - 4,108   -- -- 0 - 3,425 

  Akwanga 46 mean  60 abcd 2 49 c 99 b 1 2,369 1,152 ab 96 dc 

      range 0 – 2,456   2 -96 2 - 197    --  -- 0 - 2,456 

  total 219 mean  19 b 18 1,606 ab 1,669 ab 2 1,229 626 a  133 c 

      range 0 - 2,456   2 - 3,768 2 - 4,108   90 - 2,369 99 - 1,152 0 -  3,3768 

NGS Zaria 27 mean  62 abc 17 888 abc  682 ab 0 -- -- 336 ab 

      range 0 - 1,343   2 - 1,880 1 - 1,916    --  -- 0 - 1,880 

  total 27 mean  62 a 17 888 b 682 b -- -- -- 336 a 

      range 0 - 1,343   2 - 1,880 1 - 1,916    --  -- 0 - 1,880 
a AEZ = agroecological zone; DS = Derived Savannah, SGS = Southern Guinea Savannah, and NGS = Northern Guinea Savannah. 
b Number of isolates. 
c Aflatoxin concentration values are in parts per million and were log (value +1) transformed prior to statistical analysis. Averages followed by the 

same letter in a column are not significantly different by Tukey`s HSD test (α = 0.05). 
d Mean aflatoxin of all three taxa. 
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Figure 11 Variation among districts in the percent of Aspergillus flavus isolates that produce various quantities of 
aflatoxin B1 (ng g-1 fungal biomass) in culture. ND = none detected. 
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4 DISCUSSION 

 

A. flavus is the predominant member of Aspergillus section Flavi in cultivated maize 

fields across the three agroecological zones where most maize is produced in Nigeria (Table 1).  

A. flavus has similar dominance in other important maize producing regions of both West and 

East Africa (Cotty, 1997; Cardwell et al., 2002).  Two species that produce G aflatoxins, A. 

parasiticus and the SBG, were relatively common in some districts (Table 1).  Isolates from 

Nigeria of both species produced high concentrations of both B- and G-aflatoxins (Table 4) and, 

as a result, in fields where these species were detected, they contribute substantially to the 

average aflatoxin-producing potential of resident fungal communities.  A. parasiticus was 

restricted to a much smaller proportion of fields than SBG.  Therefore, it is more likely that 

contamination events in Nigeria involving G-aflatoxins are caused by SBG, a genetically distinct 

West African species (Ehrlich, et al. 2003, 2005), than by A. parasiticus.  As in other portions of 

the world (Cotty, 1997; Ehrlich, et. al. 2007), in Nigeria A. tamarii produces no aflatoxins, and is 

widely distributed. 

 

The average aflatoxin-producing potential of Aspergillus section Flavi communities 

varies greatly across regions.  For example, in both Argentina (Vaamonde et al., 2003) and Iran 

(Razzaghi-Abyaneh et al., 2006) less than 30% of the A. flavus produce aflatoxins, while in the 

southern USA, the majority of A. flavus isolates are aflatoxin producers (Cotty, 1997; Horn et al., 

1999).  The average aflatoxin-producing potential of section Flavi communities appears to be 

change with latitude.  Cotty (1997) reported a negative correlation between latitude and A. flavus 

toxigenicity and Horn and Dorner (1999) observed greater proportions of L-strain isolates 

producing aflatoxins in southern than in northern peanut growing regions.  In Nigeria, the percent 

A. flavus L-strain isolates that produced aflatoxins varied with geography and climate (Figure 8 

and 9).  Incidences of atoxigenic A. flavus varied widely among districts and agroecological 

zones with most A. flavus making aflatoxins in the warm, dry NGS zone and only 33% producing 

aflatoxins the SGS (Figure 8).  However, in previous studies unacceptable aflatoxin 

concentrations were found in SGS maize (Sétamou et al., 1997; Hell et al., 2003; Atehnkeng et 

al., 2008b).  Taken together, these observations demonstrate how aflatoxin levels unacceptable 

for human consumption may occur even in areas with relatively low frequencies of aflatoxin 
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producers.  In the current study, 62% of aflatoxin-producing L-strain isolates produced more than 

1,000 µg kg-1 aflatoxin B1.  This combined with high incidences allows the L-strain to be the 

largest contributor to the average aflatoxin-producing ability of fungal communities in three 

districts (Figure 10) and a potentially important causal agent of contamination in Nigeria.  

 

Atoxigenic strains of A. flavus are common in crop environments (Joffe, 1969; Lisker et 

al., 1993; Cotty, 1997).  Atoxigenic strains of A. flavus and/or A. parasiticus are used as 

biopesticides directed at minimizing crop contamination with aflatoxins (Cotty, 1994b; Dorner et 

al., 1998).  Effective biological control necessitates high ratios of atoxigenic to toxigenic strains 

(Dorner et al., 2007).  In the present study high incidences of native atoxigenic A. flavus strains 

were found in the districts Ogbomosho, Ado-Ekiti in the DS zone, and Bida, Minna, Abuja, and 

Akwanga in the SGS zone.  These native atoxigenic strains are adapted to maize production areas 

in Nigeria and, as such, may have greater value than exotic strains as biocontrol agents for 

Nigeria. 

 

Aspergillus section Flavi was resident in all sampled maize fields and quantities of section 

Flavi were higher on average in Nigeria than in neighbouring Benin (Cardwell et al., 2002).  

Densities of section Flavi in soil reflect fungal growth on crop associated organic matter.  Maize 

cobs and other crop debris harbour section Flavi for at least 3 years after harvest (Jaime-Garcia et 

al., 2004).  Following the aflatoxin epidemic year of 1988 in Iowa, high soil densities (1,231 

CFU g-1) of A. flavus were observed in harvested maize fields (Shearer et al., 1992).  In the 

present study, similar densities (1,150 CFU g-1) occurred in the SGS and DS.  These high 

concentrations of propagules of aflatoxin-producing fungi may reflect frequent and wide spread 

aflatoxin contamination of susceptible crops in Nigeria.  

 

The West African strain SBG produces numerous small sclerotia similar to the S-strain of 

A. flavus.  The S-strain is resident in several regions including North America (Cotty, 1997), 

Thailand (Ehrlich et al., 2007b), Argentina (Nesci et al., 2002), Italy (Giorni et al., 2007), and 

Kenya (Probst et al., 2007).  However, SBG produces both B- and G-aflatoxins whereas the S-

strain produces only B-aflatoxins and molecular phylogenetics suggest that SBG isolates represent 

a species distinct from both A. flavus and A. parasiticus (Egel et al., 1994; Ehrlich et al., 2003).  

During the current study, over 200 section Flavi isolates that produced numerous small sclerotia 
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were examined for aflatoxin production.  All of these isolates produced both B and G aflatoxins 

indicating an absence of the A. flavus S-strain.  Other studies in West Africa also failed to detect 

the A. flavus S-strain in either maize or soil (Cotty et al., 1999; Atehnkeng et al., 2008b).  

Therefore, in contrast to Kenya where the S-strain is the primary cause of maize aflatoxin 

contamination (Probst et al., 2007), the S-strain is either absent from West Africa or occurs at a 

very low frequency.  Factors causing the S-strain of A. flavus to be dominant in portions of East 

Africa but undetectable in West Africa are not known.  As in Benin (Cotty et al., 1999; Cardwell 

et al., 2002), SBG isolates from Nigeria consistently produced greater quantities of aflatoxins than 

sympatric A. flavus L-strain isolates.  This high aflatoxin-producing ability makes the SBG a 

potentially important cause of contamination, even where it composes only a small proportion of 

section Flavi communities.  Practices that might facilitate establishment of either the SBG in other 

portions of Africa or the S-strain in West Africa should be discouraged.  

 

Overall, SBG isolates were less common than A. flavus.  Nevertheless, SBG distribution in 

Nigeria was similar to that in Benin (Cardwell et al., 2002).  SBG was less common in the south 

(SGS and DS) than in the north (NGS).  Warm dry climates favoured SBG over other members of 

section Flavi.  SBG isolates were most prevalent in the agroecological zones bordering the Sahara 

desert, where mean temperatures are high (Cardwell et al., 2002).  In North America, the 

similarly adapted S-strain of A. flavus is also most common in dry, hot regions (Cotty, 1989; 

Cotty, 1997; Jaime-Garcia et al., 2006).  The fungi causing most crop contamination are not 

necessarily the best adapted to infection (Mellon et al., 2004).  Isolates that infect at relatively 

low frequencies but produce large quantities of aflatoxin may cause more contamination than 

more frequent isolates that produce little aflatoxin.  Aflatoxin-producing potential and plant 

virulence are not correlated and isolates that produce high levels of aflatoxins may vary widely in 

virulence (Cotty, 1989).  In the current study the SBG isolates made the greatest contribution to 

the average aflatoxin-producing potential of fungal communities resident in certain soils.  

Relative virulence of SBG isolates on maize, peanut, and other susceptible crops needs to be 

examined in order to fully evaluate the risk posed by this potent aflatoxin producer.  

 

SBG isolates produced very high levels of both B- and G-aflatoxins and incidences of the 

SBG were correlated with the average toxigenicity of fungal communities.  A similar relationship 

exists between incidences of the S-strain of A. flavus and average toxigenicity in North America 
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(Cotty, 1997).  Even low frequencies of crop infection by the SBG may adversely impact crop 

aflatoxin content.  Therefore the SBG is an important target for current efforts to control aflatoxin 

in West Africa (Atehnkeng, 2008). 

 

Crop production practices vary across agroecological zones (Hell et al., 2000; Cardwell et 

al., 2006) and crop rotations influence the composition of fungal communities (Jaime-Garcia et 

al., 2006).  SBG incidence varies across agroecological zones (Table 2) and this variation may be 

caused in part by influences of crop rotation. Studies are needed to investigate which West 

African crops favour increased incidences of SBG. 

 

Atoxigenic strains of A. flavus and A. parasiticus have been used to minimize aflatoxin 

contamination in peanuts (Dorner et al., 1992), maize (Brown et al., 1991) and cotton (Cotty, 

1994b).  Results of the current study combined with a recently published study on Nigerian 

atoxigenic strains (Atehnkeng et al. 2008) suggest that atoxigenic strains of A. flavus could be 

useful in reducing aflatoxin contamination in the three most important maize production districts 

of Nigeria.  
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 CHAPTER FOUR 

 MOLECULAR CHARACTERIZATION OF ATOXIGENIC STRAINS OF ASPERGILLUS 

FLAVUS FOR BIOLOGICAL CONTROL OF AFLATOXINS IN NIGERIA 

1 INTRODUCTION 

Aflatoxins are a group of toxic secondary metabolites produced by several species in 

Aspergillus section Flavi (Payne et al., 1998).  Aspergillus flavus isolates produce B-aflatoxins, 

while A. parasiticus, A. nomius, and the unnamed taxon SBG from West Africa produce both B- and 

G- aflatoxins (Diener et al., 1987; Kurtzman et al., 1987; Cotty et al., 1999).  The more than twenty 

genes involved in aflatoxin biosynthesis are clustered in a 65 to 70 kb DNA region (Yu et al., 1995; 

Yu et al., 2004a; Yu et al., 2004b). 

  

A. flavus is the most common causal agent of aflatoxin contamination in nature (Klich, 

2007).  Aflatoxins are highly carcinogenic and can contaminate food and feeds resulting in serious 

human and domestic animal health problems (Williams et al., 2004).  Regulations limiting the 

concentrations of aflatoxins allowed in foods and feeds exist in most countries (van Egmond et al., 

2007).  Nevertheless, there are many regions, especially in Africa, where the products of small-scale 

farms move from field to mouth without any opportunity for practical monitoring of aflatoxin 

content.  This can result in severe effects on human populations as with the recent outbreak of acute 

aflatoxicosis associated with aflatoxin contaminated maize in Kenya that resulted in hundreds of 

human mortalities (Lewis et al., 2005).  In Nigeria, official monitoring of mycotoxin levels is rare, 

but high concentrations of aflatoxin in pre and postharvest maize have been reported (Adebajo et 

al., 1994; Udoh et al., 2000; Bankole et al., 2003b; Atehnkeng et al., 2008b).  

  

A. flavus is very widely distributed with greater quantities of the fungus occurring in warm 

climates (Cotty et al., 1994b; Boyd et al., 1998).  Gene flow within A. flavus is limited by a 

vegetative compatibility system (Papa, 1986; Bayman et al., 1991) that delineates the species into 

numerous genetic groups called Vegetative Compatibility Groups (VCGs).  A. flavus VCGs are 
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clonal lineages (Ehrlich and Cotty, 2004) that exist in complex communities composed of many 

(VCGs).  VCGs vary in many characteristics including aflatoxin producing ability.  

 

Populations of Aspergillus flavus in an individual agricultural field contain isolates of many 

VCGs (Cotty et al., 1994b; Ehrlich et al., 2007a).  VCGs with aflatoxin-producing potential are 

known to vary less among isolates within a VCG than among isolates from different VCGs 

(Kenneth et al., 2004).  Communities resident in different fields, areas, and regions may vary widely 

in average aflatoxin-producing ability (Schroeder et al., 1973; Lisker et al., 1993; Cotty et al., 

1997).  Isolates and VCGs that do not produces aflatoxin, called atoxigenic, are common within A. 

flavus communities (Joffe et al., 1969; Schroeder et al., 1973; Lisker et al., 1993; Cotty et al., 1997).  

Surveys of A. flavus isolates from various geographic regions have revealed differences in the 

proportions of isolates that produce low, medium, and high amounts of aflatoxins (Cotty, 1997; 

Cotty et al., 1999; Horn et al., 1999).  In Argentina (Vaamonde et al., 2003) and Iran (Razzaghi-

Abyaneh et al., 2006) less than 30% of the A. flavus isolates were capable of producing aflatoxin 

whereas in Nigeria the number was much higher, exceeding 50% (Donner et al., 2008).  In the 

southern USA most A. flavus isolates produce aflatoxin (Cotty, 1997; Horn et al., 1999).  

 

In the USA, there are currently several atoxigenic strains of A. flavus used to reduce crop 

aflatoxin contamination through competitive exclusion of aflatoxin producers (Dorner, 2004; Cotty, 

2006; Cotty et al., 2008).  One of these strains, AF36, has successfully suppressed toxigenic strains 

of A. flavus on cottonseed in Arizona and Texas since 1999 (Antilla et al., 2002).  Recently, efforts 

began to develop similar technology for use in Africa (Atehnkeng et al., 2008a; Hell et al., 2008). 

 

The loss of aflatoxin production by members of Aspergillus section Flavi is still not well 

understood.  For example, neither A. sojae nor A. oryzae produce aflatoxins (Wei et al., 1986), even 

though homologues of several aflatoxin biosynthetic genes have been found in them (Chang et al., 

1995; Klich et al., 1995; Yu et al., 2000a).  Both species have been used for centuries in the food 

fermentation industry and are generally considered safe (Machida et al., 2005; Chang et al., 2007).  

Although A. oryzae strains have the aflatoxin biosynthetic cluster, it is not functional.  A. oryzae 

apparently is a domesticated form of A. flavus  originating from an ancestral atoxigenic A. flavus 

(Wicklow, 1984; Kurtzman et al., 1986; Chang et al., 2006).  The aflatoxin biosynthesis genes in A. 

oryzae contain deletions, frameshift mutations, and base pair substitutions that explain the lack of 
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aflatoxin production (Tominaga et al., 2006).  Deletion of portions of the aflatoxin biosynthetic 

gene cluster within atoxigenic A flavus isolates is not rare (Chang et al. 2005) and strains of A. 

flavus with large deletions in the aflatoxin gene cluster have been used to study the genetics of 

aflatoxin biosynthesis for over a decade (Prieto et al., 1996).  A single nucleotide polymorphism 

(SNP) in a polyketide synthase gene results in atoxigenicity in the biocontrol strain AF36 (Ehrlich 

et al., 2004; Ehrlich et al., 2007a).  Nevertheless, molecular mechanisms responsible for loss of 

aflatoxin production are diverse and for most atoxigenic A. flavus specific genetic lesions resulting 

in atoxigenicity are not known.  

  

In the current study, in order to provide a basis for understanding atoxigenicity in Nigeria, 

aflatoxin biosynthetic gene clusters of 21 atoxigenic A. flavus isolates belonging to 18 VCGs were 

compared with several aflatoxin producing A. flavus and with atoxigenic strain AF36, currently 

used to manage aflatoxins in North America.  To further assess the diversity of atoxigenic strains 

available for biocontrol in Nigeria, relationships among the examined isolates were assessed with 

phylogenetic analysis.  During this process, molecular characteristics were discovered that are 

useful both for monitoring the stability of the atoxigenic phenotype and for specifically identifying 

each of these candidate’s biocontrol strains.  
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2 MATERIAL AND METHODS  

2.1 Isolates, Vegetative Compatibility, and Aflatoxin Production 

Aspergillus flavus isolates from Nigeria used in this study are listed in Table 5.  Isolates 

originate from maize samples collected in several districts of Nigeria by the International Institute 

of Tropical Agriculture (IITA) (Atehnkeng et al., 2008b).  Fungi were isolated from the maize by 

dilution plate technique on modified rose Bengal Agar (MRBA, Cotty, 1994a).  All isolates belong 

to the L-strain morphotype of A. flavus, which produces sclerotia that are >400 µm in diameter 

(Cotty, 1989).  The commercial biocontrol agent from the United States, Aspergillus flavus AF36 

(ATCC96045) was used as a reference culture throughout the study.  Methods for collection, strain 

identification, and vegetative compatibility group (VCG) characterization have been described 

(Bayman et al., 1991; Bayman et al., 1993; Cotty, 1994a; Cotty, 1997).   

 

Aflatoxin was also quantified as previously described by Cotty (1997).  250 ml flasks 

containing 70 ml of a chemically defined medium with ammonium as the sole nitrogen source were 

inoculated with isolates belonging to Aspergillus section Flavi.  After 5 days incubation, 50 ml 

aceton was added to lyse the mycelium and solubilize the aflatoxins.  The cultures were filtered and 

the aflatoxins were partitioned into methylene chloride.  Extracts negative for aflatoxin content 

were evaporated to dryness, dissolved in 60% methanol and loaded onto a column with 

immunoaffinity to aflatoxins (Aflatest P column, VICAM, Watertown, MA, USA).  Aflatoxins 

were eluted from the column with methanol and the eluate was concentrated and spotted onto TLC 

plates and developed and quantified as previously described by Cotty and Cardwell (1999).  The 

column clean up allowed detection of 0.5 ppb aflatoxin B1/gram mycelium.   
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Table 5 Aspergillus flavus strains used in the study 

Isolate VCG Geographic origin Aflatoxin Production

AV3279a B Lafia No 

AV3304a D Lafia No 

AV2216a E Abuja No 

AV0106 F Ogbomosho Yes 

AV0222a G Ogbomosho No 

AV0173 H Ogbomosho No 

AV0165 I Ogbomosho No 

AV0452 L Ogbomosho No 

AV3108a M Lafia No 

AV3150 N Lafia No 

AV3228a O Lafia Yes 

AV3224 Q Lafia No 

AV3303a R Lafia No 

AV3306 S Lafia No 

AV0205 T Ogbomosho No 

AV2757a U Akwanga No 

AV3058a V Akwanga No 

AV4216a W Lokoja No 

AV16127a X Kaduna No 

AV3020a Y Akwanga No 

AV0216 NAc Ogbomosho No 

AV0230 NAc Ogbomosho No 

AV3193 NAc Lafia No 

AF36b YV36 Arizona No 
 

a Isolates from Nigeria used in a previous study by Atehnkeng et. al. (2008) 

b AF36 (ATCC 96045) a strain that produces no aflatoxin.  

c.NA = Not available. They could not be assigned to any VCG because of incompatibility. 
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2.2 DNA isolation 

Fungi were cultured in 70 ml Czapek-Dox Broth (Difco) in 250ml flasks agitated 150 rpm at 

32°C for 48-72 h.  Mycelia were collected by vacuum filtration, ground to fine powder in liquid 

nitrogen and stored at -80°C.  In 1.5 ml tubes 200 mg of mycelial powder was resuspended in 750 

µl spermidine-SDS buffer (4 mM spermidine, 10 mM EDTA, 0.1 M NaCl, 0.5% SDS, 10 mM β-

mercaptoethanol, 40 mM Tris-HCl pH 8.0).  After adding an equal volume of Phenol, the 

suspension was centrifuged at 14,000 rpm for 15 min and the mycelial lysates were recovered and 

mixed with an equal volume of phenol/chloroform (1:1) and recentrifuged for 15 min at 14,000 

rpm.  The supernatant was mixed with an equal volume of chloroform/isoamyl alcohol (24:1) and 

centrifuged.  DNA was recovered from the aqueous phase by mixing a 0.1 volume of 3M sodium 

acetate pH 5.5 and adding 2 volumes of 100% ethanol.  The DNA was pelleted by centrifugation, 

washed with 70% ethanol, air-dried and redissolved in TE buffer (20 mM Tris-HCl pH 7.5, 0.1 mM 

EDTA).  Purity and average fragment size were visualized with SYBR Gold after 1.2% agarose gel 

electrophoresis.  DNA concentration was measured with a spectrophotometer (model ND-1000, 

NanoDrop).  From some of the samples, DNA was isolated using the FastDNA SPIN Kit and the 

FastPrep Instrument according to manufacturer`s instructions (Qbiogene, Inc., CA).  

2.3 PCR conditions  

Oligonucleotide primer sets (Table 6) targeting PCR products of 0.3 to 1.2 kb were derived 

from aflatoxin biosynthetic pathway genes of A. flavus AF36 (AY 510455), AF13 (AY 510451) and 

AF70 (AY 510453).  Some primers sets were based on Chang et al. (2005) and Ehrlich et al. (2005).  

Primer sets were also designed to amplify portions of the pecA and taka amylase genes: 

pecA, 5’-GCTTAGCCTAGACTCAAG; 5’-AAGAGGAGTCCAGCTTGTG;  

taka amylase, 5’-TATCCAGGGAATGGGCTT, 5’-TTAGAGGTCGTCCATGCTGCC 

PCR used 5 ng genomic DNA, 50 pmol of forward and reverse oligonucleotides, and the 

HotMaster PCR kit (Eppendorf, Westbury, NY).  Annealing temperatures were optimized for each 

primer set and varied from 48-60° C.  The 50 µl PCR reactions were preformed with a MyCycler 

thermocycler (Bio-Rad Laboratories) with typical conditions 5 min at 95° C followed by 38 cycles 

at 95° C for 30 sec, 55° C for 20 sec, 72° C for 30 sec and 10 min at 72° C.  Amplicons were 

visualized with SYBR Gold after 1.2% agarose gel electrophoresis.  Sequencing was preformed by 

The Genomic Analysis and Technology Core Facility (GATC) at the University of Arizona, 

Tucson.  
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Table 6 PCR primer sets derived from aflatoxin biosynthetic genes and flanking regionsa  

Designation Forward primer   Reverse primer 

C2* TCGCCTTGTTCTCGCTATAC  ACACCTGATAGCGAGAGTTC 

norB GTGAGGGATAGCAATAAGTGT  TCCTGGATTTCCGCATAC 

norB-cypA** GTGCCCAGCARCTTGGTCCA  AGGACTTGATGATTCCTGCTC 

aflT* ATGACATGCTAATCGACGAG  AGGCGCATGCTACGGATC 

pksA GCTGGGATTCTGCATGGGTT  CCATCTGAGGCATCGCACA 

fasA(hexA)* TCCTATCCAGTCCACCTCGTA  CACATCTTTGTCTTGCCCGC 

afIR GGAAACAAGTCTTTTCTGG  CAGAGCGTGTGGTGGTTGAT 

aflJ* CTTCAACAACGACCCAAGGTT  AGATGAGATACACTGCCGCA 

estA* CGATGGGACTGACGGTGATT  ACCACGCCGCTGACTTTAT 

norA GGAGCACCTCAAGGAGAACA  GGAACCTTGCGTCGATTCTA 

ver-1 AGCCAAAGTCGTGGTGAACT  CCATCCACCCCAATGATCT 

omtA* CAGGATATCATTGTGGACGG  CTCCTCTACCAGTGGCTTCG 

verA* CCGCAACACCACAAGTAGCA  AAACGCTCTCCAGGCACCTT 

avnA* GCGATAGAACTGACAAAGGCA  GAATGAGTCTCCAAAGGCGAG 

verB CCCAATACAGTTCCGCAGTC  AGTGAAGAGTGCCGACGATAA 

avfA* ATTCAAATCCTCGTTCGGTCG  TAGCCCGTTGGTTGTGTTCC 

omtB TTTACTCGGATTGGGATGTGGT  CGCAGTCCTTGTTAGAGGTGAT 

vbs* AACGAGCAGCGTAAGGGTCT  TCAGCCAGAGCATACACAGTG 

cypX* GGAGCCTACCATTCGCAACA  GGCTTTGACGAACAGATTCCG 

ordB* GCTGCTACTGGAATGAAGACC  ATGCGACGACAACCAAACG 

hypA* CGCAAGACGGCAGAGATACT  GCTCCTTCAGTTCCACACCA 

glcA* AGACACAGTCATCGCCTGTT  GGTGCGAATAGGTGCAGGTA 

 

*Primer sets based on Chang et al. (2005) 

**Primer set based on Ehrlich et al. (2004)  
a Names in bold indicate sequenced genes.  
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2.4 Phylogenetic analysis 

In addition to those sequences produced during the current study, phylogenetic analyses 

included sequences from Genbank for several aflatoxin-producing fungi including A. flavus L strain 

isolates AF13 (ATCC 96044) and NRRL3357, A. flavus S strain isolate AF70 (ATCC MYA384), 

and A. parasiticus isolate NRRL5862 (AY371490).  DNA sequences were aligned with DNAMAN 

(Lynnon Biosoft, Vandereuil, Canada).   

 

Aligned sequences of the combined gene datasets were subjected to phylogenetic analyses 

with PAUP* Version 4.0b10 for Microsoft Windows (Swofford, 2002).  Parsimony trees were 

obtained using heuristic search methods with stepwise sequence addition and the tree-bisection-

reconnection (TBR) branch-swapping algorithm.  All sites were equally weighted and gaps treated 

as missing characters.  Bootstrap analyses were based on 1,000 replicates.  

2.5 Analysis of synonymous and non-synonymous substitutions 

Sequences were aligned to codon-aligned nucleotide sequences of A. flavus AF13 from 

Genbank.  Codon-aligned nucleotide sequences of A. flavus NRRL3357 were used to compute 

synonymous (silent) and non-synonymous (amino acid-altering) nucleotide substitutions.  Minor 

manual modifications were made to the DNA alignments to optimize alignments and ensure indels 

did not erroneously split codons.  Estimates of synonymous and non-synonymous substitution rates 

based on Nei and Gojobori 1986 and incorporating the statistic of Ota and Nei 1994 were made 

with SNAP (Korber, 2000).  

 

The previously described pyrosequencing (Biotage, Uppsala, Sweden) method (Das, et al, 

2008) was used to assess the distribution among the examined isolates of the single nucleotide 

polymorphisms in pksA responsible for atoxigenicity in A. flavus AF36 (Ehrlich et al., 2004).  

2.6 Data analysis 

Analyses were performed with SAS (version 9.1.3, SAS Institute Inc., Cary, NC).  Analysis 

of variance was performed on all data with the general linear model (GLM) suitable for unbalanced 

data.  The GLM of SAS uses the least squares method to fit data to a general linear model.  Tukey`s 

honestly significant difference (HSD) test was performed to compare treatment means at the 5% 

level.  
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3 RESULTS 

3.1 Aflatoxin production and vegetative compatibility groups  

The 21 atoxigenic strains previously selected for use in biocontrol of aflatoxin 

contamination of maize (Atehnkeng et al., 2008b) were confirmed to be atoxigenic (limit of 

detection 0.5 aflatoxin B1/gram mycelium) (Table 5).  The two aflatoxin producing isolates from 

West Africa produced widely varying aflatoxin concentrations from 560.3 ng g-1 aflatoxin B for 

AV0106 to 23,068.5 ng g-1 for AV3228.  These isolates belong to 18 atoxigenic and two toxigenic 

VCGs (Table 5).  Complementary mutants could not be generated for three atoxigenic isolates and 

therefore were not assigned to a VCG. 

3.2 Deletions in aflatoxin biosynthetic gene cluster of atoxigenic A. flavus isolates   

PCR with the designed primer sets was successful at amplifying all 22 gene fragments 

attempted within the aflatoxin biosynthesis gene cluster for both aflatoxin producing isolates from 

West Africa.  In addition all fragments were successfully amplified for Aspergillus flavus AF36, the 

atoxigenic strain used commercially for aflatoxin biological control in the USA, and for 13 of the 

21 atoxigenic strains belonging to different VCGs from Nigeria.  PCR results for seven of the 

atoxigenic A. flavus isolates from Nigeria were consistent and indicated large deletions in the 

aflatoxin biosynthetic pathway (Figure 12).  Deletions extended from the entire cluster for AV0222 

to deletion of all genes from norB through norA, over 35 kb.  Five of these seven isolates belonged 

to a different VCG and all originated from the same district, Ogbomosho.  The large deletions 

included the 5’ end (proximal to the teleomere) of the aflatoxin gene cluster except for AV0173 and 

AV0452 which retained remnants of the norB-cypA region.  For four VCGs, the PCR protocol 

failed to amplify the target 603 bp within the gene cypX (aflV) while protocols for the adjacent 

genes vbs (aflK) and moxY (aflW) produced the expected amplicons.  These four VCGs originated 

from 3 districts (Figure 12 and Table 5).  The protocols for the three genes not involved in aflatoxin 

biosynthesis, pecA, taka amylase, and glcA, produced the predicted amplicons for each of the 24 

Aspergillus flavus isolates included in the current study.   

 

All A. flavus isolates had deletions in the norB–cypA region when compared to the norB-

cypA region of A. parasiticus (AY371490).  In all isolates except AV3228, deletions included 
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coding regions for amino acids 1-280 of norB and 1-112 of cypA, and the norB-cypA intergenic 

region.  In AV3228 coding regions for amino acids 1-181 and 300-310 of norB and 1-29 of cypA 

were deleted along with the norB-cypA intergenic region.   

 
The pyrosequencing assay used to detect a SNP responsible for atoxigenicity in the 

biocontrol atoxigenic A. flavus AF36 (Ehrlich et al., 2004; Das et al., 2008) successfully identified 

the target SNP in AF36 but not in any of the other A. flavus isolates included in the current study.  

Figure 12 Segments of the Aspergillus flavus aflatoxin gene cluster present (filled circle) or absent (empty circle) in 
Nigerian A. flavus and United States isolates.  Original gene names are above and new names below (Yu et al., 
2004b). Amplicon sizes are indicated.  The glcA is a gene in the sugar utilization cluster adjacent to the 3’ end of 
the aflatoxin cluster; C2 is a gene - flanking region the aflatoxin gene cluster at the 5’ end.  

a Isolates names in bold indicate the aflatoxin producers 
b Two amplicons sizes were detected.  Amplicons of all isolates except AV3228 were 0.3 kb; the amplicons of AV3228 

was 0.8 kb.  

C2 norB cypA aflT pksA hexA aflR aflJ estA norA ver-1 verA avnA verB avfA omtB omtA vbs cypX moxY ordB hypA glcA

aflF aflU aflT aflC aflA aflR aflS aflJ aflE aflM aflN aflG aflL aflI aflO aflP aflK aflV aflW aflX aflY
676bp 452bp rangeb 1141bp 416bp 663bp 766bp 435bp 529bp 759bp 785bp 423bp 536bp 567bp 491bp 554bp 593bp 629bp 393bp 603bp 592bp 586bp 659bp
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3.3 Distribution of polymorphisms 

In Aspergillus flavus the aflatoxin biosynthetic gene cluster is 66.1 to 66.5 kb in length.  In 

the current study, 0.4 kb to 8.1 kb of the cluster was sequenced for the 18 atoxigenic and two 

toxigenic VCGs not exhibiting large deletions in the cluster (Table 7).  Of the sequenced cluster 

regions, 5 kb was coding sequence and 3.1 kb was non-coding.  In addition, 3 gene pieces (2.2 kb) 

outside of the cluster were sequenced, including 649bp of glcA, a component of the sugar cluster 

adjacent to the aflatoxin-biosynthesis cluster.  All polymorphisms were measured in relation to 

NRRL3357, the fully sequenced A. flavus and a producer of high concentrations of aflatoxins.  

Gene segments differed significantly (P = 0.05) in both total percentage polymorphism and non-

synonymous substitutions with the greatest rates of polymorphism in ver1 among atoxigenic VCGs 

and in omtB among all VCGs in both coding and non-coding segments.  Among all VCGs, 

significantly (P = 0.05) more polymorphisms were detected in non-coding gene segments (3.4%) 

than in the coding (2.8%).  This was true both when the toxigenic strains were included and when 

they were removed from the analysis. 

 

Polymorphisms in the gene regions outside the aflatoxin cluster in atoxigenic VCGs had 

lower ranges of polymorphisms (total, 0.3 %, synonymous, 0.2%, non-synonymous, 0.1%) than 

genes within the aflatoxin cluster. 

 

Polymorphisms in hypA, a gene present in all but one of the isolates from Nigeria, ranged 

from 0.0 % to 2.7 % in atoxigenics exhibiting a large cluster deletion (6 isolates) and from 0.0 % to 

1.1% in atoxigenics with no deletion while the two aflatoxin producers had 0.4% to 0.9% 

polymorphism.  For the isolates without large cluster deletion, there were significant (P = 0.05) 

differences in percent polymorphic sites between aflatoxin producers and atoxigenic strains in the 

coding gene segments of aflT, hexA, aflR, aflJ, ver1, and omtB.  Only the gene segments of aflT, 

ver1, and omtB had significantly (P= 0.05) more non-synonymous substitutions in atoxigenic strains 

than in the toxigenic.  Neither of the aflatoxin producers contained polymorphisms in the aflatoxin 

regulatory genes aflR and aflJ.  All but one of the atoxigenics had polymorphisms in aflR and 

several atoxigenics had polymorphisms in the aflJ segment in which several changes were detected 

in protein sequences.  Although the frequency of polymorphisms varied among atoxigenic VCGs 

for several genes (i.e. avfA and omtA) it was consistent among atoxigenics for many other genes.  

The frequency of polymorphisms in the coding and non-coding gene segments differed significantly 
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(P = 0.05) between the toxigenic and atoxigenic isolates, and in both cases atoxigenic strains had 

more polymorphism. 

 

In total, the majority of the nucleotide changes in gene segments of the aflatoxin 

biosynthesis gene cluster resulted in synonymous substitutions, (Table 7).  The ratio dn/ds, as 

calculated with SNAP (Korber, 2000) resulted in a ratio far less than one for most gene segments 

including genes with very high polymorphism rates (i.e. omtB and ver1).  However, one gene had 

dn/ds values over 1.  Twelve of 15 atoxigenics and one aflatoxin-producer had dn/ds greater than 1 

for avnA gene segment.  In that gene segment the highest ratio of synonymous to non-synonymous 

substitutions was also measured.  In the hypA gene segment, 12 of 15 atoxigenics and one aflatoxin-

producer contained 2 non-synonymous substitutions and no synonymous (Table 7).  The ratio of 

non-synonymous to synonymous changes of all isolates was almost balanced in the aflT gene 

segment.  Values for several genes could not be calculated because the values for dS or Sd were 

only 0. 

 

Although only 9.5% of the coding sequence of the aflatoxin biosynthesis pathway was 

sequenced, several DNA polymorphisms which lead to predicted amino acid changes were detected 

that did not occur in aflatoxin producing isolates (Table 8).  Several of these cause changes in 

amino acid type (i.e. serine to proline or proloine to threonine) and reactivity (i.e. arginine to 

cysteine).  
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Table 7 Frequencies of Single Nucleotide Polymorphisms in sequenced segments of the aflatoxin biosynthesis gene cluster 
compared to the toxin producer NRRL3357 for isolates in the current study lacking a large deletion in the cluster 

a Only amplicons including coding regions with protein information included; gene names and length of the 
portion of coding region used;. co region; Sd, synonymous substitutions; Sn, non-synonymous substitutions; non-
synonymous (dN) and synonymous (dS) as calculated by applying the Jukes-Cantor correction for back-mutations;  

AV3193 AV3224 AV3108 AV3279 AV3304 AV3303 AV3150 AV3306 AF36 AV3058 AV2757 AV4216 AV3020 AV2216 AV16127 AV3228 AV0106

Sd 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 1.0 0.0 1.0
Sn 1.0 1.0 2.0 1.0 1.0 1.0 2.0 1.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0

dN/dS 0.284 0.284 NA 0.284 0.284 0.284 0.574 0.284 NA 0.284 0.284 NA 0.284 NA 0.284 NA 0.574
P (%) 1.7 1.7 1.7 1.7 1.7 1.7 2.5 1.7 1.7 1.7 1.7 0.8 1.7 0.8 1.7 0.8 2.5
Sn/Sd 1.0 1.0 NA 1.0 1.0 1.0 2.0 1.0 NA 1.0 1.0 NA 1.0 NA 1.0 NA 2.0

Sd 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 3.0 2.0 3.0 2.0 0.0 2.0
Sn 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 1.0 2.0 1.0 2.0 0.0 1.0

dN/dS 0.346 0.346 0.173 0.346 0.346 0.346 0.346 0.346 0.173 0.346 0.346 0.115 0.346 0.115 0.346 NA 0.173
P (%) 0.7 0.7 0.5 0.7 0.7 0.7 0.7 0.7 0.5 0.7 0.7 0.7 0.7 0.7 0.7 0.0 0.5
Sn/Sd 1.0 1.0 0.5 1.0 1.0 1.0 1.0 1.0 0.5 1.0 1.0 0.3 1.0 0.3 1.0 NA 0.5

Sd 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0 0.0
Sn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dN/dS NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P (%) 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.0 0.0
Sn/Sd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 NA NA

Sd 1.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 0.0 0.0
Sn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0

dN/dS NA NA NA NA NA NA NA NA NA NA NA NA NA 0.339 NA NA NA
P (%) 0.3 0.3 0.0 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.3 0.0 0.0
Sn/Sd 0.0 0.0 NA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 NA NA

Sd 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 0.0 0.0
Sn 0.0 1.0 0.0 1.0 1.0 1.0 1.0 1.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0

dN/dS NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P (%) 0.5 0.5 0.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.0 0.0
Sn/Sd 0.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Sd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sn 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dN/dS NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P (%) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sn/Sd NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Sd 19.0 19.0 19.0 18.0 19.0 19.0 18.0 19.0 20.0 19.0 19.0 19.0 19.0 2.0 18.0 0.0 1.0
Sn 1.0 2.0 0.0 1.0 2.0 2.0 1.0 2.0 0.0 2.0 2.0 1.0 2.0 0.0 1.0 0.0 0.0

dN/dS 0.015 0.030 NA 0.015 0.030 0.030 0.015 0.030 NA 0.030 0.030 0.015 0.030 NA 0.015 NA NA
P (%) 4.1 4.3 3.9 3.9 4.3 4.3 3.9 4.3 4.1 4.3 4.3 4.1 4.3 0.4 3.9 0.0 0.2
Sn/Sd 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.1 0.1 0.0 0.1 NA 0.0

Sd 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 1.0
Sn 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 3.0 4.0 4.0 4.0 4.0 2.0 4.0 2.0 4.0

dN/dS 1.290 1.290 0.963 1.290 1.290 1.290 1.290 1.290 0.477 1.290 1.290 1.290 1.290 0.319 1.290 0.645 1.290
P (%) 1.3 1.3 1.0 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.0 1.3 0.8 1.3
Sn/Sd 4.0 4.0 3.0 4.0 4.0 4.0 4.0 4.0 1.5 4.0 4.0 4.0 4.0 1.0 4.0 2.0 4.0

Sd 5.0 5.0 18.0 5.0 5.0 5.0 5.0 5.0 18.0 5.0 5.0 5.0 5.0 19.0 5.0 1.0 5.0
Sn 3.0 3.0 12.0 3.0 3.0 3.0 3.0 3.0 12.0 3.0 3.0 3.0 3.0 13.0 3.0 1.0 3.0

dN/dS 0.170 0.170 0.174 0.170 0.170 0.170 0.170 0.170 0.174 0.170 0.170 0.170 0.170 0.177 0.170 0.288 0.170
P (%) 1.9 1.9 7.0 1.9 1.9 1.9 1.9 1.9 7.0 1.9 1.9 1.9 1.9 7.5 1.9 0.5 1.9
Sn/Sd 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.6 0.7 0.6 0.6 0.6 0.6 0.7 0.6 1.0 0.6

Sd 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 16.0 17.0 16.0 0.0 16.0
Sn 5.0 5.0 3.0 5.0 5.0 5.0 5.0 5.0 4.0 5.0 5.0 5.0 5.0 4.0 5.0 0.0 5.0

dN/dS 0.094 0.094 0.056 0.094 0.094 0.094 0.094 0.094 0.075 0.094 0.094 0.094 0.094 0.069 0.094 NA 0.094
P (%) 8.4 8.4 7.6 8.4 8.4 8.4 8.4 8.4 8.0 8.4 8.4 8.4 8.4 8.4 8.4 0.0 8.4
Sn/Sd 0.3 0.3 0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.3 NA 0.3

Sd 2.0 2.0 2.0 7.0 2.0 2.0 7.0 2.0 7.0 2.0 2.0 7.0 2.0 6.0 2.0 0.0 7.0
Sn 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

dN/dS NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P (%) 1.6 1.6 1.6 5.7 1.6 1.6 5.7 1.6 5.7 1.6 1.6 5.7 1.6 4.9 1.6 0.0 5.7
Sn/Sd 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Na 0.0

Sd 7.0 5.0 8.0 5.0 5.0 5.0 7.0 5.0 0.0 5.0 5.0 5.0 5.0 5.0 7.0 5.0 5.0
Sn 3.0 2.0 0.0 1.0 2.0 2.0 2.0 2.0 0.0 2.0 2.0 1.0 2.0 1.0 3.0 1.0 1.0

dN/dS 0.123 0.116 NA 0.058 0.116 0.116 0.082 0.116 NA 0.116 0.116 0.058 0.116 0.058 0.123 0.058 0.058
P (%) 1.9 1.3 1.5 1.1 1.3 1.3 1.7 1.3 0.0 1.3 1.3 1.1 1.3 1.1 1.9 1.1 1.1
Sn/Sd 0.4 0.4 0.0 0.2 0.4 0.4 0.3 0.4 NA 0.4 0.4 0.2 0.4 0.2 0.4 0.2 0.2

Sd 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Sn 2.0 2.0 0.0 0.0 2.0 2.0 2.0 2.0 1.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 0.0

dN/dS NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
P (%) 0.4 0.4 0.2 0.0 0.4 0.4 0.4 0.4 0.2 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.0
Sn/Sd NA NA 0.0 NA NA NA NA NA NA NA NA NA NA NA NA NA NA

Sd 1.0 1.0 4.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.0 1.0
Sn 1.0 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 1.0 1.0

dN/dS 0.027 0.000 0.066 0.027 0.000 0.000 0.027 0.000 0.000 0.027 0.000 0.000 0.027 0.000 0.027 0.089 0.027
P (%) 0.4 0.2 1.1 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.2 0.4 0.2 0.4 0.9 0.4
Sn/Sd 1.0 0.0 0.3 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.3 1.0

total Sd 58.0 55.0 73.0 59.0 55.0 55.0 61.0 55.0 69.0 55.0 55.0 61.0 55.0 59.0 57.0 10.0 39.0
Sn 22.0 22.0 23.0 19.0 22.0 22.0 23.0 22.0 23.0 23.0 22.0 18.0 23.0 25.0 22.0 8.0 17.0

Genesa 
Isolates

429bp

249bp

122bp

540bp

ver1

avnA

avfA

omtB

525bp

norB 120bp

aflT

hexA

612bp

582bp

aflR

aflJ

estA

glcA 462bp

omtA

vbs

hypA

354bp

190bp

426bp

483bp

387bp
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dN/dS, ratio of non-synonymous to synonymous substitutions; P, the percentage polymorphic sites for each 
gene/sequences; Sn/Sd is the simple ratio of non-synonymous to synonymous substitutions; NA, not applicable because 
uncalculated pairs of Sn/Sd or dN/dS; Isolates names in bold indicate the aflatoxin producers 

 

Table 8 Non-synonymous nucleotide substitutions in gene sequences of atoxigenic Aspergillus. flavus isolates which were 
not found in the toxigenic isolates NRRL3357, AF13, AF70, AV3228, and AV0106 

Genes Nt change Nt position with 
respect to the 
translation start 
site 

Amino acid 
change

Amino acid position 
with respect to the 
translation start

Isolates

norB
G → A 1057 G → S 353 AV0452, AV0173

T → C 1075 V → A 359 AF36, AV3108

aflT
G → T 710 M → I 237 AV3193, AV3303, AV3150, AV3303, 

AV3224, AV3279, AV3304, AV3058, 
AV16127, AV2757, AV3020 

aflR
G → C 191 M → I 64 AV2216

aflJ
T → C 768 S → P 257 AV3303, AV3150, AV3306, AV3224, 

AV3279, AV3304, AV3058, AV2757, 
AV3020

ver1
G → A 198 D → N 67 AV3303, AV3306, AV3224, AV3304, 

AV3058, AV2757, AV3020
G → A 213 E → K 72 AV3193, AV3303, AV3150, AV3306, 

AV3279, AV3304, AV3058, AV16127, 
AV2757, AV4216, AV3020

C → T 390 R → C 131 AV0230

avnA
C → T 159 L → F 54 AV0230

T → A 191 D → E 64 AF36

C → A 294 P → T 99 AV3108

A → C 415 D → G 139 AV0230

omtB
A → G 234 T → A 79 AF36

A → G 297 T → A 100 AV0452, AV0173

vbs
G → A 1065 G → R 551 AV3193, AV16127

G → A 1785 V → I 596 AV0230

T → C 1791 S → P 598 AV3193, AV3150, AV16127, AV3279, 
AV2216

G → T 1809 G → C 604 AV0452

hypA
G → C 975 P → A 326 AV0173, AV0216, AV0452

A → G 1087 Y → C 363 AF36

G → T 1118 K → N 373 AV3193, AV3224, AV3303, AV3306, 
AV3150, AV3058, AV3020, AV2757, 
AV2216, AV16127, AV0425, AV4216 

G → C 1149 E → Q 384 AV0173, AV0216, AV0452

T → A 1220 N → K 407 AV0173, AV0216, AV0452

T → C 1251 F → L 418 AV0173, AV0216, AV0452
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3.4 Phylogenetic analysis 

Phylogenetic analyses on the concatenated gene segments of the aflatoxin gene cluster 

(norb-hypA) were performed with reference aflatoxin producers on those atoxigenic strains without 

large deletions in the cluster (Figure 13).  The analysis showed diverse clade structure of the 

atoxigenic strains.  Twelve of 14 atoxigenic isolates developed a highly bootstrap supported 

structure with well supported subgroups, whereas the phylogenetic analysis of the other genes 

showed little structure.  Those groups were separated from the toxigenic isolates of Nigeria and 

from the USA.  Nevertheless, two atoxigenic isolates, AV3108 and AV2216 were closely related to 

A. flavus toxin producing isolates from the US.  The toxigenic isolates AV3228 and AV0106 which 

showed previously the lowest polymorphisms of the analyzed gene segments, shared a separated 

group with the toxin producing isolates AF70 and NRRL3357.   

 

Figure 13  One of five most-parsimonious (MP) trees based on the combined aflatoxin biosynthesis gene dataset (norB, 
aflT, hexA, aflR, aflJ, estA, ver1, avnA, avfA, omtB, omtA, vbs, and hypA) with 7,825 total characters, 238 
parsimony informative.  Tree was rooted with A. parasiticus (NRRL5862).  Bootstrap values based on 1000 
replicates are shown above the line.  Aflatoxins producers are bold.  CI, consistency index; HI, homoplasy index; 
RI, retention index; RC, rescaled consistency index.  
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The phylogenetic analysis from genes outside the cluster (taka amylase-pecA-glcA) showed 

a clear separation of five atoxigenic VCGs that contained large deletions in the aflatoxin gene 

cluster (Figure 14).  Isolate AV0452 and AV0173, which show the same deletion pattern within the 

aflatoxin gene cluster, shared a well supported subgroup within the atoxigenic isolates.  Similar 

groupings were also found by analyzing a combined sequencing data of gene segments from avnA-

hypA (not shown).  The majority of Nigerian atoxigenic isolates shared a clade separated from those 

atoxigenic and toxigenic isolates of the USA.  

Figure 14  One of 86 most-parsimonious (MP) trees based on the combined gene dataset taka-amylase, pecA, and glcA.  Of 
2035 total characters, 24 were parsimony informative. Tree is unrooted.  Bootstrap values based on 1,000 
replicates are shown above the line.  Aflatoxins producers are bold.  CI, consistency index; HI, homoplasy index; 
RI, retention index; RC, rescaled consistency index. 
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4 DISCUSSION 

A. flavus isolates that do not produce aflatoxin have been found worldwide and are not rare 

(Cotty et al., 1994b).  Some of them are used successfully to reduce aflatoxin contamination of 

susceptible crops in fields by competitively excluding native aflatoxin producing A. flavus strains 

(Antilla et al., 2002; Dorner, 2004).  There is concern, however, in using A. flavus isolates that do 

not produce aflatoxin under laboratory conditions as a biological control agent, due to the fact that 

these isolates may be able to produce aflatoxin under certain conditions.  Therefore, strong controls 

are necessary to prove the safety and stability of atoxigenic strains before their use as biological 

control agents.  The atoxigenicity of A. flavus isolate AF36, a registered biopesticide, is the result of 

a single nucleotide polymorphism which inserts a stop codon near the beginning of the pksA coding 

sequence for the polyketide synthase (Ehrlich et al., 2004).  In the current study, no single 

nucleotide polymorphism was found in the pksA sequences of the atoxigenic isolates of Nigeria.  

Nevertheless, different molecular lesions were observed in atoxigenic A. flavus isolates of various 

VCGs within the aflatoxin pathway genes. 

 

In the present study, atoxigenic A. flavus isolates from Nigeria were found that did not 

generate any PCR products of several tested genes within the aflatoxin gene cluster.  Deletions 

within the aflatoxin gene cluster were found previously in isolates from A. flavus and the closely 

related A. oryzae (Kusumoto et al., 2000; Chang et al., 2005).  Kusumoto et al. (2000) classified 

strains of A. oryzae into 3 groups based on the deletion pattern.  Strains belonging to group two and 

three contained large deletions, while group one had a nearly intact aflatoxin gene cluster.  Lee et al. 

(2006) confirmed that A. oryzae isolates belonging to group 2 had deletions on the left side of the 

aflatoxin gene cluster extending to a chromosome breakpoint in the gene ver-1.  The deletion type 

of group 2 is probably identical to that of isolate AV0230 of the current study.  Interestingly, 

several deletion patterns observed by Chang et al. (2005) were found as well within Nigerian 

atoxigenic A. flavus VCGs.  Nevertheless, in the current study new types of deletions were found.  

Isolates AV0205, AV0216, and AV0165 contained large lesions extending to ordB and hypA, at the 

distal of the aflatoxin gene cluster.  No PCR products of four atoxigenic A. flavus isolates of the 

gene cypX were generated that could cause atoxigenicity.  Wen et al. (2005) demonstrated that a 

cypX-deleted mutant of the A. parasiticus isolate NRRL2999 lost toxigenicity.  The lesion of the 
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isolates AV0173 and AV0452 (Figure12) was similar to deletion pattern C identified by Chang et 

al. (2005).  The phylogenetic analysis of the combined sequence data set of taka-pecA-glcA and 

other genes (not shown) revealed that those isolates shared one well supported subgroup within the 

isolates with large deletions patterns.  The loss of the entire aflatoxin gene cluster of isolate 

AV0222 is comparable with the deletion pattern H by Chang et al. (2005).  The putative absence of 

genes within the aflatoxin gene cluster offers a practical solution for selecting a completely safe 

atoxigenic strain for the use in a biological control management.  Nevertheless, further studies are 

required to prove whether the strains have really lost genes in the cluster.  

 

Interestingly, only atoxigenic isolates from the district Ogbomosho formed a unique group 

containing large deletions in the aflatoxin gene cluster, while isolates from other districts were only 

missing various genes.  All the Ogbomosho strains belong to different VCGs and were found within 

a relatively small geographic area.  Therefore, it could be concluded that these atoxigenic isolates 

all stem from within the district of Ogbomosho.  The occurrence of VCGs with such large deletions 

patterns originating from only one district gives rise to the hypothesis that these isolates arose from 

a common ancestral source.  However, it is not known which selective forces active in West Africa 

are responsible for such large deletion patterns.  The combined phylogenetic tree taka amylase–

pecA-glcA showed similar results of a well supported clade of those isolates adding strength to the 

above hypothesis. 

 

In the present study, the deletions occurred mostly from the left side of the aflatoxin gene 

cluster toward the utilization sugar cluster.  Chang et al. (2005) reported a similar incident. Genes 

controlling secondary metabolites are generally organized in clusters, many of which are species-

specific (Nierman et al., 2005).  As has been observed for mammals, nematodes and yeasts, repeats 

and subtelomeric sequences are associated with rearranged regions (Eichler et al., 2003; Galagan et 

al., 2005).  The aflatoxin gene cluster of the toxigenic A. flavus isolate NRRL3357 genome is biased 

toward the telomere (Chang et al., 2007).  Similarly, the left side of A. oryzae isolate RIB40 

aflatoxin gene cluster and that of RIB62 is known to be close to the telomere (Lee et al., 2006).  

According to genome sequences of A. oryzae RIB40, the distance from the beginning of the 

aflatoxin gene cluster to the telomere is only 18kb.  A comparison of genes within the biosynthesis 

gene cluster of main aflatoxin producing Aspergillus species showed that the right side of the 

aflatoxin gene cluster, toward the utilization sugar cluster is well conserved whereas the regions left 
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sided toward the telomere are highly variable (Ehrlich et al., 2005).  Preliminary, genome analyses 

reveal large non-syntenous regions resulting from insertions or deletions in subtelomeric sequences, 

intra-moleculare recombination, and variation in the number of gene duplications (Nierman et al., 

2005).  For example, a deletion in the cypA gene is the reason why A. flavus is incapable of 

producing G aflatoxins.  The cypA gene is located toward the telomeric region at the beginning of 

the aflatoxin gene cluster.  Studies have suggested that the location of the aflatoxin gene cluster in 

the telomeric region of A. nidulans, A. oryzae and A. flavus would facilitate gene loss as well as 

recombination, DNA inversions, partial deletions, translocations and other genomic rearrangements 

(Kusumoto et al., 2000; Chang et al., 2005; Ehrlich et al., 2005; Wong et al., 2005; Carbone et al., 

2007b).  Thus, the large deletions found within the gene cluster are as a result of the instability of 

the subtelomeric region of the aflatoxin gene cluster.   

 

Eleven atoxigenic VCGs were tested previously to evaluate A. flavus strains as potential 

biocontrol agents for maize in Nigeria (Atehnkeng et al., 2008a).  Those isolates showed a 

significant impact in aflatoxin reduction in maize which ranged from 70.1% to 99.9%.  AV3279 

was the most effective atoxigenic isolate (>99.3%) followed by the isolates AV3303, AV0222, and 

AV4216 with an average aflatoxin reduction of greater than 92% (Atehnkeng et al., 2008a).  In the 

present study 8 isolates of those previously tested VCGs had an intact aflatoxin biosynthesis gene 

cluster whereas isolate AV3058, AV2757, and AV16127 could not generate PCR products of gene 

cypX and the entire gene cluster was deleted for isolate AV0222.  Only 9.5% of the entire coding 

sequence of the genes along the aflatoxin pathway was sequenced.  A defective gene that resulted in 

atoxigenicity was not observed in isolates with intact aflatoxin gene clusters.  Nevertheless, 

differences of aflatoxin pathway gene sequences were observed between atoxigenic and toxigenic 

strains.  The phylogenetic analysis of gene segments within aflatoxin gene clusters and outside 

showed that the majority of atoxigenic isolates were well separated from those which produce 

aflatoxin.  The comparison of polymorphism in aflatoxin coding gene segments of atoxigenic 

isolates to that of the toxin producing isolate NRRL3357 revealed that significantly more 

polymorphism occurred in the atoxigenic isolates.  The percent polymorphism for gene ver1 

averaged 4.0% for the atoxigenic strains while it was only 0.1% for toxigenic isolates.  

Interestingly, the majority of the nucleotide changes in portions of the genes avnA and hypA 

resulted in non-synonymous amino acid substitutions for most of the isolates.  These observations 

suggest that there is a selection for non-synonymous substitutions in avnA, consistent with selective 
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pressure.  Several isolates had polymorphisms that lead in predicted amino acid changes that may 

have influence on the aflatoxin productivity.  Especially one amino acid change occurred in the aflJ 

gene in 9 atoxigenic isolates but not in the main toxigenic strains.  Gene aflJ is known to be 

involved in regulation of the aflatoxin biosynthesis pathway (Meyers et al., 1998; Ehrlich et al., 

1999; Chang et al., 2000).  Similarly to the present study the majority of atoxigenic strains of A. 

flavus and A. oryzae had an intact aflatoxin gene clusters (Kusumoto et al., 2000; Chang et al., 

2005; Lee et al., 2006).  Atoxigenicity probably results from point mutations (Ehrlich et al., 2004) 

or small deletions in genes that regulate the function of the aflatoxin production (Calvo et al., 2004).  

Since aflatoxin production requires the normal function of the complete aflatoxin biosynthesis gene 

cluster, it is suspected that dysfunctional or abnormal genes in the aflatoxin gene cluster inhibit 

aflatoxin production.  Nevertheless, the molecular mechanisms responsible for atoxigenicity in A. 

flavus appear to be diverse and are difficult to determine, especially for those isolates that seem to 

have an intact aflatoxin gene cluster.  In conclusion, the mechanism of atoxigenicity on isolates 

with intact gene cluster is still not readily apparent, however, differences between toxigenic and 

atoxigenic isolates were observed.  The sequence data of these strains is important for further 

studies to provide a safe biological control management.  Further studies of the coding sequence in 

the aflatoxin pathway gene are required to find the gene defect which results in atoxigenicity.   

 

The production of aflatoxins by the species Aspergillus involves approximately 25 genes 

within a complex biosynthetic pathway which requires a considerable expenditure of energy (Yu et 

al., 2004b).  Ehrlich et. al. (2005) estimated that the aflatoxin gene cluster of A. flavus was 

maintained for at least 25 million years and that the loss of genes for production of G-aflatoxin must 

have occurred less than 17 million years ago.  The high conservation of the cluster components 

needed for B-aflatoxins along certain A. flavus strains suggested important adaptative values for 

aflatoxins in character-shaping niches (Ehrlich et al., 2005).  Around half of the A. flavus L-strains 

do not produce aflatoxin in Nigeria (Atehnkeng et al., 2008b; Donner et al., 2008).  In contrast, A. 

parasiticus, A. nomius, and the unnamed taxon of West Africa are usually highly toxigenic 

(Kurtzman et al., 1987; Ehrlich et al., 2003; Donner et al., 2008).  All these high toxin producing 

species within the section Flavi are phylogenetically different from the A. flavus isolates (Geiser et 

al., 2000a; Ehrlich et al., 2005; Ehrlich et al., 2007b).  The function of aflatoxins is still under 

debate and much speculation about its role has been published.  Some hypotheses are that aflatoxins 

may protect against microbes in the soil or competing insects (Matsumura et al., 1967; Drummond 
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et al., 1990; Dowd, 1992), that they facilitate growth of the fungus on carbon rich sources by the 

removal of excess acetate (Bu'lock, 1965) or that they promote conidial and sclerotial development 

(Cotty, 1988; Calvo et al., 2001; Chang et al., 2002; Wilkinson et al., 2004).  Aflatoxins are to a 

large degree not phytotoxic (McLean et al., 1995; Hasan, 2001) and are not suspected to be 

involved in plant virulence any more than atoxigenic strains (Cotty, 1989).  The ability of the 

fungus to produce aflatoxins is not essential to growth under certain conditions and is not required 

for successful competition with other aflatoxin-producing strains (Horn et al., 2000; Bhatnagar et 

al., 2003).  It also has been argued that if aflatoxins are advantageous to the fungus, then aflatoxin 

producers should eventually replace atoxigenics over time (Carter et al., 2002).  Nevertheless, in 

nature, atoxigenic and toxigenic A. flavus successfully coexist and atoxigenic A. flavus strains are 

equally capable of infecting susceptible crops (Cotty, 1989; Cotty, 1997).  The aflatoxin-producing 

ability appears unnecessary when observing A. flavus success in occupying certain plant-associated 

niches (Cotty, 1989; Cotty, 1997).  Ehrlich et al. (2005) suggested that over the last several million 

years the average adaptive value of aflatoxins may have decreased by the movement into new 

niches or loss of formative niches in the current environment.  Therefore, since aflatoxins do not 

seem to be advantageous to A. flavus and if anything use unnecessary energy, the loss of this 

aflatoxin producing ability should only serve to make the fungus more energy efficient.   

 

In the present study, isolates belonging to different VCGs had identical deletion patterns and 

were closely related.  Chang et al. (2005) reported that isolates belonging to the same VCG also had 

identical deletion patterns.  No genetic exchange was found among A. flavus atoxigenic VCG 

isolates and toxin-producing isolates collected from six geographically separated regions, 

suggesting that recombination among VCGs is rare (Ehrlich et al. 2007).  Therefore, in the present 

study, isolates of the same VCG most likely have the same identical deletions patterns.   

 

Sequencing of the aflatoxins biosynthesis gene cluster has shown that for many isolates 

belonging to different VCGs, genes could not be amplified and, therefore, are likely to be missing 

or highly abnormal.  However, most of the atoxigenics had all the examined biosynthesis genes.  

Therefore, further studies are required to prove whether the strains with the occurrences of deletions 

have a total loss of function in aflatoxin production and which defect causes atoxigenicity in strains 

with intact aflatoxin gene clusters.  This study shows that many atoxigenic A. flavus isolates of the 

district Ogbomosho are good candidates for a safe biological control management in Nigeria.  
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 CHAPTER FIVE 

 CHARACTERIZATION OF AFLATOXIN-PRODUCING AND NON-PRODUCING 

STRAINS OF ASPERGILLUS SECTION FLAVI IN NIGERIA  

1 INTRODUCTION 

In agricultural fields of West Africa, Aspergillus flavus is the main producer of carcinogenic 

aflatoxins (Atehnkeng et al., 2008b; Donner et al., 2008).  In addition to A. flavus, other aflatoxin-

producing species like A. parasiticus and the unnamed taxon SBG were also reported to be present, 

but in much lower amounts (Cardwell et al., 2002; Atehnkeng et al., 2008b).  The usual aflatoxin 

regulatory limits that exist in most developed countries are also present in Nigeria but the 

necessitated regulatory controls are largely unenforceable or difficult to carry out (Bandyopadhyay, 

2007).  Thus, aflatoxin exposure in humans is high in many regions of West Africa and mainly 

associated with contaminated maize (Gong et al., 2002; Bandyopadhyay, 2007).  Therefore, interest 

in the diversity within the Aspergillus sections Flavi has increased because of recent suggestions 

that atoxigenic strains might be applied to agricultural fields in Nigeria in order to decrease the 

aflatoxin contamination in maize (Atehnkeng et al., 2008a; Hell et al., 2008).  

 

Variation among the isolates within the Aspergillus section Flavi is evident in genetic, 

physiological, and morphological character (Cotty et al., 1994b).  Populations within the 

Aspergillus section Flavi tend to be extremely diverse in terms of vegetative compatibility groups 

(Cotty et al., 1994b).  Morphological and physiological divergence within A. flavus can vary, for 

instance, A. flavus was divided into “S” and “L” types based on the size of its sclerotia (Cotty, 

1989).  S-type A. flavus isolates produce numerous small sclerotia and fewer conidia than other A. 

flavus isolates and were originally described as A. flavus parvisclerotigenus (Saito et al., 1986; 

Cotty, 1989; Saito et al., 1993), whereas the “typical” A. flavus isolates, the so called L-strain, 

produce larger and fewer sclerotia (Saito et al., 1986; Cotty, 1989).  Physiological characters vary 

as well, as in the case of the aflatoxin-producing L-strain isolates of A. flavus which produce 

anywhere from no detectable aflatoxin to great levels of only B-aflatoxin (Cotty et al., 1994b).  In 
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contrast, the S-strain isolates produce high levels of aflatoxin and S-strain atoxigenic isolates are 

rarely found in natural environments.  In addition, Geiser et. al. (1998, 2000) subdivided A. flavus 

into group I and II based on RFLPs of nuclear-coding genes and DNA sequences.  Group I contains 

both L and S strains that produce aflatoxins B1 and B2, whereas Group II comprises only S-strains 

that often produce B- and G- aflatoxins and represents, at least in part, an unnamed taxon.  These 

B- and G-aflatoxin producers are present in Australia, Thailand, Argentina, and West Africa (Saito 

et al., 1993; Cotty et al., 1999; Geiser et al., 2000a; Vaamonde et al., 2003).  None have been 

reported from the United states (Cotty et al., 1999; Horn et al., 1999).  In West Africa even though 

only the A. flavus strains resembling the S-type occur, they have the ability to produce great levels 

of both B and G aflatoxins (Cotty et al., 1999; Donner et al., 2008).  In a recent study, Pildain et al. 

(2008) designated those B+G aflatoxin producers which produce typical small sclerotia and were 

found commonly in peanut plant and fields as A. minisclerotigenes.  Some of those isolates have 

been described as A. flavus group II by Geiser et al. (1998, 2000).  Nevertheless, it is not clear if the 

B+G producers resembling the S-strain isolated from Nigerian maize fields belong to this new 

taxon.  The diversity of species within the Aspergillus sections Flavi appears to make it more 

difficult to identify species with only conventional morphological and physiological methods.  

Therefore, in the present study sequence data of three genes was used to determine phylogenetic 

relationships among Aspergillus section Flavi isolates that originate from Nigeria.  

 

Aspergillus species like A. flavus and A. parasiticus are strictly mitotic and reproduce 

asexually (Geiser et al., 1996).  These fungi mostly exist in the form of asexual spores called 

conidia, which are dispersed by wind, water and insects.  Several generations of fungi can be 

produced in a single growing season (Chang et al., 2004).  Under certain conditions, some isolates 

of A. flavus and A. parasiticus produce a specialized structure of mycelia, called sclerotia (Bennett 

et al., 1979; Wicklow et al., 1983).  Sclerotia are pigmented, compacted aggregate hyphae, which 

are capable of resisting unfavorable environmental conditions and remaining dormant long periods 

of time (Cotty, 1988; Wicklow et al., 1993; Rollins et al., 1998).  Isolates of A. flavus and A. 

parasiticus that produce aflatoxins do not always produce sclerotia (Bennett et al., 1979; Wang et 

al., 1993).  Nevertheless, a positive correlation between aflatoxin biosynthesis and conidial 

production in A. parasiticus and an inverse relationship between aflatoxin biosynthesis and 
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sclerotial production has been observed (Guzman de Pena et al., 1997).  No such relationship has 

been observed for A. flavus L-strain isolates.  

 

In this study, the relationship of different soil populations of A. flavus L-strains according to 

aflatoxin biosynthesis along with sclerotia and condial production was examined.  These 

relationships combined with the phylogenetic analysis of the main aflatoxin-producing species and 

atoxigenic isolates help support our understanding of the biology of the Aspergillus section Flavi 

strains resident in Nigeria. 
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2 MATERIAL AND METHODS  

Soils samples were collected from maize fields in 11 districts across three agroecological 

zones within Nigeria.  In each district samples were taken from five different maize fields.  Fungal 

isolates belonging to Aspergillus section Flavi were isolated by dilution plate technique on 

Modified Rose Bengal Agar (MRBA, Cotty, 1994a).  These isolates were screened for aflatoxin 

producing ability in liquid fermentation as previously described (Cotty, 1997; Atehnkeng et al., 

2008b; Donner et al., 2008).  Isolates were classified into different known species based on their 

production of only B-aflatoxins, or both B- and G-aflatoxins, and on their characteristic growth 

patterns, such as colony and sclerotial morphology, on various media Czapek-Dox Agar (BD 

Diagnostics, Sparks, MD), 5/2 agar (5% V8 juice and 2% agar, pH 5.2), and AFPA agar (A. flavus 

and parasiticus agar,Pitt et al., 1983) (Cotty, 1994a).  Isolates which produced only B-aflatoxins or 

no aflatoxin had sclerotia on average over 400µm in diameter and were classified as L-type A. 

flavus isolates.  Isolates which produced abundant small sclerotia similar to the S-type A. flavus but 

produced both B- and G-aflatoxins were initially classified as unnamed taxon SBG (Cotty et al., 

1999).  Isolates that produced B- and G-aflatoxins, dark green colonies, rough conidia, and reacted 

on AFPA agar plates similar to typical A. parasiticus were assumed to be A. parasiticus.   

 

2.1 Culture collections used in this study 

In this study a set of 54 highly toxigenic and 56 atoxigenic A. flavus L-strain isolates were 

used which were taken from the soil of 56 Nigerian maize fields located in three agroecological 

zones (Donner et al., 2008).  For comparison, isolates from various countries other than Nigeria 

were also used.  The atoxigenic A. flavus L-strain isolate AF36, the toxigenic isolates AF13 as well 

as the S-strain isolate AF70 and AF12 from the USA were analyzed (Cotty, 1989).  A. parasiticus 

isolate CP-461, which does not produce aflatoxin but the penultimate precursor, O-

methylsterigmatocystin (Dorner et al., 1984; Bhatnagar et al., 1987) from the USA was also used. 

Additionally, the aflatoxin producing A. parasiticus isolate NRRL 2999, a wild-type isolate from 

Uganda (Rambo et al., 1974) and the toxigenic A. parasiticus isolate BN009E (Cotty et al., 1999) 

from Benin were analyzed.  From Nigeria, 8 A. parasiticus isolates were used along with 18 
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isolates of unnamed taxon SBG isolated from maize fields, one unnamed taxon isolate A-11612 

(Hesseltine et al., 1970), and one A. minisclerotigenes NRRL A-11611 isolate (Hesseltine et al., 

1970; Pildain et al., 2008).  Isolate BN008R, BN040B, and BN038G of the unnamed taxon SBG 

were also included from Benin (Cotty et al., 1999).  A. nomius NRRL 13137 (Kurtzman et al., 

1987) was used as an outgroup. 

 

2.2 Sequencing and phylogenetic analysis 

Centrifuge tubes with 10 ml liquid Czapeks medium were inoculated with spores which 

were incubated at 32°C for 48-72 h.  After centrifuging at 10,000g for 15 min (Sorvall RC 5 B Plus, 

Newtown, CT, USA) mycelia masses were separated on Miracloth (Calbiochem, Corp. La Jolla, 

California).  DNA was isolated with FastDNA SPIN Kit according to the manufacturer`s instruction 

(Qbiogene, Irvine, CA).  DNA concentration was measured with a spectrophotometer (model ND-

1000, NanoDrop). 

 

Portions of the aflatoxin regulatory gene aflR, the polygalacturonase encoding gene pecA 

and the taka-amylase gene (taka) were amplified by using a HotMaster PCR kit (Eppendorf, 

Westbury, NY).  The primer sequences used were as follows 5`-3`: aflR1: GGAA-

ACAAGTCTTTTCTGG, aflR2: CAGAGCGTGTGGTGGTTGAT pecA1: GCTTAGC-

CTAGACTCAAG, pecA2: AAGAGGAGTCCAGCTTGTG; taka1: TATCCAGGGAATGGGCTT, 

taka2: TTAGAGGTCGTCCATGCTGCC.  The 50 μl reaction mixture included 3 μl DNA (5 

ng/μl), 5 μl of 10× PCR buffer, 1 μl of 10 mM dNTPs, 1.2 μl (10 ng/μl) of each primer, 0.3 μl Taq 

polymerase, and 38.3 μl deionized water.  The PCR reactions were preformed with a DNA thermo 

cycler (MyCycler, Bio-Rad Laboratories) using the following conditions: 5 min at 95° C followed 

by 38 cycles at 95° C for 30 sec, 55° C for 20 sec, 72° C for 30 sec.  A final extension was 

conducted for 10 min at 72° C.  The annealing temperature was optimized for each primer set with 

the result that the annealing temperature varied from 49-59°C.  Amplicons were visualized with 

SYBR Gold after 1.2% agarose gel electrophoresis.  Sequencing was preformed by The Genomic 

Analysis and Technology Core Facility (GATC) at the University of Arizona, Tucson. 
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DNA manipulations and alignments were made using DNAMAN (Lynnon Biosoft 

Vandreuil, Quebec, Canada).  Phylogenetic analyses were preformed using PAUP* Version 4.0b10 

for Microsoft Windows (Swofford, 2002) for parsimony and bootstrap analysis.  Bootstrap values 

were generated by 1,000 replications of the bootstrap procedure.  Gaps were treated as missing data 

and thus were excluded from the analysis.  A. nomius NRRL 13137 was used as an outgroup.  

2.3 Conidia and sclerotia production 

The production of conidial and sclerotial was measured for toxigenic and atoxigenic A. 

flavus L-strain isolates originating from Nigeria.  One atoxigenic and one toxigenic isolate were 

chosen from each of 55 locations.  Nine-centimeter Petri dishes with 20 ml of Czapeks medium 

were inoculated in the center with 15 µl of distilled water containing about 1,000 spores. Cultures 

were grown unilluminated at 32°C.  

 

After 25 days, the plates were washed three times with 100% ethanol, and then distilled 

water was added to the suspension up to 100 ml.  Conidial concentrations were measured in 20 ml 

sample tubes using a turbidity meter (Orbeco-Hellige Digital Direct-Reading Tubidimeter, Orbeco 

Analysis Systems Inc., New York, USA).  A linear nephelometric turbidity unit (NTU) vs colony 

forming unit (CFU) standard curve was developed to relate turbidity to conidial concentration.  The 

spore concentration was extrapolated from the NTU /CFU standard curve.  

 

The sclerotia were collected after having been rubbed and washed off the plate with water.  

After vacuum filtration on preweighed filter paper (Whatsman No. 4), the sclerotia were dried at 

42°C for 48 hours, and weighed.   

2.4 Data analysis 

Pearson correlations coefficients were generated with SAS (version 9.1.3, SAS Institute 

Inc., Cary, NC) to assess relationships of sclerotia weight, conidial production in NTU, and 

aflatoxin-producing ability in liquid fermentation of Nigerian A. flavus L-strains.  Linear regression 

analysis and nonlinear regression analysis were preformed with SigmaPlot 10 (Systat Software 

Inc.).  For these analyses, the isolates were grouped based on their ability to produce spores (NTU) 

in 8 groups.  The size of groups averaged 14 isolates (ranged= 8-19 isolates).  
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3 RESULTS 

3.1 Phylogenetic analysis 

The phylogenetic analysis was performed with three portions of the genes aflR, pecA, and 

taka-amylase as well as a combined dataset of all three genes.  This analysis showed that the B+G 

producing A. minisclerotigenes isolate A11611 was placed bootstrap supported between the A. 

flavus, A. parasiticus and the unnamed taxon SBG isolates.  In all genes, the Nigerian SBG isolates, 

including the A. flavus isolate A11612 and the SBG isolates of Benin (Cotty et al., 1999) were 

clustered in one well bootstrap supported clade (Figure 15, 16, and 17).  Within the A. flavus 

isolates, a separation of toxigenic and atoxigenic isolates appeared.  These separations were found 

in the analysis performed with the sequences of aflR and pecA (Figure15 and 17).  Nevertheless, 

these separations were rarely supported by high bootstrap values and the combined dataset showed 

a diverse structure (Figure 18).  Interestingly, Nigerian isolates belonging to A. parasiticus were 

found to occur in a distinct phylogenetic group, whereas, the A. parasiticus isolate of the United 

States, Uganda and the one isolate of Benin were placed strongly bootstrap supported separately 

from those of Nigeria.  The A. parasiticus isolate 2999 of Uganda lay between the isolates of 

Nigeria, Benin, and the one of the United States in only one of the three genes, the aflR.   
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Figure 15 One of the most-parsimonious (MP) trees based on pecA gene sequence. Of 674 total characters, 64 were 
parsimony informative. Tree was rooted with Aspergillus. nomius (A13137).  Bootstrap values based on 1,000 
replicates are shown above the line.  Toxigenic A. flavus isolates were written in bold.  SBG, unnamed taxon; AF, 
A. flavus; AM, A. minisclerotigenes; AP, A. parasiticus; CI, consistency index; HI, homoplasy index; RI, retention 
index; RC, rescaled consistency index 
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Figure 16 One of the most-parsimonious (MP) trees based on taka-amylase gene sequence. Of 811 total characters, 78 were 
parsimony informative.  Tree was rooted with Aspergillus. nomius (A13137).  Bootstrap values based on 1,000 
replicates are shown above the line.  Toxigenic A. flavus isolates were written in bold.  SBG, unnamed taxon; AF, 
A. flavus; AM, A. minisclerotigenes; AP, A. parasiticus;CI, consistency index; HI, homoplasy index; RI, retention 
index; RC, rescaled consistency index.  
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Figure 17.  One of the most-parsimonious (MP) trees based on aflR gene sequence. Of 685 total characters, 69 were 
parsimony informative.  Tree was rooted with Aspergillus nomius (A13137).  Bootstrap values based on 1,000 
replicates are shown above the line.  Toxigenic A. flavus isolates were written in bold.  SBG, unnamed taxon; AF, 
A. flavus; AM, A. minisclerotigenes; AP, A. parasiticus;CI, consistency index; HI, homoplasy index; RI, retention 
index; RC, rescaled consistency index. 
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Figure 18 One of 100 most-parsimonious (MP) trees based on the combined dataset taka-pecA-aflR and calculated only 
with Aspergillus flavus isolates.  Of 2,137 total characters, 44 were parsimony informative.  Tree is unrooted.  The 
outer ring divided the isolates in three groups the isolates.  The proportion of atoxigenic A. flavus isolates in each 
group is shown in percent.  CI, consistency index; HI, homoplasy index; RI, retention index; RC, rescaled 
consistency index. 

 

3.2 Conidial, sclerotial and aflatoxin production  

The toxigenic A. flavus L-strain isolates produced only B-aflatoxins and averaged 20.62 * 

104 ng g-1 total aflatoxins (ranged = 34.86 ng g-1 to 245.62 * 104 ng g-1).  Isolates of the Nigerian 

unnamed taxon strain SBG averaged 1.56 * 106 ng g-1 aflatoxins B1 (ranged = 1.69 * 103 ng g-1 to 

6.07 * 106 ng g-1) and averaged 1.65 * 106 ng g-1 aflatoxins G1 (ranged = 1.10 * 103 ng g-1 to 5.08 * 

106 ng g-1).  All isolates of both SBG and A. parasiticus produced both B- and G-aflatoxins.  Isolates 

Combined data 
set 

1 of 100 MP trees 
tree length = 116 

CI = 0.57 
HI = 0.43 
RI = 0.97 
RC = 0.52 
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of A. parasiticus averaged 1.18 * 106 ng g-1 aflatoxin B1 (ranged = 9.04 * 104 ng g-1 to 2.72 * 106 ng 

g-1) and averaged 1.40 * 106 ng g-1 aflatoxin G1 (ranged = 9.94 * 104 ng g-1 to 4.97 * 106 ng g-1). 

 

According to the Pearson’s correlation analyses, there were significant negative 

correlations between both the production of conidia mass and the mass of sclerotia (r = -0.58, P < 

0.0001) and aflatoxin-producing ability in liquid fermentation (r = -0.27, P = 0.0040) (Table 9).  

However, the weight of sclerotia was significant positive correlated with the aflatoxin-producing 

ability (r = 0.28, P = 0.0027).  

 

 Table 9 Pearson`s correlation coefficients of relationships among the quantity NTU of conidia, sclerotia weight, and of 
aflatoxin-producing ability of Aspergillus flavus L-strain isolatesa N=110 

 NTU sclerotia aflatoxin 

NTU 
 

1.00 -0.58 
<0.0001

-0.27 
0.0040 

sclerotia 
 

-0.58 
<0.0001 

1.00 
 

0.28 
0.0027 

aflatoxin 
 

-0.27 
0.0040 

0.28 
0.0027 

1.00 
 

 
aNormal font represents coefficient of correlation and italics represents probability of significance 

 

A. flavus L-strain isolates with an increasing ability to produce conidia on a Czapek’s 

media, showed decreasing ability to produce aflatoxin in liquid fermentations (Figure 19).  

Inversely, isolates with an increasing ability to produce sclerotia, showed an increasing production 

of aflatoxin (Figure 20).  A. flavus L-strain isolates with a decreasing ability to produce sclerotia, 

showed a proportional increasing production of conidia on the Czapeks plates (Figure 21).  
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Figure 19 Aflatoxin concentration (ppb) in liquid fermentation vs. conidial production in NTU after 25 days on Czapeks 
medium.  Y = 784,192 * EXP (-0.0142 * X); R2 = 0.942 

 
Figure 20 Aflatoxin concentration (ppb) in liquid fermentation vs. sclerotia weight (mg) after 25 days on Czapeks. Y = 

15,784 + EXP(0.0493 * X); R2 = 0.927 
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Figure 21 Sclerotia weight (mg) after 25 days on Czapeks medium vs. conidial production in NTU. The regression is 
linear. Y = 286.6 -0.415 X; R2 = 0.85 
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4 DISCUSSION  

The most common aflatoxin-producing species, Aspergillus flavus, can be divided into two 

strains based on its morphological and physiological characters.  The S-type produces numerous 

microsclerotia and high levels of aflatoxins, whereas the L-type produces fewer, large sclerotia and 

on average little to no aflatoxin (Saito et al., 1986; Cotty, 1989).  The A. flavus S-strain, termed SB, 

has been commonly found in North America and recently in East Africa (Cotty, 1989; Cotty, 1997; 

Jaime-Garcia et al., 2006; Probst et al., 2007).  These isolates produce only B-aflatoxins.  

Molecular phylogenetics suggests that SB isolates are closely related to the A. flavus type culture 

and other L strain isolates (Egel et al., 1994).  Nevertheless, other strains morphologically similar to 

the SB but with the ability to produce B- and G-aflatoxins, termed SBG, were found in Argentina, 

Thailand, Australia, and West Africa.  Recent studies revealed that the B- and G-aflatoxin-

producing isolates in Thailand belong to A. nomius (Ehrlich et al., 2007b) and that  most Group II 

isolates were classified as a new taxon, A. minisclerotigenes by Pildain et al. (2008).  The 

delineation of SBG type from West Africa has lead to some controversy and confusion for almost 

four decades.  The current work contributes to the gradual development of an understanding of SBG 

type isolates originating from West Africa.  

 

In the current work, as reported in previous studies, only SBG isolates were found.  Neither 

SB nor A. minisclerotigenes isolates were found in West Africa (Cotty et al., 1999; Atehnkeng et al., 

2008b; Donner et al., 2008).  The SBG type was first reported by Hesseltine et. al. (1970), who 

combined three isolates into one new unnamed taxon.  One isolate from North America produced 

only B-aflatoxin and was clearly assigned to SB A. flavus.  The other two isolates, A-11611 and A-

11612, from Nigeria produced B- and G-aflatoxins and were later known as strain SBG (Egel et al., 

1994; Cotty et al., 1999).  However, Saito et al. (1986) considered both the SB and SBG to be 

“atypical” variants of A. flavus, and applied the name A. flavus var. parvisclerotigenus (Saito et al., 

1993).  In the current study, the West African SBG isolates were placed phylogenetically between A. 

flavus and A. parasiticus in agreement with previous studies (Egel et al., 1994; Ehrlich et al., 2003; 

Ehrlich et al., 2005; Ehrlich et al., 2007b).  Therefore, it was suggested that the SBG were ancestral 

to both A. flavus and A. parasiticus.  In a recent study, Pildain et al. (2008) assigned A. flavus 
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Group II and SBG isolates originating from Australia, Argentina, Texas, and Nigeria as the new 

taxon A. minisclerotigenes.  Nevertheless, the SBG strains found in West African maize fields were 

neither related to A. minisclerotigenes nor to Group II by Geiser et al. (2000).  One of the A. 

minisclerotigenes isolates, A-11611, interfered clearly in all three gene regions with the SBGs from 

Nigeria.  A. minisclerotigenes was in all tested gene segments closely related to the A. flavus 

isolates, whereas the SBG isolates showed a clear distance from A. flavus and A. parasiticus.  In this 

study, another strain, A-11612, analyzed by Hesseltine et al. (1970) and Egel et al. (1994) was 

found strongly included within the West African SBG isolates, using all three gene regions tested.  

The phylogenetic analysis by Egel et al. (1994) of A-11611 and A-11612 indicated that these 

isolates were in two distinct phylogenetic groups, which is in agreement with the present study.   

 

Interestingly, most A. minisclerotigenes isolates and those belonging to Group II were found 

in peanuts and soil, while the West African SBG isolates were commonly isolated from maize fields 

(Cardwell et al., 2002; Atehnkeng et al., 2008a; Donner et al., 2008; Pildain et al., 2008).  Until 

now, neither A. minisclerotigenes isolates nor other S-type isolates were found in soil or from 

maize in West Africa.  Adaptations of species within section Flavi is evident within diverse animal 

and plant-associated niches in geographically isolated environments (Cotty, 1989; Cotty et al., 

1994a).  The unique Aspergillus FP-1 found in Japan and Texas is associated with fields cultivated 

with sugarcane (Kumeda et al., 2003; Garber et al., 2006).  Therefore, the special type of S-strain 

occurring in West Africa is probably well adapted to maize and its geographical environment.  

Nevertheless, it is not known which selective forces active in West Africa are responsible for these 

highly aflatoxin producing SBG strains in maize. 

 

It is still unclear why the unnamed taxon produces both aflatoxins.  The most recent 

common ancestor to section Flavi most likely produced higher levels of G1 aflatoxin relative to B1 

or O-methylsterigmatocystin (OMST) (Carbone et al., 2007a).  Since no species is known to 

produce only G-aflatoxins, Carbone et. al. (2007) suggested that the most recent common ancestor 

of section Flavi was a B-and G-aflatoxin-producer and that the selection has been acting on the 

G1/B1 ratio.  Isolates of the unnamed taxon and A. parasiticus produced on the average higher ratios 

of G1 aflatoxins relative to B1.  These observations seem consistent with the hypothesis by Carbone 
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et al. (2007) that the unnamed taxons of West Africa and A. parasiticus are one of the most 

common recent ancestors of section Flavi.  

 

Phylogenetic affiliations not described previously by current taxonomic schemes were also 

discovered.  The A. parasiticus isolates formed two distinct clades in two of three trees.  Especially 

the A. parasiticus isolates from Nigeria, which are morphologically and physiologically distinct 

from A. parasiticus, formed one separate clade from those of United States, Benin, and Uganda.  

Therefore, these isolates are only present in a relatively small geographic area.  Such diversity has 

been found for A. nomius in Thailand and for A. flavus in the United States (Bayman et al., 1993; 

Ehrlich et al., 2007b). 

 

It is evident that A. flavus S-strain isolates belong to clades in which the ability to produce 

aflatoxin is highly conserved, whereas L-type isolates belong to clades in which the aflatoxin-

producing ability is highly variable (Geiser et al., 2000b; Ehrlich et al., 2003).  The phylogenetic 

analyses of the aflR sequence presented here a separate A. flavus S-strain and L-strain set in distinct 

clades in agreement with previous studies (Cotty, 1997; Geiser et al., 2000b; Ehrlich et al., 2003).  

Similar to phylogenetic analyzes by Geiser et. al. (2000), atoxigenic A. flavus isolates were grouped 

into a separate clade from those which produce aflatoxin.  The results of this study further 

demonstrate a tendency towards separation of atoxigenics and toxigenics isolates into groups with 

similar patterns.  Some groups contained high proportions of atoxigenics up to 95% while other 

groups contained only 25% whereas in yet other groups, the proportions were equal.  Only high 

bootstrap values were detected in the aflR data set.   

 

It has been suggested that sclerotia may play an important role in survival and dispersal of A. 

flavus.  This role may account for selective pressure to produce sclerotia, despite their metabolic 

cost.  Aflatoxins may have a function in correlation to sclerotia and therefore, a relation between 

sclerotia morphogenesis (S-and L-strain) and the aflatoxins biosynthesis (Wicklow et al., 1983; 

Cotty, 1997; Guzman de Pena et al., 1997; Nesci et al., 2007).  High aflatoxin production has been 

associated with phenotypes having increased sclerotial formation, particularly in the S morphotype 

species of section Flavi (Cotty, 1997; Geiser et al., 2000b).  In the present study, a positive 

correlation between aflatoxin and the sclerotia mass within A. flavus L-strain isolates were 
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observed.  Similar results were also found in Argentina (Novas et al., 2002; Pildain et al., 2004).  It 

was suggested that the ability of the fungus to produce aflatoxin and sclerotia at the same time may 

contribute to its defense against natural predators, especially insects (Wright et al., 1982; Willetts et 

al., 1992).  The present study showed that an increasing production of spore mass was 

proportionally combined with a decreasing productions of sclerotia within the A flavus L-strain 

isolates.  Less aflatoxin producing L-strains produced a greater spore mass than highly toxigenics.  

Differences within the L-strains are reminiscent of the distinction between r- and K- selected 

species (Harper, 1977); L-strains that produce numerous conidia should be favored for colonization, 

whereas L-strains with a combined ability to produce sclerotia and aflatoxin devote more resources 

to resistant structures useful for survival.   

 

Since efforts have begun to initiate a biological management with native atoxigenic L-

strains to control the contamination in maize (Atehnkeng et al., 2008a; Hell et al., 2008), the 

combination of less aflatoxin producing isolates with the ability to produce high spore mass could 

help support a control management.  A successful biological control of aflatoxin contamination 

necessitates very high ratios of atoxigenic to toxigenic strains in the field (Horn, 2007).  Infection 

of aerial crops, like maize, occur primarily through wind and insect dispersal of conidia, and 

wounding greatly enhances colonization by A. flavus (Diener et al., 1987; Payne, 1998).  The ability 

of native atoxigenic isolates to produce great amounts of conidia combined with other control 

management techniques could be a competitive advantage against toxigenic strains in the field.  

Nevertheless, the natural ratio of highly toxigenic to atoxigenic strains is almost equal on tested 

maize and in soil (Atehnkeng et al., 2008b; Donner et al., 2008).  Studies in North America have 

shown that a relatively low proportion of highly toxigenic strains can cause the vast majority of 

aflatoxin contamination (Cotty, 1996).  Thus, a biological control management with an atoxigenic 

strain is  necessary to prevent aflatoxin contamination in Nigeria.  

 

In West Africa, unique species of section Flavi occur which are highly diverse genetically, 

physiologically, and morphologically.  My research has shown that the diversity among these 

isolates varies greatly in comparison to other geographical regions which are also home to Flavi 

isolates.  Therefore, knowledge of the specific nature of the West African isolates is needed in order 
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to develop the most effective biological control management for reducing aflatoxin contamination 

of maize in Nigeria. 
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 GENERAL CONCLUSION 

The conclusions of the present thesis are:  

 

1. The most common member of Aspergillus section Flavi from the more than 

1,000 isolates collected from soil of 55 Nigerian maize fields located in three 

agroecological zones in Nigeria was the A. flavus L-strain (85%), followed by 

the strain SBG (8%), A. tamarii (6%) and A. parasiticus (1%).   

2. All SBG and A. parasiticus isolates produced both B- and G-aflatoxins and 

greater than 300 µg g-1 total aflatoxins. 

3. Only 44% of 492 A. flavus isolates produced aflatoxins (limit of detection 5 ng 

g-1).  Thirty two percent of the A. flavus isolates produced >1 µg g-1 total 

aflatoxins, but no A. flavus isolate produced G-aflatoxins. 

4. Five of the 20 VCGs from Nigeria had large deletions (37kb to 65kb) 

extending from the teleomeric side of the aflatoxin biosynthesis cluster.  In 

one case (isolate AV0222) the deletion extended through the cluster to the 

adjacent sugar cluster.  The remaining twelve atoxigenic VCGs, including the 

VCG used for aflatoxin management in North America contained all genes of 

the aflatoxin pathway. 

5. Comparison of pathway genes revealed more changes in atoxigenic than in 

aflatoxin-producing VCGs and several non-synonymous changes that are 

unique to atoxigenics.  These observations support the existence of 

atoxigenicity for very long periods.  However, for some atoxigenic VCGs, 

additional sequencing and experimentation will be required to determine 

precise causes of atoxigenicity.   

6. The phylogenetic analysis revealed that the atoxigenic VCGs and isolates with 

large deletions in the aflatoxin biosynthetic gene cluster were closely related.  

7. The phylogenetic analysis revealed that atoxigenic A. flavus isolates were 

grouped into a separate clade from those which produce aflatoxin. 



General Conclusion   

 74 

  

8. The phylogenetically analyzed SBG isolates of Nigeria revealed that they 

neither belong to the A. minisclerotigenes nor to the Group II isolates.  

Therefore, the SBG isolates of West Africa are unique isolates resembling the 

S-strains but occurring in only a relatively small area.  

9. A. parasiticus isolates of Nigeria differed phylogenetically from those 

originating from Benin, Uganda, and the United States.  

10. A. flavus L-strain isolates with an increasing ability to produce conidia on a 

Czapek’s media, showed decreasing ability to produce aflatoxin in liquid 

fermentations.  Inversely, isolates with an increasing ability to produce 

sclerotia, showed an increasing production of aflatoxin.  A. flavus L-strain 

isolates with a decreasing ability to produce sclerotia, showed a proportional 

increasing production of conidia on the Czapeks plates.     
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