# Molecular characterization of porcine genes encoding complement components of the terminal lytic pathway and their association with hemolytic complement activity 

Inaugural-Dissertation zur

Erlangung des Grades
Doktor der Agrarwissenschaften
(Dr. agr.)
der
Hohen Landwirtschaftlichen Fakultät
der
Rheinischen Friedrich - Wilhelms - Universität
zu Bonn
vorgelegt im Mai 2008
von
Do Vo Anh Khoa
aus
Cantho, Vietnam

| Referent: | Prof. Dr. Klaus Wimmers |
| :--- | :--- |
| Korreferent: | Prof. Dr. Karl Schellander and Prof. Dr. Jéns Léon |
| Tag der mündlichen Prüfung: | 28. August 2008 |
| Erscheinungsjahr: | 2009 |

Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn unter http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

Dedicated to all beloved members in my large family including great grandmamma, parents, parents-in-law, elder brother, younger sister, especially, wife and daughter


#### Abstract

Molecular characterization of porcine genes encoding complement components of the terminal lytic pathway and their association with hemolytic complement activity

Activation of the complement system from three different pathways (classical, alternative and lectin pathway) results in the generation of the C3-convertase enzyme, which plays a key role in formation of the membrane attack complex (C5b-C9) causing the death of target cells. The porcine C3 and C5 complement components were characterized and studied for association with hemolytic complement activity (Kumar et al. 2004, Wimmers et al. 2003). In order to gain understanding for the membrane attack complex action in the innate immune mechanism, in this study it was focussed on the terminal complement components C6, C7, C8, and C9 to characterize their molecular structure, to detect single nucleotide polymorphisms (SNPs), to establish their location on chromosome, and to associate their genetic variation with hemolytic complement activity in both classical and alternative pathway in the pig.


The entire length of cDNA sequence of the candidate genes C6, C7, C8A, C8B, C8G and C9 were identified with 3306, 3561, 2146, 2461, 840 and 2536 bp encoding 935, 843, 589, 611, 202 and 543 amino acids, respectively. The porcine deduced protein sequence of the candidate genes showed 67-83\% identities with human analogue. Respectively, screening the coding region revealed five, six, seven, nine, and two SNPs in the porcine C6, C7, C8A, C8B, and C9 but non in C8G by polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP). Most of the SNPs belong to the functional protein domains such as TSP1, LDLa, MACPF, CCP and FIMAC. Genotyping for several SNP sites in three porcine breeds German Landrace (LR), Pietrain (PIE) and Muong Khuong (MK) showed that European breeds (LR and PIE) had higher allelic variation than the Asian breed (MK). All genotypic frequencies fit to Hardy-Weinberg equilibrium rule.

Using the INRA-Minnesota porcine Radiation Hybrid mapping panel, the porcine C6, C7, and C9 were assigned to the q-arm of chromosome 16 (q1.4) whereas the porcine

C8A, and C8B were mapped to chromosome 6 (q3.1-q3.5). Particularly the porcine C8G was located on chromosome 1 (q2.13).

Genetic association with hemolytic complement activity in both classical (CH50) and alternative pathway (AH50) was carried out in 417 animals of a $F_{2}$ DUMI resource population derived from cross between Duroc and Berlin Miniature Pig. Therefore, the F2 DUMI animals were immunized with Mycoplasma hyopneumoniae (Mh), Aujeszky (ADV) and porcine reproductive and respiratory syndrome (PRRSV) vaccine. Sera were isolated from blood samples taken prior and post vaccinations and measurement for CH50 and AH50 was conducted thereafter. For each gene except the porcine C8G, the SNP site with amino acid substitution $862 \mathrm{~A} \rightarrow \mathrm{G}$ for $\mathrm{C} 6,881 \mathrm{~A} \rightarrow \mathrm{G}$ for $\mathrm{C} 7,1544 \mathrm{C} \rightarrow \mathrm{T}$ for C8A, 222C $\rightarrow$ T for C8B, and $407 \mathrm{C} \rightarrow \mathrm{G}$ for C9, segregating in the DUMI, were used for genotyping the $\mathrm{F}_{2}$ animals using PCR-RFLP with the restriction enzymes TaqI, MboII, Hin6I, FnuDII, and HpyCH4III, respectively. The association results illustrated that significant difference in hemolysis among genotypes was found in CH50 for C7 ( $p=0.0080$ ), and C9 ( $p=0.0488$ ). However, this was close to significance for C6 ( $\mathrm{p}=0.0853$ ) and C8A ( $\mathrm{p}=0.0650$ ) in CH50. Therefore between homozygous genotypes CC and TT for C8A hemolytic activity showed significant difference ( $\mathrm{p}=0.0522$ ). There was no association of any of the candidate gene with hemolytic complement activity in the alternative pathway. Analyzing the interaction between genotypes and eight different immunization time points in AH50 revealed significant differences for C8A ( $\mathrm{p}=0.0027$ ), C8B $(\mathrm{p}=0.0231)$, and C9 $(\mathrm{p}=0.0340)$ whereas in CH50 this interaction was found significant for C8B ( $\mathrm{p}=0.0048$ ). Hemolytic complement activity showed the highest values at the fourth day after immunization with ADV vaccine for CH50 whereas linear increment during the experiment was performed for AH50. Along the vaccination program after each of complement stimulation by different vaccines, a short termed increment of complement activity was found, especially with ADV vaccine. Also male animals always performed higher hemolysis than females in both pathways. These results show that hemolytic complement activity depends on the genetic variation, sex, age, kind of vaccine, and interaction of complement components.

In summary, the obtained results provide the means for further understanding the role of C6, C7, C8, and C9 in natural immune response of the host against pathogens. It also
promotes the porcine C6, C7, C8, and C9 as candidate genes in efforts to genetically improve general animal health, a goal of breeding programmes for food animals.
Abstract ..... IV
List of abbreviations ..... XI
List of tables ..... XIV
List of figures ..... XVII
1 Introduction ..... 1
2 Literature review ..... 3
2.1 Innate immunity and adaptive immune response ..... 3
2.2 Complement system ..... 4
2.2.1 The classical pathway ..... 4
2.2.2 The lectin pathway ..... 5
2.2.3 The alternative pathway ..... 6
2.2.4 Membrane attack complex (MAC) ..... 6
2.3 Molecular characterization of candidate genes ..... 8
2.3.1 The sixth complement component (C6) ..... 9
2.3.2 The seventh complement component (C7) ..... 10
2.3.3 The eight complement component (C8) ..... 11
2.3.4 The ninth complement component (C9) ..... 14
2.4 Functional protein domains in candidate genes ..... 15
2.5 Polymorphisms and deficiency of candidate complement com- ..... 17 ponents
2.5.1 The sixth complement component (C6) ..... 17
2.5.2 The seventh complement component (C7) ..... 18
2.5.3 The alpha and gamma chain of the eighth complement compo- ..... 19 nent (C8A-G)
2.5.4 The beta chain of the eighth complement component (C8B) ..... 20
2.5.5 The ninth complement component (C9) ..... 21
2.6 Position of candidate genes on chromosome ..... 22
2.7 Hemolytic complement activity ..... 23
3 Materials and methods ..... 27
$3.1 \quad$ Materials ..... 28
3.1.1 Materials on station ..... 28
3.1.1.1 Experimental animals, tissue and data collection ..... 28
3.1.1.2 Phenotyping of the immune responsiveness: Sampling design ..... 31
3.1.2 Materials for laboratory analysis ..... 32
3.1.2.1 Chemicals, biological materials, kits and others ..... 32
3.1.2.2 Buffers and reagents ..... 33
3.1.2.3 Used softwares ..... 34
3.1.2.4 Equipments ..... 35
$3.2 \quad$ Methods ..... 36
3.2.1 Immunological methods: complement activity measurement ..... 36
3.2.2 Molecular genetic methods ..... 37
3.2.2.1 DNA extraction ..... 37
3.2.2.2 RNA isolation ..... 37
3.2.2.3 Complementary DNA (cDNA) synthesis ..... 38
3.2.2.4 Amplicon and primer design ..... 38
3.2.2.5 Polymerase chain reaction (PCR) ..... 39
3.2.2.6 PCR product purification ..... 40
2.2.2.7 Sequencing ..... 40
3.2.2.8 $\quad$ Screening for single nucleotide polymorphisms (SNPs) ..... 40
3.2.2.9 SNP genotyping ..... 41
3.2.2.10 Assignment of candidate genes to chromosomes ..... 41
3.2.2.11 Phylogenetic analysis ..... 43
3.2.2.12 Statistical analysis ..... 43
4 Results ..... 50
4.1 Molecular characterization and detection of polymorphisms ..... 50
4.1.1 The sixth component of the porcine complement system (C6) ..... 50
4.1.1.1 Complementary DNA and predicted protein sequence ..... 50
4.1.1.2 Single nucleotide polymorphisms ..... 53
4.1.2 The seventh component of the porcine complement system (C7) ..... 53
4.1.2.1 Complementary DNA and predicted protein sequence ..... 53
4.1.2.2 Single nucleotide polymorphisms ..... 55
4.1.3 The alpha chain of the eighth component of the porcine comple- ..... 56 ment system (C8A)
4.1.3.1 Complementary DNA and predicted protein sequence ..... 56
4.1.3.2 Single nucleotide polymorphisms ..... 57
4.1.4 The beta chain of the eighth component of the porcine comple- ..... 59 ment system (C8B)
4.1.4.1 Complementary DNA and predicted protein sequence ..... 59
4.1.4.2 Single nucleotide polymorphisms ..... 60
4.1.5 The gamma chain of the eighth component of the porcine com- ..... 62 plement system (C8G)
4.1.5.1 Complementary DNA and predicted protein sequence ..... 62
4.1.5.2 Single nucleotide polymorphisms ..... 63
4.1.6 The ninth component of the porcine complement system (C9) ..... 64
4.1.6.1 Complementary DNA and predicted protein sequence ..... 64
4.1.6.2 Single nucleotide polymorphisms ..... 65
4.2 Structural relationship analysis among the porcine homologous ..... 67 complement candidate sequences
4.3 Detection of genotypes and assignment of candidate genes to pig ..... 71 chromosome
4.3.1 Genotype analysis ..... 71
4.3.2 Location of the candidate genes on porcine chromosome ..... 76
4.4 Association of candidate genes with hemolytic complement ac- ..... 78 tivity
4.4.1 The classical lytic pathway ..... 78
4.4.2 The alternative pathway ..... 84
5 Discussion ..... 85
5.1 Structure of candidate genes ..... 85
5.1.1 Characteristic of the porcine C6 and C7 complement genes ..... 85
5.1.2 Characteristic of the porcine C8 complement gene ..... 87
5.1.3 Characteristic of the porcine C9 complement gene ..... 90
5.1.4 Common and specific structural and functional features of com- ..... 94 ponents of the terminal lytic complement pathway
5.2 Polymorphisms, genotyping and assignment of candidate genes ..... 97 to chromosome
5.3 Association analysis with hemolytic complement activity ..... 102
5.3.1 Hemolytic complement activity depending on genotypes of the ..... 102 candidate genes
5.3.2 Other factors on hemolytic complement activity in both path- ..... 105 ways
5.3.2.1 Effect of gender ..... 107
5.3.2.2 Effect of age ..... 108
5.3.2.3 Interaction of complement components ..... 108
5.3.2.4 Effect of vaccination ..... 109
6 Summary ..... 114
$7 \quad$ Zusammenfassung ..... 116
8 References ..... 120
9 Annex ..... 153

List of abbreviations

| a.a or A.A | Amino acid |
| :---: | :---: |
| Ala | Alanine |
| Arg | Arginine |
| Asn | Asparagine |
| Asp | Asparagine acid |
| bp | Base pair |
| BMP | Berlin Mininature Pig |
| Bos taurus (B. taurus) | Cattle |
| Branchiostoma belcheri (B. belcheri) | Japanese lancelet |
| ${ }^{\circ} \mathrm{C}$ | Degree Celcius |
| Canis lupus familiaris (C. familiaris) | Dog |
| CCP | The complement control protein |
| cds | Coding region |
| Cys | Cysteine |
| C6 | Complement component C6 |
| C7 | Complement component C7 |
| C8A | Complement component C8A |
| C8B | Complement component C8B |
| C8G | Complement component C8G |
| C9 | Complement component C9 |
| cDNA | Complementary deoxyribonucleic acid |
| Ctenopharyngodon idella (C. idella) | Grass carp |
| Danio rerio (D. rerio) | Zebrafish |
| DNA | Deoxyribonucleic acid |
| dNTP | Deoxyribonucleotide triphosphate |
| DR | Duroc porcine breed |
| DUMI | Duroc Berlin Miniature pig resource population |
| EGF | Epidermal growth factor module |
| Equus caballus (E. caballus) | Horse |


| Fc | Crystallizable fragment of immunoglobulin G molecule |
| :---: | :---: |
| FIMAC | Factor I membrane attack complex |
| Fundulus heteroclitus (F. heteroclitus) | Killifish |
| Gallus gallus (G. gallus) | Red jungle fowl |
| Glu | Glutamine acid |
| Gly | Glycine |
| h | Hour |
| His | Histidine |
| Homo sapiens (H.sapiens) | Human |
| HS | Hampshire porcine breed |
| Ile | Isoleucine |
| IMpRH | INRA-Minnesota porcine radiation hybrid panel |
| LDLa | Cysteine-rich repeat in the low-density lipoprotein |
| Leu | Leucine |
| Lipocalin | Lipocalin protein domain |
| LOD | Log of the odds |
| LR | German Landrace porcine breed |
| LSM | Least square mean |
| Lys | Lysine |
| MAC | Membrane attack complex |
| Macaca mulatta (M. mulatta) | Rhesus monkey |
| MACPF | Membrane-attack complex / perforin |
| Met | Methionine |
| min | Minute |
| MK | Muong Khuong porcine breed |
| ml | Milliliter |
| Monodelphis domestica (M. domestica) | Gray short-tailed opossum |
| mRNA | Messenger ribonucleic acid |
| Mus musculus (M. musculus) | House mouse |
| ng | Nanogram |


| nt | Nucleotide |
| :---: | :---: |
| Oncorhynchus mykiss (O. mykiss) | Rainbow trout |
| ORF | Open reading frame |
| Oryctolagus cuniculus (O. cuniculus) | rabbit |
| Pan troglodytes (P. troglodytes) | Chimpanzee |
| Paralichthys olivaceus (P. olivaceus) | Bastard halibut |
| PCR | Polymerase chain reaction |
| PCR-RFLP | Polymerase chain reaction-Restriction fragment length polymorphism |
| PIE | Pietrain porcine breed |
| Pongo pygmaeus (P. pygmaeus) | Orangutan |
| Pro | Proline |
| Rattus norvegicus (R. norvegicus) | Norway rat |
| Rec. fracs | Recombination fractions |
| rpm | Rotations per minute |
| s | Seconds |
| SAS | Statistic analysis system software |
| SE | Standard error |
| Seq | Sequence |
| Ser | Serine |
| SNP | Single nucleotide polymorphism |
| Sus scrofa (S. scrofa) | Pig |
| TAE | Tris-acetate-EDTA |
| Takifugu rubripes (T. rubripes) | The Japanese pufferfish fugu rubripes |
| Thr | Threonine |
| TSP1 | Type 1 repeats in thrombospondin-1 |
| Tyr | Tyrosine |
| U | Unit |
| UTR | Untranslated region |
| Val | Valine |
| $\mu \mathrm{l}$ | Microliter |
| Xenopus tropicalis (X. tropicalis) | Silurana tropicalis |

Page
Table 1 Oligonucleotide primer pairs used for determination of the cod- ..... 44 ing sequence and $5^{\prime}$ and $3^{\prime}$ untranslated regions (UTR) and for screening SNP of the candidate genes
Table 2 Oligonucleotide primers used for radiation hybrid mapping ..... 46
Table 3 List of restriction enzyme used for PCR-RFLP ..... 47
Table 4 Oligonucleotide primers used to discriminate alleles for geno- typing
Table 5 Percent nucleotide sequence and amino acid sequence identities ..... 52 of the porcine C6 with different species
Table 6 Characterization of SNPs in the porcine C6 candidate gene ..... 53
Table 7 Percent nucleotide sequence and amino acid sequence identities ..... 55 of the porcine C7 with different species
Table 8 Characterization of SNPs in the porcine C7 candidate gene ..... 56
Table 9 Percent nucleotide sequence and amino acid sequence identities ..... 57 of the porcine C8A with different species
Table 10 Characterization of SNPs in the porcine C8A candidate gene ..... 59
Table 11 Percent nucleotide sequence and amino acid sequence identities ..... 61
of the porcine C8B with different species
Table 12 Characterization of SNPs in the porcine C8B candidate gene ..... 62
Table 13 Percent nucleotide sequence and amino acid sequence identities ..... 63 of the porcine C8G with different species
Table 14 Percent nucleotide sequence and amino acid sequence identities ..... 67 of the porcine C9 with different species
Table 15 Number of cysteine residues in each functional protein domain of the candidate genes
Table 16 Genotypic frequencies of the candidate genes in different breeds ..... 71
Table 17 Allelic frequencies at several SNPs in different breeds of pig ..... 73
Table 18 Summary of RH mapping results of the candidate genes ..... 78
Table 19 Least squares means of hemolytic activity in both the classical ..... 79 (CH50) and alternative (AH50) complement pathways for dif- ferent genotypes
Table 20 Chromosomal assignments of the genes in difference species ..... 102
Table 21 Position and length of predicted porcine C8A exons ..... 153
Table 22 Position and length of predicted porcine C6 exons ..... 154
Table 23 Position and length of predicted porcine C7 exons ..... 155
Table 24 Position and length of predicted porcine C8B exons ..... 156
Table 25 Position and length of predicted porcine C8G exons ..... 156
Table 26 Position and length of predicted porcine C9 exons ..... 157
Table 27 Least squares means of the classical complement hemolytic157activity for the interaction of different genotypes x time point inporcine C6 gene
Table 28 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C7 gene
Table 29 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C8A gene
Table 30 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C8B gene
Table 31 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes $x$ time point in porcine C9 gene
Table 32 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C6 gene
Table 33 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C7 gene
$\begin{array}{lll}\text { Table } 34 & \text { Least squares means of the alternative complement hemolytic } & 160 \\ & \text { activity for the interaction of different genotypes x time point in }\end{array}$Table 35 Least squares means of the alternative complement hemolytic160 activity for the interaction of different genotypes x time point in porcine C8B gene
Table 36 Least squares means of the alternative complement hemolytic 160 activity for the interaction of different genotypes x time point in porcine C9 gene

List of figures
Page
Figure 1 Response to invading microorganisms by innate and adap- ..... 3 tive immune systems
Figure 2 Assembly of the MAC ..... 6
Figure 3 Structural organization of the MAC protein family ..... 8
Figure 4 Functional sites in C8 ..... 12
Figure 5 Locations of published human C6, C7 or C9 mutations ..... 22 leading to deficiencies (to June 2003) in relation to the modules
Figure 6 General schema of experimental approach ..... 27
Figure 7 Three different phenotypes in Muong Khuong pig breed ..... 29
Figure 8 Sampling in Muong Khuong animals on farm ..... 30
Figure 9 The structure of $\mathrm{F}_{2}$ DUMI resource population based on ..... 31 reciprocal crossing of Duroc and Berlin Miniature Pig
Figure 10 Vaccination program and time of blood sampling before ..... 32 and after immunization in $F_{2}$ DUMI population
Figure 11 The phylogenic tree of C6 proteins ..... 51
Figure 12 Location of protein domains in the porcine C6 sequence ..... 52
Figure 13 The phylogenic tree of C7 proteins ..... 54
Figure 14 Location of protein domains in the porcine C7 sequence ..... 55
Figure 15 Location of protein domains in the porcine C8A sequence ..... 58
Figure 16 The phylogenic tree of C8A proteins ..... 58
Figure 17 The phylogenic tree of C8B proteins ..... 60
Figure 18 Location of protein domains in the porcine C8B sequence ..... 61
Figure 19 Location of protein domains in the porcine C8G sequence ..... 63
Figure 20 The phylogenic tree of C8G proteins ..... 64
Figure 21 Location of protein domains in the porcine C9 sequence ..... 65
Figure 22 The phylogenic tree of C9 proteins ..... 66
Figure 23 Similarity among amino acid sequences of the candidate ..... 68genes
Figure 24 The phylogenic tree of homologous proteins of the terminal ..... 68 lytic pathway
Figure 25 Multiple alignments of homologous protein domains in69both the amino terminus and carboxyl-terminus of the can-didate genes C6, C7, C8A, C8B and C9
Figure 26 A representative pattern of comparative sequencing ..... 74
Figure 27 Representative patterns of detection of SNP using PCR- ..... 75RFLP
Figure 28 A representative pattern for PCR result of 118 DNA clones ..... 77 of the IMpRH
Figure 29 Position of the candidate genes on porcine chromosomes ..... 77
Figure 30 Histogram of least squares means of hemolytic complement ..... 80 activity in the classical pathway depending on genotypes of the candidate genes
Figure 31 Histogram of least squares means of hemolytic complement activity in the alternative pathway depending on genotypes of the candidate genes
Figure 32 Histogram of least squares means of hemolytic complement ..... 82 activity in the classical pathway along vaccination for the interaction of genotypes of each candidate gene and eight different time points
Figure 33 Histogram of least squares means of hemolytic complement ..... 83
activity in the alternative pathway along vaccination for the
interaction of genotypes of each candidate gene and eight
different time points
Figure 34 3D-structure of C6 (a.a 180-515), C7 (a.a 128-411), C8A (136-497), C8B (a.a 168-508) and C9 (122-506) homologous protein fragments
Figure 35 Comparison of the porcine C6 (a.a 22-631) and C7 (a.a 23- ..... 97
575) amino-termini with whole mature porcine C8A, C8B
and C9 proteins
Figure 36 Comparison of the porcine C6 (a.a 632-935) and C7 (a.a ..... 97 576-843) carboxyl-termini with whole mature porcine C8A, C8B and C9 proteins
Figure 37 Correspondences between human and pig chromosomal ..... 99 segments. Location of the porcine C6, C7 and C9 gene on the q-arm of chromosome 16
Figure 38 Correspondences between human and pig chromosomal ..... 100 segments. Location of the porcine C8G gene on the q-arm of chromosome 1
Figure 39 Correspondences between human and pig chromosomal ..... 101 segments. Location of the porcine C8A and C8B gene on the q -arm of chromosome 6
Figure 40 Nucleotide and predicted protein sequence of the porcine ..... 161 C6 gene
Figure 41 Nucleotide and predicted protein sequence of the porcine ..... 164 C7 gene
Figure 42 Nucleotide and predicted protein sequence of the porcine ..... 167 C8A gene
Figure 43 Nucleotide and predicted protein sequence of the porcine ..... 169 C8B gene
Figure 44 Nucleotide and predicted protein sequence of the porcine ..... 172 C8G gene
Figure 45 Nucleotide and predicted protein sequence of the porcine ..... 173C9 gene
Figure 46 Alignment of the C6 proteins among species ..... 175
Figure 47 Alignment of the C7 proteins among species ..... 179
Figure 48 Alignment of the C8A proteins among species ..... 181
Figure 49 Alignment of the C8B proteins among species ..... 184
Figure 50 Alignment of the C8G proteins among species ..... 187
Figure 51 Alignment of the C9 proteins among species ..... 188

## 1 Introduction

Infectious diseases in farm animals and their control by therapeutic, prophylactic and metaphylactic treatments and veterinary management schemes cause immense costs, animal welfare concerns and increasingly burden man and environment with chemotherapeutics. Disease infections are a main problem in animal production systems causing customer 's demands that the use of medicals and vaccines should be reduced. In pig production, producers are using antibiotics to treat illness, to prevent the spread of disease and to improve the nutritional efficiency of animals. The use of antibiotics in farm animals affects the treatment of human diseases due to bacterial resistance. The question is how to reduce antibiotics in pork? Stopping the use of antibiotics for animal growth is one of the best ways done in recent years but not at all. Particularly, Mycoplasma hyopneumoniae (Mh) infection causes the disease Porcine Enzootic Pneumonia, a highly contagious and chronic disease affecting pigs and a significant reduction in the growing performance of pigs with estimated economic losses of \$0.2-1 billion per year in the United States (Clark et al. 1991). Mh is spread worldwide and present in almost pig herd (Minion 2002). Antibiotics are less effect in disease treatment because they do not completely remove the infection. Vaccines have been found to reduce the severity of the disease but do not prevent the disease from occurring in infected pigs (Haesebrouck et al. 2004). Sadly, the immune response in presence of Mh in pigs is slow and ineffective (Minion 2002). In the case of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) infection, during outbreak periods the farrowing rate declined by 10.92 points. The number of pigs weaned per litter declined by 1.5 pigs per litter. Mortality level of nursery pigs increased by $10.65 \%$ points. Mortality level in grow-finish pigs increased by $6.05 \%$ points. Feed efficiency and average daily gain for nursery and grow-finish pigs were also impacted. Average daily gain declined by 0.21 pounds per day ( $25 \%$ decline) for the nursery pigs and 0.20 pounds per day ( $12 \%$ decline) for the grow-finish pigs...The total economic impact on production costs to pig producers in the United States is projected to be $\$ 560.32$ million annually (Kliebenstein 2004). Another question is what are better livestock management techniques to improve the health status in both animal and human? Immunologically and genetically improved health and natural disease resistance leads to higher product quality, reduced danger of transmission of infectious agents or traces of antibiotics and has positive impact on pro-
duction efficiency and animal welfare. Disease reduction by genetic means has certain advantages through cumulative and permanent effects. The use of powerful methodologies in molecular biology, biochemistry, and physiology in the last two decades has led to impressive progress in our understanding of the mechanisms of complement activation and its role in immune responses for preventing pathogen in human and some different animal species (Makrides 1998). Direct selection for disease incidence requires, besides a unique pig identification and disease registration system, challenge routines that are inconvenient in intensive pig production. Indirect selection for the expression of immune capacity may be an alternative but requires detailed knowledge of the different components of the immune system. Complement is an important humoral innate immune defence system against invading microorganisms. The activation of the complement cascade allows the direct killing of microbes, the disposal of immune complexes, and the regulation of other immune processes. In pig, the complement components C7 and C8A have been completely characterized at the molecular level (Agah et al. 2000, Nakajima et al. 1998). Agah et al (2000) could show that addition of purified porcine C7 restored the hemolytic activity of C7-depleted human sera in a dose-dependent manner. Genetic polymorphism of the sixth complement component was also detected in several different breeds of pig (Shibata et al. 1993). Furthermore, the porcine C8A gene was physically assigned to chromosome 6q3.3-q3.5 by in situ hybridization using porcine bacterial artificial chromosome (BAC) clone as a hybridization probe (Nakajima et al. 1998) and the porcine C9 gene has been mapped to chromosome 16q1.4 by fluorescence in situ hybridization (Thomsen et al. 1998).

In order to gain more knowledge about regulation of pig complement system as well as to contribute to the improvement of farm animal health status, an investigation on the complete cDNA molecular structure of the porcine terminal complement components C6, C7, C8 and C9 genes was conducted to detect single nucleotide polymorphisms within the candidate genes and to study their association with hemolytic complement activity in the classical and alternative pathway in the $\mathrm{F}_{2}$ DUMI resource population and to assign them to porcine chromosomes by radiation hybrid and linkage mapping.

## 2 Literature review

### 2.1 Innate immunity and adaptive immune response

The two primary immune responses to microorganisms and their antigens are generated by the innate and acquired or adaptive immune systems. The innate immune system is considered the first line of defense in protecting the host from invading organisms (Thacker 2003). This means that the cells of the innate system recognize, and respond to, pathogens in a generic way in a non-specific manner and not confer long-lasting or protective immunity to the host. Only if the organism escapes and survives the innate immune response an adaptive or acquired immune response occur, resulting in the generation of a specific immune response that will target that particular organism or antigen. The response increases with each exposure to the antigen (Thacker 2003).

| Innate immunity |
| :---: |
| (immediate: |
| $0-4$ hours) |


| Early induced |
| :---: |
| response |
| (early: 4-96 hours) |


| Adaptive immune <br> response <br> (late: $>96$ hours) |
| :---: |



Figure 1 Response to invading microorganisms by innate and adaptive immune systems (Thacker 2003)

The major component of the natural immunity consists of the natural killer (NK) cells, phagocytes, dendritic cells, and the complement system (Heyworth 2001, Medzhitov 2001). Lymphocytes (B and T cells) superimposed on innate immunity to improve host defense against microbes are the primary cell type of the adaptive immune response (Thacker 2003). The adaptive immune response is distinguished from innate immune mechanisms by a higher degree of specific reactivity for the including agent and recall memory (Doenhoff 2000). Its function is mediated by specific antibody or humoral immunity and a specific cellular immune response or cell mediated immunity (Corbeil 1991). This study only refers to the activity of the complement system.

### 2.2 Complement system

The complement system, an effector mechanisms of humoral immunity as well as an important mediator of the innate immune system (Thacker 2003), is a highly regulated and complex set of interacting proteins in blood plasma and on the cell surfaces that can recognize, bind to and kill or remove invading microbes. Normally, these proteins are inactive until they are cleaved by a protease, which, in turn, converts them into another protease. On the other hand, some components of the system serve as the substrate of a prior component and then as an enzyme to activate a subsequent component. There are three pathways of complement activation classical pathway, lectin pathway and alternative pathway leading to the formation of the membrane attack complex (MAC). Assembly of the MAC on target cells results in the formation of transmembrane pores that can lead to cell killing (Müller-Eberhard 1986).

### 2.2.1 The classical pathway

The classical pathway of complement activation is a sequentially acting, multistep cascade in which the complement component C1, C4, C2, and C3 are involved (Loos et al. 1998). The component C1 circulates in blood serum as a molecular complex containing 6 molecules of C1q, 2 molecules of C1r and 2 molecules of C1s. The activation of the complement system, through the classical pathway is initiated by interaction of the C1q component with the Fc regions of antigen-antibody complexes (Wimmers et al. 2003, Reid et al. 1981). Once the globular 'heads' of subcomponent C1q are bound by anti-
body, the `stalks' bind and activate C1r and C1s to generate an enzyme (Haeney, 1998) that cleaves two serum proteins (1) C4 to release C4a and C4b, which binds covalently to sugar residues on cell-surface glycoproteins and (2) C2 to release C2b and the glycoprotein C2a, which binds noncovalently to a site on C4b to give the C4b2a complex, 'the C3 convertase' (Loos et al. 1998). The C3-convertase enzyme catalyzes the cleavage of C3 into C3a and C3b, which binds covalently to glycoproteins scattered across the cell surface. Macrophages and neutrophils have receptors for C3b and can bind the C3b-coated cell or particle preparatory to phagocytosis. This effect qualifies C3b as an opsonin. C3a is a small fragment, which can bind to receptors on basophils and mast cells triggering them to release their vasoactive contents (e.g., histamine). Because of the role of these materials in anaphylaxis, C3a is called an anaphylatoxin. Some of the C3b binds C4b2a to form the C4b2a3b enzymatic molecule (C5 convertase of classical pathway) for initiation of the lytic pathway (Sunyer and Lambris 2001)

### 2.2.2 The lectin pathway

The lectin pathway is mainly driven by manose-binding lectin (MBL) (Thiel et al. 1997), one of the most important constituents of the innate immune system (Fraser et al 1998). Activation of the lectin pathway is similar to the classical pathway, with binding of the MBL serum protein, which is homologous to C1q of classical pathway, to man-nose-containing carbohydrates on bacteria or viruses that activates the complement cascade (Thacker 2003). The binding results in the association of two serine proteases, MASP1 and MASP2 (MBL-associated serine proteases), which are respectively homologous with C 1 r and C 1 s in the classical pathway, to form a complex molecule in the presence of a calcium. The MASP2 enzyme subsequently cleaves C4 into C4a and C4b as well as C2 into C2a and C2b to form the C4b2a complex playing a role as a C3 convertase in classical pathway activation (Fujita 2002). The C3 convertase then cleaves C3 into C3a and C3b, which binds to the membrane in association with C4b and C2a to form C4b2a3b (C5 convertase of lectin pathway) for lytic pathway activation. By contrast, MASP1 is able to cleave C3 directly which results in activation of the alternative pathway (Fujita 2002).

### 2.2.3 The alternative pathway

The alternative pathway represents an important part of the innate immunological system containing plasma proteins C3, factor B (a single-polypeptide chain glycoprotein), factor P (properdin) and factor D (adipsin). The alternative complement pathway is directly activated via binding of spontaneously activated C3b to the surface of a pathogen (Thacker 2003, Reid et al. 1981). It is initiated by the spontaneous hydrolysis of C3, which is abundant in the plasma activated by a $\mathrm{H}_{2} \mathrm{O}$ molecule and reacting with factor B in the presence of $\mathrm{Mg}^{2+}$ ions to form the $\mathrm{C} 3\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{B}$ molecule. Factor D then splits the bound Factor B into Bb and Ba , to form the $\mathrm{C} 3\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Bb}$ enzymatic molecule (Haeney 1998). The $\mathrm{C} 3\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Bb}$ enzyme is at low level in plasma but it can directly cleave the other C3 molecules to release C3a from the C3b molecule which reacts repeatedly with factor B and D to form the C 3 bBb enzymatic molecule. The C 3 bBb binds a serum protein called properdin to form the C3bBbP stable enzymatic molecule complex (C3 convertase), which in return can split molecules of C3 into C3a and C3b. Factor P binding to C3bBb extends the half-life of the complex (Fearon et al. 1975). The C3b subsequently binds with C 3 bBb to form a C3bBb3b molecule (C5 convertase of alternative pathway), which initiates the lytic pathway (Parish 2001, Zipfel 2001).

### 2.2.4 Membrane attack complex (MAC)

## Complement <br> Activation



Figure 2 Assembly of the MAC. Activation of complement leads to the formation of C5b-9, the cytolytic membrane attack complex of complement, or MAC (Schreck et al. 2000)

Activation of the three pathways of the complement system generates the C5 convertase as a source of inspiration in formation of the membrane attack complex (MAC) on tar-
get-cell membranes. This complex is a multiprotein set assembled by sequential addition of complement components C5b, C6, C7, C8, and C9 (DiScipio et al. 1984, Podack et al. 1982). In human the formation of MAC begins with specific cleavage of component C5 between residues 74 and 75 into C5a and C5b by C5 convertases: C4b2a3b from classical pathway, C4b2a3b from lectin pathway or C3bBb3b from alternative pathway (Hofsteenge et al. 1999, Makrides 1998, Müller-Eberhard 1988). The C5a is a potent anaphylatoxin and mediates various inflammatory events while the ability of C5b to bind C6 decays rapidly in a C5b-6 metastable bimolecular complex (Wuerzner 2003, DiScipio 1992, 1988, Podack et al. 1979, 1976). Then C7 associates mainly with the C6 subunit of the C5b-6 complex (DiScipio et al. 1988, Müller-Eberhard 1988) forming C5b-7. Upon binding of C7 to C5b-6, the trimolecular C5b-7 complex undergoes a conformational transition and allows insertion of this complex into lipid membranes (DiScipio 1992, 1988, Podack et al. 1979, 1976). Both C5b-6 and C7 are soluble proteins, whereas the C5b-7 complex is amphiphilic and capable of tightly binding phospholipid membranes (DiScipio et al. 1988). Then C8B binds to C5b-7 complex by a specific recognition site on C5b (Stewart et al. 1987). Self-polymerization of C9 is initiated by binding C5b-8 to C9 via C8A to form C5b-C9 complex of the terminal complement components (Stewart et al. 1987, Podack et al. 1982) and constitutes a supramolecular organization (Tschopp et al. 1986). The C5b-9 complex can contain one molecule of each of component C5b, C6, C7, C8 and 6-18 molecules of C9 that polymerize into barrel-like structures and can vary dramatically in size (Esser 1994, Tschopp 1984). Of these, components C6 to C9 are related plasma proteins, which differ in size and complexity (Hofsteenge et al. 1999, Müller-Eberhard 1986). Insertion of further C9 molecules into the target membrane causes local distortion of the phospholipid bilayer permeability resulting in `leaky patches` (Esser 1991) or forming a hydrophilic channel through the membrane (Bhakdi et al. 1991). It ultimately results in cellular activation, cell lysis or cell death (Morgan 1989, Esser 1987, Discipio et al. 1984). However, deposition of small amounts of the MAC on cell membranes of nucleated cells may mediate a range of cellular processes without causing cell death (Nicholson-Weller et al. 1993, Morgan 1992). Gram-positive organisms are already protected against complement lysis by the presence of their peptidoglycan cell walls. MAC inhibition may not be the sole function of streptococcal inhibitor of complement (Fernie-King et al. 2001). The cytolytic activities of the membrane attack complex (MAC) are inhibited through the bind-
ing of CD59 antigen to C8 and C9 (Meri et al. 1990). The MAC has an approximate $\mathrm{M}_{\mathrm{r}}$ of $1.7 \times 10^{6}$ (Tschopp et al. 1986)
2.3 Molecular characterization of candidate genes


Figure 3 Structural organization of the MAC protein family. Shown are maps based on sequences of the mature human proteins and the module boundaries listed in the SWISS-PROT Protein Sequence Data Bank. Abbreviations correspond to thrombospondin type I (TSP1), low-density lipoprotein receptor class A (LDLa), epidermal growth factor (EGF), complement control protein (CCP) and Factor I membrane attack complex (FIMAC) modules. The membrane attack complex/perforin segment is designated MACPF. Numbers correspond to the first residue in each module. Dots above each map indicate the approximate location of Cys residues, which are highly conserved. All are involved in intrachain disulfide bonds except $\mathrm{Cys}^{164}$ in C8A, which is linked to C8G. The shaded region fanking Cys ${ }^{164}$ corresponds to a 17 -residue insertion that is unique to C8A. Hexagonal symbols designate Asn residues that are potential N -glycosylation sites (Schreck et al. 2000)

The four terminal components of the complement system (C6, C7, C8 and C9) are glycoproteins (Witzel-Schloemp et al. 1998, Dewald et al. 1996, Hobart et al. 1995, Chakravarti et al. 1988, Müller-Eberhard et al. 1986) and C-mannosylated on multiple tryptophan residues. From the 113 Trp residues in the complete membrane attack complex, 50 were found to undergo C-mannosylation (Hofsteenge et al. 1999).

### 2.3.1 The sixth complement component (C6)

Complement C6 is one of five plasma proteins that are incorporated into the lytic terminal complement complex on lipid membranes upon activation of the complement cascade (Haefliger et al. 1989). Human C6 is a single-chain glycoprotein with an estimated $\mathrm{M}_{\mathrm{r}}$ of 95-128 kDa and a carbohydrate content of 3.8-11.3\% (DiScipio et al. 1982, Kolb et al. 1982, Podack et al. 1979, 1976). C6 is larger than C7, C8A, C8B, and C9 (Chakravarti et al. 1989). The structure of human C6 sequence is encoded with 18 exons (Hobart et al. 1993). The complete polypeptide structure of mature C6 deduced from the cDNA sequence consists of 913 amino acid residues (DiScipio et al. 1989, Haefliger et al. 1989) preceded by a typical 21-residue signal peptide. The protein is homologous with the other terminal components of complement, C7-C9 (DiScipio et al. 1989) and most similar in structure to complement C7, sharing 33.5\% identical residues with C7 including all 56 cysteine residues (Haefliger et al. 1989). It is noteworthy that cysteine is clearly the most conserved of all the amino acids because 55 of the 56 cysteines found in C7 match those in C6 (DiScipio et al. 1989). Human C6 contains a large number of cysteine residues, 64 in total in a sequence of two domains, an amino-terminal region, C6a (a.a 22-631) that is related to C8 and C9, and a carboxyl-terminal region, C6b (a.a 632-934) that has partial homology to the complement regulatory proteins factor H and factor I (DiScipio et al. 1989, Haefliger et al. 1989). The absence of any free sulfhydryl groups in the C6 protein inplies that all of the 64 cysteines are linked in 32 disulfide bonds. Disulfide linkages may exert a stabilizing influence on C6 structure because the activity of this molecule is partially resistant to treatment with chaotrophs (DiScipio et al. 1989).

The amino-terminal fragment of C6 has 30, 26, 22, and $18 \%$ residues identical with those of C7, C8A, C8B, and C9, respectively, while the carboxyl-terminal polypeptide
has $27 \%$ of its amino acids identical to those from the corresponding region of C7. The sequence of 490 first amino-terminal half of the C6 protein has 47-52\% similarity with C7, C8A, C8B, and C9, as well as 31-38\% similarity with thrombospondin (TSP1), epidermal growth factor (EGF), and low density lipoprotein receptor (LDLa). It is therefore a member of the channel-forming complement proteins (Chakravarti et al. 1989). Most of the predicted C6 alpha-helical structure resides in a portion of the polypeptide chain that is free of cysteine and which shares homology with C9 and perforin (DiScipio et al. 1989). A site of asparaginyl glycosylation of C6 contained in the sequence Asn-Phe-Thr was located at position 324 (Chakravarti et al. 1989). C6 deficiency can not form the membrane attack complex (MAC) (Mead et al. 2002)

### 2.3.2 The seventh complement component (C7)

Complement C7 is one of the components of membrane attack complex (MAC) generated by the terminal complement cascade. The derived human C7 protein sequence consists of 821 amino acids, and in addition, the precursor protein contains a 22 -residue hydrophobic leader peptide. The C7 is highly gene homologous to C6, C8A, C8B, and C9 (Hobart et al. 1995, DiScipio et al. 1988). The human seventh component of complement is a single chain plasma glycoprotein of $\mathrm{M}_{\mathrm{r}} 97.3 \mathrm{kDa}$, encoded by 18 exons whose sizes vary from 56 to 244 bp (Hobart et al. 1995, DiScipio et al. 1988). The human C7 single polypeptide chain is glycosylated at two sites and has 56 cysteines presumed to form 28 disulfide bonds. Disulfide bonds are important for stabilizing the structure of this protein. Virtually all the cysteines are found in small units of 35-77 amino acids that exhibit homology with those of various proteins including the lowdensity lipoprotein receptor, epidermal growth factor precursor and thrombospondin. The carboxyl-terminal segment of C7 is between amino acids 575-843 (DiScipio et al. 1988). Human C7 plays a major role in bringing about the hydrophilic- amphiphilic transition during the formation of the membrane attack complex, and it serves as a membrane anchor for the C5b-7 complex (DiScipio et al. 1988).

The porcine C7 was a single glycoprotein with an approximate molecular mass of 90100 kDa . Similar to human C7, the predicted amino acid sequence of precursor porcine C7 also consists of 843 amino acid residues. Human (GenBank acc. no. NM 000587)
and porcine C7 share an overall identity of $80 \%$ at the protein level. The two potential asparaginyl-linked glycosylation sites (Asn-X-Ser/Thr) at positions 202 and 754 in human C7 are also conserved in porcine C7. Both human and porcine C7 have 56 cysteine residues, the majority of which are located either at the amino or carboxyl terminus of the protein, giving rise to cysteine-rich domains (Agah et al. 2000). Although the function of these cysteine-rich motifs remains unclear, one speculation is that they play a role in the stabilization of $\beta$-turns that are presumably involved in protein-protein interactions (DiScipio et al. 1988).

Although liver has been demonstrated to be the major site for the synthesis of C6 and C8, the major site of C7 synthesis has not yet been elucidated. Human cDNA was obtained from liver, but C7 is not detected in the human hepatoma-derived cell line HepG2, thus suggesting that human hepatocytes do not primarily synthesize C7 (DiScipio et al. 1998, Wuerzner et al. 1994). Interestingly, circulating C7 initially switches to $50 \%$ of the transplanted allotype following allogeneic liver transplantation, but completely reverts to the original allotype by 6 weeks (Wuerzner et al. 1994). These data suggest that mature mononuclear white blood cells (i.e. Kupffer cells in the liver) may be a major source of C7 production (Agah et al. 2000)

### 2.3.3 The eight complement component (C8)

Human C8 oligomeric protein, is one of five components of the membrane attack complex of complement (MAC) which consists of three different polypeptides C8A (alpha chain, $\mathrm{M}_{\mathrm{r}}=64 \mathrm{kDa}$ ), C8B (beta chain, $\mathrm{M}_{\mathrm{r}}=64 \mathrm{kDa}$ ) and C8G (gamma chain, $\mathrm{M}_{\mathrm{r}}=22$ kDa ) (Plumb et al. 1999, Steckel et al. 1980). It is arranged asymmetrically as a disul-fide-linked C8alpha-gamma heterodimer that is a noncovalently associated with beta chain (Haefliger et al. 1987, Howard et al. 1987, Rao et al. 1987).

The entire human C8A cDNA length was determined to be 2443 base pairs which, when translated, yields an apparent leader sequence of 30 amino acids. This sequence contains an apparent initiation methionine, signal peptide, and propeptide which ends with an arginine-rich sequence that is characteristic of proteolytic precessing sites found in the pro form of protein precursor (Rao et al. 1987). Cysteine-rich repeat sequence found
in low-density lipoprotein receptor and to the cysteine-rich epidermal growth factor type sequence found in a number of proteins. There are 1 or 2 asparagine-linked in C8A gene (Rao et al. 1987). Both proteins C8A and C9 contain nearly the same number of amino acids and cysteine-rich amino- and carboxyl-terminal domains (Rao et al. 1987). The complete amino acid sequence of pig C8A was determined by characterizing the fulllength cDNA clone isolated from a porcine liver cDNA library. The 2145 bp sequence (GenBank acc. no. AB008156) of this clone have a 558 amino acid open reading frame and a 31 amino acid leader sequence. Porcine C8A was found to be similar to human and rabbit C8A in length, leader sequence, conserved cysteine residues (29 cysteines), cysteine-rich modules (TSP1, LDLa, EGF) (Nakajima et al. 1998). The location of these modules is very similar among pig, rabbit, and human. Differences in the amino acid sequence among the three species were detected in the proposed candidate site for CD59 recognition (amino acids 382-419) (Nakajima et al. 1998). During MAC formation, C8A mediates binding and self-polymerization of C9 to form a pore-like structure on the membrane of target cells (Slade et al. 2006, Scibek et al. 2002).


Figure 4 Functional sites in C8. (Left panel) Schematic representation of sites of interaction (hatched) in each subunit of C8. Sites are arbitrarily located within each subunit but are depicted as distinct and nonoverlapping because they function simultaneously within the MAC. Membrane interaction sites are designated ' m '. (Right panel) Relative location of the C8 subunits within membrane-bound C5b-8 and the MAC (Plumb et al. 1998). C9 is depicted as a polymer composed of an arbitrary number of monomeric units (Schreck et al. 2000).

Human C8B-cDNA-positive clones were partially sequenced to characterize the 12 exons of the gene with sizes from 69 to 347 bp (Kaufmann et al. 2004). In serum, the betasubunit is non-covalently bound to the disulfide-linked alpha-gamma subunit (Kaufmann et al. 1993). Amino-linked carbohydrate on C8 beta is not necessary for association with C8 alpha-gamma or for C8 activity (Letson et al. 1996). Analysis of the derived amino acid sequence revealed several membrane surface seeking-segments that may facilitate C8B interaction with target membranes during complement-mediated cytolysis. Determination of the carbohydrate composition indicated 1 or 2 asparaginelinked but no O-linked oligosaccharide chains (Howard et al. 1987). Comparison with the amino acid sequence of C9 shows an overall homology with few deletions and insertions. In particular, the cysteine-rich domains and membrane-inserting regions of C9 are well conserved. These findings are discussed in relation to a possible mechanism of membrane attack complex formation (Haefliger et al. 1987). Analysis of the C8B sequence reveals several segments with the potential to form amphipathic C8Bstructures that are capable of interacting with membrane surfaces. These segments may serve two functions. One is that they may assist in stabilizing interactions of C8 with C5b-7 by direct association with the membrane surface. Second, these segments may contribute directly to the lytic activity of C5b-8 and C5b-9 through membrane perturbation (Howard et al. 1987).

For human C8A and C8B, the overall homology is 33\% on the basis of identity and 53\% when conserved substitutions are allowed. For C8B and C9, the values are $26 \%$ and $47 \%$, respectively (Howard et al. 1987). For C8A and C9, they are $24 \%$ and $46 \%$, respectively (Rao et al. 1987). The human C8A and C8B are homologous to C6, C7, and C9 and form the MAC family of proteins (Plumb et al. 1998, Hobart et al. 1995). C8A and C8B have correspondingly similar roles in MAC-mediated lysis of erythrocytes and bacterial killing. C8G is not required for complement-mediated killing of Gram-negative bacteria (Parker et al. 2002).

The gamma chain whose functional role remains undefined is not related to any other complement protein but is a member of the lipocalins, a family of proteins that bind small hydrophobic ligands (Dewald et al. 1996). C8G is structural homology to protein

HC (alpha-1-microglobulin/bikunin precursor) (Hunt et al. 1987). Human C8 gamma is a 22 kDa subunit of complement component C8 (Schreck et al. 2000). C8G has one internal disulfide bridge between $\mathrm{Cys}^{76}$ and $\mathrm{Cys}^{168}$ within the carboxy-terminal 12 kDa fragment, whereas the remaining cysteine residue 40 forms the disulfide bridge with C8 alpha (Haefliger et al. 1987). C8G may act as a retinol transporting protein in plasma (Haefliger et al. 1991) and plays a role for binding an as yet unidentified ligand (Dewald et al. 1996, Kaufman et al. 1994, Ng et al. 1987).

### 2.3.4 The ninth complement component (C9)

Human C9 is the most abundant component of the membrane attack complex of the complement system of immune defense. It is the last protein that binds to the assembling membrane attack complex (MAC) of complement, completing the sequence of events that leads to the destruction of target membranes. The single chain serum protein is encoded by a gene composed of 11 exons and located on chromosome 5p13 (WitzelSchloemp et al. 2001). The nucleotide sequence of the ninth component of human complement coding 537 amino acids in a single polypeptide chain was determined (Discipio et al. 1984).

There are the presence of surface-binding domains in the amino terminal half and chan-nel-forming domains in the carboxyl terminal portion of native, monomeric C9 (Shiverg et al. 1986). Human monomeric native C9 ( $\left.\mathrm{M}_{\mathrm{r}}=66 \mathrm{kDa}\right)$ can be cleaved by $\alpha$-thrombin into two single-chain polypeptide fragments: C9a ( $\mathrm{M}_{\mathrm{r}}=28 \mathrm{kDa}$ ) and C9b ( $\mathrm{M}_{\mathrm{r}}=38$ kDa ), which are the amino and carboxyl-terminal segments of the protein, respectively (DiScipio et al. 1985). The carboxyl terminal fragment (C9b) enters lipid bilayer membranes and form single channels of defined but heterogeneous sizes and lyses erythrocytes in the absence of a fully assembled C5b-8 complex. The C9a fragment contains several regions of possible amphipathic $\beta$-structures. It is conceivable that such areas in C9a serve to bind the peptide sufficiently strongly to the membrane surface to cause leakiness (Shiverg et al. 1986). Human C9 water-soluble glycoprotein will insert quickly into lipid bilayers after binding to the membrane bound C5b-8 complex (Steckel et al. 1983, Hu et al. 1981, Podack et al. 1981). The principal binding site for C9 lies within the MACPF domain of C8alpha (Slade et al. 2006). The molecular weight calcu-
lated from the sequence for the nonglycosylated C9 protein is 60,700 (DiScipio et al. 1984).

### 2.4 Functional protein domains in candidate genes

The membrane attack complex (MAC) is an assembly of terminal complement component C5b-9 in lytic pathway of complement system (NCBI homepage). The membrane attack is important for mammalian immune defense against invading microorganisms and infected host cells. Proteins of the complement MAC and the protein perforin share a common MACPF domain that is responsible for membrane insertion and pore formation (Hadders et al. 2007). C8A is the first complement protein to insert into the membrane. The size of the MACPF domain of C8A is consistent with known C9 pore sizes (Hadders et al. 2007). Therefore, the principal binding site for C9 lies within the MACPF domain of C8A (Slade et al. 2006)

Perforin is a protein found in cytolytic T-cell and killer cells. In the presence of calcium, perforin polymerises into transmembrane tubules and is capable of lysing, nonspecifically, a variety of target cells. There are a number of regions of similarity in the sequences of complement components C6, C7, C8A, C8B, C9 and perforin (NCBI homepage).

The complement control protein (CCP) modules are defined by a consensus sequence within a stretch of about 60 amino acid residues. These modules have been identified more than 140 times in over 20 proteins, including 12 proteins of the complement system (Norman et al. 1991). Typically, two to four modules contribute to a binding site, implying that the orientation of the modules to each other is critical for function (NCBI homepage). The CCP modules mediate specific protein-protein and proteincarbohydrate interactions that are key to the biological function of the regulators of complement activation and, paradoxically, provide binding sites for numerous pathogens (O'Leary et al. 2004). The carboxyl-terminal domains of C6 and C7, which have cysteine-rich modules homologous to those found in factors H and I, have the capacity to link specifically with C5.

The factor I membrane attack complex (FIMAC) domain is found in the terminal complement component proteins (Figure 3), complement component factor I and agrin. Factor I is responsible for cleaving alpha chains of C4b and C3b in the presence of the cofactors, C4-binding protein and factor H , respectively. Agrin is a component of the basal lamina that causes the aggregation of acetylcholine receptors and acetylcholineesterase on the surface of muscle fibres of the neuromuscular junction (http://www.ebi.ac.uk/interpro). The FIMACs in C7 mediate reversible binding to C5 (Thai 2004). The C5b-binding domain of C6 was located in the 34 kDa carboxyl terminal fragment consisting of two short consensus repeats and two factor I modules (Haefliger et al. 1989). Although the FIMACs are not required absolutely for C6 activity, these modules promote interaction of C6 with C5 enabling a more efficient bimolecular coupling ultimately leading to the formation of the C5b-6 complex (DiScipio and Berlin 1999).

Both TSP1 and TSP2 are induced in response to injury (Bornstein 2001). Antisense treatment reduced the number of TSP1-positive macrophages by $50 \%$ or more (DiPietro et al. 1996).

In human C6, most of the cysteines are located in short (34-77 amino acids) discrete segments that exhibit homology with a wide variety of other proteins such as TSP1, LDLa at the carboxyl terminus (DiScipio et al. 1989, Haefliger et al. 1989), EGF, and CCP and FIMAC (DiScipio et al. 1989). In contrast to C7 and other terminal complement proteins, the TSP1 module at the amino terminus occurs as a tandem repeat in C6. The last tandem repeat at the carboxyl terminus of C6 and C7 has been identified as a new distinct module (FIMAC module), which is closely related to a segment in the heavy chain of complement control factor I (Chakravarti et al. 1989).

Both human C8A and C8B subunits contain a pair of amino-terminal modules (TSP1 and LDLa), a pair of C-terminal modules (EGF+TSP1) and an extended central segment referred to as the membrane attack/perforin (MACPF) domain (Musingarimi et al. 2002, Plumb et al. 1998, Hobart et al. 1995). Binding to C8A-G is dependent on the TSP1 + LDLa + MACPF segment of C8B. Within this segment, the TSP1 module and MACPF domain are principally involved and act cooperatively to mediate binding. Residues
within this segment also mediate binding and incorporation of C8 into the MAC (Musingarimi et al. 2002).

Human C9 is a typical mosaic protein with thrombospondin (TSP1) and low density lipoprotein receptor (LDLa) domains at its amino-terminus and an epidermal growth factor-like (EGF) domain at its carboxyl-terminus (Smith et al. 1992).
2.5 Polymorphisms and deficiency of candidate complement components

### 2.5.1 The sixth complement component (C6)

Genetic polymorphisms of the complement component C6 have been reported in human (Fernie et al. 1995, Wuerzner et al. 1995, Dewald et al. 1993, Hobart et al. 1975), particularly, in a Japanese population (Soejuma et al. 2005, Nishimukai et al. 2003, 1986, Nakamura et al. 1984, Tokunaga et al. 1983), in 203 Chinese Han people in Liaoning Province of northeast China (Tsunenari et al. 1992), among Russian rural inhabitants of the Tomsk region (Kucher et al. 1993), in a group of Africans (Fernie et al. 1996), in the Senegal population (Corbo et al. 1994), in Korean living in Seoul (Park et al. 1988), in individuals of African descent living in the United States or Europe (Parham et al. 2007), in 167 unrelated Norwegian Lapps (Olving et al. 1980), in the German population (Schwarzenholz et al. 2000, Kühnl et al. 1980, Kunstmann et al. 1980), in a African ethnic group (Fernie et al. 1996). Genetic variation was not only found in exon but also in intron fragments of human C6 (Parham et al. 2007, Nishimukai et al. 2003, Fernie et al. 1997, 1995, Wuerzner et al. 1995). In other species, polymorphisms were also detected, in the rhesus monkey (Hall 1977), in the chimpanzee (Raum et al. 1980), in the rabbit (Goldman et al. 1982, Kunstmann et al. 1980), in the common marmoset (Whitehouse 1984), in the dog (Shibata et al. 1995, Anderson et al. 1983, Eldridge et al. 1983), in the Manx shearwater (Whitehouse 1982), in the rat (Granados et al. 1884), in the mouse (Hayakawa et al. 1984, Orren et al. 1989), in the pig (Shibata et al. 1993). The porcine C6 locus was found highly polymorphic (Shitaba et al. 1993).

Deficiency of the sixth component of complement is frequently associated with recurrent neisserial infections, especially meningitis caused by Neisseria meningitidis (Par-
ham et al. 2007, Nishizaka et al. 1996) or candidiasis and toxoplasmosis (Morgan et al. 1989). Various kinds of polymorphisms were found in different species: Neisseria infections in human can be caused by a `silent' alleles at the C6 loci (Alvarez et al. 1995) or a compound heterozygote for two C6 gene mutations resulting in premature termination codons and C6 null alleles in a 16 year-old African-American male (Zhu et al. 1998) or three frameshift mutations in African-Americans and in two Dutch C6deficient kindreds (Hobart et al. 1998) or a homozygous single-base deletion in one African American and a heterozygous single base deletion in one Japanese resulting in frame shifts and premature termination of the C6 polypeptide (Nishizaka et al. 1996). C6 deficiency caused by unstable mRNA or a point mutation in the C6 gene resulting in an aberrant transcription of the C6 gene was also studied in the rat (Van Dixhoorn et al. 1997). In addition, point mutations observed in the Peru-Coppock mouse strain C6 gene may result in C6 deficiency (Bhole et al. 2004). C6 deficiency due to a blank allele for C6 was detected in the chimpanzee (Raum et al. 1980) and C6 deficiency involved in atherosclerotic lesion progression in rabbit (Schmiedt et al. 1998). Furthermore, C6 deficiency in two of 241 individuals in six breeds of pig (Landrace, Large White, Duroc, Berkshire, Meishan, Jinhua) and cross breeds tested was found, which suggested the presence of a null allele in pig populations. Marked breed differences among the gene frequencies and heterozygosities at C6 locus were observed (Shitaba et al. 1993).

### 2.5.2 The seventh complement component (C7)

Genetic polymorphisms of the seventh component of complement (C7) were found in human (Fernie et al. 1999, Horiuchi et al. 1999, Fernie et al. 1997, Fernie et a. 1995), especially in Caucasian population (Dewald 1988), in Asian populations (Horiuchi et al. 2002), in a Japanese population (Nishimukai et al. 2003, Wuerzner et al. 1991, Komatsu et al. 1989, Nishimukai et al. 1986, Washio et al. 1986, Nakamura et al. 1984), among Russian rural inhabitants of the Tomsk region (Kucher et al. 1993), in group of Africans (Fernie et al. 1997, 1996), in two Korean families (Kang et al. 2006), in Korean living in Seoul (Park et al. 1988), in 203 Chinese Han population in Liaoning Province of northeast China (Tsunenari et al. 1992), in Senegal population (Corbo et al. 1994), in the Cayapa Indians living in north-western Ecuador (Soelder et al. 1996). Different genetic mutations have also been described in intron segments of human complement
component C7 (Nishimukai et al. 2003, Fernie et al. 1999, 1996, 1995, Nishizaka et al. 1996), in the domestic dog (Eldridge et al. 1983), in the common marmoset (Whitehouse 1984).

The complement C7 deficiency was found in human diseases such as candidiasis and toxoplasmosis (Morgan et al. 1989). In the case of meningococcal meningitis a number of C7 polymorphisms were found including a large deletion mutation in exon in an Korean 11 year-old girl (Ki et al. 2005) or a 11-base pair deletion of nucleotides leading to the generation of a downstream stop codon causing the premature truncation of the C7 protein product in a Bolivian and Czech origin patient and a two-base pair deletion of nucleotides leading again to the generation of a downstream stop codon that provokes the truncation of the C7 protein in Spanish family (Barroso et al. 2006). Neisseria recurrent infections due to single base deletion of nucleotide and a missense mutation resulting in a change of amino acid were found in individuals of Moroccan Sephardic Jewish ancestry, a Spanish family (Barroso et al. 2004) as well as among a highly inbred Arab population living in the lower Galilee region of Israel (Behar et al. 2002) or a two basepair deletion of nucleotides leading to the generation of a downstream stop codon causing the truncation of the C 7 protein product in another Spanish family (Barroso et al. 2004) or appearance of a silent allele in three C7-deficient families (Alvarez et al. 1995) or a homozygous $\mathrm{G} \rightarrow \mathrm{T}$ transversion leading to a stop codon in a Spanish family (Horiuchi et al. 1999) or a homozygous $\mathrm{A} \rightarrow \mathrm{T}$ transversion leading to a stop codon TGA and a homozygous 2-bp deletion caused a frameshift, generating a premature termination codon 4-6 nucleotides downstream in two unrelated Japanese males (Nishizaka et al. 1996). Other case reports describe ankylosing spondylitis conducting on the serum of a 44 year-old woman of French-Canadian descent (Delâge et al. 1977), systemic lupus erythematosus due to a single base mutation leading to a stop codon that causes the premature truncation of the C7 protein in Spanish family additionally a $\mathrm{A} \rightarrow$ C transversion resulting in an amino acid change (Barroso et al. 2006).

### 2.5.3 The alpha and gamma chain of the eighth complement component (C8A-G)

The alpha-gamma chain extensive genetic polymorphisms were found in human (Zhang et al. 1995, Nakamura et al. 1986, Rogde et al. 1985, Rittner et al. 1984), in 203 Chinese

Han population in Liaoning Province of Northeast China (Tsunenari et al. 1992). Particularly, Dewald et al. (1996) described the first known polymorphisms in the human C8G gene, namely a polymorphic site in exon and two more ones in intron segments. In pig, an allele variation $G \rightarrow A$ (amino acid substitution Arg $\rightarrow$ His, codon 485CGC $\rightarrow$ CAC) was found in several different breeds Landrace, Large White, Duroc, Berkshire, Jinhua, Crown Miniature Pig, wild boar, and Meishan. (Nakajima et al. 1998).

Two kinds of inherited C8 deficiency have been reported in man. Type I, in which no C8 antigen is detected, was thought to represent deficiency of the whole molecule, whereas in type II, antigenically deficient C8, which apparently lacks only the beta chain, is found (http://www.genome.ad.jp/dbget-bin/www_bget?omim+120950). Association between the hereditary deficiency of the eighth component of complement and inflammatory disease like systemic lupus erythematosus disease in human (Jasin 1977) was reported. In addition, C8 deficiency in the serum of a 23 -yr-old woman resulting in gonococcal infection syndrome (Petersen et al. 1976), inherited deficiency of C8 in a patient with recurrent meningococcal infections (Densen et al. 1983) or in a family with xeroderma pigmentosum (Giraldo et al. 1977) was identified. Genetic deficiency of the alpha-gamma-subunit of the eighth complement component was found in a strain of the New Zealand White rabbit leading to the following physiologic characteristic changes such as the body weight at the first week of life, mature weight, litter size, survival rates (Komatsu et al. 1985).
2.5.4 The beta chain of the eighth complement component (C8B)

Detection of C8B different genetic mutations was described in human (Dewald et al. 1994, Kaufmann et al. 1993, Herrmann et al. 1989, Rogde et al. 1985, Alper et al. 1983).

The mutated allele was also found in intron of the C8B gene (Barba et al. 1994). C8 beta deficiency is usually detected in individuals who survive meningococcal disease (Wulffraat et al. 1994). Association between C8B deficiency and juvenile chronic arthritis in a 13 -year-old boy (Wulffraat et al. 1994) or recurrent neisserial infections re-
sulting an allele substitution leading to a codon stop in C8B human sequence (Kaufmann et al. 1993) was reported. The common $\mathrm{C} \rightarrow \mathrm{T}$ mutation in the C8B genes is the genetic basis of C 8 beta-chain deficiency in two members of this Bosnian family (Kotnik et al. 1997). Causes for C8B deficiency can be due to presence of mutated null alleles in a healthy Italian population (Bellavia et al. 1996), in 34 unrelated families from the United States and the former Soviet Union (Saucedo et al. 1995) or a nucleotide exchange creating a stop codon (Rao et al. 2004, Barba et al. 1994, Kaufmann et al. 1993) or not a major allele deletion in Norwegian meningococcal disease patients (Rogde et al. 1990).

### 2.5.5 The ninth complement component (C9)

Different single nucleotide polymorphisms have been reported in human (WitzelSchloemp et al. 2001, Coto et al. 1991, Rogne et al. 1991, Coto et al. 1990). Deficiency of the ninth component of human complement is the most common complement deficiency in Japan but is rare in other countries (Kira et al. 1998). C9 deficiency can lead to meningococcal meningitis due to creating a point mutation leading to termination codon in four Japanese C9-deficient patients (Kira et al. 1998), dermatomyositis due to the low titre of serum hemolytic complement (CH50) and a non-sense mutation in a 28 year-old Japanese woman (Ichikawa et al. 2001), recurrent neisseria infections associating two different point mutations, both generating TGA stop codons in the coding sequence in Swiss family with inherited C9 deficiency (Witzel-Schloemp et al. 1997) or a `silent' allele (Alvarez et al. 1995) and the long-surviving mismatched kidney allografts in an Caucasian group due to absence of C9 (Hobart et al. 1997). Absence of C9 can also happen in a person with good health (Inai et al. 1979) or in serum of a 47 year-old woman with paroxysmal nocturnal haemoglobinuria.

Human C9 contains a motif (48WSEWS52) common to a family of cytokine receptors that is similar to a tryptophan-rich motif (WEWWR) of the membrane pore formers, thiol-activated cytolysins. Mutation of this motif in C9 resulted in polymerized protein, consistent with this site keeping the N -terminus in a protected conformation and preventing premature self-polymerization (Taylor et al. 1997).

### 2.6 Position of candidate genes on chromosome

RH panels consist of rodent cell lines that contain fragments of porcine foreign DNA, produced by X-Ray breakage. DNA fragment size is inversely proportional to the radiation dose and breakage is largely sequence independent as is the retention frequency of fragments (Alexander et al. 1999). Since the 118 clones/7000Rad INRA-Minnesota porcine radiation hybrid (IMpRH) panel has been constructed by Yerle et al (1998) it rapidly becomes the wonderful physical mapping tool for assigning candidate markers on chromosomes and for linking cytogenetic maps further. Considering the porcine map, it appears necessary to have a more accurate tool to determine the position and order of genes and markers. The IMpRH method based on the presence or absence of specific porcine/hamster DNA sequences in RHs is mainly determined by PCR. Order and distance between markers is calculated using a statistical algorithm that estimates the frequency of breakage between markers.


Figure 5 Locations of published human C6, C7 or C9 mutations leading to deficiencies in relation to the modules (indicated in the box). Boundary mutations, generating nonsense intron sequence till a stop codon is reached (\#), and amino acid substitutions (A111B) are indicated. In addition, mutations leading to subtotal deficiency are boxed (Wuerzner 2003)

The assignment for human complement component C9 to chromosome 5 was confirmed by in situ hybridization to human metaphase chromosomes, giving a regional localization of 5p13 (Abbott et al. 1989) which is the same regional chromosomal position of human C6 and C7 (Hobart et al. 1993). The gene encoding the human C8A and C8B are physically linked on chromosome 1p32 (Platteborze et al. 1996, Michelotti et al. 1995, Theriault et al. 1992, Rogde et al. 1986) whereas the human C8G is closely linked to a series of marker loci located in the most telomeric region of chromosome 9q34.3. Remarkably, this chromosomal region contains at least four other lipocalin genes (Dewald et al. 1996). In pig, the C8A gene was physically mapped to chromosome 6q3.3-q3.5 by in situ hybridization using the porcine bacterial artificial chromosome (BAC) clone as a hybridization probe (Nakajima et al. 1998) whereas the C9 was mapped to 16 q 1.4 by fluorescence in situ hybridisation (Thomsen et al. 1998).

### 2.7 Hemolytic complement activity

The previous studies for hemolytic complement activity were conducted on many different animal species. Schwab et al. (1966) reported the effect of temperature on the hemolytic activity of lizard and toad sera was similar to the effect on bactericidal activity, but with pig serum hemolytic activity was at a maximum between 35 and $40^{\circ} \mathrm{C}$. This has been suggested that fetal pigs are unable to produce antibodies, and, hence, their serum does not kill smooth strains of gram-negative bacteria (Sterzl et al. 1962). Classical pathway hemolytic complement activity was assayed in camel trypanosomosis infected with Trypanosoma evansi (Ouma et al. 1997)

The hemolytic complement activity of pig C6 gene was conducted to test the lysis of plasma ability with sensitised sheep erythrocytes. No lysis occurred in C6-deficient samples, but lysis was observed in normal plasma. Shitaba et al (1993) summarized that the presence of a null allele in pig population was found in other animals including man. Inheritance of C6 deficiency has not been tested yet.

A high degree of biochemical and structural similarity between porcine and human C7 protein was observed by Agah et al. (2000). Hemolytic assays were performed to test
whether porcine C7 could functionally replace human C7 in C7-deficient human sera. The experiment was conducted by addition of purified porcine C7 that restored the hemolytic activity of C7-depleted human sera in a dose-dependent manner. A functionally inhibitory mAb (Monoclonal antibody) against porcine C7 attenuated the hemolytic activity of human, rabbit, or rat sera, suggesting an important conserved C7 epitope among species. The results demonstrated that porcine and human C7 are highly conserved, sharing structural and functional characteristics (Agah et al. 2000). Additionally, CH50 titer was used to analyze hemolytic complement activity in human having ankylosing spondylitis due to C7 component deficiency (Delâge et al. 1977).

Absence of the eighth complement component and a disease compatible with systemic lupus erythematosus was found in a 56 year-old black woman. After the addition of functionally pure C 8 hemolytic activity could be restored. C8 deficiency may be associated with a subtle defect in the defense mechanisms to viral infection leading to viral persistance and perhaps to diseases such as systemic lupus erythematosus where chronic viral infections have been implicated (Jasin 1977). Total hemolytic complement activity (CH50) was tested for the purpose of developing hereditary deficiency of complement component of C8 alpha-gamma and C6 in a colony of New Zealand White rabbits (Komatsu 1985).

Association between C9 deficiency with CH50 titer and diseases such as meningococcal meningitis (Zoppi et al. 1990), systemic lupus erythematosus (Takeda et al. 1994, Kawai et al. 1989), long-surviving mismatched kidney allografts (Hobart et al. 1997) were found. Almost all the ninth complement components (C9) deficiency in Japan shows $\mathrm{Arg}^{95}$ stop mutation of C9 gene but not in patients with systemic lupus erythematosus susceptibility (Kanemitsu et al. 2000). C9 deficiency is also described in serum complement levels (CH50) of a 29 year-old woman in good health (Inai et al. 1979). Supplement of complement component C9 in neonatal serum can enhance the capacity of Escherichia coli killing shown by a radiobinding assay and immunogold electron microscopy using a monoclonal anti-C9 antibody (Lassiter et al. 1994). Using purified components demonstrated that C5b-9 exerts a regulatory effect on the formation of the classical and alternative pathway C3 convertases and on the utilization of C5 by cell-
bound C5 convertase. C5b-9 complex was unable to inhibit the lysis of cells bearing C5b-7 by C8 and C9 (Bhakdi et al. 1988).

In recent years people are much more concerned about the sustainable animal production system including quality control of food for human and animal, animal welfare and health status, effects of animal production on the environment, the influences of new technology application in animal and plant production, future animal production sites and global trading strategy (http://www.agriculture.de/acms1/conf6/pdf/sumsum.pdf). With the economic development the income of many people is increasing quickly not only in developing countries but also in poor countries. The demand for both quantity and quality of food in the daily meal is more and higher. Thus in animal breeding programs people address to produce animals with less fat, much muscle, less water in meat, less toxin or antibiotic, etc. Development in biotechnology and farm animal breeding genetic technology contributes a great potential for this. It will bring producer and customer much more benefit because of decreasing in production cost and price of product. Since the complement system was known as a natural disease resistance mechanism of host body and can support to solve several problems as described above, many studies on the complement components have been conducted in various animal species. In pig some porcine genes encoding complement components have already been identified or even analyzed as candidate genes for disease resistance. Sofar, one by one, the porcine C1 composed of three subcomponents C1q (alpha chain (GenBank acc. no. AY349424) and beta chain (GenBank acc. no. AY349420)), C1r (GenBank acc. no. AY349421) and C1s (GenBank acc. no. AY349426) were sequenced (Trakooljul et al. 2004). The porcine C2 nucleotide ( 2574 bp ) and deduced protein ( 752 amino acids) sequences were found in GenBank (acc. no. NM_001101815, NCBI homepage) derived from the pig DNA sequence of clone PigI-707F1 (GenBank acc. no. AL773527) (Sehra 2007). The porcine C3 cDNA sequences including $5^{\prime}$ and $3^{\prime}$ flanking regions (GenBank acc. no. AF154933) were determined and polymorphisms were detected to carry out an association analysis between C3 and complement activity traits (Mekchay et al. 2003, Wimmers et al. 2003). Moreover, Firth et al. (2007) showed the porcine C3d sequence (GenBank acc. no. EU257630) with 999 bp coding 333 amino acid whereas the porcine C4 (GenBank acc. no. AY349423) consists of 1656 bp encoding 517 amino acids (Trakooljul et al. 2004). In a total of 5422 bp of cDNA sequence coding the 1677 amino
acid precursor, the porcine complete C5 cDNA (GenBank acc. no. AY332748) was sequenced, screened for single nucleotide polymorphisms, and an association analysis with various immunological parameters was conducted (Kumar et al. 2004). In addition, Yi and Kang (2007) also separated porcine C5a cDNA sequence with 723 bp coding 226 amino acids (GenBank acc. no. EF210575) from C5. Several polymorphisms were detected within porcine C6 gene (Shibata et al. 1996) while the porcine C7 (GenBank acc. no. AF162274) was isolated and characterized (Agah et al. 2000). The complete C8A cDNA (2145 bp) as well as deduced protein (589 amino acid) sequence (GenBank acc. no. ADB13968) was determined and mapped to porcine chromosome $6 q 3.3-q 3.5$ (Nakajima et al. 1998) whereas the porcine C9 was assigned to chromosome $16 q 14$ (Thomsen et al. 1998). In this work, focus was on the characterization of the genes encoding the terminal pathway of the complement system. Their variation and association with hemolytic complement activity in the classical and alternative pathway were studied in a $F_{2}$ DUMI resource population immunized with Mycoplasma, Aujeszky and PRRS vaccination, and the genes were assigned to porcine chromosome.

3 Materials and methods

Hereafter a general schema, which allows following the experiment up easily, is displayed (Figure 6).


Figure 6 General schema of experimental approach

### 3.1 Materials

### 3.1.1 Materials on station

### 3.1.1.1 Experimental animals, tissue and data collection

In this study, one animal of each of the pig breeds Hampshire (HS), German Landrace (LR), Duroc (DR), Pietrain (PIE), Berlin Mininature Pig (BMP) and Muong Khuong (MK) (Vietnamese potbelly pig) was used to determine the entire sequence of the conding region (cds) of the candidate genes and to screen for polymorphisms. In addition, unrelated LR ( $n=30$ ), PIE ( $n=30$ ) and MK ( $n=25$ ) animals as well as animals of the $\mathrm{F}_{2}$ DUMI resource population were used for genotyping to determine allele frequencies and to perform linkage mapping and association analysis with hemolytic complement activity.

The Muong Khuong breed is a large resource population of pig reared by H’Mong householders who are living in the Northwest mountain area, mainly in Lao Cai province of Vietnam. These pigs are often kept at small-scale level (one-several animals per householder). The animals are allowed moving freely around the house/ garden and foraging for feed. They can enjoy anything they like in nature and in soil such as vegetables, worms, minerals, etc. They are also fed available simple feed resources or farm by-products such as rice bran, ground-yellow corn, vegetable, etc. The Muong Khuong pigs are divided in three different phenotypes (Figure 7). Birth weight can reach $0.60 \pm 0.04 \mathrm{~kg}$ and weight at 12 months of age can weigh up to $92.44 \pm 2.13 \mathrm{~kg}$ (average gain 4-6 kg per month). The adult weight at around 18 months can be up to 120 kg . The Muong Khuong pig, one of Vietnamese potbelly pig breeds, known as a breed, which can resist diseases and endoparasites and which is able to adapt well to harsh environmental conditions (temperature, humidity, nutrition, management) but not scientifically verified, represents a naturally selected population. In a recent report Thuy et al. (2006) indicated that the Vietnamese autochthonous breeds including Muong Khuong breed show higher degree of polymorphism, allelic diversity, and heterozygosity than several European pig breeds (German Landrace, Pietrain and Large White). Vietnamese local breeds are a source for promising alleles of unpredictable economic value (Lemke et al.
2005). Genetic distances show large differences among European-based, Chinese, and Vietnamese indigenous breeds and reflect the geographical distribution of breeds. In comparison with the European breeds, the Vietnamese indigenous pig breeds harbour a considerable amount of genetic diversity and therefore they will be of significance for livestock bioconservation (Thuy et al. 2006).


Figure 7 Three different phenotypes in Muong Khuong pig breed: ©_black colour with 6 white points (one in the middle of head, four in legs and one in the bottom of tail), © _brown colour, and (3_dark black colour

Six adult Muong Khuong animals (three males and three females) selected at an average live weight of about 65 kg were bought for experimental sampling in Muong Khuong district of Lao Cai province. The fresh tissue specimens were submerged in RNAlater solution and stored at $-20^{\circ} \mathrm{C}$ according to Ambion's manufacture instruction (Figure 8). Total mRNA was isolated from the liver tissue and reverse transcribed to cDNA whereas DNA was extracted from tail/ ear samples of 25 Muong Khuong animals.

Liver tissue and ear/tail tissue samples from 30 unrelated individuals of each commercial breed LR and PIE raised at the Research and Performance Test Station, Frankenforst, University of Bonn, Germany were collected for RNA isolation and for DNA isolation, respectively.

The $\mathrm{F}_{2}$ DUMI resource population was derived from a reciprocal cross of Duroc and Berlin Miniature Pig (Hardge et al. 1999). The Berlin Miniature Pig was bred from Vietnamese potbelly pig, Saddleback Pigs and German Landrace (Hardge et al. 1999). Five sows of Berlin Miniature Pigs were crossed with a Duroc boar and four Duroc sows were crossed with a Berlin Miniature boar to produce $\mathrm{F}_{1}$ animals (parental genera-
tion). In total $47 \mathrm{~F}_{1}$ animals were used to produce the $\mathrm{F}_{2}$ animals ( $\mathrm{n}=902$ ) called the $\mathrm{F}_{2}$ Berlin-Bonn-DUMI resource population.


Blood sampling


Fresh tissue sampling


Carcass of Muong Khuong pig

Figure 8 Sampling in Muong Khuong animals on farm in Lao Cai province, Vietnam

About half of them ( $\mathrm{n}=485$ ) were reared at the Research Station of the Humboldt University, Berlin ( $\mathrm{F}_{2}$ Berlin DUMI) while the other $\mathrm{F}_{2}$ animals ( $\mathrm{n}=417$ ) were reared and tested performance at the Research Farm of Frankenforst, Institute of Animal Breeding Science, University of Bonn ( $\mathrm{F}_{2}$ Bonn DUMI). The $\mathrm{F}_{2}$ Bonn DUMI animals used in this study originated from 11 sows and three boars of the $F_{1}$ generation and they have been phenotyped regarding the complement activity and immune responsiveness as described below (Figure 9).


Figure 9 The structure of $\mathrm{F}_{2}$ DUMI resource population based on reciprocal crossing of Duroc and Berlin Miniature Pig

### 3.1.1.2 Phenotyping of the immune responsiveness: sampling design

In order to investigate immune competence traits the following experiment was conducted. The experiment carried out at the Frankenforst Research Station of University of Bonn consisted of two trials: (1) The control group with $36 \mathrm{~F}_{2}$ DUMI animals was unvaccinated. (2) The trial group containing the 381 remaining animals was immunized
with Mycoplasma hyopneumoniae vaccine (Mh) (Stellamune, Mycoplasma, Pfizer, Karlsruhe, Germany), Aujeszky virus vaccine (ADV) (Porcilis, Begonia Diluvac, Intervet, Tönisvorst, Germany) and Porcine Reproductive and Respiratory Syndrome Virus vaccine (PRRSV) (Ingelvac PRRS MLV, Boehringer Ingelheim, Germany) at six, 14 and 20 weeks of age for measuring immunological parameters and analysing association between the candidate genes and hemolytic complement activity in both the classical and alternative pathway. EDTA anticoagulated blood samples were collected from each animal before (day 0 ) and after Mh and ADV vaccination (day 4 and 10) but only at day 10 after PRRSV vaccination (eight sampling time points) and were then cooled immediately in ice. Sera and plasma isolations were obtained within 2 hours after blood taking by centrifugation at $4^{\circ} \mathrm{C}$ at a maximum speed of 14.000 rpm for 10 min and stored at $-80^{\circ} \mathrm{C}$ for further analysis (Wimmers et al. 2003) (Figure 10).


Figure 10 Vaccination program and time of blood sampling before and after immunization in $\mathrm{F}_{2}$ DUMI population

### 3.1.2 Materials for laboratory analysis

3.1.2.1 Chemicals, biological materials, kits and others

Applied Biosystems (Darmstadt) : RNAlater ${ }^{\circledR}$-ICE
Biomol (Hamburg)
Fermentas (Leon-Rot) : Glycogen, Restriction enzymes (AluI, Bbvi, BseDI, BsrDI, Eco91I, FnuDII, Hin6I, HpaII, PstI,)

| Invitrogen (Karlsruhe) | $:$ | SuperScrip ${ }^{\mathrm{TM}}$ III reverse transcriptase |
| :--- | :--- | :--- |
| Macherey-Nagel (Düren) | $:$ | NucleoSpin ${ }^{\circledR}$ Extract II |
| New England Biolabs ${ }^{\circledR}$ Inc. (Frank- | $:$ | Restriction enzymes (AciI, BsrI, DdeI, |
| furt am Main) |  |  |
| HpyCH4III) |  |  |

3.1.2.2 Buffers and reagents

| Digestion buffer | Tris HCl, pH 8.0 | 0.05 M |
| :--- | :--- | ---: |
|  | EDTA | 0.1 M |
|  | SDS | $0.5 \%$ |
|  | Water added up to | 1000 ml |
| SDS solution | $:$ | Sodium dodecylsulphate |
| Sodium acetate | $:$ | Sodium acetate trihydrat (>99.5\%, |
|  | D~1.42, M 136.08) | $30 \%$ |
|  | Acetic acid to adjust pH 5.2 |  |
|  | Water added up to |  |
|  | $:$ |  |
|  | Tris | 1000 ml |
|  | EDTA | 10 mM |
|  | Water added up to | 1 mM |
|  |  | 1000 ml |


| 50 x TAE buffer | Tris | 2 M |
| :--- | :--- | ---: |
|  | Acetic acid | $57 \%(\mathrm{v} / \mathrm{v})$ |
|  | EDTA, pH 8.0 | 0.05 M |
|  | Water added up to | 1000 ml |

### 3.1.2.3 Used softwares

CIRMAP version 2.4: Linkage mapping
(http://linkage.rockefeller.edu/soft/crimap/)
Chromas software
(http://www.technelysium.com.au/chromas.html)
ClustalW2: DNA/ protein alignment
(http://www.ebi.ac.uk/clustalw/)
Conserved Domains Search: Functional protein domain analysis
(http://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi)
DiANNA 1.1 web server: Cysteine state and disulfide bond partner prediction (http://clavius.bc.edu/\~clotelab/DiANNA/)

INRA-UMN porcine Radiation Hybrid (IMpRH) panel: RH mapping (http://www2.toulouse.inra.fr/lgc/pig/RH/IMpRH.htm)
MEGA3: Phylogenetic analysis
(http://www.megasoftware.net/)
MultAlin : Multiple sequence alignment
(http://bioinfo.genopole-toulouse.prd.fr/multalin/multalin.html)
NAGRP Blast Server
(http://www.animalgenome.org/blast/)

## NCBI/BLAST

(http://www.ncbi.nlm.nih.gov/BLAST/)
NCBI/Map Viewer
(http://www.ncbi.nlm.nih.gov/mapview/)
NCBI/Trace archive: retrieving genomic DNA sequence
(http://www.ncbi.nlm.nih.gov/Traces/trace.cgi?)
NEBcutter V2.0: Restriction digestion analysis
(http://tools.neb.com/NEBcutter2/index.php)

NetCGlyc 1.0 Server: C-Manosylation site prediction (http://www.cbs.dtu.dk/services/NetCGlyc/)
NetNGlyc 1.0 Server: N-Glycosylation site prediction (http://www.cbs.dtu.dk/services/NetNGlyc/)
ORF Finder: deduced amino acid sequence
(http://www.ncbi.nlm.nih.gov/gorf/gorf.html)
P O L Y V I E W - 3D: 3D Protein structures
(http://polyview.cchmc.org/polyview3d.html)
Primer 3: Primer design
(http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi)
SAS version 9.3.1, SAS Institute Inc., Cary, NC: Statistical analysis
(http://support.sas.com/documentation/onlinedoc/91pdf/)
SignalP 3.0: Signal peptide analysis
(http://www.cbs.dtu.dk/services/SignalP/)
SMART mode: Functional protein domain analysis
(http://smart.embl-heidelberg.de/)
Webcutter: Restriction digestion analysis
(http://www.firstmarket.com/cutter/cut2.html)
3D-Jigsaw comparative modelling: three-dimensional models for proteins
(http://www.bmm.icnet.uk/servers/3djigsaw/)

### 3.1.2.4 Equipments

Centrifuges
ABI 310 Genetic Analyzer (Applied Biosystems, Darmstadt)
MegaBACE 1000 (GE Healthcare, München)
PCR thermocycler (Biometra, Göttingen)
Power supply BIO-RAD Model 200/2.0 (Electrophoresis for agarose gel, Groton)
Spectrophotometer Nanodrop ND-1000 (Peqlab, Erlangen)
UV transilluminator (High performance 302 - 365 nm, Cambridge)

### 3.2 Methods

### 3.2.1 Immunological methods: complement activity measurement

Data of complement activity were obtained previously by the following procedure: for determining complement activity in the classical and alternative complement pathway hemolytic assays were applied according to the methods of Liu and Young (1988) and Demey et al. (1993). Hemolytic complement activity was expressed as the amount of serum that caused a $50 \%$ hemolysis of antibody sensitised sheep red blood cells (SRBCs) in the reaction mixture. Calculation was based on the change in lightscattering properties of erythrocytes upon lysis. The test conditions were evaluated and standardised for the assay of pig complement. SRBCs sensitised with hemolysin (antisheep red blood cell stroma from rabbit, Sigma, Taufkirchen, Germany) were collected from healthy animals, submerged into Alsever's solution and stored at $4^{\circ} \mathrm{C}$ until analysis. SRBCs were diluted 1:75 in GVBSS and used as a $2 \%$ cell-suspension. Serial dilutions of test sera ( $50 \mu \mathrm{l}$ ) were made in duplicate in flat-bottomed 96-well microtitre plates (1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256). Fifty microlitter of sensitised SRBCs suspension were added to each serum dilution, respectively. The plates were incubated for 90 min at $37^{\circ} \mathrm{C}$. The results were recorded through absorbance level of a microplate reader (ThermoMax ELISA reader and Soft Max Pro software, Molecular Devices, USA) at 650 nm . The readings were transformed by the method of von Krogh according to Mayer (1961) and the hemolytic titer was expressed as the titre that lysed $50 \%$ of the erythrocytes (CH50, U/ml) (Wimmers et al. 2003).

Rabbit erythrocytes (RRBCs) were used as foreign surfaces for testing alternative complement pathway activity in pig sera. Twenty-five microlitres of diluted sera (1:2, 1:3, 1:4 and 1:6) with GVBS-Mg-EGTA buffer and $25 \mu \mathrm{l}$ of $0.5 \%(\mathrm{v} / \mathrm{v})$ rabbit erythrocytes were incubated at $37^{\circ} \mathrm{C}$ for 90 min in duplicate wells of flatted bottom 96 -well microplates (Roth). A $150 \mu \mathrm{l}$ GVBSS-Mg-EGTA buffer was added in each well and the absorbance values at 650 nm were read. The activity was expressed in term of serum amount which causes $50 \%$ hemolysis of rabbit erythrocytes (AH50, U/ml) (Wimmers et al. 2003).

### 3.2.2 Molecular genetic methods

### 3.2.2.1 DNA extraction

Preparation of genomic DNA from tail or ear samples was performed by standard procedures involving Proteinase K digestion followed by phenol-chloroform extraction and ethanol precipitation. Tail or ear tissues were cut into small pieces of $2-3 \mathrm{~mm}$ and weighed about 0.1 g . The sample was placed in 2 ml tube containing $700 \mu \mathrm{l}$ of digestion buffer. To lyse the cells and digest proteins, $35 \mu \mathrm{l}$ of Proteinase K solution ( $20 \mathrm{mg} / \mathrm{ml}$ ) was added and the samples were then incubated at $55^{\circ} \mathrm{C}$ overnight with mixing. An equal volume of phenol-chloroform ( $1: 1 \mathrm{v} / \mathrm{v}, 700 \mu \mathrm{l}$ for each) was added. The two phases were mixed until they formed a homogenous emulsion. The two phases were separated by centrifugation at 5000 rpm for 3 min at $4^{\circ} \mathrm{C}$. The aqueous phase was collected in fresh tubes. Phenol-chloroform extraction was repeated and was followed by a chloroform extraction. One-tenths volume of sodium acetate ( $3 \mathrm{M}, \mathrm{pH} 6.0$ ) and an equal volume of isopropanol ( $700 \mu \mathrm{l}$ ) were added. The samples were shaken gently until precipitation of DNA. The DNA pellet was washed three times with 1 ml ethanol (70\%) and dried at room temperature. Finally the DNA was resuspended in $1 \times$ TE buffer and stored at $4^{\circ} \mathrm{C}$ for analysis.

### 3.2.2.2 RNA isolation

Total RNA was isolated from liver tissue of six different breeds (HS, DR, LR, PIE, BMP and MK). About 100 mg of liver was ground into fine powder with a set of porcelain mortar and pestle, submerged with 1 ml TRI Reagent in 2 ml tubes, mixed well, homogenized by passing several times through $0,9 \mathrm{~mm}$ needle attached to a syringe, and incubated at room temperature for 5 min for complete cell lysis. The sample was centrifuged for 15 min at $4^{\circ} \mathrm{C}$ at $12,000 \mathrm{x}$ g. The aquesous phase was transferred to a fresh tube and $500 \mu \mathrm{l}$ of isopropanol were added and gently mixed by inversion. After incubation at room temperature for 10 min the RNA was pelleted by centrifugation at $4^{\circ} \mathrm{C}$ for 10 min at $12,000 \mathrm{x} \mathrm{g}$. The supernatant was discarded while the white RNA pellet at the bottom of the tube was kept and washed with 1 ml of chilled $70 \%$ ethanol by gentle vortexing lightly and centrifuging at $12,000 \mathrm{xg}$ for 5 min at $4^{\circ} \mathrm{C}$. The ethanol was re-
moved by pipetting and the RNA pellet was air dried at room temperature. The RNA pellet was resuspended in $30 \mu \mathrm{l}$ of RNAse-free water. DNAseI was used to remove traces of genomic DNA. The DNAseI digestion was performed in $50 \mu \mathrm{l}$ solution, containing $30 \mu \mathrm{l}$ RNA solution, $5 \mu \mathrm{l}$ of 10 x buffer, $5 \mu \mathrm{l}$ DDT ( 0.1 M ), $1 \mu \mathrm{l}$ RNAse-free water and was then incubated for 1 hour at $37^{\circ} \mathrm{C}$. For subsequent RNA clean-up the NucleoSpin ${ }^{\circledR}$ Extract II Kit was used according to manufacturer instructions. The final RNA concentration was measured by using Nanodrop spectrophotometer. The integrity was checked on $1 \%$ agarose gel/TAE containing formaldehyde and ethidiumbromide.

### 3.2.2.3 Complementary DNA (cDNA) synthesis

First-strand cDNA was synthesis from $1 \mu \mathrm{~g}$ of total RNA using 500 ng of oligo (dT)13 VN primer and 500 ng random hexamer primers. For denaturing the RNA was mixed with the primers, brought to a final volume of $11 \mu \mathrm{l}$ and subsequently heated for 5 min at $68^{\circ} \mathrm{C}$ and immediately chilled on ice for at least 2 min . After addition of a reaction mix containing $4 \mu \mathrm{l}$ of 5 x First Strand Buffer, $1 \mu \mathrm{l}$ of 0.1 M dithiothreitol (DTT), $1 \mu \mathrm{l}$ of rRNAsin (Rnase Inhibitor $40 \mathrm{U} / \mu \mathrm{l}$ ), $25 \mu \mathrm{M}$ dNTPs and $1 \mu \mathrm{l}$ of Super Script ${ }^{\mathrm{TM}}$ III Rnase $\mathrm{H}^{-}$and RNAse free water to a final volume of $20 \mu$ l, the cDNA synthesis reaction proceeded by incubation of the reaction mixture at $25^{\circ} \mathrm{C}$ for 5 min (Hexamer annealing), followed by $50^{\circ} \mathrm{C}$ for 1 hour (reverse transcription), $70^{\circ} \mathrm{C}$ for 15 min (reverse transcription inhibition) in a thermal cycler. The cDNA solution was diluted 1:5 and stored at $20^{\circ} \mathrm{C}$ for the subsequent PCR reaction. To confirm the complete removal of genomic DNA and successful cDNA synthesis, RNA and cDNA were used as template in a PCR reaction using intron spanning primers amplifying a part of $\beta$-actin gene.

### 3.2.2.4 Amplicon and primer design

In order to obtain whole cDNA sequence of the candidate genes, screening known human and murine sequences in public databases was conducted and the nucleotidenucleotide BLAST tool (blastn) was used to retrieve available porcine orthologs (expressed sequence tags, ESTs) of the candidate genes. The retrieved porcine sequences from previous sequence information (GenBank acc. no. BP444694.1, BP444335.1, BP454270.1, BP445832.1, BP451787.1 for C6, BI336392, CF176130, AF162274 for

C7, BP448099.1, BP 449671.1, BX920949.1 for C8A, BP447190.1, BP446376.1, BX918195.1 for C8B, BP139629.1, BP443148.1 for C8G, BP139003.1, CJ007506.1, BX920671, CF363669 for C9) were assembled into contigs and the exon structure. Possible gaps were determined and their approximate sizes were estimated using the orthologous human and mouse sequences. For the porcine C7 gene the whole cds was already cloned by Agah et al. (2000, GenBank acc. no. AF162274). In order to bridge existing gaps and to amplify overlapping fragments of the whole cds, comparative sequencing primers amplifying amplicons suitable for direct sequencing were designed using Primer3 tool. The primer sequences, their position in the cDNA sequence and the lengths of corresponding amplicons are given in table 1.

### 3.2.2.5 Polymerase chain reaction (PCR)

A standard PCR mixture for sequencing and genotyping contained 50 ng of liver cDNA or 100 ng of genomic DNA, 0.2 mM of each primer (forward and reverse primer), 50 $\mu \mathrm{M}$ of each $\mathrm{dNTP}, 0.5 \mathrm{U}$ of Taq polymerase and 1xPCR buffer containing 1.5 mM of $\mathrm{MgCl}_{2}$ in a final volume of $20 \mu \mathrm{l}$. Standard PCR thermal cycling program was set up with an initial denaturation step of $94^{\circ} \mathrm{C}$ for 4 min , followed by 40 cycles at $94^{\circ} \mathrm{C}$ for 30 sec, annealing at $60^{\circ} \mathrm{C}$ for 30 sec , elongation at $72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 5 min . Individually, due to the combination condition the thermal program for primers C9.5 and C9.8.8a were conducted under the annealing temperature 50 and $55^{\circ} \mathrm{C}$ for 45 sec , respectively, followed by elongation step at $72^{\circ} \mathrm{C}$ for 75 sec . Additionally, for some primer pairs touchdown PCR profiles turned out to be optimal with conditions: initial denaturation at $94^{\circ} \mathrm{C}$ for 4 min , followed by eight cycles at $94^{\circ} \mathrm{C}$ for 30 sec , from $58-54^{\circ} \mathrm{C}$ for primers C6.1, C7.1 and C7.2, from $64-60^{\circ} \mathrm{C}$ for primers C 7.3 a and C 7.4 or $68-64^{\circ} \mathrm{C}$ for primer C 7.5 for 30 sec , at $72^{\circ} \mathrm{C}$ for 1 min (annealing temperature was stepdowns $0.5^{\circ} \mathrm{C}$ for each cycle repeated two times), then followed by $35-40$ cycles of $94^{\circ} \mathrm{C}$ for 30 sec , at 54,60 or $64^{\circ} \mathrm{C}$ for 30 sec , at $72^{\circ} \mathrm{C}$ for 1 min , and ending with an extension step at $72^{\circ} \mathrm{C}$ for 5 min . Thermal cycling conditions are summarized in table 1 . Three to $3-5 \mu$ l of PCR products were analyzed on $1 \%$ agarose gel stained with ethidium bromide in $1 \times$ TAE buffer and electrophoresed to evaluate specifity and efficiency of the amplification and the remainder was retained for sequencing or genotyping.

### 3.2.2.6 PCR product purification

The PCR products were purified by ethanol precipitation as follow: $42.5 \mu \mathrm{l}$ of $100 \%$ ethanol, $1.7 \mu \mathrm{l}$ of sodium acetate ( $\mathrm{pH} 5.2,3 \mathrm{M}$ ) and $1 \mu \mathrm{l}$ of glycogen ( $1 \mu \mathrm{~g} / \mu \mathrm{l}$ ) were added into $17 \mu \mathrm{l}$ of the PCR product and the mixture was incubated overnight at $-20^{\circ} \mathrm{C}$. The PCR products were pelleted by centrifugation at 14000 rpm at $4^{\circ} \mathrm{C}$ for 50 min , subsequently air dried and dissolved in $10 \mu \mathrm{l}$ of PCR-grade water. Alternatively the PCRproducts were purified using the NucleoSpin ${ }^{\circledR}$ Extract II Kit according to manufacturer instructions. The concentration and purity of the purified PCR products was evaluated on the Nanodrop spectrophotometer.

### 3.2.2.7 Sequencing

In order to identify cDNA/ DNA sequences and polymorphisms of the candidate genes, the PCR products after purification were used for sequencing based on the Sanger dideoxy nucleotide triphosphate (ddNTP) terminator method. According to the protocol, a total of $10 \mu \mathrm{l}$ reaction mixture was prepared containing 5 ng of the purified PCR products for each 100 bp of the DNA fragment length, 5 pm ( $0.5 \mu \mathrm{l}$ ) primer either up or down, $1.5 \mu$ l BigDye ${ }^{\mathrm{R}}$ Terminator Ready Reaction Premix and water. The cycle sequencing reaction was done with an initial denaturation step of $96^{\circ} \mathrm{C}$ for 1 min followed by 25 cycles at $96^{\circ} \mathrm{C}$ for 10 sec , from $50-65^{\circ} \mathrm{C}$ (according to the annealing temperature of each primer as given in table 1 and 4) for $5 \mathrm{sec}, 60^{\circ} \mathrm{C}$ for 4 min and cooled down to $6^{\circ} \mathrm{C}$. The products were purified using the Princeton Seperations Centri Sep Spin Column Kit. An aliquot of $4 \mu \mathrm{l}$ of PCR products was analyzed on the MegaBACE 1000 or the ABI 310 Genetic Analyzer capillary sequencer. Each sequence chromatogram was manually inspected using Chromas and when need trimmed of poor-quality sequence.

### 3.2.2.8 Screening for single nucleotide polymorphisms (SNPs)

For SNP identification the processed individual sequences of each of the six breeds were aligned and compared together using the web-based program `MultAlin'. The SNP sites are confirmed by either using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), which can discriminate between the alleles, or by
resequencing. Individual sequence traces were inspected using Chromas software. Verification of SNP was performed using cDNA as template. The typical restriction digestion reaction mixture was performed in a total volume of $20 \mu \mathrm{l}$ containing $15 \mu \mathrm{l}$ aliquot of PCR product, 10 U of the appropriate restriction enzyme and $2 \mu \mathrm{l}$ supplied reaction buffer. Incubation was done overnight to ensure complete digestion and was finished by heat inactivation for 20 min according to Fermentas or New England Biolabs manufacturer' s instruction. The enzymes and conditions used for RFLP analysis are summarized in table 3. Fragment length polymorphisms were analyzed on a 3-5\% agarose gel stained with ethidium bromide for evaluation and documentation.

### 3.2.2.9 SNP genotyping

Once the general mutation picture was established, some of the SNP sites in each gene were selected for genotyping in unrelated healthy animals of breeds LR ( $\mathrm{n}=30$ ), PIE ( $\mathrm{n}=30$ ) and MK ( $\mathrm{n}=25$ ) and 417 animals of $\mathrm{F}_{2}$ DUMI population by using PCR-RFLP analysis or by resequencing. Amplifications as well as methods for the restriction digestion reaction are described above. All of the PCR products were separated on 3-5\% agarose gel for discriminated allele identification. For genotyping, genomic DNA samples were used. The exon structure of the individual genes, derived from pig-human and/or pig-mouse comparison, was considered when designing amplicons. Intron sequences were either determined by amplification of genomic DNA using suitable primer pairs and sequencing or the sequences were retrieved from public databases as described in paragraph 3.2.2.4. Therefore one of two primers located on one exon segment whereas another primer was designed in the neighbouring exon or intron sequence. A summary of PCR conditions, amplicon designs and primers used for genotyping is given in table 4.

### 3.2.2.10 Assignment of candidate genes to chromosomes

In order to perform physical mapping of the candidate genes the INRA-University of Minnesota porcine 7000Rad Radiation Hybrid panel (IMpRH) containing 118 pig/ hamster DNA hybrid clones (Hawken et al. 1999, Yerle et al. 1998) was employed. Based on accession number sequence DQ333199, NM_214282, 5'flanking region of clone XX-1C1, DQ333201, DQ333202 and DQ333198, specific primer pairs, which allowed amplifying DNA fragments of 159 to 707 bp for mapping C6, C7, C8A, C8B, C8G and

C9 were derived. Amplicon design, primer sequences and PCR conditions are summarized in table 2. Prior to mapping, PCR conditions were optimized so that specific amplification of porcine DNA but not DNA of the hamster parental lines or amplification of fragments unambiguosly distinguishable between the two species was achieved. The expected porcine DNA fragments were then sequenced to verify their identity. PCR reaction was performed in a total $15 \mu \mathrm{l}$ reaction mixture containing 25 ng of hybrid DNA, $100 \mu \mathrm{M}$ of each dNTP, $0.1 \mu \mathrm{M}$ of each primer, $1 \times$ supplied PCR buffer containing 1.5 mM MgCl 2 and 1 U Taq polymerase. PCR reactions were prepared for 118 DNA templates of the IMpRH panel (positive), a hamster DNA template (negative control), a blank-template without DNA (negative control) and a porcine genomic DNA (positive control). The PCR products were amplified using standardized thermal profile as follows: 4 min of initial denaturation at $94^{\circ} \mathrm{C}, 40$ cycles at $94^{\circ} \mathrm{C}$ for 30 sec , at the annealing temperature $58^{\circ} \mathrm{C}$ or $60^{\circ} \mathrm{C}$ (depending on the specific primer pairs shown in table 2) for 30 sec , at $72^{\circ} \mathrm{C}$ for 1 min and a final extension at $72^{\circ} \mathrm{C}$ for 5 min . For mapping of the C 7 gene a modified, touch-down thermal profile was employed: $94^{\circ} \mathrm{C}$ for 4 min, followed by 9 cycles at $94^{\circ} \mathrm{C}$ for 30 sec , annealing temperature from $60-51^{\circ} \mathrm{C}(-$ $1^{\circ} \mathrm{C}$ per cycle) for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min , followed by 40 cycles of $94^{\circ} \mathrm{C}$ for 30 sec with annealing temperature at $50^{\circ} \mathrm{C}$ for 30 sec , at $72^{\circ} \mathrm{C}$ for 1 min , ending with an extension step at $72^{\circ} \mathrm{C}$ for 5 min . The entire PCR reactions were separated on $3 \%$ agarose gel stained with ethidium bromide and amplification products were independently scored as present (1), absent (0), or ambiguous (?). The results translated into vector format for submitting to IMpRH mapping tool. The PCR-screening of the IMpRH panel was performed twice. For ambiguous data, the PCR was repeated to minimize genotyping errors and the remaining discrepancies scored as ambiguous. Two-point linkage analysis was done using the IMpRH mapping tool available at the IMpRH Web Server.

Linkage mapping of candidate genes was performed using CRIMAP version 2.4 (Green et al. 1990). Therefore genotype information of the respective complement genes and of microsatellite markers previously obtained of the DUMI resource population was used (Wimmers et al. 2002).

### 3.2.2.11 Phylogenetic analysis

In order to estimate evolutionary distances for amino acid sequences of the candidate genes among various species that are believed to have a common ancestor in interrelationships unrooted phylogenetic trees were constructed by using the neighbour-joining distance-matrix method with 500 bootstrap replicates on the reliabitity of internal branches. Amino acid sequences were extracted from reports in GenBank. In this study the computational phylogenetics program MEGA 3 (Kumar et al. 2004), which calculates genetic distance from multiple sequence alignments, was used for analysis.

### 3.2.2.12 Statistical analysis

In this study, the SAS's PROC MIXED procedure combined with REPEATED statement (The SAS software package, release 9.1) was used for analyzing the variance of experimental dataset to estimate the effect of genotypes of candidate genes on complement activity at eight different time points of vaccination. The analysis model address valid standard errors of the fixed effect factor estimates in order to identify other significant environmental and genetic effects apart from the factor of genotypes and its interaction by stepwise elimination of non-significant effects. The SAS mixed linear model was as given below:

$$
\begin{aligned}
\mathrm{y}_{\mathrm{ijklmno}}= & \mu+\operatorname{sire}_{\mathrm{i}}+\text { dam }_{\mathrm{j}}+\text { parity }_{\mathrm{k}}+\text { treatment }_{\mathrm{l}}+\text { genotype }_{\mathrm{m}}+\text { time }_{\mathrm{n}}+\text { sex }_{\mathrm{o}}+ \\
& \text { ANIMAL }_{\mathrm{ijklmno}}+(\text { genotype x time })_{\mathrm{mn}}+\varepsilon_{\mathrm{ijklm}}
\end{aligned}
$$

Where:

| $\mathrm{y}_{\mathrm{ijk} \text { lmno }}$ | : hemolytic complement activity in classical pathway |
| :---: | :---: |
| $\mu$ | : overall mean |
| Sire $_{i}$ | : fixed effect of sire; i=1-3 |
| $\operatorname{dam}_{\mathrm{j}}$ | : fixed effect of dam; $\mathrm{j}=1-11$ |
| parity ${ }_{\text {k }}$ | : fixed effect of parity; k=1-5 |
| treatment $_{1}$ | : fixed effect of treatment-vaccinated trial/unvaccinated control; l=1-2 |
| genotype $_{\text {m }}$ | : fixed effect of genotype; m=1-3 |
| time $_{\text {n }}$ | : fixed effect of time point of measurement prior and after vaccinations; $\mathrm{m}=1-8$ |
| sex ${ }_{0}$ | : fixed effect of sex; 0=1-2 |
| ANIMAL $_{\text {ijklmno }}$ | : random effect of animal |
| (genotype x time) ${ }_{\mathrm{mn}}$ | : interaction between genotype and time point |
| $\varepsilon_{\text {ijklmno }}$ | : residual error |

Table 1 Oligonucleotide primer pairs used for determination of the coding sequence and $5^{\prime}$ and $3^{\prime}$ untranslated regions (UTR) and for screening SNP of the candidate genes

| Gene name/ primer set | Primer sequence (localization on GenBank acc. no) ${ }^{(*)}$ | Annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Length (bp) |
| :---: | :---: | :---: | :---: |
| C6 gene | GenBank acc.no. DQ333199 |  |  |
| - C6.1 | up (5'-3'): ttacaagaagatggaaaggagga (nt. 55-77, 5'UTR) down (3'-5'): tcatccgaattgtctccaca (nt. 634-653, exon 5) | touchdown $58-54$ | 599 |
| - C6.6 | up (5'-3'): cagcaagttggaatgcaatg (nt. 603-622, exon 5) down ( $3^{\prime}-5^{\prime}$ ): gacgtcagaaagctgcaaatc (nt. 1135-1155, exon 8) | 60 | 553 |
| - C6.7 | up ( $5^{\prime}-3^{\prime}$ ): tcccacaaaaaggattccag (nt. 1060-1079, exon 7\&8) down (3'-5'): aatttggctgcgtattctcg (nt. 1678-1697, exon 11) | 60 | 638 |
| - C6.10 | up ( $5^{\prime}-3^{\prime}$ ): ctttggcatgggagaaagg (nt. 1505-1523, exon 10) down (3'-5'): ctggcattccacatctcctc (nt. 2225-2244, exon 14) | 60 | 740 |
| - C6.8 | up (5'-3'): catcggtgatgatgaggaca (nt. 2013-2032, exon 13) down (3'-5'): tggagtctgtatcaagcacaca (nt. 2546-2566, exon 17) | 60 | 554 |
| - C6.9 | up ( $5^{\prime}-3^{\prime}$ ): ttaaagggccattgtcaacc (nt. 2449-2468, exon 16) down ( $3^{\prime}-5^{\prime}$ ): aactcctggatgtggcagtc (nt. 3018-3037, $3^{\prime}$ UTR) | 60 | 589 |
| C7 gene | GenBank acc.no. AF162274 |  |  |
| - C7.1 | up ( $5^{\prime}-3^{\prime}$ ): ttctgccctgaatgttttcc (nt. 96-115, $\left.5^{\prime} \mathrm{UTR}\right)^{(* *)}$ down (3'-5'): gggatttcataggttttgcat (nt. 827-847, exon 7) | touchdown 58-54 | 752 |
| - C7.2 | up (5'-3'): ttttgcaacttgctgagtcat (nt. 806-826, exon 8) down (3'-5'): atgccaccgttttgacaag (nt. 1376-1394, exon 11) | touchdown $58-54$ | 589 |
| - C7.3a | up ( $5^{\prime}-3^{\prime}$ ): gccetggaggagtatctgg (nt. 1330-1348, exon 11) down (3'-5'): ccaacaggaaacgtggtctc (nt. 1756-1775, exon 14) | touchdown 64-60 | 446 |
| - C7.4 | up (5'-3'): agaattctgtccatcacctcct (nt. 1704-1725, exon 13) down (3'-5'): caggtctccccaacagaaag (2269-2288, exon 17) | touchdown 64-60 | 585 |
| - C7.5 | up (5'-3'): ccctatgaatgcggatcttc (nt. 2152-2171, exon 16\&17) down (3'-5'): acgaggggtttgcgtttac (nt. 575-593, $\left.3^{\prime} \mathrm{UTR}\right)^{(* * *)}$ | touchdown 68-64 | 496 |
| -C7pro2DNA | up ( $5^{\prime}-3^{\prime}$ ): catggaaaatgaggctctgg (nt. 410-429, ti: 784743778; name: dpcxa0_039446.z1; mate:784159587, 5’UTR) <br> down ( $3^{\prime}-5^{\prime}$ ): gctgggactgttggaaatg (nt. 111-130 in reverse complement,ti: 848892623; name: rdpaxb0_005371.y1; mate: 854561309), 5'UTR) | 58 | 531 |

Table 1 (continued)

| Gene name/ <br> primer set | Primer sequence (localization on GenBank acc. no) ${ }^{(*)}$ | Annealing <br> temperature <br> $\left.{ }^{\circ} \mathrm{C}\right)$ |
| :--- | :--- | :--- |
| -C7pro3DNA | Length (bp) |  |

Table 1 (continued)

| Gene name/ primer set | Primer sequence (localization on GenBank acc. no) ${ }^{(*)}$ | Annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Length (bp) |
| :---: | :---: | :---: | :---: |
| C9 gene | GenBank acc.no. DQ333198 |  |  |
| - C9.1 | up ( $5^{\prime}-3^{\prime}$ ): cctttgcagtatgcattttaga (nt. 112-133, exon 1) down ( $3^{\prime}-5^{\prime}$ ): ttctgaaattttgtcaacttgg (nt. 706-729, exon 5) | 60 | 618 |
| - C9.3.1 | up ( $5^{\prime}-3^{\prime}$ ): aaagaggcgccttctgtgta (nt. 428-447, exon 4) down (3'-5'): tgggttccataggtttccaa (nt. 1116-1135, exon 7) | 62 | 708 |
| - C9.5 | up ( $5^{\prime}-3^{\prime}$ ): tattcctgcatgtcaaaggag (nt. 979-999, exon 7) down ( $3^{\prime}-5^{\prime}$ ): ccaagtttgtttctttaggtgtg (nt. 1561-1584, exon 10 ) | 50 | 606 |
| - C9.8.8a | up ( $5^{\prime}-3^{\prime}$ ): atgctccggtgctcataaat (nt. 1492-1511, exon 9) down (3'-5'): ccgcatattgactgctgac (nt. 1998-2017, exon 11) | 55 | 526 |
| ${ }^{(*)}$ _The primer sequences followed by TI number, name and mate information collected from the pig genome sequencing project accessible via the Trace Archive tool (NCBI homepage) ${ }^{\left({ }^{* *)}\right) \text { according to GenBank acc. no. BI336392 }}$ <br> ${ }^{(* * *)}$ _according to GenBank acc. no. CF176130 |  |  |  |

Table 2 Oligonucleotide primers used for radiation hybrid mapping

| Primer name | Primer sequence (genome localization) | Annealing temperature $\left({ }^{\circ} \mathrm{C}\right)$ | Length (bp) |
| :---: | :---: | :---: | :---: |
| C6.4DNA | up $5^{\prime}-3^{\prime}$ : ttccttttgcaaggatcaga (nt. 1437-1457, exon 10) <br> down $3^{\prime}-5^{\prime}$ : tcaatcacagcaggatttcc (nt. 1575-1595, exon 10) | 58 | 159 |
| C7.4.1DNA | up 5'-3': agttatcagttgttggttgttca (nt. 739-761, exon 8) <br> down 3'-5': ctcctcctaaggacccagac (nt. 915-931, exon 8) | $50^{(*)}$ | 196 |
| C8Apro2DNA | up $5^{\prime}-3^{\prime}$ : tgcttctggaggtgttcattt (clone $\mathrm{xx}-1 \mathrm{c} 1$ ) <br> down $3^{\prime}-5^{\prime}$ : cggttcaccttctcctgtatg (clone $x x-1 c 1$ ) | 60 | 707 |
| C8B6DNA | up 5'-3': gaaacaagagaagcagcatgg (nt. 1302-1322, exon 9) down 3'-5': ttaatttgatgatgtctgggttg (nt. 1438-1461, exon 9) | 60 | 160 |
| C8G1DNA | up 5'-3': cctcttgacgctgctcct (nt. 75-92, exon 1) <br> down $3^{\prime}-5^{\prime}$ : gagccacgtgcagtgaagt (nt. 268-286, exon2) | 58 | 295 |
| C9.2DNA | up $5^{\prime}-3^{\prime}$ : ggagcattgagacctttgga (nt. 283-302, exon 3) <br> down $3^{\prime}-5^{\prime}$ : gccagctcagactcttccac (nt. 528-547, exon 4) | 60 | 511 |

[^0]Table 3 List of restriction enzyme used for PCR-RFLP

| Enzyme name | Specificity |  |  | (3) | Source |
| :---: | :---: | :---: | :---: | :---: | :---: |
| AciI | $\begin{aligned} & 5^{\prime}-\mathrm{C} \wedge \mathrm{CGC}-3^{\prime} \\ & 3^{\prime}-\mathrm{GGC} \wedge \mathrm{G}-5^{\prime} \end{aligned}$ | 37 | 65 | NEBuffer 3 | Arthrobacter citreus (C. Polisson) (Biolabs) |
| AluI | $\begin{aligned} & 5^{\prime}-\mathrm{AG}^{\wedge} \mathrm{CT}-3^{\prime} \\ & 3^{\prime}-\mathrm{TC} \wedge \mathrm{GA}-5^{\prime} \end{aligned}$ | 37 | 65 | Tango ${ }^{\text {TM }}$ | Arthrobacter luteus (Fermentas) |
| BbvI (BseXI) | $\begin{aligned} & 5^{\prime}-\mathrm{GCAGC}(\mathrm{~N})_{8^{\wedge}} \wedge-3^{\prime} \\ & 3^{\prime}-\mathrm{CGTCG}(\mathrm{~N})_{12^{\wedge}-5^{\prime}} \end{aligned}$ | 65 | 80 | BseXI | Bacillus stearothermophilus Ra 3212 (Fermentas) |
| BseDI | 5'-C^CNNGG-3' <br> $3^{\prime}-$ GGNNC^C-5' | 55 | 80 | Tango ${ }^{\text {TM }}$ | Bacillus stearothermophilus RFL1434 (Fermentas) |
| BsrDI (BseMI) | 5'-GCAATGNN^-3' <br> 3'-CGTTAC^NN -5' | 55 | 80 | R | Bacillus stearothermophilus Isl 15111 (Fermentas) |
| FnuDII (Bsh1236I) | $\begin{aligned} & 5^{\prime}-\mathrm{CG}^{\wedge} \mathrm{CG}-3^{\prime} \\ & 3^{\prime}-\mathrm{GC} \wedge \mathrm{GC}-5^{\prime} \end{aligned}$ | 37 | 65 | R | Bacillus sphaericus RFL1236 (Fermentas) |
| BsrI | $\begin{aligned} & 5^{\prime}-\mathrm{ACTGGN} \wedge-3^{\prime} \\ & 3^{\prime}-\mathrm{TGAC} \wedge \mathrm{CN}-5^{\prime} \end{aligned}$ | 65 | 80 | NEBuffer 3 | Bacillus stearothermophilus (C. Polisson) (Biolabs) |
| DdeI | $\begin{aligned} & 5^{\prime}-\mathrm{C} \mathrm{TNAG}-3^{\prime} \\ & 3^{\prime} \text {-GANT^C-5 } \end{aligned}$ | 37 | 65 | NEBuffer 3 | A E. coli strain that carries the DdeI gene from Desulfovibrio desulfuricans (NCIB 83120) (Biolabs) |
| Eco91I | 5'-G^GTNACC-3' <br> $3^{\prime}$-CCANTG^G-5' | 37 | 65 | $\mathrm{O}^{+}$ | Escherichia coli RFL91(Fermentas) |
| Hin6I | $\begin{aligned} & 5^{\prime}-\mathrm{G}^{\wedge} \mathrm{CGC}-3^{\prime} \\ & 3^{\prime}-\mathrm{CGC} \end{aligned}$ | 37 | 65 | Tango ${ }^{\text {TM }}$ | Haemophilus influenzae RFL6 (Fermentas) |
| HpaII | $\begin{aligned} & 5^{\prime}-\mathrm{C}^{\wedge} \mathrm{CGG}-3^{\prime} \\ & 3^{\prime}-\mathrm{GGC} \end{aligned}$ | 37 | 65 | Tango ${ }^{\text {TM }}$ | Haemophilus parainfluenzae (Fermentas) |
| НруСН4III | $\begin{aligned} & 5^{\prime}-\mathrm{ACN} \wedge \mathrm{GT}-3^{\prime} \\ & 3^{\prime}-\mathrm{TG} \wedge \text { NCA }-5^{\prime} \end{aligned}$ | 37 | 80 | NEBuffer 4 | A E. coli strain that carries the HpyCH4III gene from Helicobacter pylori CH4 (S.A. Thompson) (Biolabs) |
| KpnI | 5'-GGTAC^C-3' <br> $3^{\prime}-\mathrm{C}^{\wedge}$ CATGG-5' | 37 | 80 | KnpI | Klebsiella pneumoniae OK8 (Fermentas) |
| MaeII (TaiI) | $\begin{aligned} & 5^{\prime}-\mathrm{ACGT} \wedge-3^{\prime} \\ & 3^{\prime}-\wedge \mathrm{TGCA}-5^{\prime} \end{aligned}$ | 65 | 80 | R | Thermus aquaticus Cc1-331 (Fermentas) |
| MboII | $\begin{aligned} & 5^{\prime}-\mathrm{GAAGA}(\mathrm{~N})_{8^{\prime}} \wedge-3^{\prime} \\ & 3^{\prime}-\mathrm{CTTCT}(\mathrm{~N})_{7} \wedge-5^{\prime} \end{aligned}$ | 37 | 65 | B | E.coli that carries the cloned mboIIR (Fermentas) |
| PstI | $\begin{aligned} & 5^{\prime}-\mathrm{CTGCA} \wedge G-3^{\prime} \\ & 3^{\prime}-\mathrm{G}^{\wedge} \mathrm{ACGTC}-5^{\prime} \end{aligned}$ | 37 | 80 | O | Providencia stuarti (Fermentas) |
| TaqI | $\begin{aligned} & 5^{\prime}-\mathrm{T} \wedge \mathrm{CGA}-3^{\prime} \\ & 3^{\prime}-\mathrm{AGC} \wedge \mathrm{~T}-5^{\prime} \end{aligned}$ | 65 | 80 | TaqI | Thermus aquaticus YT-1 (Fermentas) |

[^1]Table 4 Oligonucleotide primers used to discriminate alleles for genotyping

| Primer name | Primer sequence (genome localization) ${ }^{(*)}$ | Gene: position of SNP in acc. no. as indicated in table 1 | An- <br> neal- <br> ing <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & \text { Len } \\ & \text { gth } \\ & \text { (bp) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| C6.2DNAmk | up $5^{\prime}-3^{\prime}$ : ggagagcccagaggagaagt (nt. 748-767, exon 6) down $3^{\prime}-5^{\prime}$ : cgagcctataatcagcattgg (nt. 566-586, ti: 1373546263; name: rplun0101_g6.y1) | C6: 862A $\rightarrow$ G | 58 | 177 |
| C6.6DNAmk | up $5^{\prime}-3^{\prime}$ : tcctttttgcaaggatcagag (nt. 1438-1458, exon 10) down $3^{\prime}-5^{\prime}$ : aacagcataaacaatggaggtg (nt. 754-775, ti: 1420506448; name:SS_WGS-957p20.p1k; mate:1420506449) | C6: 1557C $\rightarrow$ G | 56 | 352 |
| C7.1.BsrDI | up 5'-3': acaactgggtctctgggttc (ti: 848149583; <br> name:bd_52849.z1; mate:863305860) <br> down $3^{\prime}-5^{\prime}$ : aacatctgaaacgctctccac (nt. 254-274, exon 4) | C7: 154A $\rightarrow$ G | 56 | 301 |
| C7.9DNAmk | up $5^{\prime}-3^{\prime}$ : gagttatcagttgttggttgttcag (nt. 738-762, exon 8) down $3^{\prime}-5^{\prime}$ : tgcgacttctctgagtcca (nt. 956-975, exon 8) | C7: 870C $\rightarrow$ T | 56 | 238 |
| C7.4.1DNA | up $5^{\prime}-3^{\prime}$ : agttatcagttgttggttgttca (nt. 859-881, exon 8) down 3'-5': ctcctcctaaggacccagac (nt. 915-934, exon 8) | C7: 881A $\rightarrow$ G | 51 | 196 |
| C8A.5.TfiI | up 5'-3': cacctcgtgtgtaacggaga (nt. 434-453, exon 4) down $3^{\prime}-5^{\prime}$ : gccaccagcgtatggtattt (clone $\mathrm{xx}-1 \mathrm{c} 1$ ) | C8A: $535 \mathrm{~A} \rightarrow \mathrm{G}$ | 56 | 322 |
| C8A4DNAmk | up $5^{\prime}-3^{\prime}$ : aagcccattacgagatactgc (nt.1490-1511, exon 10) down $3^{\prime}-5^{\prime}:$ gtcagtgccetgtgggtt (nt. 1656-1673, exon 10) | C8A: $1544 \mathrm{C} \rightarrow \mathrm{~T}$ | 60 | 184 |
| C8A.19.KnpI | up 5'-3': agcacagaggtcttggttgg (clone xx-1c1) down 3'-5': agctggcaggacagagaaaa (nt. 1969-1988, 3'UTR) | $\begin{aligned} & \mathrm{C} 8 \mathrm{~A}: \\ & 1768 \mathrm{C} \rightarrow \mathrm{~T} \end{aligned}$ | 56 | 426 |
| C8B1DNA | up $5^{\prime}-3^{\prime}$ : tgagaggccacactctcttg (nt. 160-179, exon 2) <br> down $3^{\prime}-5^{\prime}$ : cttctgacagggatcacacg (nt. 288-307, exon 2) | C8B: 222C $\rightarrow$ T | $54^{(* *)}$ | 148 |
| C8B13DNAmk | up $5^{\prime}-3^{\prime}$ : caagagcacctgcttccaa (nt. 481-499, ti: 775597740; name: rbyc_22121.y1; mate:813000763) down $3^{\prime}-5^{\prime}$ : cgagttccttcagagggtca (nt. 1009-1028, exon 7) | C8B: $935 \mathrm{~A} \rightarrow \mathrm{G} \rightarrow \mathrm{~T}$ | 56 | 312 |
| C8B.14.MaeII | up $5^{\prime}-3^{\prime}$ : ttcttatcatcgggctggtc (clone XX-1E1) <br> down $3^{\prime}-5^{\prime}$ : ctgccttgtccttgcttctt (clone XX-1E1) | C8B: 1244A $\rightarrow$ G | 56 | 528 |

Table 4 (continued)

| Primer name | Primer sequence (genome localization) ${ }^{(*)}$ | Gene: position of SNP in acc. no. as indicated in table 1 | An- <br> neal- <br> ing <br> $\left({ }^{\circ} \mathrm{C}\right)$ | $\begin{aligned} & \text { Len } \\ & \text { gth } \\ & \text { (bp) } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| C9.2DNA | up $5^{\prime}-3^{\prime}$ : ggagcattgagacctttgga (nt. 283-302, exon 3) down $3^{\prime}-5^{\prime}$ : gccagctcagactettccac (nt. 528-547, exon 4) | C9: 350A $\rightarrow$ G | 60 | 511 |
| C9.2bDNA | up 5'-3': gagccttgcgaagaccttg (nt. 363-381, exon 3) down 3'-5': atagatggccccettttcac (intron detected) | C9: 407C $\rightarrow$ G | 60 | 292 |

[^2]Information in this chapter is given in the following order: molecular characterization of the candidate genes and identification of polymorphisms, detection of genotypes and location of the candidate genes on the porcine chromosomes as well as genetic association of the genes to hemolytic complement activity in both the classical and alternative pathways.

### 4.1 Molecular characterization and detection of polymorphisms

4.1.1 The sixth component of the porcine complement system (C6)

### 4.1.1.1 Complementary DNA and predicted protein sequence

The porcine C6 gene was sequenced using six exon-primers as described in table 1. Full-length cDNA nucleotide sequence consists of 3306 bp including 144 and 354 nucleotides of 5'and 3' untranslated region, respectively (GenBank acc. no. DQ333199). Examination of the cDNA sequence revealed a single large open reading frame encoding 935 amino acids (GenBank acc. no. ABD13967), which commenced at the second available ATG codon. The porcine C6 protein sequence contains 64 cysteines. An analysis using the SignalP 3.0 tool has revealed a putative cleavage site after the signal peptide sequence between positions 21 and 22. The porcine C6 sequence has 18 exons predicted due to comparison with human intron-exon structure using the Map Viewer or alternatively, by collecting DNA genomic porcine sequences using the Trace Archive tool. The length and position of C6 exons are shown in table 22. Further detailed characterization of C6 molecule is in annex (Figure 40). The complete porcine C6 sequence shows higher homology ( $\geq 82 \%$ ) to B. taurus, C. familiaris, H. sapiens, P. troglodytes than to other species at both DNA and protein levels (Table 5 and Figure 11). By using the SMART analysis tool it is possible to identify and delineate ten distinct structural units in the porcine C6 protein, which have the characteristic features of the modules TSP1, LDLa, MACPF, EGF, CCP and FIMAC. Hence, the C6 modules are expected to fold into stable structures, to exert a specific binding function in at least some cases, and
to be potentially encoded by a single exon (Haefliger et al. 1989). Location of the module domains in porcine C6 protein sequence is showed in figure 12.


Figure 11 The phylogenic tree of C6 proteins. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship of C6 proteins among species. Bootstrap indices were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications; only values $>50 \%$ are indicated. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers in table 5. The phylogenetic tree for evaluating evolutionary distances was computed using the MEGA3 software (Kumar et al. 2004)


Figure 12 Location of protein domains in the porcine C6 sequence

Table 5 Percent nucleotide sequence and amino acid sequence identities of the porcine C6 with different species analysed by using ClustalW2 multiple sequence alignment

| C6 | Complementary DNA |  |  | Amino acids |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GenBank acc. no | bp | \% | GenBank acc. no | а.a | \% |
| S. scrofa | DQ333199 | 3306 | 100 | ABD13967 | 935 | 100 |
| C. familiaris | AB126594 | 2805 | 85 | XP_536488 | 936 | 83 |
| H. sapiens | AB126593 | 2805 | 85 | CAA50994 | 934 | 82 |
| B. taurus | NM_001045979 | 3295 | 83 | AAI14015 | 932 | 84 |
| X. tropicalis | XM_536488 | 3166 | 82 | AAH76972 | 934 | 53 |
| P. troglodytes | NM_000065 | 3551 | 81 | BAD02322 | 934 | 82 |
| P. pygmaeus | NM_176074 | 3038 | 74 | BAD02323 | 934 | 82 |
| R. norvegicus | XM_001371501 | 2802 | 71 | NP_788263 | 934 | 76 |
| M. musculus | XM_429140 | 2808 | 65 | AAH11251 | 769 | 74 |
| O. mykiss | BC011251 | 2844 | 64 | CAF22026 | 941 | 43 |
| M. domestica | BC076972 | 3286 | 52 | XP_001371538 | 933 | 65 |
| B. belcheri | BC057429 | 3075 | 49 | BAB47147 | 921 | 27 |
| G. gallus | AJ622903 | 3216 | 39 | XP_429140 | 935 | 58 |
| D. rerio | AB050669 | 3508 | 27 | AAH57429 | 885 | 45 |

### 4.1.1.2 Single nucleotide polymorphisms

By sequencing an animal of each breed (HS, DR, LR, PIE, BMP, and MK), five single nucleotide polymorphisms (SNPs) were found in the coding region of the porcine C6 gene, respectively. The SNPs were determined by PCR-RFLP method using the restriction enzymes AciI, TaqI, PstI, BsrI and DdeI. Both the nucleotide variations at nt. $1138 \mathrm{C} \rightarrow \mathrm{T}$ and $1557 \mathrm{C} \rightarrow \mathrm{G}$ belong to the MACPF domain. Two SNPs at nt. 862A $\rightarrow \mathrm{G}$ and 1557C $\rightarrow$ G have amino acid substitutions asparagines $\rightarrow$ asparagine acid and asparagine acid $\rightarrow$ glutamine acid, respectively. The fifth appears within the FIMAC module of amino acid sequence. Point mutations at position 843 and 1557, respectively, are transversion $\mathrm{A} \rightarrow \mathrm{C}$ and $\mathrm{C} \rightarrow \mathrm{G}$ while the others are transitions (Table 6).

Table 6 Characterization of SNPs in the porcine C6 candidate gene

| Variation, bp | Variation, a.a | Codon | Exon | Enzyme | Module |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $843 \mathrm{~A} \rightarrow \mathrm{C}$ | - | $233 \mathrm{CCA} \rightarrow \mathrm{CCC}$ | 6 | AciI | - |
| 862A $\rightarrow \mathrm{G}$ | Asn $\rightarrow$ Asp | $240 \mathrm{AAC} \rightarrow \mathrm{GAC}$ | 6 | TaqI | - |
| $1138 \mathrm{C} \rightarrow \mathrm{T}$ | - | $332 \mathrm{CTG} \rightarrow$ TTG | 8 | PstI | MACPF |
| $1557 \mathrm{C} \rightarrow \mathrm{G}$ | Asp $\rightarrow \mathrm{Glu}$ | $471 \mathrm{GAC} \rightarrow \mathrm{GAG}$ | 10 | BsrI | MACPF |
| $2604 \mathrm{C} \rightarrow \mathrm{T}$ | - | $820 \mathrm{GCC} \rightarrow \mathrm{GCT}$ | 17 | DdeI | FIMAC |

4.1.2 The seventh component of the porcine complement system (C7)
4.1.2.1 Complementary DNA and predicted protein sequence

The 2532 bp full-length porcine C7 cDNA sequence (GenBank acc. no. AF162274) and an open reading frame encoding 843 amino acid residues (GenBank acc. no. NP_999447) have been reported by Agah et al. (2000). The protein C7 precursor contains 56 cysteine residues. Here we report 807 (nt. $-806 \rightarrow 0$ ) and 122 (nt. 2533-2654) nucleotides of new sequences in the $5^{\prime}$ and $3^{\prime}$ flanking region without any putative polyadenylation signal, respectively. The transcriptional initiation site was assigned to position -110 bp upstream of the start codon predicted by the DRAGON

GC+PROMOTER FINDER version 1.0 (http://sdmc.lit.org.sg/ERE-V2/index) (Figure 41). The first 28 amino acids represent the signal peptide as predicted using the SignalP 3.0 tool. The signal peptide predictions from both the SMART and the SignalP 3.0 tool are identical. This means that the residues numbered from 29 to 843 encode the mature porcine C7. Eighteen exons of the pig C7 gene were identified due to blasting the porcine and human genomic C7 sequence by using the Trace Archive and the Map Viewer tool , respectively. According to figure 41, the length and position of exon fragments are displayed in table 23. The porcine C7 sequence shows higher homology ( $\geq 83 \%$ ) to $B$. taurus and $H$. sapiens than other species concerning nucleotide and protein sequences (Table 7 and Figure 13). In porcine C7 gene five classes of the modules TSP1, LDLa, MACPF, CCP, FIMAC were distinguished using the SMART analysis tool (Figure 14).


Figure 13 The phylogenic tree of C7 proteins. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship of C7 proteins among species. Bootstrap indices were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications; only values $>50 \%$ were indicated. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers in table 7. The phylogenetic tree for evaluating evolutionary distances was computed using the MEGA3 software (Kumar et al. 2004).


Figure 14 Location of protein domains in the porcine C7 sequence

Table 7 Percent nucleotide sequence and amino acid sequence identities of the porcine C7 with different species analyzed by using ClustalW2 multiple sequence alignment

| C7 | Complementary DNA |  |  | Amino acids |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GenBank acc. no | bp | \% | GenBank acc. no | a.a | \% |
| S. scrofa | AF162274 | 2532 | 100 | AAD45918 | 843 | 100 |
| B. taurus | BC114076 | 3709 | 87 | AAI14077 | 843 | 83 |
| H. sapiens | BC063851 | 4015 | 86 | AAH63851 | 843 | 83 |
| R. norvegicus | XM_001054007 | 4727 | 80 | XP_001054007 | 844 | 78 |
| M. mulatta | XM_001085533 | 1659 | 79 | XP_001085533 | 552 | 76 |
| M. musculus | XM_973486 | 2547 | 77 | XP_978580 | 848 | 72 |
| O. mykiss | AJ622902 | 2777 | 54 | CAF22025 | 845 | 43 |
| P. olivaceus | AB020964 | 2618 | 39 | BAA88899 | 805 | 43 |
| D. rerio | XM_685854 | 2532 | 54 | XP_690946 | 849 | 41 |

### 4.1.2.2 Single nucleotide polymorphisms

Five primer pairs were designed along the body of the porcine C7 cDNA sequence to screen polymorphisms. Using PCR-RFLP method with digestion of specific restriction enzymes, which separate DNA fragments at the sites with different alleles, six polymorphic sites were detected. All they are transitions. The polymorphisms at nt 546, 870 and 1764 are silent mutations whereas the other remainders have amino acid substitutions. Five of six polymorphisms belong to the functional protein domains such as TSP1, MACPF and CCP (Table 8).

Table 8 Characterization of SNPs in the porcine C7 candidate gene

| Variation, bp | Variation, a.a | Codon | Exon | Enzyme | Module |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $154 \mathrm{~A} \rightarrow \mathrm{G}$ | Ile $\rightarrow$ Val | 52ATT $\rightarrow$ GTT | 4 | BsrDI | TSP1 |
| $200 \mathrm{C} \rightarrow \mathrm{T}$ | Thr $\rightarrow$ Met | 67ACG $\rightarrow$ ATG | 4 | MaeII | TSP1 |
| 546C $\rightarrow \mathrm{T}$ | - | 182AAC $\rightarrow$ AAT | 6 | MaeII | - |
| 870C $\rightarrow \mathrm{T}$ | - | 290AGC $\rightarrow$ AGT | 8 | Hin6I | MACPF |
| 881A $\rightarrow \mathrm{G}$ | Lys $\rightarrow$ Arg | 294AAA $\rightarrow$ AGA | 8 | MboII | MACPF |
| 1764A $\rightarrow \mathrm{G}$ | - | 588ACA $\rightarrow$ ACG | 17 | MaeII | CCP |

4.1.3 The alpha chain of the eighth component of the porcine complement system (C8A)

### 4.1.3.1 Complementary DNA and predicted protein sequence

The nucleotide sequence coding for the alpha-eighth component of porcine complement factors (C8A) has been determined by sequencing PCR products from five primer pairs, which amplified overlapping fragments of 490 to 572 nucleotides in length (Table 1). The full-length cDNA sequence consists of 2146 nucleotides (GenBank acc. no. DQ333200) encoding 589 amino acids in a single polypeptide chain (GenBank acc. no. ABD13968). Nakajima et al. (1998) reported the leader peptide sequence formed by the first 31 amino acids in the porcine C8A protein sequence. Validation in length and position of 11 porcine C8A exons was conducted by comparing with porcine and human genomic sequences using the Trace Archive and the Map Viewer tool, respectively (Table 21). A part of the first exon belongs to the $5^{\prime}$ flanking region while the ending segment of the last exon is a part of the $3^{\prime}$ flanking region. Further characterization of C8A sequence is found in figure 42 . The porcine C8A sequence shows more homology with B. taurus, C. familiaris, M. mulatta, H. sapiens, P. troglodytes than with other species at both nucleotide and protein levels ( $\geq 77 \%$ ) (Table 9 and Figure 16). The polypeptide chain of the gene encoding the porcine C8A complement component contains 31 cysteines. Small cysteine-rich modules in the porcine C8A protein are highly homologue with TSP1, LDLa, and MACPF modules using the SMART analysis tool (Figure 15).

### 4.1.3.2 Single nucleotide polymorphisms

The same primer pairs were used to identify porcine C8A cDNA sequence as well as to screen polymorphisms, which were confirmed via restriction digestion by specific enzymes (Table 1). Results showed that seven SNPs were detected in the porcine C8A gene. Most SNPs were silent mutations except two of them at sites $1544 \mathrm{C} \rightarrow \mathrm{T}$ and $1674 \mathrm{~A} \rightarrow \mathrm{G}$ leading to amino acid exchanges. The protein domains containing polymorphisms were TSP1 (358C $\rightarrow$ T, 1768C $\rightarrow$ T), and MACPF (1207C $\rightarrow$ T, 1510A $\rightarrow \mathrm{G}$, $1544 \mathrm{C} \rightarrow \mathrm{T}$ ). At the nucleotide position 1545, variation of alleles $\mathrm{G} \rightarrow$ A leading to amino acid substitution $\operatorname{Arg} \rightarrow$ His at the second position of codon 485 (CGC $\rightarrow$ CAC) was confirmed by restriction digestion with HhaI enzyme (Nakajima et al. 1998). Further characterization of point mutations is given in table 10.

Table 9 Percent nucleotide sequence and amino acid sequence identities of the porcine C8A with different species analyzed by using ClustalW2 multiple sequence alignment

| C8A | Complementary DNA |  |  | Amino acids |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GenBank acc. no | bp | \% | GenBank acc. no | a.a | \% |
| S. scrofa | DQ333200 | 2146 | 100 | ABD13968 | 589 | 100 |
| H. sapiens | BC132913 | 1915 | 83 | AAI32914 | 584 | 78 |
| C. familiaris | XM_536695 | 1816 | 83 | XP_536695 | 589 | 77 |
| B. taurus | BC112635 | 2316 | 82 | AAI12636 | 589 | 80 |
| P. troglodytes | XM_513435 | 2392 | 81 | XP_513435 | 584 | 78 |
| M. mulatta | XM_001114403 | 2393 | 80 | XP_001114403 | 584 | 77 |
| O. cuniculus | NM_001082255 | 2070 | 72 | NP_001075724 | 585 | 74 |
| R. norvegicus | XM_001064004 | 3133 | 66 | XP_001064004 | 587 | 71 |
| M. musculus | BC027748 | 3665 | 65 | CAM23655 | 587 | 72 |
| X. tropicalis | BC074554 | 1973 | 50 | AAH74554 | 584 | 48 |
| G. gallus | XM_426667 | 2227 | 49 | XP_426667 | 603 | 52 |
| O. mykiss | AJ851931 | 2037 | 44 | CAH65481 | 615 | 43 |



Figure 15 Location of protein domains in the porcine C8A sequence


Figure 16 The phylogenic tree of C8A proteins. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship of C8A proteins among species. Bootstrap indexes were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications; only values $>50 \%$ were indicated. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers in table 9. The phylogenetic tree for evaluating evoluntionary distances was computed using the MEGA3 software (Kumar et al. 2004)

Table 10 Characterization of SNPs in the porcine C8A candidate gene

| Variation, bp | Variation, a.a | Codon | Exon | Enzyme | Module |
| :--- | :--- | :--- | :--- | :--- | ---: |
| $358 \mathrm{C} \rightarrow \mathrm{T}$ | - | 89AGC $\rightarrow$ AGT | 3 | HpyCH4III | TSP1 |
| 535A $\rightarrow \mathrm{G}$ | - | 148CCA $\rightarrow$ CCG | 4 | TfiI | - |
| $1207 \mathrm{C} \rightarrow \mathrm{T}$ | - | 372AGC $\rightarrow$ AGT | 8 | BsrI | MACPF |
| $1510 \mathrm{~A} \rightarrow \mathrm{G}$ | - | 473CTA $\rightarrow$ CTG | 10 | Hin6I | MACPF |
| $1544 \mathrm{C} \rightarrow \mathrm{T}$ | Arg $\rightarrow \mathrm{Cys}$ | 485CGC $\rightarrow$ TGC | 10 | Hin6I | MACPF |
| $1674 \mathrm{~A} \rightarrow \mathrm{G}$ | $\mathrm{Tyr} \rightarrow \mathrm{Cys}$ | 528TAC $\rightarrow$ TGC | 10 | Eco91I | - |
| $1768 \mathrm{C} \rightarrow \mathrm{T}$ | - | 559GGC $\rightarrow$ GGT | 11 | KnpI | TSP1 |

4.1.4 The beta chain of the eighth component of the porcine complement system (C8B)

### 4.1.4.1 Complementary DNA and predicted protein sequence

The complete porcine C8B cDNA sequence spans 1987 nucleotides, including 28 and 123 nucleotides of $5^{\prime}$ and $3^{\prime}$ untranslated region, respectively (GenBank acc. no DQ333201). The predicted protein sequence of the gene is 661 amino acids (GenBank acc. no. ABD13969), which contains ten amino acids more than human protein. A total of 27 cysteines were found in protein structure. Figure 43 shows further information for porcine C8B characterization. The signal peptide was identified between amino acids the first 44 and 45 using the SignalP 3.0 tool. Nucleotide ( $\geq 80 \%$ ) and protein ( $\geq 75 \%$ ) sequence show higher similarity with C. familiaris, H. sapiens, M. mulatta, O. cuniculus than with other species (Table 11 and Figure 17). Alignment of the porcine C8B cDNA sequence along with collected porcine and human DNAs using the Trace Archive and the Map Viewer tool, respectively, has revealed length and position of twelve exons in the porcine C8B (Table 24). Using the SMART analysis tool it is possible to identify and delineate four distinct structural units in the C8B protein sequence, which have the characteristic features of the modules TSP1, LDLa, MACPF, and EGF (Figure 18).


Figure 17 The phylogenic tree of C8B proteins. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship of C8B proteins among species. Bootstrap indexes were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers in table 11. The phylogenetic tree for evaluating evolutionary distances was computed using the MEGA3 software (Kumar et al. 2004)

### 4.1.4.2 Single nucleotide polymorphisms

Here nine polymorphisms were detected in porcine C8B gene. Most of them were identified using PCR-RFLP analysis except the polymorphic site at nucleotide position 935 with three different alleles using repeated comparative sequencing. The polymorphic
site at locus 935 with three different alleles was not only a transition but also a transversion while all remainders were transitions. Eight of these nine contain one amino acid exchange. Five of nine SNPs belong to the MACPF protein domain (Table 12).

Table 11 Percent nucleotide sequence and amino acid sequence identities of the porcine C8B with different species analysed by using ClustalW2 multiple sequence alignment

| C8B | Complementary DNA |  |  | Amino acids |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GenBank acc. no | bp | \% | GenBank acc. no | a.a | \% |
| S. scrofa | DQ333201 | 1987 | 100 | ABD13969 | 611 | 100 |
| C. familiaris | XM_536694 | 1773 | 87 | XP_536694 | 590 | 79 |
| H. sapiens | NM_000066 | 2053 | 84 | AAI30576 | 591 | 79 |
| M. mulatta | XM_001114456 | 2082 | 83 | XP_001114456 | 591 | 78 |
| O. cuniculus | NM_001082668 | 2052 | 80 | NP_001076137 | 590 | 75 |
| B. taurus | BC112600 | 1330 | 79 | AAI12601 | 383 | 85 |
| M. musculus | AB077306 | 1586 | 79 | BAC41371 | 523 | 71 |
| R. norvegicus | XM_001058539 | 2395 | 73 | XP_001058539 | 589 | 73 |
| G. gallus | XM_422502 | 2165 | 59 | XP_422502 | 584 | 57 |
| D. rerio | XM_001332783 | 1742 | 53 | XP_001332819 | 562 | 44 |
| O. mykiss | AF418597 | 1855 | 51 | AAL16647 | 587 | 43 |
| P. olivaceus | AB020962 | 1849 | 50 | BAA86877 | 588 | 43 |
| M. domestica | XM_001381244 | 1896 | 44 | XP_001381281 | 631 | 34 |



Figure 18 Location of protein domains in the porcine C8B sequence

Table 12 Characterization of SNPs in the porcine C8B candidate gene

| Variation, bp | Variation, a.a | Codon | Exon | Enzyme | Module |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $99 \mathrm{C} \rightarrow \mathrm{T}$ | Pro $\rightarrow$ Leu | $24 \mathrm{CCG} \rightarrow$ CTG | 1 | HpaII | - |
| $222 \mathrm{C} \rightarrow$ T | Thr $\rightarrow$ Met | 65ACG $\rightarrow$ ATG | 2 | FnuDII | - |
| $935 \mathrm{~A} \rightarrow \mathrm{G} \rightarrow \mathrm{T}$ | Thr $\rightarrow$ Gly $\rightarrow$ Ser | 303ACA $\rightarrow$ GCA $\rightarrow$ TCA | 7 | (*) | MACPF |
| $1244 \mathrm{~A} \rightarrow \mathrm{G}$ | $\mathrm{Ile} \rightarrow \mathrm{Val}$ | 406 ATC $\rightarrow$ GTC | 8 | MaeII | MACPF |
| $1259 \mathrm{C} \rightarrow \mathrm{T}$ | Pro $\rightarrow$ Ser | 411CCG $\rightarrow$ GCG | 8 | HpaII | MACPF |
| $1374 \mathrm{C} \rightarrow$ T | Ala $\rightarrow$ Val | $449 \mathrm{GCC} \rightarrow$ GTC | 9 | BseDI | MACPF |
| 1494C $\rightarrow$ T | Ala $\rightarrow$ Val | $489 \mathrm{GCG} \rightarrow$ GTG | 10 | AciI | MACPF |
| 1797C $\rightarrow$ T | Ala $\rightarrow$ Val | 590GCA $\rightarrow$ GTA | 12 | BbvI | - |
| 1801C $\rightarrow$ T | - | $591 \mathrm{GCC} \rightarrow$ GTC | 12 | AluI | - |

${ }^{(*)}$ _detected by resequencing
4.1.5 The gamma chain of the eighth component of the porcine complement system (C8G)
4.1.5.1 Complementary DNA and predicted protein sequence

The gene encoding the porcine C8G gene was sequenced and its structure was determined. The complete porcine C8G cDNA sequence (GenBank acc. no. DQ333202) contains 840 bp including 51 and 180 bp of the $5^{\prime}$ and $3^{\prime}$ UTR regions, respectively. The entire coding region is composed of 609 bp corresponding to an open reading frame encoding 202 amino acids (GenBank acc. no. ABD13970). Both human and pig C8G proteins contains three cysteine residues. Seven exons of the porcine C8G were identified based on alignment along length of porcine AK233484 genomic DNA sequence in GenBank (clone: LVRM10157D04, Uenishi et al. 2004) according to intron-exon junction rule (start with GT - end with AG) and length of human C8G DNA genomic sequence using the Map Viewer sequence alignment tool (Table 25). Further information about porcine C8G sequence is found in figure 44. The SignalP 3.0 analysis revealed, that the first exon contains the $5^{\prime}$ UTR together with the signal peptide coding sequences between amino acids 20-21. The porcine C8G cDNA and polypeptide precursor sequence show a high degree of $\geq 65 \%$ identity with $M$. musculus, $O$. cuniculus, $C$. familiaris and H. sapiens sequences (Table 13 and Figure 20). A sequence, which is
similar to lipocalin module was found between amino acids 48-184 using Conserved Domains Search CDS/CCD protein domain analysis tool (Figure 19).

### 4.1.5.2 Single nucleotide polymorphisms

The porcine C8G was screened for polymorphisms by comparative sequencing but no polymorphism was found in its cDNA sequence.


Figure 19 Location of protein domains in the porcine C8G sequence

Table 13 Percent nucleotide sequence and amino acid sequence identities of the porcine C8G with different species analyzed by using ClustalW2 multiple sequence alignment

| C8G | Complementary DNA |  |  | Amino acids |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GenBank acc. no | bp | \% | GenBank acc. no | a.a | \% |
| S. scrofa | DQ333202 | 840 | 100 | ABD13970 | 202 | 100 |
| M. musculus | BC019967 | 1063 | 71 | AAH19967 | 202 | 71 |
| C. familiaris | XM_537791 | 769 | 66 | XP_537791 | 202 | 80 |
| O. cuniculus | L26979 | 751 | 66 | AAA31193 | 202 | 74 |
| H. sapiens | M17999 | 857 | 65 | AAI13627 | 202 | 82 |
| G. gallus | XM_001234026 | 684 | 59 | XP_001234027 | 225 | 40 |
| R. norvegicus | XM_001073643 | 1212 | 55 | XP_001073643 | 202 | 73 |
| M. mulatta | XM_001117839 | 417 | 53 | XP_001117839 | 138 | 73 |
| O. mykiss | AJ622904 | 977 | 34 | CAF22027 | 221 | 32 |
| D. rerio | BC062865 | 1364 | 21 | AAH62865 | 209 | 32 |



Figure 20 The phylogenic tree of C8G proteins. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship of C8G proteins among species. Bootstrap indexes were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers in table 13. The phylogenetic tree for evaluating evolutionary distances were computed using the MEGA3 software (Kumar et al. 2004)
4.1.6 The ninth component of the porcine complement system (C9)

### 4.1.6.1 Complementary DNA and predicted protein sequence

The cDNA length of the porcine C9 candidate gene was obtained due to amplifying and sequencing PCR product fragments derived from four primer pairs given in table 1. Sequencing results established a continuous cDNA sequence of 2536 bp in length (GenBank acc. no. DQ333198) including 1632 bp of coding sequence. The $5^{\prime}$ and $3^{\prime}$ UTR contain 89 and 815 bp , respectively. The $3^{\prime}$ UTR has a polyadenylation signal sequence
(ATTAAA) between nucleotides 2505-2510. Alignment to porcine and human C9 sequence using the Trace Archive and the Map Viewer tool, respectively, confirmed the length and position of 11 exon fragments in the porcine C9 as shown in table 26. Computer prediction revealed the first 21 amino acids in C9 protein sequence as being a signal peptide sequence using the SignalP 3.0 tool. Examination of the cDNA sequence revealed a single large open reading frame of 543 amino acids with 19 cysteine residues. The open reading frame is terminated by a TAG stop codon after nucleotide position 1718. The protein sequence of porcine C9 shows high similarity to that of E. caballus, B. taurus, M. mulatta, H. sapiens ( $\geq 67 \%$ ) according to the ClustalW2 alignment (Table 14 and Figure 22). Using the SMART analysis tool we have detected porcine protein structure characterized by modules TSP1, LDLa and MACPF (Figure 21). Further characterization for porcine C9 sequence is showed in figure 45.


Figure 21 Location of protein domains in the porcine C9 sequence

### 4.1.6.2 Single nucleotide polymorphisms

Two segments of the porcine C9 gene encompassing the presumably polymorphic codons from comparative sequencing were amplified using polymerase chain reaction. According to the restriction fragment patterns obtained after BsrDI and HpyCH4III digestion of the PCR products, two polymorphisms were detected at nucleotide $350 \mathrm{~A} \rightarrow \mathrm{G}$ and $407 \mathrm{C} \rightarrow \mathrm{G}$ corresponding to codon 87CAA $\rightarrow \mathrm{CAG}$ and 106CAC $\rightarrow$ CAG. The first SNP belongs to the TSP1 module and the second locates on the LDLa module. The second polymorphism is a nucleotide substitution $\mathrm{C} \rightarrow \mathrm{A}$ in the third position of codon 106 causing an amino acid exchange His $\rightarrow$ Gln, whereas the remainder is a silent mutation. Both located on the same exon 3 .


Figure 22 The phylogenic tree of C9 proteins. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship of C9 proteins among species. Bootstrap indexes were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers in table 14. The phylogenetic tree for evaluating evolutionary distances were computed using the MEGA3 software (Kumar et al. 2004)

Table 14 Percent nucleotide sequence and amino acid sequence identities of the porcine C9 with different species analysed by using ClustalW2 multiple sequence alignment

| C9 | Complementary DNA |  |  | Amino acids |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | GenBank acc. no | bp | \% | GenBank acc. no | a.a | \% |
| S. scrofa | DQ333198 | 2536 | 100 | ABD13966 | 543 | 100 |
| E. caballus | NM_001081950 | 2661 | 79 | NP_001075419 | 547 | 71 |
| B. taurus | BC105174 | 2697 | 78 | AAI05175 | 548 | 70 |
| H. sapiens | BC020721 | 2094 | 78 | AAH20721 | 559 | 67 |
| O. cuniculus | NM_001082346 | 2018 | 77 | NP_001075815 | 557 | 66 |
| M. mulatta | XM_001084671 | 2774 | 73 | XP_001084671 | 561 | 69 |
| C. familiaris | XM_536494 | 1840 | 72 | XP_536494 | 589 | 65 |
| R. norvegicus | NM_057146 | 2083 | 66 | NP_476487 | 567 | 61 |
| M. domestica | XM_001372031 | 1572 | 66 | XP_001372068 | 523 | 52 |
| M. musculus | BC011137 | 1767 | 64 | AAH11137 | 561 | 55 |
| F. heteroclitus | AY495671 | 1844 | 45 | AAR87007 | 577 | 35 |
| C. idella | AY391781 | 2123 | 41 | AAS76086 | 650 | 35 |
| O. mykiss | AM039888 | 2104 | 40 | CAJ01692 | 601 | 33 |
| P. olivaceus | AB020963 | 2313 | 31 | BAA86878 | 558 | 33 |
| T. rubripes | FRU87241 | 2854 | 5 | AAC60288 | 586 | 32 |

4.2 Structural relationship analysis among the porcine homologous complement candidate sequences

From above obtained results, it is very possible to recognize that there is a relationship of functional domains in the protein sequences of the porcine terminal complement components. The amino acid sequences of the candidate gene are closely related to each other with respect to the percentage of residue identities ranging from $22-30 \%$ as revealed by ClustalW2 alignment tool (Figure 23). The porcine C8G protein with only 202 amino acids is a lipocalin. It was, therefore, not referred in this content.


Figure 24 The phylogenic tree of homologous proteins of the terminal lytic pathway. An unrooted tree was constructed by the neighbor-joining method based on the alignment of amino acid sequences. It shows the phylogenetic relationship among the terminal complement components. Bootstrap indexes were used to verify the reliability of the branches. The numbers on interior branches refer to the bootstrap values with 500 replications. The numbers indicate the `relative phylogenetic distance' between two branches of the tree. The relevant amino acid sequences were identified as GenBank accession numbers ABD13967 (C6), NP_999447 (C7), ABD13968 (C8A), ABD13969 (C8B) and ABD13966 (C9). The phylogenetic tree for evaluating evolutionary distances were computed using the MEGA3 software (Kumar et al. 2004)

Data in figure 24 re-emphasizes the great similarity between C6 and C7 while C9 has a structure more similar to C8A than to C8B. The protein sequences of the candidate
genes contain segments which are homologous to those of other proteins described as TSP1, LDLa, MACPF, EFG, CCP and FIMAC. Most of these modules are cysteine-rich sequences. The amino acid sequence of CCP module contains four cysteines in which two of them are at the first and last position of sequence. There are $58,45,17,18$, three, 13 of $64,56,31,27$, three, 19 cysteines found in C6, C7, C8A, C8B, C8G and C9 that located in small functional protein domains, respectively (Table 15 and Figure 25).

Type I protein segment (similar to TSP1 module)

|  | (a.a 44-94) | LSNWAEWTEC-FPCQDKKYRYRSLLQPNKFG-GAI |
| :---: | :---: | :---: |
| B | (a.a 79-129) | LSSWSSWTTC-DPCQKKRYRHASLLRPSQFH-GEPCN--FSDKEVEDCVS |
| C6 | (a.a 84-134) | LGDYGPWSDC-DPCVEKQFKVRSILRPNQFG-GQPCT--EPLMTFRPCIPSKLCK 51 |
| C9 | (a.a 45-95) | MSPWGEWSRC-DPCLKQMFRSRSIETFGQFN-GQKCV--DAVGDRRQCVPTEPCE 51 |
| C7 | (a.a 30-80) | WDSYAPWSEC-NGCTKTQTRRRPVAVYGQYG-GHPCV--GSTFETQSCEPTRGCP 51 |
| C6 | (a.a 568-617) | WGCWSSWSTC-DATYKRSRTRECNNPAPRQG-GKPCD--GERRQEEHCTFSIMQ-50 |
| C8A | (a.a 547-586) | WSCWSSWSAC-RLG-TQERRRECNNPAPQNG-GASCS--GHKVQT-------- 4 |
| C7 | (a.a 503-551) | WSCWSSWGPC-AQG-KKTRSRKCNNPPPSGG-GKSCI--GETSESRQCEDEDLE-49 |
| C6 | (a.a 26-79) | HYPWTQWSSCSKTCNSGTQTRQRQITINQYYLDNFCDRLCTKQETRECN-WQTCP 54 |

## Type II protein segment (similar to LDLa module)

| C6 | (a.a 139-175) | DCKNKFRCD-SGRCIASKLECNGENDCG-DNSDERNCGR 37 |  |
| :--- | :--- | :--- | :--- |
| C8B | (a.a $249-450)$ | RCEGFVCAQ-TGRCINRRLLCNGDNDCG-DQSDEANCKR 37 |  |
| C8A | (a.a $98-135)$ | QCGQDFQCKETGRCLKRHLVCNGDRDCL-DGSDEDDCED | 38 |
| C9 | (a.a 133-169) | DCGSDFQCG-TGRCIKRRLLCNGDNDCG-DFSDEDDCDS | 37 |
| C7 | (a.a 100-136) | GCGERFRCF-SGQCISKSLVCNGDSDCEEDSADEDRCE- 37 |  |

Type III protein segment (similar to EGF module)

```
C6 (a.a 512-570) CQCAPCPNNGRPVLSGTECLCVCQSGTYGDNCERRAPDYKSNAVDGN 47
C8B (a.a 519-547) ----PCQGNGVPVLKESRCDCICPAGFQGSACE-------------- 29
```

Type IV protein segment (similar to CCP module)

## Type V protein segment (similar to FIMAC module)

| C7 | (a.a 696-765) | AKKVPECQLWEK--LQNSKCVCKMP-YECGSS--LDVCARDERSKRILRLTVCKMHVLQC 55 |
| :--- | :--- | :--- |
| C7 | (a.a 772-840) | --ACGACPLWEKCDAQSSKCVCRAA-SECEEAG-FRVCV--EVNGREQTMTECEAGVLRC 54 |
| C6 | (a.a 861-934) | SCGYDTCYSWEKCSATTSKCICLLP-FQCLKGGYQHYCVKMGSSTTTRTMNICEVGAIRC 59 |
| C6 | (a.a 767-839) | TRLKGHCQPGQK--QLGSECVCLSPEEDCSHHS-EDLCVLDTDSNHYFTSSACKFLAEKC 57 |
|  |  |  |
| C7 | (a.a 696-765) | QG-RNYTLSVGETCTL 70 |
| C7 | (a.a 772-840) | LG-LSITVTSIRPCAP 69 |
| C6 | (a.a 861-934) | AL-RKMEILYPGRCRS 74 |
| C6 | (a.a 767-839) | LNNQQLQFLHIGSCQD 73 |

Figure 25 Multiple alignments of homologous protein domains in both the amino terminus and carboxyl terminus of the candidate genes $\mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8 \mathrm{~A}, \mathrm{C} 8 \mathrm{~B}$ and C9. Gaps (-) were added to maximize the similarities among sequences.

## MACPF module

```
C6 (a.a 312-516) SFIRIHKVIKVLNFTMKT-KDLQLSDVFLKALNHLPLEYNAALYSRIFDDFGTHYFTSGS 59
C8A (a.a 291-497) SFIRIFTKVQTASFMMRR-DNIMLDEVMLQSLMELPEQYNYGMYAKFIDDYGTHYITSGS 59
C9 (a.a 297-507) IFLHVKGVIHLGRFVMRK-RDVMLTKTFLDDVKYLPSTYEKGEYFAFLETYGTHYSSSGS 59
C7 (a.a 249-450) QLLVVQNTVEVAQFINNNPEFLQLAESFWKELSYLPPLYDYSAYRRLIDQYGTHYLQSGS 60
C8B (a.a 303-510) TFLHARSDLEVARYKLKS-RNLMLHYEFLQRVKQLPLEYSYGEYRDLFRDFGTHYITEAV 59
C6 (a.a 312-516) LGGVYDLLYYQFSNEELKNSGLTQEEAKNCIRIETKKRYFIVTKTKVEHRCTTNRMSEKYE 119
C8A (a.a 291-497) MGGVYEYILVLNKENMTKSGVTSDDVTSCFGGSFGIDYDYTDNLQITG-SLSGKHCKKLG 118
C9 (a.a 297-507) LGGLYELIYVLDKATMTEKGIELRDVHRCLG--FNLDLSLNFGVEIKG-KIDSENCLKRG 116
C7 (a.a 249-450) LGGEYKVLFYVDSEKVAESDLGSEDKKKCASSHISFLFKS-----------SKHKCKAME 109
C8B (a.a 303-510) LGGVYEYTLIMNKEAMERADYSLKDVHACAQHGFKIGVAIEEVYVKLG--VPVHKCKDIL 117
C6 (a.a 312-516) GSFLQGSEKSISLVKGGRSEYAAALAWEKGSSGPG-------EKTYSDWLESVKENPAV 171
C8A (a.a 291-497) GGHREDEESNMAVEDIISRVRGGSSGWGGGLTQNGS-------IITYRAWGRSLKYNPAV 171
C9 (a.a 297-507) DGKTENIMNDDFIDDVISFIRGGTRKYATELKEKLLKGAKMINVTDFVNWASSLNDAPVL 176
C7 (a.a 249-450) EALKSASGTQSNVLRGVPFVRGGRPGFVSGLSYLELDNPDG-NKQRYSSWAGSVTDLPQV 168
C8B (a.a 303-510) NEIKDRNKRSSMVNDLVVLVRGGASEHITALAYKDLP-----TADLMQEWGDAVQYNPDI 172
C6 (a.a 312-516) IDFELAPITDLVR--NIPCAVTRRNNLRRAFREYAA }20
C8A (a.a 291-497) IDFEMKPIYEILRHTNLGPLEAKRQNLRRALDQYLM }20
C9 (a.a 297-507) INQKLSPIYDLIP-VKLNDAHLKRQNLERAIEDYIN 211
C7 (a.a 249-450) IKQKLTPLYELVK--EVPCASVKRLYLKRALEEYLD 202
C8B (a.a 303-510) IKIKAEPLYELVTAADFAYSSTVKQNMKRALEEFEK 208
```

Figure 25 (continued) The alignment was created using ClustalW2 program. Cysteines are shaded in grey. Amino acids are enumerated on the right hand margin. The TSP1, LDLa, EGF, CCP, FIMAC and MACPF domains contain 40-54, 37-38, 29-47, 56-58, 69-74 and 202-211 amino acids, respectively. The TSP1 region is repeated three, two, two times in C6, C7 and C8A protein sequence, respectively. Similarity among TSP1s, LDLas, EGFs, CCPs, FIMACs or MACPFs in the candidate genes is found in a range of $5-55 \%, 32-70 \%, 48 \%, 14-35 \%, 13-36 \%$ or $26-34 \%$, respectively.

Table 15 Number of cysteine residues in each functional protein domain of the candidate genes. Each value in the same cell reflects an individual domain of the same type, i.e. C6 has three TSP1 domains

| Gene | TSP1 | LDLa | MACPF | EGF | CCP | FIMAC | Lipocalin |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| C6 | 6,5 and 5 | 6 | 3 | 7 | 4 and 4 | 8 and 10 | - |
| C7 | 5 and 5 | 6 | 3 | - | 4 and 4 | 8 and 10 | - |
| C8A | 5 and 4 | 6 | 2 | - | - | - | - |
| C8B | 5 | 6 | 2 | 5 | - | - | - |
| C8G | - | - | - | - | - | - | 3 |
| C9 | 5 | 6 | 2 | - | - | - | - |

4.3. Detection of genotypes and assignment of candidate genes to pig chromosome

### 4.3.1. Genotype analysis

Table 16 Genotypic frequencies of the candidate genes in different breeds. (Up to down) the SNPs were detected by restriction digestion enzyme TaqI, PstI, BsrDI, Hin6I, MboII, TfiI, Hin6I, KnpI, FnuDII, by repeated comparative sequencing, MaeII, BsrDI and HpyCH4III

| Gene: SNP | LR | $\%$ | PIE | $\%$ | MK | $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| C6: 862A $\rightarrow$ G (n) | 30 |  | 30 |  | 25 |  |
| AA | 14 | 0.47 | 1 | 0.03 | 0 | 0.00 |
| AG | 13 | 0.43 | 11 | 0.37 | 0 | 0.00 |
| GG | 3 | 0.10 | 18 | 0.60 | 25 | 1.00 |
| C6: 1557C $\rightarrow$ G (n) | 30 |  | 30 |  | 25 |  |
| CC | 2 | 0.07 | 0 | 0.00 | 0 | 0.00 |
| CG | 5 | 0.17 | 0 | 0.00 | 0 | 0.00 |
| GG | 23 | 0.77 | 30 | 1.00 | 25 | 1.00 |
| C7: 154A $\rightarrow$ G (n) | 30 |  | 30 |  | 25 |  |
| AA | 3 | 0.10 | 0 | 0.00 | 0 | 0.00 |
| AG | 12 | 0.40 | 5 | 0.17 | 0 | 0.00 |
| GG | 15 | 0.50 | 25 | 0.83 | 25 | 1.00 |
| C7: 870C $\rightarrow$ T (n) | 30 |  | 30 |  | 25 |  |
| CC | 0 | 0.00 | 0 | 0.00 | 7 | 0.28 |
| CT | 13 | 0.43 | 12 | 0.40 | 16 | 0.64 |
| TT | 17 | 0.57 | 18 | 0.60 | 2 | 0.08 |
| C7: 881A $\rightarrow G$ (n) | 30 |  | 30 |  | 25 |  |
| AA | 0 | 0.00 | 0 | 0.00 | 7 | 0.28 |
| AG | 13 | 0.43 | 12 | 0.40 | 16 | 0.64 |
| GG | 17 | 0.57 | 18 | 0.60 | 2 | 0.08 |
| C8A: 535A $\rightarrow$ G (n) | 30 |  | 30 |  | 25 |  |
| AA | 2 | 0.07 | 9 | 0.30 | 0 | 0.00 |
| AG | 10 | 0.33 | 15 | 0.50 | 5 | 0.20 |
| GG | 18 | 0.60 | 6 | 0.20 | 20 | 0.80 |

Table 16 (continued)

| Gene: SNP | LR | $\%$ | PIE | $\%$ | MK | $\%$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
| C8A: 1544C $\rightarrow$ T (n) | 30 |  | 30 |  | 25 |  |
| CC | 10 | 0.33 | 14 | 0.47 | 23 | 0.92 |
| CT | 12 | 0.40 | 12 | 0.40 | 2 | 0.08 |
| TT | 8 | 0.27 | 4 | 0.13 | 0 | 0.00 |
| C8A: 1768C $\rightarrow$ T (n) | 30 |  | 29 |  | 25 |  |
| CC | 23 | 0.77 | 25 | 0.86 | 18 | 0.72 |
| CT | 7 | 0.23 | 4 | 0.14 | 7 | 0.28 |
| TT | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| C8B: 222C $\rightarrow$ T (n) | 30 |  | 30 |  | 25 |  |
| CC | 30 | 1.00 | 30 | 1.00 | 18 | 0.72 |
| CT | 0 | 0.00 | 0 | 0.00 | 7 | 0.28 |
| TT | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| C8B: 935A $\rightarrow$ G $\rightarrow$ T (n) | 30 |  | 30 |  | 25 |  |
| AA | 7 | 0.23 | 0 | 0.00 | 0 | 0.00 |
| AG | 6 | 0.20 | 0 | 0.00 | 0 | 0.00 |
| AT | 13 | 0.43 | 9 | 0.30 | 2 | 0.08 |
| GT | 2 | 0.07 | 4 | 0.13 | 7 | 0.28 |
| TT | 2 | 0.07 | 17 | 0.57 | 16 | 0.64 |
| C8B: 1244A $\rightarrow$ G (n) | 30 |  | 29 |  | 25 |  |
| AA | 7 | 0.23 | 6 | 0.21 | 0 | 0.00 |
| AG | 19 | 0.63 | 17 | 0.58 | 4 | 0.16 |
| GG | 4 | 0.13 | 6 | 0.21 | 21 | 0.84 |
| C9: 350A $\rightarrow$ G (n) | 30 |  | 30 |  | 25 |  |
| AA | 2 | 0.07 | 2 | 0.07 | 0 | 0.00 |
| AG | 18 | 0.60 | 8 | 0.27 | 0 | 0.00 |
| GG | 10 | 0.33 | 20 | 0.67 | 25 | 1.00 |
| C9: 407C $\rightarrow$ G (n) ${ }^{*}$ (*) | 30 |  | 30 |  | 25 |  |
| CC | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| CG | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| GG | 30 | 1.00 | 30 | 1.00 | 25 | 1.00 |
|  |  |  |  |  |  |  |

[^3]Table 17 Allelic frequencies at several SNPs in different breeds of pig

| Gene: SNP | LR | $\%$ | PIE | $\%$ | MK | $\%$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

C6: 862A $\rightarrow$ G

| A | 41 | 0.68 | 13 | 0.22 | 0 | 0.00 |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- |
| G | 19 | 0.32 | 47 | 0.78 | 50 | 1.00 |

C6: 1557C $\rightarrow$ G

| C | 9 | 0.15 | 0 | 0.00 | 0 | 0.00 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| G | 51 | 0.85 | 60 | 1.00 | 50 | 1.00 |

C7: 154A $\rightarrow$ G

| A | 18 | 0.30 | 5 | 0.08 | 0 | 0.00 |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: |
| G | 42 | 0.70 | 55 | 0.92 | 50 | 1.00 |

C7: 870C $\rightarrow$ T

| C | 13 | 0.22 | 12 | 0.20 | 30 | 0.60 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| T | 47 | 0.78 | 48 | 0.80 | 20 | 0.40 |

C7: 881A $\rightarrow$ G

| A | 13 | 0.22 | 12 | 0.20 | 30 | 0.60 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| G | 47 | 0.78 | 48 | 0.80 | 20 | 0.40 |
| C8A: $535 \mathrm{~A} \rightarrow$ G |  |  |  |  |  |  |
| A | 14 | 0.23 | 33 | 0.55 | 5 | 0.10 |
| G | 46 | 0.77 | 27 | 0.45 | 45 | 0.90 |
| C8A: $1544 \mathrm{C} \rightarrow$ T |  |  |  |  |  |  |
| C | 32 | 0.53 | 40 | 0.67 | 48 | 0.96 |
| T | 28 | 0.47 | 20 | 0.33 | 2 | 0.04 |
| C8A: $1768 \mathrm{C} \rightarrow$ T |  |  |  |  |  |  |
| C | 53 | 0.88 | 54 | 0.93 | 43 | 0.86 |
| T | 7 | 0.12 | 4 | 0.07 | 7 | 0.14 |

C8B: 222C $\rightarrow$ T

| C | 60 | 1.00 | 60 | 1.00 | 43 | 0.86 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| T | 0 | 0.00 | 0 | 0.00 | 7 | 0.14 |
| C8B: 935A $\rightarrow$ G $\rightarrow$ T |  |  |  |  |  |  |
| A | 33 | 0.50 | 9 | 0.15 | 2 | 0.04 |
| G | 14 | 0.21 | 4 | 0.07 | 7 | 0.14 |
| T | 19 | 0.29 | 47 | 0.78 | 41 | 0.82 |
| C8B: 1244A $\rightarrow$ G |  |  |  |  |  |  |
| A | 33 | 0.55 | 29 | 0.50 | 4 | 0.08 |
| G | 27 | 0.45 | 29 | 0.50 | 46 | 0.92 |
| C9: 350A $\rightarrow$ G |  |  |  |  |  |  |
| A | 22 | 0.37 | 12 | 0.20 | 0 | 0.00 |
| G | 38 | 0.63 | 48 | 0.80 | 50 | 1.00 |
| C9: 408C $\rightarrow$ G |  |  |  |  |  |  |
| C | 0 | 0.00 | 0 | 0.00 | 0 | 0.00 |
| G | 60 | 1.00 | 60 | 1.00 | 50 | 1.00 |

Once mutations were established, genomic DNA from unrelated animals of Landrace ( $\mathrm{n}=30$ ), Pietrain ( $\mathrm{n}=30$ ), Muong Khuong ( $\mathrm{n}=25$ ) and $\mathrm{F}_{2}$ DUMI population ( $\mathrm{n}=417$ ) were amplified using the primer pairs in table 1 and table 4 in order to examine genetic variability in the candidate genes by using PCR-RFLP or repeated comparative sequencing. Differences of allelic frequencies were observed among Vietnamese and European commercial breeds. The frequency of heterozygous animals in the European breeds is higher than in the Vietnamese breed Muong Khuong pig for C6, C8A and C9 candidate genes. However for C7 and C8B it is reverse. Especially, all genotypes of C8B at locus 935 with three different alleles were found in the Landrace breed but in Pietrain and Muong Khuong the genotypes AA and AG were not found (Table 16 and Table 17).




Figure 26 A representative pattern of comparative sequencing in C8B at $935 \mathrm{~A} \rightarrow \mathrm{G} \rightarrow \mathrm{T}$ (Thr $\rightarrow$ Ala $\rightarrow$ Ser codon 303)


Figure 27 Representative patterns of detection of SNP using PCR-RFLP at postions (1_862A $\rightarrow$ G, homologous AA ( 177 bp ), GG ( $113 \mathrm{bp}+64 \mathrm{bp}$ ) and heterologous AG (113 bp + $64 \mathrm{bp}+177 \mathrm{bp}$ ) © _881A $\rightarrow$ G, homologous AA (196 bp), GG (144 + 52 bp ) and heterologous AG (144 bp + $52 \mathrm{bp}+196$ bp) 3_1544C $\rightarrow$ T, homologous CC ( 33 bp ), TT ( 163 bp ) and heterologous CT (33 bp + 163 bp ) © _222C $\rightarrow$ T, homologous CC ( $64 \mathrm{bp}+84 \mathrm{bp}$ ), TT ( 148 bp ) and heterologous CT ( $64 \mathrm{bp}+84 \mathrm{bp}+148 \mathrm{bp}$ ) © $\quad 407 \mathrm{C} \rightarrow \mathrm{G}$, homologous GG (139 bp) and heterologous CG (121 bp + 139 bp ) in porcine C6, C7, C8A, C8B and C9 cadidate genes, respectively. PCR products were digested with TaqI, MboII, Hin6I, FnuDII and HpyCH4III.

No significant differences between the observed and the expected numbers of genotypes were found in genotyped SNPs in Landrace, Pietrain and Muong Khuong populations in the candidate genes. It means that all genotypic patterns were found to be in HardyWeinberg equilibrium in commercial breeds. The restriction enzymes TaqI, MboII, Hin6I, FnuDII and HpyCH4III were used for detecting the variation of the nucleotides $862 \mathrm{~A} \rightarrow \mathrm{G}, 881 \mathrm{~A} \rightarrow \mathrm{G}, 1544 \mathrm{C} \rightarrow \mathrm{T}, 222 \mathrm{C} \rightarrow \mathrm{T}$ and $407 \mathrm{C} \rightarrow \mathrm{G}$ in $\mathrm{C} 6, \mathrm{C} 7, \mathrm{C} 8 \mathrm{~A}, \mathrm{C} 8 \mathrm{~B}$ and C 9 genes, respectively, which were segregating in the $\mathrm{F}_{2}$ DUMI resource population. They were used to evaluate association between genotypes and hemolytic complement activity in both the classical and alternative pathway as well as for linkage mapping using the CRIMAP tool. Representative patterns for SNP genotyping using repeated comparative sequencing and PCR-RFLP are shown in figure 26 and figure 27, respectively.

### 4.3.2 Location of the candidate genes on porcine chromosome

Genetic linkage and chromosomal localization studies previously established that C8A and C9 are located on chromosome 6q3.1-q3.3 (Nakajima et al. 1998) and 16q1.4 (Thomsen et al. 1998) using in situ hybridization, respectively. In this study, to determine the location and order of certain candidate genes, we used the IMpRH panel, which allows assigning unambiguously the six loci to porcine chromosomes from pig/hamster genomic DNA amplification products converted into vector sequences. Two-point RH analyses were used for the identification of linkage groups using LOD score threshold of 5.0. With all information for markers, including vectors summarized in table 18, it was demonstrated that both porcine C8A and C8B loci were physically assigned to the same chromosome 6q3.1-q3.5 whereas the porcine C6, C7 and C9 genes were closely linked on the same q -arm of chromosome 16 (16q1.4). The assignment of C9 agrees with previously obtained results of Thomson et al. (1998). C8G was assigned to chromosomes 1q2.13. Moreover, the porcine C6, C7, C8A, C8B, C8G and C9 significantly linked to markers S0077, SW1069, SW322, SSC10D08 and SW403, respectively (Figure 29). All LOD scores are greater than 6.

Genetic linkages using two-point analysis from CIRMAP 2.4 (Green et al. 1990) were confirmed between C7 and C6 with rec. fracs. $=0.02$, LOD $=50.45$, between C9 and

C6 with rec. fracs $=0.06, \mathrm{LOD}=31.50$, between C 9 and C 7 with rec. fracs $=0.06$, LOD $=35.84$, between C8B and C8A with rec. fracs $=0.05, \mathrm{LOD}=65.72$.


Figure 28 A representative pattern for PCR result of 118 DNA clones of the IMpRH. The symbols (0), (?), and (1) used for absent, ambigous and present results, respectively. The letters a, b, c, and d show a hamster sample (nagative control), a blank sample without DNA (negative control), a pig DNA (positive control) and a marker to estimate length of DNA fragments.


Figure 29 Position of the candidate genes on porcine chromosomes. Linkage is closed to markers in bold and italic

Table 18 Summary of RH mapping results of the candidate genes
$\left.\begin{array}{llllllr}\hline & \text { Result in vector } & 1 & 2 & 3 & 4 \\ \hline \text { C6 } & \begin{array}{ll}000010000001001100001111000111 \\ 001001000110011010000011010010\end{array} & 18.13 & 21 & 42 & 16 q 1.4 \\ & 011011011011011100000001110000 \\ & 000100001000010111111111100\end{array}\right]$
${ }^{(1)}$ _ LOD score, ${ }^{(2)}$ _ Distance in cR, ${ }^{(3)}$ _ Retention fraction (\%), ${ }^{(4)}$ _Chromosome
4.4. Association of candidate genes with hemolytic complement activity

Genotype analysis results were applied to associate with hemolytic complement activity in both classical and alternative pathway in the $\mathrm{F}_{2}$ DUMI resource population.

### 4.4.1. The classical lytic pathway

The effect of different genotypes on hemolytic complement activity in the classical pathway was analyzed using repeated measures mixed models of analysis of variance. Genotypes of the porcine C7 ( $\mathrm{p}=0.0080$ ), and C9 genes ( $\mathrm{p}=0.0488$ ) revealed significant
effects on CH50 whereas the genotypes of C6 ( $\mathrm{p}=0.0853$ ) and C8B ( $\mathrm{p}=0.4410$ ) did not. The effect of C8A was close to significance ( $\mathrm{p}=0.0650$ ). For the genotypes CC and TT of C8A least squares means were obtained differing at $\mathrm{p}=0.0522$ (Figure 30 and Table 19). Additionally, although there was no difference between C8B genotypes in CH50 $(\mathrm{p}=0.4410)$ the interaction of genotypes and eight different time points before and after immunizations with Mycoplasma, Ausjezky and PRRSV was highly significant difference ( $\mathrm{p}=0.0048$ ) (Table 31 and Figure 32). In general, CH50 activities were increased after each of complement activation by vaccination. The highest least squares means were observed at the fourth day after ADV vaccination in all candidate genes.

Table 19 Least squares means of hemolytic activity in both the classical (CH50) and alternative (AH50) complement pathways for different genotypes (LSM $\pm$ SE) (U/ml)

| CH50 | AH50 |
| :--- | :--- |


| CH50 | AH50 |
| :--- | :--- |

Porcine C6

| AA | $59.72 \pm 7.65$ | $66.94 \pm 5.87$ |
| ---: | ---: | ---: |
| AG | $64.98 \pm 3.39$ | $61.75 \pm 2.57$ |
| GG | $70.42 \pm 3.32$ | $61.41 \pm 2.49$ |
| p-value | 0.0853 | 0.6581 |

## Porcine C7

| AA | $70.27 \pm 3.62$ | $61.11 \pm 2.70$ |
| ---: | ---: | ---: |
| AG | $67.72 \pm 3.60$ | $61.42 \pm 2.72$ |
| GG | $44.13 \pm 8.55$ | $59.69 \pm 7.22$ |
| p-value | 0.0080 | 0.8319 |

Porcine C8A

| CC | $59.45 \pm 4.07$ | $61.94 \pm 3.13$ |
| ---: | ---: | ---: |
| CT | $65.08 \pm 3.49$ | $60.64 \pm 2.66$ |
| TT | $68.24 \pm 3.29$ | $60.90 \pm 2.40$ |
| p-value | 0.0650 | 0.8983 |

## Porcine C8B

| CC | $65.58 \pm 3.11$ | $60.96 \pm 2.33$ |
| ---: | ---: | ---: |
| CT | $62.07 \pm 3.47$ | $60.30 \pm 2.61$ |
| TT | $64.27 \pm 4.93$ | $63.99 \pm 3.54$ |
| p-value | 0.4410 | 0.5110 |

Porcine C9

| GG | $69.49 \pm 3.17$ | $62.73 \pm 2.82$ |
| ---: | ---: | ---: |
| CG | $63.59 \pm 3.65$ | $61.52 \pm 2.39$ |
| p-value | 0.0488 | 0.5968 |








Figure 31 Histogram of least squares means of hemolytic complement activity in the alternative pathway depending on genotypes of the candidate genes.


Genotype x time $\mathrm{p}=0.5374$



Genotype x time $\mathrm{p}=0.1288$


Genotype x time $\mathrm{p}=0.0048$

Figure 32 Histogram of least squares means of hemolytic complement activity in the classical pathway along vaccination for the interaction of genotypes of each candidate gene and eight different time points.



Genotype x time $p=0.0027$


Genotype x time p=0.0340


Genotype x time $\mathrm{p}=0.6422$


Genotype x time $\mathrm{p}=0.0231$

Figure 33 Histogram of least squares means of hemolytic complement activity in the alternative pathway along vaccination for the interaction of genotypes of each candidate gene and eight different time points.

### 4.4.2 The alternative pathway

Studying the effect of genetic variation on hemolytic complement activity in the alternative pathway was conducted for all candidate genes except C8G because of no polymorphism was found within its sequence. AH50 values were used to evaluate lysis level of different genotypes in each gene. As a result, no difference of genotypes in AH50 test was found in all porcine candidate genes C6, C7, C8A, C8B and C9 (Figure 31 and Table 19). However, there was statistically significant interaction of genotypes and time points of immunization on AH50 for C8A ( $\mathrm{p}=0.0027$ ), C8B ( $\mathrm{p}=0.0231$ ) and C9 $(p=0.0340)$ (Figure 33). Homozygous genotypes AA, CC and TT in candidate genes C6, C8A and C8B, respectively, showed higher complement activity in the alternative pathway. AH50 increment of these genotypes was unlinear after vaccinations. Hemolytic activity in this pathway was highest after ADV or PRRSV immunization.

### 5.1 Structure of candidate genes

### 5.1.1 Characteristic of the porcine C6 and C7 complement genes

Complement C6 is a glycosylated plasma protein (DiScipio et al. 1989). The porcine C6 protein sequence (GenBank acc. no. ABD13967) showed $>80 \%$ identity to the human orthologue. With an atomic composition formula of $\mathrm{C}_{4565} \mathrm{H}_{7108} \mathrm{~N}_{1288} \mathrm{O}_{1429} \mathrm{~S}_{74}$ the porcine C6 molecular weight ( $\mathrm{M}_{\mathrm{r}}$ ) was predicted about 105.27 kDa ; i.e. similar to human C6 ( $\mathrm{M}_{\mathrm{r}}=105 \mathrm{kDa}$ ) (Schreck et al. 2000) by using the ProtParam tool (http://au.expasy.org/tools/protparam.html). Both pig and human sequences for C6 contain 64 cysteines forming 32 disulfide bonds, which are important to stabilize the protein structure and to maintain its activity (DiScipio et al. 1989). The bonds could be formed between $\mathrm{Cys}^{1}-\mathrm{Cys}^{11}$, $\mathrm{Cys}^{2}-\mathrm{Cys}^{16}, \mathrm{Cys}^{3}-\mathrm{Cys}^{20}$, $\mathrm{Cys}^{4}-\mathrm{Cys}^{31}, \mathrm{Cys}^{5}-\mathrm{Cys}^{10}$, $\mathrm{Cys}^{6}-$ $\mathrm{Cys}^{30}, \mathrm{Cys}^{7}-\mathrm{Cys}^{36}, \mathrm{Cys}^{8}-\mathrm{Cys}^{9}, \mathrm{Cys}^{12}-\mathrm{Cys}^{39}, \mathrm{Cys}^{13}-\mathrm{Cys}^{17}, \mathrm{Cys}^{14}-\mathrm{Cys}^{38}, \mathrm{Cys}^{15}-\mathrm{Cys}^{60}$, $\mathrm{Cys}^{18}-\mathrm{Cys}^{26}, \mathrm{Cys}^{19}-\mathrm{Cys}^{33}, \mathrm{Cys}^{21}-\mathrm{Cys}^{48}, \mathrm{Cys}^{22}-\mathrm{Cys}^{24}, \mathrm{Cys}^{23}-\mathrm{Cys}^{45}, \mathrm{Cys}^{25}-\mathrm{Cys}^{62}, \mathrm{Cys}^{27}-$ $\mathrm{Cys}^{52}, \mathrm{Cys}^{28}-\mathrm{Cys}^{32}, \mathrm{Cys}^{29}-\mathrm{Cys}^{50}, \mathrm{Cys}^{34}-\mathrm{Cys}^{44}, \mathrm{Cys}^{35}-\mathrm{Cys}^{40}, \mathrm{Cys}^{37}-\mathrm{Cys}^{42}, \mathrm{Cys}^{41}-\mathrm{Cys}^{53}$, $\mathrm{Cys}^{43}-\mathrm{Cys}^{58}, \mathrm{Cys}^{46}-\mathrm{Cys}^{56}, \mathrm{Cys}^{47}-\mathrm{Cys}^{64}, \mathrm{Cys}^{49}-\mathrm{Cys}^{51}, \mathrm{Cys}^{54}-\mathrm{Cys}^{61}, \mathrm{Cys}^{55}-\mathrm{Cys}^{63}$, and $\mathrm{Cys}^{57}-\mathrm{Cys}^{59}$ as predicted using the DiANNA 1.1 software (Ferre and Clote 2005). According to von Heijne's theory (1986), the signal peptide sequence is most likely cleaved after the alanine residue. Consequently, the first 21 residues of the open reading frame of human C6 show the typical features of a signal peptide, as one would expect for a secreted protein (Haefliger et al. 1989). In silico prediction for porcine C6 indicates existence of a complementary signal peptide. After removing signal peptide sequence, the biological active polypeptide chain is composed of 913 residues in human sequence (DiScipio et al. 1989) and 914 residues in pig sequence. The porcine amino terminal C6a fragment (a.a 22-631) starts just after the signal peptide followed by the carboxyl terminal C6b segment (a.a 632-934) (Haefliger et al. 1989, DiScipio et al. 1989, Ripoche et al. 1988, Goldberger et al. 1987, Kristensen et al. 1986). The whole porcine C6 protein sequence was most closely homologous to the porcine complement C7 with $29 \%$ identity. However, analysis of C6a revealed high similarity to C8A, C8B and C9. The C6b fragment only shows considerable similarity to C7. Corresponding
results were found in human (DiScipio et al. 1989, Haefliger et al. 1987, Rao et al. 1987, Stanley et al. 1985, DiScipio et al. 1984). Similarly to the human C6 (Ripoche et al. 1988, Goldberger et al. 1987, Kristensen et al. 1986) the porcine C6b had partial homology to the complement regulatory proteins, CCP and FIMAC. Consequently a number of predicted and/or experimentally proven functions and properties of particular human amino acid sequence motifs can be expected in the porcine protein too. Human C6 has two possible sites for N-glycosylation (Asn-X-Ser/Thr), one at the amino (a.a 324) and one at the carboxyl terminus (a.a 855) (DiScipio et al. 1989, Clamp et al. 1975). The first is conserved in the pig whereas at the second site at position 855 there is a Ser instead of Asn. Using the NetNGlyc 1.0 Server tool one more N-glycosylation site was found at a.a 860 in the carboxyl terminus of the porcine C6 (Figure 46). In the C6 amino-terminus there are three cysteine-rich segments, a pair of TSP1 domains followed by a LDLa domain, containing 11 disulfide bonds. This region has a predominance of $\beta$-sheet and $\beta$-turns (DiSipio et al. 1989). Further, several hydrophobic peaks are seen in the middle segment of C6 protein containing a MACPF module, analogous to C9. The membrane-binding region may reside here (DiSipio et al. 1989). The region consists of type EGF and TSP1 units containing seven disulfide bridges with a predominance of $\beta$-sheet and $\beta$-turns. In the putative carboxyl domain, each CCP and each FIMAC has two and nine disulfide bonds, respectively. The model for the CCP motif envisions two pairs of overlapping disulfide bonds with distorted $\beta$-sheet interspaced by turns (DiSipio et al. 1989). The third TSP1 of C6 contributes to the C5 binding site of C6 and involved in terminal complement complex assembly (Wuerzner et al. 1995)

Porcine and human C7 are highly conserved, sharing structural and functional characteristics (Agah et al. 2000). The porcine C7 molecular weight ( $\mathrm{C}_{4043} \mathrm{H}_{6287} \mathrm{~N}_{1123} \mathrm{O}_{1268} \mathrm{~S}_{67}$ ) was 93.06 kDa , similar to human $\mathrm{C} 7\left(\mathrm{M}_{\mathrm{r}}=92 \mathrm{kDa}\right)$ (Schreck et al. 2000). Similar to human C7, the predicted amino acid sequence of the precursor porcine C7 (GenBank acc. no. AAD45918) consists of 843 amino acid residues. The pig precursor protein contains a 28 -residue hydrophobic signal peptide identified in the pig using the SMART and the SignalP analysis tools while it is 22 residues in human (DiScipio et al. 1998). Both pig and human C7 have 56 cysteines ( $6.8 \%$ of the total amino acid composition) giving rise to cysteine-rich domains (Agah et al. 2000) and share an overall identity of $83 \%$ at the protein level. The cysteine residues are presumed to form 28 disulfide bonds,
which are important for stabilizing the structure of this protein (DiScipio et al. 1988). Via calculation with the DiANNA 1.1 software the possible disulfide bonds in the porcine C 7 protein were predicted at: $\mathrm{Cys}^{1}-\mathrm{Cys}^{6}, \mathrm{Cys}^{2}-\mathrm{Cys}^{32}, \mathrm{Cys}^{3}-\mathrm{Cys}^{22}$, $\mathrm{Cys}^{4}-\mathrm{Cys}^{23}$, Cys $^{5}-$ Cys $^{18}$, Cys $^{7}-$ Cys $^{36}$, Cys $^{8}-$ Cys $^{55}$, Cys $^{9}-$ Cys $^{50}$, Cys $^{10}{ }^{10}$ Cys $^{14}$, Cys $^{11}-$ Cys $^{16}$, Cys $^{12}-$ Cys $^{45}$, $\mathrm{Cys}^{13}-\mathrm{Cys}^{34}, \mathrm{Cys}^{15}-\mathrm{Cys}^{56}, \mathrm{Cys}^{17}-\mathrm{Cys}^{54}, \mathrm{Cys}^{19}-\mathrm{Cys}^{43}, \mathrm{Cys}^{20}-\mathrm{Cys}^{21}, \mathrm{Cys}^{24}-\mathrm{Cys}^{25}, \mathrm{Cys}^{26}-$ $\mathrm{Cys}^{40}, \mathrm{Cys}^{27}-\mathrm{Cys}^{28}, \mathrm{Cys}^{29}-\mathrm{Cys}^{31}, \mathrm{Cys}^{30}-\mathrm{Cys}^{39}, \mathrm{Cys}^{33}-\mathrm{Cys}^{44}, \mathrm{Cys}^{35}-\mathrm{Cys}^{38}, \mathrm{Cys}^{37}-\mathrm{Cys}^{46}$, $\mathrm{Cys}^{41}-\mathrm{Cys}^{42}, \mathrm{Cys}^{47}-\mathrm{Cys}^{49}, \mathrm{Cys}^{48}-\mathrm{Cys}^{52}$, and $\mathrm{Cys}^{51}-\mathrm{Cys}^{53}$. Most of cysteine residues are found in small modules like TSP1, LDLa, CCP or FIMAC. Mature human C7 consists of two protein domains at the amino (a.a 23-575) and carboxyl terminus (a.a 576-843) (Haefliger et al. 1989, DiScipio et al. 1988). Both human and porcine C7 have two Nglycosylation sites, one at amino acid 202 of amino terminus and another at amino acid 754 of carboxyl terminus (Agah et al. 2000, DiScipio et al. 1988) (Figure 47). The amino terminal area of human C7 (a.a 22-347) is hydrophilic, but the carboxyl-terminal polypeptide (a.a 348-843) contains several intermittent zones of hydrophobicity, with the region between positions 629 to 807 having a particularly strong hydrophobic tendency (DiScipio et al. 1988).

### 5.1.2 Characteristic of the porcine C8 complement gene

The eighth component of the terminal complement lytic pathway is a serum protein consisting of three amino acid chains, encoded by C8A, C8B, and C8G (Kaufmann et al. 1993). Human C8A and C8G are covalently linked while C8B is noncovalently associated with the C8A-G (Tschopp et al. 1981). The C8B is responsible for binding of C8 to C5b-7 (Monahan et al. 1980) whereas the C8A interacts with C9 (Stewart et al. 1985) to form the membrane attack complex (C5b-9) which can polymerize to form transmembrane pores and causes osmotic cell lysis. The C8G may act as a retinol transporting protein in plasma (Haefliger et al. 1991) and bind to yet unidentified ligands (Dewald et al. 1996, Kaufman et al. 1994, Ng et al. 1987). The C8G is not involved in the lytic mechanism and its function is still unknown (Brickner et al. 1984).

The pig C8A cDNA sequence (GenBank acc. no. DQ333200) contains 2146 nucleotides encoding 589 amino acids (GenBank acc. no. ABD13968). This is in agreement with 558 amino acids and a 31 amino acid leader sequence (signal peptide) in porcine C8A
protein sequence previously reported by Nakajima et al. (1998). However, the authors published a cDNA sequence (GenBank acc. no AB008156) with 2145 nucleotides. With an adenine missing at position 825 this would lead to a frameshift with a stop codon causing a deficient C8A protein. In addition, using the SignalP 3.0 tool analysing human and porcine signal peptides revealed that their putative cleavage site is situated between a.a 19 and 20 whereas Nakajima et al. (1998) reported the first 31 residues belonging to the signal peptide corresponding to predictions in the human C8A (Rao et al. 1987). Moreover, compared with the protein sequence reported by Nakajima et al. (1998) we have found three different amino acids at positions $244(\mathrm{~K} \rightarrow \mathrm{X}), 419(\mathrm{M} \rightarrow \mathrm{L})$ and $483(\mathrm{~A} \rightarrow \mathrm{~V})$. These could be polymorphic sites with amino acid substitutions between porcine breeds analysed. Porcine C8A has a molecular weight of approximately 66 kDa calculated from the atomic composition formula $\mathrm{C}_{2856} \mathrm{H}_{4406} \mathrm{~N}_{808} \mathrm{O}_{906} \mathrm{~S}_{45}$ using the ProtParam tool while it was 64 kDa in human C8A (Steckel et al. 1980). The whole porcine C8A protein sequence, which is similar to human and rabbit C8A in length (Nakajima et al. 1998), contains 31 cysteines. Possibly, the disulfide bonds are formed between $\mathrm{Cys}^{1}-\mathrm{Cys}^{7}, \mathrm{Cys}^{2}-\mathrm{Cys}^{26}$, $\mathrm{Cys}^{3}-\mathrm{Cys}^{5}, \mathrm{Cys}^{4}-\mathrm{Cys}^{20}$, $\mathrm{Cys}^{6}-\mathrm{Cys}^{23}$, $\mathrm{Cys}^{8}-{ }^{-}{ }^{2}{ }^{25}{ }^{25}$, $\mathrm{Cys}^{9}-$ $\mathrm{Cys}^{19}, \mathrm{Cys}^{10}-\mathrm{Cys}^{14}, \mathrm{Cys}^{11}-\mathrm{Cys}^{15}, \mathrm{Cys}^{12}-\mathrm{Cys}^{18}, \mathrm{Cys}^{13}-\mathrm{Cys}^{21}, \mathrm{Cys}^{16}-\mathrm{Cys}^{27}, \mathrm{Cys}^{22}-\mathrm{Cys}^{31}$, $\mathrm{Cys}^{24}-\mathrm{Cys}^{28}$, and $\mathrm{Cys}^{29}-\mathrm{Cys}^{30}$. Cysteine-rich modules like TSP1 (one in amino terminus (a.a 43-95) and one in carboxyl terminus (a.a 542-598)), LDLa (a.a 111-133), and EGF (a.a 522-533) were found in porcine C8A protein (Nakajima et al. 1998). The content of these modules is similar to the computer prediction result here using SMART analysis tool although they showed some different nucleotide positions. There are one or two Nglycosylation sites in human C8A (Rao et al. 1987). These correspond to sequences Asn-Trp-Ala (a.a 46-48) and Asn-Gly-Ser (a.a 442-444) in the porcine C8A protein sequence. Examination of the porcine C8A revealed one more N -glycosylation site at a.a 364-366 (Asn-Met-Thr) using the NetNGlyc 1.0 Server tool (Figure 48). Nakajima et al. (1998) proposed candidate site for CD59 recognition between a.a 382-419. The CD59 is known as a $18-20 \mathrm{kDa}$ GPI-anchored membrane protein that functions as a key regulator of the terminal step of the complement activation cascade. It restricts binding of C9 to the C5b-8 complex, thereby preventing the formation of the MAC (Qian et al. 2000). During biosynthetic process, C8A contains a unique insertion (residues 189205), which includes Cys ${ }^{194}$ that forms the disulfide bond to human C8G. With a small exchange from $\mathrm{Thr}^{193}$ in human to $\mathrm{Ala}^{196}$ in pig, both these segments are highly con-
served. Therefore C8G must contain a complementary binding site for the C8A (Plumb and Sodetz 2000). The C8A-G disulfide bond has a key role in binding to C8B through a site located on C8A (Plumb et al. 1999). Plumb et al. (1999) illustrated that the binding site for C8B and C8G reside within the MACPF region of C8A. C8A mediates binding and self-polymerization of C 9 to form a pore-like structure on the membrane of target cells (Slade et al. 2006, Scibek et al. 2002). The amino-terminal modules in C8A are important for C9 binding and/or expression of C8 activity (Plumb et al. 1999).

The porcine C8B cDNA sequence (GenBank acc. no DQ333201) shows 99\% identity to a 2455 bp region (GenBank acc. no AK232952) separated from clone LVRM10055B03 (Uenishi et al. 2004). The difference is due to (1) lack of one nucleotide at the first position in 5'UTR flanking region (2) abundance of one nucleotide after position 1910 in 3' UTR flanking region (3) deletion of two nucleotides at positions 1728 and 1737 in coding region of GenBank acc. no AK232952. The deletions would lead to deficiency of C8B protein due to the formation of a stop codon. As compared to the 2563 bp nucleotide sequence of GenBank acc. no AK233291 (Uenishi H et al. 2004) we added 474 bp of 3'UTR flanking region of porcine C8B cDNA sequence including a polyadenylation signal (AATAAA) (nt. 2408-2413). Therefore, full-length porcine C8B sequence as shown in figure 43 is 2461 bp . The signal peptide sequence is 54 residues in human (Howard et al. 1987) while it is only 44 amino acids in the pig according to the SignalP 3.0 analysis. Three asparagines as candidates for potential N -glycosylation sites are at sequences Asn-Phe-Ser (a.a 101-103), Asn-Val-Thr (a.a 243-245) and Asn-Trp-Ser (a.a 553-555) in human C8B (Howard et al. 1987) corresponding to sequences Asn-Phe-Ser (a.a 113-115), Asn-Val-Thr (a.a 255-257) and Asp-Trp-Phe (a.a 565-567) in the pig, respectively. Probably the porcine C8B has three N-glycosylation sites, which two of them are conserved with human C8B and one extra site at a.a 56-58 (Asn-Glu-Ser) in the amino terminus (Figure 49). One of three possible sites of human C8B contains the same Ser-Asn-Trp-Ser sequence found at the proposed glycosylation site in human C8A. Probably, the porcine C8B only contains two possible sites because the first amino acid in the third sequence is an asparagine acid (Asp) instead of an asparagine (Asn). Using the ProtParam tool the molecular weight of porcine C8B $\left(\mathrm{C}_{3040} \mathrm{H}_{4735} \mathrm{~N}_{855} \mathrm{O}_{915} \mathrm{~S}_{39}\right)$ was predicted to be 69.15 kDa while that of human C8B was 64 kDa (Steckel et al. 1980). With a total 27 cysteines found in the C8B protein structure
disulfide bonds could be formed between $\mathrm{Cys}^{1}-\mathrm{Cys}^{15}, \mathrm{Cys}^{2}-\mathrm{Cys}^{9}, \mathrm{Cys}^{3}-\mathrm{Cys}^{26}, \mathrm{Cys}^{4}-$ $\mathrm{Cys}^{24}, \mathrm{Cys}^{5}-\mathrm{Cys}^{13}, \mathrm{Cys}^{6}-\mathrm{Cys}^{7}, \mathrm{Cys}^{8}-\mathrm{Cys}^{27}, \mathrm{Cys}^{10}-\mathrm{Cys}^{12}, \mathrm{Cys}^{11}-\mathrm{Cys}^{23}, \mathrm{Cys}^{14}-\mathrm{Cys}^{16}$, $\mathrm{Cys}^{17}-\mathrm{Cys}^{22}, \mathrm{Cys}^{18}-\mathrm{Cys}^{21}, \mathrm{Cys}^{20}-\mathrm{Cys}^{25}$. Analysis of the derived amino acid sequence revealed several membrane surface seeking segments that may facilitate C8B interaction with target membranes during complement-mediated cytolysis (Howard et al. 1987). The soluble terminal complement complex can be formed in C8B-deficient sera that contain little or no C8B (Hogasen et al. 1998). The homology between the porcine C8B and C8A protein is $28 \%$ on the basis of amino acid identities.

The primary sequence of porcine the C8G (GenBank acc. no. DQ333202) has been elucidated with 840 bp encoding 202 deduced amino acid residues (GenBank acc. no. ABD13970). The first 20 residues of the open reading frame of the human C8G show the typical features of a signal peptide using signalP analysis tool. The length of the human and porcine C8G protein sequence is the same and both share $82 \%$ identity. Using the ProtParam tool for the C8G molecule ( $\mathrm{C}_{999} \mathrm{H}_{1582} \mathrm{~N}_{288} \mathrm{O}_{281} \mathrm{~S}_{5}$ ) 22.29 kDa molecular weight was predicted, similar to human C8G with 22 kDa (Steckel et al., 1980). Porcine C8G gene was not homologous to the other candidate genes in the terminal lytic complement pathway because it only contains a lipocalin domain (aa 48-184), which binds small hydrophobic ligands (Ortlund et al. 2002, Schreck et al. 2000). Both the human and porcine C8G have three cysteine residues at a.a 60,96 and 188. The position of these cysteines is conserved in pig and human. The DiANNA 1.1 computer prediction (Ferre and Clote 2005, Ortlund et al. 2002) revealed a disulfide bond between Cys ${ }^{1}$ Cys ${ }^{3}$. According to Haefliger et al. (1987) the first cysteine (the $60^{\text {th }}$ amino acid) in C8G protein sequence forms the disulfide bridge with C8A whereas another internal disulfide bridge exists between the second (the $96^{\text {th }}$ a.a) and the third cysteine residues (the $188^{\text {th }}$ a.a). The possible N-glycosylation site is at a.a 173 (Asn-Leu-Thr) using the NetNGlyc 1.0 Server tool (Figure 50).

### 5.1.3 Characteristic of the porcine C9 complement gene

Complement component C9 binds to C5b-8 sites on target cells and polymerizes to form the membrane attack complex (Taylor et al. 1997). In this study, the deduced porcine C9 protein sequence contains 543 amino acids (GenBank acc. no. ABD13966) showing

67\% identity to human C9 (559 a.a). The first 21 amino acids may represent the signal peptide according to the SignalP 3.0 computer prediction tool. The domain within the first 16 amino acids at the amino-terminus of C9 is crucial in preventing the selfpolymerization of the globular protein (Taylor et al. 1997). Porcine C9 $\left(\mathrm{C}_{2748} \mathrm{H}_{4301} \mathrm{~N}_{753} \mathrm{O}_{836} \mathrm{~S}_{30}\right)$ has a weight of 62.23 kDa using the ProtParam tool whereas human C9 is $\mathrm{M}_{\mathrm{r}}=72 \mathrm{kDa}$ (Schreck et al. 2000). The porcine C9 has 19 cysteine residues corresponding to disulfide bonds $\mathrm{Cys}^{1}-\mathrm{Cys}^{11}, \mathrm{Cys}^{2}-\mathrm{Cys}^{14}, \mathrm{Cys}^{3}-\mathrm{Cys}^{19}, \mathrm{Cys}^{4}-$ Cys ${ }^{5}, \mathrm{Cys}^{6}-\mathrm{Cys}^{15}, \mathrm{Cys}^{7}-\mathrm{Cys}^{9}, \mathrm{Cys}^{8}-\mathrm{Cys}^{13}, \mathrm{Cys}^{10}-\mathrm{Cys}^{18}$, and $\mathrm{Cys}^{12}-\mathrm{Cys}^{16}$ as predicted with the DiANNA 1.1 analysis tool. The C9 protein has a carbohydrate content of $7.8 \%$ (Biesecker et al. 1982, 1980). Carbohydrate is usually attached to plasma proteins through an asparaginyl side chain within the characteristic sequence Asn-X-Ser/Thr (Clamp et al. 1975). Examination of the sequence of human C9 reveals only one sequence Asn-Glu-Thr (a.a 277-279) with an asparaginyl residue at position 277 likely to be a carbohydrate attachment site (DiScipio et al. 1984). This N-glycosylation site was not found in the porcine C9 protein. However by using the NetNGlyc 1.0 Server tool it showed that the porcine C9 has two N-Glycosylation sites at a.a 35-37 (Asn-Gly-Thr) in the amino terminus and (Asn-Val-Thr) in the carboxyl terminus (Figure 51). C9 watersoluble glycoprotein will insert quickly into lipid bilayers after binding to the membrane bound C5b-8 complex (Steckel et al. 1983, Hu et al. 1981, Podack et al. 1981). The C8A, C8B and C9 are members of a family of structurally related proteins that are capable of interacting to produce a hydrophilic to amphiphilic transition and membrane association (Howard et al. 1987). The principal binding site for C9 lies within the MACPF domain of C8A (Slade et al. 2006). The C9 polypeptide chain assumes a ` $\mathrm{U}^{\prime}$ shape, in which the TSP1 and LDLa modules are located on the upper rim. The EGF module is located on the lower edge of the upper rim, and midsection of the polypeptide chain constructs the barrel of the tubule. TSP1 and LDLa modules do not participate directly in polymerization but cover the hydrophobic central region of the polypeptide chain in the monomer (DiScipio and Berlin 1999). In vertebrates, C9 and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively (Rosado et al. 2007)


Figure 34 3D-structure of C6 (a.a 180-515), C7 (a.a 128-411), C8A (136-497), C8B (a.a 168-508) and C9 (122-506) homologous protein fragments built based on knowledge of structure features of homologues peptides and proteins with 3D-Jigsaw and displayed with Polyview 3D.


Figure 34 (continued) Position of amino acids at point mutations within 3D-protein regions is being numbered. Alpha and beta structures are in turns and sheets, respectively


Figure 34 (continued)
5.1.4 Common and specific structural and functional features of components of the terminal lytic complement pathway

It is really crucial to study the characteristic of the last complement proteins C6, C7, C8, C9 that act in concert to form the transmembrane pore at molecular level. The architecture of porcine C6, C7, C8A, C8G and C9 genes was identified and analyzed. Compared to human protein sequences the porcine C6, C8A, and C8B are one, five, and 20 amino acids longer, respectively, the porcine C9 is 16 amino acids shorter, whereas porcine C7 or C8G are of the same length as the human proteins. Actually, homology (2231\%) was found between amino terminus of C6 and C7 with whole mature C8A, C8B and C9 proteins (Figure 35 and Figure 36). The porcine C6, C7, C8A, C8B and C9 are mosaic proteins constructed from small cysteine-rich segments like TSP1, LDLa, EGF, CCP, FIMAC and MACPF whereas C8G individually composes of a lipocalin domain. The ubiquity of several types of cysteine-rich homology segments suggests that they have some utility in protein function (DiScipio et al. 1988). Respectively, 58, 45, 17, 18,
three, 13 of total 64, 56, 31, 27, three, 19 cysteines found in C6, C7, C8A, C8B, C8G and C9 are located in these functional protein domains. Each CCP (56-58 amino acids) contains four cysteines whereas six cysteines were found in each LDLa segment (37-38 amino acids). Within each CCP unit the two disulfide bonds are formed (1) between the first and the third cysteines, and (2) between the second and the fourth cysteines. Each short consensus unit is stabilized by small irregular groups of anti-parallel $\beta$-sheet interspaced by four or five tight turns (DiScipio et al. 1989). The FIMAC units are somewhat knotted by disulfide bonds but contain elements of conventional secondary structure (DiScipio et al. 1989). In both human and pig, the amino terminus of C6 has a tandem repeat of TSP1 whereas the carboxyl termini of C6 and C7 have a tandem of CCP and FIMAC. Each of five terminal complement mosaic proteins (C6, C7, C8A, C8B and C9) has a MACPF motif. Proteins containing MACPF domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration (Rosado et al. 2007). The MACPF domain structure is similar with poreforming cholesterol-dependent cytolysins (CDCs) from gram-positive bacteria. These lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes (Rosado et al. 2007). The CCP and FIMAC domains in C6 and C7 have the capacity to link specifically with C5 (DiScipio 1992, Haefliger et al. 1989, Ripoche et al. 1988, Catterall et al. 1987). Although the FIMAC is not required absolutely for C6 activity, this module promotes interaction of C6 with C5 enabling a more efficient bimolecular coupling ultimately leading to the formation of the C5b-6 complex (DiScipio et al. 1999, Haefliger et al. 1989). Binding of the FIMAC in C7 to the C345C domain in C5 is essential for incorporation of C7 into C5b-6 and hence for successful MAC assembly (Thai and Ogata 2005, 2004). The CCP modules mediate specific protein-protein and protein-carbohydrate interactions that are key to the biological function of the regulators of complement activation and, paradoxically, provide binding sites for numerous pathogens (O'Leary et al. 2004). The TSP1 conserved sequence motif has been suggested to play a key role in mechanisms by which malaria parasites avoid host defenses mediated by complement (Goundis et al. 1988). Both amino-terminal modules TSP1 and LDLa in C8A have a role in forming the principal binding site for C9 and that binding may be dependent on a cooperative interaction between these modules and the C8A MACPF domain (Scibek et al. 2002). However, Slade et al. (2006) indicated that principal binding site for C9 lies within the MACPF domain of C8A. The binding specificity between C8B and C8A-G
subunits is determined by a cooperative interaction of the asparaginyl-terminal TSP1 module and MACPF (Musingarimi et al. 2002). Site-specific antibodies directed to the LDLa homology unit in C9 cross-reacted with C6 and C7 (Tschopp et al. 1986). The porcine C8G is a lipocalin protein. According to King et al. (1994) some of the lipocalin proteins are allergens. Allergies are hypersensitivity reactions of the immune system to specific substances called allergens (such as pollen, stings, drugs, or food) that, in most people, result in no symptoms.

Based on obtained results it can be summarized that the complex of the porcine terminal complement components (C6-9) comprises of typical related mosaic proteins of high complexity and different size. These proteins contain modules being similar to segments of other proteins in the complex. The MAC can be regarded as a protein macromolecule from many smaller polypeptide sequences (C5b-9), which merge to each other due to interaction among their cysteine-rich homologous modules to form the membrane association. Homologous molecules of the terminal pathway (C6-9) originate from an ancestral gene. The porcine C6 is the largest protein in the terminal lytic pathway and most similar in structure to complement C7. Distance between porcine C8A and C9 is close on the phylogenetic tree. The C8A and C8B genes have correspondingly similar roles in MAC-mediated lysis of erythrocytes and bacterial killing and C8G is not required for expression of C8 activity (Schreck et al. 1998) and for complement-mediated killing of gram-negative bacteria (Parker et al. 2002). Presence of the MACPF module in all proteins C6 to C9 may have an important role in their combination to form in the stable complement complex as well as in lysis activity. The components of the MAC are physically formed in an associated arrangement C5b-C6-C7-C8B-C8A.G-C9. The characteristic pore-like appearance of the MAC is attributed to the association of as many as 12-18 C9 molecules that self-polymerize to form a circular structure in the membrane (Tschopp 1984). The individual components are hydrophilic proteins; however, when combined they form an amphipathic complex that is capable of binding to and disrupting local membrane organization (McCloskey et al. 1989). The increase in membrane permeability leads to osmotic lysis of simple cells such as erythrocytes or initiation of a variety of intracellular signaling events in the case of nucleated cells (Mold 1998). In bacteria, the MAC disrupts the outer membrane thereby increasing permeability and inducing lethal changes in the inner membrane (Esser 1994). Regulation of the mem-
brane attack pathway is essential to protect host cells from damage at sites of complement activation (Morgan 1999). In most tissues, ubiquitously expressed complement regulatory proteins prevent autologous destruction, protecting host cells from the powerful cytolytic activity of activated complement (Scolding et al. 1998).


Figure 35 Comparison of the porcine C6 (a.a 22-631) and C7 (a.a 23-575) amino-termini with whole mature porcine C8A, C8B and C9 proteins using Clustal W alignment tool.


Figure 36 Comparison of the porcine C6 (a.a 632-935) and C7 (a.a 576-843) carboxyltermini with whole mature porcine C8A, C8B and C9 proteins using Clustal W alignment tool.
5.2 Polymorphisms, genotyping and assignment of candidate genes to chromosome

Screening of the porcine C6, C7, C8A, C8B and C9, respectively, detected five, six, seven, nine, two single nucleotide polymorphisms (SNPs) in the coding regions, whereas there is no polymorphism within the porcine C8G when using one animal of each porcine breed (HS, DR, LR, PIE, BMP and MK). Most of the polymorphisms lie in cysteine-rich functional protein domains such as TSP1, LDLa, MACPF, CCP or FIMAC. Especially, eight of nine SNP within C8B have amino acid substitutions including the SNP at nt 935 with three different segregating alleles $(\mathrm{A} \rightarrow \mathrm{G} \rightarrow \mathrm{T})$. In the porcine C 9 gene, the polymorphic site at nucleotide $407 \mathrm{C} \rightarrow \mathrm{G}$ corresponding to codon

106CAC $\rightarrow$ CAG (His $\rightarrow \mathrm{Gln}$ ) shows two different genotypes GG and CG in $\mathrm{F}_{2}$ DUMI resource population but not in LR, PIE or MK. Allele `C' maybe derived from Saddleback Pigs, one of the breeds used to breed Berlin Miniature Pigs. These genetic variations may play an important role in the structural formation and function of the protein domains and therefore may affect the activity of the complement components in cell lysis. In order to evaluate genetic variation between Asian and European porcine breeds several SNP sites were selected for genotyping animals of porcine breeds LR, PIE, and MK. As a result, allele variety was found higher in LR and PIE (European breeds) than in MK (Asian breed) with different frequencies. Calculation and evaluation of all genotypic and allelic frequencies fit to Hardy-Weinberg equilibrium by Chi-square test. Genetic variations with amino acid substitution at loci that affect disease resistance traits found between European and Asian breed have great significance in breeding to improve pig health. Genetic variation in pigs has been shown in response to pathogens or immune system challenges (Henryon et al. 2002, Wilkie and Mallard 1999, Mallard et al. 1998) and in responses of pigs to infections with PRRSV (Petry et al. 2005).

In human the genes encoding the proteins of the membrane attack complex of the terminal lytic pathway (C5b-9) are required for complement bactericidal activity (Esser 1994, Schreiber et al. 1979). Genetic variations in C6 to C9 proteins associate with Neisseria infections (Ki et al. 2005, Witzel-Schloemp et al. 1997, Alvarez et al. 1995, Kaufmann et al. 1993, Figueroa et al. 1991). The polymorphic sites found in pig candidate genes are not conserved to ones associated with Neisseria infections in human.

Radiation hybrid mapping is known as a powerful tool for comparative gene mapping because gene assignments are made without the detection of genetic polymorphism as needed for linkage mapping. The assignment of genes using radiation hybrid (RH) panels is an efficient way to map genes and markers as well as to integrate the linkage and cytogenetic maps of a species (Hawken et al. 1999, Yerle et al. 1998). Application of the IMpRH panel allowed to unambiguously assigning the six loci to porcine chromosomes. The analysis revealed four new assignments and confirmed previous results. RH mapping result showed that C8A was assigned to 6q3.1-q3.5. This is also in agreement with previous result of Nakajima et al. (1998). The authors reported that the porcine

C8A gene physically maps to chromosome 6q3.3-3.5 according to in situ hybridization using the porcine bacterial artificial chromosome (BAC) clone as a hybridization probe.

The porcine C9 has been mapped to 16q1.4 by fluorescence in situ hybridization (Thomsen et al. 1998), which is confirmed by our results. Genetic mapping correspondingly revealed linkage of C6 and C7 to C9 and AGXT2 that have previously been assigned to the q arm of Ssc16 (Ponsuksili et al. 2001, Thomsen et al. 1998, Wintero et al. 1998) while on chromosome 6q3.1-q3.5 C8B links closed to C1q and C8A that have been reported by Jorgensen et al. (1997) and Nakajima et al. (1998), respectively. This is in agreement with the most recent human-porcine comparative map (Meyers et al. 2005).


Figure 37 Correspondences between human and pig chromosomal segments. Location of the porcine C6, C7 and C9 gene on the q-arm of chromosome 16 (Ssc16q1.4) adapted from http://www2.toulouse.inra.fr/lgc/pig/compare/ SSCHTML/SSC1B.HTM


Figure 38 Correspondences between human and pig chromosomal segments. Location of the porcine C8G gene on the q-arm of chromosome 1 (Ssc1q2.13) adapted from http://www2.toulouse.inra.fr/lgc/pig/compare/SSCHTML/ SSC1B.HTM


Figure 39 Correspondences between human and pig chromosomal segments. Location of the porcine C8A and C8B gene on the q-arm of chromosome 6 (Ssc 6q3.1-q3.5) adapted from http://www2.toulouse.inra.fr/lgc/pig/compare/ SSCHTML/SSC1B.HTM

The mapping results also fit the current pig-mouse and pig-rat comparative maps as accessible via the MGI webpage (http://www.informatics.jax.org/searches/homology_form.shtml). Further, the location of distinct C8 loci on chromosomes supports genetic evidence that C8 contains three separate genes encoding different proteins C8A, C8B and C8G.

Looking on the genetic maps of other species the sixth and seventh complement components are mapped to the same chromosome. Also C8A and C8B components are always found on the same chromosome. Additionally C9 complement component could be mapped to the same chromosome carrying C6 and C7 in all species addressed here except in B. taurus and D. rerio. The C8G gene is always located in a different chromosome (Table 20)

Table 20 Chromosomal assignments of the genes in difference species

5.3 Association analysis with hemolytic complement activity
5.3.1 Hemolytic complement activity depending on genotypes of the candidate genes

In human, deficiencies of candidate genes C6, C7, C8 and C9 have been studied and associated with meningitis infection in many different populations (Takata et al. 1989, Cooke et al. 1987, Keller et al. 1987, Moolenaar et al. 1987, Vogler et al. 1979). The studies have provided important information about the role of complement in the defense against pathogens, agents of infectious diseases, especially meningococcal disease. Here we refer to the association and linkage of mutation points of the terminal complement components C6, C7, C8 and C9 with immune response of two kinds of pathogen, bacteria (Mycoplasma) and virus (Aujeszky and Porcine Reproductive and

Respiratory Syndrome) before and after vaccinations for hemolytic complement activity in both classical and alternative pathway in pigs.

In the porcine C6 candidate gene, studying genetic association with hemolytic complement activity was carried out for the SNP 862A $\rightarrow$ G, causing the 240Asn $\rightarrow$ Asp amino acid substitution. Difference of genotypes in CH50 test was close to significance ( $\mathrm{p}=0.0853$ ) although along the vaccination program homozygous genotype GG always shows higher lysis levels. The allelic frequency of 'G' was found to be higher in MK than in other breeds. No evidence was found for significant association with hemolytic performance between the C6 genotypes and AH50. Comparing effects of different alleles on hemolytic complement activity in both pathways, one might tend to regard the `\(G\) ' allele as favorable and thus carriers of the allele or breed with high` $\mathrm{G}^{\prime}$ allele frequency as valuable genetic resources.

In porcine C7 gene, the SNP site at position 881A $\rightarrow$ G (294Lys $\rightarrow$ Arg) was genotyped and associated with hemolytic complement activity in the $F_{2}$ DUMI resource population. It showed that lysis activity reached maximum level at the day 4 post-ADV vaccination in CH50 and at day 10 after PRRSV immunization in AH50. There is highly significant difference between genotypes in CH50 with the allele `\({ }^{\prime}\) ' being favorable in terms of complement activity ( \(\mathrm{p}=0.0080\) ) while there was no difference in AH50. It indicated that the time course of hemolytic complement activity in the classical pathway depends on the C7 genotypes. In the DUMI resource population the allele` A ' originates from the Berlin Miniature Pig grandparents. Berlin Miniature Pigs were bred from Vietnamese potbelly pig, Saddleback Pig and German Landrace with the first being the likely source of the 'A' allele. Interestingly this allele is more frequent in the Muong Khuong compared to German Landrace and Pietrain. According to Clapperton et al. (2005) levels of innate immune traits were shown to differ between different pig breeds although it is unknown whether this effect would lead to breed differences for resistance to infectious diseases.

In the porcine C8A gene, association of C8A genotypes at SNP site $1544 \mathrm{C} \rightarrow \mathrm{T}$ ( $485 \mathrm{Arg} \rightarrow$ Cys) with hemolytic complement activity was studied. As a result, the association of C8A with CH50 was close to significance ( $p=0.0650$ ), however the difference
between the two homozygous genotypes CC and TT was significant at $\mathrm{p}=0.0522$. Animals with genotype TT show strong lysis ability at the early time point before Mh vaccination and this hemolytic activity showed a linear increment during experiment. At later time points the performance of heterozygous animals is similar to animals of the TT genotype, whereas at the early time points the hemolytic complement activity of heterozygous animals was as low as for the CC genotype. This might indicate dominance effects of the allele ` $T^{\prime}$ that are different in their direction depending on the vaccination. Additionally, interaction between genotypes and time points caused significant difference in AH50 test ( $\mathrm{p}=0.0027$ ). This showed that hemolytic complement activity in alternative pathway depends on C8A during the time course of vaccination.

In the porcine C8B gene, analysis of CH50 hemolytic complement activity depending on C8B genotypes at SNP 222 (65Thr $\rightarrow$ Met) in animals of the DUMI population along the vaccination program demonstrated that at the beginning of the vaccination program, before and after Mycoplasma vaccination, the hemolytic complement activity in animals with genotype CT (42.8 $\pm 3.4$ ) was the lowest compared to CC ( $51.5 \pm 3.4$ ) or TT (52.5 $\pm 5.7$ ). At time points around ADV vaccination differences depending on C8B genotypes were not obvious whereas at PRRSV vaccination genotype CT (71.2 $\pm 4.4$ ) vs CC ( $68.8 \pm 3.9$ ) or TT ( $62.3 \pm 7.2$ ) revealed highest value, i.e. ${ }^{`} \mathrm{~T}^{\prime}$ allele really exposes its own maximal hemolytic ability in the heterozygous pattern at this point time. Also the allele `\(T\) ' performs its own optimum lysis ability compared with remainders at day 10 after Mh or ADV immunization in the alternative complement pathway. However, the difference for CH50 and AH50 activity among genotypes at particular time points was not statistically significant. The` $\mathrm{T}^{\prime}$ allele at nucleotide 222 in the DUMI populations originates from the Berlin Miniature Pig grandparents. Berlin Miniature Pigs were bred from Vietnamese potbelly pig, Saddleback Pig and German Landrace (Hardge et al. 1999) with the first being the likely source of the ' T ' allele. The time course of hemolytic complement activity depends on the C8B genotypes. Different effects of C8B genotypes on hemolytic complement activity associated with particular vaccinations against bacterial and viral pathogens could be due to host-pathogen-interaction. Vietnamese local breeds are a source of promising alleles of unpredictable economic value (Lemke et al. 2005). In this case it can suggest that allele ` $T^{\prime}$ presenting in Muong

Khuong population is a valuable genetic resource, which provides new perspectives to improve innate immune response in pigs.

Screening the full-length cDNA sequence of the porcine C9 (GenBank acc. no. DQ333198) revealed two SNP sites: 350A $\rightarrow$ G (codon 87CAA $\rightarrow$ CAG) and $407 \mathrm{C} \rightarrow \mathrm{G}$ $(106 C A C \rightarrow$ CAG). The second SNP has an amino acid substitution His $\rightarrow$ Gln whereas the first is a silent mutation. Therefore, the second was investigated to associate with hemolytic complement activity in both classical and alternative pathway. For the porcine C9, significant difference in hemolysis was found between two genotypes GG (69.49 $\pm 3.17$ ) and CG ( $63.59 \pm 3.65$ ) for the classical $(p=0.0488)$ but not for the alternative pathway ( $62.73 \pm 2.82$ vs $61.52 \pm 2.39$, respectively). However, statistically significant difference was found in the interaction of genotypes and immunization point times ( $\mathrm{p}=0.0340$ ) in the alternative pathway. Appearance of allele `C' in heterozygous CG, probably from Saddleback Pigs, has made decreasing lysis activity whereas homozygous GG always shows hemolysis at a higher level during experiment in the classical pathway. CH50 tests showed the highest lysis value at the fourth day after ADV vaccination in both homozygous GG genotype ( $83.09 \pm 3.85$ ) and heterozygous CG ( $78.12 \pm 4.72$ ), whereas AH50 can be seen as a linear increasing line during the experiment. The genotype GG shows high variation in the level and reactivity of the complement cascade along the experiment. It could come up to the highest value ( $83.09 \pm 3.85$ ) at the fourth day post ADV immunization in CH50 and go down to one of the lowest values $(47.81 \pm 3.10)$ at the fourth day post Mh immunization in AH50. Due to their different impact on the classical and alternative pathway the C9 genotypes are of high interest for further studies.

### 5.3.2 Other factors on hemolytic complement activity in both pathways

The complement system comprises over 30 distinguished proteins and is known as a biochemical cascade for lysis invading external pathogens. These proteins are primarily formed in the liver and circulate under inactive form in blood plasma. When there is, however, presence of attacking pathogens these proteins will become active. As an activated enzyme, prior protein bind to subsequent protein to form the membrane attack complex (C5b-9). Of course, concentration of MAC will be higher in blood plasma and
on membrane of target cell at that time. Then the complex inserts into the cell membrane, punches a hole, increases leakage of water and ions through the cell membrane, initiates osmotic cytolysis and kills target cells. In turn, C5b-9 complex exerts a regulatory effect on the formation of C3 convertases of the classical and alternative pathway and on the utilization of C5 by cell-bound C5 convertases. Feedback inhibition by C5b9 represents a biologically relevant mechanism through which complement may autoregulate its effector functions (Bhakdi et al. 1988).

Due to the important role of the complement system in natural immune regulation mechanism of host body against pathogens, many studies for the complement components have been carried out; for example in bacterial meningitis infections in which the C5-9 complex attacks the gram-negative bacteria (Vázquez-Bermúdez et al. 2003, Zhu et al. 2000, Eng 1980, Haeney et al. 1980). The morbidity of meningococcal infections may be attenuated in the presence of reduced levels of the membrane attack complex (Ross and Densen 1984). Deficiencies of complement components of the terminal pathway predispose to both autoimmune disease and infections were also reported. Causes of deficiency can be inherited (Toshiro et al. 1999, Inai et al. 1989, Fukumori and Horiuchi 1998) or acquired and complete or partial. Moreover, deficiency of membrane attack complex proteins of the complement system often appears common in countries where bacterial diseases are highly prevalent (Zimran et al. 1987, Orren et al. 1987). Most of deficiencies are associated to polymorphisms present in the molecular structure of at least one complement component. Vissher et al. (2002) also provided evidence for substantial genetic variation between pigs and concluded that there is the possibility for genetic improvement of the immune capacity and response to pathogens.

Since the complement system plays an important role in natural defense system of pigs, genetic variation of C3, C5 as well as mannose-lectin genes (MBL1 and MBL2) were associated with hemolytic complement activity (Phatsara et al. 2007, Kumar et al. 2004, Mekchay et al. 2003, Wimmers et al. 2003). On the same experimental materials, here it was focused on the porcine C6, C7, C8A, C8B, and C9 genes. Not as other complement components with dependently specific functions, the C6-9 assembly has the same function of cell lysis because all they are members of the MAC macromolecule. This means that reciprocal influence among the terminal complement components on hemolytic
complement activity is indispensable. Catalytic activity of previous components could affect not only the subsequent others but also the activity of whole MAC complex. The study showed significant differences between genotypes of several genes and hemolytic complement activity in the classical pathway but not in the alternative pathway for all candidate genes. Performance of genetic variation of the terminal complement components C6-9 on hemolytic complement activity in the classical and alternative pathway is complicated. It is really indirect to use CH50 and AH50 for evaluating genetic effect of the terminal candidate genes on hemolytic complement activity because direct products at the end of the complement activation from three pathways (classical, lectin, and alternative) are C5-convertases, the essential enzyme to split C5 into two smaller fragments C5a as a potent anaphylatoxin and C5b as an event center for binding to C6 followed by C7-9. However measurement of CH50 and AH50 is the best screening test for deficiency of the complement components of classical, alternative or terminal pathway. Beside the genotypes of candidate genes, a number of other factors that affect complement activity were evident along the experiment. These factors have been taken into account in the analysis using adequate statistical models. Some of these factors may contributed to the fact that the association of the candidate genes of the terminal lytic pathway of the complement cascade, that is common to the classical and alternative pathway of complement activation, was shown for CH50 but not for AH50 for all genes except C8G. Factors such as gender and age of the animals, the used vaccines, and interaction of genotypes and vaccinations, interaction among complement genes themselves and also other immune genes that are discussed here may increase the power to detect effects on hemolytic complement activity measured in the classical pathways but mimic these effects in the alternative pathway.

### 5.3.2.1 Effect of gender

Higher hemolytic activity was found in male animals as compared to in the female animals in both pathways. Analysis of variance also indicated significant differences between genders. According to Olaho-Mukani et al. (1995) sex has an effect on complement activity.

### 5.3.2.2 Effect of age

The complement system is immature at birth. Repeated antigenic stimulation leads to the complete maturation of immunity during the first few years of life (Durandy 2003). Clearly, hemolysis showed low hemolytic values before primary immunization with Mh and reach higher ones after the following vaccinations with ADV and PRRSV. In human (Yonemasu et al. 1978) and in pigs (Olaho-Mukani et al. 1995, Tyler et al. 1988) age has an effect on complement component concentration, i.e. observation on serum concentration of C3 in healthy Japanese Yonemasu et al. (1978) reported that the concentration reaches the lowest value at 24 hours after birth ( $680.0 \pm 45.7 \mu \mathrm{~g} / \mathrm{ml}$ ) and comes up the highest at one year old ( $1385 \pm 65.3 \mu \mathrm{~g} / \mathrm{ml}$ ). The age of the patient affects interpretation of complement levels in various diseases (Yonemasu et al. 1978). Short term elevation of complement activity after immunizations is an (sub-)acute phase response of the immune system and the long term increase between vaccinations may be due to aging (Wimmers et al. 2003). Pig breed and age are important factors influencing the response to various stressors or infectious challenges (Sutherland et al. 2005)

### 5.3.2.3 Interaction of complement components

Due to aging as well as accumulation after various vaccinations the complement system is increasingly activated and responsive. Activities of the terminal complement components C6 to C9 depend on the activity of other components acting on higher levels of the cascade. Especially the formation of the C3 convertase and subsequently the C5 convertase are key to the final overall hemolytic complement activity. The release of C5b from C5 that binds to C6-9 to form the membrane attack complex is cause of interaction of different protein sequences in the three pathways of complement activation. The hemolytic complement activity in the alternative pathway partly depends on C3b formed after the complement activation of the classical pathway. The C3b plays an important role for accelerating complement activation in the alternative pathway. Hemolysis in subsequent time points was higher than the previous along the experiment for AH50 due to both antigen-specific and antigen-nonspecific immune responses and responsiveness that accumulated after each vaccination. Clearly, generation of C3convertase has directly strong effect on the formation of the MAC (C5b-9). Of course,
complement activation also depends on other signals of the immune system like interleukins. Vaccinations are known to effect acute phase response through cytokines like IL1, IL6 and TGFB1 that are released during immune response and in particular trigger the expression of C3 (Gonzalez-Ramon et al. 2000, Mackiewicz et al. 1990, Castell et al. 1989).

CRP known as an acute-phase serum protein and a mediator of innate immunity binds to microbial polysaccharides and to ligands exposed on damaged cells. Surface bound CRP reduces deposition of and generation of C5b-9 by the alternative pathway and deposition of C3b (Mold et al. 1999). CRP is most efficient at early classical pathway activation and reacts with Fc $\gamma$ receptors (Marnell et al. 1995, Crowell et al. 1991, Berman et al. 1986). CRP binding to C1q differs from IgG binding in being localized to collagen-like regions rather than the globular head groups of C1q (Jiang et al. 1991)

### 5.3.2.4 Effect of vaccination

It was shown that vaccination leads to an acute phase response measurable by an increased serum level of haptoglobin in pigs (Rekitt et al. 2001, Asai et al. 1999). Increment of the C3c serum concentration, as observed in this experiment, is part of the acute phase response (Volanakis et al. 1995, Kusher et al 1982). At the same time it reflects in vivo complement activation, while hemolytic complement activity describes the in vitro capacity of the complement system (Storm et al. 1992). Also hemolytic complement activity is elevated after immunizations. Various structures of lipopolysaccharides (LPS) of gram-negative enterobacteria, influence the complement activation. The rough LPS of Coxiella burnetii variant activated complement via the alternative pathway, whereas the intermediate LPS variant activated the classical pathway (Vishwanath and Hackstadt 1988). LPS of various Mycoplasma species have been shown to interact with C1 and induce an antibody-independent activation of the complement system via the classical pathway (Rosendal et al. 1994, Bredt et al. 1977). A previous study showed that Brucella abortus do not activate the bovine alternative pathway (Hoffmann and Houle 1983). The rough (O-antigen deficient) Brucella abortus will bind C1 and be killed by the classical pathway (Eisenschenk et al. 1999) whereas the alternative pathway does not kill Brucella abortus (Eisenschenk et al. 1995). For Salmonella minne-
sota, it was shown that the bacteria avoided killing by complement because membrane attack complexes were rapidly sloughed off. Although C3b as well as the stable complexes C5b-7 on the surface of Salmonella minnesota was formed (Joiner et al. 1982a), subsequent additions of C8-9 caused release of C5b-7 complexes (Joiner et al. 1982b). Furthermore, the lipid A region of the LPS is responsible for classical pathway activation not to depend upon antibody to the lipid A whereas alternative pathway activation proceeds by a lipid A-independent mechanism (Morrison and Kline 1977). Lipid A of gram-negative bacteria binds and activates Cl to initiate the classical pathway (Betz et al. 1981). In the absence of anticapsular antibody, complement-mediated killing occurred but not by the alternative pathway (Steele et al. 1984). In reverse way, an encapsulated strain of Escherichia coli was shown to be killed primarily by antibodydependent activation of the classical pathway (Taylor et al. 1983) whereas an unencapsulated rough strain of Escherichia coli activated the classical pathway independently of antibody (Betz et al. 1981). There also is evidence that killing of bacteria by the classical pathway system did not require specific antilipopolysaccharide antibodies and the chemical compositions of both the capsular polysaccharide and the O-antigen determine the degree of complement activation (Pluschke and Achtman 1984). O-antigen prevented both complement component C3 deposition on the surface and complementmediated killing of Bordetella parapertussis. In addition, O-antigen was required for Bordetella parapertussis to systemically spread in complement-sufficient mice, but not complement-deficient mice (Goebel et al. 2008). This can cause deficiency of C3 for the alternative pathway activation. In other studies it is reported that porin protein of bacteria binds to C1q (Alberti et al. 1996, Loos and Clas 1987). The association of LPS and porins in the absence of specific antibodies is a prerequisite for the activation of the classical pathway of complement leading to the killing of serum-sensitive bacteria (Loos and Clas 1987). Clearly the mechanisms of complement activation by bacteria are quite different depending on characteristics of the bacterial surface such as lipopolysaccharides, lipid A, O-antigen of LPS, porin, ect. However, also viruses were shown to activate the complement cascade independent from existing antibodies via both the classical and the alternative pathway. Alphaherpesviridae, in particular Epstein-BarrViruses, is an example for complement activation in both pathways (Mold et al. 1988, Mayes et al. 1984).

Furthermore, the glycoprotein C (gC) of HSV-1 and -2, bovine herpesvirus type 1, porcine herpesvirus 1 (ADV), and equine herpesvirus types 1 and 4 interact with C3b (Friedman et al. 2000). Glycoprotein C known as a receptor for C 3 bBb impedes decayaccelerating activity for the alternative pathway C3 convertase and could block the effects of complement on the infected cells in the absence of antibody (Fries et al. 1986, McNearney et al. 1987). The complement activity differs between animal species infected by HSV. It is due to the difference in affinity between the gC of HSV and either the complement component or glycoprotein structure (i.e. a difference in glycosylation level) in each animal (Hidaka et al. 1991). Thus the increment of complement activity in blood samples obtained after vaccinations might be at least partly due to specific interaction between the bacterial and viral vaccination strains and complement components. It may be conducted that activation of either the alternative or the classical pathway in the experiment differentially depends on the vaccinations. Moreover, the immunization with Mycoplasma is a booster vaccination with the first application-taking place in the first week of life. For ADV it has been shown that maternal antibodies are present until week 14 and 15 of age (Pensaert and Kluge 1989, Wittmann 1984). ADV immunization was done when maternal antibodies may still be present. Those mean that at the time point of Mh and ADV vaccination an immediate activation of the complement system via the classical pathway might have happened due to the formation of specific antigen-antibody complexes.

All factors discussed above push hemolytic complement activity in the classical pathway significantly stronger than in the alternative pathway. Consequently, the experiment may have more power to elucidate effects on the hemolytic complement activity in the classical pathway than in the alternative pathway.

In summary, in the present study the porcine genes encoding the terminal components of the complement cascade C6, C7, C8A, C8B, C8G, and C9 were characterized. The cDNA molecular structure was sequenced, polymorphisms detected, assignment to the porcine chromosome done, and association between SNPs and hemolytic complement activity evaluated. Genetic variations between European and Vietnamese porcine breeds are valuable. In the present study, Muong Khuong pig is also owner of genotypes which performed strong hemolytic complement activity. Therefore these genotypes can be
considered as the candidates to enhance natural resistance in pig in future. These genotypes might be selected through many generations of Muong Khuong pig raised in bad conditions (no vaccination, insufficience of feed and nutrient unbalance ration, bad hygiene). Also these are result of natural selection of host against infectious environmental condition. Interestingly, variations of complement activities in Meishan breed were higher than in European breeds (Duroc, Landrace and Large White) (Komatsu et al. 1998). Moreover, high similarity in molecular structure of the candidate genes among other species may open a new way to treat animals and humans with deficiency of complement components even with newly designed proteins. The obtained results provide the means for further understanding the role of C6, C7, C8, and C9 in natural immune response of the host against pathogens. It also promotes the porcine C6, C7, C8, and C9 as candidate genes in efforts to genetically improve general animal health, a goal of breeding programmes for food animals. The results also enrich evidence for genetic variation in host responses to vaccinations. The age-old principle should be regarded in breeding and selection for resistance to diseases.

This study aimed to characterize the porcine genes encoding the terminal components of the complement cascade C6, C7, C8A, C8B, C8G, and C9. Therefore the entire cDNA sequences were identified; SNPs were detected within candidate genes; genetic linkage and radiation hybrid mapping was performed; and association between SNPs and hemolytic complement activity was analyzed.

The cDNA sequences of the candidate genes C6, C7, C8A, C8B, C8G and C9 was identified with 3306, 3561, 2146, 2461, 840, and 2536 bp, including 144, 807, 91, 28, 51, and 89 bp of $5^{\prime}$ UTR and $354,122,285,597,180$ and 815 bp of $3^{\prime}$ UTR region, respectively. Alignment of cDNA sequences with human and porcine genomic sequences allowed deducing $18,18,11,12$, seven, and 11 exons of the porcine candidate genes C6, C7, C8A, C8B, C8G and C9 encoding 935, 843, 589, 611, 202 and 543 amino acids, respectively. The porcine cDNA and deduced protein sequences of the candidate genes showed high ( $65-86 \%$ and $67-83 \%$, respectively) identities with human analogues. A number of functional domains such as TSP1, LDLa, MACPF, EGF, CCP or FIMAC holding different roles in the formation of membrane attack complex (MAC) and cell lysis were detected.

Screening the cDNA sequences using comparative sequencing revealed five, six, seven, nine and two single nucleotide polymorphisms (SNPs) within the candidate genes C6, C7, C8A, C8B and C9, respectively. These SNPs were confirmed using either PCRRFLP or resequencing method. There are two (240Asn $\rightarrow$ Asp, 471Asp $\rightarrow$ Glu), three (52Ile $\rightarrow$ Val, 67Thr $\rightarrow$ Met, 294Lys $\rightarrow$ Arg), two (485Arg $\rightarrow$ Cys, 528Tyr $\rightarrow$ Cys), eight (24Pro $\rightarrow$ Leu, 65Thr $\rightarrow$ Met, 303Thr $\rightarrow$ Gly $\rightarrow$ Ser, 406Ile $\rightarrow$ Val, 411Pro $\rightarrow$ Ser, 449Ala $\rightarrow$ Val, 489Ala $\rightarrow$ Val, 590Ala $\rightarrow$ Val), and one ( $106 \mathrm{His} \rightarrow$ Gln) SNPs with amino acid substitution in the porcine C6, C7, C8A, C8B and C9, respectively. No SNP was found in C8G among the breeds Hampshire (HS), Duroc (DR), German Landrace (LR), Pietrain (PIE), Berlin Miniature Pig (BMP) and Muong Khuong (MK). Most of the polymorphisms lie in cysteine-rich functional protein domains such as TSP1, LDLa, MACPF, CCP or FIMAC. These genetic variations may play an important role in the
structural formation and function of the protein domains and therefore may affect the activity of the complement components in cell lysis.

The polymorphic sites 862A $\rightarrow \mathrm{G}(240$ Asn $\rightarrow$ Asp, TaqI) and 1557C $\rightarrow \mathrm{G}(471 \mathrm{Asp} \rightarrow \mathrm{Glu}$, PstI) for C6, 154A $\rightarrow$ G (52Ile $\rightarrow$ Val, BsrDI), 870C $\rightarrow$ T (Hin6I) and 881A $\rightarrow \mathrm{G}$ (294Lys $\rightarrow$ Arg, MboII) for C7, 535A $\rightarrow$ G (TfiI), 1544C $\rightarrow$ T (485Arg $\rightarrow$ Cys, Hin6I), and $1768 \mathrm{C} \rightarrow \mathrm{T}$ (524Tyr $\rightarrow$ Cys, KnpI) for C8A, 222C $\rightarrow$ T (65Thr $\rightarrow$ Met, FnuDII), $935 \mathrm{~A} \rightarrow \mathrm{G} \rightarrow \mathrm{T}$ (303Thr $\rightarrow \mathrm{Gly} \rightarrow$ Ser, resequencing), and 1244A $\rightarrow \mathrm{G}$ (406Ile $\rightarrow$ Val, MaeII) for $\mathrm{C} 8 \mathrm{~B}, 350 \mathrm{~A} \rightarrow \mathrm{G}(\mathrm{BsrDI})$ and $407 \mathrm{C} \rightarrow \mathrm{G}(106 \mathrm{His} \rightarrow \mathrm{Gln}$, HpyCH4III) for C9 were genotyped using PCR-RFLP or resequencing in unrelated animals of the breeds German Landrace ( $n=30$ ), Pietrain ( $n=30$ ), and Muong Khuong ( $n=25$ ). In the porcine C9 gene, the SNP $407 \mathrm{C} \rightarrow \mathrm{G}$ shows two different genotypes GG and CG in $\mathrm{F}_{2}$ DUMI resource population but not in LR, PIE or MK animals. Allele `C' maybe derived from Saddleback Pigs, one of the breeds used to breed Berlin Miniature Pigs. Genetic and allelic frequencies fit to Hardy-Weinberg equilibrium as revealed by using Chi-square test.

Using 118 DNA clones of the INRA-Minnesota RH mapping panel the porcine C8A (LOD=7.00, 56 cR , linked close to marker SW1069), and C8B (LOD=8.18, 50 cR , linked close to marker SW322) were assigned to the same chromosome 6 (q3.1-q3.5), whereas the porcine C6 (LOD=18.13, 21 cR ) and C7 (LOD=16.65, 23 cR ) were linked to marker S0077 and C9 (LOD=14.45, 27 cR ) linked to marker SW403 on the q-arm of chromosome 16 (q1.4). C8G (LOD=8.26, 44 cR , linked close to marker SSC10D08) was assigned to chromosome 1 (q2.13). Genetic mapping was performed in the DUMI $\mathrm{F}_{2}$ resource population using a set of previously genotyped markers. Genetic linkage using two-point analysis from CRIMAP 2.4 (Green et al. 1990) was confirmed between C7 and C6 (rec. fracs. $=0.02, \mathrm{LOD}=50.45$ ), C9 and C6 (rec. fracs $=0.06, \mathrm{LOD}=$ 31.50), C9 and C7 (rec. fracs $=0.06, \mathrm{LOD}=35.84$ ) on Ssc16, C8B and C8A (rec. fracs $=0.05$, LOD $=65.72$ ) on Ssc6.

Furthermore, once the polymorphisms were established, one SNP for each candidate gene C6 $(862 \mathrm{~A} \rightarrow \mathrm{G}), \mathrm{C} 7(881 \mathrm{~A} \rightarrow \mathrm{G}), \mathrm{C} 8 \mathrm{~A}(1544 \mathrm{C} \rightarrow \mathrm{T}), \mathrm{C} 8 \mathrm{~B}(222 \mathrm{C} \rightarrow \mathrm{T})$, and C 9 $(407 \mathrm{C} \rightarrow \mathrm{T})$, was used for genotyping 417 animals of $\mathrm{F}_{2}$ DUMI resource population immunized with Mycoplasma (Mh), Aujeszky (ADV) and porcine reproductive and respi-
ratory syndrome (PRRSV) vaccine. These genetic variations were used to evaluate association with hemolytic complement activity in both the classical (CH50) and alternative pathway (AH50) for identifying potential effects on immune response ability of the candidate genes. Changes of CH50 and AH50 concentrations depending on genotypes of the candidate genes were observed prior (day 0 ) and after vaccinations (day 4 and 10 for Mh and ADV but only day 10 for PRRSV vaccination). (1) For the hemolytic complement activity in the classical pathway, statistically significant difference in CH50 hemolysis was found between genotypes of the porcine C7 ( $\mathrm{p}=0.0080$ ) and C9 ( $\mathrm{p}=0.0488$ ). Simultaneously, CH50 performance was close to significant difference between genotypes of the porcine $\mathrm{C} 6(\mathrm{p}=0.0853)$ and $\mathrm{C} 8 \mathrm{~A}(\mathrm{p}=0.0650)$. Along the vaccination program, the interaction between C8B genotypes and different immunization time points was found highly significant for the CH50 ( $\mathrm{p}=0.0048$ ). (2) For the hemolytic complement activity in the alternative pathway, although no significant differences were found between genotypes of the porcine candidate genes, the interactions of genotypes and time points in the AH50 activity were significant for C8A ( $\mathrm{p}=0.0027$ ), C8B ( $\mathrm{p}=0.0231$ ), and $\mathrm{C} 9(\mathrm{p}=0.0340)$. (3) Also male animals always performed higher hemolysis than females in both pathways. Analysis of variance also indicated significant differences between genders. In summary, the CH50 shows the highest hemolysis value at the fourth day after ADV vaccination whereas the AH50 tends to increase linear during the experiment. Immune response in the short phases after each vaccinating was found in both pathways.

Genetics, sex, age, kind of vaccine, interaction of complement components are major factors modulating to complement activation, therefore causing the lysis of target cells. These obtained results promote C6, C7, C8 and C9 as candidate genes in efforts to improve the animal health in future.

Diese Studie hatte das Ziel, porcine Gene zu charakterisieren, welche die terminalen Komponenten der Komplementkaskade, C6, C7, C8A, C8B, C8G und C9, kodieren. Dafür wurden die gesamten cDNA-Sequenzen identifiziert, SNPs wurden innerhalb von Kandidatengenen gesucht, `genetic linkage mapping' und `radiation hybrid mapping' wurden durchgeführt und Assoziationen zwischen den SNPs und der hämolytischen Komplementaktivität wurden analysiert.

Die cDNA-Sequenzen der Kandidatengene C6, C7, C8A, C8B, C8G und C9 wurde identifiziert, mit 3306, 3561, 2146, 2461, 840, bzw. 2536 bp Länge, einschließlich 144, 807, 91, 28, 51, und 89 bp Länge von der $5^{\prime}$ untranslatierte Region (UTR) und 354, 122, 285, 597, 180 und 815 bp Länge der $3^{\prime}$ UTR. Der Vergleich der porcinen cDNASequenzen mit humanen genomischen Sequenzen erlaubte auf 18, 18, 11, 12, 7, und 11 Exons der porcinen Kandidatengene C6, C7, C8A, C8B, C8G und C9 zu schließen, welche für 935, 843, 589, 611, 202 bzw. 543 Aminosäuren kodieren. Die porcinen cDNAs und die abgeleiteten Proteinsequenzen der Kandidatengene zeigten hohe Homologie (65-86\% bzw. 67-83\%) mit den menschlichen Orthologen. Eine Reihe von Abschnitten mit Homologie zu funktionellen Domänen wie TSP1, LDLa, MACPF, EGF, CCP oder FIMAC wurden identifiziert, mit verschiedenen Rollen bei der Bildung von Membran-Angriffs-Komplexen (MAC) und Zellysis.

Untersuchung der cDNA-Sequenzen mit vergleichender Sequenzierung ergab, fünf, sechs, sieben, neun bzw. zwei Einzel-Nukleotid-Polymorphismen (SNPs) in den Kandidatengenen C6, C7, C8A, C8B bzw. C9. Diese SNPs wurden entweder mit Restriktions-Fragment-Längen-Polymorphismus (PCR-RFLP) Methoden oder mit anschließender Resequenzierung bestätigt. Es gibt zwei (240Asn $\rightarrow$ Asp, 471Asp $\rightarrow$ Glu), drei (52Ile $\rightarrow$ Val, $67 \mathrm{Thr} \rightarrow$ Met, 294Lys $\rightarrow$ Arg), zwei (485Arg $\rightarrow$ Cys, 528Tyr $\rightarrow$ Cys), acht (24Pro $\rightarrow$ Leu, 65Thr $\rightarrow$ Met, 303Thr $\rightarrow$ Gly $\rightarrow$ Ser, 406Ile $\rightarrow$ Val, 411Pro $\rightarrow$ Ser, 449Ala $\rightarrow$ Val, 489Ala $\rightarrow$ Val, 590Ala $\rightarrow$ Val), oder ein (106His $\rightarrow$ Gln) SNPs mit Aminosäurenaustausch in den porcinen Genen C6, C7, C8A, C8B bzw. C9. Kein SNP wurde in C8G beim Vergleich von Individuen der Rassen Hampshire (HS), Duroc (DR), Deutsche Landrasse (LR), Pietrain (PIE), Berliner Miniaturschwein (BMP) und Muong

Khuong (MK) entdeckt. Die meisten der Polymorphismen liegen in der cysteinreichen funktionellen Proteindomäne wie z.B. TSP1, LDLa, MACPF, CCP oder FIMAC. Diese Variationen können eine wichtige Rolle für die Struktur und Funktion der Proteindomänen spielen und könnten daher die Aktivität der Komplementkomponenten in der Zellyse beeinflussen.

Die SNPs 862A $\rightarrow$ G (240Asn $\rightarrow$ Asp, TaqI) und $1557 \mathrm{C} \rightarrow \mathrm{G}(471$ Asp $\rightarrow$ Glu, PstI) für C6, 154A $\rightarrow$ G (52Ile $\rightarrow$ Val, BsrDI), 870C $\rightarrow$ T (Hin6I) und 881A $\rightarrow$ G (294Lys $\rightarrow$ Arg, MboII) für $\mathrm{C} 7,535 \mathrm{~A} \rightarrow \mathrm{G}$ (TfiI), 1544C $\rightarrow$ T (485Arg $\rightarrow$ Cys, Hin6I), und $1768 \mathrm{C} \rightarrow \mathrm{T}$ $(524 \mathrm{Tyr} \rightarrow$ Cys, KnpI) für $\mathrm{C} 8 \mathrm{~A}, 222 \mathrm{C} \rightarrow \mathrm{T}(65 \mathrm{Thr} \rightarrow$ Met, FnuDII), $935 \mathrm{~A} \rightarrow \mathrm{G} \rightarrow \mathrm{T}$ (303Thr $\rightarrow$ Gly $\rightarrow$ Ser, Resequenzierung) und $1244 \mathrm{~A} \rightarrow \mathrm{G}$ (406Ile $\rightarrow$ Val, MaeII) für C8B, $350 \mathrm{~A} \rightarrow \mathrm{G}$ (BsrDI) und $407 \mathrm{C} \rightarrow \mathrm{G}$ (106His $\rightarrow$ Gln, HpyCH4III) für C9 wurden mittels PCR-RFLP oder Resequenzierung genotypisiert, in nicht verwandten Tieren der Rassen Deutsche Landrasse ( $\mathrm{n}=30$ ), Pietrain ( $\mathrm{n}=30$ ), und Muong Khuong ( $\mathrm{n}=25$ ) und die Allel- und Genotyp-Frequenzen wurden geschätzt. In dem porcinen C9 segregierte der SNP $407 \mathrm{C} \rightarrow \mathrm{G}$ mit zwei Genotypen GG und CG in der $\mathrm{F}_{2}$-Generation der DUMIRessourcenpopulation, aber nicht bei LR, MK oder PIE Tieren. Das Allel `C' könnte aus Sattelschweinen stammen, eine der Rassen, welche zur Züchtung der Berliner Miniaturschweine benutzt wurde. Die relativen Häufigkeiten der Allele und Genotypen passen zum Hardy-Weinberg-Gleichgewicht, wie mit Hilfe eines Chi-Quadrat-Tests gezeigt wurde.

Unter Benutzung von 118 DNA-Klonen des INRA-Minnesota RH-Mapping-Panel konnte das porcine C8A (LOD = 7,00, 56 cR , in der Nähe von Marker-SW1069), und C8B (LOD $=8,18,50$ cR, in der Nähe von Marker-SW322) auf dem Chromosom 6 (q3.1-q3.5) lokalisisiert werden, während das porcine C6 (LOD = 18,13, 21 cR ) und C7 (LOD = 16,65, 23 cR ) in der Nähe von Marker S0077 und C9 (LOD = 14,45, 27 cR ) in der Nähe von Marker SW403 auf dem Q-Arm von Chromosom 16 (q1.4) lokalisiert werden konnte. C8G (LOD $=8,26,44 \mathrm{cR}$, in der Nähe von Marker SSC10D08) wurde Chromosom 1 (q2.13) zugewiesen. Genetische Kartierung wurde in der DUMI $\mathrm{F}_{2}$ Ressourcenpopulation durchgeführt, unter Verwendung der zuvor genotypisieren Marker. Genkopplung konnte unter Verwendung der Zwei-Punkt-Analyse von CRIMAP 2.4 (Green et al. 1990) zwischen C6 und C7 (rec. Fracs. $=0,02$, LOD $=50,45$ ), C6 und C9
(rec. Fracs $=0,06$, LOD $=31,50$ ) bzw. C9 und C7 (rec. Fracs $=0,06$, LOD $=35,84$ ) auf Ssc16 und C8B und C8A (rec. Fracs $=0,05$, LOD $=65,72$ ) auf Ssc6 bestätigt werden.

Des Weiteren wurde, nachdem die Polymorphismen etabliert waren, ein SNP für jedes der Kandidatengene C6 $(862 \mathrm{~A} \rightarrow \mathrm{G})$, $\mathrm{C} 7(881 \mathrm{~A} \rightarrow \mathrm{G})$, C8A $(1544 \mathrm{C} \rightarrow \mathrm{T})$, C8B $(222 \mathrm{C} \rightarrow \mathrm{T})$ bzw. C9 $(407 \mathrm{C} \rightarrow \mathrm{T})$ für die Genotypisierung von 417 Tieren der $\mathrm{F}_{2}$ DUMI Ressourcenpopulation benutzt, welche mit Mycoplasma- (Mh), Aujeszky- (ADV) und dem `Porcinen Reproduktiven und Respiratorischen Syndrom'- (PRRSV) -Impfstoff immunisiert worden waren. Um potenzielle Auswirkungen auf die Immunantwort durch die Kandidatengene zu identifizieren, wurde der Zusammenhang zwischen der hämolytischen Komplementaktivität mit dem klassischen Stoffwechselweg (CH50) als auch mit dem alternativen Stoffwechselweg (AH50) und der genetischen Variation an den Kandidatengenen untersucht. Änderungen der CH50 und AH50 in Abhängigkeit von Genotypen der Kandidatengene waren vor der Impfung (Tag 0) und nach der Impfung (Tag 4 und Tag 10 bei Mh und ADV, aber nur Tag 10 bei PRRSV) beobachtet worden. (1) Für die hämolytische Komplementaktivität im klassischen Reaktionsweg CH50 wurde ein statistisch signifikanter Unterschied zwischen Genotypen des porcinen C7 ( $p=0,0080$ ) und C9 ( $p=0,0488$ ) entdeckt. Effekte auf die CH50 waren statistisch nicht abzusichern für C6 ( $p=0,0853$ ) und C8A ( $p=0,0650$ ). Die Interaktion zwischen C8B-Genotypen und Messzeitpunkten für CH50 vor und nach Immunisierung war hochsignifikant ( $\mathrm{p}=$ 0,0048). (2) Für die hämolytische Komplementaktivität beim alternativen Reaktionsweg (AH50) waren die Wechselwirkungen von Genotypen und Zeitpunkten in der AH50Aktivität für C8A ( $p=0,0027$ ), C8B ( $p=0,0231$ ), bzw. C9 ( $p=0,0340$ ) signifikant. (3) Dazu zeigten männliche Tiere immer höhere Hämolyse im Vergleich zu weiblichen in beiden Stoffwechselwegen. Die Analyse der Varianz wies außerdem auf signifikante Unterschiede zwischen den Geschlechtern hin. Zusammenfassend lässt sich sagen, dass die CH50 Hämolyse den höchsten Wert am vierten Tage nach der ADV-Impfung zeigt, während der AH50 tendenziell zu einer linearen Zunahme während des Experimentes neigt. Immunreaktionen in der kurzen Phase nach jeder Impfung wurde in beide Stoffwechselwegen beobachtet.

Die Genetik, das Geschlecht, die Art des Impfstoffs und die Interaktion der Komplementkomponenten sind wichtige Faktoren, die das Komplementsystem modulieren, und
dadurch die Lyse von Zielzellen hervorrufen. Die erzielten Ergebnisse lassen darauf schließen, dass C6, C7, C8 und C9 Kandidatengene sind, um die Tiergesundheit in der Zukunft zu steigern.

Abbott C, West L, Povey S, Jeremiah S, Murad Z, DiScipio R, Fey G (1989): The gene for human complement component C9 mapped to chromosome 5 by polymerase chain reaction. Genomics 4, 606-609

Agah A, Montalto MC, Kiesecker CL, Morrissey M, Grover M, Whoolery KL, Rother RP, Stahl GL (2000): Isolation, characterization, and cloning of porcine complement component C7. J Immunol 165, 1059-1065

Alberti S, Marques G, Hernandez-Alles S, Rubires X, Tomas JM, Vivanco F, Benedi VJ, (1996). Interaction between complement subcomponent C1q and the Klebsiella pneumoneae porin OmpK36. Infect Immun 64, 4719-4725

Alexander LJ, Hawken R, Murtaugh J, Flickinger G, Beattie G, Schook L, Milan D, Robic A, Yerle M, Gellin J (1999): Characterization of a porcine radiation hybrid (RH) panel. Plant \& Animal Genome VII Conference. Town \& Country Hotel, San Diego, CA, 17-21

Alper CA, Marcus D, Raum D, Petersen BH, Spira TJ (1983): Genetic polymorphism in C8 beta-chains: evidence for two unlinked genetic loci for the eighth component of human complement (C8). J Clin Invest 72, 1526-1531

Asai T, Mori M, Okada M, Uruno K, Yazawa S, Shibata I (1999): Elevated serum haptoglobin in pigs infected with porcine reproductive and respiratory syndrome virus. Vet Immunol Immunopathol 70, 143-148

Alvarez V, Coto E, Setién F, Spath PJ, López-Larrea C (1995): Genetic detection of the silent allele (*Q0) in hereditary deficiencies of the human complement C6, C7, and C9 components. Amer J Med Genet 55, 408 - 413

Anderson JE, Ladiges WC, Giblett ER, Weiden P, Storb R (1983): Polymorphism of the sixth component of complement (C6) in the dog. Biochem Genet 21, 155-160

Barba GM, Kaufmann TJ, Schneider PM, Rittner C, Brai M (1994): Polymorphism of the complement C8A and -B genes in two families with C8 beta deficiency and neisserial infections. Clin Immunol Immunopathol 72, 83-89

Barroso S, Rieubland C, José álvarez A, López-Trascasa M, Bart PA, Núñez-Roldán A, Sánchez B (2006): Molecular defects of the C7 gene in two patients with complement C7 deficiency. Immunology 118, 257-260

Barroso S, Sanchez B, Alvarez AJ, Lopez-Trascasa M, Lanuza A, Luque R, Wichmann I, Nunez-Roldan A (2004): Complement component C7 deficiency in two Spanish families. Immunology 113, 518-523

Behar D, Schlesinger M, Halle D, Ben-Ami H, Edoute Y, Shahar E, Kasis I, Shihab S, Elstein D, Zimran A, Mandel H (2002): C7 complement deficiency in an israeli arab village. Am J Med Genet, 25-29

Bellavia D, Schneider PM, Rittner C, Malfitano G, Kaufmann TJ, Brai M (1996): Detection of heterozygous C8 beta deficiency by PCR in a healthy Italian population. Exp Clin Immunogenet 13, 173-180

Berman S, Gewurz H, Mold C (1986): Binding of C-reactive protein to nucleated cells leads to complement activation without cytolysis. J Immunol 136, 1354-1359

Betz JJ, Isliker H (1981): Antibody-independent interactions between Escherichia coli J5 and human complement components. J Immunol 127, 1748-1754

Bhakdi S, Maillet F, Muhly M, Kazatchkine MD (1988): The cytolytic C5b-9 complement complex: Feedback inhibition of complement activation. Proc Natl Acad Sci USA 85, 1912-1916

Bhakdi S, Tranum Jensen J (1991): Complement lysis: a hole is a hole. Immunol Today 12, 318-820

Biesecker G, Gerard C, Hugli TE (1982): An amphiphilic structure of the ninth component of human complement. J Biol Chem 257, 2584-2590

Biesecker G, Muller-Eberhard HJ (1980): The ninth component of human complement: purification and physicochemical characterization. J Immunol 124, 1291-1296

Bhole D, Stahl GL (2004): Molecular basis for complement component 6 (C6) deficiency in rats and mice. Immunobiology 209, 559-568

Bornstein P (2001): Thrombospondins as matricellular modulators of cell function. J Clin Invest 107, 929-934

Bredt W, Wellek B, Brunner H, Loos M (1977): Interactions between mycoplasma pneumoniae and the first components of complement. Infect Immun 15, 7-12

Brickner A, Sodetz JM (1984): Function of subunits within the eighth component of human complement: identification of a direct role for alpha subunit of C8. Biochemistry 23, 832-837

Castell JV, Gomez-Lechon MJ, David M, Andus T, Geiger T, Trullenque R, Fabra R, Heinrich PC (1989): Interleukin-6 is the major regulator of acute phase protein synthesis in adult human hepatocytes. FEBS Lett 242, 237-239

Catterall CF, Lyons A, Sim RB, Day AJ, Harris TJ (1987): Characterization of primary amino acid sequence of human complement control protein factor I from an analysis of cDNA clones. Biochem J 242, 242-849

Chakravarti DN, Chakravarti B, Parra CA, Muller-Eberhard HJ (1989): Structural homology of complement protein C6 with other channel-forming proteins of complement. Immunology 86, 2799-2803

Chakravarti DN, Muller-Eberhard HJ (1988): Biochemical characterization of the human complement protein C6: association with $\alpha$-thrombin-like enzyme and absence of serine protease activity in cytolytically active C6. J Biol Chem 263, 18306-18312

Clark LK, Armstrong CH, Freeman MJ, Scheidt AB, Sands-Freeman L, Knox K (1991): Investigating the transmission of Mycoplasma hyopneumoniae in a swine herd with enzootic pneumonia. Vet Med 86, 543-550

Clamp JR (1975): The plasma proteins: structure, function and genetic control. In: Putnam FW (Eds.). The Plasma Proteins. Academic, New York 2, 163-211

Clapperton M, Bishop SC, Glass EJ (2005): Innate immune traits differ between Meishan and Large White pigs. Vet Immunol Immunopathol 104, 131-144

Cooke RP, Zafar M, Haeney MR (1987): Recurrent meningococcal meningitis associated with deficiencies of C8 and anti-meningococcal antibody. J Clin Lab Immunol 23, 53-56

Corbeil LB (1991): Immunity to infectious disease. In: Woolcock JB (Eds.). Microbiology of animals and animal products. ELSEVIER, Amsterdam, 115-140

Corbo RM, Scacchi R, Cossu G, Brega A, Scozzari R (1994): Genetic studies on the Senegal population. II. Polymorphisms of the plasma proteins F13A, F13B, ORM1, AHSG, C6, C7, and APOC2. Hum Biol 66, 885-903

Coto E, Martínez-Naves E, Domínguez O, DiScipio RG, Urra JM, López-Larrea C (1991): DNA polymorphisms and linkage relationship of the human complement component C6, C7, and C9 genes. Immunogenetics 33, 184-187

Coto E, Martínez-Naves E, Domínguez O, López-Larrea C (1990): DNA polymorphism of the human complement component C7 gene in familial deficiencies. Hum Genet 85, 251-252

Crowell RE, Du Clos TW, Montoya G, Heaphy E, Mold C (1991): C-reactive protein receptors on the human monocytic cell line U-937. Evidence for additional binding to Fc $\gamma$ RI. J Immunol 147, 3445-3451

Delâge JM, Bergeron P, Simard J, Lehner-Netsch G, Prochazka E (1977): Hereditary C7 deficiency. Diagnosis and HLA studies in a French-Canadian family. J Clin Invest 60, 1061-1069

Demey F, Pandey VS, Baelmans R, Agbede G, Verhulst A (1993): The effect of storage at low temperature on the haemolytic complement activity of chicken serum. Vet Res Comm 17, 37-40

Densen P, Brown EJ, O'Neill GJ, Tedesco F, Clark RA, Frank MM, Webb D, Myers J (1983): Inherited deficiency of C8 in a patient with recurrent meningococcal infections: further evidence for a dysfunctional C8 molecule and nonlinkage to the HLA system. J Clin Immunol 3, 90-99

Dewald G (1988): Polymorphism of the seventh component of complement (C7) in a healthy Caucasian population: an immunoblotting study with neuraminidase-treated samples. Ann Inst Pasteur Immunol 139, 507-515

Dewald G, Cichon S, Bryant SP, Hemmer S, Nothen MM, Spurr, NK (1996): The human complement C8G gene, a member of the lipocalin gene family: polymorphisms and mapping to chromosome 9q34.3. Ann Hum Genet 60, 281-291

Dewald G, Hemmer S, Noethen MM Human complement component C8 (1994): Molecular basis of the beta-chain polymorphism. FEBS Lett 340, 211-215

Dewald G, Noethen MM, Cichon S (1993): Polymorphism of human complement component C6: an amino acid substitution (Glu/Ala) within the second thrombospondin repeat differentiates between the two common allotypes C6 A and C6 B. Biochem Biophys Res Commun 194, 458-564

DiPietro LA, Nissen NN, Gamelli RL, Koch AE, Pyle JM, Polverini PJ (1996): Thrombospondin 1 synthesis and function in wound repair. Am J Pathol 148, 1851-1860

DiScipio RG (1992): Formation and structure of the C5b-7 complex of the lytic pathway of complement. J Biol Chem 267, 17087-17094

DiScipio RG, Berlin C (1999): The architectural transition of human complement component C9 to poly(C9). Mol Immunol 36, 575-585

DiScipio RG, Chakravarti DN, Muller-Eberhard HJ, Fey GH (1988): The structure of human complement component C7 and the C5b-7 complex. J Biol Chem 263, 549-560

DiScipio RG, Daffern PJ, Schraufstatter IU, Sriramarao P (1998): Human polymorphonuclear leukocytes adhere to complement factor H through an interaction that involves $\alpha \mathrm{M} \beta 2$ (CD11B/CD18). J Immunol 160, 4057-4066

Discipio RG, Gagnon J (1982): Characterization of human complement components C6 and C7. Mol Immunol 19, 1425-1431

DiScipio RG, Gehring MR, Podack ER, Kan CC, Hugli TE, Fey GH (1984): Nucleotide sequence of cDNA and derived amino acid sequence of human complement component C9. Proc Nat Acad Sci 81, 7298-7302

DiScipio RG, Hugli TE (1985): The architecture of complement component C9 and poly(C9). J Biol Chem 260, 14802-14809

DiScipio RG, Hugli TE (1989): The molecular architecture of human complement component C6. J Biol Chem 264, 16197-16206

DiScipio RG, Linton SM, Rushmere NK (1999): Function of the Factor I Modules (FIMS) of Human Complement Component C6. J Biol Chem 274, 31811-31818

Doenhoff MJ (2000): The immune system. In: Axford RFE, Bishop SC, Nicholas FW, Owen JB (Eds.). Breeding for disease resistance in farm animals. 2nd Edition, CAB International, Wallingford, 379-396

Durandy A (2003): Ontogeny of the Immune System. Transfus Med Hemother 30, 222227

Eisenschenk FC, Houle JJ, Hoffmann EM (1995): Serum sensitivity of field isolates and laboratory strains of Brucella abortus. Am J Vet Res 56, 1592-1598

Eisenschenk FC, Houle JJ, Hoffmann EM (1999): Mechanism of serum resistance among Brucella abortus isolates. Vet Microbiol 68, 235-244

Eldridge PR, Hobart MJ, Lachmann PJ (1983): The genetics of the sixth and seventh components of complement in the dog: polymorphism, linkage, locus duplication, and silent alleles. Biochem Genet 21, 81-91

Eng RHK (1980): Bactericidal screening test for late complement component deficiencies or defects. J Clin Microbiol 11, 631-634

Esser AF (1987): C9-mediated cytotoxicity and the function of poly (C9). In: Bonavida B, Collier RJ (Eds.). Membrane-mediated cytotoxicity. UCLA Symposia on Molecular and Cellular Biology. New York: New Series, Liss 45, 411

Esser AF (1991): Big MAC attack: complement proteins cause leaky patches. Immunol Today 12, 316-318

Esser AF (1994): The membrane attack complex of complement: assembly, structure and cytotoxic activity. Toxicology 87, 229-247

Fearon DT, Austen KF (1975): Properdin: binding to C3b and stabilization of the C3bdependent C3 convertase. J Exp Med 142, 856-863

Fernie BA, Finlay A, Price D, Chan E, Orren A, Joysey VC, Joysey KA, Hobart MJ (1996): Complement C6 and C7 DNA polymorphisms analysed by PCR in seven ethnic groups and characterisation of the C6 MspI RFLP. Exp Clin Immunogenet 3, 92-103

Fernie BA, Hobart MJ (1997): An unusual combined insertion/deletion polymorphism in intron 10 of the human complement C6 gene. Hum Genet 100, 104-108

Fernie BA, Hobart MJ (1999): Five new polymorphisms in the complement C7 gene and their association with C7 deficiency. Exp Clin Immunogenet 16, 150-161

Fernie BA, Orren A, Schlesinger M, Wuerzner R, Platonov AE, Cooper RC, Williams YE, Hobart MJ (1997): DNA haplotypes of the complement C6 and C7 genes associated with deficiencies of the seventh component; and a new DNA polymorphism in C7 exon 13. Ann Hum Genet 61, 287-298

Fernie BA, Wuerzner R, Unsworth DJ, Tuxworth RI, Hobart MJ (1995): DNA polymorphisms of the complement C6 and C7 genes. Ann Hum Genet 59: 163-181

Fernie BA, Wuerzner R, Orren A, Hobart M (1996): A new intronic polymorphism in the C7 gene 36 bp from the common expressed C7 M/N polymorphism. Ann Hum Genet 60, 179-182

Fernie-King BA, Seilly DJ, Willers C, Wuerzner R, Davies A, Lachmann PJ (2001): Streptococcal inhibitor of complement (SIC) inhibits the membrane attack complex by preventing uptake of C567 onto cell membranes. Immunology 103, 390-398

Ferre F and Clote P (2005): DiANNA: a web server for disulfide connectivity prediction. Nucleic Acids Res 33 (Web Server issue): 230-232

Figueroa JE, Densen P (1991): Infectious diseases associated with complement deficiences. Clin Microbiol Rev 4, 359-395

Firth MA, Colyer S, Shewen PE, Hodgins DC (2007): Sus scrofa complement component C3d mRNA, partial cds: GenBank acc. no. EU257630 (NCBI homepage)

Fraser IP, Koziel H, Ezekowitz RAB (1998): The serum mannose-binding protein and the macrophage mannose receptor are pattern recognition molecules that link innate and adaptive immunity. Semin Immunol 10, 363-372

Friedman HM, Wang L, Pangburn MK, Lambris JD, Lubinski J (2000): Novel mechanism of antibody-independent complement neutralization of herpes simplex virus type 1. Immunol 165, 4528-4536

Fries L F, Friedman HM, Cohen GH, Eisenberg RJ, Hammer CH, Frank MM (1986): Glycoprotein C of herpes simplex virus I is an inhibitor of the complement cascade. J Immunol 137, 1636-1641

Fujita T (2002): Evolution of the lectin-complement pathway and its role in innate immunity. Nature reviews immunology 2, 346-353

Fukumori Y and Horiuchi T (1998): Terminal complement component deficiencies in Japan. Exp Clin Immunogenet 15, 244-248

Giraldo G, Degos L, Beth E, Sasportes M, Marcelli A, Gharbi R, Day NK (1977): C8 deficiency in a family with xeroderma pigmentosum: lack of linkage to HLA region. Clin Immun Immunopath 8, 377-384

Goebel EM, Wolfe DN, Elder K, Stibitz S, Harvill ET (2008): O antigen protects Bordetella parapertussis from complement. Infect Immun 76, 1774-1780

Goldberger G, Bruns GA, Rits M, Edge MD, Kwiatkowski DJ (1987): Human complement factor I: analysis of cDNA-derived primary structure and assignment of its gene to chromosome 4. J Biol Chem 262, 10065-10071

Goldman MB, Cohen C, Stronski K, Bangalore S, Goldman JN (1982): Genetic control of C6 polymorphism and C6 deficiency in rabbits. J Immunol 128, 43-48

Gonzalez-Ramon N, Hoebe K, Alava MA, Van Leengoed L, Pineiro M, Carmona S, Iturralde M, Lampreave F, Pineiro A (2000): Pig MAP/ITIH4 and haptoglobin are inter-leukin-6-dependent acute-phase plasma proteins in porcine primary cultured hepatocytes. Eur J Biochem 267, 1878-1885

Goundis D, Reid KBM (1988): Properdin, the terminal complement components, thrombospondin and the circumsporozoite protein of malaria parasites contain similar sequence motifs. Nature 335, 82-85

Granados J, Cramer DV, Caputo JB, Marcus D and Alper CA (1984): Genetic polymorphism of the sixth component (C6) of rat complement. J Immunol 133, 405-407

Green P, Falls K, Crooks S (1990): Documentation for CRIMAP, version 2.4. Washington University, School of Medicine, St Louis, MO

Hadders MA, Beringer DX, Gros P (2007): Structure of C8A-MACPF reveals mechanism of membrane attack in complement immune defense. Science 14, 1552-1554

Haefliger JA, Jenne D, Stanley KK, Tschopp J (1987): Structural homology of human complement component C8 gamma and plasma protein HC: identity of the cysteine bond pattern. Biochem Biophys Res Commun 149, 750-754

Haefliger JA, Peitsch MC, Jenne DE, Tschopp J (1991): Structural and functional characterization of complement C8 gamma, a member of the lipocalin protein family. Mol Immunol 28, 123-131

Haefliger JA, Tschopp J, Nardelli D, Wahli W, Kocher HP, Tosi M, Stanley KK (1987): Complementary DNA cloning of complement C8 beta and its sequence homology to C9. Biochemistry 26, 3551-3556

Haefliger JA, Tschopp J, Vial N, Jenne DE (1989): Complete primary structure and functional characterization of the sixth component of the human complement system: Identification of the C5b-binding domain in complement C6. J Biol Chem 264, 1804118051

Haeney MR (1998): The role of the complement cascade in sepsis. J. Antimicrob Chemother 41, 41-46

Haeney MR, Thompson RA, Faulkner J, Mackintosh P, Ball AP (1980): Recurrent bacterial meningitis in patients with genetic defects of terminal complement components. Clin Exp Immunol 40, 16-24

Haesebrouck F, Pasmans F, Chiers K, Maes D, Ducatelle R, Decostere A (2004): Efficacy of vaccines against bacterial diseases in swine: what can we expect? Vet Microbiol 100, 255-268

Hall JE, Alper CA (1977): Genetic polymorphism of the sixth component of complement (C6) in the rhesus monkey. J Immunol 119, 253-255

Hardge T, Koepke K, Reissman M, Wimmers K (1999): Maternal influences on litter size and growth in reciprocol crossed Miniature Pigs and Durocs. Arch. Anim Breed 1, 83-92

Hayakawa J, Nikaido H, Koizumi T (1984): Genetic polymorphism of the sixth component of complement (C6) in mice. Immunogenetics 20, 633-638

Hawken RJ, Murtaugh J, Flickinger GH, Yerle M, Robic A, Milan D, Gellin J,Beattie CW, Schook LB, Alexander LJ (1999): A first-generation porcine whole-genome radiation hybrid map. Mammal Genome 10, 824-830

Henryon M, Juul-Madsen HR, Berg P (2002): Genetic variation for total and differential numbers of leukocytes in growing pigs. In: Proceedings of the $7^{\text {th }}$ WCGALP, INRA, August 19-23, Montpellier, France

Herrmann D, Sodetz JM, Rittner C, Schneider PM (1989): DNA polymorphism of the human complement C8B gene: formal genetics and intragenic localization. Immunogenetics 30, 291-295

Heyworth PG (2001): Immunodeficiency, primary. In: Fullerlove G and Robertson S (Eds.). Affecting the innate immune system. . Encylopedia of Life Sciences 9, Nature Publishing Group, London, 640-649

Hidaka Y, Sakai Y, Toh Y, Mori R (1991): Glycoprotein C of herpes simplex virus type 1 is essential for the virus to evade antibody-independent complement-mediated virus inactivation and lysis of virus-infected cells. J Gen Virol 72, 915-921

Hill JH, Ward PA (1971): The phlogistic role of C3 leukotactic fragments in myocardial infarcts of rats. J Exp Med 133, 885-900

Hobart MJ, Fernie B, DiScipio RG (1993): Structure of the human C6 gene. Biochemistry 32, 6198-6205

Hobart MJ, Fernie BA, DiScipio RG (1995): Structure of the human C7 gene and comparison with the C6, C8A, C8B, and C9 genes. J Immunol 154, 5188-5194

Hobart MJ, Fernie BA, DiScipio RG, Lachmann PJ (1993): A physical map of the C6 and C7 complement component gene region on chromosome 5p13. Hum Mol Genet 2, 1035-1036

Hobart MJ, Fernie BA, Fijen, KA, Orren A (1998): The molecular basis of C6 deficiency in the Western Cape, South Africa. Hum Genet 103, 506-512

Hobart MJ, Lachmann PJ, Alper CA (1975): Polymorphism of human C6. In Peeters H (Eds.). Protides of the Biological Fluids. 22nd Colloqium, Brugge 1974. Oxford, Pergamon Press, 575-580

Hobart MJ, Fernie BA, Wuerzner R, Oldroyd RG, Harrison RA, Joysey V, Lachmann PJ (1997): Difficulties in the ascertainment of C9 deficiency: lessons to be drawn from a compound heterozygote C9-deficient subject. Clin Exp Immunol 108, 500-506

Hoffmann EM, Houle JJ (1983): Failure of Brucella abortus lipopolysaccharide to activate the alternative pathway of complement. Vet Immunol Immunopath 5, 65-76

Hofsteenge J, Blommers M, Hess D, Furmanek A, Miroshnichenko O (1999): The four terminal components of the complement system (C6, C7, C8 and C9) are Cmannosylated on multiple tryptophan residues. J Biol Chem 274, 32786-32794

Hogasen K, Mollnes TE, Nurnberger W, Pausa M, Fukumori Y, Tedesco F (1998): Characterization of soluble terminal complement complex assembled in C8betadeficient plasma and serum. Scand J Immunol 48, 261-268

Horiuchi T, Ferrer JM, Serra P, Matamoros N, López-Trascasa M, Hashimura C, Niho Y (1999): A novel nonsense mutation at Glu-631 in a Spanish family with complement component 7 deficiency. J Hum Genet 44, 215-218

Horiuchi T, Nishimukai H, Okiura T, Nishimura K, Nishizaka H, Kojima T, Tsukamoto H, Hayashi K, Harada M (2002): Molecular bases for human complement C7 polymorphisms, C7*3 and C7*4. Biochem Biophys Res Commun 298, 450-455

Horiuchi T, Nishizaka H, Tsukamoto H, Harashima S, Sawabe T, Morita C, Niho Y (1999): An NcoI polymorphism in the human complement component 7 (C7) gene. J Hum Genet 44, 270-271

Howard OMZ, Rao AG, Sodetz JM (1987): Complementary DNA and derived amino acid sequence of the beta subunit of human complement protein C8: identification of a close structural and ancestral relationship to the alpha subunit and C9. Biochemistry 26, 3565-3570

Hu VW, Esser AF, Podack ER, Wisnieski BJ (1981): The membrane attack mechanism of complement: photolabeling reveals insertion of terminal proteins into target membrane. J Immunol 127, 380-386

Hunt LT, Elzanowski A, Barker WC (1987): The homology of complement factor C8 gamma chain and alpha-1-microglobulin. Biochem Biophy Res Commun 149, 282-288

Ichikawa E, Furuta J, Kawachi Y, Imakado S, Otsuka F (2001): Hereditary complement (C9) deficiency associated with dermatomyositis. Br J Dermatol, 1080-1083

Inai S, Akagaki Y, Moriyama T, Fukumori Y, Yoshimura K, Ohnoki S, Yamaguchi H (1989): Inherited deficiencies of the late-acting complement components other than C9 found among healthy blood donors. Int Arch Allergy Appl Immunol 90, 274-279

Inai S, Kitamura H, Hiramatsu S, Nagaki K (1979): Deficiency of the ninth component of complement in man. J Clin Lab Immunol 2, 85-87

Jasin HE (1977): Absence of the eighth component of complement in association with systemic lupus erythematosus-like disease. J Clin Invest 60, 709-715

Jiang H, Siegel JN, Gewurz H (1991): Binding and complement activation by Creactive protein via the collagen-like region of C 1 q and inhibition of these reactions by monoclonal antibodies to C-reactive protein and C1q. J Immunol 146, 2324-2330

Joiner KA, Hammer CH, Brown EJ, Cole RJ, Frank MM (1982): Studies on the mechanics of bacterial resistance to complement-mediated killing. I. Terminal complement components are deposited and released from Salmonella minnesota S218 without causing bacterial death. J Exp Med 155, 797-808

Joiner KA, Hammer CH, Brown EJ, Frank MM (1982): Studies on the mechanism of bacterial resistance to complement-mediated killing. II. C8 and C9 release C5b67 from the surface of Salmonella minnesota S218 because the terminal complex does not insert into the bacterial outer membrane. J Exp Med 115, 809-819

Jorgensen CB, Wintero AK, Yerle M, Fredholm M. (1997): Mapping of twenty-two expressed sequence tags isolated from a porcine small intestine cDNA library. Mamm Genome 8, 423-427

Kanemitsu S, Ihara K, Kira R, Kaku Y, Sakai K, Tsuzaka K, Takeuchi T, Hara T (2000): Complement component 9 deficiency is not a susceptibility factor for SLE. Lupus 9, 456-457

Kang HJ, Ki CS, Kim YS, Hur M, Jang SI, Min KS (2006): Two mutations of the C7 gene, c.1424G > A and c.281-1G > T, in two Korean families. J Clin Immunol 26, 186191

Kaufmann T, Hansch G, Rittner C, Spath P, Tedesco F, Schneider PM (1993): Genetic basis of human complement C8-beta deficiency. J Immunol 150, 4943-4947

Kaufmann T, Rittner C, Schneider PM (2004): The human complement component C8B gene: structure and phylogenetic relationship. Hum Genet 92, 69-75

Kaufman KM, Sodetz JM (1994): Genomic structure of human complement protein C8y: homology to the lipocalin gene family. Biochemistry 33, 5162-5166

Kawai T, Katoh K, Narita M, Tani K, Okubo T (1989): Deficiency of the 9th component of complement (C9) in a patient with systemic lupus erythematosus. J Rheumatol 16, 542-543

Keller H, Löke S, Hänsch GM, Jentschura D, Gerhard H, Heene DL (1987): Rezidivierende Meningitis bei familiärem Mangel der achten Komponente des Komplementsystems. J Mol Med 65, 387-390

Ki CS, Kim JW, Kim HJ, Choi SM, Ha GY, Kang HJ, Kim WD (2005): Two novel mutations in the C7 gene in a Korean patient with complement C7 deficiency. J Korean Med Sci 20, 220-224

King TP, Hoffman D, Lowenstein H, Marsh DG, Platts-Mills TA, Thomas W (1994): Allergen nomenclature. WHO/IUIS Allergen Nomenclature Subcommittee. Int Arch Allergy Immunol 105, 224-233

Kira R, Ihara K, Takada H, Gondo K, Hara T (1998): Nonsense mutation in exon 4 of human complement C9 gene is the major cause of Japanese complement C9 deficiency. Hum Genet 102, 605-610

Kliebenstein JB (2004): Economic Impact of PRRS on the Cost of Pork Production. The official website of the national pork board funded by the pork checkoff. http://www.pork.org/PorkScience/Research/Documents/02-223-KLIEBENSTEIN.ABS. 3-5-04.pdf

Kolb WP, Kolb LM, Savary JR (1982): Biochemical characterization of the sixth component (C6) of human complement. Biochemistry 21, 294-310

Komatsu M (1985): A method for developing hereditary deficiency of complement component in the rabbit. Jikken Dobutsu 34, 173-182

Komatsu M, Yamamoto K, Kawashima T, Migita S (1985): Genetic deficiency of the alpha-gamma-subunit of the eighth complement component in the rabbit. J Immunol 134, 2607-2609

Komatsu M, Yoshiwara S, Akita T (1998): Immunological characteristics of the Meishan pig: serum complement activity, serum C3 level, immune response and skin structure. In: Proceedings of the $6^{\text {th }}$ World Congress on Genetics Applied to Livestock Production. Armidale, NSW, Australia, 323-326

Komatsu N, Kido A, Oya M (1989): C7 polymorphism in Japanese: New allele C7*8. Hum Hered 39, 49-51

Kotnik V, Luznik-Bufon T, Schneider PM, Kirschfink M (1997): Molecular, genetic, and functional analysis of homozygous C8 beta-chain deficiency in two siblings. Immunopharmacology 38, 215-221

Kristensen T, Tack BF (1986): Murine protein H is comprised of 20 repeating units, 61 amino acids in length. Proc Natl Acad Sci USA 83, 3963-3967

Kucher AN, Puzyrev VP, Ivanova OF, Khu TsIu, Siuĭ TsTs, Du ZhF (1993): Genetic polymorphism of the sixth (C6) and seventh (C7) components of complement in Russian rural inhabitants of the Tomsk region. Genetika 29, 1889-1894

Kushner I (1982): The phenomenon of the acute phase response. Ann N Y Acad Sci 389, 39-48

Kühnl P, Kreckel P (1980): C6 phenotypes and allele frequencies in a German population. Immunobiology 158, 50-54

Kumar KG, Ponsuksili S, Schellander K, Wimmers K (2004): Molecular cloning and sequencing of porcine C5 gene and its association with immunological traits. Immunogenetics 55, 811-817

Kumar S, Tamura K, Nei M (2004): MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform 5, 150-163

Kunstmann G, Mauff G (1980): Genetic polymorphism of rabbit C6. Immunobiology 158, 30-33

Kunstmann G, Mauff G, Pulverer G (1980): C6 polymorphism and rare alleles in Western Germany. Immunobiology 158, 55-59

Lassiter HA, Wilson JL, Feldhoff RC, Hoffpauir JM, Klueber KM (1994): Supplemental complement component C9 enhances the capacity of neonatal serum to kill multiple isolates of pathogenic Escherichia coli. Pediatr Res 35, 389-396

Lemke U, Huyen LTT, Roeßler R, Thuy LT and Zárate V (2005): Impact of the use of exotic compared to local pig breeds on socio-economic development and biodiversity in Vietnam. Conference on International Agricultural Research for Development. Stutt-gart-Hohenheim, October 11-13, 1-4

Letson CS, Kaufman KM, Sodetz JM (1996): In vitro expression of the beta subunit of human complement component C8. Mol Immunol 33, 1295-1300

Liu CC, Young JD (1988): A semi-automated microassay for complement activity. J Immunol Methods 114, 33-39

Loos M and Clas F (1987): Antibody-independent killing of gram-negative bacteria via the classical pathway of complement. Immunol Lett 14, 203-208

Loos M, Trinder PKE, Kaul (1998): Factors of the classical pathway. In: Rother K, Till GO, Haensch GM (Eds). The complement system. 2nd revised edition. Springer-Verlag Berlin Heidelberg, 1-23

Mackiewicz A, Ganapathi MK, Schultz D, Brabenec A, Weinstein J, Kelley MF, Kushner I (1990): Transforming growth factor beta 1 regulates production of acutephase proteins. Proc Natl Acad Sci USA 87, 1491-495

Makrides SC (1998): Therapeutic Inhibition of the Complement System. Pharmacol Rev 50, 59-87

Mallard BA, Wilkie BN, Kennedy BW, Gibson J, Quinton M (1998): Immune responsiveness in swine: eight generations of selection for high and low immune response in Yorkshire pigs. In: Proceedings of the 6th World Congress on Genetics Applied to Livestock Production. University of New England, Armidale, New South Wales, Australia, 257-64

Marnell LL, Mold C, Volzer MA, Burlingame RW, Du Clos TW (1995): C-reactive protein binds to FcgRI in transfected COS cells. J Immunol 155, 2185-2193

Mayes JT, Schreiber RD, Cooper NR (1984): Development and application of an en-zyme-linked immunosorbent assay for the quantitation of alternative complement pathway activation in human serum. J Clin Invest 73, 160-170

McCloskey MA, Dankert JR, Esser AF (1989): Assembly of complement components C5b-8 and C5b-9 on lipid bilayer membranes: visualization by freeze-etch electron microscopy. Biochemistry 28, 534-540

McNearney TA, Odell C, Holers VM, Spear PG, Atkinson JP (1987): Herpes simplex virus glycoproteins gC-1 and gC-2 bind to the third component of complement and provide protection against complementmediated neutralization of viral infectivity. J Exp Med 166, 1525-1535

Mead RJ, Singhrao SK, Neal JW, Lassmann H, Morgan BP (2002): The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 168, 458-465

Medzhitov R (2001): Toll-like receptors and innate immunity. Nat Rev Immunol 1, 135-145

Mekchay S, Ponsuksili S, Schellander K, Wimmers K (2003): Association of the porcine C3 gene with haemolytic complement activity in the pig. Genet Sel Evol 35, S8396

Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, Lachmann PJ (1990): Human protectin (CD59), an 18,000-20,000 MW complement lysis restricting factor, inhibits C5b-8 catalyzed insertion of C9 into lipid bilayer. Immunology 71, 1-9

Meyers SN, Rogatcheva MB, Larkin DM, Yerle M, Milan D, Hawken RJ, Schook LB, Beever JE (2005): Piggy-BACing the human genome II. A high-resolution, physically anchored, comparative map of the porcine autosomes. Genomics 86, 739-752

Michelotti GA, Snider JV, Sodetz JM (1995): Genomic organization of human complement protein C8 alpha and further examination of its linkage to C8 beta. Hum Genet 95, 513-518

Minion FC (2002): Molecular pathogenesis of mycoplasma animal respiratory pathogens. Front Biosci 7, 1410-1422

Monahan JB, Sodetz JM (1980): Binding of the eighth component of human complement to the soluble cytolytic complex is mediated by its beta subunit. J Biol Chem 255, 10579-10582

Mold C (1998): In: The Human Complement System in Health and Disease. In: Volanakis JE, Frank MM (Eds.). Cellular responses to the membrane attack complex. Marcel Dekker, New York, 309-325

Mold C, Bradt BM, Nemerow GR, Cooper NR (1988): Activation of the alternative complement pathway by EBV and the viral envelope glycoprotein, gp350. J Immunol 140, 3867-3874

Mold C, Gewurz H, Du Clos TW (1999): Regulation of complement activation by Creactive protein. Immunopharmacology 42, 23-30

Moolenaar W, Pott Hofstede D, Hack CE, Hannema AJ (1987): A patient with meningococcal meningitis and deficiency of the 7th factor of the complement system. Ned Tijdschr Geneeskd 131, 866-868

Morgan BP (1989). Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J 264, 1-14

Morgan BP (1992): Isolation and characterization of the complement-inhibiting protein CD59 antigen from platelet membranes. Biochem J 282, 409-413

Morgan BP (1999): Regulation of the complement membrane attack pathway. Crit Rev Immunol 19, 173-198

Morgan BP, Vora JP, Bennett AJ, Thomas JP, Matthews N (1989): A case of hereditary combined deficiency of complement components C6 and C7 in man. Clin Exp Immunol 75, 396-401

Morrison DC, Kline LF (1977): Activation of the classical and properdin pathways of complement by bacterial lipopolysaccharides (LPS). J Immunol 118, 362-368

Müller-Eberhard HJ (1986): The membrane attack complex of complement. Annu Rev Immunol 4, 503-528

Mueller-Eberhard HJ (1988): Molecular organization and function of the complement system. Annu Rev Biochem 57, 321-347

Musingarimi P, Plumb ME, Sodetz JM (2002): Interaction between the C8 alphagamma and C 8 beta subunits of human complement C 8 : role of the C 8 beta N -terminal thrombospondin type 1 module and membrane attack complex/perforin domain. Biochemistry 41, 11255-11260

Nakajima E, Itoh T, Suzuk K, Kawakami K, Takeda K, Onishi A, Komatsu M (1998): Characterization, chromosomal localization, and genetic variation of the [alpha] subunit of porcine eighth component of complement. Animal Genetics 29, 377-380

Nakamura S, Ohue O, Abe K (1986): Genetic polymorphism of human complement component C81 in the Japanese population. Hum Genet 72, 344-347

Nakamura S, Ooue O, Abe K (1984): Genetic polymorphism of the seventh component of complement in a Japanese population. Hum Genet 66, 279-281

Ng SC, Rao AG, Howard OMZ, Sodetz JM (1987): The eighth component of human complement: evidence that it is an oligomeric serum protein assembled from products of three different genes. Biochemistry 26, 5229-5233

Nicholson-Weller A, Halperin JA (1993): Membrane signaling by complement C5b-9, the membrane attack complex. Immunol Res 12, $244-257$

Nishimukai H, Nishimura K, Orimoto C, Okiura T, Fujii K, Fukumori Y, Harihara S (2003): Single nucleotide polymorphisms in the human complement C6 and C7 genes. Leg Med (Tokyo) 5, 198-200

Nishimukai H, Tamaki Y (1986): Genetic polymorphism of the seventh component of complement: a new variant. Vox Sang 51, 60-62

Nishizaka, H., Horiuchi, T., Zhu, Z. B., Fukumori, Y., Nagasawa, K., Hayashi, K., Krumdieck, R., Cobbs, C. G., Higuchi, M., Yasunaga, S (1996): Molecular bases for inherited human complement component C6 deficiency in two unrelated individuals. J Immunol 156, 2309-2315

Nishizaka H, Horiuchi T, Zhu ZB, Fukumori Y, Volanakis JE (1996): Genetic bases of human complement C7 deficiency. J Immunol 157, 4239-4243

Norman DG, Barlow PN, Baron M, Day AJ, Sim RB, Campbell ID (1991): Threedimensional structure of a complement control protein module in solution. J Mol Biol 219, 717-725

Olaho-Mukani W, Nyang'ao JNM, Kimani JK, Omuse JK (1995): Studies on the haemolytic complement of the dromedary camel (Camelus dromedarius). II. Alternate pathway haemolytic activity in serum. Vet Immunol Immunopathol 48, 169-176

Olaho-Mukani W, Nyang'ao JNM, Kimani JK, Omuse JK (1995): Studies on the haemolytic complement of the dromedary camel (Camelus dromedarius). I. Classical pathway haemolytic activity in serum. Vet Immunol Immunopathol 46, 337-347

O'Leary JM, Bromek K, Black GM, Uhrinova S, Schmitz C, Wang X, Krych M, Atkinson JP, Uhrin D, Barlow PN (2004): Backbone dynamics of complement control protein (CCP) modules reveals mobility in binding surfaces. Protein Sci 13, 1238-1250

Olving JH, Teisberg P, Olaisen B (1980): Polymorphism of the sixth component of complement (C6) in Norwegian Lapps. Hum Hered 30, 211-214

Orren A, Potter PC, Cooper RC, du Toit E (1987): Deficiency of the sixth component of complement and susceptibility to Neisseria meningitidis infections: studies in 10 families and five isolated cases. Immunology 62, 249-253

Orren A, Wallance ME, Horbart MJ, Lachmann PJ (1989): C6 polymorphism and C6 deficiency in site strains of the mutation-prone Peru-Coppock mice. Complement Inflamm 6, 295-296

Ortlund E, Parker C, Schreck SF, Minor W, Ginel S, Sodetz JM, Lebioda L (2002): Crystal structure of human complement protein $\mathrm{C} 8 \gamma$ at $1.2 \AA$ resolution reveals a lipocalin fold and a distinct ligand binding site. Biochemistry 41, 7030-7037

Ouma JO, Olaho-Mukani W, Wishitemi BEL, Guya SO (1997): Changes in classical pathway complement activity in dromedary camels experimentally infected with Trypanosoma evansi. Vet Immunol Immunopathol 57, 135-140

Parham KL, Roberts A, Thomas A, Wuerzner R, Henderson HE, Potter PC, Morgan BP, Orren A (2007): Prevalence of mutations leading to complete C6 deficiency (C6Q0) in the Western Cape, South Africa and detection of novel mutations leading to C6Q0 in an Irish family. Molecular Immunol 44, 2756-2760

Parish CR (2001): Innate Immune Mechanisms: Nonself Recognition. In : Fullerlove G and Robertson S (Eds.). Encylopedia of Life Sciences 10, Nature Publishing Group, London 305-312

Park KS, Yanagisawa M, Tokunaga K, Omoto K (1988): Genetic polymorphisms of complement components C6 and C7 in Korean. J Hum Genet 33, 325-331

Parker CL, Sodetz JM (2002): Role of the human C8 subunits in the complementmediated bacterial killing: evidence that C8 gamma is not essential. Mol Immunol 39, 453-458

Phatsara C, Jennen DG, Ponsuksili S, Murani E, Tesfaye D, Schellander K, Wimmers K (2007) Molecular genetic analysis of porcine mannose-binding lectin genes, MBL1 and MBL2, and their association with complement activity. Int J Immunogenet 34, 55-63

Platteborze PL, Hobart MJ, Sodetz JM (1996): Physical linkage and orientation of the human complement C8a and C8ß genes on chromosome 1p32. Human Genetics 98, 443-446

Plumb ME, Scibek JJ, Barber TD, Dunlap RJ, Platteborze PL, Sodetz JM (1999): Chimeric and truncated forms of human complement protein C8 alpha reveal binding sites for C 8 beta and C 8 gamma within the membrane attack complex/perforin region. Biochemistry $38,8478-8484$

Plumb ME, Sodetz JM (1998): Proteins of the membrane attack complex. In: Volanakis JE, Frank MM (Eds.). The Human Complement System in Health and Disease. Marcel Dekker, New York, 119-148

Plumb ME, Sodetz JM (2000): An indel within the C8 alpha subunit of human complement C8 mediates intracellular binding of C8 gamma and formation of C8 alphagamma. Biochemistry 39, 13078-13083

Pensaert MB, Kluge JP (1989): Pseudorabiesvirus (Aujeszky's diseae). In: Horzinek (Eds.), Virus infections of vertebrates/ Volume 2; Virus infections of porcines. Verlag Elsevier Science Publishers BV, Amsterdam, The Netherlands

Petersen BH, Graham JA, Brooks GF (1976): Human deficiency of the eighth component of complement. The requirement of C8 for serum Neisseria gonorrhoeae bactericidal activity. J Clin Invest 57, 283-290

Petry DB, Holl JW, Weber JS, Doster AR, Osorio FA, Johnson RK (2005): Biological responses to porcine respiratory and reproductive syndrome virus in pigs of two genetic populations. J Anim Sci 83, 1494-1502

Pluschke G, Achtman M (1984): Degree of antibody-independent activation of the classical complement pathway by K1 Escherichia coli differs with O antigen type and correlates with virulence of meningitis in newborns. Infect Immun 43, 684-692

Podack ER, Biesecker G, Muller-Eberhard HJ (1979): Membrane attack complex of complement: generation of high-affinity phospholipid binding sites by fusion of five hydrophilic plasma proteins. Proc Natl Acad Sci 76, 897-901

Podack ER, Kolb WP, Esser AF, Mueller-Eberhard HJ (1979): Structural similarities between C6 and C7 of human complement. J Immunol 123, 1071-1077

Podack ER, Kolb WP, Muller-Eberhard HJ (1976): The C5b-9 complex: subunit composition of the classical and alternative pathway-generated complex. J Immunol 116, 1431-1434

Podack ER, Stoffel W, Esser AF, Mueller-Eberhard HJ (1981): Membrane attack complex of complement: Distribution of subunits between the hydrocarbon phase of target membranes and water. Proc natn Acad Sci USA 78, 4544-4548

Podack ER, Tschoop J, Muller-Eberhard HJ (1982): Molecular organization of C9 within the membrane attack complex of complement. Induction of circular C9 polymerization by the C5b-8 assembly. J Exp Med 156, 268-282

Ponsuksili S, Wimmers K, Yerle M, Schellander K (2001): Mapping of 93 porcine ESTs preferentially expressed in liver. Mamm Genome 12, 869-872

Qian YM, Qin X, Miwa T, Sun X, Halperin JA, Song WC (2000): Identification and functional characterization of a new gene encoding the mouse terminal complement inhibitor CD59. J Immunol 165, 2528-2534

Rao AG, Howard OM, Ng SC, Whitehead AS, Colten HR, Sodetz JM (1987): Complementary DNA and derived amino acid sequence of the alpha subunit of human complement protein C8: evidence for the existence of a separate alpha subunit messenger RNA. Biochemistry 26, 3556-3564

Rao L, Li YB, Chen GD, Zhou B, Schneider PM, Zhang L (2004): Further study on heterogeneic basis of complement C8 beta deficiency. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 21, 10-13

Raum D, Balner H, Petersen BH, Alper CA (1980): Genetic polymorphism of serum complement components in the chimpanzee. Immunogenetics 10, 455-468

Reid KBM, Porter RR (1981): The Proteolytic Activation Systems of Complement. Annurev Biochem 50, 433-464

Rekitt M, Hiss S, Dickhöfer D, Wimmers K, Schellander K, Petersen B, Sauerwein H (2001): Haptoglobin responses towards vaccination with three different antigens in pigs.

In: Proceedings of the $11^{\text {th }}$ International Conference on Production Diseases in Farm Animals. Frederisksberg, Denmark, 62

Ripoche J, Day AJ, Harris TJ, Sim RB (1988): The complete amino acid sequence of human complement factor H. Biochem J 249, 593-602

Rittner C, Hargesheimer W, Mollenhauer E (1984): Population and formal genetics of the human C81(alpha-gamma) polymorphism. Hum Genet 67, 166-169

Rogde S, Høiby EA, Teisberg P, Olaisen B (1990): Genetic aspects of complement component C8 in Norwegian meningococcal disease patients. Scand J Infect Dis 22, 673-679

Rogde S, Mevåg B, Teisberg P, Gedde-Dahl T, Tedesco F, Olaisen B (1985): Genetic polymorphism of complement component C8. Hum Genet 70, 211-216

Rogde S, Olaisen B, Gedde-Dahl T, Teisberg P (1986): The C8A and C8B loci are closely linked on chromosome 1. Ann Hum Genet 50, 139-144

Rogne S, Myklebost O, Olving JH, Kyrkjebo HT, Jonassen R, Olaisen B, Gedde- Dahl Jr T (1991): The human genes for complement components 6 (C6) and 9 (C9) are closely linked on chromosome 5. J Med Genet 28, 587-590

Rosado CJ, Buckle AM, Law RH, Butcher RE, Kan WT, Bird CH, Ung K, Browne KA, Baran K, Bashtannyk-Puhalovich TA, Faux NG, Wong W, Porter CJ, Pike RN, Ellisdon AM, Pearce MC, Bottomley SP, Emsley J, Smith IA, Rossjohn J, Hartland EL, Voskoboinik I, Trapani JA, Bird PI, Dunstone MA, Whisstock JC (2007): A Common Fold Mediates Vertebrate Defense and Bacterial Attack. Science 317, 1548-1551

Rosendal S (1994): Ovine and caprine mycoplasmas. In: Whitford, HW, Rosenbush, RF, Lauerman, LH (Eds): Mycoplasmosis in Animals: Laboratory Diagnosis. Iowa State University Press, Ames, 84-96

Ross SC, Densen P (1984): Complement deficiency states and infection: epidemiology, pathogenesis and consequences of neisserial and other infections in an immune deficiency. Medicine 63, 243-273

Saucedo L, Ackermann L, Platonov AE, Gewurz A, Rakita RM, Densen P (1995): Delineation of additional genetic bases for C8 beta deficiency. Prevalence of null alleles and predominance of $\mathrm{C} \rightarrow \mathrm{T}$ transition in their genesis. J Immunol 155, 5022-5028

Schmiedt W, Kinscherf R, Deigner HP, Kamencic H, Nauen O, Kilo J, Oelert H, Metz J, Bhakdi S (1998): Complement C6 Deficiency Protects Against Diet-Induced Atherosclerosis in Rabbits. Arteriosclerosis, Thrombosis, and Vascular Biology 8, 1790-1795

Schreiber RD, Morrison DC, Podack ER, Mueller-Eberhard HJ (1979): Bactericidal activity of the alternative complement pathway generated from 11 isolated plasma proteins. J Exp Med 149, 870-882

Schwab GE, Reeves PR (1966): Comparison of the Bactericidal Activity of Different Vertebrate Sera. J Bacteriol 91, 106-112

Sehra H (2007): Pig DNA sequence from clone PigI-707F1 on chromosome 7, complete sequence: GenBank acc. no. AL773527 (NCBI homepage)

Schreck SF, Parker C, Plumb ME, and Sodetz JM (2000): Human complement protein C8G. Biochim Biophys Acta 1482, 199-208

Schreck SF, Plumb ME, Platteborze PL, Kaufman KM, Michelotti GA, Letson CS, Sodetz JM (1998): Expression and characterization of recombinant subunits of human complement component C8: Further analysis of the function of C8A and C8G. J Immunol 161, 311-318

Schwarzenholz B, Correns A, Schroeder H, Geserick G (2000): Complement Component C6 Polymorphism: Novel Protein-Typing Technique and Distribution of Allotypes in Germany. Exp Clin Immunogenet 17, 23-28

Scibek JJ, Plumb ME, Sodetz JM (2002): Binding of human complement C8 to C9: role of the N-terminal modules in the C8 alpha subunit. Biochemistry 41, 4546-14551

Shibata T, Abe T, Tanabe Y (1995): Genetic polymorphism of the sixth component of complement (C6) in dogs. Anim Genet 26, 105-106

Shibata T, Akita T, Abe T (1993): Genetic polymorphism of the sixth component of complement (C6) in the pig. Anim Genet 24, 97-100

Shiverg JW, Dankert JR, Donovan JJ, Esserfl AF (1986): The ninth component of human complement (C9): Functional activity of the b fragment. J Biol Chem 261, 96299636

Slade DJ, Chiswell B, Sodetz JM (2006): Functional studies of the MACPF domain of human complement protein C8alpha reveal sites for simultaneous binding of C8beta, C8gamma, and C9. Biochemistry 45, 5290-5296

Smith KF, Harrison RA, Perkins SJ (1992): Molecular modeling of the domain structure of C9 of human complement by neutron and X-ray solution scattering. Biochemistry 31, 754-764

Soelder BM, De Stefano GF, Dierich MP, Wuerzner R (1996): The Cayapa Indians of Ecuador: a genetically isolated group with unexpected complement C7 M/N allele frequencies. Eur J Immunogenet 23, 199-203

Soejuma S, Tachida H, Tsuneoka M, Takenaka O, Kimura H, Yoda Y (2005): Nucleotide sequence analyses of human compelement 6 (C6) gene suggest balancing selection. Ann Hum Genet 69, 239-252

Scolding NJ, Morgan BP, Compston DA (1998): The expression of complement regulatory proteins by adult human oligodendrocytes. J Neuroimmunol 84, 69-75

Stanley KK, Kocher HP, Luzio JP, Jackson P, Tschopp J (1985): The sequence and topography of human complement component C9. Embo J 4, 375-382

Steckel EW, Welbaum BE, Sodetz JM (1983): Evidence of direct insertion of terminal complement proteins into cell membrane bilayers during cytolysis: labeling by a photosensitive membrane probe reveals a major role for the eighth and ninth components. J Biol Chem 258, 4318-4324

Steckel EW, York RG, Monahan JB, Sodetz JM (1980): The eighth component of human complement: purification and physicochemical characterization of its unusual subunit structure. J Biol Chem 255, 11997-12005

Steele NP, Munson RS, Granoff JrDM, Cumming JE, Levine RP (1984): Antibodydependent alternativepathway killing of Haemophilus influenzae type b. Infect Immun 44, 452-458

Sterzl J, Kostka J, Lanc A (1962): Development of bactericidal properties against gramnegative organisms in the serum of young animals. Folia Microbiol 7, 155-161

Stewart JL, Kolb WP, Sodetz JM (1987): Evidence that C5b recognizes and mediates C8 incorporation into the cytolytic complex of complement. J Immunol 139, 1960-1964

Stewart JL, Sodetz JM (1985): Analysis of the specific association of the eighth and ninth components of human complement: identification of a direct role for the alpha subunit of C8. Biochemistry 24, 4598-4602

Storm KE, Arturson G, Nilsson UR (1992): Purification and characterization of porcine C3. Studies of the biologically active protein and its split products. Vet Immunol Immunopathol 34, 47-61

Sunyer JO, Lambris JD (2001): Complement. In: Fullerlove G and Robertson S (Eds.). Encylopedia of Life Sciences 5, Nature Publishing Group, London 1-5

Sutherland MA, Rodriguez-Zas SL, Ellis M, Salak-Johnson JL (2005): Breed and age affect baseline immune traits, cortisol, and performance in growing pigs. J Anim Sci 83, 2087-2095

Takeda I, Igarashi S, Nishimaki T, Kasukawa R (1994): A case of systemic lupus erythematosus in late component (C9) complement deficiency. Ryumachi 34, 628-632

Takata Y, Moriyama T, Fukumori Y, Yoden A, Shima M, Inai S (1989): A biotin-avidin sandwich ELISA for quantification of intact complement component C9. The sera from hereditary C9 deficient individuals completely lack C9. Immunol Methods 117, 107113

Taylor PW, Knoll HP (1983): Killing of an encapsulated strain of Escherichia coli by human serum. Infect Immun 39, 122-131

Taylor KM, Trimby AR, Campbell AK (1997): Mutation of recombinant complement component C9 reveals the significance of the N -terminal region for polymerization. Immunology 91, 20-27

Thacker EL (2003): Immunology - the innate immune system. The Pig Journal 52, 111123

Thai CT, Ogata RT (2004): Complement Components C5 and C7: Recombinant factor I modules of C7 bind to the C345C domain of C5. J Immunol 173, 4547-4552

Thai CT, Ogata RT (2005): Recombinant C345C and factor I modules of complement components C5 and C7 inhibit C7 incorporation into the complement membrane attack complex. J Immunol 174, 6227-6232

Theriault A, Boyd E, Whaley K, Sodetz JM, Connor JM (1992): Regional chromosomal assignment of genes encoding the alpha and beta subunits of human complement protein C8 to 1p32. Hum Genet 88, 703-704

Thiel S, Vorup-Jensen T, Stover CM, Schwaeble W, Laursen SB, Poulsen K, Willis AC, Eggleton P, Hansen S, Holmskov U, Reid KBM, Jensenius JC (1997): A second serine protease associated with mannan-binding lectin that activates complement. Nature 386, 506-510

Thomsen DP, Winterø AK, Fredholm M (1998): Chromosomal assignments of 19 porcine cDNA sequences by FISH. Mamm Genome 9, 394-396

Thuy NTD, Melchinger-Wild E, Kuss AW, Cuong NV, Bartenschlager, and Geldermann H (2006): Comparison of Vietnamese and European pig breeds using microsatellites. J Anim Sci 84, 2601-2608

Tokunaga K, Yukiyma Y, Omoto K (1983): Polymorphism of the complement component C6 in Japanese. Eur J Immunogenet 10, 419-424

Toshiro H, Ryutaro K, Kenji I, Hidetoshi T (1999): Inherited deficiency of plasma complement component and complement control protein. The clinical finding and gene abnormality. Japanese Journal of Clinical Immunology 22, 53-62

Trakooljul N, Ponsuksili S, Schellander K, Wimmers K (2004). Sus scrofa complement C1qA mRNA, complete cds: GenBank acc. no. AY349424 (NCBI homepage)

Trakooljul N, Ponsuksili S, Schellander K, Wimmers K (2004). Sus scrofa complement C1qB mRNA, complete cds: GenBank acc. no. AY349420 (NCBI homepage)

Trakooljul N, Ponsuksili S, Schellander K, Wimmers K (2004). Sus scrofa complement C1r mRNA, complete cds: GenBank acc. no. AY349421 (NCBI homepage)

Trakooljul N, Ponsuksili S, Schellander K, Wimmers K (2004). Sus scrofa complement C1s mRNA, complete cds: GenBank acc. no. AY349426 (NCBI homepage)

Trakooljul N, Ponsuksili S, Schellander K, Wimmers K (2004). Sus scrofa complement C4 mRNA, partial cds: GenBank acc. no. AY349423 (NCBI homepage)

Tschopp J (1984): Circular polymerization of the membranolytic ninth component of complement. Dependence on metal ions. J Biol Chem 259, 10569-10573

Tschopp J (1984): Ultrastructure of the membrane attack complex of complement. Heterogeneity of the complex caused by different degree of C9 polymerization. J Biol Chem 259, 7857-7863

Tschopp J, Masson D, Stanley KK (1986): Structural/functional similarity between proteins involved in complement- and cytotoxic T-lymphocyte-mediated cytolysis. Nature 322, 831-834

Tschopp J, Podack ER (1981): Membranolysis by the ninth component of human complement. Biochem Biophys Res Commun 100, 1409-1414

Tsunenari S, Kibayashi K, Higashi T, Pang H, Ding M, Jia J (1992): Genetic polymorphism of complement component C6, C7 and C8(1) in Chinese Han population in northeast China. Nihon Hoigaku Zasshi 46, 469-473

Tyler JW, Cullor JS, Osburn BI, Parker K (1988): Age-related variations in serum concentrations of the third component of complement in swine. Am J Vet Res 49, 11041106

Uenishi H, Eguchi T, Suzuki K, Sawazaki T, Toki D, Shinkai H, Okumura N, Hamasima N, Awata T (2004): PEDE (Pig EST Data Explorer): construction of a database for ESTs derived from porcine full-length cDNA libraries. Nucleic Acids Res 32, 484-488

Van Dixhoorn MGA, Timmerman JJ, Van Gijlswijk-Janssen DJ, Muizert Y, Verweij C, Discipio RG, Daha MR (1997): Characterization of complement C6 deficiency in a PVG/c rat strain. Clin Exp Immunol 109, 387-396

Vázquez-Bermúdez MF, Barroso S, Walter K, Alvarez AJ, Alarcón A, López-Trascasa M, Wichmann I, Aguilar F, Núñez-Roldán A, Sánchez B (2003): Complement component C7 deficiency in a Spanish family. Clin Expl Immunol 133, 240-246

Vishwanath S, Hackstadt T (1988): Lipopolysaccharide Phase Variation Determines the Complement-Mediated Serum Susceptibility of Coxiella burnetii. Infect Immun 56, 4044

Vissher AH, Janss LL, Niewold TA, de Greef KH (2002): Disease incidence and immunological traits for the selection of healthy pigs. A review. Vet Q 1, 29-34

Vogler LB, Newman SL, Stroud RM, Johnston RB Jr (1979): Recurrent meningococcal meningitis with absence of the sixth component of complement: an evaluation of underlying immunologic mechanisms. Pediatrics 64, 465-467

Volanakis JE (1995): Transcriptional regulation of complement genes. Annu Rev Immunol 13, 277-305

Von Heijne G (1986): A new mothod for predicting signal sequence cleavage sites. Nucleic Acids Res 14, 4683-4690

Washio K, Tokunaga K, Omoto K, Misawa S (1986): Human C7 polymorphism: classification and association analysis with C6. J Hum Genet 31, 345-352

Whitehouse DB (1982): Genetic variation of the sixth component of complement (C6) in the Manx shearwater (Puffinus p. puffinus). Anim Blood Groups Biochem Genet 13, 179-187

Whitehouse DB (1984): Genetic polymorphism and linkage of the sixth and seventh complement components (C6 and C7) in the common marmoset. Biochem Genet 22, 51-63

Wilkie B, Mallard B (1999): Selection for high immune response: an alternative approach to animal health maintenance? Vet Immunol Immunopathol 72, 231-235

Wimmers K (2002): Kandidatengen- und QTL-Analyse für Merkmale der humoralen Immunabwehr beim Schwein. Habilitationsschrift, Rheinische Friedrich-WilhelmsUniversität Bonn

Wimmers K, Mekchay S, Schellander K, Ponsuksili S (2003): Molecular characterization of the pig C3 gene and its association with complement activity. Immunogenetics 54, 714-724

Wintero AK, Jorgensen CB, Yerle M, Fredholm M (1998): Improvement of the porcine transcription map: localization of 33 genes of which 24 are orthologous. Mamm Genome 9, 366-372

Wittmann G. (1984): State and control of Aujeszky's disease in West Germany. Tierärztl Prax 12, 141-147

Witzel-Schloemp K, Hobart MJ, Fernie BA, Orren A, Wuerzner R, Rittner C, Kaufmann T, Schneider PM (1998): Heterogeneity in the genetic basis of human complement C9 deficiency . Immunogenetics 48, 144-147

Witzel-Schloemp K, Rittner C, Schneider PM (2001): The human complement C9 gene: structural analysis of the $5^{\prime}$ gene region and genetic polymorphism studies. Eur J Immunogenet 28, 515-522

Witzel-Schloemp K, Spaeth PJ, Hobart MJ, Fernie BA, Rittner C, Kaufmann T, Schneider PM (1997): The human complement C9 gene: identification of two mutations causing deficiency and revision of the gene structure. J Immunol 158, 5043-5049

Wuerzner R (2003): Deficiencies of the complement MACII gene cluster (C6, C7, C9): is subtotal C6 deficiency of particular evolutionary benefit?. Clin Exp Immunol 133, 156-159

Wuerzner R, Hobart MJ, Fernie BA, Mewar D, Potter PC, Orren A, Lachmann PJ (1995): Molecular basis of subtotal complement C6 deficiency. A carboxy-terminally truncated but functionally active C6. J Clin Invest 95, 1877-1883

Wuerzner R, Joysey VC, Lachmann PJ (1994): Complement component C7: assessment of in vivo synthesis after liver transplantation reveals that hepatocytes do not synthesize the majority of human C7. J Immunol 152, 4624-4629

Wuerzner R, Tokunaga K, Nitze R, Goetze O, Lachmann PJ (1991): C7*N is a hypomorphic allele of the human complement C7 M/N protein polymorphism. Exp Clin Immunogenet. 8, 177-183

Wulffraat NM, Sanders EAM, Fijen CAP, Hannema A, Kuis W, Zegers BJM (1994): Deficiency of the beta subunit of the eighth component of complement presenting as arthritis and exanthem. Arthritis Rheum 37, 1704-1706

Yerle M, Pinton P, Robic A, Milan D, Gellin J (1998): Generation of a porcine radiation hybrid panel: a new tool for mapping the pig genome. Plant \& Animal Genome VI Conference. Town \& Country Hotel, San Diego, CA, January 18-22

Yerle M, Pinton P, Robic A, Alfonso A, Palvadeau Y, Delcros C, Hawken R, Alexander L, Beattie C, Schook L, Milan D, Gellin J (1998): Construction of a whole-genome radiation hybrid panel for high-resolution gene mapping in pigs. Cytogenet and Cell Genetics 82, 82-188

Yi KS, KangYH (2007): Sus scrofa C5a anaphylatoxin receptor mRNA, partial cds: Sus scrofa C5a anaphylatoxin receptor mRNA, partial cds. GenBank acc. no. EF210575 (NCBI homepage)

Yonemasu K, Kitajima H, Tanabe S, Ochi T, Shinkai H (1978): Effect of age on C1q and C3 levels in human serum and their presence in colostrums. Immunology 35, 523530

Yonemura Y, Kawakita M, Koito A, Kawaguchi T, Nakakuma H, Kagimoto T, Schichishima T, Terasawa T, Akagaki Y, Inai S (1990): Paroxysmal nocturnal haemo-
globinuria with coexisting deficiency of the ninth component of complement: lack of massive haemolytic attack. Br J Haematol 74, 108-113

Zhang L, Rittner C, Sodetz JM, Schneider PM, Kaufmann T (1995): The eighth component of human complement: molecular basis of C8A (C81) polymorphism. Hum Genet 96, 281-284

Zimran A, Rudensky B, Kramer MR, Tedesco F, Ehrenfeld M, Raz R, Greif Z, Gelber M, Lishner, Golan E, Hershko C (1987): Hereditary complement deficiency in survivors of meningococcal disease: high prevalence of C7/C8 deficiency in sephardic (Moroccan) Jews. Q J Med 63, 349-358

Zipfel PF (2001): Complement: alternative pathway. In: Fullerlove G and Robertson S (Eds.). Encylopedia of Life Sciences 5, Nature Publishing Group, London 25-32

Zhu ZB, Atkinson TP, Hovanky KT, Boppana SB, Dai YL,Densen P, Go RCP, Jablecki JS, Volanakis JE (2000): High prevalence of complement component C6 deficiency among African-Americans in the South-eastern USA. Clin Exp Immunol 119, 305-310

Zhu ZB, Totemchokchyakarn K, Atkinson TP, Volanakis JE (1998): Molecular defects leading to human complement component C6 deficiency in an African-American family. Clin Exp Immunol 111, 91-96

Zoppi M, Weiss M, Nydegger UE, Hess T, Spaeth PJ (1990): Recurrent meningitis in a patient with congenital deficiency of the C9 component of complement. First case of C9 deficiency in Europe. Arch Intern Med 150, 2395-2359

## 9 Annex

Hereafter, the primer sequences followed by TI number, name and mate information collected from the pig genome sequencing project accessible via the Trace Archive tool (NCBI homepage) are given in table 21, 22, 23, 24, 25, and 26.

Table 21 Position and length of predicted porcine C8A exons

| Description | Source |
| :--- | :--- |
| Exon 1: nt. 5'UTR-171 | Based on start of exon 2 |
| Exon 2: nt. 172-271 (100 bp) | ti: 862132317; name:rdpaxb0_150586.y1; ma- <br> te:815435067 |
| Exon 3: nt. 272-416 (145 bp) | ti: 863184494; name:rdpaxb0_077985.y1; ma- <br> te:854478286 |
| Exon 4: nt. 417-564 (148 bp) | ti: 852982643; name:cpg0_164359.z1 <br> mate:815846657 |
| Exon 5: nt. 565-754 (190 bp) | Based on end of exon 4 and start of exon 6 |
| Exon 6: nt. 755-955 (201 bp) | ti: 1420494233; name:ss_WGS-24b13.p1k; <br> mate:1420494234 |
| Exon 7: nt. 956-1196 (241 bp) | ti: 1420494234; name:ss_WGS-24b13.q1k; <br> mate:1420494233 |
| Exon 8: nt. 1197-1328 (132 bp) | Based on end of exon 7 and start of exon 9 |
| Exon 9: nt. 1329-1486 (158 bp) | ti: 1420545232; name:SS_WGS-667o09.q1k; <br> mate:1420545231 |
| Exon 10: nt. 1487-1709 (223 bp) | Based on end of exon 9 and start of exon 11 |
| Exon 11: nt. 1710-3'UTR | ti: 1650055823 name:DurocWGS_10036_F12.g <br> mate:1650055822 |

Table 22 Position and length of predicted porcine C6 exons

| Description | Source |
| :---: | :---: |
| Exon 1: nt. 15 (5'UTR)-121 | ti:1008570313; name:DurocWGS_20549_B01.b; mate:1008570314 |
| Exon 2: nt. 122-287 (166bp) | ti: 812320666; name: rcpg0_152426.y1 ; mate: 858788103 |
| Exon 3: nt. 288-444 (157 bp) | ti:1008617751; name:DurocWGS_20796_C15.b ; mate:1008617752 |
| Exon 4: nt. 445-589 (145 bp) | ti: 815809106; name: byc_44258.z1; mate: 812837595 |
| Exon 5: nt. 590-731 (142 bp) | ti: 808385472; name: dpcxb0_315815.z1; mate: 810707950 |
| Exon 6: nt. 732-870 (139 bp) | ti: 1373546263; name: rplun0101_g6.y1 |
| Exon 7: nt. 871-1071 (201 bp) | ti: 857624103; name: rbde_60509.y1; mate: 861251703 |
| Exon 8: nt. 1072-1312 (241 bp) | ti: 1420614517; name: SS_WGS-857e09.p1k; mate:1420614518 |
| Exon 9: nt. 1313-1435 (123 bp) | ti: 1420666160; name: SS_WGS-513i21.p1k mate:1420666161 |
| Exon 10: nt. 1438-1602 (167 bp) | ti: 1420506449; name: SS_WGS-957p20.q1k; mate:1420506448 |
| Exon 11: nt. 1603-1828 (226 bp) | ti: 1420506448 ; name: SS_WGS-957p20.p1k; mate:1420506449 |
| Exon 12: nt. 1829-2000 (172 bp) | Based on end of exon 11 and start of exon 13 |
| Exon 13: nt. 2001-2112 (112 bp) | ti: 821008954; name: rdpaxb0_030576.y1; mate:854483952 |
| Exon 14: nt. 2113-2245 (134 bp) | ti: 847766479; name: rbdd_56378.y1; mate:768215414 |
| Exon 15: nt. 2246-2434 (188 bp) | ti: 768215414; name: bdd_56378.z1; mate: 847766479 |
| Exon 16: nt. 2435-2525 (91 bp) | ti: 774040088; name: bdc_90777.z1; mate:823852002 |
| Exon 17: nt. 2526-2766 (242 bp) | Based on human genomic C6 sequence |
| Exon 18 : nt. 2767-3'UTR | Based on human genomic C6 sequence |

Table 23 Position and length of predicted porcine C7 exons

| Description | Source |
| :--- | :--- |
| Exon 1: nt. -91 (5'UTR)-6 (96 bp) | Based on human genomic C7 sequence and <br> ti: 848892623; name:rdpaxb0_005371.y1; <br> mate:854561309 |
|  | ti: 774255673 name:rbda_68237.y1 |
| Exon 2: nt. 7-62 (56bp) | ti: 862200672; name:dpcxb0_048413.z1; ma- |
| Exon 3: nt. 63-138 (76 bp) | te:808192830 |

Table 24 Position and length of predicted porcine C8B exons

| Description | Source |
| :--- | :--- |
| Exon 1: nt. 5'UTR-156 | Based on start of exon 2 |
| Exon 2: nt. 157-313 (157 bp) | ti: 1420204053; name:SS_WGS-413k10.q1k; <br> mate:1420204052 |
| Exon 3: nt. 314-455 (142 bp) | ti: 823797500; name:bdf_14280.z1; <br> mate:847963640 |
| Exon 4: nt. 456-597 (142 bp) | Based on end of exon 3 and start of exon 5 |
| Exon 5: nt. 598-730 (133 bp) | ti: 781569495; name:rbyb_35660.y1; <br> mate:812924227 |
| Exon 6: nt. 731-928 (198 bp) | Based on end of exon 5 and start of exon 7 |
| Exon 7: nt. 929-1169 (241 bp) | ti: 857822592; name:rdpbxa0_158567.y1; <br> mate:853343914 |
| Exon 8: nt. 1170-1298 (129 bp) | Based on end of exon 7 and start of exon 9 |
| Exon 9: nt. 1299-1462 (164 bp) | ti: 1420654355; name:SS_WGS-860j08.p1k; <br> mate:1420654356 |
| Exon 10: nt. 1462-1616 (154 bp) | ti: 860428303; name:rbye_44037.y1 |
| Exon 11: nt. 1617-1684 (68 bp) | Based on human genomic C8B sequence |
| Exon 12 : nt. 1685-3' UTR | Based on human genomic C8B sequence |

Table 25 Position and length of predicted porcine C8G exons

| Description | Source |
| :--- | :--- |
| Exon 1: nt. 50 (5'UTR)-189 (140bp) | Based on human genomic C8G sequence <br> and GenBank acc. no AK233484 |
| Exon 2: nt. 190-326 (137 bp) | Based on GenBank acc. no AK233484 |
| Exon 3: nt. 327-397 (71 bp) | Based on GenBank acc. no AK233484 |
| Exon 4: nt. 398-505 (108 bp) | Based on GenBank acc. no AK233484 |
| Exon 5: nt. 506-607 (102 bp) | Based on GenBank acc. no AK233484 <br> and human genomic C8G sequence |
| Exon 6: nt. 608-646 (39 bp) | Based on human genomic C8G sequence <br> Exon 7: nt. 647-3'UTR |

Table 26 Position and length of predicted porcine C9 exons

| Description | Source |
| :---: | :---: |
| Exon 1: 5'UTR-166 | Based on human genomic C9 sequence |
| Exon 2: nt. 167-272 (106 bp) | Based on human genomic C 9 sequence and start of exon 3 |
| Exon 3: nt. 273-417 (145 bp) | ti: 1382154540; name:DurocWGS_21175_M13.g; mate:1382154539 |
| Exon 4: nt. 418-565 (148 bp) | ti: 1382154540; name:DurocWGS_21175_M13.g; mate:1382154539 |
| Exon 5: nt. 566-704 (139 bp) | ti: 311779440; name:bT60L15SP6; mate:311779441 |
| Exon 6: nt. 705-971 (267 bp) | ti: 863194696; name:cpg0_070876.z1; mate:811045924 |
| Exon 7: nt. 972-1212 (241 bp) | ti: 767686602; name:DurocWGS_20407_A01.g; mate:767686601 |
| Exon 8: nt. 1213-1338 (126 bp) | ti: 784826320 name:dpcxb0_271689.z1; mate:766131427 |
| Exon 9: nt. 1339-1517 (179bp) | ti: 767686601; name:DurocWGS_20407_A01.b; mate:767686602 |
| Exon 10: nt. 1518-1747 <br> (3'UTR) (230 bp) | ti: 854554002; name:rdpcxb0_001135.y1; mate:853317835 |
| Exon 11: nt. 1748-3'UTR | Based on end of exon 10 |

Table 27 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C 6 gene (LSM $\pm \mathrm{SE})(\mathrm{U} / \mathrm{ml})$

| Vaccination | Blood sampling | AA | AG | GG |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $45.87 \pm 9.32$ | $48.44 \pm 3.87$ | $53.57 \pm 3.78$ |
|  | 2 | $42.99 \pm 10.03$ | $56.03 \pm 3.99$ | $61.52 \pm 3.87$ |
|  | 3 | $51.46 \pm 11.02$ | $53.92 \pm 4.15$ | $62.28 \pm 3.99$ |
| Aujeszky | 4 | $62.43 \pm 11.63$ | $68.50 \pm 4.20$ | $76.68 \pm 4.04$ |
|  | 5 | $83.05 \pm 12.00$ | $79.24 \pm 4.29$ | $82.21 \pm 4.12$ |
|  | 6 | $76.70 \pm 12.63$ | $67.72 \pm 4.40$ | $75.51 \pm 4.16$ |
| PRRSV | 7 | $52.92 \pm 12.73$ | $73.90 \pm 4.12$ | $76.27 \pm 3.92$ |
|  | 8 | $62.38 \pm 12.22$ | $72.12 \pm 4.27$ | $75.33 \pm 4.07$ |

Table 28 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C7 gene $(\mathrm{LSM} \pm \mathrm{SE})(\mathrm{U} / \mathrm{ml})$

| Vaccination | Blood sampling | AA | AG | GG |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $52.89 \pm 4.08$ | $49.87 \pm 4.08$ | $45.21 \pm 10.28$ |
|  | 2 | $60.58 \pm 4.19$ | $59.95 \pm 4.28$ | $43.85 \pm 10.94$ |
|  | 3 | $62.35 \pm 4.32$ | $56.90 \pm 4.42$ | $51.17 \pm 11.86$ |
| Aujeszky | 4 | $77.88 \pm 4.45$ | $73.05 \pm 4.52$ | $25.44 \pm 14.28$ |
|  | 5 | $85.61 \pm 4.45$ | $81.13 \pm 4.54$ | $55.65 \pm 13.48$ |
|  | 6 | $75.47 \pm 4.48$ | $70.08 \pm 4.65$ | $39.86 \pm 13.72$ |
| PRRSV | 7 | $74.46 \pm 4.25$ | $75.80 \pm 4.36$ | $51.32 \pm 13.49$ |
|  | 8 | $72.93 \pm 4.42$ | $74.99 \pm 4.55$ | $40.56 \pm 13.53$ |

Table 29 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C8A gene (LSM $\pm$ SE) ( $\mathrm{U} / \mathrm{ml}$ )

| Vaccination | Blood sampling | CC | CT | TT |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $49.51 \pm 4.67$ | $45.41 \pm 4.01$ | $52.96 \pm 3.72$ |
|  | 2 | $50.95 \pm 5.14$ | $52.89 \pm 4.10$ | $62.38 \pm 3.89$ |
|  | 3 | $50.39 \pm 5.34$ | $51.94 \pm 5.26$ | $62.59 \pm 4.02$ |
| Aujeszky | 4 | $62.06 \pm 5.49$ | $71.76 \pm 4.30$ | $71.94 \pm 4.15$ |
|  | 5 | $70.59 \pm 5.67$ | $81.61 \pm 4.37$ | $80.35 \pm 4.17$ |
|  | 6 | $63.46 \pm 6.13$ | $69.25 \pm 4.49$ | $71.91 \pm 4.23$ |
| PRRSV | 7 | $62.51 \pm 5.66$ | $74.86 \pm 4.23$ | $73.00 \pm 4.03$ |
|  | 8 | $66.11 \pm 5.80$ | $72.91 \pm 4.43$ | $70.78 \pm 4.19$ |

Table 30 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C8B gene (LSM $\pm$ SE) (U/ml)

| Vaccination | Blood sampling | CC | CT | TT |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $51.54 \pm 3.45$ | $42.83 \pm 4.02$ | $52.53 \pm 5.69$ |
|  | 2 | $59.06 \pm 3.65$ | $50.36 \pm 4.14$ | $57.16 \pm 6.51$ |
|  | 3 | $59.91 \pm 3.75$ | $46.65 \pm 4.27$ | $60.38 \pm 6.73$ |
| Aujeszky | 4 | $67.91 \pm 3.86$ | $70.00 \pm 4.25$ | $69.52 \pm 6.80$ |
|  | 5 | $76.15 \pm 3.89$ | $79.06 \pm 4.33$ | $79.04 \pm 7.05$ |
|  | 6 | $69.27 \pm 3.95$ | $65.79 \pm 4.47$ | $74.13 \pm 7.66$ |
| PRRSV | 7 | $71.98 \pm 3.73$ | $70.64 \pm 4.20$ | $59.09 \pm 6.77$ |
|  | 8 | $68.84 \pm 3.89$ | $71.21 \pm 4.39$ | $62.28 \pm 7.24$ |

Table 31 Least squares means of the classical complement hemolytic activity for the interaction of different genotypes x time point in porcine C9 gene $(\mathrm{LSM} \pm \mathrm{SE})(\mathrm{U} / \mathrm{ml})$

| Vaccination | Blood sampling | CG | GG |
| :--- | :---: | :---: | :---: |
| Mycoplasma | 1 | $47.62 \pm 4.31$ | $52.66 \pm 3.55$ |
|  | 2 | $56.91 \pm 4.45$ | $59.36 \pm 3.63$ |
|  | 3 | $52.23 \pm 4.64$ | $61.18 \pm 3.74$ |
| Aujeszky | 4 | $63.73 \pm 4.63$ | $77.24 \pm 3.79$ |
|  | 5 | $78.12 \pm 4.72$ | $83.09 \pm 3.85$ |
| PRRSV | 6 | $67.60 \pm 4.85$ | $73.92 \pm 3.91$ |

Table 32 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C6 gene $(\mathrm{LSM} \pm \mathrm{SE})(\mathrm{U} / \mathrm{ml})$

| Vaccination | Blood sampling | AA | AG | GG |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $56.27 \pm 11.86$ | $51.75 \pm 3.77$ | $54.02 \pm 3.44$ |
|  | 2 | $37.72 \pm 11.31$ | $53.66 \pm 3.64$ | $48.00 \pm 3.30$ |
|  | 3 | $54.11 \pm 10.58$ | $56.15 \pm 3.48$ | $50.58 \pm 3.18$ |
| Aujeszky | 4 | $65.60 \pm 10.31$ | $56.89 \pm 3.44$ | $61.07 \pm 3.20$ |
|  | 5 | $86.65 \pm 11.56$ | $64.69 \pm 3.60$ | $62.17 \pm 3.30$ |
|  | 6 | $76.79 \pm 15.87$ | $67.59 \pm 4.57$ | $71.59 \pm 4.05$ |
| PRRSV | 7 | $81.87 \pm 12.75$ | $71.72 \pm 4.07$ | $72.94 \pm 3.67$ |
|  | 8 | $76.54 \pm 12.91$ | $71.59 \pm 4.06$ | $70.88 \pm 3.67$ |

Table 33 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C7 gene (LSM $\pm$ SE) ( $\mathrm{U} / \mathrm{ml}$ )

| Vaccination | Blood sampling | AA | AG | GG |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $53.56 \pm 3.64$ | $51.37 \pm 3.94$ | $49.71 \pm 13.31$ |
|  | 2 | $47.80 \pm 3.55$ | $52.67 \pm 3.86$ | $37.21 \pm 12.95$ |
|  | 3 | $50.87 \pm 3.36$ | $56.71 \pm 3.64$ | $50.22 \pm 11.88$ |
| Aujeszky | 4 | $62.33 \pm 3.46$ | $56.65 \pm 3.66$ | $61.58 \pm 12.75$ |
|  | 5 | $63.27 \pm 3.53$ | $65.03 \pm 3.81$ | $72.53 \pm 13.24$ |
|  | 6 | $70.35 \pm 4.16$ | $67.84 \pm 4.62$ | $72.27 \pm 16.98$ |
| PRRSV | 7 | $69.51 \pm 3.64$ | $70.55 \pm 3.99$ | $58.73 \pm 13.99$ |
|  | 8 | $71.17 \pm 4.06$ | $70.58 \pm 4.49$ | $75.29 \pm 16.60$ |

Table 34 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C8A gene $(\mathrm{LSM} \pm \mathrm{SE})(\mathrm{U} / \mathrm{ml})$

| Vaccination | Blood sampling | CC | CT | TT |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $51.29 \pm 5.18$ | $50.06 \pm 3.81$ | $54.09 \pm 3.45$ |
|  | 2 | $40.85 \pm 4.97$ | $45.31 \pm 3.68$ | $54.56 \pm 3.35$ |
|  | 3 | $58.62 \pm 4.80$ | $46.60 \pm 3.54$ | $54.48 \pm 3.16$ |
| Aujeszky | 4 | $56.99 \pm 4.80$ | $59.39 \pm 3.52$ | $57.46 \pm 3.23$ |
|  | 5 | $58.74 \pm 5.11$ | $63.67 \pm 3.59$ | $64.57 \pm 3.40$ |
|  | 6 | $83.69 \pm 7.34$ | $69.07 \pm 4.65$ | $66.50 \pm 4.42$ |
| PRRSV | 7 | $79.50 \pm 6.04$ | $76.56 \pm 4.15$ | $66.02 \pm 3.81$ |
|  | 8 | $65.87 \pm 5.90$ | $74.42 \pm 4.06$ | $69.50 \pm 3.74$ |

Table 35 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C8B gene (LSM $\pm$ SE) ( $\mathrm{U} / \mathrm{ml}$ )

| Vaccination | Blood sampling | CC | CT | TT |
| :--- | :---: | :---: | :---: | :---: |
| Mycoplasma | 1 | $54.90 \pm 3.45$ | $49.80 \pm 3.76$ | $54.52 \pm 6.08$ |
|  | 2 | $53.29 \pm 3.27$ | $44.56 \pm 3.57$ | $47.81 \pm 5.66$ |
|  | 3 | $54.46 \pm 3.09$ | $46.60 \pm 3.46$ | $64.73 \pm 5.42$ |
| Aujeszky | 4 | $56.44 \pm 3.11$ | $56.14 \pm 3.40$ | $64.55 \pm 5.56$ |
|  | 5 | $64.67 \pm 3.30$ | $62.88 \pm 3.52$ | $59.53 \pm 5.86$ |
|  | 6 | $67.96 \pm 4.24$ | $70.97 \pm 4.48$ | $79.46 \pm 8.53$ |
| PRRSV | 7 | $66.59 \pm 3.71$ | $78.58 \pm 4.03$ | $73.83 \pm 7.01$ |
|  | 8 | $69.37 \pm 3.66$ | $72.82 \pm 3.96$ | $67.47 \pm 6.95$ |

Table 36 Least squares means of the alternative complement hemolytic activity for the interaction of different genotypes x time point in porcine C9 gene (LSM $\pm$ SE) $(\mathrm{U} / \mathrm{ml})$

| Vaccination | Blood sampling | CG | GG |
| :--- | :---: | :---: | :---: |
| Mycoplasma | 1 | $52.52 \pm 4.32$ | $53.72 \pm 3.21$ |
|  | 2 | $56.08 \pm 4.08$ | $47.81 \pm 3.10$ |
|  | 3 | $56.19 \pm 3.96$ | $51.98 \pm 2.98$ |
| Aujeszky | 4 | $53.81 \pm 3.90$ | $62.66 \pm 2.97$ |
|  | 5 | $67.46 \pm 4.15$ | $63.00 \pm 3.12$ |
|  | 6 | $71.90 \pm 5.25$ | $68.71 \pm 3.76$ |
| PRRSV | 7 | $72.70 \pm 4.63$ | $71.66 \pm 3.46$ |
|  | 8 | $71.17 \pm 4.77$ | $72.61 \pm 3.44$ |

```
C6 seq agcttctgg 9
C6 seq agcaggtacagaaggaaaaaataagaaataaaagattcaaaatat 54
C6 seq ttacaagaagatggaaaggaggatcctacagttgggaacaaacta 99
C6 seq gagaatcttctgaacctgccaggatctggagactctccaggcatg 144
C6 seq atggacaaacactctgtcttgtattttatcttgctgagtggtctg 189
C6 A.A M D K H S V V L Y F F I L L L S G L N 15
C6 seq attgacaagagccaagcctgtttctgtgatcactacccatggact 234
C6 A.A I D K K S Q A Cllllllllllllll
C6 seq cagtggtccagctgctcaaaaacctgtaattctggaacccagacc 279
C6 A.A Q W S S Clllllllllllllll
C6 seq agacagagacaaattactataaatcagtactatcttgacaacttt 324
C6 A.A R Q Fllllllllllllllll
C6 seq tgtgaccggctttgcaccaagcaggagaccagagaatgtaactgg 369
C6 A.A C D R L C T K L Q E T T R E E C N N W 
C6 seq caaacttgtcctātcaattgcctcctgggagattatg}gaccatgg 41
```



```
C6 seq tcagattgtgacccttgtgttgaaaaacagtttaaggttaggtcc 459
C6 A.A S D C D P C V E K D Q F F K V R N S % 105
C6 seq atcttgcgccccaatcagtttggaggacaaccatgtactgagcca 504
C6 A.A I L R P N Q F G G Q P Cllllllll
C6 seq ctcatgacctttcgaccatgtattccatctaaactctgcaaaatt 549
C6 A.A L M T F R P C I P P S K L C C K I I 135
C6 seq gaagaggttgactgcaagāataaattccgctgtgacāgtggtcgc 594
```



```
C6 seq tgcattgccagcāagttggaatgcaatggagaaaatgattgtgga 639
C6 A.A C I A S K L E C N G E N N D C G N 165
C6 seq gacaattcggatgagaggaattgtgggagaacaaaagcagtatgc 684
```



Figure 40 Nucleotide and predicted protein sequence of the porcine C6 gene. Nucleotide and amino acids are enumberated on the right side. The numbering of the nucleotide sequence starts with the first base of GenBank acc. no BP445061 and ends with the last base of GenBank acc. no BQ598214. The 5'flanking region contains 144 nucleotides (nt. 1-144). The start codon (ATG) is in the first bold box (nt. 145-147). The porcine boundaries between exons are in bold and underline. Positions of polymorphism present in shade blocks with white bold font. Cysteine residues are in underline. The open reading frame is terminated by a TGA stop codon in the second bold box (nt. 2950-2952). The 3'UTR (nt. 2953-3306) contains the putative polyadenylation signal aataaa (nt. 32403245) in bold and italic. The translation stop codon is identified by
C6 seq tcacggaagtataatcccatccctagtgtacagttgatgggcgct ..... 729
C6 A.A S R K Y N P I P S V Q L M G A ..... 195
C6 seq gggtttcatattctggcaggagagcccagaggagaagtcctaggt ..... 774
C6 A.A G F H I L A G E P R G E V L G ..... 210
C6 seq aattctttcactggaggaatatgtaaaaccgtcaaaagcagtaaa ..... 819
C6 A.A N S F T G G I C K T V K ..... 225
C6 seq gccagtaatccatttcgtgttccagccaatctagaaaacgtcaac ..... 864
C6 A.A A S N P F R V P A N L E N V N ..... 240
C6 seq tttgaggtacaaactaaagaagatgattttcaaacagatttctat ..... 909
C6 A.A F E V Q T K E D D F Q T D F Y ..... 255
c6 seq gaggatttaattcctcttgaaaatagtaaagatcaacaagccaca ..... 954
C6 A.A E D L I P L E N S K D Q Q A T ..... 270
c6 seq ggtttcggccaagagaagagctcttttcatgtaccaattttttat ..... 999
C6 A.A G F G Q E K S S F H V P I F Y ..... 285
C6 seq tcctcaaagaaaagccaaaccagcagccataattctgccttcaaa ..... 1044
 ..... 300
C6 seq caagctattcaagcctcccacaaaaaggattccagttttattagg 1089
C6 A.A Q A I Q A S H K K D S S F I R ..... 315
c6 seq atccataaagtgataaaagtcttaaacttcacaatgaaaactaaa 1134
C6 A.A I H K V I K V L N F T M K T K ..... 330
C6 seq gatttgcagctttctgacgtctttttgaaagcacttaaccatctg 1179
C6 A.A D L Q L S D V F L K A L N H L 345
C6 seq cctctagaatacaacgctgctttgtacagccggatatttgatgat 1224
C6 A.A P L E Y N A A L Y S R I F D D ..... 360
C6 seq tttgggactcactatttcacctctggctccctgggaggcgtgtac 1269
C6 A.A F G T H Y F T S G S L G G V Y ..... 375
C6 seq gaccttctctatcagtttagcaatgaggaactgaagaactcaggt ..... 1314
C6 A.A D L L Y Q F S N E E L K N S G ..... 390
c6 seq ttaacacaggaagaagccaaaaactgtatccggattgaaacaaag 1359
C6 A.A L T Q E E A K N C I R I E T K 405
c6 seq aaacgttattttatagttacaaaaacaaaggtggaacaccggtgc 1404
C6 A.A K R Y F I V T K T K V E H R C ..... 420
C6 seq accactaacaggatgtccgagaaatacgaaggttcctttttgcaa 1449
C6 A.A T T N R M S E K Y E G S F L
C6 seq ggatcagagaaatccatatccctggttaaaggtggaagaagtgag 1494
C6 A.A G S E K S I S L V K G G R S E ..... 450
C6 seq tatgcagcggctttggcatgggagaaagggagttctggcccagga 1539
C6 A.A Y A A A L A W E K G S
C6 seq gagaagacatattctgactggttggaatcagtgaaggaaaatcct 1584
C6 A.A E K T Y S D W L E S V K E N P 480
c6 seq gctgtgattgactttgagcttgctcccatcacagacttggtaaga 1629
C6 A. A A I D F E L A P I T D L V R ..... 495
C6 seq aacatcccctgtgcggtgacaagacggaacaacctcaggagagct ..... 74
C6 A. A N I P C A V T R $\quad \mathrm{R} \quad \mathrm{N} \quad \mathrm{N} \quad \mathrm{L} \quad \mathrm{R} \quad \mathrm{R} \quad \mathrm{A}$ ..... 510
C6 seq ttccgagaatacgcagccaaatttgacccttgccagtgtgctccg 1719

C6 seq tgccccaacaacggccgccctgtgctctcagggaccgaatgtcta 1764

C6 seq tgtgtgtgccagagcggcacctacggtgacaactgtgagaggcgt 1809


Figure 40 (continued)

```
C6 seq gccccggattacaaatctaatgccgtagatgggaactggggctgc 1854
```



```
C6 seq tggtcttcctggagcacatgtgacgctacgtacaagagatcaagg 1899
C6 A.A W S S W S T C D A T
C6 seq acccgagaatgcaacaaccctgccccccggcaaggagggaaaccc 1944
```



```
C6 seq tgcgacggggagaggcggcaggaggaacactgcacattctccata 1989
```



```
C6 seq atgcagaacactggacagccatgcatcggtgatgatgaggacatg 2034
C6 A.A M Q N T G Q P C I G D D E D M 630
C6 seq aaagaaatagaccttcctgaaatagaatcagattcagggtgtcct 2079
C6 A.A K E I D L P E I E S D S G C P 645
C6 seq caaccagtccctccagaaaatggatttattcggaatgaaaagaca 2124
```



```
C6 seq ctgtattcagttggggaagatgttgaaattgtatgccttactgga 2169
C6 A.A L Y S V G E D V E I V C L T G 675
C6 seq ttcaaaactgttggctaccagtacttcagatgcttacctgacaga 2214
```



```
C6 seq acctggaggcgaggagatgtggaatgccagcggactgactgcctc 2259
C6 A.A T W R R G D V E C Q R T D C L 705
C6 seq ttgccagtggtgccagaagtactgaaactgtcaccatttcagaga 2304
C6 A.A L P V V P E V L K L S P F Q R 720
C6 seq ttgtataaaattggtgactccattgagctaagctgtcccaaaggc 2349
C6 A.A L Y K I G D S I F
C6 seq tttgtcattgctgggccatcgaggtacacatgcagtggggattcc 2394
C6 A.A F V I A G P S R Y T C
C6 seq tggacaccacccatctcaagctcactcacctgtgaacaagatttt 2439
C6 A.A W T P P I S S S L T C E
C6 seq ctgacacgcttaaagggccattgtcaaccaggacaaaaacagttg 2484
C6 A.A L T R L K G H C
C6 seq ggatctgaatgtgtttgcctgtctccagaagaagactgcagccat 2529
C6 A.A G S E C V C L S P E E D C
C6 seq cattcagaagatctc̄̄gtgtgcttgatacagactccāatcattac 2574
C6 A.A H S E D L C V L D T D S N H Y 810
C6 seq tttacttcatccgcttgtaagtttttggctgagaaatgtttaaat 2619
C6 A.A F T S S A C K F L A E K C L N 825
C6 seq aatcagcaactccaatttctacatattggttcgtgccaagatggt 2664
C6 A.A N Q Q L Q F L H I G S C
C6 seq ccacagttggaatggggtcttgaaaggataaaactttcatccagt 2709
C6 A.A P Q L E W G L E R I K L S S S 855
C6 seq agcacaaagaatgaatcctgtggctatgatacctgctacagctgg 2754
C6 A.A S T K N E S C
C6 seq gaaaaatgttcagccaccācctccaagtgcatctgcctactgccc 2799
C6 A.A E K C S A T T S K C I
C6 seq ttccagtgtttgaagggtggataccaacactactgcgtcaaaatg 2844
```



```
C6 seq ggatcatcaacgaccacaagaaccatgaacatctgtgaagtagga 2889
C6 A.A G S S T T T R T M N I C E V G 915
C6 seq gccataagatgtgccctcaggaaaatggaaatactttatcctggg 2934
C6 A. A A I R C A L R K M E I
C6 seq agatgtaggtctaactga 2952
C6 A.A R C R S N * 935
```

Figure 40 (continued)

```
C6 seq aatcttgataaacagatttactgtccaaaaataatccctacagag 2997
C6 seq atgctcttgtataaacagcagactgccacatccaggagttactaa }304
C6 seq cataaattcttttgtgttagtttcatgtaattattctccctgcct 3087
C6 seq cttgtgtcttctcctctatccaattctagtccacacccctaggta 3132
C6 seq ataactttcacatcagtctagtaaattattctgttcatgtggcac 3177
C6 seq taaaatgatggcacttctaatgaccttatgaagtacaaaaacctt }322
C6 seq aatttcttcaatgaatcaataaacatagaagtctcgaactgctta 3267
C6 seq tcaaatacattcttgaaactgaaaaaaaaaaaaaaaaaa 3306
```

Figure 40 (continued)

```
    -806 catggaaaatgaggctctggcaaaaaaaagacaaggcaactg -765
C7 seq aggaagagaaaatggacagggataatgactgtgacaagaacttcc -720
C7 seq caaaagagagatctgaatggcataggattaagggaagttcttggg -675
C7 seq aaaattagtgatgcctttaaatatgtttgctaaaaatgatgctct -630
C7 seq ttttgatcattctgtgaaagtccgacgtgaagggatgcttattat -585
C7 seq gttgtgttaggctatctctgtatattctggggggattccactcca -540
C7 seq gaatgttccacttacattttgggtaactgaactgcgtttgaattt -495
C7 seq ttttcctccacaaagcgtttaatctcaaaggctgttgtataacac -450
C7 seq ccatttagagaatcatgaaaacatccacttagtacagtagatcga -405
C7 seq aggaggcttatcccttgccttacacagtctccttgggttgaaatc -360
C7 seq acttaaacattgaagtgagaacatttgctgcctttcttgatttat -315
C7 seq agatgtttttcttagaactacatttccaaacagtcccagctggct -270
C7 seq gtagctaaggcctgtgtaaattgataagatgcatttggcttcaag -225
C7 seq acacagactaagtacagggcagactcctggtgtccccagagaact -180
C7 seq ccgttggggtagaagcagcatctcggaactgcttgctctatatat -135
C7 seq gagtgccaagttaatccccagcagGgagggacaggcaaggaacag -90
C7 seq actgttgggctcttcctgctgctgaaaattcactgggcactggag -45
C7 seq gaggaaatctaccttcactcttctgccctgaatgttttcccaaac 0
```

Figure 41 Nucleotide and predicted protein sequence of the porcine C7 gene. Nucleotide and amino acids are enumberated on the right side. The numbering of the nucleotide sequence starts with the first base of trace_name:dpcxa 0_039446.z1, ti: 784743778 and ends with the last base of GenBank acc. no CF176130.1. The start codon (ATG) is in the first bold box (nt. 1-3). The porcine boundaries between exons are in bold and underline. Positions of polymorphism present in shade blocks with white bold font. Cysteine residues are in underline. Transription start site ( $\mathbf{G}$ ) is in uppercase and bold at position -110 . The open reading frame is terminated by a TAG stop codon in the second bold box (nt. 2530-2532). The downstream noncoding region contains further termination codons but does not include a polyadenylation signal. The translation stop codon is identified by (*)
C7 seq atgaaggcaatgagtttagtcttcttggtgggacttataggagag ..... 45
C7 A.A M K A M S L V F L V G L I G E ..... 15
C7 seq ttccaagttttttcaagtgcctcctctcctgtcaattgtcagtgg ..... 90
C7 A.A F $\quad$ Q $V \quad F \quad S \quad S \quad A \quad S \quad S \quad P \quad V \quad N \quad C \quad Q \quad W$ ..... 30
C7 seq gattcctatgctccttggtcagaatgcaatggttgtaccaagact ..... 135
C7 A.A D S Y A P W S E C ..... 45
C7 seq cagactcgcaggagaccogttgctgtttatgggcagtatggcggg ..... 180
C7 A.A $Q \quad T \quad R \quad R \quad R \quad P \quad V \quad A \quad V \quad Y \quad G \quad Q \quad Y \quad G \quad G$ ..... 60
C7 seq catccctgtgtcggaagtacgtttgaaacacaatcatgtgaacct ..... 225
C7 A.A H P C V G S T F E T Q S C E P ..... 75
C7 seq acacgaggatgtccaacagaagaagggtgtggagagcgtttcaga ..... 270
C7 A.A T R G C P T E E G C $\quad$ G $\quad$ E $\quad$ R $\quad$ F $\quad$ R ..... 90
C7 seq tgtttttcaggtcagtgcatcagcaaatctttggtttgcaacggg ..... 315
C7 A.A C F S G Q C I S ..... 105
C7 seq gattctgactgtgaagaagacagtgctgatgaagaccggtgtgag ..... 360
C7 A.A D S D C E E D S A D ..... 120
C7 seq gactcagaaagcagaccttcctgtgacctcagtaaacctcctccc ..... 405
C7 A.A D S E S R P S C D L S K $\quad$ P $\quad$ P $\quad$ P ..... 135
C7 seq aacatagaacttactggaaatggttacaatgcactcacgggccag ..... 450
C7 A.A N I E L T G N G Y N A L T G Q ..... 150
c7 seq tttaggaacagagtcctcaacactaaaagttttggtggtcaatgc ..... 495
C7 A.A F $\quad$ R $N \quad R \quad V \quad L \quad N \quad T \quad K \quad S \quad F \quad G \quad G \quad Q \quad C$ ..... 165
C7 seq agaaaggtgtttagtggggatgggagagatttctacagactgagt ..... 540
 ..... 180
C7 seq ggaaatgtcctctcctacacattccaggtgaaagtaaataatgat ..... 585
C7 A.A G N V L S Y T F $\quad$ Q $\quad$ V ..... 195
C7 seq tttaattatgaattttacaatagtacctggtcttatgcaaaacat ..... 630
C7 A.A F N Y E F Y N S T W S Y A K H ..... 210
C7 seq acatctacagaacatacatcatccagtaaaggacgcgtcttcatt ..... 675
C7 A.A T S T E H T S S S K G R V F I ..... 225
C7 seq tttagttcttcctcttcttcctccagttattatgcaaaaacctat ..... 720
C7 A.A F S S S S S S S S Y Y A K T Y ..... 240
C7 seq gaaatccttaagaaaaagagttatcagttgttggttgttcagaac ..... 765
C7 A.A E I L K K K S Y Q L L V V ..... 255
C7 seq actgttgaagtggctcaatttatcaataacaatccagaattttg ..... 810
C7 A.A T V E V A Q F I N N N P E F L ..... 270
C7 seq caacttgctgagtcattctggaaggaactctcctaccttcctcct ..... 855
C7 A.A Q L A E S F W K E L S Y L P P ..... 285
C7 seq ctgtatgattacagtgcctaccgaagattaattgaccagtatggg ..... 900
C7 A.A L Y D Y S A Y R R ..... 300
C7 seq acacattatctgcagtctgggtccttaggaggagaatacaaagtt ..... 945
C7 A.A T H Y L Q S G S L G G E Y K V ..... 315
C7 seq ttattttatgtggactcagagaaagtcgcagaaagcgatcttggt ..... 990
C7 A.A L F Y V D S E K V A E S ..... 330
C7 seq tcagaggataagaagaaatgtgcttcctcacatattagttttcta 1035
C7 A.A S E D K K K C A S S H I S F L ..... 345
C7 seq tttaaatcatcaaagcacaaatgcaaggcgatggaagaggcctta 1080
C7 A.A F K S S K H K C K A M E E A L 360
C7 seq aaatcagcttcaggaactcagagcaatgtgttgcgaggggtcccg 1125
C7 A.A K S A S G T Q S N V L R G V P ..... 375
C7 seq tttgtcagagggggacgtcctggctttgtgtctggccttagttac 11 ..... 1170
 ..... 390

Figure 41 (continued)

C7 seq ctggagctggacaaccctgatggaaacaaacaacgatattcttcc 1215

C7 seq tgggcaggatctgtgactgatcttccccaagtcataaaacaaaag 1260

C7 seq ctgacacctttgtatgagctggtaaaggaagtaccotgtgcttct 1305

C7 seq gtgaaaagactgtacttgaaacgggccctggaggagtatctggat 1350
C7 A.A V
C7 seq gaatttgactcctgccattgccaaccttgtcaaaacggtggcatg 1395
C7 A.A E F $\quad$ F $\quad$ D $\quad$ S $\quad$ C $\quad$ H
C7 seq gccagtgtcgaggggacccagtgtcagtgccattgcaaaccaaac 1440

C7 seq acatttggtgtggcgtgtgaacaaggagtcctcgtaggggatcat 1485

C7 seq gcaggaggcattgatggagggtggagttgctggtcctcttggggc 1530

C7 seq ccctgtgcccaagggaagaaaacaaggagccgaaaatgcaataac 1575

C7 seq ccaccccccagtgggggtgggaaatcctgtattggagaaacgtca 1620

C7 seq gaaagcaggcaatgcgaagatgaagatctggagcatcttcggttg 1665

C7 seq cttgaaccacat $\bar{t} g t t t c c c t t t g t c t t g g t t c c a a c a g a a t t c ~ 1710$

C7 seq tgtccatcacctc̄ctgccttgaaagatggatttgttcaaaatgaa 1755
C7 A.A C $\quad$ P
C7 seq gagaccacgtttcctgttgggaaaaacatagtgtacagttgcaat 1800

C7 seq gaaggatactctcttgttggagaccctgttgccagatgtggagaa 1845
C7 A.A E $\quad$ G $\quad$ Y $\quad$ S $\quad$ L $\quad$ V $\quad$ G $\quad D \quad P \quad V \quad A \quad R \quad C \quad G \quad E \quad 615$
C7 seq gatttacagtggactgttgggaaaatgcattgtcagaaaattgcc 1890

C7 seq tgtgttctacctacactgatgcgtggcttacagagtcatccccag 1935
C7 A.A C V
C7 seq aagcctttctacacagttggcgagaaggtgaccttttcctgttca 1980

C7 seq agcggcatgtccttagaaggtccatcgacatttctctgtggatcc 2025

C7 seq agcctcaagtggagccctgagatgaaaaatgtccagtgtgtgcga 2070
C7 A.A S L K W S P E M K N V Q C V R 690
C7 seq aaagaggcccotttggcaaagaaagtgcctgaatgtcagctctgg 2115

C7 seq gagaaactgcagaattcaaaatgtgtttgtaaaātgccctatgaa 2160

C7 seq tgcggatcttccttagacgtgtgcgctcgagatgagagaagcaaa 2205

C7 seq aggatcctgcgactgacagtttgcaagatgcatgttctccaatgt 2250
C7 A.A R I L R L T V C K M H V L Q
C7 seq cagggtagaaattacactctttctgttggggagacctgtactctg 2295
C7 A.A $\mathrm{Q} \quad \mathrm{G} \quad \mathrm{R} \quad \underline{\underline{N}} \quad \mathrm{Y}$
C7 seq cctggctccgctgagaaagcttgcggtgcatgtccactctgggag 2340


Figure 41 (continued)

```
C7 seq aaatgtgatgcccaaagcagcaaatgtgtctgcagagccgcctcg 2385
C7 A.A K Clllllllllllllllll
C7 seq gagtgcgaggaagcggggttccgcgtctgcgtggaggtgaacggc 2430
C7 A.A E C E E A G F R V C C V E V N G 
C7 seq agggagcagacgatgaccgagtgtgaggccggcgtcctgagatgc 2475
C7 A.A R E Q T M T E C E A G V L L R C C 
C7 seq ctaggactgagcatcactgtcaccagcatcaggccctgcgcgccc 2520
C7 A.A L G L S I I T V T T S I I R P P C A A P P 840
C7 seq gaagccccgtag 2532
C7 A.A E A P * 843
C7 seq caatcccggcgcgcacaacctgccacgtaacagcttctcagcaca 2577
C7 seq caggcctcttctttctcctcccactcatgtccacttctcccagtc 2622
C7 seq ccctgcgtaaacgcaaacccctcgttctccca 2654
```

Figure 41 (continued)

| C8A seq | c | 1 |
| :---: | :---: | :---: |
| C8A seq | ggcacgagtggtctgtagacacctcttacttcaactccetaagta | 46 |
| C8A seq | gttttagtccttctttgtaatatagggtagtggcttctggatgag | 91 |
| C8A seq | atgttggctgttgcttttttcatcttgtctttgatgacttgtcag | 136 |
| C8A A.A | M L A V A F F I L | 15 |
| C8A seq | cctggggtaaccataccggagaaggtgaaccggagagtcagtcgg | 181 |
| C8A A.A |  | 30 |
| C8A seq | gctgttctgagctccacccccacagccgtttcctgccagctaagc | 226 |
| C8A A.A |  | 45 |
| C8A seq | aactgggcagagtggacagaatgcttcccatgccaggacaaaaag | 271 |
| C8A A.A | N W A E W T E C F P C | 60 |
| C8A seq | tatagataccggagcctcctgcagccaaacaagtttgggggagcc | 316 |
| C8A A.A |  | 75 |

Figure 42 Nucleotide and predicted protein sequence of the porcine C8A gene. Nucleotide and amino acids are enumberated on the right side. The numbering of the nucleotide sequence starts with the first base of GenBank acc. no AB008156 and ends with the last base of GenBank acc. no AB008156. The 5 'flanking region contains 91 nucleotides (nt. 1-91). The start codon (ATG) is in the first bold box (nt. 92-94). The porcine boundaries between exons are in bold and underline. Positions of polymorphism present in shade blocks with white bold font. Cysteine residues are in underline. The open reading frame is terminated by a TGA stop codon in the second bold box (nt. 1859-1861). The 3'UTR (nt. 1862-2176) contains the putative polyadenylation signal attaaa (nt. 2110-2115) in bold and italic lowercase. The translation stop codon is identified by (*)
c8A seq atctgcagtgggaacgtctgggaccaagccagctgtcacagcccc ..... 361
C8A A.A I C S G N V W D Q A S C H S P ..... 90
C8A seq acagagtgtctgaggcaagcacagtgtggacaggatttccagtgt ..... 406
C8A A.A T E C L R Q A Q C ..... 105
C8A seq aaggagacagggcgctgcctgaaacgccacctcgtgtgtaacgga ..... 451
 ..... 120
C8A seq gacagggactgcttggatggctctgacgaggatgactgtgaagat ..... 496
 ..... 135
C8A seq gtcaggatcttcgaagatgactgcagccagtacgacccaattccg ..... 541
C8A A.A V R I F E D D C S $\quad \mathrm{C} \quad \mathrm{Y} \quad \mathrm{D} \quad \mathrm{P} \quad \mathrm{I} \quad \mathrm{P}$ ..... 150
C8A seq ggatcggagagggcgaccttggggtacaatattctgacccaggaa ..... 586
C8A A.A G S E R A T L G Y N I L T Q E ..... 165
C8A seq gaaacgcagagtgtgtatgatgccaggtattatgggggccagtgt ..... 631
C8A A.A E T $\quad$ O $\quad$ S V $\quad$ Y $\quad D \quad A \quad R \quad Y \quad Y \quad G \quad G \quad Q \quad C$ ..... 180
C8A seq gagactgtctacaacggggagtggagggagcttcggtatgactct ..... 676
C8A A.A E T V Y N G E W R E L R ..... 195
C8A seq gcctgtgagcgtctctactatggagatgatgagaagtacttccgg ..... 721
C8A A.A A C E R L Y Y G D D ..... 210
C8A seq aacccttacaatttcctgaagtaccacttcgaagccctggcagac ..... 766C8A A.A N P Y N F L K Y H F E A L A D 225
c8A seq agtaaattttcctcagagtcatacgatgatgcaaatgaccttctt ..... 811
C8A A.A S K F S S E S Y D D A N D L L ..... 240
C8A seq aaaaaagtaaaaaatgagaagtctgtgtcagctggagtgaccgtt ..... 856
C8A A.A K K V K N E K ..... 255
C8A seq ggtataggccctacaggtagcccatttacagcaaatgtgggctta ..... 901
C8A A.A G I G P T G S P F T A N V G L ..... 270
c8A seq tcagggtcacgagagtctgcgttcttgaacaagctaagcacgtat ..... 946
C8A A.A S G S R E S A F L N K L S ..... 285
C8A seq aacgagaagaaatacagcttcatcaggattttcacaaaggtacag ..... 991C8A A.A N E K K YC8A seq actgctagttttatgatgaggagggacaatattatgctggatgaa 1036
C8A A.A T A S F M M R R D N I M L D E 315
C8A seq gttatgctgcagtcattaatggagcttccggagcagtacaattac 1081
C8A A.A V M L Q S L M E L P E
C8A seq ggcatgtacgccaagttcattgatgactacggcacccattatatc 1126
C8A A.A G M Y A K F I D D Y G T H Y I 345
C8A seq acgtctggatcgatgggtggtgtttatgaatatatcctggtgctt 1171
C8A A.A T S G S M G G V Y E Y I L V L 360C8A seq aacaaagaaaatatgacaaaatctggtgttaccagcgatgatgtc 1216C8A A.A N K E N M T K S G V T S D D V 375C8A seq acgtcatgctttggagggtcttttggcatcgactatgactataca 1261
C8A A.A T S C F G G SC8A seq gataac $\bar{t} t a c a a a t t a c a g g a a g t t t a t c a g g a a a a c a t t g t a a a ~ 1306$C8A A.A $\quad$ D $\quad \boldsymbol{N} \quad \boldsymbol{L} \quad$ Q $\quad \boldsymbol{I}$C8A seq aaacttggaggtggccacagagaagacgaagagagcaacatggct 1351
C8A A.A $\quad$ K $\quad$ L $\quad$ G $\boldsymbol{G} \quad \boldsymbol{G} \quad \boldsymbol{H} \quad \boldsymbol{R}$
C8A seq gtggaagacatcatttctcgggtgcgaggtggcagttctggctgg 1396C8A A. A V E D I IC8A seq ggcggtggcttgacgcaaaacggcagcatcattacataccgtgcc 1441C8A A.A G G G L T Q N G S I I T Y R A 450C8A seq tgggggaggtcattaaagtataatcctgctgttattgattttgag 1486
 ..... 465

Figure 42 (continued)

```
C8A seq atgaagcccatttacgagatactgcgccacacaaacctggggccc 1531
C8A A.A M K P I Y E I L R H T N L G P 480
C8A seq ctggaggccaagcgccagaacctgcgacgggccttggatcagtac 1576
C8A A.A L E A K R Q N L R R A L L D D Q Y % 495
C8A seq ctgatggaattcaacgcctgccgctgtgggccctgcttcaacaat 1621
C8A A.A L M E F N A A C R R C F F P
C8A seq ggcgagcccatcctcgtgggtaccagctgccggtgtcagtgccct 1666
```



```
C8A seq gtgggttgccagggccttgcctgtgagcaaatgaagtcagaggga 1711
C8A A.A V G C C Q G L A Clllllllllll
C8A seq gccaaggctgatggtcgctggagctgctggagctcctggtctgct 1756
C8A A.A A K A D G R W S C W S S W S A 5 S N 
C8A seq tgcagattgggcacccaggaaaggāggagagagtgtaacaaccct 1801
C8A A.A C R L G T L Q E R R R R R E E C N N N N P 
C8A seq g
C8A A.A A P P Q N G G A Sllllllllllllll
C8A seq acccaggcatgctga 1861
C8A A.A T Q A C * 589
C8A seq gggcctctgggcacaggctggaacccacccagcagacgtcaccgc 1906
C8A seq cggcaccgaccactggatacagacctcactccgctgagagaagat 1951
C8A seq gccaatcaacgtggaccttttctctgtcctgccagcttccaggct 1996
C8A seq gaagactgggccatgccagctatacccaactgttctgttactcac 2041
C8A seq aaaactcagtcagtcacaactgggggttgagagttaactagtgtt 2086
C8A seq aactgcttgcaacactttggatcattaaagaaaagaaaagagaaa 2131
C8A seq aaaaaaaaaaaaaaa 2146
```

Figure 42 (continued)
C8B seq atgagcctcagtcagatctcctgtcgcatagaaaaaatgaagacc 73

C8B seq tctgggacgtgggcttggaggatgcCggcaaggctgtttcttctc 118
C8B A.A S G T W A W R M P A R L F L L $\quad 30$

Figure 43 Nucleotide and predicted protein sequence of the porcine C8B gene. Nucleotide and amino acids are enumberated on the right side. The numbering of the nucleotide sequence starts with the first base of GenBank acc. no AK232952 and ends with the last base of GenBank acc. no AK233291. The 5'flanking region contains 28 nucleotides (nt. 128). The start codon (ATG) is in the first bold box (nt. 29-31). The porcine boundaries between exons are in bold and underline. Positions of polymorphism present in shade blocks with white bold font. Cysteine residues are in underline. The open reading frame is terminated by a TGA stop codon in the second bold box (nt. 1862-1864).
c8B seq tgtgctgccctggggtgtctcagtttacctggctccagaggtgag ..... 163
C8B A.A C A A L G C L S L P ..... 45
C8B seq aggccacactctcttgagtcaaatgcagtcaacgagagccttggc ..... 208
C8B A.A R P H S L E S N A V N E S L G ..... 60
C8B seq aagagtagacagaGgcggagtgtggatgtcaccttgacgcctatt ..... 253
 ..... 75
C8B seq gattgtgaactgtccagctggtcctcctggaccacgtgtgatccc ..... 198
C8B A.A D C E L S S W S S W T T C D P ..... 90
C8B seq tgtcagaagaaaggtacagacatgcctccttgctccggccctct ..... 343
C8B A.A C $\quad$ Q K K $\quad$ R $\quad$ Y $\quad$ R $\quad H \quad A \quad S \quad L \quad L \quad R \quad P \quad S$ ..... 105
C8B seq cagttccatggggaaccgtgcaacttctctgacaaggaagttgaa ..... 388
C8B A.A $Q \quad F \quad H \quad G \quad E \quad P \quad C \quad N \quad F \quad S \quad D \quad K \quad E \quad V \quad E$ ..... 120
C8B seq gactgtgtttccaacagaccatgccgaagtcaagtgcgatgtgaa ..... 433
C8B A.A D C V S N R P C R S $\quad$ Q V $\quad$ R $\quad$ C ..... 135
C8B seq ggctttgtgtgtgcgcagacagggagatgcatcaaccgtagactt ..... 478
 ..... 150
C8B seq ctttgcaatggtgacaatgactgtggagatcagtcggatgaggca ..... 523
C8B A.A L C $N$ G D N D C G D Q ..... 165
C8B seq aactgtaaaaggatttataaaaagtgtcagcaggaaatggaccag ..... 568
C8B A.A N C K R I Y K K C $\quad$ Q $\quad$ Q $\quad \mathrm{E} \quad \mathrm{M} \quad \mathrm{D} \quad \mathrm{Q}$ ..... 180
C8B seq tactgggccattggcagcctggccagtgggataaatttgttcacg ..... 613
C8B A.A Y W A I G S L A S G I N L F T ..... 195
C8B seq aacaacttggagggcccagttctcgatcacaggtattacgccggt ..... 658
C8B A.A $N \quad N \quad L \quad E \quad G \quad P \quad V \quad L \quad D \quad H \quad R \quad Y \quad Y \quad A \quad G$ ..... 210
C8B seq gcatgctccccccattacatactcaacacgaggtttcggaaacca ..... 703
 ..... 225
C8B seq tacaatgtggaaaacttcaacccacagacccaaggaaaatatgac ..... 748
C8B A.A $Y$ N V E N F N P Q T Q G K Y D ..... 240
C8B seq tttgcactgacagaatacgaatcatactcagatttcgaacaaaat ..... 793
C8B A.A F A L T E Y E S Y S D F E O N ..... 255
C8B seq gtcacaactgcagcaattagcaagtctagtttcagcttcggtttt ..... 838
C8B A.A V T T A A I S K S S F S F G F ..... 270
C8B seq aaaatatctggaatgtttgaatttggcatcagtagcacaagtgat ..... 883
 ..... 285
C8B seq aaaggcaaacgttttattagcagaaccaagcgattctctcacacg ..... 928
 ..... 300
C8B seq aaaagcacatttctgcacgcgcgctctgaccttgaggtagcgcgt ..... 973
C8B A.A $\quad$ K $\quad$ S $\quad$ T $\quad$ F $\quad$ L $\quad H \quad A \quad R \quad S \quad D \quad L \quad E \quad V \quad A ~ R ~$ ..... 315
C8B seq tacaagctgaaatccagaaacctcatgctgcattacgagttcctt 1018
C8B A.A Y K L K S R N L M L H Y E F L 330
C8B seq cagagggtcaagcagctgcctctggagtacagctacggggagtac 1063

C8B seq agagatctcttccgagattttgggacccactacatcacagaggcc 1108

C8B seq gtgctcgggggtgtttatgagtacacactcatcatgaacaaagag 1153
C8B A.A V L G G V Y E Y T L I M N K E 375
C8B seq gccatggagagagcagattattctctaaaggatgtccatgcctgt 1198
C8B A.A A M E R A D Y S L K D V H A C 390
C8B seq gcccaacatggttttaaaattggtgtcgccatagaagaggtctac 1243
C8B A.A A O H G F K I G V A I E E V
C8B seq gtcaagttgggggtgCcggtgcacaagtgcaaggacattctcaat 1288
C8B A.A V K L G V P V H K C K
Figure 43 (continued)

```
C8B seq gagataaaagacagaaacaagagaagcagcatggtgaatgacttg 1333
C8B A.A E I K D R N K R S S M V N D D L 435
C8B seq gtggtccttgtgcggggaggtgcaagtgaacacatcactgccctg 1378
C8B A.A V V L V R G G A S E H I T A L }45
C8B seq gcatataaggatctgccaacagcggacctgatgcaggaatgggga 1423
C8B A.A A Y K D L P T A A D L M Q E W W G 465
C8B seq gatgcagtgcagtacaacccagacatcatcaaaattaaggcagag 1468
C8B A.A D A V Q Y N P D D I I I K I K K A E E 480
C8B seq cctctctatgaactggtgacagccgCggactttgcctattccagc 1513
C8B A.A P L Y E L V T A A D F A Y S S 4 405
C8B seq acagtgaagcagaacatgaagcgagccctggaggagttcgagaag 1558
C8B A.A T V K Q N M K R A L E E F E K 510
C8B seq gaaatcagctcctgccactgtgctccctgccaggggaatggagtc 1603
C8B A.A E I S S C H C A P C C Q G N G V 525
C8B seq cctgtcctgaaagaatcacgctgtgac\overline{tgcatctgtcctgctgga 1648}
C8B A.A P V L K E
C8B seq ttccaaggctcagcctgtgaggtcaccaatcggaaaaatgtcccc 1693
C8B A.A F Q G S A C E V T N R K N V P P 5 % \
C8B seq attgatgggaagtggaattgctggtcagactggttctccgtgttt 1738
C8B A.A I D G K W N C W S D W F S V F 570
C8B seq ctggaggacgtaaaacaagacgaaggcagtgcaacaatccacctc 1783
C8B A.A L E D V K Q D E G S A T I I H L 
C8B seq ctcaaaatgggggtagcGcctgcttgggtcctgcttcagaaacac 1828
C8B A.A L K M G V A P A W V L L Q K H
C8B seq ttaactgttaaggaagggagagcttctagcgggtga }186
C8B A.A L T V K E G R A S S S G * * 611
C8B seq tgctactgtgggctgcacacagtgagagctctgagcccttaggaa 1909
C8B seq ccaggccagctcatctccacaccagcttccacctgggcctggccc 1954
C8B seq aggggtgggaaggctgtgccattcagatttgaaataaagatggta 1999
C8B seq tttgtaaaatgcacatggatttgaacaaatagcaagttaaatact 2044
C8B seq cattatagtctcctgaagggcttaagcctcttagtaatattcact }208
C8B seq ttgcttacctctccaattttatttctacttctctctggaggggca 2134
C8B seq cactgtctcattcagtgtccgtggtagttcatatttgttgaataa }217
C8B seq ttagtacatgccagctacagtgttcagtgcatgaattcattccat }222
C8B seq cctcatgacagtcttataaggtggatgctgtcttagccccatgaa }226
C8B seq acagcaggggaaccagcttaggacagttaagtgacttgtccaagg 2314
C8B seq tgatgcaattagggagtgggggagcggggctgtgaacttgggcac 2359
C8B seq atggactccagagttttaaacgcttaattaggatactcccttcct 2404
C8B seq cttaataaatgggcacttgattaaaaaaaaaaaaaaaaaaaaaaa }244
C8B seq aaaaaaaaaaaa 2461
```

Figure 43 (continued) Interestingly, alignment of sequences of GenBank acc. no DQ333201 (in normal) and AK233291 (in intalic) in Genbank allowed merging 474 bp longer (nt. 1988-2461) in 3' flanking region of the porcine C8B cDNA sequence, which contains putative polyadenylation signal aataaa in bold and italic. The translation stop codon is identified by (*)

```
C8G seq atcgtc 6
C8G seq ctgctctctgtctccaccggtcctgtcgccgttgccgccgtggcc 51
C8G seq atgctagtccccagggctgcacccctcttgacgctgctcctggcc 96
C8G a.a M L V P R A A P L L L T L L L L A N 15
C8G seq acgggctccttgggccagagggctcagagaccccctcgacgccca 141
C8G a.a T G S L G Q R A P Q R P P P P
C8G seq tcccccatcagcaccatccagcccaaggccagctttgatgcccag 186
C8G a.a S P I S T I Q P K A Sllllllllll
C8G seq cagtttgcagggacgtggctcctggtggccgtggcttcctcctgc 231
C8G a.a Q F A G T W L L V A V A S S C C 60
C8G seq cgcttcctgcaagagcagggccaccgggctgaggccacttcactg 276
```



```
C8G seq cacgtggctcctcagggtgcagccatggccgtcagcaccttccga 321
C8G a.a H V A P Q G A A M A V S T F F R N 90
C8G seq aagctggatgggatctgctggcaggtgcggcagctcttcagagac 366
C8G a.a K L D G I C W Q V R N Q L F F R D D 105
C8G seq acggggctcccaggtcgcttcctgctccaggcccgaggcgcccga 411
C8G a.a T G L P G R F L L Q A R R G A R N 120
C8G seq ggcgcggtggatgtggtcgttggggagacggactaccggagcttt 456
C8G a.a G A V D V V V G E T D Y R S F 135
C8G seq gccatcctgtacctggagagggcccggcagctgtcggtgaagctg 501
C8G a.a A I L Y L E R A R R Q L S N V K L 150
C8G seq tacgcccgctcgctccccgtgagcgaatcagccotgagtgtcttt 546
C8G a.a Y A R S L P V S E S A L S S V F 165
C8G seq gagcagcgggtccagggggccaacctgaccgaggaccacatcctg 591
C8G a.a E Q R V Q G A N L T E D D H I L L 180
C8G seq ttcttccccaagtacggcttctgcgacgctgcagaccagttccac 636
C8G a.a F F P K Y G F C D D A A D D Q F F H 195
C8G seq gtcctggacgaagcaaagcagtga 660
C8G a.a V L D E A K Q * 202
```

Figure 44 Nucleotide and predicted protein sequence of the porcine C8G gene. Nucleotide and amino acids are enumberated on the right side. The numbering of the nucleotide sequence starts with the first base of GenBank acc. no BP139629.1 and ends with the last base of GenBank acc. no BP443148.1. The 5'flanking region contains 51 nucleotides (nt. 1-51). The start codon (ATG) is in the first bold box (nt. 52-54). The porcine boundaries between exons are in bold and underline. Positions of polymorphism present in shade blocks with white bold font. Cysteine residues are in underline. The open reading frame is terminated by a TGA stop codon in the second bold box (nt. 568-660). The 3'UTR (nt. 661-840) contains the putative polyadenylation signal attaaa (nt. 792-797) in bold and italic. The translation stop codon is identified by $\left({ }^{*}\right)$

C8G seq ggccggggccttgccgccgagagagagccacaagctggaagtgtg 705
C8G seq ggcacccgccactcctggccgagcgggggcctctcccatctgccc 750
C8G seq tggatgctgccacccccccacgagctcggggcgccaccttcatta 795
C8G seq aacactgtcggtctcaaaaaaaaaaaaaaaaaaaaaaaaaaaaa 840
Figure 44 (continued)


Figure 45 Nucleotide and predicted protein sequence of the porcine C9 gene. Nucleotide and amino acids are enumberated on the right side. The numbering of the nucleotide sequence starts with the first base of GenBank acc. no BP139003.1 and ends with the last base of GenBank acc. no CF363669. The 5 'flanking region contains 89 nucleotides (nt. 1-89). The start codon (ATG) is in the first bold box (nt. 90-92). The porcine boundaries between exons are in bold and underline. Positions of polymorphism present in shade blocks with white bold font. Cysteine residues are in underline. The open reading frame is terminated by a TGA stop codon in the second bold box (nt. 1719-1721). The 3'UTR (nt. 17222536) contains the putative polyadenylation signal attaaa (nt. 2505-2510) in bold and italic. The translation stop codon is identified by (*)


Figure 45 (continued)

aatcccaaaatagaaaatctctgaaggattgccagccccccacca 1766
aaaaaaaacaaaacaaaacaaaacactgagctgttggtttccctg 1811
ggatcacatgggaagaaaaacaccaggactccaggactgtctaga 1856
ggtagtccttgctgccgaatgaaaagcaacatgcttcatgaaaat 1901
ccccccaacctctgaagtctcctctctcagatccacagagcttct 1946
tctcttccttgaactcctatggtttccagttttttattactaatg 1991
aggagagtcagcagtcaaatatgccaagactgctttctcccacag 2036
gcaatgccaatctcttgctaacaaaacaaaattaaattaaaaaga 2081
aagtgttggttaaaaagaccttaaagtcattgccaaaggtctttg 2126
tatgacgaatacgttctgccaggtccatcaccacaagtctgtacc 2171
atgcaatttcactcctgtttacatacttgtgtcatgttcggtcat 2216
ttgtagatacgtgcatgccttcgttctgaaagtacaaacacccac 2261
cacaagcacagcactctgctttttaagtcttagctctctggttta 2306
actctatgtgtccaaggaggaaaatgtattgtatttgtaaccaaa 2351
aactattagattcagtaatgtgaaattacctttattcagtcatag 2396
tttaccaaaaaatgaaaacaaaacaaaaacaaaacccagcaatt 2441
ccatatggtccccttaatacctagtgttacgagttgtataaagtc 2486
tacccatataagaagttaattaaaggagctggctgtacaattgca 2531
aaaaa 2536

Figure 45 (continued)
S.scrofa
B. taurus
H. sapiens
P.troglodytes
P.pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
x.tropicalis
O.mykiss


#### Abstract

MDKH-SVLYFILLSGLIDKSQACFCDHYPWTQWSSCSKTCNSGTQTRQRQITINQYYLDN 59 MARH-SVMYFILLSALIDKSQACFCDHYPWSQWSSCSKTCNSGTQTRQRRIVTDKYYFEN 59 MARR-SVLYFILLNALINKGQACFCDHYAWTQWTSCSKTCNSGTQSRHRQIVVDKYYQEN 59 MARR-SVLYFILLNALINKGQACFCDHYAWTQWTSCSKTCNSGTQSRHRQIVVDKYYQEN 59 MARC-SVLYFILLSALINKGQACFCDHYPWTQWTSCSKTCNSGTQSRHRQIVVDKYYQEN 59 MAGQ-SILYFILLSALIDKCQPCFCDHYPWSQWSSCSKTCNFGTQSRQRKIVVDQYYLDN 59 MTRH-LTLCFILLIILIDKSEACFCDHYPWTHWSSCSKSCNSGTQSRQRQIVVNDYYRDN 59 MDQN-ILLYSIVLSALISGSQACYCERYPWTSWSSCSSSCNYGSQIRERHIVRDKYYEEN 59 MEKT-VLIQLILLSLVVGSCQGCYCEHYPWGSWSSCSKTCNYGTQTRHRQIKMDEYYNQN 59 MGSR-PCIIFLLIVSLAGGALSCFCDHYPWTSWSSCSKTCDHGTQSRSRTISYDDYYWKH 59 MDRTNSLLVLLHVLGSVTVSLGCFCDHYAWSSWSTCTRTCNYGTQERRRSIRYDDYYWKN 60


Figure 46 Alignment of the C6 proteins among species according to the GenBank accession no. as given in table 5 using the ClustalW2 tool. The amino acids are enumerated above each line on the right side. The identical, similar and missing residues are indicated with asterisks (*), points (.), and dashes (-), respectively. Signal peptides in human C6 protein (DiScipio et al. 1989) and in pig C6 protein are in bold and italic. The amino termini of C6 mature protein starts just after the signal peptide. The cysteine residues are highlighted. The cysteine-rich functional protein domains like TSP1, LDLa, MACPF, EGF, CCP, and FIMAC are in continuous underline. The glycosylation sites in human (Chakravarti et al. 1989, DiScipio et al. 1989) and in pig using the NetNGlyc 1.0 Server tool present in shade blocks with white bold font. The human C6 cleavage site into two fragments C6a (a.a 22-631) and C6b (a.a 632-934) by trypsin is in bold and double underline.
S.scrofa
B. taurus
H.sapiens
P.troglodytes
P.pygmaeus
C. familiaris
$R$.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H.sapiens
P.troglodytes
P. pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H. sapiens
P. troglodytes
P. pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss

## S.scrofa

B. taurus
H.sapiens
P.troglodytes
P.pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss

## S.scrofa

B. taurus
H. sapiens
P.troglodytes
P.pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss

TSP1 domain (26-79)
TSP1 domain (84-134)
FCDRLCTKQETRECNWQTCPINCLLGDYGPWSDCDPCVEKQFKVRSILRPNQFGGQPCTE 119 FCGQLCTKQESRECNWQTCPINCRLGDYGPWSDCDPCVQKRFKVRSILRPSQFGGQPCTE 119 FCEQICSKQETRECNWQRCPINCLLGDFGPWSDCDPCIEKQSKVRSVLRPSQFGGQPCTE 119 FCEQICSKQETRECNWQRCPINCLLGDFGPWSDCDPCVEKQSKVRSVLRPSQFGGQPCTE 119 FCEQICSKQETRECNWQRCPINCLLGDFGPWSDCDPCVEKQSKVRSVLRPSQFGGQPCTE 119 FCDQLCTKSETRECNWQRCPINCLLGDYGPWSDCDPCVEKQFKVRSILRPSQFGGQPCTE 119 SCDQLCTKQETRQCNVETCPINCVLGDYGTWSDCDPCIRKQVKVRSVLRPSQFGGQPCTE 119 YCDQLCTKRESRACNQQMCPINCLMGDFEPWSECDPCVKKQFRMRSILRPSQFGGQPCTE 119 FCDRLCTKQESRACNQQTCPINCQLGDFGPWSECDPCIEKQFRVRKLLRPSQFGGQACTE 119 NCGGLCTMRETRSCNEQSCPINCKLGDFGSWSDCDPCLKKQFRTRSLERPSQFGGEGCTE 119 SCEQLCQKHESRACNVQACFIHCQLTDWANWSGCSPCAKKQLRTRSLLRPSQFGGVECDA 120

LDLa domain (139-175)
PLMTFRPCIPSKLCKIEEVDCKNKFRCDSGRCIASKLECNGENDCGDNSDERNCGRTKAV 179 PLMTFQPCIPSKLCKIEEIDCKNKFRCDSGRCIASKLECNGENDCGDNSDERNCGRKKTV 179 PLVAFQPCIPSKLCKIEEADCKNKFRCDSGRCIARKLECNGENDCGDNSDERDCGRTKAV 179 PLVAFQPCIPSKLCKIEEADCKNKFRCDSGRCIARKLECNGENDCGDNSDERDCGRTKAV 179 PLVAFQPCIPSKLCKIEEADCKNKFRCDSGRCIARKLECNGENDCGDNSDERDCGRTKAV 179 PLVTFQPCIPSKLCKIEEIDCKNKFRCDSGRCIANKLECNGENDCGDNSDERNCGRAKAV 179 PLVTFQPCVPSELCKIEETDCKNKFLCDSGRCIPSKLKCNGENDCGDNSDERNCGRTKPV 179 QLVTSQKCYSTKLCNIEDIDCKNKFKCDSGRCIAMNLLCNEENDCGDSSDEKNCDRKKKV 179 TLVQSRPCFPAKLCNIVDVDCKNKFQCENGRCIAKKLECNGDNDCGDNSDERYCGRKKVV 179 ALVESRICVPAKLCKIEQLDCSGKFQCVSGRCIPFNLKCNGDNDCGDNSDERVCRKREPQ 179 VLTEDRACYPSTECKMETLNCK-EFQCGNGRCISSKLTCNKQNDCGDNSDEKNCDEFKIV 179

CS--RKYNPIPSVQLMGAGFHILAGEPRGEVLGNSFTGGICKTVKSS---KASNPFRVPA 234 CS--RSHNPIPGVQLMGMGFHFLAGEPRGEVLDNSFTGGVCRTVKSS---RASNPYRVPA 234 CT--RKYNPIPSVQLMGNGFHFLAGEPRGEVLDNSFTGGICKTVKSS---RTSNPYRVPA 234 CT--RKYNPIPSVQLMGNGFHFLAGEPRGEVLDNSFTGGICKTVKSS---RTSNPYRVPA 234 CT--RKYDPIPSVQLMGSGFHFLAGEPRGEVLDNSFTGGICKTVKSS---RTSNPYRVPA 234 CPGKRQWNPIPSVQLMGAGFHFLAGEPRGEVLDNSFTGGICKTVKSS---KASNPYRVPA 236 CS--RTYTPIPSVQLMGAGFHFLAGEPRGDVPDNSFTGGICKSVRSS---RTSNPHRVPA 234 CN--RVYQPIPSVQLMGNGFHILAGEPRGEVLDNAFMGGKCRTVRSS---RTSNPYRVPA 234 CS--RKFESIPGVHLIGSGFHILSGESRGEVLGNSFNGGECRTVRRN---ETRKSYRVPA 234 RS----FEPIPGIQLMGNGFNYLSGESRGEVLDNSFFGGKMDKVYGNGTGQNRKLYRLSA 235 CP--VEKRVVPGADLIGNGFDAMAEAMRGAVLDNMFMGDTCNLNRSRGS-SYRLYYRVPA 236
:*. .*:* **. :: ** * .* * *. .*:.*

NLENVNFEVQTKEDDFQT--DFYEDLIPLENSKDQQATGFGQE-KSSFHVPIFYSSKKSQ 291 NLENVNFEVQTKEDDLEA--DFYDDLIPLEDNKDQEALGSGLA-TSSFRVPIFYSSKRSQ 291 NLENVGFEVQTAEDDLKT--DFYKDLTSLGHNENQQGSFSSQG-GSSFSVPIFYSSKRSE 291 NLENVGFEVQTAEDDLKT--DFYKDLTSLGHNENQQGSFSSQG-GSSFSVPIFYSSKRSE 291 NLENVGFEVQTAEDDLKT--DFYKDLTSLGHNENQQGSFSSQG-GSSFSVPIFYSSKRSE 291 NLENVNFEVQTKEDDLET--DFYKDLISLTKNENQQGLFGGEE-QSSLYIPIFYSSKKTQ 293 NLENVNFEVQTIEDDLKT--DFYKDLATIGKNKNEDRSLSGEK-KDSFYVPIFYSSKKSE 291 NIESINFEVNNEEDDLQT--DFYSNLIPLGNDHVLHKSDNLQG-NSHSGIPLLWSTKRKE 291 NLEAVSFQVIDEEDDVKS--DFYRDLTPLSDGDVGSSTSSHSS-QRRSGIPGLFSKKRKV 291 NLDTFKFELRNEEDDAVP--TFYNSLIDFDKENSRTGSSQSSR-RGSAGIPLLFHRKSNT 292 NVESFEIKVEIPDDFKQEPQPVYSETVNLASPPVSTRSDSSSGDSSSIWVPIFFVGSRRH 296 *:: . :: :* .* : :* :

MACPF domain (312-516)
TSSHNSAFKQAIQASHKKDSSFIRIHKVIKVLNFTMKTKDLQLSDVFLKALNHLPLEYNA 351 SSSHSSAFKQAIQASQKKASSFIRIHKVIKVLNFTMKTKDLQLSDVFLKALNHLPLEYNS 351 NINHNSAFKQAIQASHKKDSSFIRIHKVMKVLNFTTKAKDLHLSDVFLKALNHLPLEYNS 351 NINHNSAFKQAIQASHKKDSSFIRIHKVMKVLNFTTKAKDLHLSDVFLKALNHLPLEYNS 351 NINHNSAFKQAIQASHKKDSSFIRIHKVMKVLNFTTKAKDLHLSDIFLKALNHLPLEYNS 351 STTHNSAFKQAIQASHKKDSSFTRIHKVIEVLNFTMKTKDLQLSDVFLKALNHLPLEYNF 353 NFQRNSGFKNAIEASHKKDSSFVRIHKVIKVLNFTMKTTDLQLSDVFLKALIHLPLEYNF 351 RITQQYSFKKAIQASHKKDSSFIRVHKVISVLNFTMKPTELQLSDVFLKALNHLPLQYNY 351 QITSSSSFKKAIEASHEKNSNFIRIHKVISVANFTMKESNLQLSDVFLKALNQLPLEYNY 351 RITSSSSFREAAQASRKQSSKFIRINKVISVSDFTMKKNNLWLSDVFLKALNNLPLEYNY 352 HQSNTDTFKQAISASKKTDSQFFRVHQVLPVSRFRVKDSDLYLTEPFLQFLTSLPLEYNY 356 *::* .**:: *.* *:: : : * * * .:* *:: **: * ***:**

Figure 46 (continued)
S.scrofa
B. taurus
H.sapiens
P.troglodytes
$P$.pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H. sapiens
P.troglodytes
P. pygmaeus
C. familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
o.mykiss
S.scrofa
B. taurus
H. sapiens
P.troglodytes
P. pygmaeus
C. familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss
S.scrofa
B. taurus
H.sapiens
P.troglodytes
P. pygmaeus
C. familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss

ALYSRIFDDFGTHYFTSGSLGGVYDLLYQFSNEELKNSGLTQEEAKNCIRIETKKRYFIV 411 ALYSRIFDDFGTHYFTSGSLGGVYDLLYQFSKEELKNSGLTQEEAKNCIRIETKKRFLFV 411 ALYSRIFDDFGTHYFTSGSLGGVYDLLYQFSSEELKNSGLTEEEAKHCVRIETKKRVLFA 411 ALYSRIFDDFGTHYFTSGSLGGVYDLLYQFSSEELKNSGLTEEEAKHCVRIETKKRVLFV 411 ALYSRIFDDFGTHYFTSGSLGGVYDLLYQFSSEELKNSGLTEEEAKHCVRIETKKRVLFA 411 ALYSRIFDDFGTHYYTSGSLGGVYDLLYQYSAEELRTSGLTEKEIQNCVSTETKKSVLFF 413 ALYSRIFDDFGTHYFTSGSLGGKYDLLYQFSRQELQNSGLTEEETRNCVRYETKKRFLFF 411 ALYSRLFDDFGTHYFTSGSMGGTYDLLYQYSREELKNSGLTEEESQHCVRIETVKRRLVF 411 ALYSRIFDDFGTHYYTSGKMGGSYDILYQYSSEELKNSGLSVDESMECIRTETTRRVFFR 411 PLYSRIFDDFGTHYITAGSMGGSYDLLFQYSSENLKSSGLTNQESLECVRTEITYRVFFR 412 ALYREIFKHFGTHYFASGTLGGHYDLLYQYSRLELKNSGLTEEHTKGCLKSESSMFIIIY 416

TKTKVEHRCTTNRMSEKYEGSFLQGSEKSISLVKGGRSEYAAALAWEKGSSGPGEKTYSD 471 KKTKVEHRCTTNKLSEKYEGSFMQGSEKSISLVQGGRSAYAAALAWEKGSPVPEERVFSD 471 KKTKVEHRCTTNKLSEKHEGSFIQGAEKSISLIRGGRSEYGAALAWEKGSSGLEEKTFSE 471 KKTKVEHRCTTNKLSEKHEGSFIQGAEKSISLIRGGRSEYAAALAWEKGSSGLEEKTFSE 471 KKTKVEHRCTTNKLSEKHEGSFIEGAEKSISLIRGGRSEYAAALAWEKGSSGLEEKTFSE 471 SKKEVEHRCTTNKMSKKYEGSFLQGAEKSISLIQGGRSKYAAALAWEKGSSVPTEKEFSE 473 TKTYKEDRCTTNRLSEKYKGSFLQGSEKSISLVQGGRSQQAAALAWEKGSSGPEANVFSE 471 KKKKVENRCTTNKMLDRYEGSFLQGAEKSLSLVRGGRSEHAAALAWEKKGSSPEETVFTE 471 KKKKVSTECITNKMTVKHDGSILESAERSVSLVKGGRSEYAAALAWEKKGAFPGNTIFTN 471 KKRKVRESCTRNKMSERYEGSFVQASEKSISLIKGGRAEYAAKLAWQRQETLPENTVFEE 472 SQSSNVVRCSDNTMTQKHEGSFVQSSEKSFSMVRGGRTGEAAALAWEQKGAAPDSTTYKN 476

WLESVKENPAVIDFELAPITDLVRNIPCAVTRRNNLRRAFREYAAKFDPCQCAPCPNNGR 531 WLESVKENPSVIDFALAPITDLVRNIPCAVTRRNNLRRAFREYAAKFDPCQCARCPNSGR 531 WLESVKENPAVIDFELAPIVDLVRNIPCAVTKRNNLRKALQEYAAKFDPCQCAPCPNNGR 531 WLESVKENPAVIDFELAPIVDLVRNIPCAVTKRNNLRKALQEYAAKFDPCQCAPCPNNGR 531 WLESVKENPAVIDFELAPIVDLVRNIPCAVTKRNNLRKAFQEYAAKFDPCQCAPCPNNGR 531 WLESVKENPVVIDFELAPITDLVRNIPCAVTRRNNLRKAFREYAAKFDPCWCAPCPNNGR 533 WLESVKENPAVVDYELAPIIDLVRNIPCAVTKRNNLRKALQEYAAKFDPCQCAPCPNNGR 531 WLQSVKENPAVVDFELAPILDLVKNIPCAVTKRKNLKQALHEYAEKFDPCKCAHCPNNGK 531 WLESTKDNPVVIDFEVSSIVDLVKNMPCAVTRRRNLRRALREYAGRFDPCQCAPCPNNGR 531 WVKSTIDNPVVVDFELAPILDLITGIPCAVTKKRNLQKAFAKYLETFDPCICAPCPNNAR 532 WAKSLIDNPAVVEYELLPIINLVKGIPCAATKRRHLTRALVEYLEDFDSCKCAPCPNNAR 536 * :* :** *:: : : . : : : .: ***.*:: : : :*: :* **.* ** ***..:

EGF domain (521-570) TSP1 (568-617)
PVLSGTECLCVCQSGTYGDNCERRAPDYKSNAVDGNWGCWSSWSTCDATYKRSRTRECNN 591 PVLSGTECLCVCQSGTYGENCERRSPDYKSNAVDGNWGCWSSWSSCDATYRRSRTRECNN 591 PTLSGTECLCVCQSGTYGENCEKQSPDYKSNAVDGQWGCWSSWSTCDATYKRSRTRECNN 591 PTLSGTECLCVCQSGTYGENCEKQSPDYKSNAVDGHWGCWSSWSTCDATYKRSRTRECNN 591 PTLSGTECLCVCQSGTYGENCERRSPDYKSNAVDGHWGCWSSWSTCDATYKRSRTRECNN 591 PTLSGTECLCVCHSGTYGDNCERRSPDYKSNAVDGNWSCWSSWSTCDATYKRSRTRECNN 593 PRLSGTECLCVCQSGTYGENCEKRSPDYKSNAVDGNWGCWSSWSACNAAYRRSRSRECNN 591 PTLSGTECLCVCQSGTYGENCEIRAPDYTSNEVDGAWSCWSSWSPCAASYKRQRTRECNN 591 PVLSGTECLCLCQAGTYGTNCEIRAPGYESVAVDGRWSCWSEWSSCDASFKRRRTRECNN 591 VVLSGTECLCICQPGTYGDNCEKRTPDYTSVVVDGAWGCWKAWSSCDGAFTRRRTRECNN 592 AVLSGTDCQCICQTGTYGPNCEQRAQDYTSEAVDGYWSCWGTWSACDASMKRHRTRECNN 596

PAPRQGGKPCDGERRQEEHCTFSIMQNTGQPCIGDDEDMKEIDLPEIES-DSGCPQPVPP 650 PAPQQGGKRCEGERRQEEHCTFSIMQNDGQPCISDDEDMKETDLPELES-DSGCPQPVPP 650 PAPQRGGKRCEGEKRQEEDCTFSIMENNGQPCINDDEEMKEVDLPEIEA-DSGCPQPVPP 650 PVPQRGGKRCEGEKRQEEDCTFSIMENNGQPCINDDEEMKEVDLPEIEA-DSGCPQPVPP 650 PAPQRGGKHCEGEKRQEEDCTFSIMENNGQPCINDDEEMKEIDLPEIEA-DSGCPQPIPP 650 PAPQQGGKPCEGEQRQEEDCTFSVMENNGQACISDDEEVKEIDLPEIES-DSGCPRPVSP 652 PEPQRGGQRCEGKHWQEEDCTFSIMEKVGQPCISDDEEIKEVDLAEPEA-DSGCPQPPLP 650 PAPQNGGKPCVGEQEQEEDCSFSIFENRGDLCINDEEAEKEVDIDETNP-ESGCVKPIPP 650 PSPINGGKPCKGEREEEEDCYVSVFMDNGAPCINDDEAKSELDIVVGVL-ETGCSRPDPP 650 PYPRNGGKPCEGEATQEEDCNISLFEDTGALCINEGD-KKETDRVQPEH-DTGCPKPDLL 650 PAPLRGGKLCQGPARQEEGCFISIFQEQ-NVCVNDEDFATEGRAEGLPPGVEGCPRPKRP 655 * * . **: * * : ** * . : : . . *: : : . *
S.scrofa
B. taurus
H.sapiens
P. troglodytes
P. pygmaeus
C. familiaris
R.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H. sapiens
P.troglodytes
P.pygmaeus
C. familiaris
$R$.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H.sapiens
P.troglodytes
P. pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H.sapiens
P. troglodytes
P. pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss
S.scrofa
B. taurus
H. sapiens
P.troglodytes
P.pygmaeus
C.familiaris
R.norvegicus
M.domestica
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
H. sapiens
P.troglodytes
P.pygmaeus
C.familiaris
$R$.norvegicus
M.domestica
G.gallus
X.tropicalis
O.mykiss

CCP domain (644-699)
ENGFIRNEKTLYSVGEDVEIVCLTGFKTVGYQYFRCLPDRTWRRGDVECQRTDCLLPVVP 710 ENGFIRNEKKQYSVGEEVEILCFTGFKAVGYQYFRCLPDRSWRQGDVECQRTECLKPIVP 710 ENGFIRNEKQLYLVGEDVEISCLTGFETVGYQYFRCLPDGTWRQGDVECQRTECIKPVVQ 710 ENGFIRNEKQLYSVGEDVEISCLTGFETVGYQYFRCLPDGTWRQGDVECQRRECIKPVVQ 710 ENGFIRNEKKLYSVGEDVEILCLTGFETVGYQYFRCLPDGTWRQGDVECQRTECIKPVVQ 710 ENGFIRNEKKLYSVGEEVEILCFTGFKTVGYQYFRCLPDRTWRRGDVECRKTQCLKPVVQ 712 ENAFVWNEKKLYSVGEEVEISCLTGFKAVGYQYFRCLPDRTWRQGDVECQRTECLKPVVQ 710 ENGFLRNEKRLYSVGEEAEVACMMGFNLVGYPYLRCLPDQTWRQEGVECQRVGCIKPFVQ 710 ENGFIRNEKNQYAVGEEAEIACVSGHVLIGYQFLRCLPDQTWTQQPVECQPSLCLRPPTS 710 GIAFLTNEKNWYDVAEQIEIACVSGYELSGYPFLRCLPDGTWKQEDVECVKTTCPRPKAS 710 ANSHLRKDKRYYEFGDMEEFLCFTGFEMEGYQFINCRPDGTWTPPTGMCIRKVCSPPAVP 715

CCP domain (704-761)
EVLKLSPFQRLYKIGDSIELSCPK-GFVIAGPSRYTCSGD-SWTPPISSSLTCEQDFLTR 768 EGLTLSPFQTLYKIGDSIELTCPR-GLVVNGPSRYTCSGD-SWTPPISDSLSCEKDVLTG 768 EVLTITPFQRLYRIGESIELTCPK-GFVVAGPSRYTCQGN-SWTPPISNSLTCEKDTLTK 768 EVLTITPFQRLYRIGESIELTCPK-GFVVAGPSRYTCQGN-SWTPPISNSLTCEKDTLTK 768 EVLTITPFQRLYRIGESIELTCPK-GFVVAGPSRYTCQGN-SWTPPISNSLTCEKDTLIK 768 EVLTISPFQRLYRIGESIELTCPK-GFVVAGPSRYTCSED-SWTPPISNSLTCEKDVLTK 770 DVLTISPFQSVYKIGESIELTCPR-GFVVAGPSRYTCKGD-SWTPPIPNSLSCEKDILTK 768 EGISITPYQSVYDIGNTIKLTCPY-GFAITGPPNYLCGKQ-SWEPAIPSSLTCRQDILP-767 DSVEISPFKLHYNIGETVKLSCRA-GFVVTGQTQYTCGKDLSWFPSILRSITCEKDEQAK 769 EDITIYHYKTDYKVGESIHVSCPR-DFVVVGSARYTCGRDLEWNPPILRQLTCGKETQKV 769 EGMTLYPSKKEYKVDHSVGLECTERGMVPSEQGFYTCAKSLTWEPPLPKDLHCKIDKPFV 775

FIMAC domain (767-839)
LKGHCQPGQKQLGSECVCLSPEEDCSHHSEDLCVLDTDSNHYFTSSACKFLAEKCLNNQQ 828 LRGHCQPGQKQLGSECVCMSPEEDCGHYSEEICVLDTTSSDYFTSSACKLLAEKCLNNQQ 828 LKGHCQLGQKQSGSECICMSPEEDCSHHSEDLCVFDTDSNDYFTSPACKFLAEKCLNNQQ 828 LRGHCQLGQKQSGSECICMSPEEDCSHHSEDLCVFDTDSNDYFTSPACKFLAEKCLNNQQ 828 LKGHCQPGQKQSGSECICMYPEEDCSHYSEDLCVFDTDSNDYFTSPACKFLAEKCLNNQQ 828 LKGHCQPGQKQLGSECICMSPEEDCSHYSEDLCVFDTDTSHYFTLSACKFLAEKCLNNQQ 830 SKGLCQPGQKQSGSECVCMSPEEDCSSYSEDLCIFDEGSSQYFTSSACKFLAEKCLNSNQ 828 FPENCGPGHKLVESKCVCMSPEEDCSHYSEDLCVFNSESNHYFTKPSCKFLAEKCANAQK 827 IRGVCNPGQKQVGSECVCMNPEEDCGHYSEDICVLHALSEQHVTKPSCQFSAEKCLGEQS 829 IQGNCKPGQKQMGSDCICMSPETDCGHFTEDLCTFDAVSQNPVTISRCKFLAENCLGHKK 829 PDNQCGRGERHVGSKCICVARET-CLPYKTEFCIFNAEVGSGVMMSYCGFHSGRCHG-DQ 833

LQFLHIGSC-QDGPQLEWGLERIKLSSSSTKNESCGYDTCYSWEKCSATTSKCICLLPFQ 887 LHFVHIGSC-EEGPQLKWGLERIKLSSSSTKNESCGYDTCYNWEKCSATTSKCVCLLPSQ 887 LHFLHIGSC-QDGRQLEWGLERTRLSSNSTKKESCGYDTCYDWEKCSASTSKCVCLLPPQ 887 LHFLHIGSC-QDGHQLEWGLERTRLSSN̄STKKESCGYDTCYDWEKCSASTSKCVCLLPPQ 887 LHFLHIGSC-QDGRQLEWGLERARFSSNSTKKESCGYDTCYDWEKCSASTSKCVCLLPPQ 887 LHFLHIGSC-QDGPQLEWGLERRILSSNSTKKEPCGYDTCYDWEKCSASVSKCVCLLPPQ 889 FHFVHAGSC-QEGPQLEWGLERLKLAMKSTKRVPCGYDTCYDWEKCSAHTSNCVCLLPPQ 887 LHFLSAGAC-QDGPQLERAIERIKLSYNSTKKEPCGYDTCYDWESCSASTSTCFCLMPYQ 886 FHFLHAGPC-HSTSSVHWAIERAKLSANSLKKVPCGYDTCYDWEECPESQMQCSCLMPYQ 888 LQFLDNGPC-KRD-QLDWYRTRVSLAVSSTKKEPCGYDFCYDWEQCSG--SECFCLLPPQ 885 LFFMNVGPCDEDVVSLDWAKFRVSMAAKSSVQEPCDSDTCYEWESCTES-KQCLCKVPRD 892 : *: *.* . . . * : : .* . .*. * **.**.*. * * :* :

FIMAC domain (861-934)
CLKGGYQHYCVKMGSSTTTRTMNICEVGAIRCALRKMEILYPGRCRSN- 935
CTKGGDQLFCVQIGSSANGKTMNICEVGAVKCAKREMEILHSGRC--- 932
CFKGGNQLYCVKMGSSTSEKTLNICEVGTIRCANRKMEILHPGKCLA-- 934
CFKGGNQLYCVKMGSSTSEKTLNICEVGTIRCANRKMEILHPGKCLA-- 934
CFKGGNQLYCVKMGSSTSEKTLNICEVGAIRCANRKMEILHPGKCLA - 934
CFKGGSQLYCVKMGSSLSEKTVNICEVGAIRCANRKVDILYPGRCSA-- 936
CPKDENQLHCVKMGSSMRGKTVNICTLGAVRCANRKVEILNPGRCLD-- 934
CPKNGSQVYCIRTGSSKTEKTMNICALGTLYCAQKKVEIVHHGQCIA-- 933
CPREESQLHCIRMESTGRRKRVSHCVLAAMKCAGIGLEVLEEGSCLG-- 935
CPPNSEVQYCAKVGSAGKQRTISLCSLGAIKCASIKVEVLYDGACSTTN 934
${\underset{\star}{*}}_{\text {CPKEGEHMFCVKLLKTQSKRSVNLCFMAAIKCRKMEFEILNEGLCEEST }}^{*} 941$

Figure 46 (continued)

| M.musculus | MQVTSLLILVCFIAAFQV---------FSRASSPVNCKWDSYGPWSECNGCTKTQTRRR 50 |
| :---: | :---: |
| R.norvegicus | MKATSLLILVGFMTEFQI--------FSRASSPVNCEWDSYGPWSECNGCTKTQTRRR 50 |
| S.scrofa | MKAMSLVFLVGLIGEFQV--------FSSASSPVNCQWDSYAPWSECNGCTKTQTRRR 50 |
| B. taurus | MKAITLLFLVGFIGEFQV---------FSSASSPINCQWGSYAPWSECNGCTKTQTRRR 50 |
| H.sapiens | MKVISLFILVGFIGEFQS--------FSSASSPVNCQWDFYAPWSECNGCTKTQTRRR 50 |
| D. rerio | MKCVFLHGVFLLSLLSSAPITHAGSLRSIRSASEPVHCLWGSWSSWSACDRCSKTQTQIR 60 |
| O.mykiss | MKDRLSVSLICLSWLFFG-----MFSPINCVEPVHCQWGSYGDWSECDGCTKTQSRAR 53 |
| P.olivaceus | MKLSLAVCSSLLLILLSP---------VCCQQSVNCRWGPYGEWSECDGCTSTEARTR 49 |
|  | ..::* *. :. ** *: *: |
|  | TSP1 domain (30-80) LDLa domain (84-120) |
| M.musculus | SVAVYGQYGGYPCEGSAFETQSCKPERGCPTEEGCGDRFRCFSGQCISKSLVCNGDPDCE 110 |
| R.norvegicus | SIAVYGQYGGHRCVGSAFETQSCNPERGCPTEEGCGDRFRCFSGQCISKSLVCNGDSDCE 110 |
| S.scrofa | PVAVYGQYGGHPCVGSTFETQSCEPTRGCPTEEGCGERFRCFSGQCISKSLVCNGDSDCE 110 |
| B. taurus | SIAVYGQYGGHSCVGSAFETQPCQPTRGCPTEDGCGERFRCFSGQCISKSLVCNGDSDCE 110 |
| H.sapiens | SVAVYGQYGGQPCVGNAFETQSCEPTRGCPTEEGCGERFRCFSGQCISKSLVCNGDSDCD 110 |
| D. rerio | FVAVFSQFGGQPCTGSSTRTQTCISTQVCPLEEGCGGRFRCQSGKCISLSLVCNSDQDCE 120 |
| O.mykiss | AMVVYAQFGGSPCSGGATQTQPCVTARGCPLKEGCGGRFRCRSGKCISQSMVCNGDQDCE 113 |
| P.olivaceus | HVEVYAQFGGAACSGEATQTQPCVPQKRCPLETGCGDRFRCTSGQCISRTLLCNGDFDCN 109 |
|  | *:.*:** * * : **.* . : ** : *** **** **:*** : : **. |
| M.musculus | EDGADEDKCENVAN-PSCNID---KPPPNIELTGYGYNVVTGQGKKRVINTKSFGGQCRK 166 |
| R.norvegicus | EDGADEDRCEGAESRPSCDTV---KPPPNIELTGNGYNALTGQFRNRVINTKSFGGQCRK 167 |
| S.scrofa | EDSADEDRCEDSESRPSCDLS---KPPPNIELTGNGYNALTGQFRNRVLNTKSFGGQCRK 167 |
| B. taurus | EDGADEDRCEDAESRPACDKD---KPPPNIELTGRGYNALTGQFRNQVLNTKSFGGQCRK 167 |
| H. sapiens | EDSADEDRCEDSERRPSCDID--KPPPNIELTGNGYNELTGQFRNRVINTKSFGGQCRK 167 |
| D.rerio | -DGSDEQRCDSKPICKISENTNLQKPPPNVEITGQGFDAAKREARGTVINTKSFGGLCQK 179 |
| O.mykiss | EDNQDELKCGPDKTFPVCNND---KPPPNVEQLGLGFDAVTGKQRGSVINTKSYGGQCRT 170 |
| P.olivaceus | $\underset{*}{- \text { DGLDERGCPQ }} \underset{*}{ }$ |
| M.musculus | VFSGDGKDFYRLSGNILSYTFQVKVDNDFNYEFYNSSWSYIKHTSTEQNTFYS-WKGLFS 225 |
| R.norvegicus | VFSGDGRDFYRLSGNILSYTFQVKIDNDFNYEFYNSSWSYVKHTSTDYTSSSSNRFLFFS 227 |
| S.scrofa | VFSGDGRDFYRLSGNVLSYTFQVKVNNDFNYEFYNSTWSYAKHTSTEHTSSSKGRVFIFS 227 |
| B. taurus | VYSGDGRDFYRLSGNILSYTFQVKINNDFNNEFYNSTWAYVKETSTEHSSSSKGRFLFFS 227 |
| H.sapiens | VFSGDGKDFYRLSGNVLSYTFQVKINNDFNYEFYNSTWSYVKHTSTEHTSSSRKRSFFRS 227 |
| D.rerio | TFSGDHKDFYRLPQSVLSYSFQVTAKNDFTDESFASSWHYLHHYEKHEK--------TT 230 |
| O.mykiss | VLSGDNKVIYRLPQSTLRYNFEVKVQNDFSDEFYTSSWSYAKDIVKRET--------TT 221 |
| P.olivaceus | VFSGDHKVYYRLPQSVLRYNFEVKVDNEDTDESYESSWSYTQHIQAN------------212 |
|  | * : ***. . * *.*:*. .*: . * : *:* * |

Figure 47 Alignment of the C7 proteins among species according to the GenBank accession no. as given in table 7 using the ClustalW2 tool. The amino acids are enumerated above each line on the right side. The identical, similar and missing residues are indicated with asterisks (*), points (.), and dashes (-), respectively. Signal peptides in human C7 protein (DiScipio et al. 1988) and in pig C7 protein are in bold and italic. The amino termini of C7 mature protein starts just after the signal peptide. The cysteine residues are highlighted. The cysteine-rich functional protein domains like TSP1, LDLa, MACPF, CCP, and FIMAC are in continuous underline. The glycosylation sites in human (DiScipio et al. 1988) and in pig (Agah et al. 2000) present in shade blocks with white bold font. Fragment of amino- (a.a 23-575) and carboxylterminus (a.a 576-843) is in bold and double underline (DiScipio et al.1988). Continuously italic sequence in CCP domain is the internal peptide obtained by tryptic digestion and Edman degradation of native porcine C7 (Agah et al 2000)
M.musculus
R.norvegicus
S.scrofa
B. taurus
H.sapiens
D.rerio
O.mykiss
P.olivaceus
M.musculus
R.norvegicus
S.scrofa
B. taurus
H.sapiens
D. rerio
O.mykiss
P.olivaceus
M.musculus
R.norvegicus
S.scrofa
B. taurus
H. sapiens
D.rerio
o.mykiss
P.olivaceus
M.musculus
R.norvegicus
S.scrofa
B. taurus
H. sapiens
D.rerio
O.mykiss
P.olivaceus
M.musculus
$R$. norvegicus
S.scrofa
B. taurus
H. sapiens
D.rerio
O.mykiss
P.olivaceus
M.musculus
R.norvegicus
S.scrofa
B. taurus
H.sapiens
D.rerio
O.mykiss
P.olivaceus
M.musculus
R.norvegicus
S.scrofa
B. taurus
H.sapiens
D.rerio
o.mykiss
P.olivaceus

HSRNTYGHGSAKEEIDTKMKSYKLLVVQNTVEVAQFTNNNPEFLQVAEPFWKELSHLPTL 285 SSSNRHTQSSSTKEIYMK-KSYKLLVVQNTVEVAQFINNNPEFLQLAEPFWRELSHLPTL 286 SSSSSSSYYAKTYEILKK-KSYQLLVVQNTVEVAQFINNNPEFLQLAESFWKELSYLPPL 286 SSSSSHGYSSNTNILTKK-KSYQLLVLQNTVEVAQFINNNPEFLQLAESFWKELSYLPSL 286 SSSSSRSYTSHTNEIHKG-KSYQLLVVENTVEVAQFINNNPEFLQLAEPFWKELSHLPSL 286 GTDYGHDDYVFHDELSQS-KSKNLMIIKSDVEVGQFKNKDPEYLPLSEDFWKALVALPVV 289 GTTTGFNNYDLHQTEEKN-RNNHLLVVKNNVEVAQFQNQAPGYLSLSEEFWKVLATLPTV 280 -ALFGHDRRTFHKDLTEN-KASRLIILKNKVELAQFQNSAPQYLTLSEGFWKALSSLPFT 270
: ${ }^{*}::::{ }^{* *}:{ }^{* *}{ }^{*} .{ }^{*}$ :
MACPF domain (249-450)
YDYSAYRRLIDQYGTHYLQSGSLGGEYRVLFYVDSGSAKETGFQSDQDNACSSADFQFLF 345 YDYSAYRRLIDQYGTHYLQSGSLGGEYRVLFYVDSGDVKHRGFGSVQEKACSSSDFKFIF 346 YDYSAYRRLIDQYGTHYLQSGSLGGEYKVLFYVDSEKVAESDLGSEDKKKCASSHISFLF 346 YDYSAYRRLIDQYGTHYLQSGSLGGEYKVIFHMDSEKVKKFDFHSEDKRKCASSHFQFLF 346 YDYSAYRRLIDQYGTHYLQSGSLGGEYRVLFYVDSEKLKQNDFNSVEEKKCKSSGWHFVV 346 YDYAAYRNVLERFGTHYISEGSLGGHFKLYLMASEDVISKLKSEKRDYEDCVVTSHSVMF 349 YDYATYRMVVERFGTHYLSEGTLGGYFQALLSIDQETATQMAKVTWKYNECTKTKHRILF 340 YDYSAYRQLLQTYGTHYLSEGSLGGEYQGLLELDRQAFTSTSTTDTEYKRCWKKVKRRFF 330 ***: :** : : : :****:..*:*** : : .

TS-SADQRCMKQLETEKSTSGNKGRLLR--GKPLVRGGDSGFVADLSFLDLDNPAGNKQR 402 VS-SANQRCKELENIFKSNSGNQGRVLR--GEPSVIGGGPGFVADLSFLDLDNPAGNRQR 403 KS-SK-HKCKAMEEALKSASGTQSNVLR--GVPFVRGGRPGFVSGLSYLELDNPDGNKQR 402 TS-SK-QKCTTMEEVLKSVSENEGNLLR--GVPFVRGGHSGFLAGLSYLDLNNPAGNKRR 402 KF-SS-HGCKELENALKAASGTQNNVLR--GEPFIRGGGAGFISGLSYLELDNPAGNKRR 402 FIRWSTKTCKTDTIDETKTFYKSIPESD--MKTDIIGGDPGFIAKLSMFYKYDVKENART 407 VS-WTTEKCRKDEKEYTLPNPPSISRSDTVKKVDVEGGATAHIAALKALDLNTPGRNWDM 399 RK-KVKITCETFMNSISSRDGHNVNKMP--IKVNVFGGDPSFIGALSVLDLEKPETNGEI 387 *

YSSWAGSVTRLPQVIKEKLAPLYELVKEVPCASVKRLYLKRAIEEYFDEFDPCHCRPCQN 462 YSSWASSVTSLPQVIKQRLTPLYELVKEVPCASVKRLYLKRALEEYLDEFDPCHCRPCQN 463 YSSWAGSVTDLPQVIKQKLTPLYELVKEVPCASVKRLYLKRALEEYLDEFDSCHCQPCQN 462 YSQWAGSVPDLPEVIKQKLTPLYELVKEVPCASVKKLYLKRAIEEYLDEFDPCHCRPCHN 462 YSAWAESVTNLPQVIKQKLTPLYELVKEVPCASVKKLYLKWALEEYLDEFDPCHCRPCQN 462 FSQWSGSLKYYPRIIKSKLRSLHELVKEVPCAGLKRFLLKRAIETYLTEKHSCQCRECQN 467 YKNWAESVRTFPAVIKRKMRPLYELVKEVQCAGMKRFHLKRAIEQYLNERHPCRCQPCRN 459 YDNWASSVKDFPNIIDQKLRPLHELVKEVQCAGLKKLHLERATEEYLSEEHPCHCRPCQN 447 :. *: *: * :*. :: . : ****** **.:*:: *: * * *: * ..*:*: *:*

GGLAIVVETQCQCLCKPYTFGSACEQGVLVGDQAGGVDGGWNCWSSWSPCVQGKRTRSRE 522 GGIASVVGTQCQCHCKPYTYGMACEQGVLVGDQAGGVDGGWSCWSSWSPCVQGKKSRSRE 523 GGMASVEGTQCQCHCKPNTFGVACEQGVLVGDHAGGIDGGWSCWSSWGPCAQGKKTRSRK 522 GGMATVQGSQCQCYCKPKTSGVACEQGVLLGDQAGGVDGGWNCWSSWGPCVQGKKTRSRQ 522 GGLATVEGTHCLCHCKPYTFGAACEQGVLVGNQAGGVDGGWSCWSSWSPCVQGKKTRSRE 522 NGLRVLDGNVCKCVCKPGTSGQACEYGTAYDEQPGVIHGDWACWSSWSSCSGGQKSRRRS 527 NGLVVMAGDKCSCICKPGTDGLACEKGKEVEGQEGVIHGSWSCWSGWNSCSGGQRSRTRA 519 NGQPLLSGSVCRCVCRPGTSGPACQTGAVIGEQPGLIHGGWSCWSSWGSCSGGRMSRTRS 507 .* : * * *:* * * **: * : * : . *. * ***....**: :* *

TPS1 domain (503-551)
CNNPPPRDDGKSCLGETTESKQCEDQD-LEKLRLLEPHCFHSSLAPKEFCLSPPALKDGF 581 CNNPPPRAGGKACIGETTESRQCEDQD-LENLRLLEPHCFHLSLVPKGFCPSPPALKDGF 582 CNNPPPSGGGKSCIGETSESRQCEDED-LEHLRLLEPHCFPLSLVPTEFCPSPPALKDGF 581 CNNPSPSAGGKSCIGETSETRQCEDEE-LEHLRLLEPHCFPLSLVPTKFCSSPPALKDGF 581 CNNPPPSGGGRSCVGETTESTQCEDEE-LEHLRLLEPHCFPLSLVPTEFCPSPPALKDGF 581 CTRPAPS-GGRDCIGNTEERTACEDEEELNHLRSMEPHCFDDSIKPRESCKTPPFVPNGF 586 CSNPAPQRGGHHCNGEVRETTGCDDDQDLQYLQTMEPQCFDLTVPPKETCRSPPPLPNGY 579 CNNPAPSRGGQHCTGLRAEQKPCEDPQ-IQYLQTMEPQCFSLSVTPPKTCGPPPNLRNGF 566 *..*.* .*: * * * *:* : : : *: : **:** : : * * .** : :*:

CCP domain (571-626)
VQGEGTMVPVGQSVVYACDEGYSLIGDPVARCGEDLQWLVGEMHCQKLACVLPGEMNGMQ 641 VQSEGTMFPIGKNIVYACNEGYSLVGDPVARCGEDLQWLVGEMHCQKIACFLPGGMNGMR 642 VQNEETTFPVGKNIVYSCNEGYSLVGDPVARCGEDLQWTVGKMHCQKIACVLPTLMRGLQ 641 VQDEGATFPVGKNIMYTCKEGYSLVGDPVARCGEDLQWLVGNMHCQKIACVLPALMDGIQ 641 VQDEGTMFPVGKNVVYTCNEGYSLIGNPVARCGEDLRWLVGEMHCQKIACVLPVLMDGIQ 641 VLYPKDVYPVGSKIEYTCIEGYHLIGNAIAKCQEDLNWLQYPVECKKTQCDPPQLPPDVT 646 VLDPKDVYLVGSKIEYTCIEGYHLIGIRIAECTVALTWSTPSKECKSSRCHVPSLLNDVT 639 IQNPRDFYVVGNTVEFSCTEGHYLSGDAVTRCTENQTWTPRTTVCKSTTCGIPQLGAEVM 626

Figure 47 (continued)


Figure 47 (continued)

| S.scrofa | MLAVAFFILSLMTCQP-.-.-.-.-. GVTIPEKVNRRVSR 30 |
| :---: | :---: |
| B. taurus | MFAAAFFLLFLMTYQP-.-.-.-.--GVTIQEKVNWRVSR 30 |
| C. familiaris | -MFAAAFFILSLMICQP--.-.-.-- - GVTIQEKVNRRVSR 30 |
| H.sapiens | MFAVVFFILSLMTCQP-...-.-.--GVTAQEKVNQRVRR 30 |
| P.troglodytes | -MFAVVFFILSLMTCQP-.-.-.-.-.-GVTAQEKVNQRVRR 30 |
| M.mulatta | -MFAVVFFILSLMTCQP-.-.-.--- GVTAQEKVNQRVRR 30 |
| O.cuniculus | -.-.-.--MVAAFFTLFLVTCQP-...-...---AVTAQEKVNQRVNR 30 |
| M.musculus | -- MFVVAFFGLSLVAWHP-...-....--GVTAQEKVNQRVTR 30 |
| R.norvegicus | -----MFTVAFFGLSLMAWHS-.-.-.-.-- GVTAQEKVNQRVTR 30 |
| G.gallus | -MWWSLCQVSPLILTICSLSITARWATAAA-CGEPAAVPAQRRSSR 44 |
| X.tropicalis | -----MIVMLYHALALWGYTA--------------- |
| O.mykiss | MSSFSSRSSFISNMNRLICVLLGSYILLLVLNKSPTVDATEYSWNMAETRTGQSAIRRVR 60 |
|  | * : * |

Figure 48 Alignment of the C8A proteins among species according to the GenBank accession no. as given in table 9 using the ClustalW2 tool. The amino acids are enumerated above each line on the right side. The identical, similar and missing residues are indicated with asterisks (*), points (.), and dashes (-), respectively. Signal peptides in human C8A protein (Rao et al. 1987) and in pig C8A protein are in bold and italic.
S. scrofa
B.taurus
C. familiaris
H. sapiens
P.troglodytes
M.mulatta
O.cuniculus
M.musculus
R.norvegicus
G.gallus
X.tropicalis
O.mykiss
S.scrofa
B. taurus
C. familiaris
H. sapiens
P.troglodytes
M.mulatta
O.cuniculus
M. musculus
R.norvegicus
G.gallus
X.tropicalis
O.mykiss
S.scrofa
B. taurus
C. familiaris
H.sapiens
P.troglodytes
M.mulatta
O. cuniculus
M. musculus
R.norvegicus
G.gallus
X.tropicalis
O.mykiss

TSP1 (44-94)
AVLSSTPTAVSCQLSNWAEWTECFPCQDKKYRYRSLLQPNKFGGAICSGNVWDQASCHSP 90 AV̄QSFTPTAVSCQLDNWAEWTDCFPCQDKKYRYRSLLQPNKFGGTICSGNVWDQASCHSP 90 AVQSAPITAVPCQLSNWSEWTDCFPCQDKKYRYRSLLQPDKFGGTICSGDVWDQASCHSP 90 AAT---PAAVTCQLSDWSEWTDCFPCQDKKYRHRSLLQPNKFGGTICSGDIWDQASCSSS 87 AAT---PAAVTCQLSNWSEWTDCFPCQDKKYRHRSLLQPNKFGGTICSGDIWDQASCSSS 87 AAT---PAAVTCQLSNWSEWTDCFPCQDKRYRYRSLLQPNKFGGTICSGDVWDQASCSSS 87 AAT---PRAFDCQLSSWSEWTDCFPCQDTKYRHRSLLQPNKFGGTICSGDIWDRASCYSP 87 AVT---PQAVSCQLSDWYKWTDCFPCQDKKYRYRSLLQPSKFGGTICSGDIWDEASCDSP 87 AVT---PGAVACQLSDWSEWTDCFPCQNEKYRYRSLLQPSKFGGTICSGDIWDKANCDSP 87 DISS--PPPVDCQLSQWSEWTDCFPCQGRKHRHRTLLQPAMFGGQRCKGPLWDEQSCSAW 102 SIAA--PQPEDCQLDQWSQWTSCFPCQQKKYRYRKLLQPAKYEGRPCVGSLWASMACQTA 85 SVN--KPAPINCKMKMWSSWSPCDSCTDKKFRFRYMEKASQFGGRQCLDSQWEELACPTA 118

LDLa (98-135)
TE-CLRQAQCGQDFQCKETGRCLKRHLVCNGDRDCLDGSDEDDCEDVRIFEDDCSQYDPI 149 TA-CLSQAQCGQDFQCKETGRCLKRHLVCNGDKDCLDGSDEDDCEDVRILENDCSQYDPI 149 TA-CLHQAQCGQDFQCKETGRCLKRHLVCNGDKDCLDGSDEDDCEDVRVAENDCSQYEPI 149 TT-CVRQAQCGQDFQCKETGRCLKRHLVCNGDQDCLDGSDEDDCEDVRAIDEDCSQYEPI 146 TT-CVRQAQCGQDFQCKETDRCLKRHLVCNGDQDCLDGSDEDDCEDVRAIDEDCSQYEPI 146 TP-CIRQARCGQDFQCKETGRCLKRHLVCNGDQDCLDGSDEDDCEDVRAIDEDCSQYEPI 146 TA-CLRPAQCGQDFQCKETGRCLKRHLVCNGENDCLDGSDEDNCEDIRATESDCAQYDPI 146 TP-CLRQAQCGQDFQCRETGRCLKRHLVCNGDNDCLDGSDESDCEDVRVTEDDCHQYEPI 146 TP-CLRQAQCGQDFQCRETGRCLKRHLVCNGDQDCLDGSDEDNCDDARVIEDDCRQYEPI 146 ES-CARAPSCGNDFQCKESGRCIKQHLVCNGNTDCRDGSDENDCEHE-EIEHPCDNLFPI 160 QK-CVPENNCGNDFQCRDSGRCIKRRLVCNGDLDCRDSSDEEDCDAP-EHETFCKTLFPI 143 QAVCWEPDICGERFTCNATGRCVSQALRCNGEVDCDDESDETDCEQVDDRQDKCSTLLPI 178

PGSERATLGYNILTQEETQSVYDARYYGGQCETVYNGEWRELRYDSACERLYYGDDEKYF 209 PGSEKAALGYNILTQEEAQHVYDARYYGGQCETVYNGEWRELQYDPACERLYYGDDDKYF 209 PGSESAALGYNILTQKEAQHVYDPRYYGGQCETVYNGEWREIRYDPTCERLYYGEDEKYF 209 PGSQKAALGYNILTQEDAQSVYDASYYGGQCETVYNGEWRELRYDSTCERLYYGDDEKYF 206 PGSQKAALGYNILTQEDAQSVYDASYYGGQCETVYNGEWRELRYDSTCERLYYGDDEKYF 206 PGSQKAALGYNILTQEDAQSVYDATYYGGQCETVYNGEWRELRYDPTCERLYYGDDEKYF 206 PGSEKAALGYNILTQEEAQSVYDARYYGGRCETVYNGEWRHVRYDPVCERLHHGEDDKYF 206 PGSERAALGYNILTQEEAQSVYDAKYYGGQCETVYNGDWRKLRYDPTCERLYYGEDEKYF 206 PGSERAALGYNILTQEEGQSVYDAKYYGGQCETVYNGDWRRLQYDPTCERLYYGEDEKYF 206 PGSEKAARGYNILTQEAKRYIYDPKFLGSHCESVYNGEWRALRYDAACERLYYGDDEKYL 220 PGAEKSVRGINILTHEDTRNVIDHNYFGGQCEYIYNGEWRELRYEPVCEQMYYSDEEKYF 203 PGAGRGTQGFNILTGEFVDHVLDPQYYGGQCEYVYNGEWRKLIYDPFCENLHYNEDEKNY 238 **: .. * **** : : * : *.:** :***:** : *:. **.:::.:::*

Figure 48 (continued) Position starts for amino terminus sequence of the mature porcine C8A protein in bold and double underline (Nakajima et al. 1998). The cysteine residues are highlighted. The cysteine-rich functional protein domains like TSP1, LDLa, and MACPF are in continuous underline. The glycosylation sites in human (Rao et al. 1987) and in pig (Nakajima et al. 1998) present in shade blocks with white bold font. Different amino acid sites in our protein and Nakajima et al 's (1998) are in bold and double underlined. Position of sequence forming the disulfide bond to C8G is continuously bold underlined in italic (Plumb and Sodetz 2000). The proposed candidate site for CD59 recognition is performed in continuously bold in MACPF domain of the porcine C8A (a.a 382-420) (Nakajima et al. 1998).
S.scrofa
B. taurus
C. familiaris
H.sapiens
P.troglodytes
M.mulatta
O.cuniculus
M.musculus
R.norvegicus
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
C.familiaris
H.sapiens
P.troglodytes
M.mulatta
O.cuniculus
M.musculus
R.norvegicus
G.gallus
X.tropicalis
O.mykiss
S.scrofa
B. taurus
C.familiaris
H.sapiens
P.troglodytes
M.mulatta
O.cuniculus
M.musculus
R.norvegicus
G.gallus
X.tropicalis
O.mykiss
S.scrofa
B. taurus
C.familiaris
H.sapiens
P. troglodytes
M.mulatta
O.cuniculus
M.musculus
R.norvegicus
G.gallus
X. tropicalis
O.mykiss
S.scrofa
B. taurus
C.familiaris
H.sapiens
P.troglodytes
M.mulatta
O.cuniculus
M.musculus
R.norvegicus
G.gallus
X.tropicalis
O.mykiss

RNPYNFLKYHFEALADSKFSSESYDDANDLLKKVKNEKSVSAGVTVGIGPTGSPFTANVG 269 RKPYNFLKYHFEAQADTKISSEIYNDANDLLTKVK̄̄NDKSVSSGLTIGVGIRGVPVTVTAG 269 RKPYNFLKYHFEALADTRFSSELYDDAHDLLSKVKNNNFVSTGVTVGVSFTGSSVTVDVG 269 RKPYNFLKYHFEALADTGISSEFYDNANDLLSKVKKDKSDSFGVTIGIGPAGSPLLVGVG 266 RKPYNFLKYHFEALADTGISSEFYDNANDLLSKVKKDKSDSFGVTIGIGPAGSPLLVGVG 266 RKPYNFLKYHFEALADTGISSELYDNANDLLSKVRKDKSDSFGVTIGIGPAGSPLMVGVG 266 RKPYNFLKYHFEARADTGISFELYVDGNDLFSKVKNDKSHSAGVTISAGLTGSPLLGTVG 266 RKPYNFLKYHFEALADTSISSEFYDDANDLFFHIKNGKSHSAGVTVGVAPVKSPVSIEVT 266 RKPYNFLKYHFEALADTLISSEFYDDANDLFSKIQRDKSQSNSVTFGISPAKSPITLDAS 266 LKPYNFHVYQFLAHADSGFSSEFYDDSKDLIDALKSSKSEGGGFTIGIGPKKIDFKLNLG 280 RKPYNFHIYQFLARADTKMSIEIYEDSKDVVNAVKRDFSFNIGLTFGISVPEAPVGLELG 263 RKPYNFHTYRFMAQATSEGSSEYYEDMATLLKARKTEDSFNLGVTVGIR------YVEFG 292

LSGSRESAFLNKLSTYNEKKYSFIRIFTKVQTASFMMRRDNIMLDEVMLQSLMELP-EQY 328 VSMSQDAAFLKKLSKYHEKKYSFMRIFTKVQTAHFKMRRENIVLDEGMLQSLMELP-ERY 328 VSSSQNSSSLDELKKYNKKKYSFLRVFTKVQTAHFKMRRGNIVLDEGMLQSLMELP-EQY 328 VSHSQDTSFLNELNKYNEKKFIFTRIFTKVQTAHFKMRKDDIMLDEGMLQSLMELP-DQY 325 VSHSQDTSFLNELNKYNEKKFIFTRIFTKVQTAHFKMRKDDIMLDEGMLQSLMELP-DQY 325 VSKSEDASFLKELNKYNEKKFIFMRIFTKVQTAHFKMRRDNIMLDEGMLQSLMELP-DQY 325 VSGSEDASFLNKLSQYNEKKYNFMRIFTKVQTAHFKMRRDDIVLDEGMLQALVELP-EQY 325 GSGSKASSFLNKLNKYNEKRYGFMRVSTKIQTAQFKMRRNNIVLDEGMLQSLMELP-EQF 325 VSWSDESSFMKELSKYNEKKYSFMRVSTKVQTAHFKMRRHNIVLDEGMMESLMELP-EQF 325 FTLSRGKGSLKNFTEYTAKNLGFIRIATKVQTARFKMRRNNIVLDEDMLISLRELP-DTY 339 LNYGLKTSFLKKITSFNQKNLEFVRMVTKIQTARFKMRRNLLTLDEDAMQSLMELP-DEY 322 VSGNVESALLTNLTKYTNQELGFIRLQSKVQTAQFKMRSEGLMLHEDMYLSLMELPEEKY 352

MACPF domain (291-497)
NYGMYAKFIDDYGTHYITSGSMGGVYEYILVLNKENMTKSGVTSDDVTSCFGGSFGIDYD 388 HYGMYAKFINDYGTHYITSGSMGGVYEYILVLNREKMETAGVTSAEIQKCFGVSLGIEYE 388 NYGMYAKFINDYGTHYITSGSMGGIYEHILVLNKEEMESQRITSRDIEKCFGISVGIEYD 388 NYGMYAKFINDYGTHYITSGSMGGIYEYILVIDKAKMESLGITSRDITTCFGGSLGIQYE 385 NYGMYAKFINDYGTHYITSGSMGGIYEYILVIDKAKMESLGITSRDITTCFGGSLGIQYE 385 NYGMYAKFINDYGTHYITSGSMGGTYEYILVIDKAKMESLGITSRDIMTCFGGSLGIQYE 385 NYGMYSKFINDYGTHYITSGSMGGTYEYILVLNTEKMESLGVTSEDISSCFGGFGEIQYE 385 NYGMYAKFINDYGTHYITSGTMGGIYEYVMVLDKEKMKTEGTTVDEVQKCIGGGIGIGIK 385 NYGMYSKFINDYGTHYITSGTMGGIYEYVLVLDKEKMRIHGITVEDVKKCIGGGVGLQFG 385 NYGMYAKFINDYGTHFMTSGTMGGDLEYILVVNKEEMRRKDISYEEVTTCFGLSLGVSAK 399 NYGLYAQFINDFGTHYTTSGTMGGLVENIVVLDKEIMKKQEITASMVSHCFGASVRLSVQ 382 DFGLYSRFLNTYGTHYVTQGIMGGTLEYVAVVNTTAMKTSKIDAEQLKGCLGGSIGISSP 412 .:*:*::*: : ***: *.* *** * : *: : * : *

YTD--NLQITGSLSGKHCKK---LGGGHREDEESNMAVEDIISRVRGGSSGWGGGLTQN 442 YSE--AIQIKGSSSLGPCKK----SGDGKLTENEKAMGVEDFISRVRGDSSGWGGSLTQD 442 YAN--WMKIGGSLGGKGCEN----IGGGDSKGHRLTTAVEDIISLVRGGSSGWGAGLAEK 442 D----KINVGGGLSGDHCKK----FGGGKTERARKAMAVEDIISRVRGGSSGWSGGLAQN 437 D----KINVGGGLSGDHCKK----FGGGKTETARKAMAVEDIISRVRGGSSGWSGGLAQN 437 G----GINVDGSLSGDHCKK----FGDGKTERARKAMAVEDIISRVRGGSSGWSGGLAQN 437 KG---KINAQGILSGKHCKK----SGSGDKEADKMGQAVKDIISRVRGGSSGWGGGLSQN 438 DS----TIEGVGISGEFCEN----SGDGDRDIRKKITGVEDIISRVQGGSSVWGSVLTHN 437 EK----IIGEGDLSGESCVM----TGDGNQDKRKKDLAVEDIISRVQGGSSRWSTGLAHN 437 KL---MLHWEASVSLSVCAEKQLLNAVDFSDAGSNSPVMEDIIVRIKGGDTSYSARPISS 456 TEFE-EIIPSLKLSGDFCTK----FERENQDNSSSSRAIKDVITYVIGGDSGSAGGILNV 437 IGKTKQVEVGGKLEVKGCKG----TGSYEKEMYGSSSLIKDIVTLVKGGSTGGSGGLLAI 468 ::*.: : *..:

GSIITYRAWGRSLKYNPAVIDFEMKPIYEILRHTNLG-PLEAKRQNLRRALDQYLMEFNA 501 SSLVTYRSWGRSLKYNPAVIDFEMKPIHEILQHTNLG-SLETKRQNLRRALDKYLMEFNA 501 RSTITYRSWGRSLKYNPVVIDFEMQPIHEVLRHTTLG-PLETKRQNLHRALDQYLMEFNA 501 RSTITYRSWGRSLKYNPVVIDFEMQPIHEVLRHTSLG-PLEAKRQNLRRALDQYLMEFNA 496 RSTITYRSWGRSLKYNPVVIDFEMQPIHEVLRHTSLG-PLEAKRQNLRRALDQYLMEFNA 496 RSTITYRSWGRSLKYNPVVIDFEMQPIHEVLRHTSLG-PLEAKRQNLRHALDQYLTEFNA 496 GSATTYRFWGRSLKYNPVVIDFEMQPIHEVLLHTNLG-HVEAKRQNLRRALDQYLMEFNA 497 SSAITYQSWGRSLKYNPVVIDFEMQPIYQLLRHTNLG-PLETKRQNLRRALDQYLMEFNA 496 SSAITYRSWGRSLKYNPVVIDFEMQPIYQLLQHTNLG-PLETKRRNLRRALDQYLMEFNA 496 WDSNTYRRWGRSLKYNPAIIDFELQPIHEILPRSDAG-NMETKRQHLKQALDEYLLEFNA 515 FDGRMYRYWGRSLKYNPAVIDFEIQPIYEGLQQTGLS-GIEAKRQNLKRAYNEYLSEFDP 496 KDPDTYRKWGLSLKYNPNLIEFETLPIFELVRLSTAGDHVGARPAHLRRAWEEYLLQFNS 528

Figure 48 (continued)
S.scrofa
B. taurus
C. familiaris
H. sapiens
P. troglodytes
M. mulatta
O. cuniculus
M. musculus
R. norvegicus
G.gallus
X. tropicalis
O.mykiss
S. scrofa
B. taurus
C. familiaris
H. sapiens
P. troglodytes
M. mulatta
O. cuniculus
M. musculus
R. norvegicus
G.gallus
X. tropicalis
O. mykiss

CRCGPCFNNGEPILVGTSCRCQCPVGCQGLACEQMKSE---GAKADGRWSCWSSWSACRL 558 CRCGPCFNNGEPILEGTSCKCQCPVGHQGLACEQMQSE---GAQADGRWSCWSSWSACRS 558 CRCGPCFNNGKPILEGTSCKCQCPLGRKGLSCEQMEQK---GAKADGHWSCWSSWSACRA 558 CRCGPCFNNGVPILEGTSCRCQCRLGSLGAACEQTQTE---GAKADGSWSCWSSWSVCRA 553 CRCGPCFNNGVPILEGTSCRCQCRLGSLGAACEQTQTE---GAKADGSWSCWSSWSVCRA 553 CRCGPCFNNGVPILEGTSCRCQCRLGRLGPACEQIQTE---GAKADGSWSCWSSWSVCRT 553 CRCGPCFNNGKPILEGTSCRCQCSLGLQGPACEQTEQQ---GAKADGHWSCWGSWSPCTA 554 CRCGPCFNNGEPILDGTNCRCQCSMGRQGLACERTVIEGLKDFKAAGHWSCWSSWSECRG 556 CRCGPCFNNGVPILEGTSCSCQCSMGRQGPACESMVLEAMEGAKADGRWSCWSSWSECRG 556 CRCGPCQNNGEPVLVGDECSCQCPSGYSGPACERSEHQ---GTEVDGRWSCWSSWTPCQS 572 CRCGPCHNNGMPMLENNVCTCLCAAGFNGPSCENTLRK---DVKADGRWSCWSPWTQCQS 553 CRCAPCRHDGIPVLSQTSCHCICKQGFRGEACEETLRK---DSTTDGAWSCWGAWSSCQS 585
***.** : :* *:* * * * * * :** : . . * ****..*: *
TSP1 domain (547-586)
GTQERRRECNNPAPQNGGASCSGHKVQTQAC 589
GTQERRRECNNPAPQNGGASCPGHRVQTQAC 589 GTQERRRECNNPTPQNGGASCPGWKAQTQAC 589 GIQERRRECDNPAPQNGGASCPGRKVQTQAC 584 GIQERRRECDNPAPQNGGASCPGRKVQTQSC 584 GTQERRRECDNPAPQNGGASCPGRKVQTQAC 584 GTRERRRECNNPAPQNGGAPCPGWRVQTQAC 585 GSQERRRQCNNPPPKNGGTPCLGRNLQTQAC 587 GSRERRRQCNNPAPQNGGAPCLGKSLQTQAC 587 GSRRRSRQCTNPAPQHGGAPCMGRDVQSSSC 603 GKRQRTRECNNPAPKNGGAWCLGKSLQSEPC 584 GSKTRRRSCDNPQP-DGGAACLGSSSQNQRC 615

Figure 48 (continued)

| O.mykiss | 27 |
| :---: | :---: |
| P.olivaceus | --MFRVAIPRSALNLHSCLLHVTLSLVLISK--------- 29 |
| D.rerio | -MHSFLRVN-------- 8 |
| H.sapiens | MKNSRTWAWRAPVELFLLCAALGCLSLPGSRGER---- 34 |
| M.mulatta | -MKNSRTSAWRALVELFLLCAALGCLSLPGSRGER---- 34 |
| O.cuniculus | MKKSWTWTWRVPAELLLLCAALGCLCVPGSRSER--- 34 |
| C.familiaris | --MKTSRPQGWRALAELILLCAALGCLSLPGSRSER---- 34 |
| S.scrofa | -MSLSQISCRIEKMKTSGTWAWRMPARLFLLCAALGCLSLPGSRGER---- 46 |
| R.norvegicus | MKTG-AQVWRALAKSCLLCAALGCLHLPGARGEK---- 33 |
| G.gallus | ---MTVAWMAFTLCPIKLLLLCAALCFLDVHCFSSG----- 33 |
| M.domestica | MFWVQNWKGSSSRDSETWQNGDWPKRTVRGLMDYVRAMLFTSSWRNLSNVDTVSLYNTDD 60 |

Figure 49 Alignment of the C8B proteins among species according to the GenBank accession no. as given in table 11 using the ClustalW2 tool. The amino acids are enumerated above each line on the right side. The identical, similar and missing residues are indicated with asterisks (*), points (.), and dashes $(-)$, respectively. Signal peptides in human (Howard et al. 1987) and in pig C8B protein are in bold and italic. The amino termini of C8B mature protein starts just after the signal peptide. The cysteine residues are highlighted. The functional protein domains TSP1, LDLa, MACPF, and EGF are in continuous underline. The glycosylation site in human (Howard et al. 1987) and in pig using the NetNGlyc 1.0 Server tool present in shade blocks with white bold font.
O.mykiss
P.olivaceus
D.rerio
H.sapiens
M.mulatta
O.cuniculus
C. familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
O.mykiss
P.olivaceus
D.rerio
H.sapiens
M.mulatta
o.cuniculus
C.familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
o.mykiss
P.olivaceus
D. rerio
H.sapiens
M.mulatta
o.cuniculus
C.familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
O.mykiss
P.olivaceus
D.rerio
H.sapiens
M.mulatta
o.cuniculus
C. familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
O.mykiss
P.olivaceus
D. rerio
H. sapiens
M.mulatta
O.cuniculus
C. familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica


TSP1 domain (79-129)
RKKRYRYAKLVQPSQFGGEPCHVQGKEVEPCSPPSRYDCTHDETPLCEGFLCTYTGRCVP 131 QKKRYRYAKLDQPSQFGGEPCHFHDMEDEACDVPDRYTC--DSIPLCEGFLCTQTGRCIH 131 LKKRFRYATLIQPSEFGGEPCQNNGREEESCTPPARFSCQ-KSFAICQGFRCTVTGRCVL 107 QKKRYRYAYLLQPSQFHGEPCNFSDKEVEDCVTNR--PCR--SQVRCEGFVCAQTGRCVN 135 QKKRYRYAYLLRPSQFHGEPCNFSDKEVEDCVTNR--PCR--TQVRCEGFVCAQTGRCVN 135 QKKRYRHAYLLRPSQFNGEPCNFSDKEVEDCATSR--PCR--SQVRCEGFVCAQTGRCVN 135 QKKRYRHASLLRPSQFYGEPCNFSDKEVEDCVTSR--PCR--SQVRCEGFVCAQTGRCVN 135 QKKRYRHASLLRPSQFHGEPCNFSDKEVEDCVSNR--PCR--SQVRCEGFVCAQTGRCIN 147 QKKRYRHTYLLRPSQFYGELCDFSDKEVEDCVTNR--ACR--SQVRCEGFVCAQTGRCVN 134 QKKRYRFARLEQPSQFNGEPCDYSDNESEDCVTNN--PCR--NKVRCEGFACAVTGRCIA 129 $\underset{* * * *}{\text { EKKRYRFVKVLRPSQFNGKACGLID-DSEPCSNMT--SCI-IPEVPCQGFNCNLTGRCIP }} 176$ ***:*.. : **:* *: * : * * * *** * ***:
LDLa domain (133-169)
IDLRCNGDDDCGDWSAEKGSPKVPKACKQEAQEYHGIENLAKGINILHSHLEGSVIDNRY 191 RTLQCNGEDDCGDMSDEVGCKKVPKPCRQEAEEYWGIENLAKGINILNSNLEGLVLDNRY 191 ENLRCNGDDDCGDGSDEQDCKKVYKACNQPTEEYYGIENLAKGFNILNGKMEAVVLDNRY 167 RRLLCNGDNDCGDQSDEANCRRIYKKCQHEMDQYWGIGSLASGINLFTNSFEGPVLDHRY 195 RRLLCNGDNDCGDQSDEANCRRIYKKCQHEMDQYWGIGSLASGINLFTNSLEGSVLDHRY 195 RRLLCNGDNDCGDQSDEANCRKIYKKCHHEMEQYWAIGSLASGINLFTNSLEGPVLDHRY 195 RRLLCNGDNDCGDQSDEANCRRIYKKCQHEMEQYWAIGRLASGVNLFTNSFEGPVLDHRY 195 RRLLCNGDNDCGDQSDEANCKRIYKKCQQEMDQYWAIGSLASGINLFTNNLEGPVLDHRY 207 RRLLCNGDNDCGDQSDEANCRRIYKKCSQDMEQYWAIGNLASGINLFTNTFEGPVLDHRY 194 RRLLCNGDDDCGDQSDEKNCKKVFKKCDQKMEQYWGIENLAKGLNIITKNLEGLVLDHRY 189 LSQVCNGDNDCGDGADENDCKEVTKLCQGSKNQYWGTGSLASGINIFTNALEGVVFDNNY 236

YAGSCLPHYIQDVRFRKPYNLQQYTLETKGTYDFKLQSFESYSEFVHYTMTERSSKTTVS 251 YAGSCLPQYIQDVRFRKPHNLQQYTLETKGSYDFNVQSFESYSDYMDYSMRERMTQTIVS 251 YAGGCLPHFIQDVRFRKPFNLQQYTIETKGSYDFNMKEYDSYSEYFKSESHSTLSKTSVS 227 YAGGCSPHYILNTRFRKPYNVESYTPQTQGKYEFILKEYESYSDFERNVTEKMASKSGFS 255 YAGGCSPHYILNTRFRKPYNVESYTPQTQGKYEFTLKEYESYSDFEHNVIEKAASSSGFS 255 YAGGCNPHYILDMRFRKPYNVESYTPQTQGKYKFALAEYESYSDFERNVMEKTYSKSTFN 255 YAGGCSPHYILNTRFRKPYNVESYTPQTQGKYKFALTAYESYSDFEHNITKTERSTSSFS 255 YAGACSPHYILNTRFRKPYNVENFNPQTQGKYDFALTEYESYSDFEQNVTTAAISKSSFS 267 YAGACSPHYILNTNFRKPYNVESYTPQTQGKYEFALTEYESYFDFEHNVTEKATSKSSFK 254 YAGGCSPHYIADTRFRKPYNVESYTPETKGKYEFTMTEYDSYSNYESSVLKAEAAQSSFS 249 YGGNCNAFVIDQDKYRLPSNLERYSIEVRGYYEFVYKEYESYAAFERSVIREGMKDKKMG 296 *.* * . * : .:* * *: : : : : * ** : :** :

IGFALPGVAEFGFNYADSKYSKSEKKIRRASRKENSFVQAKAELQLARYILKSEDLMLHP 311 IGFAIPGIAEFGFNYNNAKVTRSIQKIRRASSKINSFVSAKAELELAQYMLRSDDLMLHP 311 IGIAYPNAFDFSFAYNDHKYKRSVKKMRTYSGTKNKFIRAHSELEVARYALKPQNLMLHP 287 FGFKIPGIFELGISSQSDRGKHYIRRTKRFSHTKSVFLHARSDLEVAHYKLKPRSLMLHY 315 FGFKIPGIFELGISRQSDRGKHYIRRTKQFSHTKSVFLHARSDLEVAHYKLKPRSLMLHY 315 LGFKIPSIFEFGINTESDQLMNYISRTKRFSHTKSKFLHARSALEVAHYKLKPRNLMLHY 315 FGFKIPEIFEFGISMASDNGKHFISRIKRFSHTKSTFLHARSDLEVAHYKLKPRSLMLHY 315 FGFKISGMFEFGISSTSDKGKRFISRTKRFSHTKSTFLHARSDLEVARYKLKSRNLMLHY 327 FGFKLDGLVEFGVRKESNEGRHYISRTKRFSHTKSKFLHARSVLEVAHYKLKSRQLMLHY 314 IGISIPSLFEIGYSNNDNRFRKFIQRMKRFSSTSSKFLHARSDLTVAVYKLKTRALMLHY 309 PDLHILNWIDIGYNFESQSLRRFLSKIRRATQSKSKILHVQCTIDIGRYKMKSKLLMFDY 356
O.mykiss
P.olivaceus
D.rerio
H.sapiens
M.mulatta
O.cuniculus
C. familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
O.mykiss
P.olivaceus
D. rerio
H.sapiens
M.mulatta
O.cuniculus
C. familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
o.mykiss
P.olivaceus
D. rerio
H.sapiens
M.mulatta
o.cuniculus
c. familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
O.mykiss
P.olivaceus
D.rerio
H.sapiens
M.mulatta
O.cuniculus
C.familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica
O.mykiss
P.olivaceus
D. rerio
H.sapiens
M.mulatta
O.cuniculus
C.familiaris
S.scrofa
R.norvegicus
G.gallus
M.domestica

EFFLRLRALPQSYNYGEYRQIYRDYGTHYITEATLGGDYEYTVILDKEKLEKTGYSLEAY 371 EFLQRLRSLPQAYVYGEYRQIYRDYGTHYITEAALGGEYEHTIILDKEKLAKTDYSLEDY 371 EFVSRLNALPLEYSYGEYRQIYQDYGTHFIKEATLGGEFEYTVILNDEKFEKSGYSLDET 347 EFLQRVKRLPLEYSYGEYRDLFRDFGTHYITEAVLGGIYEYTLVMNKEAMERGDYTLNNV 375 EFLQRVKRLPLEYSYGEYRDLFRDFGTHYITEAVLGGIYEYTLVMNKEAMERGDYTLNNV 375 DFLQRVQRVPLEYSYGEYRDLFRDFGHHFITEAVLGGIYEYTLIMNKEAMERADYSLNDV 375 EFLQRVKLLPLEYSYGEYRDLFRDFGTHYITEAVLGGIYEYTLIMNKEAMERADYSLKAI 375 EFLQRVKQLPLEYSYGEYRDLFRDFGTHYITEAVLGGVYEYTLIMNKEAMERADYSLKDV 387 EFLQRVKSLPLEYSYGEYRDLLRDFGTHFITEAVLGGIYEYTLIMNKDAMERGDYTLDHV 374 EFLQRLHQLPLEYSYGEYRELYRDYGTHYITEATVGGIYEYTLVLNSNELQKAGFSMSDV 369 EFLMRVGRLPSDYSYGEYRDFIRAYGTHIISDAIIGGVYEYALILNPDGMDSEGYTFDDI 416 :*. *: :* * *****:: : :* * *.:* :** :*::::: : : .::

MACPF domain (303-510)
KNCEQIVLKVGANIKGVYVTVGLEGGGCDGLLNEMGEDTVKGS---MVEDYVAVVSGGDS 428 KSCTQAGLKIGANIYGVYVSAGIEGGSCNGLLNEMGEDTAIGS---SVEDFVAVVRGGSS 428 KNCVQVGLKVGVQVKKIYVGLGLSGGSCEGLLKEIGDSTKERD---MVEDVFIVVKGGDS 404 HACAKNDFKIGGAIEEVYVSLGVSVGKCRGILNEIKDRNKRDT---MVEDLVVLVRGGAS 432 HACAKNDFKIGGAIEEVYVKLGVSIGKCRGILNEIKDRNKRDT---MVEDLVVMVRGGAS 432 QACAKNDFKLGAAIEEVYVSLGVSTSKCRGILNEIKDRNKRDT---MVQDLVVLVRGGAS 432 QTCAQNDFKIGAAIKKIYVNLGVSVDTCEHILREIGDRNKRNT---MVEDLVVLVRGGAS 432 HACAQHGFKIGVAIEEVYVKLGVPVHKCKDILNEIKDRNKRSS---MVNDLVVLVRGGAS 444 SACAGGGFQIGGNVYKVYLKLGVSEKKCSDILNEIKDRNKRRT---MVEDLVVLVRGGTS 431 QKCAQHGFKIGGTIKAVSLILGVNVEGCKSLLKEIGDSTSKKQ---YVEDFIALVRGGAS 426 KSCTQEAYHSSDITNRDFVGMRMDQR-CHVLLDQIANLGKTEEDVPIVEDLAVFLRGGTI 475

ESITWLAAKNLPTPPLMRLWGEAVHYNLDFIRSVTRPLYELVTARDFSSANSLKKNLRRA 488 ESITGLVSKKLPTPQLMRLWGEGVRFNPDFIRKTTRPLYELVTSKDFSHDATLKRNLKRA 488 ETVSRLAAKQLPTPDIMQMWGEAVFYNPEFISKKIEPIYELVPPRE-ANANILKKNLKRA 463 EHITTLAYQELPTADLMQEWGDAVQYNPAIIKVKVEPLYELVTATDFAYSSTVRQNMKQA 492 EHITTLAYQELPTADLMQEWGDAVQYNPAIIKIKVEPLYELVTATDFAYSSTVKQNMKQA 492 EHITALAYSDLPTADLMQEWGDAVQYNPAIIKIKVEPLYELVTATDVAYSSTVKQNMRQA 492 EHITTLAYKELPTADLMQEWGDAVQYNPDIIKIKAEPLYELVTATDFAYSSTVRQNMKRA 492 EHITALAYKDLPTADLMQEWGDAVQYNPDIIKIKAEPLYELVTAADFAYSSTVKQNMKRA 504 EYITSLAYKDLPTAELMKEWGDAVQYNPAIIKLKAEPLYELVTATDFAYSSTVKQNMKKA 491 EHITALANKGLPTAALMQEWGDAVQYNPEIIKLKVQPLYQLVTPADFANAMTIKENLRRA 486 PSITSLAYKRLPNKELMEKWGDAAKLFPEVLKIKVIPMHEMWTGQNFINRLHLKNNMRSA 535 :: *. . **. :*. **:.. .: *::: . : : . *: *

EGF domain (519-547)
LAEYLEESSSCRCAPCRNNGLAVLKGTRCECVCPSGYSGLGCEITQRP-DIGIDGSWSCW 547 LSEYLAESSSCRCAPCHNNGVAVLRGTRCDCVCPTGYTGRGCEITQRKKQIATDGSWSCW 548 LSEYLSESSACRCSPCLNNGLAVLKGMRCTCICPAGVKGVSCEITQRK-GLAIDGNWSCW 522 LEEFQKEVSSCHCAPCQGNGVPVLKGSRCDCICPVGSQGLACEVSYRK-NTPIDGKWNCW 551 LEEFQKEVSSCHCAPCQGNGVPVLKGSRCDCICPVGSQGLACEVSYRK-NIPTDGKWNCW 551 LEEFQGEVSPCRCAPCQGNGVPVQKGSRCDCICPVGFQGSACEITSRK-NVPIDGRWSCW 551 LEEFQKEVSSCRCAPCQGNGVPVLKESRCDCICPIGSRGPACEVTYEK-NVAIDGRWNCW 551 LEEFEKEISSCHCAPCQGNGVPVLKESRCDCICPAGFQGSACEVTNRK-NVPIDGKWNCW 563 LEEFQMEVSSCRCAPCRNNGVPILKESRCECICPAGFQGVACEVTNRK-DIPIDGKWSCW 550 LDEFQLETSSCRCAPCQGNGIPVLKGTHCECICPLSRRGTACETPSRT-DAAINGNWGCW 545 VKEYYEETHVCHCAPCLGNGFPIIRDSYCECLCGMGTCGISCELGTSE--GDATGSWSCW 593

GSWSPCR-GRSKTRSRQCNNPAPSSGGIACRGLQMETTDCF------ 587
GAWSSCS-GRKMSRSRQCNNPVPSDGGLACRGLQQESTDCF------ 588
SSWSSCS-GKIQHRTRQCNNPAPHNGGVACAGAQEESADCV------ 562
SNWSSCS-GRRKTRQRQCNNPPPQNGGSPCSGPASETLDCS------- 591
SSWSSCS-GGRKTRQRQCNNPPPQNGGSPCSGPASETLDCS------- 591
SRWSSCS-GGQKTRRRQCNNPAPQDGGSPCSGPASETLAC-------- 590
SNWSPCS-GGHKTRQRQCNNPPPQNEGSPCLGPASETLNC-------- 590
SDWFSVFLEDVKQDEGSATIHLLKMGVAPAWVLLQKHLTVKEGRASSG 611
SDWSPCS-GGRKTRQRQCNNPAPQRGGSPCSGPASETLD-------- 588
ASWSPCS-GGQRTRRRQCNNPTPQNGGSSCSGPDAETVTC-------- 584
TSWTECIEAKQK-RERLCNSPIPG-SIKTCPGRQKEETSC-------- 631

Figure 49 (continued)

| S.scrofa | MLVPRAAPLLTLLLATGSLGQRAQRPPRRPSP---- 32 |
| :---: | :---: |
| C.familiaris | -MLTPWTALLLTLLLAGGSVSQRARRPPRPASR----- 32 |
| H. sapiens | -MLPPGTATLLTLLLAAGSLGQKPQRPRRPASP---- 32 |
| O.cuniculus | -MVLRGRAVLLAVLLAAGSLGRWAQKPRGAPSA----- 32 |
| M.musculus | -MLSPGAVLFFTLLLTASSLGQRTRKPIGSTSP---- 32 |
| $R . n o r v e g i c u s$ | MLSPGAVLFFTLILMASSLGQRTRKPYGSTSP----- 32 |
| G.gallus | MNPVARPAGARPAPLPGTGLRCAMAAPRALMLLSRAPRRAAGDGNSGRP-LPTAL-----54 |
| D.rerio | -MIRFWLYL-FFVLACLSFWEPVETRR-ARYKPEPPK-PKKTETQKA 43 |
| O.mykiss |  |
| S.scrofa | ISTIQPKASFDAQQFAGTWLLVAVASSCRFLQEQGHRAEATSLHVA-PQGAA--MAVSTF 89 |
| C.familiaris | ISTIQPQVNFDAHQFAGTWLLVAVASSCRFLQEQGHRAEATLLHVA-PQGAD--MAVSTF 89 |
| H. sapiens | ISTIQPKANFDAQQFAGTWLLVAVGSACRFLQEQGHRAEATTLHVA-PQGTA--MAVSTF 89 |
| O.cuniculus | ISAIQPKANFDAQQFAGTWLLAAVGSACHFLQEQGHRAEATALHVA-PQGAA--MAVSTF 89 |
| M.musculus | ISTIQAQVNFSAQKFAGTWLLVAVGSSCRFLQEQGHRAEATTLHAA-PQGAA--MAVSTF 89 |
| R.norvegicus | ISTIQAQANFNAQQFAGTWLLVAVGSACRFLQEQGHRAEATTLHIA-PQGAA--MAASTF 89 |
| G.gallus | LRKVVTEGNLSLGELVGRWFLVGVASRCSYLAENSHRLEATAMTVAVPDGQS--LAISTF 112 |
| D.rerio | IDTLAPGQNINIDQMSGKWHLLTVASRCKNLLESGFKTESTSLTWNITAD---TVTVGTV 100 |
| O.mykiss | IDDTPPAQNIDIQQMGGPWYLVNAASKCNFLMKNGLKVEATVMTLTSPSSQNPTLSVSTT 106 |
|  | $\begin{aligned} &: \quad .: \quad:: * * * * * *: . *^{*}: \\ & \text { Lipocalin domain }(48-184) \end{aligned}$ |
| S.scrofa | RKLDGICWQVRQLFRDTGLPGRFLLQARGARGAVDVVVGETDYRSFAILYLERARQLSVK 149 |
| C.familiaris | QKLDGICWQVRQLYRDGEVLGRFLLQARGARGAVNMVVGETDYQGFAILYLEQKRQLSVK 149 |
| H. sapiens | RKLDGICWQVRQLYGDTGVLGRFLLQARGARGAVNVVVAETDYQSFAVLYLERAGQLSVK 149 |
| O.cuniculus | RKLDGICWQVSQRYGATGVPGRFLLPARGPRGAVHVVAAETDYHSFAVLYLERARQLSVK 149 |
| M.musculus | RKLDGICWQVRQLFENTGVPGRFLFQVSRARGPVHMVVAETDYQSFAILYLEQGRKLSVK 149 |
| R.norvegicus | RKLDGICWQVRQLYGITGVPGRFLLQAPRARGPVHVVVAETDYQSFAILYLEQARRLSVK 149 |
| G.gallus | RKLDGQCWEIRQRYVPEGAHRRFSVRGRGYNSKMEVVVGEADPRSYAIIYYQDSQGLSVK 172 |
| D.rerio | RKLNFVCWEIKQNYMKTKTPGQLFLKGKRPSDNVDIMVLETDYSTYAMLVFKRAEKITMK 160 |
| O.mykiss | TRLNHQCWEILQAYTITPTPGRLVLNGSRPLLNTDIVIGESDYSSYAVFYYQKQGQLTMK 166 |
|  | :*: **: * : . .: *:* :*:: $:$ : : * |
| S.scrofa | LYARSLP-VSESALSVFEQRVQGANLTEDHILFFPKYGFCDAADQFHVLDEAKQ-202 |
| C.familiaris | LYARSLP-PSDSALSAFEQRIQRVNLTEDHVLFFPKYGFCEAADQFHVLDEAGR-202 |
| H.sapiens | LYARSLP-VSDSVLSGFEQRVQEAHLTEDQIFYFPKYGFCEAADQFHVLDEVRR-202 |
| O.cuniculus | LYVRSLP-VSDSVLGAFEQRVAQANLTQDQVLFFPTYGFCEAADQFHILDEVRR-202 |
| M.musculus | LYVRSLP-VNDSVLDVFERRVREANLTEDQILFFPKYGFCETADQLHILNEVPR-202 |
| R.norvegicus | LYTRTLP-VSDSALNAFEERVRGANLTEDQIFFFPKYGFCETADQFHILNEMPK-202 |
| G.gallus | LYGRSSQ-LSNAIVDKFEQRARAVGLSEDVTHYFPTYGFCDSADDFHILDETEL-225 |
| D.rerio | LYGRSGE-VPDNIVDKFEDRAKTFNLGLDVVFQFPDYGFCESAEK--VLDLT--- 209 |
| O.mykiss | LYGRSKDTLSEAILDKFEDLAEKKGLGLAYVFAFPNYSHCESVDKDHVINCVPTC 221 |
|  | ** |

Figure 50 Alignment of the C8G proteins among species according to the GenBank accession no. as given in table 13 using the ClustalW2 tool. The amino acids are enumerated above each line on the right side. The identical, similar and missing residues are indicated with asterisks $\left({ }^{*}\right)$, points (.), and dashes ( - ), respectively. Signal peptide in pig C8G protein is in bold and italic. The amino termini of C8G mature protein starts just after the signal peptide. The cysteine residues are highlighted. The lipocalin functional protein domain is in continuous underline. The glycosylation site presents in shade blocks with white bold font using the NetNGlyc 1.0 Server tool.

| R.norvegicus | T |
| :---: | :---: |
| M.musculus | MLCKPPGLPRRSSMASGMAITLALAIFALGVNAQMPIPVSREEQEQH--YPIPIDCRMSP 58 |
| S.scrofa | MRVRRRFTFAVCILEISILSAGPTPSYHPKPVDCNGTPSPIDCRMSP 47 |
| B. taurus | MSAGQRFAFAICILEISLLRAGPTPSYD--PAERQGTPLPIDCRMSS 45 |
| M.mulatta | MSACWSFAAAICILEISVLTAEYTPSYDPQPTESRGSASHIDCRMSP 47 |
| H.sapiens | -MSACRSFAVAICILEISILTAQYTTSYDPELTESSGSASHIDCRMSP 47 |
| E.caballus | MSAGRTFAFAICILEVSVLTAGPTPNYAPEPEQQSGTPLPIDCRMSS 47 |
| O.cuniculus | MAASHSFAFVVCVLEIGALTAGPTPSYVHEPIQRSDPLQPIDCRMSP 47 |
| M.domestica | MSLSETALN---------RPRREIETPAPIDCKLTS 27 |
|  | TSP1 domain (45-95) |
| R.norvegicus | WSQWSQCDPCLKQRFRSRSMEVFGQFQGKSCADALGDRQHCEPTQECEEVQENCG-NDFQ 117 |
| M.musculus | WSNWSECDPCLKQRFRSRSILAFGQFNGKSCVDVLGDRQGCEPTQECEEIQENCG-NDFQ 117 |
| S.scrofa | WGEWSRCDPCLKQMFRSRSIETFGQFNGQKCVDAVGDRRQCVPTEPCEDLEEDCG-SDFQ 106 |
| B. taurus | WSEWSKCDPCLKQMFRSRSIEIFGQFNGRKCVDAVGDRQQCVPTEACEDPEEGCG-NDFQ 104 |
| M.mulatta | WSEWSQCDPCLRQMFRSRSIEVFGQFNGKSCTDAVGDRRQCVPTEPCEDAEDDCG-NDFQ 106 |
| H.sapiens | WSEWSQCDPCLRQMFRSRSIEVFGQFNGKRCTDAVGDRRQCVPTEPCEDAEDDCG-NDFQ 106 |
| E.caballus | WSEWSECDPCLRQMFRSRSIEVFGQFNGQRCVDAVGDRRQCVPTEACEEVEDDCG-NDFQ 106 |
| O.cuniculus | WSEWSHCDPCLRQMFRSRSIEVFGQFHGKSCVDALGDRRACIPTEACEDAEEDCEKDEFH 107 |
| M.domestica | WSEWSSCEPCQKEMYRSRTIEAFGQFGGKRCLHSLGDRRSCEPFRACDDEEYDCE-NDFK 86 |
|  | *.:** *:** : : ***: ${ }^{* * * * ~ *: ~ * ~: ~ * * *: ~ * ~ * ~ *: ~: ~: ~ . * ~ . ~ *: ~}$ |
|  | LDLa domain (100-136) |
| R.norvegicus | CETGRCIKRKLLCNGDNDCGDFSDESDCESDPRLPCRDRVVEESELGRTAGYGINILGMD 177 |
| M.musculus | CETGRCIKRRLLCNGDNDCGDYSDENDCDDDPRTPCRDRVAEESELGLTAGYGINILGME 177 |
| S.scrofa | CGTGRCIKRRLLCNGDNDCGDFSDEDDCDSDPRPPCRERVVEESELARTAGYGINILGMD 166 |
| B. taurus | CGTGRCIKNRLLCNEDNDCGDYSDEDNCEQDPRPPCRNRVVEESELARTAGFGINILGMD 164 |
| M.mulatta | CGTGRCIKRRLLCNGDNDCGDFSDEDDCEGDPRPPCRDRVVEESELARTAGYGINILGMD 166 |
| H. sapiens | CSTGRCIKMRLRCNGDNDCGDFSDEDDCESEPRPPCRDRVVEESELARTAGYGINILGMD 166 |
| E.caballus | CGTGRCIKKRLLCNGDNDCGDFSDEDDCENDPRPPCRERVVEESELARTAGYGINILGMD 166 |
| O.cuniculus | CGTGRCIKRRLLCNGDNDCGDFSDEDDCETEPRLTCRNREVQESELARTAGYGINILGMD 167 |
| M.domestica | CETGRCIKKRLLCNVDNDCGDFSDEDNCEKDPRSPCHTD-VEMSELGRTAGYGMNILGMD 145 |
|  | * ****** :* ** ******:***.:*: :** .*: .: ***. ***:*:****: |
| R.norvegicus | PLGTPFDNEFYNGLCDRVRDGNTLTYYRKPWNVAFLAYETKADKNFRTENYEEQFEMFKT 237 |
| M.musculus | PLRTPFDNEFYNGLCDRVRDEK--TYYRKPWNVVSLIYETKADKSFRTENYDEHLEVFKA 235 |
| S.scrofa | PLTTPFDNEYYNGLCDRVRDGNTLTYYRKPWNVAALIYETKVDKNFRTEYHERQIQVLKT 226 |
| B. taurus | PLSTPFDNQYYNGLCDRVWDGNTLTYYRRPWNVASLTYDTKADKNFRTENHEESIQILRT 224 |
| M.mulatta | PLSTPFDNEFYNGLCNRDRDGNTLTYYRRPWNVASLIYETKGEKNLRTEHYEEQIEAFKS 226 |
| H. sapiens | PLSTPFDNEFYNGLCNRDRDGNTLTYYRRPWNVASLIYETKGEKNFRTEHYEEQIEAFKS 226 |
| E.caballus | PLSTPFDNEYYNGLCDRVRDGNTLTYYRKPWNLASLAYETKADKNFRIEHYEQQIQAFRS 226 |
| O.cuniculus | PLATPFDNEYYHGLCDRVWDGNTLTHYRKPWNVAVLAYETKIDKNFRTEYYEEQMQAFKS 227 |
| M.domestica | PLDTPFDNEYFHGLCERVRDGNTGTYYRKPWNVATLNYDTKAEKRLRTENYEEHVLQITD 205 |
|  | ** *****:: : ***:* * : *:**:***:. * *:** :* :* |

Figure 51 Alignment of the C9 proteins among species according to the GenBank accession no. as given in table 4 using the ClustalW2 tool. The amino acids are enumerated above each line on the right side. The identical, similar and missing residues are indicated with asterisks (*), points (.), and dashes (-), respectively. Signal peptides in human C9 protein (DiScipio et al. 1984) and in pig C9 protein are in bold and italic. The amino termini of C9 mature protein starts just after the signal peptide. The cysteine residues are highlighted. The cysteine-rich functional protein domains TSP1 followed by LDLa, and MACPF are in continuous underline. The glycosylation sites in human (DiScipio et al. 1984) and in pig present in shade blocks with white bold font. The human C9 cleavage site into C9a and C9b by $\alpha$-thrombin is in bold and asparaginyl linked glycosylation site is boxed in bold (DiScipio et al. 1984)
R.norvegicus
M.musculus
S.scrofa
B.taurus
M.mulatta
H.sapiens
E.caballus
O.cuniculus
M.domestica
R.norvegicus
M.musculus
S.scrofa
B.taurus
M.mulatta
H.sapiens
E.caballus
O.cuniculus
M.domestica
R.norvegicus
M.musculus
S.scrofa
B. taurus
M.mulatta
H. sapiens
E.caballus
O.cuniculus
M.domestica
R.norvegicus
M.musculus
S.scrofa
B. taurus
M.mulatta
H.sapiens
E.caballus
O.cuniculus
M.domestica

IVRDRTTSFNANLALKFTITEAPIKK-VGVDEVSPE--KNSSKPKDSSVDFQFSYFKKEN 294 INREKTSNFNADFALKFSATEVPEK---GAGEVSPA--EHSSKPTNISAKFKFSYFMGKN 290 IIEEKKSNFNADLTIKFTPTEAIEQLKSKNVELANE-ENSNP--MNNKAHFRFTYSKTET 283 IIEEKKLNFNAGLSVKYTPVEAIEKNKCVDLEHSDKGSTSSPSKLAAEAKFRFTYSKDDI 284 IVQEKTSNFNADISLKFIPTEANK----VKTEKSSE-KQASSNSLRGQGSFRFSYSKNET 281 IIQEKTSNFNAAISLKFTPTETN------KAEQCCE-ETASSISLHGKGSFRFSYSKNET 279 VIEERRSHFNADFTLKFTPTEAK------KCKQEPE-ESCNGTDSSENRIFRFAYSKNET 279 IIEEETSNFNANLALKFTPTEAKAS---KAEEASPKNKSLDDNDKGFSSKFQFSYSKNET 284 TFRERQKNFGFDISLKLTSTEAPEG---GTPKRKPD---PKRNQQDAGLTFRFRYSKNES 259

FQRLSSYLSQTKKMFLHVRGMIQLGRFVMRNRGVMLTTTFLDDVKALPVSYEKGEYFGFL 354 FRRLSSYFSQSKKMFVHLRGVVQLGRFVMRNRDVVLRSTFLDDVKALPTSYEKGEYFGFL 350 YKLLLSYSSKKEKIFLHVKGVIHLGRFVMRKRDVMLTKTFLDDVKYLPSTYEKGEYFAFL 343 YRLLSSYSAKQEKMFLHVKGKVHLGRFVMRSRDVMLQTTFLDSINTLPTTYEKGEYFAFL 344 YQLFLSYSSKKEKMFLHVKGEIHLGRFMMRNRDVVLTTTFVDDIKALPTTYEKGEYFAFL 341 YQLFLSYSSKKEKMFLHVKGEIHLGRFVMRNRDVVLTTTFVDDIKALPTTYEKGEYFAFL 339 YQLFLSYSSKKEKMFLHVKGVIQLGKFVMRSRDVVLTTTFLDDIKALPTAYEKGEYIAFL 339 YQLFLSYSSQKEKMFLLVKGIIQLGRFVMKNRGVMLTNTFLDDIKSLPTTYEKGEYFAFL 344
LHLIKYYASDKTKMFLQVKGEIQLGRFHMRNREFMLKSTFLDDLKALPTSYEKGEYFGFL 319

ETYGTHYSSSGSLGGLYELIYVLDKASMKEKGVELSDVKRCLGFNLDVSLYTPLQTALEG 414 ETYGTHYSTSGSLGGQYEIVYVLDKASMKEKGVDLNDVKHCLGFNMD--LRIPLQDDLKD 408 ETYGTHYSSSGSLGGLYELIYVLDKATMTEKGIELRDVHRCLGFNLDLSLN-------FG 396 ETYGTHYSSSGSLGGLYELIYVLDKKSMEQKDIELRDVQRCLGFDLDLSLK-------VG 397 ETYGTHYSSSGSLGGLYELIYVLDKASMNRKGVELKDVKRCLGYHLDVSLDF------SK 395 ETYGTHYSSSGSLGGLYELIYVLDKASMKRKGVELKDIKRCLGYHLDVSLAF------SE 393 ETYGTHYSSSGSLGGLYELIYVLDKASMDQKGVELRDIQRCLGFNLDLSLK-------DK 392 ETYGTHYSSSGSLGGRYELIYVLDKASMKEKGIELNDIKKCLGFDLDLSLNIPGK--SAG 402 ETYGTHYSSSGNIGGKYELIYVLDKEEMQRKGLEIQDVRKCLGLDLDLSYQS-------A 372 ********:**.:****: :***** * . . : : : *: : *** : *

MACPF domain (297-507)
PSLTANVNHSDCLKTGDGKVVNISRDHIIDDVISFIRGGTRKQAVLLKEKLLRGAKTIDV 474 ASVTASVNADGCIKTDNGKTVNITRDNIIDDVISFIRGGTREQAILLKEKILRGDKTFDK 468 VEIKGKIDSENCLKRGDGKTENIMNDDFIDDVISFIRGGTRKYATELKEKLLKGAKMINV 456 VEVTGNFDSKLCSKKGMGQTETNPEADLFDDVITFIRGGTRKYATELKEKLLRGARMINV 457 ISAGAKADKDDCVKRGEGRAVNITSDHLIDDVISLIRGGTRQYAFELKEKLLRG-TMIDV 454 ISVGAEFNKDDCVKRGEGRAVNITSENLIDDVVSLIRGGTRKYAFELKEKLLRG-TVIDV 452 YEVTAKIDKNDCLKRNEKEIVNIMDGSLIDDVISLIRGGTRKYAFELKEKLLKGAKTVNV 452 LSLTGQANKNNCLKSGHGNAVNITRANLIDDVISLIRGGTQKFAFELKEKLLTKAKMVDV 462 VNFEANIKGSDCSSVN--WKHDNERKHIIDDVISLIEGGTREYATNLKEKLLRGPKVVDV 430

NDFINWASSLDDAPALISQKLSPIYNLIPLTMKDAYAKKQNMEKAIEDYVNEFSARKCYP 534 TDFANWASSLANAPALISQRMSPIYNLIPLKIKDAYIKKQNLEKAVEDYIDEFSTKRCYP 528 TDFVNWASSLNDAPVLINQKLSPIYDLIPVKLNDAHLKRQNLERAIEDYINEFNVRKMPT 516 TDFVNWAASLNHAPVLISQKLVPIYDLIPVKMKDAHLKKQNLERAIEDYINEFSVRKCQP 517 TDFVNWASSINDAPVLISQKLSPIYNLVPVKMKNAHLKKQNLERAIEDYINEFSVRKCHS 514 TDFVNWASSINDAPVLISQKLSPIYNLVPVKMKNAHLKKQNLERAIEDYINEFSVRKCHT 512 TDFVNWASSLNDAPVLISQRLSPIYNLIPVKMKDAHQKKQNLERAIEDYINEFSVRKCHP 512 TDFINWASSLSDAPVLINQKLSPIYNLIPVKIKDAHQKRQNLERGIEDYINEFSTKKCSP 522 TDFLNWSASLDNAPVLINQKLLPIGNLVPVRMENAHEKKQNLEQAINDYVDQFNSHKCQP 490

CQNGGTAILLDGQCMCSCTIKFKGIACEISKQR-------------- 567
CLNGGTIILLDGQCLCSCPMMFRGMACEIHQKI-------------- 561
VPEWRDSDSAGWTVFVFLPKQISGNCL------------------- 543
CQNGGTVVLLDGECVCSCPKEFKGVACEIKK---------------- 548
CQNGGTAILMDGKCLCTCPFKFEGIACEISKQKVSEGLPALDFPREK 561 CQNGGTVILMDGKCLCACPFKFEGIACEISKQKISEGLPALEFPNEK 559 CQNGGTVIQIDGQCLCSCPIAFEGIACETGKKKIS----------- 547
CQNGGTALLMDGQCLCTCPFMFEGIACEISKRKLA------------ 557
CQNEGTTMLLDGECICACKTGFQGVACQISPVV---------------- 523

Figure 51 (continued)

## Acknowledgements

It is really a great opportunity to express my deepest thank to all persons and organizations those handed me the chance and possibility to complete this thesis:

- Prof. Dr. Klaus Wimmers, my supervisor, for his valuable guidance and discussion, constructive suggestion and advice on working,
- Dr. Eduard Muráni and PD. Dr. Siriluck Ponsuksili for their recommendation and kind help,
- Hannelore Tychsen, Angela Garve and Marlies Deutscher for their excellent technical assistance in laboratory,
- Dr. Ronald Marco Brunner for supporting computer technique,
- Jana Masermann for her kind helps along the educational course,
- Anja Hartman and Dr. Alexander Rebl for reading manuscript,
- Mr. Philipp Westphal for supporting German language

All are working under the same house-roof of Molecular Biology Research Unit, Research Institute for the Biology of Farm Animals (FBN-dummerstorf), Germany

- Prof. Dr. Karl Schellander (Institute of Animal Science, Faculty of Agriculture, University of Bonn) and Prof. Dr. Jéns Léon (Institute of Crop Science and Resource Conservation, Faculty of Agriculture, University of Bonn) for their painstaking comments and advices on the manuscript,
- Dr. Le Viet Dung, Asso. Prof. Dr. Vo Van Son, Dr. Bui Xuan Men and Msc. Nguyen Minh Thong (Can Tho University, Viet Nam) for promoting me to PhD student position of the BMBF/DLR scholarship,
- Dr. Huynh Thanh Tung (Laboratory of Plants Molecular Genetics, Phytology Department, Laval University, Canada) for his fruitful discussions, encouragement and always willing to help,
- Prof. Dr. Wolfgang Büscher (Institute of Agricultural Engineering, Faculty of Agriculture, University of Bonn) and Prof. Dr. Karl-Heinz Südekum (Institute of Animal Science, Faculty of Agriculture, University of Bonn) for kindly being my co-examiners in animal production and animal nutrition,
- Ms. Iris Pützer and Ms. Matina Hohensee (Faculty of Agriculture, University of Bonn) for kindly help to finish necessary procedures for the PhD course,
- Dr. Nguyen Thi Dieu Thuy (Institute of Biotechnology, Viet Nam) for her helping to treat samples in laboratory,
- Dr. Nguyen Van Duc (National Husbandry Institute, Viet Nam) and Ms. Dao Thi Uyen (Nha Uyen Company, Lao Cai, Viet Nam) for their help to collect sample of Muong Khuong animals,
- Mr. Nguyen Hoang Liet 's family (Nielhagener Str.69, 22147 Hamburg, Germany) and Mr. Ngo Tuan Anh 's family (Doberaner Str 59, 19890 Rostock, Germany) for their help, support, interest as well as sharing all in life during my interesting PhD course in Germany,
- Dr. Nguyen Chi Ngon (Can Tho University, Viet Nam), Dr. Bui Viet Duc (University of Agriculture 1, Viet Nam), Vietnamese Rostockers and colleagues (FBN-dummerstorf) for sharing the great student life in Germany,
- The Federal Ministry of Education and Research (BMBF) and the Project Management Agency in the German Aerospace Center (DLR) for granting a full 3 year-scholarship,
- Research Institute for the Biology of Farm Animals (FBN-dummerstorf) for supporting living and study conditions,
- The Faculty of Agriculture, University of Bonn for supporting study and graduation conditions,
- Last not so much but certainly not least to send special thanks to beloved persons in my large family including my external grandmama, my parents, my parents-in-law, my elder brother as well as my younger sister, especially my wife for support, encouragement, everlasting love and everything great or small during these years.

AGAIN THANK YOU WITH ALL MY HEART

## Curriculum Vitae

| Family name | : Do |
| :--- | :--- |
| First name | : Vo Anh Khoa |
| Date of birth | $: 25$ May 1975 |
| Place of birth | $:$ Tien Giang, Viet Nam |
| Nationality | $:$ Vietnamese |
| Status family | $:$ married, one daughter |
| Address | $: 42$ Ly Tu Trong street, Can Tho City, Viet Nam |
| Email | $:$ dvakhoa@ctu.edu.vn, dvakhoa@yahoo.com |

## Education

1981-1990 Tru Van Tho I Primary and Secondary School (Cai Lay, Tien Giang, Viet Nam)

1990-1992 Doc Binh Kieu High School (Cai Lay, Tien Giang, Viet Nam)
1992-1997 Bachelor of Science in Animal Husbandry and Veterinary Medicine, College of Agriculture and Applied Biology, Can Tho University, Viet Nam.

2001-2003 Master of Science in Animal Sciences with the thesis `Evaluation on the reproductive capacity of cross-bred and pure-bred female pig herd at Phuoc Tho Breeding Enterprisé carried out at College of Agriculture and Applied Biology, Can Tho University, Viet Nam.

2004-2008 PhD student in Animal Genetics with the thesis `Molecular characterization of porcine genes encoding complement components of the terminal lytic pathway and their association with hemolytic complement activity' conducted at Molecular Biology Unit, Research Institute for the Biology of Farm Animals (FBN-dummerstorf) and Faculty of Agriculture, University of Bonn, Germany.

## Professional Experiences

1997-1999 Researcher in Department of Animal Sciences, College of Agriculture and Applied Biology, Can Tho University, Viet Nam.

1999-2001 Soldier in Can Tho Army, Viet Nam
2003-present Lecturer in Department of Animal Sciences, College of Agriculture and Applied Biology, Can Tho University, Viet Nam.

## Publications

Do HQ, Son VV, Do VAK and Khang NTK (1999): Urea supplementation of rice straw for Sindhi x Yellow cattle; sprayed in solution, as a soft cake or hard block. The International Journal for Research into Sustainable Developing World Agriculture 11

Yamasaki S, Manh LH, Takada R, Men LT, Dung NNX, Do VAK, Taniguchi T (2002): Admixing synthetic antioxidants and sesame to rice bran for increasing pig performance in Mekong Delta, Viet Nam. In: Proceedings of the 2002 Annual Workshop of JIRCAS Mekong Delta Project, 176-179

Yamasaki S, Manh LH, Takada R, Do VAK, Men LT, Dung NNX (2002) Effect of admixing synthetic antioxidants and sesame with rice bran on daily weight gain, feed intake and feed efficiency of swine in Mekong Delta, Viet Nam (Poster paper). Edited by Mori Y, Hayashi T, Highley E. The 9th JIRCAS International Symposium Value -`Addition to Agricultural Products', Tsukuba, 16-17 October, 168-169

Men LT, Yamasaki S, Caldwell JS, Thuan TK, Yamada R, Do VAK, Takada R (2003): Effect of rice based balanced resources and the water hyacinth (Eichhornia crassipes) in diets on pig production in the Mekong Delta of Viet Nam. In: Proceedings of the 2003 Annual Workshop of Jircas Mekong Delta Project, Viet Nam, 164-172

Do VAK, Ponsuksili S, Murani E, Huynh TPL, Wimmers K (2006): Molecular characterization of cDNA sequences of porcine genes encoding complement compoment of the terminal lytic pathway. In: Proceedings of International Workshop on Biotechnology in Agriculture. Nong Lam University, Ho Chi Minh city, Viet Nam, 20-21 October, 29-31

Do VAK, Ponsuksili S, Murani E, Wimmers K (2006): IMpRH mapping of the porcine complement genes of the terminal lytic pathway. In: Proceedings of International Workshop on Biotechnology in Agriculture. Nong Lam University, Ho Chi Minh city, Viet Nam, 20-21 October, 32-34

Wimmers K, Do VAK, Murani E, Ponsuksili S (2006): Sus scrofa complement component C6 mRNA, complete cds: GenBank accession number DQ333199. NCBI homepage

Wimmers K, Do VAK, Murani E, Ponsuksili S (2006): Sus scrofa complement component C8A mRNA, complete cds: GenBank accession number DQ333200. NCBI homepage

Wimmers K, Do VAK, Murani E, Ponsuksili S (2006): Sus scrofa complement component C8B mRNA, complete cds: GenBank accession number DQ333201. NCBI homepage

Wimmers K, Do VAK, Murani E, Ponsuksili S (2006): Sus scrofa complement component C8G mRNA, complete cds : GenBank accession number DQ333202. NCBI homepage

Wimmers K, Do VAK, Murani E, Ponsuksili S (2006): Sus scrofa complement component C9 mRNA, complete cds: GenBank accession number DQ333198. NCBI homepage
Do VAK, Murani E, Ponsuksili S, Wimmers K (2007): Genetic variation in C8B complement gene between Muong Khuong and European pig breeds as a potential source to improve animal health. In: Proceeding of $5^{\text {th }}$ VietnameseHungarian Conference on Animal Production and Aquaculture. Can Tho Universtity, 123-129

Do VAK, Murani E, Ponsuksili S, Wimmers K (2007): Polymorphism and association with heamolytic complement activity in the pig C7 gene. Aus der Arbeit der Forschungstätten für Tierproducktion. Jahrestagung der DGfZ. Universität Hohenheim, 26-27 September, A01


[^0]:    ${ }^{(*)}$ A touch down PCR program was used to amplified a fragment of 196 bp under following thermal cycling conditions: $94^{\circ} \mathrm{C}$ for 4 min , followed by 9 cycles at $94^{\circ} \mathrm{C}$ for 30 sec , annealing temperature stepdowns every 1 cycle of $1^{\circ} \mathrm{C}$ (from $60-51^{\circ} \mathrm{C}$ ) for 30 sec , at $72^{\circ} \mathrm{C}$ for 1 min , then followed by 40 cycles of $94^{\circ} \mathrm{C}$ for 30 sec , at $50^{\circ} \mathrm{C}$ for 30 sec , at $72^{\circ} \mathrm{C}$ for 1 min , and ending with an extension step at $72^{\circ} \mathrm{C}$ for 5 min.

[^1]:    ${ }^{(1)}$ _Incubation temperature ( ${ }^{\circ} \mathrm{C}$ ), (2)_Thermal inactivation in 20 min ( ${ }^{\circ} \mathrm{C}$ ), (3)_Recommended buffer

[^2]:    ${ }^{(*)}$ _The primer sequences followed by TI numbers, name and mate information were collected form various large-scale sequencing projects of pig using the Trace Archive tool (NCBI homepage)
    ${ }^{(* *)}$ _A touch down PCR program was used with initial denaturation $94^{\circ} \mathrm{C}$ for 4 min , followed by 8 cycles at $94^{\circ} \mathrm{C}$ for 30 sec, annealing temperature $58-54^{\circ} \mathrm{C}$ (step-downs of $0.5^{\circ} \mathrm{C}$ for each cycle), then followed by 30 cycles of $94^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 54^{\circ} \mathrm{C}$ for $30 \mathrm{sec}, 72^{\circ} \mathrm{C}$ for 1 min , and ending with an extension step at $72^{\circ} \mathrm{C}$ for 5 min .

[^3]:    ${ }^{(4)}$ _ The alleles segregate in $\mathrm{F}_{2}$ DUMI animals but not in LR, PIE or MK

