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Abstract

To understand how the uptake of water by roots locally affects and is affected by the soil

water distribution, 3D soil-root water transfer models are needed. Nowadays, fully coupled

3D models at the plant scale, that simulate water flow along water potential gradients in

the soil-root continuum, are available. However, the coupling of the soil and root system

is not investigated thoroughly. In the available models the soil water potential gradient

below the soil spatial discretization is neglected. Because of the non-linear behavior of the

soil hydraulic conductivity, large discrepancies are expected in estimation of the soil water

potential at the soil-root interface, if these local soil-root interactions are considered. This

will affect the estimation of root water potentials and as such the amount of water taken

up by the roots of plants.

In this thesis a microscopic analytical approach is developed that describes the soil

hydraulic conductivity drop below the soil spatial discretization. The local hydraulic con-

ductivity drop is derived and validated for a 3D soil-root water transfer model from the

bulk soil to the soil-root interface. Furthermore, it was incorporated in the 3D model for

the assessment of densed root architectures. Simulations showed that the total root water

uptake is affected strongly by considering the local soil hydraulic conductivity drop around

roots. Especially under conditions when the radial root hydraulic conductivity, regulating

root water uptake, is larger than the soil hydraulic conductivity, regulating water flow in

the soil. It was furthermore shown that a fine soil and root discretization was required

to accurately predict soil and root water potentials. The usage of a fine soil and root

discretization goes along with a considerable computational effort. Therefore a grid re-

finement technique was developed, based on the root architecture. Simulations performed

with this refinement technique showed that the computational time was reduced largely,

compared to very fine regular grids, but with maintained accuracy.
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Kurzfassung

Um zu verstehen, wie die Wasseraufnahme durch Wurzeln lokal die Wasserverteilung im Bo-

den beeinflusst und durch diese beeinflusst wird, werden 3D-Boden-Wurzel-Wassertransfer-

Modelle benötigt. Es wurden bereits vollständig gekoppelte 3D Modelle auf der Pflanzen-

skala entwickelt, die den Wasserfluss entlang von Wasserpotential-Gradienten innerhalb des

Boden-Wurzel-Kontinuums simulieren. Die Kopplung des Boden-Wurzelsystems ist jedoch

noch nicht gründlich untersucht worden. In den vorhandenen Modellen wird der Boden-

Wasserpotential-Gradient unterhalb der räumlichen Auflösung des Bodens vernachlässigt.

Aufgrund des nicht-linearen Verhaltens der hydraulischen Leitfähigkeit des Bodens sind

sehr starke Abweichungen in der Schätzung des Boden-Wasserpotentials an der Boden-

Wurzel-Grenzschicht zu erwarten, wenn diese lokalen Boden-Wurzel-Wechselwirkungen

berücksichtigt werden. Dies wirkt sich auf die Schätzung des Wurzel-Wasserpotentials

aus und somit auf die Wassermenge, die durch die Pflanzenwurzeln aufgenommen wird.

In dieser Arbeit wurde ein mikroskopischer analytischer Ansatz zur Beschreibung der

hydraulischen Leitfähigkeitsgradienten unterhalb der räumlichen Diskretisierung des Bo-

dens entwickelt. Der lokale Leitfähigkeitsgradient wurde für ein 3D Boden-Wurzel-Wasser-

transfer-Modell vom Boden zur Boden-Wurzel-Grenzschicht hergeleitet und validiert, und

in ein 3D Modell zur Untersuchung von dichten Wurzelarchitekturen integriert. An-

hand von Simulationen wurde gezeigt, dass die gesamte Wurzelwasseraufnahme durch

die Berücksichtigung der lokalen hydraulischen Leitfähigkeitsgradienten in der näheren

Wurzelumgebung stark beeinflusst wird. Dieser Einfluss war besonders stark, wenn die

radiale Wurzelleitfähigkeit, die die Wurzelwasseraufnahme reguliert, größer war als die

hydraulische Leitfähigkeit des Bodens, die den Wasserfluss im Boden kontrolliert. Gle-

ichzeitig wurde gezeigt, dass eine feine Boden- und Wuzeldiskretisierung notwendig ist, um

Wasserpotentiale im Boden und in den Wurzeln exakt zu beschreiben. Die Verwendung von

feinen Boden- und Wurzeldiskretisierungen ist mit einem beträchtlichen Rechenaufwand

verbunden. Daher wurde eine Methode zur Gitterverfeinerung entwickelt, die auf der
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Wurzelarchitektur basiert. Simulationen zeigten, dass die Rechenzeit durch diese Ver-

feinerungsmethode stark verkürzt wurde im Gegensatz zu sehr feinen regulären Gittern.

Die Genauigkeit blieb dabei unverändert.
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Chapter 1

Introduction

Photosynthetic absorption of carbon dioxide from the atmosphere leads to the loss of water

by evaporation from the leaves of plants (transpiration). Water is absorbed from the soil

by plant roots to compensate for this transpirational loss. As a consequence, a flow of

water through the plant from the soil to the atmosphere occurs (Weatherley, 1982). The

induced flow of water experiences frictional resistances and is therefore dependent on the

hydraulic properties of the soil, of the interface between soil and root, and of the plant

conducting tissues.

The root system which links the soil, where water and nutrients reside, to the above

ground part of the plant, where these resources are mainly used, is complex. Roots show

a remarkable ability to adapt to changes in the availability of water and nutrients, as well

as to chemical properties of the soil. Root response to soil properties, in turn, affects the

uptake of soil water and nutrients (Jackson et al., 2000; Feddes and Raats, 2004).

Irrigation is required if the soil is incapable of providing the plant’s need for water. A

better understanding of the soil-plant system could help to optimize irrigation management

or in the prediction of yield under water scarcity conditions. Furthermore, it helps for the

assessment of pollutant fate in cropped soils or for the prediction of water uptake by natural

vegetation in semi-arid and arid conditions. To deal with such problems the development

of large scale hydrological models, which handle the interacting processes between plant

and soil, are needed. However, to model complicated soil-plant interactions at a large scale

they should first fully be understood at smaller scales. With detailed knowledge of these

interactions at smaller scales effective upscale mechanisms may be found. In this study

soil-plant interactions at the plant scale are investigated. A schematic of the main water

fluxes entering and leaving the soil-plant system at this scale is given in Fig. 1.1.
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2 Chapter 1. Introduction

Fig. 1.1: Water balance at the plant scale. Transpiration of water from the leaves of a plant causes the uptake
of water from the soil into the roots.

1.1 Water flow in soils

A natural soil develops as the interface between atmosphere and lithosphere. It is formed

initially through disintegration and decomposition of rocks by physical, biological and

chemical processes. The soil is divided in three phases: the solid, liquid and gaseous

phase. The solid phase constitutes the soil matrix and is a mixture of mineral and organic

constituents. The organization of the solid components of the soil determines the geometric

characteristics of the pore spaces in which water (liquid phase) and air (gaseous phase) are

transmitted and retained (Hillel, 1980).

The soil functions as a reservoir which controls the availability of water for plants

influenced by rainfall/irrigation, drainage and the evaporation demand (Fig. 1.1). The

reservoir is dependent of its texture and structure, moreover, of the characteristics of the

root system. Water flow in the soil is generally described by models that are based on

the Richards equation for variable saturated media (Richards, 1931). In this thesis single-

porosity media is considered only, which means that the flow of water is not significantly

affected by macropores, root channels and fractures. For the description of water flow in



1.1. Water flow in soils 3

non single-porosity media an extensive overview is given by S̆imu̇nek et al. (2003).

Because the Richards equation is the basis equation that is used throughout this thesis a

brief description of its components is given hereafter. Richard’s theory combines the mass

balance and the balance of momentum, the latter expressed in Darcy’s law. Assuming

incompressibility of water, the 3D mass balance can be written as

∂θ

∂t
= −∇ · F − S (1.1)

with θ [cm3 cm−3] the volumetric water content, t [d] the time, F the volumetric flux

of water [cm d−1] and S [d−1] the sink term representing water uptake by roots. The

volumetric flux is described by Darcy’s law

F = −K(θ)∇(ψw) (1.2)

where K [cm3 d kg−1] is the hydraulic conductivity tensor and ψw [kg cm−1 d−2] the soil

water potential equal to

ψw = ψm + ψg + ψo (1.3)

The water potential is the potential energy required to move an infinitesimal volume of pure

free water from one area to another. The matric potential ψm describes the amount of work

due to capillary and adsorptive forces and is in most natural soils the largest component

of ψw. The gravitational potential ψg defines the amount of work due to gravitational

forces, and the osmotic potential ψo denotes the energy needed for solutes to dissolve,

across a semi-permeable membrane or diffusion barrier, in the soil water. Substitution of

the previous equations with ψg = −ρwgez and neglecting the osmotic potential yields

∂θ

∂t
−∇ · [K(θ)[∇ψm − ρwgez]] = −S (1.4)

with ρw [kg cm−3] the water density, g [cm d−2] the gravitational acceleration and ez = ∇z

the unit vector field in the vertical direction.

The soil water characteristics describe the relation between the water content, water

potential and the hydraulic conductivity of a media. These characteristics are constitutive

relationships that are required for evaluation of Eq. (1.4). Commonly used relationships for

single-porosity media were reviewed by Leij et al. (1997). Eq. (1.4) can then be rewritten
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as a function of ψm

C(ψm)
∂ψm
∂t

−∇ · [K(ψm)[∇ψm − ρwgez]] = −S (1.5)

with C(ψm) = dθ/dψm [cm d2 kg−1] the volumetric water capacity. Note that the hysteresis

nature of the ψm-θ relationship is neglected in this thesis.

The obtained form is called the Richards equation in potential form. An alternative

form is the head form (water potential on weight basis), using the hydraulic head H =

ψw/ρwg [cm] instead of the water potential ψw. Replacing Eq. (1.3) by

H = −h− ez (1.6)

where h = −ψm/ρwg is the matric head and let F be equal to −K∗(h)∇h, the Richards

equation in head form is given by

∂θ

∂t
= C∗(h)

∂h

∂t
= ∇ · [K∗(h)[∇h+ ez]] − S (1.7)

where C∗(h) = dθ/dh = −ρwgC(ψm(h)) [cm−1] is the volumetric water capacity in head

form and K∗(h) the hydraulic conductivity in head form [cm d−1]. In the remainder of this

thesis we will use the Richards equation in head form and drop the ∗ notation. Moreover,

the matric water potential is denoted as the soil water potential.

The Richards equation describes water flow within the soil system. The estimated

amount of water in the soil is affected by water flow in and out of the soil system. In soils

where roots reside root water uptake is shown to have an enormous impact on the local

depletion of water from the soil (Dunham and Nye, 1973; Li et al., 2002b; Garrigues et al.,

2006). Dried up soil in the root zone, irrespective of rainfall/irrigation events, is rewetted

again by soil moisture redistribution from the water table (capillary rise), lateral water

flow from more wetter soil regions, and by more conductive roots that transfer water from

wet to dry soil regions within the root zone (hydraulic lift; Jackson et al. (2000)).

1.2 Water flow in roots

The root system architecture of a plant can be regarded as the result of the accumulated

effects of growth and branching responses by individual root tips and the root tissue behind

these root tips to local soil conditions and the overall state of the plant (Diggle, 1988).
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Root systems perform two primary functions: one is the acquisition of water and nutrients

from the soil and the second is anchorage. Other functions such as storage, synthesis of

growth regulators, propagation, and dispersal can be seen as secondary (Fitter, 1996).

Root architectures vary greatly within and between species and many attempts have been

made to classify these systems (Cannon, 1949; Weaver, 1958). The root system can be

divided into a set of axes that are each derived from a meristem and are characterized by

different orders: first-order (primary) axes are directly connected to the stem of the plant;

second-order (secondary) axes are connected to primary axes; and so forth. Many models

have been developed that describe the root architecture and their growth functions based

on this hierarchial classification (Diggle, 1988; Somma et al., 1998; Dunbabin et al., 2002;

Pagès et al., 2004).

of root

endodermis

conducting xylem

soil water
soil

root hairs

epidermiscortex

Fig. 1.2: Schematic of a root in the soil. Water is mainly taken up by root hairs and is transferred radially
over the cortex in the xylem tissue, where it is transferred upwards to the stem of the plant.

Water movement from the soil towards and into roots and transfer from water along

the roots to the above ground part of a plant is a vital process for plant existence. Roots

mainly take up water by root hairs that increase the effective surface area of the root (Segal

et al., 2008). Water is transferred over the cortex into the xylem tissue of a root where it

is transferred upwards to the stem of the plant (Fig. 1.2).

Landsberg and Fowkes (1978) described radial water flow across the root based on

water potential differences between the soil-root interface and the xylem tissue, dependent

on a constant radial root resistance (the resistance is related to the conductivity by its

reciprocal). The flux of water that is transferred upwards through the xylem tissue was

described as the xylem water potential difference in axial direction. Alm et al. (1992)

extended the results of Landsberg and Fowkes (1978) and separated the root into segments

for which they introduced a homogeneous axial resistance. Doussan et al. (1998a) upscaled

this approach to the whole root system architecture. They assumed that the flow of water
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through each part of the root system is in steady-state. This implies that the flow of

water in the xylem tissue is only dependent of the axial resistances of the individual root

segments and that capacitive effects of the root segments are neglected (Hunt et al., 1991).

Root radial and axial resistances are highly variable (Tsuda and Tyree, 2000). They

depend on plant species, the type of root branch (primary axis, secondary axis, etc.), their

age, temperature and on the status of the plant and the soil. Primary roots of maize have

for example less axial resistance than tertiary roots (Frensch and Steudle, 1989). Doussan

et al. (1998b) showed that young maize roots have very high axial resistances and decrease

over time when the roots get older. Lopez and Nobel (1991) showed that temperature had

a large effect on root resistances in two cactus species. Furthermore, they pointed out that

root resistances increased in drying soils and caused the root to act as a rectifier, such that

less water was taken up. Because roots in the soil are not well accessible, basic hydraulic

properties of roots are not yet adequately understood (Steudle, 2000).

1.3 Water flow between soil and root

It is known that water is taken up by roots in proportion to the water potential difference

between soil and root and that this local flux is dependent on the hydraulic conductivity

in the vicinity of and in the roots. However, there has been a long ongoing debate re-

garding the relative magnitude of the water flow resistance due to soil and root (Newman,

1969; Taylor and Klepper, 1975; Nobel and Cui, 1992). Several authors argued that the

resistance, and as a consequence the water potential gradient, in the vicinity of roots could

among other things be affected by bad soil-root contacts (Huck et al., 1970; Tinker, 1976;

Herkelrath et al., 1977; Bristow et al., 1984) or the fact that only a few roots could be

active (Passioura, 1980). Experimental investigations have shown that in dry soil regions

high water potential gradients between the bulk soil and soil-root interface exist and that

in this case soil hydraulic properties limit the potential root water uptake (Li et al., 2002b;

Garrigues et al., 2006). The difficulty of measuring locally the soil water status near the

soil-root interface makes the experimental verification of the relative magnitude of the

water flow resistance due to soil and root hard. Besides the experimental investigations,

mathematical models that consider the water potential gradient near and in the roots are

needed to characterize these important soil-root interactions.

The uptake of water by plant roots can be considered for different scales. The first,

microscopic, scale describes the uptake of water by roots as a flux across the soil-root

interface. The flux is dependent on soil and root properties, i.e. based on geometrical soil
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and root parameters, on soil and root water potentials and on the soil hydraulic properties.

The microscopic scale modelling approach describes radial water flow towards individual

roots analytically (Gardner, 1960; Cowan, 1965; Jakobsen, 1974; De Willigen and van No-

ordwijk, 1987) or numerically (Hillel et al., 1975; De Jong van Lier et al., 2006). The

microscopic expressions can be used to characterize the macroscopic root structure. The

whole root structure is then described as a set of such individual roots, assumed to be

regularly spaced in the soil at definable distances that may vary with the soil profile. A

numerical model was developed by De Jong van Lier et al. (2007). Note that microscopic

scale modelling approaches do not consider vertical water flow.

The second, macroscopic, scale describes the uptake of water by plant roots via an

extraction term in the water flow equation (Eq. (1.7)) (Molz, 1981; Hopmans and Bristow,

2002; Feddes and Raats, 2004; Green et al., 2006). The root system is assessed by its spa-

tial distribution (e.g. root length density). The extraction functions can be categorized in

three types. Type 1 considers this function to be dependent on microscopic water flow from

the soil to, and through, individual roots (Nimah and Hanks, 1973). With such mechanistic

models the actual plant transpiration can be related to soil and root water potentials and

resistances of individual roots. It allows for compensation of water from non water stressed

soil layers to water stressed soil layers. Type 2 uses semi-empirical approaches to describe

the water uptake as function of the soil root density, the soil water content, and the plant

transpiration (Feddes and Raats, 2004). Because the same potential plant transpiration is

used for all soil layers no compensation of water from non water stressed soil layers to water

stressed soil layers is possible. In order to obtain this, local water uptake mechanisms are

needed (Jarvis, 1989). The choice of the compensation mechanism, as well as the extraction

function, may have important consequences on the simulated water uptake dynamics and

occurrence of water stress (Teuling et al., 2006). Most of the models at the macroscopic

scale use 1D numerical approaches to describe the Richards equation in vertical direction

only. More detailed models were developed regarding the root system architecture and

lead to 3D macroscopic (type 2) soil water flow models (Clausnitzer and Hopmans, 1994),

where the effect of fully integrated root architecture models on soil water variability could

be investigated. The disadvantage of the type 1 and 2 root water uptake models is that

they do not consider the water flow within the root xylem tissue and can therefore not be

used to predict phenomena like hydraulic lift. Developments regarding the root hydraulic

system (e.g. Roose and Fowler, 2004) have lead to a third type of macroscopic models, so

called hybrid models. Hybrid models use the microscopic approach of type 1 but integrate
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this on the whole root architecture. These models consider water flow in the soil as well

as in the complete root architecture. A fully coupled 3D soil-root model based on water

potential differences in the soil and root system was developed by Doussan et al. (2006).

Recently, Javaux et al. (2008) has extended the implementation of the coupling of this 3D

soil-root water transfer model.

1.4 Challenges in state of the art 3D root water uptake models

In the 3D root water uptake model of Javaux et al. (2008), the root structure is indepen-

dently coupled to the soil grid that is used for the numerical solution of the water flow

equation. Therefore an approach that relates the water potentials at the grid nodes of the

water transfer model and of the root model is required. The disadvantage is that the water

potential at a given root node is taken to be equal to the average of the water potential at

the surrounding soil nodes, thereby neglecting the water potential gradient below the soil

spatial resolution, so in the vicinity of the soil-root interface. The local water potential

gradient may have large influence because of the non-linear behavior of the soil hydraulic

properties, especially near plant stress conditions, where soil water availability is limited.

This gradient, in this thesis referred to as the hydraulic conductivity drop, is taken into

account in the water flow equation and can be compensated for by using fine soil elements

(Wilderotter, 2003) or by pursuing a microscopic approach from the bulk soil to the soil-

root interface. When fine soil elements are used the number of degrees of freedom increase

largely. As a consequence, the computational costs increase drastically. To maintain the

accuracy of a fine grid but reduce the computational costs, grid refinement techniques can

be applied.

1.5 Objectives of this study

The first general objective is to evaluate the effect of considering the local soil hydraulic

conductivity drop on the estimated water uptake by plant roots, using the state of the

art 3D soil-root water transfer model of Javaux et al. (2008). The second objective is to

optimize this 3D model in terms of accuracy and computational speed. The different issues

investigated in this thesis are:

1. to build and assess a microscopic analytical approach that estimates the local hy-

draulic conductivity drop, below the soil spatial discretization, from the bulk soil to
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the soil-root interface to be used in the 3D soil-root water transfer model of Javaux

et al. (2008);

2. to incorporate and assess the analytical approach in the model of Javaux et al. (2008)

for multiple roots using different modelling techniques;

3. to develop a grid refinement method for the 3D soil-root water transfer model to be

computational quicker and without loosing accuracy compared to fine regular soil

grids.

1.6 Thesis outline

Chapters 2 to 4 are based on papers that have been or will be published independently in

international journals. Consequently, some duplication is unavoidable.

In chapter 2 a microscopic analytical approach is developed that describes the water

potential gradient below the soil spatial discretization from the bulk soil to the soil-root

interface. The analytical approach is validated by numerical means and with these tools

quantification of the local soil hydraulic conductivity drop is assessed. Furthermore, the

analytical approach is implemented in the 3D soil-root water transfer model to be used for

single roots and evaluated for different soil-root scenarios. Comparisons of a single root

scenario for different soil discretizations with and without considering the local conductivity

drop are performed. First to show the effect on the estimated soil-root interface water

potential and secondly for validation purposes.

Chapter 3 deals with the implementation of the microscopic analytical approach for

multiple roots as is usually the case for densed root architectures within a soil column.

Three different modelling methods, based on modelling assumptions used by authors in this

research field, are considered to deal with the microscopic analytical approach of chapter

2. The multiple root methods are assessed for different soil-root scenarios, especially in

dry soil regions, and compared with the average method proposed by Javaux et al. (2008),

moreover to a reference scenario using a fine regular soil grid.

Chapter 4 deals with the development of a grid refinement approach to be used for 3D

soil-root water transfer models. As root water uptake is one of the main contributors to

changes in the soil status, root information is used to refine the soil grid a priori, either

in a static or dynamic way. Static a priori refined grids are compared for a soil-root

scenario with coarse grid configurations and with a reference scenario using a fine soil

discretization. Furthermore, static a priori grids are compared and validated with a well
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recognized a posteriori refinement method. Lastly, dynamic a priori refinement is assessed.

In Chapter 5 the conclusions are drawn and a perspective into future research is given.



Chapter 2

Effect of the local soil hydraulic

conductivity drop on root water

uptake using a 3D plant scale model∗

2.1 Objectives

The objectives in this chapter are to quantify the hydraulic conductivity drop below the

soil spatial resolution using an analytical approach, and to validate it by numerical means.

Furthermore, the implementation of the analytical approach within a voxel of a 3D soil-root

water transfer model will be evaluated.

2.2 Introduction

The understanding of the uptake of water by roots is of importance for a variety of environ-

mental and agricultural purposes, such as yield prediction under water scarcity conditions,

irrigation management and assessment of pollutant fate in cropped soils. The first type

of models used for prediction of these processes are 1D macroscopic water flow models

using extraction functions. These extraction functions use semi-empirical approaches to

describe the water uptake as function of the soil root density, the soil water content, and

the plant transpiration (Feddes and Raats, 2004). However, these models do not consider

the water flow within the root system and can therefore not be used to predict phenomena

*adapted from T. Schröder, M. Javaux, J. Vanderborght, B. Körfgen, and H. Vereecken (2008). Effect
of local soil hydraulic conductivity drop using a 3D root water uptake model. Vadose Zone Journal, 7,
1089-1098

11
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like hydraulic lift (Jackson et al., 2000). Furthermore, the effects of the vertical water

distribution and water scarcity on local root water uptake is not directly considered, but

must be described using empirical relations that describe local water uptake compensation

mechanisms (Jarvis, 1989). The choice of the compensation functions may have important

consequences on the simulated water uptake dynamics and occurrence of water stress (Teul-

ing et al., 2006). The second type of models describe microscopically water flow towards

roots (Gardner, 1960; Cowan, 1965; Hillel et al., 1975; De Willigen and van Noordwijk,

1987; De Jong van Lier et al., 2006) but they do not consider vertical water flow variabil-

ity. Personne et al. (2003) proposed a model of vertical 1D water redistribution integrating

water transfer from soil to roots, but does not consider fully integrated 3D root models.

More detailed models were developed regarding root system architectures (Pagès et al.,

1989) and their hydraulics (Doussan et al., 1998a). Furthermore, 3D soil models (Claus-

nitzer and Hopmans, 1994) were developed, where the effect of fully integrated root models

on soil water variability could be investigated. The disadvantage of these 3D models was

again the semi-empirical extraction functions. Detailed modeling of the hydraulics in root

systems lead to fully coupled 3D soil-root models based on water potential differences in

the soil and root (Doussan et al., 2006). Recently, Javaux et al. (2008) has extended the

implementation of the coupling of this 3D soil-root flow model. Opposed to the model of

Doussan et al. (2006) the root structure is independently coupled to the soil grid that is

used for the numerical solution of the water flow equation. Therefore, an approach that

relates the water potentials at the grid nodes of the water flow model and of the root model

is required.

In the model of Javaux et al. (2008) the water potential at a given root node is taken

to be equal to the average of the water potential at the surrounding soil nodes, thereby

neglecting the potential drop in the vicinity of the soil-root interface. This potential drop

may have large influence because of its non-linear behavior, especially under plant stress

conditions, where soil water availability is scarce. This drop is taken into account in the

Richards equation and can be compensated for by using smaller soil elements (Wilderotter,

2003) or by pursuing an analytical approach from the bulk soil to the soil-root interface.

The analytical approach at the voxel scale is a microscopic process. The solution pro-

posed in this thesis, to fulfill the conditions imposed by the 3D plant scale model, is an

extension to solutions proposed by previous researchers (Cowan, 1965; De Willigen and

van Noordwijk, 1987; De Jong van Lier et al., 2006).
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2.3 Theory

2.3.1 Analytical model: water flow from bulk soil to soil-root interface

Many 2D analytical approaches have been made in the past to describe water flow to

root nodes (Gardner, 1960; Cowan, 1965; Jakobsen, 1974; De Willigen and van Noordwijk,

1987; De Jong van Lier et al., 2006). The differences lie in the approximations and applied

boundary conditions. The domain for a 2D radial analytical approach is given in Fig. 2.1

and was first introduced by Gardner (1960).

r

p

Fig. 2.1: 2D radial domain of the microscopic model. Outer circle represents the bulk soil with a radius rout

from root node p to the outer circle. Inner circle represents the soil-root interface with radius rroot from root
node p to the inner circle.

To evaluate the Richards equation in the 2D domain, the radial form without gravity is

(see also Schröder et al., 2007)

∂θ

∂t
=

1

r

∂

∂r
(rK(h, θ)

∂h

∂r
) = −

q

r
−
∂q

∂r
(2.1)

where q [L T−1] is the Darcy’s flow (a flux density) denoted by q = −K(h, θ)∂h
∂r

, h [L] the

water potential on weight basis (pressure head), r [L] the radial coordinate and t [T] the

time. The volumetric water content θ [L3 L−3] and the hydraulic conductivity K [L T−1]

are soil characteristics.

This equation can be linearized using the matric flux potential

Φhc
=

∫ hc

h−∞

K(h)dh (2.2)

where hc is the current water potential and h−∞ the lower integral boundary. In matric
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flux potential form Eq. (2.1) transforms into

∂θ

∂t
=

1

r

∂Φ

∂r
+
∂2Φ

∂r2
(2.3)

Under flux and water potential type boundary conditions at the inner (rroot) and outer

edges (rout) representing the bulk soil, and under steady rate behavior, i.e. ∂θ
∂t

= constant,

it yields

Φ(r) = Φrout
+ (qrootrroot − qoutrout)

(

r2/r2root

2(1 − ρ2)
+

ρ2

1 − ρ2

(

ln
rout
r

−
1

2

))

+

+ qoutroutln
r

rout
(2.4)

with ρ = rout/rroot. In equilibrium, i.e. the volumetric water content is constant and the

time derivative equals zero,

qout = qroot
rroot
rout

(2.5)

and the Cowan (1965) approach is obtained. In case of vanishing flux, i.e. no water is

extracted from the cylinder with radius rout,

qout = 0 (2.6)

and the approach of De Willigen and van Noordwijk (1987) is obtained.

Under plant stress conditions, |h ≥ hlim|, a water potential instead of a flux is imposed

at the soil-root interface which finally yields

Φ(r) = (Φrout
−Φrroot

+qoutroutln
1

ρ
)
r2/r2root − 1 + 2ρ2lnrroot/r

ρ2 − 1 + 2ρ2ln1/ρ
+qoutroutln

r

rroot
+Φrroot

(2.7)

where Φrroot
tends to go to zero and may be neglected. Details about the derivation of Eqs.

(2.4) and (2.7) are given in Appendix A.

2.3.2 3D numerical water flow model in soil and roots: R-SWMS

The model of Javaux et al. (2008), R-SWMS, consists of two interacting systems: the

soil and the root architecture. For both systems a set of equations is solved in terms

of water potential and both are coupled via the sink term S in the Richards equation.
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Boundary conditions for the plant root system can be given in terms of transpiration or

water potential at the root collar, and soil water potential at the soil-root interface to solve

the water potential and flux distributions in the xylem. From this a soil-root radial water

flux Jr [L3 T−1] can be derived

Jr = Lr(hinterface − hxylem) (2.8)

where Lr is the radial root conductance [L2 T−1] and h represents the water potential at

the soil-root interface and in the xylem respectively. The water potential at the soil-root

interface is acquired by a distance-based average of the water potential in the surrounding

soil nodes

hinterface =

∑8
i=1 hi

1
disti

∑8
i=1

1
disti

(2.9)

where dist is the distance calculated from the root node p to a soil node i (Fig. 2.2). The

sink term [T−1] of a soil voxel can now be defined as

Sj =

∑nj

k=1 Jr,k
Vj

(2.10)

where the numerator represents the sum of all the radial soil-root fluxes of the nj root

nodes located inside a soil voxel j and Vj [L3] is the volume of the jth soil voxel. The sink

term is distance-based distributed upon the soil nodes i representing the bulk soil

Si = Sj

1
disti

∑8
k=1

1
distk

, for i = 1, . . . , 8 (2.11)

Initially the root system is solved with the initial soil water potential as a boundary

condition at the soil-root interface. With the generated sink term, the water flow equation

is solved, after which the root system is solved again until both systems fulfill tolerance

criteria for the soil, in terms of water potential and water content, and for the root, in

terms of water potential.

2.3.3 Implementation of the hydraulic conductivity drop at the voxel scale

Implementation of the 2D analytical approach, describing the water potential gradient

between the bulk soil and soil-root interface, in R-SWMS is achieved by defining the
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y
z

x

p

Fig. 2.2: A soil voxel with its soil nodes (full dots). A vertical orientated root with root node p is positioned
in the soil voxel.

geometrical domain and the boundary conditions at the voxel scale. A 3D analytical

solution of the Richards equation in a soil voxel can be obtained by multiplying a linearized

analytical solution for a 2D radial coordinate system with a linearized analytical solution

for the 1D axial component. We assume, for simplicity, that the root is orientated in axial

direction in the middle of the voxel and that, as a consequence, the main influence on root

water uptake is exerted by the horizontal component.

To reduce computational times the analytical approach in axial direction is interchanged

by an averaging procedure. Soil water potentials and fluxes in the corner nodes of the cube

are averaged upon the corner nodes of the rectangular cross-section at the axial height of

root node p (Fig. 2.3A). The outer boundary conditions at the bulk soil (Fig. 2.3B) are

obtained by averaging the soil variables in the corner nodes of the rectangular cross-section

upon the intersection points of the outer circle with the edges of the voxel, while the inner

boundary conditions are defined at the soil-root interface.

2.4 Methodology

2.4.1 Effect of the hydraulic conductivity drop in the bulk soil around a root

The analytical approaches in Eqs. (2.4) and (2.7) are compared with a numerical finite

difference approach for root water uptake. The finite difference method is implicitly ap-

plied to the partial derivatives of Eq. (2.1), analogue to the implementation in the WAVE

model of Vanclooster et al. (1996). The hydraulic conductivities are averaged using the
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x
x

y

p

A B

Fig. 2.3: A: A soil voxel with its soil nodes (full dots). A vertical orientated root with root node p is positioned
in the middle of the soil voxel. B: Rectangular cross-section at the axial height of root node p (full dot). Within
the rectangular cross-section the 2D radial domain, where the outer circle represents the bulk soil and the inner
circle the soil-root interface.

arithmetic mean. To maintain mass conservation the Celia-approach (Celia et al., 1990) is

applied to the mixed form of the Richards equation. Furthermore, the non-linear terms are

evaluated using a Newton-Raphson iterative method. In matrix form a tridiagonal system

of linear equations is obtained, which is solved using the Thomas algorithm after applying

flux or water potential type boundary conditions.

With this tool the hydraulic conductivity drop over time between the soil-root inter-

face and bulk soil is investigated for different soil types. Therefore, two scenarios are

investigated for which the inner root boundary condition qroot, associated with the climatic

demand, differs. In both scenarios the initial water potential is set to -100 cm, the limiting

water potential hlim at plant stress conditions and the integral boundary value h−∞ are

equal to -15000 cm. The initial time increment is set to 5 · 10−3 d and is automatically

adjusted based on water balance errors. The radial distance from soil-root interface to bulk

soil is subdivided in 200 elements based on a logarithmic scale to create smaller elements

near the root.

Flux density values at the inner root (qroot), for single root segments in variable dense

root structures, were investigated by De Jong van Lier et al. (2006) and ranged from

O(10−1) to O(10−0) cm d−1. We chose to perform a simulation with a low climatic de-

mand qroot = 0.1 cm d−1 and a second simulation with a higher climatic demand qroot = 0.5

cm d−1. Assuming in a soil voxel of 1 by 1 by 1 cm a single root segment with a root area

Ar = 2πrrootlr, where the root radius rroot equals 5·10−2 cm and the root segment length
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lr equals 1 cm, a total water flux at the root collar, Jc = qrootAr, of respectively 3.14·10−2

and 1.57·10−1 cm3 d−1 is obtained. The soil surface area Ap of this voxel equals 1 cm2 and

a potential transpiration rate, Tp = Jc/Ap [cm d−1], of equal height as the total water flux

at the root collar was acquired. The latter value is rather high but may be realistic for

transpiration rates at midday or during the early afternoon.

The flux density boundary condition at the outer edge was arbitrarily set to a value

unequal to zero, qout = qroot(rroot/2rout), and not in equilibrium with the flux density at the

inner root.

The soil properties, the hydraulic conductivity K as well as the volumetric water con-

tent θ, are obtained via the Mualem-Van Genuchten parameterization (Van Genuchten,

1980)

Θ =

[

1

1 + (αh)n

]m

=
θ − θr
θs − θr

K(Θ) = KsΘ
λ[1 − (1 − Θ1/m)m]2 (2.12)

m = 1 −
1

n

where Θ is the normalized water content and θr and θs indicate residual and saturated

values of the water content. The saturated soil hydraulic conductivity is denoted by Ks,

and α, λ and n are soil parameters. In order to describe K−θ−h relationships soil specific

data need to be provided, as is done by Wösten et al. (2001) for soils from the Dutch Staring

series. Three of these soils are listed in Table 2.1. The soil hydraulic conductivity and the

Table 2.1: Mualem-Van Genuchten parameters for three soils from the Dutch Staring series.

Staring Textural Class θr θs Ks α λ n
soil ID (cm3 cm−3) (cm3 cm−3) (cm d−1) (cm−1)

B3 sand 0.02 0.46 15.42 0.0144 -0.215 1.534
B11 clay 0.01 0.59 4.53 0.0195 -5.901 1.109
B13 loam 0.01 0.42 12.98 0.0084 -1.497 1.441

soil water content distribution for these soils are depicted in Fig. 2.4.
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Fig. 2.4: The soil hydraulic conductivity (left) and soil water content (right) as function of the absolute water
potential for the clay (solid line), loam (dashed line) and sandy soil (dashed-dotted line) from Table 2.1.

2.4.2 Effect of the hydraulic conductivity drop in a 3D soil-root water transfer

model

Incorporation of the water potential gradient in the bulk soil around roots will affect

root water uptake and therefore the behavior of the total soil-root system. Two different

scenarios were defined (Table 2.2), considering the hydraulic conductivity drop (analytical

approach) and not considering the hydraulic conductivity drop (average approach), for

which R-SWMS was assessed in terms of

• water potential at the soil-root interface, at the bulk soil and in the xylem

• radial water flow from the soil-root interface to the xylem

• total water flow at the root collar

If the hydraulic conductivity drop is taken into account, the boundary conditions for the

analytical approach have to be defined clearly in terms of R-SWMS output. At the outer

edge of a voxel with a root segment (bulk soil) a water potential and flux density are

imposed. The water potential in the soil nodes of the voxel are obtained by the Richards

equation. The corresponding flux in these nodes is obtained by summation of the Darcy’s

flow toward each soil node from the surrounding soil nodes. At the soil-root interface a

flux density equal to the radial flux from Eq. (2.8), divided by the root surface, is imposed.

In the two different scenarios only water flow was simulated without any bio-chemical

influences. No root growth and no solute uptake were considered. For sake of simplicity,
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we simulated a very simple root structure made of one vertical root (with length 8 cm),

positioned in the center of a soil voxel and in the middle of a soil column (at r = 0) with

dimensions 9 by 9 by 12 cm. An initial pressure head of -2000 cm throughout the soil

column was prescribed, corresponding to a 67% soil moisture. At the top and bottom of

the soil domain a no flux boundary condition (BC) was imposed (no rainfall/irrigation and

no free drainage). The soil was parameterized with the Mualem-Van Genuchten functions

(Table 2.1) and considered homogeneous. The soil was discretized in voxels of 1 by 1

by 1 cm, similarly the root segments with a length lr of 1 cm. At the root collar a

time-independent water potential was imposed and the hydraulic properties for the root

segments (from Doussan et al., 2006) were considered constant with time (see Table 2.2).

The radial root conductance is defined as Lr = L∗
rAr [cm2 d−1], where L∗

r [d−1] is the radial

conductivity and Ar the root area with rroot = 5·10−2 cm. The axial root conductance Kh

[cm3 d−1] regulates the water flow in the xylem.

The radial soil-root water flow (Eq. (2.8)) is dependent of the radial root conductance

and of the difference in water potential at the soil-root interface and in the xylem. The

impact on soil water variability by an increase in radial root conductivity was shown by

Javaux et al. (2008). Because of its importance a first scenario with a low L∗
r value and

a second scenario with a higher L∗
r value were defined. In the latter case the radial root

conductivity was increased 5-fold.

Table 2.2: Two scenarios with their soil and root properties and boundary conditions (BC) for the R-SWMS
comparison with and without incorporation of the hydraulic conductivity drop.

Scenario Soil texture Root properties BC soil BC root
L∗
r [d−1] Kh [cm3 d−1] [cm d−1] collar [cm]

Low L∗
r clay 1.73·10−4 4.32·10−2 zero flux top/bottom -2700

Higher L∗
r clay 8.64·10−4 4.32·10−2 zero flux top/bottom -2700

2.4.3 Validation scenario: mesh refinement

The accuracy of the different approaches was assessed by comparing simulations for dif-

ferent spatial discretizations. For a smaller discretization, the drop in water potential and

hydraulic conductivity toward the root segment is better represented by the Richards equa-

tion in R-SWMS. The water potentials calculated at the soil nodes surrounding the root

segment are expected to converge to the water potentials at the soil-root interface. Both

the lower and higher radial root hydraulic conductivity scenarios of the previous section
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were assessed for different soil and root discretizations, with and without considering the

hydraulic conductivity drop. The discretization size ranged linearly from 0.5 by 0.5 by 0.5

cm to 4 by 4 by 4 cm. Furthermore, a reference scenario with element size 0.2 by 0.2 by

0.2 cm was simulated.

2.5 Results

2.5.1 Effect of the hydraulic conductivity drop in the bulk soil around a root

Spatial effect

Analytical and numerical solutions for three different soil types are compared for the higher

climatic demand scenario (qroot = 0.5 cm d−1) only, in Figs. 2.5 and 2.6.
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Fig. 2.5: Water potential distribution over time in a clay soil for the higher climatic demand scenario. A
comparison is shown between the analytical solution (dots) and the numerical finite difference solution (solid
line). The dashed line resembles the limiting water potential at which plant stress occurs. The simulation time
is in days.

The analytical solution for all soil types approximates the numerical model very well.

The relative error is maximal (about 5%) in the sandy soil measured at the moment the

soil water potential reached limiting conditions and close to the soil-root interface. The

mean relative error, though, over the total water potential distribution at this time was

lower than 1%. The relative error for the clay and loamy soil, for all time sections, was

smaller than 1% as well.

Similar results were obtained for the water content profiles. Because of the steady-rate

assumption that is used to obtain the analytical solution, water content profiles dependent
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Fig. 2.6: Water potential distribution over time in a loamy soil (left plot) and a sandy soil (right plot) for
the higher climatic demand scenario. Comparisons are shown between the analytical solutions (dots) and the
numerical finite difference solutions (solid line). The dashed lines resemble the limiting water potential at which
plant stress occurs. The simulation time is in days.

of time were supposed to be parallel. After the onset of plant stress conditions, and the

switch from a flux to water potential type boundary condition, this steady rate assumption

was violated. The water potential and the water content at the soil-root interface did not

change with time anymore. Therefore, the water potential and soil water content profiles

could no longer have a parallel course in the vicinity of the soil-root interface. Nevertheless,

the analytical solution stayed close to the numerical solution since the changes in soil water

content were small. Finally, an uniform water potential profile equal to the limiting water

potential was obtained.

Temporal effect

Fig. 2.7 shows the hydraulic conductivity over time at the soil-root interface and at the

bulk soil for the three soils. The hydraulic conductivity drop between the bulk soil and

soil-root interface was the largest in the sandy soil and at the moment of plant stress, where

the soil-root interface hydraulic conductivity was constant. The conductivity drop in the

low climatic demand scenario was a factor of 25 in the sandy soil, whereas in the clay and

loamy soil hardly a drop, smaller than 1.5, could be noticed. If the demand is increased

5-fold a hydraulic conductivity drop in the sandy soil of factor 250 can be observed. The

clay soil had a 3-fold drop and the loamy soil a 1.5-fold drop in hydraulic conductivity

between the bulk soil and soil-root interface. The hydraulic conductivity drop strongly

depends not only on the climatic demand, but also on the soil parameters α, λ and n
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Fig. 2.7: Soil hydraulic conductivity over time at the soil-root interface (solid line) and at the bulk soil (dashed
line) for a clay (black line), loam (red line) and sandy soil (blue line). Left graph: lower climatic demand
scenario, qroot = 0.1 cm d−1. Right graph: higher climatic demand scenario, qroot = 0.5 cm d−1.

determining the steepness of the K − h relationship.

Noticeable is the shift in time of the moment of plant stress. In case where the demand

was higher, and larger water potential gradients were created, the soil reached limiting

conditions earlier than in the lower climatic demand scenario. Furthermore, the moment of

stress occurrence varied for the individual soils dependent on their soil hydraulic properties.

If the hydraulic conductivity drop was not considered, so the hydraulic conductivity at the

soil-root interface equaled the bulk soil hydraulic conductivity, it took a much longer time

to reach limiting conditions, even for the low climatic demand where not so large soil

hydraulic water potential gradients were observed.

2.5.2 Effect of the hydraulic conductivity drop in a 3D soil-root water transfer

model

Root water uptake was assessed for R-SWMS for the case where the hydraulic conductivity

drop was considered and for the case where it was not taken into account. Note that for

all simulations, performed during one day with an initial time increment of 5·10−3 d, the

mass balance for soil and root water transfer was reduced rapidly below 1% error after

initialization of the simulation.

For the low and higher radial root conductivity scenarios (Table 2.2) the water potential

at the soil-root interface, at the soil voxel nodes surrounding the root segment (bulk soil),

and in the xylem was evaluated as function of the rooting depth in Figs. 2.8 and 2.9.
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Fig. 2.8: Left graph: water potential at the soil-root interface as function of rooting depth. Right graph: bulk
soil water potential as function of rooting depth. Without conductivity drop (dashed line) and with conductivity
drop (solid line). The low L∗

r scenario is denoted by the blue lines, the higher L∗

r scenario by the red lines.
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Fig. 2.9: Xylem water potential as function of rooting depth. Without conductivity drop (dashed line) and
with conductivity drop (solid line). The low L∗

r scenario is denoted by the blue lines, the higher L∗

r scenario by
the red lines.

The left graph of Fig. 2.8 shows, for the low radial root conductivity scenario, an aver-

age increase of 3.3% in absolute water potential at the soil-root interface considering the

hydraulic conductivity drop around the root, compared with not considering the hydraulic

conductivity drop. Furthermore, under the same soil and root collar boundary conditions

the absolute water potential at the soil-root interface increased about 7% with a 5-fold

increase in radial root conductivity.

Changes in bulk soil water potential (right graph of Fig. 2.8) were relatively small. In

the low L∗
r scenario, the change between considering and not considering the hydraulic
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conductivity drop was smaller than 1% and only about 3.5% in the higher L∗
r scenario.

The xylem water potential distribution in Fig. 2.9 illustrates that in the low L∗
r sce-

nario the xylem water potential is slightly different for both methods with and without

considering the hydraulic conductivity drop. This effect can be attributed to the large

axial conductance in the xylem opposed to the low radial root conductance. An increase

in radial root conductivity in the higher L∗
r scenario reduced the difference in conductance

between an axial and radial root segment. This affects the xylem water potential when in-

corporating the local hydraulic conductivity drop as opposed to not considering this drop.

The change, however, is not significant as it is much less than 1% in the low L∗
r scenario

and about 1% in the higher L∗
r scenario. These errors, though, are very much dependent

on the boundary conditions imposed at the root collar and on the ratio of radial and axial

root hydraulic conductance.

A change in water potential at the soil-root interface and in the xylem will also cause

a change in radial soil-root water flow following Eq. (2.8) (not shown). In the low L∗
r sce-

nario a relative average change of 14% was observed, whereas in the higher L∗
r scenario an

approximately 50% difference was observed between not considering and considering the

hydraulic conductivity drop. This may be explained by assessing the hydraulic conductivi-

ties of the soil and root. In the low L∗
r scenario the radial root hydraulic conductivity times

the length of the resistive pathway (rroot) is lower than the soil hydraulic conductivity for

the observed water potential range (Fig. 2.4). This implies that the root resistance is larger

than the soil resistance and that water fluxes between soil and xylem are determined by the

lower root hydraulic conductivity. When the radial root conductivity increases 5-fold the

soil hydraulic conductivity becomes the limiting parameter. Changes in water potential at

the soil-root interface, due to incorporation of the hydraulic conductivity drop, affect root

water uptake now largely.

The water potential distribution throughout the soil was affected by the water po-

tential at the soil-root interface, in the xylem, and the corresponding radial soil-root flux.

Fig. 2.10 shows the water potential distribution throughout the soil. In the higher L∗
r

scenario a larger change is observed than in the low L∗
r scenario, with a maximum relative

error, at the closest soil node to the root segment (bulk soil), of about 4%. Dependent

on soil and root boundary conditions and hydraulic properties the water potential distri-

bution in the soil may be greatly affected, which means that estimated water fluxes will

be affected. Another noticeable observation in Fig. 2.10 is that the estimated absolute

soil water potential at the soil nodes was less in case where the hydraulic conductivity
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Fig. 2.10: Water potential distribution throughout the soil at soil layer z = −4 cm without hydraulic conduc-
tivity drop near the root (dashed line) and with hydraulic conductivity drop (solid line). Left: low L∗

r scenario.
Right: higher L∗

r scenario.

drop within the soil voxel around the root segment was considered. The absolute water

potential at the soil-root interface, however, was larger. As a consequence, the hydraulic

gradient between the soil-root interface and the xylem was smaller and the simulated water

extraction was less.

The final quantity that was assessed is the total flow at the root collar Jc, as illustrated
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Fig. 2.11: Total water flow at the root collar Jc as function of the simulation time without considering the
hydraulic conductivity drop (dashed line) and with hydraulic conductivity drop (solid line). The low L∗

r scenario
is denoted by the blue lines, the higher L∗

r scenario by the red lines.

in Fig. 2.11 for both scenarios with and without conductivity drop. It can be noticed that

for the low radial root conductivity scenario, the average change in exponential decay of
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the total water flow at the root collar considering the conductivity drop was about 14%

less than in the case where the conductivity drop was not considered. This was caused by

the change in radial soil-root water flow. In the higher radial root conductivity scenario,

the average change in total water flow between the two methods of estimation of the water

potential at the soil-root interface was about 50%. This indicates that the effect of the

water potential gradient, seeming relative small in percentage, between the bulk soil and

soil-root interface may have a big influence on the estimated total water flow at the root

collar. Especially in those situations where radial root hydraulic conductivity is larger than

soil hydraulic conductivity.

2.5.3 Validation scenario: mesh refinement

Accuracy for low radial root conductivity
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Fig. 2.12: Soil water potential distribution for various voxel sizes at rooting depth z = −4 cm without hydraulic
conductivity drop around the root (left) and with hydraulic conductivity drop around the root (right). The soil-
root interface water potential is denoted with ‘x’. The voxel size represents the x, y and z-direction of a voxel
in cm. At r = 0 a vertical root is positioned.

Fig. 2.12 shows that, indeed, the soil water potential distribution was affected by the ele-

ment size and that the soil-root interface water potential was more precisely estimated for

smaller elements.

The left graph of Fig. 2.12 shows the soil water potential distribution without con-

sidering the hydraulic conductivity drop around the root (average approach). The water

potential at the soil-root interface (crosses in Fig. 2.12) is equal to the water potential

in the bulk soil. If the local hydraulic conductivity drop is explicitly considered around
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the root (analytical approach), we see (right graph in Fig. 2.12) that the estimated water

potential at the soil-root interface is always better estimated regardlessly the grid resolu-

tion. The observed discrepancies in water potential at the soil-root interface for all grid

resolutions were smaller than 1% (Table 2.3) and insignificant.

An interesting point is the gain in accuracy when taking the hydraulic conductivity drop

explicitly into account as opposed to not considering the conductivity drop. Therefore, we

analyzed the water potentials estimated at the soil-root interface for all grid resolutions

compared to the most accurate estimated water potential, i.e. for the 0.2 by 0.2 by 0.2 cm

voxel and considering the hydraulic conductivity drop. From Table 2.3 it can be deduced

that if the local hydraulic conductivity drop is taken into account the soil-root interface

water potential can be estimated with more accuracy for equal soil discretizations than by

using the average method. Considering the average approach, the smallest element (0.2 by

0.2 by 0.2 cm) satisfies the smaller than 1% limit and predicts water potentials that are

in range with the reference scenario. For increasing element size, however, the deviation

increases. The discrepancies seem very small; keep in mind, though, that a homogeneous

clay soil was investigated and the root was not affected by plant stress conditions. This

will not lead to large simulated water potentials near the root and will have less effect on

differences in both approaches. Despite the relative small changes in water potential, we

observed significant overestimation in radial soil-root water flow (Table 2.3). For larger

elements, a difference larger than 10% is noticeable when not considering the hydraulic

conductivity drop compared with the reference scenario.

Table 2.3: Relative error in water potential [h] at the soil-root interface and in radial soil-root water flow
[Jr] for various element sizes with respect to the element size 0.2 by 0.2 by 0.2 cm considering the hydraulic
conductivity drop. Low radial root conductivity scenario at rooting depth z = −4 cm.

Element size [cm]
0.2 by 0.2 by 0.2 0.5 by 0.5 by 0.5 1 by 1 by 1 2 by 2 by 2 4 by 4 by 4

Average [h] 0.6 % 2 % 3.3 % 4.4 % 5.5 %
Analytical [h] - 0.3 % 0.3 % 0.2 % 0.2 %

Average [Jr] 2.2 % 7.4 % 10.9 % 14 % 16.8 %
Analytical [Jr] - 1.3 % 1.3 % 1.6 % 3.3 %

Accuracy for higher radial root conductivity

We have seen above that an increase in radial root conductivity leads to a greater water

uptake around the roots and affects the water potential distribution throughout the soil. If

we compare the difference in water potential estimated at the soil-root interface and in ra-



2.5. Results 29

dial soil-root water flow for all grid resolutions with and without considering the hydraulic

conductivity drop, it can be noticed from Table 2.4 that the error has increased at least

2-fold compared with the low L∗
r scenario (Table 2.3). For larger elements, the error in

radial soil-root water flow when not considering the hydraulic conductivity drop is larger

than 30% compared with the reference scenario.

With these validation scenarios we have shown that incorporation of the local hydraulic

conductivity drop around individual roots in R-SWMS can solve problems with greater ac-

curacy for larger grid resolutions compared with not considering the hydraulic conductivity

drop.

Table 2.4: Relative error in water potential [h] at the soil-root interface and in radial soil-root water flow
[Jr] for various element sizes with respect to the element size 0.2 by 0.2 by 0.2 cm considering the hydraulic
conductivity drop. Higher radial root conductivity scenario at rooting depth z = −4 cm.

Element size [cm]
0.2 by 0.2 by 0.2 0.5 by 0.5 by 0.5 1 by 1 by 1 2 by 2 by 2 4 by 4 by 4

Average [h] 1% 4% 6% 9% 13%
Analytical [h] - <1 % <1% 2% 4%

Average [Jr] 6 % 20 % 29 % 38 % 44 %
Analytical [Jr] - 4 % 4 % 6 % 7 %

Computational times

For a soil discretization of 0.2 by 0.2 by 0.2 cm without explicitly taking the hydraulic con-

ductivity drop into account, the water potential at the soil-root interface approached the

one estimated where the hydraulic conductivity drop was considered. The computational

time, however, increased largely for such a small element, as can be seen in Table 2.5.

Here, the factor of decrease in computational time of the elements using both methods

are compared with the 0.2 by 0.2 by 0.2 element without considering the hydraulic con-

ductivity drop. Not only was a greater accuracy obtained for larger grid resolutions when

considering the hydraulic conductivity drop, but also a significant gain in computational

speed compared with neglecting the hydraulic conductivity drop.

Table 2.5: Factors of decrease in computational time for various element sizes with respect to the element size
0.2 by 0.2 by 0.2 cm without considering the conductivity drop.

Element size [cm]
0.5 by 0.5 by 0.5 1 by 1 by 1 2 by 2 by 2 4 by 4 by 4

Average 12 60 95 100

Analytical 5 25 43 86
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2.6 Conclusions

It was shown that the hydraulic conductivity drop at the voxel scale, from bulk soil to soil-

root interface, cannot always be neglected and that it can be quantified with microscopic

models coupled to soil-root water transfer models.

The microscopic model has shown that the largest drop is noticed at the moment plant

stress occurs. The amplitude of the conductivity drop and time occurrence of plant stress

is very much dependent on soil and root properties. Furthermore, the time occurrence is

affected largely, even under small conductivity drops, if the hydraulic conductivity drop is

not considered and the bulk soil conductivity equals the soil-root interface conductivity.

As observed, the effect of the hydraulic conductivity drop on water uptake for single

roots in the 3D soil-root water transfer model is considerable, even for relatively wet

soils, especially under conditions where the radial root conductivity is larger than the soil

hydraulic conductivity. These findings were reinforced by numerical validation using mesh

refinement.

Furthermore, incorporation of the hydraulic conductivity drop around individual roots

in a 3D soil-root water transfer model can solve problems for larger grid resolutions with

still an acceptable accuracy and with smaller computational times than with the distance-

based averaging procedure where the hydraulic conductivity drop is not considered.

Assessment of the accuracy of the simulated water uptake could only be based on

numerical validation. New non-invasive techniques like NMR (Pohlmeier et al., 2008)

could allow us to assess soil-root interactions at the voxel scale and test our assumptions

against real observations.

More work should be done on the effect of the hydraulic conductivity drop at the plant

scale, using larger, more realistic root structures. Simulation of water flow in large root

structures costs lots of computational power. Parallelization tools are needed to solve the

water flow in soil (Hardelauf et al., 2007) and roots.



Chapter 3

Implementation of a microscopic

soil-root hydraulic conductivity drop

function in a 3D soil-root water

transfer model∗

3.1 Objectives

In Chapter 2 an analytical microscopic approach was build and numerically validated to

estimate the local soil hydraulic conductivity drop around single roots in the 3D soil-

root water transfer model of Javaux et al. (2008). In this chapter the impact of the local

hydraulic conductivity drop on denser root architectures and in dry soil regions (near plant

stress) is addressed. Different geometrical applications of the microscopic model, describing

the hydraulic conductivity drop for multiple roots within a soil voxel of a 3D soil-root water

transfer model, are implemented. These simplifications, originating from 1D models, are

assessed for two sets of soil hydraulic properties and for four simplified root architectures

in different growing stages. The results of the different subvoxel simplifications of the

microscopic water flow towards roots are compared to a numerical simulation that resolves

the smaller scale water potential gradients by using a much finer grid.

*adapted from T. Schröder, M. Javaux, J. Vanderborght, B. Körfgen, and H. Vereecken (2009). Im-
plementation of a microscopic soil-root hydraulic conductivity drop function in a 3D soil-root architecture
water transfer model. Vadose Zone Journal, in press

31
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3.2 Introduction

The understanding of spatial and temporal root water uptake is of importance for a vari-

ety of environmental and agricultural purposes, such as irrigation management and yield

prediction under water scarcity conditions. It is known that water is taken up in propor-

tion to the water potential difference between soil and root and that it is dependent on

the hydraulic conductivity in the vicinity of the roots. However, there is a long ongoing

debate regarding the relative magnitude of the water flow resistance due to soil and root

(Newman, 1969; Taylor and Klepper, 1975; Nobel and Cui, 1992). Several authors argued

that the water potential gradient in the vicinity of roots could among other things be due

to bad soil-root contacts (Huck et al., 1970; Tinker, 1976; Herkelrath et al., 1977; Bristow

et al., 1984) or the fact that only a few roots could be active (Passioura, 1980). High

water potential gradients, however, imply that important water potential differences exist

between bulk soil and soil-root interface and that soil properties limit the potential root

water uptake (Li et al., 2002b; Garrigues et al., 2006). The difficulty of measuring the

soil water status near the soil-root interface makes the experimental verification of these

hypotheses hard. Besides the experimental investigations, numerical models that explicitly

consider the water potential gradient near the roots are needed to evaluate these impor-

tant soil-root interactions. Different 1D models explicitly consider the soil water potential

gradient for the prediction of root water uptake (Gardner, 1960; Cowan, 1965; Hillel et al.,

1975; De Willigen and van Noordwijk, 1987; De Jong van Lier et al., 2006) applied at the

single root level (microscopic scale). On the macroscopic scale, there are 1D models using

extraction functions (Feddes et al., 1976) but usually without consideration of the water

potential gradient between bulk soil and the soil-root interface.

Developments in modelling approaches of the root architecture and of the root hy-

draulics have lead to the current state of the art in modelling root water uptake: fully

coupled 3D soil-root models (Doussan et al., 2006; Javaux et al., 2008). These 3D models

predict root water uptake based on water potential differences in soil and roots. Again, the

crucial point in these 3D models is the resistance between bulk soil and soil-root interface.

Currently, 3D models assume the bulk soil water potential to be equal to the soil-root

interface water potential, neglecting the hydraulic conductivity drop within a soil voxel

surrounding roots (in the model of Javaux et al. (2008) a soil voxel is a regular hexahe-

dron). This may become problematic when the soil resolution is too coarse. Due to the

non-linearity of the soil hydraulic conductivity, root water uptake may lead to considerable

water potential gradients at the soil-root interface, which are not depicted by the numerical
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grid that is used to describe the bulk soil water movement.

3.3 Theory

3.3.1 3D macroscopic water flow model in soil and roots

The model of Javaux et al. (2008) consists of two interacting systems: the soil matrix

and the root architecture. For both systems a set of equations is solved in terms of water

potential and both are coupled via the sink term S in the Richards equation, see Javaux

et al. (2008) for more details. In this study, the boundary conditions for the plant root

system are a transpiration rate at the root collar, and a soil water potential at the soil-root

interface enabling calculation of the water potential within the roots. Stress is defined

when the water potential at the root collar is lower than a limiting water potential value.

From this point on the actual transpiration rate is lower than the potential transpiration

rate.

Radial soil-root water flow Jr [cm3 d−1] is given by

Jr = L∗

rAr(hint − hxylem) (3.1)

where L∗
r is the radial root conductivity [d−1], Ar [cm2] the root outer surface and h [cm]

represents the water potential expressed as hydraulic head at the soil-root interface (hint)

and in the xylem (hxylem) respectively. The outer root surface is defined by Ar = 2πrintlr,

with rint [cm] the root radius from the center of the xylem to the soil-root interface and lr

[cm] the length of the root segment. The radial root conductance is given by Lr = L∗
rAr

[cm2 d−1]. The water potential at the soil-root interface is estimated by a distance-based

weighting function of the water potential in the surrounding soil nodes. The sink term

[d−1] of a soil voxel j is calculated by

Sj =

∑nj

k=1 Jr,k
Vj

(3.2)

where the numerator represents the sum of all the radial soil-root fluxes of the nj root

nodes located inside a soil voxel j and Vj [cm3] is the volume of the jth soil voxel. A root

node is defined as the center of a root segment at which water exchange is allowed. The
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sink term is distributed upon the soil nodes i representing the bulk soil

Si = Sj

(hi−hint)
disti

∑8
k=1

(hk−hint)
distk

, for i = 1, . . . , 8 (3.3)

where dist is the distance from the soil node i to the soil-root interface.

3.3.2 Microscopic model

A quasi 2D horizontal microscopic analytical model was previously derived by Schröder

et al. (2008). This approach led to a good approximation of the water potentials and water

fluxes close to the soil-root interface obtained using a numerical simulation for a higher

spatial discretization. It should be noted, however, that we assume that the Richards

equation can be used to describe water potential gradients at the subvoxel scale and that the

hydraulic parameters do not vary in the vicinity of the soil-root interface. The drawback,

however, is the stage at which the root cannot be considered a point in space anymore and

the volume of the soil voxel is affected by the volume of the root segment. We therefore

introduce a volume percentage

pV =

∑n
i=1 Vsegi

Vvox
× 100 (3.4)

where Vseg = πr2
intlr equals the volume of a root segment, n is the number of root segments

in the soil voxel and Vvox is the volume of the soil voxel. If the volume percentage is

below 5% the effect of the root segment volume on the water content in a soil voxel is still

assumed to be marginal. We then assume validity of the postulation to consider the root

nodes as points in this soil voxel.

The hydraulic conductivity drop in the soil between the soil nodes surrounding a root

segment (bulk soil) and the soil-root interface was analytically estimated using the radial

Richards equation given by

∂θ

∂t
=

1

r

∂

∂r
(rK(h)

∂h

∂r
) = −

q

r
−
∂q

∂r
(3.5)

where q [cm d−1] is the Darcy’s flow (a flux density) denoted by q = −K(h)∂h
∂r

, r [cm]

the radial coordinate and t [d] the time. The volumetric water content θ [cm3 cm−3] and

the hydraulic conductivity K [cm d−1] are soil characteristics, dependent on the water
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potential. The differential equation is linearized using the matric flux potential

Φh =

∫ h

h−∞

K(h)dh (3.6)

where h is the current water potential and h−∞ the lower integral boundary representing

the permanent wilting point. Finally, for flux boundary conditions at the soil-root interface

(rint), imposed water potential and flux boundary conditions at the bulk soil (rbulk), and

assuming steady rate behavior, i.e. ∂θ
∂t

= constant, Eq. (3.5) results in

Φ(r) = Φrbulk
+ (qintrint − qbulkrbulk)

(

r2/r2int

2(1 − ρ2)
+

ρ2

1 − ρ2

(

ln
rbulk
r

−
1

2

))

+

+ qbulkrbulkln
r

rbulk
(3.7)

with ρ = rbulk/rint. The water potential is derived from Φ(r) using Eq. (3.6). The steady

rate behavior is shown to be a valid assumption (De Willigen and van Noordwijk, 1987;

De Jong van Lier et al., 2006; Schröder et al., 2008). Schröder et al. (2008) showed that

the error induced by the steady rate assumption, compared to numerical simulations, is

small and below 5% in very dry sandy soils. To keep the error within the 3D model small,

especially when larger changes in soil water content are noticed, the timestep should be

controlled and decreased. An additional criterion was implemented in the 3D model that

ensures that changes in the radial soil-root flow of a root segment, between the previous

and current solution, are small. If this condition is not fulfilled and a maximum number

of iterations is reached the model reduces the timestep and restarts the current simulation

time.

3.3.3 Water potential criterion at the soil-root interface

From the derived conductivity drop from bulk soil to soil-root interface and the flow from

soil-root interface to the root xylem vessel a criterion can be derived for the water potential

at the soil-root interface, relating the local average soil hydraulic conductivity to the radial

root conductivity.

From Eq. (3.7) we can obtain the flux of water at the soil-root interface (qint), using

Eq. (3.6),

qint =
k̄B

rint
(hbulk − hint) +Bχ1 + χ2 (3.8)



36 Chapter 3. Usage of analytical approach for multiple roots

where

k̄ =

∫ hbulk

hint
K(h)dh

hbulk − hint
=

Φrbulk
− Φrint

(hbulk − hint)
≥ 0

B =
2(1 − ρ2)

−2ρ2(lnρ− 1/2) − 1
, B > 0 for ρ > 1 (3.9)

χ1 = qbulk ρ ln1/ρ and χ2 = qbulk ρ

Because of conservation, the water flux arriving at the soil-root interface (Eq. (3.8)) equals

the water flux from soil-root interface to the xylem; qint = Jr/Ar = L∗
r(hint−hxylem) (derived

from Eq. (3.1)). Extraction of the soil-root interface water potential yields

hint =
k̄Bhbulk + L∗

rrinthxylem +Brintχ1 + rintχ2

k̄B + L∗
rrint

(3.10)

Note that Eq. (3.10) is not explicit as k is dependent on hint (Eq. (3.9)). An asymptotic

analysis of the ratio of the soil and root conductivities reveals that

k̄B � L∗

rrint → hint = hbulk +
rint
k̄
χ1 +

rint
k̄B

χ2 → hint = hbulk (3.11)

k̄B = L∗

rrint → hint =
1

2
hbulk +

1

2
hxylem +

B

2L∗
r

χ1 +
1

2L∗
r

χ2 (3.12)

L∗

rrint � k̄B → hint = hxylem +
B

L∗
r

χ1 +
1

L∗
r

χ2 (3.13)

where L∗
rrint is the radial root conductivity along its resistive pathway (cortex). In soil

locations where k̄B � L∗
rrint and the soil water potential gradient is small, the root is

the limiting system. This implies that the water potentials in the root system control

the water flux from soil to root. If L∗
r is constant and uniform it is expected that under

such conditions the sink term distribution follows the root length density trend (Coelho

and Or, 1999; Li et al., 2002a,b), as long as the xylem conductivity is high enough and

the xylem potential does not vary considerably in the root system. Beyond the point

k̄B = L∗
rrint the soil is the limiting system. Here the water potential gradients in the

soil control the flow towards the root system. A simple macroscopic relation between root

water uptake and root length density is not expected as shown by Li et al. (2002a,b) who

investigated root extraction patterns for corn at the field scale. We call this point soil

limiting conditions. Effects of local soil-root interactions will be visible beyond the point
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of limiting soil conditions (Eq. (3.13)) and therefore our simulations are mainly assessed

in this state.

3.3.4 Estimation of the soil-root interface water potential for multiple roots

in a 3D soil-root water transfer model

Two main approaches can be considered. In the averaging approach, as proposed by Javaux

et al. (2008), the soil water potential distribution below the voxel scale is not explicitly

taken into account and the potential at the soil-root interface is equal to the bulk soil

water potential. This approach may be used when the spatial discretisation is fine enough

to reproduce the soil water potential gradient towards single roots. On the other hand,

if the grid discretization is too coarse to reproduce the water potential gradient at the

soil-root interface, the flow towards the root for a given xylem pressure may be affected

by this approach (Schröder et al., 2008). In a second approach the microscopic analytical

model described above can be applied at the subvoxel scale. Fig. 3.1 shows four methods.

Method A represents the averaging procedure, while methods B, C and D use the analytical

approach at the subvoxel scale. Methods B, C, and D differ in the definition of the outer

radius of influence for the root, and in the boundary conditions. The root inner radius from

xylem to soil-root interface is known for each root segment. We assume, for all methods,

that the roots may be projected as points in space connected by line segments, i.e. root

volume << soil voxel volume.

Method B keeps the original geometry of distribution and calculates the water potential

at the soil-root interface for each individual root node. Each individual root node has an

outer radius (rbulk) that corresponds to the minimal distance between the root location and

one of the soil voxel edges. Furthermore, it has a different bulk soil water potential and flux

boundary condition at the outer edge. Water is extracted by each root node independently

from water uptake by neighboring root nodes. This means that for each root node a bigger

water reservoir is available causing probably a slight underprediction of the pressure head

gradient, compared to considering the root extraction of a neighboring root node.

In scenario C the root nodes are equally redistributed and a soil voxel is subdivided in

a number of small subvoxels equal to the number of root nodes in the soil voxel. The outer

radius of the cylinder around the root node is kept uniform and is related to the square

root of the voxel size scaled to the number of root nodes. The outer edge water potential

for each root node is obtained by averaging of the soil water potentials at the corner nodes

of the 2D plane (Fig. 3.1). We assume furthermore a zero flux condition that implies that
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no water is extracted from the outer radius (De Willigen and van Noordwijk, 1987). This

may be true regarding water extraction among neighboring root nodes within a soil voxel.

It may be a large simplification when the flow towards the voxel is important compared to

the water uptake by the roots. This may occur when in neighboring soil voxels a dissimilar

amount of water is extracted. However, one dimensional plant uptake models often use

that implicit assumption when modelling root water uptake (see e.g. De Jong van Lier

et al., 2007).

Method D relocates all root nodes to the middle of the soil voxel. One large root node

is created for which the outer radius is equal to half the voxel size. This approach is analog

to assumptions imposed by several 1D microscopic models. The flux and water potential

boundary conditions at the outer edge are obtained by averaging, similar to method C.

The total water that flows into the root is the sum of all the radial soil-root fluxes of the

individual root nodes. As a consequence, the newly defined root radius (to be used in

Eq. (3.7)) is the sum of all the root radii in the soil voxel. For estimation of the water

potential gradient from the outer edge (bulk soil) to the soil-root interface the summation

of the root radii may not exceed the outer defined (bulk soil) radius. After solving the

analytical approach, the water potential at the soil-root interface is then given to each

individual root node.

A B C D

Fig. 3.1: Four methods for estimation of the soil-root interface water potential for the multiple root problem
(2D representation). Method A represents the average approach and does not consider the local soil hydraulic
conductivity drop around roots. Scenarios B, C and D incorporate the analytical approach and take the hydraulic
conductivity drop explicitly into account. The black dots represent root nodes which have a radius rint. The
outer radius representing the bulk soil rbulk is denoted by the circles.

3.4 Methods

To test the proposed local root water uptake methods several well-defined scenarios have

to be chosen. These scenarios need the definition of different root and soil properties
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and boundary conditions for the soil and root system. We investigate four kind of root

Table 3.1: Frequency of number of root nodes per soil voxel for root architecture 1-4 assessed for two soil
discretizations, 0.2 by 0.2 by 0.2 cm and 1 by 1 by 1 cm respectively.

Root Discretization Number of root nodes in a soil voxel
architecture [cm] 1 2 3 4 5 6 7 8 9 10 11 12

F
re

q
u
en

cy

1
1 by 1 by 1 12 7 7 4 2 1
0.2 by 0.2 by 0.2 64 10 1 1

2
1 by 1 by 1 10 8 6 5 1 1
0.2 by 0.2 by 0.2 54 15 4 2 1

3
1 by 1 by 1 14 19 11 9 8 6 7 1 5 3 2
0.2 by 0.2 by 0.2 235 60 17 3 1 1

4
1 by 1 by 1 25 28 15 17 7 7 11 3 3 8 7 1
0.2 by 0.2 by 0.2 450 91 29 11 3 1 1

Root Discretization Number of root nodes in a soil voxel
architecture [cm] 13 14 16 17 19 21 25 26 29 32 43

F
re

q
u
en

cy

1
1 by 1 by 1 1
0.2 by 0.2 by 0.2

2
1 by 1 by 1 1 1
0.2 by 0.2 by 0.2

3
1 by 1 by 1 1 1 1 1
0.2 by 0.2 by 0.2

4
1 by 1 by 1 2 1 1 1 1 2 1
0.2 by 0.2 by 0.2

architectures. Each root architecture differs in the number of root nodes that are located

in a soil voxel, thus in root surface density per voxel. The root architectures are generated

with the root growth model from Somma et al. (1998). Root branches grow under different

angles and root radii vary dependent on branching hierarchy. Root architecture 1 consists

of primary roots only and has an average root length density RLD of 0.06 cm cm−3.

Root architecture 2 and 3 have secondary roots as well with a RLD of 0.09 and 0.24 cm

cm−3 respectively. Root architecture 4, in addition, has tertiary roots which increases the

total root surface determining water uptake considerably. The calculated average root

length density is 0.36 cm cm−3. These root length densities are rather small, however, root

architectures for faba beans with a RLD of order of 0.1 cm cm−3 where found by Kage

and Ehlers et al. (1996) in the field. Furthermore, for computational reasons we will not

consider extremely large root architectures in this study. A more thorough overview of the

number of root nodes per soil voxel, dependent on soil discretization, is given in Table 3.1.

For simplicity, the radial root conductivity L∗
r, regulating root water uptake, and the axial
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conductance Kh [cm3 d−1], regulating axial flow in the root xylem, for the different root

architectures are chosen constant and uniform, see Table 3.2. Note that the objective of

this study is to investigate the effect of small scale water potential gradients and the way

they are implemented in numerical models for simulating root water uptake. Therefore

a non-uniform root conductivity distribution, as proposed by Doussan et al. (1998a), to

perform realistic simulations is not considered here. However, variable root conductivities

as function of time and space can easily be implemented in the model.

The soil properties are obtained via the Mualem-van Genuchten parameterization (Van

Genuchten, 1980)

Θ =

[

1

1 + (αh)n

]m

=
θ − θr
θs − θr

K(Θ) = KsΘ
λ[1 − (1 − Θ1/m)m]2 (3.14)

m = 1 −
1

n

where Θ is the soil saturation degree and θr and θs indicate residual and saturated vol-

umetric water content. The saturated soil hydraulic conductivity is denoted by Ks, and

α, λ and n are soil parameters. Soil hydraulic parameters are given in Table 3.3. The

parameters for the clay and loamy soil are based on the parameters proposed by Carsel

and Parrish (1988). The soil properties are considered homogeneous.

Only water flow is simulated, no further root growth and no solute uptake is consid-

ered in the simulation. A soil column is defined with dimensions 7 by 7 by 12 cm and

discretized in voxels of respectively 0.2 by 0.2 by 0.2 cm (fine discretization) and 1 by 1 by

1 cm (coarse discretization). The minimal dimension of 0.2 cm for a soil cube is chosen to

ensure the existence of a representative elementary volume to apply the Richards equation.

For the coarser soil discretization the average volume percentage of roots in a soil voxel,

calculated by Eq. (3.4), for root architecture 4 (maximum root density) is 1.4·10−3%. The

maximum volume percentage is 5.7% near the root collar. Besides this maximal value,

that is still near the imposed criterion, the average value is much lower than the criterion

imposed and allows the use of the microscopic approach at this coarser soil discretization.

The size of the soil column is rather small, however, for the objectives in this study and

for computational reasons it is large enough to test the microscopic approaches. At the

top and bottom of the soil domain (and the lateral sides) zero flux conditions are imposed.

The initial soil water potential equals -1 cm throughout the soil column.
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For each root architecture, simulations are performed with a specific imposed flux at

the root collar. A flux boundary condition is imposed such that the whole pF spectrum can

be assessed if simulations are performed over a long simulation time. Root architecture 4 is

the most detailed/complex root system and is taken as point of departure. If we assume a

transpiration rate of 0.3 cm d−1 we obtain a root collar flux of 14.7 cm3 d−1 (transpiration

rate times soil surface area). An average flux density per root segment can be defined by

dividing the root collar flux by the total root area (Table 3.2). This value, equal to 0.2 cm

d−1, is used to calculate the root collar fluxes for the simulations performed with the other

root architectures. This to ensure that the average water uptake per root segment is equal

among scenarios. Root water fluxes of same order of magnitude were observed in Doussan

et al. (1998b). A summary of the boundary conditions and properties of the root and soil

is given in Table 3.2. Simulations are stopped when plant stress is reached, which is set to

a xylem water potential of -15000 cm at the root collar. As can be seen from Table 3.1,

for a fine soil discretization (0.2 by 0.2 by 0.2 cm), many soil voxels have one or very few

root nodes. We will evaluate method A, denoted by A0, as a reference method for the fine

soil discretization. For the coarser soil discretization (1 by 1 by 1 cm) all four methods of

microscopic treatment will be considered: A1, B1, C1 and D1 (Table 3.4).

Table 3.2: Root properties and boundary conditions (BC) for the four root architectures.
Root Root properties Total root BC soil BC root

architecture L∗

r [d−1] Kh [cm3 d−1] area [cm2] [cm d−1] collar [cm3 d−1]

1 6.48·10−5 4.32 15.21 zero flux top/bottom 3.045
2 6.48·10−5 4.32 22.34 zero flux top/bottom 4.473
3 6.48·10−5 4.32 50.15 zero flux top/bottom 10.038
4 6.48·10−5 4.32 73.43 zero flux top/bottom 14.700

Table 3.3: Mualem-van Genuchten parameters for a clay and loamy soil (Carsel and Parrish, 1988).

Textural Class θr θs Ks α λ n
(cm3 cm−3) (cm3 cm−3) (cm d−1) (cm−1)

Clay 0.1 0.4 10 0.01 0.5 1.1
Loam 0.08 0.43 50 0.04 0.5 1.6
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Table 3.4: The simulated root water uptake scenarios.

Scenario Soil discretization [cm] Method

A0 0.2 by 0.2 by 0.2 Averaging method

A1 1 by 1 by 1 Averaging method
B1 1 by 1 by 1 Original analytical approach
C1 1 by 1 by 1 Equidistant analytical approach
D1 1 by 1 by 1 One root analytical approach

3.5 Results

Average sink term distribution

After initialization of the simulations root water uptake will cause the soil to dry out.

Following Eq. (3.11) we first expect that the water potential gradient between xylem and

soil-root interface controls the distribution of the soil-root water fluxes and that the RLD

profile overlaps the sink term profiles. If the soil is locally so dry that the soil hydraulic

conductivity is lower than the root conductivity over its resistive pathway the soil will be

the limiting factor for that location (Eq. (3.13)). The plant will therefore take the water up

in other locations, where the water is more easily available. As a result local limiting root

nodes affect the root water uptake pattern, explaining the basic so-called ’compensation

mechanism’ (Green and Clothier, 1995). Eventually, the xylem water potential at the root

collar reaches plant stress conditions. These arguments correspond to the results in Fig. 3.2.

Here the average sink term over depth is given for root architecture 4. We evaluate the

different local root water uptake methods of Table 3.4 (A0; A1, B1, C1 and D1) for the

given soil textures in Table 3.3 at four simulation times. Note that for method D1 stress

conditions are already reached between the first and second simulation time. Moreover,

method A0 has reached plant stress conditions between simulation time three and four (see

also Table 3.5).

Regarding the implementation of the local root water uptake methods, in general, no

large discrepancies for the average sink term pattern among the local methods and between

different soil discretizations are observed. To understand why there is little change in the

average sink term patterns we have to evaluate the root system. The root system is

modelled such that the sum of the radial root fluxes equal the imposed root collar flux.

If a flux boundary condition is imposed a change in soil water potential (by e.g. a finer

discretization, or considering the subvoxel conductivity drop) is followed by a change in

xylem water potential (to fulfill mass conservation); no dramatic changes in radial and
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Fig. 3.2: Normalized average sink term against soil depth for root architecture 4 at four simulation times. The
figures in the left column represent the clay soil, the figures in the right column the loamy soil. Two different
conditions are evaluated. The top figures present no limiting soil conditions (Eq. (3.11)). In the other figures
several root nodes are under soil limiting conditions (Eq. (3.12) and Eq. (3.13)). The different local root water
uptake methods are indicated with the colored lines: A0 (black) (fine discretization); A1 (green), B1 (red), C1

(blue) and D1 (magenta) (coarse discretization). The dashed line represents the normalized root length density
profile.

axial root fluxes occur. Fig. 3.2 shows small discrepancies at simulation time 11.2 and 12

d for the loamy soil. For simulation time 11.2 d the soil is already much dryer considering

the fine discretization, indicating a larger soil resistance near roots which leads to smaller

radial soil-root fluxes. After maximal uptake, compensation mechanisms cause root nodes
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in wetter soil regions to extract more water. Besides these local changes in magnitude of

the radial soil-root fluxes (or sink term) the water extraction pattern stays more or less

similar.

3.5.1 Effect of root water uptake methods at the microscopic scale

A0  

 

−14000

−12000

−10000

−8000

−6000

−4000

A1

Fig. 3.3: A x-y cross-section at z = -2 cm shows the soil water potential [cm] distribution (color coded) and
velocity profiles (black lines) at simulation day 3.6 for root architecture 4 in a clay soil. The left panel depicts
root water uptake method A0 (fine discretization) and the right panel method A1 (coarse discretization). The
black crosses represent root nodes located in this cross-sectional plane.

First we evaluate the effect of a finer and coarser soil discretization on the water potential

and velocity distribution in the soil. A cross-section of the soil column for method A0

(fine discretization) and method A1 (coarser discretization) is shown in Fig. 3.3. In the

simulations with the fine soil discretization the water flow is better resolved towards the

individual root nodes. Furthermore, the water potential near the root is considerably lower

than in the scenario with a coarser spatial grid. In principle, the lateral water potential

distribution is affected. It is important to consider a fine soil discretization to estimate

proper water potentials and velocity profiles near the root.

When the soil starts being the limiting factor at certain locations the choice of the local

root water uptake methods will affect the water potential at the soil-root interface and in

the xylem. As a consequence the soil water potential distribution, water flux streamlines

and soil water content distribution will change. Depth profiles of the averaged soil water

potential, water content, soil-root interface water potential and xylem water potential are

given in Figs. 3.4 and 3.5 for root architecture 4 in a clay soil. Method D1 has already

reached stress conditions and is therefore not depicted in these figures. Figs. 3.4 and
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Fig. 3.4: The averaged soil water potential (top left), soil water content (top right), soil-root interface water
potential (bottom left) and water potential in the root xylem (bottom right) are plotted as function of soil
depth for root architecture 4 using a clay soil at t = 3.6 d. The different local root water uptake methods are
indicated with the colored lines: method A0 (black) (fine discretization); A1 (green), B1 (red) and C1 (blue)
(coarse discretization).

3.5 present two different simulations times (near plant stress). At the first time (Fig. 3.4)

the simulation using the fine soil discretization nearly reached stress conditions. At the

second time (Fig. 3.5) the simulation using the fine soil discretization has already reached

stress conditions, while simulations using the coarser soil discretization, including the local

conductivity drop, have almost but not reached this point. Although the soil-root interface

and xylem water potentials differ a lot among methods (Fig. 3.4, bottom), the bulk soil

water potential distributions and corresponding water content profiles are quite similar. A

difference for soil water potential can be noticed, mainly discriminating coarse and fine soil

discretizations. If we analyze the average water potential at the soil-root interface and in

the xylem over depth for the coarse soil discretization, water potentials are lower for the

methods that take the local hydraulic conductivity drop into account (B1, C1) compared

to method A1 neglecting the local conductivity drop. In the upper soil layers relative

differences in soil-root interface water potential, between considering the local conductivity
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Fig. 3.5: The averaged soil water potential (top left), soil water content (top right), soil-root interface water
potential (bottom left) and water potential in the root xylem (bottom right) are plotted as function of soil
depth for root architecture 4 using a clay soil at t = 3.8 d. The different local root water uptake methods are
indicated with the colored lines: A1 (green), B1 (red) and C1 (blue) (coarse discretization).

drop and neglecting the local conductivity drop, of about 5% (between method B1 and

A1) and 10% (between method C1 and A1) are observed. For the xylem water potential

these differences are approximately 3% and 5%. If we evaluate these quantities at a later

simulation time (Fig. 3.5) the water potential difference is increased by a factor of 1.7 for

both the soil-root interface and xylem water potential.

Same trends are found for results of the loamy soil (not shown), however, larger changes

are observed caused by the soil properties. For the loamy soil relative differences in soil-root

interface water potential, between considering and not considering the local conductivity

drop, of about 24% (between method B1 and A1) and 29% (between method C1 and A1)

are observed. For the xylem water potential this change is approximately 21% for both

methods B1 and C1 compared to method A1.

If the local hydraulic conductivity drop is considered lower soil-root interface and xylem

water potentials are obtained. This implies that plant stress conditions at the root collar

will be reached earlier (Table 3.5). The time at which the stress condition is reached is an
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indicator of the integrated local soil-root interactions at the root system scale. Table 3.5

shows that there is an increase in the time occurrence of stress, for a loamy soil over a

clay soil, between method A1 (without conductivity drop) and methods B1, C1 and D1

(with conductivity drop). Furthermore, the imposed transpiration at the root collar has a

large effect on the estimated time at which stress conditions occur. Analyzing the local root

water uptake methods at the coarser soil discretization shows us that plant stress is reached

earlier considering the local conductivity drop (methods B and C) as not considering the

conductivity drop (method A). This is conform with the observations in Figs. 3.4-3.5.

However, method D is not conform these observations. In low RLD architectures plant

stress is reached later, implying that the conductivity drop considered with the one root

approach is underestimated. Whereas in higher RLD architectures, the conductivity drop

is overestimated and plant stress is reached much earlier than considering the fine soil

discretization.

Table 3.5: The time occurrence of plant stress (ts) for all five root water uptake methods (A0; A1, B1, C1 and
D1) evaluating the four root architectures for the clay and loamy soil of Table 3.3.

Root Clay
architecture A0 A1 B1 C1 D1

1 ts [d] 16.0 17.4 16.9 16.4 17.9
2 ts [d] 10.5 11.5 11.2 11.0 11.4
3 ts [d] 5.0 5.5 5.4 5.3 5.0
4 ts [d] 3.7 4.0 4.0 3.9 2.1

Root Loam
architecture A0 A1 B1 C1 D1

1 ts [d] 50.9 55.5 53.3 52.4 57.8
2 ts [d] 34.4 37.4 36.4 35.9 38.1
3 ts [d] 16.0 17.6 17.0 16.7 16.9
4 ts [d] 11.3 12.5 12.2 12.2 8.7

3.5.2 Mass balance

The equations used for the soil and root system approximate the water potentials and

fluxes. The total system must be mass conservative. Incorporation of the local methods

affect the mass balance error. In general, averaged mass balance errors are low (below 1%)

and increase slightly under limiting soil conditions. Large mass balance errors are observed

for method D1 for root architecture three and four for a clay and loamy soil. This coincides
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with the results from Table 3.5. For root architecture four (clay soil) methods A1, B1 and

C1 show larger mass balance errors as well (between 1 and 2%). These are induced by the

large transpiration and the low soil water capacity, but are still considered marginal.

3.6 Discussion

If we compare, for flux boundary conditions at the root collar, the sink term distribution

(Fig. 3.2) for methods A, B, C and D at a coarse spatial resolution with method A at the

fine soil discretization, it is difficult to discriminate which root water uptake method is the

most appropriate to use. Few discrepancies in root water uptake profiles are noticeable.

From a modelling point of view the invariance of the water uptake profiles to local soil-root

interactions, however, may be of high interest for upscaling procedures. On the other hand,

at the coarser soil discretization, accounting for the local hydraulic conductivity drop, sig-

nificantly lower water potentials at the soil-root interface and, consequently, in the xylem

are calculated, causing stress conditions (measure for local soil-root interactions) to be

reached earlier, compared to neglecting the local conductivity drop. However, none of the

local methods at a coarse soil resolution can obtain the accurate results at the fine soil

resolution where the soil water potential gradient is estimated steeper, resulting in lower

calculated soil-root interface and xylem water potentials and consequently in the earlier

occurrence of stress. The steeper soil gradient is acquired due to the more accurate spatial

interpolation (Schröder et al., 2008).

For higher density root architectures method C seems to be the best estimator of root

water uptake among the evaluated procedures at a coarser soil discretization. With this

method stress is reached earlier than with all other local methods. Probably due to the

dry conditions, it is likely that neighboring root nodes within a soil voxel will not exchange

much water and the zero flux condition predicts a better local drop than method B where

neighboring effects are neglected. Method D seems to fail for all simulations. The un-

derestimation of the hydraulic conductivity drop for low RLD architectures using method

D can be explained with the following example. Assume that for low RLD architectures

a soil voxel is occupied by one root segment. For method D this segment is centered in

the soil voxel and the outer radius over which the drop occurs (from bulk soil to soil-root

interface) is mostly larger than the original outer radius of this root segment. This means

the drop is estimated less steep then it would do originally. In opposite case of higher

RLD architectures the problem lies in the accumulation of the radial soil-root fluxes at the

inner boundary of the centered root segment. The soil voxel can not sustain such a high



3.7. Conclusions 49

demand.

Note that the simulations were performed under flux boundary conditions at the root

collar. If water potential boundary conditions are imposed it is expected that the xylem

water potentials will not deviate largely among the local uptake methods. Estimated soil-

root interface water potentials then define the magnitude of the sink term. If the local

conductivity drop is neglected, higher water potentials are obtained at the soil-root inter-

face compared to considering the conductivity drop. As a consequence larger sink terms

are estimated and the soil will dry quicker. Under water potential boundary conditions

root water uptake profiles are expected to differ largely for the evaluated methods.

3.7 Conclusions

Incorporation of microscopic effects in macroscopic models to estimate the water poten-

tial near roots in 3D soil-root models is shown to have an effect on predicted root water

uptake. Which local root water uptake method gives the best description of root water up-

take depends largely on soil and root properties. After comparison of the local root water

uptake methods at a coarse soil discretization, for denser root architectures, the equidis-

tant approach (method C) seems to forecast root water uptake the best. Furthermore,

the 1D assumption proposed in method D does not lead to correct 3D results. The water

potential compensation introduced by calculating the local conductivity drop around roots

for a coarser soil grid resolution does not compute similar results as obtained with a fine

soil resolution. The effect of linear interpolation in and between soil elements of the finite

element method on the water potential estimation is bigger than locally implementing the

water potential gradient. A fine soil resolution is therefore needed. The computational

costs of a fine resolution grid are large for complicated 3D soil-root models. Therefore

numerical improvements such as quickly resolving regular (fine) soil grids, or the use of

irregular soil grids (Wilderotter, 2003) are needed.

At a coarse soil discretization and for limiting soil conditions, i.e. at locations where

the soil hydraulic conductivity is lower than the radial root conductivity along its resis-

tive pathway, the choice of local root water uptake method affects the water potential

distribution. The change in water potential in the xylem and at the soil-root interface

is significantly affected by considering the local hydraulic conductivity drop compared to

neglecting the local conductivity drop. The time occurrence of plant stress, which is a

measure for the integrated local soil-root interactions, occurs earlier if the local conduc-

tivity drop is incorporated. It is, however, very much dependent on root conductivities
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and root collar boundary conditions. To investigate this more thoroughly non-uniform

and non-constant root hydraulic parameterizations should be analyzed. Additionally, the

effect of the soil texture may not be disregarded in these simulations as it influences the

time span to reach stress conditions. Moreover, it affects the relative differences in water

potential distribution (in the soil, at the soil-root interface and in the xylem) between

considering and not considering the local conductivity drop. It furthermore seems that

sink term patterns, for flux boundary conditions at the root collar, are not largely affected

by soil discretization. To understand sink term patterns or locally modelled uptake mech-

anisms near plant roots in detail, new non-invasive techniques like NMR (Pohlmeier et al.,

2008) are needed.



Chapter 4

A grid refinement approach for a 3D

soil-root water transfer model∗

4.1 Objectives

In this chapter a grid refinement approach is developed based on a priori root information

that can be used in either a static or dynamic way. First a regular fine grid (reference

grid) is compared with three regular coarser grids and three static refined grids based on a

priori root information in terms of accuracy and computational time for a given soil-root

scenario. Furthermore, an obtained static grid using a priori information is compared and

validated with grids obtained by an a posteriori error estimate, that was deduced for the

3D water flow equation. In order to compare both methods the a posteriori refinement

method is adapted to generate ‘static’ grids. Finally, we address the usage of dynamic a

priori refinement techniques for the presented 3D soil-root water flow model.

4.2 Introduction

For a variety of environmental and agricultural purposes, such as irrigation management

or yield prediction under water scarcity conditions, the understanding of root water uptake

processes is of importance. Model development have lead to 3D soil-root water flow models

that describe the relationship between water flow in soil and the uptake of water by plant

roots (Javaux et al., 2008). In such models the root structure is independently coupled

*adapted from T. Schröder, L. Tang, M. Javaux, J. Vanderborght, B. Körfgen, and H. Vereecken (2009).
A grid refinement approach for a 3D soil-root water transfer model, Water Resources Research, submitted
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to the soil grid that is used for the numerical solution of the soil water flow equation,

i.e. the Richards equation. Because of more accurate measurement techniques (Pohlmeier

et al., 2008) and improved root growth and root architecture models (Pagès et al., 2004)

more detailed root architectures can be obtained. Furthermore, to acquire high resolution

soil water potentials and velocity profiles (for solute transport) a fine soil discretization is

needed (Schröder et al., 2009). As a consequence, computational costs increase largely

for estimation of the water potentials in the soil domain enclosing detailed root structures.

Grid refinement techniques can be used to reduce computational costs by increasing the

spatial resolution at locations where high gradients in soil water potential and pore water

velocity exist, and using a coarser discretization at other locations (Mansell et al., 2002).

This effectively decreases the number of elements used in the numerical grid but at the

same time keeps the high spatial resolution in parts of the domain where gradients are

large.

A generally used method for grid refinement is the a posteriori error estimate (Babus̆ka

and Rheinboldt, 1978). In this method the error between exact and approximated solution

for the elements of the soil grid is calculated after the linear system of equations is solved.

If the error exceeds a certain threshold value the element is refined. The a posteriori error

estimate is a dynamic approach where the soil resolution increases (or decreases) over time.

Dynamic approaches could e.g. be used for modelling root growth. For 2D soil grids with

a 2D root growing system Wilderotter (2003) imposed such a scheme. A second method

for grid refinement is the usage of a priori information. In root water uptake models, it is

expected that, due to transpiration, large soil water potential gradients will occur around

active roots. Therefore, a finer soil discretization in the vicinity of roots is required (see e.g.

Schröder et al., 2008). An a priori grid can be developed based on the root architecture

with finer elements near roots and coarser elements further away. A priori refinement can

either be used in a static or dynamic way. A static grid is defined as a grid that does not

change over time and is acquired after considering the total root structure. A dynamic

grid is only based on that part of the root structure that is active and takes up water, and

is time dependent.

The problems that arise with refinement techniques for coupled 3D soil-root water flow

models are related to the size of the soil discretization. First, the Richards equation is

only valid for a soil discretization larger than the representative elementary volume of the

soil texture (Bear, 1972). Second, if very small soil elements are used the volume of soil

around a root is very small, such that the ratio of the uptake rate to the volume of soil (i.e.
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the sink term) becomes very large causing the system of equations to diverge. Therefore a

theoretical and methodological limit exists in the minimum dimension of a soil element.

4.3 Methods

4.3.1 3D macroscopic water flow model in soil and roots

The model of Javaux et al. (2008) consists of two interacting systems: the soil matrix and

the root architecture. The soil system is discretized into cubes that are again divided into

six linear tetrahedral elements of equal shape, to be used for numerical interpolation of

the Richards equation. The root system is divided into nodes connected by segments. For

both systems a set of equations is solved in terms of water potential and both are coupled

via the sink term S in the Richards equation, see Javaux et al. (2008) for more details. The

boundary conditions for the plant root system are a transpiration rate or a water potential

at the root collar, and a soil water potential at the soil-root interface enabling calculation

of the water potential within the roots. Stress is defined when the water potential at the

root collar is lower than a limiting water potential value. From this point on the water

potential is kept constant at the root collar so that the simulated actual transpiration rate

becomes smaller than the potential transpiration rate.

Radial soil-root water flow Jr [cm3 d−1] is given by

Jr = L∗

rAr(ψint − ψxylem) (4.1)

where L∗
r is the radial root conductivity [d−1], Ar [cm2] the root outer surface and ψ [cm]

represents the water potential expressed as hydraulic head at the soil-root interface (ψint)

and in the xylem (ψxylem) respectively. The outer root surface is defined by Ar = 2πrintlr,

with rint [cm] the root radius and lr [cm] the length of the root segment. The water

potential at the soil-root interface is estimated by a distance-based weighting function of

the water potential in the surrounding soil nodes. The sink term [d−1] of a soil cube j is

calculated by

Sj =

∑nj

k=1 Jr,k
Vj

(4.2)

where the nominator represents the sum of all the radial soil-root fluxes of the nj root

nodes located inside a soil cube j and Vj [cm3] is the volume of the jth soil cube. A root
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node is defined as the center of a root segment at which water exchange is allowed. The

sink term is then distributed upon the soil nodes i representing the bulk soil

Si = Sj

(ψi−ψint)
disti

∑8
k=1

(ψk−ψint)
distk

, for i = 1, . . . , 8 (4.3)

where dist is the distance from the soil node i to the soil-root interface.

For each timestep of the simulation first the root system is solved, after that the soil

system and again the root system in an iterative way. If the changes in both systems are

lower than imposed tolerance criteria, for water content and water potential regarding the

soil system and for xylem water potential regarding the root system, the final solution for

this timestep is found and the simulation continues with the next timestep.

4.3.2 A priori refinement

The initial, regular coarse grid is divided into cubes which are again divided into elements.

The a priori refinement technique is applied to the soil cubes not the elements. Firstly, to

enable the usage of Eq. 4.2. Secondly, because of lower computational costs of routines that

are needed for Eq. 4.1 and 4.2 when using cubes instead of elements. As the discretization

size of a cube is limited a multi-level refinement technique up to a minimal grid size

is employed. This technique is based on bisections of the initial coarse grid, without

additional coarsening. A 2-level refinement scheme is demonstrated in Fig. 4.1 using the

known root information. Consider a root node positioned randomly in a soil cube as given

in Fig. 4.1A. Then we

1. bisect this cube in eight parts (Fig. 4.1B)

2. identify the sub-cube containing the root node

3. bisect the identified cube in additional eight cubes (Fig. 4.1C)

For a static grid this procedure is performed for all root nodes in the given soil domain,

for a dynamic grid only a selection of root nodes is considered. After this procedure a first

refined grid based on the a priori root information is gained.

Due to the multi-level refinement smaller soil cubes were generated with so called slave

nodes. Slave nodes are soil nodes that are not connected to another soil node in all available

directions of the 3D grid. Master nodes, on the other hand, are connected in all possible
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A B C

Fig. 4.1: Bisection of a soil cube. Graph A shows a coarse cube with a root node (black dot). This cube
is splitted in equal parts and the refined cube (B) is obtained. This cube is divided again in the sub-cube
containing the root node and leads to the refined grid (C). In (C) slave nodes (crosses) are denoted, but only
those at the drawn outer soil surfaces.

directions, i.e. in 6 directions if the soil node is not located at the soil boundary domain.

Slave nodes are located on the six faces of a coarser soil cube bounding its sub-cubes (crosses

in Fig. 4.1C). Two problems occur when using the multi-level refinement technique. The

first problem is related to the allocation of a sink term to a soil node in the 3D model.

In the case of regular grids (all master nodes) each soil node has a predefined volume of

soil including nodes located at the soil boundary domain. This volume of soil is used in

Eq. 4.2 to estimate the sink term obtained from the radial water flow of the root system.

Allocation of a soil volume to a slave node is rather complicated, as the volume of soil is

not necessarily equal to the volume of the cubes the slave node belongs to. An example

is illustrated in Fig. 4.1C. A slave node belongs in this example to two fine soil cubes,

however, it has also influence on the larger adjacent cube without being an actual node

of this cube. The grid is therefore extended around the initial multi-level refined grid to

transform a slave node, that has been allocated a sink term, into a master node. Hereto

neighboring cubes, adjacent to the cube with the slave node, with a refinement level larger

than the minimal refinement level are refined to this minimal level. The second problem

deals with the derivative of the solution variable (water potential) at the interface between

coarser and finer cubes. After the initial multi-level refinement only soil cubes with root

nodes in it are refined. It may very well occur that an unrefined coarser soil cube is located

next to a refined coarser cube (where the difference in level of refinement is two or higher).

In this case large jumps in the derivative of the solution variable are expected. To predict

a smooth gradient throughout the soil the transition from coarser cubes to finer cubes and

vice versa is restricted to a stepsize of one in the level of refinement.
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4.3.3 Dynamic a priori refinement based on active root segments

A static a priori grid is gained if all root nodes are considered for refinement of the soil

grid. It would be ideal for assuming that all root nodes take up water simultaneously. This

is not the case in reality though, only part of the root system is active (Passioura, 1980)

as is shown by simulations of Javaux et al. (2008) and Schröder et al. (2009). Thus, the

disadvantage of the static grid is that the number of soil nodes is generally overestimated.

Furthermore, the root system may grow and finer soil cubes may be required. Therefore

a dynamic approach is introduced. Initially the simulation is started with a coarse grid.

After the root system is solved, only those root nodes with a radial soil-root water flow are

considered and refinement is performed as in the previous section. Furthermore a criterion

is introduced such that refinement is performed again if this criterion is exceeded. For each

timestep the difference in radial soil-root water flow between the current timestep and the

one on which previous refinement was considered, is calculated. However, only for those

root nodes around which the soil is not yet refined. If the sum of the absolute differences

is larger than 5% of the total absolute sum of the radial soil-root water fluxes (at the

current timestep) then refinement is allowed. Refinement can be performed in addition to

the already existing grid. However, root water uptake patterns may shift largely between

soil layers (Li et al., 2002a; Schröder et al., 2008) and the refined grid may have soil cubes

that equal the minimum discretization size but where no refinement is actually desired, as

the roots do not take up water anymore. Therefore the initial coarse grid is taken as point

of departure for each refinement and refinement is performed for only those soil cubes that

have root nodes with a radial soil-root flow unequal to zero.

4.3.4 A posteriori refinement

The a posteriori error estimate is a widely used dynamic method for grid refinement in

soil water flow models (Mansell et al., 2002). Based on the a posteriori error estimate a

grid that produces the smallest error between the approximated and exact solutions for

the current time step can be created. The major disadvantage is that the obtained grid

is not fulfilling the criteria that were posed for the 3D soil-root model, namely the slave

nodes should not have a denoted sink term and the transitions in grid size between two

adjacent soil cubes should not exceed a stepsize of one.

Here the a posteriori error estimate is used as a tool to validate the a priori refinement

method. A derivation of the a posteriori error estimate is given in Appendix B and a short



4.3. Methods 57

description is given hereafter. After the system of equations is solved with some method

the error of an element T can be determined. The error depends on the residual values of

the vertices of an element (element residual) and on the residual values of the faces of an

element (jump residual). From these residuals the so called local error indicator (ηH) of

an element can be deduced. Another important concept, oscillation (oscH), accounts for

information missed by the averaging process associated with the employed finite element

method. The local error indicator and the oscillation are important parameters for a

posteriori refinement. If refinement is required, by evaluation of a threshold value, then

elements can be marked based on these two parameters. The first marking strategy selects

the minimal subset of elements T̂H of the mesh TH such that

∑

T∈T̂H

ηH(T )2 ≥ θ2
EηH(Ω)2 (4.4)

with 0 < θE < 1 and Ω consists of all elements. The second strategy replaces in Eq. (4.4)

the error with oscillation

∑

T∈T̂H

oscH(T )2 ≥ θ2
ooscH(Ω)2 (4.5)

with 0 < θo < 1. Note that, equivalent to the multi-level refinement strategy, the soil cubes

with the marked elements are refined.

4.3.5 Simulation scenarios

A soil-root scenario is defined to demonstrate the refinement techniques discussed in this

paper. The soil-root scenario consists of a soil column with dimensions 10 by 10 by 34

cm. The texture is a loamy soil with parameters θr = 0.08 cm3 cm−3, θs = 0.43 cm3 cm−3,

Ks = 50 cm d−1, α = 0.04 cm−1, λ = 0.5 and n = 1.6 (Carsel and Parrish, 1988). The

Mualem-van Genuchten parametrization (Van Genuchten, 1980) is used to evaluate the

soil characteristics K(ψ) and θ needed by the Richards equation. The soil is considered

homogeneous with an initial water potential of -300 cm throughout the soil. The root

structure is a 500 h old root generated by the model of Somma et al. (1998) and consists

of 9488 root segments. Root system hydraulic parameters dependent on root segment age,

for radial as well as axial flow within the roots, were taken from Doussan et al. (1998b).

Only water flow, neither solute transport nor root growth is simulated. Zero fluxes at
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the top, bottom and lateral boundaries of the soil domain are imposed. Two type of root

collar boundary conditions are used for the simulations. First, a constant water potential

at the root collar equal to -15000 cm is imposed. Simulations are performed over 5 days

and the amount of water taken up by the roots, expressed in the actual transpiration rate,

is evaluated. Second, a constant flux at the root collar equal to 15 cm3 d−1 is imposed.

The transpiration of water by the plant causes a continuous water uptake by the roots and

the simulation is stopped if the xylem water potential reaches a certain water potential

threshold value at the root collar (-15000 cm), thereby simulating water stress conditions.

This boundary condition allows for investigation of soil-root interactions in locally dry soil

regions that will develop around roots (Schröder et al., 2009).

Comparison of static irregular a priori grids with regular grids

Several scenarios were simulated to compare the performances of the model with irregular

versus regular soil grids. Table 4.1 summarizes the 7 scenarios. Scenarios 1-4 are the

standard non-refined cases (0-level refinement) with different levels of discretization. Cases

5-7 represent scenarios in which static a priori refined grids were generated: based on the

total root architecture and which do not change over time. These cases differ by their initial

soil discretization and their level of refinement. After refinement, grids are generated that

end up with fine soil cubes (0.25 by 0.25 by 0.25 cm) around roots, equal to the minimum

soil discretization that was set for scenario 1; reference scenario. Both flux and water

potential boundary conditions were used to compare scenario 2-7 with the reference grid

configuration in terms of accuracy and computational time.

Table 4.1: The grid configurations that are evaluated for the soil-root scenario.

Scenario Type of refinement Initial soil discretization [cm]

1 0-level refinement 0.25 by 0.25 by 0.25 (reference)

2 0-level refinement 0.5 by 0.5 by 0.5
3 0-level refinement 1 by 1 by 1
4 0-level refinement 2 by 2 by 2

5 1-level refinement 0.5 by 0.5 by 0.5
6 2-level refinement 1 by 1 by 1
7 3-level refinement 2 by 2 by 2
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A priori versus a posteriori refinement

The second comparison that is performed is between a static a priori grid (scenario 6,

Table 4.1) and a posteriori grids. The a posteriori refinement method is adapted for this

purpose. Root water uptake is imposed for all root segments of the root system, with a

sink value equal to 1e-3 d−1. The objective here is to investigate whether the static grid

obtained with the a priori refinement method is similar to the one obtained with the well

known a posteriori error estimate. Generation of the grid by using an a posteriori error

estimator starts with an initial coarse grid of 1 by 1 by 1 cm soil cubes and refinement is

allowed upto a minimum discretization size (0.25 by 0.25 by 0.25 cm). Marking procedures

are alternated between local error (Eq. (4.4)) and oscillation (Eq. (4.5)) for 4 cases, see

Table 4.2. With these cases the effect of the marking sequences can be evaluated. If

Table 4.2: The a posteriori scenarios for different marking sequence parameters to be used for a 2-level
refinement scheme for the soil-root scenario with a flux type root collar boundary condition.

Scenario Type of refinement θE θo

post 1 a posteriori 0.6 0.4
post 2 a posteriori 0.6 0.3
post 3 a posteriori 0.5 0.5
post 4 a posteriori 0.5 0.2

a new grid is gained after refinement, the same simulation time is rerun until a grid is

obtained where all soil cubes with a root segment, that takes up water, equal the minimum

discretization size. This methodological criterion is similar as the one for static a priori

refinement, and is used in order to get a fair comparison between the two refinement

methods. However, based on mathematical rules Eq. (B.11) should be evaluated for the a

posteriori refinement technique. After the final grid is acquired it is expanded to ensure

mass conservation (slave nodes with a denoted sink are extended to master nodes). From

this moment on we let the model run similarly to the static a priori grid using the flux

root collar boundary condition. It may seem trivial to compare these cases but these

comparisons are performed mainly for validation purposes of the a priori grid. Secondly,

information is gained on the accuracy of simulations with a posteriori grids, on the effect of

the marking sequences and on the computational time to create a priori versus a posteriori

grids.



60 Chapter 4. A grid refinement approach for a 3D soil-root water transfer model

Dynamic a priori refinement based on active root segments

A third comparison evaluates dynamic a priori refinement based on active root segments.

We consider a 2-level refinement scheme (equivalent to scenario 6 of Table 4.1) and again

we impose the flux boundary condition of 15 cm3 d−1 at the root collar. The results are

compared in terms of accuracy and computational time with the reference case (scenario

1 of Table 4.1). Furthermore they are compared with the results obtained using static a

priori grids.

4.4 Results and discussion

4.4.1 Comparison of static irregular a priori grids with regular grids

First the scenario with the water potential boundary condition at the root collar is com-

pared for the seven grid configurations of Table 4.1. Such root collar boundary condition

generates a decrease of the root collar flux over time since the water potential gradient

between the root xylem tissue and the soil diminishes with soil water depletion. This is

observed in Fig. 4.2. The area under the curves equals the total amount of water that is

taken up from the soil. Evaluating the coarse grid configurations (scenarios 2 (magenta),

3 (yellow) and 4 (cyan)) a less sharp decrease in actual transpiration rate is noticed com-

pared to the reference scenario (black line), meaning that more water is extracted from

the soil. Thus, following Eq. (4.1), the water potential estimate at the soil-root interface

has a higher value than the reference scenario. This was expected from results shown by

Schröder et al. (2008). The a priori refined grids (scenarios 5 (green), 6 (red) and 7 (blue))

on the other hand are hardly distinctive with the reference case, indicating that the plant

architecture indeed provides a very good estimate for the locations where high soil water

potential gradients will occur.

The accuracy of the solutions obtained with the different grid configurations can be

tested over the whole water potential range using a flux boundary condition at the root

collar. We are especially interested in dry soil regions that develop around roots over

time. Soil water potential and xylem water potential distributions were compared at three

simulation times (0.5, 4 and 5.4 d). The first simulation time (0.5 d) depicts wet soil

conditions. At the second simulation time (4 d) the soil around the roots is much dryer

and at the third simulation time (5.4 d) the limiting threshold value at the root collar

is almost reached for the a priori refined scenarios and the reference case. From a soil
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Fig. 4.2: Actual root collar fluxes for the simulated scenarios 1–7 of Table 4.1 with a water potential root collar
boundary condition.

point of view we compare the root mean square error (RMSE) of the soil water potentials

of scenario 2-7 with the reference scenario at an arbitrary x-y cross-section (z = -2 cm)

in the soil column. Note that the root length density is high in this cross-sectional plane

(not shown). The RMSE values are denoted in Table 4.3. At day 0.5 the soil is still very

wet and low RMSE values are observed. Larger differences in RMSE values between the

coarse discretization and the a priori refined grids are already observed. In dryer soil

regions the RMSE of scenario 2 (0.5 by 05 by 0.5 cm) is about a factor of 6 higher than the

corresponding a priori refined grid (scenario 5). Scenario 3 (1 by 1 by 1 cm) and scenario

4 (2 by 2 by 2 cm) differ with a factor larger than 10 and 20, respectively, compared to

their a priori refined grids. The coarse discretizations are not predicting the soil water

potential distributions accurately. Maximum and mean errors in xylem water potential for

Table 4.3: Root mean square errors [cm2] of the soil water potentials in a x-y cross-section at z = -2 cm at
simulation day 0.5, 4 and 5.4 d. The errors are obtained by comparing the simulated scenarios of Table 4.1
with the reference scenario.

Scenario
reference 2 3 4 5 6 7

RMSE at t = 0.5 d - 2.5 7.7 15.7 0.9 1.0 1.0
RMSE at t = 4 d - 133.6 307.6 469.9 22.2 29.8 28.7
RMSE at t = 5.4 d - 216.0 472.4 880.8 33.5 45.2 43.6

the whole root structure are given in Table 4.4 for the three different simulation times.

At day 0.5 (wet soil conditions) the coarse grid configurations have very large maximal

errors (>35%). The mean error though is still low (below 5%), except for scenario 4. At
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day 4 and 5.4 (dryer soil conditions) the mean errors of the coarse discretizations become

larger than 5%. The a priori refined grids, conversely, show maximum errors at simulation

time 5.4 of below 5.5% and mean errors near and below 2.5%. The errors observed for the

a priori refined grids (scenario 5-7), even in local dry soil conditions, can be considered

marginal.

Table 4.4 shows furthermore the total computational time (Tc) and number of soil

nodes used for each simulation. Regular coarse grids are fast, even scenario 2 (0.5 by 0.5

by 0.5 cm) needs only 14% of the time needed for the reference scenario. However, they

give poor accuracy as observed before. On the other hand, a priori refined grids take

approximately half the computational time of the reference grid (for this example), while

keeping a very good accuracy for the water potential prediction as compared to the fine

regular grid (reference). The lowest errors, from a soil and root point of view, are obtained

with scenario 5 (1-level refinement scheme). Note that the number of soil nodes that were

generated by the refinement approaches 5-7 differ, dependent on the initial soil spatial

discretization and the level of refinement. No linear relation between the number of soil

nodes and the soil spatial resolution, as was the case for regular grid configurations, can be

found anymore. For this root structure scenario 6 (2-level refinement) generates the fewest

soil nodes. Moreover, the total computational time is the lowest.

Table 4.4: Xylem water potential (WPx) errors for the total root structure at simulation day 0.5, 4 and 5.4 and
computational time Tc for the simulated scenarios of Table 4.1 compared to the reference scenario. Furthermore
the number of soil nodes for each grid configuration is given.

Scenario
reference 2 3 4 5 6 7

max error in WPx [%] at t = 0.5 d - 35.1 41.0 46.0 0.7 0.8 0.8
mean error in WPx [%] - 1.1 3.3 6.5 0.3 0.3 0.3
max error in WPx [%] at t = 4 d - 40.8 68.2 78.3 3.4 4.6 4.5
mean error in WPx [%] - 5.2 12.4 22.2 1.4 1.9 1.8
max error in WPx [%] at t = 5.4 d - 39.2 64.9 81.3 3.9 5.5 5.2
mean error in WPx [%] - 6.8 16.5 27.9 1.7 2.4 2.3

Tc compared to reference [%] 100 14 6 4 47 46 49
Number of soil nodes 230297 30429 4235 648 78312 69760 72113

4.4.2 A priori versus a posteriori refinement

The static a priori grid from scenario 6 (2-level refinement, Table 4.1) is visually com-

pared to two obtained grids using the adapted a posteriori error estimate in Fig. 4.3. The

adapted a posteriori error estimate creates a grid based on the uptake of water by all root
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segments. The left graph shows a transparent XZ view for the a priori grid, the middle

graph of the a posteriori grid (post 1) with a θE of 0.6 and θo of 0.4 and the right graph of

the a posteriori grid (post 4) with a θE and θo of respectively 0.5 and 0.2. The a posteriori

grids show that indeed soil voxels have a finer discretization near roots where larger water

potential gradients are observed. In total 99% of both a posteriori refined grids corroborate

with the a priori refined grid. On the other hand we notice for both scenarios differences

in transition from coarser to finer soil cubes, other than a stepsize of one. Furthermore,

the first depicted a posteriori grid (post 1, θE = 0.6 and θo = 0.4) has more refined soil

cubes in the lower soil regions compared to the second depicted a posteriori acquired grid.

Note that there were no flux boundary conditions at the soil boundaries. The major cause

of these differences is the sensitivity of the marking sequences. The higher the instituted

value for θE or θo the more soil elements are selected for refinement. The results of scenario

post 1 point out that after selection of those elements with a high error, other elements with

lower errors were selected as well. These elements were located further away from the root

structure, where no high water potential gradients and errors reside. For the 3D soil-root

water transfer model the choice of the marking sequence parameters is not straightforward.

This can furthermore be observed from the number of soil nodes of the other acquired a

posteriori grids in Table 4.5. Both the error and oscillation marking sequence parameters

affect the number of refined cubes largely. The first a posteriori grid (post 1) creates a

mesh with over 100.000 nodes, whereas the grid with a θE of 0.5 and θo of 0.2 (post 4) is

much closer to the number of soil nodes of the a priori obtained grid. From all grids the

a priori grid is with respect to the spatial distribution more optimal than the a posteriori

grids. Not only because a minimum number of soil nodes is generated, but also because

transitions in soil cubes from coarse to fine and vice versa differ only a stepsize of one.

One of the adaptations for the usage of the a posteriori error estimate was that refine-

ment was stopped after all soil cubes with a root segment, that takes up water, equal the

minimum discretization size. This adaptation can be tested by analyzing the local error

indicator in Eq. (B.11). It was observed that the difference in local error indicator between

the previous refined grid and the current refined grid started to converge to a small value.

Furthermore, the maximum error was initially very large for the coarse soil discretization

and was reduced for each time the grid was refined. When finally all soil cubes with root

nodes in it equalled the minimum discretization size an acceptable maximum error, in

comparison to the estimated soil water potential, was calculated. Moreover, there was no

indication to interrupt the a posteriori refinement procedure earlier than the methodolog-

ical imposed criterion that was implemented. This indicates that the criterion we imposed

is not a bad assumption. Furthermore, the local error indicator was derived separately for

the a priori obtained grid and showed that the maximum error was acceptable as well,
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in comparison to the estimated soil water potential. This indicates furthermore that a

priori grids lead to a reduction in the error between exact and approximated solutions,

compared to a coarse grid configuration, and that refinement was performed at correct

locations where soil water potential gradients were expected to be larger, i.e. near roots.

After the ‘static’ grid is obtained with the adapted a posteriori error estimate we let

the simulation run for a flux root collar boundary condition until stress is reached. A

comparison of the xylem water potential error in Table 4.5 at the three simulation times

(0.5, 4 and 5.4 d) shows that the errors obtained with the a posteriori refinement approach

(compared to the reference scenario) are within range of the errors acquired with the a

priori grid. Mostly they are slightly higher, however, for the post 3 case (θE, θo = 0.5)

the xylem water potential errors are slightly lower. This is mainly caused by the large

difference in number of soil nodes between those scenarios, secondly by the location where

soil nodes are refined. The latter is dependent on θE and θo parameters. If in a soil layer

(perpendicular to the axial direction) more fine soil cubes are generated the water poten-

tial gradient will be predicted steeper compared to the case where more coarse soil cubes

are present, caused by the linear interpolation in elements (Schröder et al., 2008). More

important is the comparison of the computational time in Table 4.5. The computational

time is significantly affected, it is even larger than the reference scenario for all a posteriori

scenarios. This is mainly caused by the computational routines to estimate the local error

for each element, furthermore because of additional routines to obtain a grid that ensures

conservation requirements. For the a posteriori scenario 4 (θE = 0.5, θo = 0.2) the time

to generate the static grid with the adapted a posteriori error estimate is about 10 times

longer than the time needed using the a priori approach.

Table 4.5: Xylem water potential (WPx) errors for the total root structure at simulation day 0.5, 4 and 5.4
d and computational time Tc for the simulated a posteriori refinement scenarios (Table 4.2) and scenario 6 of
Table 4.1 (a priori grid) compared to the reference scenario. Furthermore the number of soil nodes for each
grid configuration is given.

Scenario
reference pre 6 post 1 post 2 post 3 post 4

max error in WPx [%] at t = 0.5 d - 0.8 0.6 0.6 0.5 0.7
mean error in WPx [%] - 0.3 0.3 0.3 0.3 0.3

max error in WPx [%] at t = 4 d - 4.6 5.6 5.7 3.8 5.0
mean error in WPx [%] - 1.9 2.3 2.3 2.0 2.0

max error in WPx [%] at t = 5.4 d - 5.5 7.0 6.9 5.6 5.8
mean error in WPx [%] - 2.4 2.8 2.9 2.3 2.5

Tc compared to reference [%] 100 46 260 210 280 170
Number of soil nodes 230297 69760 106831 93220 100371 75151
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Fig. 4.3: Left: XZ aspect of the a priori grid (2-level refinement; scenario 6). Middle: XZ aspect of the a

posteriori grid with θE = 0.6, θo = 0.4 (scenario post 1 of Table 4.2). Right: XZ aspect of the a posteriori

grid with θE = 0.5 and θo = 0.2 (scenario post 4 of Table 4.2). The solid lines denote root branches, whereas
the dots represent soil nodes.

4.4.3 Dynamic a priori refinement based on active root segments

Simulations were performed for flux root collar boundary conditions. The errors in xylem water

potential and the computational time of the dynamic a priori grid scenario, where refinement is

based on the distribution of the active roots, are compared to the reference scenario in Table 4.6.

Furthermore, the static a priori grid (scenario 6, Table 4.1) is given to facilitate evaluation.

Striking is the difference in maximum water potential error. Despite the fact that only those

soil cubes are refined with a root segment that takes up water, the water potential gradient

estimation from the outer soil column towards the roots is affected. It is the same principle as

was mentioned in the previous section. In the dynamic approach more coarse cubes are available

in a horizontal soil layer and the predicted water potential gradient from the soil outer boundary

towards the root segments is calculated less steep, compared to the reference scenario. Although

the maximum xylem water potential errors are rather large in the dynamic approach the mean

errors are still below 5% and acceptable. Furthermore, the errors are lower than the errors

observed for the coarse grid configurations (Table 4.4). The dynamic approach based on a priori
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root information seems to be a suitable approach for simulating quickly and with high enough

accuracy. The computational time is reduced by 20% compared to the static a priori grid. This

is mainly caused by the reduction in number of soil nodes. Approximately 50% less soil nodes

were initially generated with the dynamic approach. Note that the grid was furthermore constant

over time, as the observed differences in radial soil-root water flow (for the dynamic criterion)

were less than 0.001%, so that the criterion that was used to decide on grid refinement did not

indicate a need to refine additionally. The dynamic approach can be applied on large soil and

root structures that can be run on a single processor for a coarse soil discretization, but not for

a regular fine soil discretization, or with the static approach. This is however dependent on the

type of scenario and the available computer resources. Furthermore, root growth can easily be

modelled with the dynamic refinement scheme.

Table 4.6: Xylem water potential (WPx) errors for the total root structure at simulation day 0.5, 4 and 5.4 d
and computational time Tc for the simulated dynamic a priori refinement scenario compared to the reference
scenario. Furthermore, the static a priori scenario 6 (Table 4.1) is denoted for comparison purposes.

Scenario
reference static a priori dynamic a priori

max error in WPx [%] at t = 0.5 d - 0.8 4.3
mean error in WPx [%] - 0.3 0.7
max error in WPx [%] at t = 4 d - 4.6 10.3
mean error in WPx [%] - 1.9 2.8
max error in WPx [%] at t = 5.4 d - 5.5 13.9
mean error in WPx [%] - 2.4 3.8

Tc compared to reference [%] 100 46 37

4.5 Conclusions

Because 3D soil-root water transfer models cost lots of computational time for accurate prediction

of water potential gradients in the soil and root system, different grid refinement techniques were

evaluated. Because roots take up water and create large soil water potential gradients around

them an a priori grid refinement technique was introduced based on the root architecture. It can

either be used in a static or dynamic approach.

Results from a soil-root scenario for two different root collar boundary conditions show that

the accuracy of static a priori refined grids is maintained in comparison to a regular fine grid that

serves as a reference. In contrast, regular coarse grids do not predict accurate solutions. Further-

more, due to the reduction of the grid complexity the computational time is reduced largely.

The static grid that was obtained by a priori refinement can be obtained using a well recog-

nized a posteriori refinement technique (adapted to obtain this static grid), indicating once more



4.5. Conclusions 67

that the a priori obtained grid is well predicted at locations were roots reside. The disadvan-

tages of the adapted a posteriori refinement technique, though, were firstly that the grids were

spatially not as optimal as the a priori acquired grids; not a minimum number of soil nodes were

generated, and not always a transition in soil cubes from coarse to fine and vice versa differed a

stepsize of one. Secondly, no significant gain in accuracy, compared to the results using a priori

grids, was obtained and thirdly the computational time to gain the static a priori grid was much

larger than the a priori approach. As a consequence the total computational time for performed

simulations exceeded the time of the reference scenario, which makes the usage of the adapted

a posteriori refinement approach in these type of soil-root models questionable. On the other

hand, if the point of departure is an a priori grid then the a posteriori refinement technique

could be used whenever soil gradients, further away from the roots, get too large after time, e.g.

in soil layers were the average water content is very low or due to rapidly changing soil boundary

conditions (Mansell et al., 2002). The latter, however, is implicitly considered in the a priori

refinement technique. Using the a posteriori error estimator the grid could be extended such

that a better accuracy could be acquired. Note that the trade off between computational costs

of the a posteriori error estimator and the gain in accuracy/overall computational time should

be minimized.

Because only part of the root system is active a static a priori grid overestimates the required

number of refined soil cubes. Therefore dynamic refinement is incorporated using the a priori

refinement technique and shows that with an acceptable accuracy, compared to the reference case,

the computational time can be reduced even more. The usage of dynamic refinement can be an

advantage for modelling large soil and root structures with high accuracy for which, on single

processors, only coarse soil and root discretizations with low accuracy can be run. Furthermore,

dynamic methods can easily be used to model root growth, opposed to static refinement methods.

In latter case it may occur that new grown roots are located in coarse soil cubes which may be

undesirable if they start to take up water.
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Chapter 5

Synthesis

The uptake of water by roots is still a topic of large debate. Many models have been developed

over the years to quantify root water uptake at the microscopic and at the macroscopic scale.

Nowadays experimental and model developments allow for the characterization of root water

uptake in much higher detail. These advancements have lead to 3D soil-root water transfer models

that simulate water flow along water potential gradients in the soil-root continuum. However,

the coupling of the soil and root system is not investigated thoroughly. In the available models

the soil water potential gradient below the resolution scale of the soil system is neglected. This

means that the local water flow from the bulk soil to the soil-root interface is not explicitly

considered. This thesis addresses the impact of considering the local hydraulic conductivity drop

around roots.

5.1 Conclusions

In chapter 2 a microscopic analytical approach was developed to consider the local hydraulic

conductivity drop below the soil discretization from the bulk soil to the soil-root interface. Val-

idation with a 2D numerical model showed that the analytical approach matches the numerical

model with high accuracy.

The analytical approach was incorporated in the 3D soil-root water transfer model of Javaux

et al. (2008) for single roots. Simulations were performed for water potential boundary conditions

at the root collar and showed that neglecting the local hydraulic conductivity drop below the soil

discretization scale has a large effect on the prediction of root water uptake. Especially in the

case if the radial root hydraulic conductivity is larger than the local soil hydraulic conductivity.

These findings were reinforced by numerical validation using mesh refinement.

In chapter 3 three approaches were introduced to take the analytical approach into account
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for multiple roots within a soil voxel. Simulations were performed for flux boundary conditions at

the root collar. Compared were five scenarios from which one was a reference scenario (very fine

soil discretization), the other four had a coarse soil discretization and incorporated either one of

the three local uptake methods or the average approach where the local hydraulic conductivity

drop was neglected. The water uptake profiles were hardly distinctive among the simulated sce-

narios. Estimation of the soil-root interface water potential on the other hand showed significant

differences. Especially for regions where the radial root conductivity was larger than the local soil

hydraulic conductivity. This corresponds to the observations for single roots in Chapter 2. For

the coarse soil discretizations that consider the local conductivity drop lower soil-root interface

water potentials, and consequently lower xylem water potentials were estimated, as compared

to neglecting the local hydraulic conductivity drop. Finally, a minimum xylem water potential

(plant stress) was reached earlier. The simulations with a coarse soil discretization that consider

the local conductivity drop do not obtain the same results as the reference scenario. For flux root

collar boundary conditions a fine soil discretization is needed as interpolation in and between the

soil elements has a much larger effect on the estimation of the soil water potential gradient than

incorporation of microscopic effects below the soil spatial discretization.

Accurate prediction of water potential gradients using a fine soil and root discretization for

large soil and root systems cost lots of computational time. In chapter 4 a grid refinement ap-

proach based on the a priori known root structure was developed, either in a static or dynamic

way. A comparison was performed between regular coarse grids, static a priori refined grids and

a reference grid (very fine regular soil grid) for different soil-root scenarios. The accuracy of static

a priori refined grids was maintained compared to the reference scenario, whereas the accuracy of

the coarse grids was not. Moreover, the computational time of the soil-root scenario using static

a priori grids was largely reduced.

The static grid that was obtained by a priori refinement can be obtained using a well recog-

nized a posteriori refinement technique (adapted to obtain this static grid), indicating once more

that the a priori obtained grid is well predicted at locations were roots reside.

Because only part of the root system is active a static a priori grid overestimates the required

number of refined soil cubes. Therefore dynamic refinement was incorporated using the a priori

refinement technique and showed that with an acceptable accuracy, compared to the reference

case, the computational time can be reduced even more.

5.2 Perspectives

In this thesis investigation of root water uptake is based on modelling approaches only. Exper-

iments are performed with methods like NMR (Pohlmeier et al., 2008) or Neutron radiography
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(Oswald et al., 2008) to visualize the root structure and to quantify the water content. Extraction

of the root skeleton is of importance to use experimental data to test the modelling approaches

on the microscopic as well as on the macroscopic scale. Therefore visualization techniques are

required that render a 3D connected root structure from a 3D matrix of grey values. Validation

of the model requires furthermore inverse modelling techniques. With such techniques the root

system can be parameterized to predict highly variable root hydraulic properties.

For optimal usage of inverse modelling techniques the computational time of a forward sim-

ulation should be minimized. This can either be done by grid refinement or by parallelization

techniques. Chapter 4 dealt with refinement techniques. A priori refinement techniques are

shown to be adequate for these type of models. Though, simulations may be performed over sev-

eral days with realistic soil and root boundary conditions that may change rapidly. The a priori

refinement technique refines the grid near the root structure and at soil boundaries, however, it

may be that further away from these locations the soil becomes very dry such that large soil water

potential gradients are created. A priori refined grids then need further refinement to accurately

predict soil water potential gradients. A posteriori refinement could be used in combination with

a priori refinement, though the trade off between computational costs of the a posteriori error

estimator and the gain in accuracy/overall computational time should be minimized.

Dynamic a priori refinement was shown to effectively reduce the computational costs consid-

ering only those root segments that are active and take up water. This allows for simulation of

large soil and root structures with a good estimation of the soil water potential gradients through-

out the soil column. However, memory resources on a single processor are limited. Therefore,

parallelization of the coupled soil (Hardelauf et al., 2007) and root system is required. With

this technique many calculations are performed simultaneously, operating on the principle that

large problems can often be divided into smaller problems, which are then solved concurrently.

Due to the usage of multiple processors the computational costs of the total simulation will be

largely reduced. An additional challenge is then the incorporation of the static/dynamic refine-

ment scheme in parallel.

One of the main objectives in this research community is the assessment of water flow (and

solute transport) on a large scale. To find upscale mechanisms, i.e. effective modelling of detailed

processes to be used on a larger scale, more detailed information is needed on local root water

uptake mechanisms. In chapter 2 and 3 it was shown that root water uptake was affected largely

from the moment that locally the soil hydraulic conductivity was lower than the radial root hy-

draulic conductivity. In these simulations constant root hydraulic properties were investigated

for different root collar boundary conditions. Investigation of non-uniform, non-constant root

hydraulic properties for different root branches and plant species should be evaluated.
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From the results in chapter 3 it can furthermore be noticed that for flux root collar boundary

conditions sink term profiles are hardly affected by different local root water uptake methods.

This effect may contribute to a more generalized method for upscaling, independent of soil dis-

cretization. However, more investigations should be performed to investigate root water uptake

patterns with even denser root structures - using non-uniform and non-constant root hydraulic

properties - and for various soil textures. Currently, homogeneous soil textures that assume

isotropic soil properties were investigated only. Because the soil is very heterogeneous and may

possess anisotropic properties as well, these effects should be investigated in addition.

Another important step in the upscaling approach is the incorporation of multiple plants

within the 3D model, to investigate plant competition and the effect on root water uptake.



Appendix A

Analytical solutions for water flow

from bulk soil to soil-root interface

The radial Richards equation (Eq. (2.1)) combined with the matric flux potential (Eq. (2.2))

Φ =
∫ hc

h−∞

K(h)dh is expressed in matric flux potential form as given in Eq. (2.3)

∂θ

∂t
=

1

r

∂Φ

∂r
+
∂2Φ

∂r2

No prior information is known about the time dependent volumetric water content. We used the

assumption of steady-rate behavior, which means the time derivative term is assumed constant,

as proposed by e.g. Feddes and Raats (2004) and De Jong van Lier et al. (2006). The common

solution is then given by

Φ =
c

4
r2 +Aln r +B and q = −

∂Φ

∂r
= −

c

2
r −

A

r
(A.1)

The parameters c, A and B are obtained via the boundary conditions

Inner edge: q = −
∂Φ

∂r
= −qroot, r = rroot (A.2)

Outer edge: q = −
∂Φ

∂r
= −qout, r = rout (A.3)

Outer edge: hout = h(rout) : Φrout =

∫ hout

h−∞

K(h)dh (A.4)

which leads to Eq. (2.4). Note that the vector direction of the flux density is opposite and negative

to the radial direction from soil-root interface to bulk soil.

Under plant stress conditions a water potential boundary condition is imposed at the soil-root
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interface. The boundary conditions are then written as

Inner edge: hroot = h(rroot) = hlim : Φrroot =

∫ hlim

h−∞

K(h)dh→ 0 (A.5)

Outer edge: hout = h(rout) : Φrout =

∫ hout

h−∞

K(h)dh (A.6)

Outer edge: q = −
∂Φ

∂r
= −qout, r = rout (A.7)

which leads to the solution given in Eq. (2.7).
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A posteriori error estimate for the

3D soil water flow equation

The a posteriori error estimate is deduced for the Richards equation

∂θ

∂t
= ∇ · (K(∇ψ + ez)) − St (B.1)

where θ is the volumetric soil water content [cm3 cm−3], K(ψ) [cm d−1] the soil hydraulic con-

ductivity, St [d−1] the sink term regulating root water uptake, t [d] the time and ez = ∇z the

unit vector field in the vertical direction. The time derivative of the water content is related to

the water potential by ∂θ
∂t = C(ψ)∂ψ∂t , where C(ψ) [cm−1] is the soil capacity. We use an implicit

backward Euler scheme that transforms Eq. (B.1) in

θn+1 − θn
4t

= ∇ · (K(∇ψn+1 + ez)) − St (B.2)

where the subscript n denotes the previous time step, the subscript n+1 the current time step and

4t the time stepsize. Eq. (B.2) can be rewritten as

−∇ · (K∇ψn+1) +
θn+1

4t
= fn (B.3)

where fn = ∇ · (Kez) + θn/4t− St.

To find the solution ψ ∈ V for each time step we need the weak form of Eq. (B.3) over the domain

Ω such that

B[ψ, v] =

∫

Ω

(

K∇ψ · ∇v +
θ

4t
v

)

dΩ+

∫

Γ
(K∇ψv) ·ndΓ =

∫

Ω
fvdΩ = F(v) ∀v ∈ V

(B.4)
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where v is a weight function and n the outward unit vector normal to boundary Γ. Note that we

dropped the time index. The discrete weak form is then given by

B[ψH , v] = F(v) ∀v ∈ VH (B.5)

where ψH ∈ VH is the approximated solution.

The weight functions are derived for linear tetrahedral elements (Cheng and Zhang, 2007).

Assembling of the system of equations is performed as was done by S̆imu̇nek et al. (1995). After

the linear system of equations is solved with some method we can evaluate the error that emerges

when approximating the solution. Substitution of the error eH := ψ − ψH (difference between

exact and approximated solution) into the bilinear form B[eH , v] (Eq. (B.5)) and integrate by

parts elementwise the so called error representation formula is obtained (Nochetto, 2006)

B[eH , v] =
∑

T∈TH

∫

T
RT (ψH)v +

∑

S∈SH

∫

S
JS(ψH)v ∀v ∈ V (B.6)

The left part RT (ψH) is associated with the element residual, the right part JS(ψH) with the

jump residual; similarly to the left handside of Eq. (B.4).

For a tetrahedral element T of the mesh TH the element residual is defined as

RT (ψH) = f + ∇ · (K∇ψH) −
θH
4t

(B.7)

where θH is the water content that belongs to the approximated solution variable ψH . For the

set of interior faces SH of the mesh TH the jump residual is defined as

JS(ψH) = −K∇ψ+
H · ν+ −K∇ψ−

H · ν− (B.8)

where S is the common side of elements T+ and T− with unit outward normals ν+ and ν−,

respectively. From this we can deduce the local error indicator ηH(T ) by

ηH(T )2 := H3
T ‖ RT (ψH) ‖2

L2(T ) +
∑

S⊂∂T

H2
S ‖ JS(ψH) ‖2

L2(S) (B.9)

where H stands for the mesh size and L2 is the vector space. The element residual is analog to

the residual in linear algebra and describes the relation between the error eH and residual for the

vertices of an element. The jump residual evaluates the boundaries of the elements.

Another important concept, oscillation, accounts for information missed by the averaging

process associated with the finite element method. The oscillation on the elements T ∈ TH is
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defined by

oscH(T )2 := H3
T ‖ RT −RT ‖2

L2(T ) (B.10)

where RT is denoted by
∫

T
RT dT

volT
, where volT is the volume of the element.

Important inequalities that belong to Eqs. (B.9) and (B.10) can be deduced (Nochetto, 2006).

There exist constants C1, C2 > 0 such that

|||ψ − ψH |||
2 ≤ C1ηH(Ω)2

C2ηH(T )2 ≤ ||ψ − ψH ||
2
H1(wT ) + oscH(wT )2

(B.11)

where the energy norm is given by |||v||| = B[v, v]1/2, Ω consists of all elements and wT of all

elements sharing at least one face with T . The first inequality tells us that the sum of the element

residual and jump residual is a reliable upper bound, the latter inequality indicates that ηH(T )

is a locally sharp error estimate provided that the oscillation is small. This leads to two obvious

marking strategies for a subset of elements T̂H of the mesh TH such that after refining, both error

and oscillation are reduced. These strategies are given in Eqs. (4.4) and (4.5).

After the soil system is solved the local error indicator (Eq. (B.9)) is calculated and evalua-

tion of the upper inequality in Eq. (B.11) indicates if refinement is needed. If so, two marking

procedures can be chosen dependent on the strategy of refinement.
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