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Abstract 

The temperature and moisture response of heterotrophic soil respiration are crucial for a 

reliable prediction of carbon dynamics with respect to climatic changes. However, despite 

numerous studies there are many controversies and open questions. 

One objective of this thesis was to analyse the influence of different soil temperature and 

moisture response functions on the prediction of CO2 production and effluxes. For this 

purpose, soil temperature and moisture reduction functions of six soil carbon decomposition 

models (CANDY, CENTURY, DAISY, PATCIS, RothC, and SOILCO2) were implemented 

in the SOILCO2/RothC model. As a test scenario, a respiration experiment on a silt loam in 

Columbia (USA) was chosen. The cumulative CO2 fluxes simulated with different 

temperature reduction functions showed deviations up to 41% (1.77 t C ha-1) for a six-month 

period in 1981. The influence of moisture reduction was smaller with deviations up to 2% 

(0.10 t  C ha-1). The functional sensitivity study showed that the choice of the soil temperature 

and soil moisture reduction function is a crucial factor for a reliable prediction of carbon 

turnover. 

Most multi-pool models describe the temperature dependence of carbon decomposition by a 

response function which uniformly scales the decomposition constants of all carbon pools. 

However, it is not clear whether the temperature response does, indeed, conform to such a 

simple formulation. Therefore, a wheat decomposition experiment under six different 

temperatures (5°C, 9°C, 15°C, 25°C, 35°C, and 45°C) was performed and the cumulative CO2 

development over time was analyzed. Data were interpreted by assuming that litter could be 

sub-divided into two pools, a labile and a more recalcitrant one, that would each decay 

exponentially. The observed patterns of carbon loss were poorly described if the same relative 

temperature response functions for the decomposition of both pools was used and the same 

chemical recalcitrance (expressed as the ratio of labile and recalcitrant pool sizes) at all 

temperatures was assumed. Data prediction could be significantly improved by using different 

temperature response functions for the decomposition of the two different organic-matter 
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fractions. Even better data prediction could be achieved by assuming that chemical 

recalcitrance varied with temperature. These findings thus suggest that the temperature 

dependence of organic matter decomposition cannot be fully described with the simple 

approaches usually employed in most laboratory experiments and modelling approaches, but 

that a more complicated interplay between the temperature dependence of decomposition 

rates and temperature effects on the chemical recalcitrance of different organic matter 

fractions exists. 

The classical approach for the in situ determination of the temperature response (Q10 or 

activation energy) from a linear regression between log-transformed CO2 fluxes and 

temperatures measured at predefined soil depths has been criticised for neglecting 

confounding factors as spatial and temporal changes in soil water content and soil organic 

matter quality and quantity. On the other hand, the derived temperature response is not 

unambiguous but depends on the depth of temperature measurement. To overcome both 

problems, we determined temperature and water content response equations of soil 

heterotrophic respiration by means of inverse parameter estimation using a 1-dimensional 

CO2 transport and carbon turnover model. Analysis of different formulations of temperature 

response resulted in estimated response factors that hardly deviated over the entire range of 

soil water contents and for temperatures < 25°C. For higher temperatures the temperature 

response was highly uncertain due to the infrequent occurrence of soil temperatures > 25°C.  

As an overall finding of all three studies, we can conclude that inverse parameter estimation 

using either conceptual or numerical models is a promising tool for a reliable determination of 

the temperature and water response of heterotrophic soil respiration. 
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Kurzfassung 

Die Temperatur- und Feuchteabhängigkeit der heterotrophen Bodenrespiration sind 

wesentliche Kenngrößen für eine zuverlässige Vorhersage der Kohlenstoffdynamik unter 

verändernden Klimabedingungen. Trotz zahlreicher Studien bestehen jedoch immer noch 

viele Unstimmigkeiten und offene Fragen. 

Ein Ziel dieser Arbeit bestand darin, den Einfluss verschiedener Temperatur- und 

Feuchteabhängigkeitsfunktionen auf die Modellvorhersage der CO2-Bildung und der CO2-

Flüsse zu untersuchen. Dafür wurden Temperatur- und Feuchteabhängigkeitsfunktionen aus 

sechs Modellen für den Abbau von organischem Kohlenstoff im Boden in das 

SOILCO2/RothC-Modell implementiert. Als Testszenario wurden Daten eines 

Respirationsexperiments auf einem schluffigen Lehm in Columbia (USA) verwendet. Die 

modellierten kumulativen CO2-Flüsse, die unter Verwendung verschiedener 

Temperaturabhängigkeitsfunktionen berechnet wurden, wichen für den sechsmonatigen 

Beobachtungszeitraum im Jahre 1981 um bis zu 41% (1.77 t C ha-1) voneinander ab. Der 

Einfluss der Feuchteabhängigkeitsfunktionen ergab geringere Abweichungen bis zu 2%  

(0.10 t C ha-1). Diese Ergebnisse zeigen, dass die Wahl der Temperatur- und 

Feuchteabhängigkeitsfunktionen sehr wichtig für eine zuverlässige Vorhersage des 

Kohlenstoffumsatzes im Boden ist. 

In den meisten Multi-Pool-Modellen wird die Temperaturabhängigkeit des Kohlenstoffabbaus 

durch eine Abhängigkeitsfunktion beschrieben, die die Abbaukonstanten aller Kohlenstoff-

Pools gemeinsam skaliert. Dabei ist es jedoch noch nicht eindeutig geklärt, ob die 

Temperaturabhängigkeit tatsächlich einen solch einfachen Zusammenhang widerspiegelt. In 

dieser Arbeit wurde daher ein Abbauexperiment mit Weizenrückständen durchgeführt und die 

zeitliche Entwicklung der CO2-Flüsse unter sechs verschiedenen Temperaturenszenarien 

(5°C, 9°C, 15°C, 25°C, 35°C und 45°C) analysiert. Für die Datenanalyse wurde 

angenommen, dass sich die Weizenrückstände aus zwei Pools zusammensetzen, einem labilen 

und einem abbauresistenteren Pool, die beide einem exponentiellen Abbau unterliegen. Die 

beobachteten CO2-Flüsse konnten jedoch nicht zufriedenstellend beschrieben werden, wenn 

die gleiche Temperaturabhängigkeit für den Abbau beider Pools und die gleiche chemische 
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Abbaubarkeit (konstantes Verhältnis des labilen und abbauresistenteren Pools) angenommen 

wurden. Durch die Verwendung verschiedener Temperaturabhängigkeiten für den Abbau 

beider Pools konnte die Vorhersage der Messwerte jedoch deutlich verbessert werden. Eine 

noch deutlichere Verbesserung wurde durch die Annahme erzielt, dass die chemische 

Abbaubarkeit ebenfalls temperaturabhängig ist. Die Ergebnisse zeigten, dass die 

Temperaturabhängigkeit des Abbaus der organischen Bodensubstanz nicht vollständig durch 

die einfachen Ansätze beschrieben werden kann, die üblicherweise in konzeptionellen oder 

numerischen Modellen verwendet werden, sondern dass es eine kompliziertere 

Wechselwirkung zwischen der Temperaturabhängigkeit der Abbauraten und 

Temperatureffekten auf die chemische Abbaubarkeit verschiedener Fraktionen der 

organischen Bodensubstanz gibt. 

Der klassische Ansatz für die in situ-Bestimmung der Temperaturabhängigkeit (Q10-Wert 

oder Aktivierungsenergie) anhand einer linearen Regression von log-transformierten CO2-

Flüssen und Temperaturmessungen in einer bestimmten Bodentiefe wurde in der Literatur 

bereits kritisiert, da dieses Vorgehen weitere Einflussgrößen wie z.B. die räumliche und 

zeitliche Veränderung des Bodenwasserhalts und der organischen Bodensubstanz nicht 

berücksichtigt. Außerdem ist die ermittelte Temperaturabhängigkeit nicht eindeutig, da sie 

von der gewählten Messtiefe der Bodentemperatur abhängig ist. Um beide genannten 

Probleme zu umgehen, wurden die Parameter der Temperatur- und 

Feuchteabhängigkeitsfunktionen der heterotrophen Bodenrespiration unter Verwendung eines 

1-dimensionalen numerischen Modells für den CO2-Transport und den Kohlenstoffabbau 

gemeinsam invers geschätzt. Die Verwendung verschiedener Temperaturabhängigkeits-

funktionen ergab Skalierungsfaktoren, die über den gesamten Feuchtebereich und für 

Temperaturen kleiner 25°C kaum Abweichungen aufwiesen. Für höhere Temperaturen war 

die Temperaturabhängigkeit sehr unsicher auf Grund des seltenen Auftretens von 

Bodentemperaturen oberhalb von 25°C. Die inverse Parameterschätzung unter Verwendung 

numerischer Modelle ist ein vielversprechendes Werkzeug für die zuverlässige Bestimmung 

der Temperatur- und Feuchteabhängigkeit der heterotrophen Bodenrespiration. 
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1 General introduction 

1.1 Global climate change 

Global climate protection is one of the most important and challenging tasks of the 21st 

century (e.g. Lackner, 2003; Pacala and Socolow, 2004). Human activities have markedly 

increased the global atmospheric concentrations of the greenhouse gases carbon dioxide 

(CO2), methane (CH4), and nitrous oxide (N20) since 1750 (IPCC, 2007a; WMO, 2008). The 

atmospheric concentration of CO2 as the most important anthropogenic greenhouse gas has 

increased from the pre-industrial value of 280 ppm to 383 ppm in 2007 (WMO, 2008). This 

concentration is significantly higher than the atmospheric CO2 concentrations of the last 

650,000 years which have been determined from ice-cores and varied between 180 and 300 

ppm (IPCC, 2007a). 

The increase of greenhouse gases, especially of CO2, strongly affects the earth climate and the 

various compartments of the earth system. During the 100 years from 1906-2005 the global 

surface temperatures increased by 0.56 to 0.92°C. Furthermore, changes of local precipitation 

amounts have been observed. For example, precipitation increased significantly in eastern 

parts of North and South America, northern Europe, and northern and central Asia. In 

contrast, precipitation decreased in the Sahel, the Mediterranean, southern Africa, and parts of 

southern Asia. Extreme weather events have likely changed in frequency and/or intensity, e.g. 

the frequency of heavy precipitation events increased over most areas (IPCC, 2007a).  

In order to counteract global climate changes, the Kyoto protocol was passed at the third 

United Nations climate change conference in 1997. The participating states stipulated the 

reduction of relevant greenhouse gas emission within a given time frame, whereby the 

industrial countries committed to reduce the emission by 5% from 2008 to 2012 compared to 

1990. To develop effective strategies for the reduction of greenhouse gas emissions the main 

sources and pathways of greenhouse gases must be determined. Therefore, exact knowledge 

about the global carbon cycling is necessary. 
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1.2 The global carbon cycle 

The atmosphere contains ~800 Gt carbon, and is therefore, one of the smallest carbon 

reservoirs. In comparison, the oceans contain ~39,000 Gt C. Soils, vegetation, and detritus 

store ~2,000 Gt C (Figure 1.1) (Oelkers and Cole, 2008). The single carbon reservoirs 

exchange huge amounts of carbon, whereby the exchange rate between the atmosphere and 

the surface ocean is 90 Gt C y-1 and between atmosphere and vegetation is estimated to be 

110 Gt C y-1 (Houghton, 2007). Nowadays, the increase of CO2 in the atmosphere can be 

clearly related to anthropogenic emissions of CO2 while fossil fuel burning, deforestation, and 

land use changes are the main sources. Present carbon fluxes from fossil fuel combustion and 

deforestation are estimated to account for 8.4 Gt C y-1 and ~ 1.5 Gt C y-1, respectively (WMO, 

2008). The rate of atmospheric CO2 increase is less than the rate of CO2 emissions since a part 

of the emitted CO2 dissolves in the oceans or is taken up by terrestrial ecosystems.  

Within the global carbon cycle soils are an important carbon reservoir. The top metre of the 

worlds soils contain twice as much carbon as currently present in the atmosphere (e.g. Adams 

et al., 1990; Anderson, 1992; Batjes, 1996; Jobbagy and Jackson, 2000). Due to the large 

amount of organic carbon stored in soils even small relative changes could significantly 

change the concentration of greenhouse gases in the atmosphere (Kirschbaum, 2000).  
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Figure 1.1: Simplistic schematic diagram of the global carbon cycle. Masses of the reservoirs are reported in 

[Gt C] and fluxes in [Gt C y-1] (modified from Oelkers and Cole, 2008). 
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The terrestrial carbon cycle 

Atmospheric carbon enters the biosphere by diffusion of CO2 into plants where one part is 

converted to carbohydrates during photosynthesis (gross primary production, GPP,  

Figure 1.2). About half of this ‘fixed’ carbon is incorporated into new plant tissues and the 

other half is released back to the atmosphere by autotrophic respiration (net primary 

production, NPP). Finally, carbon is transferred to the soil by litter fall, root turn-over, or dead 

plants and animals. The fresh organic material entering the soil is the substrate for the 

formation of soil organic matter (SOM). To close the cycle soil carbon will return to the 

atmosphere as CO2 or CH4 by SOM decomposition referred to as heterotrophic respiration. In 

general, SOM consists of a great spectrum of organic substances. These compounds possess 

different mean turnover times due to different complexity. The decomposability of soil 

organic substances is furthermore determined by their bioavailability. Organic substances 

may be less available due to physical or chemical protection. While physical protection means 

e.g. the stabilization of organic substances in soil aggregates, organic substances are 

chemically protected by adsorption onto mineral surfaces (Oades, 1988).  

 

 
Figure 1.2: Terrestrial carbon processes. 

 

Photosynthesis, as well as autotrophic and heterotrophic respiration are affected by solar 

radiation, temperature, and water availability. If soils will act as carbon sources or sinks 

therefore depends on the responses of SOM decomposition and NPP to climate change. 

Carbon is lost from the soil if decomposition is more enhanced than NPP and vice versa. As 

already noted, a decrease of soil organic carbon would constitute a positive feed back on 

global climate change. Besides climate atmospheric CO2 concentration is another important 

factor. Increasing CO2 concentrations enhance photosynthesis and water use efficiency (e.g. 

Garcia et al., 1998; Conley et al., 2001), and therefore, elevate NPP. Furthermore, net carbon 

loss or storage from soils is affected by land use changes and management practices (IPCC, 

2001).  
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1.3 Carbon sequestration 

Carbon sequestration refers to the transfer of atmospheric CO2 into long-lived carbon 

reservoirs (Lal, 2008). Besides the idea of injection of CO2 into geological formations 

(Holloway, 2001; Friedmann, 2007; Benson and Cole, 2008) and deep ocean layers (Adams 

and Caldeira, 2008) natural processes can be used to sequester CO2 in biotic and pedologic 

pools. Historically, the conversion of large areas of native ecosystems to agricultural land 

resulted in a strong net loss of soil carbon (e.g. Paustian et al., 1997; Schlesinger, 1999), 

whereby these anthropogenic impacts can be traced back until the late stone age 8000 to 6000 

years ago (Ruddiman, 2003). As a consequence of the strong carbon depletion, agricultural 

soils are a potential carbon sink, and are therefore, of special interest in the framework of 

climate protection. Even though the global mitigation potential of carbon sequestration in 

agricultural soils is limited to a period of 50 – 100 years and only accounts for 3-6% of total 

C-emissions from fossil fuels, it plays an important role within an overall mitigation concept 

of short-term atmospheric CO2 increases (Paustian et al., 1997). Sequestration of carbon in 

agricultural soils requires appropriate management strategies. Sequestration strategies are e.g. 

reduced soil tillage, improved rotations, and conversion to grass and woodland (Lal, 2004; 

Smith, 2004). The efficiency of the single methods however depends on local climatic and 

soil conditions. To support which mitigation strategies are most effective for carbon 

sequestration under changing environmental conditions for the various local ecosystems 

model predictions are an important tool (e.g. Paustian et al., 1992; Lugato and Berti, 2008).  

 

1.4 Simulation of SOM turnover 

Many different model approaches have been developed to describe SOM turnover. One of the 

first steps to interpret carbon turnover was introduced by the simple approach of Jenny 

(1941): 
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(1.1) 

 

where cSC is the amount of soil carbon [kg], t is time [d], '0 is the decomposition rate constant 

[d-1], and A is the addition rate [kg d-1]. One major limitation of this early approach is that the 

change in soil carbon quality caused by progressive decomposition was not taken into 

account, but carbon turnover was assumed to be constant with time neglecting changes in soil 
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carbon stability and availability. To overcome these limitations, more complex model 

approaches were developed, e.g. additional components were introduced. So called multi-pool 

models are process-oriented models, which describe processes controlling the transformation 

of matter or energy movement and transformation (Paustian, 1994). Besides the process-

oriented approaches, organism-oriented models have been also developed. Organism-oriented 

models are based on the flow of matter and energy through food-webs (Paustian, 1994). 

Nevertheless, multi-pool models are currently the most accepted approaches for the 

description of soil carbon turnover. 

 

Multi-pool models 

To describe the heterogeneity of the bulk SOM, several multi-pool models have been 

proposed, whereas the RothC (Jenkinson, 1990) and CENTURY (Parton et al., 1987) model 

are the most common ones. In general, all multi-pool models are conceptually very similar. 

Organic litter entering the soil is divided into fractions of different decomposability. During 

decomposition of the litter pools, several carbon pools of the mineral soil will be formed 

which differ in their turnover times. Decomposed soil carbon is either transferred into one or 

more pools or is released as CO2. Decomposition of the carbon pools is typically described as 

a first-order kinetic process: 
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where cp is the pool concentration [kg C cm-3]. The decomposition rates 'p [d(1] are 

determined by multiplication of the decomposition constants with various response factors  

fi [-]. The decomposition constants of the pools are valid for optimal environmental conditions 

and a reference temperature. First-order kinetics implies that the amount of heterotrophic 

biomass does not directly affect the decomposition rate of organic matter pools and as a 

consequence soil microorganisms are simply treated as a fraction of SOM (Andrén and 

Paustian, 1987). Contrary to the approach of first-order kinetics, Monod kinetic approaches 

treat the decomposition rates as a function of the microbial biomass (McGill et al., 1981). An 

other possibility is the use of Michaelis-Menten kinetics (van Dam and van Breemen, 1995).  
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In general, multi-pool models have been developed and validated for specific environmental 

conditions. In a comparative study the applicability of nine different SOM turnover models 

was tested for the prediction of long-term carbon dynamics ranging over different ecosystems, 

climatic, and land-use conditions (Smith et al., 1997b). Six of nine models performed well 

across all data sets, among those the RothC (Jenkinson, 1990; Coleman and Jenkinson, 1996) 

and CENTURY (Parton et al., 1988; Parton, 1996) model. However, none of the models 

performed better than the others in each scenario. Nevertheless, for reliable predictions of 

SOM turnover at large scales and under future climate conditions models are needed that are 

able to accurately predict SOM dynamics without any site specific calibration (Smith et al., 

1997a). 

 

The SOILCO2/RothC model 

In general, multi-pool models are zero-dimensional, i.e. decomposition of SOM and CO2 

release is simulated for a homogeneous surface soil layer. Both carbon pool sizes and the 

temperature and moisture response of carbon turnover will be averaged over this layer. As a 

consequence of this ‘bucket’ approach the produced CO2 will be instantaneously released to 

the atmosphere. 

In contrast, CO2 transport models, often use very simplified approaches to simulate soil 

carbon turnover. For example, within the framework of the SOILCO2 model (!im!nek and 

Suarez, 1993) microbial CO2 release is described by an optimal CO2 production rate which is 

exponentially distributed over the entire soil profile. Consequently, spatial and temporal 

changes of the quality and quantity of SOM will not be described. 

In order to provide a more accurate description of the soil carbon cycling Herbst et al. (2008) 

integrated the RothC multi-carbon pool concept into the 1-dimensional physically-based 

water flow, heat, and CO2 transport model SOILCO2 (!im!nek and Suarez, 1993). By means 

of this coupled soil carbon turnover and CO2 transport model (SOILCO2/RothC) quantitative 

and qualitative changes of SOM over the soil profile can be described in a high spatial 

resolution. For each soil depth (model node) the effective soil water contents and 

temperatures can be predicted which is essential for the accurate determination of the actual 

decomposition rates of the carbon pools. The moisture distribution is furthermore essential to 

describe the transport of CO2 through the soil profile to the atmosphere. 
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1.5 Temperature and moisture response of SOM decomposition 

Temperature has a strong influence on all biological and physicochemical processes in the 

soil. Hence, effects of the state variable temperature are most studied in the framework of 

SOM decomposition (Reichstein and Beer, 2008). However, controversial discussions within 

the scientific community show that the treatment of the temperature influence is still an 

unresolved problem. For example, Knorr et al. (2005) found a higher temperature sensitivity 

for more stable carbon fractions. In contrast to these findings, Fang et al. (2005) found no 

significant differences between the temperature sensitivity of labile and more stable soil 

carbon. Nevertheless, reliable prediction of the worlds soils role as carbon sinks or sources 

requires consensus on the decomposition sensitivity of SOM decomposition towards 

temperature (Davidson and Janssens, 2006). 

The direct estimation of the temperature response of SOM decomposition will be complicated 

by several confounding factors (Kirschbaum, 2000; Davidson and Janssens, 2006; 

Kirschbaum, 2006; Reichstein and Beer, 2008). One of these confounding factors is the soil 

moisture content. In general, soil moisture content regulates different processes involved in 

SOM decomposition such as the accessibility of substrates and nutrients for the 

microorganisms and oxygen supply (Skopp et al., 1990). As a consequence, increasing water 

contents firstly encourage microbial activity but become repressive at a stage where a lack of 

oxygen occurs. The importance of soil moisture changes on soil organic carbon dynamics has 

been stressed out by Davidson and Janssens (2006) amongst others. Enormous carbon 

amounts may be released from wetlands and peatlands due to drying and the change from 

anaerobic to aerobic conditions. The estimation of the SOM decomposition response to 

temperature is furthermore biased by temporal and spatial changes in SOM quality and 

quantity due to inputs of fresh litter material or the alteration of SOM in the course of 

decomposition. Furthermore, besides heterotrophic respiration root respiration contributes to 

total soil respiration. It is unlikely that both processes have the same response towards 

changes in temperature. Finally, the attenuation and phase shift of the soil temperature 

amplitude vary with soil depth (Pavelka et al., 2007; Bahn et al., 2008; Reichstein and Beer, 

2008). Consequently, different temperature responses will be found for different temperature 

measurement depths (e.g. Xu and Qi, 2001; Pavelka et al., 2007).  

A reliable determination of SOM sensitivity on temperature therefore requires the 

consideration of these confounding factors in the data analysis (Reichstein and Beer, 2008). 

This has been clearly demonstrated by the study of Giardina and Ryan (2000) who did not 

consider differences in the relative abundances of the soil substrates in their analysis of soil 
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samples from different latitudes and temperature regimes. Due to this insufficient assumption, 

they concluded that no correlation between temperature and soil carbon decomposition exists 

(Powlson, 2005). Since confounding factors can be better controlled in laboratory studies, 

Kirschbaum (2000; 2006) concluded that laboratory studies are more appropriate to determine 

the temperature response of SOM decomposition than field experiments. The reliability of 

response equations determined under laboratory conditions to field conditions, however, is 

questionable because laboratory conditions are always highly artificial. 

 

Approaches for the temperature and moisture response of SOM decomposition 

The correct determination of soil temperature and soil moisture response functions is crucial 

for a reliable prediction of SOM decomposition. No consensus has been found so far for a 

general formulation and parameterisation of temperature and soil moisture response functions. 

As a consequence, various equations for the temperature and moisture sensitivity of SOM 

decomposition can be found in literature. The most common expression for the temperature 

sensitivity is the Q10- equation:  
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refTT
Q

(
= ''  (1.3) 

 

where '0 is the decomposition rate at the reference temperature Tref [K] and Q10 [-] is the 

factor for which the decomposition rate increases for a temperature increment of 10 K. The 

Q10 approach is based on the observation that the reaction rate increases by a constant factor 

for a given temperature increment (Johnson and Thornley, 1985). In contrast to this empirical 

approach Arrhenius developed a theoretical based formulation for the temperature 

dependence of the decomposition rate: 
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Where % is a constant [d-1], E is the activation energy [kJ mol-1], and R is the universal gas 

constant (8.314 kg m2 s-2 K-1 mol-1). Besides the Q10 and Arrhenius relationships a great 

variety of formulations are in use (Kirschbaum, 2000; Tuomi et al., 2008) which will be 

discussed in Chapter 2. 

In terms of SOM response to soil moisture a great inconsistency in the functional approaches 

(Rodrigo et al., 1997; Davidson et al., 2000) will be also found. Soil water content controls 
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several processes involved in SOM decomposition such as substrate availability and oxygen 

supply for micro-organisms. Therefore, SOM decomposition will be enhanced by higher soil 

water contents as substrates and nutrients become increasingly available for the micro-

organisms. On the other hand, high water contents are accompanied by an oxygen limitation 

which hampers SOM decomposition. The oxygen limitation effect may be implicitly included 

in the moisture response (e.g. Hansen et al., 1990) or in the form of a separate aeration 

response function, (e.g. !im!nek and Suarez, 1993). Moisture response can be expressed in 

dependence on different state variables such as gravimetric or volumetric soil water content, 

soil matric potential, water holding capacity, water filled pore space, or precipitation indices 

(Davidson et al., 2000). 

 

1.6 General objectives 

This thesis is embedded in the general framework of global climate change research with a 

special focus on the temperature and moisture response of soil heterotrophic respiration. The 

objectives of this thesis are: 

1. to analyse the influence of different temperature and moisture response functions on 

the simulated CO2 efflux. 

2. to investigate the suitability of widely accepted assumptions for the temperature 

response of carbon turnover in multi-carbon-pool concepts for the prediction of 

measured respiration data from the decomposition of 14C-labelled wheat residues. 

3. to determine the soil temperature and moisture response for a bare soil respiration 

experiment at the FLOWatch test-site Selhausen by the means of inverse parameter 

estimation. 

 

1.7 Outline of this thesis 

In general, this thesis is based on manuscripts published or submitted to international peer-

reviewed journals (Chapter 2 to 4). 

In Chapter 2 the effect of different combinations of temperature and moisture response 

functions from six well established carbon turnover models are investigated. Therefore, the 

SOILCO2/RothC model was validated first using measured CO2 fluxes of a soil respiration 

experiment in Columbia (USA). 

In Chapter 3 respiration data from laboratory wheat decomposition experiments were 

analysed using first-order two-pool models. In a first step, general assumptions of multi-pool 
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models were used - constant initial pool ratio and the same temperature sensitivity of the 

decomposition rates of the active and recalcitrant pool. In a second step, it was tested if data 

prediction is significantly improved by assuming either a temperature dependent initial pool 

ratio or different temperature sensitivities of the pool decomposition rates. Finally, the 

applicability of the findings was tested using the RothC and CenW/CENTURY multi-pool 

models. 

In Chapter 4 the temperature and moisture response of the heterotrophic soil respiration at the 

test site Selhausen were determined simultaneously using the SOILCO2/RothC model. In a 

first step, the model was calibrated on water content and temperature measurements at six 

different soil depths. In a second step, parameters of the soil moisture and temperature 

response functions were inversely estimated using the global optimisation algorithm Shuffled 

Complex Evolution (SCE). For the moisture response an exponential function expressed in 

dependence on the soil water content was used. The moisture response equation was 

combined with four different functional approaches of the temperature response from 

literature. Finally, the estimated temperature response was compared to the temperature 

response from a conventional linear regression method. 

A general summary and further suggestions for future research are presented in Chapter 5. 
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2 Sensitivity of simulated soil 

heterotrophic respiration to temperature 

and moisture reduction functions
*
 

2.1 Introduction 

The atmospheric concentration of carbon dioxide as the most important greenhouse gas 

increased from the pre-industrial value of about 280 ppm to 379 ppm in 2005 (IPCC, 2007b). 

As stipulated by the Kyoto protocol, appropriate strategies must be developed to counteract 

the increase of atmospheric CO2 concentrations. Besides the development of new 

technologies to reduce anthropogenic CO2 emissions, changes in land use and land 

management play an important role (Lal, 2004) as soil respiration is one of the largest fluxes 

of CO2 to the atmosphere (Schlesinger and Andrews, 2000). The main processes contributing 

to soil respiration are root and heterotrophic respiration. Heterotrophic respiration is not only 

determined by the total amount of soil organic matter (SOM) within the soil profile but also 

by the composition of SOM because of the high variability of biodegradability of different 

organic substances. To describe the heterogeneous character of SOM, several multi-pool 

models have been developed over the last decade, such as RothC (e.g.Coleman and Jenkinson, 

2005), CANDY (Franko et al., 1995), and DAISY (Hansen et al., 1990). These models differ 

in the number of pools and the interactions between the single pools. Furthermore, multi-pool 

models are necessary to describe both short-term and long-term responses of soil carbon 

(Schimel et al., 1994; Trumbore, 2000). Most multi-pool models were developed and 

validated for specific sites and datasets and should not be used straightforward for simulation 

of carbon turnover at different sites. This has been clearly demonstrated by Smith et al. 

                                                 
* adapted from Bauer, J., Herbst, M., Huisman, J.A., Weihermüller, L., Vereecken, H., 2008a. Sensitivity of 

simulated soil heterotrophic respiration to temperature and moisture reduction functions. Geoderma 145, 17-27. 
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(1997b) using nine different soil carbon turnover models and twelve long-term datasets. The 

final results show that a number of models performed well for a range of datasets but none of 

the models was capable to satisfactorily simulate all scenarios. Nevertheless, prediction of 

SOM turnover at the global scale requires models that perform well under various 

environmental conditions. 

 

Most SOM decomposition models are zero-dimensional without depth discretisation. 

Consequently, spatial variations in SOM concentration, soil temperature, moisture, and soil 

aeration cannot be considered. In contrast, physically-based models enable an accurate 

description of the transport of water, heat, and CO2 in the soil profile, but often use very 

simplified approaches for calculation of SOM decomposition and are unable to describe 

carbon turnover dynamics. Recently, Herbst et al. (2008) integrated the multi-pool concept of 

the RothC model into the 1D physically-based water, heat, and CO2 transport model 

SOILCO2 (!im!nek and Suarez, 1993) to simulate depth-dependent SOM turnover. The 

RothC model has been widely used for various simulations of SOM decomposition processes 

(e.g. Coleman et al., 1997; Jenkinson et al., 1999; Cerri et al., 2003; Yang et al., 2003; Diels 

et al., 2004), and is therefore, well established. In RothC, SOM is separated into five pools. 

The first pool is inert organic matter (IOM), which is resistant to decomposition during the 

considered time period (" 100 y). The remaining four pools are decomposable plant material 

(DPM), resistant plant material (RPM), microbial biomass (BIO), and humified organic 

matter (HUM). In contrast to the original simple SOILCO2 approach for the CO2 production 

by heterotrophic respiration, the RothC concept can describe quantitative changes of SOM 

due to plant input as well as qualitative SOM differences. Therefore, the coupling of 

SOILCO2 and RothC overcomes the weak points of both models. 

  

Decomposition of the C-pools is usually described by first order kinetics with different 

decomposition rate constants. These constants are valid for optimal environmental conditions 

and a reference temperature and are transferred to the decomposition rates for the actual 

environmental conditions by reduction functions. The reduction concepts of the various SOM 

decomposition models include reduction functions using different dependencies and 

expressions. Soil temperature and moisture are considered as the most important variables for 

decomposition of SOM (Singh and Gupta, 1977). Moncrieff and Fang (1999) detected a two 

times higher sensitivity of CO2 fluxes towards soil temperature than towards soil moisture 

after increasing the status variable values by 5%. Temperature dependence of SOM 

decomposition is often expressed as Q10- or the related Arrhenius function, but other 
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expressions are also in use (Kirschbaum, 2000). Temperature sensitivity of SOM 

decomposition is more complex than the pragmatic modelling approaches discussed here, as 

has been illustrated in the review of Davidson and Janssens (2006). Conflicting results (e.g. 

Fang et al., 2005; Knorr et al., 2005) indicate that this is an unresolved topic. 

 

The expressions for soil moisture reduction functions are more diverse. For example, different 

models use different variables to describe the influence of soil moisture, such as volumetric 

water content (Fang and Moncrieff, 1999) or matric potential (Hansen et al., 1990; !im!nek 

and Suarez, 1993). Another difference between the soil moisture reduction functions is that 

some models implicitly include the effects of soil aeration in the soil moisture reduction 

function (Hansen et al., 1990; !im!nek and Suarez, 1993). 

  

The diversity of reduction functions in models with similar structures can be attributed to 

different conditions of the test sites where the models were developed and validated (Heinen, 

2006), and on the other hand, to different conceptual ideas. Rodrigo et al. (1997) illustrated 

the variation of temperature and moisture reduction factors between nine  

C-N models. They hypothesised that different reduction functions can lead to major 

differences in model outputs. 

 

The aim of this study was to assess the influence of different soil temperature and moisture 

reduction functions on the simulation of SOM decomposition and CO2 fluxes using a realistic 

scenario. In order to do so, we first validated the coupled SOILCO2/RothC model for the test 

scenario. In a next step, the sensitivity of soil CO2 fluxes towards the reduction functions was 

quantified for the same test scenario. 

 

2.2 Materials and methods 

2.2.1 Modelling of SOM decomposition with the coupled SOILCO2/RothC model 

In order to improve modelling of carbon dynamics in soils, the zero-dimensional RothC pool 

model (Coleman and Jenkinson, 2005) was integrated into the one-dimensional physically-

based transport model SOILCO2 (!im!nek and Suarez, 1993). A full description of the 

integration is given by Herbst et al. (2008). The water flow is calculated using the Richards 

equation: 
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where h is the water pressure head [cm], ! is the volumetric water content [cm3 cm-3], K is the 

unsaturated hydraulic conductivity [cm d-1], t is time [d], z is the depth [cm], and Q is a 

source/sink term [cm3 cm-3 d-1]. The soil water retention !(h) and hydraulic conductivity K(h) 

functions are described by the Mualem-van Genuchten approach (van Genuchten, 1980): 
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where !r and !s are the residual and saturated water contents [cm3 cm-3], " is the inverse of 

the bubbling pressure [cm-1], Ks is the saturated hydraulic conductivity [cm h-1], Se is the 

relative saturation [-] and m and n are shape parameters [-]. 

 

Heat transport is calculated according to Sophocleous (1979) by: 
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where T is the soil temperature [°C], l is the thermal conductivity of the soil [kg cm d-3 °C-1], 

C and Cw are the volumetric heat capacities [kg d-2 cm-1 °C-1] of the porous medium and the 

liquid phase, respectively, and Jw is the water flux density [cm d-1]. The first term on the right 

hand side of Eq. (2.3) represents the heat flow due to conduction and the second term the heat 

transported by water flow. 
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The transport of carbon dioxide is described by the following equation: 
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where Jda describes the CO2 flux caused by diffusion in the gas phase [cm d-1], Jdw the CO2 

flux caused by dispersion in the dissolved phase [cm d-1], Jca the CO2 flux caused by 

convection in the gas phase [cm d-1], and Jcw the CO2 flux caused by convection in the 

dissolved phase [cm d-1]. The total volumetric concentration of CO2 is expressed by  

cT [cm3 cm-3]. S is the CO2 production/sink term [cm3 cm-3 d-1]. The term Qcw is an expression 

for the dissolved CO2 removed from the soil by root water uptake, where cw is the CO2 

concentration in the liquid phase [cm3 cm-3] and Q is the root water uptake [cm3 cm-3 d-1]. 

 

The production of CO2 is calculated as the sum of CO2 production by soil microbes  

&s [cm3 cm-3 d-1] and CO2 production by plant roots &p [cm3 cm-3 d-1]: 

 

psS && +=  (2.5) 

 

where &p is calculated using the original approach of the SOILCO2 model. The microbial CO2 

production &s is calculated from the sum of CO2 formed during decomposition of the four 

active pools of the RothC model. Decomposition follows first order kinetics: 
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where the change of the concentration c [kg C cm-3] of the different pools p over time is 

determined by the decomposition rate 'p [d
(1]. To determine the actual decomposition rate the 

decomposition constants, which are valid for optimal conditions of soil moisture and aeration 

and a temperature of 9.25°C ('p,0) [d
(1], are scaled with various reduction factors fi [-] for soil 

temperature (fT), moisture (fW), and aeration (fa). 

 



Chapter 2. Functional sensitivity analysis 16 

2.2.2 Integration of various reduction functions into the SOILCO2/RothC model 

For the performance of the functional sensitivity analysis, soil temperature reduction 

functions and soil moisture reduction functions have been chosen from six well established 

models: CANDY (Franko et al., 1995), CENTURY (Parton et al., 2001), DAISY (Hansen et 

al., 1990), PATCIS (Fang and Moncrieff, 1999), RothC (Coleman and Jenkinson, 2005), and 

SOILCO2 (!im!nek and Suarez, 1993). All temperature and moisture reduction functions are 

listed in Table A 1 and Table A 2, respectively (see Appendix).  

 

We want to point out that temperature reduction factors generally do not vary between 0 and 1 

but can also reach higher values. Only the CANDY model uses a function with a plateau for 

temperatures > 35°C expressing optimal decomposition conditions (see Appendix Table A 1). 

For all other models, decomposition increases steadily with temperature. Both the SOILCO2 

and PATCIS model use a modified type of the Arrhenius equation (Johnson and Thornley, 

1985) to describe the temperature dependence of the decomposition rate. However, there are 

differences in the reference temperature (20°C in the case of SOILCO2, 10°C for PATCIS) 

and in the parameterisation of the activation energy. The SOILCO2 model uses a fixed value 

for the activation energy over the entire temperature range, whereas PATCIS calculates the 

temperature reduction factor with activation energy values depending on soil temperature. For 

simulation of SOM decomposition with the coupled SOILCO2/RothC model, all soil 

temperature reduction functions were transformed to match 1 at 9.25°C as the decomposition 

rates of the RothC pools are valid for that temperature. The original temperature reduction 

functions f(T) were therefore divided by the value of the original equation at the reference 

temperature (Tref = 9.25°C) as expressed by the following equation: 
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The rescaled temperature reduction functions fT(T) are plotted in Figure 2.1. In general, the 

scaling factors of the models indicate considerable differences, particularly for high 

temperatures. 
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Figure 2.1: Soil temperature reduction functions of the six different carbon models transformed to the RothC 

reference temperature of 9.25°C. The grey area represents the standard deviation. 

 

The soil moisture reduction functions from the six models use different variables (Appendix 

Table A 2). SOILCO2 and DAISY are based on pressure heads, whereas CANDY and 

PATCIS use the soil water content. The soil moisture reduction of the RothC model is 

calculated as a function of the soil clay content, precipitation, and evaporation rate. The soil 

moisture reduction function within the CENTURY model is calculated from the potential 

evapotranspiration PET and the sum of stored water and precipitation PPT. 

 

To consider the soil moisture reduction functions of RothC and CENTURY for the integration 

into the SOILCO2/RothC model, modifications were required. For RothC, the accumulated 

topsoil moisture deficit was replaced by the difference between the water content at saturation 

and the actual water content, whereas the maximum soil moisture deficit was replaced by the 

difference between the water content at saturation and the residual water content. The ratio of 

PPT to PET of the CENTURY moisture reduction function can be interpreted as the water 

stress of the system. Therefore, we used the transpiration reduction function of SOILCO2 as a 

proxy for the moisture reduction function. We replaced the PPT/PET ratio by the ratio of the 

actual soil water content to the soil water content at the pressure head h50. The h50 value 

defines the pressure head at which the water extraction rate is reduced by 50% and is included 

in the root water uptake equation of the SOILCO2 model introduced by van Genuchten 

(1987) which is based on the Feddes et al. (1978) approach. The moisture reduction factors of 

the different functions were plotted in dependence on the soil water content in Figure 2.2. The 

Mualem-van Genuchten approach (van Genuchten, 1980) was used to convert water content 

to pressure head. Therefore, the hydraulic parameters of the upper soil horizon of the test 
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scenario were chosen (see next section). As shown in Figure 2.2 the soil moisture reduction 

functions implemented in the various models exhibit large differences. Nevertheless, all 

models show an increase of the reduction factor with higher soil water contents to the point of 

optimum moisture conditions. In contrast to the other concepts, the soil moisture reduction 

function of the DAISY model decreases again for higher water contents (Hansen et al., 1990). 

This behaviour is caused by the implicit consideration of reduced oxygen availability at 

higher water contents in the soil moisture reduction function of the DAISY model. For a 

meaningful comparability to the other moisture reduction functions the DAISY function was 

modified by neglecting the effect of soil aeration. 
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Figure 2.2: Soil moisture reduction functions of six different carbon models in dependence on the volumetric 

water content for the A horizon of the Missouri dataset with !s = 0.491 cm3 cm-3, !r = 0.000 cm3 cm-3, n = 1.246, 

" = 0.0512 cm-1, and h50 = -1000 cm. The grey area represents the standard variation. 

 

In comparison, an additional reduction factor is included in the reduction term of the 

CANDY, PATCIS, and SOILCO2 model to consider oxygen shortage. Both PATCIS and 

SOILCO2 use the Michaelis-Menten equation, which is expressed in dependence on the 

oxygen concentration. !im!nek and Suarez (1993) modified this function in the following 

manner: 
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where ca is the CO2 content in the gas phase [cm3 cm-3], and K*
M is the Michaelis constant for 

the CO2 content [cm3 cm-3]. A disadvantage of this expression is that the function is not equal 

to 1 for CO2 contents ca = 0. To improve this approach an additional term was added to the 

original function as suggested by Herbst et al. (2008): 

 

( ) ( )
M

M

aOaO
K

K
cfcf *

*

mod, 42.0
21.0

22 (

(
+=   21.0<ac  (2.9) 

 

2.2.3 Experimental dataset 

In order to evaluate the influence of different soil temperature reduction functions and soil 

moisture reduction functions on the simulation of SOM decomposition and CO2 fluxes a 

dataset from the Sanborn Field (Columbia, USA) respiration experiment (Buyanovsky and 

Wagner, 1983; Buyanovsky et al., 1986) was chosen. The data of the Missouri experiment 

were already used for validation of the original SOILCO2 (Suarez and !im!nek, 1993) and 

the DNDC model (Li et al., 1994). Here, we only use the data for wheat cultivation since 

besides CO2 concentrations also CO2 fluxes were measured. During the experiment, wheat 

was planted on a Mexico silt loam in the middle of October and harvested by the beginning of 

July. CO2 concentrations in the gaseous phase were measured in situ with disposable 

chromatographic tubes at intervals of two to three weeks. At intervals of usually two weeks 

CO2 fluxes were determined by the alkali adsorption method during 24 h intervals. Besides 

CO2 concentrations and CO2 fluxes, soil moisture and temperature in the soil profile were 

measured using combined moisture-temperature cells. Data on average weekly air 

temperature, daily precipitation, and evaporation were obtained from a weather station located 

5 km south of the study site. 

 

2.2.4 Parameterisation and initialisation of the SOILCO2/RothC model 

For the simulation of the transport of water, heat, and CO2 the parameterisation, initial and 

boundary conditions (Table 2.1) were taken from Suarez and !im!nek (1993). In addition, the 

coupled SOILCO2/RothC model requires the initial sizes of the RothC pools (see below). 

Furthermore, clay content is required for calculation of the proportions for the partitioning of 

decomposed carbon to the BIO and HUM pool (Coleman and Jenkinson, 2005). Therefore, 

the clay content of each layer was taken from Buyanovsky and Wagner (1983). Potential 

evapotranspiration was calculated by Suarez and !im!nek (1993) from average weekly air 
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temperatures using the Thornthwaite equation (de Marsily, 1986). The soil profile was 

divided into three horizons (A, B1, and B2) and the hydraulic properties were calculated from 

mean textural characteristics using a pedotransfer function (Suarez and !im!nek, 1993). The 

parameters for the thermal conductivity of the clayey soil were taken from Chung and Horton 

(1987). Hydraulic properties, bulk density, organic matter, and clay content for each layer of 

the soil profile are listed in Table 2.2. 

 

Table 2.1: Boundary and initial conditions for water, heat, and CO2 transport. 

 Lower boundary 

condition 

Upper boundary  

Condition 
Initial condition 

    

water 

transport 

free drainage at a 

depth of 1.7 m 

Dirichlet (-15000 cm / 0 cm) 

/ Cauchy (P-Ep) 

constant pressure head of 

-1.0 m 
    

heat 

transport 

zero temperature 

gradient 

Dirichlet (measured air 

temperature with a daily 

amplitude of 5°C) 

constant temperature of 15°C 

for 1981 and 2°C for 1982 

    

CO2 

transport 

Cauchy  

(zero flux) 

Dirichlet (0.033% CO2) CO2 concentration 0.033% - 

1.8% (1981), 0.033% - 1.5% 

(1982) 

P: precipitation; EP: potential evaporation. 

 

Table 2.2: Hydraulic parameters according to the Mualem-van Genuchten approach (van Genuchten, 1980), 

bulk density #, organic matter OM, and clay content for the layers of the soil profile.  

 

!r 

[cm3 cm-3] 

!s 

[cm3 cm-3] 

" 

[cm-1] 

n  

[-] 

Ks 

[cm d-1] 

Depth 

[cm] 

# 

[g cm-3] 

OM 

[%] 

Clay 

[g g-1] 
          

0-13 1.37 2.9 0.22 

13-20 1.35 2.5 0.24 

A 0.000 0.491 0.0512 1.246 100 

20-28 1.33 1.7 0.24 
          

B1 0.000 0.513 0.0508 1.199 100 28-36 1.29 1.1 0.31 
          

36-51 1.29 1.2 0.53 

51-66 1.36 0.8 0.49 

B2 0.000 0.509 0.0488 1.142 100 

67-170 1.36 0.1 0.49 

!r: residual water content [cm3 cm-3], !s: saturated water content [cm3 cm-3], ": inverse of the bubbling pressure 

[cm-1], n: shape parameter [-], Ks: saturated hydraulic conductivity [cm d-1]. 
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For the simulation of the rooting depth, using the root growth model of the SOILCO2 model, 

the initial root depth was set to 15 cm in 1981 and 5 cm in 1982. The heat units required for 

the plant to mature and roots to reach the maximum rooting depth [°C d] were  

calculated after Pirasteh and Welsh (1980) and resulted in 1275°C d. It was assumed that 65% 

of the roots were located in the top 10 cm expressed by a value of 10.5 m-1 for the parameter a 

[cm-1] in the exponential depth reduction function (Suarez and !im!nek, 1993). 

 

2.2.5 Inverse estimation of the initial pool sizes 

Since information on the composition of SOM was not available, the initial pool sizes had to 

be estimated. If no measurements are available, the IOM pool size [t C ha-1] can be calculated 

according to Falloon et al. (1998) from the total soil organic carbon (SOC) content [t C ha-1] 

by:  

 

139.1049.0 SOCIOM =  (2.10) 

 

where SOC [kg C kg-1] was calculated from the organic matter contents [kg kg-1] by dividing 

SOM with a factor of 1.724 and converted to t C ha-1 by multiplying with the bulk density  

[kg cm-3] and horizon depth [cm]. 

 

The proportions of DPM, RPM, and BIO were determined inversely by minimising the sum 

of squared residuals (SSR) between measured and modelled CO2 fluxes with a global 

optimisation algorithm (SCE-UA) as described by Duan et al. (1992). HUM [kg C kg-1] was 

calculated as the remaining fraction of total SOC [HUM=SOC-(DPM+RPM+BIO+IOM)]. 

Additionally, it was assumed that the pool proportions do not vary with soil depth. 

 

2.3 Results and Discussion 

2.3.1 Simulation of soil temperature and soil moisture 

Simulation of SOM decomposition requires exact predictions of soil temperature and soil 

water content. The modelling of soil temperature and water content was already validated by 

Suarez and !im!nek (1993). Both soil temperature and soil water content in 20 cm soil depth 

could be predicted well by the model. In Figure 2.3e and 3f the simulated soil temperatures 

and soil water contents in the uppermost 50 cm of the soil profile are compared for the years 
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1981 and 1982. Due to the earlier start of the simulation period lower daily temperatures 

down to -2°C were measured in 1982. Slightly higher summer temperatures up to 27°C were 

recorded in 1981, compared to a maximum of 25°C in 1982. In both years, the soil water 

content varied between 0.10 to 0.51 cm3 cm-3 indicating that even the soil surface was never 

completely dry.  

 

 
Figure 2.3: Measured and simulated CO2 fluxes, cumulative CO2 fluxes at the soil surface; CO2 concentrations 

at 20 cm depth, and depth profiles of CO2 concentration, soil temperature, and soil water content of the upper 50 

cm (simulation results of the coupled SOILCO2/RothC model with SOILCO2 reduction functions) for the years 

1981 and 1982. 
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2.3.2 Simulation of CO2 concentrations and CO2 fluxes 

Due to the lack of information about SOM quality, the initial pool sizes were estimated. The 

IOM proportion was calculated from SOM content of each soil layer and set to the average 

value of 0.07 for the total soil profile. The proportions of the other pools were determined by 

calibration against measured CO2 fluxes (Table 2.3). For both years, the calibrated proportion 

of DPM was very small. In 1981 a rather high content of RPM was calculated, while for the 

second year nearly no fresh organic matter was present. Consequently, both the proportions of 

the HUM and the BIO pool in 1982 are significantly higher than in the year before. 

 

Table 2.3: Initial pool proportions determined by minimisation of SSRflux for the SOILCO2/RothC model 

and comparison to the original approach of !im!nek and Suarez (1993). 

 Pool proportion [-] 

 
 

DPM RPM BIO HUM IOM 

SSRconc 

[cm6 cm-6] 

SSRflux 

[cm6 cm-4 d-2] 
         

1981 SOILCO2 exponential distribution* 0.0085 0.7072 

 SOILCO2/RothC 0.0000 0.1594 0.0011 0.7695 0.0700 0.0148 0.9172 
         

1982 SOILCO2 exponential distribution* 0.0027 0.1229 

 SOILCO2/RothC 0.0010 0.0003 0.0759 0.8528 0.0700 0.0026 0.0970 
*: In the SOILCO2 model CO2 production &s [m3 m-3 d-1] is calculated from an optimal production rate  

&s,0 [m
3 m-2 d-1] which is distributed over depth by an exponential function f(z) [m-1] and converted to the actual 

soil temperature T [°C] and pressure head h [m] according to the following equation: 

( ) ( ) ( )hfTfzf WTss 0,&& =  with ( ) ( )azazf (= exp , where z is soil depth [m] and a is an empirical 

constant [m-1]. 

 

As a measure of the quality of the model initialisation, the SSR of simulated and measured 

CO2 concentrations was calculated for the SOILCO2/RothC model and the original SOILCO2 

model (Table 2.3). In the original SOILCO2 approach, CO2 production was calculated from 

an optimal microbial decomposition rate &0 (0.42 cm3 cm-2 d-1) which was distributed 

exponentially over depth. For that, the same approach as for the root depth distribution was 

used (!im!nek and Suarez, 1993), where the depth distribution parameter a was set to  

10.5 m-1. In the RothC approach, CO2 was produced by decomposition of the four active 

carbon pools. While the decomposition constants were set to the original values of the RothC 

model ('DPM = 10 y-1, 'RPM = 0.3 y-1, 'BIO = 0.66 y-1, 'HUM = 0.02 y-1) the initial pool sizes of 

the DPM, RPM, HUM, and BIO pool were inversely estimated. The coupled 

SOILCO2/RothC model should provide a larger flexibility for predicting the measured CO2 
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concentrations and fluxes due to the use of more parameters describing CO2 production 

compared to the original SOILCO2 model. However, the deviations between measured and 

simulated CO2 fluxes and concentrations were larger for the coupled SOILCO2/RothC model 

during the first year. Nevertheless, both measured CO2 fluxes and CO2 concentrations were 

simulated well (Figure 2.3a and 3c). For the year 1982 where the pools were again inversely 

estimated, both CO2 fluxes and concentrations were reproduced very well (Figure 2.3b and 

3d) with a smaller SSR for the coupled model compared to the original SOILCO2 model 

(Table 2.3). 

 

Simulation results indicate that the contribution of plant roots to CO2 production was very 

small (6% in 1981 and 9% in 1982). Root respiration contributed to soil respiration only 

during the vegetation period. During the subsequent fallow period, measured CO2 fluxes can 

be exclusively attributed to heterotrophic respiration. Measured CO2 fluxes were predicted 

well over the entire simulation period. Although root respiration was not separately measured, 

we conclude that the estimated proportion of root respiration is in the right order of 

magnitude. Consequently, the CO2 production is clearly dominated by heterotrophic 

respiration for this experiment. 

 

The CO2 concentrations in the upper 50 cm of the soil profile for both simulation periods are 

shown in Figure 2.3e and 2.3f. Very high CO2 concentrations up to 18% in 1981 and 14% in 

1982 occurred during periods with high soil water content and soil temperature. Those 

conditions enhance SOM decomposition and CO2 is retained in the soil due to limited gas 

transport through the saturated pore system. In the surface layer, CO2 concentrations were 

very low at all times because of the close contact to the atmosphere. To summarise, CO2 

production and fluxes for both years were predicted in a reasonable way by the 

SOILCO2/RothC model. The model parameterisation is therefore appropriate for the 

performance of the functional sensitivity analysis.  
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2.3.3 Influence of the soil temperature and soil moisture reduction functions on SOM 

decomposition and CO2 fluxes 

To determine the influence of soil temperature and soil moisture reduction functions on the 

prediction of CO2 fluxes, the SOILCO2/RothC model was run with the initialisation described 

above using different combinations of reduction functions. First, the influence of the soil 

temperature reduction function was studied. Therefore, the soil moisture reduction function of 

the SOILCO2 model (Appendix Table A 2) and the modified CO2 reduction function  

(Eq. (2.9)) were combined with soil temperature reduction functions of all other models 

(Appendix Table A 1). In a second step, the sensitivity of the moisture reduction was assessed 

by using the different soil moisture reduction functions in combination with the soil 

temperature reduction function of the SOILCO2 model and the CO2 reduction function as 

expressed by Eq. (2.9). Finally, soil temperature reduction functions and soil moisture 

reduction functions of each tested model were combined with the CO2 reduction function in 

order to assess a potential interdependency of both functions. The simulated cumulative CO2 

fluxes from the soil surface in dependence on temperature reduction, moisture reduction, and 

a combination of both are compared in Figure 2.4. As a measure of sensitivity, the differences 

of the cumulative CO2 fluxes during the simulation periods were calculated, where the 

cumulative CO2 fluxes simulated with the reduction functions of the SOILCO2 model were 

taken as reference values. Furthermore, the mean absolute errors of the simulated CO2 fluxes 

were calculated. The results are listed in Table 2.4. Deviations between the simulated CO2 

fluxes obviously depend on the course of soil temperatures and moisture, which explains the 

lower sensitivity towards the choice of different soil temperature and soil moisture reduction 

functions for the two months longer simulation period in 1982 compared to 1981. Hence, the 

influence of different reduction functions for soil temperature and soil moisture on the 

simulated CO2 fluxes will be more or less pronounced for different climate conditions and soil 

characteristics. 
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Figure 2.4: Cumulative CO2 flux at the soil surface simulated with different soil temperature reduction 

functions (a and b), soil moisture reduction functions (c and d), and combined soil temperature reduction 

functions and soil moisture reduction functions (e and f) for the year 1981 and 1982, respectively. 
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Table 2.4: Deviation of cumulative CO2 fluxes related to the cumulative CO2 flux of SOILCO2 and mean 

absolute error (MAE) for variation of soil temperature, moisture, and temperature + moisture reduction. 

  Variable function 

 Soil temperature Soil moisture Both 
    

 
Cum. CO2 flux 

[kg C ha-1] 

MAE 

[kg C ha-1 d-1] 

Cum. CO2 flux 

[kg C ha-1] 

MAE 

[kg C ha-1 d-1] 

Cum. CO2 flux 

[kg C ha-1] 

MAE 

[kg C ha-1 d-1] 
       

 1981 

CANDY 4120 (-5.1%) 228 4429 (2.0%) 95 4206 (-3.1%) 149 

CENTURY 4235 (-2.5%) 304 4438 (2.2%) 105 4330 (-0.3%) 328 

DAISY 4005 (-7.8%) 370 4416 (1.7%) 81 4077 (-6.1%) 313 

PATCIS 5777 (33.0%) 1537 4434 (2.1%) 104 5877 (35.3%) 1676 

RothC 4780 (10.1%) 438 4373 (0.7%) 35 4821 (11.0%) 475 

SOILCO2 4342 (ref.) ref. 4342 (ref.) ref. 4342 (ref.) ref. 

no reduction n. e. n. e. 4443 (2.3%) 112 n. e. n. e. 
       

 1982 

CANDY 4426 (-3.6%) 197 4674 (1.8%) 94 4502 (-2.0%) 131 

CENTURY 4553 (-0.9%) 263 4680 (1.9%) 104 4639 (1.0%) 273 

DAISY 4296 (-6.5%) 322 4663 (1.5%) 81 4362 (-5.0%) 288 

PATCIS 5657 (23.2%) 1239 4679 (1.9%) 102 5758 (25.4%) 1359 

RothC 4935 (7.5%) 473 4628 (0.8%) 35 4971 (8.3%) 509 

SOILCO2 4592 (ref.) ref. 4592 (ref.) ref. 4592 (ref.) ref. 

no reduction n. e. n. e. 4685 (2.0%) 110 n. e. n. e. 

ref.: reference; n. e.: not estimated. 

 

Different temperature reduction functions provided significant differences of simulated CO2 

fluxes. The smallest temperature reduction was found for the PATCIS function with a 

cumulative CO2 flux of 5777 kg C ha-1 in 1981 and 5657 kg C ha-1 in 1982. The reduction of 

the DAISY function was strongest resulting in cumulative CO2 fluxes of 4005 kg C ha-1 in 

1981 and 4296 kg C ha-1 in 1982. Both years showed long periods with soil temperatures 

above 20°C (Figure 2.3e and 3f). Because of the large range of temperature reduction factors 

at high temperatures (Figure 2.1), maximum deviations between the lowest and highest 

simulated CO2 fluxes were up to 41% (Table 2.4). The different soil moisture reduction 

functions provide very similar CO2 fluxes with maximum deviations of only ~ 2% (Table 2.4) 

and are only slightly lower than the CO2 flux without moisture reduction which was  

4443 kg C ha-1 in 1981 and 4685 kg C ha-1 in 1982. The reason can be found in the water 

contents, which never dropped below 0.1 cm3 cm-3 (Figure 2.3e and 2.3f). Consequently, 

moisture reduction factors did not vary over the entire range but were always higher than 0.49 
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corresponding to the minimal reduction factor of the RothC soil moisture reduction function. 

For the reduction functions of the other models, minimum values were even higher e.g. the 

minimum moisture reduction value of the CENTURY model was 0.95. The variations of the 

moisture reduction factors are highest for soil water contents between 0.04 and 0.2 cm3 cm-3 

(Figure 2.2). It can be concluded that deviations of the simulated CO2 fluxes increase when 

dry soil moisture conditions occur. As shown in Figure 2.3, soil water contents between 0.1 

and 0.2 cm3 cm-3 were only found in the top 5 cm during several relatively short time periods. 

As already mentioned above and illustrated by Table 2.4, different hydraulic properties and 

climatic conditions will likely result in higher deviations of simulated CO2 fluxes due to the 

larger impact of soil moisture reduction functions at lower soil water contents. Especially in 

arid and semi-arid regions affected by longer drought periods, moisture reduction will have a 

stronger effect on the simulated CO2 fluxes, as shown by Akinremi et al. (1999). The average 

mean absolute errors (Table 2.4) indicate a roughly 6 to 7 times higher sensitivity towards the 

temperature reduction function compared to the soil moisture reduction function confirming 

the results of the sensitivity analysis performed by Moncrieff and Fang (1999) for a mature 

slash pine plantation in Florida.  

 

The actual decomposition rate is determined by multiplication of the decomposition constant 

with the product of the temperature, moisture, and aeration reduction factors. It can be argued 

that the single reduction functions are interdependent, and therefore, should always be used in 

their original combination. To investigate a potential interdependency between the soil 

temperature and soil moisture reduction functions derived from the same model, both 

reduction functions were varied simultaneously. The deviations of the simulated cumulative 

CO2 fluxes (Table 2.4, Figure 2.4e and 4f) were reduced by combining the temperature 

reduction functions with the complementary moisture reduction functions in the case of 

CANDY, CENTURY, and DAISY. However, for PATCIS and RothC the deviations became 

higher. Thus, the magnitude of the deviations between the cumulative CO2 fluxes can not be 

attributed to using just one factor of the various reduction functions. 

 

The changes in the cumulative CO2 fluxes due to the variation of the temperature reduction 

function found in this study are on average higher than the changes resulting from a 5% 

increase in the status variable value found by Moncrieff and Fang (1999). Thus, even a five 

percent error in the simulation or the measurement of soil temperature would be less relevant 

than the appropriate choice of the soil temperature reduction function. 
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2.4 Summary and conclusions 

One objective of this study was the validation of the coupled SOILCO2/RothC model for the 

Missouri experiment. As already shown by Suarez and !im!nek (1993) the temperatures and 

water contents within the soil profile were predicted well by the SOILCO2/RothC model. For 

the simulation of carbon turnover, the initial sizes of the RothC pools were estimated 

inversely. Inverse estimation of the initial RothC pool sizes is an appropriate tool if no 

additional information about SOM quantity and quality are available. Nevertheless, detailed 

studies concerning the inverse estimation of the C-pools with a comparison of measured  

C pool quantities would reduce uncertainty in the model predictions. The simulated CO2 

concentrations in 20 cm depth and CO2 fluxes from the soil surfaces were in good agreement 

with the measured data of the Missouri experiment. To summarise, the dataset of the Missouri 

experiment was predicted well by the coupled SOILCO2/RothC model.  

 

The validation of the SOILCO2/RothC model was the basis for the second objective of this 

study, which was to assess the influence of soil temperature and soil moisture reduction 

functions on the prediction of carbon turnover and CO2 fluxes. For this purpose, soil 

temperature and soil moisture reduction functions from six well established carbon turnover 

models were integrated into the coupled SOILCO2/RothC model. For the conditions of the 

Missouri experiment the use of different soil temperature reduction functions had a strong 

effect on the simulation of CO2 production and CO2 fluxes. The maximum deviations of the 

simulated climate relevant cumulative CO2 fluxes were 41% for the six month simulation 

period in 1981 and 30% for the eight month simulation period in 1982. In comparison, the 

effect of different soil moisture reduction functions was less strong with maximum deviations 

between CO2 fluxes of 2% for 1981 and 1982. Simultaneous combination of soil temperature 

and soil moisture reduction functions resulted in higher deviations for the PATCIS and RothC 

model. For the CANDY, CENTURY, and DAISY model deviations were reduced. These 

contrary trends for the different models rebut a potential interdependency of soil temperature 

and moisture reduction functions. The functional sensitivity analysis revealed a roughly six 

times higher sensitivity of soil respiration towards the soil temperature reduction function 

than towards the soil moisture reduction function for the climatic and soil conditions of this 

experiment. This higher sensitivity is also effected by the reference temperature for rescaling 

of the temperature reduction functions. In our study, SOM decomposition was simulated with 

the RothC pool concept. Temperature reduction functions were therefore rescaled to the value 

of 1 at 9.25°C. The mean temperatures for the simulation periods in Missouri were clearly 
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higher. As a consequence, the response to temperature was higher than the moisture response, 

where reduction functions did not have to be rescaled. For many applications, the choice of 

the temperature reduction function will be less influential. Usually, the fractions or the 

decomposition constants of the C-pools in a SOM model are calibrated for the experimental 

conditions. This procedure will remove some of the bias on the average respiration rates that 

arises from the choice of an inappropriate temperature reduction function. 

 

Although multi-pool models differ in the number and interaction of C-pools the basic concept 

is the same. However, there is a great inconsistency in the approaches of temperature and 

moisture reduction functions for the calculation of the pool decomposition rates. We therefore 

think that the goodness of SOM turnover prediction is to a large extent determined by the 

formulation and parameterisation of the soil temperature and soil moisture reduction 

functions. In contrary, the model structure itself is of secondary importance. Hence, soil 

temperature and soil moisture reduction functions are a crucial factor for the application of 

carbon models at different field sites with conditions differing from those used to develop and 

validate a specific carbon turnover model. A reliable prediction of carbon turnover requires 

that the reduction functions of the model are valid for the environmental conditions of the 

simulation period, which is against the background of changing climatic conditions of high 

relevance. 
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3 Temperature response of wheat 

decomposition is more complex than the 

common approaches of most multi-pool 

models
*
 

3.1 Introduction 

The top metre of the world’s soils contains twice as much carbon as the atmosphere (Eswaran 

et al., 1993). Soils are therefore an important component of the global carbon cycle, and any 

changes in stored soil carbon can significantly feed back onto atmospheric concentrations. For 

a reliable prediction of carbon dynamics under changing climatic conditions, the temperature 

sensitivity of soil organic matter (SOM) decomposition is highly relevant (Schlesinger and 

Andrews, 2000). Despite numerous studies that have been performed to determine the 

temperature sensitivity of SOM decomposition, there are still many open questions. 

 

Well-established carbon turnover models, such as RothC (Coleman and Jenkinson, 2005), 

CENTURY (Parton et al., 2001), CenW (Kirschbaum and Paul, 2002), or DAISY (Hansen et 

al., 1990) express the temperature response of carbon turnover through a scaling factor that is 

applied uniformly to the decomposition rates of all pools. To describe the temperature 

response of SOM decomposition, different approaches are used. Besides the common Q10 and 

Arrhenius approaches, several other empirical formulations have been used by different 

authors (Kirschbaum, 2000). However, there have been discussions whether more resistant 

                                                 
* adapted from Bauer, J., Kirschbaum, M.U.F., Weihermüller, L., Huisman, J.A., Herbst, M., Vereecken, H., 

2008b. Temperature response of wheat decomposition is more complex than the common approaches of most 

multi-pool models. Soil Biology and Biochemistry 40, 2780-2786. 
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fractions have a different temperature dependence than the more labile fractions (e.g. 

Coûteaux et al., 2001; Knorr et al., 2005). Other authors found that their datasets could be best 

explained by assuming that the degree of recalcitrance is itself a function of temperature 

(Zogg et al., 1997; Dalias et al., 2001b; 2001a). Possible explanations for that phenomenon 

could be shifts in the microbial community (Zogg et al., 1997) or biochemical pathways 

(Dalias et al., 2001a). 

 

Numerous field and laboratory studies have been performed to investigate the temperature 

dependence of SOM decomposition. Due to numerous confounding factors, the determination 

of the temperature response from field experiments is challenging. Although laboratory 

experiments do not provide natural conditions, they are considered to be more appropriate for 

the determination of temperature responses than field experiments as confounding factors can 

be better controlled (Kirschbaum, 2000; 2006). A common approach for the interpretation of 

such respiration experiments is the use of a first-order two-pool model (Dalias et al., 2001a; 

Hyvonen et al., 2005; Rey and Jarvis, 2006; Braakhekke and de Bruijn, 2007).  

 

In this study, we analysed respiration rates from the decomposition of wheat residues 

incubated at six different temperatures. The data were described by a first-order two-pool 

model, and we tested whether agreement between data and model could be improved by either 

using different temperature dependencies for the decomposition rates of the labile and 

recalcitrant carbon pool, or by assuming that the ratio of the initial pools also varied with 

temperature. Ultimately, our aim was to derive equations that could be used to describe the 

temperature response of wheat decomposition for use in simulating carbon turnover under 

field conditions. 

 

3.2 Materials and methods 

3.2.1 Soil and wheat characteristics 

Soil was taken from the uppermost 25 cm from the lower part of the FLOWatch test site near 

Selhausen, Germany. A detailed description of the field site was provided by Weihermüller et 

al. (2007). In total, 59 soil samples were taken, which were mixed to obtain a single bulk 

sample. To provide identical initial conditions for each experiment, the bulk sample was 

homogenised by 2-mm sieving and mixing. The soil was stored at a temperature of 4°C in 2 l 

polyethylene flasks and adapted to the experimental temperature for three days before labelled 
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wheat residues were added. The soil consisted of 14.4% sand, 68.9% silt, and 16.8% clay. 

Organic carbon, inorganic carbon, and nitrogen contents were 1.04, 0.106, and 0.13% (per 

unit mass), respectively. The soil contained 0.56 and 0.06% (per unit mass) of dithionite 

extractable Fe and Al, respectively, and the pH value was 6.8. 

To follow the decomposition of fresh organic matter in the soil, growing spring wheat plants 

(Taifun) were labelled with 14C. After harvest, the wheat residues, including roots, stems, and 

leaves, were airdried and finely ground to pieces smaller than 500 µm with an ultra 

centrifugal mill at 15000 RPM (Retsch, Germany). The wheat residues contained  

39.5 ± 0.9% C and 1.34 ± 0.06% N. Specific activity was 0.134 kBq mg C-1. 

 

3.2.2 Experimental setup 

Incubations for the assessment of the temperature dependence of soil respiration were carried 

out at six different temperatures (5°C, 9°C, 15°C, 25°C, 35°C, and 45°C) while the 

gravimetric water content of all samples was maintained at 16 ± 2% by regularly checking the 

weight of flasks and adding water as necessary. For samples incubated at 5°C, soil water 

content in the flasks had to be reduced by drying the air with silica gel before entering the 

sample flasks. During the initial phase of the 45°C experiment, the water content dropped to 

9% before the problem was recognised and rectified. For each temperature, five replicates 

were examined. The experimental setup for the decomposition experiments is illustrated in 

Figure 3.1. For each replicate, 100 g of oven-dry soil was placed in a 250 ml glass flask and 

mixed with 0.5 g of 14C labelled wheat straw residues. In order to guarantee a constant 

temperature, the reaction flasks were placed in temperature-controlled water baths. 

Temperature was maintained within ± 0.5°C. To avoid CO2 enrichment within the 

microcosms, air was constantly pumped through the reaction system and any evolved CO2 

was trapped in a 0.5N - 1.0N NaOH solution (KMF, Germany). Samples were collected daily 

over the first 9 days of the experiment and with decreasing frequency over the later stages of 

the experiment. After each sample collection, NaOH flasks were exchanged with fresh ones.  
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Figure 3.1: Schematic overview of the experimental setup for the decomposition experiment. 

 

3.2.3 
14

C and elemental analysis 

14C concentrations in the wheat residues were determined from three aliquots using dry 

combustion (Tri-Carb sample Oxidizer 306, Canberra Packard, Groningen, The Netherlands). 
14CO2 was trapped in 15 ml Oxysolve (PerkinElmer, Boston, MA, USA) and quantified by 

liquid scintillation counting (LSC, Liquid Scintillation Analyzer 1500 Tri-Carb, Packard, 

Groningen, The Netherlands). 14C concentrations in the NaOH solution were determined by 

LSC from three aliquots of 1 ml mixed with 10 ml Ultima-Gold (PerkinElmer, Boston, MA, 

USA). C, N, and H concentrations in the soil and wheat residue samples were determined 

using a Leco CHNS-932 analyser (St. Joseph, MI, USA) in the Central Division of Analytical 

Chemistry at the Forschungszentrum Jülich GmbH. 

 

3.2.4 Interpretation of decomposition experiments 

Data description by first-order two-pool models 

We interpreted our respiration experiments by applying a first-order two-pool model. CO2 

production from first-order decay of two carbon pools was described by the following 

equation: 

 

( ) ( )tt

CO ececc 21 11 212
'' (( (+(=  (3.1) 

 

where c1 and c2 are the initial fractions [g C g C-1] of a labile and a more recalcitrant pool, 

respectively, '1 and '2 [d
-1] are their decomposition rates, and t is time [d]. The initial phase 
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of wheat decomposition was influenced by a lag-phase before maximal rates were observed. It 

is likely that the size of the initial microbial population was not sufficient to optimally utilise 

the large input of extra wheat straw, or that the population was not optimally adapted to the 

new litter material. In either case, there was evidence that there was a brief period when rates 

increased more or less exponentially which was indicative of the build-up of a microbial 

population of optimal size and composition. We included that effect by explicitly modelling 

the size of a microbial pool. The microbial growth rate was expressed by the depletion of the 

labile and recalcitrant pool. At the same time, the decomposition rates of both pools were 

limited by the relative size of the microbial pool. Within 10 days or less, depending on 

temperature, the microbial pool reached its optimal size and had no influence on the rate of 

decomposition processes subsequently. In order to describe the interdependence of the 

microbial growth and the decomposition of the carbon pools, equation (3.1) was expressed in 

a discrete form according to: 

 

( )iiiCO ccc ,2,1,2 1 +(=  (3.2) 

( )tpcc iMOpipip $(= (( 1,1,, exp '    (3.3) 

 

where c1,i and c2,i are the concentrations of the labile and recalcitrant pools [g C g C-1] at time 

i, respectively. The sum of the initial pool concentrations c1,0 and c2,0 [g C g C-1] was equal to 

1 by definition. $t is the time step [d] which was set to 0.1 d. The decomposition rates 'p [d] 

of the labile and recalcitrant pools were reduced by the relative size of the pool of micro-

organisms pMO [-] varying from 0 to 1 to indicate total inhibitory and non-limiting effects, 

respectively. 

 

The microbial growth rate was controlled by the depletion of the labile and recalcitrant pool 

and a multiplicative factor fMO [-].  

 

( )( )1,,21,2,11,11,1,, 1 ((((( ((+(+= iMOiiiiMOiMOiMOiMO pccccfppp  (3.4) 

 

To determine a single parameter set that simultaneously described the measured CO2 

concentrations at all temperatures, the decomposition rates of the labile and recalcitrant pools 

were formulated as follows: 
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Tpp f,0'' =  (3.5) 

 

where '0,p [d] is the decomposition-rate constant of the labile or recalcitrant pool, which was 

multiplied by a scaling factor fT as a function of temperature. 

 

Data description by the RothC model and the SOM model of CenW/CENTURY 

Respiration data were also interpreted by the well-established multi-pool-models RothC and 

CenW/CENTURY. The RothC model (Coleman and Jenkinson, 2005) consists of five carbon 

pools (Figure 3.2), four reactive ones and an inert pool (IOM). Plant inputs consist of 

decomposable plant material (DPM) and resistant plant material (RPM). The initial proportion 

of the DPM and RPM pool was inversely estimated. The DPM and RPM pools are 

decomposed to form microbial biomass (BIO), humified organic matter (HUM), and CO2. As 

the BIO and HUM pools decompose, they form further BIO and HUM, with a proportion 

released as CO2.  

 

 
Figure 3.2: RothC pool concept (modified from Coleman and Jenkinson (2005)). 

 

The CenW model (Kirschbaum, 1999; Kirschbaum and Paul, 2002) constitutes a coupling of 

the soil-organic matter component of the CENTURY model (Parton et al., 1987) with a more 

fully-developed and more detailed representation of above-ground plant- and ecosystem 

processes. For the present purpose, the CenW model is essentially the same as the CENTURY 

model of Parton et al. (1987). The SOM decomposition module of the CenW/CENTURY 

consists of five reactive carbon pools (Kirschbaum and Paul, 2002). Similar to the RothC 
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model, plant input is partitioned between two pools, referred to as metabolic litter and 

structural litter. In CenW/CENTURY, the partitioning factor xML [-] is expressed in 

dependence on the lignin LIn [g g-1] and nitrogen concentration NIn [g g-1] of input material as: 

 

InInML NLx 018.085.0 (=  (3.6) 

 

Whereas the nitrogen concentration of the wheat residues was measured (see above), the 

lignin concentration was inversely estimated. The active, slow, and resistant SOM pools are 

charged from the decomposed fractions of the metabolic and structural litter pools and by 

each other. The carbon cycling between the single pools is illustrated in Figure 3.3.  

 

 
Figure 3.3: CenW/CENTURY pool concept (modified from Kirschbaum and Paul (2002)). 

 

In both multi-pool models decomposition of all carbon pools follows first-order decay 

kinetics, where the decomposition rates of all pools are determined by scaling the 

decomposition rate constants with temperature and moisture reduction functions. The 

moisture reduction factor was the same for all temperature variants, as all experiments were 

conducted at the same water content. 

 

Description of the relative temperature response 

In order to describe the relative temperature response of wheat residue decomposition, the 

original formulation of the RothC model (Eq. ((3.7)), and for the CenW/CENTURY model, 

the equation derived by Kirschbaum (2000, Eq. (3.8)) was used. 
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( ) ( ) ( )( )79.314036.3exp +(= TTTfT  (3.8) 

 

where T is the temperature [°C]. Furthermore, the common Q10 approach (van't Hoff, 1984) 

was chosen: 

 

( ) ( ) 10
10

refTT

T QTf
(

=  (3.9) 

 

where Tref is the reference temperature [°C]. 

 

3.2.5 Statistical analysis 

The parameters providing the best prediction of the measured data were determined by the 

means of linear optimisation minimising the mean sum of squared residuals (,MSSR): 
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where yobs are the observed data, ysim are the simulated data, and N is the number of 

measurements of experiment j.  

 

Akaike’s information criterion (AIC) was calculated to decide which model described the 

decomposition experiment in the best way. The criterion, which was developed by Akaike 

(1973; 1974), describes the relationship between the Kullback-Leibler information (Kullback 

and Leibler, 1951) and likelihood theory and can be expressed as:  

 

MLAIC Maxe 2log2 +(=  (3.11) 
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where logeLMax is the maximised log-likelihood function and M is the number of model 

parameters. Within this manuscript, M is only the number of fitted parameters. For a least 

squares estimation with normally distributed errors, AIC can be calculated as:  
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The equation uses M+1 instead of M because the variance needs to be estimated. Since the 

sample size was relatively small in the present work (N/M < 40 for the model with the largest 

M), the corrected Akaike information criterion (AICc) was used (Hurvich and Tsai, 1989; 

Burnham and Anderson, 2004): 
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The best model is the one with the smallest AIC or AICc value.  

 

A third performance measure considered in this study is the model efficiency (ME). This is an 

additional measure of model performance and is defined according to Nash and Sutcliffe 

(1970) as: 
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where obsy  is the mean value of the observed data. ME values can vary between –# and 1. 

High values close to 1 are obtained if observed and simulated data are closely related and 

without systematic bias. A negative ME indicates that the mean is a better predictor of the 

data than the applied model. 
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3.3 Results and Discussion 

3.3.1 Description of carbon mineralization by two-pool-models 

Previous studies have shown that carbon mineralization can be adequately described by 

models including two carbon pools decomposing simultaneously by first-order kinetics  

(Eq. (3.1)). In Figure 3.4 the observed decomposition of 14C-labelled wheat residues at six 

different temperatures is compared. The decomposition pattern in the initial phase of 

incubation appeared to be considerably influenced by the adaptation of micro-organisms to 

the new substrate supply. Therefore, a further reduction factor for the scaling of the 

decomposition rates of the labile and recalcitrant pool was introduced. The omission of a 

description of this build-up lag-phase would have differentially affected the parameter 

estimation of the underlying temperature dependence.  
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Figure 3.4: Measured cumulative carbon mineralization rates [g C g C-1] from wheat residue decomposition at 

six temperatures. Data are illustrated as the mean values ± standard deviation from 5 replicates. 

 

In Figure 3.5 the improvement of the prediction of measured initial CO2 concentrations by 

first-order two-pool models by the inclusion of the lag-phase is illustrated. Firstly, measured 

data of the single experiments were predicted by a first-order two-pool model according to 

Eq. (3.1) as illustrated in Figure 3.5a. In this attempt, the lag-phase was omitted. In a second 

attempt, the microbial adaptation was included according to Eqs. (3.2) - (3.4). Thereby, data 

prediction was significantly improved (Figure 3.5b). Furthermore, during the first 7 days of 

incubation, the 45°C experiment was affected by a water loss of 7% which resulted in a 

temporary reduction of the decomposition rate. To describe the effect of the temporary water 
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loss during the initial decomposition phase at 45°C, the calculated decomposition rate was 

reduced by an empirical factor over the few days of water shortage. It is not thought that this 

temporary water shortage would have caused any long-term effects on decomposition rate 

after it had been rectified. 
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Figure 3.5: Initial phase of decomposition predicted by first-order two pool models, a) without consideration 

of microbial adaptation and b) with the introduction of a reduction factor to describe the adaptation of micro-

organisms to substrate supply (lag-phase). 

 

In Figure 3.6 we compare the state of decomposition after three and 110 days of incubation. 

The rate of carbon loss over the first three days provides a measure of the decomposition rate 

constant and the proportion of the labile carbon pool. After 110 days, the labile pool had been 

largely lost as CO2 and the rate of carbon loss up to that point is therefore primarily 

determined by the recalcitrant pool. During the first three days, decomposition rates were 

highest at 45°C, whereas after 110 days, more carbon had been released from samples 

incubated at 35°C and 25°C than at 45°C. This observation indicates that more complex 

processes occur which cannot be described by simple two-pool models with the general 

expectation of a ratio of labile and recalcitrant pools that was invariant with temperature and 

the same temperature response functions for the decomposition of both labile and recalcitrant 

pools. 
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Figure 3.6: State of decomposition after 3 days and after 110 days of incubation. 

 

For the interpretation of the measured CO2 release by first-order two-pool models, we firstly 

assumed that the initial pool ratio was constant and determined the decomposition rates of the 

labile and recalcitrant pool assuming that both pools have the same underlying temperature 

dependence. Although the general course of CO2 release at the six different temperatures was 

described by the model in an acceptable way over the time of incubation, carbon release rates 

tended to be under-estimated in the beginning and over-estimated in the later stages  

(Figure 3.7). We considered that the data description was not yet satisfactory and tested ways 

to improve the fit to the data. 
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Figure 3.7: Prediction of CO2 release from wheat residue decomposition at six temperatures by first-order 

two-pool models assuming a constant initial pool ratio and the same temperature dependence for the 

decomposition rates of the labile and recalcitrant pool. 
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To improve the data prediction, we tested two different hypothesises. Firstly, we assumed that 

the decomposition rates of the labile and recalcitrant pools had different temperature 

dependencies. Secondly, we assumed that the proportion of litter classified as labile or 

recalcitrant litter was itself a function of temperature. In other words, the underlying 

assumption was that the degree of chemical recalcitrance was in some way affected by 

temperature. 

 

Both assumptions resulted in a significant improvement of data prediction expressed by 

smaller MAEs (Table 3.1), but the assumption of a temperature dependent initial pool ratio 

provided the strongest improvement. Not surprisingly, the more complex models provided 

better data prediction. However, models should also be as simple as possible. Hence, 

including additional processes into a model is only advisable if data prediction is significantly 

improved. Akaike’s information criterion provides one objective measure of model quality by 

considering both the goodness of data prediction and model complexity. Applying that 

criterion to our possible models, we found that even though the two-pool model with a 

temperature dependent initial pool ratio had the highest number of parameters, it describes the 

data much better than two-pool models with a fixed initial pool ratio, and was therefore, 

judged to be the best of the three models. Measured CO2 concentrations were predicted very 

well by this model as illustrated in Figure 3.8. 

 

Table 3.1: Comparison of data prediction by first-order two-pool models with different assumptions for the 

initial pool ratio and the temperature response.  

Scenario Fitted parameters M MAE [-] AICc [-] ME [-] 
 

Same initial pool ratio / same 

temperature response 

c1, pMO, fMO, fW, k1, 

k2, fT(T) 
12 0.0199 -1386 0.9797 

 

Same initial pool ratio / different 

temperature responses 

c1, pMO, fMO, fW, 

'1(T), '2(T) 
16 0.0157 -1471 0.9877 

 

Temperature dependent initial pool 

ratio / same temperature response 

c1(T), pMO, fMO, fW, 

'0,1, '0,2, fT(T) 
17 0.0101 -1601 0.9938 

Fitted parameters were the initial concentration of the labile pool (c1), the initial ratio of micro-organisms (pMO), 

the growth factor (fMO), the moisture reduction factor (fW), the decomposition constants of the labile ('0,1), the 

recalcitrant pool ('0,2), the temperature reduction factor (fT), the decomposition rates of the labile ('1) and the 

recalcitrant pool ('2). If the parameter was assumed to be temperature dependent [(T)], a value was estimated for 

each incubation temperature. M is the number of fitted parameters, MAE is the mean absolute error, AICc is the 

corrected Akaike information criterion, and ME is the model efficiency. 
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Figure 3.8: Prediction of CO2 release from wheat residue decomposition at six temperatures by first-order 

two-pool models assuming a temperature dependent initial pool ratio and the same temperature dependence for 

the decomposition rates of the labile and recalcitrant pool. 

 

3.3.2 Determination of temperature response functions 

To determine the temperature response of the initial pool ratio, a Q10 equation was used to 

constrain the temperature course of the decomposition rate. By this preliminary fixing of the 

decomposition rates, a temperature course of the initial pool ratio emerged that was predicted 

well by an exponential equation according to: 

 

( ) ( )2
1 exp TcTbaTx xxx ++=  (3.15) 

 

where x1 is the initial proportion of the labile pool [g C g C-1]; ax, bx, and cx are empirical 

constants [-]. The high value of the model efficiency shows that the formulation provides an 

unbiased estimation of the initial pool ratios. Using the two functional relationships presented 

in Figure 3.9, the MAE was 0.0133. The fitted Q10 value of 1.16 for the decomposition rate is 

quite low because much of the overall temperature response is expressed through an 

adjustment in the proportion of labile and recalcitrant pools. The decomposition rate constants 

at 20°C of the labile and recalcitrant pool were 0.1023 d-1 and 0.0022 d-1, respectively. 
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Figure 3.9: Temperature response for data prediction by a first-order two-pool model. The temperature 

dependence of the decomposition rates was predefined by a Q10 relationship (solid line). Fitted initial pool ratios 

for all temperatures (empty symbols) were described by an exponential function (dotted line). 

 

3.3.3 Data description by multi-pool-models 

The interpretation of short term laboratory experiments by two-pool models is a common 

approach. For the prediction of longer-term carbon turnover, however, more complex carbon 

pool models with a higher number of carbon pools are used. In the following, we assess the 

validity of our findings for the two multi-carbon-pool models, RothC and CenW/CENTURY. 

Therefore, the respiration data were fitted in a first step by both models retaining their original 

parameter settings and assumptions as described in the Section 3.2. With those original 

settings, the data were not well predicted by either multi-pool model as indicated by the high 

MAE values (Table 3.2). In a next step, we applied the temperature response concept that we 

developed for the two-pool model to the multi-pool models. According to this, the fresh litter 

pool ratio was defined by an exponential equation (Eq. (3.15)) and the relative temperature 

response by a Q10 relationship (Eq. (3.9)). Data prediction was significantly improved when 

we applied the temperature response functions derived in the upper section to the multi-pool 

models. Sufficient data prediction by either multi-pool model was only provided when 

temperature sensitivity was extended to the initial partitioning of fresh litter material (results 

not shown). 
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Table 3.2: Comparison of data prediction by the RothC and CenW/CENTURY model with different 

assumptions for the pool ratio of the fresh litter pools and the relative temperature response.  

Scenario Fitted parameters M MAE [-] AICc [-] ME [-] 
      

RothC 
 

Original model assumptions1 cDPM, pMO, fMO, fW, fm 5 0.0335 -1180 0.9353 
 

Modified assumptions2 a, b, c, pMO, fMO, fW, fm, Q10 8 0.0153 -1488 0.9875 
 

CenW/CENTURY 
 

Original model assumptions1 cLig, pMO, fMO, fW, fm 5 0.0458 -1081 0.8912 
 

Modified assumptions2 cLig, a, b, c, pMO, fMO, fW, fm, Q10 9 0.0143 -1514 0.9892 

1: Original model assumptions were the same initial pool ratio and the same relative temperature response 

defined by Eq. (3.7) for the RothC model and Eq. (3.8) for the CenW/CENTURY model.  
2: Modified assumptions were a temperature dependent initial pool ratio described by Eq. (3.15) and the same 

relative temperature response defined by a Q10 relationship (Eq. (3.9)). 

Fitted parameters were the initial concentration of DPM (cDPM), the initial ratio of micro-organisms (pMO), the 

growth factor (fMO), the moisture reduction factor (fW), a scaling factor for the decomposition constants (fm), the 

initial lignin concentration (cLig), the Q10 value and the empirical parameters of the exponential response function 

(a, b and c). M is the number of fitted parameters, MAE is the mean absolute error, AICc is the corrected Akaike 

information criterion, and ME is the model efficiency. 

 

3.4 General discussion and conclusions 

In our work we set out to obtain simple temperature scaling factors for use in organic-matter 

turn-over models. However, the observed pattern of carbon loss could not be well described 

by application of simple scaling factors. Instead, our findings illustrate that the temperature 

response of SOM decomposition is more complicated than the pragmatic approaches used in 

most organic matter turnover models. This confirms the findings of other studies which have 

discussed the complexity of temperature sensitivity in a more theoretical way (Thornley and 

Cannell, 2001; Davidson and Janssens, 2006; Ågren and Wetterstedt, 2007). Other studies 

have used empirical approaches to identify differences in temperature dependence of 

decomposition by the different fractions (Coûteaux et al., 2001; Bååth and Wallander, 2003; 

Bol et al., 2003) but work to date has been inconclusive, and no real and consistent 

differences have been identified. 
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Coûteaux et al. (2002) investigated the decomposition of 14C labelled wheat straw which was 

incubated in situ at six sites along a transect in the Venezuelan Andes. Similar to our findings, 

Coûteaux et al. (2002) found that the chemical recalcitrance of SOM was altered by 

temperature. Braakhekke and de Bruijn (2007), however, re-analysed the dataset of Coûteaux 

et al. (2002) by first-order two-pool models with a constant initial pool ratio and found that 

the data were predicted almost equally well as the more complex model chosen by Coûteaux 

et al. (2002). A weak point of the dataset was that the labile pool had been almost depleted by 

the time of the first measurement, and therefore, a reliable estimation of the decomposition 

rate of the labile pool was not possible. Due to the high number of observations, the dataset 

analysed in our study provides sufficient information for a more reliable estimation of the 

decomposition rates of the labile and recalcitrant pools. 

 

For long-term dynamics of organic matter in soils, stabilisation of soil organic matter through 

interactions with the soil matrix is an important process (e.g. van Veen and Kuikman, 1990). 

It is less clear, however, what quantitative role it plays over the shorter term of incubation 

experiments. We performed a number of model test runs to assess the effect of stabilisation on 

the decomposition patterns with constraints by parameter sets of realistic turn-over times and 

pool sizes of the stabilised soil organic matter in natural soils. With such constraints, we 

found that SOM stabilisation had very little effect on the model results and hardly modified 

any trends we observed (data not shown). Therefore, we did not consider this process in our 

models any further. 

 

Our work indicates that either the decomposition of differently labile materials responds 

differently to temperature or that there is an even more complex interaction between 

temperature and the degree of chemical recalcitrance. Our results gave the greatest possible 

improvement if we assumed that chemical recalcitrance changed with temperature. A question 

may be asked how chemical recalcitrance could change with temperature, but it is possible, 

for example, that some fatty acids may be liquefied at higher temperature and readily 

decomposable, whereas become solidified and much more recalcitrant at lower temperature. 

 

The existence of such more complex temperature interactions, if it can be confirmed through 

further work, considerably complicates the use of organic matter turn-over models. While it 

might, in principle, be possible to add temperature as an extra variable in defining the 

categorization of litter into different fractions, this becomes significantly more difficult when 
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temperature changes continuously with time and would require a continuous adjustment of 

litter fractions with any change in temperature. Nonetheless, models need to attempt to 

describe reality as it is understood, and if experimental data suggest that temperature 

interactions are more complex than currently implemented in existing models, then it makes a 

case for modification of these models in order to capture reality. 
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4 Inverse determination of soil 

heterotrophic respiration response to 

temperature and water content under field 

conditions
---- 

4.1 Introduction 

Soil respiration is an important flux of CO2 to the atmosphere (Schlesinger and Andrews, 

2000). Against the background of global climate change, reliable model predictions of soil 

respiration are highly relevant. Amongst other factors, accurate knowledge of the response of 

soil carbon decomposition to changes in soil temperature and water content is essential for 

reliable predictions (Singh and Gupta, 1977; Howard and Howard, 1993; Davidson and 

Janssens, 2006). In the past, both laboratory and field experiments have been used to 

determine the response of soil heterotrophic respiration to changes in soil temperature and 

water content. Thereby, it is assumed that laboratory studies provide more reliable estimates 

of these temperature and water responses than field experiments (Kirschbaum, 2000; 2006). 

However, laboratory incubation experiments are typically performed under highly artificial 

conditions. For example, the natural soil structure is commonly destroyed by sieving and 

homogenisation. Therefore, the transferability of response equations determined in the 

laboratory to real field situations is ambiguous. 

 

                                                 
- adapted from Bauer, J., Weihermüller, L., Huisman, J. A., Herbst, M., Graf, A., Séquaris, J. M., Vereecken, H., 

2009. Inverse determination of soil heterotrophic respiration response to temperature and water content under 

field conditions. Biogeochemistry. Submitted. 
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The direct estimation of temperature and water responses from in situ measurements is 

complicated and often biased by confounding factors. For example, soil temperature and 

water content are highly interdependent because high temperatures are often accompanied by 

low water contents and vice versa (Davidson et al., 1998). Such a strong interdependency 

makes it difficult to separate the effects of temperature and water on soil respiration. 

Furthermore, changes in soil organic matter (SOM) quantity and quality during the course of a 

field experiment (e.g. fresh litter input, depletion of labile compounds) could strongly 

influence the direct estimation of response functions. A third confounding factor is that soil 

respiration originates from two processes: i) the decomposition of soil organic matter 

(heterotrophic respiration) and ii) root respiration. It is unlikely that both processes have the 

same response towards changes in temperature and water content. A fourth and final 

confounding factor is related to the choice of measurement depth/volume to relate soil 

temperature, soil water, and soil respiration. For example, the attenuation and phase shift of 

the soil temperature amplitude vary with soil depth (Pavelka et al., 2007; Bahn et al., 2008; 

Reichstein and Beer, 2008), which means that different temperature responses will be found 

for different temperature measurement depths (e.g. Xu and Qi, 2001; Pavelka et al., 2007). 

Recently, Graf et al. (2008) provided recommendations to obtain more reliable 

approximations of the temperature response from field measurements. 

 

In this study, we evaluate an alternative inverse modelling approach to determine the 

temperature and water response of soil heterotrophic respiration. Recently, Weihermüller et 

al. (2009) presented a laboratory experiment to determine the soil water response function of 

soil respiration using inverse modelling. However, inverse modelling has not yet been used to 

determine both temperature and water responses from field data. Since the inverse modelling 

approach can account for many of the confounding factors discussed above, it could provide a 

more reliable quantification of the response of soil respiration to changes in soil temperature 

and water content. To this end, we analyse a dataset of bare soil respiration using the 

SOILCO2/RothC-model for the simulation of the 1-dimensional water flux, heat and CO2 

transport, and CO2 production (Herbst et al., 2008). The parameters of different functional 

approaches to describe the temperature and water response are determined using inverse 

modelling. Finally, we compare the temperature response functions obtained with inverse 

modelling with those obtained from a classical regression method. 

 



Materials and methods 

 

51 

4.2 Materials and methods 

4.2.1 Model description 

We used the 1-dimensional numerical model SOILCO2/RothC to predict soil water content, 

soil temperature, CO2 production, and CO2 transport. A brief model description is provided in 

Chapter 2. For detailed information, we refer to !im!nek and Suarez (1993) and Herbst et al. 

(2008). 

 

4.2.2 Response functions 

The availability of water is essential for soil microbial activity. Increasing soil water content 

enhances substrate diffusion. However, the supply of oxygen is reduced when water content is 

high (Skopp et al. 1990). As a consequence, increasing water content first enhances microbial 

activity, but becomes repressive for water contents higher than some optimum. We used an 

exponential relationship to describe the water response fW: 
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where ! is the volumetric water content [cm3 cm-3], and aW and bW are empirical parameters. 

The denominator is a normalisation factor used to obtain a maximum value of 1 at the optimal 

water content, !opt [cm3 cm-3], which is located at: 
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For the temperature response, we used several common approaches from literature. First, we 

used the temperature reduction function of the RothC pool concept: 
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where T is the temperature [°C].  
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The original RothC equation is equal to 1 at a reference temperature Tref of 9.25°C. This 

formulation can be rescaled by dividing the original formulation by the value of the original 

equation at the reference temperature as expressed by the following equation: 
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Second, we used a modified form of the Arrhenius relationship (e.g. !im!nek and Suarez, 

1993; Fang and Moncrieff, 1999): 
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where E is the activation energy of the reaction [kg cm2 d-2 mol-1] and R is the universal gas 

constant [kg cm2 d-2 °C-1 mol-1] (R=8.314 kg m2 s-2 K-1 mol-1). Both the RothC and the 

Arrhenius approach show an increase in microbial decomposition with increasing 

temperature. Additionally, we analysed relationships with an optimal temperature. The first 

one is an exponential equation according to O'Connell (1990): 

 

( )( )
optT TTTbaf 5.01exp 11 (+=  (4.6) 

 

where a1 and b1 are empirical parameters and Topt is the optimum temperature. The second 

relationship was introduced by Parton et al. (1987): 
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where a2, b2, c2, d2, and e2 are empirical parameters. Negative response factors were set to 0. 

 

4.2.3 Determination of the activation energy from linear regression analysis  

Conventionally, the activation energy of soil respiration is derived from a linear regression 

analysis based on the Arrhenius formulation (Johnson and Thornley, 1985) according to: 
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where % [h-1] is a constant. This formulation can be linearised using a log-transform: 
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The activation energy can then be calculated from the slope s1 of the linear regression 

equation according to: 

 

RsE 1(=  (4.10) 

 

4.2.4 Field measurements 

All measurements were perfomed at the FLOWatch test site which is located in the river Rur 

catchment. The soil was classified as an Orthic Luvisol according to USDA classification and 

consists of three horizons ranging from 0 to 33 cm, 33 to 57 cm, and 57 to 130+ cm. The soil 

texture is a silt loam. A detailed description of the test site is given by Weihermüller et al. 

(2007). Our investigation covered the time period from October 2006 until October 2007. CO2 

flux measurements were only available until September 2007. During this period, weeds were 

continuously removed manually and/or by herbicide (glyphosate) application. In April 2007, 

the soil was power harrowed. In June 2007, a larger amount of weed was removed manually. 

 

Soil temperature was measured at 0.5, 3, 5, and 10 cm depth by type T thermocouples and at 

15, 30, 45, 60, 90, and 120 cm depth by pF-meters (Ecotech, Bonn, Germany). Soil water 

content was measured at 15, 30, 45, 60, 90, and 120 cm depth from April to October 2007 by 

custom made 3 rod TDR probes with a rod length of 20 cm. All TDR probes were connected 

to a Campbell multiplexing and data logging system (Campbell Scientific, Logan, Utah, 

USA). The raw waveforms were stored and analysed semi-automatically using the Matlab 

routine TDRAna developed in the Forschungszentrum Jülich GmbH. Matric potentials were 

recorded at 120 cm by pF-meters (Ecotech, Bonn, Germany). Climatic data were provided 

from the meteorological tower of the Forschungszentrum Jülich GmbH (5.4 km NW from the 

test site). 
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CO2 fluxes were measured by automated soil CO2 flux chambers (Li-8100, Li-Cor Inc., 

Lincoln, Nebraska, USA) operated with the Li8100 multiplexer system. From October 2006 

to April 2007, CO2 fluxes were measured twice an hour using a single chamber. In April 

2007, we installed a three chamber multiplexer system that measured 4 times per hour. All 

chambers were placed on a soil collar with a diameter of 20 cm and a height of 7 cm, of which 

5 cm were belowground. Each chamber was closed for two minutes and the rise in CO2 

concentration was measured with an infrared gas analyser. To estimate the CO2 flux, a linear 

regression was fitted to the measured CO2 concentrations. Finally, hourly mean CO2 fluxes 

and standard deviations were calculated. In order to remove outliers, we did not consider 

fluxes with a standard deviation larger than 5 times the mean standard deviation. 

 

To characterise the organic carbon within the Ap-horizon, samples were taken with a spate 

from 3 depths (0-10, 10-20, and 20-30 cm) in October 2006. Additionally, mixed soil samples 

from 3 locations were taken from deeper depths (30-40, 40-50, 50-60, 60-100 cm) in June 

2007. The organic carbon content of the soil samples was analysed using a Leco CHNS-932 

analyser (St. Joseph, MI, USA). The particulate organic matter (POM) content was 

determined according to Skjemstad et al. (2004) as the physical carbon fraction from 53 to 

2000 µm. Black carbon was determined using mid infrared spectroscopy (Bornemann et al. 

2008), and was taken as an equivalent for the inert organic carbon (IOM) content. 

 

4.2.5 Model parameterisation and initialisation 

Since measured data were not available at the beginning of the simulation, the initial soil 

water profile was derived from measurements for a comparable period in 2007. An 

atmospheric boundary condition was used to describe the upper boundary. The reference 

potential evapotranspiration was estimated according to the FAO guidelines (Allen et al., 

1998) from measured atmospheric temperature, precipitation, wind speed, atmospheric 

pressure, relative humidity, and actual duration of sunshine. The potential evaporation of a 

bare soil was calculated from the reference potential evapotranspiration by multiplication with 

a factor of 1.15 (Allen et al., 1998). The lower boundary was described by measured matric 

potentials. Figure 4.1 shows the precipitation and potential evaporation for the study period. 

The total precipitation was 831 mm and the total potential evaporation was 757 mm. 
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Figure 4.1: Precipitation (Prec), potential evaporation (Epot), cumulative precipitation (black), and potential 

evaporation (grey) between October 2006 and October 2007. 

 

The initial conditions and the upper and lower boundary conditions for heat transport were 

derived from measured soil temperatures. Missing surface temperatures (Tsurf) were estimated 

from atmospheric temperatures (Tatm) using a linear regression function 

( 9057.01173.1 (= atmsurf TT ; R2 = 0.88). Missing temperatures in 120 cm soil depth were 

estimated by linear interpolation. The parameters for the thermal conductivity of a loamy soil 

were taken from Chung and Horton (1987, Table 4.1) and are summarised in Table 4.1. 

 

Initial CO2 concentrations within the soil profile were taken from a forward model run from a 

comparable period in 2007. CO2 concentration at the soil surface was set to the atmospheric 

concentration of 0.038%. The lower boundary was defined as a zero flux boundary. All 

additional CO2 transport parameters are summarised in Table 4.1. 
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Table 4.1: Heat (Chung and Horton, 1987) and CO2 transport parameters (Patwardhan et al., 1988) used in 

the numerical simulation. 

Parameter Value Unit 
   

Heat transport   

Thermal dispersivity 1.5 cm 

Empirical constant B1 of soil thermal conductivity function 1.134E+12 kg cm-1 h-3 °C-1 

Empirical constant B2 of soil thermal conductivity function 1.834E+12 kg cm-1 h-3 °C-1 

Empirical constant B3 of soil thermal conductivity function 7.157E+12 kg cm-1 h-3 °C-1 

CO2 transport   

Molecular diffusion coefficient of CO2 in air at 20°C 572.4 cm2 h-1 

Molecular diffusion coefficient of CO2 in water at 20°C 0.0637 cm2 h-1 

Longitudinal dispersivity of CO2 in water 1.5 cm 

 

The initial carbon pool sizes were determined using the physical fractionation scheme of 

Skjemstad et al. (2004). The size of the IOM pool was set to the measured black carbon 

fraction. We assumed that the soil did not contain any DPM at the beginning of the 

simulation. The RPM fraction cRPM was defined by the measured POM fraction. The fraction 

of HUM and BIO was calculated as the remaining fraction from the total organic carbon 

[ ( )IOMRPMDPMorgBIOHUM cccccc ++(=+ ]. The proportion between BIO and HUM was 

0.0272 according to Zimmermann et al. (2007). Since no information about SOM composition 

for soil layers deeper than 30 cm was available at the beginning of the simulation period, we 

used the SOM characteristics determined 8 months later and assumed that SOM was not 

significantly altered in the deeper soil horizons. This assumption was later confirmed by our 

simulations, which indicate that the mean carbon loss from the RPM pool was only 4% in the 

30 to 60 cm depth range for the entire study period. Carbon pool concentrations were linearly 

distributed between the mean measurement depths. In Table 4.2 the measured concentration 

of SOM, POM, and black carbon are summarised. 
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Table 4.2: Measured carbon concentration of soil organic matter (SOM), particulate organic matter (POM), 

and black carbon (BC) in the soil profile. In brackets the percentages of POM and BC from SOM are given. 

Depth [cm] SOM [mg C cm-3] POM [mg C cm-3] BC [mg C cm-3] 
    

0-10 18.54 3.30 (17.8%) 2.12 (11.4%) 

10-20 17.87 2.50 (14.0%) 2.43 (13.6%) 

20-30 17.21 2.50 (14.5%) 2.52 (14.6%) 

30-40 7.92 0.51 (6.4%) 1.93 (24.4%) 

40-50 5.62 0.29 (5.2%) 1.71 (30.4%) 

50-60 4.72 0.23 (4.9%) 1.42 (30.1%) 

60-100 4.26 0.21 (4.9%) 1.35 (31.7%) 

 

Fresh weed material was added to the upper 15 cm of the soil after soil tillage in April 2007. 

For different crop stands, crop rotations, and fertilization rates various authors proposed 

annual carbon inputs via roots and crop residuals ranging from 1.5 to more than 3.8 t C ha-1 

(Jenkinson and Coleman, 1994; Coleman and Jenkinson, 1996; Coleman et al., 1997; Falloon 

et al., 1998). In general, largest C inputs were reported for grasslands and lower ones for 

different crop rotations. In all cases, large proportions of the plant material will be removed 

by harvesting. In our case, larger amounts of fresh plant material were incorporated into the 

soil, and therefore, we assumed a total input of 3 t C ha-1.  

 

4.2.6 Inverse parameter estimation  

To find the set of model parameters that best describe the measurements, the global 

optimisation algorithm SCE-UA was used (Duan et al., 1992). This algorithm searches the 

parameter space to find the minimum of used-defined objective function. In this study, we 

used the sum of squared residuals (SSR): 
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where yobs and ysim are the observed and simulated data, respectively and N is the number of 

data pairs available to compare observation and simulation. The SCE algorithm has been 

shown to be a powerful tool for calibration of hydrological models (Madsen et al., 2002) and 
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has been successfully applied in other application areas (e.g. Bauer et al., 2008; Peters and 

Durner, 2008). 

 

For a reliable prediction of the water transport, the hydraulic parameters of four soil layers 

were inversely estimated. To reduce the number of estimated parameters, we assumed that the 

saturated and residual water contents were constant over the entire soil profile. This 

assumption is in good agreement with laboratory results for the same location, where the 

mean saturated water content is 0.390 cm3
 cm-3 with a standard deviation of only  

0.03 cm3 cm-3. In total, we estimated 14 hydraulic parameters (one !s and !r for the entire 

profile and ", n, and Ks for each layer). Additionally, we imposed a decrease of Ks with depth. 

We used 3899 water content measurements at 15, 30, 45, 60, and 90 cm and 2247 

measurements at 120 cm depth in the inversion. In a second step, we inversely estimated the 

parameters of the temperature and water content response equations from 6269 CO2 flux 

measurements. For both optimization runs, SCE-UA was stopped when the change of the 

objective function was less than 0.1% in 10 consecutive loops. 

 

4.2.7 Statistical criteria of model quality  

Two criteria were used to judge the quality of the model simulations. First, we calculated the 

coefficient of determination (R2): 
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where obsy  and simy  are the arithmetic means of the observed and simulated data, 

respectively. The model efficiency ME (Nash and Sutcliffe, 1970) was used as a second 

criterion: 
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A model efficiency close to 1 indicates that observed and simulated data are closely related 

and without systematic bias. A model efficiency lower than 0 means that the mean is a better 

predictor of the data than the applied model. 

 

4.3 Results and discussion 

4.3.1 Simulation of soil water contents and soil temperatures 

In order to predict the water flow, the hydraulic parameters were inversely estimated. The 

measured soil water content could not be sufficiently described by the model with one set of 

hydraulic parameters for the plough horizon Ap (upper 33 cm). Corresponding to the findings 

of Abbaspour et al. (2000), the Ap horizon had to be divided into two separate layers with 

different hydraulic properties to provide a good prediction of the measured soil water content 

(Figure 4.2). The Ap horizon was divided at a depth of 20 cm, which is the penetration depth 

of the power harrow. The hydraulic properties yielding the best prediction of measured soil 

water content are summarised in Table 4.3. The resulting high n value (n = 1.97) of the upper 

soil layer is not representative for a silt loam soil, which might be due to the large coarse 

fraction (10 - 15 mass% > 2 mm). In addition, the soil structure of this upper layer was 

changed due to tillage. However, the water flow of the upper soil layer was predicted well and 

87% of the variation in soil water content measured at 15 cm depth was explained.  

 

Table 4.3: Estimated hydraulic parameters according to the Mualem-van Genuchten approach (van 

Genuchten, 1980) of the soil layers. Note that !r and !s were assumed to be constant with depth to reduce 

number of parameters for the estimation.  

Layer Depth [cm] !r [cm3 cm-3] !s [cm3 cm-3] " [cm-1] n [-] Ks [cm h-1] 
       

1 0-20 0.008 0.389 0.012 1.97 3.82 

2 20-33 0.008 0.389 0.023 1.23 2.64 

3 33-57 0.008 0.389 0.011 1.30 2.12 

4 57-120 0.008 0.389 0.007 1.22 0.28 

!r: residual water content, !s: saturated water content, ": inverse of the bubbling pressure, n: parameter, Ks: 

saturated hydraulic conductivity. 
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Figure 4.2: Measured (grey symbols) and simulated (black lines) water contents at different soil depths. 

 

Measured soil temperatures were predicted well by the model (Figure 4.3) with the parameter 

settings described in Section 4.2. However, soil temperature was overestimated by up to 3°C 

for the first soil layers from mid-November to early January. In this period, only a few surface 

temperature measurements were available, and therefore, surface temperatures were estimated 

from atmospheric temperatures.  
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Figure 4.3: Measured (grey) and simulated (black) temperature in different soil depths. 

 

4.3.2 Simulation of CO2 fluxes  

To determine the temperature and water response equations which are most appropriate to 

describe the measured CO2 fluxes, the parameters of an exponential water content response 

function and four different temperature response functions were inversely estimated. The 

results are summarised in Table 4.4. Data prediction was worst when the original RothC 

temperature response equation was used. Prediction of measured CO2 fluxes was significantly 

improved when the RothC temperature response equation was scaled to another optimised 

reference temperature (Sum of Squared Residuals, SSR, decreased from 812 to  

632 (kg C ha-1 h-1)2). Best data prediction was provided by the approach of Parton et al. 

(1987) with a SSR value of 538 (kg C ha-1 h-1)2. However, the Arrhenius and O'Connell (1990) 

equations produced only slightly larger errors (SSR of 542 and 547 (kg C ha-1 h-1)2, 

respectively). The mean measured CO2 flux was 0.398 kg C ha-1 h-1. The temperature 

response equation of O'Connell (1990) provided the highest agreement between measured and 

simulated mean CO2 flux ( simy  = 0.399 kg C ha-1 h-1, Table 4.4). We therefore consider the 

equation of O'Connell (1990) as the most appropriate formulation to describe the temperature 

response for our field dataset. 
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Table 4.4: Prediction of measured CO2 fluxes using different approaches for the temperature response. 

Temperature 

response 

Estimated 

temperature 

parameters 

Estimated 

water 

parameters 

SSR  

[(kg C ha-1)2] 

R
2  

[-] 

ME  

[-] 
simy   

[kg C ha-1] 

       

RothCorig 

(Eq. (4.3)) 

- aW = 157.81 

bW = -360.44 

812 0.63 0.60 0.457 

       

RothCscale 

(Eq. (4.3), 

(4.4)) 

Tref = 14.3°C aW = 58.16 

bW = -126.30 

632 0.70 0.69 0.421 

       

Arrhenius 

(Eq. (4.5)) 

Tref = 15.5°C 

E = 98 kJ mol-1 

aW = 64.91 

bW = -136.39 

547 0.73 0.73 0.409 

       

O’Connell 

(Eq. (4.6)) 

a1 = -3.3416 

b1 = 0.2611 

Topt = 42.64 

aW = 60.90 

bW = -127.55 

542 0.73 0.73 0.399 

       

Parton 

(Eq. (4.7)) 

a2 = 0.2073 

b2 = 0.0001 

c2 = 31.52 

d2 = 3.254 

e2 = 75.69 

aW = 61.44 

bW = -128.50 

538 0.73 0.73 0.405 

SSR: sum of squared residuals, R2: coefficient of determination, ME: model efficiency, simy : arithmetic mean of 

simulated respiration. 

 

In Figure 4.4 the measured and simulated CO2 flux is shown for the temperature response 

equation according to O'Connell (1990). Furthermore, the distribution of CO2 released during 

decomposition, soil water content, and soil temperature in the upper soil horizon (0-33 cm) 

are illustrated. In general, the course of measured CO2 fluxes was well described by the 

model. In January 2007, soil surface temperatures dropped below 0°C. This freezing period 

was followed by a strong CO2 release up to 1.4 kg C ha-1 h-1. A possible explanation for the 

observed CO2 flush is the death of microbial biomass due to the low temperature and the 

subsequent decomposition of this new carbon source with increasing soil temperatures and 

reactivated microbial activity (e.g. Matzner and Borken, 2008). Since this process can not be 

described by the model, the measurements of this period were not considered to avoid bias in 
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the inverse parameter estimation procedure. The simulations indicate that most CO2 was 

produced in the upper 15 cm of the soil profile in May and June 2007. In the last half of April 

and the first half of May 2007, the soil surface layer was almost dry. The low water content 

obviously hampered SOM decomposition since CO2 fluxes were significantly lower than in 

the following period despite high temperatures and fresh carbon input in April 2007 due to 

tillage. High measured CO2 fluxes were systematically underestimated during the first half of 

June 2007. The higher uncertainty in the measured CO2 fluxes during this period expressed by 

the high standard deviations of up to 1.5 kg C ha-1 can not completely explain the observed 

mismatch. Probably, additional CO2 was released by decomposing plant roots which remained 

in the soil after manual weed removal. The period of highest soil temperatures in July 2007 

was not accompanied by highest CO2 fluxes despite moderate soil water contents. This can be 

explained by the decrease of the fresh litter input quantity and quality during the course of 

decomposition.  

 

Figure 4.5 presents the four temperature response functions obtained using inverse modelling. 

The RothC function clearly deviates from the other three functions. This can be explained by 

the limited flexibility of the RothC function where only the reference temperature was 

variable and the curvature was fixed. The other three functions are very similar for 

temperatures < 25°C. For temperatures above 25°C, the three functions highly diverge. 

Despite this divergence, the prediction of measured CO2 fluxes is similar good. The reasons 

for the uncertainty in the course of the temperature response function for high temperatures 

are twofold. First, temperatures + 25°C only occurred up to a maximum depth of 18 cm. 

Second, simulated temperature exceeds 25°C only 1.6% of the time. Overall, the good 

agreement between these three temperature response equations despite their different 

functional forms is a good indicator for the reliability of the inverse modelling approach. 

 

The optimized water responses are also shown in Figure 4.5. The curvatures of the water 

response equations combined with the temperature response function of Arrhenius, O'Connell 

(1990), and Parton et al. (1987) are almost identical (Figure 4.5). The calculated optimal 

water content was 0.24 cm3 cm-3, which corresponds to a water filled pore space of 62%. This 

value is in good agreement with many other studies that found optimal aerobic microbial 

activity between 50 and 80% water filled pore space (e.g. Greaves and Carter, 1920; Rovira, 

1953; Rixon and Bridge, 1968; Pal and Broadbent, 1975; Weihermüller et al., 2009).  
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Figure 4.4: Measured and modelled CO2 flux using an exponential water response equation and the 

temperature response equation according to O'Connell (1990). Measured CO2 fluxes are shown as mean values 

with standard deviation (grey). Simulated CO2 fluxes are illustrated as black line. Simulated CO2 concentration, 

water content, and temperature are plotted for the plough horizon (upper 33 cm). CO2 concentration is plotted as 

natural logarithmic values in parts per trillion (ppt = 10-12 cm3 cm-3). 
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Figure 4.5: Optimized temperature and water response functions. Parameters for all functions are listed in 

Table 4.4 

 

4.3.3 Comparison to conventionally determined temperature responses 

Typically, the temperature response of soil respiration in field studies is quantified by fitting a 

regression between fluxes measured at the surface and temperatures measured in a certain soil 

depth (or occasionally air temperature). This practice has been criticised because confounding 

factors such as correlations with water (Davidson et al., 1998), or the effect of temperature 

measurement depth (Graf et al., 2008) might strongly affect the temperature sensitivity. It is 

therefore insightful to compare the temperature sensitivity determined by our model study, 

which takes into account water effects and heat transfer in the soil, to the one that would have 

been determined by the conventional way. For reasons of comparability between the two 

different methods of data analysis, we used simulated instead of measured soil temperatures. 

This is justified by the excellent model predictions for soil temperature (Figure 4.3). As has 

been shown before, temperature response derived from the traditional regression analysis 

highly depends on the depth of the temperature measurement with apparently stronger 

temperature responses with increasing depth (Pavelka et al., 2007; Graf et al., 2008). The 

linear regression analysis provided an activation energy of 92 kJ mol-1 for temperature 

measurements at the soil surface and a much higher value of 126 kJ mol-1 for a depth of 10 

cm, illustrating the ambiguity of the classical regression method. The inversely estimated 

activation energy was 98 kJ mol-1, which is in between the activation energy estimates for soil 

surface temperature and the temperature measured at 10 cm depth (Figure 4.6). Assuming that 

water sensitivity, and temporal and spatial distribution of substrate supply are determined 

correctly, this value represents an estimate of the intrinsic temperature sensitivity. Unlike the 

regression-based estimates which depend on the set-up and scale of the study, it provides the 

best estimate for use in any process-based forward model, fulfilling the criteria given by 

Reichstein and Beer (2008). 
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Figure 4.6: Comparison of temperature response determined by inverse parameter estimation (IE) and the 

conventional linear regression method (LR) for different soil depths.  

 

4.4 Summary and conclusions 

The temperature and water response of soil heterotrophic respiration are crucial for a reliable 

prediction of soil carbon dynamics. In this study, we determined the temperature and water 

response of soil heterotrophic respiration from an agricultural soil at the test site Selhausen by 

the means of inverse parameter estimation using the SOILCO2/RothC model. Due to the 

implementation of the RothC multi-pool carbon concept into the physically based transport 

model SOILCO2, temporal changes of temperature, water content, and the concentration and 

composition of SOM can be described in a high spatial resolution over the entire soil profile.  

 

The inverse parameter estimation approach considered four widely used temperature response 

functions. The best prediction of measured CO2 fluxes was obtained by an exponential water 

response function with an optimum at 62% water filled pore space and a temperature response 

equation according to the formulation of O'Connell (1990). However, the commonly used 

Arrhenius equation provided similarly good results. The divergence of the fitted temperature 

response functions for temperatures > 25°C indicates that the fitted functions might not be 

reliable in this range. The excellent agreement between the temperature response functions for 

temperatures below 25°C is encouraging.  
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The direct determination of the temperature and water response from field measurements is 

complicated by the interdependency of soil temperature and water, the quantitative and 

qualitative change of SOM, and the contribution of root respiration to measured soil 

respiration. Apparent response equations derived from relating measured CO2 flux to 

temperature or water indicators (e.g. matric potential, water content, precipitation and 

evapotranspiration) determined in specific soil depths may significantly differ from the 

intrinsic response. The activation energy determined using the conventional regression 

method varied between 92 kJ mol-1 and 126 kJ mol-1 for the upper 10 cm of the soil profile, 

whereas the intrinsic response was equal to 98 kJ mol-1. The activation energy of the 

Arrhenius equation determined by inverse modelling was nicely bracketed by those 

determined using the conventional regression approach. In conclusion, the inversely estimated 

temperature and water response equations provide an unbiased and reasonable prediction of 

measured CO2 fluxes. Determination of response equations from in situ measurements by the 

means of inverse parameter estimation is a promising method for a more reliable prediction of 

soil carbon turnover for areas with different soil and climate conditions. 
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5 Synthesis 

5.1 Summary 

This thesis focused on the investigation of the temperature and moisture response of soil 

heterotrophic respiration either in numerical models, or laboratory and field experiments. 

The general motivation of the work was the ongoing discussion about appropriate 

formulations for the temperature and moisture response of heterotrophic soil respiration. 

Therefore, we started up to analyse the influence of the choice of different temperature and 

moisture response functions from six well-established carbon turnover models on the 

prediction of heterotrophic respiration using a realistic case scenario (Chapter 2). In a second 

step, we performed laboratory microcosm experiments to study the decomposition process of 
14C labelled wheat residues at variable ambient temperatures (Chapter 3). Finally, we 

determined the temperature and moisture response equations from in situ measurements by 

the means of inverse parameter estimation (Chapter 4). 

 

As already stated, the aim of the first study was the assessment of the influence of different 

soil temperature and moisture reduction functions on the simulation of SOM decomposition 

and CO2 fluxes (Chapter 2). In order to do so, we first validated the coupled SOILCO2/RothC 

model for the chosen test scenario. In a next step, the sensitivity of soil CO2 fluxes towards 

the reduction functions taken from six different well established carbon turnover models was 

quantified. As a overall finding we calculated deviations of up to 41% in the predicted 

cumulative CO2 efflux between different model scenarios based on the choice of the 

temperature response equation. The influence of the different moisture response equations 

was lower with deviations between the simulated CO2 fluxes up to 2%. These results lead to 

the conclusion that much of model uncertainty may be reduced by using temperature and 

moisture response equations that have been determined from experiments at the investigated 

field sites. 
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As a consequence, we performed a decomposition experiment of fresh organic matter 

incubated at six ambient temperatures (Chapter 3). The background to do so was the 

assumption that laboratory experiments are considered to be more appropriate to determine 

the temperature and moisture response of soil heterotrophic respiration compared to field 

trials, since confounding factors such as spatial and temporal changes in soil water content 

and soil organic matter can be better controlled. To clearly identify the decomposition process 

we used 14C-labelled wheat residues. Respiration data were interpreted by first-order two-pool 

models. The overall findings showed that measured respiration could not be sufficiently 

described by the general assumptions of i) a constant initial pool ratio and ii) the same 

temperature response of the decomposition rates of all pools. Nevertheless, we significantly 

improved data prediction by the assumption that different temperature responses of the labile 

and recalcitrant pool exist. However, the integration of a temperature dependent chemical 

recalcitrance provided even higher improvement in data prediction. The findings of this study 

indicate that the temperature dependence of organic matter decomposition cannot be fully 

described with the simple approaches that are usually employed. 

 

Although confounding factors can be better controlled in laboratory experiments, they are 

performed under highly artificial conditions and the transferability of the derived temperature 

and moisture responses to field conditions is therefore questionable. To overcome this 

restrictions temperature and moisture response equations were determined from in situ 

measurements by the means of inverse parameter estimation (Chapter 4). In contrast to the 

classical method for the in situ determination of the temperature response (Q10 or activation 

energy) from a linear regression between log-transformed CO2 fluxes and temperatures 

measured in a definite soil depth, the inverse modelling approach considers all confounding 

factors included in the model. Furthermore, the derived temperature response is univocal and 

provides a more realistic estimate of the intrinsic temperature response. Measured CO2 fluxes 

were best predicted by an exponential water content response equation with an optimum at 

62% water filled pore space and a temperature response equation according to the formulation 

of O'Connell (1990). Although different approaches for the temperature response were tested, 

the estimated response factors showed a high agreement over the entire range of soil water 

contents and for temperatures < 25°C.  



Conclusions and perspectives 

 

71 

5.2 Conclusions and perspectives 

Several processes are involved in SOM turnover such as stabilisation processes, the supply of 

substrates, nutrients, and oxygen. Most of these processes are affected by temperature and/or 

soil moisture content. A reliable prediction of soil carbon turnover under changing 

environmental conditions requires models which describe the involved processes in a realistic 

way. On the other hand, models should be as simple as possible to keep them manageable. 

Multi-pool models are currently the most accepted approach for the simulation of soil carbon 

turnover. Although progress has been made in relating conceptual pools of multi-pool models 

to measureable soil carbon fractions, carbon pools remain largely simplified modelling 

constructs (Davidson and Janssens, 2006). A central question is whether this simplified model 

approaches are appropriate to represent soil carbon dynamics in a reliable way or if additional 

process understanding is needed and should be included. In this work some of the open 

questions could be solved. The key for all work presented was the use of carbon turnover 

modelling in combination with parameter estimation. 

 

Nevertheless, several processes need to be further investigated. Among these, the influence of 

the soil microbial community on SOM decomposition is considered to be very important 

(Reichstein and Beer, 2008). Furthermore, processes changing soil structure need to be further 

investigated since carbon pool sizes are often related to physical soil fractions. Processes 

which change the soil structure include i) aggregate formation, e.g. by microbial cementing 

agents and root exudates and ii) aggregate destruction, e.g. by tillage practises, wetting and 

drying events, or freezing and thawing (Paustian, 1994). Although temperature and moisture 

are the most important abiotic factors controlling SOM decomposition, the influence of other 

factors such as soil acidity, oxygen and nutrient availability should be investigated in more 

detail (Reichstein and Beer, 2008). 
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Appendix 

Table A 1: Scaling factors for the dependence of decomposition on soil temperature.  

Model Equation Tref [°C] References 
    

CANDY ( ) ( ) 1035
10

(
=

T
QTf        35.T  

( ) 1=Tf         35>T  

1210 .Q =  

35 (Franko et al., 

1995) 

CENTURY ( ) ( )( )7.15097.0arctan465.056.0 (+= TTf  30 (Parton et al., 

2001) 

DAISY ( ) 0.0=Tf           0.T  

( ) TTf 1.0=           200 .< T  

( ) ( )200193.0027.047.0exp TTTf +(=     20>T  

10 (Hansen et al., 

1990) 
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"

#
$$
%

&

++

(
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10

10

15.273*15.273*
*

exp
TTR

TTE
Tf  

-1mol kJ 78.2E =             C20T °>  

-1mol kJ 79.3E =         C20TC10 °.<°  

-1mol kJ 94.9E =             C10T °.  

CT °= 1010  

10 (Fang and 

Moncrieff, 1999; 

Moncrieff and 

Fang, 1999) 

RothC 
( )

!
"

#
$
%

&

+
+
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3.18
106

exp1

9.47

T

Tf  
9.25 (Coleman and 

Jenkinson, 2005) 

SOILCO2 
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( )
( ) ( )!
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15.273*15.273*
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exp
TTR

TTE
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-1mol kJ 55.5E =     CT °= 2020  

20 (!im!nek and 

Suarez, 1993; 

Suarez and 

!im!nek, 1993) 

E: activation energy of the reaction [J mol-1]; Q10: van’t Hoff constant [-]; R: universal gas constant  

[kg cm2 d-2 °C-1 mol-1] (R=8.314 J K-1 mol-1); T: soil temperature [°C]; Tref: reference temperature where f(T) = 1. 
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Table A 2: Scaling factors for the dependence of decomposition on soil water content. 

Model Equation References 
   

CANDY ( ) ( )PVPVfW !!! (= 14                    5.0.PV!  
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assumption:  ( )50hPETPPT !!=   cmh
3

50 10(=  

(Suarez and 

!im!nek, 1993; 

Parton et al., 2001) 

DAISY ( ) 0.1=hfW                5.010(+h  

( ) ( )hhfW 100log25.0625.1 ((=      5.45.0 1010 (+>( h  

( ) 0.0=hfW               h>( 5.410  

(Hansen et al., 

1990) 
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( ) ( )PATPATW caf +((= !! exp1      PATPAT ac+!  

mineral soil:  6.22=PATa  11.0=PATc  

(Fang and 

Moncrieff, 1999; 

Moncrieff and 

Fang, 1999) 
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*8.02.0

TSMD

TSMDTSMD
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assumptions:  !! (= saccTSMD         rsTSMD !! (=max  
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Jenkinson, 2005) 
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32
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(Suarez and 

!im!nek, 1993; 

!im!nek et al., 

1996) 

aPAT: parameter defining the maximal increase in the rate of soil decomposition with soil moisture [-]; 

cPAT: integration constant [-]; h: pressure head [cm]; h2: pressure head when CO2 production is optimal [cm];  

h3: pressure head when CO2 production ceases [cm]; h50: pressure head at which the water extraction rate is 

reduced by 50% [cm]; PET: potential evapotranspiration [cm]; PPT: sum of stored water and precipitation [cm]; 

PV: pore volume [cm3 cm-3]; TSMDmax: maximum topsoil moisture deficit [cm3 cm-2]; TSMDacc: accumulated 

topsoil moisture deficit [cm3 cm-2]; ": van Genuchten parameter; !: soil water content [cm3 cm-3]; !s: saturated 

water content [cm3 cm-3]. 
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