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Funktionelle Analyse des bovinen DNMT1 während der embryonalen Entwicklung und 

seine Assoziation mit der Fruchtbarkeit von Bullen 

 

Diese Studie wurde durchgeführt, um den repressiven und hemmenden Einfluss von 

DNMT1 (DNA methyltransferase 1) auf Merkmale der Bullenfruchtbarkeit und der 

embryonalen Entwicklung zu untersuchen. Im ersten Untersuchungsschritt wurden invitro 

erzeugte Zygoten zufällig in vier Gruppen aufgeteilt. Diese wurden mit drei 

unterschiedlichen Injektionen behandelt: der Injektion (a) mit Smartpool siRNA 

(SpsiRNA), (b) mit 5 aza-2’-deoxycytidine (5-AZA) und (c) mit Nuklease freiem Wasser. 

Gruppe 4 verblieb als unbehandelte Kontrolle bestehen. Das Verhältnis der 

unterschiedlichen Entwicklungsstadien der Embryonen wurde 48 und 72 hr post 

Mikroinjektion (pmi) erfasst, wohingegen die Rate der Blastocysten 8 Tage pmi 

aufgezeichnet wurde. Im zweiten Abschnitt dieser Forschungsarbeit wurde der Einfluss der 

SNP von DNMT1, DNMT3a und DNMT3b in zwei unterschiedlichen Merkmals-

komplexen geprüft. Zum einen wurde die Fruchtbarkeit von Bullen an Hand der Parameter 

Non-Return-Rate (NNR), Spermienqualität, sowie Plasma Membran Integrität (PMI), 

Akrosomen Integrität (PAS) und DNA Integrität (DFI) untersucht. Des Weiteren standen 

Merkmale der Embryonalentwicklung im Mittelpunkt. Zu diesem Zweck wurden die DNA 

von 310 Spermienproben von Bullen und 350 Embryonen an den entsprechenden Genorten 

genotypisiert. Die Anzahl der sich um 8-Zell-Stadium befindlichen Embryonen 72 hr nach 

pmi war geringer in den Gruppen die mit SpsiRNA und 5-AZA injiziert wurden. Die 

geringste Blastocystenrate wurde in der mit 5-AZA behandelten Gruppe beobachtet. 

Mikroinjektion von SpsiRNA bewirkte eine Reduktion der Target mRNA in Blastocysten 

und 8-Zell-Embryonen. Die Mikroinjektion von SpsiRNA und 5-AZA steigerten die 

Expression von IGF2. Die Varianzanalyse wies eine Assoziation des SNP in DNMT1 mit 

NRR und PAS vor, während DNMT3a und DNMT3b einen signifikanten Einfluss auf 

NNR und Spermienmotilität hatten. Zusätzlich zeigte eine kombinierte Genort 

Varianzanalyse von DNMT1 x DNMT3a x DNMT3b einen signifikanten Effekt auf NNR, 

Spermienmotilität und Überlebenfähigkeit nach dem Auftauen. Das Gen DNMT1 spielt 

eine entscheidende Rolle in der bovinen Preimplantation und es lässt sich mit Merkmalen 

der Bullenfruchtbarkeit und embryonalen Entwicklung assoziieren. Dies könnte ein 

Hinweis auf einen nützlichen, genetischen Marker zur Verbesserung der Merkmale sein, 

der durch weitere unabhängige Studien bewiesen werden kann. 



Functional analysis of bovine DNMT1 during bovine embryo development and its 

association with bull fertility traits 

 

This study was conducted to investigate the effects of suppressing and inhibiting DNMT1 

on the embryonic development and bull fertility traits. In the first approach, in vitro 

produced zygotes were assigned randomly into four groups namely: those injected with 

Smartpool siRNA (SpsiRNA), 5aza-2’-deoxycytidine (5-AZA), nuclease free water and 

non-injected control. The proportions of different stages of embryos were assessed 48 and 

72 hr post microinjection (pmi) while blastocyst rate was assessed at day 8 pmi. A second 

objective was to identify the effects of SNPs in DNMT1, DNMT3a and DNMT3b on bull 

fertility traits namely: non-return rate (NRR), sperm quality traits namely: sperm volume 

per ejaculate, sperm concentration, sperm motility, survivability after thawing, and sperm 

flow cytometric parameter namely: positive acrosome status (PAS), plasma membrane 

integrity (PMI) and DNA fragmentation index (DFI): and embryonic development in terms 

of time at first cleavage, late cleavage and blastocyst. For this, 310 breeding bull sperms 

obtained station and 350 embryos were genotyped at those loci using DNA samples. The 

proportions of the 8-cell embryos were lower in SpsiRNA and 5-AZA injected groups. The 

lowest total blastocyst rate was observed in 5-AZA treatment group. Microinjection of 

SpsiRNA has reduced the target mRNA by 80 and 50% in 8-cell and blastocyst stage 

embryos. Lower protein expression was also observed at 8-cell stage in embryos that were 

injected with SpsiRNA. The highest apoptotic index was found in SpsiRNA and 5-AZA 

injected groups. The microinjection of SpsiRNA and 5-AZA has increased the expression 

of IGF2 by 1.67 and 1.55 times. Analysis of variance revealed association of SNP of 

DNMT1 with NRR and PAS, while DNMT3a and DNMT3b were found to be associated 

with NRR as well as sperm motility. In addition, combined loci analysis of variance among 

DNMT1 x DNMT3a x DNMT3b showed significant association with NRR, sperm motility 

and survivability after thawing. SNP of DNMT1 gene was significant correlated with 

embryonic development. In conclusion, this gene evidently plays a critical role in bovine 

preimplantation and associates with bull fertility traits and embryonic development. 

Following validation of this result in an independent population, there is a great potential to 

use these loci as markers of fertility to enhance embryonic development. 
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Introduction  1 

1 Introduction 

Fertility is a very complex trait and strongly influenced by environmental effects and 

partly by paternal and maternal genetics. The success outcome of insemination is due to 

the quality of semen and both the quality of egg and appropriate environment. In 

mammalian preimplantation, the embryonic development depends on DNA methylation 

which is crucially involved in controlling gene expression, cell differentiation, X-

chromosome inactivation and imprinting (Bird 2002). DNA methyltransferase 1 

(DNMT1) is a maintenance enzyme adding a methyl group at CpG dinucleotides of the 

newly synthesized strand in hemimethylated DNA after replication (Bestor 1992). 

DNMT3a and DNMT3b are a de novo methylation establishing DNA methylation during 

development (Hsieh 1999; Okano et al. 1999). Mutation analysis has shown that they are 

all essential genes regulating several imprinted gene expression in mice (Lei et al. 1996; 

Li et al. 1992; Okano et al. 1999). Depletion of DNMT1 also cause embryonic lethality 

and inappropriate gene expression in Xenopus laevis embryos (Stancheva and Meehan 

2000). 

 

Gene expression pattern have demonstrated altered expression of imprinted genes using in 

vitro culture and somatic cell nuclear transfer (sNT) procedures observed in embryos, 

fetuses, and placentas in mouse, sheep, and bovine (Bertolini et al. 2002; Blondin et al. 

2000; Doherty et al. 2000; Wrenzycki et al. 2004; Young et al. 2001). The epigenetic 

specific changing in the pattern of methylation has been hypothesized (Wrenzycki et al. 

2001). Methylation has long been known to be involved in printing the process by which 

certain alleles are expressed or silenced depending on the parental sex from which they 

are inherited (Sapienza 1990). Imprinted genes such as IGF2, IGF2R, H19 are 

preferentially involved in the control of embryonic, placental, fetal and neonatal growth in 

sheep and bovine (Young et al. 2001; Zhang et al. 2004). Aberrant expression patterns of 

imprinted genes have been implicated in embryonic and fetal abnormalities (Moore and 

Reik 1996). In human, imprinting deviations are responsible for conditions known as 

Beckwith-Weidmann syndrome (Robertson 2005), in bovine the large offspring syndrome 

(Young et al. 1998). 

 

So far, the functional study of DNMT1, DNMT3a, and DNMT3b genes are limited in 

bovine. Suppression or inhibition of those genes reflecting phenotypic development of 
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embryo subsequently influencing on other imprinted gene expressions would be a 

baseline to understand loss of embryonic development. In addition, the silent mutation 

due to its exonic/intronic splicing of those genes which may effect the fertility traits 

recorded, such as non-return rate, sperm quality traits, sperm flow cytometric parameters, 

would be accountable to develop a potential marker for future selection. 

 

The DNMT1 alone is sufficient to maintain the methylation of imprinted genes during 

preimplantation in mouse (Hirasawa et al. 2008). Suppression of DNMT1 has been 

documented to decrease cell survival and proliferation and increase apoptosis in human 

and mouse (Jackson-Grusby et al. 2001; Rhee et al. 2000). Inhibition of DNMT1 with 5-

AZA results in lower cellular maintenance and methyltransferase activity, demethylation 

of global and gene-specific expression in human cell line (Robert et al. 2003) and 

inhibition of cell differentiation in mouse sperm (Mizukami et al. 2008; Raman and 

Narayan 1995). In other species, it halts embryonic development at early gastrula stage 

and subsequently induces apoptosis in Xenopus laevis embryos (Kaito et al. 2001). 

 

The candidate genes developed as a marker for boar fertility and semen quality has been 

reported in swine (Huang et al. 2002; Lin et al. 2006c; Wimmers et al. 2005). 

  

In spite of its crucial role in preimplantation embryonic development and fertility traits in 

other species, the biological function study during preimplantation embryonic 

development and its association with fertility traits of this gene have not been done in 

bovine.  

 

Therefore, the objectives of this study were elucidated:- 

1. Suppression and inhibition of DNMT1 and its effect on embryonic development, 

apoptosis and the expression of imprinted genes during bovine preimplantation stage 

embryos 

2. To identify polymorphisms in the candidate genes DNMT1, DNMT3a, and DNMTT3b 

and their association with bull fertility traits and embryonic development of embryos 
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2 Literature review 

Fertility is a very complex trait and strongly influenced by environmental effects and a 

part by genetics of males and females. The successful outcome of insemination is 

attributed to the service bull, the inseminated cow, and the embryos. The service bull 

provides the quality of semen and genes that are directly transmitted to the embryo. On 

the other hand, the cow provides the quality of egg and appropriate environment. 

Furthermore, the cow develops a direct genetic effect transmitting its genes to the embryo. 

With respect to the embryos, physiological studies reveal a high fertilization rate, that is, 

each insemination yields 90% of successful fertilization occurs, suggesting that the 

embryo plays an important role in the reproductive process through its own development 

(Miglior 1998). In addition, during preimplantation and postimplantation development, 

there are many genes analyzed involved in numerous biological processes including 

compaction/cavitation, metabolism, transcription/ translation, DNA methylation, stress 

(e.g., oxidative), growth factor/cytokine signalling, cell cycle regulation and apoptosis 

(Wrenzycki et al. 2004).  

 

2.1 Mammalian preimplantation development 

The preimplantation development in mammals is characterized by a highly dynamic 

process including phenomena such as oogenesis, oocyte maturation, fertilization and 

implantation of the embryo. The development of the fertilized zygote through several 

morphologic changes results in the storage of maternal mRNA and protein that support 

the early embryonic development (Nothias et al. 1995). Despite a number of zygotic and 

embryonic genes which are expressed in a stage-specific manner, this leads to genome 

activation of the embryo (Rodriguez-Zas et al. 2008). The start of zygote genome 

activation in mammals varies between 1- and 8-cell stage embryos, depending on the 

species (Telford et al. 1990). In porcine, the first synthesis of nucleolar RNA was 

observed at 4-cell stage (Anderson et al. 2001; Viuff et al. 2002). In mice, the first major 

wave of gene activation starts at the 2- to 4-cell stage, and the peak is reached at the 8-cell 

stage (Hamatani et al. 2004).  

 

In bovine, the major genomic activation of zygotic gene occurs at 8-16 cell stage (Dean et 

al. 2001; Frei et al. 1989; Kopecny et al. 1989). However, a few studies have also reported 
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the minor genomic starts at an earlier stage of development before the 8-cell stage 

(Memili et al. 1998; Sirard et al. 2005). During the 8-16 cell stage, a set of genes is 

transited by turning off the maternal and turning on the zygotic translation called 

maternal-zygotic transition (MZT) (Sirard et al. 2005). This is absolutely essential for the 

processes of embryonic development and differentiation. 

 

Preimplantation development is critical for the generation of the genomic methylation 

pattern. Reprogramming in early embryos occurs by active and passive mechanisms (Reik 

et al. 2001). During early cleavage, a genome is widely dropped in methylation to reset 

the genome where it can be reprogrammed to direct embryonic development. A de novo 

wave of methylation is then remethylating a new pattern during preimplantation or 

postimplantation depending on the species. These processes appear to be conserved across 

mammalian species and are essential for normal development (Dean et al. 2001; Okano et 

al. 1999; Reik et al. 2001). During the preimplantation stages, the reprogramming in the 

genome is controlled by epigenetics.   

 

2.2 Epigenetics 

Epigenetic refers to the different patterns of gene expression based on the biochemical 

properties without a change of the DNA sequence. Two known major mechanisms 

responsible for these specific properties are DNA methylation and post-translational 

histone modification (Bird and Wolffe 1999; Jenuwein and Allis 2001).  

 

2.2.1 DNA methylation 

DNA methylation is a covalent chemical modification, resulting in the addition of a 

methyl (CH3) group at the carbon 5 position of the cytosine ring occurring at CG 

dinucleotides (Larsen et al. 1992; Li et al. 1993). It is mainly within particular regions 

termed CpG islands which occupy up to 70% in the genome and represent one of the 

major epigenetic modifications in mammals (Li 2002; Robertson and Wolffe 2000). The 

active and inactive alleles are due to the differential DNA methylation in a critical 

regulatory region. These differentially methylated regions (DMRs) are essential for 

expression or repression. It is noted that a high number of imprinted genes are found to be 

methylated on the maternal allele (Reik and Walter 2001). 
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DNA methylation also plays an important role in imprinting, both in silencing genes as 

well as activating other genes (Reik and Walter 2001; Sleutels and Barlow 2002). X-

chromosome inactivation also depends on methylation (Avner and Heard 2001). In cancer 

cell lines, gene repression is mediated by DNA methylation, where tumors are often 

globally hypomethylated but locally hypermethylated, especially in tumor-suppressor 

genes (Bird and Wolffe 1999; Jones and Takai 2001; Rountree et al. 2001). 

 

2.2.2 Histone modifications 

Histone modification refers to the addition or removal of phosphate, acetyl and/or methyl 

groups to the histone proteins that form the nucleosome composing of histone H2A, H2B, 

H3 and H4. These modifications are dynamic during development, vary among different 

tissues, and interact with other epigenetic control systems such as DNA methylation 

(Jenuwein and Allis 2001; Richards and Elgin 2002; Turner 2000). Acetylation of various 

amino acid residues of histones H3 and H4 is generally associated with an active 

chromatin configuration and expressed genes mainly found in euchromatin area. In 

contrast, histone methylation is generally associated with condensed or heterochromatic 

chromatin and results in gene repression (Richards and Elgin 2002). 

 

Post-translation histone modification refers to the addition or removal of phosphate, 

acetyl and/or methyl groups to the histone protein in DNA package. The modification 

results in transcription or repression of a specific gene based on whether it lies in an open 

(acetylated) or closed (phosphorylated, methylated or unmethylated) conformation 

(Jenuwein and Allis 2001).  

 

Thus, modifications of either DNA methylation or histone status which result in a 

differential gene expression refer to genetic reprogramming. In addition, pattern of DNA 

methylation and affect of histone status have been implicated in transcriptional regulation 

both in a global and gene specific manner, X-chromosome inactivation, genomic 

imprinting, as a mechanism for controlling cell differentiation (Reik and Walter 2001).  
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2.3 Genes involved in DNA methylation and genomic imprinting  

In mammals, methylation patterns are established and maintained by several DNA 

methyltransferases subsequent to DNA replication within DMRs of imprinted genes.  

 

2.3.1 DNA methyltransferases (DNMTs) enzyme family 

The DNMT enzyme family is involved in the production and modulation dynamics of the 

global genomic methylation pattern in mammalian embryo development (Bestor 2000). It 

has been identified and grouped into three families: DNA methyltransferase 1 (DNMT1), 

DNA methyltransferase 2 (DNMT2) and DNA methyltransferase (DNMT3) (Bestor 2000; 

Li 2002). All DNMTs have a similar molecular structure and most of them contain ten 

specific sequence motifs within the C-terminal catalytic domain, six of which are highly 

conserved (Lauster et al. 1989).  

 

DNMT1 is the maintenance enzyme responsible for methylation of hemimethylated CG 

dinucleotides after DNA replication (Bestor 1992). DNMT3a and DNMT3b are required 

for de novo methylation to establish new DNA methylation patterns during embryonic 

development (Hsieh 1999; Okano et al. 1999). In addition, DNMT3L by itself has no 

methylation activity, colonizes with DNMT3a and DNMT3b and is thought to be essential 

for establishing methylation (Bourc'his et al. 2001; Hata et al. 2002) 

 

DNMT1 is the first member of the DNMTs family identified and shows its most abundant 

activities in mammalian cells (Robertson et al. 1999). DNMT1 maintains the methylation 

status during or after replication by copying the methylation patterns from the parental to 

the newly synthesized strand (Li et al. 1992; Pradhan et al. 1999). Additionally, DNMT1 

is also involved in certain types of de novo methylation activity as seen in embryo lysate 

(Yoder et al. 1997b). This enzyme is about 1620 amino acids long. The first 1100 amino 

acids constitute the regulatory domain or N-terminus region of the enzyme. The 

remaining residues contain the catalytic domain or C-terminus. The domains are joined by 

Glycine-Lysine repeats (Pradhan et al. 1999). The DNMT1 protein interaction with 

several cellular proteins plays an important role in methylation mechanism such as De 

novo DNA methyltransferase (Kim et al. 2002), histone  

deacetylase (HDAC1/2) (Fuks et al. 2000; Rountree et al. 2000), methyl CpG binding 
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(MeCP2) (Kimura and Shiota 2003), and transcription/RNA processing (Carty and 

Greenleaf 2002). 

 

DNMT1 has several isoforms, including an alternative splice variant known as DNMT1 

oocyte specific isoforms (DNMT1o), DNMT1 somatic isoforms (DNMT1s), and DNMT1 

sperm isoforms (DNMT1p) (Mertineit et al. 1998). The DNMT1o introduces an oocyte-

specific 5’-exon (exon 1o) start position at the ATG codon in exon 4, which makes an N-

terminal part 118 amino acids shorter than the somatic isoforms (Bestor 2000). DNMT1o 

expression is restricted during the oocyte and early preimplantation development (Howell 

et al. 2001; Mertineit et al. 1998; Ratnam et al. 2002). The DNMT1o is highly 

accumulated in the nucleus only during at earliest stages of oocyte growth, and it becomes 

localized in the cytoplasma within the oocyte cortex (Carlson et al. 1992). Subsequently, 

the DNMT1o protein is cytoplasmic at the beginning of oocyte growth and during 1-cell 

to 4-cell stage, but it specifically enters and then exits the nuclei at the 8-cell stages 

(Carlson et al. 1992; Mertineit et al. 1998). The DNMT1o protein does not become fully 

nuclear until the implantation is done, when it is replaced by the full-length somatic 

isoforms (Bestor 2000).  

 

The promoter and the exon (exon 1s) of DNMT1s are active in all somatic cells and they 

are working as the housekeeping promoter (Yoder et al. 1997a). The protein contains 

1620 amino acids (Mertineit et al. 1998). The promoter of DNMT1s is activated shortly 

after implantation and at the post-insemination Day 7 in mice (Mertineit et al. 1998). In 

bovine, the DNMT1s mRNA isoforms were found to be expressed throughout the 

preimplantation stages (Golding and Westhusin 2003). 

 

The promoter and the exon (exon 1p) is only active with high amount of mRNA 

transcription in the pachytene spermatocyte but the translation of this gene does not 

happen (Mertineit et al. 1998). 

 

Recently, a splice variant of DNMT1s, called DNMT1b was identified. It is truncated at 

the 5’ end lacking 887 nucleotides (DNMT1, position 1 to 887 Genebank accession 

number AY173048). The truncation extends until exon 12, which lacking 15 nt at its 5’ 
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end. The function of DNMT1b has not yet been studied but it might be necessary for 

maintenance and de novo methyltransferase activity (Russell and Betts 2008). 

 

The architecture of the DNMT3 enzyme family is similar to DNMT1 with a large amino 

terminal regulatory region attached to a catalytic domain. The DNMT3a protein binds to 

RP58, a DNA-binding transcriptional repressor, leading to methylation independent 

repression of the gene (Fuks et al. 2001). It further binds to HDAC1, leading to a histone 

deacetylase mediated gene silencing (Pradhan and Esteve 2003). DNMT3a and DNMT3b 

consist of a large regulatory N-terminal domain and a smaller catalytic C-terminal 

domain, but no intra-molecular interaction was found between the two domains (Margot 

et al. 2003). The isolated C-terminal domain remains capable of methylating DNA 

(Gowher and Jeltsch 2002). DNMT3a and DNMT3b are predominantly active in de novo 

methylation processes during embryonic development and they are involved in the 

establishment of maternal and paternal imprinting (Hata et al. 2002; Kaneda et al. 2004; 

Santos et al. 2002). 

 

DNMT3a is predominantly localized in retroviral sequences, major satellite repeats, IAP 

repeats, non-imprinted genes as well as paternally imprinted genes, and the Xist gene on 

the X-chromosome (Chen et al. 2003). Knock out of DNMT3a maternal or paternal alleles 

leads to embryonic motility and impaired spermatogenesis (Kaneda et al. 2004). 

 

Mutant DNMT3b has no effect on phenotype after crossing with wild-type female mice 

(Kaneda et al. 2004). In human, deletion of DNMT3b causes immunodeficiency and 

chromosome instability disease (ICF syndrome) (Okano et al. 1999; Xu et al. 1999). 
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2.3.2 Genomic reprogramming  

The change in the paternal and maternal genome after fertilization is a critical stage for 

the methylation pattern in mammals. The DMRs within imprinted genes and methylation 

pattern of the entire genome are parts of the reprogramming process (Reik et al. 2001). 

 

2.3.2.1 Demethylation 

The methylation patterns of the paternal genome are active demethylation in the embryo 

after fertilization (Dean et al. 2003; Mayer et al. 2000). The timing of the onset of active 

demethylation is conserved among species. In mouse, rat, pig and human, the male 

pronucleus is demethylated shortly after fertilization, while demethylation was observed 

only at the blastocyst stage in sheep (Beaujean et al. 2004). In bovine, the genomic 

methylation is further reduced from the beginning of the early cleavage until the 8-cell 

stage (Dean et al. 2001) (Figure: 1). On the other hand, the maternal genome is passively 

demethylated due to the absence of maintenance DNMT1.  

 

It was proposed that passive demethylation after fertilization occurs because the oocyte 

specific DNMT1o is excluded from the nucleus (Cardoso and Leonhardt 1999; Carlson et 

al. 1992; Howell et al. 2001). The DNMT1o is supposed to play an important role to 

maintain the imprinting at 8-cell stage (Howell et al. 2001; Ratnam et al. 2002).  
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Figure 1: The diagram shows the timing of the epigenetic alternations in the male and 

female genome during the bovine preimplantation development  

 

2.3.2.2 Remethylation 

The genome starts remethylation by de novo methylation from 8-16-cell stage or 

blastocyst stage in bovine or mouse onward, respectively (Dean et al. 2001; Santos et al. 

2002), which is presumably catalyzed by methyltransferase of the DNMT3 family (Reik 

et al. 2001). Thus, the highest methylation level takes place at the blastocyst stage when 

the first two cell lineages are differentiated: the inner cell mass (ICM) and the 

trophectoderm (TE). The ICM cells are hypermethylated while TE cells are 

hypomethylated. These differences are reflected later during the development (Reik et al. 

2001; Reik et al. 2003; Santos et al. 2002). 

 

There is little known about the function of bovine DNMT family and its isoforms on 

methylation pattern during in preimplantation development. Up to now, Hirasawa and 

colleagues demonstrated that DNMT1 alone is sufficient to maintain the methylation of 

imprinted genes during cleavage. The DNMT3a and DNMT3b are not required for the 

maintenance of the imprints in mouse preimplantation embryos (Hirasawa et al. 2008). 
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2.3.3 DNMTs expression   

During mammalian preimplantation development, specific DNA methyltransferase 

mRNAs have been identified as shown in table 1. In bovine, DNMT1s and DNMT1b are 

expressed throughout all stages of preimplantation, whereas DNMT3a and DNMT3b are 

expressed from the at 8-16 cell stages onwards. The DNMT1o is not expressed during in 

preimplantation. In mouse, DNMT1o (except at 4-cell stage and 8-16 cell stage), 

DNMT1s and DNMT3a are expressed throughout the preimplantation stages whereas 

DNMT3b is only expressed at the blastocyst stage.  

 

2.4 Regulation of gene expression  

There are many mechanisms and chemicals regulating gene expression as well as embryo 

production protocol. 

 

2.4.1 RNA interference and micro RNA  

RNA is more profound and plays a complex role during regulating of the gene expression. 

The regulation is through RNA-associated silencing that can be transcriptional in nature,  

 

Table 1: DNA methyltransferases (DNMTs) mRNA expression during preimplantation 

Expression Zygote 2-cell 4-cell 8-16 cell Morula Blastocyst Ref.

Bovine DNMT1o - - - - - - 1 

  DNMT1s + + + + + + 1 

  DNMT3a - - - + + + 1 

  DNMT3b - - - + + + 1 

 DNMT1b + + + + + + 2 

Mouse DNMT1o + + - - + + 3,4 

  DNMT1s + + + + + + 3,4 

  DNMT3a + + + + + + 3,4 

  DNMT3b - - - - - + 3,4 

Remark: 1/Golding and Westhusin 2003; 2/Russell and Betts 2008; 3/ Ratnam et al., 

2002; 4/Ko et al., 2005 
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and is operable through an RNA interference (RNAi). This mechanism is mediated by 

small-interfering (siRNA) RNA (Kawasaki et al. 2005). Double-strand RNA (dsRNA)-

induced post-transcriptional gene silencing (PTGS) is known as RNAi in animals (Fire et 

al. 1998). In this system, dsRNA is processed to 21-25 bp nucleotides long by RNase III 

Dicer (Elbashir et al. 2001). These siRNA are incorporated to the RNAi-induced silencing 

complex (RISC) where they then promote degradation of sequence-specific mRNAs 

mediated by Argonaute 2 (Ago 2) in the cytoplasm of cells (Hammond et al. 2000; Liu et 

al. 2004; Tuschl et al. 1999). 

 

Silencing mechanisms by microRNA (miRNA) at the level of translation are operated by 

targeting of partially complementary sequences which are located within the 3’ 

untranslated region (UTR) (Ambros 2004; Bartel 2004). miRNAs are first transcribed as a 

long RNA and then processed to a premiRNA of approximately 70 nucleotides (Lee et al. 

2003). This premiRNA is transported to the cytoplasm (Lund et al. 2004) and processed 

by RNase III dicer to produce the mature miRNA. The mature miRNA is incorporated 

into a ribonucleoprotein complex including eIF2C2 and FMRP, which play a role during 

RNAi-mediated gene silencing (Mourelatos et al. 2002).  

 

Both siRNA and miRNA have their main function to guide the cleavage of sequence-

complementary mRNA (Mansfield et al. 2004; Yekta et al. 2004). Additionally, it was 

found that siRNAs targeted to promoters can induce transcriptional silencing via DNA 

methylation in human cells (Kawasaki and Taira 2004; Morris et al. 2004).  

 

The mechanism by which the promoter-directed siRNAs are guided to and gain access to 

genomic DNA, however, remains unknown. siRNAs might gain access to genomic DNA 

during cell division when the nuclear membrane disappears, which involves both DNMT1 

and DNMT3b RNA (Kawasaki and Taira 2004). The siRNAs can induce not only DNA 

methylation but also histone methylation (Kawasaki and Taira 2004). Thus, the 

methylation of histones by RNAi also has the potential to induce DNA methylation. This 

mechanism of siRNA-induced DNA methylation may be complicated and might actually 

involve a chromatin remodelling complex at least at some stage of the silencing (Morris et 

al. 2004).  
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2.4.2 DNA methylation inhibitors  

DNA methylation in promoter regions can be targeted by inhibiting DNA 

methyltransferases resulting in re-expression of genes (Strathdee and Brown 2002). The 

first DNA methyltransferase inhibitors synthesized are 5-Azacytidine and 5-aza-2’-

deoxycytidine (5-AZA) (Figure: 2). They are chemical analogues and similar to the 

natural substrate of DNA methyltransferase. The inhibitor mechanism appears to be 

through the incorporation into DNA strands (after phosphorylation) and subsequent 

trapping of DNMT1 onto the DNA. Concurrently with the trapping, free DNMT1 

disappears from the whole cell causing methylated gene re-expression (Liu et al. 2003).  

 

 

Figure 2: Structure of cytidine and its 5-aza-analoges. (R= robes, dR = doeoxyribose) 

 

Embryos treated with 5-AZA showed delayed gastrulation and developmentally arrested 

at the neurula stage. They subsequently loose cellular adhesion and finally die. Gene 

expression profiles of 12-hr old embryos treated with 5-AZA revealed 91 unregulated 

genes and 168 down regulated genes in comparison with wild-type embryos. In addition, 

genes associated with the stress response and cell defence were up regulated, whereas 

genes involved in cell adhesion were down regulated (Sasaki and Satoh 2007). 

 

2.4.3 Embryo production protocols 

Gene expression varies according to the respective IVP and sNT protocol (Lonergan et al. 

2003; Niemann and Wrenzycki 2000; Niemann et al. 2002). Imprinted genes appear to be 

more susceptible to alterations in epigenetic modifications (Moore 2001), especially after 

in vitro culture ( IVC) of ovine (Young et al. 2001), bovine embryos (Blondin et al. 2000; 

Tveden-Nyborg et al. 2008), and mice (Dean et al. 1998; Doherty et al. 2000; Humpherys 

et al. 2001; Khosla et al. 2001).  
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It has been shown that in vitro culture of embryos and embryonic stem cells affected the 

methylation pattern of the DNA upstream of H19 in mouse (Mann et al. 2003) and 

disrupted the DMR2 within the imprinted IGF2R gene which subsequent affected on 

phenotype and growth in sheep (Young et al. 2001). The hypothesis to account for these 

abnormality phenotype is epigenetic deregulation of genes. It would affect in particular 

expression of genes that are subject to imprinting (Khosla et al. 2001; Young and Fairburn 

2000).  

 

2.5 Functional study of genes 

To study the function of genes in mammalian embryogenesis, the posttranscriptional gene 

silencing (PTGS) by double-stranded RNA (dsRNA), or RNA interference (RNAi), has 

emerged as a new tool for studying gene function in an increasing number of organism 

(Review see Schellander et al. 2007). The first study has been successively reported that 

injection of E-cadherin, Mos and Plat dsRNA interfered the expression of targeted mRNA 

in mouse oocytes (Svoboda et al. 2000; Wianny and Zernicka-Goetz 2000). In bovine, 

injection of C-mos, cyclin B1, and Oct-4 dsRNA in immature oocytes resulted in a 

decrease in mRNA and protein in mature oocyte stage cultured in vitro (Nganvongpanit et 

al. 2006; Paradis et al. 2005) as well as the injection of Connexin 43 and E-Cadherin 

dsRNA at zygote decreased in mRNA and protein in blastocyst stage either cultured in 

vivo or in vitro (Tesfaye et al. 2007). For the RNAi, since Tuschl’s group showed that 21-

nucleotide siRNA suppressed expression of endogenous and heterologous genes in 

mammalian cell lines (Elbashir et al. 2001), then siRNA has been widely used to knock 

down the targeted mRNA in several genes (Review see McManus and Sharp 2002). In 

bovine, Adams et al. (2007) showed that transfection of DNMT1s siRNA leads to a 

moderate reduction in mRNA level in bovine fibroblast cells. 
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2.6 Effect of DNMT1 suppression  

Suppression of DNMT1 affects embryonic development, apoptosis, and imprinted gene 

expression  

 

2.6.1 Embryonic development 

Embryos enter several divisions after fertilization. Cell division or cleavage occurs 

without increasing cell mass. In bovine, cleavage of embryos of the first, second, third 

and fourth cell cycle in vitro has been estimated to be 32-34, 9-14, 10-11 and 48-52 hrs, 

respectively (Grisart et al. 1994; Holm et al. 1998). The fourth cell cycle is usually 

prolonged in embryos developed in vitro (Gordon 1994). To maintain genomic stability, 

the genetic code must be copied faithfully from cell to cell and from generation to 

generation.  

 

Mechanistic insights into the role of DNA methylation and the establishment of 

methylation patterns during the development came from phenotypic analyses of mice 

mutations. Deletion of DNMT1 in mice (Lei et al. 1996; Li et al. 1992) and antisense 

RNA-mediated inhibition of xDNMT1 expression in frogs (Stancheva and Meehan 2000) 

results in global demethylation and embryonic lethality. This variation in DNMT1 

expression alters the phenotype of the embryo. DNMT1 activity is also required for 

progression through mitosis (Milutinovic et al. 2003). Deficient DNMT1o leads to 

significant loss of post-implantation embryos between Day 14 to 21 of gestation (Howell 

et al. 2001). It suggests that developmental abnormalities in DNMT1o-deficient embryos 

are largely due to imprinting defects (Toppings et al. 2008). So far, the knowledge about 

suppression of DNMT1 and its effect on bovine embryonic development is limited in in 

vitro bovine preimplantation embryos. 
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2.6.2 Apotosis 

Apoptosis is a programmed cell death that can be considered as normal process to 

eliminate damaged cells. It is required at normal mid-to-late stage blastocyst in 

preimplantation embryos (Jacobson et al. 1997). The dead cells were phagocytized by 

ICM and polar trophectodermal cells and digested in phagocytic vacuoles. The dead cells 

are believed to be ones that had failed to be differentiated normally (Pierce et al. 1989).  

 

In bovine, apoptosis has been observed in embryos after the 8-cell stage using the TUNEL 

assay (Fahrudin et al. 2002; Matwee et al. 2000). In in vitro produced blastocysts, the 

percentage of apoptotic cells is significantly higher than their in vivo-development 

counterpart in mouse (Brison and Schultz 1997; Hardy 1997) and bovine (Gjorret et al. 

2001). Furthermore, the presence of glucose (Moley et al. 1998), fetal bovine serum 

(Byrne et al. 1999) and synthetic oviduct fluid medium (Watson et al. 2000) can affect the 

incidence of apoptosis in mouse and bovine, respectively.  

 

Stress has been also reported to increase apoptosis. Heat stress inducing TUNEL labeling 

at the late 8- to 16-cell stage has been reported in bovine (Paula-Lopes and Hansen 2002). 

Thus, increased apoptosis is probably related to embryo losses and to lower 

developmental competence of in vitro fertilized and cultured embryos (Betts and King 

2001). However, the relationship between the rate of individual cell death and the level of 

whole embryo loss is unclear.  

 

It has been hypothesized that epigenetic modification may be responsible for the 

programmed cell death. Transient depletion of DNMT1 in frog embryos induces DNA 

hypomethylation producing an altered phenotype and causes apoptosis (Stancheva et al. 

2001). Conditional inactivation of DNMT1 causes genomic demethylation which then 

leads to apoptosis in embryos (Panning and Jaenisch 1996; Stancheva et al. 2001) and in 

primary fibroblasts (Jackson-Grusby et al. 2001). TUNEL assays showed that the cell 

undergoes apoptosis (Jackson-Grusby et al. 2001) as well as DNMT1 mutants also 

showed apoptotic cell death in ES cells (Panning and Jaenisch 1996). The widespread 

apoptotic phenotype of these DNMT1-deficient cell suggested that DNA demethylation 

might represent an endogenous signal of DNA damage. The Trp53 tumor-suppressor gene 

was considered to rescue this cell lethal phenotype, as it is activated in response of DNA 
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damage (Jackson-Grusby et al. 2001; Levine 1997). Additionally, other embryonic lethal 

mutations genes, such as Rad51, Brca1 and Brca2, have been rescued (Hakem et al. 1997; 

Lim and Hasty 1996; Ludwig et al. 1997).  

 

2.6.3 Imprinted gene expression 

Epigenetic modulations of DNA and histone determine the pattern of gene expression and 

silencing (Jaenisch and Bird 2003). The epigenetic regulation of gene expression seems 

inevitable for multicellular organisms as it underlies the development of cell lineage-

specific gene expression (Jablonka and Lamb 1998). In general, known effects of DNA 

methylation on gene expression evident in frog showed that demethylation induces of 

premature gene activation (Stancheva et al. 2002; Stancheva and Meehan 2000). 

Similarly, widespread activation of tissue-specific genes has been seen in fibroblasts 

(Jackson-Grusby et al. 2001). The 5-AZA interferes with the activity of DNMT1, leading 

to genomic hypomethylation. It also reactivates silenced tumor suppressor genes (Esteller 

and Herman 2002; Santini et al. 2001). DNMT1 knockout led to biallelic IGF2 

expression. In contrast, the imprinted gene IGF2R, was completely resistant to de novo 

methylation even when DNMT1 was overexpressed (Biniszkiewicz et al. 2002). The table 

below (Table 2) summarizes the imprinted genes in bovine. 

 

2.6.3.1 Insulin-like growth factor 2 (IGF2) 

The IGF2 gene is a polypeptide growth factor hormone, which plays an important role for 

the regulation of cellular growth and division during embryonic development (Ferguson-

Smith et al. 1991) and the development of the placenta (Reynolds et al. 1997). IGF2 is 

maternally imprinted. With the exception of the central nervous system where the gene is 

biallelically expressed, only the paternal allele is normally transcribed in all tissues (Hu et 

al. 1997; Hu et al. 1995).  
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Table 2: Imprinted genes indentified in bovine 

Imprinted 

loci 

Chromosome Expression 

parental 

Name References 

H19 - Maternal  Zhang et al. 2004  

IGF2 29 Paternal Insulin-like growth 

 factor 2 

Dindot et al.2004 

IGF2R 9 Maternal Insulin-like grow  

factor 2 receptor 

Killian et al. 2001 

XIST  X Maternal X-inactive specific  

transcript 

Dindot et al. 2004 

NAPIL5  Paternal Nucleosome assembly  

protein 1-like 5 

Zaitoun and Khatib 

2006 

NESP55 2 Maternal Neuroendocrine  

cecretory protein 

Khatib 2004 

NNAT 13 Paternal Neuronatin Zaitoun and Khatib 

2006 

PEG1 

(Mest-1) 

4 Paternal Paternally expressed gene 1 Tveden-Nyborg  

et al. 2008 

tPEG3 18 Paternal Paternally expressed  

gene 3 

Kim et al. 2004 

GTL2 21 Paternal  Gene trap locus 2 Dindot et al. 2004 

 

The imprinted status of the IGF2 gene is conserved among rodents, humans, and 

ruminants (Dindot et al. 2004; Young et al. 2003). The function of IGF2 is mediated 

through the insulin-like growth factor1 (IGF1), the insulin-like growth factor 2 receptor 

(IGF2R) and several serum IGF binding protein. Disruption of only one of the IGF family 

members can affect the embryonic development (Sara and Hall 1990). However, 

overexpression of IGF2 or IGF2R, which is paternally and maternally expressed, 

respectively, results in overgrowth of mouse embryos (Sun et al. 1997).  

 

Genomic imprinting is associated with allele-specific DNA methylation. In mouse 

embryos that are deficient in the DNA methyltransferases gene, the expression of IGF2 

(Li et al. 1993). Mono-allelic expression of the IGF2 gene is regulated by a methylation-
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sensitive insulator element (Eden et al. 2001) which is located between enhances and 

promoters, and prevent gene expression. The function of insulator elements is related to 

chromatin boundary, which is “closed” in its unmethylated status but “open” when 

methylated (West et al. 2002). Silencing of the maternal IGF2 allele which is only 

possible when the imprinting control element (ICE) remained constantly unmethylated on 

the maternal allele (Srivastava et al. 2000) is performed through binding of the repressor 

factor CTCF (CCCTC-binding factor) to a repressor element of the maternal allele. CTCF 

cannot interfere with the paternal allele protected by methylation (Fedoriw et al. 2004; 

Schoenherr et al. 2003; Szabo et al. 2000). CTCF-binding seems to be initiated after 

fertilization when primary imprints have already been established to protect the maternal 

imprinting from methylation (Verona et al. 2003). 

 

DNA demethylation induced by the demethylating agent 5-AZA leads to loss of IGF2 

imprinting in tissues (Hu et al. 1997), dramatically increased the expression of IGF2 

which was primarily derived from the activation of the normally imprinted maternal 

alleles. The normal expression from paternal allele also remains active (Hu et al. 1996). In 

cells treated with 5-AZA, the IGF2 expression increased 2- to 4-fold compared to the 

imprinted allele (Eversole-Cire et al. 1993). 

 

2.6.3.2 Insulin-like growth factor 2 receptor (IGF2R)  

IGF2R gene is generally imprinted on the paternally inherited allele and expressed from 

maternal allele depending on the imprinting control region (ICR) differentially methylated 

(Sleutels et al. 2002; Zwart et al. 2001). IGF2R is imprinted in bovine, sheep, pig and 

mice (Killian et al. 2001). There are two imprinting control regions (ICR) in the mouse 

IGF2R gene which are differentially methylated on the two parental alleles. The first ICR 

includes the sense IGF2R RNA promoter and is only methylated on the suppressed 

paternal allele. The second ICR2 encompasses the promoter of the IGF2R antisense RNA 

(Wutz et al. 1997) which is preferentially methylated on the maternal allele (Hu et al. 

1998). The IGF2R gene encode including the promoter for the sense IGF2R transcript, 

which is located within the second intron of the gene, includes the promoter for Air gene 

(Sleutels et al. 2002).  

The silencing activity of ICR2 on the paternal allele correlates with the absence of 

methylation and the presence of Air RNA. In contrast, expression of the IGF2R on the 
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maternal allele correlates with region 2 methylation and Air repression (Wutz et al. 1997). 

The presence of a methylation imprint on the active maternal allele indicates that this 

allele is epigenetically activated by DNA methylation (Zwart et al. 2001). This 

interpretation contrasts with results obtained in vitro  based on demethylating agents (Hu 

et al. 1999), but is consistent with results obtained in vivo based on mouse mutants 

lacking the maintenance methyltransferase gene (Jackson-Grusby et al. 2001).  

 

Aberrant methylation patterns at IGF2R significantly regulates the expression of IGF2R 

in bovine cells which is correlated with developmental abnormalities such as heavy liver, 

heart and abnormal brain in cloned bovine (Long and Cai 2007). 

 

2.6.3.3 Insulin-like growth factor binding protein 4 (IGFBP-4) 

The IGFBP-4 gene contains 15.3 kb bp which the transcription initiation site located 28 

bp downstream of a TATA box and 286 bp 5’ of the translation initiation codon. The 

IGFBP-4 gene is composed of four exons separated by three introns (Zazzi 2000). The 

function of IGFBP-4 appears to protect cells from overstimulation by IGF genes, since it 

acts as an inhibitor of cell growth by binding to IGF genes (Culouscou and Shoyab 1991). 

However, IGFBP-4 is suppressed by a specific protease that cleavages IGFPB-4 into two 

18- and 14-kDa protein fragments (Conover et al. 1993). Expression of IGFPB-4 was 

related to growth and differentiation of colon cancer cells due to up-regulation of IGFBP-

4 expression (Dai et al. 1997). High expression of IGFBP-1 and IGFBP-4 favoured early 

embryonic development in vitro fertilized oocytes aspirated from human follicles (Wang 

et al. 2006). Demethylation by culturing cell lines with 10 µmol/L 5-azaC for 48 hr and 

then adding IGF-1 induced IGPB-4 and IGFBP-2 expression (Sato et al. 2006). In cloned 

bovine claves dying within 48 hrs of birth, IGFBP-4 was found to be aberrant in five 

tissues, with lower levels in livers, lungs, and kidneys of adult and fetal fibroblast cell-

derived clones, but higher levels in brains and hearts of fetal fibroblast cell-derived clones 

(Li et al. 2007). 
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2.7 Genetic of male fertility  

Male fertility is the result of a combination of genetic potential and environment. It seems 

likely that substantial genetic effects are contributing to the fertility, despite the low 

heritability of most fertility traits (Veerkamp and Beerda 2007).  

 

2.7.1 Factors affecting male fertility 

Factors that influence semen and sperm quality include genetic factors (genes) and 

environmental factors 

 

2.7.1.1 Genetic factors 

Molecular evidence suggests that the regulation of normal spermatogenesis is mediated by 

several genes. Mutants in ubiquitin specific protease (USP) 26 gene and mitochondrial 

ND4 gene causes hypogonadism (Paduch et al. 2005) and low sperm motility in humans 

(Selvi Rani et al. 2006) respectively. Mutants in the haemochromatosis gene (HFE)H63 D 

shows an association with abnormal sperm motility in human (Gunel-Ozcan et al. 2008). 

Premature translation of transition protein 2 (Tnp2) mRNA causes abnormal head 

morphogenesis, reduced sperm motility and male infertility in mouse (Tseden et al. 2007). 

Mutation in Nsun7 depresses motility of sperm in mouse (Harris et al. 2007). Petrunkina 

et al (2007) showed that inhibition of protein kinase increased the number of sperm cells 

and ejaculate volume in the boar. Two SNPs in the porcine testis-specific 

phosphoglycerate kinase 2 (PGK2) gene resulting in amino acid substitutions decreased 

semen volume in boar (Chen et al. 2004). In bovine, the defect of complex vertebral 

malformation (CVM) gene reduced reproductive performance as measured in terms of 

non return rate (NRR) (Berglund et al. 2004). The polymorphisms of GFG2 and STAT5 

gene is associated with fertilization success and survival rate of embryos during in bovine 

preimplantation (Khatib et al. 2008a; Knatib et al 2008b)  
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2.7.1.2 Environmental factors 

Season alters endocrine profiles and influences fertility of males. Spermatogenesis is 

impaired, and testosterone is lower during early exposure to hyperthermia. However, 

season of semen collection did not affect 56-day NRR, but calving rate was significantly 

higher for semen collected in the period when the photoperiod was increasing over time 

across of the year (Haugan et al. 2005). Cows with higher milk production had lower 

probability of pregnancy and higher probability of embryonic loss (Vasconcelos et al. 

2006). In mice, scrotal heat stress, 42°C for 30 min, resulted into a lower concentration of 

spermatozoa which reduced viability, low motility, and higher degree of DNA damage in 

mice (Perez-Crespo et al. 2008). In addition, there is a significant increase in the number 

of immotile sperm (Rizvi et al. 2008).  

 

2.8 Male fertility traits of bull 

Reproductive efficiency of bull is evaluated by several traits; NRR, semen quality (sperm 

concentration, motility and morphology), and sperm flow cytometric parameters. 

 

2.8.1 NRR 

NRR is defined as the percentage of cows that were inseminated and not reinseminated 

within a specified interval, typically 56 days (Grossman et al. 1995). It is also the result of 

conception (Koops et al. 1995) and, therefore, is regarded as a field fertility measure. 

Bulls different in their reproductive performance can be evaluated on the basis of NRR. 

NRR is under the influence of several factors, such as the reliability of the estrus control 

systems, season (Stalhammar et al. 1994), herd, technician, age of the cow (Guaita et al. 

1996), heat stress, and humidity (Ravagnolo and Misztal 2002; Ravagnolo et al. 2000). 

Other factors not related to fertility may affect NRR, among these, misidentification of the 

cow at subsequent services, inaccurate heat detection and recording (Rycroft and Bean 

1991).  

 

The NRR has been found to be correlated with semen quality such as sperm morphology 

(Barth, 1992), and sperm motility (Hallap et al. 2006; Kjaestad et al. 1993).  
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2.8.2 Sperm quality traits 

The sperm quality is routinely evaluated providing descriptive information on 

morphology, motility, and numbers of spermatozoa in the ejaculation. These parameters 

also determine primarily the fertility of bull. A minimum of 80% motility and 70% 

normal sperm of freshly ejaculated semen represents an acceptable standard for breeding 

soundness evaluation of bulls (Hopkins and Spitzer 1997). The major defects of sperms 

including abnormalities of the head, mid piece, and proximal cytoplasmic droplets are 

evidently correlated with low bull fertility bulls; however, it can be compensated by 

increasing sperm dose per insemination (Saacke et al. 2000). Sperm quality differs with 

age of the sires. Young bulls have high percentages of proximal droplets (Arteaga et al. 

2001), whereas older bulls display a lower number of total sperm per ejaculation (Al-

Makhzoomi et al. 2008).  

 

The percentage of morphologically normal and abnormal spermatozoa is related 

positively to NRR (Fitzpatrick et al. 2002). Reduction of total sperm per insemination 

from 16x106 to 10x106 has no affect on NRR (Foote and Kaproth 1997). Sperm motility 

and sperm motility index (SMI) showed significant relation with NRR (Hoflack et al. 

2005; Kjaestad et al. 1993; Stalhammar et al. 1994). However, based on using sexed 

semen (91.6% females), an overall numerical decline of 13.6 in NRR was observed 

(Frijters et al. 2009).  

 

2.8.3 Sperm flow cytometric parameters 

2.8.3.1 Membrane integrity  

The sperm outer membrane is essential for sperm metabolism, capacitation, sperm 

attachment and acrosome reaction. The plasma membrane is responsible for the 

mechanism of maintaining the cell osmotic equilibrium and acts as a barrier between 

intra- and extra cellular medium. Damages in this structure can lead to homeostasis loss, 

leading to cellular death (Flesch and Gadella 2000). The most common adverse effect of 

freeze-thawing is the dramatic and sharp decrease in plasma membrane integrity (PMI) of 

sperm in human (Lin et al. 1998), mouse (Nishizono et al. 2004; Sztein et al. 2001) and 

bovine (Bollwein et al. 2008). Sperm require an active membrane during fertilization and 

they will fail to fertilize if the plasma membrane is physically not intact. Vital stains 

measure whether the membrane is functionally active. Propidium iodide (PI) is a 
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fluorescent probe that binds to DNA of cells possessing a damaged plasma membrane 

(Graham et al. 1990). Other fluorescent probes with DNA specificity have also been used 

such as Hoechst 33258 (H258), Hoechst 33342 (H342) (Casey et al. 1993) and SYBR-14 

(Thomas et al. 1998). PMI values are not correlated with fertility as measured by NRR 56 

days due to the fact that the PMI was required only for fertilization, but not for embryonic 

development (Watson 1995). Thus, it was compensated by increasing sperm 

concentration or volume (Evenson, 1999). This result was not consistent with Bollwein 

and colleagues who found that the PMI was correlated with NRR (56 days) (Bollwein et 

al. 2008).  

 

2.8.3.2 Acrosome integrity  

The acrosome is a large lysosome-like vesicle overlying the sperm nucleus containing a 

large array of powerful hydrolyzing enzymes including hyaluronidase and acrosin 

(Zaneveld et al. 1991). A spermatozoa must maintain an intact acrosome up to the time it 

binds to zona pellucida of the mature oocyte and undergoes the acrosome reaction to 

release acrosomal enzymes (Graham and Moce 2005). It is an important feature to 

evaluate the sperm fertilizing potential (Silva and Gadella 2006). The acrosome can be 

examined by several methods. The most commonly used is fluorescein isothiocyanate 

(FITC) labelled plant lectins such as pisum sativum agglutinin (PSA) and peanut 

agglutinin (PNA) (Gillan et al. 2005). The lectin can penetrate an acrosomal membrane 

when it has been damaged.  

 

2.8.3.3 DNA integrity 

The integrity of sperm DNA is of prime importance for the paternal genetic contribution 

to normal offsprings. Spermatozoa with DNA defects affects on spermatogenesis, delays 

in initiation of the zygotic S-phase (Eid et al. 1994) and blocking embryonic development 

(Fatehi et al. 2006), and subsequently reduces number of fetus developed to term (Ahmadi 

and Ng 1999). Several techniques have been developed to detect DNA abnormalities 

(Fraser 2004). These assays include the single cell gel electrophoresis assay (COMET) 

(Irvine et al. 2000), the terminal deoxynucleotidyl transferase-mediated nick end labelling 

(TUNEL) assay (Host et al. 2000a; Host et al. 2000b), in situ nick translation (NT) 

(Sakkas et al. 1996), sperm chromatin structure assay (SCSA) (Evenson et al. 1999; 

Evenson et al. 2002), and acridine orange test (AOT) (Duran et al. 1998).  
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The degree of DNA-stability determined by SCSA within the sperm chromatin structure 

is related to 56-day NRR (Bollwein et al. 2008; Januskauskas et al. 2001; Januskauskas et 

al. 2003), 60-day NRR (Waterhouse et al. 2006), and 90-day NRR (Madrid-Bury et al. 

2005). 

 

2.9 Genotype dependent embryonic development  

In in vitro bovine embryo production, approximately one-thirds of oocytes develop to the 

blastocyst stage (Gordon 1994). There is a relationship between the time of the first 

cleavage of a bovine oocyte in vitro and its development ability. The earliest-cleaving 

oocytes are more likely to develop the blastocyst stage than those that cleave late 

(Lonergan et al. 1999). With regard to the mechanisms, the sperm influences the time of 

first cleavage and thereby development without involvement of the maternal genotype 

(Comizzoli et al. 2000; Ward et al. 2001). Therefore, early embryonic development can be 

used to measure embryo quality and bull field fertility. Ward et al (2001) reported that the 

proportions of early-cleaving oocytes developing to blastocysts stage are higher than the 

late-cleaving oocytes. In addition, the 33-hpi-cleavage rate was the best predictor of field 

fertility (NRR 150-days). There was also a high correlation between Day 7 blastocyst 

yield and NRR (Ward et al. 2001).  

 

In addition, concentration of sperm in IVF also reflected blastocyst yields and bull field 

fertility. By this regard, a minimum concentration of 0.125 x 106 sperm/ml resulted in 

higher Day 8 blastocyst yield regardless of sire. A concentration of 0.5 x 106 sperm/ml 

showed significant correlation between cleavage rate (48 phi) and NRR (Ward et al. 

2003). Bovine IVF and embryo culture techniques showed the relationship between in 

vivo bull fertility and IVF outcomes (Lonergan et al. 1994; Zhang et al. 1997). Individual 

bulls differ in their ability to fertilize oocytes following IVF procedures (Ward et al. 

2001) and even after intracytoplasmic sperm injection (Wei and Fukui 1999).  
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The polymorphisms of GFG2 gene is reported to be associated with fertilization success 

and survival rate of embryo during in bovine preimplantation (Khatib et al. 2008a). 

Knatib et al (2008b) showed that STAT5 affected the survival rate of embryo by 2 

mechanisms: prefertilization involving sperm factors and causing lower fertilization rate 

and postfertilization causing incompatibility between the male pronucleus and the oocyte, 

which in turn leads to death of the embryo before the blastocyst stage (Khatib et al. 

2008b).  

 

2.10 Association of candidate genes with bull fertility traits and embryonic 

development  

Association analyses of genes that play a major role during bovine preimplantation 

development have been done with bull fertility traits namely NRR, sperm quality, and 

sperm flow cytometric parameters. Polymorphisms of the leptin gene were found to be 

associated with shorter calving intervals and the time of day open in Jersey cows 

(Komisarek and Antkowiak 2007). A growth hormone gene polymorphisms was observed 

to have an effect on volume of ejaculation and NRR (Lechniak et al. 1999). Kia (2007) 

reported that association analysis revealed significant association of SNP of desmocollin 2 

(DSC2) and tight junction protein 1 (TJP1) with volume of ejaculated, aldo-keto reductase 

family1 member1 (AKR1B1) and CDH1 with sperm motility, CD9, AKR1B1, COX-2, 

DSC2 and TJP1 with sperm motility, CD9, N-PAC, CDH1 and Plakophilin 1 (PKP1) with 

sperm concentration. However, there was no association of those SNPs with NRR and 

sperm flow cytometric parameters.  

 

In porcine, the candidate genes associated with boar fertility traits namely NRR and 

sperm quality traits have also been investigated. Lin (2005) reported the significant 

associations of the following  candidate genes with traits: actinin alpha 1 (ACTN1) and 

acrosin (ACR) locus with NRR; prolactin (PRL), inhibin beta B (INHBB), ACR, and 

follicular stimulating hormone beta (FSHB) locus with sperm concentration; actin gamma 

(ACTG2), relaxin (RLN) and follistatin (FST) with semen volume per ejaculate; ACTG2, 

retinol-binding protein 4 (RBP4), OPNin6, ACR and gonadotropin releasing hormone 

receptor (GnRHR) with motility; GnRHR, inhibin alpha (INHA), inhibin beta A 

(INHBA), OPNpro and androgen receptor (AR) with abnormal sperm rate.  
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For the development of embryos in IVP, there was a difference of genotype frequency of 

the IJP1 gene observed at blastocyst stage. The IJP1 gene might play an important role 

during early bovine preimplantation development (Kia 2007). 
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3 Materials and methods 

3.1 Experimental design 

The aim of this study was to study the function of DNMT1 gene in bovine 

preimplantation and the association analysis of DNMT1, DNMT3a, and DNMT3b 

sequence variants with bull fertility traits and embryonic development. 

 

3.1.1 Suppression of DNMT1  

Firstly, alternative transcripts of DNMT1 isoforms namely; DNMT1o and DNMT1s, and 

their expression profiles were analysed in preimplantation stage embryos. To identify the 

isoforms, two sets pairs of primer were designed as shown in Figure 3. The cDNA from 

immature oocytes, mature oocytes, 2-cell, 4-cell, 8-cell, 16-cell and blastocyst was 

obtained for DNMT1 mRNA expression by using semi-quantitative RT-PCR. The 

transcript profile of DNMT1 isoforms was done by quantitative RT-PCR. 

 

 

Figure 3: The primer set designer to identify the different isoforms of DNMT1 gene.  

 

It is due to the fact that DNMT1o initiates at oocyte ATG in exon 4, resulting in the 118 

amino acids shorter than the somatic isoforms (Mertineit et al. 1998). The pair of primer 

A was designed to cover exon 4 which is specific to amplify only the somatic-specific 

DNMT1 isoforms and the pair of primer B is amplified both isoforms. Therefore the 

specific DNMT1 isoforms could be identified due to the intensity of the PCR product. 

 

Secondly, it was to investigate the effects of suppression of DNMT1 on the embryonic 

development, the levels of apoptosis, and the expression of imprinted genes during bovine 

preimplantation. In vitro produced zygotes were categorized into four groups, namely 

those injected with Smartpool siRNA (SpsiRNA), 5-aza-2’-deoxycytidine (5-AZA), 

nuclease free water, and uninjected control. The mRNA and protein expression data were 
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generated using Real Time polymerase chain reaction (RT-PCR) based on the relative 

standard curve method employing glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

as reference gene for normalization and western blotting analysis, respectively. As shown 

in the overview of the first experiment (Figure 4), the microinjection was performed at the 

zygote stage. The survival rate was recorded 3-4 hr post microinjection (pmi). Phenotype 

assessments of the proportion of 2-, 4-, 8- cell and 2-, 4-, 8 and 16-cell embryos were 

assessed 48 and 72 hr pmi, respectively. The mRNA and protein expression was 

performed at 8-cell stage to check whether the cognate mRNA and protein were degraded. 

Moreover, an independent transcript of DNMT3a and DNMT3b was quantified to access 

the specificity of the mRNA suppression. In a second experiment (Figure 5), the zygotes 

were cultured until Day 8 blastocyst. For phenotype assessment development to Day 7 

and Day 8 blastocyst was observed. RT-PCR and western blotting analysis was performed 

to check whether the cognate mRNA and protein had degraded at Day 8 blastocyst. The 

TUNEL staining was performed to calculate the apoptotic index (API) by dividing the 

number of apoptotic cells by the total cell number. Moreover, the expression of imprinted 

genes, namely IGF2, IGF2R, and IGFBP-4 was measured. 
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Figure 4: An outline of the experiment designed to investigate the effect of suppressing 

and inhibiting DNMT1 on the embryonic development, mRNA and protein 

expression at 8-cell stage bovine preimplantation. 
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Figure 5: An outline of the experiment designed to investigate the effects of suppressing 

and inhibiting DNMT1 on blastocyst rate, apoptotic index, mRNA and protein 

expression at blastocyst stage bovine preimplantation.  

 

3.1.2 Association analysis of DNMT1, DNMT3a, and DNMTT3b sequence variant 

This study was to elucidate effects of gene DNMT1, DNMT3a, and DNMT3b gene on 

bull fertility traits namely; non-return rate (NRR; 56 days, %), sperm quality traits which 

are sperm volume per ejaculate (VOL), sperm concentration (CONC), sperm motility 

(MOT), and survivability after thawing (SUVR), sperm flow cytometric parameters such 

as positive acrosome status (PAS), plasma membrane integrity (PMI), and DNA 

fragmentation index (DFI), and embryonic development such as early cleavage, late 

cleavage, and blastocyst embryos (Figure 6). For this, The single nucleotide 

polymorphisms studied namely; DNMT1 (rs41256891; C/T), DNMT3a (rs41569254; 

C/T), and DNMT3b (rs41700758; A/G) were retrieved from the dbSNP database 

(http://www.ncbi.nlm.nih.gov/SNP). The SNPs of interest were confirmed with 11 

different cattle breeds namely; Limousin, Gelbvieh, Blond d’Aquitaine, Salers, 
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Vorderwälder, Hinterwälder, Charolais, Red Angus, Piemontese, Pinzgauer and Galloway 

by using comparative sequencing analysis and the PCR-RFLP method. A total of 310 bull 

sperms and 210 embryo samples were used for genotyping. 

 

Figure 6: Flowchart of the experiment design to study the association analysis of 

DNMT1, DNMT3a and DNMT3b sequence variants with bull fertility traits 

and embryonic development  
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3.2 Material  

3.2.1 Samples 

3.2.1.1 Suppression of DNMT1  

Bovine ovaries were collected from two different local slaughterhouses. A total of 1,470 

embryos were obtained by in vitro production (IVP) after in vitro maturation, fertilization 

and culture at the experimental farm Frankenforst of the University Bonn. 

 

3.2.1.2 Association of DNMT1, DNMT3a, DNMT3b 

3.2.1.2.1   Bull 

Sperms from 310 black and red Holstein-Friesian AI bulls with a range of age 1 to 8 years 

obtained from the Rinder-Union West eG (RUW) station were used for genotyping and 

association analysis. The phenotypes in this study were included the bull fertility traits 

namely NRR (56 days), semen quality traits namely; VOL (ml), CONC (x106/ml), MOT 

(%), and SUVR (%) and sperm flow cytometric parameters namely PMI, PNA, and DFI. 

Semen qualities of each bull were evaluated with a standard method based on the 

guidelines of the World Health Organization (WHO). The sperm flow cytometric 

parameters were tested and recorded by the University Hanover (Prof. Dr. Bollwein lab). 

The additional information on bull status (testing bulls and approved bulls), inseminator 

(veterinarian, technician, and farm owner), and bull race (black and brown bulls) were 

obtained from the RUW. 

 

3.2.1.2.2   Embryos 

A total 350 embryos obtained from two different local slaughterhouses and produced by 

IVP at the experimental farm Frankenforst of the University Bonn. The mature oocytes 

were fertilized with the heterozygote genotype DNMT1 (C/T), DNMT3a (C/T), and 

DNMT3b (A/G). The zygotes which had developed to 2-cell stage at 30 hr post 

insemination (hpi) were placed in new droplets and cultured in separated groups. Half of 

them were individually frozen in liquid nitrogen. The rest were cultured until blastocyst 

stage and frozen individually in liquid nitrogen. The zygotes which did not cleavage at 30 

hpi (late cleavage) were individually frozen in liquid nitrogen. These three groups of 

samples, early cleavage, late cleavage, and blastocyst were used for the genotyping.  
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3.2.2 Chemicals 

Abcam plc (UK): DNMT1 antibodies 

 

Affymetrix, Inc (USA): ExoSAP-IT® 

 

Applied Biosystems 

(Foster City): 

SYBR® Green Universal PCR Master Mix,  

 

Beckman Coulter (Krefeld): CEQ™ 8000 Genetic Analysis System Sequencing 

(DTCS) kit, Sample loading solution (SLS), Glycogen 

 

 

Biomol (Hamburg): Phenol, Phenol:Chlorophorm:Isoamyl alcohol  

(25:24:1) 

 

Dharmacon RNA technologies: 

 

Smartpool RNA DNMT1 

DYNAL Biotech (Hamburg): 

 

Dynabeads oligo (dT)25 

Fermentas (Germany): Restriction emyzmes (BcnI, BspLI, and NdeI) 

 

GeneCraft (Germany): BioTherm® Taq DNA polymerase 

 

Invitrogen Life Technologies 

(Karlsruhe): 

 

DTT, SuperScriptTM II RNase H- Reverse  

transcriptase, 5x first strand buffer, random primers 

 

 

Kodak (Japan): Autoradiography film (Kodak® Biomax XAR film) 

 

MWG biotech: Oligonucleotide primers 

 

Promega (Mannheim): BSA, pGEM®-T vector, RQ1 RNase-free DNase, 
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RNasin ribonuclease inhibitor, 2x rapid ligation buffer, 

T4 DNA ligase 

 

Qiagen (Hilden): RNeasy® Mini kit, QIAquick PCR Purification Kit, 

Mini EluteTM Reaction Cleanup Kit 

 

Roth (Karlsruhe): 2- Propanol, 5-bromo-4-chloro-3-indolyl-ß-D-

galactopyra-noside (X-gal), Acetic acid, Agar-Agar, 

Ampicillin, Ammonium peroxydisulfate (APS), 

Bromophenol blue, Dimethyl sulfoxide (DMSO), 

Ethylenediaminetetraacetic  

acid (EDTA), Ethanol, Ethidium bromide,  

Hydrochloric acid, Isopropyl -D-thiogalactoside  

(IPTG), Ponceau-S, Proteinase K, Sodium dodecyl 

sulfate (SDS), Sodium acetate, Sodium carbonate, 

Sodium chioride, Sodium hydroxide, TEMED, Tris, 

Tris-HCl, T-octylphenosypolyethosyethanol (Triton X-

100), Trichloromethane/chiorophorm, Tyrode, Yeast 

extract 

 

Sigma (Steinheim, Germany): 5-aza-2’-deoxycytidine, 10× Buffer for PCR, Albumin 

bovine, Bisbenzemide, Dulbecco´s Phosphate Buffer 

Saline (D-PBS), Heparin, Hepes, Hyaluronidase, 

Hypotaurin, Igepal, Isopropanol, L-Glutamin, 

Magnesium chloride, Medium 199, Mineral oil, 

Penicillin, Polyvinyl pyrolidone (PVP), Propidium 

iodide, Protease inhibitor cocktail, Sodium hydrogen 

carbonate, Sodium hydrogen sulphate, Sodium lactate 

solution (60%), Sodium pyruvate, Streptomycin 

sulfate,  

 

SYBR® Green JumpStartTM Taq ReadyMix, Tween-

20, TRIReagent 
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StarLab (Germany): Agarose (StarPure Agarose) 

 

Stratagene (Amsterdam): 5 c-DH Escherichia coli competent cells 

 

3.2.3 Reagents and media 

All solutions used in these investigations were prepared with deionized Millipore water 

(ddH2O) and pH was adjusted with sodium hydroxide (NaOH) or hydrochloric acid 

(HCl).   

 

Agarose loading buffer Bromophenol blue 0.0625 g 

 Xylenczanol 0.0625 g 

 Glycerol 7.5 ml 

 Water added to  25 ml 

   

Ampicillin (10 mg/ml) Ampicillin powder 2 g 

 Water added to  40 ml 

   

Anode buffer I Tris-HCl (pH 10.4) 300 mM 

 Methanol 10 ml 

 Water added to 100 ml 

   

Anode buffer II Tris-HCl (pH 10.4) 25 mM 

 Methanol 10 ml 

 Water added to 100 ml 

   

Binding buffer Tris-HCl (1 M pH 7.5) 1,000 µl 

 Lithium chloride (5M) 10 ml 

 EDTA (0.005 M pH 8) 20 ml 

 Water added to 50 ml 

 

 



Material and Methods   37 

Blocking buffer Polyvinyl pyrolidone 1 g 

 TBST added to 100 ml 

   

BSA (3 %) Bovine serum albumin (BSA) 0.15 g 

 PBS+PVA added to 5 ml 

   

Capacitation medium Sodium chloride 0.2900 g 

 Potasium chloride 0.0115 g 

 Sodium hydrogen carbonat 0.1050 g 

 Sodium dehydrogen sulphate 0.0017 g 

 Hepes 0.1190 g 

 Magnisium chloride 6H2O 0.0155 g 

 Calcium chloride 0.0145 g 

 Sodiumlactate solution (60%) 184 µl 

 Phenol red solution (5% in D-PBS) 100 µl 

 Water add to 50 ml 

   

Cathode buffer Tris-HCl (pH 9.4) 25 mM 

 Methanol 10 ml 

 6-aminohexanoic acid 60 mM 

 Water added to 100 ml 

   

Culture medium Hemicalcium lactate 0.0273 g 

 Streptomycin sulphate 0.0039 g 

 Penicillin G 0.0019 g 

 Sodium chloride 0.3156 g 

 Potasium chloride 0.0112 g 

 Sodium hydrogencarbonate 0.1050 g 

 Sodium pyruvate 0.0022 g 

 L-Glutamin 0.0073 g 

 Phenol red solution (5% in D-PBS) 100 µl 
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DEPC-treated water DEPC 1 ml 

 Water added to 1,000 ml 

   

Digestion buffer NaCl 100 mM 

 Tris-HCl 50 mM 

 EDTA pH 8.0 1 mM 

   

dNTP solution dATP (100 mM) 10 µl 

 dCTP (100 mM)  10 µl 

 dGTP (100 mM) 10 µl 

 dTTP (100 mM) 10 µl 

 Water added to 400  

   

Epinephrin solution Sodiumdisulphate 0.0400 g 

 Epinephrin 0.0018 g 

 Water added to 40 ml 

   

Fertilization medium Sodium chloride 0.3300 g 

 Potassium chloride 0.0117 g 

 Sodium hydrogen carbonate 0.1050 g 

 Sodium dihydrogen phosphate 0.0021 g 

 Penicillin 0.0032 g 

 Magnesium chloride hexahydrate 0.0050 g 

 Calcium chloride dehydrate 0.0150 g 

 Sodium lactate solution (60%) 93 µl 

 Phenol red solution 100 µl 

 Water added to 50 ml 

   

Glycine+PBS Glycine 0.02252 g 

(30 mmol/ml) PBS+PVA solution added to 10 ml 
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IPTG solution IPTG 1.2 g 

 Water added to 10 ml 

LB-agar Sodium chloride 8 g 

 Pepton 8 g 

 Yeast extract 4 g 

 Agar 12 g 

 Sodium hydroxide (40 mg/ml) 480 µl 

 Water added to 800 ml 

   

LB-broth Sodium chloride 8 g 

 Pepton 8 g 

 Yeast extract 4 g 

 Sodium hydroxide (40 mg/ml) 480 µl 

 Water added to 800 ml 

   

Lysis buffer Igepal (0.8%) 0.8 µl 

 RNasin 5 µl 

 Dithiothreitol (DTT) 5 µl 

 Water added to 100 µl 

   

Modified parker medium Sodium hydrogencarbonat 0.080 g 

 Hepes 0.140 g 

 Sodium pyruvat 0.025 g 

 L-Glutamin 0.010 g 

 Gentamycin 500 µl 

 Medium 199 99 ml 

 Hemicalcium lactate 0.06 g 

 Water added to 110 ml 

   

Paraformaldehyde 16%, Paraformaldehyde  1.6 g 

 Water added to 10 ml 
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PBS + PVA  Polyvinyl alcohol (PVA) 300 mg 

 PBS added to 50 ml 

Permeabilization solution Tritonx-100 5 µl 

 Glycine + PBS added to 10 ml 

   

PHE medium Physiological saline (0.9%) 16 ml 

 Hypotaurin solution 10 ml 

 Epinephrin solution 4 ml 

   

Physiological saline Sodium chloride  9 g 

 Water added to 1,000 ml 

   

Running buffer, 10× Tris-HCl (0.25 M)  30.3 g 

 Glycin (1.92 M)  144 g 

 SDS 10.0 g 

 Water added to 1,000 ml 

   

Sample loading buffer, 4× Tris-Hcl (1M pH 6.8) 13 ml 

 SDS 

2-Mercaptoethanol 

6 g 

10 ml 

 Glycerine 20 ml 

 Bromophenol blue 10 mg 

 Water added to 50 ml 

   

Separating gel  
Acrylamide (30%), 

bis-acrylamide (0.8%) 

5 ml 

 Tris (1 M pH 8.8) 5.60 ml 

 SDS (10%) 0.15 ml 

 APS (20%) 30 µl 

 TEMED 10 µl 

 Water 4.25 ml 

 

 



Material and Methods   41 

Stacking gel  Acrylamide (30%), bis-acrylamide (0.8%) 1.50 ml 

 Tris-HCl (1M pH 6.8) 1.30 ml 

 SDS (10%) 0.15 ml 

 APS (20%) 30 µl 

 TEMED 10 µl 

 Water 7.05 ml 

   

TAE buffer, pH 8, 50X Tris-HCl 242 mg 

 Acetic acid 57.1 ml 

 EDTA (186.1 mg/ml) 100 ml 

 Water added to 1,000 ml 

   

TBE buffer, 10X Tris-HCl 108 g 

 Boric acid 55 g 

 EDTA 40 ml 

 Water added to 1,000 ml 

   

TBS Tris-HCl 121.14 g 

 Water added to 1,000 ml 

   

TBST Tween-20 1 ml 

 TBS added to 1,000 ml 

   

TE buffer, 1X Tris-HCl (1M) 10 ml 

 EDTA (186.1 mg/ml) 2 ml 

 Water added to 1,000 ml 

   

Washing buffer Tris-HCl (1 M pH 7.5) 500 µl 

 Lithium chloride (LiCl) 1,500 µl 

 EDTA (0.005 M pH 8.0) 1,000 µl 

 Water added to 50 ml 
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X-gal solution  X-gal 50 mg 

 N,N´-dimethylformamide 1 ml 

   

 

3.2.4 Kits 

CEQ DTCS-Quick Start Kit: Beckman Coulter (CA, USA) 

 

ECL Plus Western Blotting 

Detection: 

Amersham Biosciences, (Buckinghamshire, UK) 

  

GenEluteTM Plasmid Miniprep Kit: Sigma (Steinheim, Germany) 

pGEM®-T vector: Promega (Medison, USA) 

 

In Situ Cell Death Detection Kit : Roche Diagnostics GmbH, Germany 

 

3.2.5 Software 

ABI PRISM 7000 Sequence Applied Biosystems, Foster city, USA  

 

BLAST program http://www.ncbi.nlm.nih.gov/BLAST/ 

 

Image analysis  BIo-Rad Laser Sharp MRC-1024 CLS Software 

 

Multi sequence alignment  http://prodes.toulouse.inra.fr/multalin/multalin.html 

 

Primer Express® Software Applied Biosystems, Foster city, CA, USA 

 

Restriction enzyme analysis http://tools.neb.com/NEBcutter2/index.php 

 

Weight to Molar Quantity http://www.molbiol.ru/eng/scripts/01_07.html 

 

SAS (version 8.02)   SAS Institute Inc, NC, USA 
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3.2.6 Equipments 

ABI Prism® 7000 Sequence   Applied Biosystems (Foster Detection 

System City, CA, USA) 

 

Binocular microscope (TS-100)  Nikon TS-100 inverted microscope, (Japan) 

 

Carbon dioxide incubator (BB16)  Heraeus (Hanau, Germany) 

 

Carbon dioxide incubator (MCO-17AI) Sanyo (Japan) 

 

Centrifuge Hermle (Wehingen, Germany) 

 

CEQ™ 8000 Series Genetic 

Analysis System 

 

Beckman Coulter GmbH (Krefeld, Germany)

CLSM LSM 510 Carl Zeiss (Germany) 

 

Cryotube Nunc (Roskilde, Germany) 

 

Electrophoresis chamber BioRad (Munich, Germany) 

 

Epifluorescence microscope   Leica (Bensheim, Germany) 

 

Four-well dish   Nunc (Roskilde, Germany) 

 

HERA safe Bioflow safety hood  Heraeus Instruments, Meckenheim 

 

Incubator (BB16) Heraeus (Hanau, Germany) 

 

Injection capillary (K-MPIP-3335-5) Cook (Ireland) 

 

Microinjector pipettor (Femto Jet 5247) Eppendorf (USA) 

Millipore apparatus Millipore Corporation (USA) 
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Nitrocellulose transfer membrane 

(Protran®) 

Schleicher & Schuell BioScience, (Germany)

 

PCR thermal cycle (PTC 100) MJ Research (USA) 

 

pH meter Kohermann 

 

Power Supply PAC 3000 BioRad (München, Germany) 

 

Power Supply Mini-Protan®  BioRad (Italy) 

 

Spectrophotometer, Ultrospec™ 2100

 pro UV/Visible 

 

Amersham Bioscience (Munich, Germany) 

Trans/Blot®Semi/Dry transfer Cell   BioRad (CA, USA) 

 

Tuttnauer autoclave  Connections unlimited (Wettenberg

Germany) 

 

Ultra low freezer (-80oC)  Labotect GmbH (Göttingen, Germany) 

 

Ultraspec 2100 pro spectrophotometer Amersham Biosciences (Buckinghamshire, 

UK) 
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3.3 Methods 

3.3.1 Experiment 1 

3.3.1.1 In vitro embryo production  

Bovine ovaries were collected from two different local slaughterhouses and transported to 

the laboratory in a thermoflask containing 0.9% physiological saline solution at 39°C. 

Cumulus oocyte complexes (COCs) were aspirated from follicles (2-8 mm in diameter) 

with 18-gauge needle and COCs with multiple layers of cumulus cells were selected for in 

vitro maturation. The selected oocytes were washed in maturation medium (modified 

Paker medium, PMP) supplemented with 15% oestrus cow serum (OCS), 0.5 mM L-

glutamine, 0.2 mM pyruvate, 50 µg/ml gentamycin sulphate and 10 µl/ml FSH 

(Folltropin, Vetrepharm, Canada) before set into culture. The COCs were cultured in 

groups of 40 in 50 µl of maturation medium under mineral oil in four-well dishes (Nunc, 

Roskilde, Denmark). Maturation was performed at 39°C for 24 hours under humidified 

atmosphere containing 5% CO2 in air. A group of 50 matured oocytes were transferred 

into a four-well dishes containing fertilization medium. 

 

Matured oocytes were washed two times in the fertilization medium and transferred into a 

four-well dish containing 400 µl of fertilization medium supplement with 6 mg/ml bovine 

serum albumin (BSA), 2.2 mg/ml sodium pyruvate and 1 mg/ml heparin. Ten microliter 

of PHE medium was added to each well and covered with mineral oil (Sigma).  

 

The sperms of selected bull were thawed and motile spermatozoa were obtained by swim-

up procedure (Parrish et al. 1988). Sperm cell were incubated in a tube containing 5 ml 

capacitating medium supplement with heparin for 50 min at 39°C in an incubator with 

humidified atmosphere of 5% CO2. The motile sperm cells found in the upper layer of the 

solution were transferred into new falcon tube. The sperm cells collected by 

centrifugation at 10,000 rpm for 10 min. The sperm cell pellets were washed two times 

and then resuspended in 3-5 ml capacitating medium and further used for the in vitro 

fertilization. 

 

The motile spermatozoa were added to the fertilization medium with a final concentration 

of 1x106 spermatozoa/ml and added to a group of 50 oocytes in each well. Sperms and 
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oocytes were co-cultured for 18 hr at standard incubation conditions, 39ºC and humidified 

atmosphere containing 5% CO2. 

 

After IVF, the presumptive zygotes were transferred into 15 ml falcon tube containing 1 

ml of culture medium (CR1aa) supplemented with 10% OCS, 10 µl/ml BME (essential 

amino acids) and 10 µl/ml MEM (non essential amino acids). The fertilized oocytes were 

gently vortexed to separate them from dead spermatozoa and the cumulus cells. The 

cumulus free zygotes were selected and washed two times with culture medium before 

being transferred in group of 50-60 cells into four-well dish, each well containing a 400 µl 

culture medium cover with mineral oil.  

 

3.3.1.2 Microinjection of zygotes 

Each groups of 50-70 zygotes were placed in 10 µl droplet injection medium (H-TCM) 

under mineral for microinjection. Dharmacon synthesized smartpool siRNA (SpsiRNA), 

5-aza-2’-deoxycytidine (5-AZA), and nuclease-free water were used. The microinjection 

was performed with a 0.5 µm diameter injection capillary (Femtojet II, Eppendorf, USA) 

under an inverted microscope (Nikon TS-100). The injection volume of ~7 pl was 

estimated from the displacement of the minisque of mineral oil in the capillary. All groups 

of injected zygotes were cultured for 3-4 hr after that the survival rates were recorded. For 

this experiment, a total of 1470 zygotes were produced and categorized into four groups: 

those injected with SpsiRNA (n= 374), 5-AZA (n=382), nuclease-free water (n=380), and 

uninjected control zygotes (n=340) (control).  

 

3.3.1.3 Embryo collection  

Eight-cell stage and Day 8 blastocyst embryos were collected at specific time points to 

access the effects of suppression and inhibition on mRNA transcript abundance and 

protein expression using RT-PCR and western blotting analysis. During experiment 1 

(Figure 4), each group of 50-70 injected zygotes were cultured for 48 and 72 pmi to allow 

phenotypic development, those zygotes used for transcription and protein expression 

studies were collected at 8-cell stage. In experiment 2 (Figure 5), each group of 50-70 

injected zygotes were cultured in vitro until Day 8 blastocyst to assess the developed and 

resulting blastocysts. For each treatment group of blastocyst was used for transcription, 

protein expression and apoptosis studies. All samples from 8-cell and blastocyst were 
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washed two times with PBS (Sigma) and treated with acidic Tyrode pH 2.5-3.0 (Sigma) 

to dissolve the zona pellucida. The zona free embryos were further washed two times in 

drops of PBS and frozen in cryo-tubes containing lysis buffer. The samples for western 

blot study were additionally treated with protease inhibitor (Sigma). Finally, all embryos 

were stored in liquid nitrogen.  

 

3.3.1.4 RNA isolation and cDNA synthesis 

Three pools biological replicates of 20-25 embryos per each pool from each treatment 

group of 8-cell stage and 10-15 embryos per each pool from each treatment of Day 8 

blastocysts were used for mRNA isolation using T7-oligo (dT)23 attached magnetic beads 

(Dynal, Oslo, Norway) according to the manufacture’s instruction. The isolated mRNA 

samples were eluted in 11 µl DEPC treated water and reverse transcribed in 20 µl of total 

reaction volume containing 1 µl oligo (dT)23 primer, 4 µl 5x first stand buffer (375 mM 

KCl, 15 mM MgCl2, 250 mM Tris –HCl pH (8.3), 2 µl DTT, 1 µl dNTP, 0.3 µl RNase 

inhibitor (Promega) and 0.7 µl superscript II reverse transcriptase (Invitrogen, Karlsruhe, 

Germany). Messenger RNA and oligo (dT)23 primer were mixed and incubated at 70ºC 

for 3 min and placed on ice until the remaining reaction components were added. The 

reaction was incubated at 42ºC for 90 min and terminated by heat inactivation at 70ºC for 

15 min. 

 

3.3.1.5 Preparation of RNA template for RT-PCR quantification 

Primer pairs were designed according to the bovine cDNA sequences as assigned in 

GenBank (see Table 3 for details) using Primer Express® Software v2.0 (Applied 

Biosystems). The primers were designed to amplify fragments of the genes covering the 

coding sequence. The identity of the product was confirmed by sequencing. PCR 

amplification was performed in a 20 µl reaction volume containing 1.0 U Taq DNA 

polymerase, 50 ng of each primer, 200 µM of each dNTP, 2.0 µl 10x PCR buffer, and 2 µl 

RNA template. PCR started with denaturing at 95°C for 5 min, followed by 35 cycles of 

94°C for 30 s, annealing step (temperatures as indicated in table 3) for 30 s ,and 72°C for 

1 min. The final extension was at 72°C 10 min. The PCR product was visualized on 0.8% 

agarose gel stained with ethidium bromide. 
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The amplified fragments were cut from the 0.8% agarose gel and displaced in 1.5 ml tube 

and kept at -20°C overnight. The product fragments with the gel were homogenized in 

500 ml 1x TE buffer. Five hundred microliters of phenol: chloroform: isoamyl (1:1:1 v/v) 

were added to the homogenized solution and mixed well by vortexing. The mixture was 

centrifuged at 12,000 rpm for 10 min at 4°C, then the aqueous phase of the solution was 

transferred to new 2.0 ml tube followed by an equal volume of chloroform. The mixture 

was centrifuged by 12,000 rpm for 10 min at 4°C and the aqueous phase of the solution 

was transferred to a new 2.0 ml tube. 1:10 volume of sodium acetate (3 M, pH 5.2) and an 

equal volume of 100% ethanol was added. The DNA was allowed to precipitate at -20°C 

overnight. Thereafter, the pellet was recovered by centrifugation for 30 min at 4°C. The 

pellet was washed two times with 75% ethanol and resuspended in 7 µl ddH2O and stored 

at -20°C until further use. 

 

3.3.1.6 Cloning and transformation 

The fragments isolated from the agarose gel were then ligated using pGEM®-T vector 

(Promega). The ligation reaction was performed in 5 µl reaction volumes containing 2.5 

µl ligation buffer, 0.5 µl vectors, 0.5 µl T4 DNA ligase (3 U/µl) and 1.5 µl RNA template. 

The reaction was incubated at 4 °C overnight.  
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Table 3: Details of the primers for gene expression study by RT-PCR  

Gene  

 

Primer sequences Annealing 

temperature  

   (°C) 

Product 

size (bp) 

5’-AGGGAGACGTGGAGATGCTG-3’ DNMT1 

(AY244709) 5’-CATGGAGCGCTTGAAGGAG-3’ 
57 194 

DNMT1 set A1 5’-GCCTTCTCACTGCCTGACGAT-3’ 

(AY244709) 5’-TAGCCAGGTAGCCCTCCTCA-3’ 
57 193 

DNMT1 set B1 5’-AGAACGGGAGCCAGACAAGTG-3’ 

(AY244709) 5-CCCCGTGGGAAATGAGATG-3’ 
57 221 

5’-AGACATGTGGGTTGAACCCG-3’ DNMT3a 

(AY271298) 5’-GGCTCCCACAAGAGATGCAG-3’ 
58 188 

5’-CAGGATGGGAAGGAGTTTGGA-3’ Dnmt3b 

(AY244710) 5’-CACCAAACCACTGGACCCAC-3’ 
56 151 

5’-GGGATCAGAACAACATCTCT-3’ IGF22  

(X53553) 5’-GCTAGTTTGCTTTTCTGGTG-3’ 
58 176 

5’-GCCTACAGCGAGAAGGGGTTAGT-3’ IGF2R2 

(AF342811) 5’-GAAAAGCGTGCACGTGCGCTTGT-3’ 
62 293 

5’-TGTGAGGAGCTGGTGCGAGA-3’ IGFBP-42 

(NM174557) 5’-TTCGTGGGTGCGGCTCTGT-3’ 
60 281 

5’-AATGGAAAGGCCATCACCATC-3’ 
GAPDH 

5’-GTGGTTCACGCCCATCACA-3’ 
60 203 

(1)Primer designed for semi-quantitative RT-PCR  
(2)Primers from Li et al. (2007)  

 

Three microliters of the ligation product was co-incubated with 60 µl DH5α E. coli 

competent cells (Stratagen) for 30 min on ice. The mixture was heat shocked by putting it 

into a 42°C water bath for 90 s and immediately transferred on ice for 2 min. LB-broth 

(750 ml) was added to the bacteria solution and shaked at 150 rpm at 37°C for 90 min. 

Each bacterial suspension was plated on two ampicillin containing LB-agar plates. The 

medium contained 20 µl X-gal and IPTG solutions, incubated at 37°C was done 

overnight. Colonies were differentiated by the activity of ß-galactosidase as white and 
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blue for the presence of inserted DNA fragment. Due to the activation of LacZ gene on 

the vector, colonies containing the insert target DNA appear as white colonies and those 

with active LacZ gene without insert DNA formed blue colonies. 

 

To identify the inserted fragments, two white colonies were picked up from each plate and 

suspended in 30 µl 1X PCR buffer. One blue colony was picked up as a control to 

differentiate the presence of the target insert by comparing the length of amplified DNA 

fragments from white and blue colonies with M13 primers.  

 

3.3.1.7 M13 amplification 

M13 PCR was performed to confirm the insertion of the fragment into the plasmid. 

Bacterial suspensions were boiled at 95°C for 10 min and then the solution was used as 

template. The M13 PCR was carried out in a 20 µl reaction including 1 µl 10x PCR 

buffer, 10 µl lysed bacterial solution, 0.5 µl dNTP (10 mM), 0.5 µl (10 µM) of each M13 

primer (forward: 5’-TTG-TAA-AAC-GAC-GGC-CAG-T-3’; reverse: 5’- CAG-GAA-

ACA-GCT-ATG-ACC-3’) and 0.1 U Taq polymerase. The PCR reaction was performed 

with a thermal cycling program of 95°C for 5 min followed by 35 cycles of 94°C for 30 s, 

60°C for 30 s, 70°C for 1 min and an additional extension step for 10 min at 72°C. An 

aliquot of 5 µl PCR product was then electrophoresed in 2% (w/v) agarose gel with 0.8 

µg/ml ethidium bromide in 1xTAE buffer. Under UV-transilluminator, length 

differentiation of PCR fragments was identified. The successful white colony ligation was 

kept and then cultured in 5 ml LB-broth at 37°C overnight in a shaking incubator for 

plasmid isolation. 
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3.3.1.8 Plasmid isolation 

Plasmid was isolated using the GenElute™ Plasmid Miniprep Kit followed the 

manufacturer’s instructions. Briefly, 5 ml of bacterial culture were centrifuged at 14,000g 

for 1 min for harvesting cells, the supernatant was discarded. These cells were 

resuspended and vortexed in 200 µl of resuspension solution before adding 200 µl of lysis 

solution. The mixture was subsequently mixed by inversion of tubes until it became clear 

and viscous. After incubating at room temperature for 4 min, cell precipitation was done 

by adding 350 µl of neutralization/binding buffer, mixed gently and centrifuged at 14,000 

g for 10 min. The GeneElute Miniprep column was prepared by adding 500 µl of 

preparation solution, centrifuging shortly and discarding the flow-through. After that, the 

clear supernatant was transferred to this binding column and centrifuged at 14,000 g for 1 

min. The flow-through was discarded and the column was washed by adding 750 µl of 

wash solution followed by centrifugation at 14,000 g for 1 min. To elute plasmid, the 

column was transferred to a fresh collection tube; 50 µl of ddH2O was added and 

centrifuged at 14000 g for 1 min. The column was discarded and the plasmid was then 

collected. For determination of plasmid size and quality, 5 µl of plasmid together with 2 

µl loading buffer was checked by agarose gel electrophoresis. In addition, the quantity of 

the plasmid was measured by reading the absorbance at 260 nm in a spectrophotometer 

UV/visible light (Beckman Du® 62). The plasmid was kept at -20°C for further used to 

set up the standard curve for RT-PCR. 

 

3.3.1.9 Sequencing 

The fragments inserted in the plasmid were sequenced using CEQ™ 8000 Series Genetic 

Analysis System (Beckman Coulter). A mixture of 1 µl of ExoSAP-IT with 5 µl of PCR 

product was incubated at 37°C for 30 min followed by ExoSAP-IT inactivation at 80°C 

for 15 min to purify the PCR product. Five microliters of purified sample were used for 

sequencing, with specific primers (Table 3), and Dye Terminator Cycle Sequencing 

(DTCS) kit (Beckman Coulter). Twenty microliter of sequencing PCR were performed 

for each primer. 3 M NaOAc, 100 mM EDTA, and glycogen were added to the PCR 

product. After that 60 µl of 100% ethanol were added and mixed well by vortexing, then 

centrifuged at 18,000 rpm at 4°C for 15 min. The liquid was removed and the pellets were 

washed twice times with 200 µl 70% ethanol. Finally, the ethanol was removed and the 

sample was air dried. The sample was then resuspended in 40 µl of sample loading 
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solution (SLS) (Beckman Coulter). Samples were transferred to a CEQ sample plate and 

overlaid with mineral oil and then sequenced using CEQ™ 8000 Genetic Analysis 

System. The completed sequencing result of the inserted fragment was compared by using 

BLAST program (http://www.ncbi.nlm.hih.gov/BLAST/). The fragments from cloning 

were considered to be right gene if they were identified with the fragment from GenBank 

with a percentage of ≥90. 

 

3.3.1.10  Gene expression analysis by semi-quantitative RT-PCR 

The cDNA from immature oocyte, mature oocyte, 2-cell, 4-cell, 8-cell, 16-cell, blastocyst 

and muscle was performed to measure the DNMT1 expression isoforms using semi-

quantitative RT-PCR. GAPDH was adopted to give the same plateau phase PCR signal 

strength. Primer sequence and optimal PCR annealing temperature are listed in Table 3. 

The PCR program initially started with a 95°C denaturation for 5 min, followed by 29 

cycles of 94°C for 30 s, annealing step for 30 s and 72°C for 1 min. The final extension 

was at 72°C 10 min. The PCR product was visualized on 2.0% agarose gel stained with 

ethidium bromide. 

 

3.3.1.11 Gene expression analysis by quantitative RT-PCR 

The ABI Prism® 7000 apparatus (Applied Biosystems) was used to perform the 

quantitative real time PCR analysis using SYBR® Green Universal PCR Master Mix 

(Applied Biosystem) incorporation for dsDNA-specific fluorescent detection dye. The 

amount of cDNA present in a sample was measured as a function of how quickly a 

fluorescent signal is first observed above threshold (CT value) during the process of 

sequence amplification. The threshold cycle (CT) is the point at which the fluorescence 

values are recorded during every cycle and represents the amount of the product amplified 

to that point in the amplification reaction. The more templates present at the beginning of 

the reaction, the fewer number of cycles it takes to reach this point. 

 

The plasmid concentration was converted into number of copies (molecules) using the 

program Weight to Molar Quantity (www.molbiol.ru/eng/scripts/01_07.html). The 

plasmid solution was diluted several folds to be at a concentration range similar to the 

target in the embryos. Serial dilutions were freshly prepared for RT-PCR from 101 to 108 

copy numbers in 50 µl volume. 
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The SYBR® Green dye can bind to any DNA and generate fluorescence. Therefore an 

additional verification was achieved by plotting fluorescence as a function of temperature 

to generate a melting or dissociation curve of the amplicon, which is sequence specific. 

This curve has been used to distinguish between the amplicon and non-specific DNA. The 

dissociation curve was produced at the end of PCR by monitoring fluorescence 

continuously while slowly heating the sample from 60°C to 95°C at 0.2°C intervals to 

observe the loss of fluorescence at the denaturing temperature. As the products specificity 

is determined entirely by its primers, an optimization step has been done for each pair of 

primers before quantification. 

 

Optimization of the primers concentration has been done to determine the minimum 

primer concentrations giving the lowest threshold cycle without primer dimer formation. 

For each primer pairs, nine reactions using different combinations of each primer with a 

total 20 µl were carried out. The dissociation curves generating the lowest primer dimer 

by observing the absence of non specific amplification, the combination was selected for 

target quantification. 

 

GAPDH was quantified as endogenous control for RT-PCR. The DNMT1 transcript was 

quantified at 8-cell and blastocyst stage to assess the suppression and inhibition of 

DNMT1. Moreover, independent transcript of DNMT3a and DNMT3b had been 

quantified at 8-cell stage to assess the specificity of mRNA suppression by the SpsiRNA. 

In addition, the IGF2, IGF2R, and IGFBP-4 transcripts have been also quantified to 

investigate the subsequent suppression and inhibition of DNMT1 at blastocyst stage. The 

ABI Prism® 7000 apparatus was used to perform the quantitative analysis using SYBR® 

Green Universal PCR Master Mix (Applied Biosystem) incorporation for dsDNA-specific 

fluorescent detection dye. Quantitative analyses of all studied transcripts were performed 

in comparison with GAPDH as an endogenous control and were run in separate wells. 

The primer sequences were designed for RT-PCR amplification according to the bovine 

cDNA sequence (Table 3) using Primer Express® Software v2.0 (Applied Biosystems). 

Standard curves were generated for both target and endogenous control genes using serial 

dilutions of plasmid DNA (101–108 molecules). The RT-PCRs were performed in 20 µl 

reaction volume containing 10.2 µl SYBR® Green Universal PCR Master Mix (Applied 

Biosystem), optimized concentration of gene specific forward and reverse primer 
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combinations, and 2 µl embryonic cDNA. During each PCR reaction samples from the 

same cDNA source were run in duplicate to control the reproducibility of the results. A 

universal thermal cycling program with an initial denaturation step at 95°C for 10 min, 45 

cycles of denaturation at 95°C for 15 s and 60°C for 60 s was used to quantify each gene 

of interest. After the end of the last cycle, a dissociation curve was generated by starting 

the fluorescence acquisition at 60°C and taking measurements every 7 s interval until the 

temperature reached 95°C. 

 

3.3.1.12 Protein analysis by western blotting  

A total of 80 8-cell stage and 40 of Day 8 blastocyst embryos from each treatment group 

and uninjected control were lysed with sample loading buffer to denature protein 

structure. The equal amount of protein normalized by adjusting the same numbers of 

embryos from each treatment groups were used for protein analysis. The embryos were 

homogenized in sample loading buffer by boilng at 95 °C for 5 min. 

 

Twelve percentage acrylamide SDS-PAGE gel was used for protein segregation. Two 

solutions were prepared a separating gel and a stacking gel. A separating gel was used to 

separate proteins into their respective sizes allowing sharp bands to be seen, whereas the 

stacking gel organizes proteins before they enter the separating gel. Glass plates were 

cleaned thoroughly using soap and distilled water and finally cleaned using 70% ethanol. 

The sandwich glass plates were introduced into the support piece and placed on a flat 

surface. First, the separating gel (30% acrylamide, 0.8 % bis acrylamide, 1M Tris-HCl 

with pH 8.8, 10% SDS, 20% APS, TEMED) was prepared, quickly mixed and poured in 

3/4 volume of sandwich glass plate and the remaining space (1/4 volume) was filled with 

isopropanol to avoid air bubbles and normalize the surface the gel. The isopropanol was 

poured off after polymerization took place. The stacking gel (30% acrylamide, 0.8% bis 

acrylamide, 1M Tris-HCl with pH 6.8, 10% SDS, 20% APS, TEMED) was added on the 

top of separating gel and then a 10 well comb was inserted.  

 

The sandwich glass plates were fixed with the U-shape rubbers and then put into the 

chamber. The upper reservoir was filled with running buffer and then the samples were 

loaded in the prepared wells. The SDS-PAGE was run 1 hr with a standard vertical gel 

electrophoresis apparatus (BioRad) at 10 mA. 
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Proteins were then transferred into a nitrocellulose transfer membrane (Protran®, 

Schleicher&Schuell, BioScience) using the Trans-Blot Semi-Dry Transfer Cell (BioRad). 

A transfer membrane was prepared by soaking it in wetting solution for a few seconds. 

Three pieces of filter paper were wetted in anode buffer I and placed on the anode plate of 

the blotter. Three piece of filter paper were soaked in anode buffer II and placed on top of 

filter papers previously placed on electrode. The membrane was equilibrated in water for 

5 min, then removed from water and placed on top of filter paper stack. The gel was 

placed on top of the transfer membrane and finally, three pieces of filter paper were 

soaked in cathode buffer and placed on top of the gel. Time of transfer was 1 hr using 100 

mA per each gel (1.75mA/cm2/hr). After transfer was completed, the blot membrane was 

washed two times with water and then stained with ponceau-S (Roth). The blot membrane 

was washed twice times in TBST (10 min/time). 

 

The blot membrane was placed into blocking buffer (1% PVP). It was incubated on the 

shaker at room temperature for 1 hr to prevent a non-specific absorption of the 

immunological reagent. The blocking solution was poured off and 10 ml of primary 

antibody in 0.1% blocking buffer was added. The primary antibody, anti-mouse 

monoclonal to DNMT1 protein (Abcam, Cambridge, UK) was used at a dilution of 1:800 

of 0.1% PVP in TBST. The primary antibody was poured off and then the blot membrane 

was washed for 10 min in 10 ml washing buffer. It was incubated overnight on shaker at 

4°C. The washing step was done with 20 ml TBST six times 10 min each. The secondary 

antibody, horseradish-peroxidase (HRP) conjugated anti-mouse antibody (Abcam, 

Cambridge, UK) was used a dilution of 1:25,000 in 0.1% PVP in TBST. The blot 

membrane was then incubated with 10 ml of secondary antibody on shaker at room 

temperature for 1 hr. The blot membrane was washed with 20 ml TBST six times 10 min 

each.  

 

The ECL Plus Western Blotting Detection (Amersham Biosciences) was employed using 

the manufacturer’s protocol. The detection solution A and solution B were mixed in a 

ratio of 40:1 and the final volume of detection reagent required was 0.1 ml/cm2. The 

mixed detection reagent was poured on the blot membrane followed by incubation for 5 

min at room temperature. The blot membrane was placed on to a fresh piece of saran 

wrap. The wrapped membrane was placed side up in an X-ray film cassette. A sheet of 
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autoradiography film (Kodak®Biomax XAR film, Kodak) was placed to cover over 

membrane. The film was exposed for 5-30 min in the dark room. To visualize the film, 

the exposed film was then soaked in developer solution (Kodak®Kodak) for 5 min, water 

for 5 min, and finally fixed with fixation solution for 5 min (Kodak®Kodak). 

 

3.3.1.13 DNA fragmentation detection by TUNEL staining  

A total of 114 blastocysts, those injected with SpsiRNA (n= 40), 5-AZA (n=22), 

nuclease-free water (n=25), and uninjected control (n=27) were fixed in 4% 

paraformaldehyde (P-6148, Sigma, Germany) in PBS for 1 hr at room temperature, and 

then washed three times with PBS. Embryos were placed into 50 µl drops of TUNEL 

reagent (Roche Diagnostics GmbH, Mannheim, Germany) covered with paraffin oil and 

incubated at 37°C for 60 minutes under dark and moist conditions. Negative control 

embryos were apoptosis induced by using the protein kinase inhibitor staurosporine 

(STS). Embryos were incubated in culture media containing 10 µM STS for 26 hr and 

they were finally subjected to TUNEL reagent in the absence of deoxynucleotide 

transferase enzyme. Positive control embryos were treated with 50 IU/ml of DNase 

(Roche Diagnostics GmbH, Mannheim, Germany) for 10 min at 37°C before incubation 

with TUNEL reagent. Counter staining was performed by incubating embryos in the PBS 

solution containing 6.5 µg/ml bisbenzemide (Hoechst H33528, Sigma) for 4 min followed 

washing three times in PBS. Embryos were mounted on glass slides and examined under 

an epifluorescence microscope (DM-IRB, Leica, Bensheim, Germany). Two standard 

filters, DAPI filter (emission wavelength: 425 nm) were employed to determine the 

number of inner cell mass (ICM) and trophectoderm (TE) cells, while FITC (emission 

wavelength: 512 nm) was used to detect TUNEL stained nuclei. The total number of cells 

and the number of cells with DNA fragmented nuclei were counted.  

 

3.3.2 Experiment 2 

3.3.2.1 DNA isolation  

Sperm samples were thawed from -80°C and then mixed with 4 ml 0.9% sodium chloride 

solution. The mix was centrifuged at 5,000×g for 10 min and the supernatant was 

discarded. The pellet was resuspended in 4 ml digestion buffer. In order to digest protein 

in the pellet suspension, 4 ml lysis buffer containing proteinase K, SDS and 

mercaptoethanol were added and the samples were incubated at 56°C overnight. Two 
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times an equal volume of phenol-chloroform (1:1 v/v) was added and mixed thoroughly 

and centrifuged at 5,000×g for 10 min. Two layers of aqueous supernatant solution were 

formed and the upper layer was collected and transferred into fresh tubes. To the 

supernatant, one-tenths volume of 3 M sodium acetate (pH 5.2) was added followed by an 

equal volume of isopropanol and gently shaking until precipitation of DNA. The DNA 

was washed with 200 µl of 70 % ethanol twice and dried at room temperature. The DNA 

pellet was resuspended with 1 ml TE buffer and kept at 4°C. The DNA was diluted to a 

final concentration of 50 ng/µl.  

 

Embryos were digested with 10 µl of lysis buffer, a solution containing 1.13 mg/ml 

proteinase K in 50 mM KCl, 50 mM Tris-HCl (pH 8.3), 2.5 mM MgCl2, and 0.5% Tween 

20. The digestion was carried out at 56°C overnight. Finally, the digestion was heated to 

inactivate the proteinase K at 98°C for 8 min. The lysed sample was stored at 4°C for 

further genotyping.  

 

3.3.2.2 Genotyping  

Bull sperms and embryos were genotyped for single nucleotide polymorphisms of 

DNMT1 (C/T), DNMT3a (C/T), and DNMT3b (A/G) with different primer pairs as 

shown in Table 4. PCR amplification was performed in a 20-µl reaction volume 

containing 1.0 U Taq DNA polymerase, 50 ng of each primer, 200 µM of each dNTP, 2.0 

µl 10x PCR buffer, and 2 µl DNA template. PCR started with denaturing at 95°C for 5 

min, followed by 35 cycles of 94°C for 30 s, annealing (temperatures as indicated in table 

4) for 30 s and 72°C for 1 min. The final extension was at 72°C 10 min. In addition to 

genotyping the embryos, the PCR products were amplified in a nested PCR reaction using 

primer pairs; DNMT1 (forward primer: 5’-CAG-TGC-CTC-CAG-GAC-TTC-TC-3’, 

reverse primer: 5’-TTC-CGA-ACG-TTC-TCC-AAG-AG-3’), DNMT3a (forward primer: 

5’-CTC-TCC-TCC-GTC-CTG-AGT-TG-3’, reverse primer: 5’-CCG-AGA-GAG-GCT-

CTA-CAT-GC-3’), and DNMT3b (forward primer: 5’-TAA-GAC-TGT-GTG-GCC-

CTG-TG-3, reverse primer: 5’-ACT-GGC-ACA-ATG-GTT-CT-TCC-3’), respectively. 

The nested PRC reaction included 4 µl of PCR product, 50 ng of each primers, 200 µM of 

each dNTP, 2 µl of 10x PCR buffer, and 1 U Taq DNA polymerase. The temperature 

cycles were as described for the first PCR. 
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Table 4: Detail of primers used for genotyping 

Gene Primer sequences Annealing 

temperature 

(°C) 

Product  

size (bp) 

5’-TTGAAGATCCTCCGAACCAC-3’ DNMT1 

(AY244709) 5’-GACCACCAGGGAGTTCTTGA-3’ 
60 602 

5’-CACACGCACACACACTGAAG-3’  DNMT3a 

(NW001492965) 5’-TCCTTTTAGCCAGTGGAGTA-3’ 
60 611 

5’-CTGAAAGGAATCCAGCTTGC-3’ DNMT3b 

(NW_001493157) 5’-TGAGTGGGTCCATTCCTCTC-3’ 
60 641 

 

DNA samples from bulls and embryos were genotyped using PCR-RFLP (restriction 

fragment length polymorphisms) method. The restriction enzymes were selected 

according to their recognition size (http://tools.neb.com/NEBcutter2/index.php) of the 

polymorphism. For genotyping gene at the locus DNMT1 (position: 3593), DNMT3a 

(position: 308446), and DNMT3b (position: 337339), PCR products were digested with 

the restriction enzymes BcnI, BspLI, and NdeI (Fermentas, Germany), respectively. The 

digestions were carried out in 10 µl reaction volume containing 1 U restriction enzyme, 1 

µl 10x restriction buffer (Fermentas, Germany), 3.9 µl ddH2O and 5 µl PCR product. 

Finally, digests were incubated at 37°C for 6 hr. Digested products were then visualized 

on 3% agarose gel stained with ethidium bromide. The different fragment lengths between 

non- and digested DNAs reflected the genotype of a specific DNA sample as shown in 

figure 7. 
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Figure 7: Picture of PCR-RFLP for genotyping of DNMT1 (A), DNMT3a (B), and 

DNMT3b (C) using restriction enzyme BcnI, BspLI, and NdeI, respectively.  

 

3.4 Statistical analysis 

3.4.1 Suppression of DNMT1  

The mRNA expression of the gene silencing studies was analyzed based on the relative 

standard curve observed from the RT-PCR. The reference gene GADPH was used for 

normalization. The relative expression data were analyzed using the Statistical Analysis 

System (SAS) version 8.0 (SAS institute Inc.) software package. Differences in mean 

values between two or more treatment groups were tested using ANOVA variance 

analysis followed by a multiple pair wise comparisons using t-test. If the P-value is ≤ 

0.05, it is considered to be significant. 
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3.4.2 Association analysis of DNMT1, DNMT3a, and DNMT3b sequence variant 

Allele and genotype frequencies were calculated and tested for Hardy-Weinberg 

equilibrium by chi-square analysis.  

 

For the association analysis of single nucleotide polymorphisms of DNMT1, DNMT3a 

and DNMT3b following traits were observed: NRR; semen quality traits namely VOL, 

CONC, MOT, and SUVR; and sperm flow cytometric parameter namely PMI, PAS, and 

DFI. Linear mixed model, using the procedure “Proc Mixed” in SAS were applied to the 

analysis. NRR was calculated by No. of non-return cows (56-days last service) dividing 

by No.of inseminations. The bull fertility traits were assumed to be normally distributed 

for each bull. Multiple pair wise comparisons were conducted using the Tukey-Kramer 

test. Differences of P ≤ 0.05 were considered as significant association. All analyzes were 

conducted with the SAS 9.1 Package (SAS Inc., Cary, NC, USA).  

 

3.4.2.1 NRR 

The following linear mixed model was used (Model 1): 

 

  yijkn   = µ +  TECi + BSTATj +BRk + GENl + Bn + εijkln 

 

Where:  

yijkln   NRR under investigation per cow i inseminated with bull n,  

µ   Overall mean,  

TECi   Fixed effect for the AI-technician, veterinarian, and farm owner who 

inseminated cow i,  

BSTATj  Fixed effect for the status of bull, tested and approved bulls j , 

BRk   Fixed effect for the colour of bull, black and brown bulls k 

GENl   Fixed effect for the genotypes of the genes, DNMT1, DNMT3a, and 

DNMT3b under investigation for bull l,  

Bn   Random effect of the bull n, 

εijkln   Error 
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3.4.2.2 Sperm quality traits and sperm flow cytometric parameters 

 

The following linear mixed model was used (Model 2): 

 

  ykln   = µ + BRk + GENl + Bn + εkln 

 

Where:  

yijkln   Traits and parameters under investigation per cow i inseminated with  

bull n,  

µ   Overall mean,  

BRk   Fixed effect for the colour of bull, black and brown bulls k 

GENl   Fixed effect for the genotypes of the genes, DNMT1, DNMT3a, and 

DNMT3b under investigation for bull l,  

Bn   Random effect of bull n, 

εkln   Error 

 

3.4.2.3 Embryo development 

Analysis of variance using “GENMOD” was performed to investigate the effect of 

genotypes DNMT1, DNMT3a, and DNMT3b depending on embryonic development. Pair 

wise comparisons were done using the chi-square test. Differences of P ≤0.05 were 

considered as significant. The following statistical model was used (Model 3): 

 

yi = µi + Ci + εi  

Where;  

yi  Embryonic development investigated of embryo i 

µ  The overall mean of embryo i  

Ci  Effect of genotype DNMT1, DNMT3a, and DNMT3b of embryo i 

εi  Error 
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4 Results  

4.1 Effect of DNMT1 suppression 

4.1.1 DNMT1 expression isoforms and its profile 

The results showed that both the primer set A and B amplified cDNA with the same PCR 

signal strength from muscle, immature oocyte, mature oocyte, 2-cell, 4-cell, and 

blastocyst except the 8-cell, 16-cell cells. (Figure 8). In addition, the cDNA product of 

pooled embryos was further confirmed by comparative sequence analysis with somatic 

cDNA from muscle (Figure 9). The results clearly indentifying the reading frame of 

embryonic ATG starting codon necessary to produce the DNMT1o mRNA; however, the 

DNMT1o was not able to amplify. Therefore, only the somatic DNMT1 isoform is 

expressed during bovine preimplantation stage embryos. 

 

 

Figure 8: The semi quantitative PCR analysis demonstrating the PCR product amplified 

with primer set A and B using cDNA sample from different development 

stages of bovine preimplantation embryos. GADPH was adopted to give the 

same plateau phase (33 cycles) PCR signal strength (Data not shown) 

 

 

Figure 9: A sequence alignment of the oocyte-specific DNMT1 ATG initiation region of 

bovine DNMT1 gene from cDNA of muscle and embryos. 
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The DNMT1 mRNA expression profile was analysed throughout in vitro preimplantation 

embryo development RT-PCR (Figure 10). The relative gene expression of DNMT1 was 

higher during the mature oocyte stage and was gradually down-regulated at the blastocyst 

stage. 
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Figure 10: Relative abundance of DNMT1 mRNA (mean±SD) in in vitro bovine 

preimplantation stage embryos 

 

4.1.2 Effect of suppression of DNMT1 on embryonic development at 8-cell and 

blastocyst stage 

In order to avoid any effects of physical injury on further developmental competence, 

only those zygotes which survived the microinjection procedure were considered in the 

subsequent developmental data analysis. Developmental data were recorded 48 and 72 hr 

post microinjection (pmi). There was no significant difference among embryos of the 

different treatment groups on early cleavage rate at 48 hr pmi (data not shown). However, 

the proportions of 8-cell embryos was significantly lower (P<0.05) in SpsiRNA and 5-

AZA compared with embryos from water injected and uninjected control groups  

(Table 5).  
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Table 5: Proportions of phenotype development (mean±SD) of embryos in different 

treatment groups 72 hr pmi 

proportion of cleavage 

Treatment 
No.of 

zygote 

Sur-

vival 

 rate 
2-cell 4-cell 8-cell 16-cell 

Total 

cleavage 

Uninjected 250 97.6 13.1±4.5 20.9±5.9 30.7±6.2a 2.0±1.0 66.8±8.8a 

Water 350 83.7 15.3±4.4 17.9±1.9 26.8±2.9a 1.5±1.1 61.6±9.8a 

SpsiRNA 352 81.3 13.9±5.4 20.5±4.5 16.3±4.5b 1.2±0.9 52.0±9.9b 

5-AZA 355 80.2 16.3±3.0 20.3±3.5 17.7±4.9b 2.3±0.7 56.8±5.5b 

a, b: P<0.05 

Similarly, the proportions of embryos that developed to blastocyst stage were 

significantly lower (P<0.05) in 5-AZA compared with SpsiRNA, water injected and 

uninjected control (Table 6). 

 

Table 6: In vitro development of bovine zygote at blastocyst stage after microinjection of 

water, SpsiRNA and 5-AZA 

Blastocyst rate (%) Treatment No. 

zygotes 

Survival  

rate (%) Day 7 Day 8 

Total blastocyst 

(%) 

Uninjected 230 96.1 14.5±4.3a 14.9±2.7 29.4±2.1a 

Water 350 82.7 10.4±3.2a 13.7±2.4 24.1±5.3 a 

SpsiRNA 352 81.8 9.0±3.3a 14.2±6.1 23.4±2.1a 

5-AZA 357 85.2 6.8±1.2b 10.1±4.9 16.9±4.9 b 

a, b: P<0.05 
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4.1.3 Effect of microinjection of SpsiRNA and 5-AZA on mRNA expression  

As shown in table 5, the proportions of 8-cell embryos and blastocysts were lower in 

SpsiRNA and 5-AZA treated groups compared to embryos from water injected and 

uninjected control groups. Moreover, the selective suppression of DNMT1 mRNA was 

also confirmed by quantification of the DNMT3a and DNMT3b mRNA in the treatment 

groups. The result showed that the microinjection of SpsiRNA had reduced (P<0.05) the 

target mRNA by 80 and 50% in 8-cell and blastocyst stage embryos, respectively, 

compared to uninjected control groups (Figure 11 and Figure 12).  
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  a, b: P<0.05 

Figure 11: Relative abundance of DNMT1 mRNA levels (mean±SD) of 8-cell stage 

embryos from different treatment groups.  
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  a, b: P<0.05 

Figure 12: Relative abundance of DNMT1 mRNA abundance levels (mean±SD) at 

blastocyst stage from different treatment groups.  
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Microinjection of 5-AZA had no effect on DNMT1 mRNA levels at neither 8-cell stage 

embryos nor blastocyst stage. Microinjection of SpsiRNA and 5-AZA had no effect on 

the relative abundance of DNMT3a and DNMT3b observed at 8-cell stage in vitro bovine 

preimplantation stage embryos (Figure 13). 
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Figure 13: Relative abundance of DNMT3a and DNMT3b mRNA (mean±SD) at 8-cell 

stage embryos from different treatment groups. 

 

4.1.4 Effect of DNMT1 mRNA suppression on protein product  

Western blot analysis was performed to determine the subsequent suppression of DNMT1 

mRNA using proteins extracted from each treatment group. As shown in figure 14 (A), 

reduced the intensity of DNMT1 protein (MW 198 kDa) at 8-cell stage embryos. 

However, microinjection of SpsiRNA had no affect on degradation of protein at 

blastocyst stage (Figure 14 B). In addition, microinjection of 5-AZA had no significant 

effect on protein found both at 8-cell and blastocyst stage embryos. 
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                   (1)            (2)         (3)          (4)            (5)  

 

Figure 14: Western blot analysis for detection of DNMT1 protein at 8-cell stage (A) and 

blastocyst stage (B). (1) Marker, (2) Uninjected, (3) Water,  

(4) SpsiRNA, (5) 5-AZA  

 

4.1.5 Effect of suppression on incidence of apoptosis  

The TUNEL assay was performed to detect the fragments with DNA damage. The total 

cell number and the TUNEL stained nuclei were recorded to calculate the apoptotic index 

(API). As shown in figure 15, no difference was observed in the total cell number among 

treatment groups. 
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Figure 15: The total cell number of blastocysts stage between the different treatment 

groups  

 

However, the highest API (P<0.05) was found in SpsiRNA (4.2±2.0) and 5-AZA 

(4.1±1.7) injected groups compared to water injected (2.8±2.1) and uninjected control 

(2.9±2.3) (Figure 16) 
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  a, b: P<0.05 

Figure 16: The apoptotic index of blastocysts stage between the different treatment 

groups.  

 

4.1.6 Effect of gene expression of imprinted genes due to suppression of DNMT1 

To evaluate the effect of suppression of DNMT1 on expression of some candidate 

imprinted genes, the relative expression of IGF2, IGF2R and IGFBP-4 was quantified. 

The results showed that microinjection of SpsiRNA had significantly increased the 

expression of IGF2 (1.67 and 1.55 times), respectively compared to uninjected control. 

No effects of the microinjection of SpsiRNA and 5-AZA on the expression of IGF2R and 

IGFPB-4 were found (Figure 17).  
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      a, b: P<0.05 

Figure 17: Relative gene expression of IGF2 (black bars), IGF2R (scattered bars) and 

IGFBP-4 (lined bars) at blastocyst stage.  
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4.2 Association analysis of DNMT1, DNMT3a and DNMTT3b sequence variants 

with bull fertility traits 

4.2.1 Test of Hardy-Weinberg equilibrium 

The Chi-square test revealed that the DNMT1 and DNMT3a loci were in Hardy-

Weinberg equilibrium in the bull population while DNMT3b is not in Hardy-Weinberg. In 

the embryo population, the DNMT3a locus was in Hardy-Weinberg equilibrium (Table 

7).  

 

Table 7: Chi-square test revealing genotypes of the loci in Hardy-Wienberg equilibrium 

Bull population Embryos Locus 
N 

X2 P-value 
N 

X2
 P-value 

DNMT1 300 0.45 0.96 249 13.99 0.001* 

DNMT3a 306 0.63 0.53 286 1.72 0.12 

DNMT3b 303 3.41 0.03* 310 0.0006 0.002* 

* shows significant difference (P<0.05) 
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4.2.2 Description of bull fertility traits data 

4.2.2.1 NRR 

The NRR (%) was calculated by number of non-return cows (56 days last service) divided 

by number of inseminations. Number of bulls (N), number of inseminations (n), ranges 

(minimum and maximum), and mean, standard deviation (SD) in population are shown in 

table 8. 

 

Table 8: Number of bulls (N), number of inseminations (n), mean, standard deviation 

(SD) and range of NRR 

Number of bulls (N) Number of inseminations (n) Min Max Mean ± SD 

310 368,694 58 92 74.08±6.87 

 

For the NRR, the mean and standard deviations were 74.08 and 6.8, respectively. The 

NRR within all observation ranged widely from 58 to 92% within the bull population. 

 

4.2.2.2 Sperm quality traits 

The sperm quality traits including VOL (ml), CONC (x106/ml), MOT (%) and SUVR (%) 

were obtained from each ejaculation. The semen quality, number of bulls (N), number of 

inseminations (n), range (minimum and maximum), means, and standard deviation (SD) 

are shown in table 9:  

 

Table 9: Number of bulls (N), number of inseminations (n), mean, standard deviations 

and range of sperm quality trait 

Sperm quality 

traits 

Number of bulls  

(N) 

Number of 

inseminations (n) 

Min Max mean± SD 

VOL 145 2,465 3 6 4.50±2.49 

CONC 145 2,465 0.51 2.15 1.33±3.31 

MOT 145 2,465 70 80 75.00±8.12 

SUVR 145 2,465 10 60 50.00±8.01 

 

The mean and standard deviation of VOL, CONC, MOT and SUVR were 4.50±2.49, 

1.33±3.31, 75.00±8.12, and 50.00±8.01, respectively.  
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4.2.2.3 Sperm flow cytometric parameters 

Using flow cytometer technique, the three additional PMI, PAS and DFI of the sperm 

were recorded. The number of bulls (N), number of inseminations (n), range (minimum 

and maximum), means, and standard deviation (SD) observed in the population are shown 

in table 10:  

 

Table 10: Number of bulls (N), number of inseminations (n), mean, standard deviations 

and range of sperm flow cytometric parameters 

Sperm flow cytometric 

parameters 

Number of bulls  

(N) 

Number of 

inseminations 

(n) 

Min Max mean± SD 

PMI 177 990 52 56 54.18±2.43 

PAS 177 990 22 28 25.54±3.87 

DFI 177 990 3 5 4.30±1.41 

 

The mean and standard deviation of the sperm flow cytometric parameters, PMI, PAS, 

and DFI were 54.18±2.43, 25.54±3.87, and 4.30±1.41, respectively.  
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4.2.3 Results of genotyping 

A) Single loci 

The genotype and allele frequencies of the diallelic loci within the bull population were 

calculated and shown in table 11 and table 12. 

 

Table 11: The genotype frequencies and number of bulls (N) genotyped at the loci 

DNMT1, DNMT3a, and DNMT3b 

Locus Genotype Number of bulls (N) Frequency (%) 

CC 30 10.0 

CT 133 44.3 

DNMT1 

TT 137 45.7 

CC 84 27.4 

CT 160 52.4 

DNMT3a 

TT 62 20.2 

AA 51 16.7 

AG 175 57.6 

DNMT3b 

GG 77 25.7 

 

The frequencies of heterozygote CT and homozygote TT variation of DNMT1 were 44.3 

and 45.7%, respectively. The homozygote CC was rare with only 10% in the bull 

population. For DNMT3a and DNMT3b, the heterozygote CT and AG variation were 

most frequent. The homozygote CC, TT and AA, GG ranged between 16.7 and 27.4% 

(Table 11). The allele frequencies found in the bull population at the loci DNMT1, 

DNMT3a, and DNMT3b are shown in table 12.  
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Table 12: Alleles, and allele frequencies found in the bull population at the loci DNMT1, 

DNMT3a, and DNMT3b 

 

Locus Allele Frequency (%) 

C 32.1 DNMT1 (N=300) 

T 67.9 

C 53.6 DNMT3a (N=306) 

T 46.4 

A 45.5 DNMT3b (N=303) 

G 54.5 

 

In table 12, allele T of DNMT1 was very frequent, nearly 70%. The allele T and G of 

DNMT3a and DNMT3b were almost equal, about 50% in the bull population. 

 

The genotype and allele frequencies of the single loci within the embryo population with 

different development stages were calculated and the results are shown in table 13 and 

table 14. 

 

Table 13: The number of genotyped embryos (N) and genotype frequencies (Freq) at the 

loci DNMT1, DNMT3a, and DNMT3b  

Early cleavage Late cleavage Blastocyst Locus Genotype 

N Freq (%) N Freq (%) N Freq (%) 

CC 4 2.5 11 12.6 12 15.0 

CT 19 23.8 19 21.8 25 31.3 

DNMT1 

TT 59 73.7 57 65.5 43 53.8 

CC 18 22.5 37 31.9 17 18.9 

CT 36 45.0 42 36.2 49 54.4 

DNMT3a 

TT 26 32.5 37 31.9 24 26.7 

AA 15 17.9 16 12.3 17 18.5 

AG 44 50.0 55 42.3 49 53.3 

DNMT3b 

GG 29 33.9 59 45.4 26 28.3 
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The homozygote genotype TT of DNMT1 was most frequent in the early cleavage, late 

cleavage, and blastocyst embryo groups (Table 13). The frequency of homozygote TT 

was 73.7, 65.5, and 53.8%, while the heterozygote CT was moderate with frequencies 

23.8, 21.8, and 31.3%, respectively. The heterozygote CT and AG of DNMT3a and 

DNMT3b were most frequent in the early cleavage, late cleavage, and blastocyst embryo 

groups. The frequencies were 45.0, 36.2, 54.4% and 50.0, 42.3, 53.3%, respectively 

(Table 13). The allele frequencies found in the genotyped embryos at the loci DNMT1, 

DNMT3a, and DNMT3b are shown in table 14. 

 

Table 14: Alleles frequencies at the loci DNMT1, DNMT3a, and DNMT3b 

Locus Allele Early cleavage Late cleavage Blastocyst 

C 14.3 23.5 30.6 DNMT1(N=249) 

T 85.7 76.5 69.4 

C 45.0 50.0 46.1 DNMT3a (N=286) 

T 55.0 50.0 53.9 

A 41.10 33.4 45.0 DNMT3b (N=310) 

G 58.9 66.6 55.0 

 

As shown in table 14, allele T and G of DNMT1 and DNMT3b were 85.7, 76.5, 69.4% 

and 58.9, 66.6, and 55.0% in early cleavage, late cleavage, and blastocyst group, 

respectively. For DNMT3a, the allele frequency C and T were similar. 
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B) Combined loci 

In this experiment, the interaction effect of DNMT1, DNMT3a, and DNMT3b were also 

observed in the bull population as shown in table 15.  

 

Table 15: The genotype frequencies (Freq) and number of bulls (N) at the combined loci 

DNMT1xDNMT3axDNMT3b  

Genotype N Freq (%) Genotype N Freq (%) 

CCxCCxAA 1 0.46 CTxCTxGG 11 4.91 

CCxCCxAG 1 0.46 CTxTTxAA 5 2.23 

CCxCTxAA 3 1.34 CTxTTxAG 9 4.01 

CCxCTxAG 7 3.12 CTxTTxGG 3 1.34 

CCxCTxGG 4 1.78 TTxCCxAA 4 1.78 

CCxTTxAA 2 0.89 TTxCCxAG 10 4.46 

CCxTTxAG 9 4.02 TTxCCxGG 3 1.34 

CCxTTxGG 2 0.89 TTxCTxAA 16 7.14 

CTxCCxAA 8 3.57 TTxCTxAG 34 15.17 

CTxCCxAG 11 4.91 TTxCTxGG 7 3.12 

CTxCCxGG 4 1.78 TTxTTxAA 3 1.34 

CTxCTxAA 18 8.03 TTxTTxAG 8 3.57 

CTxCTxAG 39 17.41 TTxTTxGG 2 0.89 

 

As shown in the table 15, the frequency of CTxCTxAG was the highest (17.41%) while 

CCxCCxAA and CCxCCxAG were both the lowest (0.46%) in the bull population.  
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4.2.4 Results of associations 

4.2.4.1 NRR 

A) Single loci 

Association of the different genotypes with NRR were analyzed using model 1. The 

statistical results were given as least square means and their standard errors. The 

representations of the effects of DNMT1, DNMT3a, and DNMT3b on the phenotypes of 

the bulls are shown in table 16. Analysis of variance revealed a significant association of 

DNMT1, DNMT3a, and DNMT3b with the NRR in the population.  

 

Table 16: Effect of DNMT1, DNMT3a, and DNMT3b genotypes on the Non return rate 

(NRR) (%) 

Locus No. of inseminations Genotype LSM±SE 

24,959 CC 70.50±0.03a 

21,7085 CT 75.77±0.03b 

DNMT1 

12,6650 TT 67.96±0.04c 

93,909 CC 72.65±0.04a 

228,338 CT 74.25±0.04b 

DNMT3a 

46,447 TT 67.36±0.05c 

42,543 AA 71.62±0.06a 

166,972 AG 73.23±0.07b 

DNMT3b 

159,179 GG 74.26±0.05c 

a, b, c: (P<0.001) 

 

Table 16 shows the estimates of NRR for bulls depending on the DNMT1, DNMT3a, and 

DNMT3b loci. For both the DNMT1 and DNMT3a loci, the NRR of heterozygous bulls is 

higher than those the homozygous genotypes.  
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B) Combined loci 

The interaction effect of the three genes DNMT1, DNMT3a, and DNMT3b was analysed 

in the bull population as shown in table 17. The results of the statistical analysis revealed 

a significant association of the combined genotypes DNMT1xDNMT3axDNMT3b with 

NRR.  

  

Table 17: Effect of combination of DNMT1, DNMT3a, and DNMT3b genotypes on 

NRR1 (%) 

Genotype No.of inseminations LSM ± SE 

CTxTTxGG 4,787 88.23±0.12 

TTxCTxGG 13,266 79.73±0.07 

TTxTTxAG 10,278 76.33±0.08 

TTxCCxAG 21,855 75.03±0.08 

CTxCTxGG 100,975 74.37±0.07 

TTxCTxAG 50,841 73.35±0.04 

TTxCCxGG 7,351 71.18±0.10 

CCxCTxAG 8,198 69.40±0.12 

CTxTTxGG 1,466 68.04±0.19 

TTxTTxAA 5,729 64.23±0.15 

TTxTTxGG 3,142 62.52±0.15 

 Significant difference (P<0.001) 

 

The Estimate of NRR for bulls depending on the DNMT1xDNTM3axDNMT3b ranged 

from 62.52 to 88.23%. Bulls with genotype TTxTTxGG and CTxTTxGG had the lowest 

and highest NRR, respectively (Table 17).  

 

4.2.4.2 Sperm quality traits 

A) Single loci 

The effects of the candidate genes DNMT1, DNMT3a, and DNMT3b on VOL, CONC, 

MOT, and SUVR were estimated according to the model 2. The results of the statistical 

analysis revealed that DNMT3a and DNMT3b were significantly associated with MOT. 

However, DNMT1, DNMT3a, and DNMT3b did not have a significant effect on VOL, 

CONC, and SUVR. No association was found of DNMT1 with MOT (Table 18). 
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Table 18: Effect of DNMT1, DNMT3a, and DNMT3b genotypes on sperm quality (%) 

Locus Genotype No.of 

inseminations 

VOL CONC MOT SUVR 

CC 248 4.65±0.31 1.25±0.17 72.74±0.43 48.34±0.54 

CT 979 4.79±0.34 1.36±0.16 72.60±0.53 48.79±0.54 

DNMT1 

TT 1,238 4.83±0.44 1.53±0.16 72.82±0.56 49.11±0.56 

CC 636 4.63±0.45 1.29±0.15 72.09±0.53a 47.69±0.74 

CT 1,368 4.90±0.34 1.39±0.16 72.10±0.44a 48.06±0.65 

DNMT3a 

TT 461 5.02±0.50 1.69±0.15 73.04±0.23b 48.78±0.59 

AA 414 4.60±0.56 1.41±0.12 73.00±0.62b 48.43±0.66 

AG 1,534 4.90±0.67 1.39±0.14 72.23±0.53a 47.88±0.54 

DNMT3b 

GG 517 5.00±0.55 1.55±0.13 72.00±0.47a 48.58±0.33 

a, b: (P<0.05) 

 

Table 18 shows estimates of VOL, CONC, MOT, and SUVR for the bull depending on 

the DNMT1, DNMT3a, and DNMT3b genotypes. Significant effects of the DNMT3a and 

DNMT3b gene on MOT were observed in the bull population. Bulls with homozygous 

genotype TT and AA of DNMT3a and DNMT3b had higher MOT than those of other 

genotypes, respectively. 

 

B) Combined loci 

In addition, the interaction effect of the three genes, DNMT1, DNMT3a, and DNMT3b 

was analysed. The statistical analysis revealed a significant association of the combined 

genotypes DNMT1xDNMT3axDNMT3b with MOT and SUVR in the bull population as 

shown in table 19. 
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Table 19: Effect of combination of DNMT1, DNMT3a, and DNMT3b genotypes on MOT 

and SUVR (%) 

LSM ± SE 
Genotype 

No.of inseminations 

MOT SUVR 

CCxCCxAG 17 56.78±2.81a 50.48±2.84cd 

CCxCTxAG 66 72.65±1.76b 41.44±1.81c 

CTxCCxGG 96 69.72±1.22 b 50.32±1.23d 

CTxCTxAA 68 70.96±1.40 b 49.46±1.41d 

CTxCTxAG 277 73.14±0.75 b 49.27±0.76d 

CTxTTxAG 145 73.33±1.08 b 49.48±1.10d 

TTxCCxAG 148 72.16±0.94 b 50.27±0.95d 

TTxCTxAA 185 73.36±1.04 b 48.45±1.06d 

TTxCTxAG 504 72.21±0.63 b 48.83±0.63d 

TTxCTxGG 119 70.96±1.15 b 49.17±1.17d 

TTxTTxAG 81 71.94±1.23 b 50.24±1.23d 

a, b: (P<0.01); c, d: (P<0.05) 

 

The estimates of MOT and SUVR ranged from 74.61 to 56.78% and 41.44 to 50.48%, 

respectively. The bulls with genotype CCxCCxAG and CCxCTxAG had the lowest MOT 

and SUVR, respectively. The bulls with genotype TTxCCxGG and CCxCTxAG had the 

highest MOT and SUVR, respectively. 

 

4.2.4.3 Sperm flow cytometric parameters 

The effects of the candidate genes DNMT1, DNMT3a, and DNMT3b on PMI, PAS, and 

DFI were estimated according to the model 2. The results of the statistical analysis 

revealed that only DNMT1 was associated with PAS. Bulls with the homozygous 

genotype CC had higher PAS than those with CT and TT. No association was found of 

DNMT3a and DNMT3b with PAS. No association was found among DNMT1, DNMT3a, 

and DNMT3b with MPI and DFI (Table 20). In addition, the interaction effect of the three 

genes, DNMT1, DNMT3a, and DNMT3b on PMI, PAS, and DFI, was not observed. 
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Table 20: Effect of DNMT1, DNMT3a, and DNMT3b genotypes on PMI, PAS and DFI  

Locus Genotype No.of 

inseminations 

PMI PAS DFI 

CC 76 40.29±1.63 31.21±1.44a 4.94±0.43 

CT 424 49.55±1.63 25.73±1.46b 4.38±0.53 

DNMT1 

TT 490 48.42±1.54 26.50±1.56b 4.65±0.46 

CC 262 45.07±1.64 28.66±1.55 5.06±0.53 

CT 557 49.07±1.53 26.13±1.56 4.47±0.44 

DNMT3a 

TT 171 50.43±1.65 24.48±1.15 4.33±0.43 

AA 166 51.13±1.65 22.84±1.62 4.30±0.42 

AG 541 47.35±1.67 28.08±1.64 4.41±0.53 

DNMT3b 

AG 283 48.15±1.55 25.28±1.63 5.17±0.47 

a, b: (P<0.05) 
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4.2.4.4 Embryonic development  

The effect of candidate genes DNMT1, DNMT3a, and DNMT3b on embryonic 

development early cleavage, late cleavage, and blastocyst were estimated according to the 

model 3. The chi-square results showed a significant association DNMT1 with embryonic 

development as shown in Table 21. Early cleavage with genotype CC was lower in 

frequency compared to both the late cleavage and blastocyst groups. No association of 

DNMT3a and DNMT3b with embryonic development was observed. 

 

Table 21: Effect of DNMT1, DNMT3a, and DNMT3b genotypes on embryonic 

development  

Genotype frequency (%) Locus Genotype 

Early cleavage Late cleavage Blastocyst 

CC 2.5a 12.6b 15.0b 

CT 23.8 21.8 31.3 

DNMT1 

TT 73.8 65.5 53.8 

CC 22.5 31.9 18.9 

CT 45.0 36.2 54.4 

DNMT3a 

TT 32.5 31.9 26.7 

AA 17.9 12.3 18.5 

AG 50.0 42.3 53.3 

DNMT3b 

GG 33.9 45.4 28.3 

a, b: (P<0.05) 
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5 Discussion 

DNA methylation is a major epigenetic modification involved in genomic imprinting that 

causes parental-origin-specific monoallelic expression of mammalian genes. Imprinted 

genes are established in the parental germline and then maintained throughout embryonic 

development. The imprinting genes play important roles in diverse biological phenomena 

such as embryonic development, placental formation and fetal growth (Reik and Walter 

2001). The first evidence that DNMT1 is essential for maintenance of imprinting genes 

comes from gene knockout mice performed by Li et al. (1993). Up to now, the functional 

study of DNMT1 gene on embryonic development and subsequent influence on imprinted 

gene expression has been limited in bovine preimplantation. In addition, the effect of 

DNMT1, DNMT3a and DNMT3b (DNMTs) genotypes on bull fertility traits and 

embryonic development has not been studied. In this study, we demonstrated that 

suppression of DNMT1 affects the embryonic development during preimplantation period 

and enhances IGF2 gene expression. Moreover, we show associations between sequence 

variants of DNMTs with bull fertility traits and early embryonic development. 

 

5.1 Expression of DNMT1 mRNA during early preimplantation  

During bovine preimplantation development, the genomic methylation pattern is erased 

during the first few cleavage divisions and then reasserted during the 8- to 16-cell 

transition (Dean et al. 2001). The specific DNMT enzymes responsible for dynamic 

genomic methylation are currently unknown but studies in mouse suggest the ability of 

DNMT1o and DNMT1s proteins synthesized at the same time to substitute for one 

another’s maintenance function of methylation imprints in the embryonic development 

(Cirio et al. 2008). In human, both the DNMT1o and DNMT1s mRNA are expressed 

earlier during oogenesis and persisted in early preimplantation development (Huntriss et 

al. 2004). In this study, unlike mouse and human, we demonstrated that bovine DNMT1 

mRNA contains the coding sequence necessary to produce the DNMT1o splice variant 

but could not be amplified. Therefore, the DNMT1s is an isoforms that expresses during 

bovine preimplantation stage embryos. Our finding was in accordance with Golding and 

Westhusin (2003) who found only the DNMT1s mRNA to be expressed during early 

bovine embryonic development. Thus, it is possible that bovine DNMT1o is transcribed 

and translated during the earliest stage of oocyte development and utilized during this 
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time to carry out the allele specific imprints observed in the mouse (Cirio et al. 2008). 

Alternatively, the splice variant of the DNMT1s, the DNMT1b which is shown to be 

consistent with a tissue-specific mode of regulation and possess the functional domains 

necessary for maintenance and de novo methyltransferase activity (Russell and Betts 

2008) replaces the DNMT1o activity. The misexpression of the DNMT1o isoforms must 

be considered regarding direct and indirect effects on epigenetic programming during 

normal bovine development (Golding and Westhusin 2003).  

 

The relative abundance of DNMT1 mRNA was detected throughout bovine 

preimplantation developmental stage. The expression was highest at mature oocyte stage 

and lowest at blastocyst stage (Figure 10). This result was similar with the previous 

studies in bovine using RT-PCR analysis (Golding and Westhusin 2003; Russel and Betts 

2008). 

 

5.2 Effect of suppression of DNMT1 mRNA on early embryonic development 

Bovine embryonic development in the early preimplantation stages is supported by 

mRNA and protein transcribed from the maternal and embryonic genome. Until the major 

round of embryonic transcription during the 8- to 16-cell stage in bovine embryos, the 

development is largely dependent on the transcripts and protein formed by the oocyte 

(Memili and First 2000). DNMT1 regulates the cell cycle (Detich et al. 2001) which is 

associated with the protein proliferation (Chuang et al. 1997) concurrently occurring 

during DNA replication (Araujo et al. 1998). Unterberger et al. (2006) demonstrated that 

DNMT1 depletion in the DNA replication leads to overall arrest of replication. Antisense 

knock down of DNMT1 was reported resulting in inhibition of DNMT1 leading to 

inhibition of initiation of DNA replication (Araujo et al. 1998; Knox et al. 2000; 

Milutinovic et al. 2003) and subsequently effecting cell proliferation (Fournel et al. 1999), 

cell growth (Liu et al. 2003) and 50% reduction in cell numbers (Egger et al. 2006).  

 

The DNA methylation inhibitor 5-azacytidine and its derivatives have been studied. Khan 

et al. (2006) suggested 5-azacytidine induces cell cycle arrest involving all G0/G1, and 

G2 phases in cell lines. Other studies of 5-azacytidine in rats (Doerksen and Trasler 1996; 

Doerksen et al. 2000) and mice (Kelly et al. 2003, Oakes et al. 2007a) have shown that the 
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treatment resulted in a disruption of spermatogenesis by lowering sperm counts and 

survivability. In Xenopus, antisense knocks down of DNMT1 results in developmental 

arrest (Kaito et al. 2001) and abnormal embryonic development (Stancheva and Meehan 

2000, Stancheva et al. 2001). In addition, DNMT1 knockdown and 5-AZA had no effect 

on genomic methylation (Unterberger et al. 2006).  

 

In the present study, the quantitative expression profiling results throughout the 

preimplantation embryonic stage evidenced that DNMT1 is activated from the maternal 

genome. The transcript abundance sharply increases after maturation and is reduced until 

8-cell stage. The detectable amount of DNMT1 transcript was very low between morula 

and blastocyst stages. Therefore, microinjection of SpsiRNA DNMT1 and 5-AZA is 

targeting transcripts from the maternal genome and minor embryonic genome activation 

at 2- to 4-cell stages. Consequently, injection of SpsiRNA against DNMT1 and 5-AZA at 

the zygote stage has resulted a reduction in the proportion 8-cell embryos at 72 hr pmi 

compared with the water injected and uninjected control groups. Similarly, the total 

blastocyst rate was lowered in 5-AZA compared to the other treatment groups. It is 

suggested that the normal development of zygote to term is dependent on the major 

maternally derived mRNA and protein accumulation. The blastocyst rate was not affected 

by microinjection of SpsiRNA. This can be explained in terms of suppression efficiency 

and availability of protein at blastocyst stage.  

 

The reduction of expression of target DNMT1 (80%) dramatically resulted in reducing 

protein accumulation at 8-cell stage in the group injected with SpsiRNA compared with 

those injected with 5-AZA, water and uninjected control groups. By introducing of RNAi 

to mammalian cells, the amount of target mRNA and protein was effectively decreased 

24-48 and 48-72 hr pmi, respectively (Bonetta 2004). However, there was no difference in 

protein expression at blastocysts in microinjection of SpsiRNA groups. This could be 

explained that moderate suppression of the target mRNA (50%) at blastocyst stage was 

not enough to reduce amount of protein accumulation and subsequently leads to 

embryonic development normality. This might be due to the protein’s half-life, its 

abundance, and the regulation of its expression (Elbashir et al. 2002). In studies showing 

the successive knockdown of DNMT1 protein such as in human colorectal cancer cells, 

transfection was carried out every day and the cultures were split every other day (Robert 
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et al. 2003; Ting et al. 2004). Alternative splicing isoforms of DNMT1, the DNMT1b 

which reportedly has been expressed throughout bovine preimplantation (Russell and 

Betts 2008) may compensate to assist in normal embryonic development. However, its 

function has not yet been known.  

 

5-AZA has been known as an anti-cancer agent that irreversibly binds DNMT1, DNMT3a 

and DNMT3b protein (Gabbara and Bhagwat 1995), resulting in trapping in 5-AZA-

containing DNA but not causing disappearance of the protein (Unterberger et al.2006). 

Therefore, in the present study, microinjection of 5-AZA has no effect on protein 

degradation at 8-cell and blastocyst stages.  

 

The lowered development of 8-cell embryos and total blastocyst in the present study is in 

agreement with relevant studies where DNMT1 mutant mouse showed reduced rate of 

cell division (Jackson-Grusby et al. 2001), increased embryonic death, failure to progress 

beyond the first trimester (Li et al. 1992) and the late gestation period (Howell et al. 2001) 

and delayed development of multiple organs at mid-gestation (Toppings et al. 2008). 

Spermatogonial cells treated with 5-AZA showed complete inhibition of differentiation 

into spermatocyte stage (Raman and Narayan 1995), blocked testicular cord formation 

and sertoli and leydig cell differentiation (Mizukami et al. 2008) and subsequently 

reduced sperm motility, fertilization ability, early embryo development to the blastocyst 

stage and sequence-specific DNA methylation (Oakes et al. 2007a). Furthermore, 5-AZA 

has halted cell proliferation and growth and subsequently reduced percentage of 

blastocysts rate in bovine embryonic development (Enright et al. 2005; Khan et al. 2006) 
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5.3 Effect of suppression of DNMT1 mRNA on apoptosis level 

In the present study we have investigated post microinjection of SpsiRNA DNMT1 and 5-

AZA using TUNEL staining. 5-AZA has been extensively studied, and its ability to 

damage DNA by activating the G1 checkpoint regulator protein 53 (p53) (Karpf et al. 

2001) has been shown. Furthermore, 5-AZA treatment results in inhibition of cell 

proliferation due to p53-dependent activation of p21Waf1/Cip1 (Karp et al. 2001, Zhu et al. 

2004). The 5-AZA also induces apoptosis, either in a p53-dependent (Schneider-Stock et 

al. 2005) or p53-independent (Nieto et al. 2004) manner. In previous reports, antisense 

knock down DNMT1 resulted in negative effect on cell proliferation (Fournel et al. 1999), 

reduced in cell growth (Liu et al. 2003) and total cell numbers (Egger et al. 2006). In the 

present study, microinjection of 5-AZA reduced proportion of 8-cell embryos at 72 hr pmi 

and total blastocyst rate until Day 8 pmi, whereas microinjection of SpsiRNA DNMT1 

reduced proportion of 8-cell embryos at 72 hr pmi. It is due to the fact that activity of 

DNMT1 knockdown and 5-AZA has no effect on genomic methylation (Unterberger et al. 

2006), the subsequent influence on apoptotic cell development has to be confirmed. 

 

The effect of suppressing DNMT1 on the level of cellular DNA fragmentation as a 

characteristic feature of apoptotic cells was performed at blastocyst stage. Microinjections 

of DNMT1 SpsiRNA and 5-AZA resulted in significant increase of apoptosis index (API) 

compared to water injected and uninjected controls. The total cell numbers were slightly 

lowered in embryos injected with SpsiRNA and 5-AZA compared with water injection 

and uninjected control. However, these differences were not statistically significant. Thus, 

microinjection of SpsiRNA DNMT1 may cause DNA damage, which could result in 

reduced proportion of 8-cell and total blastocyst rate by inhibiting cell proliferation 

activators. This finding was in agreement with a previous report where a DNMT1 

mutation has shown to increase API in primary mouse fibroblast 6 days post infection 

(Jackson-Grusby et al. 2001). Antisense induced knock down of DNMT1 resulted in a 

DNA damage caused by apoptosis dependent of p53 in mouse germline somatic cells 

(Takashima et al. 2009).  

 

Alternatively, it is possible that the decrease of 8-cell and total blastocyst rate results from 

antisense knock down of DNMT1 causing re-expression of tumor suppressor genes; 
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cyclin-dependent kinase inhibitor 2A (p16
ink4A), cadherin 1 (CDH1), ras association 

(RalGDS/AF-6) domain family 1 A (RASSF1A) (Suzuki et al. 2004), programmed cell 

death 4 (PDCD4) and prostaglandin E synthase (PTGES) (Fan et al. 2007). Studies in 

Xenopus embryos also supported that antisense knock down of DNMT1 provide a signal 

via p53 that induces apoptotic cell development (Stanchev et al. 2001). It is also 

consistent with the report where 5-AZA treatment has resulted in an increase of apoptotic 

cells in human cell lines (Khan et al. 2006; Kiziltepe et al. 2007). 

 

5.4 Effect of suppression of DNMT1 mRNA on expression of imprinted genes  

DNA methylation plays an important role to control the imprinting gene expression in 

which only one allele of a specific gene is expressed, depending on its parental origin (Li 

et al. 1992 and Li et al. 1993). The first evident study in frog, however, showed that 

antisense knock down DNMT1 resulted in demethylation and induction of premature gene 

activation (Stancheva and Meehan 2000; Stancheva et al. 2001). Similarly, conditional 

knock out of DNMT1 caused demethylation and increasing global gene expression in 

mouse fibroblasts cells (Jackson-Grusby et al. 2001). The 5-AZA which interferes with 

the activities of DNMT1 protein leads to genomic hypomethylation and reactivates 

silenced tumor suppressor genes (Fan et al. 2007; Suzuki et al. 2004). Knock out DNMT1 

resulted in higher expression of IGF2 due to biallelic expression (Biniszkiewicz et al. 

2002). It is known that the bovine clone calves exhibit abnormally biallelic expression of 

imprinted genes, such as Xist, H19, IGF2, and IGF2R, but relatively normal expression in 

normal cloned calves. These facts indicate that DNA methylation plays an important role 

in normal gene expression during early preimplantation development (Xue et al. 2002; 

Yang et al. 2005).  

 

In this study, we showed that DNMT1 silencing increased the expression of imprinted 

genes, IGF2, IGF2R and IGFBP-4 at blastocyst stage. However, the increment of IGF2R 

and IGFBP-4 was not statistically significant due to high standard deviation. The higher 

expression of IGF2 in this study was also relevant in previous reports of tissue of cloned 

calves (Humpherys et al. 2001; Li et al. 2007), overgrown fetuses and placentae of cloned 

mice (Ogawa et al. 2003). Thus, the higher expression might be due to the biallelic 

expression revealed with bisulfite analysis (Gebert et al. 2006; Li et al. 2007) 
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IGF2R is a well-characterized negative regulator of IGF2 that binds and down regulates 

IGF2 activity by endocytosis and degradation (Ludwig et al. 1996). Both hyper- and 

hypo-methylated alleles in the IGF2R were found in Day 9.5 cloned mice fetuses that had 

developed normally (Ogawa et al. 2003). Strongly reduced levels of DNA methylation 

were observed in the differentially methylated regions (DMR) of IGF2R in the second 

intron of cloned sheep (Young et al. 2003). 

 

5.5 Association of sequence variants of DNMT1, DNMT3a, and DNMT3b with bull 

fertility traits 

We have shown that suppression or inhibition of DNMT1 using SpsiRNA or DNMT1 

inhibitor 5-AZA resulted in a reduction of proportion of 8-cell and total blastocyst rate, 

increment of API and enhancement of imprinted gene expression. Firstly, we 

demonstrated that the DNMT1 gene is important for normal embryonic development 

during the preimplantation period. However, the effect of exonic/intronic mutation of 

DNMT isoforms on embryonic development or phenotype variations needs to be 

investigated.  

 

For this study, DNMT1, DNMT3a and DNMT3b sequence variants have been associated 

with bull fertility traits; NRR, sperm quality, sperm flow cytometric parameters, and 

embryonic development. The fertility traits have a low heritability (h2 ~0.007-0.049) but 

show high genetic variation. Therefore higher numbers of animals are required to be 

analyzed in order to eliminate the effects by environment and single loci (Long and 

Langeley, 1999). In contrast, sperm quality traits have moderate to medium heritability 

(h2 for ejaculation volume, concentration and motility: 0.09, 0.16, and 0.22, respectively) 

(Kealey et al. 2006). The bull fertility traits of NRR and sperm quality traits have been 

successively applied as the parameters for genetic improvement of cattle population. 

However, both methods do not provide insight details of membrane, acrosome and sperm 

chromatin structure that may have a major impact on fertilizing ability of the sperm. Data 

analysis from Computer-Assisted Semen Analyzer (CASA) in combination with 

fluorescent staining assessed by flow cytometry are more precise than data from 

conventional methods (Christensen et al. 2005; Garner et al. 1994; Januskauskas et al. 

1996). A simple approach is an evaluation of plasma membrane, acrosome, and DNA 
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integrity, which can be assessed with various fluorescent probes (Anzar et al. 2002; 

Celeghini et al. 2007; Graham 2001; Silva and Gadella 2006).  

 

Hardy-Weinberg equilibrium is performed to test whether the genotype frequencies in the 

population remain constant or are in equilibrium from generation to generation without 

influence from genetic selection, mutations, limited population size, genetic drift and gene 

flow (Wigginton et al. 2005). In this study, the candidate genes DNMT1 and DNMT3a 

loci were in Hardy-Weinberg equilibrium, while the DNMT3a locus was not in the 

Hardy-Weinberg equilibrium in the bull population. In the embryo population, only the 

DNMT3a locus was in Hardy-Weinberg equilibrium. The reason why the loci do not obey 

Hardy-Weinberg equilibrium is unknown; however, it may reflect the fact that selection 

and random genetic drift cause a change in allele frequency.  

 

Obviously, male fertility has an influence on the reproductive performance and 

productivity in commercial herds. The development of highly polymorphic genetic 

markers and extensive linkage maps now makes it possible to dissect genetic variation for 

quantitative traits and to identify the chromosomal regions with genes contributing most 

to variation (Fries 1999). As mentioned, efforts to identify quantitative traits loci (QTL) 

for fertility traits (Ben Jemaa et al. 2008; Holmberg and Andersson-Eklund 2006; 

Schrooten et al. 2000), milk yield (Khatkar et al. 2004) and work ability traits (Schrooten 

et al. 2000) are already well done. Several studies have reported significant association 

between SNPs with genes that control production traits (Khatib et al. 2007; Leonard et al. 

2005; Weikard et al. 2005) as well as the fertility traits (Lin 2005; Lin et al. 2006a; Lin et 

al. 2006b; Wimmers et al. 2005). In the current study, SNP of DNMT1, DNMT3a and 

DNMT3b were found to be associated with bull fertility traits including NRR and sperm 

quality traits, sperm quality traits and sperm flow cytometric parameters. 

 

The impact of nucleotide difference is variable and elusive, but it is clearly dependent 

upon the location of the polymorphism in the genome (Shen et al. 1999). Nucleotide 

differences in regions upstream of the protein-encoding gene regions influence the 

binding of promoter repressors, resulting in differential regulation of transcription. 

However, the polymorphisms at intron/exon boundaries have been reported to probably 

affect exonic or intronic splicing enhancer or silencer position, modifying the polypeptide 
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and its structure of protein (Nissim-Rafinia and Kerem 2002). So far, the role of intronic 

splicing in regulation the expression level of genes or tissue specific expression pattern 

has been noted in several reports (Garifulin et al. 2007; Greenwood and Kelsoe 2003; 

Jiang et al. 2000; Pagani and Baralle 2004; Van Laere et al. 2003; Virts and Raschke 

2001).  

 

The diallic loci of DNMT1, DNTM3a and DNMT3b, and their interaction on multiple 

loci of DNMT1xDNTM3axDNMT3b were for the first time shown to affect the NRR (56 

days). The silent mutation at position Ala1197Ala of DNMT1 and intronic splicing effect 

of DNMT3a and DNMT3b might have an impact on mRNA and protein expression and 

its structure of the corresponding gene. It is due to the fact that, during embryonic 

development, DNA methyltransferase enzyme family (DNMTs) play important roles in 

DNA methylation. DNMT1 primarily maintains established methylation patterns during 

DNA replication, whereas patterns are established by the de novo methyltransferase 

DNMT3a and DNMT3b (Li et al. 1992; Okano et al. 1999). In our study, therefore, 

multiple combinations of loci of DNMT1xDNTM3ax DNMT3b supported the polygenic 

influence on complex traits of NRR. The highest NRR value was 88.23% in the 

combination of DNMT1xDNMT3axDNMT3b with CTxTTxGG.  

 

The SNPs of Ala1197Ala DNMT1, 308446C>T DNMT3a and 337339A>G DNMT3b 

located on Bos taurus autosomes (BTA) BTA7, BTA11 and BTA13, respectively. They 

were not in accordance with the QTLs showing significant effects on NRR (56 Days) that 

mapped on BTA9 (Holmberg and Andersson-Eklund 2006; Schrooten et al. 2000) and 

BTA18 (Kuhn et al. 2003). This enforces that the bull fertility trait of NRR is controlled 

by several genes located on different chromosomes so that the SNP associated with NRR 

found in this study might be additional markers potentially linked to these complex traits.  

 

In this study, it was for the first time detected that the diallelic loci of DNMT3a and 

DNMT3b are associated with sperm motility and multiple loci of 

DNMT1xDNMT3axDNMT3a are associated with sperm motility (MOT) and 

survivability after thawing (SUVR). Although the exonic or intronic splicing effects of 

DNTM1, DNMT3a, and DNMT3b polymorphisms on sperm quality traits are not clear. 

DNMTs are known to play an important role for DNA methylation in the process of male 
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germ cell development during the spermatogenesis (Davis et al. 1999; La Salle and 

Trasler 2006; Oakes et al. 2007b). Inactivation of the DNMTs through gene-targeting 

results in male infertility (Bourc'his et al. 2001; Kaneda et al. 2004). Demethylation with 

5-AZA causes insufficient of DNMT proteins (Gabbara and Bhagwat 1995) in rats 

(Doerksen et al. 2000; Doerksen and Trasler 1996) and mice (Kelly et al. 2003; Oakes et 

al. 2007a) resulting in disruption of spermatogenesis by reducing sperm motility and 

increasing levels of abnormalities in testicular histology, which is linked to lower 

survivability of sperm after thawing. The multiple loci of DNMT1xDNMT3axDNMT3b 

with TTxCCxGG (74.61%) and CCxCCxAG (50.48%) were the highest for MOT and 

SUVR in the population under study.  

 

This experiment revealed for the first time that DNMT1 locus is significantly associated 

with plasma membrane integrity (PMI). Thus, maintenance of the sperm fertilizing 

potential depends on the integrity and functionality of different cellular structures. Plasma 

membrane integrity is crucial to sperm survival inside the female reproductive duct 

(Celeghini et al. 2007). The acrosome is filled with hydrolytic enzymes which are 

necessary for penetration of sperm to zona pellucida (Silva and Gadella 2006). Plasma 

membrane and sperm acrosome integrity were reported to be positively correlated with 

sperm motility (Hua et al. 2006). The integrity of sperm DNA is also important for the 

accurate transmission of genetic information and further development of embryos 

(Agarwal and Said 2003; D'Occhio et al. 2007). Inhibition of DNMTs with 5-AZA caused 

failure of the acrosome reaction, capacitation, sperm-egg recognition, and  chromatin 

quality (Oakes et al. 2007b) and subsequently lowered the ability of sperm to successfully 

fertilize the oocyte. It is shown in this study that the DNMT1 locus with genotype CC 

(31.21%) had higher PMI than genotype CT and TT (25.73 and 26.5%).  

 

5.6 Association of DNMT1, DNMT3a, and DNMTT3b sequence variants with 

embryonic development 

The purpose of this study was to correlate the single nucleotide polymorphism of 

candidate genes with the embryonic development in terms of cleavage time and blastocyst 

rate. The bull sperm selected for fertilization of oocytes aspirated from slaughterhouse 

ovaries were heterozygote for all three genes. Zygotes developing to 2-cell stage within 
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30 hpi are consisdered as early cleaved (Ward et al. 2001). The early development of 

embryos is controlled by many genes. In mice, the Ped (preimplantation embryo 

development) gene has been identified involving in controlling cell division and embryo 

survival (Warner et al. 1998) during preimplantation. In human, Oct-4 (Abdel-Rahman et 

al. 1995) and gap-junction connexin 43 (Hardy et al. 1996) were involved in embryonic 

development normality. In this study, suppression of DNMT1 affected early embryonic 

development. Additionally, sequence variants of either single or combined loci of 

DNMT1, DNMT3a and DNMT3b were found to be associated with bull fertility traits and 

sperm flow cytometric parameters. Therefore, the association of DNMT1 sequence 

variants with the embryonic development in terms of cleavage time and blastocyst rate 

was reliable supported.  
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5.7 Future prospect 

In this study, we demonstrated that suppression of DNMT1 affected the embryonic 

development during the preimplantation period and enhanced IGF2 gene expression. 

Moreover, we showed the relationship between sequence variants of DNMT1 and both 

DNMT3a, and DNMT3b with bull fertility traits and early embryonic development. In the 

future research, the candidate gene approach (DNMT1, DNMT3a and DNMT3b) to study 

association with bull fertility traits and/or sperm flow cytometric parameter should be 

confirmed using different bull population. Additionally, the genotypes dependent of 

embryonic development should be quantified the mRNA expression levels among the 

development groups. 
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6 Summary 

DNA methyltransferase enzymes (DNMTs) are believed to be involved in DNA 

methylation which is the well-characterized epigenetic modulator that has been shown to 

have essential functions in germline and embryonic genome imprinting. The first study 

was conducted to investigate the consequences of suppressing and inhibiting DNMT1 on 

the development, the levels of apoptosis and the expression of imprinted genes in 

preimplantation bovine embryos. In vitro produced zygotes were categorized into four 

groups, namely: those injected with SpsiRNA (n = 800), 5-AZA (n = 864), nuclease free 

water (n = 850) and uninjected control (n =755). The mRNA expression data were 

generated using the RT-PCR based on relative standard curve method employing GAPDH 

as a normalizer. The apoptotic index (API) was calculated by dividing the number of 

apoptotic cells by the total cell numbers. The proportions of different stages of embryos 

were assessed 48 and 72 hr post microinjection (pmi) while blastocyst rate was assessed 

at day 8 pmi. The proportions of 2-, 4- and 8-cell embryos at 48 pmi were not significant 

among treatment groups. However, the proportion of the 8-cell embryos was lower 

(P<0.05) in SpsiRNA (16.3±4.5) and 5-AZA injected groups compared to water injected 

and uninjected control at 72 hpi. The lowest total blastocyst rate (P<0.05) was observed 

in 5-AZA treatment group compared to SpsiRNA and water injected and uninjected 

control. Microinjection of SpsiRNA has reduced the target mRNA by 80% and 50% in 8-

cell and blastocyst stage embryos, respectively, compared to uninjected control. The 

protein expression level was also reduced at 8-cell stage embryos as confirmed by western 

blotting. Injection of 5-AZA had no significant effect on mRNA and protein expression. 

The highest API (P<0.05) was found in SpsiRNA and 5-AZA injected groups compared 

to water injected and uninjected control. The microinjection of SpsiRNA and 5-AZA at 

zygote stages has increased the expression of IGF2 by 1.67 and 1.55 times at blastocyste 

stage embryos. However no effect on the expression of both IGF2R and IGFPB-4 was 

found. 

 

The second study was conducted to elucidate the association of single polymorphisms 

(SNP) of DNMT1 (rs41256891; C>T), DNMT3a (rs41569254; C>T) and DNMT3b 

(rs41700758; A>G) isoforms with bull fertility traits including; NRR (56 days) and sperm 

quality traits namely, sperm volume per ejaculate, sperm concentration (x109/ml), sperm 

motility, and survivability after thawing. Moreover, association study was done with 
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sperm flow cytometric parameters including positive acrosome status (PAS), plasma 

membrane integrity (PMI) and DNA fragmentation index (DFI). For this, sperm DNA 

from 310 breeding German Holstein bulls obtained from Rinder-Union West eG (RUW) 

station were genotyped at those loci. Analysis of variance revealed association of DNMT1 

with NRR (p<0.0001) and PAS (p<0.01), while DNMT3a and DNMT3b were found to 

be associated with NRR (p<0.0001) as well as sperm motility (p<0.01). In addition, 

interaction analysis of variance among DNMT1 x DNMT3a x DNMT3b showed 

significant association with NRR (p<0.0001), sperm motility (p<0.001) and survivability 

after thawing (p<0.001). However, SNPs of all the three isoforms have no significant 

association with sperm volume per ejaculate, sperm concentration (x106/ml), PMI and 

DFI.  

In addition, the SNP of DNMT1, DNMT3a and DNMT3 sequence variant were correlated 

with the embryonic development in terms of time at first cleavage, late cleavage and 

blastocyst rate. Fore this, 350 embryos were produced in vitro from oocytes aspirated 

from slaughterhouse ovaries and fertilized with bull spermatozoa heterozygote for all 

three genes. The results showed that the DNMT1 locus was significantly correlated with 

embryonic development (p<0.05). 

 

In conclusion, suppression and inhibition of DNMT1 resulted in lower proportion of 8-

cell embryos, reduced blastocyst rate, increased apoptotic index and affected the 

expression of some imprinted genes. In addition, the SNP of DNMT1, DNMT3a and 

DNMT3b sequence variants revealed association with bull fertility traits and were 

correlated with embryonic development. This gene evidently plays a critical role in 

bovine preimplantation development and associates with bull fertility traits and 

embryonic development. Following validation of this result in an independent population, 

there is a great potential to use these loci as markers of fertility to enhance embryonic 

development. 
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7 Zusammenfassung 

Die Funktion der DNA Methyltransferase (DNMTs) wird in der DNA-Methylierung 

vermutet, welches eine gut charakterisierte epigentische Regulationseinheit ist und eine 

essentielle Rolle in Keimbahnprozessen und embryonalem genomischen Imprinting spielt. 

Die erste Studie wurde durchgeführt, um die Konsequenzen eines repressiven und 

hemmenden Einflusses von DMNT1 auf die Entwicklung und Grad der Apoptose und 

Expression genomisch geprägter Gene von preimplantativen bovinen Embryonen zu 

untersuchen. In vitro erzeugte Zygoten wurden zufällig in vier Gruppen aufgeteilt, die mit 

drei unterschiedlichen Injektionen behandelt wurden: der Injektion (a) mit Smartpool 

siRNA (SpsiRNA) (n=800), (b) mit 5aza-2’-deoxycytidine (5-AZA) (n=864) und (c) mit 

Nuklease freiem Wasser (n=850). Gruppe 4 verblieb als unbehandelte Kontrolle (n=755) 

bestehen. Die Daten der mRNA Expression wurden durch RT-PCR generiert, die dann 

mit der Relativen-Standard-Kurven-Methode auf Grundlage von GAPDH normalisiert 

wurden. Der Apoptose Index (API) wurde mittels der Division der Anzahl apoptotischer 

Zellen durch die Anzahl Gesamtzellen berechnet. Das Verhältnis der jeweiligen 

Entwicklungsstadien der Embryonen in den Behandlungsgruppen wurde 48 und 72 hr 

post Mikroinjektion (pmi) beurteilt, wohingegen die Bastozystenrate erst 72 hr pmi 

festgestellt wurde. Der Anteil der 2-, 4- und 8- Zell Embryonen 48 hr pmi war zwischen 

den Behandlungsgruppen nicht signifikant verschieden. Dagegen war der Anteil 8- Zell 

Embryonen 72 hr pmi in den Gruppen SpsiRNA (16.3 ± 4.5) und 5-AZA geringer 

(P<0.05) als in der mit Wasser behandelten Gruppe oder der unbehandelten 

Kontrollgruppe. Die geringste Blastozystenrate (P<0.05) wurde in der 

Behandlungsgruppe 5-AZA im Vergleich zur SpsiRNA, der Wasser und unbehandelten 

Gruppe beobachtet. Die Mikroinjektion von SpsiRNA reduzierte die Expression der 

Target mRNA um 80 bzw 50% in Embryonen des 8-Zellstadium im Vergleich zur 

unbehandelten Kontrolle. Zusätzlich war die Proteinexpression in dieser behandelten 

Gruppe reduziert, welches mit Hilfe von Western Blotting bestätigt werden konnte. Die 

Injektion von 5-AZA hatte keinen signifikanten Effekt auf die Expression von mRNA und 

Proteinen. Der API war in den Behandlungsgruppen SpsiRNA und 5-AZA, verglichen mit 

der Gruppe die mit Wasser injiziert wurde und der unbehandelten Gruppe, höher 

(P<0.05). Der Einfluss der Mikroinjektion von SpsiRNA und 5-AZA in die Zygote 
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steigerte die Expression von IGF2 auf 1.67 bzw. 1.55 in Blastozysten. Es konnte 

allerdings kein Effekt auf die Expression von IGF2R und IGFPB-4 beobachtet werden. 

 

Im zweiten Abschnitt dieser Arbeit wurde der Einfluss der genetischen Polymorphismen 

(single nukleotide polymorphisms (SNP)) von DNMT1 (rs41256891; C>T), DNMT3a 

(rs41569254; C>T) und DNMT3b (rs41700758; A>G) auf zwei unterschiedlichen 

Merkmalskomplexe geprüft. Zum einen wurde die Fruchtbarkeit von Deutschen 

Holsteinbullen an Hand der Parameter Non-Return-Rate nach 56 Tagen (NNR), 

Spermienqualität (Volumen je Ejakulates, Spermienkonzentration, Motilität, 

Überlebensfähigkeit der Spermien nach dem Auftauen), sowie Durchfluss-

zytometrieparameter des Spermiums (Plasma Membran Integrität (PMI), Akrosomen 

Integrität (PAS), DNA Integrität (DFI) untersucht. Des Weiteren standen Merkmale der 

Embryonalentwicklung in den Stadien der 1. Zellteilung, der späten Zellteilung und in 

Blastocysten im Mittelpunkt. Zu diesem Zweck wurden genomische DNA aus 310 

Spermienproben von Zuchtbullen der Rinder Union West eG (RUW) und DNA Proben 

von 350 Embryonen an den entsprechenden Genorten genotypisiert. Die Varianzanalyse 

wies eine Assoziation des SNP in DNMT1 mit NRR (P<0.0001) und PAS (P<0.01) vor, 

während DNMT3a und DNMT3b einen signifikanten Einfluss auf NNR (P<0.0001) und 

Spermienmotilität (P<0.01) hatten. Zusätzlich zeigte eine kombinierte Genort 

Varianzanalyse von DNMT1 x DNMT3a x DNMT3b einen signifikanten Effekt auf NNR 

(P<0.0001), Spermienmotilität (P<0.001) und Überlebenfähigkeit nach dem Auftauen 

(P<0.001). Allerdings konnte kein Einfluss der SNPs in den drei Isoformen auf Volumen 

je Ejakulates und Spermienkonzentration, sowie PMI und DFI nachgewiesen werden. 

Zusätzlich konnte eine Korrelation der genetischen Polymorphismen von DNMT1, 

DNMT3a und DNMT3b auf die embryonale Entwicklung zum Zeitpunkt der ersten 

Zellteilung, der späten Zellteilung und der Blastozystenrate beobachtet werden. Zu 

diesem Zweck wurden invitro Eilzellen aus Schlachthof Ovarien aspiriert und mit Bullen 

Spermatozoen, die heterozygot für alle drei Gene waren, befruchtet. So konnten 350 

Embryonen erzeugt werden, die über die unterschiedlichen genetischen Eigenschaften 

verfügten. Das Ergebnis aus diesem Versuch zeigte, dass der Genort DNMT1 einen 

signifikanten Einfluss (P<0.05) auf die embryonale Entwicklung hat. Verfügten 

Embryonen über den Genotyp CC, so war der Anteil an Blastozysten höher (15.0), als 

zum Zeitpunkt der späten Teilung (12.6) oder der ersten Teilung (2.5) (P<0.05), während 
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kein signifikanter Unterschied zwischen den Genotypen CT und TT in den jeweiligen 

Entwicklungsstufen festgestellt werden konnte. 

 

Abschließend hat ein repressiver und hemmender Effekt von DNMT1 eine schlechtere 

Entwicklung der Embryonen, vor allem im 8-Zellstadium und Blastocysten, zur Folge und 

ändert das Expressionsverhalten einiger genomisch geprägter Gene. Zusätzlich zeigten die 

Polymorphismen in DNMT1, DNMT3a und DNMT3b einen signifikanten Einfluss auf 

Fruchbarkeitsmerkmale und die embryonale Entwicklung. Das Gen DNMT1 spielt 

sichtbar eine Rolle in der bovinen Preimplantation. Des Weiteren lässt es sich mit 

Merkmalen der Bullenfruchtbarkeit und embryonalen Entwicklung assoziieren. Dies 

könnte ein Hinweis auf einen nützlichen, genetischen Marker zur Verbesserung dieser 

Merkmale sein, welcher durch weitere unabhängige Studien bewiesen werden sollte. 
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