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CPPI Strategies in Discrete Time



Abstract
In general, the purpose of portfolio insurance strategies is to limit the downside risk of risky
portfolios. The constant proportion portfolio insurance (CPPI) is a prominent example
of a portfolio insurance strategy. Based on a dynamic trading rule, the CPPI provides
payoffs greater than some minimum wealth level at some specified time horizon. The
great advantage of the CPPI is its particularly simple trading rule, which basically only
requires the knowledge of the current portfolio value and thus makes the CPPI applicable
to any kind of risky portfolio. Under the assumption of a complete financial market where
trading takes place in continuous time, it is well known that the payoffs provided by the
CPPI are greater than a pre-specified minimum wealth level with certainty. In this thesis
we are concerned with various sources of market incompleteness. One source of market
incompleteness are trading restrictions. Restricting the possibility of making changes
to the portfolio to a fixed set of trading dates allows for payoffs below the minimum
wealth level. The associated risk is called gap risk. The assumption of a fixed set of
trading dates is well suited for the derivation of various risk-measures related to gap
risk. Analyzing the gap risk is important with respect to the effectiveness of the CPPI
if trading in continuous time is not possible. One natural reason for the assumption
of trading restrictions are transaction costs. However, in the presence of transaction
costs the frequency of monitoring the portfolio is generally larger than the willingness
to rebalance the portfolio. With respect to transaction costs it is reasonable only to
rebalance the portfolio upon relevant changes in the portfolio value or the underlying
assets. This rationale leads to the notion of triggered trading dates. It turns out that
triggered trading dates are also better suited with respect to analyzing modifications of the
CPPI. The basic CPPI exhibits at least three structural problems. First, it requires the
assumption of unlimited borrowing which can be explicitly modelled with the introduction
of a borrowing constraint. Second, in the case of a good performance of the portfolio,
it is well possible that the minimum wealth level becomes insignificant in comparison to
the portfolio value. This can be modelled by increasing the minimum wealth level upon
good performances of the portfolio. Third, the exposure to the underlying risky assets
can become arbitrarily small such that portfolio may basically only consist of riskless
assets. Explicitly defining a minimum on the exposure to the risky assets provides another
modification. All modifications can be analyzed in a setup with triggered trading dates.
While the use of triggered trading dates allows for the modelling of transaction costs also
for the modifications of the CPPI, choosing small triggers allows for approximations of the
continuous-time case for which analytic expressions for the modifications are not known
in the literature so far either.
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Introduction

Financial strategies designed to limit downside risk and at the same time to profit from
rising markets are summarized in the class of portfolio insurance strategies. Among others,
Leland and Rubinstein (1976), Grossman and Vila (1989) as well as Basak (1995) define
a portfolio insurance strategy as a trading strategy which guarantees a minimum level of
wealth at a specified time horizon.1 This definition has to be understood as a minimum
requirement for a portfolio insurance strategy. Surely, strategies that require stronger
conditions such as permanently keeping the portfolio value above some minimum level as in
El Karoui, Jeanblanc, and Lacoste (2005) or keeping the portfolio value permanently above
some stochastic minimum level as for example in Grossman and Zhou (1993) and Cvitanić
and Karatzas (1995) are included in the definition of portfolio insurance strategies.

The optimality of an investment strategy depends on the risk profile of the investor. If the
risk profile is given in the form of an utility function, in order to determine the optimal
rule, one has to solve for the strategy which maximizes the expected utility. Approaches
that model portfolio insurers as utility maximizers where the maximization problem in-
cludes an additional constraint for keeping the portfolio value above some certain (not
necessarily constant or deterministic) level can be found for example in Cox and Huang
(1989), Brennan and Schwartz (1989), Grossman and Vila (1989), Grossman and Zhou
(1993, 1996), Basak (1995), Cvitanic and Karatzas (1995, 1999), Browne (1999), Tepla
(2000, 2001). In a fairly general framework, El Karoui, Jeanblanc, and Lacoste (2005)
show that the solution to the maximization problem, when the portfolio is to be kept
above a certain constant level (permanently or only at some specified time), is given by
the unconstrained solution with an additional put option written on the unconstrained
solution. Unconstrained solution is to be understood in the sense of an optimal choice
about the assets to invest in if the portfolio insurance constraint is ignored. The put

1An alternative definition can be found in Leland (1980) and Brennan and Schwartz (1989) who refer
to the term portfolio insurance with respect to any strategy whose payoff at some specified time horizon
is a convex function of the payoff of some reference portfolio.
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option on this optimal choice then accounts for the satisfaction of the portfolio insurance
constraint. This is what is often called three fund separation. It goes back to Cox and
Huang (1989) and can be viewed as a generalization of the famous two fund separation

by Markowitz (1952). Portfolio insurance strategies that employ options to satisfy the
portfolio insurance condition are called option-based portfolio insurance (OBPI). The ap-
propriate options do not need to be traded assets. It is well known that in a complete
market model any claim is attainable such that options can be replicated by a self-financing
dynamic trading strategy. However, there are various sources of market frictions such as
borrowing constraints, short selling restrictions and transaction costs that cause a market
to become incomplete. A market incompleteness may result in the relevant option of an
OBPI not being attainable in the sense that it may not be possible to be replicated with
a self-financing strategy. Consequently it is well possible that an optimal strategy in a
complete market ceases to be optimal if a source of market incompleteness is introduced.
Furthermore, solving the optimization problem in an incomplete market is usually quite
complicated or even impossible. Another problem is posed by model risk. This is gener-
ated by the possible inconsistency between the unknown true model and the model the
risk manager relies on in order to determine the optimal strategy. That is, one has to use
some (educated) assumptions about the data-generating processes. However, strategies
which are based on an optimality criterion with respect to some assumed model, fail to
be optimal if the true model deviates from the assumed one.

In absence of an optimal solution due to the presence of market frictions, an alternative
approach is to define a stylized trading rule that, if followed by the portfolio manager,
satisfies the constraint of a portfolio insurance strategy. One of the most prominent
of such strategies is the constant proportion portfolio insurance (CPPI). The CPPI was
introduced by Black and Jones (1987) and Perold (1986). While the CPPI can be found to
emerge as a special case of the maximization with HARA utility functions which goes back
as far as Merton (1971), Black and Perold (1992) show the CPPI to be utility maximizing
with respect to a piecewise HARA utility function if the only source of incompleteness is
due to borrowing constraints. The properties of CPPI strategies in continuous time have
been widely studied in the literature. Apart from the above mentioned Bookstaber and
Langsam (2000) focus on the comparison of different portfolio insurance strategies with
respect to path dependency. Black and Rouhani (1989) and Bertrand and Prigent (2002a)
compare the properties of the CPPI and the OBPI. Several modifications of the CPPI
are compared in a Monte Carlo study in Boulier and Kanniganti (1995). While Black
and Perold (1992) further develop the properties of the CPPI strategy in continuous
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time based on a standard lognormal model, they also introduce discrete-time trading
based on triggered trading dates and show how to include borrowing constraints and
transaction costs. The analysis of the CPPI has also been conducted under alternative
model assumptions, such as a stochastic volatility model and jump processes in Bertrand
and Prigent (2003) and Bertrand and Prigent (2002b).

While it is an appealing feature, that the CPPI can be found to be utility maximizing
under certain conditions, this is not the main intention with a stylized trading rule. The
great advantage of the CPPI lies in an extremely simple trading rule and its flexibility.
Consider, for example, a fund manager that has to keep a portfolio consisting of many
different assets above a certain level. In the option based approach, the manager is
required to either buy or replicate put options to insure the portfolio. While put options on
the single assets in the portfolio might be available on the market, usually an appropriate
option on the whole portfolio will not be. Also, insuring the portfolio with options on all
single assets is likely to be too expensive, such that the manager might have no choice but
to make assumptions about parameters such as the drift and volatility of the portfolio and
determine a suitable replication strategy for the appropriate option. Surely, the success
of the strategy hinges critically on the assumptions, such that these must frequently be
checked and the strategy adapted if necessary. Furthermore, the manager might want to
change the composition of the portfolio from time to time. Altering the composition of
the portfolio will usually also lead to an altered appropriate option to insure the portfolio
and therefore also to a different trading strategy. In contrast to this, in order to insure the
portfolio with a CPPI strategy, basically all information needed is the current portfolio
value. Surely, any projections about the future performance of a CPPI strategy critically
hinge on the model assumptions as well. However, the strategy itself does not. It is this
great simplicity, that has let the CPPI to become a frequently applied strategy among
practitioners and caused the market to produce a large number of CPPI based products.

Clearly, since the CPPI is based on a stylized trading rule, it can only be optimal in the
utility maximizing sense with respect to certain conditions on the market environment.
Nevertheless, as an optimal strategy mostly is not available, it is important to investigate
the performance of the CPPI with respect to satisfying the portfolio insurance condition as
well as with respect to different performance measures under the consideration of various
sources of market incompleteness. To a large extent, this is the focus of this work. In
particular, the main source of market incompleteness will be caused by trading restrictions.
Although the standard lognormal model along the lines of Black and Scholes (1973) is used
for the underlying assets, trading will be restricted to discrete time. In chapter 1, which
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is strongly based on Balder, Brandl, and Mahayni (2009), it is assumed, that trading can
only take place at a discrete set of fixed trading dates. While, if trading in continuous time
is permitted, it can be shown, that the CPPI strategy always yields a portfolio value at
a pre-specified future time that is greater than some minimum level, thus always satisfies
the portfolio insurance constraint, this is not true any more if trading is restricted to a
discrete set of fixed trading dates. Under discrete-time trading the potential losses in
underlying assets and hence also in the portfolio value may be so large from one trading
date to another, such that with the lowered portfolio value it is not possible any more to
meet the portfolio insurance constraint with certainty, even if this was still possible at the
previous trading date. This is what is commonly labelled gap risk or overnight risk. An
accumulation of the gap risks yields the probability of the discrete CPPI not satisfying
the portfolio insurance constraint, i.e. the shortfall probability. The shortfall probability
is one of several risk-measures that are employed in order to investigate the effectiveness
of the CPPI in discrete time with respect to keeping the portfolio insurance constraint,
another risk-measure is the expected shortfall. However, also other properties of the
discrete CPPI such as the moments and sensitivities with respect to the model parameters
are provided. It is also shown, that the discrete CPPI converges to the continuous time
version as the number of permitted trading dates turns to infinity.

In chapter 2 a different kind of discrete-time trading is employed. In contrast to the
discrete set of fixed trading dates in chapter 1, in principle trading is permitted at any
time. The fact that trading is permitted at any time does not mean that trading in
continuous time is possible. A natural reason for the introduction of such a trading
restriction are transaction costs. Based on the methodology of Black and Perold (1992),
it is assumed that trading takes place upon changes in the underlying assets, i.e. the
trading dates are assumed to be triggered. While choosing a certain number of fixed
trading dates in chapter 2 can be viewed as a strategic decision, so can choosing the right
triggers here. It turns out that triggered trading dates result in appealing properties of
a discrete version of the CPPI based on these trading dates. For example, as a direct
consequence of the construction, it also turns out that with the so-discretized CPPI the
portfolio insurance constraint can be satisfied with certainty which means there is no
gap risk. In addition, it is possible to find an analytic expression for the distribution
of the discrete CPPI. There are several structural problems of the CPPI. One of these
structural problems is the requirement of the assumption of unlimited borrowing. While
first an analytical expression for the requirement of certain borrowing levels is derived, it
is shown later, that the introduction of a borrowing limit changes the properties of the
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CPPI considerably. The CPPI with borrowing constraints will be called a capped CPPI
and important properties such as the distribution are derived and compared. It is also
possible to introduce transaction costs without borrowing constraints or in addition to a
borrowing limit.

The analysis in chapter 3 is also based on the methodology of triggered trading dates.
However, while in the first two chapters the focus is on trading restrictions, the focus here
is on modifying the CPPI. While a portfolio insurance that guarantees a minimum level of
wealth at a specified future time might be appropriate for a short time horizon, for a long
time horizon it is well possible for the portfolio value to increase to a level that makes the
portfolio insurance insignificant in comparison. A modification of the CPPI that increases
the level of portfolio insurance as the portfolio increases is proposed. The modification is
quite similar to a TIPP strategy as proposed by Estep and Kritzman (1988). Although
Grossman and Zhou (1993) and Cvitanić and Karatzas (1995) prove the optimality of
the strategy with respect to a CRRA utility function, the properties of the strategy have
hardly been analyzed. After the investigation of this modification another structural
problem, the cash-lock, which is common to CPPI structures in general is tackled. The
term cash-lock refers to a situation where the portfolio is completely invested into the
riskless asset. While such a situation in a strict sense can only occur as a result of a
fixed set of trading dates as in chapter 1 or as a result of jumps in the underlying assets,
in a wider sense in can be used to describe situations where the investment into risky
assets is very small. It turns out that the modified CPPI increases this problem. The
problem is tackled by modifying the CPPI further such as to require a minimum fraction
of the portfolio value to be invested into the risky assets. However, while such a condition
clearly solves the cash-lock problem, it opens up the possibility of a violation of the
portfolio insurance condition again.





Chapter 1

The Discrete CPPI with Fixed Trading

Dates

A CPPI investor specifies two parameters, a constant multiplier and a minimum level
of wealth at some future time, the guarantee. The present value of the guarantee is
called the floor. Then the exposure, i.e. the amount which is invested in a risky asset,
is determined by the product of the multiplier and the excess of the portfolio value over
the floor. The excess of the portfolio value over the floor is called the cushion such that
the exposure equals the product of the multiplier and the cushion. The remaining part,
i.e. the difference of the portfolio value and the asset exposure is invested in a riskless
asset. This implies that the strategy is self-financing. Self-financing means that funds are
neither taken from nor added to the portfolio. The procedure is best explained on the
basis of an example. Suppose, the portfolio value equals 1000, the multiplier is chosen
to be equal to 6 and the portfolio insurance condition requires the portfolio value to be
larger than 900 in one year, which reflects the guarantee. Assuming for simplicity that the
riskfree interest rate equals 0%, then the floor is equal to the guarantee. Consequently,
the cushion is 100 and the exposure is 600. If now the portfolio value decreases to a
value of 950 due to a bad performance of the risky asset, the cushion drops to 50 and
consequently the exposure drops to 300. Vice versa, if the portfolio value increases due to
a good performance of the risky asset, the exposure increases as well. Hence, the CPPI
is a pro-cyclical strategy. If the risky asset keeps decreasing, the exposure of the CPPI
will approach zero at the same time such that the guarantee can still be met with the
investment in the riskless asset. If the price process of the risky asset does not permit
jumps, the continuous-time application of the CPPI ensures that the portfolio value does

7
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not fall below the floor. The strategy outperforms the prescribed floor unless there is a
sudden drop in market prices such that the manager is not able to rebalance the portfolio
adequately.

In this chapter, we assume that trading is restricted to a given set of fixed trading dates.
Surely, from one trading date to another the risky asset can drop so much such as to yield
a portfolio value below the floor and thus violate the portfolio insurance condition. We
propose a discrete-time version of a simple CPPI strategy which satisfies three conditions.
The strategy is self-financing, the asset exposure is non–negative and the value process
converges. Assuming that the underlying price process is given by a geometric Brownian
motion, trading restrictions in the sense of discrete-time trading are sufficient to model
the possibility of a floor violation. The advantage of a model setup along the lines of
Black and Scholes (1973) is that risk measures, such as the shortfall probability and the
expected shortfall which are implied by the discrete-time CPPI method can be given in
closed form. Once the risk measures are determined, the gap risk can be priced easily.
However, the main focus is not the pricing. Instead, the relevant risk measures are used
to discuss criteria which must be satisfied such that the CPPI strategy is still effective if
applied in discrete time.1 For example, it turns out that for a small number of rehedges,
the shortfall probability, i.e. the probability that the strategy falls below the floor at
the terminal date, may as well first increase in the trading frequency before it decreases.
However, after a critical number of rehedges, the shortfall probability is always decreasing
in the number of rehedges. The change in monotonicity can be interpreted in terms of a
minimal number of rehedges which is necessary such that a portfolio protection can be
achieved by applying the CPPI technique in discrete time. Obviously, the critical number
of rehedges depends on the model parameters.

The outline of the chapter is as follows. Section 1.1 gives the model setup and reviews the
structure and the properties of continuous-time CPPI strategies. A discrete-time version
of a CPPI strategy where the asset exposure is restricted to be non-negative is defined
in section 1.2. The properties of the discrete-time version are derived in analogy to the
continuous-time version. The assumption that the asset price increments are independent
and identically distributed yields a closed-form solution for the shortfall probability and
the expected shortfall. The calculations are given in section 1.3 which also includes a
sensitivity analysis of the risk measures with respect to model and strategy parameters.
Section 1.4 illustrates the results and discusses criteria which ensure that the discrete-

1It is worth mentioning that while arbitrage free pricing is based on the expectation under the mar-
tingale measure, the risk measures must be determined with respect to the real world measure.
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time strategy is effective, i.e. the portfolio protection is still valid in discrete time. In
section 1.5 it will be shown, that the discrete-time version of the CPPI converges to
the continuous-time version as the trading restrictions vanish. Section 1.6 concludes the
paper.

1.1 Model Setup and the simple CPPI in continuous

time

All stochastic processes are defined on a stochastic basis (Ω,F , (Ft)t∈[0,T ∗], P ) which sat-
isfies the usual hypotheses. We consider two investment possibilities: a risky asset S and
a riskless bond B which grows with constant interest rate r, i.e. dBt = Btr dt where
B0 = b. The evolution of the risky asset S, a stock or benchmark index, is given by a
geometric Brownian motion, i.e.

d St = St (μ dt + σ dWt) , S0 = s, (1.1)

where W = (Wt)0≤t≤T denotes a standard Brownian motion with respect to the real
world measure P and μ, σ are constants with μ > r ≥ 0 and σ > 0. A continuous–
time investment strategy or saving plan for the interval [0, T ] can be represented by a
predictable process (αt)0≤t≤T where αt denotes the fraction of the portfolio value at time
t which is invested in the risky asset S. If there are no additional borrowing restrictions,
we can, w.l.o.g., restrict ourselves to strategies which are self–financing, i.e. strategies
where money is neither injected nor withdrawn during the trading period ]0, T [. Thus,
the amount which is invested at date t in the riskless bond B is given in terms of the
fraction 1 − αt. V = (Vt)0≤t≤T denotes the portfolio value process which is associated
with the strategy α, i.e. Vt is the solution of

dVt(α) = Vt

(
αt

dSt

St
+ (1 − αt)

dBt

Bt

)
, where V0 = x. (1.2)

Notice that there are alternative possibilities for portfolio insurance. Let T denote the
terminal trading date. For example, one might think of T as the retirement day. The
minimal wealth which must be obtained is denoted by G. The guaranteed amount is
assumed to be less than the terminal value of a pure bond investment, i.e. we assume
G < erT V0. Besides a pure bond investment, a trivial possibility is given by a static
trading strategy where at the initial time t = 0 the present value of the guarantee, i.e.
Ge−rT is invested in the bond B and the remaining part, i.e. the surplus V0 − e−rT G,
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is invested in the risky asset S. Thus, although αt = (V0−e−rT G)
Vt

St

S0
is stochastic, the

strategy is static in the sense that there are no rebalancing decisions involved during the
interval ]0, T ]. Abstracting from stochastic interest rates, the above strategy honors the
guarantee G independent of the stochastic process generating the asset prices. Another
example of portfolio insurance is given by a stop–loss–strategy which is represented by a
portfolio fraction αt = 1{Vt>e−r(T−t)G}. Here, everything is invested in the asset until the
surplus (or cushion) Vt−e−r(T−t)G is exhausted. This means that the strategy is effective
with respect to the guarantee if continuous–time monitoring (trading) is possible and the
asset price process does not permit jumps. Together, the above strategies can be used
to explain the basic idea of the constant proportion portfolio insurance. A combination
of continuous–time monitoring and keeping the cushion under control yields the CPPI
approach.

However, in a complete market there is a second possibility, the option based portfo-
lio insurance approach. The completeness implies that there is a self–financing and du-
plicating strategy in S and B for any claim with payoff h(ST ) at T . Notice that for
h(ST ) = λ

(
ST +
[

G
λ
− ST

]+)
= G + λ

[
ST − G

λ

]+ and λ > 0 it holds h(ST ) ≥ G. Buy-
ing λ assets and λ put–options with strike G

λ
enables a portfolio insurance, too.2 If the

associated options are not traded, they must be synthesized by a hedging strategy in S

and B. If the concept of perfect hedging is impeded by market incompleteness, the OBPI
and the CPPI can both violate the purpose of portfolio insurance. In terms of model
risk, i.e. the problem that one does not know which process can describe the true data
generating process adequately, the OBPI approach causes more problems than the CPPI
technique. The composition of the CPPI strategy is model independent. In contrast to
this, it is necessary to incorporate a volatility guess in order to implement the OBPI
approach with synthetic options. Thus, there is an additional error introduced by using
the wrong hedging model.

In the following, we concentrate on the CPPI approach. It is worth mentioning that
even without an utility based justification, the CPPI is an important strategy in prac-
tice.3 We fix the notation and review the basic form and properties of continuous–time
CPPI strategies. Recall that the basic idea of the CPPI approach is to invest the amount

2Or buying λ call options with strike G
λ and a riskless investment of Ge−rT .

3Besides the importance of CPPI strategies in the context of hedge funds, the CPPI technique has
recently been extended to the credit derivatives market, c.f. Fletcher (2005). ABN Amro created the
first credit CPPI product in April 2004. It is called Rente Booster.
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of portfolio value which is above the present value of the guarantee in the risky asset S.
Normally, the symbol F is used to denote the floor. The floor is defined by Ft := e−r(T−t)G

and thus denotes the present value of the guarantee G. This is equivalent to

dFt = Ftr dt with F0 = e−rT G.

The surplus is called cushion and denoted by C, i.e. Ct := Vt − Ft. If the cushion is
monitored in continuous time, it is even possible to invest a multiple of the cushion in the
risky asset. Let m denote the multiplier, then the fraction α of a CPPI strategy is given
by4

αt :=
mCt

Vt
.

Notice that there are various modifications of the CPPI, some of which will be considered
in chapters 2 and 3. For this reason, we call a continuous-time CPPI strategy which
satisfies the above form simple. Notice that a simple CPPI strategy is given in terms
of the guarantee G and the multiplier m ≥ 1. In addition to the protection feature,
this ensures that the value of the CPPI strategy is convex in the asset price5, at least
in a continuous-time setup with continuous asset paths. Throughout this chapter, the
guarantee is given exogenously, i.e. it is the minimal value of wealth which is needed
at T . We review some basic properties of the continuous-time CPPI technique. First,
consider the cushion process (Ccont

t )0≤t≤T . We use the notation Ccont for the cushion
process in continuous time and likewise V cont for the value process in continuous time
in order to distinguish from several discrete-time cushion and value processes yet to be
introduced.

Lemma 1.1.1

If the asset price dynamic is lognormal, i.e. if it satisfies equation (1.1), the cushion
process (Ccont

t )0≤t≤T of a simple CPPI is lognormal, too. In particular, it holds

dCcont
t = Ccont

t ((r + m(μ − r) dt + σm dWt) .

4For simplicity, we abstract from borrowing constraints in this chapter. Borrowing constraints are
discussed in chapter 2. In the current framework, they could be modelled by αt = min{m(Vt−Ft),pVt}

Vt
with

p ≥ 0.
5Note that this property ensures that the CPPI is also a portfolio insurance strategy with respect to

the definition of Leland (1980) and Brennan and Schwartz (1989).
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Proof: Notice that Ccont
t = V cont

t − Ft implies

dCcont
t = d

(
V cont

t − Ft

)
= V cont

t

(
mCcont

t

V cont
t

dSt

St

+

(
1 − mCcont

t

V cont
t

)
dBt

Bt

)
− Ft

dBt

Bt

= Ccont
t

(
m

dSt

St
− (m − 1)r dt

)
.

The rest of the proof follows with equation (1.1). �

Proposition 1.1.2

The t–value of the a simple CPPI with parameter m and G is

V cont
t = Ge−r(T−t) +

V0 − Ge−rT

Sm
0

exp

{(
r − m

(
r − 1

2
σ2

)
− m2 σ2

2

)
t

}
Sm

t .

Proof: Notice that the assertion can also be rewritten as

V cont
t = Ft +

C0

Sm
0

exp

{(
r − m

(
r − 1

2
σ2

)
− m2σ2

2

)
t

}
Sm

t .

The proof of this equation is well-known, c.f. for example Bertrand and Prigent (2002a).
Together with

St = S0e
(μ− 1

2
σ2)t+σWt

it follows that
Ccont

t = C0e
(r+m(μ−r)− 1

2
m2σ2)t+σmWt (1.3)

which matches the result of lemma 1.1.1. �

Proposition 1.1.2 illustrates the basic property of a simple CPPI. The t-value of the
strategy consists of the present value of the guarantee G, i.e. the floor at t, and a non-
negative part which is proportional to

(
St

S0

)m
. Thus, the value process of a simple CPPI

strategy is path independent.6 The payoff above the guarantee is linear for m = 1 and it
is strictly convex for m > 1. In financial terms, the payoff of a CPPI strategy with m > 1

can be interpreted as a power claim. The portfolio protection is efficient with probability
one, i.e. the terminal value of the strategy is higher than the guarantee with probability
one. Notice that the lognormality of the asset price process implies the lognormality of
the cushion process. Therefore, it is immediately clear that the strategy does not fall
below the floor in all scenarios where the asset price dynamic is lognormal. Clearly, the
assumption of lognormality is not necessary. In general, the CPPI in continuous time

6Notice that this is not true if one deviates from the concept of a simple CPPI.
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Expectation and Standard Deviation of a simple CPPI
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Figure 1.1: Expected terminal value of a simple
CPPI with V0 = 1000, G = 800, T = 1 and varying
m for σ = 0.1, μ = 0.1 and r = 0.05.
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Figure 1.2: Standard deviation of the terminal
value of a simple CPPI with V0 = 1000, G = 800,
T = 1 and varying σ for μ = 0.1, r = 0.05 and
m = 2 (m = 4, m = 8 respectively).

will satisfy the portfolio insurance condition whenever the sample-paths of the underlying
risky asset are assumed to be continuous.

The expected value and the variance of a simple CPPI are easily calculated as follows.

Lemma 1.1.3

E
[
V cont

t

]
= Ft +

(
V0 − Ge−rT

)
exp {(r + m(μ − r)) t}

V ar
[
V cont

t

]
=
(
V0 − Ge−rT

)2
exp {2 (r + m(μ − r)) t}

(
exp
{
m2σ2t
}
− 1
)
.

Proof: With proposition 1.1.2 it follows

E
[
ln
(
V cont

t − Ft

)]
= ln C0 +

(
r + m(μ − r) − 1

2
m2σ2

)
t

V ar
[
ln
(
V cont

t − Ft

)]
= σ2m2t

while it is well-known that for X ∼ N (μX , σX) we have

E
[
eX
]

= eμX+ 1
2
σ2

X , V ar
[
eX
]

= e2μX eσ2
X

(
eσ2

X − 1
)

.

�

It is worth mentioning that the expected terminal value of a simple CPPI strategy is in-
dependent of the volatility σ. In contrast, the standard deviation increases exponentially
in the volatility of the asset S, c.f. figures 1.1 and 1.2. Intuitively, this property explains
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that the effectiveness of a CPPI strategy with respect to various sources of market in-
completeness does not only depend on the asset price drift but even more importantly on
the volatility of the underlying asset. In particular, this is the case for large values of the
multiplier.

1.2 Trading restrictions

We assume now that trading is restricted to a discrete set of dates and define a discrete-
time version of the simple CPPI strategy satisfying the following three conditions. Firstly,
the value process of the discrete-time version converges in distribution to the value process
of the simple continuous-time CPPI strategy. Secondly, the discrete-time version is a self-
financing strategy. This means, that after the initial investment V0 = x, there is no in-
or outflow of funds. Thirdly, the strategy does not allow for a negative asset exposure.
Notice that the first condition implies that the cushion process of the discrete-time version
converges to a lognormal process in distribution. However, the cushion process with
respect to a discrete-time set of trading dates may also be negative. Therefore, to avoid
a negative asset exposure, this must be captured by the definition of the discrete–time
version.

Let T n denote a sequence of equidistant refinements of the interval [0, T ], i.e.

T n = {t0 = 0 < t1 < · · · < tn−1 < tn = T} ,

where tk+1 − tk = T
n

for k = 0, · · · , n − 1. The restriction that trading is only possible
immediately after tk ∈ T n implies that the number of shares held in the risky asset is
constant on the intervals ]ti, ti+1] for i = 0, . . . , n − 1. However, the fractions of wealth
which are invested in the assets change as asset prices fluctuate. Thus, it is necessary
to consider the number of shares held in the risky asset η and the number of bonds β,
i.e. the tupel φ = (η, β). With respect to the continuous-time simple CPPI strategies, it
holds

ηt =
αtV

cont
t

St
=

mCcont
t

St
,

βt =
(1 − αt)V

cont
t

Bt
=

V cont
t − mCcont

t

Bt
.

The following argumentation illustrates that a time-discretized strategy φT n which is
defined by

φT n

t := φtk for t ∈]tk, tk+1], k = 0, . . . , n − 1
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is in general not self-financing. The value process V T n
:= V (φ; T n) which is associated

with the discrete-time version of φ, i.e. with φT n , is defined by V T n

0 := V0 and

Vt(φ; T n) := ηtkSt + βtkBt for t ∈]tk, tk+1]

= Vt(φ) − (ηt − ηtk)St − (βt − βtk)Bt for t ∈]tk, tk+1],

where
Vt(φ) := ηtSt + βtBt.

If φ is self-financing, this is not necessarily true for φT n . Notice that φT n is self-financing
iff

ηtkStk+1
+ βtkBtk+1

= ηtk+1
Stk+1

+ βtk+1
Btk+1

for all k = 0, . . . , n − 1

⇐⇒ Vtk+1
(φ; T n) = Vtk+1

(φ) for all k = 0, . . . , n − 1.

Obviously, this is only true in the limit, i.e. for n → ∞. It is worth mentioning that it
is not even clear whether the above time-discretized version is mean-self-financing with
respect to the real world measure, c.f. for example Mahayni (2003). In order to specify a
meaningful discrete-time version of a simple CPPI strategy, it is necessary to admit only
self-financing strategies. This is equal to the condition that

βT n

t =
1

Btk

(
V T n

tk
− ηT n

t Stk

)
for t ∈]tk, tk+1] (1.4)

which is reflected in the following definition.

Definition 1.2.1 (Discrete–time CPPI)

A strategy φT n
=
(
ηT n

, βT n) where for t ∈]tk, tk+1] and k = 0, . . . , n − 1

ηT n

t := max

{
m(V T n

tk
− Ftk)

Stk

, 0

}
βT n

t :=
1

Btk

(
V T n

tk
− ηT n

t Stk

)
is called simple discrete-time CPPI.

Recall that constant proportion portfolio insurance means that the fraction of wealth α

which is invested in the risky asset is given proportionally to the difference of the portfolio
value and the floor, i.e. the cushion. Note that this basic trading rule of the CPPI is
immanent in definition 1.2.1. In addition, we do not allow for short positions in the risky
asset, i.e. the asset exposure is bounded below by zero. This is achieved by considering
the positive part of the cushion in definition 1.2.1. Also, the self-financing condition from
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equation 1.4 is reflected. In order to distinguish from the discretization with triggered
trading dates, which is introduced in chapter 2, from now on we will denote the value
process and the cushion process of a simple discrete-time CPPI with respect to a fixed set
of trading dates as defined in definition 1.2.1 with V fi and Cfi, respectively. The cushion
process Cfi is defined by Cfi

t := V fi
t − Ft.

Proposition 1.2.2 (Discrete–time cushion process)

Let ts := min
{

tk ∈ T n|Cfi
tk

≤ 0
}

denote the first trading date at which the portfolio value
process of the simple discrete-time CPPI is not strictly above the floor. Further set ts = ∞
if the minimum is not attained. Then it holds

Cfi
tk+1

= C0e
r(tk+1−min{ts,tk+1})

min{s,k+1}∏
i=1

(
m

Sti

Sti−1

− (m − 1)er T
n

)
.

Proof: Notice that

V fi
tk+1

= max

{
mCfi

tk

Stk

, 0

}
Stk+1

+

(
V fi

tk
− max

{
mCfi

tk

Stk

, 0

}
Stk

)
Btk+1

Btk

=

⎧⎨⎩ Ftk

Btk+1

Btk
+ Cfi

tk

(
m

Stk+1

Stk
− (m − 1)

Btk+1

Btk

)
for Cfi

tk
> 0

V fi
tk

Btk+1

Btk
for Cfi

tk
≤ 0.

Together with Ftk

Btk+1

Btk
= Ftk+1

it follows

Cfi
tk+1

=

⎧⎨⎩ Cfi
tk

(
m

Stk+1

Stk
− (m − 1)er T

n

)
for Cfi

tk
> 0

Cfi
tk

er T
n for Cfi

tk
≤ 0,

for all k = 0, . . . , n − 1, from which the assertion becomes apparent. �

Notice that the value process V fi converges in distribution to the value process V cont if
the trading restrictions vanish, i.e. if n → ∞. The proof of the convergence statement is
based on the convergence of the corresponding expectation and variance. Therefore, it is
postponed to section 1.5 where the moments are known.

1.3 Risk Measures of Discrete–Time CPPI

Recall that the basic idea of a CPPI strategy is portfolio protection. Heuristically, the
usage of these strategies is explained by an investor who wants to participate in bullish
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markets but does not want the terminal value of the strategy to end up below a guar-
anteed amount G. Thus, the investor is completely risk averse for values below the floor
(or guarantee). As motivated in the previous sections, as soon as a source of market
incompleteness is considered, i.e. a restriction on the set of trading dates, the concept of
a perfect portfolio protection is impeded, in particular for dynamic strategies. With the
exception of static portfolio insurance strategies, there is a positive probability that the
terminal value is below the guaranteed amount. In particular, this is true for CPPI and
OBPI strategies which include a synthetic put. The use of such constrained strategies
or strategies which include a gap risk can be explained as follows. On the one hand,
one might think of an investor who accepts, because of market incompleteness, a strategy
which gives the guaranteed amount with a certain success probability. On the other hand,
one might think of retail products which are based on the CPPI method and are thus also
hedged by a CPPI strategy. Normally, the buyer of such a product gets the guaranteed
amount even in the case that the strategy fails to provide it. Here, the issuer takes the gap
risk and considers this in his product pricing. In both cases, the risk profile of the CPPI is
of great interest. It is necessary to compute risk measures which allow a characterization
if the constrained CPPI is still effective in terms of portfolio insurance.

In the following, we take the view of an investor who uses the CPPI as a savings plan with
portfolio protection. A CPPI strategy contradicts the original idea of the portfolio insur-
ance if it results in a very high gap risk, i.e. if the shortfall probability and the expected
shortfall are prohibitively high. The investor has to decide whether this additional risk is
not too high in terms of a portfolio insurance. In addition to the expected final value and
its standard deviation, we consider the shortfall probability and the expected shortfall
given default as the risk measures which determine the effectiveness of the discrete–time
CPPI strategy.7 The shortfall probability is the probability that the final value of the
discrete–time CPPI strategy is less or equal to the guaranteed amount G. Intuitively,
one can also define a local shortfall probability (given that no prior shortfall happened
before). Additionally, we use the expected shortfall given default to describe the amount
which is lost if a shortfall occurs.

7Notice that the shortfall probability is not a coherent risk measure, i.e. it is not sub–additive. In
contrast, the expected shortfall given default is a coherent risk measure. We remain within the class of
stylized strategies, i.e. the CPPI strategies. Thus, it is in fact not a problem even if the effectiveness of
the strategies is analyzed by using a risk measure which is not sub–additive. For details on coherent risk
measures we refer to the work of Artzner, Delbaen, Eber, and Heath (1999).
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Definition 1.3.1 (Risk measures)

P SF := P
(
V fi

T ≤ G
)

= P
(
V fi

T ≤ FT

)
shortfall probability

P LSF
ti,ti+1

:= P
(
V fi

ti+1
≤ Fti+1

|V fi
ti > Fti

)
local shortfall probability

ES := E
[
G − V fi

T |V fi
T ≤ G

]
expected shortfall given default.

It turns out that, in contrast to a discrete-time option based strategy with a synthetic
put, the calculation of the shortfall probability implied by a CPPI strategy is very simple.
This is easily explained if one observes that the shortfall event is equivalent to the event
that the stopping time which is defined in proposition 1.2.2 is prior to the terminal date.
It is convenient to consider the following lemma.

Lemma 1.3.2

Let Ak :=
{

Stk

Stk−1
> m−1

m
er T

n

}
for k = 1, . . . , n, then it holds

{ts > ti} =

i⋂
j=1

Aj and {ts = ti} = AC
i ∩
(

i−1⋂
j=1

Aj

)
for i = 1, . . . , n.

Proof: According to the proof of proposition 1.2.2 it holds

Cfi
tk+1

=

⎧⎨⎩ Cfi
tk

(
m

Stk+1

Stk
− (m − 1)er T

n

)
for Cfi

tk
> 0

Cfi
tk

er T
n for Cfi

tk
≤ 0.

The rest of the proof follows immediately with the definition of the stopping time ts and

m
Stk+1

Stk

− (m − 1)er T
n > 0 ⇐⇒

Stk+1

Stk

>
m − 1

m
er T

n .

�

Lemma 1.3.3

The local shortfall probability is independent of ti and ti+1, i.e.

P LSF
ti,ti+1

= P LSF = N (−d2) (1.5)

where d2 :=
ln m

m−1
+ (μ − r)T

n
− 1

2
σ2 T

n

σ
√

T
n

. (1.6)

Proof: Notice that in view of lemma 1.3.2

P LSF
ti,ti+1

= P
(
V fi

ti+1
≤ Fti+1

|V fi
ti > Fti

)
= P (ts = ti+1|ts > ti) = P

(
AC

1

)
,

where the last equality follows from the assumption that the asset price increments are
independent and identically distributed (iid). �
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Figure 1.3: Shortfall probability dependent on
the number of rehedges. The parameters are V0 =

1000, GT = 1000, m = 12 (15 and 18 respectively),
μ = 0.085, r = 0.05 and σ = 0.1.
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Figure 1.4: Shortfall probability dependent on
the number of rehedges. The parameters are V0 =

1000, GT = 1000, m = 12 (15 and 18 respectively),
μ = 0.085, r = 0.05 and σ = 0.3.

Proposition 1.3.4

The shortfall probability P SF is given in terms of the local shortfall probability P LSF, i.e.

P SF = 1 −
(
1 − P LSF)n .

Proof: The above lemma is a direct consequence of lemmas 1.3.2, 1.3.3 and the inde-
pendence of asset price increments, i.e.

P SF = 1 − P (ts = ∞) = 1 −
(
1 − P LSF)n .

�

It will be shown later, c.f. lemma 1.5.2, that the shortfall probability converges to zero
as continuous-time trading is approached, i.e. lim

n→∞
P SF = 0. At first glance, it might be

tempting to think that the shortfall probability is monotonically decreasing in the hedging
frequency, i.e. the number of rehedges n. In general, this is only true after a sufficiently
large n is reached. The effect that the shortfall probability is increasing for small n is more
pronounced for high volatilities and high multipliers, c.f. figure 1.3 and figure 1.4.8 Let
n∗ denote the number of rehedges such that the shortfall probability is increasing in n for
n ≤ n∗ and decreasing for n ≥ n∗. The critical level n∗ is to be interpreted as a minimal
number of rehedges which is necessary such that the CPPI method is effective for m > 1

8It is straightforward to show that the shortfall probability is monotonically increasing in m and σ.
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in discrete time. Consider for example a guaranteed amount G given by G = erT m−1
m

V0

such that α0 = 1, i.e. the initial exposure in the risky asset coincides with the initial
portfolio value. If in addition n is chosen to be one, i.e. there is no rehedge until T , the
discrete-time CPPI strategy coincides with a pure asset investment. Obviously, the CPPI
method can not be effective for n = 1, i.e. a pure asset investment is not in the spirit
of the CPPI method. Thus, it is intuitively clear that a minimal number of rehedges
becomes necessary such that the CPPI method applies if trading is restricted to discrete
time. The critical level n∗ and its implications are further discussed in section 1.4 where
the effectiveness of the discrete-time CPPI method is studied in detail.

If a shortfall is possible, one should also consider the amount of the shortfall or a risk
measure which describes the amount of the shortfall. One possibility is given by the
expected shortfall ES which is introduced in definition 1.3.1. It turns out that in order
to determine the expected shortfall, it is convenient to decompose the expected terminal
payoff into two parts. One part is given by the expected terminal value if a shortfall
occurs and the other by the expectation on the set where the terminal value is above the
guarantee.

Proposition 1.3.5 (Expected terminal value)

It holds

E
[
V fi

T

]
= G + (V0 − Ge−rT )

[
En

1 + E2
erT − En

1

er T
n − E1

]
where E1 := meμT

n N (d1) − er T
n (m − 1)N (d2)

E2 := meμT
n N (−d1) − er T

n (m − 1)N (−d2) ,

d2 is the same as in lemma 1.3.3 and d1 := d2 + σ
√

T
n
.

Proof: First notice that

E
[
V fi

T

]
= E
[
V fi

T 1{ts=∞}

]
+ E
[
V fi

T 1{ts≤tn}

]
(1.7)

where the first expectation on the right hand side can be written as

E
[
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]
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1Ai

]
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(
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T

n∏
i=1

1Ai

]
(1.8)

with the help of lemma 1.3.2.
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We now show that

E

[
Cfi

ti

i∏
j=1

1Aj

]
= C0 (E1)

i , ∀ i = 1, . . . , n. (1.9)

The following calculations are based on proposition 1.2.2, lemma 1.3.2 and the assumption
that the asset price increments are independent and identically distributed (iid).

E

[
Cfi

ti

i∏
j=1

1Aj

]
= C0E

[
i∏

j=1

(
m

Stj

Stj−1

− (m − 1)er T
n

)
1Aj

]

= C0

i∏
j=1

E

[(
m

Stj

Stj−1

− (m − 1)er T
n

)
1Aj

]

= C0

(
E

[(
m

St1

S0

− (m − 1)er T
n

)
1A1

])i

Notice that the last expectation matches the definition of E1, i.e. it holds
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]
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such that equation (1.9) is proven.

For the second expectation on the righthand side of equation (1.7), observe that
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We now show that
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From lemma 1.3.2 we know
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Notice from proposition 1.2.2 that if there is no shortfall until ti−1, it holds
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such that
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With equation (1.9) and the assumption that the asset price increments are iid, it follows
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where it is straightforward to check that the expectation satisfies the definition of E2.
This proves equation (1.11). Now a combination of equations (1.10) and (1.11) yields
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such that together with equations (1.7), (1.8) and (1.9) the proposition is proven. �

The calculation of the expected shortfall ES is now straightforward.9

Corollary 1.3.6 (Expected Shortfall)

The expected shortfall ES which is defined as in definition 1.3.1 is given by

ES = −
C0E2

erT−En
1

er T
n −E1

P SF .

Proof: According to the definition, it holds

ES = E
[
G − V fi

T |ts < ∞
]

= G −
E
[
V fi
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]
P SF

.

The proof is completed by inserting equation (1.12). �

9The same is true for the price of the associated gap risk, i.e. the price of an option where the payoff
at T is given by (G − V fi

T )+. Notice that by standard financial theory, the t0–price is given by the
expected value of the discounted payoff under the martingale measure. However, the risk measures which
are considered here must be given with respect to the real world measure.
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Proposition 1.3.7 (Variance of final value)

With d1 and d2 as defined above, it holds
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Proof: Notice that
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Analogously to the proof of proposition 1.3.5 it is straightforward to show for all i =
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which gives an expression for the first term on the right hand side of equation (1.14). For
the second term on the right hand side of equation (1.14) note first that

E[(Cfi
T )21{ts=ti}] = e2r(T−ti)E

[
(Cfi

ti )21{ts=ti}

]
where

E
[
(Cfi

ti )21{ts=ti}

]
= E

[
(Cfi

ti )21AC
i

i−1∏
j=1

1Aj

]

= E

[(
Cfi

ti−1

)2(
m

Sti

Sti−1

− (m − 1)er T
n

)2

1AC
i

i−1∏
j=1

1Aj

]

= E

[(
m

St1

S0

− (m − 1)er T
n

)2

1AC
1

]
C2

0 Ẽ
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Sensitivity of risk measures

Risk measures Strategy parameter Model parameter
G m μ σ

Mean ↓ ↑ ↑ ↑
Stdv. ↓ ↑ ↑ ↑
P SF – ↑ ↓ ↑
ESF ↓ ↑ ↑ ↑

Table 1.1: Sensitivity analysis of risk measures. We use the symbol ↑ for monotonically increasing and
↓ for monotonically decreasing.

with the help of equation (1.15). Therefore the sum in equation (1.14) is given by

n∑
i=1

E
[
(Cfi

T )21{ts=ti}

]
= C2
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n∑
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e2r(T−ti)Ẽi−1
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0 Ẽ2
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which combined with equations (1.13), (1.14), and (1.15) yields the assertion in the propo-
sition. �

Before we study the effectiveness of the time–discretized CPPI in detail, we briefly perform
a sensitivity analysis of the risk measures. In order to avoid a lengthy discussion of all
possible sensitivities, we summarize the main results in table 1.1. The corresponding
proofs are straightforward. Notice that the shortfall probability is independent of G, c.f.
proposition 1.3.4. Partial differentiation immediately yields that the shortfall probability
is increasing in σ and m but decreasing in μ. In contrast, the sensitivity analysis of the
other risk measures is tedious. For example, the monotonicity of the expected terminal
value, i.e. E[V fi

T ], in σ is shown at the end of the section in lemma 1.3.8. Likewise, similar
arguments to the ones presented here can be used to show that the expected terminal
payoff is also increasing in μ and m. Monotonicity in G and V0 is immanent. With respect
to the standard deviation, it is intuitively clear that the volatility σ has a positive effect
on the standard deviation, so does m. It is worth mentioning that both the shortfall
probability and the expected shortfall are increasing in m and σ. This implies that a
discrete-time CPPI is not effective in discrete time if either the standard deviation is too
large in comparison to the multiplier or vice versa.

We end the section by proving the sensitivity of the expected terminal value with respect
to the volatility.
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Lemma 1.3.8

The expected terminal value of the simple discrete CPPI is increasing in the volatility σ,
i.e.
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For μ > r, the leading factors are positive. Besides, we have ∂ E1
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is omitted here. In particular, analogous calculations as for the determination of the vega
of a call-option price in a Black/Scholes–type model are needed. Finally, it is to show
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Notice that due to E1 > er T
n , the above inequality is also strict. �

1.4 Effectiveness of the discrete-time CPPI method

As shown above, the effectiveness of the discrete-time CPPI method depends on the
strategy parameters, i.e. the multiplier m, the number of rehedges n and the guarantee
G, as well as the model parameters μ and σ. The most important influences are caused by
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the multiplier m and the volatility σ. Therefore, all examples are considered for varying
multipliers and volatilities. If not mentioned otherwise, we consider a model scenario
where μ = 0.085, σ = 0.1 (0.2 or 0.3, respectively) and r = 0.05. The maturity time of
the CPPI strategy is equal to one year (T = 1), the initial investment coincides with the
guarantee, i.e. V0 = G = 1000. Thus, the goal of the strategies under consideration is to
ensure 100% of the initial capital. This is in accordance to guaranteed fund management.10

For the multiplier m we consider the values 12, 15 and 18. Here, the initial asset exposure
m
(
V0 − e−rTG

)
is 585.247 for m = 12, 731.559 for m = 15 and 877.870 for m = 18 such

that the relative initial asset investment varies between 0.585 and 0.88. A high multiplier
is convenient in order to emphasize all effects and to highlight the effect of a small change
in volatility.

First, we consider the question whether the discrete-time CPPI method gives a good
approximation of the continuous-time CPPI for a finite number of rehedges n. Recall
that the value process of the discrete–time CPPI converges to the value process of the
continuous–time CPPI in distribution, c.f. proposition 1.5.1. Since the cushion process
of the continuous–time CPPI is lognormal, the payoff distribution of the continuous–time
CPPI is described by its mean and its standard deviation. These numbers are summarized
in table 1.2. In addition, table 1.2 summarizes the moments and risk measures for various
numbers of rehedges n.

Now consider the shortfall probability. Observe, that in the case where σ = 0.1, a monthly
CPPI–strategy (n = 12) with a multiplier m = 12 implies a shortfall probability of only
0.01. In contrast, a volatility of σ = 0.2 gives a shortfall probability of more than 0.5.
Thus, the monthly CPPI strategy ensures a significant protection level for σ = 0.1 while
the concept of portfolio insurance is already impeded for σ = 0.2. Here (for σ = 0.2),
even a weekly rehedging, i.e. n = 48 is not enough to achieve a shortfall probability of less
than 0.05. This illustrates that the effectiveness of the discrete–time CPPI method is very
sensitive to the volatility of the asset price process. Besides, the higher the multiplier,
the more pronounced the effect is. For example, notice that the shortfall probability for
a CPPI–strategy with n = 24 and m = 18 is 0.049 for σ = 0.1 but 0.86 for σ = 0.2.

Recall that the shortfall probability is not necessarily monotonically decreasing in the
number of rehedges. A very large shortfall probability implies that the number of rehedges

10It is worth mentioning that the probability that the CPPI portfolio value is higher than the OBPI
value increases in the percentage of the insured initial investment, c.f. Bertrand and Prigent (2003).
Recall that V OBPI

T = G+[ST −G]+. Thus, the above effect is intuitively explained by observing that the
probability of exercising the embedded call option is decreasing in the strike.
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Moments and risk measures of the CPPI

n m Mean Stdv. SFP ESF

12 12 1077.53 (1080.23) 125.04 (703.03) 0.0115 (0.5430) 5.463 (25.933)
24 12 1077.77 (1078.60) 132.01 (948.79) 0.0002 (0.3195) 2.981 (12.296)
48 12 1077.90 (1077.98) 135.88 (1133.36) 0.0000 (0.0580) 1.574 (5.802)
96 12 1077.97 (1077.97) 137.92 (1249.06) 0.0000 (0.0009) 0.000 (3.037)
∞ 12 1078.03 (1078.03) 140.04 (1387.90)

n m Mean Stdv. SFP ESF

12 15 1085.94 (1074.28) 206.30 (1874.59) 0.0767 (0.7592) 8.901 (57.01)
24 15 1086.22 (1090.92) 226.81 (3361.17) 0.0069 (0.6610) 4.836 (27.86)
48 15 1086.44 (1087.43) 238.86 (4936.18) 0.0000 (0.3258) 2.597 (11.03)
96 15 1086.56 (1086.60) 245.46 (6130.89) 0.0000 (0.0333) 1.364 (5.02)
∞ 15 1086.67 (1086.67) 252.51 (7801.45)

n m Mean Stdv. SFP ESF

12 18 1095.70 (1120.63) 339.07 (4924.65) 0.2094 (0.8691) 13.911 (118.32)
24 18 1095.65 (1111.58) 396.37 (12759.40) 0.0494 (0.8593) 7.296 (64.66)
48 18 1095.90 (1101.08) 432.75 (25691.30) 0.0015 (0.6767) 3.908 (23.70)
96 18 1096.08 (1096.68) 453.66 (39053.60) 0.0000 (0.2131) 2.067 (8.30)
∞ 18 1096.27 (1096.27) 476.83 (62763.30)

Table 1.2: The time horizon is T = 1 year and the guarantee G is equal to the initial investment
V0 = 1000. The model parameters are given by μ = 0.085, r = 0.05 and σ = 0.1 (σ = 0.2 respectively).
The case n = ∞ represents the continuous-time CPPI.

is still too low to achieve an effective portfolio protection. For example, one might think
of the extreme case that n = 1, i.e. the case where the portfolio is held constantly on
the trading period [0, T ]. Obviously, a portfolio protection can only be achieved if only
the surplus is invested in the risky asset. One can argue that the CPPI method is not
effective if the number of rehedges n is still in a region where the shortfall probability is
increasing in n. Thus, it is convenient to determine the minimal number n∗ such that
an increase in the number of portfolio rebalancing dates is able to reduce the shortfall
probability. For different combinations of σ and m, the critical number n∗ is illustrated
in table 1.3.11 However, n∗ can only be used as a number which is at least necessary to
achieve an effective portfolio insurance.

11Compare also the remarks in the last section referring to figure 1.3 and figure 1.4.



28 CHAPTER 1. THE DISCRETE CPPI WITH FIXED TRADING DATES

Minimal number of rehedges

m σ n∗ m σ n∗ m σ n∗

12 0.1 2.00 15 0.1 3.08 18 0.1 4.40
12 0.2 7.00 15 0.2 11.09 18 0.2 16.11
12 0.3 15.35 15 0.3 24.44 18 0.3 35.64

Table 1.3: Minimal number n∗ of rehedges such that the shortfall probability is decreasing in n.

One solution to ensure the effectiveness of the discrete-time CPPI method is given by the
possibility to determine the contract parameters such that the probability of falling below
the guarantee is bounded from above by a confidence level γ, for example γ = 0.99 (or
γ = 0.95). This can be explained by an investor who is aware of market incompleteness
and accepts a small shortfall probability with respect to the guarantee. Again, we consider
the same model scenario where T = 1, μ = 0.085, r = 0.05, V0 = G = 1000 and distinguish
between σ = 0.1 and σ = 0.2. For illustration, we determine (n, m)–tupels which give a
shortfall probability of 0.01 and 0.05. The resulting values as well as the corresponding
other risk measures are given in table 1.4. For example, observe that in the case of
σ = 0.1, the CPPI method with monthly rehedging and a multiplier of 11.84 ensures
that the capital is maintained with a probability of 0.99. At the same time the expected
payoff and the variance of the payoff are similar in magnitude to the ones obtained by
a direct investment in S, i.e. for the expectation compare 1077 to 1088 and for the
standard deviation compare 121.75 to 109.14.12 Therefore, in the case where σ = 0.1,
even a monthly rehedging is enough to give a high success probability if the multiplier

12A direct investment of V0 in the asset S gives for σ = 0.1 (σ = 0.2 respectively)

E
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Risk profile for discrete-time CPPI strategies with a shortfall probability of

0.01 (0.05).

σ = 0.1

n m Mean Stdv. ES

12 11.843 (14.124) 1077.118 (1083.377) 121.752 (178.420) 5.313 (7.770)
24 15.446 (18.024) 1087.558 (1095.730) 246.087 (398.225) 5.157 (7.319)
36 18.146 (20.956) 1096.273 (1106.154) 432.362 (774.426) 5.149 (7.217)
48 20.386 (23.389) 1104.150 (1115.646) 717.129 (1419.070) 5.186 (7.219)
60 22.336 (25.507) 1111.528 (1124.588) 1152.310 (2511.390) 5.243 (7.267)

σ = 0.2

n m Mean Stdv. ES

12 6.065 (7.152) 1063.302 (1065.747) 107.138 (150.350) 4.478 (6.432)
24 7.879 (9.128) 1067.464 (1070.485) 204.334 (316.650) 4.275 (5.931)
36 9.234 (10.605) 1070.748 (1074.241) 345.136 (591.266) 4.190 (5.720)
48 10.358 (11.829) 1073.591 (1077.500) 554.966 (1048.690) 4.145 (5.605)
60 11.335 (12.893) 1076.156 (1080.449) 868.650 (1804.760) 4.121 (5.535)

Table 1.4: For a given discretization in terms of n, the multiplier is determined such that the implied
shortfall probability is 0.01 (0.05 respectively).

is chosen appropriately.13 However, in case of a volatility scenario where σ = 0.2, the
multiplier is to be chosen much more conservatively. Finally, it is worth mentioning that
it is sufficient to control the shortfall probability if one also wants to control the expected
shortfall which is unarguably a more convincing risk measure. In the above example,
keeping the shortfall probability on a 0.01 level is approximately the same as keeping the
expected shortfall at a level of 5.2.

13Again, it is worth mentioning that although a multiplier of approximately 12 seems to be fairly large,
it is to be interpreted in combination with the low volatility. In particular, a multiplier of m = 11.843

implies that for a guarantee G = V0 = 1000 the initial amount invested in S is given by

αV0 = m(V0 − F0) = 11.843(1000− e−0.051000) = 577.59.
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1.5 Convergence

Based on the results of section 1.3, the purpose of this section is to show that the simple
discrete CPPI converges to the simple continuous CPPI as the trading restrictions vanish.
In particular, the following proposition will be shown.

Proposition 1.5.1 (Convergence)

For n → ∞, the value process V fi converges to the value process V cont in distribution, i.e.

V fi L→ V cont. In particular, it holds

lim
n→∞
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First, we consider the convergence of the shortfall probability, the expected terminal value
and the variance of the terminal value.

Lemma 1.5.2

The shortfall probability converges to zero if the trading restrictions vanish, i.e.

lim
n→∞

P SF = 0

Proof: Let f ∈ C1(R) such that lim
x→∞

f(x) = 1. With

lim
x→∞

(f(x))x = lim
x→∞

(
1 +

x(f(x) − 1)

x

)x

= e
lim

x→∞x(f(x)−1)

together with an application of L’Hôpital’s rule, i.e.

lim
x→∞

x(f(x) − 1) = lim
x→∞

f(x) − 1

x−1
= lim

x→∞
−x2 ∂ f

∂ x
(x),

it follows lim
x→∞

(f(x))x = e
lim

x→∞−x2 ∂ f
∂ x

(x) if lim
x→∞

−x2 ∂ f
∂ x

(x) exists. Thus,

lim
n→∞

P SF = lim
n→∞

1 − (1 − P LSF )n = 1 − lim
n→∞

N (d2)
n

= 1 − e
lim

n→∞−n2 ∂ N (d2)
∂ n = 1 − e

lim
n→∞−n2N ′(d2)

∂ d2
∂ n .

The rest of the proof follows immediately with the definition of d2, c.f. proposition 1.3.5,
and

lim
n→∞

e−nnk = 0 for all k ∈ N.

�



1.5. CONVERGENCE 31

Lemma 1.5.3

The expected value of the discrete–time CPPI converges to the expected value of a simple
CPPI if the trading restrictions vanish, i.e.

lim
n→∞

E
[
V fi

T

]
= G + (V0 − Ge−rT )e(r+m(μ−r))T

Proof: According to proposition 1.3.5 it holds

E[V fi
T ] = G + (V0 − Ge−rT )En

1 + (V0 − Ge−rT )e−r T
n E2

erT − En
1

1 − E1e
−r T

n

. (1.16)

First, we consider the limit of En
1 . Using the definition of E1, c.f. proposition 1.3.5, it is

straightforward to show that lim
n→∞

E1 = 1. According to the proof of lemma 1.5.2 it holds

lim
n→∞

En
1 = e

lim
n→∞−n2 ∂ E1

∂ n

where

−n2 ∂ E1

∂ n
= mμTeμT

n N (d1) − (m − 1)rTer T
n N (d2)

− meμT
n n2N ′(d1)

∂ d1

∂ n
+ (m − 1)er T

n n2N ′(d2)
∂ d2

∂ n
.

Notice that the last two terms on the right-hand side vanish for n → ∞. Besides, with
the definitions of d1 and d2, c.f. proposition 1.3.5, it immediately follows

lim
n→∞

N (d1) = 1, lim
n→∞

N (d2) = 1

such that

lim
n→∞

(V0 − Ge−rT )En
1 = (V0 − Ge−rT )emμT−(m−1)rT .

Thus, it is still to show that the last term of the right hand side of equation (1.16)
converges to zero. Inserting E2 according to its definition, c.f. proposition 1.3.5, the
relevant term is

(V0 − Ge−rT )(erT − En
1 )

⎛⎝1 +
m
(
e(μ−r)T

n − 1
)

1 − E1e
−r T

n

⎞⎠ .

Notice that lim
n→∞

m
(
e(μ−r)T

n − 1
)

= 0 and lim
n→∞

1−E1e
−r T

n = 0. With the rule of L’Hôpital
and similar arguments as above it follows

lim
n→∞

m
(
e(μ−r)T

n − 1
)

1 − E1e
−r T

n

= lim
n→∞

⎛⎝ −m(μ−r)T
n2 e(μ−r)T

n

−E1rTe−r T
n

n2 − e−r T
n

∂ E1

∂ n

⎞⎠
=

m(μ − r)T

rT − (mμT − (m − 1)rT )
= −1.

�
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Lemma 1.5.4

The variance of the discrete–time CPPI converges to the variance of a simple CPPI if the
trading restrictions vanish, i.e.

lim
n→∞

V ar
[
V fi

T

]
= (V0 − Ge−rT )2e2(r+m(μ−r))T (em2σ2T − 1)

Proof: Recall that according to proposition 1.3.7 it holds

V ar[V fi
T ] = (V0 − Ge−rT )2Ẽn

1 + (V0 − Ge−rT )2e−2r T
n Ẽ2

e2rT − Ẽn
1

1 − e−2r T
n Ẽ1

− (E[V fi
T ] − G)2.

Analogously to the proof of lemma 1.5.3, it can be shown that Ẽ2
e2rT−Ẽn

1

1−e−2r T
n Ẽ1

n→∞−→ 0. For

the convergence of Ẽn
1 we use again that lim

n→∞
Ẽn

1 = e
lim

n→∞−n2 ∂ Ẽ1
∂ n . Notice that

−n2 ∂ Ẽ1

∂ n
= m2e(2μ+σ2)T

n (2μ + σ2)TN (d3) − 2m(m − 1)e(μ+r)T
n (μ + r)TN (d1)

+(m − 1)2e2r T
n 2rTN (d2) − m2e(2μ+σ2)T

n n2N ′(d3)
∂ d3

∂ n

+2m(m − 1)e(μ+r)T
n n2N ′(d1)

∂ d1

∂ n
− (m − 1)2e2r T

n n2N ′(d2)
∂ d2

∂ n
.

Similar arguments to the ones given in the proofs of lemma 1.5.3 and lemma 1.5.2 imply

lim
n→∞

Ẽn
1 = em2(2μ+σ2)T−2m(m−1)(μ+r)T+(m−1)22rT = e2(r+m(μ−r))T em2σ2T .

Finally, lemma 1.5.3 immediately gives

lim
n→∞

(E
[
V fi

T

]
− G)2 = (V0 − Ge−rT )2e2(r+m(μ−r))T .

�

In order to prove proposition 1.5.1 it is remains to show that, for n → ∞, the limiting
distribution of ln(V fi

T ) is a normal distribution . Let

ζn :=
n∑

i=1

ln

(
m

Sti

Sti+1

− (m − 1)er T
n

)
︸ ︷︷ ︸

=:ξi,n

.

In view of lemma 1.5.2, i.e. lim
n→∞

P SF = 0, it is sufficient to show that the limiting
distribution of ζn is a normal distribution. Applying the results for rowwise independent
arrays of Gnedenko and Kolmogorov (1954), c.f. in particular theorem 1 in Ch.5 §26, it
remains to show that

n∑
i=1

P (|ξi,n| > ε)
n→∞−→ 0 for all ε > 0.
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Using the independency, one only needs to show that

nP (|ξ1,n| > ε)
n→∞−→ 0 for all ε > 0.

This proof is straightforward, i.e. it is given by arguments which are similar to the ones
used in the proofs of the above lemmas.

1.6 Conclusion

The introduction of market incompleteness and model risk impedes the concept of dynamic
portfolio insurance, i.e. the technique of constant proportion portfolio insurance. The
introduction of tradings restrictions is one possibility to model a gap risk in the sense
that a CPPI strategy can not be adjusted adequately. Measuring the risk that the value
of a CPPI strategy is less than the floor (or guaranteed amount) is of practical importance
for at least two reasons. On the one hand, CPPI strategies are common in hedge funds
and retail products. Often, a CPPI strategy is pre–specified in the term sheet of hedge
funds. In addition, it is combined with a guarantee for the investor. Thus, an additional
option is written. The option is exercised if the value of the CPPI strategy is below the
floor. On the other hand, CPPI strategies can be used to protect return guarantees which
are embedded in unit-linked life insurance contracts. The terminal date T is interpreted
as the time of retirement and the guarantee is interpreted as the amount which is at least
needed by the insured. The assumption that the insurer wants to back up the guarantee
by a simple and discrete-time investment strategy highlights some advantages in favor of
the CPPI method. Firstly, it is computationally very simple and it can easily be applied in
discrete time. Secondly, the composition of a CPPI strategy is independent of the model
assumption of the investor or insurer who might use a misspecified model. Thirdly, the
riskiness in terms of commonly used risk measures which is induced by trading restrictions
can be given in closed form. In particular, this is also true for the price of an additional
option which is normally included in CPPI-based products.

The analysis of the risk measures of a discrete-time CPPI strategy poses various problems
which are to be considered. Basically, it is necessary to check the associated risk measures
and to determine whether the strategy is still effective in terms of portfolio protection.
For example, the protection feature is violated if the shortfall probability of the CPPI
strategy under consideration exceeds the shortfall probability of a pure asset investment.
Formally, the last one can be interpreted as a static CPPI. Intuitively, this explains the
result that the shortfall probability of a discrete–time CPPI is only decreasing in the



34 CHAPTER 1. THE DISCRETE CPPI WITH FIXED TRADING DATES

hedge frequency after a sufficiently high number of rehedges. Below this critical number,
the shortfall probability increases such that additional adjustments of the strategy yield
a shortfall probability which is even higher than the one of a pure asset investment. This
effect is even more pronounced for high asset price volatilities and high multipliers. Thus,
if one restricts the set of admissible strategies to those strategies which satisfy a confidence
level of protection, the choice of the CPPI–multiplier is naturally restricted. A similar
reasoning is applied to other risk measures such as the expected shortfall.



Chapter 2

The Discrete CPPI with Triggered

Trading Dates

In this chapter we are also concerned with the question of how the CPPI can be performed
in discrete time. In the previous chapter a discretization of the CPPI strategy based on
a fixed set of trading dates was presented. The focus was on the discussion of the default
risk that emerged as a consequence of the discretization. Default risk was understood in
the sense that the payoff of the discrete version of the CPPI will not be greater than some
given guarantee with probability one. However, since the CPPI strategy in continuous
time does not incorporate default risk, the pure existence of default risk in the discrete
version has to be viewed as a major drawback. Although as a consequence of convergence
the default risk can be made arbitrarily small by choosing smaller distances between the
trading dates, it is unpleasant that the discrete-time version of the CPPI loses the most
important feature of the continuous-time CPPI, portfolio protection with probability one.
A second drawback is that the default risk between any two trading dates is constant,
independent of the size of the cushion. This makes things even worse, because it is clearly
an unfavorable feature that no matter how far the portfolio is above the guarantee, the
probability of falling below the guarantee from one trading date to the next is always the
same.

Here we present a different kind of discretization. Instead of taking fixed trading dates, the
portfolio is adjusted at triggered trading dates based on the performance of the portfolio.
By triggered trading dates we mean that trading only takes place whenever the underlying
risky asset or alternatively the cushion process has gained or lost a certain proportion,
for example 10%. Note that triggered trading dates emerge naturally as a consequence

35
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of transaction costs. In the presence of transaction costs the frequency of monitoring
the portfolio and rebalancing the portfolio is usually not identical since the willingness
to rebalance is reduced due to the induced costs. In particular, while the frequency of
monitoring may be very large in order to reduce the gap risk, one would like to only trade
upon relevant changes in the portfolio value, the cushion value or the underlying assets
such as to reduce the costs of rebalancing. This can be achieved with triggered trading
dates.

In this chapter we use a model where the frequency of monitoring is infinite, i.e. continuous
monitoring, but trading takes place in discrete time dependent on changes in the cushion
value or the underlying assets. If trading takes place upon changes in the value of the
cushion, it is quite intuitive, that the cushion process cannot fall below zero because it
can always lose only a predetermined proportion of its previous value from one trading
date to another. Since the cushion is the difference between the portfolio value and the
amount theoretically needed to be rolled over in the riskless asset such as to yield the
guarantee at maturity, the cushion can never become negative if from one trading date to
the next only a fixed proportion of the previous cushion value can be lost. As a result we
get a discrete-time version of the CPPI that keeps the portfolio protection feature with
probability one.

However, this very appealing result comes at a cost. From a formal point of view, it
is clear, that for this strategy to be able to work, we must have a model in which the
underlying assets (the risky asset as well as the riskless asset if stochastic) have continuous
sample paths and we must assume a market that allows for the instantaneous execution
of trading orders. From a practical point of view, this strategy is slightly more difficult to
perform than the strategy with fixed trading dates since it requires continuous monitoring
of the portfolio. The acceptance of continuous monitoring will be the price for the riddance
of default risk.

This strategy was first investigated by Black and Perold (1992). They show that the
payoff of the discrete CPPI with triggered trading dates only depends on the number of
trading dates (which can possibly be arbitrarily large) and the terminal values of the risky
and the riskless asset. In general, this is a very appealing result in itself and they also
show that the inclusion of transaction costs does not change the basic structure of this
result. However, in order to be able to deduce quantitative results like the moments or
the distribution of the terminal payoff from their formula, the joined distribution of the
number of trading dates and the terminal values of the underlying assets would be needed
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which is not known so far.

This chapter consists of three topics. The first topic is the presentation and discussion
of the simple CPPI with a discretization based on triggered trading dates. In partic-
ular, analytical expressions in terms of Laplace transforms for the case of a standard
Black/Scholes type market are provided, such that the only numerics required will be the
inversion of a Laplace transform. Note that with a Monte-Carlo simulation it is very hard
to find reliable results, since the simulation of the portfolio value is equivalent to simu-
lating the mth moment of the underlying risky asset1 and therefore the simulation errors
are hard to control in particular for high values of m. In contrast to this, the Laplace
transform can be calculated very fast and with high precision2. The main results include
the distribution and the moments of the terminal value, the distribution of the number of
trading dates and the distribution of the maximum amount of borrowing required. Also
convergence to the continuous-time strategy is shown as the trading restrictions vanish.
The second topic is dedicated to a structural problem of the simple CPPI, the requirement
of unlimited borrowing. An attempt to limit the borrowing leads to the introduction of a
modification of the CPPI, the capped CPPI. We are able to present analytical expressions
based on Laplace transforms also for the capped CPPI. Finally, the influence of transac-
tion costs on both, the simple and the capped CPPI, is discussed. Note, that we use a
basic Black/Scholes type setup and will make frequent use of the independent and iden-
tical increments property of Brownian motion. The use of the independent and identical
increments property combined with the assumption of continuous sample paths basically
limit our results to a log-normal model. Principally, both assumptions can be relaxed but
analytical expressions do not seem possible any more if they are relaxed. Additionally,
relaxing the continuous sample paths condition will allow for the possibility of default
risk.

Note, that the discretization with triggered trading dates is advantageous from a theo-
retical point of view not only because of the riddance of default risk. It opens the door
for an analytical consideration of various modifications of the CPPI strategy, the first
of which is the capped CPPI. In the next chapter this discretization will be used as a
vehicle to consider several other modifications. While it already seems very hard to find
an analytical expression for the distribution of the payoff of the simple CPPI if a fixed set
of trading dates is used as in the previous chapter, it is even harder to find any analytical

1See e.g. Bertrand and Prigent (2002a)
2See Abate and Valkó (2004) for further information on the numerical inversion of the Laplace trans-

form and an appropriate algorithm. We use their Mathematica-package for our calculations.
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expressions for modifications. The combination of the use of triggered trading dates and
Laplace transforms translates the continuous-time problem into a random-walk problem.

From an applied point of view, the discretization with triggered trading dates can also
be seen as an approximation to the following strategy. Suppose, the CPPI strategy is to
be performed in discrete time with fixed trading dates where the trading dates are very
frequent, for example daily (which is currently quit common) or even several times a day.
As changes made to the portfolio are always subject to transaction costs, it might be
decided not to change the portfolio on every single trading date but only if the changes
to be made are of significant size. This strategy would require a hybrid model between
fixed and triggered trading dates, but the discretization with triggered trading dates will
yield a good approximation.

In particular, the chapter is organized as follows. The basic model and definitions will be
introduced in section 2.1. The focus is on the simple CPPI in section 2.2. The capped
CPPI will be introduced and discussed in section 2.3 and transaction costs are considered
in section 2.4. Finally, in section 2.5, the strategies will be discussed with respect to long
maturity times. A conclusion of the chapter is given in section 2.6.

2.1 Basic Model and Definitions

As in the previous chapter, we assume a Black-Scholes type market with two investment
opportunities, a risky asset and a bond with values St and Bt at time t, respectively. The
risky asset is assumed to follow a geometric Brownian motion, i.e. dSt = St(μdt+σdWt).
The bond is assumed to be riskless and grows at a constant rate r, i.e. dBt = Btrdt. In the
previous chapter we assumed a given set of fixed trading dates 0 = t0 < t1 < t2 < · · · <

tN = T at which trading took place while between two trading dates the strategy was a buy
and hold strategy. Here we do not assume fixed trading dates but we assume an increasing
potentially infinite sequence of random variables 0 = τ0 < τ1 < τ2 < . . . at which trading
takes place. However, we also assume here that no changes to the portfolio are made
between the trading dates. In order to distinguish the discretization with triggered trading
dates from the discretization with fixed trading dates we use the notation Ctr

t and V tr
t

for the cushion process and the value process at some time t respectively. As the floor is
identical to the floor in the discretization with fixed trading dates, we keep the notation
Ft. It is clear, that if the trading rule of the simple CPPI is followed on each trading date
τi, i.e. invest the amount mCtr

τi
in the risky asset and the rest, V tr

τi
−mCtr

τi
, in the riskless



2.1. BASIC MODEL AND DEFINITIONS 39

asset, for t ∈ (τi, τi+1] we find

Ctr
t = Ctr

τi
er(t−τi)

(
m

Ste
−r(t−τi)

Sτi

− m + 1

)
(2.1)

similarly to proposition 1.2.2 in the previous chapter, since this is just a consequence of the
fact that no changes are made to the portfolio between any two trading dates. However,
while for fixed trading dates there is always the probability of a default, i.e. a nega-
tive cushion, this possibility can be avoided by defining the trading dates appropriately.
Suppose the trading dates are defined by

τ0(ω) := 0,

τn(ω) := min

{
inf

t>τn−1

e−r(t−τn−1)Ctr
t = kuC

tr
τn−1

, inf
t>τn−1

e−r(t−τn−1)Ctr
t = kdC

tr
τn−1

}
, (2.2)

where ku > 1 and kd ∈ (0, 1) are some constants, the triggers. This recursive definition
of the trading dates means that trading takes place whenever the discounted cushion
process has gained the fraction ku − 1 or lost the fraction or 1 − kd relative to the value
of the discounted cushion process at the previous trading date. In the following we will
refer to a fractional change of ku − 1 as an up-move and to a fractional change of kd − 1

as a down-move. Note that the number of trading dates is not bounded from above a
priori. From equation (2.2) it is obvious, that at each trading date the discounted cushion
process has either multiplied with ku relative to its value at the previous trading date as
a result of an up-move or multiplied with kd as a result of a down-move. Since both, ku

and kd are positive constants, the discounted cushion process can never become negative
by construction. The value of the discounted cushion process can become arbitrarily
small due to frequent down-moves and hence frequent multiplication with kd, but it will
remain positive. However, if the discounted cushion process is positive at all times, clearly
the cushion process is also positive at all times and therefore no default can occur by
construction. The only thing we have to make sure is that no problem similar to the
paradox of Achilles and the turtle can occur.3

3The paradox of Achilles and the turtle is as follows. Achilles and a turtle are having a race to find
out who is the fastest runner. Achilles is comfortable to easily win the race and therefore they agree
on the turtle getting a head start of some distance. At some time after the race has started, Achilles
will reach the starting point of the turtle but the turtle will have moved forward as well. By the time,
Achilles reaches the point where the turtle was when he had reached the starting point of the turtle, the
turtle will have moved forward again and so on. The consequence is, that Achilles will never be able to
overtake the turtle. He can shrink the lead of the turtle to an infinitesimal distance if he indeed is faster
than the turtle, but he can never overtake.
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To this end, notice that a combination of equations (2.1) and (2.2) yields

m
Ste

−r(t−τi)

Sτi

− m + 1 = ku,d

⇔ Ste
−r(t−τi)

Sτi

= 1 +
ku,d − 1

m
(2.3)

such that the trading dates could be equivalently defined by fractional changes of ku−1
m

or
kd−1

m
in the discounted risky asset instead of fractional changes of ku − 1 or kd − 1 in the

discounted cushion process. While this relation holds in more general model setups and
is also mentioned in Black and Perold (1992), in our setup it is also equivalent to changes
in the Brownian motion driving the risky asset. From the dynamics of the risky asset we
know

St = Sτi
e(μ− 1

2
σ2)(t−τi)+σ(Wt−Wτi)

which yields

Ste
−r(t−τi)

Sτi

= 1 +
ku,d − 1

m

⇔ e(μ−r− 1
2
σ2)(t−τi)+σ(Wt−Wτi) = 1 +

ku,d − 1

m

⇔
μ − r − 1

2
σ2

σ
(t − τi) + Wt − Wτi

=
1

σ
log

(
1 +

ku,d − 1

m

)
which relates the definition of the trading dates to changes in a Brownian motion with
drift. In particular, the trading dates could equivalently be defined by trading whenever
the Brownian motion with drift δ, W δ

t := δt + Wt, has lost the quantity

a(kd) :=
1

σ
log

(
1 − 1 − kd

m

)
(2.4)

or gained the quantity

b(ku) :=
1

σ
log

(
1 +

ku − 1

m

)
(2.5)

where

δ :=
μ − r − 1

2
σ2

σ
. (2.6)
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Figure 2.1: Sample path of Brownian motion with
drift hitting exactly twice the upper barrier before
T .

Note that a(kd) < 0 and b(ku) > 0. For
most parts of the chapter we will shorten
the notation to a = a(kd) and b = b(ku).
The situation is as schematically depicted
in figure 2.1. For the first trading date
to occur, the Brownian motion with drift
must hit either of the barriers a and b. If
the barrier a is hit, the discounted cushion
process of the simple CPPI has multiplied
with kd and likewise if the barrier b is hit,
the discounted cushion process has multi-
plied with ku. From that point onwards,
for the second trading date to occur, the
Brownian must again hit the same barriers a or b and so on until neither of the barriers
is hit any more up to maturity time T . In the remainder of the chapter we will need
information about the trading dates, i.e. their distribution. However, we know now that
the distribution of the time between any two successive trading dates τi+1 − τi is given
by the time the Brownian motion with drift needs to hit the barriers a or b. Due to
the independent and identical increments property of Brownian motion, it is clear that
τi+1 − τi must be independently identically distributed. Coming back to the problem of
Achilles and the turtle, the independent and identical distribution of the difference be-
tween any two trading dates is sufficient to conclude that such a problem can not occur in
our setup. It is now crucial to find expressions for the hitting time densities. Fortunately
the double barrier problem has been solved already such that from Hall (1997) we can
take the following lemma.
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Lemma 2.1.1 (Hitting time densities)

Let (W δ
t )t≥0 a Brownian motion with drift δ started from 0 and a < 0 < b two con-

stants. Let further t0 > 0 and define g1(t|γ, δ) := γ√
2πt3

e−
1
2
(γ2

t
+δ2t) and g2(t|γ, δ) :=

1√
2πt

e−
1
2
(γ2

t
+δ2t).4

a) The defective probability density function pu(t|a, b, δ), t ∈ [0, t0] for the time of

hitting the upper barrier b before the lower barrier a and before time t0 is given by

pu(t|a, b, δ) = ebδ

( ∞∑
j=0

g1(t|2j(b − a) + b, δ) −
∞∑

j=0

g1(t|2j(b − a) + b − 2a, δ)

)

b) The defective probability density function pd(t|a, b, δ), t ∈ [0, t0] for the time of
hitting the lower barrier a before the upper barrier b is given by

pd(t|a, b, δ) = eaδ

( ∞∑
j=0

g1(t|2j(b − a) − a, δ) −
∞∑

j=0

g1(t|2j(b − a) + 2b − a, δ)

)

c) The joint probability density function pt0(z|a, b, δ) of W δ
t0

and hitting none of the two

barriers a and b up to time t0 is given by

pt0(z|a, b, δ) = eδz

(
g2(t0|z, δ) +

∞∑
j=1

g2(t0|z − 2j(b − a), δ) +
∞∑

j=1

g2(t0|z + 2j(b − a), δ)

−
∞∑

j=1

g2(t0|z + 2j(b − a) − 2b, δ) −
∞∑

j=1

g2(t0|z − 2j(b − a) − 2a, δ)

)

From our discussion above, it is clear that with a, b, δ as in (2.4), (2.5), (2.6), respec-

tively, for all i,
T−τi∫
0

pu(t|a, b, δ)dt is the probability (conditioned on the knowledge of

time τi) of the discounted cushion process increasing by the factor ku,
T−τi∫
0

pd(t|a, b, δ)dt

is the probability of the discounted cushion process decreasing by the factor kd and
b∫

a

pT−τi(z|a, b, δ)dz is the probability of the discounted cushion process staying within

the bounds (kdC
tr
τi

e−rτi , kuC
tr
τi

e−rτi). Since our results are all based on Laplace transforms
we will need the following proposition. The Laplace transform of some function f(t) at
the point s with respect to the variable t will be denoted by Lt,s {f(t)} and likewise the
inverse Laplace transform of some function f(s) with respect to the variable s will be
denoted by L−1

s,t {f(t)}.5

4Note, that eγδg1 and δeγδg2 are the densities of the inverse gaussian and the reciprocal inverse
gaussian distribution respectively. See for example Barndorff-Nielsen and Koudou (1998).

5See also section A.2 in the appendix for a brief introduction to Laplace transforms.
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Proposition 2.1.2 (Laplace transforms of the hitting time densities)

The Laplace transforms of the densities pu(t|a, b, δ), pd(t|a, b, δ) and pt(z|a, b, δ) with re-
spect to t are given by

a) u(s|a, b, δ) := Lt,s {pu(t|a, b, δ)} = ebδ−b
√

2s+δ2 1−e2a
√

2s+δ2

1−e−2(b−a)
√

2s+δ2

b) d(s|a, b, δ) := Lt,s {pd(t|a, b, δ)} = eaδ+a
√

2s+δ2 1−e−2b
√

2s+δ2

1−e−2(b−a)
√

2s+δ2

c) ρ(s, z|a, b, δ) := Lt,s {pt(z|a, b, δ)}

=

⎧⎨⎩d(s) e−aδ−a
√

2s+δ2

√
2s+δ2 (eδz+z

√
2s+δ2 − eδz−z

√
2s+δ2+2a

√
2s+δ2

) , z ≤ 0

u(s) e−bδ+b
√

2s+δ2

√
2s+δ2 (eδz−z

√
2s+δ2 − eδz+z

√
2s+δ2−2b

√
2s+δ2

) , z > 0.

Proof: With a hint to footnote (4) it is well known that the Laplace transform of g1 is
given by Lt,s {g1(t|γ, δ)} = e−γ

√
2s+δ2

, γ > 0. With this we get

Lt,s {pu(t|a, b, δ)}

= ebδ

( ∞∑
j=0

Lt,s {g1(t|2j(b − a) + b, δ)} −
∞∑

j=0

Lt,s {g1(t|2j(b − a) + b − 2a, δ)}
)

= ebδ

( ∞∑
j=0

e−(2j(b−a)+b)
√

2s+δ2 −
∞∑

j=0

e−(2j(b−a)+b−2a)
√

2s+δ2

)

and an application of the summation formula for a geometric series yields

Lt,s {pu(t|a, b, δ)} = ebδ−b
√

2s+δ2

(
1

1 − e−2(b−a)
√

2s+δ2
− e2a

√
2s+δ2

1 − e−2(b−a)
√

2s+δ2

)
proofing a). The proof of b) is completely analogous. For c) note that with respect to
footnote (4) we know Lt,s {g2(t|γ, δ)} = e−|γ|

√
2s+δ2

√
2s+δ2 . Therefore

Lt,s

{
pt(z|a, b, δ)

}
= eδz

(
e−|z|

√
2s+δ2

√
2s + δ2

+

∞∑
j=1

e(z−2j(b−a))
√

2s+δ2

√
2s + δ2

+

∞∑
j=1

e−(z+2j(b−a))
√

2s+δ2

√
2s + δ2

−
∞∑

j=1

e−(z+2j(b−a)−2b)
√

2s+δ2

√
2s + δ2

−
∞∑

j=1

e(z−2j(b−a)−2a)
√

2s+δ2

√
2s + δ2

)

=
eδz

√
2s + δ2(1 − e−2(b−a)

√
2s+δ2)

(
e−|z|

√
2s+δ2

(1 − e−2(b−a)
√

2s+δ2
) + ez

√
2s+δ2−2(b−a)

√
2s+δ2

+e−z
√

2s+δ2−2(b−a)
√

2s+δ2 − e−z
√

2s+δ2+2a
√

2s+δ2 − ez
√

2s+δ2−2b
√

2s+δ2
)

Considering the cases z ≤ 0 and z > 0 directly yields the result. �
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For most parts of the chapter we will use the shorter notation u(s) = u(s|a, b, δ), d(s) =

d(s|a, b, δ) and ρ(s, z) = ρ(s, z|a, b, δ).

2.2 The Simple Discrete CPPI With Triggered Trading

Dates

We start this section by giving the distribution of the number of trading dates. The
number of trading dates is important in particular for a comparison with the discrete
CPPI with fixed trading dates as in the previous chapter as well as with respect to
section 2.4 where we will consider transaction costs.

Proposition 2.2.1 (Distribution of the number of trading dates)

Let N(ω) := sup {n ∈ N0|τn ≤ T} be the number of trading dates. Then the distribution

of N is given by:

a) For n ∈ N0 : P (N = n) = L−1
s,T

{
1−u(s)−d(s)

s
(u(s) + d(s))n

}
b) For n ∈ N0 : P (N ≤ n) = L−1

s,T

{
1−(u(s)+d(s))n+1

s

}
and the expected number of trading dates is given by

c) E [N ] = L−1
s,T

{
1
s

u(s)+d(s)
1−u(s)−d(s)

}
Proof: For n ≥ 1, let fτn(t) denote the probability density function of τn. Note that
fτ1(t) = pu(t|a, b, δ) + pd(t|a, b, δ) and further fτn = fτ1 ∗ · · · ∗ fτ1︸ ︷︷ ︸

n times

where ∗ denotes the

convolution. Therefore

P (N(ω) = n) = P (τn ≤ T ∧ τn+1 > T )

=

T∫
0

fτn(t)P (τn+1 > T |τn = t)dt

= (fτn(·) ∗ P (τ1 > ·)) (T )

= L−1
s,T

⎧⎨⎩(u(s) + d(s))n

b∫
a

ρ(s, z)dz

⎫⎬⎭
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Figure 2.2: Point probabilities for different val-
ues of ku and kd = k−1

u , m = 4, μ = 0.15, r = 0.05,
σ = 0.3, T = 1.
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Figure 2.3: Point probabilities for different val-
ues of the volatility σ and ku = 1.4, kd = k−1

u ,
m = 4, μ = 0.15, r = 0.05, T = 1.

follows from the convolution property of the Laplace transform6. Direct calculation shows

that
b∫

a

ρ(s, z)dx = 1−u(s)−d(s)
s

. The proof can be found in the appendix, proposition A.3.1.

This proofs part a) for n ≥ 1 and the case n = 0 is trivial. Part b) follows from a) by
summing over n. As for part c), note that

E [N ] =
∞∑

n=0

nP (N = n)

and hence the result follows from part a) and

∞∑
n=0

nxn = x

∞∑
n=0

∂ xn

∂ x
= x

∂
∞∑

n=0

xn

∂ x
=

x

(1 − x)2

�

It is important to notice that the distribution of the number of trading dates only depends
on u(s) and d(s), i.e. the Laplace transform of the hitting time densities. This means
in particular, that the number of trading dates is independent of the guarantee G = FT .
This is no surprise, since the trading dates are defined on relative changes in the cushion
and the guarantee only influences the size of the cushion at time t = 0.7

In figure 2.2 and 2.3 we have depicted the distribution of the number of trading dates for
different values of ku and σ respectively. It is striking at first glance that the distributions

6See proposition A.2.5,b) in the appendix.
7Also, Proposition 2.2.1 only requires the i.i.d. increments property and not the continuous sample

paths property such that the very same formula holds if the risky asset is modelled by a Lévy-process.
Of course u(s) and d(s) have to be adjusted in that case.
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look very symmetric, although there are possibly arbitrarily many trading dates and
clearly no less than zero. Also, it can be seen, that there is approximately a quadratic
relation between the number of trading dates and the volatility. Doubling the volatility
means quadrupling the number of trading dates. Intuitively we can do comparative statics
on the basis of equations (2.4), (2.5) and (2.6). The drift δ of the Brownian motion has
a minor influence on the number of trading dates and therefore also μ and r do not
influence the number of trading dates much. However, the size of the barriers a and b is
crucial. Doubling either of these barriers in size approximately results in half as many
trading dates. Therefore, since in view of equations (2.4) and (2.5) doubling the volatility
σ means cutting the barriers a and b half in size, it is intuitively clear, that the number
of trading dates must quadruple which is confirmed by figure 2.3. Also, doubling the
multiplier m approximately means quadrupling the number of trading dates. Using a
simple first-order Taylor approximation for the exponential function, ex ≈ 1 + x, we find
a ≈ −1−kd

σm
and b ≈ ku−1

σm
from which this effect is apparent. While likewise the number of

trading dates can be found approximately proportional with respect to ku − 1 and 1− kd

if only either ku − 1 or 1 − kd is changed, it is more difficult to determine the influence
of ku if the symmetric case kd = 1

ku
is considered as in figure 2.2. Clearly, the number of

trading dates is less than quadratic in ku−1 for the symmetric case. Finally, it is obvious
that the number of trading dates must be approximately proportional with respect to
maturity time T .

Unfortunately, since the formulas in proposition 2.2.1 involve an inverse Laplace transform
it is not possible to directly do any comparative statics on the basis of these formulas.
However, as the inverse Laplace transform can be expressed as an integral8, the formulas
can easily be derived by exchanging the inverse Laplace transform and the differentiation.
For example we can write

∂

∂ σ
P (N ≤ n) = L−1

s,T

{
−1

s

∂

∂ σ
(u(s) + d(s))n+1

}

and likewise for the other parameters if a precise comparative statics is required.

8See appendix A.2.
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Proposition 2.2.2 (Moments of the simple CPPI with triggered trading dates)

Let ku > 1, kd ∈ (0, 1). The j-th moment of the terminal value of the cushion is given by

E
[
(Ctr

T )j
]

= Cj
0e

jrTL−1
s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b∫

a

(meσz − m + 1)jρ(s, z)dz

1 − kj
uu(s) − kj

dd(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where the integral is given explicitly in proposition A.3.1.

Proof: Let Ωi,n := {ω ∈ Ω| τn ≤ T ∧Ctr
τn

= C0e
rτnki

uk
n−i
d }, i ∈ {0, ..., n}, n ∈ N0 be the

event that the discounted cushion process performs i up-moves and n − i down-moves.
Note that (Ωi,n∩{τn+1 > T})i∈{0,...,n},n∈N0

is a partitioning of Ω. Let further fi,n(t) denote
the probability density function for the first time at which the event Ωi,n occurs. Since
there are

(
n
i

)
different ways of the discounted cushion process performing i up-moves and

n − i down-moves, we have

fi,n =

(
n

i

)
pu(·|a, b, δ) ∗ · · · ∗ pu(·|a, b, δ)︸ ︷︷ ︸

i times

∗ pd(·|a, b, δ) ∗ · · · ∗ pd(·|a, b, δ)︸ ︷︷ ︸
n−i times

and hence

Lt,s {fi,n(t)} =

(
n

i

)
u(s)id(s)n−i

follows from the convolution property of the Laplace transform and proposition 2.1.2.
From equations (2.1) and (2.2) we know that (Ctr

T )j = Cj
0e

jrTkji
u k

j(n−i)
d (meσ(W δ

T −W δ
τn

) −
m + 1)j on the set Ωi,n ∩ {τn+1 > T}. Further we can find

E
[
(meσ(W δ

T −W δ
τn ) − m + 1)j1Ωi,n1{τn+1>T}

]
=

T∫
0

fi,n(t)E
[
(meσ(W δ

T −W δ
τn

) − m + 1)j1{τn+1>T }|τn = t
]
dt

=

T∫
0

fi,n(t)

b∫
a

(meσz − m + 1)jpT−t(z|a, b, δ)dzdt

=

b∫
a

(meσz − m + 1)j
(
fi,n(·) ∗ p(·)(z|a, b, δ)

)
(T )dz

= L−1
s,T

{(
n

i

)
u(s)id(s)n−i

∫ b

a

(meσz − m + 1)jρ(s, z)dz

}
.
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m E [N ] ku Mean Stdv.

12 12 1.4080 (1.9768) 1076.87 (1074.28) 126.08 (626.14)
12 24 1.2756 (1.6245) 1077.42 (1075.97) 132.46 (872.32)
12 48 1.1885 (1.4117) 1077.72 (1076.94) 136.07 (1076.37)
12 96 1.1301 (1.2768) 1077.87 (1077.48) 138.01 (1214.38)

18 12 1.6654 (2.7373) 1091.69 (1082.85) 332.24 (2999.90)
18 24 1.4389 (2.0579) 1093.80 (1088.25) 389.85 (8763.30)
18 48 1.2950 (1.6730) 1094.98 (1091.82) 428.42 (19614.13)
18 96 1.2011 (1.4414) 1095.61 (1093.92) 451.17 (33035.68)

Table 2.1: Moments of the discrete CPPI with triggered trading dates. The
parameters are T = 1, V0 = 1000, G = 1000, μ = 0.085, r = 0.05 and σ = 0.1

(σ = 0.2 respectively).

Therefore we get

E
[
(Ctr

T )j
]

=
∞∑

n=0

n∑
i=0

E
[
(Ctr

T )j1Ωi,n1{τn+1>T}
]

= Cj
0e

jrTL−1
s,T

⎧⎨⎩
b∫

a

(meσz − m + 1)jρ(s, z)dz
∞∑

n=0

n∑
i=0

(
n

i

)
kij

u u(s)ik
(n−i)j
d d(s)n−i

⎫⎬⎭
= Cj

0e
jrTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b∫

a

(meσz − m + 1)jρ(s, z)dz

1 − kj
uu(s) − kj

dd(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
using the binomial formula and the summation formula for the geometric series. �

From the moments of the cushion, we can easily deduce the moments of the terminal value
of the portfolio since V tr

T = G + Ctr
T . In particular, the expected value and the variance

are immediately given by

E
[
V tr

T

]
= G + E

[
Ctr

T

]
V ar
[
V tr

T

]
= V ar

[
Ctr

T

]
= E
[
(Ctr

T )2
]
− E
[
Ctr

T

]2
.

Table 2.1 shows the expected terminal value and the standard deviation of the terminal
value for different values of m and different values of the triggers ku and kd. We have
chosen kd = 1

ku
and ku such that the expected number of trading dates are 12, 24, 48
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and 96. Remember, that it is quite easy to translate the values of ku into changes in
the discounted risky asset with the help of equation (2.3). For example, in order to have
an expected number of 96 trading dates per year with m = 18 and σ = 0.20, trading
must take place whenever the discounted risky asset has gained 2.45% or lost 1.7%. The
other parameter values are chosen such as to equal the choice of table 1.2 for the simple
discrete-time CPPI with fixed trading dates and the simple continuous-time CPPI. It is
important to notice that the moments of the discrete CPPI with fixed trading dates are
mostly closer to the moments of the continuous CPPI than the moments of the discrete
CPPI with triggered trading dates if the expected number of triggered trading dates
equals the number of fixed trading dates. In particular in view of the very high shortfall
probabilities of the CPPI with fixed trading dates for the case m = 18 and σ = 0.20 this
is quite remarkable.

The lower standard deviation of the CPPI with triggered trading dates in comparison
with the CPPI with fixed trading dates can surely partly be explained with the missing
possibility of a shortfall. However, since the expected terminal value is also mostly lower
and considering the magnitude of the standard deviation, the lower standard deviation
must also or mainly stem from the large payoffs. The reason here seems to be the choice
of the triggers, in particular kd = 1

ku
. This choice favors conservative adaptations of the

portfolio since the lower barrier 1− kd is smaller than the upper barrier ku − 1. If 1 − kd

was to be chosen such as to equal ku −1, i.e. kd = 2−ku, then last line in table 2.1 would
read

m E [N ] ku Mean Stdv.

18 96 1.1836 (1.3671) 1096.24 (1096.35) 469.94 (54750.79)

giving a higher expectation and standard deviation of the terminal value than for the
CPPI with fixed trading dates.

Let us now turn to the distribution of the terminal value of the CPPI. It will simplify
things considerably if kd = 1

ku
and we will make this assumption from now on. Let N

denote the number of trading dates before time T , then τN is the last trading date before
time T . Further, let n denote the number of net up-moves, i.e. the number of up-moves
minus the number of down-moves at time τN and therefore also at time T . Then it
immediately follows from the definition of the trading dates, i.e. equation (2.2), that

Ctr
τN

= C0e
rτN kn

u .
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Also, since τN is the last trading date before time T , it follows that

Ctr
T ∈ (C0e

rT kn−1
u , C0e

rT kn+1
u )

since otherwise there would be another up- or down-move. Now, suppose some x ∈ (G,∞)

and choose nx such that C0e
rT knx

u ≤ x−G < C0e
rT knx+1

u , then it is apparent that whenever
the number of net up-moves up to time T is less than nx, n < nx, the condition V tr

T ≤ x

or equivalently Ctr
T ≤ x − G must be satisfied, while for all n > nx + 1 the condition

Ctr
T ≤ x − G can not be satisfied. For the cases n = nx and n = nx + 1, it depends upon

the behavior of Ctr
t in the interval (τN , T ] whether the condition Ctr

T ≤ x − G is satisfied
or not. It is this simple idea, that lies beneath our expression for the distribution of the
terminal value of the CPPI.

Proposition 2.2.3 (Distribution of the simple CPPI)

Let ku > 1, kd = k−1
u . Further let 9,

nx :=

⌊
log x−G

C0erT

log ku

⌋

y1(x) :=
1

σ
log

(
x − G

mC0erT knx
u

+
m − 1

m

)
y2(x) :=

1

σ
log

(
x − G

mC0erT knx+1
u

+
m − 1

m

)
for x ∈ (G,∞). Then the distribution of the terminal value of the simple CPPI with

triggered trading dates, i.e. the probability P (V tr
T ≤ x), is given by:

L−1
s,T

⎧⎨⎩1 − u(s) − d(s)

s
Q(nx − 1, s) + q(nx, s)

y1(x)∫
a

ρ(s, z)dz + q(nx + 1, s)

y2(x)∫
a

ρ(s, z)dz

⎫⎬⎭
where q(k, s) = q(k|u(s), d(s)), Q(k, s) = Q(k|u(s), d(s)) for all k as in lemma A.1.2 and
the integrals as in proposition A.3.2.10

Proof: Note that nx is the solution to

max
{
n ∈ Z|G + C0e

rT kn
u ≤ x
}

and therefore the condition V tr
T ≤ x is satisfied for all n < nx, independent of the behavior

of Ctr
t in the interval (τN , T ] (remember that n denotes the number of net up-moves at

9For some x ∈ R, �x� denotes the largest integer less or equal to x. Likewise, we will later use the
notation �x� to denote the smallest integer larger or equal to x.

10We will mostly use the shorter notation q(k, s) and Q(k, s) from now on.
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time τN and τN is the last trading date before maturity time T ). Therefore

P (V tr
T ≤ x, n = k) = P (n = k)

for all k ∈ Z, k < nx is immediate. Similarly to the proof of proposition 2.2.2 let us now
define

Ωk,i :=
{

ω ∈ Ω| τ|k|+2i ≤ T ∧ Ctr
τ|k|+2i

= C0e
rτ|k|+2ikk

u

}
, i ∈ N0, k ∈ Z

and fk,i(t) denote the probability density function for the first time at which the event
Ωk,i occurs. The Laplace transform of fk,i is then given by

Lt,s {fk,i(t)} =

⎧⎨⎩
(|k|+2i

i

)
u(s)id(s)|k|+i , k < 0(|k|+2i

i

)
u(s)|k|+id(s)i , k ≥ 0.

Therefore we get

P (n = k) =
∞∑
i=0

P (Ωk,i, τ|k|+2i+1 > T )

=

∞∑
i=0

T∫
0

fk,i(t)P (τ|k|+2i+1 > T | τ|k|+2i = t)dt

=
∞∑
i=0

T∫
0

fk,i(t)

b∫
a

pT−t(z|a, b, δ)dzdt

=
∞∑
i=0

b∫
a

(
fk,i(·) ∗ p(·)(z|a, b, δ)

)
(T )dz

=

⎧⎪⎪⎨⎪⎪⎩
L−1

s,T

{ ∞∑
i=0

(|k|+2i
i

)
u(s)id(s)|k|+i

b∫
a

ρ(s, z)dz

}
, k < 0

L−1
s,T

{ ∞∑
i=0

(|k|+2i
i

)
u(s)|k|+id(s)i

b∫
a

ρ(s, z)dz

}
, k ≥ 0

= L−1
s,T

⎧⎨⎩q(k, s)

b∫
a

ρ(s, z)dz

⎫⎬⎭
where the last equality follows from a glimpse at lemma A.1.2. Note the analogy to random
walks which occurs as a consequence of the convolution property of Laplace transforms
that turns convolutions into products.

Let us now turn to the case n = nx. We know that

V tr
T = G + Ctr

τN

Ctr
T

Ctr
τN

= G + C0e
rT knx

u

(
meσ(W δ

T −W δ
τN

) − m + 1
)
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and therefore, in this case,

V tr
T ≤ x ⇔ a < W δ

T − W δ
τN

≤ 1

σ
log

(
x − G

mC0erT knx
u

+
m − 1

m

)
= y1(x)

from which

P (V tr
T ≤ x, n = nx) = L−1

s,T

⎧⎨⎩q(nx, s)

y1(x)∫
a

ρ(s, z)dz

⎫⎬⎭
can be concluded analogously to the cases n < nx. Finally, for the case n = nx + 1, we
find

P (V tr
T ≤ x, n = nx + 1) = L−1

s,T

⎧⎨⎩q(nx + 1, s)

y2(x)∫
a

ρ(s, z)dz

⎫⎬⎭
analogously to the case n = nx. The assertion is now a direct consequence of

P (V tr
T ≤ x) =

nx+1∑
k=−∞

P (V tr
T ≤ x, n = k)

since
b∫

a

ρ(s, z)dz = 1−u(s)−d(s)
s

is already known. �

Corollary 2.2.4 (Density of the simple CPPI)

In the notation of proposition 2.2.3, the probability density function of the terminal value

of the simple CPPI with triggered trading dates, pV tr
T

(x), is given by:

pV tr
T

(x) = L−1
s,T

{
q(nx, s)ρ(s, y1(x))

∂ y1

∂ x
+ q(nx + 1, s)ρ(s, y2(x))

∂ y2

∂ x

}
where

∂ y1

∂ x
=

1

σ(x − G) + σ(m − 1)C0erT knx
u

∂ y2

∂ x
=

1

σ(x − G) + σ(m − 1)C0erT knx+1
u

Proof: The formulas can be immediately verified from theorem 2.2.3 by differentiation.
�

In figure 2.4 we have plotted different densities of the terminal value of the simple CPPI.
The triggers ku are chosen such as to yield 3, 6, 12, 24 expected transactions per year. The
choice of the other parameters deviates from our usual choice in chapter 1. The reason
for this is that the density of the simple CPPI (continuous as well as discrete) becomes
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Figure 2.4: Densities of the terminal value of the discrete CPPI for G = 800, V0 = 1000, m = 4,
μ = 0.15, r = 0.05, σ = 0.30, T = 1, and the ku chosen to give approximately 3, 6, 12, 24 expected
trading dates. The dotted line is the continuous CPPI.

very spiky close to the guarantee for high values of m which makes it impossible to see
differences between densities of the discrete and the continuous version. The volatility
has been set to a high value of σ = 0.30 to pronounce the differences. We will use these
parameters as a standard throughout this chapter. It is not difficult to notice the spikes
in figure 2.4. They are placed at the values x = C0e

rT kn
u for n ∈ Z and thus refer to

the trading dates, where changes in the portfolio are made. It is not surprising that the
density is not differentiable in these points. However, it is quite remarkable, how few
transactions are required to resemble the density of the continuous CPPI. This is even
more surprising if one keeps in mind, that for the same parameters the discretization with
fixed trading dates yields default risks of 11.15%, 4.52%, 0.44% and 0.003% respectively.

In order to further investigate how good or bad the discrete version of the CPPI resembles
the continuous version, we consider the terminal value of the simple continuous-time CPPI
conditioned on the terminal value of the simple CPPI with triggered trading dates taking
some fixed value. In particular, we can show
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Proposition 2.2.5 (Conditional Distribution)

Using the same notation as in proposition 2.2.3 and the additional notation

n1,u,x(j) := max{nx, 0} + j

n1,d,x(j) := −min{nx, 0} + j

n2,u,x(j) := max{nx + 1, 0} + j

n2,d,x(j) := −min{nx + 1, 0} + j

for j ∈ N0, it holds:

a) Given that the terminal value of the discrete simple CPPI equals x, V tr
T = x, the

terminal value of the continuous simple CPPI, V cont
T , can only take values from the

discrete set
∞⋃

j=0

v1,j(x) ∪
∞⋃

j=0

v2,j(x),

where

v1,j(x) := G + C0e
(r− 1

2
m(m−1)σ2)T+n1,d,x(j)mσa+n1,u,x(j)mσb+my1(x)

v2,j(x) := G + C0e
(r− 1

2
m(m−1)σ2)T+n2,d,x(j)mσa+n2,u,x(j)mσb+my2(x)

b) The distribution of the terminal value of the simple continuous-time CPPI condi-
tional on V tr

T = x is a discrete distribution and for i ∈ {1, 2} and for all j ∈ N0:

P (V cont
T = vi,j(x)|V tr

T = x) =
L−1

s,T

{(
ni,d,x(j)+ni,u,x(j)

ni,u,x(j)

)
u(s)ni,u,x(j)d(s)ni,d,x(j)ρ(s, yi(x))∂ yi

∂ x

}
pV tr

T
(x)

Proof: For part a) note that there are two possibilities for the terminal value of the
discrete CPPI, V tr

T , to take the value x. First, the discounted (discrete) cushion process
has performed exactly net nx up-moves at the last trading date τN and W δ

T −W δ
τN

= y1(x).
Second, the discounted (discrete) cushion process has performed exactly nx + 1 net up-
moves and W δ

T − W δ
τN

= y2(x). Therefore we know that W δ
τN

can take any of the values
ni,d,x(j)a + ni,u,x(j)b for i ∈ {1, 2},j ∈ N0, dependent on the exact number of up- and
down-moves. Since we know from lemma 1.1.1 that

Ccont
t = C0e

(r+m(μ−r)− 1
2
m2σ2)t+σmWt

= C0e
(r− 1

2
m(m−1)σ2)t+σmW δ

t ,
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we find that V cont
T can take the values

V cont
T = G + Ccont

τN

Ccont
T

Ccont
τN

= G + C0e
(r− 1

2
m(m−1)σ2)τN+ni,d,x(j)mσa+ni,u,x(j)mσbe(r− 1

2
m(m−1)σ2)(T−τN )+mσyi(x)

= G + C0e
(r− 1

2
m(m−1)σ2)T+ni,d,x(j)mσa+ni,u,x(j)mσb+mσyi(x)

for i ∈ {1, 2},j ∈ N0.

For part b) is suffices to notice that

P (V cont
T = vi,j(x)|V tr

T = x) =
P (V cont

T = vi,j(x), V tr
T ∈ dx)

P (V tr
T ∈ dx)

=
P (V tr

T ∈ dx, τni,u,x(j)+ni,d,x(j) ≤ T < τni,u,x(j)+ni,d,x(j)+1)

P (V tr
T ∈ dx)

.

�

Before we discuss the implications of the conditional distribution of proposition 2.2.5,
we establish L2 convergence for ku → 1 of the terminal values of the simple discrete-time
CPPI with triggered trading dates and the simple continuous-time CPPI as an application.

Proposition 2.2.6 (Convergence)

The terminal value of the simple discrete-time CPPI with triggered trading dates converges

to the terminal value of the simple continuous-time CPPI in L2 as ku → 1:

lim
ku→1

E
[
(V cont

T − V tr
T )2
]

= 0.

Proof: First note that

E
[
(V cont

T − V tr
T )2
]

= E
[
(Ccont

T − Ctr
T )2
]

= E
[
(Ccont

T )2
]
− 2E
[
Ccont

T Ctr
T

]
+ E
[
(Ctr

T )2
]

where

E
[
(Ccont

T )2
]

= C2
0e

(2r+2m(μ−r)+m2σ2)T

is known from lemma 1.1.3. Further we know from proposition 2.2.2 that

E
[
(Ctr

T )2
]

= C2
0e

2rTL−1
s,T

⎧⎪⎪⎨⎪⎪⎩
2∑

i=0

(
2
i

)
mi(1 − m)2−i 1−eiσbu(s)−eiσad(s)

s−i(μ−r)−i(i−1)σ2

2

1 − k2
uu(s) − k2

dd(s)

⎫⎪⎪⎬⎪⎪⎭
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and find

lim
ku→1

1 − eiσbu(s) − eiσad(s)

1 − k2
uu(s) − k2

dd(s)
=

s − i(μ − r) − i(i − 1)σ2

2

s − 2m(μ − r) − m2σ2

with the rule of L’Hospital. Therefore

lim
ku→1

E
[
(Ctr

T )2
]

= C2
0e

2rTL−1
s,T

⎧⎪⎪⎨⎪⎪⎩
2∑

i=0

(
2
i

)
mi(1 − m)2−i

s − 2m(μ − r) − m2σ2

⎫⎪⎪⎬⎪⎪⎭
= C2

0e
2rTL−1

s,T

{
1

s − 2m(μ − r) − m2σ2

}
= E
[
(Ccont

T )2
]

follows with the help of lemma A.2.5,d). Using proposition 2.2.5 we further find

E
[
Ccont

T Ctr
T

]
=

∞∫
0

xE
[
Ccont

T |Ctr
T = x
]
pCtr

T
(x)dx

= C2
0e

(2r− 1
2
m(m−1)σ2)TL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b∫

a

emσy(meσy − m + 1)dy

1 − kuemσbu(s) − kdemσad(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

Writing

b∫
a

emσy(meσy − m + 1)dy =
1∑

i=0

mi(1 − m)1−i 1 − e(m+i)σb − e(m+i)σa

s − (m + i)(μ − r) − (m + i)(m + i − 1)σ2

2

we can apply the rule of L’Hospital again to give

lim
ku→1

1 − e(m+i)σb − e(m+i)σa

1 − kuemσbu(s) − kdemσad(s)
=

s − (m + i)(μ − r) − (m + i)(m + i − 1)σ2

2

s − 2m(μ − r) − 3
2
m2σ2 + 1

2
mσ2

from which

lim
ku→1

E
[
Ccont

T Ctr
T

]
= C2

0e
(2r− 1

2
m(m−1)σ2)TL−1

s,T

{
1

s − 2m(μ − r) − 3
2
m2σ2 + 1

2
mσ2

}
= C2

0e
(2r− 1

2
m(m−1)σ2)T e(2m(μ−r)+ 3

2
m2σ2− 1

2
mσ2)T

= E
[
(Ccont

T )2
]

follows again with lemma A.2.5,d). �

Figure 2.5 shows the probabilities for the terminal value of the continuous CPPI to take
different values under the condition that the terminal value of the discrete CPPI equals
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Figure 2.5: Probabilities P (V cont
T | V tr

T = 1080)

and G = 800, V0 = 1000, m = 4, μ = 0.15, r =

0.05, σ = 0.30, T = 1, ku = 1.276.
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Figure 2.6: Probabilities P (V cont
T − V tr

T | V tr
T =

1051) for different values of the volatility σ and
G = 800, V0 = 1000, m = 4, μ = 0.15, r = 0.05,
T = 1, ku = 1.276.

1080. All probabilities greater than 1% are depicted and the values of the continuous
CPPI vary from 1035 to 1135 which seems to be a very large range. All parameters have
the same values as in figure 2.4, picture 4. In particular with this picture in mind one
might have expected a better result. Observe that the conditioned distribution consists of
two parts. The two parts consist of the values v1,j(x) and v2,j(x), respectively. However,
conditioning on the portfolio values V tr

T = G + C0e
rT kn

u for n ∈ Z, which relates to the
values at the trading dates, will result in the collapse of one part. Observe also that the
distribution is skewed to the right and for increasing values of V tr

T it will even be more so.
This has already been observed by Black and Perold (1992). They noticed that reversals,
i.e. an up-move followed by a down-move or vice versa, increase the continuous CPPI
relative to the discrete CPPI. This result they call "volatility cost". Since the number of
reversals is bounded from below by zero but unbounded from above, it is clear that the
conditioned distribution must be skewed to the right. Conditioned on the performance of
the discrete CPPI, the continuous CPPI takes its minimum value if there is no reversal,
i.e. if the number of net up-moves equals the number of up-moves.

In figure 2.6 we have chosen V tr
T appropriately such that the conditional distribution

collapses to only one part, in particular V tr
T = V0e

rT which equals the performance of
the riskless asset, and depicted three distributions for different volatilities. All point
probabilities that belong to the same value of the volatility are connected to make the
picture clearer. A very important observation is that the variance of the conditional
distributions increases as the volatility of the risky asset increases. This is important
because the discrete CPPI possesses a certain "self-regulation" property. The term self-
regulation is to be understood on the following chain of arguments. It is intuitively clear,
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that an increase in the volatility of the risky asset will increase the deviation between the
discrete and continuous CPPI if ku is adjusted such as to keep the number of expected
trading dates constant. However, an increase in the volatility will result in an increase in
the number of trading dates if ku is kept constant. This exploits the convergence and thus
reduces the deviation to the continuous CPPI. This "self-regulation" property puts the
question about the relevance of the volatility for the deviation between the continuous
CPPI and the discrete CPPI as one might think that the increase in the number of
trading dates could make up for the increased volatility. We learn from figure 2.6 that
this is clearly not the case. The (conditional) variance of the deviation between discrete
and continuous CPPI still increases in the volatility, irrespective of the larger number of
trading dates.

The simple CPPI requires the assumption of unlimited borrowing. In particular this
means that for any given borrowing level, there is a positive probability of the simple
CPPI requiring even more borrowing if the trading rule is to be followed. We can not
expect our discrete version to change this basic fact, as the strategy converges to the
continuous one for a large number of trading dates. However, it is interesting to investigate
how exactly the borrowing requirement changes in the discrete version. An expression for
the probability of the discrete CPPI requiring more borrowing than some borrowing level
Z ∈ R

+
0 is given in the following proposition.

Proposition 2.2.7 (Borrowing requirement)

Let Z ∈ R
+
0 and n̄ :=

⌈
log

F0+Z
(m−1)C0

log ku

⌉
− 1. Then the probability for the simple discrete-

time CPPI with triggered trading dates to require at least a discounted amount of Z to be

invested into the risky asset in addition to the current portfolio value V tr
t at some point

before maturity time T is given by:

P ( mCtr
t ≥ V tr

t + Zert for some t ∈ [0, T ] ) = L−1
s,T

{
h(n̄ + 1, s)

s

}
where h(k, s) = h(k|u(s), d(s)) as in lemma A.1.1.

Proof: The condition can be rewritten in the following way:

mCtr
t ≥ V tr

t + Zert ⇔ (m − 1)Ctr
t ≥ (F0 + Z)ert.

Since rebalancing takes place only at trading dates, additional capital will also only be
required at trading dates. However, at trading dates the cushion process takes the form
Ctr

τ = C0k
n
uerτ , where n denotes the net up-moves at time τ . Therefore the first time
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when the condition is satisfied is determined by the net up-moves, i.e.

min {n ∈ Z|(m − 1)C0k
n
u ≥ F0 + Z}

and it is obvious that n̄ + 1 is the solution to this minimization problem. From lemma
A.1.1 we know that the Laplace transform of the probability density function of the first
time the discounted cushion process performs net n̄ + 1 up-moves is given by h(n̄ +

1|u(s), d(s)). Therefore with lemma A.2.5 part c) it is clear that the Laplace transform
of the appropriate probability is given by h(n̄+1,s)

s
which proves the assertion. �

0 1000 2000 3000 4000
Discounted Borrowing Requirement

0.2

0.4

0.6

0.8

P
r
o
b
a
b
i
l
i
t
y

Figure 2.7: Borrowing requirement of the discrete
and continuous CPPI with parameters G = 800,
V0 = 1000, m = 4, μ = 0.15, r = 0.05, σ = 0.3,
T = 1, ku = 1.276.

Figure 2.7 depicts the probabilities of
the continuous and the discrete CPPI
to require more borrowing than the
amount Zert at least at some point
in time, t ∈ [0, T ], depending on the
borrowing level Z. The curve with
the jumps stems from the discrete
CPPI. It is apparent from the figure
that the probability for the require-
ment of borrowing is reduced com-
pared to the continuous CPPI for
virtually any borrowing level. The
jumps in the curve stem from the
fact, that the discrete CPPI can only
require borrowing at trading dates and not in between. However, it is also apparent
from figure 2.7 that borrowing is a critical issue in general for both, the discrete and the
continuous CPPI.

2.3 Limited Borrowing - The Capped CPPI

In this section we deal with the problem of limited borrowing. As we know from section
2.2, the simple CPPI requires the assumption of unlimited borrowing both in discrete
time as in continuous time. If the trading rule is to be followed strictly there is a positive
probability for the CPPI to require more borrowing than any given borrowing level at
some point in time. In practice, this is a major drawback. It is clear that the trading
rule cannot be followed strictly in all cases in practice since unlimited borrowing does
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not exist. But consequently, estimations about the outcome of the strategy based on the
formulas of the simple CPPI, be it the discrete or continuous version, must be flawed.
Indeed, we know from section 2.2 and proposition 2.2.7 in particular that the amount
of borrowing the simple CPPI requires, is directly linked to the size of the cushion and
therefore as well to the portfolio value. Hence, introducing a borrowing limit will only
affect the "good" paths and lead to a significant change in particular in the expected
terminal value. Estimations based on the formulas for the simple CPPI will overestimate
the expected terminal value of the strategy. In the following, we assume a borrowing
limit Z ∈ R

+
0 and Z will denote the maximum borrowing allowed in discounted terms,

i.e. at time t the total borrowing will be restricted to Zert. In particular, Z = 0 refers
to the case of no borrowing such that the maximum exposure will always be equal to the
current portfolio value. The resulting strategy will be referred to as capped CPPI. The
value process and the cushion process of the capped CPPI at some time t will be denoted
by V Cap

t and CCap
t respectively. On the basis of our discrete time model we will only

be concerned with borrowing limits in discrete time. For borrowing limits in continuous
time see Balder (2007). The introduction of a borrowing limit immediately leads to two
different cases. Already at time t = 0 it is possible for the capped CPPI to require more
borrowing than the borrowing limit permits. The condition for this is mC0 ≥ V0 + Z.
In this case, already at time t = 0 the borrowing constraint is binding and our trading
rule changes such that the amount V0 + Z (in contrast to mC0 in the unrestricted case)
is invested in the risky asset and the amount Z is borrowed. The situation where the
borrowing limit is binding will be referred to as a situation of full exposure. Analogously
mC0 < V0 + Z refers to the case where the borrowing constraint is not binding at time
t = 0 and the investment in the risky asset is mC0 like in the case of the simple CPPI
whereas the investment in the riskless asset is V0 − mC0.

We proceed to determine the distribution of the capped CPPI and start by investigating
the somewhat simpler case mC0 ≥ V0+Z. Since the portfolio value V0 and in addition the
borrowed amount Z is invested in the risky asset, the portfolio value evolves according to

V Cap
t = (V0 + Z)

St

S0
− Zert (2.7)

and the first trading date is now defined by the first time the condition

mCCap
t = V Cap

t + Zert (2.8)

holds, as this is the first time, the investment into the risky asset is determined by the
trading rule of the CPPI and not the borrowing constraint. Together with equation (2.7)
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zero and changing probabilities at the maximum
level.
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and V Cap
t = Ft + CCap

t , this can be rewritten as Ste−rt

S0
= m(F0+Z)

(m−1)(V0+Z)
or equivalently

W δ
t =

1

σ
log

(
m(F0 + Z)

(m − 1)(V0 + Z)

)
=: a′ (2.9)

and the time defined by equation (2.8) or equivalently equation (2.9) therefore is τ1. Note
that τ1 is a dummy trading date as the exposure to the risky asset is still maximal and
no trading takes place. However, it is the first time, the exposure to the risky asset is
determined by the trading rule of the CPPI and not the borrowing limit. In contrast to
conditions (2.4) and (2.5), condition (2.9) only reflects a one-sided barrier on the Brownian
motion. The first trading date occurs, if the Brownian motion (W δ

t ) decreases to a′. It is
easy to verify, that for the case where there is only one barrier, analogous expressions to
the ones given in proposition 2.1.2 are given by

d(s|a,∞, δ) := lim
b→∞

d(s|a, b, δ) = eaδ+a
√

2s+δ2

ρ(s, z|a,∞, δ) := lim
b→∞

ρ(s, z|a, b, δ) =

⎧⎪⎨⎪⎩
eδz+z

√
2s+δ2−eδz−z

√
2s+δ2+2a

√
2s+δ2

√
2s+δ2 , z ≤ 0

eδz−z
√

2s+δ2
(
1−e2a

√
2s+δ2
)

√
2s+δ2 , z > 0

for some a < 0 and some δ ∈ R and thus the Laplace transform of the probability density
function of the time for the first trading date to occur is given by d(s|a′,∞, δ) with δ

as in equation (2.6). The second trading date will be the first time, the portfolio is
rebalanced and it can only occur as the result of a down-move since the strategy is still at
full exposure. The situation at τ1 is as depicted as a binomial tree in figure 2.8 where the
start of the tree refers to time τ1. The tree starts at level 0 which refers to the case of full
exposure. Since the exposure is at its maximum, there can only be a down-move. With
respect to our discretization this down move occurs if the discounted cushion process
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decreases by the fraction 1 − kd which is equivalent to condition (2.4). Therefore, the
Laplace transform for the time of this down-move to occur is given by d(s|a(kd),∞, δ).
After this down-move the strategy is at level −1 from where both, up- and down-moves,
are possible. Hence we set the maximum number of up-moves to 0 and count the net
up-moves as n = 0,−1,−2, . . . .

Proposition 2.3.1 (Distribution of the capped CPPI, case mC0 ≥ V0 + Z)

Let Z ∈ R
+
0 the maximum amount of borrowing allowed, C := F0+Z

m−1
and a′ as in equation

(2.9) and d′(s) = d(s|a′,∞, δ). Further let

n′
x := min

{⌊
log x−G

CerT

log ku

⌋
, 0

}

y′
1(x) :=

1

σ
log

(
x − G

mCerT k
n′

x
u

+
m − 1

m

)
y′

2(x) :=
1

σ
log

(
x − G

mCerT k
n′

x+1
u

+
m − 1

m

)
y′

3(x) :=
1

σ
log

xe−rT + Z

V0 + Z

for all x ∈ (G,∞). Then the distribution of the terminal value of the capped CPPI, i.e.
the probability P (V Cap

T ≤ x), is given by:

P (V Cap
T ≤ x) = L−1

s,T

{
d′(s)

1 − u(s) − d(s)

s
Q0(n

′
x − 1, s)

}

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1
s,T

{
d′(s)

(
q0(n

′
x, s)

y′
1(x)∫
a

ρ(s, z)dz + q0(n
′
x + 1, s)

y′
2(x)∫
a

ρ(s, z)dz

)}
, n′

x < −1

L−1
s,T

{
d′(s)

(
q0(n

′
x, s)

y′
1(x)∫
a

ρ(s, z)dz + q0(n
′
x + 1, s)

y′
2(x)∫
a

ρ(s, z|a,∞, δ)dz

)}
, n′

x = −1

L−1
s,T

{
d′(s)q0(n

′
x, s)

y′
1(x)∫
a

ρ(s, z|a,∞, δ)dz +
y′
3(x)∫
a′

ρ(s, z|a′,∞, δ)dz

}
, n′

x = 0

with q0(k, s) = q0(k|u(s), d(s), d(s|a,∞, δ)) and Q0(k, s) = Q0(k|u(s), d(s), d(s|a,∞, δ))

as in lemma A.1.4. Expressions for the integrals are given in propositions A.3.2 and
A.3.4.

Proof: If τ1 < T , we know that the cushion of the capped CPPI at time τN is given by
CCap

τN
= CCap

τ1 er(τN−τ1)kn
u , where n denotes the number of net up-moves at τN . From

equation (2.8) it is apparent that CCap
τ1

= erτ1C and hence CCap
τN

= CerτN kn
u . Fur-

thermore it is known from equation (2.9) that τ1 < T is equivalent to the Brownian
motion with drift hitting a′ and the appropriate Laplace transform is d′(s). Once τ1
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has occurred, the three cases n ≤ n′
x − 1, n = n′

x and n = n′
x + 1 can be consid-

ered analogously to the proof of proposition 2.2.3. Note that n′
x is the solution to

max
{
n ∈ {0,−1, . . . } | G + CerT kn

u ≤ x
}
. Hence, for n ≤ n′

x − 1, we know V Cap
T <

G + CerT k
n′

x
u ≤ x regardless of how the cushion develops in the time interval (τN , T ].

Similarly to proposition 2.2.3 the probability of all cases n ≤ n′
x − 1 without any restric-

tion to the further development of the cushion is given by

L−1
s,T

⎧⎨⎩d′(s)

b∫
a

ρ(s, z)dz

n′
x−1∑

k=−∞
q0(k, s)

⎫⎬⎭
where the differences are that the net up-moves are counted by q0(k, s)11 instead of q(k, s)

and that d′(s) has to be added as a factor accounting for trading date τ1.

The situation is more complicated for the cases n = n′
x and n = n′

x + 1. Due to the fact,
that the maximum number of net up-moves is 0, three more cases have to be considered:
n′

x < −1, n′
x = −1, n′

x = 0. Let us start with the case n = n′
x and n′

x < −1. In this case
the portfolio value at time T is given by

V Cap
T = G + CerT kn′

x
u

(
meσ(W δ

T −W δ
τN

) − m + 1
)

and hence V Cap
T ≤ x ⇔ a < W δ

T − W δ
τN

≤ y′
1(x). We immediately conclude that the

probability of V Cap
T ≤ x in this case is given by

L−1
s,T

⎧⎪⎨⎪⎩d′(s)q0(n
′
x)

y′
1(x)∫
a

ρ(s, z)dz

⎫⎪⎬⎪⎭ .

For the cases n = n′
x +1, n′

x < −1 and n = n′
x, n′

x = −1 the probability can be calculated
analogously to yield

L−1
s,T

⎧⎪⎨⎪⎩d′(s)q0(n
′
x + 1)

y′
2(x)∫
a

ρ(s, z)dz

⎫⎪⎬⎪⎭
and

L−1
s,T

⎧⎪⎨⎪⎩d′(s)q0(n
′
x)

y′
1(x)∫
a

ρ(s, z)dz

⎫⎪⎬⎪⎭
respectively. However, the situation is different in the case n = n′

x +1 and n′
x = −1. Since

n = n′
x+1 = 0 the exposure is at its maximum (where there can only be a down-move and

11See lemma A.1.4 where the corresponding random walk problem is solved.
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the probability of a down-move as well as the probability of not having further trading
dates are altered) and hence ρ(s, z|a,∞, δ) must be used instead of ρ(s, z) to yield

L−1
s,T

⎧⎪⎨⎪⎩d′(s)q0(n
′
x + 1)

y′
2(x)∫
a

ρ(s, z|a,∞, δ)dz

⎫⎪⎬⎪⎭
and likewise the case n = n′

x and n′
x = 0 gives

L−1
s,T

⎧⎪⎨⎪⎩d′(s)q0(n
′
x)

y′
1(x)∫
a

ρ(s, z|a,∞, δ)dz

⎫⎪⎬⎪⎭ .

Clearly, the case n = n′
x + 1, n′

x = 0 can not happen, since n ≤ 0. However, so far, the
additional assumption for all cases was τ1 < T , made at the beginning of the proof. It is
possible that there is never a first trading date τ1 up to maturity time T , i.e. τ1 ≥ T . In
this case, the exposure will always be at its maximum, i.e. the capped CPPI is nothing
more than a pure investment into the risky asset (leveraged if Z > 0). The portfolio value
at time T is then given by

V Cap
T = (V0 + Z)

ST

S0
− ZerT = (V0 + Z)erT eσW δ

T − ZerT (2.10)

and V Cap
T ≤ x ⇔ a′ < W δ

T ≤ y′
3(x). Therefore the probability in this case is given by

L−1
s,T

⎧⎪⎨⎪⎩
y′
3(x)∫

a′

ρ(s, z|a′,∞, δ)dz

⎫⎪⎬⎪⎭
completing the proof. �

Now consider the case mC0 < V0 + Z where the borrowing is not binding at time t = 0.
Since the up-moves determine the size of the cushion and therefore also the investment in
the risky asset and the required borrowing, it is clear that the introduction of a borrowing
limit induces a maximum number of net up-moves which we will denote by n̄. Allowing
for n̄ + 1 up-moves and then changing the portfolio according to the trading rule of the
CPPI, i.e. invest m times the cushion into the risky asset, would violate the borrowing
constraint. Therefore the situation is as depicted in figure 2.9 such that the number of
net up-moves can take the values n̄, n̄ − 1, n̄ − 2, . . . . From proposition 2.2.7 it is known
that n̄ is given by

n̄ =

⌈
log F0+Z

(m−1)C0

log ku

⌉
− 1. (2.11)
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As the trading rule of the CPPI can not be followed after net n̄ + 1 up-moves due to
the borrowing constraint, it would be the simplest way to define the strategy such that
whenever a situation of net n̄ up-moves occurs, only a down-move is possible and no
changes are made to the portfolio if the (discounted) cushion process keeps increasing.
However, with this simple rule, full exposure would only be possible in special cases. For
being fully invested at some trading date τ , the condition mCCap

τ = V Cap
τ + Zerτ must

hold and we get the condition

(m − 1)C0k
n̄
u = F0 + Z (2.12)

using CCap
τ = C0e

rτkn̄
u and C0 = V0 − F0. It is obvious that condition (2.12) can only

hold for discrete values of ku. In order to make full exposure possible for the non-suited
values of ku, we proceed in the following way. Suppose the cushion has performed net
n̄ + 1 up-moves at some time τ . Then the current portfolio value is given by

V Cap
τ = Fτ + C0e

rτkn̄+1
u (2.13)

and the amount V Cap
τ +Zerτ is invested into the risky asset since mCCap

τ ≥ V Cap
τ +Zerτ and

thus the borrowing limit is binding. The situation is then similar to the case mC0 ≥ V0+Z

where the borrowing limit is binding already at time t = 0. Analogously to that case the
portfolio evolves according to

V Cap
t = (V Cap

τ + Zerτ )
St

Sτ
− Zert (2.14)

and we define the next trading date by

mCCap
t = V Cap

t + Zert (2.15)

analogously to condition (2.8). Equations (2.13), (2.14) and (2.15) together yield

W δ
t − W δ

τ =
1

σ
log

(
m(F0 + Z)

(m − 1)(F0 + C0kn̄+1
u + Z)

)
=: a′′ (2.16)

and so the appropriate Laplace transforms are given by d(s|a′′,∞, δ) and ρ(s, z|a′′,∞, δ).
It is important to notice that while the situation at the beginning is as depicted in figure
2.9, the situation after n̄ + 1 up-moves is as depicted in figure 2.8.



66 CHAPTER 2. THE DISCRETE CPPI WITH TRIGGERED TRADING DATES

Proposition 2.3.2 (Distribution of the capped CPPI, case mC0 < V0 + Z)

In the notation of propositions 2.2.3, 2.3.1 and additionally a′′ as in equation (2.16),
d′′(s) = d(s|a′′,∞, δ) and

y′′
3(x) :=

1

σ
log

xe−rT + Z

F0 + C0kn̄+1
u + Z

for all x ∈ (G,∞), the distribution of the terminal value of the capped CPPI, P (V Cap
T ≤

x), is given by:

P (V Cap
T ≤ x) = P1(x) + P2(x)

where

P1(x) = L−1
s,T

{
1 − u(s) − d(s)

s
Qn̄(min {nx, n̄} − 1, s)

}

+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

L−1
s,T

{
qn̄(nx, s)

y1(x)∫
a

ρ(s, z)dz + qn̄(nx + 1, s)
y2(x)∫
a

ρ(s, z)dz

}
, nx < n̄

L−1
s,T

{
qn̄(nx, s)

y1(x)∫
a

ρ(s, z)dz

}
, nx = n̄

L−1
s,T

{
qn̄(n̄, s)1−u(s)−d(s)

s

}
, nx > n̄

and

P2(x) = L−1
s,T

{
h(n̄ + 1, s)d′′(s)

1 − u(s) − d(s)

s
Q0(n

′
x − 1, s)

}

+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1
s,T

{
h(n̄ + 1, s)d′′(s)

(
q0(n

′
x, s)

y′
1(x)∫
a

ρ(s, z)dz

+q0(n
′
x + 1, s)

y′
2(x)∫
a

ρ(s, z)dz

)}
, n′

x < −1

L−1
s,T

{
h(n̄ + 1, s)d′′(s)

(
q0(n

′
x, s)

y′
1(x)∫
a

ρ(s, z)dz

+q0(n
′
x + 1, s)

y′
2(x)∫
a

ρ(s, z|a,∞, δ)dz

)}
, n′

x = −1

L−1
s,T

{
h(n̄ + 1, s)d′′(s)q0(n

′
x, s)

y′
1(x)∫
a

ρ(s, z|a,∞, δ)dz

+h(n̄ + 1, s)
y′′
3 (x)∫
a′′

ρ(s, z|a′′,∞, δ)dz

}
, n′

x = 0

Notice that qn̄(k, s) = qn̄(k|u(s), d(s)) and Qn̄(k, s) = Qn̄(k|u(s), d(s)) as in lemma A.1.3,
while q0(k, s) = q0(k|u(s), d(s), d(s|a,∞, δ)) and Q0(k, s) = Q0(k|u(s), d(s), d(s|a,∞, δ))

as in lemma A.1.4. Expressions for the integrals are given in propositions A.3.2 and
A.3.4.
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Proof: We determine the probability P (V Cap
T ≤ x) as the sum of two cases. The first

case gives the joint probability of V Cap
T ≤ x and the cap never becoming relevant (i.e. net

n̄ + 1 up-moves never occur up to time T ). The second case gives the joint probability of
V Cap

T ≤ x and the cap becoming active at some point in time before T . The two cases refer
to P1(x) and P2(x) respectively. We start with the first case. Since the cap is never to
become active, the capped CPPI behaves exactly like the simple CPPI, but the probability
for the net up-moves must be calculated according to lemma A.1.3. It is therefore apparent
that for nx < n̄, the expression for P1(x) must equal the expression in proposition 2.2.3

with q(k, s) exchanged by qn̄(k, s). For nx = n̄, the term qn̄(nx + 1, s)
y2(x)∫
a

ρ(s, z)dz must

vanish, since net nx + 1 = n̄ + 1 up-moves would violate the assumption that the net up-
moves do not surpass n̄. For nx > n̄ it is apparent from the fact that there can maximally
be net n̄ up-moves and from the definition of nx that

V Cap
T < G + C0e

rT kn̄+1
u ≤ G + C0e

rT knx
u ≤ x

such that V Cap
T ≤ x is always satisfied. Hence, here the probability P (V Cap

T ≤ x) must be
given by

L−1
s,T

{
1 − u(s) − d(s)

s

n̄∑
k=−∞

qn̄(k, s)

}
= L−1

s,T

{
1 − u(s) − d(s)

s
Qn̄(n̄, s)

}
.

Let us now turn to the second case where net n̄ + 1 up-moves do occur up to time T .
Once the cushion process has performed n̄ + 1 up-moves, the situation is equivalent to
the situation where mC0 ≥ V0 + Z. Hence the expression for P2(x) is very similar to the
expression for P (V Cap

T ≤ x) in proposition 2.3.1 and we restrict ourselves here to explain
the differences. While d′(s) was needed in proposition 2.3.1 to leave the borrowing limit,
here d′(s) must be replaced by the product of h(n̄ + 1, s) and d′′(s) for first reaching
and then leaving the borrowing limit. After n̄ + 1 up-moves (which we suppose to occur
at time τ) the portfolio evolves according to equation (2.14) and thus V Cap

T = (V Cap
τ +

Zerτ )ST

Sτ
−ZerT if the borrowing limit keeps being binding until maturity time T . Hence,

with equation (2.13)

V Cap
T ≤ x ⇔ (Fτ + C0e

rτkn̄+1
u + Zerτ )

ST

Sτ

≤ x + ZerT

⇔ (F0 + C0k
n̄+1
u + Z)eσ(W δ

T −W δ
τ ) ≤ x + ZerT

⇔ W δ
T − W δ

τ ≤ y′′
3(x)

and it becomes obvious that
y′
3(x)∫

a′

ρ(s, z|a′,∞, δ)dz
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Figure 2.10: Densities of the terminal values of
the risky asset, the capped and uncapped CPPI.
The parameters are V0 = 1000, G = 800, Z = 0,
m = 4, μ = 0.15, r = 0.05, σ = 0.30, T = 1,
ku = 1.01.
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Figure 2.11: Densities of the terminal values of
the risky asset, the capped and uncapped CPPI.
The parameters are V0 = 1000, G = 600, Z = 0,
m = 4, μ = 0.15, r = 0.05, σ = 0.30, T = 1,
ku = 1.01.

from proposition 2.3.1 must be replaced by

h(n̄ + 1, s)

y′′
3 (x)∫

a′′

ρ(s, z|a′′,∞, δ)dz

here. �

The probability density function of the terminal value of the capped CPPI can imme-
diately be deduced from propositions 2.3.1 and 2.3.2 by differentiation analogously to
corollary 2.2.4. Figures 2.10 and 2.11 depict the density functions for the terminal value
of the CPPI, the capped CPPI and a pure investment into the risky asset. While for figure
2.10 we have used our usual choice of parameters, in figure 2.11 the guarantee is reduced
such that the initial exposure, mC0, is considerably larger than the initial portfolio value
V0 which makes the borrowing constraint binding already at time t = 0. The trigger ku

has been chosen extremely small, such as to refrain from the effects of the discretization
and resemble the continuous-time case instead. A large ku leads to spikes in the density
function similar to figure 2.4.

The first thing to notice is that the capped CPPI is bimodal. Unsurprisingly this is a
direct consequence of the change in the strategy whenever the borrowing limit is binding.
The position of the break in the density can be deduced from the condition mCCap

T =

V Cap
T + ZerT , which is the condition for the borrowing limit being binding at maturity T .

Solving for V Cap
T gives

V Cap
T =

mG + ZerT

m − 1
(2.17)
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for the position of the break. What can also be seen from the figures is that the right
tail of the capped CPPI and the risky asset seem to be similar while the right tail of the
simple CPPI is significantly different. Indeed, since the borrowing of the simple CPPI
is directly linked to the portfolio value, high payoffs of the capped CPPI can only be
achieved when the cap is binding. However, if the cap is binding, the capped CPPI is
only a pure investment in the risky asset (leveraged if Z > 0) such that the behavior
of the capped CPPI for large values of the risky asset must be identical to the behavior
of the risky asset itself. The distribution of the simple CPPI on the other hand has a
much fatter right tail than the risky asset. These fat tails of the simple CPPI reflect the
possibility to create exorbitant gains. It is exactly this theoretical possibility to create
large gains that accounts for the very high expectation and standard deviation of the
terminal value of the simple CPPI and that must be paid with a large probability for the
terminal value to end up close to the guarantee. The capped CPPI effectively solves this
problem.

On the other hand, the left tail of the capped CPPI is very similar to that of the simple
CPPI while the left tail of the risky asset must be considerably different as there is no
portfolio protection for a pure investment in the risky asset. The left tail behavior of the
capped CPPI is unsurprising, as the capped CPPI is identical to the simple CPPI as long
as the cap is not binding which is the case for low portfolio values.

Generally it can be said that in comparison to the simple CPPI, the capped CPPI shifts
probability mass from the right tail towards the middle while in comparison to a pure
investment in the risky asset the capped CPPI shifts probability mass from the left tail
towards the middle.

Proposition 2.3.3 (Moments of the cushion of the capped CPPI)

In the notation of proposition 2.3.2, the j-th moment of the cushion of the capped CPPI
is given by

Case mC0 ≥ V0 + Z:

E
[
(CCap

T )j
]

=
(
CerT
)j L−1

s,T

⎧⎨⎩d′(s)Q̃0(−1, s)

b∫
a

(meσz − m + 1)jρ(s, z)dz

⎫⎬⎭
+
(
CerT
)j L−1

s,T

⎧⎨⎩d′(s)q̃0(0, s)

∞∫
a

(meσz − m + 1)jρ(s, z|a,∞, δ)dz

⎫⎬⎭
+ejrTL−1

s,T

⎧⎨⎩
∞∫

a′

((V0 + Z)eσz − (Z + F0))
j ρ(s, z|a′,∞, δ)dz

⎫⎬⎭
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Case mC0 < V0 + Z:

E
[
(CCap

T )j
]

=

(
C0e

rT
)j L−1

s,T

⎧⎨⎩Q̃n̄(n̄, s)

b∫
a

(meσx − m + 1)jρ(s, z)dz

⎫⎬⎭
+
(
CerT
)j L−1

s,T

⎧⎨⎩h(n̄ + 1, s)d′′(s)Q̃0(−1, s)

b∫
a

(meσz − m + 1)jρ(s, z)dz

⎫⎬⎭
+
(
CerT
)j L−1

s,T

⎧⎨⎩h(n̄ + 1, s)d′′(s)q̃0(0, s)

∞∫
a

(meσz − m + 1)jρ(s, z|a,∞, δ)dz

⎫⎬⎭
+ ejrTL−1

s,T

⎧⎨⎩h(n̄ + 1, s)

∞∫
a′′

(
(F0 + C0k

n̄+1
u + Z)eσz − (Z + F0)

)j
ρ(s, z|a′′,∞, δ)dz

⎫⎬⎭
where

q̃0(k, s) = q0(k|kj
uu(s), kj

dd(s), kj
dd(s|a,∞, δ)), Q̃0(k, s) = Q0(k|kj

uu(s), kj
dd(s), kj

dd(s|a,∞, δ))

as in lemma A.1.4, q̃n̄(k, s) = qn̄(k, s|kj
uu(s), kj

dd(s)), Q̃n̄(k, s) = Qn̄(k|kj
uu(s), kj

dd(s)) as

in lemma A.1.3 and the integrals as in propositions A.3.1 and A.3.3.

Proof: As the proof is very similar to the proofs of propositions 2.3.1 and 2.3.2, we
only show the case mC0 ≥ V0 + Z where the strategy starts with full exposure. Recall
from the beginning of the section that the first trading date τ1 is defined by the first
time the trading rule of the CPPI requires full exposure and the Laplace transform of
the probability density function of τ1 is given by d′(s). Further recall from the proof of
proposition 2.3.1 that CCap

τN
= CerτN kn

u where n denotes the number of net up-moves at
the last trading date before maturity, τN . Therefore, for k ≤ −1, we have

E
[
(CCap

T )j1{n=k}1{τ1<T}

]
= E

[(
CerT kk

u

(
meσ(W δ

T −W δ
τN

) − m + 1
))j

1{n=k}1{τ1<T}

]

=
(
CerT
)j L−1

s,T

⎧⎨⎩kjk
u d′(s)q0(k|u(s), d(s), d(s|a,∞, δ))

b∫
a

(meσz − m + 1)j ρ(s, z)dz

⎫⎬⎭
as a consequence of lemma A.1.4. Now carefully notice that

kjk
u q0(k|u(s), d(s), d(s|a,∞, δ)) = q0(k|kj

uu(s), kj
dd(s), kj

dd(s|a,∞, δ)) = q̃0(k, s)

follows from the definition of the function q in lemma A.1.4 and kd = 1
ku

. Likewise, for



2.3. LIMITED BORROWING - THE CAPPED CPPI 71

m E [N ] ku Mean Stdv.

12 12 1.4080 (1.9768) 1072.57 (1066.58) 77.60 (133.97)
12 24 1.2756 (1.6245) 1072.71 (1066.75) 78.11 (135.30)
12 48 1.1885 (1.4117) 1072.78 (1066.84) 78.37 (136.04)
12 96 1.1301 (1.2768) 1072.82 (1066.88) 78.50 (136.39)

Table 2.2: Moments of the capped CPPI. The parameters are T = 1,
V0 = 1000, G = 1000, μ = 0.085, r = 0.05, Z = 0 and σ = 0.1 (σ = 0.2

respectively).

k = 0, we find

E
[
(CCap

T )j1{n=0}1{τ1<T}

]
=
(
CerT
)j L−1

s,T

⎧⎨⎩d′(s)q̃0(0, s)

∞∫
a

(meσz − m + 1)j ρ(s, z|a,∞, δ)dz

⎫⎬⎭ .

Finally, if the borrowing constraint is always binding, it follows with equation (2.10)

E
[
(CCap

T )j1{τ1≥T}

]
= E
[
(V Cap

T − G)j1{τ1≥T}

]
= ejrTE

[(
(V0 + Z)eσW δ

T − Z − F0

)j
1{τ1≥T}

]

= ejrTL−1
s,T

⎧⎨⎩
∞∫

a′

((V0 + Z)eσz − (Z + F0))
j ρ(s, z|a′,∞, δ)dz

⎫⎬⎭
and hence the assertion of the proposition follows with

E
[
(CCap

T )j
]

=

0∑
k=−∞

E
[
(CCap

T )j1{n=k}1{τ1<T}

]
+ E
[
(CCap

T )j1{τ1≥T}

]
�

Table 2.2 shows the moments of the capped CPPI when no borrowing is permitted. The
parameters are chosen such as to match the parameters in table 2.1. For a better com-
parison the values for the trigger ku have been chosen identical to the values in table 2.1.
Hence, the column E [N ] refers to the expected number of trading dates for the simple
CPPI. The expected number of trading dates for the capped CPPI will clearly be lower
in comparison, as one of the effects of the capped CPPI is that no trading takes place
while the cap is binding. The chosen parameter constellation implies an initial exposure
of 585.25 such that the borrowing limit is not binding at time t = 0. It is remarkable, how
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little the values for the capped CPPI resemble those for the simple CPPI. A comparison
of the values of the mean confirm what was said at the beginning of the section, the
cap affects only the "good" paths, such that the simple CPPI overestimates the expected
terminal value. The same argument holds for the considerably reduced values of the stan-
dard deviation of the capped CPPI. However, it is remarkable how little the values for the
standard deviation vary with respect to the number of trading dates. For σ = 20% the
values standard deviation only vary between 133.97 and 136.39. While figure 2.4 already
suggested that very few trading dates are necessary to resemble the continuous simple
CPPI well, the values for the standard deviation in table 2.2 suggest that this impression
is even more valid if borrowing limits are introduced. Note that, compared with table
2.1, we have omitted to display the values for m = 18. The reason is that the initial
exposure in this case equals 877.87 which is already close to the borrowing limit such that
the effects of the case m = 12 are only highlighted but no new information can be drawn.

We will now proceed to discuss the influence of the strategy parameters on the capped
CPPI. In order to sharpen the intuition about the behavior of the strategy it seems to be
well suited to look at extreme values of the parameters. An overview is given in (2.18).

Z → ∞ −→ Simple Discrete − Time CPPI

Z = 0, G → 0 −→ Risky Asset

Z = 0, m → ∞ −→ Stop − Loss

Z = 0, mC0 ≥ V0, ku → ∞ −→ Stop − Loss

(2.18)

Let us first consider the borrowing limit Z. We know that the condition for the cap to
be active is given by mCCap

t ≥ V Cap
t + Zert. Therefore it is intuitively clear that the

probability of the cap to be active is decreasing in the borrowing limit Z and converges
to 0 for Z → ∞, such that in the limit case the cap will never be active. Hence, as Z

turns to infinity, the capped CPPI will converge to the simple discrete-time CPPI with
all other parameters identical. Now suppose the case G → 0. If G = 0, i.e. there is no
guarantee, the cushion is always equal to the portfolio value, since CCap

t = V Cap
t −Ft and

Ft = Ge−r(T−t). As a consequence, the condition mCCap
t ≥ V Cap

t +Zert is always satisfied
if borrowing is not allowed since it can be rewritten as (m − 1)V Cap

t ≥ 0. Therefore the
cap is always active and the capped CPPI collapses to a pure investment into the risky
asset. It can also be observed in figures 2.10 and 2.11 that for the smaller value of G,
the density of the capped CPPI resembles the risky asset much better. Note, that this
is not the case for Z > 0. In this case the condition mCCap

t ≥ V Cap
t + Zert can only be

rewritten to (m − 1)V Cap
t ≥ Zert such that there is a positive probability of the cap not

being active. However, looking at this condition, it is clear that for G = 0 the borrowing
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limit Z must be large in order for the capped CPPI to differ significantly from a buy and
hold strategy where V0 + Z is invested into the risky asset and the amount Z borrowed
at time t = 0. Let us now turn to the case m → ∞. As m becomes large, the cushion
must become very small to violate the condition for the cap being active. Therefore, it is
intuitive that in the limit case, the cap must always be active unless the cushion becomes
zero, in which case the portfolio value at maturity equals the guarantee. This is exactly
what a stop-loss strategy does. A formal proof of the convergence in m can be found
in Black and Perold (1992). Finally we consider the case ku → ∞. When ku turns to
infinity, at the same time kd = 1

ku
turns to 0. It is obvious, that in this case, there will

be no trading at all unless the cushion approaches zero. Therefore, if mC0 ≥ V0 and no
borrowing is permitted, the capped CPPI converges to the stop-loss strategy analogously
to the case m → ∞. If borrowing is permitted and mC0 ≥ V0, the capped CPPI still
converges to a stop-loss strategy but a leveraged one in the sense that more than the initial
portfolio value V0 will be invested in the risky asset at time t = 0 and this investment
will be held until the cushion approaches zero. In the case mC0 < V0, the capped CPPI
turns to a mixture of a riskless investment and a stop-loss strategy. Generally it can be
said that the non-leveraged capped CPPI is a hybrid between a pure investment into the
risky asset (or a stop-loss strategy) and the simple CPPI as its distribution possesses the
tail of the risky asset while close to the guarantee the capped CPPI shows the smooth
stop-loss feature of the simple CPPI.

2.4 Transaction costs

In this section we investigate how transaction costs change our results from the previous
sections. For simplicity we assume that the cost of a transaction is given by some fraction
of the transaction size, i.e. we are only concerned with proportional transaction costs.
Note that the introduction of a fixed component in the transaction costs can result in the
cushion becoming negative and thus lead to default risk if the cushion size is very small.
For economic reasons, in such cases, one would resort to changing the strategy and omit
the transactions if the cushion size is very small. This problem can be avoided if only
proportional transaction costs are considered.

For the definition of the transaction costs we follow Black and Perold (1992). Denote the
proportional factor of the transaction costs by β such that e.g. β = 1% means that for
any transaction, 1% of the transaction size is lost in value. Further denote by Cτi

and Cτi+
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the cushion before and after the transaction, respectively, such that Ct+ is the cushion
process net of transaction costs. We do not use the specific notation Ctr and CCap as the
general procedure of the implementation of transaction costs holds for both strategies.
The trading rule of our strategy will be to invest the quantity mCτi+ into the risky asset
at time τi such that the transaction costs are immediately implemented in the strategy.
At time τi−1 the investment in the risky asset is mCτi−1+ according to the trading rule.
At time τi this investment will have evolved to mCτi−1+

Sτi

Sτi−1
and the trading rule will

require to invest the amount mCτi
into the risky asset. Therefore the transaction costs

will be βm
∣∣∣Cτi+ − Cτi−1+

Sτi

Sτi−1

∣∣∣. We can now find the cushion net of transaction costs at
time τi through the equation

Cτi+ = Cτi
βm

∣∣∣∣Cτi+ − Cτi−1+
Sτi

Sτi−1

∣∣∣∣ (2.19)

and from the definition of the trading dates in (2.2) we know

Cτi
= Cτi−1+er(τi−τi−1)ku (2.20)

and

Cτi
= Cτi−1+er(τi−τi−1)kd (2.21)

for and up- and down-move respectively. Furthermore, a combination of equations (2.1)
and (2.20) yields

Sτi

Sτi−1

=
ku + m − 1

m
er(τi−τi−1) (2.22)

in case of an up-move while a combination of equations (2.1) and (2.21) yields

Sτi

Sτi−1

=
kd + m − 1

m
er(τi−τi−1) (2.23)

in case of a down-move. Combining equations (2.19), (2.20) and (2.22) now gives

Cτi+ = Cτi−1+er(τi−τi−1)ku − βm

(
Cτi+ − Cτi−1+

ku + m − 1

m
er(τi−τi−1)

)
⇔ Cτi+ = Cτi−1+er(τi−τi−1)

(
1 +

1 + β

1 + βm
(ku − 1)

)
︸ ︷︷ ︸

=:k̂u

(2.24)

in case of an up-move and likewise equations (2.19), (2.21) and (2.23) yield

Cτi+ = Cτi−1+er(τi−τi−1)kd + βm

(
Cτi+ − Cτi−1+

kd + m − 1

m
er(τi−τi−1)

)
⇔ Cτi+ = Cτi−1+er(τi−τi−1)

(
1 − 1 − β

1 − βm
(1 − kd)

)
︸ ︷︷ ︸

=:k̂d

(2.25)
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in case of a down-move. It is easy to see that generally k̂u < ku and k̂d < kd for β > 0

such that a comparison with (2.2) leads to the insight that the cushion process net of
transaction costs is gernerally smaller than the cushion process without transaction costs,
as it should be. Note, that the cushion process is not supposed to become negative.
Therefore from (2.25) we find a lower bound for kd to be given by

k̂d ≥ 0 ⇔ kd ≥ 1 − 1 − βm

1 − β
.

For 0 < kd < 1 − 1−βm
1−β

the cushion process without transaction costs will still always be
positive but the transaction costs will cause the cushion to become negative on the first
down-move such that the amount G can not be guaranteed any more.

It is important to keep in mind, that while the probability of an up-move or down-move
of the cushion remains unchanged in the presence of transaction costs, i.e. still hinges on
the triggers ku and kd, the discounted cushion only multiplies with k̂u < ku in case of an
up-move and k̂d < kd in case of a down-move. It is fairly easy to include transaction costs
in the propositions of section 2.2. Basically, replacing ku by k̂u and kd by k̂d wherever they
don’t refer to a probability is all there is to do. For example, in proposition 2.2.3, ku and
kd must be replaced in the expressions for nx, y1, y2 while they must not be replaced in
the expressions for a, b and hence also the expressions for u, d, ρ and q remain unchanged.
However, the condition kd = 1

ku
must be changed to k̂d = 1

k̂u
. Generally, apart from the

trivial case m = 1, if kd = k−1
u holds, k̂d = k̂−1

u will not hold. This condition can be
satisfied by first calculating k̂u as defined in equation (2.24), then putting k̂d = 1

k̂u
and

finally calculating kd from k̂d, using the definition of k̂d in equation (2.25). It is slightly
more difficult to include transaction costs in the propositions of section 2.3, in particular
for the case mC0 < V0. The reason for this is the change in the trading rule at the first
time the cap becomes binding. Since the cap is binding at that time, the investment into
the risky asset is less than it would be without the cap and therefore the transaction costs
are also less. In section 2.3 we have omitted to present the density of the terminal value
of the capped CPPI. As an example of how to implement transaction costs, we will now
give this density in the presence of transaction costs. The density without transaction
costs can be deduced by setting β = 0.

Corollary 2.4.1 (Density of the capped CPPI, case mC0 < V0 + Z)

Let β ≥ 0 the factor for the transaction costs, ku > 0, k̂u as in eq. (2.24), k̂d = 1

k̂u
,

kd = 1 − 1−β
1−βm

(1 − k̂d) and Z ∈ R+ the maximum amount of borrowing allowed. Further

let n̄ as in equation (2.11) and nx, y1(x), y2(x) as in proposition 2.2.3 and C, n′
x, y′

1(x),
y′

2(x) as in proposition 2.3.1 with ku and kd exchanged by k̂u and k̂d. Additionally let V :=
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F0+C0k̂n̄
uku+Z+βC0k̂n̄

u(ku+m−1)
1+β

, a′′ := 1
σ

log mC
V

, y′′
3(x) := 1

σ
log xe−rT +Z

V
for all x ∈ [G,∞).

Then the density of the terminal value of the capped CPPI in the presence of transaction

costs is given by:

pV Cap
T

(x) = p1(x) + p2(x)

where

p1(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
L−1

s,T

{
qn̄(nx, s)ρ(s, y1(x))∂ y1

∂ x
+ qn̄(nx + 1, s)ρ(s, y2(x))∂ y2

∂ x

}
, nx < n̄

L−1
s,T

{
qn̄(nx, s)ρ(s, y1(x))∂ y1

∂ x

}
, nx = n̄

0 , nx > n̄

and

p2(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−1
s,T

{
h(n̄ + 1, s)d′′(s)

(
q0(n

′
x, s)ρ(s, y′

1(x))
∂ y′

1

∂ x

+q0(n
′
x + 1, s)ρ(s, y′

2(x))
∂ y′

2

∂ x

)}
, n′

x < −1

L−1
s,T

{
h(n̄ + 1, s)d′′(s)

(
q0(n

′
x, s)ρ(s, y′

1(x))
∂ y′

1

∂ x

+q0(n
′
x + 1, s)ρ(s, y′

2(x)|a,∞, δ)
∂ y′

2

∂ x

)}
, n′

x = −1

L−1
s,T

{
h(n̄ + 1, s)d′′(s)q0(n

′
x, s)ρ(s, y′

1(x)|a,∞, δ)
∂ y′

1

∂ x

+h(n̄ + 1, s)ρ(s, y′′
3(x)|a′′,∞, δ)

∂ y′′
3

∂ x

}
, n′

x = 0

Proof: The expression for p1(x) follows immediately from proposition 2.3.2 by differen-
tiation. For p2(x) we have to take into account that after net n̄ + 1 up-moves (which we
suppose to happen at time τ) the trading rule changes such that instead of mCCap

τ+ the
amount V Cap

τ+ + Zerτ is invested into the risky asset. Since mCCap
τ ≥ V Cap

τ + Zerτ , the
transaction costs for the changes made to the portfolio will therefore be lower. Denote
the trading date before τ with τ ′, then the amount invested into the risky asset at time
τ ′ was mCCap

τ ′+ and it follows from equation (2.3) that this amount has evolved to

mCCap
τ ′+

Sτ

Sτ ′
= CCap

τ ′+ er(τ−τ ′)(ku + m − 1)

= C0e
rτ k̂n̄

u(ku + m − 1)

up to time τ . It follows that

V erτ = V Cap
τ + Zerτ − β

(
V erτ − C0e

rτ k̂n̄
u(ku + m − 1)

)
determines the amount V erτ to be invested into the risky asset at time τ . This equation
can be solved for V to yield

V =
Vτe

−rτ + Z + βC0k̂
n̄
u(ku + m − 1)

1 + β
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Figure 2.12: Expected terminal value of the sim-
ple CPPI for different values of the transaction
costs. The parameters are V0 = 1000, G = 800,
m = 4, μ = 0.15, r = 0.05, σ = 0.20, T = 1,
Z = 0. From top to bottom the curves are for
β = 0, β = 0.2% and β = 0.5%.
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Figure 2.13: Expected terminal value of the
capped CPPI for different values of the transaction
costs. The parameters are V0 = 1000, G = 800,
m = 4, μ = 0.15, r = 0.05, σ = 0.20, T = 1,
Z = 0. From top to bottom the curves are for
β = 0, β = 0.2% and β = 0.5%.

from which it follows immediately that V matches the definition in the corollary if it is
taken into account that

V Cap
τ = erτ

(
F0 + C0k̂

n̄
uku

)
is the portfolio value at time τ before the transaction. Now, analogously to the proof of
proposition 2.3.2, the expressions for a′′ and y′′

3 can be found and the expression for p2(x)

then follows from proposition 2.3.2 by differentiation. �

Figure 2.12 shows the expected terminal value of the simple CPPI depending on the
expected number of trading dates with and without transaction costs. While it can be
shown that the expected terminal value of the simple CPPI in continuous time is greater
than the expected terminal value of the simple CPPI in discrete time, i.e. the global
maximum of the expected terminal value is attained for E [N ] → ∞ or equivalently
ku → 1, this is not true any more if transaction costs are considered. In the presence of
transaction costs, the expected terminal value exhibits a local maximum in the number of
trading dates. While it is rather intuitive that a large number of trading dates causes the
expected terminal value to decrease, it is surprising how few trading dates are sufficient
to produce this effect. Figure 2.12 shows that the maximum of the expected terminal
value is approximately at 7.5 expected trading dates for β = 0.2% and at 3.5 expected
trading dates (per year!) for β = 0.5%. Note also that it is possible for the expected
terminal value to have a local minimum for large ku (or equivalently for very few expected
trading dates). A similar effect occurs for m → ∞. Black and Perold (1992) show that
the expected terminal value of the simple CPPI has a maximum for very large m before
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Figure 2.14: Probability of the CPPI and the
capped CPPI performing better than the riskless
asset. The parameters are V0 = 1000, F0 = 750,
m = 4, μ = 0.15, r = 0.05, σ = 0.20, ku = 1.01,
Z = ∞, V0, 0.
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Figure 2.15: Probability of the CPPI and the
capped CPPI performing better than the riskless
asset. The parameters are V0 = 1000, F0 = 750,
m = 4, μ = 0.15, r = 0.05, σ = 0.30, ku = 1.01,
Z = ∞, V0, 0.

converging to the expected terminal value of a stop-loss strategy. Similarly, for large ku

the simple CPPI converges to a stop-loss strategy. With the help of the expected terminal
value of a stop-loss strategy it can be shown, that in spite of the local minimum for large
ku, the global maximum can not be at ku → ∞.

For the capped CPPI, the situation is different. The global maximum without transaction
costs can be attained for E [N ] → ∞ with the same effects as for the simple CPPI.
However, figure 2.13 shows, that the global maximum of the expected terminal value can
also be attained for ku → ∞ which reflects the case of a stop-loss strategy. This effect
occurs if the initial exposure is close to or even greater than the maximum exposure. For
initial exposures well below the maximum exposure, the situation will be as for the simple
CPPI in figure 2.12.

2.5 Long Maturities

So far we have omitted to discuss the influence of the maturity time T on the behavior of
both, the simple and the capped CPPI. As in section 2.3 it will be instructive to discuss
the influence of the maturity time in terms of the extreme case T → ∞. However, there is
a good reason for the omittance. The simple as well as the capped CPPI were introduced
as strategies that aim to guarantee a certain fixed amount G at maturity time T . With
a fixed guarantee G, the initial floor is given by F0 = Ge−rT and the initial exposure
equals m(V0 − F0) = m(V0 − Ge−rT ). For large maturities, it is obvious that the initial
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floor turns to zero while the initial exposure turns to mV0. Hence, it is trivial that the
guarantee becomes irrelevant in the long run.

In order to meaningfully investigate the influence of the maturity time, we therefore resort
to keeping the initial floor F0 constant which in turn makes the guarantee a function of the
maturity time, i.e. G = FT = F0e

rT . Notice, that this is a change in the interpretation of
the strategies. In contrast to guaranteeing a fixed amount at maturity, keeping F0 constant
can be interpreted as guaranteeing a minimum rate of return of r on some fraction, F0

V0
, of

the initial wealth. For a given maturity T , both interpretations are obviously equivalent.

Throughout this section we will mainly focus on the probability of the simple and the
capped CPPI performing better than the riskless asset. Figures 2.14 and 2.15 show this
probability as a function of the maturity time, i.e. P (VT > V0e

rT ). The three cases
refer to no borrowing, a maximum borrowing of the initial portfolio value and unlimited
borrowing which reflects the case of the simple CPPI. We have basically used our standard
parameter set with σ = 20% in figure 2.14 and σ = 30% in figure 2.15. The trigger ku was
chosen very small such as to reflect an approximation of the continuous-time case. The
initial floor was chosen such as to yield an initial exposure equal to V0. Without borrowing
(the case Z = 0) this means that the capped CPPI is exactly at full exposure at time
t = 0. The first thing to notice is that with respect to the probability of beating the
riskless asset the capped CPPI performs worse in both figures if borrowing is permitted.
Also it can be seen, that in figure 2.14 all probabilities are increasing in the maturity time,
while in figure 2.15 all probabilities are decreasing. For the simple CPPI, the probability
of beating the riskless asset may converge to 0 or to 1 as the maturity time T turns
to infinity dependent on the exact parameter constellation. This behavior stems from
the dynamics of the simple CPPI. We know from lemma 1.1.1 that the simple CPPI in
continuous time follows a geometric Brownian motion. In particular we know that the
terminal value of the simple CPPI in continuous time is given by

V cont
T = G + C0e

(r+m(μ−r)− 1
2
m2σ2)T+mσWT

= V0e
rT + C0e

rT
(
e(m(μ−r)− 1

2
m2σ2)T+mσWT − 1

)
and it is obvious that the probability of beating the riskless asset hinges on the drift term
m(μ − r) − 1

2
m2σ2. More specifically it is the sign of the term

μ − r − 1

2
mσ2 (2.26)

that determines whether the probability of the simple CPPI beating the riskless asset
approaches 1 or 0 in the long run. If the sign is positive, the probability will approach
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Figure 2.16: Probability of the simple CPPI per-
forming better than the riskless asset for different
values of the transaction costs β = 0, β = 0.2%,
β = 0.5%. The parameters are V0 = 1000,
F0 = 750, m = 4, μ = 0.15, r = 0.05, σ = 0.20,
ku = 1.085.
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Figure 2.17: Probability of the capped CPPI
performing better than the riskless asset for differ-
ent values of the transaction costs. The parame-
ters are V0 = 1000, F0 = 750, m = 4, μ = 0.15,
r = 0.05, σ = 0.20, ku = 1.085 and Z = 0.

one and if the sign is negative, the probability will approach zero. The sign of the term
(2.26) critically depends on the multiplier m and the volatility σ of the risky asset and is
very stringent as can be seen in figure 2.18. If the parameters are chosen to be μ = 0.15,
r = 0.05 and σ = 0.20, the multiplier can maximally be set to m = 5 if the probability
of the simple CPPI beating the riskless asset is not supposed to converge to zero. This
maximum on the multiplier is interesting in particular with respect to the fact that the
expected terminal value of the simple CPPI is increasing in the multiplier. Therefore,
for large m and a large maturity time T , the probability of the simple CPPI performing
better than the riskless asset will be close to zero, while the expected payoff will be huge
at the same time. This is a feature that is rather suited for a lottery than for a meaningful
portfolio insurance strategy.

Things are not as simple for the capped CPPI. In figure 2.14 the probability of outper-
forming the riskless asset approaches 1 in the long run for both capped CPPI strategies,
with and without borrowing, such that the only difference is in the speed of convergence.
However, in figure 2.15, for neither of the strategies the probability of beating the riskless
asset will approach 0 in the long run. Indeed, if no borrowing is permitted and if the
initial floor is set to F0 = m−1

m
V0, which yields an initial exposure of V0, it is possible to

show

lim
T→∞

lim
ku→1

P (V Cap
T > V0e

rT ) =

⎧⎪⎨⎪⎩1 − [μ−r− 1
2
mσ2]

−

(m−1)σ2

2

, μ − r − σ2

2
> 0

0 , μ − r − σ2

2
≤ 0

(2.27)
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with the rule of L’Hôpital and lemma A.2.5,e).12 From equation (2.27) it is apparent that
the probability of the capped CPPI beating the riskless asset depends on the sign of the
same term as for the simple CPPI but in addition on the sign of the term μ− r− σ2

2
. The

terminal value of a pure investment into the risky asset is given by

VT = V0e
(μ−σ2

2
)T+σWT

= V0e
rT eσW δ

T

such that the sign of δ =
μ−r−σ2

2

σ
determines whether the probability of a pure investment

into the risky asset outperforming the riskless asset turns to 0 or 1 in the long run.
In other words, the long run probability of the capped CPPI beating the riskless asset is
dependent on both, the long run probability of the simple CPPI and the risky asset beating
the riskless asset. Note that equation (2.27) only holds for the special case F0 = m−1

m
V0

and Z = 0. For F0 > m−1
m

V0 the probability will be lower while for F0 < m−1
m

V0 the
probability will be larger. Similarly, the probability is decreasing in the borrowing limit.
Also, equation (2.27) does only hold strictly for the continuous-time limit case ku → 1,
however the distortions for reasonable values ku > 1 are minute.

Figures 2.16 and 2.17 show the probability of the simple and the capped CPPI beating the
riskless asset for different values of the proportional transaction costs. The discretization
parameter has been set to ku = 1.085 which approximately gives 96 expected trading
dates per year for the simple CPPI. While the probability for the simple CPPI is still
increasing for the small transaction costs β = 0.2%, it can be seen that the probability
already decreases for β = 0.5%. In fact, there are still only two cases for the simple
CPPI, either the probability turns to 0 or to 1 in the long run. In comparison, the
probability for the capped CPPI is still increasing even for the larger transaction costs
β = 0.5%. However, while the probability still turns to 1 for the smaller transaction costs
β = 0.2%, for β = 0.5% the probability only turns to around 89% for T → ∞. Notice
that while the discretization parameter ku has only marginal effects on the long term
probability of beating the riskless asset, the effect becomes significant when transaction
costs are considered. For example, choosing ku = 1.26, which yields about 12 trading
dates per year, causes both, the probability of the simple and the capped CPPI for the
larger transaction costs β = 0.5% to approach 1.

Figure 2.19 shows the expected yield of the capped CPPI, as defined by 1
T

log E
[

V Cap
T

V0

]
,13

as a function of T . The parameters are identical to the ones in figure 2.17, with the
12The notation [X ]− denotes the negative part of X , i.e. [X ]− := [−X ]+.
13Note that this is rather the yield of the expectation than the expected yield, as the expected yield is
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Figure 2.18: Combinations of m and σ such as to
yield μ− r− m

2 σ2 = 0 for different μ. The riskfree
interest rate is set to r = 0.05.

0 5 10 15 20
T

0.115

0.12

0.125

0.13

0.135

0.14

0.145

0.15

E
x
p
e
c
t
e
d

Y
i
e
l
d

Figure 2.19: Expected yield of the capped CPPI
for different values of the transaction costs. The
parameters are V0 = 1000, F0 = 750, m = 4, μ =

0.15, r = 0.05, σ = 0.20, ku = 1.085 and Z =

0. From top to bottom the curves are for β =

0, 0.2%, 0.5%.

exception of a higher volatility σ = 30%. The higher volatility is chosen such as to
produce the case μ − r − 1

2
mσ2 < 0. It is clear that the expected yield must approach

15% for T → 0 as this is the drift of the risky asset and the initial exposure is 100%. It
can be seen that the expected yield is increasing in the long run. Indeed, it can be shown
that

lim
T→∞

lim
ku→1

1

T
log

E
[
V Cap

T

]
V0

= μ

independent of the other parameters. Although this result might seem appealing, there
is a major drawback. The reason for the large expected yield is that in the long run, the
capped CPPI outgrows the guarantee. Once the cap is binding, the higher drift of the
risky asset compared with the riskless asset results in a tendency of the capped CPPI
never reach a situation again where the cap is not binding. Exactly those paths, that
keep the cap permanently binding, are responsible for the high expected yield and make
the guarantee increasingly irrelevant over time. This feature of the capped CPPI makes
it a strategy that is rather suited for short than for long maturities.

usually defined by 1
T E
[
log V Cap

T

V0

]
. The difference is that the yield of the expectation is not risk-adjusted.

For example, for the risky asset it holds

1
T

log E

[
ST

S0

]
= μ while

1
T

E

[
log

ST

S0

]
= μ − σ2

2
.

We use the yield of the expectation as a tool to meaningfully investigate the expected terminal value for
large maturity times T .
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2.6 Conclusion

The discretization with triggered trading dates of the CPPI strategy solves the problem
of continuous trading at cost of continuous monitoring while maintaining the feature that
the terminal value be above some pre-specified guaranteed amount almost surely. It is
this feature, that distinguishes a discretization with triggered trading dates from one
with fixed trading dates. It is shown that as the triggers become small, the discrete
CPPI converges to the continuous CPPI. Also the discrete CPPI possesses a certain self-
regulation property with respect to the volatility. If the triggers are kept constant, an
increase of the volatility of the risky asset will lead to a higher expected number of trading
dates, thus exploiting the convergence. However, an increase of the volatility will lead to
a larger difference between the discrete and the continuous CPPI and the self-regulation
property can only dampen but not compensate this effect. In particular with respect to
hedging this is an important insight. The introduction of transaction costs results in the
expected payoff of the discrete CPPI not being monotonously increasing in the expected
number of trading dates any more. Moreover the expected payoff will have a maximum,
such that there is an optimal number of expected trading dates. In continuous time,
the simple CPPI strategy requires the assumption of unlimited borrowing. Although
also the discrete version of the simple CPPI requires unlimited borrowing, the borrowing
requirement is reduced.

The introduction of a borrowing limit changes the properties the CPPI significantly. In
particular the moments of second order or higher change dramatically if a borrowing limit
is assumed. While for the simple CPPI the exposure is directly linked to the portfolio
value, the introduction of a borrowing limit is equivalent to the introduction of a maximum
exposure ratio. As a consequence the capped CPPI shows two different tail behaviors. For
large portfolio values the CPPI behaves like a pure investment in the risky asset, while
for low portfolio values, the capped CPPI behaves like the simple CPPI. Dependent on
the parameters the density of the payoff of the capped CPPI can be bimodal.





Chapter 3

Floor Adjustments on CPPI

The previous chapters were mainly dedicated to discretizing the simple CPPI strategy.
In addition, the structural problem of unlimited borrowing was solved by introducing a
capped version of the CPPI. For the simple and the capped CPPI, the floor develops
over time like an investment in the riskless asset and the goal is to keep the portfolio
value above the floor at any point in time. Therefore, given a fixed maturity, a fixed
amount can be guaranteed. For short maturities this seems to be a reasonable target.
However, for long maturities, due to the higher drift of the risky asset, the portfolio value
is likely to outgrow the floor, such that the floor and therefore the guaranteed amount
at maturity can easily become insignificant in size in comparison to the portfolio value.
Surely, once the portfolio value has outgrown the floor, it would be undesired to fall back
to the floor in a market crash. Therefore for long maturities, it might be a desirable
feature to increase the floor farther upwards in bullish markets such as to protect the
gains to date. The Time Invariant Portfolio Protection (TIPP) strategy, which was first
formulated by Estep and Kritzman (1988), is designed to do exactly this. The basic
idea of the TIPP is to increase the current floor together with the portfolio value. In
particular, the current floor in the TIPP will be a certain fraction of the maximum of all
past portfolio values. That means, whenever the portfolio value reaches a new all-time
high, the new floor will be set to a certain fraction γ of the current portfolio value. In
contrast to the CPPI, where the floor increases at the riskfree interest rate, the guarantee
in the TIPP solely hinges on the maximum of the portfolio values and remains constant
otherwise. Apart from the differences in the definition of the floor, the TIPP trading rule
is the same as the trading rule of the CPPI, at each point in time a multiple m of the
current cushion, i.e. the difference between the current portfolio value and the current

85
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floor, is invested into the risky asset and the rest into the riskless asset. It is apparent
that in the TIPP strategy the current floor will always be significant in size compared
with the current portfolio value as the ratio between floor and portfolio value can never
fall below γ. Currently there are several investment funds on the market which perform
TIPP strategies, for example Zurich Financial Services, who were the first to offer such
a structure with their "Protected Profits Fund" in 2003 or Barclay Capital’s "Prosper".
While for short maturities these companies usually perform capped CPPI strategies with
a fixed guarantee at maturity, Prosper as well as the Protected Profits Fund are offered
as open ended products, which is consistent with our discussion above.

In this chapter we are concerned with a strategy very similar to the TIPP. While in
the TIPP the current floor remains constant unless the portfolio value reaches a new
maximum, we increase the floor by the riskfree interest rate as for the CPPI. However,
we also adopt the feature of the TIPP and tie the current floor to the maximum of the
portfolio value. In particular, in the strategy to be considered, the current floor will be
set to a certain fraction γ of the portfolio value whenever this fraction is greater than the
current floor and the strategy will be referred to as CPPI with floor adjustment. Grossman
and Zhou (1993) as well as Cvitanić and Karatzas (1995) show that if the floor is defined
as described for the CPPI with floor adjustment, then, with respect to the expected long-
term growth rate of a utility of constant relative risk aversion as well as with respect to
the expected long term growth rate of logarithmic utility, it is optimal to use the trading
rule of the CPPI.

While the CPPI with floor adjustment is better suited as a long term portfolio insurance
strategy in a certain sense as its construction prohibits the portfolio insurance condition,
i.e. the floor, to be outgrown by the portfolio value, it turns out to be more susceptible
with respect to a structural problem of the CPPI, the cash-lock. The cushion and hence
the exposure to the risky asset can become arbitrarily small for the CPPI with floor ad-
justment as well as for the simple and the capped CPPI such that the investor effectively
might end up holding a bond. This problem is referred to as cash-lock and it is a problem
that all CPPI structures share. As a reaction to the cash-lock problem, CPPI products
are often offered with a minimum exposure ratio. This means, that CPPI strategies are
modified such that the exposure to the risky asset is never less than a certain fraction of
the current portfolio value and it results in a CPPI strategy that switches to a constant
mix strategy for low cushion values and switches back when the cushion value increases
again. While a minimum exposure ratio solves the cash-lock problem by construction, it
contradicts the idea of a portfolio insurance at the same time. The introduction of a min-
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imum exposure ratio causes default risk even in a continuous-time setup without market
frictions if no additional provision is taken. We investigate the effects of the minimum
exposure ratio in particular with respect to the drawback of the default risk caused and
the gains of an increased expected yield. Finally we consider the case where put-options
are employed to cover the default risk caused by the introduction of a minimum exposure
ratio. It turns out that a provision against the default risk is quite expensive.

After introducing the CPPI with floor adjustment in section 3.1 and a modification in
section 3.2 we investigate and compare the cash-lock for the CPPI with floor adjustment
with the simple and the capped CPPI in section 3.3. A minimum exposure ratio is
introduced in section 3.4. Section 3.5 is dedicated to the investigation of the costs of
hedging against the default risk caused by the introduction of a minimum exposure ratio.

3.1 The CPPI with Floor Adjustment

We use the same model setup as in the previous chapter, i.e. changes in the portfolio
take place whenever the yield of the discounted cushion process is equal to ku − 1 or
kd − 1 whichever occurs first. For simplicity we assume kd = 1

ku
throughout this chapter.

Suppose an initial investment of V0. The floor at time t = 0 is set to F0 = γV0 where
γ ∈ (0, 1) is a constant and accordingly the initial cushion is equal to C0 = (1− γ)V0. As
for the simple and the capped CPPI, the floor increases at the riskfree rate r such that
Ft = ertF0 at some time t. From equation (2.2) we know that if at some trading date
τ the portfolio has performed net n up-moves, the portfolio value of the simple CPPI is
given by

V0e
rτ (γ + (1 − γ)kn

u). (3.1)

However, here we want to adapt the rule that if the fraction gamma of the current portfolio
value is greater than the current floor, i.e. γVt > Ft, the floor is adjusted and set to
Ft = γVt. Note that this is equivalent to saying that the floor is adjusted whenever the
discounted portfolio value has reached a new maximum. Indeed, it can immediately be
seen that γVt > Ft is equivalent to Vte

−rt > F0

γ
= V0 such that the first adjustment to the

floor is made when the discounted portfolio value surpasses V0. Since γ +(1−γ)ku > 1, it
is obvious from equation (3.1) that the discounted portfolio value reaches a new maximum
in our discrete-time setup when the discounted cushion process performs net one up-move.
In order to distinguish the CPPI with floor adjustment from the other strategies, at some
time t the portfolio value, the cushion and the floor will be denoted by V FA

t , CFA
t and
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F FA
t respectively. Suppose that the level of one net up-move is reached the first time at

τ . Then the portfolio value is given by V FA
τ = V0e

rτc where

c = c(γ, ku) := γ + (1 − γ)ku (3.2)

and the floor adjustment rule sets the new floor to F FA
τ = γV FA

τ = γV0e
rτc and thereby

the cushion to CFA
τ = (1 − γ)V0e

rτc. From time τ onwards the situation resembles the
situation at the beginning. The time τ of the floor adjustment can be interpreted as a
reset to the CPPI such that a new CPPI is started with floor F FA

τ . Therefore the floor
at time t > τ is given by F FA

t = F FA
τ er(t−τ) and when the discounted cushion process

performs net one up-move (suppose at time τ ′), the floor is adapted to F FA
τ ′ = γV FA

τ ′ and
the CPPI strategy is restarted again and so on. From equation (3.1) it is immediate that
at time τ ′ the portfolio value is given by V FA

τ er(τ ′−τ)c = V0e
rτ ′

c2 such that between two
floor adjustments the strategy is a simple CPPI strategy while on every floor adjustment,
the portfolio multiplies with the constant c and the strategy is restarted. It is important
to notice that γ can not be chosen independently of the multiplier m with respect to
borrowing. Since the cushion at the time of a floor adjustment equals CFA

τ = (1−γ)V FA
τ ,

the investment into the risky asset equals m(1 − γ)V FA
τ according to the trading rule of

the CPPI. Therefore, in contrast to the capped CPPI where a maximum exposure ratio
was explicitly modelled, the CPPI with floor adjustment automatically incorporates a
maximum exposure ratio given by m(1 − γ). Any borrowing limit can be modelled with
a suitable choice of the parameters m and γ. In particular, choosing

γ =
m − 1

m
(3.3)

yields a maximum exposure ratio of 100%, thereby ruling out borrowing while allowing for
the possibility of the portfolio being completely invested into the risky asset. For γ < m−1

m

the strategy will possibly require borrowing and for γ > m−1
m

the maximum exposure ratio
will be below 100% such that some fraction of the portfolio value is always invested into
the riskless asset. As a first result we calculate the moments of the strategy.

Proposition 3.1.1 (Moments of the CPPI with floor adjustment)

Let γ ∈ (0, 1). Then the moments of the CPPI with floor adjustment, E
[
(V FA

T )j
]
, are

given by

V j
0 ejrT

j∑
i=0

(
j

i

)
γj−i(1 − γ)iL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 − ki

uh(1, s)

1 − cjh(1, s)

b∫
a

(meσz − m + 1)iρ(s, z)dz

1 − ki
uu(s) − ki

dd(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
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where h as in lemma A.1.1, the constant c as in equation (3.2) and the integral as in

A.3.1.1

Proof: Suppose the number of floor adjustments equals k ∈ N0. Then the terminal value
of the CPPI with floor adjustment is given by V FA

T = V0e
rT ck(γ+(1−γ)kl

u(meσ(W δ
T −W δ

τN
)−

m + 1)) where l = 0,−1,−2, ... denotes the number of net up-moves between the time
of the last floor adjustment and time T . Hence, the j-th power of the terminal value is
given by

(V FA
T )j = V j

0 ejrT ckj
(
γ + (1 − γ)kl

u(meσ(W δ
T −W δ

τN
) − m + 1)

)j
= V j

0 ejrT ckj

j∑
i=0

(
j

i

)
γj−i(1 − γ)ikil

u (meσ(W δ
T −W δ

τN
) − m + 1))i

We know that the Laplace transform for the first time of net k up-moves is given by h(k, s).
Further we know that the Laplace transform for the last hit before time T yielding net l

up-moves while never surpassing the level 0 is given by q0(l, s) and the Laplace transform
for having no further trading date is given by ρ(s, z). Therefore the j-th moment of
the terminal value of the CPPI with floor adjustment, conditioned on having k floor
adjustments and the last trading date before time T being at level l, is given by

V j
0 ejrT

j∑
i=0

(
j

i

)
γj−i(1 − γ)iL−1

s,T

⎧⎨⎩h(k, s)ckjq0(l, s)k
il
u

b∫
a

(meσz − m + 1)iρ(s, z)dz

⎫⎬⎭ .

Since kil
uq0(l, s) = q0(l|ki

uu(s), ki
dd(s)) and h(k, s) = h(1, s)k, summation over all k ∈ N0

and l ∈ Z \ N immediately yields

V j
0 ejrT

j∑
i=0

(
j

i

)
γj−i(1 − γ)iL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q0(0|ki

uu(s), ki
dd(s))

b∫
a

(meσz − m + 1)iρ(s, z)dz

1 − cjh(1, s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
using the definition of Q0. From lemma A.1.3 we know that

Q0(0|ki
uu(s), ki

dd(s)) =
q0(0|ki

uu(s), ki
dd(s))

1 − h(−1|ki
uu(s), ki

dd(s))
=

1 − ki
uh(1, s)

1 − ki
uu(s) − ki

dd(s)

where the second equality follows immediately from direct calculation using the identities
(A.4). �

1As in the previous chapter, we will frequently use short notations such as h(k, s) = h(k|u(s), d(s)),
q(k, s) = q(k|u(s), d(s)), qn̄(k, s) = qn̄(k|u(s), d(s)), Qn̄(k, s) = Qn̄(k|u(s), d(s)) and so on.
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Before we give the moments of the continuous-time version, notice the similarity between
the formula for the moments of the CPPI with floor adjustment in proposition 3.1.1 and
the formula for the moments of the cushion of the simple CPPI in proposition 2.2.2.

Corollary 3.1.2 (Moments, continuous-time case)

The j-th moment of the continuous-time version of the CPPI with floor adjustment is

given by

2V j
0 ejrT

j∑
i=0

(
j
i

)
γj−i(1 − γ)i

θ1,i + θ2,j

(
θ1,ie

(θ2
1,i−δ̃2)T

2 N (−θ1,i

√
T ) + θ2,je

(θ2
2,j−δ̃2)T

2 N (θ2,j

√
T )
)

where
δ̃ =

μ − r − 1
2
mσ2

σ
, θ1,i = δ̃ + imσ, θ2,j = δ̃ + jmσ(1 − γ)

Proof: In view of proposition 3.1.1 we first need to determine the limit case ku → 1.
Notice that

lim
ku→1

1 − ki
uh(1, s)

1 − cjh(1, s)
=

√
2s + δ̃2 − δ̃ − imσ√

2s + δ̃2 − δ̃ − jmσ(1 − γ)

follows after lengthy calculations as an application of the rule of L’Hospital. Similarly to
the proof of proposition 2.2.6 also

lim
ku→1

b∫
a

(meσz − m + 1)iρ(s, z)dz

1 − ki
uu(s) − ki

dd(s)
=

1

s − im(μ − r) − i(i − 1)m2 σ2

2

follows with the rule of L’Hospital. Now notice that

1

s − im(μ − r) − i(i − 1)m2 σ2

2

=
2

(
√

2s + δ̃2 − θ1,i)(
√

2s + δ̃2 + δ̃ + imσ)

and hence the moments of the continuous-time version of the CPPI with floor adjustment
are given by

V j
0 ejrT

j∑
i=0

(
j

i

)
γj−i(1 − γ)iL−1

s,T

⎧⎨⎩ 2(√
2s + δ̃2 − δ̃ − jmσ(1 − γ)

)(√
2s + δ̃2 + δ̃ + imσ

)
⎫⎬⎭

Due to the particularly simple structure, the involved Laplace transforms can be inverted
analytically, such as to yield the assertion in the corollary. �

Notice that the expression given in corollary 3.1.2 is closed-form. In particular, it does
not contain any Laplace transform since the relevant Laplace transforms could be inverted
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Figure 3.1: Expected yield of the capped CPPI
and the CPPI with floor adjustment as a function
of the maturity time T . The parameters are ku =

1.01, m = 4, μ = 0.15, r = 0.05, σ = 0.20, γ =
m−1

m = 0.75 and F0 = γV0 for the capped CPPI.
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Figure 3.2: Standard deviation of the capped
CPPI and the CPPI with floor adjustment as a
function of the maturity time T . The parameters
are ku = 1.01, m = 4, μ = 0.15, r = 0.05, σ = 0.20,
γ = m−1

m = 0.75 and F0 = γV0 for the capped
CPPI.

explicitly. Remember that it is far from usual that the inverse of a Laplace transform can
be calculated analytically2. All Laplace transforms given in chapter 2 must be calculated
numerically. However, one might wonder whether it is possible to find a closed-form
solution for the continuous-time version of the capped CPPI, i.e. the limit case ku → 1.
Unfortunately, although it is possible to find the Laplace transform for the limit case, its
analytical inversion does not seem possible for the capped CPPI.

Figure 3.1 depicts the expected yield, defined by 1
T

log E[VT ]
V0

, for the capped CPPI and
the CPPI with floor adjustment as a function of the maturity time T . The dotted line is
the capped CPPI. While the capped CPPI seems to converge to the drift, μ, of the risky
asset, the CPPI with floor adjustment seems to be monotonously decreasing to a value
considerably below μ. Indeed, we know that

lim
T→∞

lim
ku→1

1

T
log

E
[
V Cap

T

]
V0

= μ (3.4)

for the capped CPPI from the previous chapter and, with the help of corollary 3.1.2 and
proposition A.2.5,e), it can be shown that

lim
T→∞

lim
ku→1

1

T
log

E
[
V FA

T

]
V0

= r + m(1 − γ)[μ − r − mγ
σ2

2
]+

for the CPPI with floor adjustment and in particular

lim
T→∞

lim
ku→1

1

T
log

E
[
V FA

T

]
V0

= r + [μ − r − (m − 1)
σ2

2
]+ (3.5)

2See Polyanin and Manzhirov (1998) for a good reference on correspondence tables of Laplace trans-
forms.
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if γ is chosen as in equation (3.3) such as to yield a maximum exposure ratio of 100%.
For the parameter values in figure 3.1 this gives a rate of convergence of 9% for the CPPI
with floor adjustment. The capped CPPI converging to μ is a confirmation of what was
already mentioned at beginning of the chapter. In the long run, the higher drift of the
risky asset results in a tendency of the capped CPPI to reach the maximum exposure
ratio of 100% (without leverage) and remain at that level unless a massive decrease in the
risky asset occurs and hence the behavior of the capped CPPI becomes similar to a pure
investment in the risky asset. For the CPPI with floor adjustment this is not true. Let
us choose γ as in equation (3.3) such that the strategy starts with a 100% investment in
the risky asset at time t = 0 and the instantaneous yield at the beginning consequently
equals μ. From the point of full exposure, if the portfolio value increases, the floor is
adjusted and the exposure ratio remains at its maximum. However, if the portfolio value
decreases, funds are shifted from the risky asset towards the riskless asset irrespective
of how often the floor has been adjusted before. This is the crucial difference to the
capped CPPI. If the portfolio value in the capped CPPI is large, a moderate decrease in
the risky asset will not change the exposure ratio. In the CPPI with floor adjustment,
no matter what the portfolio value is, decreases in the risky asset will pull the exposure
ratio below 100%. It is therefore intuitive, that the expected yield of the CPPI with
floor adjustment must decrease in the maturity time if the initial exposure ratio is 100%.
A closer look at the term r + [μ − r − (m − 1)σ2

2
]+ yields the insight that for a high

volatility of the risky asset or a high multiplier, the expected yield of the CPPI with floor
adjustment very easily converges to the risk-free interest rate r. For example one of the
standard parameter constellations from chapter 2, μ = 0.15, σ = 0.30, m = 4 already
gives r + [μ − r − (m − 1)σ2

2
]+ = r. This insight makes the choice of the underlying as

well as the choice of the multiplier crucial decisions for the success of a CPPI with floor
adjustment as a long maturity or even open ended product.

Figure 3.2 shows that the standard deviation of the CPPI with floor adjustment is consid-
erably reduced compared to the one of the capped CPPI. Since in contrast to the capped
CPPI the exposure ratio of the CPPI with floor adjustment is not likely to remain at
100%, a shift of funds to the riskless asset must result in a decrease of variance.

Proposition 3.1.3 (Distribution of the CPPI with floor adjustment)
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Let n̄x :=

⌊
log x

γV0erT

log c

⌋
, nx := max

{⌊
log x

V0erT

log c

⌋
, 0

}
, nx(i) :=

⌊
log

x−γciV0erT

(1−γ)ciV0erT

log ku

⌋
and

y1(i, x) :=
1

σ
log

(
x − ciγV0e

rT

mci(1 − γ)V0erT k
nx(i)
u

+
m − 1

m

)

y2(i, x) :=
1

σ
log

(
x − ciγV0e

rT

mci(1 − γ)V0erT k
nx(i)+1
u

+
m − 1

m

)
for all x ∈ (γV0e

rT ,∞). Then the probability P (V FA
T ≤ x) is given by

L−1
s,T

⎧⎨⎩1

s
(1 − h(nx, s)) +

n̄x∑
i=nx

h(i, s)

⎛⎝Q0(nx(i) − 1, s)

b∫
a

ρ(s, z)dz

+q0(nx(i), s)

y1(i,x)∫
a

ρ(s, z)dz + q0(nx(i) + 1, s)

y2(i,x)∫
a

ρ(s, z)dz

⎞⎠
⎫⎬⎭

with h, q0, Q0 as in lemmas A.1.1, A.1.3 and the integrals as in proposition A.3.2.

Proof: Note that nx is the solution to max
{
i ∈ N0|V0e

rT ci ≤ x
}
. Suppose the number

of floor adjustments is i. Then it is clear that VT ≤ V0e
rT ci(γ + (1 − γ)ku) = V0e

rT ci+1

and therefore the condition VT ≤ x always holds for 0 ≤ i < nx. The Laplace transform
for the density of the first time of having nx floor adjustments is given by h(1, s)nx =

h(nx, s) and therefore, using proposition A.2.5,c), the probability for having nx or more
floor adjustments is given by L−1

s,T

{
h(nx,s)

s

}
. Consequently, using proposition A.2.5,d),

the probability for having less than nx floor adjustments equals L−1
s,T

{
1−h(nx,s)

s

}
which

accounts for the first term in the expression for P (VT ≤ x). For the other terms, first note
that n̄x is the solution to max

{
i ∈ N0|γV0e

rT ci ≤ x
}
. Since γV0e

rT ci is the guarantee after
i floor adjustments, we know that always VT > x for i > n̄x. However, for i ∈ {nx, . . . , n̄x},
once the i-th floor adjustment has occurred, the situation is very similar to that of the
capped CPPI in proposition 2.3.1. From that time on the maximally allowed number of
net up-moves is zero because otherwise there would be a further floor adjustment. Note,
that the definitions of nx(i), y1(i, x) and y2(i, x) match the definitions of proposition 2.3.1
with G = γV0e

rT ci and C = (1 − γ)V0c
i. Therefore,

L−1
s,T

⎧⎨⎩h(i, s)

⎛⎝Q0(nx(i) − 1, s)

b∫
a

ρ(s, z)dz + q0(nx(i), s)

y1(i,x)∫
a

ρ(s, z)dz

+q0(nx(i) + 1, s)

y2(i,x)∫
a

ρ(s, z)dz

⎞⎠
⎫⎬⎭
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Figure 3.3: Densities of the capped CPPI and the
CPPI with floor adjustment. The parameters are
ku = 1.01, m = 4, μ = 0.15, r = 0.05, σ = 0.20,
γ = m−1

m = 0.75, T = 5 and F0 = γV0 for the
capped CPPI.
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Figure 3.4: Density of the CPPI with floor ad-
justment. The parameters are ku = 1.40, m = 4,
μ = 0.15, r = 0.05, σ = 0.20, γ = m−1

m = 0.75,
T = 5.

gives the joint probability of having i floor adjustments and VT ≤ x. Summing over all
i ∈ {nx, . . . , n̄x} completes the proof. �

It is straightforward deduce the density of the CPPI with floor adjustment by means of
differentiation.

Corollary 3.1.4 (Density of the CPPI with floor adjustment)

In the notation of proposition 3.1.3, the density of the terminal value of the CPPI with
floor adjustment is given by

pV F A
T

(x) = L−1
s,T

⎧⎨⎩
n̄x∑

i=nx

h(i, s)

(
q0(nx(i), s)ρ(s, y1(i, x))

∂ y1(i, x)

∂ x

+q0(nx(i) + 1, s)ρ(s, y2(i, x))
∂ y2(i, x)

∂ x

)}
where

∂ y1(i, x)

∂ x
=

1

σ

1

x − ciV0erT
(
γ − (m − 1)(1 − γ)k

nx(i)
u

)
∂ y2(i, x)

∂ x
=

1

σ

1

x − ciV0erT
(
γ − (m − 1)(1 − γ)k

nx(i)+1
u

)
Note that the structure of the formula in corollary 3.1.4 is very similar to the structure
of the density of the simple CPPI in corollary 2.2.4, the main difference being the sum.
However, this difference is crucial with respect to the numerical complexity. While the
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sum is finite for any fixed ku > 1, the upper summation limit n̄x turns to infinity as
ku → 1.

Figure 3.3 depicts the densities of the capped CPPI (dotted line) and the CPPI with
floor adjustment. The discretization parameter ku was chosen very small such as to
approximate the continuous-time case. Figure 3.4 shows the density of the CPPI with
floor adjustment for the same parameters but a larger discetization parameter. The
occurrence of the spikes in the density for larger values of the discretization parameter
is not very surprising. Since between any two floor adjustments, the CPPI with floor
adjustment is identical to a simple CPPI, the spikes reflect the spike of the simple CPPI
close to the guarantee. However, for small values of the discretization parameter, the
CPPI with floor adjustment becomes uni-modal as can be observed in figure 3.3. This is
in contrast to the capped CPPI where the one break in the density as given in equation
(2.17) remains, independent of ku. Generally it can be said that the CPPI with floor
adjustment shifts probability mass from both edges towards the middle compared with
the capped CPPI. The vertical line is at the point VT = V0e

rT and therefore symbolizes
the payoff of the riskless asset. From equation (2.17) it is immediate that the placement
of the break in the density of the capped CPPI is equal to the payoff of the riskless asset
whenever there is no borrowing permitted and the initial exposure ratio is 100%. Figure
3.3 also suggests that the probability of beating the riskless asset is larger for the CPPI
with floor adjustment than for the capped CPPI. Indeed, it is known from the previous
chapter that

lim
T→∞

lim
ku→1

P (V Cap
T > V0e

rT ) =

⎧⎪⎨⎪⎩1 − [μ−r− 1
2
mσ2]

−

(m−1)σ2

2

, μ − r − σ2

2
> 0

0 , μ − r − σ2

2
≤ 0

(3.6)

is the long term probability for the capped CPPI beating the riskless asset while it can
be shown (using propositions 3.1.3 and A.2.5,e)) that

lim
T→∞

lim
ku→1

P (V FA
T > V0e

rT ) = γ

[μ−r− 1
2 mσ2]

−

m(1−γ) σ2
2

and in particular

lim
T→∞

lim
ku→1

P (V FA
T > V0e

rT ) =

(
m − 1

m

) [μ−r−1
2 mσ2]

−

σ2
2 (3.7)

for γ as in equation (3.3) is the long term probability for the CPPI with floor adjust-
ment beating the riskless asset. An application of Bernoulli’s inequality to equation (3.7)
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Figure 3.5: Probability of the CPPI with floor
adjustment and the capped CPPI performing bet-
ter than the riskless asset. The parameters are
V0 = 1000, m = 4, μ = 0.15, r = 0.05, σ = 0.20,
ku = 1.01, γ = m−1

m = 0.75 and Z = 0, F0 = γV0

for the capped CPPI.
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Figure 3.6: Probability of the CPPI with floor
adjustment and the capped CPPI performing bet-
ter than the riskless asset. The parameters are
V0 = 1000, m = 4, μ = 0.15, r = 0.05, σ = 0.30,
ku = 1.01, γ = m−1

m = 0.75 and Z = 0, F0 = γV0

for the capped CPPI.

immediately yields

(
m − 1

m

) [μ−r− 1
2 mσ2]

−

σ2
2 ≥ 1 −

[
μ − r − 1

2
mσ2
]−

mσ2

2

≥ 1 −
[
μ − r − 1

2
mσ2
]−

(m − 1)σ2

2

such that at least in the long run, the probability of beating the riskless asset is larger for
the CPPI with floor adjustment.

Figures 3.5 and 3.6 depict the probability of the capped CPPI and the CPPI with floor
adjustment outperforming the riskless asset as a function of the maturity time T . The
parameter constellations only differ in the volatility. Using equations (3.6) and (3.7) we
find that the probability of beating the riskless asset tends to one in the long run for
both strategies in figure 3.5 while it tends to 40.74% for the capped CPPI and 59.96% for
the CPPI with floor adjustment in figure 3.6. Figure 3.6 is particularly interesting with
respect to the long term yield of the capped CPPI and the CPPI with floor adjustment,
i.e. equations (3.4) and (3.5). While the probability of outperforming the riskless asset
is only about 40% but the expected yield equals the drift, μ, of the risky asset for the
capped CPPI, the probability of outperforming the riskless asset is 60% but the expected
yield is equal to the riskfree rate r.
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3.2 Increased initial floor levels

First, we generalize the strategy of the previous section section slightly. In the previous
section the floor was adjusted and set to γV FA

τ whenever F FA
τ > γV FA

τ on some trading
date τ , which was seen to be equivalent to adjusting the floor whenever the maximum
exposure ratio m(1 − γ) is surpassed. In this section we will use the same rule for floor
adjustments. However, while in the previous section, the initial floor was set to F0 = γV0,
here we investigate the effects of increased initial floors, i.e. F0 ∈ [γV0, V0). The choice
F0 = γV0 means that the strategy starts with the maximum exposure ratio at time t = 0.
Combined with a choice of γ = m−1

m
as in equation (3.3), which is the condition for

making an exposure ratio of 100% possible while ruling out borrowing, this means that
the strategy starts with the whole portfolio invested into the risky asset. Choosing larger
values for the initial floor results in the strategy starting with less than the maximum
exposure ratio, in particular with a choice of F0 > γV0 and γ = m−1

m
the strategy starts

with an exposure ratio, which is less than 100% but the possibility of the exposure ratio
rising up to 100% in the future remains. While in the previous section the initial exposure
ratio was equal to the maximum exposure ratio and therefore floor adjustments were made
after net one up-move, the situation is slightly different here. Since the initial exposure
ratio is lower than the maximum exposure ratio, it will take more than net one up-move
to surpass the maximum exposure ratio.

Suppose that the initial floor is set to F0 = γV0

γ+(1−γ)kn̂
d

where n̂ ∈ N0. It is obvious that
n̂ = 0 yields F0 = γV0 and lim

n̂→∞
γV0

γ+(1−γ)kn̂
d

= V0 such that the value for F0 is chosen from
a discrete subset of the interval (γV0, V0). The restriction to this discrete subset is not
necessary and is only done for simplicity. Suppose now that the cushion process performs
net n̂ up-moves up to time τ . Then the portfolio value at time τ is given by

V FA
τ = F0e

rτ + (V0 − F0)k
n̂
uerτ

=
V0e

rτ

γ + (1 − γ)kn̂
d

and the exposure ratio is given by

m(V FA
τ − F FA

τ )

V FA
τ

= m(1 − γ)

which is the maximum exposure ratio. Therefore, the first time the maximum exposure
ratio is surpassed is after net n̂ + 1 up-moves. Like in the last section, at this time the
current floor is increased to γ times the current portfolio value such that the exposure
ratio becomes equal to the maximum exposure ratio. From this time onwards the strategy
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is identical to the strategy in the previous section. Since after the first floor adjustment,
which is made after n̂ + 1 net up-moves, the exposure ratio is at its maximum, it requires
only one net up-move to adjust the floor again. Formally, the only difference to the
strategy in the previous section is, that the first floor adjustment requires net n̂ + 1 up-
moves. Calculating the moments and the distribution of the strategy is a straightforward
adaption of propositions 3.1.1 and 3.1.3 and we restrict ourselves to giving the moments
in the following corollary.

Corollary 3.2.1 (Moments, increased initial floor)

Let γ ∈ [m−1
m

, 1), n̂ ∈ N0 and F0 = γV0

γ+(1−γ)kn̂
d
. Then the j-th moment of the CPPI with

floor adjustment and increased initial floor is given by(
V0e

rT

γ + (1 − γ)kn̂
d

)j j∑
i=0

(
j

i

)
γj−i(1 − γ)i·

L−1
s,T

⎧⎨⎩cjh(n̂ + 1, s)

1 − cjh(1, s)
Q0(0|ki

uu(s), ki
dd(s))

b∫
a

(meσz − m + 1)iρ(s, z)dz

+kin̂
d Qn̂(n̂|ki

uu(s), ki
dd(s))

b∫
a

(meσz − m + 1)iρ(s, z)dz

⎫⎬⎭
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Figure 3.7: Expected yield of the CPPI with floor
adjustment as a function of the maturity. The pa-
rameters are ku = 1.01, m = 4, μ = 0.15, r = 0.05,
σ = 0.20, γ = 0.75. The three lines are (from top
to bottom) for n̂ = 0, 37, 62 giving approximately
F0 = 750, 900, 950 respectively.

Figure 3.7 depicts the expected yield as a
function of the time to maturity for differ-
ent values of the initial floor. It can be
seen that the expected yield is not always
monotonous in the maturity time. While
for low values of the initial floor it seems to
be monotonously decreasing, it seems to be
monotonously increasing for high values of
the initial floor. For medium values of the
initial floor, however, the expected yield
has a maximum in the maturity time. Nev-
ertheless, the size of the initial floor does
not seem to have any impact on the long
term performance of the strategy, but only
influences the short term performance. Ir-
respective of the size of the initial floor the expected yield converges to the same value,
which is equal to r + [μ − r − (m − 1)σ2

2
]+ as is known from the previous section.
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Let us now take a different view on the increased initial floors. Suppose the CPPI with
floor adjustment is offered as an open ended fund product where customers can invest or
withdraw their investment at any time. Without loss of generality we can assume a two
customer case here. At time t = 0, a company launches an open ended CPPI product
with floor adjustment and customer one invests the amount K1 at time t = 0 and we
assume F0 = γV0 = γK1. At a later point in time τ > 0, which we assume to be a trading
date for simplicity, customer two wants to enter and invest the amount K2. At time τ

the wealth of customer one is equal to K1c
ierτ (γ + (1 − γ)kn

d ) for some i, n ∈ N0. This
means, that customer one has had i floor adjustments after which the portfolio decreased
such that the next floor adjustment requires net n + 1 up-moves. If the strategy is not
to be changed by the investment of customer two, the first floor adjustment for customer
two will also be after net n + 1 up-moves. After the arrival of customer two, the (joined)
portfolio value is given by

Vτ = K1c
ierτ (γ + (1 − γ)kn

d ) + K2

=
(
K1c

ierτ + K2

γ+(1−γ)kn
d

)
(γ + (1 − γ)kn

d )
(3.8)

such that from equation (3.8) it is apparent that for customer two, entering a running
CPPI with floor adjustment is equivalent to investing into a CPPI with floor adjustment
and an increased initial floor. In view of this, the above mentioned irrelevance of the
long term performance of the CPPI with floor adjustment of the initial floor is an ideal
result. Irrespective of when a customer joins an open ended CPPI with floor adjustment
and how the performance has been in the past, the long term performance will always be
the same. Surely, the short term performance may be considerably different and heavily
depends on the past performance as is obvious from figure 3.7.

3.3 The cash-lock problem

The term cash-lock refers to a situation where the portfolio value of the CPPI is lower
than the floor at some point in time, i.e. the cushion is negative. In a cash-lock situation,
the investment strategy is to fully invest the portfolio into the riskless asset and this is
where the terminology stems from. However, if the price process of the risky asset is
continuous, this situation can not occur in continuous time and neither in discrete time
with triggered trading dates as in the previous chapter. A cash-lock can only occur if
trading takes place in discrete time with fixed trading dates as in chapter 1 or if the price
process of the risky asset is not continuous. Since in our setup a cash-lock can not occur,
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we resort to a slightly modified definition of cash-lock. In the following, we will call a
situation ε-cash-lock if the exposure ratio of the strategy falls below some ε > 0. Although
all versions of the CPPI considered in this and the previous chapter can fully recover from
an ε-cash-lock situation, once the exposure ratio has become small, the expected time for
a recovery is large such that a very small exposure ratio is already an unpleasant situation
to be in.

Proposition 3.3.1 (ε-Cash-Lock)

Let ε > 0, γ ∈ (0, 1) and n :=
⌊

log γε
(m−ε)(1−γ)

log ku

⌋
. Then, with h(n, s) = h(n|u(s), d(s)) as in

lemma A.1.1 and hk(n, s) = hk(n|u(s), d(s)) as in lemma A.1.5, it holds

a) the probability of the exposure ratio of the simple CPPI with F0 = γV0 falling below ε

at some point in time before maturity time T is given by

L−1
s,T

{
h(n, s)

s

}

b) the probability of the exposure ratio of the CPPI with floor adjustment falling below ε

at some point in time before maturity time T is given by

L−1
s,T

{
1

s

h0(n, s)

1 − hn+1(1, s)

}

c) with F0 = γV0, the probability of the exposure ratio of the capped CPPI falling below ε

at some point in time before maturity time T is given by

L−1
s,T

{
1

s
hn̄−1(n, s) +

1

s

hn+1(n̄, s)d′′(s)d(s|a,∞, δ)h0(n
′ + 1, s)

1 − d(s|a,∞, δ)hn′+2(1, s)

}

for the case mC0 < V0 + Z and by

L−1
s,T

{
1

s

d′(s)d(s|a,∞, δ)h0(n
′ + 1, s)

1 − d(s|a,∞, δ)hn′+2(1, s)

}

for the case mC0 ≥ V0 + Z, where n̄,d′(s) d′′(s) as in propositions 2.3.1, 2.3.2 and addi-

tionally n′ :=

⌊
log
(

(m−1)F0ε
(m−ε)(F0+Z)

)
log ku

⌋
.

Proof: From equation (3.1) we know that at some trading date τ the value of the simple
CPPI is given by V0e

rτ (γ + (1 − γ)kn
u) for some n ∈ Z. Therefore the exposure ratio at

τ is given by m(1−γ)kn
u

γ+(1−γ)kn
u

and it follows immediately that the exposure ratio is less than or
equal to ε for all n ≤ n. We know that the Laplace transform of the density for the first
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time of having net n up-moves is given by h(n, s). Hence, with the help of proposition
A.2.5,c) part a) of the proposition is immediate.

For part b) note that the value of the CPPI with floor adjustment is given by V0e
rτci(γ +

(1 − γ)kn
u) at some trading date τ for some i ∈ N0 and some n ∈ Z \ N. Hence, the

exposure ratio is again given by m(1−γ)kn
u

γ+(1−γ)kn
u

and less than or equal to ε for all n ≤ n. The
Laplace transform of the density for the first time of having i floor adjustments while
not reaching the ε-cash-lock and then n net up-moves while not having a further floor
adjustment is given by (hn+1(1, s))

i h0(n, s). Since there can be possibly arbitrarily many
floor adjustments, summing over i ∈ N0 yields the result.

For part c) note that hn̄(n, s) is the Laplace transform for reaching the ε-cash-lock before
the cap becomes active, which explains the first summand in c) for the case mC0 < V0+Z.
Likewise hn+1(n̄+1, s) is the Laplace transform for reaching the cap before the ε-cash-lock.
The term d′′(s) is the Laplace transform for going down to the situation where mCCap

t =

V Cap
t +Zert, i.e. the situation where according to the trading rule of the CPPI the complete

portfolio plus the maximum borrowing must be invested in the risky asset. From that
point, it requires n′ up-moves to reach the ε-cash-lock. The term d(s|a,∞, δ)hn′+2(1, s)

stands for going down one level and going up to the situation of full exposure again
without reaching the ε-cash-lock before. The term 1

1−d(s|a,∞,δ)hn′+2(1,s)
therefore accounts

for the fact that there can be arbitrarily many switches between full exposure and less
than full exposure. Finally, d(s|a,∞, δ)h0(n

′ + 1, s) stands for going down to less than
full exposure and reaching the ε-cash-lock while not reaching full exposure again. Hence,
the case mC0 < V0 + Z becomes apparent and the case mC0 < V0 + Z is analogous. �

Figures 3.8 and 3.9 show the probability of an ε-cash-lock occurring as a function of the
maturity time for the simple CPPI, the capped CPPI and the CPPI with floor adjustment.
It is clear, that the ε-cash-lock probability must be increasing in the maturity time for all
strategies, since a longer maturity time increases the overall variance. It can be seen that
the ε-cash-lock probability of the CPPI with floor adjustment converges to one in both
figures, the ε-cash-lock probability of the capped CPPI converges to a value considerably
below one in both figures and the ε-cash-lock probability of the simple CPPI converges
to a value below one in figure 3.8 and to one in figure 3.9. These differences require some
comment and we start with the capped CPPI. The capped CPPI has two basic barriers.
One lower barrier for reaching the ε-cash-lock and one upper barrier for reaching the cap.
There is always a positive probability of reaching the cap and this probability does not
converge to zero if the time to maturity becomes large. However, once the cap is reached,
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Figure 3.8: Probability of an ε-cash-lock of the
simple CPPI, the capped CPPI and the CPPI
with floor adjustment as a function of the matu-
rity time. The parameters are ku = 1.01, m = 4,
μ = 0.15, r = 0.05, γ = 0.75, F0 = γV0, ε = 0.01

and σ = 0.20.
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Figure 3.9: Probability of an ε-cash-lock of the
simple CPPI, the capped CPPI and the CPPI
with floor adjustment as a function of the matu-
rity time. The parameters are ku = 1.01, m = 4,
μ = 0.15, r = 0.05, γ = 0.75, F0 = γV0, ε = 0.01

and σ = 0.30.

the strategy turns into a pure investment in the risky asset. We know that the value
of the discounted risky asset at some time t > τ is given by St = Sτe

σ(W δ
t −W δ

τ ). It is
well known, that for Brownian motions with positive drifts, there is a positive probability
of the Brownian motion never hitting lower barriers. Therefore, whenever the drift δ is
positive and the strategy has reached full exposure, there is a positive probability of the
strategy never reaching less than full exposure again.

For the simple CPPI the situation is somewhat different. From proposition 1.1.2 we
know that the discounted cushion process of the continuous-time version is given by
e−rtCcont

t = C0e
(m(μ−r)− 1

2
m2σ2)t+σmWt . With the same argument about Brownian motions

with drift, we find here that there is positive probability for the discounted cushion process
never falling below some lower barrier, if μ − r − 1

2
mσ2 is positive. Since the exposure

ratio is given by me−rtCcont
t

F0+e−rtCcont
t

and directly dependent on the discounted cushion process, the
same is true for the ε-cash-lock probability. However, for negative drifts the probability
of an ε-cash-lock occurring in infinite time is indeed 1. The parameters in figures 3.8
and 3.9 are the same as in figures 3.5 and 3.6 and therefore also yield μ − r − 1

2
mσ2 > 0

and < 0 respectively. Surely, for our discrete version of the simple CPPI, this condition
is only an approximation as we know that for ku → ∞ the simple CPPI converges to a
stop-loss strategy. Nevertheless, for reasonable values of the discretization parameter ku,
the cash-lock probability of the discrete version of the simple CPPI is well explained by
the cash-lock probability of the continuous time version.
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For the CPPI with floor adjustment, note that after each floor adjustment, the fixed
number of net n up-moves (since n is negative these are actually down-moves) is required
to reach the ε-cash-lock. Hence it is a simple consequence of the indefinitely increasing
variance of the Brownian motion in infinite time that any fixed number of net down-
moves is surpassed at some point in time. Therefore, independent of the parameters,
the CPPI with floor adjustment will reach an ε-cash-lock situation with certainty within
infinite time. Although, for a long-term or open ended strategy this is not a nice result,
it is the trade-off for the increased portfolio insurance. Notice also that the probability
of recovering from an ε-cash-lock situation is the same for all three strategies as their
behavior is identical for low portfolio values close to the respective floor.

Nevertheless, as a consequence of the large ε-cash-lock probability it is an intuitive idea to
further modify the CPPI with floor adjustment such as to introduce a minimum exposure
ratio. Currently, CPPI products are often offered with a maximum as well as a minimum
exposure ratio. While the maximum exposure ratio is a natural byproduct of the floor
adjustments, the minimum exposure ratio must be modelled explicitly. This is what will
be done in the next section.

3.4 The CPPI with Minimum Exposure Ratio

In this section, we provide the CPPI with floor adjustment with a minimum exposure
ratio. The idea is to create a new strategy by performing a CPPI with floor adjustment
whenever the exposure ratio according to the CPPI with floor adjustment is greater than
some minimum exposure ratio λ ∈ (0, 1) and investing exactly the fraction λ of the current
portfolio value in the risky asset and the fraction 1− λ in the riskfree asset whenever the
exposure ratio would be less than λ according to the CPPI with floor adjustment. We will
call this strategy CPPI with minimum exposure ratio. In continuous time, always investing
exactly some fraction λ in the risky asset and the fraction 1 − λ is called a constant mix

strategy. Therefore a situation where the minimum exposure ratio is binding will be
referred to as the strategy being in the constant mix part as opposed to the strategy
being in the CPPI part.

The first question in modelling the constant mix part of the strategy is how to define the
trading dates. Up to now, the trading dates were defined upon changes in the discounted
cushion process and this was equivalent to trading upon changes in the price process of the
discounted risky asset. However, this equivalence does not hold anymore for the constant
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mix part of the strategy. It is impossible to define the trading dates of the constant
mix part of the strategy based on changes in the discounted cushion process. Formally,
this would mean that the portfolio is rebalanced according to the constant mix strategy
whenever the discounted cushion process e−rtCt = e−rt(Vt − Ft) increases or decreases
by certain fractions. The consequence of so-defined trading dates would be a problem
equivalent to the paradox of Achilles and the turtle. Therefore it is clear, that the trading
dates can not be defined upon changes of the cushion process, but they can be defined
upon changes in the discounted price process of the risky asset. If the same fractions
as for the CPPI part of the strategy were used, trading would take place whenever the
discounted price process of the risky asset has gained the fraction ku−1

m
or lost the fraction

1−kd

m
. However, it is not clear, why the same fractions as for the CPPI part should be

used. While being in the constant mix part, one might wish to trade at a higher or lower
frequency. Although it is no problem to introduce different fractions for the constant mix
part upon which the trading dates are defined, it is not our concern here to discretize the
constant mix strategy. Therefore we resort to the simplest possibility and perform the
constant mix part of the strategy in continuous time.
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Figure 3.10: Binomial tree with both, a maxi-
mum and minimum barrier.

It might seem somewhat awkward to com-
bine discrete time trading and continu-
ous time trading and it is justified to ask
what information can be drawn from such a
model. Firstly, for ku close to 1, the model
will be a good approximation for the en-
tirely continuous time pendant of the strat-
egy and so far there does not exist a contin-
uous time pendant in the literature. Sec-
ondly, one could argue that while a com-
pany performs the CPPI part of the strat-
egy itself, whenever the constant mix part
is reached, it invests into a constant mix product on the market and does not perform
this part itself. For ku considerably greater than 1, the differences between the results of
our partially discrete time strategy and the entirely continuous-time pendant will clearly
only stem from the CPPI part and this shall be the focus here. Thirdly, a constant mix
strategy is not a portfolio insurance strategy. For a constant mix strategy there is always
the possibility of the portfolio value decreasing to zero such that the portfolio can not be
kept above a certain level. Hence, the CPPI with minimum exposure ratio is not a port-
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folio insurance strategy either. Reinstalling a portfolio protection feature for the CPPI
with minimum exposure ratio becomes an important topic. The next section is dedicated
to this topic and it entails considerable simplifications if the constant mix part of the
strategy is performed in continuous time.

Let us now briefly recall the constant mix strategy in continuous time. Suppose, at some
point in time τ , the amount Vτ is invested into a constant mix strategy with parameter
λ. Then the dynamics of the portfolio value is given by

dVt

Vt
= λ

dSt

St
+ (1 − λ)rdt

= (λμ + (1 − λ)r)dt + λσdWt (3.9)

for t > τ using the dynamics of the risky asset as defined in equation (1.1). It is apparent
from equation (3.9) that the portfolio value of the constant mix strategy follows a geomet-
ric Brownian motion again if the dynamics of the price process of the risky asset follows
a geometric Brownian motion. From equation (3.9) we therefore immediately conclude
that

Vt = Vτe
r(t−τ)e(λ(μ−r)− 1

2
λ2σ2)(t−τ)+λσ(Wt−Wτ )

which can be rewritten as

Vt = Vτe
r(t−τ)eλσ(W

δλ
t −W

δλ
τ ) (3.10)

where

δλ :=
μ − r − 1

2
λσ2

σ
(3.11)

and W δλ
t denotes the Brownian motion with drift δλ.

In the following we will give a detailed description of the CPPI with minimum exposure
ratio. At time t = 0 the strategy starts in the CPPI part such that a CPPI with floor
adjustment is performed. From section 3.1 we know that at some trading date τ the
portfolio value is given by V0e

rτci(γ +kn
d (1−γ)) for some i, n ∈ N0. From section 3.3 it is

known that the exposure ratio of the CPPI with floor adjustment is less than λ whenever
n > nλ where

nλ :=

⎢⎢⎢⎣ log
(

γλ
(1−γ)(m−λ)

)
log kd

⎥⎥⎥⎦ (3.12)
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and therefore the constant mix part of the strategy is reached, when the strategy has
performed nλ+1 down-moves since the most recent floor adjustment.3 Hence, the portfolio
value at the beginning of the constant mix part is given by

V ME
τ = V0e

rτ ci(γ + knλ+1
d (1 − γ)) (3.13)

for some i ∈ N0, where V ME
t denotes the value process of the CPPI with minimum

exposure ratio at time t. Likewise CME and F ME denote the cushion and the floor. After
being in the constant mix part, the question is, when to enter the CPPI part again. The
canonical choice would be the time, when the trading rule of the CPPI suggests to invest
exactly the fraction λ of the portfolio into the risky asset. However, for simplicity, we
define the time of reentering the CPPI part by

τ ′ := min
t≥τ

V ME
t = V0e

rtci(γ + knλ
d (1 − γ)) (3.14)

such that from time τ ′ it requires exactly net nλ up-moves to achieve full exposure again
and exactly net nλ + 1 up-moves for the next floor adjustment. In general, the exposure
ratio a time τ ′ will be slightly higher than λ. It will be equal to λ if and only if k

nλ
d (1−γ)

γ+k
nλ
d (1−γ)

=

λ which can only be the case for certain combinations of λ and kd. We will now focus on
the time needed to reenter the CPPI part of the strategy. A combination of equations
(3.10), (3.13) and (3.14) yields

V0e
rtci(γ + knλ+1

d (1 − γ))eλσ(W
δλ
t −W

δλ
τ ) = V0e

rtci(γ + knλ
d (1 − γ))

or equivalently

W δλ
t − W δλ

τ =
1

λσ
log

(
γ + knλ

d (1 − γ)

γ + knλ+1
d (1 − γ)

)
=: bλ. (3.15)

It is important to notice that equation (3.15) does not depend on the number of floor
adjustments i such that the time to reach the CPPI part again, once being in the constant
mix part, is independent of how often the floor has been adjusted before. From equation
(3.15) it is immediate that the Laplace transform for the density of the time to reenter
the CPPI part is given by

u∞,λ(s) := u(s| −∞, bλ, δλ) := lim
a→−∞

u(s|a, bλ, δλ) = ebλδλ−bλ

√
2s+δ2

λ

3Note that (3.12) is given in terms of down-moves which is in contrast to the formulas in the previous
sections where the formulas were given in terms of up-moves. Although nλ down-moves is equivalent to
−nλ up-moves due to kd = 1

ku
, it is convenient to think in terms of down-moves in this section. The

situation is as depicted in figure 3.10.
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and the Laplace transform for the joint density of not reentering the CPPI part up to
some point in time and the final value of the Brownian motion with drift δλ is given by

ρ∞,λ(s, z) := ρ∞,λ(s, z| −∞, bλ, δλ)

:= lim
a→−∞

ρ(s, z|a, bλ, δλ)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1−e

−2bλ

√
2s+δ2

λ

)
e
δλz+z

√
2s+δ2

λ

√
2s+δ2

λ

, z ≤ 0

e
δλz−z

√
2s+δ2

λ−e
δλz+z

√
2s+δ2

λ
−2bλ

√
2s+δ2

λ√
2s+δ2

λ

, z > 0.

We are now in a position to give the first result, the moments of the CPPI with minimum
exposure ratio.

Proposition 3.4.1 (Moments of the CPPI with minimum exposure ratio)

Let γ ∈ [m−1
m

, 1), λ ∈ (0, m(1 − γ)) and F0 = γV0. Then the j-th moment of the CPPI
with minimum exposure ratio, E

[
(V ME

T )j
]
, is given by

V j
0 ejrTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j∑

i=0

(
j
i

)
γj−i(1 − γ)iξu(k

i
uu(s), ki

dd(s))
b∫

a

(meσz − m + 1)iρ(s, z)dz

(1 − η∞,λ(j, s))(1 − cjh−nλ
(1, s))

+

η∞,λ(j, s)
j∑

i=0

(
j
i

)
γj−i(1 − γ)ikinλ

d ξd(k
i
uu(s), ki

dd(s))
b∫

a

(meσz − m + 1)iρ(s, z)dz

(1 − η∞,λ(j, s))cjh0(nλ + 1, s)

+

η∞,λ(j, s)(γ + knλ+1
d (1 − γ))j

bλ∫
−∞

ejλσzρ∞,λ(s, z)dz

(1 − η∞,λ(j, s))cjh0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where

η∞,λ(l, s) :=
clh0(nλ + 1, s)h0(−nλ − 1, s)u∞,λ(s)

(1 − clh−nλ
(1, s))(1 − hnλ

(−1, s)u∞,λ(s))
, l ∈ N0

and

ξu(u, d) :=
1 − h−nλ

(1|u, d) − h0(−nλ − 1|u, d)

1 − u − d

ξd(u, d) :=
1 − hnλ

(−1|u, d)− h0(nλ + 1|u, d)

1 − u − d
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Proof: We only proof the proposition for j = 1, the formula for arbitrary j is a straight-
forward generalization. First, we explain the term η∞,λ(l, s). It can be understood as the
strategy performing a certain cycle. The cycle consists of first having a possibly arbitrary
number of floor adjustments without reaching the constant mix part of the strategy, then
reach the constant mix part, switch possibly arbitrarily often between the constant mix
part and the CPPI part without further floor adjustment before finally having another
floor adjustment. Since the strategy starts with maximum exposure, one net up-move
is sufficient for a floor adjustment. So, in the following we will refer to a situation with
maximum exposure as the strategy being at level zero. Also we know that net nλ + 1

down-moves are required to enter the constant mix part of the strategy and we will call
this level −nλ − 1. Therefore the Laplace transform for having a floor adjustment while
not entering the constant mix part before is given by h−nλ

(1, s). We know that a floor
adjustment means multiplying the portfolio with c and therefore cj for the j-th moment.
Suppose there are i1 ∈ N0 floor adjustments, then we have (cjh−nλ

(1, s))
i1 . The Laplace

transform for reaching the constant mix part is given by h0(−nλ − 1, s) and the Laplace
transform for going back to the CPPI part is u∞,λ(s). From that point, level −nλ, the
Laplace transform for entering the constant mix part while not having another floor ad-
justment before is given by hnλ

(−1, s). Therefore the term (hnλ
(−1, s)u∞,λ(s))

i2 describes
i2 ∈ N0 switches between the CPPI part and the constant mix part. Adjusting the floor
again after the last switch requires net nλ+1 up-moves and the relevant Laplace transform
for that is h0(nλ + 1, s). In addition, a multiplication with cj for the floor adjustment is
needed again for the floor adjustment. Hence, in total we get

(ch−nλ
(1, s))i1 h0(−nλ − 1, s)u∞,λ(s) (hnλ

(−1, s)u∞,λ(s))
i2 ch0(nλ + 1, s)

and summation over all possibilities i1, i2 ∈ N0 yields η∞,λ(1, s). There can be an arbitrary
number of such cycles and therefore the term

∞∑
i=0

η∞,λ(1, s)
i =

1

1 − η∞,λ(1, s)

is found.

After a possibly arbitrary number of cycles, there are three cases. First, never reach the
constant mix part again. Second, reach the constant mix part again, switch arbitrarily
often between constant mix and CPPI without having another floor adjustment before
eventually neither having another floor adjustment nor reaching the constant mix part
again. Third, reach the constant mix part again, switch arbitrarily often between constant
mix and CPPI without having another floor adjustment before never returning to the
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CPPI part again. We will now calculate the expected value of the strategy for each of
these cases separately.

For the first case, note that never reaching the constant mix part again means that there
can still be arbitrarily many floor adjustments and the Laplace transform for that is given
by 1

1−ch−nλ
(1,s)

including the multiplications with c for each floor adjustment. The value
of the strategy at maturity T is given by

V0e
rT ci(γ + (1 − γ)kn

d (meσ(W δ
T −W δ

τN
) − m + 1))

for some i ∈ N0, n ∈ {0, 1, . . . , nλ} if the strategy ends in the CPPI part where τN is
the last trading date before time T as usual. The c are accounted for implicitly with
the probabilities of occurring floor adjustments as described above. After the last floor
adjustment, the strategy is at level zero. It is apparent that ξu(u(s), d(s)) accounts for
the probability of all paths that neither produce another floor adjustment nor reach the
constant mix part. Hence, for the first case the expected guarantee is given by

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γξu(u(s), d(s))

b∫
a

ρ(s, z)dz

(1 − η∞,λ(1, s))(1 − ch−nλ
(1, s))

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.16)

Since the cushion multiplies with ku for each up-move and kd for each down move, we can
implicity account for that by taking ξu(kuu(s), kdd(s)) and therefore the expected cushion
is given by

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − γ)ξu(kuu(s), kdd(s))

b∫
a

(meσz − m + 1)ρ(s, z)dz

(1 − η∞,λ(1, s))(1 − ch−nλ
(1, s))

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.17)

For the second case there can be arbitrarily many floor adjustments, hence 1
1−ch−nλ

(1,s)
,

before reaching the constant mix part with h0(−nλ − 1, s), going back to the CPPI part
with u∞,λ(s) and switching arbitrarily often between the constant mix and the CPPI with

1
1−hnλ

(−1,s)u∞,λ(s)
. Multiplication of the terms yields

h0(−nλ − 1, s)u∞,λ(s)

(1 − ch−nλ
(1, s))(1 − hnλ

(−1, s)u∞,λ(s))
=

η∞,λ(1, s)

(1 − η∞,λ(1, s))ch0(nλ + 1, s)
.

The strategy then is at level −nλ and the probability of all paths that neither produce an-
other floor adjustment nor reach the constant mix part is accounted for with ξd(u(s), d(s)).
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With the same arguments as above, for the second case the expected guarantee is given
by

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γη∞,λ(1, s)ξd(u(s), d(s))

b∫
a

ρ(s, z)dz

(1 − η∞,λ(1, s))ch0(nλ + 1, s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.18)

and the expected cushion is given by

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − γ)knλ

d η∞,λ(1, s)ξd(kuu(s), kdd(s))
b∫

a

(meσz − m + 1)ρ(s, z)dz

(1 − η∞,λ(1, s))ch0(nλ + 1, s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (3.19)

For the third case we analogously find the term

η∞,λ(1, s)

(1 − η∞,λ(1, s))ch0(nλ + 1, s)u∞,λ(s)

for all cases of the strategy reaching level −nλ − 1. Since the strategy is not to enter the
CPPI part again by assumption, the value of the portfolio at maturity is given by

V0e
rT ci(γ + (1 − γ)knλ+1

d )eλσ(W
δλ
T −W

δλ
τN

)

and therefore the expected value at maturity must equal

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η∞,λ(1, s)(γ + knλ+1

d (1 − γ))
bλ∫

−∞
eλσzρ∞,λ(s, z)dz

(1 − η∞,λ(1, s))ch0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3.20)

for the third case.

It can readily be seen, that the sum equations (3.16), (3.17), (3.18), (3.19) and (3.20)
coincides with the formula in the proposition for j = 1. �

Note that while the formula given in proposition 3.4.1 is closed-form in terms of a Laplace
transform, as all formulas presented so far, it does not seem possible to receive such an
expression for the distribution of the CPPI with minimum exposure ratio. Although it
is not difficult to find an expression containing an infinite sum of Laplace transforms (or
equivalently a Laplace transform of an infinite sum), we therefore restrict ourselves to
present some risk-measures.



3.4. THE CPPI WITH MINIMUM EXPOSURE RATIO 111

Proposition 3.4.2 (Risk-Measures)

In the notation of proposition 3.4.1 and in addition

aλ :=
1

λσ
log

γ

γ + (1 − γ)knλ+1
d

ηλ(s) :=
h0(nλ + 1, s)h0(−nλ − 1, s)u(s|aλ, bλ, δλ)

(1 − h−nλ
(1, s))(1 − hnλ

(−1, s)u(s|aλ, bλ, δλ))
, l ∈ N0,

it holds:

a) The probability of the strategy being in default at maturity T , i.e. the shortfall proba-

bility PSF = P (V ME
T < FME

T ), is given by

L−1
s,T

⎧⎨⎩ η∞,λ(0, s)

(1 − η∞,λ(0, s))h0(nλ + 1, s)u∞,λ(s)

aλ∫
−∞

ρ∞,λ(s, z)dz

⎫⎬⎭
b) The probability of the strategy with maturity time T falling below the current floor at

some time before T , i.e. P
(
∃t ∈ (0, T ) : V ME

t < FME
t

)
, is given by

L−1
s,T

{
ηλ(s)

(1 − ηλ(s))h0(nλ + 1, s)u(s|aλ, bλ, δλ)

d(s|aλ, bλ, δλ)

s

}

c) The expected shortfall at maturity, ESF , is determined through

ESF = E
[
F ME

T − V ME
T |V ME

T < FME
T

]
=

E
[
(F ME

T − V ME
T )1{V ME

T <F ME
T }

]
PSF

where E
[
(F ME

T − V ME
T )1{V ME

T <F ME
T }

]
is given by

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η∞,λ(1, s)

(
γ

aλ∫
−∞

ρ∞,λ(s, z)dz − (γ + (1 − γ)knλ+1
d )

aλ∫
−∞

eλσzρ∞,λ(s, z)dz

)
(1 − η∞,λ(1, s))ch0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Proof: We know that the value of the portfolio at maturity is given by V0e

rT ci(γ + (1−
γ)knλ+1

d )eλσ(W
δλ
T −W

δλ
τN

) if the strategy is to end in the constant mix part. Since

V0e
rT ci(γ + (1 − γ)knλ+1

d )eλσaλ = γV0e
rT ci,

which equals the time T guarantee after i floor adjustments, part a) is immediately clear
from the proof of proposition 3.4.1. It is also obvious from the proof of proposition 3.4.1



112 CHAPTER 3. FLOOR ADJUSTMENTS ON CPPI

0 0.05 0.1 0.15 0.2 0.25 0.3
Minimum Exposure Ratio

0

0.1

0.2

0.3

0.4

D
e
f
a
u
l
t

P
r
o
b
a
b
i
l
i
t
y

Σ�0.30

Σ�0.20

Figure 3.11: Probability of a default at matu-
rity of the CPPI with minimum exposure ratio as a
function of the minimum exposure ratio, λ, for dif-
ferent volatilities. The parameters are ku = 1.01,
m = 4, μ = 0.15, r = 0.05, γ = 0.75 and T = 30.
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Figure 3.12: Probability of a default at matu-
rity of the CPPI with minimum exposure ratio
as a function of the maturity time T for different
volatilities. The parameters are ku = 1.01, m = 4,
μ = 0.15, r = 0.05, γ = 0.75 and λ = 0.10.

that

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
γη∞,λ(1, s)

aλ∫
−∞

ρ∞,λ(s, z)dz

(1 − η∞,λ(1, s))ch0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is the expected guarantee on the set of all paths that end in default and

V0e
rTL−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η∞,λ(1, s)(γ + (1 − γ)knλ+1

d )
aλ∫

−∞
eλσzρ∞,λ(s, z)dz

(1 − η∞,λ(1, s))ch0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
is the expected portfolio value on the set of all paths that end in default. Hence, part c)
is apparent.

For part b) note that ηλ(s) is identical to η∞,λ(0, s) only that u∞,λ(s) has been exchanged
for u(s|aλ, bλ, δλ), which is the Laplace transform for the strategy (once in the constant
mix part) reaching the CPPI part again before the current portfolio value is below the
current floor. Likewise, d(s|aλ, bλ, δλ) is the Laplace transform for the strategy, being in
the constant mix part, reaching default while not going back to the CPPI part before.
Hence, part b) follows. �

Figures 3.11 and 3.12 show the probability of the CPPI with minimum exposure ratio
being in default at maturity as a function of the minimum exposure ratio λ and the
maturity T respectively. The default probability is increasing in both variables. It is
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CPPI with floor adjustment
E[N ]

T
ku Mean Stdv.

12 1.2595 (1.4134) 8148.29 (4384.71) 8619.67 (5519.37)
24 1.1773 (1.2774) 7890.23 (4266.88) 8069.22 (4937.29)
48 1.1224 (1.1890) 7712.84 (4190.30) 7692.69 (4570.41)
96 1.0851 (1.1303) 7590.02 (4139.48) 7433.26 (4332.29)

CPPI with minimum exposure ratio
E[N ]

T
λ Mean Stdv. SFP ESF

12 10% 8433.07 (5377.21) 8618.26 (6497.90) 0.0467 (0.2951) 84.89 (159.84)
24 10% 8177.71 (5238.70) 8068.96 (5879.65) 0.0479 (0.2981) 84.15 (158.08)
48 10% 8000.68 (5146.05) 7692.52 (5482.67) 0.0485 (0.2995) 83.59 (156.82)
96 10% 7878.46 (5084.82) 7433.20 (5224.02) 0.0490 (0.3006) 83.21 (155.98)

12 30% 9535.64 (7275.82) 9089.27 (9196.78) 0.0890 (0.3651) 313.28 (599.16)
24 30% 9279.10 (7106.25) 8544.44 (8464.34) 0.0914 (0.3718) 310.28 (594.80)
48 30% 9095.30 (6983.79) 8163.74 (7965.56) 0.0927 (0.3751) 307.91 (590.82)
96 30% 8969.08 (6903.44) 7902.12 (7640.84) 0.0937 (0.3776) 306.27 (588.29)

Table 3.1: Moments and risk-measures of the CPPI with floor adjustment and the CPPI with
minimum exposure ratio. The parameters are T = 20, V0 = 1000, m = 4, γ = m−1

m = 0.75,
F0 = γV0 = 750, μ = 0.15, r = 0.05 and σ = 0.2 (σ = 0.3 respectively).

clear, that the default probability must vanish as the minimum exposure ratio tends to
zero, since in this case the CPPI with minimum exposure ratio converges to the CPPI
with floor adjustment. However, in figure 3.11 it is interesting to notice, that in the case of
σ = 30% already a minimum exposure ratio of 1% produces a default risk of approximately
26% for a maturity of 30 years. Also, the difference in the default probability for the two
different volatilities is remarkable. The difference is even more remarkable in figure 3.12.
While the default probability converges to around 32.2% as T turns to infinity for the
case σ = 30% it only converges to approximately 5.3% for a volatility of σ = 20%.

Table 3.1 compares the moments of the terminal values of the CPPI with floor adjustment
and the CPPI with minimum exposure ratio for different volatilities, different values of the
discretization parameter ku and different values of the minimum exposure ratio λ. While
the parameters agree with our usual set of parameters, the maturity time T has been
chosen quite large to equal 20 years. This is consistent with our interest in the long term
performance as well as suited to pronounce the effects of the minimum exposure ratio.
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First notice that the discretization parameter ku has been chosen such as to yield 12,
24, 48 and 96 expected trading dates per year (see the column E[N ]

T
). Although we have

not presented the distribution of the trading dates in this chapter, it is straightforward
to check that this distribution coincides with the distribution of the trading dates of the
simple CPPI as given in proposition 2.2.1. For the CPPI with minimum exposure this is
not true any more. The column E[N ]

T
here merely is supposed to symbolize that the same

discretization parameters as for the CPPI with floor adjustment have been chosen.

Notice that the values for the moments in table 3.1 are significantly decreasing in the
number of expected trading dates. This is no coincidence. We know from section 2.3 that
both, the simple and the capped CPPI, converge to a stop-loss strategy as ku turns to
infinity. This is also true for the CPPI with floor adjustment and the CPPI with minimum
exposure ratio. The strategies start with full exposure at time t = 0 and for ku → ∞ the
portfolio will never be rebalanced. While it is well-known that the stop-loss strategy has
the same expected long term yield as the risky asset, i.e. the drift μ, it is known from
section 3.1 that this is not true for the CPPI with floor adjustment. Also the long term
yield of the CPPI with minimum exposure ratio will be lower than the drift of the risky
asset. Therefore it is not surprising that the moments are decreasing in the number of
expected trading dates. However, one must not be misled by the increase of the expected
value for ku → ∞. Although a larger expected payoff seems appealing, no rebalancing of
the portfolio also means, that there will be no floor adjustment, such that the portfolio
protection is considerably lowered at the same time.

Now compare the values of the moments for the two different volatilities σ = 20% and
σ = 30%. Recall from equation (3.5) that the expected long term yield of the CPPI with
floor adjustment equals the risk-free interest rate r for σ = 30%. On this basis, the CPPI
with floor adjustment can be ruled out as a reasonable long term strategy upon violation
of the condition μ−r−(m−1)σ2

2
≥ 0. Table 3.1 underpins this impression. The difference

between the values for the two volatilities is remarkable.

A comparison between the moments of the CPPI with minimum exposure ratio and the
moments of the CPPI with floor adjustment demonstrates once again the basic effect
of the minimum exposure ratio. It provokes a trade-off between an increased expected
payoff and the existence of a shortfall probability. For the smaller volatility, σ = 20%, it
is surprising that both, the gain in the expected payoff and the shortfall probability, are
quite small for a minimum exposure ratio of λ = 10%. For the minimum exposure ratio of
λ = 30% the effect is more pronounced. Notice also that the moments vary considerably
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Figure 3.13: Probability of the CPPI with min-
imum exposure ratio becoming smaller than the
floor at some time up to maturity as a function of
the minimum exposure ratio for different volatil-
ities. The parameters are ku = 1.01, m = 4,
μ = 0.15, r = 0.05, γ = 0.75, T = 30 and
σ = 0.20, 0.30.
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Figure 3.14: Probability of the CPPI with min-
imum exposure ratio becoming smaller than the
floor at some time up to maturity as a function
of the maturity time T for different volatilities.
The parameters are ku = 1.01, m = 4, μ = 0.15,
r = 0.05, γ = 0.75, λ = 0.10 and σ = 0.20, 0.30.

dependent on the discretization while the shortfall probability and the expected shortfall
remain relatively constant in comparison. In the case of the larger volatility, σ = 30%, the
gain in the expected payoff compared to the CPPI with floor adjustment is remarkable,
in particular for the larger minimum exposure ratio, but so is the increase of the shortfall
probability.

The relevance of the risk-measures and acceptance of the CPPI with minimum exposure
ratio very much depends on the contract specification between the issuer and the investor.
For example, if the contract is such that the investor bears all default risk and pays the
issuer only for performing the strategy, a default risk of around 5% (10%) for σ = 20% and
λ = 10% (λ = 30%) might well be acceptable for the avoidance of the cash-lock dependent
on the investor’s attitude towards risk. Keep in mind that the shortfall probability gives
the probability of the portfolio value at maturity being lower than the floor. Due to the
floor adjustments, this probability has little to do with the investor losing money compared
to the initial investment. It is well possible that, compared to the initial investment, the
terminal portfolio is quite large while below the floor at the same time such that the
outcome is satisfactory irrespective of a shortfall. This situation occurs in particular if
the portfolio value increases very much at the beginning and decreases later. The situation
is much different if the issuer commits himself to guarantee at least the floor at maturity.
In this case the risk-measures are crucial.

Figures 3.13 and 3.14 depict the probability of the CPPI with minimum exposure ratio
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becoming smaller than the floor at some time before maturity. Once the current portfolio
value is below the current floor, default at maturity would be safe if all funds were switched
to the riskless asset immediately. Hence, from this time onwards the strategy must perform
better than the riskless asset to avoid default and so the situation could be called a
virtual default. This probability converges to one, independent of the parameters, as the
maturity T turns to infinity. The reason is the same as for the probability of an ε-cash-
lock, the increasing variance of the risky asset for large maturities combined with the floor
adjustment rule.

The importance of the virtual default probability also depends very much on the contract
specifications. If the CPPI with minimum exposure ratio is offered as a fixed maturity
product, then the virtual default probability is of minor interest, as there is no obligation
before maturity time whatsoever. However, for example a surrender option that allows
the investor to retrieve the maximum of the current portfolio value and the current floor
at any time before maturity makes the virtual default probability relevant. The virtual
default probability is the only one of relevance if the CPPI with minimum exposure ratio
is offered as an open ended fund product where investors can come an go at any time. Our
results show, that while the CPPI with minimum exposure ratio might be an acceptable
long term investment strategy based on a fixed maturity, if offered as an open ended fund
product the strategy must end in default sooner or later.

The default risk can be avoided by covering the potential losses caused by the minimum
exposure ratio with the help of options. Such a hybrid between a CPPI and an OBPI is
presented in the next section.

3.5 Hedging the CPPI with minimum exposure ratio

In section 3.4 it was shown that the introduction of a minimum exposure ratio causes
significant default risk, such that hedging a CPPI with minimum exposure ratio becomes
an important issue. First, we consider the CPPI with minimum exposure ratio with a
fixed maturity T and determine the fair price at time t = 0 to cover potential losses that
occur if the strategy does not end up above the floor F ME

T at maturity, which we suppose
is guaranteed by the issuer. More explicitly, the question will be what the price of the
claim

(
F ME

T − V ME
T

)+ (3.21)
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is. This claim is an European put-option written on the CPPI with minimum exposure
ratio as underlying and the floor at maturity as strike. Note that if the i-th floor ad-
justment is made at some trading date τ , the portfolio value of the CPPI with minimum
exposure ratio is given by V ME

τ = V0e
rτci, while the floor is given by F ME

τ = γV0e
rτci.

Therefore, the discounted claim
(
e−rT F ME

T − e−rT V ME
T

)+ can also be viewed as an in-
finitely increasing ladder put, based on the discounted value process of the CPPI with
minimum exposure ratio, where the barriers are given by V0c

i and the strikes are given
by γV0c

i for i ∈ IIN0. From the fundamental theorem of asset pricing it is well-known that
the price of the option in equation (3.21) is given by

EP ∗
[
e−rT
(
F ME

T − V ME
T

)+]
where P ∗ is the equivalent martingale measure4. Note that pricing the option in equation
(3.21) is quite similar to calculating the expected shortfall of the CPPI with minimum
exposure ratio. Since the expected shortfall of the CPPI with minimum exposure ratio
at maturity is given by

E
[(

F ME
T − V ME

T

)+]
PSF

,

formally the difference between the expectation for the expected shortfall and the price of
the option is simply in discounting and taking expectations with respect to the martingale
measure P ∗ instead of the physical measure P . Therefore, from proposition 3.4.2,c) we
have the following corollary.

Corollary 3.5.1 (Price of a static hedge at time t = 0)

The fair price at time t = 0 for covering all potential losses of the CPPI with minimum

exposure ratio, i.e. EP ∗
[
e−rT
(
F ME

T − V ME
T

)+], is given by

V0L−1
s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
η∞,λ(1, s)

(
γ

aλ∫
−∞

ρ∞,λ(s, z)dz − (γ + (1 − γ)knλ+1
d )

aλ∫
−∞

eλσzρ∞,λ(s, z)dz

)
(1 − η∞,λ(1, s))ch0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in the notation of proposition 3.4.2 with the additional assumption μ = r ⇒ δ = −1

2
σ.

4See Harrison and Kreps (1979) and Harrison and Pliska (1981) for the notion of arbitrage free pricing.
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Figure 3.15: Price of the option at time
t = 0 to cover all potential losses of the CPPI
with minimum exposure ratio as a function
of the maturity T and in percent of the ini-
tial investment V0 for two different volatilities,
σ = 0.20 and σ = 0.30. The other parameters
are ku = 1.01, m = 4, λ = 0.20, r = 0.05,
γ = 0.75.

Figure 3.15 shows the price of the option as
a function of the maturity time T . It is no-
ticeable that the price of the option is very
large. For a volatility of 30% and a matu-
rity of 30 years, the fair price of the option
is around 17.5% of the initial investment.
The reason for this large price are the floor
adjustments. Since the strike of the put
option equals the floor at maturity, each
floor adjustment makes the option more
valuable. As we know from the previous
section, the floor at maturity is roughly
equal to γerT max

t∈[0,T ]
e−rtV ME

t , therefore de-

pends on the maximum of the value process
of the CPPI with minimum exposure ratio
and is very similar to a look-back option.
It turns out that the price of the option is increasing in the maturity time but more impor-
tantly, the price is not bounded from above as the maturity time turns to infinity. Indeed,
Duffie and Harrison (1993) show that the price of a perpetual look-back option can not be
finite. Already in finite time the price of the option in equation (3.21) can be higher than
the initial investment V0. Hence, even if the simplest contract specification is considered,
i.e. a fixed maturity time T and a guarantee from the issuer that is only related to the
maturity time, the issuer might not be able to perform a static hedge against potential
losses due to the guarantee by just buying (or synthesizing) the option in equation (3.21).
A simple static hedge might thus not be a viable option.

We therefore resort to considering claims of the form(
F ME

T − V ME
T

)+
1{F ME

T =F ME
τ er(T−τ)} (3.22)

where τ is the time of some floor adjustment. The claim in equation (3.22) refers to a
knock-out put option that starts at a time where a floor adjustment is made and covers all
potential losses of the CPPI with minimum exposure ratio as long as there is no further
floor adjustment, which is the knock-out condition. In the following, the idea is not to
buy an option that covers all potential losses right at time t = 0 but to buy the knock-
out option in equation (3.22) every time a floor adjustment is made. It is clear that if
such a knock-out option is bought every time a floor adjustment is made, all potential
losses of the CPPI are covered. From the point of view of time t = 0, the expected
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costs of this hedging strategy equal the price in corollary 3.5.1. However, we will not
hedge the CPPI with minimum exposure ratio externally, but rather buy the knock-out
options from the portfolio such as to produce a new self-financing strategy that features
a minimum exposure ratio while keeping the cushion non-negativ. The resulting strategy
can be viewed as a hybrid between an OBPI and a CPPI strategy and we will call it the
default protected CPPI with minimum exposure ratio. We start by giving the price of the
knock-out options.

Corollary 3.5.2 (Price of a hedge between two floor adjustments)

Suppose a CPPI with minimum exposure ratio that starts at time t ∈ [0, T ] with maturity
time T and an initial investment of one unit, i.e. Vt = 1. Then the fair price at time t

of the option to cover potential losses of the strategy if there is no floor adjustment, i.e.
π(t, T ) := EP ∗

[
e−r(T−t)

(
F ME

T − V ME
T

)+
1{F ME

T =F ME
t er(T−t)}|Ft

]
, is given by

L−1
s,T−t

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h0(−(nλ + 1), s)

(
γ

aλ∫
−∞

ρ∞,λ(s, z)dz − (γ + (1 − γ)knλ+1
d )

aλ∫
−∞

eλσzρ∞,λ(s, z)dz

)
1 − hnλ

(−1, s)u∞,λ(s)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
in the notation of proposition 3.4.2 with the additional assumption μ = r ⇒ δ = −1

2
σ.

Suppose that at some time τ of a floor adjustment, the CPPI with minimum exposure
ratio is to be hedged with a knock-out option. Then, according to corollary 3.5.2 the
hedging costs at time τ are given by V ME

τ π(τ, T ). However, if the option is to be bought
from the portfolio, then the amount available for the CPPI with minimum exposure ratio
decreases and hence V ME

τ π(τ, T ) can not be the correct price any more, since this is the
price if the amount invested into the CPPI with minimum exposure ratio equals V ME

τ ,
which it does not any more after the option is acquired. It turns out that the price of the
appropriate option is given by

V ME
τ

1 + π(τ, T )
π(τ, T ) (3.23)

since

V ME
τ − V ME

τ

1 + π(τ, T )
π(τ, T ) =

V ME
τ

1 + π(τ, T )

such that the amount invested into the CPPI with minimum exposure ratio after the
option is bought equals V ME

τ

1+π(τ,T )
, which is consistent with the price in equation (3.23).

Since the option knocks out on the next floor adjustment, this effectively means that the
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portfolio value decreases by the factor 1
1+π(τ,T )

on each floor adjustment. However, we
also know, that the discounted portfolio value of the CPPI with minimum exposure ratio
multiplies with the constant factor c on each floor adjustment. Therefore, the discounted
value process of the default protected CPPI with minimum exposure ratio multiplies with
the factor

c̃(τ, T ) :=
c

1 + π(τ, T )
(3.24)

instead of c as for the CPPI with minimum exposure ratio. With the trivial inequality
π(τ, T ) ≥ 0 this means that the portfolio value of the default protected CPPI with mini-
mum exposure ratio is generally lower than the portfolio value of the CPPI with minimum
exposure ratio as long as the latter is larger than the floor.

Unfortunately, as a consequence of the dependence of c̃(τ, T ) on the time to maturity T−τ ,
it does not seem possible to find any analytical expressions for the moments or even the
distribution of the default protected CPPI with minimum exposure ratio. Nevertheless we
can find an expression for a lower bound of the expected terminal payoff. As a preparation
the following proposition is needed.

Proposition 3.5.3 The price π(t, T ) is increasing in the time to maturity T − t.

Proof: Since π(t, T ) = π(0, T − t), it is sufficient to show π(0, T ) ≤ π(0, T ′) for T ′ >

T . Let τ be the time of the first floor adjustment. Due to the fact that the CPPI
with minimum exposure ratio is a self-financing strategy, the discounted value process
(V ME

t e−rt) is a martingale under the martingale measure P ∗ and hence also the process
(γ − V ME

t e−rt) is a martingale. Therefore also the stopped process (γ − V ME
t∧τ e−r(t∧τ)) is

a martingale according to the Optional Sampling Theorem5. Hence we have

π(0, T ′) = EP ∗
[
e−rT ′ (

F ME
T ′ − V ME

T ′
)+

1{F ME
T ′ =F ME

0 erT ′}

]
= EP ∗

[(
γ − V ME

(T ′∧τ)e
−r(T ′∧τ)

)+]
= EP ∗

[
EP ∗
[(

γ − V ME
(T ′∧τ)e

−r(T ′∧τ)
)+∣∣∣∣FT

]]
≥ EP ∗

[
EP ∗
[
γ − V ME

(T ′∧τ)e
−r(T ′∧τ)

∣∣∣FT

]+]
= EP ∗

[(
γ − V ME

(T∧τ)e
−r(T∧τ)
)+]

= π(0, T )

5See for example Rogers and Williams (2000), p.159.
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using Jensen’s inequality. �

With the help of proposition 3.5.3 it is now obvious that c̃(t, T ) ≥ c̃(0, T ), such that a
rough lower bound for the expected payoff of the default protected CPPI with minimum
exposure ratio can be found by always using c̃(0, T ) instead of c̃(t, T ).

Corollary 3.5.4 (Expected payoff, lower bound)

A lower bound for the expected terminal payoff of the default protected CPPI with minimum
exposure ratio is given by

V0e
rT

1 + π(0, T )
L−1

s,T

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(

ξu(u(s), d(s))

1 − c̃(0, T )h−nλ
(1, s)

+
η∞,λ(s)ξd(u(s), d(s))

c̃(0, T )h0(nλ + 1, s)

) γ
b∫

a

ρ(s, z)dz

1 − η∞,λ(s)

+

(
ξu(kuu(s), kdd(s))

1 − c̃(0, T )h−nλ
(1, s)

+ knλ
d

η∞,λ(s)ξd(kuu(s), kdd(s))

c̃(0, T )h0(nλ + 1, s)

) (1 − γ)
b∫

a

(meσz − m + 1)ρ(s, z)dz

1 − η∞,λ(s)

+

η∞,λ(s)

(
γ

aλ∫
−∞

ρ∞,λ(s, z)dz + (γ + knλ+1
d (1 − γ))

bλ∫
aλ

eλσzρ∞,λ(s, z)dz

)
(1 − η∞,λ(s))c̃(0, T )h0(nλ + 1, s)u∞,λ(s)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
where

η∞,λ(s) :=
c̃(0, T )h0(nλ + 1, s)h0(−nλ − 1, s)u∞,λ(s)

(1 − c̃(0, T )h−nλ
(1, s))(1 − hnλ

(−1, s)u∞,λ(s))
, l ∈ N0

and the other notation as in propositions 3.4.1 and 3.4.2.

Figures 3.16 and 3.17 show the expected yield per year of the CPPI with floor adjustment,
the CPPI with minimum exposure ratio and the lower bound of the default protected
CPPI with minimum exposure ratio as a function of the maturity time T as given by the
formula 1

T
log E[VT ]

V0
for our standard parameter constellation and σ = 20% and σ = 30%

respectively. The minimum exposure ratio was set to λ = 10%. It is known from section
3.1 that the expected yield of the CPPI with floor adjustment converges to 9% for σ = 20%

and to the riskfree interest rate of 5% for the large volatility σ = 30%. Unsurprisingly, the
expected yield of the CPPI with minimum exposure ratio is significantly larger in the long
run, in particular for the larger volatility. This is a direct consequence of the constant
mix part of the strategy. The expected yield of a pure constant mix strategy is given by
λμ + (1− λ)r which gives 6% for our parameters. It is intuitively clear that the expected
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Figure 3.16: Expected yield of the CPPI with
floor adjustment, the CPPI with minimum expo-
sure ratio and the lower bound of the default pro-
tected CPPI with minimum exposure ratio as a
function of the maturity time T . The parameters
are ku = 1.01, m = 4, μ = 0.15, r = 0.05, γ = 0.75,
λ = 0.10 and σ = 0.20.
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Figure 3.17: Expected yield of the CPPI with
floor adjustment, the CPPI with minimum expo-
sure ratio and the lower bound of the default pro-
tected CPPI with minimum exposure ratio as a
function of the maturity time T . The parameters
are ku = 1.01, m = 4, μ = 0.15, r = 0.05, γ = 0.75,
λ = 0.10 and σ = 0.30.

yield of the CPPI with minimum exposure ratio will not be lower. Nevertheless, our
numerical results suggest that for T → ∞ the expected yield is considerably larger than
6% and converges to approximately 7.4%. For the default protected CPPI with minimum
exposure ratio things look different. First consider figure 3.17. Although also the lower
bound for the default protected CPPI with minimum exposure ratio will converge to a
value larger than the riskfree interest rate and therefore perform better than the CPPI
with floor adjustment in the long run, the default protection seems to be quite costly.
In figure 3.16 the result is disastrous for the default protected CPPI with minimum
exposure ratio. The high hedging costs seem to completely thwart the positive effects
of the minimum exposure ratio, i.e. the avoidance of an ε-cash-lock. Although it must
not be forgotten that the curve for the default protected CPPI with minimum exposure
ratio only constitutes a lower bound which is very rough, this result is remarkable.

So far we have assumed a fixed maturity time. Suppose now that the default protected
CPPI with minimum exposure ratio is offered as an open ended fund product. In this case
the European type options from equation (3.22) must be replaced by perpetual American
type options. It is well-known that the price of an European type option is always a lower
bound for the price of an otherwise identical American type option. Since we know from
proposition 3.5.3 that π(0, T ) is increasing in the maturity time T , it is apparent that

π(0,∞) = lim
T→∞

π(0, T )
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constitutes a lower bound for the price of the options to be bought if the default protected
CPPI with minimum exposure ratio is offered as an open ended fund product. In addition
to that, due to the infinite maturity, it is immediate that π(t,∞) = π(0,∞) for all t.
Hence, from the definition of c̃ in equation 3.24 we also find that c̃(t,∞) = c̃(0,∞) for all
t, such that c̃ is independent of time. Consequently, if c̃(0, T ) is replaced by c̃(0,∞) in
corollary 3.5.4, then corollary 3.5.4 constitutes an upper bound for the expected payoff of
the open ended strategy after T years. With respect to figures 3.16 and 3.17 it therefore
must be said, that hedging the default risk induced by the minimum exposure ratio by
consecutively buying knock-out options does not seem to be a viable strategy. Although,
in principle, it is possible to hedge the minimum exposure ratio with knock-out options,
the induced costs seem to be too large.

3.6 Conclusion

For long maturity times, the capital protected with conventional CPPI strategies such
as the simple and the capped CPPI can become insignificantly small compared to the
portfolio value. The CPPI with floor adjustment increases the level of protection by lifting
the floor if the portfolio value increases and hence keeps the magnitude of the protected
capital significant compared with the portfolio value. In particular, the portfolio value
can never lose more than a given fraction of the maximum of the past portfolio values.
While both, the expectation and variance of the terminal value, are lower in comparison
with the capped CPPI, the probability of outperforming the riskless asset is increased.
Hence, the CPPI with floor adjustment is better suited for conservative investors. Due to
the increasing level of protection, the strategy is suited for both a long maturity and an
open ended product. New investors joining at a later point in time will face a different
short-term performance while receiving the same expected yield as earlier investors in the
long run.

A well known problem that CPPI structures in general share is the cash-lock. The proba-
bility of a cash-lock is found to be increased for the CPPI with floor adjustment compared
with the simple and capped CPPI and a direct consequence of the increased protection
level. While it seems to be a natural idea to introduce a minimum exposure ratio such
as to prevent an ε-cash-lock, it contradicts the idea of portfolio protection. If no further
provision is taken, the portfolio value can not be kept above the floor and thus a minimum
exposure ratio induces default risk. For an investor who is willing to accept a small de-
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fault risk as a trade-off for avoiding an ε-cash-lock, a CPPI with minimum exposure ratio
can be an adequate investment strategy. However, the strategy is can not be labelled a
portfolio insurance strategy any more in the strict sense as it induces default risk.

Formally, the default risk induced by the introduction of a minimum exposure ratio can
be covered using put-options written on the value process of the CPPI with minimum
exposure ratio. However, it turns out, that the price of these options can be larger than
the initial portfolio value for long maturities and is unbounded from above as the maturity
time turns to infinity. The reason for this result is the combination of the minimum
exposure ratio and the floor adjustments. Due to the floor adjustment, insuring the
portfolio against default risk at the inception of the strategy means insuring potential
gains of the strategy that are yet to be realized. For long maturities this is not possible.
Although it is possible to successively insure the portfolio whenever gains have been
realized, i.e. whenever floor adjustments are made, this procedure is very expensive.
While the introduction of a minimum exposure ratio has positive effects on the expected
payoff of the strategy, these positive effects seem to be made undone by the large costs of
covering the default risk.



Appendix A

Mathematical Prerequisites

A.1 Some aspects about Random Walks

Consider a potentially infinitely repeated game where at each step the probability of
winning one unit of money is u, the probability of loosing one unit of money is d and the
probability of the game terminating immediately is ρ where u + d + ρ = 1. For n ∈ N0,
let Xn denote the wealth of the player at the n-th step of the game and suppose X0 = 0.1

Lemma A.1.1 The probability of the player’s wealth rising or falling to k ∈ Z at some
step is given by

P (∃n ∈ N0 : Xn = k) = h(k|u, d)

where

h(k|u, d) :=

⎧⎪⎨⎪⎩
(

1+
√

1−4ud
2d

)k
, k < 0(

1−
√

1−4ud
2d

)k
, k ≥ 0.

Proof: The lemma will be proven together with the following lemma. �

Lemma A.1.2 Let N ∈ N0 denote the number of steps after which the game terminates.

a) The probability of the game terminating at wealth level k ∈ Z is given by

P (XN = k) = ρ q(k|u, d)

1Most of the results presented in this section are well-known and can be found, at least for the special
case u + d = 1, for example in Feller (1968) in the context of generating functions.
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where

q(k|u, d) :=
h(k|u, d)√
1 − 4ud

.

b) The probability of the game terminating at or lower than wealth level k ∈ Z is given
by

P (XN ≤ k) = ρQ(k|u, d)

where

Q(k|u, d) :=

k∑
j=−∞

q(j|u, d) =

⎧⎨⎩
q(k|u,d)

1−h(−1|u,d)
, k < 0

1
1−u−d

− q(k+1|u,d)
1−h(1|u,d)

, k ≥ 0.

Proof: We start with part a). It is apparent that the probability of the game terminating
at wealth level k ∈ N0 is given by

xk :=

⎧⎪⎨⎪⎩
ρd−k

∞∑
n=0

(
2n−k
n−k

)
(ud)n , k < 0

ρuk
∞∑

n=0

(
2n+k
n+k

)
(ud)n , k ≥ 0

(A.1)

such that the proof of the lemma boils down to finding an expression for these sums. It
is obvious that x−k = dk

uk xk for k ≥ 0 and therefore it is sufficient to consider the case
k ≥ 0. From equation (A.1) the difference equation

uxk + dxk+2 = xk+1

for the series (xk) can easily be verified and we solve this difference equation with the
standard method. The general solution to the difference equation is given by

xk = Aλk
1 + Bλk

2

where λ1,2 are found from the characteristic equation

u + dλ2 = λ ⇒ λ1,2 =
1 ±

√
1 − 4ud

2d

and A and B are some constants. From the general solution we know that the constants
A and B must satisfy

x0 = A + B, x1 = Aλ1 + Bλ2 (A.2)

such that the problem has reduced to finding explicit expressions for x0 and x1. It can
readily be checked that (

2n

n

)
(ud)n =

(
−1

2

n

)
(−4ud)n
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and therefore

x0 = ρ
∞∑

n=0

(
2n

n

)
(ud)n

= ρ
∞∑

n=0

(
−1

2

n

)
(−4ud)n

=
ρ√

1 − 4ud

as a consequence of Newton’s binomial formula2. From equation (A.1) ux−1+dx1 = x0−ρ

can be verified and together with x−1 = d
u
x1 we find

x1 =
x0 − ρ

2d
=

ρ√
1 − 4ud

1 −
√

1 − 4ud

2d
.

From condition (A.2) we now immediately deduce

A = 0, B =
ρ√

1 − 4ud
= x0

and therefore

xk =
ρ√

1 − 4ud

(
1 −

√
1 − 4ud

2d

)k

= ρq(k|u, d)

for k ≥ 0. For k < 0 we now get

xk =
d−k

u−k

ρ√
1 − 4ud

(
1 −

√
1 − 4ud

2d

)−k

=
ρ√

1 − 4ud

(
1 −

√
1 − 4ud

2u

)−k

=
ρ√

1 − 4ud

(
1 +

√
1 − 4ud

2d

)k

= ρq(k|u, d)

which completes the proof of part a) of lemma A.1.2. Also lemma A.1.1 now becomes
apparent. Note, that xk can also be written as xk = x0h(k|u, d) and can therefore be
interpreted as first reaching a wealth level k with the probability h(k|u, d), then terminate
at that level with probability x0.

For part b) we have to calculate the sums
k∑

j=−∞
q(k|u, d). For k < 0, the formula imme-

diately follows from

k∑
j=−∞

q(j|u, d) = q(k|u, d)

0∑
j=−∞

h(j|u, d) = q(k|u, d)

∞∑
j=0

h(−1|u, d)j

2See for example Feller (1968), p.51.
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while for k ≥ 0, note that

k∑
j=−∞

q(j|u, d) =
∞∑

j=−∞
q(j|u, d)−

∞∑
j=k+1

q(j|u, d).

For the second sum on the right hand side of the equation we get
∞∑

j=k+1

q(j|u, d) = q(k + 1|u, d)

∞∑
j=0

h(k|u, d) =
q(k + 1|u, d)

1 − h(1|u, d)

while for the first sum we find
∞∑

j=−∞
q(j|u, d) = q(0|u, d)

0∑
j=−∞

h(j|u, d) + q(1|u, d)
∞∑

j=0

h(j|u, d)

= q(0|u, d)

(
1

1 − h(−1|u, d)
+

h(1|u, d)

1 − h(1|u, d)

)
.

Finally, the identity

1

1 − h(−1|u, d)
+

h(1|u, d)

1 − h(1|u, d)
=

q(0|u, d)−1

1 − u − d

yields the assertion. �

Lemma A.1.3

a) The joint probability of the game terminating at wealth level k ∈ [n̄, n̄−1, n̄−2, . . . [

and the wealth level never surpassing some maximum wealth level n̄ ∈ N0 is given
by

P (XN = k, max
n∈{0,1,...,N}

Xn ≤ n̄) = ρqn̄(k|u, d)

where

qn̄(k|u, d) :=

⎧⎨⎩q(k|u, d)
(
1 − (h(1|u, d)h(−1|u, d))n̄+1) , k < 0

q(k|u, d)
(
1 − (h(1|u, d)h(−1|u, d))n̄+1−k

)
, k ≥ 0.

b) The joint probability of the game terminating at or lower than wealth level k ∈
[n̄, n̄ − 1, n̄ − 2, . . . [ and the wealth level never surpassing some maximum wealth
level n̄ ∈ N0 is given by

P (XN ≤ k, max
n∈{0,1,...,N}

Xn ≤ n̄) = ρQn̄(k|u, d)
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where

Qn̄(k|u, d) :=
k∑

j=−∞
qn̄(j|u, d) =

⎧⎨⎩
qn̄(k|u,d)

1−h(−1|u,d)
, k < 0

qn̄(k|u,d)
1−h(−1|u,d)

+ 1−h(k|u,d)
1−u−d

, k ≥ 0.

Proof: Throughout this proof we will use the simplified notation qn̄(k) = qn̄(k|u, d),
q(k) = q(k|u, d) and h(k) = h(k|u, d). Let qn̄(k) denote the probability of the wealth level
being k when the game terminates such that the probability of the game terminating at
wealth level k is given by ρqn̄(k). First, consider the situation with a maximum wealth
level of 0 and in particular the probability q0(0). Since we start with a wealth level 0

and the maximum wealth level is not to be surpassed, there are only two possibilities:
The game terminates or the wealth level goes to −1. From level −1 the probability of
reaching level 0 again sooner or later is given by h(1|u, d). Once being at level 0 again,
the situation is the same as at the start. Therefore the probability of terminating at level
0 is given by

ρq0(0) = ρ + ρdh(1)q0(0)

from which

q0(0) =
1

1 − dh(1)

can be deduced. By a similar chain of arguments we find that

q0(k) = d (q0(k + 1) + h(1)q0(k))

⇔ q0(k) =
d

1 − dh(1)
q0(k + 1) = h(−1)q0(k + 1)

and by recursion

q0(k) = h(k)q0(0). (A.3)

Now, in the situation with an arbitrary maximum wealth level n̄ ∈ N0, it is apparent by
a similar argument, that the probabilities are given by

qn̄(k) =

⎧⎪⎪⎨⎪⎪⎩
n̄∑

j=0

h(j)q0(k − j) k < 0

n̄∑
j=k

h(j)q0(k − j) k ≥ 0
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and with equation (A.3) we find for k < 0

qn̄(k) =

n̄∑
j=0

h(j)q0(k − j)

= q0(0)h(k)

n̄∑
j=0

(h(1)h(−1))j

= q0(0)h(k)
1 − (h(1)h(−1))n̄+1

1 − h(1)h(−1)

= q(k)
(
1 − (h(1)h(−1))n̄+1)

and likewise for k ≥ 0

qn̄(k) = q(k)
(
1 − (h(1)h(−1))n̄+1−k

)
which proofs part a) of the lemma. For part b) we only have to calculate the sums

k∑
j=−∞

qn̄(j). For k < 0, the formula immediately follows from

k∑
j=−∞

qn̄(j) = qn̄(k)
0∑

j=−∞
h(j).

For k ≥ 0 we have

k∑
j=−∞

qn̄(j) =
−1∑

j=−∞
qn̄(j) +

k∑
j=0

qn̄(j)

=
qn̄(−1)

1 − h(−1)
+

k∑
j=0

q(0)h(j)
(
1 − (h(1)h(−1))n̄+1−j

)
=

qn̄(−1)

1 − h(−1)
+ q(0)

1 − h(k + 1)

1 − h(1)
− q(0)

1 − h(−1)−(k+1)

1 − h(−1)−1
(h(1)h(−1))n̄+1

and since 1
1−h(−1)−1 = − h(−1)

1−h(−1)
we further get

k∑
j=−∞

qn̄(j)

= q(0)

(
h(−1)

1 − h(−1)
+

1

1 − h(1)

)
− q(0)

h(1)

1 − h(1)
h(k) − q(0)

h(k)(h(1)h(−1))n̄+1−k

1 − h(−1)

= q(0)

(
h(−1)

1 − h(−1)
+

1

1 − h(1)

)
− q(0)h(k)

(
h(1)

1 − h(1)
+

1

1 − h(−1)

)
+

qn̄(k)

1 − h(−1)

=
qn̄(k)

1 − h(−1)
+

1 − h(k)

1 − u − d
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where the last equation follows from

h(−1)

1 − h(−1)
+

1

1 − h(1)
=

q(0)−1

1 − u − d
and

h(1)

1 − h(1)
+

1

1 − h(−1)
=

q(0)−1

1 − u − d
. (A.4)

�

Lemma A.1.4 Suppose there is a maximum wealth level n̄ ∈ N0. Suppose further that

whenever the wealth level equals n̄, the probability of losing one unit of money equals d2

and the probability of the game terminating is ρ2 with d2 + ρ2 = 1, while whenever the

wealth level is lower than n̄, the probabilities of the game terminating, gaining one unit of
money and loosing one unit of money are ρ, u and d, respectively, with u + d + ρ = 1.

a) Then the probability of the game terminating at a wealth level k ∈ [n̄, n̄−1, n̄−2, . . . [

is given by

P (XN = k) =

⎧⎨⎩ρ2 qn̄(k|u, d, d2) , k = n̄

ρ qn̄(k|u, d, d2) , k < n̄

where3

qn̄(k|u, d, d2) :=

⎧⎨⎩
1

1−d2h(1|u,d)
h(n̄|u, d) , k = n̄

qn̄−1(k|u, d) + d2

1−d2h(1|u,d)
h(n̄|u, d)q0(k + 1 − n̄|u, d) , k < n̄.

b) The probability of the game terminating at or lower than a wealth level k < n̄ is
given by

P (XN ≤ k) = ρ Qn̄(k|u, d, d2)

where

Qn̄(k|u, d, d2) :=

k∑
j=−∞

qn̄(j|u, d, d2) =

⎧⎨⎩
qn̄(k|u,d,d2)
1−h(−1|u,d)

, k < 0

qn̄(k|u,d,d2)
1−h(−1|u,d)

+ 1−h(k|u,d)
1−u−d

, 0 ≤ k < n̄.

Proof: For the proof we use the simplified notation q̃n̄(k) = qn̄(k|u, d, d2), qn̄(k) =

qn̄(k|u, d) and h(k) = h(k|u, d). Consider first the situation with a maximum level n̄ = 0.
Analogously to the proof of lemma A.1.3 we find

ρ2q̃0(0) = ρ2 + ρ2d2h(1)q̃0(0) ⇒ q̃0(0) =
1

1 − d2h(1)

3For n̄ = 0, the term qn̄−1(k|u, d) becomes meaningless and must be set equal to zero for the formula
to hold.
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and then for k < 0

q̃0(k) = d2 (q0(k + 1) + h(1)q̃0(k)) ⇒ q̃0(k) =
d2

1 − d2h(1)
q0(k + 1).

For the situation with an arbitrary maximum level n̄ ∈ N it is sufficient to notice that

q̃n̄(n̄) = h(n̄)q̃0(0)

and

q̃n̄(k) = qn̄−1(k) + h(n̄)q̃0(k − n̄)

for k < n̄. This proofs part a) of the lemma. Part b) is a immediate consequence of part
a) and lemma A.1.3. �

Note, that the term qn̄−1(k|u, d) in Lemma A.1.4 refers to Lemma A.1.3. Since qn̄(k|u, d, d) =

qn̄(k|u, d) for all k, Lemma A.1.4 is a generalization of Lemma A.1.3 and we use the same
notation for both.

Lemma A.1.5 Suppose a minimum (maximum) wealth level k ∈ Z \ N (k ∈ N0) and a
target wealth level n ∈ N0 (n ∈ Z \ N). Then the probability of reaching the target wealth

level before falling below the minimum (rising above the maximum) wealth level is given
by

hk(n|u, d) :=

⎧⎨⎩h(n|u, d) 1−(h(1|u,d)h(−1|u,d))|k|+1

1−(h(1|u,d)h(−1|u,d))|n|+|k|+1 , for k, n ∈ Z, kn ≤ 0

0 , else

Proof: Since the two cases are analogous, it is sufficient to consider a minimum wealth
level k ∈ Z \ N and a target wealth level n ∈ N0. For notational simplicity set h(i) =

h(i|u, d), i ∈ Z throughout this proof. From lemma A.1.1 it is known that h(n) is the
probability of ever reaching a wealth level n. However, since the wealth level can fall
below k before reaching n, this probability is too large for the current situation and hence
we subtract the probability h(−(|k| + 1))h(n + |k| + 1) for falling below the minimum
wealth level k and rising to the level n afterwards. Unfortunately, although h(−(|k|+ 1))

is the probability for falling below the minimum wealth level k, the wealth level might
have risen to n before. Therefore the subtraction of h(−(|k| + 1))h(n + |k| + 1) is too
large and the probability h(n)h(−(n + |k| + 1))h(n + |k| + 1) for rising to n, falling to k

and rising to n again must be added. Surely this addition is too large again. Carrying on
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this procedure ad infinitum will give the probability in the assertion. Hence we find

hk(n|u, d) = h(n) − h(−(|k| + 1))h(n + |k| + 1)

+h(n)h(−(n + |k| + 1))h(n + |k| + 1)

−h(−(|k| + 1))h(n + |k| + 1)h(−(n + |k| + 1))h(n + |k| + 1) + − . . .

= (h(n) − h(−(|k| + 1))h(n + |k| + 1))

∞∑
i=0

(h(−(n + |k| + 1))h(n + |k| + 1))i

= h(n)
1 − (h(1)h(−1))|k|+1

1 − (h(1)h(−1))n+|k|+1

using the summation formula for the geometric series. �

A.2 Basics about Laplace Transforms

This section summarizes some important facts about Laplace transforms. All results are
well-known and can be found for example in Davies (1985).

Definition A.2.1 (Laplace transform) Let f : [0,∞) �→ R, then the Laplace trans-

form of f is a function C �→ C defined by

Lt,s {f(t)} =

∞∫
0

e−stf(t)dt.

Lemma A.2.2 (Existence) Let f : [0,∞) �→ R a piecewise continuous function and

suppose |f(t)| ≤ Meαt for all t ∈ [0,∞) and some constants M and α. Then Lt,s {f(t)}
is an analytic function for Re(s) > α.

Lemma A.2.3 (Uniqueness) Let f and g two functions with Lt,s {f(t)} = Lt,s {g(t)}
for all s ∈ C with Re(s) > α where alpha is some constant such that the Laplace transforms
of both functions exist. Then f(t) = g(t) for all t ∈ [0,∞) where f(t) and g(t) are

continuous.

Lemma A.2.4 (Inversion) Suppose the Laplace transform of some function f is ana-
lytic for all s ∈ C with Re(s) > α. Then

f(t) =
1

2πι

γ+ι∞∫
γ−ι∞

estLt,s {f(t)}

for any γ > α. The integral is known as the Bromwich-Integral.
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Proposition A.2.5 (Properties) Let f and g two functions such that both Laplace

transforms, Lt,s {f(t)} and Lt,s {g(t)}, exist for all s ∈ C with Re(s) > α. Then it
holds:

a) Linearity: For any constants c1 and c2 the Laplace transform of c1f(t) + c2g(t) is

given by
Lt,s {c1f(t) + c2g(t)} = c1Lt,s {f(t)} + c2Lt,s {g(t)}

b) Convolution: The Laplace transform of the convolution, (f ∗ g)(t), is given by

Lt,s {(f ∗ g)(t)} = Lt,s {f(t)}Lt,s {g(t)}

c) Integration:

Lt,s

⎧⎨⎩
t∫

0

f(τ)dτ

⎫⎬⎭ =
1

s
Lt,s {f(t)}

d) Special Case:

L−1
s,t

{
1

s − a

}
= eat

e) Limit: If f is analytic on Re(s) > 0, it holds

lim
t→∞

f(t) = lim
s→0+

s · Lt,s {f(t)}

A.3 Some integrals

Proposition A.3.1 Let a, b, δ ∈ R with a < 0, b > 0 and ρ(s, z|a, b, δ) as in proposition
2.1.2. Let further A1, A2, A3 ∈ R some constants. Then, for some j ∈ N0,

b∫
a

(A1e
zA3 + A2)

jρ(s, z|a, b, δ)dz =

j∑
i=0

(
j
i

)
Ai

1A
j−i
2 (1 − eibA3u(s|a, b, δ) − eiaA3d(s|a, b, δ))

s − iδA3 − 1
2
i2A2

3

and the particular choice δ =
μ−r− 1

2
σ2

σ
and A3 = σ yields

b∫
a

(A1e
σz + A2)

jρ(s, z|a, b, δ)dz =

j∑
i=0

(
j
i

)
Ai

1A
j−i
2 (1 − eiσbu(s|a, b, δ) − eiσad(s|a, b, δ))

s − i(μ − r) − i(i − 1)σ2

2

while the choosing j = 0 gives
b∫

a

ρ(s, z|a, b, δ)dz =
1 − u(s|a, b, δ) − d(s|a, b, δ)

s
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Proof: First, an application of the binomial expansion yields

(A1e
zA3 + A2)

j =

j∑
i=0

(
j

i

)
Ai

1e
ziA3Aj−i

2

such that only the integrals of the form
b∫

a

eziA3ρ(s, z|a, b, δ)dz need to be considered.

Notice that

0∫
a

eziA3ρ(s, z|a, b, δ)dz = d(s)
e−aδ−a

√
2s+δ2

√
2s + δ2

0∫
a

(
e(δ+iA3+

√
2s+δ2)z − e(δ+iA3−

√
2s+δ2)z+2a

√
2s+δ2
)

dz

with

0∫
a

(
e(δ+iA3+

√
2s+δ2)z − e(δ+iA3−

√
2s+δ2)z+2a

√
2s+δ2
)

dz

=
(δ + iA3 −

√
2s + δ2)e(δ+iA3+

√
2s+δ2)z − (δ + iA3 +

√
2s + δ2)e(δ+iA3−

√
2s+δ2)z+2a

√
2s+δ2

(δ + iA3 +
√

2s + δ2)(δ + iA3 −
√

2s + δ2)

∣∣∣∣∣
0

a

=
1

2

√
2s + δ2(1 + e2a

√
2s+δ2 − 2eiA3aeaδ+a

√
2s+δ2

) − (δ + iA3)(1 − e2a
√

2s+δ2
)

s − iδA3 − 1
2
i2A2

3

and likewise

b∫
0

eziA3ρ(s, z|a, b, δ)dz = u(s)
e−bδ+b

√
2s+δ2

√
2s + δ2

b∫
0

(
e(δ+iA3−

√
2s+δ2)z − e(δ+iA3+

√
2s+δ2)z−2b

√
2s+δ2
)

dz

with

b∫
0

(
e(δ+iA3−

√
2s+δ2)z − e(δ+iA3+

√
2s+δ2)z−2b

√
2s+δ2
)

dz

=
(δ + iA3 +

√
2s + δ2)e(δ+iA3−

√
2s+δ2)z − (δ + iA3 −

√
2s + δ2)e(δ+iA3+

√
2s+δ2)z−2b

√
2s+δ2

(δ + iA3 +
√

2s + δ2)(δ + iA3 −
√

2s + δ2)

∣∣∣∣∣
b

0

=
1

2

√
2s + δ2(1 + e−2b

√
2s+δ2 − 2eiA3bebδ−b

√
2s+δ2

) + (δ + iA3)(1 − e−2b
√

2s+δ2
)

s − iδA3 − 1
2
i2A2

3

.

Summing up the two integrals
0∫
a

eziA3ρ(s, z|a, b, δ)dz and
b∫
0

eziA3ρ(s, z|a, b, δ)dz now yields

the assertion. �
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Proposition A.3.2 Let a, b, δ ∈ R with a < 0, b > 0 and u(s|a, b, δ), d(s|a, b, δ),

ρ(s, z|a, b, δ) as in proposition 2.1.2. Then the integral
y∫
a

ρ(s, z|a, b, δ)dz is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−d(s|a,b,δ)

s
+ d(s|a, b, δ) (δ+

√
2s+δ2)eδy−y

√
2s+δ2+2a

√
2s+δ2−(δ−

√
2s+δ2)eδy+y

√
2s+δ2

2s
√

2s+δ2eδa+a
√

2s+δ2
, y ≤ 0

1−d(s|a,b,δ)
s

− u(s|a, b, δ) (δ+
√

2s+δ2)eδy−y
√

2s+δ2−(δ−
√

2s+δ2)eδy+y
√

2s+δ2−2b
√

2s+δ2

2s
√

2s+δ2eδb−b
√

2s+δ2
, y > 0

Proof: Follows from direct calculation similar to the proof of proposition A.3.1. �

Proposition A.3.3 Let a, δ ∈ R with a < 0 and d(s|a,∞, δ), ρ(s, z|a,∞, δ) as in section
2.3. Let further A1, A2, A3 ∈ R some constants. Then, for some j ∈ N0

∞∫
a

(A1e
zA3 + A2)

jρ(s, z|a,∞, δ)dz =

j∑
i=0

(
j
i

)
Ai

1A
j−i
2 (1 − eiaA3d(s|a,∞, δ))

s − iδA3 − 1
2
i2A2

3

and the particular choice δ =
μ−r− 1

2
σ2

σ
and A3 = σ yields

∞∫
a

(A1e
σz + A2)

jρ(s, z|a,∞, δ)dz =

j∑
i=0

(
j
i

)
Ai

1A
j−i
2 (1 − eiσad(s|a,∞, δ))

s − i(μ − r) − i(i − 1)σ2

2

Proof: Follows immediately from proposition A.3.1 and b → ∞. �

Proposition A.3.4 Let a, δ ∈ R with a < 0 and d(s|a,∞, δ), ρ(s, z|a,∞, δ) as in section

2.3. Then the integral
y∫
a

ρ(s, z|a,∞, δ)dz is given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−d(s|a,∞,δ)

s
+ (δ+

√
2s+δ2)eδy−y

√
2s+δ2+2a

√
2s+δ2−(δ−

√
2s+δ2)eδy+y

√
2s+δ2

2s·
√

2s+δ2 , y ≤ 0

1−d(s|a,∞,δ)
s

− (1−e2a
√

2s+δ2 )(δ+
√

2s+δ2)eδy−y
√

2s+δ2

2s·
√

2s+δ2 , y > 0

Proof: Follows immediately from proposition A.3.2 and b → ∞. �

Proposition A.3.5 Let b, δ, A ∈ R with b > 0 and ρ∞,λ(s, z) = lim
a→−∞

ρ(s, z|a, b, δ) as
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in section 3.4. Then the integral
y∫

−∞
eAzρ∞,λ(s, z)dz is given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1−e−2b

√
2s+δ2 )e(δ+

√
2s+δ2+A)y

√
2s+δ2(δ+

√
2s+δ2+A)

, y ≤ 0

1

s−Aδ−A2

2

+ 1√
2s+δ2

(
e(δ−

√
2s+δ2+A)y

δ−
√

2s+δ2+A
− e(δ+

√
2s+δ2+A)y−2b

√
2s+δ2

δ+
√

2s+δ2+A

)
, y > 0

Proof: Follows from direct calculation. �
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