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for helpful suggestions and constructive comments. Many thanks also to Jarkko Turunen

for the support during my time at the European Central Bank and our joint project. I

greatly enjoyed both the academic and recreational interaction with my fellow graduate

students. In particular, I would like to thank Michael Evers for interesting and fruitful

discussions, his continuous help and a lot of fun. Special thanks also go to Zeno Enders,

Andrea Felfe, Katharina Greulich, Stefan Niemann and Markus Poschke.

Financial support from the Bonn Graduate School of Economics, Jörg Breitung and the

Marie Curie Fellowship at the Universitat Pompeu Fabra is gratefully acknowledged. Many

thanks go also to Urs Schweizer and Jürgen von Hagen for managing the Bonn Graduate

School of Economics.

Last but not least, I am deeply indebted to Malte, my friends and my family for their pa-

tience, their unconditional emotional support and encouragement as well as their enduring

belief in me.



Contents

Introduction 1

1 On the Implications of Technology and Non-Technology Shocks for Ag-

gregate Labor Demand 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 A standard labor market model . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.2 Empirical performance based on neutral shocks . . . . . . . . . . . . 15

1.3 Moments conditional on technology shocks . . . . . . . . . . . . . . . . . . . 17

1.3.1 Identification and estimation . . . . . . . . . . . . . . . . . . . . . . 17

1.3.2 The Shimer puzzle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3.3 The “job finding puzzle” . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.4 Are the estimated shocks really technology shocks? . . . . . . . . . . 26

1.4 Different shocks: Fisher identification . . . . . . . . . . . . . . . . . . . . . 27

1.4.1 Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

1.4.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.5 Alternative variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.1 Alternative worker flows . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.5.2 Job flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

i



1.6 Alternative identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.6.1 Motivation and identification . . . . . . . . . . . . . . . . . . . . . . 37

1.6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Appendix to Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2 On the Implications of Skill-Biased Technological Progress for the Busi-

ness Cycle 53

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 Empirical approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.2.1 Shocks to the production technology . . . . . . . . . . . . . . . . . . 57

2.2.2 Identification and estimation . . . . . . . . . . . . . . . . . . . . . . 59

2.2.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.3 Skill-biased technology shocks . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.3.1 Skill bias in ‘neutral’ technology shocks . . . . . . . . . . . . . . . . 65

2.3.2 Shocks to the supply of skill . . . . . . . . . . . . . . . . . . . . . . . 67

2.3.3 Identified skill-biased technology shocks . . . . . . . . . . . . . . . . 69

2.3.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.4 Investment-specific shocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.4.1 Skill bias in investment-specific shocks . . . . . . . . . . . . . . . . . 75

2.4.2 Contribution to business cycle fluctuations . . . . . . . . . . . . . . 78

2.4.3 Capital-skill complementarity . . . . . . . . . . . . . . . . . . . . . . 80

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

Appendix to Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

3 On the Implications of Unobserved Age and Cohort Effects for Aggre-

gate Labor Supply 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

ii



3.2 Data and methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.1 Basic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.3.2 Model with observed determinants . . . . . . . . . . . . . . . . . . . 107

3.3.3 Projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Appendix to Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Conclusion 131

Appendix 135

A Identification and estimation in Chapters 1 and 2 137

A.1 Standard long-run identification . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.2 Estimation of the BVAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.3 Restricted Fisher identification . . . . . . . . . . . . . . . . . . . . . . . . . 139

A.4 Alternative identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.5 VAR identification with short- and long-run restrictions . . . . . . . . . . . 141

iii



iv



List of Figures
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Introduction

The macroeconomic approach to the labor market aims at explaining aggregate labor mar-

ket phenomena that have been present in many industrialized countries such as the United

States or the western European countries in the postwar period. These phenomena include

the permanent and simultaneous presence of unemployment and unfilled job vacancies as

well as the fact that aggregate hours worked, employment and unemployment strongly

co-move with the business cycle. At the same time, the amount and composition of labor

supplied to the market and employed in production have substantially changed over the

last decades. Understanding the driving forces and economic mechanisms that lead to the

outcome in the labor market is of high importance to grasp the business-cycle fluctuations

as well as the evolution of long-run growth of the economy as a whole.

A large strand in the macroeconomic labor literature builds on the seminal work of Dale

Mortensen and Christopher Pissarides (see Mortensen and Pissarides (1994) and Pissarides

(2000)) who employ search frictions in the labor market in order to explain the parallel

existence of unemployment and unfilled vacancies in equilibrium. In their model, posting

a vacancy is costly for firms, and matching in the labor market takes time depending on

the tightness of the labor market, i.e., the ratio of unemployed workers seeking employ-

ment and open vacancies required to be filled. Firms and workers who meet in the labor

market bargain over the wage given their economic conditions such as labor productivity

or unemployment benefits.

The dynamic version of the Mortensen-Pissarides model aims at replicating the procyclical

fluctuations of employment and countercyclical fluctuations of unemployment respectively.

Here, shocks to labor productivity increase the incentive for firms to post vacancies and

therefore decrease unemployment. This means that the fluctuations in the labor market

are prominently driven by labor demand. Building on this baseline model, a variety of

issues have been raised in recent years in order to improve the empirical performance of
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the model, i.e., its ability to replicate the employment and unemployment fluctuations it

aims to explain. For example, the introduction of rigid wages is conjectured to improve the

model with respect to the volatility of the key variables (see Shimer (2005a) or Hall (2005)).

Another issue of importance is the question whether the data support the assumption of

a constant job separation rate, i.e., the probability with which an employed worker is

separated from an existing employment relationship (see Fujita and Ramey (forthcoming)

or Ramey (2008)).

A related part of the literature incorporates search-and-matching in the labor market as in

Mortensen and Pissarides into a general macroeconomic real-business-cycle (RBC) setup

(see Merz (1995) and Andolfatto (1996) and also denHaan et al. (2000)). This research

was initially motivated to improve upon the empirical performance of the RBC model.

In contrast to the standard model, it provides a more sophisticated framework which

links the developments in the labor market to the key macroeconomic aggregates such as

output, capital investment and consumption. Fluctuations in the basic RBC model are

(mainly) driven by shocks to technological progress or more generally aggregate supply.

As labor productivity shocks in the more general setup of the Mortensen-Pissarides model

are widely interpreted as technology shocks (Shimer (2005a)), the RBC framework indeed

provides the natural framework to link the cyclical movements of the labor market variables

to the induced driving force of the business-cycle. However, the RBC paradigm about

the cyclical movements of the variables and the sources of the business cycle is heavily

disputed in the literature (see for example Gaĺı (1999)). In the tradition of this dispute,

Chapter 1 challenges the conventional view that cyclical labor market dynamics are mainly

driven by technology shocks by highlighting the role of shocks to the aggregate demand

(here preference shocks) as a complementary source of fluctuations in employment and

unemployment. Based on this analysis, Chapter 1 also contributes to many of the issues

raised with respect to the Mortensen-Pissarides model such as its empirical performance,

or the endogeneity of job separations.

Another part of the macroeconomic labor literature has focused on the long run develop-

ments of labor demand. Also here, technological progress constitutes the main determinant

of the labor demand of firms in the medium to long run. A wide literature has documented

that this demand has shifted in favor of higher rather than lower educated workers in re-

cent decades, so-called skill-biased technological progress (for example Katz and Murphy

(1992) or Autor et al. (1998)). Analyzing these shifts in the composition of inputs to ag-
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gregate production via a growth decomposition framework reveals not only the skill-bias

of technological progress but also the degree of substitutability or complementarity be-

tween high and low skilled labor as well as capital in aggregate production (Krusell et al.

(2000)). Building on aspects of the above mentioned RBC literature as well as results and

methods of Chapter 1, Chapter 2 investigates the implications of skill-biased technological

change for the business cycle. Over and above linking the conventional driving forces of

business-cycles and long-run growth to the developments in the labor market, Chapter

2 therefore attempts to identify sources of cycles and growth that originate in the labor

market itself.

Apart from labor demand, aggregate labor market supply evolves as a complex result of

individual economic choices which are potentially affected by wages, labor market policies

such as unemployment benefits or labor taxes, but also preferences for education and skills

or social norms and culture. Shifts in the magnitude or composition of labor supply and

consequently labor input are an important factor of actual and potential economic growth.

In fact, this highlights the importance of the underlying heterogeneity between different

workers in the labor force for the aggregate developments. Like labor demand, labor supply

has shifted towards a higher ratio of high skilled workers in the recent decades (see again

Katz and Murphy (1992) or Autor et al. (1998)). This may be due to the aforementioned

increase in skill demand, but is also attributable to an increased preference for education.

Together with compositional changes with respect to skill, the age composition of aggregate

labor supply has also changed. As more and more young persons tend to stay in education

longer, they enter the labor force later in life, but are also better educated. Further,

changes in the age composition of the population towards a higher share of older persons

also affect the age composition of the labor and work force.

In addition to growth, skill supply shifts have also importantly affected the business-

cycle fluctuations of employment as shown in Chapter 2. Apart from this, the labor

force in the aforementioned literature (and the first two chapters of this dissertation) was

assumed to be constant. However, fluctuations in labor market participation behavior

are present in the data, affect the aggregate labor supply and play an important role for

the labor market business-cycle fluctuations (for a recent study on this, see Veracierto

(2008)). In the presence of labor market frictions as assumed in Chapter 1, a rise in labor

market participation initially increases the pool of unemployed and therefore decreases the

probability to find a job. Participation may increase over the cycle in response to rising
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wages, i.e., higher opportunity costs of staying out of the labor force. This effect strongly

depends on the underlying wage elasticity of the labor supply and is often associated with

the so-called “added worker” effect of persons, often females, in a liaison with a working

partner.

In addition to cyclical fluctuations, labor market participation has substantially increased

over time, especially for females. This rise in participation has often been associated with

cohort effects. Cohort effects generally encompass any factor associated with a particular

birth year and constitute unobserved sources of labor supply shifts between different gen-

erations of workers. These shifts are often reflected in choices made early on in life such as

marriage, maternity leave and/or education and are related to changes in the underlying

preferences or cultural factors. Chapter 3 attempts to disentangle shifts in labor market

participation that are due to movements of the business cycle or a change in labor market

policies from those that are due to unobserved cohort effects.

In general, the subsequent analysis is positive and policy applications will be referred to,

but not addressed explicitly. However, as this dissertation aims at achieving a better

understanding of the movements of hours worked, employment, unemployment and labor

market participation over the business cycle and along their long-run trends, its results are

highly relevant for both the conduct and the evaluation of labor market policy, and also

fiscal and monetary policy. The following chapter summaries will provide more detailed

insights into the particular questions addressed and the results obtained in this dissertation

and will also illustrate the differences and connections between the respective chapters.

Chapter 11. The standard workhorse model to study business-cycle movements into and

out of employment and unemployment is based on a dynamic version of the Mortensen

and Pissarides (1994) model with search-and-matching in the labor market. The question

whether this model is able to replicate the business-cycle fluctuations in U.S. time series

data has been one of the most controversially discussed issues in the recent macro-labor

literature. Shimer (2005a), one of the most important contributors to this debate, has

documented that the model does not mirror the high volatility of the job finding rate and

unemployment that is observed in the data.

Chapter 1 re-addresses the empirical performance of the model by relating the business-

cycle fluctuations in the labor market variables to the sources of the cycle. In particular,

1This chapter is based on the working paper “New Evidence, Old Puzzles: Technology Shocks and

Labor Market Dynamics” (Balleer (2009))
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the dynamics in the standard frictional labor market model stem from fluctuations in labor

productivity and “a change in labor productivity is most easily interpreted as a technol-

ogy or supply shock” (Shimer (2005a)). This points towards a representation of the labor

market dynamics within a real-business-cycle (RBC) and growth model in which technol-

ogy shocks are the main driving forces of labor productivity. However, other disturbances

such as demand shocks may affect labor productivity as well. In Chapter 1, I disentangle

different types of technology (supply) and non-technology (demand) shocks using a struc-

tural VAR with long-run restrictions similar to Gaĺı (1999). I then assess the empirical

performance of the standard model based on second moments that are conditional on

technology shocks rather than on overall unconditional moments.

I document that a baseline model that is driven by technology shocks and is conventionally

calibrated performs well to replicate the standard deviations in the key labor market

variables that are conditional on technology shocks. This means that much of the criticism

that has been uttered with respect to the performance of these models based on overall

unconditional moments does in fact not apply. However, the model is not able to replicate

the positive correlation between unemployment and labor productivity that is conditional

on technology shocks. This result displays a new puzzle in the macro labor literature that

is in many ways parallel to the existing “hours puzzle” with respect to the RBC model

without labor market frictions (Gaĺı (1999)). In addition, I show that non-technology

shocks are necessary to explain both the overall volatility in the labor market and the co-

movement of the labor market variables with labor productivity. I test the effect of demand

shocks in the form of shocks to the marginal-rate of substitution between consumption

and leisure, generally referred to as preference shocks, in the macroeconomic labor market

model. I document that these shocks can help to explain the overall volatility in the labor

market variables, but are not suitable to analyze the conditional correlations in the data.

Conventional technology shocks commonly referred to as a source of the business cycle may

either be factor-neutral or biased towards new investment rather than consumption goods

(investment-specific technology shocks). Motivated by observed variation in the data, I

propose a new identification scheme to separate different types of technology shocks that

are neither neutral nor investment-specific in Chapter 1. I show that these remaining

technology shocks play an important role for the business-cycle variance of the labor

market variables. While it is difficult to interpret these technology shocks in the theoretical

framework of this chapter, when assuming a Cobb-Douglas production technology, Chapter
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2 provides a more general context in this respect in order to further explore these shocks.

Chapter 22. Like the preceding chapter, Chapter 2 builds on the evidence that technology

shocks have been an important driving source of the US business cycle in the last two

decades. At the same time, the US as well as many other industrialized countries, have

seen a strong parallel increase in the price and quantity of skill. This fact has been taken

as evidence for an increase in skill demand driven by technological progress that is biased

towards making skilled labor more productive (see Katz and Murphy (1992) or Autor et al.

(1998)). This means that newly developed technologies require relatively more educated

and fewer uneducated workers. Chapter 2 attempts to relate these two phenomena by

exploring the implications of skill-biased technological change for the business cycle.

Existing studies on skill-biased technological change have focused on slow moving trends

in annual data. As annual data are not suitable to analyze business cycle fluctuations,

we construct a quarterly series for the skill premium and the supply of skilled workers for

the US from the Current Population Survey outgoing rotation groups. Measuring neutral

and investment-specific technology shocks using long-run restrictions in a structural VAR

similar to Chapter 1 then allows us to assess the relationship between technology and

the skill premium, and hence skill-bias, over the business cycle. Over and above this

assessment, Chapter 2 adds a different angle as it proposes a structural VAR to identify

skill-biased, and complementary also skill-neutral, technological change directly. This

strategy allows to explore potential sources of the business cycle that originate in the

labor market.

We document that cyclical improvements in technology significantly increase the skill

premium. This effect is realized in full within a year, providing evidence in favor of skill-

biased technological change and its potential importance for business cycle fluctuations.

Further, skill-biased and skill-neutral technology shocks have different implications for

other aggregate variables. In particular, a positive skill-biased technology shock leads

to a much larger reduction in total hours worked than a skill-neutral technology shock

and may therefore provide an explanation to the “hours puzzle” already mentioned in

Chapter 1. Apart from this, the results from Chapter 2 are instructive with respect to the

relationship between the inputs to aggregate production. In particular, high and low skilled

labor are not perfect substitutes in production. It is documented that investment-specific

technology shocks have a significant negative effect on the skill premium and, conversely,

2This chapter draws on joint work with Thijs van Rens (Balleer and van Rens (2008)).
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skill-biased technology shocks raise the relative price of investment goods. This evidence

directly contradicts the hypothesis of capital-skill complementarity, suggesting instead

that capital and skill are in fact substitutes in the aggregate production process.

Chapter 2 highlights the role of non-technology shocks for the business-cycle dynamics in

the labor market. These shocks are different in nature than the non-technology shocks

investigated in Chapter 1. Here, shifts in the ratio of high to low skilled workers in the

aggregate labor supply affect the composition of the pool of workers available to firms. If

the two groups of workers differ in their productivity, these shifts affect the composition

of aggregate employment, aggregate productivity and the wage premium. This means

that shocks to the relative supply of high skilled workers may mistakenly be measured as

technology shocks. In Chapter 2, we propose a strategy to separately gauge these skill

supply shocks in the structural VAR. This cleans the measure of technology shocks from

the potential influence of the skill supply shocks. We furthermore document that skill

supply shocks play an important role for the business cycle movements of hours worked

as they account for around 30% of the business cycle variance of this variable.

Chapter 33. Similar to the US, the euro area labor force participation rate, defined as the

ratio between the labor force and the working age population, has increased from below

65% in the early 1980s to 70.9% in 2007. The participation rate of females in the euro

area has increased by more than 15 percentage points over this time period, to 63.3% in

2007, compared to the participation rate of 78.6% for males. The large increase in the

propensity of the euro area population to work or to search for and be available for jobs has

been one of the main driving forces of the substantial increase in euro area labor supply

that has accelerated since the mid-1990s. This strong increase has significantly reduced

the gap in the use of labor input between the euro area and the United States, and has

substantially contributed to output growth and welfare in the euro area. A number of

determinants could have factored into this rise in participation, including reforms in the

labor market, changes in cultural attitudes towards work (particularly for women), as well

as demographic factors. As demographic factors will become less favorable with population

ageing increasing in the future, positive participation trends within age and gender groups

will be important for sustaining potential growth in the euro area.

3This chapter is based on the working paper “Labor Force Participation in the Euro Area: A Cohort-

Based Analysis” which is joint work together with Jarkko Turunen and Ramon Gomez-Salvador (Balleer

et al. (2009))
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Chapter 3 uses a cohort based model of labor force participation to analyze determinants

of participation for disaggregated groups of workers in the euro area and the five largest

euro area countries (Germany, France, Italy, Spain and the Netherlands). The model is

used to decompose the evolution of time-series of age-specific participation rates into the

impact of the business cycle, observed structural determinants of participation and other

unobserved determinants captured by fixed effects that are specific to ages and cohorts.

Chapter 3 documents that analyzing participation behavior both between (age and gender

effects) and within (cohort effects) detailed age and gender groups is particularly useful for

modelling trends in euro area aggregate participation rates and projecting them forward.

The results suggest that age and cohort effects can explain a substantial part of the recent

increase in labor force participation rates in the euro area, although not the surge since

early 2000s. Cohort effects are particularly relevant for women, with those born in the

1920s and 1930s less likely and those born in the late 1960s and early 1970s more likely to

participate in the labor market over the life-cycle. There is substantial variation in cohort

effects across the five largest euro area countries that are analyzed. Depending on the

country, the estimated cohort profiles suggest an increase of 10 to 30 percentage points in

female participation rates. In addition, a number of observed determinants, such as labor

taxes, union density, unemployment benefits and the average number of children have had

an impact on labor force participation rates, although the specific impact varies across

age and gender groups and countries.

We use the results from the cohort model in order to consider different scenarios of future

labor market participation. As cohort effects have increased for those born before the

mid 1970’s, but have then stabilized at a constant level, they continue to positively affect

future participation as long as these groups still remain in the labor force. Looking forward,

demographic factors will negatively affect participation as population ageing increases. We

document that positive cohort effects are not large enough to compensate for the downward

impact of population ageing on future labor force participation rates in the euro area.
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Chapter 1

On the Implications of Technology

and Non-Technology Shocks for

Aggregate Labor Demand

1.1 Introduction

U.S. business cycles are characterized by large movements into and out of employment.

The standard framework commonly used to study these movements comprises search-and-

matching in the labor market as first presented by Mortensen and Pissarides (1994). In

the dynamic version of this model, business-cycle fluctuations of labor market variables

originate in fluctuations of labor productivity. These dynamics can be characterized by

gross worker flows, i.e., the flow of unemployed workers filling an open job vacancy and

employed workers separating from an existing employment relationship. The question

whether the standard model is able to replicate the business-cycle fluctuations in U.S.

time series data has been one of the most controversially discussed issues in the recent

macro-labor literature.

Shimer (2005a) has fuelled the debate by criticizing the standard model with respect

to its empirical performance. His criticism was based on comparing second moments

generated from the model to second moments in worker flow data calculated from the

U.S. Current Population Survey (CPS). He showed that the model did not mirror the

high volatility of the job finding rate and unemployment that is observed in the data. In

addition, the correlation between the job finding rate and the unemployment rate with

labor productivity is much too high in the model.
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While the dynamics in the standard frictional labor market model stem from fluctuations

in labor productivity, “a change in labor productivity is most easily interpreted as a

technology or supply shock” (Shimer (2005a), p. 25). Hence, labor market dynamics can

be represented within a real-business-cycle (RBC) and growth model as in Merz (1995),

or Andolfatto (1996). In these models technology shocks are the main driving forces of

labor productivity. However, other disturbances such as demand shocks may affect labor

productivity as well. Within this context, Gaĺı (1999) demonstrated how to separately

identify technology and non-technology shocks in time series data via restricting their

long-run effects in structural vector-autoregressions (SVARs).

Against this background, this paper re-addresses the empirical performance of the stan-

dard search-and-matching model of the labor market in which fluctuations are driven by

technology shocks. The empirical performance of the model is assessed based on second

moments that are conditional on technology shocks rather than on overall unconditional

moments.1 Since conditional and unconditional moments substantially differ in this case,

the judgement of the model that is based on unconditional moments may be very mis-

leading. The results provide answers to various issues of importance to the standard labor

market model. First, one can gain important insights into the failure of the model to

generate sufficient volatility on the unconditional level as documented by Shimer. Second,

in addition to the moments conditional on technology shocks, this analysis provides in-

formation about the importance of non-technology shocks and the dynamics induced by

these shocks. Put differently, unconditional dynamics may encompass various different

dynamics on the conditional level. Since the identified shocks are structural, the results

deliver a meaningful guidance for the formal modelling of the labor market dynamics.

Third, if the identified shocks are in fact shocks to the business cycle, their effect on the

rate of job separations sheds light on the validity of assuming a constant job separation

rate in a business-cycle model.

Two main findings emerge. With respect to volatility, the standard deviations of the job

finding rate and the unemployment rate that are conditional on technology shocks are much

lower than the unconditional ones. In addition, these standard deviations are, in fact, close

to the standard deviations that are generated within a commonly calibrated version of the

1I am not the first to address conditional moments with respect to labor market dynamics. Michelacci

and Lopez-Salido (2007), Ravn and Simonelli (2006), Fujita (2009) and many others all have also used

SVARs in order to investigate the effect of different shocks on worker and job flows. I will refer to differences

in the focus as well as methods and results below.
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standard model that is driven by technology shocks. Consequently, the Shimer critique

of the model with respect to its lack of volatility does not apply when the empirical

performance is based on conditional moments. Since the technology shocks generate only

a part of the overall volatility in the data, non-technology shocks play a substantial role

for this volatility as well. In order to replicate the unconditional moments in the data, the

standard model should therefore be augmented by additional non-technological sources

of fluctuations rather than with respect to a better propagation of technology shocks as

suggested in the literature. I show that shocks to the marginal rate of substitution between

consumption and leisure, so-called preference shocks, may work in this respect. Further,

job separations significantly move after both types of estimated shocks. This means that

it is not reasonable to assume the job separation rate to be constant over the cycle.

With respect to the conditional correlations, the co-movement of the job finding rate

with labor productivity that is conditional on technology shocks is negative, while the

conditional correlation of unemployment with productivity is positive. Put differently, job

finding falls after a positive technological innovation while unemployment increases. In

the standard labor market model, a positive technology shock of the same size leads to an

increase in labor productivity and, hence, to an increase in the job finding rate and a fall

in unemployment. This result constitutes a “job finding puzzle” from the viewpoint of the

standard model that is comparable to the so-called “hours puzzle” documented in Gaĺı

(1999). Since technology shocks play a considerable role for the business cycle variance of

the job finding rate and unemployment, this result is a much more serious challenge to the

empirical performance of the standard model than the Shimer volatility in unemployment

puzzle. Hence, this result supports models which are able to incorporate these effects.

Since the correlations of these two variables with productivity that are conditional on

technology shocks are of opposite sign as the respective unconditional moments, non-

technology shocks are necessary again to fully describe the overall dynamics in the data.

However, I show that preference shocks are not suitable to explain the remaining variation

in the data.

This paper presents results for different types of technology shocks and different types

of measures for the labor market dynamics. Based on Gaĺı (1999), technology shocks

are the only shocks that have a long-run effect on labor productivity. This assumption

holds in the RBC framework with frictional labor markets that is presented in Section

1.2. The identification of these standard Gaĺı technology shocks within a structural VAR
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as well as their conditional moments that are estimated including the Shimer worker flow

data are presented in Section 1.3. In addition, Fisher (2006) has motivated the separate

identification of factor-neutral and investment-specific (or capital-embodied) technology

shocks from the data. In the model, both of these shocks positively affect labor productiv-

ity in the long-run, while investment-specific technology shocks have a negative long-run

effect on price of investment goods relative to consumption goods in addition. Section

1.4 presents the identification of these two shocks based on assumptions derived from the

model and documents the results. Note that the identification employed uses an additional

assumption on the effect of investment-specific technology shocks on labor productivity

that goes back to Fisher. This assumption has an important effect on the results and has

been neglected by many other authors in similar studies (such as Canova et al. (2007)

and Ravn and Simonelli (2006)). Here, even though investment-specific technology shocks

provide an additional source of volatility in job finding and unemployment, they are not

large enough to explain the high volatility in the data. Further, investment-specific and

neutral technology shocks generate very similar dynamics in the worker flow data and

hence support the findings from the Gaĺı identification.

Moments conditional on neutral and investment-specific shocks from the Fisher identifi-

cation are presented for job flow data in Section 1.5.2. Data on job flows are generally

viewed as an alternative to worker flows in order to assess the empirical performance of a

model with a frictional labor market. Using recent data collected by Davis et al. (2006),

the volatility result outlined above prevails. The job finding puzzle vanished however

when incorporating job flows rather than worker flows in the estimation. Again, non-

technological disturbances are necessary in order to fully understand the overall dynamics

in the data.

Complementary to the Gaĺı and Fisher identification, Section 1.6 proposes a new and

alternative identification strategy for technology shocks which attempts to shed light on a

few issues that arise from the estimation of technology shocks and their potential impact

on the results. First, I document that the identified standard Gaĺı technology shocks

have a positive and significant effect on the relative price of investment. This means

that the Gaĺı technology shocks are neither truly neutral technology shocks nor are they

investment-specific technology shocks. Rather, these shocks are negatively biased towards

new investment. Neither the Gaĺı nor the Fisher identification accommodates this variation

in the data. Second, the Fisher identification of technology shocks employs an assumption
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which fixes the effect of the investment-specific technology shock on labor productivity

and consequently the correlation between this shock and the neutral technology shock.

I propose a mixture of long-run zero and sign restrictions to distinguish positive produc-

tivity shocks with positive from positive productivity shocks with negative effects on the

investment price. On the one hand, this provides an identification of investment-specific

technology shocks alternative to the Fisher identification. Thereby I can test the critical

Fisher restriction for its validity. On the other hand, I identify a new kind of technology

shocks, namely positive technology shocks that are negatively biased towards investment.

These shocks have so far not been taken into account in the literature as it is not clear how

to interpret them. However, they are shown to play a significant role for the dynamics of

the labor market variables. For both types of technology shocks following from this iden-

tification, the general results with respect to the empirical performance of the standard

model based on moments conditional on these shocks continue to hold.

1.2 A standard labor market model

1.2.1 The model

The standard labor market framework referred to in the following nests search-and-

matching in the labor market within a real-business-cycle (RBC) and growth model as

in Merz (1995). The model comprises the subsequent equations:

max
{Ct,Nt+1,Vt,Kt+1}∞t=0

E0

∞∑

t=0

βt

(
χ ln(Ct)− N1+φ

t

1 + φ

)

subject to

AtK
α
t N1−α

t ≥ Ct + Xt + aVtZt

Kt+1 ≤ (1− δ)Kt + ItXt

Nt+1 = (1− ψ)Nt + µV 1−η
t (1−Nt)η

At = exp(γ + εat)At−1

It = exp(ν + εit)It−1.

The posting of vacancies Vt creates a cost a and thereby search frictions. Employment next

period is determined by those jobs that remain after exogenous separation ψ and the new

job matches that are formed in this period via a commonly used Cobb-Douglas matching
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function with matching elasticity η. The labor force is assumed to be constant, so that

unemployment in period t can be measured by 1 − Nt. Job finding per period can be

described by Ft = µ( Vt
1−Nt

)1−η and thus co-moves with labor market tightness, defined as

the ratio of vacancies to unemployment. The social planner representation can be derived

from a decentralized problem in which workers and firms bargain over the wage. In order

to meet the Hosios condition, the bargaining weight is implicitly set equal to the matching

elasticity in this setup.

As in Fisher (2006), growth is exogenously generated by two types of technological

progress. At represents general purpose technology in the production function and will

be called neutral technology in the following. It is referred to as investment-specific tech-

nology as makes new investment goods relatively cheaper than consumption goods and

hence drives the real price of new investments down.2 Through the capital accumulation

equation it favors new investments, leads to new capital formation and hence positively

affects output and labor productivity. As in Fisher, output, consumption, investment

and labor productivity grow with the rate αν+γ
1−α along a balanced growth path, while the

capital stock grows at rate ν+γ
1−α . Employment, unemployment and vacancies are station-

ary3. Shocks to these two types of technology generate business cycle fluctuations in the

model. Note that each one of these technology shocks also constitutes a labor productivity

shock. Through its positive effect on labor productivity, job finding rises after a positive

technology shock, while unemployment falls. Following from the two laws of motion for

technology, the investment-specific technology shock has a permanent effect on the rel-

ative price of investment, and both technology shocks have permanent effects on labor

productivity. These two properties will serve as identifying restrictions in the estima-

tion and hence, this framework serves as the suitable setup for the subsequent empirical

investigation.4

2This can also be described as 1
Pt

. Greenwood et al. (2000) derive this one-sector representation of the

model from a two-sector version with a consumption and an investment sector. Empirically, investment-

specific technological progress is believed to be responsible for the persistent fall in the real price of

equipment goods from 1955 until 2000 as measured by Cummins and Violante (2002) among others.

3Hence, vacancies are multiplied by Zt = A
1

1−α
t I

α
1−α
t in the budget constraint.

4Note that DeBock (2006) also presents a search-and-matching model with investment-specific tech-

nology shocks. However, the shocks are transitory in his framework and therefore not in line with our

identification of technology shocks applied later. Michelacci and Lopez-Salido (2007) describe a search-

and-matching model with permanent neutral and investment-specific technology shocks. Their model is

much more complicated than the standard model here and aims at describing different results in the data.
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The labor market model outlined above differs in many respects from the standard

Mortensen and Pissarides (1994) model that provides the basis for the Shimer model.

Utility is not linear, but follows the standard assumptions in the RBC literature. In ad-

dition, due to the explicit modelling of capital and capital accumulation (i.e. savings) as

well as output fluctuations, the RBC setting aims much more at imitating real fluctua-

tions outside the labor market. This will be important for potential extensions in order

to augment the performance of the model with respect to other variables and to other

shocks. However, as in Shimer, this study focusses on the second moments of the central

variables that this model wants to explain, that is the dynamics in the job finding, job

separation and unemployment rate.

Both the Shimer model and the model outlined above lack many features that have been

shown to be important to replicate overall dynamics in the data such as nominal or real

rigidities outside the labor market. The standard labor market model serves as a baseline

model in order to contrast its empirical performance based on unconditional moments

with moments conditional on labor productivity shocks, that is, technology shocks. It is

straightforward to add any other non-technological source of variation on productivity,

e.g. demand shocks. As long as extensions of the model do not affect the validity of the

identification, the empirical results documented below remain equally valid. In Section

1.3, I will consider preference shocks which move the marginal rate of substitution between

consumption and leisure. In the model, this means that the parameter χ will be replaced

by a stochastic process of the form ln(xt) = ρx ln(xt−1) + εxt.

1.2.2 Empirical performance based on neutral shocks

Due to the difference to the Shimer model, I re-consider the empirical performance of the

model outlined above. To keep the framework as simple as possible, I start with considering

neutral shocks as the only source of variation in the model. For this, I calibrate the model

and generate artificial time series from the model, compute the respective second moments

and compare them to the unconditional ones in the data. I choose a set of standard

parameters for the calibration: a capital share in production of α = 1
3 , the time discount

factor of β = 0.99 and capital depreciation of δ = 0.02. The Frisch labor supply elasticity

is pinned down by φ = 1 and χ = 1. In line with Mortensen and Nagypal (2007), the

elasticity of the matching function with respect to unemployment is set to η = 0.46. The

constant of the matching function (µ = 1.5) and the cost of posting vacancies (a = 0.02)
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are calibrated such that the steady state labor market tightness is equal to one and the

respective job finding rate equals the mean quarterly job finding rate of 1.5 in the worker

flow data used later in the estimation. The same data delivers the mean quarterly job

separation rate of ψ = 0.09.5

The first and second column of Table 1.1 compare the second moments in the data to those

that are generated from the model driven by neutral shocks only. Hence, εit = 0. The

growth rate and standard deviation of the neutral technology shock εat are then calibrated

to match the standard deviation of labor productivity which results in γ = 0.0035. Both

the artificial and the data series are detrended with a very smooth HP-filter (λ = 105) as

in Shimer in order to relate my results directly to his. In the actual data, the job finding

rate and unemployment are a lot more volatile than the job separation rate. From this,

Shimer concludes that unemployment fluctuations are mainly driven by fluctuations in the

job finding rather than the job separation rate. Furthermore, the standard deviation of

the job finding rate and unemployment are about ten times as large as the one in labor

productivity. All series are highly autocorrelated in the first lag.

The comparison with the model moments mirrors the Shimer volatility in unemployment

puzzle. First, the standard deviations of job finding and unemployment generated in

the model are very small compared to the ones in the data. Second, the correlation of

unemployment and job finding with productivity is too high in the model compared to

the data.6 Shimer concludes that there exists no internal propagation mechanism of labor

productivity shocks in the model, since the real wage strongly reacts to labor productivity

shocks and hence weakens the incentives for firms to post vacancies. In order to improve its

empirical performance, Shimer and also Hall (2005) have therefore proposed to introduce

rigid wages into the standard framework.

Hagedorn and Manovskii (2008) and many other authors have argued that Shimer’s volatil-

ity in unemployment puzzle disappears for a different calibration of the model, more pre-

cisely for a different calibration of the outside option of the workers in the wage bargaining.

This parameter is not considered here. Within the framework used above, the parameters

are chosen such that the volatility in the job finding rate and unemployment is as high

5For more details on the data and the sample, see Section 1.3.1.

6Table 1.7 shows that these result do not depend on the choice of the smoothing parameter in the

HP-Filter.
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as possible7. Put differently, the aim of this study is not to find a calibration such that

the model driven by technology shocks matches the unconditional moments in the data.

Rather, the output from this model in the standard calibration is to be compared to the

moments that are conditional on technology shocks.

1.3 Moments conditional on technology shocks

In the model, business cycle fluctuations of labor productivity, job finding and unemploy-

ment originate in movements of technological progress. It is therefore straightforward to

evaluate the empirical performance of the model based on second moments conditional

on technology shocks rather than on unconditional moments. In the data, shocks other

than technology shocks play a role for the overall fluctuations as well. Thus disentangling

the technology shocks from other shocks potentially serves three purposes. First, I can

investigate the dynamic relationships (correlations and impulse responses) between the

variables of interest that are conditional on technology shocks. Second, since these may

be different from the unconditional ones it may therefore be possible explain the failure

of the model on the unconditional level. Third, it is possible to assess the importance of

technology shocks for the unconditional data dynamics.

1.3.1 Identification and estimation

The effects of technology shocks on labor market variables can be investigated within

a structural VAR framework with long-run restrictions based on Blanchard and Quah

(1989). The main idea is to find a mapping that transforms the residuals from a reduced

form VAR into structural residuals such that the latter can be interpreted as certain types

of shocks such as technology shocks. These mappings typically involve assumptions on the

variance-covariance matrix of the structural shocks as well as restrictions on the effects of

these shocks on the variables in the VAR.

Based on Gaĺı (1999), technology shocks are identified via the central assumption that

they are the only shocks that positively affect labor productivity in the long-run. In addi-

tion, the technology shocks are orthogonal to each of the non-technology shocks estimated.

7Investigating sensitivity of this result to the choice of parameter values, it is possible, for example, to

increase the matching elasticity with respect to unemployment to the value proposed by Shimer of λ = 0.72

which clearly decreases the volatility of job finding and unemployment.
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Table 1.1: Historical decomposition of Gaĺı identification

Uncond. Model Conditional Moments
Sample I II Technology Residual

A: Standard Deviations
JFinding 0.1542 0.0536 0.0417 0.0548 0.1229

(0.04,0.08) (0.10,0.14)

JSeparation 0.062 0.0503 0.056
(0.04,0.06) (0.05,0.06)

Unemployment 0.1786 0.0519 0.0404 0.0881 0.1409
(0.06,0.12) (0.12,0.16)

Productivity 0.0156 0.0156 0.0116 0.0116 0.0166
(0.01,0.02) (0.01,0.02)

B: Autocorrelations
JFinding 0.9128 0.9071 0.9061 0.9189 0.8869

(0.86,0.95) (0.86,0.90)

JSeparation 0.6336 0.9256 0.6158
(0.89,0.95) (0.59,0.66)

Unemployment 0.9218 0.845 0.8443 0.9131 0.9109
(0.88,0.93) (0.90,0.92)

Productivity 0.8507 0.8701 0.868 0.8927 0.9206
(0.86,0.92) (0.90,0.94)

C: Cross-Correlations
JFind.,Prod. 0.0567 0.8625 0.8522 -0.436 0.6739

(-0.66,-0.10) (0.52,0.77)

JSep.,Prod. -0.4392 0.3544 -0.6703
(0.11,0.48) (-0.74,-0.59)

Unemp.,Prod. -0.1858 -0.7776 -0.7668 0.4613 -0.8014
(0.17,0.63) (-0.88,-0.70)

JFind.,Unemp. -0.9558 -0.9272 -0.9266 -0.9041 -0.9359
(-0.96,-0.75) (-0.95,-0.91)

JSep.,Unemp. 0.6845 0.885 0.6302
(0.80,0.92) (0.56,0.69)

JFind.,JSep. -0.4404 -0.596 -0.3167
(-0.76,-0.19) (-0.40,-0.19)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). For the conditional

moments, the series are simulated with the respective shock operating only. The point estimate is the

median, the confidence intervals are 68% Bayesian bands from the posterior distribution. Calibration I

of the model matches the unconditional standard deviation of labor productivity, calibration II matches

the same moment, conditional on technology shocks.
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These assumptions are implemented by including labor productivity in first differences and

ordered first in the VAR and then applying a Cholesky decomposition to the long-run hori-

zon forecast revision variance8. It has to be noted that many structural disturbances other

than technological innovations can affect labor productivity in the short and medium run,

but that technology shocks can be distinguished from non-technology shocks with respect

to their long-run effects on this variable. With this approach, I do not exactly estimate the

model outlined above. Rather the conditional moments obtained should hold for a broad

class of different model specifications that fulfill the identifying assumptions. The long-run

assumption about the nature of technology shocks holds in the model presented as well

as in many other models, such as the neoclassical growth model or the New Keynesian

model9.

All identification alternatives presented in the following are based on the same reduced-

form VAR which contains labor productivity, the job finding and separation rate. For

later comparison with alternative identification schemes, the relative price of investment

is added to the VAR. The reduced-form VAR is estimated within a Bayesian framework

with a Minnesota prior, similar to Canova et al. (2007). The Minnesota prior incorporates

a unit root in the levels of the variables included in the VAR and a fixed residual variance

which determines the tightness on own lags, other lags and potential exogenous variables

as well as the decay of the lags. Using the latter parameter, this prior allows us to generate

sensible results for a large number of lags, as Canova et al. outline. This addresses an

often cited criticism on the VAR approach (e.g. by Chari et al. (2008)) which states that

in theory one should employ a VAR with an infinite number of lags (here eight lags will

be employed) in order to correctly identify technology shocks using long run restrictions.

Except for the decay, I will use a relatively loose prior in the estimation10. Further, the

VAR is estimated with a trend as suggested by Canova et al. (2006). Here, the trend is

a dummy that is deterministically broken at 1973:2 and 1997:1. These dates have been

considered as break points in the growth literature and replicate the turning points in the

job separation rate and unemployment series.11

8See the Appendix A.1 for further details.

9It does not hold in endogenous growth frameworks.

10The prior variance of the coefficients depends on three hyper-parameters φ1 = 0.2, φ2 = 0.5 and

φ3 = 105, that determine the tightness and decay on own lags, other lags and exogenous variables. The

decay parameter is set to d = 7.

11See Fernald (2007b) for empirical evidence on the trend breaks. Section 1.4.3 presents robustness

checks to this specification along various dimensions including different priors, different break points for
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The baseline specification is estimated using quarterly time series data for the U.S. over the

sample 1955:1-2004:4. The job finding and separation rates are taken from the worker flow

data produced by Robert Shimer12. Labor productivity (output per hours of all persons) is

the standard non-farm business measure provided by the U.S. Bureau of Labor Statistics.

The real price of investment consists of a price index for equipment and software and a

consumption price deflator that is chain weighted from nondurable, service and government

consumption. The standard data from the National Income and Product Accounts (NIPA)

have been criticized not to take into account the price-per-quality change in the investment

goods of interest (see Gordon (1990)). I use the quarterly series generated by Fisher (2006)

that is based on the measure of Cummins and Violante (2002) and that takes these flaws

into account13. Labor productivity and the relative price of investment are included in

growth rates in the VAR, while the job finding and separation rates are included in levels.

Under the assumption of homogenous workers and a constant labor force, the unem-

ployment rate can be approximated by the steady state unemployment rate ũ = js
js+jf .

Linearizing this relationship, one can also deduct the impulse-response of unemployment

from the responses of the job finding and the job separation rates. Shimer’s assumption

that the job separation rate does not move over the cycle and, therefore, does not play a

role for the fluctuations of unemployment has been criticized by Fujita and Ramey (forth-

coming) among others. In fact, the job separation rate is more strongly correlated with

labor productivity than the job finding rate as can be seen from the first column in Table

1.1. I include the job separation rate in the VAR in order to test this criticism.

1.3.2 The Shimer puzzle

Table 1.1 depicts the historical decomposition of the actual time series into the technol-

ogy and non-technology (or residual) components. These component series are generated

assuming the exclusive presence of the respective shock and using information on the first

lags in the sample. Detrending the resulting series with the smooth HP-filter as in Shimer

then delivers the business cycle components of interest. The historical decomposition doc-

uments the ability of the single shocks to replicate exactly those moments in the data that

the trend and no trend as well as different lag lengths in the VAR.

12This is the worker flow data officially posted on the website of Robert Shimer and documented in

Shimer (2005b). For additional details, see http://home.uchicago.edu/∼shimer/data/flows.

13The series by Jonas Fisher was extended by Ricardo DiCecio. I thank both for making their data

available to me.
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have been used for judging the empirical performance of the model.14

Volatility is measured by the standard deviation in panel A. The standard deviations of the

component series of the job finding rate and unemployment that are driven by technology

shocks are less than half of the overall sample volatility. In fact, if the model is calibrated

to match the standard deviation of labor productivity that is conditional on technology

shocks (calibration II in column 3 of Table 1.1), the standard deviation of the job finding

rate generated in the model is close to and lies within the confidence bands of the standard

deviation that is conditional on technology shocks.

The model assumes a constant job separation rate over the business cycle. The estimated

standard deviation of the job separation rate that is conditional on both technology shocks

and non-technology shocks is, however, significantly positive. If business cycles are driven

by technology shocks, this result undermines the assumption of a constant separation rate

over the cycle. Instead, this result favors a theoretical context with endogenous rather

than exogenously fixed job separation as in denHaan et al. (2000).

Addressing the empirical performance of the model with constant job separation never-

theless, one should therefore consider the volatility of unemployment that is driven by the

job finding rate only, setting the job finding rate to its mean value throughout the sample

period. The unconditional standard deviation of 0.1525 is then contrasted with the 0.0548

conditional on technology shocks and 0.1237 conditional on non-technology shocks (see

first row in Table 1.2). The standard deviation in unemployment that is generated by the

model therefore lies within the confidence bands conditional on technology shocks. As a

result, the technology-shock driven model works well to replicate the volatilities in the job

finding rate and unemployment that are conditional on technology shocks in the data. As

a consequence, the Shimer critique does not apply.

While the model works well to generate the volatility that is conditional on technology

shocks, it, however, still fails to explain the overall volatility in the sample. In fact, a

large part of the volatility still remains to be unexplained in the “residual” disturbances

as depicted in the last column of Table 1.115. In order to replicate the dynamics in the

14Note that the second moments resulting from these series do not add up to the unconditional moment.

Note also that all results discussed also hold for HP-filtered data using the standard parameter of λ = 1600

as can be seen in Table 1.7 in Section 3.4.

15In a parallel developed paper, Barnichon (2008) also shows the importance of non-technology shocks

for worker flows. He argues that these remaining shocks are monetary policy shocks.
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overall data, the standard search-and-matching model should consequently be augmented

by additional non-technology sources of volatility, generally referred to as demand shocks.

Hall (1997) has proposed a candidate for these residual shocks, namely preference shocks

or shocks to the marginal rate of substitution between consumption and leisure.16 As

mentioned in Section 1.2, it is easy to incorporate these kinds of shocks into the model.

After a positive preference shock, agents in the economy want to consume and work more,

hence they are willing to accept a lower wage in order to become employed which increases

the incentive for firms to post vacancies and decreases unemployment. Panel A and B of

Table 1.2 depict the unconditional and conditional moments in the data (assuming a

constant job separation rate) as well as the moments from the model that is driven by

preference shocks only. The model is calibrated to match the standard deviation of labor

productivity that is conditional on the non-technology shocks which involves ρx = 0.5 and

σx = 0.2. Preference shocks are suitable to generate high volatility in these two variables

as suggested by Hall.

1.3.3 The “job finding puzzle”

The autocorrelations conditional on technology shocks are close to the unconditional ones.

The model lacks some persistence with respect to the job finding rate as the autocorre-

lation is a bit too low compared to the one in the data. Generally however, the model

performs well in replicating the conditional and unconditional autocorrelations. The con-

ditional co-movement of the variables is depicted in panel C of Table 1.1 and also in the

impulse-responses to a one-standard deviation technology shock in Figure 1.117. Most

prominently, job finding falls after a positive technology shock and the conditional corre-

lation between job finding and productivity is negative. Regardless of the job separation

rate, unemployment increases after the fall in job finding and the correlation of unemploy-

ment and productivity is positive. These two effects are opposite to those in the overall

sample and the exact contrary to what the standard model proposes. Hence, this result

16Hall decomposes macroeconomic variables into fluctuations that originate in technology, government

spending and preference shocks. He bases his decomposition on equations derived from a standard RBC-

model, he does not use structural VAR techniques for his analysis. He shows that preference shocks account

for most of the fluctuations in hours worked. His results are therefore similar to the results documented

here.

17The response of unemployment is calculated from the linearized relationship between the approximated

unemployment rate and the responses of the job finding and separation rates according to ût = f
(s+f)2

ŝt−
s

(s+f)2
f̂t, where s and f are the mean values of the two rates respectively.
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Table 1.2: The role of job separation and preference shocks

Unconditional Model Conditional Moments
Sample Pref. Shocks Technology Residual

A: Standard Deviations
JFind. and Unemp. 0.1526 0.1314 0.0548 0.1238

(0.04,0.08) (0.10,0.14)

Productivity 0.0156 0.0165 0.0116 0.0165
(0.01,0.02) (0.01,0.02)

B: Autocorrelations
JFind. and Unemp. 0.9128 0.832 0.9207 0.8873

(0.85,0.95) (0.86,0.90)

Productivity 0.8507 0.9184 0.8902 0.9208
(0.86,0.92) (0.90,0.94)

C: Cross-Correlations
JFind.,Prod. 0.0489 -0.7702 -0.4347 0.662

(-0.64,-0.07) (0.53,0.76)

Unemp.,Prod. -0.0489 0.892 0.4332 -0.6626
(0.07,0.64) (-0.76,-0.53)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). Unemployment is calculated

with a job separation rate that is constant and set equal to its mean value over the sample. For the condi

tional moments, the series are simulated with the respective shock operating only. The point estimate is

the median, the confidence intervals are 68% Bayesian bands from the posterior distribution. The model

is driven by preference shocks only and is calibrated such that it matches the conditional standard deviation

of labor productivity.

challenges the conventional dynamics in the standard search-and-matching model in a

similar fashion as the results in Gaĺı (1999), known as the “hours puzzle”, have challenged

the RBC paradigm with frictionless labor markets.18

A variance decomposition adds up the impulse-response coefficients from the estimation

to a certain conventional business cycle horizon. This statistic reports the respective con-

tribution of each shock to the overall variance and therefore also highlights the importance

of the shocks relative to each other. Decomposing the business cycle variance of the Gaĺı

identification into the contribution of technology and non-technology shocks, technology

shocks explain up to 17% of the business cycle variance of job finding and over 20% of the

variance of unemployment. Hence, an appropriate model should take these dynamics into

account.

18Researchers have questioned that the identified shocks can in fact be interpreted as technology shocks.

Section 1.3.4 shows robustness for this finding using an alternative measure of technology derived by Basu

et al. (2006).
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Figure 1.1: Impulse-responses to Gaĺı technology shocks
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Notes: Responses in percentage points to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.

Gaĺı has explained the drop in hours worked within a sticky price New Keynesian frame-

work. Can the natural extension of this framework including search-and-matching in the

labor market equally explain the drop in the job finding rate? In the case of hours, fixed

demand in the short run leads firms to adjust hours worked after a positive technology

shock. Since it is much more costly to adjust employment rather than hours worked, it

is not clear that the same mechanism works equally well in this context. In their speci-

fication with real rigid wages, Blanchard and Gaĺı (2006) document that unemployment

increases after a positive productivity shock. Here, labor market tightness and hence the

job finding rate move together with unemployment replicating the dynamics documented

above. Barnichon (2008) uses a similar reasoning to generate the fall in labor market

tightness which he documents in a similar SVAR-framework as the one presented here.

However, as conjectured, his model is not able to generate the large fall in labor market

tightness and strong increase in unemployment that we see in the data.19

There exist explanations for this empirical finding different from a New Keynesian setup.

Chapter 2 documents that the shocks that have been identified as neutral technology

shocks in the Gaĺı identification are in fact positively biased towards new skills (as they

have a positive effect on the wage premium of high to low skilled workers). Consider a

framework in which two types of workers are used in production and are to some degree

substitutable. After a positive skill-biased technology shock, high-skilled workers become

19In contrast, Krause and Lubik (2007) present a framework in which job finding falls after a positive

productivity shock mentioning that the resulting dynamics are counterfactual. This is no longer true based

on conditional moments. In Christoffel et al. (2006), vacancies fall and unemployment increases after a

positive productivity shock, resulting in an fall of labor market tightness and the job finding rate.
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more productive than low-skilled workers and overall labor productivity increases. Low-

skilled workers will then be substituted out of employment. The job finding rate for

low-skilled workers will drop, while it will potentially increase for high-skilled workers. If

the negative effect on low-skilled is larger than the positive effect on high-skilled workers,

the overall job finding rate drops and unemployment increases.

Regardless of the mechanism, a model driven by technology shocks is again not suitable

to explain the overall dynamics in the data. Rather, non-technology shocks are needed

in order to model the unconditional dynamics in the data. Reconsidering the preference

shocks from above, these kinds of shocks have been popular in the RBC-literature in order

to explain the empirical correlation of labor productivity with hours20. Table 1.2 docu-

ments that the correlations of the job finding rate and unemployment with productivity

that are generated by preference shocks in the model are opposed to the ones conditional

on non-technology shocks in the data, however. After a positive preference shock, agents

want to consume more and hence decrease investments. Capital falls and, after an initial

increase, output falls as a consequence. Due to the increase in employment, labor pro-

ductivity falls which induces a negative correlation of this variable with the job finding

rate and a positive one with unemployment. Hence, preference shocks are not suitable to

explain the conditional correlations within this setup. It has to be noted that in a New

Keynesian setup, the induced correlations are different and preference shocks could repli-

cate the empirical dynamics. A distinction between skill-biased and skill-neutral shocks

could also provide two shocks that match the conditional correlations in the data.

As exhibited in Figure 1.1, job separation significantly increases after a positive technology

shock contributing to an even larger increase in unemployment. A rise in job separation

after a positive innovation in technology might be due to the fact that not all of the

existing job matches can freely use this new technology. Hence, technological innovation

is embodied in new jobs, or specific to existing vintages. Canova et al. (2007) employ a

vintage human capital in order to model the “Schumpeterian creative destruction” after

a neutral technology shock. As is documented in greater detail in Section 1.4.3, the effect

of job separation is not robust neither when considering different sub-samples nor to the

in- or exclusion of a trend in the estimation.

20See for example Bencivenga (1992) on the Dunlop-Tarshis observation.
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Figure 1.2: Impulse-responses to BFK technology shocks
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Notes: Responses in percentage points to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.

1.3.4 Are the estimated shocks really technology shocks?

Many researchers have questioned that the structural residuals that are identified from a

Gaĺı-style VAR are in fact estimates of technological progress. Supporting the findings

from Gaĺı, a recent piece of evidence from Basu et al. (2006) has documented that their

measure of technological progress, derived as a “sophisticated” Solow residual from a very

different exercise, also induces a contractionary effect on hours worked. Here, I use this

measure in order to support the effect of technology on the job finding and separation

rate from my estimation in two different ways. First, I incorporate “true” total-factor-

productivity (TFP) instead of labor productivity into my SVAR with long-run restrictions.

Neutral technology shocks are then the only shocks that move TFP in the long run.

As depicted in Figure 1.2, the effects of these shocks on the job finding rate, the job

separation rate and unemployment are very similar to the ones from the estimation with

labor productivity. Second, as suggested by Basu et al. (2006), I regress four lags of their

technology measure (dz) on job finding and job separation. Here, I detrend the two rates as

in the VAR by regressing them on a dummy trend broken at 1973:2 and 1997:1. Table 1.3

shows the results, for impulse-responses, one could simply add the estimated coefficients.

Here, TFP has a negative effect on the job finding rate. The effect on the job separation

rate is also negative, but since this effect is small (and insignificant), unemployment still

increases after a shock to TFP.
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Table 1.3: Regression on BFK measure

Dependent variable Regressor

dz dz(-1) dz(-2) dz(-3) dz(-4)

JFinding -0.6250* -0.3429 -0.4441* -0.5339* -0.3447

JSeparation -0.1473 0.0305 -0.0835 -0.1753 -0.1848

Notes: The star * denotes significance based on one standard error bands.

1.4 Different shocks: Fisher identification

Fisher (2006) based on Greenwood et al. (1997) has addressed the issue that fluctua-

tions in labor productivity might be generated not only by factor-neutral technolog-

ical progress, but also by investment-specific technological innovations. Consequently,

investment-specific technological progress satisfies the identifying assumption for the Gaĺı

technology shocks and hence invalidates the interpretation of these shocks to be factor-

neutral. Fisher proposes a strategy to separately estimate neutral and investment-specific

technology shocks and documents that the two shocks might have different effects on

macroeconomic variables. Further, investment-specific technological progress contributes

to a larger extend to growth and cyclical fluctuations of macroeconomic variables (in

particular of output and hours worked) than neutral technology. Investment-specific tech-

nological progress thus provides a potential additional source of variation in the job finding

rate and unemployment.

In the original Shimer framework, it is not possible to distinguish between these two

sources of variation in labor productivity, while the model in Section 1.2 does differentiate

between these two shocks. As mentioned before, the labor market dynamics that are

induced by the two technology shocks are actually very similar, i.e., job finding increases

and unemployment falls after both technology shocks. However, since the formation of

capital takes time, productivity increases with a lag in response to investment-specific

technological progress. This increases the overall standard deviation of the job finding

rate and unemployment in the model in which both types of technology shocks operate

(see second column of Table 1.8 in the Appendix to Chapter 1). Further, the correlation

between the job finding rate and productivity is smaller than in the model with neutral

shocks only. However, these effects are not large enough to replicate the unconditional
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data moments, hence the Shimer critique still holds.21

1.4.1 Identification

In order to identify the two types of technology shocks, Fisher imposes the assumption

that investment-specific technology shocks are the only shocks that (negatively) affect the

relative price of investment in the long-run and that are additionally allowed to affect labor

productivity in the long-run. (Investment-)neutral technology shocks are then the only

remaining shocks that affect labor productivity in the long run. Note that this assumption

is true in the model outlined in Section 1.2.

It is easy to implement these two assumptions ordering the first differences of the relative

investment price and labor productivity first in the reduced-form VAR and applying a

Cholesky decomposition to the long-run forecast revision variance. However, the effect

of the investment-specific shocks on labor productivity is estimated to be negative in our

baseline specification. This means that all or at least a part of the identified investment-

specific shocks are not technology shocks according to the Gaĺı definition and more im-

portantly not positive shocks to labor productivity as the ones in the model and referred

to by Shimer. Fisher addresses this problem by introducing the additional assumption

that positive investment-specific shocks increase labor productivity by a fixed proportion

to their effect on the investment price. Derived from the production function in the model

this proportion is set to α
(1−α) . This additional assumption comes at a cost as it not only

strongly restricts the long-run productivity effect of investment-specific shocks to a certain

value but also implies a positive and fixed correlation between the investment-specific and

neutral technology shocks.22

There exist several a few studies that consider the responses of worker flows to both neutral

and investment-specific technology shocks based on the Fisher identification. The work

by Canova et al. (2006) is closely related to the analysis in this section of the paper. The

estimation of the reduced form VAR in a Bayesian framework with a Minnesota prior is

21In this simulation of the model, the growth rates and standard deviations of the two types of technology

shocks are calibrated to match the moments of labor productivity and the investment price which results

in γ = 0.0074 and ν = −0.0117 for our sample. The mean growth rate of labor productivity then equals
1

1−α
γ + α

1−α
ν.

22See Figure 1.6 for a comparison of the responses of the restricted and the unrestricted Fisher iden-

tification. See the Appendix A.3 for more details and the implementation of this identification scheme.

Parallel to the model calibration I use α = 1
3
.
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taken directly from them. However, Canova et al. employ the Fisher identification without

the additional third restriction. Equally, Ravn and Simonelli (2006) identify technology

shocks without the third restriction in a framework which also incorporates fiscal and

monetary policy shocks. Adding the third restriction delivers quite different dynamics

induced by the investment-specific technology shock. I will discuss this issue further in

Section 1.6 in which I also propose a test for the third restriction. Complementary to

these studies, there exist many contributions in the literature that estimate medium or

large scale DSGE models which incorporate search-and-matching in the labor market.

Here, technology shocks are usually identified based on a combination of short-run sign

restrictions as in Fujita (2009) or Braun et al. (2006). While these shocks should generally

depict the same dynamics as the technology shocks identified in this paper, this is not

always the case and depends on the fact that the co-movement between labor input and

productivity in the short run is explicitly used for identification.

1.4.2 Results

The historical decomposition of the standard deviation supplements the results from the

Gaĺı identification, see Table 1.8 in the Appendix to Chapter 1. Both types of technology

shocks, as well as both technology shocks taken together, generate standard deviations

in the job finding rate and unemployment that are much smaller than the unconditional

standard deviations, but quite close to the ones produced from the model. Again, sources

other than technology are necessary to understand the unconditional volatility in the

data.23

With respect to the conditional dynamics, Figure 1.3 depicts the responses of the job

finding and separation rate as well as unemployment to positive one standard deviation

technology shocks from the Fisher identification. Note that the responses to the neutral

shock are very similar to the responses derived from the Gaĺı identification. Job finding

drops after both types of technology. This effect is stronger and more persistent after a

neutral technology shock than after an investment-specific shock. The job separation rate

does not significantly react to an investment-specific technology shock. The falling job

finding rate positively affects the unemployment rate, but the effect is again not as strong

as for the neutral technology shock. Consequently, the contrast between the conditional

23Note that here, the two technology shocks are not orthogonal. Hence, the historical decomposition is

not truly a decomposition. Technology shocks and the residual disturbances are orthogonal, however.
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Figure 1.3: Impulse-responses to Fisher technology shocks
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Notes: Percentage responses to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.

dynamics in the data versus the ones in the model still exists, but is weaker in case of the

investment-specific shocks. This is also reflected in the conditional correlations in panel C

in Table 1.8. The conditional correlation of job finding and productivity is much lower than

the one conditional on a neutral shock, the correlation of unemployment with productivity

has the same sign as the unconditional one, both of these figures are insignificant. The

investment-specific technology shock therefore moderates the effect of the neutral shock.

Both technology shocks taken together however still generate dynamics that are opposite

to the unconditional dynamics and that are not replicated in the model.

Table 1.6 in the Appendix to this chapter exhibits the contribution of the shocks to the

forecast error variance of the variables in this small VAR. The neutral shock is much more

important for the variances of the labor market variables than the investment-specific

shock. This highlights again the importance to replicate the dynamics of this shock in an

appropriate model. Together, the technology shocks explain between 45% to 60% of the

variance of job finding and unemployment.24

24This result is similar to Canova et al. (2007) who, in spite of an alternative identification of investment-

specific technology shocks, document that employment effects can mainly be attributed to neutral tech-

nology shocks.
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1.4.3 Robustness

This section investigates the robustness of the main results from the Fisher identifica-

tion. As documented above, the neutral shocks from the Fisher identification and the

Gaĺı identification are very similar in fact. The robustness analysis focusses on the two

main results: The low standard deviation conditional on neutral and invest-ment-specific

technology shocks in job finding and unemployment and the drop in the job finding rate

after positive innovations of both types of technology. Table 1.4 summarizes the results.

The first set of robustness checks deals with the prior and the lag length in the estimation

of the reduced form VAR. Clearly, the baseline specification with the Minnesota prior is

different from a standard OLS specification with 2 to 4 lags in the VAR. In the Minnesotay

prior, a high decay parameter is necessary for a large number of lags to generate both

significant and sensible results. Using a smaller number of lags together with a smaller

decay on these lags, or similarly a flat prior (OLS equivalent) for the estimation of the

reduced form VAR, qualitatively supports the findings in the baseline specification, but is

not significant, however. Further, the results are robust to relaxing the assumption of a

fixed residual variance within a Normal-Wishart prior structure. The prior suggested by

Kadiyala and Karlsson (1997) employs the same mean for the coefficients as the Minnesota

prior and generalizes the Minnesota prior in terms of a non-diagonal, unknown residual

variance. Compared to the Minnesota prior, the coefficient variance additionally weights

the effect of the exogenous variables on a variable with its respective variance and fixes

φ1 = 1.

The baseline specification includes a broken dummy-trend into the specification which is

not uncontroversial. In fact, the question of whether or not to include a trend into the

specification is closely related to the debate on how to specify hours worked in a similar

structural VAR. Here, it has been shown that if specified in first differences or HP-filtered,

hours worked fall after a positive Gaĺı-type technology shock, while they increase after

the same type of shock if specified in levels (see Gaĺı (1999) and Christiano et al. (2003)

respectively). The fall in hours worked after a positive technology shock contradicts the

standard RBC paradigm and has become famous as the “hours puzzle” in the literature.

In fact, a trend as the one applied here takes out slow-moving components from the series

and is therefore related to taking first differences of the labor market variables. Canova et

al. (2006) argue that if the variables are specified in levels, long-run restrictions may pick

up the slowly moving components of the variables, even though they aim at explaining
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Table 1.4: Robustness of the Fisher identification

Conditional Standard Deviation Impulse Response

Job Finding Unemployment Job Finding

i-shock n-shock i-shock n-shock i-shock** n-shock

Baseline 0.0627 0.0667 0.0692 0.0972 -,sign. -,sign.

Baseline specification with Minnesota prior changed to

4 lags, decay 7 0.0651 0.071 0.0808 0.1129 -,sign. -,sign.

12 lags, decay 7 0.069 0.0702 0.847 0.1053 -,sign. -,sign.

8 lags, decay 4 0.579 0.0477 0.0745 0.0689 -;+,not sign. -,not sign.

3 lags, decay 1 0.0533 0.0567 0.0706 0.0809 -,not sign. -,not sign.

Flat prior (OLS equivalent) with

2 lags 0.0511 0.0609 0.727 0.0971 -,not sign. -,not sign.

3 lags 0.0533 0.0649 0.0737 0.0899 -;+,not sign. -,not sign.

K and K prior* 0.651 0.0738 0.689 0.1037 -,sign. -,sign.

Trend specification

no break 0.0667 0.0595 0.058 0.0494 -,sign. -,sign.

Fisher subsamples without break

1955:I-1979:II 0.0828 0.0853 0.0784 0.0895 -,sign. -,sign.

1982:III-2004:IV 0.0352 0.059 0.0777 0.0402 -;+,sign. -,sign.

Fujita and Ramey subsample without break

1976:III-2004:IV 0.0424 0.0699 0.0622 0.0528 -;+,sign. -,sign.

Notes: **Describes the effect on impact. Here, -;+ indicates initial drop, then hump-shaped increase.

*Kadiyala and Karlsson prior with Minnesota structure, same parameters as in baseline specification.
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business cycles fluctuations.

Figure 1.11 shows the results for the baseline specification without the dummy breaks.

The job finding rate still decreases after positive innovations of both technology shocks.

This means that the “job finding” puzzle is is robust to including a trend or not in the

specification. Note further that job separation now falls significantly after both shocks.

In fact, it falls by such a large extend that the unemployment rate falls in the longer

horizon which reflects the result from the hours debate. In addition, the results from the

entire sample are compared to results for subsamples suggested by Fisher (2006). Here,

no trend is incorporated into the specification, the results are robust to an inclusion of

trend breaks as in the baseline specification, however. In the latter sample, investment-

specific technology shocks induce an initial fall in the job finding rate and a subsequent,

(borderline) significant increase. Job separation does not react to a neutral shock, but

decreases significantly after an investment-specific technology shock. Hence, these shocks

do generate dynamics different from the neutral shocks in this sample.

1.5 Alternative variables

1.5.1 Alternative worker flows

The worker flow data of Shimer and the respective business-cycle facts are not uncon-

troversial in the literature. Fujita and Ramey (forthcoming) have also calculated worker

flows from the CPS. The Fujita and Ramey dataset does not encompass the same sample

as the one by Shimer; it ranges from 1976:3 to 2004:425. As stated by the authors, the

standard deviation of the job separation rate is higher and the one of job finding is lower in

their data series compared to Shimer. This suggests a larger role for the first series in the

dynamics of unemployment. Job separation is also more persistent. The correlations of

the job finding and separation rates with productivity are much lower than in the Shimer

series. Figure 1.4 shows that the responses in both datasets are quite similar. Note that

job separation decreases after a positive technology shock. However, this is mainly due to

the subsample rather than the difference in the measurement of the data. In fact, results

for the job separation rate are not robust to subsample choices or different specifications.

25I thank Shigeru Fujita for making the data available to me.
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Figure 1.4: Shimer versus Fujita-Ramey
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Notes: Solid lines depict Shimer data, broken lines show Fujita and Ramey data.

Responses in percentage points to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.

1.5.2 Job flows

Instead of worker flows, so-called job flow data have often been used to assess the empirical

validity of the standard labor market model (similar to Cole and Rogerson (1999) and

Davis et al. (1998)). Note that from the perspective of the standard model job flows and

worker flows are indistinguishable, i.e., when a worker moves into or out of a job, the

job match is automatically created or destroyed. In the data, these two concepts show

quite different unconditional business-cycle moments however, and hence it is interesting

to consider conditional moments in job flows complementary to the above.

Here, I use data from Faberman (2006) which encompasses the fluctuations of jobs defined

as small size units (“plants”) that are created and destroyed within the U.S. manufactur-

ing sector26. The resulting rates are usually referred to as job creation and destruction

rates and both are measured in percent of employment. Unemployment dynamics are

approximated by unemployment growth which results from taking the difference between

the job destruction and creation rate. In the following, the same exercise as in the Fisher

identification in Section 1.4 is repeated by using job flows rather than worker flows. Table

1.5 presents the conditional and unconditional moments from this set of data together

with the familiar moments from the model.

Note that in this sample, that job destruction is about twice as volatile as job creation.

Both series are less persistent than the worker flows, while the cross-correlations between

the variables are qualitatively similar, but quite different in value from the ones in the

26The data is also described in Davis et al. (2006). I thank Jason Faberman for making the data available

to me.
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Table 1.5: Historical decomposition from Fisher identification - Job flows

Uncond. Model Conditional Moments
Sample Inv. Tech. Neu. Tech. All Tech. Residual

A: Standard Deviations
Creat. 0.0765 0.0775 0.0455 0.0336 0.041 0.0732

(0.0717) (0.04,0.06) (0.03,0.04) (0.03,0.05) (0.07,0.08)

Dest. 0.1311 0.0547 0.0473 0.0583 0.1214
(0.04,0.08) (0.03,0.07) (0.04,0.07) (0.11,0.13)

Unemp. 1.0612 0.0708 0.3921 0.2604 1.7027 3.9574
(0.0657) (0.25,0.57) (0.17,0.40) (1.27,2.17) (3.78,4.16)

Prod. 0.0156 0.0156 0.0174 0.0191 0.013 0.01
(0.0129) (0.01,0.02) (0.02,0.02) (0.01,0.01) (0.01,0.01)

B: Autocorrelations
Creat. 0.6177 0.8655 0.8254 0.9051 0.8226 0.6383

(0.8671) (0.75,0.90) (0.81,0.96) (0.76,0.89) (0.60,0.67)

Dest. 0.7222 0.8247 0.6189 0.7751 0.7146
(0.63,0.88) (0.45,0.82) (0.65,0.86) (0.70,0.74)

Unemp. 0.6683 0.8607 0.8133 0.5611 0.9457 0.9455
(0.8632) (0.69,0.86) (0.33,0.77) (0.93,0.96) (0.94,0.95)

Prod. 0.8507 0.8482 0.8563 0.8141 0.864 0.8514
(0.855) (0.80,0.90) (0.77,0.85) (0.85,0.88) (0.79,0.90)

C: Cross-Correlations
JC,P 0.1545 0.5141 0.4224 0.2328 0.2206 0.0636

(0.4087) (0.21,0.57) (-0.12,0.46) (0.08,0.34) (-0.08,0.24)

JD,P -0.4733 -0.4225 0.2207 -0.0073 -0.6159
(-0.65,-0.02) (-0.31,0.43) (-0.22,0.23) (-0.76,-0.45)

U,P -0.4449 -0.4427 -0.5901 0.0538 0.1561 -0.0678
(-0.3506) (-0.72,-0.35) (-0.47,0.37) (-0.13,0.40) (-0.14,0.02)

JC,U -0.7176 -0.8718 -0.6134 -0.3034 0.2599 0.114
(-0.8749) (-0.79,-0.31) (-0.56,-0.05) (0.11,0.43) (0.04,0.19)

JD,U 0.9242 0.7912 0.782 0.3496 0.1383
(0.59,0.90) (0.58,0.89) (0.25,0.45) (0.10,0.18)

JC,JD -0.4187 0.0523 0.4158 -0.0813 -0.3764
(-0.33,0.49) (0.07,0.65) (-0.32,0.22) (-0.42,-0.34)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). The point estimate is the median,

the confidence intervals are 68% Bayesian bands from the posterior distribution. The model is calibrated to

match the unconditional standard deviation of labor productivity and the same figure that is conditional

on both technology shocks (in brackets).
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worker flow series. With regard to the empirical performance of the standard model based

on unconditional second moments, this means that while the model now replicates the

standard deviation of job creation (in fact the standard deviation is a little too high in

the model), it does not mirror the volatility of the job destruction rate and hence unem-

ployment. A natural extension of this model would include endogenous job destruction

as in Mortensen and Pissarides (1998) or denHaan et al. (2000) in order to account for

fluctuations in this variable. The model does not aim at explaining the positive correlation

between productivity and job creation with unemployment.

Conditional on investment-specific and neutral technology shocks, the standard deviation

in job creation is even smaller than the unconditional one. More importantly, the two

technology shocks generate a standard deviation of job destruction and unemployment

that is only about a third of the one in the data. Hence, job destruction does move after

technology shocks, but most of its volatility stems from non-technological disturbances.

This means that endogenous job destruction alone cannot realign the moments from the

model with the unconditional moments. Complementary to this result, technology shocks

explain only up to 17% of the business cycle variance of job creation and destruction as

is exhibited in Table 1.9 in the Appendix to Chapter 1. My result supports the findings

from the previous sections that an additional non-technological disturbance is needed in

order to explain the fluctuations observed unconditionally.

Panel C of Table 1.5 depicts the conditional cross-correlations of the labor market vari-

ables with each other and productivity. Figure 1.7 in the Appendix to this chapter also

visualizes the dynamics induced by the two technology shocks. Most importantly, job

creation and labor productivity are positively correlated after both technology shocks. As

a consequence, the “job finding puzzle” after a neutral technology innovation from before

disappears. Unemployment still increases after a positive neutral shock, due to the strong

increase in job destruction (This is also reflected in the positive co-movement of these

variables with productivity). Even though insignificant, in a model with endogenous job

destruction and vintage technologies, job destruction may increase after a positive shock

to technology if it can only be used in newly formed jobs rendering many existing job

matches technologically obsolete. Then, these effects provide a valid and easy explanation

to the rise in unemployment or parallel the fall in hours after a technology shocks and,

hence, to the hours puzzle documented by Gaĺı (1999). Strikingly, investment-specific

technology shocks induce dynamics that are different from the ones generated by neutral
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technology shocks and that are similar to those expected from the standard model: Job

creation goes up and job destruction falls after a positive innovation in investment-specific

technology. As a consequence, unemployment decreases before converging back to zero.

The responses after the investment-specific shocks exhibit greater persistence than the

ones after a neutral shock.27 However, investment-specific technology shocks are not im-

portant enough to explain the unconditional moments. Again, an additional source of

fluctuations is necessary here.

Are the results from the Fisher identification with worker and with job flows are truly

comparable? Plotting the structural shocks from the two estimations and calculating their

correlation, it is possible to see that the investment-specific shocks are almost identical

in both specifications. The neutral shocks from both estimations are positively correlated

(the correlation coefficient is about 0.6), but not identical. Alternatively, both job and

worker flow data can be included into one common specification. This is also important in

the light of the joint dynamics of these two data concepts which has been an issue in the

literature. The results show that the effects of the neutral shock on job creation and job

destruction hardly change28. To summarize, since the two data concepts not only generate

quite different unconditional statistics, but also react differently to the estimated shocks,

it seems reasonable to try to distinguish the different concepts and model the empirical

dynamics of these two sets of data in a theoretical framework as well.

1.6 Alternative identification

1.6.1 Motivation and identification

This section investigates to which extend the results outlined above in sections 1.3 and

1.4.2 strongly rely on the imposed identification assumption for the technology shocks, or

whether they are robust to an alternative identification scheme as well. To motivate, let

us briefly return to the Gaĺı identification of technology shocks. In fact, the identified Gaĺı

shocks have a significant and positive effect on the relative price of investment. These

shocks are therefore negatively biased towards new investment and mistakenly labelled

27Michelacci and Lopez-Salido (2007) do a similar empirical exercise with job flow data. They document

similar responses after a neutral technology shock, but different responses after an investment-specific

technology shock due a different identification.

28Job creation drops on impact after a positive neutral technology shock, but then rises with a hump-

shape above zero.
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factor-neutral, see Figure 1.8 in the Appendix to Chapter 129.

The Fisher identification separates technology shocks that have an effect on the relative

price of investment from technology shocks that do not have an effect on the relative price of

investment and hence are truly investment-neutral. However, the Fisher identification dis-

regards those shocks that have a positive effect on both productivity and the price. When

estimated without the third restriction on the productivity effect of investment-specific

shocks, these shocks are incorporated into the investment-specific technology shocks in

the Fisher identification. The difference between the results from the Fisher identification

with and without the third restriction documents that these shocks may play an important

role in the overall dynamics of these two variables. More precisely, labor productivity falls

in response to these unrestricted investment-specific technology shocks (see discussion in

Section 1.4). Additionally, these unrestricted shocks produce labor market dynamics that

are quite different from the ones generated by the restricted shocks. Namely, job finding

increases in a hump-shape after a positive investment-specific technology shock and job

separation falls. As a result, unemployment decreases.30 The unrestricted shocks also play

a much larger role for the business cycle variance of the labor market variables than the

restricted shocks.

Against this background, I propose an alternative identification of technology shocks which

separates investment-specific technology shocks from those other shocks. The identifica-

tion strategy imposes the following assumptions:

1. Technology shocks are assumed to be the only shocks that affect the relative price

of investment and labor productivity in the long run.

2. Out of these shocks, investment-specific technology shocks are those shocks that

affect labor productivity positively and the relative price of investment negatively in

the long run.

3. Out of these shocks, the remaining shocks may affect labor productivity positively

and the relative price of investment positively in the long run.

These assumptions are implemented with a mixture of long-run zero and sign restrictions

similar to the Gaĺı and Fisher identifications. I order the relative price of investment and

29Chapter 2 documents that these shocks are not only biased negatively towards investment, but also

towards skilled labor.

30See Figure 1.9 in the Appendix to this chapter.
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labor productivity first in the VAR and impose zero restrictions on the long-run effects

of all but the first two shocks on these variables. Sign restrictions similar as in Peersman

(2005) are then applied to the upper left 2-by-2 system of the long-run horizon forecast

revision matrix according to the restrictions outlined above. The remaining elements of

the long-run effects can then be calculated subsequently.31.

Figure 1.10 in the Appendix to Chapter 1 visualizes the assumed responses of price and

productivity to the two newly identified shocks. Not surprisingly, the new shocks turn

out to be negatively biased towards investment and may consequently called investment-

unspecific technology shocks. Note that the Gaĺı, Fisher and the alternative identification

strategies all offer an alternative decomposition of the long-run variance of the investment

price and productivity32. The Fisher and Gaĺı identification each impose an extra zero

restriction on this system. This means that by construction the Fisher identification

does not deliver shocks that induce the same effect on the price and productivity as the

Gaĺı identification. Thus, the Fisher identification does not provide a decomposition of

the Gaĺı technology shocks. My alternative identification is more closely related to the

Gaĺı identification as this scheme decomposes Gaĺı’s productivity shocks into investment-

specific and -unspecific shocks. I can now test Fisher’s third identifying assumption based

on the effect of the first shock in a more general context in which all shocks are in fact

orthogonal. Further, I can assess the importance of those shocks that resulting from the

unrestricted Fisher identification might have been labelled investment-specific technology

shocks by mistake and can explore their properties. However, it is no longer possible to

distinguish between investment-specific and investment-neutral shocks in this setup.

What are technology shocks that drive the relative price of investment up? In the model

outlined in Section 1.2, shocks that have a positive effect on the relative price of investment

negatively affect labor productivity and, hence, are not technology shocks. As a conse-

quence, the model outlined above does not accommodate these shocks and it is therefore

not clear how to interpret them in this context. Chapter 2 suggests to identify technol-

ogy shocks which originate in the labor market. More precisely, it is documented that

technology shocks that are biased towards skilled labor have a positive effect on the rela-

tive price of investment and could therefore capture the variation of the data documented

31For further details of the implementation of the long-run sign restrictions are contained in Appendix

A.4.

32This is true if the price is ordered second in the Gaĺı identification. The remaining elements of the

first two rows of this matrix are always zero.
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here.33 Once more, this points to the use of a more complex production function with

which it is possible to distinguish between low and high skilled labor in order to replicate

the empirical dynamics.

1.6.2 Results

Table 1.11 in the Appendix to this chapter exhibits the historical decompositions for

this identification scheme. Regarding volatility, the standard deviations conditional on

investment-specific technology shocks are very close to the results from the Fisher iden-

tification. The two identified technology shocks together generate a conditional standard

deviation that is again less than half of the unconditional standard deviation in job finding,

separation and unemployment. This is not surprising, since the alternative identification

is just a different decomposition of the technology shocks from the other identification

schemes.

More interesting in this respect are the labor market dynamics induced by the two new

shocks documented in Figure 1.5 and Table 1.11. For both types of shocks, job finding

drops and unemployment increases supporting the findings of the Fisher and Gaĺı identifi-

cation. There are significant differences between the responses of the two shocks however.

After an investment-specific productivity shock job separation does not move significantly.

Note that the dynamics of this shock are very similar to the ones I have documented for

the restricted Fisher investment-specific technology shocks. Indeed, the estimated rela-

tionship between the effect of this shock on the price and productivity is very close to the

one imposed via the third restriction. After an investment-unspecific shock job finding

does not react on impact and subsequently decreases in a hump-shape, job separation

significantly rises and the rising unemployment inherits the hump-shape from the effects

on the job finding rate34.

The variance decomposition in Table 1.10 in the Appendix to this chapter sheds light on the

33The identification of these shocks originates in the effect of technological progress on the skill premium

in a model which allows for both skilled and unskilled labor in production. The fact that the investment

price increases in responses to these shocks provides evidence for capital-skill substitutability in the data.

34Note that the inverse of this shock is an investment-specific technology shock with a negative effect

on productivity. The resulting dynamics are strikingly close the the ones from the unrestricted Fisher

identification, see Figure 1.9 in the Appendix to Chapter 1 or Canova et al. (2007). This means that

the major part of the unrestricted investment-specific technology shocks consists of shocks that do not

positively affect labor productivity and are consequently not in line with our model.
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Figure 1.5: Productivity shocks from sign restrictions
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Notes: Responses in percentage points to a one-standard deviation shock.

Confidence intervals are 68% Bayesian bands.

relative importance of investment-specific -unspecific technology shocks. The investment-

unspecific technology shock is more important for the business cycle variance of labor

productivity than the investment-specific technology shock. The investment-specific tech-

nology shock explains more of the variance of the relative investment price in the first

two horizons, while the investment-unspecific shock is more important in the longer run.

This means that a substantial part of the dynamics in the unrestricted investment-specific

shocks are not driven by positive productivity shocks and this highlights the importance of

distinguishing between the two types of shocks. The investment-unspecific shock explains

a substantial fraction of the job finding and separation rate and consequently unemploy-

ment. This shock is generally more important for the business cycle variation of the labor

market variables than the investment-specific technology shock. Together, both shocks

explain about 20% of the business cycle variation in job finding and unemployment.

Investment-unspecific technology shocks have not been identified so far. The reason clearly

lies in the fact that they are difficult to interpret in the context of a standard model as

the one outlined in Section 1.2. Here I have shown that they carry some weight with

respect to the dynamics in the labor market. As argued above, these shocks reflect skill-

biased technology shocks as identified in Chapter 2. Skill-biased technology shocks have

a negative effect on total hours worked and thus induce similar dynamics to the shocks
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identified here.

1.7 Conclusion

Starting from the recent ongoing debate on the empirical performance of the Mortensen-

Pissarides search-and-matching model, this study provides an important contribution to

the debate as it judges the empirical performance of the model on basis of moments

conditional on technology shocks rather than on unconditional moments. My analysis

breaks down the second moments of labor productivity, the job finding, job separation and

unemployment rate into the contribution of technology and non-technology shocks. These

shocks are identified within a SVAR framework with conventional long-run restrictions

and a combination of long-run zero and sign restrictions.

I find that technology shocks cannot be the source of the high volatility in the job finding

rate and unemployment present in the data. As a result, the standard deviation of these

variables that is generated from a standard model replicates the volatility conditional

on technology shocks. A large part of the volatility remains unexplained in the residual

from the structural estimation. This residual might be called non-technology or demand

shock. In order to mirror the overall volatility in the data, the model should be augmented

with an additional non-technological source of volatility rather than with respect to the

propagation of technology shocks as proposed by Shimer. Ravn and Simonelli (2006)

identify government spending shocks in a similar SVAR. Their shocks indeed mirror the

dynamics of our “residual” disturbances as they drive labor productivity and labor market

tightness up and unemployment down. Barnichon (2008) argues that these shocks are

shocks to monetary policy. Here, I investigate an idea by Hall (1997) that preference

shocks in the form of shocks to the marginal rate of substitution between consumption

and leisure are important for labor market dynamics. These shocks in fact add a lot of

volatility to the model.

Technology shocks induce a negative co-movement between job finding and productivity

and a positive co-movement between unemployment and productivity, while the respective

figures in the overall sample are directly the opposite. Put differently, job finding falls and

importantly contributes to an increase in unemployment after a positive technology shock.

This result contradicts the effects generated in the standard search-and-matching model.

Chapter 2 contains evidence that these effects may be explained through a distinction
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between high- and low-skilled labor in production. Since the identified technology shocks

are (possibly) biased towards the productivity of high-skilled labor, low-skilled labor gets

substituted out of production. Further results in the following chapter show that the “job

finding puzzle” vanishes when job flow data rather than worker flow data are employed

in the specification. In any case, additional non-technological disturbances are needed in

order to replicate the unconditional correlation between productivity, the job finding rate

and unemployment.

In different specifications, I distinguish technology shocks that are factor-neutral or

investment-specific as in Gaĺı (1999) and Fisher (2006). I document that the two main

results are robust to these extensions. The role of technology shocks for labor market dy-

namics is further assessed through a distinction of positive productivity shocks that have

either a negative or a positive effect on the relative price of investment. The latter my be

called investment-unspecific technology shocks. First, this identification tests and verifies

a critical assumption in the Fisher identification on the effect of investment-specific tech-

nology shocks on labor productivity. Second, this procedure investigates the relationship

between constrained and unconstrained investment-specific technology shocks. I find that

investment-unspecific technology shocks might by mistakenly labelled investment-specific

in the unconstrained identification. In addition, these shocks play a significant role for

labor market fluctuations. However, these shocks cannot be interpreted in the context of

the standard model. It will be shown in chapter 2 that it is reasonable to assume that

these shocks are the same as skill-biased technology shocks in their paper. Technology

shocks that are skill-biased induce similar dynamics in the investment price and the labor

market as the shocks identified here. This result again provides empirical foundation to

allowing for a more sophisticated production function in this class of model in which low-

and high-skilled labor are substitutable in production.
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Appendix to Chapter 1:

Additional Tables and Graphs

Table 1.6: Variance decomposition in Fisher identification

Investment-specific Shock Neutral Shock

Quarters 1 8 16 32 1 8 16 32

Price 59.27 78.02 86.83 93.30 6.55 4.47 3.07 1.58

(31,79) (52,91) (68,95) (83,98) (1,27) (1,20) (0,14) (0,7)

Productivity 13.50 14.12 12.94 11.46 68.33 76.50 82.49 86.43

(8,19) (11,18) (11,16) (10,13) (50,78) (67,82) (77,86) (84,88)

JFinding 15.92 6.73 6.23 6.28 46.86 42.34 42.98 42.70

(8,23) (4,12) (3,11) (3,11) (28,59) (18,58) (19,58) (19,58)

JSeparation 1.87 3.02 3.46 3.62 19.27 21.26 21.15 21.59

(0,9) (1,11) (1,11) (1,11) (3,41) (4,43) (5,43) (5,43)

Unemployment 15.19 6.38 6.00 6.02 49.44 43.54 43.86 43.48

(8,22) (3,12) (3,11) (3,10) (31,61) (19,59) (20,59) (19,59)

Notes: The values for the investment-specific shock, the neutral shock and the (omitted) residual

disturbances add up to 100 for each variable at each time horizon. The point estimate is the median,

the confidence intervals are 68% Bayesian bands from the posterior distribution.

All numbers are percent.
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Table 1.7: Gaĺı identification with standard detrending

Uncond. Model Conditional Moments
Sample I II Technology Residual

A: Standard Deviations
JFinding 0.1019 0.0407 0.0251 0.0327 0.0835

(0.02,0.05) (0.07,0.10)

JSeparation 0.0497 0.0255 0.0444
(0.02,0.03) (0.04,0.05)

Unemployment 0.1181 0.041 0.0252 0.0479 0.0928
(0.03,0.07) (0.08,0.11)

Productivity 0.0105 0.0105 0.0066 0.0066 0.009
(0.00,0.01) (0.00,0.01)

B: Autocorrelations
JFinding 0.8137 0.8008 0.8031 0.7939 0.7688

(0.68,0.87) (0.71,0.80)

JSeparation 0.4409 0.7408 0.3913
(0.66,0.83) (0.32,0.44)

Unemployment 0.8345 0.6784 0.6791 0.7325 0.8136
(0.64,0.79) (0.79,0.83)

Productivity 0.6881 0.6651 0.6651 0.7161 0.7286
(0.64,0.80) (0.70,0.76)

C: Cross-Correlations
JFind.,Prod. 0.1443 0.9522 0.9532 -0.7619 0.5986

(-0.87,-0.48) (0.45,0.72)

JSep.,Prod. -0.4826 0.4837 -0.6975
(0.22,0.63) (-0.80,-0.60)

Unemp.,Prod. -0.3051 -0.6943 -0.696 0.7441 -0.8329
(0.55,0.84) (-0.89,-0.72)

JFind.,Unemp. -0.9254 -0.8405 -0.8408 -0.908 -0.8984
(-0.96,-0.75) (-0.92,-0.86)

JSep.,Unemp. 0.6346 0.8453 0.5455
(0.68,0.91) (0.44,0.61)

JFind.,JSep. -0.2947 -0.5102 -0.1169
(-0.71,-0.04) (-0.22,0.05)

Notes: All series are detrended with the HP-Filter with λ = 1600. The point estimate is the median,

the confidence intervals are 68% Bayesian bands from the posterior distribution. Calibration I of the

model matches the unconditional standard deviation of labor productivity, calibration II matches

the same moment, conditional on technology shocks.
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Table 1.8: Historical decomposition of Fisher identification

Uncond. Model Conditional Moments
Sample Inv. Tech. Neu. Tech. All Tech. Residual

A: Standard Deviations
Find. 0.1542 0.0775 0.0684 0.0741 0.0671 0.1283

(0.0717) (0.05,0.09) (0.05,0.11) (0.05,0.09) (0.11,0.15)

Sep. 0.062 0.0401 0.048 0.0512 0.0543
(0.03,0.05) (0.04,0.06) (0.04,0.06) (0.05,0.06)

Unemp. 0.1786 0.0708 0.0658 0.0996 0.088 0.1434
(0.0657) (0.05,0.09) (0.06,0.14) (0.07,0.12) (0.12,0.17)

Prod. 0.0156 0.0156 0.0185 0.0184 0.0129 0.016
(0.0129) (0.01,0.02) (0.02,0.02) (0.01,0.01) (0.01,0.02)

B: Autocorrelations
Find. 0.9128 0.8655 0.7116 0.8182 0.8771 0.9009

(0.8671) (0.62,0.82) (0.69,0.89) (0.81,0.92) (0.87,0.92)

Sep. 0.6336 0.9245 0.8984 0.8757 0.6389
(0.85,0.96) (0.83,0.95) (0.82,0.92) (0.59,0.70)

Unemp. 0.9218 0.8607 0.7692 0.8326 0.9045 0.9143
(0.8632) (0.67,0.88) (0.74,0.88) (0.87,0.93) (0.90,0.92)

Prod. 0.8507 0.8482 0.9055 0.8597 0.8909 0.9253
(0.855) (0.85,0.95) (0.80,0.91) (0.87,0.92) (0.91,0.94)

C: Cross-Correlations
JF,P 0.0567 0.5141 -0.1674 -0.5569 -0.3274 0.6979

(0.4087) (-0.38,0.11) (-0.29,-0.70) (-0.55,0.01) (0.57,0.79)

JS,P -0.4392 -0.4355 0.2757 0.2059 -0.6298
(-0.61,-0.21) (0.03,0.46) (-0.02,0.38) (-0.73,-0.53)

U,P -0.1858 -0.4427 -0.0838 0.5323 0.3431 -0.821
(-0.3506) (-0.44,0.19) (0.27,0.67) (0.03,0.55) (-0.89,-0.72)

JF,U -0.9558 -0.8718 -0.8394 -0.9147 -0.8606 -0.9409
(-0.8749) (-0.92,-0.72) (-0.79,-0.97) (-0.94,-0.75) (-0.91,-0.95)

JS,U 0.6845 0.3897 0.794 0.7584 0.5997
(0.06,0.65) (0.60,0.88) (0.58,0.85) (0.51,0.66)

JF,JS -0.4404 0.2296 -0.4877 -0.3075 -0.2893
(-0.12,0.52) (-0.17,-0.69) (-0.58,0.11) (-0.17,-0.38)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). The point estimate is the median,

the confidence intervals are 68% Bayesian bands from the posterior distribution. The model is calibrated to

match the unconditional standard deviation of labor productivity and the same figure that is conditional on

both technology shocks (in brackets).
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Table 1.9: Variance decomposition in Fisher identification - Job flows

Investment-specific Shock Neutral Shock

Quarters 1 8 16 32 1 8 16 32

Price 76.39 92.80 96.60 98.39 4.44 0.91 0.42 0.20

(54,90) (82,98) (91,99) (96,100) (0,19) (0,5) (0,2) (0,1)

Productivity 12.15 11.94 11.01 10.50 80.46 85.85 87.87 88.94

(9,15) (11,13) (10,12) (10,11) (73,85) (84,88) (87,89) (88,89)

JCreation 6.32 6.84 7.04 7.05 3.93 10.19 10.45 10.45

(1,14) (3,13) (3,12) (3,12) (0,15) (3,24) (3,24) (3,24)

JDestruction 1.37 4.60 4.66 4.66 15.77 11.79 11.81 11.81

(0,5) (2,12) (2,12) (2,12) (2,40) (4,31) (4,31) (4,31)

Unemployment 1.35 6.12 6.12 6.12 8.20 9.11 9.28 9.27

(0,6) (2,13) (2,13) (2,13) (1,26) (3,21) (3,22) (3,22)

Notes: The values for the investment-specific shock, the neutral shock and the (omitted) residual

disturbances add up to 100 for each variable at each time horizon. The point estimate is the median,

the confidence intervals are 68% Bayesian bands from the posterior distribution. All numbers in percent.

Table 1.10: Variance decomposition in sign identification

Investment-specific Shock Investment-unspecific Shock

Quarters 1 8 16 32 1 8 16 32

Productivity 24.66 28.25 29.67 31.68 46.85 59.75 63.89 65.10

(2,59) (3,67) (3,70) (3,74) (18,77) (23,86) (24,91) (24,93)

Price 27.75 35.71 38.80 37.82 11.45 24.53 39.06 51.75

(7,52) (10,61) (9,68) (8,74) (1,36) (4,53) (9,69) (16,82)

JFinding 16.86 6.44 6.00 5.90 3.54 9.88 12.93 13.42

(4,33) (2,18) (2,17) (2,17) (0,14) (3,28) (4,31) (4,31)

JSeparation 2.69 2.98 3.06 3.10 17.87 15.26 14.50 14.51

(0,13) (1,12) (1,12) (1,12) (6,36) (5,34) (5,33) (5,32)

Unemployment 16.38 6.35 5.91 5.83 4.09 10.62 13.61 14.00

(4,34) (2,18) (2,17) (2,17) (0,16) (3,30) (4,32) (4,32)

Notes: The values for the investment-specific shock, the investment-unspecific shock and the (omitted)

residual disturbances add up to 100 for each variable at each time horizon. The point estimate is the

median, the confidence intervals are 68% Bayesian bands from the posterior distribution.

All numbers are percent.
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Table 1.11: Historical decomposition of sign identification

Uncond. Conditional Moments
Sample I-Specific I-Unspecific Both Shocks Residual

A: Standard Deviations
Find. 0.1542 0.0456 0.051 0.0643 0.1242

(0.04,0.07) (0.04,0.07) (0.05,0.09) (0.10,0.15)

Sep. 0.062 0.0408 0.0499 0.0527 0.0535
(0.03,0.05) (0.04,0.06) (0.04,0.06) (0.05,0.06)

Unemp. 0.1786 0.0538 0.0742 0.088 0.139
(0.04,0.08) (0.05,0.10) (0.07,0.11) (0.12,0.16)

Prod. 0.0156 0.0122 0.0109 0.0127 0.0156
(0.01,0.01) (0.01,0.01) (0.01,0.01) (0.01,0.02)

B: Autocorrelations
Find. 0.9128 0.8091 0.9436 0.8653 0.9028

(0.70,0.91) (0.90,0.96) (0.79,0.91) (0.87,0.92)

Sep. 0.6336 0.9374 0.8886 0.8634 0.6507
(0.88,0.96) (0.83,0.94) (0.80,0.92) (0.59,0.71)

Unemp. 0.9218 0.897 0.9185 0.8992 0.9137
(0.83,0.95) (0.89,0.95) (0.87,0.92) (0.90,0.92)

Prod. 0.8507 0.92 0.9381 0.8929 0.9225
(0.88,0.97) (0.89,0.98) (0.87,0.92) (0.90,0.94)

C: Cross-Correlations
JF,P 0.0567 0.003 -0.0897 -0.3597 0.7118

(-0.46,0.29) (-0.47,0.21) (-0.53,-0.04) (0.58,0.80)

JS,P -0.4392 -0.1501 -0.1297 0.235 -0.6269
(-0.58,0.33) (-0.51,0.30) (-0.02,0.40) (-0.73,-0.54)

U,P -0.1858 -0.1624 -0.0406 0.3822 -0.8218
(-0.65,0.46) (-0.48,0.44) (0.05,0.56) (-0.91,-0.76)

JF,U -0.9558 -0.7386 -0.8048 -0.8396 -0.9408
(-0.90,-0.55) (-0.92,-0.61) (-0.93,-0.70) (-0.95,-0.91)

JS,U 0.6845 0.6339 0.7937 0.7583 0.5913
(0.33,0.86) (0.64,0.88) (0.64,0.86) (0.51,0.66)

JF,JS -0.4404 0.1652 -0.2492 -0.2512 -0.2781
(-0.46,0.47) (-0.59,0.19) (-0.57,0.04) (-0.38,-0.15)

Notes: All series are detrended with the smooth HP-filter as in Shimer (2005a). The point estimate

is the median, the confidence intervals are 68% Bayesian bands from the posterior distribution.
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Figure 1.6: Restricted and unrestricted Fisher identification
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Notes: Responses in percent to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.
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Figure 1.7: Job flow responses to Fisher technology shocks
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Confidence intervals are 68% Bayesian bands.

Figure 1.8: Gaĺı identification - price and productivity
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Confidence intervals are 68% Bayesian bands.
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Figure 1.9: Unrestricted Fisher technology shocks
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Confidence intervals are 68% Bayesian bands.

Figure 1.10: Sign identification - price and productivity
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Confidence intervals are 68% Bayesian bands.
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Figure 1.11: Fisher technology shocks - no trend
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Chapter 2

On the Implications of

Skill-Biased Technological

Progress for the Business Cycle

2.1 Introduction

The US, as well as many other industrialized countries, have seen a marked increase in

the skill premium over the past two decades. Over the same period, the average education

level of the workforce also rose substantially. This parallel rise in the price and quantity of

skill points towards an increase in the demand for skill that exceeded the increase in the

supply of skilled workers. A commonly accepted explanation for this finding is skill bias

in technological progress: newly developed technologies require relatively more educated

and fewer uneducated workers (Katz and Murphy (1992); Autor et al. (1998); Acemoglu

(2002); Autor et al. (2005) and Autor et al. (2008)).

At the same time, shocks to technological progress have been attributed to be an important

driving force of US business cycles. Conventional technology shocks commonly referred

to as a source of the business cycle may either be factor-neutral or biased towards new

investments (investment-specific technology shocks). In this paper, we relate these two

phenomena by exploring the implications of skill-biased technological change for business

cycle fluctuations. We will consider this issue from two angles: First, we investigate the

relationship between technology and the skill premium, and hence skill-bias, over the

business cycle. Second, we propose an empirical strategy to identify skill-biased, and
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complementary also skill-neutral, technological change directly. Over and above linking

the conventional driving forces of business-cycles to the developments in the labor market,

this paper therefore attempts to identify sources of cycles that originate in the labor market

itself. Our approach allows us to address many important questions in this respect: Does

skill-biased technological progress play an important role for the business cycle? What does

skill-biased technological progress imply for the business-cycle dynamics of macroeconomic

aggregates? How are the production inputs capital, high and low skilled labor related over

the business cycle?

Existing studies on skill-biased technological change, including those mentioned above,

have focused on slow moving trends in the data. These papers use annual data, constructed

from a variety of worker-level data sources. Annual data are not suitable to analyze

business cycle fluctuations and we construct a quarterly series for the skill premium and

the relative supply of skill over the 1979:I-2006:II period, using the Current Population

Survey (CPS) outgoing rotation groups. Every month, about one fourth of workers in the

CPS is in an outgoing rotation group, meaning they are being interviewed for the fourth

month in a row and are therefore being rotated out of the sample. These workers are asked

about earnings and hours as well as education and other personal characteristics. We use

this information to calculate the skill premium as the log ratio of wages of college graduate

equivalent workers over high school graduate equivalents, controlling for experience and

other standard Mincer controls.1

The skill premium is close to acyclical over our sample period. If we think of business cycles

as being driven by technology shocks, one might conclude from this observation that most

of the higher frequency movements in the skill premium are driven by fluctuations in the

supply of skill rather than its demand. Acemoglu (2002) and Autor et al. (2005) reach this

conclusion, although from a different observation: once we detrend the skill premium and

the relative supply of skill, the two series are negatively rather than positively correlated.2

Our estimates confirm that shocks to the supply of skill are an important determinant of

fluctuations in the skill premium. However, we also find significant effects of technology

1Lindquist (2004) also construct a quarterly series for the skill premium from the CPS outgoing rotation

groups, but does not control for multiple education levels and other sources of worker heterogeneity, see

section 2.2.3.

2Acemoglu (2002) regresses the skill premium on the relative supply of skill controlling for a linear trend

and finds a coefficient of −0.74 (table 2, column 1). Autor et al. (2005) detrend the time series and show

graphically that there is strong comovement in both series, but they move in opposite directions (figure 7,

panel A).
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shocks on the premium.

Unconditional correlations are the result of a variety of shocks to the economy, which may

obscure the effects of changes in technology. We use a structural vector autoregression

(VAR) both to estimate the conditional response of the skill premium and the relative

supply of skill to technology shocks and to identify skill-biased versus skill-neutral tech-

nology shocks in the data. In order to control for fluctuations in the supply of skill, we

separately identify skill supply shocks using a short run restriction, assuming that the sup-

ply of skilled workers is predetermined. We then identify the various technology shocks

using long-run restrictions as in Blanchard and Quah (1989).

In a first approach, we assess the overall skill bias in technology shocks, identified following

Gaĺı (1999) as the only shocks that affect labor productivity in the long run. Improvements

in technology significantly increase the skill premium. This effect is realized in full within

a year, providing evidence in favor of skill-biased technological change and its potential

importance for business cycle fluctuations.

This result rises the question whether all technological changes are skill-biased or whether

there is a difference between skill-biased and skill-neutral technology shocks. We propose

a strategy to identify skill-biased technology (SBT) shocks from a long-run restriction,

arguing that SBT shocks are the only shocks that affect the skill premium in the long

run. Skill-neutral technology shocks are all remaining sources of permanent changes in

labor productivity. Skill-biased technology shocks are similar to skill-neutral technological

changes in that they increase labor productivity. However, they have different implications

for other aggregate variables. In particular, a positive SBT shock leads to a much larger

reduction in total hours worked than a skill-neutral technology shock. In addition, SBT

shocks increase the supply of skill in the long run, as we would expect, whereas skill-neutral

shocks lead to reduced supply of skill. For robustness, we show that the impulse-responses

that result from a decomposition of a production function that allows for inputs of high

and low skilled labor as well as capital are similar to the ones from our estimated SBT

shocks.

Having measured that skill-biased technological progress exists and matters over the busi-

ness cycle, we attempt to better understand what drives skill-biased technological change.

In particular, we evaluate the hypothesis, put forward by Krusell et al. (2000), that skill-

biased technological change is the result of an increase in the relative productivity of the

investment-goods producing sector. It is a well-documented fact that, over the same pe-
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riod that the skill premium has risen, the relative price of investment goods (software,

equipment structures) has fallen substantially, providing evidence for investment-specific

technological change (Gordon (1990); Greenwood et al. (1997); Cummins and Violante

(2002)). Krusell et al. (2000) show that if capital and skilled labor are complements in

the aggregate production function, investment-specific technological progress can explain

the increasing trend in the skill premium, because the increase in the capital-labor ratio

makes skilled labor relatively more productive.

We identify investment-specific technology shocks, following Fisher (2006), as the only

shocks that affect the relative price of investment in the long run. An investment-specific

improvement in technology lowers the relative price of investment goods. The remaining

shocks that affect labor productivity in the long run, are then investment-neutral tech-

nology shocks. We find that investment-specific technology shocks have a significant, but

negative effect on the skill premium, while investment-neutral technology shocks have a

positive effect on this variable. Conversely, skill-biased technology shocks, identified as

described above, raise the relative price of investment goods. This evidence is in direct

contradiction with the hypothesis of capital-skill complementarity, suggesting instead that

capital and skill are (to some degree) substitutes in the aggregate production process. We

support this result by simulating data from a model with different degrees on complemen-

tarity and substitutability between capital and skilled labor and estimating shocks and

responses from these data with our structural VAR.

The remainder of this paper is organized as follows. Section 2.2 describes our empirical

approach. First we define the different shocks to the production technology that we con-

sider, then we discuss how to identify the effects of these shocks using long-run restrictions.

We also describe the data that are necessary to estimate these effects and show some de-

scriptive statistics on the cyclicality of our quarterly series for the skill premium and the

relative supply of skill. In Section 2.3 we discuss skill-biased in technology shocks based on

the structural VAR analysis and the production function decomposition. Section 2.4 deals

with investment-specific technology shocks and capital-skill complementarity. Section 2.5

concludes.
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2.2 Empirical approach

In this Section, we outline our approach to estimate the implications of skill-biased techno-

logical progress for the business cycle. We start by defining different types of of technolog-

ical change, discussing various specifications for the aggregate production function. Next,

we explain how to identify these different technology shocks from the data using either the

functional form of the production function or a VAR with long-run restrictions. Finally,

we describe the data needed for the identification, including quarterly series for the skill

premium and the relative supply and employment of skilled labor, which we construct

from micro data.

2.2.1 Shocks to the production technology

Consider an aggregate production function for output Yt that takes capital Kt, high skilled

labor Ht and low skilled labor Lt as inputs. The production function satisfies the standard

conditions: it is increasing and concave in all its arguments and homogenous of degree

one so that there are constant returns to scale. Shocks to total factor productivity are

neutral technology shocks, in the sense that they affect the productivity of all inputs

in the same proportion. To allow for skill-biased technology shocks, the literature has

typically assumed an aggregate production function of the following form (see e.g. Katz

and Murphy (1992), Katz and Autor (1999), Autor et al. (2008)).

Yt = AtK
α
t

[
β (BtHt)

σ−1
σ + (1− β) L

σ−1
σ

t

] (1−α)σ
σ−1

(2.1)

Here, At is total factor productivity and Bt is skilled labor augmenting technology. An

increase in Bt can be skill or unskill biased, depending on the elasticity of substitution

between skilled and unskilled labor σ > 0. If high and low skilled labor are substitutes

rather than complements (σ > 1), the substitution effect of improvements in skilled labor

augmenting technology dominates the income effect so that an increase in Bt increases

the demand for skill and therefore the skill premium (assuming the supply curve for skill

is downward sloping). The consensus estimate for σ is around 1.5 (see Katz and Murphy

(1992), Ciccone and Peri (2006), Teulings and van Rens (2008)), so that we can think of

skill-biased technology shocks as increases in Bt.

There are two ways to interpret skill-biased technology shocks to an aggregate production

function as in (2.1). If the production function for all goods in the economy is the same,
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then we can think of an increase in Bt as a technological development that makes skilled

labor more productive in all sectors. Alternatively, we may think that the production in

different sectors i requires skilled labor in different proportions βi of total labor input.

In this case, even if skilled and unskilled labor are neither substitutes nor complements

within each sector,3 a sector-specific technology shock to a skill-intensive sector could still

increase the skill premium.

A particularly interesting case is an economy that consists of a consumption goods pro-

ducing sector and an investment goods producing sector. In this economy there are two

mechanisms, by which sector-specific shocks may affect the skill premium. First, the input

shares for skill might be different across the two sectors as explained above. Because in-

vestment goods are used to build up capital, which is an input in the production process,

sector-specific shocks may also affect the capital-labor ratio used in production. If capital

and skill are complements, as argued by Krusell et al. (2000), then a higher capital labor

ratio increases the relative demand for skilled labor and therefore the skill premium.

Suppose the two sectors have identical production functions except for a difference in total

factor productivity. In this case, as shown among others by Fisher (2006) and Krusell et

al. (2000), the economy can be aggregated to a one-sector economy, where total output is

divided between consumption and investment,

Yt = Ct + ptIt (2.2)

where the relative price of investment goods pt reflects technological improvements in the

investment goods producing sector. An aggregate production function that allows for

capital-skill complementarity is a slightly generalized version of (2.1).

Yt = At

[
β

(
γK

ρ−1
ρ

t + (1− γ) (BtHt)
ρ−1

ρ

) ρ
ρ−1

σ−1
σ

+ (1− β) L
σ−1

σ
t

] σ
σ−1

(2.3)

where σ is the elasticity of substitution between skilled and unskilled labor as before,

except that now it also measures the elasticity of substitution between capital and unskilled

labor, ρ is the elasticity of substitution between capital and skilled labor and β and γ are

share parameters. As shown by Krusell et al. (2000), improvements in investment-specific

technology increase the skill premium if and only if the elasticity of substitution between

capital and skilled labor ρ is lower than the elasticity of substitution between capital and

unskilled labor σ, i.e., if the production technology displays capital-skill complementarity.

3This is the case where σi = 1 for all i. In the limit for σ → 1, production function (2.1) becomes

Cobb-Douglas, so that changes in Bt are indistinguishable from changes in At.
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2.2.2 Identification and estimation

Under the assumption that workers’ wages are proportional to their marginal product, we

can calculate the skill premium directly from the production function. Using aggregate

production function (2.1), we get the following expression,

log
(

wH,t

wL,t

)
= log

(
β

1− β

)
− 1

σ
log

(
Ht

Lt

)
+

σ − 1
σ

log Bt (2.4)

where wH,t and wL,t are the wages of high and low skilled workers respectively. This

equation can be interpreted as a demand curve for skill. The skill premium is decreasing

in the relative demand for high skilled workers, log (Ht/Lt), where the elasticity of demand

depends on the elasticity of substitution between high and low skilled workers.

Changes in skill-biased technology Bt represent shifts of the skill demand curve or skill

demand shocks. Since the skill premium and the relative quantity of skill are observable,

these shocks can be directly retrieved from equation (2.4), using an estimate for the

elasticity of substitution between low and high skilled workers σ.4 The estimates for the

skill-biased technology shocks obtained this way are identified from the assumption that

wages are proportional to marginal products. A sufficient condition for this assumption

is that labor markets are perfectly competitive, in which case the wage of all workers

equals their marginal product. If there are frictions in the labor market, the weaker

assumption that wages are proportional to marginal products still holds approximately.

However, if there are frictions in the wage determination process, then wages may deviate

from marginal products in the short run. Therefore, we alternatively identify technology

shocks using a structural VAR with long-run restrictions, as suggested by Blanchard and

Quah (1989) and first used to estimate technology shocks by Gaĺı (1999).

Consistent with equation (2.4), we identify skill-biased technology shocks as the only

shocks that affect the skill premium in the long run, conditional on the supply of skill. Since

the identifying restriction is an assumption on the long-run effects of the structural shocks

on the variables in the VAR, it is a weaker assumption than assuming that (2.4) holds in

each period and makes the estimates robust to wage rigidity for example. In addition, the

long run identification does not depend on the exact functional form of the production

function and we no longer need to use an estimate for σ.5 Thus, we use long run restrictions

4An estimate for the share parameter β is unnecessary since this parameter affects only the level of Bt

and we normalize the mean and variance of the shocks to zero and one respectively.

5Of course the assumption is not valid for all production functions. For example, with capital-skill
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in all our estimates, although we compare the results to a direct decomposition using

equation (2.4), see Section 2.3.3, and find that for the simplest estimates the differences

are not large.

The estimation of structural shocks using long run restrictions is implemented in two steps.

First, we estimate a reduced form VAR in the variables labor productivity, hours worked,

the skill premium and in some specifications also the relative price of investment goods.

Second, we map the reduced form coefficients and residuals into structural coefficients and

shocks normalizing the variance of all structural shocks to one and assuming orthogonality

between these shocks, as well as an identifying restriction. The long-run identifying re-

strictions are incorporated using a Cholesky decomposition of the infinite horizon forecast

error variance.6

The specific restriction depends on the type of shock we are interested in estimating.

Skill-biased technology shocks are shocks to the production technology that affect the

skill premium, investment-specific technology shocks change the relative price of invest-

ment goods and in the presence of capital-skill complementarity technology shocks may be

both investment-specific and skill-biased. Neutral technology shocks increase productivity

but do not affect either the relative price or the skill premium. We discuss the specific

identifying restrictions used to identify neutral, skill-biased and investment-specific tech-

nology shocks as we describe our results in Section 2.3. The identification of different types

of shocks using the Cholesky decomposition is then implemented by simply reordering the

variables in the VAR.

Our baseline VAR is estimated on quarterly data from 1979:I to 2000:IV. This period

is relatively short because of data limitations, see Section 2.2.3. All variables are used

in first differences in order to allow for unit roots.7 The reduced form is estimated as

a Bayesian VAR with a Minnesota prior, similar to Canova et al. (2006). The prior

complementarity, as in (2.3), any shocks that affect the capital stock also affect the skill premium in the

long run. However, the restriction can easily be modified to incorporate this case, see Section 2.4.

6The procedure employed here is very similar to the one in Uhlig (2004). We approximate the infinite

horizon with 20 years. The procedure uniquely pins down the effects of the identified shocks on all variables

in the VAR and the results are not affected by additional (superfluous) long-run zero restrictions.

7In the context of the identification of neutral technology shocks, there has been a debate in the literature

whether hours worked should be included in levels (Christiano et al. (2003)) or in first differences (Gaĺı

and Rabanal (2004)). Canova et al. (2006) show that once the very low frequencies are purged out from

the data, the results of Gaĺı (1999) are robust to using hours worked in levels. In all specifications, we

verified that our results are also robust to this choice.
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mean pushes towards a unit root (in levels), the prior variance affects the tightness of

the lags of the autoregressive variables and of exogenous variables. We use this prior

for two reasons. First, in theory one should employ a VAR with an infinite number of

lags in order to correctly identify technology shocks using long run restrictions, see e.g.

Chari et al. (2008). The Minnesota prior allows us to generate sensible results for a large

number of lags simultaneously adjusting the importance (decay) of these additional lags

for the estimation. Here, we use 8 lags and a decay parameter of 3.8 Second, the prior

makes our estimation results more stable in the presence of high frequency variation in the

skill premium that is due to measurement error. The prior does not affect the long-run

restrictions in any way and we show that our results are robust to the strength of the prior

and to estimating the reduced form VAR using ordinary least squares (see Table 2.4).

2.2.3 Data

We construct quarterly series for the skill premium and the relative employment and

supply of skill using individual-level wage and education data from the CPS outgoing

rotation groups. This survey has been administered every month since 1979 so that our

series runs from 1979:1 to 2006:2.9 Wages are usual hourly earnings (weekly earnings

divided by usual weekly hours for weekly workers) and are corrected for top-coding and

outliers. We limit our sample to wage and salary workers between 16 and 64 years old in

the private, non-farm business sector and weight average wages by the CPS-ORG sampling

weights as well hours worked in order to replicate aggregate wages as close as possible.

Education is measured in five categories (less than high school, high school degree, some

college, college degree, more than college) and made consistent over the full sample period

following Jaeger (1997). In an average quarter, we have wage and education data for about

35,000 workers.

Our measure for the skill premium is the log wage differential between college graduates

and high school graduates. The relative employment and supply of skill are defined as the

8The remaining hyper-parameters are chosen as in the RATS manual such that the Minnesota prior is

quite loose: φ1 = 0.2 for the tightness on own lags of a variable, φ2 = 0.5 for the tightness on lags of other

variables and φ3 = 105 for the tightness on exogenous variables.

9The BLS started asking questions about earnings in the outgoing rotation group (ORG) surveys in

1979. The March supplement goes back much further (till 1963), but does not allow to construct wage

series at higher frequencies than annual. The same is true for the May supplement, the predecessor of the

earnings questions in the ORG survey.
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Figure 2.1: Skill premium and Mincer return to schooling in the US
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Figure 2.2: Relative employment and relative supply of skill in the US
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log ratio of the number of college graduates over the number of high school graduates in

the population and the workforce respectively. Following Autor et al. (2005), we map the

five education levels in the data to college and high school graduate equivalents and control

for changes in experience, gender, race, ethnicity and marital status. To do this, we first

estimate a standard Mincerian earnings function for log wages. The predicted values from

this regression for males and females at 5 education levels in 5 ten-year experience groups

yield average wages for 50 education-gender-experience cohorts keeping constant the other

control variables. We then calculate the number of workers in each cell as a fraction of the

workforce or population. Dividing by a reference category, this procedure gives us relative

the prices and quantities of skill for 50 skill categories. Finally, we aggregate to two skill
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types by averaging relative prices using average quantity weights and averaging quantities

using average price weights.10

The way we measure the skill premium and the relative employment and supply of skill

allows easy comparison to models with workers of only two skill levels. Yet, the measures

do justice to the greater degree of heterogeneity in the data. This is necessary to ensure

that changes in the price of skill are correctly attributed to changes in the skill premium

and changes in the quantity of skill to the relative employment or supply of skill. Suppose,

for example, that there is an increase in the number of workers with a masters degree.

This represents an increase in the supply of skill. However, a naive measure of the relative

supply, which just counts the number of workers with at least a college degree, would not

reflect this increase. Moreover, if workers with a masters degree earn on average higher

wages than workers with a bachelors degree only, then a naive measure of the skill premium

would increase. In our measures, this increase in the supply of skill would leave the skill

premium unchanged and increase the relative supply measure.

Figure 2.1 plots our quarterly series for the log wage premium of college over high school

graduates.11 As documented in previous studies, the data show a pronounced increase in

the skill premium since 1980, which seems to slow down mildly towards the end of the

1990s. For comparison, the figure also shows a naive measure of the skill premium (the

log wage difference between workers with at least a college degree and those with at most

a high school degree) and the Mincerian return to schooling. The trend and fluctuations

in our measure of the skill premium are similar to those in the Mincer return, indicating

we have adequately controlled for heterogeneity beyond two skill types.

Figure 2.2 shows similar plots for the relative employment and the relative supply of

skilled labor. Again, there is a substantial difference between our preferred measure and

the naive measure of the relative employment of skill. The increase in the employment and

the supply of skill was roughly similar over the last two decades, but the higher frequency

10For the skill premium and relative employment series, we calculate average prices and quantities

weighting individual workers in each cell by hours worked. For the relative supply series this is not possible

since we do not observe hours worked for non-employed workers. For this series, we weight averages only

by the CPS-ORG sample weights.

11Note that all our original data series exhibit large high frequency movements. These fluctuations are

not seasonal effects but reflect measurement error (sampling error). In a first attempt to get rid of this

measurement error the series, as exhibited in figure 2.1 and 2.2, are smoothed using an HP-filter with a very

small smoothing parameter, here λ = 1. The impulse responses are further smoothed by the Minnesota

prior.
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Table 2.1: Unconditional business cycle correlations

Std Correlation with

Output Hours Productivity Invest. Price

Baseline measure

Skill premium 0.0077 0.1017 -0.0598 0.2874 -0.1486

Relative employment 0.0248 -0.3529 -0.2372 -0.2805 0.5123

Naive measure

Skill premium 0.0086 0.0199 0.0788 -0.0898 0.0236

Relative employment 0.0232 -0.3153 -0.265 -0.165 0.4724

Relative supply 0.0114 0.0213 0.0759 -0.0824 0.2430

Notes: Series are HP-filtered with λ=1600.

fluctuations differ markedly as we document below.

The other data series we use in our analysis are the following. Output is non-farm business

output of all persons from the national income and product accounts (NIPA). Hours are

total hours of non-supervisory workers from the Current Employment Statistics establish-

ment survey. Labor productivity is output per hour. All three series are available from

the Bureau of Labor Statistics (BLS) productivity and cost program. As the relative price

of investment goods, we use a quarterly intrapolation as in Fisher (2006) of the quality

adjusted NIPA deflator for producer durable equipment over the consumption deflator

(Gordon (1990); Cummins and Violante (2002)).12

Table 2.1 shows the business cycle correlations of the skill premium and the relative em-

ployment and supply of skill with output, hours, productivity and the relative price of

investment goods.13 The skill premium is basically acyclical: it is only very mildly pos-

itively correlated with output and even less correlated with hours worked. This finding

is consistent with previous studies (Keane and Prasad (1993); Lindquist (2004)). The

relative supply of skill is acyclical as well, but the relative employment of skill is higher

in recessions than in booms, indicating the presence of a composition bias in employment

as argued by Solon et al. (1994). The correlation of the skill premium with the relative

investment-price is weak and negative. This is a first indication that capital-skill comple-

12We thank Jonas Fisher for making his data available to us. The quarterly relative price data runs

until 2000, which limits our estimation sample.

13The sample used to generate these correlations coincides with the estimation sample used in the next

section, i.e. 1979:1-2000:4.
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Figure 2.3: Gaĺı identification with skill premium
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mentarity does not seem an important feature of the data at business cycle frequencies.

2.3 Skill-biased technology shocks

In this section, we present our results for the effects of technology shocks on aggregate

variables. We start by assessing the degree of skill bias in ‘traditional’ neutral technology

or total factor productivity shocks. We then discuss how exogenous shocks to the supply of

skill may bias these estimates and how we can control for these skill supply shocks. Next, in

Section 2.3.3, we propose a strategy for separating skill-biased technology shocks from skill-

neutral shocks. In Section 2.4, we address the issue of capital-skill complementarity and

evaluate the hypothesis that it is investment-specific technological progress that produces

the skill-bias observed in the data. Finally, in Section 2.4.2, we jointly estimate all three

types of technology shocks and evaluate their importance for business cycle fluctuations

in various aggregates.

2.3.1 Skill bias in ‘neutral’ technology shocks

Gaĺı (1999) identifies permanent technology shocks as the only source of long-run move-

ments in labor productivity. In a wide range of models, closed-economy, stationary, one-

sector RBC models as well as models of the new Keynesian variety, shocks to total factor

productivity are the only shocks that satisfy this identifying restriction. The remaining

disturbances in the structural VAR are non-technology or ‘demand’ shocks, an amalgum

of other possible shocks in the model: government expenditure shocks, preference shocks,
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or shocks to price or wage markups. As a first pass at our data, we evaluate the skill bias

in technology shocks identified in this manner.

Figure 2.3 presents impulse response functions of a VAR as in Gaĺı (1999), extended

with the skill premium as a measure of skill bias in addition to labor productivity and

hours worked, and estimated on our smaller sample. Here, as in all graphs that will

follow, the point estimate is the median from and the dotted confidence intervals are

68 % Bayesian bands from the posterior distribution of the structural impulse-response

coefficients. Introducing the price of skill as an additional regressor and using a different

estimation sample leaves the responses of labor productivity and total hours worked almost

unchanged compared to Gaĺı (1999).

As in his estimates, a positive innovation in technology leads to an almost immediate

increase in labor productivity equal to the long run effect, and an initial reduction and a

subsequent increase in hours worked. The first finding is supportive of the interpretation

of the identified shock as a permanent improvement in technology. The second finding

has typically been interpreted as evidence in favor of price rigidities, which dampen the

substitution effect on impact and thus make the income effect of higher productivity

that increases the demand for leisure dominant in the short run. Note that the skill

premium increases in response to a permanent improvement in technology. The effect

is permanent and is almost fully realized after two quarters. This finding is consistent

with the hypothesis of skill-biased technological change, suggesting that the improved

technology increased the demand for high-skilled labor.

When we include the wages and hours of high and low skilled workers separately in the

VAR, the wage of high skilled workers increases as expected, see Figure 2.8 in the appendix

to this chapter. The wage of low skilled workers stays roughly constant and initially even

decreases a bit. Apparently, the skill bias in the technology shocks is so large that the

relative price effect dominates the average price effect on the wage of low skilled workers.

A different picture emerges for hours worked. Here, hours worked by high skilled workers

decrease, while they increase for low skilled workers. This result is somewhat counter-

intuitive, since we would have expected the relative quantity of skilled labor to increase.

Since we have not properly identified skill-biased technology shocks here, this result could,

however, obscure different kinds of disturbances such as different types of technology

shocks or skill supply shocks.

The estimated technology shocks and their dynamics from the Gaĺı (1999) VAR used here,
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are similar to the direct estimates of total-factor productivity by Basu et al. (2006). As a

robustness check, we use the quarterly series of the Basu et al. (2006) residuals, constructed

by Fernald (2007a), instead of labor productivity in the VAR.14 If the technology shocks

identified by the two approaches were identical, then these impulse responses should be

the same as those shown in Figures 2.3 and 2.8. The results are shown in Figures 2.9 and

2.10 in the appendix to this chapter. Indeed, the responses of the ‘purified’ technology

measure, hours and the premium are very similar, providing support for the identifying

restriction used here. Interestingly, the increase in the wage premium stems from a fall in

the wage of low skilled workers rather than an increase in high skilled wages, however.

2.3.2 Shocks to the supply of skill

In the identification of technology shocks used above, we assumed that technology shocks

are the only shocks that drive productivity in the long run. We showed that these shocks

have asymmetric effects on the demand for high and low skilled labor. Thus, production

does not use a standard Cobb-Douglas technology, but either requires high and low skilled

labor as separate and imperfectly substitutable inputs, as in equation (2.1), or output to

be produced in multiple sectors with different input shares of skilled labor. In these cases,

the identifying assumption of Gaĺı is no longer valid because shocks to the supply of skill

may affect labor productivity in the long run.

Suppose a preference shock causes college enrollment to increase permanently. When

the new, larger cohort of college graduates enters the labor market, the supply of skill

exogenously increases. The resulting lower skill premium leads firms to employ relatively

more skilled workers. Since skilled workers are more productive, this raises average labor

productivity. Thus, this shock to the supply of skill satisfies the identifying restriction for

a technology shock, even though technology has not changed at all.

We separately identify shocks to the supply of skill in order to avoid biasing the estimated

technology shocks. For this purpose, we include a measure of the relative supply of skilled

workers in our VAR. We use a short-run restriction to identify shocks to the supply of

skill: only skill supply shocks affect the supply of skill within a quarter. This restriction

is equivalent to assuming that the supply of skill is predetermined.

14We are grateful to Marty Eichenbaum and Luigi Paciello for drawing our attention to these data and

making them available to us.
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Of course there are many other shocks that may increase the supply of skill endogenously,

through an increase in the skill premium. Skill-biased technology shocks are just one

example. However, the intuition for the identifying restriction is that in order to increase

the supply of skill in response to an increase in its price, workers need to obtain more

education, which lasts at least a year. It seems unlikely therefore, that other shocks would

affect the supply of skill within a quarter.

It is crucial for our identification that we use a measure of the relative supply of skill,

not the relative employment. It is reasonable to assume that the supply of skill is prede-

termined, but the same is not true for the employment of skill. If low and high skilled

workers are imperfect substitutes, then firms may hire relatively more skilled workers in

recessions, when the unemployment pool is larger and these workers are more abundantly

available. This composition bias has been documented by Solon et al. (1994). We mea-

sure the relative supply of skill as the ratio of skilled workers to low skilled workers in the

workforce, whereas the relative employment is the the equivalent ratio among employed

workers, see Section 2.2.3.

The strategy to identify technology shocks conditional on skill supply shocks is recursive.

We first identify skill supply shocks with the short-run restriction and next use the same

long run restriction discussed in the previous subsection to identify technology shocks.

Thus, skill supply shocks are allowed to have a long run effect on productivity. Having

identified fluctuations in productivity (as well as other variables in our VAR) that are due

to skill supply shocks, technology shocks are the only remaining shocks that affect labor

productivity in the long run. The details on the implementation of this combination of

short and long run restrictions can be found in Appendix A to Chapter 1 and Chapter 2.

Figure 2.11 in the appendix to this chapter shows the impulse response functions for this

identification scheme. The lower row shows the responses to a one-standard deviation

skill supply shock. By construction, the supply of skill increases immediately in response

to this shocks. The estimates indicate that the effect is permanent: the supply of skill

remains high in subsequent quarters. Somewhat counter-intuitively, labor productivity

falls after a positive skill supply shock, hours jump up on impact and continue to increase

and the skill premium is almost unaffected.

Controlling for skill supply shocks affects the impulse responses to technology shocks very

little. The responses of productivity, hours and the skill premium are all very similar to

the estimates without controlling for skill supply shocks. The response of productivity is
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Figure 2.4: SBT identification
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a bit stronger and the response of the skill premium a bit weaker than before. The supply

of skill falls moderately, but significantly, in response to a positive technology shock. We

conclude that, while the direction of the bias is as expected, its size seems to be small.

Nevertheless, we will control for shocks to the supply of skill in all specifications in the

rest of the paper.

2.3.3 Identified skill-biased technology shocks

While the response of the skill premium is consistent with skill-biased technological change,

it casts doubt on the traditional interpretation of these shocks. If these were truly shocks

to total factor productivity, as in equation (2.1), the demand for skilled and unskilled labor

should increase in equal proportions and the relative demand should be unaffected. Here,

we propose an alternative identification strategy to directly identify skill-biased technology

shocks in addition to skill-neutral shocks to productivity.

In Sections 2.3.1 and 2.3.2 above, we interpreted the increase in the skill premium in re-

sponse to a technology shock as a measure of skill bias in technology. Here, we formalize

that interpretation as an identifying restriction, identifying skill-biased technology shocks
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as those shocks that affect the relative price of skill in the long run, see equation (2.4). This

restriction is similar in spirit to the identification of investment-specific technology shocks

as shocks that affect the relative price of investment goods proposed by Fisher (2006).

Controlling for shocks to the supply of skill is particularly important in this context, be-

cause of the standard simultaneity problem in estimation of demand or supply elasticities.

An exogenous, permanent increase in the supply of skill would permanently reduce the

price of skill and thus satisfies our identifying restriction for skill-biased technology shocks.

We control for skill supply as described above in Section 2.3.2.

Precisely, the identifying assumptions are now as follows. First, we identify skill supply

shocks as the only shocks that affect the supply of skill contemporaneously. Next, we

identify skill-biased technology shocks as the only remaining shocks that affect the rel-

ative price of skill in the long run. Both types of shocks could potentially affect labor

productivity. Finally, skill-neutral technology shocks are all remaining shocks that affect

labor productivity in the long run. We implement these assumptions by ordering the

respective variables subsequently in the VAR.

This identification scheme strictly speaking is not a decomposition of technology shocks

as in Gaĺı (1999) into skill-biased and skill-neutral shocks. In principle, there might be

shocks that affect the skill premium but not labor productivity in the long run. However,

as explained in Section 2.2.1, it is hard to imagine non-technology shocks other than skill

supply shocks to affect the skill premium in the long run. Moreover, our estimates indicate

that the shocks we identify as skill-biased technology shocks increase labor productivity,

supporting our interpretation of these shocks as a specific type of technology shock.

Figure 2.4 shows the responses of the skill premium, the supply of skill, labor productivity

and total hours worked to a one-standard deviation skill-biased technology shock (SBT

shock) and skill neutral technology shock. By assumption, a positive SBT shock drives

the skill premium up in the long run. The estimates indicate that half of this effect is

realized immediately and the rest within a year. A skill-neutral technology shock has no

significant effect on the wage premium on impact and by assumption there is no long run

effect either. SBT shocks increase the supply of skill in the long run, as should be expected

with a higher skill premium, but this effect is small.

In response to a positive SBT shock, hours worked significantly and persistently fall. Inter-

estingly, skill-neutral technology shocks barely decrease hours on impact and significantly

and substantially increase hours worked less than a year after impact. This finding sug-
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gests that at least part of the fall in hours worked in response to technology shocks, as

in Gaĺı (1999) and in the estimates in Section 2.3.1, is related to the skill bias in these

shocks. If high skilled workers are much more productive than low skilled workers, then it

is possible that by substituting low skilled for high skilled workers in response to an SBT

shock, firms may increase effective labor input in their production process, while reducing

total hours or employment. Figure 2.12 in the appendix to this chapter confirms this

interpretation: In response to an SBT shock, the wage of high skilled workers increases

substantially, but the wage of low skilled workers actually falls. In contrast, the wages of

both types of workers are affected identically by a skill-neutral technology shock. These

findings indicate that for low skilled workers the relative productivity effect dominates the

average productivity effect of an SBT shock.

Table 2.3 shows a decomposition of the forecast error of the VAR at various horizons. At

business cycle frequencies with periodicities from 8 to 32 quarters, SBT shocks explain

a little over 3% of fluctuations in output, which seems unimportant compared to the

45% of fluctuations explained by skill-neutral technology shocks. Fluctuations in the skill

premium are almost exclusively due to SBT shocks, with skill supply shocks and neutral

technology shocks combined explaining less than 2% of the variance. Thus, it seems that

fluctuations in the skill premium are largely driven by shocks that are unrelated to output

fluctuations. However, to understand business cycles in the labor market, it is important

to allow for skillbias in technology shocks. Skill-biased shocks are responsible for about

10% of fluctuations in hours worked, slightly more than neutral technology shocks.

2.3.4 Robustness

In our baseline estimates, we impose a Minnesota (Litterman) prior on the decay of the

lag coefficients in order to be able to allow for a large number of lags. However, our results

are not driven by this prior. The responses of productivity and the skill premium to all

shocks are virtually unaltered when we change the number of lags, the strength of the

prior, or when we estimate the VAR using ordinary least squares (OLS). The fall in hours

worked in response to skill-biased technology shocks is also robust across specifications and

is significant if we include at least 4 lags in the VAR. The increase in hours in response

to neutral technology shocks is actually stronger in all alternative specifications: whereas

in the baseline the positive effect becomes significant only after 3 quarters, in all other

specifications it is significant at all horizons. These results are summarized in the first
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panel of Table 2.4.

Next we explore to what extent the way we constructed our measure for the skill premium

matters for the results. Using a ‘naive’ measure of the skill premium that does not take

into account the heterogeneity over and above two skill types, we would not have observed

the fall in hours in response to an SBT shock. The likely reason is that this measure picks

up some changes in the quantity of skill as changes in the premium. Thus, the SBT shock

identified off changes in the naive measure would include some skill supply shocks. And

since skill supply shocks would be expected to increase hours worked, this would mitigate

the fall in hours in response to the identified SBT shocks.

Finally, we compare the properties of our identified SBT shocks to a simple decomposition

using equation (2.4), see Section 2.2.2. This decomposition is similar in spirit to a Solow

residual and requires a value for the elasticity of substitution between high and low skilled

workers σ. We use σ = 1.5, which is the consensus estimate from the literature based on

several different data sources (Katz and Murphy (1992), Ciccone and Peri (2006), Teulings

and van Rens (2008)). With this value, we can use equation (2.4) to retrieve changes in

skill-biased technology Bt from our data on the skill premium and the relative employment

of skill. After demeaning these changes and normalizing their variance to unity, they are

comparable to the identified SBT shocks from the structural VAR. The difference is in

the identification. Whereas the identified shocks require assumptions only on the long

run behavior of the skill premium, the decomposition requires equation (2.4) to hold in

each period. Figure 2.13 plots both estimates for the shocks over the sample period. It is

encouraging that despite the differences in identification, the resulting estimates for the

skill-biased technology shocks look similar, except at the beginning of the sample. The

correlation between the two estimates is 0.48. Moreover, the decomposition is robust to

the value of σ chosen. In fact, the estimates for the SBT shocks using the decomposition

are similar to the first difference of the skill premium.

To complete the comparison, we compare the response of productivity, hours worked and

the skill premium to the identified SBT shocks and the estimated shocks using the de-

composition. We regress these variables on lags of the shocks, estimated either from the

decomposition using equation (2.4) or as the residuals from our structural VAR, as sug-

gested by Basu et al. (2006). This is a direct estimate of the moving average representation

of the impulse response functions and the results are comparable to the impulse responses

in Figure 2.4. Since the impulse responses in Figure 2.4 seem to flatten out after about 6
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Figure 2.5: Impulse-responses to Solow residual
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Notes: Percent responses in quarters to a positive one-standard-deviation shock.

First row: Impulse-responses from regression of the skill premium, productivity, hours

worked and the relative supply on six lags of the identified SBT shock.

Second row: Impulse-responses from regression of the variables on six lags of the residual

from the production function decomposition. The black dotted line repeats the estimate

from the first row. Confidence intervals are one standard errors.
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quarters, we use 6 lags of the shocks. The results are presented in the first row of Figure

2.5. The responses to identified SBT shocks estimated in this way are quite similar, espe-

cially in sign, to those directly calculated from the VAR estimates. We now discuss how

the responses to SBT shocks obtained from the decomposition compare to these.

The second row of Figure 2.5 shows the responses to SBT shocks estimated using the

decomposition. Generally, the responses are different from the responses to the VAR

residuals but throughout equal in sign. The responses of the skill premium and hours

worked to the VAR residuals are larger, the respective response of the relative supply of

skill is smaller in absolute value than the responses to the decomposition residuals. The

largest difference in the responses to SBT shocks estimated in the two different ways is the

response of labor productivity. Labor productivity falls below zero on impact and does

overall not respond significantly to a shock to the decomposition. Given the difference

in the identifying assumption underlying both sets of estimates, the difference must be

due to short run deviations of the skill premium from equation (2.4), for example because

of wage rigidities. We have discussed above that we find some evidence for other shocks

affect both the skill premium and/or labor productivity in the long run, for example

neutral technology shocks or skill supply shocks. These shocks are not adequately filtered

out by the decomposition, which justifies using long run restrictions.

2.4 Investment-specific shocks and the skill premium

Over our sample period the relative price of investment goods fell substantially. This find-

ing has been interpreted to mean that technological progress has been faster in investment

goods producing sectors than in consumption goods producing sectors (Greenwood et al.

(1997), Cummins and Violante (2002)). Fisher (2006) has argued that such investment-

specific technological change is important not only for long run trends, but also for busi-

ness cycle fluctuations. Because the increase in the skill premium roughly coincided with

the decrease in the relative price of investment goods, Krusell et al. (2000) argue that

investment-specific and skill-biased technological change might be one and the same. If

capital and skill are complements in the aggregate production function, technological in-

novation in the investment-sector will necessarily lead to an increase in the demand for

skill. If this is the case, then investment-specific technology shocks should lead to business

cycle fluctuations in the skill premium. In this section, we explore this hypothesis and
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find no evidence for capital-skill complementarity.

2.4.1 Skill bias in investment-specific shocks

Consider the alternative aggregate production function (2.3), as in Krusell et al. (2000),

which allows for complementarity or substitutability between capital and skill. Assuming

as before that wages are proportional to marginal products in the long run, expression

(2.4) for the skill premium changes to the following.

log
(

wH,t

wL,t

)
= log

(
β (1− γ)

1− β

)
− 1

ρ
log

(
Ht

Lt

)
+

ρ− 1
ρ

Bt

+
σ − ρ

σ (ρ− 1)
log

(
γK

ρ−1
ρ

t + (1− γ) (BtHt)
ρ−1

ρ

)
(2.5)

Since investment-specific technological progress raises the long run capital-labor ratio, it

is clear that such technological change will also raise the skill premium if ρ < σ, i.e., if

capital and skill are complements rather than substitutes in production. As a result, our

identifying restriction that skill-biased technology shocks are the only shocks that affect

the skill premium in the long run is no longer valid, and we need to separately control

for investment-specific shocks. In addition, it is interesting in itself to assess the skill bias

in investment-specific shocks, because it will allow us to assess the degree of capital-skill

complementarity in aggregate production.

We follow Fisher (2006) in identifying investment-specific and investment-neutral technol-

ogy shocks using the relative price of investment goods. We estimate the effect of these

shocks on the skill premium in order to evaluate the hypothesis of capital-skill comple-

mentarity. As before, we control for skill supply shocks, so that the exact identifying

restrictions are as follows. First, we identify skill supply shocks using a short run re-

striction as described above. Then, we identify investment-specific technology shocks as

the only remaining shocks that affect the relative price of investment goods in the long

run. Finally, investment-neutral technology shocks are all remaining shocks that drive

labor productivity in the long run. For implementation, skill supply, the relative price of

investment and labor productivity are ordered first in the VAR.

Figure 2.6 shows the responses of the the skill premium, the relative supply of high skilled

workers, labor productivity, hours worked and the relative price of investment goods to

investment-specific and investment-neutral technology shocks. Note that controlling for

skill supply shocks changes the results in Fisher (2006) very little. After an improvement in
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Figure 2.6: Fisher identification with skill supply shocks
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Notes: Percent responses to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.
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investment-specific technology, the relative price of investment falls, productivity increases

and hours worked increase as well. An investment-neutral technology shock, has no effect

on the relative price of investment, increases productivity and leads to a fall in hours

worked15.

The skill premium and the supply of skill significantly fall after an improvement in

investment-specific technology. While there is certainly evidence for a relation between

skill bias and investment-specific technical change, these estimates point towards capital-

skill substitutability rather than complementarity: investment-specific shocks increase rel-

ative demand for unskilled labor. Because we have already documented that technology

shocks are skill biased, it should not be surprising that investment-neutral technology

shocks increase the skill premium, suggesting these shocks increase the demand for skilled

labor.

The same finding can be documented in an alternative way. In Figure 2.14 in the appendix

to this chapter, we present impulse responses of the relative price of investment goods to

skill-biased and skill-neutral technology shocks, identified as in Section 2.3.3. The graphs

provide the mirror image to those in Figure 2.6: Skill-biased technology shocks increase the

relative price of investment goods significantly, suggesting these shocks are “consumption-

specific” or capital and skill are substitutes in production. Note that these shocks share

the same features as the investment-unspecific technology shocks identified in Chapter 1.

Our findings are in striking contradiction with the argument in Krusell et al. (2000). What

explains the difference is that Krusell et al. (2000) base their argument on a correlation

in the long run trends in the skill premium and the relative price of investment goods.

In our approach, the identifying variation are comovement between those two series at all

frequencies except the trends, which are captured by the constant term in the VAR. It is

possible that the comovement in the trends in both relative prices is a spurious correlation

between two integrated series. It is also possible that the model needed to explain long run

growth trends is different from the model that describes higher frequency fluctuations.16

In any case, our findings reject the hypothesis that there is a stable aggregate production

15Since productivity increases after an investment-specific technology shock in our specification, we do

not need to use an additional assumption on this effect as in Fisher (2006).

16Lindquist (2004) presents a business cycle with capital-skill complementarity and investment-specific

technology shocks and argues that the model can explain fluctuations in the skill premium and the capital-

skill ratio. However, he evaluates the model based on the unconditional correlations of the skill premium

with output and does not consider the correlation of the skill premium with the investment price.
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function with capital-skill complementarity.

2.4.2 Contribution to business cycle fluctuations

Our results suggest that there are at least four different types of technology shocks with

distinct implications for the comovement of aggregate variables: skill-neutral, investment-

neutral; skill-neutral, investment-specific; skill-biased, investment-neutral; and unskill-

biased, investment-specific (or skill-biased, consumption-specific) technology shocks. With

the identifying restrictions discussed above, it is not possible to separately identify all

four different shocks simultaneously. Recall that both investment-specific and investment-

neutral technology shocks affect the skill premium. Conversely, both skill-biased and

skill-neutral technology shocks affect the relative price of investment goods. Hence, if

we use a recursive identification scheme, identifying first investment-specific technology

shocks, then these shocks will include the unskill-biased, investment-specific shocks. In

this case, skill-biased technology shocks will be identified as all remaining shocks that af-

fect the skill premium in the long run and will exclude shocks that affect both the relative

price of investment and the skill premium. Similarly, if we identify first the skill-biased

shocks, then these shocks will include the skill-biased, consumption-specific shocks.

Our solution to this problem is to estimate both orderings and use the estimates as a lower

and upper bound for the contribution of the various shocks. To be more precise, we always

identify supply shocks first as above. Then, in ordering I, we identify investment-specific

technology shocks as all remaining shocks that affect the relative price of investment goods.

These shocks are allowed to affect the skill premium. Skill-biased technology shocks are

identified as all remaining shocks that affect the skill premium in the long run. The

estimates of this VAR provide an upper bound for the contribution of investment-specific

shocks and a lower bound for the contribution of skill-biased technology shocks. In ordering

II, we identify skill-biased technology shocks as all shocks that affect the skill premium

in the long run (conditional on skill supply shocks) and investment-specific shocks as the

remaining shocks that affect the relative price in the long run. This ordering provides

an upper bound for the contribution of skill-biased shocks and a lower bound for the

contribution of investment-specific shocks. In both cases, the remaining shocks affecting

labor productivity are neutral technology shocks.

Table 2.2 shows the variance decomposition of the forecast error in output, hours and

the skill premium. The contribution of skill supply shocks and neutral technology shocks
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Table 2.2: Variance decomposition from joint identification

Horizon 8 16 32

I II I II I II

output

supply shock 5.3 5.9 10.0 10.8 12.3 13.1

invest. shock (ub,lb) 63.9 54.8 60.6 50.7 57.3 48.7

SBT shock (lb,ub) 2.5 9.1 1.9 9.7 1.9 8.9

neutral shock 4.2 4.9 4.3 5.0 4.6 5.2

hours

supply shock 20.6 21.3 30.2 30.7 35.9 36.0

invest. shock (ub,lb) 46.0 26.6 38.8 22.1 31.8 18.7

SBT shock (lb,ub) 1.0 19.4 1.1 17.8 1.1 15.3

neutral shock 1.3 1.1 0.7 0.6 0.6 0.4

premium

supply shock 1.7 1.5 2.0 1.8 2.4 2.2

invest. shock (ub,lb) 11.2 5.4 21.5 2.2 25.2 1.0

SBT shock (lb,ub) 86.0 92.2 76.0 95.6 72.2 96.6

neutral shock 0.4 0.2 0.1 0.1 0.1 0.0

Notes: Numbers are in percent. The values for the shocks and the (omitted)

residual disturbances add up to 100 for each horizon. The point estimate is the

median, the confidence intervals are 68 % Bayesian bands from the posterior

distribution.
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is very similar in both orderings of the identifying restrictions. This illustrates that we

identify the same shocks in both orderings. Neutral technology shocks explain less than 5%

of business cycle fluctuations in output and play virtually no role for fluctuations in hours

and the skill premium. Investment-specific technology shocks explain up to two thirds

of the volatility in output at business cycle frequencies, about one third of the variation

in hours. This finding is consistent with earlier findings in this literature (Fisher (2006),

Canova et al. (2006)).

Skill-biased technology shocks explain almost all of the entire business cycle variation in

the skill premium. These shocks are important for fluctuations in output and (especially)

hours as well, but only insofar as they also affect the relative price of investment goods.

Investment-specific, skill-neutral technological progress is important for fluctuations in

output, but does not have much of an effect on the skill premium. These results suggest

that shocks that drive fluctuations in the skill premium are largely unrelated to other

variables in the economy. This finding is consistent with the unconditional moments in

Table 2.1, which show the skill premium to be largely uncorrelated with output.

2.4.3 Capital-skill complementarity

Our finding that the skill premium decreases in response to investment-specific shocks,

and the relative price of investment goods increases in response to skill-biased technology

shocks suggest that capital and skill are substitutes rather than complements in the aggre-

gate production function. Yet the estimates by themselves do not give any indication as to

how large this effect is. What parameters of production function (2.3) are consistent with

our estimates? To answer this question, we simulate a simple business cycle model with

a production function as in (2.3) and compare the estimated impulse response functions

from the actual data to those from simulated data for different values of the substitution

parameters. This procedure also allows us to see whether the structural VAR performs

well in capturing the conditional moments of the variables in a model that is consistent

with our interpretation of the results.

The model is a simple real business cycle model with high and low skilled workers. The

model is taken from Lindquist (2004) and combines the two sector model of Greenwood

et al. (1997), in which output can be used for consumption or accumulation of capital

equipment, with the model of Krusell et al. (2000) with two skill types and capital-skill

complementarity. Business cycle fluctuations in the model are driven by shocks to total
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factor productivity and the relative price of investment goods.

For the calibration of the structural parameters of the model we also follow Lindquist

(2004), but we assume the two productivity shocks are highly persistent and uncorrelated

with each other in order to be consistent with the identifying restrictions of our VAR.

The substitution parameters in the aggregate production function (2.3) are σ = 1.67 and

ρ = 0.67. These values were estimated by (2.3) to be consistent with the trends in the

relative price of investment goods and the skill premium. Since ρ < σ in this calibration

the aggregate production function exhibits capital-skill complementarity. In alternative

calibrations, we keep σ constant, because the value of the elasticity of substitution between

high and low skilled workers is well documented, and change ρ to vary the degree of

capital skill complementarity. We consider the cases of capital-skill complementarity (ρ =

0.67), weak complementarity (ρ = 1.17), neither complementarity nor substitutability

(ρ = σ = 1.67), weak substitutability (ρ = 2.17), substitutability (ρ = 2.67) and strong

substitutability (ρ = 3.17) and also an extreme case of substitutability (ρ = 5). In each

case, we recalibrate the other model parameters if necessary to keep the calibration targets

constant.

We simulate the model 1000 times for 88 quarters, the same sample length as in our data.

In each simulation, the model is first simulated for 200 periods, which are then discarded,

in order to remove dependence on the initial conditions. We then estimate the VAR for

each sample of 88 quarters and average the impulse responses across the 1000 simulations.

Figure 2.15 in the appendix to this chapter illustrates this for the calibration in which

capital and skill are neither complements nor substitutes. For better comparison, the

responses are normalized such that they match the responses in the actual data of the

investment price and labor productivity to the two technology shocks respectively. Nicely,

the estimated responses from the simulated data closely match the theoretical ones from

the model.17 This is also the case for other degrees of substitutability of complementarity

between capital and high-skilled labor. Most importantly for our purposes, the estimated

response of the skill premium to investment-specific shocks is positive if capital and skill are

complements, negative if they are substitutes and zero when they are neither substitutes

nor complements.

Figure 2.7 shows the impulse responses of the skill premium to an investment-specific

17The small differences may be due to many reasons: technology shocks in the model are persistent but

not permanent, the prior smoothes the estimated responses, the finite lag length in the VAR, etc.
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Figure 2.7: Capital-skill substitutability
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structural VAR with actual data together with the Bayesian 68% confidence

bands (red dotted lines). The dashed lines show the responses from the

model with ρ = 0.67, ρ = 1.17, ρ = 2.17, ρ = 2.67 and ρ = 5 respectively.

shock from the model simulated for different degrees of capital-skill complementar-

ity/substitutability as well as from the actual data. Comparing the response of the skill

premium to investment-specific shocks in the actual data to that in the model, it is clear

that our estimates suggest a fairly large degree of capital-skill substitutability. In fact, the

estimates suggest an elasticity of substitution between capital and high skilled labor of

around ρ = 5, whereas the elasticity of substitution between capital and low skilled labor

is σ = 1.67. These parameters imply that if the capital stock increases by 1%, firms can

still produce the same amount of output as before if they fire 1.67% of their low skilled

workers or as much as up to 5% of their high skilled workers. One should recall here

that the estimated response to the skill premium is particularly low for the baseline spec-

ification of the estimation. Other estimates will provide lower values of substitutability

between skilled labor and capital.

2.5 Conclusions

This paper has investigated the implications of skill-biased technological change for the

business cycle. In order to address this issue we have constructed a quarterly series of the

skill premium and skill supply from the CPS outgoing rotation groups. We have identified

conventional neutral and investment-specific technology shocks from structural VARs with
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long-run restrictions using quarterly U.S. data. In addition, we have proposed a strategy

to identify skill-biased technology shocks through reshuffling the variables in the same

VAR that we have used for the identification of the conventional technology shocks. Skill-

biased technology shocks are those technology shocks that drive the skill premium up and

may affect productivity in the long-run. Since they potentially bias the results, we have

additionally controlled for shocks to the supply of skill using a short-run restriction.

We have investigated the effect of neutral and investment-specific technology shocks on

the skill premium and documented that technology shocks are skill-biased at all business

cycle frequencies. Further, there exists no evidence for complementarity between capital

and skill over the business cycle as investment-specific technology shocks do not signifi-

cantly drive up the skill premium. Rather, capital and skill are substitutes in production.

Moreover, we find that skill-biased technology shocks lead to a fall in hours worked and

may thus be suitable to explain what Gaĺı (1999) has documented as the ’hours puzzle’.

As a consequence, skill-biased technology shocks are important to understand the business

cycle fluctuations.

We have addressed a great variety of robustness checks for our results. We have considered

different measures for the skill premium and skill supply as well as various specifications

of estimating the baseline VAR. In addition, we have constructed a measure of skill biased

technology from a production function decomposition, similar to a Solow residual. We have

furthermore simulated artificial data from a model with different degrees of capital-skill

substitutability and complementarity in order to test our identification procedure.

There are nevertheless still some caveats and issues that will need further attention in

future research. For example, the induced dynamics to shocks to the supply of skill do

not fully agree with what they were expected to ex ante. With respect to the capital-

skill substitutability, the biggest open question still lies in the discrepancy of our results

with the evidence of complementarity between these two production inputs in the trends

(zero frequency). The joint coincidence of these two results points to the existence of two

different production functions in the different frequencies. Last, it would be insightful to

study the degree of capital-skill substitutability or complementarity in different sectors

in order to see how this relates to or causes the aggregate substitutability that we have

documented above.
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Appendix to Chapter 2:

Additional Tables and Graphs

Table 2.3: Variance decomposition SBT identification

Horizon 1 8 16 32

output

supply shock 1.39 1.30 2.44 2.97

(1.3,1.4) (0.6,3.2) (0.7,8.1) (0.5,10.7)

SBT shock 1.66 3.12 3.44 3.66

(0.1,7.5) (0.5,11.4) (0.6,13.6) (0.5,14.4)

neutral shock 47.55 45.10 44.46 44.23

(29.5,64.2) (27.7,60.4) (26.5,60.2) (26.2,60.6)

hours

supply shock 7.83 8.21 14.45 17.22

(7.8,7.9) (3.8,14.7) (6.1,25.8) (7.3,31.7)

SBT shock 7.87 10.28 9.90 9.56

(1.6,18.1) (1.9,24.7) (1.7,25.3) (1.5,25.4)

neutral shock 1.75 9.30 9.51 9.16

(0.2,6.6) (2.2,22.2) (2.1,23.3) (1.8,23.3)

premium

supply shock 1.07 0.79 1.04 1.18

(1.0,1.1) (0.3,2.6) (0.3,3.9) (0.2,4.7)

SBT shock 90.98 94.74 96.43 97.40

(80.7,96.7) (89.3,97.9) (92.5,98.5) (93.8,99.1)

neutral shock 0.88 0.84 0.41 0.19

(0.1,4.2) (0.3,2.6) (0.1,1.3) (0.1,0.6)

Notes: Numbers are in percent. The values for the shocks and the (omitted)

residual disturbances add up to 100 for each horizon. The point estimate is

the median, the confidence intervals are 68 % Bayesian bands from the

posterior distribution.
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Table 2.4: Robustness of SBT Identification

SBT shock on hours skill-neutral shock on hours

Baseline specification

-, sign. +, sign. after 3rd quarter

Variation of the baseline specification with baseline wage premium

Minnesota prior with 8 lags changed to

2 lags -, not sign. +, sign.

4 lags -, sign. +, sign.

12 lags -, sign. -, sign. on impact,

+, sign. after 3rd quarter

weaker prior* -, sign. +, sign.

Flat prior (OLS equivalent)

2 lags -, not sign. +, not sign.

4 lags -, sign. +, sign.

Baseline specification with different wage premium series

Naive measure +, small effect, +, sign.

sign. on impact*

Lindquist measure +, small effect, +, sign.

sign. on impact* +, sign. after 3rd quarter

Notes: *Changed decay parameter from d = 3 to d = 1.
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Table 2.5: Variance decomposition Fisher identification

Horizon 1 8 16 32

output

supply shock 0.47 5.48 9.86 11.86

(0.4,0.5) (2.1,9.9) (3.5,17.9) (3.9,21.7)

i-shock 15.21 60.21 56.95 54.21

(7.7,25.2) (47.8,70.5) (42.5,69.4) (37.7,69.1)

neutral shock 17.17 6.65 6.29 6.20

(8.0,29.6) (2.5,13.4) (2.1,13.2) (1.7,14.3)

hours

supply shock 17.25 20.43 28.87 33.22

(17.2,17.3) (14.7,27.6) (19.3,39.9) (22.2,46.1)

i-shock 15.44 41.95 35.79 29.74

(8.1,23.9) (29.9,54.2) (21.2,51.3) (15.5,48.8)

neutral shock 13.65 2.08 1.69 1.53

(5.9,23.3) (0.6,6.8) (0.5,6.1) (0.3,6.1)

premium

supply shock 0.05 2.70 3.17 3.75

(0.0,0.1) (0.9,6.3) (0.8,8.7) (0.7,10.5)

i-shock 3.98 10.39 20.02 23.12

(0.7,10.5) (2.8,22.9) (6.3,37.7) (6.5,43.6)

neutral shock 21.13 31.85 28.59 27.37

(11.7,31.4) (20.3,44.1) (17.5,41.4) (16.0,40.6)

Notes: Numbers are in percent. The values for the shocks and the (omitted)

residual disturbances add up to 100 for each horizon. The point estimate is

the median, the confidence intervals are 68 % Bayesian bands from the

posterior distribution.
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Figure 2.8: Gaĺı identification - additional variables
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Notes: Percent responses to a positive one-standard-deviation shock.

Confidence intervals are 68% Bayesian bands.

Figure 2.9: Gaĺı identification with TFP measure
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Figure 2.10: Gaĺı with TFP measure and additional variables
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Figure 2.11: Gaĺı identification with skill supply shocks
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Figure 2.12: SBT identification - additional variables
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Figure 2.13: Comparison of SBT shock and decomposition

1980 1985 1990 1995 2000 2005
−3

−2

−1

0

1

2

3

4

Notes: Black solid line depicts identified SBT shock, red dashed line shows the

residual from the production function decomposition.

Figure 2.14: SBT identification - relative price of investment goods
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Figure 2.15: Impulse-responses from model and simulated data
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Chapter 3

On the Implications of Unobserved

Age and Cohort Effects for

Aggregate Labor Supply

3.1 Introduction

The euro area labor force participation rate, defined as the ratio between the labor force

and the working age population, has increased from below 65% in the early 1980s to 70.9%

in 2007. The increase in the propensity to work or to search for and to be available for

jobs has been the main driver of the substantial increase in euro area labor supply that

has accelerated since the mid-1990s. However, the overall increase reflects substantial

heterogeneity in the evolution of participation behavior across population groups and

across euro area countries. The participation rate of females in the euro area has increased

by more than 15 percentage points over this time period, to 63.3% in 2007, compared to

the participation rate of 78.6% for males (see upper panel of Figure 3.1). The participation

rate of the young (15-24 years old) declined markedly until the mid-90s and has stabilized

to around 45% in the last decade, whereas, following a long period of stable participation

rates, the participation rate of those 55-64 years old increased markedly in the last few

years (see lower panel of Figure 3.1). Also, the extent of the increase in participation

and its composition across worker groups varies across euro area countries, suggesting

an important role for cross-country heterogeneity in the underlying factors that determine

individual labor supply decisions. A number of factors could have contributed to the overall

increase in participation: robust, employment intensive economic growth (in particular
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from the mid-1990s onwards), reforms targeted at groups with lower attachment to the

labor market, changes in cultural attitudes towards work (particularly for women), as well

as demographic factors, such as the larger share of the population in prime working age.

We use harmonized data from the EU Labour Force Survey (LFS) and a cohort-based

model to analyze determinants of labor market participation in the euro area and the five

largest euro area countries (Germany, France, Italy, Spain and the Netherlands) over the

last few decades. We refer to two euro area aggregates. The first (EA12) consists of the

euro area 12 countries before Slovenia, and later Malta, Cyprus and Slovakia, entered the

euro area and the second (EA5) an aggregation of the five largest euro area countries.

The cohort-based model is used to decompose time-series of age-specific participation

rates in euro area countries into the impact of the business cycle, observed structural

determinants of participation (such as labor market institutions) and most importantly

unobserved determinants captured by age and birth-year specific (i.e. cohort) effects.

The age and cohort effects are derived from the evolution of the age-participation profile

over time. The propensity to participate evolves over the life-cycle, as reflected in an

inverted u-shape age-participation profile. The age effects in the model capture this feature

of the underlying age-participation profile. At the same time, the age-participation profile

is continuously shifting. The cohort based model captures parallel shifts in the profile

that are specific to a birth-year through the unobserved cohort effects. While cohort

effects generally encompass any factor associated with a particular birth year, they are

likely to reflect the impact of individual participation choices made early on in life (for

example choices relating to starting a family, maternity leave and/or education) that

persist throughout the life-cycle. They may also reflect crowding-out effects or slowly

evolving preferences, cultural factors or institutions.1 Controlling for business-cycle effects,

we first estimate age and cohort effects for the euro area aggregate (EA12) and individual

euro area countries.

While cohort effects explain shifts in the age-participation profile, potential changes in

the shape of this profile are captured through observed time-varying determinants, such

as demographic trends and changing labor market institutions. We use the model with

1For example, Fernandez (2007) builds a model of female participation that is based on culture and

learning. She argues that cultural factors can explain the increase (and the S-shaped time series pattern)

of female participation rates in the United States. Antecol (2000) finds that the home country plays an

important role in participation decisions of first generation female immigrants in the US, suggesting that

culture matters for participation behavior.
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Figure 3.1: Participation rates by worker groups in the euro area (EA12)
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observed determinants to explain changes in trend participation rates over time and also

to project them forward in the five largest euro area countries. We then aggregate these

country trends and projections for the euro area (EA5). Projections that take age and

cohort effects and the changing population structure into account provide a useful bench-

mark scenario for future labor supply in the euro area. In particular, a cohort based model

takes into account the extent of the pass-through of participation behavior from the young

cohorts to the oldest cohorts. Looking forward, demographic factors will become less fa-

vorable with population ageing increasing the importance of positive participation trends

within age and gender groups in sustaining potential growth in the euro area. As we

estimate the model separately for individual euro area countries and aggregate the results,

the results for the euro area also fully incorporate heterogeneity across countries.

Our paper is related to two main strands of literature. First, our main focus is on ac-

curately estimating trends in participation based on both observed determinants and the

unobserved age and cohort effects in the euro area. For this purpose we use a modified

version of the cohort-based model presented in Fallick and Pingle (2007) and applied in

Aaronson et al. (2006) to data for the United States. By simultaneously estimating par-

ticipation equations for single ages for each gender and taking advantage of cross-equation

restrictions the model provides a detailed account of the role of age and cohort effects in

explaining movements in the aggregate participation rate. Fallick and Pingle find that

these effects provide additional insights compared to time series based trend/cycle decom-

positions. For example, they find that the levelling off of the increase in the propensity to

participate at cohorts born around 1950 suggests that increased labor market attachment

is less likely to support an increase in the participation of females in the United States. We

are not aware of a cross-country study of European participation rates that accounts for

these features. Euwals et al. (2007) find using micro-data that cohort effects have played

an important role in explaining the increase in female participation from 1992 to 2004

in the Netherlands. Fitzenberger et al. (2004) use an alternative age, cohort, and period

accounting model to study participation and employment in Germany and find significant

cohort effects for females.2

Second, a number of studies have documented the impact of labor market institutions

on unemployment and employment in European countries (for a recent contribution and

2Other studies that use closely related methods include Beaudry and Lemieux (1999) for Canada and

Fukuda (2006) for Japan. In addition, Carone (2005) and Burniaux et al. (2004) take advantage of cohort

effects to project participation rates for EU and OECD countries respectively.
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review of the literature, see Bassanini and Duval (2006) and Bertola et al. (2007) for

age-group specific analysis). Participation decisions have received less attention in this

context. Blöndal and Scarpetta (1999) and Duval (2006) focus on older workers and their

retirement decisions and Jaumotte (2003) on females. Genre et al. (2005) and (2008)

focus on group specific participation rates in European countries. Using annual data for

a panel of European Union countries, they estimate participation equations for age and

gender groups in order to identify the impact of institutions in participation decisions.

They find that labor market institutions indeed matter for labor supply: higher union

density, more employment protection and more generous unemployment benefits lower

participation rates. Genre et al. (2008) also find using lagged participation rate as a proxy,

that a common (across countries) cohort effect is an important element for understanding

participation rates of older women (those between 55 and 64) in European countries. We

add to these studies by considering disaggregated groups and by evaluating age and cohort

effects and possible observed determinants of participation in the same model. Instead of

the cross-country focus of most previous studies, we exploit the time series dimension of

the data and incorporate the impact of a broader set of factors through the unobserved

age and cohort effects.

We find that analyzing participation behavior both between (age and gender effects) and

within (cohort effects) detailed age and gender groups is particularly useful for modelling

trends in euro area aggregate participation rates and projecting them forward. Our results

suggest that age and cohort effects can explain a substantial part of the recent increase in

labor force participation rates in the euro area, although not the surge since early 2000s.

Cohort effects are particularly relevant for women, with those born in the 1920s and 1930s

less likely and those born in the late 1960s and early 1970s more likely to participate

in the labor market over the life-cycle. There is substantial variation in cohort effects

across the five largest euro area countries that we analyze. Depending on the country,

the estimated cohort profiles suggest an increase of 10 to 30 percentage points in female

participation rates. We also find that a number of observed determinants, such as labor

taxes, union density, unemployment benefits and the average number of children have had

an impact on labor force participation rates, although the specific impact varies across

age and gender groups and countries. Looking forward, while they continue to provide

some upward support to participation rates of women in the euro area, positive cohort

effects are not large enough to compensate for the downward impact of population ageing

on labor force participation rates in the euro area.

97



The rest of the paper is organized as follows. In Section 3.2 we describe sources and

characteristics of the data employed and the cohort based model of participation. In

Section 3.3 we present results from the model in three parts. We first illustrate the role

of estimated age and cohort effects in determining participation. Second, we analyze the

impact time-varying observed determinants of participation within a full model. Third,

we present projections for participation rates up to 2030 based on the model and compare

them with alternative scenarios. Finally, we summarize our results and conclude in Section

3.4.

3.2 Data and methodology

Participation behavior and its determinants vary systematically by age and gender and

changes in group-specific participation rates translate into the aggregate through an evolv-

ing population structure.3 As a result, analyzing participation behavior of detailed age

and gender groups is essential for understanding aggregate participation developments.

The source for data on population, employment and unemployment for detailed age and

gender groups for euro area countries is the EU Labour Force Survey (LFS) compiled by

Eurostat.4 The same LFS data are used by Eurostat to calculate official statistics on

participation and unemployment for EU countries. The LFS data are harmonized across

countries and therefore particularly well-suited for cross-country comparative analysis.

The annual data from 1983 to 2007 are based on the spring (second quarter) results. Data

are available for ages from 15 to those over 70.5

Constructing consistent data over time requires some adjustments. In the case of Germany,

data prior to 1991 have been extrapolated backwards on the basis of the developments in

3Naturally, participation behavior varies also across other personal characteristics, such as education

and skills, immigrant status etc. We focus on age and gender for reasons of data availability: in particular,

LFS data by education categories is only available from the early 1990s onwards. That data shows that

more educated workers tend to have higher participation rates and that an increase in overall educational

attainment over time has coincided with an increase in participation rates, particularly for women.

4A detailed description of the sampling methods and adjustment procedures used in the LFS can be

found in ”The European Union Labour Force Survey - Methods and Definitions, 2001”, the available

variables are listed and described in the ”EU Labour Force Survey database - User guide”. The change

from annual to quarterly periods by Eurostat has resulted in breaks in the LFS survey in many euro area

countries. Therefore we rely on the more consistent spring (second quarter) data throughout the sample

period, except for France and Austria (first quarter).

5Except for Spain where data are available for those above 16.
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West Germany. We refer to two euro area aggregates in the paper. The first consists of the

euro area 12 countries before Slovenia, and later Malta, Cyprus and Slovakia, entered the

euro area. While there is no information available in the LFS for the euro area countries

before they joined the European Union (i.e., for Spain and Portugal prior to 1986, for

Austria and Finland prior to 1995), this has been taken into account in the calculation

of the euro area 12 aggregate. In particular, data for the euro area 12 aggregate prior to

1996 have been obtained on the basis of the growth rate of the largest aggregate available

(i.e., 12 countries in 1995 to 2006, 10 countries between 1986 and 1995 and 8 countries

before 1986). The second aggregate (euro area 5) contains only the largest 5 countries of

the euro area, namely Germany, France, Italy, Spain and the Netherlands. This aggregate

is calculated from the actual and estimated participation rates of the single countries,

weighted with their respective population shares.

Labor supply and participation rates evolve substantially over the life-cycle, tracing a

well-known overall inverted u-shape profile of participation rates that peaks around the

prime working age. Figure 3.8 in the Appendix to this chapter illustrates these profiles

for the EA12 aggregate for males and females in 2007. The participation rates of younger

workers (those below 25) and older workers (those above 50) change substantially from

one age group to another, whereas the substantially higher participation rates for those in

prime working age show a relatively flat profile between the ages of 30 and 50. The age

participation profile for females is always below, peaking earlier than the profile for males.

The gap to the male profile is smaller at younger than at older ages. At the country level,

we can observe somewhat different participation profiles in 2007, pointing to important

heterogeneity in participation behavior. For instance, the gap between male and female

participation rates is more substantial in Italy and Spain than in France, Germany and

the Netherlands, especially for those in prime age. While the participation rates of the

youngest age groups are comparable between most countries (at levels around 10-30%),

they are substantially higher in the Netherlands (at around 60%). Finally, for the oldest

age groups (60-64 years old), differences are mostly concentrated in female participation,

which varies from 10% in Italy to around 30% in Germany, while for males, participation

rates are generally between 30-50%, with the only exception of France (below 20%). The

age effects in the model for the euro area and the different countries will capture these

features of the underlying age-participation profiles for men and women.

These age-participation profiles for males and females are continuously evolving as a result
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Figure 3.2: Changes in participation rates by age for females in the euro area (EA12)
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of changes both between and within age groups. Figure 3.2 plots the overall change in

participation rates for each single age for females in two time periods, 1983-1995 and 1995-

2007. These two periods are comparable both in terms of length and in terms of economic

developments (i.e. the business cycle). Overall, since 1983 the female profile has been lifted

up for those between 25 and 58 years old, in particular for older women who increasingly

stay in the labor market after child-bearing. At the same time, the participation rates for

the youngest women have declined. Since the mid-1990s the latter effect has decreased,

while the hump-shaped pattern of an increase in participation for those between 25 and 58

years old has shifted towards older age groups. This effect is reminiscent of cohort specific

participation effects, i.e., female participation behavior for a particular cohort persists over

time. In terms of the age-participation profile, the estimated cohort effects in the model

describe upward shifts in the profile that are specific to a particular birth-year.

In contrast, participation rates for prime-age males have not changed significantly in the

entire period. However, the participation rates of those between 15-24 years old have

slightly declined, while those of the oldest, between 55 to 64 years old, have increased a bit.

For both males and females, the increases in participation rates for the youngest and oldest

workers may be related to the impact of labor market reforms that have focused on groups

100



with a weaker attachment to the labor market. While the cohort effects capture parallel

shifts in the age-participation profile, changes in the shape of the age-participation profile

over time will be captured by time-varying institutions and other explanatory variables

such as the share of youth in education.

We use the output gap to measure the business cycle. The output gap is calculated as

a deviation of real GDP from an Hodrick-Prescott filtered trend. In line with Uhlig and

Ravn (2002), the smoothing parameter in the HP-filter for annual data is set at λ = 6.25.

The real GDP data for both the euro area 12 and the single countries is taken from the

AMECO database. The full model specifications include a number of indicators for key

time-varying institutions. We include OECD indicators for union density, labor taxes,

implicit tax for older workers, the unemployment benefit replacement rate, the share of

youth in education and average number of children also used in Bassanini and Duval (2006)

and a measure of life expectancy from Eurostat. When missing, data for the last few years

has been extrapolated based on past trends. As noted before, we include institutions to

control for changes in the shape of the age-participation profile. This means that we rely

on time-series variation of institutions within a single country to identify the impact of

institutions. Therefore, several important institutional determinants of labor supply that

do not generally vary over time, such as the mandatory retirement age, are excluded from

this analysis.

The estimation strategy is based on the cohort-based model presented in Fallick and

Pingle (2007).6 Specifically, we estimate a system of constrained least squares regressions

for single ages 15 to 70 and over, separately for men and women:

ln
(

LFPRg,t

1− LFPRg,t

)
= αg +

1992∑

b=1917

Cg,b,tβb + λgXg,t + εg,t

The dependent variable is the logistic transformation of the participation rate for males

or females. We use the logistic transformation to ensure that predicted participation rates

remain bounded between 0 and 100 and undo the transformation after estimation.

6Closely related models based on age, cohort and period accounting have a long tradition in sociological

and demographic research and have been recently applied to analyze labor supply in Beaudry and Lemieux

(1999) and Fitzenberger et al. (2004). Articles in Mason and Fienberg (1985) provide an early discussion

of basic accounting models and applications that rely on functional form assumptions. From an economic

perspective the pure age, cohort and period accounting approach seems rather ad hoc in nature. The

current model is therefore an attempt to move beyond a pure statistical decomposition by including

observable variables that capture underlying factors that determine participation rates. See also Euwals

et al. (2007) for a discussion and comparison of different modelling strategies.
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The coefficient α represents an age effect that is constant over time and measures the

average propensity to participate in the labor market at a certain age. The α for all

ages trace an underlying fixed age-participation profile. The coefficients Cg,b,t represent

dummies for the different birth years and are equal to one if the birth cohort b appears in

age g at time t. Within each gender group and country, the coefficient β is constrained to

be the same across equations. This allows an identification of cohort effects separately from

the age and business cycle effects. As a consequence, the coefficients β represent cohort

effects that are constant over time and may be interpreted as the average propensity to

participate in the labor force when born in a particular year. The cohort effect shifts the

underlying age participation profile up and down, depending on the propensity of the birth

year cohort to participate in the labor market throughout their working lives. We include

all cohorts in the estimation which results in considering persons born between the years

1917 and 1992. However, as the most recent birth cohorts are only observed when they

are very young, we estimate the model without the last eight cohorts.7 Later, we assign

a cohort effect to these cohorts after estimation by setting it equal to the last estimated

cohort effect (equal to the cohort effect for those born in 1984).

Finally, X contains other variables that have explanatory power for participation rates

of particular age groups. In the baseline specification, this encompasses business cycle

effects represented by the contemporaneous value and two preceding lags of the output

gap. In addition, both the estimated age and cohort effects are potentially influenced by

time-varying institutions. In the full model therefore X includes also a set of indicators

of observed determinants. Note that the institutions do not vary across ages, although

some institutions are included only in the equations for young (youth in education), female

(number of children) or older workers (implicit tax and life expectancy). The coefficients

of the observed determinants vary freely across ages and therefore allow the underlying

age-participation profile to tilt.

The total system is estimated based on 1400 age-year observations, with 56 equations,

resulting in 56 estimated age and 168 estimated business cycle parameters each and 72

(constrained) cohort parameters. The unconstrained model results in a regressor matrix

that is of reduced rank. With the help of the restrictions on the cohort effects, the

estimation is nevertheless possible as shown in Greene and Seaks (1991). Significance tests

7We do this by replacing the values of the participation rate and the other explanatory variables of the

ages affected with means from the rest of the sample. We also restrict the cohort effects of the last eight

cohorts to equal the average of the remaining cohorts for the respective age.
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Table 3.1: Contribution of population composition to changes in participation rates

1983-1995 1995-2007 2007-2015 2007-2030

15-19 -1.4 -0.2 -0.1 0.0

20-24 -0.4 -0.8 -0.3 -0.1

25-34 1.9 -2.4 -1.4 -1.9

35-44 1.1 1.9 -1.9 -3.5

45-54 -0.3 1.7 2.2 0.4

55-64 0.4 0.2 1.0 2.8

Total 1.3 0.4 -0.6 -2.4

Change in PR 1.5 5.7 – –

Notes: Numbers in percentage points. Sources: EU LFS (Eurostat) and own calculations.

are based on robust (White-corrected) standard errors. The cross-equation constraints

identify the cohort effects only up to a scale factor. As in Fallick and Pingle (2007), we

therefore normalize the coefficient estimates by setting the parameter of one cohort (here

1969) to one.

Based on the results for labor market participation of the single ages for males and females,

we then construct aggregate participation trends using population weights. In addition to

changes in group-specific participation behavior, Table 3.1motivates how changes in the

composition of the euro area population have affected participation rates over time.8 In

particular, the positive total effect of the population composition of 1.3 percentage points

observed in 1983-1995 declined significantly in 1995-2007 mainly resulting from the de-

creasing share of the prime-age population in favor of older groups with lower participation

rates. Moreover, the supportive contribution of the 25-34 year-old to aggregate partici-

pation in 1983-1995 turned negative in 1995-2007. Note that even though the population

effect declined, the overall participation rate increased much more in the second period

than in 1983-1995.

Finally, in order to construct a scenario for future labor supply, we use population pro-

jections from the New Cronos database by Eurostat (EUROPOP2008). EUROPOP2008

contains statistical information on population projections with reference to projected 1st

8The impact of the change in composition can be measured by applying the change in the population

composition between the two periods to the participation rates of the first period, by age and gender

groups.
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of January population by sex and single year of age, projected vital events (births and

deaths) and assumptions concerning fertility, life expectancy at birth by sex and inter-

national migration. In the projections, we have made use of two variants: the baseline

projection includes migration, while an alternative scenario captures the population de-

velopments without migration. Looking forward, population ageing implies that the older

age groups within the working age population gain more weight: those above 55 years old

that are expected to be around 20% of the working age population in 2015, compared with

17.6% in 2007. In contrast, the weight of the ones below 24 years is expected to decline by

1 percentage point over the same period to 16.5%; and the weight of the group between

35 and 44 years old, i.e., those most attached to the labor market, is expected to decline

by more than 2 percentage points to 21.4%. The mechanical decomposition depicted in

Table 3.1 therefore suggests a substantial decline (by 0.6 percentage points) in the aggre-

gate participation rate, putting downward pressure on total labor supply and potential

growth in the euro area. This downward pressure intensifies significantly (a decline of

2.4 percentage points in the aggregate participation rate) if the horizon is extended up to

2030 when the oldest group (those between 55 to 64 years) is expected to account for one

fourth of the working age population.

Figure 3.3: Estimated age-participation profiles in the EA12

0
2

0
4

0
6

0
8

0
1

0
0

P
a
rt

ic
ip

a
tio

n
 r

a
te

, 
%

15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63

Age groups

Female Male

euro area

104



3.3 Results

We present results in three parts. We first illustrate the role of age and cohort effects

using a basic decomposition of participation rates into age, cohort and business cycle

effects. Second, we add a number of indicators of time-varying observed determinants

of participation behavior, such as labor market institutions, in the model. Finally, we

present projections for male and female participation rates up to 2030. While the focus

is on the euro area, we use country results to illustrate and to account for cross-country

heterogeneity in participation behavior. In particular, the full model with time-varying

observed determinants is estimated separately for the five largest euro area countries (Ger-

many, France, Italy, Spain and the Netherlands) and the results, in terms of trends and

projections, are then aggregated to form a euro area 5 aggregate.

3.3.1 Basic model

For the basic model, we will investigate the results from the decomposition to age and

cohort effects for the euro area (EA12) and the five largest euro area countries. The results

suggest substantial and highly statistically significant age effects that show the familiar

hump-shaped pattern. For males, underlying euro area participation rates increase until

age 30, remain stable until age 50, before gradually declining again (see Figure 3.3). The

overall level of the underlying euro area age-participation profile is lower for females. While

male participation rates are close to 100% in prime-age, female participation is highest

at ages 40-50 at around 45%. In addition, for females the estimated age participation

profile features a pronounced dip around early 30s. The dip suggests that a number

of women leave the labor market temporarily to start a family, returning to work in

their late 30s. The overall pattern of the age effects is similar across euro area countries.

However, both the level and shape of the underlying female age-participation profiles differ

substantially across countries (see Figure 3.9 in the Appendix to this chapter). While

female participation rates peak at close to 70% in France, they do not exceed 40% in

Spain and the Netherlands. The post child-bearing-age increase in participation is visible

in all countries except Italy. These differences point to significant underlying differences

in the participation behavior of European women that are likely to reflect a combination

of time-invariant cultural and institutional factors. The results also point to the need

to model the female participation rate using a flexible functional form that varies across
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Figure 3.4: Estimated cohort effects in the EA12

.6
.8

1
1

.2
1

.4
1

.6
N

o
rm

a
liz

e
d
 F

E

19
20

19
25

19
30

19
35

19
40

19
45

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

Cohort

Female Male

euro area

countries. While the male age-participation profile could be characterized by a second

order polynomial of age, female age-participation profiles are more complex and cannot

be adequately captured by simple polynomials.

The results from the basic model also confirm that cohort effects are statistically significant

and robust to age and period effects as measured by an indicator of the business cycle.

In line with the descriptive evidence, cohort effects appear more significant in size for

females than males. The normalized cohort fixed effects for the euro area are plotted in

Figure 3.4 for both males and females. The results show a broadly declining profile for

males and an increasing profile for females. The overall pattern of declining cohort effects

for men and decreasing cohort effects for women appears similar to that observed in the

United States (see Figure 8 in Fallick and Pingle (2007)). This mix of a positive cohort

effect for the middle female cohorts and a negative effect for the younger female cohorts

has a large impact on overall labor supply and, as demographic change shifts the weight

between birth cohorts, turns out to be a relevant factor for future euro area labor supply.

Again country results broadly confirm the overall pattern of estimated cohort effects (see

Figure 3.10 in the Appendix to this chapter). The relative decline in cohort effects for

men varies most across countries, with a substantial decline in Italy contrasted with an

increase throughout in the Netherlands.
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Combining the age and cohort effects, and excluding the business cycle and the error

term, provides a measure of trend participation rates for each age group. For both females

and males the actual and trend participation rates show a decline in participation of the

younger age groups (up to 20-24 for females and 25-29 for males). For those in prime

age and for older workers the trends diverge somewhat. For females, actual and trend

participation increase for those in prime working age, and post mid 1990s also for older

workers. For males, actual and trend participation rates are either stable or declining for

those in prime age, whereas a more recent increase in participation rates for older workers

results in a mild u-shaped pattern. Estimated trend participation rates from the simple

decomposition capture actual developments reasonably well for most detailed age groups.

The model does particularly well in explaining the increasing trend of female participation

and the recent increase in the participation of older workers for both males and females

(with different timing across genders). In comparison, the results for some age groups

suggest that the simple model misses important determinants of participation. Aggregat-

ing results for both males and females shows that beyond the broad trends of increasing

participation of females and decreasing participation of males, important medium term

developments are not fully captured by the simple model. For both males and females

this includes a mild slump in participation in the 1990s and the most recent increase be-

ginning around 2004. For males, actual participation rates were also above trend rates as

captured by the model in the early 1980s. Overall, while the simple decomposition does

well in explaining broad trends in participation, in particular for females, for some groups,

age and cohort effects alone are not sufficient to capture trend participation patterns in

the euro area.

3.3.2 Model with observed determinants

Going beyond the basic model, it is likely that other factors, such as time-varying la-

bor market institutions, may have influenced participation trends in the medium term.

Therefore, in a second step, we estimate the cohort model for the five largest euro area

countries with a number of indicators of observed determinants that may matter for par-

ticipation decision. We include union density, labor taxes, implicit tax on retirement for

older workers, unemployment benefit replacement rate, the share of highly educated in

the youth population, average number of children and life expectancy. The list of indi-

cators is suggested by previous empirical analysis on the impact of institutions on labor
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force participation (see Bassanini and Duval (2006) and Genre et al. (2005) and 2008)

and theoretical considerations. In addition, availability of comparable indicators with suf-

ficient time variation limits the list of relevant institutional factors that are considered

(excluding, for example, indicators of employment protection legislation or the retirement

age).

A number of hypotheses about the likely impact of these institutional factors can be put

forward. First, we expect that declining union density in a number of euro area countries

may have contributed to increase participation through its positive impact on expectations

about the availability of jobs to those that have been previously inactive. As unions tend

to compress the wage distribution, the decline in unionization may have more of an impact

on those at the lower part of the wage distribution (more likely to be younger and older

workers). Second, an increase in labor taxes (observed in a number of euro area countries)

over time is also expected to result in lower labor participation by making leisure relatively

less expensive. However, from a household labor supply perspective an increase in labor

taxes for the head of the household may also result in an increased propensity to participate

for other members of the household (more likely to be women). For older workers the

implicit tax on continued work, a summary measure of retirement incentives, is likely to

be more relevant than the overall labor tax. A higher implicit tax rate is expected to lower

incentives to retire early (for the ages 55-64 considered here) and therefore to increase the

participation rate of older workers. Third, observed declines in the generosity of the

unemployment benefits system, as measured by the replacement rate, in a number of euro

area countries is likely to lower the incentive to participate in the labor market by lowering

alternative income when unemployed relative to inactivity. By contrast, unemployment

benefits may also have a positive impact on participation via wage bargaining, with lower

generosity leading to weakening of the insider’s position in the labor market relative to the

outsiders, or as a proxy for the overall generosity of the welfare system. Fourth, longer life

expectancy is likely to lead to higher participation for older workers as they remain active

and may also anticipate a longer period of retirement. Fifth, the higher share of young

in education relative to older workers is expected to lower participation of young workers.

Finally, the number of children is expected to influence female participation rates, with

more children lowering participation rates of women around the typical age for starting a

family. While union density, unemployment benefits and labor taxes are included in the

equations for all age and gender groups (in working age), variables relating to education are

included only for the youngest workers, life expectancy and the implicit tax on continued
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work for the oldest workers and, finally, the number of children for females only.

Tables 3.2 and 3.3 show the aggregated coefficient estimates and their t-statistics of the

observed determinants of participation for three main age groups: young (15-24), prime-

aged (25-54) and older (55-64), for all five countries. To simplify comparisons of coefficient

estimates across groups and indicators, the data on observed determinants has been stan-

dardized. Note that the identification of the impact of institutions here relies only on

available within-country time variation, which is often limited for the indicators of labor

market institutions considered here. As a result, relatively few indicators turn out to be

statistically significant. With this caveat in mind, a number of institutional indicators

seem to matter, although the magnitude, and in some cases the sign, varies across coun-

tries and age groups. Higher labor taxes tend to lower participation rates (as reflected in

16 out 19 statistically significant coefficients). This impact is estimated more consistently

for males in all countries. Higher union density (in 11 out of 15 statistically significant co-

efficients) and more generous unemployment benefits (17 out of 24 statistically significant

coefficients) also tend to lower participation rates. The negative impact of unemployment

benefits is consistent with the interpretation that unemployment benefits impact participa-

tion rates either via their impact on bargaining (with increased power for insiders leading

to higher bargained wages and lower participation rates for outsiders) or via their role as a

proxy of the overall generosity of the welfare state (more generous benefits tend to coincide

with more generous welfare benefits for financing non-participation, lowering participation

rates). Exceptions to this result occur mainly for young people, whose participation rates

in some countries are positively associated with unemployment benefits. The results also

suggest that unemployment benefits increase participation of all males in Germany. While

not conclusive, these results are suggestive of negative incentive effects for the unemployed

stemming from generous unemployment benefits that are also of relatively long duration.

In this case, a decline in benefits over time would lead some unemployed workers (who

may have not been actively looking for jobs) to leave the labor force altogether. Overall,

the results for union density and unemployment benefits are broadly in line with panel

regression results in Genre et al. (2005) and 2008, who also find that higher union density

and more generous unemployment benefits lower participation rates.

For females, with the exception of young females in France and the Netherlands, higher

number of children tends to lower participation. The decline in number of children in most

euro area countries is therefore associated with an increase in female participation rates.
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Table 3.2: Impact of observed determinants: males

LT UD UB TR LE YE

Germany:
Young 0.00 -0.01 0.10 0.05

(-0.22) (-0.33) (5.07) (3.68)
Prime-aged -0.07 -0.03 0.03

(-7.03) (-1.43) (1.97)
Older -0.12 -0.04 0.07 0.03 0.40

(-7.89) (-1.02) (3.34) (0.54) (7.29)
France:
Young -0.16 0.46 0.05 -0.27

(-4.86) (5.14) (2.54) (-5.00)
Prime-aged -0.07 -0.04 -0.02

(-5.10) (-2.10) (-2.28)
Older 0.02 -0.09 -0.06 0.02 -0.09

(0.86) (-2.06) (-5.49) (1.44) (-2.47)
Italy:
Young -0.14 -0.07 -0.32 0.20

(-6.10) (-2.00) (-9.00) (2.95)
Prime-aged -0.11 0.00 -0.10

(-4.83) (-0.15) (-3.85)
Older 0.00 -0.15 0.06 0.04 0.21

(0.08) (-4.43) (1.54) (3.12) (3.06)
Spain:
Young -0.03 -0.04 -0.12 0.05

(-3.18) (-2.24) (-4.27) (0.85)
Prime-aged -0.08 -0.01 -0.11

(-6.52) (-0.50) (-7.65)
Older -0.03 0.01 -0.07 -0.03 0.05

(-1.78) (0.62) (-2.33) (-0.59) (1.49)
Netherlands:
Young -0.08 -0.34 -0.08 -0.02

(-1.91) (-5.21) (-2.97) (-0.25)
Prime-aged -0.03 -0.18 -0.08

(-1.37) (-4.42) (-4.21)
Older -0.11 0.05 0.04 0.42 0.14

(-2.66) (0.71) (1.30) (4.49) (2.20)

Note: T-statistics based on robust standard errors in parenthesis. LT is labor taxes, UD is union

density, UB is unemployment benefits, TR is tax on retirement, LE is life expectancy, YE is youth

education. For each age group, the coefficients and their standard errors have been aggregated from

single ages using labor force weights in 2007.
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Table 3.3: Impact of observed determinants: females

LT UD UB TR LE YE NC

Germany:
Young 0.00 0.13 0.06 0.03 -0.12

(0.35) (4.70) (4.22) (3.26) (-10.04)
Prime-aged -0.04 0.02 0.01 -0.01

(-8.08) (1.70) (1.01) (-1.51)
Older -0.04 0.00 -0.05 0.06 -0.03 -0.02

(-3.78) (-0.10) (-3.98) (2.12) (-0.95) (-2.07)
France:
Young -0.14 0.51 0.07 -0.29 0.17

(-3.96) (4.18) (3.36) (-5.11) (1.89)
Prime-aged 0.03 -0.02 -0.01 0.00

(2.47) (-1.07) (-2.27) (-0.11)
Older 0.06 -0.19 -0.02 -0.03 -0.09 0.08

(1.99) (-3.64) (-1.49) (-1.50) (-2.22) (0.91)
Italy:
Young -0.11 -0.09 -0.22 0.59 -0.04

(-5.79) (-2.14) (-6.94) (8.85) (-1.95)
Prime-aged -0.07 -0.01 -0.10 -0.02

(-6.18) (-0.84) (-8.17) (-2.55)
Older -0.01 -0.04 -0.06 0.01 0.06 0.00

(-0.28) (-1.29) (-1.75) (0.86) (0.94) (-0.13)
Spain:
Young 0.03 0.05 -0.09 -0.01 0.15

(2.31) (1.42) (-3.02) (-0.05) (1.03)
Prime-aged 0.01 0.03 -0.06 -0.10

(1.28) (2.88) (-4.02) (-1.29)
Older 0.00 -0.04 -0.05 -0.01 0.01 0.06

(0.04) (-1.11) (-1.61) (-0.08) (0.35) (0.19)
Netherlands:
Young 0.03 -0.15 0.05 0.04 0.15

(0.71) (-2.41) (2.72) (0.58) (4.73)
Prime-aged -0.01 -0.07 -0.04 -0.04

(-0.31) (-3.39) (-2.67) (-2.07)
Older 0.02 -0.11 -0.02 0.20 -0.03 -0.05

(0.32) (-1.67) (-0.42) (2.20) (-0.52) (-0.76)

Note: T-statistics based on robust standard errors in parenthesis. LT is labor taxes, UD is union

density, UB is unemployment benefits, TR is tax on retirement, LE is life expectancy, YE is youth

education and NC is number of children. For each age group, the coefficients and their standard

errors have been aggregated from single ages using labor force weights in 2007.
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This is also in line with the Genre et al. (2008) finding that the fertility rate is negatively

associated with participation rate of prime-aged females.9 Other group specific variables

appear to be estimated less consistently, with both the sign and statistical significance

changing across age groups and countries. Higher implicit tax on retirement, in the few

cases when it is statistically significant, increases participation of older workers. With

few counterintuitive exceptions (older people in France) increased life expectancy also

increases participation of older workers. Both the sign and statistical significance of the

share of youth in education varies across countries, suggesting that investment in human

capital may not be well captured in the model.10

As regards the business cycle, we find that the sum of the coefficients of current and two

lags of the output gap for worker groups are often not statically significant (not shown).

In addition, for a number of groups we find a negative business cycle effect. For some

groups, such as young people and females, this result could reflect ”added worker” effects.

For example, for individuals in families with a main bread-winner, in good times labor

income from the rest of the family members may not be needed, whereas additional income

from a second job is needed in bad times.11 We tried other indicators of the business

cycle (unemployment and employment gap measures) with similar results. We therefore

conclude that the business cycle has little influence on participation decisions in these

countries, in line with results that show that European unemployment and employment

rates are mainly influenced by structural factors or interactions of structural factors and

shocks (e.g. Bassanini and Duval (2006) and Blanchard and Wolfers (2000)).

In order to illustrate the size of the total impact of observed determinants we compare

the total change in trend participation rates as measured by our model with a scenario of

keeping the observed determinants at their 1995 values. The scenario reflects the view that

the acceleration of labor market reforms from the second half of the 1990s onwards has

9We also experimented with other determinants of female participation, in particular, the tax rate on

second earners and marriage rate. Previous literature has suggested that both are potentially important

determinants (see Jaumotte (2003). The tax rate on second earners was usually not statistically significant

for these countries. We found some (counterintuitive) indication that the marriage rate is positively

associated with participation. Both variables where therefore excluded from the final model. Jaumotte

(2003) and Genre et al. (2008) exploit cross-section variation to establish other potential determinants of

female participation (such as maternity leave) that we do not consider here.

10These effects could be captured better by changes in returns to education. However, we are not aware

of comparable estimates of returns to education with a sufficiently long time-series that we could use.

11Prieto-Rodriguez and Rodriguez-Gutierrez (2000) find these effects to be relevant for women in Spain,

in line with our finding of negative business cycle effects for women of all ages.
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Figure 3.5: Total impact of observed determinants
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contributed positively to participation rates (see for example, Masuch and Force (2008)).

The results are shown in Figure 3.5. The positive impact of observed determinants on

participation is most evident for older males, as reflected in the large gap between the

two bars. The most relevant variable in this respect appears to be life expectancy. The

increase in life expectancy since 1995 has had a positive impact in the participation rate

of older males. Overall, the observed determinants have resulted only in small increase in

participation rates for females, with most of the increase over this time period attributed

to age and cohort effects instead. For young people, the impact of observed determinant

has been to dampen participation rates. This is partly explained by the increase in the

proportion of young people in education. At the country level, it is worth mentioning that

the impact of the change in the institutional framework is broadly based for prime-age

age males and females, and for females aged 55 and over. In contrast, for the young, the

developments are strongly influenced by the results for Italy and France, and for males

aged 55 and over by the results for Netherlands and Germany.

Both age and cohort effects remain jointly statistically significant in all models even after

including business cycle indicators and other time-varying determinants of participation.

These coefficients can be thought of as capturing the impact of other time-invariant cul-

tural or institutional factors (for the age coefficients) or slowly changing impact of factors
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Figure 3.6: Estimated cohort profiles in the EA5

0
2
0

4
0

6
0

8
0

16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Age groups

1974-1984 1963-1973

1952-1962 1941-1951

1930-1940 1919-1929

Females

2
0

4
0

6
0

8
0

1
0
0

16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Age groups

1974-1984 1963-1973

1952-1962 1941-1951

1930-1940 1919-1929

Males

114



that are specific to birth years (for the cohort coefficients). The latter may include factors

such as cultural attitudes towards labor market participation (for women in particular)

or institutional factors and reforms that are not captured by the observed determinants.

Figure 3.6 plots the estimated cohort profiles based on the trend participation rates from

the model, aggregated to the euro area five (EA5) level. For males, the lines indicating

participation rates for specific cohorts are mostly overlapping. There is some indication

that most recent cohorts enter the labor market later, reflecting the substantial increase

in the average number of years spent in education. The same impact is visible also for the

youngest female cohort. However, in addition, the cohort profile for females suggests a

substantial shifting up of the age participation profile over time. For prime-aged women,

those in their mid 30s and 40s, the participation rate has increased by more than 20 per-

centage points. Furthermore, while the cohort profile for those born between 1953 and

1962 shows a pronounced dip at child bearing age, this dip is not visible for the next co-

hort (those born between 1963 and 1973). The higher propensity to participate of females

born in the late 1960s and early 1970s has therefore contributed to the increase in female

participation in the euro area.

Country results show that participation behavior differs across the largest five euro area

countries and that again this is most evident for women. For women in their 30s and

40s, the estimated cohort profiles show that participation rates of most recent cohorts has

increased most, by more than 30 percentage points, in the Netherlands and Spain and the

least in France, with roughly 10 percentage points (see Figure 3.11 in the Appendix to

this chapter). The disappearance of the dip at child bearing age is most pronounced in

the Netherlands: while the participation rates of women in the late 20s and early 30s for

those born in 1950s dropped by as much as 20 percentage points, the more recent cohorts

appear to have stayed in the labor market through the child bearing years.

3.3.3 Projections

In a third and final step we use the model results to project participation rates forward until

2030. The results of both trend and projection for the euro area (EA5) are obtained by

aggregating the full model estimates for Germany, France, Italy, Spain and the Netherlands

weighting the countries with their respective populations. We assume that age and cohort

effects are fixed throughout the sample and keep observed determinants at their 2007

values. In addition, for the young cohorts, i.e., the last eight cohorts of our sample and
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Figure 3.7: Trend and participation and projections in the EA5 by gender, 1986-2030
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those that enter the labor market after 2007, we fix their cohort effects at the level of

the last cohort effect we estimate, namely those born in 1984. Figure 3.7 shows the trend

from the estimation of the full model for males and females together with the actual

participation rates for the euro area (EA5). The results clearly show that within the

sample period the full model captures both trends and medium-term developments well.

This is confirmed by results for individual ages shown in Figures 3.12 to 3.17 in the

Appendix to this chapter.

The projected euro area participation rate decreases for males throughout the projection

period. In contrast, the euro area participation rate for females increases before stabilizing

at about 70% in 2030. This pattern is in line with the waning impact of the positive cohort

effects for females that continue to support participation rates looking forward. While the

gap between male and female participation rates is expected to decline substantially, at

the end of the projection horizon male participation rate remains 4.6 percentage points

above the female participation rate. Overall, towards the end of the sample the negative

impact of population ageing shifting the larger share of the population to older age groups

with lower participation rates begins to dominate and dampen the overall participation

rate. As a result, the overall participation rate is anticipated to increase slightly up to

2015, by 1 percentage point, but to decline thereafter. However, in 2030 it is still expected
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to remains at just above the 2007 level (see Table 3.4). The underlying country results

from the baseline model are shown in Table 3.5. The results for all countries point to an

ongoing increase in female participation and a decline in male participation. Indeed, in

the Netherlands and France the gap between male and female participation closes by 2030.

Reflecting the continued positive trend in female participation, the overall participation

rate is expected to continue increasing in all countries except Germany.

In order to explore these results further and to evaluate robustness we calculate three

additional scenarios for the euro area (see Table 3.4). First, we compare our results with

a scenario that keeps participation rates by age and gender groups unchanged at their

2007 level, i.e., accounting only for population effects. The model based results imply a

more positive outlook for participation than a scenario based on unchanged participation

behavior. Indeed, in the latter scenario, the overall participation rate declines already in

2015, with a gap of 3.9 percentage points in 2030 between the baseline model results and

the alternative scenario. Second, we calculate a scenario that accounts for the impact of

migration through the population structure. Specifically we compare the baseline model

results with a scenario that assumes no migration and find that the impact of migration

through the population structure is positive. On average, migrants tend to be younger

and therefore to have higher participation rates than the native population. The impact

is relatively small, but its relevance grows over time - the gap in the participation rate

between the baseline migration and non-migration scenario is 0.1 percentage point in 2015,

but reaches 0.8 percentage point in 2030. A comparison of the scenarios by gender shows

that migration is only relevant for the male participation rate, while the impact on the

female participation rate is negligible. Finally, we compare our results with those derived

from the participation rate projections at the country level published by the European

Commission (EuropeanCommission (2008)). We find that there is a significant gap be-

tween our baseline model results and the European Commission projections. According to

the European Commission, the overall participation rate is expected to increase somewhat

more, by 2.2 percentage points in 2015 and 3 percentage points in 2030. This gap reflects

a substantially more positive outlook for male participation in the European Commission

projections - for males the gap in participation is 2.4 and 5.8 percentage points in 2015

and 2030 respectively. While it is not straightforward to decompose the difference in terms

of underlying determinants, the European Commission projections appear to incorporate

more inertia from recent participation trends for males. Note that we keep the effect of in-

stitutional variables unchanged in the model based projections. Therefore, recent changes
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in observed determinants that persist or have lagged effects are not reflected in our model

based scenario. In contrast, reflecting the important role of cohort effects in explaining

past participation trends, our results suggest a somewhat more positive outlook for female

participation.

3.4 Conclusion

We use a cohort based model of labor force participation to analyze determinants of

participation for disaggregated groups of workers in European countries, with a focus on

the euro area. The model identifies significant age and cohort effects for detailed worker

groups as indicators of (unobserved) structural determinants. We use observed structural

determinants and age and cohort effects to construct trend measures of labor supply and to

disentangle the impact of structural and business cycle factors on labor force participation

rates.

Our results suggest that age and cohort effects can explain a substantial part of the recent

increase in labor force participation rates in the euro area, although not the surge since

early 2000s. Cohort effects are particularly relevant for women, with those born in the

1920s and 1930s less likely and those born in the late 1960s and early 1970s more likely to

participate in the labor market over the life-cycle. There is substantial variation in cohort

effects across the five largest euro area countries that we analyze. While cohort effects

generally encompass any factor associated with a particular birth year, we speculate that

the cohort effects that we observe reflect evolving preferences or social norms that vary

across countries. Depending on the country, the estimated cohort profiles suggest an in-

crease of 10 to 30 percentage points in female participation rates. We control for a number

of observed time-varying institutions, such as labor taxes, union density, unemployment

benefits and the average number of children and find that they have had an impact on

labor force participation rates, although the specific impact varies across age and gen-

der groups and countries. Looking forward, while they continue to provide some upward

support to participation rates of women in the euro area, positive cohort effects are not

large enough to compensate for the downward impact of population ageing on labor force

participation rates in the euro area.
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Appendix to Chapter 3:

Additional Tables and Graphs

Table 3.4: Alternative scenarios for future participation rates (EA5)

2007 2015 2020 2025 2030

Total participation rate

PR (baseline model) 72.0 73.0 72.9 72.5 72.5

PR (model - no migration) 72.0 72.9 72.6 71.9 71.8

PR (2007 level) 72.0 71.3 70.3 69.1 68.6

PR (EC) 72.0 74.2 74.6 74.6 75.0

Females participation rate

PR (baseline model) 64.1 67.6 68.8 69.5 70.2

PR (model - no migration) 64.1 67.5 68.7 69.2 69.9

PR (2007 level) 64.1 63.1 62.1 60.9 60.5

PR (EC) 64.1 67.6 68.5 68.8 69.5

Males participation rate

PR (baseline model) 79.9 78.4 76.9 75.4 74.8

PR (model - no migration) 79.9 78.2 76.5 74.6 73.8

PR (2007 level) 79.9 79.4 78.4 77.1 76.5

PR (EC) 79.9 80.8 80.8 75.9 80.6

Notes: Euro area obtained as the aggregation of Germany, Italy, France, Spain and the Netherlands.

PR (2007 level) refers to a scenario based on unchanged participation rates at the 2007 level.

PR (EC) refers to a scenario derived from European Commission (2008); it has been re-based to

the 2007 level derived from the EU-LFS. Sources: EU LFS (Eurostat) and own calculations.
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Table 3.5: Country projections

1987 1997 2007 2015 2020 2025 2030

Germany

Total 69.6 70.4 75.5 75.1 74.3 73.2 72.7

Females 57.6 61.8 70.0 71.4 71.5 71.1 70.8

Males 81.8 78.8 81.0 78.7 77.0 75.2 74.5

France

Total 67.1 68.0 68.6 68.8 68.8 68.7 68.8

Females 57.0 61.1 64.1 66.4 67.6 68.5 69.3

Males 77.6 75.2 73.3 71.2 70.0 68.8 68.4

Italy

Total 59.7 58.7 62.7 66.3 67.0 67.3 68.3

Females 41.9 44.0 50.9 57.7 60.3 62.1 64.1

Males 78.3 73.6 74.5 74.8 73.7 72.5 72.5

Spain

Total 58.3 62.8 72.5 74.2 74.0 73.3 72.8

Females 36.9 47.7 61.9 66.3 67.5 68.0 68.5

Males 80.3 78.0 82.7 82.0 80.3 78.4 76.9

Netherlands

Total 63.9 71.4 78.2 79.6 79.9 80.3 81.0

Females 48.4 61.2 71.8 76.7 78.7 80.4 81.9

Males 79.1 81.4 84.4 82.4 81.1 80.2 80.0

EU LFS (Eurostat) and own calculations.
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Figure 3.8: Age-participation profiles by gender in the euro area (EA12), 2007
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Figure 3.9: Estimated age-participation profiles by country
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Figure 3.10: Estimated cohort effects by country
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Figure 3.11: Estimated cohort profiles by country, females
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Figure 3.12: Trend and participation rates in the EA5: young females
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Notes: Trend is a three-year moving average of the estimated trend participation rate.
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Figure 3.13: Trend and participation rates in the EA5: prime-age females
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Figure 3.14: Trend and participation rates in the EA5: older females
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Figure 3.15: Trend and participation rates in the EA5: young males
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Figure 3.16: Trend and participation rates in the EA5: prime-age males
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Figure 3.17: Trend and participation rates in the EA5: older males
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Notes: Trend is a three-year moving average of the estimated trend participation rate.
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Conclusion

This dissertation has investigated different aspects of business-cycle and long-run move-

ments of aggregate labor supply and demand. In particular, the three chapters have

addressed the implications of unobserved shocks for the evolution of these two variables

and the resulting equilibrium in the labor market. While Chapter 1 has considered the

importance of technology versus non-technology shocks for the cyclical fluctuations in la-

bor demand, Chapter 2 has investigated the role of skill-biased technological change for

these fluctuations. In addition, Chapter 2 has highlighted the role of these shocks as well

as of shocks to the supply of skill (which may be interpreted as preference shifts in favor of

higher education) for both the business-cycle and economic growth. Chapter 3 in turn has

disentangled business-cycle from cohort effects (which may be interpreted as preference

shifts in favor of participation in the labor market) as determinants for the overall increase

in aggregate labor supply.

Contributing to the recent ongoing debate on the empirical performance of the Mortensen-

Pissarides search-and-matching model, Chapter 1 has judged the empirical performance

of the model on basis of moments conditional on technology shocks and non-technology

shocks rather than on overall unconditional moments. These shocks were identified within

a SVAR framework with conventional long-run restrictions and a combination of long-run

zero and sign restrictions. Chapter 1 has documented that technology shocks cannot be

the source of the high volatility in the job finding rate and unemployment present in the

data. Opposite to the figures in the overall sample, technology shocks induce a negative

co-movement between job finding and productivity and a positive co-movement between

unemployment and productivity. Instead, additional non-technological disturbances are

needed in order to replicate the unconditional volatility and correlations. Chapter 1 has

documented that preference shocks which have been suggested to be important in the

literature can only partly account for this.
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Chapter 2 has investigated the implications of skill-biased technological change for the

business cycle. Based on a new quarterly series of the skill premium and skill supply from

the CPS outgoing rotation groups, this chapter has assessed the effect of technology shocks

identified from a SVAR with long-run restrictions on the skill premium. Here, skill supply

shocks have been controlled for using a short-run restriction. In addition, the chapter has

proposed a strategy to identify skill-biased technology shocks through simple reshuffling

of the variables in the same VAR that was used for the identification of the conventional

technology shocks. Chapter 2 has documented that technology shocks are skill-biased

at all business cycle frequencies. Further no evidence was provided for complementarity

between capital and skill over the business cycle as investment-specific technology shocks

do not significantly drive up the skill premium. Rather, capital and skill are substitutes

in production.

Even though Chapter 2 abstracts from search-and-matching on the labor market, it con-

tains valuable results that may be used in order to enhance the empirical performance of

the models addresses in Chapter 1 in future research. More precisely, Chapter 2 has pro-

vided empirical foundation for a (cyclical, i.e. short- to medium-run) production function

in which low- and high-skilled labor as well as high-skilled labor and capital are substi-

tutes in production. In this framework, skill-biased technology shocks lead to a fall in

hours worked and may thus be suitable to explain the “hours puzzle”. Intuitively, as these

technology shocks make high skilled workers more productive, low skilled workers are sub-

stituted out of production and overall hours fall. Further, skill-biased technology shocks

mirror the dynamics of investment-unspecific technology shocks that have been identified

in Chapter 1 in order to assess shortcomings of the conventional Fisher identification for

investment-specific technology shocks. As a consequence, skill-biased technology shocks

are important to understand the overall business cycle fluctuations that we observe in the

data.

Based on the evidence in Chapters 1 and 2, it is potentially worthwhile to consider business-

cycle labor market dynamics within a New Keynesian model rather than a RBC framework.

New Keynesian models may well incorporate the dynamics driven by both non-technology

and technology shocks that are documented in Chapter 1. These models usually investigate

the effect of labor market frictions on optimal monetary policy. But it can be interesting to

turn this question around: How do real and nominal rigidities in prices and wages influence

the dynamics on the labor market? The answer to this question is not clear a priori. To
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give an example, in the presence of rigid nominal wages and flexible nominal prices and

given a certain wage bargaining setup, firms may strategically affect the real wage through

the setting of the nominal price. Since this potentially has an important effect on the labor

market dynamics different from those in a setup in which nominal wages are fully flexible, it

is possibly worthwhile to investigate this issue further in future research. This assessment

becomes even more interesting when allowing for more heterogeneity on the labor market,

for example with respect to skill.

Chapter 3 also highlights the role of heterogeneity in order to understand the dynamics

on the labor market, in particular those of labor supply. Chapter 3 has used a cohort

based model of labor force participation in order to analyze determinants of participa-

tion for disaggregated groups of workers in European countries, with a focus on the euro

area. The model identifies significant age and cohort effects for detailed worker groups

as indicators of (unobserved) structural determinants and disentangles these effects from

other structural and business cycle factors on labor force participation rates. Indeed, it

has been documented that age and cohort effects can explain a substantial part of the

recent increase in labor force participation rates in the euro area, although not the surge

since early 1990s. Cohort effects are particularly relevant for women, with those born in

the 1920s and 1930s less likely and those born in the late 1960s and early 1970s more

likely to participate in the labor market over the life-cycle. Looking forward, while they

continue to provide some upward support to participation rates of women, positive cohort

effects are not large enough to compensate for the downward impact of population ageing

on labor force participation rates in the euro area.

Against this background, participation decisions of women may also have an important

impact on the labor market dynamics over the business cycle and are worthwhile to be

considered further in future research. In fact, two partners of a household interact with

respect to their choices about market work, home production and leisure. This underlying

heterogeneity plays a role for the individual allocation of time and hence the elasticity of

labor supply. Allowing for this kind of heterogeneity in the aggregate potentially allows

new insights into the determinants of aggregate labor supply and may have important

implications for labor market or fiscal policy.
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Appendix A

Identification and estimation in

Chapters 1 and 2

A.1 Standard long-run identification

Chapter 1 and 2 both employ structural identification in a VAR with long-run restrictions

in order to estimate different types of technology shocks and disentangle them from non-

technology shocks. Identification involves finding a mapping A of the residuals from a

reduced form VAR into so-called structural residuals such that these can be interpreted as

technology shocks. More precisely, name vt the residuals from a reduced form VAR with

E[vtv
′
t] = Ω. The relationship between the structural and reduced form residuals is then

et = Avt which induces AΣeA
′ = Ω. The remaining assumptions in order to pin down A

then need to come from restrictions on the matrix of long-run effects. These assumptions

can be incorporated as zero restrictions in the matrix of long-run effects C ≡ ∑∞
i=0 ΦiA,

where Φi are the impulse-response coefficients.

In the case of the Gaĺı identification, all identified shocks, i.e. the neutral technology

shock plus the remaining n− 1 non-technology shocks, are assumed to be orthogonal. In

addition, the variance of the structural residuals is normalized such that Σe = I. If labor

productivity is ordered first in the VAR, a lower triangular structure of the matrix C

satisfies Gaĺı’s assumption that only neutral technology shocks drive labor productivity

in the long run. This is easily obtained by decomposing the variance of the k-step ahead

forecast error ηt,k = Xt+k − Et(Xt+k) which is equal to

MSE(k) = (
k∑

i=0

Φi)Ω(
k∑

i=0

Φi)′
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with the Cholesky decomposition1. In the application, k = ∞ has to be approximated by

some large value, here k is 80 quarters. It has to be noted that this procedure uniquely

pins down the effect of the neutral technology shock on all variables in the VAR and that

the result is not affected by the additional (unnecessary) zero restrictions in the matrix of

long-run effects.

The reduced form VAR for all baseline specifications is estimated in a Bayesian framework

in the main application. More precisely, I obtain 1000 draws of the posterior distribution of

the reduced form coefficients and then apply the identification procedure to each of these

in order to produce draws of the distribution of the structural coefficients.2 The point

estimates exhibited then correspond to the median and the confidence intervals to the

16th and 84th percentiles of the posterior distribution (this is equivalent to one standard

error).

A.2 Estimation of the BVAR

All baseline results in chapter 1 and 2 are based on the reduced form VAR that is estimated

in a Bayesian framework with a Minnesota prior. The Minnesota prior consists of a normal

prior for the VAR coefficients and a fixed and diagonal residual variance. The prior mean

d0 is restricted such that it represents a random walk structure on the VAR coefficients,

i.e. in the standard case, the prior mean on the first lag is set to unity and the prior mean

on the other lags (remaining parameters) is set to zero. Here, this is reflected by the fact

that all variables enter the VAR in first differences resulting in a zero mean for all lags.

The prior variance Σd0 = Σd0(φ) of the coefficients depends on three hyper-parameters φ1,

φ2 and φ3, that determine the tightness and decay on own lags, other lags and exogenous

variables. Except for the decay, a loose prior is chosen for the hyper-parameters, namely

φ1 = 0.2, φ2 = 0.5 and φ3 = 105. The decay parameter in chapter 1 is d = 7, in chapter 2

it is d = 3. The advantage of the structure of the Minnesota prior is exactly this ability to

separately deal with the lags of the variables, i.e. own and other lags, as well as exogenous

variables. Together with a normal likelihood of the data the Minnesota prior produces a

1See for example Uhlig (2004). Note that the variables important for identification, here labor produc-

tivity, need to enter in first differences in the VAR for this equation to hold.

2This approach goes back to Canova (1991) and Gordon and Leeper (1994) and is feasible if the system

is just identified, that is, if there exists a unique mapping between draws of the residual variance covariance

matrix and draws of the identification matrix A.
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posterior that can be derived analytically. Hence, the estimation does not rely on sampling

procedures.

A.3 Restricted Fisher identification

In the restricted Fisher identification in chapter 1, I implement the identifying assump-

tion for neutral and investment-specific technology shocks as in Fisher (2006). Here, the

restricted Fisher identification is very similar to the Gaĺı identification, apart from a few

issues.3 First, if the the real investment price is ordered first and labor productivity

second in the VAR, the matrix of long-run effects may be lower triangular in order to

impose the first two restrictions, namely that only investment-specific technology shocks

affect the investment price in the long run and only technology shocks may be sources of

long-run fluctuations in labor productivity. In addition, the third restriction implies that
c21
c11

= α
1−α , where cii are the respective elements of the matrix of long-run effects C. Since

the lower triangular structure already imposes the number of conditions necessary for the

identification of A, I need to relax one of the other assumptions in order to maintain exact

identification. Here, the third restriction results in a positive correlation between neutral

and investment-specific technology shocks. Hence, Σe is no longer diagonal, but rather

Σe =




1 ρ O

ρ 1 O

O O I


 .

Naming Λ the lower triangular Cholesky factor from the decomposition of the k-step ahead

forecast error, the identification matrix is then A = FB with F = (
∑k

i=0 Φi)−1 and

B =




1 0 O

b
√

(1 + b2) O

O O I


 .

With b =
α

1−α
λ11−λ21

λ22
, with λii being the elements of Λ, the correlation between the two

technology shocks is pinned down as ρ = −b√
(1+b)2

.

3Note that Fisher imposes his restrictions in an instrumental variable framework similar to Shapiro and

Watson (1988). I thank Fabio Canova for the solution of the implementation of the Fisher restrictions as

explained above.
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A.4 Alternative identification

The alternative identification in chapter 1 combines long-run zero restrictions as in the

Fisher identification with sign restrictions on the long-run effects of the structural shocks

on the real investment price and labor productivity. Assuming Σe = I, the n elements of

the matrix A that maps the reduced form into structural residuals have to be determined

such that AA′ = Ω and our long-run restrictions are fulfilled. Note that this is equivalent

to finding a decomposition L of the long-run forecast revision variance such that

LL′ = Σ∞ = (
∞∑

i=0

Φi)Ω(
∞∑

i=0

Φi)′.

Consider the same order of variables as in the Fisher identification, i.e. the real price

of investment and labor productivity are ordered first in the VAR. First, I assume that

only the two types of productivity shocks can affect the real investment price and labor

productivity in the long run. This means that l13 = l14 = ... = l1n = 0 and l23 = l24 =

... = l2n = 0 and results in

L1:2,1:2L
′
1:2,1:2 = Σ∞1:2,1:2.

Next, I implement sign restrictions on this upper left 2-by-2 system in a similar fashion

as in Peersman (2005). This involves a rotation of L1:2,1:2 using an orthonormal matrix Q

(i.e. QQ′ = I):

Q =

[(
cos(θ) −sin(θ)

sin(θ) cos(θ)

)]
.

As in Peersman (and similar to Uhlig (2005)), our VAR is estimated in a Bayesian frame-

work. For each draw of the posterior distribution of the reduced form VAR coefficients, I

calculate the long-run forecast revision variance. I then randomly draw θ from a uniform

distribution [0, π], use Q to calculate the upper left elements of the matrix L and check

whether our sign restrictions are satisfied. In the application, I draw 100 candidates from

the posterior distribution of the reduced from coefficients and another 100 values of θ for

the rotation. I compute the impulse responses for all draws that satisfy the sign restriction

and report the median and the 16th and 84th percentile from the resulting distribution.

On average over a third of the draws satisfies the sign restrictions.

After having implemented the restrictions, I can now proceed to calculate the remain-

ing elements of the matrix L such that this matrix provides a valid decomposition of

the long-run variance. For the remaining elements of the first two columns, I use that
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L3:n,1:2L
′
1:2,1:2 = (Σ∞1:2,3:n)′. Now I still need to determine the lower right elements of L.

Note that these elements do not impose any of the restrictions nor are they related to the

shocks of interest. I use the information on the first two rows and columns in order to

adjust the lower right elements of the long-run variance. This ’remaining’ block of the

variance is then decomposed using the Cholesky decomposition. Having found all elements

of L, I can then determine the matrix A via A = (
∑∞

i=0 Φi)−1L.

A.5 VAR identification with short- and long-run restric-

tions

This section describes the method to implement the combination of short-run and long-

run restrictions in chapter 2. To implement the short-run restriction which identifies skill

supply shocks together with the long-run restrictions for the various technology shocks,

we seek to find a unique transformation matrix A that maps the reduced form residuals

vt into structural shocks et. Assuming orthogonality between the structural residuals

and normalizing their variance to unity, A therefore satisfies AA′ = Ω where Omega is

the variance matrix of the reduced from residuals. In a VAR with n variables, another

n(n− 1)/2 restrictions are then necessary for exact identification and will come out of the

short- and long-run assumptions.

Similar to before, we can formulate the problem in a triangular structure when the variables

are conveniently ordered. This means ordering the supply of skill first in the VAR and then

ordering the other variables according to the respective specification. The identification

then works as follows. First, one identifies the supply shock through its short-run effect.

More precisely, in order to identify supply shocks we assume that neither i-shocks, nor

SBT-shocks nor neutral or non-technology shocks affect the supply of skill in the short

run (on impact). This is equivalent to restricting a12 = a13 = ... = a1n = 0 (with aij being

elements of A). These zero restrictions in the first row of A, combined with

A1. ∗A′.1 = Ω1. (A.1)

pin down the first column of A. The first column uniquely determines the effects of the

supply shocks on the system of variables.

Second, we need to determine all other elements of the matrix A except for the first row

and column. As in the standard long-run assumptions, the subsequent remaining columns
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should incorporate the effects of the various technology shocks. As before, we therefore

use a Cholesky decomposition of the infinite horizon forecast error variance in order to

measure the technology shocks. However, we only need to use the lower right block of this

matrix, i.e. the part of the forecast variance which remains after the first row and column

of A have already been taken into account. The Cholesky decomposition then delivers the

remaining elements of A.
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