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Introduction

This dissertation covers two distinct topics in the field of financial economics: risk

measurement and the term structure of interest rates.

The phenomenon of risk plays a ubiquitous role in finance and insurance as well

as in economics, since it is involved in nearly all financial and economic activities.

Risk is a key aspect in diverse situations, as the formation of investment decisions

and the operation of financial markets. It is the daily occupation of several pro-

fessions, as rating agents, financial regulators, and portfolio and fund managers.

Without it, the profession of investment banking would reduce to simple account-

ing, as stated by Machina & Rothschild (2008), and the insurance industry would

cease to exist.

Due to its central role, risk and its various aspects are frequently addressed in

economic literature. The idea of risk entered economic theory with the dissertation

of Knight (1921) and his famous distinction between risk and uncertainty. Von Neu-

mann & Morgenstern (1944) accomplished the formal incorporation of risk by their

axiomatization of the expected utility hypothesis. Remarkably, this hypothesis al-

ready appears in Bernoulli (1738). By considering the expected utility instead of the

expected return of a random payoff and introducing the idea of diminishing marginal

utility Bernoulli (1738) solved the well-known St. Petersburg paradox, which was

posed by his cousin Nicholas Bernoulli in 1713.

The primary step in coping with risk is its measurement. To this end actuarial
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and financial literature has proposed a variety of measures of risk over the last

decades, for an overview confer e.g. Bühlmann (1970) and Föllmer & Schied (2004).

This research in quantifying the risk of a random payoff lead from simple moment-

considerations, as the Sharpe ratio, to the commonly-used Value-at-Risk and more

sophisticated measures, as e.g. expected shortfall, utility-based or spectral risk

measures. Since some of these measures expose unfavorable properties, e.g. Value-

at-Risk penalizes diversification, Artzner et al. (1999) introduce axioms of coherence

in order to ensure consistent risk measures. As pointed out by Denuit et al. (2006)

broad classes of risk measures base on the actuarial principle of an equivalent utility

premium: they are obtained by deriving the indifference price, that is the price

for which a decision-maker is indifferent between accepting the financial position

by paying this price or not entering the position. The indifference price is thus

the minimal certain side payment or capital requirement, which makes a position

acceptable.

The primary idea in the first part of this thesis is not to ask for the price in

this context, but for the level of risk aversion of the investor, which leaves him

indifferent. The rational behind this idea is obvious: a financial position, which

is exposed to high risk, is rejected by the majority of risk-averse agents and an

indifferent agent has to be relatively risk-affine compared to the majority. And vice

versa, for a low-risk position an agent has to be relatively risk-averse in order to be

indifferent. Consequently the indifference risk aversion level provides inference to

the risk of the position. I call this idea risk measurement via the indifference risk

aversion principle.

In order to apply this principle I consider the elementary setting of agents with

exponential utility in the expected utility paradigm of decision-making. Following

the indifference risk aversion principle I ask which agent of this family is exactly

indifferent. Thereby I define the indifference measure, which maps a position to
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the positive constant Arrow-Pratt coefficient of the agent who is indifferent to the

position in question. This consideration follows the pathbreaking work of Aumann

& Serrano (2008). They introduce a risk measure, they call the index of riskiness,

which is defined as the reciprocal of the indifference measure.

In order to ensure the existence of riskiness Aumann & Serrano (2008) provide

three conditions on the random payoff. Their third condition is although sufficient,

but not necessary for existence and excludes some central distributions of risk. In

order to include these distribution I relax their third condition. The main result

in Chapter 1 derives three conditions which are equivalent to the existence of riski-

ness. Appealingly, a consideration of economic acceptance behavior shows that these

conditions on the distribution of a random payoff (namely the possibility of losses,

a positive expected value, and no heavy negative tail) are the relevant case for a

non-trivial decision under risk.

Having clarified for which financial positions the index of riskiness, and hence

the indifference measure, exist, the next elementary question is their computation.

Whereas Aumann & Serrano (2008) calculate the riskiness of trivial cases and po-

sitions, which are normally distributed, it remains defined implicitly for all other

positions. Calculating riskiness explicitly is demanding, since the implicit definition

involves an improper integral, which can be difficult to solve and need not exist.

Chapter 1 observes a connection to the theory of Laplace transforms and reduces

the problem of explicit calculation of riskiness to the easier problem of inverting

two-sided Laplace transforms. Moreover, I provide closed-form solutions of several

distributions, including the Exponential, Poisson, and Gamma distribution.

I believe that Chapter 1 contributes to both, theory and practice of riskiness and

the indifference measure. On the theoretical side it derives equivalent conditions for

existence. Naturally, existence is the basis for the proceeding research on riskiness

and the indifference measure. Moreover, relaxing the third condition of Aumann &
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Serrano (2008) is economically relevant as it incorporates several continuous distri-

butions of risk, which were excluded before, e.g. the Exponential, Gamma, Laplace

and Logistic distribution. On the practical side, explicit calculations are necessary

for any application of riskiness and the indifference measure. They allow the index

of riskiness to quantify the risk involved in a position. Deriving explicit numbers

gives riskiness a meaning beside its appealing axiomatic properties.

These computations show that the indifference measure maps positions, which

are exposed to high risk, to low parameters and vice versa. This is in line with the

intuition of the indifference risk aversion principle. By convention, a typical risk

measure associates high-risk positions with high numbers and low-risk position with

low numbers. This suggests to reverse the indifference measure in order to receive

a conventional risk measure. An outstanding example for this reversion is riskiness,

which is the reciprocal of the indifference measure. To verify this intuition, that

a reversed indifference measure is a sensible risk measure, I consider the axiom of

duality.

This axiom is also introduced in the seminal paper of Aumann & Serrano (2008).

The duality axiom asserts, roughly speaking, that less risk-averse agents accept

riskier gambles. More precisely, it poses a condition on risk measures: A risk mea-

sure is dual, if every agent accepts all positions, which are less risky (by means of the

risk measure in question) than a position, which is already accepted by a more risk-

averse agent. There are two reasons for this behavior: first, the agent in question

is relatively more risk-affine, and second, the gambles in question are relatively less

risky. This makes duality a natural assumption, which can be seen as a requirement

on risk measures. Aumann & Serrano (2008) characterize riskiness uniquely by du-

ality and the axiom of positive homogeneity. Since positive homogeneity is of minor

importance (also in their opinion), Chapter 2 relaxes it and considers the whole

class of dual risk measures. This class is of relevance as it contains all risk measures
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satisfying the natural axiom of duality.

As it turns out, the crucial key to this class of risk measures is the indifference

measure, which induces an ordering on the set of positions. The main insight of

Chapter 2 is that all dual risk measures can be characterized by the indifference mea-

sure. The primary theorem of Chapter 2 yields, that any dual risk measure reverses

the ordering induced by the indifference measure. A consequence is a representa-

tion theorem which decomposes dual risk measures into the indifference measure

and a reversing function. Further I derive that the opposite implication also holds

true: any measure reversing the ordering of the indifference measure is necessarily

dual. Hence Chapter 2 provide an easy method to construct dual risk measures by

composing the indifference measure with an arbitrary reversing function. Overall, I

present a handy equivalent condition for duality.

This characterization supports the risk measurement via the indifference risk

aversion principle. It verifies the intuition, that reversed indifference measures are

sensible risk measures, as they satisfy the natural duality axiom. Moreover, it shows

that every dual risk measure necessarily bases on the indifference measure. Thus the

indifference measure, introduced and analyzed in Chapter 1 and derived by the indif-

ference risk aversion principle, is crucial for the class of dual risk measures, as shown

in Chapter 2. In addition, it is very appealing that the indifference measure, that is

derived by exponential utility solely, ensures duality, which in turn ensures consis-

tency with a notion of comparative risk aversion for general utility functions beyond

exponential utility. This highlights the outstanding role of the indifference measure

and exponential utility among concave utility functions.

As mentioned above, the importance of the classical equivalent utility principle

based on the indifference price is unquestioned in finance, insurance, and economics.

Similarly the equivalent utility principle based on indifference risk aversion can add

to the accuracy of risk measurement. This new principle illuminates a different
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aspect of the broad phenomenon of risk. It is conceptually appealing, since the link

between risk and attitude towards risk is natural. In the context of risk measurement

(opposed to risk valuation) it is more direct than the relation between risk and an

indifference price. Moreover, it is attractive that no fixed level of risk aversion has

to be assumed and that a position itself is measured without changing it by adding

a side payment. These appealing properties underline the potential of the principle

and in particular dual risk measures. Of course, there are many important aspects

in risk measurement, and the indifference risk aversion principle is at most one of

them. In the light of the statement ”risk is what risk-averters hate” by Machina &

Rothschild (2008) it is a promising one.

To summarize I briefly list the contribution of Chapter 1 and Chapter 2 to the

theory of risk measurement: First, a new principle for risk measurement is intro-

duced, which is conceptually appealing and has the potential to add to the accuracy

of risk measurement. Second, the abstract principle is made concrete by consider-

ing the indifference measure. The indifference measure constitutes a new type of

risk measure which differs conceptually from all classical risk measures except for

the index of riskiness. Its existence, and thereby the existence of riskiness, is clarified

by relating it to acceptance behavior and it is computed explicitly by linking it to

the theory of Laplace transforms. Third, I introduce the class of dual risk measures

and characterize it by a simple equivalent condition. This equivalence provides a

representation theorem and a construction method for dual risk measures. It further

proves the intuition, given by the indifference risk aversion principle, that reversed

indifference measures are meaningful risk measures.

The second topic of this thesis is distinct from the first topic as it addresses

the term structure of interest rates. Hereby I focus on a long-term perspective.

The long-term behavior of the yield curve is essential for the valuation of long-term

interest rate sensitive products. These products include fixed-income securities, in-
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surance and annuity contracts, and perpetuities. For pricing and hedging of these

instruments finance practitioners require a term structure for 100 years or more,

whereas in most markets only 30 years are observable. Thus they rely on theoretical

models, which extrapolate the evolution of the term structure beyond observable

maturities. For the resulting limiting term structure Chapter 3 derives two results:

under no arbitrage long zero-bond yields and long forward rates are monotonically

increasing and equal to their minimal future value. Both results are inspired the

seminal work of Dybvig et al. (1996). They are fairly general as they require only

the minimal setting of buy-and-hold trading of Chapter 3 and barely impose restric-

tions on bond prices. My results contribute to the theory of interest rates theory

as they apply to virtually all arbitrage-free term structure models and impose re-

strictions on their long-term behavior by excluding various behavior of limiting yield

curves. These implications serve as caution for modelers that not every specification

is consistent with the considered notions of arbitrage. Specifically, setting up the

asymptotic yield or forward rate as a diffusion process or a process with systematic

jumps necessarily imposes arbitrage opportunities.

Every chapter in this thesis forms a self-explaining unit.
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Chapter 1

Existence and Computation of the

Aumann-Serrano Index of

Riskiness

Aumann & Serrano (2008) introduce the index of riskiness to quantify the risk

of a financial position. We clarify for which positions this index of riskiness

exists by considering the acceptance behavior of CARA-agents. Furthermore,

we derive numerical and closed-form solutions for the riskiness of several distri-

butions of risk. These existence and computation results base on a connection

of riskiness to the theory of Laplace transforms.

1.1 Introduction

Aumann & Serrano (2008) introduce the economic index of riskiness, which asso-

ciates the risk of a gamble or financial position to a real number. The index is

essentially characterized by an axiom, which asserts that every agent a fortiori ac-

cepts a position, which is less risky (in term of the risk measure in question) than

a position, which is accepted by another agent, who is uniformly more risk-averse

compared to the first agent. Aumann & Serrano (2008) derive several appealing

9
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theoretical properties of the index, including continuity, positive homogeneity and

consistency with first and second order stochastic dominance.

In this chapter we clarify, for which financial positions the index of riskiness

exists, and we derive explicit calculations of riskiness.

In their highly inspiring paper Aumann & Serrano (2008) consider the class of

positions with positive mean and potential negative outcomes. For infinite positions,

these two conditions do not imply the existence of riskiness, as we show by consid-

ering a position, which is lognormally distributed. Therefore Aumann & Serrano

(2008) add a third condition, which is sufficient, but not necessary for existence. It

excludes several central distributions of risk, whose riskiness exists. This suggests to

relax this third condition and raises the question for the set of equivalent conditions

of existence. We answer this question by our main result, which states that the in-

dex of riskiness of a position exists, if and only if, the position satisfies the following

three conditions: (i) it has negative outcomes, (ii) it has a positive mean, and (iii)

it does not have a heavy negative tail. 1 Therefore we identify the class of positions,

whose riskiness exists. Relaxing the third condition of Aumann & Serrano (2008)

to condition (iii) is important as it incorporates several continuous distributions of

risk, as the Exponential, Gamma, Laplace, and Logistic distribution.

We illustrate this existence result by the following economic intuition and show

that conditions (i), (ii) and (iii) are mild assumptions, as they ensure that the

decision problem is non-trivial. As Aumann & Serrano (2008) show, riskiness can

be interpreted as the reciprocal of the risk aversion parameter of an agent with

CARA-utility, who is indifferent between accepting the position or not. Thus the

index of riskiness exists, if and only if, there exists a positive number α, such that

1We state these conditions formally by denoting a random variable describing the position by X,

the measure of a probability space by P and the expectation under this measure by E. Condition

(i) is given by P(X < 0) > 0, condition (ii) by EX > 0 and condition (iii) by the existence of a

positive number α with E exp(−αX) < ∞. The third condition in Aumann & Serrano (2008) is

given by E exp(−αX) < ∞ for all α > 0.
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an agent of CARA-utility with parameter α has a zero expected utility by accepting

the position.2 However, such an indifferent agent does not necessarily exist. This

happens in the following two cases: First, if all CARA-agents with a positive param-

eter accept the position. This case, called Case A, holds exactly for positions which

have only positive outcomes. Such positions involve no risk at all and thus Case

A is not relevant for risk measures, as the decision is trivial. Case A is excluded

by condition (i). Second, if all CARA-agents reject the position. This case, called

Case R, holds exactly for positions with negative mean or heavy negative tail, as

we show. A position with negative mean is rejected by all risk-neutral or risk-averse

agents in a expected utility framework. Thus the decision is obvious and there is

no reason to consult a risk measure. Such positions are excluded by condition (ii).

A position with a heavy negative tail involves risk, which is not bounded. In spite

of a potentially positive mean all risk-averse CARA-agents decline such a position,

regardless how close to risk-neutrality they are. These positions are excluded by

condition (iii).

In the remaining case under conditions (i), (ii) and (iii), there necessarily exists a

CARA-agent accepting the position and another CARA-agent rejecting the position.

Our result shows that this yields also the existence of an indifferent CARA-agent

(called Case I), and thus the index of riskiness. Intuitively this follows by the

continuity of expected utility in parameter α.3 Overall we show that riskiness exists

exactly for positions which involve risk and have a positive expectation and no heavy

tail in the meantime, which is the relevant case for decision-making under risk.

Having clarified when the index of riskiness exists, the next elementary ques-

tion is its computation. Aumann & Serrano (2008) calculate the riskiness of trivial

cases and positions which are normally distributed. For all other positions the in-

2By referring to CARA-agents we can abstract from wealth effects, since the decisions of an

CARA-agent are the same under all wealth levels.
3However, the proof is not direct, since the CARA-expected utility does not necessarily exist

for all α > 0.
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dex of riskiness is defined implicitly. Calculating riskiness explicitly is demanding,

since the implicit definition involves an improper integral, which can be difficult

to solve and need not exist. In this chapter we derive a method, which in princi-

ple computes explicitly the riskiness of arbitrary positions. This method is based

on our observation that the expected utility of a CARA-agent essentially equals

the bilateral Laplace transform of the position in question. Hence the theory of

Laplace transforms is the suitable technique on the mathematical level to consider

existence and computation of riskiness. This connection to Laplace transforms re-

duces the problem of calculating riskiness to the easier problem of inverting Laplace

transforms, which is still a demanding task. Using this method, we provide nu-

merical calculations of the riskiness of arbitrary positions, which are described by

common distributions of risk. Moreover, we provide closed-form solutions of several

distributions, including the exponential, Poisson, and Gamma distribution. These

solutions involve the non-elementary Lambert W-function.

We believe that this chapter contributes to both, theory and practice of the in-

dex of riskiness. On the theoretical side it clarifies, for which positions it actually

exists by deriving equivalent conditions. Existence is the basis for the proceeding

research on riskiness. Moreover, relaxing the third condition of Aumann & Serrano

(2008) to condition (iii) is economically relevant as it incorporates several contin-

uous distributions of risk, which were excluded before. These distributions include

the following classes: Exponential, Gamma, Laplace, and Logistic distribution. On

the practical side, explicit calculations are necessary for any application of riskiness.

They allow the index of riskiness to quantify the risk involved in a position. Un-

questionable the measurement of risk is central in economic, financial, and actuarial

sciences: Coping with risk plays a pervasive role, since the phenomenon of risk is

a key aspect in diverse situations, as the formation of investment decisions and the

operation of financial markets. Deriving explicit numbers gives riskiness a meaning

beside its axiomatic properties and allows for comparisons to classical measures of
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risk.

This chapter is organized as follows: The following section asks more formally

for the existence of riskiness and provides the connection to Laplace transforms.

This question is answered in Section 3 by relating three essential cases of CARA-

acceptance behavior to the properties of respective positions. In Section 4 riskiness is

calculated explicitly by deriving numerical and closed-form solutions. The Appendix

provides details on several integral transforms and the Lambert W-function.

1.2 The Problem

We use standard notation. The triple (Ω,F ,P) denotes a probability space and E

denotes the expectation operator with respect to P . A financial position or gamble

is described by a random variable X : Ω → R. X(ω) is the discounted net worth

of the position at the end of a given period under scenario ω. By X we denote the

set of financial positions. For full generality we set X := L0(Ω,F ,P) − ker(‖ · ‖p),

i.e. the space of Borel-measurable functions on (Ω,F) minus the kernel of the

seminorm ‖ · ‖p. Thus we consider all real-valued random variables except for

random variables, which equal zero almost surely. We exclude the trivial case of

vanishing positions for the convenience that some inequalities below hold strictly.

This is no restriction in our context of decision-making, as vanishing positions do

not affect expected utility. Since the set X also contains positions with infinite

mean we refer to Delbaen (2002) and Delbaen (2009) for details on risk measures

for non-integrable random variables. We state the main problem of this chapter.

Problem 1. For any position X ∈ X find a positive real number α∗(X) with

E e−α∗(X) X = 1. (1.1)

For a position X we call a positive solution of equation (1.1) the positive root

α∗(X). The index of riskiness R, introduced in Aumann & Serrano (2008), is defined
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as the reciprocal of the positive root

R(X) :=
1

α∗(X)
.

Following Aumann & Serrano (2008) the positive root α∗(X) can be interpreted

as the parameter of a CARA-agent, who is indifferent between accepting the position

X or not. An agent is called CARA with parameter α, if she has a constant Arrow-

Pratt coefficient of absolute risk aversion (CARA), which is defined by

ru(x) :=
−u′′(x)

u′(x)
,

confer Arrow (1965), Arrow (1971) and Pratt (1964). Any CARA-agent has a utility

function, which is up to additive and multiplicative constants of the form

ūα(x) :=
1

α
(1− e−αx)

with α 6= 0. Such a CARA-agent is indifferent, if her expected utility equals zero,

i.e.

E ūα(X) = 0,

which is equivalent to equation (1.1). Thus the existence of an indifferent CARA-

agent with positive parameter α∗ is equivalent to the existence of a positive root

α∗.

The main insight to solve Problem 1 is the observation that the left hand

side of equation (1.1) is the two-sided Laplace transform of X. The two-sided

Laplace transform Lf : R→ R of a function f is given by the integral

Lf (α) :=

∫

R
e−αxf(x) dx.

For an extensive introduction to Laplace transformation we refer to Feller (1966)

and Doetsch (1974). By denoting the continuous density function of X with fX we

rewrite the expectation of equation (1) and receive the Laplace transform of fX , (or

of X in shorter notation to avoid double indexing):

E e−αX =

∫

R
e−αxfX(x) dx = LX(α).
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Hence we can solve Problem 1 by finding a positive point α∗ of the Laplace transform,

where it equals one

LX(α∗) = 1. (1.2)

This reduces Problem 1 to the problem of inverting the Laplace transform of X,

since α∗ can be, if it exists, expressed more explicitly by

α∗(X) = L−1
X (1),

where L−1 denotes the inverse function of LX(α) in argument α mapping into the

positive numbers. Note that we do not refer to the common inverse of Laplace

transforms in argument X yielding the density fX . Since the theory on Laplace

transforms is highly sophisticated and Laplace transforms are derived for virtually

all distributions, this solves Problem 1 in principle.

For convenience we focus on a continuous notation here. Strictly speaking, the

relation of E e−αX to the Laplace transform holds only, if the position X has a con-

tinuous density function. Nonetheless our results hold analogously for discrete po-

sitions: The properties of the Laplace transform we use below, i.e. essentially strict

convexity and the moment-relation, are similarly fulfilled by E e−αX as a function

in argument α, regardless if X is continuous or discrete. For a unifying approach

we refer to Appendix A.1, in which we relate to the moment-generating function

M(X,α) by

E e−αX = M(X,−α).

However, for the sake of brevity we focus on the relation to the Laplace transform in

this chapter. This appears more illustrating, since the positive root is the positive

point of Laplace transform equalling one. Since there are some more integral trans-

forms, which help to solve Problem 1, we consider these transforms in Appendix

A.1.

The economic interpretation with acceptance behavior of CARA-agents is given

by the following relation between the Laplace transform and the expected CARA-
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utility for α > 0

LX(α) = 1− α E ūα(X), E ūα(X) =
1

α
− 1

α
LX(α), (1.3)

and, in particular

LX(α) = 1 ⇔ E ūα(X) = 0.

1.3 Existence of Riskiness

In this section we derive for which positions the index of riskiness exists by dis-

cussing three cases of acceptance behavior. We start by showing, which positions

are accepted by all CARA-agents.

Lemma 2. All CARA-agents accept a position X ∈ X, i.e. Eūα(X) > 0 for all

α > 0 and called Case A, if and only if the position X satisfies

( ic) no losses are possible, i.e. X ≥ 0.

Proof. We start assuming condition (ic), which is the complement of condition (i)

of the introduction. As the trivial position X ≡ 0 is excluded, there is a positive

outcome, i.e. P(X > 0) > 0. We consider the Laplace transform for α > 0

LX(α) =

∫

R+
0

e−αxfX(x) dx = P(X = 0) +

∫

R+

e−αxfX(x) dx

< P(X = 0) +

∫

R+

fX(x) dx = P(X = 0) + P(X > 0) = 1,

where the strict inequality follows by e−αx < 1 for all α > 0 and x > 0. Consequently

by equation (1.3) it holds for all α > 0

E ūα(X) > 0,

which yields Case A. A typical Laplace transform in Case A is plotted in Figure

1.1. The other direction of the lemma we show by contraposition. We assume,
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Figure 1.1: Laplace transform LX(α) in Case A.

that losses are possible, i.e. P(X < 0) > 0. Then it holds by definition of the

Laplace transform

lim
α→∞

1

α
LX(α) = ∞.

This yields limα→∞ E ūα(X) = −∞ by equation (1.3). Thus for sufficiently large

α there exists a CARA-agent rejecting the position, which contradicts Case A and

completes the proof.

In the next case we derive the positions, which are rejected by all CARA-agents.

Lemma 3. All CARA-agents reject a position X ∈ X, i.e. Eūα(X) < 0 for all

α > 0 and called Case R, if and only if the position X satisfies

( iic) X has a non-positive mean, i.e. EX ≤ 0, or

( iiic) X has a heavy negative tail, i.e. Ee−αX = ∞ for all α > 0.

Proof. We start by assuming condition (iic), which yields

L ′
X(0) = −EX ≥ 0,
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since the k-th derivative of the Laplace transform at zero equals minus the k-th

moment of X. The Laplace transform is strictly convex on the interval, where it

exists. To see this we consider the second derivative, which equals by the continuity

of the exponential

L ′′
X(α) =

∫

R
x2e−αxfX(x) dx > 0.

This integral is strictly positive for all X ∈ X, since the integrand is strictly positive

for all x 6= 0 and positions which equal zero almost surely are excluded. The strict

convexity and the nonnegative slope in 0 yields for α > 0

LX(α) > LX(0) = 1.

This is illustrated in Figure 1.2 and by equation (1.3) this is equivalent to

E ūα(X) < 0,

for α > 0, which yields Case R. This is natural, since even a risk-neutral agent

rejects this position. Assuming condition (iiic) it holds by definition

LX(α) = ∞

for α > 0, which yields by equation (1.3)

E ūα(X) = −∞,

for α > 0, and hence Case R. The other implication of the lemma we show again

by contraposition. By assuming condition (iii), the complement of condition (iiic),

there exists some α > 0 with LX(α) < ∞. Thus the Laplace transform exists on

the interval [ 0, b ) for some b > 0. By the moment-relation

L ′
X(0) = −EX

this yields EX < ∞. By condition (ii), the complement of (iic), the Laplace trans-

form is further decreasing in 0, and hence there exists some α > 0 with

LX(α) < 1,



1.3. EXISTENCE OF RISKINESS 19

-0.5 0.5 1.0 1.5 2.0
Α

5

10

15

Figure 1.2: Laplace transform LX(α) in Case R.

which yields E uα(X) > 0 by equation (1.3). This contradicts Case R and closes the

proof.

The following theorem provides that the index of riskiness exists for all positions

of the final case.

Theorem 4 (Existence of Riskiness). There exists a CARA-agent, who is indifferent

to a position X ∈ X, i.e. there exists some α > 0 with Eūα(X) = 0 and called Case

I, if and only if the position X features the following three conditions

( i) losses are possible, i.e. P(X < 0) > 0, and

( ii) X has a positive mean, i.e. EX > 0, and

( iii) X has no heavy negative tail, i.e. Ee−αX < ∞ for some α > 0.

Proof. From Case I it follows by contraposition, that the position satisfies conditions

(i), (ii) and (iii): If one of the conditions is violated, Case A or Case R holds, what

is shown in Lemmata 2 and 3, and contradicts Case I. The other implication of the
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Figure 1.3: Laplace transform LX(α) with no indifferent CARA-agent.

theorem is not so direct using Lemmata 2 and 3, since it is not directly clear that

Case I is the complement of Case A or R. Although this complementarity is intuitive

it does not hold, if there only exist CARA-agents accepting or rejecting the position

and not an indifferent one. This case is illustrated in Figure 1.3, in which agents

with parameter α < 1 accept the position. Agents with parameter α ≥ 1 reject

it, since the Laplace transform is unbounded and their expected utility is minus

infinity. The continuity of expected utility does not directly help out, since it fails

to exist for the rejecting agents. To see that this cannot happen and we provide the

following proof for the other implication, which shows that the Laplace transform

grows unboundedly, when approaching the minimal point, where it is infinite. Thus

Case I actually is the complement of Case A or R.

We start assuming conditions (i), (ii) and (iii) are satisfied and consider the

minimal value b, such that the Laplace transform is infinite

b(X) := inf
α≥0

{LX(α) = ∞},

and set b(X) := ∞, if the Laplace transform is finite on R+. By condition (iii),
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there exists a positive α with LX(α) < ∞ and we have b(X) > 0. By definition

of b and its strict convexity the Laplace transform is finite on the interval [ 0, b ).

Notice that this yields again that the mean of X is finite. We consider a monotone

sequence (bn)n∈N with bn ↗ b. It remains to show that

lim
n→∞

LX(bn) = ∞. (1.4)

Then the Laplace transform is exploding on the right-hand side of the interval [ 0, b ),

where it exists. On the left-hand side of this interval it is smaller than one by

condition (ii): L ′
X(0) = −EX < 0. In consequence it equals one at some point α∗

with 0 < α∗ < b by the continuity of the Laplace transform on the interval [ 0, b ).

This is illustrated in Figure 1.4 and yields a positive root and thus Case I.

We close the proof by showing the remaining equation (1.4). In case of b(X) =

∞, equation (1.4) follows, as it holds by definition of the Laplace transform under

condition (i)

lim
α→∞

LX(α) = ∞.

In case of b(X) < ∞, we consider the following trivial decomposition

LX(b) = L−X(b) + L+
X(b),

with

L−X(b) :=

∫

R−
e−bxfX(x) dx, L+

X(b) :=

∫

R+
0

e−bxfX(x) dx.

Since the integral on the positive axis is finite for b > 0 by

L+
X(b) ≤

∫

R+
0

1fX(x) dx ≤ 1,

we have L−X(b) = ∞ by definition of b. We define the following sequence of integrands

fn(x) := e−bnx 1{x<0}, n ∈ N.

So we have 0 ≤ f1 ≤ f2 ≤ ... and

lim
n→∞

fn = e−bx 1{x<0}.
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Figure 1.4: Laplace transform LX(α) in Case I.

Thus the assumptions of the Beppo Levi’s theorem of monotone convergence are

satisfied and limit and integration can be interchanged

lim
n→∞

∫
fn fX dx =

∫
lim

n→∞
fn fX dx,

which is by definition of fn

lim
n→∞

L−X(bn) = L−X(b) = ∞,

and establishes equation (1.4) by the nonnegativity of limn→∞ L+
X(bn).

Having clarified the existence of the index of riskiness, we address its uniqueness.

Lemma 5 (Uniqueness of Riskiness). If there exists a positive root of equation (1.2),

it is unique.

Proof. The existence of a positive root yields by Theorem 4 that conditions (i), (ii)

and (iii) are met. Positive roots can only exists in the interval ( 0, b ) with again

b := inf
α≥0

{LX(α) = ∞}.
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Notice that it holds

LX(0) =

∫

R
fX(x) dx = 1 (1.5)

trivially for all density functions fX and L ′
X(0) < 0 by condition (ii). This yields

L ′
X(α∗) > 0 for the minimal positive root α∗ by the strict convexity of the Laplace

transform on ( 0, b ). Again by convexity there thus cannot exist a second positive

root in ( 0, b ).

We have clarified for which gambles a positive root and thus riskiness exist by

identifying the three essential Cases A, R and I of acceptance behavior. Hence we

are in position to extent the index of riskiness from Case I, where it exists, to the set

of all gambles in X. To do so we extend the positive root from Case I to a measure

on X, we call indifference measure.

Definition 6 (Indifference Measure). The indifference measure α : X → R+
0∪{∞}

is defined by

α(X) :=





α∗(X) in Case I,

∞ in Case A,

0 in Case R.

The extension to Cases A and R is chosen in a natural way: In Case A, a

position is accepted by CARA-agents with arbitrary big parameter. The parameter

of a potential indifferent agent is hence unbounded and set to infinity. In Case R,

all CARA-agents reject the position regardless how small their positive parameter

is. Thus a potential indifferent agent must have a non-positive parameter and it is

set to zero. By the reciprocity of riskiness and the positive root we follow Aumann

& Serrano (2008) in extending riskiness.

Definition 7 (Extended Riskiness). Extended Riskiness R : X → R+
0 ∪ {∞} is
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defined by

R(X) :=





1
α∗(X)

in Case I,

0 in Case A,

∞ in Case R.

In Case A no losses are possible. This risk-free situation is reflected by a riskiness

of zero. Whereas in Case R no risk-averse agent accepts the position, and hence

riskiness is infinite.

In the remainder of this section we consider an example of a position, which

satisfies condition (i) and (ii) and violates condition (iii). This is of interest in

this context, since it illustrates that condition (i) and (ii) are not sufficient for the

existence of riskiness. This position of Case R is accepted by a risk neutral agent,

but rejected by all risk-averse CARA-agents, regardless how close to risk-neutrality

they are. This example is inspired by Example 3.11 of Romano & Siegel (1986).

The position is lognormally distributed and has a heavy negative tail.

Example 8. Let X have standard normal distribution. We consider the random

variable Y := 2 − eX . Hence Y is up to additive and multiplicative constants a

standard lognormal distribution. To show that the Laplace transform of Y explodes

on the positive real axis we consider for α > 0

LY (α) = L2−eX (α) = E exp(α exp(X)− 2α)

= (2π)−
1
2

∫

R
exp

(
α exp(x)− x2

2
− 2α

)
dx

≥ (2π)−
1
2

∫ ∞

0

exp
(
α(1 + x +

x2

2
+

x3

6
)− x2

2
− 2α

)
dx

= ∞.

The inequality follows by omitting integration on the negative axis and by reduc-

ing the exponential of x to a third-degree polynomial. Since this polynomial has

the positive coefficient α, the integrand tends to infinity for x → ∞. Therefore
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the Laplace transform is infinite for any positive α and condition (iii) is violated.

Nonetheless condition (i) and (ii) are satisfied, since it holds

P(Y < 0) = P(X > log(2)) > 0 and EY = 2− e
1
2 > 0.

1.4 Calculations of Riskiness

In this section we derive explicit solutions for the riskiness of positions whose dis-

tributions take common forms. In the first subsection we compute the riskiness

for standard distributions numerically, whereas in the remainder of the section we

present closed-form solutions for the riskiness for some particular distributions.

1.4.1 Numerical Solutions

We compute the index of riskiness exemplary for the following non-heavy tailed dis-

tributions of risk: Laplace, Logarithmic, Logistic, Uniform and Binomial distribu-

tion. Theorem 4 provides for which parameters of the distributions riskiness exists.

For the two-parameter distributions we thus consider pairs of parameter which en-

sure that the distributions satisfy conditions (i) and (ii). For the one-parameter

Logarithmic distribution, its support is the positive real line for all parameters.

Hence no losses are possible. To meet condition (i) of Theorem 4 nonetheless, we

shift the distribution to the left, i.e. considering the position X − s for s ≥ 0. The

economic interpretation of s is the deterministic price to enter the position X. We

also shift the Binomial distribution, since its support is a subset of the nonnegative

numbers.

The connection to Laplace transforms, presented in section 2, reduces these cal-

culations of riskiness to the invertion of Laplace transforms. We compute positives

roots of equation (1.2) and thus positive roots of Problem 1 using the Newton

method. Regarding the shift of the Logarithmic and Binomial distribution it holds
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for the Laplace transform all α ∈ R

LX−s(α) = esα LX(α).

In Table 1.1 we present exemplary some computations for different parameters.

For each distribution except for the Binomial distribution we consider three pairs of

parameters. The first pairs are standard parameters. The second pairs are chosen in

such a way that the distribution has a lower mean compared with the first pairs. This

yields an increase of risk for the positions. According to the axiom of monotonicity

the computed riskiness is higher. The third pairs of parameters result that the

distributions have a higher volatility compared with distributions of the second

pairs. Since this again increases the risk of the positions, also computed riskiness

increases. For the Binomial distribution we consider four triples of parameters. The

first triple is standard. The second triples leads to a higher shift and thus to a lower

mean compared to the first triple. This increases risk and riskiness is higher. The

third triple leads to a lower success probability and once more increases risk and

riskiness. The forth triple reduces the number of trials and substantially increases

risk and riskiness.

1.4.2 Closed-form Solutions

In remainder of the section we derive closed-form solutions for several distributions,

namely the Exponential, Normal, Poisson, and Gamma distribution. To find the

positive root of equation (1.1) we are slightly more generally in the remainder of the

section by including also non-positive solutions, i.e. some α∗ ∈ R with

LX(α∗) = 1. (1.6)

We call the solution α∗ = 0 trivial solution, since it holds LX(α)(0) = 1 for all

X ∈ X by equation (1.5). A solution α∗ 6= 0 is called non-trivial solution.



1.4. CALCULATIONS OF RISKINESS 27

Table 1.1: Positive Roots and Riskiness of Common Distributions.

Distribution of X α∗(X) R(X)

Laplace(1 , 1) 0.71456 1.39947

Laplace(0.5 , 1) 0.44796 2.23233

Laplace(0.5 , 1.5) 0.21091 4.74144

Logarithmic(0.9) - 1.5 1.70229 0.58745

Logarithmic(0.9) - 2 0.63128 1.58408

Logarithmic(0.8) - 2 0.25185 3.97058

Logistic(1 , 1) 0.54281 1.84225

Logistic(0.5 , 1) 0.29502 3.38957

Logistic(0.5 , 1.5) 0.13330 7.50207

Uniform[-1 , 4] 2.54265 0.39329

Uniform[-1 , 2] 1.54078 0.64902

Uniform[-2 , 4] 0.77039 1.29805

Binomial(5 , 0.5) - 1 3.28128 0.30475

Binomial(5 , 0.5) - 1.5 1.80107 0.55522

Binomial(5 , 0.4) - 1.5 0.91123 1.09741

Binomial(4 , 0.4) - 1.5 0.21165 4.72469
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1.4.3 Exponential Distribution

Let X be exponentially distributed with parameter λ > 0. Thus the density function

is of the following form:

fλ(x) := λ e−λx 1{x≥0}.

Since the support of X is the positive real line, we shift the position by a number

s to the left in order to meet condition (i). The economic interpretation for such a

position is natural: The agent buys an investment, which has a constant hazard rate

λ. She benefits from the stochastic lifetime of the investment, e.g. a light bulb, car

or manufacturing facility. For this benefit she pays the fixed price s. The Laplace

transform of X − s is given by

LX−s(α) = eαs λ

λ + α
.

Lemma 9. Let X ∼ Exp(λ). The general solution for the set of roots of equation

(1.6) is given by

α∗(X − s) = −λ− 1

s
W(−λs e−λs), (1.7)

where W denotes the Lambert W-function for real arguments.

Proof. We consider the Laplace transform of α∗ and set z := −λs e−λs for conve-

nience

LX−s(α
∗) = eα∗s λ

λ + α∗
= e−λs−W(z) −λs

W(z)
=

z

W(z) eW(z)
= 1.

The last equality follows for all values of W(z) as the denominator equals the nom-

inator by W(z) eW(z) = z, see equation (4.1) in Appendix B.1. Thus the Laplace

transform satisfies equation (1.6).

For details on the Lambert W-function we refer to Appendix B.1. Since this set

of roots may only contain the trivial solution or also a non-trivial solution, which can

be positive or negative, we discuss this in more detail. This discussion illuminates

the relation between four aspects: the choice of parameters λ and s, the conditions of
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Theorem 4, the shape of the Laplace transform and the number of roots of equation

(1.6). It is illustrating to see how these aspects coincide in four different cases, which

we distinguish by the choice of parameters, namely the choice of price s.

• We start with considering s ≤ 0. In this case the price is negative and the

position X − s has only positive outcomes. Since no losses are possible, the

position belongs to Case A and Lemma 2 yields that there is no positive root.

The Laplace transform is shaped as in Figure 1.1. Thus the trivial root is the

only one. How is this reflected in the solution (1.7)? By the negativity of s,

it is −λs e−λs > 0. Referring to the discussion of the Lambert W-function in

Appendix B.1, this yields W(−λs e−λs) has one value, namely the principal

branch W0(−λs e−λs) = −λs. This yields the trivial root α∗X−s = 0, which is

unique.

• We assume 0 < s < 1
λ
. By this positive price the position X − s has potential

negative outcomes, but still a positive mean. Since the exponential distribution

does not have a heavy negative tail, the position belongs to Case I and Theorem

4 yields the existence of a positive root besides the trivial root. A typical

Laplace transform is plotted in Figure 1.4. How are these two roots given by

solution (1.7)? By choice of the price in this case it holds e−1 > λs e−λs > 0.

The first inequality follows by the relation −1 > log(λs)−λs, which holds for

all λs > 0 and 0 < λs < 1. In consequence the Lambert W-function at point

−λs e−λs is two-valued. The principal branch W0(−λs e−λs) = −λs yields

the trivial root by −λs > −1. For the second value of the alternate branch it

holds W−1(−λs e−λs) < −1. This yields a positive root α∗X−s.

• Let s = 1
λ
. The price is chosen, that the position has zero-mean. In this

case the Laplace transform has slope 0 at point 0 and by strict convexity it

is strictly greater than 1 in all other points, what is illustrated in Figure 1.5.

This yields that the trivial root is unique, and so the position belongs to Case
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Figure 1.5: Laplace transform LX(α) of an Exponential Distribution with Zero-

Mean.

R. This is reflected by solution (1.7), since W(−e−1) has one value by the

principal branch W0(−e−1) = −1, yielding the unique trivial root.

• The last possible case is 1
λ

< s. The position has a negative mean and pos-

itive outcomes are possible. The corresponding Laplace transform has pos-

itive slope at point 0 and increases to infinity for α → ∞ and α → −∞.

Thus there is a negative root beside the trivial root, what is illustrated in

Figure 1.6, and the position belongs to Case R. This is reflected in the so-

lution (1.7): By −λs < −1, −λs is the value of the alternate branch, i.e.

W−1(−λs e−λs) = −λs. This yields the trivial root α∗X−s = 0. For the sec-

ond value of the principal branch it holds W0(−λs e−λs) > −1. This yields a

negative root α∗X−s by equation (1.7).

Summing up, riskiness exists if and only if 0 < s < 1
λ

holds, i.e. Case I, and is

given by the reciprocal of

α∗(X − s) = −λ− 1

s
W−1(−λs e−λs),
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Figure 1.6: Laplace transform LX(α) of an Exponential Distribution with Negative

Root.

which is unique and positive. For e.g. λ = 0.5 and s = 1, it is α∗ = 1.2564 and hence

a riskiness of R = 0.7959. The Laplace transform for these parameters is plotted in

Figure 1.4.

1.4.4 Normal Distribution

Let X be normal distributed with mean µ ∈ R and standard deviation σ ∈ R, i.e.

fµ,σ(x) :=
1

σ
√

2π
exp

(− (x− µ)2

2σ2

)
.

The Laplace transform of X is given by

LX(α) = exp(−µα +
α2σ2

2
).

The non-trivial root of equation (1.6) is given by

α∗(X) =
2µ

σ2
,
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for all µ, σ ∈ R−{0}, which is derived in Aumann & Serrano (2008) and also direct

by

LX(α∗) = exp(−2µ2

σ2
+

2µ2

σ2
) = 1.

Riskiness is given by R(X) = σ2

2µ
and exists, if and only if, it holds µ > 0, i.e. Case

I.

1.4.5 Poisson Distribution

Let X be Poisson distributed with parameter λ > 0, i.e.

fλ(k) :=
λk e−λ

k!
.

Since the support of X is the set N0, we again shift by price s in order to satisfy

condition (i). The Laplace transform of X − s is given by

LX−s(α) = exp(λe−α − λ + αs).

Lemma 10. Let X ∼ P(λ). The set of roots of equation (1.6) is given by

α∗(X − s) =
λ

s
+ W(−λ

s
e−

λ
s ).

Proof. We insert these roots into the Laplace transform. For convenience we set

z := −λ
s
e−

λ
s and use W(z) eW(z) = z:

LX−s(α
∗) = exp

(
λe−α∗ − λ + α∗s

)

= exp
(
λe−

λ
s
−W(z) + sW(z)

)

= exp
(
s e−W(z)(−z + W(z)eW(z))

)

= exp
(
s e−W(z) 0

)

= 1.
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Riskiness exists if and only if it holds 0 < s < λ, i.e. Case I, and is given by the

reciprocal of

α∗(X − s) =
λ

s
+ W0(−λ

s
e−

λ
s ).

For e.g. λ = 1 and s = 0.5, it is α∗ = 1.5936 and hence a riskiness of R = 0.6275.

1.4.6 Gamma Distribution

Let X be Gamma distributed with parameter a, b > 0, i.e.

fa,b(x) := xa−1 e−x/b

ba Γ(a)
.

The Gamma distribution is a generalization of the exponential distribution, since

for a ∈ N it has the same distribution as the sum of a random variables, which

are exponentially distributed with parameter 1/b. The Laplace transform of X − s

exists on (−1/b,∞) and is given by

LX−s(α) = eαs (1 + b α)−a.

Lemma 11. Let X ∼ Γ(a, b). The set of roots of equation (1.6) is given by

α∗(X − s) = −1

b
− a

s
W(− s

ab
e−

s
ab ).

Proof. We consider the Laplace transform and set z := − s
ab

e−
s
ab

LX−s(α
∗) = eα∗s (1 + b α∗)−a

=
exp(− s

b
− a W(z))(− a b

s
W(z)

)a

=
(−a b

s
)−a e−

s
b

W(z)a ea W(z)

=
za

(
W(z) eW(z)

)a

= 1.
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Riskiness exists if and only if it holds 0 < s < ab, i.e. Case I, and is given by the

reciprocal of

α∗(X − s) = −1

b
− a

s
W−1(− s

ab
e−

s
ab ).

For e.g. a = 2, b = 1 and s = 1, it is α∗ = 2.5129 and hence a riskiness of

R = 0.3980.



Chapter 2

A Characterization of Dual Risk

Measures via the Indifference

Measure

Decisions involving risk depend on two distinct aspects: (i) the risk of the po-

sition and (ii) the investor’s attitude towards risk. The literature captures the

first aspect by risk measures and the second by risk aversion. We connect both

concepts by considering a new principle for risk measurement, which refers to

the indifference risk aversion level. Applying this principle in an elementary

setting provides the indifference measure. This measure is shown to be a mean-

ingful risk measure, as it characterizes all so-called dual risk measures, which

respect comparative risk aversion.

2.1 Introduction

Whenever facing a position with uncertain outcomes people are exposed to risk.

These positions appear in diverse situations and include e.g. any stock, portfolio,

credit, gamble or lottery. Conceptually, whether or not an individual enters such a

position depends, following Diamond & Stiglitz (1974), on two distinct aspects:

35
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(i) the objective attributes of the position, in particular how risky it is, and

(ii) the subjective attitude towards risk of the investor, in particular how risk-

averse she is.

For both aspects the literature provides sophisticated theories. Concerning the first,

it suggests numerous risk measures, which quantify the risk of a financial position.

Famous examples are the commonly used Value-at-Risk, Expected Shortfall, spectral

risk measures, and risk measures based on moments and expected utility. Since

some of these examples expose unfavorable properties (e.g. Value-at-Risk penalizes

diversification), Artzner et al. (1999) and Föllmer & Schied (2002) introduce axioms

of coherence to ensure consistent risk measures. Concerning the second aspect, the

classic contribution of Arrow (1965), Arrow (1971) and Pratt (1964) measures the

attitude towards risk by defining a coefficient of risk aversion based on the subjective

utility function.

This chapter aims to connect both concepts. For this purpose we will introduce

the indifference risk aversion principle and the class of dual risk measures, which

respect comparative risk aversion.

Quantifying the risk of a random payoff for aspect (i) usually bases on the ac-

tuarial principle of an equivalent utility premium: As pointed out by Denuit et al.

(2006) broad classes of common risk measures are obtained by deriving the price,

such that a decision-maker is indifferent between accepting the financial position

and paying the price or not entering the position. This indifference price is thus

the minimal certain side payment or capital requirement, which makes a position

acceptable.

Our primary idea in this context is not to ask for the price, but for the level of

risk aversion of an investor, which leaves him indifferent. The rationale behind this

idea is obvious: a financial position, which is exposed to high risk, is rejected by the

majority of risk-averse agents and an indifferent agent has to be relatively risk-affine
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compared to the majority. And vice versa, for a low-risk position an agent has to be

relatively risk-averse in order to be indifferent. Consequently the indifference risk

aversion level provides inference to the risk of the position. We call this plausible

idea risk measurement via the indifference risk aversion principle. This principle

connects the two aspects (i) and (ii) of decision-making in a natural way.

The importance of the classical equivalent utility principle based on the indif-

ference price is unquestioned in finance, insurance, and economics. Similarly the

equivalent utility principle based on indifference risk aversion can add to the accu-

racy of risk measurement. This new principle illuminates a different aspect of the

broad phenomenon of risk. It is conceptually appealing, since the link between risk

and attitude towards risk is natural. In the context of risk measurement, opposed

to risk valuation, it is more direct than the relation between risk and an indifference

price. Moreover, it is attractive that no fixed level of risk aversion has to be assumed

and that a position itself is measured without changing it by adding a side payment.

In order to apply this principle in a concrete setting we consider the family of

risk-averse CARA-agents in the expected utility framework. Inspired by the indiffer-

ence risk aversion principle we ask which agent of this family is exactly indifferent.

Thereby we define the indifference measure, which maps a position to the positive

constant Arrow-Pratt coefficient of the agent, who is indifferent to the position in

question. By convention, a typical risk measure associates a position, which is ex-

posed to high risk, with a high value. Since the indifference measure expresses high

risk with a low parameter and low risk with a high parameter, it is natural to reverse

it in order to receive a risk measure. In order to verify this intuition, that a reversed

indifference measure is a sensible risk measure, we consider the axiom of duality.

This axiom is introduced in the pathbreaking paper of Aumann & Serrano (2008).

The duality axiom asserts, roughly speaking, that less risk-averse agents accept

riskier gambles. More precisely, it poses a condition on risk measures: A risk mea-

sure is dual, if every agent accepts all positions, which are less risky (by means of the
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risk measure in question) than a position, which is already accepted by a more risk-

averse agent. There are two reasons for this behavior: first, the agent in question

is relatively more risk-affine and second, the gambles in question are relatively less

risky. This makes duality a natural assumption, which could be seen as a require-

ment on risk measures. Aumann & Serrano (2008) define a risk measure, called the

index of riskiness, and show that it equals the reciprocal of the indifference measure.

Further they characterize the index of riskiness by two axioms: duality and positive

homogeneity. Since positive homogeneity is of minor importance (also in their opin-

ion), we relax it and consider the whole class of dual risk measures. This class is of

relevance as it contains all risk measures satisfying the natural axiom of duality.

As it turns out, the crucial key to this class of risk measures is the indifference

measure, which induces an ordering on the set of positions. The main insight of

this chapter is that all dual risk measures can be characterized by the indifference

measure. Our primary theorem yields, that any dual risk measure reverses the

ordering induced by the indifference measure. A consequence is a representation

theorem which decomposes dual risk measures into the indifference measure and

a reversing function. It turns out that the opposite implication also holds true:

any measure reversing the ordering of the indifference measure is necessarily dual.

Hence we derive a method to construct dual risk measures by composition of the

indifference measure with an arbitrary reversing function. Overall, we provide a

handy equivalent condition for duality.

This characterization supports the risk measurement via the indifference risk

aversion principle. It verifies the intuition that reversed indifference measures are

sensible risk measures, as they satisfy the natural duality axiom. Furthermore, it

shows that every dual risk measure necessarily bases on the indifference measure,

which is derived by the indifference risk aversion principle. It is in addition very

appealing that the indifference measure, that is derived by exponential utility solely,

ensures duality, which in turn ensures consistency with a notion of comparative
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risk aversion for general concave utility functions beyond exponential utility. This

highlights the outstanding role of the indifference measure and exponential utility

among concave utility functions.

Summing up, we believe that this chapter contributes to various aspects of

decision-making under risk. First, it introduces a new principle for risk measure-

ment, which is conceptually appealing and has the potential to add to the accuracy

of risk measurement. Further this indifference risk aversion principle achieves to

connect the theories of the two essential aspects (risk measurement and risk aver-

sion) of individual decision-making. Second, the abstract principle is made concrete

by considering the indifference measure. The indifference measure constitutes a new

type of risk measure, which differs conceptually from all classical risk measures ex-

cept for the index of riskiness. Third, the class of dual risk measures is introduced

and characterized by a simple equivalent condition. This equivalence provides a

representation theorem and a construction method for dual risk measures. It fur-

ther proves the intuition, given by the principle, that the indifference measure is a

meaningful risk measure.

The chapter is organized as follows: the following section provides the indifference

measure, whereas Section 3 introduces the axiom of duality. The primary result is

derived in Section 4, which provides the characterization of dual risk measures via

the indifference measure.

2.2 Notation and the Indifference Measure

We use the standard notation from Chapter 1 and repeat it in brief. The triple

(Ω,F ,P) denotes a probability space and E denotes the expectation operator with

respect to P . A financial position or gamble is described by a random variable

X : Ω → R. X(ω) is the discounted net worth of the position at the end of a given

period under scenario ω. By X we denote the set of financial positions. For full
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generality we set X := L0(Ω,F ,P)− ker(‖ · ‖p), i.e. the space of Borel-measurable

functions on (Ω,F) minus the kernel of the seminorm ‖ · ‖p.

We consider a standard paradigm of decision-making, the expected utility frame-

work. Let u : R→ R denote a Bernoulli utility function for money, which is strictly

monotonic, strictly concave, and in C2(R). We identify an agent i by her utility

function ui and denote by wi ∈ R agent i’s wealth level. We say i accepts X at w, if

accepting the position at wealth w increases agent i’s expected utility compared to

rejecting it, i.e.

Eui(X + w) > ui(w).

Analogously, i is indifferent to X at w, if it holds Eui(X + w) = ui(w), and i rejects

at w, if it holds Eui(X + w) < ui(w).

For a utility function u the Arrow-Pratt coefficient of absolute risk aversion is

defined by

ru(x) :=
−u′′(x)

u′(x)
.

Any utility function with constant Arrow-Pratt coefficient of absolute risk aversion,

called CARA, is up to additive and multiplicative constants of the form

ūα(x) := 1
α
(1− e−αx).

The corresponding agent is called CARA with parameter α. Since we only consider

risk-averse agents, we concentrate on α > 0. Such an agent is indifferent at wealth

w, if it holds

E 1
α

(
1− e−α (X+w)

)
= 1

α

(
1− e−αw

)
,

which is equivalent to

E e−αX = 1.

for all wealth levels w ∈ R. Thus, the decisions of CARA-agents are the same under

all wealth levels. By considering CARA-agents we abstract from wealth effects.

We are in position to apply the indifference risk aversion principal for risk mea-

surement. For a given position we ask, which agent of the CARA-family is indifferent
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to the position. Thus we map a position X ∈ X to the positive parameter of risk

aversion of an indifferent CARA-agent.

Definition 12 (Indifference Measure). The indifference measure α : X → R+
0 ∪

{∞} is defined by

α(X) :=





α∗ the positive root of E e−α∗X = 1, if it exists,

∞ if Ee−αX < 1 holds for all α > 0,

0 if Ee−αX > 1 holds for all α > 0.

This definition yields a well-defined mapping, as derived in Chapter 1. The

existence of a positive root is analyzed in detail and the three cases of the definition

are related to properties of the position X. Moreover, Chapter 1 yields numerical

and closed-form solutions for the positive root. Finally, we define a risk measure,

which quantifies the risk of a position.

Definition 13 (Risk Measure). A mapping ρ : X → R ∪ {∞,−∞} is called a

risk measure.

Hence the indifference measure is formally a risk measure. The computations

of Chapter 1 show that it maps high-risk positions to low parameters and vice

versa. This is in line with the intuition of the indifference risk aversion principle.

However, by convention a typical risk measure associates high-risk positions with

high numbers and low-risk position with low numbers: For a given risk measure ρ,

we say a position X is riskier than a position Y , if it holds ρ(X) > ρ(Y ). This

suggests to reverse the indifference measure in order to receive a conventional risk

measure. To verify the intuition, that a reversed indifference measure is a sensible

risk measure, we consider the axiom of duality.
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2.3 The Axiom of Duality

In this section we consider the axiom of duality and a notion of comparative risk

aversion, which are introduced by Aumann & Serrano (2008).

Definition 14 (Uniform Comparative Risk Aversion). Agent i is as least as risk-

averse as j (denoted by iD j), if for all positions X ∈ X and wealth levels wi, wj ∈ R
holds

If agent i accepts X at wi, then agent j accepts X at wj.

Agent i is more risk-averse than j (denoted by i B j), if it is i D j and not j D i; (or

equivalently, if for all X ∈ X and wi, wj ∈ R holds: if agent i accepts X at wi, then

agent j accepts X at wj, and there additionally exist Y ∈ X and w′
i, w

′
j ∈ R such

that i rejects Y at w′
i and j accepts Y at w′

j).

This notion of uniform comparative risk aversion induces a partial ordering of the

agents by their risk aversion and is essential for the definition of duality. An agent

j is, roughly speaking, more ”risk-affine” than agent i, if she accepts at all wealth

levels all positions, which are accepted by the more risk-averse agent i at some wealth

level. Thus this notion compares ”uniformly” in wealth. For a detailed discussion

of this notion and its relation to the classic and ”local” notion of comparative risk

aversion we refer to Aumann & Serrano (2008). Aumann & Serrano (2008) provide

several arguments supporting the uniform notion in comparison to the local notion.

Most convincing is the fact that it appears in the antecedence of the axiom, which

in turn makes assuming the axiom a weaker condition.

Definition 15 (Duality). A risk measure ρ is dual, if for all agents i, j, positions

X, Y ∈ X and wealth levels wi, wj ∈ R it holds

If i B j, i accepts X at wi, and ρ(X) > ρ(Y ), then j accepts Y at wj. (2.1)

In words, a risk measure is dual, if every agent accepts any position, which is less

risky (by means of ρ) than a position, which is accepted by a more risk-averse agent.
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In other words, duality of a risk measure ρ states that, if the more risk-averse of two

agents accepts the riskier (by means of ρ) of two positions, than more than ever the

less risk-averse agent accepts the less risky position. There are two reasons for this

behavior: first, the second agent is more risk-affine, and second, the second position

is less risky. In the light of these two reasons assuming duality appears natural. By

definition a dual risk measure respects comparative risk aversion.

2.4 Representation Theorem

We present the main theorem, which states that any dual risk measure reverses the

ordering, which is induced by the indifference measure α on the set of positions

X. In addition, the other implication of the theorem yields that an arbitrary risk

measure reversing the ordering is necessarily dual and thus provides a criterium for

duality.

Theorem 16 (Characterization of Dual Risk Measures). A risk measure ρ is dual

if and only if for all positions X, Y ∈ X it holds

ρ(X) > ρ(Y ) → α(X) ≤ α(Y ). (2.2)

Proof. If-Direction: Suppose equation (2.2) holds. To show that ρ is dual we fix

any agents i, j with i B j and any two positions X,Y ∈ X with ρ(X) > ρ(Y ). We

have to show that j accepts Y at wj, if i accepts X at wi.

We start the proof with some preparations. Without loss of generality we nor-

malize both utility functions to ui(0) = uj(0) = 0 and u′i(0) = u′j(0) = 1. Also

without loss of generality we set wi = wj = 0, since for e.g. wi 6= 0 we consider the

agent ĩ with

ũi(x) :=
ui(x + wi)− ui(wi)

u′i(wi)
,

who accepts a position at wealth 0 if and only if i accepts this position at wi.
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Further we consider the following three statements about the Arrow-Pratt coef-

ficients ri, rj of agents i, j, which we will use below:

It holds 0 < ri(x) < ∞ for all agents i and x ∈ R. (2.3)

If it holds ri(x) ≤ rj(x) for all x, then it holds ui(x) ≥ uj(x) for all x. (2.4)

It is i D j if and only if it holds ri(xi) ≥ rj(xj) for all xi, xj. (2.5)

Statement (2.3) follows by the assumption of twice differentiability, strict mono-

tonicity and strict concavity on utility functions. The proofs of statements (2.4)

and (2.5) are given in Aumann & Serrano (2008), Corollary 3 and Proposition 4.1.2,

and are not repeated here. We set

r : = inf
x∈R

ri(x), and

r : = sup
x∈R

rj(x).

By i B j and statement (2.5) it follows the inequality r ≥ r, and together with

statement (2.3) the inequalities

∞ > r ≥ r > 0.

Having finished the preparations we assume that agent i accepts X at 0, i.e.

Eui(X) > 0,

in order to show that agent j accepts Y at 0. By ri(x) ≥ r for all x and statement

(2.4) we have for all x

ui(x) ≤ ūr(x) :=
1

r
(1− er x),

and hence

Eūr(X) > 0,

which means that a CARA-agent with parameter r accepts X. This gives us α(X) >

0 by definition of the indifference measure. Note that it holds

r < α(X),
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since otherwise the inequality r ≥ α(X) yields α(X) < ∞ and further by state-

ment (2.4) the inequality ūr ≤ ūα(X), which in turn yields by the defining equation

Eūα(X)(X) = 0 the contradiction

Eūr(X) ≤ 0.

We use equation (2.2), which yields the inequality α(X) ≤ α(Y ) by the given as-

sumption ρ(X) > ρ(Y ), and we sum up the upper inequalities by

0 < r ≤ r < α(X) ≤ α(Y ).

By definition of CARA-utility ū it holds the following statement

If it is α < β, then it holds ūα(x) > ūβ(x) for all x 6= 0. (2.6)

Thus we have the ordering

ūr > ūα(Y ) on R−{0}

by r < α(Y ) and assuming α(Y ) < ∞. This ordering finally yields by the defining

equation Eūα(Y )(Y ) = 0

Eūr(Y ) > 0,

for all Y ∈ X. In case of α(Y ) = ∞ this follows directly by definition of the

indifference measure. The relation rj(x) ≤ r for all x and statement (2.4) close the

proof that ρ is dual by yielding that agent j accepts Y , i.e.

Euj(Y ) > 0.

Only If-Direction: The converse direction we show by contraposition: If equation

(2.2) is violated, then ρ is not dual. Hence we have to show that there exist some

agents i, j, some positions X,Y ∈ X, and some wealth levels wj, wj, which satisfy

the assumptions of equation (2.1), and that agent j does not accept Y at wj.
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Without loss of generality we again normalize both utility functions and set

wi = wj = 0. By the violation of equation (2.2), there exist some positions X, Y ∈ X

with ρ(X) > ρ(Y ) and α(X) > α(Y ). For the proof we choose these two positions

and two CARA-agents i, j, which are defined by their parameters

ri = min
(α(X) + α(Y )

2
, α(Y ) + 1

)
,

rj = min
(α(X) + 3 α(Y )

4
, α(Y ) +

1

2

)
.

This choice yields the following ordering

0 ≤ α(Y ) < rj < ri < α(X) ≤ ∞,

for arbitrary α(X), α(Y ) ∈ R+
0 ∪ {∞}. Notice that by α(X) > α(Y ) it holds

α(X) > 0 and α(Y ) < ∞. By the upper ordering the antecedence of equation (2.1)

is satisfied: The ordering

i B j

follows by ri > rj, statement (2.5) and its contraposition. The second assumption

in the antecedence of equation (2.1)

Eūri
(X) > 0

follows trivially by definition of the indifference measure in case of α(X) = ∞. In

case of α(X) < ∞ we have Eūα(X)(X) = 0. Then the second assumption follows

by ri < α(X) and statement (2.6) for all X ∈ X. The third assumption in the

antecedence,

ρ(X) > ρ(Y ),

holds trivially by choice of X and Y . What remains to be shown is that agent j does

not accept Y at 0. In case of α(Y ) = 0 this follows trivially as j is a CARA-agent.

In case of α(Y ) > 0 we have Eūα(Y )(Y ) = 0. Then it follows

Eūrj
(Y ) < 0

by rj > α(Y ) and statement (2.6), which completes the proof.
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For formal clarity we restate the theorem in a set-theoretic notation.

Definition 17. The strict ordering on X induced by a risk measure ρ is defined by

≺ρ := {(X, Y ) ∈ X× X | ρ(X) < ρ(Y )}.

The (set-theoretic) kernel of a risk measure ρ is defined by

kerρ := {(X, Y ) ∈ X× X | ρ(X) = ρ(Y )}.

Corollary 18 (Characterization in Set-Theoretic Notation). A risk measure ρ is

dual if and only if it holds

≺ρ ⊂ {≺−α ∪ kerα}.

The next theorem yields that essentially any dual risk measure can be decom-

posed into the indifference measure and a reversing function. We call a function

φ : R+
0 ∪ {∞} → R ∪ {∞,−∞} reversing, if it holds

φ(x) ≤ φ(y)

for all x, y ∈ R+
0 ∪ {∞} with x > y. In particular, any function with a non-positive

derivative is reversing. Moreover, the theorem provides a method to obtain dual

risk measures by composing the indifference measure with an arbitrary reversing

function.

Theorem 19 (Representation Theorem). If a risk measure ρ is dual and it holds

kerα ⊂ kerρ, then it has the following representation in terms of the indifference

measure

ρ = φ ◦ α,

where φ is a reversing function. On the other hand, for any reversing function φ,

the risk measure ρ, defined by the composition

ρ := φ ◦ α,

is dual.
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Proof. In order to proof the second statement of the theorem we fix a reversing

function φ. To show duality of the composition ρ = φ ◦ α it is by Theorem 16

sufficient to show the contraposition of equation (2.2), i.e.

α(X) > α(Y ) → ρ(X) ≤ ρ(Y )

for all X,Y ∈ X. This implication is trivial, since for X, Y in X with α(X) > α(Y )

it holds

ρ(X) = φ(α(X)) ≤ φ(α(Y )) = ρ(Y )

as the function φ is reversing.

In order to proof the first statement of the theorem we fix a risk measure ρ with

kerα ⊂ kerρ. To construct a reversing function φ we require some notation. The

kernel of the indifference measure defines an equivalence relation by

X ∼ Y :⇔ α(x) = α(Y ).

The quotient set of X modulo equivalence in terms of the indifference measure

X / ∼ := { [X]∼ | X ∈ X }

consists of the equivalence classes [X]∼ := {Y ∈ X |Y ∼ X} and is also called

coimage of the indifference measure. There is a natural isomorphism between the

image and the coimage of a function, which maps an image to the equivalence class

of the inverse images of this image. Thus the following function is well-defined

α−1 : R+
0 ∪ {∞} → X / ∼

x 7→ {X ∈ X | α(X) = x }.

Intuitively the function α−1 maps an Arrow-Pratt coefficient to the set of positions

to which an CARA-agent of this coefficient is indifferent. It is essentially an inverse

of the indifference measure, as it holds

α−1 ◦ α : X → X / ∼
X 7→ [X]∼.
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Next we consider the function

ρ∼ : X / ∼ → R ∪ {∞,−∞}
[X]∼ 7→ ρ(X),

which intuitively maps all positions with the same indifference measure to their

ρ-measure. Thus for the well-definition of this function, it must hold, that two po-

sitions of the same indifference measure have the same ρ-measure, or more formally

X,Y ∈ [X]∼ → ρ(X) = ρ(Y )

for all X,Y ∈ X. This is ensured by the assumption kerα ⊂ kerρ, which is equivalent

to

α(X) = α(Y ) → ρ(X) = ρ(Y )

for all X, Y ∈ X. We refer to a remark on the weakness of this assumption below

the proof. We are in position to construct the reversing function by

φ := ρ∼ ◦ α−1.

This provides the representation ρ = φ ◦ α, since it holds by the above definitions

φ ◦ α = ρ∼ ◦ α−1 ◦ α = ρ.

The relation of all considered functions is illustrated in the following diagram:

R+
0 ∪ {∞}

φ

²²

α−1

**UUUUUUUUUUUUUUUUUUUU

X

α
44iiiiiiiiiiiiiiiiiiii

ρ

&&MMMMMMMMMMMMMMMMMMMMMMMMM X / ∼

ρ∼

wwoooooooooooooooooooooooo

R ∪ {∞,−∞}
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In order to close the proof of the first statement, it remains to show that the function

φ is reversing. To show this we fix x, y ∈ R+
0 ∪ {∞} with x > y and any two

representatives X,Y with

X ∈ α−1(x),

Y ∈ α−1(y).

By definition of the equivalence classes it holds

α(X) = x > y = α(Y ).

Since the measure ρ is dual by assumption, Theorem 16 thus provides by the con-

traposition of equation (2.2)

ρ(X) ≤ ρ(Y ).

By construction of the reversing function this gives us

φ(x) = ρ∼(α−1(x)) =ρ∼([X]∼) = ρ(X)

≤ ρ(Y ) = ρ∼([Y ]∼) = ρ∼(α−1(y)) = φ(y),

yielding that the function φ is reversing.

Finally we remark that the assumption kerα ⊂ kerρ is natural in the context

of representing dual risk measures by the indifference measure. If it is violated,

there exist two positions X, Y with α(X) = α(Y ) and ρ(X) 6= ρ(Y ). In this case

there trivially cannot exist a composition ρ = φ ◦ α. Hence, a dual risk measure,

which violates kerα ⊂ kerρ, has some freedom within the equivalence classes [X]∼.

However, even in this case the indifference measure determines the structure of

a dual risk measure ρ: For all positions X, Y with α(X) 6= α(Y ) it either holds

α(X) < α(Y ) or α(X) > α(Y ). Then the relation ρ(X) ≥ ρ(Y ) or ρ(X) ≤ ρ(Y )

is given by the contraposition of equation (2.2). Consequently, on the quotient set

X / ∼ the structure of a dual risk measure is given as its ordering of the equivalence
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classes is determined by the indifference measure. Thus, roughly speaking, as far as

the indifference measure can tell (i.e. modulo its equivalence relation), it determines

the structure of arbitrary dual risk measures.
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Chapter 3

Asymptotic Maturity Behavior

of the Term Structure

Pricing and hedging of long-term interest rate sensitive products require to ex-

trapolate the term structure beyond observable maturities. For the resulting

limiting term structure we show two results: under no arbitrage long zero-bond

yields and long forward rates (i) are monotonically increasing and (ii) equal

their minimal future value. Both results constrain the asymptotic maturity

behavior of stochastic yield curves. They are fairly general and require only

buy-and-hold strategies. Hence our framework embeds various arbitrage-free

term structure models and imposes restrictions on their specification.

3.1 Introduction

Bond markets play a prominent role among international financial markets. It is

popular to set up bond market models on the term structure of interest rates. Its

stochastic modeling is a central topic in mathematical finance. The recent litera-

ture has advanced in modeling the evolution of the term structure dynamically by

integrating asset-pricing theory. Traditionally, many models in this approach con-

centrate on the short-term behavior. However, the focus on the long rate is also

53
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of great interest: The long-term behavior is essential for the valuation of long-term

interest rate sensitive products. These products include fixed-income securities, in-

surance and annuity contracts, and perpetuities. For pricing and hedging of these

instruments finance practitioners require a term structure for 100 years or more,

whereas in most markets only 30 years are observable. Hence models are required,

which capture the evolution of the yield curve beyond limited observable maturities.

To derive joint properties of such models, we examine the limiting term structure

in general and show the following two results: Under no arbitrage in a frictionless

bond market with infinitely increasing maturities, long zero-bond yields and long

forward rates satisfy two properties:

(i) Asymptotic Monotonicity: Both rates are monotonically increasing in time,

(ii) Asymptotic Minimality: Both rates equal their minimal future value.

This chapter derives both results in a general framework for term structure models.

The first result of asymptotic monotonicity states that both asymptotic rates

cannot fall over time and hence excludes that tomorrow’s long rate is less than to-

day’s long rate. Both rates still may increase with positive probability, but they

cannot increase almost surely. This is denied by the second result of asymptotic

minimality as it excludes systematic jumps of the long rates. Consequently both

results cause that asymptotic maturity behavior of the term structure is not arbi-

trary. They reduce potential realizations of stochastic yields curves by excluding a

multitude of asymptotic behavior under no arbitrage.

Both results are fairly general, since we derive them under weak assumptions.

To show properties of the long rates, we assume their existence. The only further

assumption is to postulate no arbitrage in a bond market with infinitely increasing

maturities. For this purpose we provide a definition of arbitrage in bond markets,

which distinguishes between the economically sound notions of bounded and van-

ishing risk. Instead of addressing a certain term structure model, we rather present

a framework for term structure models, which refers to a frictionless bond market.
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A model in our framework is given by a family of bond prices for any maturity. We

do not have to impose a structure on these bond prices, except for adaption and

boundedness, which both appear natural. Furthermore, our results require only a

minimal setting of elementary buy-and-hold trading, which gives them a concrete

and applicable character. Nonetheless our results also apply in more sophisticated

settings, as they e.g. extend to continuous trading, which is of vast theoretical im-

portance. As a result of this generality in bond prices and trading, our framework

embeds virtually all existing arbitrage-free term structure models. In consequence

the results and their implications apply to all these models.

Summing up, asymptotic monotonicity and minimality are important, as they

exclude various behavior of limiting yield curves. Since we derive them in a general

framework, they impose severe restrictions on the long-term behavior of virtually

all term structure models. These theoretical implications serve as a benchmark for

modelers specifying an arbitrage-free term structure. Specifically, setting up the

asymptotic yield or forward rate as a diffusion process or a process with systematic

jumps necessarily imposes arbitrage opportunities.

The actual asymptotic behavior of 16 well-known term structure models is an-

alyzed in detail by Yao (1999b). All these models satisfy asymptotic monotonicity,

although they are not necessarily arbitrage-free. In the models of Dothan (1978)

and Heath et al. (1992) the result applies under existence of the long rates without

further parameter specification. On first sight the result seems to be violated in the

model by Brennan & Schwartz. (1979). The long rate is specified exogenously and

decreases under certain parameter choice, but it refers to a consol bond, instead of

a zero-coupon bond. In some term structure models, including Vasicek (1977), Cox

et al. (1985) and Chen (1996), long bond yields are constant over time. This specific

behavior suggests to consider the generalization of our two results, stating that long

yields are constant over time. However, it is impossible to derive this generalization,

which in consequence closes our results. This can be seen by considering the discrete
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binomial model by Ho & Lee (1986). This model is an example of an arbitrage-free

bond market with infinitely increasing maturities. Its long yield rises with each

upward shock, which appears with positive Bernoulli-probability at all discrete time

points. Considering this model is furthermore illustrative for both results, since they

are not violated, although the bond yield underlies downward shocks, which have a

permanent effect. For this discussion we refer to Dybvig et al. (1996).

The two results of this chapter base on Dybvig et al. (1996). They came up with

the genuine idea of showing the results by a no arbitrage-argument. Since the topic

is also addressed by several other authors, we compare the different approaches and

comment on our respective generalizations in Section 3.5. Furthermore the notion of

arbitrage, we introduce to derive the results, is compared to closely-related classical

notions. We discuss under which conditions the results can be transferred to these

notions.

This chapter is organized as follows: The following Section provides the general

framework for term structure models and the definition of arbitrage. In this setting

Section 3 presents the proof of asymptotic monotonicity by explicitly constructing

an arbitrage strategy. Using a related proof, asymptotic minimality is established

in Section 4. The related literature and related notions of arbitrage are discussed in

Section 5. Section 6 concludes.

3.2 Modeling the Bond Market and Arbitrage

This section presents the formal setting of the bond market and introduces the

notion of arbitrage in the limit. The bond market is defined by a family of zero-

coupon bond prices, confer also Musiela & Rutkowski (1997). A zero-coupon bond

is a financial security that pays one unit of cash to its holder at a fixed later date

T , called maturity. We assume these bonds to be default-free.

Definition 20 (Bond Market). A Bond Market consists of a filtered probability
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space (Ω,F , (Ft)t≥0,P) and an adapted uniformly bounded process B(·, T ) for every

T ≥ 0.

This definition is very general, since the only two restrictions for bond prices,

adaption and uniform boundedness, are not very demanding.1 Bond prices are just

assumed to be given, so they can be observed in some real market or generated

by some procedure. A model in our general approach is thus given by a family of

almost arbitrary bond prices. We refer to price processes, which are denoted in a

continuous-time setting. This is no essential restriction, since our results can be de-

rived analogously in a discrete-time setting. The reason to consider the continuous-

time version, is that our framework will include both, models with discrete and

continuous trading, as we state below. More demanding is requiring the existence

of bond price for arbitrarily large T . Notice that we do not need the existence of

the limiting process limT→∞ B(·, T ), which in practice equals zero. As common we

assume the filtration to satisfy the usual conditions.

For a given bond we consider the constant yield from holding it over the time in-

terval [t, T ]. This yield-to-maturity is called bond yield or zero-coupon rate, denoted

by z(t, T ) and defined via

B(t, T ) = exp (−z(t, T )(T − t)) . (3.1)

The instantaneous forward rate is the interest rate fixed at time t for lending over

the infinitesimal interval [T, T + dt]. It is denoted by f(t, T ) and connected to bond

1The boundedness is a t-uniform almost sure boundedness and formally given by the existence

of a bound K ∈ R with −K < B(t, T ) < K almost surely for all t ≥ 0. This restriction is not

severe: zero-coupon bond prices are under the absence of arbitrage and negative interests rates

always nonnegative and less or equal to the principal of one unit of cash. Thus the principal is a

uniform bound. Also in practice such bonds prices lie between zero and one. Assuming adaption

to the filtration is also natural.
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prices and bond yields by

B(t, T ) = exp

(
−

∫ T

t

f(t, u)du

)
,

z(t, T ) =
1

T − t

∫ T

t

f(t, u)du. (3.2)

The concept of continuously compounded forward rates is a mathematical idealiza-

tion, whereas bond prices and bond yields are observable in practice. Nevertheless

all three concepts are, from a theoretical point of view, equivalent in defining the

so-called term structure of interest rates or yield curve at time t, which relates ma-

turity T to the bond yield z(t, T ). For our asymptotic view of the term structure

we define the following almost sure limits:

the long bond yield zL(t) : = lim
T→∞

z(t, T ), (3.3)

and the long forward rate fL(t) : = lim
T→∞

f(t, T ),

which do not necessarily exist. If these limits exists, i.e. the sequence of long rates

converges for growing maturities, then this convergence is assumed to imply that

these limits are almost surely bounded. This can be supported by the analogy to

the deterministic case: A converging sequence of numbers implies that its limit is

finite. An argument for the existence is given by Yao (1999b) and empirically by

Malkiel (1966), who show that the yield curve levels out for growing maturity.

We now consider how bonds can be traded in our market. Here we can take three

simplifying assumptions: (i) an investor trades at a finite number of dates in the

continuous-time setting, (ii) an investor trades a finite number of bonds out of the

infinite number of bonds available, and (iii) an investor has a finite trading horizon.

This elementary setting of buy-and-hold trading of finite portfolios in finite time is a

minimal requirement to construct an arbitrage strategy in order to prove our results

by contradiction. Nonetheless this arbitrage also works in more complicated settings,

since in continuous trading models with infinite portfolios and horizons it is naturally

also possible to trade buy-and-hold of finite portfolios in finite time. Thus our
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results also apply to more complicated settings, as we require the minimal setting,

but we also allow for more complicated trading in the meantime. In consequence,

our framework embeds also continuous-time trading models with infinite portfolios

and horizons. For a rigorous generalization to infinite portfolios, we refer to Björk

et al. (1997). Concerning continuous-time trading there is a large literature, which

culminates in Delbaen & Schachermayer (1994). It shows that stochastic integration

with respect to general integrands is a powerful and sophisticated tool to model

continuous trading. Technically speaking, the fact that these stochastic integrals

equal Riemann-sums on the set of simple integrands, which represent buy-and-hold

strategies, yields that our results extent to continuous-time trading.

The fact that our arbitrage strategies only require elementary buy-and-hold trad-

ing has three advantages. First, as mentioned above our framework includes both,

models with discrete trading and models with continuous trading. Second, although

continuous trading is of immense theoretical importance, in practice it is only an

ideal approximation: the only possible way of trading is buy-and-hold. This gives

our arbitrage strategies a more applicable character, since they do not rely on un-

feasible continuous trading. Third, we can include a broader class of bond prices.

In continuous trade settings semimartingales proved to be tailor-made in model-

ing bond prices. Delbaen & Schachermayer (1994) show that their famous concept

of no-arbitrage implies that bond prices are semi-martingales. In contrast to this

we may also include non-semimartingales in our setting for the following two rea-

sons: First, there no technical problems: elementary Riemann-sums are, opposed

to stochastic integrals, well-defined for non-semimartingales. Second, it can also

make sense: non-semimartingales do not necessarily impose arbitrage possibilities

in continuous time settings, if one permits continuous trade, as recently shown by

Jarrow et al. (2008). Allowing for non-semimartingales, for example the fractional

Brownian motion, is significant, since non-semimartingales appear more regularly

in the empirical literature estimating price processes, see Lo (1991) and references
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therein.

Formally we express buy-and-hold trading of finite, say k, portfolios at a fi-

nite number m of dates in the following standard way. Let T = (T 1, ..., T k) be

a vector of maturities, which identify the corresponding bonds. Moreover, an in-

vestor can invest into the numéraire B, in which the bonds are expressed.2 By

B(·,T) =
(
B(·), B(·, T 1), ..., B(·, T k)

)
we denote the k + 1-dimensional process of

the numéraire and the traded bonds. A bond trading strategy is a pair (Φ,T), where

Φ = (Φ0, ..., Φk) is a k + 1-dimensional simple integrand with bounded support. A

simple integrand with bounded support is a sum of the form

Φ =
m∑

l=1

fl · 1(τl−1,τl],

where 0 = τ0 ≤ τ1 ≤ ... ≤ τm are finite stopping times and the random variables

fl = (f 0
l , ..., fk

l ) are Fτl−1
-measurable for l = 1, ..., m. At each date τl−1 the agent

buys f 0
l units of the numéraire and f i

l units of the bond B(·, T i) and holds them

until time τl. The measurability requirements exclude insider trade and clairvoyance.

The finite time horizon is ensured, since τm is a finite stopping time. The value of

a trading strategy (Φ,T) at date u is given by the following Riemann-sums

V(Φ,T)(u) =
m∑

l=1

〈
fl , B(u ∧ τl,T)−B(u ∧ τl−1,T)

〉

=
m∑

l=1

k∑
i=0

f i
l

(
B(u ∧ τl, T

i)−B(u ∧ τl−1, T
i)
)
,

and accumulates gains and losses up to time u. Since the numéraire is a traded

asset and its price process, priced by itself, equals one at all times, it serves as a

cash box, which finances buys and sells. Hence we do not have to check, if bond

trading strategies are self-financing. Notice that our results do not depend on the

choice of numéraire.
2To consider discounted bond prices, we can change the numéraire e.g. to the money market

account, given by B(t) := exp(
∫ t

0
f(u, u)du), or to an account rolling over certain bonds, e.g.

B(t) := B(t,[t]+1)∏[t]+1
n=1 B(n−1,n)

.
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The last concept we formalize is the concept of arbitrage. Intuitively, an arbitrage

is described by a risk-free strategy with a chance of ”making something out of

nothing”. As we are interested in the behavior of limiting yields, we need to define

an arbitrage trading bonds, which approximate the asymptotic bond. This is done

by considering a sequence of bond trading strategies, in which all maturities increase

infinitely.

Definition 21 (Arbitrage in the Limit). A sequence of bond trading strategies

(Φj,Tj)j∈N with limj→∞ T i
j = ∞ for all i is called a simple arbitrage in the limit

with bounded risk (SALBR), if its value process satisfies the following conditions:

(a) V(Φj, Tj)(u)− < Kj a.s. for all j ∈ N, u ≥ 0,

(b) lim
j→∞

V(Φj, Tj)(τm) ≥ 0 a.s.,

(c) P

(
lim

j→∞
V(Φj,Tj)(τm) = ∞

)
> 0,

where Kj ∈ R and V(Φ, T)− := max
(
0 ,−V(Φ, T)

)
denotes the negative part. The

sequence is called a simple arbitrage in the limit with vanishing risk (SALVR), if it

additionally satisfies

(d) lim
j→∞

V(Φj,Tj)(u)− = 0 a.s. uniformly in u.

All limits in the definition are almost sure limits. These limits are allowed to take

infinite values with positive probability such that condition (c) is satisfiable. Note

that the maturities of traded bonds explode and not the trading time. The absence

of arbitrage in the limit with bounded or vanishing risk in the bond market via

simple integrands is denoted by ”no simple arbitrage in the limit with bounded risk”

(NSALBR) or ”no simple arbitrage in the limit with vanishing risk” (NSALVR),

respectively. Since condition (d) is additional, (NSALBR) implies (NSALVR). These

two notions are inspired by classical definitions of arbitrage, as introduced in formal

notation by Delbaen & Schachermayer (1994) and Kabanov & Kramkov (1994). For

a detailed comparison of these notions we refer to the last section.
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In the remainder of the section we discuss the intuition of the conditions given

in the definition. V(Φ,T)(τm) describes the final value or payoff from trading the

strategy (Φ, T), since it holds by construction V(Φ,T)(u) = V(Φ,T)(τm) for all

u ∈ [τm,∞). Condition (b) asserts that this final payoff from trading long bonds

is risk-free, as it is asymptotically nonnegative. Condition (c) ensures that there is

a chance to gain an arbitrary big payoff, as the final value grows to infinity with

positive probability. Conditions (a) and (d) refer, besides to the final value, also

to the whole trading interval. Condition (a) states that the value of each strategy

is bounded from below, and thus ensures that risk is bounded uniformly over the

time. This condition is often called ”admissibility of the strategy” in the literature

and is required to exclude trivial arbitrage opportunities by doubling strategies.

Condition (d) asserts that risk vanishes, as it ensures that the negative parts of the

value process converge to zero uniformly over all dates.

3.3 Asymptotic Monotonicity

In this section we prove that long bond yields and long forward rates can never fall

over time in an arbitrage-free setting. Given the bond market from the previous

section the following holds:

Theorem 22 (Asymptotic Monotonicity). If zL(s) and zL(t) exist almost surely for

s < t, then under (NSALVR) it holds

zL(s) ≤ zL(t) a.s.

Before proving the result we give some intuition: The theorem states that to-

morrow’s infinite bond yield can never be less than today’s infinite bond yield. If

this statement was wrong, the long bond yield would fall with positive probability.

Then we would buy a bond with high long yield today. We sell this bond tomorrow,

when it has a lower long yield with positive probability. By relation (3.1) this bond
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is more expensive in the limit. To capture the asymptotic long yield we consider

a sequence of such trades, indexed by the maturity of the bond. We buy a precise

number of shares, such that today’s costs tend to zero for limiting maturity. In case

the long bond yield falls, tomorrow’s bond is more expensive and we have a profit

with positive probability. This strategy yields a simple arbitrage in the limit with

vanishing risk contradicting (NSALVR). Note that the gain is realized in finite time

t, only the maturity of traded bonds tends to infinity.

Proof. We prove the almost sure-result of asymptotic monotonicity by contradic-

tion: Assuming the long yield falls with positive probability, we will construct a

simple arbitrage in the limit with vanishing risk, which contradicts the assumption

of (NSALVR).

The first step in constructing this arbitrage strategy is to find a Fs- measurable

random variable y, which is smaller than zL(s) and larger than zL(t) with positive

probability. Therefore we consider the essential infimum of zL(t) conditioned on

zL(s). We denote it by ess inf
(
zL(t)

∣∣ zL(s)
)

and it satisfies by definition

ess inf
ω∈A

(
zL(t)

∣∣ zL(s)
)
(ω) = ess inf

ω∈A
zL(t)(ω) ∀A ∈ D,

where D is the σ-algebra generated by zL(s). For an extensive discussion of condi-

tional essential suprema we refer to Barron et al. (2003). This reference provides

also the existence of ess inf
(
zL(t)

∣∣ zL(s)
)

and its D-measurability. Intuitively it is

the largest D-measurable random variable, which is almost surely smaller or equal

to zL(t). We define the following set, which plays a crucial role in the proof:

Ω1 : = {zL(s) > ess inf
(
zL(t)

∣∣ zL(s)
)}.

The set Ω1 consists of the states, in which the long yield can potentially fall, as seen

from date s, i.e. the states where the long yield at date s is almost surely higher

than the lowest possible long yield at date t, which can occur after the considered

state at date s. Clearly Ω1 also contains the states, in which the long yield actually
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falls, i.e. {zL(s) > zL(t)} ⊂ Ω1. By assuming the contrary of the almost sure-result

of asymptotic monotonicity, i.e.

P(zL(s) > zL(t)) > 0,

it thus follows P(Ω1) > 0. By the adaptedness of the bond yields we have D ⊂ Fs.

This yields trivially ess inf
(
zL(t)

∣∣ zL(s)
) ∈ Fs, and hence Ω1 ∈ Fs. Now we can

define the random variable y for the first step by

y :=
1

2
zL(s) +

1

2
ess inf

(
zL(t)

∣∣ zL(s)
)
.

By definition y is Fs-measurable and it holds

zL(s) > y > ess inf
(
zL(t)

∣∣ zL(s)
)

on Ω1, (3.4)

which means that, if the long yield at date s can potentially fall, it is larger than

y. The convergence of the long yields, which is given by assumption, implies that

the limits zL(s) and zL(t) are almost surely bounded, as stated after equation (3.3).

Since ess inf
(
zL(t)

∣∣ zL(s)
)

is smaller or equal to zL(t) and bounded from below by

the lower bound of zL(t), it is also almost surely bounded and so is y by construc-

tion. To finalize the first step it remains to show, that y is larger than zL(t) with

positive probability. Therefore we assume the contrary, i.e. y ≤ zL(t) almost surely.

Proposition 2.6.b in Barron et al. (2003) then yields y ≤ ess inf
(
zL(t)

∣∣ zL(s)
)

al-

most surely. This expresses the intuition that the conditional essential infimum is

the largest D-measurable random variable, which is almost surely smaller or equal

to zL(t), and thus larger than y. Moreover it contradicts the last inequality of (3.4)

in the light of P(Ω1) > 0, and we obtain

P(y > zL(t)) > 0. (3.5)

Having completed the first step we are in position to construct the arbitrage in

the limit strategy. Therefore we consider the following sequence of bond trading
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strategies (Φj,Tj)j∈N, given by

Φ0
j(u) := 0, Φ1

j(u) := exp(y(j − s)) 1Ω1 1(s,t](u), Tj := (j),

for all j ∈ N. Each strategy of the sequence is a trivial buy-and-hold trade: at date

s we buy exp(y(j − s)) units of the bond with maturity j and sell them at date

t. We only trade on the set Ω1. Note that on the complement of Ω1 asymptotic

monotonicity holds trivially. We first show that each strategy is predictable, a

property which is questioned in Hubalek et al. (2002). Since the only buying date

is date s, it suffices to show that Φ(s+) is Fs-measurable. This is the case since y

and Ω1 are Fs-measurable, as we already pointed out. It remains to show that the

sequence constitutes an arbitrage in the limit with vanishing risk and we consider

the value of the strategy

V(Φj,Tj)(u) = exp(y(j − s))
(
B(u ∧ t, j)−B(u ∧ s, j)

)
1Ω1 .

By the above mentioned almost sure boundedness of y the number of shares exp(y(j−
s)) is almost surely bounded for any given j. Since bounded prices are almost sure

u-uniformly bounded by definition, the value process V(Φj,Tj)(u) is almost sure u-

uniformly bounded for every j by construction. Thus risk is bounded and condition

(a) of Definition 21 is satisfied. The value process allows for the trivial representa-

tion by the difference V(u) = M(u) − S(u), with minuend M and subtrahend S,

given by

MΦ
j (u) := exp(y(j − s)) B(u, j)1Ω1 1(s,t](u) + exp(y(j − s)) B(t, j)1Ω1 1(t,∞)(u)

SΦ
j (u) := exp(y(j − s)) B(s, j)1Ω1 1(s,∞)(u)

= exp(y(j − s)) exp(−z(s, j)(j − s))1Ω1 1(s,∞)(u)

= exp
(
(y − z(s, j))(j − s)

)
1Ω1 1(s,∞)(u) (3.6)

The term (3.6) is derived by relation (3.1). It converges almost surely to zero

for j → ∞, since zL(s) converges almost surely and zL(s) > y holds on Ω1 by
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equation (3.4). Hence the subtrahend S converges to zero uniformly in u. By the

nonnegativity of the minuend M it follows V− ≤ S. Thus risk is vanishing and

condition (d) of definition 21 is satisfied. The zero-convergence of the subtrahend

implies in particular for the final date t

lim
j→∞

V(Φj,Tj)(t) = lim
j→∞

Mj(t) = lim
j→∞

exp(y(j − s)) B(t, j)1Ω1

= lim
j→∞

exp(y(j − s)) exp(−z(t, j)(j − t))1Ω1 .

By the nonnegativity of the last term condition (b) of Definition 21 is met. The

almost sure existence of the limiting final payoff is ensured by the convergence of

zL(t). Moreover this last term grows unboundedly for j → ∞ on the set {y >

zL(t)}. Since this set is a subset of Ω1 and since it has a positive probability by

equation (3.5), condition (c) of Definition 21 is satisfied. Consequently the sequence

(Φj,Tj)j∈N constitutes a simple arbitrage in the limit with vanishing risk, which

contradicts the assumption of (NSALVR) and closes the proof.

As shown in Dybvig et al. (1996), Theorem 1 for a discrete time setting or easily

derived by relation (3.2), fL(t) equals zL(t) almost surely, if fL(t) exists almost

surely. As a result, the following corollary states that the infinite forward rate

cannot fall over time.

Corollary 23 (Asymptotic Monotonicity). If fL(s) and fL(t) exist almost surely

for s < t, then under (NSALVR) it holds

fL(s) ≤ fL(t) a.s.

3.4 Asymptotic Minimality

In the previous section we have seen that the long bond yield cannot fall over time.

It certainly may rise, what can be seen e.g. by considering the discrete binomial

model by Ho & Lee (1986), whose long yield rises with positive Bernoulli-probability
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at each discrete time point. But may it rise almost surely? This question is denied

by the following result: the long bond yield always equals its minimal future value.

Thus today’s long bond yield cannot be bounded away from the support of possible

future long yields and so jumps with probability one are excluded.

Theorem 24 (Asymptotic Minimality). If zL(s) and zL(t) exist almost surely for

s < t, then under (NSALBR) it holds

zL(s) = ess inf
(
zL(t)

∣∣ zL(s)
)

a.s.

Before proving the result we again give some intuition: If the theorem was wrong,

tomorrow’s long bond yield would rise with probability one due to asymptotic mono-

tonicity. Then we could short-sell a bond today and liquidate it tomorrow, when it

is cheaper in the limit, since the long yield is higher. We consider a sequence of such

trades, which is indexed by maturity. We sell a precise number of shares, such that

we are paid today to enter the position and have asymptotically no costs tomorrow.

This arbitrage opportunity is realized in finite time and contradicts the assumption.

Proof. We start by observing a direct corollary of asymptotic monotonicity. Under

the given assumptions it holds

zL(s) ≤ ess inf
(
zL(t)

∣∣ zL(s)
)

a.s.

To show the remaining inequality, we assume its contrary, i.e. P(Ω2) > 0, with

Ω2 = {zL(s) < ess inf
(
zL(t)

∣∣ zL(s)
)}.

The set Ω2 consists of the sates, in which the long rate at date s is strictly less

than the lowest possible long rate at date t as seen from date s. The first step

in constructing the arbitrage strategy is to find a Fs-measurable random variable,

which is larger than zL(s) and smaller than zL(t) with positive probability. As we

will see, the random variable y from the previous proof of Theorem 22 also does this
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job. Since the reasoning here is similar to the previous proof, we provide a condensed

version. By definition we have ess inf
(
zL(t)

∣∣ zL(s)
) ∈ Fs, and hence Ω2 ∈ Fs. We

recall the random variable y for the first step:

y =
1

2
zL(s) +

1

2
ess inf

(
zL(t)

∣∣ zL(s)
)
.

By definition y is Fs-measurable and we have the following ordering on Ω2

zL(s) < y < ess inf
(
zL(t)

∣∣ zL(s)
) ≤ zL(t). (3.7)

Having completed the first step we construct the arbitrage strategy. Therefore we

consider the following sequence of bond trading strategies (Ψj, Tj)j∈N, given by

Ψ0
j(u) := 0, Ψ1

j(u) := − exp(y(j − s)) 1Ω2 1(s,t](u), Tj := (j),

for all j ∈ N. Each strategy of the sequence is a trivial buy-and-hold trade: at date

s we sell exp(y(j − s)) units of the bond with maturity j to rebuy them at date t.

We only trade on the set Ω2, as on the complement of Ω2 asymptotic minimality

holds trivially. Each strategy is predictable, since y and Ω2 are Fs-measurable. To

see that this sequence constitutes a simple arbitrage in the limit with bounded risk,

we consider the value process, which equals for all j

V(Ψj,Tj)(u) = − exp(y(j − s))
(
B(u ∧ t, j)−B(u ∧ s, j)

)
1Ω2 .

The number of shares exp(y(j − s)) is bounded for any given j, since y is bounded

by equation (3.7) and the convergence of the bond yields. As bond-prices are u-

uniformly bounded by definition, the value process is u-uniformly bounded for every

j and thus satisfies condition (a) of Definition 21. To close the proof we consider

the final value at date t

V(Ψj,Tj)(t) =− exp(y(j − s))
(
B(t, j)−B(s, j)

)
1Ω2

= exp(y(j − s)) exp(−z(s, j)(j − s))1Ω2

− exp(y(j − s)) exp(−z(t, j)(j − t))1Ω2 (3.8)

= : MΨ
j (t)− SΨ

j (t).
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Due to the inequality y < zL(t) in (3.7) the subtrahend SΨ
j (t) converges almost

surely to zero on the set Ω2. By the nonnegativity of the minuend MΨ
j (t) condition

(b) of Definition 21 is met. Moreover, the minuend MΨ
j (t) explodes on Ω2 by the

inequality zL(s) < y in (3.7). As we have P(Ω2) > 0 by assumption, condition (c)

of Definition 21 is also satisfied. Consequently (Ψj, Tj)j∈N is a simple arbitrage in

the limit with bounded risk, which completes the proof.

The result of asymptotic minimality can again be expanded to long forward rates.

Corollary 25 (Asymptotic Minimality). If fL(s) and fL(t) exist almost surely for

s < t, then under (NSALBR) it holds

fL(s) = ess inf
(
fL(t)

∣∣ fL(s)
)

a.s.

3.5 The Literature

In the first part of this section we compare the literature on asymptotic monotonicity

to our approach. In the second part of the section we refer to asymptotic minimality

and clarify an apparent contradiction to existing literature. In the third part we

compare our notions of arbitrage to closely-related classical notions and analyze, if

our results can be transferred to these notions.

3.5.1 Asymptotic Monotonicity

Since several authors worked on the topic of asymptotic monotonicity, we concen-

trate on the papers, which are closely related to ours. The most important contri-

bution to asymptotic monotonicity is by Dybvig et al. (1996). They came up with

the genuine idea of showing this result by a no arbitrage-argument and initiated the

proceeding literature. Since the emphasis in their paper is on intuition, we aim to

make their original idea more rigorous in this chapter. For this purpose, we provide

a stringent formal setting, in which all objects are defined in mathematical terms.
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Compared to Dybvig et al. (1996), this setting is extended in several aspects. We

stress out two aspects: First by using a continuous-time setting we also allow for

continuous trading, which is of vast theoretical importance. Second, whereas in

Dybvig et al. (1996) all dates, except for date t, are deterministic, our setting is a

filtered probability space, in which all dates are stochastically modeled.

MacCollugh (2000) comments on Dybvig et al. (1996) and states that the proof

is defective, since it includes an error. This critic is valid, but it only refers to

the proof in the body of Dybvig et al. (1996). The proof in the Appendix of

Dybvig et al. (1996) is not affected, since the problem stems from the set
{
y =

ess inf
(
zL(t)

∣∣ zL(s)
)}

, where the invested amount equals the essential infimum, and

y is chosen to be strictly greater than the infimum. Neither our proof is affected for

the same reason.

Yao (1999a) derives asymptotic monotonicity rigorously under additional as-

sumptions in a jump-diffusion context.

There is another approach to prove asymptotic monotonicity: Hubalek et al.

(2002) provide a stringent proof by assuming the existence of an equivalent martin-

gale measure. In contrast to this we approach arbitrage in a less abstract way by

a positive definition. We see two advantages in this approach: First by introducing

the concrete notion of arbitrage, we can construct the arbitrage strategy explicitly

and tell an arbitrageur to buy how many of which bonds. Hence our proof is more

illustrative. Second we do not require the fundamental theorem of asset pricing and,

thus we are able to leave the common semimartingale-setting. As a result, whereas

in the setting of Hubalek et al. (2002) bond prices are modeled as semimartingales,

our setting may also include non-semimartingales. Without affecting the validity

of their elegant and conveniently brief proof, Hubalek et al. (2002) criticize Dybvig

et al. (1996) erroneously in proposing that the strategy is anticipative. They state

that in consequence one has to assume implicitly in Dybvig et al. (1996) that the

long bond yield at time t, denoted by zL(t), is Fs-measurable for s < t. But this
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assumption is not necessary, since the strategy in Dybvig et al. (1996) is not antic-

ipating: The strategy does not depend on zL(t), but on its unconditioned essential

infimum. The essential infimum is in turn a property of the distribution, which does

not depend on the realization of zL(t). In the setting of Dybvig et al. (1996), with

stochastic modeling only at date t, this infimum is just a number and its measur-

ability poses no problem. In our general setting it neither poses a problem. By

considering the essential infimum conditioned on zL(s), which is hence known at

date s, we can construct an arbitrage strategy, which is not anticipating.

3.5.2 Asymptotic Minimality

Dybvig et al. (1996) also address the second result of asymptotic minimality. They

derive it in spaces with a finite number of states. On the other hand, they provide

a counter-example for infinite spaces. In this section we briefly clarify the result-

ing contradiction to our Theorem 24 and we show that it is only ostensible. The

reason for the contradiction does not lie in the different setting of the bond market

mentioned above. It is solely located in the definition of arbitrage. In Dybvig et al.

(1996) this definition is presented in an intuitive way. The crucial difference to our

notions of arbitrage is the claim for ω-uniform convergence. The counter-example

(see Example 2 in Dybvig et al. (1996)) presents a long yield, which is almost surely,

but not ω-uniformly almost surely converging. In consequence the corresponding

arbitrage strategies are neither ω-uniformly converging and asymptotic minimality

cannot be proved under the no-arbitrage notion of Dybvig et al. (1996) in general

spaces. However, in finite spaces almost sure convergence implies uniform conver-

gence and asymptotic minimality is shown in Dybvig et al. (1996) for finite spaces.3

Opposed to this, asymptotic minimality is established in general spaces under

3Assuming that the bond yield is ω-uniformly almost surely converging at date s and t, the

counter example is excluded and asymptotic minimality can be derived for general spaces under

the no-arbitrage notion of Dybvig et al. (1996) analogously to the finite space proof.
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(NSALBR) in section 4. We show that there is arbitrage in the (NSALBR)-sense

in the counter-example. Therefore we consider the almost sure limits of the bond

yield in the counter-example, which equal in continuous-time notion

zL(s) = min(r2, r1 − log(1− p)), zL(t) = r2,

where r1, r2 > 0 and p ∈ (0, 1). If it holds r2 ≤ r1 − log(1 − p), asymptotic

minimality holds trivially. If it holds r2 > r1 − log(1 − p), the long yield is strictly

growing between dates s and t. Then by the choice of y = 1
2
(r1 + r2 − log(1 − p))

equation (3.7) holds true and the strategies (Ψj,Tj)j∈N constitute a simple arbitrage

with bounded risk, as derived in the proof of Theorem 24.

3.5.3 Related Notions of Arbitrage

There are several notions of arbitrage in the literature. We compare our Definition

21 to those definitions of arbitrage, which are closely related. Moreover we discuss

under which conditions asymptotic monotonicity and minimality hold true under

these classical notions.

We start with the notions of Delbaen & Schachermayer (1994). They refer to a

stock price process and the integrator is fixed throughout the sequence. In our notion

the integrator is a bond price and it varies within the sequence to approximate the

limiting bond. Nonetheless we transfer the two notions of Delbaen & Schachermayer

(1994) and their convergence criteria to a bond market and interpret it for bond

prices with limiting maturity in our notation.

Definition 26 (No free lunch with bounded or vanishing risk). A sequence of bond

trading strategies (Φj,Tj)j∈N with limj→∞ T i
j = ∞ for all i is called a free lunch
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with bounded risk (FLBR), if its value process satisfies the following conditions:

(a) V(Φj,Tj)(u)− < Kj a.s. for all j ∈ N, u ≥ 0

(b) lim
j→∞

V(Φj,Tj)(τm) ≥ 0 a.s.,

(cDS) P

(
lim

j→∞
V(Φj,Tj)(τm) > 0

)
> 0,

where Kj ∈ R. The sequence is called a free lunch with vanishing risk (FLVR), if it

additionally satisfies

(dDS) lim
j→∞

V(Φj,Tj)(τm)− = 0 a.s. uniformly in ω.

Notice that condition (a) is the admissibility condition on strategies in Delbaen

& Schachermayer (1994). Together with condition (b) it yields that risk of the final

value is j-uniformly bounded, which is central for the intuition of (FLBR).4 The

interpretation of (NFLBR) in the upper definition shows that there is essentially no

difference to (NSALBR). Since condition (cDS) is slightly weaker than condition (c),

asymptotic monotonicity and asymptotic minimality hold true under (NFLBR).

The crucial difference between the vanishing risk notions, is that (FLVR), ex-

cept for the admissibility condition (a), only considers the final value of the strat-

egy, whereas (SALVR) also imposes restrictions on the value of all dates, as risk is

vanishing uniformly over the trading period. In this sense (NSALVR) is a weaker

assumption as (NFLVR). On the other hand, condition (dDS) of (FLVR) calls ad-

ditionally for almost sure ω-uniform convergence, compared to (SALVR). Thus we

consider in the following lemma, when ω-uniform convergence of risk is ensured.

Lemma 27 (Uniform Convergence in ω). If zL(s) and zL(t) exist as almost sure

ω-uniform limits, then the negative parts of the arbitrage strategies (Φj,Tj)j∈N and

4More formally: By (b) the almost sure lower bounds Kj on the final value V(Φj , Tj)(τm)

converge to zero and so there exists a J ∈ N with Kj < 1 for all j > J . By (a) we have

V(Φj , Tj)(τm)− < Kj ∈ R for all j ∈ N. In consequence we have V(Φj , Tj)(τm)− < K almost

surely with K := max(1, L) and L := maxj<J Kj < ∞.



74 CHAPTER 3. ASYMPTOTIC TERM STRUCTURE

(Ψj,Tj)j∈N of the previous proofs satisfy:

lim
j→∞

V(Φj,Tj)(u)− = 0 a.s. uniformly in ω and in u ≥ 0,

lim
j→∞

V(Ψj,Tj)(t)
− = 0 a.s. uniformly in ω.

Proof. Notice that by V− ≤ S the negative parts converge almost sure ω-uniformly,

if the respective subtrahends of the decomposition given in the proofs converge

almost sure ω-uniformly. The limit of the subtrahend of SΦ
j (u) depends crucially on

the limit zL(s) solely: If z(s, j) converges almost sure ω-uniformly, so it does SΦ
j (u),

confer equation (3.6). Moreover this convergence is uniform in u. Analogously, if

z(t, j) converges almost sure ω-uniformly, so it does SΨ
j (t), confer equation (3.8).

However, SΨ
j (u) for arbitrary u ≥ 0 depends on the convergence behavior of z(u, j)

with u ∈ (s, t], and thus its risk is not necessarily vanishing.

By this lemma arbitrage strategies (Φj,Tj)j∈N and (Ψj,Tj)j∈N satisfy condition

(dDS), since risk of the final value is uniformly converging to zero. In consequence

Asymptotic Monotonicity and Asymptotic Minimality hold true under (NFLVR) for

ω-uniformly converging yields.

Finally we address the notion of asymptotic arbitrage, which is introduced by

Kabanov & Kramkov (1994). The idea of asymptotic arbitrage already appears

in the arbitrage pricing theory, which is introduced by Ross (1976) and extended

e.g. by Huberman (1982). Kabanov & Kramkov (1994) and Kabanov & Kramkov

(1998) define a large financial market by a sequence of market models. To transfer

our bond market of Definition 20 to this setting, we consider the sequence of market

models, which consists of copies of our probability space Bj = (Ω,F , (Ft)t≥0,P) for

all j ∈ N. The price process of the j-th market Sj is given by the bond price B(·, j).
So we are able to rewrite asymptotic arbitrage in our notation.

Definition 28 (Asymptotic Arbitrage). A sequence of bond trading strategies (Φj,Tj)j∈N

with Tj = (j) is called a asymptotic arbitrage of the first kind (AA1), if its value
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process satisfies the following conditions:

(a) V(Φj,Tj)(u)− < Kj a.s. for all j ∈ N, u ≥ 0,

(bKK) lim
j→∞

Kj = 0,

(cKK) lim
j→∞

P (V(Φj,Tj)(τm) > 1) > 0,

where Kj ∈ R.

Condition (a) is the admissibility condition on strategies. Condition (bKK) as-

serts that risk is vanishing: There are lower bounds on an asymptotic arbitrage,

which are uniform over Ω and time and converge to zero. Thus (AA1) is a stronger

notion compared to (SALBR). It it also stronger than (SALVR) in the sense that

it claims additionally for ω-uniform convergence of vanishing risk. Strictly speak-

ing it is weaker than (SALVR) in the sense that the almost sure existence of the

limiting payoff is not asserted and e.g. an oscillating value is permitted. Finally

condition (cKK) is essentially the same as condition (c). Since Lemma 27 ensures

that the risk of the arbitrage strategies (Φj, Tj)j∈N is vanishing uniformly over Ω and

time, asymptotic monotonicity holds true under (NAA1) for ω-uniformly converging

yields zL(s) and zL(t). However, asymptotic minimality does not necessarily hold

true under (NAA1).

3.6 Conclusion

In order to analyze the long-term behavior of the term structure we consider families

of almost arbitrary bond prices with infinitely increasing maturities. In this general

framework for term structure models we derive the Dybvig-Ingersoll-Ross result

of non-falling long bond yields. Introducing a notion of arbitrage we prove this

result by constructing an arbitrage strategy explicitly. This strategy requires only

a minimal setting of buy-and-hold trading and is not anticipating, as proposed in

the literature. Furthermore we extend the second Dybvig-Ingersoll-Ross result to
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general spaces: Long bond yields and forward rates equal their minimal future value.

Both results impose restrictions on arbitrage-free term structure models, since they

exclude a multitude of asymptotic maturity behavior. These severe implications

serve as caution for modelers that not every specification is consistent with the

considered notions of arbitrage. Specifically, setting up a long yield, which decreases

with positive probability or increases almost surely, imposes arbitrage opportunities.



Chapter 4

Appendices

A.1 Moment-Generating Function and

Integral Transforms

The central question of Chapter 1, the existence and computation of the index of

riskiness, is focused in Problem 1. In this section we consider the relation of Problem

1 to the moment-generating function and several integral transforms. These con-

nections reduce Problem 1 to the simpler problem of inverting integral transforms.

The well-known moment-generating function is the expectation EeαX and pro-

vides a unifying approach to solve Problem 1, regardless if X is continuous or dis-

crete. If the position X ∈ X has a continuous density function fX , the moment-

generating function is defined by

M(X, α) :=

∫ ∞

−∞
eαxfX(x) dx,

whereas for discrete positions X ∈ X it is given by

M(X, α) :=
∑

x∈ Im(X)

eαx P(X = x).

In both cases we have the relation

Ee−αX = M(X,−α).

77
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In consequence a positive root of Problem 1 is given by α∗ with

M(X,−α∗) = 1,

and can be expressed more explicitly by

α∗(X) = −M−1(X, 1),

where M−1 is the inverse of the moment-generating function in argument α mapping

into the negative numbers. The moment-generating function receives its name from

the moment-relation
δn M(X, 0)

δαn
= EXn.

Moreover, for X 6= 0 almost surely the moment-generating function is strictly convex

in α, where it exists. In the continuous case this follows by the continuity of the

exponential:
δ2 M(X, α)

δα2
=

∫ ∞

−∞
x2eαx fX(x) dx > 0.

In the discrete case this follows directly by

δ2 M(X,α)

δα2
=

∑

x∈ Im(X)

x2eαxP(X = x) > 0.

By these two properties the proofs in chapter 1 holds analogously for the moment-

generating function instead of the Laplace transform. In consequence our results of

chapter 1 hold for all positions X ∈ X, regardless if X is continuous or discrete.

In the following we assume that the density function fX is continuous. As derived

in chapter 1 Problem 1 is closely related to the bilateral Laplace transform by

Ee−αX = LX(α).

Moreover, there are further similar relations to integral transforms. First, we con-

sider the unilateral Laplace transform, given by

L1(f(x), α) :=

∫ ∞

0

e−αxf(x) dx.
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Problem 1 is related to the unilateral Laplace transform by

Ee−αX = L1(fX(x), α) + L1(fX(−x),−α).

Second, the connection to the characteristic function, and the continuous Fourier

transform, defined by

φX(α) : =

∫ ∞

−∞
e−iαxfX(x) dx,

F(f, α) : =
1√
2π

∫ ∞

−∞
e−iαxf(x) dx,

is given by

Ee−αX = φX(−iα),

Ee−αX =
√

2π F(fX ,−iα).

While inverting the characteristic function and the Fourier transform we have to

restrict to non-complex solutions. Third, for the Mellin transform, given by

M(f, α) :=

∫ ∞

0

xα−1f(x) dx,

it holds

Ee−αX = M(fX(− log x), α).

Inverting one of the considered integral transforms helps to solve Problem 1, since

the theory on these various integral transforms is highly sophisticated.

B.1 The Lambert W-Function

We consider the Lambert W-function, which is also called product log or Omega

function. It is the inverse function of

f(x) = x ex = z,
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Figure 4.1: The Function f(x) = x ex.

which is plotted in Figure 4.1. We denote the Lambert W-function by W and it

satisfies for the above arguments x and z

W(z) = x.

This provides the relation we frequently use

W(z) eW(z) = z. (4.1)

We consider the Lambert W-function for real arguments x and z and do not refer to

complex solutions for the inversion of a complex function f . Since the real function

f : R→ R is not injective on (−∞, 0], the real Lambert W-function is multivalued.
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Figure 4.2: The Two Branches of the Real Lambert W-Function.
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It consists of two single-valued branches: the principal branch W0 : [−1
e
,∞) →

[−1,∞) and the alternate branch W−1 : (−1
e
, 1) → (−∞,−1). These two branches

are plotted in Figure 4.2. The Lambert W-function R → R × R is two-valued on

the interval (−1
e
, 0). The number of values depends on argument z and is formally

given by

W(z) =





(∅, ∅) for z < −1
e
,

(W0,W1) for − 1
e

< z < 0,

(W0, ∅) for z = −1
e

or z ≥ 0.
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