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Abstract

We consider tangible economic problems for agents assessing risk by virtue
of dynamic coherent and convex risk measures or, equivalently, utility in
terms of dynamic multiple priors and variational preferences in an uncertain
environment.

Solutions to the Best-Choice problem for a risky number of applicants are
well-known. In Chapter 2, we set up a model with an ambiguous number
of applicants when the agent assess utility with multiple prior preferences.
We achieve a solution by virtue of multiple prior Snell envelopes for a model
based on so called assessments. The main result enhances us with conditions
for the ambiguous problem to possess finitely many stopping islands.

In Chapter 3 we consider general optimal stopping problems for an agent
assessing utility by virtue of dynamic variational preferences. Introducing
variational supermartingales and an accompanying theory, we obtain optimal
solutions for the stopping problem and a minimax result. To illustrate, we
consider prominent examples: dynamic entropic risk measures and a dynamic
version of generalized average value at risk.

In Chapter 4, we tackle the problem how anticipation of risk in an uncer-
tain environment changes when information is gathered in course of time. A
constructive approach by virtue of the minimal penalty function for dynamic
convex risk measures reveals time-consistency problems. Taking the robust
representation of dynamic convex risk measures as given, we show that all
uncertainty is revealed in the limit, i.e. agents behave as expected utility
maximizers given the true underlying distribution. This result is a gener-
alization of the fundamental Blackwell-Dubins theorem showing coherent as
well as convex risk measures to merge in the long run.

Keywords: Uncertainty, Dynamic Variational Preferences, Dynamic Multi-
ple Prior Preferences, Dynamic Convex Risk Measures, Dynamic Coherent
Risk Measures, Dynamic Penalty, Robust Representation, Time-Consistency,
Best-Choice Problem, Optimal Stopping, Blackwell-Dubins Theorem





If we begin with certainties,

we shall end in doubts;

if we begin with doubts,

and are patient,

we shall end in certainties.

Marcus Aurelius
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Chapter 1

General Introduction

In light of the current financial crisis accompanied by an unprecedented

amount of uncertainty in markets, financial industry as well as market su-

pervisors are in need of sophisticated yet applicable instruments to quantify

and manage risk. Therefore, the general question how agents anticipate risk

in uncertain environments is not just one of theoretical interest in economists

but necessitates a wholehearted and understandably framed answer procur-

able to be adopted by professionals in real world practice.

1.1 An Axiomatic Approach to Risk Mea-

surement

For the financial industry, value at risk (VaR) still seems to be the standard

approach in quantification of risk despite its several well known shortcomings

elaborately discussed e.g. in [McNeil et al., 05]: A danger in applying VaR

is the possibility of accumulating a highly risky portfolio and the fact that

diversification effects might not be accounted for. The prominence of VaR as

industry standard is mainly owed to its simplicity and intuitiveness. In over-

coming these shortcomings, alternative approaches to risk assessment have

to be introduced which result in risk measures that are easily communicated,



1. GENERAL INTRODUCTION

intuitive and straightforward to implement for solving tangible problems. As

an example, alternative risk measures have to be readably applicable to min-

imal capital requirement models in line with the Basel II accord to ensure

financial stability for banking institutions while being easily manageable.

A sensible axiomatic approach to quantify risk was first mentioned in

[Artzner et al., 99] for a static setting: The authors introduced the notion

of coherent risk measures assessing risk of projects considered as real valued

random variables. Several other references as [Delbaen, 02] advanced upon

this approach for more general probability spaces. The approach to coherent

risk measures is based on four quite intuitive axioms and leads to a simple

and hence applicable robust representation that we encounter later. We will

rigorously introduce the underlying notion of risk measures in the respective

chapters of this thesis. However, for the sake of completeness and an intuitive

understanding at this stage, the four axioms for a risk measure to be coherent

are given by monotonicity, cash invariance, sub-additivity and positive homo-

geneity of degree one. The major advantage of coherent risk measures is their

simple and intuitive robust representation in terms of maximized expected

loss as elaborated below. Furthermore, coherent risk measures do not ne-

cessitate a specific probabilistic model and hence help to significantly reduce

model risk in applications. However, coherent risk measures have two ma-

jor shortcomings: First, they overestimate risk as they lead to a worst-case

approach by virtue of robust representation: An issue that has to be scoped

with from point of view of financial institutions having an intrinsic interest

in assessing risk not too conservatively when calculating minimal capital re-

quirements. Secondly, due to the assumption of homogeneity, coherent risk

measures do not take into account liquidity risk as one of the major problems

in the current financial crisis.

As an advancement, convex risk measures are introduced inter alia in

[Föllmer & Schied, 04] for a static setting: The assumptions of sub-additivity

and homogeneity are replaced by convexity, intuitively stating that diversifi-

2



1.1. AN AXIOMATIC APPROACH TO RISK

cation reduces risk. It is immediately seen that coherent risk measures are a

special class of convex ones.

The prominent VaR is neither coherent nor convex. However, average

value at risk (AVaR), also called expected shortfall or conditional value at

risk in respective literature, is coherent as it, intuitively speaking, considers

not just quantiles but has a closer look in the respective tails of a distribu-

tion. The most prominent example for a convex risk measure is entropic risk

conveying an elegant intuition discussed below.

Of course, financial markets are intrinsically dynamic and agents are sup-

posed to use information they gain in course of time. Hence, dynamic convex

risk measures are considered in many of the cited references. Dynamic coher-

ent risk measures can inter alia be found in [Riedel, 04] or [Artzner et al., 07].

Wholehearted elaborations of dynamic convex risk measures are given in

[Föllmer & Penner, 06] or [Föllmer et al., 09] for risky projects seen as pay-

offs in the last period and in [Cheridito et al, 06] for risky projects seen as

stochastic processes.

To give some flesh to the bone without being mathematically precise at

this stage, consider a risky project X and an information process given by

filtration (Ft)t. We then call a family (ρt)t of (Ft)t-adapted random variables

a dynamic convex risk measure if each ρt is a conditional convex risk measure

and hence possesses the robust representation

ρt(X) = ess sup
Q

{
EQ [−X| Ft]− αt(Q)

}
for some dynamic (minimal) penalty function (αt)t. Intuitively, at time t the

agent evaluates risk of a position X as the maximal conditional expected

loss with respect to all possible distributions but has to be compensated

by nature for choosing a specific distribution in terms of the non-negative

penalty. In this sense, robust representation of convex risk is a maximized

penalized expected loss. Intuitively, the smaller the penalty the more likely

the agent considers the respective distribution to be the correct probabilistic

3



1. GENERAL INTRODUCTION

model ruling the world. As coherent risk measures are just a special case

of convex ones, they also satisfy this robust representation but in terms of

a much simpler penalty that can only take the values zero or infinity and

is, hence, called trivial penalty further on. Throughout we consider robust

representation in terms of minimal penalty.

By virtue of the robust representation above, a convex risk measure is

uniquely characterized by its minimal penalty function. Given a coherent

and a convex risk measure for which the sets of distributions with infinite

penalty coincide, we see that the convex risk measure assesses risk more

liberally than the coherent one: A conservative over estimation of risk when

using coherent risk measures is the price we have to pay for substantially

reducing model risk. In other terms, if two agents assess risk in a convex

manner, the first one with penalty (α1
t )t, the second one with penalty (α2

t )t,

then, given (α1
t )t ≥ (α2

t )t, the first agent is less uncertainty averse. In this

sense, the penalty is a measure for uncertainty aversion. In other terms, (ρ1
t )t

assesses risk more liberal than (ρ2
t )t.

When considering dynamic problems under convex risk, the integral ques-

tion is how conditional convex risk measures at distinct time-periods are

connected. To scope with this issue, the notion of time-consistency was in-

troduced. It is inter alia elaborately discussed in [Föllmer & Penner, 06] and

[Cheridito et al, 06]. Formally, time-consistency is defined as ρt = ρt(−ρt+1),

a Bellman equation for nature, the intuition of which is given in the respec-

tive chapters of this thesis. By virtue of the robust representation, time-

consistency of a dynamic convex risk measure can equivalently be stated as

a property of the minimal penalty function, called the no-gain condition. In

the coherent case, time-consistency reduces to a stability condition on the

set of distributions for which penalty vanishes, the set of multiple priors.

This stability condition and equivalent notions are inter alia discussed in

[Riedel, 09].

4



1.2. A PREFERENCE BASED ALTERNATIVE

1.2 A Preference Based Alternative

So far, we have focused on risk measures as underlying objects. Equivalently,

we can build our results on a preference based point of view of the problem.

Multiple prior preferences were introduced in [Gilboa & Schmeidler, 89] and

applied to a dynamic framework in [Epstein & Schneider, 03]. These types

of preferences are, assuming ambiguity aversion but risk neutrality as well

as a discount factor of unity and no intermediate payoffs, equivalent to co-

herent risk measures: Robust representation of multiple prior preferences is

the same as the one for coherent risk measures up to a minus sign. In that

sense, an agent evaluating utility of a risky project in an uncertain environ-

ment in terms of multiple priors, considers the minimal expected payoff with

respect to all distributions she deems likely to rule the world, i.e. have a

vanishing penalty. [Riedel, 09] approaches optimal stopping problems with

respect to multiple priors and thereto generalizes the Snell envelope approach

appropriately.

The preference based equivalent to convex risk measures is given by varia-

tional preferences, introduced in a static set up in [Maccheroni et al., 06a] and

generalized to a dynamic framework in [Maccheroni et al., 06b]. For the sake

of intuitive convenience, [Cheridito et al, 06] actually state their theory of

time-consistent dynamic convex risk measures in terms of utility functionals

instead of risk measures. As for the equivalence of coherent risk measures and

multiple priors, the robust representation of variational preferences coincides

with that of convex risk measures up to a minus sign: Robust representation

of variational preferences might hence be seen as a minimal penalized expec-

tation. In the dynamic setting, time-consistency considerations are the same

for the preference based approach as for the one in terms of risk measures

and result in the no-gain condition on the minimal penalty function.

Given these considerations, we note that it does not matter for our in-

sights whether we apply the preference based approach or the ansatz by

5



1. GENERAL INTRODUCTION

virtue of risk measures: Each chapter may be reformulated in terms of the

other approach. However, in chapters 3 and 4, we consider a theory in terms

of dynamic variational preferences. Chapter 5 is based on dynamic convex

risk measures.

1.3 Particular Considerations

The main chapters of this thesis, each of which self contained in notation,

are based on three articles. The first two consider optimal behavior of agents

assessing risk in terms of coherent and convex risk measures or, equivalently,

assessing utility in terms of multiple prior preferences and variational pref-

erences. The third one is concerned with merging of dynamic convex risk

measures as information is gained in course of time. The latter chapter is

coauthored by Monika Bier.

As we have already mentioned, there are basically three distinct but equiv-

alent ways to introduce convex and hence coherent risk measures. First, by

virtue of an axiomatic system. Secondly, through a robust representation as

given above. Lastly, in terms of acceptance sets. The latter approach makes

explicit that, intuitively, a risk measure might be seen as the smallest amount

of numeraire that is necessary to make the agent accept a risky project. This

intuitively shows the tight connection of risk measures to preferences. The

starting point for our discussions in the subsequent chapters, however, will be

the robust representation of convex risk measures or variational preferences,

respectively. In this sense, we build our models on fundamental results con-

cerning the representation of time-consistent dynamic convex risk measures

as inter alia stated in [Föllmer & Penner, 06].

In Chapter 2 we generalize the so called Best-Choice problem to multiple

priors. Extensions of the “simple” Best-Choice or Secretary problem are in-

ter alia introduced in [Gilbert & Mosteller, 66] or [Freeman, 83]. Solutions to

the problem for a risky number of applicants, i.e. when the number of appli-

6



1.3. PARTICULAR CONSIDERATIONS

cants is given by a random variable with a known distribution, can be found

in [Presman & Sonin, 72], [Stewart, 81], [Petrucelli, 83] and [Irle, 80]. Here,

we set up a model with an ambiguous number of applicants, i.e. a distinct

distribution on the random number of applicants is not known. An impossi-

bility result shows the natural ambiguous generalization of the risky model

not to be solvable in terms of a time-consistent approach. We achieve a solu-

tion by virtue of the multiple prior Snell envelope introduced in [Riedel, 09]

for the ambiguous model based on so called assessments. The main result

enhances us with conditions for the ambiguous problem to possess finitely

many stopping islands and constitutes a generalization of the main result

in [Presman & Sonin, 72]. A major practical contribution of our ambiguous

model is elimination of model risk that is highly apparent in the risky setup

of the problem. However, before building our own model for the Best-Choice

problem under ambiguity, we take some time to review extensions of the

problem with a fixed number of applicants and discuss distinct approaches

to the problem with a risky number of applicants.

In Chapter 3 we consider general optimal stopping problems of pay-

off processes for an agent assessing risk in a convex manner as set out in

[Cheridito et al, 06] or, equivalently, assessing utility by virtue of dynamic

variational preferences as in [Maccheroni et al., 06b]. By generalizing the

approach in [Riedel, 09] from the coherent to the convex case introducing

variational supermartingales and an accompanying theory, we obtain optimal

solutions for the stopping problem and a minimax result. As a byproduct, we

generalize the model in [Maccheroni et al., 06b] to the case of infinite proba-

bility spaces. To illustrate the main results, we consider prominent examples:

dynamic entropic risk measures and a dynamic version of generalized average

value at risk (gAVaR); for our theory to be applicable, we have to introduce

a time-consistent dynamic version of gAVaR.

Having discussed risk optimal behavior of agents in the foregoing two

chapters, in Chapter 4, coauthored by Monika Bier, we answer the follow-

7



1. GENERAL INTRODUCTION

ing question: How does anticipation of risk and, hence, optimal behavior in

an uncertain environment change when information is gathered in course of

time? We answer this question in terms of dynamic convex risk measures or,

equivalently, dynamic variational preferences. Therefore, we first introduce

a constructive approach by virtue of the minimal penalty function conceived

as likelihood of priors showing that time-consistency turns out to be a ma-

jor problem when explicitly constructing a dynamic penalty. Hence, in the

second part of that chapter we take the robust representation of dynamic

convex risk measures as given and show that all uncertainty is revealed in

the limit, i.e. distinct agents behave as expected utility maximizers given

the true underlying distribution. In other terms, distinct dynamic convex

risk measures merge to conditional expectation with respect to the under-

lying distribution as information increases. Note, it is just uncertainty that

is revealed: There is still risk going on by virtue of the underlying distri-

bution. This result is a generalization of the fundamental Blackwell-Dubins

theorem, cp. [Blackwell & Dubins, 62], to convex risk measures. A particular

achievement is the extension of the Blackwell-Dubins theorem to not neces-

sarily time-consistent convex risk measures. We thus obtain a more general

existence result for limiting risk measures than [Föllmer & Penner, 06]. As

an application we consider dynamic entropic risk measures.

So far, we have just quite briefly discussed related literature. As the sub-

ject matters of the underlying articles are quite different, a scientific place-

ment of our results within the literature seems cumbersome in this general

introduction. Hence, elaborate discussions on literature and relevance of our

results are stated in the respective chapters.

As the intuition of our results can mostly be inferred from the respective

mathematical proofs, we have decided to state them within the chapters and

not in separate appendices.

8



Chapter 2

The Best-Choice Problem with

an Ambiguous Number of

Applicants

2.1 Introduction

The Best-Choice or Secretary problem is not just a popular anecdote you

can tell at dinner parties but constitutes a whole field in stochastic optimiza-

tion theory. The origin of this problem is not quite clear today but traces

back to the 1950s. Historical abridgments may be found in [Freeman, 83] or

[Ferguson, 89]. The latter article summarizes the “simple” Secretary problem

as follows:

• You are ought to assign a position as a secretary to exactly one of n ∈ N
applicants; n is known.

• Applicants are interviewed sequentially in random order and ranked

relative to the ones already interviewed. The decision to accept an

applicant, i.e. to stop the process of job interviews, is based on relative

ranks only.
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• Once rejected, a job candidate cannot be recalled upon.

• You want to have the best secretary: You obtain payoff 1 if choosing

the best applicant among all n and zero else. Put equivalently, you

want to find a stopping time for the interview process maximizing the

probability of accepting the best applicant.

The solution to this formulation, i.e. the stopping rule that maximizes the

probability of choosing the best applicant, is well known:

• Given s ∈ N. Reject the first s− 1 applicants and then accept the first

relatively best thereafter.

• Choose s to maximize the probability of choosing the best applicant

among all n within the last n− s. For n� 0, s ≈ 1
e
n ≈ 1

3
n.

Due to the variety of distinct formulations of the Secretary problems, it seems

worthwile to consider a generic definition:

Definition 2.1.1 ([Ferguson, 89], p.284). A Secretary Problem is a sequen-

tial observation and selection problem in which the payoff [and the decision

to stop] depends on the observations only through their relative ranks and not

otherwise on their actual values.1

Though we use the above definition, three types of Secretary Problems

are customarily distinguished:

• The no-information problem: only the rank of an upcoming applicant

is observable. All orderings are equally probable.2

1In this very definition, we already see the problem of talking about ambiguity: By

definition, a Secretary problem is considered under ambiguity as there is no distribution

of actual values known. However, when we talk of ambiguity in context of this problem,

we mean an ambiguous number of applicants.
2[Chudjakow & Riedel, 09] introduce ambiguity about the orderings.

10



2.1. INTRODUCTION

• The full-information problem: To each applicant, an actual value can

be attached. These values are distributed with a known probability

distribution.

• The partial-information problem: Actual values of applicants are ob-

served but the distribution is only partially known, i.e. belongs to some

family (Fθ)θ∈Θ with unknown parameter θ.

As mentioned in [Ferguson, 89], a first rigorous approach to the Secretary

problem is elaborated in [Lindley, 61]: A solution to the finite horizon prob-

lem as well as an approximation for the infinite horizon problem is discussed.

In advance, a more general utility function than above is considered. Sur-

prisingly, the partial-information and the no-information problem are quite

similar: [Stewart, 78] shows that a non-informative prior leads to the same

solution as the no-information problem, i.e. bayesian learning does not con-

tribute to maximizing the probability of choosing the best applicant.

The concern of this article is to extend the Secretary problem to ambigu-

ity. Introducing ambiguity may be done in two distinct ways: First, in the no-

information case, ambiguity is introduced about the number n of applicants.

In the simple problem above, n is fixed and known to the observer. Several

extensions relax this assumption by introducing risk : [Presman & Sonin, 72]

assume a random number N of applicants being distributed by a known

prior distribution on N. Another approach, makes use of applicants arriving

at poisson random times with known parameter and choice to be accom-

plished before a fixed time horizon, e.g. [Stewart, 81]. In our approach, we

assume applicants arriving at fixed times 1, 2, . . . and introducing ambiguity

over the number of applicants N in terms of multiple priors. A second ap-

proach would be introducing ambiguity over arrival times, e.g. ambiguous

poisson arrival times, up to a fixed time horizon T .

Secondly, ambiguity could be introduced over the actual qualification of

applicants in the partial information setting, usually considered to be risky

11



2. AMBIGUOUS BEST-CHOICE PROBLEM

but not uncertain. In this sense, the no-information problem considered here

is a case of maximal ambiguity on qualifications.

To be precise, here we tackle the no-information problem with an ambigu-

ous number of applicants. Our approach to ambiguity is based on (recursive)

multiple priors as in [Gilboa & Schmeidler, 89] and [Epstein & Schneider, 03]

on the number of applicants, applied to optimal stopping as in [Riedel, 09].

An alternative approach to ambiguity makes use of non-additive measures, so

called capacities, and corresponding Choquet integrals with respect to those

(cp. [Föllmer & Schied, 04]). These allow for uncertainty averse as well as

uncertainty loving agents (cp. [Skulj, 01]) and the degree of convexity of the

capacity is a measure for uncertainty averseness. However, for optimal stop-

ping problems the multiple priors framework seems more adequate. Under

the assumption of uncertainty averseness both approaches are equivalent, as

stated in [Chateauneuf, 1991].

[Riedel, 09] shows that an uncertainty averse but risk neutral agent in a

time-consistent dynamic ambiguous setup behave as expected utility max-

imizer with respect to some worst-case distribution as she plays against a

malevolent nature, underpinning [Gilbert & Mosteller, 66], where the prob-

lem is modeled as a two person game: one player chooses the applicant,

the other the order in which applicants are presented in order to minimize

the observers probability of choosing the best. Such a two person game

in a risky and in an ambiguous context is also discussed in [Bruss, 84] and

[Hill & Krengel, 91], respectively.

In course of modeling and solving the ambiguous Best-Choice problem,

we have also to tackle the following problem: As usual, a stopping time only

depends on the information gathered so far. Hence, in the no-information

case, the decision to stop at time t only hinges on the relative rank of the tth

applicant. In case of a fixed or a risky number of applicants, if t is a candidate,

the optimal solution is measurable with respect to the σ-algebra generated by

the relative rankings up to time t, i.e. the stopping rule is a random variable

12
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but at the realization at time t it is known whether to stop or not for sure.

Hence, we call these deterministic stopping rules. In [Presman & Sonin, 72]

it is shown that randomization at time t does not increase expected payoff,

a result extended in [Abdel-Hamid et al., 82]. Thus, it is enough to con-

sider deterministic stopping rules. However, [Hill & Krengel, 91] consider

randomized stopping rules. Such a rule τ is not measurable with respect

to the sigma algebra generated by the relative ranks up to time t but sat-

isfies {τ = t} ∈ σ(R1, U1, . . . , Rt, Ut), where the Ri’s denote relative ranks

and the Ui’s independent random experiments. Intuitively: At time t, the

stopping rule specifies a random experiment, e.g. tossing a coin, whose out-

come determines stopping or not. In other words, at time t, we stop with a

probability that is fixed upon realization at t. Randomized stopping times

are discussed in [Siegmund, 67]. As we will see, in our model it suffices to

consider deterministic rules.

We will encounter that a straightforward ambiguous generalization of the

risky setup in [Presman & Sonin, 72] is not only doubtful from an economic

perspective but also does not satisfy the crucial time-consistency condition

needed for solving the problem: We show an intuitive impossibility result

stating that time-consistency cannot be achieved by virtue of a set of priors

on N and come up with a distinct approach based on so called assessments

µ := (µi)i, i.e. families of distributions on the number of applicants, where µi

may be thought of as the distribution on the number of applicants the agent

considers being correct upon observing the ith applicant. Multiple priors in

this framework then correspond to the distributions of the candidate process

induced by multiple assessments.

Having obtained an adequate model in terms of assessments inducing

time-consistent multiple priors, we solve the problem by virtue of minimax

Snell envelopes as introduced in [Riedel, 09] and obtain our main result: The

ambiguous version of Theorem 3.1 in [Presman & Sonin, 72] giving neces-

sary and sufficient conditions for the solution to the ambiguous Best-Choice

13



2. AMBIGUOUS BEST-CHOICE PROBLEM

problem to consist of finitely many stopping islands. A stopping island is,

intuitively speaking, a set of applicants, which, if observed to be better than

all applicants interviewed before, are optimal to be chosen. The theorem fur-

thermore characterizes these stopping islands. To understand the importance

of such a theorem it has to be noted, that the “simple” Best-Choice problem

is monotone and hence there is just one stopping island up to infinity. This

monotonicity property does not hold any longer in the risky as well as in the

ambiguous case.

Before turning to a mathematical formulation and solution to the issue,

we should ask if the Best-Choice problem is worthwhile for applications or if

it is just for theoretical considerations. [Stewart, 78] gives two examples, a

third is given in [Gilbert & Mosteller, 66]; the fourth is the usual application

thought of today:

• Selling a single item: You have your old car for sale but no information

on the market price. Prospective buyers arrive in random order telling

the amount willing to pay. Either you stop and sell your car to some

buyer or you send him away.3

• Exploration of resources: You are exploring oil deposits in the Middle

East. When you have found a deposit you either stop and exploit it or

you go on exploring. If not exploiting a deposit, someone else will do

so.

• Atomic bomb inspection programs: You try to maximize the probabil-

ity of finding a repository where illegal weapons-usable plutonium is

stored.4

3[Stewart, 78] argues that the first example should be considered in the context of

poisson arrival times.
4This particular example is more intuitive when modeled as a two person game as e.g. in

[Gilbert & Mosteller, 66]: You want to maximize the probability of finding the repository

by choosing an appropriate stopping rule whereas your opponent tries to minimize this

probability by choosing the appropriate random order of examined repositories.

14
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• Optimal exercise of an option or other financial derivatives.

As we see, the application changes over time but the integral problem, and

in particular the mathematical methods, remain the same.

Having discussed the importance of the problem in economics, the last

question to answer is: What value is added when considering this problem in

an ambiguous set-up? First, we substantially decrease model risk apparent in

the risky setup of the problem as a probabilistic model regarding the number

of applicants has to be chosen and this respective model might just be wrong.

Secondly, having a look at financial markets nowadays, a lot of uncertainty

is “going on” there. No clear cut probability distributions can be attached to

derivatives as not enough information is available or volatility is hitting in

too strongly. In this case, an ambiguous or, equivalently, coherent approach

seems a valuable ansatz for solving problems as e.g. pricing derivatives. In

particular, with no information available, expert judgement tends to favor

worst case solutions being theoretically underpinned within our framework.

The article is structured as follows: The next section discusses the “sim-

ple” Best-Choice problem and related extensions. The third section intro-

duces the Secretary problem with a risky number of applicants, first by

showing distinct approaches to model the problem and then discussing a

concrete model. The fourth section is the main part of this article: We first

recall the approach to optimal stopping as set out in [Riedel, 09]. Then,

we introduce a direct generalization of the risky Best-Choice Problem to an

ambiguous one and show why this is not feasible. Thereafter, we model the

ambiguous problem in terms of so called assessments and solve it by virtue

of the multiple prior Snell envelope. The main result of this article gener-

alizes the main result in [Presman & Sonin, 72] to the ambiguous case and

gives necessary and sufficient conditions for the solution to the ambiguous

Best-Choice problem to consist of finitely many stopping islands. The last

section concludes.
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2. AMBIGUOUS BEST-CHOICE PROBLEM

2.2 The Fundamental Problem

Before turning to the ambiguous model, we briefly set out the “simple” Best-

Choice problem with a fixed number of applicants n ∈ N, known to the

agent. This section is divided into two parts: the no-information and the

full-information problem. We achieve optimal strategies and respective choice

probabilities as well as asymptotic results.

2.2.1 The No-Information Best Choice Problem

[Gilbert & Mosteller, 66] restate the problem in the following fashion: Given

an urn with n balls, each with a different number but the range of numbers

not known to the agent. The balls are drawn sequentially without replace-

ment. The agent is reported the number on the ball but does not know which

numbers are left in the urn, in particular has no information on the distribu-

tion of draws or even its range. Hence, the decision can only depend on rel-

ative ranks of draws. Equivalently, we could, as in [Gilbert & Mosteller, 66],

just report the current rank to the agent. When reported the current rank,

the agent must choose between keeping the current ball or continuing draw-

ing. The problem is to maximize the probability of choosing the ball with

the largest number among all n balls, or in other words to stop at the true

maximum of the sequence. Equivalently, we endow the agent with a utility

function only accounting for the best and the agent has to maximize expected

utility. We will now make the problem rigorous.

Definition 2.2.1. (a) Let Yi denote the relative rank of the ith applicant

among the first i, i ≤ n. Let Ȳi denote its absolute rank among all n appli-

cants.

(b) We call applicant i a candidate (or current maximum), if Yi = 1. We

call i the true maximum (or the best) if Ȳi = 1.

More formally: Let (Ω,F ,P) be some arbitrary underlying probability
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space, Ȳi : Ω → {1, . . . , n}, i = 1, . . . , n, the absolute rank and Yi : Ω →
{1, . . . , i}, i = 1, . . . , n, the relative rank. Define the filtration (Fi)i≤n by

Fi := σ(Y1, . . . , Yi) and F0 = {∅,Ω}. Having in mind the intuition of a

filtration as information process, (Fi)i≤n states: Upon arrival of applicant

i, the agent can only observe her relative rank. In particular Ȳi is not Fi-
measurable for i < n.

Define a (random) utility function u : {1, . . . , n} ×Ω→ R from stopping

at applicant i for the agent as follows:

ui =

{
1 if Ȳi = 1,
0 else.

As we see, ui 6∈ Fi, i.e. (ui)i≤n is not adapted and hence not an admissible

payoff process for our problem.5 The natural way to introduce an adapted

payoff process built on this utility function is to consider its projection on

(Fi)i≤n, i.e. its conditional expectation. Hence, we define the adapted payoff

process (Xi)i≤n from stopping at applicant i upon observing by

Xi := EP [ui| Fi] = P(Ȳi = 1|Y1, . . . Yi, i) = P(Ȳi = 1|Yi, i),

where the last equation reflects the Marcovian nature of the problem. In

words, Xi is the expected payoff from stopping at applicant i or, in other

terms, the probability of applicant i being the best given her current rank.

Let T denote the set of all stopping times, i.e. all mappings τ : Ω →
{1, . . . , n} such that {τ ≤ i} ∈ Fi, then the no-information Best Choice

problem is defined by its value function (Vi)i≤n:

Remark 2.2.2 (Agent’s Problem). For n ≥ i ≥ 0 the value function V :=

5Intuitively, to evaluate u(i, ·) we need all information up to the last applicant n.
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2. AMBIGUOUS BEST-CHOICE PROBLEM

(Vi)i≤n of the problem is given by

Vi := max
τ∈T,τ≥i

EP[Xτ |Fi] = max
τ∈T,τ≥i

EP [EP[uτ |Fτ ]
∣∣Fi]

= max
τ∈T,τ≥i

EP[uτ |Fi]

= max
τ∈T,τ≥i

P(Ȳτ = 1|Fi) (2.1)

= max
τ∈T,τ≥i

P(Ȳτ = 1|Yi, i).

Note that Vi is an Fi-measurable random variable.

Proposition 2.2.3. Equation (2.1), the Best-Choice problem, is solved by

the smallest optimal stopping time:

τ ∗ := min
i
{i ≥ s∗|Yi = 1} ∧ n,

where s∗ solves

n−1∑
k=s∗

1

k
≤ 1 <

n−1∑
k=s∗−1

1

k
.

Proof. As stated in [Neveu, 75], Section VI.1, the value function (Vs)s≤n of

an optimal stopping problem satisfies the Bellman equation and hence

Vs = max

P(Ȳs = 1|Fs)︸ ︷︷ ︸
=Xs

; EP[Vs+1|Fs]

 .

for s < n and Vn := un = Xn. Let’s assume interviewing the sth applicant,

s ≤ n. If s = n, we always stop as there is no better to come even if she is

not ranked first. If she is not a candidate, i.e. Ys > 1, and s < n, the value

is given by

Vs = max{P(Ȳs = 1|Ys > 1, s ≤ n); EP[Vs+1|Ys > 1, s ≤ n]}

= EP[Vs+1|Ys > 1, s ≤ n] = max
τ>s

P[Ȳτ = 1|Ys > 1, s ≤ n],

since Ys > 1 implies Ȳs > 1 P-a.s. Hence, an applicant not being a candidate

is never accepted and stopping does not occur at s.
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2.2. THE FUNDAMENTAL PROBLEM

Now assume s to be a candidate. In this case P(Ȳs = 1|Ys) > 0 and hence,

if s < n,

Vs = max{P(Ȳs = 1|Ys = 1); EP[Vs+1|Ys = 1]}

is non-trivial. By the principle of backwards induction, we stop at s, if the

probability of applicant s being best exceeds that of choosing the best appli-

cant from applicant s+ 1 onwards, i.e.

P(Ȳs = 1|Ys = 1) ≥ EP[Vs+1|Ys = 1]. (2.2)

In other words, the payoff at s exceeds the conditional expected payoff from

going on with optimal stopping strategy. We have

P(Ȳs = 1|Ys = 1) =
s

n
.

This term is increasing in s, i.e. the later we observe a candidate, the higher

the probability that she is best. The second part of the value function above,

i.e. the probability of winning with the best strategy from s+ 1 onwards, is,

by monotonicity of probability measures, decreasing in s. Hence, the optimal

strategy is of the form: pass the first s∗ draws and take the first candidate

thereafter.6

Given this form of an optimal strategy, we now compute EP[Vs∗+1|Fs∗ ]
as the probability of winning with the optimal strategy when rejecting s

applicants. By combinatoric considerations, we have for all k, and s∗ ≤ k

P(Ȳk = 1) =
1

n
, P(Ys∗+1 > 1, . . . , Yk−1 > 1) =

s∗

k − 1
,

meaning that the relatively best applicant in 1, . . . , k − 1 is in 1, . . . , s∗ − 1.

Hence, by independence,

P(Ys∗+1 > 1, . . . , Yk−1 > 1 ∧ Ȳk = 1) =
s∗

n(k − 1)
.

6In the process of modeling the problem in the risky and the ambiguous setup, we see

that this monotonicity property does not necessarily hold when n is not deterministic.
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2. AMBIGUOUS BEST-CHOICE PROBLEM

Summing up, we achieve the probability of accepting the best applicant

when accepting the first candidate after applicant s∗, i.e. the probability of

winning with a strategy of the optimal type:

EP[Vs∗+1|Fs∗ ]

= P

(
n⋃

k=s∗+1

{Y ∗s + 1 > 1, . . . , Yk−1 > 1 ∧ Ȳk = 1}

)
=

n∑
k=s∗+1

s∗

n(k − 1)
.

By equation (2.2), we have the optimal s, say s∗, to satisfy

s

n
≥ s

n

n∑
k=s+1

1

k − 1
∧ s− 1

n
<
s− 1

n

n∑
k=s

1

k − 1
,

or, equivalently, s∗ solves

n−1∑
k=s∗

1

k
≤ 1 <

n−1∑
k=s∗−1

1

k
.

Remark 2.2.4. The intuition of the last inequality is immediate: The ex-

pected number of candidates following s∗ − 1 has to be at least 1, whereas

the expected number of candidates following the one at s∗ has to be less than

one, having in mind that the last candidate is the best applicant. Intuitively,

a strategy that passes the first s∗ observations may fail if the best applicant

already appears among the first s∗ ones or if between the (s∗ + 1)st and the

best applicant there is candidate who is then mistakenly chosen.

Approximate results for s∗ are available: For large n, we can use the Euler

approximation and obtain

P(
n⋃
k=s

{Ys > 1, . . . , Yk−1 > 1 ∧ Ȳk = 1}) ≈ s

n
ln
n

s
.

Maximizing the last term yields s∗ = n
e

and a corresponding probability of

choosing the best of 1
e
, where e denotes the Euler constant.
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Remark 2.2.5 (On Snell envelopes). The foregoing proof was explicitly

achieved in terms of backward induction via the Bellman equation. This is,

however, just an explicit way of solving optimal stopping problems in terms of

Snell envelopes (Ui)i≤n.7 For the sake of completeness, we briefly reconsider

the foregoing proof: For an adapted processes (Xi)i≤n, the minimal optimal

stopping time is given by τ ∗ = inf{i ≥ 0|Xi ≥ Ui}, where the Snell envelope

(Ui)i≤n for the no-information Best-Choice problem is recursively defined by

Un := Xn = P(Ȳn = 1|Fn) = 1{Yn=1}(Yn)

Ui := max
{
Xi; EP[Ui+1|Fi]

}
= max

{
P(Ȳi = 1|Fi); EP[Ui+1|Fi]

}
for i < n. We see that this is just the Bellman equation.8 Having in mind

– as already extensively used – that the payoff only depends on the observed

rank of the applicant, we evaluate the distinct parts of the Snell envelope:

P(Ȳi = 1|Yi > 1) = 0,

P(Ȳi = 1|Yi = 1) =
i

n
,

EP[Ui+1|Fi] =
i

n

n−1∑
k=i

1

k
,

where the last equation is shown in the foregoing proof. Hence,

Ui = max

{
i

n
I{Y1=1} + 0I{Y1>1};

i

n

n−1∑
k=i

1

k

}

and we obtain as smallest optimal stopping rule

τ ∗ = min

{
i ≥ 1

∣∣∣∣∣ i

n
≥ i

n

n−1∑
k=i

1

k
∧ Yi = 1

}

= min

{
i ≥ s

∣∣∣∣∣ s = arg min
t≤n

{
t

n
≥ t

n

n−1∑
k=t

1

k

}
∧ Yi = 1

}
7The theory of Snell envelopes will be discussed in more detail in course of this article.
8In particular, we have (Ui)i≤n = (Vi)i≤n.
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= min

{
i ≥ s

∣∣∣∣∣
n−1∑
k=s

1

k
≤ 1 <

n−1∑
k=s−1

1

k
∧ Yi = 1

}
n→∞
≈ min

{
i ≥ 1

e

∣∣∣∣ Yi = 1

}
,

a solution, which of course equals our result in Proposition 2.2.3.

2.2.2 The Full-Information Best-Choice Problem

For the sake of completeness we briefly consider the Best Choice problem

without any ambiguity: We have full knowledge about the distribution of

applicants’ qualifications as well as the number of applicants is fixed.

Let therefore (Wi)i≤n be a family of random variables, iid with distribu-

tion F each. The agent wants to maximize the probability of choosing the

largest draw. Since only the largest counts and nothing else, we may without

loss of generality set F = U [0, 1], the uniform distribution on the interval

[0, 1]. Now, we call the ith draw a candidate if Wi = maxk≤i{Wk}.

In the no-information problem, s∗ observations were needed to gain infor-

mation. This is not the case here: If we, for example, observe the first draw

very close to unity, the probability of larger observations is relatively small

and hence, it might even be optimal, to accept the first draw. Thus, in the

current problem, the decision is not only contingent on an applicant being a

candidate or not and its time of observation but also on her current value.

As we will see, the general rule turns out to be: Accept the first candidate

exceeding some decision number corresponding to the qualification of that

applicant.

The sequence of optimal decision numbers may be obtained by backward

induction and only depends on the number of remaining draws: The last draw

Wn is always accepted. Hence, the decision number is b1 = 0. Assume that

we have not accepted an applicant up to the second to last, Wn−1 = w, and

that Wn−1 = maxi≤n−1Wi. Recall, that we will never accept non-candidates.
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Then

P(Wn ≥ w) = 1− w.

Hence, if w ≥ 1
2
, we choose it; otherwise, we go on, maximizing the probability

of winning in the second to last step. Hence, we have b2 = 1
2
. In this sense,

the decision numbers are just those values for candidates’ qualifications that

make the agent indifferent between stopping an going on just in the same

fashion as in the proof of Proposition 2.2.3.

In general: Let bi denote the decision number at the (n − i + 1)st draw.

Suppose we are faced with the (n−i)th draw Wn−i = w. In order to obtain the

optimal indifference value, we have to equate both parts of the Snell envelope

reducing to the following consideration: Expected payoff from accepting draw

n− i, the left hand side of the Snell envelope, is given by

P(Wn−i = max
t≤n

Wt|Wn−i = x = max
t≤n−i

Wt) = wi,

whereas expected payoff from going on, the right hand side of the Snell

envelope, is calculated by the following considerations: First, we observe

that the optimal decision numbers are increasing, i.e. decrease as we go on

with drawing since the probability of drawing a larger number decreases.

Hence, in later draws, we would choose any draw exceeding bi+1. Assume

Wn−i = w = bi+1:

• If there is only one such draw exceeding w, following our strategy, we

choose it.

• If two those occur, say y ≥ z ≥ w, we have P(y) = 1
2
.

• If three occur, say y ≥ z ≥ x ≥ w, we have P(y) = 1
3
.

• etc.
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Hence,

EP[Ui+1|Fi] =
i∑

k=1

1

k

(
i

k

)
wi−k(1− w)k.

Equating these probabilities, we obtain ∀i bi+1 = w as solution to

i∑
k=1

1

k

(
i

k

)
wi−1(1− w)k = wi

⇔ 1 =
i∑

k=1

1

k

(
i

k

)(
1− w
w

)k
,

leading to the following proposition on optimal stopping numbers:

Proposition 2.2.6. The problem is solved by the following optimal stopping

rule:

τ ∗ := min{i ≥ 1 | Wi ≥ bn−i+1 ∧ Wi = max
k≤i

Wk},

where the sequence (bi)i=1,...,n is achieved as above.

Proof. Again, in terms of the Snell envelope approach:

Un = P(Wn = max
i≤n

Wi|Fn) = 1{Wn=maxi≤nWi}(Wn),

Ui = max{P(Wi = max
k≤n

Wk|Fi); E[Ui+1|Fi]}

τ ∗ = min{i ≥ 1 | P(Wi = max
k≤n

Wk|Fi) ≥ Ui}

= min{i ≥ 1 | Wi ≥ bn−i+1 ∧ Wi = max
k≤i

Wk}.

The last equality is seen as follows: At Wi(ω) = x, i < n, the Snell envelope

is given by

Ui := max

{
P(Wi = max

k≤n
Wk|Wi = max

k≤i
Wk);

E[Ui+1|Wi = max
k≤i

Wk)]

}
I{Wi=maxk≤iWk}

+ max

0; E[Ui+1|Wi < max
k≤i

Wk) ]︸ ︷︷ ︸
>0

 I{Wi<maxk≤iWk}
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and the first term

max

{
P(Wi = max

k≤n
Wk|Wi = max

k≤i
Wk); E[Ui+1|Wi = max

k≤i
Wk)]

}
= max

{
wn−i ;

n−i∑
k=1

1

k

(
n− i
k

)
wn−i−k(1− w)k

}
.

Hence,

τ ∗ = min

{
t ≥ 1

∣∣∣∣∣W n−t
t ≥

n−t∑
k=1

1

k

(
n− t
k

)
W n−t−k
t (1−Wt)

k

∧ Wt = max
i≤t

Wi)

}
= min

{
t ≥ 1|Wt ≥ bn−t+1 ∧ Wt = max

i≤t
Wi)

}
.

2.2.3 A Further Refinement

One objection to the Secretary problem is that only the best choice counts.

Let us briefly consider the case when utility is given by the actual value of

the draw. Due to the fact that the agent obtains strictly positive utility even

from draws that are not candidates, the optimal stopping rule does not hinge

on an applicant being a candidate and hence it might be even optimal to

accept a non-candidate.

Let (Wi)i≤n be sequentially and independently drawn from a distribution

with density f . Define the Snell envelope U recursively by

Un := Wn,

Ui := max{Wi; E[Ui+1|Fi]}, 1 ≤ i < n.

Then, it is optimal to stop at τ ∗ := min{i ≥ 1|Ui = Wi}. We have

E[Un|Fn−1] = E[Wn|Fn−1] = E[Wn] =

∫
wf(w)dw := b1.
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Hence, the value of the problem at draw n− 1 is given by

Vn−1 = Un−1 = max{Wn−1; b1}.

At draw n − 1, accept Wn−1 if and only if Wn−1 ≥ b1. Let b2 denote the

value of the problem of length 2 when going on, i.e. b2 = E[Un−1|Fn−2].

Then, we accept Wn−2 at draw n − 2 if and only if Wn−2 ≥ b2: The family

(bi)i is a family of decision numbers as well as the value of not accepting the

current draw. Having a look at draw Wn−2, we have to decide whether to

go on or to accept that draw. We accept, if the draw exceeds the expected

value b2 of going on. How do we obtain this value? When going on, i.e.

after rejecting Wn−2, we accept Wn−1 if exceeding b1, i.e. with probability

P (Wn−1 ≥ b1) =
∫∞
b1
f(w)dw. In that case we obtain the expected value of

Wn−1 conditional on exceeding b1. We reject Wn−1 if smaller than b1, i.e.

with probability P (Wn−1 ≤ b1) =
∫ b1
−∞ f(w)dw, in which case we obtain the

expected value of the last draw, b1. Formally,

b2 = E[Un−1|Fn−2]

= P(Wn−1 ≥ b1)E[Wn−1|Wn−1 ≥ b1] + P(Wn−1 < b1) E[Wn|Wn−1 < b1]︸ ︷︷ ︸
=E[Wn]=b1

=

(∫ ∞
b1

f(w)dw

)
E[Wn−1|Wn−1 ≥ b1] + b1

∫ b1

−∞
f(w)dw

=

∫ ∞
b1

f(w)dw

∫∞
b1
wf(w)dw∫∞

b1
f(w)dw

+ b1

∫ b1

−∞
f(w)dw

=

∫ ∞
b1

wf(w)dw + b1F (b1).

Now, going on recursively, we set bi := E[Un−i+1|Fn−i] or equivalently

bn−j+1 = E[Uj|Fj−1]. Then, we accept Wn−i−1 if and only if Wn−i−1 ≥ bi+1.

We obtain the following recursive relation:

bi+1 = E[Un−i|Fn−i−1]

= P(Wn−i ≥ bi)E[Wn−i|Wn−i ≥ bi]
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+P(Wn−i ≤ bi) E[Un−i+1|Fn−i ∧ {Wn−i ≤ bi}]︸ ︷︷ ︸
E[Un−i+1|Fn−i]=bi

=

∫ ∞
bi

wf(w)dx+ biF (bi).

Since bn−j+1 is the expected value of rejecting the draw at j − 1, the value

function (equalling the Snell envelope) becomes Ui = max{Wi, bn−i}. For the

optimal stopping time, we have

τ ∗ = min{i ≥ 1|Ui = Wi} = min{i ≥ 1|Wi ≥ bn−i}

with (bi)i achieved recursively as above.

2.3 The No-Information Problem with a Risky

Number of Objects

The major contribution of this article is the extension of the Best-Choice

problem to an ambiguous number of applicants taking care of model risk. As

a first step, we relax the assumption of a known number of applicants and

consider the case of a risky number, i.e. with a given probability distribution

on the number of applicants. Now, in addition to the risk of missing out

on the best applicant in the setup with a fixed number, the agent is faced

with the danger of waiting too long and being surprised by having no further

choices.

2.3.1 A Review

There are several approaches to introduce risk about the number of appli-

cants. We briefly summarize two and elaborately discuss the model that

underlies this article. From a mathematical point of view, these approaches

are just alternative ways to pose the problem. However, from an economic

standpoint, they are quite different: which ansatz to prefer is a decision based

on faith in which parameters can possibly be known.
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[Stewart, 81] discusses both approaches: First, one might just assume the

number of applicants being a random variable N with known distribution

µ ∈ M(N). All other assumptions in the simple model preserve. In par-

ticular, applicants arrive at deterministic times. This approach is followed

in many articles: [Presman & Sonin, 72] apply a Snell envelope approach

to the Marcov chain of candidates. They show, that the optimal solution

of the problem is qualitatively different from the fixed-horizon setting: Dis-

tinct stopping islands may emerge, i.e. choosing a candidate may be optimal

within some interval of applicants followed by an interval, where accepting is

not optimal, again followed by an interval, where stopping is optimal, and so

on. Intuitively, in course of the application process, data is gathered about the

actual number of applicants that makes stopping at a candidate not optimal

even though it would have been optimal at an earlier stage with less informa-

tion. The reason for multiple stopping islands is owed to the fact that the

problem is not monotone any longer in case of risk. [Presman & Sonin, 72]

show that we still may use non-randomized stopping rules9 and, moreover,

give sufficient conditions to ensure single island rules.

[Gianini-Pettitt, 79] use the same approach to treat the problem of min-

imizing the expected rank. [Rasmussen & Robbins, 75] and [Rasmussen, 75]

also follow this approach for a bounded random variable N with known dis-

tribution and obtain results for increasing bound. However, they mistakenly

obtain a single island rule to be optimal for all distributions, contradicting

[Presman & Sonin, 72]. [Irle, 80] explicitly states a counterexample to this

single-island-statement and shows an algorithm to compute stopping islands.

Furthermore, a monotonicity condition is achieved as a sufficient condition

for optimality of a single island stopping rule. [Petrucelli, 83] gives sufficient

9Here, we distinguish between non-randomized and randomized stopping times: The

former ones are just adapted integer valued random variables, the latter ones are distri-

bution valued random variables, i.e. at some point in time, they do not specify whether

to stop or not but which distribution on stopping or not to choose.
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and necessary conditions on the distribution of N to obtain optimality of

single island rules. Moreover, [Petrucelli, 83] shows that virtually any family

of sets in N can be achieved as stopping islands of an optimal stopping rule

by appropriately selecting a distribution. [Petrucelli, 83] shows for bounded

distributions that only finitely many stopping islands are possible, i.e. there

exists an integer such that stopping will occur at the next candidate.

In [Samuel-Cahn, 96] and [Samuel-Cahn, 95], the author goes a slightly

different route: The problem is assumed with a fixed number n of applicants

but with a random freeze M . Hence, we have a problem with random number

of applicants N := n ∧M . For both settings, the full-information as well

as the no-information model, a sufficient and necessary condition on the

distribution of M implying optimality of a single island rule is derived. It

is shown that the setup with random horizon is equivalent to the simple

problem with horizon equalling the upper bound of the distribution and a

discount on payoffs induced by the distribution of M . In case of an optimal

single island rule, stopping occurs earlier than in the fixed horizon case du

to the discounting. [DeGroot, 68] considers a partial-information model with

random horizon.

A second approach doubts arrival times being deterministic: An appli-

cant is selected within a fixed time horizon but arrival times are randomly

distributed. [Gnedin, 96] applies a planar poisson process on [0, 1]×]−∞, 0]

to the full-information problem. [Bruss, 84] and [Bruss & Samuels, 87] use

the following model: Let arrival times be independently and identically dis-

tributed on the fixed interval [0, t], e.g. by a poisson process. Let the overall

random number N of applicants be independent of the arrival times but with

an unknown distribution. Then, knowledge of the arrival time distribution

fully compensates for ignorance of the number of applicants: The probability

of choosing the best is the same as for the simple problem, i.e. e−1. Whereas

in case of fixed arrival times and a known distribution of N , the probability of

choosing the best is significantly decreased. Of course, we may again achieve
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multiplicity of stopping islands. [Stewart, 81] uses an intermediate route in

assuming N being distributed via some prior and arrival times being i.i.d.

exponential random variables with known parameter. Then, upon arrival of

an applicant the belief about N is updated in a Bayesian manner. Given

this posterior distribution of N , optimization takes place as in the very first

approach. The idea underlying [Stewart, 81] is the incapability of achieving

a correct prior distribution for N as also assumed in [Bruss & Rogers, 91].

Hence, [Stewart, 81] introduces the non-informative prior of N basically as

some kind of “uniform distribution” on N. Of course, this is not a proper dis-

tribution but the posterior is. The posterior has to be taken as an additional

state variable in the value function V , whereas in [Rasmussen, 75] it is suf-

ficient to just truncate the prior distribution. However, the idea to compare

the value from stopping and the value from going on optimally is the same.

[Stewart, 81] shows that the optimal rule is of single island type and if large

values of N are likely, the optimal selection probability approaches that in

the fixed horizon problem, e−1. This observation is of particular importance:

In the deterministic case, misspecification of the number of applicants leads

to severe consequences as model risk is a serious issue. Within Stewart’s

model an exact estimation of N is not needed but results are quite stable.

Hence, model risk is considerably smaller in this setup: [Stewart, 81] achieves

robustness results showing that even for a relatively small number of appli-

cants as well as for an erroneous specification of the parameter of exponential

arrival rate (up to factor 2), the selection probability following the specified

rule is still quite close to the optimal case.

The “formal Bayes rule” obtained in [Stewart, 78] coincides with the op-

timal rule in the infinite horizon problem. [Bruss & Samuels, 87] extend this

insight and achieve that, for any loss function with finite risk in the infinite

secretary problem, the rule that is optimal in the infinite secretary problem

is formal Bayes in the sense of [Stewart, 78].

In the present article, we follow the first approach with fixed arrival times
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but unknown horizon, i.e. number of applicants. Based on this, we build

a model for an ambiguous number of applicants. There are as many good

reasons for the first as for the second approach. The main point for the latter

is that reliability theory indicates arrival times of uncertain events being

exponentially distributed. On the other hand, when considering financial

markets or atomic bomb inspection programs, we know at which times we

have a look at the market or at a potential repository but are not sure about

the time horizon.

2.3.2 A Specific Model

Let us now extend the simple no-information Best-Choice problem to the case

of a random number N of applicants with known distribution µ ∈ M(N),

µ(n) := µ(N = n), where M(N) denotes the set of distributions on N. As

we want to maximize the probability of choosing the best applicant, being

a candidate is a necessary condition to be accepted. Hence, the idea is to

only consider the candidate process instead of the applicant process. This

approach is found in [Presman & Sonin, 72].

Recall that Yk denotes the relative rank of applicant k among the first k

applicants, whereas Ȳk denotes the absolute rank of applicant k among all.

For k > N , we set Yk = Ȳk = ∞. First, we intuitively obtain the relevant

probabilities, then we rigorously introduce the probabilistic model at hand.

Given µ ∈M(N), k ∈ N, we have

Pµ(Yk = 1) = µ(N ≥ k)Pµ(Yk = 1|N ≥ k)

+µ(N < k)Pµ(Yk = 1|N < k)

= µ(N ≥ k)Pµ(Yk = 1|N ≥ k)

= µ(N ≥ k)Pµ(Yk = 1 ∧ N ≥ k)
1

µ(N ≥ k)

= Pµ(∪∞s=k{Yk = 1 ∧ N = s})
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=
∞∑
s=k

Pµ(Yk = 1 ∧ N = s)

=
∞∑
s=k

Pµ(Yk = 1|N = s)µ(s)

=
1

k

∞∑
s=k

µ(s) =
1

k
µ(N ≥ k).

Pµ(Ȳk = 1) =
∞∑
s=k

1

s
µ(s).

Pµ(Ȳk = 1|Yk = 1) =
Pµ(Ȳk = 1 ∧ Yk = 1)

Pµ(Yk = 1)
=

Pµ(Ȳk = 1)

Pµ(Yk = 1)

=

∑∞
s=k

1
s
µ(s)

1
k
µ(N ≥ k)

=
k

µ(N ≥ k)

∞∑
s=k

µ(s)

s
.

The last term is the value from stopping at applicant k being a candidate.

Note that this is just the µ-expectation of the value from stopping at appli-

cant k being a candidate in the “simple” problem:

Eµ

[
k

N

]
= Eµ

[
k

N

∣∣∣∣N ≥ k

]
1

µ(N ≥ k)
=

k

µ(N ≥ k)

∞∑
s=k

µ(s)

s
.

Following [Presman & Sonin, 72], we now separate the the payoff and

the applicant process. The latter is then refined to the candidate process

(ξi)i, where ξi = k means that the ith candidate is the kth applicant. We

now compute the distribution of this process. From the problem with fixed

number n ≥ k > l of applicants, i.e. µ(N = n) = 1, we have

Pµ(Yk = 1 ∩ Yk−1 > 1 ∩ · · · ∩ Yl+1 > 1|Yl = 1)

=
Pµ(Yk = 1 ∩ Yl = 1 ∩ {Yj > 1|j ∈ {l + 1, · · · , k − 1}})

Pµ(Yl = 1)

=
l

k
· 1

l
· l

l + 1
· . . . · k − 2

k − 1
=

l

k(k − 1)

This is the transition probability Pµ(ξi = k|ξi−1 = l) of the homogenous

Markov chain (ξi)i with state space {1, . . . , n} in case of a fixed N = n. For

a random number N of applicants with distribution µ, the distribution Pµ of
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(ξi)i is fully characterized by the initial distribution

Pµ ◦ ξ−1
1 = I{ξ1=1}

and the transition kernel pµ given by

pµ(l, k) := Pµ(ξi = k|ξi−1 = l)

= Pµ(Yk = 1 ∩ {Yj > 1|j ∈ {l + 1, · · · , k − 1}}|Yl = 1)

=
Pµ (Yk = 1 ∩ Yl = 1 ∩ {Yj > 1|j ∈ {l + 1, · · · , k − 1}} ∩N ≥ k)) + 0

Pµ(Yl = 1 ∩N ≥ l) + 0

=

Pµ
(
Yk = 1 ∩ Yl = 1
∩{Yj > 1|j ∈ {l + 1, · · · , k − 1}}

∣∣∣∣N ≥ k

)
µ(N ≥ k)

Pµ({Yl = 1|N ≥ l)µ(N ≥ l)

=

{
lµ(N≥k)

k(k−1)µ(N≥l) l < k <∞,
0 l ≥ k,

∀k ≥ 2,

pµ(∞,∞) = 1, pµ(l,∞) = Pµ(Ȳl = 1|Yl = 1) =
l

µ(N ≥ l)

∞∑
s=l

µ(s)

s
.

Having entirely characterized the candidate process (ξi)i by its distribution,

we turn to the appropriate payoff function given by the probability of a candi-

date being the best: given ξi = k, set gµ(k) := pµ(k,∞) = k
µ(N≥k)

∑∞
s=k

µ(s)
s

.

Theorem 2.1 in [Presman & Sonin, 72] shows that it suffices to only consider

the Markov chain of candidates to solve the Best-Choice problem and ne-

glect all elements with zero payoff, the “non-candidates”, as those will never

be chosen.

Definition 2.3.1 (Best-Choice problem under risk). Following the approach

in [Presman & Sonin, 72], the Best-Choice problem with a risky number of

applicants for a distribution µ ∈M(N) is given by the candidate process (ξi)i

with transition kernel pµ(·, ·) and payoff function gµ(·) as above.

The Snell envelope for optimally stopping the process (gµ(ξi))i is, at ξi =
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k, given by

Uµ
ξi

:= max
{
gµ(ξi) ; Eµ[Uµ

ξi+1
|Fk]

}

= max


k

µ(N ≥ k)

∞∑
s=k

µ(s)

s
;

∞∑
s=k+1

k

s(s− 1)

µ(N ≥ s)

µ(N ≥ k)︸ ︷︷ ︸
=:p(k,s)

Uµ
s

 ,

where the first term is the probability of choosing the best when stopping at

the current candidate and the second term the probability of choosing the

best by going on and optimally decide whether to stop at the next candidate.

Due to homogeneity, only the value k of the variable ξi is of interest. This is

also the reason for our modest change of notation: We now write Uµ
ξi

instead

of Uµ
i for the Snell envelope and thereby make explicit that the problem we

consider now is not stated in terms of the applicant process any longer but

in terms of the sub-process of candidates.

E.g. in [Riedel, 09] it is mentioned that Uµ
ξi

is the smallest supermartingale

exceeding the payoff process gµ(ξi) := ξi
µ(N≥ξi)

∑∞
s=ξi

µ(s)
s

and hence, it is

optimal to accept candidate i being applicant ξi = k, whenever Uµ
k ≤ gµ(k).

In other terms, the optimal stopping set Γµ is given by

Γµ = {k|Uµ
k ≤ gµ(k)}

and the smallest optimal stopping time is

τ ∗ := min{i|ξi ∈ Γµ} = min{i|Uµ
ξi
≤ gµ(ξi)},

where stopping at τ = i means stopping at the ith candidate, not at the ith

applicant. However, k ∈ Γµ means to stop at applicant k being a candidate.

For more intuition on Γµ consider Section 2.4.2.

The main virtue of this article is to generalize the above model to the case

of an ambiguous number of applicants and to find conditions for finitely many

stopping islands, i.e. to generalize the results in [Presman & Sonin, 72].
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2.4 The No-Information Problem with an Am-

biguous Number of Objects

There are basically two approaches to model ambiguity: On one side, multi-

ple priors or equivalently coherent risk measures, on the other side Choquet

integrals. It is not just a matter of taste which ansatz to apply but what

shall be modeled. The first route to model behavior under uncertainty is

by virtue of non-additive probabilities or capacities applying Choquet inte-

gration for evaluation of “expected utility”. As not followed here, we just

have brief a look at the intuition of this approach. A valuable introduction

to capacities and the related Choquet integral can be found in [Skulj, 01].

[Chateauneuf, 1991] gives economic content to the theory by presenting an

“expected utility theorem” for capacities by virtue of Choquet integrals serv-

ing as expected utility. Furthermore, a connection to multiple priors expected

utility on convex sets of additive probabilities is drawn and hence an equiv-

alence to the multiple priors framework: An agent is ambiguity averse in

the sense of [Gilboa & Schmeidler, 89] if and only if the ruling non-additive

probability is convex. The gap of the total capacity to unity is a measure

for ambiguity ; measures for convexity of the capacity are in this sense mea-

sures for ambiguity aversion. A concave capacity is connected to an agent

who is ambiguity loving. In case of an additive probability, there is no am-

biguity or, more precisely, ambiguity does not matter to the agent. This is

equivalent to the case of a unique prior in the multiple priors theory. Then

the worst-case measure as obtained in [Chateauneuf, 1991] or in [Riedel, 09]

for the distinct theories coincides with this unique prior additive probabil-

ity. For a convex capacity, [Marinacci, 99] gives an explicit description of

a worst-case measure, i.e. a probability distribution such that the integral

with respect to that distribution and the Choquet integral coincide or, equiv-

alently, the expected utilities coincide. [Gilboa, 87] generalizes the expected

utility theorem for additive probabilities step by step to capacities and ex-
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plicitly compares additive and non-additive theory. Further representations

as well as equivalence results of convex capacities and multiple priors may

be found in [Schmeidler, 86], [Schmeidler, 89] or [Yaari, 87]. In the latter

reference, capacities are generated by monotone increasing distortions of ad-

ditive probabilities. An introduction to Choquet integration and its relation

to coherent risk measures can also be found in [Föllmer & Schied, 04].

The second approach is the multiple priors framework as introduced in

[Gilboa & Schmeidler, 89]. They obtain a representation result for uncer-

tainty averse agents’ preferences in terms of minimal expected payoff, i.e.

expected reward is calculated as the minimized expected value with respect

to some set of prior distributions. [Epstein & Schneider, 03] extend this ap-

proach to a dynamic context where dynamic consistency leads to a recursive

representation of utility: Assuming conditional preferences at each time-event

pair to satisfy the axioms in [Gilboa & Schmeidler, 89] and the process of

conditional preferences being dynamically consistent, the value function is

obtained recursively. The notion of time-consistency, intuitively stating that

the set of prior distributions is closed under pasting, is rigorously introduced

in the next section.

The advantage of the approach in terms of capacities is to explicitly deliver

a measure of ambiguity aversion. In our model below we make use of multiple

priors. Therein an agent is assumed to be ambiguity averse and the expansion

of the set of priors might possibly measure ambiguity averseness. [Riedel, 09]

shows that this framework is adjuvant for optimal stopping problems. A

further reason for the multiple priors framework is merely a question of belief:

under the assumption of ambiguity aversion, is it easier to specify a unique

capacity or to give a full range of additive probabilities that seem possible for

the agent to rule the world? As we have seen above in the discussion of the

literature on capacities, the Choquet approach and multiple priors framework

are equivalent under mild conditions.
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2.4.1 General Theory of Optimal Stopping with Mul-

tiple Priors

For multiple prior preferences, [Riedel, 09] derives a general theory of optimal

stopping when the set of multiple priors is time-consistent. A recursive repre-

sentation of the value function allows for a generalization of the Snell envelope

approach in [Neveu, 75] and, hence, of the backward induction principle to

ambiguous settings. As the Snell envelope is the smallest supermartingale

dominating payoff in the risky case, we see that an appropriately generalized

Snell envelope is the smallest multiple prior supermartingale with this prop-

erty in the ambiguous case. As in the classical case, it is optimal to stop when

the value of the multiple prior Snell envelope equals the payoff from stop-

ping. Thereunto, [Riedel, 09] introduces a general theory of multiple prior

(sub-/super-)martingales.

Intuition

We briefly recap the framework in [Riedel, 09]. Given an arbitrary underlying

probability space (Ω,F ,P0) with filtration (Ft)t, a multiple prior martingale

is a process (Mt)t that satisfies Mt = ess infP∈Q EP[Mt+1|Ft] for some set Q
of prior distributions all being assumed locally equivalent to P0. Hence, a

minimax martingale is a submartingale for all distributions in Q and, in case

of time-consistency, a martingale with respect to some worst-case distribution

in Q. In this sense, it is a fair game for an ambiguity averse agent who always

expects nature to choose the worst distribution. Given time-consistency, the

minimax Snell envelope is the lower envelope of the Snell envelopes with

respect to priors in Q and it is the classical Snell envelope with respect to

the worst case distribution in Q. This amounts to the following main insight:

Remark 2.4.1. Assuming time-consistency, the ambiguity averse agent be-

haves as the Bayesian expected utility maximizer given the worst case distri-

bution in the set of priors Q.
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This formalizes the precious intuition that ambiguity averse agents expect

nature to be malevolent. Put another way: solving an optimal stopping

problem reduces to finding the worst case distribution and then solving the

problem as in the Bayesian setup.10

This insight simplifies the solution to the Best-Choice problem in the

multiple priors framework: Whereas [Hill & Krengel, 91] need randomized

stopping times in the uncertain case, [Abdel-Hamid et al., 82] as well as

[Presman & Sonin, 72] have shown that it suffices to consider non-randomized

rules in the Bayesian setup. Hence, we have:

Remark 2.4.2 (On randomized stopping rules). The optimal stopping time

for the ambiguous Best Choice problem in case of time-consistent multiple

priors is non-randomized.11

Rigorous Set-up and Results

We now formally introduce the results in [Riedel, 09]. let (Ω,F ,P0) be a

probability space with filtration (Ft)t. P0 serves a s a reference distribution.

The time horizon might be finite or infinite. Given a bounded adapted payoff

process (Xt)t, the agent tries to maximize payoff by appropriately choosing a

stopping time τ with respect to (Ft)t. The main assumption is that the distri-

bution of (Xt)t is not entirely known but belongs to a convex, weakly compact

set Q of measures that are (locally) equivalent to P0
12 or, equivalently, that

the agent is an ambiguity averter in the sense of [Gilboa & Schmeidler, 89].

10This is actually not precisely the case for the ambiguous Best-Choice problem as we

will see later: Given the worst case distribution the agent solves a problem that is just

related to the Best-Choice problem under risk.
11Please recall the distinction between randomized and non-randomized stopping times:

a non-randomized stopping time or just stopping time is a random variable τ such that

{τ ≤ t} ∈ Ft, whereas a randomized stopping time specifies a probability distribution

whether to stop or not upon arrival at t.
12Note that Q consists of distributions of the payoff process (Xt)t. The assumptions

made so far ensure suprema and infima to be maxima and minima, respectively.
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Hence, the agent has to solve

max
τ

min
P∈Q

EP[Xτ ].

The following assumption is crucially needed for this approach to be feasible.

Assumption 2.4.3. Let Q be time-consistent.

The following definition is taken from [Riedel, 09]. Therein, equivalent

definitions are discussed.

Definition 2.4.4 ([Riedel, 09], Assumption 4). A set of priors Q is said to

be time-consistent if for all P and Q in Q and stopping times τ the “pasted”

distribution R defined by virtue of

dR
dP0

∣∣∣∣
Ft

:=

{
pt if t ≤ τ ,
pτ qt
qτ

else

also belongs to Q, where dQ
dP0

denotes the Radon-Nikodym derivative with re-

spect to P0 and pi (resp. qi) denotes the density process of P with respect to

P0, i.e. ∀ i ∈ N

pi :=
dP
dP0

∣∣∣∣
Fi
.

Intuitively, Q is assumed to be closed under pasting: at any time-event

pair, combining marginals of P ∈ Q with conditionals of other priors in Q
has to be in Q again. This implies that Q is uniquely determined by the

process of conditional one-step-ahead distributions. In the above definition,

R is obtained as a distribution given by P up to time τ and Q thereafter

We now recall the mathematical concept crucial for our model:

Definition 2.4.5 ([Riedel, 09], Definition 1). Let Q be a time-consistent set

of priors. Let (Mt)t be an adapted process with EP[Mt] < ∞ ∀P ∈ Q and

∀t ∈ N. (Mt)t is called a multiple prior (sub-, super-) martingale with respect

to Q if ∀t ∈ N, it holds

ess inf
P∈Q

EP[Mt+1|Ft] = (≥,≤)Mt a.s.
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[Riedel, 09] shows that (Mt)t is a multiple prior submartingale if and

only if (Mt)t is a submartingale for all P ∈ Q. (Mt)t is a multiple prior

supermartingale if and only if there exists a P∗ ∈ Q such that (Mt)t is a

P∗-supermartingale. (Mt)t is a multiple prior martingale if and only if (Mt)t

is a submartingale for all P ∈ Q and there exists a P∗ ∈ Q such that (Mt)t

is a P∗-martingale. Hence, an ambiguity averse agent considers a game fair,

if it is non-disadvantageous for all priors and fair for the worst case prior P∗.
For existence of this worst case distribution P∗, time-consistency is crucially

needed as it is achieved by pasting instantaneous worst case distributions

recursively. It is shown in [Riedel, 09] that the Doob decomposition and

the optional sampling theorem are still valid for minimax martingales given

time-consistency. In a forthcoming article, we extend this notion and the

respective results to the case of dynamic variational preferences or, equiva-

lently, dynamic convex risk measures. The next theorem is the main result

in [Riedel, 09]: Let first T be finite.

Definition 2.4.6 ([Riedel, 09], Theorem 1). The multiple prior Snell enve-

lope U := (Ut)t of X := (Xt)t with respect to Q is defined recursively by

virtue of UT = XT and for all t < T

Ut := max

{
Xt, ess inf

P∈Q
EP[Ut+1|Ft]

}
.

Theorem 2.4.7 ([Riedel, 09], Theorem 1). Let Q be time-consistent, then

U is the smallest multiple prior supermartingale exceeding X. U is the value

process of the optimal stopping problem under ambiguity, i.e.

Ut = ess sup
τ≥t

ess inf
P∈Q

EP[Xτ |Ft].

The smallest optimal stopping time is τ ∗ := inf{i ≥ 0|Ui = Xi}.

The proof follows an insightful idea: At each time-event pair, we cal-

culate a one-step-ahead worst case distribution and then paste it with the

worst case distribution already obtained from the following time period on.
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Following this procedure recursively, we obtain a worst case distribution P∗

of the payoff process (Xt)t. As already stated, we have that the multiple

prior Snell envelope U with respect to Q equals the Snell envelope UP∗ of

the payoff process (Xt)t under P∗. In this sense, the ambiguity averse agent

behaves as the expected utility maximizer under a worst case distribution.

We hence have a minimax theorem:

Proposition 2.4.8 ([Riedel, 09], Theorem 2). (Ut)t is the lower envelope

of the Snell envelopes (UP
t )t w.r.t. the priors P ∈ Q, and this envelope is

attained by the worst case prior P∗, i.e. Ut = ess infP∈Q U
P
t = UP∗

t . More

precisely, we have

Ut = ess sup
τ≥t

ess inf
P∈Q

EP[Xτ |Ft] = ess inf
P∈Q

ess sup
τ≥t

EP[Xτ |Ft]

= ess inf
P∈Q

UP
t = UP∗

t .

For sake of completeness, we state the results in [Riedel, 09] for the infinite

horizon case, i.e. T =∞.

Definition 2.4.9 ([Riedel, 09], Equation (6)). The value function V := (Vt)t

of the optimal stopping problem on (Xt)t is defined as

Vt := ess sup
τ≥t

ess inf
P∈Q

EP[Xτ |Ft].

Theorem 2.4.10 ([Riedel, 09], Theorem 3). V is the smallest multiple prior

supermartingale with respect to Q exceeding X. V satisfies the Bellman equa-

tion

Vt = max

{
Xt, ess inf

P∈Q
EP[Vt+1|Ft]

}
for all t ≥ 0. The smallest optimal stopping time is given by τ ∗ := inf{i ≥
0|Vi = Xi} provided that τ ∗ <∞ a.s.

We can approximate infinite by finite horizon problems:
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Proposition 2.4.11 ([Riedel, 09], Theorem 4). Denote by UT the multiple

prior Snell envelope of the optimal stopping problem of X with horizon T .

Then limT→∞ U
T
t = Vt for all t ≥ 0, where (Vt)t denotes the infinite horizon

value function.

These results particularly show that the value function and the multiple

prior Snell envelope coincide for an ambiguous problem. Moreover, the value

function and the Snell envelope in the risky set-up are equal.

2.4.2 The Model

We introduce ambiguity on the number of applicants in the Best-Choice prob-

lem. In [Chudjakow & Riedel, 09], ambiguity comes into account by virtue

of ambiguous orderings of the applicant process but with a fixed number of

applicants, i.e. [Chudjakow & Riedel, 09] assume distinct sets of ordering

distributions.

In [Hill & Krengel, 91], we see an extreme case of ambiguity: Basically

nothing is known about the distribution of N , the number of applicants.

However, we have to notice the formal difference between ambiguity therein

and in the sense of [Riedel, 09]: In the former, ambiguity is introduced by

non-uniqueness of priors µ ∈ M(N) on the number of applicants. In the

approach in [Riedel, 09], a prior is a distribution of the payoff process (Xi)i.

Thus, ambiguity in our ansatz comes into account by assuming a whole set

Q of possible prior distributions of the payoff process.

In a first approach, the problem seems to be transforming a distribution

µ ∈ M(N) on the number N of applicants to a distribution of the payoff

process (Xµ
i )i: Therefore, we first would have to appropriately define the

payoff process (Xµ
i )i given µ. Thereafter, it would suffice to give an ini-

tial distribution and a stochastic kernel to obtain a distribution of the pay-

off process as done in Section 2.3.2 mimicking [Presman & Sonin, 72]. We

hence obtain a one-to-one mapping from the set of priors on the number
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of applicants to the set of priors on the payoff process and may solve the

problem as in [Riedel, 09]. This approach directly generalizes the model in

[Presman & Sonin, 72]. However, we will see that time-consistency turns out

to be an integral problem. In a second approach, we find a remedy for the

time-consistency issue when modeling ambiguity in terms of assessments.

Although the first approach does not immediately lead to a solution, we

briefly consider it here as the calculations are the cornerstone for the second

approach and we explicitly note impossibility of time-consistency in the first

ansatz.

The Payoff Process and its Distribution for given µ ∈M(N)

We briefly recall the setup leading to the appropriate payoff process in several

steps. Let Yk be the relative rank of applicant k within the first k applicants

and Ȳk its absolute rank among all. Set Yk = ∞ for k > N . We again

fix an underlying space (Ω,F ,P0) and define a filtration by virtue of Fk :=

σ(Y1, . . . , Yk), k ∈ N. Intuitively, Fk states whether applicant k is a candidate

or not and in particular if k ≤ N . Payoff is unity if we have successfully

chosen the best applicant and zero else. However, the process

Xk :=

{
1 if Ȳk = 1,
0 else

}
= IȲk=1

is not Fk-measurable since Ȳk 6∈ Fk. Hence, the above definition does not

yield an admissible payoff process. The intuitive reasoning is just that upon

interviewing applicant k, we do not know if she is best among all. Otherwise,

the problem would be equivalent to the parking problem, where the agent,

upon observing an open lot, knows the utility that he gains from parking

there. Hence, as in the classical case, the best the agent can do is to cal-

culate the conditional expected payoff from accepting an applicant given the

information available and use this as payoff process to be maximized. This

payoff is equivalent to calculating the probability of an applicant being best
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among all. If the number of applicants is fixed at N = n, the payoff process

(Xδn
k )k is

Xδn
k := E[IȲk=1|Fk] = P(Ȳk = 1|Fk)

=

{
k
n

if Yk = 1,
0 if Yk > 1.

By definition Xδn
k ∈ Fk. Hence, (Xδn

k )k is an admissible payoff process.

In case that the number of applicants N is a random variable with dis-

tribution µ ∈ M(N), µ(N = s) =: µ(s), the conditional probability that

applicant k is best, and hence the payoff process, is given by

Xµ
k := Eµ[IȲk=1|Fk] =

{
k

µ(N≥k)

∑∞
s=k

µ(s)
s

if Yk = 1,

0 if Yk > 1.

The respective calculations are stated in Section 2.3.2.

As in [Presman & Sonin, 72] we separate the applicant process from the

payoff process and w.l.o.g. reduce the former to the corresponding candidate

process since non-candidates generate payoff zero and, hence, will never be

chosen.

More formally: Consider the Markov chain zk := (Yk, k) with payoff

gµ(zk) = gµ(Yk, k) := Xµ
k . Theorem 2.1 in [Presman & Sonin, 72] now al-

lows for the following: Define the process (ξi)i by virtue of ξ1 = 1, ξk :=

min{n > ξk−1|gµ(zn) > 0}, i.e. ξi is the arrival time of the ith candidate.

We then set Zi := zξi . It is shown that the stopping problems are equiv-

alent, i.e. the maximal expected values from stopping (zk)k equals that of

(Zi)i. Hence, we may reduce our analysis to the candidate process Zi. Since

Zi = zξi = (1, ξi), we identify Zi ≡ ξi and gµ(ξi) ≡ gµ(1, ξi). Hence, we have:

Remark 2.4.12. The Best-Choice problem under risk is reduced to optimally

stop the candidate process (ξi)i with corresponding payoff function gµ(ξi) =

Xµ
ξi

= ξi
µ(N≥ξi)

∑∞
s=ξi

µ(s)
s

.

In order to solve the problem, we need to characterize the distribution

Pµ of (ξi)i, which then of course also yields the distribution of Xµ
ξi

= gµ(ξi).
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Given µ, this is entirely achieved by the initial distribution

Pµ ◦ ξ−1
1 = I{ξ1=1},

as the first applicant is obviously a candidate, and the homogenous proba-

bility kernel (cf. Section 2.3.2)

pµi−1(l, k) := pµ(l, k) := Pµ(ξi = k|ξi−1 = l)

=

{
lµ(N≥k)

k(k−1)µ(N≥l) , l < k <∞,
0 l ≥ k,

∀i ≥ 2 (2.3)

pµ(∞,∞) = 1,

pµ(l,∞) = Pµ(Ȳl = 1|Yl = 1) =
l

µ(N ≥ l)

∞∑
s=l

µ(s)

s
.

pµ(l, k) is the probability that the kth applicant is a candidate given the

foregoing candidate is applicant l. Note that this is the transition kernel of

a homogenous Markov chain: intuitively, not the time of appearance of the

candidate matters but the time of appearance of the applicant being that

candidate.

The Payoff Process in an Ambiguous Setting – A First Approach

Let µ ∈ Q̃ ⊂ M(N), the set of priors on N. The aim in this section is to

define an appropriate payoff process as well as the set Q of priors on that

process corresponding to the set Q̃ of priors on applicants.

Assumption 2.4.13. Let Q̃ be closed and convex. If µ1, µ2 ∈ Q̃, then

sup{n|n ∈ supp(µ1)} = sup{n|n ∈ supp(µ2)}.

The last assumption ensures the corresponding set Q of distributions Pµ

of the candidate process (ξi)i via equation (2.3) being equivalent as imposed

in [Riedel, 09].13 Observing applicant ξi = k, the ambiguity averse agent

13This immediately follows from equation (2.3): if µ1(N ≥ k) = 0 for some k, then

the same has to hold for µ2, otherwise, the candidate process corresponding to µ2 puts

positive probability on events that are null sets under the process corresponding to µ1.
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evaluates her minimax expected value from choosing her as

XQ̃k := min
µ∈Q̃

Eµ[IȲk=1|Fk]

=

{
minµ∈Q̃

{
k

µ(N≥k)

∑∞
s=k

µ(s)
s

}
if Yk = 1,

0 else.

This payoff is an immediate consequence of [Gilboa & Schmeidler, 89] in a

static set up. By definition, XQ̃k ∈ Fk and hence an admissible payoff process.

We have seen, that every µ ∈ Q̃ ⊂ M(N) corresponds to a distribution

Pµ of the candidate process (ξi)i by virtue of equation (2.3), but with payoff

function

gQ̃(ξi) := XQ̃ξi = min
µ∈Q̃

{
ξi

µ(N ≥ ξi)

∞∑
s=ξi

µ(s)

s

}
. (2.4)

Hence, Q̃ corresponds to some set

Q := {Pµ := I{ξi=1} ⊗ (pµ)N | µ ∈ Q̃} (2.5)

of priors Pµ of (ξi)i, where pµ is defined in equation (2.3). Note, that µ is

fixed in Pµ, i.e. does not switch to another prior on the number of applicants

in course of time; this eventually will cause the time-consistency issues.

Remark 2.4.14 (Model I). Given Q̃, we may now solve the optimal stopping

problem of the candidate process (ξi)i with payoff gQ̃ as in equation (2.4) for

an ambiguity averse agent facing Q from equation (2.5). In other words, we

have the optimal stopping problem of the model (Ω,F ,P0, (Fξi)i, (XQ̃ξi )i,Q) as

in [Riedel, 09].

Remark 2.4.15. This model is an eligible generalization of the Best-Choice

problem under risk, as it holds for any stopping time τ

inf
Pµ∈Q

EPµ
[

min
µ∈Q̃

{
ξτ

µ(N ≥ ξτ )

∞∑
s=ξτ

µ(s)

s

}]
= inf

Pµ∈Q
EPµ [I{Yj>1 ∀j>ξτ}

]
.

This fact immediately follows from construction or, explicitly, from Lemma

1 in [Chudjakow & Riedel, 09].
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When choosing a stopping time τ , we may calculate the (minimax) ex-

pected reward infPµ∈Q EPµ [XQ̃ξτ ] and the agent’s problem is

sup
τ

inf
Pµ∈Q

EPµ [Xξτ ] = sup
τ

inf
Pµ∈Q

EPµ
[

min
µ∈Q̃

{
ξτ

µ(N ≥ ξτ )

∞∑
s=ξτ

µ(s)

s

}]
.

More formally, the (multiple prior) value (V Q̃ξi )i of the candidate process

at candidate i is

V Q̃ξi := ess sup
τ≥i

ess inf
P∈Q

EP[gQ̃(ξτ )︸ ︷︷ ︸
XQ̃ξτ

|Fξi ].

Again, we slightly misuse notation: We are now faced with optimally stopping

the payoff process (X̄i
Q̃

)i := (XQ̃ξi )i adapted to the filtration (F̄i)i := (Fξi)i.
To be entirely in line with the notation from the general theory, the value

is actually given by V Q̃i = ess supτ≥i ess infP∈Q EP[X̄Q̃τ |F̄i]. However, we con-

sider the notation in terms of (V Q̃ξi )i more handy in our model. It furthermore

makes explicit the relation of the reduced problem to the“simple”Best-Choice

problem as we see that the value process of the candidate process is just a

sub-process of the value process of the applicant process; the same holds true

for the filtration. In this setup, a stopping time τ does not mean to stop at

applicant τ but at candidate τ , i.e. at applicant ξτ . Note, in case of a unique

µ, the above expression reduces to value function in [Presman & Sonin, 72].

Problems and their Removal

Before we go on, we have to answer two questions: Are all properties satisfied

in order to apply the theory in [Riedel, 09]? Does the set-up make sense from

an economic point of view?

Answering the first question is equivalent to posing the question whether

we can identify properties of Q̃ in order for Q to be time-consistent. As we

will see in Proposition 2.4.16, constructing Q as above, we cannot obtain
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Q to be time-consistent. Of course, from a mathematical point of view, we

could introduce something like a time-consistent hull of Q:

TC(Q) :=
{
I{ξi=1} ⊗∞i=1 p

µi
i

∣∣ pµii as in equation (2.3) for some µi ∈ Q̃
}
.

This approach has two major disadvantages: First, it only allows for simply

pasting kernels from distributions in Q. However, we have to change the

internal structure of kernels for a meaningful formalization of the notion

of time-consistency in this context, since kernels do not just incorporate

a marginal distribution of µ at the respective candidate but a probability

induced by that µ of all future applicants, in particular of applicants beyond

the time of pasting. More formally, if we paste at candidate t, then, being at

candidate k < t, the kernel used at k incorporates the respective measure µ1

also for times beyond t via the term µ1(N ≥ k), where µ2 is the generating

measure. Secondly, a pasted distribution in TC(Q) does not correspond to

a distribution in Q̃ in general, i.e. there are distributions in TC(Q) that

cannot be induced by a single distribution in Q̃. In particular, we might

achieve a worst case distribution that is not induced by a prior in Q̃.

Having obtained the set of priors Q on the candidate process (ξi)i from

the set of priors Q̃ on the number of applicants by virtue of equation (2.5),

recall that time-consistency in terms of Definition 2.4.3 assumes Q to be

closed under pasting.

Proposition 2.4.16. If µ1 6= µ2 ∈ Q̃ with corresponding priors P1 6= P2 ∈
Q, 1 ≤ t ≤ max{n|n ∈ supp(µi)}, and we define P3 by virtue of P3 :=

Iξ1=1 ⊗ p1 ⊗ . . . ⊗ p1 ⊗ p2 ⊗ . . ., where pi are the respective kernels, i.e. P3

is obtained by pasting kernels at candidate t. Then, there does not exist any

µ ∈M(N) generating P3 via equation (2.3). In particular, Q generated from

Q̃ by virtue of equation (2.5) cannot be time-consistent as P3 6∈ Q.

Proof. Assume, there exists µ̃ ∈ Q̃ s.t. pµ̃(l, k) is generated from µ̃ as in

equation (2.3), i.e.

pµ̃i−1(l, k) =
l

k(k − 1)

µ̃(N ≥ k)

µ̃(N ≥ l)
∀l < k <∞, i ≥ 2
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and

pµ̃i−1(l, k) =
l

k(k − 1)

µ1(N ≥ k)

µ1(N ≥ l)
∀l < k <∞, t > i ≥ 2,

pµ̃i−1(l, k) =
l

k(k − 1)

µ2(N ≥ k)

µ2(N ≥ l)
∀l < k <∞, i ≥ t.

Set l = 1 and obtain

1

k(k − 1)
µ1(N ≥ k) = pµ̃1(1, k) =

1

k(k − 1)
µ̃(N ≥ k) k > 1,

implying µ̃ = µ1. Likewise, we see µ̃ = µ2, Contradicting µ1 6= µ2. In

particular we would have P1 = P2 = P3.

In order to generate a time-consistent model, we now consider the follow-

ing definition motivated by the proof of Proposition 2.4.16:

Definition 2.4.17. For µ1, µ2 ∈ Q, t ∈ N, let µ̃ ∈ Q defined as

µ̃(i) :=
1

µ1(N < t) + µ2(N ≥ t)

{
µ1(i) if i < t,

µ2(i) if i ≥ t.

The corresponding kernel is given by

pµ̃(l, k) =
l

k(k − 1)

µ̃(N ≥ k)

µ̃(N ≥ l)

=
l

k(k − 1)


µ2(N≥k)
µ2(N≥l) k > l ≥ t,

µ2(N≥k)
µ1(t>N≥l)+µ2(N≥t) k ≥ t > l,
µ1(t>N≥k)+µ2(N≥t)
µ1(t>N≥l)+µ2(N≥t) t > k > l,

0 else.

However, having a look at this kernel, we immediately observe the following

problem: Given a stopping time τ , i.e. stop at candidate τ , i.e. stop at

applicant ξτ = t. Consider the case ξτ = t > l = ξi−1, in particular τ > i− 1.

Hence, we have that P(ξi = k|ξi−1 = l) is not Fξi−1
-measurable but Fξτ -

measurable by the above formula, contradicting the general properties that

conditional probabilities have to satisfy. Hence, this is not an admissible

density process since we need future information.

In the next section, we come up with an appropriate notion taking care

of time-consistency as well as measurability problems.
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Ambiguity in terms of Assessments

As seen, a straightforward generalization of [Presman & Sonin, 72]’s model

leads to time-inconsistency, non-measurability as well as to properties that

are hard to justify in economic terms. We now tackle these issues. The

problem of time-consistency arises because Q̃ does not incorporate any notion

of time, whereas Q does. Hence, we consider the following definition:

Definition 2.4.18. A sequence µ := (µ1, µ2, . . .) ∈ M(N)N is called an

assessment.

Notation 2.4.19. In order to keep notation simple, we stick to our old

notation though the content has changed: Now, µ denotes an assessment

and not an element in M(N), whereas µi is the generic notation for these

distributions. Q̃ now denotes a set of assessments, not of simple distributions

any longer and Q defined below is the set of priors corresponding to the set

Q̃ of assessments.

Intuitively, given an assessment (µi)i, µk denotes the distribution on the

number of applicants, the agent thinks to be correct upon observing applicant

k. We do not assume µk(i) = 0 for i < k; in particular, µk is in general not

the distribution conditional on N ≥ k. Recall that the aim is to find a

time-consistent set Q of distributions of (ξi)i. Hence, let us now assume that

the agent has a set Q̃ consisting of assessments. Assume that an assessment

induces a distribution of (ξi)i via the kernels

P∗(ξi = k|ξi−1 = l) :=

{
l

k(k−1)
µi(k)+µi+1(k+1)+...
µi−1(l)+µi(l+1)+...

if k > l,

0 else,

or alternatively

P∗∗(ξi = k|ξi−1 = l) :=

{
l

k(k−1)

µk(k)+µk+1(k+1)+...

µl(l)+µl+1(l+1)+...
if k > l,

0 else.

Note, that the first kernel does not only depend on k and l but also on i.

Now, pasted kernels correspond to some assessment and in order to achieve
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time-consistency, this is assumed to be in Q̃. Note, that the second kernel

is the one induced by µ̃ ∈M(N) defined by µ̃(i) := 1P
j≥1 µj(j)

∑
j≥1 Ij=iµi(i),

µi(k) := µi(N = k). However, having a look at this approach we immediately

observe two aspects: Pasting assessments, we may easily run into the same

measurability problems as before. Furthermore, both kernels do not have to

be probability kernels. Even more severe, the first approach does not make

sense, because we evaluate the probability of a kth applicant existing in terms

of the measure at the ith candidate. As for the second alternative, does it

really make sense to evaluate the probability that N = j by µj(j) for j ≥ l

being at applicant l, where we have assesment µl? We don’t think so and

hence, we define the transistion probability in another way:

Definition 2.4.20. Given assessment µ := (µi)i, define the kernel

Pµ(ξi = k|ξi−1 = l) = pµ(l, k) :=

{
l

k(k−1)
µl(N≥k)
µl(N≥l)

if l < k <∞,
0 l ≥ k,

(2.6)

pµ(∞,∞) := 1,

pµ(l,∞) :=
l

µl(N ≥ l)

∞∑
s=l

µl(s)

s
.

Note that Pµ(ξi = k|ξi−1 = l) ∈ Fξi−1
.

Assumption 2.4.21. Given a set Q̃ of assessments, set Q̃k := {µk|(µi)i ∈
Q̃}. For every k, let Q̃k be convex and closed. Moreover, if µ1, µ2 ∈ Q̃, then

sup{i|µ1
k(i) > 0} = sup{i|µ2

k(i) > 0} ∀k.

Definition 2.4.22. For Q̃, the set of assessments, we define the set of priors

of (ξi)i as Q := {Pµ = Iξ1=1 ⊗ (pµ)N|µ = (µi)i ∈ Q̃},14 where pµ is obtained

as in equation (2.6).

Note that Q̃ now denotes a set of assessments and not of simple elements

in M(N). Q still denotes the set of priors on (ξi)i but now induced by

multiple assessments. Q̃k contains elements in M(N), the k-projections of

14Convex and compact by the foregoing assumption.
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the respective assessments. Again, the latter part of the assumption induces

Q consisting of equivalent distributions, the former allows for the following

payoff process: Given a set of assessments Q̃, upon observing applicant k,

we have the (multiple prior) payoff

XQ̃k := min
µk∈Q̃k

E[IȲk=1|Fk]

=

{
minµk∈Q̃k

{
k

µk(N≥k)

∑∞
s=k

µk(s)
s

}
if Yk = 1,

0 else.

By definition, XQ̃k ∈ Fk and hence an admissible payoff process. Thus, we

consider the candidate process (ξi)i with payoff function

gQ̃(ξi) := XQ̃ξi = min
µξi∈Q̃ξi

{
ξi

µξi(N ≥ ξi)

∞∑
s=ξi

µξi(s)

s

}
. (2.7)

Remark 2.4.23 (The Correct Model (Ω,F ,P0, (Fξi)i, (XQ̃ξi )i,Q)). We are

now in the context of [Riedel, 09] and may solve the optimal stopping problem

of the candidate process (ξi)i with payoff function gQ̃ as in equation (2.7),

i.e. stopping the payoff process (XQ̃ξi )i, for an ambiguity averse agent facing

priors in Q from Definition 2.4.22 with transition kernel in Definition 2.4.20.

Proposition 2.4.24. Q is time-consistent if and only if Q̃ satisfies the

following property: Given µ1, µ2 ∈ Q̃ and a stopping time τ , then µ3 :=

(µ1
1, . . . , µ

1
ξτ−1, µ

2
ξτ
, . . .) ∈ Q̃.

Proof. Let P1 be the distribution corresponding to assessment µ1 and P2 to

µ2. Then, we the have as density process of (ξi)i for the respective assess-

ments:

pji :=
dPj

dP0

∣∣∣∣
Fi

=
d(Iξ1=1 ⊗ (pj)i−1)

d(Iξ1=1 ⊗ (p0)i−1)
,

pji (ξ1 = l1, ξ2 = l2, . . . ξi = li) =
I{1}(l1)pj(l1, l2) . . . pj(li−1, li)

I{1}(l1)p0(l1, l2) . . . p0(li−1, li)
,
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∀l1 < l2 < . . . < li. Now consider a stopping time τ and set

ri :=
dR
dP0

∣∣∣∣
Fi

:=

{
p1
i i ≤ τ,
p1τp

2
i

p2τ
i > τ.

ri(ξ1 = l1, . . . ξi = li) =


I{1}(l1)p1(l1,l2)...p1(li−1,li)

I{1}(l1)p0(l1,l2)...p0(li−1,li)
i ≤ τ,

I{1}(l1)p1(l1,l2)...p1(lτ−1,lτ )p2(lτ ,lτ+1)...p2(li−1,li)

I{1}(l1)p0(l1,l2)...p0(li−1,li)
i > τ,

∀l1 < l2 < . . . < li. We immediately see that R is induced by any assessment

of the form µ3 := (µ1
1, . . . , µ

1
lτ−1

, µa1
lτ−1

, . . . µ
alτ−lτ−1

−1

lτ−1
, µ2

lτ
, . . .) with aj ∈ {1, 2},

1 ≤ j ≤ lτ − lτ−1 − 1. However, since this has to hold for all τ and since

all µ are equivalent to µ0 in the sense that the induced distributions of the

candidate process have to be equivalent and hence ξi can take all values k ≥ i

with positive probability, we have that Q is time-consistent, if and only if

µ3 := (µ1
1, . . . , µ

1
lτ−1

, µ1
lτ−1+1, . . . , µ

1
lτ−1, µ

2
lτ , µ

2
lτ+1 . . .) ∈ Q̃

for all stopping times τ .

Example 2.4.25. Q is time-consistent if Q̃ is the independent product of its

projections, i.e. Q̃ = Q̃1 ⊗ Q̃2 ⊗ . . .

Remark 2.4.26. If µ1 = µ2 = . . ., and |Q̃| = 1, we are back in the case

of [Presman & Sonin, 72]. Our first approach (the time-consistent hull) is

achieved by the assumption Q̃1 = Q̃2 = . . . and the independence assumption.

To keep the model simple, we pose the following assumption:

Assumption 2.4.27. We assume that Q̃ is of the form Q̃1 = Q̃2 = . . .

and that Q̃ satisfies the assumptions for Q being time-consistent as given in

Proposition 2.4.3,15 i.e. Q̃ being an independent product of its projections.

One may object that we might have µi(k) > 0 for k < i though it seems

counterintuitive given the intuition of an assessment. We might also have as-

sumed Q̃k to only enclose the respective distributions appropriately updated,

15Note, that time-consistency is not automatically satisfied in the indistinguishable case:

Indeed, set Qi = {µ1
i , µ

2
i }, µ

j
1 = µj2 := µj , (µ1, µ1), (µ2, µ2) ∈ Q̃ but (µ1, µ2), (µ2, µ1) 6∈ Q̃.
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i.e. contingent on observing k applicants. However, this does not change the

payoff process (gQ̃(ξi))i or the distribution of (ξi)i since these contingencies

are “averaged out” in the respective formulae.

2.4.3 Results

Considering our formulation of the ambiguous best choice problem, we are in

context of optimally stopping the stochastic process (ξi)i with payoff function

g(ξi) as in equation (2.7) and transition kernel from Definition 2.4.20, where

the agent faces the set of priors Q as in Definition 2.4.22, induced by a set

Q̃ of assessments satisfying Assumption 2.4.27. The value process (V Q̃ξi )i at

candidate i being applicant ξi is given by

V Q̃ξi = ess sup
τ≥i

ess inf
P∈Q

EP[gQ̃(ξτ )|Fξi ].

From Theorem 2.4.10, we know that the value function equals the multiple

prior Snell envelope

U Q̃ξi = max

{
gQ̃(ξi); ess inf

P∈Q
EP[U Q̃ξi+1

|Fξi ]
}

= max

{
gQ̃(ξi); ess inf

p(ξi,·)

∞∑
s=ξi+1

p(ξi, s)U
Q̃
s

}

= max

{
gQ̃(ξi); ess inf

µξi∈Q̃ξi

∞∑
s=ξi+1

ξi
s(s− 1)

µξi(N ≥ s)

µξi(N ≥ ξi)
U Q̃s

}

= max

{
min

µξi∈Q̃ξi

ξi
µξi(N ≥ ξi)

∞∑
s=ξi

µξi(s)

s
;

min
µξi∈Q̃ξi

∞∑
s=ξi+1

ξi
s(s− 1)

µξi(N ≥ s)

µξi(N ≥ ξi)
U Q̃s

}
.

We now set

τ ∗ := min{i ≥ 1|U Q̃ξi = gQ̃(ξi)}.

By Theorem 2.4.10, τ ∗ is the smallest optimal stopping time. Recall that

τ(ω) = m means to “stop at candidate m”. However, to comply with the
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classical problem, we want to have a stopping strategy telling us “stop at

applicant m, given she is a candidate”. Hence, we set

ΓQ̃ := {k|U Q̃k = gQ̃(k)}

and we see that

τ ∗ = min{i > 0|ξi ∈ ΓQ̃}.

ΓQ̃ is the set of all arrival times of applicants (not of candidates) that are

optimally chosen if being a candidate. τ ∗ is the first candidate in ΓQ̃.

Remark 2.4.28. The specific structure of ΓQ̃ is the solution to our problem

and the multiple prior Snell envelope entirely characterizes ΓQ̃.

Remark 2.4.29 (Instantaneous Worst-Case Assessment). Having a look at

the left hand side of the Snell envelope, gQ̃(k), at applicant k being a can-

didate, the agent has to calculate the instantaneous payoff from stopping by

minimizing expected payoff with respect to the set of k-projections of assess-

ments. As for a given distribution of the number of applicants, the instanta-

neous payoff is just the probability that no further candidate will follow, the

instantaneous payoff in the multiple priors set-up is just given by the mini-

mum of this probability with respect to all possible distributions of numbers

of applicants.

Recall that we assume all orderings of agents being equally likely. Hence,

the probability of the current candidate being the last is minimal for the

distribution that puts weight on large numbers of applicants. Hence, for

every applicant k, there corresponds a distribution µ̃k ∈ Q̃k such that

min
µk∈Q̃k

{
k

µk(N ≥ k)

∞∑
s=k

µk(s)

s

}
=

k

µ̃k(N ≥ k)

∞∑
s=k

µ̃k(s)

s
.

Hence we may define the instantaneous worst-case assessment µ̃ by virtue of

components (µ̃i)i minimizing the instantaneous payoff at applicant i. From

the structure of the minimization problem and assuming Q̃k = Q̃m, we see

55



2. AMBIGUOUS BEST-CHOICE PROBLEM

that µ̃k = µ̃m for every k,m, i.e. the instantaneously minimizing assess-

ment is constant. It is immediate, that there is no problem in calculating

the instantaneous worst case assessment (µ̃k)k for the instantaneous payoff

(gQ̃(k))k in advance as this is, irrespective of whatever might happen, the

distribution that puts on average most weight on higher values.

Notation 2.4.30. By the foregoing remark, we may hence write gQ̃(k) =

gµ̃k(k), where µ̃ = (µ̃i)i denotes the instantaneous worst-case assessment.

A first – unfruitful – Approach to a Solution

The first idea to the solution of the problem is to use the minimax theorem

in order to interchange the infimum and the supremum in the problem’s

value function. This would allow for solving the inner maximization problem

as in [Presman & Sonin, 72] for every assessment under consideration and

then obtain the worst case assessment in terms of that solution with minimal

payoff to the agent. However, as the instantaneous payoff also depends on the

distribution, we will show that this approach is not eligible for the ambiguous

Best-Choice problem. Formally, we have

V Q̃ξi = ess sup
τ≥i

ess inf
Pµ∈Q

EPµ [gQ̃(ξτ )|Fξi ]

= ess sup
τ≥i

ess inf
µ∈Q̃

EPµ [gQ̃(ξτ )|Fξi ]

= ess sup
τ≥i

ess inf
µ∈Q̃

EPµ
[

min
µξτ∈Q̃ξτ

ξτ
µξτ (N ≥ ξτ )

∞∑
s=ξτ

µξτ (s)

s

∣∣∣∣∣Fξi
]

in general

6= ess sup
τ≥i

ess inf
µ∈Q̃

EPµ
[

ξτ
µξτ (N ≥ ξτ )

∞∑
s=ξτ

µξτ (s)

s

∣∣∣∣∣Fξi
]

MiniMax
= ess inf

µ∈Q̃
ess sup

τ≥i
EPµ

[
ξτ

µξτ (N ≥ ξτ )

∞∑
s=ξτ

µξτ (s)

s

∣∣∣∣∣Fξi
]
,

The second to last inequality destroys our simple approach to the probelm:

We cannot just reduce the ambiguous problem to the risky one, i.e. solve the
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2.4. THE NO-INFORMATION PROBLEM UNDER AMGIGUITY

inner problem in the last line as in [Presman & Sonin, 72] for every assess-

ment on its own and then apply the worst of these risky solutions to solve

the ambiguous one. We will make this more concrete in Remark 2.4.32 below

as the upper inequality shows the multiple prior Snell envelope not to be the

lower envelope of the individual risky Best-Choice problems’ Snell envelopes.

We however argue that this does not contradict [Riedel, 09] as we consider a

family of induced risky problem, the Snell envelopes of which are enveloped

from below by the multiple prior Snell envelope.

Remark 2.4.31 (On the Schizophrenia of Agents). It is not just formally

obvious that the line of equations does not hold in general but also intuitively.

Before we apply the minimax theorem in the above line of equations, we

combine the minimal instantaneous distribution with the worst case dynamic

distribution. However, we have to distinguish these terms: the instantaneous

worst case distribution is just the minimizer in the instantaneous payoff g(k)

at applicant k being a candidate. Of course, due to homogeneity, we can at

time zero calculate the assessment minimizing the instantaneous payoff, i.e.

(µ̃k)k s.t. µ̃k ∈ arg min gQ̃(k) for every k. We call (µ̃k) the instantaneous

worst case assessment as each component gives the worst case distribution for

the instantaneous payoff at the respective candidate. On the other hand, we

calculate the worst case distribution of the candidate process. This is given

by some worst case assessment (µ̄k)k that induces the worst case distribution

for the payoff in terms of the kernels in equation (2.3).

Our approach above would now imply these worst case assessments (the

instantaneous and the dynamic one) to coincide. However, this is not true

as might immediately be seen in case of prior assessments consisting of dis-

tributions that induce the best choice problem to still be monotone, as e.g.

families of uniform distributions. Observing applicant k being a candidate,

the instantaneous worst case distribution µ̃k on the number of applicants

would prefer high values as this would minimize the probability of the respec-

tive candidate chosen being the best and hence minimize the instantaneous
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payoff.16 However, in the monotonic case, as the value function, and hence

the right hand side of the Snell envelope is increasing, the worst case assess-

ment puts most weight on lower values of the candidate process. Hence, in

general (µ̃k)k 6= (µ̄k)k.

This behavior seems quite schizophrenic on first sight: At applicant k being

a candidate, the agent beliefs that nature will choose a different distributions

contingent on her decision to stop or not. We, however, do not consider this

observation as unintuitive: Having decided on stopping or going further, the

agent’s view of what might happen in worst case changes drastically.

Solution to the Ambiguous Problem

We have seen the multiple prior Snell envelope to be given by

U Q̃ξi = max

{
min

µξi∈Q̃ξi

(
ξi

µξi(N ≥ ξi)

∞∑
s=ξi

µξi(s)

s

)
;

min
µξi∈Q̃ξi

(
∞∑

s=ξi+1

ξi
s(s− 1)

µξi(N ≥ s)

µξi(N ≥ ξi)
U Q̃s

)}

and the optimal stopping time as τ ∗ := min{i|ξi ∈ ΓQ̃}, where the stopping

set ΓQ̃ := {k|gQ̃(k) = U Q̃k }. Hence, we can write

τ ∗ = min{i|gQ̃(ξi) = U Q̃ξi }

= min

{
i

∣∣∣∣gQ̃(ξi) ≥ min
µ∈Q

EPµ
[
U Q̃ξi+1

∣∣∣Fξi]}
= min

{
i

∣∣∣∣∣gQ̃(ξi) ≥ min
µξi∈Q̃ξi

(
∞∑

s=ξi+1

ξi
s(s− 1)

µξi(N ≥ s)

µξi(N ≥ ξi)
U Q̃s

)}

Remark 2.4.32 (Major Problem for the solution). In [Riedel, 09]’s theory

of optimal stopping under ambiguity, instantaneous payoff did not depend on

16Of course, this monotonic behavior of instantaneous payoff g always holds and, hence,

the instantaneous worst case assessment (µ̃k)k is calculated in any case. Of course, appro-

priate assumptions have to be required as, otherwise, nature would choose a distribution

favoring infinitely many applicants and hence set the payoff to zero.
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priors. Hence, in that case the multiple prior Snell envelope is the lower en-

velope of the individual Snell envelopes with respect to the single priors. In

the Snell envelope of the risky Best-Choice problem, however, the instanta-

neous payoff g, the left hand side of the Snell envelope, also depends on the

distribution. Hence, the multiple prior Snell envelope of the ambiguous Best-

Choice problem is not the lower envelope of the individual Snell envelopes of

the respective risky Best-Choice problems.

However the way we solve this apparent contradiction to [Riedel, 09] is

by artificially introducing an induced risky problem by virtue of the instan-

taneous payoff g already as the minimal instantaneous payoff with respect to

priors. In that respect, the multiple prior Snell envelope of the ambiguous

Best-Choice Problem is the lower envelope of the the Snell envelopes of the

optimal stopping problems with artificial payoff g given the respective priors.

But it is important to keep in mind that these optimal stopping problems are

not the risky Best-Choice problems as the payoff of the induced risky problems

is given by the minimized expectation and hence in general not equal to the

payoff of the risky Best-Choice problems.

More formally it holds:

ess sup
τ≥i

ess inf
µ∈Q̃

EPµ
[

min
µξτ∈Q̃ξτ

ξτ
µξτ (N ≥ ξτ )

∞∑
s=ξτ

µξτ (s)

s

∣∣∣∣∣Fξi
]

= ess inf
µ∈Q̃

ess sup
τ≥i

EPµ
[

min
µξτ∈Q̃ξτ

ξτ
µξτ (N ≥ ξτ )

∞∑
s=ξτ

µξτ (s)

s

∣∣∣∣∣Fξi
]

in general

6= ess inf
µ∈Q̃

ess sup
τ≥i

EPµ
[

ξτ
µξτ (N ≥ ξτ )

∞∑
s=ξτ

µξτ (s)

s

∣∣∣∣∣Fξi
]
.

The multiple prior Snell envelope of the optimal stopping problem with payoff

gQ̃ given by gQ̃(k) := minµk∈Q̃k

{
k

µk(N≥k)

∑∞
s=k

µk(s)
s

}
and set of assessments

Q̃, i.e. the ambiguous Best-Choice problem (first line above), is not the lower

envelope of the individual Snell envelopes of the risky problems with payoff gµ

defined by virtue of gµ(k) := k
µk(N≥k)

∑∞
s=k

µk(s)
s

for assessments µ ∈ Q̃, i.e.

the risky Best-Choice problems (third line). It is however the lower envelope
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of the individual Snell envelopes of the risky problems with payoff gQ̃ and

distributions given by µ ∈ Q̃ (second line).

The Finite Problem

In order to obtain a feeling for solving the problem, we first consider the

almost surely finite case. This will already make several aspects explicit.

Assumption 2.4.33. Given a fixed T ∈ N, we have for all µ ∈ Q̃ supp(µi) ⊂
[0, T ] for all i.

Given this assumption, we have max{supp(µi)} = T for all i. Recall that

ξi = ∞ if there does not exists an ith candidate and, hence, in particular if

there does not exist an ith applicant. Furthermore, g(∞) = 0.

Have in mind that for all i, ξi+1 > ξi a.s., in particular ξi ≥ i, and hence

the effective state spaces of (ξi)i are of the form

ξ1 = 1

ξ2 ∈ {2, 3, . . . , T,∞} µ2 − a.s.∀µ2 ∈ Q2

...

ξi+1 ∈ {ξi + 1, . . . , T,∞} ⊂ {i+ 1, . . . , T,∞} µi+1 − a.s.∀µi+1 ∈ Qi+1

...

ξT ∈ {T,∞} µT − a.s.∀µT ∈ QT

We can now compute:

U Q̃ξT = gQ̃(ξT ) = 1{ξT=T}

and for U Q̃ξT−1

gQ̃(ξT−1) =


0 if ξT−1 =∞,
1 if ξT−1 = T ,

minµT−1

(
T−1

µT−1(N≥T−1)

(
µT−1(T−1)

T−1
+ µT−1(T )

T

))
if ξT−1 = T − 1
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and, as one-step ahead conditional expected minimax payoff

min
µ∈Q

EPµ
[
U Q̃ξT

∣∣∣FξT−1

]
=


0 if ξT−1 =∞,
0 if ξT−1 = T ,

minµT−1

(
pµ(T − 1, T )U Q̃T + pµ(T − 1,∞)U Q̃∞

)
if ξT−1 = T − 1.

=


0 if ξT−1 =∞,
0 if ξT−1 = T ,

minµT−1

(
1
T

µT−1(N≥T )

µT−1(N≥T−1)

)
if ξT−1 = T − 1.

Hence, we stop at T − 1 if and only if either

ξT−1 = ∞,

ξT−1 = T,

or, in case ξT−1 = T − 1

min
µT−1

(
T − 1

µT−1(N ≥ T − 1)

(
µT−1(T − 1)

T − 1
+
µT−1(T )

T

))
≥ min

µT−1

µT−1(N ≥ T )

TµT−1(N ≥ T − 1)
,

where the left hand side of the inequality equals

min
µT−1

(
T − 1

µT−1(N ≥ T − 1)

(
µT−1(T − 1)

T − 1
+
µT−1(T )

T

))
= min

µT−1

(
1− µT−1(T )

T (µT−1(T − 1) + µT−1(T ))

)
= min

µT−1

(
1− µT−1(T )

TµT−1(N ≥ T − 1)

)
.

Hence, upon observing ξT−1 = T − 1, the agent stops the process if and only

if

min
µT−1

(
1− µT−1(T )

TµT−1(N ≥ T − 1)

)
≥ min

µT−1

µT−1(N ≥ T )

TµT−1(N ≥ T − 1)
.

Two observations are worthwhile to note: First, µT−1(T )

TµT−1(N≥T−1)
is the prob-

ability that ξT−1 is the second to last candidate, i.e. there will be the best
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applicant among all to follow at T given the candidate at T −1. In this sense

the left hand side is the probability that the candidate at T − 1 is the best

among all, the right hand side the probability that a better applicant is still

to follow and hence observed at T .

In terms of the intuition of coherent risk or multiple prior preferences, the

minimization problem that nature has to solve on both sides of the inequality

is immediate: on the left hand side, nature has to minimize the probability

of the chosen candidate to be the best, on the right hand side she has to

minimize the probability that, if candidate T − 1 is not chosen, there still

follows a candidate at T , i.e. nature wants that the candidate at T − 1 was

actually the best and the agent realizes that stopping is too late. Formally:

Pµ
[
ȲT−1 = 1

∣∣YT−1 = 1
]

= 1− µT−1(T )

TµT−1(N ≥ T − 1)
,

Pµ [YT = 1|YT−1 = 1] =
µT−1(T )

TµT−1(N ≥ T − 1)
,

where Ȳ denotes the absolute and Y the relative rank.

Secondly, it is immediate that, observing candidate T − 1, these mini-

mization problems are conflicting: As set out, on the right hand side, nature

minimizes the probability of a better candidate to be chosen, i.e. at T − 1

to minimize the probability that there is a candidate at T , whereas the left

hand side is equivalent to maximize this probability, as then the chosen can-

didate at T − 1 is not the best applicant. More formally, the left hand side

is equivalent to the problem

max
µT−1

µT−1(N ≥ T )

TµT−1(N ≥ T − 1)
.

Hence, at T − 1, observing ξT−1 = T − 1, for the immediate payoff function

g, we obtain a minimizing assessment µ̃ s.t. µ̃T−1(T − 1) = µl(T − 1) and

µ̃T−1(T ) = µu(T ), where µu denotes the assessment putting most weight on

T and µl the one putting least weight. On the other hand, the worst case

measure from T − 1 onwards is abteined by µ̄ s.t. µ̄T−1(T − 1) = µu(T − 1)
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and µ̄T−1(T ) = µl(T ), i.e. exactly the opposite. Thus, the Snell envelope,

upon observing ξT−1 = T − 117 takes the form

U Q̃T−1 =

{
1−

µuT−1(T )

TµuT−1(N ≥ T − 1)
;

µlT−1(T )

TµuT−1(N ≥ T − 1)

}
.

At this stage, we observe the difference of our Snell envelope in the ambiguous

case and the one in [Presman & Sonin, 72] in the risky case: in the risky set

up, there is the same distribution on both sides, in our ambiguous approach,

there is an instantaneous worst case assessment on the left and a dynamic

worst case assessment on the right hand side and those do not coincide.

Explicit solutions can now be achieved by going on further with the backward

induction principle given explicit characteristics of the set of assessments

under consideration. We, however, do not want to achieve this here but have

a look in theoretical results on the set Γ of stopping islands.

The General Problem

Again, we note that the problem is entirely solved by characterizing Γ, the

stopping set. In general, i.e. when the support is not assumed bounded, the

Snell envelope of the problem is given by18

U Q̃ξi = max

{
gQ̃(ξi); min

µ∈Q
EPµ

[
U Q̃ξi+1

∣∣∣Fξi]} ,
which, for ξi = k takes the form

U Q̃k = max

{
min
µk∈Q̃k

∞∑
s=k

k

s

µk(s)

µk(N ≥ k)
; min
µk∈Q̃k

∞∑
s=k+1

k

s(s− 1)

µk(N ≥ s)

µk(N ≥ k)
U Q̃s

}
.

In [Chudjakow & Riedel, 09], the approach to ambiguity is again leading to

monotone problems but does not cover the case of an ambiguous number of

17Due to homogeneity of the process, this is the same value for any ξi = T − 1 as it

does not matter if it is the first or (T − 1)st candidate at applicant T − 1 or whatever in

between, i.e. be it ξ1, ξ2, . . . does not matter.
18More precisely, in the infinite case, it is the value function satisfying the Bellman

equation.
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applicants. As in the risky Best-Choice problem, the main problem here is

the lack of monotonicity leading to a multiplicity of stopping islands. Hence,

it is not possible in our case to find a worst case distribution for the payoff

process in terms of stochastic dominance as it is done in several examples

in [Riedel, 09]. We will now emphasis on a theoretical result: The question

is, whether we can find conditions to ensure finitely many stopping islands

in case of not necessarily bounded support of priors. The following theorem

shows that there exists a final stopping island up to infinity and, hence, there

can only be finitely many stopping islands. It generalizes the main result in

[Presman & Sonin, 72] to an ambiguous number of applicants.

We have already introduced the difference between the instantaneous

worst case assessment (µ̃k)k and the dynamic worst case assessment (µ̄k)k

in the foregoing paragraph:

µ̃k ∈ arg min
µk∈Q̃k

∞∑
s=k

k

s

µk(s)

µk(N ≥ k)︸ ︷︷ ︸
=gQ̃(k)

µ̄k ∈ arg min
µk∈Q̃k

∞∑
s=k+1

pµk(k, s)U Q̃(s).

Let us know pose two definitions as in [Presman & Sonin, 72]:

cµkk := gQ̃(k)−
∞∑

s=k+1

pµk(k, s)gQ̃(s)

and define the operator

QµkgQ̃(k) := max

{
gQ̃(k);

∞∑
s=k+1

pµk(k, s)gQ̃(s)

}

In the proof of the following main theorem, generalizing Theorem 3.1 in

[Presman & Sonin, 72], we inevitably use the fact, that the multiple prior

Snell envelope is the lower envelope of the Snell envelopes of the induced

risky problems.
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Theorem 2.4.34. (a) If ΓQ̃ consists of finitely many stopping islands, then

there exists some k∗ such that cµ̄kk ≥ 0 for all k ≥ k∗.

(b) If there exists (µ∗k)k such that c
µ∗k
k ≥ 0 for all k ≥ k∗, then ΓQ̃ exists

of finitely many stopping islands; in particular, [k∗;∞] ⊂ ΓQ̃.

(c) Given k∗ from part (b), if for all µk∗−1 ∈ Q̃k∗−1 it holds c
µk∗−1

k∗−1 < 0,

then k∗ − 1 6∈ ΓQ̃.

Proof. ad (a): Note that ΓQ̃ possesses finitely many stopping islands if there

exists a “last” stopping island up to infinity. Let [k∗,∞] ⊂ ΓQ̃, then for all

k ≥ k∗ we have

U Q̃k = gQ̃(k) by definition of ΓQ̃

≥ min
µk

∞∑
s=k+1

pµk(k, s)U Q̃s by definition of U Q̃

=
∞∑

s=k+1

pµ̄k(k, s)U Q̃s by definition of µ̄k

≥
∞∑

s=k+1

pµ̄k(k, s)gQ̃(s).

ad (b): Let µ∗k be such that c
µ∗k
k ≥ 0 for all k ≥ k∗, then

gQ̃(k) ≥
∞∑

s=k+1

pµ
∗
k(k, s)gQ̃(s)

and hence

Qµ∗kgQ̃(k) = max

{
gQ̃(k);

∞∑
s=k+1

pµ
∗
k(k, s)gQ̃(s)

}
= gQ̃(k).

As (ξi)i is increasing we have that pµ
∗
k(k, s) = 0 for all s ≤ k and it follows

inductively that the payoff process is idempotent with respect to Q, i.e.

(Qµ∗k)ngQ̃(k) = gQ̃(k) ∀n ∀k ≥ k∗.

Let Uµ∗k denote the Snell envelope of the induced risky problem under distri-

bution µ∗k but still with payoff gQ̃. Then, we know from the general theory
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of optimal stopping of Markov chains:

U
µ∗k
k = lim

n→∞

(
Qµ∗k

)n
gQ̃(k) = gQ̃(k) ∀k ≥ k∗.

As the multiple prior Snell envelope of our ambiguous problem ist the lower

envelope of these Snell envelopes, we have

gQ̃(k) = U
µ∗k
k ≥ min

µk∈Q̃k
Uµk
k = U Q̃k ∀k ≥ k∗.

and hence, as by definition of U Q̃ we have U Q̃k ≥ gQ̃(k) for all k,

U Q̃k = gQ̃(k) ∀k ≥ k∗.

This implies k ∈ ΓQ̃ for all k ≥ k∗.

ad (c): If now c
µk∗−1

k∗−1 < 0 for all µk∗−1 ∈ Q̃k∗−1, then

Qµk∗−1gQ̃(k∗ − 1) > gQ̃(k∗ − 1)

⇒ U
µk∗−1

k∗−1 > gQ̃(k∗ − 1) ∀µk∗−1 ∈ Q̃k∗−1

⇒ U Q̃k∗−1 = min
µk∗−1

U
µk∗−1

k∗−1 > gQ̃(k∗ − 1)

⇒ k∗ − 1 6∈ ΓQ̃.

Of course, part (a) of the foregoing theorem is quite difficult to check.

However, for applications, parts (b) and (c) are the interesting ones. Asser-

tion (b) particularly holds for (µ̃k)k, the instant worst-case assessment.

2.5 Conclusions

Having elaborated the “simple” and the risky Best-Choice problem, we came

up with an adequate generalization to an ambiguous number of applicants.

To solve this problem, we made use of the theory of optimal stopping with

respect to multiple priors as set out in [Riedel, 09]: Agents assess expected
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reward in terms of multiple prior preferences or, equivalently, coherent risk

measures.

When solving the problem, we have seen that a direct generalization of the

risky to the ambiguous set-up is not feasible as time-consistency is impossibly

achieved in that model. The problem, however, was seen to be solvable in

terms of multiple assessments with a time-consistency assumption. By virtue

of multiple prior Snell envelopes we have achieved conditions for the solution

to consist of finitely many stopping islands. Furthermore, these stopping

islands were entirely characterized by the multiple prior Snell envelope.

As we have seen, the major problem in solving the model is that the

multiple prior Snell envelope is not the lower envelope of the individual Snell

envelopes of the respective risky problems as the respective distribution is

also incorporated in the instantaneous payoff. It is, however, the lower enve-

lope of the Snell envelopes of the respective risky problems with artificially

introduced instantaneous payoff g.

So far, we have not considered learning in our model as introduced in

[Epstein & Schneider, 07]. On the contrary, an agent observing applicant,

say, 10 may still put positive probability on having only, say, 5 applicants.

However, updating assessments won’t change the results as updating is“aver-

aged out” in expected reward. Nevertheless, future research should introduce

learning to this model: One might think of state dependent projections of sets

of assessments, narrowing or widening contingent on available information.

In this sense, assessments would emerge from learning.

Furthermore, ambiguous arrival times with a fixed horizon, extending

[Stewart, 81] or [Bruss, 84] to the ambiguous case, should be considered;

e.g. in case of Poisson arrival times, one might introduce multiplicity of

parameters. Moreover, the case of ambiguity on the quality of applicants and

an updating approach of beliefs over this set of priors is to elaborate in case

of the partial information Best-Choice problem. After several observations,

the set of priors on agents’ quality is refined since several priors seem too
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unlikely; an approach as used in [Epstein & Schneider, 07].

A further extension is to consider the secretary problem when uncertainty

over the number of applicants is not given as here but in terms of dynamic

variational preferences or convex risk measures. A general theory for optimal

stopping problems in that context can be found in the next chapter.
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Chapter 3

Optimal Stopping with

Dynamic Variational

Preferences

3.1 Introduction

In our everyday life we face a broad variety of optimal stopping problems : We

accept bids for our used car to sell or stop the process of potential marriage

partners not knowing whether a more appropriate partner is still to come.

On financial markets, agents try to maximize profits from American options.

Hence, optimal stopping problems are not just of value for theoretical con-

siderations but of great virtue in applications. All examples have in common

that, on an abstract level, an agent has to find an optimal stopping time for

some stochastic payoff process. The classical solution to this problem, as in-

ter alia given in [Neveu, 75], assumes the agent to possess a unique subjective

prior ruling the payoff process and to maximize expected payoff. In an un-

certain environment however, there might not be a unique prior distribution:

On incomplete financial markets, we might be faced with multiple equivalent

martingale measures not being sure which one is ruling the world. Hence,
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with multiple possible distributions, a solution to the problem by virtue of

simple expected utility maximization with respect to some subjective prior

cannot be eligible: An alternative notion of“expected reward”has to be used.

In this article, we hereto choose dynamic variational preferences.

[Riedel, 09] considers the problem to optimally stop an adapted payoff

process (Xt)t∈N on a filtered probability space (Ω,F ,P, (Ft)t∈N) when ex-

pected reward is induced by multiple prior preferences or, equivalently, by

coherent risk measures. By virtue of a robust representation theorem, ex-

pected reward for chosen stopping time τ is then given by a minimal ex-

pectation of the form infQ∈Q EQ[Xτ ] on a set of priors Q. Several reasons

for considering optimal stopping problems in terms of multiple prior prefer-

ences are stated therein: An ambiguity averse agent might not be able to

completely determine the distribution governing the payoff process (Xt)t and

hence apply this worst-case approach. Equivalently, when considering the

problem from point of view of risk assessment, the above minimized expec-

tation is, modulo a minus sign, the robust representation of coherent risk

measures as seen in [Riedel, 04] or [Föllmer & Schied, 04]. We let the matter

of justification rest at this point but mention the following example: In case

(Xt)t is viewed as the payoff process of an American option in an incomplete

financial market, a unique real world measure may induce several risk neu-

tral martingale measures and, hence, a robust approach to expected payoff

maximization with Q as the set of risk neutral measures seems appropriate.

As mentioned, the approach in [Riedel, 09] is based on multiple prior pref-

erences introduced in [Gilboa & Schmeidler, 89], applied to a dynamic frame-

work in [Epstein & Schneider, 03]. It can equivalently be stated in context of

coherent risk measures introduced in [Artzner et al., 99] and applied to a dy-

namic setting in [Riedel, 04]. However, [Föllmer & Schied, 04] point out the

limitations of the coherent approach: Due to homogeneity coherent risk mea-

sures do not account for liquidity risk. Secondly, the robust representation

shows coherent risk measures to assess risk quite conservatively. Hence, the
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coherent approach is generalized to convex risk measures relaxing the homo-

geneity and sub-additivity assumption to a convexity condition resulting in a

more liberal assessment of risk; in a dynamic context elaborately discussed in

[Föllmer & Penner, 06] and [Cheridito et al, 06]. Furthermore, several fun-

damental risk measures are not coherent but convex as inter alia entropic risk.

Equivalently, [Maccheroni et al., 06a] generalize the multiple priors approach

to so called variational preferences and to dynamic variational preferences in

[Maccheroni et al., 06b]. In a more general setup dynamic risk adjusted val-

ues or (concave) utilities are introduced in [Cheridito et al, 06] for stochastic

processes. [Maccheroni et al., 06b] show dynamic multiple prior preferences

to be a special class of dynamic variational preferences; [Cheridito et al, 06]

show dynamic coherent risk measures to be a special class of dynamic convex

risk measures.

For both approaches, the one in terms of variational preferences as well

as the one in terms of convex risk measures, robust representations in terms

of minimal penalized expected payoff (or maximal penalized expected loss)

are achieved. These approaches are equivalent in the sense that the robust

representations coincide up to a factor of −1. Under the assumption of risk

neutrality but uncertainty aversion, a discount factor of unity and without

intermediate payoffs, expected reward πt for stopping the process (Xt)t with

stopping strategy τ induced by dynamic variational preferences at time t is

given by a robust representation of the form

πt(Xτ ) = ess inf
Q

(
EQ[Xτ |Ft] + αt(Q)

)
, (3.1)

for some dynamic penalty (αt)t. The equivalent dynamic convex risk mea-

sure is then given as ρt = −πt. Having in mind the robust representation

of dynamic multiple prior preferences, it is immediate that these are a spe-

cial case of dynamic variational preferences when the penalty is trivial, i.e.

only achieves values null and infinity. In the same token, this holds for

coherent risk measures as a special case of convex ones. It is beyond the
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scope of this article to discuss the axioms of variational preferences or con-

vex risk measures, respectively, leading to the robust representation. We

just take the representation as given and build our theory upon that. (αt)t,

formally derived by a Fenchel-Legendre transform, might be interpreted as

an ambiguity index ; this is inter alia done in [Maccheroni et al., 06a] and

[Maccheroni et al., 06b]. We might intuitively think of (αt)t as an inverse

likelihood of a distribution to be the ruling one: the larger the penalty, the

less likely the agent assumes the respective distribution to be the true under-

lying one. Stated differently: Given two agents, one characterized by (αt)
1
t ,

the other by (αt)
2
t . If (αt)

1
t ≥ (αt)

2
t , then the first agent is less ambigu-

ity averse. Equivalently, (rho1
t )t assess risk more liberally. Throughout, we

assume robust representation in terms of minima penalty (αt)
min
t uniquely

characterizing the variational preference.

For dynamic models, the first question is how preferences or risk mea-

sures at distinct time periods are interrelated. An assumption that serves

as a link between time periods is time-consistency, defined by virtue of

πt = πt(πt+1). Robust representation results showing equivalence of time-

consistency and a condition on dynamic minimal penalty (αmin
t )t, called no-

gain condition, are obtained in [Cheridito et al, 06], [Föllmer & Penner, 06],

and [Maccheroni et al., 06b]. The basic idea is to represent minimal penalty

as a sum of contingent penalties and a one-step-ahead penalty, thus con-

necting penalties in different time periods. Hence, the great advantage of

the approach via dynamic variational preferences is that time consistency

as a property of dynamic minimal penalty function (αmin
t )t leads to a re-

cursive robust representation in terms of minimal penalized expected utility.

This property will elaborately be discussed in the next section. As shown in

[Maccheroni et al., 06b], the no-gain condition on (αmin
t )t reduces to stability

of the set of priors in context of multiple prior preferences.

By virtue of the above expected reward in terms of minimal penalized

expectation, results in this article constitute a generalization of the results in
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[Riedel, 09] by applying optimal stopping to dynamic convex risk measures or

dynamic variational preferences under the assumption of time-consistenty. In

terms of a recursion formula we obtain a worst-case distribution for expected

reward induced by dynamic variational preferences. It is however important

that we do not obtain the elegant intuition in [Riedel, 09] that the agent

behaves as expected utility maximizer with respect to the worst-case distri-

bution since the penalty is not trivial and, hence, does not vanish. We make

use of a Snell envelope approach to solve the problem at hand by showing

equality of the value function and an appropriately generalized Snell envelope,

called variational Snell envelope, for a finite horizon. In the infinite horizon

case, we show the Bellman principle to hold for the value function. These re-

sults allow us to obtain an optimal stopping strategy recursively: We observe

that the smallest optimal stopping time obeys well-known characteristics. A

further result is a minimax theorem for optimal stopping under convex risk.

In order to achieve our results, we introduce the notion of variational (super-,

sub-) martingales and an accompanying variational martingale theory.

We then consider two prominent examples of dynamic convex risk mea-

sures. First, we have a look at dynamic entropic risk measures (or dynamic

multiplier preferences). We state a robust representation of these measures

and obtain quite intuitive results on the worst case measure for a specific kind

of payoff processes. Secondly, we consider dynamic convex generalizations of

average value at risk (AVaR) as introduced in [Cheridito & Li, 09]. As the

natural dynamic extension of these risk measures is not time-consistent, we

first achieve a dynamic version directly in terms of the definition of time-

consistency. Secondly, we achieve a time-consistent version of generalized

AVaR by virtue of a recursive construction in terms of the minimal penalty

from the static version of generalized AVaR assumed to satisfy the no-gain

condition when applied to a dynamic framework. As we see in the examples,

when considering non-trivial penalty functions applications become more

complex: in particular, independence, inevitably used in simple examples
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in [Riedel, 09], does not hold any longer. Nevertheless, the second example

constitutes a tangible alternative to widely used VaR taking into account

liquidity risk, satisfying time-consistency, and avoiding the problem of risk

accumulation caused by VaR.

To prevent confusion, the reader should have the following in mind: Even

though we stop a payoff process (Xt)t, we do not need dynamic risk measures

in all generality for stochastic processes (Xt)t as set out in [Cheridito et al, 06].

We only consider dynamic risk of a random variable Xτ . Hence, it suffices to

consider the results from the theory of dynamic risk measures for end-period

payoffs as in [Föllmer & Penner, 06].

[Schied, 07] applies an approach to optimal behavior on financial markets

neglecting time-consistency. Agents maximize minimal penalized intertem-

poral utility as given above. Making use of convex conjugates, he achieves

a minimax theorem similar to ours without using time-consistency. Hence,

no constructive recursion for worst-case measures is achieved in that set-

up. However, we are convinced that time-consistency is not only a crucial

property from a theoretical point of view to obtain explicit results but also

intuitively justifiable.

Again, let us note the (mathematical) equivalence of dynamic convex

risk measures and dynamic variational preferences. Slovenly, both are the

same modulo a minus sign in terms of robust representation. The notion of

time-consistency as well as necessary and sufficient conditions for it to be

satisfied are in both approaches basically identical. Just the interpretation

differs: The risk measure of a (financial) position reflects the amount of the

numeraire needed to make the position acceptable or might be seen as penal-

ized worst expected loss, whereas variational preferences are used to assess

utilities. Hence, throughout the article we identify convex risk measures with

variational preferences and coherent risk measures with multiple priors pref-

erences. Particularly in the last section where we state examples, dynamic

variational preferences are directly given in terms of dynamic convex risk
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measures.

The article is structured as follows: The next section defines the model,

gathers the relevant assumptions and then states the optimal stopping prob-

lem in terms of a value function. This directly leads to the definition of vari-

ational supermartingales and an accompanying theory in Section 3. Section

4 contains the main results with proofs. Section 5 discusses some interesting

examples. Thereafter, we conclude.

3.2 The Model

We now come up with a model to optimally stop a payoff process (Xt)t≤T , T ∈
N ∪ {∞}, in discrete time. For this purpose let (Ω,F ,P0) be an underlying

probability space with filtration (Ft)t≤T , F0 := {∅,Ω} and F = σ
(⋃

t≤T Ft
)
,

modeling the information process for the agent. P0 serves as a reference

distribution. Consider an adapted process (Xt)t≤T assumed to be essentially

bounded.1 If not stated otherwise, equalities are meant to hold P0-a.s. Let

Me(P0) denote the set of all probability measures on (Ω,F) that are locally

equivalent to P0, i.e. for every t, Q ≈ P0 on Ft. In particular, if T < ∞,

this is just the set of all distributions equivalent on F = FT . As we see

in [Föllmer & Penner, 06], the assumption of locally equivalent distributions

is justified from a mathematical point of view as the robust representation

allows for only considering these distributions under suitable assumptions on

convex risk measures. Intuitively, equivalence of distributions implies that

the agent, not sure which distribution is the correct one, at least agrees upon

which events are possible, i.e. have positive mass under all distributions, and

which are not, i.e. have mass zero. We will elaborate on local equivalence

being appropriate further in Chapter 4. Recall that a stopping time τ is

an integer valued random variable such that {τ ≤ t} ∈ Ft for all t ≤ T .

1This crucial assumption is mainly used for convenience. In the proofs it can be seen

that weaker notions of integrability might be sufficient.
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For ω ∈ Ω, we set Xτ (ω) := Xτ(ω)(ω). Let L∞ := L∞(Ω,F ,P0) be the

space of all essentially bounded F -measurable random variables. Analog, for

t ≤ T , let L∞(Ft) := L∞(Ω,Ft,P0) be the space of all essentially bounded

Ft-measurable random variables.

3.2.1 Robust Representation of Time-Consistent Vari-

ational Preferences

For the payoff process (Xt)t≤T an agent chooses a stopping time τ with respect

to filtration (Ft)t≤T in order to maximize expected reward.

How do Agents assess Utility?

Given a stopping time τ , we first have to answer the following question:

Remark 3.2.1 (Initial Question). Given the agent is not able to entirely

assess the ruling distribution of the payoff process and is uncertainty averse

but risk neutral, how does expected reward look like?

The assumption in expected utility theory would be that the agent has a

subjective probability distribution, say Q, of the payoff process and assesses

expected reward by EQ[Xτ ].
2 [Riedel, 09] assumes the agent not being sure

about the appropriate distribution of (Xt)t but knowing that it belongs to

some convex set Q ⊂ Me(P0) with reference distribution P0. However, all

elements in Q are assumed being equally probable. Then, multiple prior

expected reward is given by infQ∈Q EQ[Xτ ].

In this article, we go a step further by assuming that an agent deter-

mines expected reward from stopping time τ in terms of dynamic variational

preferences as introduced in [Maccheroni et al., 06b] or, equivalently, by a

dynamic convex risk measure as in [Föllmer & Penner, 06]. As shown in

2We have implicitly assumed the agent to be risk-neutral as we will do throughout the

article. Hence, we may choose the identity as Bernoulli state utility.
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[Maccheroni et al., 06b] as well as in [Cheridito et al, 06], the agent then as-

sesses variational expected reward at time t from stopping at τ by

πt(Xτ ) = ess inf
Q

(
EQ[Xτ |Ft] + αt(Q)

)
, (3.2)

where (αt)t≤T denotes the dynamic penalty, also called dynamic ambiguity

index in [Maccheroni et al., 06b]. This robust representations is obtained

from the axioms of dynamic variational preferences. The penalty is achieved

in terms of a Fenchel-Legendre transform. However, throughout this article,

we take the robust representation as given and build our theory upon that; we

do not consider the axiomatic approach to dynamic variational preferences.

Equivalently, the axioms of dynamic convex risk measures (ρt)t lead to a

robust representation satisfying ρt = −πt.
Before stating appropriate assumptions and rigorous definitions, let us

make a short note on the penalty’s intuition: As set out in the introduc-

tion, the approach of assessing expected reward in term of minimal penal-

ized expected utility emerges from the (dynamic) variational preferences ax-

ioms in [Maccheroni et al., 06b], as well as the convex risk measure axioms

in [Cheridito et al, 06]. Robust representation results therein justify rep-

resenting expected reward in the above manner. [Maccheroni et al., 06a]

and [Maccheroni et al., 06b], as well as [Rosazza Gianin, 06] in the time-

consistent case, incorporate a broad discussion of the penalty αt: The penalty

function is a measure for ambiguity aversion of an agent: If α1
t ≥ α2

t for all t

and all distributions, then agent 1 is less ambiguity averse than agent 2. In-

terpreted in another way, the penalty represents the subjective likelihood of

a distribution to be the ruling one: The higher the value of αt, the less likely

the agent considers the respective distribution. In terms of a game against

nature, αt is usually interpreted as a cost nature has to bear for choosing

a specific probability at time t. the penalty is – under the assumption of

risk neutrality but ambiguity aversion – the characterization of the agent’s

preferences; unique as long as it is the minimal penalty function. Distinct ex-
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amples of dynamic convex risk measures and dynamic variational preferences

will be given later. As an extreme case, consider a distribution Q ∈Me(P0)

such that, for all t, αt(Q) = 0 and ∞ for all P 6= Q: We achieve expected

utility theory with subjective prior Q. As shown in [Maccheroni et al., 06b],

multiple prior expected reward with Q ⊂ Me(P0) is a special case of vari-

ational expected reward where αt = 0 on Q and ∞ else. In this sense, the

present article constitutes a generalization of the approach in [Riedel, 09].

We now state a rigorous definition of the penalty (αt)t≤T and appropriate

assumptions for the above expected reward (πt)t≤T to be well defined as a

robust representation of dynamic (time-consistent) variational preferences.

There are several justifications for our definition of penalty: As seen in the

respective literature as e.g. [Cheridito et al, 06] or [Föllmer & Penner, 06],

our assumptions yield a representation of convex risk measures or variational

preferences in terms of a penalty (αt)t satisfying the properties below.

Notation 3.2.2. Define the set M of distributions in Me(P0) by

M := {Q | Q|Ft ≈ P0|Ft∀t, α0(Q) <∞},

where “≈” means two probability distributions to be equivalent. Given the

distribution Q ∈ M, Q|Ft denotes the restriction of Q to Ft, i.e. the distri-

bution of the process up to time t. As usual Q(·|Ft) denotes the conditional

probability distribution of the process given history up to time t.

The following definitions are obtained from [Föllmer & Penner, 06] and

[Maccheroni et al., 06b]:

Definition 3.2.3 (Dynamic Penalty & Time-Consistency). (a) We call a

family (αt)t a dynamic penalty if each αt satisfies:

• αt is a mapping αt : M → L1
+(Ft): For each Q ∈ M, αt(Q) is an

Ft-measurable random variable with values in R+.34

3More elaborately, for all ω ∈ Ω, αt(·)(ω) is a function on the Ft-bayesian updated

distributions in M, i.e. the effective domain satisfies effdom(αt(·)(ω)) ⊂ {Q(·|Ft) : Q ∈
M, ω ∈ Ft ∈ Ft}. Hence, when writing αt(Q) we actually have in mind αt(Q(·|Ft)).

4It can be seen in [Föllmer & Penner, 06], Lemma 3.5, that this domain of a penalty is
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• For all t ≥ 0, αt is grounded, i.e. ess infQ∈M αt(Q) = 0.

• αt is closed and convex,5 i.e. convex as a mapping on M and closed in

the sense that images of closed sets are again closed.

(b) At t, define the acceptance set by At := {X ∈ L∞|ρt(X) ≤ 0}. Then,

we define the minimal penalty (αmin
t )t by

αmin
t (Q) := ess sup

X∈At
EQ[−X|Ft].

for all Q ∈M.6

(c) Let pt (resp. qt) denote the density process of P (resp. Q) with respect to

P0, i.e. pt := dP
dP0

∣∣∣
Ft

, where dP
dP0

denotes the Radon-Nikodym derivative with

respect to P0. For a stopping time θ define the “pasted distribution” P ⊗θ Q
by virtue of

d(P⊗θ Q)

dP0

∣∣∣∣
Ft

:=

{
pt if t ≤ θ,
pθqt
qθ

else.

(d) We call a dynamic penalty (αt)t time-consistent if it satisfies the following

no-gain condition: for all t ≥ 0 and Q we have

αt(Q) = EQ [αt+1(Q)|Ft] + ess inf
P∈M

αt(Q⊗t+1 P). (3.3)

Notation 3.2.4. Taking into account that αt only depends on Bayesian up-

dates, we simplify notation when appropriate and write

αt(Q⊗t+1 P) = αt

(
q1 . . . qt+1pt+2 . . .

q1 . . . qt

)
= αt(qt+1pt+2 . . .).

well defined in case of relevant time-consistent dynamic convex risk measures as relevance

allows to only consider the set of locally equivalent distributions in the robust represen-

tation and time-consistency in conjunction with relevance implies αt(Q) < ∞ for all t.

We call a dynamic convex risk measure (ρt)t≤T relevant, if P0[ρt(−εIA) > 0] > 0 for all t,

ε > 0 and A ∈ F such that P0[A] > 0.
5This assumption is well defined by [Föllmer & Schied, 04], Remark 4.16.
6(αmin

t )t≤T is a penalty function in terms of (a).
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Assumption 3.2.5. Throughout this article we assume the agent to as-

sess risk in terms of a relevant time-consistent dynamic convex risk measure

(ρt)t≤T on the set of essentially bounded F-measurable random variables as

in [Föllmer & Penner, 06] or, equivalently, assess utility in terms of time-

consistent dynamic variational preferences (πt)t≤T for end-period payoffs as

in [Maccheroni et al., 06b]. Note that we identify dynamic variational pref-

erences with its robust representation of induced payoff. Furthermore, we

assume continuity from below for (ρt)t≤T , i.e. for all (Xn)n ⊂ L∞ such that

Xn ↗ X for some X ∈ L∞, we have ρt(Xn) ↘ ρt(X). Equivalently, we

assume continuity from below of (πt)t≤T , i.e. πt(Xn) ↗ πt(X) for the above

sequence.

Definition 3.2.6. (ρt)t is called time-consistent if it satisfies ρt = ρt(−ρt+1)

for all t < T . Equivalently, πt = πt(πt+1).7

Remark 3.2.7. [Cheridito et al, 06] and [Föllmer & Penner, 06] show that,

under Assumption 3.2.5, (ρt)t≤T and (πt)t≤T have a robust representation of

the form

ρt(Xτ ) = −πt(Xτ ) = ess sup
Q∈M

{
EQ[−Xτ |Ft]− αt(Q)

}
,

with some dynamic penalty (αt)t≤T . Furthermore, it is shown that this ro-

bust representation holds true in terms of, the minimal penalty (αmin
t )t≤T ,

satisfying the no-gain condition (3.3) by the time-consistency assumption.

Remark 3.2.8. By virtue of the Fenchel-Legendre Transform, the minimal

7In general, time-consistency is defined as: ρt = ρt(−ρt+s), t, s ≤ T , t + s ≤ T .

In this sense, our definition of time-consistency is a special case, called “one-step time-

consistency” in [Cheridito et al, 06]. However, for the proofs in this article, our definition

is sufficient and, of course, always satisfied in the general case of time-consistency. On

the other hand, one-step time-consistency implies general time-consistency under our con-

tinuity assumptions by Proposition 4.5 in [Cheridito et al, 06]. Hence, our definition of

time-consistency in terms of ”one-step time-consistency” is equivalent to the general notion

of time-consistency.
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penalty can be written as

αmin
t (Q) = ess sup

X∈L∞
(EQ[−X|Ft]− ρt(X))

for all Q ∈M. The term “minimal” is justified as the robust representation of

(ρt)t≤T or (πt)t≤T might allow for multiple penalties (αt)t≤T , but the minimal

one satisfies

αmin
t (Q) ≤ αt(Q)

for all Q ∈M and (αt)t≤T in the robust representation of (ρt)t≤T or (πt)t≤T .

The minimal penalty uniquely characterizes the agent’s preferences or,

equivalently, risk attitude by virtue of the robust representation.

Assumption 3.2.9. We assume robust representation in terms of the min-

imal penalty throughout this article.

Remark 3.2.10. (a) The no-gain condition on the minimal penalty (αmin
t )t

is equivalent to time-consistency of (πt)t≤T or (ρt)t≤T . Connecting distinct

periods via the penalty function, this property leads to a recursive structure

of penalty and hence of the value function of the optimal stopping problem.

We will make this explicit later on.

(b) As stated in [Föllmer et al., 09], Remark 1.1, continuity from below of

πt or ρt implies continuity from above of either one. Continuity from above is

equivalent to the existence of a robust representation of πt (or ρt) in terms of

minimal penalized expected payoff; continuity from below of πt (or ρt) induces

the worst case distribution to be achieved. We hence could change the sup

into a max. πt is continuous from above (below) if and only if the convex

risk measure ρt is continuous from above (below).

The intuition of equation (3.3), the no-gain condition, is the following:

We might think that nature has to pay a penalty for choosing a specific dis-

tribution at time t: αmin
t . Nature may now accomplish the task of choosing

a probability in two ways: On the left hand side of equation (3.3), it uses
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the time-consistent way by just choosing a probability Q, pay the appropri-

ate amount and do nothing in the next period and go with the conditional

distribution Q(·|Ft). However, the right hand side describes the possibly

time-inconsistent way of choosing a probability: It chooses today a distri-

bution P that inuces the same distribution today as Q but may differ from

tomorrow on and pays the amount αmin
t (Q ⊗t+1 P). In the second step, i.e.

after realization of Ft+1, nature may deviate and, conditionally on Ft, choose

a distribution Q. If this time-inconsistent way of choosing a distribution is

not less costly, we call (αmin
t )t time-consistent. Equation (3.3) particularly

tells us that the cost of choosing Q at time t can be decomposed into the

sum of expected cost of choosing Q’s conditionals at time t+ 1 and the cost

of inducing Q|Ft+1 as a so-called one-period-ahead marginal distribution of

the payoff process at time t.

The no-gain condition on (αmin
t )t is the generalization of the time-consistency

condition in [Riedel, 09]: As shown in [Maccheroni et al., 06b], if (αt) is triv-

ial, i.e. only assumes values in {0,∞}, the no-gain condition is equivalent to

stability of the set of priors Q := {Q ∈ M : αmin
t (Q) = 0}. This also holds

true in the not necessarily finite case as shown in e.g. in [Cheridito et al, 06].

In course of this section, we explicitly show time-consistency results when

assuming a robust representation of dynamic convex risk measures or dy-

namic variational preferences in terms of minimal penalty.

Explicit Answer to the Initial Question

The following assumption answers the question how agents assess utility in

the present set-up.

Assumption 3.2.11 (Main Assumption on Preferences). To sum up, for

given τ we assume expected reward (πt)t≤T being continuous from below and

possessing the robust representation as in Remark 3.2.7: for all t

πt(Xτ ) = ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
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with dynamic minimal penalty (αmin
t )t≤T assumed to be time-consistent, i.e.

satisfying equation (3.3). This is equivalent to Assumption 3.2.5 but in terms

of robust representation.

Again, due to continuity from below, we can write the robust representa-

tion as ess min instead of ess inf.

In terms of dynamic variational preferences, time consistency is given by

the recursion formula πt(πt+1) = πt, which, as elaborately discussed below,

in our case becomes for τ ≥ t+ 1

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ
[
ess inf

P∈M

(
EP[Xτ |Ft+1] + αmin

t+1(P)
)∣∣∣∣Ft]+ αmin

t (Q)

)
.

Remark 3.2.12. The following assumption is equivalent to πt (or equiva-

lently ρt) being continuous from below:{
dP
dP0

∣∣∣∣
Ft

∣∣∣∣ αt(P) < c

}
,

for each c ∈ R, t ∈ N, being relatively weakly compact in L1(Ω,F ,P0).8

Proof. Theorem 1.2 in [Föllmer et al., 09] states the assertion in an uncondi-

tional setting. Due to the properties of conditional expectations, the assertion

also holds in our dynamic set-up.

Remark 3.2.13 (Robust Representation as in Remark 3.2.7). We have now

justified the representation in Remark 3.2.7. Relevance in conjunction with

time-consistency allows us to only consider locally equivalent distributions

in the robust representation and ensures M being non-empty as shown in

[Föllmer & Penner, 06].

The second part, continuity from below, then induces the worst case dis-

tribution to be attained in the coherent case, cp. [Föllmer & Schied, 04],

Corollary 4.35, and Lemma 9 and 10 in [Riedel, 09], and the minimal distri-

bution to be achieved in our approach as will be seen in Proposition 3.3.6.

8Or, assuming αmin
t to be lsc, then just weakly compact. Due to time-consistency, we

have αmin
t (Q) <∞ for all t whenever there exists one such t.
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Remark 3.2.14 (Conditional Cash Invariance). One of the axioms of dy-

namic variational preferences (and dynamic convex risk measures) is condi-

tional cash invariance. In conjunction with a normalization assumption, this

property becomes: for all t ≤ T and Ft-measurable X, we have πt(X) = X.

As we do not consider the axiomatic approach, we immediately derive this

property from the robust representation as αmin
t is assumed to be grounded:

πt(X) = ess inf
Q∈M

(
EQ[X|Ft] + αmin

t (Q)
)

= X + ess inf
Q∈M

αmin
t (Q) = X.

The next result justifies to define time-consistency in terms of the penalty

as it results in time-consistency of dynamic variational preferences (πt)t≤T .

Proposition 4.5 in [Cheridito et al, 06] shows in case of continuity from below

our definition of time consistency, πt = πt(πt+1), to be equivalent to the

general definition, πt = πt(πt+s). The proof of Proposition 3.2.15 is a special

case of the proof of Theorem 4.22 in [Cheridito et al, 06]. It is explicitly

stated here as it generates fruitful insights.

Proposition 3.2.15. The no-gain condition, equation (3.3), implies time-

consistency of dynamic variational preferences (πt)t≤T , i.e. πt = πt(πt+1) for

t < T . More precisely, we have for all (Xt)t≤T and τ ≤ T

πt(Xτ ) = Xτ I{τ≤t} + πt(πt+1(Xτ ))I{τ≥t+1}

= πt(Xτ I{τ≤t} + πt+1(Xτ )I{τ≥t+1})

= πt(πt+1(Xτ )).

Proof. (i) τ ≤ t: In this case, Xτ is Ft-measurable and in particular Ft+1-

measurable. Hence, by conditional cash invariance, we have

πt(Xτ ) = Xτ = πt+1(Xτ )

and hence πt(Xτ ) = πt(πt+1(Xτ )).

(ii) τ ≥ t+ 1: “≤”: If, for all Q ∈M, we have

αmin
t (Q) ≤ EQ [αmin

t+1(Q)|Ft
]

+ ess inf
P∈M

αmin
t (Q⊗t+1 P),
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then, as ess infR∈M αmin
t (Q⊗t+1 R) ≤ αmin

t (Q), also

αmin
t (Q⊗t+1 P) ≤ EQ⊗t+1P [αmin

t+1(Q⊗t+1 P)|Ft
]

+ αmin
t (Q).

Now, consider Q1,Q2 ∈ M and B ∈ F . Set dQ3

dP0
:= IB dQ1

dP0
+ IBc dQ1

dP0
. Then

Q3 ∈M and by the local property of minimal penalty, [Föllmer & Penner, 06],

Lemma 3.3, we have αmin
t (Q3) = IBαmin

t (Q1) + IBcαmin
t (Q2). Define B as

B := {EQ2 [Xτ |Ft+1] + αmin
t+1(Q2) ≥ EQ1 [Xτ |Ft+1] + αmin

t+1(Q1)}.

Then

EQ3 [Xτ |Ft+1] + αmin
t+1(Q3)

= min
{
EQ1 [Xτ |Ft+1] + αmin

t+1(Q1); EQ2 [Xτ |Ft+1] + αmin
t+1(Q2)

}
showing the set {

EP[Xτ |Ft+1] + αmin
t+1(P) : P ∈M

}
to be downward directed. Hence, there exists a sequence (Pn)n ⊂ M such

that

EPn [Xτ |Ft+1] + αmin
t+1(Pn)↘ πt+1(Xτ ).

As (αmin
t )t≤T is assumed to satisfy equation (3.3) and (πt)t≤T is assumed to be

relevant, pasted distributions again have finite penalty. Hence, M is closed

under pasting and we obtain for all Q ∈M and such Pn:

πt(Xτ ) = ess inf
P,Q

(
EQ⊗t+1P[Xτ |Ft] + αmin

t (Q⊗t+1 P)
)

≤ EQ⊗t+1Pn [Xτ |Ft] + αmin
t (Q⊗t+1 Pn)

≤ EQ⊗t+1Pn [Xτ |Ft]︸ ︷︷ ︸
=EQ [EPn [Xτ |Ft+1]|Ft]

+ EQ⊗t+1Pn [αt+1(Q⊗t+1 Pn)|Ft]︸ ︷︷ ︸
=EQ [αt+1(Pn)|Ft]

+αmin
t (Q)

= EQ [EPn [Xτ |Ft+1] + αmin
t+1(Pn)

∣∣Ft]+ αmin
t (Q),
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i.e. for all Q ∈M we have

πt(Xτ ) ≤ EQ [EPn [Xτ |Ft+1] + αmin
t+1(Pn)

∣∣Ft]+ αmin
t (Q).

Hence, letting n→∞, we achieve for all Q ∈M

πt(Xτ ) ≤ EQ [πt+1(Xτ )| Ft] + αmin
t (Q).

Applying the essential infimum to this expression yields

πt(Xτ ) ≤ πt(πt+1(Xτ )).

“≥”: Assuming

αmin
t (Q) ≥ EQ [αmin

t+1(Q)|Ft
]

+ ess inf
P∈M

αmin
t (Q⊗t+1 P)

for all Q ∈M, we obtain

EQ[Xτ |Ft] + αmin
t (Q)

≥ EQ[Xτ |Ft] + EQ [αmin
t+1(Q)|Ft

]
+ ess inf

P∈M
αmin
t (Q⊗t+1 P)

≥ ess inf
P∈M

(
EQ⊗t+1P [EQ [Xτ |Ft+1] + αmin

t+1(Q)
∣∣Ft] + αmin

t (Q⊗t+1 P)
)

≥ ess inf
P∈M

(
EQ⊗t+1P [πt+1(Xτ )| Ft] + αmin

t (Q⊗t+1 P)
)

≥ πt(πt+1(Xτ )).

Applying the essential infimum, we achieve

πt(Xτ ) ≥ πt(πt+1(Xτ )).

As in [Maccheroni et al., 06b] we have the following result on the recursive

structure of expected reward πt at time t. However, we achieve this result

for more general probability spaces but under the assumption of end-period

payoffs, risk neutrality and a discount factor of unity.
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Corollary 3.2.16. For time-consistent dynamic minimal penalty (αmin
t )t,

the time-t conditional expected reward from choosing stopping time τ ≤ T

satisfies

πt(Xτ ) = Xτ I{τ≤t} + ess inf
µ∈M|Ft+1

(∫
πt+1(Xτ )dµ+ γt(µ)

)
I{τ≥t+1},

where

γt(µ) := ess inf
Q∈M

αmin
t (µ⊗t+1 Q) ∀µ ∈M|Ft+1 ,

andM|Ft+1 denotes the set of all distributions inM restricted on Ft+1 condi-

tional on Ft. To have this expression well-defined, we set ess infP∈M αmin
t (µ⊗t+1

P) := ess infP∈M αmin
t (Q⊗t+1 P) with Q ∈M such that Q|Ft+1(·|Ft) = µ.

Proof. By conditional cash invariance, we have

πt(Xτ ) = πt(Xτ I{τ≤t} + πt+1(Xτ )I{τ≥t+1})

= Xτ I{τ≤t} + πt(πt+1(Xτ ))I{τ≥t+1}.

As πt+1 is Ft+1-measurable we have, whenever τ ≥ t+ 1,

πt(πt+1(Xτ )) = ess inf
Q∈M

(
EQ[πt+1(Xτ )|Ft] + αmin

t (Q)
)

= ess inf
R,P∈M

ER⊗t+1P[πt+1(Xτ )|Ft]︸ ︷︷ ︸
E

R|Ft+1 [πt+1(Xτ )|Ft]

+αmin
t (R⊗t+1 P)


= ess inf

µ∈M|Ft+1
,P∈M

(
Eµ[πt+1(Xτ )|Ft] + αmin

t (µ⊗t+1 P)
)

= ess inf
µ∈M|Ft+1

Eµ[πt+1(Xτ )|Ft] + ess inf
P∈M

αmin
t (µ⊗t+1 P)︸ ︷︷ ︸
=:γt(µ)

 .

γt might be viewed as nature’s penalty when choosing the one-period-

ahead marginal µ. Hence, it is called one-period-ahead penalty in analogy to

[Maccheroni et al., 06b]. In terms of γt, equation (3.3) becomes

αmin
t (Q) = EQ[αmin

t+1(Q)|Ft] + γt(Q|Ft+1(·|Ft)). (3.4)
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Remark 3.2.17 (Bellman Principle for Nature). Given τ ≤ T , Corollary

3.2.16 can be rephrased as

πt(Xτ ) = ess inf
Q|Ft+1

∈M|Ft+1

(
EQ|Ft+1 [πt+1(Xτ )|Ft] + γt(Q|Ft+1)

)
:

Indeed, this is immediately seen as Xτ I{τ≤t} is Ft-measurable, γt is grounded,

and the conditional expectation is the unconditional one with respect to the

conditional distribution.

Intuitively, this constitutes a Bellman principle for nature’s choice of a

worst-case distribution:9 Given the optimal (worst-case) distribution from

time t+1 on, represented by its value πt+1, nature chooses a minimizing one-

period ahead conditional distribution Q|Ft+1. Note, that the above expression

is basically the same as the robust representation but in terms of a one-

step-ahead problem. This insight is particularly adjuvant when constructing

a worst-case distribution in Proposition 3.3.6 in terms of pasted one-period

ahead conditional distributions.

3.2.2 The Agent’s Problem

Let (Xt)t≤T , T ∈ N ∪ {∞}, be a payoff process adapted to the filtered “ref-

erence space” (Ω,F ,P0, (Ft)t≤T ) and expected reward (πt)t≤T with robust

representation by virtue of time-consistent minimal penalty (αt)t≤T . Recall

that M := {Q ∈Me(P0) : αmin
0 (Q) <∞}.

The agent solves the following problem by finding an appropriate stopping

time τ with respect to (Ft)t≤T :

sup
0≤τ≤T

inf
Q∈M

(
EQ[Xτ |F0] + αmin

0 (Q)
)

(3.5)

among all stopping times that are universally finite, i.e.

inf
Q∈M

Q[τ <∞] = 1.

9This should not be mixed up with the Bellman principle in the next chapter’s theorems

on optimal stopping: there, we achieve Bellman equations for the optimal stopping decision

of the agent, not for the worst-case distribution decision of nature.
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Definition 3.2.18 (Value Function, Snell Envelope). (a) For the problem at

hand, the value (function) (Vt)t≤T at time t ≤ T is given by

Vt := ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
. (3.6)

(b) For finite T , define the variational Snell envelope (Ut)t≤T of (Xt)t≤T with

respect to dynamic minimal penalty (αmin
t )t recursively by UT := XT and

Ut := max

{
Xt, ess inf

Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)}

for t < T . (3.7)

(c) Define the stopping time

τ ∗ := inf{t ≥ 0|Ut = Xt}. (3.8)

Due to time-consistency of (πt)t≤T the variational Snell envelope can also

be written as:

Ut = max {Xt, πt(Ut+1)}

= max

{
Xt, ess inf

Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)}

= max

{
Xt; ess inf

µ∈M|Ft+1

(∫
πt+1(Ut+1)dµ+ γt(µ)

)}

= max

{
Xt; ess inf

µ∈M|Ft+1

(∫
Ut+1dµ+ γt(µ)

)}

Subsequently, we show that the value function and the variational Snell

envelope coincide when T is finite. In the infinite time-horizon case, we show

the Bellman principle to hold for the value function allowing for recursive

solutions. Furthermore, it follows that τ ∗ is an optimal stopping time, i.e.

a solution to the initial problem. Note, that the variational Snell envelope

coincides with the multiple prior Snell envelope in case of multiple prior

preferences as introduced in [Riedel, 09]. It coincides with the “good old”

Snell envelope as e.g. set out in [Neveu, 75] in case of a unique subjective

prior.
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3.3 Variational Supermartingales

From the approach to optimal stopping in terms of Snell envelopes as e.g.

set out in [Neveu, 75] or more generally with multiple prior Snell envelopes

as in [Riedel, 09], we know that the value function satisfies some kind of

supermartingale property.10 The sleight of hand is always showing the value

function to be “some kind” of martingale until the optimal stopping time

and “some kind” of supermartingale thereafter. Hence, in order to solve the

agent’s problem, we have to come up with an appropriate notion of martingale

for dynamic variational preferences: the following definition generalizes the

notion of multiple prior (sub-, super-) martingales in [Riedel, 09]:

Definition 3.3.1. Given a time-consistent dynamic minimal penalty func-

tion (αmin
t )t∈N, let (Mt)t∈N be an (Ft)t∈N-adapted process with EQ[|Mt|] <∞

for all t ≤ T and all Q ∈ M. (Mt)t∈N is called a variational (sub-, super-)

martingale with respect to (αmin
t )t∈N if the following relation holds for t < T :

ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)

= (≥,≤)Mt.

In Lemma 6, [Riedel, 09] achieves a quite elegant way to characterize the

concepts of multiple prior (sub-, super-) martingales with respect to some

time-consistent set Q of distributions in terms of (sub-, super-) martingales

with respect to a worst-case distribution P∗ ∈ Q. However, this result is owed

to the simple structure of αt in the multiple priors case. Under variational

preferences, we do not achieve such an elegant lemma, but nevertheless can

state a similar result for variational supermartingales as being a supermartin-

gale “modulo penalty” with respect to some worst-case distribution Q∗ ∈M.

However, non-triviality of the minimal penalty in case of variational pref-

erences is the reason why the intuition of an agent behaving as expected

utility maximizer under the worst case distribution does not carry over from

10Having a look in the respective chapters in [Neveu, 75], it can be seen that the term

Snell envelope is not explicitly used therein; the solution procedure, however, is identical.
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[Riedel, 09]. As in Riedel’s Lemma 6, the worst-case distribution is achieved

recursively: At each time t, the worst-case conditional one-step-ahead dis-

tribution is chosen. In [Riedel, 09], time-consistency is needed to ensure the

recursively pasted distribution to be again in the set of priors Q. By defi-

nition ofM and equation (3.3), we obviously have that pasted distributions

are again in M: αmin
t+1(Q) < ∞ implies αmin

t (Q) < ∞. However, the most

important part in our construction of a worst-case Q∗ is that, given equa-

tion (3.3), pasting of worst-case one-step-ahead distributions is consistent

with being of worst-case type given equation (3.3) Having achieved a worst-

case distribution from t + 1 onwards, we paste this with the one-step-ahead

worst-case conditional distribution from t to t+ 1 and achieve the worst-case

distribution from time t onwards.

For the next result analog to Lemma 6 in [Riedel, 09], we need several

lemmata directly generalizing the respective ones in [Riedel, 09] (Lemmata

9 and 10) to dynamic variational preferences applying interim results from

[Föllmer & Penner, 06]. Throughout we assume the minimal penalty to sat-

isfy equation (3.3).

Lemma 3.3.2. For all µ ∈ M|Ft+1 there exists P∗ ∈ M(·|Ft+1) such that

αmin
t (µ⊗t+1 P∗) = ess infP∈M(·|Ft+1) α

min
t (µ⊗t+1 P).

Proof. By the weak compactness assumption on the set of density processes

(equivalent to continuity from below), it is sufficient to show that there exists

a sequence (Pn)n ⊂M(·|Ft+1) such that

αmin
t (µ⊗t+1 Pn)↘ ess inf

P∈M(·|Ft+1)
αmin
t (µ⊗t+1 P).

Hence, it suffices to show that for all µ ∈M|Ft+1 , the set

{αmin
t (µ⊗t+1 Pn) : P ∈M(·|Ft+1)}

is downward directed, i.e. for every P1,P2 ∈ M(·|Ft+1), there exists a P3 ∈
M(·|Ft+1) sucht that

min
{
αmin
t (µ⊗t+1 P1), αmin

t (µ⊗t+1 P2)
}

= αmin
t (µ⊗t+1 P3).
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Indeed, set A := {αmin
t (µ⊗t+1 P1) < αmin

t (µ⊗t+1 P2)} and define P3 by virtue

of

dP3

dP0

:= IA
dP1

dP0

+ IAC
dP2

dP0

.

By Lemma 3.3 in [Föllmer & Penner, 06], we have

αmin
t (µ⊗t+1 P3) = IAαmin

t (µ⊗t+1 P1) + IACαmin
t (µ⊗t+1 P2)

since µ⊗t+1 P3 = (µ⊗t+1 P1)IA + (µ⊗t+1 P2)IAC . Hence, we have

min
{
αmin
t (µ⊗t+1 P1), αmin

t (µ⊗t+1 P2)
}

= αmin
t (µ⊗t+1 P3),

which concludes the proof.

Lemma 3.3.3. Let Z ∈ L∞(Ω,FT ,P0). Then, for any stopping time τ , the

set {
EQ[Z|Fτ ] + αmin

τ (Q) : Q ∈M, Pτ |Fτ = P0|Fτ
}

is downward directed, i.e. for any Q1,Q2 ∈ M with Q1|Fτ = Q2|Fτ = P0|Fτ ,

there exists Q3 ∈M with Q3|Fτ = P0|Fτ such that

EQ3 [Z|Fτ ] + αmin
τ (Q3)

= min
{
EQ1 [Z|Fτ ] + αmin

τ (Q1); EQ2 [Z|Fτ ] + αmin
τ (Q2)

}
.

Proof. Let Q1 and Q2 be chosen as above. Consider some arbitrary set

B ∈ Fτ and define Q3 by virtue of

dQ3

dP0

:= IB
dQ1

dP0

+ IBC
dQ2

dP0

.

We have Q3 ∈ M, Q3|Fτ = P0|Fτ , and by [Föllmer & Penner, 06], Lemma

3.3, we have the so called local propery for the minimal penalty

αmin
τ (Q3) = IBαmin

τ (Q1) + IBCαmin
τ (Q2) <∞.

Now, define B ∈ Fτ as

B := {ω ∈ Ω|EQ2 [Z|Fτ ](ω) + αmin
τ (Q2)(ω)

≥ EQ1 [Z|Fτ ](ω) + αmin
τ (Q1)(ω)

}
.
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Then, by definition of Q3 and the local property, we have

EQ3 [Z|Fτ ] + αmin
τ (Q3)

=
(
EQ1 [Z|Fτ ] + αmin

τ (Q1)
)

IB +
(
EQ2 [Z|Fτ ] + αmin

τ (Q2)
)

IBC

= min
{
EQ1 [Z|Fτ ] + αmin

τ (Q1); EQ2 [Z|Fτ ] + αmin
τ (Q2)

}
,

which completes the proof.

Lemma 3.3.4. Let Z ∈ L∞(Ω,Fs,P0), s ≤ T , and τ a stopping time.11

Then there exists Pτ ∈M sucht that Pτ |Fτ = P0|Fτ and

ess inf
Q∈M

(
EQ[Z|Fτ ] + αmin

τ (Q)
)

= EPτ [Z|Fτ ] + αmin
τ (Pτ )I{s>τ}.

Proof. In case τ ≥ s, the assertion obviously holds true by conditional cash

invariance: Both sides of the equation equal Z.12

Hence, we consider the case τ < s. To show: ∃ (Pm)m ⊂ M with

Pm|Fτ = P0|Fτ such that

ess inf
Q∈M

(
EQ[Z|Fτ ] + αmin

τ (Q)
)

= lim
m→∞

EPm [Z|Fτ ] + αmin
τ (Pm).

By the weak closedness assumption, such a sequence (Pm)m then weakly

converges to some P∞ ∈M that satisfies

ess inf
Q∈M

(
EQ[Z|Fτ ] + αmin

τ (Q)
)

= EP∞ [Z|Fτ ] + αmin
τ (P∞).

Setting P∞ =: Pτ then concludes the proof.

It leaves to prove existence of a sequence (Pm)m ⊂ M with the above

properties: As in the proof of Lemma 10 in [Riedel, 09], Bayes rule as well

as the dependence of ατ only on the Fτ -conditional distribution allows us to

restrict attention to Q ∈ M such that Q = P0 on Ft. This is made explicit

11We actually state the assertion in a more general fashion than needed: For our results

it suffices to have a fixed stopping period t ∈ N.
12Of course, the assertion in the lemma would still be correct without the indicator

function attached to the penalty. Then, in case τ ≥ s, the minimizing distribution Pτ is

just the one for which αmin
τ (Pτ ) = 0. However, our form makes more explicit that the

α-term vanishes in that case.
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in Corollary 2.4 in [Föllmer & Penner, 06]. Hence, existence of the sequence

is assured if we can show the set{
EQ[Z|Fτ ] + αmin

τ (Q) : Q ∈M, Pτ |Fτ = P0|Fτ
}
.

to be downward directed as achieved in Lemma 3.3.3.

Corollary 3.3.5 (from Lemma 3.3.4). For all Z ∈ L∞(Ω,Ft+1,P0), ∃µ∗ ∈
M|Ft+1 such that

ess inf
µ∈M|Ft+1

(Eµ[Z|Ft] + γt(µ)) = Eµ∗ [Z|Ft] + γt(µ
∗).

Proposition 3.3.6. Let (Mt)t∈N be an adapted process and (αmin
t )t∈N a time-

consistent minimal dynamic penalty function.

(a) If (Mt)t∈N is a Q-submartingale for all Q ∈M, then (Mt)t∈N is a varia-

tional submartingale with respect to (αmin
t )t.

(b) (Mt)t∈N is a variational supermartingale with respect to (αmin
t )t∈N if and

only if there exist a Q∗ ∈ M such that (Mt)t∈N is a Q∗-supermartingale

“modulo penalty”, i.e.

EQ∗ [Mt+1|Ft] + αmin
t (Q∗) ≤Mt.

In particular, (Mt)t∈N is a Q∗-supermartingale, i.e. EQ∗ [Mt+1|Ft] ≤Mt.

Proof. ad (a): Let (Mt)t∈N be a submartingale for every Q ∈M, i.e.

EQ[Mt+1|Ft] ≥Mt ∀Q ∈M

⇒ ess inf
Q∈M

{
EQ[Mt+1|Ft] + αmin

t (Q)
}

≥ ess inf
Q∈M

EQ[Mt+1|Ft] + ess inf
Q∈M

αmin
t (Q)

= ess inf
Q∈M

EQ[Mt+1|Ft] ≥Mt.

This shows (a).

ad (b): “⇐” Let Q∗ ∈ M be such that Mt ≥ EQ∗ [Mt+1|Ft] + αmin
t (Q∗).

Then obviously, Mt ≥ ess infQ∈M
{
EQ[Mt+1|Ft] + αmin

t (Q)
}

and hence (Mt)t
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is a variational supermartingale w.r.t. (αt)
min
t∈N as well a Q∗-supermartingale:

Mt ≥ EQ∗ [Mt+1|Ft] + αmin
t (Q∗) ≥ EQ∗ [Mt+1|Ft].

“⇒” By making use of Corollary 3.2.16, we will explicitly construct a

worst-case distribution Q∗ ∈M that satisfies

Mt ≥ ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)

= EQ∗ [Mt+1|Ft] + αmin
t (Q∗)

for t < T . Let M(·|Ft) denote the set of all distributions in M conditional

on Ft and M|Ft as defined in Corollary 3.2.16. We use that, due to conti-

nuity from below, the infima in the robust representation of preferences are

achieved and, hence, are actually minima. We nevertheless state the equa-

tions in terms of infima as this is common in the respective literature. We

have

Mt ≥ πt(Mt+1)

= ess inf
Q|Ft+1

∈M|Ft+1

EQ|Ft+1 [πt+1(Mt+1)︸ ︷︷ ︸
=Mt+1

|Ft] + γt(Q|Ft+1(·|Ft))


by Corollary 3.2.16

= ess inf
Q|Ft+1

∈M|Ft+1

(
EQ|Ft+1 [Mt+1|Ft] + γt(Q|Ft+1(·|Ft))

)
= EQ∗|Ft+1 [Mt+1|Ft] + γt(Q∗|Ft+1(·|Ft))

with Q∗|Ft+1 as achieved in Corollary 3.3.5

= EQ∗|Ft+1 [Mt+1|Ft] + ess inf
P∈M(·|Ft+1)

αmin
t (Q∗|Ft+1(·|Ft)⊗t+1 P)

by definition of γt

= EQ∗|Ft+1
⊗t+1Q∗(·|Ft+1)[Mt+1|Ft] + αmin

t (Q∗|Ft+1(·|Ft)⊗t+1 Q∗(·|Ft+1))

by Lemma 3.3.2 and Bayes rule on the first summand

= EQ∗(·|Ft)[Mt+1|Ft] + αmin
t (Q∗(·|Ft))

by definition of ⊗t+1

= EQ∗ [Mt+1|Ft] + αmin
t (Q∗),

where Q∗(·|Ft) := Q∗|Ft+1(·|Ft)⊗t+1 Q∗(·|Ft+1) is the pasting of the Q∗|Fs ’s,
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s ≥ t, and Q∗ the respective recursive pasting down to time 0. The last

equality makes use of the fact that the penalty only depends on conditional

distributions13 and that the conditional expectation is the unconditional one

with respect to the conditional distribution.

In the foregoing proposition, we see that a variational submartingale with

respect to some minimal penalty (αmin
t )t∈N does not need to be a submartin-

gale with respect to some Q ∈ M. This insight limits the mathematical

theory obtained later. Luckily however, our economic results only rely on

the properties of variational supermartingales.

Remark 3.3.7. As seen in the lemmata, the foregoing assertion can be gen-

eralized to: ∃ Q∗ ∈M such that ∀t, s we have

EQ∗ [Ms|Ft] + αmin
t (Q∗)I{s>t} ≤Mt.

Indeed, if s ≤ t, due to projection property of conditional expectation, the left

hand side reduces to Ms as, in that case, Ms is Ft-measurable, and αmin
t is

assumed to be grounded.

In the same token as [Riedel, 09], we generalize standard results for su-

permartingales to our notion of variational supermartingales. First, we show

the fundamental Doob Decomposition in martingale theory to still be valid

in our framework. Thereafter, we show an Optional Sampling theorem for

variational supermartingales.

Proposition 3.3.8 (Doob Decomposition). Let (St)t∈N be a variational su-

permartingale with respect to time-consistent minimal penalty (αmin
t )t∈N. Then

there exists a variational martingale (Mt)t∈N with respect to (αmin
t )t∈N and a

predictable non-decreasing process (At)t∈N, A0 = 0, such that St = Mt − At
for all t and this decomposition is unique.

13I.e. the effective domain of the dynamic minimal penalty is the set of conditionals

and, hence, our intuitive notation here is justified.
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Proof. (a) Uniqueness: Let S = M − A as above. Then

ess inf
Q∈M

(
EQ[St+1 − St + At+1 − At|Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[Mt+1 −Mt|Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)
−Mt = 0,

as M was assumed to be a variational martingale. Since αmin
t is uniquely

given (as ρt is assumed to be relevant) and A is assumed to be predictable,

we have

At+1 = At − ess inf
Q∈M

(
EQ[St+1 − St|Ft] + αmin

t (Q)
)
.

This shows uniqueness of A and thus also of M .

(b) Existence: Define (At)t∈N by virtue of A0 = 0 and

At+1 := At − ess inf
Q∈M

(
EQ[St+1 − St|Ft] + αmin

t (Q)
)
.

Then, At+1 ∈ Ft, i.e. (At)t∈N is predictable and, moreover, it is non-

decreasing. Set Mt := St +At. It is left to show that (Mt)t∈N is a variational

martingale with respect to (αmin
t )t∈N:

ess inf
Q∈M

(
EQ[Mt+1|Ft] + αmin

t (Q)
)
−Mt

= ess inf
Q∈M

(
EQ[Mt+1 −Mt|Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[St+1 − St + At+1 − At|Ft] + αmin

t (Q)
)

= At+1 − At + ess inf
Q∈M

(
EQ[St+1 − St|Ft] + αmin

t (Q)
)

= 0,

where the last equality follows by definition of (At)t∈N and the second to last

because of its predictability.

Proposition 3.3.9 (Optional Sampling). Let (St)t∈N be a variational super-

martingale with respect to the time-consistent minimal penalty (αmin
t )t∈N and

σ ≤ τ be universally finite stopping times. Then

Sσ ≥ ess inf
Q∈M

(
EQ[Sτ |Fσ] + αmin

σ (Q)
)
.
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Proof. We know from Proposition 3.3.6 that there exists a “worst case” dis-

tribution P∗ ∈M such that

St ≥ EP∗ [St+1|Ft] + αmin
t (P∗).

Whereas the proof of optional sampling with multiple priors in [Riedel, 09]

is immediate as the minimal penalty vanishes for the worst case distribution,

we have to mimic the proof of the original optional sampling theorem and

carry with us the penalty. The proof is accomplished in two steps:

(i) First, we show that for fixed N ∈ N a stopped “supermartingale mod-

ulo penalty” (SN∧t)t∈N is again one such. I.e.14

SN∧t ≥ EP∗ [SN∧(t+1)|Ft] + αmin
t (P∗)I{N>t}. (3.9)

Indeed, we have

SN∧t = S0 +
t∑

k=1

I{N≥k}(Sk − Sk−1)

≥ S0 +
t∑

k=1

I{N≥k}(Sk − Sk−1)

+I{N≥t+1}(EP∗ [St+1 − St|Ft] + αmin
t (P∗))

= EP∗
[
S0 +

t∑
k=1

I{N≥k}(Sk − Sk−1) + I{N≥t+1}(St+1 − St)|Ft

]
+αmin

t (P∗)I{N>t}
= EP∗ [SN∧(t+1)|Ft] + αmin

t (P∗)I{N>t},

where the inequality holds with equality for variational martingales.

(ii) Note: By (i), we have for a variational martingale (Mt)t∈N

EP∗ [MN∧t] = EP∗ [MN∧(t+1) + αmin
t (P∗)I{N>t}]

14It might, at first sight, seem quite confusing that there is an indicator function adjacent

to the penalty in equation (3.9) as already stated in Remark 3.3.7. However, the intuition

is that a time t > N , i.e. when the process has already been stopped, its value is known

since SN is Ft-measurable and nature does not have to be penalized any more as it does

not choose any distribution.
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and in particular

EP∗ [M0] = EP∗
[
MN∧t +

t−1∑
i=0

αmin
i (P∗)I{N>i}

]
∀N, t.

Moreover, it holds

lim
t→∞

EP∗ [MN∧t +
t−1∑
i=0

αmin
i (P∗)I{N>i}]

= EP∗ [MN ] + EP∗ [
∞∑
i=0

αmin
i (P∗)I{N>i}].

Hence,

EP∗ [M0] = EP∗ [MN ] + EP∗
[
∞∑
i=0

αmin
i (P∗)I{N>i}

]
.

We set
∑∞

i=0 α
min
i (P∗)I{N>i} =:

∑N−1
i=0 αmin

i (P∗). Now, let B ∈ Fσ and define

SB := σIB + κIBC ,

TB := τIB + κIBC ,

where κ := supN . Then SB and TB are stopping times and we have by

equation (3.3)

EP∗
[
MσIB +

σ−1∑
i=0

αmin
i (P∗)IB

]
+ EP∗

[
MκIBc +

κ−1∑
i=0

αmin
i (P∗)IBc

]

= EP∗

MSB +
SB−1∑
i=0

αmin
i (P∗)


= EP∗ [M0]

= EP∗

MTB +
TB−1∑
i=0

αmin
i (P∗)


= EP∗

[
Mτ IB +

τ−1∑
i=0

αmin
i (P∗)IB

]
+ EP∗

[
MκIBc +

κ−1∑
i=0

αmin
i (P∗)IBc

]
,

and hence

EP∗ [MσIB] = EP∗
[

(Mτ +
τ−1∑
i=σ

αmin
i (P∗))IB

]
.
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Since this holds true for all B ∈ Fσ, we have

EP∗ [Mσ|Fσ] = EP∗ [Mτ +
τ−1∑
i=σ

αmin
i (P∗)|Fσ],

i.e.

Mσ = EP∗
[
Mτ +

τ−1∑
i=σ+1

αmin
i (P∗)

∣∣∣∣∣Fσ
]

+ αmin
σ (P∗)I{τ>σ}.

Summing up, we have shown for τ > σ15

Mσ ≥ EP∗ [Mτ |Fσ] + αmin
σ (P∗)

≥ ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)

for a variational martingale M ; for τ = σ

Mσ = Mτ = EP∗ [Mτ |Fσ]

= ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)

as αmin
σ is grounded and Mτ ∈ Fσ. Hence, for τ ≥ σ

Mσ ≥ EP∗ [Mτ |Fσ] + αmin
σ (P∗)I{τ>σ}

≥ ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)
.

For (St)t∈N being a variational supermartingale, the conjecture then follows

from the Doob decomposition, Proposition 3.3.8, and the above results for

variational martingales:

ess inf
Q∈M

(
EQ[Sτ − Sσ|Fσ] + αmin

σ (Q)
)

= ess inf
Q∈M

(
EQ[Mτ |Fσ] + αmin

σ (Q)
)
−Mσ︸ ︷︷ ︸

≤0

+Aσ − Aτ︸ ︷︷ ︸
≤0

≤ 0.

Hence

Sσ ≥ ess inf
Q∈M

(
EQ[Sτ |Fσ] + αmin

σ (Q)
)
.

15As usual the empty sum is assumed to equal zero.
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For the proofs of our economic results, we just need:

Corollary 3.3.10 (from Propsition 3.3.9). Let (St)t∈N be a variational super-

martingale with respect to time-consistent minimal penalty (αmin
t )t∈N. Then

we have for every stopping time τ

Sτ∧t ≥ ess inf
Q∈M

(
EQ[Sτ∧(t+1)|Ft] + αmin

t (Q)
)
.

Proof. From the first part of the proof of Proposition 3.3.9, we have

Sτ∧t ≥ EP∗ [Sτ∧(t+1)|Ft] + αmin
t (P∗)I{τ>t}

≥ ess inf
Q∈M

(
EQ[Sτ∧(t+1)|Ft] + αmin

t (Q)I{τ>t}
)

= ess inf
Q∈M

(
EQ[Sτ∧(t+1)|Ft] + αmin

t (Q)
)
.

The last equation follows from (αmin
t )t∈N assumed to be grounded: In case

τ ≤ t we have

ess inf
Q∈M

(
EQ[Sτ |Ft] + αmin

t (Q)
)

= Sτ + ess inf
Q∈M

αmin
t (Q) = Sτ .

3.4 Main Results

We are now enabled to state and prove the main results of this article.

These directly generalize the results in [Riedel, 09] to dynamic variational

preferences. In the first subsection, we state the solution of the optimal

stopping problem for finite time-horizons and a minimax-theorem similar to

[Schied, 07] or [Riedel, 09]. The second subsection is devoted to the solution

of the infinite time-horizon problem and an approximation result. The proofs

directly follow the lines in [Riedel, 09]

3.4.1 Finite Horizon

Let T < ∞. The following result extends the fundamental Propositions

VI-1-2 and VI-1-3 in [Neveu, 75] to dynamic variational preferences.
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Recall the agent’s problem as given by the value function in equation

(3.6): At time t, find a stopping rule τ solving

Vt := ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
,

where (αmin
t )t≤T is a time-consistent dynamic minimal penalty function.

Theorem 3.4.1 (Solution to the Finite Problem). (a) The variational Snell

envelope (Ut)t≤T defined in equation (3.7) by

Ut := max

{
Xt, ess inf

Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)}

for t < T

and UT = XT is the smallest variational supermartingale with respect to

(αmin
t )t≤T that dominates (Xt)t≤T .

(b) We have Ut = Vt for all t ≤ T , i.e. the variational Snell envelope,

equation (3.7), equals the problem’s value function, equation (3.6).

(c) τ ∗ := inf{t ≥ 0|Ut = Xt} from equation (3.8) is an optimal stopping

time, i.e. solves the optimal stopping problem under dynamic variational

preferences stated in Remark 3.5. Moreover, it is the smallest optimal stop-

ping time.

Proof. ad (a): By definition we have Ut ≥ Xt for all t ≤ T and

Ut ≥ ess inf
Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)

for all t ≤ T−1. Hence, (Ut)t≤T is a variational supermartingale with respect

to (αmin
t )t≤T exceeding the payoff process (Xt)t≤T . Let (Zt)t≤T be another

such variational supermartingale with respect to (αmin
t )t≤T . We show by

(backward) induction that (Zt)t≤T ≥ (Ut)t≤T : By definition ZT ≥ XT = UT .

Assuming Zt+1 ≥ Ut+1, we achieve

Zt ≥ ess inf
Q∈M

EQ[Zt+1︸︷︷︸
≥Ut+1

|Ft] + αmin
t (Q)


≥ ess inf

Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)
.
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Thus, as by assumption Zt ≥ Xt, we have hence shown (a):

Zt ≥ max

{
Xt, ess inf

Q∈M

(
EQ[Ut+1|Ft] + αmin

t (Q)
)}

= Ut.

ad (b): We first show “≥”: By Proposition 3.3.9, we have for the varia-

tional supermartingale (Ut)t≤T ≥ (Xt)t≤T and all t ≤ τ ≤ T

Ut ≥ ess inf
Q∈M

(
EQ[Uτ |Ft] + αmin

t (Q)
)

≥ ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
.

Hence, we have

Ut ≥ ess sup
t≤τ≤T

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.

To show “≤”, we define the stopping rule

τ ∗t := inf{s ≥ t : Us = Xs}.

Now, fix t ≤ T . If we can show the stopped variational supermartingale

(Us∧τ∗t )t≤s≤T to be a variational martingale with respect to (αmin
s )t≤s≤T , we

are done: Indeed, in that case, we have since τ ∗t ≥ t

Ut = ess inf
Q∈M

(
EQ[Uτ∗t |Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ[Xτ∗t

|Ft] + αmin
t (Q)

)
≤ ess sup

t≤τ≤T
ess inf

Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.

Summing up, we then have Ut = Vt for all t ≤ T .

Hence, it leaves to show the variational martingale property of the stopped

variational Snell envelope (Us∧τ∗t )t≤s≤T : Let t ≤ s ≤ T .

(i) Whenever τ ∗t ≤ s, we have U(s+1)∧τ∗t = Uτ∗t = Us∧τ∗t and hence

ess inf
Q∈M

(
EQ[U(s+1)∧τ∗t |Fs] + αmin

s (Q)
)

= ess inf
Q∈M

(
EQ[Us∧τ∗t |Fs] + αmin

s (Q)
)

= Us∧τ∗t + ess inf
Q∈M

αmin
s (Q) = Us∧τ∗t .
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(ii) For τ ∗t > s, we have (by (a) and the definition of τ ∗t ) Us > Xs and hence

Us∧τ∗t = Us = max

{
Xs, ess inf

Q∈M

(
EQ[Us+1|Fs] + αmin

s (Q)
)}

= ess inf
Q∈M

EQ[ Us+1︸︷︷︸
=U(s+1)∧τ∗t

|Fs] + αmin
s (Q)

 .

(i) and (ii) show the stopped variational martingale property.

ad (c): Let t = 0. Then

τ ∗ := τ ∗0 := inf{s ≥ 0 : Us = Xs}

and (Us∧τ∗)s≤T is a variational martingale with respect to (αmin
s )s≤T as already

shown. We now obtain

ess sup
0≤τ≤T

ess inf
Q∈M

(
EQ[Xτ ] + αmin

0 (Q)
)

= V0 = U0 by (b)

= ess inf
Q∈M

(
EQ[Uτ∗|F0] + αmin

0 (Q)
)

by Proposition 3.3.9

= ess inf
Q∈M

(
EQ[Xτ∗ ] + αmin

0 (Q)
)

by definition of τ ∗.

Hence, τ ∗ is optimal and the proof of (c) is completed. Morover, any stopping

time such that P0[τ ∗∗ < τ ∗] > 0 cannot be optimal since in that case by

definition of τ ∗ and part (b)

V0 > ess inf
Q∈M

(
EQ[Xτ∗∗ ] + αmin

0 (Q)
)
.

Since coherent risk is just a special case of convex risk, the example in

[Riedel, 09], Appendix D, shows that time-consistency is a necessary condi-

tion for the above theorem to hold.

We now state a minimax-theorem. Technically, this allows us to inter-

change the “inf” and “sup” in the formulation of the problem, i.e., intuitively,

it does not matter if nature chooses a worst case distribution first and then
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the agent maximizes, or vice versa. In the not necessarily time-consistent

case, this result is achieved in [Schied, 07]. The proof therein makes use of

convex conjugates. However, the result in [Schied, 07] does not constitute a

constructive device for the calculation of solutions. Here, the result takes the

form

ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
UQ
t + αmin

t (Q)
)
,

where UQ
t := ess supT≥τ≥t EQ[Xτ |Ft] is the value of the expected-utility opti-

mal stopping problem with subjective prior Q.

Remark 3.4.2. As we immediately see, this means that

Vt = Ut = ess inf
Q∈M

(
UQ
t + αmin

t (Q)
)
.

Hence, we do not have the elegant result as in [Riedel, 09] that the variational

Snell envelope (Ut)t is the lower envelope of the individual Snell envelopes

(UQ
t ) as the penalty is not necessarily zero.

Of course, upon revelation, payoffs are equal:

ess inf
Q∈M

(
EQ[Xτ |Fτ ] + αmin

τ (Q)
)

= Xτ + ess inf
Q∈M

αmin
τ (Q) = Xτ .

Remark 3.4.3. Again, we can show the set{
UQ
t + αmin

t (Q) : Q ∈M
}

to be downward directed.

Indeed: Making use of Lemma 3.3 in [Föllmer & Penner, 06], the proof

works as Lemma 3.3.3 when setting A := {UQ1
t +αmin

t (Q1) < UQ2
t +αmin

t (Q2)} ∈
Ft.

Theorem 3.4.4 (Minimax-Theorem). For every t, we have the following

identity:

ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
ess sup

T≥τ≥t
EQ[Xτ |Ft] + αmin

t (Q)

)
.
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Proof. “≤”: This inequality is inter alia shown in [Rockafellar, 70] for general

minimax-problems.

“≥”: By virtue of Proposition 3.3.6 there exists a Q∗ such that we have

the following chain of inequalities:

ess sup
T≥τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess sup
T≥τ≥t

(
EQ∗ [Xτ |Ft] + αmin

t (Q∗)I{τ>t}
)

≥ ess inf
Q∈M

ess sup
T≥τ≥t

(
EQ[Xτ |Ft] + αmin

t (Q)I{τ>t}
)

= ess inf
Q∈M

ess sup
T≥τ≥t

(
EQ[Xτ |Ft] + αmin

t (Q)
)

since αmin
t is grounded, i.e. on {τ = t}, we have

ess inf
Q∈M

(
EQ[Xt|Ft] + αmin

t (Q)
)

= Xt + ess inf
Q∈M

αmin
t (Q) = Xt.

Remark 3.4.5. Set Q∗ the worst-case distribution in case of time-consistent

dynamic variational preferences and Q∗∗ the worst-case distribution for time-

consistent multiple priors in Q assuming M = Q, i.e. the sets of distribu-

tions with finite penalty coincide. Let (Vt)t denote the value function of the

optimal stopping problem under dynamic variational preferences and (V Q
t )t

the value of the optimal stopping problem with subjective prior Q for an ex-

pected utility maximizer. We then have

Vt = ess sup
T≥τ≥t

EQ∗ [Xτ |Ft] + αmin
t (Q∗)︸ ︷︷ ︸
≥0


︸ ︷︷ ︸

≥EQ∗ [Xτ |Ft]

≥ V Q∗
t .

Hence, in addition to Remark 3.4.2, this inequality makes explicit that the

uncertainty averse agent under variational preferences does not behave as

an expected utility maximizer with respect to the worst case measure as it is

the case in [Riedel, 09] under multiple priors. This fact is also elaborated in
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Proposition 3.5.16 below. In particular, the optimal stopping time τ ∗ from

the ambiguous problem, does not coincide with the smallest optimal stopping

time from the expected utility optimal stopping problem under the worst-case

subjective distribution Q∗.
Furthermore, we see

Vt ≥ V Q∗∗
t .

Hence, compared to the multiple priors approach, expected reward from vari-

ational preferences is at least as high due to non-triviality of the penalty if

we assume Q = M. In other words, sophistication of αmin increases min-

imal expected utility. Intuitively: The agent has more information on the

likelihood of distributions available under variational preferences than under

multiple priors and hence values the problem more. Stated in other terms

more important to application in risk management: Convex risk measures

assess risk in a more liberal manner than coherent risk measures given the

sets of considered distributions coincide.

3.4.2 Infinite Horizon

Let T = ∞. Since the variational Snell envelope is only defined for T < ∞,

the appropriate theorem for the infinite time-horizon case shows the value

function to satisfy the Bellman principle.

Theorem 3.4.6 (Infinite Problem & Approximation). (a) The value process

(Vt)t∈N as defined in equation (3.6) is the smallest variational supermartingale

with respect to (αmin
t )t∈N that dominates the payoff process (Xt)t∈N.

(b) The value process (Vt)t∈N satisfies the Bellman principle, i.e.

Vt = max

{
Xt, ess inf

Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)}

for all t ≥ 0.

(c) τ ∗ := inf{t ≥ 0|Vt = Xt} is the smallest optimal stopping time.

(d) Let (UT
t )t≤T denote the variational Snell envelope with respect to (αmin

t )t≤T

for the optimal stopping problem of (Xt)t≤T truncated to finite horizon T <
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∞. Let (Vt)t∈N denote the value process of the infinite problem as given in

Theorem 3.4.6. Then we have limT→∞ U
T
t = Vt for all t ≥ 0.

Proof. ad (b): “≥”: By Lemma 3.4.7 below, there exists a sequence (τk)k of

stopping times, such that

ess inf
Q∈M

(
EQ[Xτk |Ft+1] + αmin

t+1(Q)
)
↗k Vt+1.

Hence, making use of time-consistency16 and continuity from below, we have

ess inf
Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)

= lim
k→∞

ess inf
Q∈M

(
EQ
[
ess inf

P∈M

(
EP[Xτk |Ft+1] + αmin

t+1(P)
)∣∣∣∣Ft]

+αmin
t (Q)

)
= lim

k→∞
ess inf

Q∈M

(
EQ[Xτk |Ft] + αmin

t (Q)
)
≤ Vt.

Furthermore, by definition of (Vt)t∈N, we have Vt ≥ Xt and hence

Vt ≥ max

{
Xt, ess inf

Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)}

for all t ≥ 0.

“≤”: Given τ, t and set σ := max{τ, t + 1}. Then, by conditional cash

16Here, we use time-consistency directly in terms of preferences, i.e., for τ, t, we have

πt(Xτ ) = πt(πt+1(Xτ )), or, more elaborately,

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= ess inf
Q∈M

(
EQ
[
ess inf
Q∈M

(
EQ[Xτ |Ft+1] + αmin

t+1(Q)
)∣∣∣∣Ft]+ αmin

t (Q)
)
.
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invariance,

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= XtI{τ≤t} + ess inf
Q∈M

(
EQ[Xσ|Ft] + αmin

t (Q)
)

I{τ≥t+1}

= XtI{τ≤t}

+ ess inf
Q∈M

(
EQ
[
ess inf

P∈M

(
EP[Xσ|Ft+1] + αmin

t+1(Q)
)∣∣∣∣Ft]
+αmin

t (Q)
)
I{τ≥t+1}

≤ max

{
Xt, ess inf

Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)}

,

as ess infP∈M
(
EP[Xσ|Ft+1] + αmin

t+1(Q)
)
≤ Vt+1.

This shows “≤” since the above inequality holds for all τ ≥ t and hence

for the ess supτ≥t. Hence (b) is achieved.

ad (a): By (b) we have for all t

Vt ≥ ess inf
Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)

and Vt ≥ Xt.

Hence, (Vt)t∈N is a variational supermartingale with respect to (αmin
t )t∈N and

Vt ≥ Xt. Let (Wt)t∈N be another variational supermartingale with respect to

(αmin
t )t∈N exceeding (Xt)t∈N. By Proposition 3.3.9 we have for all τ ≥ t ∈ N

Wt ≥ ess inf
Q∈M

(
EQ[Wτ |Ft] + αmin

t (Q)
)

≥ ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)
,

as Wτ ≥ Xτ and, hence,

Wt ≥ ess sup
τ≥t

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.

This shows (a).

ad (c): As in the proof of Theorem 3.4.1, we can show (Vs∧τ∗)s∈N to be a

variational martingale. By our continuity assumption, we hence achieve

ess inf
Q∈M

(
EQ[Vτ∗|F0] + αmin

0 (Q)
)

= lim
s→∞

ess inf
Q∈M

(
EQ[Vs∧τ∗|F0] + αmin

0 (Q)
)

= V0,
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which shows the assertion in (c).

ad (d): Since (Xt)t∈N is assumed to be bounded, (UT
t )t≤T is bounded,

too. Furthermore, enlarging the set of stopping times when considering the

process up to T + 1 instead of T , we have UT
t ≤ UT+1

t . Hence, the limit

U∞t := limT→∞ U
T
t is well-defined for all t. We thus have by continuity from

below

U∞t = lim
T→∞

UTt︷ ︸︸ ︷
max

{
Xt, ess inf

Q∈M

(
EQ[UT

t+1|Ft] + αmin
t (Q)

)}
= max

{
Xt, ess inf

Q∈M

(
EQ[U∞t+1|Ft] + αmin

t (Q)
)}

.

In particular, (U∞t )t∈N is a variational supermartingale with respect to (αmin
t )t∈N

exceeding (Xt)t∈N. We now show (Vt)t∈N = (U∞t )t∈N, where (Vt)t∈N is the infi-

nite horizon problem’s value function: By (a) and (Ut)t∈N being a variational

supermartingale exceeding (Xt)t∈N, we have (U∞t )t∈N ≥ (Vt)t∈N. From the

finite horizon problem, we have for all T and t

UT
t = ess sup

t≤τ≤T
ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

≤ ess sup
t≤τ≤∞

ess inf
Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)

= Vt.

Hence for all t it holds

U∞t = lim
T→∞

UT
t ≤ Vt.

This shows (Vt)t∈N = (U∞t )t∈N and completes the proof.

The last part of the foregoing theorem is particularly valuable for achiev-

ing constructive solutions for infinite models in terms of limiting solutions of

truncated ones.

Lemma 3.4.7. Let (αmin
t )t∈N be a time-consistent dynamic minimal penalty.

For t ∈ N, the set{
ess inf

Q∈M

(
EQ[Xτ |Ft] + αmin

t (Q)
)∣∣∣∣ τ ≥ t

}
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is upward directed, i.e. for any two stopping times τ1, τ2, there exists a stop-

ping time, say, τ3 ≥ t such that

ess inf
Q∈M

(
EQ[Xτ3|Ft] + αmin

t (Q)
)

= max

{
ess inf

Q∈M

(
EQ[Xτ1|Ft] + αmin

t (Q)
)

;

ess inf
Q∈M

(
EQ[Xτ2|Ft] + αmin

t (Q)
)}

.

Proof. Set

A :=

{
ess inf

Q∈M

(
EQ[Xτ1|Ft] + αmin

t (Q)
)

> ess inf
Q∈M

(
EQ[Xτ2|Ft] + αmin

t (Q)
)}

and define the stopping time

τ3 := τ1IA + τ2IAC .

Note that A ∈ Ft.
“≥”: By Lemma 3.3.4, there exists Q3 ∈M such that

ess inf
Q∈M

(
EQ[Xτ3|Ft] + αmin

t (Q)
)

= EQ3 [Xτ3 |Ft] + αmin
t (Q3)I{τ3>t}

= EQ3 [Xτ1 |Ft]IA + EQ3 [Xτ2|Ft]IAC

+αmin
t (Q3)I{τ3>t}∩A + αmin

t (Q3)I{τ3>t}∩Ac

=
(
EQ3 [Xτ1|Ft] + αmin

t (Q3)I{τ1>t}
)

IA
+
(
EQ3 [Xτ2|Ft] + αmin

t (Q3)I{τ2>t}
)

IAC

≥ ess inf
Q∈M

{
EQ[Xτ1|Ft] + αmin

t (Q)
}

IA

+ ess inf
Q∈M

(
EQ[Xτ2|Ft] + αmin

t (Q)
}

IAC

= max

{
ess inf

Q∈M

(
EQ[Xτ1|Ft] + αmin

t (Q)
)

;

ess inf
Q∈M

(
EQ[Xτ2|Ft] + αmin

t (Q)
)}

,
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where the indicator function again drops as αmin
t is assumed to be grounded.

The last equality follows from the definition of A.

“≤”: Since

EQ[Xτ3|Ft] + αmin
t (Q)

=
(
EQ[Xτ1 |Ft] + αmin

t (Q)
)

IA +
(
EQ[Xτ2|Ft] + αmin

t (Q)
)

IAC ,

we have

ess inf
Q∈M

(
EQ[Xτ3|Ft] + αmin

t (Q)
)

=

[
ess inf

Q∈M

(
EQ[Xτ1|Ft] + αmin

t (Q)
)]

IA

+

[
ess inf

Q∈M

(
EQ[Xτ2|Ft] + αmin

t (Q)
)]

IAC

≤ max

{
ess inf

Q∈M

(
EQ[Xτ1|Ft] + αmin

t (Q)
)

;

ess inf
Q∈M

(
EQ[Xτ2 |Ft] + αmin

t (Q)
)}

,

as A ∩ AC = ∅ and each factor in front of the indicator function is of course

smaller than or equal to the maximum of both factors.

3.5 Examples

In this section, we consider optimal stopping problems for prominent exam-

ples of dynamic variational preferences. First, we consider stopping with

dynamic multiplier preferences or, equivalently, dynamic entropic risk mea-

sures. Secondly, we apply our theory to a generalized version of average value

at risk particularly paying attention to time-consistency issues.

In [Riedel, 09], several examples of optimal stopping problems with multi-

ple priors are considered; in particular for monotone payoff processes, as e.g.

American calls or puts. For those, a worst-case distribution is achieved by

virtue of stochastic dominance. Then the optimal stopping rule for multiple
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priors is the optimal stopping rule for the expected utility problem under this

worst-case distribution aligning with the intuition of an uncertainty averse

agent with multiple priors behaving as an expected utility maximizer under

the worst-case distribution.

However, simplicity of these examples is owed to the penalty being trivial

for multiple priors. As the penalty is not trivial in case of variational prefer-

ences, we might have a trade off between stochastic dominance on the payoff

process and the penalty that might increase as nature moves towards stochas-

tically dominated distributions of the payoff process. Hence, the worst-case

distribution cannot be attained any longer by stochastic dominance for the

payoff process even in the monotone case but by stochastic dominance of the

entire expression, the sum of expected payoff and penalty. Furthermore, we

observe that correlation is introduced even in quite simple contexts.

3.5.1 Dynamic Entropic Risk Measures

As first fundamental example we consider dynamic entropic risk measures

or, equivalently, dynamic multiplier preferences. Its robust representation is

intuitive: the agent expects a reference distribution Q ∈ M most likely and

distributions further away seem to be more and more unlikely. Hence, nature

shall be punished more severely the further “away” the chosen distribution

from that specific Q. Relative entropy turns out to be the measure of dis-

tance in the robust representation. We introduce multiplier preferences as

in [Maccheroni et al., 06b]. [Cheridito et al, 06] and [Föllmer & Penner, 06]

equivalently consider this example as dynamic entropic risk measures. Let

again (Ω,F , (Ft)t≤T ,P0), T ∈ N∪{∞}, be the underlying space and τ denote

a stopping time.

Definition 3.5.1. For P� Q, locally,17 we define the relative entropy of P

17By definition of M this is satisfied for all distributions under consideration.
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with respect to Q at time t ≥ 0 as

Ht(P|Q) := EP [ln(Zt)] ,

where Zt := dP
dQ |Ft. Furthermore, we define the conditional relative entropy

of P with respect to Q at time t ≥ 0 as

Ĥt(P|Q) := EP
[

ln

(
ZT
Zt

)∣∣∣∣Ft] = EQ
[
ZT
Zt

ln

(
ZT
Zt

)∣∣∣∣Ft] I{Zt>0}.

Basic properties of relative entropy are stated in [Csiszar, 75]: Ht(P|Q) =

0 if and only if P = Q on Ft, i.e. Zt = 1, and non-negative else. As we assume

the distributions under consideration to be locally equivalent, the indicator

function in the last equation vanishes.

We now formally introduce dynamic multiplier preferences:

Definition 3.5.2. Let θ > 0. We say that dynamic variational expected

reward πet (Xτ ), t, τ ≤ T , is obtained by dynamic multiplier preferences given

reference model Q or, equivalently by dynamic entropic risk measures, if its

robust representation is of the form18

πet (Xτ ) = ess inf
P∈M

(
EP[Xτ |Ft] + θĤt(P|Q)

)
. (3.10)

Remark 3.5.3. The variational formula for relative entropy implies

πet (Xτ ) = −θ ln(EQ[e−
1
θ
Xτ |Ft]).

Proposition 3.5.4. Dynamic multiplier preferences with reference distri-

bution Q ∈ M are time-consistent: Its robust representation has minimal

penalty αmin
t (P) = θĤt(P|Q) for t ≤ T , P ∈M, satisfying the no-gain condi-

tion. Hence, we have

πet (Xτ ) = XtI{τ=t}

+ ess inf
µ∈M|Ft+1

(∫
πet+1(Xτ )dµ+ θĤt+1(µ|Q(·|Ft))

)
I{τ≥t+1},

18This is the generalized version of the respective definition in [Maccheroni et al., 06b].

By conditional cash invariance, for τ ≤ t both sides of the equation equal Xτ .
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where we set Ĥt+1(µ|Q(·|Ft)) := Eµ[ln( dµ
dQ(·|Ft)|Ft+1

)] which, by abuse of nota-

tion, we write as Eµ[ln( dµ
dQ(·|Ft)

∣∣∣
Ft+1

)], µ ∈M|Ft+1.

Proof. The specific form of the penalty is shown in [Föllmer & Penner, 06],

Lemma 6.2, in terms of dynamic entropic risk measures: Robust representa-

tion of these are equal to those of multiplier preferences up to a minus sign.

Time-consistency is shown in [Föllmer & Penner, 06], p.92.

We now show the specific form of πet : By Corollary 3.2.16, we have

to show γt(µ) = θĤt+1(µ|Q(·|Ft)). For µ ∈ M|Ft+1 we recall γt(µ) :=

ess infP∈M αmin
t (µ ⊗t+1 P). As αmin

t only depends on the conditional dis-

tributions given Ft, we may write αmin
t (µ ⊗t+1 P) := αmin

t (Q ⊗t µ ⊗t+1 P)

∀Q ∈M. Hence,

1

θ
γt(µ) = ess inf

P∈M
αmin
t (Q⊗t µ⊗t+1 P)

= ess inf
P∈M

EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗tµ⊗t+1P)

dQ |FT
d(Q⊗tµ⊗t+1P)

dQ |Ft

)∣∣∣∣∣Ft
]
.

First, note that we have by dµ = d(Q⊗t µ)(·|Ft)

Eµ

[
ln

(
dµ

dQ(·|Ft)

∣∣∣∣
Ft+1

)]
= EQ⊗tµ

[
ln

(
d(Q⊗t µ)

dQ

∣∣∣∣
Ft+1

)∣∣∣∣∣Ft
]
.

As the integrand is Ft+1-measurable and d(Q⊗tµ)
dQ

∣∣∣
Ft+1

= d(Q⊗tµ⊗t+1P)
dQ

∣∣∣
Ft+1

, the

following equation holds for all P ∈M:

Eµ

[
ln

(
dµ

dQ(·|Ft)

∣∣∣∣
Ft+1

)]

= EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗t µ⊗t+1 P)

dQ

∣∣∣∣
Ft+1

)∣∣∣∣∣Ft
]
.
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Hence, it leaves to show for all R ∈M that

EQ⊗tµ⊗t+1R

[
ln

(
d(Q⊗t µ⊗t+1 R)

dQ

∣∣∣∣
Ft+1

)∣∣∣∣∣Ft
]

= ess inf
P∈M

EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗tµ⊗t+1P)

dQ |FT
d(Q⊗tµ⊗t+1P)

dQ |Ft

)∣∣∣∣∣Ft
]

= ess inf
P∈M

EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗t µ⊗t+1 P)

dQ

∣∣∣∣
FT

)∣∣∣∣∣Ft
]
,

where the last equation follows as d(Q⊗tµ⊗t+1P)
dQ |Ft = 1.

We know from the properties of the entropy, that Ĥt(P|Q) ≥ 0 and = 0

if and only if P = Q on Ft. In the same way, we have that

Q ∈ arg ess inf
P∈M

EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗t µ⊗t+1 P)

dQ

∣∣∣∣
FT

)∣∣∣∣∣Ft
]
.

More precisely,

arg ess inf
P∈M

EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗t µ⊗t+1 P)

dQ

∣∣∣∣
FT

)∣∣∣∣∣Ft
]

= {V ∈M|V = R⊗t µ⊗t+1 Q for some R ∈M}.

Hence, we have

ess inf
P∈M

EQ⊗tµ⊗t+1P

[
ln

(
d(Q⊗t µ⊗t+1 P)

dQ

∣∣∣∣
FT

)∣∣∣∣∣Ft
]

= EQ⊗tµ⊗t+1Q

[
ln

(
d(Q⊗t µ⊗t+1 Q)

dQ

∣∣∣∣
FT

)∣∣∣∣∣Ft
]

= EQ⊗tµ⊗t+1Q

[
ln

(
d(Q⊗t µ⊗t+1 Q)

dQ

∣∣∣∣
Ft+1

)∣∣∣∣∣Ft
]
,

where the second equality follows since qt := dQ
dQ |Ft = 1 for all t ≤ T and

hence d(Q⊗tµ⊗t+1Q)
dQ

∣∣∣
Ft+1

= d(Q⊗tµ⊗t+1Q)
dQ

∣∣∣
Fη

for all η ≥ t + 1. This completes

the proof.
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For the value function, we thus have

Vt = ess sup
t≤τ≤T

πet (Xτ )

= ess sup
t≤τ≤T

{
XtI{τ=t}

+ ess inf
µ∈M|Ft+1

(∫
πet+1(Xτ )dµ+ θĤt+1(µ|Q(·|Ft))

)
I{τ≥t+1}

}
= max

{
Xt;

ess sup
t+1≤τ≤T

ess inf
µ∈M|Ft+1

(∫
πet+1(Xτ )dµ+ θĤt+1(µ|Q(·|Ft))

)}
= max

{
Xt;

ess inf
µ∈M|Ft+1

(∫
ess sup
t+1≤τ≤T

πet+1(Xτ )dµ+ θĤt+1(µ|Q(·|Ft))
)}

= max
{
Xt; ess inf

Q∈M

(
EQ[Vt+1|Ft] + αmin

t (Q)
)}

again showing the Bellman principle to hold but having applied our mini-

max theorem. As we want to achieve explicit solutions, we further confine

ourselves:

Assumption 3.5.5. Let the underlying probability space (Ω,F , (Ft)t≤T ,P0)

be given as the independent product of the time-t state space, (S,S, ν0), S ⊂
R. Then P0 = ⊗Tt=1νo and Fs is generated by the projection mappings εt :

Ω 7→ S, t ≤ s. In particular, the εts are i.i.d. with ν0 under P0.

As in [Riedel, 09], we confine ourselves to the set

M[a,b] :=

{
Pβ ≈ P0 :

dPβ

dP0

∣∣∣∣
Ft

= Dβ
t ∀t, (βt)t ⊂ [a, b], predictable

}
,

Dβ
t := exp(

∑t
s=1 βsεs −

∑t
s=1 L(βs)) for some predictable process (βt)t≤T ⊂

[a, b] ⊂ R and L(βt) := ln
∫
S
eβtxν0(dx).

Remark 3.5.6. As we have now constrained the set of possible probability

distributions, we note that we are not in context of general dynamic entropic

risk measures any longer.
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Notation 3.5.7. The reference distribution of the entropic penalty write as

Q := Pβ1
, i.e. (β1

t )t≤T denotes the process defining the penalty’s reference

distribution. Note that Q is in general not equal to P0. Other distributions

in M write as P := Pβ2
.

Then

dP
dQ

∣∣∣∣
Ft

=
Dβ2

t

Dβ1

t

dP0

dP0

∣∣∣∣
Ft

= exp

(
t∑

s=1

(β2
s − β1

s )εs −
t∑

s=1

[L(β2
s )− L(β1

s )]

)
.

and the entropic penalty with reference distribution Q is given by

αmin
t (P) = θĤt(P|Q)

= θEP

[
T∑

s=t+1

(β2
s − β1

s )εs −
T∑

s=t+1

[L(β2
s )− L(β1

s )]

∣∣∣∣∣Ft
]
.

We write Eβ := EPβ and Ĥt(β
2|β1) := Ĥt(Pβ

2|Pβ1
) as well as αmin

t (β2). Note,

in case Q = P0, we have (β1
t )t≤T = 0 and hence for P = Pβ2

: αmin
t (P) =

θEP
[∑T

s=t+1 β
2
s εs −

∑T
s=t+1 L(β2

s )
∣∣∣Ft].

To make the value function (Vt)t≤T more explicit, note for µ ∈ M|Ft+1

given by previsible (β2
t )t≤T and penalty’s reference distribution Q ∈ M by

previsible (β1
t )t≤T , we have

Ĥt+1(µ|Q(·|Ft)) = Eµ

[
ln

(
dµ

dQ(·|Ft)|Ft+1

)]
= Eβ2

t+1
[
(β2

t+1 − β1
t+1)εt+1 − (L(β2

t+1)− L(β1
t+1))

]
.

Hence, as above the value is given by

Vt = ess sup
t≤τ≤T

ess inf
β2⊂[a,b]

(
Eβ2

[Xτ |Ft] + θĤt(β
2|β1)

)
(3.11)

= ess sup
t≤τ≤T

ess inf
β2⊂[a,b]

Eβ2

[
Xτ + θ

(
T∑

s=t+1

(β2
s − β1

s )εs

−
T∑

s=t+1

[L(β2
s )− L(β1

s )]

)∣∣∣∣∣Ft
]

= max
{
Xt;
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ess sup
t+1≤τ≤T

ess inf
β2
t+1∈[a,b]

Eβ2
t+1
[
πt+1(Xτ ) + θ

(
(β2

t+1 − β1
t+1)εt+1

−(L(β2
t+1)− L(β1

t+1))
)] }

= max
{
Xt ; ess inf

β2
t+1∈[a,b]

Eβ2
t+1
[
Vt+1 + θ

(
(β2

t+1 − β1
t+1)εt+1

−(L(β2
t+1)− L(β1

t+1))
)] }

,

where the last equality follows from the Minimax result. In particular, we

see that the value of the problem – and hence the worst case distribution –

depends on the reference distribution Q = Pβ1
of the penalty. In case T <∞,

the same recursion has to hold for the Snell envelope (Ut)t≤N by Theorem

3.4.1:

Ut = max {Xt; πt(Ut+1)}

= max

{
Xt; ess inf

µ∈M|Ft+1

(∫
πt+1(Ut+1)dµ+ θHt+1(µ|Q(·|Ft))

)}

= max

{
Xt; ess inf

µ∈M|Ft+1

(∫
Ut+1dµ+ θHt+1(µ|Q(·|Ft))

)}
= max

{
Xt; ess inf

β2
t+1∈[a,b]

Eβ2
t+1
[
Ut+1 + θ

(
(β2

t+1 − β1
t+1)εt+1

−(L(β2
t+1)− L(β1

t+1))
)] }

.

To further solve problems under entropic risk, we have to make specific

properties of the payoff process explicit. We constraint ourselves to monotone

problems:

Assumption 3.5.8. Xt := f(t, εt), where f is a bounded measurable function

that is strictly monotone in the state variable εt.

For monotone payoff processes in the ambiguous, i.e. multiple priors, case

it is shown in [Riedel, 09] that Ut is increasing in εt. However, having a look

at the proof therein (Appendix F), we see that this crucially depends on εt

being independent of Ft−1 (cf. equation (12) in [Riedel, 09]) as the process
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(β2
t )t yielding the worst case distribution under multiple priors is constant,

and the worst case distribution being the one that is stochastically dominated

for the payoff process (Lemma 13). We will see that these arguments do not

have to hold in case of variational preferences. Furthermore, in [Riedel, 09]’s

multiple priors case, the calculation of a worst case measure is done by virtue

of stochastic dominance on the payoff process. It is intuitive that this cannot

work as elegant under variational preferences: The penalty is not trivial, i.e.

not zero on some set of priors and infinite else. In particular, in the entropic

case, the worst-case measure depends on the reference distribution Q: there

might be a trade off between stochastic dominance on (Xt)t and the penalty:

The penalty increases the further nature moves away from Q and in direction

of a distribution minimizing the expectation of the payoff process.

To gain insights, we have a look at a special case for the reference distri-

bution of the penalty:

Example 3.5.9. Let f be increasing and the reference distribution be Q =

Pa, the distribution given by β1
t = a for all t ≤ T . We encounter for the

first term in the value function, Eβ2
[f(τ, ετ )|Ft]: Pa is stochastically domi-

nated, i.e. minimizes that term on M[a,b]. Pa also minimizes the penalty:

Ĥt(β
2|a) := Ĥt(Pβ

2|Pa) is increasing in β2 on [a, b], Ĥt ≥ 0 and zero if and

only if Pβ2
= Pa. Hence we have equivalence of the problem under dynamic

multiplier preferences and the optimality problem under the worst case dis-

tribution Pa as in Theorem 5 in [Riedel, 09].

Proposition 3.5.10. Let f be increasing, T < ∞, and τa denote the opti-

mal stopping time for the classical optimal stopping problem of (Xt)t≤T under

subjective distribution Pa, i.e. τa solves max0≤τ≤T Ea[Xτ ]. Let Q = Pa be

the reference measure for the penalty, i.e. β1
t = a, t ≤ T , in equation (3.11).

Then, τa is the solution to the robust problem with dynamic multiplier pref-

erences (πet )t≤T as given in equation (3.11).

Proof. Intuitively, in Appendix F in [Riedel, 09], it is shown that Pa is the

worst case distribution for the first term in the value function (3.11). As
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Ĥt(a|a) = 0 ≤ Ĥt(β
2|a) for all β2, Pa also minimizes the penalty and hence

is the worst case distribution in the multiplier case when Q = Pa.
Formally: For all increasing bounded measurable functions h : Ω → R

and all t ≥ 1, we have by Lemma 13 in [Riedel, 09]

Ea[h(εt)|Ft−1] = ess inf
β2∈[a,b]

Eβ2

[h(εt)|Ft−1]

= ess inf
β2[a,b]

Eβ2

[h(εt)|Ft−1] + min
β2∈[a,b]

θĤt−1(β2|a)︸ ︷︷ ︸
=Ĥt(a|a)=0

= ess inf
β2∈[a,b]

(
Eβ2

[h(εt)|Ft−1] + θĤt−1(β2|a)
)
,

where the last equation follows as the joint minimizer of both summands is Pa.
Given this result, we can mimic the proof of Theorem 5 in [Riedel, 09]: Let

(Ut)t≤T denote the variational Snell envelope of the problem under multiplier

preferences and (Ua
t )t≤T the classical Snell envelope with respect to subjective

prior Pa. For t = T , we have UT = XT = f(T, εT ) = Ua
T and hence increasing

in εT . As by induction hypothesis Ut+1 is an increasing function of εt+1, say

Ut+1 = u(εt+1) for some bounded measurable increasing u, we have for all

t < T

Ut = max

{
f(t, εt), ess inf

β2∈M[a,b]

(
Eβ2

[Ut+1|Ft] + θĤt(β
2|a)
)}

= max

f(t, εt), Ea[Ut+1|Ft] + θĤt(a|a)︸ ︷︷ ︸
=0


= max {f(t, εt), Ea[Ut+1|Ft]} =: Ua

t .

This shows the assertion by equality of the recursion formulas: (Ut)t≤T =

(Ua
t )t≤T and hence the optimal stopping times coincide.

Remark 3.5.11. The foregoing proof particularly shows that Ut is increasing

in εt in case Q = Pa: εt+1 is independent of Ft under Pa and hence

Ut = max{f(t, εt),Ea[u(εt+1)|Ft]}

= max{f(t, εt),Ea[u(εt+1)]}.
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The argument in the foregoing proof for the case Q = Pa is that Pa mini-

mizes EP[f(t, εt)] as well as Ĥt(P|a). Of course, this does not hold true if the

reference measure Q = Pβ1
is such that β1

t is not identical a. Then, we have

a trade off between a decrease in the first term, EP[f(t, εt)], which is inde-

pendent of Pβ1
, and an increase of the penalty in the second term, Ĥt(P|β1),

the further nature deviates from the reference distribution Pβ1
“downwards”

to the distribution Pa. More elaborately, considering a distribution Pβ2
with

β2
t ∈ [a, β1

t ], t ≤ T : When nature moves towards Pa, decreasing the first

term, the second term increases; when nature moves towards the reference

distribuiton Pβ1
, minimizing the second term, the first term increases. How-

ever, moving from Pβ1
in direction of the upper extremal distribution Pb,

both terms increase:

Proposition 3.5.12. Let Q = Pβ1 ∈ M[a,b] be the reference distribution of

the entropic penalty, and f be increasing. Then, the worst case distribution

Pβ̄2
satisfies β̄2

t ∈ [a, β1
t ].

Proof. For h as above, we have

ess inf
β∈[a,b]

{
Eβ[h(εt)|Ft−1] + Ĥt−1(β|β1)

}
≤ Eβ2

[h(εt)|Ft−1] + Ĥt−1(β2|β1)

for all β2
t ∈ [β1

t , b] for all t as Ĥt−1(β1|β1) = 0 and ≥ 0 else and further-

more Eβ2
[h(εt)|Ft−1] is increasing in β2 as seen in the proof of Lemma 13

in [Riedel, 09]. As Ĥt(·|β1) is strictly increasing on [β1
t , b], we have strict

inequality on ]β1
t , b].

We see, that the approaches e.g. in [Karatzas & Zamfirescu, 08], with

nature maximizing over the set of priors, are easier to handle in this context

as there is no tradeoff.

Example 3.5.13. The second extreme case for monotone increasing prob-

lems to be considered is the penalty’s reference distribution set to Q = Pb:
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Here, the smaller (β2
t )t is chosen and hence the smaller the first term, the

more increases the penalty as nature deviates further from the reference dis-

tribution. In particular, we see that the worst case distribution depends on

the specific form of f , not just on f being increasing: Due to tradeoff, it

depends on the slope of f at a particular state of the world. This has severe

consequences for the complexity of calculations: Let us for example take the

case of an American call as considered in [Riedel, 09]. As long as it is in the

money, the slope of f is one, whereas it is zero when out of the money. I.e.,

when out of the money, nature cannot just apply a distribution low enough

to likely staying out of the money but also has to take care of it being close

enough to Q not to increase the penalty too much. In this sense, the penalty

comes relatively more severely into account when the call is out of the money

and, hence, the one step ahead worst case distribution depends on the current

state:

Remark 3.5.14. In case of variational preferences, correlation is already

introduced for the call that has independent rewards under multiple priors as

shown in [Riedel, 09].

In general, we see that an increase in penalty by deviating further from

Pβ1
to Pa is less severe the steeper f , i.e. the tradeoff effect is in favor of

minimizing the first part of the value function, the expectation. In extreme

cases we might even still have Pa to be the worst case distribution if f is“steep

enough”, i.e. the increase in penalty might be outweighed by the decrease in

expected f , and Pβ1
“is not too far away” from Pa. To sum up:

Proposition 3.5.15. As we have already seen, the worst case distribution

depends on the reference distribution Q of the penalty, i.e. on (β1
t )t≤T . Fur-

thermore, as we have argued, it is a function of the current state of the world

and the specific form of the function f at that state and particularly of the

whole history.

It is hence immediate that not even a constant reference process (β1
t )t≤T

induces a constant worst case (β̄2
t )t≤T . This insight can be seen in the follow-
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ing calculations: Let Ut = h(ε1, . . . , εt), bounded and Ft-measurable. Then,

the right hand side of the Snell envelope becomes

Eβ2
t [h(ε1, . . . , εt)|Ft−1] + θĤt(β

2
1 |Pβ

1

(·|Ft−1)|Ft)

= Eβ2
t [h(ε1, . . . , εt) + θ

(
(β2

t − β1
t )εt − (L(β2

t )− L(β1
t ))
)
|Ft−1].

In order to recursively obtain a worst-case distribution, we have to min-

imize this expression with respect to β2
t ∈ [a, b] and obtain some β̄2

t =

β̄2
t (ε1, . . . , εt−1, β

1
t ). In particular, we can see that the process achieving the

worst-case distribution is again previsible, i.e. β̄2
t is Ft−1-measurable. Hence,

given a specific structure of (Xt)t≤T and a reference Pβ1
for the penalty, we

receive a worst case measure Pβ̄2
where (β̄2

t )t is achieved as above. Having

achieved this worst case distribution, we can calculate the optimal stopping

time τ ∗. However, as in general Ĥt(β̄
2
t |β1

t ) 6= 0, we obtain a negation of

Theorem 5 in [Riedel, 09] for our approach:

Proposition 3.5.16. Let (β̄2
t )t denote the process inducing the worst-case

distribution for the monotone problem under dynamic multiplier preferences

(πet )t≤T . Then,

Ut = max

{
Xt; ess inf

β2
t+1∈[a,b]

(
Eβ2

t+1 [Ut+1|Ft] + θHt+1(β2
t+1|Pβ

1

(·|Ft))
)}

= max
{
Xt; Eβ̄2

t+1 [Ut+1|Ft] + θHt+1(β̄2
t+1|Pβ

1

(·|Ft))
}

≥ max
{
Xt; Eβ̄2

t+1 [Ut+1|Ft]
}

= U β̄2

t ,

where U β̄2

t denotes the classical Snell envelope of the optimal stopping problem

under subjective prior given by β̄2. In particular, we see that

τ ∗ = inf
t
{Xt = Ut} ≥ inf

t
{Xt = U β̄2

t } = τ β̄
2∗.

As the recursion formulas for the Snell Envelopes and hence the optimal stop-

ping times of the problem under dynamic multiplier preferences and the one

for an expected utility maximizer under the respective worst case distribution
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differ, we see that the intuition in [Riedel, 09] is not valid anymore: The

agent does not behave as the expected utility maximizer under the worst

case distribution.

As a tangible example, we apply the problem of an American put to vari-

ational preferences. We assume the agent to consider the market as “emerg-

ing”, i.e. she considers distributions more favorable under which the value of

the underlying is likely to go up. We hence set the reference distribution of

the entropic penalty to Pb. We will formally show the following result: As

the value of the American put is decreasing in the value of the underlying

and the penalty is minimal for Pb, the worst case distribution is given by Pb.
Moreover, as Ĥt(Pb|Pb) = 0 for all t, the agent behaves as expected utility

maximizer under the subjective prior Pb. Formally:

Example 3.5.17 (American Options in CRR-Model). Let the agent assess

utility in terms of dynamic multiplier preferences with entropic penalty given

by parameter θ = 1 and reference distribution Pb. We consider American

options for the Cox-Ross-Rubinstein (CRR) model: Let Ω := {0, 1}T , T <

∞.19 Let εt : Ω → {0, 1}, t ≤ T , be the projection mappings and P0 such

that εt’s are i.i.d. under P0 with P0[εt = 1] = P0[εt = 0] = 1
2
. Let M[a,b]

be given as in Assumption 3.5.5. As in [Riedel, 09], we then have for all

β := (βt)t that Pβ[εt = 1|Ft−1] ∈ [p; p̄], where p := ea

1+ea
and p̄ := eb

1+eb
. Let

Pa be again the distribution induced by the constant process with βt = a for

all t and equivalently for Pb. Then, under Pa, εt’s are i.i.d. with Pa[εt] = p

and equivalently for Pb with Pb[εt] = p̄.

The “ingredients” of the CRR-model are given by a risk-less asset with

value process Bt = (1 + r)t for some fixed interest rate r > −1 and a risky

asset with value process St at t such that S0 = 1 and

St+1 = St ·

{
(1 + d) if εt+1 = 1,

(1 + c) if εt+1 = 0,

19The infinite case can be achieved by virtue of Theorem 3.4.6.
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where we assume the constants to satisfy −1 < c < r < d for the model not

to allow for arbitrage opportunities.

Now, consider an American option with payoff A(t, St) from exercising at

t. The agent has to solve the problem20

ess sup
τ

ess inf
P∈M[a,b]

{
EP [A(τ, Sτ )] +H0(P|Pb)

}
.

To further elaborate the example: Assume Ap(t, St) being an American put

and, hence, decreasing in St for all t.21 Let (U b
t )t≤T denote the classical Snell

envelope of Ap(t, St) under subjective probability Pb, i.e.

U b
t (t, St) = max

{
Ap(t, St); p̄U

b
t (t+ 1, St(1 + d))

+(1− p̄)U b
t (t+ 1, St(1 + c))

}
.

The following assertion holds: The variational Snell envelope (Ut)t≤T of the

American put problem with dynamic multiplier preferences and reference

distribution Pb satisfies (Ut)t≤T = (U b
t )t≤T . In particular, the worst case

distribution is given by Pb and, as the penalty vanishes for this distribution,

the optimal stopping time is given by τ ∗ = inf{t ≥ 0|Ap(t, St) = U b
t } = τ b∗,

i.e. the optimal stopping time τ b∗ of the problem under subjective prior Pb.

The proof of this assertion is immediate by virtue of stochastic dominance:

As in Appendix H in [Riedel, 09], we show for the variational Snell envelope

(Ut)t≤T that Ut = u(t, St) = U b
t , t ≤ T , for a function u that is decreasing

in the second variable: First, we have UT = Ap(T, ST ) = U b
T by definition.

For an inductive proof, we write with a slight but intuitively understandable

misuse of notation Ĥt(pt+1 ⊗ pt+2 ⊗ . . . |Pb)22 for pi ∈ [p; p̄] and note that

Ĥt(p̄ ⊗ p̄ ⊗ . . . |Pb) = 0 and ≥ 0 else, i.e. p̄ at any t minimizes the penalty.

From the induction hypothesis, we have u(t+1, St(1+d)) ≤ u(t+1, St(1+c)).

20[Riedel, 09] achieves a general theory for American options under multiple priors.
21Equivalent results hold for an American call with Pa as reference distribution.
22Formally: Ĥt(pt+1 ⊗ pt+2 ⊗ . . . |Pb) := Ĥt(Pβ |Pb) with (βt)t≤T such that Pβ [εt =

1|Ft−1] = pt for t ≤ T ; well defined as p1, . . . , pt drops by general definition of Ĥt.
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We hence have

Ut = max
{
Ap(t, St) ; min

pt+1∈[p;p̄]

{
pt+1u(t+ 1, St(1 + d))

+(1− pt+1)u(t+ 1, St(1 + c))

+Ht(pt+1 ⊗ p̄⊗ . . . |Pb)
}}

= max
{
Ap(t, St) ; p̄u(t+ 1, St(1 + d))

+(1− p̄)u(t+ 1, St(1 + c))

+Ht(p̄⊗ p̄⊗ . . . |Pb)︸ ︷︷ ︸
=0

}
= U b

t .

Thus, we have the equality of the variational Snell envelope and the classical

Snell envelope under the worst case measure, i.e. (Ut)t≤T = (U b
t )t≤T , and the

coincidence of the respective optimal stopping times, i.e. τ ∗ = τ b∗.

To conclude: The problem of optimally exercising an American put under

dynamic entropic risk with reference distribution Pb for the entropic penalty

coincides with the problem for the American put for an expected utility max-

imizer with respect to subjective prior Pb.

In a way, the result in the example is more like a self fulfilling prophecy

as the agent assumes the worst-case distribution to be the most likely one.

The same holds true for an American call with reference distribution Pa: In

that case, the reference distribution is also the worst-case one. However, due

to the tradeoff effects, Pa is not the worst-case distribution for the American

call when Pb is the reference distribution; as Pb is not worst-case distribution

for the American put when Pa is the reference one.

[Föllmer & Schied, 02] introduce convex risk measures based on expected

loss or shortfall risk in a static framework. Entropic risk measures are just a

special case when loss is exponential. Carrying over these risk measures to a

dynamic framework, a fruitful further application could be achieved as risk

measures based on shortfall risk have a quite intuitive appeal.
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3.5.2 Dynamic Generalized AVaR

In the financial industry value at risk (V aR) still is a standard method for

risk quantification and risk management. Given a confidence level λ ∈]0, 1[,

V aR of a risky project X is “commonly” defined as

V aRλ(X) := inf {l ∈ R|P(X + l < 0) < λ} ,

i.e. the negative of the upper quantile, a definition that might inter alia be

found in [Cheridito & Stadje, 09]. Prominence of VaR might be due to its

simplicity in applications and its intuitive appeal. Though widely used, V aR

is neither convex nor coherent as it is not sub-additive: Applying V aR, a risk

officer runs the danger or accumulating a highly risky portfolio. A standard

example is inter alia given in [McNeil et al., 05]. Moreover, VaR does not

account for the actual magnitude of losses but just loss events. Being aware

of VaR’s shortcomings, average value at risk (AV aR) is introduced taking

into account not only loss probabilities in terms of quantiles, as V aR does,

but also the amount of possible loss. Nevertheless, AV aR is still intuitive

and easily implemented by virtue of

AV aRλ(X) :=
1

λ

∫ λ

0

V aRm(X)dm

for some level λ ∈]0, 1[. It can be shown that AVaR satisfies the robust

representation

AV aRλ(X) = sup
Q∈M

{
EQ[−X]− α(Q)

}
for

αmin(Q) =

{
0 if dQ

dP0
≤ 1

λ
,

∞ else.

Hence AV aR is a coherent risk measure giving raise for multiple prior prefer-

ences as considered in [Riedel, 09]. Elaborate discussions on AVaR and fur-

ther representations can be found in [McNeil et al., 05]. [Föllmer et al., 09]
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introduce a generalization of AVaR, called utility based shortfall risk measure.

[Cheridito & Li, 09] use a convenient representation for AV aR which has an

immediate generalization to a convex risk measure, called generalized AV aR

(gAV aR) here. This convex risk measure gives then raise to a variational

preference by multiplying the robust representation with −1.

As shown in [Cheridito & Stadje, 09] as well as [Artzner et al., 07] the

natural dynamic extension of AV aR, and hence of gAV aR, just in terms

of conditional expectations is not time-consistent, cp. [Artzner et al., 99]’s

Definition 5.5. We thus define a time-consistent dynamic version of gAV aR,

called dyn gAV aR: In a first approach as in [Cheridito & Stadje, 09] recur-

sively in terms of the definition of time-consistency. Thereafter, recursively

in terms of the penalty function as in [Maccheroni et al., 06b] by compos-

ing one period ahead penalties directly achieving the robust representation.

By Corollary 4.8 in [Cheridito et al, 06], both approaches induce the same

time-consistent dynamic convex risk measure or, equivalently, the same time-

consistent dynamic variational preference.

Consider again the underlying filtered reference space (Ω, (Ft)t≤T ,P0).

Set Lit := Li(Ω,Ft,P0|Ft) for i ∈ {0} ∪ N ∪ {∞}, t ≤ T . To start with,

we first consider the static convex risk measure gAV aR for some end pe-

riod payoff XT ∈ L∞T as in [Cheridito & Li, 09], T < ∞. Later this static

risk measure will serve as dyn gAV aR0 in the definition of the dynamic con-

vex risk measure (dyn gAV aRt)t≤T . We obtain robust representations for

gAV aR in terms of a penalty αmin, serving as αmin
0 in the penalty function

(αmin
t )t≤T for (dyn gAV aRt)t≤T .

Definition 3.5.18. For (θ, β, p) ∈]0,∞[×]1,∞[×[1,∞[, define the risk mea-

sure gAVaR for XT ∈ L∞T , called generalized Average Value at Risk (gAVaR),

by virtue of

gAV aRβ,p
θ (XT ) := min

s∈R

{
1

θ

∥∥(s−XT )+
∥∥β
p
− s
}
,

where ‖ · ‖p := (EP0|FT [| · |p])
1
p denotes the usual p-norm.
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For ease of notation, we do not explicitly state the parameters but just

write gAV aR instead of gAV aRβ,p
θ when these are obvious. We have:

Proposition 3.5.19. (a) For (θ, β, p) ∈ ]0, 1[×{1} × [1,∞[, gAV aRβ,p
θ is

a coherent risk measure for XT ∈ L∞T with robust representation in terms of

minimal penalty αmin by virtue of

αmin(Q) =

{
0 if ‖ dQ|FT

dP0|FT
‖q ≤ 1

θ
,

∞ else,

for Q ∈M, where q := p
p−1

and ‖ dQ|FT
dP0|FT

‖q =
(
EP0|FT [| dQ|FT

dP0|FT
|q]
) 1
q
.

(b) For θ ∈]0, 1[, β = p = 1, we have ‖ dQ|FT
dP0|FT

‖∞ = ess sup | dQ|FT
dP0|FT

| and hence

the robust representation becomes

gAV aR1,1
θ (XT ) = sup

Q∈M

{
EQ|FT [−XT ]

∣∣ 0 ≤ dQ|FT
dP0|FT

≤ 1

θ

}
= AV aRθ(XT ),

which again shows AV aR to be a coherent risk measure.

(c) For (θ, β, p) ∈ ]0,∞[×]1,∞[×[1,∞[, gAV aRβ,p
θ is a convex risk mea-

sure for XT ∈ L∞T with minimal penalty αgAV aR(Q) := c‖ dQ|FT
dP0|FT

‖dq, where

q := p
p−1

, d := β
β−1

and c = θd−1β1−dd−1. Hence

gAV aRβ,p
θ (XT ) = sup

Q∈M

{
EQ|FT [−XT ]− c

∥∥∥∥ dQ|FTdP0|FT

∥∥∥∥d
q

}
.

Proof. cp. [Cheridito & Li, 09].

[Cheridito & Stadje, 09] recursively achieve a time-consistent dynamic

version of AV aR for end period payoff XT . Mimicking this approach by

virtue of the definition of time-consistency for dynamic convex risk measures,

i.e. ρt = ρt(−ρt+1) or ,equivalently, πt = πt(πt+1) for dynamic variational

preferences,23 we obtain a time-consistent dynamic version of gAV aRβ,p
θ .

23As we assume T being finite, time-consistency of dynamic risk measures is by Propo-

sition 4.5 in [Cheridito et al, 06] equivalent to “one-step time consistency” as applied in

this article.
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As in [Cheridito & Stadje, 09], we now define a time-consistent version

for the more general risk measure gAV aR in terms of the definition of time-

consistency:

Definition 3.5.20. We recursively define the dynamic convex risk measure

called dynamic generalized average value at risk, (dyn gAV aRt)t≤T , as fol-

lows: Let Xi ∈ Fi, i ≤ T , then we set for all t

dyn gAV aRt(Xj) := −Xj,

dyn gAV aRt(Xt+1) := ess inf
s∈L∞t

{
1

θ

(
E
[∣∣(s−Xt+1)+

∣∣p∣∣Ft])βp − s} ,
dyn gAV aRt(Xz) := dyn gAV aRt(−dyn gAV aRt+1(Xz))

for j ≤ t, t+ 1 < z ≤ T .24

Remark 3.5.21. In terms of Definition 3.5.20, for an adapted payoff process

(Xt)t≤T and a stopping time τ ≤ T , the term dyn gAV aRt(Xτ ) is well defined

for t ≤ T .

Remark 3.5.22. From [Cheridito & Stadje, 09], we see that the natural dy-

namic generalization

gAV aRt(XT ) := ess inf
s∈L∞t

{
1

θ

(
E
[∣∣(s−XT )+

∣∣p∣∣Ft])βp − s}
is not time-consistent. But in these terms our definition becomes

dyn gAV aRt(Xz) = gAV aRt(−dyn gAV aRt+1(Xz)).

Proposition 3.5.23. (dyn gAV aRt)t≤T is a time-consistent dynamic convex

risk measure, i.e. satisfies for t < T

dyn gAV aRt = dyn gAV aRt(−dyn gAV aRt+1).

24The last term is well-defined as dyn gAV aRt+1(Xz) is Ft+1-measurable. A special

case is of course z = T, in which case we are back in the setting of [Cheridito & Stadje, 09]

but for gAVaR instead of AVar.
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In our optimal stopping approach time-consistency can be written as: For

(Xt)t≤T , and a stopping time τ ≤ T we obtain for t < T

dyn gAV aRt(Xτ ) = dyn gAV aRt

(
Xτ I{τ≤t}
−dyn gAV aRt+1(Xτ )I{τ≥t+1}

)
= −Xτ I{τ≤t}

+dyn gAV aRt(−dyn gAV aRt+1(Xτ )I{τ≥t+1}).

Proof. Being a dynamic time-consistent convex risk measure is immediate by

Definition 3.5.20 in terms of the static convex risk measure gAV aR as the

recursion formula is just the definition of time-consistency.

Our special form of time-consistency follows immediately as we have al-

ready seen in the theoretical section. Nevertheless, we make it explicit here:

As τ ≤ T , Xτ is FT -measurable, i.e. at time T we know when we have

stopped the process. Writing Xτ = Xτ I{τ≤t} + Xτ I{τ≥t+1} we obtain with

conditional cash invariance

dyn gAV aRt(−dyn gAV aRt+1(Xτ ))

= dyn gAV aRt(−dyn gAV aRt+1(Xτ I{τ≤t} +Xτ I{τ≥t+1}))

= dyn gAV aRt(− dyn gAV aRt+1(Xτ I{τ≤t})︸ ︷︷ ︸
=−Xτ I{τ=t}

−dyn gAV aRt+1(Xτ )I{τ≥t+1})

= dyn gAV aRt(Xτ I{τ≤t} − dyn gAV aRt+1(Xτ )I{τ≥t+1})

= −Xτ I{τ≤t} + dyn gAV aRt(−dyn gAV aRt+1(Xτ )I{τ≥t+1}).

By [Föllmer & Penner, 06], Theorem 4.5, (dyn gAV aRt)t≤T then of course

possesses a robust representation in terms of a minimal penalty satisfying the

no-gain condition by Proposition 3.2.15.

Definition 3.5.24. We say that the dynamic variational preference (πaRt )t≤T

is obtained by dynamic generalized average value at risk (dyn gAV aRt)t≤T if
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it is of the form

πaRt := −dyn gAV aRt.

Remark 3.5.25. By Proposition 3.5.23, (πaRt )t≤T is time-consistent, i.e. for

t < T , z ≤ T , we have

πaRt (Xz) = πaRt (πaRt+1(Xz)),

more elaborately for a stopping time τ ≤ T

πaRt (Xτ ) = Xτ I{τ≤t} + πaRt
(
πaRt+1(Xτ )I{τ≥t+1}

)
which shows time-consistency in terms of Proposition 3.2.16.

As the assertion in Theorem 3.4.1 can be reformulated not to make use of

the robust representation of dynamic variational preferences, we can directly

apply the variational Snell envelope approach25 and achieve for t < T

Ut = max
{
Xt; π

aR
t (Ut+1)

}
= max {Xt;−dyn gAV aRt(Ut+1)}

= max

{
Xt; ess sup

s∈L∞t

{
s− 1

θ

(
E
[∣∣(s− Ut+1)+

∣∣p∣∣Ft])βp}}

as Ut+1 is Ft+1-measurable. In order to achieve explicit solutions in terms

of worst-case distributions as done in the theoretical section, we rather want

to have the robust representation of (dyn gAV aRt)t≤T . Hence, we end this

section by establishing an alternative way to introduce a time-consistent dy-

namic version of gAV aR in terms of a robust representation, i.e. we ap-

propriately define a penalty (αgAVaR
t )t≤T : Hereto, we will use the minimal

penalty αgAV aR of the static gAV aR as defined in Proposition 3.5.19. We

apply the recursive procedure from [Maccheroni et al., 06b] in terms of one

25In [Cheridito et al, 06], Section 5.3, optimal stopping problems with general monetary

risk measures are considered. In that case, the Snell envelope can only be given in this

form as the risk measure does not necessarily possess a robust representation.
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period ahead penalties (γt)t≤T to achieve a time-consistent dynamic mini-

mal penalty (αgAVaR
t )t≤T . We then show that the dynamic time-consistent

variational preferences obtained by virtue of both procedures coincide.

To ease notation, we do not state this example in terms of one-period

ahead penalties γt but in terms of s-period ahead penalties αmin
t,t+s, s ≥ 0,

as defined in [Föllmer & Penner, 06], p. 76. s-period ahead penalties con-

stitute a direct generalization of our one-period ahead penalties by virtue

of γt(Q|Ft+1(·|Ft)) = αmin
t,t+1(Q). We do not rigorously introduce the theory

in terms of these more general s-period ahead penalties: All assertions, in

particular the no-gain condition, can be analogously stated in terms of αmin
t,t+1.

The respective results are given in [Föllmer & Penner, 06], Theorem 4.5.

Making use of αgAV aR in Proposition 3.5.19(c), define the s-period ahead

penalty at t by

αgAV aRt,t+s (Q) := αgAV aR(Q|Ft+s(·|Ft)) = c

(
EP0

[(
dQ
dP0

∣∣∣∣
Ft+s

)q∣∣∣∣∣Ft
]) d

q

for s ≥ 0, t+ s ≤ T , Q ∈M, and the parameters as in Proposition 3.5.19(c).

Note, that we then have αgAV aR0,0+T (Q) = αgAV aR(Q) = c

∥∥∥∥ dQ
dP0

∣∣∣
FT

∥∥∥∥d
q

. Then, the

one period ahead penalty γgAV aRt on M|Ft+1 is defined by

γgAV aRt (Q|Ft+1(·|Ft)) := αgAV aRt,t+1 (Q) = c

(
EP0

[(
dQ
dP0

∣∣∣∣
Ft+1

)q∣∣∣∣∣Ft
]) d

q

.

Given this one-step ahead penalty, we recursively define a dynamic penalty

(αgAV aRt )t≤T as in Theorem 2 in [Maccheroni et al., 06b]:

Definition 3.5.26. Let Ft ∈ Ft.We define the dynamic penalty (αgAV aRt )t≤T

by virtue of

αgAV aRT (Q)(ω) :=

{
0 if Q = I{ω},
∞ else

for ω ∈ Ω,

αgAV aRt (Q)(Ft) :=

∫
αgAV aRt+1 (Q(·|Ft+1))dQ(·|Ft) + γgAV aRt (Q(·|Ft)|Ft+1)
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if Q(Ft) > 0,

αgAV aRt (Q)(Ft) := ∞ if Q(Ft) = 0,

for t < T .26

Applying (αgAV aRt )t≤T to a robust representation, we define dynamic vari-

ational preferences (πα
gAV aR

t )t≤T by

πα
gAV aR

t (XT ) := ess inf
Q∈M

{
EQ[XT |Ft] + αgAV aRt (Q)

}
for XT ∈ L∞T .

Remark 3.5.27. (πα
gAV aR

t )t≤T is a time-consistent dynamic variational pref-

erence. Indeed: It is a dynamic variational preference by virtue of its defi-

nition in terms of a robust representation. Time-consistency of (πα
gAV aR

t )t≤T

follows by Proposition 3.2.15 as the penalty (αgAV aRt )t≤T is defined recursively

in terms of the no-gain condition.

We have achieved two distinct time-consistent variational preferences gen-

eralizing gAV aR: (πaRt )t≤T = (−dyn gAV aRt)t≤T and (πα
gAV aR

t )t≤T . We

now show that these preferences coincide, i.e.

(πaRt )t≤T = (πα
gAV aR

t )t≤T ,

given equality of the respective model parameters not explicitly stated here.

By Corollary 4.8 in [Cheridito et al, 06], it suffices to check that πaR0 (XT ) =

πα
gAV aR

0 (XT ) for FT -measurable random variables XT . However, for both πaR0

as well as πα
gAV aR

0 we have a robust representation:

πα
gAV aR

0 (XT ) = ess inf
Q∈M

{
EQ [XT ] + αgAV aR0 (Q)

}
,

26Intuitively, αgAVaR
T (Q)(ω) is the penalty that only allows for the observed path

(ω1, . . . , ωT ).
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and on the other hand we have

πaR0 (XT ) = −dyn gAV aR0(XT )

= − ess inf
s∈R

{
1

θ

(
EP0 [|s−XT |p]

)β
p − s

}
= −gAV aR(XT )

= ess inf
Q∈M

{
EQ|FT [XT ] + αgAV aR(Q)

}
,

where the second equality follows by Definition 3.5.20 and time-consistency,

and the last by Proposition 3.5.19. Hence, it suffices to show equality of the

minimal penalties at t = 0, i.e. for all Q ∈M, we have to show

αgAV aR(Q) = αgAV aR0 (Q).

Indeed: As we have seen that αgAV aR0,0+T (Q) = αgAV aR(Q), it leaves to show

αgAV aR0,0+T (Q) = αgAV aR0 (Q). By Theorem 4.5 in [Föllmer & Penner, 06], we

have the no-gain condition for s-period ahead penalties reducing to

αgAV aR0 (Q) = αgAV aR0,0+T (Q) + EQ
[
αgAV aRT (Q)

∣∣∣F0

]
.

The right hand side equals αgAV aR0,0+T (Q) as EQ
[
αgAV aRT (Q)

∣∣∣F0

]
= 0 by defini-

tion of αT and the assumption that Q ∈M: Otherwise EQ
[
αgAV aRT (Q)

∣∣∣F0

]
=

∞ contradicting Q ∈M.

Hence, both time-consistent dynamic variational preferences, πaR and

πα
gAV aR

, coincide and we have

πaRt (Xτ ) = ess inf
Q∈M

{
EQ[Xτ |Ft] + αgAV aRt (Q)

}
= Xτ I{τ≤t}

+ min
µ∈M|Ft+1

(∫
πaRt+1(Xτ )dµ+ γgAV aRt (µ)

)
I{τ≥t+1}.

We have the following recursive representation of the Snell envelope of time-

consistent dynamic variational preferences induced by dynamic generalized
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average value at risk, (dyn gAV aRt)t≤T :

Ut = max
{
Xt; π

aR
t (Ut+1)

}
= max

{
Xt; ess inf

µ∈M|Ft+1

(∫
πaRt+1(Ut+1)dµ+ γgAV aRt (µ)

)}

= max

{
Xt; ess inf

µ∈M|Ft+1

(∫
Ut+1dµ+ c

(
E
[∣∣∣∣ dµ

dP0|Ft+1(·|Ft)

∣∣∣∣q∣∣∣∣Ft]) d
q

)}
.

This representation enables us, given an explicit structure of (Xt)t≤T , to solve

the problem for an optimal stopping time τ ∗ as in Theorem 3.4.1.

3.6 Conclusions

We have generalized the theory of optimal stopping under multiple priors

as set out in [Riedel, 09] to dynamic convex risk measures or, equivalently,

dynamic variational preferences introduced in [Maccheroni et al., 06b]. To

achieve our results, we have introduced the notion of variational supermartin-

gales as a generalization of the usual notion of supermartingales. For this

concept, we have obtained results including a Doob decomposition and op-

tional sampling. These enabled us to generalize the classical optimal stopping

approach for an expected utility maximizer in [Neveu, 75] (Section VI.1) in

terms of Snell envelopes to the case of dynamic variational preferences by

virtue of variational Snell envelopes. We have achieved general optimal stop-

ping times for this problem and have shown that the solution to the infi-

tite horizon problem can be approximated by a sequence of solutions for an

approximating sequence of finite horizon problems. A further insight is a

minimax theorem similar to a minimax result in [Schied, 07] but making use

of time-consistency.

Our results were then applied to prominent examples: dynamic entropic

risk measures and dynamic generalized average value at risk. For the latter,

we are not aware of any reference having obtained this notion to a dynamic
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context. We applied static generalized average value at risk to a dynamic

set up solving a severe time-consistency issue. We have achieved a recursive

representation directly applicable to the optimal stopping approach in terms

of variational Snell envelopes.

To conclude, the virtue of the present article is that optimal stopping

problems are now solved for convex risk measures. This is important for

applications on financial markets: coherent risk measures, as a robust ap-

proach reducing model risk, are quite conservative. Convex risk measures

are a comprehensive vehicle to more liberally assess risk while still being ro-

bust: No specific probabilistic model is assumed but a penalty representing

the likelihood of distinct models.

Of course, our approach leaves a realm for further generalizations. It

seems possible to achieve the results in this article for general time-consistent

(monotone) monetary risk measures, i.e. relaxing the convexity assumption.

Of course, in that case, the robust representation in terms of penalty α does

not hold anymore. Hence, proofs have to be adjusted accordingly. However,

as we have explicitly stated in one of the examples, the variational Snell

envelope does not need a robust representation and can hence be generalized

to more general risk measures.27 The next direction in which theory might be

generalized is to relax the assumption of the payoff process being bounded.

27In [Cheridito et al, 06], Chapter 5.3, the authors introduce a stopping problem for

more general dynamic risk measures relaxing the convexity assumption. It is assumed

that expected reward (πt)t≤T is induced by a dynamic time-consistent monetary risk

measure, i.e. a dynamic time-consistent monotone translation invariant risk measure.

As the convexity assumption is relaxed, (πt)t≤T does not convey the robust representation

crucial for our recursive solution. However, having the agent maximizing over her set of

stopping times, the usual Snell envelope approach as set out in [Neveu, 75] is still valid.

Hence, [Cheridito et al, 06] achieve equality of the Snell envelope and the value function as

well as the smallest optimal stopping time as in Theorem 3.4.1. Moreover, they show the

value function to be time-consistent and again a monetary utility function, i.e. the value

function again has all properties of expected reward (πt)t≤T . Due to a missing robust

representation, the solution is not explicit.
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Several of the cited references consider convex risk measures for Lp processes

or, as in [Cheridito & Li, 09], risk measures defined on Orlicz spaces.

Besides these theoretical considerations, further examples and concrete

applications might be elaborated. As mentioned in the text, the theory

should be applied to dynamic risk measures based on expected shortfall as

a generalization of dynamic entropic risk measures or dynamic variational

preferences. These can inter alia be found in [Föllmer et al., 09].

At last, the problem might be considered in a time-continuous setting.

Several approaches to convex risk measures in a time-continuous framework

are available: In [Bion-Nadal, 08], dynamic convex risk measures are achieved

by virtue of BMO martingales. A special case of this approach is given

in [Rosazza Gianin, 04] and [Rosazza Gianin, 06] via BSDE resulting in g-

expectations as introduced in [Peng, 97].
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Chapter 4

Learning for Convex Risk

Measures with Increasing

Information

4.1 Introduction

Reaching decisions concerning risky projects in a dynamic system, an agent

faces new information consecutively influencing her assessment of risk instan-

taneously.

In this article, we answer the question how anticipation of risk evolves

over time when an agent gathers information. We show that, in the limit, all

uncertainty is revealed but risk remains if the agent perceives risk in terms

of time-consistent dynamic convex risk measures and, hence, generalize the

famous Blackwell-Dubins Theorem to convex risk measures. We then relax

the time-consistency assumption and show the result to still be valid. Hereto,

a fundamental assumption is existence of a reference distribution that fixes

impossible and sure events by virtue of equivalence of distributions under

consideration.

Coherent risk measures were introduced by virtue of an axiomatic ansatz
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in [Artzner et al., 99] in a static setting and have been generalized to a dy-

namic framework in [Riedel, 04]. Tangible problems in this setup are inter

alia discussed in [Riedel, 09]. The equivalent theory of multiple prior prefer-

ences in a static setup is introduced in [Gilboa & Schmeidler, 89]; a dynamic

generalization is given in [Epstein & Schneider, 03]. Applying coherent risk

measures substantially decreases model risk as they do not assume a spe-

cific probability distribution to hold but assume a whole set of equally likely

probability models. Moreover, they possess a simple robust representation.

However, as they assume homogeneity, coherent risk measures do not ac-

count for liquidity risk. Though in financial applications, the Basel II accord

requires a “margin of conservatism”, coherent risk measures are far too con-

servative when estimating risk of a project as they result in a worst case

approach. Furthermore, popular examples of risk measures, as e.g. entropic

risk, are not coherent.

Hence, it seems worthwhile to consider a more sophisticated axiomatic

system: [Föllmer & Schied, 04] introduce convex risk measures as a gener-

alization of coherent ones relaxing the homogeneity assumption. Equiva-

lently, [Maccheroni et al., 06a] generalize multiple prior preferences to varia-

tional preferences. Convex risk measures are applied to a dynamic setup in

[Föllmer & Penner, 06] for a stochastic payoff in the last period or, equiva-

lently, in [Maccheroni et al., 06b] in terms of dynamic variational preferences.

[Cheridito et al, 06] applies dynamic convex risk measures to stochastic pay-

off processes. Given a set of possible probabilistic models, convex risk mea-

sures are less conservative than coherent ones. Dynamic convex risk measures

as well as dynamic variational preferences possess a robust representation in

terms of minimal penalized expectation. The minimal penalty, serving as

a measure for uncertainty aversion, uniquely characterizes the risk measure

or, respectively, the preference. Conditions on the minimal dynamic penalty

characterize time-consistency of the dynamic convex risk measure.

A parametric learning model in an uncertain environment for dynamic co-
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herent risk measures or, equivalently, dynamic multiple priors as introduced

in [Epstein & Schneider, 03], is elaborated in [Epstein & Schneider, 07]. The

main virtue of this article is to introduce learning based on experience to

convex risk measures models. First, we try to introduce learning in a con-

structive approach: we design a minimal penalty function and plug it into

the robust representation: Since the penalty might be seen as some inverse

likelihood of a specific prior distribution, we first apply a quite simple and

intuitive learning mechanism to the penalty. We calculate the likelihood of

a distribution given past experience and use this as updated penalty. The

intuition behind this approach is quite simple: observing good events, dis-

tributions of a payoff process that are “stochastically more dominated”, i.e.

put more weight on bad events, become more unlikely, i.e. have a higher

penalty. However, besides its intuitive appeal, it turns out that this proce-

dure does not result in a penalty function as it is backwards oriented and a

penalty function, by definition, incorporates probability distributions of the

future movement of the payoff process. In a second, more sophisticated ap-

proach, we model a penalty incorporating projections of “past” likelihoods on

future distributions. Here, we make use of the conditional relative entropy

as penalty function: we achieve a proper penalty that penalizes distributions

according to “distance” from the “most likely” distribution serving as refer-

ence distribution. However, the convex risk measure in terms of this penalty

turns out not to be time-consistent in general as shown by a counterexample.

In [Epstein & Schneider, 07], time-consistency is not an issue as multiplicity

of priors is not introduced in terms of multiple equally likely distributions of

the payoff process as e.g. in [Riedel, 09] or [Maccheroni et al., 06a], but in

terms of multiple distributions on the parameter space.

Our further approach is not constructive but takes the robust representa-

tion of a risk measure in terms of minimal penalty for granted. As the main

result of this article we achieve a generalization of the famous Blackwell-

Dubins Theorem in [Blackwell & Dubins, 62] from conditional probabilities
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to time-consistent dynamic convex risk measures. We pose a condition on

the minimal penalty in the robust representation, always satisfied by coherent

risk measures, forcing the convex risk measure to converge to the conditional

expected value under the true underlying distribution. Intuitively, this re-

sult states that, eventually, the uncertain distribution is revealed or, in other

words, uncertainty diminishes as information is gathered but risk remains.

The agent, as she has learned about the underlying distribution, is again

in the framework of being an expected utility maximizer with respect to the

true underlying distribution. We have hence achieved learning as an intrinsic

property of dynamic convex risk measures.

Our generalization of the Blackwell-Dubins Theorem serves as an alterna-

tive approach to limit behavior of time-consistent dynamic convex risk mea-

sures as the one in [Föllmer & Penner, 06]. The result particularly states the

existence of a limiting risk measure. As an example we consider dynamic

entropic risk measures or, equivalently, dynamic multiplier preferences. We,

however, show a Blackwell-Dubins type result to hold, even if we relax the

time-consistency assumption. Again, we obtain existence of a limiting risk

measure but in a more general manner than [Föllmer & Penner, 06] for not

necessarily time-consistent convex and coherent risk measures.

[Schnyder, 02] discusses H.P. Minsky’s theory of financial instability, a

huge portion of which is caused by herding on financial markets. Besides,

herding is usually one of the major objections towards Basel II. Our result

however shows that, in the long run, there is hardly any chance to circumvent

herding behavior.

The article is considered in a parametric setting. However, the second part

can be restated in a non parametric setting. It is structured as follows: The

next section formally introduces the underlying probabilistic model. Section

3 elaborately discusses robust representation of dynamic (time-consistent)

convex risk measures. Constructive approaches to learning in terms of dy-

namic minimal penalty as well as their shortcomings are stated in Section
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4. Section 5 generalizes the Blackwell-Dubins Theorem to conditional expec-

tations. The following two sections then apply this result to coherent and

convex risk measures first in the time-consistent case and then in the case

without time-consistency. Section 8 states examples. Then we conclude.

4.2 Model

For our model we start with a discrete time set t ∈ {0, ..., T} where T is an

infinite time horizon. We will now construct an underlying filtered reference

space (Ω,F , (Ft)t,Pθ0) and define risky projects X:

We fix (S,A) as a measurable space where S describes the possible states

of the world at a fixed point in time t and define Ω to be all possible states

of the world, formally the set of sequences of elements of S. For this let

St = S for all t ∈ {0, ..., T} and then define Ω :=
⊗T

t=0 St. On this space

let F be the product σ-field generated by all projections πt : Ω → St and

let the elements of the filtration Ft be generated by the sequence π1, ..., πt.

Additionally define all sequences up to time t by Ωt :=
⊗t

s=0 Ss. Denote

generic elements on these spaces by st ∈ St, s ∈ Ω, st ∈ Ωt and at ∈ A.

Let Θ be a set of parameters where every θ ∈ Θ uniquely defines a distri-

bution Pθ on (Ω,F) with filtration (Ft)t and fix Pθ0 as a reference distribution

which can be seen as the true distribution of the states. For all θ ∈ Θ, Pθ

is assumed to be equivalent to Pθ0 . Let Me(Pθ0) denote the set of all distri-

butions on (Ω,F) equivalent to Pθ0 . Assume that all these can be achieved

by parameters θ ∈ Θ, i.e. Me(Pθ0) = {Pθ|θ ∈ Θ}. For Pθ ∈ Me(Pθ0) let

Pθ(·|Ft) denote the distribution conditional on Ft. Due to our assumption

to only consider distributions equivalent to Pθ0 , the reference distribution

merely fixes the null-sets of the model, i.e. distinct agents at least agree on

impossible and sure events. This assumption has no influence on the stochas-

tic structure of the distributions it just tells the decision makers what sure

or impossible events are. An economic interpretation of this assumption was
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given by Epstein and Marinacci in [Epstein & Marinacci, 07]. They related

it to an axiom on preferences first postulated by Kreps in [Kreps, 79]. He

claimed that if an agent is ambivalent between an act x and x ∪ x′ then he

should also be ambivalent between x ∪ x′′ and x ∪ x′ ∪ x′′. Meaning if the

possiblity of choosing x′ in addition to x brings no extra utility compared to

just being able to choose x, then also no additional utility should arise from

being able to choose x′ supplementary to x ∪ x′′.
Furthermore we define X : Ω → R to be an F -measurable random vari-

able which can be interpreted as a payoff at final time T . Assume X being

essentially bounded with ess sup |X| = κ > 0. Having constructed the fil-

tered reference space (Ω,F , (Ft)t≥0,Pθ0) as above, the sets of almost surely

bounded F -measurable and Ft-measurable random variables are denoted by

L∞ := L∞(Ω,F ,Pθ0) and L∞t := L∞(Ω,Ft,Pθ0), respectively. All equations

have to be understood Pθ0-almost surely.

Remark 4.2.1. As we will see in course of the article, the parametric set-

ting is only needed in the first part on the constructive approach to learn-

ing. All statements in the second part, the generalization of the Blackwell-

Dubins theorem, can be posed in terms of an arbitrary underlying filtered

space (Ω,F , (Ft)t≥0,P0) with distributions in Me(P0), where P0 denotes the

reference distribution, i.e. in a non-parametric setting. Moreover, for these

results, we do not need the particular structure of Ω in terms of a product of

marginal spaces St. We however follow the parametric approach throughout

to obtain a unified appearance.

4.3 Dynamic Convex Risk Measures

In this article, we apply the theory of convex risk measures as set out in

[Föllmer & Penner, 06] for end-period payoffs. For payoff processes, con-

vex risk measures are described in [Cheridito et al, 06]. We do not consider

the axiomatic approach to convex risk but take the robust representation of
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dynamic convex risk measures or, equivalently, of dynamic variational pref-

erences as given.

Definition 4.3.1 (Dynamic Convex Risk & Penalty Functions). (a) A family

(ρt)t of mappings ρt : L∞ → L∞t is called a dynamic convex risk measure if

each component ρt is a conditional convex risk measure, i.e. for all X ∈ L∞,

ρt can be represented in terms of

ρt(X) = ess sup
Q∈Me(Pθ0 )

(
EQ [−X| Ft]− αt(Q)

)
,

where (αt)t denotes the dynamic penalty function, i.e. a family of mappings

αt : Me(Pθ0) → L∞t , αt(Q) ∈ R+ ∪ ∞, closed and grounded. For technical

details on the penalty see [Föllmer & Schied, 04].

(b) Equivalently, we define the dynamic concave monetary utility function

(ut)t by virtue of ut := −ρt, i.e.

ut(X) := ess inf
Q∈Me(Pθ0 )

(
EQ [X| Ft] + αt(Q)

)
.

Remark 4.3.2. (a) By Theorem 4.5 in [Föllmer & Penner, 06], the above

robust representation in terms of Me(Pθ0) is sufficient to capture all time-

consistent dynamic convex risk measures.

(b) Assuming risk neutrality but uncertainty aversion, no discounting, and no

intermediate payoff, (ut)t is the robust representation of dynamic variational

preferences as introduced in [Maccheroni et al., 06b]. In this sense, all our

results also hold equivalently for dynamic variational preferences. However,

we have chosen to concentrate on dynamic convex risk measures here.

Assumption 4.3.3. In the robust representation, we assume the penalty αt

to be given by the minimal penalty αmin
t . The minimal penalty is introduced

in terms of acceptance sets in [Föllmer & Penner, 06], p.64: For every Q ∈
Me(Pθ0)

αmin
t (Q) := ess sup

X∈L∞:ρt(X)≤0

EQ [−X| Ft] .
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As stated in the respective references, every dynamic convex risk mea-

sure (ρt)t can be expressed in terms of the above robust representation,

uniquely by virtue of the minimal penalty and vice versa. The notion of

minimal penalty is justified by the fact that every other penalty represent-

ing the same convex risk measure a.s. dominates the minimal one, cp.

[Föllmer & Penner, 06]’s Remark 2.7. Throughout, we assume a represen-

tation in terms of the minimal penalty (αmin
t )t.

Remark 4.3.4 (Equivalent Notation). In our parametric set-up, a distribu-

tion Pθ of the process is uniquely defined by a parameter θ ∈ Θ. Hence, we

write

ρt(X) = ess sup
θ∈Θ

(
EPθ [−X| Ft]− αmin

t (θ)
)
.

Further assumptions on the risk measure under consideration will be

posed when necessary.

Remark 4.3.5 (On Coherent Risk). As set out in the references, the robust

representation of coherent risk is a special case of the robust representation

of convex risk when the penalty is trivial, i.e. for all t it holds

αt(θ) =

{
0 if Pθ(·|Ft) ∈ Q̃(·|Ft),

∞ else

for Q̃ the set of prior distributions induced by all θ in some set Θ̃ ⊂ Θ.

Throughout, Q̃ is assumed to be convex and weakly compact or, equivalently,

Θ̃ is assumed to be such.

The following definition is a major assumption needed in order to solve

tangible economic problems under convex risk.

Definition 4.3.6 (Time-Consistency). A dynamic convex risk measure (ρt)t

is called time-consistent if, for all t, s ∈ N, it holds

ρt = ρt(−ρt+s)

or, equivalently, ut = ut(ut+s).
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Remark 4.3.7. For the special approach here, [Cheridito et al, 06] show that

it suffices to consider s = 1 in the above definition.

Remark 4.3.8. As inter alia shown in [Föllmer & Penner, 06], Theorem

4.5, time-consistency of (ρt)t is equivalent to a condition on the minimal

penalty (αmin
t )t called no-gain condition in [Maccheroni et al., 06b].

We now introduce a special class of dynamic convex risk measures that

will be used in several examples later on: Dynamic entropic risk measures.

Therefore, we first have to introduce:

Definition 4.3.9 (Relative Conditional Entropy). For P� Q, we define the

relative entropy of P with respect to Q at time t ≥ 0 as

Ht(P|Q) := EP [logZt] ,

where (Zt)t by virtue of Zt := dP
dQ |Ft denotes the density process of P with

respect to Q. Furthermore, we define the conditional relative entropy of P
with respect to Q at time t ≥ 0 as

Ĥt(P|Q) := EP
[

log
ZT
Zt

∣∣∣∣Ft] = EQ
[
ZT
Zt

log
ZT
Zt

∣∣∣∣Ft] I{Zt>0}.

Definition 4.3.10 (Entropic Risk Measures). Given reference model Q ∈
Me(P0). Let δ > 0. We say that dynamic convex risk ρet (X) of a random

variable X ∈ L∞, is obtained by a dynamic entropic risk measure given

reference model Q ∈Me(Pθ0) if it is of the form

ρet (X) = ess sup
P∈Me(Pθ0 )

(
EP[−X|Ft]− δĤt(P|Q)

)
. (4.1)

Equivalently, dynamic multiplier preferences (uet )t are defined by virtue of

uet (X) = ess inf
P∈Me(Pθ0 )

(
EP[X|Ft] + δĤt(P|Q)

)
. (4.2)

Remark 4.3.11. The variational formula for relative entropy implies

ρet (X) = δ log(EQ[e−
1
δ
X |Ft]).
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Intuitively, an entropic risk measure means that the agent in an uncertain

setting beliefs the reference model Q as most likely and distributions “further

away” as more unlikely. Again, we can write (ρet )t by virtue of

ρet (X) = ess sup
θ∈Θ

(
EPθ [−X|Ft]− δĤt(θ|η)

)
,

where Pη defines the reference model.

4.4 A Constructive Approach to Learning

In this section, we try to explicitly develop a learning mechanism by virtue of

penalty functions that are then used for the robust representation of dynamic

convex risk measures. We will encounter, that this is not an eligible approach

to model learning as it is still not clear how to explicitly form a penalty. In

a later section, we will just take the robust representation as given and pose

the question what can be said about learning when distinct properties of the

penalty are assumed.

4.4.1 The Intuition of Learning via Penalties

In a first, intuitive approach, we explicitly introduce a learning mechanism

to the penalty (αt)t in terms of a likelihood function. The fundamental idea

is that the penalty might be viewed as a measure for the likelihood of a

distribution. In the extreme case of coherent risk, this means

• αt(θ) =∞: Pθ is not possible,

• αt(θ) = 0: Pθ is among the most likely.

In general, the larger αt, the less likely the respective distribution. Stated in

other terms, (αt)t is a measure for uncertainty aversion: given two penalties

(α1
t )t and (α2

t )t, the a.s. larger one corresponds to the less uncerteinty averse
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agent. In the entropic case, αt(θ) = Ht(Pθ|Pθ̄), the conditional relative en-

tropy of Pθ with respect to Pθ̄ at time t, the agent considers Pθ̄ most likely as

Ht(Pθ̄|Pθ̄) = 0 and distributions “further away” as more and more unlikely.

In the coherent case characterized by a trivial penalty, learning means

to alternate the sets Q̃t := {P ∈ Q̃ | P(·|Ft) ∈ Q̃(·|Ft)} , t = 0, ..., T of

conditional priors on which the penalty as value zero: when more information

is available and hence, more might be known about the distribution that rules

the world, Q̃t ⊃ ˜Qt+1, i.e. penalty is increasing in t. For some cut off value

β, an intuitive approach would be in terms of some likelihood function l:

αt(θ) =

{
0 if l(Pθ|θ,Ft) ≥ β,
∞ else.

As a direct generalization to convex risk measures, one might consider the

log-likelihood − log(l(Q|θ,Ft)) as penalty. It will turn out that this approach

is not eligible since a penalty defined in terms of likelihood functions is not

feasible. Hence, we come up with a distinct ansatz in which penalty is given

by relative conditional entropy. We then achieve a dynamic convex risk

measure but run into trouble regarding time-consistency. A model defined

as above serves as a measure theoretic fundament of H.P. Minsky’s theory

of financial instability: A sequence of “good” events causes the penalty to

be smaller for distributions that stochastically dominate for the payoff under

consideration. Upon observing favorable events, the agent thinks that nature

has become kinder. This might help to understand underestimation of risk

leading to bubbles and financial instability in times of growth and financial

success.

4.4.2 Special Case: Explicit Learning for Coherent Risk

[Epstein & Schneider, 07] introduce learning for coherent risk in terms of

likelihood ratio tests. As we will see later, they do not consider the sets of

priors (Qt)t as for example in [Riedel, 04] but the process Pt(Ft) of one-step
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ahead conditional beliefs, formally introduced below, as these immediately

represent the learning process. Moreover, [Epstein & Schneider, 07] distin-

guish between information that can be learned and information that cannot:

Information that can be learned is incorporated in a the set of priors not

being singleton, information that cannot be learned is incorporated in the

set of likelihood functions not being singleton.

Formally, let the state space be given by ST := ⊗Tt=1St, St = S, Θ as in the

general model. The space of parameters will be slightly modified, i.e. every

θ ∈ Θ uniquely characterizes a distribution on S and not on Ω; however,

this modification is restricted to the current subsection. Let Q0 ⊂M(Θ) be

the set of priors on Θ and L the set of likelihoods, i.e. every l ∈ L satisfies

l(·|θ) ∈ M(S) and l(st|·) is Ft-measurable for st ∈ St. Set st = (s1, . . . , st),

si ∈ Si. Every µ0 ∈ Q0 together with a family of likelihoods (l1, l2, . . .) ∈ L∞

induces a prior P ∈Me(P0) of the payoff process or, equivalently, the process

(pt)t of one-step-ahead conditionals

pt(·|st) =

∫
Θ

l(·|θ)dµt(θ|st) ∈M(St+1),

where µt is derived from µ0 as described below and µt(·|st) ∈ Qt(st), the set

of posterior beliefs on Θ given history st. Hence, multiplicity of beliefs is

described by

Pt(st) =

{
pt(·|st) =

∫
Θ

l(·|θ)dµt(θ)
∣∣∣∣ µt ∈ Qαt (st), l ∈ L

}
:=

∫
Θ

L(·|θ)dQαt (θ).

To complete the model, it leaves to show how (µ0; l1, . . .) induce µt or, equiv-

alently, how Qt(st) is obtained. For (µ0; l1, . . .), the posteriors are obtained

by Bayesian updating:

dµt(·, st, µ0, l
t)

=
lt(st|·)∫

Θ
lt(st|θ̃dµt−1(θ̃, st−1, µ0, lt−1)

dµt−1(·, st−1, µ0, l
t−1).
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Then, the posteriors are achieved by virtue of a likelihood ratio test in terms

of the unconditional data density:

Qαt (st) :=

{
µt(s

t, µ0, l
t)

∣∣∣∣∣µ0 ∈ Q0, l
t ∈ Lt,

∫ t∏
j=1

lj(sj|θ)dµ0(θ)

≥ β max
µ̄0∈Q0,l̄t∈Lt

∫ t∏
j=1

l̄j(sj|θ)dµ̄0(θ)

}

for some bound β ∈ R+.

Remark 4.4.1. Conceptually, there is a huge difference between the ap-

proach in [Epstein & Schneider, 07] and [Gilboa & Schmeidler, 89]: In the

latter, the term “multiple priors” means multiple distributions of the payoff

stream, all being equally likely, in the former, it means multiple distribu-

tions of the parameter, i.e. multiple distributions on the distributions of

the payoff stream. Hence, [Epstein & Schneider, 07] is a generalization of

[Gilboa & Schmeidler, 89] as the latter framework is achieved with Q0 = {µ0}
with µ0 the uniform distribution on some subset of Θ. In that case we have

a trivial α and hence a coherent risk measure. Intuitively, a uniform distri-

bution on a subset of Θ corresponds to the agent believing all distributions in

that subset being equally likely and the others impossible.

Nevertheless, fruitful insights from [Epstein & Schneider, 07] can be gained

for our approach in particular the incorporation of a likelihood ratio test. We

go a step closer to [Gilboa & Schmeidler, 89] and introduce a single distribu-

tion on Θ inducing a unique penalty for a dynamic convex risk measure.

4.4.3 A First, Particularly Intuitive Approach: Sim-

plistic Learning

As stated above, multiple prior preferences mean the agent has a uniform

distribution on a subset of Θ: She is sure about which parameters are possible

and which not, but has no tendency towards their likeliness. In a way, this
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corresponds to a non-informative weighting or a trivial penalty function α0.

We act on this non-informative approach and assume the following penalty

at time zero: Let Θ̃ ⊂ Θ. The penalty corresponding to this distribution is

given by:

αt(θ) =

{
0 if θ ∈ Θ̃,
∞ else.

Hence, initially the convex risk measure is actually coherent:

ρ0(X) := ess sup
θ∈Θ

{
EPθ [−X]− α0(θ)

}
= ess sup

θ∈Θ̃

EPθ [−X].

We now come up with a simple learning mechanism directly defining the

dynamic penalty function (αt)t in terms of likelihoods. At t = 0, we have

already characterized the penalty. Furthermore, we set

α1(θ) := − ln

(
l(s1|θ)

supθ̄ l(s1|θ̄)

)
= − ln

(
Qθ(s1)

supθ̄ Qθ̄(s1)

)
,

where s1 = s1 and

α2(θ) = − ln

(
l(s2|θ)

supθ̄ l(s
2|θ̄)

)
= − ln

(
Qθ(s1)Qθ(s2|θ, s1)

γ2

)
,

where γ2 := supθ∈Θ Qθ(s1)Qθ(s2|θ, s1).

Definition 4.4.2. We say that the penalty (αt)t in the robust representation

of the convex dynamic risk measure (ρt)t is achieved by simplistic learning,

if it is of the form:

αt(θ) := − ln

(∏t
i=1 Qθ(si|θ, si−1)

γt

)
,

where γt := supθ∈Θ

∏t
i=1 Qθ(si|θ, si−1).

Remark 4.4.3 (On improperness of simplistic learning). (αt)t achieved by

simplistic leaning is not a feasible penalty function.

Proof. A penalty at t shall include the conditional distributions from t on-

wards as seen in the definition. In our likelihood approach αt only depends

on distributions up to time t, i.e. already realized entities of the density

process.
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4.4.4 A Second, More Sophisticated Approach: En-

tropic Learning

We now incorporate the likelihood function in the relative entropy in order

to achieve a risk measure based on the well known and elegant entropic risk

measures.

Here, we assume θ = (θt)t ∈ Θ; every entity θt characterizes a distribution

in M(St) possibly dependent on (θi)i<t. The family θ = (θt)t then defines a

prior Pθ ∈Me(Pθ0). Set θt := (θ1, . . . , θt) analogous to st.

In the foregoing section, we have seen the major problem to be that our

“penalty” was only contingent on the past evolution of the density process.

There is however a whole bunch of possibilities to estimate the future by use

of past information. A prominent route is by virtue of maximum likelihood

estimator.

Definition 4.4.4 (Experience Based Learning). (a) Given likelihood l. Being

at time t, learning is said to be naive if the estimator θ̂t for θt is achieved

solely by taking into account maximum likelihood for the observation st at

time t.

(b) Learning is called intermediate or experience based at level m, if θ̂t is

the maximum likelihood estimator of the last m observations (st−m, . . . , st)

MLE−m ∈ arg max
θt∈Θ

l(st−m, . . . , st|θt, θ̂t−1, st−m−1).

(c) Learning is said to be of maximum likelihood type, if, at any t, θ̂t is the

maximum likelihood estimator of the whole history.

Note that the naive estimator is just the intermediate one at level zero.

Furthermore, note that our definition of experience based maximum like-

lihood. In the next definition, we characterize how learning results in a

distribution for the payoff.
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Definition 4.4.5 (Learning Distributions). Being at time t, having obtained

θ̂t and the foregoing estimators (θ̂i)i<t, the reference family θ̂ of parameters

is achieved by

θ̂i =

{
θ̂i i ≤ t,

θ̂t i > t.

Having seen how agents learn about the best fitting distribution, we now

formally introduce entropic learning for wich dynamic entropic risk measures

in Definition 4.3.10 serve as a vehicle: We choose the best fitting distribution

as reference distribution in the conditional relative entropy.

The agent’s variational utility incorporating learning is in our setup given

by a convex risk measure with an entropic penalty function:

Definition 4.4.6 (Experience Based Entropic Risk). A penalty (α̂t)t is said

to be achieved by experience based entropic learning if given as

α̂t(η) := δĤt(Pη|Pθ̂)

for δ > 0 and θ̂ = (θ̂t)t achieved as in Definition 4.4.5, η = (ηt)t ∈ Θ. The

resulting convex risk measure (ρ̂t)t incorporating this very penalty function is

then called experience based entropic risk.

Remark 4.4.7. (α̂θt )t is well defined as penalty; this is inter alia shown in

[Föllmer & Schied, 04]. Due to our construction, the penalty now incorpo-

rates conditional distributions of future movements.

Remark 4.4.8. When the parameter is also the realization of an entity in

the density process, e.g. in a tree (cp. the example below), relative entropy

can directly be written as

α̂t(θ) = EPθ
[

ln

(
dPθ

dPθ0
/ dPθ̂

dPθ0

)∣∣∣∣∣Ft
]
.

Remark 4.4.9. Naive entropic learning reflects the tendency of the agent to

forget (or ignore) about the distant past and just assume the present to be the
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best estimator of the underlying model. This learning mechanism is then of

course particularly adjuvant in explaining a bubble as it is harder to see that

the financial system moves away from the fundamentals.

Despite [Epstein & Schneider, 07] we do not consider multiplicity of likeli-

hoods here. Hence, we do not incorporate information that cannot be learned

upon in our model. Though real world applications with several true param-

eters, e.g. in incomplete financial markets with a multiplicity of equivalent

martingale measures, would be modeled in terms of multiple likelihoods.

However, our main result in this section on “time-inconsistency” of expe-

rience based entropic risk would not change when extending the model to

multiple likelihoods.

Proposition 4.4.10. The model is well defined, i.e. for every t, ρ̂t is a

conditional convex risk measure.

Proof. As can easily be seen, the model satisfies the axioms of convex risk

measures: ρ̂t : L∞ → L∞t and

• ρ̂t is monotone, i.e. ρ̂t(X) ≤ ρ̂t(Y ) for X ≥ Y a.s.

• ρ̂t is cash-invariant, i.e. ρ̂t(X +m) = ρ̂t(X)−m ∀m ∈ Lt, X ∈ LT

• ρ̂t is convex as a function on LT

As inter alia shown [Föllmer & Penner, 06], Proposition 4.4, dynamic en-

tropic risk measures are time-consistent when the reference distribution is

not learned but fixed at the beginning. However, now that the reference

distribution is also stochastic, we achieve:

Proposition 4.4.11. Experience based entropic risk is in general not time-

consistent.

Proof. As proof we construct the following counterexample showing an ex-

perience based entropic risk measure which is not time-consistent.

157



4. INCREASING INFORMATION & CONVEX RISK

Example 4.4.12 (Entropic Risk in a Tree). Since our example is mainly for

demonstration purposes we restrict ourselves to a simple Cox-Ross-Rubinstein

model with 3 time periods. Each time period is independent of those before.

One could imagine that in every time period a different coin is thrown and

the result of the coin toss determines the realization in the tree, e.g. from

heads results up and from tails down. The payoffs of our random variable

X are limited to the last time-period and are as shown in the figure below.

For tractability reasons we also confine ourselves to a single likelihood func-

tion l(· | θ). For the same reason we will also use the extreme case of naive

updating which means our reference measure will merely depend on the last

observed event in our tree. The probability for going up in this tree will always

be assumed to lie in the interval [a, b] where 0 < a ≤ b < 1.

Time-period 2: Since we want to show a contradiction to time-consistency

we will show that the recursive formula

ρ̂t(X) = ρ̂t(−ρ̂t+s(X)) for all t ∈ [0, T ] and s ∈ N

is violated. So we start with the calculation of ρ2(X) for the different sets in

F2

ρ̂2(X)(up, up)

= ess sup
p∈[a,b]

E [−X | F2] (up, up)− E
[
ln

(
θ2

θ∗2

)
| F2

]
(up, up)

= sup
p∈[a,b]

(
−3p− 1 + p− p ln

p

b
− (1− p) ln

(
1− p
1− b

))
= ln

(
be−3 + (1− b)e−1

)
,

where the reference distribution Pθ∗ induced by θ∗ is determined by the fol-

lowing maximization:

θ∗ = (θ∗0, θ
∗
1, θ
∗
2), θ∗2 ∈ arg max

θ2∈[a,b]

l(up | θ2)

giving us the maximum-likelihood estimator for what happened in the last

time-period which we also think is the right distribution for the next time-

period.
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The result of this computation can also be obtained by using a variational

form which can for example be found in [Föllmer & Penner, 06] and takes

the following form

ρ̂t(X) = ln EPθ∗ [exp(−X) | Ft] ,

where Pθ∗ is again the reference distribution the decision maker establishes

by looking at the past, which, as we look at naive learning, will again only

be what happened in the last period. Since this gives way for an easier and

quicker computation we will use this form for the following calculations:

ρ̂2(X)(down, up) = ln EPθ∗ [exp(−X) | F2] (down, up)

= ln
(
be−1 + (1− b)e1

)
,

ρ̂2(X)(up, down) = ln EPθ∗ [exp(−X) | F2] (up, down)

= ln
(
ae−1 + (1− a)e1

)
.

Here one can nicely observe the extremeness of the naive learning approach.

Even though the decision maker in these two calculations is located at the

same vertex in the tree he has very different beliefs about the probability of

going up or down which causes strong shifts in his risk conception.

In the case of going first down then up he clearly believes up will be more

probable in the next step. This is visible in his choice of reference measure

Pθ∗ in the penalty function which he sets b for going up and 1 − b for going

down.

In contrast to this the decision maker who has observed up and then down

will put more weight on the probability of going down in the next step and

therefore sets his reference measure a for up and 1− a for down.

For the last possible event in time 2 our risk-measure takes the following

value:

ρ̂2(X)(down, down) = ln EPθ∗ [exp(−X) | F2] (down, down)

= ln
(
ae1 + (1− a)e3

)
.
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Time-period 1: If for the next time-period we maintain the assumption of

time-consistency and make use of the recursive formula, using the variational

form as we did above will yield

ρ̂1(X)(up) = ρ̂1(−ρ̂2(X))(up) = ln EPθ∗ [exp(ρ̂2(X)) | F1](up)

= ln
(
b
(
be−3 + (1− b)e−1

)
+ (1− b)

(
ae−1 + (1− a)e1

))
= ln

(
b2e−3 + (a+ b)(1− b)e−1 + (1− a)e1

)
.

Now if we calculate ρ̂1(X)(up) without the time-consistency assumption mean-

ing we cannot use the recursive formula we obtain the following equation:

ρ̂1(X)(up) = ess sup
p,q∈[a,b]

Ep,q [−X | F1] (up)− Ep,q

[
ln

(
θ1θ2

θ∗1θ
∗
2

)
| F1

]
(up)

= ln
(
b2e−3 + 2b(1− b)e−1 + (1− b)2e1

)
.

This clearly is not the same as we obtained under the assumption of time-

consistency. However if our dynamic experience based entropic risk measure

were time-consistent these calculations should give us the same results. Hence

this example clearly shows us that the assumption of our risk measure being

time-consistent only leads up to contradictions and can therefore not be true.

To emphasize the reason for these inconsistencies set Zt := dPθ1
dPθ2

∣∣∣
Ft

, where

Pθi is the reference distribution the agent obtains at time i when looking at

past realizations and then maximizing the respective likelihood function. Then

for instance for t = 1 and ω = up we obtain:

ρ̂1(−ρ̂2(X − ln
ZT
Z2

))(up)

= ln

[
EPθ1

[
exp

(
ρ2

(
X3 − ln

Z3

Z2

))]
| F1

]
(up)

= ln

[
bEPθ2

[
e−X

Z

Z2

| F2

]
(up, up)

+(1− b)EPθ2
[
e−X

Z

Z2

| F2

]
(up, down)

]
= ln

[
b

(
be−3 bbb

bbb

bb

bb
+ (1− b)e−1 bb(1− b)

bb(1− b)
bb

bb

)
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+ (1− b)
(
ae−1 b(1− b)b

b(1− b)a
b(1− b)
b(1− b)

+(1− a)e1 b(1− b)(1− b)
b(1− b)(1− a)

b(1− b)
b(1− b)

)]
= ln

[
b2e−3 + 2b(1− b)e−1 + (1− b)2e1

]
= ρ1(X)(up),

which, if ZT
Zi
6= 1 (generally true), clearly contradicts time-consistency.

In this special case for example the measure Pθ1 corresponds to the mea-

sure assigning the probability b to up in every time period, whereas Pθ2 is the

measure assigning b to up in the first 2 time periods and a in the last. That

is why e.g. Z3(up, down, up) = b(1−b)b
b(1−b)a and Z3

Z2
(up, down, up) = b

a
.

4.4.5 Lack of Time Consistency

As we have seen in the foregoing paragraph our definition of experience based

entropic risk does not result in a time-consistent dynamic convex risk mea-

sure. This insight is somewhat disappointing as time consistency is a pros-

perous vehicle to solve tangible problems. On the other hand, [Schied, 07]

shows that a meaningful theory of convex risk can even be achieved in a not

generally time-consistent setting.

We have to pose the following question: Does there exist any learning

model for the reference distribution such that dynamic entropic risk becomes

time-consistent?

Remark 4.4.13. The major issue that might come into mind is the inde-

pendence of the reference distribution of future histories. As we will see,

this is basically the reason for the general impossibility result below. Fur-

thermore, the worst-case distribution chosen by nature is heavily dependent

on the reference distribution. As the latter one may change in a broad va-

riety of manners, there is no good reason to expect nature to choose in a

time-consistent way.

Next, we pose the most general definition of learning in entropic set-ups.
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4. INCREASING INFORMATION & CONVEX RISK

Definition 4.4.14. A reference distribution Pθ̃ for experience based entropic

risk is said to be obtained by general learning if the family (θ̃t)t is a family

of random variables, i.e. not deterministically fixed from scratch. We call

the resulting dynamic convex risk measure (ρ̃gt )t defined by virtue of α̃gt :=

Ĥt(·|(θ̃t)t) in the robust representation general experience based entropic risk.

We see that our definition of experience based entropic risk satisfies the

above definition as in that context learning takes place in terms of maximum

likelihood.

Using this general definition of learning, we can show an impossibility

result for time-consistency of general experience based entropic risk.

Proposition 4.4.15. General experience based entropic risk (ρ̃gt )t is in gen-

eral not time-consistent.

Proof. Let θ̃ = (θ̃1, . . .) be obtained by general learning and tθ̃ such that

Ptθ̃ = Pθ̃(·|Ft). Let Zt+1 := dQtθ̃
dQt+1θ̃

∣∣∣
Ft+1

. Then, we have

ρ̃gt (X) = ln EQtθ̃ [e−X∣∣Ft]
= ln EQtθ̃

[
eln EQ

tθ̃
[e−X|Ft+1]

∣∣∣∣Ft]
= ln EQtθ̃

[
e

ln EQ
t+1θ̃

h
ZT
Zt+1

e−X
˛̨̨
Ft+1

i∣∣∣∣Ft]
= ln EQtθ̃

[
e
−(−ρt+1(X−ln(

ZT
Zt+1

)))

∣∣∣∣Ft]
= ρ̃gt (−ρ̃

g
t+1(X − ln(

ZT
Zt+1

)))

6= ρ̃gt (−ρ̃
g
t+1(X)),

if ZT
Zt+1
6= 1 a.s., i.e. if, intuitively speaking, learning actually takes place and,

hence, the reference distributions at distinct time periods differ.

The foregoing result immediately implies our main intuition for expe-

rience based entropic risk not being time-consistent though quite puzzling

as entropic risk measures are broadly used as standard example for time-

consistent convex risk.
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Remark 4.4.16 (Main Intuition). The minimal penalty function uniquely

defines a risk measure. Changing the reference distribution due to learning

results in a different minimal penalty and hence, a distinct risk measure.

Hence, an experience based entropic risk measure is actually a family of dy-

namic entropic risk measures and our definition of time-consistency is not

even applicable.

4.4.6 A Retrospective – In Between

In this section, we have stated a constructive approach to learning for convex

risk measures. We have encountered several problems in doing that:

• In our first intuitive approach, we ran into problems in defining a

penalty function not entirely contingent on the past evolution of the

density process.

• In our second one, we ran into time-consistency problems.

In a way, in the next section, we put the cart before the horse: We

just take the robust representation in terms of minimal penalty of time-

consistent dynamic convex risk measures as given and ask ourselves what can

be said about “learning” in that respect. We will show an equivalent to the

fundamental Blackwell-Dubins Theorem for convex risk measures. As will be

seen, this result will be equivalently satisfied whenever the true parameter

is eventually learned upon as defined in the subsequent subsection. Our

result states some kind of herding behavior as every market participant will

eventually perceive risk in the same manner.

4.4.7 Learning for a given Time-Consistent Convex Risk

Measure

We now want to encounter, whether we actually have to construct a learning

mechanism or if learning is not already incorporated in some sense in the
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concept of a time-consistent convex risk measure.

Remark 4.4.17. We have stated that the time-consistency problem encoun-

tered so far in learning models is due to the fact that penalties are not just

random variables but random itself, i.e. also the functional form depends on

the observations. This assumption in general contradicts time-consistency as

we actually may achieve distinct risk measures at a particular point in time.

However, the basis for learning is already incorporated in convex risk as the

domain of penalty consists of bayesian updated distributions of the process.

Let us hence assume a true underlying parameter θ0 ∈ Θ and the agent

evaluates risk in terms of robust representation of time-consistent dynamic

convex risk (ρt)t with minimal penalty (αmin
t )t. We then state the following

definition:

Definition 4.4.18. We say that θ0 is eventually learned upon if∣∣∣ρt(X)− EPθ0 [−X|Ft]
∣∣∣→ 0 Pθ0 − a.e.

for t→∞.

Proposition 4.4.19. The above definition is satisfied if and only if

lim
t→∞

∣∣∣∣ρt(X)−
∫
St+1

−ρt+1(X)Pθ0(dst+1|Ft)
∣∣∣∣ = 0 Pθ0 − a.e.

Proof. cp. [Klibanoff et al., 09], Proposition 5.

In the time-consistent case, the following assertion is equivalent to Defi-

nition 4.4.18:

Proposition 4.4.20. Given a time-consistent dynamic convex risk measure

(ρt)t, then θ0 is eventually learned upon if and only if

αmin
t (θ)

t→∞−→ 0 Pθ0 − a.e

for all θ such that αmin
0 (θ) < 0.
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Proof. As (ρt)t is assumed to be time-consistent, it holds for all t

ρt = ρt(−ρt+1)

or, more elaborately, for all X

ρt(X)

= sup
θ∈Θ

{
EPθ [−X| Ft]− αmin

t (θ)
}

= sup
θ∈Θ

{
EPθ [−ρt+1(X)| Ft]− αmin

t (θ)
}
.

As further for all X ∫
St+1

−ρt+1(X)Pθ0(dst+1|Ft)

= EPθ0 [−ρt+1(X)| Ft]

= sup
θ∈Θ

{
EPθ [−ρt+1(X)| Ft]− ᾱmin

t (θ)
}
,

where (ᾱmin
t )t is defined as

ᾱmin
t (θ) :=

{
0 if θ = θ0

∞ else,

the proof follows readily: αmin
t (θ)

t→∞−→ ᾱmin
t (θ) by Proposition 4.4.19. Theo-

rem 5.4.(4) in [Föllmer & Penner, 06] then shows equivalence to a vanishing

limit given time-consistency.

In the subsequent sections, we show the notion of being eventually learned

upon to be satisfied by convex risk measures in case of time-consistency and

under less stringent assumptions in terms of Blackwell & Dubins.

4.5 Adaption of Blackwell-Dubins Theorem

As a cornerstone for our main result on convergence of dynamic convex

risk measures, we first generalize the famous Blackwell-Dubins theorem, cp.
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[Blackwell & Dubins, 62], from conditional probabilities to conditional expec-

tations of risky projects. As set out in the model section, we assume existence

of a reference distribution Pθ0 , θ ∈ Θ, as in [Blackwell & Dubins, 62]. This

reference has to be interpersonally being agreed upon.

Proposition 4.5.1. Let Pθ be absolutely continuous with respect to Pθ0 for

some θ ∈ Θ,1 X as in the definition of the model, then∣∣EPθ [X |Ft]− EPθ0 [X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞.

Proof. For improving readability denote Pθ0 by P and Pθ by Q.

Given P and Q, Q being assumed absolutely continuous with respect to

P, i.e. dQ
dP = q, and for every n, dQ(·|Ft)

dP(·|Ft) = q(·|Ft). Then, the following line of

equations holds:

EQ[X|Ft] = EQ(·|Ft)[X]

= EP(·|Ft)[q(·|Ft)X]

and hence∣∣EQ[X|Ft]− EP[X|Ft]
∣∣ =

∣∣EP(·|Ft) [(q(·|Ft)− 1)X]
∣∣

≤ κ
∣∣EP(·|Ft) [(q(·|Ft)− 1)]

∣∣
= κ

∣∣∣∣∫ (q(·|Ft)− 1) P(d · |Ft)
∣∣∣∣ ,

which converges to zero P-a.s. by Blackwell-Dubins theorem as (Ft)t is as-

sumed to be a filtration and, hence, an increasing family of σ-fields.

Remark 4.5.2. As we see in the proof, the parametric setting is not needed.

The assertion can be shown in the same fashion in a non-parametric setting.

The same holds true for subsequent results.

1Note that we have assumed all distributions induced by parameters θ ∈ Θ to be

equivalent. In particular, all those are absolutely continuous with respect to each other

and this assumption is no restriction within our setup. Also note that the respective θ

does not have to be θ0.
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4.6 Time-Consistent Risk Measures

We will now show a Blackwell-Dubins type result for coherent as well as

convex risk measures in case time-consistency is assumed. We see that the

risk measure eventually equals the expected value under the true parameter;

in this sense, uncertainty vanishes but risk remains.

4.6.1 Time-Consistent Coherent Risk

Let (ρt)t be a time-consistent coherent risk measure possessing robust repre-

sentation

ρt(X) = sup
θ∈Θ̃

EPθ [−X |Ft],

with Θ̃ ⊂ Θ assumed to be a convex and compact set of parameters inducing

a weakly compact and convex set of priors Q̃ ⊂ Me(Pθ0).

Proposition 4.6.1. For every essentially bounded F-measurable random

variable X and time-consistent coherent risk measure (ρt)t we have∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞.

Proof. Thanks to the assumption of time-consistency and compactness there

exists a parameter θ∗ ∈ Θ̃ such that ρt(X) = EPθ∗ [−X |Ft] for all t ∈
{0, ..., T} resulting in the following equation∣∣ρt(X)− EPθ0 [−X |Ft]

∣∣ =
∣∣EPθ∗ [−X |Ft]− EPθ0 [−X |Ft]

∣∣
and this converges to zero as t increases and Pθ∗ ∼ Pθ0 by Proposition 4.5.1.

Remark 4.6.2. Note that we have not assumed θ0 ∈ Θ̃.

Remark 4.6.3. The assumption that Θ̃ is weakly compact is a very crucial

assumption, as it assures that the supremum is actually attained. Addition-

ally it is a necessary property for our result to hold, which is shown in the

Proposition 4.6.4.
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Proposition 4.6.4. Weak compactness of the set {Pθ|θ ∈ Θ̃} of priors is a

necessary condition for our result in Proposition 4.6.1 to hold.

Proof. For the proof, see the counterexample in Section 4.8.2.

4.6.2 Time-Consistent Convex Risk

Let (ρt)t be a time-consistent dynamic convex risk measure, hence, possessing

the following robust representation:

ρt(X) = ess sup
θ∈Θ

{
EPθ [−X|Ft]− αmin

t (θ)
}

with dynamic minimal penalty (αmin
t )t.

Assumption 4.6.5. We assume (ρt)t to be continuous from below for all t,

i.e. for every sequence of random variables (Xj)j, Xj ∈ L∞ for all j, with

Xj ↗ X ∈ L∞ we have limj→∞ ρt(Xj) = ρt(X).

Remark 4.6.6. In the coherent case, continuity from below is equivalent to

weak compactness of the set {Pθ|(αt(θ))t = 0} = {Pθ|θ ∈ Θ̃} of priors as

inter alia shown in [Riedel, 09].

This assumption has technical advantages as it ensures the supremum to

be achieved in the robust representation of ρt. A proof is given in Theorem

1.2 of [Föllmer et al., 09]. It is also shown that continuity from below implies

continuity from above. To sum up: continuity from above is equivalent to the

existence of a robust representation. Continuity from below (which general-

izes the compactness assumption in the coherent case) is equivalent to the

existence of a robust representation in terms of a distinct prior distribution,

the so called worst case distribution.

From an economic point of view, continuity from below results from a

feature of preferences already claimed in [Arrow, 71] and related to this as-

sumption by [Chateauneuf et al., 05]. The condition on preferences we need

to ask for in order to obtain this feature is called Monotone Continuity: If
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an act f is preferred over an act g then a consequence x is never that bad

that there is no small p such that x with probability p and f with probability

(1−p) is still preferred over g. The same is true for good consequences mixed

with g.

Formally this means, for acts f � g, a consequence x and a sequence of

events {En}n∈N with E1 ⊇ E2 ⊇ ... and ∩n∈NEn = ∅ there exists an n̄ ∈ N
such that [

x if s ∈ En̄
f(s) if s /∈ En̄

]
� g and f �

[
x if s ∈ En̄
g(s) if s /∈ En̄

]
.

Now with the help of this assumption we can show the Blackwell-Dubins

result for time-consistent convex risk measures:

Proposition 4.6.7. For every essentially bounded F-measurable random

variable X and time-consistent convex risk measure (ρt)t, continuous from

below, it holds∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞

if there exists θ ∈ Θ such that αmin
t (θ) → 0 Pθ0-almost surely and αmin

0 (θ) <

∞.

Remark 4.6.8 (On the Assumption). By the main assumption in Proposi-

tion 4.6.7 there ought to be some θ such that the penalty vanishes in the long

run. This intuitively means that, eventually, nature at least has to pretend

some distribution to be the correct one. We see that this is satisfied e.g. in

the coherent or in the entropic case.

The assertion then states that it does not matter which risk measure was

chosen as long as the penalty is finite in the beginning. In the time-consistent

case, the penalty then vanishes for all those parameters and the convex risk

eventually will be coherent.

As we will see later, in the non-time-consistent case, nature has to pay a

price for not choosing a distribution time-consistently as in that case penalty

has to vanish for the true underlying parameter. To conclude: when nature

169



4. INCREASING INFORMATION & CONVEX RISK

chooses the worst case distribution time-consistently, she merely has to pre-

tend some distribution to be the underlying one. If she does not choose the

worst case measures at any stage time-consistently, she has to reveal the true

underlying distribution in the long run.

Remark 4.6.9. By Theorem 5.4 in [Föllmer & Penner, 06] due to time-

consistency the assumption αmin
t (θ)→ 0 Pθ0-almost surely for some θ ∈ Θ is

equivalent to αmin
t (θ)→ 0 Pθ0-almost surely for all θ ∈ Θ with α0(θ) <∞.

Proof of the proposition. By our assumptions on (ρt)t there exists θ∗ ∈ Θ

such that the assertion becomes∣∣∣EPθ∗ [−X|Ft]− αmin
t (θ∗)− EPθ0 [−X|Ft]

∣∣∣→ 0 Pθ0-a.s.

By the foregoing proposition on coherent risk, we know that this assertion

holds if and only if ∣∣αmin
t (θ∗)

∣∣→ 0 Pθ0-a.s.

Theorem 5.4 in [Föllmer & Penner, 06] implies this convergence being equiv-

alent to ∣∣αmin
t (θ)

∣∣→ 0 Pθ0-a.s.

for some θ ∈ Θ such that α0(θ) <∞ as assumed to hold in the assertion.

Corollary 4.6.10. By Proposition 4.4.20 under the conditions of Proposition

4.6.7, θ0 is eventually learned upon.

Again, note that we have not assumed θ0 such that α0(θ0) <∞.

Corollary 4.6.11. Every dynamic time-consistent convex risk measure (ρt)t

satisfying the assumptions of the Proposition 4.6.7 is asymptotically precise

as in the sense of [Föllmer & Penner, 06], i.e. ρt(X)→ ρ∞(X) = −X, and

vice versa. In particular, this holds for the coherent case as t→∞.
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Proof. By the assumption of continuity from below, we know that a worst

case measure in the robust representation of (ρt)t is actually achieved. By

Theorem 5.4 (5) in [Föllmer & Penner, 06] we have that ρt(X)→ ρ∞(X) ≥
−X as we have assumed αmin

t (θ0) → 0. Then the assertion is shown by

Proposition 5.11 in [Föllmer & Penner, 06].

Remark 4.6.12. In [Föllmer & Penner, 06] time-consistency is directly used

to show the existence of the limit ρ∞ := limt→∞ρt. As, by assumptions on X

in the model, limt→∞(EPθ0 [−X |Ft]) exists we achieve existence of ρ∞ from

our result not directly from time-consistency. In our propostion the con-

vergence of the α corresponds to asymptotic precision, however starting at a

different point of view. The question now is if time-consistency is a necessary

condition for our result to hold. If so, we have gained nothing, if not, we have

a more general existence result for ρ∞ than [Föllmer & Penner, 06]. We will

tackle the problem of necessity of time-consistency for our result within the

next section.

Proposition 4.6.13. (ρt)t being continuous from below is a necessary con-

dition for the result in Theorem 4.6.7 to hold.

Proof. In Proposition 4.6.4 we show necessity of weak compactness of the set

of priors for coherent risk measures. However, weak compactness is equivalent

to continuity from below and coherent risk measures are particular examples

for convex ones. This proofs the assertion.

Remark 4.6.14. In Proposition 4.6.7, if there does not exist θ such that

αmin
t (θ)→ 0 but αmin

t (θ∗) ≤ c ∈ R+ for all t ≥ n0 for some n0 ∈ N then there

is at least an upper bound on the remaining uncertainty:

|ρt(X)− EPθ0 [−X|Ft]| ≤ c

as t→∞.
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4.7 Not Necessarily Time-Consistent Risk Mea-

sures

We will now achieve a Blackwell-Dubins type result for dynamic coherent and

convex risk measures for which we do not pose the time-consistency assump-

tion. However, we still assume the dynamic risk measure to be continuous

from below, i.e. in the coherent case the set of priors to be weakly compact.

We can still show that anticipation of risk converges to the expected value

of a risky project X as defined in the model with respect to the underlying

parameter θ0.

4.7.1 Non Time-Consistent Coherent Risk

We will now restate the result in a manner that time-consistency is not

needed. We however need to assume that learning takes place; which is a

more liberal assumption than time-consistency as seen in Section 4.8.3.

Definition 4.7.1. (a) Given a dynamic convex risk measure (ρt)t, continu-

ous from below but not necessarily time-consistent, we call a distribution Pθ∗t

instantaneous worst case distribution at t if it satisfies2

ρt(X) = EPθ
∗
t [−X| Ft]− αmin

t (θ∗t ).

(b) We say learning takes place if there exists a θ ∈ Θ, Pθ ∼ Pθ0, such that

the instantaneous worst case measures Pθ∗t → Pθ weakly for t → ∞. In the

coherent case we need θ ∈ Θ̃ as the penalty is infinite otherwise.

In this very definition, we see however, that the agent does not have to

learn the true underlying parameter θ0. In this sense, nature might mislead

her to a wrong parameter.

2Note, that existence is locally guaranteed by continuity from below. As we however

have not assumed time-consistency, the instantaneous worst case distributions at each time

period may differ, hence global existence is not necessarily fulfilled.
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We can now relax the time-consistency assumption in the main result of

this article. Note that time-consistency is a special case of Definition 4.7.1

given continuity from below as in that case the sequence of instantaneous

worst case parameters is constant. Hence, we achieve the more general result:

Proposition 4.7.2. Let (ρt)t be a not necessarily time-consistent dynamic

coherent risk measure for which learning takes place. Then∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞.

Proof. To make things clearer we will write the proof in terms of penalty

functions and not in terms of priors. We know that a coherent risk measure

has a robust representation of a convex risk measure with a penalty

αmin
t (θ) =

{
0 if Pθ(·|Ft) ∈ Q̃(·|Ft),
∞ else

where Q̃ is the set of priors, i.e. Q̃ = {Pθ|(αmin
t (θ))t = 0} uniquely defining

the coherent risk measure. As we are in the case of a coherent risk measure,

we particularly have αmin
t (θ∗t ) = 0.

First, note that in case αmin
t (θ) → ∞ for all θ ∈ Θ̃3, our convergence

result cannot hold, as limt→∞ EPθ0 [−X|Ft] exists and is finite by assumption.

Secondly, in the time-consistent (coherent as well as convex) case, it suf-

fices to assume αmin
t (θ̄) → 0 for some θ̄ ∈ Θ. This assumption in the time-

consistent case is equivalent to αmin
t (θ)→ 0 for all θ for which αmin

0 (θ) <∞
by Theorem 5.4 in [Föllmer & Penner, 06].

Let us now turn to the proof itself: As Q̃ is assumed to be weakly compact

and non-empty, i.e. there exists a distribution that has penalty zero, we

achieve an instantaneous worst case distribution at each time step, i.e. at

any t, there exists θ∗t ∈ Θ s.t.

ρt(X) = EPθ
∗
t [−X| Ft]− αmin

t (θ∗t ) = EPθ
∗
t [−X|Ft].

Of course, due to “time-inconsistency”, we might have θ∗i 6= θ∗j for i 6= j.

3Of course, convergence is trivial in this case due to triviality of the penalty function.
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The proof is completed by showing the following convergence4

EPθ∗n [−X|Ft]→ EPθ0 [−X|F∞] for n, t→∞.

In order to do this we look at the following equation for n ≥ t which uses the

projectivity of the density, i.e. of the Radon-Nikodym derivative:

EPθ∗n [−X|Ft] = EPθ0 [−XdPθ∗n
dPθ0

∣∣∣
Fn
|Ft].

Define the following sequence of random variables Yn := −X dPθ∗n
dPθ0

∣∣∣
Fn

. These

have finite expectation and thanks to our assumption that learning takes

place and the original Blackwell-Dubins result we have

Pθ0 [ lim
n→∞

Yn = −X] = Pθ0 [−XdPθ∗∞
dPθ0

∣∣∣
F∞

= −X] = 1.

Then, by Lemma 4.7.4, the assertion follows.

Remark 4.7.3. Again, note that we have not assumed θ0 ∈ Θ̃.

In the foregoing proof, we need a general martingale convergence result

as stated in [Blackwell & Dubins, 62], Theorem 2. We know from Doob’s

famous martingale convergence result that

EPθ [X|Ft] = lim
t→∞

EPθ [X|F∞] a.s.

under suitable assumptions. The question is: If Xn ↗n X in some sense, is

it true that

EPθ [Xn|Ft] = lim
n,t→∞

EPθ [X|F ] a.s.?

A positive answer is given in the following lemma.

4By our assumptions we know:

• EPθ
∗
n [−X|Ft]→ EPθ [−X|Ft] for n→∞ as θ∗n → θ by Portemonteau’s Theorem.

• EPθ
∗
n [−X|Ft]→ EPθ

∗
n [−X|F∞] for t→∞ by Proposition 4.5.1.

The question now is, whether the result also holds when letting n, t→∞ at once.

In the time-consistent case, where θ∗i = θ∗j for all i, j, this is immediate by Proposition

4.5.1.
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Lemma 4.7.4. Fix θ. Let (Yn)n be a sequence of F-measurable random

variables such that EPθ [supn |Yn|] < ∞. Assume Yn →n→∞ Y almost surely

for some F-measurable random variable Y . Then, it holds5

lim
n,t→∞

EPθ [Yn| Ft] = EPθ [Y | F ] .

Proof. We re-sample the proof in [Blackwell & Dubins, 62]: For k ∈ N, set

Gk := sup{Yn|n ≥ k}. If n ≥ k, we hence have Yn ≤ Gk and thus

EPθ [Yn| Ft] ≤ EPθ [Gk| Ft] (4.3)

for all t. Together with Doob’s martingale convergence result and Lebesgue’s

theorem, we achieve

z := lim
j→∞

sup
n,t≥j

EPθ [Yn| Ft]

(4.3)

≤ lim
j→∞

sup
t≥j

EPθ [Gk| Ft]

= lim
t→∞

EPθ [Gk| Ft]
Doob
= EPθ [Gk| F ]

and

z ≤ lim
k→∞

EPθ [Gk | F ]
Lebesgue

= EPθ [Y | F ] .

In the same token,

x := lim
j→∞

inf
t,n≥j

EPθ [Yn| Ft] ≥ EPθ [Y | F ] ,

which completes the proof since

x = lim
j→∞

inf
t,n≥j

EPθ [Yn| Ft] ≤ lim
j→∞

sup
n,t≥j

EPθ [Yn| Ft] = z.

5The convergence in the assertion of the lemma can also be shown in L1.
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Remark 4.7.5 (On Blackwell-Dubins Type Learning). Blackwell-Dubins ap-

plies for learning models but does not necessarily result in time-consistency

as this notion is now motivated as a special case of our notion of θ0 to be

eventually learned upon.

We have built a bridge between the first and the second part of this article:

in the first part we have achieved dynamic convex risk measures by virtue of

learning that did not turn out to be time-consistent. Hence, we have shown,

that our result even holds for those models, e.g. entropic learning.

Remark 4.7.6. Note, that the above new version of the fundamental result

particularly holds for time-consistent dynamic coherent risk measures as then

such a limiting θ as in the Definition 4.7.1(b) always exists, the worst case

one. However, we particularly have an existence result for the limit ρ∞ :=

limt→∞ ρt in the non time-consistent case and thus a more general existence

result than in [Föllmer & Penner, 06].

4.7.2 Non Time-Consistent Convex Risk

As in the case of coherent risk measures, we now state our generalization

of the Blackwell-Dubins theorem when the dynamic convex risk measure is

not assumed to be time-consistent. As in the coherent case, we assume that

learning takes place, i.e. there exists θ ∈ Θ such that the instantaneous worst

case θ∗t → θ as t → ∞. Furthermore, we have to assume αmin
t (θ∗t ) → 0 as

n→∞:6 As in the foregoing proof, we achieve convergence of the conditional

expectations under the family of instantaneous worst case distributions to the

conditional expectation under θ0.

Proposition 4.7.7. For every risky project X as set out in the model and

dynamic convex risk measure (ρt)t, continuous from below but not necessarily

time-consistent, we have∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞

6Note, again, we do not have to assume αmin
t (θ0)→ 0.

176



4.8. EXAMPLES

if learning takes place for an instantaneous worst case sequence (θ∗t )t toward

some θ ∈ Θ and we have

αmin
t (θ∗t )→ 0.

Proof. Applying the procedure used in the proof of Proposition 4.7.2 to the

proof of Proposition 4.6.7 shows the assertion.

4.8 Examples

In this section, we first consider dynamic entropic risk measures as a promi-

nent economic example of time-consistent dynamic convex risk measures. In

the second part we state a counterexample serving as proof for Proposition

4.6.4 and 4.6.13. Lastly, we consider a dynamic risk measure that is not

time-consistent.

4.8.1 Entropic Risk

Here, we will have a look at time-consistent dynamic entropic risk measure

(ρet )t. Recall its Definition 4.3.10 in terms of

ρe
t(X) := δ log E

[
e−γX

∣∣Ft]
for some model parameter δ > 0. A fundamental result shows that the

robust representation of dynamic entropic risk is given in terms of conditional

relative entropy as penalty function, i.e. for all n, we have

αmin
t (θ) =

1

γ
Ĥt(Pθ|Pη) :=

1

γ
EPθ

[
ln
ZT
Zt

∣∣∣∣Ft] ,
where Zt := dPθ

dPη

∣∣∣
Ft

, the Radon-Nikodym derivative of Pθ with respect to Pη

conditional on Ft.
The fundamental Blackwell-Dubins Theorem immediately shows that∣∣Pθ(·|Ft)− Pη(·|Ft)

∣∣→ 0
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for every θ, η. Hence, we have that ZT
Zt
→ 1 Pθ0-a.s. for t→∞and hence

αmin
t (θ)→ 0

showing Proposition 4.6.7 to hold. This is an alternative way to show the

last assertion in Theorem 6.3 in [Föllmer & Penner, 06] directly.

4.8.2 Counterexample

To show necessity of continuity from below in Proposition 4.6.7 we consider

the following example introduced in [Föllmer & Penner, 06]:

The underlying probability space consists of the state space Ω = (0, 1]

endowed with the Lebesgue measure Pθ0 and a filtration (Ft)t generated by

the dyadic partitions of Ω. This means Ft is generated by the sets Jt,k :=

(k2−t, (k + 1)2−t] for k = 0, ..., 2t−1. In this setting [Föllmer & Penner, 06]

construct a time-consistent coherent and therefore convex risk measures with

αmin
t (θ0)→ 0 Pθ0-a.s. of the following form:

ρt(X) = − ess sup{m ∈ L∞t |m ≤ X}.

That this sequence from all properties assumed in Proposition 4.6.7 is only

missing continuity from below (here equivalent to weak compactness of priors)

can be seen in the following way: Let t be arbitrary but fixed and X defined

by virtue of

X(ω) =

{
0 for ω ∈ (0, (2t − 1)2−t],
1 else.

Then we can construct a sequence (Xn)n, Xn ↗ X, such that ρt(Xn) = 0

for all n but ρt(X) = −X 6= 0. This shows (ρt)t not being continuous from

below.

Now we still have to show that for this construction the statement of our

proposition is not fulfilled. To verify this look at a set A assumed to be

F := σ(
⋃
t≥0Ft)-measurable such that Pθ0 [A] > 0 and Pθ0 [Ac ∩ Jt,k] 6= 0 for
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all t and k. For this set, it holds

lim
t→∞

∣∣∣ρt(1A)− EPθ0 [−1A |Ft]
∣∣∣ = lim

t→∞

∣∣0 + Pθ0 [A |Ft]
∣∣ = Pθ0 [A] > 0

and hence necessity of the continuity assumption is shown.

The skeptical reader might now object that such a set A might not exist.

For sake of completeness we briefly quote a set A from [Föllmer & Penner, 06]

that satisfies our assumptions: Let A be defined by virtue of its complement

A :=

(
∞⋃
t=1

2t−1⋃
k=1

Uεt(k2−t)

)c

,

where Uεt denotes the εt-neighborhood and εt ∈]0, 2−2t].

4.8.3 A Non Time-Consistent Example

Here, we consider the entropic learning model introduced in Definition 4.4.6

explicitly in terms of Ω = ⊗tSt. Let Pθ denote the distribution induced by

θ = (θt)t, θt inducing a marginal distribution in M(St). Though the model

looks quite similar to dynamic entropic risk measures, we briefly recall it: Let

the robust representation of a dynamic convex risk measure (ρ̂t)t be given by

virtue of the penalty

α̂min
t (θ) := δĤt(Pθ|Pθ̂),

δ > 0 and θ̂ = (θ̂t)t be achieved as in Definition 4.4.5: for t ∈ N, θ̂t is the

maximum likelihood estimator of the foregoing observations and θ̂i := θ̂t for

i > t. Restricting ourselves to the iid case, we know that we achieve θ̂t → θ̄0,

Pθ0-a.ss, where θ0 = (θ̄0)t for some θ̄0 inducing a marginal distribution in

M(St). By definition, (ρ̂t)t is a dynamic convex risk measure. As shown

in Proposition 4.4.15, (ρ̂t)t is not time-consistent. By standard results on

conditional entropic risk measures, (ρ̂t)t is continuous from below.

Furthermore, Proposition 4.7.7 is applicable and hence, our generaliza-

tion of Blackwell-Dubins’ theorem holds for experience based entropic risk.
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Indeed: By definition of the penalty and our considerations in Section 4.8.1,

α̂min
t (θ) → 0 as t → ∞ for all θ ∈ Θ. Secondly, as the maximum likelihood

estimator is asymptotically stable, i.e. θ̂t → θ̄0, the conditional reference

distributions Pθ̂(·|Ft) converge. Thus, the worst case instantaneous distribu-

tions Pθ∗t converge as in Definition 4.7.1 due to continuity of the entropy and

as the effective domain of the penalty is given by conditional distributions, a

fact that is made particularly precise in [Maccheroni et al., 06b].7

4.9 Conclusions

The major contribution of our results is to carry over the famous Blackwell-

Dubins theorem from probability distributions to convex risk measures. It is

particularly striking that the results still hold when time-consistency is not

posed as an assumption.

Hereto, the present article is twofold: In the first part, we show that

explicitly constructing dynamic convex risk measures by virtue of a penalty

emerging from a learning mechanism and inserted in the robust represen-

tation of convex risk measures leads to time-consistency problems. In the

second part, we have then assumed a time-consistent dynamic convex risk

measure for granted and asked the question of limit behavior; more elabo-

rately its convergence to the expected value under the true underlying dis-

tribution.

We therefore introduced a generalization of the famous Blackwell-Dubins

theorem on “Merging of Opinions” to conditional expected values. Existence

of a worst case distribution due to continuity from below and time-consistency

then allowed for a further generalization to coherent and convex risk mea-

sures. In particular, we have obtained the existence of the limiting risk

7The notation is quite misleading at this point: the worst case instantaneous distribu-

tions Pθ∗t ∈ Me(Pθ0) as in Definition 4.7.1 is a distribution on (Ω,F) as θ∗t is an element

of Θ and not a “marginal” parameter as the above θts.

180



4.9. CONCLUSIONS

measure ρ∞ in that case.

By virtue of a counterexample, we have shown necessity of continuity

from below for our result. However, we have shown that time-consistency

is not necessary for the result to hold. In particular, we have obtained

a more general existence result for the limiting risk measure ρ∞ than in

[Föllmer & Penner, 06]. Our generalization of the Blackwell-Dubins theorem

was shown to be equivalent to the notion of the parameter being eventually

learned upon and the notion of asymptotic precision in [Föllmer & Penner, 06]

in the time-consistent case.

Further research should be conducted in the direction of our results.

First, of course, the riddle of explicitly constructing convex risk measures

by virtue of the penalty function is still to solve; in particular, how a learn-

ing mechanism might be introduced without destroying the assumption of

time-consistency. Weaker notions of time-consistency that are satisfied in

a “learning” environment should be introduced along with a comprehensive

theory allowing for solutions of tangible economic and social problems.

In the article at hand, we have considered risky projects with final payoffs,

i.e. random variables of the form X ∈ F . We have shown convergence of con-

vex risk measures to the conditional expected value with respect to the true

underlying distribution: a generalization of the Blackwell-Dubins theorem to

(not necessarily time-consistent) convex risk measures for final payoffs. To

us it seems being an interesting, yet challenging, task to generalize our result

to the case of convex risk measures for stochastic payoff processes (Xt)t with

respect to some filtration (Ft)t, where each Xt denotes the stochastic payoff

in period t. [Cheridito et al, 06] introduce dynamic convex risk measures for

these stochastic processes and elaborately discuss time-consistency issues but

do not inspect limiting behavior. A major difficulty in the case of stochastic

processes is that the assumption of equivalent distributions should be re-

placed by local equivalence, cp. [Riedel, 09]. Hence, the main question turns

out to be if the result still holds assuming local instead of global equivalence
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as done here.
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Chapter 5

Closing Remarks

Within the three essays of this thesis we have tackled several problems arising

in case of dynamic coherent as well as convex risk measures or, equivalently,

dynamic variational preferences. Each essay is elaborately given in one chap-

ter and finalized by a conclusion stating achievements of that essay’s results

as well as limitations and ideas for further research. Nevertheless, we briefly

summarize our results here at the very end:

First, we have generalized the Best-Choice or Secretary problem to the

case of an ambiguous number of applicants. For this problem we have

achieved a result on the number of stopping islands generalizing the main

theorem in [Presman & Sonin, 72]. In order to achieve this, we have encoun-

tered several problems in directly generalizing the risky to the ambiguous

problem and hence have built a model in terms of assessments.

Thereafter, we have build a general theory for optimal stopping of pay-

off processes in context of time-consistent dynamic variational preferences.

In order to achieve our results on optimal stopping times by virtue of so

called variational Snell envelopes extending [Riedel, 09], we have introduced

the notion of variational supermartingales and have built an accompanying

martingale theory. We have applied our insights to dynamic entropic risk

measures and average value at risk.



5. CLOSING REMARKS

In the third article, we have considered dynamic convex risk measures

when information is gathered in course of time. We have generalized the

fundamental Blackwell-Dubins theorem from [Blackwell & Dubins, 62] to not

necessarily time-consistent dynamic convex risk measures and have thus shown

their convergence to conditional expected values with respect to the true un-

derlying distribution: Intuitively the result shows that uncertainty vanishes

but risk endures.
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the 21st Century, G. Szegö ed., pp.227-248,Wiley & Sons, 2004.

[Frittelli & Rosazza Gianin, 05] Frittelli, Marco & Roszza Gianin,

Emanuela: Law Invariant Convex Risk Measures, Advances in



Mathematical Economics, Vol.7, pp.42-53, Springer-Verlag, Berlin,

2005.

[Gianini-Pettitt, 79] Gianini-Pettitt, Jacqueline: Optimal Selection Based on

Relative Ranks with a Random Number of Individuals, Advances in

Applied Probability, Vol.11, No.4, pp.720-736, 1979.

[Gilbert & Mosteller, 66] Gilbert, John P. & Mosteller Frederick: Recogniz-

ing the Maximum of a Sequence, Journal of the American Statistical

Association, Vol.61, No. 313, pp.35-73, 1966.

[Gilboa, 87] Gilboa, Itzhak: Expected Utility with Purely Subjective Non-

additive Probabilities, Journal of Mathematical Economics, Vol.16,

No.1, pp.65-88, 1987.

[Gilboa & Schmeidler, 89] Gilboa, Itzhak & Schmeidler, David: Maximin

Expected Utility with non-unique Prior, Journal of Mathematical Eco-

nomics, Vol.18, pp.141-153, 1989.

[Gnedin, 94] Gnedin, Alexander V.: A Solution to the Game of Googol, The

Annals of Probability, Vol.22, No.3, pp.1588-1585, 1994.

[Gnedin, 96] Gnedin, Alexander V.: On the Full-Information Best-Choice

Problem, Journal of Applied Probability, Vol.33, No.3, pp.678-687, 1996.

[Gnedin & Krengel, 95] Gnedin, Alexander V. & Krengel, Ulrich: A Stochas-

tic Game of Optimal Stopping and Order Selection, The Annals of Prob-

ability, Vol.5, No.1, pp.310-321, 1995.

[Hill & Krengel, 91] Hill, Theodore P. & Krengel, Ulrich: Minimax-Optimal

Stop Rules and Distributions in Secretary Problems, The Annals of

Probability, Vol.19, No.1, pp.342-353, 1991.



[Hill & Kennedy, 92] Hill, Theodore P. & Kennedy, D.P.: Sharp Inequalities

for Optimal Stopping with Rewards based on Ranks, The Annals of

Probability, Vol.2, No.2, pp.503-517, 1992.

[Irle, 80] Irle, Albrecht: On the Best Choice Problem with Random Popula-

tion Size, Zeitschrift für Operations Research, Vol.24, No.5, pp.177-190,

1980.

[Jouini et al., 04] Jouini, Elyes; Meddeb, Moncef & Touzi, Nizar: Vector

Valued Coherent Risk Measures, Finance and Stochastics, Vol.8, No.4,

pp.531-552, 2004.

[Kalai & Lehrer, 94] Kalai, Ehud & Lehrer, Ehud: Weak and Strong Merging

of Opinions, Journal of Mathematical Economics, Vol. 23, No.1, pp.73-

86, 1994.

[Karatzas & Zamfirescu, 06] Karatzas, Ioannis & Zamfirescu, Ingrid-Mona:

Martingale Approach to Stochastic Control with Discretionary Stopping,

Applied Mathematics & Optimization, Vol.53, No.2, pp.163-184, 2006.

[Karatzas & Zamfirescu, 08] Karatzas, Ioannis & Zamfirescu, Ingrid-Mona:

Martingale Approach to Stochastic Differential Games of Control and

Stopping, Annals of Probability, Vol.36, No.4, pp.1495-1527, 2008.

[Klibanoff et al., 09] Klibanoff, Peter; Marinacci, Massimo & Mukerji,Sujoy:

Recursive Smooth Ambiguity Preferences, Journal of Economic Theory,

forthcoming.

[Kreps, 79] Kreps, David: A Representation Theorem for ‘Preference for

Flexibility’ , Econometrica, Vol. 47, No.3, pp.565-577, 1979.

[Lindley, 61] Lindley, Dennis Victor: Dynamic Programming and Decision

Theory, Applied Statistics, Vol.10, No.1, pp.39-51, 1961.



[Maccheroni et al., 06a] Maccheroni, Fabio; Marinacci, Massimo & Rusti-

chini, Aldo: Ambiguity Aversion, Robustness, and the Variational Rep-

resentation of Preferences, Econometrica, Vol.74, No.6, pp.1447-1498,

2006.

[Maccheroni et al., 06b] Maccheroni, Fabio; Marinacci, Massimo & Rusti-

chini, Aldo: Dynamic Variational Preferences, Journal of Economic The-

ory, Vol.128, No.1, pp. 4-44, 2006.

[Marinacci, 99] Marinacci, Massimo: Limit Laws for Non-additive Probabil-

ities and Their Frequentist Interpretation, Journal of Economic Theory,

Vol.84, No.2, pp.145-195, 1999.

[Marinacci, 02] Marinacci, Massimo: Learning from Ambiguous Urns, Sta-

tistical Papers, Vol.43, No.1, pp. 145-151, 2002.

[McNeil et al., 05] McNeil, Alexander; Frey, Rüdiger & Embrechts, Paul:
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