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Abstract

Contract theory studies the incentives and contractual outcomes in eco-
nomic interactions, and how they are influenced by given institutions and
information structures. On an abstract level, a contractual relationship is
characterized by the costs and obstacles that have to be faced in order to
carry out the desired economic transaction. Such transaction costs include
for example search and information cost, bargaining and contracting costs,
and enforcement costs. Depending on the type of transaction costs, optimal
contracts will take one form or another. To try to understand economic inter-
actions at this level of detail is of course an enormous undertaking, to which
this thesis makes a small contribution, focusing on the effect of renegotiation
on the form of contracts.

In the first chapter, we consider a repeated moral hazard problem, where
both the principal and the wealth-constrained agent are risk-neutral. In each
of two periods, the principal can make an investment and the agent can exert
unobservable effort, leading to success or failure. Incentives in the second
period act as carrot and stick for the first period, so that effort is higher
after a success than after a failure. If renegotiation cannot be prevented, the
principal may prefer a project with lower returns; i.e., a project may be “too
good” to be financed or, similarly, an agent can be “overqualified.”

The second chapter examines the efficiency of expectation damages as a
breach remedy in a bilateral trade setting with renegotiation and relationship-
specific investment by the buyer and the seller. As demonstrated by Edlin and
Reichelstein (1996), no contract that specifies only a fixed quantity and a fixed
per-unit price can induce efficient investment if marginal cost is constant and
deterministic. We show that this result does not extend to more general payoff
functions. If both parties face the risk of breaching, the first best becomes
attainable with a simple price-quantity contract.

In the third chapter, we consider the case of an upstream seller who works
to improve an asset that has been specialized to a downstream buyer’s needs.
There is no contract; instead the buyer afterwards makes a take it or leave it
offer to the seller. We assume that the seller has private information about
the fraction of the surplus that he can realize on his own, and show that this
leads to higher investment compared to the complete information case. While
a seller with a large default payoff has always strong incentives to invest, now
also a seller with a low outside option can choose a large investment, trying to
convey the impression of having profitable alternatives. This positive effect on
investment is traded off against the occurence of inefficient separation, which
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results when the buyer mistakenly tries to call the seller’s bluff with a low
offer.

The forth chapter studies infinitely repeated two player games with perfect
information and side payments. Each period consists of two stages, one in
which the parties simultaneously choose an action and one in which they
make a monetary transfer. We show that in order to find subgame perfect
or renegotiation-proof payoffs for a given discount factor one can restrict the
analysis to a class of simple stationary strategies, which we call stationary
contracts. We provide simple conditions that characterize renegotiation-proof
stationary contracts, and apply these to a series of examples. In particular,
we show that in a principal-agent game, in which only the agent chooses an
action, all Pareto efficient outcomes can be made renegotiation-proof.
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1

Introduction

1.1 Preliminaries

Many exchanges of goods or services are far more complex than ideal mar-
ket transactions. Apart from frictions like search and coordination costs or
contract writing costs, possible obstacles are that actions of others cannot
easily be monitored and controlled, that information may be asymmetrically
distributed or that utility may not be perfectly transferable. Even if all con-
cerned parties possess all relevant information, outcomes may be difficult to
verify in front of a court, and the legal system may be imperfect or restrict
the clauses in a contract for other reasons. Moreover, nothing prevents the
parties from tearing up their contract and writing a new one. The possibility
of renegotiation is a direct consequence of freedom of contracting, and cannot
easily be excluded. Renegotiation interacts with the above mentioned market
imperfections, sometimes being a blessing sometimes a curse.

The incentive problems created by unobserved actions or private infor-
mation are typically dealt with by ex ante committing to ex post inefficient
behavior. Consider for example the case that one of the contracting parties
could take a costly action that increases the value of the relationship but is
not observed by the other party. Examples include an employee’s working
effort, an insured person’s care to avoid an accident or a seller’s investment
into quality of a good or service. A formal contract can only make use of
the relationship between the hidden action and the verifiable value it creates,
rewarding good outcomes and punishing bad outcomes. Such a punishment,
however, is typically inefficient; it could for example leave too much risk with
the more risk-averse party, or lead to underemployment. Therefore, once the
action lies in the past, the parties may be tempted to ignore the specifications
of the original contract and renegotiate to a better outcome. Since contracts
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that rely on Pareto dominated threats will not be adhered to, the impossibility
to exclude renegotiation acts as a constraint on feasible outcomes.

In a world of complete contracts, in which it is possible to write perfectly
enforceable contracts on all variables that are observable, there are no allo-
cations that can be reached by renegotiation only. Even if the contracting
parties do not have all relevant information at one point in time, they can
condition the contract on all events that could possibly arise at later dates.
Hence, under the strong assumption of complete contracting, there are no
benefits to renegotiation, only potential costs.1

Since the ability to commit is valuable, we may observe behavior that
seems irrational at first but can be explained by the search for a commitment
device, i.e., we may observe agents who deliberately restrict their options,
like Odysseus tying himself to the mast to escape the sirens. A principal (an
employer or a lender) may choose an inefficient monitoring technology, which
she would never do if renegotiation could be excluded, because not learning
the real quality of the agent (the employee or borrower) allows her not to
be too forgiving of failures. That imperfect observability may help to over-
come a commitment problem in environments with incomplete information
is shown in Cremer (1995) and Dewatripont and Maskin (1995a). Chapter 2
provides a new example of this effect in a hidden action framework, in which
a worse agent is preferred over a more productive one, as the principal gains
the credibility to fire the agent.

In contrast to the complete contracting environment, renegotiation can
play a beneficial role if contracts are incomplete. If there are many different
events that could possibly occur, each with small probability, a contract that
provides for all these events may be very costly to write. These costs could be
saved by writing only a simple contract and renegotiating it later when cir-
cumstances have become more clear. There is, however, a tradeoff to retaining
flexibility until the optimal contractual terms present themselves, since out-
comes that are desirable ex post do not have to be desirable from an ex ante
point of view. If the share of the gains from trade that each of the trading
partners receives is determined at a later stage, incentives to prepare for trade
depend on the ex post bargaining process. In particular, parties will generally
be very reluctant to invest into the relationship in the absence of a binding
contract, as the rents that the investment generates have to be shared with the
other party according to bargaining power (such underinvestment problems
are known by the term hold-up problem, see Grout (1984), Klein, Crawford

1 See for example Fudenberg and Tirole (1990), who explicitly introduce a “renego-
tiation proofness constraint” in a dynamic contracting problem. For an overview
of the effects of such a constraint, see Dewatripont and Maskin (1990) or Bolton
and Detwatripont (2005, Chapter 9).
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and Alchian (1978), Hart and Moore (1988)). In contrast, renegotiation may
not be an obstacle for efficient ex ante investment if at least some contracts
can be formulated and enforced. Even a simple contract may have powerful
effects on the parties’ bargaining positions, and therefore influence the over-
all outcome. Articles like Hermalin and Katz (1991), Edlin and Reichelstein
(1996) and Evans (2008) show that in such cases it may be possible to have
ex post flexibility and ex ante efficiency at the same time.

Another reason why contracts may have to be simple is that not all clauses
are enforceable. For example, while a contract can specify fines for nonperfor-
mance (“liquidated damages”), there is a limit to these fines. In many legal
systems these are not allowed to be grossly higher than the expected loss of
breach. Uncertainty with regard to which clauses are allowed may lead to
an unmerited prevalence of standard remedies. Therefore, standard remedies
for breach of contract are an important object of study, even though it is in
principle possible to contract around them whenever they are not suitable.
In Anglo-American law, the default legal remedy for breach of contract is
the expectation damages rule. This rule, and how it can help the contract-
ing parties to achieve maximal gains from trade in a framework with simple
noncontingent contracts and renegotiation, is the topic of Chapter 3.

The theory of incomplete contracts is closely linked to the theory of the
firm (see for example Coase (1937) and Williamson (1971, 1979, 1985)). This
theory offers a way to explain how production is organized: which transac-
tions are conducted within a firm and which via a market. The idea is that
because contracts are never perfect, there is a difference between doing some-
thing yourself and writing a contract in order to get somebody else to do it.
Williamson identifies three major determinants of this “make or buy” decision:
asset specificity, uncertainty, and frequency of transactions. The impossibility
of writing complete contracts and the resulting potential for holdup if in-
vestment is specific to the relationship encourage contracting parties to enter
long-term relationships or to vertically integrate.

In the property rights models that study these decisions (Grossman and
Hart (1986), Hart and Moore (1990), Hart (1995)) only ownership structures
can be contracted on. Outside opportunities, which depend on who owns the
asset, are then crucial to determine the amount of investment. Firms that
can put their assets to profitable alternative uses are less vulnerable to hold-
up and therefore can invest more. In Chapter 4, we study the possibility
that asymmetric information about the outside option could lead to higher
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investment on average, as firms try to signal a high outside option with their
investment.2

Another way to overcome enforcement problems and induce more invest-
ment is a long-term relationship. If the relevant actions are observable to the
contracting parties, but it is not possible to write a contract that has to be en-
forced by a third party, then reputation and repeated interaction may be used
instead. Informal agreements have to be enforced within the relationship, e.g.,
by threats of terminating a profitable relationship. The resulting agreements
are not contracts in the legal sense, but are still sometimes called relational
contracts. The term originated in the legal literature, in work by Macaulay
(1963) and MacNeil (1978). The study by Macaulay documents how firms in
practice coordinate their behavior without the assistance of written contracts.
Although detailed agreements are made use of, disputes are often settled with-
out reference to the contract.

When economists speak of relational contracts, they mean “informal agree-
ments sustained by the value of future relationships”(Baker, Gibbons and
Murphy (2002, p.39) ). Concern for the future of the relationship is modeled
by letting the same stage game be repeated infinitely often. Relational con-
tracts are essentially subgame perfect equilibria in such a repeated game, but
the term also implies a kind of relationship between the parties.3 This relation-
ship may give them the opportunity to negotiate to efficient equilibria, and
also to organize monetary transfers to induce compliance with jointly optimal
behavior. In Chapter 5, we assume that parties can make unlimited monetary
transfers and impose a renegotiation-proofness constraint, and characterize
the resulting outcomes for a general class of games.

In the remainder of this introduction we summarize the chapters and in
each summary highlight the imperfections in the economic environment that
the chapter focuses on. A detailed introduction including an overview of re-
lated literature is given at the beginning of the chapters.

2 Signaling may occur if some information may be conveyed through observable
actions prior to the contracting. The classical example is education as a wasteful
signal for productivity ( Spence (1973)).

3 This could for example be a business to business relationship, or an employer -
employee relationship within a firm. Baker et al. (2002) entertain the idea that the
role of managers is to communicate and adjust the relational contracts within a
firm. See also McLeod (2007) for a discussion of how to define relational contracts.
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1.2 Optimal renegotiation-proof contracts with dynamic

investment

The second chapter studies a problem in classical principal-agent theory.4 This
theory is concerned with the relationship between a principal (an employer, a
landlord, a bank or other investor etc.) and an agent who acts on behalf of the
principal. The problem of the principal is to design a compensation scheme
that aligns the interests of the agent as best as possible with his own, taking
into account the unobservability of the agent’s actions and other technological
constraints.

In the chapter, we highlight the effect of renegotiation in a repeated hid-
den action model featuring a principal who delegates a project to a wealth-
constraint agent. Since effort is not contractible, the agent must be motivated
with a bonus in case of success or even by a threat to terminate the project
after a failure in the first period. Although termination is an inefficient second
period outcome, such a contract may ex ante be optimal for the principal. If
renegotiation cannot be prevented, a threat to terminate ceases to be credible
for projects with high potential. Only projects that yield a low per-period re-
turn will actually be discontinued, and such a project then could be preferred
by the principal. The worse project has a value as a commitment device, and
this effect on effort may actually outweigh the smaller return.

The chapter makes two contributions to the literature. First, it shows
how effort levels compare across states in a two-period moral hazard model
with limited liability. The principal exploits the repetition by rewarding two
successes in a row relatively more than the individual successes. This leads to
what we call the hot-hand effect: an agent who achieves a success in the first
period is better motivated and hence more likely to succeed in the second
period as well. The second contribution is to show that if renegotiation is
introduced in this repeated version of a standard model, an overqualification
effect may occur: it can happen that an optimizing principal chooses a worse
project/agent over a better one.

In the environment studied here, lack of observability and non-
transferability of utility makes the first best unattainable. While these prob-
lems are more severe in the one-shot interaction, they can only in part be
overcome by the two-period contract. The result is generated by the pres-
ence of both these imperfections: if the agent was not wealth constrained, he
could simply buy the firm and become residual claimant, while if his effort
choice was observable, he could be forced to exert first best effort. Lack of
commitment plays a role because punishment in form of a low-powered incen-

4 This chapter is based on Ohlendorf and Schmitz (2008), available as a CEPR
discussion paper.
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tive contract -or even termination after a failure- is Pareto dominated by the
optimal one-period contract.

There are many versions of the renegotiation-proofness principle5, but
in this complete contracting environment, in which the principal optimizes
among all possible contracts, it takes a very simple form: the optimization
can be restricted to contracts that specify Pareto optimal outcomes in every
subgame. This means that the induced second period effort must be weakly
greater than the second best effort of the one-shot problem, and that termi-
nation can only occur if the project generates a sufficiently low return. The
resulting contract is never renegotiated, and thus would not change if the ex
post bargaining process was different from the situation ex ante, in which the
principal has all the bargaining power.

1.3 Simple efficient contracts and contract law

Contract enforcement not only guarantees that payments are made and de-
livery takes place, but may also foster investments which are of value only in
a particular relationship. If buyers can rely on a contract, they can plan an
advertisement campaign or start training their workers to use contracted-for
equipment before actual delivery. Likewise, sellers can engage in research to
reduce production costs and tailor their production to the needs of the buyer
without fear of holdup. Whether a contract indeed leads to the right incen-
tives for investment also depends on the consequences of breach. If a contract
is breached, damages have to be paid, which are either stipulated in the con-
tract, or set by a court. Chapter 3 is concerned with the most common legal
rule for damage payments, the expectation measure.

The chapter builds on the analysis of Edlin and Reichelstein (1996), who
analyze standard breach remedies when contracts consist only of an up front
transfer, a quantity to be traded and a price per unit. Because contracts
can be renegotiated once state uncertainty has been resolved, the ex post
optimal decision is always implemented. The up-front transfer can be used
to divide the gains from trade, such that the role of price and quantity is
merely to induce ex ante efficient investment. Edlin and Reichelstein show
that these variables may successfully fill this role if only one of the contracting
parties invests. The bilateral investment case is more difficult, but for specific
performance it is sometimes possible to align the incentives of both parties
with a single quantity. Expectation damages, on the other hand, seems ill-
suited for bilateral investment cases.

5 See Brennan and Watson (2002).
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The intuition for the inefficiency of expectation damages is that this rem-
edy treats the breaching party and the victim of breach asymmetrically. While
the breaching party takes an efficient breach decision, and in anticipation of
breach will have efficient investment incentives, the victim of breach is always
insured to receive the expected profit from the contracted quantity. This party
then prepares for a higher than optimal quantity, not internalizing the risk
of breach. The contribution of Chapter 3 of this thesis is to recognize that in
the framework of Edlin and Reichelstein, with divisible contracts, the identity
of the breaching party is endogenous and influenced by the per-unit price. It
is shown that if one moves away from the deterministic and linear functions,
both parties face the risk of breaching. The two variables price and quantity
can be used to fine-tune the investment incentives of the two parties, balanc-
ing the hold-up effect that arises from the possibility of renegotiation against
the overinvestment effect that arises from being the victim of breach.

This result holds only when contracts are divisible and payoff functions are
sufficiently concave. If these conditions do not hold and a simple price-quantity
contract cannot reach the first best, one might ask how comprehensive con-
tracts have to be for an efficient outcome under the legal regime of expectation
damages. It is demonstrated in the chapter how a slightly more complicated
contract with a stochastic price can reach the first best for a more general
class of functions, including the linear ones. An option contract may also help
in case of a deterministic and linear cost function, but not in general, since
whenever only one party faces the risk of breaching, Edlin and Reichelstein’s
inefficiency result prevails.

In this contracting environment, the optimal trade decision becomes con-
tractible ex post but cannot be described ex ante. If the parties were to go to
court, the court would be able to assess damages, but parties do not make use
of this information directly in the contract. This can be viewed as an adhoc
restriction of possible contracts, typical for the law and economics literature,
which often assumes simple contracts in order to study the effect of a given
institution like a breach remedy. One may alternatively take institutions as
given and study how complex contracts have to be in reaction to the pre-
scribed rules. In the special case of Chapter 3 with costless renegotiation, the
parties are able to achieve an efficient outcome with a simple contract. As-
suming small contract writing costs, such a non-contingent contract should
then be strictly preferred to more complex agreements.6 The optimal con-
tract looks natural in the sense that the stipulated prices and quantities do

6 Of course, the model abstracts from a lot of other frictions like legal costs, bargain-
ing costs etc. as well. The effects of introducing small costs for different actions
certainly deserve more scrutiny, as it is not always clear how these costs would
interact with each other.
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not take on extreme values, but the exact values depend on the details of the
environment, in particular on the anticipated bargaining process.

1.4 Incomplete contracts and asymmetric information

about asset specificity

In many industries big companies rely on the relationship-specific investments
of their suppliers, yet the subcontractors are small firms compared to their
customers, and potential customers are few. If the bargaining power lies en-
tirely with the customer, how are the necessary innovations induced in this
environment where the customer dictates the rules and sueing for payment is
unthinkable? It seems vital for small suppliers to have many customers such
that in case of separation they can make up for the loss by dealing with others.
Suppliers who manage not to be dependent on any one customer may be able
to avoid exploitation and be compensated for their investment.

In Chapter 4, we show that information rents resulting from asymmetric
information about the position of the supplier in the market may stimulate
innovation if the customer has no other way to commit herself to adequately
reward investment. The idea is that too much pressure on the buyer’s subcon-
tractors would result in the loss of the strong ones, while only the weak ones
would stay, hurting also the buyer itself. Moreover, there is a signaling motive
in the investment choice. If the best alternative use of the relationship-specific
asset is private information to the supplier, the customer will try to deduce the
outside option from the level of investment. If the supplier is very reluctant
to invest, it may be from fear of hold-up because of a low outside option, and
the buyer will make only a low offer. If instead the supplier is very eager to
invest, it seems likely that the private value from the investment is high, hence
the buyer has to make a high offer. Now, of course, the possibility arises that
a supplier with a low outside option mimics the type with the high outside
option and invests more. This effect may mitigate the hold-up problem and
lead to higher investment.

We find that while the information asymmetry leads to higher investment,
this effect is traded against the inefficiency generated by the non-investing
party trying to appropriate part of the information rents. Welfare compar-
isons can therefore go in both directions. As in Chapter 3, the parties are
interacting in an incomplete contracting environment. A change in bargaining
power would lead to a different equilibrium outcome. In particular, giving all
bargaing power to the investing party would lead to an efficient allocation. As
in Chapter 2, limited commitment also plays a role in making the outcome
more inefficient and less profitable for the buyer.
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1.5 Renegotiationproof relational contracts

The last chapter studies renegotiation-proof relational contracts.7 There are
two parties who find themselves in the same situation in a potentially infinite
number of periods. They can be business partners who trade repeatedly or
cooperate in production, or firms in the same market who compete for the
same pool of workers or collude in price setting. Each period consists of two
stages, one stage in which the parties simultaneously choose an action and one
stage in which they can make a payment to the other party. The parties know
the entire history of the game, but compliance with the relational contract
cannot be enforced by verifiable contracts.

Folk theorems tell us that as the parties become infinitely patient, all in-
dividually rational outcomes can be sustained as subgame perfect equilibria
in the repeated game. The future matters to such a great extent that the
players are afraid to deviate from any agreement if a devation leads to a
worse outcome. The two parties might thus be trapped in a very bad equi-
librium, but such outcomes seem unrealistic if they are able to communciate
with each other. In case communication is feasible, equilibria that can never
be renegotiated to better outcomes seem more likely than others. This idea
is captured formally by requiring equilibria to be renegotiation-proof. Since
renegotiation-proofness is not straightforward to define for infinitely repeated
games, there exist several definitions in the literature. In the chapter, we adapt
strong perfection as defined in Rubinstein (1980) as well as Farell and Maskin
(1989)’s concepts of weak and strong renegotiation-proof equilibria to our set-
ting with monetary transfers. We assume that bargaining can take place after
every period and also between the two stages of a given period, and provide
a characterization of renegotiation-proof relational contracts given arbitrary
discount factors.

We find that all Pareto optimal subgame perfect payoffs and renegotiation-
proof payoffs can be found by restricting attention to a class of stationary con-
tracts. These stationary contracts prescribe play of the same action in every
period on the equilibrium path, and in case of a deviation allow the deviator
to pay a fine and return to equilibrium play. The actual punishment that re-
sults if a fine is not paid occurs within one period. Fines can hence be used
to create one-period punishments, which are more resistent to renegotiation
than a punishment that lasts forever. If a customer has not paid yet, instead
of never trading with him again, it may be more credible to threaten no de-
livery in this month only and expect a better contract for the next month.
Renegotiations in this month are then blocked by the plans for the next. Not

7 The chapter is based on Kranz and Ohlendorf (2009), available as a SFB TR 15
discussion paper.
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paying and trying to renegotiate will be too high a temptation only if a one
month delivery stop is too costly.

The concepts of renegotiation proofness that are applied in the chapter
define properties that an equilibrium has to fulfill in order to be considered
renegotiation-proof. Behind this axiomatic formulation lies the idea that once
there was a deviation, there is time for bargaining before the next action has
to be chosen. The concepts differ with respect to the timing of negotiations
and the set of alternative strategies that the parties bargain about, but they
all have in common that the default option should the negotiations fail is the
original equilibrium. In addition, they do not specify an explicit bargaining
process and therefore usually do not make a unique prediction. Bargaining in
the beginning of the game then is different from bargaining at later stages.



2

Repeated moral hazard, limited liability, and

renegotiation

2.1 Introduction

Consider a risk-neutral principal, who can invest to install a project and hire a
risk-neutral but wealth-constrained agent. The agent can exert unobservable
effort, which increases the likelihood of success. In the one-shot problem, there
is a well-known trade-off between effort incentives and rent extraction, which
leads to a downward distorted effort level compared to the first-best solution.
We extend the standard model by assuming that there is a second period,
in which the principal can again make an investment to continue the project
and the agent can again exert unobservable effort. It turns out that there are
several interesting insights that so far have escaped the literature on repeated
moral hazard, which was focused on the case of risk-averse agents.

In particular, if the principal can commit not to renegotiate, the second
period incentives can be used to partially circumvent the limited liability
constraint. In the second period, the principal implements a particularly high
effort level following a first-period success and a particularly low effort level
following a first-period failure. The prospect of a higher second-period rent
following a first-period success motivates the agent to exert more effort in the
first period; i.e., rents in the second period act as reward and punishment for
the first period. It should be emphasized that we assume no impact of a first-
period success or failure on the second-period technology. Nevertheless, if an
outsider observed today a principal-agent pair that was successful and another
identical pair that was not successful, he would be right to predict that the
first pair also is more likely to succeed tomorrow. In other words, a “hot hand”
effect is generated endogenously, merely based on incentive considerations. 1

1 The term “having a hot hand” originated in basketball and means having a streak
of successes that cannot be attributed to normal variation in performance. It
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Just as in the one-shot model, effort levels are distorted and not every
project that would be installed in a first-best world will be pursued under
moral hazard. It also is still the case that the principal will always prefer
a project (or, equivalently, an agent) that can yield a larger return (among
otherwise identical projects or agents). Somewhat surprisingly, however, the
latter observation is no longer true if renegotiation cannot be ruled out.

The “hot hand” effect implies that a principal would sometimes like to
commit to terminate a project following a first-period failure, even though
technologically the success probability of the second period is not affected by
the first-period outcome. Yet, the threat to terminate may not be credible
if renegotiation cannot be prevented. In this case, a new kind of inefficiency
occurs: The principal might deliberately choose a project that is commonly
known to yield smaller potential returns than another (otherwise identical)
project that is also available. Similarly, she might deliberately hire an agent
that is commonly known to be less qualified.

The reason that a project might be “too good” to be funded or an agent
might be “overqualified” is the fact that the principal cannot resist the tempta-
tion to renegotiate if the potential return is too attractive, which is anticipated
by the agent, whose incentives to work hard in the first period are dulled. In
contrast, a less qualified agent or an agent working on a less attractive project
may well be willing to exert more effort, because he knows that in case of a
failure he will not get a second chance. Since the credible threat to terminate
the project after a first-period failure improves first-period incentives, there
are indeed parameter constellations under which a relatively bad project is
funded, while a better project is not.

The literature on repeated moral hazard problems and renegotiation has
different strands. Most papers consider repeated versions of the traditional
moral hazard setting, where the agent is risk-averse and there is a trade-off
between insurance and incentives.2 In a pioneering paper, Rogerson (1985)
considered a two-period moral hazard problem and showed that the optimal
second-period incentives depend on the first-period outcome, even though the
periods are technologically independent. However, his result is driven by the
consumption-smoothing motive of the risk-averse agent,3 which is absent in
our setting. In moral hazard models with a risk-averse agent, renegotiation

seems to spectators that the probability of a success increases after a row of suc-
cesses, even though the trials in question are independent; see Gilovich, Vallone,
and Tversky (1985).

2 For comprehensive surveys, see Chiappori et al. (1994) and Bolton and Dewa-
tripont (2005, ch. 10).

3 Cf. Malcomson and Spinnewyn (1988), Fudenberg, Holmström, and Milgrom
(1990), and Rey and Salanié (1990).
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is an issue even in the one-shot problem, because after the agent has cho-
sen an effort level, there is no need to expose him to further risk. Fudenberg
and Tirole (1990), Ma ((1991), (1994)) and Matthews ((1995), (2001)) show
that it depends on the details of the renegotiation game whether or not effort
incentives are reduced.4 In contrast, in our framework there is scope for rene-
gotiation only if the moral hazard problem is repeated, and the details of the
renegotiation game are irrelevant for our results.

Although we consider a repeated moral hazard problem, it is interesting
to note that our results are also related to the repeated adverse selection lit-
erature.5 Specifically, in a seminal paper Dewatripont and Maskin (1995b)
consider a two-period model where the agent has private information about
the quality of a project that he submits for funding. Ex ante, the principal
would like to terminate bad projects after the first period in order to deter
the agent from submitting them (“hard budget constraint”). Yet, at the be-
ginning of the second period she is tempted to refinance them (“soft budget
constraint”). The absence of commitment power thus enables bad projects to
be funded. However, as has been pointed out by Kornai, Maskin, and Roland
(2003, p. 1110), the principal would not finance a bad project if she knew
the quality ex ante. In contrast, in our model a bad project may be funded,
while a better project may not be funded, even though the quality is common
knowledge.

The remainder of the chapter is organized as follows. In Section 2.2.1, we
introduce the one-shot moral hazard problem with a risk-neutral but wealth-
constrained agent, which now is sometimes called “efficiency wage” model.6

This model serves as a benchmark for the dynamic analysis. We then intro-
duce the two-period model in Section 2.2.2.7 In Section 2.3, we analyze the

4 See also Hermalin and Katz (1991) and Dewatripont et al. (2003), who consider
observable but unverifiable effort.

5 The fact that the one-shot moral hazard model with a risk-neutral but wealth-
constrained agent has some similarities to the one-shot adverse selection model
has already been noted by Laffont and Martimort ((2002),p. 147).

6 See Tirole (1999, p. 745) or Laffont and Martimort (2002, p. 174). See also Innes
(1990), Pitchford (1998), and Tirole (2001) for more detailed discussions of the
one-shot moral hazard model with risk-neutrality and resource constraints. More-
over, cf. the traditional efficiency wage literature (Shapiro and Stiglitz, (1984))
and the literature on deferred compensation (Lazear, (1981); Akerlof and Katz,
(1989)), which are related but have a different focus. In related frameworks,
Strausz (2006) studies auditing and Lewis and Sappington (2000) explore the
role of private information about limited wealth.

7 Dynamic models with risk-neutral agents, hidden actions, and wealth constraints
include also Crémer (1995), Baliga and Sjöström (1998), Che and Yoo (2001), and
Schmitz (2005). Yet, they rely on features (private information about productiv-
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commitment scenario and highlight the “hot hand” effect. In Section 2.4, it is
assumed that renegotiation cannot be ruled out, which leads to the “overqual-
ification ” effect. Finally, concluding remarks follow in Section 2.5. All proofs
have been relegated to the end of the chapter.

2.2 The model

2.2.1 The one-shot contracting problem

As a useful benchmark, let us first take a brief look at the one-shot moral-
hazard problem that will be repeated twice in our full-fledged model. There
are two parties, a principal and an agent, both of whom are risk-neutral. The
agent has no resources of his own, so that all payments to the agent have to
be nonnegative. The parties’ reservation utilities are given by zero. At some
initial date 0, the principal can decide whether or not to pursue a project.
If she installs the project, she incurs costs I and she offers a contract to
the agent. Having accepted the contract, the agent exerts unobservable effort
e ∈ [0, 1] at date 1. His disutility from exerting effort is given by c(e). Finally,
at date 2, either a success (y = 1) or a failure (y = 0) is realized, where
Pr{y = 1|e} = e. The principal’s verifiable return is given by yR.

ASSUMPTION 1 The effort cost function satisfies8

1. c ∈ C3([0, 1]) and c′(1) > R,
2. c′ > 0, c′′ > 0, c′′′ ≥ 0,
3. c(0) = 0 and c′(0) = 0.

The first-best effort level maximizes the expected total surplus S(e) :=
eR − c(e) and is characterized by

S′(eFB) = R − c′(eFB) = 0.

In a first-best world, the project would be installed whenever S(eFB) ≥ I.
The principal could attain the first-best outcome, but in order to do so

she would have to leave all of her returns to the agent, because payments to
the agent cannot be negative. Hence, the principal faces a trade-off between

ity, observable yet unverifiable effort, common shocks, and technological relations
between the periods, respectively) which are absent in the repeated (pure) moral
hazard problem studied here.

8 The assumptions allow us to focus on first-order conditions. With minor nota-
tional modifications of the proofs, we could relax Assumption 1a) by including
c ∈ C3([0, 1)), where lime→1 c′(e) > R.
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increasing the pie and getting a larger share for herself. To find the second-best
solution, observe first that the principal will not pay anything when no revenue
is generated. Next, let t denote the principal’s transfer payment to the agent in
case of success. The agent’s expected payoff from exerting effort e is et− c(e).
If t ≤ R, which obviously is optimal, the agent’s maximization problem has
an interior solution characterized by t = c′(e). Hence, the principal maximizes
P (e) := e[R − c′(e)] over e. The first-order condition characterizing the effort
level she will implement thus is

P ′(eSB) = R − c′(eSB) − eSBc′′(eSB) = 0.

Note that the function P is concave, positive for e < eFB and negative for
e > eFB . We also define A(e) := ec′(e)−c(e), the agent’s rent from a contract
that leads him to choose effort e. Since its derivative is A′(e) = ec′′(e), this is
a non-negative and strictly increasing function. Hence, a higher implemented
effort level yields higher rents for the agent. In order to reduce the agent’s rent,
the principal thus introduces a downward distortion of the induced effort level,
eSB < eFB .

In the one-shot problem, the principal will install the project whenever
P (eSB) ≥ I; i.e., not all projects that would be pursued in a first-best world
will actually be installed. However, given the choice between two (otherwise
identical) projects with possible returns R = Rg and R = Rb < Rg, the
principal will never prefer the bad project that can yield Rb only.

2.2.2 The two-period model

Now we turn to the full-fledged two-period model. For simplicity, we neglect
discounting. At date 0, the principal decides whether (x1 = 1) or not (x1 = 0)
to invest an amount I1 > 0 in order to install the project and run it for the
first period. If she pursues the project, she makes a take-it-or-leave-it contract
offer to the agent. Having accepted the offer, at date 1 the agent chooses an
unobservable first-period effort level e1 ∈ [0, 1], incurring disutility c(e1). At
date 2, the verifiable first-period return y1R is realized, where y1 ∈ {0, 1}
denotes failure or success, and Pr{y1 = 1|e1} = e1. The project may then
be terminated (x2(y1) = 0) or continued (x2(y1) = 1) which is verifiable.9 In

9 We assume that it is too costly for the principal to replace the agent at date 2,
because at that point in time the parties are “locked-in” (i.e., the relationship
has undergone Williamson’s (1985) “fundamental transformation”). For instance,
hiring a new agent for the ongoing project might require specific training, which
makes replacement unprofitable. See Spear and Wang (2005) and Mylovanov and
Schmitz (2008) for models in which replacement involves no costs. Of course, our
model could be extended to the case of costly replacement, but this would make
the exposition less tractable.
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order to continue the project, the principal must invest an amount I2 ≤ I1.
10

In this case, at date 3 the agent chooses an unobservable second-period effort
level e2(y1) ∈ [0, 1]. Finally, at date 4 the verifiable second-period return y2R
is realized, where y2 ∈ {0, 1} and Pr{y2 = 1|e2(y1)} = e2(y1), and the con-
tractually specified transfer payments are made. Note that the two periods are
independent; in particular, we do not assume any technological spillovers that
would make a second-period success more likely after a first-period success.

The sequence of events is illustrated in Figure 2.1.

-

first period second period

0 1 2 3 4

contract effort e1 y1 realized effort e2 y2 realized

Fig. 2.1. Repeated moral hazard problem.

The first-best solution. Assume for a moment that effort was verifiable.
If S(eFB) + S(eFB) ≥ I1 + I2, then the principal would install the project
(x1 = 1), she would continue regardless of the first-period outcome (x2(0) =
x2(1) = 1), and she would implement e1 = e2(0) = e2(1) = eFB with a
straightforward forcing contract, leaving no rent to the agent. Otherwise, the
project would not be installed at all.

Contracts when effort is unobservable. In the remainder of the paper,
we assume again that effort levels are unobservable. If the principal decides to
install the project (x1 = 1), a contract can specify the continuation decision
x2(y1) and transfer payments t(y1, y2) ≥ 0 from the principal to the agent.
Note that we do not impose any ad hoc restrictions on the class of feasible
contracts; i.e., there is complete contracting in the sense of Tirole (1999).11 It

10 The assumption I2 ≤ I1 is made only to simplify the presentation. If I2 > I1, then
the project might be terminated even after a success in the first period, which
would lead to more case distinctions without yielding any additional economic
insights.

11 As is well-known, in a pure moral hazard framework with unobservable effort,
there is no need to consider messages sent by the agent (in contrast, such messages
would have to be considered if effort were observable yet unverifiable). Moreover,
note that there is no need to consider additional payments made at earlier dates.
The principal is (weakly) better off when she makes all payments to the agent at
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will be helpful to distinguish between (direct) rewards regarding the first and
second period, so we use the following notational convention:

t(0, 0) = t0 + t00, t(0, 1) = t0 + t01,

t(1, 0) = t1 + t10, t(1, 1) = t1 + t11.

It is easy to see that it is optimal for the principal to set t0 = t00 = t10 = 0.12

A first-period success will thus be directly rewarded with a bonus payment t1,
while a second-period success will be rewarded with a bonus t01 (following a
first-period failure) or t11 (following a first-period success). As we will see, a
first-period success will also be indirectly rewarded by the prospect of getting
a larger bonus for a second-period success if it follows a first-period success,
which will be a driving force behind our main results.

2.3 Commitment: The “hot hand” effect

Let us first assume that the principal can commit not to renegotiate the
contract that is written at date 0. If the principal installs the project (x1 = 1),
her expected profit is given by

Π(e1, e2(0), e2(1))

= e1 (R − t1 + x2(1) [e2(1)(R − t11) − I2])

+(1 − e1)x2(0) [e2(0)(R − t01) − I2] − I1,

otherwise it is given by zero. The agent’s incentive compatibility constraints
for the second period read

e2(0) = arg max
e

et01 − c(e),

e2(1) = arg max
e

et11 − c(e).

The agent’s first-period incentive compatibility constraint is given by

e1 = arg max
e

e [t1 + e2(1)t11 − c(e2(1))] + (1 − e) [e2(0)t01 − c(e2(0))] − c(e).

date 4 (since the agent might “consume” earlier payments, so that he cannot be
forced to pay them back).

12 Obviously, the principal will set t(0, 0) = 0. Hence, we can write t0 = t00 = 0
and t(0, 1) = t01 without loss of generality. Moreover, note that we can restrict
attention to t11 ≥ t10. If t10 were not zero, the payments could be replaced by
t̃10 = 0, t̃1 = t1 + t10 t̃11 = t11 − t10. Notice that we could also assume that the
direct rewards for the first period are paid at date 2 already.
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Moreover, the payments must be non-negative due to the agent’s wealth con-
straint, which together with incentive compatibility also ensures participation.

The following proposition characterizes the second-best solution of the
two-period model under full commitment.13

Proposition 2.1. Assume that the principal can commit not to renegotiate.
There exist a cut-off level I∗2 and continuous and decreasing threshold func-
tions IC

1 (I2) and IT
1 (I2), where 0 < I∗2 < IC

1 (I∗2 ) = IT
1 (I∗2 ).

a) If I2 ≤ I∗2 and I1 ≤ IC
1 (I2), then the project is installed and it is always

continued, x1 = x2(0) = x2(1) = 1. The effort levels induced by the principal’s
optimal contract satisfy

eFB ≥ eC
2 (1) > eC

1 > eSB > eC
2 (0) > 0.

b) If I2 > I∗2 and I1 ≤ IT
1 (I2), then the project is installed and it is

terminated whenever the first period was a failure, x1 = x2(1) = 1, x2(0) = 0.
In this case,

eFB ≥ eT
2 (1) > eT

1 > eSB .

c) Otherwise, the project is not installed at all, x1 = 0.

Proof. See section 2.6 at the end of the chapter.

There are two ways in which a success in the first period is indirectly
rewarded by the principal. First, consider the case in which the principal’s
investment costs I1 and I2 are sufficiently small, so that the project is in-
stalled and always continued (Proposition 1a). Even though a success in the
first period has no technological effect whatsoever on the likelihood of a suc-
cess in the second period, the principal implements eC

2 (1) > eSB > eC
2 (0).

Giving the agent in the second period articularly high incentives following a
first-period success (and particularly low incentives following a failure) has
desirable spillover effects on the first-period incentives: The agent works hard
in the first period not only in order to get the direct reward t1, but also in
order to enjoy a higher second-period rent (A(eC

2 (1)) instead of A(eC
2 (0))).

Interestingly, from an outsider’s perspective, this means that a success in the
second period is indeed more likely to be observed after a first-period success;
i.e., there is a “hot hand” effect endogenously generated purely due to incen-
tive considerations.14 In fact, the direct first-period reward t1 will be positive

13 The superscript “C” denotes continuation, while “T” denotes termination.
14 See also McFall et al. ((2006)), who show a “hot hand” effect in a series of contests

when there happens to be a huge reward for those who win the most contests.
Players with initial good luck have more to win later on, therefore they exert
relatively higher effort.
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only if the principal already induces eC
2 (1) = eFB , so that implementing an

even higher effort level following a first-period success would reduce the total
surplus. Since giving the agent incentives in the first period is now cheaper
than in the one-shot problem, the principal implements eC

1 > eSB .
Second, the fact that the principal induces only low second-period effort

after a first-period failure implies that continuing the project after a first-
period failure might not be in the principal’s interest when her continuation
costs I2 are sufficiently large (Proposition 1b).15 Clearly, if eC

2 (0) is so small
that P (eC

2 (0)) < I2, the principal is better off if she terminates the project. But
even if this inequality does not hold, it can still be optimal for the principal
to commit to terminate the project, because doing so improves the agent’s
first-period incentives. Hence, the cut-off level I∗2 is smaller than P (eC

2 (0)).
The inefficiencies exhibited by the second-best solution are of a similar

nature as the inefficiencies we encountered in the one-shot model. There are
downward distortions of the effort levels compared with the first-best solution,
and as a result there are projects that would be installed (and continued) in
a first-best world, but that are not pursued (or at least not continued after
a first-period failure) in the presence of moral hazard. However, it is still
impossible for a project to be “too good” to be pursued, as is stated in the
following corollary.

Corollary 2.2. Assume that the principal can commit not to renegotiate. If
at date 0 the principal can choose between two (otherwise identical) projects
with possible returns R = Rg and R = Rb < Rg, she will never prefer the bad
project that can yield Rb only.

Proof. See section 2.6 at the end of the chapter.

2.4 Renegotiation: The “overqualification” effect

After the first period is over, the principal might want to modify the con-
tractual arrangements, because at that point in time she would be best off
under the optimal one-period contract as characterized in Section 2.1. In the
following we assume that the principal cannot ex ante commit not to rene-
gotiate the contract.16 In our complete contracting framework, the principal

15 Obviously, given that the principal installed the project at all, she will always
continue if the first period was successful, because I2 ≤ I1.

16 See Bolton and Dewatripont (2005) for extensive discussions of the assumption
that renegotiation cannot be ruled out.
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can mimic the outcome of renegotiations in her original contract; i.e., we can
confine our attention to renegotiation-proof contracts.17

Proposition 2.3. Assume that the principal cannot commit not to renego-
tiate. There exist continuous and decreasing threshold functions ĪC

1 (I2) and
IT
1 (I2), where P (eSB) < ĪC

1 (P (eSB)) < IT
1 (P (eSB)).

a) If I2 ≤ P (eSB) and I1 ≤ ĪC
1 (I2), then the project is installed and it is

always continued, x1 = x2(0) = x2(1) = 1. The effort levels satisfy

eFB ≥ ēC
2 (1) > ēC

1 > ēC
2 (0) = eSB .

b) If I2 > P (eSB) and I1 ≤ IT
1 (I2), then the project is installed and it is

terminated whenever the first period was a failure, x1 = x2(1) = 1, x2(0) = 0,
and

eFB ≥ eT
2 (1) > eT

1 > eSB .

c) Otherwise, the project is not installed at all, x1 = 0.

Proof. See Section 2.6 at the end of the chapter.

As we have seen in the previous section, if the project was always continued
under full commitment, the principal implemented a second-period effort level
smaller than eSB when the first period was a failure. The resulting smaller
second-period rent acted as an indirect punishment of the wealth-constrained
agent for the first-period failure. This is no longer possible if renegotiation
cannot be ruled out, because at date 2 the principal would prefer to implement
eSB in order to maximize her second-period profit. While thus the “stick” is no
longer available, the principal can still make use of the “carrot;” i.e., she can
indirectly reward first-period effort by implementing an effort level larger than
eSB following a first-period success.18 As a result, it is still cheaper for the
principal to motivate the agent to exert first-period effort in the two-period
model than in the one-shot benchmark model, so that ēC

1 > eSB .
Just as in the full commitment regime, for sufficiently large investment

costs I2, the principal would be better off if she terminated the project when-
ever the first-period was a failure. This is clearly the case if continuation would

17 Note that, in particular, this means that it is inconsequential how the renegotia-
tion surplus would be split at date 2. The principal can achieve the same outcome
that would be attained if she had all bargaining power in the renegotiation game
by designing the appropriate renegotiation-proof contract at the outset.

18 Note that the principal would like to reduce her promised payment t11 after a
first-period success has occurred (in order to implement eSB in the second period),
but in this case there is no scope for mutually beneficial renegotiation. The agent
would insist on the original contract, which gives him a larger rent.
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cause more costs than gains, I2 > P (ēC
2 (0)) = P (eSB), but it is also the case

for smaller investment costs I2, because the threat to terminate improves
the first-period incentives. Hence, there is a cut-off level Ī∗2 < I∗2 < P (eSB),
in analogy to the commitment scenario. However, if renegotiation cannot be
ruled out, at date 2 the principal prefers to continue the project as long as
she can make a positive second-period profit by doing so. Her threat to ter-
minate the project after a first-period failure is no longer credible, unless
her expected second-period profit in case of continuation would actually be
negative, P (eSB) − I2 < 0.

In other words, if Ī∗2 < I2 < P (eSB), the principal would like to commit to
termination following a first-period failure, but she cannot do so. This obser-
vation has peculiar implications with regard to the project that the principal
will choose at the outset, as is highlighted in Corollary 3 below. A new kind of
inefficiency occurs, which we saw neither in the well-known one-shot problem
nor in the two-period model with full commitment.

Corollary 2.4. Assume that the principal cannot commit not to renegotiate
and I1 < ĪC

1 (P (eSB)). If, ceteris paribus, I2 is increased, then the principal’s
expected profit is reduced, except for the point I2 = P (eSB). At this point,
there is an upward jump, which is bounded from below by eSBA(eSB).

Proof. See Section 2.6 at the end of the chapter.

Corollary 2 says that the principal can be better off if her continuation
costs I2 are increased, which may be surprising at first sight. Yet, this result
follows immediately from the fact that the principal would like to commit to
termination after a first-period failure for all I2 ≥ Ī∗2 , but given that renegoti-
ation cannot be ruled out, she can do so only when I2 ≥ P (eSB). Hence, her
expected profit makes an upward jump at I2 = P (eSB). This effect can be so
strong that the principal would even prefer to have higher investment costs in
both periods, or similarly, she would prefer to install a project that can only
yield a smaller revenue R.

Corollary 2.5. Assume that the principal cannot commit not to renegotiate.
If at date 0 the principal can choose between two (otherwise identical) projects
with possible returns R = Rg and R = Rb < Rg, she may prefer the bad
project that can yield Rb only.

Proof. See Section 2.6 at the end of the chapter.

For example, let c(e) = 1
2e2, I2 = 0.12, Rb = 0.68, and Rg = 0.7. It is

straightforward to show that the principal’s expected profit is Π ≈ 0. 147− I1
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if she installs the “good” project that can yield Rg, while it is Π ≈ 0. 157− I1

if she installs the “bad” project that can yield Rb only (and is otherwise
identical). Note that if I1 = 0.15, this even means that while the principal
would be willing to install the “bad” project, the “good” project would never
be funded.

Intuitively, pursuing a bad project that can yield a relatively small return
(or, similarly, hiring a less qualified agent who can generate only a small return
or who requires higher investments by the principal) acts as a commitment
device. The principal knows that if she chooses the more attractive alternative,
then at date 2 she cannot resist the temptation to continue after a first-period
failure. For this reason, a project can be just “too good” to be funded or an
“overqualified” agent may not be hired.19

2.5 Conclusion

In this paper, we have extended the literature on repeated moral hazard prob-
lems to cover hidden action models in which the agent is risk-neutral but
wealth-constrained. We have compared the induced effort levels across periods
and states. Moreover, we have identified a novel kind of potential inefficiency
that has escaped the previous literature.

The present contribution seems to be sufficiently simple to be used as a
building block in more applied work. As has been pointed out in the introduc-
tion, our model shares some features with dynamic adverse selection models.
It might thus be applied in fields which previously have been studied from
the perspective of the literature on precontractual private information and
soft budget constraints. Specifically, applications of our model could help to
explain the funding of inferior projects (e.g., in the context of development
aid), even if the project quality is commonly known. Our model could also be
applied in the field of corporate finance, where moral hazard problems with
risk-neutral but wealth-constraint agents are ubiquitous (see Tirole (2005)).20

19 Lewis and Sappington (1993) have also pointed out that employers will sometimes
not hire applicants who are “overqualified,” even when their salary expectations
are modest. However, their model is quite different from ours; they consider an
adverse selection problem with countervailing incentives due to type-dependent
reservation utilities. Note that in our model a more productive agent might not
be hired even if his reservation utility is not higher than the one of a less qualified
agent.

20 On a less serious note, the model could be applied to dating and marriages. If
one’s dream partner knows that anything will be forgiven, he or she may spent
less effort to remain faithful. It may therefore not be a good idea to “date above
one’s level.”
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It is straightforward to relax several assumptions that were made to keep
the exposition as clear as possible. For example, if it is required by an applica-
tion, one might easily generalize the model by allowing different cost functions
and different returns in the two periods. Moreover, one can dispense with the
assumption that the principal has all bargaining power. Regardless of the
bargaining protocol, the principal would only be willing to participate if her
investment costs were covered. Hence, qualitatively our main findings would
still be relevant. One could also consider the case in which the agent’s wealth
or his reservation utility may be positive. As long as his reservation utility is
smaller than his rent, nothing changes. As long as the agent is not wealthy
enough to “buy the firm,” the effects highlighted in our model continue to be
relevant.
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2.6 Proofs

Proof of Proposition 1.
The proof proceeds in several steps.

Step 1. Consider first the case x1 = x2(0) = x2(1) = 1, so that the
project is always continued. The incentive compatibility constraints can then
be written as

c′(e2(0)) = t01,

c′(e2(1)) = t11,

c′(e1) = t1 + A(e2(1)) − A(e2(0)).

The principal chooses the payments or, equivalently, the effort levels to
maximize her expected payoff

e1 [R − t1 + P (e2(1))] + (1 − e1)P (e2(0)) − I2 − I1,

where t1 = c′(e1) − A(e2(1)) + A(e2(0)) must be nonnegative. Thus, Π is a
continuous function defined on the compact set [0, 1]3∩{t1 ≥ 0} and as such it
must have a maximum. The conditions on c ensure that the maximum is not
on the boundary of [0, 1]3, but it could be on the boundary of {t1 ≥ 0}. The
Kuhn-Tucker necessary condition for a solution of the maximization problem

max
e1,e2(0),e2(1)

P (e1) + e1 [S(e2(1)) − S(e2(0))] + P (e2(0)) − I2 − I1

subject to t1 = c′(e1) − A(e2(1)) + A(e2(0)) ≥ 0 is

∇Π + λ∇t1 = 0 with λ ≥ 0 and λ > 0 ⇒ t1 = 0.

This gives us the three equations

P ′(eC
1 ) + S(eC

2 (1)) − S(eC
2 (0)) = −λc′′(eC

1 ), (2.1)

eC
1 S′(eC

2 (1)) = λA′(eC
2 (1)), (2.2)

P ′(eC
2 (0)) − eC

1 S′(eC
2 (0)) = −λA′(eC

2 (0)). (2.3)

Furthermore, if λ > 0, then t1 = 0 and using equation (2.1), we can calculate
that

λ = eC
1 −

R + P (eC
2 (1)) − P (eC

2 (0))

c′′(eC
1 )

.

Since P is bounded by S(eFB) < R, this means that even if λ is positive,
λ < eC

1 .
From equation (2.2), we see that
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eC
2 (1) ≤ eFB and eC

2 (1) = eFB ⇔ λ = 0.

This equation can also be written as

P ′(eC
2 (1)) =

λ − eC
1

eC
1

A′(eC
2 (1)) < 0.

Thus, we can infer eC
2 (1) > eSB . Likewise, equation (2.3) can be rearranged

to

P ′(eC
2 (0)) =

eC
1 − λ

1 − eC
1

A′(eC
2 (0)) > 0.

Therefore, eC
2 (0) < eSB . Moreover, equation (2.1) implies eC

1 > eSB , because

P ′(eC
1 ) = S(eC

2 (0)) − S(eC
2 (1)) − λc′′(eC

1 ) < 0.

Finally, eC
1 < eC

2 (1) follows from

c′(eC
1 ) = A(eC

2 (1)) − A(eC
2 (0)) < c′(eC

2 (1))

in the case λ > 0 and from

R − c′(eC
1 ) = eC

1 c′′(eC
1 ) − S(eFB) + S(eC

2 (0)) > t1 + P (eC
2 (0)) > 0

(using the fact that ec′′(e) > c′(e) for e > 0) in the case λ = 0. Thus, we have
proved that eFB ≥ eC

2 (1) > eC
1 > eSB > eC

2 (0) > 0. The principal’s expected
profit in the case under consideration is

ΠC(I1, I2, R) = P (eC
1 ) + eC

1

[

S(eC
2 (1)) − S(eC

2 (0))
]

+ P (eC
2 (0)) − I2 − I1.

Step 2. Consider next the case in which the principal chooses x1 = x2(1) =
1, x2(0) = 0, so that the project is terminated whenever the first period was
a failure. The optimal contract can then be characterized in analogy to Step
1. In particular, the first-order conditions now read

P ′(eT
1 ) + S(eT

2 (1)) − I2 = −λc′′(eT
1 ),

eT
1 S′(eT

2 (1)) = λA′(eT
2 (1)),

and t1 = c′(eT
1 ) − A(eT

2 (1)) ≥ 0 is binding if λ > 0. In analogy to Step 1, it
follows that eFB ≥ eT

2 (1) > eT
1 > eSB .21 The expected profit in this case is

ΠT (I1, I2, R) = P (eT
1 ) + eT

1

[

S(eT
2 (1)) − I2

]

− I1.

21 Note that to show eT
1 > eSB , we now use S(eT

2 (1)) > I2, which due to I2 ≤ I1

must hold if the case under consideration is more profitable for the principal than
x1 = 0.
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Step 3. It is straightforward to check that x1(1) = 0, x2(0) = 1 can never
be optimal. Among the remaining alternatives (the cases discussed in Steps 1
and 2 and x1 = 0), the principal will always commit to the one leading to the
largest expected profits. For a given R, the expected profits ΠC(I1, I2, R) and
ΠT (I1, I2, R) are decreasing in I1 and I2. In particular, using the envelope
theorem it follows that

dΠT (I1, I2, R)

dI2
= −eT

1 > −1 =
dΠC(I1, I2, R)

dI2
.

Note that ΠC(I1, 0, R) − ΠT (I1, 0, R) does not depend on I1 and is
strictly positive, because in Step 1 we showed that it is not optimal to set
eC
2 (0) = 0. Moreover, if I2 were prohibitively large, continuation would never

be optimal. Hence, there exists a unique cut-off level I∗2 > 0, such that
ΠC(I1, I

∗
2 , R) = ΠT (I1, I

∗
2 , R). If I2 ≤ I∗2 , continuation is better than termi-

nation, and if in addition I1 ≤ IC
1 (I2) := ΠC(0, I2, R), then x1 = 1 is optimal.

If I2 > I∗2 and I1 ≤ IT
1 (I2) := ΠT (0, I2, R), then the project is started and

it is terminated following a first-period failure. Otherwise, the project is not
installed. It remains to be shown that the region in which the termination con-
tract is optimal is nonempty, given that I2 ≤ I1. As has already been pointed
out in the discussion following Proposition 1, I∗2 < P (eC

2 (0)).22 Hence,

IC
1 (I∗2 ) = ΠC(0, 0, R) − I∗2 > 2P (eSB) − P (eSB) > I∗2 ,

and the proposition has been proved.

Proof of Corollary 1.
Consider the optimal contract in the case of the bad project (R = Rb). In the
case of the good project (R = Rg), the principal could simply offer the same
contract. Then the agent’s behavior would be the same, but the principal’s
expected profit would be larger. By optimally adjusting the contract in the
case of the good project, the principal can do even better.

Proof of Proposition 2.
The proof proceeds again in several steps.

Step 1. The principal now has to take into consideration additional
renegotiation-proofness constraints. First, if the project is continued, then
e2(y1) ∈ [eSB , eFB ] must be satisfied. If the original contract induced e2(y1) <
eSB , then at date 2 both parties could be made better off if the transfer pay-
ments were renegotiated such that the agent chooses eSB . Similarly, imple-
menting e2(y1) = eFB would make both parties better off if the original con-
tract induced e2(y1) > eFB . If e2(y1) ∈ [eSB , eFB ], no renegotiation occurs,

22 To see this formally, note that ΠC(I1, P (eC
2 (0)), R) < P (eC

1 ) +
eC
1

ˆ
S(eC

2 (1)) − P (eC
2 (0))

˜
− I1 < ΠT (I1, P (eC

2 (0)), R).
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because effort levels closer to eFB are more efficient, but given that transfer
payments to the agent must be non-negative, the principal’s second-period
profit is larger the closer the induced effort level is to eSB (see Section 2.1).
Second, if the project is installed and I2 ≤ P (eSB), then x2(y1) = 1 must be
satisfied (if x2(y1) = 0, renegotiation would occur, because at date 2 both par-
ties could be made better off by continuing the project). If I2 > P (eSB), then
x2(y1) = 0 is renegotiation-proof, whereas x2(y1) = 1 is renegotiation-proof
whenever I2 ≤ S(e2(y1)).

Step 2. Consider the case I2 ≤ P (eSB). Given that the project is installed,
the analysis is analogous to Step 1 of the proof of Proposition 1, where x1 =
x2(0) = x2(1) = 1. In particular, equation (2.3) now has to be replaced
with ēC

2 (0) = eSB , since the renegotiation-proofness constraint ēC
2 (0) ≥ eSB

is always binding (among all renegotiation-proof effort levels, eSB not only
maximizes the principal’s second-period expected profit, but it also provides
highest incentives for the agent in the first period). The other two effort levels,
ēC
1 and ēC

2 (1), have to be adjusted accordingly. They can be derived from the
first order conditions (2.1) and (2.2), and the implications for the ordering
of the effort levels remain true. The principal’s expected profit in the case of
unconditional continuation is

Π̄C(I1, I2, R) = P (ēC
1 ) + ēC

1

[

S(ēC
2 (1)) − S(eSB)

]

+ P (eSB) − I2 − I1.

The project will not be installed (x1 = 0) if I1 > ĪC
1 (I2) := Π̄C(0, I2, R).

Step 3. Consider next the case I2 > P (eSB). Since then I2 > I∗2 , the
termination contract (x1 = x2(1) = 1, x2(0) = 0) characterized in Step 2 of
Proposition 1 solves the principal’s maximization problem, given that x1 = 1.
This contract is renegotiation-proof, because eT

2 (1) > eSB and I2 ≤ I1 ≤
P (eT

1 ) + eT
1

[

S(eT
2 (1)) − I2

]

≤ S(eT
2 (1)), given that the principal decides to

install the project. The project will not be installed if I1 > IT
1 (I2). Finally,

note that

IT
1 (P (eSB)) > ĪC

1 (P (eSB)) = Π̄C(0, 0, R) − P (eSB) > P (eSB),

so that the proposition follows immediately.

Proof of Corollary 2.
Π̄C(I1, I2, R) and ΠT (I1, I2, R) are continuous and decreasing in I2. At I2 =
P (eSB) > I∗2 , we know that ΠT (I1, I2, R) > ΠC(I1, I2, R) > Π̄C(I1, I2, R).
Hence, given that the project is installed, at I2 = P (eSB) the principal’s
expected profit as characterized in Proposition 2 is discontinuous, and the
size of the jump is given by
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ΠT (I1, P (eSB), R) − Π̄C(I1, P (eSB), R)

= P (eT
1 ) + eT

1

[

S(eT
2 (1)) − P (eSB)

]

−
(

P (ēC
1 ) + ēC

1

[

S(ēC
2 (1)) − S(eSB)

])

> P (ēC
1 ) + ēC

1

[

S(ēC
2 (1)) − P (eSB)

]

−
(

P (ēC
1 ) + ēC

1

[

S(ēC
2 (1)) − S(eSB)

])

> eSBA(eSB).

Proof of Corollary 3.
Take any R = R̃ and I1, I2 such that I2 = P (eSB) and I1 ≤ IT

1 (I2). Corollary
2 shows that ΠT (I1, I2, R̃) > Π̄C(I1, I2, R̃) + eSBA(eSB). Note that, using
the envelope theorem, dP (eSB)/dR = eSB > 0. Proposition 2 thus implies
that if Rg is slightly larger than R̃ and Rb is slightly smaller than R̃, then
the principal prefers Rb (leading to the expected profit ΠT (I1, I2, Rb)) to Rg

(leading to the expected profit Π̄C(I1, I2, Rg)).



3

Expectation damages, divisible contracts, and

bilateral investment

3.1 Introduction

Real-world contracts sometimes look surprisingly simple given the complexity
of the environment. A production contract between a buyer and a seller might
specify only a fixed quantity and a price per unit, although between the signing
of the contract and actual trade many contingencies may arise that affect the
value of trade. As a consequence, after the uncertainty about valuation and
production costs is resolved, the parties might observe that they can make a
larger profit by trading more or less than the stipulated quantity. In this case,
they can resort to renegotiation to reach a trade decision that is optimal given
the relationship-investments they made. The main purpose of their contract
is then to set the right incentives to invest.

The contract affects the investment incentives by serving as a disagree-
ment point in the renegotiations. Here, standard breach remedies play a role,
since the payoff that one party can realize unilaterally also depends on the
consequences of breach. In this chapter, we focus on the standard expectation
damages remedy. It is assumed that courts can verify all relevant information
to award expectation damages, which compensate the victim of breach for the
loss of profit. Our result is that contracts do not need to be contingent under
this damage rule: price and quantity can be adjusted to induce both parties
to invest efficiently.

Two effects of renegotiation and standard breach remedies on investment
have been identified in the literature. If the parties leave the trade decision
to ex post negotiations, they will underinvest relative to the first best, due
to a hold-up problem (see e.g. Williamson (1985), Hart and Moore (1988)).
In contrast, the economic analysis of breach remedies by Shavell (1980,1984),
Rogerson (1984) and others reveals that if contracts and breach remedies are
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available then there can also be an overinvestment effect. Remedies such as
the expectation measure act as an insurance against breach. The victim of
breach invests more than if he or she internalized the lost investment in case
of breach.

These two intuitions are integrated by Edlin and Reichelstein (1996)
(henceforth ER), who show that it is possible to balance the hold-up effect
against the overinvestment effect when contracts are enforced by the standard
breach remedies of expectation damages or specific performance. They find
that a continuous quantity in the contract is a powerful tool to adjust the
investment incentives of one party.1 In addition, when the breach remedy is
specific performance, the incentives of two parties can be aligned with a single
quantity if the payoff functions have a particular form. In contrast, for the
regime of expectation damages ER show that for a deterministic and linear
cost function no fixed price-quantity contract exists that achieves first best
investment decisions. They conclude that specific performance is better suited
for two-sided investment problems than expectation damages.

The present chapter extends the analysis to more general cost and val-
uation functions and finds that the scope of expectation damages to solve a
bilateral hold-up problem is much larger than this counterexample suggests. It
turns out that in ER’s framework with divisible contracts2, the per-unit price
can be used as an additional instrument to fine-tune both parties’ incentives
to invest. ER establish their positive results for one-sided investment through
the adjustment of quantity alone, while the price is set high or low such that
always the same party breaches. With an intermediate price, any party may
breach the contract, and the parties’ probabilities of breach vary with price.
Therefore, a contract that specifies an up-front transfer, a quantity, and a
per-unit price often suffices to obtain efficient two-sided investment.

The reason why the first best can not be obtained under the expecta-
tion damages remedy in the case of constant and deterministic marginal cost
is that the seller’s investment decision completely determines who breaches.
The breaching party never gains from having invested more than the efficient
amount, hence the hold-up effect dominates this party’s incentives. In order to
balance both investment decisions, both parties must face the risk of breach.

1 The idea that a continuous variable can help to reach the first best by balancing
one party’s investment incentives also appears in related articles such as Chung
(1991), Aghion, Dewatripont and Rey (1994), and Nöldeke and Schmidt (1995).
In these papers, the first best can be reached because renegotiation leaves one
party with the full surplus.

2 A divisible contract consists of several items and the price to be paid is appor-
tioned to each item. It can be broken into its component parts, such that each
unit together with the per-unit price can be treated as a separate contract, which
is fulfilled or breached independently.
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While no single per-unit price has this effect in ER’s example, we demonstrate
that the parties can use a lottery between an extremely high and extremely
low per-unit price. Like the intermediate per-unit price, the probability of
a high price can be used as an additional continuous variable to fine-tune
investment incentives.

The chapter is organized as follows: Section 3.2 introduces the model, while
in Section 3.3 the ex post consequences of expectation damages with divisible
contracts are discussed. The main result on the optimality of price-quantity
contracts is presented in Section 3.4, and Section 3.5 deals with stochastic
prices. Concluding remarks can be found in Section 3.6. Proofs have been
relegated to the end of the chapter.

3.2 The model

The sequence of events is illustrated in Figure 3.1. A seller and a buyer, both
of whom are risk-neutral, have to incur relationship-specific investments in
preparation of future trade. To protect these investments, they sign a contract
at date 1, specifying a per-unit price p̄ and a quantity q̄ ∈ [0, qmax] of the good
to be traded.3 The parties may also exchange an up-front transfer T to divide
the gains from trade after price and quantity are chosen to maximize joint
surplus.

-

1 2 3 4 5

Contract
is signed

Investments
are chosen

θ is
realized

Breach
decisions

Production
and trade

| {z }

Renegotiation
Fig. 3.1. Timeline of the model.

At date 2, the seller invests to decrease his marginal cost, and the buyer
invests to increase her marginal benefit of the good. The costs of their invest-
ments (or reliance expenditures, in legal terms) are denoted by σ ∈ [0, σmax]

3 The quantity of the traded good could also be interpreted as duration of the busi-
ness relationship. With this interpretation the problem has a dynamic structure
which is analyzed by Guriev and Kvasov (2005).
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and β ∈ [0, βmax], respectively. These investment decisions may be difficult to
describe or to observe, and consequently are not contractible. The exact shape
of the cost and valuation functions becomes commonly known at date 3, when
the state of the world θ ∈ Θ is realized. The contingency θ reflects exogenous
uncertainty and is drawn from a compact state space Θ ⊂ R

n according to a
distribution function F .

At date 4, both seller and buyer decide whether they want to breach to
a quantity lower than the one specified in the contract. The consequences of
breach are determined by expectation damages, either as the default breach
remedy or because the contract explicitly specifies this breach remedy. A more
detailed description of the consequences of breach follows in Section 3.3. The
payoff as determined by the legal consequences constitutes the disagreement
point in subsequent renegotiations. The outcome of the negotiations is as-
sumed to be the (generalized) Nash bargaining solution, where γ ∈ [0, 1]
denotes the seller’s bargaining power. We use the following notation and as-
sumptions:

• The seller’s payoff of producing quantity q is −C(σ, θ, q) − σ. The cost
function C is increasing and strictly convex in q, and (σ, q) 7→ C(σ, θ, q) is
twice continuously differentiable for all θ ∈ Θ, with Cσq ≤ 0. The functions
C and Cσ are assumed to be continuous in θ.

• The buyer’s payoff of obtaining quantity q is V (β, θ, q)−β. The valuation
function V is increasing and strictly concave in q, and (β, q) 7→ V (β, θ, q)
is twice continuously differentiable for all θ ∈ Θ, with Vβq ≥ 0. Moreover,
V and Vβ are continuous in θ.

Ex post, trade of a quantity q creates a joint surplus of

W (β, σ, θ, q) := V (β, θ, q) − C(σ, θ, q).

This is maximized at the efficient quantity

Q∗(β, σ, θ) := arg max
q∈[0,qmax]

W (β, σ, θ, q).

We denote by (β∗, σ∗) the efficient investment levels which maximize
∫

W (β, σ, θ,Q∗(β, σ, θ))dF − β − σ.

in [0, βmax] × [0, σmax]. We assume that these are the unique maximizers.

3.3 Breach decisions

The contract and the legal consequences define a game between seller and
buyer, which we will solve by backward induction. In this section we analyze
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the ex post subgame, when cost and valuation functions are realized and
observable by both players and the court. Renegotiation will lead the parties
to the ex post efficient trade decision. In order to determine their payoffs, we
first explore the consequences of breach to see how much a party can achieve
unilaterally. We abstract from issues like litigation costs or difficulties to assess
damages.

According to the expectation damage rule, the breaching party has to
compensate the victim of breach for the loss caused by the breach. The goal
of this remedy is to put the victim in as good a position as if the contract had
been fulfilled. This rule is, however, not applied literally in cases where this
party faces negative profits from completion of the contract. If one party’s
breach is advantageous for the other, it is not possible to sue for a reward,
but damage payments are zero.

The buyer and the seller face symmetric decisions in this subgame. While
the seller can breach by producing and delivering less than ordered, the buyer
can breach by announcing her breach decision before the unwanted units are
produced. In that case, the seller can only recover the profit margin of the
canceled goods, but not their cost of production. Suppose that first the buyer
announces her anticipatory breach decision qB ≤ q̄, followed by the seller’s
announcement qS ≤ q̄.4 Then the seller subsequently delivers the quantity q =
min{qS , qB}, as he will not be compensated for producing a larger quantity.

Since the contract explicitly specifies a price per unit, it is divisible, and
the seller is entitled to a payment of p̄q for his partial performance. The payoffs
from this part of the contract are

S(σ, θ, q) := p̄q − C(σ, θ, q)

and
B(β, θ, q) := V (β, θ, q) − p̄q.

Damages are confined to that part of the contract that was breached. If q < qB ,
the seller is liable for the buyer’s loss on the units between q and qB . On all
units above qB the contract counts as consensually canceled. The seller has
to pay

max{B(β, θ, qB) − B(β, θ, q), 0}5

in damages to the buyer. Similarly, if q = qB , the seller can sue the buyer for
the sum
4 The order of announcements does not matter for the outcome of the subgame.
5 This is the formula used by ER and most of the literature. Another approach

is to compare the utility resulting from breach with a hypothetical, “reasonably
foreseeable” (Cooter (1985)) valuation B(β∗, θ, q) instead of the actual valuation.
As shown by Leitzel (1989) and Schweizer (2005) this solves the overreliance
problem.
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max{S(σ, θ, qS) − S(σ, θ, q), 0}.

Fig. 3.2. This figure shows that at Q∗, the buyer’s marginal damage payments
equal her marginal gain from breach.

We will show that with these damage payments the efficient breach prop-
erty of expectation damages continues to hold.6 An intuition for this result
can be gained from Figure 3.2 which shows marginal cost and valuation. The
two functions intersect at the efficient quantity Q∗, and in the case that is
illustrated, this quantity is lower than the contracted quantity q̄, and the
“equilibrium price” P ∗ is lower than the contracted price p̄. No damage is
done by breach on the units above Q̂S , and no damages have to be paid. For
breach on all other units, the buyer has to pay the difference between p̄ and
the “supply curve” to the seller, while she gains the difference between p̄ and
the “demand curve”. The buyer thus breaches on all units in excess of the
quantity Q∗, where these differences become equal.

To formalize this result we define two quantities that are related to supply
and demand at the contract price:

Q̂S := arg max
q≤q̄

S(σ, θ, q) = min{q̄, arg max
q

S(σ, θ, q)}

and

6 This would not be true if the court ignored the higher breach quantity and calcu-
lated damages with respect to the contracted quantity. Such a rule would aggre-
gate gains and losses on breached units, such that in some contingencies breach
leads to a less than efficient quantity.
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Q̂B := arg max
q≤q̄

B(β, θ, q) = min{q̄, arg max
q

B(β, θ, q)},

where the second equality is due to concavity of the functions S and B. We
also define

P ∗ := Cq(σ, θ,Q∗).

Let us assume first that Q∗ ≤ Q̂S , which is equivalent to the case that Q∗ ≤ q̄
and P ∗ ≤ p̄. We will show that equilibrium payoffs are equal to S(σ, θ, Q̂S) for
the seller and W (β, σ, θ,Q∗) − S(σ, θ, Q̂S) for the buyer. If the seller chooses
qS = Q̂S , the damage rule ensures him a payoff of S(σ, θ, Q̂S) plus a possible
gain from renegotiation. This is true regardless of the buyer’s breach decision,
since even if the seller turned out to be the one to breach, he would pay no
damages. On the other hand, if the buyer chooses the anticipatory breach
decision qB = Q∗, she gets at least W (β, σ, θ,Q∗) − S(σ, θ, Q̂S). To see that,
note that she gets W (β, σ, θ,Q∗) − S(σ, θ, qS) if she pays positive damages
and at least B(β, θ,Q∗) if she has to pay no damages.

Therefore, in any Nash equilibrium the buyer gets at least W (β, σ, θ,Q∗)−
S(σ, θ, Q̂S), while the seller gets at least S(σ, θ, Q̂S). Since in sum the payoffs
cannot be higher than the maximal joint surplus, these must be the parties’
equilibrium payoffs, achieved by qB = Q∗ and qS = Q̂S . In the appendix, we
show that these strategies form the unique equilibrium if γ ∈ (0, 1). The key
intuition here is that the breaching party receives all gains from the breach
decision.

If Q∗ ≤ Q̂B , which is equivalent to the case that Q∗ ≤ q̄ and P ∗ ≥ p̄, the
buyer makes a positive profit on every unit that is efficient to trade. This time
the seller breaches to qS = Q∗ and pays damages to the buyer. Their payoffs
are B(β, θ, Q̂B) for the buyer and W (β, σ, θ,Q∗) − B(β, θ, Q̂B) for the seller.

In the case Q∗ > q̄ the optimal quantity can be reached by renegotiation
only. In these contingencies, one of the parties makes a profit on each unit
traded under the contract. The analysis here is the same as in ER. In this
case, there will be no breach, and renegotiation can take place before or after
delivery of q̄. The parties share the additional gain from efficient trade

∆(β, σ, θ, q̄) := W (β, σ, θ,Q∗) − W (β, σ, θ, q̄)

according to bargaining power, leaving the seller with a share of γ, the buyer
with a share of 1 − γ of the renegotiation surplus. Hence, their payoffs are
S(σ, θ, q̄) + γ∆(β, σ, θ, q̄) for the seller and B(β, θ, q̄) + (1− γ)∆(β, σ, θ, q̄) for
the buyer.
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3.4 Optimal contracts

In this section, we turn to the ex ante perspective of the game and analyze
the investment choices that are induced by the contract. Taking into account
the possible ex post equilibrium payoffs as described in the last section we
obtain the following expression for the seller’s expected payoff:

s(β, σ) =

∫

[Q∗>q̄]

S(σ, θ, q̄) + γ∆(β, σ, θ, q̄)dF (3.1)

+

∫

[Q̂B≥Q∗]

W (β, σ, θ,Q∗) − B(β, θ, Q̂B)dF

+

∫

[Q̂S≥Q∗]

S(σ, θ, Q̂S)dF − σ.

The buyer’s expected payoff, denoted by b(β, σ), is derived analogously
to the seller’s expected payoff. The payoff functions are easiest to analyze
for extreme contracts, for which at efficient investment at least one of the
events “renegotiation”, “buyer breaches” and “seller breaches” never occurs.
We define

qH := max
θ

Q∗(β∗, σ∗, θ), qL := min
θ

Q∗(β∗, σ∗, θ)

and
pL := min

θ,β,σ
P ∗(β, σ, θ), pH := max

θ,β,σ
P ∗(β, σ, θ).

Moreover, let
σS(q, p) := arg max

σ
s(β∗, σ)

denote the seller’s best response to β∗ and

βB(q, p) := arg max
β

b(β, σ∗)

the buyer’s best response to σ∗ if the contract specifies a quantity q and a
price p.

Lemma 3.1. For all prices p, it holds that

max σS(qL, p) ≤ σ∗ ≤ min σS(qH , p)

and
max βB(qL, p) ≤ β∗ ≤ min βB(qH , p).

Moreover, σS(qH , pL) = {σ∗} and βB(qH , pH) = {β∗}.
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PROOF: See Section 3.7 at the end of the chapter.
The intuition is that, given efficient investment, a contracted quantity as

low as qL means that the contract will always be renegotiated to a higher
quantity. In the renegotiations, a party receives only a fraction of the surplus
generated by the investment, therefore both parties underinvest (hold-up ef-
fect). A high contracted quantity qH means renegotiation never occurs, and
being sometimes the non-breaching party induces the parties to prepare for
trade of a high quantity. Both parties overinvest, except for the case of a very
high or very low price: In this case one party always breaches and invests
efficiently, in anticipation of the efficient breach decision. This last result has
been studied in detail in Edlin (1996), who uses the term “Cadillac contract”
for a contract that is always breached.

This extreme kind of contracts will only in exceptional cases be able to
induce efficient investment in equilibrium.7 To infer from the behavior of best
responses for extreme contracts to the behavior for contracts with an inter-
mediate price and quantity, we need a continuity assumption. In line with
the analysis of the one-sided investment case in ER, we make the following
assumption.

ASSUMPTION 2 The best response correspondences (q, p) 7→ σS(q, p) and
(q, p) 7→ βB(q, p) have a continuous selection.

It would be desirable to have a characterization of the cost and valuation
functions for which this condition holds. Sufficient conditions can be found,
as for example the following assumption.

ASSUMPTION 3 Let (σ, q) 7→ C(σ, θ, q) be strictly convex and (β, q) 7→
V (β, θ, q) be strictly concave for all θ ∈ Θ.

This assumption already implies some of the assumptions that were introduced
in Section 3.2, and it holds that

Lemma 3.2. Assumption 3 implies Assumption 2.

PROOF: See Section 3.7 at the end of the chapter.
Continuity of best responses indeed ensures existence of an optimal con-

tract, as is illustrated in Figure 3.3, which provides the intuition for our main
result:

7 One of these special cases is γ ∈ {0, 1}. It has been known since Chung (1991)
that specific performance can lead to two-sided efficient investment if one party
has all the bargaining power. The same is true for expectation damages if the
price is set such that this party always breaches. The quantity can then be used
to generate investment incentives for the other party.
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Proposition 3.3. Given Assumption 2, there exists a non-contingent con-
tract (q̄, p̄) such that the first best investment levels (β∗, σ∗) constitute a Nash
equilibrium of the induced game.

PROOF: See Section 3.7 at the end of the chapter.

6

-
qL qH

pL

pH

σS ≤ σ∗

βB ≤ β∗

σS ≥ σ∗

βB ≥ β∗

βB = β∗

σS = σ∗

Fig. 3.3. This figure shows the space of price-quantity contracts. For low and high
quantities it is indicated whether the best response to efficient investment of the
other party is underinvestment, overinvestment or efficient investment. The contracts
on the paths have the property that the best response to efficient investment is equal
to efficient investment.

In order to find the optimal contract given a particular problem we can
use the first order conditions of the parties’ maximization problem. Since
the derivatives of the parties’ objective functions, evaluated at the efficient
investments, are continuous in p and q, there is always a contract such that the
first order conditions hold. Without a sufficient condition like Assumption 3,
we cannot be sure that such a solution then indeed leads to a maximum and
have to check the second order conditions.

The derivatives of the expected payoff functions take a particularly simple
form if cost and valuation functions belong to the following class of functions:

ASSUMPTION 4

C(σ, θ, q) = C1(σ)q + C2(θ, q) + C3(σ, θ)

V (β, θ, q) = V1(β)q + V2(θ, q) + V3(β, θ).

ER show that with this functional form, the incentives for the two parties can
be aligned with a single quantity if the breach remedy is specific performance.

Corollary 3.4. If Assumption 4 holds, and (β∗, σ∗) is an interior solution,
the first best contract (q̄, p̄) has to fulfill the conditions
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∫

[Q̂S≥Q∗]

(Q̂S − Q∗)dF = (1 − γ)

∫

[Q∗>q̄]

(Q∗ − q̄)dF (3.2)

∫

[Q̂B≥Q∗]

(Q̂B − Q∗)dF = γ

∫

[Q∗>q̄]

(Q∗ − q̄)dF , (3.3)

where all quantities are evaluated at σ = σ∗ and β = β∗.

PROOF: See Section 3.7 at the end of the chapter.

As an example, consider the case that cost and valuation are correlated in
a way that P ∗ is independent of θ. Balancing incentives in such a case is poten-
tially hard to do, because the investment decisions completely determine the
identity of the breaching party. Since P ∗ does not vary with θ, for every com-
bination of investments one of the events [Q̂B > Q∗] and [Q̂S > Q∗] is empty.
From the necessary conditions (3.2) and (3.3) it follows that if γ ∈ (0, 1), the
only candidate for a first best contract is q̄ = qH and p̄ = P ∗(β∗, σ∗, θ). If the
payoff functions are sufficiently concave, the parties make a larger profit with
efficient investment than by preparing for a higher quantity, because overin-
vestment leads to renegotiation in some contingencies. To make sure that this
is indeed the case, we have to appeal to Assumption 3. Two explicit examples,
exploring the importance of this assumption, can be found in Appendix B.

3.5 Price adjustment clauses

In this section, we explore what kind of contracts the trading partners can
write if Assumption 2 and Proposition 3.3 do not hold. One of these cases
is identified by ER, who show that for γ ∈ (0, 1) and the cost function
C(σ, θ, q) = C1(σ)q there exists no contract (q̄, p̄) that can achieve the first
best if the valuation function has positive variance. With this kind of cost
function the seller faces a choice between two conflicting roles: Either he in-
vests low and breaches the contract, or he invests high and seeks damages
if necessary. Whenever such a conflict leads to a discontinuity in one party’s
best response, the parties may have to write more complicated contracts in
order to attain the first best. We will show that if the parties can stipulate a
stochastic price, they can obtain first best outcomes for a larger class of payoff
functions, including linear ones.

Using a lottery between a very low and a very high price instead of an
intermediate price p̄ is a more direct way to achieve breach of both parties.
Let the contract condition the price on an event that occurs with probability
λ independently of cost and valuation functions, such that the low price pL is
valid if the event occurs and pH if it does not. This resembles so-called price
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escalator clauses or price adjustment clauses, which parties can use to share
the risk of breach.8

Proposition 3.5. Assume that the best responses are continuous in q and λ.
Then there is a quantity q̄ ∈ [qL, qH ] and a λ ∈ [0, 1], such that a contract
specifying q̄ and a lottery over pL with probability λ and pH with probability
1 − λ induces the first best.

PROOF: See Section 3.7.
Since this result does not require continuity of best responses in price, it

holds for a larger class of payoff functions than Proposition 3.3.9 The optimal
contract illustrates how the performance of expectation damages depends on
who will breach the contract. This is especially true for the case of the payoff
functions defined in Assumption 4, for which the contract takes a very intuitive
form.

Proposition 3.6. If Assumption 4 holds, a contract for q̄ =
∫

Q∗(β∗, σ∗, θ)dF at a price pL with probability γ (the seller’s bargain-
ing power) and pH with probability 1 − γ induces the first best.

PROOF: See Section 3.7.
As ER show, the same contracted quantity leads to efficient investment

with specific performance if Assumption 4 holds. One could ask whether
stochastic prices are also able to improve the performance of this breach rem-
edy. The answer depends on the bargaining game. While ER keep the bargain-
ing process very general in the one-sided investment analysis, for two-sided
investment they also assume the Nash bargaining solution with a constant
sharing rule. When the price is so high or so low that it is always in one
party’s interest to sue for performance, the seller’s expected profit as derived
in ER is:

∫

S(σ, θ, q̄) + γ∆(β, σ, θ, q̄)dF − σ.

The derivative of this expression with respect to σ does not depend on the
price. Hence, investment incentives can only be generated through the con-
tracted quantity, and there is no analog to Proposition 3.5.

While the results can not be generalized as long as only quantity can be
used, price always matters to some degree. How much it matters depends on

8 Usually, one would think of price adjustment clauses as insurance against events
that are correlated with either cost or valuation. Such a clause can also help to
balance incentives, but the point is much simpler to make for the independent
case.

9 A sufficient condition corresponding to Assumption 3 is that W (β, σ, θ, q) is
strictly concave in (σ, q) and (β, q).
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the bargaining process. Here is one example to show how much the price can
matter with a different bargaining solution, a two-sided offer game with out-
side options, as for example modeled in W. Bentley MacLeod and David M.
Malcomson (1993)10. Applying this solution here means treating the enforce-
ment of trade of inefficient units as an outside option. In the case that Q∗ ≥ q̄
the parties would split the renegotiation surplus equally, while in the case
Q∗ ≤ q̄ the seller’s (buyer’s) outside option would always bind if the price is
pH (pL). If the contract specifies the low price with probability λ and the high
price with probability 1 − λ, applying an outside option bargaining solution
suggests the following payoff for the seller:

∫

Q∗≥q̄

S(q̄) +
1

2
∆(q̄)dF +

∫

q̄>Q∗

λ(W (Q∗) − B(q̄)) + (1 − λ)S(q̄)dF − σ.

Since this is the same payoff as under expectation damages with Nash bar-
gaining, Proposition 3.5 carries over to specific performance.

Option contracts

Are there other simple contracts that can reach the first best in the linear
case? The deterministic case can be solved with an option contract, but in
general option contracts together with expectation damages perfom poorly.
This is not surprising because there is again only one instrument to adjust
incentives. We define an option contract to specify an upfront payment and
a per-unit price p̄. Ex post, the buyer can order any quantity she wants at
price p̄. The seller can subsequently decide whether he wants to breach. The
outcome can also be renegotiated.

This game is easy to analyze given what we already know from Section 3.3.
At date 4, the buyer orders the quantity Q̂B which ensures her the maximal
payoff of B(β, θ, Q̂B) plus a possible gain from renegotiation. The seller will
deliver Q∗ if Q∗ ≤ Q̂B and Q̂B otherwise. The buyer will never breach, which
provides an intuition for why expectation damages perform poorly with a
buyer-option contract. Besides, there is only one instrument, price, to fine-
tune both incentives to invest, which will only work in special cases.

Proposition 3.7. An option contract together with expectation damages can
only implement the first best if either

(i) γ = 1, in which case p̄ is chosen such that
∫

Vβ(β∗, θ, Q̂B(β∗, θ))dπ = 0
at p = p̄, or

10 This bargaining solution is also mentioned in ER as one for which the one-sided
investment result still holds.
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(ii) Q∗(σ∗, β∗, θ) = Q̂B(σ∗, β∗, θ) for almost all θ. With a constant per-unit
price p̄ and positive variance of Q∗, this is true if and only if C(σ, θ, q) =
C1(σ)q and p̄ = C1(σ

∗).

PROOF: See Section 3.7.

3.6 Concluding remarks

We have shown that in the framework of expectation damages with bilateral
investment in Edlin and Reichelstein (1996), the first best can be restored
if both parties face the risk of breaching. With divisible contracts, this can
always be achieved with a lottery between a high and a low per-unit price,
or with a fixed price if the payoff functions are sufficiently concave. In both
cases, each party’s probability of breaching varies with price, such that price
and quantity are sufficient to fine-tune both sides’ incentives to invest. Con-
sequently, also in this framework the trading parties can write non-contingent
contracts and obtain efficient outcomes, relying on renegotiation and the stan-
dard breach remedy of expectation damages.

The advantage of an intermediate price is that depending on the move of
nature, both seller and buyer will breach sometimes. Moreover, an interme-
diate price seems more realistic and might lead to a lower up-front payment,
thus reducing the problem to design a substantial up-front transfer such that
it is not touched by the breach remedy. Prerequisite for the contractual solu-
tion identified in this chapter is that the court can readily assess the damages.
Even though expectation damages is a standard remedy that courts are used
to deal with, there may be cases where this information is not available, and
specific performance is the better choice.

Moreover, there is a general truth behind ER’s inefficiency example: the
expectation damage rule treats the breaching party and the party suffering
from breach asymmetrically. The only contract that overcomes the hold-up
problem of the breaching party specifies such a high quantity that the non-
breaching party invests too much. This intuition is likely to carry over to
more general settings, as long as only quantity has an effect on investment.
The contribution of this chapter is to recognize that investment incentives
need not be generated by quantity alone, price matters as well. It remains
to be explored how much price and quantity can achieve if contracts are not
divisible, or for other legal rules and contractual environments.
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3.7 Proofs

Proof of uniqueness of the equilibrium in the ex post subgame.
As in the text, we consider only the case that Q̂S > Q∗ and assume γ ∈ (0, 1).
We show that the equilibrium Q∗ (buyer) and Q̂S in fact results from iterative
elimination of dominated strategies. First, for the buyer all strategies qB > Q̂S

are weakly dominated by Q∗: For any such qB and qS ≥ qB the buyer pays
no damages and gets

B(qB) + (1 − γ)∆(qB) = γW (qB) + (1 − γ)W ∗ − S(qB) < W (Q∗) − S(qS).

For qS ≤ Q∗ the payoffs compare as follows

max{B(qB), B(qS)} + (1 − γ)∆(qS) ≤ max{B(Q∗), B(qS)} + (1 − γ)∆(qS)

while for the case qB > qS > Q∗ they are

B(qS) + (1 − γ)∆(qS) ≤ W (Q∗) − S(qS).

Second, if qB ≤ Q̂S , the strategy Q̂S is a strictly dominant strategy for the
seller. To see this, take any other qS and first the case that qS ≥ qB . In this
case he gets

max(S(qS), S(qB)) + γ∆(qB) < S(Q̂S) + γ∆(qB).

Now look at the other case qS < qB . In this case, the seller gets

S(qS) − max{B(qB) − B(qS), 0} + γ∆(qS)

which is equal to

S(qS)(1−γ)+γS(qB)+γ∆(qB)+γ(B(qB)−B(qS))−max{B(qB)−B(qS), 0}.

One can see that this payoff is smaller than

S(Q̂S) + γ∆(qB).

Last, of course Q∗ is a strictly best reply to Q̂S .

Proof of Lemma 3.1.
The steps of the proof are exercised in detail only for the seller’s payoff func-
tion, the result for the buyer can then be derived in a similar way. In a first
step, we calculate the derivative of the seller’s expected profit. For this, note
that as a direct application of the envelope theorem (for constrained maxi-
mization) we get for all θ ∈ Θ
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∂

∂σ
W (β, σ, θ,Q∗(β, σ, θ)) = −Cσ(σ, θ,Q∗(β, σ, θ)), (3.4)

and
∂

∂σ
S(σ, θ, Q̂S(σ, θ)) = −Cσ(σ, θ, Q̂S(σ, θ)). (3.5)

Next, to calculate the derivative ∂
∂σ

s(β, σ), note that for each θ the integrand
in s is the piecewise defined function

σ 7→







(1 − γ)S(σ, θ, q̄) + γW (β, σ, θ,Q∗) − γB(β, θ, q̄) if Q∗ > q̄

S(σ, θ, Q̂S) if Q∗ ≤ Q̂S

W (β, σ, θ,Q∗) − B(β, θ, Q̂B) if Q∗ ≤ Q̂B

It turns out that the piecewise defined derivative of this function is continuous,
i.e., the pieces of this function are joined smoothly. We assume integrability
of Cσ, so that we can interchange integration and differentiation, and get:

∂

∂σ
s(β, σ) = −

∫

[Q∗>q̄]

((1 − γ)Cσ(σ, θ, q̄) + γCσ(σ, θ,Q∗))dF − 1 (3.6)

−

∫

[Q̂S≥Q∗]

Cσ(σ, θ, Q̂S)dF −

∫

[Q̂B≥Q∗]

Cσ(σ, θ,Q∗)dF

= −(1 − γ)

∫

[Q∗>q̄]

∆σ(β, σ, θ, q̄)dF −

∫

[Q̂S≥Q∗]

∆σ(β, σ, θ, Q̂S)dF .

−

∫

Cσ(σ, θ,Q∗)dF − 1

Because we already know that for β = β∗ the expected joint surplus is
uniquely maximized at σ∗, we will study the function

s̃(σ) := s(β∗, σ) −

(∫

W (β∗, σ, θ,Q∗(β∗, σ, θ))dF − σ

)

.

which has derivative

s̃′(σ) = −(1 − γ)

∫

[Q∗>q̄]

∆σ(β∗, σ, θ, q̄)dF −

∫

[Q̂S≥Q∗]

∆σ(β∗, σ, θ, Q̂S)dF .

(3.7)
By exploiting Cσq ≤ 0 , it is straightforward to see that ∆σ(β∗, σ, θ, q) is
weakly decreasing in q, and that the first term in s̃′(σ) is negative and the
second is positive (if they do not vanish). The first term is the derivative of
what ER call the “hold-up tax”, this term is responsible for any potential
underinvestment, and the second term is the derivative of the seller’s “breach
subsidy“, this term may create overinvestment.
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Now, in order to prove the lemma, consider first q̄ = qL. In this case, for
all σ ≥ σ∗, since Q∗ is nondecreasing in σ, the event [Q∗ > qL] is equal to Θ
and

s̃′(σ) = −(1 − γ)

∫

∆σ(β∗, σ, θ, qL)dF ≤ 0.

Hence, s̃ is a monotonically decreasing function in this range. All σ > σ∗

then lead to a lower payoff than σ∗, hence max σS(qL, p) ≤ σ∗. For a con-
tract over qH the first term in s̃′ vanishes for σ ≤ σ∗, i.e., s̃ is a weakly
increasing function. Therefore, at qH all σ < σ∗ are dominated by σ∗, and
min σS(qH , p) ≥ σ∗. Finally, consider qH and a low price pL. By definition of
pL it holds that Q̂S(σ, θ) ≤ Q∗(β∗, σ, θ) for all θ ∈ Θ and σ. Therefore, the
function s̃ is weakly decreasing for σ ≥ σ∗, hence σS(qH , pL) = {σ∗}. For the
buyer, the corresponding claims follow from the assumption that Vβq ≥ 0.

Proof of Lemma 3.2.
Again, we prove the claim only for the seller. First, let us state the required
conditions more precisely. For each θ, whenever Q∗(β∗, σ, θ) ≤ Q̂S(σ, θ) we
need that S(σ, θ, Q̂S) is concave in σ, i.e.,

Cσσ(σ, θ, Q̂S) −
Cqσ(σ, θ, Q̂S)2

Cqq(σ, θ, Q̂S)
≥ 0.

This condition follows from Assumption 3, because the determinant of the
Hessian matrix of (σ, q) 7→ C(σ, θ, q) is positive at q = Q̂S . One can see here
why a linear cost function might be a problem: as Cqq becomes small, this
condition becomes harder to fulfill. Furthermore we need the condition that
W (β∗, σ, θ,Q∗) is concave, meaning that

Cσσ(σ, θ,Q∗) +
Cσq(σ, θ,Q∗)2

Wqq(β∗, σ, θ,Q∗)
≥ 0,

which also follows from Assumption 3. Last, we need the condition
Cσσ(σ, θ, q̄) ≥ 0, which is also implied by convexity of C in both variables.

Since s is continuous in q, p and σ (which is straightforward to check),
according to Berge’s theorem, the argmax correspondence σS(q, p) is upper
hemicontinuous. Since upper hemicontinuity coincides with continuity if the
correspondences are functions, for Assumption 2 to hold it suffices that the
function σ 7→ s(σ, β∗) has a unique maximizer for all q and p. We therefore
show that s is strictly concave, given that Assumption 3 holds. For this we
need that the derivative (see equation 3.6) is decreasing in σ. It suffices to show
that the continuous integrand is piecewise decreasing, which can be done by
calculating the piecewise derivatives and using the above conditions.



46 3 Expectation damages, divisible contracts, and bilateral investment

Proof of Proposition 3.3.
Since because of Assumption 2 the best responses have a continuous selection,
we may assume that σS(q, p) and βB(q, p) are continuous functions. For all
p ∈ [pL, pH ], define

q̄S(p) := {q ∈ [0, qH ] : σS(q, p) = σ∗}

and
q̄B(p) := {q ∈ [0, qH ] : βB(q, p) = β∗}.

¿¿From Lemma 3.1 and the intermediate value theorem it follows that these
sets are nonempty for each p. Since the derivative s′(β∗, σ∗) (equation (3.6)
is weakly increasing in q, these sets must also be convex, i.e., q̄S and q̄B are
compact and convex valued upperhemicontinuous correspondences. Consider
first the case that they are functions.11 Lemma 3.1 tells us that q̄S(pL) = qH ≥
q̄B(pL) and q̄B(pH) = qH ≥ q̄S(pH). Applying the intermediate value theorem
again yields existence of a p̄ such that qS(p̄) = qB(p̄) =: q̄. This contract (q̄, p̄)
thus leads to β∗ as a best response to σ∗ and σ∗ as a best response to β∗.

If the correspondences q̄S and q̄B are not single-valued, their graphs are
still pathwise connected and a similar argument applies: Since q̄S and q̄B are
compact and convex valued upperhemicontinuous correspondences, the same
is true for d := q̄S − q̄B . We have to show that there exists a p̄ with 0 ∈ d(p̄).
We know that d(pL) contains nonnegative elements, therefore we can define
p̄ = max{p ∈ [pL, pH ] : d(p) ∩ [0, qH ] 6= ∅}. Then we can take any sequence
(pn)n ⊂ [p̄, pH ] with limit p̄. For the limit d̄ := limn d(pn) we know that both
d̄ ∈ d(p̄) and d̄ ≤ 0. Convexity of d(p̄) then implies that 0 ∈ d(p̄).

Proof of Corollary 1.
The derivative of s̃(σ), as calculated in the proof of Lemma 3.1 (equation 3.7),
evaluated at σ∗, must vanish at the optimal contract. The corollary follows
since for the kind of functions defined in Assumption 4 it holds that

∆σ(q) = −C ′
1(σ)(Q∗ − q) and ∆β(q) = V ′

1(β)(Q∗ − q). (3.8)

Proof of Proposition 3.5.
When the price is pL, the buyer makes a profit on each unit, i.e., Q̂B = q̄
for all θ. When price is pH , it holds that Q̂S = q̄ for all θ. Expected payoff
is analogous to the case with an intermediate price and can be rearranged to
look as follows (again only for the seller):

11 This holds for example if the inequalities Cσq ≤ 0 and Vβq ≥ 0 hold strictly
everywhere, Q∗ is continuous in θ, γ ∈ (0, 1), and σ∗ and β∗ are interior solutions.
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s(σ, β) =

∫

W (β, σ, θ,Q∗)dF − σ −

∫

B(β, θ, q̄)dF (3.9)

−(1 − γ)

∫

[Q∗>q̄]

∆(β, σ, θ, q̄)dF − (1 − λ)

∫

[Q∗≤q̄]

∆(β, σ, θ, q̄)dF

with p = λpL + (1 − λ)pH . The claim can now be proved following the same
steps as in the proof of Proposition 3.3, the role of the price being played by
λ.

Proof of Proposition 3.6.
We prove this result independently of previous results in this chapter, because
it holds without Assumption 2, and would hold also for arbitrary investment
decisions and linear functions. For λ = γ, the seller’s expected payoff functions
as stated in equation (3.9) equals

s(β, σ) = p̄q̄ + (1 − γ)

(∫

−C(σ, θ, q̄)dF − σ

)

(3.10)

+γ

(∫

W (β, σ, θ,Q∗)dF − σ

)

− γ

∫

V (β, θ, q̄)dF (3.11)

with p̄ = γpL +(1−γ)pH . In this case, the payoff functions are identical to the
ones that result from specific performance in ER. Next, consider the defining
equation of σ∗, which is that for all other σ
∫

W (β∗, σ∗, θ,Q∗(σ∗, β∗, θ))dF − σ∗ ≥

∫

W (β∗, σ, θ,Q∗(σ, β∗, θ))dF − σ.

(3.12)
Furthermore, from the definition of Q∗ we know that

W (β∗, σ, θ,Q∗(σ, β∗, θ)) ≥ W (β∗, σ, θ,Q∗(σ∗, β∗, θ)) for all σ, θ. (3.13)

From these two equations, it follows that

σ∗ ∈ arg max
σ

∫

−C(σ, θ,Q∗(σ∗, β∗, θ))dF − σ (3.14)

Since we assumed the special payoff functions defined in Assumption 4 it
follows that with q̄ =

∫

Q∗(β∗, σ∗, θ)dF

σ∗ ∈ arg max
σ

∫

−C(σ, θ, q̄)dF − σ. (3.15)

Hence, when β = β∗, all terms in the seller’s payoff function are maximized
at σ∗, and it is straightforward to show that the same holds symmetrically
for the buyer.
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Proof of Proposition 3.7.
The derivative of the seller’s payoff function, evaluated at σ∗, is

−(1 − γ)

∫

[Q∗≥Q̂B ]

∆σ(σ∗, θ, Q̂B)dπ.

Therefore, a necessary condition for first best investment levels is γ = 1 or
Q∗(σ∗, β∗) ≤ Q̂B(β∗) almost surely. In case of γ = 1, choose p̄ such that

∫

Vβ(β∗, θ, Q̂B)dπ = 1

at p = p̄. Then choice of β∗ is a dominant strategy for the buyer, and σ∗ is the
seller’s best response. If Q∗(σ∗, β∗) ≤ Q̂B(β∗) a.s., the buyer will overinvest
except if Q∗(σ∗, β∗) = Q̂B(β∗) a.s., which would lead to investments σ∗ and
β∗ and efficient trade without renegotiation. However, for this to hold the price
function must equal the cost function, which therefore has to be deterministic
and linear.

3.8 Examples

In this appendix we compute two examples, to explore for which type of func-
tions Assumption 2 is likely to hold. In the first example P ∗ is deterministic,
such that the concavity assumption becomes very important. The second ex-
ample shows that the first best can also sometimes be reached although the
cost function is linear, as long as there is enough variance in P ∗. Let γ = 1

2
and

C(σ, θ, q) =
1

2σ
q + c

q2

2θ
,

V (β, θ, q) =

(

4

3
c +

7

3
−

1

2β

)

q −
q2

2θ
.

In the specification of the model the investment cost was normalized to be
linear, but it can as well be any convex function. For this example, we take
σ2/2 to be the cost of investment σ. The uncertainty parameter θ is assumed
to be uniformly distributed on the interval [1, 2]. The efficient quantity is

Q∗(β, σ, θ) =

(

4

3
c +

7

3
−

1

2β
−

1

2σ

)

θ

1 + c
.

Calculations reveal that σ∗ = β∗ = 1. Since the equilibrium price
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P ∗(β, σ, θ) =
c

1 + c

(

4

3
c +

7

3
−

1

2β
−

1

2σ

)

+
1

2σ
.

does not depend on θ, the only candidate for an efficient contract is q̄ = 8
3 and

p̄ = 4
3c + 1

2 . The sufficient condition in Assumption 3 is fulfilled if c > 3/16.12

For very low c, this contract leads to a saddle point instead of a maximum of
the seller’s payoff function at σ∗. This can be seen by calculating the second
derivative for σ ≥ σ∗: as c goes to zero, it becomes positive.

This example is one in which, once investment is sunk, only one party
breaches the contract. Nevertheless, since the overinvesting party faces hold-
up and non-breach contingencies, the equilibrium is efficient if the payoff func-
tions are sufficiently concave. As the cost function approaches a linear and
deterministic one, the first best ceases to be attainable.

This does not necessarily hold if there is a random element in the linear
term, such that always both parties face the risk of breaching. Consider the
following variant of the preceding example:

C(σ, θ, q) =

(

1

2σ
+ θ1

)

q

V (β, θ, q) =

(

7

3
−

1

2β
+ θ1

)

q −
q2

2θ2
.

That is, we set c = 0 and to the contingency we add a new component which
makes marginal cost volatile. The part θ1 is a market shock which affects both
the buyer’s valuation and the seller’s cost (which could be opportunity cost).
The part θ2 only affects the buyer, and is again uniformly distributed on [1, 2].
With regard to θ1, we assume that it is uniformly distributed on [0, 1]. The
efficient quantity is now

Q∗(β, σ, θ) =

(

7

3
−

1

2β
−

1

2σ

)

θ2.

Looking for the optimal contract, we get the following equation from the
seller’s maximization problem:

∫

[Q∗≤q̄]

(

p̄ −
1

2

)

(q̄ − Q∗) dθ2 =

∫

[Q∗>q̄]

1

2
(Q∗ − q̄) dθ2

One obvious solution is q̄ = 2 and p̄ = 1. All solutions are characterized by

p̄S(q) =
1

2
+

( 3
4 q̄ − 2)2

2( 3
4 q̄ − 1)2

12 This bound is even lower if the convex investment cost is taken into account.
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for all qH = 8
3 > q̄ > qL = 4

3 . The buyer’s payoff fulfills all assumptions.
Unfortunately, the condition that characterizes the optimal contract for the
buyer becomes quite complex. As numerical solutions of the two equations we
get q̄ = 2.039 and p̄ = 0.8956.
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Signaling an outside option

4.1 Introduction

While so-called general investments are rewarded by the market, specific in-
vestment loses a large part of its value if it is used outside a particular rela-
tionship.1 If specific investments are not contractible, their level will depend
on other characteristics of the relationship, for example on the ownership right
to the asset that will be improved by the investment. If there are no other
contracts, bargaining power and alternative use of the investment determine
the investor’s share in the investment’s returns. For example, an employee
may increase her human capital in the safe knowledge that it cannot be taken
away from her and has a value for other employers as well. Subcontractors
that produce an input for a downstream firm will have some incentives to in-
novate if they are granted ownership of the asset that they work to improve,
or a legal title to the innovation that they develop. Nevertheless, if there is
a large discrepancy between the asset’s value in the current relationship and
the next best alternative, investment incentives might be diluted for fear of
opportunistic behavior of the other party.

Many investments in machines or human capital are a mix of specific and
general investment. In fact, how specific an investment is also depends on the

1 In the terminology of Klein, Crawford and Alchian (1978), general investments
create no appropriable rents, while the quasi-rents that are generated by specific
investments may be subject to opportunistic behavior of the other party in the re-
lationship. Another context in which this distinction between general and specific
investment is important is the acquisition of human capital (Becker (1964)). The
worker, who owns the property right to his human capital, will always acquire an
efficient amount of general investment, but firm-specific captial is not so easily
induced.
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characteristics of the investing party, e.g. on its access to the market for the
asset or its ability to transform the asset to general use. For a worker who
has the entrepreneurial ability to use his training to start his own business,
all training might be considered general. In contrast, for a worker who has
to rely on finding a job in a similar business the specificity of the investment
depends on his cost of switching jobs. The degree of specificity determines
the investing party’s ex post bargaining position, but it may in fact be a
hidden characteristic of the investing party. In this chapter, we explore the
consequences of assuming that the investing party from the outset has private
information about the outside option.

The baseline model that we use in this chapter is a simplified version of the
property rights model developed by Grossman and Hart (1986) and Hart and
Moore (1990)2. An upstream supplier invests into an asset, which is specific to
the relationship with a downstream buyer. It is not possible to write detailed
long-term contracts, instead the buyer later makes a take-it-or-leave-it offer
to the seller and thus determines how they share the return to investment.
If the buyer knows what the seller can maximally accomplish without the
cooperation of the buyer, this is what the buyer will offer to the seller. The
seller’s return and incentives to invest are then completely determined by this
outside option. For the seller to have any incentive to invest at all in this
setting, he must own the asset.

We make the assumption that the degree of specificity, as captured by the
best alternative use of the asset, is private information to the seller. In this
situation, the downstream party tries to deduce the upstream firm’s outside
option from the level of relationship-specific investment. If the seller is very
reluctant to invest, the buyer infers that the seller probably fears a hold-up
because he cannot use the investment elsewhere. The buyer will then indeed
make a low offer. In contrast, if the seller is very eager to invest, the buyer
may conclude that his private value from the investment is high, hence she
has to make a high offer. Now of course the possibility arises that the seller
with a low outside option mimics the high type and invests more. This effect
could potentially mitigate the hold-up problem and lead to higher investment.

We find that this game, in which the seller tries to signal a high outside op-
tion with his investment, has a unique equilibrium (modulo out-of-equilibrium
beliefs and strategies). If the seller’s outside option is known to be relatively
low compared to the value of the investment to the buyer, all types of sellers
invest the same amount. They choose the same investment as the type with
the maximum outside option does under symmetric information. Clearly, in

2 See also Hart (1995), Farrell and Gibbons (1995) and de Meza and Lockwood
(1998).
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such a pooling equilibrium investments and joint surplus are higher than in
the case with complete information.

In general, the equilibrium is a hybrid, or semi-pooling, equilibrium. There
is a cut-off type such that all sellers with a lower outside option pool on this
type’s strategy. This cut-off type, and all higher ones, mix between their own
and all higher types’ complete information investments. All these types hence
separate in the sense that they choose different strategies. Because of the ran-
domization, however, a chosen investment does not give away the type ex post.
An observed investment could have been chosen by any type who would invest
less under complete information. While the information asymmetry leads to
higher investment, this effect is traded against the inefficiency generated by
the non-investing party trying to appropriate part of the information rents.
How the joint surplus compares to the case with complete information there-
fore depends on the parameters of the model.

That in our model relationship-specific investment can be used as a signal
for an outside option distinguishes this chapter from the rest of the literature.
The idea that private information about outside options can lead to rents
that foster investment has been addressed before, eg. by Malcomson (1997)
and Sloof (2008). In these papers, the outside options are realized after invest-
ment decisions have been made. Although there is no signaling going on, such
models yield similar qualitative predictions: in comparison to the standard
hold-up model, which excludes all ex post frictions and focuses on inefficient
preparations, there are now greater inefficiencies ex post and less ex ante.
In particular, investment levels can be too high relative to their later use. A
characteristic of the signaling model, in comparison, is a “bluffing” element
that leads to an equilibrium in mixed strategies.3

Signaling models by now have a long tradition in economics, starting with
Spence (1973), who models education as a wasteful signal of productivity.4

It is possible to reveal private information with signals like for example war-
ranties or high prices as signals for quality, because the cost of the signal
differs across types. In contrast, in our model the cost of investment depends
only indirectly on types. Because all types of sellers have the same cost of
investment, types only matter if the other party uses her bargaining power
and makes low offers. In particular, types of sellers completely separate under
symmetric information, while in the original Spence model the wasteful sig-
nal is not used at all under symmetric information. This also means that by
definition signaling cannot lead to underinvestment in that model, but this

3 This outcome of an equilibrium in mixed strategies due to a commitment problem
is reminiscent of equilibria in hold-up problems with asymmetric information as
studied in Gul (2001) and Gonzales (2004).

4 For an excellent survey of signaling and screening models, see Riley (2001).
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changes if one allows education to be productive (see Weiss (1983)). More
related to the present chapter is recent work on signaling that assumes pro-
ductive investment and shows that signaling leads to higher investment and
even to a Pareto improvement. This includes Hermalin (1998), in which a
leader may signal a worthwhile project by exerting high effort, and Daughety
and Reinganum (2009), in which a signaling motive helps a team to overcome
a free-riding problem.

The remainder of the chapter is organized as follows. In Section 4.2, the
outside option signaling game is introduced. We first solve it for a finite type
space in Section 4.3. In Section 4.4 we analyze the case that the type space is
a continuum. We analyze both these cases because it is much more natural to
think about the problem using a finite type space, but the solution has a more
tractable from in the limit of a continuous type space. We also discuss how
changes in the timing or information structure would change the outcome of
the game; in particular we analyze a version with commitment in Section 4.5.
Proofs not given in the text can be found at the end of the chapter.

4.2 The outside option signaling game

The model describes an interaction between a downstream buyer-
manufacturer and an upstream supplier who has to tailor his production pro-
cesses to the needs of the buyer.5 In the game with complete information, the
seller chooses an investment i ∈ I, at cost c(i), to improve the value of an
asset/good to be traded. If seller and buyer work together, they can generate
a value of v(i), while the value of the good or asset to the seller without the
buyer is only the fraction θv(i), θ ∈ Θ ⊂ [0, 1].6 The buyer observes the in-
vestment and the value of the asset and makes an offer about how to share the
surplus with the seller. If the seller rejects the offer, he gets θv(i) from taking
his outside option, while the buyer is left with zero. If the seller accepts, they
split the generated surplus as proposed by the buyer.

ASSUMPTION 5 We assume that I = R, that the functions v and c
are differentiable, increasing, and concave resp. strictly convex. Furthermore
v(0) ≥ 0, c(0) = 0, c′(0) = 0, and limi→∞ c′(i) = ∞.

The buyer has no way to commit to a particular reaction or to write a
contract that conditions on i or v(i) or that specifies a particular bargaining

5 As explained in the introduction, the model is very abstract and therefore fits a
variety of settings, including an employer-employee relationship.

6 There does not need to be a deterministic relationship between the value and the
investment. As long as the downstream party can observe the investment and the
value, the analysis remains valid if v(i) represents the expected value.
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game. Instead she makes a take-it-or-leave-it offer to the seller, which is opti-
mal for her from an ex post perspective, but not necessarily from an ex-ante
perspective. If θ is the type of the buyer, i the seller’s investment, o ∈ [0, 1] the
buyer’s offer, expressed as a share of the surplus, and a ∈ {0, 1} the acceptance
decision of the seller, then the seller’s payoff is given by

(ao + (1 − a)θ)v(i) − c(i)

and the buyer’s payoff by
a(1 − o)v(i).

This game can be easily solved by backward induction. The seller will accept
all offers o > θ, and since the buyer can always offer a little bit more, we
assume that the seller (except maybe if θ = 1) accepts all offers o ≥ θ. The
buyer will offer a share θ of the realized surplus, which the seller will accept,
leaving him a profit of θv(i) − c(i) from investment i. In anticipation of this
return to investment the seller invests

ic(θ) = arg max θv(i) − c(i),

which given our assumptions always exists and is unique. Therefore also the
inverse of ic exists, which we denote by θc : ic(Θ) → Θ. The seller’s payoff
under complete information, in dependence on the outside option θ, is denoted
by

uc(θ) = max
i

θv(i) − c(i).

Note that the derivative of uc is equal to v◦ic, and in particular, uc is increasing
and strictly convex. 7

-

1 2 3 4

Seller learns
outside option

θ ∼ F

Seller chooses
investment

i ∈ I

Buyer observes i

and the value v(i),

and makes an offer o

Seller accepts

(a = 1) or rejects

(a = 0)

Fig. 4.1. Timeline of the outside option signaling game.

7 We could alternatively make this, or other conditions from which it follows, our
assumption.
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In the game with incomplete information, θ is private information of the
upstream seller. The sequence of events is illustrated in Figure 4.1. We as-
sume that first the seller learns his type θ, which is drawn from a type space
Θ ⊂ [0, 1] according to a distribution function F. The buyer only knows the
distribution of the outside option, but not the realized value. She observes the
seller’s investment, forms beliefs about the outside option and then makes a
take-it-or-leave-it offer that is optimal for her given her updated beliefs about
the acceptance threshold of the seller. We are interested in perfect Bayesian
equilibria of this game, and in such an equilibrium a seller of type θ will ac-
cept an offer if and only if it is greater than the outside option. We therefore
take this acceptance decision, the same as in the game with perfect informa-
tion, for granted, and deal with the following payoff functions: if the seller is
of type θ and invests i, and the buyer makes an offer o, then the seller gets
max(θ, o)v(i) − c(i) and the buyer gets (1 − o)v(i) if θ ≤ o, and 0 else.

A strategy of the seller specifies an investment for each type, possibly
using a randomization device to mix over a set of investments. A strategy of
the seller is a function Q : Θ × I → [0, 1] such that Q(.|θ) := Q(θ, .) is the
distribution of investments that a type θ chooses. A strategy for the buyer
maps all possible investments into a share of the surplus that she offers to
the seller, where she as well may randomize over a set of offers. We write a
strategy of the buyer as a function P : I×[0, 1] → [0, 1] , where Pi(o) := P (i, o)
is the probability that the buyer’s offer, when observing investment i, is less
or equal to o.

If the buyer’s strategy is given by P , the seller’s expected profit from
choosing investment i is

U(P, i, θ) =

∫

max(θ, o)dPi(o) v(i) − c(i),

and given a strategy Q of the seller, the buyer’s expected payoff from the pure
strategy o : I → [0, 1] is

V (Q, o) =

∫ ∫

[θ≤o(i)]

(1 − o(i))v(i)dQ(i|θ)dF (θ).

4.3 Finite type space

In this section, we assume that Θ = {θ1, ..., θH} with 0 ≤ θ1 < θ2 < ... <
θH < 1.8 We shortcut ic(θk) =: ik. In the following, we fix a perfect Bayesian

8 The assumption θH < 1 is made only for simplicity. We could easily add types
θ ≥ 1 who would always invest ic(θ) and get no acceptable offer from the buyer.
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equilibrium of the signaling game (P,Q). We will derive properties of (P,Q),
in order to eventually arrive at a characterization of all equilibra of the out-
side option signaling game. Let I∗ be the set of investments that are chosen
with positive probability in the equilibrium (P,Q), and let Θ∗(i) denote the
set of all types that choose i ∈ I∗ with positive probability. We denote the
equilibrium payoff to a seller of type θ by u∗(θ), i.e., with this notation we
have for all i ∈ I∗ and θ ∈ Θ∗(i) that u∗(θ) = U(P, i, θ).

Note that u∗(θ) ≥ uc(θ), because a type θ can always guarantee himself
the payoff uc(θ) independent of the buyer, by investing ic(θ) and taking his
outside option. Similarly, because the seller’s payoff is weakly increasing in θ
for all offers and investments, U(P, i, θ) and u∗(θ) are weakly increasing in θ.
A higher type could always play a lower type’s strategy and get at least the
same payoff as that type.

In the following, we will first show that if an investment i may occur at
all in equilibrium, then it is chosen with positive probability by the type θc(i)
that chooses i under symmetric information, and by none of the higher types.
Then, in Lemma 4.1, we show that investing i is optimal for all types from θ1

to θc(i). Finally, in Prop. 4.3 we will answer the question which investments
will be chosen in equilibrium. The reader who is not interested in the proofs
may skip the lemmas leading to Prop. 4.3 which contains the main result of
this section.

When the buyer observes an investment i ∈ I∗, she updates that the seller
must have an outside option in Θ∗(i). The share she offers will therefore also
lie in Θ∗(i) ⊂ {θ1, ..., θH}, and it will never be more than the highest possible
type would accept, i.e. the offer is not higher than θm = max Θ∗(i). The profit
to type θm from choosing i is therefore equal to θmv(i)− c(i), which would be
strictly smaller than uc(θm) if i 6= im. Therefore i = im, which means that if
an investment i occurs in the signaling equilibrium, then θc(i) is the highest
type to choose this investment. In particular, only investments ik, k = 1, ...,H
occur in equilibrium.

We will sometimes use the one-to-one relationship between θk and ik and
express everything in types. We can also identify the buyer’s offer with the
type that just accepts it, and then write the equilibrium strategies P and
Q as matrices. An entry pkl of P stands for the probability of offer θl when
investment ik is observed, and an entry qkl in Q is the probability of type k
investing il, or “mimicking” type l. Since we have shown that in any equilib-
rium the mixed strategy of type θk has support {ik, ..., iH} and the buyer’s
random offer following investment ik takes on values in {θ1, ..., θk}, equilib-

That is, a type θ ≥ 1 seller would neither mimic other types nor be mimicked
himself.
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rium strategies P and Q are triangular matrices. Equilibrium conditions for
strategies (P,Q) in matrix form then look as follows:

(i) qkl > 0 implies that

l ∈ arg max
m

m
∑

j=1

pmj max(θj , θk)v(im) − c(im),

(ii) for each l with il ∈ I∗, plj > 0 implies that

j ∈ arg max
k

(1 − θk)

k
∑

j=1

fjqjl.

We will show next that the set of best responses to P of a given type θk

includes all investments that are greater or equal than ik and are chosen at all
in the equilibrium. In other words, if an investment ik is chosen at all, then
it is optimal for every type smaller or equal to the corresponding type θk.

Lemma 4.1. For all ik ∈ I∗ it holds that U(P, ik, θ) = u∗(θ) for all θ =
θ1, ..., θk.

Proof. We know already that U(P, ik, θk) = u∗(θk). First, we show that this
also holds for the lowest type, i.e. that U(P, ik, θ1) = u∗(θ1). To this end,
let θl be the lowest type with this property, i.e., U(P, ik, θl) = u∗(θl) and
U(P, ik, θ) < u∗(θ) for all θ < θl. Since no type below θl chooses ik, the offer
following it cannot be lower than θl. Type l’s expected payoff then does not
depend on him being type θl, but every lower type would get the same payoff
when investing ik :

U(P, ik, θl) =

∫

odPik
(o)v(ik) − c(ik) = U(P, ik, θ) for all θ ≤ θl. (4.1)

Payoff monotonicity then implies that U(P, ik, θ) = u∗(θ) for any type θ ≤ θl,
hence l = 1.

Second, we show that for a seller of type θl the investments that are best
responses to P can be found by maximizing Pi(θl−1)v(i) over all i ∈ I∗, where
we define Pi(θ0) = 0. More precisely, the claim is that for all l = 1, ...,H

arg max
i∈I∗

U(P, i, θl) = arg max
i∈I∗

Pi(θl−1)v(i) ⊂ arg max
i∈I∗

U(P, i, θl−1).

It is clear that the claim implies the lemma, since it tells us that

ik ∈ arg max
i∈I∗

U(P, i, θk) ⊂ ... ⊂ arg max
i∈I∗

U(P, i, θ1).
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It remains to prove the claim, which we will do by induction. Since we know
that U(P, i, θ1) = u∗(θ1) for all i ∈ I∗, it holds for l = 1 for the appropriate
definitions. Assume the claim is true for type l − 1 ≥ 1. For all i ∈ I∗ with
u∗(θl−1) = U(P, i, θl−1) type θl’s payoff is

U(P, i, θl) = u∗(θl−1) + (θl − θl−1)Pi(θl−1)v(i). (4.2)

while for any i′ ∈ I∗ with U(P, i′, θl−1) < u∗(θl−1) it holds that

U(P, i′, θl) < u∗(θl−1) + (θl − θl−1)Pi′(θl−1)v(i′). (4.3)

Using the induction hypothesis, we have that for any such i and i′

Pi′(θl−1)v(i′) = Pi′(θl−2)v(i′) ≤ Pi(θl−2)v(i) ≤ Pi(θl−1)v(i),

hence we have shown that U(P, i′, θl) < U(P, i, θl). The remainder of the claim
follows easily.

To summarize, we have shown so far that in any equilibrium, while there
may be investments that do not occur at all, every investment that does occur
is chosen by the type that would invest the same amount with symmetric in-
formation. Furthermore, all lower types’ payoff from choosing this investment
equals their equilibrium payoff. In order to be consistent with this structure,
the buyer’s strategy must induce all these indifferences. This observation gives
rise to the following lemma.

Lemma 4.2. For all k and i ∈ I∗ with i > ik it holds that

Pi(θk)v(i) =
u∗(θk+1) − u∗(θk)

θk+1 − θk

. (4.4)

Moreover, for all im, ik ∈ I∗ with m ≥ k it holds that pmk > 0.

Proof. The first claim follows from the proof of Lemma 4.1, because there we
had that for all i ∈ I∗ with i > ik it holds that

u∗(θk+1) = u∗(θk) + (θk+1 − θk)Pi(θk)v(i).

To show the last claim of the lemma, note first that for any type θk with
ik ∈ I∗ it must be true that pkk > 0, because else U(P, ik, θk−1) is too low: if
pkk = 0, this payoff is equal to

((1 − pkk)θk−1 + pkkθk)v(ik) − c(ik) = θk−1v(ik) − c(ik) < uc(θk−1).

Second, assume that for m > k as in the lemma we have pmk = 0. Then
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0 = Pim
(θk)v(im)−Pim

(θk−1)v(im) =
u∗(θk+1) − uc(θk)

θk+1 − θk

−
uc(θk) − u∗(θk−1)

θk − θk−1
,

whence

uc(θk) = u∗(θk+1)
θk − θk−1

θk+1 − θk−1
+ u∗(θk−1)

θk+1 − θk

θk+1 − θk−1
.

As mentioned before, the function uc is strictly convex. Therefore, and because

θk = θk+1
θk − θk−1

θk+1 − θk−1
+ θk−1

θk+1 − θk

θk+1 − θk−1
,

we have that

uc(θk) < uc(θk+1)
θk − θk−1

θk+1 − θk−1
+ uc(θk−1)

θk+1 − θk

θk+1 − θk−1
.

Hence, pmk > 0.

Now that we have some idea about the offers that the buyer must be willing
to make, we turn to a description of the buyer’s behavior, in order to pin down
the seller’s equilibrium strategy. The details can be found in the proof of the
following proposition that describes the structure of an equilibrium. But first
we need more notation and an assumption:

ASSUMPTION 6 Let R(θ) := (1 − θ)F (θ) and k̄ := min{k : R(θk) >
R(θk+1)}.

9 We assume that R is strictly concave on {θk̄, ..., θH}.

Assume for a moment that all types choose the same investment i. Then
R(θ) describes the buyer’s expected share of the surplus v(i) if she makes a
take it or leave it offer of θ. The maximum θ̄ of this function is the offer that
she would make in a pooling equilibrium. Can a pooling equilibrium exist?
Since the highest type θH chooses iH in any equilibrium, if all types pool on
the same investment, this must be iH . It follows that there is such a pooling
equilibrium if and only if θ̄ = θH . This suggests that complete pooling is only
possible for types lower than θ̄, and since a separating type could easily be
mimicked by a lower type, equilibria must typically be of a hybrid form and
involve mixed strategies.

Proposition 4.3. If Assumption 6 holds, then an equilibrium of the signaling
game must have the following form: No investment below ik̄ is chosen. A type
θk with k ≥ k̄ mixes between all investments in {ik, ..., iH}, with expected
payoff equal to uc(θk). All types θk with k ≤ k̄ mix over {ik̄, ..., iH} with
payoff uc(θk̄). When observing investment ik, the buyer mixes between offers
in {θk̄, ..., θk}, and her expected payoff from any such offer is (1 − θk)v(ik).

9 Let θH+1 = 1.
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Proof. See Section 4.7 at the end of the chapter.

All equilibria of the outside option signaling game lead to the same ex-
pected payoffs. Refinements to pin down beliefs following zero probability
events are not needed for this result. The reason is that even if an investment
ik does not trigger an acceptable offer from the buyer, this investment would
still allow type θk to get uc(θk) by himself.

From all the indifference conditions that have to be met in an equilibrium
we are able to obtain an equilibrium candidate. Combining Prop. 4.3 and
Lemma 4.2 yields for all k ≥ k̄ and m > k

Pim
(θk) =

uc(θk+1) − uc(θk)

(θk+1 − θk)v(im)
and Pik

(θk) = 1, (4.5)

as well as for k < k̄
Pim

(θk) = 0. (4.6)

The equilibrium conditions for the seller’s strategy are

(1 − θl)

l
∑

j=1

fjqjk = (1 − θk)

k
∑

j=1

fjqjk for all k ≥ l ≥ k̄ (4.7)

and

(1 − θl)

l
∑

j=1

fjqjk ≤ (1 − θk)

k
∑

j=1

fjqjk for all l < k̄. (4.8)

Due to the definition of k̄, the latter condition can be fulfilled by defining

qjk = qk̄k for all j < k̄. (4.9)

Let us further define λk := fk(1−θk)(1−θk−1)
θk−θk−1

and λH+1 := 0. Possible values

for the qjk are:

qk̄k =
λk − λk+1

R(θk̄)
for all k > k̄ (4.10)

qk̄k̄ = 1 −
λk̄+1

R(θk̄)
(4.11)

qjk =
λk − λk+1

λj

for all k ≥ j > k̄ (4.12)

Proposition 4.4. The strategies described in equations (4.5), (4.6), (4.9),
(4.10), (4.11) and (4.12) form an equilibrium of the outside option signaling
game.

Proof. See Section 4.7 at the end of the chapter.
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Example

We look at an example with three types to illustrate the different kinds of
equilibrium and the uniqueness issue. First, since R(θ) is the buyer’s expected
share of v(i) if all types choose the same investment i and the buyer offers
θ, pooling on the investment i3 is an equilibrium if and only if (1 − θ3) =
maxθ R(θ). We write this equilibrium in the matrix form described at the
beginning of this section:

Q =





0 0 1
0 0 1
0 0 1



 , P =





1 0 0
0 1 0
0 0 1



 .

Note that beliefs out of equilibrium, i.e. after observing an investment i 6= i3,
are not pinned down uniquely. Consequently also the first two rows in P are
not uniquely determined.

In case (1− θ2)F (θ2) = maxθ(1− θ)F (θ) an equilibrium is of the following
form:

Q =





0 q12 1−q12

0 q22 1−q22

0 0 1



 , P =





1 0 0
0 1 0
0 p32 1 − p32





Again, the first row of P does not have to be the unit vector. To see how
the structure of Q translates into the condition for R, let µ2 := q22f2 + q12f1

be the probability of i2 being chosen (here the same as the probability of any
lower investment being chosen). The conditions for the buyer are

• (1 − θ3)(1 − µ2) = (1 − θ2)(F (θ2) − µ2) which is equivalent to µ2 =
R(θ2)−R(θ3)

θ3−θ2

. This expression is always less or equal to 1, and it is non-
negative iff R(θ2) ≥ R(θ3).

• (1 − θ2)(F (θ2) − µ2) ≥ (1 − θ1)(F (θ1) − q12f1) which is equivalent to

q12f1 ≥ R(θ1)−R(θ2)
1−θ1

+ (1−θ2)µ2

(1−θ1)

• (1 − θ2)µ2 ≥ (1 − θ1)q12f1 which is equivalent to q12f1 ≤ (1−θ2)
(1−θ1)

µ2

Obviously, the last two conditions can only be fulfilled if R(θ1) ≤ R(θ2). If

this holds, the solutions are q12 = (1−θ2)µ2

R(θ1)
− ∆ for any 0 ≤ ∆ ≤ R(θ2)−R(θ1)

R(θ1)
.

Thus, in this case the solution is typically not unique. If we make the restric-
tion q12 = q22, the last two conditions, which state that the buyer prefers
offering θ2 to offering θ1, read

• q12f1 ≥ R(θ1)−R(θ2)
1−θ1

+ R(θ2)q12

(1−θ1)
⇐⇒ 1 ≥ q12

• f1 ≤ (1−θ2)
(1−θ1)

F (θ2) ⇐⇒ R(θ1) ≤ R(θ2)
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That is, we immediately have a solution, given by q12 = q22 = R(θ2)−R(θ3)
F (θ2)(θ3−θ2)

.

This is not surprising, because here the pooling condition (R increasing) holds
up to θ2. The proposed equilibrium in Prop. 4.4 also uses this fact. The buyer’s
expected profit does not depend on the values of q12 and q22, only on µ2.

If (1 − θ1)F (θ1) = maxθ(1 − θ)F (θ), then the equilibrium is unique:

Q =





q11 q12 1 − q11 − q12

0 q22 1 − q22

0 0 1



 ,P =





1 0 0
p21 1 − p21 0
p31 p32 1 − p31 − p32





For the values of the entries, see Proposition 4.4. The expressions may become
complex, that is why we look at a continuous strategy space in the next section.

We know from Prop. 4.3 that a strategy of the form

Q =





q11 0 1 − q11

0 0 1
0 0 1





cannot be part of an equilibrium. This can be checked explicitly here, showing
that for this to be an equilibrium it must be true that R(θ1) = maxθ R(θ) and
R convex, contradicting our assumption that R is concave. While it might be
possible to relax this assumption and still say something about the resulting
equilibria, we do not address this question in this chapter.

4.4 Continuous type space.

The expressions for equilibrium strategies will have a simpler form in this
section, which treats the continuous type space as the limit case. Hence, in
this section Θ = [θL, θH ]. We assume that F is an atomless distribution on Θ
with density f > 0, for which the derivative f ′ exists.

ASSUMPTION 7 F is log-concave.

Analogous to the previous section, we define θ̄ = θH if R′(θ) ≥ 0 on Θ, and
else

θ̄ = inf{θ ∈ Θ : R′(θ) < 0}, (4.13)

and have

Lemma 4.5. Given Assumption 7, R is concave on [θ̄, θH ] and θ̄ =
arg maxθ R(θ).
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Proof. To show that F log-concave (which is implied by f log-concave) is
sufficient for this property of R, we will show first that

R′′(θ) ≥ 0 ⇒ R′(θ) > 0.

The second derivative of R is

R′′(θ) = (1 − θ)f ′(θ) − 2f(θ)

such that R′′(θ) ≥ 0 implies that f ′(θ) ≥ 0 and

(1 − θ) ≥
2f(θ)

f ′(θ)
.

Hence,

R′(θ) = (1 − θ)f(θ) − F (θ) ≥
2f(θ)2 − F (θ)f ′(θ)

f ′(θ)
≥

f(θ)2

f ′(θ)
> 0.

From the definition of θ̄, where we have a local maximum, the claim easily
follows.

Proposition 4.6. Given Assumption 7, an equilibrium of the signaling game
is given by

Pi(θ) =







0 θ < θ̄
v(ic(θ))

v(i) θ̄ ≤ θ ≤ θc(i)

1 θ ≥ θc(i)

(4.14)

and Q(i|θ) = Q(i|θ̄) for all θ < θ̄, and for all θ ≥ θ̄

Q(i|θ) =











0 i < ic(θ)

1 − (1−θc(i))2f(θc(i))
(1−θ)2f(θ) ic(θ) ≤ i < ic(θH)

1 i = ic(θH)

(4.15)

The proof is straightforward and therefore omitted. It can also be shown that
this equilibrium is the limit of the equilibrium found in the previous section
(Prop. 4.4) as the partition becomes finer.

4.4.1 Surplus Comparison

In the following paragraphs, we compare different timings and information
regimes with respect to the payoff that is generated for the seller and the
buyer as well as the joint surplus. In some applications as for example the
mobility of a worker, it seems realistic that the worker knows his mobility
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but the employer never learns it until it is too late. Alternatively, it may be
the case that the worker learns his outside option only after making the firm-
specific investment. In a market setting, it may be that the outside option is
known to both sides from the start, or that both sides learn it after investment
decisions have been made. We always evaluate payoffs and surplus with respect
to the distribution F , and that is also how the expectations in the following
expressions should be understood.

First we look at the case of complete information. In this case the out-
side option is common knowledge even before investment is undertaken. The
seller’s expected profit is E[uc(θ)] and the buyer gets E[(1 − θ)v(ic(θ))]. The
expected joint surplus is E[S(ic(θ))] with S := v − c.

If the outside option becomes common knowledge only after the investment
is sunk, and is not known before to any party, the expected social surplus is
S(ic(E[θ])). If we assume that S(ic(θ)) is a concave function in θ (eg. v′′′ −
c′′′ ≤ 0) then this surplus is higher than under complete information. The
seller gets uc(E[θ]) and is therefore worse off than in the complete info case,
because he cannot prepare for his outside option. The buyer is better off with
(1−E[θ])v(ic(E[θ])), capturing the quasi-rent from low types who invest too
much.

A third timing and information structure of the game is that the seller, and
only the seller, learns the outside option later. In this case, there is no signaling
motive. The buyer makes an offer of θ̄ and the seller invests ic(E[θ∨ θ̄]). While
the investment is higher than in the two cases above, it is not always put to
its best use, as all types above θ̄ reject the offer. The seller gets uc(E[θ̄ ∨ θ])
which is more than in the previous case, as he enjoys some informations rents.
The buyer gets R(θ̄)v(ic(E[θ ∨ θ̄])).

Finally, in the signaling equilibrium (Prop. 4.6), a seller with outside option
θ gets max(uc(θ), uc(θ̄)), i.e. the seller’s expected profit is

F (θ̄)uc(θ̄) +

∫ θH

θ̄

uc(θ)f(θ)dθ.

To find the buyer’s surplus in the signaling equilibrium, note first that −R′′(θ̂)
is the probability density of investment on [θ̄, θH). Therefore, the buyer’s
expected payoff is

∫ θH

θ̄

−R′′(θ)(1 − θ)v(ic(θ))dθ + (1 − θH)2f(θH)v(i(θH))

We see that the seller has an incentive to learn the outside option early,
because in the signaling equilibrium his expected payoff is E[uc(θ ∨ θ̄)] >
uc(E[θ ∨ θ̄]). It is also better for him in expected terms if it is known that he
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is aware of his outside option, while its value stays secret. In the next section
we consider the case that the investment decision is contractible. It is clear
that in that case, lower seller types are unambiguously better for the buyer.

4.5 The case with commitment

In the game that is studied in the main part of this chapter, all the buyer
can do is make a take it or leave it offer based on her updated beliefs. In
this section we shall explore the consequences of full commitment and ask
what would happen if the buyer could offer a binding contract conditional on
investment before the seller moves. We assume that she still cannot observe
the seller’s type, and characterize the optimal screening contract. While in
the signaling model the seller moves first, now the buyer can act before the
seller takes the investment decision. 10

Proposition 4.7. If the buyer can write a contract on the investment deci-
sion, the outcome involves investment of ic(1) and inefficient separation if

θ ≥ θ̄: Such a type θ takes the outside option with probability p(θ) = v(ic(θ))
v(ic(1)) .

Each seller type is left with the same payoff as in the case without commit-

ment, max(uc(θ), uc(θ̂)). The buyer gets S(ic(1))−uc(θ̄)−
∫ θH

θ̄
S(ic(θ))dF (θ).

Proof. We use the revelation principle and let a general contract be a map
from types into outcomes that satisfies the incentive compatibility constraints
of each type of seller telling the truth. The buyer also has to take into account
that the seller can go for his outside option, then getting a payoff of θv(i)
after having invested an amount i, or uc(θ) ex ante.

All that matters for truth telling and participation of the seller is his
expected payoff, and the buyer in addition cares for the surplus created by
the contract. Therefore, it is sufficient to concentrate on contracts of the form
(t(θ), i(θ), p(θ)), where t(θ) is an up-front payment from the seller to the
buyer, i(θ) is the investment that an announced type θ is required to make,
and p(θ) is the probability of separation. With probability 1 − p(θ), buyer
and seller collaborate and the seller gets the whole ex post surplus v(i(θ)).
There is no loss of generality in assuming this form of contracts, because all
payoff transfers from the seller to the buyer can be handled by the up-front
payment t(θ). Given such a contract, the expected payoff to a seller of type θ
who pretends to be of type θ̃ is

10 Adverse selection problems with type-dependent reservation utilities have been
addressed before, but in different frameworks (Moore (1985), Jullien (2000)). Our
problem has a much simpler structure, but is not a special case of these results.
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(1 − p(θ̃))v(i(θ̃)) + p(θ̃)θv(i(θ̃)) − c(i(θ̃)) − t(θ̃).

A truth-telling seller creates the joint surplus S(i(θ)) − p(θ)(1 − θ)v(i(θ)),
and gets uS(θ) = S(i(θ)) − p(θ)(1 − θ)v(i(θ)) − t(θ) for himself. The buyer’s
optimization problem is the following:

max

∫ θH

θL

t(y)dF (y),

subject to the incentive compatibility constraint

uS(θ) ≥ uS(θ̃) + (θ − θ̃)p(θ̃)v(i(θ̃)) (IC)

and the ex ante participation constraint

uS(θ) ≥ uc(θ), (PC)

which have to hold for all θ, θ̃ ∈ [θL, θH ].
It may seem intuitive that an optimal contract specifies efficient invest-

ment, because the seller types do not differ with respect to the cost of invest-
ment, only with respect to the outside option. The screening device therefore
is the probability of separation, not the investment. However, since in order to
separate the seller’s types this probability must be positive, it is not obvious
that i(θ) = ic(1), because ic(1) is not the optimal preparation for every type
(which would be ic(1− (1− θ)p(θ))). In particular, so far the formulation also
allows for some types not participating and choosing p = 1, i = ic(θ), t = 0.

To see that setting i(θ) = ic(1) is without loss of generality, consider any
contract (t(θ), i(θ), p(θ)). The contract (t̃(θ), ĩ(θ), p̃(θ)) defined by

t̃(θ) = t(θ) + S(ic(1)) − S(i(θ) ≥ t(θ),

ĩ(θ) = ic(1), and

p̃(θ) = p(θ)
v(i(θ))

v(ic(1))
∈ [0, 1]

leads to the same IC and PC constraints and weakly higher expected profit
for the buyer. In particular, this means that excluding types is not a good
idea for the buyer.

For any p : [θL, θH ] → [0, 1] that is part of an IC contract, if p(θ̃) = 0 for
some type θ̃, then we know that lower types pool on this type, i.e. uS(θ̃) =
uS(θ) for all types θ ≤ θ̃. In the buyer’s optimal contract it will then hold
that p(θ) = 0 and t(θ) = S(ic(1))−uc(θ̃) for all θ ≤ θ̃. We therefore now take
a threshold θ0 ∈ Θ as given and replace the IC constraints by the requirement
that p is nondecreasing and
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uS(θ) =

∫ θ

θ0

p(y)v(ic(1))dy + uc(θ0).

We define P 0 := {p : [θ0, θH ] → (0, 1], nondecreasing}. Following the stan-
dard method of finding an optimal screening contract we write the problem
as

max
p∈P 0

S(ic(1)) − uc(θ0) −

∫ θH

θ0

(R′(y) + 1)p(y)v(ic(1))dy

s.t.

∫ θ

θ0

p(y)v(ic(1))dy ≥ uc(θ) − uc(θ0).

Because R′(θ)+1 ≥ 0, p(θ) must be as small as possible. This suggests that the
PC should bind everywhere, which we will indeed show next. First, because
the objective function can also be written as

S(ic(1)) − uS(θH) −

∫ θH

θ0

R′(y)p(y)v(ic(1))dy

it is clear that θ0 ≥ θ̄. Furthermore, for the part that depends on p we can
use integration by parts to get

uS(θH) +

∫ θH

θ0

R′(y)p(y)v(ic(1))dy

=(1 − θH)f(θH)uS(θH) − R′(θ0)uc(θ0) −

∫ θH

θ0

R′′(y)uS(y)dy

≥(1 − θH)f(θH)uc(θH) − R′(θ0)uc(θ0) −

∫ θH

θ0

R′′(y)uc(y)dy

This shows that the objective function is maximized if the PC is binding
everwhere. For this to be true, the buyer would have to set

p(θ) =
v(ic(θ))

v(ic(1))
,

which is indeed increasing, hence must be the solution to the optimization
problem. Finally, we find the optimal θ0: Solving

max
θ0

S(ic(1)) − uc(θ0) −

∫ θH

θ0

(R′(θ) + 1)v(ic(θ))dθ

yields θ̄ as the optimal cut-off value.
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The optimal contract induces higher investment now that i is verifiable, as
there should be no hold-up problem. In fact, that the buyer offers no contract
for any investment other than ic(1) means that there is overinvestment relative
to the investment’s later use. The buyer promises a contract over the full
surplus v(ic(1)) with some probability, in exchange for an up-front payment.
The seller can choose among a menu of contracts consisting of combinations
of separation probabilities and up-front payments

(

v(i)

v(ic(1))
, S(ic(1)) − S(i)

)

, i ∈ [ic(θ̄), ic(θH)],

or trade for sure and pay S(ic(1)) − uc(θ̄) up-front. This contract excludes
higher types with positive probability, which would be impossible without a
form of commitment.

4.6 Conclusion

We introduced private information about the reservation value in a simple
property rights model.11The simplicity of the model allowed us to fully char-
acterize the resulting equilibrium payoffs, which are uniquely determined. The
equilibrium involves pooling up to a certain type of outside option, such that
all lower types get the same payoff. Because they accept all offers in equilib-
rium these types are not distinguishable, even ex post. Higher types follow
a mixed strategy and on average obtain the same payoff as with complete
information. The seller has to randomize since there is a strong force against
a separating equilibrium in this model: if only high types choose a certain
investment and get high offers, they will be mimicked by lower types.

In the outside option signaling game, there is a gap between the chosen
investment and the investment that would result if the seller obtained the full
return to his investment. We have shown that this gap vanishes if investment is
verifiable. The gap would also shrink if the seller had greater bargaining power
than in the game that was analyzed. For example, if the bargaining game was
modeled as the seller making a take it or leave it offer with probability α and

11 In fact, the model is essentially an ultimatum game with a prior investment stage,
in which the responder invests to increase the pie that he and the proposer can
share. The model can then be interpreted as the responder having private infor-
mation about the payoff he gets when rejecting an unfair offer. Simply obtaining
a proportion of the pie as payoff is of course not a good model of human behavior,
and therefore for this application the reader is referred to more realistic models
of behavior like the game in von Siemens (2007), which then leads to a more
complex signaling structure.
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the buyer only with probability 1 − α, then a higher α would increase the
surplus and the seller’s payoff. Since there is more investment on average, the
buyer’s payoff is non-monotonic in α. It would also be interesting to allow for
more complex bargaining games at the ex post stage. One game that should
leave the results unchanged obtains if the buyer can make repeated offers; but
if both players can make offers, results will change and become difficult to
derive (cf. Skryzpazc (2004)).

There are a couple of other extensions of the model that present them-
selves. One interesting task for future work is to allow the payoff that the
buyer gets when the seller takes the outside option to be dependent on the
seller’s type. This would admit a greater set of applications, in particular
the interpretation of the outside option as suing the buyer for payment, with
private information about the probability of winning.12 Another possible ex-
tension is the case of pure rent-seeking, in which the investment increases the
outside value but is of little use inside the relationship. Investment can still
be used as a signal for profitable outside opportunities, but higher investment
is no longer more efficient.

12 See Chonné and Linnemer (2008) for a related model in the context of pretrial
bargaining and investment in trial preparation.
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4.7 Proofs

Proof of Proposition 4.3.
Let ik ∈ I∗. When observing ik, the buyer’s expected profit from offering θl is
G(θl|ik)(1 − θl) , where

G(θl|ik) =

∑l
j=1 fjqjk

∑k
j=1 fjqjk

.

We know from Lemma 4.2 that to be consistent with the seller’s behavior,
the buyer, when observing ik, has to offer all θj , ij ∈ I∗, j ≤ k with positive
probability. She will offer θk if

k
∑

j=1

fjqjk(1 − θk) ≥
l
∑

j=1

fjqjk(1 − θl) for all l,

and θl if
k
∑

j=1

fjqjk(1 − θk) =

l
∑

j=1

fjqjk(1 − θl).

As a first step, we write down all inequalities that define the buyer’s be-
havior in an equilibrium (P,Q). Denote by

K := {k : ik ∈ I∗\{iH}}

all chosen investments that are strictly smaller than iH . We treat H separately
because we have to account for the fact that Q is a stochastic matrix, i.e.,
that the row entries add up to one. For all j, l ≤ k, l, k ∈ K the following
inequalites must hold:

j
∑

i=1

fi(θk − θj)qik +
k
∑

i=j+1

fi(θk − 1)qik ≤ 0

−

(

l
∑

i=1

fi(θk − θl)qik +

k
∑

i=l+1

fi(θk − 1)qik

)

≤ 0

−qjk ≤ 0

plus (straightforward calculation) for all l < H, i ∈ K



72 4 Signaling an outside option

R(θH) − R(θl) ≥
l
∑

j=1

∑

j≤k∈K

fj(θl − θH)qjk +
H−1
∑

j=l+1

∑

k∈K

fj(1 − θH)qjk

R(θi) − R(θH) ≥
i
∑

j=1

∑

j≤k∈K

fj(θH − θi)qjk +

H−1
∑

j=k+1

∑

j≤k∈K

fj(θH − 1)qjk

1 ≥
∑

j≤l∈K

qji

We are going to treat the variables we are looking for as one big vector,
denoted by q. That is, the entries in q are indexed by jk, 1 ≤ j ≤ k, k ∈ K.
Similarly, we define a vector µjk by µjk

ik = fi(θk − θj) for all i ≤ j and

µjk
ik = fi(θk − 1) for all i > j and zero else. Furthermore, define a vector µl

by µl
jk = fj(θl − θH) for all j ≤ l and µl

jk = fj(1− θH) for all j > l. Last, let

1j denote a vector with 1j
jk = 1 for j ≤ k ∈ K and 0 else. And let ejk be a

vector with ejk
jk = 1 and 0 else.

Our inequalities now read

−ejkq ≤ 0 1 ≤ j ≤ k, k ∈ K

1jq ≤ 1 j = 1, ...,H − 1

µjkq ≤ 0 for all k ∈ K, j < k and ≥ 0 for j ∈ K

µlq ≤ R(θH) − R(θl) for all l < H and ≥ 0 for l ∈ K

As the second step, we find a system of inequalities that is an alternative of
this system, i.e. that has a solution if and only if this one has none. We use
Theorem 22.1 of Rockafellar (1970) to get the following alternative system:

(i)
∑H−1

j=1 βj +
∑H−1

l=1 δl(R(θH) − R(θl)) < 0

(ii)
∑H−1

j=1 1jβj +
∑

jk µjkγjk +
∑H−1

l=1 µlδl ≥ 0

where we are looking for coefficients βj ≥ 0, j = 1, ..H − 1, γjk (≥ 0 if
j /∈ K), δl, (≥ 0 if l /∈ K). For the analysis, it is convenient to write the second
equation as an equation in each coefficient jk with k ∈ K and j ≤ k

βj+

j−1
∑

i=1

γikfj(θk−1)+

k−1
∑

i=j

γikfj(θk−θi)+

j−1
∑

l=1

δlfj(1−θH)+

H−1
∑

l=j

δlfj(θl−θH) ≥ 0

Let k̂ = min K. We claim that k̄ = k̂ and first show that R(θl) ≤ R(θ
k̂
)

for l < k̂. Assume not. Then there is a solution with δl = γlk = 1 and
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δ
k̂

= γ
k̂k

= −1 and all other coefficients equal to zero: The first inequality is

obviously satisfied, and for the second, since k ≥ k̂ > l always holds, there are
only three cases to distinguish, j > k̂, l < j ≤ k̂, and j ≤ l.

Similarly, one can show that R(θ
k̂+1) ≤ R(θ

k̂
) is also necessary, because

else there is a solution with δ
k̂+1 = γ

k̂+1k
= 1 and δ

k̂
= γ

k̂k
= −1. The easy

case distinctions are again left to the reader. Hence, k̂ = k̄. Note that we could
have shown more generally that K ⊂ {k with R(θk) ≥ R(θk+1)}.

Next we show that K is an interval. Assume to the contrary that there is
a gap in K, i.e, there exist l < m < h with m /∈ K, l = max {k ∈ K, k ≤ m}
and h = min{k ∈ K, k ≥ m}. There is a λ ∈ (0, 1) with (1 − λ)θh + λθl =
θm. Define δl = γlk = −λ, δm = γmk = 1, δh = γhk = −(1 − λ) for all
relevant k ∈ K. Then the first condition holds because R is concave on K:
λR(θl) + (1 − λ)R(θh) − R(θm) < 0. That the second condition always holds
with equality is seen immediately if k ≤ l, for which this condition takes the
form θm − θH − λ(θh − θH) − (1 − λ)(θl − θH) = 0. For the remaining case
k ≥ h there has to be again a case distinction regarding j, each case leading to
the same result. Thus concavity of R implies that there are no gaps in chosen
investment, K = {k̄, ...,H − 1} .

Proof of Proposition 4.4.
First, we check that the strategies fulfill equation 4.7:

(1 − θl)

l
∑

j=1

fjqjk = (1 − θl)





k̄
∑

j=1

fj

λk − λk+1

R(θk̄)
+

l
∑

j=k̄+1

λk − λk+1

λj





= (1 − θl)





λk − λk+1

1 − θk̄

+

l
∑

j=k̄+1

(

λk − λk+1

1 − θj

−
λk − λk+1

1 − θj−1

)





= λk − λk+1,

which is independent of l. Similarly for the remaining cases.
Next, note that

R(θk) − R(θk−1)

θk − θk−1
=

fk(1 − θk−1)

(θk − θk−1)
− F (θk) =

fk(1 − θk)

(θk − θk−1)
− F (θk−1)

and therefore

λk − λk+1 = (1 − θk)

(

R(θk) − R(θk−1)

θk − θk−1
−

R(θk+1) − R(θk)

θk+1 − θk

)

≥ 0.

Also,
R(θk̄) − λk̄+1 ≥ 0 ⇔ R(θk̄) − R(θk̄+1) ≥ 0.
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These conditions imply that all qjk ≥ 0. We still need to show that they add
up to one:

H
∑

k=j

qjk =

H
∑

k=j

λk − λk+1

λj

= 1 for all j > k̄

H
∑

k=k̄

qjk̄ = 1 −
λk̄+1

R(θk̄)
+

H
∑

k=k̄+1

λk − λk+1

R(θk̄)
= 1

Here we have that all low types follow the same strategy. If such a restriction
is not imposed, there may be more possible values for the strategies.
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Renegotiation-proof relational contracts with

side payments

5.1 Introduction

Relational contracts are self-enforcing informal agreements that arise in many
long-term relationships, often in response to obstacles to write exogenously
enforceable contracts. Examples include the non-contractible aspects of em-
ployment relations, illegal cartel agreements, or buyer-seller relations in which
complete formal contracts are too costly to write. Agreements between coun-
tries also often have the nature of a relational contract, when there is no in-
stitution that is able or willing to enforce compliance with the agreed terms.
In these examples, monetary transfers play a role in the relationships, be it
in form of prices, bonuses or other compensation schemes, and could thus
also be used to sustain the relational contract. Moreover, the relational con-
tracts are drafted and negotiated, and meetings continue to take place as the
relationship unfolds. In this chapter, we analyze relational contracts under
these circumstances: with renegotiation and the possibility to make monetary
transfers.

As an illustration how side-payments can be used in a relational contract
consider the case of collusive agreements. Cartels sometimes use compensation
schemes to make sure that each firm in the cartel stays with the target (see
Harrington (2006) for details1). A cartel member that violates the agreement
is required to buy a certain quantity from a competitor, or to transfer a
valuable customer to a competitor. Such compensation schemes seem more
robust to renegotiation than threatening with an immediate price war after a
violation of the agreement. Price wars are costly for all firms, and therefore
cartel members will be tempted to agree to ignore the violation. In contrast,

1 For a list of cartels in which such compensation schemes have been used see also
the introduction of Harrington and Skrzypacz (2007).
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if a deviating firm must pay a fine, competitors gain from the punishment and
have therefore no incentive to renegotiate the agreement. In order to induce a
firm to pay the compensation there must be a threat of a real punishment in
case no payment is made, a punishment that does not require the voluntary
participation of the punished. Renegotiation may therefore play a role again.

The chapter investigates these issues and provides a characterization of
renegotiation proof relational contracts given arbitrary discount factors. We
study infinitely repeated two player games with perfect monitoring where in
each period players can make monetary transfers before playing a simulta-
neous move game. We translate Abreu’s (1988) optimal penal codes to this
set-up and show that every Pareto optimal subgame perfect payoff can be
achieved using a class of simple strategies, which we call stationary contracts.
In such a stationary contract, the same action profile is played in every pe-
riod, while an up-front transfer is used to achieve the required distribution of
surplus. Transfers on the equilibrium path can be used to transfer slack from
one player’s incentive constraint to the other’s.2 A player who deviates is re-
quired to pay a fine to the other player, and after payment equilibrium play is
resumed. If he does not pay, there is a single punishment action before there
is another chance to make a monetary transfer and return to the equilibrium
path.

In the second part of the chapter, we characterize renegotiation-proof sta-
tionary contracts, and show that again, one can often restrict the analysis
to the class of stationary contracts to find payoffs that survive renegotiation-
proofness refinements. The literature offers several concepts of renegotiation-
proofness for infinitely repeated normal form games.We adapt strong perfec-
tion as defined in Rubinstein (1980) as well as Farell and Maskin (1989)’s
concepts of weak and strong renegotiation-proof equilibria to our setting and
observe that the timing of negotiations and transfers plays a role.

Since a period consists of two stages, a crucial question is at what times
renegotiation is possible. We first follow Levin (2003), who studies optimal
subgame perfect equilibria in a repeated principal-agent relationship, and as-
sume that the players only meet to negotiate at the beginning of a period,
before a payment is made. This assumption seems reasonable in situations
where payments can be organized quickly such that whenever there is suffi-
cient time to meet and renegotiate future actions there is also sufficient time
to make side payments before future actions are conducted.

2 That it suffices to look at stationary equilibrium play paths in an environment
with side payments is used in many articles on relational contracting, such as
Baker, Gibbons and Murphy (2002), Levin (2003), Doornik (2006), and Blonski
and Spagnolo (2003).
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As in Levin’s framework, renegotiation-proofness has no bite with this
timing; all Pareto optimal subgame perfect payoffs can be implemented in a
renegotiation-proof way. In a Pareto efficient stationary contract, all continu-
ation equilibria that start with a payment achieve the same highest possible
joint payoff. At the side payment stage the punishment takes the form of the
deviator paying a fine to the other player, followed by return to efficient equi-
librium play. This means that if renegotiation is allowed only before transfers
can be made, the threat of inefficient continuation play (which is necessary to
induce payment of the fine) is never subject to renegotiation.

In the main part of this chapter, we consider a timing that also allows
negotiations before the punishment for not paying is carried out. This timing is
for example used in Fong and Surti (2009), who characterize subgame perfect
and to some extent also renegotiation-proof outcomes in a repeated prisoner’s
dilemma with side payments, for all possible constellations of discount factors.
The underlying assumption behind this timing is that not having made a
transfer is a sunk decision, and hence the consequences can be renegotiated.
This assumption makes sense in situations in which the monetary transfers
can only be made at certain times, or take a long time to be organized, as
should for example be the case for illegal side payments in cartels.

We first characterize strong perfect equilibrium payoffs. An equilibrium
is strong perfect if all its continuation payoffs lie on the Pareto frontier of
subgame perfect payoffs for that stage. The set of strong perfect equilibrium
payoffs is always a subset of the Pareto frontier of subgame perfect payoffs,
but it is often empty. We show that every strong perfect payoff can be achieved
by a strong perfect stationary contract and derive simple conditions that al-
low to check for strong perfection. These conditions are used to show that
in a principal agent game in which only one side has to take an action, all
subgame perfect payoffs can be implemented using strong perfect stationary
contracts. That in other examples strong perfect equilibria fail to exist re-
flects that strong perfection should be considered as a sufficient condition for
renegotiation-proofness rather than a necessary requirement.

The more widely used concept of strong renegotiation proofness (SRP)
only requires that continuation payoffs must lie on the Pareto frontier of
weakly renegotiation proof (WRP) payoffs instead of subgame perfect pay-
offs. An equilibrium is WRP if players can never both improve their payoffs
by negotiating from one continuation equilibrium to another. As is already
known from the analysis in Baliga and Evans (2000), who study a similar set-
ting with monetary transfers, the set of SRP payoffs converges to the Pareto
frontier of individually rational stage game payoffs as the players become in-
finitely patient. In contrast, with intermediate discount factors SRP equilibria
sometimes fail to exist. We show that if they do exist and disounting is suffi-
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ciently low3, all SRP payoffs can be obtained by varying the up-front transfer
of a single stationary contract. We also provide a simple sufficient condition
for existence of SRP stationary contracts. By contrast, if discounting is too
high (δ < 1

2 ), stationary contracts may not be sufficient to implement all
Pareto optimal WRP payoffs, which can sometimes require alternation be-
tween different action profiles or money burning on the equilbrium path. We
illustrate this effect in a Prisoner’s Dilemma game.

In Baliga and Evans (2000), which is the most directly related work, the
stage game is augmented by a side-payment mechanism such that actions and
payments are chosen simultaneously. By construction, the punishment for not
paying a fine is subject to renegotiation. Their analysis is hence more related
to our framework than to a timing as in Levin (2003) that excludes negotia-
tions before the stage game’s actions are chosen. The difference to our frame-
work is that we allow a larger set of discount factors as well as side payments
that depend on the most recent action played. If achievable outcomes are con-
strained by high discounting of the future, the players have a joint incentive to
use transfers that condition on past behaviour; withholding a planned transfer
can already be a punishment, making defection less profitable. A characteriza-
tion of optimal relational contracts for all discount factors is useful for studies
that compare different regimes or institutions regarding the lowest discount
factor that allows efficiency in the induced repeated game.

The chapter is organized as follows. In Section 5.2 we introduce the frame-
work and notation. In Section 5.3 we characterize subgame perfect stationary
contracts and show that all Pareto optimal subgame perfect payoffs can be
implemented by a stationary contract. We show with an example how the
resulting conditions can be applied to find all subgame perfect payoffs for a
given discount factor. In Section 5.4 we discuss the timing of renegotiations
and characterize the set of strong perfect payoffs. In Section 5.5 we show that
if the future matters more than the present period (δ ≥ 1

2 ), the WRP payoff
with the highest joint payoff can be implemented by a stationary contract. If
SRP payoffs exist at all, they can also be implemented using such a stationary
contract. Finally, we discuss the case δ < 1

2 , and then conclude in Section 5.6.
Proofs have been relegated to the end of the chapter.

5.2 The game

We consider an infinitely repeated two-player game with perfect monitoring
and common discount factor δ ∈ [0, 1). Players are indexed by i, j ∈ {1, 2}.

3 We need to assume that the present period does not get a larger weight than all
future periods together, i.e., that the discount factor δ does not exceed 1

2
.
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Each period (or stage) t = 0, 1, 2, ... comprises two substages, without dis-
counting between the substages: a side payment stage (or pay stage) in which
both players choose a nonnegative monetary transfer to the other player, and
an action stage (or play stage) in which the players play a simultaneous move
game.

The stage game is given by the continuous payoff function

g : A1 × A2 → R × R,

where the set Ai is the compact action space of player i. Let A = A1 × A2,
and denote the joint payoff from action profile a = (a1, a2) ∈ A by G(a) =
g1(a) + g2(a). The best reply or cheating payoff of player i is defined by

ci(a) := max
{ã: ãj=aj}

gi(ã).

The analysis and examples in this chapter are restricted to the case of pure
strategy equilibria of the repeated game.4 We also assume that the stage game
has a Nash equilibrium in A.

In the beginning of each period, each player i may decide to make a mon-
etary transfer to the other player, denoted p̃i. We assume that the player’s
endowment is sufficiently large such that wealth constraints do not play a
role. In order to have a compact strategy space, we require the payments to
be bounded by a large bound, e.g. that payments cannot be larger than the
present value of the highest possible surplus of the stage game in each period.
Players are risk-neutral with quasi-linear utility. Player i’s payoff in a period
with net transfers pi := p̃i−p̃j and played action profile a is given by gi(a)−pi.
We will often write payments in the form of net payments p = (p1, p2), as-
suming that only the player with a positive net payment makes a monetary
transfer. As is intuitively clear, simultaneous monetary transfers by both play-
ers will never be necessary to achieve a certain equilibrium payoff. 5

A path is an infinite stream of alternating net transfers and actions, be-
ginning with a payment or an action. Player i’s average (or normalized)
discounted payoff when the repeated game’s outcome is given by a path
Q := {pt, at}

∞
t=0 is defined as

4 It would be possible to extend the analysis to the finite-dimensional simplex of
mixed strategies and expected payoff if we assume (following Farell and Maskin
(1989) and others) that a player can observe the other player’s mixed strategy of
a stage game and not only the realized outcome.

5 Formally: consider a strategy profile that after some history {p0, a0, p1, ..., at}
prescribes play of p̃ with min(p̃1, p̃2) = p̃i > 0. If p̃i is replaced by 0, and p̃j by
p̃j − p̃i, then the modified strategy profile leads to the same payoffs, and is a
subgame perfect equilibrium if the original has this property.
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ũi(Q) := (1 − δ)

∞
∑

t=0

δt(gi(at) − pt,i),

while given a path Q := {at, pt+1}
∞
t=0 it is

ũi(Q) := (1 − δ)
∞
∑

t=0

δt(gi(at) − δpt+1,i).

A history that ends before stage k ∈ {pay, play} in period t is a list of all
transfers and actions that have occurred before stage k at that point in time.
Let Hk be the set of all histories that end before stage k. A strategy σi of
player i in the repeated game maps every history hplay ∈ Hplay into an action
σi(h

play) ∈ Ai, and every history hpay ∈ Hpay into a payment σi(h
pay) ≥ 0.

Every strategy profile σ defines a path Q(σ) in the usual way, and we denote
u(σ) = ũ(Q(σ)).

Note that every history h ∈ H defines a subgame of the repeated game.
We write σ|h for the strategy profile that starts after play according to h.
While u(σ) = (u1(σ), u2(σ)) denotes the tuple of payoffs, we also need the
total payoff U(σ) := u1(σ) + u2(σ). We often make use of the fact that u(σ)
is equal to a convex combination of current period payoff (weighted by 1− δ)
and future average payoff (weighted by δ).

Subgame perfect equilibrium means subgame perfection of the strategy
profile in all of the subgames. We denote by Σk

SGP the set of subgame perfect
equilibria that start in stage k. If σ ∈ Σk

SGP is a subgame perfect equilibrium,
we call u(σ) a subgame perfect payoff. All continuation payoffs of a given
equilibrium σ before a given substage k ∈ {pay, play} are denoted by Uk(σ) =
{u(σ|h) : h ∈ Hk}. The set of subgame perfect payoffs is denoted by Uk

SGP =
u(Σk

SGP ).

5.3 Stationary contracts and subgame perfection

5.3.1 Stationary contracts

In the following we define a class of simple stationary strategies which are
helpful to characterize the Pareto-frontier of subgame perfect payoffs and to
study the effects of different renegotiation-proofness requirements.

Definition 5.1. A stationary strategy profile, denoted by σ(ae, a1, a2), is
characterized by action profiles ae, a1, a2 ∈ A and a payment scheme in the
following way:

In the payment stage in period 0, there are up-front payments p0 = (p0
1, p

0
2).
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Whenever a player makes the prescribed payment in the payment stage,
they play ae in the action stage.

Whenever they play ae, or simultaneously deviate, payments pe are con-
ducted in the next payment stage.

If player i unilaterally deviates from the prescribed action, he pays a fine
F i to the other player in the subsequent payment stage.

If ever player i does not make the required payment, they play ai in the
action stage and player i makes an “adjustment payment” f i to the other
player in the subsequent payment stage.

Fig. 5.1. Arrows indicate the sequence of actions according to the continuation
equilibria. If player 1 (2) unilateraly deviates then the top (bottom) row will be
played in the next stage. If a bilateral deviation occurs then the game continues on
the equilibrium path in the next stage.

The structure of a stationary strategy profile is illustrated in Figure 5.1. To
make this construction very clear, let us express a stationary strategy profile
in terms of simple strategies as defined by Abreu (1988). A simple strategy
profile for two players, denoted by σ(Qe, Q1, Q2), prescribes play of the initial
path Qe, while any unilateral deviation from the prescribed paths by player i
is followed by play along the punishment path Qi. In our setting, a stationary
strategy profile consists of the initial path

Qe = (p0, ae, pe, ae, pe, ...)

and two punishment paths for player i, depending on whether the deviation
occured in the side payment phase or in the action phase:
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Qi
pay = (F i, ae, pe, ae, pe, ...)

Qi
play = (ai, f i, ae, pe, ae, pe, ...).

Abreu (1988) is build around the now familiar idea that for subgame perfec-
tion the punishment does not need to fit the crime. Any deviation from a given
play path can be punished by the same continuation equilibrium, namely the
worst possible subgame perfect equilibrium for that player. The optimal pe-
nal codes, as such worst play paths are called in Abreu’s work ((1986, 1988)),
then often have a “stick and carrot” structure: they begin with the worst pos-
sible action for the punished player, and may reward him for complying with
the punishment further along the path.6 In our framework, the punishment
paths have a similar structure: chosen optimally, the action ai must have a
low enough cheating payoff ci(a

i) to deter a deviation by player i. The adjust-
ment transfer f i is used to fine-tune the punishment. It will be positive if the
punishment was not yet enough to be rewarded with equilibrium play again,
and negative if the punishment was too harsh, to induce the cooperation of
the punished player in the punishment.

There are two different punishment paths because a punishment can either
start in the play or in the pay phase. This is due to the sequential nature of the
interaction, but the intuition that the players can use a universal punishment
to react to all deviations goes through in the sense that the two punishments
may induce the same punishment payoff. For a given stationary strategy profile
and player i ∈ {1, 2}, we denote this payoff by ui

i = ũ(Qi
pay) and define the

adjustment payment f i such that the punishment paths give the same payoff
to the punished player:

f i = F i −
ui

i − gi(a
i)

δ
. (5.1)

Definition 5.2. If a stationary strategy profile σ(ae, a1, a2) with adjustment
payments given by (5.1) is a subgame perfect equilibrium, we call it a station-
ary contract.

In the following, we find conditions that imply subgame perfection of a
stationary strategy profile. It is often more convenient to think about a sta-
tionary contract in terms of the continuation payoffs it defines, and not in

6 Such a structure with possible “repentance”, where punishment does not last
forever, is also useful if renegotiation proofness is an issue, which can for example
be seen in Segerstrom (1988), Farell and Maskin (1989), van Damme (1989), or
Farell and von Weizsäcker (2001). Return to the initial path may happen after
a fixed number of punishment periods, with some probability after each period
of punishment, or after the payment of a fine as in the present paper and Baliga
and Evans (2000). The fine is a very powerful instrument because it additionally
reduces the incentive to deviate or renegotiate for the player who collects it.
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terms of the actual payments that have to be made. The equilibrium payment
pe for example plays a role for the continuation payoff on the equilibrium path
starting with the action ae, which we denote by

ue = g(ae) − δpe, (5.2)

and the fine F i influences player i’s punishment payoff

ui
i = −(1 − δ)F i + ue

i . (5.3)

To verify that a given stationary strategy profile is a subgame perfect equi-
librium, it is sufficient to check that there are no profitable one-shot deviations.
We first do this for the punishment path for player i ∈ {1, 2}. Irrespective of
the stage in which the punishment starts, player i’s payoff is always ui

i if he
complies, and either ui

i or ci(a
i)(1 − δ) + δui

i if he deviates once and then
complies again. Therefore, player i will not deviate from the punishment path
if it holds that

ui
i ≥ ci(a

i). (5.4)

Since this implies that F i ≥ f i, one may think of the adjustment payment
f i as a lower fine. In particular, f i = F i holds only if player i cannot profitably
deviate from ai. Otherwise the deviator’s cooperation in the punishment must
be induced by the carrot of lowering the fine that is due in the next period,
in fact, f i may even be negative.

We now turn to the role of player j in player i’s punishment. The condition

gj(a
i)(1 − δ) + δ((1 − δ)f i + ue

j) ≥ cj(a
i)(1 − δ) + δuj

j

means that player j will play his part in ai and that he is willing to pay −f i,
in case this is positive. Since the adjustment payment f i divides the payoff on
the punishment path such that player i gets ui

i, this condition is equivalent to

G(ai)(1 − δ) + δG(ae) − ui
i ≥ cj(a

i)(1 − δ) + δuj
j . (5.5)

On the equilibrium path, compliance with both ae and the transfer pe is
implied by

ue
i ≥ ci(a

e)(1 − δ) + δui
i for i ∈ {1, 2}. (5.6)

Finally, an up-front payment just like a fine divides the surplus G(ae)
between the two players. Any transfer that satisfies

p0
i ≤ F i for i ∈ {1, 2} (5.7)

can be part of a stationary contract. That is, the up-front payment can be
chosen to achieve any desired distribution of payoffs on the line between
(u1

1, G(ae) − u1
1) and (G(ae) − u2

2, u
2
2).
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To summarize, we have shown that a stationary strategy profile
σ(ae, a1, a2) with given transfers p0, pe and fines F 1, F 2 is a stationary con-
tract if conditions (5.4), (5.5), (5.6), and (5.7) are satisfied. Since the up-front
transfer can be used to achieve all possible distributions of the surplus, it is
clear that the transfer on the equilibrium path only matters for the incentives
not to deviate from the initial path. Therefore, we next look for conditions
that allow action profiles ae, a1, a2 to be part of a stationary contract given
appropriate selection of the equilibrium payment. Whenever the sum of the
two inequalities in (5.6) holds, then pe can be chosen such that the individual
conditions hold. Furthermore, if we are merely interested in subgame per-
fection, we can set the fines to the maximum level such that the cheater’s
continuation payoff is ui

i = ci(a
i), i = 1, 2.7 These two observations lead to

the following lemma:

Lemma 5.3. There is a stationary contract σ(ae, a1, a1) if and only if

G(ae) ≥ (1 − δ)(c1(a
e) + c2(a

e)) + δ(c1(a
1) + c2(a

2)) (5.8)

and

G(ai)(1−δ)+δG(ae)−ci(a
i) ≥ cj(a

i)(1−δ)+δcj(a
j) for j 6= i ∈ {1, 2}. (5.9)

Proof. See Section 5.7 at the end of the chapter.

5.3.2 Subgame perfect payoffs

In the following we show that every Pareto optimal sugame perfect payoff can
be sustained by a stationary contract. We denote the weak Pareto frontier of
the set of subgame perfect payoffs by P(Upay

SGP ). Furthermore, let

ŪSGP := sup
u∈Upay

SGP

u1 + u2

be the maximum total payoff, and for i = 1, 2 let

7 These highest fines are given by F i = 1
(1−δ)

(ue
i − ci(a

i)). The maximum fines
become very large as the game’s surplus rises. Such extreme values are not nec-
essary, but convenient in our search for all sustainable equilibrium payoffs. There
is another, equivalent, possibility to define the punishment paths, employed by
Baliga and Evans (2000): We could define an equilbrium path payment pe = p̄i

that makes player i’s incentive constraint just binding. Fines can be much smaller
if punishment of player i means paying first a fine and then switching to such a
path.
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ūi
SGP := inf

u∈Upay

SGP

ui

be the lowest payoff for player i in any subgame perfect equilibrium. Note
that these values would be the same if the range of payoffs Upay

SGP was replaced

by Uplay
SGP , the set of subgame perfect payoffs starting with the play stage.

If there is a stationary contract with equilibrium action profile āe such that
G(āe) = ŪSGP , then we call the stationary contract optimal.

Proposition 5.4. There exists an optimal stationary contract σ(āe, ā1, ā2)
with punishment payoff ci(ā

i) = ūi
SGP for player i = 1, 2. The Pareto frontier

of subgame perfect payoffs P(Upay
SGP ) is equal to the line from (c1(ā

1), G(āe)−
c1(ā

1)) to (G(āe) − c2(ā
2), c2(ā

2)).

Proof. See Section 5.7 at the end of the chapter.

The proposition says that any Pareto optimal subgame perfect payoff can
be implemented using a stationary contract σ(āe, ā1, ā2) with maximum fines.
All distributions of the optimal surplus G(āe) that give player i at least ci(ā

i)
can be achieved by changing the up-front transfer. The punishment contin-
uation equilibrium in such a stationary contract then constitutes an optimal
penal code as defined in Abreu (1988). In order to find such a stationary
contract, one can use the conditions in Lemma 5.3.

5.3.3 Example (Abreu)

Abreu (1988) uses a simplified Cournot game to illustrate the superiority of
optimal penal codes as compared to punishment with the worst stage game
equilibrium. In the following we use this game to illustrate a simple heuristic
of finding optimal subgame perfect payoffs. Two firms simultaneously choose
either low (L), medium (M), or high (H) output. Stage game payoffs are given
by the following matrix:

Firm 2
L M H

L 10,10 3,15 0,7
Firm 1 M 15,3 7,7 -4, 5

H 7,0 5,-4 -15,-15

While total payoff is maximized if the firms choose (L,L), the unique Nash
equilibrium of the stage game is (M,M); and high output minimizes the maxi-
mal payoff of the other firm. Abreu (1988) constructs optimal penal codes for
the game without side payments and shows that the collusive (L,L) can be
supported (in pure strategies) for δ ≥ 4

7 .



86 5 Renegotiation-proof relational contracts with side payments

In the following, we sketch a way to find the optimal stationary contract
σ(āe, ā1, ā2) for all discount factors. We start with the action profile that
maximizes the joint payoff G(a) among all a ∈ A as our candidate for āe; here
this is (L,L). This profile will either turn out to be admissible for discount
factors greater than some critical value, or for no discount factor, then we
would try the action profile with the next highest joint payoff. Similarly, for
player i’s punishment we have to start with an action profile ai that minimizes
player i’s cheating payoff ci(a) over all possible action profiles a ∈ A. Since
the cheating payoff only depends on the punisher’s action ai

j , we must make

a choice for ai
i. It is obvious from the constraints (5.8) and (5.9) that we have

to check only the action that maximizes G(ai) − cj(a
i). Our candidates are

thus ā1 = (M,H) and ā2 = (H,M). A short calculation reveals that the
action profiles (L,L), (M,H), (H,M) indeed define a stationary contract for
δ ≥ 1

3 . Side payments here facilitate collusion for intermediate discount factors
because the payments can be used to smoothly adjust the punishment.

To find optimal contracts for the remaining discount factors, note first
that the binding condition was the incentive constraint for the equilibrium
path (condition (5.8)). Whenever the equilibrium constraint is binding, we
have to replace the candidate for equilibrium play with the action profile that
generates the next highest joint payoff among all profiles that relax this con-
straint, using the same punishment actions as before. In this symmetric game,
it does not matter whether we pick (L,M) or (M,L) as our next candidate.
The equilibrium condition (5.8) then holds for all δ ≥ 2

11 , while the punish-
ment constraints in (5.9) hold for all δ ≥ 1

4 . Thus, for all δ ∈ [14 , 1
3 ) at least a

partially collusive outcome can be sustained. Note that a stationary contract
of the form σ((L,M), (M,H), (H,M)) requires positive equilibrium payments
from firm 2 to firm 1.

Since this time it is the constraint for the punishment path (5.9) that is
binding, high output is not sustainable for lower discount factors. Whenever
condition (5.9) is binding for player i, the punishment action profile for player
i has to be replaced by the profile that offers the lowest player i cheating
payoff among all profiles that relax the binding condition. In our case, the
punishment actions have to be replaced by the Nash equilibrium (M,M).
Since punishment with medium quantity is not sufficient for equilibrium play
of (L,M), for δ < 1

4 the optimal contract is repeated play of (M,M), which
is the action profile with the next highest joint payoff.

5.4 Renegotiation-proofness: Strong perfection

So far we have characterized Pareto optimal subgame perfect outcomes, which
seem likely outcomes if the players can communicate and thus would not some-
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how be trapped in an inefficient equilibrium. However, if the players can meet
and coordinate on an efficient subgame perfect equilibrium at the beginning
of their relationship, they may be able to do the same after any history for
which the original continuation equilibrium does not lead to a Pareto opti-
mal outcome. If the players anticipate such a renegotiation, the equilibrium
strategies may cease to be credible. Therefore, one may predict that players
will initially choose an equilibrium that is immune to this criticism. For exam-
ple, there is never scope for renegotiation if an equilibrium creates the same
maximum surplus ŪSGP after every possible history.

This strongest notion of renegotiation proofness is called strong optimality
in Levin (2003). Levin introduces this criterion in his analysis of Pareto opti-
mal relational contracts in a principal-agent setting where it is easily fulfilled.
In fact, he shows that in his game all Pareto optimal subgame perfect payoffs
can be implemented by a strongly optimal equilibrium. This result depends,
however, on the way Levin defines this notion for a repeated sequential game.
He assumes that negotiations only take place at the beginning of a period,
but never just before a punishment has to be carried out.

Similarly, if in our setting we define a subgame perfect equilibrium σ to
be strongly optimal if U(σ|h) = ŪSGP for every history h ∈ Hpay, then all
optimal stationary contracts σ(āe, a1, a2) are strongly optimal. The reason is
that in every continuation equilibrium starting with the side payment, the
required payments will be conducted and equilibrium play āe is continued or
resumed. Since by assumption there is no renegotiation directly before the play
stage, continuation equilibria that require inefficient play are never subject to
renegotiation. This implies that the set of strongly optimal payoffs coincides
with the Pareto frontier of subgame perfect payoffs P(Upay

SGP ).
The assumption that no renegotiation is possible before the action stage is

natural if payments do not have to be carried out at a certain point in time,
such that not paying continues to be a reversible action. In this case, the threat
that implements a compensation scheme can never be negotiated away from.
Any try to renegotiate the punishment will be blocked by the nondeviating
party, who believes that it will receive the fine as soon as the negotiations stop.
The focal disagreement point is always the original equilibrium, and therefore
the deviating party cannot credibly argue that it has no intention of paying.

For a more stringent test of renegotiation proofness one may want to an-
alyze a different timing, and admit renegotiation between the two stages of a
period, which we will do in the remainder of this chapter. With this timing
there can only in special cases be an equilibrium that creates joint surplus
ŪSGP after every history h ∈ H, since punishments typically entail some effi-
ciency loss. We therefore turn to the slightly weaker concept of strong perfec-
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tion, which requires that no continuation payoff is strictly Pareto dominated
by another subgame perfect payoff.8

Definition 5.5. A subgame perfect equilibrium σ is strong perfect also within
periods if Uk(σ) ⊂ P(Uk

SGP ) for all k ∈ {pay, play}.

Strong perfect equilibria may fail to exist, but the concept provides a
useful sufficient condition for renegotiation-proofness. If every other subgame
perfect equilibrium makes at least one of the players worse off, then one may
feel confident that renegotiation is deterred. We show next that every strong
perfect payoff can be sustained by a stationary contract, and then use this
fact to characterize the set of strong perfect payoffs.

Proposition 5.6. If the set of strong perfect payoffs Upay
SP is nonempty, then

there exists a strong perfect optimal stationary contract σ(āe, a1, a2) with pun-
ishment payoffs ui

i such that Upay
SP is the line between (u1

1, G(āe) − u1
1) and

(G(āe) − u2
2, u

2
2).

Proof. See Section 5.7 at the end of the chapter.

An optimal stationary contract can only in the punishment phases, before
the play stage, be dominated by another subgame perfect equilibrium. To
find a characterization of strong perfect stationary contracts, we are therefore
interested in P(Uplay

SGP ). Let σ ∈ Σplay
SGP with u(σ) ∈ P(Uplay

SGP ) be a Pareto
optimal equilibrium in the subgame that starts with the play stage. Let ã
be the first action profile on the equilibrium path of σ. Clearly, there exists
an optimal stationary contract σ(āe, ā1, ā2) that weakly dominates u(σ|ã). It
can then be shown that play of ã followed by play of σ(āe, ā1, ā2) must be
a subgame perfect equilibrium with payoffs equal to u(σ). Equilibria of this

form are essential for the shape of P(Uplay
SGP ). We define:

Definition 5.7. An action profile ã ∈ A is called admissible if

(1 − δ)G(ã) + δŪSGP ≥ (1 − δ)(c1(ã) + c2(ã)) + δ(ū1
SGP + ū2

SGP ).

The preceeding discussion suggests that an action profile ã is admissible if
and only if there is a subgame perfect equilibrium in which ã is played on the
equilibrium path. Admissible actions play an important role in the following
characterization of strong perfect stationary contracts.

8 That we use strict Pareto dominance matters for knife-edge cases only, for which
the conclusion of renegotiation proofness then is not as strong.
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Proposition 5.8. An optimal stationary contract σ(āe, a1, a2) with punish-
ment payoffs u1

1 and u2
2 is strong perfect if and only if for both players i ∈ {1, 2}

and all admissible ã with G(ã) > G(ai) it holds that either

(i) (1 − δ) (G(ã) − ci(ã)) − δūi
SGP ≤ (1 − δ)G(ai) − ui

i, or

(ii) (1 − δ)(G(ã) − cj(ã)) + δG(āe) − δūj
SGP ≤ ui

i for j 6= i.

Proof. See Section 5.7 at the end of the chapter.

Intuitively, conditions (i) and (ii) concern the punishment for player i in
a stationary contract: condition (i) ensures that there are no subgame perfect
equilibria with higher payoff for the other player, and if this condition fails,
condition (ii) adds that such equilibria should not have a higher player i pay-
off. 9 We now derive corollaries that are easier to apply than the proposition:

Corollary 5.9. There exists a strong perfect stationary contract with punish-
ment payoffs ūi

SGP - and consequently Upay
SP = P(Upay

SGP ) - if and only if for
i = 1, 2 there exists an admissible āi ∈ A with ci(ā

i) = ūi
SGP such that

G(āi) − ci(ā
i) ≥ G(ã) − ci(ã)

for all admissible ã ∈ A.

Proof. See Section 5.7 at the end of the chapter.

Corollary 5.10. There exists no strong perfect stationary contract
σ(āe, a1, a2) if for both players i = 1, 2 it holds that G(āe) > G(ai)
and

(1 − δ) (G(āe) − ci(ā
e)) − δūi

SGP > (1 − δ)G(ai) − ci(a
i).

Proof. See Section 5.7 at the end of the chapter.

These two corollaries can be used to show that in Abreu’s Cournot example
there is no strong perfect equilibrium, except for the Nash equilibrium of the
stage game as the only admissible action profile in case δ < 1

4 . Instead of
exercising this non-existence in detail, we now present examples in which
strong perfect equilibria at least sometimes exist.

9 That the latter case cannot be excluded in a strong perfect stationary contract,
and that thus we cannot restrict attention to strong perfect stationary contracts
with maximum fines, is due to the fact that we did not assume the existence of a
public correlation device. In a stationary contract that ceases to be strong perfect
if the maximum fines are used, the punishment payoff is always dominated by a
convex combination of payoffs in Uplay

SGP .
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Example: Principal-Agent Game

Assume that only player 1 (the agent) chooses an action a ∈ A1. The action
creates a nonpositive payoff g1(a) for player 1 and a nonnegative benefit g2(a)
for player 2 (the principal). One interpretation is that player 1 is a supplier
who delivers a product of a certain quality, where higher quality is more
expensive. Another interpretation is that player 1 is a worker who can exert
work effort a, which can be observed by the employer. The agent can choose
a ’do-nothing’ action a = 0 that yields zero payoff for both players.

Since a = 0 is the worst punishment for player 2, while any action yields
zero cheating payoff to player 1, the subgame perfection condition is G(a) ≥
(1 − δ)g2(a). The optimal equilibrium action āe is therefore the one that
maximizes G(a) among all a ∈ A1 with G(a) ≥ (1− δ)g2(a). We use corollary
5.9 to show that σ(āe, āe, 0) is strong perfect. The punishment for player 1 is
simply that he does not get paid, while the punishment for player 2 if he does
not pay is termination of the relationship for the current period. Since for any
admissible action ã it holds that G(ã)− g2(ã) = g1(ã) ≤ 0, the equilibrium is
strong perfect. Hence, in this simple complete information game, we confirm
the intuition of Levin (2003) that with a one-sided incentive problem, optimal
subgame perfect payoffs can be implemented in a renegotiation-proof way.10

Example: Strong Perfection in the Prisoner’s Dilemma

For another example, consider a Prisoner’s Dilemma game of the form

C D
C 1, 1 d, S − d
D S − d, d 0, 0

with d > 1 > S
2 . Cooperation can be sustained if δ ≥ d−1

d
=: δCC .

First, assume that S ≤ 0. In this case, (D,D) is not only an easier pun-
ishment, but also the more efficient one. For δ < δCC only the equilibrium
(D,D) is subgame perfect, and therefore of course also renegotiation-proof.
For δ ≥ δCC , we use Corollary 5.9 to see that there is a strong perfect sta-
tionary contract with equilibrium action (C,C) if and only if d ≥ 2. If this
condition holds, Upay

SP = {(u1, 2 − u1) : u1 ∈ [0, 2]}. It may seem counterintu-
itive that for strong perfection the temptation to deviate from (C,C) in the
stage game must be sufficiently large, but this condition implies that payoffs
on the equilibrium path cannot be too asymmetric. At the end of section 5.5

10 That punishment in which the agent is punished by not being paid, while con-
tinueing to work, can lead to strong perfect equilibria has already been noted by
Farrell and Weizsäcker (2001).
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we will return to the prisoners’ dilemma and compare this condition for strong
perfection to the condition for strong renegotiation proofness.

Next, take the case that S > 0 and d ≥ 2 − S. Note that for all δ ≥ δCC ,
(C,D) and (D,C) are also admissible, and corollary 5.9 again tells us that the
resulting σ((C,C), (C,D), (D,C)) are strong perfect. For δ < δCC we have to
distinguish two cases. If it happens to be true that S ≤ 1, then only (D,D)
is admissible for these low discount factors. If instead S > 1 then there is a
range of discount factors for which (C,D) is admissible but (C,C) is not. In
this case, stationary contracts of the form σ((C,D), (C,D), (D,C)) are strong
perfect.

Finally, for the case that S > 0 and 2 > d+S there are only trivial strong
perfect equilibria: (D,D) as the only stationary contract for any δ < δCC .

5.5 Renegotiation proofness: WRP and SRP

Strong perfection is a very strong criterion; in a strong perfect equilibrium
every continuation payoff must survive comparison to all subgame perfect
equilibria, even to those that are not considered possible ways of playing
the game themselves. In this section, we analyze a concept that tries to avoid
such comparisons, namely weak and strong renegotiation-proofness defined by
Farell and Maskin (1989). An equilibrium is weakly renegotiation-proof if none
of its continuation equilibria is strictly Pareto dominated by another contin-
uation equilibrium. Strong renegotiation proofness requires stability against
renegotiation to any possible weakly renegotiation proof continuation equilib-
rium. The formal definitions, allowing for renegotiation within a period, are
as follows:

Definition 5.11. A subgame perfect equilibrium σ is weakly renegotiation
proof (WRP), if for no stage k ∈ {pay, play} there are continuation payoffs
u, u′ ∈ Uk(σ) such that u is strictly Pareto dominated by u′.

WRP equilibria always exist in our framework, but the concept often does
not have much restricting power. For example, playing the same Nash equi-
librium of the stage game after every history is always a WRP equilibrium. If
an equilibrium σ is WRP, then we also say that the payoffs Uk(σ) are WRP.
Let Uk

WRP denote the set of all WRP payoffs beginning with stage k.

Definition 5.12. A WRP equilibrium σ is strongly renegotiation proof (SRP)
if for no stage k and u ∈ Uk(σ) there exists another WRP payoff u′ ∈ Uk

WRP

such that u is strictly Pareto dominated by u′.
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It follows directly from this definition that the set of SRP payoffs is a
subset of the Pareto-frontier of all WRP payoffs, but in general the two sets
do not coincide. In fact, SRP equilibria often do not even exist. When mon-
etary transfers are possible, however, Baliga and Evans (2000) show in a re-
lated model that as players grow infinitely patient, the set of SRP payoffs
approaches the set of all efficient total payoff in the stage game payoffs, which
are the individually rational distributions of the maximum surplus that can
be achieved in the stage game. This insight carries through to our framework.
In the following we characterize the set of SRP payoffs for all discount fac-
tors δ ≥ 1

2 . This assumption that the future matters more than the present
guarantees that the way we specified the payments in a stationary contract
is general enough to characterize SRP payoffs. At the end of this section, we
provide conditions for the results to extend to the case δ < 1

2 .
First, we answer the question under what conditions a given stationary

contract σ(ae, a1, a2) is WRP. We do this only for a subclass of stationary
contracts that is sufficient for our analysis.

Definition 5.13. A stationary contract σ(ae, a1, a2) is called regular if it has
maximum fines, G(ae) ≥ G(ai), and either ci(a

i) < ci(a
e) or ai = ae for

i = 1, 2.

Lemma 5.14. Let σ(ae, a1, a2) with equilibrium payoffs ue = g(ae) − δpe be
a regular stationary contract. Then σ(ae, a1, a2) is WRP if and only if

(1 − δ)G(ai) + δG(ae) − ci(a
i) ≥ ue

j for i 6= j = 1, 2. (5.10)

There exists a payment vector p̃e such that σ(ae, a1, a2) with equilibrium pay-
ments p̃e instead of pe is WRP if and only if

(1 − δ)G(ai) + δG(ae) − ci(a
i) ≥ (1 − δ)cj(a

e) + δcj(a
j) (5.11)

(1 − δ)(G(a1) + G(a2)) + 2δG(ae) ≥ G(ae) + c1(a
1) + c2(a

2). (5.12)

The intuition is simple. Since in a stationary contract all continuation
equilibria starting with the side payment stage have the same total payoff, they
cannot dominate each other. In the regular case in which the largest surplus
is generated on the equilibrium path, the only inefficiency occurs when the
actual punishment has to be carried out. If a player’s punishment is his least
preferred outcome, for WRP each player has to prefer the other’s punishment
to the equilibrium path. The conditions (5.11) and (5.12) ensure that it is
possible to choose the equilibrium transfer such that this holds.

If the game is symmetric and in addition ae = (ae
1, a

e
1), side payments on

the equilibrium path are superfluous; in this case one can show that actions
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ae, a1, a2 = (a1
2, a

1
1) can be implemented in a regular stationary WRP contract

if and only if it holds that

(1 − δ)G(a1) − c1(a
1) ≥ (1 − 2δ)g1(a

e). (5.13)

Simple conditions for stationary contracts to be WRP are very useful, because
they allow us to characterize the Pareto frontier of WRP payoffs.

Proposition 5.15. Let δ ≥ 1
2 . For all σ ∈ Σpay

WRP there exists a regular
WRP stationary contract σ(ae, a1, a2) with G(ae) ≥ u1 + u2, ci(a

i) ≤ ui

and G(ai)(1 − δ) + δG(ae) − ci(a
i) ≥ uj for all u ∈ Uplay(σ).

Proof. See Section 5.7 at the end of the chapter.

In particular, we may restrict our attention to regular WRP stationary
contracts when we are interested in the WRP payoff that maximizes the
joint surplus of the players. We say that a regular WRP stationary contract
σ(ae, a1, a2) is an optimal WRP contract if G(ae) ≥ U(σ) for all σ ∈ Σpay

WRP .
Moreover, it follows from the proposition that any payoff on the Pareto fron-
tier P(Upay

WRP ) can be implemented by a regular WRP stationary contract.
While in a WRP equilibrium the punishment need not fit the crime, it

must fit the equilibrium play. Hence, there does not have to be an equilibrium
which can be used as punishment in all WRP equilibria. This changes when
we turn to SRP equilibria, in which all continuation payoffs must lie on the
Pareto frontier of WRP payoffs. Since elements of P(Uplay

WRP ) do not Pareto
dominate each other, there is now a chance to find universal punishments.

Proposition 5.16. Let δ ≥ 1
2 . If the set of SRP payoffs is nonempty, there

exists an SRP stationary contract σ(ae, a1, a2) with punishment payoffs u1
1

and u2
2 such that Upay

SRP is given by the line between (u1
1, G(ae) − u1

1) and
(u2

2, G(ae) − u2
2).

Proof. See Section 5.7 at the end of the chapter.

This proposition is only helpful if we know whether SRP equilibria exist at
all. Fortunately, we can prove the following sufficient condition for an optimal
WRP stationary contract to be SRP:

Proposition 5.17. Let δ ≥ 1
2 . A regular optimal WRP contract σ(ae, a1, a2)

is SRP if there is no regular WRP stationary contract σ(ãe, ã1, ã2) and i ∈
{1, 2} such that

G(ãi)(1 − δ) + δG(ãe) − ci(ã
i) > G(ai)(1 − δ) + δG(ae) − ci(a

i).

Proof. See Section 5.7 at the end of the chapter.
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Remarks on the case δ <
1

2

For many games, our characterization of WRP and SRP payoffs extends be-
yond the case δ ≥ 1

2 , because the following holds:

Remark 5.18. If the actions of every regular stationary contract σ(ae, a1, a2)
that satisfy conditions (5.11) also satisfy (5.12), then the results in Proposi-
tions 5.15, 5.16, and 5.17 also hold for the case δ < 1

2 .

This follows immediately because Propositions 5.16 and 5.17 assume that
δ ≥ 1

2 only because they rely on Proposition 5.15. That Proposition 5.15
holds also for δ < 1

2 if the joint WRP condition (5.12) follows from the other
conditions is obvious from its proof.

In the following we sketch how to extend the definition of a stationary
contract in order to be able to implement all WRP payoffs on the Pareto
frontier. So far, we have assumed that in a stationary contract all transfers
add up to zero. Now we also admit the possibility that for the equilibrium
transfer pe it holds that pe

1 + pe
2 < 0. We call a stationary contract with

pe
1+pe

2 < 0 a money-burning stationary contract. Such an artificial inefficiency
may be necessary to find all WRP payoffs, because play on the punishment
path is compared to play on the equilibrium path. If it is not possible to make
the punishment more efficient, instead resources have to be destroyed on the
equilibrium path.

The conditions for weak renegotiation-proofness of a stationary contract
with money burning are more involved than those for a regular stationary
contract. Let δ < 1

2 and σ(ae, a1, a2) be a stationary contract such that the
actions ae, a1, a2 fulfill G(ae) ≥ G(ai), ci(a

i) < ci(a
e) as well as the conditions

in (5.11), but not condition (5.12). The highest possible total payoff in a
money-burning WRP σ(ae, a1, a2) then is

Ū =
(1 − δ)(G(a1) + G(a2)) − (c1(a

1) + c2(a
2))

1 − 2δ
≤ G(ae). (5.14)

We can define the transfer pe such that ue
i := G(aj)(1−δ)+δŪ −cj(a

j). Note
that ue

1 + ue
2 = Ū .

We have to make sure that the reduced joint payoff on the equilibrium
path still satisfies the subgame perfection conditions, which take the form

(1 − δ)G(ai) + δŪ − ci(a
i) ≥ (1 − δ)max(cj(a

i), cj(a
e)) + δcj(a

j). (5.15)

The WRP conditions for payoffs in the play stage hold by definition, but we
also have to take into account that continuation payoffs before the payment
stage now do not all have the same sum of payoffs. In a continuation equi-
librium before the fine or the adjustment payment is paid the total payoff is
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Ū , while it is lower before the equilibrium transfer. Therefore, we only have
to ensure that the continuation payoff before the equilibrium transfer is not
dominated by the continuation payoff before the adjustment payment is made,
i.e., that either

ue
i − (1 − δ)gi(a

e) ≥ ci(a
i) − (1 − δ)gi(a

i)

or
ue

j − (1 − δ)gj(a
e) ≥ δŪ − ci(a

i) + (1 − δ)gi(a
i),

which is equivalent to

Ū ≥ gj(a
i) + gi(a

e) or gj(a
i) ≥ gj(a

e) (5.16)

for i 6= j ∈ {1, 2}.

Proposition 5.19. For all u ∈ Upay
WRP there exists a WRP, possibly money-

burning, stationary contract with maximum fines that weakly Pareto domi-
nates u.

Proof. See Section 5.7 at the end of the chapter.

All payoffs on the strict Pareto frontier of WRP payoffs can be imple-
mented by a WRP stationary contract with money burning. Unfortunately,
for the case that δ < 1

2 , P(Upay
WRP ) does not have to be linear. Characterization

of SRP payoffs is therefore difficult if money burning stationary contracts are
needed, and since these cases are more the exception than the rule, we do
not attempt to go into more detail here. Note, however, that there is no a
priori reason why such a money burning stationary contract cannot be SRP.
Since continuation equilibria need only be compared to other WRP payoffs,
they never have to be compared to the relational contract that just skips the
money burning and is otherwise identical, because this one is not WRP.

While money burning can never be part of a strong perfect relational
contract, it arises naturally when requiring weak renegotiation-proofness. This
is in part due to the timing of renegotiations; if it were possible to separate
the money burning from the transfer, and renegotiate from before the money
burning to the point where the money has already been burned, then such
money burning stationary contracts would also not be WRP. Nevertheless, this
type of stationary contract does fit in with the spirit of weak renegotiation-
proofness, which requires that equilibrium outcomes may not be too desirable
compared to the payoffs in the punishments. Moreover, money buring is used
here only as a means to find WRP payoffs, and as such does not have to
resemble real-world agreements. For every WRP payoff there may be many
different equilibria that implement this payoff, possibly including some that
do not require money burning on the equilibrium path.
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Examples

First, we go back to the examples of Section 5.3 and 5.4, to find that the
SRP criterion excludes equilibria with punishment actions that create a low
joint surplus. In Abreu’s Cournot game, we have that for δ ≥ 1

3 , the optimal
stationary contract σ((L,L), (L,H), (H,L)) is SRP, while for δ ∈ [ 4

13 , 1
3 ), all

contracts of the form σ((L,M), (L,H), (H,L)) are SRP. In contrast, station-
ary contracts with punishments (M,H) or (H,M) are never SRP. For δ < 4

13
only the Nash equilibrium (M,M) is WRP, and hence SRP.

In the Prisoner’s dilemma, for δ ≥ 1
2 every optimal stationary contract

that uses the punishment with the highest joint payoff is SRP. To understand
why this condition is so different from the condition for strong perfection,
consider again the case S ≤ 0 and δ ≥ δCC to compare the condition for
weak renegotiation proofness, δ ≥ 1

2 , to the condition for strong perfection,
which was 2 ≤ d. For weak renegotiation-proofness, player j′s payoff in i′s
punishment only has to be higher than continuation payoffs in the same equi-
librium. Therefore the payoff 2δ has to be greater or equal to the equilibrium
payoff 1, which is true if δ ≥ 1

2 . In contrast, for strong perfection player j′s
payoff has to be compared to all possible subgame perfect payoffs, including
those with positive equilibrium transfers. The higher the defection payoff d is,
the more of those asymmetric payoffs there are. The largest player j payoff
is 2 − (1 − δ)d, and comparing this to 2δ we arrive at the condition 2 ≤ d.
Since these asymmetric equilibria are not necessarily WRP, they do not have
to be taken into account for SRP, which provides an intuition for why the
SRP condition is also equal to δ ≥ 1

2 for the case S ≤ 0.11

The only case that is missing in the case distinctions regarding the pris-
oner’s dilemma is S > 0, 2 − d > S, 1

2 > δ ≥ δCC . Let δCD denote the
discount factor at which (C,D) becomes admissible. For all δ < δCD, the
equilibrium (D,D) is SRP. For all δ ≥ 1−S

2−S
, σ((C,C)(C,D), (D,C)) is SRP,

and for δ ∈ [δCD, 1−S
2−S

) all conditions except the joint WRP condition are
satisfied. In this case, money burning is needed to find all WRP payoffs.

As an example for a money-burning stationary contract, let the variables
take the values S = 1

2 , d = 5
4 , δ = 3

10 . The maximal joint payoff is Ū = 7
4 ,

which can be achieved by the money-burning stationary contract that has
the following continuation payoffs in the play stage: (7

8 , 7
8 ), (7

8 , 0) and (0, 7
8 ).

Continuation payoffs before the payment stage are ( 7
12 , 7

12 ), (7
4 , 0), (0, 7

4 ).

11 The maximal payoff in any WRP equilibrium, given by 5.14, is equal to 0 for
δ < 1

2
.
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Collusion in a Bertrand game

Bertrand competition with symmetric costs

We now investigate the case of a Bertrand duopoly with side payments. In
order to have a compact strategy space and well-defined cheating payoffs, we
assume that prices are chosen from a finite grid Ai = {ǫm}m̄

m=0, with ǫ small
and m̄ sufficiently large. Firm i’s profits are given by

gi(a) =







(ai − ki)D(ai) if ai < aj

(ai − ki)D(ai)/2 if ai = aj

0 if ai > aj

where D is a weakly decreasing market demand function, and ki ≥ 0 is the
constant marginal cost of firm i. We first consider the case of symmetric firms
k1 = k2. Clearly, marginal cost pricing is an optimal punishment, and for
δ ≥ 1

2 the Pareto frontier of subgame perfect payoffs includes all distributions
of the monopoly profit. Using Lemma 5.14 and Prop. 5.16 one can establish
that these payoffs are also SRP.

In contrast, for a Betrand duopoly without side payments, Farell and
Maskin (1989) show that only marginal cost pricing can be sustained in a
WRP equilibrium in pure strategies. Based on this result, McCutcheon (1997)
argues that small fines for meetings of competitors can facilitate collusion
since renegotiation becomes harder. However, weak renegotiation proofness
only restricts the set of outcomes if mixed strategies are not allowed (Farell
and Maskin, 1989) and if prices are not restricted to lie on a sufficiently coarse
grid (Andersson and Wengström, 2007). Our example shows that in addition
it needs to be assumed that side payments are impossible.

Bertrand competition with asymmetric costs

Miklos-Thal ? shows that cost asymmetries facilitate collusive subgame per-
fect equilibria in a repeated Bertrand competition if side payments are possi-
ble. In the following, we use our characterizations to first replicate this result
for two firms and then show that weak renegotiation proofness does not re-
strict the set of equilibrium payoffs. Let now k1 ≤ k2 and πi(p) = (ai−p)D(p)
denote firm i’s profit if it serves the whole market at a price p. As punish-
ment profiles we choose ai = (ki, ki + ǫ). Collusion is easiest to sustain if
the low cost firm supplies the whole market and compensates the high cost
firm with side payments. Define φ(p) = p−k2

p−k1

as the ratio of firm 2’s markup
to firm 1’s markup at price p. The condition for action profiles of the form
ae = (ae

1, a
e
1 + ǫ) to be part of a stationary contract σ(ae, a1, a2) is equal to
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δ ≥
φ(ae

1)

1 + φ(ae
1)

(5.17)

as ǫ → 0. Since φ(ae
1) ≤ 1, cost asymmetries facilitate collusion. Moreover,

since φ(k2) = 0, some collusive markup can be sustained for every discount
factor δ > 0. Such contracts σ(ae, a1, a2) are WRP if

δ ≥
π1(a

e
1) − π1(k2)

2π1(ae
1) − π1(k2)

. (5.18)

For a perfectly inelastic demand function D, condition (5.18) is identical to
the subgame perfection condition (5.17), and since D is weakly decreasing,
the first condition always implies the latter.

5.6 Concluding remarks

We have shown that Pareto optimal subgame perfect payoffs and
renegotiation-proof payoffs can generally be found by restricting attention
to a class of stationary contracts. These stationary contracts prescribe play
of the same action in every period on the equilibrium path, and in case of a
deviation allow the deviator to pay a fine and return to equilibrium play. The
actual punishment that results if a fine is not paid occurs within one period.
Fines can hence be used to create one-period punishments, which are more
resistent to renegotiation than a punishment that lasts forever. Renegotiations
are often blocked by the expectations for the next period.

In fact, a one period inefficiency will also never be renegotiated if negotia-
tions only take place after actions have already been taken, i.e., if the timing
follows a “bargain-pay-play” pattern. This timing can be thought of as bar-
gaining and action occuring at certain points in time while payments can in
principle be made all the time. In contrast, the “bargain-pay-bargain-play”
timing that is mainly analyzed the present chapter implies that payment and
action occur at specified dates, but bargaining can occur at all times. Since
in applications it is often difficult to pin down the timing of negotiations, the
most important results in this paper are probably the sufficient conditions
for strong perfection, because this concept offers a similarly strong conclusion
of renegotiation-proofness as Levin (2003)’s strong optimality. These results
can therefore serve the purpose of a robustness-against-renegotiation-check
for optimal subgame perfect equilibria.

The results in this chapter add to the discussion in Fong and Surti (2009)
about the role of side payments in relational contracts. Among other things,
they conjecture that restriction to stationary equilibrium paths without cor-
relation is without loss of generality also beyond the prisoners’ dilemma that
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they study. We have shown here that even with possibly complex punishments,
stationary contracts are sufficient to characterize Pareto optimal subgame per-
fect payoffs.12 Fong and Surti (2009) do not attempt to make a conjecture
about the generalizability of their results on renegotiation proofness, which
are complex and technical in their framework with an impatient and a patient
player. In contrast, in our framework with a common discount factor, finding
the set of strong perfect, WRP, or SRP payoffs is often not difficult, and the
use of stationary contracts helps to explain the technical conditions that de-
scribe these sets. To see whether and how these characterizations extend to
more general frameworks, e.g., with private information or costly transfers,
are interesting tasks for future work.

12 The proof can be extended to show that correlation devices are not needed for
this task if side payments, including an ex ante payment, are possible. The ex-
istence of such devices may, however, matter for the set of renegotiation-proof
outcomes. We have excluded the use of a public correlation device in the analysis
of renegotiation-proof payoffs because it is not clear what this would mean for
the timing of negotiations.



100 5 Renegotiation-proof relational contracts with side payments

5.7 Proofs

Proof of Lemma 5.3.
We are interested in finding conditions on ae, a1, a2 that make it possible to
define the equilibrium transfer pe and fines F 1 and F 2 such that conditions
(5.4), (5.5), and (5.6) for subgame perfection are fulfilled. Note that there are
three conditions that bound ui

i, i = 1, 2 from above but only one that bounds
it from below. Therefore, these conditions hold for some ui

i if and only if
they hold for the lowest continuation payoff ui

i = ci(a
i). Since the equilibrium

transfer pe only plays a role in the equilibrium conditions

gi(a
e) − δpe

i ≥ ci(a
e)(1 − δ) + δci(a

i) for i ∈ {1, 2},

we can for example choose δpe
1 = g1(a

e) − c1(a
e)(1 − δ) − δc1(a

1) such that
player 1’s incentive constraint is binding. Player 2’s incentive constraint then
reads

G(ae) ≥ (c1(a
e) + c2(a

e))(1 − δ) + δ(c1(a
1) + c2(a

2)),

which is just the sum of the two equilibrium incentive constraints and must
therefore also hold if those hold separately.

Proof of Proposition 5.4.
There must be sequences of equilibria in Σplay

SGP ,
(

σe
n, σ1

n, σ2
n

)

n∈N
with

limn→∞ U(σe
n) = ŪSGP and limn→∞ ui(σ

i
n) = ūi

SGP . Let ai
n be the first ac-

tion profile of the equilibrium path of σl
n, l = e, 1, 2. Then al

n is a sequence in
the compact set A = A1×A2, and as such must have convergent subsequences
with limits in A. We assume here w.l.o.g. that these subsequences are already
given by al

n and denote the limits by āe, ā1 and ā2, resp. In the following we
use the properties of σe

n, σ1
n, σ2

n to make inferences about the limit actions.
First, if we decompose U(σe

n) into current period payoff and future payoff, we
find that

U(σe
n) ≤ G(āe

n)(1 − δ) + δŪSGP .

Since G is continuous, taking limits on both sides yields

ŪSGP ≤ G(āe). (5.19)

Second, subgame perfection of σi
n implies

ui(σ
i
n) ≥ ci(a

i
n)(1 − δ) + δūi

SGP .

Again, since ci is continuous, taking limits yields

ūi
SGP ≥ ci(ā

i). (5.20)
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Third, summing up player 1 and 2 ’s subgame perfection conditions for σe
n

yields
ŪSGP ≥ (c1(a

e
n) + c2(a

e
n)) (1 − δ) + δ(ū1

SGP + ū2
SGP ).

In the limit, and using (5.19) and (5.20), this becomes

G(āe) ≥ (c1(a
e) + c2(a

e)) (1 − δ) + δ(c1(ā
1) + c2(ā

2)). (5.21)

Last, we exploit the subgame perfection condition

uj(σ
i
n) ≥ cj(a

i
n)(1 − δ) + δūj

SGP

as well as
G(ai

n)(1 − δ) + δŪSGP ≥ U(σi
n)

to get

G(ai
n)(1 − δ) + δŪSGP − ūi

SGP ≥ cj(a
i
n)(1 − δ) + δūj

SGP .

In the limit, and using (5.19) and (5.20), this becomes

G(āi)(1 − δ) + δG(ae) − ci(ā
i) ≥ cj(ā

i)(1 − δ) + δcj(ā
j). (5.22)

Equations (5.21) and (5.22) together with Lemma 5.3 now tell us that there
is a stationary contract σ(āe, a1, a2), with joint payoff G(āe) = ŪSGP and
punishment payoffs ci(a

i) = ūi
SGP . The up-front payment can be used to

achieve all payoffs on the line between (c1(ā
1), G(āe) − c1(ā

1)) and (G(āe) −
c2(ā

2), c2(ā
2)).

Proof of Proposition 5.6.
Assume that Uplay

SP is nonempty. Let ūi be a tuple in the closure of Uplay
SP with

ūi
i = inf

u∈Uplay

SP

ui, i = 1, 2. Since the lowest possible strong perfect payoffs

must be able to implement at least one action profile āe with G(āe) = ŪSGP

it must hold that

G(āe) ≥ (c1(ā
e) + c2(ā

e)) (1 − δ) + δ(ū1
1 + ū2

2).

It also holds again that ūi
i = infu∈Upay

SP
ui.

As in the SGP case (proof of Prop. 5.4) there must exist ai with ūi
i ≥ ci(a

i)
and

G(ai)(1 − δ) + δG(āe) − ūi
i ≥ ūi

j ≥ cj(a
i)(1 − δ) + δūj

j for i 6= j ∈ {1, 2}.

Due to these conditions, there is a stationary contract σ(āe, a1, a2) and pun-
ishment payoffs ū1

1 and ū2
2. In this stationary contract, all continuation equi-

libria either have total payoff ŪSGP , or the payoff is ui with ui
i = ūi

i and
ui

j ≥ ūi
j . Thus, σ(āe, a1, a2) is strong perfect for all subgame perfect up-front

payments. Therefore, Upay
SP must be equal to the line from (ū1

1, G(āe)− ū1
1) to

(G(āe) − ū2
2, ū

2
2).
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Proof of Proposition 5.8.
First we show that a stationary contract σ(āe, a1, a2) with punishment payoffs
u1

1 and u2
2 is strong perfect given that the condition in the proposition holds.

Clearly, continuation equilibria that start with the transfer cannot be Pareto
dominated, so we only have to show that this holds also for the punishment
phases. Assume to the contrary that there is an equilibrium σ̃ ∈ Σplay

SGP that
strictly dominates the punishment for player i. The first action profile ã of σ̃
is admissible and since G(ai)(1− δ) + δG(āe) < U(σ̃) ≤ G(ã)(1− δ) + δG(āe)
it must hold that G(ã) > G(ai), hence either inequality (i) or (ii) holds.
We know that in the equilibrium σ̃ player j’s payoff is bounded by the joint
payoff U(σ̃) minus player i’s minimum payoff (1 − δ)ci(ã) + δūi

SGP . Hence
strict Pareto dominance of σ̃ implies that

(1−δ)G(ai)+δG(āe)−ui
i < uj(σ̃) ≤ G(ã)(1−δ)+δG(āe)−(1−δ)ci(ã)−δūi

SGP

and
ui

i < ui(σ̃) ≤ G(ã)(1 − δ) + δG(āe) − (1 − δ)cj(ã) − δūj
SGP ,

which is a contradiction to the fact that either (i) or (ii) has to hold.
Next we assume that σ(āe, a1, a2) with punishment payoffs u1

1, u
2
2 is strong

perfect, and assume to the contrary that there exists an admissible ã with
G(ã) > G(ai) and

(1 − δ)G(ã) − ci(ã)(1 − δ) − δūi
SGP > (1 − δ)G(ai) − ui

i (5.23)

and
(1 − δ)G(ã) + δG(āe) − cj(ã)(1 − δ) − ūj

SGP > ui
i. (5.24)

for some player i. Because ã is admissible, strategies that follow play of the
path

Q̃ := (ã, p̃, ae, pe, ae, ....)

and use the optimal penal codes as punishments form a subgame perfect
equilibrium for a nonempty range of p̃. Since G(ã) > G(ai) the equilibrium has
a higher joint payoff than the punishment phase for player i in our stationary
equilibrium. Because of conditions (5.23) and (5.24), the transfer after play of
ã can be used to give each player strictly more than in the punishment phase
of σ(āe, a1, a2), contradicting strong perfection.

Proof of Corollary 5.9.
Assume first that there exist strong perfect stationary contracts with pun-
ishment payoffs ūi

SGP . There must exist an optimal stationary contract
σ(āe, ā1, ā2) with maximum fines and such that ci(ā

i) = ūi
SGP and G(āi) ≥

G(ai) for all other admissible action profiles ai with ci(a
i) = ūi

SGP . Now as-
sume that there is an admissible action ã and i ∈ {1, 2} with G(āi)− ci(ā

i) <
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G(ã)−ci(ã). Since ci(ā
i) ≤ ci(ã) it must hold that G(ã) > G(ai). Condition (i)

of Prop. 5.8 then takes the form G(ã) − ci(ã) ≤ G(āi) − ci(ā
i) and therefore

does not hold. Condition (ii), together with admissibility of ã, implies that

ci(ã)(1− δ)+ δci(ā
i) ≤ G(ã)(1− δ)+ δG(āe)− cj(ã)(1− δ)− δcj(ā

j) ≤ ci(ā
i).

Hence, ci(ã) = ci(ā
i), contradicting our choice of āi.

Next, assume that there are admissible ā1 and ā2 such that for all admis-
sible ã it holds that

G(āi) − ci(ā
i) ≥ G(ã) − ci(ã) for i = 1, 2.

Then there exists an optimal stationary contract σ(āe, ā1, ā2) with ci(ā
i) =

ūi
SGP , and condition (i) of Prop. 5.8 is true for all admissible ã.

Proof of Corollary 5.10.
Assume to the contrary that there is a strong perfect stationary contract
σ(āe, a1, a2) with punishment payoffs u1

1 and u2
2, while it holds that

(1 − δ) (G(āe) − ci(ā
e)) − δci(ā

i) > (1 − δ)G(ai) − ci(a
i) for both i ∈ {1, 2}.

Take ã = āe in Prop. 5.8. Condition (i) does not hold for any i ∈ {1, 2}.
Therefore, condition (ii) must hold for both i ∈ {1, 2}, and in sum these
conditions imply that u1

1 + u2
2 ≥ G(āe). This can only be fulfilled if u1

1 + u2
2 =

G(āe), and in this case the condition also implies that G(āe) = c1(ā
1)+c2(ā

2).

This means that P(Upay
SGP ) and P(Uplay

SGP ) consist of at most one point with
joint payoff ŪSGP , hence σ(āe, a1, a2) cannot be strong perfect.

Proof of Lemma 5.14.
Let σ(ae, a1, a2) with equilibrium payoff ue be a regular stationary contract
that is WRP. If (1 − δ)G(ai) + δG(ae) − ci(a

i) < ue
j , then it must hold that

ci(a
i) ≥ ue

i , i.e., ci(a
i) ≥ ci(a

e). This implies ai = ae and therefore

G(ai)(1 − δ) + δG(ae) − ci(a
i) = G(ae) − ci(a

e) ≥ G(ae) − ue
i = ue

j .

Next, assume that for the regular stationary contract σ(ae, a1, a2) inequal-
ity (5.10) holds. Since G(ae) ≥ G(ai) this implies that the payoff when player
i is punished and the equilibrium payoff ue cannot be Pareto ranked. More-
over, (1 − δ)G(ai) + δG(ae) − ci(a

i) ≥ ue
j ≥ ci(a

i), and therefore the two
punishments cannot be Pareto ranked, either.

To prove the second statement, note that the conditions (5.11) and (5.12)
follow from the condition 5.10 and subgame perfection. To prove the other
direction, one has to adjust the equilibrium payment in the appropriate way.
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Conditions (5.11) and (5.12) and the conditions for subgame perfection imply
that it is possible to choose p̃e

1 such that

G(ae) − c2(a
e)(1 − δ) − δc2(a

2) ≥ g1(a
e) − p̃e

1 ≥ c1(a
e)(1 − δ) + δc1(a

1)

and

G(a2)(1−δ)+δG(ae)−c2(a
2) ≥ g1(a

e)− p̃e
1 ≥ (1−δ)(G(ae)−G(a1))−c1(a

1)

The resulting stationary contract, which is equal to σ(ae, a1, a2) except for
the new equilibrium payment p̃e, is still a regular stationary contract, and it
is WRP.

Proof of Proposition 5.15.
Let σ be any WRP equilibrium and let Ū = supu∈Uplay(σ) u1 + u2, and ūi

i =

infu∈Uplay(σ) ui. We take (ūe
1, ū

e
2) to be a payoff tuple in the closure of Uplay(σ)

such that ūe
1 + ūe

2 = Ū . Similarly, (ūi
1, ū

i
2) shall be a tuple in the closure of

Uplay(σ) such that among all such tuples with the same player i payoff ūi
i,

player j’s payoff is maximized. We then have that ūi
i ≤ ui and ūi

j ≥ uj for all

u ∈ Uplay(σ). Let u(σ|he
n) be a sequence in Uplay(σ) with limit (ūe

1, ū
e
2) and for

i = 1, 2 let u(σ|hi
n) be a sequence with limit (ūi

1, ū
i
2). Let furthermore al

n be
the w.l.o.g. convergent sequences of the first action profiles of the continuation
equilibria σ|hl

n, l = e, 1, 2. Completely analogous to the SGP case (see the
proof of Prop. 5.4) we have for the limits of these sequences, denoted by
ae, a1, a2, that G(ae) ≥ Ū , ci(a

i) ≤ ūi
i,

Ū ≥ (c1(a
e) + c2(a

e))(1 − δ) + δ(ū1
1 + ū2

2),

and

G(ai)(1 − δ) + δŪ − ūi
i ≥ ūi

j ≥ max(cj(a
j), cj(a

i))(1 − δ) + δūj
j ,

as well as

G(ai)(1 − δ) + δŪ − ci(a
i) ≥ ūe

j ≥ cj(a
e)(1 − δ) + δcj(a

j)

and
(G(a1) + G(a2))(1 − δ) + 2δŪ − c1(a

1) − c2(a
2) ≥ Ū .

Since we assumed that δ ≥ 1
2 , these conditions are relaxed if we re-

place Ū by G(ae). Next, define ãe ∈ {ae, a1, a2} such that G(ãe) =
max{G(ae), G(a1), G(a2)}, and ãi = ai if ci(a

i) < ci(ã
e) and ãi = ãe else.

It is straightforward to show that all conditions still hold:

G(ãe) ≥ (1 − δ)(c1(ã
e) + c2(ã

e)) + δ(c1(ã
1) + c2(ã

2)),
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G(ãi)(1 − δ) + δG(ãe) − ci(ã
i) ≥ max(cj(ã

e), cj(ã
i))(1 − δ) + δcj(ã

j),

and

(G(ã1) + G(ã2))(1 − δ) + 2δG(ãe) − (c1(ã
1) + c2(ã

2)) ≥ G(ãe).

Because of Lemma 5.14 there is a WRP regular stationary contract
σ(ãe, ã1, ã2) with properties as stated in the proposition.

Proof of Proposition 5.16.
Since no two payoff tuples in Uplay

SRP can be strictly Pareto ranked, one can
show as in the WRP case that there exists a WRP regular stationary contract
σ(ae, a1, a2) with G(ae) ≥ u1 + u2, ci(a

i) ≤ ui,and G(ai)(1 − δ) + δG(ae) −

ci(a
i) ≥ uj for all u ∈ Uplay

SRP . Since σ(ae, a1, a2) cannot Pareto dominate the
SRP equilibria it follows that G(ae) = maxUplay

SRP

u1 + u2, and because the

worst SRP payoffs must be able to sustain ae, σ(ae, a1, a2) with punishment
payoffs infUplay

SRP

ui instead of ci(a
i) is SRP.

Proof of Proposition 5.17.
Assume that σ(ae, a1, a2) is not SRP. Since σ(ae, a1, a2) is an optimal WRP
stationary contract, it can only be dominated in the punishment phase, that is,
there must be i ∈ {1, 2} and a WRP equilibrium σ̃ such that ui(σ̃|h) > ci(a

i)
and for j = 3 − i

uj(σ̃|h) > G(ai)(1 − δ) + δG(ae) − ci(a
i)

for some h ∈ Hplay. Because of Prop. 5.15 there exists a regular WRP sta-
tionary contract σ(ãe, ã1, ã2) with

G(ãi)(1 − δ) + δG(ãe) − ci(ã
i) ≥ uj(σ̃|h).

Proof of Proposition 5.19.
The proof is analogous to the proof of Proposition 5.15. Let σ ∈ Σpay

WRP

and as before, let u(σ|he
n) be a sequence in Uplay(σ) with limit ūe such that

ūe
1 + ūe

2 = Ūe = supu∈Uplay(σ) u1 + u2, and let u(σ|hi
n) be a sequence with

limit ūi, where ūi
i ≤ ui and ūi

j ≥ uj for all u ∈ Uplay(σ). Let furthermore

ae, a1, a2 be the limits of the sequences consisting of the first action pairs of
the continuation equilibria σ|hl

n, l = e, 1, 2. We already know that G(ae) ≥ Ūe,

G(ai)(1 − δ) + δŪe − ci(a
i) ≥ max(cj(a

i), cj(a
j))(1 − δ) + δcj(a

j),

G(ai)(1 − δ) + δŪe − ci(a
i) ≥ ūe

j ≥ cj(a
e)(1 − δ) + δcj(a

j),

and in particular
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(G(a1) + G(a2))(1 − δ) + (2δ − 1)Ūe − c1(a
1) − c2(a

2) ≥ 0. (5.25)

If this last condition still holds if we replace Ūe by G(ae), then we are in the
case of Prop. 5.15. For the case that ci(a

i) ≥ cj(a
e) for some i, it holds that

σ(ae, ae, aj) is a WRP stationary contract.
Let us now assume that ci(a

i) < ci(a
e) and 5.25 binds at some joint payoff

Ūe ≤ Ū < G(ae). This payoff is the one defined in (5.14), and the conditions
for subgame perfection (5.15) are satisfied as well. Therefore, we know that
there is a stationary contract σ(ae, a1, a2) with money burning and equilib-
rium payoff

(

G(a1)(1 − δ) + δŪe − c1(a
1), G(a2)(1 − δ) + δŪe − c2(a

2)
)

. The
WRP conditions for the play stage hold by definition, it remains only to show
that they also hold for the pay stage.

We show first that no tuple in the closure of Upay(σ) strictly Pareto dom-
inates another such tuple: take any two sequences u(σ|hn) and u(σ|h′

n) in
Upay(σ). Then for any n ∈ N it holds that either u1(σ|hn) ≥ u1(σ|h

′
n) and

u2(σ|hn) ≤ u2(σ|h
′
n), or u1(σ|hn) ≤ u1(σ|h

′
n) and u2(σ|hn) ≥ u1(σ|h

′
n). Since

one of the conditions must hold for a subsequence, this condition must then
also hold for the limit.

Consequently, among the payoff vectors u(σ), (ūe − g(ae)(1 − δ))/δ, and
(ūi − g(ai)(1 − δ))/δ, i = 1, 2 no two are strictly Pareto ranked. This implies
that Ū ≥ gi(a

e) − gj(a
i) or gj(a

e) ≤ gj(a
i). Moreover, there must be an

i ∈ {1, 2} with δui(σ) ≤ ūe
i − gi(a

e)(1 − δ). Define the up-front transfer in
σ(ae, a1, a2) such that ui(σ(ae, a1, a2)) = ui(σ), the resulting σ(ae, a1, a2) then
is a money-burning WRP stationary contract that weakly Pareto dominates
σ.
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