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1. INTRODUCTION 1

1. Introduction

In this thesis we construct an additive category whose objects are embedded graphs (or in par-
ticular knots) in the 3-sphere and where morphisms are formal linear combinations of 3-manifolds.
Our definition of correspondences relies on the Alexander branched covering theorem [1], which
shows that all compact oriented 3-manifolds can be realizedas branched coverings of the 3-sphere,
with branched locus an embedded (not necessarily connected) graph. The way in which a given 3-
manifold is realized as a branched cover is highly not unique. It is precisely this lack of uniqueness
that makes it possible to regard 3-manifolds as correspondences. In fact, we show that, by con-
sidering a 3-manifoldM realized in two different ways as a covering of the 3-sphere as defining a
correspondence between the branch loci of the two covering maps, we obtain a well defined associa-
tive composition of correspondences given by the fibered product.
An equivalence relation between correspondences given by 4-dimensional cobordisms is introduced
to conveniently reduce the size of the spaces of morphisms. We construct a 2-category where mor-
phisms are coverings as above and 2-morphisms are cobordisms of branched coverings. We discuss
how to pass from embedded graphs to embedded links using the relation ofb-homotopy on branched
coverings, which is a special case of the cobordism relation.
We associate to the set of correspondences with compositiona convolution algebra and we describe
natural time evolutions induced by the multiplicity of the covering maps. We prove that, when consid-
ering correspondences modulo the equivalence relation of cobordism, this time evolution is generated
by a Hamiltonian with discrete spectrum and finite multiplicity of the eigenvalues.
Similarly, in the case of the 2-category, we construct an algebra of functions of cobordisms, with
two product structures corresponding to the vertical and horizontal composition of 2-morphisms.
We consider a time evolution on this algebra, which is compatible with the vertical composition of
2-morphism given by gluing of cobordisms, that correspondsto the Euclidean version of Hartle–
Hawking gravity. This has the effect of weighting each cobordism according to the corresponding
Einstein–Hilbert action.
We also show that evolutions compatible with the vertical composition of 2-morphisms can be ob-
tained from the linearized version of the gluing formulae for gauge theoretic moduli spaces on 4-
manifolds. The linearization is given by an index theorem and this suggests that time evolutions
compatible with both the vertical and horizontal compositions may be found by considering an index
pairing for the bivariant Chern character on KK-theory classes associated to the geometric correspon-
dences. We outline the argument for such a construction. Ourcategory constructed using 3-manifolds
as morphisms is motivated by the problem of developing a suitable notion ofspectral correspondences
in noncommutative geometry, outlined in the last chapter ofthe book [17]. The spectral correspon-
dences described in [17] will be the product of a finite noncommutative geometry by a “manifold
part”.
The latter is a smooth compact oriented 3-manifold that can be seen as a correspondence in the sense
described in the present paper. We discuss the problem of extending the construction presented here
to the case of products of manifolds by finite noncommutativespaces in the last section of the first
chapter.

Chapter two begins with a discussion of how to pass from the case where the branch loci of
the coverings are embedded multi-connected graph to more special case where these loci are links
and knots. This is achieved using the “Alexander trick” and the equivalence relation ofb-homotopy
of branched covering. Passing to knots and links allows us tomake use in our context of some
invariants and known constructions for knots and links and investigate analogs for embedded graphs.
An interesting homology theory for knots and links that we consider here is the one introduced by
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Khovanov in [43]. We recall the basic definition and properties of Khovanov homology and we
give some explicit examples of how it is computed for very simple cases such as theHopf link. We
also recall, at the beginning of Chapter 2, the constructionof the cobordism group for links and for
knots and their relation. We then consider the question of constructing a similar cobordism group
for embedded graphs in the 3-sphere. We show that this can actually be done in two different ways,
both of which reduce to the same notion for links. The first onecomes from the description of
the cobordisms for links in terms of sequences of two basic operations, called “fusion” and “fission”,
which in terms of cobordisms correspond to the basic cobordisms obtained by attaching or removing a
1-handle. We define analogous operations of fusion and fission for embedded graphs and we introduce
an equivalence relation of cobordism by iterated application of these two operations. The second
possible definition of cobordism of embedded graphs is the one that we already used in Chapter 1
in section 7 as part of the definition of cobordisms of branched coverings, as the induced cobordism
of the branched loci in the 3-sphere realized by an embedded surface (meaning here 2-complex)
in S3× [0,1] with boundary the union of the given graphs. While for links,where cobordisms are
realized by smooth surfaces, these can always be decomposedinto a sequence of handle attachments,
hence into a sequence of fusions and fissions, in the case of graphs not all cobordisms realized by 2-
complexes can be decomposed as fusions and fissions, hence the two notions are no longer equivalent.
We then return to homology again and discuss the question of extending Khovanov homology from
links to embedded graphs. We propose two possible approaches to this purpose and we explain
completely only one of them, while only sketching the other.The first idea is to try and combine
the Khovanov complex, which is based on resolving in different ways crossings in a planar diagram,
with the complex for thegraph homology, which is not sensitive to the graph being embedded, but
it has a good control over the combinatorial complexity of edges and vertices. We only sketch in
one very simple example how one can try to combine these two differentials. We then take on a
different approach. This is based on a result of Kauffman that constructs a topological invariant of
embedded graphs in the 3-sphere by associating to such a graph a family of links and knots obtained
using some local replacements at each vertex in the graph. Heshowed that it is a topological invariant
by showing that the resulting knot and link types in the family thus constructed are invariant under
a set of Reidemeister moves for embedded graphs that determine the ambient isotopy class of the
embedded graphs. We build on this idea and simply define the Khovanov homology of an embedded
graph to be the sum of the Khovanov homologies of all the linksand knots in the Kauffman invariant
associated to this graph. Since this family of links and knots is a topologically invariant, so is the
Khovanov homology of embedded graphs defined in this manner.We close Chapter two by giving an
example of computation of Khovanov homology for an embeddedgraph using this definition.

The appendix collects some known preliminary notions and background material that is needed
elsewhere in the text.
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Graphs Category and Three-manifolds as correspondences

1. Three-manifolds as correspondences

For the moment, we only work in the PL (piecewise linear) category, with proper PL maps. This
is no serious restriction as, in the case of 3-dimensional and 4-dimensional manifolds, there is no
obstruction in passing from the PL to the smooth category. When we refer to embedded graphs inS3,
we mean PL embeddings of 1-complexes inS3 with no order zero or order one vertices.
Let M3 andN3 be smooth compact oriented 3-manifolds without boundary. Abranched covering
p : M3→ N3 is a continuous surjective map with the property that there exists a 1-dimensional sub-
complexE in N3 such that on the complement ofE the map

p : M3 r p−1(E)→ N3 r E (1.1)

is an actual (smooth) covering space. The manifoldM3 is called the covering manifold,N3 the base,
andE is called the branching set or branch locus.

1.1. 3-manifolds and branched covers.We begin by recalling the following well known results
that will be useful in the rest of our work (see [54]).

THEOREM 1.1. (Alexander branched covering theorem): SupposeM3 is a compact oriented 3-
dimensional manifold without boundary. Then there exists abranched covering p: M3→ S3 with
branch locus an embedded (not necessarily connected) graph.

In particular, this includes the special cases where the branch loci areknotsor links.
In the case where the branch locus is a graph we in general onlyassume that the multiplicities,

i.e. the number of points in the fiberp−1(x), is constant along 1-simplices (edges) of the graph, with
compatibilities at the vertices, meaning that if two edgese1 ande2 of a graphG meet at a vertex
v andm1 andm2 are the multiplicities of the covering over these vertices,then the multiplicitym
over the vertexv divides bothmi, that is, multiplicities of adjacent edges have a common divisor.
However, to simplify some of the arguments that follow, we will often make a stronger assumption
on the coverings, which is to require that the multiplicities are constant on connected components of
the graph.

Notice that Theorem 1.1 does not impose any condition on the order of the covering. In fact, it is
known (see [54]) that one can strengthen the Alexander branched covering theorem to the following
form.

THEOREM1.2. (Hilden-Montesinos Theorem): For any compact oriented 3-manifoldM3 without
boundary, there exists a 3-fold covering p: M3→ S3 of the 3-sphere branched along a knot K.

DEFINITION 1.3. In the above, letmbe the order of the the covering map (1.1) that is, #p−1(x) =
m for x∈N3rE. Suppose that the branch locus is an embedded graph of componentsE = G1∪·· ·∪
Gn and assume for simplicity that #p−1(x) = ni for all x ∈ Gi ⊂ E, with Gi ∩G j = /0, for i 6= j and
1≤ ni < m. We denote the integersni the multiplicities of the components of the branch set. The

3



4 1. GRAPHS CATEGORY AND THREE-MANIFOLDS AS CORRESPONDENCES

branching indices of the componentsGi are positive integersbi j for j = 1. . .ni satisfying
ni

∑
j=1

bi j = m. (1.2)

In other words, the integerbi j counts how many components of the covering (1.1) come together
at a point inp−1(Gi).

The data listed in Definition 1.3 above are not completely arbitrary. In fact, it is well known [24]
that a branched coveringp : M → S3 is uniquely determined by the restriction to the complementof
the branch locusL⊂ S3, which is a covering space of orderm

p : M r p−1(E)→ S3 r E. (1.3)

This gives an equivalent description of branched coveringsin terms of representations of the funda-
mental group of the complement of the branch locus [25]. We recall it here below as it will be useful
in the following.

LEMMA 1.4. Assigning a branched cover p: M → S3 of order m branched along a graph E is
the same as assigning a representation

σE : π1(S3 r E)→ Sm, (1.4)

where Sm denotes the group of permutations of m elements.

PROOF. It suffices in fact to specify the representation up inner automorphisms of the groupSm.
Thus, we do not have to worry about the choice of a base point for the fundamental group. By the
observation above (see [24]), for a codimension two branch locus, there is auniqueway of extending
a covering (1.3) to a branched coverp : M →S3, so that the remaining data (multiplicities and branch
indices over the points of the branch locus) are uniquely determined by assigning the datum (1.3).�

EXAMPLE 1.5. (Cyclic branched coverings):We representS3 asR3∪{∞}. Let l be a straight line
chosen inR3. Consider the quotient mapp : R3→R3/(Z/nZ) that identifies the points ofR3 obtained
from each other by a rotation by an angle of2π

n about the axisl . Upon identifyingR3≃ R3/(Z/nZ),
this extends to a mapp : S3→ S3 which is ann-fold covering branched along the unknotl ∪{∞} and
with multiplicity one over the branch locus.

These cyclic branched coverings are useful to construct other more complicated branched cover-
ings by performing surgeries along framed links (see [54]).

1.2. Correspondences and morphisms.The main idea we present in this section is to define
morphismsφ : G→G′ between graphs as formal finite linear combinations

φ = ∑
i

aiM i (1.5)

with ai ∈Q andM i compact oriented smooth 3-manifolds with submersions

πi : M i → S3

and
π′i : M i → S3

that are branched covers, respectively branched alongG andG′. We use the notation

G⊂ S3 πG←−M
πG′−→ S3⊃G′ (1.6)

for a 3-manifold that is realized in two ways as a covering ofS3, branched along the graphG or G′.
This definition makes sense, since the way in which a given 3-manifold M is realized as a branched
cover ofS3 branched along a knot is not unique.
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EXAMPLE 1.6. (Poincaŕe homology sphere):Let P denote the Poncaré homology sphere. This
smooth compact oriented 3-manifold is a 5-fold cover ofS3 branched along thetrefoil knot (that is,
the (2,3) torus knot), or a 3-fold cover ofS3 branched along the(2,5) torus knot, or also a 2-fold
cover ofS3 branched along the(3,5) torus knot. For details see [54], [44].

We can extend the definition above to the case where the manifolds M are smooth and compact
(without boundary) but not necessarily connected. In this case, if M = M1∪ ·· · ∪Mn, with M i

connected we identify the morphism
φ = ∑

i

M i

with the morphism defined byM . This corresponds to introducing a first simple equivalencerelation
on morphisms.

DEFINITION 1.7. LetM be a disjoint union of two smooth compact connected 3-manifolds with-
out boundaryM = M1∪M2, with compatible covering mapsπG = (πG,1,πG,2) andπG′ = (πG′,1,πG′,2).
Then we set

φM = φM1 + φM2. (1.7)

where we letφM : G→G′ denote the morphism defined by a manifoldM as in (1.6).

1.3. The set of geometric correspondences.We define the set of geometric correspondences
Hom(G,G′) between two embedded graphsG andG′ in the following way.

DEFINITION 1.8. Given two embedded graphsG andG′ in S3, let Hom(G,G′) denote the set
of 3-manifoldsM that can be represented as branched covers as in (1.6), for some graphsE andE′,
respectively containingG andG′ as subgraphs. We also assume that, for allG the setHom(G,G) also
contains the sphereS3 as trivial (unbranched) covering.

We explain in §2 below why here we need to allow for larger graphs E andE′ instead of just
assuming the branch loci to be the givenG andG′ as we suggested earlier in (1.5). We explain in §2.3
below why we include the unbranched covering inHom(G,G).

To avoid logical complications in dealing with the “set” of all 3-manifolds, we describe the
Hom(G,G′) in terms of the following set of representation theoretic data. As we have seen in Lemma
1.4 above (see [24]), a branched coveringp : M → S3 is uniquely determined by the restriction to the
complement of the branch locusE ⊂ S3. This gives an equivalent description of branched coverings
in terms of representations of the fundamental group of the complement of the branch locus [25]. The
representation is determined up to inner automorphisms, hence there is no dependence on the choice
of a base point for the fundamental group in (1.3).

Thus, in terms of these representations, the spaces of morphismsHom(G,G′) are identified with
the set of data

RG,G′ ⊂
⋃

n,m,G⊂E,G′⊂E′
Hom(π1(S3 r E),Sn)×Hom(π1(S3 r E′),Sm), (1.8)

where theE,E′ are embedded graphs,n,m∈ N, and where the subsetRG,G′ is determined by the
condition that the pair of representations(σ1,σ2) define the same 3-manifold.

1.4. Covering moves and correspondences.To get some more feeling for the type of corre-
spondences we are dealing with, we recall here a result on covering moves which, from our point
of view, describes when a given 3-manifoldM is a correspondence between two graphsG andG′.
Suppose given a compact oriented smooth 3-manifoldM and a mapπL realizing this 3-manifold as a
covering ofS3 branched along a link (or a knot)L. By the stronger form of the Hilden-Montesinos
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theorem, we can assume that it is a 3-fold cover. It is known that such a covering can be repre-
sented by a colored link (see for instance [52]). Notice that the same manifold has many different
representations as a colored link, as the following statement illustrates.

THEOREM1.9. (Equivalence Theorem,[52]) Two colored link diagrams represent the same man-
ifold if and only if they can be related (up to colored Reidemeister moves) by a finite sequence of moves
of the four types described in[52].

In this theorem we see that the manifold is a covering, branched over another link, obtained by
simple moves called colored moves applied to the first link. Thus, one can see that it is quite easy to
provide examples of different links that realize the same 3-manifold as branched cover ofS3, with the
given link as branch locus. As a consequence of this result weobtain the following statement.

LEMMA 1.10. Let M be a compact 3-manifold that is realized as a branched cover of S3,
branched along a knot K. Then the manifoldM belongs to Hom(K,K′), for all knots K′ that are
obtained from K by the covering moves of[52].

2. Composition of correspondences

We now explain why in Definition 1.8 we need to assume that the covering maps are branched on
graphs containing the given graphsG andG′. This has to do with having a well defined composition
of morphisms.

In fact, if we only require the branch loci to be exactlyG andG′, our preliminary definition of
morphisms as elements of the form (1.5) runs immediately into a problem with the composition law.
In fact, it is natural to define the composition of geometric correspondences of the form (1.5) to be
given by the fibered product, as in [18].

DEFINITION 2.1. Suppose given

G⊂ S3 πG←−M
πG′−→ S3⊃G′ and G′ ⊂ S3 π̃G′←− M̃

π̃G′′−→ S3⊃G′′. (2.1)

One defines the compositionM ◦ M̃ as

M ◦ M̃ := M ×G′ M̃ , (2.2)

where the fibered productM ×G′ M̃ is defined as

M ×G′ M̃ := {(x,x′) ∈M × M̃ |πG′(x) = π̃G′(x
′)}. (2.3)

The compositionM ◦ M̃ defined in this way satisfies the following property.

PROPOSITION2.2. Assume that the maps of(2.1)have the following multiplicities. The mapπG

is of order m for x∈ S3 r G and of order n for x∈G; the mapπG′ is of order m′ for x∈ S3 r G′ and
n′ for x∈ G′; the mapπ̃G′ is of orderm̃′ for x∈ S3 r G′ and of orderñ′ for x∈ G′; the mapπ̃G′′ is of
order m̃′′ for x∈ S3 r G′′ andñ′′ for x∈G′′. For simplicity assume that

G∩πG(π−1
G′ (G

′)) = /0 and G′′∩ π̃G′′(π̃−1
G′ (G

′)) = /0. (2.4)

Then the fibered product̂M = M ×G′ M̃ is a smooth 3-manifold with submersions

E ⊂ S3 π̂E←− M̂
π̂E′′−→ S3⊃ E′′. (2.5)

where

E = G∪πG(π−1
G′ (G

′)) (2.6)

E′′ = G′′∪ π̃G(π̃−1
G′ (G

′)) (2.7)
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The fibers of the map̂πE have cardinality

#π̂−1
E (x) =







mm̃′ x∈ S3 r (G∪πG(π−1
G′ (G

′))
m̃′n x∈G
mñ′ x∈ πG(π−1

G′ (G
′)

(2.8)

Similarly, the fibers of the map̂πE′′ have cardinality

#π̂−1
E (x) =







m̃′′m′ x∈ S3 r (π̃G′′(π̃−1
G′ (G

′))∪G′′)
m̃′′n′ x∈ π̃G′′(π̃−1

G′ (G
′))

m′ñ′′ x∈G′′
(2.9)

PROOF. Consider the diagram

M̂ = M ×G′ M̃

P1
yyrrrrrrrrrrr

P2
%%LLLLLLLLLLL

M
πG

{{xx
xx

xx
xx

x

πG′ &&LLLLLLLLLLL M̃

π̃G′xxrrrrrrrrrrr
π̃G′′

##GG
GGG

GGGG

G⊂ S3 G′ ⊂ S3 G′′ ⊂ S3

The fibered product̂M is by definition a subset of the productM × M̃ defined as the preimagêM =
(πG′×πG′′)

−1(∆(S3)), where∆(S3) is the diagonal embedding ofS3 in S3×S3. This defines a smooth
3-dimensional submanifold ofM × M̃ . In generalM̂ needs not be connected. The restriction to
M̂ ⊂M × M̃ of the projectionsP1 : M × M̃ →M andP2 : M × M̃ → M̃ defines projections

M
P1← M̂

P2→ M̃ . (2.10)

We first show that these maps are branched covers, respectively branched alongπ−1
G′ (G

′) ⊂ M and
π̃−1

G′ (G
′)⊂ M̃ . For a pointx∈M the preimageP−1

1 (x) ⊂ M̂ consists of

P−1
1 (x) = {y∈ M̃ | π̃G′(y) = πG′(x)}.

There are two cases: if the points= πG′(x)∈S3 lies in the complement of the graphG′ then #̃π−1
G′ (s) =

m̃′, while if s= πG′(x) ∈G′ then #̃π−1
K′ (s) = ñ′ < m̃′. We see from this that the mapP1 : M̂ →M is a

branched cover of order ˜m′, with branch locus the set of points{x∈M |πG′(x) ∈ G′} = π−1
G′ (G

′). A
similar argument for the fibers

P−1
2 (y) = {x∈M |πG′(x) = π̃G′(y)}

shows that the mapP2 : M̂ → M̃ is a branched cover of orderm′ branched along the setπ̃−1
G′ (G

′). Now
we consider the composite maps

π̂G = πG◦P1 : M̂ → S3 and π̂G′′ = π̃G′′ ◦P2 : M̂ → S3.

We show that these maps are also branched covers, with the order and multiplicities as specified in
(2.8) and (2.9). Consider the preimagesπ̂−1

G (s) for s∈ S3. For a points∈ S3r (G∪πG(π−1
G′ (G

′))) we
have #̂π−1

G (s) = #π−1
G (s) ·#P−1

1 (x), for x∈M r π−1
G′ (G

′). This gives

#π̂−1
G (s) = mm′, ∀s∈ S3 r (G∪πG(π−1

G′ (G
′))).

If we consider instead a points∈G , by assumption thatG∩πG(π−1
G′ (G

′)) = /0 we know that the point
x∈ π−1

G (s) are inM r π−1
G′ (G

′), hence we get

#π̂−1
G (s) = nm′, ∀s∈G⊂ S3
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G=

E=

FIGURE 1

Finally, by the same reasoning we obtain

#π̂−1
G (s) = mn′, ∀s∈ πG(π−1

G′ (G
′))

This gives the result of (2.8) The case of the composite mapπ̂G′′ = π̃G′′ ◦P2 is analyzed in the same
way and it yields the multiplicities of (2.9). �

REMARK 2.3. The assumption (2.4) need not hold in general, where onetypically has

G∩πG(π−1
G′ (G

′)) 6= /0 or G′′∩ π̃G′′(π̃−1
G′ (G

′)) 6= /0. (2.11)

One still obtains thatE and E′′ are embedded graphs, and the counting of the multiplicitiesand
branched indices will be more involved but the argument remains essentially analogous to the one
given in Proposition 2.2.

This shows that, for the composition̂M = M ◦ M̃ , the mapŝπG andπ̂G′′ are no longer coverings
branched alongG andG′′. In fact, the branch loci are now larger graphs

E = G∪πG(π−1
G′ (G

′)) and E′′ = G′′∪ π̃G′′(π̃−1
G′ (G

′)) (2.12)

and the multiplicities are different on different parts of the graph. Thus, in order to have a well defined

composition law, we need to enlarge the class of morphisms from our initial proposal (1.5) to include
what we obtained as the result of the composition of morphisms in the class (1.5).

DEFINITION 2.4. A morphismφ : G→G′ is a finite linear combination∑i aiM i , with coefficients
ai ∈Q and where theM i are smooth compact oriented 3-manifolds with branched covering maps

G⊂ Ei ⊂ S3 πEi←−M i

πE′i−→ S3⊃ E′i ⊃G′, (2.13)

whereEi are embedded graphs inS3 whereEi = G∪Gi,1∪ ·· ·Gi,gi , andE′i = G′∪G′i,1∪ ·· ·G′i,g′i .

The graphEi containG (G⊂ Ei) but not necessarily as a connected component, see for example
Figure 1.

Notice that we need to assume in the definition above that the graphsEi andE′i are not necessarily
the same for differentM i, though they all containG (respectivelyG′). This is because in the argument
of Proposition 2.2 we see that the graphsE = G∪πGπ−1

G′ (G
′) andE′′ = G′′∪ π̃G′′π̃−1

G′ (G
′) along which

the composite morphism̂M is ramified do not depend only on the subgraphsG, G′ andG′′ but also on
the projection mapsπG andπG′ (respectivelyπ̃G′ andπ̃G′′), hence on the manifoldsM andM̃ . This
means that, when we consider the composition of morphisms according to Definition 2.4, we do so
according to the following definition.

DEFINITION 2.5. LetM andM̃ be smooth compact oriented 3-manifolds with branched covering
maps

E ⊂ S3 πE←−M
πE′1−→ S3⊃ E′1 and E′2⊂ S3

π̃E′2←− M̃
π̃E′′−→ S3⊃ E′′, (2.14)
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with graphsE, E′1, E′2 andE′′ with G⊂ E , G′ ⊂ E′1 andG′ ⊂ E′2 andG′′ ⊂ E′′. The composition
M ◦ M̃ is given by the fibered product

M ◦ M̃ := M ×G′ M̃ , (2.15)

with

M ×G′ M̃ := {(x,y) ∈M × M̃ |πE′1
(x) = π̃E′2

(y)}. (2.16)

The result of Proposition 2.2 adapts to this case to show the following result.

LEMMA 2.6. Let G′ ⊂ E1 and G′ ⊂ E2 be two graphs inS3. Consider branched coverings

G⊂ S3 πG←M
π1→ S3⊃ E1 E2⊂ S3 π2← M̃

πG′′→ G′′.

The compositionM̂ = M ×G′ M̃ is a branched cover

G∪πGπ−1
1 (E2)⊂ S3 π̂G← M̂

π̂G′′→ S3⊃G′′∪πG′′π−1
2 (E1).

PROOF. Consider first the projectionsP1 : M ×G′ M̃ → M and P2 : M ×G′ M̃ → M̃ . They are
branched covers, respectively branched overπ−1

1 (E2) andπ−1
2 (E1). In fact, we have

P−1
1 (x) = {(x,y) ∈M × M̃ |π1(x) = π2(y)} = {y∈ M̃ |π2(y) = π1(x)}.

Thus, the mapP1 is branched over the pointsx ∈ M such thatπ1(x) lies in the branch locus of
the mapπ2, that is, the points{x ∈ π−1

1 (E2)}. Similarly, the branch locus of the mapP2 is the set
of points y ∈ π−1

2 (E1) ⊂ M̃ . Thus, the composite map̂πE = πG ◦P1 : M̂ → S3 is branched over
the graphE = G∪ πGπ−1

1 (E2) and the map̂πE′′ = πG′′ ◦P2 : M̂ → S3 is branched over the graph
E = G′′∪πG′′π−1

2 (E1). �

COROLLARY 2.7. Let
G⊂ E1⊂ S3 π1←M

π2→ S3⊃ E2⊃G′

and
G′ ⊂ E3⊂ S3 π3← M̃

π4→ S3⊃ E4⊃G′′

be morphisms from G to G′ and from G′ to G′′, respectively, in the sense of Definition 2.4. Then the
compositionM̂ = M ◦ M̃ = M ×G′ M̃ of (2.15), (2.16) is also a morphism from G to G′′ in the sense
of Definition 2.4.

PROOF. The composition is given by the diagram

M̂ = M ×G′ M̃

P1
yyrrrrrrrrrrr

P2
%%LLLLLLLLLLL

M
π1

{{xx
xx

xx
xx

x

π2
%%LLLLLLLLLLL M̃

π3
yyrrrrrrrrrrr

π4

##FF
FF

FF
FF

F

E1⊂ S3 E2⊂ S3⊃ E3 E4⊂ S3

As in (2.10), the restriction tôM ⊂M × M̃ of the projectionsP1 : M × M̃ →M andP2 : M × M̃ →
M̃ defines projectionsP1 : M̂ → M and P2 : M̂ → M̃ . Lemma 2.6 shows that they are branched
covers, respectively branched alongπ−1

2 (E3)⊂M andπ−1
3 (E2)⊂ M̃ , so that the resulting mapsπ̂1 =

π1 ◦P1 and π̂2 = π4 ◦P2 from M̂ to S3 are branched covers, branched alongE1∪ π1π−1
2 (E3) and

E4∪π4π−1
3 (E2), respectively. SinceG⊂ E1∪π1π−1

2 (E3) andG′′ ⊂ E4∪π4π−1
3 (E2), we obtain that

G⊂ E1∪π1π−1
2 (E3)⊂ S3 π̂1← M̂

π̂2→ S3⊃ E4∪π4π−1
3 (E2)⊃G′′
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is a morphism inHom(G,G′′) in the sense of Definition 2.4. �

We then describe explicitly the multiplicities of the covering mapsπ̂i : M̂ → S3. To simplify
the computation we work under the assumption that the multiplicities are constant on connected
components of the graph and not just on the individual simplices (up to homotopy it is always possible
to reduce to this case).

LEMMA 2.8. Let M and M̃ be as in Corollary 2.7 above. Assume that the graphs Ei, for i =
1, . . . ,4 , have components

Ei = Gi0∪Gi1∪ ·· ·∪Gigi , (2.17)

with G10 = G, G20 = G′ = G30 and G40 = G′′ and gi ≥ 0 for i = 1, . . . ,4 is the number of the compo-
nents of the graph Gi. Also assume that the mapsπi have multiplicities

#π−1
i (x) =

{

mi x∈ S3 r Ei

ni j x∈ Ei j j = 1, . . . ,gi .
(2.18)

Then the composite maps

E1∪π1π−1
2 (E3)⊂ S3 π̂1← M̂

π̂2→ S3⊃ E4∪π4π−1
3 (E2)

have multiplicities

#π̂−1
1 (x) =















m1m3 x∈ S3 r Ê1

m1n3 j x∈ π1π−1
2 (G3 j) j = 0, . . . ,g3

n1 jm3 x∈G1 j j = 0, . . . ,g1

(2.19)

#π̂−1
2 (x) =















m2m4 x∈ S3 r Ê2

n2 jm4 x∈ π4π−1
3 (G2 j) j = 0, . . . ,g2

m2n4 j x∈G4 j j = 0, . . . ,g4,

(2.20)

whereÊ1 = E1∪π1π−1
2 (E3) andÊ4 = E4∪π4π−1

3 (E2).

PROOF. The argument is analogous to Proposition 2.2. For a pointx∈M the preimageP−1
1 (x)⊂

M̂ consists of
P−1

1 (x) = {y∈ M̃ |π3(y) = π2(x)}.
Thus, the mapP1 has multiplicities

#P−1
1 (x) =

{

m3 x∈M r π−1
2 (E3)

n3 j x∈ π−1
2 (G3 j) j = 0, . . . ,g3.

(2.21)

Thus there are then three cases for the mapπ̂1 = π1 ◦P1: if the point π1(x) = s∈ S3 lies in the
complement of bothE1 andπ1π−1

2 (E3) then #̂π−1
1 (s) = m1m3. If the pointπ1(x) = s is in a component

G1 j then #̂π−1
1 (s) = n1 jm3. Finally, if π1(x) = s is in π1π−1

2 (G3 j), for one of the componentsG3 j of
E3, then #̂π−1

1 (s) = m1n3 j . This gives the multiplicities of (2.19). The case of the composite map

π̂2 = π4◦P2 is analogous. We first notice that the multiplicities for themapP2 are #P−1
2 (x) = m2 for

x∈ m̃rπ−1
3 (E2) and #P−1

2 (x) = n2 j for x∈ π−1
3 (G2 j), for j = 0, . . . ,g2. Then arguing as before we see

that there are three possible cases, as before, for the multiplicities for π̂2. If the pointπ4(x) = s∈ S3

is in the complement of bothE4 andπ4π−1
3 (E2), then #̂π−1

2 (s) = m2m4. If the pointπ1(x) = s is in a
componentG4 j , then #̂π−1

2 (s) = n4 jm2. Finally, if π1(x) = s is in π4π−1
3 (G2 j), then #̂π−1

2 (s) = n2 jm4.
This gives the multiplicities of (2.20). �



2. COMPOSITION OF CORRESPONDENCES 11

The general case where the multiplicities change on different simplices within the same con-
nected component can be treated similarly only the formulaebecome more involved. The argument
one then uses to derive explicit formulae for the branching indices is also analogous.

2.1. Example of correspondences and composition.We give simple example of composition
of morphisms by fibered product.

EXAMPLE 2.9. In this example one can use the cyclic branched coveringmaps we mentioned
before in Example 1.5. Consider the fibered productMm◦Mn of

O⊂ S3←Mn→ S3⊃O O⊂ S3←Mm→ S3⊃O, (2.22)

whereMn andMm are, respectively, then-fold andm-fold branched cyclic coverings, branched over
the trivial knot O. Then the compositionMm◦Mn is the cyclic branched coverMmn, which is a
morphism between two unknots.

2.2. Associativity of composition.We now prove that the composition of morphisms defined in
the previous section is associative. We begin by stating a very simple lemma that will be useful in the
proof.

LEMMA 2.10. Consider a commutative diagram

W = X×Z Y

p
yyss

sss
sss

sss

q
%%KKK

KKKK
KKKK

X
u

����
��

��
�

f
%%KKKKKKKKKKKK Y

g
yyssssssssssss

v

��
??

??
??

?

A Z B

where all the maps are submersions and p(x,y) = x, q(x,y) = y. Then, for any b∈ B one has

upq−1v−1(b) = u f−1gv−1(b)⊂ A.

PROOF. LetV ⊂Y be the setV = v−1(b). Its preimage underq is the set

{(x,y) ∈ X×Y |y∈V, g(y) = f (x)} = {(x,y) ∈ X×Y | f (x) = g(y) ∈ g(V)}.
Thus, the imagepq−1(V) = {x∈ X | f (x) ∈ g(V)} = f−1g(V). This impliesupq−1(V) = u f−1g(V),
hence the statement follows. �

We now compare the compositionsM1 ◦ (M2 ◦M3) and (M1 ◦M2) ◦M3 of morphismsM i ∈
Hom(Gi,Gi+1).

PROPOSITION2.11. Suppose given branched covers

E1⊂ S3 π11←M1
π12→ S3⊃ E2

E′2⊂ S3 π22←M2
π23→ S3⊃ E3

E′3⊂ S3 π33←M3
π34→ S3⊃ E4,

(2.23)

where E1 is a graph containing the subgraph G1, E2 and E′2 are graphs containing the subgraph G2,
E3 and E′3 are graphs containing a given subgraph G3and E4 is a graph containing the subgraph G4.
The composition is associative

M1◦ (M2◦M3) = (M1◦M2)◦M3. (2.24)
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PROOF. Consider first the composition̂M23 := M2◦M3 = M2×G3 M3. It is given by the diagram

M̂23 = M2×G3 M3

P23,1
wwpppppppppppp

P23,2
''NNNNNNNNNNNN

M2

π22

{{ww
ww

ww
ww

w

π23
''NNNNNNNNNNNN M3

π33
wwpppppppppppp

π34

##GG
GG

GG
GG

G

E′2⊂ S3 E3⊂ S3⊃ E′3 E4⊂ S3

with π̂232 = π22◦P23,1 andπ̂234 = π34◦P23,2. By Lemma 2.6,M̂23 is a branched cover

Ê2⊂ S3 π̂232← M̂23
π̂234→ S3⊃ Ê4,

with
Ê2 = E′2∪π22π−1

23 (E′3) Ê4 = E4∪π34π−1
33 (E3). (2.25)

Then the composition̂M1(23) := M1◦ M̂23 = M1◦ (M2◦M3) is given by the diagram

M̂1(23) = M1×G2 M̂ (23)

P1(23),1
wwoooooooooooooo

P1(23),2
((PPPPPPPPPPPPP

M1

π11

{{xx
xxx

xxx
x

π12
''PPPPPPPPPPPPPP M̂ (23)

π̂232vvnnnnnnnnnnnnnn
π̂234

$$HH
HH

HH
HH

H

E1⊂ S3 E2⊂ S3⊃ Ê2 Ê4⊂ S3

whereÊ2 = E′2∪π22(π−1
23 (E′3)) andÊ4 = E4∪π34(π−1

33 (E3)). We use the notation̂πJ1 := π11◦P1(23),1

andπ̂J4 := π̂234◦P1(23),2. By Lemma 2.6,M̂1(23) is a covering

J1⊂ S3 π̂J1← M̂1(23)
π̂J4→ S3⊃ J4,

with branch locus the graphs

J1 = E1∪π11π−1
12 (Ê2) J4 = Ê4∪ π̂234π̂−1

232(E2). (2.26)

Consider now the composition̂M12 := M1◦M2. It is given by the diagram

M̂12 = M1×G2 M2

P12,1
wwpppppppppppp

P12,2
''NNNNNNNNNNNN

M1

π11

{{ww
ww

ww
ww

w

π12 ''NNNNNNNNNNNN M2

π22wwpppppppppppp
π23

##GG
GG

GG
GG

G

E1⊂ S3 E2⊂ S3⊃ E′2 E3⊂ S3

with π̂121 = π11◦P12,1 andπ̂123 = π23◦P12,2. By Lemma 2.6 above, this is a branched cover

Ê1⊂ S3 π̂121← M̂12
π̂123→ S3⊃ Ê3
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where the graphŝE1 andÊ2 are given by

Ê1 = E1∪π11π−1
12 (E′2) Ê3 = E3∪π23π−1

22 (E2). (2.27)

Then the composition̂M (12)3 := M̂12◦M3 = (M1 ◦M2)◦M3 is given by the diagram

M̂ (12)3 = M̂ (12)×G3 M3

P(12)3,1
wwnnnnnnnnnnnnn

P(12)3,2
''OOOOOOOOOOOOOO

M̂ (12)

π̂121

{{vvv
vv

vvv
v

π̂123 ((PPPPPPPPPPPPP
M3

π33
wwoooooooooooooo

π34

""FFF
FFF

FFF

Ê1⊂ S3 Ê3⊂ S3⊃ E′3 E4⊂ S3

with Ê1 = E1∪π11(π−1
12 (E′2)) andÊ3 = E3∪π24(π−1

23 (E2)). We haveπ̂I1 := π̂121◦P(12)3,1 andπ̂I4 :=
π34◦P(12)3,2. Again by Lemma 2.6 this is a branched covering

I1⊂ S3 π̂I1← M̂ (12)3
π̂I4→ S3⊃ I4,

with branch locus the graphs

I1 = Ê1∪ π̂121π̂−1
123(E

′
3) I4 = E4∪π34π−1

33 (Ê3). (2.28)

Thus, we need to compare the branch locus

E1∪π11π−1
12 (Ê2) = E1∪π11π−1

12 (E′2)∪π11π−1
12 π22π−1

23 (E′3)

with

Ê1∪ π̂121π̂−1
123(E

′
3) = E1∪π11π−1

12 (E′2)∪ π̂121π̂−1
123(E

′
3).

Using Lemma 2.10, we now see that

π̂121π̂−1
123(E

′
3) = π11π−1

12 π22π−1
23 (E′3),

so that the branch lociJ1 = I1 agree. Similarly, we now compare the branch locus

Ê4∪ π̂234π̂−1
232(E2) = E4∪π34π−1

33 (E3)∪ π̂234π̂−1
232(E2)

with

E4∪π34π−1
33 (Ê3) = E4∪π34π−1

33 (E3)∪π34π−1
33 π23π−1

22 (E2).

Again using Lemma 2.10, we see that

π̂234π̂−1
232(E2) = π34π−1

33 π23π−1
22 (E2)

so that the branch lociJ4 = I4 also coincide. It remains to check that the multiplicities also agree. As
before, to simplify the computation let us assume thatEi = Gi0∪·· ·∪Gigi where theGi j are subgraphs
with gi ≥ 0 the number of the components of the graphGi, and withG10 = G1, G20 = G′20 = G2,
G30 = G′30 = G3 and G40 = G4. We also need to fix some notation for the multiplicities of each
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branched covering map. We assume that the mapsπii andπi i+1, i = 1,2,3, of (2.23) have multiplicities

#π−1
11 (x) =

{

m11 x∈ S3 r E1

n11, j x∈G1 j j = 0, . . . ,g1

#π−1
12 (x) =

{

m12 x∈ S3 r E2

n12, j x∈G2 j j = 0, . . . ,g2

#π−1
22 (x) =

{

m22 x∈ S3 r E′2

n22, j x∈G′2 j j = 0, . . . ,g′2

#π−1
23 (x) =

{

m23 x∈ S3 r E3

n23, j x∈G3 j j = 0, . . . ,g3

#π−1
33 (x) =

{

m33 x∈ S3 r E′3

n33, j x∈G′3 j j = 0, . . . ,g′3

#π−1
34 (x) =

{

m34 x∈ S3 r E4

n34, j x∈G4 j j = 0, . . . ,g4

(2.29)

By Lemma 2.6 we then know that the multiplicities of the composite maps are of the form

#π̂−1
121(s) =















m11m22 s∈ S3 r Ê1

n11, jm22 s∈G1 j j = 0, . . . ,g1

m11n22, j s∈ π11π−1
12 (G′2 j) j = 1, . . . ,g′2

(2.30)

#π̂−1
123(s) =















m12m23 s∈ S3 r Ê3

m12n23, j s∈G3 j j = 0, . . . ,g3

n12, jm23 s∈ π23π−1
22 (G2 j) j = 0, . . . ,g2

(2.31)

#π̂−1
232(s) =















m22m33 s∈ S3 r Ê2

n22, jm33 s∈G′2 j j = 0, . . . ,g′2

m22n33, j s∈ π22π−1
23 (G′3 j) j = 0, . . . ,g′3

(2.32)

#π̂−1
234(s) =















m23m34 s∈ S3 r Ê4

m23n34, j s∈G4 j j = 0, . . . ,g4

n23, jm34 s∈ π34π−1
33 (G3 j) j = 0, . . . ,g3

(2.33)

Now we check that the composition is associative by checkingthat the multiplicities also agree, as we
saw for the branched loci. We will begin witĥM (12)3 = M̂ (12) ◦M3. The projectionP(12)3,1 : M̂ (12)3→
M̂ (12) is a branched cover branched alongπ̂−1

123(E
′
3)⊂ M̂ (12) with multiplicities

#P−1
(12)3,1(x) =

{

m33 x∈ M̂ (12) r π−1
123(E

′
3)

n33, j x∈ π−1
123(G

′
3 j) j = 0, . . . ,g′3

(2.34)
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Similarly, the projectionP(12)3,2 : M̂ (12)3→M3 has multiplicities

#P−1
(12)3,2(x) =















m12m23 x∈M3 r π−1
33 (Ê3)

m12n23, j x∈ π−1
33 (G3 j) j = 0, . . . ,g3

n12, j m23 x∈ π−1
33 (π23π−1

22 (G2 j)) j = 0, . . . ,g2

(2.35)

Now consider the composite mapsπ̂I1 = π̂121◦P(12)3,1 andπ̂I4 = π34◦P(12)3,2. These are branched as
described above with multiplicities

#π̂−1
I1 (x) =



























m11m22m33 x∈ S3 r I1

n11, jm22m33 x∈G1 j j = 0, . . . ,g1

m11n22, j m33 x∈ π11π−1
12 (G′2 j) j = 0, . . . ,g′2

m11m22n33, j x∈ π̂121π̂−1
123(G

′
3 j) j = 0, . . . ,g′3.

(2.36)

Similarly, for the map̂πI4 = π34◦P(12)3,2 we obtain the multiplicities

#π̂−1
I4 (x) =



























m12m23m34 x∈ S3 r I4

m12m23n34, j x∈G4 j j = 0, . . . ,g4

m12n23, j m34 x∈ π34π−1
33 (G3 j) j = 0, . . . ,g3

n12, j m23m34 x∈ π34π−1
33 π23π−1

22 (G2 j) j = 0, . . . ,g2.

(2.37)

We now compare the multiplicities of the mapsπ̂I1 and π̂I2 to those obtained from the other com-
position. Namely, we consider the mapsπ̂J1 = π11 ◦ P1(23),1 and π̂J2 = π̂234◦ P1(23),2. The map
P1(23),1 : M̂1(23) → M1 is a branched cover, branched overπ−1

12 (Ê2), with Ê2 = E′2∪ π22(π−1
23 (E′3)).

It has multiplicities as follows.

#P−1
1(23),1(x) =















m22m33 x∈M1 r π−1
12 (Ê2)

n22, jm33 π−1
12 (G′2 j) j = 0, . . . ,g′2

m22n33, j π−1
12 (π22π−1

23 (G′3 j)) j = 0, . . . ,g′3

(2.38)

By the same argument, the projection mapP1(23),2 is a branched cover of̂M (23), branched over over
π̂−1

232(E2) with multiplicities as follows

#P−1
1(23),2(x) =

{

m12 x∈ S3 r π̂−1
232(E2)

n12, j x∈ π̂−1
232(G2 j) j = 0, . . . ,g2.

(2.39)

This gives for the composition̂πJ1 = π11◦P1(23),1 the multiplicities

#π̂−1
J1

(x) =



























m11m22m33 x∈ S3 r J1

n11, jm22m33 x∈G1 j j = 0, . . . ,g1

m11n22, jm33 x∈ π11π−1
12 (G′2 j) j = 0, . . . ,g′2

m11m22n33, j x∈ π11π−1
12 π22π−1

23 (G′3 j) j = 0, . . . ,g′3

(2.40)
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Similarly we have

#π̂−1
J4

(x) =



























m12m23m34 x∈ S3 r J1

m12m23n34, j x∈G4 j j = 0, . . . ,g4

m12n23, j m34 x∈ π34π−1
33 (G3 j) j = 0, . . . ,g3

n12, jm23m34 x∈ π̂234π̂−1
232(G2 j) j = 0, . . . ,g2.

(2.41)

We can then see by direct comparison that the multiplicitiesof the mapŝπI1 andπ̂J1 agree and so do
the multiplicities of the mapŝπI4 andπ̂J4. A similar argument can be used to compare the branching
indices and show that they also match. This completes the proof that the composition is associative.

�

2.3. Trivial covering and composition. Now we consider the question of the existence of an
identity element for composition,i.e. whether there exists a 3-manifoldU, which is an element of
Hom(G′,G′) for any given embedded graphG′ and with the property that, for allM ∈ Hom(G,G′),
the compositionsU ◦M = M andM ◦U = M . To this purpose, it is convenient to allow, in addition
to the morphisms inHom(G,G) given by branched coversG⊂ E ⊂ S3← M → S3 ⊃ E′ ⊃ G also
an additional morphism representing theunbranched case, as we did in our definition of morphisms.
Since the 3-sphereS3 has trivial fundamental group, we know that an unbranched covering can only
be the trivial oneS3→ S3 given by the identity (multiplicity one everywhere). We assume that the
trivial coveringid : S3→S3 belongs toHom(G,G) for all G. We then have the following proposition.

PROPOSITION2.12. The trivial covering id: S3→ S3 is the identity elementU for composition.

PROOF. consider the diagram

M ×G S3

p1
yytttttttttt

p2
%%JJJJJJJJJJ

M
π1

{{xx
xx

xx
xx

x

π2
%%JJJJJJJJJJ S3

π3
yytttttttttt

π4

""EE
EE

EE
EE

E

E1⊂ S3 E2⊂ S3⊃ /0 S3⊃ /0

whereE1 andE2 are two graphs that containG andG′ respectively and are the branching locus ofπ1

andπ2, respectively. The mapsπ3 = π4 = id are the identity map of the trivial coveringid : S3→ S3.
The notation/0 ⊂ S3 means that this is an unbranched cover (empty graph). The fibered product
satisfies

M ×G′ S3 = {(m,s) ∈M ×S3 |π2(m) = s}=
⋃

s∈S3

π−1
2 (s) = M .

So the projection mapp1 is just the identity mapid : M →M , with the composite map̂πG = π1◦ p1 =
π1. The projection mapp2 : M ×G′ S3→ S3 that sends(m,s) 7→ s for m∈ π−1

2 (s) is just the map
p2 = π2, and so iŝπG = π4 ◦ p2 = π2. Thus, we see thatM ×G S3 = M with πG = π1 andπG′ = π2.
This shows thatM ◦U = M . The argument for the compositionU◦M is analogous. �
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3. Representations and compositions of correspondences

We reinterpret the composition of correspondences described in §2 above from the point of view
of representations of fundamental groups, using the characterization of branched coverings as in
Lemma 1.4 above. The results of this section are not needed for the rest of our work, but we include
them here for completeness.

We first discuss some facts about covering spaces. Letp : X→ Z be a covering space of order
m. If X̃ denotes the universal cover ofX, andG = π1(Z,x) the fundamental group, then we have
X = X̃/N1 for N1 a normal subgroup ofG, with G/N1 the group of deck transformations of the
coveringX → Z, with #G/N1 = m. The coveringp : X → Z is uniquely specified by assigning a
representationσ : π1(Z)→ Sm, determined up to inner automorphisms ofSm. Suppose now that
p : X→ Z is the composite of two covering mapsp = p2◦ p1,

X
p1→Y

p2→ Z.

The coveringY = X̃/N2 of Z is similarly obtained from a normal subgroupN2 of G, so that its
group of deck transformations isG/N2, with #G/N2 = n2. As above the covering is determined by
a representationσ2 : π1(Z)→ Sn2. Notice that this factors through the quotientG/N2. Similarly, the
spaceX, viewed as a covering ofY is determined by a representationσ1 : π1(Y) = N2→ Sn1, where
n1 = #N2/N1 andN1 is a normal subgroup ofN2 andH = N2/N1 is the group of deck transformations
of the coveringp1 : X→Y. We havem= n1n2. The representationsσ, σ1 andσ2 are related in the
following way.

LEMMA 3.1. Let G and N2 be as above. Then the representationσ : G→ Sm is given by

xi, j 7→ xσ(γ)(i, j) = xσ1(hj )(i),σ2(g)( j), (3.1)

where g= γ modN2 and hj ∈ N2 ≃ π1(Y, x̃ j) is determined by an identificatioñγ j = h jg of the
homotopy classes of pathsP x̃j ,gx̃j ≃ π1(Y, x̃ j )g, whereγ̃ j is the lift of the pathγ ∈ π1(Z,x) to the
covering Y starting at the point̃x j ∈ p−1

2 (x).

PROOF. Consider a pathγ ∈ π1(Z,x) and a chosen point ˜x ∈ p−1
2 (x) ⊂ Y. We denote bỹγ the

unique path liftingγ starting atγ̃(0) = x̃. It has γ̃(1) = gx̃ ∈ p−1
2 (x), whereg ∈ G/N2 is the corre-

sponding deck transformation withg = γ modN2. We can identify the set of homotopy classesP x̃,gx̃

with the set

π1(Y, x̃)g := {γ̃◦ γ′ |γ′ ∈ π1(Y, x̃)},
with g = γ̃ modN2. Forg = g1g2 ∈G/N2, we obtain

π1(Y, x̃)g = {γ̃2◦ γ̃1 ◦ γ′ |γ′ ∈ π1(Y, x̃)}= {γ̃2 ◦ γ̃1◦ γ̃−1
1 ◦ γ′′ ◦ γ̃1 |γ′′ ∈ π1(Y,g1x̃)} (3.2)

with gi = γ̃i modN2. Let us then look more precisely at the representationσ1 : π1(Y)→ Sn1 describ-
ing the coveringp1 : X→Y. Suppose given elementsh∈ N2⊂ G, andγhγ−1 ∈ N2, for someγ ∈ G.
Then, we identifyN2 = π1(Y, x̃) for a choice of a base point ˜x ∈ p−1

2 (x) ⊂ Y. The lift of the pathγ
to the coveringY in general will not be close but will send the initial point ˜x to the pointgx̃ where
g = γ modN2 the class inG/N2 acting as the group of deck transformations. Thus, the pathγhγ−1

in G = π1(Z,x) defines an element inπ1(Y,gx̃), for the new base point. Thus, when we consider the
representationσ1 : π1(Y, x̃)→ Sn1 and we identify it with a representationσ1 : N2→ Sn1, we should
more precisely regard this as a pair(σ1, x̃) of a representation ofN2 and a choice of a base point that
gives the identificationN2≃ π1(Y, x̃). Then the action of an elementγ ∈G by conjugation onh∈ N2

produces an elementγhγ−1 ∈ N2, as well as a deck transformationg = γ modN2 that changes the
base point ˜x to gx̃. The representationσ1 : π1(Y, x̃)→ Sn1 is not invariant under this action, because
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the base point is not preserved, but the set of pairs(σ1, x̃) is and it is acted upon byG as

Adγ : (σ1, x̃) 7→ (σ1◦Adγ,gx̃), (3.3)

for σ1 ◦Adγ : N2→ Sn1 given by σ1 ◦Adγ(h) = σ1(γhγ−1) andg ∈ G/N2 given byg = γ modN2.
Equivalently, we think of the pairs(σ1, x̃) as a representationσ1 : N2→ (Sn1)

n2, wheren2 = #p−1
2 (x),

that maps
σ1(h) = (s̃hs̃−1)s∈G/H , (3.4)

where the ˜s are a chosen lift of thes∈ G/H. We can write (3.4) equivalently as(σ1(hs))s∈G/H , or
again equivalently as(σ1(h j)) j=1...,n2 ∈ (Sn1)

n2 as in (3.1). The action (3.3) becomes of the form

Adγ : σ1(h) 7→ σgσ1(h)σ−1
g , (3.5)

whereg= γ modN2 andσg is the permutation inSn2 that sends the points∈G/H to sg∈G/H. This
shows that the representationσ1 satisfies

σ1(γhγ−1) = σgσ1(h)σ−1
g , with g = γ modN2, (3.6)

for permutationsσg ∈ Sn2 as above. The expression (3.1) defines an element inSm for m= n1n2. To
see that it is a representation ofG it suffices to show compatibility with the product. Forγ = γ1γ2 we
have

σγ1γ2 = σ1(h)σ2(g),

where by (3.6) and (3.2)
σ1(h) = σ1(h1)σg1σ1(h2)σ−1

g1

By construction the matricesσg ∈ Sn2 are the elementsσ2(g) of the representationσ2 : π1(Z)→ Sn2

describing the coveringp1 : X→Y. �

We now describe the composition of correspondences of the form (2.1) in terms of representations
of the fundamental groups of the complement of the branch loci. Suppose given, as before, two 3-
manifoldsM andM̃ with branched covering maps as in (2.1),

G⊂ S3 πG←−M
πG′−→ S3⊃ E1⊃G′ and G′ ⊂ E2⊂ S3 π̃G′←− M̃

π̃G′′−→ S3⊃G′′,

These correspond to the data of representations

σG : π1(S3 r G)→ Sm σE1 : π1(S3 r E1)→ Sm′

σ̃E2 : π1(S3 r E2)→ Sm̃′ σ̃G′′ : π1(S3 r G′′)→ Sm̃′′ ,
(3.7)

whereE1 andE2 are two graphs containing the subgraphG′

PROPOSITION3.2. The compositionM̂ = M ×G′ M̃ is the branched covering

E = G∪πGπ−1
G′ (E2)⊂ S3 π̂E←− M̂

π̂E′′−→ S3⊃ E′′ = G′′∪ π̃G′′π̃−1
G′ (E1), (3.8)

with π̂E = πG◦P1 and π̂E′′ = π̃G′′ ◦P2. This corresponds to the representations

σ̂E : π1(S3 r E)→ Smm̃′ and σ̂E′′ : π1(S3 r E′′)→ Sm̃′′m′ (3.9)

given by
σ̂E(γ) = σ̃E2(πG′(γ))σG(ιG(γ)) and σ̂E′′(γ) = σE1(π̃G′(γ))σ̃G′′(ιG′′(γ)). (3.10)

Here ιG : π1(S3 r E)→ π1(S3 r G) and ιG′′ : π1(S3 r E′′)→ π1(S3 r G′′) are the group homomor-
phisms induced by inclusion. The elementsγ denote the collection of lifts ofιG(γ) to paths inM (or of

ιG′′(γ) to M̃ , respectively), depending on the choice of a point in the fiber of the coveringπG : M →S3

(respectively,̃πG′′ : M̃ → S3).
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PROOF. Let GE = π1(S3 r E,s) andGG = π1(S3 r G,s). Sinceπ̂E is a branched covering map
of ordermm̃′, branched alongE = G∪πGπ−1

G′ (E2), then by Lemma 1.4 the covering is determined by
the datum of a representation

σ̂E : π1(S3 r E)→ Smm̃′ .

The covering can be described in terms of a normal subgroupNE = (π̂E)∗π1(M̂ r π̂−1
E (E)) of GE

with GE/NE the group of deck transformations with #GE/NE = mm̃′. On the other hand,̂πE is a
composition of two covering mapŝπE = πG ◦P1. Thus, we can use the result of Lemma 3.1 above
to describe it in terms of the representations associated toπG andP1. The coveringπG corresponds
to a normal subgroupNG = (πG)∗π1(M r π−1(G)) of GG such thatGG/NG is the group of deck
transformations, of order #GG/NG = m. The coveringπG is determined by a representationσG :
π1(S3 r G)→ Sm. In the same way, the covering mapP1 is branched along the setπ−1

G′ (E2) ⊂ M ,
hence the covering is specified by a representation

σP1 : π1(M r π−1
G′ (E2))→ Sm̃′ .

In terms of normal subgroups, this covering corresponds to asubgroupNE2 ⊂ π1(M rπ−1
G′ (E2)). The

quotientH = π1(M r π−1
G′ (E2))/NE2 gives the group of deck transformations of the covering with

#H = m̃′. Consider the group homomorphism

(πG′)∗ : π1(M r π−1
G′ (E2))→ π1(S3 r E2) (3.11)

induced by the covering mapπG′ : M →S3, branched alongE1. This induces a map of representations

Hom(π1(S3 r E2),Sm̃′)→ Hom(π1(M r π−1
G′ (E2)),Sm̃′)

given by compositionσ 7→ σ◦(πG′)∗. Let σ̃E2 : π1(S3rE2)→Sm̃′ be the representation that describes
the covering

M̃
π̃G′−→ S3⊃ E2⊃G′.

Claim: The representationσP1 satisfiesσP1 = σ̃E2 ◦ (πG′)∗.

PROOF. For a chosen base pointx ∈M r π−1
G′ (E2), let γ ∈ π1(M r π−1

G′ (E2),x). Let thenγ̂ be a
lifting of the pathγ to M̂ , which starts at a chosen point(x,y1) ∈ M̂ , with y1 ∈ P−1(x) andπG′(x) =
π̃G′(y). We denote by(x,y2) the endpoint of̂γ. This is another point in the same fiber, that is, with
y2 ∈ P−1(x) and(x,y2) = σP1(γ)(x,y1). The point(x,y2) is uniquely determined by(x,y1) and the
homotopy class ofγ. By definition, the permutatioñσE2(γ) ∈ Sm̃′ is the permutation

σP1(γ) : (x,y1) 7→ (x,y2). (3.12)

On the other hand the image(πG′)∗(γ) under the group homomorphism (3.11) determines an element
in π1(S3 r E2,πG′(x)). Let us denote this element byγ′, with πG′(x) the base point. Then for any
given pointỹ1 ∈ M̃ such thatπG′(x) = π̃G′(ỹ1), there exists a unique lift̃γ′ of γ′, which starts at ˜y1 ∈
π̃−1

G′ (πG′(x)). We denote by ˜y2 the endpoint of this path. This is also a point in the fiberπ̃−1
G′ (πG′(x))

and it is uniquely determined by ˜y1 andγ′. The permutatioñσE2(γ′) ∈ Sm̃′ is given by

σ̃E2(γ
′) : ỹ1 7→ ỹ2. (3.13)

Notice that, sinceπG′(x) = π̃G′(ỹ1), we have(x, ỹ1) ∈ M̂ . Thus, as above, we can consider the liftγ̂
of γ to M̂ that starts at this point(x, ỹ1) ∈ P−1

1 (x). We want to show that the endpoint of this path is
(x, ỹ2) ∈ M̂ with ỹ2 the endpoint of the path̃γ′, as above. This will imply, by (3.12) and (3.13) that the
permutationsσP1(γ) andσ̃E2(γ′) are the same. Now, since the diagram
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M̂
P1

��~~
~~

~~
~~ P2

��
@@

@@
@@

@

M

πG′ ��
@@

@@
@@

@@
M̃

π̃G′��~~
~~

~~
~

S3

is commutative, we have
π̃G′(P2(γ̂)) = πG′(P1(γ̂)) = πG′(γ) = γ′. (3.14)

This mean thatP2(γ̂) is a lifting path ofγ′, which starts at(x, ỹ1). By the uniqueness of the lifting
for a chosen initial point, we haveP2(γ̂) = γ̃′, so that both paths end at the same point(x, ỹ2). This
implies thatσP1(γ) = σ̃E2(γ′) ∈ Sm̃′ , which proves the claim. We now apply the result of Lemma 3.1.

Consider a pathγ ∈GE. Under the restriction map

ιG : π1(S3 r (G∪πGπ−1
G′ (E2)))→ π1(S3 r G)

induced by the inclusion, we can identifyγ with an elementιG(γ) = γ ∈GG, hence we can apply to it
the representationσG to obtain an elementσG(ιG(γ)) ∈ Sm. For a chosen base pointx∈ π−1

G (s)⊂M \
π−1

G (G)∪π−1
G′ (E2), there existgx∈ π−1

G (s) such that the unique liftinḡγ of γ with starting pointx ends
at the pointgx. The deck transformationg is the element ofGG/NG satisfyingg= γ modNG. Thus, in
the same way as before, we can parameterize the set of lifts ofelements inπ1(S3r(G∪πGπ−1

G′ (E2)),s)
with the set

∪g∈GG/NGπ1(M r (π−1
G (G)∪π−1

G (E2)),x)g.

Again we have a group homomorphism

ιE2 : π1(M r (π−1
G (G)∪π−1

G (E2)),x)→ π1(M r π−1
G (E2)),x)

induced by the inclusion. Thus, we can apply the representation σP1 : π1(M r π−1
G′ (E2))→ Sm̃′ to

an elementιE2(γ̃), for γ̃ in π1(M r (π−1
G (G)∪π−1

G (E2)),x), such that̃γg describes a lift ofγ to M as
above. The change of base pointx 7→ gxcorresponds to an actionα 7→ γαγ−1 on the normal subgroup

(πG)∗π1(M r (π−1
G (G)∪π−1

G (E2)),x) ⊂ π1(S3 r (G∪πGπ−1
G′ (E2)),s).

As in the proof of Lemma 3.1, we can shift the pairs(σP1 ◦ιE2,x) to (σP1 ◦ιE2 ◦Adγ,gx) with the action

σP1 ◦ ιE2 ◦Adγ : π1(M r (π−1
G (G)∪π−1

G′ (E2)))→ Sm̃′

given by
σP1 ◦ ιE2 ◦Adγ(α) = σP1 ◦ ιE2(γαγ−1)

for g the image ofγ in the quotient ofπ1(S3 r (G∪ πGπ−1
G′ (E2)),s) by the normal subgroupN =

(πG)∗π1(M r (π−1
G (G)∪π−1

G (E2)),x). Since our covering mapπG is of orderm, then the representa-
tions(σP1,x) define anm-vector of representations, or equivalently a single map

σP1 : π1(M r π−1
G′ (E2))→ (Sm̃′)

m.

We write this equivalently as in Lemma 3.1 in the form(σP1(α j)) j=1...,m ∈ (Sm̃′)
m. We then have

σP1(γαγ−1) = σgσP1(α)σ−1
g with g = γ modN, whereσg is the permutation inSm determined by the

deck transformationg, so that we get̂σE(γ) = σP1(α j)σG(γ). We then apply the result of the Claim
above, and replaceσP1(α j) = σ̃G′ ◦ (πG′)∗(α j) and this complete the proof of the statement. �
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4. Semigroupoids and additive categories

A semigroupoid can be thought of as a generalized semigroup in which only certain multiplica-
tions are possible.
A semigroupoid on a setS is a setG together with the following pair of maps(s, r)

G

s
''

r

77 S

s is called the source whiler is called the range. To each elementα ∈ G we assigns an arrow from
s(α) = x to r(α) = y in S

s(α) = x
α−→ r(α) = y

Define the set of composable pairs

G 2 = {(α,β) ∈ G ×G |s(α) = r(β)}
with a productm : G 2−→ G defined by

m(α,β) = αβ = α◦β.

Now if β : s(β) = x−→ r(β) = y = s(α) And α : s(α) = y−→ z= r(α) Then

αβ : x = s(β) = s(αβ)−→ z= r(α) = r(αβ)

as in the diagram

x
β

//

αβ=α◦β
((y

α
// z

The multiplicationm is an associativei.e. α(βδ) = (αβ)δ.

An embeddingγ : S −→ G is called a unit section if it satisfies

γ(r(α))α = α = αγ(s(α)), ∀α ∈ G .

Notice that it is not necessary in general that all theγ(r(α)) = γ(s(α)) = γ, but if they are all equal
thenG is a semigroup andγ is the unit of the semigroup.

A semigroupoid is the same thing as a small category which is acategory in which both objects
andHom(,) are actually sets. We denote byU (G ) the set of units ofG . A semigroupoid is regular
if, for all α ∈ G there exist unitsγ and γ′ such thatγα and αγ′ are defined. Such units, if they
exist, are unique (for eachα). To each unitγ ∈ U (G ) in a regular semigroupoid one associates a
subsemigroupoidG γ = {α ∈ G |γ(s(α)) = γ}.
A semigroupoid (cf. [37]) gives rise to a hierarchy of sets

G 0 = γ(S )≃ S
G 1 = G

G 2 = {(α,β) ∈ G ×G |s(α) = r(β)}
G 3 = {(α,β,γ) ∈ G ×G ×G |s(γ) = r(β),s(β) = r(α)}

and so on, by considering successive compositions of morphisms.

We can reformulate the results on embedded graphs and 3-manifolds obtained in the previous
section in terms of semigroupoids in the following way.

LEMMA 4.1. The set of compact oriented 3-manifolds forms a regular semigroupoid, whose set
of units is identified with the set of embedded graphs.



22 1. GRAPHS CATEGORY AND THREE-MANIFOLDS AS CORRESPONDENCES

PROOF. We letG be the collection of dataα = (M ,G,G′) with M a closed oriented 3-manifold
with branched covering maps toS3 of the form (1.6). We define a composition rule as in Definition
2.5, given by the fibered product. In the multi-connected case, for

M = M1∪M2∪ ·· ·∪Mk (4.1)

with (Mi ,G,G′) as in (1.6) withMi connected, we extend the compositionM ◦ M̃ to mean

M ◦ M̃ = M1◦ M̃∪M2◦ M̃∪ ·· ·∪Mk◦ M̃, (4.2)

and similarly forM̃ multi-connected. It is necessary to include the multi-connected case since the
fibered product of connected manifolds may consist of different connected components. We impose
the condition that the composition ofα = (M1,G1,G′1) andβ = (M2,G2,G′2) is only defined when
theG′1 = G2. By Lemma 2.12, we know that, for eachα = (M ,G,G′) ∈ G the source and range are
given by the trivial coveringsγ = UG = (U,G,G) andγ′ = UG′ = (U,G′,G′). That is, we can identify
them withs(α) = G and r(α) = G′. Thus, the set of unitsU (G ) is the set of embedded graphs in
S3. �

For a given embedded graphG, the subsemigroupoidGG is given by the set of all 3-manifolds
that are coverings ofS3 branched along embedded graphsE containingG as a subgraph.

Given a semigroupoidG , and a commutative ringR, one can define an associated semigroupoid
ring R[G ], whose elements are finitely supported functionsf : G → R, with the associative product

( f1∗ f2)(α) = ∑
α1,α2∈G :α1α2=α

f1(α1) f2(α2). (4.3)

Elements ofR[G ] can be equivalently described as finiteR-combinations of elements inG , namely
f = ∑α∈G aαδα, whereaα = 0 for all but finitely manyα ∈ G and δα(β) = δα,β, the Kronecker
delta. The following statement is a semigroupoid version ofthe representations of groupoid algebras

generalizing the regular representation of group rings.

LEMMA 4.2. Suppose given a unitγ ∈ U (G ). LetH γ denote the R-module of finitely supported
functionsξ : G γ→ R. The action

ργ( f )(ξ)(α) = ∑
α1∈G ,α2∈G γ:α=α1α2

f (α1)ξ(α2), (4.4)

for f ∈ R[G ] andξ ∈ H γ, defines a representation of R[G ] onH γ.

PROOF. We have
ργ( f1∗ f2)(ξ)(α) = ∑( f1∗ f2)(α1)ξ(α2)

= ∑
β1β2=α1∈G

∑
α1α2=α

f1(β1) f2(β2)ξ(α2) = ∑
β1β=α

f1(β1)ργ( f2)(ξ)(β),

henceργ( f1 ∗ f2) = ργ( f1)ργ( f2). Since for elements of a semi-groupoid the range satisfiess(αβ) =
s(β), the action is well defined onH γ. �

In the next section we see that in fact the difference in the representation (4.4) between the semi-
groupoid and the groupoid case manifests itself in the compatibility with the involutive structure.

A semigroupoid is just an equivalent formulation of a small category, so the result above simply
states that embedded graphs form a small category with the sets Hom(G,G′) as morphisms. Pass-
ing from the semigroupoidG to R[G ] corresponds to passing from a small category to its additive
envelope, as follows.
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5. Categories of graphs and correspondences

In the previous discussion on correspondences we introduced a category of graphs and correspon-
dences, see Lemma 4.1 above. We will later refine them by introducing suitable equivalence relations
on the correspondences. Here we first describe the additive envelope of the small category of Lemma
4.1.

DEFINITION 5.1. We letK denote the category whose objectsOb j(K ) are graphsG⊂ S3 and
whose morphismsφ ∈ Hom(G,G′) areQ-linear combinations∑i aiM i of 3-manifold M i with sub-
mersionsπE andπE′ to S3 as in Definition 2.4, including the trivial (unbranched) covering in all the
Hom(G,G) as in Proposition 2.12.

LEMMA 5.2. The categoryK is a small pre-additive category.

PROOF. Notice thatOb j(K ) is a set, since tamely embedded graphs inS3 can be identified with
linearly embedded graphs inS3 and that 3-manifolds are here described by representation theoretic
dataπ1(M r E′) −→ Sm that also form a set, so thatK is a small category. We have seen that
the trivial unbranched covering is the identity for composition. This shows that, for each object
G∈Ob j(K ), there is an identity morphismidG ∈Hom(G,G). We have also proved that associativity
of composition holds. Thus,K is a category.

DEFINITION 5.3. A pre-additive categoryC is a category such that, for anyO ,O ′ ∈ Ob j(C ) the
set of morphismsHom(O ,O ′) is an abelian group and the composition of maps is a bilinear operation,
that is, forO ,O ′,O ′′ ∈Ob j(C ) the composition

◦ : Hom(O ,O ′)⊗Hom(O ′,O ′′)−→ Hom(O ,O ′′)

is a bilinear homomorphism.

In our case, the set of morphismsHom(G,G′) is an abelian group with the addition of coefficients.
In fact, we can write morphismsφ = ∑i aiM i equivalently asφ = ∑M aM M , where the sum ranges over
the set of all 3-manifolds that are branched covers

G⊂ E ⊂ S3 πE←−M
πE′−→ S3⊃ E′ ⊃G′

and all but finitely many of the coefficientsaM are zero. Then, forφ = ∑aM M andφ′ = ∑bM M , we
haveφ + φ′ = ∑M (aM + bM )M . The composition rule given by the fibered product of 3-manifolds
extends to linear combinations by

φ′ ◦φ = (∑
i

aiM i)◦ (∑
j

b jM j) = ∑
i, j

aib jM i ◦M j .

This gives a bilinear homomorphism

Hom(G,G′)⊗Hom(G′,G′′)→ Hom(G,G′′).

This shows thatK is a pre-additive category. �

DEFINITION 5.4. Suppose given a pre-additive categoryC . Then the additive categoryMat(C )
is defined as follows (cf. [3]).

(1) The objects inOb j(Mat(C )) are formal direct sums
⊕n

i=1O i of objectsO i ∈Ob j(C ), where
we allow for the direct sum to be possibly empty.

(2) If F : O ′→ O is a morphism inMat(C ) with objectsO =
⊕m

i=1O i andO ′ =
⊕n

j=1O j then
F = Fi j is a m× n matrix of morphismsFi j : O ′ j → O i in C . The abelian group struc-
ture onHomMat(C )(O

′,O ) is given by matrix addition and the abelian group structure of
HomC (O ′ j ,O i).
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(3) The composition of morphisms inMat(C ) is defined by the rule of matrix multiplication
and the composition of morphisms inC .

ThenMat(C ) is called theadditive closureof C . For more details see for instance [3].

In the following, for simplicity of notation, we continue touse the notationK for the additive clo-
sure of the categoryK of Definition 5.1. Notice that we could equally choose to workwith Z-linear
combinations instead ofQ-linear combinations in the definition of morphisms, since for a pre-additive
category one requires that composition isZ-bilinear.

6. Convolution algebra and time evolution

Consider as above the semigroupoid ring (algebra)C[G ] of complex valued functions with finite
support onG , with the associative convolution product (4.3),

( f1∗ f2)(M) = ∑
M1,M2∈G :M1◦M2=M

f1(M1) f2(M2). (6.1)

We define an involution on the semigroupoidG by setting

Hom(G,G′) ∋ α = (M ,G,G′) 7→ α∨ = (M ,G′,G) ∈ Hom(G′,G), (6.2)

where, ifα corresponds to the 3-manifoldM with branched covering maps

G⊂ E ⊂ S3 πG←M
πG′→ S3⊃ E′ ⊃G′

thenα∨ corresponds to the same 3-manifold with maps

G′ ⊂ E′ ⊂ S3 πG′←M
πG→ S3⊃ E ⊃G

taken in the opposite order. In the following, for simplicity of notation, we writeM∨ instead of
α∨ = (M ,G′,G).

LEMMA 6.1. The algebraC[G ] is an involutive algebra with the involution

f∨(M) = f (M∨). (6.3)

PROOF. We clearly have(a f1 +b f2)∨ = ā f∨1 + b̄ f∨2 and( f∨)∨ = f . We also have

( f1∗ f2)
∨(M) = ∑

M∨=M∨1◦M∨2
f1(M∨1 ) f2(M∨2 ) = ∑

M=M2◦M1

f∨2 (M2) f∨1 (M1)

so that( f1∗ f2)∨ = f∨2 ∗ f∨1 �

6.1. Time evolution. Given an algebraA over C, a time evolution is a 1-parameter family of
automorphismsσ : R→ Aut(A ). There is a natural time evolution on the algebraC[G ] obtained as
follows.

LEMMA 6.2. Suppose given a function f∈C[G ]. Consider the action defined by

σt( f )(M) :=
( n

m

)it
f (M), (6.4)

whereM a covering as in(1.6), with the covering mapsπG andπG′ respectively of generic multiplicity
n and m. This defines a time evolution onC[G ].
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PROOF. Clearlyσt+s = σt ◦σs. We check thatσt( f1 ∗ f2) = σt( f1)∗σt( f2). By (6.1), we have

σt( f1∗ f2)(M) =
( n

m

)it
( f1∗ f2)(M)

= ∑
M1,M2∈G :M1◦M2=M

(

n1

m1

)it

f1(M1)

(

n2

m2

)it

f2(M2) = (σt( f1)∗σt( f2))(M),

whereni ,mi are the generic multiplicities of the covering maps forM i , with i = 1,2. In fact, we know
by Lemma 2.6 thatn = n1n2 andm = m1m2. The time evolution is compatible with the involution
(6.3), since we have

σt( f∨)(M) =
( n

m

)it
f∨(M) =

( n
m

)it
f (M∨) =

(m
n

)it
f (M∨) = σt( f )(M∨) = (σt( f ))∨(M).

�

Similarly, we define the left and right time evolutions onA by setting

σL
t ( f )(M) := nit f (M), σR

t ( f )(M) := mit f (M), (6.5)

wheren and m are the multiplicities of the two covering maps as above. Thesame argument of
Lemma 6.2 shows that theσL,R

t are time evolutions. One sees by construction that they commute, i.e.
that [σL

t ,σR
t ] = 0. The time evolution (6.4) is the composite

σt = σL
t σR
−t . (6.6)

The involution exchanges the two time evolutions by

σL
t ( f∨) = (σR

−t( f ))∨. (6.7)

6.2. Creation and annihilation operators. Given an embedded graphG ⊂ S3, consider, as
above, the setGG of all 3-manifolds that are branched covers ofS3 branched along an embedded
graphE ⊃G. On the vector spaceHG of finitely supported complex valued functions onGG we have
a representation ofC[G ] as in Lemma 4.2, defined by

(ρG( f )ξ)(M) = ∑
M1∈G ,M2∈GG:M1◦M2=M

f (M1)ξ(M2). (6.8)

It is natural to consider on the spaceHG the inner product

〈ξ,ξ′〉= ∑
M∈GG

ξ(M)ξ′(M). (6.9)

Notice however that, unlike the usual case of groupoids, theinvolution (6.3) given by the trans-
position of the correspondence does not agree with the adjoint in the inner product (6.9), namely
ργ( f )∗ 6= ργ( f∨).
The reason behind this incompatibility is that semigroupoids behave like semigroup algebras imple-
mented by isometries rather than like group algebras implemented by unitaries. The model case for an
adjoint and involutive structure that is compatible with the representation (6.8) and the pairing (6.9)
is therefore given by the algebra of creation and annihilation operators. (See the appendix for more
information on the general properties of creation and annihilation operators.)

We need the following preliminary result.

LEMMA 6.3. Suppose given elementsα = (M ,G,G′) andα1 = (M1,G1,G′1) in G . If there exists
an elementα2 = (M2,G2,G′2) in G (G2,G′2) such thatα = α1◦α2 ∈ G , thenα2 is unique.
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PROOF. We haveM = M1 ◦M2. We denote byE ⊃ G, E′ ⊃ G′ andE1 ⊃ G1 andE′1 ⊃ G′1 the
embedded graphs that are the branching loci of the covering mapsπG, πG′ andπG1, πG′1

of M and
M1, respectively. By construction we know that for the composition α1 ◦α2 to be defined inG we
need to haveG′1 = G2. Moreover, by Lemma 2.6 we know thatE = E1∪πG1π−1

G′1
(E2) andE′ = E′2∪

πG′2
π−1

G2
(E′1), whereE2 andE′2 are the branch loci of the two covering maps ofM2. The manifoldM2

and the branched covering mapsπG2 andπG′2
can be reconstructed by determining the multiplicities,

branch indices, and branch lociE2, E′2. The n-fold branched coveringπG : M → S3 ⊃ E ⊃ G is
equivalently described by a representation of the fundamental groupπ1(S3 r E)→ Sn. Similarly, the
n1-fold branched coveringπG1 : M1→ S3 ⊃ E1⊃ G1 is specified by a representationπ1(S3 r E1)→
Sn1. Given these data, we obtain the branched coveringP1 : M →M1 such thatπG = πG1 ◦P1 in the
following way. The restrictionsπG : M r π−1

G (E)→ S3 r E andπG1 : M1 r π−1
G1

(E)→ S3 r E are

ordinary coverings, and we obtain from these the coveringP1 : M r π−1
G (E)→M1 r π−1

G1
(E). Since

this is defined on the complement of a set of codimension two, it extends uniquely to a branched
coveringP1 : M → M1. The image underπG′1

of the branch locus ofP1 and the multiplicities and
branch indices ofP1 then determine uniquely the manifoldM2 as a branched coveringπG2 : M2→
S3 ⊃ E2. Having determined the branched coveringπG2 we have the covering maps realizingM as
the fibered product ofM1 andM2, hence we also have the branched covering mapP2 : M → M2.
The knowledge of the branch loci, multiplicities and branchindices ofπG′ andP2 then allows us to
identify the part of the branch locusE′ that constitutesE′2 and the multiplicities and branch indices of
the mapπG′2

. This completely determines also the second covering mapπG′2
: M2→ S3⊃ E′2. �

We denote in the following by the same notationHG the Hilbert space completion of the vector
spaceHG of finitely supported complex valued functions onGG in the inner product (6.9). We denote
by δM the standard orthonormal basis consisting of functionsδM (M ′) = δM ,M ′ , with δM ,M ′ the Kro-
necker delta.
Given an elementM ∈ G , we define an associated bounded linear operatorAM onHG of the form

(AM ξ)(M ′) =

{

ξ(M ′′) if M ′ = M ◦M ′′

0 otherwise.
(6.10)

Notice that (6.10) is well defined because of Lemma 6.3.

LEMMA 6.4. The adjoint of the operator(6.10)in the inner product(6.9) is given by the operator

(A∗M ξ)(M ′) =

{

ξ(M ◦M ′) if the composition is defined

0 otherwise.
(6.11)

PROOF. We have

〈ξ,AM ζ〉= ∑
M ′=M◦M ′′

ξ(M ′)ζ(M ′′) = ∑
M ′′

ξ(M ◦M ′′)ζ(M ′′) = 〈A∗M ξ,ζ〉.

�

We regard the operatorsAM andA∗M as the annihilation and creation operators onHG associated
to the manifoldM . They satisfy the following relations.

LEMMA 6.5. The products A∗MAM = PM and AM A∗M = QM are given, respectively, by the projec-
tion PM onto the subspace ofHG given by the range of composition byM , and the projection QM onto
the subspace ofHG spanned by theM ′ with s(M ′) = r(M).

PROOF. This follows directly from (6.10) and (6.11). �
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The following result shows the relation between the algebraC[G ] and the algebra of creation and
annihilation operatorsAM , A∗M .

LEMMA 6.6. The algebra of linear operators onHG generated by the AM is the imageρG(C[G ])
of C[G ] under the representationρG of (6.8).

PROOF. Every function f ∈ C[G ] is by construction a finite linear combinationf = ∑M aM δM ,
with aM ∈ R. Under the representationρG we have

(ρG(δM )ξ)(M ′) = ∑
M ′=M1◦M2

δM (M1)ξ(M2) = (AM ξ)(M ′). (6.12)

�

This shows that, when working with the representationsρG the correct way to obtain an involu-
tive structure is by extending the algebra generated by theAM to include theA∗M , instead of using the
involution (6.3) ofC[G ].

6.3. Hamiltonian. Given a representationρ :A →End(H ) of an algebraA with a time evolution
σ, one says that the time evolution, in the representationρ, is generated by a HamiltonianH if for all
t ∈ R one has

ρ(σt( f )) = eitH ρ( f )e−itH , (6.13)

for an operatorH ∈ End(H ).

LEMMA 6.7. The time evolutionsσL
t and σR

t of (6.5) and σt = σL
t σR
−t of (6.4) extend to time

evolutions of the involutive algebra generated by the operators AM and A∗M by

σL
t (AM) = nit AM σL

t (A∗M) = n−it A∗M

σR
t (AM) = mit AM σR

t (A∗M) = m−it A∗M

σt(AM) =
(

n
m

)it
AM σt(A∗M) =

(

n
m

)−it
A∗M.

(6.14)

PROOF. The result follows directly from (6.12) and the conditionσt(T∗) = (σt(T))∗. �

We then have immediately the following result.

LEMMA 6.8. Consider the unbounded linear operators HL
G′ and HR

G′ on the spaceHG′ defined by

(HL
G′ ξ)(M) = log(n) ξ(M), (HR

G′ ξ)(M) = log(m) ξ(M) (6.15)

for M a geometric correspondence of the form

G⊂ E ⊂ S3 πG←−M
πG′−→ S3⊃ E′ ⊃G′

with πG and πG′ branched coverings of order n and m, respectively. Then HL
G′ and HR

G′ are, respec-
tively, Hamiltonians for the time evolutionsσL

t andσR
t in the representationρG′ of (6.8).

PROOF. It is immediate to check that

ρG′(σL
t ( f )) = e−itHL

ρG′( f )eitHL
and ρG′(σR

t ( f )) = e−itHR
ρG′( f )eitHR

,

for f ∈C[G ]. In fact, it suffices to use the explicit form of the time evolutions on the creation and an-
nihilation operators given in Lemma 6.7 above to see that they are implemented by the Hamiltonians
HL

G′ andHR
G′. �
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An obvious problem with this time evolution is the fact that the Hamiltonian typically can have
infinite multiplicities of the eigenvalues. For example, bythe strong form of the Hilden-Montesinos
theorem [54] and the existence of universal knots [33], there exist knotsK such that all compact
oriented 3-manifolds can be obtained as a 3-fold branched cover of S3, branched alongK. For this
reason it is useful to consider time evolutions on a convolution algebra of geometric correspondences
that takes into account the equivalence given by 4-dimensional cobordisms. We turn to this in §7 and
§8 below.

7. Equivalence of correspondences

It is quite clear that, in our first definition of the categoryK of knots with correspondences given
by branched covers of the 3-sphere, we typically have spacesof morphisms that are “too large” to
deal with effectively. The following result illustrates one of the problems we encounter.

LEMMA 7.1. There are choices of embedded graphs G, G′ for which Hom(G,G′) is theQ-vector
space spanned by all compact oriented connected 3-manifolds.

PROOF. To find such example it is suffices to restrict to the case where G andG′ are knots. The
result is an immediate consequence of the existence ofuniversal knots(see the appendix and also
[33], [35]). A knot G is universal if all compact oriented connected 3-manifoldscan be obtained as
branched covers ofS3 branched along the same knotG. It suffices to chooseG andG′ to be universal
knots to obtain the stated result. �

Thus, it is clear that it is necessary to impose a suitable equivalence relation∼ on correspon-
dences and redefine our category as the categoryK ∼ where objects are graphs and the morphisms
areQ-linear combinationsφ = ∑i ai [Mi] of equivalence classes of branched covers with the properties
described above. This will allow us to work with smaller spaces of morphisms. It is well known that,
whenever one defines morphisms via correspondence, be it cycles in the product as in the case of
motives or submersions as in the case of geometric correspondence, the most delicate step is always
deciding up to what equivalence relation correspondences should be considered. In fact, as the case of
motives clearly show (cf. [40]) the properties of the category change drastically when one changes the
equivalence relation on correspondences. In the case of 3-manifolds with the structure of branched
covers, there is a natural notion of equivalence, which is given by cobordisms of branched covers.

7.1. Cobordisms of branched covers.Hilden and Little (cf. [37]) gave us a suitable notion of
equivalence relation of branched coverings obtained by using cobordisms. Namely, suppose given
two compact oriented 3-manifoldsM1 andM2 that are branched covers ofS3, with covering maps
π1 : M1→ S3 andπ2 : M2→ S3, respectively branched along 1-dimensional simplicial complex E1

andE2. A cobordism of branched coverings is a 4-dimensional manifold W with boundary∂W =
M1∪−M2 (where the minus sign denotes the change of orientation), endowed with a submersion
q : W→ S3× [0,1], with M1 = q−1(S3×{0}) andM2 = q−1(S3×{1}) andq|M1 = π1 andq|M2 =
π2. One also requires that the mapq is a covering map branched along a surfaceS⊂ S3× [0,1]
such that∂S= E1∪−E2, with E1 = S∩ (S3×{0}) andE2 = S∩ (S3×{1}). Since in the case of
both 3-manifolds and 4-manifolds there is no substantial difference in working in thePL or smooth
categories, we keep formulating everything in thePL setting. We adapt easily this notion to the case
of our correspondences. We simply need to modify the definition above to take into account the fact
that our correspondences have two (not just one) covering maps toS3, so that the cobordisms have to
be chosen accordingly.
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DEFINITION 7.2. Suppose given two morphismsM1 andM2 in Hom(G,G′), of the form

G⊂ E1⊂ S3 πG,1←−M1
πG′ ,1−→ S3⊃ E′1⊃G′

G⊂ E2⊂ S3 πG,2←−M2
πG′ ,2−→ S3⊃ E′2⊃G′.

Then a cobordism betweenM1 andM2 is a 4-dimensional manifoldW with boundary∂W = M1∪
−M2, endowed with two branched covering maps

S⊂ S3× [0,1]
q←−W

q′−→ S3× [0,1]⊃ S′, (7.1)

branched along surfacesS,S′ ⊂S3× [0,1]. The mapsq andq′ have the properties thatM1 = q−1(S3×
{0}) = q′−1(S3×{0}) andM2 = q−1(S3×{1}) = q′−1(S3×{1}), with q|M1 = πG,1, q′|M1 = πG′,1,
q|M2 = πG,2 andq′|M2 = πG′,2. The surfacesSandS′ have boundary∂S= E1∪−E2 and∂S′ = E′1∪
−E′2, with E1 = S∩ (S3×{0}), E2 = S∩ (S3×{1}), E′1 = S′∩ (S3×{0}), andE′2 = S′∩ (S3×{1}).

Here By “surface” we mean a 2-dimensional simplicial complex that is PL-embedded inS3×
[0,1], with boundary∂S⊂ S3×{0,1} given by 1-dimensional simplicial complexes,i.e. embedded
graphs.

LEMMA 7.3. We setM1 ∼ M2 if there exists a cobordims W as in Definition 7.2. This is an
equivalence relation.

PROOF. (1) Reflexivity. ConsiderM in Hom(G,G′) specified by a diagram

E1⊂ S3 π1←−M
π2−→ S3⊃ E′1.

We can chooseW = M × [0,1] as a cobordism ofM with itself. This has∂W = M ∪−M ,
with covering maps

E1× [0,1]⊂ S3× [0,1]
q1←−W = M × [0,1]

q2−→ S3× [0,1]⊃ E′1× [0,1]

branched along the surfacesS= E1× [0,1] andS′ = E′1× [0,1] in S3× [0,1]. These have
∂S= E1∪−E′1 and ∂S′ = E1∪−E′1, as needed. The covering mapsq1 and q2 have the
properties that

M = q−1
1 (S3×{0}) = q−1

2 (S3×{0}) = q−1
1 (S3×{1}) = q−1

2 (S3×{1}).
Thus, this satisfies all the properties of Definition 7.2 above.

(2) Symmetry. Given M1 ∼ M2, there exist a cobordismW satisfying the properties of Def-
inition 7.2. Now considerW, which is the same manifoldW, with the opposite orienta-
tion. This is also a cobordism betweenM2 andM1, that is, it has boundary∂W = ∂W =

(M1∪−M2) =−M1∪M2. It is also endowed with two branched covering maps

S⊂ S3× [0,1]
q←−W

q′−→ S3× [0,1]⊃ S′, (7.2)

branched along the surfaces(S,S′) ⊂ S3× [0,1], where here againS, S′, q, q′ and[0,1] are
the same asS, S′, q, q′ and[0,1], but taken with the opposite orientation. The mapsq andq′

have the property that

M1 = q−1(S3×{0}) = q−1(S3×{1}) = q′−1(S3×{0}) = q′
−1

(S3×{1}),

M2 = q−1(S3×{1}) = q−1(S3×{0}) = q′−1(S3×{1}) = q′
−1

(S3×{0}),
with q|M1 = πG,1, q′|M1 = πG′,1, q|M2 = πG,2 andq′|M2 = πG′,2. The surfacesSandS′ have
boundary∂S= (∂S) = (E1∪−E2) = −E1∪E2 and∂S= (∂S) = (E1∪−E2) = −E1∪E2,
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with E1 = S∩(S3×{0}), E2 = S∩(S3×{1}), E′1 = S′∩(S3×{0}), andE′2 = S′∩(S3×{1}).
Thus, this shows thatM2∼M1.

(3) Transitivity. Assume thatM1∼M2 andM2∼M3. We want to show thatM1∼M3. Since
M1∼M2, there exists a cobordismW1 as in Definition 7.2 with a diagram

S1⊂ S3× [0,1]
q1←−W1

q′1−→ S3× [0,1]⊃ S′1, (7.3)

and∂S1 = E1∪−E2, ∂S′1 = E′1∪−E′2. Similarly, sinceM2 ∼M3, there exist a cobordism
W2, which also satisfies the properties of Definition 7.2, with covering maps

S2⊂ S3× [0,1]
q2←−W2

q′2−→ S3× [0,1]⊃ S′2, (7.4)

where∂S2 = E2∪−E3 and∂S′2 = E′2∪−E′3. Now we use the “collar neighborhood” property.
Consider the sets

U1 = q−1
1 (S3× [1− ε,1]), U ′1 = (q′1)

−1(S3× [1− ε,1]),

U2 = q−1
2 (S3× [0,ε]), U ′2 = (q′2)

−1(S3× [0,ε]).

For a sufficiently smallε > 0 these have the property that there exist homeomorphisms

φ1 : U1→M2× [1− ε,1], φ′1 : U ′1→M2× [1− ε,1],

φ2 : U2→M2× [0,ε], φ2 : U ′2→M2× [0,ε].

Here we can replace homeomorphisms by PL-homeomorphism of diffeomorphism if we
work in the PL or smooth category. Moreover, under this identification, we also have, for
i = 1,2, identifications

fi := ψiqiφ−1
i = πG,i × id, gi := ψ′iq

′
i(φ
′
i)
−1 = πG′,i× id, (7.5)

where theψi : S3× [1− ε,1]→ S3× [1− ε,1] andψ′i : S3× [0,ε]→ S3× [0,ε] are homeo-
morphisms with the property that

ψ1(S1∩ (S3× [1− ε,1])) = E2× [1− ε,1]

ψ′1(S
′
1∩ (S3× [1− ε,1])) = E′2× [1− ε,1]

ψ2(S2∩ (S3× [0,ε])) = E2× [0,ε]

ψ′2(S
′
2∩ (S3× [0,ε])) = E′2× [0,ε].

Thus, f1 is branched alongE2× [1−ε,1], f2 is branched alongE′2× [1−ε,1], g1 is branched
alongE2× [0,ε] andg2 is branched alongE′2× [0,ε]. Now fix a homeomorphismh : [1−
ε,1]→ [0,ε] and define

W = W1∪M2 W2 = W1∪W2/∼,

which is the quotient of the disjoint unionW1∪W2 by the equivalence relation generated by
requiring thatw1 ∼ w2 wheneverw1 ∈U1∩U ′1 andw2 ∈U2∩U ′2 with hφ1(w1) = φ2(w2)
andhφ′1(w1) = φ′2(w2). We can assume in the following, possibly after passing to a smaller
ε > 0, thatU1 = U ′1 andU2 = U ′2, so we just use the notationU1 andU2 for both theφ
and φ′ maps. We then need to check thatW = W1∪M2 W2 defined as above satisfies all
the properties of Definition 7.2. First, we check thatW is a 4-dimensional manifold with
boundary∂W = M1∪M3, endowed with two branched covering maps

Ŝ⊂ S3× [0,1]
Π1←−W

Π2−→ S3× [0,1]⊃ Ŝ′. (7.6)
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Here we use an identificationS3× [0,1]≃ S3× I , whereI is the interval obtained by iden-
tifying two copies of the interval[0,1] by gluing [1− ε,1] and[0,ε],

I = [0,1]∪h:[1−ε,1]→[0,ε] [0,1].

This means that we identifys1 ∼ s2, for s1 ∈ S3× [1− ε,1] ands2 ∈ S3× [0,ε] whenever
h(ψ1(s1)) = ψ2(s2) andh(ψ′1(s1)) = ψ′2(s2). In order to define the functionsΠ1 andΠ2

of (7.6), we first need the following fact. Ifw1 ∼ w2, with w1 ∈ U1 and w2 ∈ U2, then
q1(w1) ∼ q2(w2). In fact, suppose thatw1 ∼ w2. This means thathφ1(w1) = φ2(w2) and
hφ′1(w1) = φ′2(w2). Suchw1 andw2 have imagesq1(w1) ∈ S3× [1− ε,1] andq2(w2) ∈ S3×
[0,ε]. We apply the mapsψi and obtainhψ1(q1(w1)) = (πG,1×h)(w1) = ψ2(q2(w2)), which
means thatq1(w1)∼ q2(w2). The same argument shows that, conversely, ifq1(w1)∼ q2(w2)
thenw1∼ w2. Thus, we can define the functionsΠ1 andΠ2 of (7.6) by setting

Π1(w) =

{

q1(w) w∈W1

q2(w) w∈W2

Π2(w) =

{

q′1(w) w∈W1

q′2(w) w∈W2

(7.7)

This gives well defined maps on the quotientW = W1∪M2 W2 of the above equivalence
relation. By construction, these two mapsΠ1 and Π2 are branched, respectively, along
surfacesŜ, Ŝ′ ⊂ S3× [0,1], where

Ŝ= S1∪L2 S2 = S1∪S2/∼,

which is again the quotient of the disjoint unionS1∪S2 by the equivalence relations1 ∼ s2

whens1 ∈ S1∩ (S3× [1− ε,1]) ands2 ∈ S2∩ (S3× [0,ε]) with h(ψ1(s1)) = ψ2(s2), i.e. the
identification obtained by gluing the two surfaces along thecommon boundary components
given by the linkE2. The surfaceŜ′ is obtained in the same way. Moreover, the mapsΠ1

andΠ2 have the properties that

M1 = q−1
1 (S3×{0}) = Π−1

1 (S3×{0}) = q′−1
1 (S3×{0}) = Π−1

2 (S3×{0})
and

M3 = q−1
2 (S3×{1}) = Π−1

1 (S3×{1}) = q′−1
2 (S3×{1}) = Π−1

1 (S3×{1}).
The surfaceŝS and Ŝ′ have boundary∂Ŝ= E1∪−E3 and∂Ŝ′ = E′1∪−E′3, with E1 = Ŝ∩
(S3×{0}), E3 = Ŝ∩ (S3×{1}), E′1 = Ŝ′∩ (S3×{0}), andE′3 = Ŝ′∩ (S3×{1}).

�

PROPOSITION7.4. Let M1∼M2 in Hom(G,G′) andM ′1∼M ′2 in Hom(G′,G′′). Then the com-
positions satisfy

M ′1◦M1∼M ′2◦M2.

PROOF. Suppose givenM1 andM2 ∈Hom(G,G′) andM ′1 andM ′2 ∈ Hom(G′,G′′) with

G⊂ E11⊂ S3 π11←M1
π12→ S3⊃ E12⊃G′

G⊂ E21⊂ S3 π21←M2
π22→ S3⊃ E22⊃G′

G′ ⊂ E′11⊂ S3 π′11←M ′1
π′12→ S3⊃ E′12⊃G′′

G′ ⊂ E′21⊂ S3 π′21←M ′2
π′22→ S3⊃ E′22⊃G′′.

(7.8)
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SinceM1∼M2, there exist a cobordismW1 such that∂W1 = M1∪−M2, endowed with two branched
covering maps

S11⊂ S3× [0,1]
q1←−W1

q′1−→ S3× [0,1]⊃ S12, (7.9)

branched along surfacesS11,S12⊂ S3× [0,1]. These surfaces have boundary∂S11 = E11∪−E21 and
∂S12 = E12∪−E22, and the branched covering maps satisfyq1|M1 = π11, q′1|M1 = π12, q1|M2 = π21

andq′1|M2 = π22, with the properties of Definition 7.2. In the same way,M ′1 ∼ M ′2 mean that there
exists a cobordismW2 with ∂W2 = M ′1∪−M ′2, with branched covering maps

S21⊂ S3× [0,1]
q2←−W2

q′2−→ S3× [0,1]⊃ S22, (7.10)

branched along surfacesS21,S22⊂ S3× [0,1]. These surfaces have boundary∂S21 = E′11∪−E′21 and
∂S22 = E′12∪−E′22, and the maps satisfyq2|M ′1 = π′11, q′2|M ′1 = π′12, q2|M ′2 = π′21 andq′2|M ′2 = π′22, with
the properties of Definition 7.2. The compositionM1◦M ′1 corresponds to the diagram

M1◦M ′1

P11
xxrrrrrrrrrrr

P12
&&LLLLLLLLLLL

M1

π11

{{wwwwwwwww

π12
&&LLLLLLLLLLL

M ′1

π′11xxrrrrrrrrrrr
π′12

##HHHHHHHHH

E11⊂ S3 E12⊂ S3⊃ E′11 E′12⊂ S3.

Corollary 2.7 shows that the composite mapsπ̂1 = π11◦P11 andπ̂2 = π′12◦P12 are branched coverings

I1 = (E11∪π11π−1
12 (E′11))⊂ S3 π̂1←M1◦M ′1

π̂2→ S3⊃ I2 = (E′12∪π′12π′−1
11 (E12)).

Thus,M1 ◦M ′1 is a morphism inHom(G,G′′). Similarly, for the compositionM2 ◦M ′2 we consider
the diagram

M2◦M ′2

P21
xxrrrrrrrrrrr

P22
&&LLLLLLLLLLL

M2

π21

{{wwwwwwwww

π22
&&LLLLLLLLLLL

M ′2

π′21xxrrrrrrrrrrr
π′22

##HHHHHHHHH

E21⊂ S3 E22⊂ S3⊃ E′21 E′22⊂ S3.

Again by Corollary 2.7 we know that the mapsπ̂′1 = π21◦P21 andπ̂′2 = π′22◦P22 are branched coverings
with

I3 = (E21∪π21π−1
22 (E′21))⊂ S3 π̂′1←M2◦M ′2

π̂′2→ S3⊃ I4 = (E′22∪π′22π′−1
21 (E22)),

henceM2◦M ′2 is also a morphism inHom(G,G′′). Now, in order to show thatM ′1◦M1 ∼M ′2◦M2,
we define a new 4-dimensional manifold given by the fibered product

W1 ◦W2 := {(x,y) ∈W1×W2|q′1(x) = q2(y)}. (7.11)

This has branched covering maps obtained as in the diagram below,
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W1 ◦W2

F1
vvmmmmmmmmmmmmmm

F2
((QQQQQQQQQQQQQQ

W1
q1

xxqqqqqqqqqqq

q′1 ((PPPPPPPPPPPPPP W2

q2
vvnnnnnnnnnnnnnn

q′2

&&MMMMMMMMMMM

S11⊂ S3× [0,1] S12⊂ (S3× [0,1])⊃ S21 S22⊂ S3× [0,1].

The mapsT1 = q1 ◦ F1 and T2 = q′2 ◦ F2 are branched along the surfacesŜ1, Ŝ2 with Ŝ1 = S11∪
q1(q

′−1
1 (S21)) andŜ2 = S22∪q′2(q

−1
1 (S12)), i.e.we have a branched covering

Ŝ1⊂ S3× [0,1]
T1←W1 ◦W2

T2→ S3× [0,1]⊃ Ŝ2.

We claim thatW1 ◦W2 is a cobordism betweenM1 ◦M ′1 and M2 ◦M ′2 and that it satisfies all the
properties of Definition 7.2. To show this, we first prove thatthe boundary is given by

∂(W1 ◦W2) = ∂W1 ◦∂W2 = (M1∪−M2)◦ (M ′1∪−M ′2) = (M1◦M ′1)∪−(M2◦M ′2).

First we want to prove that∂(W1 ◦W2) = ∂W1◦∂W2.
By the definition ofW1◦W2 we know that it is a submanifoldW1◦W2⊂W1×W2, defined by imposing
the conditionq′1(w1) = q2(w2) on pairs(w1,w2) ∈W1×W2, hence

∂(W1 ◦W2)⊂ ∂(W1×W2) = ∂W1×W2∪W1×∂W2.

In fact, we have∂(W1◦W2) = (W1 ◦W2)∩∂(W1×W2) Let (w1,w2) ∈ ∂(W1 ◦W2)⊂W1◦W2. Suppose

that (w1,w2) ∈ ∂W1×W2. Then, sincew1 ∈ ∂W1, it has imageq′1(w1) ∈ S3×{0} or in S3×{1}.
Sayq′1(w1) ∈ S3×{0} (the other case is analogous). The conditionq′1(w1) = q2(w2) then implies
that q2(w2) ∈ S3×{0}, which means thatw2 ∈ q−1

2 (S3×{0}) ∈ ∂W2. This shows that an element
(w1,w2) ∈ ∂(W1 ◦W2) satisfies(w1,w2) ∈ ∂W1×∂W2, hence that∂(W1 ◦W2)⊂ ∂W1×∂W2.
Conversely, an element(w1,w2) ∈ ∂W1×∂W2, with the property thatq′1(w1) = q2(w2) is inW1◦W2∩
∂(W1×W2) = ∂(W1 ◦W2). This completes the proof that

∂(W1 ◦W2) = ∂W1◦∂W2.

Next we prove that(M1∪−M2) ◦ (M ′1∪−M ′2) = (M1 ◦M ′1)∪−(M2 ◦M ′2). This follows from
the following simple general fact. Suppose given disjoint unions X = X1∪X2, Y = Y1∪Y2, and
Z = Z1∪Z2, with submersionsfi : X1→ Zi andgi : Yi → Zi . Let f : X→ Z andg : Y→ Z be defined
by f (x) = fi(x) for x∈ Xi andg(y) = gi(y) for y∈Yi , for i = 1,2. Then the fibered product satisfies

X×ZY = (X1×Z1 Y1)∪ (X2×Z2 Y2).

In fact, one has

X×Z Y = {(x,y) ∈ X×Y | f (x) = g(y)}
= {(x,y) ∈ X1×Y1 | f1(x) = g1(y)}∪{(x,y) ∈ X2×Y2 | f2(x) = g2(y)}.
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The result then follows by applying this general fact toXi = M i, Yi = M ′i, Z1 = S3×{0} andZ2 =
S3×{1}. Moreover, we have

∂Ŝ1 = ∂(S11∪q1(q
′−1
1 (S21))) = ∂S11∪∂q1(q

′−1
1 (S21))

= E11∪−E21∪q1(q
′−1
1 (E′11∪−E′21)) = E11∪−E21∪q1(q

′−1
1 (E′11))∪q1(q

′−1
1 (E′21))

= E11∪q1(q
′−1
1 (E′11))∪ (−E21∪q1(q

′−1
1 (E′21)))

= E11∪π11(π−1
12 (E′11))∪ (−E21∪π21(π−1

22 (E′21)))

= I1∪−I3.

By the same calculation one can get∂Ŝ2 = I2∪−I4. Finally, we need to show that

T−1
1 (S3×{0}) = M1◦M ′1 = T−1

2 (S3×{0})
T−1

1 (S3×{1}) = M2◦M ′2 = T−1
2 (S3×{1}).

We just consider the case ofT−1
1 (S3×{0}), as the argument for the other cases is analogous. We

have

T−1
1 (S3×{0}) = F−1

1 q−1
1 (S3×{0})

= {(x,y) ∈W1×W2 : q′1(x) = q2(y),q1(x) ∈ S3×{0}}
= {(x,y) ∈ q−1

1 (S3×{0})×W2 : q′1(x) = q2(y)}, (7.12)

while we have

M1◦M ′1 = q−1
1 (S3×0)◦q−1

2 (S3×0)

= {(x,y) ∈ q−1
1 (S3×{0})×q−1

2 (S3×{0}) : q′1(x) = q2(y)}. (7.13)

In comparing (7.12) and (7.13), we see that, in order to show that T−1
1 (S3×{0}) = q−1

1 (S3× 0) ◦
q−1

2 (S3× 0) it suffices to show that points(x,y) ∈ F−1
1 q−1

1 (S3× {0}) necessarily have alsoy ∈
q−1

2 (S3× 0) not just inW2. This follows from the conditionq′1(x) = q2(y). In fact, given(x,y) ∈
F−1

1 q−1
1 (S3×{0}) thenq′1(x) = q2(y), but q′1(q

−1
1 (S3×{0})) ⊂ S3×{0}, henceq2(y) ∈ S3×{0},

which impliesy∈ q−1
2 (S3×{0}). This shows that the two sets of (7.12) and (7.13) are equal.

A similar argument can be used to show thatM1◦M ′1 = T−1
2 (S3×{0}) and thatM2◦M ′2 = T−1

1 (S3×
{1}) = T−1

2 (S3×{1}). �

LEMMA 7.5. Let G and G′ be embedded graphs inS3 and let Hom(G,G′) be the set of geometric
correspondences as in equation 1.6. Let

Hom(G,G′,∼) := Hom(G,G′)/∼ (7.14)

denote the quotient of Hom(G,G′) by the equivalence relation of cobordism of Definition 7.2. There
is an induced associative composition

◦ : Hom(G,G′,∼)×Hom(G′,G′′,∼)→ Hom(G,G′′,∼). (7.15)

As in §4 above, given a commutative ringR we defineHomR,∼(G,G′) to be the freeR-module
generated byHom(G,G′,∼), that is, the set of finiteR-combinationsφ = ∑[M ] a[M ][M ], with [M ] ∈
Hom(G,G′,∼) anda[M ] ∈ R with a[M ] = 0 for all but finitely many[M ]. We writeHom∼(G,G′) for
HomZ,∼(G,G′). We then construct a categoryKR,∼ of embedded graphs and correspondences in the
following way.

DEFINITION 7.6. The categoryKR,∼ has objects the embedded graphsG in S3 and morphisms
theHomR,∼(G,G′)
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After passing toMat(KR,∼) one obtains an additive category of embedded graphs and correspon-
dences, which one still denotesKR,∼.

7.2. Time evolutions and equivalence.We return now to the time evolutions (6.5) and (6.4) on
the convolution algebraC[G ]. After passing to equivalence classes by the relation of cobordism, we
can consider the semigroupoid̄G which is given by the dataα = ([M ],G,G′), where[M ] denotes
the equivalence class ofM under the equivalence relation of branched cover cobordism. Lemma 7.3
shows that the composition in the semigroupoidG induces a well defined composition law in̄G . We
can then consider the algebraC[Ḡ ] with the convolution product as in (6.1),

( f1 ∗ f2)([M ]) = ∑
[M1],[M2]∈Ḡ :[M1]◦[M2]=[M ]

f1([M1]) f2([M2]). (7.16)

The involution f 7→ f∨ is also compatible with the equivalence relation, as it extends to the involution
on the cobordismsW that interchanges the two branched covering maps.

LEMMA 7.7. The time evolutions(6.5) and (6.4) descend to well defined time evolutions on the
algebraC[Ḡ ].

PROOF. The result follows from the fact that the generic multiplicity of a branched covering is
invariant under branched cover cobordisms. Thus, we have aninduced time evolution of the form

σL
t ( f )[M ] := nit f [M ], σR

t ( f )[M ] := mit f [M ], σt( f )[M ] :=
( n

m

)it
f [M ], (7.17)

where each representative in the class[M ] has branched covering maps with multiplicities

G⊂ E ⊂ S3 n:1←M m:1→ S3⊃ E′ ⊃G′.

We see that the time evolution is compatible with the involution as in Lemma 6.2. �

7.3. Representations and Hamiltonian.Similarly, we can again consider representations of
C[Ḡ ] as in (6.8)

(ρ( f )ξ)[M ] = ∑
[M1]∈Ḡ ,[M2]∈ḠG:[M1]◦[M2]=[M ]

f [M1]ξ[M2]. (7.18)

As in the previous case, we define on the spaceH̄G of finitely supported functionsξ : ḠG→ C the
inner product

〈ξ,ξ′〉= ∑
[M ]

ξ[M ]ξ′[M ]. (7.19)

Once again we see that, in this representation, the adjoint does not correspond to the involutionf∨

but it is instead given by the involution in the algebra of creation and annihilation operators

(A[M ]ξ)[M ′] =

{

ξ[M ′′] if [M ′] = [M ]◦ [M ′′]
0 otherwise

(7.20)

(A∗[M ]ξ)[M ′] =

{

ξ[M ◦M ′] if the composition is possible

0 otherwise.
(7.21)

Again we haveρG(δ[M ]) = A[M ] so that the algebra generated by theA[M ] is the same as the image of
C[Ḡ ] in the representationρG and the algebra of the creation and annihilation operatorsA[M ] andA∗[M ]

is the involutive algebra inB (H̄G) generated byC[Ḡ ]. In fact, the same argument we used before
shows thatA∗[M ] defined as in (7.21) is the adjoint ofA[M ] in the inner product (7.19).

We then have the following result. We state it for the time evolution σR
t , while the case ofσL

t is
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analogous.

THEOREM 7.8. The Hamiltonian H= HR
G generating the time evolutionσR

t in the representation
(7.18)has discrete spectrum

Spec(H) = {log(n)}n∈N,

with finite multiplicities
1≤ Nn≤ #π3(Bn), (7.22)

where Bn is the classifying space for branched coverings of order n.

PROOF. It was proven in [11] that then-fold branched covering spaces of a manifoldM , up to
cobordism of branched coverings, are parameterized by the homotopy classes

Bn(M) = [M ,Bn], (7.23)

where theBn are classifying spaces. In particular, cobordism equivalence classes ofn-fold branched
coverings of the 3-sphere are classified by the homotopy group

Bn(S3) = π3(Bn). (7.24)

The rational homotopy type of the classifying spacesBn is computed in [11] in terms of the fibration

K(π, j−1)→
t−1
∨

ΣK(π, j−1)→
t

∨

K(π, j), (7.25)

which holds for any abelian groupπ and any positive integerst, j ≥ 2, withΣ denoting the suspension.
For theBn one finds

Bn⊗Q =

p(n)
∨

K(Q,4) (7.26)

with the fibration

S3⊗Q→
p(n)−1
∨

S4×Q→ Bn⊗Q, (7.27)

wherep(n) is the number of partitions ofn. The rational homotopy groups ofBn are computed from
the exact sequence of the fibration (7.27) (see [11]) and are of the formπn(Bk)⊗Q = QD with

D =















p(n) k = 4
Q(k−1

3 , p(n)−1) k = 1,4,10 mod 12, with k 6= 1,4
Q(k−1

3 , p(n)−1)+Q(k−1
6 , p(n)−1) k≡ 7 mod 12

0 otherwise

(7.28)

where

Q(a,b) =
1
a∑

d|a
µ(d)ba/d

with µ(d) the Möbius function. The result (7.28) then implies that the homotopy groupsπ3(Bn)
satisfy π3(Bn)⊗Q = 0. Moreover, in [11] the classifying spacesBn are constructed explicitly by
fitting together the classifying spaceBO(2), that carries the information on the branch locus, with the
classifying spaceBSk, for Sk the group of permutations ofk elements. For example, in the case of
normalized simple coverings of [7], the classifying space is a mapping cylinderBO(2)∪BDk BSk, with
Dk the dihedral group, over the maps induced by the inclusionDk →֒ O(2) as the subgroup leaving
the set of k-th roots of unity globally invariant, andDk→ Sk giving the permutation action on the k-th
roots of unity. In the case of [11] that we consider here, where more general branched coverings are
considered, the explicit form ofBk in terms ofBO(2) andBSk is more complicated, as it also involves
a union over partitions ofk, which accounts for the different choices of branching indices, of data of
disk bundles associated to each partition.
The skeleta of the classifying space have finitely generatedhomology in each degree,i.e. they are
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spaces of finite type, and simply connected in the case of [11]. By a result of Serre it is known that,
for simply connected spaces of finite type, the homotopy groups are also finitely generated (cf. also
§0.a of [29]). The conditionπ3(Bn)⊗Q = 0 then implies that the groupsπ3(Bn) are finite for all
n. By the same argument used in Lemma 6.8, the Hamiltonian generating the time evolution in the
representation (7.18) is of the form

(H ξ)[M ] = log(n)ξ[M ], (7.29)

whereM is a branched cover ofS3 of ordern branched alongE ⊃ G, for the given embedded graph
G specifying the representation. Thus, the multiplicity of the eigenvalue log(n) is the number of
cobordism classes[M ] branched along an embedded graph containingG as a subgraph. This number
Nn = Nn(G) is bounded by 1≤ Nn(G)≤ #π3(Bn). �

The result can be improved by considering, instead of the Brand classifying spacesBn of branched
coverings, the more refined Tejada classifying spacesBn(ℓ) introduced in [59], [8]. In fact, the homo-
topy groupπ3(Bn) considered above parameterizes branched cobordism classes of branched coverings
where the branch loci are embedded manifolds of codimensiontwo. Since in each cobordism class
there are representatives with such branch loci (cf. the discussion in Section 2 in Chapter 2 below)
we can work withBn and obtain the coarse estimate above. However, in our construction we are
considering branch loci that are, more generally, embeddedgraphs and not just links. Similarly, our
cobordisms are branched over 2-complexes, not just embedded surfaces. In this case, the appropri-
ate classifying spaces are the generalizationsBn(ℓ) of [59], [8]. These are such thatBn(2) = Bn and
Bn(ℓ), for ℓ > 2, allows for branched coverings and cobordisms where the branch locus has strata of
some codimension 2≤ r ≤ ℓ. We have then the following more refined result.

COROLLARY 7.9. The multiplicity Nn(G) of the eigenvaluelog(n) of the Hamiltonian HG satisfies
the estimate

1≤ Nn(G)≤ #π3(Bn(4)). (7.30)

PROOF. In our construction, we are considering branched coverings of the 3-sphere with branch
locus an embedded graphE⊃G, up to branched cover cobordism, where the cobordisms are branched
over a 2-complex. Thus, the branch locusE has strata of codimension two and three and the branch
locus for the cobordism has strata of codimension two, three, and four. Thus, we can consider, instead
of the classifying spaceBn, the more refinedBn(4). The results of [8] show thatπ3(Bn)∼= π3(Bn(3)),
while there is a surjectionπ3(Bn(3))→ π3(Bn(4)), so that we have #π3(Bn(4))≤ #π3(Bn). Thus, the
same argument of Theorem 7.8 above, using cobordisms with stratified branch loci, gives the finer
estimate (7.30) for the multiplicities. �

We can then consider the partition function for the Hamiltonian of the time evolution (7.17). To
stress the fact that we work in the representationρ = ρG associated to the subsemigroupoidḠG for a
given graphG, we writeH = H(G). We then have

ZG(β) = Tr(e−βH(G)) = ∑
n

exp(−β log(n))Nn(G). (7.31)

Thus, the question of whether the summability condition Tr(e−βH) < ∞ holds depends on an estimate
of the asymptotic growth of the cardinalities #π3(Bn) for largen→ ∞, by the estimate

ζ(β) = ∑
n

n−β ≤ ZG(β)≤∑
n

#π3(Bn)n−β. (7.32)

This corresponds to the question of studying a generating function for the numbers #π3(Bn). We will
not pursue this in the present text, but we hope to return to itin future work.
Notice that there is evidence in the results of [8] in favor of some strong constraints on the growth of
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the numbers #π3(Bn) (hence of the #π3(Bn(4))), based on the periodicities along certain arithmetic
progressions of the localizations at primes. In fact, it is proved in [7] that, at least for the classifying
spacesBRn of normalized simple branched coverings, in the stable range n > 4 and for any given
prime p, the localizationsπ3(BRn)(p) satisfy the periodicity

π3(BRn)(p) = π3(BRn+2a+i+1pb+ j )(p),

for n = 2apbm with (2,m) = (p,m) = 1. The number 2i p j is determined by homotopy theoretic data
as described in Proposition 11 of [7]. Thus, one can consider associated zeta functions

Zp(β) = ∑
n

#π3(BRn)(p)n
−β. (7.33)

If a finite summability Tr(e−βH) < ∞ holds for sufficiently largeβ >> 0, then one can recover in-

variants of embedded graphs as zero temperature KMS functionals, by considering functionals of the
Gibbs form

ϕG,β( f ) =
Tr(ρG( f )e−βH)

Tr(e−βH)
, (7.34)

where, for instance,f is taken to be an invariant of embedded graphs in 3-manifoldsand f (M) :=
f (π−1

G (G)), for πG : M → S3 the branched covering map. In this case, in the zero temperature limit,
i.e. for β→∞, the weak limits of states of the form (7.34) would give back the invariant of embedded
graphs inS3 in the form

lim
β→∞

ϕK,β( f ) = f (UG).

Notice that, to the purpose of studying KMS states for the algebra with time evolution, the conver-

gence of the partition functionZG(β) is not needed, as KMS states need not necessarily be of the
Gibbs form (7.34),cf. [27]. However, it is still useful to consider the question of theconvergence of
the partition functionZG(β), since Gibbs states of the form (7.34) may have applicationsto construct-
ing interesting zeta functions for embedded graphsG⊂ S3.
For instance, suppose given an invariantF of cobordism classes of embedded graphs inS3. Cobor-

dism for embedded graphs can be defined, for connected graphs, as in [57], and in the multi-connected
case using the same basic relation (attaching a 1-handle) asin the case of links, as in [36]. An ex-
ample of such an invariant can be obtained, for instance, by considering the collection of linksT(G)
constructed in [42] as an invariant of an embedded graphG and define a total linking number ofT(G)
by adding the total linking numbers of all the links in the collection. Given such an invariantF, one

can then consider, for a set of representatives of the classes [M] ∈ π3(Bn), the valuesF(πG′π−1
G (G))

and form the series

∑
n

∑
[M]∈π3(Bn)

F(πG′π−1
G (G))n−β, (7.35)

where the inner sum is over the classes[M] ∈ π3(Bn) such thatM is a branched cover ofS3 branched
along a graphE ⊃ G. Similarly, one can form variations of this same concept based on the zeta
functions (7.33). When the functionF on the set of the{πG′π−1

G (G)} is either bounded or of some
growth∼ nα, then the convergence ofZG(β) (or of theZp(β) of (7.33)) would ensure the convergence
of (7.35). Obviously such zeta functions are very complicated objects, even for very simple graphsG
and it would be difficult to compute them explicitly, but it would be interesting to see whether some
variant of this idea might have relevance in the context of spin networks, spin foams, and dynamical
triangulations.

Finally, notice that, while the HamiltonianH of the time evolutionσL
t has finite multiplicities

in the spectrum after passing to the quotient by the equivalence relation of cobordism (similarly for
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σR
t ), the infinitesimal generator for the time evolutionσt = σL

t σR
−t still has infinite multiplicities. In

fact, the time evolution (6.4) is generated by an unbounded operatorD that acts on a densely defined
domain inHG by

DδM = log
( n

m

)

δM , (7.36)

with n and m the multiplicities of the two covering maps, as above. This operator is not a good
physical Hamiltonian since is does not have a lower bound on the spectrum. It has the following
property.

LEMMA 7.10. The operator D of(7.36)has bounded commutators[D,a] with the elements of the
involutive algebra generated (algebraically) by the A[M ] and A∗[M ].

PROOF. It suffices to check that the commutators[D,A[M ]] and[D,A∗[M ]] are bounded. We have

[D,A∗[M ]]δ[M ′] =

(

log

(

nn′

mm′

)

− log

(

n′

m′

))

δ[M◦M ′] = log
( n

m

)

δ[M◦M ′].

The case of[D,A[M ]] is analogous. �

Notice, however, thatD fails to be a Dirac operator in the sense of spectral triples,because of the
infinite multiplicities of the eigenvalues.

8. Convolution algebras and 2-semigroupoids

In noncommutative geometry, it is customary to replace the operation of taking the quotient by
an equivalence relation by forming a suitable convolution algebra of functions over the graph of the
equivalence relation. This corresponds to replacing an equivalence relation by the corresponding
groupoid and taking the convolution algebra of the groupoid, cf. [14]. In our setting, we can proceed
in a similar way and, instead of taking the quotient by the equivalence relation of cobordism of
branched cover, as we did above, keep the cobordisms explicitly and work with a 2-category.

LEMMA 8.1. The data of embedded graphs in the 3-sphere, 3-dimensional geometric correspon-
dences, and 4-dimensional branched cover cobordisms form a2-categoryG 2.

PROOF. We already know that embedded graphs and geometric correspondences form semi-
groupoid with associative composition of morphisms given by the fibered product of geometric corre-
spondences. Suppose given geometric correspondencesM1 M2 andM3 in Hom(G,G′), and suppose
given cobordismsW1 andW2 with ∂W1 = M1∪−M2 and∂W2 = M2∪−M3. As we have seen in
Lemma 7.3, for the transitive property of the equivalence relation, the gluing of cobordismsW1∪M2W2

gives a cobordism betweenM1 andM3 and defines in this way a composition of 2-morphisms that has
the right properties for being the vertical composition in the 2-category. Similarly, suppose given cor-
respondencesM1,M̃1 ∈ Hom(G,G′), andM2,M̃2 ∈ Hom(G′,G′′), with cobordismsW1 andW2 with
∂W1 = M1∪−M̃1 and∂W2 = M2∪−M̃2. Again by the argument of Lemma 7.3, we know that the
fibered productW1 ◦W2 defines a cobordism between the compositionsM1◦M2 andM̃1 ◦ M̃2. This
gives the horizontal composition of 2-morphisms. By the results of Lemma 7.3 and an argument like
that of Proposition 2.11, one sees that both the vertical andhorizontal compositions of 2-morphisms
are associative. �

In the following, we denote the compositions of 2-morphismsby the notation

horizontal (fibered product):W1◦W2 vertical (gluing): W1•W2. (8.1)
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We obtain a convolution algebra associated to the 2-semigroupoid described above. Consider the
space of complex valued functions with finite support

f : U → C (8.2)

on the set

U = ∪M1,M2∈GU (M1,M2),

of branched cover cobordisms

U (M1,M2) = {W |M1
W∼M2}, (8.3)

with

S⊂ S3× I
q←W

q′→ S3× I ⊃ S′,

where∼ denotes the equivalence relation given by branched cover cobordisms with∂W = M1∪−M2,
compatibly with the branched cover structures as in §7 above.
As in the case of the setsHom(G,G′) of geometric correspondences discussed in §2, the collection

U (M1,M2) of cobordisms is a set because it can be identified with a set ofbranched covering data of a
representation theoretic nature. In fact, as a PL manifold,one such cobordismW can be specified by
assigning a representation

σW : π1((S3× I)r S)→ Sn, (8.4)

which determines a covering space on the complement of the branch locusS. This space of functions

(8.2) can be made into an algebraA (G 2) with the associative convolution product of the form

( f1• f2)(W) = ∑
W=W1•W2

f1(W1) f2(W2), (8.5)

which corresponds to the vertical composition of 2-morphisms, namely the one given by the gluing
of cobordisms. Similarly, one also has onA (G 2) an associative product which corresponds to the
horizontal composition of 2-morphisms, given by the fiberedproduct of cobordisms, of the form

( f1◦ f2)(W) = ∑
W=W1◦W2

f1(W1) f2(W2). (8.6)

We also have an involution compatible with both the horizontal and vertical product structure. In fact,
consider the two involutions on the cobordismsW

W 7→ W̄ =−W, W 7→W∨, (8.7)

where the first is the orientation reversal, so that if∂W = M1∪−M2 then∂W̄ = M2∪−M1, while
the second extends the involutionM 7→M∨ and exchanges the two branch covering maps, that is, if
W has covering maps

S⊂ S3× I
q←W

q′→ S3× I ⊃ S′

thenW∨ denotes the same 4-manifold but with covering maps

S′ ⊂ S3× I
q′←W

q→ S3× I ⊃ S.

We define an involution on the algebraA (G 2) by setting

f †(W) = f (W̄∨) (8.8)

LEMMA 8.2. The involution f7→ f † makesA (G 2) into an involutive algebra with respect to both
the vertical and the horizontal product.
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PROOF. We have( f †)† = f since the two involutionsW 7→ W̄ andW 7→W∨ commute. We also
have(a f1 +b f2)† = ā f†

1 + b̄ f†
2 . For the two product structures, we have

W̄ = W̄1 ◦W̄2 for W = W1 ◦W2

W∨ = W∨1 •W∨2 for W = W1 •W2

which gives
( f1 ◦ f2)

†(W) = ∑
W̄∨=W̄∨1 ◦W̄∨2

f1(W̄
∨
1 ) f2(W̄

∨
2 ) = ( f †

2 ◦ f †
1 )(W)

( f1• f2)
†(W) = ∑

W̄∨=W̄∨1 •W̄∨2
f1(W̄

∨
1 ) f2(W̄

∨
2 ) = ( f †

2 • f †
1 )(W).

�

9. Vertical and horizontal time evolutions

We say thatσt is avertical time evolutiononA (G 2) if it is a 1-parameter group of automorphisms
of A (G 2) with respect to the product structure given by the vertical composition of 2-morphisms as
in (8.5), namely

σt( f1• f2) = σt( f1)•σt( f2).

Similarly, ahorizontal time evolutiononA (G 2) satisfies

σt( f1◦ f2) = σt( f1)◦σt( f2).

We give some simple examples of one type or the other first and then we move on to more subtle
examples.

LEMMA 9.1. The time evolution by order of the coverings defined in(6.4)extends to a horizontal
time evolution onA (G 2).

PROOF. This clearly follows by taking the order of the cobordisms as branched coverings of
S3× I . It is not a time evolution with respect to the vertical composition. �

LEMMA 9.2. Any numerical invariant that satisfies an inclusion-exclusion principle

χ(A∪B) = χ(A)+ χ(B)−χ(A∩B) (9.1)

defines a vertical time evolution by

σt( f )(W) = exp(it (χ(W)−χ(M2))) f (W), (9.2)

for ∂W = M1∪−M2.

PROOF. This also follows immediately by direct verification, since

σt( f1• f2)(W) = eit (χ(W)−χ(M2)) ∑
W=W1∪MW2

f1(W1) f2(W2)

= eit (χ(W1)+χ(W2)−χ(M)−χ(M2)) ∑
W=W1∪MW2

f1(W1) f2(W2)

= ∑
W=W1∪MW2

eit (χ(W1)−χ(M)) f1(W1)e
it (χ(W2)−χ(M2)) f2(W2) = (σt( f1)•σt( f2))(W).

�

In particular, the following are two simple examples of thistype of time evolution.

EXAMPLE 9.3. Settingχ(W) to be the Euler characteristic gives a time evolution as in (9.2).
Since the 4-dimensional volume of the boundary 3-manifoldM is zero, also settingχ(W) = Vol(W)
gives a time evolution.
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A more elaborate example of this type is given in §11 below.

10. Vertical time evolution: Hartle–Hawking gravity

We describe here a first non-trivial example of a vertical time evolution, which is related to the
Hartle–Hawking formalism of Euclidean quantum gravity [28]. The classical Euclidean action for
gravity on a 4-manifoldW with boundary is of the form

S(W,g) =− 1
16π

∫

W
Rdv− 1

8π

∫

∂W
K dv, (10.1)

whereR is the scalar curvature andK is the trace of the II fundamental form. In the Hartle–Hawking
approach to quantum gravity, the transition amplitude between two 3-dimensional geometriesM1 and
M2, endowed with Riemannian structuresgM1 andgM2 is given by

〈(M1,g1),(M2,g2)〉=
∫

eiS(g)D[g], (10.2)

in the Lorentzian signature, where the formal functional integration on the right hand side involves
also a summation over topologies, meaning a sum over all cobordismsW with ∂W = M1∪−M2. In
the Euclidean setting the probability amplitudeeiS(g) is replaced bye−S(g), with S(g) the Euclidean
action (10.1). We have suppressed the dependence of the probability amplitude on a quantization
parameter~. This suggests setting

σt( f )(W,g) := eitS(W,g) f (W,g), (10.3)

with S(W,g) as in (10.1). For (10.3) to define a vertical time evolution,i.e. for it to satisfy the com-
patibility σt( f1 • f2) = σt( f1) •σt( f2) with the vertical composition, we need to impose conditions
on the metricsg onW so that the gluing of the Riemannian data near the boundary ispossible when
composing cobordismsW1•W2 = W1∪M W2 by gluing them along a common boundaryM .
For instance, one can assume cylindrical metrics near the boundary, though this is does not corre-
spond to the physically interesting case of more general space-like hypersurfaces. Also, one needs to
restrict here to cobordisms that are smooth manifolds, or toallow for weaker forms of the Riemannian
structure adapted to PL manifolds. Then, formally, one obtains states for this vertical time evolution
that can be expressed in the form of a functional integrationas

ϕβ( f ) =

∫

f (W,g)e−βS(g)D[g]
∫

e−βS(g)D[g]
. (10.4)

We give in the next section a more mathematically rigorous example of vertical time evolution.

11. Vertical time evolution: gauge moduli and index theory

Consider again the vertical compositionW1 •W2 = W1∪M2 W2 given by gluing two cobordisms
along their common boundary. In order to construct interesting time evolutions on the corresponding
convolution algebra, we consider the spectral theory of Dirac type operators on these 4-dimensional
manifolds with boundary,cf. [6].
Consider first the simpler case whereX is a closed connected 4-manifold andM is a hypersurface
that partitionsX rM in two componentsX = X1∪M X2 with boundary∂X1 = M =−∂X2. We assume
thatX is endowed with a cylindrical metric on a collar neighborhood M× [−1,1] of the hypersurface
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M. Let D be an elliptic differential operator onX of Dirac type. We take it to be the Dirac operator
assuming thatX is a spin 4-manifold. The restrictionD |M×[−1,1] has the form

D |M×[−1,1] = c(
∂
∂s

+B ),

wherec denotes Clifford multiplication byds and B is the self-adjoint tangential Dirac operator
on M. We letP≥ denote the spectral Atiyah–Patodi–Singer boundary conditions, i.e. the projection
onto the subspace of the Hilbert space of square integrable spinors L2(M,S +|M) spanned by the
eigenvectors ofB with non-negative eigenvalues. HereS = S + ⊕ S − is the spinor bundle onX,
with D + : C∞(X,S +)→C∞(X,S −). The projectionP≤ is defined similarly. LetD i denote the Dirac
operator onXi with APS boundary conditions, that is,

D +
1 : C∞(X1,S

+,P≤)→C∞(X1,S
−), D +

2 : C∞(X1,S
+,P≥)→C∞(X2,S

−),

where
C∞(X1,S +,P≤) = {ψ ∈C∞(X1,S +) |P≤(ψ|M) = 0},
C∞(X2,S +,P≥) = {ψ ∈C∞(X2,S +) |P≥(ψ|M) = 0}.

The index of the Dirac operatorD is computed by the Atiyah–Singer index theorem and is given by a
local formula, while the index ofD i is given by the Atiyah–Patodi–Singer index theorem and consists
of a local formula, together with a correction given by an etainvariant of the boundary manifoldM.
Moreover, one has the following splitting formula for the index (cf. [6], p.77)

Ind(D ) = Ind(D 1)+ Ind(D 2)−dimKer(B ). (11.1)

In the case of 4-manifoldsW = W1∪M W2, where∂W = M1∪−M3, ∂W1 = M1∪−M2, and∂W2 =
M2∪−M3, one can modify the above setting by imposing APS boundary conditions at both ends
of the cobordims. Namely, we assume thatW is a smooth manifold with boundary endowed with a
Riemannian metric with cylindrical endsM1× [0,1] andM3× [−1,0], as well as a cylindrical metric
on a collar neighborhoodM× [−1,1]. Thus, the operatorD will be the Dirac operator with APS
boundary conditionsP≥ andP≤ at M1 andM3, and similarly for the operatorsD 1 andD 2. We also
denote byB , B1 andB2 the tangential Dirac operators onM, M1 andM2, respectively. We then obtain
a time evolution on the algebraA (G 2) with the product (8.5) associated to the splitting of the index,
in the following way.

LEMMA 11.1. Let W=W1∪M W2 be a composition of 4-dimensional cobordisms with metrics as
above, and withD , D i the corresponding Dirac operators with APS boundary conditions. We let

δ(W) := Ind(D )−dimKer(B2). (11.2)

Then setting
σt( f )(W) = exp(itδ(W)) f (W) (11.3)

defines a time evolution onA (G 2) with the product(8.5)of vertical composition.

PROOF. Using the splitting formula (11.1) for the index one sees immediately that

σt( f1• f2)(W) = ∑
W=W1•W2

eitδ(W) f1(W1) f2(W2)

= ∑
W=W1•W2

eit (IndD 1+IndD 2−dimKerB−dimKerB2) f1(W1) f2(W2)

= ∑
W=W1•W2

eitδ(W1) f1(W1)e
itδ(W2) f2(W2) = σt( f1)•σt( f2)(W).

�
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The type of spectral problem described above arises typically in the context of invariants of 4-
dimensional geometries that behave well under gluing. A typical such setting is given by the topolog-
ical quantum field theories, as outlined in [2], where to every 3-dimensional manifolds one assigns
functorially a vector space and to every cobordism between 3-manifolds a linear map between the
vector spaces. In the case of Yang–Mills gauge theory, the gluing theory for moduli spaces of anti-
self-dualSO(3)−connections on smooth 4-manifolds (see [58] for an overview) shows that ifM is a
compact oriented smooth 3-manifold that separates a compact smooth 4-manifoldX in two connected
pieces

X = X+∪M X− (11.4)

glued along the common boundaryM = ∂X+ =−∂X−, then the moduli spaceM (X) of gauge equiv-
alence classes of framed anti-self-dualSO(3)-connections onX decomposes as a fibered product

M (X) =M (X+)×M (M)M (X−), (11.5)

whereM (X±) are moduli spaces of anti-self-dualSO(3)-connections on the 4-manifolds with bound-
ary andM (M) is a moduli space of gauge classes of flat connections on the 3-manifold M . The
fibered product is over the restriction maps induced by the inclusion ofM in X±. In particular, at the
linearized level, the virtual dimensions of the moduli spaces satisfy

dimM (X) = dimM (X+)+dimM (X−)−dimM (M). (11.6)

In Donaldson–Floer theory the virtual dimension of the moduli space for the 3-manifold is zero, the
deformation complex being given by a self-adjoint ellipticoperator, however we allow here for the
possibility thatM (M) might be of positive dimension. We then obtain a time evolution on the algebra
A (G 2) with the product (8.5) associated to the instanton moduli spaces in the following way.

LEMMA 11.2. Let W be a branched cover cobordism with∂W = M1∪−M2. LetM (W) denote
the moduli space of gauge equivalence classes of framed anti-self-dual SO(3)-connections on W. Let
M (M i) be the moduli space of gauge equivalence classes of flat framed connections onM i. We set

δ(W) = dimM (W)−dimM (M2). (11.7)

Then setting
σt( f )(W) = exp(itδ(W)) f (W) (11.8)

defines a time evolution onA (G 2) with the product(8.5)of vertical composition.

PROOF. We assume in this discussion that the moduli spaces satisfythe gluing theorem so that

M (W) =M (W1)×M (M)M (W2) (11.9)

for W = W1∪M W2 with ∂W1 = M1∪−M and∂W2 = M ∪−M2. Strictly speaking, the result (11.5)
holds for a compact 4-manifoldX, while here we are dealing with a 4-manifoldW with boundary.
The same technique used in analyzing the moduli spacesM (X±) in (11.5) can be used to treatM (W).
A detailed discussion of the gluing theory that yields (11.9) is beyond the scope of this short paper.
Assuming (11.9) we see immediately that

σt( f1• f2)(W) = ∑
W=W1•W2

eitδ(W) f1(W1) f2(W2)

= ∑
W=W1•W2

eit (dimM (W1)+dimM (W2)−dimM (M)−dimM (M2)) f1(W1) f2(W2)

= ∑
W=W1•W2

eitδ(W1) f1(W1)e
itδ(W2) f2(W2) = σt( f1)•σt( f2)(W).

�
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One can define similar time evolutions using other moduli spaces on 4-manifolds that satisfy
suitable gluing formulae, such as the Seiberg–Witten moduli spaces, with the gluing theory discussed
in [12]. Notice that we are only using a very coarse invariant extracted from the moduli spaces,
namely the (virtual) dimension. This only depends on the linearized theory. Typically, the virtual
dimension is computed via an index theoremδ(W) = IndDW whereDW : Ωodd→Ωev, for an elliptic
complex

Ω0 D 0→Ω1 D 1→Ω2

where the elliptic operatorsD 1 andD 0 correspond, respectively, to the linearization of the nonlinear
elliptic equations and to the infinitesimal gauge action. Thus, the fact that (11.8) becomes a direct
consequence of the additivity of the index

IndDW = IndDW1 + IndDW2. (11.10)

12. Horizontal time evolution: bivariant Chern character

The time evolution of Lemma 11.2, however, does not detect the structure ofW as a branched
cover ofS3× I branched along an embedded surfaceS⊂ S3× I . Thus, there is no reason why a time
evolution defined in this way should also be compatible with the other product given by the horizontal
composition of 2-morphisms. The interpretation of the timeevolution (11.8) in terms of the additivity
of the index (11.10), however, suggests a possible way to define other time evolutions, also related to
properties of an index, which would be compatible with the horizontal composition. Although we are
working here in the commutative context, in view of the extension to noncommutative spectral corre-
spondences outlined in the next section, we give here a formulation using the language of KK-theory
and cyclic cohomology that carries over naturally to the noncommutative cases. In noncommutative

geometry, one thinks of the index theorem as a pairing of K-theory and K-homology, or equivalently
as the pairing〈chn(e),chn(x)〉 of Connes–Chern characters

chn : Ki(A )→ HC2n+i(A ) and chn : K i(A )→ HC2n+i(A ), (12.1)

under the natural pairing of cyclic homology and cohomology, cf. [14]. Recall that cyclic (co)homology

has a natural description in terms of the derived functors Ext and Tor in the abelian category of cyclic
modules (cf. [15]), namely

HCn(A ) = ExtnΛ(A ♮,C♮) andHCn(A ) = TorΛn (C♮,A ♮), (12.2)

whereΛ denotes the cyclic category andA ♮ is the cyclic module associated to an associative algebra
A . It was shown in [50] that the characters (12.1) extend to a bivariant Connes–Chern character

chn : KK i(A ,B )→ Ext2n+i
Λ (A ♮,B ♮) (12.3)

defined on KK-theory, which sends the Kasparov products

◦ : KK i(A ,C )×KK j(C ,B )→ KK i+ j(A ,B )

to the Yoneda products,

Ext2n+i
Λ (A ♮,C ♮)×Ext2m+ j

Λ (C ♮,B ♮)→ Ext2(n+m)+i+ j(A ♮,B ♮), (12.4)

with the natural cap product pairings

TorΛm(C♮,A ♮)⊗ExtnΛ(A ♮,B ♮)→ TorΛm−n(C
♮,B ♮) (12.5)
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corresponding to an index theorem

ψ = ch(x)φ, with φ(e◦x) = ψ(e). (12.6)

requires a modification of bothKK-theory and cyclic cohomology. Such a general form of the bi-

variant Connes–Chern character is given in [20]. The construction of [18] of geometric correspon-
dences realizing KK-theory classes shows that, given manifolds X1 and X2, classes inKK(X1,X2)
are realized by geoemtric data(Z,E) of a manifoldZ with submersionsX1← Z→ X2 and a vec-
tor bundleE on Z. The Kasparov productx◦ y ∈ KK(X1,X3), for x = kk(Z,E) ∈ KK(X1,X2) and
y = kk(Z′,E′) ∈ KK(X2,X3), is given by the fibered productx◦y = kk(Z◦Z′,E ◦E′), where

Z◦Z′ = Z×X2 Z′ and E◦E′ = π∗1E×π∗2E′.

To avoid momentarily the complication caused by working with manifolds with boundary, we con-

sider the simpler situation whereW is a 4-manifold endowed with branched covering maps to a
compact 4-manifoldX (for instanceS3×S1 or S4) instead ofS3× [0,1],

S⊂ X
q←−W

q′−→ X ⊃ S′ (12.7)

branched along surfacesSandS′ in X. We can then think of an elliptic operatorDW on a 4-manifold
W, which has branched covering maps as in (12.7), as defining anunbounded Kasparov bimodule,i.e.
as defining a KK-class[DW] ∈ KK(X,X). We can think of this class as being realized by a geometric
correspondence in the sense of [18]

[DW] = kk(W,EW),

with the property that, for the horizontal compositionW = W1 ◦W2 = W1×X W2 we have

[DW1]◦ [DW2] = kk(W1,EW1)◦kk(W2,EW2) = kk(W,EW) = [DW].

The bivariant Chern character maps these classes to elements in the Yoneda algebra

chn([DW]) ∈ Y := ⊕ jExt2n+ j(A ♮,A ♮) (12.8)

chn([DW1])chm([DW2]) = chn+m([DW1]◦ [DW2]).

Let χ : Y → C be a character of the Yoneda algebra. Then by composingχ◦chwe obtain

χch([DW1]◦ [DW2]) = χch([DW1])χch([DW2]) ∈ C.

This can be used to define a time evolution for the horizontal product of the form

σt( f )(W) = |χch([DW])|it f (W)

13. Noncommutative spaces and spectral correspondences

We return now briefly to the problem of spectral correspondences of [17], mentioned in the in-
troduction. Recall that a spectral triple(A ,H ,D) consists of the data of a unital involutive algebra
A , a representationρ : A → B (H ) as bounded operators on a Hilbert spaceH and a self-adjoint
operatorD on H with compact resolvent, (A hermitian linear operatorL in a Hilbert spaceH is
said to have a compact resolvent if there is a complex numberλ ∈ ρ(L) for which the resolvent
R(λ,L) = (L−λI)−1is compact) such that[D,ρ(a)] is a bounded operator for alla∈ A . We extend
this notion to a correspondence in the following way, following [17].
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DEFINITION 13.1. A spectral correspondence is a set of data(A1,A2,H ,D), whereA1 andA2

are unital involutive algebras, with representationsρi : A i→ B (H ), i = 1,2, as bounded operators on
a Hilbert spaceH , such that

[ρ1(a1),ρ2(a2)] = 0, ∀a1 ∈ A1, ∀a2 ∈ A2, (13.1)

and with a self-adjoint operatorD with compact resolvent, such that

[[D,ρ1(a1)],ρ2(a2)] = 0, ∀a1 ∈ A1, ∀a2 ∈ A2, (13.2)

and such that[D,ρ1(a1)] and[D,ρ2(a2)] are bounded operators for alla1∈ A1 anda2∈ A2. A spectral
correspondence is even if there exists an operatorγ onH with γ2 = 1 and such thatD anticommutes
with γ and[γ,ρi(ai)] = 0 for all ai ∈ A i , i = 1,2. A spectral correspondence is odd if it is not even.

One might relax the condition of compact resolvent on the operatorD if one wants to allow more
degenerate types of operators in the correspondences, including possiblyD≡ 0, as seems desirable in
view of the considerations of [17]. For our purposes here, we consider this more restrictive definition.
Notice also that the condition (13.2) also implies[[D,ρ2(a2)],ρ1(a1)] = 0 because of (13.1). A more

refined notion of spectral correspondences as morphisms between spectral triples, in a setting for
families, is being developed by B. Mesland, [48]. We first show that our geometric correspondences
define commutative spectral correspondences and then we give a noncommutative example based on
taking products with finite geometries as in [17].

LEMMA 13.2. Suppose given a compact connected oriented smooth 3-manifold with two branched
covering mapsS3 π1←−M

π2−→ S3. Given a choice of a Riemannian metric and a spin structure onM ,
this defines a spectral correspondence forA1 = A2 = C∞(S3).

PROOF. We consider the Hilbert spaceH = L2(M ,S), whereS is the spinor bundle onM for the
chosen spin structure. Let/∂M be the corresponding Dirac operator. The covering mapsπi , for i = 1,2,
determine representationsρi :C∞(S3)→ B (H ), byρi( f ) = c( f ◦πi), wherec denotes the usual action
of C∞(M) onH by Clifford multiplication on spinors. Then we have[/∂M ,ρi( f )] = c(d( f ◦πi)), which
is a bounded operator onH . All the commutativity conditions are satisfied in this case. �

Let A andB be finite dimensional unital (noncommutative) involutive algebras. LetV be a finite
dimensional vector space with commuting actions ofA andB . Let T ∈ End(V) be a linear map such
that[[T,a],b] = 0 for all a∈ A andb∈ B . Then we obtain noncommutative spectral correspondences
of the type described in the last section of [17] in the following way.

LEMMA 13.3. The cup product SM ∪ SF of SM = (C∞(S3),C∞(S3),L2(M ,S), /∂M ) and SF =
(A,B,V,T) defines a noncommutative spectral correspondence for the algebras C∞(S3)⊗ A and
C∞(S3)⊗B .

PROOF. We simply adapt the usual notion of cup product for spectraltriples to the case of corre-
spondences. If the correspondence(A,B,V,T) is even, with gradingγ, then we consider the Hilbert
spaceH = L2(M ,S)⊗V and the operatorD = T⊗1+γ⊗ /∂M . Then the usual argument for cup prod-
ucts of spectral triples show that(C∞(S3)⊗A,C∞(S3)⊗B,H ,D) is an odd spectral correspondence.
Similarly, if (A,B,V,T) is odd, then takeH = L2(M ,S)⊗V⊕L2(M ,S)⊗V, with the diagonal actions
of C∞(S3)⊗A andC∞(S3)⊗B . Consider then the operator

D =

(

0 δ∗
δ 0

)

,

for δ = T ⊗ 1+ i ⊗ /∂M . Then, by the same standard argument that holds for spectraltriples, the
data(C∞(S3)⊗A,C∞(S3)⊗B,H ,D) form an even spectral correspondence with respect to theZ/2Z



48 1. GRAPHS CATEGORY AND THREE-MANIFOLDS AS CORRESPONDENCES

grading

γ =

(

1 0
0 −1

)

.

In either case, we denote the resulting correspondence(C∞(S3)⊗A,C∞(S3)⊗B,H ,D) as the cup
productSM ∪SF . �

We can then form a convolution algebra on the space of correspondences, using the equivalence
relation given by cobordism of branched covering spaces of §7 above, as in §8 above. This requires
extending the equivalence relation defined by cobordisms ofbranched coverings to the case of the
product by a finite geometry. We propose the following construction. The existence of a cobordism
W of branched coverings between two geometric correspondencesM1 andM2 in Hom(G,G′) implies
the existence of a spectral correspondencewith boundaryof the form

SW = (C∞(M1),C
∞(M2),L

2(W,S), /∂W).

We will not discuss here the setting of spectral triples withboundary. A satisfactory theory was re-
cently developed by Chamseddine and Connes (cf. [13]). We only recall here briefly the following
notions, from [16]. A spectral triple with boundary(A ,H ,D) is boundary evenif there is aZ/2Z-
gradingγ onH such that[a,γ] = 0 for all a∈ A andDom(D)∩γDom(D) is dense inH . The boundary
algebra∂A is the quotientA /(J∩J∗) by the two-sided idealJ = {a∈ A |aDom(D)⊂ γDom(D)}. The
boundary Hilbert space∂H is the closure inH of D−1KerD∗0, whereD0 is the symmetric operator
obtained by restrictingD to Dom(D)∩ γDom(D). The boundary algebra acts on the boundary Hilbert
space bya−D−2[D2,a]. The boundary Dirac operator∂D is defined onD−1KerD∗0 and satisfies
〈ξ,∂Dη〉 = 〈ξ,Dη〉 for ξ ∈ ∂H andη ∈ D−1KerD∗0. It has bounded commutators with∂A . One can
extend from spectral triples to correspondences, by havingtwo commuting representations ofA1 and
A2 on H with the properties above and such that the resulting boundary data(∂A1,∂A2,∂H ,∂D)
define a spectral correspondence. If one wants to extend to the product geometries the condition of
cobordism of geometric correspondences, it seems that one is inevitably faced with the problem of
defining spectral triples with corners. In fact, ifSW andSF are both spectral triples with boundary,
then their cup productSW∪SF would no longer give rise to a spectral triple with boundary but to one
with corners. At present there isn’t a well defined theory of spectral triples with corners. However,
we can still propose a way of dealing with products of cobordisms by finite noncommutative geome-
tries, which remains within the theory of spectral triples with boundary. To this purpose, we assume
that the finite partSF is an ordinary spectral triple, while only the cobordims part is a spectral triple
with boundary. We then relate the cup productSW ∪SF to the spectral correspondencesSM i ∪SFi

via the boundary∂SW and bimodules relating theSFi to SF . More precisely, we consider the fol-
lowing data. Suppose givenM i ∈ Hom(G,G′), i = 1,2 as above and finite spectral correspondences
SFi = (Ai ,Bi,Vi ,Ti). Then we say that the cup productsSM i ∪SFi are related by a spectral cobordism if
the following conditions hold. The geometric correspondences are equivalentM1 ◦M2 via a cobor-
dismW. There exist finite dimensional (noncommutative) algebrasRi, i = 1,2 together withRi–Ai

bimodulesEi andBi–Ri bimodulesFi, with connections. There exists a finite spectral correspondence
SF = (R1,R2,VF ,DF) such thatSW ∪SF = (A ,H ,D ) is a spectral triple with boundary in the sense
of Chamseddine–Connes with

∂A =⊕i=1,2C
∞(M i)⊗Ri

∂H =⊕i=1,2L2(M i ,S)⊕ (E1⊗A1 Vi⊗Bi Fi)

and∂D gives the cup product of the Dirac operators∂M i with the Ti, with the latter twisted by the
connections onEi andFi.
We do not give more details here. In fact, in order to use this notion to extend the equivalence
relation of cobordims of branched coverings and the 2-category we considered in §8 above to the
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noncommutative case, one needs a gluing theory for spectraltriples with boundary that makes it
possible to define the horizontal and vertical compositionsof 2-morphisms as in the case ofW1 ◦W2

andW1•W2. The analysis necessary to develop such gluing results is beyond the scope our study and
the problem will be considered in future work .





2

Knots, Khovanov Homology

1. Introduction

In the previous chapter we presented a construction of a 2-category whose objects are embedded
graphs in the 3-sphere, whose 1-morphisms are 3-manifolds realized in different ways as branched
coverings of the 3-sphere with the given embedded graphs as branch loci, and with 2-morphisms given
by 4-dimensional branched cover cobordisms. We also studied time evolutions on algebras obtained
from this 2-category. We would then like to see if one can obtain suitable cohomology theories
that can define functors for our category to some category of vector spaces. To be precise, since
we are working with a 2-category, we should expect to land in some 2-category of 2-vector spaces,
for instance in the sense introduced by Kapranov and Voevodsky [41], or in a more explicit form in
a 2-category of 2-matrices as constructed by Elgueta in [21]. In this chapter we only make some
preliminary steps in this direction, leaving a more detailed investigation to future work. We begin this
chapter by a remark on the results of the previous chapter, in§2 below, which shows that one can pass
from the case where the branch loci of the coverings are embedded graphs to the more restrictive case
of links using the equivalence relation ofb-homotopy of branched coverings. This result suggests
that we may be able to seek a suitable cohomology theory for our purposes by a suitable extension
of known cohomological constructions for knots and links inthe 3-sphere. Following this idea, we
then recall the definition and main properties of Khovanov homology for knots and links. We also
recall the notion of cobordism groups for knots and links andtheir relation. The following part of this
chapter first deals with extending the notion of cobordism from links to embedded graphs. We find
that this can be done in two possible ways, which respectively extend two notions of cobordisms that
are known to be equivalent in the case of links but are no longer equivalent for graphs. We then discuss
how to extend Khovanov homology from links to embedded graphs. The first idea is to combine the
Khovanov complex with the complex of graph homology, where the Khovanov complex accounts for
the crossings and the complexity of the embedding in the 3-sphere and the graph homology accounts
for the combinatorial complexity of the graph. We only show in an example how one can associate
to each term of the graph homology complex for a planar diagram of an embedded graph in the
3-sphere a cubical complex that resolves the crossings in each of the graphs involved in the graph
homology complex. However, instead of continuing along this line of thought to construct rigorously
a double complex, we show that one can bypass several difficulties and achieve a satisfactory notion
of Khovanov homology for embedded graphs through a different procedure, which is based on a result
of Kauffman. This result is a construction of a topological invariant of embedded graphs, which is
given by a finite collection of knots and links, obtained by performing certain cutting operations at the
vertices of the graph. Thus, this first step incorporates thecombinatorial complexity of the graph, in a
way similar to what graph homology does in the approach described above, while the topology of the
embedding is retained by the links and knots in the resultingfamily. Since the family of links is itself
a topological invariant, any further invariant computed out of them will also be. Thus, one can then
proceed to define a Khovanov homology for an embedded graph asbeing the sum of the Khovanov
homologies of all the knots and links in the Kauffman invariant of the graph. This is well defined and
a topological invariant.

51
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2. From graphs to knots

The Alexander branched covering theorem is greatly refined by the Hilden–Montesinos theorem,
which ensures that all compact oriented 3-manifolds can be realized as branched covers of the 3-
sphere, branched along a knot or a link (see [31], [49], cf. also [54]). One can see how to pass from a
branch locus that is a multi-connected graph to one that is a link or a knot in the following way, [10].
One says that two branched coveringsπ0 : M → S3 andπ1 : M → S3 areb-homotopic if there exists
a homotopyHt : M → S3 with H0 = π0, H1 = π1 andHt a branched covering, for allt ∈ [0,1], with
branch locus an embedded graphGt ⊂ S3. The “Alexander trick” shows that two branched coverings
of the 3-ballD3→D3 that agree on the boundaryS2 = ∂D3 areb-homotopic. Using this trick, one can
pass, by ab-homotopy, from an arbitrary branched covering to one that issimple, namely where all the
fibers consist of at leastn−1 points,n being the order of the covering. Simple coverings aregeneric.
The same argument shows ([10], Corollary 6.6) that any branched coveringM → S3 is b-homotopic
to one where the branch set is a link. We restrict to the case where the embedded graphsG andG′

are knotsK andK′ and we consider geometric correspondencesHom(K,K′) modulo the equivalence
relation ofb-homotopy. Namely, we say that two geometric correspondencesM1,M2 ∈ Hom(K,K′)
areb-homotopic if there exist two homotopiesΘt , Θ′t relating the branched covering maps

S3 πK,i←−M
πK′ ,i−→ S3.

Since we have the freedom to modify correspondences byb-homotopies, we can as well assume that
the branch loci are links. Thus, we are considering geometric correspondences of the form

K ⊂ L⊂ S3 πK←−M
πK′−→ S3⊃ L′ ⊃ K′, (2.1)

where the branch loci are linksL andL′, containing the knotsK andK′, respectively. Notice also that,
if we are allowed to modify the coverings byb-homotopy, we can arrange so that, in the composition
M1◦M2, the branch lociL∪πkπ−1

1 (L′2) andL′′∪πK′′π−1
2 (L′1) are links inS3. We denote by[M ]b the

equivalence class of a geometric correspondence under the equivalence relation ofb-homotopy. The
equivalence relation ofb-homotopy is a particular case of the relation of branched cover cobordism
that we considered above. In fact, the homotopyΘt can be realized by a branched covering map
Θ : M × [0,1]→ S3× [0,1], branched along a 2-complexS= ∪t∈[0,1]Gt in S3× [0,1]. Thus, by the
same argument used to prove the compatibility of the composition of geometric correspondences with
the equivalence relation of cobordism, we obtain the compatibility of composition

[M1]b ◦ [M2]b = [M1◦M2]b. (2.2)

The b-homotopy is realized by the cobordism(M1 ◦M2)× [0,1] with the branched covering maps
Θ̂ = Θ◦P1 andΘ̂′ = Θ′ ◦P2. While the knotsK andK′ are fixed in the construction ofHom(K,K′),
the other components of the linksL andL′, when we consider the correspondences up tob-homotopy,
are only determined up to knot cobordism with trivial linking numbers (i.e. as classes in the knot
cobordism subgroup of the link cobordism group, see [36]). To make the role of the link components
more symmetric, it is then more natural in this setting to consider a category where the objects are
cobordism classes of knots[K], [K′] and where the morphisms are given by theb-homotopy classes of
geometric correspondencesHom([K], [K′])b. The time evolution considered in the previous chapter
still makes sense on the corresponding semigroupoid ring, since the order of the branched cover is
well defined on theb-equivalence class and multiplicative under composition of morphisms.
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3. Khovanov Homology

In the following we recall a homology theory for knots and links embedded in the 3-sphere. We dis-
cuss later in this chapter how to extend it to the case of embedded graphs.

3.1. Khovanov Homology for links. In recent years, many papers have appeared that discuss
properties of Khovanov Homology theory, which was introduced in [43]. For each linkL ∈ S3, Kho-
vanov constructed a bi-graded chain complex associated with the diagramD for this link L and applied
homology to get a groupKhi, j(L), whose Euler characteristic is the normalised Jones polynomial.

∑
i, j

(−1)iq jdim(Khi, j(L)) = J(L)

He also proved that, given two diagramsD andD′ for the same link, the corresponding chain com-
plexes are chain equivalent, hence, their homology groups are isomorphic. Thus, Khovanov homology
is a link invariant.

3.2. The Link Cube. Let L be a link withn crossings. At any small neighborhood of a crossing
we can replace the crossing by a pair of parallel arcs and thisoperation is called a resolution. There are
two types of these resolutions called 0-resolution (Horizontal resolution) and 1-resolution (Vertical
resolution) as illustrated in figure (1).

0−resolution Crossing 1−resolution

FIGURE 1. 0 and 1- resolutions to each crossing

We can construct an-dimensional cube by applying the 0 and 1-resolutionsn times to each crossing
to get 2n pictures called smoothings (which are one dimensional manifolds) Sα. Each of these can be
indexed by a wordα of n zeros and ones,i.e. α ∈ {0,1}n. Let ξ be an edge of the cube between two
smoothingsSα1 andSα2, whereSα1 andSα2 are identical smoothings except for a small neighborhood
around the crossing that changes from 0 to 1-resolution. To each edgeξ we can assign a cobordism
Σξ (orientable surface whose boundary is the union of the circles in the smoothing at either end)

Σξ : Sα1 −→ Sα2

This Σξ is a product cobordism except in the neighborhood of the crossing, where it is the obvious
saddle cobordism between the 0 and 1-resolutions. Khovanovconstructed a complex by applying a
1+ 1-dimensional TQFT (Topological Quantum Field Theory) which is a monoidal functor (see the
appendix 4), by replacing each vertexSα by a graded vector spaceVα and each edge (cobordism)Σξ
by a linear mapdξ, and we set the groupCKh(D) to be the direct sum of the graded vector spaces for
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all the vertices and the differential on the summandCKh(D) is a sum of the mapsdξ for all edgesξ
such that Tail(ξ)= α i.e.

di(v) = ∑
ξ

sign(−1)dξ(v) (3.1)

wherev∈Vα ⊆CKh(D) andsign(−1) is chosen such thatd2 = 0.
An element ofCKhi, j(D) is said to have homological gradingi andq-grading j where

i = |α|−n− (3.2)

j = deg(v)+ i +n−+n+ (3.3)

for all v∈Vα ⊆CKhi, j(D), |α| is the number of 1’s inα, andn−, n+ represent the number of negative
and positive crossings respectively in the diagramD.

DEFINITION 3.1. LetV =
⊕

mVm be a graded vector space with homogenous componentsVm.
Then the graded dimension ofV is defined to beqdimV = ∑mqmdim(Vm), which is a Laurant poly-
nomial in variableq.

DEFINITION 3.2. For a graded vector spaceV and an integern we can define a new graded vector
spaceV{n} (called a shifted version ofV) byV{n}m = Vm−n

Here we give an example of computing the homology of the Hopf link CKh∗,∗( )

EXAMPLE 3.3. [61] Consider then-cube diagram of the Hopf link figure (2) ,

C
−2,*

C C
−1,* 0,*

( ) ( ) ( )

FIGURE 2. n-cube diagram of the Hopf link

We associate to each smoothing (vertex) in then-cube a graded vector space as follows: PutV =
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Q{1,x} (Q-vector space with 1,x basis elements). Grade the two basis elements bydeg(1) = 1 and
deg(x) =−1. Associate to each vertexα a graded vector spaceVα = Vkα{|α|+n+−2n−} where|α|
is the number of 1′s in α andkα is the number of circles os smoothings in the vertexα. Set

CKhi,∗ =
⊕

α∈{0,1}n
Vα

In this particular case, then-cube is given in figure (3).

V{−3}

V{−3}

V V{−4} V V{−2}

m

m −  

FIGURE 3

The linear mapdξ : Vα −→ Vα′ is either a fusion map given by multiplicationm : V ⊗V −→ V or
the splitting map given by co-multiplication△ : V −→ V ⊗V, corresponding geometrically to the
contribution of a disk where the crossing change happens, and the identity map outside the disk. The
multiplication mapm is defined by

m(1⊗1) = 1, m(1⊗x) = m(x⊗1) = x, m(x⊗x) = 0

and the co-product△ by

△(1) = 1⊗x+x⊗1, △(x) = x⊗x.

Now following [61], by using the equation (3.1), we see that the homology can begiven in a table as
follows.

H
H

H
H

HH
j

i
-2 -1 0

0 Q
-1
-2 Q
-3
-4 Q
-5
-6 Q

3.3. Properties. [61],[46] Here we give some properties of Khovanov homology.

PROPOSITION3.4. (1) If D′ is a diagram obtained from D by the application of a Reide-
meister move then the complexes(CKh∗,∗(D)) and(CKh∗,∗(D′)) are homotopy equivalent.

(2) For an oriented link L with diagram D, the graded Euler characteristic satisfies

∑(−1)iqdim(Khi,∗(L)) = J(L) (3.4)
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where J(L) is the normalised Jones Polynomials for a link L and

∑(−1)iqdim(Khi,∗(D)) = ∑(−1)iqdim(CKhi,∗(D))

(3) Let Lodd and Levenbe two links with odd and even number of components then Kh∗,even(Lodd)=
0 and Kh∗,odd(Leven) = 0

(4) For two oriented link diagrams D and D′, the chain complex of the disjoint union D⊔D′ is
given by

CKh(D⊔D′) = CKh(D)⊗CKh(D′). (3.5)

(5) For two oriented link L and L′, the Khovanov homology of the disjoint union L⊔L′ satisfies

Kh(L⊔L′) = Kh(L)⊗Kh(L′).

(6) Let D be an oriented link diagram of a link L with mirror image Dm diagram of the mirror
link Lm. Then the chain complex CKh(Dm) is isomorphic to the dual of CKh(D) and

Kh(L)∼= Kh(Lm)

3.4. Links Cobordisms. Recall that in section (7.2) we defined branched cover cobordism as a
cobordismW with boundaryM1∪−M2 with two branched covering maps.

S⊂ S3× [0,1]
q←−W

q′−→ S3× [0,1]⊃ S′, (3.6)

branched along compact oriented surfacesS andS′ ⊂ S3× [0,1] with boundary∂S= L0∪−L1 and
∂S′ = L′1∪−L′2. Here we assume that theLi andL′i are links. We discuss later in this chapter what
happens in the case of embedded graphs. In this section we want to recall how one constructs a linear
map between the homologies of the boundary links by following Khovanov [43]. The first idea is, we
can decomposeS into elementary subcobordismsSt for finitely manyt ∈ [0,1] with

St = S∩S3× [0, t]

and
∂St = Lt−1∪−Lt

whereLt−1 andLt are one dimensional manifolds, not necessary links. Using asmall isotopy we can
obtain that they are links for somet ∈ [0,1]. Here we assume that S is a smooth embedded surface.
A smooth embedded surface S can be represented by a one parameter family Dt , t ∈ [0,1] of planar
diagrams of oriented linksLt for finitely manyt ∈ [0,1] and this representation is called amovie M.
Between any two consecutive clips of a movie the diagrams will differ by one of the “Reidemeister
moves” or “Morse moves”. The Reidemeister moves are in figure(1) in the appendix or the first
moves in figure (17) and the Morse moves are given in figure (4).

These two types of moves will be calledlocal moves. This means that between any two consecutive
diagrams there is a local move either of Reidemeister or of Morse type. The necessary condition is
that the projection diagramD0 in the first clip inM should be the a projection of the linkL0 and the
projection diagram in theD1 in the last clip of the movieM should be the projection of the linkL1

(boundary ofS). Notice that the orientation ofS induces an orientation on all intersection linksLt .
To show that, letv be a tangent vector toLt . Then orientv in the positive direction if(v,w) gives the
orientation ofSwherew is the tangent vector toS in the direction of increasing oft. Khovanov con-
structed a chain map between complexes of two consecutive diagrams that changed by a local move,
hence a homomorphisms between their homologies. The composition of these chain maps defines a
homomorphism between the homology groups of the diagrams ofthe boundary links.
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                0−handle

   1−handle

2−handle

FIGURE 4. Morse moves

3.5. Constructing the homology map from local moves.We recall here more explicitly how
one obtains the maps associated to the two types of local moves described above.

(1) Reidemeister moves: The idea of constructing the homology map is getting a homotopy
equivalence between the chain complexes of consecutive clips see proposition 3.4 no.1. Let
Dtr−1,Dtr be two consecutive diagrams in two consecutive clips in the movieM which differ
by one of the Reidemeister moves of the first type or the secondtype withDtr is the one with
more crossings, then by [43] the chain complex of the diagramDt can be split into direct
sum of chain complexCKhtr and contractible chain complexC proposition 3.4 no.4

CKh(Dtr ) = CKhtr ⊕C (3.7)

Then we can get a homomorphism which respects the filtration,see the appendix (2),

Ξ : CKhtr −→CKh(Dtr−1)

to showCKh(Dtr−1) is equivalent toCKh(Dtr ) it is enough to see that the composition ofΞ
with the projection map onto the first summand 3.7 is chain equivalent to the composition
of the inclusioni andΞ−1.
For the third move thenCKh(Dtr−1) andCKh(Dtr ) can be split both into a chain complex
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and a contractible chain complexesC1 andC2 as above 3.7,

CKh(Dtr−1) = CKhtr−1⊕C1 (3.8)

and

CKh(Dtr ) = CKhtr ⊕C2 (3.9)

and by the same way we can get as above an isomorphism map

Ξ : CKhtr−1 −→CKhtr

then we have equivalent chain complexes

CKh(Dtr ) = CKhtr ⊕C2
Pr−→CKhtr

Ξ−→CKhtr−1

i−→CKh(Dtr−1) = CKhtr−1⊕C1 = CKh(Dtr−1)

Now we get a homotopy equivalence of chain complexes ofDtr in the movieM that differ by
one of the Reidemeister move from the previous diagram whichinduce a map in homology
ϒ : Kh∗,∗(Dtr−1)−→ Kh∗,∗(Dtr ) with respects the filtration onKh∗,∗.

(2) Morse moves: LetD0 andD1 be two diagrams that differ by one of the Morse moves. For 0
or 2-handle there is a simple closed curve that one will add orremove from the consecutive
diagrams. ThenCKh∗,∗(Dt−r

⊔©) =CKh∗,∗(Dtr )⊗V (whereV = Q{1,x} is a vector space
with two basis elements [61] ). we can define for 0-handle a map [43]

φt = Id⊗ i : CKh∗,∗(Dtr−1)−→CKh∗,∗+1(Dtr ) = CKh∗,∗(Dtr−1⊗V)

The increasing in q-grading 3.3 by 1 comes from the fact thatV has identity with q-grading
equal 1 [61], andi : Q−→V is the unit of frobenius algebra [61]. The same operation works
for 2-handle with the mapφt = Id⊗ ε, whereε is the co-unit mapε : V −→Q. Then we can
define the homology map

ϒSt : Kh∗,∗(Dtr−1)−→ Kh∗,∗+1(Dtr )

For the 1-handle move the mapCKh∗,∗(Dtr−1) −→ CKh∗,∗−1(Dtr ) is constructed by [43],
[61] and by applying homology we can get

ϒSt : Kh∗,∗(Dtr−1)−→ Kh∗,∗−1(Dtr )

Let ϒS : Kh∗,∗(D0)−→ Kh∗,∗+χ(S)(D1) be a composition of consecutive mapsϒSt , t ∈ [0,1].
One can see that the q-grading is changed by adding the Euler characteristic of cobordism
Sand this change comes from Morse moves since the q-grading does not change by using
Reidemeister moves, and by the sum over all these changes we get χ(S), see [43].

4. Knots and Links Cobordism Groups

A notion of knot cobordism group and link cobordism group canbe given by using cobordism
classes of knots and links to form a group [23],[36]. The link cobordism group splits into the direct
sum of the knot cobordism group and an infinite cyclic group which represents the linking number,
which is invariant under link cobordism [36]. In this part we will give a survey about both knot and
link cobordism groups. In a later part of this chapter we willshow that the same idea can be adapted
to construct a graph cobordism group by using the definition of cobordisms between graphs given in
section 7.1 definition(7.2).
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4.1. Knot cobordism group. We recall the concept of cobordism between knots introducedin
[23]. Two knotsK1 andK2 are called knot cobordic if there is a locally flat cylinderS in S3× [0,1]
with boundary∂S= K1∪−K2 whereK1⊂ S3×{0} andK2⊂ S3×{1}. We then writeK1∼ K2. The
critical points in the cylinder are assumed be minima (birth), maxima (death), and saddle points. In
the birth point at somet0 there is a sudden appearance of a point. The point becomes an unknotted
circle in the level immediately abovet0. At a maxima or death point, a circle collapses to a point and
disappearance from higher levels.

��

��

DeathBirth

FIGURE 5. Death and Birth Points

For the saddle point, two curves touch and rejoin as illustrated in figure 6

����

��
��
��
�� Saddle Point

Saddle Point

After

Before

FIGURE 6. Saddle Point

These saddle points are of two types:negativeif with increasingt the number of the cross sections
decreases andpositiveif the number increases.
A transformation [23] from one cross section to another is called negative hyperbolic transformation
if there is only one saddle point between the two cross sections and if the number of components
decreases. We can define analogously a positive hyperbolic transformation.
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DEFINITION 4.1. [36] We say that two knotsK1 andK2 are related by an elementary cobordism
if the knotK2 is obtained byr−1 negative hyperbolic transformations from a split link consisting of
K1 together withr−1 circles.

What we mean by split link is a link withn components(Ki, i = 1....n) in S3 such that there are
mutually disjointn 3-cells(Di, i = 1....n) containingKi, i = 1,2...,n

LEMMA 4.2. [36] Two knots are called knot cobordic if and only if they are related by a sequence
of elementary cobordisms

It is well known that the oriented knots form a commutative semigroup under the operation of
composition #. Given two knotsK1 andK2, we can obtain a new knot by removing a small arc from
each knot and then connecting the four endpoints by two new arcs. The resulting knot is called the
composition of the two knotsK1 andK2 and is denoted byK1#K2.
Notice that, if we take the composition of a knotK with the unknot© then the result is againK.

LEMMA 4.3. The set of oriented knots with the connecting operation# forms a semigroup with
identity©

Fox and Milnor [23] showed that composition of knots induces a composition on knot cobordism
classes[K]#[K′]. This gives an abelian groupGK with [©] as identity and the negative is−[K] = [−K],
where the−K denotes the reflected inverse ofK.

THEOREM 4.4. The knot cobordism classes with the connected sum operation# form an abelian
group, called the knot cobordism group and denoted by GK .

4.2. Link cobordism group. [36] For links, the conjunction operation & between two links
gives a commutative semigroup.L1&L2 is a link represented by the union of the two linksl1∪ l2
wherel1 representsL1 andl2 representsL2 with mutually disjoint 3-cellsD1 andD2 containl1 andl2
respectively. Here “represents” means that we are working with ambient isotopy classesLi of links
(also calledlink types) and thel i are chosen representatives of these classes. In the following we
loosely refer to the classesLi also simply as links, with the ambient isotopy equivalence implicitly
understood. The zero of this semigroup is the link consisting of just the empty link. The link cobor-
dism group is constructed [36] using the conjunction operation and the cobordism classes. We recall
below the definition of cobordism of links.
Let L be a link inS3 containingr-componentsk1, ....,kr with a split sublinkLs = k1∪k2∪ ....∪kt , t ≤ r
of L. Define a knot̂K to bek1+k2+ ....+kt +∂Bt+1+∂Bt+2+ ....+∂Br where{Bt+1,Bt+2,Bt+3....,Br}
are disjoint bands inS3 spanningLs [36]. The operation+ means additions in the homology sense.
PutL1 = Ls∪kt+1∪kt+2....∪kr andL2 = K̂ ∪kt+1∪kt+2....∪kr . Now, the operation of replacingL1

by L2 is calledfusion andL2 by L1 is calledfission.

DEFINITION 4.5. [36] Two links will be called link cobordic if one can be obtainedfrom the
other by a sequence of fusions and fissions. This equivalencerelation is denoted by≃. [L] denotes
the link cobordism class ofL.

THEOREM 4.6. [36] The link cobordism classes with the conjunction operation form an abelian
group, called the link cobordism group and denoted by GL.

PROOF. For two cobordism classes[L1] and[L2] the multiplication between them is well defined
and given by

[L1]& [L2] = [L1&L2]
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Knot (K)
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K+B

Fusion

Fission

FIGURE 7. Band

The zero of this operation is the class[©] which is the trivial link of a countable number of compo-
nents. The negative of[L] is−[L] = [−L], where−L denoted the reflected inverse ofL. �

LEMMA 4.7. For any link L, a conjunction L& −L is link cobordic to zero.

To study the relation between the knot cobordism groupGK and link cobordism groupGL define
a natural mappingf : GK −→ GL which assigns to each knot cobordism class[k] the corresponding
link cobordism class[L] whereL is the knotk viewed as a one-component link. We claim thatf is a
homomorphism.f is well defined from the following lemma

LEMMA 4.8. [36] Two knots are link cobordic if and only if they are knot cobordic.

Now, K1#K2 is a fusion ofK1&K2 thenK1#K2 is cobordic toK1&K2, thereforef is a homomor-
phism. Again by using the lemma 4.8, if a knot is link cobordicto zero then it is also knot cobordic
to zero, and henceker( f ) consists of just©.

LEMMA 4.9. f is an isomorphism of GK onto a subgroup of GL.

THEOREM4.10. [36] f (GK) is a direct summand of GL and it is a subgroup of GL whose elements
have total linking number zero. The other summand is isomorphic to the additive group of integers.

5. Graphs and cobordisms

The rest of this chapter will be dedicated to extending some of the notions recalled above for
knots and links, to the case of embedded graphs in the 3-sphere. In this section we describe how to
obtain a cobordism group for graphs, in two possible ways andthe relation between them and with
the cobordism group of links.
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5.1. Some basic facts about graphs.We recall here some basic facts about graphs. A GraphG is
an ordered triple(V(G),E(G),φG) consisting of a nonempty setV(G) of vertices (zero-dimensional),
a setE(G), disjoint fromV(G), of edges or loops or lines (one-dimensional), and an incidence func-
tion φG that associates with each edge ofG an unordered pair of ( not necessarily distinct) vertices of
G. If e is an edge andu andv are vertices such thatφG(e) = uv, thene is said to joinu andv. The
verticesu andv are called the ends ofe. Each vertex is indicated by a point, and each edge by a line
joining the points which represent its ends.

FIGURE 8

Most of the definitions and concepts in graph theory are suggested by the graphical representation.
The ends of an edge are said to be incident with the edge, and vice versa. Two vertices which are in-
cident with a common edge are adjacent, as are two edges whichare incident with a common vertex.
An edge with identical ends is called a loop, and an edge with distinct ends a link.
A graph is finite if both its vertex set and edge set are finite, we call a graph with just one vertex trivial
and all other graphs nontrivial. A graph is simple if it has noloops and no two of its edges join the
same pair of vertices. We use the symbolsv(G) (sometimes|G|) andε(G) (sometimes||G||) to denote
the number of vertices and edges in the graphG.
Two graphsG andH are identical (written G = H) ifV(G) =V(H) andE(G)= E(H), andφG = φH . If
two graphs are identical then they can clearly be represented by identical diagram. Two graphsG and
H are said to be isomorphicG≃H if there are bijectionsθ : V(G)−→V(H) andψ : E(G)−→ E(H)
such thatφG(e) = uv if and only if φh(ψ(e)) = θ(u)θ(v); such pair(θ,ψ) of mapping is called iso-
morphism betweenG andH.
A class of graphs that is closed under isomorphism is called agraph property. A simple graph in
which each pair of distinct vertices is joined by an edge is called a complete graph. Up to isomor-
phism there is just one complete graph onn vertices and denotedKn or Kn. K3 is called a triangle.
For an arbitrary edgee∈ E(G) we can defineG− e to be the graphG with deleted edgee, and by
G/e the graph obtained by contacting edgee i.e.by identifying the vertices incident toeand deleting
e. A graph is said to bedigraph if each graph edge is replaced by a directed graph edgei.e. graph
whose edge have direction and are calledarcs. A complete graph in which each edge is bidirected
(symmetric pair of directed edges) is called a complete directed graph. The inverse of a directed graph
G is a graph−G with the same number of vertices but reverse direction of theedges
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Graph G

Graph −G

Directed Graph

FIGURE 9. Directed Graphs

5.1.1. subgraphs.A graphH is a subgraph ofG written(H ⊆G) if V(H)⊆V(G), E(H)⊆E(G)
andφH is the restriction ofφG to E(H). WhenH ⊆G but (H 6= G), we writeH ⊂ G and call proper
subgraph of G. A spanning subgraph ofG is a subgraphH with V(H) = V(G). The unionG1∪G2

of G1 andG2 is the subgraph with vertex setV(G1)∪V(G2) and edge setE(G1)∪E(G2). If G1 and
G2 are disjoint sometimes denote their union byG1 + G2. The intersectionG1∩G2 of G1 andG2 is
defined similarly, but in this caseG1 andG2 must have at least one vertex in common.

5.2. Graph cobordism group. In this section we construct cobordism groups for embedded
graphs by extending the notions of cobordisms used in the case of links. In definition (7.2) we
have already introduced a concept of cobordism between graphs. We recall here the definition of
cobordisms of graphs that we used in the previous chapter.

DEFINITION 5.1. Two graphsE1 and E2 are called cobordic if there is a surfaceS have the
boundary∂S= E1∪−E2 with E1 = S∩ (S3×{0}), E2 = S∩ (S3×{1}) and we setE1 ∼ E2. Here
by ”surfaces” we mean 2-dimensional simplicial complexes that are PL-embedded inS3× [0,1]. [E]
denotes the cobordism class of the graphE.

By using the graph cobordism classes and the conjunction operation &, we can induce a graph
cobordism group.E1&E2 is a graph represented by the union of the two graphsE1∪E2 with mutually
disjoint 3-cellsD1 andD2 containing (representatives of)E1 andE2, respectively. Here again we do
not distinguish in the notation between the ambient isotopyclasses of embedded graphs (graph types)
and a choice of representatives.

LEMMA 5.2. The graph cobordism classes in the sense of Definition 5.1 with the conjunction
operation form an abelian group called the graph cobordism group and denoted by GE.

PROOF. For two cobordism classes[E1] and[E2] the operation between them is given by

[E1]& [E2] = [E1&E2].

This operation is well defined. To show that : SupposeE1∼ F1, for two graphsE1 andF1. Then there
exists a surfaceS1 with boundary∂S1 = E1∪−F1. Suppose also,E2∼ F2, for two graphsE2 andF2.
Then there exists a surfaceS2 with boundary∂S2 = E2∪−F2. We want to show thatE1&E2∼ F1&F2,
i.e. we want to find a surfaceSwith boundary∂S= (E1&E2)∪−(F1&F2).
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Define the cobordismS to beS1&S2 whereS1&S2 representsS1∪S2 with mutually disjoint 4-cells
D1× [0,1] andD2× [0,1], containingS1 andS2 respectively withD1×{0} containingE1, D2×{0}
containingF1, D1×{1} containingE2 andD2×{1} containingF2. The boundary ofS is given by,

∂S= ∂(S1&S2) = ∂S1&∂S2 = ∂S1∪∂S2 = (E1∪−F1)∪ (E2∪−F2) = (E1&E2)∪−(F1&F2)

Then the operation is well defined. The zero of this operationis the class[��
��
��
��

] which is the trivial
graph of a countable number of components. The negative of[E] is−[E] = [−E], where−E denoted
the reflected inverse ofE. �

5.3. Fusion and fission for embedded graphs.We now describe a special kind of cobordisms
between embedded graphs, namely the basic cobordisms that correspond to attaching a 1-handle and
that give rise to the analog in the context of graphs of the operations of fusion and fission described
already in the case of links. LetE be a graph containing n-components with a split subgraphEs= G1∪
G2∪G3...∪Gt. We can define a new grapĥE to beG1+G2+G3...+Gt +∂Bt+1+∂Bt+2+ ....+∂Bn

where{Bt+1,Bt+2,Bt+3....,Bn} are disjoint bands inS3 spanningEs. The operation+ means addition
in the homology sense. PutE1 = Es∪Gt+1∪Gt+2....∪Gn andE2 = Ê +Gt+1 +Gt+2....+Gn. Now,
The operation of replacingE1 by E2 is calledfusion andE2 by E1 is calledfission.

Graph G

Band

Graph G+Band

FIGURE 10

Notice that, in order to make sure that all resulting graphs will still have at least one vertex, one needs
to assume that the 1-handle is attached in such a way that there is at least an intermediate vertex in
between the two segments where the 1-handle is attached, as the figure above illustrates.

REMARK 5.3. Unlike the case of links, a fusion and fission for graphs does not necessarily change
the number of components. For example see the figure below.

We can use the operations of fusion and fission described above to give another possible definition
of cobordism of embedded graphs.

DEFINITION 5.4. Two graphs will be called graph cobordic if one can be obtained from the other
by a sequence of fusions and fissions. We denote this equivalence relation by≃, and by[E] the graph
cobordism class ofE.

Thus we have two corresponding definitions for the graph cobordism group. One can check from
the definition of fusion and fission that they gives the existence of a cobordism (surface) between two
graphsE1 andE2.
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FIGURE 11

LEMMA 5.5. Two graphs E1 and E2 that are cobordant in the sense of Definition 5.4 are also
cobordant in the sense of Definition 5.1. The converse, however, is not necessary true.

PROOF. As we have seen, a fusion/fission operation is equivalent toadding or removing a band
to a graph and this implies the existence of a saddle cobordism given by the attached 1-handle, as
illustrated in figure (6). By combining this cobordism with the identity cobordism in the region
outside where the 1-handle is attached, one obtains a PL-cobordism betweenE1 andE2. This shows
that cobordims in the sense of Definition 5.4 implies cobordism in the sense of Definition 5.1. The
reason why the converse need not be true is that, unlike what happens with the cobordisms given
by embedded smooth surfaces used in the case of links, the cobordisms of graphs given by PL-
embedded 2-complexes are not always decomposable as a finiteset of fundamental saddle cobordims
given by a 1-handle. Thus, having a PL-cobordism (surface inthe sense of a 2-complex) between two
embedded graphsE1 andE2 does not necessarily imply the existence of a finite sequenceof fusions
and fissions. �

LEMMA 5.6. The graph cobordism classes in the sense of Definition 5.4 with the conjunction
operation form an abelian group called the graph cobordism group and denoted by GF .

PROOF. The proof is the same as the proof on lemma 5.2 since fusion and fission are a special
case of cobordisms. �

The result of Lemma 5.5 shows that there are different equivalence classes[E1] 6= [E2] in GF that
are identified[E1] = [E2] in GE. Thus, the number of cobordism classes when using Definition5.1 is
smaller that the number of classes by the fusion/fission method of Definition 5.4.

6. Homology theories for embedded graphs

In this part we will present a method to extend Khovanov homology from links to embedded
graphsG⊂ S3. Our construction is obtained by using Khovanov homology for links, applied to a
family of knots and links associated to an embedded graph. This family is obtained by a result of
Kauffman [42] as a fundamental topological invariant of embedded graphsobtained by associating to
an embedded graphG in three-space a family of knots and links constructed by some operations of
cutting graphs at vertices. Before we give this construction, we motivate the problem of extending
Khovanov homology to embedded graphs by recalling another known construction of a homology
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theory,graph homology, which is defined for abstract graphs and captures the combinatorial com-
plexity of the graph. The homology theory we seek to construct will combine aspects of Khovanov
and graph homology, in as it captures information both on theembedding, as in Khovanov homology,
and on the combinatorics of the graph, as in graph homology.

6.1. Graph homology. We recall here the construction and some basic properties ofgraph ho-
mology. As we discuss below, graph homology can be regarded as a categorification of the chromatic
polynomial of a graph, in the same way as Khovanov homology gives a categorification of the Jones
polynomial of a link. A construction is given for a graded homology theory for graphs whose graded
Euler characteristic is theChromatic Polynomialof the graph [30]. Laure Helm-Guizon and Yongwu
Rong used the same technique to get a graded chain complex. Their construction depends on the
edges in the vertices of the cube{0,1}n whose elements are connected subgraphs of the graphG. In
this subsection we recall the construction of Laure Helm-Guizon and Yongwu Rong.

6.1.1. Chromatic Polynomial.let G be a graph with set of verticesV(G) and set of edgesE(G).
For a positive integert, let {1,2, ..., t} be the set oft-colors. A coloring ofG is an assignment of a
t-color to each vertex ofG such that vertices that are connected by an edge inG always have different
colors. LetPG(t) be the number ont-coloring ofG i.e. is the number of vertex colorings ofG with
t colors (in a vertex coloring two vertices are colored differently whenever they are connected by an
edgee), thenPG(t) satisfies the Deletion-Contraction relation

PG(t) = PG−e(t)+PG/e(t)

In addition to thatPKn(t) = tn whereKn is the graph withn vertices andn edges. PG(t) is called
Chromatic Polynomial. Another description can be give toPG(t), let s⊂ E(G), defineGs to be the
graph whose vertex set is the same vertex set ofG with edge sets. Putk(s) the number of connected
components ofGs. Then we have

PG(t) = ∑
s⊆E(G)

(−1)|s|tk(s)

6.1.2. Constructing n-cube for a Graph.First we want to give an introduction to the type of
algebra that we will use it in our work later.

DEFINITION 6.1. [30] Let V = ⊕iVi be a gradedZ-module where{Vi} denotes the set of ho-
mogenous elements with degreei, and the graded dimension ofV is the power series

qdimV = ∑
i

qidimQ(Vi ⊗Q)

.

We can define the tensor product and directed sum for the graded Z-module as follows:

THEOREM 6.2. [30] LetV andW be a gradedZ-modules, thenV ⊗W andV ⊕W are both
gradedZ-module with

(1) qdim(V ⊕W ) = qdim(V )+qdim(W )
(2) qdim(V ⊗W ) = qdim(V ) ·qdim(W )

Let G be a graph with edge setE(G) andn = |E(G)| represents the cardinality ofE(G). We need
first to order the edges inE(G) and denote the edges by{e1,e2, ...,en}. Consider then-dimensional
cube{0,1}n [30],(see the figure (12)). Each vertex can be indexed by a wordα ∈ {0,1}n. This vertex
α corresponded to a subsets = sα of E(G). This is the set of edges ofG that are incident to the
chosen vertex. Thenei ∈ sα if and only if αi = 1. Define|α| = ∑αi (height ofα) to be the number
of 1′s in α or equivalently the number of edges insα. We associate to each vertexα in the cube
{0,1}n, a graded vector spaceVα as follows [30]. Let Vα be a graded freeZ-module with 1 andx
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FIGURE 12

basis elements with degree 0 and 1 respectively, thenVα = Z⊕Zx with qdim(Vα) = 1+q and hence,
qdim(V⊗k

α ) = (1+q)k.
ConsiderGsα, the graph with vertex setV(G) and edge setsα. Replace each component ofGsα by a
copy ofVα and take the tensor product over all components.
Define the graded vector spaceVα = V⊗k

α wherek is the number of the components ofGsα. Set the
vector spaceV to be the direct sum of the graded vector space for all the vertices. The differential map
di , defined by using the edges of the cube{0,1}n. We can label each edge of{0,1}n by a sequence
of {0,1,⋆}n with exactly one⋆. The tail of the edge labeled by⋆ = 0 and the head by⋆ = 1. To
define the differential we need first to definePer-edgemaps between the vertices of the cube{0,1}n.
These maps is defined to be a linear maps such that every squarein the cube{0,1}n is commutative.
Define theper-edgemapdξ : Vα1 −→ Vα2 for the edgeξ with tail α1 and headα2 as follows: Take
Vαi = V⊗ki for i = 1,2 with ki is the number of the connected components ofGsαi

. Let e be the edge
andsα2 = sα1∪{e}, then there are two possible cases. First one (easy case):dξ will be the identity map
if the edgee joins a componentr of Gsα1

to itself. Thenk1 = k2 with a natural correspondence between
the components ofGsα1

andGsα2
. Second one: ife joins two different components ofGsα1

, sayr1 and
r2, thenk2 = k1−1 and the components ofGsα2

arer1∪ r2∪{e}∪ ....∪ rk1. Definedξ to be the identity
map on the tensor factor coming fromr3, r4, ..., rk1. Also definedξ on the remaining tensor factor to
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be the multiplication mapVα⊗Vα −→Vα sendingx⊗ y to xy. The differentialdi : V i −→ V i+1 in
given by

di = ∑
|ξ|=i

sign(ξ)dξ

Where sign(ξ) is chosen so thatd2 = 0.

THEOREM 6.3. [61],[30] The following properties hold for graph homology.

• The graded Euler characteristic for the graph homology given by

∑
i, j

(−1)iq jdim(Khi, j (G)) = PG(t)

where PG(t) is the chromatic polynomial
• In graph homology a short exact sequence

0−→CKhi−1, j(G/e)−→CKhi, j(G)−→CKhi, j(G−e)−→ 0

can be constructed by using the deletion-contraction relation for a given edge e∈ G. This
gives a long exact sequence

· · · −→ Khi−1, j(G/e)−→ Khi, j(G)−→ Khi, j(G−e)−→ ·· ·
6.2. Graph homology and Khovanov homology.A first idea of how to obtain a homology

theory that extends Khovanov homology for embedded graph isto combine the chain complex that
computes Khovanov homology, constructed using the basic cobordisms near each crossing of a planar
diagram, and the chain complex of graph homology which is based on removing edges from the graph.

Since we are going to concentrate later on a different approach to constructing a Khovanov ho-
mology for embedded graphs, we only give here a simple example illustrating how to associate to
each level in the graph homology complex a corresponding cubical complex as in Khovanov ho-
mology with differentials between these induced by the graph homology differentials, but we do not
pursue the details of this construction further at present.

The aim of the approach we sketch briefly here would be to obtain a double complex that com-
bines the graph homology complex and a version of the Khovanov complex. We recall briefly the
notion of a double complex.

DEFINITION 6.4. LetC be an additive category. A double complex(C∗,∗(A),dx) in C is the data
of (Ci, j ,d′i, j x,d′′i, j x),(i, j) ∈Z×Z, whereCi, j ∈ C and the differentialsd′i, jx :Ci, j −→Ci+1, j (vertical
differential) andd′′i, j x : Ci, j −→Ci, j+1 (horizontal differential) satisfy:

d′2x = d′′2x = 0,d′ ◦d′′ = d′′ ◦d′

in the commutative diagram

Ci, j d′′
//

d′

��

Ci, j+1 d′′
//

d′

��

Ci, j+2

d′

��

Ci+1, j d′′
//

d′

��

Ci+1, j+1 d′′
//

d′

��

Ci+1, j+2

d′

��

Ci+2, j d′′
// Ci+2, j+1 d′′

// Ci+2, j+2

We now look at a simple example of an embedded graph with a small number of vertices and of
crossings, to illustrate how one can try to combine Khovanovand graph homology.

For a graphG with n crossings, one can follow the same idea of Khovanov and construct an
associatedn-cube by applying the 0 and 1-resolutions illustrated in figure (13)
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1−crossing         crossing       0−crossing

FIGURE 13. 0 and 1- resolutions to each crossing in a Graph G

To each vertexα in then-cube we can associate a gradedZ-moduleM α and sum over all columns to
get a complexC.

C =
⊕

α n−cube

M α

And to each edge in the cube we associate a differentiald. A differential D on the summandC is the
sum of the mapsd for all edges, such thatd2 = 0. Consider the diagram in figure (14)

n−cube diagram

for the graph

(C    )           (C    )
0,* 1,*

FIGURE 14

One can then try to combine then-cube complex obtained in this way with the complex computing
graph homology as described in the previous section. Consider the example of the planar diagram of
an embedded graph as illustrated in figure (15).
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Figure (14) shows the graph together with the associated twoterms cubical complex obtained by re-
solving the crossing in the two different ways, while Figure(15) shows the graph homology complex
for the same graph. Consider then the diagram in figure (16) This shows how to associate to each
term in the first two steps of the graph homology complex a corresponding cubical complex.
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Instead of continuing in more generality this approach, we show in the next section a more direct
and simpler approach to constructing a Khovanov homology ofembedded graphs. The approach we
present below will have the advantage that the proof of topological invariance will immediately follow
from Kauffman’s result and will not require checking that the graph Reidemeister moves induce chain
homotopies of the complexes involved.

To this purpose, we first review a useful result of Kauffman inthe next paragraphs.

6.3. Kauffman’s invariant of Graphs. We give now a survey of the Kauffman theory and show
how to associate to an embedded graph inS3 a family of knots and links. We then use these results
to give our definition of Khovanov homology for embedded graphs. In [42] Kauffman introduced
a method for producing topological invariants of graphs embedded inS3. The idea is to associate
a collection of knots and links to a graphG so that this family is an invariant under the expanded
Reidemeister moves defined by Kauffman and reported here in figure (17).

He defined in his work an ambient isotopy for non-rigid (topological) vertices. (Physically, the rigid
vertex concept corresponds to a network of rigid disks each with (four) flexible tubes or strings ema-
nating from it.) Kauffman proved that piecewise linear ambient isotopies of embedded graphs inS3

correspond to a sequence of generalized Reidemeister movesfor planar diagrams of the embedded
graphs.

THEOREM 6.5. [42] Piecewise linear (PL) ambient isotopy of embedded graphs isgenerated by
the moves of figure (17), that is, if two embedded graphs are ambient isotopic, then any two diagrams
of them are related by a finite sequence of the moves of figure (17).
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1−

2−

3−

4−

5−

FIGURE 17. Generalized Reidemeister moves by Kauffman

Let G be a graph embedded inS3. The procedure described by Kauffman of how to associate toG
a family of knots and links prescribes that we should make a local replacement as in figure 18 to each
vertex inG. Such a replacement at a vertexv connects two edges and isolates all other edges at that
vertex, leaving them as free ends. Letr(G,v) denote the link formed by the closed curves formed by
this process at a vertexv. One retains the linkr(G,v), while eliminating all the remaining unknotted
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FIGURE 18. local replacement to a vertex in the graph G

arcs. Define thenT(G) to be the family of the linksr(G,v) for all possible replacement choices,

T(G) = ∪v∈V(G)r(G,v).

For example see figure (19).

THEOREM 6.6. [42] Let G be any graph embedded inS3, and presented diagrammatically. Then
the family of knots and links T(G), taken up to ambient isotopy, is a topological invariant of G.

For example, in the figure (19) the graphG2 is not ambient isotopic to the graphG1, sinceT(G2)
contains a non-trivial link.

6.4. Definition of Khovanov homology for embedded graphs.Now we are ready to speak
about a new concept of Khovanov homology for embedded graphsby using Khovanov homology
for the links (knots) and Kauffman theory of associate a family of links to an embedded graphG, as
described above.

DEFINITION 6.7. LetG be an embedded graph withT(G) = {L1,L2, ....,Ln} the family of links
associated toG by the Kauffman procedure. LetKh(Li) be the usual Khovanov homology of the link
Li in this family. Then the Khovanov homology for the embedded graphG is given by

Kh(G) = Kh(L1)⊕Kh(L2)⊕ ....⊕Kh(Ln)

Its graded Euler characteristic is the sum of the graded Euler characteristics of the Khovanov homol-
ogy of each link,i.e. the sum of the Jones polynomials,

∑
i, j,k

(−1)iq jdim(Khi, j (Lk)) = ∑
k

J(Lk). (6.1)
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We show some simple explicit examples.

EXAMPLE 6.8. In figure (19)T(G1) = {©©,©} then forKh(©) = Q

Kh(G1) = Kh(©©)⊕Kh(©)

Now, from proposition 3.5 no.5

Kh(G1) = Kh(©)⊗Kh(©)⊕Kh(©)

Kh(G1) = Q⊗Q⊕Q = Q⊕Q

T(G2) = { ,©} then

Kh(G2) = Kh( )⊕Kh(©)

Kh(G2) =

H
H

H
H

HH
j

i
-2 -1 0

0 Q⊕Q
-1
-2 Q
-3
-4 Q
-5
-6 Q

7. Questions and Future Work

We sketch briefly an outline of ongoing work where the construction presented in this paper is
applied to other constructions related to noncommutative geometry and knot invariants.
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7.1. Categorification and homology invariants.We have constructed a category of knots and
links, or more generally of embedded graphs, where it is possible to use homological algebra to
construct complexes and cohomological invariants. The process of categorifications in knot theory,
applied to a different category of knots, has already provedvery successful in deriving new knot
invariants such as Khovanov homology. We have begun investigating in this second chapter how to
associate cohomologies to the objects in our category. We need to understand how to combine these
with the rest of the categorical structure described in the first chapter, to obtain a functor from our
2-category to a 2-category of 2-vector spaces. We also plan to study filtrations, long exact sequences,
and spectral sequences for Khovanov homology of embedded graphs.

7.2. Time evolutions and moduli spaces.We have constructed vertical time evolutions from
virtual dimensions of moduli spaces. It would be more interesting to construct time evolutions on
the algebra of correspondences, in such a way that the actualgauge theoretic invariants obtained by
integrating certain differential forms over the moduli spaces can be recovered as low temperature
equilibrium states. The formal path integral formulationsof gauge theoretic invariants of 4-manifolds
suggests that something of this sort may be possible, by analogy to the case we described of Hartle–
Hawking gravity. In the case of the horizontal time evolution, it would be interesting to see if that can
also be related to gauge theoretic invariants. The closest model available would be the gauge theory
on embedded surfaces developed in [45].

7.3. Noncommutative spaces and dynamical systems.Another way to construct noncommu-
tative spaces out of the geometric correspondences considered here is via the subshifts of finite type
constructed in [56] out of the representationsσ : π1(S3 r L)→ Sm describing branched coverings.
A subshift of finite type naturally determines a noncommutative space in the form of associated
Cuntz–Krieger algebras. The covering moves (or colored Reidemeister moves) of [52] will determine
correspondences between these noncommutative spaces.





APPENDIX A

1. Branched Covering

1.1. Branched Coverings of Manifolds.We work here in the PL category with piecewise linear
maps. Manifolds have piecewise linear local charts and all mapsφ : Mm→ Nm betweenm-manifolds
are assumed to be PL and proper (i.e. the preimage of a compact set is compact). A PL, proper, finite-
to-one and open mapφ : Mm−→ Nm between manifolds is called a branched covering. The singular
set is the set of points ofMm at whichφ fails to be a local homeomorphism. It is a subpolyhedron of
Mm of codimension 2. The branched set, or branch locus, ofφ (denoted byBφ) is the image of the
singular set of the branched coveringφ in Nm. The fibers ofφ are finite setsφ−1(y), for all y∈ Nm.
The degree degφ is the maximum cardinality of a fiber.

EXAMPLE 1.1. LetD2 = {z∈C : |z| ≤ 1} and letP : D2−→D2 be the map given by the formula
P(z) = zn. Then P is an n-fold branched covering with unique branched point z= 0.

Two branched coveringsφ0,φ1 : Mm−→ Nm are equivalent if there exist homeomorphismsf :
Mm−→Mm andg : Nm−→ Nm such thatgφ0 = φ1 f . They are b-homotopic if there is a homotopy
θt : Mm−→Nm, for 0≤ t ≤ 1, such thatθ0 = φ0, θ1 = φ1, and such that eachθt is a branched covering.
We recall briefly the “Alexander trick” for branched covering. Any branched coveringφ : D3−→ D3

is b-homotopic to the coneC(φ|∂D3), hence two such branched coverings that agree on∂D3 are b-
homotopic.
Suppose thatφ : M3 −→ N3 is branched covering and thatN3 is orientable. The orientation ofN3

determines an orientation ofM3 such thatφ is orientation- preserving. To show this, triangulateM3

andN3 so thatφ is simplicial and orient them-simplices ofM3 so thatφ is orientation-preserving on
each simplex. A branched coveringφ : M3 −→ N3 which preserves specified orientations ofM3 and
N3 is called an oriented branched covering . A branched covering φ : M3 −→ N3 of degreen≥ 2 is
simpleprovided that it is of local degree 2 and, for eachx∈ N3, the fiberφ−1(x) overx consists of at
leastn−1 points (hence it contains at most one singular point).

PROPOSITION1.2. [5] Let φ : M3 −→ N3 be a simple branched covering of degree n between
compact manifolds, and letξ : M3−→ N3 be any other branched covering. Ifξ is close enough toφ
in the compact-open topology, thenξ is also simple.

LEMMA 1.3. [5] Any Branched coveringφ : D2 −→ D2 is b-homotopic rel∂D2 to a simple
branched covering.

THEOREM 1.4. [5] Let M3 be a connected orientable3-manifold with connected boundary and
let φ : ∂M3−→ S2 be a simple branched covering of degree n≥ 3. Then there is a simple branched
coveringϕ : M3−→ D3 which extendsφ.

In [38] A. Hurwitz introduced a way of associating data to every branched coveringφ : Mn−→Nn

of degreenwhich are called theHurwitz systemfor φ. This is defined in the following way: a branched
coveringφ0 : M3 r φ−1(Bφ)−→ N3 r Bφ can be determined by a representation

σ(φ) : π1(N
mr Bφ)→ Sm, (1.1)

77
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whereSm is the symmetric group. One then has the following result.

THEOREM 1.5. (Hurwitz Existence Theorem)
For any finite set B⊂ Nm and representationσ : π1(Nm r B)→ Sn, there is a degree n branched
coveringφ : Mm−→ Nm, where Mm is not necessary connected, with Bφ ⊂ B andσ(φ)⊂ σ.

One also has the following result that generalizes Lemma 1.3above.

THEOREM 1.6. [5] Any branched coveringφ : M3−→N3 of degree n is b-homotopic to a simple
branched covering.

This can be used to show (see [5]) that one can, up to homotopy, always reduce to the case where
the branch locus is a manifold, which in the case of branched coverings of 3-manifolds means a
1-manifold in the 3-sphere, that is, a link.

COROLLARY 1.7. Any branched coveringφ : M3 −→ N3 is branched homotopic to one with
branched set a1-manifold.

In the first chapter, in order to have well defined compositions of morphisms, we did not want to
consider coverings up to homotopy, so we had to keep also branch loci that are embedded graphs and
not just links.

Another result from the general theory of branched coverings of 3-manifolds that we used exten-
sively in our work is the fact that all 3-manifolds are branched coverings of the 3-sphere. We report
here a simple argument that shows why this is the case. It assumes the fact that all 3-manifolds admit
a Heegaard splitting.

THEOREM 1.8. LetM3 be a closed orientable 3-manifold, and n≥ 3 an integer. Then there exists
a simple branched coveringφ : M3−→ S3 of degree n.

PROOF. Let M3 = H−∪H+ be a Heegaard decomposition whereH− andH+ are handlebodies
identified along their boundary. LetS3 = D3− ∪D3

+ whereD3− andD3
+ are the upper and lower

hemispheres. By the Hurwitz Existence theorem 1.5 there is asimple branched coveringξ : ∂H− −→
∂D3− . By the extension theorem 1.4ξ extends to a simple branched coveringφ− : H− −→ D3− and
to a simple branched coveringφ+ : H+ −→ D3

+ of degreen. Just setφ = φ−∪φ+ �

The fact that all compact PL 3-manifolds admit a Heegaard splitting is also easy to check. In
fact, take a triangulation of the 3-manifold. A small tubular neighborhood of the 1-skeleton of the
triangulation gives a handlebodyH− and the complement of this tubular neighborhood can also be
seen to be a handlebodyH+ of the same genus. Their common boundary is the genusg surface along
which the gluing of the two handlebody happens.

2. Filtration

A finite length filtration of a chain complexC is a sequence of subcomplexes

0 = Ck⊂Ck−1⊂Ck−2⊂ ......⊂C0 = C

A map f : C−→C′ between two filtered chain complexes is said to respect the filtration if f (Ci)⊂C′i .
A map f is a filtered map of degreek if f (Ci)⊂C′i+k. By defining a filtration{Ci} on a chain complex
C, one can induce another filtration{Fi} on H∗(C) defined as follows : a class[x] ∈ H∗(C) is in Fi if
and only if it has a representative which is an element ofCi . Notice that if f : C−→C′ is a filtred
chain map of degree k, then it is easy to see that the induced map f∗ : H∗(C)−→H∗(C′) is also filtered
of degree k. A finite length filtration{Ci} onC induces a spectral sequence which converges to the
associated graded group of the induced filtration{Fi}. The associated grading of a filtration is defined
as follows : an elementx∈C has gradingi if and only if x∈Ci andx 6∈Ci+1. The associated graded
group is the quotient groupCi/Ci+1.
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3. Knot and link

A link or aknot in S3 is a smooth embedding of a disjoint family of circles (link) or a single circle
(knot), i.e. it is a collection of disjoint smooth simple closed curves, which is a 1-dimensional closed
submanifold ofS3.

DEFINITION 3.1. Two linksL1 andL2 are said to be equivalent if there is a homeomorphism
of S3 taking one to the other. Two linksL1 andL2 are said to be ambient isotopic if there exists a
continuous family of homeomorphismsφt of S3 beginning from the identityφ0 = id and ending with
a homeomorphismφ1 with L1 = φ1(L2). The ambient isotopy class of a link is called the link type.

A link (knot) is said to be trivial if it is equivalent to a circles (circle). The relation between
equivalence and ambient isotopy is the following. Given a choice of the orientation on the 3-sphereS3,
if the homeomorphism ofS3 that gives the equivalence betweenL1 andL2 is orientation preserving,
then there is a continuous family of homeomorphisms ofS3 beginning from the identity and ending
with a homeomorphism takingL1 to L2 which is an ambient isotopy. Thus, two linksL1 andL2 are
ambient isotopic if there exists an orientation preservinghomeomorphismsφ of S3 with L1 = φ(L2).

A knot is said to be tame if it is isotopic to a polygonal knot. Non-tame knot exist and are called
wild. The set of tame knot types is countable. A knot is calledsmooth if it is a smooth submanifold
of S3.

Let K be a tame knot type. One can projectK onto a plane in such a way that the image is a nodal
curve. By drawing the nodal points as crossings that remember the 3-dimensional positions of the
two crossing strands of the knot, one obtains a picture called aknot diagram Dof K. One can define
the link diagrams in the same way.

DEFINITION 3.2. The minimal crossing numberc(K) of a given knot typeK is the minimum
number of crossings among all the planar diagrams representing K.

DEFINITION 3.3. A knot invariant is a mathematical object associated with each knot, in such
a way that the object attributed to two ambient isotopic knots is the same (or isomorphic in the
appropriate category).

For example, the crossing number is a knot invariant. LetK be a knot type inS3. We can reflect
its image through a plane to get a knotKm called the mirror image ofK. If K ambient isotopic to its
mirror imageKm thenK is called achiral and if they are not ambient isotopic then the knot is called
chiral. For example, the Figure-8 knot is achiral.

DEFINITION 3.4. A knot diagramD is called alternating if, when we proceed along the nodal
curve, we pass alternately over, under, over and so on, at each crossing.

The usual planar diagram for the trefoil knot is alternating.
The following result is a well known and very useful characterization of ambient isotopy of knots

and links in terms of their planar diagrams.

PROPOSITION3.5. Two diagrams represent the same link or knot type if and only if we can get
one from the other by finite sequence of Reidemeister moves asin figure (1).

Let K be an embedded knot inS3. We define the knot complement as the complement of the knot
in S3 i.e. the topological spaceS3−K. Let K andK′ be two ambient isotopic knots inS3, and letφ :
S3−→S3 be an orientation preserving homeomorphism ofS3 with φ(K) = K′. The restrictionφ|(S3−
K) −→ (S3−K) is also a homeomorphism. Thus, two ambient isotopic knots have homeomorphic
knot complements.

A knot or a link called reducible (composite knot) if it can beexpressed as theconnected sumof
two non-trivial knots or links. Recall that, if we have two knotsK1 andK2, then the connected sum
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Move III Move a string completely over or under a crossing.

Move II: Move one loop completely over another.

Move I: Twist and untwist in either direction.

: 

FIGURE 1. Reidemeister move

of K1 andK2, denoted byK1#K2, is formed in the following way. Take a knot projection ofK1 and
K2, and put them next to each other. Select a smallarc on each of the two knotsK1 andK2. Delete
a segment of arc from each, and connect the endpoints by adding two new arcs each connecting an
endpoint on one of the two knots to an endpoint on the other. A knot is composite if it is a connected
sum of two non-trivial knots. The knotsK1 andK2 arefactor knotsof K1#K2. The decomposition of
knots intoprime factors is unique up to the order of each summand in the connected sum (like the
unique prime factorization of natural numbers). For example, the trefoil knot is a prime knot.

However, unlike the case of prime numbers, here there are twochoices of how to connect the
endpoints of the arcs in performing a connected sum. These yield the same result whenever one of
the knots is invertible.

THEOREM 3.6. The composition K1#K2 is unique if and only If one of the two knots K1 or K2 is
invertible (i.e. it can be deformed by an ambient isotopy into the same knot with the reverse orienta-
tion).

3.1. Universal Knot. In 1982 the concept ofuniversal linkfor 3-manifolds was introduced by
W.Thurston [60]. He gave an example of a six components universal link. A link (or a knot)UL is
said to be universal if every closed orientable 3-manifold can be realized as a branched covering of
S3 in such a way that the branched set isUL.
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Hilden, Lozano, and Montesinos constructed the first example of a universal knot in [34]. They also
gave a description of 2 and 4-components universal links. Their result is based on the use of the
following result.

THEOREM 3.7. [34] Let L be a link inS3 with n+ 1-components. Then there is a link L′ in S3

with 2n+4-components and a map p: S3−→ S3 such that

(1) p is a2n+5 to 1 branched covering map, branched along a knot k.
(2) p−1(k) = L′ and L⊂ L′

The first example of a universal knot first obtained by Hilden,Lonzano, and Montesinos is very
complicated, but simpler examples where constructed later. Not all knots are universal knots. For
example, the question of whether the Figure-8 knot is universal remained open for some time and was
eventually proved by Hilden, Lozano, and Montesinos in [33].

4. Topological Quantum Field Theory

A topological quantum field theory (or topological field theory or TQFT) is a quantum field
theory which computes topological invariants. In physics,topological quantum field theories are the
low energy effective theories of topologically ordered states, such as fractional quantum Hall states,
string-net condensed states, and other strongly correlated quantum liquid states. In 1988 [2] Atiyah
gave a description of topological QFT with axioms. The basicidea is that a TQFT is a functor from a
certain category of cobordisms to the category of vector spaces.

DEFINITION 4.1. [2] In dimensiond, TQFT is a monoidal functorZ : Cob(d + 1) −→ Vect,
whereCob(d + 1) is the category whose objects are closed, orientedd-manifoldsM without bound-
ary. The cobordism morphismW : M −→ M′ is a smooth, oriented, compactd + 1-dimensional
manifold with boundary∂W = M ⊔−M′. Two cobordismsW1 andW2 are equivalent if there is an
orientation-preserving diffeomorphismf : W1 −→W2. Vect is a symmetric monoidal category of
finite dimensional complex vector space where morphisms arelinear mapsL : V1 −→ V2 with dual
L∗ : V2−→V1.

This functor satisfies the following axioms [2]:

(1) For a cobordismW with boundary∂W = M1⊔−M2, thenZ(W) = Z(M1) −→ Z(M2) is a
homomorphism,i.e.a linear map of vector spaces.

(2) Z is involutory, that is,Z(−M)= Z(M)∗, where−M denotesM with the opposite orientation
andZ(M)∗ = Hom(Z(M),C) is the dual vector space.

(3) Z ismultiplicative, that is,Z(M1⊔M2) = Z(M1)⊗Z(M2).
(4) Z isAssociative: for composite cobordisms (gluing)W = W1∪M2 W2 with ∂W1 = M1⊔−M2

and∂W2 = M2⊔−M3 thenZ(W) = Z(W1)◦Z(W2) ∈ Hom(Z(M1),Z(M3)).
(5) Z( /0) = C.
(6) Z(M× I) is the identity endomorphism ofZ(M).

REMARKS 4.2. • The identity endomorphism ofZ(M) in (6) and the functoriality ofZ
imply homotopy invariance.
• LetW be a closed (d+1)-dimensional manifold (with empty boundary). Then by(5) the vec-

tor Z(W) is just a complex number. This means that a TQFT assigns a numerical invariant
to each closed (d+1)-manifolds.
• Let W = W1

⊔

M2
W2 as in(3) with M1 = M3 = /0. Then one can cutW along ad-manifold

M2 and one obtains
Z(W) = 〈Z(W1),Z(W2)〉

where〈·, ·〉 denotes the pairing of the vector spaceZ(M2) with its dualZ(M2)
∗ = Z(−M2).
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Here one can give a physical explanation of the meaning to these axioms. In dimension 3 we can
suppose thatM is a physical space with an imaginary timeM× I and a Hilbert spaceZ(M) of the
quantum theory associated to the HamiltonianH with evolution operatoreitH (wheret is the coordi-
nate on the intervalI ). In axiom (6) the HamiltonianH vanishes. Thus having a topological QFT
implies that there is no real dynamics taking place along thecylinderM× I . Notice that, for a man-
ifold W with ∂W = M̄1∪M2, there can still be an interesting propagation fromM1 to M2 and this
reflects the nontrivial topology ofW.

Topological quantum field theories had many important applications in modern geometry, among
these the work of Gromov [26] on pseudo-holomorphic curves in symplectic geometry. In TQFT (and
in particular for example in [26]) a vectorZ(W) in the Hilbert spaceZ(M) is called avacuum stateif
∂W = M and for a closed manifoldW the numberZ(W) is thevacuum-vacuumexpectation value. In
analogy with the statical mechanics it is also called the partition function.

5. 2-Category

In category theory, a 2-category is a small categoryC2 with “morphisms between morphisms”.
2-categories are the first case of higher order categories and they are constructed as follows:

• C2 is defined as a small category enriched overCat which is defined as a category of small
categories and functors. Here we mean by enriched category acategory whoseHom−Sets
are replaced by objects from some other category. More precisely, a 2-category consists of
the following data.
• A class of objects(A,B, ....) ∈Cat called 0-cells.
• For all 0-cellsA andB, we can define a setC2(A,B) which is defined as aHomC2(A,B) of

objects f : A−→ B which are called 1-cells.
• A morphismα : f1 −→ f2 for any two morphismsf1 and f2 of C2. These 2-morphisms are

called 2-cells.
• The 2-categorical compositions of 2-morphisms is denoted as • and is calledvertical com-

position.
• For all objectsA, B andC, there is a functor

◦ : C2(A,B)×C2(B,C)−→ C2(A,C)

called horizontal composition, which is associative and admits the identity 2-cellsIA as
identities.
• For any objectA there is a functor from the terminal category (with one object and one

arrow) toC2(A,A).

The notion of 2-category differs from the more general notion of a bicategory in that composition of
1-morphisms is required to be strictly associative, whereas in a bicategory it needs only be associative
up to a 2-isomorphism.

There are three different ways to obtain a category from a 2-category, all of which we use in
Chapter 1. They are summarized as follows.

• Forgetting 2-morphisms: one is left with the category consisting of the objects and 1-
morphisms of the 2-category.
• Forgetting objects: one obtains a category whose objects are the 1-morphisms ofthe 2-

category and whose morphisms are the 2-morphisms of the 2-category.
• Equivalence relation: one uses the 2-morphisms to define an equivalence relation on the set

of 1-morphisms and obtains in this way a category whose objects are the same as the objects
of the 2-category and whose morphisms are the equivalence classes of 1-morphisms of the
two category modulo the equivalence relation generated by the 2-morphisms.
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6. Group Rings

A group ring is a ringR[G] constructed from a ringR and a groupG. As anR-module, the ring
R[G] is the free module overRgenerated by the elements ofG, that is, the elements of the group ring
are finite linear combinations of elements ofG with coefficients inR,

R[G] = {∑
g∈G

αgg|αg ∈ R}

with all but finitely many of theαg being 0.
TheR-moduleR[G] is a ring with addition of formal linear combinations

( ∑
g∈G,ag∈R

agg)+ ( ∑
g∈G,bg∈R

bgg) = ∑
g∈G

(ag +bg)g (6.1)

and multiplication defined by the group operation inG extended by linearity and distributivity, and
the requirement that elements ofR commute with elements ofG,

( ∑
g∈G,ag∈R

agg)( ∑
h∈G,bh∈R

bhh) = ∑
g,h∈G

(agbh)gh. (6.2)

If R has a unit element, then this is the unique bilinear multiplication for which(1g)(1h) = (1gh).
In this case,G can be identified with the elements 1g of R[G]. The identity element ofG is the
multiplicative unit in the ringR[G]. If R is commutative, thenR[G] is an associative algebra overR.
If R= F is a field, thenF[G] is an algebra, called the group algebra.

We have the following equivalent descriptions of the group ring

DEFINITION 6.1. [51] Let G be a group andR a ring. Define the setR[G] to be one of the
following equivalent statements:

• The set of all formalR-linear combinations of elements ofG.
• The set of all functionsf : G−→ Rwith f (g) = 0 for all but finitely manyg∈G.
• The freeR-module with basisG.

The ring structure is given as above by (6.1) and (6.2).

If RandG are both commutative,i.e. Ris a commutative ring andG is an abelian group, thenR[G]
is commutative. IfH is a subgroup ofG, thenR[H] is a subring ofR[G]. Similarly, if S is a subring of
R, thenS[G] is a subring ofR[G].

6.1. Group algebra over a finite group. [51]
We recall briefly the example of group algebras for finite groups. These occur naturally in the

theory of group representations of finite groups. As we have seen above, whenR is a fieldF the group
algebraF[G] is a vector space overF, with a canonical basiseg given by the elementsg∈G and with
elements given by formal sums

v = ∑
g∈G

xgeg

As we saw in general for group rings, the algebra structure isdefined by the multiplication in the
group,

eg.eh = egh

Thinking of the free vector space asF-valued functions onG, the algebra multiplication can be written
equivalently as convolution of functions.

The group algebra is an algebra over itself; under the correspondence of representations overR
andR[G] modules, it is the regular representation of the group. Written as a representation, it is the
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representationg 7→ ρg with the action given byρ(g).eh = egh, or

ρ(g).r = ∑
h∈G

khρ(g).eh = ∑
h∈G

kh.egh

For a finite group, the dimension of the vector spaceF[G] is equal to the number of elements in
the group. The fieldF is commonly taken to be the complex numbersC or the realsR. The group
algebraC[G] of a finite group over the complex numbers is a semisimple ring. This result, Maschke’s
theorem, allows us to understandC[G] as a finite product of matrix rings with entries inC.

6.2. Groupoids, semigroups, semigroupoids and their rings. In the first chapter of our work
we introduced algebras that are generalizations of group rings. They are generalizations in two differ-
ent senses. First of all one can pass from groups to groupoidsand define the groupoid ringR[G ]. In
a different direction one has generalizations where one replaces the group by a semigroup and have
the corresponding semigroup ringR[S]. In our case, we work with a generalization of both of these
concepts which is a semigroupoidS and the corresponding ringR[S ]. We recall here these different
notions and stress the way in which they differ from one another and from the original notion of group
ring recalled above.

6.3. Groupoid Ring. A groupoidG is a small category in which each morphism is an isomor-
phism. ThusG has a set of morphisms, which we call elements ofG, a setY of objects together
with range (target) and source functionsr,s : G −→ Y such that, forg1,g2 ∈ G with r(g1) = s(g2),
then the product or compositeg2g1 = g2 ◦g1 exists, withs(g2g1) = s(g1) andr(g2g1) = r(g2). The
composition is associative. Forγ : Y −→ G and for an elementx ∈ Y the elementγ(x) is denoted
by 1x and it acts as the identity, and each elementg has an inverseg−1 such thats(g−1) = r(g) and
r(g−1) = s(g), with g−1g = γ(s(g)) andgg−1 = γ(r(g)).

In a groupoidG, for y1,y2 we define the setG(y1,y2) of all morphisms with initial pointy1 and
final pointy2. We say thatG is transitive if, for ally1,y2 ∈Y the setG(y1,y2) is non-empty. Fory∈Y
we denote the set{g∈G : s(g) = y} by Gy. Let G be a groupoid. The transitive component ofx∈Y,
denoted byC(G)y, is the full subgroupoid ofG on those objectsx∈Y such thatG(y,x) is non-empty.

DEFINITION 6.2. LetG be a groupoid andR a ring or a field. The groupoid ring (or groupoid
algebra in the field case)R[G] consists of all finite formal sums of the form∑n

i r igi wherer i ∈ R and
gi ∈G, which satisfy the following conditions.

(1) If ∑n
i=1 r igi = ∑n

i=1 sigi thenr i = si , for i = 1,2, ...,n.

(2) (∑n
i=1 r igi)+ (∑n

i=1 sigi) = ∑n
i=1(r i +si)gi .

(3) (∑n
i=1 r igi)(∑n

i=1sigi) = (∑n
i=1kiti) whereki = ∑n

i, j r isj andti = gig j .

(4) r igi = gir i for all r i ∈ Randgi ∈G.

(5) r ∑n
i=1 r igi = ∑n

i=1 rr igi , for r, r i ∈ R.

Notice that since 1∈ R andgi ∈ G, we haveG = 1.G ⊂ R[G] andR⊂ G if and only if G has
identity, otherwiseR* G.

6.4. Semigroup Ring.We now similarly recall the notion of semigroup ring, which is another
generalization of the concept of group ring recalled in §6 above.

The construction of the semigroup ring is not far from what wesaid before for the group ring. We
try to illustrate the concept of semigroup from another perspective. LetS be a semigroup and letR
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be a commutative ring. We define the semigroup ringR[S ] to be the set of functionsf : S −→ R that
send all but finitely elements ofS to zero,

f (s) = ∑
m∈S

amδm(s),

wheream ∈ R and δm(s) = δm,s is the Kronecker delta function, and all but finitely many of the
coefficients aream = 0. Clearly the set of such functions has the structure of anR-module if is a ring,
or a vector space ifR is a field. From the product in the semigroupS we can also define a product on
the semigroup ringR[S ] as follows. Let(x,y) be a pair of elements ofS with xy= s∈ S then we set

( f ∗g)(s) = ∑
xy=s

f (x)g(y). (6.3)

This is analogous to the way one defines the product in the group ring. In fact, it takes the product
of all non-zero components off andg and collects the resulting terms whose indices multiply to the
same element of the semigroup. With this additive and multiplicative structure, one can check that,
as in the case of groups, the setR[S ] is in fact a ring (or an algebra ifR is a field).

In this text we have assumed the convention that semigroups have a unit. However, the definition
above makes sense also for the case where one does not requireS to have a unit. In some text the
semigroup ring of a semigroup with unit is called amonoid ring. It is then a unital ring with a unit
given by the identity (unit) of the semigroup. IfS is a group we recover the same definition ofgroup
ring discussed in §6 above. If in any of these cases we start with a commutative semigroup we get a
commutative ring.

Notice that ifS is a group, for the group ringR[S ], sincexy= s only if y = x−1s, we can rewrite
the product formula (6.3) in the equivalent form

( f ∗g)(s) = ∑
x∈S

f (x)g(x−1s).

This way of multiplying two functions on a group is calledconvolutionproduct.
The notion of semigroupoid and semigroupoid ring is described in detail in Chapter 1. It is similar

to the groupoid case, in as the compositions are only defined when the range of the first element agrees
with the source of the second, and it is also similar to the semigroup case, in the sense that not all
elements have an inverse. The notion of semigroupoid ring oralgebra that we consider there is still a
natural generalization of the notion of groupoid ring, as the ones we recalled in this appendix.

7. Creation and annihilation operators

The unitariesUk : f 7→ (Uk f )(n) = f (n+k), for k∈ Z, acting onℓ2(Z), induce isometries

(Sn f )(k) =

{

f (k+n) k+n≥ 0

0 k+n < 0,
(7.1)

acting on the Hilbert spaceℓ2(N∪{0}) = ℓ2(Z/V) with V = {±1}.

LEMMA 7.1. The operators Sn of (7.1), for n∈ Z, satisfy the relations S∗n = S−n and

S∗nSn = Pn and SnS∗n = P−n (7.2)

with Pn the projection Pn f (k) = f (k)χ[n,∞)(k), which is the identity for n< 0. The operators Sn also
satisfy the relations

SnSm = P−nSn+m. (7.3)
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PROOF. First notice that theSk satisfy

(S∗n f )(k) =

{

f (k−n) k−n≥ 0

0 k−n < 0.
(7.4)

In fact, we have

〈Sn f ,ψ〉= ∑
k∈N∪{0}

f (k+n)χ[0,∞)(k+n)ψ(k)

= ∑
u∈Z

f (u)χ[0,∞)(u)χ[0,∞)(u−n)ψ(u−n) = ∑
u∈N∪{0}

f (u)χ[0,∞)(u−n)ψ(u−n).

Thus, we haveS∗n = S−n. we then have

S∗nSn f (u) = χ[n,∞)(k) f (k) = Pn f (k)

and
SnS∗n f (k) = χ[−n,∞)(k) f (k) = P−n f (k).

This is in fact a particular case of the following relations.The relationUnUm = Un+m satisfied by the
unitaries acting onℓ2(Z) descends to the relation (7.3) between the isometriesSn acting onℓ2(N∪
{0}). In fact, we have

SnPm f (k) = χ[−n,∞)(k)χ[m−n,∞)(k) f (k+n) = Pm−nSn f (k)

where

PmSn f (k) = χ[−n,∞)(k)χ[m,∞)(k) f (k+n).

Thus, we see thatSnSm = P−nSn+m, since

(SnSm f )(k) = χ[−n,∞)(k)χ[−(n+m),∞)(k) f (k+m+n) = (P−nSn+m f )(u).

�

Thus, we see that, even in the case of a commutative group likeZ, where the algebra of theUm is
commutative, we obtain a noncommutative algebra of isometriesSm,

SmSn = P−mSn+m 6= P−nSn+m = SnSm.

Notice however that, ifn andm are both positive, thenP−m = 1 = P−n so thatSnSm = SmSn = Sn+m.
Notice also that the fact that the algebra generated by the isometriesSn is associative follows from the
fact that the projectionsPn commute among themselves, as they are given by multiplication operators
by the characteristic functionsχ[n,∞). In fact, we have

Sn(SmSk) = SnP−mSm+k = P−m−nSnSm+k = P−m−nP−nSn+m+k

(SnSm)Sk = P−nSn+mSk = P−nP−(n+m)Sn+m+k,

with P−(n+m)P−n = P−nP−(n+m). Forn> 0, we also haveSn
−1 = P1S−2Sn−1

−1 = P1 · · ·Pn−1S−n = Pn−1S−n =

S−n, sincePn−1S−n f (k)= χ[n−1,∞)(k)χ[n,∞)(k) f (k−n)= χ[n,∞)(k) f (k−n). Similarly,Sn
1 = P−1S2Sn−1

1 =
P−1 · · ·P−n+1Sn = Sn sinceP−n+k = 1, for k = 0, . . . ,n−1.

Clearly, the algebra of theSn we described here is generated by a single isometryS−1, which is
the isometry that describes the “phase” part of the creationoperator in quantum mechanics, see [22].
In fact, recall that the creation and annihilation operators a† anda, with a∗ = a†, act onℓ2(N∪{0})
by

a†en =
√

n+1en+1 and aen =
√

nen−1, (7.5)
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with the commutation relation[a†,a] = 1. It is well known that, while the operatorsa† anda do not
have a polar decomposition in terms of a unitary and a self-adjoint operator, they have a decomposi-
tion in terms of an isometry and a self-adjoint operator in the form

a† = N1/2S−1 and a = S1N1/2, (7.6)

whereN en = nen is the grading operator onℓ2(N∪{0}) andS1 andS−1 are the isometries described
above,S1en = en−1 and S−1en = en+1. Notice that the grading operatorN acting onℓ2(N∪ {0})
defines a 1+-summable self-adjoint operator with compact resolvent and with the property that the
commutators with the operatorsSn are bounded. Namely, one has the commutation relation

[N,Sn] =−nSn. (7.7)

The Hamiltonian associated to the creation and annihilation operators is of the form (see [22])

H = a†a, with Spec(H) = N∪{0}. (7.8)

The corresponding partition function at inverse temperature β > 0 is of the form

Z(β) = Tr(e−βH) = ∑
n≥0

exp(−βn) = (1−exp(−β))−1. (7.9)

8. A quick introduction to Dirac operators

8.1. Clifford Algebra. Let V ≃ Rn be a vector space with non degenerate symmetric bilinear
form g. Over a field of characteristic different than 2, such a bilinear form can always be determined
by the correspondingquadric form qdefined asq(v) = g(v,v), by setting 2g(u,v) = q(u,v)−q(u)−
q(v).

DEFINITION 8.1. The Clifford AlgebraCL(V,g) is an algebra overR generated by the vectors
v∈V, subject to the relationuv+vu= 2g(u,v) for all u,v∈V.

8.1.1. concepts in Riemannian geometry.Let M be a compact smoothn-dimensional manifold
without boundary. Define a Riemannian metric onM to be a symmetric bilinear form

g : F(M)×F(M)−→C(M),

whereF(M)= Γ(M,TCM) is the space of continuous vector fields onM, andC(M) is the commutative
C∗-algebra of continuous functions onM. Theng satisfies the following properties.

(1) g(X,Y) is a real function ifX,Y are real vector fields.
(2) g is C(M)-bilinear i.e. g( f X,Y) = g(X, fY) = f g(X,Y) for all f ∈C(M). In this condition

g is given by a continuous family of symmetric bilinear mapgx : TxM×TxM −→ R , where
gx is positive definite.

(3) g(X,X)≥ 0 for X real, withg(X,X) = 0 only if X = 0 in F(M).

8.1.2. Dirac Operator. Let (M,g) be a smooth compact Riemannianm-manifold without bound-
ary with a Clifford algebra bundleCL(M). A Clifford module is a module overCL(M). Any Clifford
moduleΛ that is finitely generated and projective is of the formΛ = Γ(M,E) for E−→M a complex
vector bundle. ForE −→M a smooth complex vector bundle of Clifford modulesΛ = Γ(M,E), we
can define the Clifford multiplication which is a bundle mapc :CL(M)−→Hom(E,E) which is given
fiberwise by mapsc : CL(TxM,gx)−→ HomC(Ex,Ex).

Any choice of a smooth connection

∇ : C∞(M,E)−→C∞(M,T∗M⊗E)

defines an operator ofDirac typeby settingD = c◦∇. We use here the identification of tangent and
cotangent bundleTM∼= T∗M induced by the Riemannian metric.
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Consider a small open chart domainU ⊂M, where the cotangent bundle is trivial,i.e. T∗M |U≃
U ×Rn. For any local coordinate(x1,x2, ...,xn) over a chart domainU , the local coordinate of the
cotangent bundleT∗M |U are(x,ξ) = (x1,x2, ...,xn,ξ1,ξ2, ...,ξn) whereξ ∈ T∗x M. A differential oper-
ator acting on smooth local sectionsf ∈ Γ(U,E) is an operatorP of the form

P = ∑
|α|≤d

aα(x)Dα

with aα ∈ Γ(U,EndE), and whereDα = Dα1
1 .Dα2

2 .Dα3
3 ...Dαn

n . andD j =−i ∂
∂xj

, with a positive integer
d representing the order ofP. Let E −→M be a vector bundle of rankr. By Fourier transform, we
can write for f ∈C∞(U,Rn):

P f(x) = (2π)n
∫

Rn
expixξ p(x,ξ) f̂ (ξ)dnξ

= (2π)n
∫ ∫

R2n
expi(x−y)ξ p(x,ξ) f (ξ)dnydnξ, (8.1)

wherep(x,ξ) is a polynomial of orderd in theξ-variable, called thecomplete symbolof the operator
P. Then we can isolate the homogeneous part

p(x,ξ) =
d

∑
j=0

pd− j(x,ξ)

wherepd− j(x, tξ) = td− j pd− j(x,ξ) for t > 0.

DEFINITION 8.2. An elementp is called aclassical symbolif we can find a sequence of terms
pd(x,ξ), pd−1(x,ξ), .... with

p(x,ξ) ∼
∞

∑
j>0

pd− j(x,ξ)

such thatpd− j(x, tξ) = td− j pd− j(x,ξ) for t > 0.

DEFINITION 8.3. A classicalpseudo-differential operatorof orderd over the chart domainU ⊂
Rn is an operatorP defined by 8.1, for whichp(x,ξ) is a classical symbol, whose leading term
pd(x,ξ) does not vanish. This leading term is called theprincipal symbolof P, and we also denote it
by σ(P)(x,ξ) = pd(x,ξ).

For an operator of Dirac type, which is a first-order differential operator onΓ(M,E), we get
σ(D ) ∈ Γ(T∗M,π∗(EndE)) and for the property ofp(x,ξ) = c(dxj )(ξ j − iω j(x)) we get

σ(D )(x,ξ) = c(ξ jdxj) = c(ξ)

and
σ(D 2)(x,ξ) = (σ(D )(x,ξ))2 = (c(ξ))2 = g(ξ,ξ)

Notice thatσ(D 2) only vanishes whenξ = 0, that is, on the zero section ofT∗M.

DEFINITION 8.4. LetPa classical pseudo-differential operator, thenP is calledelliptic if σ(P)(x,ξ)
is invertible whenξ 6= 0.

An operatorsD of Dirac type is elliptic and so is its squareD 2. On a compact manifold without
boundary this implies that it is Fredholm (has finite dimensional kernel and cokernel), hence its index
Ind(D ) = dimKer(D )−dimCoker(D ) is well defined. The Atiyah-Singer index theorem gives a lo-
cal formula, in terms of integration of a differential form,for the index. On a manifold with boundary,
the Fredholm property depends on the choice of boundary conditions. With the Atiyah-Patodi-Singer
boundary conditions one still has a Fredholm operator and anindex formula, now with an additional
term that is an eta invariant for the operator restricted to the boundary manifold.
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9. Concepts of Cyclic Cohomology

Cyclic cohomology of non-commutative algebras is playing in non-commutative geometry a sim-
ilar role to that of de Rham cohomology in differential topology [14]. The first appearance of the
Cyclic cohomology was in the cohomology theory for algebras. The cyclic cohomologyHC∗(A ) of
an algebraA over R or C is the cochain complex{C∗λ(A ),b}, whereC∗λ(A ),n≥ 0 consists of the
(n+1)-linear formsϑ onA satisfying the cyclicity condition[19]

ϑ(a0,a1, ...an) = (−1)nϑ(a1,a2, ...,a0) (9.1)

wherea0,a1, ...,an ∈ A and the coboundary operator is given by

(bϑ)(a0,a1, ...,an) =
n

∑
j=0

(−1) j(a0, ...,a j a j+1, ...,an+1)+ (−1)n+1ϑ(an+1a0, ...,an)

C∗λ(A ) then consists of all continuous(n+ 1)-linear forms onA satisfying 9.1. Cyclic cohomology
provides numerical invariants of K-theory classes as follows. For an even integern, given ann-
dimensional cyclic cocycleϑ onA , then the scalar

ϑ⊗Tr(E,E, ...,E) (9.2)

is invariant [19] under homotopy, for an idempotent

E2 = E ∈MN(A ) = A ⊗MN(C)

This gives the pairing〈[ϑ], [E]〉 between cyclic homology and K-theory. For a manifoldM let A =
C∞(M) with

ϑ( f 0, f 1, ..., f n) = 〈Ω, f 0d f1∧d f2∧ ...∧d fn〉
where f 1, f 2, ..., f n ∈ A andΩ is a closedn-dimensional de Rham form onM. Then the invariant 9.2
up to normalization is equal to〈Ω,ch∗(τ)〉 wherech∗(τ) denotes the Chern character of the rankN
vector bundleτ on M whose fiber atx∈M is the range ofE(x) ∈MN(C). To any algebraA one can
associate a moduleA ♮ over the cyclic category by assigning to each integern≥ 0 the vector space
Cn(A ) of (n+ 1)-linear formsϑ(a0,a1, ...,an) on A and to the generating morphisms the operators
δi : Cn−1−→Cn andσi : Cn+1−→Cn defined above. One thus [19], obtains the desired interpretation
of the cyclic cohomology group ofK -algebraA over a ground ringK in terms of derived functors
over the cyclic category

HCn(A )≃ ExtnΛ(K ♮,A ♮)

and
HCn(A )≃ TorΛn (A ♮,K ♮)
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