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1. INTRODUCTION 1

1. Introduction

In this thesis we construct an additive category whose thje embedded graphs (or in par-
ticular knots) in the 3-sphere and where morphisms are folimear combinations of 3-manifolds.
Our definition of correspondences relies on the Alexandandited covering theoreni][ which
shows that all compact oriented 3-manifolds can be realiedranched coverings of the 3-sphere,
with branched locus an embedded (not necessarily connegtaph. The way in which a given 3-
manifold is realized as a branched cover is highly not uniduis precisely this lack of uniqueness
that makes it possible to regard 3-manifolds as correspmede In fact, we show that, by con-
sidering a 3-manifoldV realized in two different ways as a covering of the 3-spharéefining a
correspondence between the branch loci of the two coveraggspwe obtain a well defined associa-
tive composition of correspondences given by the fiberedymb
An equivalence relation between correspondences givendigndnsional cobordisms is introduced
to conveniently reduce the size of the spaces of morphisnescistruct a 2-category where mor-
phisms are coverings as above and 2-morphisms are cobardisbmanched coverings. We discuss
how to pass from embedded graphs to embedded links usingldi®n ofb-homotopy on branched
coverings, which is a special case of the cobordism relation
We associate to the set of correspondences with compositgamvolution algebra and we describe
natural time evolutions induced by the multiplicity of th@vering maps. We prove that, when consid-
ering correspondences modulo the equivalence relatioalmirdism, this time evolution is generated
by a Hamiltonian with discrete spectrum and finite multipyiof the eigenvalues.

Similarly, in the case of the 2-category, we construct aeladg of functions of cobordisms, with
two product structures corresponding to the vertical angzbntal composition of 2-morphisms.
We consider a time evolution on this algebra, which is corbfetvith the vertical composition of
2-morphism given by gluing of cobordisms, that correspotadthe Euclidean version of Hartle—
Hawking gravity. This has the effect of weighting each caliem according to the corresponding
Einstein—Hilbert action.

We also show that evolutions compatible with the verticahposition of 2-morphisms can be ob-
tained from the linearized version of the gluing formulae gauge theoretic moduli spaces on 4-
manifolds. The linearization is given by an index theorerd #ris suggests that time evolutions
compatible with both the vertical and horizontal compositi may be found by considering an index
pairing for the bivariant Chern character on KK-theory sksassociated to the geometric correspon-
dences. We outline the argument for such a constructionc@tegory constructed using 3-manifolds
as morphisms is motivated by the problem of developing abl@tnotion ospectral correspondences
in noncommutative geometry, outlined in the last chaptahefbook [L7]. The spectral correspon-
dences described il 7] will be the product of a finite noncommutative geometry bynaahifold
part”.

The latter is a smooth compact oriented 3-manifold that @aseen as a correspondence in the sense
described in the present paper. We discuss the problem exfidirlg the construction presented here
to the case of products of manifolds by finite noncommutagiwaces in the last section of the first
chapter.

Chapter two begins with a discussion of how to pass from tlse eghere the branch loci of
the coverings are embedded multi-connected graph to meaadrase where these loci are links
and knots. This is achieved using the “Alexander trick” amel ¢quivalence relation d¢homotopy
of branched covering. Passing to knots and links allows uma&e use in our context of some
invariants and known constructions for knots and links awestigate analogs for embedded graphs.
An interesting homology theory for knots and links that wegider here is the one introduced by
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Khovanov in B3]. We recall the basic definition and properties of Khovanawnblogy and we
give some explicit examples of how it is computed for very@encases such as tiopf link. We
also recall, at the beginning of Chapter 2, the construabiotine cobordism group for links and for
knots and their relation. We then consider the question ostracting a similar cobordism group
for embedded graphs in the 3-sphere. We show that this caallycbe done in two different ways,
both of which reduce to the same notion for links. The first onemes from the description of
the cobordisms for links in terms of sequences of two basiratjpns, called “fusion” and “fission”,
which in terms of cobordisms correspond to the basic cobordliobtained by attaching or removing a
1-handle. We define analogous operations of fusion andtissiembedded graphs and we introduce
an equivalence relation of cobordism by iterated appbeatf these two operations. The second
possible definition of cobordism of embedded graphs is thetbat we already used in Chapter 1
in section 7 as part of the definition of cobordisms of bradot@verings, as the induced cobordism
of the branched loci in the 3-sphere realized by an embeddddce (meaning here 2-complex)
in S* x [0,1] with boundary the union of the given graphs. While for linkg)ere cobordisms are
realized by smooth surfaces, these can always be decomimeedsequence of handle attachments,
hence into a sequence of fusions and fissions, in the casefignot all cobordisms realized by 2-
complexes can be decomposed as fusions and fissions, hertemthotions are no longer equivalent.
We then return to homology again and discuss the questiorteh@ing Khovanov homology from
links to embedded graphs. We propose two possible appredohthis purpose and we explain
completely only one of them, while only sketching the oth&he first idea is to try and combine
the Khovanov complex, which is based on resolving in diffiérgays crossings in a planar diagram,
with the complex for thegraph homologywhich is not sensitive to the graph being embedded, but
it has a good control over the combinatorial complexity ofexland vertices. We only sketch in
one very simple example how one can try to combine these tifereitials. We then take on a
different approach. This is based on a result of Kauffmam ¢bastructs a topological invariant of
embedded graphs in the 3-sphere by associating to suchlagfamily of links and knots obtained
using some local replacements at each vertex in the grapbhéleed that it is a topological invariant
by showing that the resulting knot and link types in the fantilus constructed are invariant under
a set of Reidemeister moves for embedded graphs that degetime ambient isotopy class of the
embedded graphs. We build on this idea and simply define tlwa¢iov homology of an embedded
graph to be the sum of the Khovanov homologies of all the larkd knots in the Kauffman invariant
associated to this graph. Since this family of links and &nsta topologically invariant, so is the
Khovanov homology of embedded graphs defined in this maierclose Chapter two by giving an
example of computation of Khovanov homology for an embedgtagh using this definition.

The appendix collects some known preliminary notions ardkdpapund material that is needed
elsewhere in the text.



Graphs Category and Three-manifolds as correspondences

1. Three-manifolds as correspondences

For the moment, we only work in the PL (piecewise linear) gatg, with proper PL maps. This
iS no serious restriction as, in the case of 3-dimensiondl4dimensional manifolds, there is no
obstruction in passing from the PL to the smooth categoryei\e refer to embedded graphsSth
we mean PL embeddings of 1-complexe$twith no order zero or order one vertices.

Let M3 and N3 be smooth compact oriented 3-manifolds without boundarybr@nched covering
p: M3 — N3 is a continuous surjective map with the property that theistea 1-dimensional sub-
complexE in N3 such that on the complement Bfthe map

p:M3pYE) - N3\E (1.1)

is an actual (smooth) covering space. The manifaftis called the covering manifoldy® the base,
andE is called the branching set or branch locus.

1.1. 3-manifolds and branched covers\We begin by recalling the following well known results
that will be useful in the rest of our work (se&]).

THEOREM 1.1. (Alexander branched covering theorem): Suppbbkgis a compact oriented 3-
dimensional manifold without boundary. Then there existsaached covering pM23 — S* with
branch locus an embedded (not necessarily connected) graph

In particular, this includes the special cases where thechrboci areknotsor links.

In the case where the branch locus is a graph we in generalasslyme that the multiplicities,
i.e. the number of points in the fibgr(x), is constant along 1-simplices (edges) of the graph, with
compatibilities at the vertices, meaning that if two edgesnde, of a graphG meet at a vertex
v andmy andn, are the multiplicities of the covering over these vertidbgn the multiplicitym
over the vertex divides bothmy, that is, multiplicities of adjacent edges have a commoisdiv
However, to simplify some of the arguments that follow, wdl witen make a stronger assumption
on the coverings, which is to require that the multipligtere constant on connected components of
the graph.

Notice that Theorem 1.1 does not impose any condition ontither @f the covering. In fact, it is
known (see$4]) that one can strengthen the Alexander branched covenggrém to the following
form.

THEOREM1.2. (Hilden-Montesinos Theorem): For any compact orientedaBifiold M 3 without
boundary, there exists a 3-fold covering |2 — S2 of the 3-sphere branched along a knot K.

DEFINITION 1.3. In the above, lah be the order of the the covering map (1.1) that s, ¥x) =
mfor x € N3~ E. Suppose that the branch locus is an embedded graph of cemig&n= G, U--- U
G and assume for simplicity thatp#!(x) = n; for all x € G; C E, with G;N G; =0, fori # j and
1<n < m. We denote the integers the multiplicities of the components of the branch set. The

3



4 1. GRAPHS CATEGORY AND THREE-MANIFOLDS AS CORRESPONDENSE
branching indices of the componei@sare positive integerts;; for j = 1...n; satisfying
N
z bij =m 1.2
j=1

In other words, the integds; counts how many components of the covering (1.1) come tegeth
at a point inp~(G;).

The data listed in Definition 1.3 above are not completelytiaty. In fact, it is well known 4]
that a branched covering: M — S® is uniquely determined by the restriction to the complenuént
the branch locus c S*, which is a covering space of order

p:M~p}E)—S\E. (1.3)

This gives an equivalent description of branched coveringerms of representations of the funda-
mental group of the complement of the branch lo@8.[We recall it here below as it will be useful
in the following.

LEMMA 1.4. Assigning a branched cover:pM — S® of order m branched along a graph E is
the same as assigning a representation

o : T (S]\E)— Sn, (1.4)
where &, denotes the group of permutations of m elements.

ProOEF It suffices in fact to specify the representation up inng¢omuorphisms of the grouf.
Thus, we do not have to worry about the choice of a base pairthéofundamental group. By the
observation above (se24]), for a codimension two branch locus, there israqueway of extending
a covering (1.3) to a branched coyerM — S2, so that the remaining data (multiplicities and branch
indices over the points of the branch locus) are uniquelgrdghed by assigning the datum (1.3)]

EXAMPLE 1.5. (Cyclic branched coverings)Ve represen®® asR3U {o}. Letl be a straight line
chosen iR3. Consider the quotient map: R3 — R3/(Z/nZ) that identifies the points @3 obtained
from each other by a rotation by an angle%éfabout the axi$. Upon identifyingR® ~ R3/(Z/nZ),
this extends to a map: S* — S°® which is ann-fold covering branched along the unknat {»} and
with multiplicity one over the branch locus.

These cyclic branched coverings are useful to construetr ottore complicated branched cover-
ings by performing surgeries along framed links (s&8)[

1.2. Correspondences and morphismsThe main idea we present in this section is to define
morphismsp: G — G’ between graphs as formal finite linear combinations

=5 aM; (1.5)
|
with g € Q andM; compact oriented smooth 3-manifolds with submersions
M —S°
and
T[i' M — §
that are branched covers, respectively branched abagdG'. We use the notation
Gestlem o6 (1.6)

for a 3-manifold that is realized in two ways as a coveringbfbranched along the graghor G'.
This definition makes sense, since the way in which a givera8Hold M is realized as a branched
cover ofS® branched along a knot is not unique.
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ExampLE 1.6. (Poincaie homology sphere).et P denote the Poncaré homology sphere. This
smooth compact oriented 3-manifold is a 5-fold coveSdbranched along theefoil knot (that is,
the (2,3) torus knot), or a 3-fold cover d8® branched along thé2,5) torus knot, or also a 2-fold
cover ofS® branched along the8, 5) torus knot. For details se&4], [44).

We can extend the definition above to the case where the nidgNb are smooth and compact
(without boundary) but not necessarily connected. In tlise¢c ifM = M1U---UMyp, with M;
connected we identify the morphism

o=> M;
|

with the morphism defined byl. This corresponds to introducing a first simple equivalenetation
on morphisms.

DEFINITION 1.7. LetM be a disjoint union of two smooth compact connected 3-métsfavith-
out boundaryM =M UM, with compatible covering maps = (Tig 1, Tig2) andTiy = (Tl 1, T 2)-
Then we set

O = Pvy + Qv (1.7)
where we letpy : G — G’ denote the morphism defined by a maniftddas in (1.6).

1.3. The set of geometric correspondencedVe define the set of geometric correspondences
Hom(G, G’) between two embedded grapBsandG’ in the following way.

DEFINITION 1.8. Given two embedded grapsandG' in S°, let Hom(G,G') denote the set
of 3-manifoldsM that can be represented as branched covers as in (1.6) e g@ph<£ andE/,
respectively containin@ andG’ as subgraphs. We also assume that, foBahe setHom(G, G) also
contains the spher® as trivial (unbranched) covering.

We explain in 82 below why here we need to allow for larger bsap andE’ instead of just
assuming the branch loci to be the giveandG' as we suggested earlier in (1.5). We explain in §2.3
below why we include the unbranched coveringdiom(G, G).

To avoid logical complications in dealing with the “set” of 8-manifolds, we describe the
Hom(G,G') in terms of the following set of representation theoretitadés we have seen in Lemma
1.4 above (see2H]), a branched covering: M — S®is uniquely determined by the restriction to the
complement of the branch locsc S°. This gives an equivalent description of branched covering
in terms of representations of the fundamental group of timeptement of the branch locugq]. The
representation is determined up to inner automorphisms;ehthere is no dependence on the choice
of a base point for the fundamental group in (1.3).

Thus, in terms of these representations, the spaces of morpHom(G, G') are identified with
the set of data

Ree C U  Hom(my(S*\E),S) x Hom(my(S*\ E),Sw), (1.8)
nmGCE,G' CE’

where theE,E’ are embedded graphs,m € N, and where the subs&is ¢ is determined by the
condition that the pair of representatiofts , 0») define the same 3-manifold.

1.4. Covering moves and correspondencedo get some more feeling for the type of corre-
spondences we are dealing with, we recall here a result oeriogvmoves which, from our point
of view, describes when a given 3-manifditi is a correspondence between two graghandG'.
Suppose given a compact oriented smooth 3-manNbland a mapy realizing this 3-manifold as a
covering ofS® branched along a link (or a knot) By the stronger form of the Hilden-Montesinos
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theorem, we can assume that it is a 3-fold cover. It is knove fluch a covering can be repre-
sented by a colored link (see for instané?]). Notice that the same manifold has many different
representations as a colored link, as the following statenliastrates.

THEOREM1.9. (Equivalence Theorem52]) Two colored link diagrams represent the same man-
ifold if and only if they can be related (up to colored Reid&tee moves) by a finite sequence of moves
of the four types described [52].

In this theorem we see that the manifold is a covering, brati@ver another link, obtained by
simple moves called colored moves applied to the first linkus, one can see that it is quite easy to
provide examples of different links that realize the sanmeaifold as branched cover 8%, with the
given link as branch locus. As a consequence of this resutibtain the following statement.

LEMMA 1.10. Let M be a compact 3-manifold that is realized as a branched coves®p
branched along a knot K. Then the manifditl belongs to HortK,K’), for all knots K that are
obtained from K by the covering moveq 52].

2. Composition of correspondences

We now explain why in Definition 1.8 we need to assume that tivering maps are branched on
graphs containing the given grapBsandG'. This has to do with having a well defined composition
of morphisms.

In fact, if we only require the branch loci to be exac®yandG’, our preliminary definition of
morphisms as elements of the form (1.5) runs immediatety anproblem with the composition law.
In fact, it is natural to define the composition of geometiecrespondences of the form (1.5) to be
given by the fibered product, as ihq].

DEFINITION 2.1. Suppose given

GeFIE M P56 and G PN $oa 2.1)
One defines the compositidvi o M as
MoM:=M xg M, (2.2)
where the fibered produtt xg M is defined as
M xo M :={(x,X) € M x M|Tiz(X) = Ti' (X) }. (2.3)

The compositiortM o M defined in this way satisfies the following property.

PrROPOSITION2.2. Assume that the maps (#.1) have the following multiplicities. The mamg
is of order m for xc S®\. G and of order n for xc G; the mapr is of order mfor x € S*~. G’ and
n for x € G'; the mapiiy is of orderi for x € S*\. G’ and of orderi{ for x € G'; the mapiig is of
order M’ for x € S*\. G” and ¥’ for x € G”. For simplicity assume that

GNT(M5H(G)) =0 and G N (fgH(G)) =0. (2.4)

Then the fibered produdﬁl =M xg M is a smooth 3-manifold with submersions

Ec e m ™ 35 (2.5)

where
E = GUT(TGH(G)) (2.6)
E' = G' UT(figh(@)) 2.7)
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The fibers of the mafiz have cardinality
mit x€ P\ (GUTG(TGHG))
') =

#Tg mn xe G (2.8)
miY X € T (T5H(G)
Similarly, the fibers of the mafi=» have cardinality

m'm x e S\ (T (TGHG)) UG)
Yx) = {

Hi M X € Tig (T H(G)) (2.9)
N xe G’

PrROOFE Consider the diagram

|\7| =M Xa! |\7|
/ R
M M
G e
T ﬁG’

Gc$S Gcs G'cs?

The fibered produdf/l is by definition a subset of the produdt x M defined as the preimagf& =
(e x Tie) " L(A(S?)), whereA(S®) is the diagonal embedding 8f in S® x S°. This defines a smooth
3-dimensional submanifold dfl x M. In generall\?l needs not be connected. The restriction to
M C M x M of the projection®; : M x M — M andP, : M x M — M defines projections

MM 2N, (2.10)

We first show that these maps are branched covers, respgdiramched alongrg,l(G’) C M and
figt(G') € M. For a pointx € M the preimagé®; *(x) C M consists of

PLi(x) = {y e M|fiz (y) = e/ ()}
There are two cases: if the poBit Tz (x) € S lies in the complement of the gra@i then #5(s) =
i, while if s= Tig/(X) € G’ then # }(s) = i < 1. We see from this that the m& : M — M is a

branched cover of order’,"with branch locus the set of poinfg € M |1z (x) € G’} = THG). A
similar argument for the fibers

P, H(y) = {xe M |Te (X) = fiz (y)}

shows that the mai, : M — M is a branched cover of order branched along the s#g!(G'). Now
we consider the composite maps

T[G:TIGOP1:M—>§ and f[G//:ﬁ-G//OPZ:M—)§.

We show that these maps are also branched covers, with tee @amd multiplicities as specified in
(2.8) and (2.9). Consider the preimades (s) for s€ S°. For a points € S*\ (GUTG (1 (G))) we
have #5(s) = #151(9) - #P 1(x), for x€ M\ TiGH(G). This gives

#igl(s) = mnl, Vse S*\ (GUTG(TGHG))).
If we consider instead a poiste G, by assumption tha® N Tig(Ti5H(G')) = 0 we know that the point
X € TgH(s) are inM ~ T} (G'), hence we get

#igl(s)=nnl, VseGcS®
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e

FIGURE 1

Finally, by the same reasoning we obtain

#igl(s) =mrl, Vsemg(rgh(G))
This gives the result of (2.8) The case of the composite Tgap= i o P, is analyzed in the same
way and it yields the multiplicities of (2.9). d

REMARK 2.3. The assumption (2.4) need not hold in general, wherdymieally has

GNTG(TEHG)) #0 or G'Ni (fgH(G)) #0. (2.11)
One still obtains thaE and E” are embedded graphs, and the counting of the multiplicaied
branched indices will be more involved but the argument iesassentially analogous to the one
given in Proposition 2.2.
This shows that, for the compositid)?l =M oM, the mapsis andfizr are no longer coverings
branched along andG”. In fact, the branch loci are now larger graphs

E=GUTG(M5H(G)) and E”=G"UTie(TgHG)) (2.12)
and the multiplicities are different on different partstoétgraph. Thus, in order to have a well defined

composition law, we need to enlarge the class of morphisams @ur initial proposal (1.5) to include
what we obtained as the result of the composition of morpsignthe class (1.5).

DEFINITION 2.4. A morphismp: G— G’ is afinite linear combinatiofy; a;M;, with coefficients
a € Q and where th&/; are smooth compact oriented 3-manifolds with branchedrouyenaps

3 T/
GCECSE M L SHE G, (2.13)

whereE; are embedded graphs 83 whereE; = GUG;1U---Gj g, andE/ = G'U Gi’,1U -Gl "

The graphE; containG (G C E;) but not necessarily as a connected component, see for exampl
Figure 1.

Notice that we need to assume in the definition above thatrtighgE; andE/ are not necessarily
the same for differenl;, though they all contait (respectivelyG’). This is because in the argument
of Proposition 2.2 we see that the grajihs: GUTGT (G') andE” = G” UTie/ iy (G') along which
the composite morphisi¥ is ramified do not depend only on the subgrafh&’ andG” but also on
the projection mapsig andTiy (respectivelyfiz andfig/), hence on the manifolds! andM. This
means that, when we consider the composition of morphismarding to Definition 2.4, we do so
according to the following definition.

DEFINITION 2.5. LetM andM be smooth compact oriented 3-manifolds with branched ocoyer
maps

TrE/ ﬁE/ ~  Then
EcSEM-_LS5FE and B,c =M = SHE, (2.14)
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with graphsE, E;, E; andE” with GC E , G' C E; andG' C E; andG” C E”. The composition
M oM is given by the fibered product

MoM:=M xg M, (2.15)
with
M xa M= {(xy) € M x N |Tig () = Tigy (y)}. (2.16)
The result of Proposition 2.2 adapts to this case to showadlf@ning result.
LEMMA 2.6. Let G C E; and G C E, be two graphs ir8%. Consider branched coverings

GCSEMAESOE BcSEMEG.
The compositiorh?l — M xg M is a branched cover

GUTETL Y(Ep) c S & M S S G'UTe T, *(Ey).

PrROOF Consider first the projection8; : M x g M—M andP,: M xg M — M. They are
branched covers, respectively branched ayeh(E,) andTt, *(E;). In fact, we have

P (¥) = {(xY) €M x M [T (x) = T(y)} = {y € M| TR(y) = Ta(x)}.
Thus, the magP; is branched over the pointse M such thatry(x) lies in the branch locus of
the maprg, that is, the point{x € 1 Y(E»)}. Similarly, the branch locus of the ma is the set
of pointsy € Tt (El) C M. Thus, the composite maf: = Tig © P, : M — S® is branched over
the graphE = GUTrGTr1 L(E,) and the mapgier = Tigr o Ps M — S3 is branched over the graph
E=G'"Umngm(E). O
COROLLARY 2.7. Let

GCEcSEMEBSSE G
and

GCcEBcSEMBRSES5E, -G
be morphisms from G to’@nd from G to G, respectively, in the sense of Definition 2.4. Then the

compositiorM =M oM = M xg M of (2.15), (2.16)is also a morphism from G to’Gn the sense
of Definition 2.4.

PrROOFE The composition is given by the diagram

M MXG/~

U
2 AN

EicS® E, c SO E; E,cS?

As in (2.10), the restriction tM M x M of the projectionsP; : M x M — M andP,: M x M —

M defines projection$ : M—M andP;: M — M. Lemma 2.6 shows that they are branched
covers, respectively branched anng1 (E3) C M andtg (Ez) C M, so that the resulting mapg =
ToP, and T = Ty o P> from M to S3 are branched covers, branched aldhgJ 1T, 1(E3) and

E Uty (Ey), respectively. Sinc& ¢ E; Uy, H(Ez) andG” € E4U Tyt H(E,), we obtain that

G C E;umym, }(Es) csehpgsg E Uty i(E) D G’
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is a morphism irHom(G, G”) in the sense of Definition 2.4. O

We then describe explicitly the multiplicities of the cowey mapsT : M — S3. To simplify
the computation we work under the assumption that the ntigitips are constant on connected
components of the graph and not just on the individual sicesl{up to homotopy it is always possible
to reduce to this case).

LEMMA 2.8. LetM andM be as in Corollary 2.7 above. Assume that the graphsfd i =
1,...,4, have components

E; :GioUGilu'--UGigi, (2.17)

with G1p= G, Gyg= G = Gzpand Gig=G” and g > 0fori=1,...,4is the number of the compo-
nents of the graph GAIlso assume that the mapshave multiplicities

m xeSPE
#1T L (x) = - (2.18)

nj XeEj j=1,...,0.

Then the composite maps
EiUmm, (Es) c SEEM L E Uy H(Ey)

have multiplicities
mmz Xe& S3 AN El
#f[Il(X) = mng; Xe 'IT]_T[EJ'(G:;J') j=0,...,03 (2.19)
mjmg X€ G5 j=0,...,01
mmy Xe€ S3\E;
#LI(X) =4 mymy xe T H(Gyy) j=0,...,0 (2.20)
mpngj X € Gaj j=0,...,0,
whereE; = E; Uy, 1(E3) and B4 = E4U TG (Ey).

PrRoOFE The argument is analogous to Proposition 2.2. For a pag¥ the preimag@fl(x) C
M consists of
P (x) = {y € M| T5(y) = T(x)}.
Thus, the maj; has multiplicities

H#P () = {

Thus there are then three cases for the rfigp- Ty o Py: if the point Ty(x) = s€ S° lies in the
complement of botfE; andmy T, *(Es) then #1 *(s) = mumg. If the pointry (x) = sis in a component
G,j then #ﬁ[l(s) = ngjmg. Finally, if Ty (X) = sis in nlngl(ng), for one of the componentSs; of
Es, then #ﬁ[l(s) = myngj. This gives the multiplicities of (2.19). The case of the pasite map
T = Ty o P, is analogous. We first notice that the multiplicities for thapP, are #Pz‘l(x) =m, for

x € M\ TG 1(Ez) and #P5 1(x) = mpj for x e T 1(Gy;), for j =0, ..., go. Then arguing as before we see
that there are three possible cases, as before, for theptiuitiees for 7. If the pointmy(x) = s¢ S

is in the complement of botB, and g *(Ey), then #t, () = mpmy. If the pointty(x) = sis in a
componenGy;, then #5,1(s) = nyjmy. Finally, if Ty (x) = sis in TR *(Gy;j), then #51(s) = nyjmy.
This gives the multiplicities of (2.20). 0

mg x€M 1, }(Es)

L _ (2.21)
n3j XeT,(Gszj) j=0,...,0s.
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The general case where the multiplicities change on diifesemplices within the same con-
nected component can be treated similarly only the formb&mme more involved. The argument
one then uses to derive explicit formulae for the branchmtices is also analogous.

2.1. Example of correspondences and compositionVe give simple example of composition
of morphisms by fibered product.

EXAMPLE 2.9. In this example one can use the cyclic branched coveniags we mentioned
before in Example 1.5. Consider the fibered proddgto M, of

O0cS«M,—$>50 0cS—My—S$>50, (2.22)

whereM, andM, are, respectively, the-fold andm-fold branched cyclic coverings, branched over
the trivial knotO. Then the compositiotM o M, is the cyclic branched covel ,,, which is a
morphism between two unknots.

2.2. Associativity of composition.We now prove that the composition of morphisms defined in
the previous section is associative. We begin by statingyasimple lemma that will be useful in the
proof.

LEMMA 2.10. Consider a commutative diagram
W=XxzY

/ \
X Y
u \Y
f g
A Z B
where all the maps are submersions ard,p) = x, qx,y) =y. Then, for any k& B one has
upg v i(b) =ufigv-i(b) c A
PROOF. LetV C Y be the seV = v—1(b). Its preimage undeg is the set
{(xy) eXxYlyeV, gly) = f(x)} = {(xy) e XxY[f(x) =g(y) €g(V)}.

Thus, the imagepq (V) = {x € X| f(x) € g(V)} = f~1g(V). This impliesupg (V) = uf-1g(Vv),
hence the statement follows. O

We now compare the compositiohd; o (M2 0 M3) and (M1 0M3) o M3 of morphismsM; €
HO”KGi7Gi+1)'

PrRoPOSITION2.11. Suppose given branched covers
EcS®M BS$oE
E,cSEM, B 5E; (2.23)
ELCcSEM; S5 E,
where E is a graph containing the subgraphGE; and E, are graphs containing the subgraphG

Es and E are graphs containing a given subgraphdhd E is a graph containing the subgraphuG
The composition is associative

Mio(M2o0M3)=(M1oM3)oMs. (2.24)
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ProoOFE Consider first the compositidﬁ 23:=M2oM3z=M; xg,M3. Itis given by the diagram

Moz =M, XG; M3

M M3
T2 T4
3 T3
E,C S Es C S DE]} EscS®

with ﬁ232 =Thoo0 P23’1 andﬁ234 =T340 P23’2. By Lemma 26]\7| 231is a branched cover
Ez - ng<[2—32|\7|23f§4§ D) é4,
with
Ex = E)UTRoT4 ()  Es = EqU T4ty (Es). (2.25)
Then the compositio 1(23 '=Mjo0 Moz =Mjo (M20M3) is given by the diagram

A~

M1z =M1 xc, M (23

M1 M (23
T T34
T2 a2

E,Cc S E,Cc SO E E,cS?

whereE; = E) UTha(Th4 (ES)) andEs = E4UTia(TG4 (Es)). We use the notatiofy, := a0 P31
andfy, := Tpago P1(232- By Lemma 2.6M 1(23) is a covering
J1CS°’T<E |\7|1(23) TE;S?’D\M,
with branch locus the graphs
J=E Ut (Bp)  Js = E4UTuadlha(Ea). (2.26)

Consider now the compositidﬁ 12 :=Mj10Moy. Itis given by the diagram

Mi»=M; X, M2

M1 M2
1 3
Tu2 T2

E,cS® E;CS*DE) E;c S?

with Ty21 = Th1 0 P121 andTz = Thzo Pi2o. By Lemma 2.6 above, this is a branched cover

élCSngl—ZlMlzTE?’SgDég
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where the graphg; andE; are given by
El =EU 'l'[]_]_Tl'Izl(Eé) E3 =E3U T[23T[£21(E2). (227)

Then the compositioM (123 := M120M3 = (M10M5) o M3 is given by the diagram

M (123 = M 12 X, M3

P23 P12)32
M (12) M3
Tu21 Ty
23 a3
E,CS EsC SO E, E,CS

with By = B3 UTya(153 (E})) andEs = E3 U Tka(Th3 (E2)). We haveft, := 210 g1 andfi, :=
Ta0 P1232. Again by Lemma 2.6 this is a branched covering
|1CS’3& M(lz)ggSgD l4,
with branch locus the graphs
I3 = E1UTupift5(Es)  la = E4UTeati (Es). (2.28)
Thus, we need to compare the branch locus
EiU T[11T[I21(|§2) =EU TT]_]_TTIZJ'(Eé) U T[llTTIZJ'T[zzT[E:;'(Eé)
with
E1 U fuaaft 35(Es) = Ex Uity (E) U fuaafy 35(Es).
Using Lemma 2.10, we now see that
2476 25(E3) = TuaTh ;) T3 (ES),
so that the branch lod, = I; agree. Similarly, we now compare the branch locus
Ea U flaaft3,(Ez) = EaUTkaTl3 (Es) U Tlsafhi;(En)
with
E4 U TlaT3 (Es) = EaUTieaTl3 (Es) U T3 TaTh, (Ez).
Again using Lemma 2.10, we see that
T3435(E2) = ThaaTly3 ThaTh 5 (Eo)

so that the branch lodi, = 14 also coincide. It remains to check that the multiplicitiésoaagree. As
before, to simplify the computation let us assume Bat GjoU- - - UGjg; where theG;; are subgraphs
with g > 0 the number of the components of the grafh and withGio = Gy, Gy = G,y = G,

Gzo = G5y = Gz and G40 = G4. We also need to fix some notation for the multiplicities ottea
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branched covering map. We assume that the napedrsg; 1,1 =1, 2,3, of (2.23) have multiplicities

B M Xe SS\E]_
#111 (%) .
N11j XGG]_J' ]=0,...,01
3
#qul() mo XeSNEBEp
Nnoj XeGy j=0,...,0
3 /
#ngzl() My XES \.E2 /
(2.29)
1 Mpg X¢& S3\E3
#T3 (X) .
Np3j X€Gzj J=0,...,03
- Mgz X€E S3\E§
#13 (x) . ,
- Mes X€ S3\E4
#1G4 (X) = .
n347j X€G4j J:O,...,g4

By Lemma 2.6 we then know that the multiplicities of the cosippmaps are of the form

M1y  S¢E SEN El
#ig21(s) = Mijmz SEGy j=0,....01 (2.30)

_1 .
M2 SE Tu1Th; (G’zj) i=1....9,

([ mpomps se S Ej
#0J5(S) = Miopzj SEGgj j=0,....03 (2.31)
[ M2jMs SE a5 (Gyj) =0,...,0

Mpmgs  s€ SN Ep
#iG35(S) = MazjMes SE€ Gy j=0,...,0 (2.32)
[ M22N3zj  SE TRolh3 (G3j) j=0,...,0;

MpsMas  SE€ B Ey4
#G5)(S) = MpaMaaj SEGaj j=0,....0 (2.33)

[ M3jMss SETRaTG3(Gsj) j=0,...,03

Now we check that the composition is associative by checkiagthe multiplicities also agree, as we
saw for the branched loci. We will begin with (123 = M (12 ©M3. The projectiorP 53 : M (123 —

M (12) is @ branched cover branched aImqg*‘3 (E3) C M (12) With multiplicities

#P 1

(1231

M TG A(EL
) = {mss X € M (12) \ T 5(E3) 234



2. COMPOSITION OF CORRESPONDENCES 15
Similarly, the projectiorP 123> : M (123 — M3 has multiplicities

Moy XE M3z~ 'l'[g?il'(é:g)
#P(lé)3 ,(X) =14 Mzj XeTG3(Gs) j=0,...,03 (2.35)
M2jMp3 X € Ty (TeaT,5(Gej)) | =0,...,02
Now consider the composite mafiis = Ta210 P12)31 andf, = Tgao P(12)32- These are branched as
described above with multiplicities
My 1MpoMa3 xe Sy
.1 N11,jMo2M33 Xe€Gyj j=0,...,01
#1G, (%) = e , (2.36)
MaNz2jMez X € T (Gy;) j=0,....0;

A /\_1 .
MiMpaNazj X € Tl21fl55(Gy;) | =0, ..., G5

Similarly, for the magt, = Tg40 P(12)3, we obtain the multiplicities

My 2Mp3Maa xeSBly

.1 M12oMh3Nzy | Xe Gy j=0,...,04
#17,7(X) = . _ (2.37)

Mi2Mp3  Maa X € T3 (Ggj) ] =0,...,0s

N2 jMaMes X € TRaTGATRaTHA(Gyj) | =0, ..., 0.

We now compare the multiplicities of the mafis and i, to those obtained from the other com-
position. Namely, we consider the mafi§ = i1 o Py23 1 and 7, = g0 Pyp3 2. The map

Pr231: M1(23) — M7 is a branched cover, branched O\ng\LE1L E,), with E; = E2U1'[22(T[23 (E3))-
It has multiplicities as follows.

MpoMa3 x€ M1\ (Ez)
#2910 = Me2jMea 2 (Ghy) j=0,....0 (2.38)
MeaNaaj Ty (TeaTh3(Gy))) | =0,..., 0

By the same argument, the projection ni3p3) - is a branched cover ol (23), branched over over
T54,(E2) with multiplicities as follows

myo x € SPTOL(Es
H#P] 33 ,(X) = { L o2l ®2) (2.39)
Maj XE T3 (Gyj) j=0,...,0.
This gives for the compositiofty, = 10 Py(»3 1 the multiplicities
M11MpoMa3 xe S
.1 N11,jMpoiMi3 X€Gyjj=0,...,01
#1G,7(X) = P ) (2.40)
M11N22 jMa3 X € T1T; (Gy) j=0,...,9;

—1 -1 .
MiMpaNaaj X € TuaTh 5 TeoTh3(Gyy) j =0,...,03



16 1. GRAPHS CATEGORY AND THREE-MANIFOLDS AS CORRESPONDERE

Similarly we have

M1oMp3Ma4 xeSSBd

My 2Mp3N34 j X€ G4y [j=0,...,04
—1 .

Moz jMas X € TaTlyg (Ggj) | =0,...,03

N2 jMa3Mes X € Tlaaaly35(Goj) | =0, ..., 0.

#7G, (x) = (2.41)

We can then see by direct comparison that the multiplicifethe mapst, andTy, agree and so do

the multiplicities of the map#, andy,. A similar argument can be used to compare the branching

indices and show that they also match. This completes thaf finat the composition is associative.
O

2.3. Trivial covering and composition. Now we consider the question of the existence of an
identity element for composition,e. whether there exists a 3-manifold, which is an element of
Hom(G',G') for any given embedded grajf and with the property that, for aM € Hom(G,G'),
the compositiond oM = M andM o U = M. To this purpose, it is convenient to allow, in addition
to the morphisms itHom(G, G) given by branched cove® Cc E ¢ S*— M — S* D E’ 5 G also
an additional morphism representing thebranched cases we did in our definition of morphisms.
Since the 3-spher®® has trivial fundamental group, we know that an unbranchegriog can only
be the trivial oneS® — S2 given by the identity (multiplicity one everywhere). We as® that the
trivial coveringid : S* — S® belongs tdHom(G, G) for all G. We then have the following proposition.

PROPOSITION2.12. The trivial covering id: S* — S is the identity element for composition.

PROOF consider the diagram

MX683
M S3
NN
1L W
EicS® E,cS3H0 S$$o0

whereE; andE; are two graphs that contal® andG’ respectively and are the branching locustof
andn, respectively. The maps = Tu = id are the identity map of the trivial covering : S° — S°.
The notationd C S® means that this is an unbranched cover (empty graph). TheediEoduct
satisfies

MxgS ={(ms)eM xS |mm) =s} = | ;,*(s) =M.
seS?
So the projection mapy is just the identity majd : M — M, with the composite mafic = Ty o p; =
™. The projection magp; : M xg S* — S® that sendgm,s) — s for m € T, (s) is just the map
P2 = Th, and So iSig = Ty o P2 = Th. Thus, we see thdll x¢S® =M with g = T4 andTiy = To.
This shows thaM o U = M. The argument for the compositidho M is analogous. O
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3. Representations and compositions of correspondences

We reinterpret the composition of correspondences destiib§2 above from the point of view
of representations of fundamental groups, using the ctarzation of branched coverings as in
Lemma 1.4 above. The results of this section are not needdbldaest of our work, but we include
them here for completeness.

We first discuss some facts about covering spacesplet — Z be a covering space of order
m. If X denotes the universal cover ¥ andG = m(Z,x) the fundamental group, then we have
X = )~</N1 for N; a normal subgroup o6, with G/N; the group of deck transformations of the
coveringX — Z, with #G/N; = m. The coveringp : X — Z is uniquely specified by assigning a
representatioro : Ty(Z) — Sy, determined up to inner automorphisms &f. Suppose now that
p: X — Zis the composite of two covering maps= p; o pu,

xXByRz

The coveringY = >~</N2 of Z is similarly obtained from a normal subgroly of G, so that its
group of deck transformations G/N,, with #G/N, = n,. As above the covering is determined by
a representation; : T4 (Z) — S,,. Notice that this factors through the quoti€itN,. Similarly, the
spaceX, viewed as a covering of is determined by a representation: Ty (Y) = N, — §;,, where

n; = #N,/N; andN;j is a normal subgroup &, andH = N,/N; is the group of deck transformations
of the coveringp; : X — Y. We havem = nin,. The representations, o; ando, are related in the
following way.

LEMMA 3.1. Let G and N be as above. Then the representatibnG — Sy, is given by

Xi,j = Xa(y)(i,j) = Xou(h;)(i),02(9) () (3.1)

where g=y modN, and h € N, >~ (Y, Xj) is determined by an identificatiopy = h;g of the
homotopy classes of pathg, oz ~ T (Y,X;)g, wherey; is the lift of the pathy € T (Z,x) to the
covering Y starting at the poirk; € pgl(x).

PROOF Consider a patly € Ty(Z,x) and a chosen point € p,*(x) C Y. We denote byj the
unique path liftingy starting aty(0) = X. It hasy(1) = gX € pgl(x), whereg € G/N; is the corre-
sponding deck transformation with=y modN,. We can identify the set of homotopy clasaggs
with the set

T (Y,X)g:= {yoY|Y € m(Y,X)},
with g=¥ modN,. Forg = g10, € G/N,, we obtain

(Y, 09 = {foofoV|Y € m(Y, %)} = {foofro¥, oy ofn|Y € m(Y,01%)} (3.2)

with g =¥ modN,. Let us then look more precisely at the representadipnm (Y) — S,, describ-
ing the coveringp; : X — Y. Suppose given elemerttisc N, C G, andyhy~! € N,, for somey € G.
Then, we identifyN, = m (Y, X) for a choice of a base pointe pgl(x) C Y. The lift of the pathy

to the coveringy in general will not be close but will send the initial poxtd the pointgk where
g=Yy modN, the class inG/N; acting as the group of deck transformations. Thus, the yath

in G =m(Z,x) defines an element my (Y, gX), for the new base point. Thus, when we consider the
representatiow; : T (Y,X) — S,, and we identify it with a representatian : N, — S,,, we should
more precisely regard this as a pém, X) of a representation df, and a choice of a base point that
gives the identificatiomN, ~ m (Y, X). Then the action of an elemept G by conjugation orh € N,
produces an elemeghy~! € N,, as well as a deck transformatign=y modN, that changes the
base poink 1o gk. The representatioa; : Ty (Y,X) — S,, is not invariant under this action, because
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the base point is not preserved, but the set of gaifsX) is and it is acted upon b@ as
Ad, : (01,%) — (010Ad,gx), (3.3)
for o10Ad, : N — S, given byo; o Ad,(h) = o1(yhy 1) andg € G/N; given byg =y modNs.
Equivalently, we think of the pair€s1, %) as a representatiosy : N, — ()™, wheren, = #p, (),
that maps
01(h) = (88 Y)scm, (3.4)
where thesare a chosen lift of the € G/H. We can write (3.4) equivalently d®1(hs))scg/H, OF
again equivalently ao1(hj))j=1..n, € (Sy)™ asin (3.1). The action (3.3) becomes of the form

Ad, : a1(h) — ogo1(h)og (3.5)
whereg =y modN, anday is the permutation i$,, that sends the poiste G/H tosge G/H. This
shows that the representation satisfies

oi(yhy ) = og01(h)og?, with g=y modN;, (3.6)

for permutationsog € S,, as above. The expression (3.1) defines an elemesy for m= nin,. To

see that it is a representation @fit suffices to show compatibility with the product. Ppe y1y> we
have

Oyy, = 01(h)02(9),
where by (3.6) and (3.2)
01(h) = 01(h1)0g,01(hp) 0!
By construction the matricesy € S, are the elementsy(g) of the representation; : T4 (Z) — S,
describing the covering; : X — Y. O

We now describe the composition of correspondences of the(f2.1) in terms of representations
of the fundamental groups of the complement of the branch Bappose given, as before, two 3-
manifoldsM andM with branched covering maps as in (2.1),

GcS M B5E S5G and GBSl M B 256,
These correspond to the data of representations
oG T (S*\G) — Sy Og, T (S]\E1) — Sy

O, m(S*\E) —Sv  Oc (SN G") — Sy, (3.7
whereE; andE; are two graphs containing the subgraph
PROPOSITION3.2. The compositiodM =M xg M is the branched covering
E = GUTGTLH(E) € S & N ¥4 & 5 B = 6" Ut figh(Ey), (3.8)
with iz = Tig o Py and Tie» = Tigr o P>. This corresponds to the representations
6g :m(S*NE)—Snw and 6g: (SN E") — Sy (3.9)
given by
Ge(Y) = Ok, (T (Y))0c(16(Y)) and Ger(y) = Ok, (e (¥))Gor (ter (V))- (3.10)

Hereig: m(SP\E) — m(S*\G) andig : Ty (SN E”) — m(S3 . G") are the group homomor-
phisms induced by inclusion. The elemerdgnote the collection of lifts o (y) to paths inM (or of
e (y) to M, respectively), depending on the choice of a point in the ibthe coveringtg : M — S3
(respectivelyfigr : M — S3).
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PROOF. Let G = m(S®\E,s) andGg = m(S*\ G,s). Sincefk is a branched covering map
of ordermiY, branched alon§ = GuU T[GTE/l(Eg), then by Lemma 1.4 the covering is determined by
the datum of a representation

6'E:TT1(§\E)—>STm.

The covering can be described in terms of a normal subghp: (i) (M ~ f=2(E)) of Ge
with Gg /Ng the group of deck transformations witlG#/Ng = miY. On the other handik is a
composition of two covering magg = T o P;. Thus, we can use the result of Lemma 3.1 above
to describe it in terms of the representations associateg #ndP;. The coveringrg corresponds

to a normal subgroupls = (). Ty (M ~ T 1(G)) of Gg such thatGg/Ng is the group of deck
transformations, of orderGiz/Ng = m. The coveringr is determined by a representatiog :

T (S*\ G) — Sy In the same way, the covering m&pis branched along the seg!(Ez) C M,
hence the covering is specified by a representation

op, : Tu(M \TGH(E2)) — Sw-

In terms of normal subgroups, this covering correspondsstdbgroupNg, C T (M ~ Trg,l(Ez)). The
quotientH = (M ~ Tr(g,l(Ez))/NE2 gives the group of deck transformations of the covering with
#H = 7. Consider the group homomorphism

(M)« : T (M N TGH(E2)) — Tu(S*\ Ep) (3.11)
induced by the covering magy : M — S°, branched alon;. This induces a map of representations
Hom(my (S* \ Ez), Sw) — Hom(Tg (M \ TGH(E2)), Sw)

given by compositiow — oo (T ). LetOg, : (S Ez) — Sy be the representation that describes
the covering

M S$5E G,
Claim: The representatioop, satisfiesop, = Ok, o (Tiw' ).

PROOF For a chosen base poire M . T} (Ep), lety € Tu(M ~ 151 (E), X). Let theny be a
lifting of the pathy to M, which starts at a chosen poifty1) € M, with y; € P~1(x) andTig () =
Tiz (y). We denote byx,y») the endpoint ofy. This is another point in the same fiber, that is, with
y2 € P~1(x) and (x,y2) = op, (Y)(X,y1). The point(x,y>) is uniquely determined byx,y;) and the

homotopy class of. By definition, the permutatiofg,(y) € Sy is the permutation

ap (V) : (X,Y1) — (X,Y2). (3.12)

On the other hand the imaggg ). (y) under the group homomorphism (3.11) determines an element
in Ty (SN E2, Tz (x)). Let us denote this element lyy; with Tz (x) the base point. Then for any
given pointy; € M such thatis (x) = Tz (V1), there exists a unique liff of y, which starts ay; e

figt (T (x)). We denote by the endpoint of this path. This is also a point in the fifig(1iz (x))
and it is uniquely determined by andy. The permutatio@g,(y) € Sy is given by

Oe,(Y) Y1 Vo (3.13)

Notice that, sincet (x) = iz’ (¥1), we have(x,§1) € M. Thus, as above, we can consider theift
of yto M that starts at this poinix, V1) € Pl‘l(x). We want to show that the endpoint of this path is
(x,¥2) € M with ¥, the endpoint of the pat}i, as above. This will imply, by (3.12) and (3.13) that the
permutationsop, (y) anddg, (Y) are the same. Now, since the diagram



20 1. GRAPHS CATEGORY AND THREE-MANIFOLDS AS CORRESPONDERE

M
2N
M M
TA A/
SS

T (P2(Y) = T (Pu(Y) =T (V) = V. (3.14)
This mean thaP,(y) is a lifting path ofy, which starts atx,y;). By the uniqueness of the lifting
for a chosen initial point, we hav&(y) =Y, so that both paths end at the same p&ny,). This
implies thatop, (y) = 0g,(Y) € Sw, which proves the claim. We now apply the result of Lemma 3.1.

is commutative, we have

Consider a patly € Ge. Under the restriction map

lg: Tu(S*\ (GUTGTGH(E2))) — Tu(S*\ G)
induced by the inclusion, we can identifyith an elementg(y) =y € Gg, hence we can apply to it
the representatioag to obtain an elemertdg(ig(Y)) € Sy For a chosen base poit Tizl(s) €M\
15 (G) UT (Ep), there exisgx € Tig(s) such that the unique lifting of y with starting pointx ends
at the poingx. The deck transformatiogis the element o6 /Ng satisfyingg=ymodNg. Thus, in

the same way as before, we can parameterize the set of ldtsrments iy (S3\ (GU TrGTrg,l(Ez)), S)
with the set

Ugee/NsTi (M~ (TGH(G) UTEH(E2)). X)g.
Again we have a group homomorphism
lg, : Tu(M N (TGH(G) UTGH(E2)), ) — Ta(M N TG (E2)),X)
induced by the inclusion. Thus, we can apply the representaip, : Tu (M Trg,l(Ez)) — Sy to
an elementeg, (y), for yin Ty (M ~ (151(G) U (E2)), X), such thafyg describes a lift of to M as
above. The change of base paint> gx corresponds to an actian— yoy~* on the normal subgroup
(T6)-Ta(M \ (TGH(G) UTG(E2)),X) C Tu(S* N (GUTTG (Ez)),9).
As in the proof of Lemma 3.1, we can shift the pgios, olg,,X) to (Op, olg, o Ad,, gx) with the action

Op, o1, 0 Ady 1 Tu (M N (T (G) UTG (E2))) — S
given by
Op ClEg, OAdY(a) =0p.0 lEz(Wyil)
for g the image ofy in the quotient ofry (S® (GUTIGTE,l(Eg)),S) by the normal subgroupl =
(T6).Tu(M ~ (T51(G) UG (E2)),X). Since our covering mapg is of orderm, then the representa-
tions (op,, X) define anm-vector of representations, or equivalently a single map

Op, : T[]_(M AN Tlal(Eg)) — (Sﬁ)m
We write this equivalently as in Lemma 3.1 in the fomp, (aj))j—1..m € (Sw)™ We then have
op, (yay 1) = ogopl(or)cgl with g = y modN, wheregy is the permutation irs,, determined by the

deck transformationy, so that we gebe(y) = op,(0j)oc(y). We then apply the result of the Claim
above, and replaceP; (aj) = 6 o (Tlz’)«(a) and this complete the proof of the statement. [J
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4. Semigroupoids and additive categories

A semigroupoid can be thought of as a generalized semigrowhich only certain multiplica-
tions are possible.
A semigroupoid on a set is a setg together with the following pair of maps,r)

sis called the source whileis called the range. To each element ¢ we assigns an arrow from
s(a) =xtor(a) =yins

s(a)=x—r(a)=y
Define the set of composable pairs

G2 ={(a,p) € G xg|s(a) =r(B)}

with a productm: 62 — ¢ defined by

m(a,B) =af=aof.
Now if B:s(B) =x—r(B) =y=s(a) Anda :s(a) =y — z=r(a) Then

aB:x=s(B) = s(aB) — z=r(a) =r(ap)
as in the diagram
ap=oof

X 5 y 5 4

The multiplicationmis an associativee. a(3d) = (ap)d.
An embeddingy: s — ¢ is called a unit section if it satisfies

v(r(a))a =a=ay(s(a)), Vaeg.
Notice that it is not necessary in general that all yiga)) = y(s(a)) =y, but if they are all equal
theng is a semigroup angis the unit of the semigroup.

A semigroupoid is the same thing as a small category whictcetegory in which both objects
andHom(,) are actually sets. We denote loy( G ) the set of units of;. A semigroupoid is regular
if, for all a € g there exist unitsy andy such thatya and ay are defined. Such units, if they
exist, are unique (for eaoh). To each unity € u(g) in a regular semigroupoid one associates a

subsemigroupoid;y = {a € g |y(s(a)) = v}.
A semigroupoid ¢f. [37]) gives rise to a hierarchy of sets
GO =Y(s)=s
Gt=g
G2 ={(o.B) € g x Gls(a) =r(B)}
G°={(a,B.Y) € G x G x G[s(y) =r(B),S(B) = r(a0)}
and so on, by considering successive compositions of marhi
We can reformulate the results on embedded graphs and 3aldanobtained in the previous

section in terms of semigroupoids in the following way.

LEMMA 4.1. The set of compact oriented 3-manifolds forms a regular gempoid, whose set
of units is identified with the set of embedded graphs.
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PROOF We letg be the collection of data = (M,G,G’) with M a closed oriented 3-manifold
with branched covering maps & of the form (1.6). We define a composition rule as in Definition
2.5, given by the fibered product. In the multi-connectec caw

M=MiUMaU--- UM 4.1)
with (M;,G,G’) as in (1.6) withM; connected, we extend the compositidr M to mean
MoM=M;oMUMzoMU---UMygoM, (4.2)

and similarly forM multi-connected. It is necessary to include the multi-earied case since the
fibered product of connected manifolds may consist of dffieiconnected components. We impose
the condition that the composition af= (M1,G1,G)) andB = (M2, G, G)) is only defined when
the G} = G,. By Lemma 2.12, we know that, for each= (M,G,G’) € ¢ the source and range are
given by the trivial coveringg = Ug = (U, G, G) andy = Ug = (U,G/,G'). That is, we can identify
them withs(a) = G andr(a) = G'. Thus, the set of units(g) is the set of embedded graphs in
il O

For a given embedded graj the subsemigroupoigg is given by the set of all 3-manifolds
that are coverings @82 branched along embedded grajEhsontainingG as a subgraph.

Given a semigroupoid;, and a commutative ring, one can define an associated semigroupoid
ring R[G |, whose elements are finitely supported functiéns; — R, with the associative product

(fix f2)(a) = > fi(aa) fa(a2). (4.3)

A1,02€G :0102=0Q

Elements ofR[g] can be equivalently described as finRecombinations of elements i@, namely
f = Yaes 8da, Whereag = 0 for all but finitely manya € g and 84 (B) = 8y, the Kronecker
delta. The following statement is a semigroupoid versiothefrepresentations of groupoid algebras

generalizing the regular representation of group rings.

LEMMA 4.2. Suppose given a unjte 1 (g ). Let#, denote the R-module of finitely supported
functionsg : gy — R. The action

py(F)(&)(a) = > fla1)&(az), (4.4)

a1€G,02€Gy:0=0102
for f € R[g] and§ € 71, defines a representation ofdR on #,.

PrRooF We have

py(fox f2)(&)(a) = (fox f2)(a1)¢(a2)
= > > fB)fBEa) = Y fi(B)ey(f2)(E)(B)

BiBr=01€6 A102=0 B1B=a
hencepy(f1* f2) = py(f1)py(f2). Since for elements of a semi-groupoid the range satisfoe) =
S(B), the action is well defined osny. O

In the next section we see that in fact the difference in theasentation (4.4) between the semi-
groupoid and the groupoid case manifests itself in the cdibifily with the involutive structure.

A semigroupoid is just an equivalent formulation of a smatiegory, so the result above simply
states that embedded graphs form a small category with théHeen(G,G’) as morphisms. Pass-
ing from the semigroupoid; to R[g| corresponds to passing from a small category to its additive
envelope, as follows.
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5. Categories of graphs and correspondences

In the previous discussion on correspondences we introdaicategory of graphs and correspon-
dences, see Lemma 4.1 above. We will later refine them byduatiag suitable equivalence relations
on the correspondences. Here we first describe the additxdape of the small category of Lemma
4.1.

DEFINITION 5.1. We letx denote the category whose obje€ib j(% ) are graphs$s c S® and
whose morphismg € Hom(G, G’') areQ-linear combinationsy; aM; of 3-manifold M; with sub-
mersionsie andTi to S® as in Definition 2.4, including the trivial (unbranched) edng in all the
Hom(G, G) as in Proposition 2.12.

LEMMA 5.2. The categoryx is a small pre-additive category.

PROOF. Notice thatObj(% ) is a set, since tamely embedded graphSfican be identified with
linearly embedded graphs B and that 3-manifolds are here described by representat@nrédtic
datam (M \ E’) — Sy, that also form a set, so that is a small category. We have seen that
the trivial unbranched covering is the identity for compiosi. This shows that, for each object
G € Obj(x ), there is an identity morphisids € Hom(G, G). We have also proved that associativity
of composition holds. Thusx is a category.

DEFINITION 5.3. A pre-additive category is a category such that, for amy, 0’ € Obj(c) the
set of morphismsélom(0, 0’) is an abelian group and the composition of maps is a bilinparation,
that is, foro,0’,0” € Obj(c) the composition

o:Hom(o,0"y®@Hom(o’,0") — Hom(o,0")
is a bilinear homomorphism.

In our case, the set of morphistH®mM(G, G') is an abelian group with the addition of coefficients.
In fact, we can write morphismg= 3; aiM; equivalently asp= Yy au M, where the sum ranges over
the set of all 3-manifolds that are branched covers

GCEcSEMESSESE

and all but finitely many of the coefficients; are zero. Then, fop= Y ayM andq = Y byM, we
have@+ ¢ = Yy (am +bv)M. The composition rule given by the fibered product of 3-nmaldg
extends to linear combinations by
Goo= (3 aMi)o (Y bjMj) =3 abjMioM;.
i J 1]
This gives a bilinear homomorphism

Hom(G,G') @ Hom(G',G") — Hom(G,G").
This shows thatx is a pre-additive category. d

DEFINITION 5.4. Suppose given a pre-additive categoryThen the additive categoiMat(c)
is defined as followsdf. [3]).

(1) The objects iObj(Mat(c)) are formal direct sum&; ; 0; of objectso; € Obj(c), where
we allow for the direct sum to be possibly empty.

(2) If F: 0" — o is a morphism irMat(c) with objectso = @, 0; ando’ = @]_; 0 then
F = Fj is amx n matrix of morphismsF; : 0’; — 0j in ¢. The abelian group struc-
ture onHomyy(~)(0’,0) is given by matrix addition and the abelian group structure o
HOI’T]C(O/J',Oi).
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(3) The composition of morphisms Mat(c) is defined by the rule of matrix multiplication
and the composition of morphisms dn

ThenMat(c) is called theadditive closureof ¢. For more details see for instancs. [

In the following, for simplicity of notation, we continue tese the notatiorx. for the additive clo-
sure of the category of Definition 5.1. Notice that we could equally choose to waikh Z-linear
combinations instead @J-linear combinations in the definition of morphisms, sinmed pre-additive
category one requires that compositioiZidilinear.

6. Convolution algebra and time evolution

Consider as above the semigroupoid ring (algefiff@)] of complex valued functions with finite
support ong , with the associative convolution product (4.3),

(f1xf2)(M) = z fi(M1)f2(M2). (6.1)
M1,M2e6 MioMo=M

We define an involution on the semigroupajdby setting
Hom(G,G)>a=(M,G,G)—a’=(M,G,G) e HomG,G), (6.2)
where, ifa corresponds to the 3-manifol with branched covering maps
GCECSEMESSE ST
thena corresponds to the same 3-manifold with maps
GCcEcSEMEBSES5ESG

taken in the opposite order. In the following, for simplcif notation, we writeM" instead of
a’=(M,G,G).

LEMMA 6.1. The algebraC|g] is an involutive algebra with the involution

V(M) = T(MY). (6.3)

PROOF. We clearly haveaf, +bf,)” = afy +bfy and(f")" = f. We also have

f1% o)V = LMY (MY) = f) £/
(fixf2)" (M) Mv:w%omg 1(M1)f2(M3) M:’%OMl 2 (M2) ' (M1)

so that(fy* fo)Y = ) « f)/ a

6.1. Time evolution. Given an algebraz over C, a time evolution is a 1-parameter family of
automorphism® : R — Aut(). There is a natural time evolution on the algef# | obtained as
follows.

LEMMA 6.2. Suppose given a functiond C[g|. Consider the action defined by

G (f)(M) := (%)" F(M), (6.4)

whereM a covering as in(1.6), with the covering mapss and T respectively of generic multiplicity
n and m. This defines a time evolution @}y |.
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PROOF. Clearlyoi,s = 0; o 0s. We check that (fy x ) = 0t(f1) 0t (f2). By (6.1), we have
nyit
a(fuxf2)(M) = (=) (fax f2)(M)

My n2

it it

(m2) ) (12 faM) = (o1(10) < x(f) ).
M1MacGMioMo=M \ ML m
wheren;, my are the generic multiplicities of the covering mapsibr, withi = 1,2. In fact, we know
by Lemma 2.6 thath = n;np, andm = m;m,. The time evolution is compatible with the involution
(6.3), since we have

o)) = (2) vy = (D) F7y = (1) 1 w) = DM = (o) ().

m n
O]

Similarly, we define the left and right time evolutions arby setting
ot (F)(M) :==n"f(M),  of(f)(M) :=m" f(M), (6.5)
wheren and m are the multiplicities of the two covering maps as above. Same argument of

Lemma 6.2 shows that tha R are time evolutions. One sees by construction that they agmjire.
that (o}, oR] = 0. The time evolution (6.4) is the composite

o; = ook, (6.6)
The involution exchanges the two time evolutions by
or (fY) = (a%()". (6.7)

6.2. Creation and annihilation operators. Given an embedded gragh c S°, consider, as
above, the set;g of all 3-manifolds that are branched coversSSfbranched along an embedded
graphE D G. On the vector spacgc of finitely supported complex valued functions ga we have
a representation d[g] as in Lemma 4.2, defined by

(P (f)E)(M) = > f(M1)E(M2). (6.8)

MieG ,M2eGg:M10M2=M

It is natural to consider on the spagg the inner product

(€&) =3 EMEM). (6.9)
Mege
Notice however that, unlike the usual case of groupoids,irtelution (6.3) given by the trans-
position of the correspondence does not agree with therdadjoithe inner product (6.9), namely
py(f)* # py(fY).
The reason behind this incompatibility is that semigrodpdiehave like semigroup algebras imple-
mented by isometries rather than like group algebras imghted by unitaries. The model case for an
adjoint and involutive structure that is compatible witle tiepresentation (6.8) and the pairing (6.9)
is therefore given by the algebra of creation and annibitatiperators. (See the appendix for more
information on the general properties of creation and alatibn operators.)
We need the following preliminary result.

LEMMA 6.3. Suppose given elememts= (M,G,G’) anda; = (M1,G1,G)) in . If there exists
an elementi; = (M2,Gy,G}) in G (G, G)) such thato = ajoa; € g, thenasy is unique.
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PROOF We haveM = M10M,. We denote by D G, E' D G’ andE; D G; andE; D G] the
embedded graphs that are the branching loci of the coveragsmg, e andTi,, T, of M and
M1, respectively. By construction we know that for the composia; o o, to be defined ing we
need to hav&s) = G,. Moreover, by Lemma 2.6 we know thBt= Elurrelrr&ll(Ez) andE’' =E,U

TrG/ZTrgzl(Ei), whereE; andE} are the branch loci of the two covering maps\bj. The manifoldM »
and the branched covering mams, andTrG/2 can be reconstructed by determining the multiplicities,

branch indices, and branch loEp, E;. The n-fold branched coveringic : M — S DE D G is
equivalently described by a representation of the fundaahgnoupmy (S* < E) — S,. Similarly, the
n;-fold branched coveringg, : M1 — S* 5 E; D Gy is specified by a representatiaxm(83 “E1) —
Sy Given these data, we obtain the branched coveingM — M1 such thatiig = Tig, o Py in the
following way. The restrictionsic : M \ TG} (E) — S’ \ E andmg, : M1\ T (E) — S\ E are
ordinary coverings, and we obtain from these the coveingM ~ T} (E) — Mg~ Trgll(E). Since
this is defined on the complement of a set of codimension tivextends uniquely to a branched
coveringP; : M — M;. The image underrG/1 of the branch locus o, and the multiplicities and
branch indices oP; then determine uniquely the manifold, as a branched coverings, : My —

S® 5 E,. Having determined the branched coverimg we have the covering maps realiziiy as
the fibered product oM, and M, hence we also have the branched covering BapM — M.
The knowledge of the branch loci, multiplicities and bramtices ofriz andP, then allows us to
identify the part of the branch locd that constitute€) and the multiplicities and branch indices of
the maprig,. This completely determines also the second coveringmgapM, — S$o E). g

We denote in the following by the same notatigg the Hilbert space completion of the vector
spacex of finitely supported complex valued functions gg in the inner product (6.9). We denote
by dwm the standard orthonormal basis consisting of functiméM’) = &y w/, with dy w’ the Kro-
necker delta.

Given an elemen¥l € g, we define an associated bounded linear opergjoon #¢ of the form

EM”) if M'=MoM”
(AmME)(M’) = { (6.10)

0 otherwise.

Notice that (6.10) is well defined because of Lemma 6.3.

LEMMA 6.4. The adjoint of the operatq6.10)in the inner product6.9)is given by the operator

, &(MoM’) if the composition is defined
(Am&)(M7) = (6.11)

0 otherwise.

PrRoOE We have

€Al = % E(M’)Z(M”)ZZE(MOM”)Z(M”)=<A’KAE,Z>-
6

M’=MoM”
g

We regard the operators, andAy, as the annihilation and creation operators#associated
to the manifoldM. They satisfy the following relations.

LEMMA 6.5. The products §Av = Py and Ay Ay, = Qu are given, respectively, by the projec-
tion By onto the subspace afs given by the range of composition B, and the projection @ onto
the subspace ofig spanned by th#1’ with gM’) =r(M).

PrRoOOF This follows directly from (6.10) and (6.11). O
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The following result shows the relation between the algéljrg) and the algebra of creation and
annihilation operatorsw, Ay, .

LEMMA 6.6. The algebra of linear operators arg generated by the y\is the imageps(C[g])
of C[g] under the representatiopg of (6.8).

PrROOF Every functionf € C[g] is by construction a finite linear combinatidn= 3\ ay dw,
with ayy € R. Under the representatiq; we have

(Pc(dm)E)(M') = > dm(M1)E(Mz) = (AuE)(M ). (6.12)
M/ —fT30M,
]

This shows that, when working with the representatipgghe correct way to obtain an involu-
tive structure is by extending the algebra generated byghéo include theAy,, instead of using the
involution (6.3) ofC[g].

6.3. Hamiltonian. Given arepresentatiqgm: 2 — End(# ) of an algebraa with a time evolution
0, one says that the time evolution, in the representaiida generated by a Hamiltoniah if for all
t € R one has

p(ai(f)) =e™Mp(f)e™, (6.13)
for an operatoH € End(# ).

LEMMA 6.7. The time evolutions- and off of (6.5) and oy = oFo®, of (6.4) extend to time
evolutions of the involutive algebra generated by the ojpesady and A, by

or(Aw) =n"'Au  of(Ay) =n""Ay,

oR(Am) =mtAy  oR(Ay) =m A (6.14)
oi(Aw) = ()" Av - oA = (5) " A
PrROOF The result follows directly from (6.12) and the conditiof{T*) = (o¢(T))*. O

We then have immediately the following result.
LEMMA 6.8. Consider the unbounded linear operator tand HS on the spacei defined by
(Hg&)(M) =log(n) E(M),  (HG &)(M) =log(m) §(M) (6.15)
for M a geometric correspondence of the form
GCEcS™ M@ SBHESE

with T and Ty branched coverings of order n and m, respectively. Thgnaﬂd I—@ are, respec-
tively, Hamiltonians for the time evolutiom$ andof in the representatiopg of (6.8).

PrROOE Itis immediate to check that
pe (o () =e ™ pg (f)éM" and pg(oR(f)) =e " pg (f)et",

for f € C[g]. Infact, it suffices to use the explicit form of the time evaus on the creation and an-
nihilation operators given in Lemma 6.7 above to see thatdne implemented by the Hamiltonians
HE andH§. O
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An obvious problem with this time evolution is the fact thia¢ tHamiltonian typically can have
infinite multiplicities of the eigenvalues. For example,thg strong form of the Hilden-Montesinos
theorem 4] and the existence of universal knot33], there exist knotK such that all compact
oriented 3-manifolds can be obtained as a 3-fold branchedraxf S°, branched alondl. For this
reason it is useful to consider time evolutions on a coniatudlgebra of geometric correspondences
that takes into account the equivalence given by 4-dimeasicobordisms. We turn to this in 87 and
88 below.

7. Equivalence of correspondences

It is quite clear that, in our first definition of the categayof knots with correspondences given
by branched covers of the 3-sphere, we typically have spafcemrphisms that are “too large” to
deal with effectively. The following result illustrates ®of the problems we encounter.

LEMMA 7.1. There are choices of embedded graphs GioBwhich Hon{G, G') is theQ-vector
space spanned by all compact oriented connected 3-masiifold

ProoOFR To find such example it is suffices to restrict to the case &@eandG’ are knots. The
result is an immediate consequence of the existenamiversal knotgsee the appendix and also
[33], [35]). A knot G is universal if all compact oriented connected 3-manifalds be obtained as
branched covers @2 branched along the same kr@®t It suffices to choos& andG' to be universal
knots to obtain the stated result. O

Thus, it is clear that it is necessary to impose a suitablévalgunce relation~ on correspon-
dences and redefine our category as the categorywhere objects are graphs and the morphisms
areQ-linear combinationg= ¥; & [M;] of equivalence classes of branched covers with the preserti
described above. This will allow us to work with smaller spgof morphisms. It is well known that,
whenever one defines morphisms via correspondence, beldéscycthe product as in the case of
motives or submersions as in the case of geometric corrdspogr, the most delicate step is always
deciding up to what equivalence relation correspondertoasi@ be considered. In fact, as the case of
motives clearly showdf. [40]) the properties of the category change drastically whenaranges the
equivalence relation on correspondences. In the case ari¥foids with the structure of branched
covers, there is a natural notion of equivalence, whichvsmgby cobordisms of branched covers.

7.1. Cobordisms of branched coversHilden and Little €f. [37]) gave us a suitable notion of
equivalence relation of branched coverings obtained bygusbbordisms. Namely, suppose given
two compact oriented 3-manifoldd ; andM, that are branched covers 8%, with covering maps
M : M1 — SPandm, : My — SB, respectively branched along 1-dimensional simpliciahptex E;
andE,. A cobordism of branched coverings is a 4-dimensional noéhdV with boundarydwW =
M1U—M, (where the minus sign denotes the change of orientatiomoveed with a submersion
q:W — S®x[0,1], with My = q~1(S® x {0}) andM, = g~ %(S® x {1}) andq|u, = T4 andq|u, =
. One also requires that the maps a covering map branched along a surf&e S* x [0,1]
such thatdS = E; U —Ep, with E; = SN (S® x {0}) andE, = SN (S® x {1}). Since in the case of
both 3-manifolds and 4-manifolds there is no substantiémince in working in thé®L or smooth
categories, we keep formulating everything in Blesetting. We adapt easily this notion to the case
of our correspondences. We simply need to modify the dedmigibove to take into account the fact
that our correspondences have two (not just one) coverinas nees®, so that the cobordisms have to
be chosen accordingly.
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DEFINITION 7.2. Suppose given two morphisis; andM» in Hom(G, G'), of the form
GCEcSE M ®iP5E G

GCECS M, 2 5E G,

Then a cobordism betwedvi; andM, is a 4-dimensional manifol&v with boundaryoWW =M, U
—M >, endowed with two branched covering maps

scSx[0,1 L w-L$x[0,158, (7.1)

branched along surfac&S c S x [0,1]. The mapsjandg have the properties thi; = q~1(S® x
{0}) =q~Y(S*x {0}) andM2 = g }(S* x {1}) = ¢~ H(S* x {1}), with qlm, = T 1, I |m, = Tl 1,
dm, = Te2 andq|w, = Tz’ 2. The surfaceSandS have boundargS= E; U —E; anddS = E} U
—E}, with Ey = SN (S® x {0}), E2 = SN (S¥ x {1}), B, = SN (S¥x {0}), andE} = SN (P x {1}).

Here By “surface” we mean a 2-dimensional simplicial compleat is PL-embedded i8° x
[0,1], with boundarydS c S® x {0,1} given by 1-dimensional simplicial complexds. embedded
graphs.

LEMMA 7.3. We setM 1 ~ M, if there exists a cobordims W as in Definition 7.2. This is an
equivalence relation.

PROOF (1) Reflexivity. ConsideM in Hom(G, G') specified by a diagram
EcSEMBESoE.

We can choos®# = M x [0,1] as a cobordism dff with itself. This hagW =M U —M,
with covering maps

E1x[0,1] CS¥x[0,1] <X W =M x [0,1] -2 S*x [0,1] D E} x [0,1]

branched along the surfac8s= E; x [0,1] andS = E} x [0,1] in $® x [0,1]. These have
0S= E U—E; anddS = E; U —Ej, as needed. The covering magsand g, have the
properties that

M =0 7(S*x {0}) = g }(S* x {0}) = 0, *(S* x {1}) = g *(S° x {1}).
Thus, this satisfies all the properties of Definition 7.2 abov

(2) Symmetry. GivenM1 ~ M, there exist a cobordisM/ satisfying the properties of Def-
inition 7.2. Now considelV, which is the same manifol&/, with the opposite orienta-
tion. This is also a cobordism betwedt, andM 1, that is, it has boundafW = oW =
(M1U—-M3) = —-M1UMa. Itis also endowed with two branched covering maps

ScSx0,1] LWL s*x[0,1 58, (7.2)

branched along the surfacé8 S) ¢ S® x [0, 1], where here agaiB, S, g, ¢ and[0,1] are
the same a$§, S, g, g and|0, 1], but taken with the opposite orientation. The mg@sdq
have the property that

M1=g (P x {0}) =g Y(S*x {1}) = ¢ HS*x {0}) =@ “(S*x {1}),
Mz=q Y(SPx {1}) =g Y(S*x {0}) = ¢ U x {1}) =T “(S*x {0}),

with Tlm, = Te1, I |m, = o1, Gm, = Te2 andd|u, = Tz 2. The surfaceSandS have
boundarydS = (0S) = (E;U—Ey) = —E; UE; anddS= (0S) = (E;U—Ep) = —E1 UEy,
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with E; = SN (S®x {0}), E2 = SN (S x {1}), Ei= SN(SEx{0}), andE, = SN(SEx{1}).
Thus, this shows thal, ~ M ;.
(3) Transitivity. Assume thaM; ~ M, andM, ~ M 3. We want to show thd1; ~ M 3. Since

M1 ~ My, there exists a cobordiskv; as in Definition 7.2 with a diagram

S cSx[0,1 2w L ex[0,158, (7.3)
andoS = E; U —Ey, 0S, = E; U —E}. Similarly, sinceM, ~ M3, there exist a cobordism
W5, which also satisfies the properties of Definition 7.2, withering maps

S cSx[0,1] <2 W -2 % (0,1 5 S, (7.4)

wheredS, = E;U—Ez anddS, = E,U —Ej;. Now we use the “collar neighborhood” property.
Consider the sets

=q (S x[1-¢1), Uj=(d) (Sx[1-¢1),
Uzzqz LS x[0,¢]), U; = (6p)(S* x [0,€]).
For a sufficiently smal¢ > 0 these have the property that there exist homeomorphisms
@ :Up—Max[l-¢g1], ¢:U —Myx[l-g1],
@ Uz — M2 x [0,¢], @ :Uj;— My x[0,¢].

Here we can replace homeomorphisms by PL-homeomorphisniffebmiorphism if we
work in the PL or smooth category. Moreover, under this iifieation, we also have, for
i = 1,2, identifications

fi = UJ'Qi(H_l =T xid, g == Wgi(¢f) ™" =g, x id, (7.5)
where the; : S x [1—¢€,1] — S® x [L—¢,1] andy) : S® x [0,€] — S% x [0, €] are homeo-
morphisms Wlth the property that

Wi(SIN(S*x [1—¢,1])) =Exx [1—¢,1]
Wi(SIN(Sx [1-¢,1))) =E)x [1—¢,1]
W2(S N (S°x [0,€])) = E2 x [0,¢]

lIle(gzm (§ X [078])) = E2 X [078]'

Thus, f1 is branched along; x [1—¢,1], f» is branched along, x [1—¢, 1], g; is branched
alongE; x [0,€] andg;y is branched alon x [0,€]. Now fix a homeomorphisrh : [1—
€,1] — [0,€] and define

W =Wy Um, Wo =W UW,/ ~,

which is the quotient of the disjoint uniafy UW, by the equivalence relation generated by
requiring thatwy ~ wo whenevew; € U;NU; andw, € U NUS with her (wy) = @(w2)
andhg, (w1) = ¢,(w2). We can assume in the following, possibly after passing toaller

e > 0, thatU; = Uj andU; = UJ, so we just use the notatidty andU, for both the¢
and@ maps. We then need to check thst= W Uy, W defined as above satisfies all
the properties of Definition 7.2. First, we check thdtis a 4-dimensional manifold with
boundaryoW = M ; UM 3, endowed with two branched covering maps

Scx[0,1 w2 x0,158. (7.6)
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Here we use an identificatid®® x [0,1] ~ S® x 1, wherer is the interval obtained by iden-
tifying two copies of the interval0, 1] by gluing[1 — ¢€,1] and|[0, €],

I = 10,1 Un1—e1—[og [0,1].

This means that we identifg; ~ s, for s, € S x [1—¢,1] ands; € S° x [0,€] whenever
h(yi(s1)) = Wa(s2) andh(W)(s1)) = W5(s). In order to define the functiond, and My
of (7.6), we first need the following fact. iy ~ w,, with wy € U; andw, € Uy, then
g1(w1) ~ g2(Wy). In fact, suppose that; ~ w,. This means thalig; (w1) = @(w;) and
ha, (1) = @ (w2). Suchw; andw, have images; (w;) € S° x [1—¢,1] andgp(ws) € S® x
[0,€]. We apply the mapgy; and obtairhy; (qu(w1)) = (Tig 1 x h)(Wa) = P2(d2(W2)), which
means thad}; (w1) ~ gz(W,). The same argument shows that, conversety, (ifv1) ~ gz (W,)
thenw; ~ w,. Thus, we can define the functioflg andll, of (7.6) by setting

w) weW
(W) = (W) h
Qw) weWw,
(W) weW
Ma(w) = q,l( ) "
BH(w) weW
This gives well defined maps on the quotiélt=W; Uy, W> of the above equivalence
relation. By construction, these two mafg and[l; are branched, respectively, along
surfacesS S ¢ S° x [0,1], where
S=SU,S=5US/~,
which is again the quotient of the disjoint uni®uU S, by the equivalence relation ~ s,
whens; € SN (S x [1—¢,1]) ands, € SN (S® x [0,€]) with h(P1(s1)) = Ya(s), i.e. the
identification obtained by gluing the two surfaces alongadtmon boundary components

given by the linkE,. The surfaceS is obtained in the same way. Moreover, the mBgs
and[l, have the properties that

M1 =0 (S x {0}) =N 1S’ x {0}) = *(S*x {0}) =M, (S° x {0})
and
M3z =0 (S x {1}) =N H(S % {1}) =g 1S x {1}) = N1 (S x {1}).

The surfacesS and S have boundargS= E; U —E3 anddS = E} U —Ej4, with E; = SN
(S*x {0}), E3= SN (S*x {1}), E; = 8N (S*x {0}), andE, = S N (S® x {1}).

(7.7)

0

PROPOSITION7.4. LetM1 ~ M3 in Hom(G,G') andM/ ~ MY in Hom(G',G”). Then the com-
positions satisfy
MjioM1~M5oMs.

PROOF Suppose giveM 1 andM;, € Hom(G,G') andM/ andM’, € Hom(G',G") with
GCEnCS ™M BSOE;,DG
GCEnCSEM, BS5ERDG

T,

" (7.8)
GCE,CcS<M,E2S$DE,DG

Ty T
G CEjpcSEM, 2SS DOE),DG.
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SinceM 1 ~ M, there exist a cobordishV; such thatwW;, = M ;U —M,, endowed with two branched
covering maps

S1CSx[0,1 <% w5 (0,1 5 S, (7.9)

branched along surfac&s;, S;» S x [0,1]. These surfaces have boundafy; = E;; U —Ep; and
0S12 = E12U —Ey», and the branched covering maps satisfi, = Tu1, djlm, = Tuz, Gilm, = T1
andd |m, = T, with the properties of Definition 7.2. In the same whl; ~ M/, mean that there
exists a cobordisrib, with dWs, = M U —MY, with branched covering maps

S1C S x[0,1] <2 W 2. B x[0,1] 5 S, (7.10)

branched along surfac&;, S, C S°® x [0,1]. These surfaces have boundas; = Ej,U—E5, and
0, = Eizg —E5,, anq .tr.le maps satisty|y, = T_"11v Ualmy = o, G2lmy, = Ty aan’z\M/z =TL,,, with
the properties of Definition 7.2. The compositibh o M/ corresponds to the diagram

M 10 M 3_
Pr1 P12
/
1 1
Thy ”’12
T2 T'fll
EnCS® EnC SO E}, E;,C S

Corollary 2.7 shows that the composite mé@ps= 110 P11 and, = 11,0 Pp are branched coverings

l1 = (En1UTaamg; (Epy)) € S* & MioM) B S8 0 1o = (B, U, H(Eao)).

Thus,M10M/ is @ morphism irHom(G,G"). Similarly, for the compositioM, o M/, we consider
the diagram

M 20 M /2
P21 k\
M, M,
1 T,
o2 %
Ex C S Ez C S D) Eél Eéz - 3

Again by Corollary 2.7 we know that the mafis= 11 0 P,; andft, = 1t,,0 P,, are branched coverings
with

_ # v .
I3 = (E21UTeaTh; (E1)) € S° & Mo M5 = S° O lg = (EpU T, (E22),

henceM oM} is also a morphism iflom(G,G"). Now, in order to show tha1; o M1 ~ M} oMy,
we define a new 4-dimensional manifold given by the fiberedyxb

Wi oWs = {(xy) € Wi x Walqy (X) = ga(y) }- (7.11)

This has branched covering maps obtained as in the diagrianw,be
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W oW,
Wy Wo
/ \ / *
qg_ a2
Siic $x[0,1] SipC (% [0,1]) O Sn S % [0,1].

The mapsTy = gy o Fy and T, = g o F; are branched along the surfaces S with § = S, U
au(d; H(S1)) andS = S U d,(0;1(S12)), i.e. we have a branched covering

& cSx[0,1 EWioWs 2 2% [0,1] > S.

We claim thatW; oW, is a cobordism betweel 1 oM/ andM;o M) and that it satisfies all the
properties of Definition 7.2. To show this, we first prove ttheg boundary is given by

0(Wy oW,) = 0Wj 0 OV, = (M]_U—MZ)O(M&U—MIZ) = (M]_OM?L)U—(MQOM%).

First we want to prove that(\Wj o\W,) = 0Wj o OW5.
By the definition ofW; oW, we know that it is a submanifolM) oW, € Wy x W, defined by imposing
the conditiond (w1) = d2(W2) on pairs(wy,w,) € Wy x Wb, hence

O(Wl O\Nz) C a(W]_ XVVZ) = oWy xWo UW, X OWS.

In fact, we haved(Wy oWo) = (W oWo) NA(WA x Wh) Let (wg, W) € 0(Wp o) C Wy oWh. Suppose

that (wy,w2) € W4 x Wo. Then, sincew; € W, it has imaged; (w;) € S2 x {0} or in S3 x {1}.
Sayd,(w;) € S® x {0} (the other case is analogous). The conditipfw;) = gp(w2) then implies
that gp(ws) € S® x {0}, which means thatv, € g, *(S® x {0}) € k. This shows that an element
(W, W) € 0(Wy oWb) satisfiegwy, Wo) € AWy x Wb, hence thad(Wy oWs) C W, x OWS.
Conversely, an elemefivy, w,) € 0W; x 0W,, with the property thay; (w1) = gz(W2) is inWj oW N
oWy xWo) = 0(Wy oW5). This completes the proof that

O(Wl OVV2) = an o 6W2
Next we prove tha{M1 U —M3) o (M7 U—-M%) = (M10oM/)U—(Mz0oM)). This follows from
the following simple general fact. Suppose given disjointons X = X3 U Xz, Y = Y1 UY,, and
Z = Z1UZp, with submersiond; : X; — Zj andg; : Y; — Z;. Letf : X — Z andg:Y — Z be defined
by f(x) = fi(x) for x e X; andg(y) = gi(y) fory e ¥;, fori = 1,2. Then the fibered product satisfies
XxzY = (X]_ leYl) U (Xz XZZYZ).

In fact, one has

XxzY = {(xy) e XxY[f(x)=9(y)}
= {(xy) € XixY1| f1(X) = gr(y)} U{(XY) € X2 x Y2 f2(X) = ga(Y) }.
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The result then follows by applying this general facto= M;, Y, = M/, Z; = S® x {0} andZ, =
S® x {1}. Moreover, we have
S = 9(SuUqu(ay H(S1))) = 0S11Uda (0 H(S1))
= EnU-ExnUdi(dy *(EjU—Epy) = EnnU—EarUcu(dy H(Efy)) Ut (dh *(Epy))
= EnnUaqu(d; *(Efy) U (—EaUa(dy H(Ey)))
= E1nUmna (T, (Efy)) U (—Ea1U Ta(T3 (E)y)))
= l1U—ls.
By the same calculation one can §& = I, U —I4. Finally, we need to show that
T, 1S x {0}) =M1oM] =T, 1(S® x {0})
T HSE X {1}) =MaoMb =T, H(S® x {1}).

We just consider the case ®f *(S® x {0}), as the argument for the other cases is analogous. We
have

T HS % {0}) = Fita;(S°x{0})
= {(xy) WL xWo: g (X) = Ga(y), 0 (X) € S x {0}}
= {(xy) €qr (S x {0}) x Wo: 6y (X) = ()}, (7.12)
while we have
MioM; = g;(S*x0)0q,}(S*x0)
= {(xy) € g1 (S x {0}) x R} (S* x {0}) : Gy (X) = aa(y) }- (7.13)
In comparing (7.12) and (7.13), we see that, in order to shawT, *(S® x {0}) = g;}(S* x 0) o
0, 2(S® x 0) it suffices to show that pointéx,y) € F; 1q;1(S® x {0}) necessarily have alsp €
0, 1(S® x 0) not just inW,. This follows from the conditior; (x) = ga(y). In fact, given(x,y) €
Fy oy (S* x {0}) thend} (x) = da(y), butd(d; *(S* x {0})) € S*x {0}, hencegy(y) € S x {0},
which impliesy € q§1(83 x {0}). This shows that the two sets of (7.12) and (7.13) are equal.
A similar argument can be used to show thbito M) = T, 1(S® x {0}) and thaM ;o MY, = T, (S x
(1) =T, (S x {1}). O
LEMMA 7.5. Let G and Gbe embedded graphs 8% and let HoniG, G') be the set of geometric
correspondences as in equation 1.6. Let
Hom(G,G',~) := Hom(G,G')/ ~ (7.14)
denote the quotient of HiB, G') by the equivalence relation of cobordism of Definition 7.Befe
is an induced associative composition
o:Hom(G,G',~) x Hom(G',G",~) — Hom(G,G",~). (7.15)
As in 84 above, given a commutative rifgwe defineHomg (G, G') to be the freeR-module
generated bHom(G,G',~), that is, the set of finit&-combinationsp = ¥y au[M], with [M] €
Hom(G,G',~) andayy € Rwith ay; = 0 for all but finitely many[M]. We writeHom. (G, G') for
Homy, . (G,G'). We then construct a categof .. of embedded graphs and correspondences in the
following way.

DEFINITION 7.6. The categoryr .. has objects the embedded grahs S® and morphisms
theHomk .(G,G)
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After passing tdViat(Xr ) one obtains an additive category of embedded graphs anespoim-
dences, which one still denotég . .

7.2. Time evolutions and equivalenceWe return now to the time evolutions (6.5) and (6.4) on
the convolution algebr&|[g|. After passing to equivalence classes by the relation obibdm, we
can consider the semigroupoigl which is given by the data = ([M],G,G’), where[M] denotes
the equivalence class & under the equivalence relation of branched cover cobordissmma 7.3
shows that the composition in the semigroupgidhduces a well defined composition lawdn We
can then consider the algelitég | with the convolution product as in (6.1),

(frxf2)(M]) = > f1([M1]) f2([Mz2]). (7.16)
[M1],[M2]€g:[M1]o[M2]=[M]

The involutionf — f" is also compatible with the equivalence relation, as itreokseto the involution
on the cobordismgV that interchanges the two branched covering maps.

LEMMA 7.7. The time evolution$6.5) and (6.4) descend to well defined time evolutions on the
algebraClg].

PrROOF The result follows from the fact that the generic multiplicof a branched covering is
invariant under branched cover cobordisms. Thus, we havsdaced time evolution of the form

oF(HM]:=ntf[M], oR(F)M]:=mtf[M], oy(f)[M]:= (%)“ fM],  (7.17)
where each representative in the cldd$ has branched covering maps with multiplicities
GCECSEMMSHE 5G.
We see that the time evolution is compatible with the involutas in Lemma 6.2. O

_7.3. Representations and Hamiltonian.Similarly, we can again consider representations of
C[g] asin (6.8)
P(HOM] = > f(M1]€[Mz]. (7.18)
M1]€g ,[Mz]ega:Ma]o[M]=[M]
As in the previous case, we define on the spageof finitely supported functiong : G — C the
inner product

(€,&) =3 EMIEM]. (7.19)

(M]
Once again we see that, in this representation, the adjoid dot correspond to the involutidiy
but it is instead given by the involution in the algebra ofatien and annihilation operators

.| &M M = [M]o[M7]
A ®)IM] = { 0 otherwise (7.20)
. h &[M oM’] if the composition is possible
(A )M = { 0 otherwise. (7:21)

Again we haveps(djm]) = A so that the algebra generated by Mg, is the same as the image of

C[g] in the representatiopg and the algebra of the creation and annihilation opem@ﬂsandA?M]

is the involutive algebra irs (#g) generated byC[G]. In fact, the same argument we used before

shows thaAfM] defined as in (7.21) is the adjoint &fy in the inner product (7.19).

We then have the following result. We state it for the timeletion off, while the case ob} is
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analogous.

THEOREM 7.8. The Hamiltonian H= Hé generating the time evolutiasf in the representation
(7.18)has discrete spectrum
Spec¢H) = {log(n) }nen,
with finite multiplicities
1 < Ny < #1(Bn), (7.22)

where B, is the classifying space for branched coverings of order n.

PROOEF It was proven in 11] that then-fold branched covering spaces of a manifdd up to
cobordism of branched coverings, are parameterized bydimotopy classes
Bn(M) = [M, By, (7.23)
where theB, are classifying spaces. In particular, cobordism equnadeclasses ai-fold branched
coverings of the 3-sphere are classified by the homotopypgrou

Bn(S®) = Ti5(Bn). (7.24)

The rational homotopy type of the classifying spaBg$s computed in11] in terms of the fibration
t—1 t

K(mj—1) — \/ZK(m j—1) — \/K(m j), (7.25)

which holds for any abelian groupand any positive integetsj > 2, with >~ denoting the suspension.
For theBy, one finds

p(n)
Bn@Q=\/K(Q,4) (7.26)
with the fibration
p(n)—1
SoQ— \/ $'xQ—B®Q, (7.27)

wherep(n) is the number of partitions af. The rational homotopy groups Bf, are computed from
the exact sequence of the fibration (7.27) (se)[and are of the fornm, (By) ® Q = QP with

p(n) k=4

b QUghpM -1 =1410 mod12withk#14 0
Q42 p(m -1 +Q(&2, p(n)—1) k=7 mod12 :
0 otherwise

where 1
a,b) ==Y p(d)b¥

Q(a,b) adzlau( )
with p(d) the Mdbius function. The result (7.28) then implies tha tiomotopy groupsi(By)
satisfy 3(Bp) ® Q = 0. Moreover, in L1] the classifying spaceB,, are constructed explicitly by
fitting together the classifying spaB®(2), that carries the information on the branch locus, with the
classifying spac®%, for S the group of permutations &f elements. For example, in the case of
normalized simple coverings of]; the classifying space is a mapping cylin@®D(2) Ugp, B, with
D the dihedral group, over the maps induced by the incluBipr— O(2) as the subgroup leaving
the set of k-th roots of unity globally invariant, abg — S giving the permutation action on the k-th
roots of unity. In the case ofLl] that we consider here, where more general branched cogeare
considered, the explicit form dj in terms ofBO(2) andBS; is more complicated, as it also involves
a union over partitions df, which accounts for the different choices of branchingdedj of data of
disk bundles associated to each partition.
The skeleta of the classifying space have finitely generatedology in each degreeg. they are
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spaces of finite type, and simply connected in the cas&X)f By a result of Serre it is known that,
for simply connected spaces of finite type, the homotopy gsa@re also finitely generatedf(also
80.a of R9]). The conditiontz(B,) ® Q = 0 then implies that the groups(By,) are finite for all
n. By the same argument used in Lemma 6.8, the Hamiltonianrgtng the time evolution in the
representation (7.18) is of the form

(HE&)[M] = log(n) E[M], (7.29)

whereM is a branched cover @& of ordern branched along > G, for the given embedded graph
G specifying the representation. Thus, the multiplicity loé teigenvalue lo@) is the number of
cobordism classel#1] branched along an embedded graph contai@ras a subgraph. This number
Np = Np(G) is bounded by K Ny(G) < #1i3(Bp). O

The result can be improved by considering, instead of thadctassifying spacd3,, of branched
coverings, the more refined Tejada classifying sp&zé€6) introduced in 9], [8]. In fact, the homo-
topy groupriz(B,,) considered above parameterizes branched cobordismslafds@anched coverings
where the branch loci are embedded manifolds of codimerision Since in each cobordism class
there are representatives with such branch lokitlle discussion in Section 2 in Chapter 2 below)
we can work withB,, and obtain the coarse estimate above. However, in our cmtisin we are
considering branch loci that are, more generally, embeddapohs and not just links. Similarly, our
cobordisms are branched over 2-complexes, not just emtesidéaces. In this case, the appropri-
ate classifying spaces are the generalizatigg(g) of [59], [8]. These are such th&,(2) = B, and
Bn(¢), for £ > 2, allows for branched coverings and cobordisms where thechbrlocus has strata of
some codimension Z r < ¢. We have then the following more refined result.

COROLLARY 7.9. The multiplicity N((G) of the eigenvaluég(n) of the Hamiltonian g satisfies
the estimate

1< No(G) < #75(Bn(4)). (7.30)

PROOE In our construction, we are considering branched coveraighe 3-sphere with branch
locus an embedded grafiD G, up to branched cover cobordism, where the cobordisms anebed
over a 2-complex. Thus, the branch lodu$as strata of codimension two and three and the branch
locus for the cobordism has strata of codimension two, ttaee four. Thus, we can consider, instead
of the classifying spacB,, the more refined,(4). The results of§] show thatrz(By) = 153(Bn(3)),
while there is a surjections(Bn(3)) — 13(Bn(4)), so that we haver(B,(4)) < #13(By). Thus, the
same argument of Theorem 7.8 above, using cobordisms witifistd branch loci, gives the finer
estimate (7.30) for the multiplicities. d

We can then consider the partition function for the Hamikiarof the time evolution (7.17). To
stress the fact that we work in the representafioa pg associated to the subsemigroupagid for a
given graphG, we writeH = H(G). We then have

Zs(B) = Tr(e 1)) = 5 exp(—Blog(n)) Nn(G). (7.31)

Thus, the question of whether the summability conditiofeT#") < « holds depends on an estimate
of the asymptotic growth of the cardinalities#B,,) for largen — o, by the estimate

{B) =3 nP<Zo(B) < Y #ms(Bn)n P, (7.32)

This corresponds to the question of studying a generatingtifon for the numbersm(Bp). We will
not pursue this in the present text, but we hope to returnitofitture work.
Notice that there is evidence in the results&jfifi favor of some strong constraints on the growth of
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the numbers #;(B,,) (hence of the #;(B(4))), based on the periodicities along certain arithmetic
progressions of the localizations at primes. In fact, itrsved in [7] that, at least for the classifying
spacesBR, of normalized simple branched coverings, in the stablegang 4 and for any given
prime p, the localizationsw(BR,) ) satisfy the periodicity

ﬂg(BR-,)(p) = 'lT3(BRn+2a+i+1pb+j )(p),

for n= 22p°’mwith (2,m) = (p,m) = 1. The number D! is determined by homotopy theoretic data
as described in Proposition 11 [ Thus, one can consider associated zeta functions

Zp(B) = 3 #16(BRy) (pyn P (7.33)

If a finite summability Tte P") < o holds for sufficiently larged >> 0, then one can recover in-

variants of embedded graphs as zero temperature KMS fuiatsioby considering functionals of the
Gibbs form "
Tr(ps(f)e™)

bop(f) = Tre ) (7.34)
where, for instancef is taken to be an invariant of embedded graphs in 3-manifafdsf (M) :=
f(r51(G)), for 15 : M — S® the branched covering map. In this case, in the zero temperknit,
i.e.for B — oo, the weak limits of states of the form (7.34) would give baok invariant of embedded
graphs inS® in the form

éiﬂlq’“(f) = f(Ug).

Notice that, to the purpose of studying KMS states for theladg with time evolution, the conver-

gence of the partition functiodg(p) is not needed, as KMS states need not necessarily be of the
Gibbs form (7.34)cf. [27]. However, it is still useful to consider the question of twvergence of

the partition functiorZg(B), since Gibbs states of the form (7.34) may have applicatoesnstruct-

ing interesting zeta functions for embedded gra@hs S°.

For instance, suppose given an invarignbf cobordism classes of embedded graphS§*inCobor-

dism for embedded graphs can be defined, for connected gipimgb7], and in the multi-connected
case using the same basic relation (attaching a 1-handie)ths case of links, as ir8p]. An ex-
ample of such an invariant can be obtained, for instancephgidering the collection of link¥ (G)
constructed in42] as an invariant of an embedded grapland define a total linking number @fG)
by adding the total linking numbers of all the links in theleotion. Given such an invariaft, one

can then consider, for a set of representatives of the dldsec T(By), the values (e T (G))
and form the series

F(meTg!(G))n P, (7.35)

N [M]emg(Bn)

where the inner sum is over the clasfés € T3(By) such thaM is a branched cover & branched
along a graptE O G. Similarly, one can form variations of this same conceptetasn the zeta
functions (7.33). When the functidf on the set of theTig Tz (G)} is either bounded or of some
growth~ n%, then the convergence 8§ () (or of theZ,(f3) of (7.33)) would ensure the convergence
of (7.35). Obviously such zeta functions are very compéidatbjects, even for very simple grapBs
and it would be difficult to compute them explicitly, but it wid be interesting to see whether some
variant of this idea might have relevance in the context of sptworks, spin foams, and dynamical
triangulations.

Finally, notice that, while the HamiltoniaH of the time evolutionol has finite multiplicities
in the spectrum after passing to the quotient by the equicaleelation of cobordism (similarly for
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o), the infinitesimal generator for the time evolution= a+oR, still has infinite multiplicities. In
fact, the time evolution (6.4) is generated by an unboungestadorD that acts on a densely defined
domain in#g by

Doy = Iog( ) S, (7.36)

with n and m the multiplicities of the two covering maps, as above. Tipgrator is not a good
physical Hamiltonian since is does not have a lower boundhenspectrum. It has the following

property.

LEMMA 7.10. The operator D of(7.36)has bounded commutatoli3, a] with the elements of the
involutive algebra generated (algebraically) by thg,Aand ATM].

PROOF It suffices to check that the commutat¢is Ay;] and[D, A ]] are bounded. We have

. nn n n
S G R I

The case ofD,Ay] is analogous. O

Notice, however, thdD fails to be a Dirac operator in the sense of spectral triflesause of the
infinite multiplicities of the eigenvalues.

8. Convolution algebras and 2-semigroupoids

In noncommutative geometry, it is customary to replace fheration of taking the quotient by
an equivalence relation by forming a suitable convolutitgelara of functions over the graph of the
equivalence relation. This corresponds to replacing arvalgmce relation by the corresponding
groupoid and taking the convolution algebra of the groupcid14]. In our setting, we can proceed
in a similar way and, instead of taking the quotient by theiedence relation of cobordism of
branched cover, as we did above, keep the cobordisms elypsiad work with a 2-category.

LEMMA 8.1. The data of embedded graphs in the 3-sphere, 3-dimensieoahgtric correspon-
dences, and 4-dimensional branched cover cobordisms faroaegoryg 2.

PrROOF We already know that embedded graphs and geometric conmdspces form semi-
groupoid with associative composition of morphisms givethe fibered product of geometric corre-
spondences. Suppose given geometric correspondéhcds, andM 3 in Hom(G, G'), and suppose
given cobordism&Vy andW, with oWy = M1 U —M» andoWs = Mo U —M 3. As we have seen in
Lemma 7.3, for the transitive property of the equivalendati@n, the gluing of cobordisma; Uy, Wo
gives a cobordism betwed, andM 3 and defines in this way a composition of 2-morphisms that has
the right properties for being the vertical compositionhia 2-category. Similarly, suppose given cor-
respondenceM M, € Hom(G,G), andM», M, € Hom(G',G"), with cobordismah, andW, with
MWL =M1U—M7 anddWe = Mo U —Mo,. Again by the argument of Lemma 7.3, we know that the
fibered product; oW, defines a cobordism between the compositivhs> M » andl\7| 10Mo. This
gives the horizontal composition of 2-morphisms. By thailtssof Lemma 7.3 and an argument like
that of Proposition 2.11, one sees that both the verticahanidontal compositions of 2-morphisms
are associative. 0

In the following, we denote the compositions of 2-morphidmghe notation
horizontal (fibered product)W, oW, vertical (gluing): Wy e W5, (8.1)
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We obtain a convolution algebra associated to the 2-senpgid described above. Consider the
space of complex valued functions with finite support
frau—-C (8.2)
on the set
u = UM]_.MzEQ“(M]_,Mz)?
of branched cover cobordisms
w
UMMy = {W[M1~ Mz}, (8.3)
with
scS¥xldwh Sxios,

where~ denotes the equivalence relation given by branched cobardsms witdW = MU —M»,
compatibly with the branched cover structures as in 87 above
As in the case of the setdom(G, G') of geometric correspondences discussed in §2, the colfecti

U(m,,M,) Of cobordisms is a set because it can be identified with a detaoiched covering data of a
representation theoretic nature. In fact, as a PL manifoid,such cobordistw can be specified by
assigning a representation

ow :T((SEx1)\S) — S, (8.4)
which determines a covering space on the complement of HrebrdocusS. This space of functions
(8.2) can be made into an algebrdg ?) with the associative convolution product of the form

(fre f2)(W) = f1(Wh) f2(W2), (8.5)
W= ews,

which corresponds to the vertical composition of 2-monptisnamely the one given by the gluing
of cobordisms. Similarly, one also has ar{g?) an associative product which corresponds to the
horizontal composition of 2-morphisms, given by the fibgpealduct of cobordisms, of the form

(frofo)(W) = f1(Wa) f2(We). (8.6)
w={Tow,

We also have an involution compatible with both the horiaband vertical product structure. In fact,
consider the two involutions on the cobordisWis

Wi—W=-W, W—WY, (8.7)

where the first is the orientation reversal, so th@aVif = M1 U —M, thendW = M, U —M 4, while
the second extends the involutitvh — M"Y and exchanges the two branch covering maps, that is, if
W has covering maps

scex1dwlsixiog
thenW" denotes the same 4-manifold but with covering maps
Scex1dwiSexios
We define an involution on the algebsd 6 2) by setting
fTw) =FwY) (8.8)

LEMMA 8.2. The involution fi— fT makesa (g 2) into an involutive algebra with respect to both
the vertical and the horizontal product.
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PROOF We have( fT)T_: f since the two involutionsV — W andW — W" commute. We also
have(af,+bf)" = a_flJr + bsz. For the two product structures, we have
W=WioWo  forW =W oW
WY =W, e W)  for W =W e Wb

which gives B B
(hof)fW)= Y  FW)TW) = (o f)W)
WV:W1VoW2v
(hef) W)= Y  TW)RW) = (1] e f)W).
WV:W1VoW2v

9. Vertical and horizontal time evolutions

We say thaty; is avertical time evolutioron 4 (g ?) if it is a 1-parameter group of automorphisms
of 4(g?) with respect to the product structure given by the verticahposition of 2-morphisms as
in (8.5), namely

O't(flo fz) = O't(fl) OO't(fz).
Similarly, ahorizontal time evolutioon 4 (G ?) satisfies
O't(flo fz) = O't(fl) OO't(fz).

We give some simple examples of one type or the other first lagwl e move on to more subtle
examples.

LEMMA 9.1. The time evolution by order of the coverings definebif) extends to a horizontal
time evolution om (G?2).

PrROOF This clearly follows by taking the order of the cobordisnsskaanched coverings of
S® x 1. Itis not a time evolution with respect to the vertical corsition. g

LEMMA 9.2. Any numerical invariant that satisfies an inclusion-exuasprinciple

X(AUB) =X(A) +X(B) —X(ANB) (9.1)
defines a vertical time evolution by
ot (f)(W) = exp(it (X(W) — X(M2))) f (W), (9.2)

foroW =M,U—M,.

PrROOFE This also follows immediately by direct verification, sinc

i (fre f2)(W) = gt (x(W)—x(M2)) f1 (W) f2(Wb)
W=WUnuWo
— dt(XWa)+x(Wa)—x(M)—X(M2)) f1(Wh) F2(Ws)
W=W1UmWo
= (W) —=x(M)) £, (W ) et X(W) =X (M2)) £,(\\,) = (0 (1) @ Ot (F2)) (W).
W=WiUmWo

In particular, the following are two simple examples of ttyige of time evolution.

ExAMPLE 9.3. Settingx(W) to be the Euler characteristic gives a time evolution as i@)(9
Since the 4-dimensional volume of the boundary 3-manifdlé zero, also setting (W) = Vol(W)
gives a time evolution.
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A more elaborate example of this type is given in 811 below.

10. Vertical time evolution: Hartle—Hawking gravity

We describe here a first non-trivial example of a verticaletievolution, which is related to the
Hartle-Hawking formalism of Euclidean quantum graviB8]. The classical Euclidean action for
gravity on a 4-manifoldV with boundary is of the form

1 7 1
W,g9) = —— | Rdv—— Kd 10.1
SW,g) =~ [ Rov—z- [ Kav (10.1)

whereRis the scalar curvature ardis the trace of the Il fundamental form. In the Hartle—Hawvgkin
approach to quantum gravity, the transition amplitude betwtwo 3-dimensional geometrigly and
M2, endowed with Riemannian structurgs, andgw, is given by

(M1,01), (M2, 02)) = [ €9D[g), (10.2)

in the Lorentzian signature, where the formal functionétgnation on the right hand side involves
also a summation over topologies, meaning a sum over allrdgmsW with oW = M1U—Mo. In
the Euclidean setting the probability amplituei? is replaced byeS9), with S(g) the Euclidean
action (10.1). We have suppressed the dependence of thahgigbamplitude on a quantization
parametef.. This suggests setting

oy (f)(W,g) := &SWI f(w,g), (10.3)

with S\W, g) as in (10.1). For (10.3) to define a vertical time evolutioe, for it to satisfy the com-
patibility o(f; e f) = ot(f1) e 0t (f2) with the vertical composition, we need to impose conditions
on the metricgg onW so that the gluing of the Riemannian data near the boundamgsisible when
composing cobordismas e\Wo =W, Uy Wb by gluing them along a common bounddwy:

For instance, one can assume cylindrical metrics near thadaoy, though this is does not corre-
spond to the physically interesting case of more generalesfike hypersurfaces. Also, one needs to
restrict here to cobordisms that are smooth manifolds, alldav for weaker forms of the Riemannian
structure adapted to PL manifolds. Then, formally, oneiabtatates for this vertical time evolution
that can be expressed in the form of a functional integraaion

/W, g)e FS9D[g]
- JePS9D[g]

We give in the next section a more mathematically rigorousygde of vertical time evolution.

op(f) (10.4)

11. Vertical time evolution: gauge moduli and index theory

Consider again the vertical compositigv e W, =W Uy, Wo given by gluing two cobordisms
along their common boundary. In order to construct intargdime evolutions on the corresponding
convolution algebra, we consider the spectral theory cd®type operators on these 4-dimensional
manifolds with boundarycf. [6].

Consider first the simpler case wheXes a closed connected 4-manifold aktlis a hypersurface
that partitionsX ~. M in two componentX = X; Uy X2 with boundarydX; = M = —0X,. We assume
thatX is endowed with a cylindrical metric on a collar neighbortidé x [—1, 1] of the hypersurface



11. VERTICAL TIME EVOLUTION: GAUGE MODULI AND INDEX THEORY 43

M. Let » be an elliptic differential operator oX of Dirac type. We take it to be the Dirac operator
assuming thak is a spin 4-manifold. The restriction |y .11 has the form

0
D |Mx[-11 = C(G_S—H;)’

where ¢ denotes Clifford multiplication byds and 3 is the self-adjoint tangential Dirac operator
on M. We letP- denote the spectral Atiyah—Patodi—Singer boundary cionditi.e. the projection
onto the subspace of the Hilbert space of square integrgimers L2(M,s*|M) spanned by the
eigenvectors ofs with non-negative eigenvalues. Hese= s* @ s~ is the spinor bundle oiX,
with o+ :C*(X,5T) — C*(X,s 7). The projectiorP< is defined similarly. Leto; denote the Dirac
operator or¥; with APS boundary conditions, that is,

D 1C%(Xq,5T,P<) = C°(X,87), D5 :C*(Xq,5T,P>) = C*(Xp,57),

where

COO(X175+> PS) = {lIJ € COO(X1>5+) | PS(‘MM) = 0}7

Cw(X275+7 PE) = {LIJ S Cw(X275+) ’ PE("IJ’M) = 0}
The index of the Dirac operatar is computed by the Atiyah—Singer index theorem and is giyea b
local formula, while the index ab; is given by the Atiyah—Patodi—Singer index theorem andistss

of a local formula, together with a correction given by aniatariant of the boundary manifolsll.
Moreover, one has the following splitting formula for thel@x (f. [6], p.77)

Ind(?) = Ind(D1) + Ind(D2) — dimKer(3). (11.1)

In the case of 4-manifold&/ =W, Uy Wb, wheredW = M1 U —M3, OW; = Mp U —My, anddWs =
M> U —Mg3, one can modify the above setting by imposing APS boundanglibons at both ends
of the cobordims. Namely, we assume tWais a smooth manifold with boundary endowed with a
Riemannian metric with cylindrical endd; x [0,1] andM3 x [—1,0], as well as a cylindrical metric
on a collar neighborhooM x [—-1,1]. Thus, the operatop will be the Dirac operator with APS
boundary condition$. andP< at M; andMg, and similarly for the operator®; and»,. We also
denote bys, 81 and3; the tangential Dirac operators dh M1 andM,, respectively. We then obtain
a time evolution on the algebra( g ?) with the product (8.5) associated to the splitting of thesid

in the following way.

LEMMA 11.1. LetW =W, UyW, be a composition of 4-dimensional cobordisms with metrics a
above, and witlo, D; the corresponding Dirac operators with APS boundary caadd. We let

O(W) :=Ind(®») — dimKer(3,). (11.2)
Then setting

ot (f)(W) = exp(itd(W)) f(W) (11.3)
defines a time evolution om(g ?) with the produci(8.5) of vertical composition.

PROOF Using the splitting formula (11.1) for the index one seemdiately that
o (Lo f2) (W) = W) £ (W) Fo(Wb)
W=WieW,
_ eit(lndﬂl-lrlndz)z—dim Kers —dimKers,) fl (Wl) fz(\Nz)

W: 1.\/\&

- &) 1 (Wa )€ oY) o (W) = 0 () @ 0 (F2) (W)
W=WeWo
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The type of spectral problem described above arises typicathe context of invariants of 4-
dimensional geometries that behave well under gluing. Acgtsuch setting is given by the topolog-
ical quantum field theories, as outlined &],[where to every 3-dimensional manifolds one assigns
functorially a vector space and to every cobordism betweemaBifolds a linear map between the
vector spaces. In the case of Yang—Mills gauge theory, thiegitheory for moduli spaces of anti-
self-dualSQ(3)—connections on smooth 4-manifolds (s&6][for an overview) shows that ¥ is a
compact oriented smooth 3-manifold that separates a cdrapaoth 4-manifolX in two connected
pieces

X=X, Uy X_ (11.4)
glued along the common boundaw = dX, = —dX_, then the moduli spac# (X) of gauge equiv-
alence classes of framed anti-self-d8&) 3)-connections oiX decomposes as a fibered product

3 (X) = 3 (X.) X ) M OC), (11.5)

whereas (X.) are moduli spaces of anti-self-dus@(3)-connections on the 4-manifolds with bound-
ary andsa (M) is a moduli space of gauge classes of flat connections on tharold M. The
fibered product is over the restriction maps induced by thkigion ofM in Xy. In particular, at the
linearized level, the virtual dimensions of the moduli gmeatisfy

dimas (X) =dimas (X)) +dimas (X_) —dimas (M). (11.6)

In Donaldson—Floer theory the virtual dimension of the mosjpace for the 3-manifold is zero, the
deformation complex being given by a self-adjoint elliptigerator, however we allow here for the
possibility thata (M) might be of positive dimension. We then obtain a time evolutin the algebra
4(6?) with the product (8.5) associated to the instanton modualcsp in the following way.

LEMMA 11.2. Let W be a branched cover cobordism witv = M1 U —M3j. Letas (W) denote
the moduli space of gauge equivalence classes of framedelfiilual S@3)-connections on W. Let
M (M;) be the moduli space of gauge equivalence classes of flatdraomections oiM;. We set

O(W) =dima (W) —dimas (M»). (11.7)
Then setting
ot (f)(W) =exp(itd(W)) f(W) (11.8)
defines a time evolution om(g ?) with the produci(8.5) of vertical composition.
PROOFE We assume in this discussion that the moduli spaces s#iisfyluing theorem so that
M (W) = 9 (Wh) X g () M (V) (11.9)

for W =W, Uy Ws with oW, = MU —M anddW, = M U —M,. Strictly speaking, the result (11.5)
holds for a compact 4-manifold, while here we are dealing with a 4-manifdld with boundary.
The same technique used in analyzing the moduli spaces. ) in (11.5) can be used to treat (W).

A detailed discussion of the gluing theory that yields (}1s%heyond the scope of this short paper.
Assuming (11.9) we see immediately that

oy (f1e f)(W) = W) £ (Wh) f2(Wb)
W=WeWo
_ eit(dimM (Wp)+dimar (We)—dimar (M)—dimar (M32)) fl(Wl) fz(\Nz)
W=WeWo

- &) 1 (Wa )€ oY) (W) = 0 () @ 0 (f2) (W)
W=W1eW,
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One can define similar time evolutions using other modulicepaon 4-manifolds that satisfy
suitable gluing formulae, such as the Seiberg—Witten maghalces, with the gluing theory discussed
in [12]. Notice that we are only using a very coarse invariant ex¢@ from the moduli spaces,
namely the (virtual) dimension. This only depends on thednzed theory. Typically, the virtual
dimension is computed via an index theord(w) = Ind Dy, wheredyy : Q°44 — Q¢V, for an elliptic
complex

Q° 22 Q% 02
where the elliptic operators, and Dq correspond, respectively, to the linearization of the imaar
elliptic equations and to the infinitesimal gauge actionud;hthe fact that (11.8) becomes a direct
conseguence of the additivity of the index

IndDw = Ind Dy, + IndDyy,. (11.10)

12. Horizontal time evolution: bivariant Chern character

The time evolution of Lemma 11.2, however, does not detexisthucture ofV as a branched
cover ofS® x | branched along an embedded surf&ce S3 x |. Thus, there is no reason why a time
evolution defined in this way should also be compatible withdther product given by the horizontal
composition of 2-morphisms. The interpretation of the tewelution (11.8) in terms of the additivity
of the index (11.10), however, suggests a possible way taalether time evolutions, also related to
properties of an index, which would be compatible with thezmntal composition. Although we are
working here in the commutative context, in view of the egten to noncommutative spectral corre-
spondences outlined in the next section, we give here a fation using the language of KK-theory
and cyclic cohomology that carries over naturally to theamonmutative cases. In noncommutative

geometry, one thinks of the index theorem as a pairing ofétith and K-homology, or equivalently
as the pairingch,(e),chy(x)) of Connes—Chern characters

chy:Ki(2) — HConyi(a) and chy:K'(a) — HC?"(q), (12.1)

under the natural pairing of cyclic homology and cohomo]afy14]. Recall that cyclic (co)homology

has a natural description in terms of the derived functotsaled Tor in the abelian category of cyclic
modules €f. [15]), namely

HC"(a) = ExtA(a,C"%) andHCy(a) = Torh(C%, a"%), (12.2)

whereA denotes the cyclic category amd is the cyclic module associated to an associative algebra
4. It was shown in 0] that the characters (12.1) extend to a bivariant ConnesrCtharacter

chy KK/ (a,8) — Ex@" (2% 8%) (12.3)
defined on KK-theory, which sends the Kasparov products
o:KK'(2,c) xKKI(c,8) — KKTI(a,8)
to the Yoneda products,
ExC™i(af, cf) x Extm (c? 8t) — ExBMMFTI (8 gl (12.4)
with the natural cap product pairings
Torh(CF, a%) @ Exth (4", %) — Torh,_,(C*, %) (12.5)
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corresponding to an index theorem

P = ch(x)@, with @eox) = y(e). (12.6)
requires a modification of botKK-theory and cyclic cohomology. Such a general form of the bi-
variant Connes—Chern character is given26]] The construction of18] of geometric correspon-
dences realizing KK-theory classes shows that, given rolasiX; and X, classes irKK (X, X2)
are realized by geoemtric datd,E) of a manifoldZ with submersions$; < Z — X; and a vec-
tor bundleE on Z. The Kasparov productoy € KK(Xz, X3), for x = kk(Z,E) € KK(X1,X2) and
y=kk(Z',E’) € KK(X2,X3), is given by the fibered produgby = kk(ZoZ' ,EoE’), where

ZoZ =Zxx,Z' and EoE'=TgE x THE’.

To avoid momentarily the complication caused by workinghwitanifolds with boundary, we con-

sider the simpler situation whel is a 4-manifold endowed with branched covering maps to a
compact 4-manifolX (for instanceS® x St or S*) instead ofS® x [0, 1],

scxtw- Lxog (12.7)

branched along surfac&andS in X. We can then think of an elliptic operataxy on a 4-manifold

W, which has branched covering maps as in (12.7), as defininglaounded Kasparov bimodules.

as defining a KK-clasgpy| € KK(X,X). We can think of this class as being realized by a geometric
correspondence in the sense B

[Dw] = kk(W7 Ew),
with the property that, for the horizontal compositdh= W, oWWb =W xx W, we have
[Dw ] 0 [Dw,] = Kk(WA, Ewy, ) o KK(Wa, Ewy, ) = Kk(W, Ew) = [Dw].
The bivariant Chern character maps these classes to elemehe Yoneda algebra

ch([Dw]) € 7 == @Ex" (4% ") (12.8)

chh([Dws])chin([Dws]) = Chapm([Dwi] © [Dwy]).-
Letx: o — C be a character of the Yoneda algebra. Then by compogsiran we obtain

xeh([Dw] o [Dw,]) = Xch([Dw])xeh([Dw]) € C.
This can be used to define a time evolution for the horizontadyct of the form
at(f)(W) = [xch([ow])[" f(W)

13. Noncommutative spaces and spectral correspondences

We return now briefly to the problem of spectral correspordsrof [L7], mentioned in the in-
troduction. Recall that a spectral tripl&, #,D) consists of the data of a unital involutive algebra
4, a representatiop : 2 — 8(# ) as bounded operators on a Hilbert spaceand a self-adjoint
operatorD on # with compact resolvent, (A hermitian linear operatoin a Hilbert spacex is
said to have a compact resolvent if there is a complex nurhbep(L) for which the resolvent
R(A,L) = (L — Al)~tis compact) such thdD,p(a)] is a bounded operator for a@lc 2. We extend
this notion to a correspondence in the following way, follogv[17].
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DerINITION 13.1. A spectral correspondence is a set of data4,,4 ,D), where4; and 4,
are unital involutive algebras, with representatipnsa; — 3 (# ), i = 1,2, as bounded operators on
a Hilbert space , such that

[P1(a1),p2(a2)] =0, Vay € 41, Vag € 42, (13.1)
and with a self-adjoint operat@ with compact resolvent, such that
[[D,pa(a1)], p2(a2)] =0, Vay € 41, Vap € 42, (13.2)

and such thaD, p1(a1)] and[D, p2(a2)] are bounded operators for all € 4, anday € 4,. A spectral
correspondence is even if there exists an opesator# with V> = 1 and such thad anticommutes
with yand|y,pi(&)] = 0 for allg € 4;,i = 1,2. A spectral correspondence is odd if it is not even.

One might relax the condition of compact resolvent on theatpeD if one wants to allow more
degenerate types of operators in the correspondenceasdimglpossiblyD = 0, as seems desirable in
view of the considerations ol}]. For our purposes here, we consider this more restrictfimition.
Notice also that the condition (13.2) also impli@3, p2(az2)],p1(a1)] = 0 because of (13.1). A more

refined notion of spectral correspondences as morphismgbptspectral triples, in a setting for
families, is being developed by B. Meslandg]. We first show that our geometric correspondences
define commutative spectral correspondences and then eeagiencommutative example based on
taking products with finite geometries as iv].

LEMMA 13.2. Suppose given a compact connected oriented smooth 3-damitb two branched
covering maps$® <+ M —% S3. Given a choice of a Riemannian metric and a spin structuréon
this defines a spectral correspondence dar= 4, = C*(S%).

PROOF. We consider the Hilbert spacé = L?(M, S), whereSis the spinor bundle oM for the
chosen spin structure. L, be the corresponding Dirac operator. The covering rmagdsri = 1,2,
determine representatiops: C*(S®) — 3 (# ), by pi(f) = c(f oTg), wherec denotes the usual action
of C*(M) on # by Clifford multiplication on spinors. Then we ha{@y,pi(f)] =c(d(f o1g)), which
is a bounded operator ori. All the commutativity conditions are satisfied in this case d

Let 2 and3 be finite dimensional unital (hnoncommutative) involutilgebras. LeV be a finite
dimensional vector space with commuting actiongiadnd3. Let T € EndV) be a linear map such
that[[T,a],b] =0 for allac 2 andb € 3. Then we obtain noncommutative spectral correspondences
of the type described in the last section d7][in the following way.

LEMMA 13.3. The cup product U S of §y = (C*(S%),C*(S*),L2(M,S),dv) and & =
(A,B,V,T) defines a noncommutative spectral correspondence for tpebals C(S%) ® 2 and
C*(S*) @ 3.

PrROOF We simply adapt the usual notion of cup product for spettiales to the case of corre-
spondences. If the corresponderiéeB,V, T) is even, with grading, then we consider the Hilbert
spacerf =L?(M,S)®V and the operatdd = T ® 1+y®dy. Then the usual argument for cup prod-
ucts of spectral triples show thé€* (S®) ® A,C*(S*) ® B, #,D) is an odd spectral correspondence.
Similarly, if (A,B,V,T) is odd, then taker = L*(M,S)®@V & L*(M,S)®V, with the diagonal actions
of C*(S%) ® 2 andC>(S®) ® 8. Consider then the operator

0 &
°=(5 0);

ford=T®1l+i®du. Then, by the same standard argument that holds for spedpias, the
data(C*(S®) ® A,C*(S®) @ B, # ,D) form an even spectral correspondence with respect té (B&
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(%)

In either case, we denote the resulting correspondé@t¢S®) @ A,C*(S*) ® B, # ,D) as the cup
productSy U &. O

We can then form a convolution algebra on the space of caynglgmces, using the equivalence
relation given by cobordism of branched covering spaced @ftfove, as in 88 above. This requires
extending the equivalence relation defined by cobordisnmwrarfiched coverings to the case of the
product by a finite geometry. We propose the following cargton. The existence of a cobordism
W of branched coverings between two geometric corresporddhgandM, in Hom(G, G') implies
the existence of a spectral correspondenith boundaryof the form

Sw = (COO(MI)?COO(MZ)aLZ(W7S)7aW)'

We will not discuss here the setting of spectral triples vaittundary. A satisfactory theory was re-
cently developed by Chamseddine and Conréq13]). We only recall here briefly the following
notions, from L6]. A spectral triple with boundary4, #/,D) is boundary eveirif there is aZ/2Z-
gradingyon #£ such thata,y] = 0 for alla € 2 andDom(D) NyDom(D) is dense ir¥/ . The boundary
algebrada is the quotientz /(IJNJ*) by the two-sided ideal = {a € a2|aDom D) c ypbom(D)}. The
boundary Hilbert spacas is the closure in# of D~1KerDj;, whereDy is the symmetric operator
obtained by restrictin@ to Dom(D) nyDom(D). The boundary algebra acts on the boundary Hilbert
space bya— D2[D?,a]. The boundary Dirac operat@D is defined onD~'KerD}, and satisfies
(¢€,0Dn) = (€,Dn) for & € d# andn € D~KerD;. It has bounded commutators willx. One can
extend from spectral triples to correspondences, by hawongommuting representations .ef and

4, on # with the properties above and such that the resulting boyndiata (021,042,04 ,0D)
define a spectral correspondence. If one wants to extenct tprdduct geometries the condition of
cobordism of geometric correspondences, it seems thatsanevitably faced with the problem of
defining spectral triples with corners. In fact,3fy and S are both spectral triples with boundary,
then their cup producdy U S would no longer give rise to a spectral triple with boundauyto one
with corners. At present there isn't a well defined theorypddral triples with corners. However,
we can still propose a way of dealing with products of col&di by finite noncommutative geome-
tries, which remains within the theory of spectral triplegtmboundary. To this purpose, we assume
that the finite par&: is an ordinary spectral triple, while only the cobordimstpsia spectral triple
with boundary. We then relate the cup prod&gtU S to the spectral correspondenclg, U S

via the boundarn@Sy and bimodules relating th& to S-. More precisely, we consider the fol-
lowing data. Suppose gived; € Hom(G,G'), i = 1,2 as above and finite spectral correspondences
S = (A, B, M, Ti). Then we say that the cup produSg, U S, are related by a spectral cobordism if
the following conditions hold. The geometric correspormsnare equivaleritl; o M, via a cobor-
dismW. There exist finite dimensional (noncommutative) algelRas = 1,2 together withR—A;
bimodulesk; andB;—R; bimodulesk;, with connections. There exists a finite spectral corredpnoe

S = (R1,R2,VE,Dg) such thatSy US = (a,%, D) is a spectral triple with boundary in the sense
of Chamseddine—Connes with

grading

04 = EBi:;L,zCOO(M i)OR;
0H = Bi—12L2(M{,S) @ (E; ®a, Vi @, F)
andop gives the cup product of the Dirac operatdfs with the T, with the latter twisted by the
connections or; andF.

We do not give more details here. In fact, in order to use thigon to extend the equivalence
relation of cobordims of branched coverings and the 2-cayewe considered in 88 above to the
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noncommutative case, one needs a gluing theory for spedjlds with boundary that makes it
possible to define the horizontal and vertical compositimin2-morphisms as in the case\8f oW,
andW; eW5. The analysis necessary to develop such gluing resulty@idehe scope our study and
the problem will be considered in future work .






Knots, Khovanov Homology

1. Introduction

In the previous chapter we presented a construction of deyoey whose objects are embedded
graphs in the 3-sphere, whose 1-morphisms are 3-manifellized in different ways as branched
coverings of the 3-sphere with the given embedded graphaastbloci, and with 2-morphisms given
by 4-dimensional branched cover cobordisms. We also sludiee evolutions on algebras obtained
from this 2-category. We would then like to see if one can iobtaitable cohomology theories
that can define functors for our category to some categoryeofov spaces. To be precise, since
we are working with a 2-category, we should expect to landbmes 2-category of 2-vector spaces,
for instance in the sense introduced by Kapranov and VoéyddHl], or in a more explicit form in
a 2-category of 2-matrices as constructed by Elguet&1h [In this chapter we only make some
preliminary steps in this direction, leaving a more dethite/estigation to future work. We begin this
chapter by a remark on the results of the previous chapt&8 below, which shows that one can pass
from the case where the branch loci of the coverings are edduegraphs to the more restrictive case
of links using the equivalence relation bthomotopy of branched coverings. This result suggests
that we may be able to seek a suitable cohomology theory foporposes by a suitable extension
of known cohomological constructions for knots and linkghie 3-sphere. Following this idea, we
then recall the definition and main properties of Khovanomblmgy for knots and links. We also
recall the notion of cobordism groups for knots and links i@k relation. The following part of this
chapter first deals with extending the notion of cobordisomfiinks to embedded graphs. We find
that this can be done in two possible ways, which respegtagiend two notions of cobordisms that
are known to be equivalent in the case of links but are no loageivalent for graphs. We then discuss
how to extend Khovanov homology from links to embedded gsafithe first idea is to combine the
Khovanov complex with the complex of graph homology, whéeKhovanov complex accounts for
the crossings and the complexity of the embedding in theh&rspand the graph homology accounts
for the combinatorial complexity of the graph. We only shawain example how one can associate
to each term of the graph homology complex for a planar dragoh an embedded graph in the
3-sphere a cubical complex that resolves the crossingscim eéathe graphs involved in the graph
homology complex. However, instead of continuing along timie of thought to construct rigorously
a double complex, we show that one can bypass several diffis@dnd achieve a satisfactory notion
of Khovanov homology for embedded graphs through a diftgeescedure, which is based on a result
of Kauffman. This result is a construction of a topologicalariant of embedded graphs, which is
given by a finite collection of knots and links, obtained byfpening certain cutting operations at the
vertices of the graph. Thus, this first step incorporatestmebinatorial complexity of the graph, in a
way similar to what graph homology does in the approach desgtiabove, while the topology of the
embedding is retained by the links and knots in the resufangly. Since the family of links is itself
a topological invariant, any further invariant computed oluthem will also be. Thus, one can then
proceed to define a Khovanov homology for an embedded grapkiag the sum of the Khovanov
homologies of all the knots and links in the Kauffman invatiaf the graph. This is well defined and
a topological invariant.

51
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2. From graphs to knots

The Alexander branched covering theorem is greatly refilyetido Hilden—Montesinos theorem,
which ensures that all compact oriented 3-manifolds canebézed as branched covers of the 3-
sphere, branched along a knot or a link (s&H,[[49], cf. also b4]). One can see how to pass from a
branch locus that is a multi-connected graph to one thatirkal a knot in the following way, 10].
One says that two branched coverimgs M — S® andm : M — S® areb-homotopic if there exists
a homotopyH; : M — S with Hy = T, H; = T4 andH; a branched covering, for dle [0, 1], with
branch locus an embedded graphc S°. The “Alexander trick” shows that two branched coverings
of the 3-ballD® — D3 that agree on the bounda®y = dD* areb-homotopic. Using this trick, one can
pass, by &-homotopy, from an arbitrary branched covering to one thsitiple namely where all the
fibers consist of at least— 1 points,n being the order of the covering. Simple coveringsgeneric
The same argument showd (|, Corollary 6.6) that any branched coveriMy— S2 is b-homotopic
to one where the branch set is a link. We restrict to the casremhe embedded grap@sand G’
are knotK andK’ and we consider geometric corresponderidesn(K,K’) modulo the equivalence
relation ofb-homotopy. Namely, we say that two geometric corresporeeig, M, € Hom(K, K’)
areb-homotopic if there exist two homotopi€%, ©] relating the branched covering maps

Since we have the freedom to modify correspondencdsHhmymotopies, we can as well assume that
the branch loci are links. Thus, we are considering geometnirespondences of the form

KcLcSS™ M XS5 5K, 2.1)

where the branch loci are linksandL’, containing the knotk andK’, respectively. Notice also that,

if we are allowed to modify the coverings liyhomotopy, we can arrange so that, in the composition
M10M,, the branch locL U gt (L)) andL” Ui, (L)) are links inS®. We denote byM]j, the
equivalence class of a geometric correspondence undeqtineakence relation db-homotopy. The
equivalence relation df-homotopy is a particular case of the relation of branchagkicoobordism
that we considered above. In fact, the homot@pycan be realized by a branched covering map
©:M x [0,1] — S*x [0,1], branched along a 2-compl&= Uic|o1) Gt in S* x [0,1]. Thus, by the
same argument used to prove the compatibility of the contipagf geometric correspondences with
the equivalence relation of cobordism, we obtain the coibiitt of composition

[M1]po[Mz]p = [M10Mz]p. (2.2)

The b-homotopy is realized by the cobordisfivl1 o M) x [0,1] with the branched covering maps
© =00P, and® = @ oP,. While the knotsK andK’ are fixed in the construction efom(K,K’),

the other components of the linksandL’, when we consider the correspondences upliomotopy,

are only determined up to knot cobordism with trivial lingimumbers i(e. as classes in the knot
cobordism subgroup of the link cobordism group, s¥@)[ To make the role of the link components
more symmetric, it is then more natural in this setting tosider a category where the objects are
cobordism classes of kndjt€], [K'] and where the morphisms are given by ibHeomotopy classes of
geometric correspondenceom([K],[K'])p. The time evolution considered in the previous chapter
still makes sense on the corresponding semigroupoid ringe gshe order of the branched cover is
well defined on thés-equivalence class and multiplicative under compositiomorphisms.
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3. Khovanov Homology

In the following we recall a homology theory for knots andkrembedded in the 3-sphere. We dis-
cuss later in this chapter how to extend it to the case of eddsedraphs.

3.1. Khovanov Homology for links. In recent years, many papers have appeared that discuss
properties of Khovanov Homology theory, which was introethén [43]. For each linkL € S8, Kho-
vanov constructed a bi-graded chain complex associatédthétdiagranD for this link L and applied
homology to get a grough"J(L), whose Euler characteristic is the normalised Jones poijalo

S (—Dgdim(Kh"i (L)) = I(L)

I*,J
He also proved that, given two diagrafsandD’ for the same link, the corresponding chain com-
plexes are chain equivalent, hence, their homology grogaisamorphic. Thus, Khovanov homology
is a link invariant.

3.2. The Link Cube. LetL be a link withn crossings. At any small neighborhood of a crossing
we can replace the crossing by a pair of parallel arcs andggation is called a resolution. There are
two types of these resolutions called O-resolution (Hariabresolution) and 1-resolution (Vertical
resolution) as illustrated in figure (1).

- N

/

O-resolution Crossing 1-resolution

NS e
N

FIGURE 1. 0 and 1- resolutions to each crossing

We can construct a-dimensional cube by applying the 0 and 1-resolutionignes to each crossing
to get 2" pictures called smoothings (which are one dimensional folais) S,. Each of these can be
indexed by a word of n zeros and onese. a € {0,1}". Let be an edge of the cube between two
smoothingsy,, andS;,, whereS;; andS,, are identical smoothings except for a small neighborhood
around the crossing that changes from 0 to 1-resolution.atb edg€, we can assign a cobordism
2¢ (orientable surface whose boundary is the union of theesriti the smoothing at either end)

ZE:SM—>S]2

This Z; is a product cobordism except in the neighborhood of thesangs where it is the obvious
saddle cobordism between the 0 and 1-resolutions. Khoveoostructed a complex by applying a
1+ 1-dimensional TQFT (Topological Quantum Field Theory) ethis a monoidal functor (see the
appendix 4), by replacing each vert&xby a graded vector spatg and each edge (cobordisihy

by a linear ma;, and we set the groupKh(D) to be the direct sum of the graded vector spaces for
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all the vertices and the differential on the summanith(D) is a sum of the maps; for all edgest
such that Taif)=a i.e.

d'(v) = sign(—1)dg (v) (3.1)
H
wherev € Vg C CKh(D) andsign(—1) is chosen such thaf = 0.
An element ofCKh"! (D) is said to have homological gradingndg-gradingj where
i=la]—n_ (3.2)
j=deqgVv)+i+n_+n, (3.3)

for all ve Vy C CKHI(D), |a] is the number of 1's i, andn_, n, represent the number of negative
and positive crossings respectively in the diagiam

DEFINITION 3.1. LetV = &,,Vm be a graded vector space with homogenous compoignts
Then the graded dimension éfis defined to begdimV = 5 ,,q"dim(Vin), which is a Laurant poly-
nomial in variableg.

DEeFINITION 3.2. For a graded vector spaé¢end an integen we can define a new graded vector
spaceV{n} (called a shifted version &f) by V{n}m =Vin-n

Here we give an example of computing the homology of the Hiukf(I:Kh*v*(C )
ExampPLE 3.3. [61] Consider then-cube diagram of the Hopf link figure (2) ,

9
©

Y
9

FIGURE 2. n-cube diagram of the Hopf link

We associate to each smoothing (vertex) in theube a graded vector space as follows: Put
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Q{1,x} (Q-vector space with X basis elements). Grade the two basis elementidgl) = 1 and
degx) = —1. Associate to each vertexa graded vector spadg = V¥ {|a|+n, —2n_} where|a|
is the number of s in a andk, is the number of circles os smoothings in the vedeSet

CKh*= P Vq
ae{0,1}n

In this particular case, thecube is given in figure (3).

V{-3}
G
VR V{-4} $ V &v{-2}
EN
V{-3}

FIGURE 3

The linear mapd; : Vo — Vi is either a fusion map given by multiplication:V @V — V or
the splitting map given by co-multiplications : V — V ®V, corresponding geometrically to the
contribution of a disk where the crossing change happermsthanidentity map outside the disk. The
multiplication mapm s defined by
Mlel) =1 mlex)=mXxX®1l) =X mXeX)=0
and the co-produch\ by
A1) =1x+x®1, A(X)=X®X

Now following [61], by using the equation (3.1), we see that the homology cagives in a table as
follows.

J
0 Q
-1
2 Q
-3
4 Q
-5
6 Q

3.3. Properties. [61],[46] Here we give some properties of Khovanov homology.

PROPOSITIONS.4. (1) If D' is a diagram obtained from D by the application of a Reide-
meister move then the complex€xh**(D)) and (CKh**(D’)) are homotopy equivalent.
(2) For an oriented link L with diagram D, the graded Euler cheteristic satisfies

S (~1)iqdimKh (L)) = (L) (3.4)
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where JL) is the normalised Jones Polynomials for a link L and

Y (=1)'qdim(Kh'*(D)) = $ (~1)'qdimCKH"* (D))
(3) LetLygqand Levenbe two links with odd and even number of components théf'RTLyqq) =
O and KW’Odd(Leven) == 0

(4) For two oriented link diagrams D and’Dthe chain complex of the disjoint union.[D’ is
given by
CKh(DUD') = CKh(D) © CKh(D'). (3.5)
(5) For two oriented link L and 1, the Khovanov homology of the disjoint union/ L’ satisfies
Kh(LUL') = Kh(L) @ Kh(L").

(6) Let D be an oriented link diagram of a link L with mirror ige D" diagram of the mirror
link L™. Then the chain complex CKIb™) is isomorphic to the dual of CKD) and

Kh(L) 2 Kh(L™)

3.4. Links Cobordisms. Recall that in section (7.2) we defined branched cover cofiords a
cobordismw with boundaryM; U —M> with two branched covering maps.

scsx[0,1 <~ w-L£x[0,1>8, (3.6)

branched along compact oriented surfaBesdS c S x [0,1] with boundarydS= LoU —L; and
0S = LjU—L5. Here we assume that the andL are links. We discuss later in this chapter what
happens in the case of embedded graphs. In this section vigéow@call how one constructs a linear
map between the homologies of the boundary links by follginovanov §3]. The first idea is, we
can decompos8into elementary subcobordisngsfor finitely manyt € [0, 1] with

S =SNS*x[0,]

and

0S8 =Li_1U—L
whereL;_1 andL; are one dimensional manifolds, not necessary links. Ussmall isotopy we can
obtain that they are links for sontec [0,1]. Here we assume that S is a smooth embedded surface.
A smooth embedded surface S can be represented by a one paréamaly D;,t € [0,1] of planar
diagrams of oriented linkk; for finitely manyt € [0, 1] and this representation is calledreovie M
Between any two consecutive clips of a movie the diagramisdifier by one of the “Reidemeister
moves” or “Morse moves”. The Reidemeister moves are in figiyjen the appendix or the first
moves in figure (17) and the Morse moves are given in figure (4).

These two types of moves will be calléatal moves This means that between any two consecutive
diagrams there is a local move either of Reidemeister or afskltype. The necessary condition is
that the projection diagramy in the first clip inM should be the a projection of the lirily and the
projection diagram in th®; in the last clip of the movié/ should be the projection of the lirlk
(boundary ofS). Notice that the orientation @ induces an orientation on all intersection links

To show that, lev be a tangent vector to. Then orientv in the positive direction ifv,w) gives the
orientation ofSwherew is the tangent vector t8in the direction of increasing af Khovanov con-
structed a chain map between complexes of two consecutggains that changed by a local move,
hence a homomorphisms between their homologies. The catioposf these chain maps defines a
homomorphism between the homology groups of the diagrartteedioundary links.
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O-handle

O (| X

1-handle

2-handle

FIGURE 4. Morse moves

3.5. Constructing the homology map from local movesWe recall here more explicitly how
one obtains the maps associated to the two types of localsmraeribed above.

(1) Reidemeister moves: The idea of constructing the hogyohoap is getting a homotopy
equivalence between the chain complexes of consecutppe stie proposition 3.4 no.1. Let
D, ,,D, be two consecutive diagrams in two consecutive clips in tbeieM which differ
by one of the Reidemeister moves of the first type or the setyqedwithD;, is the one with
more crossings, then byg] the chain complex of the diagral; can be split into direct
sum of chain comple€Kh, and contractible chain compl&proposition 3.4 no.4

CKh(Dy, ) =CKh, &C (3.7
Then we can get a homomorphism which respects the filtragism the appendix (2),
=:CKh, — CKh(Dy, ,)

to showCKh(Dy, ,) is equivalent taCKh(Dy, ) it is enough to see that the composition=of
with the projection map onto the first summand 3.7 is chainvatgnt to the composition
of the inclusioni and="1.

For the third move the@Kh(D;, ,) andCKh(Dy, ) can be split both into a chain complex
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and a contractible chain complexeésandC, as above 3.7,
CKh(D;,_,) =CKh,_,&C; (3.8)
and
CKh(Dy,) = CKh, &C; (3.9)
and by the same way we can get as above an isomorphism map
Z:CKh, , — CKh,

then we have equivalent chain complexes

CKh(D;, ) = CKh, &C, =5 CKh, —= CKh, , ——CKh(D,,_,) = CKh,_, ®Cy =CKh(Dy, ,)

Now we get a homotopy equivalence of chain complexds,ah the movieM that differ by
one of the Reidemeister move from the previous diagram wihidhice a map in homology
Y: Kh**(Dy, ,) — Kh**(Dy, ) with respects the filtration okh**.

(2) Morse moves: LeDg andD; be two diagrams that differ by one of the Morse moves. For 0
or 2-handle there is a simple closed curve that one will adémiove from the consecutive
diagrams. The@Kh*(D;_, | |O) =CKh**(Dy, ) @V (whereV = Q{1,x} is a vector space
with two basis element®$[] ). we can define for 0-handle a magd]

@ = lg®i:CKh*(Dy,_,) — CKh***(D; ) = CKh"*(Dy,_, ®V)

The increasing in g-grading 3.3 by 1 comes from the fact\¥hlas identity with g-grading
equal 1 p1], andi : Q — V is the unit of frobenius algebr&]]. The same operation works
for 2-handle with the mam = Iq ® €, whereeg is the co-unit mag : V — Q. Then we can
define the homology map

Ys : Kh**(Dy,_,) — Kh***1(Dy )

For the 1-handle move the m&Kh**(D;_,) — CKh**~1(Dy ) is constructed by43),
[61] and by applying homology we can get

Ys : Kh**(Dy,_,) — Kh**"1(Dy,)

Let Ys: Kh**(Dg) — Kh***X(S(D;) be a composition of consecutive mays,t < [0, 1].
One can see that the g-grading is changed by adding the Ehdeaateristic of cobordism
Sand this change comes from Morse moves since the g-gradies it change by using
Reidemeister moves, and by the sum over all these changestwésy, see £3].

4. Knots and Links Cobordism Groups

A notion of knot cobordism group and link cobordism group t&ngiven by using cobordism
classes of knots and links to form a gro@3],[36]. The link cobordism group splits into the direct
sum of the knot cobordism group and an infinite cyclic groupciviiepresents the linking number,
which is invariant under link cobordisn8§]. In this part we will give a survey about both knot and
link cobordism groups. In a later part of this chapter we slilbw that the same idea can be adapted
to construct a graph cobordism group by using the definitiocobordisms between graphs given in
section 7.1 definition(7.2).
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4.1. Knot cobordism group. We recall the concept of cobordism between knots introduced
[23]. Two knotsK; andK; are called knot cobordic if there is a locally flat cylindg@mn S° x [0, 1]
with boundarydS= K; U —K;, whereK; c S® x {0} andK; C S® x {1}. We then writek; ~ K. The
critical points in the cylinder are assumed be minima (pinthaxima (death), and saddle points. In
the birth point at somég there is a sudden appearance of a point. The point becomeantted
circle in the level immediately abowtg. At a maxima or death point, a circle collapses to a point and
disappearance from higher levels.
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Birth Death

FIGURE 5. Death and Birth Points

For the saddle point, two curves touch and rejoin as illtestran figure 6

> < Before

|
1
el e >< Saddle Poin

_/
2

Saddle Point

After

FIGURE 6. Saddle Point

These saddle points are of two typemgativeif with increasingt the number of the cross sections
decreases amabsitiveif the number increases.

A transformation 23] from one cross section to another is called negative hygerbransformation

if there is only one saddle point between the two cross sextamd if the number of components
decreases. We can define analogously a positive hyperbatisformation.
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DEFINITION 4.1. [36] We say that two knot&; andK; are related by an elementary cobordism
if the knotK5 is obtained by — 1 negative hyperbolic transformations from a split link sisting of
K1 together withr — 1 circles.

What we mean by split link is a link with componentgK;,i = 1....n) in S® such that there are
mutually disjointn 3-cells(Dj,i = 1....n) containingK;,i = 1,2...,n

LEMMA 4.2. [36] Two knots are called knot cobordic if and only if they are tethby a sequence
of elementary cobordisms

It is well known that the oriented knots form a commutativenggoup under the operation of
composition #. Given two knot; andK,, we can obtain a new knot by removing a small arc from
each knot and then connecting the four endpoints by two new arhe resulting knot is called the
composition of the two knotk; andK, and is denoted bi{1#Ko.

Notice that, if we take the composition of a krtowith the unknot") then the result is agais.

LEMMA 4.3. The set of oriented knots with the connecting operatidorms a semigroup with
identity O

Fox and Milnor R3] showed that composition of knots induces a compositionrat kobordism
classesK]#K’]. This gives an abelian grou@x with [O)] as identity and the negativeigK] = [—K],
where the—K denotes the reflected inversekof

THEOREM4.4. The knot cobordism classes with the connected sum operatam an abelian
group, called the knot cobordism group and denoted Ry G

4.2. Link cobordism group. [36] For links, the conjunction operation & between two links
gives a commutative semigrouf1&L, is a link represented by the union of the two linksJ1,
wherel; represents.; andl, represents., with mutually disjoint 3-celldd; andD- containl, andl»
respectively. Here “represents” means that we are workiitly ambient isotopy classds of links
(also calledlink typeg and thel; are chosen representatives of these classes. In the fogowe
loosely refer to the classes also simply as links, with the ambient isotopy equivalenoelicitly
understood. The zero of this semigroup is the link congistihjust the empty link. The link cobor-
dism group is constructe®§] using the conjunction operation and the cobordism clasafesrecall
below the definition of cobordism of links.

LetL be a link inS containingr-componentsy, ...., k, with a split sublinkLs = ky Uko U.... Uk, t <r

of L. Define aknoK to beky +ko+ ...+ k +0By 1+ 0B 2+ ...+ 9B, where{B, 1,B 2, B 3....,B; }
are disjoint bands i$® spanningLs [36]. The operation+ means additions in the homology sense.
PutLy = LUk 1 Ukiio.... Uk andLy = K Uk 1 Ukeio.... Uk Now, the operation of replacinig

by L, is calledfusion andL, by L, is calledfission

DEFINITION 4.5. [36] Two links will be called link cobordic if one can be obtainé@m the
other by a sequence of fusions and fissions. This equivaletagon is denoted by-. [L] denotes
the link cobordism class df.

THEOREM4.6. [36] The link cobordism classes with the conjunction operat@mfan abelian
group, called the link cobordism group and denoted hy G

PROOF For two cobordism classéls; | and|L;] the multiplication between them is well defined
and given by
La]&[Lo] = [La&Lo]
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FIGURE 7. Band

The zero of this operation is the clag9| which is the trivial link of a countable number of compo-
nents. The negative ¢f] is —[L] = [-L], where—L denoted the reflected inverselof O

LEMMA 4.7. For any link L, a conjunction & — L is link cobordic to zero.

To study the relation between the knot cobordism gréypand link cobordism grou, define
a natural mapping : Gk — G which assigns to each knot cobordism cldggshe corresponding
link cobordism class$L] whereL is the knotk viewed as a one-component link. We claim tids a
homomorphism.f is well defined from the following lemma

LEmMMA 4.8. [36] Two knots are link cobordic if and only if they are knot cobiord

Now, K1#K5 is a fusion ofK1& Ky thenK #Ko is cobordic toK,& Ks, thereforef is a homomor-
phism. Again by using the lemma 4.8, if a knot is link coborttizero then it is also knot cobordic
to zero, and hencker( f) consists of jus.

LEMMA 4.9. fis an isomorphism of onto a subgroup of G

THEOREM4.10. B6] f(Gk) is a direct summand of Gand it is a subgroup of Gwhose elements
have total linking number zero. The other summand is isohiorp the additive group of integers.

5. Graphs and cobordisms

The rest of this chapter will be dedicated to extending sofmte notions recalled above for
knots and links, to the case of embedded graphs in the 3esphethis section we describe how to
obtain a cobordism group for graphs, in two possible waysthadelation between them and with
the cobordism group of links.
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5.1. Some basic facts about graphsWe recall here some basic facts about graphs. A G@igh
an ordered tripléV (G),E(G), @) consisting of a nonempty s&{G) of vertices (zero-dimensional),
a setE(G), disjoint fromV (G), of edges or loops or lines (one-dimensional), and an imciedéunc-
tion @ that associates with each edge@#&n unordered pair of ( not necessarily distinct) vertices of
G. If eis an edge and andv are vertices such thgiz(e) = uv, thene s said to joinu andv. The
verticesu andv are called the ends @& Each vertex is indicated by a point, and each edge by a line
joining the points which represent its ends.

FIGURE 8

Most of the definitions and concepts in graph theory are sstgdeby the graphical representation.
The ends of an edge are said to be incident with the edge, aad/ersa. Two vertices which are in-
cident with a common edge are adjacent, as are two edges atfg¢hcident with a common vertex.
An edge with identical ends is called a loop, and an edge viétindt ends a link.

A graph is finite if both its vertex set and edge set are finiecall a graph with just one vertex trivial
and all other graphs nontrivial. A graph is simple if it hasloops and no two of its edges join the
same pair of vertices. We use the symbdlS) (sometimesG|) ande(G) (sometime8G||) to denote
the number of vertices and edges in the gr&ph

Two graphsG andH are identical (written G =H) ¥/ (G) =V (H) andE(G) = E(H), andgg = @q. If
two graphs are identical then they can clearly be repreddatédentical diagram. Two graplzand

H are said to be isomorphig ~ H if there are bijection®:V(G) — V(H) andy: E(G) — E(H)
such thatps(e) = uvif and only if @,(P(e)) = 8(u)B(v); such pair(6,P) of mapping is called iso-
morphism betweef andH.

A class of graphs that is closed under isomorphism is callgdhph property. A simple graph in
which each pair of distinct vertices is joined by an edge Ikedaa complete graph. Up to isomor-
phism there is just one complete graphrowertices and denoteld, or K". Kz is called a triangle.
For an arbitrary edge € E(G) we can definégs — e to be the grapl with deleted edge, and by
G/ethe graph obtained by contacting edgee.by identifying the vertices incident ®and deleting

e. A graph is said to beligraphif each graph edge is replaced by a directed graph edggraph
whose edge have direction and are cableck A complete graph in which each edge is bidirected
(symmetric pair of directed edges) is called a completectBegraph. The inverse of a directed graph
Gis a graph—G with the same number of vertices but reverse direction oétlges
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FIGURE 9. Directed Graphs

5.1.1. subgraphs.A graphH is a subgraph doB written (H C G) if V(H) CV(G),E(H) CE(G)
and@y is the restriction ofps to E(H). WhenH C G but (H # G), we writeH C G and call proper
subgraph of G. A spanning subgraph@fs a subgraptd with V(H) =V (G). The unionG; UG,
of G; andG; is the subgraph with vertex sé{G;) UV (G,) and edge sdE(G1) UE(Gy). If G and
G, are disjoint sometimes denote their union®y+ G,. The intersectiorz; N G, of Gy andG; is
defined similarly, but in this cag8; andG, must have at least one vertex in common.

5.2. Graph cobordism group. In this section we construct cobordism groups for embedded
graphs by extending the notions of cobordisms used in the o&dinks. In definition (7.2) we
have already introduced a concept of cobordism betweerhgray/e recall here the definition of
cobordisms of graphs that we used in the previous chapter.

DEerFINITION 5.1. Two graphss; and E; are called cobordic if there is a surfaGehave the
boundarydS = E; U —E, with E; = SN (S% x {0}), Ex = SN (S% x {1}) and we seE; ~ E,. Here
by "surfaces” we mean 2-dimensional simplicial complexes are PL-embedded 8 x [0,1]. [E]
denotes the cobordism class of the gr&ph

By using the graph cobordism classes and the conjunctioratipe &, we can induce a graph
cobordism groupE; & E; is a graph represented by the union of the two graahsE, with mutually
disjoint 3-cellsD; andD5 containing (representatives df) andE,, respectively. Here again we do
not distinguish in the notation between the ambient isotdagses of embedded graphs (graph types)
and a choice of representatives.

LEMMA 5.2. The graph cobordism classes in the sense of Definition 51 tivé conjunction
operation form an abelian group called the graph cobordiswug and denoted by &

PROOF For two cobordism class€g;| and|[E;] the operation between them is given by
[E1]&[Ez] = [E1& E2].

This operation is well defined. To show that : SuppBse- F;, for two graphs; andF;. Then there
exists a surfac&; with boundarydS; = E; U —F;. Suppose alsd;, ~ F», for two graphsE; andF,.
Then there exists a surfaBg with boundarydS, = E; U —F,. We want to show theE1 & E, ~ F1&F,
i.e.we want to find a surfacB8with boundarydS= (E1&Ey) U —(F1&F).
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Define the cobordisnsto be §& S, where$& S, representss; U S with mutually disjoint 4-cells
D1 x [0,1] andD3 x [0, 1], containingS, andS, respectively withD; x {0} containingE;z, D, x {0}
containingF;, D1 x {1} containingE,; andD> x {1} containingF,. The boundary oS§is given by,

0S=0(S1&S) = 05&0S =05, U0S = (E1U—F) U (E2U —F) = (E1&E2) U —(F1& )

Then the operation is well defined. The zero of this operaisotie class{©] which is the trivial
graph of a countable number of components. The negati{e| & — [E] = [—E], where—E denoted
the reflected inverse @. O

5.3. Fusion and fission for embedded graphsWe now describe a special kind of cobordisms
between embedded graphs, namely the basic cobordismothesgond to attaching a 1-handle and
that give rise to the analog in the context of graphs of theaifmas of fusion and fission described
already in the case of links. LEtbe a graph containing n-components with a split subgEaph G, U
G, UGs3...UG;. We can define a new graﬁno beG; +Go+Gs...+ G+ 0By 1+ 0B 2+ .... 4+ 0By
where{B.1,B;2,Bt+3...., By} are disjoint bands i3 spanningEs. The operation- means addition
in the homology sense. PHf = EsU G 1 UGi12.... UG, andE; = E+ Gii1+Giy2.... + Gn. Now,
The operation of replacing; by E; is calledfusion andE;, by E; is calledfission

> D 32

Graph G Graph G+Band

FIGURE 10

Notice that, in order to make sure that all resulting grapHisstill have at least one vertex, one needs
to assume that the 1-handle is attached in such a way that ithat least an intermediate vertex in
between the two segments where the 1-handle is attachduk figure above illustrates.

REMARK 5.3. Unlike the case of links, a fusion and fission for grapbesschot necessarily change
the number of components. For example see the figure below.

We can use the operations of fusion and fission describeddbaive another possible definition
of cobordism of embedded graphs.

DEFINITION 5.4. Two graphs will be called graph cobordic if one can baioled from the other
by a sequence of fusions and fissions. We denote this equéetelation by~, and by[E] the graph
cobordism class dE.

Thus we have two corresponding definitions for the graph bm group. One can check from
the definition of fusion and fission that they gives the exiséeof a cobordism (surface) between two
graphsk; andE,.
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FIGURE 11

LEMMA 5.5. Two graphs kE and E that are cobordant in the sense of Definition 5.4 are also
cobordant in the sense of Definition 5.1. The converse, hawiewnot necessary true.

PROOF As we have seen, a fusion/fission operation is equivaleatithng or removing a band
to a graph and this implies the existence of a saddle cobordigen by the attached 1-handle, as
illustrated in figure (6). By combining this cobordism withet identity cobordism in the region
outside where the 1-handle is attached, one obtains a Pardism betweerE; andE,. This shows
that cobordims in the sense of Definition 5.4 implies colsndin the sense of Definition 5.1. The
reason why the converse need not be true is that, unlike wapriems with the cobordisms given
by embedded smooth surfaces used in the case of links, th@disims of graphs given by PL-
embedded 2-complexes are not always decomposable as aéinitEfundamental saddle cobordims
given by a 1-handle. Thus, having a PL-cobordism (surfatkedrsense of a 2-complex) between two
embedded graphs; andE, does not necessarily imply the existence of a finite sequehfiesions
and fissions. d

LEMMA 5.6. The graph cobordism classes in the sense of Definition 51 tiwé conjunction
operation form an abelian group called the graph cobordiswug and denoted by &

PrRoOFE The proof is the same as the proof on lemma 5.2 since fusidrfission are a special
case of cobordisms. d

The result of Lemma 5.5 shows that there are different etgriea classefE;] # [E;] in G that
are identifiedE;] = [Ey] in Gg. Thus, the number of cobordism classes when using Defirtibiis
smaller that the number of classes by the fusion/fission adeb Definition 5.4.

6. Homology theories for embedded graphs

In this part we will present a method to extend Khovanov haggplfrom links to embedded
graphsG c S3. Our construction is obtained by using Khovanov homologyliftks, applied to a
family of knots and links associated to an embedded graplis fa@mily is obtained by a result of
Kauffman @2] as a fundamental topological invariant of embedded graptained by associating to
an embedded grapB in three-space a family of knots and links constructed byesoperations of
cutting graphs at vertices. Before we give this constructise motivate the problem of extending
Khovanov homology to embedded graphs by recalling anothewhk construction of a homology
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theory, graph homologywhich is defined for abstract graphs and captures the catdsial com-
plexity of the graph. The homology theory we seek to constwilt combine aspects of Khovanov
and graph homology, in as it captures information both orethbedding, as in Khovanov homology,
and on the combinatorics of the graph, as in graph homology.

6.1. Graph homology. We recall here the construction and some basic propertigsaph ho-
mology. As we discuss below, graph homology can be regarsleccategorification of the chromatic
polynomial of a graph, in the same way as Khovanov homologgsja categorification of the Jones
polynomial of a link. A construction is given for a graded haogy theory for graphs whose graded
Euler characteristic is thehromatic Polynomiabf the graph 30]. Laure Helm-Guizon and Yongwu
Rong used the same technique to get a graded chain compleir comstruction depends on the
edges in the vertices of the cub@, 1}" whose elements are connected subgraphs of the @aph
this subsection we recall the construction of Laure HelnizGuand Yongwu Rong.

6.1.1. Chromatic Polynomial.let G be a graph with set of vertic&4(G) and set of edge&(G).
For a positive integet, let {1,2,...,t} be the set of-colors. A coloring ofG is an assignment of a
t-color to each vertex db such that vertices that are connected by an ed@eahways have different
colors. LetPs(t) be the number otrcoloring of G i.e.is the number of vertex colorings & with
t colors (in a vertex coloring two vertices are colored défatty whenever they are connected by an
edgee), thenPg(t) satisfies the Deletion-Contraction relation

Pe(t) = Po_e(t) + PG/e(t)
In addition to thatPx,(t) = t" whereK, is the graph withn vertices anch edges. Ps(t) is called
Chromatic Polynomial Another description can be give Rx(t), letsC E(G), defineGs to be the
graph whose vertex set is the same vertex s& with edge ses. Putk(s) the number of connected
components o6ss. Then we have

Polt)= ¥ (—1)t<®

SCE(G)
6.1.2. Constructing n-cube for a Graphrirst we want to give an introduction to the type of

algebra that we will use it in our work later.

DEFINITION 6.1. [30] Let v = @&;V; be a graded-module where{Vi} denotes the set of ho-
mogenous elements with degrieand the graded dimension of is the power series

qdim’ =3 ddimg(V © Q)

We can define the tensor product and directed sum for the g7aeeodule as follows:

THEOREM6.2. [30] Let ¥ and % be a gradedZ-modules, them’ @ w and v & ' are both
gradedZ-module with

1) qdimv @ w) = qdim(+) + qdim(w )
(2) qdimv @ w) = qdim(+) - qdim(w)

Let G be a graph with edge se{G) andn = |E(G)| represents the cardinality &(G). We need
first to order the edges iB(G) and denote the edges B, e, ...,e,}. Consider thar-dimensional
cube{0,1}" [30],(see the figure (12)). Each vertex can be indexed by a ward0,1}". This vertex
a corresponded to a subset 54 of E(G). This is the set of edges @ that are incident to the
chosen vertex. Theg € & if and only if a; = 1. Definela| = § a; (height ofa) to be the number
of ’sin a or equivalently the number of edges sp. We associate to each vertexin the cube
{0,1}", a graded vector spadg as follows B0]. LetV, be a graded fre&-module with 1 andk
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basis elements with degree 0 and 1 respectively, gea Z & Zx with qdim(Vy ) = 1+ g and hence,
qdim(V*) = (1+q)*.

ConsiderGg,, the graph with vertex s&t(G) and edge set,. Replace each component®§, by a
copy ofVy and take the tensor product over all components.

Define the graded vector spatg = V2K wherek is the number of the components @f,. Setthe
vector space’ to be the direct sum of the graded vector space for all thecestt The differential map
d', defined by using the edges of the culiel}". We can label each edge {8,1}" by a sequence
of {0,1,%}" with exactly onex. The tail of the edge labeled by= 0 and the head by = 1. To
define the differential we need first to defiRer-edgemaps between the vertices of the cyioel}".
These maps is defined to be a linear maps such that every squheecube{0,1}" is commutative.
Define theper-edgemapd; : 4, — 74, for the edge with tail a; and headx, as follows: Take
Va, = V@K for i = 1,2 with k; is the number of the connected component@gif. Letebe the edge
andsy, = Sy, U{e}, then there are two possible cases. First one (easy chsell be the identity map
if the edgeejoins a componentof Gg, to itself. Therk; =k, with a natural correspondence between
the components cfrale andG%. Second one: i€ joins two different components Gsul, sayr; and
ro, thenk, = k; — 1 and the components G‘suz areryUrpU{e}U....Ury,. Defined; to be the identity
map on the tensor factor coming framry, ...,ry, . Also defined; on the remaining tensor factor to
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be the multiplication mapy ®Vy — Vi sendingx®y to xy. The differentiald' : v' — ¥+1in
given by _
d' =% sign(€)d
[E]=i
Where sigif€) is chosen so that? = 0.

THEOREM6.3. [61],[30] The following properties hold for graph homology.
e The graded Euler characteristic for the graph homology gitg

3 (—1)'dldim(Kh'i(G)) = Ps(t)
1]
where R(t) is the chromatic polynomial
¢ In graph homology a short exact sequence

0 — CKh1I(G/e) — CKh'(G) — CKH/(G—e) — 0

can be constructed by using the deletion-contraction iefator a given edge € G. This
gives a long exact sequence

.. — Kh~1(G/e) — Kh"/(G) — Kh'"I (G—e) — - -

6.2. Graph homology and Khovanov homology.A first idea of how to obtain a homology
theory that extends Khovanov homology for embedded grapi ég@mbine the chain complex that
computes Khovanov homology, constructed using the badiordisms near each crossing of a planar
diagram, and the chain complex of graph homology which isthas removing edges from the graph.

Since we are going to concentrate later on a different appré@constructing a Khovanov ho-
mology for embedded graphs, we only give here a simple exaitipstrating how to associate to
each level in the graph homology complex a correspondingcallbomplex as in Khovanov ho-
mology with differentials between these induced by the yiapmology differentials, but we do not
pursue the details of this construction further at present.

The aim of the approach we sketch briefly here would be to olatalouble complex that com-
bines the graph homology complex and a version of the Khovaomplex. We recall briefly the
notion of a double complex.

DEFINITION 6.4. Letc be an additive category. A double complgX*(A),dx) in ¢ is the data
of (CH,d™Ix,d""Ix), (i, j) € Z x Z, whereC""} € ¢ and the differentials™x: C"} — C"*1 (vertical
differential) andd”)x : C"J — C"1*+1 (horizontal differential) satisfy:

d/2X — d//ZX -0 d/ Od// — d// Od/
in the commutative diagram

/! U
ci —9 o it 9 i

bk

/!
ci+lj — 9 cirnjr1 9 sirvj42

l d/ l d, l d,
u /!

ci+2j — 4 civzjr1 9 itz 42

We now look at a simple example of an embedded graph with d sinaber of vertices and of
crossings, to illustrate how one can try to combine Khovaarod graph homology.

For a graphG with n crossings, one can follow the same idea of Khovanov and artsan
associatedi-cube by applying the 0 and 1-resolutions illustrated inrigg(13)
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FIGURE 13. 0 and 1- resolutions to each crossing in a Graph G

To each vertext in then-cube we can associate a gradedhodulesas, and sum over all columns to
get a complex.
C == @ Mq

o n—cube

And to each edge in the cube we associate a differeditial differential D on the summan@ is the
sum of the mapd for all edges, such thal®> = 0. Consider the diagram in figure (14)

n—cube diagramT
for the graph

o
L

Cc” )y~ (€ )

FIGURE 14

One can then try to combine tlmeecube complex obtained in this way with the complex commutin
graph homology as described in the previous section. Centheé example of the planar diagram of
an embedded graph as illustrated in figure (15).
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FIGURE 15

Figure (14) shows the graph together with the associateddmas cubical complex obtained by re-
solving the crossing in the two different ways, while Fig(t®) shows the graph homology complex
for the same graph. Consider then the diagram in figure (18 Stows how to associate to each
term in the first two steps of the graph homology complex assponding cubical complex.



6. HOMOLOGY THEORIES FOR EMBEDDED GRAPHS 71

FIGURE 16

Instead of continuing in more generality this approach, @\sin the next section a more direct
and simpler approach to constructing a Khovanov homologgnibedded graphs. The approach we
present below will have the advantage that the proof of tmgioal invariance will immediately follow
from Kauffman'’s result and will not require checking that tiraph Reidemeister moves induce chain
homotopies of the complexes involved.

To this purpose, we first review a useful result of Kauffmathie next paragraphs.

6.3. Kauffman’s invariant of Graphs. We give now a survey of the Kauffman theory and show
how to associate to an embedded grapBira family of knots and links. We then use these results
to give our definition of Khovanov homology for embedded dpsmpIn 2] Kauffman introduced
a method for producing topological invariants of graphs edued inS®. The idea is to associate
a collection of knots and links to a grafgih so that this family is an invariant under the expanded
Reidemeister moves defined by Kauffman and reported herguref(17).

He defined in his work an ambient isotopy for non-rigid (tagmptal) vertices. (Physically, the rigid
vertex concept corresponds to a network of rigid disks eatt {four) flexible tubes or strings ema-
nating from it.) Kauffman proved that piecewise linear agmbiisotopies of embedded graphsSth
correspond to a sequence of generalized Reidemeister nmvpknar diagrams of the embedded
graphs.

THEOREM6.5. [42] Piecewise linear (PL) ambient isotopy of embedded grapbsnerated by
the moves of figure (17), that is, if two embedded graphs al#arnisotopic, then any two diagrams
of them are related by a finite sequence of the moves of figédje (1
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FIGURE 17. Generalized Reidemeister moves by Kauffman

Let G be a graph embedded $1. The procedure described by Kauffman of how to associa® to
a family of knots and links prescribes that we should makesal leeplacement as in figure 18 to each
vertex inG. Such a replacement at a vertegonnects two edges and isolates all other edges at that
vertex, leaving them as free ends. iéB,v) denote the link formed by the closed curves formed by
this process at a vertex One retains the link(G,v), while eliminating all the remaining unknotted
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FIGURE 18. local replacement to a vertex in the graph G

arcs. Define thei (G) to be the family of the links (G, v) for all possible replacement choices,
T(G) = Uyev () (G,V).
For example see figure (19).

THEOREMG6.6. [42] Let G be any graph embeddedS?, and presented diagrammatically. Then
the family of knots and links (G), taken up to ambient isotopy, is a topological invariant of G

For example, in the figure (19) the grafh is not ambient isotopic to the gra@, sinceT (Gy)
contains a non-trivial link.

6.4. Definition of Khovanov homology for embedded graphsNow we are ready to speak
about a new concept of Khovanov homology for embedded graphssing Khovanov homology
for the links (knots) and Kauffman theory of associate a i links to an embedded graph, as
described above.

DEFINITION 6.7. LetG be an embedded graph withG) = {L3, Ly, ....,Ly} the family of links
associated t& by the Kauffman procedure. L&th(L;) be the usual Khovanov homology of the link
L; in this family. Then the Khovanov homology for the embeddeabb G is given by

Kh(G) = Kh(Ly) & Kh(Lz) & .... & Kh(Lp)

Its graded Euler characteristic is the sum of the gradedrEukracteristics of the Khovanov homol-
ogy of each linkj.e.the sum of the Jones polynomials,

zk( 1)'g’dim(Kh"J (Ly)) ZJ (L). (6.1)
],
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FIGURE 19

We show some simple explicit examples.
ExamMPLE 6.8. Infigure (19)T (G1) = {OO, O} then forKh(Q) =Q
Kh(G1) = Kh(OO) & Kh(O)

Now, from proposition 3.5 no.5
Kh(G1) = Kh(O) @ Kh(O) & Kh(O)
Kh(G1) =QeQaQ=QeQ

T(Gy) = {C ,O} then

Kh(Gy) =| -2 Q

W) Q

6 Q

7. Questions and Future Work

We sketch briefly an outline of ongoing work where the cortdiom presented in this paper is
applied to other constructions related to noncommutataaetry and knot invariants.
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7.1. Categorification and homology invariants. We have constructed a category of knots and
links, or more generally of embedded graphs, where it isiplesso use homological algebra to
construct complexes and cohomological invariants. Thege® of categorifications in knot theory,
applied to a different category of knots, has already provey successful in deriving new knot
invariants such as Khovanov homology. We have begun imadstg in this second chapter how to
associate cohomologies to the objects in our category. \&%@ tteunderstand how to combine these
with the rest of the categorical structure described in thet éhapter, to obtain a functor from our
2-category to a 2-category of 2-vector spaces. We also platutly filtrations, long exact sequences,
and spectral sequences for Khovanov homology of embedagxhgyr

7.2. Time evolutions and moduli spacesWe have constructed vertical time evolutions from
virtual dimensions of moduli spaces. It would be more irgéng to construct time evolutions on
the algebra of correspondences, in such a way that the atugk theoretic invariants obtained by
integrating certain differential forms over the moduli spa can be recovered as low temperature
equilibrium states. The formal path integral formulatiafigiauge theoretic invariants of 4-manifolds
suggests that something of this sort may be possible, bpgynéb the case we described of Hartle—
Hawking gravity. In the case of the horizontal time evolatid would be interesting to see if that can
also be related to gauge theoretic invariants. The closedehavailable would be the gauge theory
on embedded surfaces developeddf] [

7.3. Noncommutative spaces and dynamical system#énother way to construct noncommu-
tative spaces out of the geometric correspondences coegitiere is via the subshifts of finite type
constructed in§6] out of the representations : Ty (S®\ L) — S, describing branched coverings.
A subshift of finite type naturally determines a noncommwuaspace in the form of associated
Cuntz—Krieger algebras. The covering moves (or coloredéteeister moves) obp] will determine
correspondences between these noncommutative spaces.






APPENDIX A

1. Branched Covering

1.1. Branched Coverings of Manifolds. We work here in the PL category with piecewise linear
maps. Manifolds have piecewise linear local charts and afisp: M™ — N™ betweermm-manifolds
are assumed to be PL and propeg.the preimage of a compact set is compact). A PL, proper, finite
to-one and open map: M™ — N™ between manifolds is called a branched covering. The sangul
set is the set of points &fl ™ at whiche fails to be a local homeomorphism. It is a subpolyhedron of
M™ of codimension 2. The branched set, or branch locug) (@fenoted byBy) is the image of the
singular set of the branched coveripgn N™. The fibers ofyp are finite setsp~(y), for ally € N™.
The degree dagis the maximum cardinality of a fiber.

EXAMPLE 1.1. LetD? = {z< C: |z < 1} and letP : D? — D? be the map given by the formula
P(z) = 2". Then P is an n-fold branched covering with unique brancluatz = 0.

Two branched coveringgy, @, : M™ — N™ are equivalent if there exist homeomaorphisins
MM — M™andg: N™ — N™ such thaigg, = @, f. They are b-homotopic if there is a homotopy
6 :M™— N™ for 0<t <1, such thaby = @, 6; = ¢, and such that eadh is a branched covering.
We recall briefly the “Alexander trick” for branched coveginAny branched covering: D — D3
is b-homotopic to the con@(g|dD?3), hence two such branched coverings that agre@vhare b-
homotopic.

Suppose thap: M3 — N8 is branched covering and thif is orientable. The orientation &3
determines an orientation M2 such thatpis orientation- preserving. To show this, triangulié
andNS® so thatgis simplicial and orient then-simplices ofM 2 so thatis orientation-preserving on
each simplex. A branched coverigg M3 — N2 which preserves specified orientations\df and
N3 is called an oriented branched covering . A branched coyepirV® — N2 of degreen > 2 is
simpleprovided that it is of local degree 2 and, for each N3, the fiberg—(x) overx consists of at
leastn— 1 points (hence it contains at most one singular point).

PrROPOSITION1.2. [B] Let@: M3 — N3 be a simple branched covering of degree n between
compact manifolds, and 1&t: M2 — N2 be any other branched covering.&fs close enough tg
in the compact-open topology, théris also simple.

LEMMA 1.3. [B] Any Branched covering : D? — D? is b-homotopic redD? to a simple
branched covering.

THEOREM 1.4. [B] Let M2 be a connected orientab®manifold with connected boundary and
let @: M3 — S be a simple branched covering of degree- 8. Then there is a simple branched
covering¢ : M3 — D3 which extends.

In[38] A. Hurwitz introduced a way of associating data to everynisteed covering: M" — N"
of degreen which are called thelurwitz systenfior . This is defined in the following way: a branched
covering@ : M3\ @ 1(By) — N3~ B, can be determined by a representation

o(@) : Tu(N™ Bg) — S, (1.1)
77
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whereS;, is the symmetric group. One then has the following result.

THEOREM 1.5. (Hurwitz Existence Theorem)
For any finite set B N™ and representatioro : Ty (N™ < B) — S,, there is a degree n branched
coveringgp: M™ — N™ where M" is not necessary connected, with 8 B ando(¢) C o.

One also has the following result that generalizes Lemmalio®e.

THEOREM 1.6. [5] Any branched covering: M2 — N3 of degree n is b-homotopic to a simple
branched covering.

This can be used to show (sé#)[that one can, up to homotopy, always reduce to the caseawher
the branch locus is a manifold, which in the case of branclmerings of 3-manifolds means a
1-manifold in the 3-sphere, that is, a link.

COROLLARY 1.7. Any branched covering: M3 — N2 is branched homotopic to one with
branched set 4-manifold.

In the first chapter, in order to have well defined compos#tiohmorphisms, we did not want to
consider coverings up to homotopy, so we had to keep alselviani that are embedded graphs and
not just links.

Another result from the general theory of branched coveripig3-manifolds that we used exten-
sively in our work is the fact that all 3-manifolds are braedltoverings of the 3-sphere. We report
here a simple argument that shows why this is the case. lireessthe fact that all 3-manifolds admit
a Heegaard splitting.

THEOREM 1.8. LetM?3 be a closed orientable 3-manifold, anc8 an integer. Then there exists
a simple branched covering: M3 — S2 of degree n.

PROOF. LetM?3 = H_UH, be a Heegaard decomposition whete andH.. are handlebodies
identified along their boundary. L& = D3_uU D3, whereD3_ andD3. are the upper and lower
hemispheres. By the Hurwitz Existence theorem 1.5 thersiimple branched covering: o0H_ —
dD3_ . By the extension theorem 1&extends to a simple branched coveripg: H. — D3_ and
to a simple branched coverimgy : H, — D3, of degreen. Just setp= ¢_ U@, O

The fact that all compact PL 3-manifolds admit a Heegaarittisigl is also easy to check. In
fact, take a triangulation of the 3-manifold. A small tubufeighborhood of the 1-skeleton of the
triangulation gives a handlebody_ and the complement of this tubular neighborhood can also be
seen to be a handlebodt, of the same genus. Their common boundary is the ggrsusface along
which the gluing of the two handlebody happens.

2. Filtration

A finite length filtration of a chain compleR is a sequence of subcomplexes
0=CkcC1CCrC...... cCy=C

Amap f :C — C' between two filtered chain complexes is said to respect thatiin if f(C;) C C/.

A mapf is afiltered map of degrdeif f(C;) C C/,,. By defining afiltration{C; } on a chain complex

C, one can induce another filtratidi; } on H,.(C) defined as follows : a clagg] € H.(C) is in K if

and only if it has a representative which is an elemenE;ofNotice that iff : C — C’ is a filtred
chain map of degree k, then it is easy to see that the inducpdm#l.(C) — H.(C') is also filtered

of degree k. A finite length filtratiogC;} on C induces a spectral sequence which converges to the
associated graded group of the induced filtrafiBi}. The associated grading of a filtration is defined
as follows : an element € C has grading if and only if x € C; andx ¢ C, 1. The associated graded

group is the quotient grou@; /Ci 1.
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3. Knot and link

A link or aknotin S® is a smooth embedding of a disjoint family of circles (link)aosingle circle
(knot),i.e.it is a collection of disjoint smooth simple closed curvesjeh is a 1-dimensional closed
submanifold ofS3.

DerINITION 3.1. Two linksL1 andL, are said to be equivalent if there is a homeomorphism
of S® taking one to the other. Two links; andL, are said to be ambient isotopic if there exists a
continuous family of homeomorphisngs of S® beginning from the identityyp = id and ending with
a homeomorphisnp; with L; = @;(L2). The ambient isotopy class of a link is called the link type.

A link (knot) is said to be trivial if it is equivalent to a cies (circle). The relation between
equivalence and ambient isotopy is the following. Giveneiahof the orientation on the 3-sphe3g
if the homeomorphism o8°® that gives the equivalence betweenandL, is orientation preserving,
then there is a continuous family of homeomorphisms&bbeginning from the identity and ending
with a homeomorphism takinlg; to L, which is an ambient isotopy. Thus, two links andL, are
ambient isotopic if there exists an orientation preserviogeomorphisme of S® with L; = @(L5).

A knot is said to be tame if it is isotopic to a polygonal knobritame knot exist and are called
wild. The set of tame knot types is countable. A knot is cafietboth if it is a smooth submanifold
of S3.

LetK be atame knot type. One can proj&conto a plane in such a way that the image is a nodal
curve. By drawing the nodal points as crossings that rememhiee3-dimensional positions of the
two crossing strands of the knot, one obtains a picturecaallanot diagram Dof K. One can define
the link diagrams in the same way.

DEFINITION 3.2. The minimal crossing numbe(K) of a given knot typeK is the minimum
number of crossings among all the planar diagrams repiagdft

DEFINITION 3.3. A knot invariant is a mathematical object associatetth wach knot, in such
a way that the object attributed to two ambient isotopic &nistthe same (or isomorphic in the
appropriate category).

For example, the crossing number is a knot invariant. K Lee a knot type irs3. We can reflect
its image through a plane to get a kGt called the mirror image df. If K ambient isotopic to its
mirror imageK™ thenK is called achiral and if they are not ambient isotopic thenkhot is called
chiral. For example, the Figure-8 knot is achiral.

DEFINITION 3.4. A knot diagranD is called alternating if, when we proceed along the nodal
curve, we pass alternately over, under, over and so on, htaeassing.

The usual planar diagram for the trefoil knot is alternating
The following result is a well known and very useful charaeiion of ambient isotopy of knots
and links in terms of their planar diagrams.

ProrPoOSITION3.5. Two diagrams represent the same link or knot type if and dnlseican get
one from the other by finite sequence of Reidemeister movedigsre (1).

LetK be an embedded knot 8F. We define the knot complement as the complement of the knot
in S® i.e. the topological spacg® — K. LetK andK’ be two ambient isotopic knots &, and let:
S® — S® be an orientation preserving homeomorphisrsbivith (K ) = K'. The restrictionp|(S® —
K) — (S*—K) is also a homeomorphism. Thus, two ambient isotopic knote hameomorphic
knot complements.

A knot or a link called reducible (composite knot) if it can é&eressed as trmnnected surof
two non-trivial knots or links. Recall that, if we have twodte K; andKj, then the connected sum
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-

Move |: Twist and untwist in either direction.

0—)(

Move Il: Move one loop completely over another.

Move Il : Move a string completely over or under a crossing

FIGURE 1. Reidemeister move

of K1 andKj, denoted byK;#K5, is formed in the following way. Take a knot projection Kf and
Ky, and put them next to each other. Select a srralion each of the two knotk; andK,. Delete
a segment of arc from each, and connect the endpoints bygtdonew arcs each connecting an
endpoint on one of the two knots to an endpoint on the othema Is composite if it is a connected
sum of two non-trivial knots. The knot§; andK; arefactor knotsof K;#K,. The decomposition of
knots intoprime factors is unique up to the order of each summand in the coemhestim (like the
unique prime factorization of natural numbers). For examible trefoil knot is a prime knot.
However, unlike the case of prime numbers, here there arecho@es of how to connect the
endpoints of the arcs in performing a connected sum. Thedd tfie same result whenever one of
the knots is invertible.

THEOREM 3.6. The composition KKy is unique if and only If one of the two knots &r Ko is
invertible (i.e. it can be deformed by an ambient isotopy thie same knot with the reverse orienta-
tion).

3.1. Universal Knot. In 1982 the concept ainiversal linkfor 3-manifolds was introduced by
W.Thurston B0]. He gave an example of a six components universal link. & (or a knot)U, is
said to be universal if every closed orientable 3-manif@d be realized as a branched covering of
S® in such a way that the branched seltljs
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Hilden, Lozano, and Montesinos constructed the first exaraph universal knot ind4]. They also
gave a description of 2 and 4-components universal linkseirTiesult is based on the use of the
following result.

THEOREM 3.7. [34] Let L be a link inS® with n+ 1-components. Then there is a linkih S3
with 2n+ 4-components and a map: 8¢ — S® such that

(1) pisa2n+5to 1 branched covering map, branched along a knot k.
(2 piky=LandLcL

The first example of a universal knot first obtained by Hildeonzano, and Montesinos is very
complicated, but simpler examples where constructed. I&et all knots are universal knots. For
example, the question of whether the Figure-8 knot is usdleemained open for some time and was
eventually proved by Hilden, Lozano, and Montesinos38| [

4. Topological Quantum Field Theory

A topological quantum field theory (or topological field thewmr TQFT) is a quantum field
theory which computes topological invariants. In physiopplogical quantum field theories are the
low energy effective theories of topologically orderedesasuch as fractional quantum Hall states,
string-net condensed states, and other strongly cordetptantum liquid states. In 198&][Atiyah
gave a description of topological QFT with axioms. The b&iga is that a TQFT is a functor from a
certain category of cobordisms to the category of vectocespa

DEFINITION 4.1. [2] In dimensiond, TQFT is a monoidal functoZ : Cob(d + 1) — Vect,
whereCob(d + 1) is the category whose objects are closed, oriedtesanifoldsM without bound-
ary. The cobordism morphisMW/ : M — M’ is a smooth, oriented, compadt 1-dimensional
manifold with boundarypW = M LI —M’. Two cobordism3d\;, andWs, are equivalent if there is an
orientation-preserving diffeomorphish: Wy — W5, Vectis a symmetric monoidal category of
finite dimensional complex vector space where morphismgirggar mapd. : Vi — V, with dual
L* 1 Vo — V4.

This functor satisfies the following axiomg]{

(1) For a cobordisnW with boundarydW = M1 LI —My, thenZ(W) = Z(M1) — Z(My) is a
homomorphismi.e. a linear map of vector spaces.

(2) Zisinvolutory, thatis,Z(—M)=Z(M)*, where—M denotesV with the opposite orientation
andZ(M)* = Hom(Z(M),C) is the dual vector space.

(3) Zismultiplicative that is,Z(M1UM3) =Z(M1) @ Z(My).

(4) ZisAssociative for composite cobordisms (gluinyly =W Uy, Wo with oWy = M1 LI —M
andow, = M, LI —M3 thenZ(W) = Z(W) 0 Z(Wo) € HOom(Z(M1),Z(M3)).

(5) Z2(0) =C.
(6) Z(M x 1) is the identity endomorphism &f(M).
REMARKS 4.2. e The identity endomorphism a(M) in (6) and the functoriality oz

imply homotopy invariance.

e LetW be a closed (d+1)-dimensional manifold (with empty bougpgarhen by(5) the vec-
tor Z(W) is just a complex number. This means that a TQFT assigns aricahi@variant
to each closed (d+1)-manifolds.

o LetW =W;| |y, W, as in(3) with My = M3 = 0. Then one can cl along ad-manifold
M, and one obtains

Z(W) = (Z(Wh), Z(Wb))
where(-,-) denotes the pairing of the vector spati®/,) with its dualZ(M;)* = Z(—My).
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Here one can give a physical explanation of the meaning teethgioms. In dimension 3 we can
suppose thaM is a physical space with an imaginary tirivex | and a Hilbert spac&(M) of the
quantum theory associated to the Hamiltorliimwith evolution operatoe™ (wheret is the coordi-
nate on the interval). In axiom (6) the HamiltonianH vanishes. Thus having a topological QFT
implies that there is no real dynamics taking place alongcytieder M x |. Notice that, for a man-
ifold W with 0W = M1 U My, there can still be an interesting propagation frivlnto M, and this
reflects the nontrivial topology aW.

Topological quantum field theories had many important @pagithns in modern geometry, among
these the work of Gromo\2p] on pseudo-holomorphic curves in symplectic geometry. @FT (and
in particular for example in6]) a vectorZ(W) in the Hilbert spac&(M) is called avacuum statéf
oW = M and for a closed manifold/ the numbeZ (W) is thevacuum-vacuurexpectation value. In
analogy with the statical mechanics it is also called thétgar function.

5. 2-Category

In category theory, a 2-category is a small categorwith “morphisms between morphisms”.
2-categories are the first case of higher order categor¢haly are constructed as follows:

e (» is defined as a small category enriched dvat which is defined as a category of small
categories and functors. Here we mean by enriched categmategory whoséiom— Sets
are replaced by objects from some other category. Moreg@lgcia 2-category consists of
the following data.

e A class of objectgA,B,....) € Cat called O-cells.

e For all O-cellsA andB, we can define a set(A, B) which is defined as &lom,(A,B) of
objectsf : A—— B which are called 1-cells.

e A morphisma : f; — f, for any two morphismd; and f, of ¢,. These 2-morphisms are
called 2-cells.

e The 2-categorical compositions of 2-morphisms is denosadand is calledsertical com-
position

e For all objectsA, B andC, there is a functor

o: C2(A,B) x 2(B,C) — 2(A,C)

called horizontal compositionwhich is associative and admits the identity 2-célsas
identities.

e For any objectA there is a functor from the terminal category (with one cbped one
arrow) toc2(AA).

The notion of 2-category differs from the more general notia bicategory in that composition of
1-morphisms is required to be strictly associative, whenea bicategory it needs only be associative
up to a 2-isomorphism.

There are three different ways to obtain a category from at@gory, all of which we use in
Chapter 1. They are summarized as follows.

e Forgetting 2-morphisms one is left with the category consisting of the objects and 1
morphisms of the 2-category.

e Forgetting objects one obtains a category whose objects are the 1-morphisrtsedi-
category and whose morphisms are the 2-morphisms of theegars.

e Equivalence relationone uses the 2-morphisms to define an equivalence relatitimecset
of 1-morphisms and obtains in this way a category whose thge the same as the objects
of the 2-category and whose morphisms are the equivaleassad of 1-morphisms of the
two category modulo the equivalence relation generatethéimorphisms.
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6. Group Rings

A group ring is a ringR[G| constructed from a ring and a grougs. As anR-module, the ring
R[C] is the free module oveR generated by the elements®fthat is, the elements of the group ring
are finite linear combinations of elements@fvith coefficients inR,

RG] = R
[G] {ggso‘gg’age }

with all but finitely many of thexg being 0.
TheR-moduleR[G] is a ring with addition of formal linear combinations

+ beg) = +b 6.1
(geggeRagg) (ge%geR 69) g;(ag 9)9 (6.1)

and multiplication defined by the group operationGrextended by linearity and distributivity, and
the requirement that elements®tommute with elements @,

( agg)(hEG%heRbhh) = g;eG(agbh)gh- (6.2)

geG,ageR

If R has a unit element, then this is the unique bilinear mudiition for which(1g)(1h) = (1gh).
In this case,G can be identified with the elementg df R[G]. The identity element o6 is the
multiplicative unit in the ringR[G]. If Ris commutative, thelR[G] is an associative algebra over
If R=F is afield, therF[G] is an algebra, called the group algebra.

We have the following equivalent descriptions of the graung r

DEFINITION 6.1. [B]] Let G be a group an®R a ring. Define the seR|G] to be one of the
following equivalent statements:

e The set of all formaR-linear combinations of elements Gf
e The set of all functiond : G — Rwith f(g) = 0 for all but finitely manyg € G.
e The freeR-module with basi<s.

The ring structure is given as above by (6.1) and (6.2).

If RandG are both commutativee. Ris a commutative ring an@ is an abelian group, theR(G]
is commutative. IH is a subgroup 06, thenR[H] is a subring oR[G]. Similarly, if Sis a subring of
R, thenSG] is a subring oR[G].

6.1. Group algebra over a finite group. [5]]

We recall briefly the example of group algebras for finite guThese occur naturally in the
theory of group representations of finite groups. As we haea ebove, wheR s a fieldF the group
algebraF [G] is a vector space ovét, with a canonical basig; given by the elementg € G and with
elements given by formal sums

V=
g;xgeg

As we saw in general for group rings, the algebra structudefined by the multiplication in the
group,

€g-6h = Egh
Thinking of the free vector space Bsvalued functions ofg, the algebra multiplication can be written
equivalently as convolution of functions.

The group algebra is an algebra over itself; under the qooredence of representations ower
andR[G] modules, it is the regular representation of the group. téfris a representation, it is the
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representatioly — pgy with the action given by(g).e, = egh or

P(@).r= > knp(g).en= ) kn-eyn
heG heG
For a finite group, the dimension of the vector spg¢@| is equal to the number of elements in
the group. The fieldr is commonly taken to be the complex numbérer the realsR. The group
algebraC|G] of a finite group over the complex numbers is a semisimple fTings result, Maschke’s
theorem, allows us to understa@G| as a finite product of matrix rings with entries@

6.2. Groupoids, semigroups, semigroupoids and their ringsin the first chapter of our work
we introduced algebras that are generalizations of grawgsriThey are generalizations in two differ-
ent senses. First of all one can pass from groups to groupoidsiefine the groupoid ring[g]. In
a different direction one has generalizations where onkacep the group by a semigroup and have
the corresponding semigroup rilRjS. In our case, we work with a generalization of both of these
concepts which is a semigroupasdand the corresponding ririgs]. We recall here these different
notions and stress the way in which they differ from one amotimd from the original notion of group
ring recalled above.

6.3. Groupoid Ring. A groupoid® is a small category in which each morphism is an isomor-
phism. Thus® has a set of morphisms, which we call element®ofa setY of objects together
with range (target) and source functions: & — Y such that, forg;, gz € & with r(g;1) = s(gz2),
then the product or compositeg; = g2 0 g exists, withs(g2g1) = s(g1) andr(gz01) =r(gz2). The
composition is associative. Fgr.Y — & and for an element € Y the element/(x) is denoted
by 14 and it acts as the identity, and each elenghas an inversg~! such thats(g™!) = r(g) and
r(g™!) =s(g), with g~'g=y(s(g)) andgg* = y(r(g))-

In a groupoid®, for y1,y, we define the seb(yi,y») of all morphisms with initial point; and
final pointy,. We say that is transitive if, for ally;,y, € Y the set®(y1,y-) is non-empty. Foy € Y
we denote the sdig € & : s(g) =y} by &y. Let® be a groupoid. The transitive componenief Y,
denoted bYC(®)y, is the full subgroupoid o® on those objects € Y such that’(y, x) is non-empty.

DEFINITION 6.2. Let® be a groupoid an® a ring or a field. The groupoid ring (or groupoid
algebra in the field cas&)[®] consists of all finite formal sums of the forf{'r;g; wherer; € Rand
g € 8, which satisfy the following conditions.

(1) f s rigi =3 s0g thenri=s,fori=1,2,....n.
(2) (FiL1rig) +(TL180) = SiLa(ri+S)gi
(3) (3L1rig)(FL150) = (F]L1kiti) wherek; = 37 ris; andt; = gig;.

(4) rigi = girj for all r; € Randg; € &.

(5) rytqrig =3 qrrig, forrri e R

Notice that since £ Randg; € &, we have® = 1.6 C R[] andR C & if and only if & has
identity, otherwiseRZ &.

6.4. Semigroup Ring.We now similarly recall the notion of semigroup ring, whichanother
generalization of the concept of group ring recalled in §6vab

The construction of the semigroup ring is not far from whatsaiel before for the group ring. We
try to illustrate the concept of semigroup from another pective. Lets be a semigroup and I&
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be a commutative ring. We define the semigroup Rig] to be the set of function§ : s — Rthat
send all but finitely elements gf to zero,

= z amdm(s)
mes
whereany € R and &y (S) = s is the Kronecker delta function, and all but finitely many bét
coefficients are,, = 0. Clearly the set of such functions has the structure &-amodule if is a ring,
or a vector space Ris a field. From the product in the semigrosipve can also define a product on
the semigroup rindR[s| as follows. Let(x, y) be a pair of elements of with xy=s e s then we set

(f f(x 6.3
9)( X;S (6.3)
This is analogous to the way one defines the product in thepgriag. In fact, it takes the product
of all non-zero components dfandg and collects the resulting terms whose indices multiphhto t
same element of the semigroup. With this additive and nlidéfive structure, one can check that,
as in the case of groups, the &% is in fact a ring (or an algebra Ris a field).

In this text we have assumed the convention that semigroayss daunit. However, the definition
above makes sense also for the case where one does not redaifeave a unit. In some text the
semigroup ring of a semigroup with unit is calledr@noid ring It is then a unital ring with a unit
given by the identity (unit) of the semigroup. dfis a group we recover the same definitiorgadup
ring discussed in 86 above. If in any of these cases we start witimanzitative semigroup we get a
commutative ring.

Notice that ifs is a group, for the group rinB[s], sincexy = sonly if y = x~'s, we can rewrite
the product formula (6.3) in the equivalent form

(fx0)(s f(x

This way of multiplying two functions on a group is callednvolutionproduct.

The notion of semigroupoid and semigroupoid ring is desttiln detail in Chapter 1. It is similar
to the groupoid case, in as the compositions are only defitnethwhe range of the first element agrees
with the source of the second, and it is also similar to theigemp case, in the sense that not all
elements have an inverse. The notion of semigroupoid rirdgabra that we consider there is still a
natural generalization of the notion of groupoid ring, asadhnes we recalled in this appendix.

7. Creation and annihilation operators
The unitariedJy : f — (Uxf)(n) = f(n+k), for k € Z, acting on¢?(Z), induce isometries
f(k+n) k+n>0

(Swf)(k)Z{ 0 k+n;O (7.1)

acting on the Hilbert spac&(NU{0}) = ¢2(Z/V) with V = {+1}.
LEMMA 7.1. The operators Sof (7.1), for n € Z, satisfy the relations;S= S, and

with B, the projection Rf (k) = f(K)X|n.«) (K), which is the identity for r< 0. The operators Salso
satisfy the relations

$Sn=P-nSim. (7.3)
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PROOF First notice that thé& satisfy

f(k=n) k—n>0

(SiH)K) :{ 0 ino (7.4)

In fact, we have
(Sfwy= > fktn)Xow k+nwk)
keNU{0}
=3 F(U)X[0e) (WXjoeo) (U—MWU—D) = T f(U)X[per) (U—N)P(u—1).
uez ueNU{0}
Thus, we haves, = S_,. we then have

SSf(U) = Xjne) (k) F (k) = Paf(k)
and
SIS F(K) = X[—ne) (k) F (k) = P_nf (K).
This is in fact a particular case of the following relatiofi$e relationU,Un, = Un.m, Satisfied by the

unitaries acting orf?(Z) descends to the relation (7.3) between the isomeS8jeacting on/?(N U
{0}). In fact, we have

SiPif (K) = X -neo) (K) Xiim-ns) (K) f (K+ 1) = P (K)
where

PnSh f(K) = X[—n) (K) Xjmeo) (K) f(K+1).
Thus, we see th&,S,, = P_nS+m, Since

($1S0F)(K) = X nem) (0 X[ () () F (K- M-41) = (P F) (1),
O

Thus, we see that, even in the case of a commutative groufd Jikdnere the algebra of thdy, is
commutative, we obtain a noncommutative algebra of isaes,

S = P—mSH—m 7’é P—nSH—m = SiSn

Notice however that, ih andm are both positive, theR_, = 1 = P_,, so that§,S, = SnS = S
Notice also that the fact that the algebra generated by dnedsiesS, is associative follows from the
fact that the projectionB, commute among themselves, as they are given by multircajperators
by the characteristic functiong, .. In fact, we have

31(3118&) = S1P—m3n+k = P—m—nSnSTH-k = P—m—nP—nS1+m+k

(SnSn)S« = P—nSHme( = anp—(n+m)31+m+k>
with P m)P-n=P-nP_(n1m)- Forn>0, we also hav&', = Pligsj‘ll =P P 1S h=PRP1S =
S n, SINCePy 1S n (k) = Xjn-1.00) (K)Xneo) (K) (k=) = X[ ) (K) f (k—1). Similarly, § = P_ 1S5 =
Pi-P 1S =S sinceP_n.x=1,fork=0,...,n—1.
Clearly, the algebra of th§, we described here is generated by a single isort&tyy which is

the isometry that describes the “phase” part of the creatpmrator in quantum mechanics, s2g]|
In fact, recall that the creation and annihilation opesdranda, with a* = a', act on/?(NU {0})

by
a'ey=vn+1ley,: and ae =ne 1, (7.5)



8. A QUICK INTRODUCTION TO DIRAC OPERATORS 87

with the commutation relatiofa’,a) = 1. It is well known that, while the operatoeg anda do not
have a polar decomposition in terms of a unitary and a sédfiatdoperator, they have a decomposi-
tion in terms of an isometry and a self-adjoint operator eftirm

a' =NY2s; and a=SNY? (7.6)

whereN &, = ng, is the grading operator off(NU {0}) andS; andS_; are the isometries described
above,S e, =e,-1 andS_je, = e,,.1. Notice that the grading operatdt acting onez(Nu {0})
defines a 1-summable self-adjoint operator with compact resolveunt &ith the property that the
commutators with the operato8s are bounded. Namely, one has the commutation relation

[N,S] = —-nS,. (7.7)
The Hamiltonian associated to the creation and annihilatjgerators is of the form (se2d])
H=a'a, with Spe¢H)=NuU{0}. (7.8)
The corresponding partition function at inverse tempeegbu> O is of the form
2(B) =Tr(e ™) = 5 expl—pn) = (L-exp( )" (7.9)

8. A quick introduction to Dirac operators

8.1. Clifford Algebra. LetV ~ R" be a vector space with non degenerate symmetric bilinear
form g. Over a field of characteristic different than 2, such a b#éinform can always be determined
by the correspondinguadric form gdefined agy(v) = g(v,v), by setting 3(u,v) = q(u,v) —g(u) —

q(v).

DEFINITION 8.1. The Clifford AlgebraCL(V, Q) is an algebra oveR generated by the vectors
v eV, subject to the relationv+ vu = 2g(u,v) for all u,v e V.

8.1.1. concepts in Riemannian geometilyet M be a compact smootidimensional manifold
without boundary. Define a Riemannian metricMrio be a symmetric bilinear form

g: (M) xF(M) — C(M),

whereg(M) =T (M, TcM) is the space of continuous vector fieldsMpandC(M) is the commutative
C*-algebra of continuous functions &h. Theng satisfies the following properties.

(1) g(X,Y) is areal function ifX,Y are real vector fields.

(2) gisC(M)-bilineari.e. g fX,Y) =g(X, fY) = fg(X,Y) for all f € C(M). In this condition
g is given by a continuous family of symmetric bilinear mgg M x TtM — R, where
Ox is positive definite.

(3) g(X,X) >0 for X real, withg(X,X) =0 only if X =0 in §(M).

8.1.2. Dirac Operator. Let (M, g) be a smooth compact Riemanniamanifold without bound-
ary with a Clifford algebra bundl€L(M). A Clifford module is a module oveZL(M). Any Clifford
moduleA that is finitely generated and projective is of the folm- (M, E) for E— M a complex
vector bundle. FOE — M a smooth complex vector bundle of Clifford modules= T (M,E), we
can define the Clifford multiplication which is a bundle maCL(M) — Hom(E, E) which is given
fiberwise by maps : CL(TyM, gx) — Homg (Ey, Ex).

Any choice of a smooth connection

0:C*(M,E) — C*(M,T*"M®E)

defines an operator dirac typeby settingp = co 1. We use here the identification of tangent and
cotangent bundl@ M = T*M induced by the Riemannian metric.
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Consider a small open chart dom&inC M, where the cotangent bundle is triviag. T*M |y~
U x R". For any local coordinatéx;, xy, ...,X,) over a chart domait/, the local coordinate of the
cotangent bundl&*M |y are(x,§) = (X1,X2, ..., %1, &1,&2, ...,&n) Whereg € T,*M. A differential oper-
ator acting on smooth local sectiofi I' (U, E) is an operatoP of the form

P= % ag(x)D"
d[<d
with aq € I'(U,EndE), and whereD® = D}*.D32.D5®...D%". andD; = —ia"Tj, with a positive integer

d representing the order &f. LetE — M be a vector bundle of rank By Fourier transform, we
can write forf € C*(U,R"):

Pf(x) = (211)”/]RneX|d'XE p(x, &) f(&)d"E
= " [ [ exd" Ve pix ) f)dyeE, ®.1)

wherep(x,§) is a polynomial of orded in the &-variable, called theomplete symbaif the operator
P. Then we can isolate the homogeneous part

d
p(x, E) = ZO Pd—j (X> E)
=

wherepg_j(x,t&) =t9" I pg_j(x,&) fort > 0.

DEFINITION 8.2. An elemeni is called aclassical symboif we can find a sequence of terms
Pa(X€), Pa-1(%.€), .... with

p(x,&) ~ i Pa-j(X.€)

>0
such thatpg_j(x,t&) =t9"Ipg_j(x,&) fort > 0.

DeFINITION 8.3. A classicapseudo-differential operatasf orderd over the chart domaib C
R" is an operatoiP defined by 8.1, for whichp(x,§) is a classical symbol, whose leading term
p4(x,&) does not vanish. This leading term is called giiecipal symbolof P, and we also denote it

by 6(P)(x,€) = pa(x,€)-

For an operator of Dirac type, which is a first-order diffdr@noperator on” (M, E), we get
o(p) € T(T*M, 1 (EndE)) and for the property op(x,&) = c(dx!)(&; —iwj(x)) we get

a(?)(%,€) = c(&jdx) = c(§)
and
a(D?)(%,€) = (0(D)(%,8))* = (c(§))* = d(&,&)

Notice thato(a)z) only vanishes whefg = 0, that is, on the zero section of M.

DEFINITION 8.4. LetP a classical pseudo-differential operator, tiaa calledelliptic if o(P)(x,§)
is invertible wherg, #£ 0.

An operatorsp of Dirac type is elliptic and so is its squage®. On a compact manifold without
boundary this implies that it is Fredholm (has finite dimenal kernel and cokernel), hence its index
Ind(2) =dimKer(2 ) —dimCoker D) is well defined. The Atiyah-Singer index theorem gives a lo-
cal formula, in terms of integration of a differential forfor the index. On a manifold with boundary,
the Fredholm property depends on the choice of boundaryittamsl With the Atiyah-Patodi-Singer
boundary conditions one still has a Fredholm operator ariddex formula, now with an additional
term that is an eta invariant for the operator restrictedhéottoundary manifold.
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9. Concepts of Cyclic Cohomology

Cyclic cohomology of non-commutative algebras is playimgaon-commutative geometry a sim-
ilar role to that of de Rham cohomology in differential topgy [14]. The first appearance of the
Cyclic cohomology was in the cohomology theory for algebrBEise cyclic conomologHC*(2) of
an algebraa overR or C is the cochain compleXC;(4),b}, whereC;(4),n > 0 consists of the
(n+ 1)-linear formsd on 4 satisfying the cyclicity conditiori[9]

9@, at,..a") = (—1)"9(al, &, ...,a%) (9.1)
wherea®, al,...,a" € 2 and the coboundary operator is given by

(b9)(a°,at,...,a") = Z(—l)j(ao,...,ajaj“,...,a”*l)+ (—1)™lg @0, ....a"
J:

C;(a) then consists of all continuous + 1)-linear forms ona satisfying 9.1. Cyclic cohomology
provides numerical invariants of K-theory classes as ¥ailo For an even integer, given ann-
dimensional cyclic cocyclé on 4, then the scalar

S®Tr(E,E,...,E) (9.2)

is invariant fL9] under homotopy, for an idempotent
E2=E e Mn(a) =2 ®@My(C)
This gives the pairind[9],[E]) between cyclic homology and K-theory. For a maniféddet 2 =
C*(M) with
(O 1 M) =(Q, f%df AdFPA.. AT

wherefl f2 .. " ¢ 2 andQ is a closedh-dimensional de Rham form dvl. Then the invariant 9.2
up to normalization is equal tQ,ch*(1)) wherech*(t) denotes the Chern character of the réhk
vector bundler on M whose fiber ak € M is the range ok (x) € My(C). To any algebraa one can
associate a module’ over the cyclic category by assigning to each integer O the vector space
C"(a) of (n+ 1)-linear formsd(al,al,...,a") on 4 and to the generating morphisms the operators
i :C"! — C"andg; : C"! — C" defined above. One thusg], obtains the desired interpretation
of the cyclic cohomology group ak -algebrag over a ground ringx in terms of derived functors
over the cyclic category

HC"(a) ~ Ext}(x" 4%
and

HCh(a) ~ Torh(a*, x %)
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