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Abstract

In the last decades there has been enormous progress in the fabrication of nanoscopic
quasi-one-dimensional systems, e.g., carbon nanotubes, semiconducting quantum wires, and
conducting organic molecules. These materials have an inhomogeneous composition due to
defects, impurities, or because they are formed by several types of atoms. In such sys-
tems, the strong electron correlations, inherent to their low-dimensional structure, and
large quantum fluctuations induce new and interesting quantum phases, for example super-
conductivity, quantum Hall edge states, and magnetic ordering.

While the properties of homogeneous one dimensional systems, even with disorder, are
relatively well-understood, very little is known about the properties of strongly interacting
inhomogeneous systems. Their high-energy physics is determined by the underlying che-
mistry which, in the atomic scale, introduces Coulomb correlations and local potentials. On
the other hand, at large length scales, the physics has to be described by the Tomonaga-
Luttinger liquid (TLL) model. In order to establish a connection between the low-energy
TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate
the density-density correlation function in inhomogeneous one-dimensional systems in the
asymptotic region. Position dependent on-site Coulomb interaction U(x) and local po-
tentials V (x) are used to model the changes in the local chemistry of the inhomogeneous
systems. To investigate homogeneous as well as inhomogeneous systems, we will use the
density-matrix renormalization group (DMRG) method.

We will present results for ground state properties, such as the density-density cor-
relation function and the parameter Kc, which characterizes its decay at large distances.
Results on some dynamic properties such as spectral density and optical conductivity will
be presented as well.
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Introduction

Condensed matter deals with aggregates of units, such as bosons or fermions, subject to
interactions with each other, and to internal or external fields. The goal being the under-
standing of the phases that such interactions induce. The first remark that can be made out
of this definition is that the systems of our interest have many degrees of freedom. Next, it
is necessary to model the interactions following the rules of the quantum mechanics. Thus,
much of the work consists in constructing a Hamiltonian with the desired characteristics of
being analytically solvable and encompassing a fully description of the investigated system,
which also allows one to make predictions. Such a scenario is still unachievable and we have
to settle for simple Hamiltonians for which an analytical solution is not always at hand,
and a numerical one is the best we can pursuit of. Even more, such a solution renders a
partial understanding of the properties of the system of interest. But sometimes, and for
the beginning, this is all which is needed. Surprisingly enough, adequate simplifications
have led to plausible, experimental-compatible results. If not all of the degrees of freedom
play an essential role and if the particles interact only weakly, simplifications can be made.
Examples of this are the P. Drude and A. Sommerfeld and theories of metals in the begin-
ning of the 20th century. Electron-electron interactions were then not considered because a
positive-charged cloud surrounding an electron would screen the interaction with its neigh-
bors, transforming an interacting bare electron into a free “dressed” one. The effect of the
crystal lattice was taken into account by F. Bloch, who showed that the wavefunction of a
particle placed in a periodic potential, like that of a crystal lattice, can be written as the
product of a plane wavefunction and a periodic function which has the same periodicity
as the potential. All these results being summarized in what is called the Fermi gas of
free electrons. A step further was taken as L. Landau investigated the effects of electron-
electron interactions. The result is the so called Fermi liquid, which included interactions
(even strong) among the particles, and showed that the description of the system remains
analog to that of the Fermi gas if considering quasiparticles, which are particle-hole low-
energy excitations, instead of (dressed) electrons. Our present understanding of interacting
fermionic systems rests still mainly on the Fermi liquid theory.

Phenomena such as high temperature superconductivity, magnetic ordering, Kondo ef-
fect, and the fractional quantum Hall effect, which involve inherently strong correlations,
have kept the scientific community busy for a while. Whenever possible, the usual approach
to deal with many-interacting-particle systems is to start from a non-interacting system and
assume that the interactions are weak enough to treat them perturbatively. At some point,
this procedure becomes unreliable. Several models have been developed to treat interacting
systems. Most of them are based on the structure of the Hubbard model, an elegant de-
scription of two competing processes: the hopping of valence electrons from one site of the
lattice to another, parameterized by the coupling t, and the local interaction of two elec-
trons sitting in the same site given by the on-site Coulomb potential U . Limiting cases for
the ratio U/t, e.g., U/t≫ 1, give rise to further interesting models such as the t−J model,
in which doubly occupied sites are forbidden, or the spin-1/2 Heisenberg model. The later
can be solved exactly by the Bethe Ansatz, which is one of the most celebrated methods to
find an analytical solution for the ground state. But even if it allows to obtain exact results,
which are not accessible by perturbative methods, it is not possible to calculate correlation
functions, which characterize the presence or lack of long-range order in the systems. Ac-
cess to other properties of many-body interacting systems, such as correlation functions and
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low-energy excited states, has been gained through the use of numerical methods. In the
case of (quasi) one-dimensional systems, the density-matrix renormalization group (DMRG)
developed by S. White has proved to be a powerful method. Its algorithm was originally
developed to overcome the problems that arise in one-dimensional interacting systems when
standard renormalization group techniques are applied. This method is designed to diago-
nalize the Hamiltonian of large systems by restricting the basis states to a smaller sector of
the Hilbert space.

Condensed matter physics has also being linked to the design and fabrication of new
materials, and in this area there has been significant progress. For example in creating
low-dimensional systems with interesting electric and magnetic properties, such as carbon
nanotubes and quantum wires. The discovery of superconductivity in organic molecules also
triggered the investigation of their normal state properties. Finding that such materials are
electric conductors with the electrons propagating in a preferred direction, making it an
example of a low-dimensional system. Another aspect to be considered is the underlying
inhomogeneous chemical composition of these materials, much more complex than simple
homogeneous systems such as the Fermi gas. Their chemical composition introduces po-
tential barriers which alter the transport properties drastically. Technically it is important
to know how to control the transport and equilibrium properties. Besides, dimensiona-
lity profoundly affects the tractability and physical properties of the systems. The strong
electron correlations, inherent to the low-dimensional structure, and large quantum fluctu-
ations induce new and interesting quantum phases. In one dimension (1D), the low-energy
electronic single-particle excitations posses vanishing spectral weight at the Fermi surface,
i.e., there are no quasiparticles present. The physics of such systems, in the homogeneous
low-energy regime, is described by the Tomonaga-Luttinger liquid (TLL) model introduced
by Haldane1. Within this model, it is found that all correlation functions exhibit a power-
law decay with the distance, which is specified only by the parameters Kc,s, where c refers
to the charge regime and s to the spin regime.

In this thesis we investigate the properties of one-dimensional strong correlated fermionic
systems and study their low-energy physics by means of the TLL theory and the density-
matrix renormalization group, which is a reliable method to handle an otherwise exponen-
tially-increasing Hilbert space of a many-body system. This thesis is organized as follows:
chapter 1 is devoted to dimensionality effects. We review the concept of dimensionality,
and present some examples of the low-dimensional materials obtained in the laboratory
and their properties. We also discuss the stability of the Fermi liquid and see that it is no
longer suitable to describe low-dimensional systems. For such systems the relevant degrees
of freedom are no longer the single particle electronic states but collective spin and charge
density waves propagating with different group velocities. This phenomenon is known as
spin-charge separation. As we already mentioned, the physics of one-dimensional systems,
in the homogeneous low-energy regime, is well described by the Tomonaga-Luttinger liquid
model, which will be introduced in an intuitive way in chapter 2 and will be solved by means
of the method known as Bosonization in chapter 3, where the power-law decay of correlation
functions will be found in terms of the Kc,s parameters. In chapter 4 the Bethe Ansatz
solution for the one-dimensional Hubbard model is presented for systems under periodic and
open boundary conditions. In this chapter we also introduce the inhomogeneous structures,
called heterostructures, that we want to study using as well a form of the one-dimensional
Hubbard Hamiltonian. Different heterostructures, whose configuration is modeled varying
parameters such as the on-site Coulomb potential and introducing local confining potentials,
are investigated . By means of the Kc parameter, we want to investigate how valid the TLL
is in the inhomogeneous regime. In chapter 5 the density-matrix renormalization group

1The Tomonaga-Luttinger liquid is also simply called Luttinger liquid.
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method is described in detail. The method has two algorithms, the infinite-size and the
finite-size algorithms. The first one lets us grow the system to a desired length. The second
one keeps the size of the system fixed, while refining the values of, for example, the ground
state energy. Measurement of density-density correlation functions can be then performed
and the Kc parameter estimated. The DMRG method allows for calculation not only of
static but also of dynamic properties. This is done by implementing the Lanczos vector
method to obtain spectral densities, and the correction vector method to calculate, for
example, the optical conductivity. Such quantities enable to compare theory to experiment
and vice versa. We recall that benchmarks of the TLL are the power law decay of the
correlation functions and the spin-charge separation. With this in mind, we present in
chapter 6 the results obtained for both homogeneous and inhomogeneous regimes. We will
present the density-density correlation function for different heterostructures and discuss
the parameters intervals in which a TLL description still holds. The case of systems at
half-filling, kF = π/2, deserves special treatment, as there is a gap in the charge excitation
spectrum. The systems are then insulating. Since in 1D there are no quasiparticles, no
peak is expected to appear in the spectral function. Instead, two divergences due to spin-
charge separation located at ±us,cq (us,c are the velocities for spin and charge fluctuations,
and q is the momentum) have been predicted. However, clear experimental signatures of
spin-charge separation are scarce in quasi-one dimensional materials. We will also present
results for spectral densities and optical conductivity. A final discussion and outlook will
be left for the conclusions chapter.

Parts of this thesis have been published in:

Y. Arredondo and H. Monien, “ Study of the charge correlation function in one-
dimensional Hubbard heterostructures”, Phys. Rev. B 78, 115425 (2008)





Chapter 1

One-dimensional systems

1.1 Dimensionality

Real materials are in general 3-dimensional. However, when talking about the dimen-
sionality of a system, one emphasizes the lack or presence of a certain anisotropy in the
system. In this work, such anisotropy is related to the propagation of the electrons as
being constrained to just one direction. Thus, we will consider a material a 1D system if
the conduction takes place along one preferred direction. In a first approach, the physics
of the electrons can be described in terms of non-interacting electrons in a regular lattice
(crystal) in any dimension, as is done within the independent-electron approximation. One
possibility to study the effect of dimensionality can be by considering the density of states
(DOS) ρ, in 1, 2, and 3 dimensions1. The DOS, which counts the discrete energy levels
within a unit energy, is given by

ρ(E) = 2
V

(2π)3

∫

E=Ek

dΩk
1

|∇kEk|
, (1.1)

where V stands for volume and dΩk is an element of volume in momentum space. The
integral is done over a surface of fixed energy E = Ek, with wavevector k. The 3D, 2D and
1D DOS being:

ρ3D(E) =
V

π2
k2

(

dEk

dk

)−1

,

ρ2D(E) =
A

π
k

(

dEk

dk

)−1

,

ρ1D(E) =
L

π

(

dEk

dk

)−1

, (1.2)

V , A, and L stand for volume, area, and length, respectively. If, as mentioned above, we
take a model of (quasi)free-electrons, the energy dispersion relation is given by the parabolic
form Ek = ~

2k2/2m∗, with ~ = h/2π, the reduced Planck’s constant, and m∗, the effective
mass of the electrons. The resulting DOS for the corresponding dimensions are,

ρ3D(E)dE =
V

2π2

(

2m∗

~2

) 3
2√

EdE,

ρ2D(E)dE =
A

π

(

2m∗

~2

)

dE,

ρ1D(E)dE =
L

2π

(

2m∗

~2

) 1
2 dE√

E
. (1.3)

1Since we are actually interested in the effects of the reduction of dimensions, we will describe, in the
following, the physics starting at 3D moving towards 1D.
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10 One-dimensional systems

We can see in Fig. 1.1 that in 1D the states close to the bottom of the band play a
more important role than in 3D, where the higher energy states predominantly contribute
to determining the DOS. The effect of the reduction of phase space, which accompanies
the reduction of dimensions, is tremendously significant in the physics of materials. This is
exemplified also in Fig. 1.1, where the table classifies some of the models for free systems,
described by a band structure formalism; and interacting systems, described by the Fermi
and Tomonaga-Luttinger liquids. We include in the table examples of the observed pheno-
mena in different dimensions. Changes in the dimensionality introduce as well corresponding
boundary conditions, which will eventually generate a specific quantization scheme, for
example, in the electronic properties of 2D and 1D systems, as we will discuss in section -
1.3.

Figure 1.1: Effects on the physics of materials due to the reduction of dimensions.

The dimensionality has a deep impact on the electron-electron interactions. For a 3D
electron system, the low energy excitations can be essentially described by weakly inter-
acting quasiparticles, one reason for this is the large phase space available in 3D, which
produces a very dilute gas of excitations, the quasiparticles, where the interactions are
harmless enough. This is one of the main results of the well-known Fermi liquid theory,
which we will discuss in the next section. This idea can also be expressed by stating
that electron-electron interactions do not qualitatively change the picture given by the
independent-electron approximation. In order to illustrate the role of electron-electron
interactions, let us consider the next: In the case of 2D systems as, for example, the 2D
electron gases in GaAs heterojunctions, two important phenomena may take place: the
integer or the fractional quantum Hall effect, IQHE and FQHE, respectively. This depends
on the magnitude of the applied magnetic field (B) perpendicular to the surface of the gas.
The application of a magnetic field leads to Landau quantization, and therefore to a discrete
energy spectrum E0,N = E0 + (N + 1/2)~ωc, with N = 1, 2, . . . and cyclotron frequency
ωc = eB/mc. The Landau levels are highly degenerate, with filling factor ν, defined as
the number of electrons per Landau level. At low magnetic fields (≤ 10T ) and low tempe-
ratures, ν is an integer greater than one, rendering the IQHE. When high magnetic fields
are applied (≈ 20T ), only one Landau level is partially filled, with fractional values for ν,
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for which this phenomenon is known as the FQHE. The IQHE can be described by non-
interacting quantum mechanics, where the Hamiltonian for a single particle of momentum
pi and vector potential2 A(xi) is

H0 =

N
∑

i

(

pi − eA(xi)
)2

2m
. (1.4)

Since, for the FQHE, the fractional values occurred in the middle of a highly degenerate
Landau level, where no gap was apparently present, the observation of the FQHE could
not be explained by the same model as the one of Eq. (1.4), therefore it was necessary to
include electron-electron interactions,

Hint =

N
∑

i

(

pi − eA(xi)
)2

2m
+

N
∑

i<j

e2

|xi − xj |
. (1.5)

In this case, the potential energy e2/|xi − xj | is no longer a small term compared to
the cyclotron energy and cannot be neglected, breaking in this way the degeneracy of the
lowest Landau level and leading to a well-defined ground state and a gap for excitations,
which can be very different as compared to those of bare electrons.

1D electron systems occur in carbon nanotubes, semiconducting wires, and organic
conductors. They are promising laboratories to investigate the predicted effects of electron-
electron interactions in reduced dimensions. Alone the intuitive picture of electrons aligned
in one direction makes the single-particle excitations no longer possible. One electron propa-
gating will definitely “push” its neighbors due to the electron-electron interactions. In this
way, single-particle excitations are replaced by collective ones. Such collective excitations,
which take the form of either spin or charge density waves, are predicted to be dispersing
with different group velocities, as opposed to the expected in the Fermi liquid theory.
The reduction of phase space in 1D results in a Fermi surface consisting of two points.
Furthermore, well-defined low-energy particle-hole excitations are found only close to the
Fermi surface, thus making a crucial simplification possible, namely the linearization of the
fermionic dispersion relation. Another predicted signature of 1D systems is the power-law
scaling of correlation functions, which we will study in detail in this thesis. These qualitative
properties in the low-energy regime of 1D systems will be formalized in the next chapters
as we discuss the Tomonaga-Luttinger model. In the next section we will briefly discuss
the Fermi liquid theory for interacting systems and try to understand why this description
is not suitable for 1D systems.

1.2 Stability of the Fermi liquid

In the introduction we sketched the development of the understanding of many-particle
physics following the different models and methods. These evolved in their degree of dif-
ficulty and gained comprehension of the condensed matter physics. This, of course, was
by no means a lineal development. The Fermi gas model, which described a homogeneous
gas of almost-independently-moving electrons, was followed by the Fermi liquid theory by
Landau, which includes the effect of interactions in n-dimensional systems, for n > 1. In
the ideal Fermi gas, the electrons have a kinetic energy equal to the thermal energy kBT ,
with kB the Boltzmann constant and T the temperature. Since one neglects all interactions,
the energy levels E of the gas in terms of the single-particle kinetic energies εk and of the
number nk of electrons in a single-particle state at energy εk are E =

∑

k nkεk. With

2Such vector potential is associated to the gauge A(xi) = 1/2 B(yi − xi), with B= Bz.



12 One-dimensional systems

the momentum and spin of each electron specified by the label k. Furthermore, the Pauli
exclusion principle restricts the values that nk may take for particles of half-integer spin to
nk = 0 or 1 (see the broken line in Fig. 1.2). If we consider a cell of volume V in phase
space3, it can contain at most two electrons with opposite spins, so that in the ground state
at T = 0 the electrons must have a spread of momenta in a range up to a maximum value
pF , also called the “Fermi momentum”. For N electrons with up and down spins inside the
volume V –and upon definition of kF = pF /~ – the density n = N/V can be written as
n = k3

F /3π
2. The wave number kF is the radius of a spherical surface, also called the “Fermi

surface”, and the energy of an electron with momentum corresponding to the Fermi surface
is the Fermi energy εF . This defines the lowest energy with which one may add a further
electron to the gas (εF is also referred to as the chemical potential of the gas at T = 0). kF

increases with the electron density according to kF = (3π2n)1/3. The notion of the Fermi
sphere, or surface, turns out to be a helpful picture of the ground state and excitations in a
Fermi fluid. At T = 0, the single-particle states inside the Fermi sphere are fully occupied
by the fermions and the states outside are empty. The momentum distribution thus takes
a discontinuous change from 1 to 0 as the momentum crosses the Fermi surface. Thermal
excitations at finite temperature bring fermions from states inside to states outside the
Fermi surface with well-defined momentum k and energy ǫ(k), leaving “holes” behind and
lowering the chemical potential of the gas.

Surprisingly, a number of properties of the free Fermi gas are observed (with modified
parameters) when interactions are “switched on” in the system. Landau postulated a
one-to-one mapping of the low-energy eigenstates of the interacting electrons to those of
the non-interacting Fermi gas. Landau assumed that in a Fermi liquid the net effect of
the (short-range) interactions4 would result in an excited particle “dressed” by a cloud of
surrounding particle-hole excitations, building up what is known as a “quasiparticle”, with
modified inertial mass m∗. The Fermi liquid concept concentrates on the low-temperature
regime, i.e., T < TF = εF /kB and weakly excited states. One begins by determining the
system energy change δE =

∑

kσ εkσδnkσ
5, induced by the small density distribution change

δnkσ = nkσ − n0
kσ ≪ 1, due to thermal excitations and interactions between particles. n0

kσ

is the ground state distribution. In this limit the change of energy in the system is given
by

δE =
∑

kσ

(

εk − µ
)

δnkσ +
1

2

∑

kk′σσ′

fσσ′

kk′ δnkσδnk′σ′ + . . . (1.6)

∼
∑

kσ

{

εk − µ+
1

2

∑

kk′σσ′

fσσ′

kk′ δnk′σ′

}

δnkσ

≡
∑

kσ

Ekσδnkσ,

where Ekσ is the energy of a quasiparticle and fσσ′

kk′ quantifies the scattering process of a
quasiparticle (kσ) interacting with another quasiparticle (k′σ′). Quasiparticles (and holes)
are nevertheless approximate eigenstates of the system, and we can estimate their lifetime
τ using the Fermi’s golden rule to obtain the decay rate of a quasiparticle with energy ε
above the Fermi surface at T = 0. In such a case we have,

1

τε
=

2π

~

∫ ε

0
dωN(εF )ω

∫ 2kF

ω/~vF

dk kd−1|D(k, ω)|2
(2π/L)d(~vFk)2

, (1.7)

3In general it can be consider a n-dimensional volume but we will usually refer to the 3D volume, V = L3.
4Unfortunately, the Fermi liquid theory does not work for long-range interactions either.
5σ =↓, ↑ is the spin degree of freedom.
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with N(εF ) the density of states at the Fermi surface and vF the Fermi velocity. The
integral over ω accounts for the number of possible hole excitations that can be created,
and D(k, ω) is the matrix element for the scattering process6. Thus in 3D, the lifetime is
given by

1

τε
=

2π

~

∑

f

|Vif |2δ(ε− εF ) (1.8)

∼ π

~
|V |2N(εF )3ε2,

where the sum is performed over the possible final states and |Vif | are the scattering matrix
elements (considered constant) between the initial (i) and final (f) states. From this result
one concludes that, close to the Fermi surface where ε is small, the quasiparticle is always
well-defined since its decay rate (∝ ε2) is much smaller than its excitation energy (ε). From
Eq. (1.7) we see that in 1D, even for a constant D(k, ω), the decay is proportional to ε, i.e.,
there is no limit where the quasiparticle energy is well-defined, thus there are no 1D-Fermi
liquids.

Figure 1.2: Single-particle momentum distribution nσ(k) at T = 0. (a) For electrons in a Fermi liquid.
The discontinuity at the Fermi energy εF is of magnitude z < 1. (b) The absence of a discontinuity in a 1D,
interacting system signalizes the lack of quasiparticles. The broken line shows the discontinuity in the case
of a free Fermi gas.

When dealing with quasiparticles rather than with bare electrons, the excitations of
the system can be described as an ideal gas of free quasiparticles. Furthermore, such
quasiparticles obey Fermi statistics, so that at low-temperature the low-lying excited states
can be described in terms of the excitation of the quasiparticles across the Fermi surface,
still finding a discontinuity at this point, though with an amplitude z < 1, as it was the case
for the free gas of electrons7 (see Fig. 1.2). For a free fermion gas the one-particle Green’s
function has a pole on the real axis describing the one-particle excitation of well-defined
energy ε0(k):

G(k, ω) =
1

ω − ε0(k) + iδ
. (1.9)

6In this form, the integral is also independent of the direction of the momentum. The integration resulted
precisely in the term (~νF k)

2.
7Giamarchi refers in his book to this amplitude as the one related to “the ‘fraction’ of the electrons that

remains in this quasiparticle state.” [13].
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When interactions are switched on, the Green’s function specifies the many-body effects by
including the self-energy term Σ(k, ω),

G(k, ω) =
1

ω + iδ − ε0(k) − Σ(k, ω)
. (1.10)

Then, the Fermi liquid is characterized by a solution which is a pole of finite residue

z−1 = 1 − ∂Σ

∂ω

∣

∣

∣

∣

∣ ω=0
k=kF

≤ 1, (1.11)

with the amplitude of zk giving the magnitude of the discontinuity of the momentum dis-
tribution at the Fermi surface. zk can be considered as the order parameter of the Fermi
liquid. The failure in 1D of the Fermi liquid appears in the form of a continuous momentum
distribution function, meaning that no single-quasiparticle excitations are to be found, and
another description has to be introduced for 1D systems.

1.3 Quasi-one-dimensional systems in the laboratory

A couple of decades ago, the observation of low-dimensional effects was not possible
due to the lack of suitable 1D materials. By now, novel material processes have success-
fully created a palette of quasi-one-dimensional structures. There one can explore electron
transport among other effects. A comprehension of such devices, on both levels theoretical
and experimental, is a quite ambitious project with promising applications in the new fields
of nanotechnology and spintronics. In the rest of this chapter we want to introduce three
examples of 1D systems and briefly describe their structure and other known properties.

1.3.1 Carbon nanotubes

Carbon nanotubes were discovered in 1991 by Iĳima in the form of multi-walled carbon
nanotubes (MWNT) [17]. The basic constituent of carbon nanotubes are graphite layers,
which are 2D honeycomb lattices made up of carbon atoms, wrapped to form a cylinder. A
single graphite layer is also called graphene. A typical radius is 1−2 nm and a typical length
is of the order of several microns (see Fig. 1.3 a). Single-walled carbon nanotubes (SWNT)
were observed also by Iĳima [18] and independently by Bethune [5] 8 (see Fig. 1.3 b). In
this thesis we will concentrate on the so-called defect free nanotubes, i.e., tubes formed with
graphite layers whose network is only hexagonal. Topological defects such as pentagons and
heptagons in the lattice are unavoidable in the case of bent, branched or capped nanotubes.
A SWNT can be uniquely characterized by a vector C in terms of a set of two integers
(n,m) corresponding to graphene vectors a and b (see Fig. 1.4), with C = na +mb, and
a = |a| = |b| the lattice constant of the graphene. A SWNT is constructed by rolling up
the graphene sheet such that the two extremes of the vector C are superimposed. If m = n,
the tubes are called armchair tubes, if m = 0, they are zigzag tubes. A third structure is the
one with n > m > 0, called chiral tubes. In general, these structures can be characterized
by the chiral angle θ defined as

cos(θ) =
m+ 2n

2
√
n2 +m2 + nm

. (1.12)

8Chronologically, there is record of previous work done by M. Endo and A. Oberlin who reported on the
observation of what was most probably multi-walled carbon nanotubes in 1976, although for the time being
it was not clear for them what it meant.
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Figure 1.3: (a) High resolution electron micrograph of homogeneous multiwalled nanotubes consisting of
five (i), two (ii), and seven (iii) graphene sheets. With cross sections of diameter between 5.5 and 6.7nm
[17]. (b) TEM image of single-walled nanotube of diameter ∼1.2nm [5].

Figure 1.4: Unrolled honeycomb lattice (graphene sheet). The vectors a and b form the unit cell of
graphene. A nanotube (n,m) forms by rolling the graphene sheet along the chiral vector C = na +mb. The
nanotube can be also characterized by the diameter |C| and the chiral angle θ with respect to the zigzag
axis. The diagram is constructed for a (4,2) nanotube.
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the angle θ ranges from 0 for zigzag tubes, to a maximum of 30◦ for n = m (armchair
tubes). In Fig. 1.5 and Fig. 1.6 we show examples of nanotube models. The importance of
the direction of the rolling is emphasized by the fact that it determines if the nanotube will
be metallic or semiconducting. When the graphene is rolled over to form the nanotube, pe-
riodic boundary conditions are imposed, quantizing in this way the two-dimensional vector
k according to k · C = 2πn, where n is an integer. If the wavevector is expressed as the
sum of a component along the tube circumference, k⊥, and a component in the direction
z of the tube, kz, the boundary condition results in the quantization condition k⊥ = 2πn,
whereas the wavevector kz remains a continuous variable (see Fig. 1.7). From this, we can
classify the electronic properties of the nanotubes in terms of the parameters n and m. If
n −m = 3q, i.e., for zigzag nanotubes, the dispersion close to the Fermi level has a gap,
thus the tubes correspond to small-gap semiconductors. If n = m, i.e, in the case of the
armchair nanotubes, the band structure can be approximated by a linear dispersion close
to the Fermi level. The system is then metallic. All other combinations of n,m turn out to
be large-gap semiconductors. If the material is metallic, ballistic conductance is observed
with the value of 4e2/h at low temperatures. The mean-free path in this case corresponds
to a room temperature resistivity of the order of 10−6cm. This means that the conductivity
of metallic nanotubes is at least as good as the conductivity of the best metals at room
temperature. The main reason for this is the reduced phase space for scattering due to
acoustic phonons. In higher dimensions the scattering events eventually reverse the direc-
tion of the electrons, which is not possible in 1D, where the only direction left to propagate
is forwards or backwards, making carbon nanotubes excellent laboratories to investigate
the motion of electrons in one dimension. The semiconducting behavior in the nanotubes
has also been reported, showing that the nanotube conducts at negative values of the gate
voltage and turns off when positive voltage is applied. The resistance changes between
the on and off state over many orders of magnitude. Such behavior is analogous to that
of a metal-oxide-semiconductor transistor, with the carbon nanotube as a one-dimensional
analog of the two-dimensional device.

Figure 1.5: Zigzag structure of a nanotube with chirality indices (10,0). The material is in this case
semiconducting.
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Figure 1.6: Armchair structure of a nanotube with chirality indices (8,8). The material is in this case
metallic.

Figure 1.7: Carbon nanotubes can be represented by a cylinder built on the chiral vector C. While the
wavevector kz along the tube axis (z) takes continuous values, the wavevector k⊥ along the tube circumference
can only take discrete values.

The extremely small size and highly symmetric structure of the nanotubes are the
underlying reason for their interesting properties. The electronic properties of a nanotube
are inherited from those of the graphene, for which the dispersion relation9 as a function of
the wavevector k = (kx, ky) is

E(kx, ky) = ±t
[

1 + 4 cos
(

√
3kxa

2

)

cos
(kya

2

)

+ 4 cos2
(kya

2

)

] 1
2
, (1.13)

here t is the nearest-neighbor hopping parameter and a is the lattice constant. Examples for
these parameters are t = 2.5 − 3.2 eV and a = 0.246 nm. Carbon nanotubes are often seen
as straight or elastic bending structures by transmission electron microscopy (TEM), scan-
ning electron microscopy (SEM), atomic force microscopy (AFM), and scanning tunneling
microscopy (STM). To study their structural features techniques have been employed such

9Obtained using a tight-binding model, which is the simplest one that one can handle.
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as electron diffraction (EDR), x-ray diffraction (XRD), and Raman spectroscopy, among
others [8, 1].

Figure 1.8: Dispersion relation of graphene in the kx, ky plane as given by Eq. (1.13).

A Luttinger liquid behavior in nanotubes has been reported on bundles of nanotubes
by Bockrath [6] and on single nanotubes by Yao [54]. Both works support the prediction of
the Luttinger liquid theory, predicting that the differential conductance scales as a power
law. From Bockrath, the differential conductance was fitted using

dI

dV
= ATα sinh

(

eV

2kBT

)∣

∣

∣

∣

∣

Γ

(

1 + α

2
+ γ

ieV

2πkBT

)∣

∣

∣

∣

∣

2

, (1.14)

with Γ(x) the gamma function, γ is a fitting parameter related to the choice of the contacts
between the ropes (bulk- or end-contacted), and A is a constant. In Fig. 1.9, the results
of both workgroups are shown. In the work by Yao et al, heterostructures of the type
metal-metal and metal-semiconductor were fabricated by introducing defects in the form of
a pentagon and a heptagon into the graphene sheet.

Figure 1.9: By dividing Eq. (1.14) between Tα, the remainder is a function of eV/kBT . (a) Differential con-
ductance for a bulk-contacted tube for different temperatures. The inset shows results for T = 1.6K, 8K, 20K
and 35K, where the straight line on a log-log plot is a guide to the eye to indicate the power law behav-
ior. The graph was taken from Bockrath [6]. (b) Results by Yao [54] showing the universal feature of the
differential conductance in carbon nanotubes.
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1.3.2 Quantum wires

The success in growing layered semiconducting 2D devices boosted the creation of low-
dimensional systems. These 2D devices, whose basic structure is sketched in Fig. 1.10, are
based on aluminum-gallium-arsenide (AlGaAs) and gallium-arsenide (GaAs) layers stacked
along the vertical direction. They are, in general, denoted as AlGaAs/GaAs heterojunc-
tions. Layers of AlGaAs, usually doped with silicon (Si), trap a much thinner layer of GaAs
and confine the carriers in this region, therefore the GaAs is commonly called a quantum
well, i.e., a realization of a 2D electron gas (2DEG). Fabricated using molecular beam epi-
taxy (MBE), these structures show an electron mobility of the order of 106cm2/Vs, and
serve as basis for the fabrication of 1D wires. The use of the carrier spin as an additional
degree of freedom in semiconducting devices, with their electronic properties depending on
external magnetic fields, has open up a new branch of electronics called “spintronics”. In
this section we will briefly describe some examples of quantum wires: cleaved edge wires,
split gate devices, and V groove wires.

Figure 1.10: Semiconducting device designed to confine the charge carriers in the active region, the GaAs
region. The active region is sandwiched by the barrier regions of AlGaAs, which have wider band gaps than
the active region and are oppositely doped to inject electrons and holes separately.

Cleaved edge wires.- The sample basic preparation consists of a GaAs base and a first
overgrowing of an AlGaAs wafer (of a few hundred microns) [28]. Over the AlGaAs layer
a thin doped GaAs layer (14 − 40µm thick) is grown, followed by a second doped AlGaAs
layer. The result is a 2DEG along the embedded GaAs layer, with electron mobility of
the order of 106cm2/Vs. On top of this, a long and narrow tungsten stripe (tungsten gate
T, see Figs. 1.11 a,b) is evaporated. This stripe separates the 2DEG into two halves that
act as source and drain contacts to the wire. It will also determine the length of the wire,
1µm-20µm. In order to provide the cleanest possible surface (edge) on which to proceed
with further epitaxial growth, the former structure is to be cleaved in ultra high vacuum
using a thallium (Ta) metal bar. After cleaving, a doped AlGaAs setback is grown on the
cleaved plane, which will introduce electrons at the edge of the GaAs surface. Over this, a
final cap of Ti-Au is deposited, which will serve as a side gate (S) to increase the carrier
density in the wire. With a gate voltage VT = 0, the 2DEG is continuous and the 2D
contact areas are not yet separated (see Fig. 1.11 d). For a negative voltage VT = VD,
called the depletion voltage, the top gate has separated the contact area but the connecting
wire remains weakly confined. For even more negative values of VT the 1D wire is well
developed and completely confined: by the GaAs surface in the z direction, and by the
strong potential in the y direction (see Figs. 1.11 e,f). The quantization of the conductance
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has been clearly observed in the laboratory and some results are shown in Fig. 1.12 [53].

Figure 1.11: Cleaved edge wire geometry and set up for measurements. The figure was taken from [53].
Extra labels were introduced to clarify the structure of the device. (a) Sample geometry with long and narrow
tungsten stripe (T). (b) After cleaving, a doped AlGaAs is grown along the 110 direction (transparent layer).
A Ti-Au gate (S) is deposited over the entire 110 surface. (c) The top gate (T) is biased to deplete the
2DEG underneath, leaving only the wire as a possible channel. (d) Cross section through the YZ plane in
the wire region for unbiased conditions. The 2DEG is coupled directly to the electrons along the cleaved
edge. (e) The 2DEG is depleted by the top gate. (f) For larger (negative) values of the top gate the wire
confinement improves.

Figure 1.12: Linear response conductance of a 2 µm long wire in a 25 nm quantum well vs the top-
gate voltage (VT ) measured at a temperature of 0.3 K. The solid line is the measured conductance. The
dashed curve is the measured conductance multiplied by an empirical factor of 1.15. Inset: Linear response
conductance of the last plateau for wires of different lengths fabricated consecutively along the edge of a
single 25 nm cleaved edge overgrowth specimen. The numbers denote the wire length in microns.

Split gate devices.- A split gate device consists of a GaAs/AlGaAs heterostructure,
where the later one is doped. The heterostructure is grown by MBE. The material serving
as gate, for example gold, is deposited by electron-beam lithography, followed by thermal
evaporation on top of the heterostructure in the form of a stripe of a length L of a few
µm, and with the particular characteristic that it has a gap of width W < 0.5 µm. Under
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application of a negative voltage to the two gates, the 2DEG formed on the GaAs is depleted
of electrons and current flows then through the narrow region not covered by the gate metal.
If the elastic mean free path le is much greater than W or L, the transport through the
1D channel is ballistic and the conductance is quantized in units of 2e2/h. Some results for
this are shown in Fig. 1.13 [44].

Figure 1.13: Conductance quantization in a split-gate wire as function of the gate voltage. The inset (a)
shows a diagram of the device. D and S stand for drain and source, respectively. In (b) the raw data is
plotted against the gate voltage.

V groove wires.- The V groove wires take their name from the corrugated pattern on
which the GaAs/AlGaAs heterostructure is deposited [48]. The basic layer is an undoped
(100)GaAs substrate patterned with a 3µm-pitch grating, with grooves (∼ 2µm deep) orien-
ted along the [001̄] direction, made by chemical etching. The layer structure consists of a
Si-doped AlGaAs layer (24-50 µm) followed by one or several thin (2-5 µm) GaAs quantum
wells, separated also by Si-doped AlGaAs barrier layers (see Fig. 1.14). The structure is
grown using the method called organometallic chemical vapor deposition (OMCVP) - under
conditions of ambient pressure or under low pressure (∼ 1 µbar). The results are 2DEGs on
planar GaAs as well as on the sidewall of the corrugated structure, with mobility values of
the order of 105cm2/Vs. The 1D (crescent-shaped) quantum wire is created at the bottom
of the groove, due to both the groove sharpening during the AlGaAs growth and segregation
of the Ga species on the bottom of the groove. The cross-section of the heterostructure has
been captured in TEM images (see Fig. 1.15).

Figure 1.14: Schematic view of a V-groove wire growth. The broken line indicates the surface after etching
[48].
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Figure 1.15: (a) Cross-sectional TEM images of a quantum wire with a nominal thickness of 12µm. (b)
Conductance vs. gate voltage for different values of Lg, the gate width, with wire thicknes t = 26nm. The
inset shows the conductance vs. gate voltage for a wire of thickness t = 21nm and Lg = 0.5µm [22].

Hints of the Luttinger liquid behavior on quantum wires have tried to be observed in
the form of a power law, like in the case of the carbon nanotubes, or by expecting the group
velocities of collective spin and charge modes to be different as predicted by the Luttinger
theory. Examples of the effect of the Coulomb interaction in 1D have been found in a
change in the quantized conductance as a function of the temperature when the length of
the wire is increased [43], and in weakly disordered V-groove wires [23].

1.3.3 Organic conductors

The search for molecular conductors lead to the synthesis of organic salts, one of whose
most representative group is the one of the Bechgaard salts 10 (TMTSF)2X, where X is
an inorganic anion with several possible symetries: spherical (PF6, AsF6, SbF6, TaF6),
tetrahedral (BF4, ClO4, ReO4), or triangular (NO3). These compounds were the first of
their class to exhibit superconductivity. This was first dicovered in (TMTSF)2FS6 at 0.9K
under a pressure of 12kbar in 1979 by Jérome, Mazaud, and Ribault in Paris, and indepen-
dently by Bechgaard in Copenhagen [21]. Superconductivity is only one of many complex
and interesting features grabbing the attention of both experimenters and theoreticians.
Their varied phase diagram at very low temperatures includes Peierls transition, antiferro-
magnetism, spin-density waves, superconductivity, and a less clear, non-Fermi liquid phase.
At ambient pressure, the material shows a Mott-insulator transition. These phases have
been unified in the diagram shown in Fig. 1.16 for several TMTSF compounds by C. Bour-
bonaiss and D. Jérome [7].

10The compund full name is tetramethyltetraselenefulvalene.
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Figure 1.16: Phase diagram of TMTSF compounds [7]. MI: Mott insulator, LL: Luttinger liquid, FL:
Fermi liquid, SP: spin Peierls, AF: antiferromagnetic spin-density wave, SC: superconducting.

Figure 1.17: Organic molecule basic element, the tetramethyltetraselenefulvalene (TMTSF) molecule.

These organic molecules are composed of linear stacks of TMTSF positive ions ( see
Fig. 1.17) arranged into planes separated by X anions, which stabilize the structure and
allow for charge transfer between TMTSF and X to provide charge neutrality to the whole
molecule (see Fig. 1.18). The lattice vectors are not orthogonal but one can distinguish a
vertical axis a along the stacks, a horizontal axis b in the TMTSF planes, and a c axis
pointing out of the planes. Considering the hopping of electrons in these three directions,
it was found that the compound is highly anisotropic at room temperature, with hopping
values 1000K:100K:30K in the a, b, and c direction, respectively. The reason for this is
that the π orbitals of the selenium overlap along the stacking direction. This makes these
systems quasi-one dimensional. And with one ion for two TMTSF molecules the chains are
quarter-filled. Furthermore, this concentration cannot be modified under pressure. A direct
proof of a Luttinger behavior has been found in these compounds. Measurements of the
a-axis optical conductivity by Schwartz show clearly a power law decay shown in Fig. 1.19
[35].
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Figure 1.18: Organic conducting molecule formed by stacking of TMTSF planes separated by anions X.
ta, tb, and tc are the hopping energies in the a, b, and c direction, respectively.
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Figure 1.19: Optical conductivity for different TMTSF compounds as measured by Schwartz et al [35].
The solid line corresponds to a fit of the form σ(ω) ∼ ω−ν , with ν = 1.3 ≤ 0.1.

Summary

In this chapter we discussed the concept of dimensionality of materials not only in terms
of the spatial dimensions but also in terms of the possible restrictions on the propagation of
conducting electrons. The conductivity can be confined to a plane or even to a line. In the
last case, we call the material a one dimensional material. One-dimensional systems imply
strong correlations between the particles. Therefore, we turned to the Fermi liquid model
for interacting systems and found out that it describes accurately high-dimensional systems
but for D=1 the model fails because the spectral weight vanishes at the Fermi surface. The
physics of such systems, in the homogeneous low-energy regime, is well described by the
Tomonaga-Luttinger liquid model, which predicted that all correlation functions exhibit a
power-law decay with the distance. The Tomonaga-Luttinger liquid will be the subject of
the following chapters. We also presented examples of quasi-one dimensional materials such
as carbon nanotubes, quantum wires, and organic conductors. We described some of their
properties and commented the possible observation of TLL behavior.





Chapter 2

Tomonaga-Luttinger liquid

In the previous chapter we discussed the effect of a reduced dimensionality on the
physical properties of fermionic systems, from which a reduction of the phase space follows,
making it impossible to keep a Fermi liquid description for 1D interacting systems. Haldane
introduced the concept of the Luttinger liquid, a model that has its roots in the work by
Tomonaga and Luttinger on the theory of interacting electrons in 1D. In this chapter we will
study the Tomonaga-Luttinger liquid theory beginning by making plausible a description of
1D interacting systems in terms of boson operators. Such a bosonic description lies at the
roots of the solution of the Tomonaga-Luttinger model known as bosonization, presented in
the next chapter. Suggested literature on the subject includes: seminal papers by Tomonaga
[45], Luttinger [26] and Haldane [14]. Deep reviews on the subject of strong correlated
fermionic systems are those by Voit [46], Sólyom [40], and Schulz [33]. The bosonization
method can be also consulted in the papers by Schönhammer [30], Senechal [36], and von
Delft [47].

2.1 Non-interacting model

2.1.1 Linear dispersion approximation

In a one-dimensional many-particle system of non-interacting particles the Hamiltonian,
in the language of the second quantization, is given by

H0 =
∑

k,σ

ǫ(k)c†k,σck,σ, (2.1)

where c†i,σ (ci,σ) is the creation (annihilation) operator with spin index σ =↓, ↑, and ǫ(k) =

k2/2m is the dispersion relation quadratic in the wavenumber k, and is shown in Fig. 2.1a
for the first Brillouin zone. The Fermi level1 is given by kF lying in between the highest
filled level and the lowest non-occupied level. Figure 2.1b shows the particle-hole excitations
spectrum for two and three-dimensional systems. The particle-hole pairs can be created
with arbitrarily low-energy, leading to a continuum of excitations for all momentum vectors
q smaller than 2kF . In 1D, if we consider low-energy excitations, they are allowed only close
to the Fermi points, because exciting a particle deep down the Fermi sea would require a
great amount of energy and therefore such processes are forbidden. From Fig. 2.1c we
observe that in the low-energy regime, the only possible well-defined excitations involve a
momentum transfer of q ∼ 0 or q ∼ 2kF . This feature is seen in the particle-hole spectrum,
which modifies as shown in Fig. 2.1d. And this is one important reason for the bosonic
treatment of these systems, because a particle-hole unit is a bosonic unit in nature. This
will be formalized in this and the next chapter.

1Remember that the Fermi surface in 1D is represented by two points in phase space, −kF and +kF .

27



28 Tomonaga-Luttinger liquid

Figure 2.1: (a) Quadratic dispersion relation in the first Brillouin zone for higher dimensions with the
Fermi energy level indicated. (b) Continuum spectrum of particle-hole pairs for higher dimensions. (c), (d)
In 1D particle-hole pairs are allowed only close to the Fermi points, for q ∼ 0 or q ∼ 2kF .

Figure 2.2: (a) Linear approximation close to the Fermi surface of the quadratic dispersion for free systems.
(b) The Tomonaga model limits the linear approximation with a band cut-off in the momentum.(c) Luttinger
extended the dispersion to −∞ to make the mathematics easier to deal with. The extra non-physical states
are removed by the introduction of the normal-ordering of operators.
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If we consider to retain the low-energy properties of the system and excitations close to
the Fermi level, a first approximation that can be done is to linearize the dispersion relation
at the Fermi points (see Fig. 2.2a). A natural question that arises is how far can we extend
such a linear dispersion. Tomonaga introduced from the beginning a band cut-off in the
momentum (see Fig. 2.2b), as well as the concept of "right" and "left" movers, referring to
the direction of the propagation of the electrons. This is described by the right and the
left branch of the dispersion. Luttinger later extended the dispersion to −∞, as shown in
Fig. 2.2c. This introduces many extra states that must be removed at some point in the
calculations to avoid infinite counting.

The electrons represented by the two branches may be defined in terms of the usual
creation and annihilation fermionic operators. The left movers operator c†+,k and the right

movers operator c†−,k are given by

c†+,k = c†k, if k ≥ 0

c†−,k = c†k, if k < 0. (2.2)

In terms of these operators, we introduce the linear dispersion in the free Hamiltonian
(2.1) and obtain2

H0 =
∑

r,k

vF (rk − kF ) : c†r,kcr,k : (2.3)

where r = ± correspond to the branch index, + for the right branch and - for the left
branch. The normal ordering of a product of operators : · · · : was introduced to subtract
the average value of the artificial vacuum generated by the extended linear dispersion of
the Luttinger model. The normal ordering is defined as

: c†r,kcr,k : = c†r,kcr,k − 〈ψ0|c†r,kcr,k|ψ0〉
= c†r,kcr,k − θ(kF − rk) (2.4)

The Hamiltonian (2.3) is the free model of the Luttinger liquid and we will come to its
solution in the next chapter.

2.1.2 Boson representation

The Tomonaga-Luttinger low-energy spectrum can be represented as a bosonic spec-
trum. A simple physical picture of this is the next: The spectrum in the low-energy regime
is discrete with equidistant energy levels ∆. Let us define NF (E) and NB(E) as the number
of states with energy E for the fermionic and bosonic systems respectively. A state with
energy ∆ = 1 can be thought of as a fermion just above the Fermi surface or exactly one
boson at the level ∆ = 1, so NF = NB = 1. If we consider fermion states with energy
∆ = 2, then the possible states are: either a fermion with two energy levels above the
Fermi surface, or a fermion just above the Fermi surface with ∆ = 1 and a fermion just
below the Fermi surface which jumped to the level left empty by the first fermion, finally
NF = NB = 2. We can extend this analysis to other energy levels (of course, not for all),
as for the example, the case ∆ = 3 for which NF = NB = 3. This equivalence is illustrated
in Fig. 2.3.

2The formal process of linearization of the Hamiltonian (2.1) is presented in the next chapter.
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Figure 2.3: Equivalence between the energy levels of a fermionic and a bosonic system for a given energy
∆.

We can conclude that, in the low-energy limit, there is an equivalence between the
energy levels of a fermionic system and the bosonic ones for a given energy. Therefore, it
should be possible, in this limit, to write the fermionic Hamiltonian in a bosonic form. To
formalize this idea let us first define the density operator for the branch r in the fermionic
system,

ρr(x) ≡: ψ†
r(x)ψr(x) : (2.5)

with the field operator

ψr(x) =
1√
L

∑

k

eikxcr,k. (2.6)

The Fourier transform of the density operator is

ρr,q =

∫

dxe−iqxρr(x)

=

{

∑

k c
†
r,k+qcr,k if q 6= 0

∑

k

(

c†r,kcr,k − θ(kF − rk)
)

if q = 0.
(2.7)

with commutator
[

ρr,q, ρr′,−q′
]

= −δr,r′δq,q′rLq/2π. (2.8)

We observe that the commutator is similar, up to a constant, to that of creation (a†q)
and annihilation (aq) boson operators

[

aq, a
†
q′

]

= δq,q′ . (2.9)

This indicates that there are bosonic degrees of freedom as part of the system and they
are related to the density fluctuations. Indeed, the Hamiltonian for the free Luttinger model
acquires the form,

H0 ≈
∑

q 6=0

vF |q|a†qaq. (2.10)
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Observe that the negative values of Eq. (2.3) have disappeared after the normal ordering
was introduced. The Hamiltonian is still not complete due to the fact that we have not
yet translated all the problem into the bosonic representation and there is still fermionic
behavior in our Hamiltonian. The field operators of Eq. (2.6), for example, are still in
terms of fermionic operators, which change the total number of particles in one, whereas
the bosonic operators conserve the total number of particles. We will see in the next chapter
that we can also write the fermionic field operators in terms of bosonic ones. The calculation
of the density operators commutator (2.8) and detailed derivation of the Hamiltonian (2.10)
are also left for the next chapter.

2.2 Interacting channels

We are now interested in considering the interactions of the system. In one dimension
the available space for interactions is strongly limited compared to higher dimensional
systems. The possible two-body interactions in 1D are clearly classified in terms of the
momentum transfer they involve. According to this, there are four possible interaction
processes identified by a set of coupling constants g1, g2, g3 and g4

3. We will describe them
next but not considering this numerical order; rather, we will order them in terms of an
increasing momentum transfer:

• Forward scattering on different branches. When a particle from the left branch couples
to one in the right branch, staying however on their original branch (see Fig. 4.2a).
This process, with coupling constant g2, involves a momentum transfer q ∼ 0.

• Forward scattering on the same branch. When the two coupled particles are on the
same branch (see Fig. 4.2b). This process, with coupling constant g4, involves a
momentum transfer q ∼ 0.

• Backward scattering. When two particles switch their direction of motion, i. e., they
switch branches keeping their spins (see Fig. 4.2c). This process, with coupling con-
stant g1, involves a momentum transfer q ∼ 2kF .

• Umklapp process. When two particles (of opposite spin) on the same branch switch
their direction of motion, i. e., they switch branches (see Fig. 4.2d). This process, with
coupling constant g3, requires the system to be half-filled and involves a momentum
transfer q ∼ 4kF .

Until now, the spin index has not been written explicitly, and for spinless fermions the
only important processes are the forward scattering processes with g2 and g4. On the other
hand, the couplings have two values for electrons with spin, corresponding to parallel g‖, or
antiparallel spins g⊥. For spinless electrons, the g1 and g2 processes are identical, for the
backward scattering can be considered an effective forward scattering process. If the spin is
included, g1‖ = g2‖, by permuting two of the operators but g1⊥ 6= g2⊥. For spinful electrons
we have corresponding charge (c) and spin (s) combinations of the coupling constants given
by:

gic =
1

2

(

gi‖ + gi⊥

)

gis =
1

2

(

gi‖ − gi⊥

)

(2.11)

for i = 1 . . . 4.
3This classification is known as the g-ology as described by Emery [10].
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Figure 2.4: Interacting channels in 1D. (a) Forward scattering on different branches with constant cou-
pling g2.(b) Forward scattering on the same branch with constant coupling g4.(c) Backward scattering with
constant coupling g1. (d) Umklapp process with constant coupling g3.

The Tomonaga-Luttinger model deals only with the low-momentum transfer events,
hence we will only take into account the g2 and g4 interactions4. A general form for the
interaction, which depends only on the position of the particles, is

Hint =
∑

r

∫

dx dx′
[

ρr(x)g2(x− x′)ρ−r(x
′) + ρr(x)g4(x− x′)ρr(x

′)
]

. (2.12)

The first term refers to the interaction g2 for fields with opposite r-values, and the second
term accounts for interaction between fields with the same r-value. The Fourier expansion
of these interactions is

g2,4(x) =
π

L

∑

q

eiqxg2,4(q). (2.13)

Furthermore, we will assume that g2,4(q) = g2,4(−q), which means that g2,4(x) =
g2,4(−x). Upon introduction of the Fourier expansion (2.13) in (2.12) and after performing
the integrals, the interaction in momentum space takes the form:

Hint =
π

L

∑

r,q

(

g2(q)ρr(q)ρ−r(−q) + g4(q)ρr(q)ρr(−q)
)

. (2.14)

The form of Hamiltonian (2.14) involves actually quartic terms in the fermion operators,
but by using boson operators a, a†, which are still to be defined, or linear combinations
of them, the interaction remains quadratic in the boson operators, being thus easy to
diagonalize by means of a Bogoliubov transformation.

4In the following we are dropping the spin index.
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Summary

In this chapter we introduced the Tomonaga-Luttinger liquid model in an intuitive and
physical way. We observed how the particle-hole spectrum changes in 1D, restricting the
excitations to only those with momentum q = 0 or q = 2kF , close to the Fermi surface.
We discussed that in 1D, the dispersion relation can be approximated by a linear function
in the low-energy regime. In this limit as well, the energy spectrum of both fermionic and
bosonic systems is equivalent, thus 1D systems can be represented by bosonic variables.
We also discussed the possible interacting channels in 1D and classified them following the
notation by Emery [10].





Chapter 3

Bosonization

In the previous chapter we presented the Tomonaga-Luttinger model for one-dimensional
strongly correlated systems. Considering the discussed properties of low-dimensional sys-
tems, there is a plausible bosonic representation of such systems in the low-energy regime.
In this chapter we will formalize this. First we will derive the Hamiltonian for the free Lut-
tinger model. Then we will construct the density operator. We will find that its properties
will allow for the construction of boson operators from which a complete set of boson eigen-
states can be generated. Afterwards, the field operators must also be transformed into the
boson basis. We will discuss the interacting systems and finally the correlation functions1.

3.1 Non-interacting model

3.1.1 Free Luttinger model

We want to obtain the Hamiltonian with linear dispersion

H0 =
∑

r,k,σ

vF (rk − kF ) : c†r,k,σcr,k,σ : (3.1)

from the free Hamiltonian of Eq. (2.1) using the new operators for right and left propagating
electrons2,

c+,k = ck, if k ≥ 0

c−,k = ck, if k < 0. (3.2)

Conversely, the usual fermionic operators can be expressed in the compact form:

ck =
∑

r

θ(rk)cr,k, (3.3)

with r = ±, and θ(x) is the step function defined as

θ(x) =

{

1 if x ≥ 0
0 if x < 0.

(3.4)

In terms of the new particle operators, the field operator ψ(x) is

ψ(x) =
1√
L

∑

r,k

θ(rk)eikxcr,k. (3.5)

In a non-interacting one-dimensional system, the Hamiltonian, which consist only of the
kinetic term, is given by

H0 = − 1

2m

∫

dx ψ†(x)∂2
xψ(x). (3.6)

1It is worth mentioning that the bosonization method has found application in other phenomena. We
suggest the paper by Senechal [36] and the book by Stone [41] for a survey on the subject of bosonization
applied to other problems.

2In the following we will drop the spin index but can be recovered anytime.
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Inserting in (3.6) the field operator from (3.5) and performing the integral the Hamil-
tonian turns into:

H0 =
1

2m

∑

r,k

θ(rk)k2c†r,kcr,k

=
1

2m

∑

r,k

θ(rk)
(

rk − kF + kF

)2
c†r,kcr,k. (3.7)

In the last line of Eq. (3.7) we made use of the fact that r2 = 1 and inserted a zero by
adding and subtracting kF . Next, we expand the quadratic term to find

H0 =
1

2m
k2

F

{

∑

r,k

θ(rk)

(

rk − kF

kF

)2

c†r,kcr,k

+ 2
∑

r,k

θ(rk)

(

rk − kF

kF

)

c†r,kcr,k

+
∑

r,k

θ(rk)c†r,kcr,k

}

. (3.8)

Let us now observe this Hamiltonian in the context of our low-energy regime. Since
for low-energy states only excitations close to the Fermi points are allowed, and for these
states we find that their contribution to the sum ∼ (rk − kF /kF )2 is a small number, the
sum of quadratic terms can be ignored in this limit, getting for the Hamiltonian the next
approximation:

H0 ≈ vF

∑

r,k

θ(rk)(rk − kF )c†r,kcr,k +
1

2
vFkF

∑

r,k

θ(rk)c†r,kcr,k, (3.9)

with the Fermi velocity, vF = kF /m. Now we want to measure the energy with respect to
the ground state, which is given by both branches filled below the Fermi points and has an
energy E0. We will consider the extended linear dispersion (to ±∞) proposed by Luttinger,
as it has no influence in the low-energy regime, close to the Fermi points, but it will be
necessary when studying the boson-fermion equivalence. Subtracting the ground state, we
find

H0 − E0 ≈ vF

∑

r,k

θ(rk)(rk − kF )
(

c†r,kcr,k − θ(kF − rk)
)

+
1

2
vFkF

∑

r,k

θ(rk)
(

c†r,kcr,k − θ(kF − rk)
)

. (3.10)

Since only terms with rk > 0 will contribute, i.e., for r and k with the same sign, we
can then write the Hamiltonian as:

H0 − E0 ≈ vF

∑

r,k

(rk − kF )
(

c†r,kcr,k − θ(kF − rk)
)

+
1

2
vFkF

∑

r,k

(

c†r,kcr,k − θ(kF − rk)
)

. (3.11)

The last term in Hamiltonian (3.11) corresponds to the number of particles relative to
the ground state, and if constant assumed, we finally obtain the Hamiltonian for the free
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Luttinger model:

H0 = vF

∑

r,k

(rk − kF )
(

c†r,kcr,k − θ(kF − rk)
)

=
∑

r,k

vF (rk − kF ) : c†r,kcr,k : (3.12)

3.1.2 The density operator

In this section we will prove the commutation relation of Eq. (2.8) for the density
operator. This will let us construct a boson basis in the next section. We recall that the
density operator is defined as:

ρr(x) ≡: ψ†
r(x)ψr(x) : (3.13)

with Fourier transformation:

ρrq =

∫

dxe−iqxρr(x)

=

{

∑

k c
†
r,k+qcr,k if q 6= 0

∑

k

(

c†r,kcr,k − θ(kF − rk)
)

if q = 0,
(3.14)

Let us write and expand the next commutator:

[

ρr,q, ρr′,−q′
]

=
∑

k,k′

(

c†r,k+qcr,kc
†
r′,k′−q′cr′,k′ − c†r′,k′−q′cr′,k′c†r,k+qcr,k

)

=
∑

k,k′

(

δr,r′δk,k′−q′c
†
r,k+qcr′,k′ − δr,r′δk′,k+qc

†
r′,k′−q′cr,k

)

= δr,r′
∑

k

(

c†r,k+qcr′,k+q′ − c†r′,k+q−q′cr,k
)

. (3.15)

The second line results after using the anticommutation relations of cr,k and c†r,k. In the
last line the summation over k′ was performed. Now let us analyze the result of Eq. (3.15).
For q 6= q′ the commutator is already normal ordered and upon the change of variables
k + q → k + q − q′ the commutator vanishes. If q = q′ the commutator must be normally
ordered first. Using the definition of Eq. (2.4) for the normal order, the commutator can
be expressed as:

δr,r′δq,q′
∑

k

(

: c†r,k+qcr,k+q : +θ
(

kF − r(k + q)
)

− : c†r,kcr,k : −θ
(

kF − rk
)

)

. (3.16)

By shifting k → k + q, the ordered expressions cancel leaving only

δr,r′δq,q′
∑

k

(

θ
(

kF − r(k + q)
)

− θ
(

kF − rk
)

)

=

{

δr,r′δq,q′
[

θ
(

kF − (k + q)
)

− θ
(

kF − k
)]

if r = +
δr,r′δq,q′

[

θ
(

kF + (k + q)
)

− θ
(

kF + k
)]

if r = −.

=

{

−δr,r′δq,q′Lq/2π if r = +
+δr,r′δq,q′Lq/2π if r = −. (3.17)

The last line follows from evaluating the sum of the step functions for different signs of
r and q. Summarizing,

[

ρr,q, ρr′,−q′
]

= −δr,r′δq,q′
rLq

2π
. (3.18)
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If the spin index s =↓, ↑ is introduced, charge and spin densities can be defined respec-
tively as:

ρc
r(q) =

1√
2

[

ρr↑(q) + ρr↓(q)
]

(3.19)

and

ρs
r(q) =

1√
2

[

ρr↑(q) − ρr↓(q)
]

. (3.20)

These operators obey the same commutation relations as in (3.18).

3.1.3 Boson representation

We will formulate the complete boson representation in three stages: a) constructing the
boson operators, b) constructing the boson eigenstates, and c) carrying out the bosonization
of the field operators.

Boson operators

Since the density operators commute in a similar way as the bosonic ones, let us define
new boson operators for q 6= 0:

a†q =

√

2π

|q|L
∑

r

θ(rq)ρr,q (3.21)

aq =

√

2π

|q|L
∑

r

θ(rq)ρr,−q. (3.22)

Using the result from Eq. (3.18), we can compute the next commutators for the a’s
operators,

[

aq, a
†
q′

]

=
2π

L
√

|qq′|
∑

r,r′

θ(rq)θ(r′q′)
[

ρr,−q, ρr′,q′
]

= δq,q′
1

√

|qq′|
∑

r

rq′θ(rq)θ(rq′). (3.23)

We observe from the last line, that the only contributions are those for which rq > 0,
thus the final result reduces to δq,q′ . Another commutator is:

[

a†q, a
†
q′

]

=
2π

L
√

|qq′|
∑

r,r′

θ(rq)θ(r′q′)
[

ρr,q, ρr′,q′
]

= − 1
√

|qq′|
∑

r,r′

δr,r′δ−q′,q rqθ(rq)θ(r
′q′)

= − 1
√

|qq′|
∑

r

δ−q′,q rqθ(rq)θ(rq
′). (3.24)

In the last line, the Kronecker delta, δ−q′,q, keeps both step functions equal to zero at
the same time, thus the commutator vanishes. Similarly the commutator [aq, aq′ ] vanishes.
We can summarize the results in the following,

[

aq, a
†
q′

]

= δq,q′ (3.25)
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[

aq, aq′
]

=
[

a†q, a
†
q′

]

= 0. (3.26)

We have so far shown that boson operators can be written in terms of the density
operators and now we are left with the task of inverting Eq. (3.21) and Eq. (3.22). To this
end, we will rewrite the a’s in the following way:

θ(rq)a†q =

√

2π

|q|Lθ(rq)ρr,q (3.27)

and

θ(−rq)a−q =

√

2π

|q|Lθ(−rq)ρr,q. (3.28)

If q 6= 0, then

ρr,q =
{

θ(rq) + θ(−rq)
}

ρr,q

=
√

L|q|/2π
{

θ(rq)a†q + θ(−rq)a−q

}

. (3.29)

If q = 0, the corresponding mode is represented by the number operator Nr ≡∑k nr,k−
〈nr,k〉0, which results from the normal ordering, thus:

ρr,q = Nrδq,0 +
√

L|q|/2π
{

θ(rq)a†q + θ(−rq)a−q

}

(3.30)

Now the density operator has been reformulated in terms of bosonic variables. In the
following we will construct the boson eigenstates.

Boson eigenstates

Before we construct a set of boson states, we need to investigate the commuting prop-
erties of Hamiltonian (3.12) and its effect on states of the two branches.

We look first at the commutator between the Hamiltonian H0 and the particle number
operator Nr on branch r,

[

H0, Nr

]

= vF

∑

r′,k′

∑

k

(

r′k′ − kF

)[

c†r′,k′cr′,k′ , c†r,kcr,k
]

= vF

∑

r′,k′

∑

k

(

r′k′ − kF

)(

δk,k′δr,r′c
†
r′,k′cr,k − δk,k′δr,r′c

†
r,kcr′,k′

)

(3.31)

After performing the prime summations, the last line vanishes, finding that H0 and Nr

can have common eigenstates, since
[

H0, Nr

]

= 0. (3.32)

Now let us think of possible states of the system. We can construct states from the
ground state by adding Nr fermions to the first levels just above the Fermi point for the
branch r, and by removing N−r fermions just below the Fermi level. We can write such
states as the set {|NrN−r〉}. These are eigenstates of the number operator Nr and have
a filling θ

(

kF + Nr2π/L − rq
)

, where we observe that it has been increased or decreased
in Nr. The effect of the Hamiltonian (3.12) on these states indicates that {|NrN−r〉} are
eigenstates of H0 with energies given by:

ENrN−r = vFπ/L
∑

r

Nr(Nr + 1)2,

= vFπ/L
∑

r

N2
r , (3.33)
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where the last line results from dropping the term Nr/L in the thermodynamic limit. Let
us compute the commutator between H0 and ρqr,

[

H0, ρr,q

]

= vF

∑

r′,k′

∑

k

(

r′k′ − kF

)(

c†r′,k′cr′,k′c†r,k+qcr,k − c†r,k+qcr,kc
†
r′,k′cr′,k′

)

= vF

∑

r′,k′

∑

k

(

r′k′ − kF

)(

δk′,k+qδr,r′c
†
r′,k′cr,k − δk,k′δr,r′c

†
r,k+qcr′,k′

)

= vF

∑

k

{(

r(k + q) − kF

)

c†r,k+qcr,k −
(

rk − kF

)

c†r,k+qcr,k
}

= vF rqρr,q. (3.34)

The second line is obtained after repeatedly application of the anticommutation rela-
tions. The third line follows from the primed summations, and in the last line we use the
definition of ρr,q in Eq. (3.14). The previous results for the commutators allow for the

straightforward calculation of the commutator between H0 and a†q,

[

H0, a
†
q

]

=
√

2π/L|q|
∑

r

θ(rq)
[

H0, ρr,q

]

=
√

2π/L|q|
∑

r

θ(rq)vF rqρr,q

= vF |q|a†q. (3.35)

By an induction procedure, the result in (3.35) is easily generalized to

[

H0,
(

a†q
)nq
]

= nqvF |q|
(

a†q
)nq for nq ≥ 0, (3.36)

with the corresponding Hermitian conjugate

[

H0, a
nq
q

]

= −nqvF |q|anq
q for nq ≥ 0. (3.37)

From this we can conclude that if |E〉 is an eigenstate of H0 with energy E, then

(a†q)nq |E〉 is also an eigenstate of H0 with energy E + vFnq|q| and a
nq
q |E〉 is an eigenstate

with energy E − vFnq|q|. In this way, a whole set of eigenstates for H0 can be constructed

with aq and a†q acting as ladder operators. From this, we define the next boson states:

|Nr, N−r, {nq}〉 =
∏

q 6=0

(a†q)nq

√

nq!
|NrN−r〉, (3.38)

and using the results in (3.33) and (3.36), we find that the eigenvalues of such states are
given by

E(Nr, N−r, {nq}) = vF

∑

q 6=0

nq|q| + vFπ/L
∑

r

N2
r . (3.39)

Thus, the Hamiltonian (3.12) can be expressed in terms of the boson operators aq as:

H0 = vF

∑

q 6=0

|q|a†qaq + vFπ/L
∑

r

N2
r . (3.40)

The completeness of the set of these bosonic states is supported by Haldane, who showed
that the N -particle Hilbert space HN , spanned by all possible particle-hole excitations of
|N〉0, is also spanned by repeatedly applying a†q on |N〉0, as is here the case. Furthermore,
the bosonic states are an orthonormal set with

〈N ′
r, N

′
−r, {n′q}|Nr, N−r, {nq}〉 = δNr,N ′

r
δN−r,N ′

−r
δ{nq},{n′

q}
. (3.41)
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To conclude this section, let us define the operators N and J corresponding to the total
number of particles and the current (given by the difference between the left and right
movers), respectively, by:

N = N0 +
∑

r

Nr,

J =
∑

r

rNr (3.42)

from which follows that

2
∑

r

N2
r = (N −N0)

2 + J2

2
∑

r

NrN−r = (N −N0)
2 − J2. (3.43)

After inserting (3.43) into (3.40) we obtained the free bosonized Hamiltonian

H0 = vF

∑

q 6=0

|q|a†qaq +
π

2L

(

vF (N −N0)
2 + vFJ

2
)

. (3.44)

So far, we have shown how the density operator and the Hamiltonian can be written in
terms of bosonic operators, and constructed a complete set of orthonormal boson states. In
the following, we will perform the bosonization of the field operators too.

Bosonization of the field operator

The boson representation of the field operator (2.6) has been discussed by Haldane [14]
and by Schönhammer [30]. In this section we will follow the presentation of the later, still
we will obtain the same results as those by Haldane.

Let us define the following in terms of the boson operators aq,

A =
∑

q 6=0

λqa
†
q

B =
∑

q 6=0

µqaq. (3.45)

Given two operators a and b, such that
[

b, [a, b]
]

= 0, then
[

a, eb
]

=
[

a, b
]

eb. Further-
more,

[

aq, e
BeA

]

= eB
[

aq, e
A
]

+
[

aq, e
B
]

eA

= eB
[

aq, A
]

eA

= λqe
BeA (3.46)

and
[

a†q, e
BeA

]

= eB
[

a†q, e
A
]

+
[

a†q, e
B
]

eA

=
[

a†q, B
]

eBeA

= −µqe
BeA. (3.47)

Now, given a fermionic operator S satisfying the following equations
[

aq, S
]

= −λqS
[

a†q, S
]

= µqS, (3.48)
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by the commutation relations of eA and eB above, we find that
[

aq, Se
BeA

]

=
[

aq, S
]

eBeA + S
[

aq, e
BeA

]

= −λqSe
BeA − λqSe

BeA

= 0 (3.49)

and
[

a†q, Se
BeA

]

=
[

a†q, S
]

eBeA + S
[

a†q, e
BeA

]

= µqSe
BeA − µqSe

BeA

= 0. (3.50)

From the results above, we see that the operator SeBeA commutes with both aq and a†q,
furthermore, S ∼ e−Ae−B, i. e., the fermionic operator is related to exponentials of boson
fields. If we could only identify the operator SeBeA, then we could have a fermionic field
operator in terms of boson variables. Let us identify ψ†

r(x) with S to find the values of λq

and µq by computing the next commutators,

[

aq, ψ
†
r(x)

]

=
√

2π/|q|L
∑

r′

θ(r′q)
[

ρr′,−q, ψ
†
r(x)

]

=
√

2π/|q|L
∑

r′

θ(r′q)δr,r′e
iqxψ†

r(x)

= θ(qr)
√

2π/|q|Leiqxψ†
r(x) (3.51)

and
[

a†q, ψ
†
r(x)

]

=
√

2π/|q|L
∑

r′

θ(r′q)
[

ρr′,q, ψ
†
r(x)

]

=
√

2π/|q|L
∑

r′

θ(r′q)δr,r′e
−iqxψ†

r(x)

= θ(qr)
√

2π/|q|Le−iqxψ†
r(x). (3.52)

Thus, we can choose

λq = −θ(rq)
√

2π/|q|Leiqx

µq = −θ(rq)
√

2π/|q|Le−iqx.

and we can construct the next operator

Or(x) = ψ†
re

iϕr(x)eiϕ
†
r(x), (3.53)

where
ϕr(x) = −i

∑

q 6=0

θ(rq)
√

2π/|q|Le−iqxaq. (3.54)

The operator Or(x) commutes with both aq and a†q. Besides, it is uniquely determined
and represented in the boson basis. By inversion of Eq. (3.53), we find an expression for

ψ†
r(x) in terms of boson operators.

By inverting Eq. (3.53), we find3

〈N ′
r, N

′
−r|ψ†

r(x)|Nr, N−r〉

= 〈N ′
r, N

′
−r|Or(x)e

−iϕ†
re−iϕr(x)|Nr, N−r〉

= 〈N ′
r, N

′
−r|Or(x)|Nr, N−r〉 (3.55)

3This results from the commutation relation between the O’s and the exponentials of ϕ
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Recalling the definition of the field operator (2.6), we obtain

〈N ′
r, N

′
−r|Or(x)|Nr, N−r〉

=
1√
L

∑

k

eikx〈N ′
r, N

′
−r|c†r,k(x)|Nr, N−r〉 (3.56)

Since the set of states |Nr, N−r〉 is orthonormal, the inner product in the sum of the last
equation vanishes except for the case in which |N ′

r, N
′
−r〉 = |Nr + 1, N−r〉 and k = kF +

2π(Nr + 1)/L− π/L 4, thus5

Or(x)|Nr, N−r〉 = |Nr + 1, N−r〉L1/2ei(2π(Nr+1)/L+kF−π/L)rx

= L−1/2ei(kF−π/L)rxeirx2πNr/L|Nr + 1, N−r〉. (3.57)

From the last results we can conclude that the effect of the Or(x) on a boson eigenstate
is given by

Or(x)|Nr, N−r, {nq}〉 =
∏

q 6=0

(a†q)nq

√

nq!
Or(x)|Nr, N−r〉

=
∏

q 6=0

(a†q)nq

√

nq!
L−1/2ei(kF−π/L)rxeirx2πNr/L|Nr + 1, N−r〉

= L−1/2ei(kF−π/L)rxeirx2πNr/L|Nr + 1, N−r, {nq}〉 (3.58)

where we have used the commutation relations between Or(x) and a†q. And we can define
the operator Ur as

Ur ≡ L1/2e−i(kF−π/L)rxe−irx2πNr/LOr(x). (3.59)

The operator Ur, as well as it conjugate U †
r , inherits the commutation relations of Or(x)

with a†q and aq. Ur is a ladder operator that raises the fermion number on the r-branch by
one and, at the same time, commutes with the boson operators aq. Ur is a unitary operator,

i.e., U †
rUr = UrU

†
r = 1. Such operators are also known in the field theory language as “Klein

factors”.
Recalling the definition of ψ†

r, as obtained by inversion of (3.53), and the definition of
Ur, (3.59), we find

ψ†
r(x) = Or(x)e

−iϕ†
r(x)e−iϕr(x)

= L−1/2ei(kF−π/L)rxeirx2πNr/L Ur e
−iϕ†

r(x)e−iϕr(x)

= L−1/2ei(kF−π/L)rxeirxπNr/Le−iϕ†
r(x) Ur e

irxπNr/Le−iϕr(x), (3.60)

Defining the next

φr(x) = r(πx/L)Nr − ϕr(x)

= r(πx/L)Nr + i
∑

q 6=0

θ(rq)
√

2π/L|q|e−iqxaq, (3.61)

we can write the Fermi field operator ψ†
r as

ψ†
r(x) =

1√
L
eirkF xeiφ

†
r(x) Ur e

iφr(x). (3.62)

4This corresponds to creating a particle with the lowest momentum available.
5In the first line of Eq. (3.57), the Nr in the exponential refers to the eigenvalue of the number operator,

whilst in the exponential in the second line, Nr is the number operator.
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Equation (3.62) is a tremendous result, for it states that the degrees of freedom of our
Fermi systems can be expressed as bosonic degrees of freedom. The field operator φr(x)
was introduced by Haldane in the context of a charge (N) and current (J) formalism, by
making symmetric and antisymmetric combinations of the left and right movers. Following
this idea, we have already introduced the operators for charge and current in Eq. (3.42).
Further, we can define the density and field operators as:

ρN (x) =
N0

L
+
∑

r

ρr(x),

ρJ(x) =
∑

r

rρr(x),

where N0 = kFL/π, and

φN (x) =
∑

r

φr(x),

φJ(x) =
πN0

L
x+

∑

r

rφr(x),

By defining the next local phase fields θN (x) and θJ(x) as

θN (x) = φN (x) + φ†N (x),

θJ(x) = φJ(x) + φ†J (x).

It is easy to deduce the following relations:

∂xθN (x) = 2πρJ(x),

∂xθJ(x) = 2πρN (x).

with

[ρN (x), θN (x′)] = [ρJ(x), θJ(x′)] = i
∑

n

δ(x− x′ + nL),

[ρN (x), θJ(x′)] = [ρJ(x), θN (x′)] = 0

The fields (ρN (x), θN (x)) and (ρJ(x), θJ(x)) are canonically conjugate pairs. Expressing
ρN and the field φN (x) in terms of the boson operators from Eq. (3.21) and Eq. (3.22) one
obtains:

ρN (x) =

(

N

L

)

+
∑

q 6=0

√

|q|/2πL eiqx(a†q + a−q), (3.63)

ρJ(x) =

(

J

L

)

+
∑

q 6=0

√

|q|/2πL sgn(q)eiqx(a†q − a−q), (3.64)

φN (x) =

(

N

L

)

πx+ i
∑

q 6=0

√

2π/L|q| e−iqxaq, (3.65)

φJ(x) =

(

N

L

)

πx+ i
∑

q 6=0

√

2π/L|q| sgn(q)e−iqxaq. (3.66)

In the phase field variables, the Hamiltonian 3.44 can be expressed as:

H0 =
vF

π

∫

dx :
(

∂xθN (x)
)2

+
(

∂xθJ(x)
)2

: (3.67)

With this, we complete the boson representation of a Fermi system under the corres-
ponding physical considerations as discussed in the previous and in this chapter. In the
next section we will study the interactions in the Tomonaga-Luttinger model.
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3.2 Interacting model

In this section we will study the interacting part of the Tomonaga-Luttinger model. Two
cases are to be discuss: spin-independent systems and systems including the spin degree
of freedom. First we will discuss the spinless case, and then we will be able to extend the
results to the case with spin6.

Spinless case

In chapter 2 we discussed the possible interacting processes for both spinless case and
the case with spin-1/2. In this section, we will make use of all the machinery constructed to
write the full Hamiltonian of the Tomonaga-Luttinger model and solve it. The interacting
spinless part, Eq. (2.14) is

Hint =
π

L

∑

r,q

(

g2(q)ρr(q)ρ−r(−q) + g4(q)ρr(q)ρr(q)

)

, (3.68)

Let us expand the Hamiltonian in terms of the operators a and a† by using Eq. (3.30).
The first term can be expressed then as:

∑

r,q

g2(q)ρr(q)ρ−r(−q) =

∑

r,q

g2(q)

(

Nrδq0 +

√

L|q|
2π

(

θ(rq)a†q + θ(−rq)a−q

)

)

×

(

N−rδ−q,0 +

√

L|q|
2π

(

θ(rq)a†q + θ(−rq)aq

)

)

= g20
∑

r

NrN−r +
L

2π

∑

q 6=0

g2(q)|q|
(

a†qa
†
−q + aqa−q

)

. (3.69)

Where g20 = g2(q = 0). The last line was obtained by using the fact that g2(q) = g2(−q).
By performing the corresponding substitution in the second term, we obtain

∑

qr

g4(q)ρr(q)ρr(−q) = g40
∑

r

N2
r +

L

2π

∑

q 6=0

g4(q)|q|
(

a†qaq + aqa
†
q

)

. (3.70)

The full Hamiltonian turns into

H = H0 +Hint =

vF

∑

q 6=0

|q|a†qaq +
1

2

∑

q 6=0

g2(q)|q|
(

a†qa
†
−q + aqa−q

)

+
1

2

∑

q 6=0

g4(q)|q|
(

a†qaq + aqa
†
q

)

+
π

L
g20
∑

r

NrN−r +
π

L
(g40 + vF )

∑

r

N2
r (3.71)

The last two terms in the Hamiltonian can be expressed as

π

L
g20
∑

r

NrN−r +
π

L
(g40 + vF )

∑

r

N2
r =

π

2L

(

vjJ
2 + vN (N −N0)

2

)

, (3.72)

6We especially recommend the paper by Haldane [14] and the book by Giamarchi [13].
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where we introduced the following definitions:

vj = vF + g40 − g20

vN = vF + g40 + g20

Applying the commutation relations from Eq. (3.25), we write the total Hamiltonian as

H =
1

2

∑

q 6=0

|q|
[

g2(q)(a
†
qa

†
−q + aqa−q) + (vF + g4(q))(a

†
qaq + aqa

†
q)

]

+

π

2L

(

vjJ
2 + vN (N −N0)

2
)

− 1

2

∑

q 6=0

vF |q|. (3.73)

We would like now to diagonalize this Hamiltonian. Observe that, because the Hamilto-
nian consists of terms of the form a†qaq, a†qa

†
−q, and aqa−q, it should be possible to introduce

a linear combination of the boson operators to solve Hamiltonian (3.73). Let us define

bq ≡ αqaq − βqa
†
−q. (3.74)

α and β are real values and only depend on the absolute value of q, just as the cou-
pling interactions g2,4. We should make sure that the new operators satisfy the boson

commutation relations, i.e., [bq, b
†
q′ ] = δq,q′ . The calculation of the commutator renders

[

αqaq − βqα
†
−q, αq′a

†
q′ − βq′α−q′

]

= δq,q′(α
2
q − β2

q ). (3.75)

From the result above, we have α2
q − β2

q = 1, which indicates that α and β can be
expressed using the functions cosh and sinh , respectively. Then the b operator can be
written as7

bq = cosh ξqaq − sinh ξqa
†
−q, (3.76)

equally, ξq is assumed to be real and depends only on |q|. From the above, we can now

invert the equation for bq and write the boson operators aq and a†q as

a†q = cosh ξqb
†
q + sinh ξqb−q

aq = cosh ξqbq + sinh ξqb
†
−q. (3.77)

Let us now insert these expressions into the first term of Eq. (3.73),

g2(q)(a
†
qa

†
−q + aqa−q) + (vF + g4(q))(a

†
qaq + aqa

†
q)

=
(

αqβqg2q + α2
q(g4q + vF )

)

(b†qbq + bqb
†
q)

+
(

αqβqg2q + β2
q (g4q + vF )

)

(b†−qb−q + b−qb
†
−q)

+
(

(α2 + β2)g2q + 2αqβq(g4q + vF )
)

(b†qb
†
−q + bqb−q). (3.78)

Should the last line in this equation vanish, the interacting Hamiltonian would reduce to
an expression easily diagonalizable. Such requirement would give place to the next condition

(cosh ξq
2 + sinh ξq

2)g2q + 2 cosh ξq sinh ξq(g4q + vF ) = 0. (3.79)

Using the properties of cosh and sinh functions, the equation above leads to the definition
of ξq,

tanh 2ξq = − g2q

vF + g4q
. (3.80)

7This actually means to carry on a unitary transformation of aq and a†q, i. e. bq = SaqS
†, with S an

hermitian operator, so that SS† = 1. In this case this is a Bogoliubov transformation.
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With this definition, the first term of the Hamiltonian 3.73 is,

1

2

∑

q 6=0

|q|
[

g2(q)(a
†
qa

†
−q + aqa−q) + (vF + g4(q))(a

†
qaq + aqa

†
q)

]

=
1

2

∑

q 6=0

|q|
[

2αqβqg2q + (α2
q + β2

q )(vF + g40)

]

(b†qbq + bqb
†
q)

=
1

2

∑

q 6=0

|q|
√

(vF + g4q)2 − (g2q)2(b
†
qbq + bqb

†
q), (3.81)

We conclude that the full interacting fermion Hamiltonian from Eq. (3.73) can be
mapped onto a free bosonic one as,

H = E0 +
∑

q 6=0

ωqb
†
qbq +

π

2L

(

vjJ
2 + vN (N −N0)

2
)

E0 =
1

2

∑

q 6=0

(ωq − vF |q|)

ωq = |q|
√

(vF + g4q)2 − (g2q)2. (3.82)

Spinful case

The inclusion of spin degrees of freedom, σ =↑, ↓, leaves the boson and number opera-
tors with analogous definitions as for the spinless case, only with an extra spin index. A
significant difference is the introduction of another type of interaction in the Hamiltonian.
Due to the fact that the backward scattering process can no longer be considered an effec-
tive forward scattering process, and g1⊥ 6= g2⊥, we have to consider the interaction g1. The
interacting Hamiltonian becomes therefore:

Hint = H1 +H2 +H4, (3.83)

H1 =
1

L

∑

k,k′,q,σ,σ′

g1c
†
+,k,σc

†
−,k′,σ′c+,k′+2kF +q,σ′c−,k−2kF−q,σ,

H2 =

∫

dx
∑

σ

{

g2‖ρ+,σ(x)ρ−,σ(x) + g2⊥ρ+,σ(x)ρ−,−σ(x)

}

H4 =

∫

dx
∑

r,σ

{

g4‖

2
ρr,σ(x)ρr,σ(x) +

g4⊥
2
ρr,σ(x)ρr,−σ(x)

}

(3.84)

The Hamiltonian above is no longer diagonal in the spin index, as the interaction couples
up- with down-spins. To diagonalize it (observe that the Hamiltonian is still quadratic in
the fields φ and θ), one introduces the spinful definitions for operators and fields. For the
density operator, analog to Eq. (3.13), we have:

ρrσ ≡: ψ†
rσψrσ : (3.85)

and we recall that the charge and spin densities, see Eq. (3.20) and Eq. (3.20), in real
space are:

ρc(x) =
1√
2

[

ρ↑(x) + ρ↓(x)
]

,

ρs(x) =
1√
2

[

ρ↑(x) − ρ↓(x)
]

. (3.86)
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The boson fields are

φc(x) =
1√
2

[

φ↑(x) + φ↓(x)
]

,

φs(x) =
1√
2

[

φ↑(x) − φ↓(x)
]

. (3.87)

An analog relation corresponds to the θ(x) fields. In terms of these fields, H2 and H4

become

H2 =
1

4π

∫

dx
[

g2‖ + g2⊥
]

(

(∂xφc(x))
2 − (∂xθc(x))

2

)

+

[

g2‖ − g2⊥
]

(

(∂xφs(x))
2 − (∂xθs(x))

2

)

(3.88)

and

H4 =
1

4π

∫

dx
[

g4‖ + g4⊥
]

(

(∂xφc(x))
2 + (∂xθc(x))

2

)

+

[

g4‖ + g4⊥
]

(

(∂xφs(x))
2 + (∂xθs(x))

2

)

(3.89)

The g1⊥-term can be bosonized rendering

H1 =

∫

dx
g1⊥

(2πα)2

∑

s=↑,↓

[

ei(−2φs(x)) + ei(−2φ−s(x))
]

=

∫

dx
g1⊥

(2πα)2
cos
(

2
√

(2) φσ(x)
)

(3.90)

We have now two decoupled sectors corresponding to charge and spin excitations, thus
H = Hc + Hs. Let us, for each sector λ = c, s define the next coupling constants and
velocities:

Kλ ≡
√

2πvF + g4λ − g2λ

2πvF + g4λ + g2λ
(3.91)

uλ ≡ vF

√

(

1 +
g4λ

2πvF

)2
−
( g2λ

2πvF

)

(3.92)

3.3 Correlation functions

In one-dimensional systems, with short-range interactions, the T = 0 point represents
a quantum critical point. This can be characterized through the corresponding correlation
functions at T = 0. In systems of D > 1, the correlation functions give information about
the tendency of the system to show long-range order. In 1D though, criticality manifest
itself in an algebraic decay of the correlation functions.

With charge and spin dynamics already decoupled, we can define the operators for each
sector. For the charge sector we have the total density operator

Oc(x) =
∑

r,σ

: ψ†
r,σ(x)ψr,σ(x) : (3.93)

with q ∼ 2kF and q ∼ 4kF components given by

OCDW (x) =
∑

σ

e−2ikF xψ†
+,σ(x)ψ−,σ(x), (3.94)

O4kF
(x) = e−4ikF xψ†

+,σ(x)ψ†
+,−σ(x)ψ−,−σ(x)ψ−,σ(x). (3.95)
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the q ∼ 0 component, as we will see below, decays as 1/r2 for long distances r. For the spin
sector, the total density operator and q ∼ 2kF component are

Os(x) =
∑

r,µ,ν

σ3
µ,ν : ψ†

r,µ(x)ψr,ν(x) :, (3.96)

Oa
SDW (x) =

∑

µ,ν

e−2ikF xσa
µ,νψ

†
+,µ(x)ψ−,ν(x), (3.97)

where σa
µ,ν is the µ, ν elements of the a-th Pauli matrix, µ, ν = ±1, a = 1, 2, 3. We are now

interested in the correlation functions, which are defined as Cλ(x) ≡ 〈Oλ(x)O†
λ(x)〉. The

results are summarized in the next,

Cc(x) = Kc

(πx)2
Cs(x) = Ks

(πx)2

CCDW (x) ∼ cos (2kF x)
xKc+Ks

Cz
SDW (x) ∼ cos (2kF x)

xKc+Ks

C4KF
(x) ∼ cos (4kF x)

x4Kc
Cx,y

SDW (x) ∼ cos (2kF x)

x
(Kc+ 1

Ks
)

A logarithmic correction of the density-density correlation function was carried out by
Giamarchi [12], so one obtains:

〈ρc(x)ρc(0)〉 =
Kc

(πx)2
+
A1 cos(2kFx)

x1+Kc
ln(x)−

3
2 +

A2 cos(4kFx)

x4Kc
+ . . . . (3.98)

This is the form of the density-density correlations that we will use to study the systems
to be proposed in the next chapter.

Summary

In this chapter we have employed the method of bosonization to solve the Tomonaga-
Luttinger model of one-dimensional interacting systems. We learned that in the low-energy
regime there is an equivalence between a fermionic and a bosonic representation, the last
one being easier to treat since the Hamiltonian, free and interacting, reduces to quadratic
terms in the new bosonic variables and this can be solved by a usual Bogoliubov transfor-
mation. We also learned that the systems decouple in independent spin and charge sectors
of different group velocities, in contrast to the high-dimensional case of a Fermi liquid.
This phenomenon is well-known under the name of spin-charge separation and is one of the
Tomonaga-Luttinger liquid benchmarks. We found also that Kλ is a relevant parameter
that characterizes the decay of the correlation functions. It is also clear that up to now
there is no way to estimate it, if the couplings are unknown. One aspect of this work will
be the calculation of Kc from the measurement of the density-density correlation function.





Chapter 4

One-dimensional inhomogeneous systems

When we consider the experimental progress and the results we discussed in chapter
1, it is no wonder that a great effort is being invested in the study of the properties of
one-dimensional strongly correlated electron systems. In this sense, to investigate the low-
energy (T = 0K) properties of one-dimensional inhomogeneous systems, we will turn to the
one-dimensional Hubbard model which has been one of the most helpful models of strongly
correlated electron systems. While appearing simple, as it only consists of two terms, it is
by no means a trivial model. It has been used in the study of a wide variety of phenomena
including metal-insulator transition, ferrimagnetism, antiferromagnetism, ferromagnetism,
superconductivity and Tomonaga-Luttinger liquid. The one-dimensional Hubbard model
is one of the rare examples of an exactly solvable model for spin-1/2 fermions. It was
solved using the Bethe Ansatz [24], which is a powerful analytical technique to treat one-
dimensional systems. The method was first used by Bethe to solve the isotropic Heisenberg
Hamiltonian [4] and was later successfully applied to other models. This original method
is now known as the coordinate Bethe Ansatz (CBA). It was further developed by Baxter
[19] and other representatives of the Russian school, giving rise to the quantum inverse
scattering method (QISM).

In this chapter we will first describe the one-dimensional Hubbard model, and see that
the Bethe Ansatz can be a good approach to solve it. General properties of this model will
also be discussed. At the end we will write the Hubbard model for the case of inhomogeneous
systems and define in this way the heterostructures we study in this thesis.

4.1 One-dimensional Hubbard model

The Hubbard model, as described by Ashcroft and Mermin [3], is a highly oversimplified
model for electrons propagating in a solid and interacting with each other through short-
ranged Coulomb interactions. The Hamiltonian of the Hubbard model consists of two parts:
H0, which describes the propagating electrons, as they hop from one site to another; andHU ,
which describes the effect of two electrons sitting in the same site, i.e, the on-site Coulomb
interaction. Each term on their own offers no big difficulties, but if their energy scales
are comparable both terms must be considered, leading to a competing process that takes
place between the kinetic term trying to delocalize the electrons and the on-site Coulomb
interaction trying to do the opposite. The physics then becomes non-trivial.

Given a lattice of length L sites and a total of N electrons the Hubbard Hamiltonian is

H = H0 +HU , (4.1)

with kinetic term

H0 =
∑

<ij>

∑

σ

−tij
(

c†i,σcj,σ + c†j,σci,σ
)

(4.2)

where c†i,σ, ci,σ are the creation and annihilation fermion operators, respectively, with spin
σ =↑, ↓ on the site i. The hopping amplitude tij = tji = t > 0 represents the probability
that an electrons hops from site i to site j, and it is usually assumed to be real. < ij >

51
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implies that the sum is done over the nearest-neighboring sites. The interacting term is

HU =
∑

i

Uini,↑ni,↓, (4.3)

where niσ = c†i,σci,σ is the electron number operator. For our purposes, Ui > 0, i.e., we will
describe repulsive interactions. This term describes the gain in the energy, by Ui, when
two electrons occupy a single orbital state at i. The fermion operators obey the canonical
anticommutation relations,

{

c†i,σ, ci′,σ′

}

= δii′δσσ′

{

c†i,σ, c
†
i′,σ′

}

=
{

ci,σ, ci′,σ′

}

= 0.

Now let us investigate some basic conserved quantities. It is easy to check that the total-
number operator

N =
∑

i

(

ni,↑ + ni,↓

)

(4.4)

commutes with the Hamiltonian H, and since each lattice site has at most two electrons,
0 ≤ N ≤ 2L, where N is the number of particles and L is the length of the chain. It also
conserves the number of down-spins M (similarly of M ′ up-spins), so we find

[

∑

i

ni↑,H

]

=

[

∑

i

ni↓,H

]

= 0. (4.5)

The Hubbard Hamiltonian is as well invariant under a particle-hole transformation and
under reversal of all spins.

4.1.1 Bethe Ansatz solution (PBC)

The eigenvalue problem for the Hubbard Hamiltonian with periodic boundary conditions
(PBC) was solved by Lieb and Wu [24, 25] using the CBA. They proved in the end that
the ground state corresponds to an antiferromagnet and a Mott transition takes place.

We saw in the previous section that the number of down-spins M as well as that of
up-spins M ′ are conserved. This fact allows us to characterize the eigenstates of the system
by using these quantities. We can write then the Schrödinger equation as

H|M,M ′〉 = E(M,M ′)|M,M ′〉 (4.6)

with N = M + M ′, and we will restrict to a particle number of N such that N ≤ L,
i.e., the band is half-filled at most1. The eigenstate |M,M ′〉 can be expressed as a su-
perposition of all the states |x1x2 . . . xN 〉 in which all the down-spin electrons are located
at the sites x1, x2, . . . , xM , and the up-spin electrons are at sites given by the coordinates
xM+1, . . . , xN . A particular ordering of the particles, which we can call a sector Q, is
given by

xQ1 ≤ xQ2 ≤ . . . ≤ xQN (4.7)

where Q = {Q1, Q2, . . . , QN} is a permutation that maps the ordered set {1, 2, . . . , N}
into {Q1, Q2, . . . , QN}, so in 4.7, it is meant that the particle Q1 is in the first position,
Q2 in the second, etc. In total there are N ! permutations and corresponding sectors Q.

1For fixed M and M ′, the solution to Eq. (4.6) is not uniquely determined. To restrict the solutions one
makes use of the particle-hole invariance and finds that N ≤ L.
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The union of these sectors gives the full configuration space. Furthermore, such sectors are
disjoint except for their boundaries, for which xQi = xQ(i+1).

Let us proceed, then, to diagonalize the Hamiltonian in Eq. (4.6). An arbitrary form of
the eigenstate |M,M ′〉 is

|M,M ′〉 =
∑

x1≤x2≤ ... ≤xN

aσ1 ... σN
(x1, x2, . . . , xN )|x1x2 . . . xN 〉, (4.8)

where the summation is over all xi, from 1 toN , and aσ1...σN
(x1, x2, . . . , xN ) is the amplitude

of the state |x1x2 . . . xN 〉 with spin projections σi.
Next, we substitute Eq. (4.8) in the Schrödinger equation, Eq. (4.6), and obtain for the

amplitudes (setting tij = 1)

−
N
∑

i

[

aσ1...σN
(x1, . . . , xi + 1, . . . , xN ) + aσ1...σN

(x1, . . . , xi − 1, . . . , xN )
]

+ U
∑

i<j

δ(xi − xj)δσi,−σj
aσ1...σN

(x1, . . . , xN ) = Eaσ1...σN
(x1, . . . , xN ) (4.9)

Since we are working with fermions, the amplitude aσ1...σN
(x1, x2, . . . , xN ) is required

to be antisymmetric separately in both the M - and in the M ′-region. This condition also
ensures that the amplitude will be zero if any two x’s are equal in the same subset, thus
the only relevant delta-function terms in 4.9 are the ones with i ≤ M and j > M , i.e., the
only interaction is between the up- and down-spins. We now proceed to solve 4.9 for the
amplitudes a and the energy E, keeping in mind that site 1 is the same as the site N + 1
for the boundary condition to be periodic. We will find the proceeding in steps. First we
will consider a system with one electron in the chain, then with two electrons, and finally
we can generalize the solution to N electrons.

Case I: One electron in the chain. In this case, Eq. (4.9) reduces to

− aσ(x− 1) − aσ(x+ 1) = Eaσ(x) (4.10)

whose solution is
aσ(x) = eipxaσ, (4.11)

with aσ a normalization constant. And for the energy eigenvalue

E = −2 cos p. (4.12)

Case II: Two electrons in the chain. Now we have to consider two cases: when the
electrons are located at different sites, and therefore they do not interact with each other
(the U term vanishes), and when the electrons are able to interact in the same site.

If the electrons are at different sites, x1 and x2, Eq. (4.9) becomes

− aσ1σ2(x1 − 1, x2) − aσ1σ2(x1 + 1, x2)

− aσ1σ2(x1, x2 − 1) − aσ1σ2(x1, x2 + 1)

= Eaσ1σ2(x1, x2). (4.13)

The solution in this case is

aσ1σ2(x1, x2) = c1σ1σ2
eip1x1+ip2x2 − c2σ1σ2

eip2x1+ip1x2 (4.14)

with c1 and c2 arbitrary constants, and energy

E = −2(cos p1 + cos p2). (4.15)
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In the case that the two electrons are neighbors with opposite spin, it is possible for
them to interact in the same site x1 = x2 = x, then Eq. (4.9) becomes

− aσ1σ2(x− 1, x) − aσ1σ2(x+ 1, x)

− aσ1σ2(x, x− 1) − aσ1σ2(x, x+ 1)

+ Uδσ1,−σ2aσ1σ2(x, x)

= Eaσ1σ2(x, x). (4.16)

To find the solution we have to consider two different configurations, namely x1 < x2

and x2 < x1. If x1 < x2 we have,

aσ1σ2(x1, x2) = Aσ1σ2(p1, p2)e
ip1x1+ip2x2 −Aσ1σ2(p2, p1)e

ip2x1+ip1x2 , (4.17)

if x2 < x1, then

aσ1σ2(x1, x2) = Aσ2σ1(p2, p1)e
ip1x1+ip2x2 −Aσ2σ1(p1, p2)e

ip2x1+ip1x2 . (4.18)

Equations (4.17) and (4.18) can be unified for the region xQ1 < xQ2 as

aσ1σ2(x1, x2) =
∑

P

(−1)ηPAσQ1
σQ2

(P,Q)ei(pP1
x1+pP2

x2) (4.19)

where P and Q are the two permutations of the particles for momenta pi and coordinates
xi. The expression includes the antisymmetry condition under exchange of two electrons,
and since we are considering PBC, the continuity of the wavefunction at x1 = x2 means
that the amplitudes in (4.17) and in (4.18) must satisfy,

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1) = Aσ2σ1(p2, p1) −Aσ2σ1(p1, p2). (4.20)

Upon substitution of (4.19) into Eq. (4.16), we obtain

− 2(cos p1 + cos p2)
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

= E
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

+
(

eip1 − e−ip1 − eip2 + e−ip2
)

×
[

Aσ2σ1(p2, p1) −Aσ1σ2(p1, p2)
]

− U
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

, (4.21)

which can be also expressed as

− 2(cos p1 + cos p2)
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

= E
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

+

{

2i
(

sin p1 − sin p2

)

×
[

Aσ2σ1(p2, p1) −Aσ2σ1(p1, p2)
]

− U
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

}

. (4.22)

This result looks like an equation for the eigenfunction
[

Aσ1σ2(p1, p2) − Aσ1σ2(p2, p1)
]

with eigenvalue (4.15) if the expression in braces vanishes, i.e., if

2i
(

sin p1 − sin p2

)

×
[

Aσ2σ1(p2, p1) −Aσ2σ1(p1, p2)
]

− U
[

Aσ1σ2(p1, p2) −Aσ1σ2(p2, p1)
]

= 0, (4.23)
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from which we find the next relation between the amplitudes

Aσ1σ2(p2, p1) =
−U/2i

sin p1 − sin p2 − U/2i
Aσ1σ2(p1, p2)

+
sin p1 − sin p2

sin p1 − sin p2 − U/2i
Aσ2σ1(p1, p2), (4.24)

which can be written using matrix representation as

Aσ1σ2(p2, p1) =
∑

σ1′σ2′

S
σ1σ1′
σ2σ2′

(p1, p2)Aσ1′σ2′
(p1, p2), (4.25)

where

S
σ1σ1′
σ2σ2′

(p1, p2) = +
sin p1 − sin p2

sin p1 − sin p2 − U/2i
δσ1,σ1′

δσ2,σ2′

+
−U/2i

sin p1 − sin p2 − U/2i
δσ1,σ2′

δσ2,σ1′
(4.26)

is called the S-matrix. It is in general regarded as a two-particle scattering matrix between
an interacting pair of particles at sites i and j, and relates the amplitudes in the two regions
without interfering with the other N − 2 regions. Let us try now to generalize the previous
construction to N particles. We remember that the full configuration space is divided
into N ! sectors according to the ordering of the particles on the chain, and are labeled by
elements of the permutation group. For example, the sector x3 < x1 < x7 < . . . is labeled
by the permutation Q = {Q1 = 3, Q2 = 1, Q3 = 7, . . .}. In the interior of the regions there
are no interactions, thus the wavefunction will be given as a sum of the product of single-
particle wavefunctions, i.e., as the sum of plane waves. In the case a boundary is crossed,
two particles are then interacting. Since there are no other multiparticle interactions, we
can summarize the interacting effects using a general form of the S-matrix. We thus consider
wavefunctions of the Bethe form:

∑

P

(−1)ηPAσQ1
σQ2

...σQN
(P,Q)ei[pP1

xQ1
+pP2

xQ2
+ ... +pPN

xQN
], (4.27)

which is known as the Bethe Ansatz. ηP indicates the parity of the permutation and
ensures the antisymmetry of the wavefunction. P and Q are elements of the configuration
space. The Ansatz is a superposition of plane waves 2 with wave numbers pj and (complex)
amplitudes AσQ1

σQ2
...σQN

(P,Q) ≡ Aσ1σ2...σN
(Q|P ), where the term to the right indicates

only a different notation. Correspondingly, the energy and total momentum are given by

E =
∑

j

−2t cos pj (4.28)

P =
∑

j

pj . (4.29)

The amplitudes are related by the S-matrix by

A...σi...σj ...(Q̃|P ) =
∑

σi′σj′

S
σiσi′
σjσj′

(pi, pj)A...σi′ ...σj′ ...(Q|P ). (4.30)

The relation between different elements of the S-matrix can be derived from a simple,
but illustrative example: A three-particle initial state given by (x1 < x2 <3) is scattered to

2This is actually a generalization of the original CBA used to solve the Heisenberg chain. Here we do
not only consider permutations of the pj numbers but also of the coordinates xj .
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a final state (x3 < x2 <1). The process to get to the final state is not unique. There are
two ways to follow through intermediate states:

1.− (x1 < x2 < x3) → (x2 < x1 < x3) → (x2 < x3 < x1) → (x3 < x2 < x1),

2.− (x1 < x2 < x3) → (x1 < x3 < x2) → (x3 < x1 < x2) → (x3 < x2 < x1).

Both processes are equivalent, and this means that for the scattering matrices we have
∑

σ1′σ2′σ3′

S
σ1σ1′
σ2σ2′

(p1, p2)S
σ1σ1′′
σ3σ3′

(p1, p3)S
σ2σ2′′
σ3σ3′′

(p2, p3) =

∑

σ1′σ2′σ3′

S
σ2σ2′
σ3σ3′

(p2, p3)S
σ1σ1′
σ3σ3′′

(p1, p3)S
σ1σ1′′
σ2σ2′′

(p1, p2). (4.31)

Introducing the momentum parameterization pj = pj(λj), such that the S-matrix de-
pends only of the difference of the velocities, i.e., such that S(p1p2) → S(λ1 − λ2), then
Eq. (4.31) can be written as

S
σ1σ1′
σ2σ2′

(λ)S
σ1σ1′′
σ3σ3′

(λ+ µ)S
σ2σ2′′
σ3σ3′′

(µ) =

S
σ2σ2′
σ3σ3′

(µ)S
σ1σ1′
σ3σ3′′

(λ+ µ)S
σ1σ1′′
σ2σ2′′

(λ). (4.32)

Repeated indices indicate a summation. Equations (4.32) are known as the Yang-Baxter
equations [19], with λ called the spectral parameter. An artificial but helpful construction
is that of the transfer matrix T, defined as follows

T σ1...σN
τ1...τN

(λ) =
∑

γ1...γN

Sγ1γ2
σ1τ1 (λ)Sγ2γ3

σ2τ2 (λ) · · ·SγNγ1
σN τN

(λ), (4.33)

The Hamilton operator can be expressed using either the S- or the transfer matrix, so
that the diagonalization of the Hamiltonian reduces to diagonalizing the transfer matrix.
When considering PBC, the eigenvalue problem takes the form

TjA(I|I) = eiNpjA(I|I), for j=1, . . . , N. (4.34)

From this equation we see that, the jth electron will be dispersed by the other N − 1
particles, and the whole set of events will be quantified through the S-matrix and summa-
rized in the transfer matrix. After the electron has been transferred along the whole chain
of length L, the wavefunction gains a wavefactor of eiLpj . From this analysis, one obtains
a set of N +M equations for the N parameters pj and M additional equation for the set
of λi, which parameterize the momentum:

eipjL =

M
∏

i=1

λi − sin pj + iU/4

λi − sin pj − iU/4
, j = 1, 2, . . . , N (4.35)

N
∏

l=1

λi − sin pl + iU/4

λi − sin pl − iU/4
=

M
∏

k=1
k 6=i

λi − λk + iU/2

λi − λk − iU/2
, i = 1, 2, . . . ,M (4.36)

Eq. (4.35) results from the periodic boundary conditions imposed. Taking the logarithm
on both sides, we obtain another pair of equations,

pjL = 2πIj + 2

M
∑

i=1

arctan

(

4

U
(λi − sin pj)

)

, (4.37)

N
∑

j=1

2 arctan

(

4

U
(λi − sin pj)

)

= 2πJi +

M
∑

k=1

2 arctan

(

2

U
(λi − λk)

)

, (4.38)
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where Ij and Ji are integers or half-integers. Adding up the first equation on j and the
second on i, we obtain for the total momentum:

L

N
∑

j=1

pj = 2π

(

N
∑

j=1

Ij +

M
∑

i=1

Ji

)

. (4.39)

4.1.2 Bethe Ansatz solution (OBC)

The analysis carried out previously is valid also for systems under open boundary con-
ditions (OBC). This condition must be introduced when diagonalizing the Hamiltonian (in
terms of the transfer matrix). Analog to Eq. (4.35) and Eq. (4.36), equations for momenta
pj and velocities λi are found for OBC and are given by (setting p0 = λ0 = 0 in this case)
[31]

e2pj(L+1) =

M
∏

i=1

(sin (pj) + iU/4)(sin (pj) + λi + iU/4)

(sin (pj) − λi − iU/4)(sin (pj) + λi − iU/4)
(4.40)

and

N
∏

l=1

(λi − sin (pl) + iU/4)(λi + sin (pl) + iU/4)

(λi − sin (pl) − iU/4)(λi + sin (pl) − iU/4)
=

M
∏

k=1
k 6=i

(λi − λk + iU/2)(λi + λk + iU/2)

(λi − λk − iU/2)(λi + λk − iU/2)
(4.41)

And, by taking again the logarithm on both sides, we obtain the following sets of
equations:

2(L+ 1)pj = 2πIj −
M
∑

i=1

{

2 arctan

(

4

U
(sin pj − λi)

)

+ 2 arctan

(

4

U
(sin pj + λi)

)

}

, (4.42)

and

N
∑

j=1

{

2 arctan

(

4

U
(λi − sin pj)

)

+ 2 arctan

(

4

U
(λi + sin pj)

)

}

= 2πJi +

M
∑

k=1

{

2 arctan

(

2

U
(λi − λk)

)

+ 2 arctan

(

2

U
(λi + λk)

)

}

. (4.43)

Equations (4.37)-(4.38), and (4.42)-(4.43) can be solved by the method of Newton iter-
ation3. Once with the set of pj ’s one can calculate the ground state energy from Eq. (4.29).
The only down side of the Bethe Ansatz is the fact that correlation functions cannot be
obtained from this solution, since the information gained is related to the thermodynamics
of the systems.

3In Eqs. (4.35)-(4.43), in the terms iU/2 and iU/4, i refers to the complex unit and not the parameters
index.
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4.2 Model systems

In the introduction we mentioned that the low-dimensional materials have a rather com-
plex chemical structure making them, in general, inhomogeneous systems (or heterostruc-
tures), where the valence electrons propagate under the influence of different values of the
on-site Coulomb interaction (due to the diverse types of atoms present), and of scattering
potentials (due to impurities or defects). On the other hand, such complexity is also the
source of the singular physical properties with promising applications in technology. We will
model inhomogeneous systems starting from the one-dimensional Hubbard Hamiltonian in
Eq. (4.1), including terms corresponding to scattering potentials,

H = −t
∑

i,σ

c†i,σci+1,σ +
∑

i

Uini↑ni↓ +
∑

i,σ

Viniσ (4.44)

where again c†i,σ (ci,σ) is the creation (annihilation) operator with spin σ (=↑, ↓) at site i

and niσ = c†i,σci,σ is the electron number operator. Tunable parameters are t, U , and V ;
and we choose t to set the energy scale. The Hamiltonian in Eq. (4.44) incorporates the
different systems we want to study. The Hubbard heterostructures we investigate are chains
with length L under OBC. Figure 4.1 shows the layout of the structures. We describe them
in the following:

• Heterostructure I is a chain with on-site Coulomb interaction U/t switching be-
tween two different values, in a step-wise form (see the continuum line in Fig. 4.2). It
can be visualized as a square valley in the middle point of the chain with sharp edges
at the sites labeled xL and xR. No scattering potentials are introduced. The form of
the Coulomb interaction is given by the function

U(x) =







UL for 0 < x < xL

UC for xL ≤ x < xR

UR for xR ≤ x < L
(4.45)

where UL = UR > UC .

• Heterostructure II has a form of the Coulomb interaction which changes smoothly
close to xL and xR, contrary to the former case. The actual change is given by the
function

U(x) = A+B cos (γx), (4.46)

with A, B and γ are constants (see broken line in Fig. 4.2). As in the previous case,
no scattering potentials are introduced. Heterostructures I and II are designed to
investigate what happens when the Coulomb potential modifies abruptly or smoothly.

• Heterostructure III includes, in addition to the Coulomb interaction described for
heterostructure I, two potential walls of different height V , located at the positions
xL and xR in the chain (see Fig. 4.2).

The sites xL and xR, as seen from Fig. 4.1 and Fig. 4.2, divide the whole system into
three homogeneous subchains UL, UC and UR. This raises two main questions: first, how
the density-density correlation function behaves in the whole system and second, whether
the known results for the homogeneous regime can be recovered within the subchains.

For inhomogeneous structures the high-energy physics is determined by the underlying
chemistry which, as already mentioned, introduces in the atomic scale on-site Coulomb
correlations and local potentials. On the other hand, at large length scales, the physics has
to be described by the TLL model. In order to establish a connection between the low-energy
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Figure 4.1: General arrangement of a Hubbard heterostructure. The inhomogeneous systems are 1D chains
where the electrons hop with coupling constant t and the on-site Coulomb interaction is position-dependent.
Our heterostructures are defined as junctions of three homogeneous regions, UL, UC , and UR, with different
values for the on-site Coulomb interaction.
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Figure 4.2: On-site Coulomb interaction as a function of the position used to define heterostructures I,II,
and III.

TLL and the quasi-one-dimensional systems synthesized in the laboratory, we investigate
the density-density correlation functions in the asymptotic region (i. e. for well separated
positions x and x′). Position dependent on-site Coulomb interaction U(x) and a local
potential V are used to model the changes in the local chemistry of the heterostructures.
This defines regions which, for slowly varying potentials, can be separately considered as
homogeneous. We wish to study how the TL parameter changes close to the crossover
regions. We expect to find a description of it in terms of U(x) and the local density n(x).
We will investigate the above described structures using the density-matrix renormalization
group method, which is he topic of the next chapter.

summary

In this chapter we introduced the one-dimensional Hubbard model and solved it using the
Bethe Ansatz. For systems with periodic boundary conditions, the Bethe Ansatz solution
was explained in detail, and the results were extended to systems with open boundary
conditions. The Tomonaga-Luttinger liquid model and the Bethe Ansatz solution of the
one-dimensional Hubbard model gives accurate information on the low-energy physics of
homogeneous systems. We want now to investigate how much of these descriptions is still
valid in the case of inhomogeneous systems (heterostructures), which we also introduced
in this chapter. They are represented by a one-dimensional Hubbard model with position-
dependent on-site Coulomb interaction U(x)/t. Some of these inhomogeneous systems
include as well potential barriers.





Chapter 5

The Density-Matrix Renormalization Group Method

An accurate description of a many-body system must take into account the different
interactions between its components. Such interactions can lead to strong correlation effects
and make the problem analytically and even numerically unsolvable. Exact solutions such
as the ones achieved through the Bethe Ansatz are, as we mentioned in section 4.1.2, rare.
A numerical study of quantum many-body problems requires to handle an exponentially
increasing basis to represent the quantum state of the system. As an example, we can
think of a two-spin system with s = 1/2. In this case, four states | ↓↓ 〉, | ↓↑ 〉, | ↑↓ 〉, and
| ↑↑ 〉 conform the basis of the Hilbert space. As is expected, the dimension of this Hilbert
space increases exponentially as 2n, with n the number of spins. Normally, only systems of
up to 30 spins can be solved by exact diagonalization. In this chapter, the density matrix
renormalization group method (DMRG) will be discussed and its algorithms described. This
method will be introduced as a successor of the numerical renormalization group method
(NRG) by Wilson [52].

5.1 The DMRG method

The DMRG developed by S. R. White has proven to be a powerful method for treating
low-dimensional strongly correlated systems [49, 50]. It combines a variational method and
a real space renormalization group method. The goal is to diagonalize the Hamiltonian of
large one-dimensional lattice systems, by selecting a smaller sector of the complete Hilbert
space with a size-manageable basis, yet accurate enough to best represent the state of the
system. Such accurate representation, as we will see, will be given by the density matrix
of the system. The DMRG method was originally developed to overcome the problems
that arise in one-dimensional interacting systems when standard renormalization group
techniques are applied [27]. The main concerns areg a) the selection of the sector of the
Hilbert space, b) the construction of the wavefunction of the system, and c) the handling
of the boundary conditions in the block construction of the systems.

In the renormalization group by Wilson the attention was directed not to the full spec-
trum of the eigenstates but only to the ground state or low-energy excitations. With this
in mind, the truncation of the Hilbert space is done by keeping only the sector with the m
lowest-energy eigenstates. This reduction of the Hilbert space would allow access to bigger
systems which are constructed starting from two neighboring sites S or blocks and combined
(i. e. they interact with each other) to form a new system SS twice the size of the original.
At this point the new Hilbert space has a size of m2 states and must be again truncated to
keep its size constant. By attaching a new site in an iterative process, the system can be
grown to any desired size. The construction of the wavefunction at each iteration follows
from the diagonalization of the Hamiltonian HS of the system, which is now expressed in
terms of the reduced basis.

Wilson used the renormalization group method to solve the problem of the Kondo effect.
This is the effect of a magnetic impurity in a metallic host. It was observed that there is
a critical temperature at which a spin-1/2 impurity couples to the conduction band of the
metal resulting in a finite magnetization. Wilson mapped the problem to a one-dimensional

61



62 The Density-Matrix Renormalization Group Method

chain with the impurity in one extreme (see Fig. 5.1). Formulated in this way, the couplings
between the blocks decrease exponentially obtaining a good numerical accuracy. In the
case of one-dimensional systems where the interactions between the building blocks are
constant, the NRG leads to important errors due to the Hilbert space truncation. One
example of this is found when studying the non-interacting one-dimensional tight-binding
model [51]. In non-interacting models, an appropriate combination of boundary conditions
solve the problem, but in the interacting case the solution is not trivial. In the following we
will discuss how the density matrix projection gives us the necessary information to best
represent a state in a reduced basis.

Figure 5.1: Mapping of the Kondo problem to a 1D chain. With the magnetic impurity at the head and
decaying values for the couplings.

5.1.1 Density matrix projection

When dealing with quantum systems, we are specially interested in observables, which
are given by the corresponding expectation value of a suitable operator A and this can be
calculated as

〈 A 〉 = tr (ρA), (5.1)

where ρ is the density matrix of the system. Thus, one can assume that the physically
significant information of the system is contained in the density matrix. If the system is in
a pure state, i.e., if it is characterized by a single-state vector | ψ 〉, the density matrix is
ρ = | ψ 〉〈 ψ | 1. In the case that a system is allowed to interact with a second one, which
we can call a bath or environment, a state of the system will be a mixed one as a result of
the interaction. Let | i 〉 be the states of the system and | j 〉 the states of the environment.
The elements of the density matrix of the system plus environment are then 〈 ij |ρ| i′j′ 〉.
Since we want to keep our attention focused on the system, it is necessary to extract from

1If the system is not in a pure state, it can be written as a combination of pure states | φ1 〉, | φ2 〉, . . .
pondered by the corresponding weights w1, w2, . . ..
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ρ only the part characterizing it. Let us consider once again the matrix elements of an
operator Aii′ , which acts only on the system part of the superblock and are given by

Aii′ = 〈 ij |A| i′j′ 〉 = 〈 i |A| i′ 〉δjj′ , (5.2)

where the states | j 〉 are assumed to be orthogonal. From Eq. (5.1) and Eq. (5.2) the
expectation value 〈 A 〉 is

〈 A 〉 = tr
(

ρA
)

=
∑

ii′jj′

〈 ij |ρ| i′j′ 〉〈 i′j′ |A| ij 〉

=
∑

ii′

[

∑

j′

〈 ij′ |ρ| i′j′ 〉
]

〈 i′ |A| i 〉. (5.3)

We can define the elements of a matrix ρE by

〈 i |ρE | i′ 〉 =
∑

j′

〈 ij′ |ρ| i′j′ 〉. (5.4)

Then Eq.(5.3) can be written as

〈 A 〉 =
∑

ii′

〈 i |ρE | i′ 〉〈 i′ |A| i 〉

= tr ρEA. (5.5)

Since the information on the system can be expressed in terms of the expectation value
of an operator acting on it, it follows from Eq. (5.5) that such information of the system
can be obtained once ρE is known. Because the density matrix elements in the unobserved
variable j are traced out, ρE(i) is usually called the reduced density matrix. This can also
be expressed as taking the total density matrix ρ and then project it onto the subspace of
interest. For convenience we will introduced the shorthand notation

ρE = trE ρ (5.6)

where trE ρ indicates the trace over all unobserved variables.
The reduced density matrix has n eigenvalues ωα and orthonormal eigenstates | ωα 〉

ρE | ωα 〉 = ωα| ωα 〉 (5.7)

with
∑

α

ωα = 1. (5.8)

Generally, it is assumed that the states are ordered such that ω1 ≥ ω2 ≥ ω3 ≥ . . . . So,
when keeping only m states of the reduced density matrix to describe the system, the error
due to the truncation is

Err = 1 −
m
∑

α=1

ωα. (5.9)

In the following we will show, using a variational approach, how to obtain the optimal
quantum states of a system from the reduced density matrix 2.

Let us consider the already described arrangement, also called superblock, consisting of
two parts or blocks, S and E (see Fig. 5.2). The ground state wavefunction | Ψ 〉

2In his original paper, White wrote the problem in the form of a singular-value decomposition [49].
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Figure 5.2: A superblock consist initially of a left block or system S and a right block or environment E,
with ground state wavefunction | Ψ 〉 =

P

i,j Ψij | i 〉 ⊗ | j 〉.

| Ψ 〉 =
∑

i,j

Ψij | i 〉 ⊗ | j 〉 (5.10)

is written in terms of the states | i 〉 and | j 〉 on the blocks S and E respectively. If
the system is truncated and the Hilbert space is spanned by only m (m < n) orthonormal
states |α〉 =

∑

i uαi| i 〉 with real coefficients. Then the wavefunction of the system can be
approximated by 3

| Ψ̃ 〉 =

m
∑

α=1

n
∑

j=1

aαj | α 〉 ⊗ | j 〉, (5.11)

and the problem turns to minimize the distance

||| Ψ 〉 − | Ψ̃ 〉||2 = 1 − 2
∑

αij

ψijaαjuαi +
∑

αj

a2
αj (5.12)

with respect to aαj and uαi. The stationary solution in aαj
4 leads to

∑

i

ψijuαi = aαj . (5.13)

Combining Eq. (5.13) and Eq. (5.12), and using the reduced density matrix of the system
we find that

1 −
∑

αii′

uαiρii′uαi′ . (5.14)

The coefficients uαi′ transform the basis from | i 〉 to | α 〉, and Eq. (5.14) can be
expressed in terms of the density matrix eigenvalues ωα:

1 −
∑

αii′

uαiρii′uαi′ = 1 −
m
∑

α=1

ωα. (5.15)

3Here we assume that the system and environment have the same configuration and therefore m states
are kept on both. However, this must not necessarily apply.

4Obtained by taking the derivative in aαj of Eq. (5.12) and setting it to zero.
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In this way the minimum can be found by choosing | α 〉 to be the m eigenvectors | ωα 〉
corresponding to the largest eigenvalues ωα of the density matrix.

In this section we discussed the motivation for using numerical approaches in solving
many-body, strongly correlated systems. We showed that the density matrix projection
offers a controlled process to reduce the degrees of freedom by decimating the Hilbert space
but still permitting to accurately describe the ground state of a system connected to an
environment. In the next subsections we will describe the DMRG algorithms based on the
density matrix projection and how the calculation of equilibrium properties is done.

5.1.2 Infinite-size algorithm

The basic DMRG algorithm incorporates the density matrix projection described in the
last section into the renormalization group scheme by Wilson. We begin with a small system
and let it grow iteratively by adding new sites between the system and the environment (see
Fig. 5.3). The new block must be transformed according to the density matrix projection.
This first process is know as the infinite-size algorithm, for it allows to grow the system to
any desired size. The algorithm consists of the next steps:

1. Take a system block S with L sites and m states. It should be small enough to be
exactly diagonalizable and obtain the ground state | Ψ 〉.

2. Add a single site with n states to S to get a new system block S′ with m× n states.

3. Construct the superblock by joining the system block S′ and the environment E. E
may consist of a block with a few sites or a reflection of the block system S′.

4. Calculate the ground state of the superblock. For this one can choose between the
Lanczos or the Davison algorithms [29]. The ground state of the superblock, as
explained in the last section, is

| Ψ 〉 =

m×n
∑

i

n
∑

j

Ψij | i 〉 ⊗ | j 〉 (5.16)

For the beginning, we are interested in the ground state. We express this by saying
that the ground state is the target state. For some applications other states out of the
ground state will serve as target states. In general, the target states are those from
which the reduced density matrix is calculated.

5. Calculate the reduced density matrix ρE

(ρE)ii′ =
∑

j

ΨijΨi′j (5.17)

Diagonalize the density matrix to obtain the set of eigenvectors and corresponding
eigenvalues, | ωα 〉 and ωα, respectively. In this step the important states to represent
the system are selected.

6. Keep the m eigenvectors of the reduced density matrix with the largest eigenvalues.
They are the new basis of the system block. Transform the operators A in the system
like

Ã = UTAU (5.18)

where U is the transformation matrix formed by the m column eigenvectors of the
density matrix with the largest eigenvalues.
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Figure 5.3: DMRG infinite-size algorithm. The system (S) is grown up to a desired length L. The system
connects to an environment (E) through single sites. In this diagram the environment is chosen to have a
fixed length of a few sites.

7. Go back to step 2 and repeat the process until the desired size of the system is reached.

The process of joining two blocks, as done in steps 2 and 3, amounts to building the
operators of the new system or superblock, like for example the Hamiltonian. An operator
on the system (environment) with elements AS

i,i′ (AE
j,j′) acts only on the states of the

corresponding block, this means that the same operator on the superblock is written as

Aij,i′j′ = AS
i,i′δj,j′ +AE

j,j′δi,i′ . (5.19)

In the case of the Hamiltonian operator, extra terms emerge from the interaction between
the blocks. From Fig. 5.4 we see that, in the case of nearest neighbor interactions, the total
Hamiltonian at a step is

H = HS +Ha +Hb +HS−a +Ha−b +Hb−E +HE . (5.20)

Such operator is not explicitly constructed, one makes use of the system symmetries.
Examples of these symmetries are

[H, ~S2] = [H, Sz] = [H, N ] = 0 (5.21)

where ~S =
∑

i
~Si and N =

∑

i ni. The symmetries present in the system depend on
the model one is working with. Nevertheless, once a symmetry found ([H,A] = 0), the
Hamiltonian will not mix states from different eigenspaces of A. And this will let us work
with blocks.

5.1.3 Finite-size algorithm

The infinite-size algorithm is not suitable to describe a system of fixed length L. System-
atic errors can propagate as the size of the system increases. We can see from the algorithm
that at each step, with a system of length LS , whose basis has been truncated, the ground
state of the new system LS+1 is approximated using that of the previous smaller system.
In this way, the density matrix and the corresponding truncation are never constructed
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Figure 5.4: Connecting the system (S) and the environment (E) through two single sites a and b.

in terms of the correct target state. The finite-size algorithm was designed to solve this
problem. At each step, the size of both LS and LE will be chosen so that the size of the
superblock remains constant, i. e., LS + LE = L (see Fig. 5.5). The finite-size algorithm
consists of the following steps:

1. Use the infinite-size algorithm to build up the superblock to the desired length L.
After every truncation, store all operators, including the Hamiltonians, as they will
be reused in the coming iterations. After the last step, the system has a length LS

and the environment LE , with LS +LE = L. We will now rename the components of
the superblock. The system block is now the left block of size l, and the environment
block is the right block of size r.

2. Add a single site to the right block, so that r′ = r + 1. Add a single site to the left
block of size l = L− r′ − 1. Build a superblock out of these two new blocks.

3. Carry out steps 4-6 of the infinite-size algorithm, i. e. diagonalize the superblock,
calculate the reduced density matrix with respect to the left block, and transform the
operators with the new basis.

4. Rename r = r′. Go back to step 2 until l = 2. We see how the right block increases
its size and at the same time, the left block shrinks. This is called the right to left
sweep.

5. Add a single site to the left block, so that l′ = l + 1. Add a single site to the right
block of size r = L− l′ − 1. Build a superblock from these two blocks.

6. Carry out the steps 4-6 of the infinite-size algorithm.

7. Rename l = l′. Go back to the step 5 until L− l′ = 2. This is called the left to right
sweep.

8. Go back to point 2 and repeat steps 2-7 until the system converges.

The sweeping back and forth over the system has the advantage that the target state is
always determined for the same system. The environment blocks used in the first sweep5

5This means, the system blocks stored from the infinite-size algorithm.
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Figure 5.5: DMRG finite-size algorithm. In order to keep the total length of the system fixed, the system
block shrinks in the direction of growing in the right-to-left sweep. The process reverses in the left-to-right
sweep.

were calculated for smaller systems, so they are not optimal to represent the environment.
But for the second sweep, the new environment blocks were calculated for the system with
the right size, so they are better than those used in the former sweep. This leads to a
progressive improvement in the measurement of the target states of the superblock.

5.1.4 Calculation of equilibrium properties

The ground state energy of the superblock is determined every time the superblock is
diagonalized. Since the DMRG is a variational approach E0

DMRG ≥ E0
exact. The measure-

ment of observables renders better results if carried out at the position where E0 has a
minimum. In the case of homogeneous systems the minimum is usually in the middle of
the chain. For impurity systems like the single-impurity Anderson model, the minimum is
close to the position of the impurity.

Expectation values of local operators are the first observables that can be measured.
This is, as explained above, usually done after the superblock reached a symmetric configu-
ration, i.e., when both system and environment have the same size. The expectation value
of an operator A is

〈 A 〉 = 〈 Ψ | A | Ψ 〉 (5.22)

with | Ψ 〉 the eigenstate of the superblock and the operator A has been always tracked,
i. e., it has been properly transformed and stored at every step. For an operator A acting
on the left block, the expectation value can be written like

〈 Ψ | A | Ψ 〉 =
∑

ii′,j

Ψ∗
ij Aii′Ψi′j . (5.23)

For products of operators on two different sites, A and B, as in the case of correlation
functions, two different situations have to be considered: a) the operators act on the same
block or b) they act on different blocks. In the case of both operators acting on the same
block, for example on the left block, one could naively try to calculate first the matrix



5.2 Dynamic properties at zero temperature 69

elements of the operators product like

(AB)i,j =
∑

k

Ai,k Bk,j . (5.24)

This is wrong because the index k should run over all the states of the left block, but the
basis of this block has been truncated thus misleading the measurement of the expectation
values. This problem is solved by constructing from the beginning of the process, the
operator C = AB. One must keep track of it during the whole process. In this way its
expectation value can be calculated just as that of a single site operator.

In the second case, both operators are fully represented by the corresponding block
basis, so the correlation function is given by

〈 Ψ | AB | Ψ 〉 =
∑

ii′,jj′

Ψ∗
ijAii′Bjj′Ψi′j′ (5.25)

5.1.5 Multiple target states

Low-lying excited states can be represented approximately through the use of multiple
target states | Ψα 〉. For each one of them, the reduced density matrix must be calculated
separately and added up to obtain the total reduced density matrix,

ρ =
∑

α

ωαρα (5.26)

where ρα = | Ψα 〉〈 Ψα |, which are pondered by the weights ωα. There are no rules for
choosing the weight associated to each state. Usually one gives the ground state | Ψ0 〉 half
of the weight and the rest of it is equally divided between the other target states.

5.2 Dynamic properties at zero temperature

In the last section we have discussed how the DMRG is an effective numerical method to
study ground state properties and low-lying excited states of one-dimensional systems with
great accuracy. Dynamic properties, on the other hand, are beyond investigation if using
the DMRG method alone. One reason for this it that the time evolution of a general excited
state requires an exploration of large sectors of the Hilbert space. Important achievements
in the measurement of dynamic properties have been realized by implementing techniques,
like those of Green’s functions, into the known DMRG algorithms. The Green’s function
method has become a valuable tool, for it provides a systematic approach for extracting
physical information out of the system. This is done by calculating dynamic correlation
functions, from which spectral density functions can be obtained, having an opportunity to
relate analytical or numerical results to those obtained in the laboratory.

In the coming sections we will recall the Lehmann representation of Green’s functions to
calculate spectral densities and will discuss the use of this with the Lanczos vector method
[15] and the correction method [42] for calculating dynamic properties.



70 The Density-Matrix Renormalization Group Method

5.2.1 Spectral densities

Let us begin by writing the causal single-particle Green’s function at T = 0, defined as
the expectation value of the time-ordered6 commutator of field operators Ψ(x, t),

iGαβ(xt, x′t′) = 〈 ψ0 | T
[

ΨαH(x, t),Ψ†
βH(x′, t′)

]

| ψ0 〉
= θ(t− t′)〈 ψ0 | ΨαH(x, t)Ψ†

βH(x′, t′) | ψ0 〉 ±
θ(t′ − t)〈 ψ0 | ΨβH(x′, t′)Ψ†

αH(x, t) | ψ0 〉 (5.27)

with ψ0 the ground state of the system, and

ΨαH(t) = eiHtΨαe
−iHt (5.28)

is the field operator in the Heisenberg representation. In the absence of external magnetic
field and ferromagnetism, the indices α and β, labeling the spin degrees of freedom, can
be neglected. Also in the absence of external fields, and in homogeneous systems, the
Green’s function depends only on the time difference t̃ = t − t′ instead of t and t′, so
G(t, t′) = G(t− t′). For fermionic systems one has to take care of the minus sign resulting
from the time-ordering. Inserting Eq. (5.28) into Eq. (5.27) and evaluating the time-order
operator, the Green’s function becomes

iG(xt, x′t′) = θ(t̃)〈 ψ0 |eiHt Ψ(x, t)e−iHteiHt′Ψ†(x′, t′)e−iHt | ψ0 〉 −
θ(−t̃)〈 ψ0 |eiHt′ Ψ†(x′, t′)e−iHt′eiHtΨ(x, t)e−iHt | ψ0 〉 (5.29)

iG(x, x′, t̃) = θ(t̃)eiE0 t̃〈 ψ0 | Ψ(x)e−iHt̃Ψ†(x′) | ψ0 〉 −
θ(−t̃)e−iE0 t̃〈 ψ0 | Ψ†(x′)eiHt̃Ψ(x) | ψ0 〉. (5.30)

By Fourier transforming the Green’s function to the frequency space

iG(ω) = i

∫ ∞

−∞
dt eiωtG(t) (5.31)

we obtain

iG(x, x′, ω) =

∫ ∞

−∞
dt̃eiωt̃

[

θ(t̃)eiE0 t̃〈 ψ0 | Ψ(x)e−iHt̃Ψ†(x′) | ψ0 〉 −

θ(−t̃)e−iE0 t̃〈 ψ0 | Ψ†(x′)eiHt̃Ψ(x) | ψ0 〉
]

, (5.32)

and finally

iG(x, x′, ω) =

∫ ∞

−∞
dt̃
[

〈 ψ0 | Ψ(x)
(

θ(t̃)eiE0 t̃e−iHt̃eiωt̃
)

Ψ†(x′) | ψ0 〉 −

〈 ψ0 | Ψ†(x′)
(

θ(−t̃)e−iE0 t̃eiHt̃eiωt̃
)

Ψ(x) | ψ0 〉
]

. (5.33)

Using the integral representation of the θ function and its inverse

±eiǫtθ(±t) =
1

2π

∫ ∞

−∞
dω

ieiωt

w − ǫ± iη
(5.34)

∫ ∞

−∞
dteiωte−iǫtθ(±t) = ± i

w − ǫ± iη
(5.35)

6The time-order operator places operators with the larger time argument to the left of those with he
smaller time argument. Therefore it can be expressed in terms of a time step function θ.
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the Green’s function can now be written as

G(x, x′, ω) = 〈ψ0 | Ψ(x)
1

ω − (H − E0) + iη
Ψ†(x′) | ψ0〉 +

〈ψ0 | Ψ†(x′)
1

ω + (H − E0) − iη
Ψ(x) | ψ0〉. (5.36)

where η is a positive number. We shall come back to this parameter by the end of this
section. Introducing a complete set of basis states |ψn〉, i.e.,

∑

n |ψn〉〈ψn| = 1, the Green’s
function becomes

G(x, x′, ω) =
∑

n

〈ψ0 | Ψ(x) | ψn 〉 1

ω − (H − E0) + iη
〈 ψn| Ψ†(x′) | ψ0〉 +

〈ψ0 | Ψ†(x′) | ψn 〉 1

ω + (H − E0) − iη
〈 ψn| Ψ(x) | ψ0〉 (5.37)

and for the on-site Green Function, i.e., for x = x′,

G(x, ω) =
∑

n

|〈ψ0 |Ψ(x)| ψn〉|2
(

1

ω − (En − E0) + iη
+

1

ω + (En − E0) − iη

)

. (5.38)

To calculate spectral densities from the Green’s function method we take the correlation
function defined by

CA(x, t− t′) = 〈ψ0 | A†(x, t)A(x, t′) |ψ0 〉 (5.39)

where A(x, t) is the Heisenberg representation of an operator A and |ψ0〉 is the ground state
of the system,

A(x, t) = eiHtA(x)e−iHt. (5.40)

Inserting this into Eq. (5.39) one obtains

CA(x, t− t′) = 〈ψ0 |eiHt′A†(x)e−iHt′eiHtA(x)e−iHt|ψ0 〉 (5.41)

Proceeding as before, we Fourier transform Eq. (5.41) to the energy space and introduce
a complete set of states |α〉, after which the correlation function becomes 7

CA(x, ω) =

∫

dt̃eiωt̃
∑

α

ei(Eα−E0 )̃t |〈α|A(x)|ψ0〉|2

=
∑

α

|〈α|A(x)|ψ0〉|2 δ(w − (Eα − E0)) (5.42)

Let us now go back to the Green’s function of Eq. (5.38) and consider the imaginary
part of it,

Im
[

G(x, ω)
]

= Im

[

∑

n

|〈ψ0 |Ψ(x)| ψn〉|2
(

1

ω − (En − E0) + iη
+

1

ω + (En − E0) − iη

)]

. (5.43)

7This is called the Lehmann representation of the spectral density. An excellent book on the Green’s
function methods is the one by Abrikosov, Gorkov and Dzyaloshinski [2]
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Using the relation

1

x+ iη
= P

[

1

x

]

− iπδ(x) (5.44)

where P denotes the principal part. By substitution of x+ iη through ω ∓ (En −E0) ± iη,
one obtains

Im
[

G(x, ω)
]

= Im
∑

n

|〈ψ0 |Ψ(x)| ψn〉|2
{

P

[

1

ω − (En − E0) + iη

]

− iπδ(ω − (En − E0)) +

P

[

1

ω + (En − E0) − iη

]

+ iπδ(ω + (En − E0))

}

(5.45)

which simplifies to

Im
[

G(x, ω)
]

= ∓iπ
∑

n

|〈ψ0 |Ψ(x)| ψn〉|2
(

δ(ω − (En − E0)) + δ(ω + (En − E0))
)

. (5.46)

After comparing Eq. (5.42) and Eq. (5.46) we can conclude that

C(x, ω) = − 1

π
ImG(x, ω), (5.47)

where G is the Green’s function of the operator A. Since we are interested in lattice
models, let us consider a finite lattice with n sites and N particles, with Hamiltonian H.
The corresponding Green’s function is given by

G(i, j, ω) = 〈ψ0|ci
1

ω − (H − E0) + iη
c†j |ψ0〉 +

〈ψ0|c†j
1

ω + (H − E0) − iη
ci|ψ0〉, (5.48)

|ψ0〉 is the ground state of the system, and c†i and ci are the creation and annihilation
operators, respectively, of a particle at site i. Excitations of the system are created, for
example, by adding or removing a particle. Such processes result in the following set of
Schödinger equations,

H|α〉 = Eα|α〉
H|β〉 = Eβ|α〉, (5.49)

where |α〉 are the eigenstates of the Hamiltonian H with N + 1 particles and |β〉 are the
eigenstates of the Hamiltonian with N − 1 particles.

We define c†i |ψ0〉 = |i+〉 and ci|ψ0〉 = |i−〉. Using these definitions and introducing the
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|α〉 and |β〉 sets of eigenstates in Eq. (5.48), we obtain

G(i, j, ω) =
∑

α,α′

〈i+|α〉〈α| 1

ω − (H − E0) + iη
|α′〉〈α′|j+〉 +

∑

β,β′

〈j−|β〉〈β| 1

ω + (H − E0) − iη
|β′〉〈β′|i−〉 (5.50)

=
∑

α,α′

〈i+|α〉 δα,α′

ω − (Eα − E0) + iη
〈α′|j+〉 +

∑

β,β′

〈j−|β〉 δββ′

ω + (Eβ − E0) − iη
〈β′|i−〉 (5.51)

=
∑

α

〈i+|α〉 〈α|j+〉
ω − (Eα − E0) + iη

+

∑

β

〈j−|β〉 〈β|i−〉
ω + (Eβ − E0) − iη

. (5.52)

Finally, the on-site lattice Green’s function is given by

G(i, ω) =
∑

α

〈|i+|α〉|2
ω − (Eα − E0) + iη

+

∑

β

〈|j−|β〉|2
ω + (Eβ − E0) − iη

. (5.53)

Summarizing, the spectral density can be systematically calculated following the next
steps [16]:

• Take a lattice with N particles and calculate the ground state |ψ0〉.

• Calculate |i〉 = c†i |ψ0〉.

• Diagonalize the (N + 1)-particle Hamiltonian to obtain the set of |α〉 eigenstates and
corresponding eigenvalues Eα.

• calculate the weights w(α) = |〈i|α〉|2.

• To visualize the peaks one can use either a Gaussian or a Lorentzian function. If using
a Gaussian function, the right-hand side of the spectrum is given by

Ar(ω) =
∑

α

w(α)
1√

2πσ2
exp
(

− (ω − (Eα − EN
0 ))2

2σ2

)

. (5.54)

To obtain the left part of the spectrum, one applies the annihilation operator, so that
|i〉 = ci|ψ0〉 and the (N − 1)-particle Hamiltonian is to be diagonalized to obtain the |β〉
set of eigenstates. The weights w(β) are calculated the same way as before. The left-hand
side of the spectral density is the given by

Al(ω) =
∑

β

w(β)
1√

2πσ2
exp
(

− (ω − (Eβ − EN
0 ))2

2σ2

)

, (5.55)

where σ is an arbitrary broadening factor. Experimentally, inverse photoemission (IPE) is
used to study the spectral density associated with the addition of an electron to the system,
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whereas in the case of the subtraction of an electron, photoemission (PE) experiments are
used.

In this section we presented the Green’s function method for a lattice fermionic system.
Calculation of the spectral densities offers a way to establish connection between the theory
and the experiment. In the next sections we will discuss two different methods to perform
dynamic calculations.

5.2.2 Lanczos vector method

As we have seen in the last section, a quasiparticle state of the system can be represented
by its spectral density of states (in momentum space) Aq(ω) and the peak position of Aq(ω)
can be identified with the dispersion energy ǫ(q). When discussing symmetries and good
quantum numbers for the DMRG method in section (5.1.2) we did not include momentum,
because the method is applied in real space and momentum is not a good quantum number.
Besides, information of the excited states is lost in the truncation of the Hilbert space. In
the work by Hallberg [15], the dynamic correlation functions are actually computed. We
can summarize the method in two steps: first, the use of the Lanczos algorithm to find
the tridiagonal form of the Hamiltonian H, which is a symmetric matrix; and second, the
inversion of the tridiagonal matrix to finally obtain the spectrum from the continued fraction
expansion given by

G(z) =
〈 Ψ0 |A†A|Ψ0 〉

z − a0 −
b21

z − a1 −
b22

z − . . .

, (5.56)

where the coefficients an and bn are obtained from the Lanczos recursion relation

|fn+1〉 = H|fn〉 − an|fn〉 − b2n|fn−1〉, (5.57)

here the starting vector |f0〉 is an arbitrary vector. We will see below that the correct choice
of |f0〉 has great advantages. The tri-diagonalization occurs after projection of H onto a
space spanned by the product of powers of H and the Lanczos vectors v = |fn〉. Such space
is called the Krylov space,

Km(H, v) = span{v,Hv,H2v, . . . ,Hm−1v}. (5.58)

The resulting tridiagonal Hamiltonian is

H =



















a0 b0 0
b0 a1 b1 0

b1 a2 b2 0
. . .

. . .
. . .

bm−2 am−1 bm−1

0 bm−1 am



















(5.59)

Once in its tridiagonal form, the eigenvalues and eigenvectors of the Hamiltonian can
be obtained easily, i. e. the ground state |ψ0〉 can be obtained with this method. Let us
now apply this to calculate spectral densities. We start by setting the first Lanczos vector
to,

|f0〉 =
Aq|ψ0〉

〈ψ0|A†
qAq|ψ0〉

, (5.60)



5.2 Dynamic properties at zero temperature 75

where Aq is an operator in momentum space and |ψ0〉 is the ground state of the system.
We now run once again the Lanczos algorithm, which is summarized in the following:

|f0〉 = Aq|ψ0〉/〈ψ0|A†
qAq|ψ0〉

an = 〈fn|H|fn〉
b2n = ‖ |fn〉 ‖2

|fn+1〉 = H|fn〉 − an|fn〉 − b2n|fn−1〉

The tridiagonal form of H can be diagonalized and the result is a set of eigenvectors
|ϕm〉. This is a nearly complete set, i.e., 1 ≈

∑

m |ϕm〉〈ϕm|, and can be used to be included
in the Green’s function

G(x, x′, ω) ≈
∑

n,m

〈ψ0|A†
q|ϕn〉〈ϕn

∣

∣

1

ω − (H − E0) + iη

∣

∣ϕm〉〈ϕm|Aq|ψ0〉

=
∑

n

〈ϕn

∣

∣

1

ω − (H − E0) + iη

∣

∣ϕn〉
∣

∣〈ϕn|Aq

∣

∣ ψ0〉|2

=
∑

n

(ϕ0
n)2〈ψ0|A†

qAq|ψ0〉
ω − (En − E0) + iη

, (5.61)

where En is the eigenvalue of |ϕn〉 and ϕ0
n = 〈f0|ϕn〉. The dynamic correlation function can

be calculated from

C(q, ω) = − 1

π
lim

η→0+
ImG(q, ω + E0 + iη)

=
〈ψ0|A†

qAq|ψ0〉
π

lim
η→0+

∑

n

η(ϕ0
n)2

(ω − (En − E0))2 + η2

= 〈ψ0|A†
qAq|ψ0〉

∑

n

δ(ω − (En − E0))(ϕ
0
n)2, (5.62)

where E0 is the ground state energy and the peaks appear at ωn = En − E0. A crucial
point about the Lanczos method lies in the orthogonality of the Lanczos vectors, which
must be ensured at each step. Furthermore, the calculation of spectral densities is also
approximated, given the fact that the set of Lanczos vectors is almost complete. The actual
calculation of the spectrum is carried out within the DMRG algorithm as follows: let us
first recall that the on-site lattice Green’s function is given by

G(i, ω) =
∑

α

〈|i+|α〉|2
ω − (Eα − E0) + iη

+

∑

β

〈|j−|β〉|2
ω + (Eβ − E0) − iη

. (5.63)

Then the right part of the spectrum can be obtained following the next steps:

• Select the appropriate target states:

|ψ0〉 the ground state

c†i |ψ0〉 = |f0〉 the first Lanczos vector
|fi〉 the next few Lanczos vectors
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• Build up the system to the desired size using the infinite-size DMRG algorithm.

• Carry out the finite-size DMRG algorithm until reaching convergence of the ground
state energy.

• Sweep back to the position where the truncation errors reach their minimum on both
blocks8, and calculate the spectral density in the way as was described in the last
section.

To complete the spectrum, the left part must be calculated. For this, the algorithm
above has to be carried out again, this time with ci|ψ0〉 = |f0〉 as the first Lanczos vector.
Just as in subsection 5.1.5 was explained, there are no specific rules to choose the weights
if using multiple target states, as is the case here. For our purposes, we assigned half of the
total weight to the ground state and the rest weight is shared between the other states.

5.2.3 Correction vector method

Even though the Lanczos vector method gives us an insight to the whole spectrum in
two steps (done for the right and left branches), the information obtained is reliable only
for low-lying frequencies. If one looks for calculation of dynamic properties even at regions
of higher excited states, then the correction vector method offers a reasonable solution [42].
If we are interested in regions of the Hilbert space with a specific frequency ω or z = ω+ iη,
we select as target states the following:

|ψ0〉 the ground state
|Aq〉 = Aq|ψ0〉 the first Lanczos vector
|x(z)〉 = 1

z−H |Aq〉 the correction vector

With the correction vector, the Green’s function can be calculated directly as:

G(q, z) = 〈Aq|x(z)〉. (5.64)

We expect that after convergence using the target states above, the system will be
optimally described to allow for the calculation of the Green’s function for a given frequency
ω and a broadening factor η. The correction vector is, by definition, written as a complex
quantity, and for a better handling of it, we will split it into a real (xre) and an imaginary
part (xim)

|x(z)〉 =
1

ω −H + iη
|Aq〉

=
ω −H

[ω −H]2 + η2
|Aq〉 − i

η

[ω −H)]2 + η2
|Aq〉

= |xre〉 + i|xim〉

Furthermore, the real part can be derived from the imaginary one

η|xre〉 =
[

H − ω
]

|xim〉

In this way, calculating the correction vector reduces actually to calculating the imagi-
nary part only, which we can rewrite as

[

[ω −H]2 + η2
]

|xim〉 = −η|Aq〉 (5.65)

8In homogeneous or symmetric systems this occurs around the middle of the chain.
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This is a system of linear equations of the form Ax = b, where A is in general a non-
symmetric matrix and x and b are vectors. It can be solved using the restarted version of
the generalized minimal residual method, GMRES [29]. Grosso modo, this method works in
the following way: at the kth iteration, the GMRES computes the solution estimate xk that
minimizes the Euclidean norm of the residual rk =b - Axk over a subspace of dimension k,
this estimation will be recycled and used as a better initial guess to restart the algorithm,
so that as each iteration enlarges the minimizing subspace, the residual norm decreases
monotonically until convergence. A matter of concern about the GMRES method is that,
even when the residual norm remains monotonic, the restarted process can stagnate with a
non-zero residual, failing to ever converge.

Contrary to the Lanczos method that allows for display of the whole spectrum at a
time, the correction vector method concentrates only in the region of frequency ω, giving
the corresponding peak broaden by the factor η. This means that the process has to run
for every value of the frequency. The most elaborated part of Eq. (5.65) is the inversion of
the Hamiltonian to obtain the imaginary part of the correction vector, furthermore we can
see that the closer ω is to an eigenvalue of the Hamiltonian, or the smaller the broadening
factor η is, the more singular the system becomes. A large value of η, on the other hand,
makes the Hamiltonian closer to a diagonal matrix, speeding up the process, but at the
same time, losing resolution of the spectrum.

5.2.4 Construction of operators for open systems

In the last sections we have discussed the calculation of the Green’s function and spectral
densities associated to a specific operator Aq in the momentum space. We also mentioned
that since we are studying systems in real space, the momentum in not a good quantum
number. The operators though must be represented in momentum space. An operator An

in real space for infinite systems can be Fourier transformed to its momentum representation
Aq, with wavevector q:

Aq =

∞
∑

n=−∞

Ane
ixnq (5.66)

An =
1

2π

∫ π

−π
dqAqe

−ixnq, (5.67)

where xn is the position of site n, and the lattice spacing is taken as the unit. For finite
systems under OBC9, the operators in momentum space are constructed as wavepackets of
finite spatial extent and finite uncertainty in the momentum by inserting a filter function
F (x) in Eq. (5.66). The filter should first eliminate the effects of the edges, and second, it
must have such a form that the uncertainty in the wavevector ∆q of the operator remains
small. A first choice of the filter could be a Gaussian function, for which the product of
uncertainties ∆x∆q is minimum. However, a more appropriate suggestion was made by
Kuehner [42], who chose a Parzen filter defined as

F (x) =

{

1 − 6|x|2 + 6|x|3 if 0 ≤ |x| < 1/2
2(1 − |x|)3 if 1/2 ≤ |x| ≤ 1

(5.68)

For operators in real space, instead of using the complex form of (5.66), we will handle

9Under OBC the DMRG yields results with the highest numerical precision.



78 The Density-Matrix Renormalization Group Method

the real and imaginary part separately, namely

Aq =

∞
∑

n=−∞

cos (qxn)f(xn)An

=
1

4π

∫

dq′(Aq′ +A−q′)f(q − q′), (5.69)

and

Aq =

∞
∑

n=−∞

sin (qxn)f(xn)An

=
1

4πi

∫

dq′(Aq′ −A−q′)f(q − q′), (5.70)

where f(xn) = F (xn

M ), with 2M the width of the window filter. We will use systems with
even number of sites and offset xn so that x = 0 is in the center of the system. The sites
closest to the middle of the chain are then x = 1/2 and x = −1/2. In terms of the sine and
cosine components, the Green’s function is

G(q, z) = 〈 A†
q|

1

z −H
|Aq 〉

=
1

4
〈 (A†

q ±A†
−q)|

1

z −H
|(Aq ±A−q) 〉, (5.71)

where the plus sign corresponds to the cosine term, and the minus sign to the sine com-
ponent. Furthermore, 〈 A†

q| 1
z−H |Aq 〉 = 〈 A†

−q| 1
z−H |A−q 〉 and A−π = −Aπ, and one

can recognize three different cases for the Green’s function: for Aq =
∑

n cos (qxn)An the
Green’s function is

G(q, z) =











1
2〈 A

†
q| 1

z−H |Aq 〉 for 0 < q < π

〈 A†
q| 1

z−H |Aq 〉 for q = 0

0 for q = π

(5.72)

And for for Aq =
∑

n sin (qxn)An,

G(q, z) =











1
2〈 A

†
q| 1

z−H |Aq 〉 for 0 < q < π

0 for q = 0

〈 A†
q| 1

z−H |Aq 〉 for q = π

(5.73)

For q = 0 (q = π), the cosine (sine) term will give the full Green’s function. For
0 < q < π, the Green’s function is obtained by calculating the cosine and sine components
and adding them up. To reduce the finite-size effect on the Green’s function it is required
that π2 =

∫

dqf(q)2 for the filter function. For the Parzen filter, this renders an additional
prefactor of

√

140π/151M , which must be included in the filter.

summary

In this chapter we explained the density-matrix renormalization group method and
showed how it uses the density matrix rather than an effective Hamiltonian to renorma-
lize a one-dimensional system. The use of the density matrix to select the most probable
states of a system allows for a controlled truncation of the Hilbert space. By keeping
the size of the Hilbert space fixed, we can handle large chains using the infinite-size and
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finite-size algorithms. Equilibrium properties such as expectation values of operators and
static correlation functions can be calculated straightforwardly. Dynamic properties at zero
temperature can be also calculated using Green’s functions techniques combined with the
Lanczos vector method, which gives information on the system at all frequencies, or the
correction vector method, which give information on the system at a specific frequency at
a time. The DMRG is a method in real space and therefore not suitable for calculations
in momentum space. However, one can construct operators in momentum space by Fourier
transforming the operators in real space. A filter window is then used to avoid undesired
effects due to the edges of the systems. With these numerical methods we will calculate
ground state properties of both homogeneous and inhomogeneous one-dimensional systems.
By measuring the density-density correlation function we will find out if the TLL description
is still valid to describe inhomogeneous systems.





Chapter 6

Numerical results for one-dimensional systems

We investigated one-dimensional homogeneous as well as inhomogeneous systems using
the DMRG method. Analytical results for the half-filling case of homogeneous systems are
known from the Bethe Ansatz method explained in chapter 4. Away from half-filling the
(quasi) one-dimensional systems are conductors and display a Luttinger liquid behavior.
Close to half-filling, on the other hand, nearly every site is singly occupied, leaving only
a very low density of holes in the system. In this case, the important interaction is the
short-range repulsion between the holes. At half-filling (kF = π/2) there is a gap in the
charge excitation spectrum due to umklapp scattering, which transfers two particles from
one branch of the linear dispersion to the other1. The umklapp term can be bosonized
following the formalism of chapter 3, mapping the system to a spinless fermion model with
ground state energy EK = ±[v2

F (k±π/2)2+∆2]1/2, where the gap is given by ∆ = g3/(2πα),
and α is a constant. This result indicates that the system is an insulator [34]. In the next
sections we will show the results for both homogeneous and inhomogeneous systems at
different band fillings (n = N/L, with N the number of particles on a chain of length L ).
We begin by presenting results for the ground state energy (per site) and particle density
distributions. We will also present the results for the density-density correlation function
and values for the TL parameter Kc. In the last part we will present results for spectral
densities, obtained using the Lanczos vector method; and for optical conductivity, measured
using the correction vector method.

6.1 Ground state energies and density profile

We will briefly recall the layout of the heterostructures defined in chapter 4. The
Hubbard heterostructures are chains of length L, where the hopping of the particles is
measured by the coupling t and the on-site Coulomb interaction U/t switches between
different values. The change in U/t can be sharp, as for heterostructure I; or smooth, as in
the case of heterostructure II. In addition, potential walls of height V/t can be introduced,
as is the case of heterostructure III. The sites xL and xR divide the whole system into
three homogeneous regions UL = 1.1t, UC = 0.9t and UR = 1.1t. The general layout of the
systems is shown again in Fig. 6.1.

Figure 6.1: General arrangement of a Hubbard heterostructure. The systems consist of a junction of three
homogeneous subregions.

1Such a process involves a total momentum transfer of 4kF = 2π which is a reciprocal lattice vector.
Recall Fig. 4.2d in chapter 2.
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The DMRG parameters that we used are the next: For the ground state properties of
the 240-sites systems we truncated the Hilbert space keeping a total of up to m = 256
states. The error due to the truncation can be estimated by adding up the weight of the
discarded states, and in Fig. 6.2 we show the total discarded weight as a function of the
position for several sweeps. We see that the maximum error is of the order of 10−6. If only
one state, i.e., the ground state, is targeted, convergence of the energy is usually achieved
after five sweeps (see Fig. 6.3).
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Figure 6.2: Discarded weight for heterostructure I
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Ground state energy

From the analysis by Lieb and Wu of the one-dimensional Hubbard model, the energy
of a system of size L and at half-filling is given by E = −2tL

∫

dk cos (k)ρ(k), where
∫

dkρ(k) = N/L [24]. In Fig. 6.4 we show the DMRG results for half-band filling and
compare them to those given by the Bethe Ansatz.
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Figure 6.4: Ground state energy as a function of the Coulomb interaction U/t for a homogeneous system
at half-band filling. Results obtained from Bethe Ansatz and with DMRG are compared.
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Except for the case of half-filling, the equations given by Lieb and Wu cannot be an-
alytically solved. However, the ground state energy away from half-filling has been ap-
proximated by Shiba based on the known Bethe ansatz solution [37]. Limiting cases cor-
respond to U/t = 0.0, for which E0 = (−4/π)(sin (nπ/2)), and U/t → ∞, for which
E0 = −(2/π)(sin (πn)). In Fig. 6.5 we plot the results by Shiba and show the DMRG re-
sults for the ground state energy for homogeneous systems as a function of the band filling
for different values of the on-site Coulomb interaction.
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Figure 6.5: Ground state energy as a function of band-filling n for a homogeneous system. L = 240,
U/t = 0, 1.0, 2.0, 4.0, 8.0, 16.0 from top to bottom. The limiting cases U/t = 0 and U/t → ∞ correspond to
the results by Shiba [37].

In figures 6.6 and 6.7, we present the ground state energy results for inhomogeneous
systems. The results can be compared to those of a homogeneous system with U/t = 1.0.
Figure 6.6 shows the ground state energy per site as a function of the band filling for het-
erostructures I, II, and for heterostructure III with V/t = 1.0. In Fig. 6.7 we show the
ground state energy as a function of the band filling for heterostructure III with different
heights for the potential barriers. We observe that the ground state energy, even for het-
erostructure III with V/t = 10.0, remains the same for low-particle densities and varies only
slightly when approaching to half-band filling.
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Density profile

Using systems with open boundary conditions, finite size effects are induced. One ex-
ample of these effects is the local density oscillations and the charge accumulation close to
the edges of the system due to the breaking of the translational invariance. Such density
oscillations are called Friedel oscillations2. The oscillations appear with wavenumber 2kF ,
and are given by δn(x) ∼ cos (2kFx+ ϕ)x−η, where the exponent η depends on the inter-
action. The oscillations are shown in figures 6.8-6.17. In the case of the heterostructures,
due to the symmetric construction, the charge distribution is expected to be also symmetric
with regard to the middle point of the chain. This is the case of heterostructure II (see
Fig. 6.9). We observe however, that for heterostructures I and III the symmetry is slightly
perturbed. In heterostructure I (see Fig. 6.8) the perturbation takes place only locally at
the positions where the on-site Coulomb potential switches values, i.e., xR and xL. For
our purposes, such small changes are negligible, specially because we will take average over
pairs of correlation functions, as will be explained in the next section. It is still observed
that the charge density remains fairly homogeneous in the valley of the Coulomb interac-
tion in heterostructure I. In heterostructure III the symmetry is much more affected upon
introduction of the potential barriers, as seen from Fig. 6.10 and Fig. 6.11. In Figs. 6.8-6.17,
the on-site Coulomb interaction function is plotted with its value given on the right vertical
axis.
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Figure 6.8: Particle density for heterostructure I,
with band filling n = 0.5. The symmetry breaks lo-
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Figure 6.9: Particle density for heterostructure II,
with band filling n = 0.5. The distribution is com-
pletely symmetric.
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Figure 6.10: Particle density for heterostructure III,
with V/t = 1.0 and band filling n = 0.5.
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Figure 6.11: Particle density for heterostructure III,
with V/t = 10.0 and band filling n = 0.5.

2Such oscillations can also be induced by the presence of an impurity in the system.
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In the case of homogeneous systems, the particle distribution is symmetric with regard
to the middle point of the system. In figures 6.12-6.17 we show the evolution of the particle
density for increasing on-site Coulomb interaction U for systems with band filling n = 0.5.
We observe that the amplitude of the oscillations decreases with increasing on-site Coulomb
interaction.
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Figure 6.12: Particle density for a tight-binding
chain, with U/t = 0.0 and band filling n = 0.5.
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Figure 6.13: Particle density for a homogeneous sys-
tem, with U/t = 1.0 and band filling n = 0.5.
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Figure 6.14: Particle density for a homogeneous sys-
tem, with U/t = 2.0 and band filling n = 0.5.
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Figure 6.15: Particle density for a homogeneous sys-
tem, with U/t = 4.0 and band filling n = 0.5.
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Figure 6.16: Particle density for a homogeneous sys-
tem, with U/t = 8.0 and band filling n = 0.5.
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Figure 6.17: Particle density for a homogeneous sys-
tem, with U/t = 16.0 and band filling n = 0.5.
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6.2 Density-density correlation function

To estimateKc, we fit the values of the numerical data to the first two terms of Eq. (3.98),
i.e.,

〈ρc(x)ρc(0)〉 =
Kc

(πx)2
+
A1 cos(2kFx)

x1+Kc
ln(x)−

3
2 . (6.1)

We will see below that, even though the 2kF-oscillations could not be fitted in all the cases,
the power law decay was clearly observed. A few explanations are needed to detail the fitting
of the data. Since we have systems with an even number of sites, there is no site at exactly
the middle of the chain, and we chose the closest position to the middle point, namely the
site at position x = 120, to be the zero of Eq. (6.1), such that the correlation functions will
decay symmetrically, in principle, in the direction of the edges of the systems. We can thus
speak of two branches of the systems. We will refer to the region from the middle of the
chain up to the boundary (we can choose between the site at xR or at xL) of the Coulomb
valley as the region R1, and from this point until the end of the chain, as the region R2.
Fig. 6.18 shows the setup of the system for measuring density-density correlations. The
symmetric construction of the systems reflects in its properties to a certain degree, as was
seen in the density profiles. For the measurement of the correlation function we actually
had to choose between the branches, the one who would render the best possible results.
In the following we describe in detail the results for each heterostructure.

Figure 6.18: Setup of the system for measuring density-density correlations. We can select either the
branch formed by the regions UL-UC , or UC-UR to measure the density-density correlation function.

Heterostructures I and II

Heterostructure I, even with the sharp edges valley in the on-site Coulomb repulsion, did
not suffered from significant alterations in the continuous decay of the correlation function,
this is seen from the logarithmic plots in figures 6.19 and 6.20, which illustrate both the
power-law decay of the density-density correlation function and the 2kF-oscillations. For
band fillings 0.1 ≤ n < 1.0, the power-law decay extends beyond the boundary point (xL

or xR) and is not completely constrained to any of the regions R1 or R2. However, fitting
the 2kF-oscillations succeeded over the selected branch only for n ≤ 0.5. For n > 0.5
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the fitting was only carried out for the first term of Eq. (6.1), i.e., even though the 2kF-
oscillations could not be fitted, the power-law decay was still observed. When comparing
the results to those for heterostructure II ( with an interaction of the form U(x) ∝ cos(γx)),
the valley along the system remains but the change of U(x) towards the ends of the chain
is done in a smoothly way. This variation of U resulted in actually the same values for
the correlation functions as already presented, showing that the sharp edges of the on-site
Coulomb potential did not influence strongly the Luttinger liquid behavior of the system.
Another possible configuration that we studied was a less symmetric one, with xL = 70 and
xR = 156. For this arrangement, we found the density-density correlations behavior to be
qualitatively the same as for the original arrangement, including the decrease in the value
of the Kc for n > 0.5.
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Figure 6.19: Density-density correlation function for heterostructure I (continuous line) and II (broken
line), with n = 0.2.
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Figure 6.20: Density-density correlation function for heterostructure I (continuous line) and II (broken
line), with n = 0.5.
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The Friedel oscillations can be observed as well in Fig. 6.21 and Fig. 6.22, where the
continuous line corresponds to the fitting done according to Eq. (6.1).
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Figure 6.21: Fitting (continuous line) of density-density correlation data for heterostructure I (crosses),
with n = 0.5. The inset shows a close up of the 2kF-oscillations at large distances.
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Figure 6.22: Fitting (continuous line) of density-density correlation data for heterostructure II (crosses),
with n = 0.5. The inset shows a close up of the 2kF-oscillations at large distances.
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Heterostructure III

In this case, we keep the valley in the Coulomb interaction of heterostructure I: UL =
UR = 1.1t and UC = 0.9t. Furthermore, we simulated two potential walls by introducing
the confining potential VxL

/t = VxR
/t = V/t and V (x)/t = 0.0 for the rest of the sites.

The results showing the change in the correlation function of the system as a function of
the height of the potential is presented in Fig. 6.23, where a close up of the effects close
to the transition from region R1 to R2 is shown. We studied the system with V/t =
0.5, 1.0, 3.0, 10.0 and 20.0. From this figure, we see that for V/t = 1.0 there is apparently
little influence on the correlation function decay. Indeed, for the band fillings n = 0.3−0.6 a
TLL was still observed. For n = 0.3−0.5 also the 2kF-oscillations could be fitted, for n = 0.6,
as for the previous heterostructures, only the power-law decay was fitted. The results in
the case of heterostructure III distinguished strongly from those previously described if
V/t ≥ 3.0. The confining potential V/t at xL and xR generated stronger changes from
one region to the other for V/t > 3.0. Such scattering potential interrupted abruptly the
decay of the correlation function, not having further space to fully establish the decay in
the amplitude of the 2kF-oscillations.
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Figure 6.23: Density-density correlation function for heterostructure II for different values of the potential
barrier VxL

/t = VxR
/t = V/t. With band filling n = 0.5.

In figures 6.24-6.26 we show the logarithmic plot of the the density-density correlation
function for heterostructure III for different values of the band filling and with V/t = 1.0.
In this case, the correlation function decays continuously for band fillings 0.3 ≤ n ≤ 0.6.
For other values of the band filling the behavior is strongly affected by the presence of the
potential, as we can see, for example, for n = 0.2 in Fig. 6.24. We compare the results to
those in the case of heterostructure I.
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Figure 6.24: Density-density correlation function for heterostructure I (continuous line) and III (broken
line), with n = 0.2.
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Figure 6.25: Density-density correlation function for heterostructure I (continuous line) and III (broken
line), with n = 0.5.
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Figure 6.26: Density-density correlation function for heterostructure I (continuous line) and III (broken
line), with n = 0.6.
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In Fig. 6.27 we show a closer view of the 2kF-oscillations and the corresponding fitting
for n = 0.5. In 6.28 we see from the inset that the 2kF-oscillations cannot be accurately
fitted. In this case, we only calculated the power-law decay.
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Figure 6.27: Fitting (continuous line) of density-density correlation data for heterostructure III (crosses),
with n = 0.5. The inset shows a close up of the 2kF-oscillations at large distances.
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Figure 6.28: Fitting (continuous line) of density-density correlation data for heterostructure III (crosses),
with n = 0.6. The 2kF-oscillations cannot be accurately fitted in this case, as shown in the inset.
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Tomonaga-Luttinger parameter, Kc

As a test for our numerics, we considered the case of a homogeneous chain for which we
confirmed the results obtained from the Bethe Ansatz for the correlation functions [32, 9].
In Fig. 6.29 we show our results for several values of U obtained with a homogeneous chain
of length L = 240 sites.
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Figure 6.29: Tomonaga-Luttinger parameter as a function of the band filling n for the homogeneous
Hubbard lattice compared to our DMRG data (dots). U = 1.0, 2.0, 4.0, 8.0, 16.0 from top to bottom.

In figure 6.30, the results for Kc are shown as a function of the band filling, including
the homogeneous case with U/t = 1.0 for comparison. For heterostructure I Kc < 1.0,
which indicates that spin or charge density waves are present. Let us recall that for both
heterostructures I and III, for n ≤ 0.5 the 2kF-oscillations were clearly observed and fitted
accurately, whereas for n ≥ 0.6, even though there are oscillations present, they do not
match the 2kF-component as expected. Still, the power-law decay of the correlation function
was confirmed. This behavior is also reflected on the values of Kc, and we observe in
Fig. 6.30, two different values sets for the density intervals already mentioned, finding that
there is a drop in the Kc’s values for n ≥ 0.6.
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Figure 6.30: TL parameter Kc for both heterostructures as a function of the band filling as compared to
the results for the homogeneous system with U = 1.0. For heterostructure I Kc < 1.0, indicating a Luttinger
liquid behavior.
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6.3 Spectral density and optical conductivity

Spectral density

Spectral functions are useful to understand the electronic structure of solids. Let us
briefly recall what kind of information we obtain through them. The spectral function
A(q, ω) is the probability that an electron has momentum q and energy ω. The spectral
functions are defined by (see Eq. (5.42)):

A+(q, ω) =
∑

α

|〈α|c†q|ψ0〉|2 δ(w − (Eα − E0)),

A−(q, ω) =
∑

β

|〈β|cq|ψ0〉|2 δ(w + (Eβ − E0)).

Creation and annihilation operators, c†q and cq respectively, are represented in momentum
space, constructed in the way described in section 5.2.4. |ψ0〉 is the ground state wavefunc-
tion of the N -particle system, |α〉 are states of the system after adding a particle (N + 1),
and |β〉 are states of the system after removing a particle (N − 1). A+ can be measured
in angular-resolved inverse photoemission, and A− in photoemission experiments. A(q, ω)
represents thus a quasiparticle state of the system. For non-interacting systems, the spec-
tral function is a delta function located at ω = ε(q)3. For interacting systems, the spectral
function has a broadening ∆(q), which may be related to the lifetime τ(q) of the state by
τ = ~/∆. In higher dimensions, the effect of electron-electron interactions can be observed
in different ways: As a broadening of the quasiparticle peak, as a shift of the energy of the
quasiparticle band, or as a renormalization of the weight of the peak, due to the appearance
of an incoherent background. In 1D there is no quasiparticle peak in the spectral function.
Instead, one finds two divergences due to spin-charge separation located at ±us,cq, where
us,c are spin and charge group velocities. Unambiguous experimental signatures of spin-
charge separation are scarce in quasi-one dimensional materials, one exception being the
organic molecule TTF-TCNQ4 [39], whose spectrum dispersion can be mapped onto sep-
arated spin and charge excitation bands of the 1D Hubbard model away from half-filling.
The case of half-filled Hubbard chains, as we mentioned, must be considered apart. Due
to short-range antiferromagnetic correlations, extra weight is created near the Fermi en-
ergy, finding thus a peak with finite broadening. To calculate spectral densities following
the Lanczos vector method introduced in section 5.2.2, we kept the ground state ψ0 and
NL = 4 or NL = 8 Lanczos vectors, with up to m = 256 states in the DMRG basis and a
broadening factor η = 0.1.

In Fig. 6.31 we show the spectral density as function of the wavevector q for heterostruc-
ture I at half-filling. The first four Lanczos vectors were kept as well as the ground state.
We observe that the peaks, shifted by the chemical potential µ, can be identified with the
dispersion ε(q) = −2t cos (q).

3ε(q) is the energy dispersion relation of the system.
4Tetrathiafulvalene-tetracyanoquinodimethane, TTF-TCNQ.
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Figure 6.31: Spectral density as a function of the wavevector q of heterostructure I at half-filling. We used
the ground state ψ0 and the first four Lanczos vectors, NL = 4. The broadening factor is η = 0.1 and we
kept m = 256 states. Observe that the position of the peaks can be identified with the dispersion relation
ε(q) = −2t cos (q).
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Figure 6.32: Sector of the spectral density function with wavevector q = π of heterostructure I. We used
the ground state |ψ0〉 and the first four (NL = 4), and eight (NL = 8) Lanczos vectors. The broadening
factor is η = 0.1. The inset shows results obtained using one correction vector, with η = 0.1 and m = 256
basis states.

In Fig. 6.32 we show the spectral density at q = π, with NL = 4 and NL = 8 Lanczos
vectors. We observe that the Lanczos vector method does not converge in higher-energy
regions, for which we include some points obtained using the correction vector method.

Optical conductivity

The linear optical absorption is proportional to the real part σ1(ω) of the optical con-
ductivity, which is related to the imaginary part of the current-current correlation function
by

σ1(ω > 0) =
1

ω
Im χJJ(ω > 0), (6.2)

and

χJJ(ω > 0) = − 1

L
〈ψ0|J

1

ω − (H − E0) + iη
J |ψ0〉

= − 1

L

∑

n

〈ψ0|J |n〉
ω − (En − E0) + iη

, (6.3)

where we introduced the set of states |n〉 with corresponding energies En. The current
operator J is given by

J = −t
∑

i,σ=↑,↓

(

c†iσci+1σ − c†i+1σciσ

)

. (6.4)

To calculate σ1, we constructed the momentum representation of the current operator
and used the method described in section 5.2.3, with the correction vector

|x(ω)〉 =
1

ω − (H − E0) + iη
Jq|ψ0〉. (6.5)
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The DMRG calculations were performed keeping m = 128 basis states of the Hilbert
space, with a broadening factor η = 0.1. In chapter 3 we wrote the bosonization of Fermi
field operators, products of such operators can be also written for current, spin or electron
density operators. The current operator is given by5

J(x, t) =
e

π
∂tφc(x, t), (6.6)

φc(x, t) is the boson field introduced in Eq. (3.87) and e is the electron charge. In [11], the
optical conductivity for a one-dimensional Hubbard chain at half- filing was studied. If only
scattering states of holons6 (h) and antiholons (h̄) are considered, the contribution to the
real part of the optical conductivity is given by7

σhh̄ =
e2t

a0

uc

vF

√
ω2 − 4∆2

ω2
θH(ω − 2∆)

× exp

[

−
∫ ∞

0

dx

x

exp(−x)[1 − cos (4xθ0/π) cosh (2x)]

cosh (x) sinh (2x)

]

, (6.7)

where a0 is the lattice spacing, θH is the Heaviside function, ∆ is the charge gap and
θ0 = arcosh (ω/2∆). In the case of U/t = 3.0, we have ∆(U/t = 3.0) = 0.315687 and
uc/vF ∼ 1.22371. In Fig. 6.33 we show the results after plugging these values into Eq. (6.7)
and compare to the results obtained using the correction vector method.
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Figure 6.33: Optical conductivity for a homogeneous one-dimensional Hubbard chain for U/t = 3.0 com-
pared to results from field theory. The chain length is L = 128 sites and we kept m = 128 states in the
DMRG basis.

In Fig. 6.34 we show the optical conductivity of the one-dimensional Hubbard model
calculated using the correction vector method for U/t = 3.0, 6.0. Observe that the width
of the spectrum decreases with decreasing on-site Coulomb interaction. The results can be
compared to those obtained in [20].

5This is the linear response result obtained from the conservation law for the charge, ∂ρ(x,t)
∂t

+ ~∇ · Ĵ = 0.
6Gapped, spinless excitations carrying charge ±e are called antiholons and holons, respectively.
7Since the current operator is neutral, only intermediate states with equal number of holons and antiholons

will contribute to the current-current correlation function.
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Figure 6.34: Optical conductivity for a homogeneous one-dimensional Hubbard chain for U/t = 3.0 and
U/t = 6.0. The chain length is L = 128 sites and we kept m = 128 states in the DMRG basis, with a
broadening factor eta = 0.1.

0.0

0.3

0.6

0.9

 0  2  4  6  8  10

σ
1
(ω

)

ω

Homogeneous System, U/t = 1.0
Heterostructure I, V=0.0

Figure 6.35: Optical conductivity for heterostructure I compared to the results for a homogeneous one-
dimensional Hubbard chain of length L = 240 sites, with U/t = 1.0. In both cases we kept m = 128 states
in the DMRG basis, with a broadening factor eta = 0.1..

In Fig. 6.35 we show the optical conductivity of heterostructure I and compare the
results to those for a homogeneous one-dimensional Hubbard chain of length L = 240 sites,
with U/t = 1.0.
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summary

In this chapter we summarized our findings on homogeneous and inhomogeneous one-
dimensional systems. Results for ground state properties included ground state energy
values. In the homogeneous half-filling case, the results could be directly compared to
those obtained using Bethe Ansatz [24]. Away from half-filling, the energies matched the
results given by the approximation by Shiba [37]. In chapter 3, we found from the exact
solution of the Tomonaga-Luttiger model, that the power law decay of the correlation
functions is characterized by the parameter Kc, for the charge regime. Kc is determined
by microscopic coupling constants which cannot be directly measured. Using the DMRG
method to calculate the density-density correlation function, we estimated the value of Kc.
In the homogeneous regime, our results are in good agreement with those reported by [32]
and [9]. In the inhomogeneous regime, i.e., for the heterostructures, we found that a slow
variation of the on-site Coulomb potential, as in the case of heterostructures I and II, does
not interrupt the decay of the density-density correlation functions between the subregions
and the system as a whole behaves as a TLL, with Kc < 1. A different behavior results
from the introduction of a scattering potential at the junctions between the subregions, as
was the case of heterostructure III. In this case, there is a threshold value for the height
of the potential, after which the central region (with UC = 0.9t) is isolated from the other
components (UL and UR) of the system. Even though the correlation function decays within
R1, the behavior is interrupted after the point xL (or xR). Thus, no TLL behavior could
be characterized under these conditions. For values of V/t ∼ U/t, the corresponding power
law decay was still observed for certain band fillings. The oscillatory component of the
correlation function (see Eq. (6.1)) was observed for all cases. Although the 2kF -oscillations
could only be fitted for n ≤ 0.6. We can conclude that the TLL is not a universal feature
for one-dimensional systems.

For systems at half-filling, which are Mott insulators, we calculated spectral density
functions at different momenta q using the Lanczos vector method. In the high-frequency
regime, the method (even if increasing the number of Lanczos vectors) does not seem
to render accurate information. In that case, using the correction vector method is a
better option. The optical conductivity for heterostructure I was also calculated using the
correction vector method.





Conclusions

Finding parameters to tune the physical properties of electronic devices is a key aspect
of the materials research. In this thesis, we have presented examples of the results of the last
decades in the fabrication of nanoscopic quasi-one-dimensional systems. Carbon nanotubes,
semiconducting quantum wires and organic molecules have become helpful laboratories to
investigate a wide range of low-dimensional quantum effects. And while the properties of
homogeneous one dimensional systems (even with disorder) are relatively well-understood,
very little is known about the properties of strongly interacting inhomogeneous systems.
The physics of one-dimensional systems, in the homogeneous low-energy regime, is described
by the Tomonaga-Luttinger liquid model for which the relevant degrees of freedom are no
longer the single particle electronic states, whose spectral weight vanishes at the Fermi
surface. Instead, collective spin and charge density waves appear propagating with different
group velocities. Another prediction of this model is the algebraic decay of the correlation
functions, which exhibits a power-law decay specified only by the Tomonaga-Luttinger
parameter Kλ. Both spin-charge separation and the algebraic decay of the correlation
function are benchmarks of the Tomonaga-Luttinger liquid. The Tomonaga-Luttinger liquid
can be exactly solved using the bosonization method, which was explained in this thesis.
Such method states the equivalence between fermionic and bosonic degrees of freedom in
the low-energy regime of one-dimensional systems. A boson representation of the problem
allowed for an easier diagonalization of the Hamiltonian of the system including interactions.

In this thesis we have investigated static and dynamic properties of low-dimensional
homogeneous and inhomogeneous systems (which we also called heterostructures). We
described how junctions between different types of atoms influence the variation in space
of the density-density correlation function. The heterostructures can be seen as unions of
homogeneous systems with different coupling constants. The numerical analysis showed
that a slow variation of the on-site Coulomb potential, as the one for heterostructures
I and II, does not affect the decay of the density-density correlation function. In these
heterostructures, the leading term predicted by the Luttinger liquid, i.e., the power-law
decay, was observed for band filling smaller than half-filling (which must be considered
apart). The systems also presented an oscillatory behavior in the density-density correlation
function. But only for certain values of the band-filling, namely 0.1 ≤ n < 0.6, they matched
the expected 2kF -oscillations of the charge density. A different behavior was found when
introducing a scattering potential V at the junctions between the homogeneous sectors, as
it was done for heterostructure III. In this case, the density-density correlation function
depends strongly on the height of the potential barrier. After a threshold value, the decay
of the correlation function is abruptly interrupted and is not longer possible to describe the
behavior in terms of a Luttinger liquid. However, for V ∼ t, the Luttinger liquid behavior
was observed with 0.3 ≤ n ≤ 0.6. Our findings show that the Tomonaga-Luttinger liquid
is not a universal feature for one-dimensional systems. Similar systems were investigated
where the on-site Coulomb potential was turned on and off over the subregions [38]. For such
systems an effective exponent, K∗

c = f(K1,c,K2,c), was calculated considering, for example,
two subchains which were assumed as independent, homogeneous Luttinger liquids.

We also considered systems at half-filling, which are no longer Luttinger liquids but
Mott insulators, with a gap in the charge spectrum. We calculated the spectral density
for heterostructure I, finding peaks at positions which can be identified with the energy
dispersion relation for a Hubbard chain. Measurements of optical conductivity were done
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on both homogeneous Hubbard chains and heterostructure I, finding for the homogeneous
regime results that match those given in [11].

The systems were investigated using the density-matrix renormalization group, a method
which has been particularly developed to study low-dimensional systems. Extensions of
this method, such as the Lanczos vector method and the correction vector method allow for
calculation of dynamic properties. Further work remains to be done concerning transport
properties also at temperatures different from zero, which are significant in the designing
and fabrication of properly tunable electronic devices.
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