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Summary

This thesis concerns relative determinants for Laplacians on surfaces with asymptotically cusps
ends and the inverse spectral problem on surfaces with cusps. We consider (M, g), a surface with
cusps, and a metric on the surface that is a conformal transformation of the initial metric h = e2ϕg.

In the first part we find conditions ϕ that make it possible to define the relative determinant
of the pair (∆h,∆g). We prove Polyakov’s formula for the relative determinant and study the
extremal values of this determinant as a function of unit area metrics inside a conformal class. We
prove that if the maximum exists it has to be attained at the metric of constant curvature. We
discuss necessary conditions for the existence of a maximizer.

In the second part we restrict our attention to hyperbolic surfaces of fixed genus and a fixed
number of cusps. We study the relative determinant as a function on the moduli space for this
kind of surfaces and use the results in [19] to prove that it tends to zero at the boundary of the
moduli space.

In the third part we return to general surfaces with cusps. We prove a splitting formula for
the relative determinant and use it to prove compactness in the C∞-topology of sets of isospectral
metrics in a given conformal class. We assume that the conformal factors ϕ have support in a fixed
compact set of M .
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Introduction

In this thesis we study the relative (regularized) determinant of the Laplace operator on surfaces
with cusps. Regularized determinants of elliptic operators play an important role in many fields
of mathematics and mathematical physics. They were initially introduced by D. B. Ray and M.
I. Singer in [41] in relation to R-torsion. Let A be a self-adjoint non-negative elliptic pseudo-
differential operator of order m on a compact Riemannian manifold of dimension n. Then A has
pure point spectrum consisting of a sequence of eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · of finite multiplicities.
The regularized determinant of A is defined through the zeta function

ζ(s) =
∑
λj 6=0

λ−sj , Re(s) > n/m.

After Seeley [38] it is well known that the zeta function admits a meromorphic extension to the
complete complex plane that is regular at s = 0. Then the regularized determinant is defined as:

det(A) = exp
(
− d

ds
ζ(s)

∣∣∣∣
s=0

)
.

The zeta function can also be expressed in terms of the heat semigroup associated to A:

ζ(s) =
1

Γ(s)

∫ ∞

0
(Tr(e−tA)− dim Ker(A))ts−1dt.

This formula is only valid in the half-plane Re(s) > n/m. In section 1.8 we explain in detail how
to derive this formula when A is the Laplacian on a closed manifold.

The regularized determinant of the Laplacian on a compact Riemannian manifold is an impor-
tant spectral invariant. For instance, in the 2-dimensional case, Osgood, Phillips and Sarnak (to
whom we refer as OPS from now on) in [33] showed that the determinant, considered as a functional
on the space of metrics, has very interesting extremal properties. They proved the following result:
let M be a closed surface of genus p. Then in a given conformal class, among all metrics of unit area,
there exists a unique metric of constant curvature at which the regularized determinant attains a
maximum. They also proved a corresponding statement for compact surfaces with boundary and
suitable conditions at the boundary.

This determinant can also be restricted to a function on the moduli space of hyperbolic metrics
on a closed surface of genus p, Mp:

det ∆· : Mp → R, [τ ] 7→ det ∆τ ,

where τ is a metric of constant curvature and unit area. Sarnak in [37] made the very interesting
conjecture that the function that assigns to an isometry class ĝ its “height”, given by − log det ∆ĝ,
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has a unique global minimum. If this conjecture is true, the global minimum could be taken as a
“distinguished metric” on the surface.

The regularized determinant of the Laplacian can be used to study inverse spectral problems
such as isospectral problems. Isospectral problems go back to 1960 when Leon Green asked if a
Riemannian manifold was determined by its spectrum. The question was rephrased by Kac for
planar domains in the very suggestive way: “Can one hear the shape of a drum?” see [20]. An
important result is the well known existence of non-isometric manifolds that are isospectral, see
[40] and the references therein. We also refer to [46] for a comprehensive survey of inverse spectral
problems in geometry.

The isospectral problem on closed surfaces and simply connected planar domains was studied
by OPS in [34]. In that paper the authors prove compactness of isospectral sets of isometry classes
of metrics in the corresponding C∞-topology. Two metrics g1 and g2 are called isospectral if the
spectrum of the Laplacians ∆g1 and ∆g2 are the same including multiplicities. In particular the
heat invariants aj for j ≥ 0 and the determinant det ∆ have the same values at g1 and g2. As the
authors remark in the paper, the use of the regularized determinant of the Laplacian is essential
in order to obtain compactness, since the heat invariants are not enough. On planar domains the
problem has been studied by R. Melrose in [27] and OPS in [35], and for compact surfaces with
boundary by Y. Kim in [22].

The isospectral problem also makes sense for certain non-compact manifolds. There scattering
theory comes into play and we need to deal with inverse scattering theory. For example, on exterior
planar domains the isospectral problem was studied by A. Hassell and S. Zelditch in [18]. There
two exterior planar domains are called isophasal if they have the same scattering phase. Hassell
and Zelditch prove that each class of isophasal exterior planar domains is sequentially compact in
the C∞-topology. In the proof they define a regularized determinant of the Laplacian that plays a
fundamental role.

The goal of this thesis is to study how to extend the results of OPS in [33] and [34] to surfaces
with cusps. As suggested by the work of Hassell and Zelditch, it is important to find a good
definition of the determinant of the Laplace operator.

In the first part we study the definition of the determinant for surfaces with cusps and asymp-
totically cusps ends and its possible extremal values. Let (M, g) be a surface with cusps. This
means that it is a smooth 2-dimensional Riemannian manifold of finite area such that outside a
compact set the metric is hyperbolic. The hyperbolic ends are called cusps. The first thing to do
is to define the determinant of the Laplacian ∆g on M . It is well known that ∆g has continuous
spectrum therefore its zeta regularized determinant can not be defined. To solve this problem we
use relative determinants. The relative determinant of a pair of non-negative self-adjoint operators
(A,B) in a Hilbert space was introduced by W. Müller in [30]. If the operators (A,B) satisfy
certain given conditions the relative determinant can be defined through a zeta function using the
trace of e−tA − e−tB.

We start by fixing a class of metrics on M that are conformal to g and that satisfy suita-
ble conditions. For any metric h = e2ϕg in the conformal class [g] we obtain a Laplacian which
we denote by ∆h. We will consider relative determinants of pairs (∆h,∆g) and also of pairs
(∆h, ∆̄β,0), where ∆̄β,0 is an operator over M that is associated to the cusps. We have to take into
account the following technical detail: the operator ∆h acting on L2(M,dAg) is not self-adjoint. We
therefore consider a unitary map T : L2(M,dAg) → L2(M,dAh) and the corresponding transformed
operators. The map T then appears in all the corresponding statements and proofs.
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For the relative determinant det(∆h,∆g) to make sense, the relative heat operator T−1e−t∆hT−
et∆g must be trace class for t > 0 and the trace must have suitable asymptotic expansions for large
and small values of t. This is the case if the conformal factor ϕ has a specific decay at infinity.
Chapters 2 and 3 are devoted to finding these decay conditions and to proving the properties re-
quired above. The first main result is:

Theorem 2.3 Let h = e2ϕg and let i(z) be a function on M satisfying i(z) = 1 if z ∈M0, and
i(z) = yj if z = (xj , yj) ∈ Zj, for j = 1, . . . ,m. If ϕ(z) and ∆gϕ(z) are O(i(z)−1) as i(z) → ∞,
then T−1e−t∆hT − e−t∆g is a trace class operator for all t > 0.

Theorem 2.3 implies that the continuous spectra of the Laplacians ∆h and ∆g coincide. Since
σc(∆g) = [1/4,∞), it follows from [30, Lemma 2.2] that there exists a constant κ > 0 such that
the relative trace has the following asymptotic expansion as t→∞:

Tr(T−1e−t∆hT − e−t∆g) = O(e−κt). (1)

The second main result is about the asymptotic expansion of the relative heat trace as t→ 0:

Theorem 3.4 Let us use the notation of Theorem 1. If the functions ϕ(z) and ∆gϕ(z) are
O(i(z)−32) as i(z) → ∞, then there exists an expansion up to order two in t of Tr(T−1e−t∆hT −
e−t∆g) as t→ 0.

In the proof of Theorem 3.4 we use mainly classical methods such as parametrices, Duhamel’s
principle, upper bounds of heat kernels and covering spaces.

We are now ready to define det(∆h,∆g) using the relative zeta function. By Theorem 3.4 and
equation (1) we may define:

ζ(s;∆h,∆g) =
1

Γ(s)

∫ ∞

0
Tr(T−1e−t∆hT − e−t∆g)ts−1 dt,

that converges in the a half plane Re(s) ≥ 1. This formula for ζ(s;∆h,∆g) is analogous to the
formula in the compact case that expresses the zeta function in terms of the trace of the heat
operator. The asymptotic expansions for the trace described above ensure that the relative zeta
function has a meromorphic continuation to C that is analytic at s = 0. The relative determinant
is then defined by:

det(∆h,∆g) = exp
(
− d

ds
ζ(s;∆h,∆g)

∣∣∣∣
s=0

)
.

Although Theorem 3.4 allows us to define the relative determinant det(∆h,∆g); the result is
not optimal since we would like to obtain a complete asymptotic expansion of the relative heat
trace requiring lower decay. It seems possible to improve the statement using methods borrowed
from Melroses’ b-calculus but that will be part of another project.

In Chapter 4 we define the relative determinant for the pair (∆h,∆1,0). We study it as a
functional on the space of metrics of a given fixed area inside the conformal class and look for its
extremal values. The main result of Chapter 4 is a Polyakov-type formula for det(∆h,∆1,0):

Theorem 4.5 Let (M, g) be a surface with cusps and let h = e2ϕg be a conformal transformation
of g with ϕ(z) and ∆gϕ(z) being O(i(z)−32) as y = i(z) → ∞. For the corresponding relative
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determinants we have the following formula:

log det(∆h,∆1,0) = − 1
12π

∫
M
|∇gϕ|2 dAg −

1
6π

∫
M
Kg ϕ dAg + logAh + log det(∆g,∆1,0).

The proof of this formula follows the same lines as the proof in the compact case in [33]. The
formula is the same as the one obtained by R. Lundelius in [26] for heights of pairs of admissible
surfaces. Let us point out however that our methods are different from the ones in [26]. As in [33]
and [26], we see that if there exists a maximum it is attained at the metric of constant curvature.
The equation relating the curvature of the metrics g and h = e2ϕg is Kh = e−2ϕ(∆gϕ+Kg). The
study of this differential equation for ϕ together with the conditions of constant curvature in the
cusps for g and constant curvature everywhere for h leads to a precise decay for the function ϕ
at infinity. Unfortunately this decay is not included in the conditions required to define the de-
terminant. Therefore the metric of constant curvature will not be in the conformal class that we
consider unless we start with a metric of constant curvature.

In Chapter 5 we study the relative determinant as a function on the moduli space of hyperbolic
surfaces with cusps. We work in Mp,m, the moduli space of compact Riemann surfaces of genus p
with m punctures and think of it as a space of complete hyperbolic metrics on a topological surface
of genus p with m punctures. We define the free Laplacian as the Laplacian ∆̄1,0 associated to
the union of m cusps all starting at 1; notice that the Laplacian ∆̄1,0 is chosen independently of
[g]. Hence the relative determinant defines a function on the moduli space in the same way as in
the compact case: [g] ∈ Mp,m 7→ det(∆g, ∆̄1,0) ∈ R+, where g ∈ [g] is hyperbolic. We start by
analyzing the behavior of det(∆g, ∆̄1,0) as [g] approaches the boundary of Mp,m. It is well known
that each point of the boundary can be reached through a degenerating family of metrics. The
degeneration arises from closed geodesics whose length converges to zero. Comparing the relative
determinant with the determinant defined in [19] we prove the following theorem:

Theorem 5.4 Let Mp,m be the moduli space of hyperbolic surfaces with cusps. Consider the
relative determinant det(∆g, ∆̄1,0) as a function on Mp,m. Then det(∆g, ∆̄1,0) tends to zero if [g]
approaches Mm,p \Mp,m, the boundary of the moduli space.

This will imply that det(∆g, ∆̄1,0) attains its maximum in the interior of the moduli space.
The determinant as a function of the moduli space of hyperbolic surfaces of finite area was studied
in [26] in terms of the heights of a degenerating family of hyperbolic surfaces and a fixed surface.
There the author proves an asymptotic formula for the degeneration of the height. The regularized
determinant as a function of the moduli space of metrics on surfaces with smooth boundary was
studied by H. H. Khuri in [23] and by Y-H. Kim [22], obtaining different results under different
conditions.

Finally, we study the isospectral problem inside a conformal class of the metric in a surface with
cusps. In this setting, two metrics are isospectral if the resonances are the same for both metrics
including multiplicities. For hyperbolic surfaces of finite area, W. Müller proved in [29] that the
resonance set associated to the surface determines the surface up to finitely many possibilities. We
restrict our attention to metrics inside a given conformal class. The main result of this part is the
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following theorem:

Theorem 7.5 Let (M, g) be a surface with cusps, K ⊂M be compact and let [g]K = {e2ϕg | ϕ ∈
C∞c (M), supp(ϕ) ⊂ K} be the K-compactly supported conformal class of g. Then isospectral sets
in [g]K are compact in the C∞-topology.

In the proof of Theorem 7.5 we use a splitting formula for the relative determinant. This for-
mula relates det(∆g,∆β,0) (with β big enough) to the determinant of the Dirichlet-to-Neumann
operator acting on a submanifold of M homeomorphic to S1. We prove this formula in Chapter 6.
We finally discuss the possibility of generalizing Theorem 7.5 to conformal classes including metrics
that have asymptotically cusp-ends.

In Chapter 1 we introduce notation and most of the background theory we use throughout the
document. We include two appendices. Appendix A about Sobolev spaces and Appendix B with
an explicit computation of the spectral shift function of the pair of operators (∆g,∆1,0).
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Chapter 1

Background theory

In this chapter we introduce the notation, definitions and main results we use throughout this
thesis. We start by defining the spaces over which we work and the operators in which we are
interested. In the second section we state the main known results about spectral theory of surfaces
with cusps. In the other sections we define conformal transformations of metrics, the injectivity
radius of a Riemannian manifold, we state the Gauss-Bonnet formula for surfaces with cusps. We
dedicate a section to summarizing some results we will use about heat kernels and their estimates.
In the last section we give the definition of the regularized determinant of the Laplace operator on
a closed manifold.

1.1 Notation and some definitions

A surface with cusps is a 2-dimensional Riemannian manifold that is complete, non-compact, has
finite volume and is hyperbolic in the complement of a compact set. It admits a decomposition of
the form

M = M0 ∪ Z1 ∪ · · · ∪ Zm,

where M0 is a compact surface with smooth boundary and for each i = 1, ...,m we assume that

Zi ∼= [ai,∞)× S1, g|Zi = y−2
i (dy2

i + dx2
i ), ai > 0

The subsets Zi are called cusps. Sometimes we denote Zi by Zai to indicate the “starting point”
ai. Instances of surfaces with cusps are quotients of the form Γ(N)\H, where H is the upper half
plane and Γ(N) ⊆ SL2(Z) is a congruence subgroup, i.e. Γ(N) = {γ ∈ SL2(Z)|γ ≡ Id (mod N)}.
These quotients play an important role in the theory of automorphic forms.

To any surface with cusps (M, g) we can associate a compact surface M such that (M, g) is
diffeomorphic to the complement of m points in M . Let p denote the genus of the compact surface
M ; then the pair (p,m) is called the conformal type of M . In many of the proofs we set m = 1
and a1 = 1, to simplify the equations.

For any oriented Riemannian manifold (M, g) the Laplace-Beltrami operator on functions is
defined as ∆f = −div grad f . It is equal to ∆ = d∗d. Note that we consider positive Laplacians.
In local coordinates the Laplacian has the form

∆f = − 1√
det(gij)

∂j(
√

det(gij) gij∂if),

1



M
0

Z
1

Z
2

Z
3

Figure 1.1: A surface with cusps

where f ∈ C∞c (M). On a cusp Z, the Laplacian is given by

∆Z = −y2

(
∂2

∂y2
+

∂2

∂x2

)
.

If (M, g) is complete, ∆ has a unique closed extension that we denote by ∆g. The gradient in
coordinates is given by grad f = (gij∂jf)∂i and the Laplacian of the product of two functions f1

and f2 is given by
∆(f1f2) = (∆f1)f2 + f1(∆f2)− 2〈grad f1, grad f2〉 (1.1)

Definition 1.1. Let a > 0, let ∆a,0 denote the self-adjoint extension of the operator

−y2 ∂
2

∂y2
: C∞c ((a,∞)) → L2([a,∞), y−2dy)

obtained after imposing Dirichlet boundary conditions at y = a. The domain of ∆a,0 is then given
by Dom(∆a,0) = H1

0 ([a,∞)) ∩H2([a,∞)), where H1
0 ([a,∞)) = {f ∈ H1([a,∞)) : f(a) = 0}.

Let ∆̄a,0 = ⊕mj=1∆aj ,0 be defined as the direct sum of the self-adjoint operators operators ∆aj ,0

defined above. The operator ∆̄a,0 acts on a subspace of ⊕mj=1L
2([aj ,∞), y−2

j dyj).

Now, let a > 0, let Za be endowed with the hyperbolic metric g and let ∆Za,D be the self-adjoint
extension of

−y2

(
∂2

∂y2
+

∂2

∂x2

)
: C∞c ((a,∞)× S1) → L2(Za, dAg)

obtained after imposing Dirichlet boundary conditions at {a} × S1. The operator ∆Za,D can be
decomposed as follows. Put

L2
0(Za) = {f ∈ L2(Za, dAg)|

∫
S1

f(y, x)dx = 0 for a. e. y ≥ a}. (1.2)

2



The orthogonal complement of L2
0(Za) in L2(Za, dAg) consists of functions that are independent

of x ∈ S1. Indeed, let f ∈ L2
0(Za)

⊥, then
∫
Za
f(y, x)ψ(y, x)dAg(z) = 0 for all ψ ∈ L2

0(Za),
in particular for ψn(x) = e−2πinx with n 6= 0. This implies that in the Fourier decomposition
of f , f(y, x) =

∑
n∈Za

an(f, y)e2πinx, all the terms but the constant term are zero. Therefore
f(y, x) = a0(f, y) =

∫
S1 f(y, x)dx, i.e. f is independent of x. The other inclusion is obvious. Then

we can decompose L2(Za, dAg) as the orthogonal direct sum

L2(Za, dAg) = L2([a,∞), y−2dy)⊕ L2
0(Za).

This decomposition is invariant under ∆Za,D so in terms of this decomposition we can write ∆Za,D =
∆a,0 ⊕∆Za,1, where ∆Za,1 acts on L2

0(Za).

Remark 1.2. The operator ∆Za,1 has compact resolvent; in particular it has only point spectrum,
see Lemma 7.3 in [32]. In addition, the counting function for ∆Za,1, N∆Za,1

(λ) = #{λ̃j ≤ λ}, where
{λ̃j} are the eigenvalues of ∆Za,1, satisfies N∆Za,1

(λ) ∼ λ
4πAg. See [12, Thm.6]. This implies that

the heat operator e−t∆Za,1 is trace class.

1.2 Spectral theory of surfaces with cusps

For spectral theory for manifolds with cusps we refer to [28], [12], and the references therein. The
results in [28] hold for any dimension. For surfaces in particular we refer to [29]. Here we only
recall the main facts and definitions that we use in this document.

For a surface with cusps (M, g), the spectrum of the Laplacian σ(∆g) is the union of the
point spectrum σp and the continuous spectrum σc. The point spectrum consist of a sequence of
eigenvalues

0 = λ0 < λ1 ≤ λ2 ≤ . . .

Each eigenvalue has finite multiplicity, and the counting function N(Λ) = #{λj |λj ≤ Λ2} for
Λ > 0 satisfies lim supN(Λ)Λ−2 ≤ Ag(4π)−1, where Ag denotes the area of (M, g). Depending on
the metric, the set of eigenvalues may be infinite or not.

The continuous spectrum σc of ∆g is the interval [14 ,∞) with multiplicity equal to the number
of cusps of M . For a proof of this fact, see for example [28, p.206]. The spectral decomposition
of the absolutely continuous part of ∆g is described by the generalized eigenfunctions Ej(z, s), for
j = 1, . . . ,m with z ∈ M , s ∈ C. To each cusp we can associate such generalized eigenfunctions,
also called Eisenstein functions by analogy with the Eisenstein series for hyperbolic surfaces. They
are closely related to the wave operators W±(∆g, ∆̄a,0) and to the scattering matrix S(λ). For
details, see [28, sec.7].

Each Eisenstein function Ej(z, s) is smooth as a function of z ∈ M and is meromorphic as a
function of s ∈ C. It satisfies:

∆gEj(z, s) = s(1− s)Ej(z, s).

Its poles are contained in the union of the half-plane Re(s) < 1
2 and the interval (1

2 , 1]. The
restriction of Ej(z, s) to the cusp Zi satisfies

Ej((yi, xi), s) = δjiy
s
i + Cji(s)y1−s

i +O(e−cyi), as yi →∞.

Let C(s) be the m × m matrix (Cji(s)). Then C(s) is a meromorphic function of s ∈ C. The
scattering matrix S(λ;∆g, ∆̄a,0) given by the time-dependent approach to scattering theory is
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related to C(s) by the equation S(1
4 + λ2) = C(1

2 + iλ), for λ ∈ R. In this way S(λ) has an
extension to the double covering of C defined by λ = s(1 − s). This extension is meromorphic
and we have that S(s(1− s)) = C(s), see [30, p.342]. From now on in this setting we refer to the
matrix-valued function C(s) as the scattering matrix.

Let us summarize the main properties of the Eisenstein functions and the scattering matrix by
recalling Theorem 7.24 in [28].

Theorem 1.3. ([28]) With the notation introduced above we have that the Eisenstein functions and
the scattering matrix associated to the surface with cusps (M, g) satisfy the following properties:

1. (a) C(s) is meromorphic on C with poles contained in the half-plane Re(s) < 1
2 and the

interval (1
2 , 1].

(b) The poles s0 ∈ (1
2 , 1] of C(s) are simple.

(c) C(s) is holomorphic in a neighborhood of the line Re(s) = 1
2 .

(d) The matrix C(s) is symmetric and satisfies the functional equation C(s)C(1− s) = Id.

2. For every j = 1, . . .m,

(a) Ej(z, s) is holomorphic in a neighborhood of the line Re(s) = 1
2 .

(b) The poles s0 ∈ (1
2 , 1] of Ej(z, s) are simple and if s0 is a pole of Ej then s0 is also a

simple pole of Cjj(s).

(c) If s0 is a pole of Ej(z0, s) of order n then s0 is also a pole of Ej(z, s) of order n for all
z ∈M , and n is the maximal order of the pole of Cij(s) at s0, i = 1, . . . ,m.

(d) The system of Eisenstein functions satisfies the functional equations:

Ei(z, s) =
m∑
j=1

Cij(s)Ej(z, 1− s).

The scattering matrix also satisfies:

C(s) = C(s̄) and C(s)∗ = C(s̄).

Let L2
d(M,dAg) be the subspace of L2(M,dAg) spanned by the eigenfunctions of ∆g, and let

ϕ0, ϕ1, . . . be a basis of L2
d(M,dAg) composed of normalized eigenfunctions of ∆g. Then any

f ∈ C∞0 (M) has the following Fourier type expansion:

f(z) =
∑
k

(ϕk, f)ϕk +
1
4π

m∑
j=1

∫
R
Ej(z,

1
2

+ iλ)
∫
M
Ej(w,

1
2
− iλ)f(w) dAg(w) dλ.

A quantity of interest is the determinant of the scattering matrix which we denote by φ(s) =
detC(s). It satisfies the following equations:

φ(s)φ(1− s) = 1, φ(s) = φ(s̄), s ∈ C .

The concept of resonance is very important in the spectral theory of surfaces with cusps. The
definition of resonance is given in Chapter 7. The mathematical quantity that we use to define
isospectral metrics here is the resonance set of the Laplacian. This set is defined as the union of
the poles of the scattering matrix and the set {sj |sj(1− sj)is an eigenvalue}.
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1.3 Conformal transformations

In this section we explain how some geometrical quantities change under a conformal transformation
of the metric, i.e., when we multiply a given metric by a function that is strictly positive in the
complete manifold.

Definition 1.4. A conformal transformation of the metric g on M is a metric h defined by h = e2ϕg
where ϕ ∈ C∞(M).

In this paper we consider conformal factors that are the exponential of smooth functions on M .
These functions are often denoted by ϕ. Depending on the case they may have compact support
or not. If the support is not compact we usually require some decay at infinity of the function
as well as some of its derivatives. In what follows the metric h will always denote a conformal
transformation of g.

Definition 1.5. Two metrics g1, g2 are quasi-isometric if there exist constants C1, C2 > 0 such
that

C1g1(z) ≤ g2(z) ≤ C2g1(z), for all z ∈M,

in the sense of positive definite forms.

Quasi-isometric metrics have equivalent geodesic distances. The associated L2-spaces coincide
as sets, thought the inner product is not the same.

Remark 1.6. If the function ϕ appearing in the conformal factor is bounded on M we have that
the metrics g and h = e2ϕg are quasi-isometric and the geodesic distances dg and dh are equivalent.
If in addition the metric g is complete, so is the metric h.

Let Ag denote the area of (M, g), dAg the volume element, and Kg(z) its Gaussian curvature.
Let Ah, dAh and Kh be the quantities corresponding to (M,h), for any conformal transformation h
of g. Let ∆h be the Laplacian associated to h. Then for the metrics g and h we have the following
relations:

dAh = e2ϕdAg

Kh = e−2ϕ(∆gϕ+Kg)
∆h = e−2ϕ∆g

The domains of the Laplacians ∆g and ∆h lie in different Hilbert spaces. Thus sometimes it
is necessary to consider a unitary map between the spaces L2(M,dAg) and L2(M,dAh). From the
definition of the metrics and the transformation of the area element we have that the unitary map
is:

T : L2(M,dAg) → L2(M,dAh), f 7→ e−ϕf. (1.3)

For the transformed Laplacians we have the following expressions:

T−1∆hTf = ∆hf + 2〈∇hf,∇hϕ〉h − (∆hϕ+ |∇hϕ|2h)f
= e−2ϕ

(
∆gf + 2〈∇gf,∇gϕ〉g − (∆gϕ+ |∇gϕ|2g)f

)
(1.4)

T∆gT
−1f = e2ϕ (∆hf − 2〈∇hϕ,∇hf〉h + (∆hϕ− |∇hϕ|h)f)
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To see this notice that ∆he
−ϕ = −e−ϕ∆hϕ− e−ϕ|∇hϕ|h. Then by equation (1.1)

∆h(e−ϕf) = (∆he
−ϕ)f + e−ϕ(∆hf)− 2〈∇he

−ϕ,∇hf〉h
= (−e−ϕ∆hϕ− e−ϕ|∇hϕ|h)f + e−ϕ(∆hf) + 2e−ϕ〈∇hϕ,∇hf〉h

T−1∆hTf = ∆hf + 2〈∇hϕ,∇hf〉h − (∆hϕ+ |∇hϕ|h)f

As for g we have ∆ge
ϕ = eϕ∆gϕ− eϕ|∇gϕ|g. Then

∆g(eϕf) = (∆ge
ϕ)f + eϕ(∆gf)− 2〈∇ge

ϕ,∇gf〉g
= (eϕ∆gϕ− eϕ|∇gϕ|g)f + eϕ(∆gf)− 2eϕ〈∇gϕ,∇gf〉g

T∆gT
−1f = ∆gf − 2〈∇gϕ,∇gf〉g + (∆gϕ− |∇gϕ|g)f

Note that the operators T−1∆hT and T∆gT
−1 are self-adjoint in the corresponding transformed

domain.
Let us first give a handwaving definition of what we mean by a surface with asymptotically

cusps ends. The reason to do that is that we need flexibility in the conditions on the conformal
factors:

A surface with asymptotically cusp ends is a surface (M,h) where the metric h is a conformal
transformation of the metric on a surface with cusps (M, g) such that the conformal factor as well
as some of its derivatives have a suitable decay in the cusps.

1.4 Injectivity radius

Let (M, g) be a Riemannian manifold. The injectivity radius at a point z ∈ M is defined as the
supremum of the radius of balls centered at 0 ∈ TzM such that the exponential function expz
is defined and injective in such balls. (This is equivalent to defining it as the minimal distance
from the point z to its cut locus). Let us denote the injectivity radius at a point z ∈ M by
injg(z). The injectivity radius of M is the infimum of the injectivity radius at each point, i.e.
injg(M) = infz∈M injg(z).

Let g and h be as above i.e. h = e2ϕg. We are particularly interested in the case where for
(y, x) ∈ Z, ϕ(y, x) = O(1/y) as y → ∞. In this case, the metrics g and h are quasi-isometric and
the geodesic distances are equivalent.

It is well known that on a surface with cusps (M, g) the injectivity radius is null. For an element
in a cusp, z = (y, x), we have that injg(z) ∼ 1

y . If we assume in addition that ∆gϕ = O(1) as y →∞
then the surface (M,h) has bounded Gaussian curvature. This implies that there exist constants
c, c′ > 0 such that

injh(z) ≥ min{c injg(z), c
′}, z ∈M,

see [32, Prop.2.1].
The injectivity radius is a very important quantity in geometry. Many generalizations of results

in geometric analysis for compact manifolds hold for manifolds of bounded geometry, i.e. manifolds
with bounded curvature and injectivity radius bounded away from zero. If the injectivity radius
vanishes these results generally fail in their standard form. For example, the Sobolev embedding
theorems and Rellich’s lemma do not hold for surfaces with cusps.
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1.5 Heat kernels and estimates

Heat semigroups and heat kernels are very useful and important tools when working with regula-
rized determinants via zeta function regularization. The heat semigroup associated to a closed self-
adjoint operator can be constructed using the spectral theorem. For the existence and uniqueness
of the heat kernel on a complete open manifold with Ricci curvature bounded from below see [15].
For the main properties of heat kernels see [15] and [9]. On a complete Riemannian manifold of
dimension n with Ricci curvature bounded from below, the heat kernel K(x, y, t) is the smallest
smooth positive fundamental solution of the heat equation on M , i.e. K(x, y, t) ≤ p(x, y, t) for
every positive fundamental solution p(x, y, t). The heat kernel is symmetric in the space variables
and satisfies the conservation law

∫
M K(x, y, t)dV (y) = 1, for all t > 0 and x ∈ M . Let (M, g)

and h = e2ϕg be as above, and let e−t∆h , e−t∆g , e−t∆1,0 denote the heat semigroups associated to
the Laplacians ∆h, ∆g and ∆1,0, respectively. Since the Laplacians are positive, the heat equation
is ∆ + ∂t = 0. Let Kh(z, z′, t) and Kg(z, z′, t) denote the heat kernels corresponding to ∆h and
∆g respectively. We hope that this will not lead to confusions with the notation for the Gaussian
curvatures and the heat kernels.

Like the Laplacians, the heat semigroups act on different spaces. The operator e−t∆h may act on
L2(M,dAg), but it is not self-adjoint with respect to this inner product. To make e−t∆h and e−t∆g

act on the same space and preserve self-adjointness we use the unitary map T : L2(M,dAg) →
L2(M,dAh) defined by (1.3). The transformed operators T−1e−t∆hT and Te−t∆gT−1 are self-
adjoint on the corresponding space. Consider the integral kernel of the transformed operator
T−1e−t∆hT : L2(M,dAg) → L2(M,dAg). If f ∈ L2(M,dAg), then

T−1e−t∆hTf(z) = T−1

(∫
M
Kh(z, z′, t)e−ϕ(z′)f(z′) dAh(z′)

)
=
∫
M
eϕ(z)Kh(z, z′, t)e−ϕ(z′)f(z′)e2ϕ(z′) dAg(z′)

=
∫
M
eϕ(z)Kh(z, z′, t)eϕ(z′)f(z′) dAg(z′),

thus KT−1e−t∆hT (z, z′, t) = eϕ(z)Kh(z, z′, t)eϕ(z′). This also follows from the general transformation
law in the product space:

L2(M ×M,dAh × dAh) → L2(M ×M,dAg × dAg), f(z, z′) 7→ f(z, z′)eϕ(z)eϕ(z′)

The kernel of T−1e−t∆hT restricted to the diagonal is KT−1e−t∆hT (z, z, t) = Kh(z, z, t)e2ϕ(z).
For the details of the construction of the heat kernel on a compact Riemannian manifold M and

its asymptotic expansion for small t, we refer to [9], [6] and the references therein. If the manifold
is closed, there exists a constant c > 0 such that for any fixed 0 < τ <∞, the heat kernel satisfies
the following bounds

K(x, y, t) � t−n/2e−
d(x,y)2

ct , for t ≤ τ. (1.5)

If the manifold has boundary, consider the closed self-adjoint extension of the Laplacian with
Dirichlet boundary conditions. For the Dirichlet heat kernel, and given a compact set K ⊂M and
a T > 0, there exists a positive constant c′ such that

KD(x, y, t) ≤ c′t−n/2(e−
d(x,y)2

ct + e
d(y,∂M)2

8t ),

for (x, y, t) ∈ K ×M × (0, T ], see [9, chapter VII].
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1.5.1 The heat kernel on a surface with cusps

The heat kernel on a surface with cusps was constructed by W. Müller in [28]. Here we give a
brief description of this construction and mention some of the main statements; for details see [28].
In this part we consider (M, g) with only one cusp, M = M0 ∪ Z and Z ∼= [1,∞) × S1. The
kernel of a parametrix for the heat operator is constructed by gluing together the heat kernel in
the complete cusp R+×S1 equipped with the hyperbolic metric and the heat kernel in a suitable
compact manifold.

Let R+ × S1 be the complete cusp with the hyperbolic metric y−2(dy2 + dx2). Let ∆1 be the
unique self-adjoint extension of the Laplacian defined on C∞c (R+×S1). It is unique because R+×S1

with the hyperbolic metric is a complete Riemannian manifold. The notation for ∆1 is arbitrary.
Since the metric in the cusp Za, for any a > 0, is also the hyperbolic metric, the Laplacians ∆Za,D

and ∆1 coincide when acting on C∞c ((a,∞)× S1).
The heat kernel for ∆1 on R+×S1 may be constructed using separation of variables and equals:

K1((y, x), (y′, x′), t) =
∑
n∈Z

K̃n(y, y′, t)e2πin(x−x′),

where K̃n(y, y′, t) is the heat kernel corresponding to the operator

Dn = −y2

(
∂2

∂y2
− 4π2n2

)
,

with domain containing C∞c (R+); see [28, page 218].
Let M2 = M0∪([1, 2]×S1), let W be a closed Riemannian manifold containing M2 isometrically.

Let ∆W be the Laplacian on W , e−t∆W be its corresponding heat operator and K2(z, z′, t) be the
fundamental solution of the heat equation on W restricted to M2 ×M2 × R+.

We define the gluing functions φ1, φ2 and ψ1, ψ2 as follows: let ϕ(b, c) denote any increasing
C∞ function of real variable u such that ϕ = 0 for u ≤ b and ϕ = 1 for u ≥ c, and let

φ1 = ϕ(1, 1 +
1
4
), ψ1 = ϕ(1 +

3
8
, 1 +

5
8
)

φ2 = 1− ϕ(1 +
3
4
, 2), ψ2 = 1− ψ1.

We consider each of these functions as defined on the cylinder Z = [1,∞) × S1 and extend them
in the obvious way to M . Then we glue the two heat kernels together:

H(z, z′, t) = φ1(z)K1(z, z′, t)ψ1(z′) + φ2(z)K2(z, z′, t)ψ2(z′).

The function H(z, z′, t) is the kernel of a parametrix for the heat operator associated to g.
Let i(z) be the function given by:

i(z) =
{

1, if z ∈M \ Z;
y, if z ∈ Z and z = (y, x).

(1.6)

The kernels K1 and Kg satisfy the following estimates:

8



1. For K1(z, z′, t), the heat kernel in the complete cusp, and for arbitrary T > 0 there exist
constants C1, c2 > 0 such that for 0 < t < T , y, y′ ≥ 1, and k, l,m ∈ N one has:∣∣∣∣ ∂k∂tk dlzdmz′K1(z, z′, t)

∣∣∣∣ ≤ C1(i(z)i(z′))
1
2 t−1−k−l−m exp

(
−
c2d

2
g(z, z

′)
t

)
(1.7)

where dg(z, z′) is the Riemannian distance in (M, g), that is the hyperbolic distance in the
cusp. The constants depend on T .

2. For Kg(z, z′, t), we have: for T > 0 there exist C1, c2 > 0 such that

|Kg(z, z′, t)| ≤ C1(i(z)i(z′))
1
2 t−1 exp

(
−
c2d

2
g(z, z

′)
t

)
(1.8)

uniformly for 0 < t < T .

Note that the constants in the previous equations can be different but since we are dealing with
inequalities we can choose the most convenient (the largest one in front of the inequalities and the
smallest one in the exponents).

We also have that for every l ∈ N and T > 0 there exist constants C2, C3 such that

|Kg(z, z′, t)−H(z, z′, t)| ≤ C2(i(z)i(z′))
1
2 tl exp

(
−
C3d

2
g(z, z

′)
t

)
,

uniformly for 0 < t < T . The constants C2, C3 depend on l ∈ N and T . This follows from equations
(4.9) and (4.10) in [28].

Let us now go back to the metric h = e2ϕg. We can extend it to a metric on the complete cusp
Z̃ = R+×S1 in the following way: On Z̃ we have the hyperbolic metric g0. The metric g|Z = g0.
We start by extending the function ϕ|Z to a smooth function ϕ̃ on Z̃ that vanishes in a small
neighborhood of 0. Then on (0,∞) × S1 we define h as h := e2eϕg0. It is a complete metric and
h = g0 close to 0. In this way we can define the Laplacian on (Z̃, h). Denote its unique self-adjoint
extension by ∆1,h. Clearly ∆1,h = e−2eϕ∆1. The heat kernel associated to ∆1,h is denoted by
K1,h(z, z′, t), for z, z′ ∈ Z̃ and t > 0.

1.5.2 Other heat kernels

In this subsection we introduce the other heat operators that we will use throughout this document.
For a > 1 let ∆a,0 be the operator defined in section 1.1. The heat kernel pa(y, y′, t) for ∆a,0

can be computed explicitly, see [8, sec.14.2] or [28, p.258]. It is given by

pa(y, y′, t) =
e−t/4√

4πt
(yy′)1/2

{
e−(log(y/y′))2/4t − e−(log(yy′)−log(a2))2/4t

}
, (1.9)

for y, y′ > a. This is easy to verify by direct computation. Also note that for 1 ≤ y ≤ a,
pa(y, y′, t) = 0.

The operator e−t∆a,0 acts on L2([a,∞), y−2dy). However, we can regard it as an operator acting
on L2([1,∞), y−2dy). In order to do so, let us consider the following linear transformations: Let

J1,a : L2([a,∞), y−2dy) → L2([1,∞), y−2dy)
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be the inclusion and
ρa,1 : L2([1,∞), y−2dy) → L2([a,∞), y−2dy)

be the restriction. If f ∈ L2([1,∞), y−2dy), then e−t∆a,0f := J1,ae
−t∆a,0ρa,1f .

Conversely, the operator e−t∆1,0 can be regarded as acting on L2([a,∞), y−2dy) in the following
way: Let f ∈ L2([a,∞), y−2dy), e−t∆1,0f := ρa,1e

−t∆1,0J1,af .
Now, let us assume that M can be decomposed as M = M0 ∪ Z with Z = [1,∞) × S1. Then

we can make the operator e−t∆a,0 act on L2(M,dAg) in the following way: let Πa : L2(M,dAg) →
L2([a,∞), y−2dy), be the projection defined by Πaf(y) =

∫
S1 f |Za

(y, x)dx, where as before Za
denotes the cusp [a,∞)×S1, and let Ja : L2([a,∞), y−2dy) → L2(M,dAg) be the inclusion. By an
abuse of notation, for f ∈ L2(M,dAg), we write e−t∆a,0f := Jae

−t∆a,0Πaf . Explicitly,

e−t∆a,0f(z) =
∫ ∞

a

∫
S1

pa(y, y′, t) f |Za
(y′, x′)dx′

dy′

y′2
for z = (y, x) ∈ Za

and is zero otherwise. From the symmetry of pa(y, y′, t), is clear that the operator e−t∆a,0 acting
on L2(M,dAg) is symmetric.

Recall the operator ∆Z,D defined in section 1.1. The kernel of the operator e−t∆Z,D is con-
structed by a classical method (see [9, chapter VII]) and it is given by:

KZ,D((y, x), (y′, x′), t) = K1((y, x), (y′, x′), t) + p1,D((y, x), (y′, x′), t) (1.10)

where y, y′ ≥ 1, x, x′ ∈ S1, t > 0, and p1,D((y, x), (y′, x′), t) is a function that decays exponentially
as t → 0 if (y, x) and (y′, x′) are away from the boundary. More precisely, for every T > 0 there
exist constants C, c > 0 such that:

|p1,D(z, z′, t)| ≤ Ct−1(i(z)i(z′))1/2e−
c(dg(z,∂Z)+dg(z′,∂Z))2

t (1.11)

for all z, z′ ∈ Z and 0 < t < T . For manifolds of dimension n, the power of t is −n/2.
For upper estimates of heat kernels on complete Riemannian manifolds, we refer to [11], Theo-

rems 4, 6 and 7. There, the authors work with the heat kernel of a complete Riemannian manifold
with sectional curvature bounded from above and from below by constants C and −c, with C, c ≥ 0.
They state that the derivatives of the heat kernel K(x, y, t) are expected to satisfy similar inequal-
ities as K(x, y, t) itself satisfies, except for the powers of the time variable t which will be different
and the constants will depend on the curvature of M and its covariant derivatives. We state here
some of their results. Let M be a complete Riemannian manifold with bounded curvature. Then
there exists a constant c(n, k, T ), with n = dimM , k the lower bound of the curvature, and T > 0,
such that for all p, x ∈M , and for all t ∈ [0, T ], ([11, Thm 4])

K(p, x, t) ≤ c(n, k, T )(δ̃(p))−α(n)t−n/2 exp
(
−α(n)d2(p, x)

t

)
.

for some universal constant α(n) > 0, where

δ̃(p) = min
{

1, δ(p),
π

12
√
K

}
,

and δ(p) is the injectivity radius at p. For the derivatives of K one has, ([11, Thm 6])

|∇K|(x, p, t) ≤ c(n, k, T )(δ̃(p))−α(n)t−(n+1)/2 exp
(
−α(n)d2(p, x)

t

)
.
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Finally, under the same hypothesis as above Theorem 7 in [11] states that there exists a constant
C(n,A0, A1, T ) such that for all p, x ∈M , and for all t ∈ [0, T ],

|hessK|(p, x, t) ≤ C(n,A0, A1, T )(δ̃(p))−α(n)t−(n+2)/2 exp
(
−α(n)d2(p, x)

t

)
,

where A0 is a bound for the curvature tensor and A1 is a bound for its covariant derivative.
Now let us go back to the conformal transformation of the metric in a surface with cusps,

h = e2ϕg. Let us assume that ϕ and ∆gϕ decay in the cusp as O(1/y), as y → ∞. Remember
that in that case the metrics g and h are quasi-isometric, therefore the corresponding Riemannian
distances are equivalent, i.e., there exist constants C1, C2 > 0 such that

C1dg(z, z′) ≤ dh(z, z′) ≤ C2dg(z, z′).

Transferring the results of [11] to our case we have that for the power of the injectivity radius
α = 1/2 and for z = (y, x) ∈ Z, δ(z) = injg(z) ∼ y−1 ∼ injh(z). Therefore the kernel of the heat
operator for the metric h satisfies the same estimate as the one corresponding to g:

Kh(z, z′, t) � (i(z)i(z′))
1
2 t−1 exp

(
−
c0d

2
h(z, z

′)
t

)
� (i(z)i(z′))

1
2 t−1 exp

(
−
c1d

2
g(z, z

′)
t

)
(1.12)

uniformly for 0 < t < T , where c1 and c2 are positive constants and the symbol � means ≤ c times
the expression, for some constant c ≥ 0.

For the derivatives of the heat kernel K∗, where ∗ denotes the metric g or h, we obtain:

|∇K∗|(z, z′, t) ≤ c(n, k, T ) (i(z)i(z′))1/2t−3/2 exp

(
−
c1d

2
g(z, z

′)
t

)
, and (1.13)

|∆∗K∗|(z, z′, t) ≤ C(n,A0, A1, T ) (i(z)i(z′))1/2t−2 exp

(
−
c1d

2
g(z, z

′)
t

)
. (1.14)

Now let ∆Z,h be the self-adjoint extension of the operator

−e−2ϕy2(∂2
y + ∂2

x) : C∞c (Z) → L2(Z, dAh)

obtained after imposing Dirichlet boundary conditions at {1} × S1. Let KZ,h denote the kernel of
the operator e−t∆Z,h . As in the case of the heat kernel associated to the operator ∆Z,D, equation
(1.10), the kernel KZ,h is given by:

KZ,h(z, z′, t) = K1,h(z, z′, t) + ph,D(z, z′, t), (1.15)

for z, z′ ∈ Z and t > 0 where the term ph,D(z, z′, t) is determined by the boundary condition. By
the same argument as above, we infer that ph,D(z, z′, t) satisfies, up to some constants, the same
estimate as the one given by equation (1.11).

1.6 Duhamel’s Principle

There are several ways to state and use Duhamel’s principle. In this section we refer to [9, VII.3].
Let Ω be a regular domain in a fixed Riemannian manifold M and let ∂Ω be its boundary. The
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boundary carries the outward unit normal vector field ν. A regular domain is a connected open
subset which has compat closure and whose boundary is smooth.

Let u, v ∈ C2(Ω× (0, t)) be such that they extend continuously to Ω̄, and their gradients extend
to continuous vector fields on Ω̄. Let [α, β] ⊆ (0, t). Then∫ β

α
dτ

∫
Ω
{(Lu)(z, t− τ)v(z, τ)− u(z, t− τ)(Lv)(z, τ)}dA(z)

=
∫ β

α
dτ

∫
∂Ω

{
∂u

∂νx
(x, t− τ)v(x, τ)− u(x, t− τ)

∂v

∂νx
(x, τ)

}
dA(x)

+
∫

Ω
u(z, t− β)v(z, β)− u(z, t− α)v(z, α)dA(z), (1.16)

where L = ∆ − ∂
∂t . In the notation of [9] the Laplacian is negative. Since we work with positive

Laplacians we need to arrange the signs.
Duhamel’s principle can be applied in the non-compact setting under certain assumptions on the

decay of the functions. This is the case of the heat kernels on surfaces with cusps and asymptotically
cusp ends. Using equation (1.16) and the properties of the heat kernels, we obtain the equations
that we will use throughout this thesis. One of then is the following:

Kh(z, z′, t)e2ϕ(z′)−Kg(z, z′, t) =
∫ t

0
dτ

∫
M
Kh(z, w, s)e2ϕ(w)(∆g−∆h)Kg(w, z′, t− s)dAg(w)ds

In terms of the operators, Duhamel’s principle can be written as:

T−1e−t∆hT − e−t∆g =
∫ t

0
T−1e−s∆hT (∆g − T−1∆hT )e−(t−s)∆g ds.

1.7 Gauss-Bonnet formula

For a surface M with m cusps, the Euler characteristic is given by χ(M) = (2− 2p−m), where p
is the genus of the compact surface M defined in section 1.1. A Gauss-Bonnet formula is valid in
this setting: ∫

M
KgdAg = 2πχ(M),

where Kg denotes the Gaussian curvature of the metric g. The same formula is valid for the metric
h = e2ϕg when ϕ and ∆gϕ have a suitable decay at infinity, since:∫

M
Kh dAh =

∫
M
e−2ϕ(∆gϕ+Kg)e2ϕ dAg =

∫
M

∆gϕ dAg +
∫
M
Kg dAg =

∫
M
Kg dAg.

1.8 Regularized determinants on compact manifolds

On a n-dimensional orientable connected closed Riemannian manifold, the determinant of the
Laplace operator is defined by a zeta regularization method. We know that the spectrum of the
Laplacian ∆ consists of a discrete set 0 = λ0 < λ1 ≤ λ2 ≤ · · · of eigenvalues and that the
corresponding eigenfunctions {φi}i∈N form an orthonormal basis of L2(M). Let N(λ) =

∑
λj≤λ 1,

12



it is well known that it satisfies Weyl’s asymptotic formula N(λ) ∼ ωn vol(M)
(2π)n λn/2 as λ→∞, where

ωn = (2π)n/2

Γ(n/2) . This implies in particular that λn/2j ∼ (2π)nj
ωn vol(M) , for j � 1.

The spectral zeta function associated to ∆ is defined by the series:

ζ∆(s) =
∑
λj>0

λ−sj .

Since for j � 1, λ−sj ∼ (C(n)j)−2s/n with C(n) = 2π/wn vol(M), it is clear that the series converges
absolutely on Re(s) > n/2 and that the convergence is uniform on compact subsets of the same
half plane. Using Mellin transform we obtain

ζ∆(s) =
1

Γ(s)

∫ ∞

0

∞∑
j=1

e−λjtts−1dt =
1

Γ(s)

∫ ∞

0
(Tr(e−t∆)− 1)ts−1dt.

Let F (s) = 1
Γ(s)

∫∞
1

∑∞
j=1 e

−λjtts−1dt. It converges absolutely and uniformly on compact subsets
of C. On the other hand the heat kernel has an asymptotic expansion at the diagonal as t→ 0:

∞∑
j=0

e−tλjφj(x)2 = (4πt)−n/2

 k∑
j=0

tjuj(x, x)

+O(tk−
n
2
+1).

The coefficients are universal polynomials in the curvature and its derivatives; see [16]. The ex-
pansion of the heat kernel induces an asymptotic expansion on the trace of the heat operator as
t→ 0+:

Tr(e−t∆) ∼ t−n/2
∞∑
j=0

ajt
j .

The numbers aj are called the heat invariants. We use this asymptotic expansion to obtain:

∫ 1

0
(Tr(e−t∆)− 1)ts−1dt = −1

s
+

N∑
k=0

ak
k + s− n

2

+O(1),

as t→ 0. Thus, we can continue ζ∆(s) to a meromorphic function on C by using

ζ∆(s) =
1

Γ(s)

{
−1
s

+
N∑
k=0

ak
k + s− n

2

+ analytic in s

}
.

The pole at s = 0 in the brackets cancels with the zero of 1
Γ(s) = seγs

∏∞
n=1(1 + s

n)e−
s
n . In this

way we obtain an extension of ζ∆(s) that is analytic at s = 0. The regularized determinant of ∆
is then defined by:

det ∆ = exp
(
− d

ds
ζ∆(s)

∣∣
s=0

)
. (1.17)

In the same way, one can define a regularized determinant for every self-adjoint non-negative elliptic
operator P on a closed manifold.
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1.9 Relative determinants

The notion of relative determinant was introduced by W. Müller in [30]. The relative determinant
is defined for two self-adjoint, nonnegative linear operators, H1 and H0, in a separable Hilbert
space H satisfying the following assumptions:

1. For each t > 0, e−tH1 − e−tH0 is a trace class operator.

2. As t→ 0, there is an asymptotic expansion of the relative trace of the form:

Tr(e−tH1 − e−tH0) ∼
∞∑
j=0

k(j)∑
k=0

ajkt
αj logk t,

where −∞ < α0 < α1 < · · · and αk → ∞. Moreover, if αj = 0 we assume that ajk = 0 for
k > 0.

3. Tr(e−tH1 − e−tH0) = h+O(e−ct), as t→∞, where h = dim KerH1 − dim KerH0.

These properties allow us to define the relative zeta function as:

ζ(s;H1,H0) =
1

Γ(s)

∫ ∞

0
(Tr(e−tH1 − e−tH0)− h)ts−1dt.

The relative determinant is then defined as:

det(H1,H0) := e−ζ
′(0;H1,H0).

In a more general setting, condition 3) is replaced by an asymptotic expansion as t→∞. Then,
in order to define the relative zeta function, the integral has to be split in two parts, see [30].
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Chapter 2

Trace class property of relative heat
operators

In this chapter we give a proof of Theorem 2.3, which says that the difference of the heat operators
for g and h is trace class. As we know, none of the heat operators e−t∆h nor e−t∆g is trace class;
which is the reason why we consider their difference. The trace class property is very important
because it allows us to study the scattering theory of a pair of operators. In addition, it is the first
step to define the relative determinant of the pair.

Let (M, g), M0, Z as well as ∆g, ∆Z,D, and ∆1 be as in Chapter 1. Here again we consider the
surface (M, g) only with one cusp so that it can be decomposed as M = M0 ∪Z with M0 compact
and Z = [1,∞)× S1.

Recall that the product of a trace class operator with a bounded operator is trace class, the
product of two Hilbert-Schmidt operators is a trace class operator and the product of a Hilbert-
Schmidt operator with a bounded operator is Hilbert-Schmidt.

Let T be a trace class operator and T = RS with R,S Hilbert-Schmidt. Then

‖T‖1 ≤ ‖R‖2‖S‖2,

where ‖ · ‖1 denotes the trace norm and ‖ · ‖2 denotes the Hilbert-Schmidt norm, see [21] for
the corresponding definitions. For an integral operator R with integral kernel r(z, z′) the Hilbert-
Schmidt norm is giving by:

‖R‖2
2 =

∫
M

∫
M
|r(z, z′)|2dA(z)dA(z′).

In this chapter we need to make many estimates for which we repeatedly use the following
lemmas:

Lemma 2.1. For any a > 0, and b, n,m ∈ R, we have that:∫ m

n
e−ax

2−bxdx =
eb

2/4a

√
a

∫ √
a(m+ b

2a
)

√
a(n+ b

2a
)
e−v

2
dv ≤

√
πeb

2/4a

√
a

.

For any c > 0, 0 < t ≤ T , k, ` ≥ 0 with k + ` > 2 we have:∫ ∞

1

∫ ∞

1
y−ky′−`e−

c
t

log(y/y′)2dydy′ ≤
√
te(1−k)

2t/c. (2.1)
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Proof. Both results follow just from a change of variables. For the second part, for y′ fixed, put
v = log(y/y′), so y′ev = y, and since 1 ≤ y′ <∞, then −∞ < − log(y′) ≤ 0, thus∫ ∞

1

∫ ∞

1
y−ky′−`e−

c
t

log(y/y′)2dydy′ =
∫ ∞

1

∫ ∞

− log(y′)
y′−`−k+1e(1−k)ve−

c
t
v2dvdy′

≤
∫ ∞

1
y′−`−k+1

∫ ∞

−∞
e(1−k)ve−

c
t
v2dvdy′ �

√
te(1−k)

2t/c.

Note that for a, b, c > 0 the function f(t) = t−ae−ct
−b

is bounded in (0,∞) and limt→0 f(t) = 0.

Lemma 2.2. Let ϕ ∈ C∞(M), ψ = e−2ϕ − 1 and ψ̃ = e2ϕ − 1. If ϕ|Z(y, x), ∆gϕ|Z(y, x) and
|∇gϕ|g|Z(y, x) are O(y−k) as y → ∞, then so are ψ|Z(y, x), ∆gψ|Z(y, x), |∇gψ|g|Z(y, x) and the
analogues functions corresponding to ψ̃.

Proof. Let z = (y, x) ∈ Z. Since ϕ = O(y−k), as y → ∞, there exist constants c > 0 and N > 1
such that |ϕ(y, x)| ≤ cy−k, for y > N . Then there exists a constant c1 > 0 such that for y ≥ N :

|ψ̃(x, y)| = |e2ϕ − 1| ≤
∞∑
`=1

(2|ϕ|)`

`!
≤

∞∑
`=1

(2c)`

yk``!
≤ 1
yk

∞∑
`=1

(2c)`

yk`−k`!

≤ 1
yk

∞∑
`=1

(2c)`

Nk`−k`!
=
Nk

yk

∞∑
`=1

(2c)`

Nk``!
≤ y−k(Nke2c/N

k
).

For the other statements, notice that

∇gψ = ∇ge
−2ϕ = −2e−2ϕ∇gϕ

∆gψ = ∆ge
−2ϕ = −2e−2ϕ∆gϕ− 4e−2ϕ|∇gϕ|2.

Later we will also use the fact that the Riemannian distance in the cusp Z satisfies dg(z, z′) ≥
| log(y/y′)|, for z = (y, x), z′ = (y′, x′), see for example [28].

2.1 Trace class property for relative heat operators of conformal
transformations

Take g as background metric on M . Let h be a conformal transformation of the metric g by
a conformal factor e2ϕ. We assume that on the cusp Z the functions ϕ(y, x), |∇gϕ(y, x)| and
∆gϕ(y, x) are O(1/y) as y goes to infinity. Recall that this implies that g and h are quasi-isometric
and h has bounded curvature.

Let e−t∆h and e−t∆g denote the heat operators corresponding to the Laplacians ∆h and ∆g,
respectively. Let Kh(z, z′, t) and Kg(z, z′, t) denote their kernels. As we explained in Chapter 1
we need to consider the unitary map T : L2(M,dAg) → L2(M,dAh), T (f) = e−ϕf . Recall the
expression for T−1∆hT given by equation (1.4) which implies:

∆g − T−1∆hT = (1− e−2ϕ)∆g + e−2ϕ(−2〈∇gϕ,∇g · 〉g + ∆gϕ+ |∇gϕ|2g), (2.2)

T∆gT
−1 −∆h = (e2ϕ − 1)∆h − 2e2ϕ〈∇hϕ,∇h · 〉h + (∆gϕ− |∇gϕ|2g). (2.3)
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Note that the functions e−2ϕ− 1 and 1− e2ϕ are O(y−1) as y →∞ and that the functions e2ϕ and
e−2ϕ are bounded on M . In this section we use these facts, the decay at infinity of the function ϕ
and its derivatives and the estimates for heat kernels and their derivatives given in Chapter 1.

Theorem 2.3. Let h = e2ϕg, and assume that on the cusp Z the functions ϕ(y, x), |∇gϕ(y, x)|
and ∆gϕ(y, x) are O(1/y) as y →∞. Then for any t > 0 the operator

T−1e−t∆hT − e−t∆g

is trace class.

To prove this statement we follow a procedure similar to that used by Müller and Salomonsen
in [32]. We use Duhamel’s principle which was stated in Section 1.6. Recall how it is given in terms
of the operators:

T−1e−t∆hT − e−t∆g =
∫ t

0
T−1e−s∆hT (∆g − T−1∆hT )e−(t−s)∆g ds. (2.4)

Let ‖ · ‖ denote the operator norm and ‖ · ‖1,g, (‖ · ‖1,h, resp.), denote the trace norm in
L2(M,dAg), (in L2(M,dAh), resp.), then:

‖T−1e−t∆hT − e−t∆g‖1,g ≤
∫ t/2

0
‖e−s∆h‖ ‖(∆g − T−1∆hT )e−(t−s)∆g‖1,g ds

+
∫ t

t/2
‖e−s∆h(T∆gT

−1 −∆h)‖1,h ‖e−(t−s)∆g‖ ds

≤
∫ t/2

0
‖(∆g − T−1∆hT )e−(t−s)∆g‖1,g ds+

∫ t

t/2
‖e−s∆h(T∆gT

−1 −∆h)‖1,h ds (2.5)

When considering the trace of the operator in the right hand side of equation (2.4) as an integral
using heat kernels and their estimates one has to take two aspects into account. One is related
with the time singularity at t = 0 and the other one is related with the convergence of the space
integral. The idea of breaking up the integral in equation (2.5) comes from the need to avoid the
time singularities coming from the heat kernel Kh(z, z′, s) (Kg(z, z′, t−s)) close to s = 0 (t−s = t)
that do not integrate to something finite in a neighborhood of 0 (of t).

Equation (2.5) reduces the proof of the theorem to the following Lemma:

Lemma 2.4. Let 0 < a < b <∞, under the same conditions of theorem 2.3 we have that for each
t ∈ [a, b], the operators

(∆g − T−1∆hT )e−t∆g and e−t∆h(T∆gT
−1 −∆h)

are trace class and each trace norm is uniformly bounded on t ∈ [a, b].

In the proof we will use a choice of auxiliary function φ repeatedly, where φ ∈ C∞(M), satisfies
φ > 0 and

φ(y, x) = y−1/2, (y, x) ∈ Z. (2.6)

Let Mφ and M−1
φ denote the operators multiplication by φ and φ−1, respectively.

The proof of Lemma 2.4 is presented in the following two subsections:
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2.1.1 Trace class property of (∆g − T−1∆hT )e−t∆g

Let us write

(∆g − T−1∆hT )e−t∆g = ((∆g − T−1∆hT )e−(t/2)∆gM−1
φ ) ◦ (Mφe

−(t/2)∆g).

Let us prove that for every t > 0, (∆g − T−1∆hT )e−t∆gM−1
φ and Mφe

−t∆g are Hilbert-Schmidt
operators. The reason to include the auxiliary function φ is that the heat operator e−t∆g itself is
not Hilbert-Schmidt but when composed with Mφ it is.

The operator (∆g − T−1∆hT )e−t∆gM−1
φ is Hilbert-Schmidt.

We use equation (2.2) to write the operator as:

(∆g − T−1∆hT )e−t∆gM−1
φ = ((1− e−2ϕ(z))∆g)e−t∆gM−1

φ

+ e−2ϕ(−2〈∇gϕ,∇g · 〉g + (∆gϕ+ |∇gϕ|2g))e−t∆gM−1
φ .

We start by proving the Hilbert-Schmidt property for ((1− e−2ϕ(z))∆g)e−t∆gM−1
φ . In order to

do that we just need to prove that the following integral is finite:∫
M

∫
M
|(1− e−2ϕ(z))∆g,zKg(z, z′, t)φ(z′)−1|2dAg(z)dAg(z′).

Let us use the decomposition of M as M = M0 ∪ Z to split the integral as:∫
M

∫
M
· · · dAg(z)dAg(z′) =

∫
M0

∫
M0

· · · dAg(z)dAg(z′) +
∫
M0

∫
Z
· · · dAg(z)dAg(z′)

+
∫
Z

∫
M0

· · · dAg(z)dAg(z′) +
∫
Z

∫
Z
· · · dAg(z)dAg(z′) (2.7)

and let us prove that each integral is finite. We use the estimates for the derivatives of heat kernel
Kg(z, z′, t) given in (1.14), the decay of the function 1− e−2ϕ(z) at infinity, which by Lemma 2.2 is
the same decay as the one of the function ϕ, and the definition of the function i(z) given in (1.6).
To estimate the resulting integrals we use the lemmas given at the beginning of this chapter. For
the sake of simplicity let us just write c instead of 2c for the constant in the exponential factor of
the estimates of the heat kernels.

For the first term in the sum in equation (2.7) which involves z ∈M0 and z′ ∈M0 we have:∫
M0

∫
M0

|(1− e−2ϕ(z))∆g,zKg(z, z′, t)φ(z′)−1|2dAg(z)dAg(z′)

�
∫
M0

∫
M0

t−4e−
c
t
d2g(z,z′) dAg(z) dAg(z′) � t−4.

For the second term in the sum in equation (2.7) which involves z′ ∈M0 and z ∈ Z we have:∫
M0

∫
Z
|(1− e−2ϕ(z))∆g,zKg(z, z′, t)φ(z′)−1|2dAg(z)dAg(z′)

� t−4

∫
M0

∫
S1

∫ ∞

1

1
y3

e−
c
t
d2g((y,x),z′) dy dx dAg(z′) � t−4.
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The third term in the sum in equation (2.7) involves variables z ∈M0 and z′ ∈ Z. In this case
we use that the Riemannian distance satisfies dg(z, z′) ≥ dg(∂Z, z′) ≥ | log(y′)| from which we infer:∫

Z

∫
M0

|(1− e−2ϕ(z))∆g,zKg(z, z′, t)φ(z′)−1|2dAg(z)dAg(z′)

� t−4

∫
S1

∫ ∞

1

∫
M0

e−
c
t
d2g(z,(y′,x′)) dAg(z) dx′ dy′ � t−4

∫ ∞

1
e−

c
t
(log(y′))2 dy′

= t−4

∫ ∞

0
e−

c
t
u2
eu du� t−7/2et/c

′
.

Finally, the last term in the sum in equation (2.7) in which the variables z, z′ lie in Z we have:∫
Z

∫
Z
|(1− e−2ϕ(z))∆g,zKg(z, z′, t)φ(z′)−1|2dAg(z)dAg(z′)

� t−4

∫ ∞

1

∫ ∞

1
y−3e−

c
t
(log(y/y′))2 dy dy′ � t−7/2e

t
c .

Thus we obtain:
‖(1− e−2ϕ)∆ge

−t∆gM−1
φ ‖2

2 � t−4
(
1 + t1/2et/c

)
.

Now we prove that the operators e−2ϕ〈∇gϕ,∇g · 〉ge−t∆gM−1
φ and e−2ϕ(∆gϕ+|∇gϕ|2g))e−t∆gM−1

φ

are Hilbert-Schmidt. Their integral kernels are given by

e−2ϕ(z)〈∇g,zϕ(z),∇g,zKg(z, z′, t)〉gφ−1(z′) and e−2ϕ(z)(∆gϕ(z) + |∇g,zϕ(z)|2g)Kg(z, z′, t)φ−1(z′),

respectively. For which we have respectively the following estimates:

|e−2ϕ(z)〈∇g,zϕ(z),∇g,zKg(z, z′, t)〉gφ−1(z′)|2 � t−3i(z)i(z′)|∇gϕ(z)|2e−
c
t
d2g(z,z′)φ−1(z′)2

|e−2ϕ(z)(∆gϕ(z) + |∇g,zϕ(z)|2gKg(z, z′, t)φ−1(z′)|2

� t−2(|∆gϕ(z)|+ |∇gϕ(z)|2g)2i(z)i(z′)e−
c
t
d2g(z,z′)φ−1(z′)2.

We split the integrals on M ×M in the same way as in equation (2.7), and the integrals obtained
are very similar to those carried out in the previous part for the operator (1− e−2ϕ)∆ge

−t∆g . The
main difference occurs in the power of t. For the operator e−2ϕ〈∇gϕ,∇g · 〉ge−t∆gM−1

φ we use the
estimates in equation (1.13) and the decay of the function |ϕ| at infinity. Let us check the following
two cases:

When z ∈M0, z′ ∈ Z:∫
Z

∫
M0

|e−2ϕ(z)〈∇g,zϕ(z),∇g,zKg(z, z′, t)〉gφ−1(z′)|2dAg(z)dAg(z′)

� t−3

∫ ∞

1
y′2e−

c
t
(log(y′))2 dy

′

y′2
� t−5/2et/c

′
.

When z ∈ Z, z′ ∈ Z:∫
Z

∫
Z
|e−2ϕ(z)〈∇g,zϕ(z),∇g,zKg(z, z′, t)〉gφ−1(z′)|2dAg(z)dAg(z′)

� t−3

∫ ∞

1

∫ ∞

1
yy′

1
y2
y′e−

c
t
(log(y/y′))2 dy

y2

dy′

y′2
= t−3

∫ ∞

1

∫ ∞

1
y−3e−

c
t
(log(y/y′))2dydy′ � t−5/2e

t
c .

19



Now for the operator e−2ϕ(∆gϕ + |∇gϕ|2g))e−t∆gM−1
φ we use the estimate of the heat kernel

given in equation (1.8) and the decay of the functions involving ϕ. Let us check only the integral
on Z × Z. For z ∈ Z we have (∆gϕ(z) + |∇g,zϕ(z)|2g)2 � (y−1 + y−2)2 � y−2. Then∫

Z

∫
Z
|e−2ϕ(z)(∆gϕ(z) + |∇g,zϕ(z)|2g)Kg(z, z′, t)φ−1(z′)|2dAg(z)dAg(z′)

� t−2

∫ ∞

1

∫ ∞

1
y−3e−

c
t
(log(y/y′))2dydy′ � t−3/2e

t
c .

Thus in the same way as above we obtain:

‖e−2ϕ〈∇gϕ,∇g · 〉ge−t∆gM−1
φ ‖2

2 � t−3
(
1 + t1/2et/c

)
‖e−2ϕ(∆gϕ+ |∇gϕ|2g)e−t∆gM−1

φ ‖2
2 � t−2

(
1 + t1/2et/c

)
The operator Mφe

−t∆g is Hilbert-Schmidt

In order to prove this, we have to prove that the following integral is finite:∫
M

∫
M
|φ(z)Kg(z, z′, t)|2dAg(z)dAg(z′).

We decompose the integral as in equation (2.7), and prove that each integral is finite. We
use here the estimates for Kg(z, z′, t) given in (1.8) and the definition of the functions φ and i(z).
Again, for the sake of simplicity we just write c instead of 2c in the exponential factor of the heat
estimates. The computations are very similar to those in the previous case.

For the first term in which z, z′ ∈M0 we have:∫
M0

∫
M0

|φ(z)Kg(z, z′, t)|2dAg(z)dAg(z′) �
∫
M0

∫
M0

t−2e−
c
t
d2g(z,z′) dAg(z) dAg(z′) � t−2.

For the second term which involves z′ ∈M0 and z ∈ Z we have:∫
M0

∫
Z
|φ(z)Kg(z, z′, t)|2dAg(z)dAg(z′)

� t−2

∫
M0

∫
S1

∫ ∞

1

1
y2

e−
c
t
d2g((y,x),z′) dy dx dAg(z′) � t−2.

For the third term in the sum in which z ∈M0 and z′ ∈ Z we have:∫
Z

∫
M0

|φ(z)Kg(z, z′, t)|2dAg(z)dAg(z′) � t−2

∫ ∞

1

1
y′
e−

c
t
(log(y′))2 dy′

= t−2

∫ ∞

0
e−

c
t
u2
du� t−3/2.

Finally, the last term in which the variables z, z′ lie in Z satisfies:∫
Z

∫
Z
|φ(z)Kg(z, z′, t)|2dAg(z′)dAg(z) �

∫ ∞

1

∫ ∞

1

1
y
y y′t−2e

−c
t

(log(y/y′))2 dy
′

y′2
dy

y2
(2.8)

= t−2

∫ ∞

1

∫ ∞

1

1
y2

1
y′
e
−c
t

(log(y/y′))2 dy dy′ ≤ t−3/2ec
′t. (2.9)
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Therefore
‖Mφe

−t∆g‖2
2 � t−2 + t−3/2et/4c.

In this way we have that (∆g − T−1∆hT )e−t∆g is a trace class operator and

‖(∆g − T−1∆hT )e−t∆g‖1,g ≤ ‖(∆g − T−1∆hT )e−(t/2)∆gM−1
φ ‖2 · ‖Mφe

−(t/2)∆g‖2

� (t−2 + t−3 + t−4)1/2
(
1 + t1/2et/c

)1/2 (
t−2 + t−3/2et/c

′
)1/2

the last expression is integrable for t in compact subsets of (0,∞).

2.1.2 Trace class property of e−t∆h(T∆gT
−1 −∆h)

The proof is very similar to the proof for (∆g − T−1∆hT )e−t∆g since the heat kernels satisfy the
same estimates, and the metrics are quasi-isometric. Let us write:

e−t∆h(T∆gT
−1 −∆h) = (e−(t/2)∆hMφ) ◦ (M−1

φ e−(t/2)∆h(T∆gT
−1 −∆h)),

where φ ∈ C∞(M) is as above. Then we have to prove that for every t > 0, the operators e−t∆hMφ

and M−1
φ e−t∆h(T∆gT

−1 −∆h) are Hilbert-Schmidt, i.e. that their kernels are square integrable.

The operator M−1
φ e−t∆h(T∆gT

−1 −∆h) is Hilbert-Schmidt

First of all let us consider the kernel of the operator e−t∆h(T∆gT
−1−∆h). Let f ∈ C∞c (M). Then

we have:

(e−t∆h(T∆gT
−1 −∆h)f)(z) =

∫
M
Kh(z, z′, t) · (T∆g,z′T

−1 −∆h,z′)f(z′)dAh(z′)

=
∫
M

((T∆g,z′T
−1 −∆h,z′)Kh(z, z′, t)) · f(z′)dAh(z′)

since the operators T∆g,z′T
−1 and ∆h are symmetric on L2(M,dAh). Now, use equation (2.3):

M−1
φ (T∆gT

−1 −∆h)e−t∆h = M−1
φ e−t∆h{(e2ϕ − 1)∆h − 2e2ϕ〈∇hϕ,∇h · 〉h + (∆gϕ− |∇gϕ|2g)}.

It follows that M−1
φ e−t∆h(T∆gT

−1 −∆h) is Hilbert-Schmidt if the following functions

1. φ(z)−1(e2ϕ(z′)− 1)∆h,z′Kh(z, z′, t),

2. φ(z)−1e2ϕ(z′)〈∇h,z′ϕ,∇h,z′Kh〉h and

3. φ(z)−1(∆gϕ(z′)− |∇g,z′ϕ|2g)Kh(z, z′, t)

are in L2(M ×M,dAhdAh).
We split the integral in the same way as in equation (2.7) and use the estimates on the heat

kernel Kh(z, z′, t) and its derivatives given in equations (1.12), (1.13) and (1.14). We also use that
since ϕ is bounded on M and since dAh = e2ϕdAg, then for any function f ∈ L1(M,dAh) we have:∫

M
|f |dAh �

∫
M
|f |dAg.
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For the first function listed above, the integrals are almost the same as the ones corresponding
to the operator (1− e−2ϕ)∆ge

−t∆gM−1
φ . We obtain:∫

M

∫
M
|φ(z)−1(e2ϕ(z′) − 1)∆h,z′Kh(z, z′, t)|2dAh(z)dAh(z′) � t−4 + t−7/2et/c

for some constant c > 0. Similarly for the other two functions we get bounds by t−3(1 + t1/2et/c)
and t−2(1 + t1/2et/c), respectively. Combining these estimates we obtain:

‖M−1
φ e−t∆h(T∆gT

−1 −∆h)‖2
2 � (t−4 + t−3 + t−2)(1 + t1/2et/c).

e−t∆hMφ is Hilbert-Schmidt

The kernel of e−t∆hMφ is Kh(z, z′, t)φ(z′). Since the estimates for the kernel Kh(z, z′, t) are, up to
some constants, the same as the estimates for Kg(z, z′, t), we can use exactly the same proof as for
the operator Mφe

−t∆g to show that:

‖e−t∆hMφ‖2
2 � t−2(1 +

√
te

t
c ).

Finally, for the operator e−t∆h(T∆gT
−1 −∆h) we obtain:

‖e−t∆h(T∆gT
−1 −∆h)‖1,h ≤ ‖e−(t/2)∆hMφ‖2 · ‖M−1

φ e−(t/2)∆h(T∆gT
−1 −∆h)‖2

� t−1(t−4 + t−3 + t−2)1/2
(
1 +

√
tet/c

)
This expression is clearly integrable for t on compact subsets of (0,∞).

This finishes the proofs of Lemma 2.4 and Theorem 2.3.

2.2 Operators on the cusp

Proposition 2.5. The operator e−t∆g − e−t∆Z,D is trace class for all t > 0, where e−t∆Z,D is
considered as acting on L2(M,dAg).

This is a corollary of Proposition 6.4 in [28]. The statement of that proposition can be rewritten
in our notation as follows:

Assume that M can be decomposed as M = M0 ∪ Z with Z = [1,∞) × S1. Let P0 be the
orthogonal projection of L2(M,dAg) onto L2([1,∞), y−2dy). Then for every t > 0, e−t∆g−e−t∆1,0P0

is a trace class operator.
To see that Proposition 2.5 follows from this statement, recall what we explained in section 1.1:

the operator ∆Z,D can be decomposed as ∆Z,D = ∆1,0 ⊕∆Z,1, where the heat operator e−t∆Z,1 is
trace class. So we have:

‖e−t∆g − e−t∆Z,D‖1 = ‖e−t∆g − e−t∆1,0‖1 + ‖e−t∆Z,1‖1

Now, let us consider the operator ∆a,0 for a > 1. To see that e−t∆g − e−t∆a,0 is trace class, we
will proceed by writing the difference as

e−t∆g − e−t∆a,0 = e−t∆g − e−t∆1,0 + e−t∆a,0 − e−t∆1,0 .

By the proposition above, the first difference is trace class, so it suffices to show that e−t∆a,0−e−t∆1,0

is trace class.
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Proposition 2.6. For any a > 1 and t > 0 the operator e−t∆a,0−e−t∆1,0 acting on L2([1,∞), y−2dy)
is trace class and the trace is given by:

Tr(e−t∆a,0 − e−t∆1,0) = − 1√
4πt

e−t/4 log(a).

As an operator on L2([a,∞), y−2dy) the trace is given by:

Tr(e−t∆a,0 − e−t∆1,0) = −e
−t/4
√

4π
Erf (log(a)/

√
t),

where Erf (s) =
∫ s
0 e

−v2dv.

Proof. This proof uses a classical method and the explicit expression for each heat kernel, see
Section 1.5.2. Recall equation (1.9):

pa(y, y′, t) =
e−t/4√

4πt
(yy′)1/2

{
e−(log(y/y′))2/4t − e−(log(yy′)−log(a2))2/4t

}
,

for y, y′ > a; for 1 ≤ y ≤ a, pa(y, y′, t) = 0. First note that e−t∆a,0 − e−t∆1,0 is a Hilbert Schmidt
operator:

∫ ∞

1

∫ ∞

1
|pa(y, y′, t)− p1(y, y′, t)|2

dy′

y′2
dy

y2
=
∫ ∞

a

∫ ∞

a
|pa(y, y′, t)− p1(y, y′, t)|2

dy′

y′2
dy

y2

+
∫ a

1

∫ ∞

1
|p1(y, y′, t)|2

dy′

y′2
dy

y2
+
∫ ∞

a

∫ a

1
|p1(y, y′, t)|2

dy′

y′2
dy

y2
(2.10)

For the first integral in the right hand side of the previous equation we use that (log(y/a) +
log(y′/a))2 ≥ log(y/a)2 and a similar expression for y′ to obtain:∫ ∞

a

∫ ∞

a
|pa(y, y′, t)− p1(y, y′, t)|2

dy′

y′2
dy

y2

=
e−t/2

4πt

∫ ∞

a

∫ ∞

a
(yy′)−1(−e−

log(yy′/a2)2

4t + e−
log(yy′)2

4t )2dy′dy

≤ e−t/2

4πt

∫ ∞

a

∫ ∞

a
(yy′)−1(e−

(log(y/a)+log(y′/a))2

2t + e−
log(yy′)2

2t )dy′dy

≤ e−t/2

4πt

∫ ∞

a

∫ ∞

a
(y−1e−

log(y/a)2

4t y′−1e−
log(y′/a)2

4t + y−1e−
log(y)2

4t y′−1e−
log(y′)2

4t )dy′dy.

All the integrals involved are clearly finite. For the other terms in the right hand side of equation
(2.10), using the symmetry of the kernel p1(y, y′, t) = p1(y′, y, t) we have that∫ a

1

∫ ∞

1
|p1(y, y′, t)|2

dy′

y′2
dy

y2
+
∫ ∞

a

∫ a

1
|p1(y, y′, t)|2

dy′

y′2
dy

y2
≤ 2

∫ a

1

∫ ∞

1
|p1(y, y′, t)|2

dy′

y′2
dy

y2

� e−t/2

4πt

∫ a

1

∫ ∞

1
(yy′)−1e−(log(y/y′))2/2tdy′dy +

e−t/2

4πt

∫ a

1

∫ ∞

1
(yy′)−1e−(log(yy′))2/2tdy′dy
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The second integral in the right hand side of last equation is computed in the same way as above.
For the first integral in the right hand side, we make the usual change of variables: u = log(y/y′)
to obtain: ∫ a

1

∫ ∞

1
(yy′)−1e−(log(y/y′))2/2tdy′dy =

∫ a

1
y−1dy

∫ ∞

−∞
e−u

2/2tdu�
√
t.

Therefore the operator e−t∆a,0 − e−t∆1,0 is Hilbert-Schmidt, for every t > 0.
The second step is to decompose the difference as the following sum:

e−t∆a,0−e−t∆1,0 = e−t/2∆a,0Mφ·M−1
φ (e−t/2∆a,0−e−t/2∆1,0)+(e−t/2∆a,0−e−t/2∆1,0)M−1

φ ·Mφe
−t/2∆1,0 ,

where Mφ is multiplication by the function φ defined in equation (2.6). We shall prove that each
term is Hilbert Schmidt. Let us start with e−t/2∆a,0Mφ and let us set s = t/2:

‖e−s∆a,0Mφ‖2
2 ≤

e−s/2

4πs

∫ ∞

a

∫ ∞

a
y′−2y−1(e−

log(y/y′)2
2s + e−

log(yy′/a2)2

2s

+ 2e−
log(y/y′)2

4s e−
log(yy′/a2)2

4s ) dy′dy

The first integral in the right hand side is estimated by C
√
t, as in equation (2.1). For the other

terms we have:∫ ∞

a

∫ ∞

a
y′−2y−1(e−

log(yy′/a2)2

2s + 2e−
log(y/y′)2

4s e−
log(yy′/a2)2

4s ) dy′dy

�
∫ ∞

a

∫ ∞

a
y′−2y−1e−

log(yy′/a2)2

4s dy′dy �
∫ ∞

a
y−1e−

log(y/a)2

4s dy <∞.

For M−1
φ (e−t/2∆a,0 − e−t/2∆1,0), let s = t/2 then in the same way as above we obtain

‖M−1
φ (e−t/2∆a,0 − e−t/2∆1,0)‖2

2 ≤
e−s/2

4πs

∫ ∞

a

∫ ∞

a
y′−1(e−

log(yy′/a2)2

2s + e−
log(yy′)2

2s )dy′dy

+
∫ a

1

∫ ∞

1
|p1(y, y′, s)|2

dy′

y′2
dy

y
+
∫ ∞

1

∫ a

1
|p1(y, y′, s)|2

dy′

y′2
dy

y

=
e−s/2

4πs

(∫ ∞

a

∫ ∞

a
y′−1e−

log(yy′/a2)2

2s dy′dy +
∫ ∞

1

∫ ∞

1
y′−1e−

log(yy′)2
2s dy′dy

+
∫ a

1

∫ ∞

1
y′−1e−

log(y/y′)2
2s dy′dy +

∫ a

1

∫ ∞

1
y′−1e−

log(y/y′)2
2s dydy′

)
. (2.11)

The fact that both integrals in the third line in equation (2.11) are finite follows from:∫ ∞

a

∫ ∞

a
y′−1e−

log(yy′/a2)2

2s dy′dy ≤
∫ ∞

a
e−

log(y/a)2

4s

∫ ∞

a
y′−1e−

log(y′/a)2

4s dy′dy

=

(∫ ∞

log(a)
e−

u2

4s eudu

)(∫ ∞

log(a)
e−

u′2
4s du′

)
<∞. (2.12)

The finiteness of the fourth line of equation (2.11) follows from a similar argument as in equation
(2.12).
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The estimate of the Hilbert Schmidt norm of the other operators follows in the same way. This
finishes the proof of the trace class property. Now, let us compute the trace:

Tr(e−t∆a,0 − e−t∆1,0) =
∫ ∞

1
(pa(y, y, t)− p1(y, y, t))

dy

y2

= −
∫ a

1
p1(y, y, t)

dy

y2
+
∫ ∞

a
(pa(y, y, t)− p1(y, y, t))

dy

y2

= − e
−t/4
√

4πt

∫ a

1
(1− e−(log(y2))2/4t)

dy

y
+
e−t/4√

4πt

∫ ∞

a
(e−(log(y2))2/4t − e−(log(y2)−log(a2))2/4t)

dy

y

=
e−t/4√

4πt

{
− log(a) +

∫ ∞

1
e−(log(y))2/tdy

y
−
∫ ∞

a
e−(log(y/a))2/tdy

y

}
= − e

−t/4
√

4πt
log(a),

where the two integrals in the last line cancel after the change of variables v = y/a in the latest
one and noticing that dy/y is invariant under such change. If we consider e−t∆a,0 − e−t∆1,0 as an
operator acting on L2([a,∞), y−2dy) we have that

Tr(e−t∆a,0 − e−t∆1,0) =
∫ ∞

a
(pa(y, y, t)− p1(y, y, t))

dy

y2
= − e

−t/4
√

4πt

∫ a

1
e−(log(y))2/tdy

y
.

This finishes the proof of the Proposition.

Remark 2.7. The trace of e−t∆a,0−e−t∆1,0 as an operator on L2([a,∞), y−2dy) has an asymptotic
expansion for small values of t. This follows from Proposition 2.6 and the fact that Erf (x) has an
expansion for x� 1. Taking into account only the first term we have that Erf (x) =

√
π

2 +O(x−1),
as x→∞ from which we infer that:

Tr(e−t∆a,0 − e−t∆1,0)L2([a,∞),y−2dy) = −1
4

+O(
√
t) as t→ 0.

Remark 2.8. Let us study now the case when the manifold M can be decomposed as M = M0∪Za
with a ≥ 1 and we want to compare the operators e−t∆g and e−t∆1,0. In this case we could consider
the operator e−t∆1,0 acting on L2(M,dAg) in the way explained in subsection 1.5.2. However it is
more convenient and accurate to consider the extended space:

L2(M,dAg)⊕ L2([1, a], y−2dy) = L2(M0, dAg)⊕ L2
0(Za)⊕ L2([a,∞), y−2dy)⊕ L2([1, a], y−2dy)

= L2(M0, dAg)⊕ L2
0(Za)⊕ L2([1,∞), y−2dy) (2.13)

where L2
0(Za) is the space defined in equation (1.2). Then the operators e−t∆g and e−t∆1,0 act on

the extended space by being null where they are not defined. In this way we have that

Tr(e−t∆g−e−t∆1,0)L2(M)⊕L2([1,a]) = Tr(e−t∆g−e−t∆a,0)L2(M) +Tr(e−t∆a,0−e−t∆1,0)L2([1,∞)) (2.14)

where for the sake of simplicity we dropped the densities in the notation of the L2 spaces.
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Chapter 3

Expansion of relative heat traces for
small time

In Chapter 2 we proved that under suitable conditions T−1e−t∆hT −e−t∆g is a trace class operator.
In this chapter we prove the existence of an expansion in t up to order two of the relative heat trace
Tr(T−1e−t∆hT − e−t∆g) for small time. Our goal was to prove existence of a complete asymptotic
expansion of the relative heat trace as t → 0 under the same conditions of Theorem 2.3; namely
that ϕ and its derivatives up to order two decay as y−1 at infinity. We were not able to completely
realize this, but we did identify a condition for the existence of the expansion up to order two which
is enough to define the relative determinant of the pair (∆h,∆g). We give an explicit sufficient rate
of decay, but we expect this could be improved.

3.1 Expansion of the trace of T−1e−t∆hT − e−t∆g

Let (M, g) be as in Chapter 1. For the sake of simplicity we assume that (M, g) has only one cusp
Z ∼= [1,∞) with the hyperbolic metric on it. We take g as the background metric on M . Let h be
a conformal transformation of the metric g by a conformal factor e2ϕ. To start with, let us assume
that for (y, x) ∈ Z, the functions ϕ(y, x) and ∆gϕ(y, x) are O(y−1) as y →∞.

Let e−t∆h and e−t∆g denote the heat operators corresponding to the Laplacians ∆h and ∆g,
respectively. Let Kh(z, z′, t) and Kg(z, z′, t) denote their kernels.

As before, for α > 1 let

Mα := M0 ∪ ([1, α]× S1), Z ′α = [1, α]× S1, Zα = [α,∞)× S1.

We start by constructing the kernel of a parametrix Qh(z, w, t) for the heat operator associated
to ∆h by patching together suitable heat kernels over Z ′3 = M3 ∩Z = [1, 3]×S1. The construction
is similar to the one in Section 1.5.1. Let us consider the following kernels:

• K1,h(z, w, t): the heat kernel for ∆1,h on the complete cusp Z̃ = R+×S1, as was defined at
the end of Section 1.5.1.

• KZ,h(z, w, t): the heat kernel for ∆Z,h, the self-adjoint extension of the Laplacian on (Z, h)
obtained after imposing Dirichlet boundary conditions at {1} × S1. By equation (1.15) the
kernel KZ,h is given by K1,h+ph,D, where the term ph,D comes from the boundary condition.

26



• For the compact part we consider a closed manifold W containing M2 isometrically. Let ∆W,h

be the Laplacian on W and KW,h(z, w, t) be the kernel of the corresponding heat operator
e−t∆W .

For any two constants 1 < b < c, let φ(b,c) be a smooth function on [1,∞)×S1 that is constant
in the second variable, is non-decreasing in the first variable, and satisfies φ(b,c)(y, x) = 0 for y ≤ b,
and φ(b,c)(y, x) = 1 for y ≥ c. Let ψ2 = φ( 5

4
,2) and ψ1 = 1−ψ2; then {ψ1, ψ2} is a partition of unity

on [1, 2] × S1. Let ϕ2 = φ(1, 9
8
) and ϕ1 = 1 − φ( 5

2
,3), so that ϕi = 1 on the support of ψi, i = 1, 2.

Extend these functions to M in the obvious way. Note that |∇hϕi(z)| � 1 and |∆hϕi(z)| � 1, for
i = 1, 2. For this choice of functions we have that:

• supp∇hϕ1 ⊆ [52 , 3]× S1, and, suppψ1 ⊆M2.

• supp∇hϕ2 ⊆ [1, 9
8 ]× S1, and, suppψ2 ⊆ [54 ,∞)× S1.

Now, we put:

Qh(z, w, t) = ϕ1(z)KW,h(z, w, t)ψ1(w) + ϕ2(z)K1,h(z, w, t)ψ2(w). (3.1)

From the properties of the heat kernels, KW,h and K1,h, and the construction of the gluing functions
it is easy to see that Qh(z, w, t) → δw−z, as t→ 0.

Lemma 3.1. There exist constants C ≥ 0 and c > 0 such that∣∣∣∣( ∂

∂t
+ ∆h,z

)
Qh(z, w, t)

∣∣∣∣ ≤ Ce−c/t, for 0 < t ≤ 1.

Proof. Here we use the estimates for the heat kernels given in Chapter 1 (see (1.12), (1.13) and
(1.14) as well as Theorem 2.3) and the equivalence of the geodesic distances dg and dh.

(
∂

∂t
+∆h,z)Qh(z, w, t) = ϕ1(z)((

∂

∂t
+∆h,z)KW,h)ψ1(w)+(2〈∇ϕ1,∇zKW,h〉+(∆hϕ1)KW,h)ψ1(w)

+ ϕ2(z)((
∂

∂t
+ ∆h,z)K1,h)ψ2(w) + (2〈∇ϕ2,∇zK1,h〉+ (∆hϕ2)K1,h)ψ2(w).

Because the kernels satisfy the heat equation it follows that:∣∣∣∣( ∂

∂t
+ ∆h,z

)
Qh(z, w, t)

∣∣∣∣� |(〈∇ϕ1,∇zKW,h〉+ (∆hϕ1)KW,h)ψ1(w)|

+ |(〈∇ϕ2,∇zK1,h〉+ (∆hϕ2)K1,h)ψ2(w)|.

Note that
∣∣( ∂
∂t + ∆h,z

)
Qh(z, w, t)

∣∣ has compact support in z. Let us consider the following
terms separately:

S1 := |(〈∇ϕ1,∇zKW,h〉+ (∆hϕ1)KW,h)ψ1(w)|,
S2 := |(〈∇ϕ2,∇zK1,h〉+ (∆hϕ2)K1,h)ψ2(w)|.

Notice that S1 6= 0 if z ∈ supp∇ϕ1 and w ∈ suppψ1. In this case dg(z, w) ≥ log((5/2)/2)) =
log(5/4) > 0, so that taking c′1 = c log(5/4) we obtain:

S1 ≤ (|∇ϕ1(z)| |∇zKW,h(z, w, t)|+ |∆hϕ1(z)| |KW,h(z, w, t)|)χsuppψ1(w)

� t−3/2e−cd
2
g(z,w)/t + t−1e−cd

2
g(z,w)/t

≤ (t−3/2 + t−1)e−c
′
1/t � e−c

′
1/2t,
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since (t−3/2 + t−1)e−c
′
1/2t is bounded for 0 < t ≤ 1. In the same way as above, note that S2 6= 0

if z ∈ supp∇ϕ2 and w = (v, u) ∈ suppψ2 = [54 ,∞) × S1. In this case dg(z, w) ≥ log(v/(9/8)) ≥
log(10/9) > 0. Therefore:

S2 ≤ (|∇ϕ2(z)| |∇zK1,h(z, w, t)|+ |∆hϕ2(z))| |K1,h(z, w, t)|)χsuppψ2(w)

� (i(z)i(w))1/2t−3/2e−cd
2
g(z,w)/t + (i(z)i(w))1/2t−1e−cd

2
g(z,w)/t

� v1/2e−c(log(8v/9))2/2t(t−3/2 + t−1)e−c
′
2/2t �

√
ve−c(log(8v/9))2/2e−c

′
2/4t � e−c

′
2/4t,

where c′2 = c log(10/9). This finishes the proof of the lemma.

Remark 3.2. Note that (
∂

∂t
+ ∆h,z

)
Qh(z, w, t)

∣∣∣∣
w=z

= 0.

In order that the expression above does not vanish we need that

dg(z, w) ≥ min{log(5/4), log(10/9)} > 0.

To see this, consider the following:(
∂

∂t
+ ∆h,z

)
Qh(z, w, t) = (2〈∇ϕ1(z),∇zKW,h(z, w, t)〉+ (∆hϕ1(z))KW,h(z, w, t))ψ1(w)

+ (2〈∇ϕ2(z),∇zK1,h(z, w, t)〉+ (∆hϕ2(z))K1,h(z, w, t))ψ2(w) = 0

unless the following conditions are satisfied:

• z ∈ supp∇ϕ1 ⊆ [52 , 3]× S1 and w ∈ suppψ1 ⊆M2. This implies that dg(z, w) ≥ log(5/4).

• z ∈ supp∇ϕ2 ⊆ [1, 9
8 ]× S1 and w ∈ suppψ2 ⊆ Z 5

4
. This implies that dg(z, w) ≥ log(10/9).

We now prove that in the expression for the trace we can exchange the heat kernel Kh for the
parametrix Qh built above.

Lemma 3.3. There exist constants C ≥ 0 and c3 > 0 such that, for any 0 < t ≤ 1:∫
M
|Qh(z, z, t)−Kh(z, z, t)|dAh(z) ≤ Ce−

c3
t .

Proof. Applying Duhamel’s principle (see equation (1.16)) to the heat kernelKh and the parametrix
Qh we infer:

Qh(z, z′, t)−Kh(z, z′, t) =
∫ t

0

∫
M
Kh(z, w, s)

(
∂

∂t
+ ∆h,w

)
Qh(w, z′, t− s) dAh(w) ds.

Using Remark 3.2 we have that:∫
M
|Qh(z, z, t)−Kh(z, z, t)|dAh(z)

≤
∫ t

0

∫
M

∫
M
|Kh(z, w, s)

(
∂

∂t
+ ∆h,w

)
Qh(w, z, t− s)| dAh(w) dAh(z) ds

=
∫ t

0

∫
M2

∫
[ 5
2
,3]×S1

· dAh(w) dAh(z) +
∫
Z 5

4

∫
[1, 9

8
]×S1

· dAh(w) dAh(z)

 ds.
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For the first integral in the right hand side we have:∫ t

0

∫
M2

∫
[ 5
2
,3]×S1

|Kh(z, w, s)
(
∂

∂t
+ ∆h,w

)
Qh(w, z, t− s)| dAh(w) dAh(z) ds

�
∫ t

0

∫
M2

∫
[ 5
2
,3]×S1

i(z)1/2s−1e−
c2
s e−

c′
t−s dAh(w) dAh(z) ds

�
(∫ t

0
e−

c2
2s e−

c′
t−s ds

)(∫ 3

5
2

dv

v2

)
� te−

c3
t � e−

c3
t

since 0 < t ≤ 1.
For the second integral, recall that suppψ2 ⊂ [5/4,∞)× S1. Thus:∫ t

0

∫
Z 5

4

∫
[1, 9

8
]×S1

|Kh(z, w, s)
(
∂

∂t
+ ∆h,w

)
Qh(w, z, t− s)| dAh(w) dAh(z) ds

�
∫ t

0

∫
Z 5

4

∫
[1, 9

8
]×S1

i(z)1/2s−1e−
c
s
d2g(z,w)e−

c1
t−s dAh(w) dAh(z) ds

�
∫ t

0

∫ ∞

5
4

∫ 9
8

1
y1/2e−

c2
2s e−

c1
t−s

dv

v2

dy

y2
ds

≤
(∫ t

0
e−

c2
2s e−

c1
t−s ds

)(∫ ∞

5
4

y−3/2 dy

)(∫ ∞

1

dv

v2

)
≤ te−

c3
t ≤ e−

c3
t .

Therefore we obtain that:∫
M
|Qh(z, z, t)−Kh(z, z, t)|dAh(z) � e−

c3
t .

Thus in the heat trace we can replace Kh(z, w, t) by Qh(z, w, t). Since the function e−2ϕ is
bounded, the derivatives of the gluing functions ϕ1 and ϕ2 with respect to the metric g satisfy
the same bounds as the derivatives with respect to the metric h. Then we can perform the same
construction for the kernel Kg(z, w, t) to replace it by Qg(z, w, t). Let us state the main result of
this chapter:

Theorem 3.4. Let ϕ|Z(z), ∆gϕ|Z(z), and, |∇gϕ|g|Z(z) with z = (y, x), be O(y−32) as y → ∞.
Then there is an expansion of the relative heat trace:

Tr(T−1e−t∆hT − e−t∆g) = a0t
−1 + a1 + a2t+O(t2), as t→ 0. (3.2)

Proof. First of all recall that the kernel of T−1e−t∆hT is given by eϕ(z)Kh(z, z′, t)eϕ(z′). Then the
relative heat trace is given by:

Tr(T−1e−t∆hT − e−t∆g) =
∫
M

(Kh(z, z, t)e2ϕ(z) −Kg(z, z, t)) dAg(z).
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Let us start by using Lemma 3.3:∣∣∣∣∫
M

(Kh(z, z, t)e2ϕ(z) −Kg(z, z, t))dAg(z)−
∫
M

(Qh(z, z, t)e2ϕ(z) −Qg(z, z, t))dAg(z)
∣∣∣∣

=
∣∣∣∣∫
M

(Kh(z, z, t)−Qh(z, z, t))e2ϕ(z) −Kg(z, z, t) +Qg(z, z, t)dAg(z)
∣∣∣∣

≤
∫
M
|Qh(z, z, t)−Kh(z, z, t)|dAh(z) +

∫
M
|Qg(z, z, t)−Kg(z, z, t)|dAg(z) � e−c3/t.

Therefore in order to prove Theorem 3.4 we can replace the heat kernels by the corresponding
parametrices. Let a > 1 and let us decompose the integral as a sum:∫

M
Qh(z, z, t)e2ϕ(z) −Qg(z, z, t)dAg(z) = I0(t) + I1(t) + I2(t),

where

I0(t) =
∫
M
ψ1(z)(KW,h(z, z, t)e2ϕ(z) −KW,g(z, z, t)) dAg(z), (3.3)

I1(t) =
∫

[1,a]×S1

ψ2(z)(K1,h(z, z, t)e2ϕ(z) −K1,g(z, z, t)) dAg(z) and, (3.4)

I2(t) =
∫
Za

ψ2(z)(K1,h(z, z, t)e2ϕ(z) −K1,g(z, z, t)) dAg(z). (3.5)

For I0(t) we use the asymptotic expansion of the kernels KW,h and KW,g:

KW,h(z, z, t) = t−1
N∑
k=0

ak(h, z)tk+RN (h, z, t) and KW,g(z, z, t) = t−1
N∑
k=0

ak(g, z)tk+RN (g, z, t).

For any N the remainder terms RN (h, z, t) and RN (g, z, t) are uniformly bounded in a compact set
therefore they can be integrated. In this way the integral I0 has a complete asymptotic expansion
in t:

I0(t) =
∫
M2

ψ1(z)(KW,h(z, z, t)e2ϕ(z) −KW,g(z, z, t)) dAg(z)

= t−1
N∑
k=0

∫
M2

ψ1(z)(ak(h, z)e2ϕ(z) − ak(g, z))tk dAg(z)

+
∫
M2

ψ1(z)(RN (h, z, t)e2ϕ(z) −RN (g, z, t)) dAg(z).

The other two integrals can be rewritten as traces of the operators:

A(t) = MχZ′a
Mψ2(T

−1e−t∆1,hT − e−t∆1,g) and B(t) = MχZa
Mψ2(T

−1e−t∆1,hT − e−t∆1,g),

respectively. We will prove in Proposition 3.5 that for 0 < t ≤ 1, taking a = t−1/9 and assuming
that ϕ((y, x)) and ∆gϕ((y, x)) are O(y−1) as y →∞, Tr(A(t)) = I1(t) has a complete asymptotic
expansion of the form:

I1(t) ∼ t−1
∞∑
j=0

bjt
j .
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For B(t), also taking a = t−1/9 and under the conditions that ϕ((y, x)), |∇gϕ((y, x))| and
∆gϕ((y, x)) are O(y−32) as y →∞, we will prove in Proposition 3.7 that |Tr(B(t))| � t2. The idea
in this part is to assume that ϕ((y, x)) decays at infinity as y−k and to use Duhamel’s principle in
a similar way as in the proof of Theorem 2.3 to estimate the trace norm of B(t). The condition
k = 32 comes from requiring that I2(t) = Tr(B(t)) = O(t2).

Proving these two facts will complete the proof of the theorem.

Proposition 3.5. Under the conditions of Theorem 2.3 we have that there is a complete asymptotic
expansion as t→ 0 of the integral I1(t) in equation (3.4), with a = t−1/9. The asymptotic expansion
has the following form:∫

[1,a]×S1

ψ2(z)(K1,h(z, z, t)e2ϕ(z) −K1,g(z, z, t)) dAg(z) ∼ t−1
∞∑
j=0

bjt
j .

Proof. In order to deal with the integral∫ a

1

∫
S1

ψ2(z)(K1,h(z, z, t)e2ϕ(z) −K1,g(z, z, t)) dAg(z),

we first recall what K1,h and K1,g are. Recall that h was extended to the complete cusp Z̃ and
that K1,h(z, w, t) denotes the heat kernel for ∆h on Z̃. The idea of the proof of Proposition 3.5 is
to use the local asymptotic expansion of the corresponding heat kernels and find a uniform bound
on the remainder term.

Let us consider the universal covering of Z̃: Let Ẑ = R+ × R, π : Ẑ → Z̃ be the quotient
function, and, Γ = Z be the group of deck transformations. The metric h on Z̃ induces a metric ĥ
on Ẑ, that has the same curvature properties as h. In addition, ĥ = e2ϕ̂ĝ0, where ĝ0 is the lift of g0
to Ẑ and is precisely the hyperbolic metric on H, and the function ϕ̂ is a lift of ϕ̃ (ϕ̃ the extension
of ϕ to Z̃), ϕ̂ = ϕ̃ ◦ π. It follows that ĥ and ĝ0 are quasi-isometric. Therefore by Proposition
2.1 in [32] it follows that the injectivity radius of ĥ is bounded from below by a positive constant
independent of the point. In this way (Ẑ, ĥ) has bounded geometry. Let kh denote the heat kernel
for ∆ĥ in Ẑ. Then from the results in [11] we have the following estimate:

kh(z̃, w̃, t) ≤ Ct−1e−
cd2(ez, ew)

t ,

where z̃, w̃ ∈ Ẑ and 0 < t ≤ 1. Before we continue we need the following lemma:

Lemma 3.6. K1,h(z, w, t) =
∑

m∈Z kh(z̃, w̃ +m, t), where π(z̃) = z, π(w̃) = w.

Proof. Let H(z, w, t) :=
∑

m∈Z kh(z̃, w̃ + m, t). In order to prove this lemma, it suffices to prove
that H satisfies the following defining properties of the heat kernel:

1.
(
∂
∂t + ∆h

)
H(z, w, t) = 0

2. H(z, w, t) → δw−z, as t→ 0.

3. H(z, w, t) = H(w, z, t).

31



First equation:(
∂

∂t
+ ∆h

)
H(z, w, t) =

(
∂

∂t
+ ∆ĥ

)∑
m∈Z

kh(z, w +m, t) =
∑
m∈Z

(
∂

∂t
+ ∆ĥ

)
kh(z, w +m, t) = 0

where we can exchange the series and the derivatives because of the uniform convergence of the
series in C2. Since (Ẑ, h) is complete and with bounded curvature, the heat kernel kh and its
derivatives satisfy the estimates given in [11]. The uniform convergence in C2 follows from these
estimates.

Second equation: Let F ⊂ Ẑ be a fundamental domain for Γ = Z, let f ∈ C∞c , and let f̃ be a
lift of f , so that f ◦ π = f̃ , then∫
Z
H(z, w, t)f(w)dAh(w) =

∫
F

∑
m∈Z

kh(z̃, w̃ +m, t)f̃(w̃)dAĥ(w̃) =
∑
m∈Z

∫
F+m

kh(z̃, w̃, t)f̃(w̃)dAĥ(w̃)

=
∫
Ẑ
kh(z̃, w̃, t)f̃(w̃)dAĥ(w̃) → f̃(z̃) = f(z), as t→ 0.

Third equation: Let z̃, w̃ ∈ Ẑ be fixed. Then,

H(z, w, t) =
∑
m∈Z

kh(z̃, w̃ +m, t) =
∑
m∈Z

kh(w̃ +m, z̃, t) =
∑
m∈Z

kh(w̃, z̃ +m, t) = H(w, z, t).

Continuing with the proof of Proposition 3.5, notice that we can perform the above construction
for the kernel K1,g. Then the integral I1(t) becomes:

I1(t) =
∫ a

1

∫
S1

ψ2(z)(K1,h(z, z, t)e2ϕ(z) −K1,g(z, z, t)) dAg(z)

=
∫ a

1

∫ 2π

0
ψ̃2(z̃)

(∑
m∈Z

kh(z̃, z̃ +m, t)e2ϕ̂(ez+m) −
∑
l∈Z

kg(z̃, z̃ + l, t)

)
dAĝ(z̃),

because F = R+× [0, 2π] is a fundamental domain for Γ and the domain corresponding to Z ′a in F
is [1, a]× [0, 2π]. Thus

I1(t) =
∫ a

1

∫ 2π

0

∑
m∈Z

ψ̃2(z̃)(kh(z̃, z̃ +m, t)e2ϕ̂(ez+m) − kg(z̃, z̃ +m, t)) dAĝ(z̃)

=
∫ a

1

∫ 2π

0
ψ̃2(z̃)(kh(z̃, z̃, t)e2ϕ̂(ez) − kg(z̃, z̃, t)) dAĝ(z̃)

+
∫ a

1

∫ 2π

0
ψ̃2(z̃)

∑
m6=0

(kh(z̃, z̃ +m, t)e2ϕ̂(ez+m) − kg(z̃, z̃ +m, t)) dAĝ(z̃). (3.6)

We will start by estimating the second term on the right hand side of (3.6). Note that ϕ̂ = ϕ̃◦π
implies that the function e2ϕ̂ is bounded. This, the fact that the metrics ĥ and ĝ are quasi-isometric
and the estimate on the heat kernel kh imply that:∑

m6=0

kh(z̃, z̃ +m, t)e2ϕ̂(ez+m) � t−1
∑
m6=0

exp

(
−
c1d

2
ĝ(z̃, z̃ +m)

t

)
. (3.7)
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From the explicit expression of the hyperbolic distance in the upper half plane, we have that

dĝ((x̃, ỹ), (x̃+m, ỹ)) = cosh−1

(
1 +

m2

2ỹ2

)
.

Since for s ≥ 1 we have that cosh−1(s) = log(s+
√
s2 − 1), we obtain

dĝ((x̃, ỹ), (x̃+m, ỹ)) = log

(
1 +

m2

2ỹ2
+
|m|
ỹ

√
m2

4ỹ2
+ 1

)
≥ log

(
1 +

m2

2ỹ2

)
.

For ỹ = y ∈ [1, a], we have 1
2a2 ≤ 1

2y2
≤ 1 and log(1 + m2

2ey2 ) ≥ log(1 + 1
2a2 ). Thus

e−
c1d2

ĝ(ez,ez+m)

t ≤ e−
c1 log(1+1/2a2)2

2t e−
c1 log(1+m2/2ey2)2

2t .

For 0 ≤ s ≤ 1, we have that log(1 + s) ≥ s2/2. Applying this to s = (2a2)−1, we obtain

∑
m6=0

e−
c1d2

ĝ(ez,ez+m)

t ≤ e−
c1

26a8t

∑
m6=0

e−
c1 log(1+ m2

2ey2 )2

2t ≤ e−
c2
a8t

∑
m6=0

e−
c1 log(1+ m2

2a2 )2

2t , (3.8)

with c2 a positive constant. In order to estimate the series, we compare it with an integral using

the fact that e−
c1 log(1+ m2

2a2 )2

2t is a decreasing function of m. We proceed in the following way:

∑
m6=0

e−
c1 log(1+ m2

2a2 )2

2t �
∫ ∞

1
e−

c1 log(1+ u2

2a2 )2

2t du ≤
∫ √

2a

1
e−

c1 log(1+ u2

2a2 )2

2t du+
∫ ∞

√
2a
e−

2c1 log( u√
2a

)2

t du

� (
√

2a− 1) + a

∫ ∞

0
e−

2c1v2

t evdv � a(1 +
√
tect) � a, (3.9)

where for one integral we used that e−x ≤ 1, for all x ≥ 0, and for the other integral we used the
change of variables v = log( u√

2a
); in the middle step we used that for x ≥ 1, log(x+ 1)2 ≥ log(x)2.

Now we can use (3.7) and the bounds above to estimate the second term in the right hand side of
equation (3.6):∫ a

1

∫ 2π

0
|ψ̃2(z̃)

∑
m6=0

(kh(z̃, z̃ +m, t)e2ϕ̂(ez+m) − kg(z̃, z̃ +m, t))| dAĝ(z̃)

� t−1

∫ a

1

∫ 2π

0
|ψ̃2(z̃)

∑
m6=0

e−
c1d2

ĝ(ez,ez+m)

t |dAĝ(z̃)

� t−1e−
c2
a8t

∫ a

1

∑
m6=0

e−
c1 log(1+ m2

2a2 )2

2t
dy

y2
� t−1ae−

c2
a8t .

Now taking a = t−1/9 we get a8t = t1/9. Therefore e−
c2
a8t = e

− c2

t1/9 and we obtain:∫ a

1

∫ 2π

0
|ψ̃2(z̃)

∑
m6=0

(kh(z̃, z̃ +m, t)e2ϕ̂(ez+m) − kg(z̃, z̃ +m, t))| dAĝ(z̃)

� t−1t−1/9e
− c2

t1/9 � t−10/9e
− c2

t1/9 � e
− c2

2t1/9 .
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Let us see now what happens with the first term in the right hand side of equation (3.6):∫ a

1

∫ 2π

0
ψ̃2(z̃)(kh(z̃, z̃, t)e2ϕ̂(ez) − kg(z̃, z̃, t))dAĝ(z̃)

=
∫ t−1/9

1

∫ 2π

0
ψ̃2(z̃)(kh(z̃, z̃, t)e2ϕ̂(ez) − kg(z̃, z̃, t))dAĝ(z̃).

The kernel kh(z̃, z̃, t), as well as kg(z̃, z̃, t), has a uniform local asymptotic expansion as t → 0
of the usual form:

kh(z̃, z̃, t) = t−1
N∑
k=0

ak(ĥ, z̃)tk +RN (ĥ, z̃, t) and kg(z̃, z̃, t) = t−1
N∑
k=0

ak(ĝ, z̃)tk +RN (ĝ, z̃, t)

for any N ≥ 0. For the remainder terms there is a constant C > 0 such that

|RN (ĥ, z̃, t)| ≤ CtN and |RN (ĝ, z̃, t)| ≤ CtN (3.10)

independent of z̃. Replacing the corresponding expansion in the previous integral we obtain:

∫ t−1/9

1

∫ 2π

0
ψ̃2(z̃)t−1

(
N∑
k=0

ak(ĥ, z̃)e2ϕ̂(ez) − ak(ĝ, z̃)

)
tkdAĝ(z̃)

+
∫ t−1/9

1

∫ 2π

0
ψ̃t−1/9,1(z̃)(RN (ĥ, z̃, t)e2ϕ̂(ez) −RN (ĝ, z̃, t))dAĝ(z̃).

The first term can be integrated without any problem to obtain:∫ t−1/9

1

∫ 2π

0
ψ̃2(z̃)t−1

(
N∑
k=0

ak(ĥ, z̃)e2ϕ̂(ez) − ak(ĝ, z̃)

)
tkdAĝ(z̃) = t−1

N∑
k=0

bkt
k.

As for the remainder terms, using equation (3.10) we have:∣∣∣∣∣
∫ t−1/9

1

∫ 2π

0
ψ̃2(z̃)(RN (ĥ, z̃, t)e2ϕ̂(ez) −RN (ĝ, z̃, t))dAĝ(z̃)

∣∣∣∣∣
≤
∫ t−1/9

1

∫ 2π

0
(|RN (ĥ, z̃, t)e2ϕ̂(ez)|+ |RN (ĝ, z̃, t)|)dAĝ(z̃) � tN

∫ t−1/9

1

dy

y2
� tN ,

since 0 < t ≤ 1. This finishes the proof of Proposition 3.5.

Proposition 3.7. Under the conditions of Theorem 3.4, for 0 < t ≤ 1, and for a = t−1/9 we have
that:

|Tr(MχZa
Mψ2(T

−1e−t∆1,hT − e−t∆1,g))| � t2.

Proof. To prove Proposition 3.7 we want to apply Duhamel’s principle on the cusp Z. However the
heat operators involved in the trace correspond to Laplacians in the complete cusp Z̃. Therefore
in order to make the computations easier we first replace them by the heat operators e−t∆Z,h and
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e−t∆Z,g described at the beginning of this section and apply Duhamel’s principle to e−t∆Z,h and
e−t∆Z,g . We have to take into account more terms, but we avoid the problem of the singularity at
y = 0. Using equations (1.10) and (1.15) to replace the respective kernels we obtain:

Tr(MχZa
Mψ2(T

−1e−t∆1,hT − e−t∆1,g)) = Tr(MχZa
Mψ2(T

−1e−t∆Z,hT − e−t∆Z,g))

−
∫
M
χZa(z)ψ2(z)(ph,D(z, z, t)e2ϕ(z) − p1,D(z, z, t))dAg(z).

From equation (1.11) and supp(ψ2) = Z5/4 it follows that:

∣∣∣∣∫
M
ψ2(z)(ph,D(z, z, t)e2ϕ(z) − p1,D(z, z, t))dAg(z)

∣∣∣∣� ∫
Z 5

4

t−1y(e−
cdh(z,∂Z)

t + e−
c′dg(z,∂Z)

t )dAg(z)

�
∫ ∞

5
4

t−1ye−
c1 log(y)2

t
dy

y2
≤ t−1e−

c1 log(5/4)2

2t

∫ ∞

5
4

y−1e−
c1 log(y)2

2t dy � e−
c1 log(5/4)2

4t .

We now continue with the estimation of the trace of the operator MχZa
Mψ2(T

−1e−t∆Z,hT −
e−t∆Z,g). The kernel of T−1e−t∆Z,hT − e−t∆Z,g as operator on L2(M,dAg) is given by

eϕ(z)KZ,h(z, w, t)eϕ(w) −KZ,g(z, w, t),

that for z = w takes the form KZ,h(z, z, t)e2ϕ(z) −KZ,g(z, z, t). From the usual form of Duhamel’s
principle in equation (1.16) we infer:

KZ,h(z, w, t)e2ϕ(w) −KZ,g(z, w, t) =∫ t

0

∫
M
KZ,h(z, z′, s)e2ϕ(z′)(∆Z,g −∆Z,h)KZ,g(z′, w, t− s)dAg(z′) ds.

Then taking z = w in the equation above and using the conformal transformation of Laplacians we
obtain:

Tr(MχZa
Mψ2(T

−1e−t∆Z,hT − e−t∆Z,g)) =
∫
Za

ψ2(z)(KZ,h(z, z, t)e2ϕ(z) −KZ,g(z, z, t))dAg(z)

=
∫
Za

ψ2(z)
∫ t

0

∫
Z
KZ,h(z, z′, s)e2ϕ(z′)(1− e−2ϕ(z′))∆Z,gKZ,g(z′, z, t− s)dAg(z′) ds dAg(z).

Remember that supp(ψ2) = Z5/4 and let us first assume that a > 5/4, so 4a/5 > 1. Split the
integral as the sum of the following terms:

1. J1 =
∫ t
0

∫
Za

∫
[1, 4a

5
]×S1 · dAg(z′)dAg(z)ds.

2. J2 =
∫ t/2
0

∫
Za

∫
Z 4a

5

· dAg(z′)dAg(z)ds.

3. J3 =
∫ t
t/2

∫
Za

∫
Z 4a

5

· dAg(z′)dAg(z)ds.
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Let k ≥ 1 and suppose that ϕ(y, x) = O(y−k) as y → ∞. Note that according to Lemma (2.2),
ψ = 1− e−2ϕ and ψ̃ = e2ϕ − 1 have the same order as ϕ. Then for J1 we have:

J1 =
∫ t

0

∫
Za

∫
[1, 4a

5
]×S1

ψ2(z)(K1,h(z, z′, s) + ph,D(z, z′, s))e2ϕ(z′)

ψ(z′)∆Z,g(K1,g(z′, z, t− s) + p1,D(z′, z, t− s)) dAg(z′) dAg(z) ds.

Note that on this region a ≤ y <∞ and 1 ≤ y′ ≤ 4a
5 . Thus 1 < 5

4 ≤
y
y′ , so log(y/y′) is bounded

away from 0. Using the

|J1| �
∫ t

0

∫ ∞

a

∫ 4a
5

1
s−1(t− s)−2y(e−

c log(y/y′)2
s + e−

c log(y)2

s e−
c log(y′)2

s )

y′−k+1(e−
c log(y/y′)2

t−s + e−
c log(y)2

t−s e−
c log(y′)2

t−s )
dy′

y′2
dy

y2
ds

� at−2

∫ t/2

0

∫ ∞

a
s−1y−1(e−

c log(5y/4a)2

s + e−
c log(y)2

s )dyds

+ at−1

∫ t

t/2

∫ ∞

a
(t− s)−2y−1(e−

c log(5y/4a)2

t−s + e−
c log(y)2

t−s )dyds.

Since y ≥ a > 5
4 we have an estimate in s:

e−
c log(5y/4a)2

s + e−
c log(y)2

s ≤ e−
c log(5/4)2

2s (e−
c log(5y/4a)2

2s + e−
c log(y)2

2s )

and
∫∞
a y−1e−

c log(5y/4a)2

2s dy =
∫∞

5
4
v−1e−

c log(v)2

2s dv �
√
s. We get a similar estimate for t − s, and

together these give:

|J1| � at−2

∫ t/2

0
s−1e−

c log(5/4)2

2s

∫ ∞

5
4

y−1e−
c log(y)2

2s dyds

+ at−1

∫ t

t/2
(t− s)−2e

− c log(5/4)2

2(t−s)

∫ ∞

5
4

y−1e
− c log(y)2

2(t−s) dyds

� at−2

∫ t/2

0
s−1/2e−

c log(5/4)2

2s ds+ at−1

∫ t

t/2
(t− s)−3/2e

− c log(5/4)2

2(t−s) ds

� at−2e−
c log(5/4)2

4t

∫ t/2

0
ds+ at−1e−

c log(5/4)2

2t

∫ t

t/2
ds� a(t−1 + 1)ec1/t � ae−

c′
t ,

for some constants c1, c′ > 0, where we also used that for any b > 0 the function f(s) = s−1e−
b
s � 1

on R+.
For J2, let us use that the variable z′ ∈ Z 4a

5
to multiply the inside the integral by the charac-

teristic function χZ 4a
5

(z′). Then, denoting again 1− e2ϕ by ψ we have:

J2 =
∫ t/2

0

∫
Za

∫
Z 4a

5

ψ2(z)KZ,h(z, z′, s)e2ϕ(z′)

χZ 4a
5

(z′)ψ(z′)∆Z,gKZ,g(z′, z, t− s)dAg(z′)dAg(z)ds.
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Writing this integral in terms of traces of the corresponding operators we infer:

|J2| =

∣∣∣∣∣
∫ t/2

0
Tr(Mψ2e

−s∆Z,hMe2ϕMχZ 4a
5

Mψ∆Z,ge
−(t−s)∆Z,g)ds

∣∣∣∣∣
�
∫ t/2

0
‖MχZ 4a

5

Mψ∆Z,ge
−(t−s)∆Z,g‖1ds =

∫ t

t/2
‖MχZ 4a

5

Mψ∆Z,ge
−s∆Z,g‖1ds.

To obtain a bound, we use a similar method to the one used in Chapter 2 to prove the trace class
property. Let us use the auxiliary function φ defined by equation (2.6). Then for the trace norm
of the operator MχZ 4a

5

Mψ∆Z,ge
−s∆Z,g we have that:

‖MχZ 4a
5

Mψ∆Z,ge
−s∆Z,g‖1 ≤ ‖MχZ 4a

5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2‖Mφe
−s/2∆Z,g‖2.

The terms in the right hand side can be estimated as follows:

‖MχZ 4a
5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2
2 =

∫
Z

∫
Z
|χZ 4a

5

(z)ψ(z)∆Z,gKZ,g(z, z′, s/2)φ(z′)−1|2dAg(z′)dAg(z)

=
∫
Z 4a

5

∫
Z
|ψ(z)∆Z,gKZ,g(z, z′, s/2)φ(z′)−1|2dAg(z′)dAg(z)

�
∫ ∞

4a
5

∫ ∞

1
y−2kyy′s−4(e−

4c
s

(log(y/y′))2 + e−
4c
s

(log(yy′))2)y′
dy′

y′2
dy

y2

= s−4

∫ ∞

4a
5

∫ ∞

1
y−2k−1e−

4c
s

(log(y′/y))2 dy′ dy + s−4

∫ ∞

4a
5

∫ ∞

1
y−2k−1e−

4c
s

(log(y′))2 dy′ dy.

For the first integral in the right hand side, let us fix y and let us make the change of variables
v = log(y′/y), y′ = yev, dy′ = yevdv. Then we obtain:

s−4

∫ ∞

4a
5

∫ ∞

− log(y)
y−2keve

−4c
s
v2 dv dy � s−4e

s
4c
√
s

∫ ∞

4a
5

y−2k

∫ ∞

−∞
e−v

2
dv dy � s−7/2a−2k+1e

s
4c .

For the second integral, we obtain in a similar way:

s−4

∫ ∞

4a
5

∫ ∞

1
y−2k−1e−

4c
s

(log(y′))2 dy′ dy � s−7/2e
s
4ca−2k.

Thus,
‖MχZ 4a

5

Mψ∆Z,ge
−s/2∆Z,gM−1

φ ‖2 � s−7/4(a−k + a−k+1/2).

For the operator Mφe
−s/2∆Z,g , using equation (2.9) we have:

‖Mφe
−s/2∆Z,g‖2

2 �
∫ ∞

1

∫ ∞

1
s−2y−1yy′(e−

2c
s

(log(y/y′))2 + e−
2c
s

(log(yy′))2)2
dy′

y′2
dy

y2

�
∫ ∞

1

∫ ∞

1
s−2y′−1y−2(e−

4c
s

(log(y/y′))2 + e−
4c
s

(log(yy′))2)dy′dy

� s−2√ses/4c + s−2

∫ ∞

1
y′−1e−

4c
s

(log(y′))2dy′ � s−3/2(1 + es/4c).
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Since s ≤ t ≤ 1 we have that ‖Mφe
−s/2∆Z,g‖2 � s−3/4. It follows that:

|J2| �
∫ t

t/2
s−7/4(a−k + a−k+1/2) · s−3/4ds� a−k+1/2t−3/2.

Now, for J3 we have:

J3 =
∫ t

t/2

∫
Za

∫
Z 4a

5

ψ2(z)KZ,h(z, z′, s)e2ϕ(z′)χZ 4a
5

(z′)

(∆Z,g −∆Z,h)z′KZ,g(z′, z, t− s)dAg(z′)dAg(z)ds.

Remember that ∆Z,g −∆Z,h = (e2ϕ(z′) − 1)∆Z,h = ψ̃(z′)∆Z,h, so the previous equation becomes:

J3 =
∫ t

t/2

∫
Za

∫
Z 4a

5

ψ2(z)KZ,h(z, z′, s)χZ 4a
5

(z′)ψ̃(z′)(∆Z,hKZ,g(z′, z, t− s))e−2ϕ(z)dAh(z′)dAh(z)ds

=
∫ t

t/2

∫
Za

∫
Z 4a

5

ψ2(z)(∆Z,hKZ,h(z, z′, s)ψ̃(z′))χZ 4a
5

(z′)KZ,g(z′, z, t− s)e−2ϕ(z)dAh(z′)dAh(z)ds

=
∫ t

t/2

∫
Za

∫
Z 4a

5

ψ2(z)e−2ϕ(z)KZ,g(z, z′, t− s)χZ 4a
5

(z′)(∆Z,hψ̃(z′)KZ,h(z′, z, s))dAh(z′)dAh(z)ds.

Writing this in terms of the corresponding operators we obtain:

J3 =
∫ t

t/2
Tr(Mψ2Me−2ϕe−(t−s)∆Z,gMχZ 4a

5

∆Z,hM eψe−s∆Z,h)ds,

|J3| ≤
∫ t

t/2
‖MχZ 4a

5

∆Z,hM eψe−s∆Z,h‖1 ds.

We are now working in L2(M,dAh) therefore to simplify notation we do not write the subindex h
in the trace and the Hilbert-Schmidt norms.

‖MχZ 4a
5

∆Z,hM eψe−s∆Z,h‖1 ≤ ‖MχZ 4a
5

∆Z,hM eψe−s∆Z,h/2Mφ−1‖2‖Mφe
−s∆Z,h/2‖2

The kernel of the operatorMχZ 4a
5

∆Z,hM eψe−s∆Z,h/2Mφ−1 is χZ 4a
5

(z′)(∆Z,h(ψ̃(z′)KZ,h(z′, z, s))φ(z)−1.

Using the decay assumptions on ϕ and its derivatives, we have that:

|∆Z,h(ψ̃KZ,h)|2 � |ψ̃∆Z,hKZ,h|2 + |KZ,h∆Z,hψ̃|2 + 2|〈∇ψ̃,∇KZ,h〉|2

� y′−2k+1y(s−4 + s−2 + s−3)(e−
c
s
(log(y/y′))2 + e−

c
s
(log(yy′))2)2.

Since for 0 < s < 1 we have that s−4 + s−2 + s−3 � s−4, we can estimate the Hilbert-Schmidt
norm by:

‖MχZ 4a
5

∆Z,hM eψe−s∆Z,h/2Mφ−1‖2
2 =

∫
Z

∫
Z
|χZ 4a

5

(z′)ψ̃(z′)∆h,z′Kh(z′, z, s/2)φ(z)−1|2dAh(z′)dAh(z)

� s−4

∫ ∞

1

∫ ∞

4a
5

y2 y′−2k+1(e−
2c
s

(log(y/y′))2 + e−
2c
s

(log(yy′))2)2
dy′

y′2
dy

y2

� s−4

∫ ∞

4a
5

∫ ∞

1
(y′−2k−1e−

4c
s

(log(y/y′))2 + y′−2k−1e−
4c
s

(log(y))2) dy dy′

� (a−2k+1 + a−2k)s−7/2es/4c � a−2k+1s−7/2.
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We finally obtain:
‖M−1

φ e−s/2∆Z,hψ̃∆h‖2 ≤ a−k+1/2s−7/4.

For the operator e−s/2∆Z,hMφ, the proof goes in the same way as for the operator Mφe
−s/2∆Z,g .

At the end we obtain:

‖e−s∆Z,hMφ‖2 =
(∫

Z

∫
Z
|KZ,h(z, z′, s/2)φ(z′)|2dAh(z′)dAh(z)

)1/2

� s−3/4.

In this way:

|J3| �
∫ t

t/2
a−k+1/2s−7/4s−3/4ds� a−k+1/2t−3/2.

Therefore for 0 < t < 1, we obtain:

|Tr(Mψ2(T
−1e−t∆Z,hT − e−t∆Z,g))| � a−k+1/2t−3/2 + ae−c

′/t � a−k+1/2t−3/2.

We know that t−3/2 ≥ 1, thus for a = t−1/9, the condition a−k+1/2t−3/2 ≤ tα, for α ≥ 1, becomes:
k
9 −

1
18 −

3
2 ≥ α, thus, k ≥ 9α + 14. Then, for α = 2, we need k ≥ 32; here is where 32 comes in.

If 1 ≤ a ≤ 5
4 , then 1 ≤ t−1/9 ≤ 5

4 and
(

4
5

)9 ≤ t ≤ 1. Since Tr(MχZa
Mψ2(T

−1e−t∆1,hT − e−t∆1,g)) is
continuous on [

(
4
5

)9
, 1] the statement of the Proposition also holds when 1 ≤ a ≤ 5

4 . This finishes
the proof of the Proposition.

Remark 3.8. In the proof of Proposition 3.5 we took a = t−1/9, but what we need is that a8t = tκ

for some κ > 0. So we could take a = t−β with 0 < β < 1/8. This will allow us to weaken the decay
of the function ϕ at infinity in Proposition 3.7. However, the decay still must be greater than 29
for this to work. Also note that we can obtain a higher order expansion if we require higher decay
at infinity of the functions ϕ and ∆gϕ.

To compute the coefficients in the expansion (3.2) remember that the coefficients in the local
expansion of the heat kernels are given by universal functions. Thus we have that:

Tr(T−1e−t∆hT − e−t∆g) =
∫
M
Kh(z, z, t)e2ϕ(z) −Kg(z, z, t) dAg(z)

=
∫
M
ψt−1/9,1(z)t

−1
2∑
`=0

(a`(h, z)e2ϕ(z) − a`(g, z))t` dAg(z) +O(t2)

=
∫
M

2t−1/9

ψt−1/9,1(z)
(
t−1

4π
(e2ϕ(z) − 1) +

1
12π

(K(h, z)e2ϕ(z) −K(g, z))

+ t(a2(h, z)e2ϕ(z) − a2(g, z))
)
dAg(z) +O(t2),

where K(g, z) and K(h, z) denote the Gaussian curvatures corresponding to each metric. So, as
t→ 0 we have:
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Tr(T−1e−t∆hT − e−t∆g)

=
∫
M

{
t−1

4π
(e2ϕ(z) − 1) +

1
12π

(K(h, z)e2ϕ(z) −K(g, z)) + t(a2(h, z)e2ϕ(z) − a2(g, z))
}
dAg(z)

+O(t2 + e−c/t
1/9

+ e−c
′/t)

=
t−1

4π

∫
M
e2ϕ(z) − 1 dAg(z) +

1
12π

∫
M
K(h, z)e2ϕ(z) −K(g, z) dAg(z)

+ t

∫
M
a2(h, z)e2ϕ(z) − a2(g, z) dAg(z) +O(t2).

From Gauss-Bonnet’s theorem follows that the constant term in the expansion vanishes. There-
fore we finally obtain:

Tr(T−1e−t∆hT − e−t∆g) =
t−1

4π
(Ah −Ag) + t

(∫
M
a2(h, z)dAh(z)−

∫
M
a2(g, z)dAg(z)

)
+O(t2), as t→ 0, (3.11)

where Ah and Ag denote the area of M with respect to the metrics h and g, respectively.

3.2 Expansion for other relative heat traces.

In this section we consider surfaces with several cusps. Let (M, g) be a Riemannian surface of genus
p with m cusps. So, (M, g) admits a decomposition of the form M = M0 ∪ Za1 ∪ · · ·Zam , where
ai ≥ 1 for 1 ≤ i ≤ m, M0 is a compact surface with boundary and the metric in each cusp Zai is
hyperbolic. We assume that ai ≥ 1 but this is not really necessary, it can be ai > 0. Let ∆̄a,0 be
the direct sum ⊕mj=1∆aj ,0 of the Dirichlet Laplacians ∆aj ,0 defined in Chapter 1. Proposition 6.4 in
[28] establishes that the operator e−t∆g − e−t∆̄a,0 is trace class. For its trace there is the following
asymptotic expansion as t→ 0:

Tr(e−t∆g − e−t∆̄a,0) =
Ag
4π
t−1 + (

γm

2
+

m∑
j=1

log(aj))
1√
4πt

+
m log(t)
2
√

4πt
+
χ(M)

6
+
m

4
+O(

√
t) (3.12)

A close examination of the proof of equation (3.12) in [28] shows that the term
∑m

j=1
log(aj)√

4πt
can

be replaced by e−t/4
∑m

j=1
log(aj)√

4πt
.

In Chapter 5 it will be convenient to consider the relative determinant of the pair (∆g, ∆̄1,0).
To that purpose we consider the trace Tr(e−t∆g − e−t∆̄1,0). Recall that in Remark 2.8 we explained
that the trace is taken in an extended L2 space. From equation (2.13) follows that in this case the
extended space is given by

L2(M,dAg)⊕⊕mj=1L
2([1, aj ], y−2dy) = L2(M0, dAg)⊕⊕mj=1(L

2
0(Zaj )⊕ L2([1,∞), y−2dy)). (3.13)

Thus, using Proposition 2.6 and equations (2.14) and (3.12) we obtain the following asymptotic
expansion as t→ 0:

Tr(e−t∆g − e−t∆̄1,0) =
Ag
4π
t−1 +

γm

2
√

4πt
+
m log(t)
2
√

4πt
+
χ(M)

6
+
m

4
+O(

√
t). (3.14)
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This together with equation (3.11) gives:

Tr(T−1e−t∆hT − e−t∆̄1,0) =
Ah
4π
t−1 +

γm

2
1√
4πt

+
m log(t)
2
√

4πt
+
χ(M)

6
+
m

4
+O(

√
t). (3.15)

where the transformation T is the identity in the space ⊕mj=1L
2([1, aj ], y−2dy).
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Chapter 4

Polyakov’s formula for the relative
determinant, extremals

In [33] the authors proved that on compact surfaces, with and without boundary and under suitable
restrictions, the regularized determinant of the Laplace operator has an extremum. In this chapter
we discuss the generalization of the extremal property of determinants given by OPS to certain
cases of surfaces with asymptotically cusp ends using the relative determinant introduced by W.
Müller in [30]. We study the relative determinant as a function of the metric inside a conformal
class, considering non-compact deformations with good decay and proof Polyakov’s formula for the
relative determinant. Relative determinants on surfaces with cusps were studied by W. Müller in
[30], and by R. Lundelius in [26] in terms of “heights”.

4.1 Definition of the relative determinant

For the definition of the relative regularized determinant we borrow the definition from [30], as
it was recalled in Section 1.9. Let (M, g), h := e2ϕg where ϕ and its derivatives up to order two
have a suitable decay at infinity. We use the notation introduced in Chapter 1. As before we
consider positive Laplacians. Let us recall how the area element, the Laplace operator and the
Gaussian curvature change under conformal transformations: dAh = e2ϕdAg, ∆h = e−2ϕ∆g, and
Kh = e−2ϕ(∆gϕ+Kg). Since relative determinants on surfaces with cusps were already studied by
W. Müller in [30], here we restrict our attention to the definition and the properties of the following
relative determinants:

• det(∆h,∆g), and

• det(∆h,∆1,0).

In Chapter 2 we proved that the operators, T−1e−t∆hT−e−t∆g , e−t∆g−e−t∆1,0 and T−1e−t∆hT−
e−t∆1,0 are trace class, where T : L2(M,dAg) → L2(M,dAh), f 7→ e−ϕf . In Chapter 3 we proved
the corresponding asymptotic expansions of their traces as t→ 0. See equations (3.12) to (3.15).

Remember the condition for the existence of the expansion of the trace of T−1e−t∆hT − e−t∆g

for small values of t: the conformal factor ϕ|Z(y, x), as well as its derivatives up to second order,
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should decay as y−32, as y →∞. The expansion for this case is:

Tr(T−1e−t∆hT−e−t∆1,0) =
Ah
4π
t−1+

γm

2
1√
4πt

+
m log(t)
2
√

4πt
+

1
12π

∫
M
Kh dAh+

m

4
+O(

√
t) as t→ 0.

Let us take m = 1 and let us fix the notation:

a0 =
Ah
4π

a10 =
γ

4
√
π
, a11 =

1
4
√
π
, a2 =

χ(M)
6

+
1
4
.

For the asymptotic expansion of the relative heat trace for big t, the trace class property together
with the fact that σac(∆1,0) = [1/4,∞) and Lemma 2.22 in [30] give the existence of a constant
C1 > 0 such that

Tr(T−1e−t∆hT − e−t∆1,0) = 1 +O(e−C1t), as t→∞, (4.1)

where the value 1 in the right hand side comes from dim Ker∆h − dim Ker∆1,0 = 1 − 0 and the
trace is taken in L2(M,dAg).

Following [30], we see that the conditions of Theorem 3.4 suffice to define the relative determi-
nant of (∆h,∆1,0). We start by defining the relative zeta function as:

ζ(s;∆h,∆1,0) =
1

Γ(s)

∫ ∞

0
ts−1(Tr(T−1e−t∆hT − e−t∆1,0)− 1)dt, (4.2)

for Re(s) > 1. It follows from the asymptotic expansions (3.15) and (4.1) that the function
ζ(s;∆h,∆1,0) has a meromorphic continuation to the complex plane, which we denote again by ζ.
To see that there is a meromorhic extension and that it is regular at s = 0, consider

ζ(s;∆h,∆1,0) = ζ1(s) + ζ2(s)

=
1

Γ(s)

∫ 1

0
ts−1(Tr(T−1e−t∆hT − e−t∆1,0)− 1)dt+

1
Γ(s)

∫ ∞

1
ts−1(Tr(T−1e−t∆hT − e−t∆1,0)− 1)dt

=
1

Γ(s)

∫ 1

0
ts−1(a0t

−1 + (a10 + a11 log t)t−1/2 + a2 − 1 +O(
√
t))dt+

1
Γ(s)

∫ ∞

1
ts−1f(t)dt,

where f(t) = O(e−c1t), as t → ∞, thus the term 1
Γ(s)

∫∞
1 ts−1f(t)dt is analytic at s = 0. For

Re(s) > 1, we have that:

ζ1(s) =
1

Γ(s)

∫ 1

0
ts−1(a0t

−1 + (a10 + a11 log t)t−1/2 + a2 − 1 + ϑ(t))dt

=
1

Γ(s)

(
a0

s− 1
+

a10

s− 1/2
− a11

(s− 1/2)2
+
a2 − 1
s

+ ϑ1(s)
)
,

where ϑ(t) = O(
√
t)) and ϑ1(s) is a function that is analytic at s = 0.

Therefore, we can define the regularized relative determinant of (∆h,∆0) as:

det(∆h,∆0) = exp
(
− d

ds
ζ(s;∆h,∆0)

∣∣∣
s=0

)
. (4.3)
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4.2 Polyakov’s formula

The main tool to study extremal properties of determinants is Polyakov’s formula. This formula
relates the determinant of a given metric to the determinant of a conformal perturbation of it. In
this section we establish a variational formula for ζ(s;∆h,∆1,0) that implies Polyakov’s formula for
relative determinants. The formula obtained is the same as the one for regularized determinants
on compact surfaces given in [33]. The proof of the variational formula and Polyakov’s formula
follows the main lines of the corresponding proof in [33] but we focus in the technical details that
allow us to perform each step in the main proof.

In order to study the variation of the relative regularized determinant and the variation of the
respective relative zeta function at the metric h we need to consider the following set of functions:

F32 := {ψ ∈ C∞(M)| ψ(z) and ∆gψ(z) are O(i(z)−32) as y = i(z) →∞}.

Remember that if ψ(z) = O(i(z)−32) as y = i(z) →∞, so are 1− e2ψ(z) and 1− e−2ψ(z) and their
derivatives up to second order. Now, for ψ ∈ F32 and u ∈ R, let us consider:

hu := e2(ϕ+uψ)g = e2uψh

∆u := ∆hu = e−2uψ∆h, dAu := dAhu = e2uψdAh,

Tu : L2(M,dAu) → L2(M,dAh), f 7→ feuψ.

Tu is an unitary map, since for f ∈ L2(M,dAu),
∫
M |Tuf |2dAh =

∫
M |f |2dAu. Let us consider the

following functional:

F : F32 → C, Fs(ϕ+ uψ) := ζ(s;∆u,∆1,0)

=
1

Γ(s)

∫ ∞

0
ts−1(Tr(Tue−t∆uT−1

u − Te−t∆1,0T−1)− 1)dt,

where the trace is taken in L2(M,dAh). The variation of ζ at ϕ in the direction of ψ is defined as:

δζ

δψ
(s;∆h,∆1,0) :=

∂

∂u
Fs(ϕ+ uψ)

∣∣∣∣
u=0

Before we proceed with the computation of the derivative in the equation above, we need the
following lemmas:

Lemma 4.1.
d

du
Tr(Tue−t∆uT−1

u − Te−t∆1,0T−1)
∣∣∣∣
u=0

= −tTr(∆̇he
−t∆h),

where ∆̇h ≡ ∂
∂u ∆u

∣∣
u=0

= −2ψ∆h.

Proof. Let Hu = Tu∆uT
−1
u . Then Hu is a family of self-adjoint operators acting on L2(M,dAh).

Note that e−tHu = Tue
−t∆uT−1

u . It is also clear that:

d

du
Tr(Tue−t∆uT−1

u − Te−t∆1,0T−1) = Tr
(
d

du
e−tHu

)
.

Let u1, u2 > 0, with u1 > u2. Let us apply Duhamel’s principle in terms of the operators:
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e−tHu1 − e−tHu2 =
∫ t

0

∂

∂s

(
e−sHu1e−(t−s)Hu2

)
ds

=
∫ t

0
−e−sHu1Hu1e

−(t−s)Hu2 + e−sHu1Hu2e
−(t−s)Hu2 ds.

Dividing by u1 − u2 the previous equation becomes:

e−tHu1 − e−tHu2

u1 − u2
= −

∫ t

0
e−sHu1

(
Hu1 −Hu2

u1 − u2

)
e−(t−s)Hu2 ds,

and letting u2 → u1, we obtain:

d

du
e−tHu

∣∣∣∣
u=u1

= −
∫ t

0
e−sHu1

(
d

du
Hu

∣∣∣∣
u=u1

)
e−(t−s)Hu1 ds.

Therefore we get:

d

du
Tr(Tue−t∆uT−1

u − Te−t∆1,0T−1) = −
∫ t

0
Tr(e−sHu

(
d

du
Hu

)
e−(t−s)Hu) ds

= −
∫ t

0
Tr(
(
d

du
Hu

)
e−tHu) ds = −tTr

(
Ḣue

−tHu

)
. (4.4)

Let us compute the derivative Ḣu:

d

du
Hu =

(
d

du
Tu

)
∆uT

−1
u + Tu

(
d

du
∆u

)
T−1
u + Tu∆u

(
d

du
T−1
u

)
= ψTu∆uT

−1
u + Tu

(
d

du
∆u

)
T−1
u − Tu∆uψT

−1
u .

Thus we get

Tr
(
Ḣue

−tHu

)
= Tr

(
ψTu∆ue

−t∆uT−1
u

)
+ Tr

(
Tu∆̇ue

−t∆uT−1
u

)
− Tr

(
Tu∆uψe

−t∆uT−1
u

)
= Tr

(
ψ∆ue

−t∆u
)

+ Tr
(
∆̇ue

−t∆u

)
− Tr

(
∆uψe

−t∆u
)
.

From the rate of decay assumed for ψ and ∆gψ we have that the operators ψe−t∆u and ∆uψe
−t∆u

are trace class; the proof follows in the same way as the proofs in Chapter 2. Now we use the fact
that for a bounded operator A and a trace class operator B we have Tr(AB) = Tr(BA). Using
that e−t∆u∆u is bounded for all t > 0 we obtain:

Tr
(
∆uψe

−t∆u
)

= Tr
(
e−

t
2
∆u∆uψe

− t
2
∆u

)
= Tr

(
ψe−t∆u∆u

)
= Tr

(
ψ∆ue

−t∆u
)
.

In this way we get:

Tr
(
Ḣue

−tHu

)
= Tr

(
∆̇ue

−t∆u

)
= −2 Tr

(
ψ∆ue

−t∆u
)
.

Taking u = 0 in the previous equation together with equation (4.4) implies the statement of the
lemma.
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Lemma 4.2. For any t > 0, the operator ψe−t∆h is trace class.

Proof. Let us use the semigroup property to decompose the operator ψe−t∆h as

ψe−t∆h = ψe−(t/2)∆hMφ−1Mφe
−(t/2)∆h ,

where φ is a smooth function on M such that φ(y, x) = y−1/2, for (y, x) ∈ Z and where Mφ denotes
the multiplication operator by φ. Each of the operators ψe−t/2∆hMφ−1 and Mφe

−t/2∆h is Hilbert-
Schmidt. The proof of the Hilbert-Schmidt property for Mφe

−t/2∆h is the same as the proof for
Mφe

−t/2∆g in Chapter 2. For the operator ψe−t/2∆hMφ−1 the proof is similar. We just need to
verify that ∫

M

∫
M
|ψ(z)Kh(z, z′, t/2)φ(z′)−1|2dAh(z)dAh(z′) <∞.

The integrals obtained after estimating the heat kernel are of the same kind as those obtained in
Chapter 2.

In this way we have for the variation of the relative zeta function that:

δζ

δψ
(s;∆h,∆1,0) =

1
Γ(s)

∫ ∞

0
ts−1 d

du
(Tr(Tue−t∆uT−1

u − Te−t∆1,0T−1)− 1)
∣∣∣∣
u=0

dt

=
−1
Γ(s)

∫ ∞

0
ts Tr((−2ψ∆he

−t∆h)dt =
−2
Γ(s)

∫ ∞

0
ts
∂

∂t
Tr(ψe−t∆h)dt,

where the last equality follows from:

∂

∂t
(Trψe−t∆h) =

∫
M
ψ(z)

∂

∂t
Kh(z, z, t)dAh(z)

= −
∫
M
ψ(z)∆hKh(z, z, t)dAh(z) = −Tr(ψ∆he

−t∆h).

Remember that in equation (4.2), the constant 1 stands for dim Ker∆h−dim Ker∆1,0. In this case
we have dim Ker ∆u − dim Ker∆1,0 = 1, i.e. it will be independent of u. Now,

∂

∂t
ψe−t∆h =

∂

∂t
ψ(e−t∆h − PKer(∆h)).

Therefore
δζ

δψ
(s;∆h,∆1,0) =

−2
Γ(s)

∫ ∞

0
ts
∂

∂t
Tr(ψ(e−t∆h − PKer(∆h)))dt. (4.5)

Before we proceed with the computation of the above integral, we need the following lemmas:

Lemma 4.3. There exists a constant c > 0 such that:

Tr(ψ(e−t∆h − PKer(∆h))) = O(e−ct), as t→∞.
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Proof. Let t > 1 and let us write:

ψ(e−t∆h − PKer(∆h)) = ψe−
1
2
∆h(e−(t− 1

2
)∆h − PKer(∆h)),

where we used that e−
1
2
∆hPKer(∆h) = PKer(∆h). Now, by Lemma 4.2 we have that ψe−

1
2
∆h is trace

class. On the other hand, using the spectral theorem we have for f ∈ L2(M,dAh):

e−t∆hf − PKer(∆h)f = e−t(∆h−PKer(∆h))f.

Note that σess(∆h) = [1/4,∞) implies that 0 is an isolated eigenvalue of ∆h and σ(∆h−PKer(∆h)) ⊆
[c1,∞) for some c1 ∈ (0, 1/4]. Thus ‖e−t(∆h−PKer(∆h))‖L2(M,h) ≤ e−c1t for any t > 0. If t > 1,
t− 1

2 > 0 and for the trace we obtain:

|Tr(ψ(e−t∆h − PKer(∆h)))| ≤ ‖ψe−
1
2
∆h(e−(t− 1

2
)∆h − PKer(∆h))‖1

≤ ‖ψe−
1
2
∆h‖1‖e−(t− 1

2
)(∆h−PKer(∆h))‖L2(M,h) � e−c1t.

This proves Lemma 4.3.

Lemma 4.4. For 0 < t ≤ 1 the trace of the operator ψ(e−t∆h − PKer(∆h)) has the following
expansion:

Tr(ψ(e−t∆h − PKer(∆h))) =
∫
M
ψ(z)

(
1

4πt
+
Kh(z)
12π

− 1
Ah

)
dAh +O(t)

as t→ 0.

Proof. In order to prove Lemma 4.4 we use a method similar to the one used in Section 3.1 to prove
the existence of the expansion of the relative heat trace Tr(e−t∆h − e−t∆g) for small t. We start by
considering the parametrix kernel Qh(z, z′, t) defined by equation (3.1):

Qh(z, w, t) = ϕ1(z)KW,h(z, w, t)ψ1(w) + ϕ2(z)K1,h(z, w, t)ψ2(w),

where the functions ϕi and ψi, i = 1, 2, are defined in Section 3.1. Lemma 3.3 gives a constant
c3 > 0 that allows us to replace the heat kernel Kh(z, z′, t) by Qh(z, z′, t):

Tr(ψ(e−t∆h − PKer(∆h))) =
∫
M
ψ(z)(Kh(z, z, t)−

1
Ah

)dAh(z)

∣∣∣∣∫
M
ψ(z)(Kh(z, z, t)−

1
Ah

)dAh(z)−
∫
M
ψ(z)(Qh(z, z, t)−

1
Ah

)dAh(z)
∣∣∣∣

�
∫
M
|Kh(z, z, t)−Qh(z, z, t)|dAh(z) = O(e−c3/t).

With this we can restrict our attention to
∫
M ψ(z)(Qh(z, z, t) − 1

Ah
)dAh(z) and split the integral

as the sum of the following two terms:

L1(t) =
∫
M2

ψ(z)ψ1(z)(KW,h(z, z, t)−
1
Ah

)dAh(z)

L2(t) =
∫
Z 5

4

ψ(z)ψ2(z)(K1,h(z, z, t)−
1
Ah

)dAh(z).
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For L1(t) we use the asymptotic expansion of the kernel KW,h(z, z, t) on the compact manifold W
to obtain:

L1(t) =
∫
M2

ψ(z)ψ1(z)(KW,h(z, z, t)−
1
Ah

)dAh(z)

=
∫
M2

ψ(z)ψ1(z)
(

1
4πt

+
Kh(z)
12π

− 1
Ah

+R1(z, t)
)
dAh(z). (4.6)

For L2(t), we consider the same construction as in the proof of Proposition 3.5. Let us summarize
the idea. For the details see the proof of Proposition 3.5. We first extend the metric h to a metric
h̃ on the complete cusp Z̃ = (0,∞) × S1 and then we lift h̃ to a metric ĥ on the universal cover
Ẑ = R+×R of the complete cusp Z̃. We also lift the functions ψ and ψ2 to functions on Ẑ satisfying
ψ̂ = ψ̃ ◦ π and ψ̂2 = ψ̃2 ◦ π. By Lemma 3.6 we have that

K1,h(z, w, t) =
∑
m∈Z

kh(z̃, w̃ +m, t),

where π(z̃) = z and π(w̃) = w. We also have that F = R+ × [0, 2π] is a fundamental domain for
the the group of deck transformations Γ = Z. Now, let a > 5/4 and let us split the integral L2(t)
as the sum L2 = J1(t) + J2(t) + J3(t), where the Ji, i = 1, 2, 3, are given by:

J1(t) =
∫ ∞

5
4

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)(kh(z̃, z̃, t)−

1
Ah

)dAĥ(z̃),

J2(t) =
∫ a

5
4

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)

∑
m6=0

kh(z̃, z̃ +m, t)dAĥ(z̃),

J3(t) =
∫ ∞

a

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)

∑
m6=0

kh(z̃, z̃ +m, t)dAĥ(z̃).

For J1 we use the local asymptotic expansion of the heat kernel kh(z̃, z̃, t):

J1(t) =
∫ ∞

5
4

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)

(
1

4πt
+
Kĥ(z̃)
12π

− 1
Ah

+R1,1(z̃, t)
)
dAĥ(z̃) (4.7)

We know that |R1,1(z̃, t)| = O(t), uniformly in z̃, see [10].
For J2(t) we use the same kind of estimates as in the proof of Proposition 3.5. We use namely

that the metric ĥ is quasi-isometric to the hyperbolic metric in the upper half plane. Therefore the
heat kernel kh satisfies the estimate:

kh(z̃, w̃, t) � t−1e−
c1dĝ(ez, ew)

t ,

where dĝ is the hyperbolic distance. Thus the series can be estimated in the same way as in equation
(3.8). Then using equation (3.9) we obtain:

J2(t) �
∫ a

5
4

y−32e−
c2
a8t

∑
m6=0

e−
c1 log(1+ m2

2a2 )2

2t
dy

y2

� e−
c2
a8t

∫ a

5
4

y−32

∫ ∞

1
e−

c1 log(1+ u2

2a2 )2

2t du
dy

y2
� ae−

c2
a8t . (4.8)
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Now, for J3 we have:

J3(t) =
∫ ∞

a

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)

∑
m6=0

kh(z̃, z̃ +m, t)dAĥ(z̃)

≤
∫
Za

ψ(z)ψ2(z)K1,h(z, z, t)dAh(z) �
∫ ∞

a
t−1y−32y

dy

y2
= t−1

∫ ∞

a
y−33dy � t−1a−32. (4.9)

As in Chapter 3, let us take a = t−1/9. Then putting equations (4.6) (4.7) (4.8) and (4.9) together
we obtain:

Tr(ψ(e−t∆h − PKer(∆h))) =
∫
M
ψ(z)(Kh(z, z, t)−

1
Ah

)dAh(z)

=
∫
M2

ψ(z)ψ1(z)
(

1
4πt

+
Kh(z)
12π

− 1
Ah

+R1(z, t)
)
dAh(z)

+
∫ ∞

5
4

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)

(
1

4πt
+
Kĥ(z̃)
12π

− 1
Ah

+R1,1(z̃, t)
)
dAĥ(z̃) +O(t2),

where O(t2) is clearly independent of z. Now we know that |R1(z, t)| � t and |R1,1(z̃, t)| � t
uniformly in z. Therefore we can make the following estimate:∫

M2

ψ(z)ψ1(z)R1(z, t)dAh(z) +
∫ ∞

5
4

∫ 2π

0
ψ̂(z̃)ψ̂2(z̃)R1,1(z̃, t)dAĥ(z̃) � t.

In this way we conclude that:

Tr(ψ(e−t∆h − PKer(∆h))) =
∫
M
ψ(z)

(
1

4πt
+
Kh(z)
12π

− 1
Ah

)
dAh(z) +O(t).

This finishes the proof of Lemma 4.4.

Going back to the variation of the relative zeta function, let us apply integration by parts in
equation (4.5) to obtain for Re(s) > 0:

δζ

δψ
(s;∆h,∆1,0) =

2s
Γ(s)

∫ ∞

0
ts−1 Tr(ψ(e−t∆h − PKer(∆h)))dt.

Let us now split this integral as:

δζ

δψ
(s;∆h,∆1,0) =

2s
Γ(s)

(∫ 1

0
ts−1 Tr(ψ(e−t∆h − PKer(∆h)))dt

+
∫ ∞

1
ts−1 Tr(ψ(e−t∆h − PKer(∆h)))dt

)
(4.10)

and let us study each term separately.
For the second term on the right hand side in equation (4.10) it follows from Lemma 4.3 that∫∞

1 ts−1 Tr(ψ(e−t∆h − PKer(∆h)))dt is an entire function of s. Since Γ(s)−1 ∼ s, we infer

d

ds

2s
Γ(s)

∫ ∞

1
ts−1 Tr(ψ(e−t∆h − PKer(∆h)))dt

∣∣∣
s=0

= 0
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For the first term on the right hand side of (4.10), we use Lemma 4.4. Thus, for Re(s) > 1 and
taking the corresponding extensions, we have:

δζ1
δψ

(s;∆h,∆1,0) =
2s

Γ(s)

∫ 1

0
ts−1

{∫
M
ψ(z)

(
1

4πt
+
Kh(z)
12π

− 1
Ah

)
dAh +O(t)

}
dt

=
2s

Γ(s)

{
1
4π

1
s− 1

∫
M
ψ(z)dAh +

1
s

∫
M
ψ(z)(

Kh(z)
12π

− 1
Ah

)dAh + analytic in s
}

=
2s

Γ(s)

{
1
s

∫
M
ψ(z)(

Kh(z)
12π

− 1
Ah

)dAh + analytic in s near 0
}
.

We consider now the derivative with respect to s at s = 0. We first take into account that
1

Γ(s) = s+O(s2). Then

d

ds

δζ1
δψ

(s;∆h,∆1,0)
∣∣∣
s=0

=
d

ds

s

Γ(s)

(
1
s

∫
M

2ψ(z)(
Kh(z)
12π

− 1
Ah

)dAh + analytic in s
) ∣∣∣

s=0

=
d

ds

1
Γ(s)

(∫
M

2ψ(z)(
Kϕ(z)
12π

− 1
Ah

)dAh + (ã1s+ . . . )
) ∣∣∣

s=0

=
∫
M

2ψ(z)
(
Kh(z)
12π

− 1
Ah

)
dAh.

Thus,

δ

δψ
log det(∆h,∆1,0) = − δ

δψ

d

ds
ζ(s;∆h,∆0)

∣∣
s=0

= −
∫
M

2ψ(z)
(
Kh(z)
12π

− 1
Ah

)
dAh

= −
∫
M

2ψ(z)
(

1
12π

e−2ϕ(∆gϕ+Kg)−
1
Ah

)
e2ϕdAg

= − 1
6π

∫
M
ψ(z)(∆gϕ+Kg)dAg +

1
Ah

∫
M

2ψe2ϕdAg

= − 1
6π

∫
M
ψ(∆gϕ+Kg) dAg +

δ

δψ
logAh.

Using that

1
2
∂

∂u

∫
M
|∇g(ϕ+ uψ)|2 dAg

∣∣∣∣
u=0

=
1
2
∂

∂u
〈dg(ϕ+ uψ), dg(ϕ+ uψ)〉

∣∣∣∣
u=0

=
1
2
(
〈d∗gdgϕ,ψ〉+ 〈ψ, d∗gdgϕ〉

)
= 〈ψ,∆gϕ〉,

∂

∂u

∫
M
Kg (ϕ+ uψ) dAg

∣∣∣∣
u=0

=
∫
M
Kg ψ dAg,

for all ψ in the domain of F we obtain:

log det(∆h,∆1,0) = − 1
12π

∫
M
|∇gϕ|2 dAg −

1
6π

∫
M
Kg ϕ dAg + logAh + C.

Notice that if ϕ = 0 we have ∆h = ∆g and from the previous equation we obtain C =
log det(∆g,∆1,0). In this way, we have proved Polyakov’s formula:
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Theorem 4.5. Let (M, g) be a surface with cusps and let h = e2ϕg be a conformal transformation
of g with ϕ ∈ F32. For the corresponding relative determinants we have the following formula:

log det(∆h,∆1,0) = − 1
12π

∫
M
|∇gϕ|2 dAg −

1
6π

∫
M
Kg ϕ dAg + logAh + log det(∆g,∆1,0). (4.11)

4.3 Extremal properties of the relative determinant

Following [33] we choose a functional Φ related to det(∆h,∆1,0) that is translation invariant and
such that maximizing log det(∆h,∆1,0) is the same as minimizing Φ for metrics of constant area.
It is convenient to choose the same functional as in [33]:

Φ(ϕ) =
1
2

∫
M
|∇gϕ|2 dAg +

∫
M
Kg ϕ dAg − πχ(M) log

(∫
M
e2ϕdAg

)
. (4.12)

It is translation invariant since for any constant a we have:

Φ(ϕ+ a) =
1
2

∫
M
|∇g(ϕ+ a)|2 dAg +

∫
M
Kg (ϕ+ a) dAg − πχ(M) log

(
e2a
∫
M
e2ϕdAg

)
= Φ(ϕ) + a

(∫
M
Kg dAg − 2πχ(M)

)
= Φ(ϕ).

From

−6π log det(∆h,∆1,0) =
1
2

∫
M
|∇gϕ|2 dAg +

∫
M
Kg ϕ dAg − 6π log(Ah)

= Φ(ϕ) + πχ(M) log
(∫

M
e2ϕdAg

)
− 6π log(Ah),

it follows that
Φ(ϕ) = −6π log det(∆h,∆1,0) + π(6− χ(M)) log(Ah).

Then, under the constraint Ah = 1 we have

Φ(ϕ) = −6π log det(∆h,∆1,0).

Notice that Φ is convex, if χ(M) ≤ 0. Therefore, Φ may attain a minimum.
Let us analyze the functional without requiring the constraint Ah = 1. Assume that χ(M) ≤ 0

and that ϕ minimizes Φ. If this happens we have that δΦ
δψ (ϕ) = 0, for all ψ ∈ F32.

δΦ
δψ

(ϕ) = −6π
δ

δψ
log det(∆h,∆1,0) + π(6− χ(M))

δ log(Ah)
δψ

=
∫
M
ψ(∆gϕ+Kg) dAg +−6π

δ log(Ah)
δψ

+ π(6− χ(M))
δ log(Ah)

δψ

=
∫
M
ψ(∆gϕ+Kg) dAg − πχ(M)

1
Ah

∫
M

2ψe2ϕdAg

=
∫
M
ψ[∆gϕ+Kg − πχ(M)

2
Ah

e2ϕ]dAg = 0.
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By elliptic regularity we have:

∆gϕ+Kg −
2πχ(M)
Ah

e2ϕ = 0,

thus
Kh = e−2ϕ(∆gϕ+Kg) =

2πχ(M)∫
M e2ϕdAg

.

The left hand side in the last equation is independent of x ∈ M . Therefore if ϕ minimizes Φ it
follows that Kh should be constant. If Ah = 2π(2p +m − 2), it follows that Kh ≡ −1, where p is
the genus of M and m is the number of cusps.

On the other hand if Kh ≡ constant we have that:

δΦ
δψ

(ϕ) =
∫
M
e2ϕψKhdAg −

πχ(M)
Ah

∫
M

2ψe2ϕdAg

=
∫
M

e2ϕψ

Ah
(KhAh − 2πχ(M))dAg = 0,

because of Gauss-Bonnet theorem and the constant value of the Gaussian curvature (KhAh =∫
M Kh dAh).

Remark 4.6. About the existence of a maximizer of the relative determinant, consider starting
with a metric τ on M of negative constant curvature Kτ = −1, and taking the conformal class

Conf1,32(τ) = {h|h = e2ψτ, with ψ ∈ F32 and Ah = 2π(2p+m− 2)}.

Since τ itself is the maximizer and τ ∈ Conf1,32(τ), the maximizer trivially exists inside the con-
formal class. However, if we start with a general metric g on M that is hyperbolic only in the cusp
Z, the differential equation for the curvature on the cusp will be:

−e2ϕ = ∆gϕ− 1.

This implies that in the cusp the function ϕ should decay as y−1, being in this case the function
ϕ outside the conformal class under consideration. Therefore in order to have a maximizer of the
relative determinant inside the conformal class we need to be able to define the determinant for
Laplacians whose metrics have conformal factors e2ϕ with ϕ having a decay of y−1 at infinity.
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Chapter 5

Boundedness and comparison

In this chapter we specialize to hyperbolic surfaces. We use Selberg’s trace formula and use the work
of L. Bers in [1] and of J. Jorgenson and R. Lundelius in [19] to prove that the relative determinant
tends to zero when one approaches the boundary of the the moduli space of hyperbolic surfaces of
fixed genus q with m cusps, Mq,m. This fact implies that the relative determinant is bounded as
a function on the moduli space.

Let (M, τ) be a Riemann surface of genus q with m cusps, where τ is a hyperbolic metric
of constant negative unitary curvature. To each element [τ ] ∈ Mq,m we associate the relative
determinant det(∆τ , ∆̄1,0). Let us recall the operator ∆̄1,0 defined in Section 1.1. Let us denote by
∆1,0 the self-adjoint extension of the operator

−y2 ∂
2

∂y2
: C∞c ((1,∞)) → L2([1,∞), y−2dy)

obtained after imposing Dirichlet boundary conditions at y = 1. Let ∆̄1,0 be the operator defined
as the direct sum ⊕mj=1∆1,0. The operator ∆̄1,0 acts on a subspace of ⊕mj=1L

2([1,∞), y−2
j dyj). If

(M, τ) can be decomposed asM = M0∪Za1∪· · ·Zam , with aj ≥ 1; then the difference e−t∆τ−e−∆̄1,0

is taken in the extended L2 space given by equation (3.13):

L2(M,dAτ )⊕⊕mj=1L
2([1, aj ], y−2dy) = L2(M0, dAτ )⊕⊕mj=1(L

2
0(Zaj )⊕ L2([1,∞), y−2dy)).

We want to see how det(∆τ , ∆̄1,0) behaves as we let the class [τ ] approach the ‘boundary’ of the
moduli space, where by ‘boundary’ we mean the set Mq,m \Mq,m. We assume surfaces connected,
although the limit M may not be connected. In order to prove our statements we use some of
the results of Jorgenson and Lundelius in [19]. Therein they define a determinant for Laplacians
on hyperbolic Riemann surfaces of finite volume, non-connected in general. We compare both
determinants. Part of the problem is to understand the kind of degenerations under consideration.

Let us start by recalling Selberg’s trace formula [39] as it is presented in [17], applied to the

function h(r) = e−t(
1
4
+r2) and its Fourier transform g(u) = 1√

4πt
e−

t
4 e−

u2

4t .
Let Γ be a Fuchsian group of the first kind. Let Γ \H = M be the associated surface, let ∆ be

the Laplacian on M and let λ2
j = 1

4 − r2j be the sequence of eigenvalues of ∆. We do not include
the contribution of the elliptic elements, because we consider groups without elliptic elements. In
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this case Selberg’s trace formula applied to the heat operator takes the form:

∑
j

e−t(
1
4
+r2j ) − 1

4π

∫
R
e−t(

1
4
+λ2)φ

′

φ
(
1
2

+ iλ)dλ+
e−

t
4

4
Tr(Φ(

1
2
))

=
Area(M)

4π

∫
R
e−t(

1
4
+λ2)λ tanh(πλ)dλ+

e−
t
4

√
4πt

∞∑
k=1

∑
{γ}Γ

`(γ)

2 sinh (k`(γ)2 )
e−

(k`(γ))2

4t

− m

π

∫
R
e−t(

1
4
+λ2) Γ

′

Γ
(1 + iλ)dλ+

m

4
e−

t
4 −m log(2)

e−
t
4

√
4πt

, (5.1)

where the sum runs over the primitive hyperbolic conjugacy classes γ with length `(γ), m is the
number of inequivalent cusps, Φ(s) is the scattering matrix and φ(s) = det Φ(s).

In the notation of [19] the hyperbolic heat trace HTrKM (t) and the regularized trace STrKM (t)
are given by

HTr KM (t) =
e−

t
4

√
16πt

∞∑
k=1

∑
{γ}Γ

`(γ)

sinh (k`(γ)2 )
e−

(k`(γ))2

4t

STrKM (t) = HTr KM (t) + Area(M)KH(t, 0),

where
KH(t, 0) =

1
4π

∫
R
e−t(

1
4
+λ2)λ tanh(πλ)dλ.

With the help of these expressions, the authors in [19] define a hyperbolic zeta function and a
hyperbolic determinant:

ζM,hyp(s) =
1

Γ(s)

∫ ∞

0
(STrKM (t)− d)ts−1dt and dethyp∆τ := exp(−ζ ′hyp(0)), (5.2)

where d is the number of connected components of M as well as the dimension of Ker(∆τ ).
We want to see now how the hyperbolic determinant dethyp∆τ relates to the relative determinant

(∆τ , ∆̄1,0). In order to do that let us first consider P (t) be the contribution of the parabolic elements
to the trace formula. We know that P (t) is given by

P (t) =
∫

R
e−t(

1
4
+r2) Γ

′

Γ
(1 + ir) dr,

and for which we have the following lemma:

Lemma 5.1. P (t) has the following asymptotic expansions:

P (t) ∼ −π
2

log(t)
t

+
√
π

2
√
t
(−B1 + γ − log(4) + π) + t−1/2

∞∑
j=1

bjt
j/2, as t→ 0,

where B1 is the first Bernoulli number and γ in this case denoted the Euler constant. As t → ∞,
we have that P (t) = O(e−

t
4 ).
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Proof. The proof of Lemma 5.1 easily follows from the formula

Γ′(z + 1)
Γ(z + 1)

=
1
2z

+ log(z)−
∫ ∞

0

(
1
2
− 1
u

+
1

eu − 1

)
du,

for Re(z) > 0, and from Stirling’s formula:

log(Γ(z)) = (z − 1
2
) log(z)− z +

1
2

log(2π) +
∞∑
r=1

(−1)r−1Br
2r(2r − 1)z2r−1

,

for | arg(z)| ≤ π
2 − θ, where Br is the r-th Bernoulli number.

The relation between the two determinants is given by the following proposition:

Proposition 5.2. For the relative determinant and the hyperbolic determinant we have the follow-
ing relation:

det(∆τ , ∆̄1,0) = Cdethyp(∆τ ),

where C is a constant that depends only on the number of cusps of M .

Proof. Equation (2.2) in [29] implies the following formula:

Tr(e−t∆τ − e−t∆̄a,0) =
∑
k

e−tλk − 1
4π

∫
R
e−t(

1
4
+r2)φ

′

φ
(
1
2

+ ir) dr

+
e−

t
4

4
(Tr(Φ(

1
2
)) +m) +

e−
t
4

√
4πt

m∑
j=1

log(aj), (5.3)

where the operator ∆̄a,0 was given in Definition 1.1. The equation above differs from equation
(2.2) in [29] by the term e−

t
4m/4 that comes from the boundary condition of the operator ∆̄a,0.

Equation (5.3) and Proposition 2.6 imply that

Tr(e−t∆τ − e−t∆̄1,0) =
∑
j

e−tλj − 1
4π

∫
R
e−t(

1
4
+r2)φ

′

φ
(
1
2

+ ir) dr +
e−

t
4

4
(Tr(Φ(

1
2
)) +m).

Combining this equation with Selberg’s trace formula in equation (5.1) gives

Tr(e−t∆τ − e−t∆̄1,0)− STrKM (t) = −m
π
P (t)− m log(2)√

4πt
e−

t
4 +

m

2
e−

t
4 , (5.4)

Let consider the following auxiliary function:

ξ(s) =
m

Γ(s)

∫ ∞

0

{
− 1
π
P (t) + e−

t
4

(
1
2
− log(2)√

4πt

)}
ts−1dt. (5.5)

From Lemma 5.1 it follows that the function ξ(s) has a meromorphic continuation to C that is
analytic at s = 0. In this way we have that ζ(s;∆τ , ∆̄1,0) = ζM,hyp(s) + ξ(s), thus,

det(∆τ , ∆̄1,0) = e−ξ
′(0)dethyp(∆τ ).

The constant C = e−ξ
′(0) depends only on the number of cusps of M .
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Now let us consider how to approach the “boundary” of the moduli space. For this we refer to
[1]. Let us recall the notation and the main theorem in this paper. Let G = SL(2,R)/{±I}. Every
Fuchsian group Γ satisfying the condition mes(G/Γ) ≤ µ has a signature σ = (p, n; ν1, · · · , νn),
where p and n are integers, the νj are integers or the symbol ∞, and p ≥ 0, n ≥ 0, 2 ≤ ν1 ≤ · · · ≤
νn ≤ ∞. Let

X(σ) = {[Γ] : [Γ] is a conjugacy class of Fuchsian groups Γ with signature σ}

The spaces X(σ), with their natural topologies, are metrizable. The topology of X(σ) can be
derived from the Teichmüller topology, see [1] for the details. The theorem that is of our interest
is the following:

Theorem 5.3. (L. Bers) The subset of X(σ) corresponding to groups Γ such that `(γ) ≥ 2+ ε > 2
for all hyperbolic γ ∈ Γ is compact.

This implies that the only possible deformations are obtained is by pinching smallest geodesics,
i.e., we can approach the boundary of the moduli space by deforming hyperbolic elements in the
group.

For example if we consider hyperbolic elements of the form
(

1 + ε b
0 1

1+ε

)
they degenerate to(

1 b
0 1

)
that is parabolic.

Recall now that the goal of this chapter is to prove the following theorem:

Theorem 5.4. det(∆τ , ∆̄1,0) tends to zero as [τ ] approaches the ‘boundary’ of the moduli space.

As we said before, we use the results in [19]. Thus let us describe their notation and explain
their results: Let {Ml}l∈I⊂Rp

+
be a degenerating family of hyperbolic Riemann surfaces of finite

volume (each surface Ml is assumed to have m cusps) with p pinching geodesics. This means that
for each l = (l1, · · · , lp) ∈ I the cutoff cylinders Clk,ε are embedded in Ml for every 0 < ε < 1/2. A
fundamental domain for the cutoff cylinder Clk,ε inside the fundamental domain for the complete
cylinder Clk in H would be

{ρ exp(iα) : 1 ≤ ρ < exp(lk), cot−1(ε/(2lk)) < α < π − cot−1(ε/(2lk))}.

From Gauss-Bonnet follows that the area of the surfaces is kept invariant during the deformation
i.e., Alj = Alk = c, c is a constant. Let DH(Γl) ⊂ H(Γl) be a set of representatives of primitive
non-conjugated hyperbolic classes corresponding to the geodesics that we are pinching. Proposition
2.1 in [19] yields that the degenerating heat trace for t > 0 equals:

DTrKMl
(t) =

e−t/4√
16πt

∑
DH(Γl)

∞∑
n=1

`(γ)
sinh(n`(γ)/2)

e−(n`(γ))2/4t.

Let M be the Riemann surface that is the limit of the degenerating family {Ml} then M is not
necessarily connected and the number of cusps of M is m+ 2p. Theorem 2.2 in [19] states that:

lim
l→0

(HTrKMl
(t)−DTrKMl

(t)) = HTrKM (t).

Their next step is to separate (in the trace) the small eigenvalues of the Laplacian on Ml because
some of them may degenerate to 0 (since the limit surface M may not be connected, the eigenvalue
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0 of the Laplacian on M has multiplicity equal to the number of connected components of M). Let
0 < α < 1/4 be such that α is not an eigenvalue of M and consider:

HTrKα
Ml

(t) := HTrKMl
(t)−

∑
λn,l≤α

e−λn,lt

From this definition we have that:

STrKα
Ml

(t) = HTrKα
Ml

(t) +AlKH(t, 0) = STrKMl
(t)−

∑
λj,l≤α

e−tλj,l , and

STrKα
M (t) = HTrKM (t)−

∑
λj(M)≤α

e−tλj(M) +AKH(t, 0),

where A denotes the area of the limit surface M that satisfies A = Al, for any l ∈ I.
Now for the given manifold M∗, Jorgenson and Lundelius consider the truncated hyperbolic

zeta function:

ζαhyp M∗(s) =
1

Γ(s)

∫ ∞

0
STrKα

M∗(t)t
s−1 dt =

1
Γ(s)

∫ ∞

0
(STrKM∗(t)− d∗)ts−1 dt−

∑
0<λj,∗≤α

λ−sj,∗ ,

where d∗ is the dimension of the kernel of ∆∗, and the corresponding determinant is:

log detαhyp∆M∗ = − ∂

∂s
ζαhyp M∗

∣∣∣∣
s=0

.

Let us see now how detαhyp∆Ml
relates to det(∆Ml

, ∆̄1,0). Notice that the operator ∆̄1,0 remains
constant through the degeneration and recall that it only has continuous spectrum equal to [14 ,∞)
with multiplicity m. At the moment we are not yet concerned with the relative determinant
det(∆M , ∆̄1,0) but rather with the behavior of the relative determinant of the degenerating surfaces.
Equation (5.4) applied to Ml can be rewritten as:

Tr(e−t∆Ml − e−t∆̄1,0)− STrKα
Ml

(t) = m

(
− 1
π
P (t) + (

1
2
− log(2)√

4πt
)e−

t
4

)
+
∑
λj,l≤α

e−tλj,l

Writing this in terms of zeta functions we obtain:

ζ(s,∆Ml
, ∆̄1,0)− ζαhyp Ml

(s) = ξ(s) +
∑
λj,l≤α

λ−sj,l ,

where ξ(s) is as in equation (5.5). Taking the meromorphic continuations and differentiating we
obtain that:

log detαhyp∆Ml
= log det(∆Ml

, ∆̄1,0) +mc−
∑
λj,l≤α

log(λj,l), (5.6)

where for ξ(s) we used again Lemma 5.1 and the fact that from (5.5) is clear that ξ′(0) = c m,
where c is a constant independent of l. We wanted to use now Corollary 4.3 in [19]. However, there
is a misprint in a sign in their result. For this reason we decided to refer to Theorem 4.1 in [19]
and keep track of the signs. Theorem 4.1 in [19] establishes:

lim
l→0

(
ζαhyp Ml

(s)− 1
Γ(s)

∫ ∞

0
DTrKMl

(t)ts−1dt− ζαhyp M (s)
)

= 0 (5.7)
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In order to deal with the second term in the left-hand side of equation (5.7) we follow Remark
4.2 in [19]:∫ ∞

0
DTrKMl

(t)ts−1dt =
∑

DH(Γl)

∞∑
n=1

1√
16π

`(γ)
sinh(n`(γ)/2)

∫ ∞

0
e−t/4e−(n`(γ))2/4tts−3/2dt

=
∑

DH(Γl)

∞∑
n=1

1√
16π

`(γ)
sinh(n`(γ)/2)

Ks−1/2(1/2, n`(γ)/2),

where Ks(a, b) :=
∫∞
0 e−a

2t−b2/tts−1dt is the K-Bessel function. Now, taking into account 1/Γ(s)
and differentiating we obtain:

d

ds

1
Γ(s)

∫ ∞

0
DTrKMl

(t)ts−1dt

∣∣∣∣
s=0

=
∑

DH(Γl)

∞∑
n=1

1√
16π

`(γ)
sinh(n`(γ)/2)

K−1/2(1/2, n`(γ)/2)

=
∑

DH(Γl)

∞∑
n=1

1√
16π

`(γ)
sinh(n`(γ)/2)

K1/2(n`(γ)/2, 1/2) =
∑

DH(Γl)

∞∑
n=1

e−n`(γ)

n(1− e−n`(γ))
,

where we used that K1/2(a, b) =
√
πe−2ab/b. This together with equation (5.7) gives:

lim
l→0

(
log dethyp∆Ml

+
∑

γ∈DH(Γl)

∞∑
n=1

e−n`(γ)

n(1− e−n`(γ))

)
= log detαhyp∆M .

Let us replace log dethyp∆Ml
in the expression above using equation (5.6):

lim
l→0

(
log det(∆Ml

, ∆̄1,0) +mc+
∑

γ∈DH(Γl)

∞∑
n=1

e−n`(γ)

n(1− e−n`(γ))
−

∑
0<λj,l≤α

log(λj,l)
)

= log detαhyp∆M . (5.8)

In order to study the behavior of log det(∆Ml
, ∆̄1,0) we need to know the behavior of the series

in the left-hand side of equation (5.8) as l→ 0. Recall that `(γ) → 0 as l→ 0. Let us remark here
that the asymptotic expansion for the series given in [19] is wrong. For the correct expression we
refer to [45, page 308]: if Re(s) > 0 we have:

∞∑
n=1

e−ns`(γ)

n(1− e−n`(γ))
=
(

π2

6`(γ)
+ (s− 1

2
) log(1− e−s`(γ))

)
+O(1),

as `(γ) → 0+. Taking s = 1 we see that

lim
l→0

∑
γ∈DH(Γl)

∞∑
n=1

e−n`(γ)

n(1− e−n`(γ))
= ∞

For the sum of the logarithm of the small eigenvalues we have the following: some of the small
eigenvalues of the family {Ml} may degenerate. For the eigenvalues of M , 0 = λj(M), that come
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from degeneration we know that for any 0 < α < 1
4 , α not an eigenvalue of M , there is a l0 such

that for all 0 < l ≤ l0, λl,j ≤ α. This is due to the convergence of any finite number of eigenvalues.
Thus liml→0

∑
0<λj,l≤α log(λj,l) = −∞. In this way we have:

lim
l→0

∑
γ∈DH(Γl)

∞∑
n=1

−e−n`(γ)

n(1− e−n`(γ))
−

∑
0<λj,l≤α

log(λj,l) = ∞,

since the term cm and the hyperbolic α-regularized determinant of the limit surface are both finite,
it follows that

lim
l→0

log(det(∆Ml
, ∆̄1,0)) = −∞.

This finishes the proof of Theorem 5.4.
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Chapter 6

Splitting formula for the relative
determinant

Splitting formulas for determinants have been widely studied. They have been proved in the setting
of compact manifold by Burghelea, Friedlander and Kappeler in [5], and in other settings by many
other authors. For example, in the setting of manifolds with cylindrical ends they were studied by
Müller and Müller in [31] and Loya and Park in [25]. The purpose of this chapter is to use the
Dirichlet-to-Neumann operator for the Laplacian on a manifold with cusps to obtain a splitting
formula for the relative determinant det(∆g,∆β,0).

6.1 Dirichlet-to-Neumann operator for ∆g

In this section we give the definition of the Dirichlet-to-Neumann operator N (z) and its main
properties. We also study the limit operator as the parameter z goes to zero.

6.1.1 Definition and properties

In this part we decompose the manifold (M, g) as M = Mα ∪ Zα where α ≥ 1 and Zα is isometric
to [α,∞)× S1 with the hyperbolic metric.

As before, let ∆g be the self adjoint Laplacian on M , let β ≥ α and ∆Zβ ,D be the self ad-
joint Dirichlet Laplacian on Zβ obtained by imposing Dirichlet boundary conditions at {β} × S1.
Similarly, let ∆Mβ ,D be the self adjoint extension of the Laplacian on Mβ obtained after impos-
ing Dirichlet boundary conditions at ∂Mβ = {β} × S1. We will explicitly compute a part of the
Dirichlet-to-Neumann operator N (z) on Σβ ' {β} × S1, for any value of β. The metric on Σβ

is given by gΣβ
= β−2dx ⊕ dx, the eigenvalues for the Laplacian ∆Σβ

are {4π2n2β2}n∈Z and the
corresponding eigenfunctions are {β exp (2πinx)}n∈Z.

Let z be in the resolvent set of ∆g, ρ(∆g). Then the Dirichlet-to-Neumann operator,

N (z) : C∞(Σβ) → C∞(Σβ),

is defined as follows. Let f ∈ C∞(Σβ) and let f̃ be the unique square integrable solution to the
problem {

(∆g − z)f̃ = 0 in M \ Σβ

f̃ = f on Σβ.
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Let n+ denote the inwards unit normal vector field at Σβ on Mα and n− the one on Zβ. Then
N (z)f is defined by the following equation

N (z)f := −
(

∂

∂n+

(
f̃
∣∣
Mβ

)
+

∂

∂n−

(
f̃
∣∣
Zβ

))
Theorem 2.1 in [7] establishes that for z ∈ C \[0,∞), the Dirichlet-to-Neumann operator is

a 1st-order elliptic, invertible, pseudodifferential operator, whose principal symbol is a scalar,
symp(N (z))(x, η) = 2

√
gx(η, η), (x, η) ∈ T ∗M . In addition, the function z 7→ N (z) is holomorphic

as function of z. In particular, N (z) has continuous extensions H1(Σβ) → L2(Σβ) → H−1(Σβ).
Then we can think of N (z) as an operator N (z) : H1(Σβ) ⊂ L2(Σβ) → L2(Σβ) on L2(Σβ).
Furthermore, for f ∈ C∞(Σβ) we have that:

N (z)−1f(x) =
∫

Σβ

G(x, y, z)f(y)dµ(y), (6.1)

where G(x, y, z) is the Schwartz kernel of (∆g−z)−1 on M , see Theorem 2.1 in [7]. This expression
is equivalent to:

N (z)−1f = ρΣβ
◦ (∆g − z)−1 ◦ iΣβ

(f),

where iΣβ
(f) = f ⊗ δΣβ

, in the distributional sense, this means f ⊗ δΣβ
(ϕ) =

∫
Σβ
ϕ · f for any

ϕ ∈ C∞(M). For convenience of the reader we reproduce the proof of equation (6.1) as it is given
in [7], but for functions and using our notation. Let f ∈ C∞(Σβ) and ϕ ∈ C∞0 (M), then

(∆g − z)−1(δΣβ
⊗ f)(ϕ) =

∫
Σβ

∫
M
ϕ(w)G(z, w, v)f(v)dAg(w)dAΣβ

(v) = 〈ϕ, u〉,

where u ∈ L2(M) is defined by u(w) =
∫
Σβ
G(z, w, v)f(v)dAΣβ

(v). Then from the previous equation
it is clear that in the distributional sense 〈u, ϕ〉 = 〈(∆g − z)−1(δΣβ

⊗ f), ϕ〉, therefore u = (∆g −
z)−1(δΣβ

⊗f), and, (∆g− z)u = δΣβ
⊗f . In particular (∆g− z)u = 0, on M \Σβ. Now use Green’s

formulas and smoothness of ϕ to obtain:

〈(∆g − z̄)ϕ, u〉L2(M) = 〈ϕ, (∆g − z)u〉L2(M) = ((∆g − z)u)(ϕ) =
∫
M

((∆gu)ϕ− (zu)ϕ)dAg

=
∫
Mβ

(u(∆gϕ)− (∆gu)ϕ)dAg +
∫
Zβ

(u(∆gϕ)− (∆gu)ϕ)dAg

=
∫

Σβ

(u
∂ϕ

∂n+
− ∂u

∂n+
ϕ+ u

∂ϕ

∂n−
− ∂u

∂n−
ϕ)dAΣβ

=
∫

Σβ

−(
∂u

∂n+
+

∂u

∂n−
)ϕdAΣβ

=
∫

Σβ

(N (u|Σβ
))ϕ dAΣβ

.

Therefore (∆g − z)u = δΣβ
⊗ (N (u|Σβ

)). Then it follows that N (u|Σβ
) = f , thus N−1f = u|Σβ

.
Now, remember that 0 ∈ σ(∆g) is an isolated eigenvalue. Thus the Dirichlet-to-Neumann ope-

rator N (z) is actually defined for z in a neighborhood of zero and it makes sense to consider its
limit as z approaches zero. Indeed, we show that it exists for z = 0 and that the dependence on
z is continuous. In order to do this, let us split the problem in the classical way: let N (z) =
N1(z) +N2(z), where for i = 1, 2 Ni(z) is defined as follows.
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Let f ∈ C∞(Σβ), then let ϕ1 ∈ C∞(Mβ \Σβ) ∩C0(Mβ) be the unique solution to the problem{
(∆− z)ϕ1 = 0 in Mβ \ Σβ

ϕ1 = f on Σβ.

Put N1(z)f = − ∂ϕ1

∂n+ . Similarly, let ϕ2 ∈ C∞(Zβ) ∩ L2(Zβ) be the unique square integrable
solution to the problem: {

(∆− z)ϕ2 = 0 in Zβ
ϕ2 = f on Σβ

Put N2(z)f = − ∂ϕ2

∂n− .
Using the usual method of separation of variables in the cusp we can compute the operator

N2(z) explicitly. This explicit expression of N2(z) is useful to compute the limit of the operator as
z → 0.

Proposition 6.1. Let f ∈ C∞(Σβ). Write z = s(1− s). Then for N2(z)f we have

If Re(s) >
1
2
, N2(s(1− s))f = −(1− 2s)c0(f)β − sf + β

√
∆Σβ

Ks+ 1
2
(β
√

∆Σβ
)

Ks− 1
2
(β
√

∆Σβ
)
f. (6.2)

If Re(s) <
1
2
, N2(s)f(x) = −sf(x) + β

√
∆Σβ

Ks+ 1
2
(β
√

∆Σβ
)

Ks− 1
2
(β
√

∆Σβ
)
f(x), (6.3)

where c0(f) is the projection of f on the kernel of ∆Σβ
.

If Re(s) = 1
2 , f ∈ Dom(N2(z)) only if it satisfies

∫
Σβ
fdAΣβ

= 0. In this case we have:

N2(s)f = −sf + β
√

∆Σβ

Ks+ 1
2
(β
√

∆Σβ
)

Ks− 1
2
(β
√

∆Σβ
)
f, (6.4)

where Kν is the modified Bessel function of order ν.

Proof. On Zβ the Laplacian is given by ∆g = −y2
(
∂2

∂y2
+ ∂2

∂x2

)
. Therefore the Fourier expansions

of ϕ2(y, x) and f(x) have the following forms:

ϕ2(y, x) =
∑
n∈Z

an(y)βe2πinx where an(y) =
∫ 1

0
ϕ2(y, x)βe−2πinxdx

β2

f(x) =
∑
n∈Z

cnβe
2πinx where cn =

∫ 1

0
f(x)βe−2πinxdx

β2
.

Using separation of variables, the problem becomes:{
(−y2 d2

dy2
+ y24π2n2β2 − z)an(y) = 0

an(β) = cn, for n ∈ Z.

Set z = s(1− s) with s ∈ C. Then for n 6= 0, two linear independent solutions of the equation(
−y2 d

2

dy2
+ 4π2n2β2y2 − s(1− s)

)
an(y) = 0 (6.5)
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are y
1
2Ks− 1

2
(2π|n|βy) and y

1
2 Is− 1

2
(2π|n|βy), where Ks− 1

2
and Is− 1

2
are the modified Bessel func-

tions. We discard Is− 1
2

because it is not square integrable on [1,∞) for any value of s. Thus,

ϕ2(y, x) =
∑
n∈Z

an(y)e2πinx = b0,1y
sβ + b0,2y

1−sβ +
∑
n6=0

bny
1
2Ks− 1

2
(2π|n|βy)βe2πinx.

I.e. for n 6= 0, an(y) = bny
1
2Ks− 1

2
(2π|n|βy), where bn and b0,1, b0,2 are constants determined by the

boundary and the square integrable conditions.
Case Re(s) > 1

2 . In this case b0,1 = 0 and y
1
2Ks− 1

2
(2π|n|βy) is square integrable on [1,∞[.

Then we have:
ϕ2(y, x) = b0,2y

1−sβ +
∑
n6=0

bny
1
2Ks− 1

2
(2π|n|βy)βe2πinx,

where a0(y) = b0,2y
1−s and an(y) = bny

1
2Ks− 1

2
(2π|n|βy). The boundary condition ϕ2(β, x) = f(x)

is equivalent to an(β) = cn. Thus b0,2 = c0β
s−1 and

bn =
cn

β
1
2Ks− 1

2
(2π|n|β2)

.

In this way we obtain:

ϕ2(y, x) = c0β
s−1y1−sβ +

∑
n6=0

cn

β
1
2Ks− 1

2
(2π|n|β2)

y
1
2Ks− 1

2
(2π|n|βy)βe2πinx,

y
∂

∂y
ϕ2(y, x) = (1− s)yc0βs−1y−sβ

+ y
∑
n6=0

cnβe
2πinx

β
1
2Ks− 1

2
(2π|n|β2)

(
y−

1
2

2
Ks− 1

2
(2π|n|βy) + y

1
2
d

dy
Ks− 1

2
(2π|n|βy)

)
.

Let us use here the following equation:

d

dy
Ks− 1

2
(2π|n|βy) = (s− 1

2
)y−1Ks− 1

2
(2π|n|βy)− 2π|n|βKs+ 1

2
(2π|n|βy).

Then we have:

y
∂

∂y
ϕ2(y, x) = (1− s)yc0βs−1y−sβ

+ y
∑
n6=0

cnβe
2πinx

β
1
2Ks− 1

2
(2π|n|β2)

(
sy−

1
2Ks− 1

2
(2π|n|βy)− 2π|n|βy

1
2Ks+ 1

2
(2π|n|βy)

)

y
∂

∂y
ϕ2(y, x)

∣∣∣∣
y=β

= (1− s)c0β + β
∑
n6=0

cn

(
sβ−1 − 2π|n|β

Ks+ 1
2
(2π|n|β2)

Ks− 1
2
(2π|n|β2)

)
βe2πinx

= (1− 2s)c0β + sf(x)− β
√

∆Σβ

Ks+ 1
2

Ks− 1
2

(β
√

∆Σβ
)f(x),
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where we have chosen the positive square root of the eigenvalues to define
√

∆Σβ
. Recall that the

term c0 is the projection of f on the kernel of ∆Σβ
. Then we obtain equation (6.2).

Case Re(s) = 1
2 . This is an interesting case. The computations are the same as in the previous

case but the square integrability condition implies that the zero term in the Fourier expansion of
the solution ϕ2 should be null, thus

ϕ2(y, x) =
∑
n6=0

bny
1
2Ks− 1

2
(2π|n|βy)βe2πinx.

and the condition a0 = c0 gives c0 = 0. This means that only in the case when c0 = 0 will there
exist a solution to the problem. Hence for f to be in the domain of N2(s(1− 1)), f should satisfy
c0(f) =

∫
Σβ
fdAΣβ

= 0. For such functions f equation (6.4) holds.

Case Re(s) < 1
2 . In this case b0,2 = 0 and b0,1 = c0β

−s. Then:

ϕ2(y, x) = c0β
−sysβ +

∑
n6=0

cnβe
2πinx

β
1
2Ks− 1

2
(2π|n|β2)

y
1
2Ks− 1

2
(2π|n|βy),

y
∂

∂y
ϕ2(y, x)

∣∣∣∣
y=β

= sf − β
∑
n6=0

2π|n|β
Ks+ 1

2
(2π|n|β2)

Ks− 1
2
(2π|n|β2)

cnβe
2πinx.

Thus we obtain equation (6.3).

Remark 6.2. For z < 0 the operator N (z) is positive. This follows from the non-negativity of the
Laplacian ∆g and from the construction of N (z). Recall that the Schwartz kernel of N (z)−1 is the
same as the Schwartz kernel of (∆g − z)−1. We have ∆g ≥ 0. If z < 0, then (∆g − z) > 0, and
(∆g − z)−1 > 0. Therefore N (z)−1 > 0.

6.1.2 Existence and properties for N

Lemma 6.3. For every f ∈ C∞(Σβ) there exists a unique solution f̃ ∈ C∞(M \ Σβ) ∩ L2(Zβ) ∩
C0(M) to the problem: {

∆gf̃ = 0 in M \ Σβ

f̃ = f on Σβ.

In addition, using the notation introduced above we have that:

N2f := − y
∂

∂y
ϕ2(y, x)

∣∣∣∣
y=β

= β
√

∆Σβ
f.

Proof. As in the proof of Lemma 3.1 in [31], the uniqueness of the solution ϕ1 ∈ C∞(Mβ \ Σβ) ∩
C0(Mβ) of the Dirichlet problem on Mβ follows from the invertibility of ∆Mβ ,D. The uniqueness of
the solution on Zβ also follows from the invertibility of ∆Zβ ,D. To see the existence and uniqueness
on Zβ more explicitly let us follow the same procedure as above taking z = 0. One way to obtain
z = 0 is to take s = 1 in equation (6.5). In this case the square integrable condition gives

ϕ2(y, x) =
∑
n∈Z

an(y)e2πinx = b0,2β +
∑
n6=0

bny
1
2K 1

2
(2π|n|βy)βe2πinx.
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We know that K 1
2
(r) =

√
π
2 r

− 1
2 e−r. Then for n 6= 0 we have an(y) = bn

2
√
|n|β

e−2π|n|βy. The

boundary condition ϕ2(β, x) = f(x), which is equivalent to an(β) = cn, gives b0 = c0 and bn =
cn2
√
|n|βe2π|n|β2

. Then

ϕ2(y, x) = c0β +
∑
n6=0

cne
2π|n|β2

e−2π|n|βyβe2πinx.

Taking the inward derivative we have:

y
∂

∂y
ϕ2(y, x)

∣∣∣∣
y=β

= β
∑
n6=0

−2π|n|β · cn βe2πinx = −β
√

∆Σβ
f.

The other way to obtain z = 0 is taking s = 0 in equation (6.5). In this case we have:

ϕ2(y, x) =
∑
n∈Z

an(y)e2πinx = b0,1β +
∑
n6=0

bny
1
2K− 1

2
(2π|n|βy)βe2πinx.

As above, and using that K− 1
2

= K 1
2
, we obtain:

ϕ2(y, x) = c0β +
∑
n6=0

cne
2π|n|β2

e−2π|n|βyβe2πinx.

Thus for s = 0 and for s = 1, we obtain the same solution of the Dirichlet problem on Zβ. Since
ϕ1|Σβ

= ϕ2|Σβ
, we have that the solution f̃ is continuous on M . Taking the inward derivative we

have

y
∂

∂y
ϕ(y, x)

∣∣∣∣
y=β

= β
∑
n6=0

−2π|n|β · cn βe2πinx = −β
√

∆Σβ
f.

In this way we obtain:
N2f = β

√
∆Σβ

f. (6.6)

Remark 6.4. For z ∈ ρ(∆g), the resolvent set of ∆g, it is well known that N1(z) is a 1st order
invertible elliptic pseudodifferential operator. The limit, N1, as z → 0, it is well known to be a
1st order elliptic pseudodifferential operator, but it is non-invertible, see for example [5] and [44,
Section 7.11]. Therefore the operator N = N1 +N2 is non-invertible. However it is non-negative
and dim(Ker(N )) = 1.

Lemma 6.5. Let f ∈ C∞(Σβ). Then N (z)f depends continuously of z in a small enough neigh-
borhood of z = 0, and

lim
z→0

N (z)f = N f

Proof. The proof that limz→0N1(z)f = N1f is the same as for Lemma 3.3 in [31]. For the conve-
nience of the reader we repeat here the argument with our notation. For f ∈ C∞(Σβ), let ϕ1(z)
be the unique function in C∞(Mβ \ Σβ) satisfying (∆g − z)ϕ1(z) = 0, ϕ1(z)|Σβ

= f and

ϕ1(z) = f̃ − (∆Mβ ,D − z)−1((∆Mβ
− z)(f̃)),
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where f̃ ∈ C∞(Mβ) is any extension of f . Since ∆Mβ ,D is invertible, the formula also holds for
z = 0. From this representation of ϕ1(z), it follows immediately that N1(z)f converges to N1f as
z → 0.

Now let us take the limit of N2(z) as s→ 1. To do that we use equation (6.2) to obtain:

lim
s→1

N2(s(1− s))f = c0β − f + β
√

∆Σβ

K 3
2
(
√

∆Σβ
)

K 1
2
(
√

∆Σβ
)
f.

Using the expression K 3
2
(u) =

√
π
2u

−3/2e−u(u+ 1), we have that
K 3

2
(2π|n|β2)

K 1
2
(2π|n|β2)

= 2π|n|β2+1
2π|n|β2 . Thus,

lim
s→1

N2(s(1− s))f = c0β − f +
∑
n6=0

(2π|n|β2 + 1)cnβe2πinx

= β
∑
n6=0

2π|n|βcnβe2πinx = β
√

∆Σβ
f = N2(0)f.

For the limit when s→ 0 we have:

lim
s→0

N2(s(1− s))f = lim
s→0

−sf(x) + β
∑
n6=0

2π|n|β
Ks+ 1

2
(2π|n|β2)

Ks− 1
2
(2π|n|β2)

cnβe
2πinx

= β
∑
n6=0

2π|n|β cnβe2πinx = β
√

∆Σβ
f.

Thus it follows that

lim
s→1

N2(s(1− s))f = lim
s→0

N2(s(1− s))f = N2(0)f = β
√

∆Σβ
f.

6.2 Splitting formula for the relative determinant

We want to have a splitting formula for the relative determinant that relates det(∆g,∆β,0) to the
regularized determinant of the Dirichlet-to-Neumann operator N (0). We will use this formula in
Chapter 7 to prove compactness of isospectral sets of metrics inside a conformal class with compact
support on surfaces with cusps. For z ∈ ρ(∆g) Corollary 4.6 in [7] establishes the following splitting
formula for complete surfaces, which we rewrite using his notation:

det(L − z,L0,D − z) = detN (z), (6.7)

where L is the self-adjoint extension of the Laplacian on M and L0,D is the self-adjoint extension
of the Laplacian on M \ Σ with Dirichlet boundary conditions on Σ. Let λ > 0, put z = −λ and
let us denote N (−λ) by R(λ). Then R(λ) > 0 and it has the same properties as N (−λ). Let us
take Σ = Σβ. In our case equation (6.7) has the form:

det(∆g + λ,∆Zβ,D
+ λ)(det(∆Mβ,D

+ λ))−1 = detR(λ) = detN (−λ). (6.8)

We now want to take the limit on both sides of equation (6.8) as λ→ 0+.
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Lemma 6.6. As λ→ 0+ we have the following decomposition:

log det(∆g+λ,∆Zβ ,D+λ)− log det(∆Mβ,D
+λ) = log λ+log det(∆g,∆Zβ ,D)− log det ∆Mβ,D

+o(1).

Proof. Let us go back to the definition of log det(∆g + λ,∆Zβ ,D + λ):

log det(∆g,∆Zβ ,D) = − d

ds
ζ(s;∆g,∆Zβ ,D)

∣∣∣∣
s=0

,

log det(∆g + λ,∆Zβ ,D + λ) = − d

ds
ζ(s;∆g + λ,∆Zβ ,D + λ)

∣∣∣∣
s=0

,

where ζ(s;∆g,∆Zβ ,D) and ζ(s;∆g + λ,∆Zβ ,D + λ) are respectively the meromorphic continuations
of the functions

1
Γ(s)

∫ ∞

0
(Tr(e−t∆g − e

−t∆Zβ,D)− 1)ts−1dt and

1
Γ(s)

∫ ∞

0
Tr(e−t∆g − e

−t∆Zβ,D)e−tλts−1dt.

We use the same notation for the function and its analytic continuation. Note that the second
integral above converges because of the asymptotic expansions of the relative heat traces for small
and large t. Further,

ζ(s;∆g + λ,∆Zβ ,D + λ) =
1

Γ(s)

∫ ∞

0
Tr(e−t∆g − e

−t∆Zβ,D)e−tλts−1dt

=
1

Γ(s)

∫ ∞

0

{
(Tr(e−t∆g − e

−t∆Zβ,D)− 1)e−tλ + e−tλ
}
ts−1dt

=
1

Γ(s)

∫ ∞

0
(Tr(e−t∆g − e

−t∆Zβ,D)− 1)e−tλts−1dt+
1

Γ(s)
Γ(s)λ−s

= λ−s +
1

Γ(s)

∫ ∞

0
(Tr(e−t∆g − e

−t∆Zβ,D)− 1)
{

1− tλ+
t2λ2

2!
− . . .

}
ts−1dt

= λ−s + ζ(s,∆g,∆Zβ ,D) +
λ

Γ(s)

∫ ∞

0
(Tr(e−t∆g − e

−t∆Zβ,D)− 1)
e−tλ − 1

λ
ts−1dt.

The last integral converges in a half plane. Therefore due to the asymptotic expansions, it has an
analytic continuation that is holomorphic at s = 0. So,

d

ds
ζ(s;∆g + λ,∆Zβ ,D + λ)

∣∣∣∣
s=0

= − log λ+
d

ds
ζ(s;∆g,∆Zβ ,D)

∣∣∣∣
s=0

− o(1), as λ→ 0+,

− log det(∆g + λ,∆Zβ ,D + λ) = − log λ− log det(∆g,∆Zβ ,D)− o(1), as λ→ 0+,

as desired. Similarly, log det(∆Mβ,D
+ λ) = log det(∆Mβ,D

) + o(1) as λ → 0+, follows in the same
way as above from:

ζ∆Mβ,D
+λ(s) =

1
Γ(s)

∫ ∞

0
Tr(e−t∆Mβ,D )e−tλts−1dt.

This finishes the proof of the lemma.
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Now let us take care of the middle side of equation (6.8). First of all recall that for λ > 0,
R(λ) is a 1st order elliptic, invertible, self-adjoint pseudodifferential operator, therefore its zeta
determinant is well defined. Set R = R(0). We saw that R ≥ 0, KerR = C and limλ→0R(λ) = R
in the strong sense. Let 0 < µ1(λ) ≤ µ2(λ) ≤ µ3(λ) ≤ . . . be the eigenvalues of R(λ). Then

µ1(λ) → 0, as λ→ 0,
µi(λ) ≥ c > 0, for i ≥ 2, λ ≥ 0.

The regularized determinant of R, det∗R, is defined as usual by the meromorphic continuation of

ζ∗R(s) =
∑
µi>0

µi(0)−s.

Lemma 6.7. As λ→ 0+ there is the following asymptotic expansion:

log detR(λ) = logµ1(λ) + log det∗R+ o(1). (6.9)

Proof. Let Ker(R) be the kernel of R, H = (Ker(R))⊥ be its orthogonal complement and P :
L2(Σβ) → Ker(R) and P⊥ : L2(Σβ) → H be the corresponding orthogonal projections. By
definition:

log detR(λ) := − d

ds

∣∣∣∣
s=0

ζR(λ)(s) = − d

ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞

0
Tr(e−tR(λ))ts−1dt.

The first thing to do is to separate the first eigenvalue. For that, let γ be a contour in C contained
in ρ(R(λ)) and surrounding the spectrum of R(λ), for all λ ≥ 0 small enough. Then:

e−tR(λ) =
1

2iπ

∫
γ
e−tξ(R(λ)− ξ)−1dξ

=
1

2iπ

∫
γ1

e−tξ(R(λ)− ξ)−1dξ +
1

2iπ

∫
γ2

e−tξ(R(λ)− ξ)−1dξ,

where γ1 is a contour surrounding {µ1(λ), 0} and γ2 surrounds the half line [c,∞), where µ2(λ) ≥ c
for all λ > 0. From the assumptions is clear that γ1 and γ2 can be chosen without overlapping and
independently of λ. It is also clear that:

1
2iπ

∫
γ1

e−tξ(R(λ)− ξ)−1dξ = e−tµ1(λ)P (λ).

Therefore

ζR(λ)(s) =
1

Γ(s)

∫ ∞

0
e−tµ1(λ)ts−1dt+

1
Γ(s)

∫ ∞

0
Tr
(∫

γ2

e−tξ(R(λ)− ξ)−1dξ

)
ts−1dt.

There are two ways to approach the proof. One is using the convergence of the resolvent and
it was suggested by R. Mazzeo; the other one is following the argument in [25].

As it was explained above, we know that R(λ) is a family of 1st order pseudodifferential opera-
tors. Hence they have bounded extensions to operators from H1(Σβ) to L2(Σβ). Since H1(Σβ) ⊂
L2(Σβ), R(λ) is a bounded operator acting on a subspace of L2(Σβ) into L2(Σβ) that depends
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continuously on λ. The resolvent of R(λ) also depends continuously of λ. Since R has 0 as
eigenvalue, the resolvent (R− ξ)−1 has a pole at ξ = 0 and can be written as:

(R− ξ)−1 = −ξ−1P +A(ξ),

with A(ξ) a holomorphic operator in ξ. On the other hand we have µ1(λ) > 0 for λ > 0. Therefore
we have that (R(λ)−ξ)−1 is continuous in λ close to 0 and holomorphic in ξ far from σ(R(λ)). When
integrating over γ2 we are actually dealing with the operators P (λ)⊥R(λ) or P⊥R(λ). From general
results about resolvents we have that (P (λ)⊥R(λ) − ξ)−1 converges continuously to (P⊥R − ξ)−1

as λ→ 0+ for ξ ∈ ρ(R(λ)). Now:

e−tP (λ)⊥R(λ) =
1

2iπ

∫
γ2

e−tξ(P (λ)⊥R(λ)− ξ)−1dξ,

e−tP
⊥R =

1
2iπ

∫
γ2

e−tξ(P⊥R− ξ)−1dξ.

From the preceding expressions it is clear that e−tP (λ)⊥R(λ) converges to e−tP
⊥R. Therefore

Tr(e−tP (λ)⊥R(λ)) depends continuously on λ and so does the zeta function. In this way we ob-
tain:

log detP (λ)⊥R(λ) = log detP⊥R+ o(1), as λ→ 0+.

This finishes the proof of equation (6.9).
The other method we have of proving equation (6.9) is using the approach of [25]. We use that

R(λ)−1 = ρΣβ
◦ (∆g + λ)−1 ◦ iΣβ

. Let Q(λ) := (∆g + λ)−1 − 1
λP and T (λ) := ρΣβ

◦Q(λ) ◦ iΣβ
, so

that R(λ)−1 = 1
λP + T (λ). The main point is that:

R =

{
0, on Ker(R)
T−1 on H = (Ker(R))⊥

with T = P⊥T (0)P⊥. This implies that:

− d

ds

∣∣∣∣
s=0

ζP⊥R(λ)(s) = log det∗R+ o(1), as λ→ 0+.

This also finishes the proof of the Lemma.

Let us now introduce some notation. Remember that R(λ) = N (z), with λ = −z > 0, and

R(λ)−1f = ρΣβ
◦ (∆g + λ)−1 ◦ iΣβ

(f).

Let µ > 0 and let Pµ be the spectral projection on [0, µ]. Then R(λ)−1 can be decomposed as

R(λ)−1 = ρΣβ
◦ Pµ(∆g + λ)−1 ◦ iΣβ

+ ρΣβ
◦ (I − Pµ)(∆g + λ)−1 ◦ iΣβ

Let Qµ(λ) := ρΣβ
◦ Pµ(∆g + λ)−1 ◦ iΣβ

. Then the kernel of Qµ(λ) in terms of the spectral decom-
position of ∆g on M is given by:

KQµ(λ)(x, y, λ) =
∑
λj≤µ

1
λj + λ

ϕj(x)ϕj(y) +
1
2π

∫ µ

0

1
λ+ 1/4 + r2

E(x,
1
2

+ ir)E(y,
1
2
− ir)dr,
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for x, y ∈ Σβ. We can write R(λ)−1 = Qµ(λ) + Q̃µ(λ) with

Q̃µ(λ) = ρΣβ
◦ (I − Pµ)(∆g + λ)−1 ◦ iΣβ

.

Now further decompose Qµ(λ) as Qµ,1(λ) +Qµ,2(λ), where Qµ,1(λ) is given by:

Qµ,1(λ)f =
1
λ

1
Ag

∫
Σβ

f(y)dµ(y), with KQµ,1(λ)(x, y, λ) =
1
λ

1
Ag
,

and Qµ,2(λ) is the operator whose kernel is:

KQµ,2(λ)(x, y, λ) =
∑

0<λj≤µ

1
λ+ λj

ϕj(x)ϕj(y) +
1
2π

∫ µ

0

1
λ+ 1/4 + r2

E(x,
1
2

+ ir)E(y,
1
2
− ir)dr.

(6.10)
We have the following Lemma:

Lemma 6.8. There is a constant C > 0 such that

‖ρΣβ
◦ (I − Pµ)(∆g + λ)−1 ◦ iΣβ

‖L2(Σβ) ≤ C,

for all λ > 0.

Proof. The proof goes as in Lemma 3.5 in [31].
We know that iΣβ

: L2(Σβ) → H−1(M) and ρΣβ
: H1(M) → L2(Σβ) are continuous and dual

to each other. We want to see that (I − Pµ)(∆g + λ)−1 : H−1(M) → H1(M) is bounded by a
constant independent of λ.

Let us see that (∆g +λ)−1 : H−1(M) → H1(M) is bounded: Let λ > 0 such that λ ∈ ρ(∆g) we
have that (∆g + λ)−1 : dom(∆g + λ)−1 ⊂ L2(M) → H2(M) is bounded. For f ∈ H−1(M) we have

‖(I − Pµ)(∆g + λ)−1f‖H1 = ‖(∆g + I)1/2(I − Pµ)(∆g + λ)−1f‖L2

= ‖(∆g + I)(I − Pµ)(∆g + λ)−1(∆g + I)−1/2f‖L2

≤ ‖(∆g + I)(I − Pµ)(∆g + λ)−1‖L2‖(∆g + I)−1/2f‖L2 � ‖f‖H−1

The fact that (∆g+I)(I−Pµ)(∆g+λ)−1 is bounded by a constant independent of λ > 0 follows
from the spectral theorem. For φ ∈ L2(M) it is ease to see that:

(∆g + I)(I − Pµ)(∆g + λ)−1φ ≤
(

1 +
1
µ

)
φ,

for any λ > 0.

Now we study the behavior of logµ1(λ) as λ→ 0+. For that we have the following Proposition:

Lemma 6.9.

logµ1(λ) = log λ+ log
(
Ag
`β

)
+ o(1), (6.11)

as λ→ 0+, where Ag = area(M), and `β = length(Σβ).
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Proof. First observe that:
1

µ1(λ)
= ‖R(λ)−1‖.

Now, let us study ‖R(λ)−1‖ as λ→ 0+, where the norm is the operator norm in L2(Σβ). From the
expression for KQµ,2(λ) in equation (6.10) we have:

lim
λ→0

KQµ,2(λ)(x, x
′, λ) =

∑
0<λj≤µ

1
λj
ϕj(x)ϕj(x′) +

1
2π

∫ µ

0

1
1/4 + r2

E(x,
1
2

+ ir)E(x′,
1
2
− ir)dr.

Thus ‖Qµ,2(λ)‖ remains bounded as λ→ 0+. We also have that:

‖Qµ,1(λ)‖ =
1
λ

`β
Ag
.

Since R(λ)−1 = Qµ,1(λ) +Qµ,2(λ) + Q̃µ(λ), using Lemma 6.8 it follows that:

‖R(λ)−1‖ =
`β
λAg

+O(1), as λ→ 0+.

This equation together with 1
µ1(λ) = ‖R(λ)−1‖ gives:

1
µ1(λ)

=
`β
λAg

+O(1), as λ→ 0+.

Now remember the expansion for the logarithm:

log(a+ x) = log(a) +
∞∑
n=1

(−1)n+1

nan
xn = log(a) +

1
a
x− 1

2a2
x2 + . . . .

Then writing 1
µ1(λ) = `β

λAg
+ u(λ), with u(λ) = O(1) as λ→ 0, we obtain:

log
(
`β
λAg

+ u(λ)
)

= log
(
`β
λAg

)
+
λAg
`β

u− 1
2

(
λAg
`β

)2

u2 + . . .

= log
(
`β
λAg

)
+O(λ) as λ→ 0+.

Then equation (6.11) follows straight from:

log
(

1
µ1(λ)

)
= − log(µ1(λ)) = log

(
`β
Ag

)
− log λ+O(λ) as λ→ 0+.

Putting everything together we obtain the splitting formula, that is the main result of this
chapter:
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Theorem 6.10. For the relative determinant of the Laplace operator on a surface with cusps (M, g),
and the regularized determinant of the Dirichlet-to-Neumann operator on Σβ = {β} × S1 ⊂M , we
have the following splitting formula:

det(∆g,∆Zβ ,D)
det(∆Mβ,D

)
=
Ag
`β

det∗R,

where Ag denotes the area of M and `β denoted the length of Σβ.

Proof. We start with the splitting formula for λ > 0, and λ ∈ ρ(∆g):

log det(∆g + λ,∆Zβ ,D + λ)− log det(∆Mβ,D
+ λ) = log detR(λ)

From the previous lemmas we have that:

log det(∆g,∆Zβ ,D) + log λ− log det(∆Mβ ,D + λ) + o(1)

= logµ1(λ) + log det∗R+ o(1) = log λ+ log
(
Ag
`β

)
−O(λ) + log det∗R+ o(1)

Letting λ→ 0, we finally obtain:

log det(∆g,∆Zβ ,D)− log det(∆Mβ,D
) = log

(
Ag
`β

)
+ log det∗R.

That is the same as the equation in the statement of the theorem.

Remark 6.11. If we further decompose the operator ∆Zβ ,D as ∆β,0 ⊕∆Zβ,1
we obtain:

log det(∆g,∆β,0)− log det(∆Zβ ,1)− log det(∆Mβ,D
) = log

(
Ag
`β

)
+ log det∗R. (6.12)
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Chapter 7

Compactness of isospectral sets of
conformal metrics

In this chapter we consider the isospectral problem for a surface with cusps restricting our attention
to a conformal class of metrics. Moreover we assume that the conformal factors have support in
a fixed compact set. We partially generalize the result of B. Osgood, R. Phillips, and P. Sarnak
in [34] that states that on a closed surface every set of isometry classes of isospectral metrics is
sequentially compact in the C∞-topology. The generalization is partial in the sense that we consider
only a fixed conformal class of metrics. Concerning the variation in the moduli space of surfaces of
constant negative curvature W. Müller proved that the resonance set σ(Γ) of a hyperbolic surface
of finite area Γ \H determines the surface in the moduli space up to finitely many possibilities [29,
Thm. 8.10]. In particular the resonance set determines the topological type (p,m), (p is the genus
and m is the number of cusps), and the length spectrum of Γ \ H. Here we prove that, given a
fixed compact set K ⊂ M , inside a “K-compactly supported” conformal class, sets of isospectral
metrics are compact in the C∞-topology.

Let us start by review OPS’s proof of compactness of isospectral sets of metrics on closed
surfaces in the C∞-topology. In this setting, two metrics g1 and g2 are called isospectral if the
spectra of the Laplacians ∆g1 and ∆g2 are the same including multiplicities. In particular, the
regularized determinant det ∆ and the heat invariants aj for j ≥ 0 have the same values at g1 and
g2. Recall that the heat invariants are the coefficients of the asymptotic expansion of the heat trace
for small t.

To define the notion of convergence they fix a background metric g0. Associated to g0, there is
the Levi-Civita connection and the covariant derivative that allow us to differentiate in the whole
tensor algebra. A sequence of metrics {gn}n∈N converges to a metric g in Ck if ‖gn − g‖Ck → 0, as
n→∞. A sequence of isometry classes of metrics ĝn converges to an isometry class ĝ if there are
representatives hn ∈ ĝn, h ∈ ĝ, such that hn → h, as n → ∞. Now, let {ρn}n∈N be a sequence of
functions in Ck(M) and let σ be a fixed metric on M . Then ρnσ → ρσ in Ck as metrics if and only
if ρn → ρ in Ck as functions. Moreover, if the metrics σn → σ in C∞, and the function ρn → ρ in
Ck, then the metrics ρnσn → ρσ in Ck.

After defining convergence and isospectrality, OPS consider a sequence of isospectral isometry
classes of metrics {ĝn}n∈N and pick representatives gn. For each gn there is a metric of constant
curvature τn such that gn = e2ϕnτn. In this way, they associate to each ĝn a hyperbolic isometry
class τ̂n. They use that for each n, det∆τ̂n ≥ det ∆ĝn = constant > 0 and Mumford’s compactness
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theorem to prove that there exists a subsequence of {τ̂n}n∈N that converges to an element τ̂ in the
moduli space. To have compactness of the conformal factors {ϕn}n∈N, they prove that for each
k ∈ N the k-th Sobolev norms ‖ϕn‖k are uniformly bounded. Compactness in the C∞-topology
follows then from Rellich’s Lemma and the Sobolev embedding theorems on M . The constant value
of the determinant is used to prove uniform boundedness of the first Sobolev norm. For the higher
Sobolev norms, they use the constant values of the heat invariants.

Now let (M, g) be a surface of fixed genus p and a fixed number of cusps m. We usually take
m = 1 to make the proofs simpler but the statements hold for general m. We take g as the
background Riemannian metric. Let us decompose M as M = M0 ∪Σα Zα where M0 is compact
with boundary Σα and the metric on Zα = [α,∞)× S1 is the usual hyperbolic metric.

For s > 0 and f ∈ Hs(M, g) recall the definition of the Sobolev norms:

‖f‖Hs := ‖(∆ + I)s/2f‖L2

Now, let K be a compact subset of M . Then there is a β ≥ α such that K ⊂Mβ and such that
K ∩Σβ = ∅. Fix that β and let us define the “K-compactly supported” conformal class of g as the
set

[g]K = {e2ϕg | ϕ ∈ C∞c (M), suppϕ ⊂ K}. (7.1)

Then for every metric in h ∈ [g]K , (M,h) is a surface with cusps and the cusp (if m = 1) is
contained in M \Mβ.

Since we restricted to a conformal class, the notion of convergence of metrics reduces to the
convergence of the conformal factors:

Definition 7.1. A sequence of metrics {gn}n∈N, with gn = e2ϕng converges to a metric h in Ck if
and only if the sequence of function {ϕn}n∈N converges to a function ϕ in Ck.

Now we explain what we mean by isospectrality of surfaces with cusps (M, g). Let us start by
defining what are resonances: Let R(s) = (∆g−s(1−s))−1 be the resolvent of the Laplacian ∆g for
Re(s) > 1/2 and s 6= s̄. The resolvent R(s) = (∆g− s(1− s))−1 regarded as operator from C∞c (M)
to L2

loc(M) admits a meromorphic extension to C. The poles of the meromorphic continuation are
called resonances. For each pole ρ one can define its multiplicity n(ρ). If λj = sj(1 − sj) is an
eigenvalue of ∆g, then sj is a resonance. The complement of the set of poles that correspond to
eigenvalues are poles of the scattering matrix, see [29].

Definition 7.2. The resonance set of ∆g is the union of the poles of the scattering matrix and of
the set {sj |sj(1− sj) is an eigenvalue}.

One reason to consider resonances is that the following trace formula holds ([29, (2.2)]):

Tr(e−t∆g − e−t∆̄α,0) =
∫
M

(Kg(z, z, t)−
m∑
j=1

pαj (z, z, t))dAg(z)

=
∑
k

e−λkt − 1
4

∫ ∞

−∞
e−(1/4+λ2)tφ

′

φ
(1/2 + iλ)dλ

+
1
4
e−t/4(Tr(C(1/2)) +m) +

e−t/4√
4πt

m∑
j=1

log(αj), (7.2)
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where the term m
4 e

−t/4 comes from the extra term of pαj (z, z, t)) determined by the Dirichlet
extension, i.e. the term e−t/4

√
4πt

(yy′)1/2e−(log(yy′)−log(α2))2/4t in equation (1.9). Now by Theorem 5.11
in [29] the integral that involves the logarithmic derivative of the scattering matrix can be rewritten
as follows:

− 1
4π

∫ ∞

−∞
e−(1/4+λ2)tφ

′

φ
(1/2 + iλ)dλ

=
log(q)
(4π)3/2

e−t/4√
t

+
1
4

∑
ρ

n(ρ){e−tρ(1−ρ)Erfc(
√
t(
√
t(1/2− ρ)) + e−tρ̄(1−ρ̄)Erfc(1− ρ̄))}, (7.3)

where ρ runs over all zeros and poles of φ(s) in Re(s), 1/2, n(ρ) denotes either the order of the
pole ρ or the negative of the order of the zero ρ, q is a well-determined constant and Erfc is the
complementary error function, see [29, (5.13)].

We are ready now to define isospectral metrics:

Definition 7.3. Two cusp metrics g1 and g2 on M are isospectral if their resonance sets including
multiplicities are the same.

For the definition of isospectrality, the continuous spectra are irrelevant since for two surfaces
with cusps (M, g1) and (M, g2), σc(∆g1) = σc(∆g2) = [1/4,∞) with multiplicity the number of
cusps.

Remark 7.4. Let (M, g1) and (M, g2) be two surfaces with cusps that are isospectral. Then,
equations (7.2) and (7.3) imply that the corresponding traces of the heat operators coincide. Under
the same hypothesis, the fact that the determinants of the scattering matrices are the same follows
from Theorem 3.31 in [29], which expresses the determinant of the scattering matrix as the following
Weierstrass product:

φ(s) = φ(1/2)qs−1/2
∏
ρ

s− 1 + ρ̄

s− ρ
,

where ρ runs over all poles of φ(s), counted with the order and q is the same constant of equation
(7.3). It is also clear that the eigenvalues of the Laplacians coincide. In this way, we also have
that the corresponding relative determinants satisfy

det(∆g1 , ∆̄a,0) = det(∆g2 , ∆̄a,0),

for any a = (a1, . . . , am) with min{aj , 1 ≤ j ≤ m} big enough.

The main theorem in this chapter is:

Theorem 7.5. Let (M, g) be a surface with cusps, let K ⊂M be a fixed compact subset of M and
let [g]K = {e2ϕg | ϕ ∈ C∞c (M), suppϕ ⊂ K} be the K-compactly supported conformal class of g.
Then isospectral sets in [g]K are compact in the C∞-topology.

Remark 7.6. As in the compact case, the proof of Theorem 7.5 uses Sobolev embedding theorems
and Rellich’s Lemma. We refer the reader to Appendix A and the references therein for the state-
ments of these theorems. It is well known that due to the nullity of the injectivity radius that neither
Sobolev embedding theorems nor Rellich’s lemma hold on surfaces with cusps in their standard form.
This is one of the reasons why we restrict our attention to transformations of the metric that take
place inside a fixed compact set and use the theorems for compact manifolds.
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Figure 7.1: Cusps and the compact set K. K is shown in gray.

Proof. First of all we need to compactifyM to a Riemannian manifold that containsK isometrically.
It is convenient at this point to change the coordinates in the cusp by the transformation z → w =
eiz. Then Zα becomes {w ∈ C : 0 < |w| ≤ e−α} =: D∗

e−α and the metric on it becomes

g|D∗
e−α

= log(|w|−1)−2|w|−2|dw|2.

Let us keep the old notation in these new coordinates. Then for b ≥ α, Mb = M0∪(D∗
e−α\D∗

e−b)∪Σb

and we could also denote D∗
e−b by Zb. Let f ∈ C∞(M) satisfy

f(w) :=

{
| log(|w|)||w| if w ∈ D∗

e−β−2(∼= Zβ+2)
1 if w ∈Mβ+1,

and put
σ = f(z)2 · g.

Then take M̃ = M ∪ {0} the one-point compactification of M (m-point compactification if M has
m cusps). The metric σ on M extends to a smooth metric on M̃ which we denote again by σ. Thus
(M̃, σ) is a closed manifold that contains Mβ isometrically and that has the same genus as M .

Now let {gn}n∈N ⊂ [g]K be a sequence of isospectral of metrics on M conformal to g. Notice
that since the metrics in the sequence are isospectral their areas Agn are the same and by the
Gauss-Bonnet theorem we have that Agn = 2π(2p+m−2). Since gn ∈ [g]K , there exists a function
ϕn ∈ C∞c (M) such that gn = e2ϕng and suppϕn ⊂ K, for each n ∈ N. Now put

g̃n := e2ϕnσ.

Then the metrics g̃n are conformal to σ on M̃ . The fact that K  Mβ+1 = M \ D∗
e−β−1 and

σ|Mβ+1
= g|Mβ+1

imply that the values Agn − Ag(D∗
eβ+1) are constant. Then the areas Aegn

of

(M̃, g̃n) have all the same value; this follows from:

Aegn
= Agn −Ag(D∗

eβ+1) +Aσ(M̃ \Mβ+1).

Therefore we can renormalize the metrics g̃n such that Aegn
= 1.
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As in the previous paragraph, the definitions of K and σ, the condition suppϕn ⊂ K for all
n ∈ N and the locality of the Laplacians ∆g and ∆σ imply that

‖ϕn‖2
Hk(fM,σ)

= ‖ϕn‖2
Hk(M,g). (7.4)

Notice here that compactness of {ϕn}n∈N in C∞(M̃, σ), together with suppϕn ⊂ K b M , for all
n ∈ N implies compactness of {ϕn}n∈N in C∞(M, g). In order to prove compactness in C∞(M, g)
we therefore need to prove that for each k ≥ 1:

‖ϕn‖Hk(fM,σ)
≤ C(k) for all n ∈ N,

where C(k) is a constant that may depend on k. The kth Sobolev norm can also be written as

‖ϕn‖2
Hk(fM,σ)

=
k∑
l=0

∫
fM |∇l

σϕn(x)|2dAσ,

where for the sake of simplicity ∇l
σ is denoted just by ∇l.

In Lemmas 7.7 and 7.8 we prove that if {gn}n∈N is isospectral then det∆egn
is constant and the

heat invariants of the metrics g̃n are the same for all n. The theorem will then follow from the
results of [34]. In Lemma 7.9 we prove the uniform bound in the first Sobolev norm. The proof
follows the same lines as in [34] but we repeat it here for convenience and completeness.

Lemma 7.7. Given a sequence {gn}n∈N of isospectral metrics in a conformal class [g]K , let {g̃n}n∈N
be the associated sequence of metrics on M̃ defined above. Then the regularized determinants
det ∆egn

are constant, i.e. their value is independent of n.

Proof. Let h be any metric in [g]K and let h̃ = f2 · h. Recall that M̃ = M ∪ {0} was defined above
as the one-point compactification of M . Then for the relative determinant of (∆h,∆β,0) and the
determinant of ∆eh we have the following splitting formulas:

log det(∆h,∆β,0)− log det ∆Zβ ,1 − log det ∆(Mβ ,h),D = log
(
Ah(M)
`(Σβ, h)

)
+ log det∗Rh

and

log det ∆
(fM,eh) − log det ∆

(Mβ ,eh),D − log det ∆
(fM\Mβ ,eh),D = log

(
Aeh(M̃)

`(Σβ, h̃)

)
+ log det∗Reh,

where the first formula is the one given by equation (6.12) and follows straight forward from
Theorem 6.10, and the second formula is the well known splitting formula for a closed surface, as
in [5]. Subtracting the equations we obtain:

log det ∆
(fM,eh) − log det(∆h,∆β,0) + log det ∆Zβ ,1 − log det ∆

(fM\Mβ ,eh),D
= log

(
Aeh(M̃)

`(Σβ, h̃)

)
− log

(
Ah(M)
`(Σβ, h)

)
+ log det∗Reh − log det∗Rh.
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From the definition of f we have that h̃ = h on Mβ+1, and f ≡ 1 in a neighborhood of Σβ. So
we have that `(Σβ, h) = `(Σβ, h̃). On the other hand, the Dirichlet-to-Neumann operators are the
same for both metrics. To see this, notice that given a function u ∈ C∞(Σβ), the unique solution
to the problem ∆gũ = 0 on M \ Σβ with ũ|Σβ

= u will also be a solution of ∆hũ = e−2ϕ∆gũ = 0
on M \ Σβ satisfying the same boundary condition. Then we have:

log det ∆
(fM,eh) − log det(∆h,∆β,0)− log det ∆

(fM\Mβ ,eh),D = log(Aeh(M̃))− log(Ah(M)) + c (7.5)

where c is a constant that does not depend on h. Now, let {gn}n∈N be a sequence of isospec-
tral metrics in [g]K and let {g̃n}n∈N be as in the proof of Theorem 7.5. Recall that Agn(M),
Aegn

(M̃), det(∆gn ,∆β,0) are constants independent of n. Moreover, g̃n|fM\Mβ
= σ|fM\Mβ

. Therefore

det ∆
(fM\Mβ ,egn),D

is also constant. Then replacing h and h̃ by gn and g̃n respectively, in equation
(7.5) we obtain:

log det(∆egn
) = constant.

This finishes the proof of the lemma.

Lemma 7.8. The heat invariants corresponding to the metrics of the sequence {g̃n}n∈N are the
same for any n ∈ N if we start with an isospectral sequence {gn}n∈N.

Proof. Let h be any of the metrics gn we are considering. Let us start by constructing the kernel
of a parametrix Hh for the heat operator e−t∆h on the surface with cusps (M,h), as we explained
in chapter 1 and in a similar way as in chapter 3. Namely we use the standard method of gluing
the heat kernel on the complete hyperbolic cusp (0,∞) × S1, denoted by K1 and independent of
h, with the heat kernel on (M̃, h̃), denoted by K

2,eh, restricted to Mβ+2.
Let us recall how we defined the gluing functions: For any two constants 1 < b < c, let φ(b,c)

be as defined in Chapter 1, so that φ(b,c)(y, x) = 0 for y ≤ b, and φ(b,c)(y, x) = 1 for y ≥ c. Let
ψ1 = φ(β+ 5

4
,β+2), and ψ2 = 1 − ψ1; then {ψ1, ψ2} is a partition of unity on [β + 1, β + 2] × S1.

Let φ1 = φ(β,β+1) and φ2 = 1 − φ(β+ 5
2
,β+3), so that φi = 1 on the support of ψi, i = 1, 2. The

parametrix we are considering is:

Hh(z, z′, t) = φ1(z)K1(z, z′, t)ψ1(z′) + φ2(z)K2,eh(z, z′, t)ψ2(z′).

As in Lemma 3.3, we can prove that there exist constants C, c > 0 such that:∫
M
|Kh(z, z, t)−Hh(z, z, t)|dAh(z) ≤ Ce−

c
t

for 0 < t ≤ 1. Then for small t we can replace the heat kernel Kh for the parametrix Hh. Let

pβ(z, z′, t) :=
(yy′)1/2√

4πt
e−

t
4 (e−

(log(y/y′))2
4t − e−

(log(yy′/β2))2

4t )

and pβ(z, z′, t) := 0 elsewhere. We thereby derive an analog to equation (8.14) in [28, page 283],
exactly as it is done there:∫

M
(Kh(z, z, t)− pβ(z, z, t)) dAh(z) =

∫
Zβ+1

(K1(z, z, t)− pβ(z, z, t)) dAh(z)

+
∫
Mβ+1

K
2,eh(z, z, t) dAh(z) +O(e−

c
t ), as t→ 0.
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For a metric g̃n on M̃ the heat invariants are, by definition, the coefficients in the asymptotic
expansion of the trace of the heat kernel as t→ 0:∫

fM K2,egn
(z, z, t) dAegn

∼ 1
t

∞∑
j=0

aj(g̃n)tj , as t→ 0.

The goal of this lemma is to prove that aj(g̃n) = aj(g̃m) for any n,m ∈ N, and for all j ≥ 0. This
will follow from the equality of the asymptotic expansions for small values of t of the integrals∫

fM K2,egn
(z, z, t) dAegn

and
∫

fM K2,egm
(z, z, t) dAegm

(7.6)

for any n,m ∈ N. We can split the integral over M̃ as an integral over Mβ+1 and one over M̃ \Mβ+1.
Given two metrics gn and gm as in the statement of the lemma, we have that on M̃ \Mβ+1, g̃n = g̃m.
Since relative to any coordinate system, the coefficients of the asymptotic expansion of the heat
kernel are given by universal polynomials in terms of the metric tensor and its covariant derivatives,
we have that aj(z, g̃n) = aj(z, g̃m), for z ∈ M̃ \Mβ+1. On M̃ \Mβ+1 we have that dAegn

= dAegm
.

Therefore: ∫
fM\M0

K2,egn
(z, z, t) dAegn

(z) =
∫

fM\M0

K2,egm
(z, z, t) dAegn

(z).

By assumption, K1 and pβ(z, z, t) are independent of gn and gm. Therefore:∫
Mβ+1

K2,egn
(z, z, t) dAegn

(z)−
∫
Mβ+1

K2,egm
(z, z, t) dAegm

(z)

∼t→0

∫
M

(Kgn(z, z, t)− pβ(z, z, t)) dAgn(z)−
∫
Zβ+1

(K1(z, z, t)− pβ(z, z, t)) dAgn(z)

−
∫
M

(Kgm(z, z, t)− pβ(z, z, t)) dAgm(z) +
∫
Zβ+1

(K1(z, z, t)− pβ(z, z, t)) dAgm(z)

=
∫
M

(Kgn(z, z, t)− pβ(z, z, t)) dAgn(z)−
∫
M

(Kgm(z, z, t)− pβ(z, z, t)) dAgm(z) = 0,

where the last equality follows from the fact that the metrics are isospectral and from equations
(7.2) and (7.3). So, we have proved that the asymptotic expansions as t → 0 for the integrals in
(7.6) are the same. From the definition of the heat invariants it follows that:

aj(g̃n) = aj(g̃m), for all j ≥ 0, and n,m ∈ N .

Let us prove now the uniform bound on the first Sobolev norms of the metrics {ϕn}n∈N in
(M̃, σ). The proof only requires the constant value of the determinants det∆egn

and the constant
value of the areas Aegn

. In fact, the proof is exactly the same as in [34], but restricted to a conformal
class. For convenience and completeness we repeat the proof here adapted to the restriction to a
conformal class.

Lemma 7.9. ([34]) For all n ∈ N we have that ‖ϕn‖H1(fM,σ)
� 1.
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Proof. We take (M̃, σ) as the background Riemannian manifold. We assume that M̃ admits a
metric of negative curvature, so that it is Euler characteristic is negative. We know that in the
conformal class of the metric σ, [σ] = {e2ϕσ | ϕ ∈ C∞(M̃)}, there is a unique hyperbolic metric, τ
of unit area, τ = e2ψσ. Thus, the metrics g̃n are conformal to the uniform metric τ :

g̃n = e2(ϕn−ψ)τ.

Polyakov’s formula for regularized determinants on closed surfaces gives ([34, (1.13)]):

log det(∆egn
) = − 1

6π

{
1
2

∫
fM |∇τ (ϕn − ψ)|2dAτ +

∫
fM Kτ (ϕn − ψ)dAτ

}
+ log(Aegn

) + log det(∆τ ).

This is equivalent to

−6π log det(∆egn
) =

1
2

∫
fM |∇τ (ϕn − ψ)|2dAτ + 2π(2− 2p)

∫
fM (ϕn − ψ)dAτ − 6π log det(∆τ ).

Let ψn := ϕn − ψ. Since Aτ =
∫fM dAτ = 1 and

Aegn
=
∫

fM dAegn
=
∫

fM e2ϕndAσ =
∫

fM e2(ϕn−ψ)dAτ = 1,

we can apply Jensen’s inequality to obtain:

exp
(∫

fM 2ψn dAτ

)
≤
∫

fM exp(2ψn) dAτ , thus
1
2

∫
fM ψn dAτ ≤ log

(∫
fM e2ψn dAτ

)
= 0. (7.7)

In [33], the authors proved that inside a conformal class [σ], among all metrics of unit area, the
functional logarithm of the determinant attains its maximum at the metric of constant curvature.
Thus:

log det(∆τ ) ≥ log det(∆egn
).

From Lemma 7.7 we have that log det(∆egn
) is constant. Therefore there exists a constant C > 0

such that C ≥ log det(∆τ )− log det(∆egn
) ≥ 0. Then,

C ≥ 6π(log det(∆τ )− log det(∆egn
)) =

1
2

∫
fM |∇τψn|2dAτ + 2π(2− 2p)

∫
fM ψn dAτ ≥ 0. (7.8)

We restrict now to surfaces for which p ≥ 1. Then, from equation (7.7) it follows that the term
2π(2− 2p)

∫fM ψn dAτ is positive. Therefore

1
2

∫
fM |∇τψn|2dAτ ≤ C − 2π(2− 2p)

∫
fM ψn dAτ ≤ C. (7.9)

Thus, ∫
fM |∇τψn|2 dAτ � 1. (7.10)

In order to see that the previous equation implies
∫fM |∇σϕn|2 dAσ � 1, notice that there is a

constant Cσ,τ ≥ 0 such that∫
fM |∇σψn|2 dAσ ≤ Cσ,τ

∫
fM |∇τψn|2 dAτ � 1,
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and
‖∇σϕn‖L2(fM,σ)

≤ ‖∇σ(ϕn − ψ)‖
L2(fM,σ)

+ ‖∇σψ‖L2(fM,σ)
� 1.

The next step is to prove that ∫
fM |ϕn|2dAσ � 1.

In order to do this, use Trudinger’s inequality and the fact that τ is a metric of unit area, thus

1 =
∫

fM e2ψn dAτ ≤ C exp
(
c1

∫
fM |∇τψn|2 dAτ + c2

∫
fM ψn dAτ

)
.

Then we have −1
c2

log(C ′ec
′
1) ≤

∫fM ψn dAτ ≤ 0. Therefore∣∣∣∣∫fM ψn dAτ

∣∣∣∣� 1. (7.11)

To show that the L2(M̃, σ)-norms of the functions ψn are uniformly bounded, use equations (7.10),
(7.11), and the min-max principle in the following way. If ψn ⊥ 1, i.e.

∫fM ψn dAτ = 0, one has∫fM |∇τψn|2 dAτ∫fM |ψn|2 dAτ
≥ λ1(∆τ ),

so ∫
fM |ψn|2 dAτ ≤

1
λ1(∆τ )

∫
fM |∇τψn|2 dAτ � 1.

If ψn is not orthogonal to the constant functions, then decompose it as ψn = ψ̂n + c(ψn) with
c(ψn) the projection of ψn on the kernel of ∆τ , and ψ̂n ⊥ 1. Then ∇τψn = ∇τ ψ̂n, and ‖ψn‖2

2 =
‖ψ̂n‖2

2 + c(ψn)2A2
τ � 1. Thus, we have ∫

fM |ψn|2 dAτ � 1.

Now use that dAσ = ρ dAτ , for a positive function ρ, to obtain∫
fM |ψn|2 dAσ ≤

1
min ρ

∫
fM |ψn|2 dAτ � 1.

Finally, the triangle inequality for the metric σ gives

‖ϕn‖2 ≤ ‖ϕn − ψ‖2 + ‖ψ‖2 � 1.

Putting everything together we obtain:

‖ϕn‖H1(fM,σ)
� 1, for all n ∈ N .
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The uniform estimates for the higher Sobolev norms follow in the same way as in [34]. The idea
of the proof is the following. The constant value of all the heat invariants, aj(g̃n) = constant for
all n ∈ N, implies uniform bounds for the corresponding curvatures and all their derivatives (the
proof of this implication is tiresome and full of technicalities). Then, using the equation for the
conformal change of the curvature, which in this case is −e2ψn = ∆τψn+Kψn , one obtains uniform
estimates for all the Sobolev norms of the conformal factors ψn, therefore for all the Sobolev norms
of the functions ϕn, n ∈ N. This finishes the proof of compactness of isospectral sets of metrics in
this case.

Remark 7.10. To extend Theorem 7.5 to include non compactly supported deformations we need
to solve several problems. The first problem is to find a suitable weighted Sobolev space where the
Sobolev embeddings and the Rellich’s Lemma hold. On the other hand, from equation (7.9) is clear
that we need the existence of a maximizer of det(∆·,∆1,0) inside the conformal class. As we noticed
in Chapter 4, Remark 4.6 this is only possible if the function ϕ in the conformal factor decays in
the cusps as y−1, as y → ∞. Therefore we should be able to define the relative determinant for
this wider class of metrics. We also need a complete asymptotic expansion of the relative heat
trace for small t since this asymptotic expansion is where the constancy of the heat invariants and
their relation with the higher derivatives of the function ϕ comes from. Those are the necessary
ingredients to obtain uniform boundedness of the Sobolev norms of the functions ϕn. Once we have
all that, we need to improve the bounds such that the weighted Sobolev norms are uniformly bounded.

82



Appendix A

Sobolev spaces

Sobolev embedding theorems and Rellich’s Lemma on closed manifolds are a key tool in the proof
of compactness (up to diffeomorphism) of isospectral sets of metrics on closed surfaces, [34]. In
the first part of this appendix we give the statement of these theorems. It is well known that for
Sobolev spaces defined on surfaces with cusps these theorems do not hold any more. In the second
part we give a brief description of the Sobolev spaces defined on surfaces with cusps.

A.1 Closed manifolds

In this part we give a brief description of Sobolev spaces for closed manifolds and state their main
properties that are used in this thesis. We refer the reader to [24] and [43]. In [24] the authors
define Sobolev spaces in the setting of Hermitian vector bundles with connection on a Riemannian
manifold. The following definitions and results are presented as they are stated in [43, Chapter 4].

We assume that the theory of Sobolev spaces in Rn is well known to the reader. Let us recall
the definition of the Sobolev space in Rn:

Hs(Rn) = {u ∈ S ′(Rn)|(1 + |ξ|2)s/2û(ξ) ∈ L2(Rn)}

where û denotes the Fourier transform of u. The sth-Sobolev norm of u is given by

‖u‖2
s =

∫
R
(1 + |ξ|)2s|û(ξ)|2dξ.

Let M be a compact manifold, and let u ∈ D′(M). We say that u ∈ Hs(M) provided that on
any coordinate patch U ⊂ M , any ψ ∈ C∞0 (U), the element ψu ∈ E ′(U) belongs to Hs(U), if U
is identified with its image in Rn. By the invariance under coordinate changes, it suffices to work
with any single coordinate cover of M .

The Sobolev embedding theorems have several parts. Let us state only the part that is of
interest for us:

Theorem Let M be a smooth compact manifold of dimension n, then

1. Sobolev embedding. If u ∈ Hs(M), then u ∈ Ck(M), provided s > n
2 + k. The inclusion

Hs(M) ⊂ Ck(M) is continuous.

2. Rellich’s Lemma Given s ∈ R, the inclusion Hs+σ(M) → Hs(M) is compact for all σ > 0.
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The theorems above are also valid on complete open manifolds with bounded geometry. However
it is well known that they are not valid in general.

A.2 Surfaces with cusps

In this part we refer to [36] and [32]. There, the authors define and study Sobolev spaces for
Riemannian manifolds with bounded curvature. See these references for the details.

Let M be a Riemannian manifold with bounded curvature. We also assume that M is complete.
Let k ∈ N, then the Sobolev space H2k(M) is defined as:

H2k(M) := {f ∈ L2(M)|∆l
gf ∈ L2(M), for all l = 1, . . . , k},

with the norm:
‖f‖H2k := ‖(∆g + I)kf‖L2 . (A.1)

The closure of C∞0 (M) in H2k(M) is denoted by H2k
0 (M) and C∞(M) ∩ H2k(M) is dense in

H2k(M). Let
C̃∞k (M) = {f ∈ C∞(M)|(∆g + I)kf ∈ L2(M)},

then H2k(M) is the completion of C̃∞k (M) with respect to the norm defined in equation (A.1).
Now for s ∈ R, let (∆g + I)s/2 be defined by the spectral theorem. Let

C̃∞s (M) = {f ∈ C∞(M)|(∆g + I)s/2f ∈ L2(M)},

and define Hs(M) as the completion of C̃∞s (M) respect to the norm:

‖f‖Hs := ‖(∆g + I)s/2f‖L2 . (A.2)

Lemma 3.2 in [32] establishes that if M is complete, then H2k(M) = H2k
0 (M), for any k ∈ N.

Now let (M, g) be a surface with cusps, as it was described in Chapter 1. Let 0 ≤ s′ ≤ s, for
λ ≥ 0 we have that (1 + λ)s

′ ≤ (1 + λ)s. Therefore ‖f‖Hs′ ≤ ‖f‖Hs . In this way we have that
Hs(M) ⊂ Hs′(M).

For s > 0, we claim that H−s(M) ∼= (Hs
0)∗(M). First notice that Hs(M) ⊂ H−s

0 (M). To see
that, let f, ϕ ∈ Hs(M) and let φf be the corresponding element in (Hs(M))′. Then for ϕ ∈ C∞0 (M)
we have that φf (ϕ) = 〈f, ϕ〉Hs(M), and |φf (ϕ)| ≤ ‖f‖Hs‖ϕ‖Hs . Now,

〈φf , ϕ〉H−s = 〈(∆g + I)−s/2φf , (∆g + I)−s/2ϕ〉L2 = 〈φf , (∆g + I)−sϕ〉L2 = 〈f, (∆g + I)−sϕ〉Hs

|〈φf , ϕ〉H−s | ≤ ‖f‖Hs‖(∆g + I)−sϕ‖Hs = ‖f‖Hs‖ϕ‖H−s .

To see the isomorphism, consider the pairing C∞0 (M)× C∞0 (M) → C given by:

(f, ϕ) := 〈f, ϕ〉L2 =
∫
M
fϕ dAg.

This pairing has a continuous extension to H−s
0 ×Hs

0 → C, since for f, ϕ ∈ C∞0 we have:

(f, ϕ) = 〈f, ϕ〉L2 = 〈(∆g + I)−s/2f, (∆g + I)s/2ϕ〉L2 .

Let f ∈ H−s
0 and let ϕ ∈ C∞0 (M). Then:

|〈f, ϕ〉L2 | = |〈(∆g + I)−s/2f, (∆g + I)s/2ϕ〉L2 | ≤ ‖(∆g + I)−s/2f‖L2‖(∆g + I)s/2ϕ‖L2

= ‖f‖H−s‖ϕ‖Hs .

If s > 0 we have thatHs ⊂ L2 ⊂ H−s. The operator ∆g : H2(M) → L2(M) is naturally continuous.
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Lemma A.1. The operators ∆g + I : H1
0 (M) → H−1

0 (M) and (∆g + I)−1 : H−1
0 (M) → H1

0 (M)
are continuous.

Proof. Let us start with ∆g + I. Let f ∈ C∞0 (M). Then

‖(∆g + I)f‖H−1 = ‖(∆g + I)−1/2(∆g + I)f‖L2 = ‖(∆g + I)1/2f‖L2 = ‖f‖H1

Now let f ∈ H1
0 (M). Then there exists {fk} ⊂ C∞0 (M) so that fk −→ f in H1(M), that is,

‖fk − f‖H1(M) = ‖(∆g + I)1/2(fk − f)‖L2 → 0, as k →∞,

in particular fk → f in L2.
On the other hand, ‖(∆g+I)(fk−fj)‖H−1 = ‖fk−fj‖H1 → 0 as k, j →∞ therefore {(∆g+I)fk}

it is a Cauchy sequence in H−1(M) and there exists ψ ∈ H−1(M) so that (∆g + I)fk → ψ in
H−1(M), thus ‖(∆g + I)fk − ψ‖H−1 → 0. We just have to prove that (∆g + I)f = ψ in H−1(M),
i.e. in the distributional sense. Let ϕ ∈ C∞0 (M):

〈(∆g + I)f, ϕ〉 = 〈f, (∆g + I)ϕ〉 = lim
k→∞

〈fk, (∆g + I)ϕ〉 = lim
k→∞

〈(∆g + I)fk, ϕ〉 = 〈ψ,ϕ〉.

Thus, ∆g + I : H1
0 (M) → H−1

0 (M) is continuous.
To prove continuity of (∆g + I)−1 : H−1

0 (M) → H1
0 (M) we proceed almost in the same way as

in the previous case. Let f ∈ C∞0 (M). Then

‖(∆g + I)−1f‖H1 = ‖(∆g + I)1/2(∆g + I)−1f‖L2 = ‖(∆g + I)−1/2f‖L2 = ‖f‖H−1 .

Now let f ∈ H−1
0 (M). Then there exists {fk} ⊂ C∞0 (M) so that fk → f in H−1(M). That is,

‖fk − f‖H−1 = ‖(∆g + I)−1/2(fk − f)‖L2 → 0, as k →∞.

In the same way as above, we have that {(∆g + I)−1fk} is a Cauchy sequence in H1(M) and
there exists ψ ∈ H1(M) so that (∆g + I)fk → ψ in H1(M), thus

‖(∆g + I)−1fk − ψ‖H1 = ‖(∆g + I)−1/2fk − (∆g + I)1/2ψ‖0 → 0.

As before, we have to prove that (∆g + I)−1f = g in H1(M). To do this, we proceed a little
bit differently from the previous case. Let ε > 0. Then there exists N ∈ N so that for all k > N

‖(∆g + I)−1f − ψ‖H1 = ‖(∆g + I)−1/2f − (∆g + I)1/2ψ‖L2

≤ ‖(∆g + I)−1/2(f − fk)‖L2 + ‖(∆g + I)−1/2fk − (∆g + I)1/2ψ‖L2

<
ε

2
+
ε

2
= ε.

Thus (∆g + I)−1f = ψ and (∆g + I)−1 : H−1
0 (M) → H1

0 (M) is continuous.
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Appendix B

Spectral shift functions

In this part, we compute the spectral shift function associated to the Laplacian on the surface with
cusps and the Dirichlet Laplacian on the cusps.

The general theory of spectral shift functions associates a function of a real variable to a pair
of operators satisfying certain conditions. Let us mention two important aspects of spectral shift
functions. The first is a trace formula. An important part of the theory is devoted to understanding
what conditions on a pair of operators (A,B) and a function ϕ make the formula

Tr(ϕ(A)− ϕ(B)) =
∫

R
ϕ′(λ)ξ(λ)dλ

hold. The second aspect of the theory that we want to mention here is the relationship of spectral
shift functions to the scattering matrix S(λ) that is given by the equation:

detS(λ) = e−2πiξ(λ)

for almost every λ ∈ R.
For the details, we refer to [3] [4] and [30]. Let H and H0 be two self-adjoint operators acting

on a separable Hilbert space H such that their difference H −H0 is trace class. For z ∈ ρ(H0), the
perturbation determinant is defined as

∆H/H0
(z) = det(I + (H −H0)Rz(H(0))) = det((H − z)(H0 − z)−1).

It is analytic in both half planes Im(z) > 0 and Im(z) < 0. The trace class property of
(H − H0)Rz(H(0)) implies that ∆H/H0

(z) → 1 as | Im(z)| → ∞. Let ς(z) := log ∆H/H0
(z) =∫

R
ξ(t)
t−zdt, for Im(z) 6= 0. The branch of the logarithm is fixed by the condition ς(z) → 0 as

Im(z) →∞. After analyzing the function ς(z) close to the real line one obtains that:

ξ(λ) = ξ(λ;H,H0) = π−1 lim
ε→0+

arg ∆H/H0
(λ+ iε)

for almost every λ ∈ R. The spectral shift function ξ(λ) is real valued, belongs to L1(R) and
satisfies

Tr(H −H0) =
∫

R
ξ(λ)dλ, ‖ξ‖1 ≤ ‖H −H0‖1.
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There is an invariance principle for spectral shift functions (named after the invariance princi-
ple in Scattering theory). This principle relates the spectral shift function associated to a pair
(F (H), F (H0)), for a suitable function F , with the one associated to a the pair (H,H0), see [4]:

ξ(λ;H,H0) = ε ξ(F (λ);F (H), F (H0)), ε = sgnF ′,

where the spectral shift function on the left-hand side of the previous equation is obviously inte-
grable only with a suitable weight. To finish this mini introduction let us include Proposition 2.1
in [30]:

Proposition B.1. ([30]) Let H, H0 be two nonnegative self-adjoint operators in H and assume
that e−tH − e−tH0 is a trace class operator for t > 0. Then there exists a unique real valued locally
integrable function ξ(λ) = ξ(λ;H,H0) on R such that for each t > 0, e−tλξ(λ) ∈ L1(R) and the
following conditions hold:

1. Tr(e−tH − e−tH0) = −t
∫∞
0 e−tλξ(λ)dλ.

2. For every ϕ ∈ {f : R → R |f ∈ L1 and
∫

R |f̂(p)|(1 + |p|)dp < ∞}, ϕ(H) − ϕ(H0) is a trace
class operator and

Tr(ϕ(H)− ϕ(H0)) =
∫

R
ϕ′(λ)ξ(λ)dλ.

3. ξ(λ) = 0 for λ < 0.

B.1 Spectral shift function for a surface with cusps

Now let (M, g) be a surface with cusps as described in Chapter 1, where Zaj ' [aj ,∞) × S1 with
aj > 0, j = 1, . . . ,m. Let us consider the pair of self-adjoint operators (∆g,∆0,D), where ∆g is
the Laplacian on the surface with cusps and ∆0,D denotes the operator ⊕mj=1∆Zj ,D, where ∆Zj ,D

is the self-adjoint extension of −y2
j

(
∂2

∂y2j
+ ∂2

∂x2

)
: C∞c (Zaj ) → L2(Zaj , y

−2
j dy dx), with respect to

Dirichlet boundary conditions at {aj} × S1. In what follows we compute ξ(λ;∆g,∆0,D).
Let us start decomposing the spectral shift function into its discrete and continuous parts:

ξ(λ,∆g,∆0,D) = ξd(λ) + ξc(λ).

For the discrete part, remember that we can decompose the operator ∆0,D as ∆0,D = ⊕mj=1(∆aj ,0⊕
∆Zj ,1) where the operators ∆Zj ,1 have only point spectrum. Therefore we have that

ξd(λ) = −Ng(λ) +
m∑
j=1

Nj(λ),

where Ng(λ) =
∑

λi≤λ 1 and λ0 = 0 < λ1 ≤ λ2 ≤ . . . are the eigenvalues of ∆g and Nj(λ) is the
counting function corresponding to ∆Zj ,1.

Now let us proceed with the continuous part. Let ∆ac denote the absolute continuous part of
∆g and let ∆̄a,0 denote ⊕mj=1∆aj ,0. We know that for a suitable class of functions; we have that

Tr(ϕ(∆ac)− ϕ(∆̄a,0)) =
∫

R
ϕ′(λ)ξc(λ)dλ. (B.1)
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Let Y � max{aj}, let Zj,Y = [Y,∞) and let MY := M \
⋃m
j=1 Zj,Y . Then we have

Tr(ϕ(∆ac)− ϕ(∆̄a,0)) = lim
Y→∞

∫
MY

Kc,ϕ(z, z) dAg(z)−
∫
MY

K0,ϕ(z, z) dAg(z), (B.2)

where Kc,ϕ(z, z′) and K0,ϕ(z, z′) are the kernels of the operators ϕ(∆ac) and ϕ(∆̄a,0), respectively.
We use equations (B.1) and (B.2) to compute the spectral shift function explicitly. Using the
spectral decomposition of the Laplacian we get:

Kc,ϕ(z, z′) =
1
4π

∫ ∞

−∞
ϕ(

1
4

+ λ2)
m∑
j=1

Ej(z,
1
2

+ iλ)Ej(z′,
1
2
− iλ)dλ,

K0,ϕ(z, z′) =
1
4π

∫ ∞

−∞
ϕ(

1
4

+ λ2)
m∑
j=1

ej(y,
1
2

+ iλ)ej(y′,
1
2
− iλ)dλ,

where Ej is the Eisenstein series associated with cusp Zaj and ej is a function that satisfies the
following equations in the cusp Zaj :

−y2 d
2

dy2
ej(y, s) = s(1− s)ej(y, s),

ej(aj , s) = 0,
ej(y, s) = ys + ψ(y, s),

with ψ(y, s) ∈ L2(Zaj ), for Re(s) > 1
2 . The solution to this problem is:

ej(y, s) = ys − a2s−1
j y1−s.

Integrating this function over the corresponding truncated cusp we obtain:∫ Y

aj

|ej(y, 1
2

+ iλ)|2dAg(y) =
∫ Y

aj

(2y − a2iλ
j y1−2iλ − a−2iλ

j y1+2iλ)
dy

y2

=

{
2 log(y) +

a2iλ
j

2iλ
y−2iλ −

a−2iλ
j

2iλ
y2iλ

}∣∣∣∣∣
Y

aj

= 2 log(Y ) +
a2iλ
j

2iλ
Y −2iλ −

a−2iλ
j

2iλ
Y 2iλ − 2 log(aj).

Now we want to compute the corresponding integral for the Eisenstein series associated to the
cusp Zaj . In order to do this, define ẼjY by:

ẼjY (z, s) =
{
Ej(z, s) if z ∈M \

⋃m
j=1 Zj,Y ,

Ej(z, s)− δijy
s
i − Cij(s)y1−s

i if z ∈ Zi,Y .

From Proposition 7.13 in [28], it follows that for 0 < Re(s) < 1,∫
MY

Ei(z, s)Ej(z, s′)dAg(z) = 〈Ẽi(z, s), Ẽj(z, s′)〉+O(e−cY )
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as Y →∞. Now let us use Lemma 7.23 in [28]:

〈Ẽi(z, 1
2

+ iλ), Ẽj(z,
1
2

+ iλ′)〉 = δij
Y i(λ−λ′) − Y −i(λ−λ′)

i(λ− λ′)

+ Y −i(λ−λ′)
m∑
k=1

Cik(
1
2

+ iλ)
Ckj(1

2 − iλ)− Ckj(1
2 − iλ′)

i(λ− λ′)

+
1

i(λ+ λ′)
(Y i(λ+λ′)Cji(

1
2
− iλ′)− Y −2i(λ−λ′)Cij(

1
2

+ iλ))

and let λ′ → λ to obtain

〈Ẽi(z, 1
2

+ iλ), Ẽj(z,
1
2

+ iλ)〉 = δij2 log(Y ) +
(
C(

1
2

+ iλ)
d

ds
C(

1
2
− iλ)

)
i,j

+
1

2iλ
(Y 2iλCji(

1
2
− iλ)− Y −2iλCij(

1
2

+ iλ)).

In this way we obtain that:∫
MY

|E(z, s)|2dAg(z) =
m∑
j=1

∫
MY

|Ej(z, s)|2dAg(z)

= 2m log(Y ) + Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
− iλ)

)
+

1
2iλ

(
Y 2iλ Tr(C(

1
2
− iλ))− Y −2iλ Tr(C(

1
2

+ iλ))
)

+O(e−cY ).

Put everything together for equation (B.2); we have∫
MY

Kc,ϕ(z, z)dAg(z)−
∫
MY

K0,ϕ(z, z)dAg(z)

=
∫
MY

1
4π

∫
R
ϕ

(
1
4

+ λ2

) m∑
j=1

|Ej(z, 1
2

+ iλ)|2 −
m∑
j=1

|ej(z, 1
2

+ iλ)|2
 dAg(z)

=
1
4π

∫
R
ϕ

(
1
4

+ λ2

)
{2m log(Y ) + Tr

(
C(

1
2

+ iλ)
d

ds
C(

1
2
− iλ)

)
+

1
2iλ

(
Y 2iλ Tr(C(

1
2
− iλ))− Y −2iλ Tr(C(

1
2

+ iλ))
)
− 2m log(Y )

−
m∑
j=1

{
1

2iλ
(a2iλ
j Y −2iλ − a−2iλ

j Y 2iλ)− 2 log(aj)
}

+O(e−cY )}dλ

=
1
4π

∫
R
ϕ

(
1
4

+ λ2

)Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
− iλ)

)
+

1
2iλ

Y 2iλ(Tr(C(
1
2
− iλ)) +

m∑
j=1

a−2iλ
j )

− 1
2iλ

Y −2iλ(Tr(C(
1
2

+ iλ)) +
m∑
j=1

a2iλ
j ) +

m∑
j=1

2 log(aj) +O(e−cY )

 dλ.
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Hence we obtain:

Tr(ϕ(∆ac)− ϕ(∆̄a,0))

=
1
4π

∫
R
ϕ

(
1
4

+ λ2

)
lim
Y→∞

Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
− iλ)

)
+

m∑
j=1

2 log(aj)

+
1

2iλ
Y 2iλ(Tr(C(

1
2
− iλ)) +

m∑
j=1

a−2iλ
j ) − 1

2iλ
Y −2iλ(Tr(C(

1
2

+ iλ)) +
m∑
j=1

a2iλ
j ) +O(e−cY )

 dλ

=
1
4π

∫
R
ϕ

(
1
4

+ λ2

)Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
− iλ)

)
+

m∑
j=1

2 log(aj)

 dλ

+ lim
Y→∞

1
4π

∫
R
ϕ

(
1
4

+ λ2

) 1
2iλ

Y 2iλ(Tr(C(
1
2
− iλ)) +

m∑
j=1

a−2iλ
j )

− 1
2iλ

Y −2iλ(Tr(C(
1
2

+ iλ)) +
m∑
j=1

a2iλ
j )

 dλ.

Write Y 2iλ = cos(2λ log Y ) + i sin(2λ log Y ). Then the last integral is the difference of the two
following terms

1
4π

∫
R
ϕ

(
1
4

+ λ2

)
(Tr(C(

1
2
− iλ)) + Tr(C(

1
2

+ iλ)) +
m∑
j=1

a2iλ
j + a−2iλ

j )
sin(2λ log Y )

2λ
dλ, and

1
4iπ

∫
R
ϕ

(
1
4

+ λ2

) Tr(C(1
2 + iλ))− Tr(C(1

2 − iλ)) +
∑m

j=1 a
2iλ
j − a−2iλ

j

2λ
cos(2λ log Y ) dλ.

Taking the limit as Y →∞ we obtain:

Tr(ϕ(∆ac)− ϕ(∆̄a,0)) =
1
4π

∫
R
ϕ

(
1
4

+ λ2

)Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
)− iλ)

)
+

m∑
j=1

2 log(aj)

 dλ

+ ϕ

(
1
4

)
Tr(C(1

2)) +m

4
.

Now we are ready to compute the spectral shift function. We first consider ϕ ∈ C∞c (R) such
that ϕ(1/4) = 0. Then the previous equation becomes:

Tr(ϕ(∆ac)− ϕ(∆̄a,0)) =
1
4π

∫
R
ϕ

(
1
4

+ λ2

)Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
)− iλ)

)
+

m∑
j=1

2 log(aj)

 dλ.

Now let us use the fact that the functions ϕ
(

1
4 + λ2

)
, Tr

(
C(1

2 + iλ) ddsC(1
2 − iλ)

)
and the constants

are even, thus so it is the integrand. Therefore we obtain:

Tr(ϕ(∆ac)− ϕ(∆̄a,0)) =
1
2π

∫ ∞

0
ϕ

(
1
4

+ λ2

)Tr
(
C(

1
2

+ iλ)
d

ds
C(

1
2
)− iλ)

)
+

m∑
j=1

2 log(aj)

 dλ.
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Let us also call ρ(λ) = Tr
(
C(1

2 + iλ) ddsC(1
2 − iλ)

)
+
∑m

j=1 2 log(aj). Then the change of variables
λ′ = 1/4 + λ2 and integration by parts give:

Tr(ϕ(∆ac)−ϕ(∆̄a,0)) =
1
4π

∫ ∞

1/4
ϕ(λ′)

ρ(
√
λ′ − 1/4)√
λ′ − 1/4

dλ′ = − 1
4π

∫ ∞

1/4
ϕ′(λ′)

∫ λ′

1/4

g(
√
λ̃− 1/4)√
λ̃− 1/4

dλ̃ dλ′,

where we used d
dλ′

∫ λ′
1/4

ρ(
√eλ−1/4)√eλ−1/4

dλ̃ = ρ(
√
λ′−1/4)√
λ′−1/4

.

In this way, we have for the spectral shift function that:

ξ̃c(λ′) :=

 − 1
4π

∫ λ′
1/4

ρ(
√eλ−1/4)√eλ−1/4

dλ̃− (Tr(C( 1
2
))+m)

4 if λ′ ≥ 1
4

0 if λ′ < 1
4 .

Now let ϕ ∈ C∞c (R). Then∫ ∞

1/4
ϕ′(λ′)ξ̃c(λ′)dλ′ = ϕ(λ′)ξ̃c(λ′)

∣∣∣∞
λ′=1/4

+
1
4π

∫ ∞

1/4
ϕ(λ′)

g(
√
λ′ − 1/4)√
λ′ − 1/4

dλ′

= ϕ(1/4)
(Tr(C(1

2)) +m)
4

+
1
4π

∫ ∞

1/4
ϕ(λ′)

g(
√
λ′ − 1/4)√
λ′ − 1/4

dλ′.

In the last integral, make the inverse substitution λ =
√
λ′ − 1/4 to get:∫ ∞

1/4
ϕ′(λ′)ξ̃c(λ′)dλ′ = ϕ(1/4)

(Tr(C(1
2)) +m)
4

+
1
2π

∫ ∞

0
ϕ(1/4 + λ2)ρ(λ) dλ

= Tr(ϕ(∆ac)− ϕ(∆̄a,0)) =
∫

R
ϕ′(λ′)ξc(λ′) dλ′.

Since ξ̃c(λ′) = 0 for λ′ < 1/4, for any ϕ ∈ C∞c (R) we have that∫
R

dϕ

dλ′
(λ′)(ξ̃c(λ′)− ξc(λ′))dλ′ = 0.

By ellipticity of d
dλ′ , it follows that ξ̃c − ξc ∈ C∞(R) and

d

dλ′
(ξ̃c(λ′)− ξc(λ′)) = 0,

thus ξ̃c(λ′) − ξc(λ′) = c, a constant function. Recall that ξc(λ′) is the absolutely continuous part
of the spectral shift function ξ(λ;∆,∆0) and σac(∆) = σac(∆̄a,0) = [1/4,∞). It follows from the
properties of the spectral shift function that ξc(λ′) = 0 for λ′ < 1/4. Since ξ̃c(λ′) = 0, for λ′ < 1/4
we have that c = 0, therefore ξc(λ′) = ξ̃c(λ′). Finally we obtain:

ξc(λ) = − 1
2π

∫ √λ−1/4

0
Tr
(
C(

1
2

+ iλ̃)
d

ds
C(

1
2
− iλ̃)

)
dλ̃−

(Tr(C(1
2)) +m)
4

−
√
λ− 1/4
2π

m∑
j=1

log aj ,

if λ ≥ 1
4 , and otherwise ξc(λ) = 0.

91



B.2 Spectral shift function for (∆, ∆1,0)

Now consider the Laplacian ∆1,0 that is the self adjoint extension of the direct sum of

−y2
j

∂2

∂y2
j

: C∞0 ([1,∞)) → L2([1,∞),
dyj
y2
j

)

obtained by imposing Dirichlet boundary conditions at yj = 1, for all 1 ≤ j ≤ m. In this case the
kernel of ϕ(∆1,0) is

K̂1,0,ϕ(z, z′) =
1
4π

∫ ∞

−∞
ϕ(

1
4

+ λ2)
m∑
j=1

êj(y,
1
2

+ iλ)êj(y′,
1
2
− iλ)dλ,

where êj satisfy the following equations on [1,∞):

−y2 d
2

dy2
êj(y, s) = s(1− s)êj(y, s),

êj(1, s) = 0,
ej(y, s) = ys + ϕ(y, s).

Then in the previous proof the only changes are that aj = 1, for 1 ≤ j ≤ m, and that the term
involving log(aj) becomes null. Therefore we obtain:

ξc(λ;∆,∆1,0) :=

{
− 1

2π

∫√λ−1/4
0 Tr

(
C(1

2 + iλ̃) ddsC(1
2 − iλ̃)

)
dλ̃− (Tr(C( 1

2
))+m)

4 if λ ≥ 1
4

0 if λ < 1
4 .
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in Mathematics, Vol. 194 Springer-Verlag, Berlin-New York 1971.

[7] G. Carron, Determinant relatif et la fonction Xi. Amer. J. Math. 124 (2002), no. 2, 307-352.

[8] H. S. Carslaw and J. C. Jaeger, Conduction of heat in solids. Second Edition. Oxford, 1959.

[9] I. Chavel, Eigenvalues in Riemannian Geometry. Academic Press, 1984.

[10] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions
of the Laplace operator, and the geometry of complete Riemannian manifolds. J. Differential
Geom. 17 (1982), no. 1, 15–53.

[11] S. Y. Cheng, P. Li and S. T. Yau, On the Upper Estimate of the Heat Kernel of a Complete
Riemannian Manifold, Am. J. Math., Vol. 103, No. 5. (1981), pp. 1021-1063.

[12] Y. Colin de Verdiere, Une nouvelle dmonstration du prolongement mromorphe des sries
d’Eisenstein. C. R. Acad. Sci., Paris, Sr. I 293, 361-363 (1981).

[13] E. B. Davies, Pointwise bounds on the space and time derivatives of heat kernels. J. Operator
Theory 21 (1989), 367-378.

[14] H. Donnelly, Essential Spectrum and Heat Kernel. Journal of Functional Analysis 75, 362-381
(1987).

[15] J. Dodziuk, Maximum principle for parabolic inequalities and the heat flow on open manifolds.
Indiana Univ. Math. J. 32 (1983), no. 5, 703–716.

93



[16] P. Gilkey, The spectral geometry of a Riemannian manifold. J. Differential Geom. Volume 10,
Number 4 (1975), 601-618.

[17] H. Iwaniec, Spectral methods of Automorphic forms. Second edition. Graduate Studies in Math-
ematics, 53. American Mathematical Society, Providence, RI.

[18] A. Hassell and S. Zelditch, Determinants of Laplacians in Exterior domains IMRN Interna-
tional Mathematics Research Notices. 1999, No. 18. 971-1004.

[19] J. Jorgenson and R. Lundelius, A regularized heat trace for hyperbolic Riemann surfaces of
finite volume. Comment. Math. Helv. 72, 636-659, (1997).

[20] M. Kac, Can one hear the shape of a drum?. Amer. Math. Monthly 73 (1966), 1-23.

[21] T. Kato, Perturbation theory for linear operators. New York: Springer, 1980.

[22] Y-H. Kim, Surfaces with boundary: Their uniformizations, determinants of Laplacians, and
Isospectrality. Duke Math. J. 144 (2008), no. 1, 73–107.

[23] H. H. Khuri, Heights on the moduli space of Riemann surfaces with circle boundaries.. Duke
Math. J. Vol. 64, No. 3 (Dec. 1991), 555-570.

[24] H. B. Lawson and M. L. Michelsohn, Spin Geometry. Princeton Mathematical Series, 38.
Princeton University Press, Princeton, NJ, 1989.

[25] P. Loya and J. Park, Decomposition od the ζ-determinant for the Laplacian on manifolds with
cylindrical end. Illinois J. Math. 48 (2004), no. 4, 1279–1303

[26] R. Lundelius, Asymptotics of the determinant of the Laplacian on hyperbolic surfaces of finite
volume. Duke Math. J. 71 (1993), no. 1, 211-242.

[27] R. Melrose, The inverse spectral problem for planar domains in Instructional Workshop on
Analysis and Geometry, Part I. (Canberra, 1995), Proc. Centre Math. Appl. Austral. Nat.
Univ. 34, Austral. Nat. Univ. Canberra, 1996.

[28] W. Müller, Spectral theory for Riemannian manifolds with cusps and a related trace formula.
Math. Nachr. 111 (1983) 197-288.

[29] W. Müller, Spectral geometry and scattering theory for certain complete surfaces of finite
volume. Invent. math. 109, 265-303. (1992).

[30] W. Müller, Relative zeta functions, relative determinants, and scattering theory. Comm. Math.
Physics 192 (1998), 309-347.

[31] J. Müller and W. Müller, Regularized determinants of Laplace type operators, analytic surgery
and relative determinants. Duke Math. J., Vol 133, No. 2 (2006), 259-312.

[32] W. Müller and G. Salomonsen, Scattering theory for the Laplacian on manifolds with bounded
curvature. 2006.

[33] B. Osgood, R. Phillips and P. Sarnak, Extremal of Determinants of Laplacians. Journ. Funct.
Analysis 80, 148-211, 1988.

94



[34] B. Osgood, R. Phillips and P. Sarnak, Compact Isospectral sets of surfaces. Journ. Funct.
Analysis 80, 212-234, 1988.

[35] B. Osgood, R. Phillips and P. Sarnak, Moduli Space, Heights and Isospectral sets of Plane
Domains. Annals of Mathematics, 2nd Ser., VOl. 129, No. 2. (Mar., 1989), 293-362.

[36] G. Salomosen, Equivalence of Sobolev Spaces. Results Math. 39 (2001), no. 1-2, 115–130.

[37] P. Sarnark, Extremal Geometries. Extremal Riemann surfaces (San Francisco, CA, 1995), 1-7,
Contemp. Math., 201, Amer. Math. Soc., Providence, RI, 1997.

[38] R. T. Seeley, Complex powers of an elliptic operator Singular Integrals (Proc. Sympos. Pure
Math., Chicago, Ill., 1996) pp. 288-307. Amer. Math. Soc., Providence, R.I.

[39] A. Selberg, Collected papers. Vol. I and II. Springer-Verlag, Berlin, 1991.

[40] T. Sunada, Riemannian coverings and isospectral manifolds. Annals of Mathematics, Second
Series, Vol. 121. No. 1 (Jan., 1985), 169-186.

[41] D. B. Ray and I. M. Singer, R-torsion and the Laplacian on Riemannian Manifolds. Advances
in Mathematics 7, 145-210 (1971).

[42] K. Richardson, Critical points of the determinant of the Laplace operator. J. Funct. Anal. 122
(1994), no. 1, 52–83.

[43] M. E. Taylor, Partial Differential Equations I. Basic theory. Applied Mathematical Sciences,
115. Springer-Verlag, New York, 1996.

[44] M. E. Taylor, Partial Differential Equations II. Qualitative studies of linear equations Applied
Mathematical Sciences, 116. Springer-Verlag, New York, 1996.

[45] S. A. Wolpert, Asymptotics of the spectrum and the Selberg zeta function on the space of
Riemann surfaces. Commun. Math. Phys. 112, 283-315 (1987).

[46] S. Zelditch, The inverse spectral problem. arXiv:math.SP/0402356 v1. 23 Feb. 2004.

95


