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Preface

The importance of human genetics research is clear in order to understand human nature, dis-

eases and development of effective disease treatment. Human genetics covers a variety of overlapping 

fields including cytogenetics, molecular genetics, population genetics, human biology, medical genetics 

and statistics. In fact, there is a long historical link between genetics and statistics. Two of the most im-

portant pioneers of modern statistics, Karl Pearson and Ronald Fisher, were involved in genetics at 

some point in their careers. In the first issue of Biometrika (1901), the editorial stated:

“The biologist, the mathematician, and the statistician have hitherto had widely differentiated 

fields of  work ... Patient endeavour to understand each other's methods, and to bring them in harmony 

for united ends and common profits – this is the only method by which we can earn for biometry a rec-

ognized place in the world of Science ...”

Despite this strong historical citation, genetic statistics is often regarded as a difficult area by 

both geneticists and statisticians. Geneticists are often taken aback by novel statistic methods, and some 

statisticians are put off by the technical terminology of genetics. Genetic research requires geneticists 

and statisticians to work together and to learn, at least to some extent, the other person's field.

Chapter 1 starts with an introduction of genetic epidemiology and the aim of this work. The first 

section of chapter 2 provides an introduction to the basic molecular genetical mechanisms that are re-

quired as a background for understanding the statistical methods in the following chapters. The next 

sections are intended as a brief introduction to linkage analysis. They present parametric versus  non-

parametric analysis and  twopoint versus multipoint analysis. An in-depth understanding of the linkage 

methods relies on some standard algorithms enabling one to compute multipoint likelihoods. Two of 

these algorithms are presented in  chapter 3,  Elston-Stewart algorithm  and  Lander-Green algorithm. 

Accurate linkage maps are crucial for the success of gene mapping projects. How genetic maps are con-

structed is the subject of chapter 4. While linkage analysis relies on segregation information in families, 

association studies focus on differences at the population level. The concept of association is intro-

duced briefly in chapter 5. The topic of this work are the pseudoautosomal regions in the field of genet-

ic linkage as is presented chapter 6. In addition, in chapter 7 a new genetic map is constructed for the 

pseudoautosomal regions using the techniques of linkage.  Finally, chapter 8 provides a summary and 

the conclusions from this work.
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Chapter 1

INTRODUCTION TO GENETIC EPIDEMIOLOGY

Genetic Epidemiology is a broad discipline combining aspects of statistics, population genetics, 

classical epidemiology, and human genetics. The basic goal of genetic epidemiology is to understand 

the role of specific genes, specific environmental factors, and interactions between genes and environ-

ment in determining a particular trait of interest. This trait can be either a binary trait such as a particu-

lar disease (schizophrenia, breast cancer) or a quantitative trait (serum cholesterol levels, height). It dif-

fers from epidemiology that explicitly genetic factors and similarities within families are taken into ac-

count.  On the other hand, it  can be distinguished from medical genetics by considering population 

rather than single patients or individuals. 

 Once a gene is found, this should lead to a much clearer understanding of the disease and new 

more targeted therapies can be tested. While most scientists agree that effective gene therapies are a 

long way off, some drugs based on molecular interventions are becoming a reality in contemporary 

medicine. Such work is likely to take many years, but it should be a good start into the right direction. It 

is already in practice for several years the so called genetic diagnosis. The diagnosis of genetic diseases, 

or a predisposition to a disease, is done using genetic diagnosis, or genetic tests. By examining the 

genes or proteins in a patient’s cells, one can determine if the patient carries variant genes (e.g. genes 

that cause cystic fibrosis) or is predisposed toward a specific disease (like certain cancers). These tests 

apply to adults, children, and even embryos. To date, with the genetic diagnosis in embryos more than 

two hundred genetic disorders can be reliably diagnosed, most of them so-called monogenic diseases.

Before researchers identify and finally sequence the gene responsible for a disease, it must be 

first mapped, located in the Genome. Chromosome maps are a natural way of organizing genetic data 

about chromosomes. Existing chromosomes maps can be broadly divided into two categories: Physical  

Maps and Genetic Maps. Although both of them make reference to the same biological entity, namely 

chromosomes, they differ substantially in the types of genetic experiments conducted and the types of 

genetic data collected. These maps provide essential tools for understanding the organization and func-

tion of the genome. This work will focus in the direction of Genetic Mapping. The two major tech-

niques used for Genetic Mapping are linkage and association analysis.  Linkage is a method that allows 

to determine regions of chromosomes that are likely to contain a risk gene, and rule out areas where 

there is a low chance of finding a risk gene. Linkage works by using markers, which are well-character-
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ized regions of DNA. Linkage studies relies on the cosegregation of stretches of DNA in families rear-

ranged by recombination events. Researchers are searching for a marker that is consistently present in 

those that are affected, and is not present in non-affected relatives. When this marker is found, the 

marker and the disease-causing gene are said to be linked, and are assumed to be very close together. 

After using linkage to get an idea where risk genes may be located, association studies allow to test 

candidate genes, or very small genetic regions, to see if they are associated with having the disease. As-

sociation studies also require the use of DNA from many individuals. However, association studies do 

not necessarily use families. Rather, they look at DNA from affected individuals compared to DNA of 

non-affected individuals. Once a gene is located in a chromosome and suspected to being involved in a 

certain disease, then it is referred as a candidate gene.

Linkage and association  analysis  are  two standard methods  in  genetic  epidemiology.  These 

methods have succeed in the past to allocate genes for autosomal and X-linked diseases but have shown 

some weakness to detect genes in the pseudoautosomal regions to be linked to a disease. The pseudoau-

tosomal regions are two regions of near sequence identity at the tips of X and Y chromosomes. The 

pseudoautosomal regions behave like autosomes, in the sense of pairing and crossing over during meio-

sis. In contrast to the autosomes the recombination activity is extremely high and different between 

males and females. To date 29 genes have been reported to be located in these regions. Possible con-

nection with clinical disorders such as short stature, asthma, psychiatric disorders and leukemia have 

been suggested but only one pseudoautosomal gene, SHOX (Short Stature Homeobox) has been associ-

ated clearly with disease, short stature of Turner syndrome.

This work focuses mainly on statistical methods for linkage analysis and genetic mapping in the 

pseudoautosomal regions. Some points about association analysis in these regions are also presented. 

The last chapters are dealing exclusively with estimation of genetic maps and methodological develop-

ments to account for the special characteristics of the pseudoautosomal regions. In addition, the con-

struction of a new genetic map for the pseudoautosomal regions is presented. 
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Chapter 2

INTRODUCTION TO LINKAGE ANALYSIS

2.1 Transmission and recombination

All the cells of a human are derived from a single cell called the zygote which is formed  by the 

union of two gametes, the ovum and the sperm. Each gamete contributes a half (or haploid) set of the 

23 chromosomes, so that the zygote receives a full (or diploid) set of 23 pairs of chromosomes. Normal 

gametes contain 22 autosomes and a sex chromosome. The 22 autosomes are numbered in order of de-

creasing length from 1 to 22 (except that chromosome 21 is slightly shorter than chromosome 22). 

There are two types of sex chromosomes, X and Y. The sex chromosome in a normal ovum is always 

X, but in a normal sperm is equally likely to be X or Y. If a zygote contains a Y chromosome it will 

normally develop into a male, otherwise it will normally develop into a female. Figure 2.1 illustrates 

the karyogram of a female and male zygote.

Figure 2.1 represents the 23 paired chromosomes. Left side a female karyogram and the right side a male  
karyogram. Images from the Centre for Genetics Education (CGE), Royal North Shore Hospital in Sydney.
Female karyogram: http://www.genetics.com.au/images/factsheets/fs29-2.gif
Male karyogram: http://www.genetics.com.au/images/factsheets/fs30-2.gif 
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The 23 pairs of chromosomes in the zygote are duplicated every time a cell  division occur. The 

only exceptions are the gametes, which are produced by the sex organs (testes and ovaries). Gametes 

are produced by a special form of cell division called meiosis. Two chromosomes are said to be homol-

ogous if they pair (synapse) during meiosis. Two homologous chromosomes are not only similar in 

length, but are also similar in sequence. This similarity between homologous chromosomes means that 

diploid organisms, such as human, have two copies of every gene, except of those on the X and Y chro-

mosomes. Meiosis gives rise to daughter cells which contain only a haploid set of 22 autosomes and 

one sex chromosome. This ensures that the union of two gametes will produce the set of 23 pairs of 

chromosomes.  In addition,  meiosis  involves  the rearrangement  of  genetic  material  by the event  of 

crossover. This rearrangement is achieved by the exchange of genetic material between a chromosome 

of parental origin and the corresponding homologous chromosome of maternal origin. This exchange 

produces new chromosomes which consist of alternating segments of paternally and maternally DNA. 

The 23 new pairs of chromosomes segregate independently into four daughter cells. These daughter 

cells develop into gametes that ensures the survival of the genetic material into the next generation. The 

process of meiosis is crucial for the production of gametes. The process of meiosis begins with a regu-

lar diploid cell containing 22 autosome pairs and one pair of sex chromosomes. All pairs of chromo-

somes are duplicated to form two sister strands  (chromatids) connected to each other at a region called 

centromere. The chromosomes then form pairs, resulting in four chromatids  known as a tetrad or biva-

lents. At this stage the non-sister chromatids adhere to each other in a semi-random fashion at regions 

called chiasmata  (meaning a cross, singular chiasma). Figure 2.2 illustrates the process of crossover 

during meiosis for one pair of autosomal chromosomes. 

Each chiasma represents a point where crossing over between two non-sister chromatids can oc-

cur. Crossovers do not occur entirely at random, as they are more likely further away from the cen-

tromere, and it is unusual to find two crossovers very close to each other, this phenomenon is termed 

interference. During meiosis the presence of one chiasma usually reduce the formation of a second chi-

asma nearby, resulting in  positive interference. The average number of crossovers for a chromosome 

depends of the length of the chromosome, ranging from just over 1 for chromosome 21 to nearly 4 for 

chromosome 1. On average, there are more crossovers in females than in males. During meiosis in a fe-

male cell the two sex chromosomes(XX) behave like an autosomal and could recombine on their entire 

length. During male meiosis however the two sex chromosomes (XY) only could crossover on two 

smalls region called the pseudoautosomal regions. The pseudoautosomal regions are discussed in more 

detail in chapter 6. The rest of the Y chromosome, that is left exclusively to male individuals, is not ho-
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mologous to X and thus can not recombine.   

Figure 2.2  A pair of two autosomal chromosomes are duplicated resulting
in two pairs of chromosomes. The four chromosomes may crossover leading

           to exchange of DNA fragments in the adjacent homologous chromosomes 
          regions resulting in the phenomenon of genetic recombination. Finally, one
          of the four resulting chromosomes is randomly picked to be incorporated in

           the new gamete. Figure from the Access Excellence (AE) the national health museum
           http://www.accessexcellence.org/RC/VL/  GG/crossing.php  

                                             

The remarkable structure of DNA allows accurate copies of it to be made. This accuracy is cru-

cial because changes in the DNA may disrupt a coding sequence and lead to the production of a protein 

that has a harmless effect on the cell. Nevertheless, changes in the DNA do occur from time to time, 

and such mutations introduce diversity and evolution into the population. 

The further apart two segments are from each other on a chromosome, the greater the probabili-

ty is that a crossover will occur between them. Hence, the greater is the distance, the higher the proba-

bility is for a recombination to be observed between the segments. The probability for a recombination, 

termed the  recombination fraction, abbreviated by Ө, can be utilized as a stochastic measure for the 
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distance between two genes. If the segments were located very close to each other, they would almost 

never be separated by a crossover, hence Ө would approximate 0. If at the other extreme, the segments 

were situated very far apart from each other or at different chromosomes, could recombine randomly 

(Ө=1/2). 

The existence of crossovers during the process of meiosis, is not only important for the rear-

rangement of genetic material from one generation to the other. It makes also possible to locate genes 

using the probability of co-segregation of two genes. This sequence of distribution and combination 

forms the basis of a number of test statistics that will be introduced later. 

At this point I will introduce some fundamental genetic terminology. Definitions and terminolo-

gy are the same as used by Jurg Ott in his book “Analysis of human genetic linkage” (1999). Heritable 

characters are determined by genes, where different genes are responsible for the expression of different 

characteristics. In modern terminology, a gene is a specific coding sequence of DNA, the unit of trans-

mission, recombination and function. Genes consists of coding regions (exons) with intervening se-

quence of noncoding DNA (introns). Each individual carries two copies of each gene, one of which was 

received from the mother and the other from the  father. A gene can occur in different forms or states 

called alleles, each potentially having a different physical expression. Any heritable quantity that fol-

lows the mendelian laws is generally called a locus (plural, loci), where a gene is special type of locus, 

that is, a locus with a function (a gene product). Well-characterized loci with a clear mendelian mode of 

inheritance may serve as genetic marker loci  (or marker for short). As in the case of genes, loci may 

also occur in different allelic forms. In the true sense of the word, “locus” refers to the position of a 

gene or any other mendelizing unit than to these quantities themselves. The relative frequencies in the 

population of the different alleles at a locus are called gene frequencies (this term is a reminder of the 

alternative meaning of  “gene”). A locus is called polymorphic when its most common allele has a pop-

ulation frequency of less than 95% (lately a criterium of 99% is used). At a given locus, the pair of alle-

les in an individual constitutes that individual's  genotype. When two alleles have identical forms at a 

particular autosomal locus, the individual is called homozygote for that locus. The opposite of homozy-

gote is heterozygote, an individual who has two different allele of a particular locus. Males outside the 

pseudoautosomal regions possess only one allele on the X chromosome. At these loci the individual is 

called  hemizygote.  However, except for rare and disputed exceptions, the Y chromosome is void of 

genes (a genetic dummy), and thus males are hemizygous for the X chromosomal alleles only, effective-

ly. Finally, when the two alleles in a homozygous genotype are known to be copies of the same ances-

tral allele (identical by descent, IBD). that genotype is termed autozygous, otherwise it is called allozy-
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gous.

2.2 Estimation of the recombination rate and genetic maps

A genetic map is  a sequence of genetic loci  with distances between adjacent loci  reflecting 

crossover activity.  Physical  and genetic maps are essential  for linkage and association studies.  The 

physical position is known for the most of the markers from the assembled sequence of the human 

genome, however estimation of genetic maps still pose some difficulties.

The genetic map distance (in units of Morgans) between two loci is defined as the expected 

numbers of crossovers occurring between them on a single chromatid during meiosis. Since each chro-

mosome consists of a tetrad, and each crossover involves two chromatids, the genetic map distance be-

tween two loci is also equal to half the average number of crossovers between them for the tetrad as a 

whole.  The  genetic  map  length  of  an  entire  chromosome  is  equal  to  half  the  average  number  of 

crossover that occur in a tetrad in a meiosis. Another commonly used unit map distance is the centi-

Morgans (cM), which is defined as 1/100 of a Morgan. 1 cM correspond approximately to 1000 000 

base pairs (1000 Kbp).

A mathematical relationship that converts recombination fraction (Ө) into genetic distance (m) 

is called a mapping function. In the last decades, several mapping functions have been proposed. These 

mapping functions are discussed in more detail in chapter 4. Table 4.3 lists some commonly used map-

ping functions and their inverses. 

On the other hand, is there a correspondence between physical and map distance? The total 

length of the human genome can be assumed to be approximately 3300 cM. On average, 1cM corre-

sponds to a 0.88 Mb. However, the actual correspondence varies for different chromosomal regions due 

to chiasma incidence is not uniformly distributed along a chromosome. In the genome exists recombi-

nation hot spots and cold spots. Hot (or cold) spots of recombination are genomic regions exhibiting 

much higher (or lower) rates of recombination than the genome average. In human, chiasmata are gen-

erally more  frequent  in  females  than in  males  meiosis.  In each linkage map females  distances  are 

greater than male distances, providing evidence for a relative increase in female recombination across 

the human genome. This general trend has been also observed in studies in which male:female levels 

have been analyzed, females maps are always significantly longer than males maps. One exception to 
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this rule are the pseudoautosomal regions in the sex chromosomes.  In these regions males exhibit a 

much higher recombination rate than females.

Three different type of methods could be used to estimate recombination rates for the construc-

tion  of  genetic  maps:  Three generation  families,  sperm typing  in  males  and unrelated  individuals. 

Sperm typing studies can of course only estimate male recombination rates. Whereas, three generation 

studies allow estimates of sex-specific recombination rates but only generate maps above the megabase 

scale. Using unrelated individuals, a very high resolution is reached but only sex-average recombination 

rates can be estimated.

Three generation families

Genetic maps of three generation families allows to allocate the order of loci as well as estimate 

sex-averaged and sex-specific recombination rates. This approach is done using the techniques of link-

age analysis. The first genetic map of the human genome was created in 1987 by the Centre d'Etude du 

Polymorphisme Humaine (CEPH). It was followed by the Genethon map (Weissenbach et al., 1992),  

Marshfield  map (Broman et al., 1998) and the deCODE  map (Kong et al., 2002). The last map con-

structed using this technique is the Rutgers map (Kong et al., 2004). Although this last map is based on 

2000 meioses, its resolution is still limited. Generally the possible resolution depends on the number of 

meiosis. For example, the estimation of a recombination rate of 0.5% with 95% confidence interval of 

width 0.25% requires 12.000 informative meioses. 

Single sperm typing

In 1988, Arnheim and colleagues (Li et al., 1988) reported the extraordinary finding that unique 

DNA sequences could reliably be amplified from isolated sperm cells. In sperm typing studies, alleles 

at a single haploid cell can be typed and the haplotypes are determined directly without using pedigree 

analysis. The method allows for studying recombination on a fine scale since a larger number of meios-

es can be analyzed using sperm from one male. The typing of large numbers of single sperm cells from 

a single volunteer provides genetic information which is simple to interpret though very tedious to ob-

tain by single cell PCR. Genetic distances and gene order can be derived directly by counting the num-

ber of cells with each allelic combination. Therefore, ignoring individual variability of recombination 

rate estimates including few men but many sperm cells leads to underestimation of standard errors. In 

addition, genetic maps from sperm typing studies could be biased since not all sperm represent viable 
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gametes. A genetic map for the human pseudoautosomal region was constructed using this technique 

(Lien et al.,  2000).  To date,  it  does not exist  a map based on sperm typing for the whole human 

genome. 

Unrelated individuals 

Haplotypes from unrelated individuals also bear information about recombination rates. They 

reflect linkage disequilibrium (LD) on the population level since LD describes the present of a non ran-

dom association between two or more alleles at distinct loci. The LD is reduced if recombination oc-

curs during transmission into the next generation. Since other evolutionary forces influence the LD too, 

recombination rate estimation from haplotypes requires some extra assumptions like population size, 

population structure, mutation and selection. Recently, statistical methods based on coalescence theory 

have made feasible to estimate recombination rates using unrelated individuals (McVean et al., 2004). 

They enable a very fine resolution in densely typed regions by taking historic recombination events into 

account. Maps derived from unrelated individuals compared with those with pedigrees display a strong 

concordance for the majority of the regions with only some discrepancies at the end of the chromo-

somes. Two disadvantages are that the coalescence model assumes a finite neutrally evolving popula-

tion with constant population size which can not be easily validated with empirical data, and only sex-

averaged maps can be created.  This technique has been applied by HapMap-Consortium for the human 

genome at the kilobase scale (phase2, 2005).   

Several attempts have been made to integrate multiple types of mapping data. LDB (the Genetic 

Location Database, Collins et al., 1996) was the first attempt to integrate multiple types of genetic map-

ping data (genetic linkage, radiation hybrid and physical maps) to provide a superior estimate of the 

physical map position of genetic markers. This often gave improved ordering of markers, and this infor-

mation could then be used to construct finer grained genetic maps for linkage analysis. Most recently, 

David Duffy used weighted regression to obtain smoothed local recombination rates to interpolate be-

tween markers with known genetic distances (Duffy, 2006) .

2.3 Genetic markers for linkage studies

In order to analyze and estimate the recombination frequencies it  is fundamental to have the 

availability of the so-called genetic markers with a specified and known location in the genome. A ge-

netic marker is a special DNA locus with at least one base being different between at least two individ-
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uals. The conditions of being detectable and having a known location in the human genome are the req-

uisites for a locus to serve as a marker. However, some qualities are especially desirable for a genetic 

marker, it should have a low mutation frequency and it must be polymorphic, i.e., several distinguish-

able variants must exist in the population with sufficient frequency. 

The last quality is one of the most important, to be useful as a marker for linkage, a locus should 

be highly polymorphic. An ideal index for marker informativeness should therefore measure not only 

the number of possible alleles occurring at the locus, but also the frequencies of the alleles. The first in-

dex is the probability that a randomly selected individual from the population under random mating is 

heterozygous at the locus. This index, called average heterozygosity (H), is defined as:

H=1−∑
i= 1

n

pi
2

where pi is the frequency of the ith allele at the locus, and n is the total number of alleles. Another pop-

ular index most useful in the context of linkage analysis in dominantly inherited diseases is called poly-

morphism information content (PIC) value (Botstein et al., 1980):

PIC=1−∑
i=1

n

p i
2−∑

i=1

n−1

∑
j=i1

n

2 p i
2 p j

2  

The type of genetic markers utilized is a rapidly changing topic. However, the two types that are 

most often seen today are microsatellites and single nucleotide polymorphisms.  

In the non-coding parts  of DNA, large areas can be found where parts  of the sequence are 

tandemly repeated. Because the number of repeats units varies between individuals, these can be used 

as genetic markers. Depending on the size of the single repeated unit, these are called variable number 

of tandem repeats (VNTRs)  or  microsatellites, which is used synonymously for  short tandem repeat  

(STRs). In contrast to other repeat polymorphism, STRs consists of shorter sequences of typically two 

to four nucleotides. STRs have the advantage of being highly polymorphic, although there are usually 

only one or two highly frequent alleles. Concerning to the informativeness, that means that the large 

number of alleles leads to high informativity. It has been discussed whether  STRs have biological 

function. On the other hand, it has been assumed that they have no physiologic function but are useful 

in the areas of forensic DNA profiling and linkage analysis. 
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The most  abundant  form of variation in  the human genome,  about 90%, are the  single  nu-

cleotide polymorph (SNP). Basically, these are variations at only a single base, meaning that one base is 

substituted by another. Because of their short length, SNPs can easily be typed by PCR methods. Al-

though most SNPs are found in non-coding regions, some of them are located in genes or in the promo-

tor of genes and can be directly viewed as candidate variation for disease. Because SNPs are nearly al-

ways diallelic, they are inherently less informative than STRs. Currently, there are several groups offer-

ing high throughput  of  DNA SNP microarrays,  called  “GeneChips”  genotyping.  The biggest  ones, 

Affymetrix  and Illumina  provide GeneChips containing more than one million SNPs covering the 

whole genome. The two platforms vary in the genome coverage of their maps, the extent of missing 

data and in their accuracy, but both have costs that are more than 100 times lower than what was avail-

able only a few years ago.

2.4 Pedigrees for linkage

Because recombinations events can be recognized only on the basis of haplotypes passed from 

parents to children, linkage analysis cannot be carried out with unrelated individuals and requires obser-

vations  on  relatives.  Therefore,  for  linkage analysis,  researchers  collect  phenotypic  information  on 

members on family pedigrees. A pedigree may be defined as a set of relatives with known relationship 

among individuals (see Figure 2.3). 
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                          Figure 2.3 Illustration of a pedigree. The three founders in the pedigree are marked 
by an arrow, the rest of individuals are non-founders. Males are represented
by a square and females by a circle. When the figure is filled in black 
represents that the corresponding individual is affected by the phenotype under study.

Pedigree members fall into two classes: founders are individuals whose parents are not in the pedigree 

whereas non-founders have their parents in the pedigree. For statistical reasons, each non-founder is as-

sumed to have both parents represented in the pedigree. Founders are generally assumed to be unrelated 

and drawn randomly from the population. A nuclear pedigree is a family formed by father, mother, and 

their offspring. Those pedigrees including other relationships are called extended pedigrees.

2.5 Test for linkage

Linkage analysis is the method typically used to determine the genetic location of a disease gene 

or to map a gene in the genome. The aim is to identify a piece of DNA of known location that is co-seg-

regated by all family members affected by the disorder being studied, and is not inherited by any of the 

unaffected family members. Once this piece of DNA is found, one knows that the disease gene must be 

located somewhere close by. The main idea is to determine the location of the disease gene and then the 

gene itself. Linkage analysis methods rest on the biological event of crossover, and hence on the recom-

bination fraction. In the simplest case where two loci are considered, the problem  reduces to test the 

hypothesis of linkage versus the hypothesis of no linkage, and then the estimation of the recombination 
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fraction between these two loci. If the number of recombinant and non-recombinant gametes in a ran-

dom sample of gametes can be counted, then an estimation of the recombination fraction,  , is simply 

the proportion of gametes that are recombinant, and then a test for linkage is the test whether this pro-

portion is equal to ½ (the null hypothesis of no linkage) or less than ½ (the alternative hypothesis of 

linkage). The hypotheses can be written in the following manner:

H 0 :=1
2

vs H A :0≤1
2

The conditions where the number of recombinant and non-recombinant gametes can be counted directly 

are easy to observe in experimental organisms but rarely so in humans. 

Linkage analysis involving two loci is known as twopoint analysis (also referred as twolocus or 

singlepoint analysis). Usually, one of the loci is well-known and already mapped and the other one is 

not yet mapped. The second locus could be a so far not located marker, with the objective of  determine 

its position. The second locus could be also a disease susceptibility gene i.e., genes which are responsi-

ble for the development of a certain disease, with the objective of map it on the genome. The other type 

of analysis, multipoint analysis (also referred as multilocus analysis), is carried out for a set of markers 

that are linked to each other against a disease locus or a new marker. The marker order and the inter-

marker distances are assumed to be known. The disease locus or the new marker is then placed in each 

marker interval and left and right of the most left and most right markers, respectively. Next, the likeli-

hood is computed for all possible positions of the trait in the considered chromosomal regions, and the 

most likely position is chosen. The inter-marker distances are given by the genetic map, and it is funda-

mental to use of a reliable map, in multipoint analyses.

2.5.1 The genetic model of hereditary diseases

There are two main linkage analysis approaches: parametric (or model-based) and nonparamet-

ric (or model-free) methods. Parametric methods require specification of genetic parameters, such as 

penetrance; disease-allele frequency; phenocopy and mutation rates describing the mode of disease in-

heritance (presented in the next section). The statistical method in parametric models employs the LOD 

score, based on calculation of the likelihood of the observed pedigree data, given assumed parameter 

values. Complex diseases are not caused by a single gene, but by multiple genetic and environmental 

factors, and thus it is much harder to specify a genetic model.  Therefore, alternative nonparametric 
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models linkage (NPL) methods have been developed.

In linkage analysis, the parameter of primary interest is the recombination fraction in the case of 

twopoint analysis, or a set of recombination fractions (or genetic map) in a multipoint analysis. These 

are the only parameters that appear in the likelihood function for simple pedigrees and simple co-domi-

nant loci. However, in order to deal with more complex pedigrees and loci, it is helpful to introduce ad-

ditional parameters.

2.6 Parametric linkage analysis and likelihood

As a matter  of definition,  there is  a clear distinction between  phenotype  and  genotype.  The 

genotype of an individual is usually defined as the set of alleles present in the individual at loci under 

consideration and is, in principle not observable. The phenotype of an individual is defined as the ob-

served characteristics of the individual that are influenced by the locus under consideration. The rela-

tionship between phenotype and genotype is specified by a set of parameters known as  penetrance 

(2.4). Formally, penetrance is the conditional probability of being affected with the disease under con-

sideration (phenotype) given a specific genotype. If we assume a disease-causing genotype with one 

disease-causing allele D and one allele not causing the disease d, the probabilities of being affected de-

pending of the genotypes (penetrances) can be expressed as follows:

f 0=P affected | dd  f 1=P affected | Dd  f 2=P affected | DD

Specially, f0 is termed the frequency of phenocopies, the probability of being affected without carrying a 

particular disease-causing allele at the locus under consideration.

2.6.1 The pedigree likelihood

Parametric linkage analysis is a special form of the likelihood ratio test. The likelihood principle 

as stated by Edwards (1972, p. 30) says:

“Within the framework of a statistical model, all the information which the data

provide concerning the relative merits of two hypotheses is contained in the

likelihood ratio of those hypotheses on the data. ...For a continuum of hypotheses,

this principle asserts that the likelihood function contains all the necessary

information.”
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The main point lies into compute the likelihood of a genetic model (including its parameters) given 

family tree data “L(Model | data)”, that is proportional to the observed family data given the genetic 

model.

L Model | Data ∝ L Data | Model

 

The constant of proportionality could be selected arbitrarily, in the following, it will be set to unity. In 

this case, the observed data refers to the individual genotypes and phenotypes as well as the family rela-

tionship between the individuals. The genetic model need to be defined by the penetrances, the disease 

allele frequency, and the allele frequencies at the loci. In addition, the recombination frequencies be-

tween the loci are also part of the model. For the calculation of the likelihood in a pedigree, it is neces-

sary to treat founders and non-founders differentially. The founders are supposed to be independent 

from each other and drawn at random from the population and non-founders are treated as founder's de-

pendents.  

Denoting the genotype and phenotype of the ith individuals in a pedigree by gi  and xi respec-

tively, the conditional probability of x given g can be written as:

P x | g =∏ P x i | gi 

where the product is taken over all pedigree members. Each of the conditional probabilities of a pheno-

type given a genotype is a function of the penetrance parameters. Since genotypes g are not directly ob-

served, the likelihood of a set of pedigree data is just the unconditional probability of the pedigree phe-

notypes x, and this can be expressed as the sum of the joint probabilities of x and g over all possible 

values of g:

P x =∑ P  x | gP g

where the summation is taken over all possible values of g. The genotypes of the individuals in a pedi-

gree are interrelated to each other by genetic transmission from parent to offspring. Since   determines 

the probabilities of haplotype transmission from parent to offspring and hence the probability distribu-

tion of offspring genotype conditional on parental genotypes, it is known as a transmission parameter.  

The parameters that determine the probability  distribution of genotypes in the founding members of a 

pedigree are known as population parameters. In the most general case, the population parameters con-
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sists of the frequencies of all possible ordered genotypes at the loci concerned. Consequently, if the 

analysis concerns two loci, one with m1 and the other with m2 alleles, then the number of haplotypes is 

m1m2 and the number of possible ordered genotypes is  H(m1m2)². For example, when two loci have 5 

and 3 alleles, respectively, there are 15 possible haplotypes and 225 ordered genotypes. So, the number 

of possible genotypes is increasing rapidly with the number of alleles at the loci. 

If the  n members  of  a pedigree are ordered such that  the  f founders  precede the  n-f  non-

founders, then the joint probability of the genotypes of all members can be written as a product as fol-

lows:

L g  = P g1 P g2 | g1 P g3 | g1, g2 ... P gn | g1, g2,. .. ,g n−1

=P g1 ... P g f P g f 1 | g f1, f , g f 1, m ... P gn | gn , f , gn , m

where gj,f and gj,m denote the genotypes of the father and mother of jth nonfonder member of the pedi-

gree. The likelihood of a pedigree is a multiple summation of products each involving n penetrance pa-

rameters, f population genotypes frequencies (for the f founders) and n-f conditional transmission prob-

abilities (for the n-f non-founders) over all possible combinations of genotypes for the n individuals in 

the pedigree. Denoting the penetrance, population frequencies and the transmission probability of geno-

type gi by pen(xi  | gi), pop(gi) and tran(gi|gi,f  , gi,m) respectively, this multiple summation can be written 

as:

L = ∑
G 1

...∑
G n

∏
1

n

pen x i | g i ∏
i=1

f

pop g i ∏
i= f 1

n

tran gi | g i , f , g i , m  

where Gi   represents all possible genotypes for individual i.  For two loci with  m1 and the m2 alleles, 

each person can have (m1m2)² possible ordered genotypes, so that there are (m1m2)2n possible combina-

tions  of ordered genotypes for the entire  pedigree of  n  members.  The likelihood is  then a sum of 

(m1m2)2n terms, each term being a product of 2n probabilities. The number of terms in the summation 

increases with the number of loci and the alleles included in the analysis. Efficient algorithms are there-

fore necessary for multipoint linkage analysis of general pedigree data.

The formulation of the pedigree likelihood as a multiple summation of products between popu-

lation, transmission and penetrance parameters, over all combinations of possible genotypes, was pro-

posed by Elston and Stewart (1971), who also suggested a recursive algorithm that greatly reduces the 

computational time. The so-called Elston-Stewart algorithm has been extended to deal with complexi-

ties such as consanguineous matings (Ott, 1974; Lange and Elston, 1975; Cannings et al., 1978). This 
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method is presented in detail in chapter 3.

The above remarks for the calculation of the likelihood refer in particular for autosomal loci. 

For loci situated on the X-chromosome, outside the pseudoautosomal regions, some special characteris-

tics have to be taken into account. The penetrance parameters for X-chromosomal loci in females are 

the same as defined for autosomal loci. For hemizygous males, considering a locus with m alleles, that 

means m different genotypes consisting of one allele each, thus m independent penetrance parameters. 

Considering a diallelic locus, located at the X-chromosome, to each male would correspond two pene-

trance parameters and to each female three penetrance parameters. Also the genotype frequencies in fe-

males are the same that the ones regarding to autosomal loci. For males, the genotype frequencies of a 

locus situated on the X-chromosome would be identical to the allele frequencies.  The probabilities of 

transmission for X-chromosome have to be differentiated between women and men. When a woman in-

herits her maternal haplotype, it can be treated in the same way as autosomal loci, since the mother of 

the woman carries two X-chromosomes. The transmission probability, outside the pseudoautosomal re-

gion, for the paternal inherited haplotype is always 1, since the father of the woman has only one X-

chromosome. He will pass the entire haplotype to his daughter without recombinations. A male off-

spring inherits always the X-chromosome from his mother, which undergoes crossover and recombina-

tion, of course. 

When more than one pedigree is considered, each family is supposed to be independent from 

each other. However, they have to come from the same population. Thus, the likelihood of a sample of 

t pedigrees L(all pedigrees) is therefore the product of the likelihoods for each simple pedigree contained in 

the sample:

Lall pedigrees =∏
k=1

t

L pedigreek 
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2.6.2 Estimation of the parameters

When dealing with parametric linkage analysis all  parameters of the genetic model must be 

known and specified. In some cases however, these parameter are unknown and need to be estimated. A 

way to estimate the unknown parameters is using the likelihood function on the basis of the observa-

tions. In statistical terminology, observations are random variables. Any function of random variables, 

which does not depend on unknown parameters, is termed a statistic. Various statistical methods of pa-

rameter estimation exits, in the statistical analysis of human pedigree data, maximum likelihood estima-

tor  (MLE)  is  usually the method of  choice for  estimating model  parameters.  In some situations,  a 

closed-form solution can be found; others require a numerical solution using  iterative methods. Statis-

tical geneticists have employed several iterative schemes. Among these are Newton-Raphson scoring, 

the simplex method, quasi-Newton methods, simulated annealing, and the EM (expectation-maximiza-

tion) algorithm. The EM algorithm is a numerical method for finding the MLE of parameters and is ap-

plicable when the problem can be formulated as one of incomplete data. In other words, it is applicable 

to situations where the estimation can be made much easier if certain additional pieces of data are avail-

able. First, the unknown parameters are assumed to take an initial set of plausible values. Then, based 

on these initial values, the expected values of the missing data are calculated. These expected values are 

imputed for missing data, so that together with the available data, a complete data set is obtained. This 

is known as the expectation step, since expected values are imputed for missing data. From the com-

plete data set, maximum likelihood estimates of the parameters are obtained, and these constitute im-

proved estimates of the parameters. This is known as the maximization step, since maximum likelihood 

estimates are obtained from the complete data. The improved parameter estimates are used in another 

expectation step to give an improved set of values for the missing data. The new imputed values are 

then combined with the observed data and subjected to another maximization step to give a set even 

more accurate parameter estimates. This procedure of alternating expectation and maximization step is 

repeated until the changes in parameter estimates are small and tolerable for the purpose of the study. In 

the case of pedigree data, the MLE can be used for the estimation of the parameters such as allele fre-

quencies, haplotype frequencies, penetrances and recombination frequencies. In most cases, the recom-

bination frequency between the putative disease locus and one or a set of marker loci is estimated. 
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2.6.3  The LOD Score

In parametric linkage analysis, the likelihood function is calculated using the observations on 

the pedigree  members to test for the presence of linkage. In the case of twopoint linkage analysis the 

recombination fraction  between two loci need to be estimated, so the likelihood function will depend 

on the unknown parameter  .  In the framework of multipoint linkage analysis the likelihood will de-

pend on a vector of  ' s , representing the recombination fractions to a group of relatively close loci. For 

the calculation of the likelihood, in both cases, all the other parameters regarding to the genetic model 

must be known and specified. 

Twopoint Analysis

Twopoint analysis is performed considering one marker locus and a disease locus, or two mark-

er locus. In the case of marker-disease, the specification of the disease model it is necessary . This spec-

ification is given by the disease allele frequency and the penetrances at the disease locus. The allele fre-

quencies of the marker locus need to be specified, too. A test of linkage concerning two marker loci is 

performed in the same way, with the calculation of the likelihood. In this case, of course, it is easier be-

cause it is not necessary to define the disease model. The calculation of the likelihood, which will de-

pend on  , does not give whether the two locus are linked or not. To test for linkage between two loci, 

one needs to calculate the so-called likelihood ratio L /L =1/2  where L =1 /2  is the likelihood un-

der the null hypothesis (H0), which considers that both loci are unlinked to each other. L  represents 

the likelihood under the alternative hypothesis (HA), i.e. for 1 /2 . The likelihood ratio indicates how 

much higher the likelihood of the data is under linkage than under the absence of linkage. It is usually 

convenient to work not with the likelihood ratio but with its logarithm (to base 10), the resulting score 

is named  LOD score (Barnard, 1949) and is denoted by Z(Ө) :

Z  = log10
L  

L =1 /2 

In addition, it is necessary to define the MLE of the recombination fraction from the pedigree data, in 

fact for 0≤≤1 /2. The reason for this restriction is that recombination fractions bigger than ½ make no 

sense in terms of genetics. Then one needs to compute the likelihood for multiple values of  , or to use 

the EM-algorithm described above to obtain the estimate of  ,  . Using the MLE L =  in the numer-

ator of  the Equation (2.11) the so-called maximum LOD score is obtained:
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Z=Z  = log10
L =

L =1/2

The maximum LOD score, Z , is the statistic for measuring linkage as well as  the one to use for testing 

the hypothesis H 0:=1 /2 vs H A:1 /2 . Under H0, hypothesis of no linkage, the statistic 2 · Z · ln 10 is 

asymptotically distributed as  a Chi-square distribution with one degree of freedom 1
2 and may be 

used to test the statistical significance of the differences of likelihood between the two hypotheses. The 

degrees of freedom used for Chi-square test is the difference in number of estimated parameters in the 

two models under study. In this situation one parameter is estimated under HA, whereas under H0 all pa-

rameters are fixed. Positive LOD scores indicate evidence in favor of linkage, and negative LOD scores 

indicate evidence against linkage. The calculation of the Z  is not only used to carry out the linkage test, 

in the same time provides an estimator of the recombination fraction between the marker locus and the 

disease locus. This is very helpful to determine the exact position of the disease gene. 

Multipoint Analysis

In parametric multipoint analysis, linkage relationships between a disease locus and a multitude 

of marker loci on a known map are investigated, so like in the case of twopoint parametric analysis here 

one needs to specify the genetic model at the disease locus and the allele frequencies of the marker loci. 

In addition one must specify the marker distances , and thus implicitly, the marker order. Multipoint 

analysis differ from twopoint analysis in the fact that the order of the marker loci now is very important. 

The number of parameters, haplotypes, and genotypes increases drastically with the number of loci con-

sidered. With multipoint analysis can also be tested whether a group of markers are linked to a further 

marker. In this case, of course, the specification of the disease model is not necessary. 

In the multipoint analysis the likelihood ratio will be defined as L(x)/L(x unlinked) and the mul-

tipoint LOD score, Z(x), as:

Z  x =log10
L  x

L  x unlinked 

The numerator indicates the likelihood for a genetic position x of the disease locus. The denominator 

describes the likelihood under H0, i.e. in the case that the set of markers are linked, and the test locus is 
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not linked to any marker in this set of marker loci.  Two situations need to be considered for the calcu-

lation of the likelihood for a concrete position of the disease locus. One is whether the disease locus is 

within the set of markers, and the other case would be whether the disease locus is situated outside the 

set of markers. If it lies within the set of markers, then it is inserted between two flanking markers. 

Then, the recombination fraction between the two markers needs to be split up in two intervals accord-

ing to the position of the disease locus, i.e. first marker-disease locus and then disease locus-second 

marker. If the disease locus is outside of the set of markers, it must be attached to the appropriate end of 

the set of markers. Under H0, no linkage, the recombination fraction will be ½, and it is unimportant 

whether the disease locus is added respect to the set of markers. For the calculation of the likelihood 

under HA the MLE of the location of the disease locus must be determined. For that, the likelihood is 

maximized for each interval between two markers and the global MLE is determined. In the case where 

the disease locus is attached outside the set of markers, the likelihood is computed in the the same way 

as  for the twopoint analysis. Then, the maximum LOD score Z is obtained using the MLE L  x=x in 

the numerator of the Equation 2.13:

 Z=log10
L  x=x 

L  x unlinked 

Z is the statistic for the multi-marker analysis for testing the hypothesis H0: disease locus unlinked vs 

HA:  disease locus linked to the set  of markers.  Here again, Under H0,  the test  statistic 2 · Z · ln 10

asymptotically has a Chi-square distribution with one degree of freedom 1
2 As in the case of  two-

point analysis, the calculation of the Z  permits to test on linkage and in the same time produces an esti-

mate of the location of the disease locus.

The LOD score for several pedigrees is simply the summation of the LOD score for single pedi-

grees (see 2.10), considering t pedigrees one obtains

Z all pdigrees=log10

L H1 all pedigrees

L H0 all pedigrees

=log10

∏
s=1

t

L H 1all pedigrees

∏
s=1

t

L H 0 all pedigrees 

=∑
s=1

t

log10

L H 1all pedigrees

L H 0all pedigrees 

=∑
s=1

t

Z  pedigrees 
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2.6.4 Interpretation

When Z reaches or exceeds a certain critical value Z0, the data is said to convey significant evi-

dence for linkage. The critical value of the test is obtained on the basis of additional assumptions about 

the test distribution. The first of these assumptions follows the fact that under H0, values of 2 · Z · ln 10

are distributed as 2 with one degree of freedom. Thus, given the type I error  determines the critical 

value of the test, P [2 · ln 10 · Z2  ,1
2 ]= . The second assumption about the test distribution includes an 

attempt to use Bayesian arguments. The Bayesian procedure results in a-posteriori probability for link-

age, i.e. probability for HA conditionally on the observed data, and a-posteriori probability about the re-

lationship between HA and H0. Following these assumptions, Morton (1955) proposed a critical value of 

Z0=3, for an autosomal locus, and Z0=2 for X-linked locus. 

For autosomal loci a Z between 2 and 3 is taken as suggestive evidence for linkage. If the LOD 

score  is below -2 for a certain region, then the location of a disease susceptibility gene can be excluded 

from that region. This strategy is called exclusion mapping.

In the past years the “LOD 3 criteria”, has been in the focus of long discussions. In response to 

the  frequent  failure  to  replicate  claimed  localizations  of  disease  susceptibility  genes,  Lander  and 

Kruglyak (1995) proposed a series of thresholds: 

• Suggestive linkage is a LOD score or p-value that would be expected to occur once by chance in a 

whole genome scan. 

• Significant linkage is a LOD score or p-value that would be expected to occur by chance 0.05 times 

in a whole genome scan (i.e. the conventional p = 0.05 threshold of significance).

• Highly suggestive linkage is a LOD score or p-value that would be expected to occur by chance 

0.001 times in a whole genome scan.

• Confirmed linkage is when a significant linkage observed in one study is confirmed by finding a 

LOD score or p-value that would be expected to occur 0.01 times by chance in a specific search of 

the candidate region.
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2.6.5 Effects of model misspecification.

The likelihood method of linkage analysis requires the specification of a statistical model, in 

which the parameter of first interest is usually the recombination fraction between two loci, or the posi-

tion of a locus relative to a set of fixed loci. Other parameters, such as allele frequencies and pene-

trances, are usually of secondary interest and considered as nuisance parameters. In linkage analysis 

these nuisance parameters are not usually jointly estimated with the primary parameters, but are speci-

fied before the analysis according to prior knowledge. The analysis is 'optimal' when the model is cor-

rectly specified. Model misspecification of any form is expected to have negative effects, which may 

include a reduction in the power to detect linkage, and biased estimates of the parameters of interest. 

The first concern of researchers regarding model misspecification is that it may invalidate the 

statistical test for linkage. Fortunately, the likelihood ratio test (and the LOD score method) is quite ro-

bust in this regard. By deriving the exact probability distribution of the LOD score functions for nuclear 

family data, Clerget-Darpoux et al. (1986) found that misspecification of the disease locus parameters 

(i.e. disease allele frequency and penetrances) did not inflate the false positive rate of declaring linkage 

between the disease and the marker loci. However, the test for linkage is not entirely robust to model 

misspecification. When pedigrees ascertained for a disease contain founders with unknown marker phe-

notypes, Ott (1992) showed that misspecification of the allele frequencies of the marker locus could 

lead to an increased rate of false positives linkage findings between the disease and the marker. 

Multipoint linkage analysis is much more sensitive to misspecification of the disease model 

(Risch and Giuffra, 1992). The reduction in power due to the misspecification of genetic model param-

eters may be substantial. Often, if there is a disease locus in an interval spanned by several markers, but 

the parameters of the disease locus are misspecified, the LOD score function is grossly deflated within 

the interval, and only becomes moderately positive outside the interval. The explanation lies in the 

mathematical properties of the multipoint likelihood function. In comparison to the twopoint analysis, 

there is less confounding between the position of the disease locus and the parameters of the disease 

model.  This  sensitivity of  multipoint  linkage  analysis  to  model  misspecification  has  led  some  re-

searchers to favor twopoint analysis when there are uncertainties about the true disease model. This is 

somehow a negative view, as the situation with multipoint analysis can also be viewed in a positive 
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light. Multipoint data offers more information than twopoint data for the estimation of unknown param-

eters, when the disease model is uncertain.

     

2.7 Nonparametric analysis

Complex diseases are not caused by a single gene, rather by multiple genetic and environmental 

factors, and thus it is much harder to specify a genetic model. Therefore, alternative nonparametric link-

age (NPL) methods based on allele sharing by relatives have been developed. The basic idea is to con-

sider a pedigree with several affected members, it is likely that the affected individuals share the same 

disease alleles from one or a few founders. In this approach, suggested by Penrose (1935), is to discard 

the parametric method of linkage analysis, and to focus on the association between the sharing of dis-

eases status and the sharing of marker allele by relatives (usually affected sib-pairs, ASPs). 

2.7.1 Measures of allele-sharing by relatives  

Allele sharing is central to nonparametric methods of linkage analysis. There are two different 

definitions of allele-sharing,  identity-by-state (IBS) and  identity-by-descent (IBD). Two alleles of the 

same form (i.e. having the same DNA sequence) are said to be IBS. If, in addition to being IBS, two al-

leles are co-segragated from the same ancestral allele, then they are said to be IBD. Figure 2.4 illus-

trates the distinction between IBD and IBS for a pair of full sibs. In addition, it also illustrates the exis-

tence of a close relationship between IBD status and recombinations events. This close relationship im-

plies that IBD is more directly relevant than IBS for linkage analysis.
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Figure 2.4 Consider a nuclear family with the following genotypes at loci A and B, which are in extremely tight  
linkage. The two siblings have identical genotypes ( A1A2) at locus A, and are therefore IBS. A1 allele must be 
descended  from the same parental A1 allele. These two alleles are therefore IBD. The two allele A2  are de-
scended from the mother. Since she has two A2  alleles, these are indistinguishable from each other, and it is im-
possible to determine whether the two A2 alleles shared by the siblings were descended from the same A2  allele  
or not, using the information of locus A alone. However, the mother transmitted B1 to the the first sibling and B2  

to the second sibling, and so the two A2 alleles transmitted from the mother to the two siblings could only be  
IBD if a recombination event occurred between A and B in one of the two meiosis. Since A and B are in ex-
tremely tight linkage, this is highly unlikely,  so the two siblings are IBD for only one allele (A1) at locus A.

Affected sib pair test

The simplest and one of the most important test of the nonparametric linkage analysis is the so 

called affected-sib-pairs (ASP) analysis (Penrose, 1935).  For this variant at least a pair of affected sib-

lings is needed and the two parents. With the ASP method one determines how many alleles are shared 

between a pair of siblings, i.e whether the pair shares zero, one or two alleles IBD. These absolute fre-

quencies are denoted by n0, n1 and n2 respectively. The relative frequencies are the estimation for the 

probability zi that an affected sib pair shares i alleles IBD:

z i=
ni

n
for i=0,1,2

where n=n0+n1+n2 is the sample size. If locus x is unlinked to the disease locus (H0), the expected dis-
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tribution of alleles IBD for sib pairs equals the binomial probabilities, i.e. z0=1/ 4, z1=1/ 2 and z2=1/ 4

(see Appendix, A1). Thus, the hypothesis testing at locus x can be formulated as:

H 0: z0
0 , z1

0 , z2
0 =

1
4

,1
2

,1
4


H A : z0 , z1 , z2 ≠
1
4

,1
2

,1
4


If HA is true, the power of the test at locus x will depend on how much  z0 , z1 , z2  deviates from (½, ¼, 

½ ). This depends both on the genetic model and the recombination fraction between locus x and the 

disease locus. Obvious constraints for z0 , z1 , z2  are: z0z1z 2=1, z00 , z10 and z 20.

There are several statistic tests, in order to examine whether the observed distribution of the al-

leles IBD deviate significantly from the distribution under H0. For example, like in the case of paramet-

ric linkage analysis, a likelihood ratio test exists also in the context of the ASP analysis (Risch, 1990c). 

Here the parameters   z0 , z1 , z2  and n0 , n1 ,n2 are the observed data. The test statistic  TLR (likelihood 

ratio) represents the likelihood of the observed data under HA in relation to the likelihood under H0:

T LR=log10

z 0
n 0 z1

n1 z2
n2

 z0
0

n 0 z1
0

n1 z2
0

n2
=log10

z0
n 0 z1

n1 z 2
n 2

1/ 4n 01/2 n11/ 4n 2

Then, 2·ln(10)·TLR is asymptotically Chi-square distributed with two degrees of freedom and provides a 

test for linkage. There are only two free parameters because of the constrain of z0z1z 2=1.

Holmans (1993) and Faraway (1993) showed that the power could be increased by restricting 

the maximization of the IBD probabilities i.e. z0 , z 1 , z2 to a set of inequalities:

z1≤
1
2

2 · z0≤z1 z0≥0

These three restrictions in a special plot form a triangle. A more powerful test for linkage can be ob-

tained by restricting the alternative hypothesis to this region. The triangle test statistic (TTS) is asymp-

totically distributed as a mixture of Chi-square distribution with two degrees of freedom.

The proportion test (Day and Simons, 1976; Suarez et al., 1978) tests whether the proportion of 

affected sib pairs sharing two alleles IBD equals ¼ or whether this sharing is increased. The test statis-
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tic Tprop is examined whether z2 deviates significantly from the expected value z2
0 =1/4 under H0, where 

Tprop follows asymptotically a normal distribution for large n.

T prop= z2=
n 2

n

Another affected sib pair test is the mean test  proposed by Blackwelder and Elston (1985). The 

statistic used for the proportion of alleles shared IBD for a sib pair is given by:

T mean= z12 z2=
n1

n
2

n 2

n

Tmean examines whether the the proportion of alleles IBD deviates significantly from the expected value 

1/2 under H0. Tmean is for sufficient large n also asymptotically normal distributed.

A large study to compare the power of ASP statistics was conducted by Blackwelder and Elston 

(1985). They compared three different scores, the Tprop  test, the Tmean test and the TLR test. Their conclu-

sion was that although the most powerful test depends on the true mode of inheritance, the disease al-

lele frequency and the recombination fraction, the Tmean test is generally more powerful.

In many applications, the collected sample will contain several sibships with more than two af-

fected siblings. In practice, all possible pairs are formed, so for a sibship of size  s, there are  s(s-1)/2 

possible pairs, though only s-1 of theses pairs are independent. If all possible combinations of sib pairs 

from the same family  are used this can lead to an underestimation of the p-value (Daly and Lander, 

1996). One suggestion is to use weighted LOD score of each affected sib pair, weighted with 2/s, al-

though it results in a conservative test (Meunier et al., 1997).

2.7.2 Methods for analyzing larger pedigrees

Within an extended pedigree tree, pairs of relatives other than siblings are suitable for nonpara-

metric linkage analysis (Risch, 1990b). The general approach for nonparametric linkage analysis in ex-

tended pedigrees is  the  affected pedigree member (APM) method,  developed by Weeks and Lange 

(1988, 1992). In its original version, the sum of the observed number of alleles shared IBS by each af-

fected pair of relatives is compared to its expected value in the absence of linkage. Although it has been 

extended in several ways so that unaffected relatives could be included, the APM method had two ma-
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jor weak points. First, the results are profoundly  dependent of the allele frequencies at the marker loci. 

Second, the APM method is constructed on the concept of IBS information and is less powerful than 

methods based on the IBD distribution. An improved version of the APM method, SimIBD, is based on 

IBD rather than IBS (Davis et al., 1996) and computes an empirical p-value using conditional simula-

tion. This method was found to perform poorly when analyzing sibships without typed parents (Davis 

and Weeks, 1997). Another alternative is the  nonparametric linkage (NPL) approach, originally pro-

posed by Kruglyak et al. (1996). It is based on the observed marker inheritance patterns of the affected 

individuals. The alleles IBD are determined using the genotypes of all loci of all the individuals from 

the same pedigree. Thereby the recombination fractions between the loci are considered. In this way the 

NPL score can be determined for different genetic positions. This allows the determination of a position 

of a susceptibility disease gene, in a given maker map. The computation of the NPL score  will be de-

scribed in detail in the next chapter through the procedure known as Lander-Green algorithm. The NPL 

score was first implemented in the program GENHUNTER. The significance levels of the NPL statistic 

calculated by GENHUNTER is based on the assumption of complete IBD information, and the test is 

conservative when this is not the case, resulting in some loss of power. This may make the NPL statis-

tic less efficient than other methods for analyzing sib pair data, although it appears to be a powerful 

method of nonparametric analysis on extended pedigrees. The problem of the conservativeness of the 

NPL statistic  has been addressed by Kong and Cox (1997).  However,  the Lander-Green algorithm 

scales highly unfavorable with the number of individuals in a pdigree, and thus large pedigrees cannot 

be analyzed under this approach.

Another method based on IBD sharing in affected relatives and for large pedigrees is the one de-

veloped by Curtis and Sham (1944) called  extended relative pair analysis (ERPA).  ERPA calculates 

for each affected relative pair the prior IBD probabilities based on the degree of relationship, without 

taking into account the genotype data, and the posterior IBD including the degree of relationship as well 

as marker genotype information.   The  weighted pairwise correlation statistic  (WPC) (Commenges, 

1994; Commenges and Jacqmin-Gadda 1997) is also designed to perform nonparametric analysis on ar-

bitrary large pedigrees. Its basics premise is that under linkage, the correlation of the residuals (the ob-

served trait value minus its expected value) of a pair of relatives will increase with the number of alle-

les shared IBD. The WPC method can be applied to either quantitative or dichotomous traits.  
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2.8 Parametric versus nonparametric analysis

When the mode of inheritance is known, such as for monogenic Mendelian traits, model-based 

maximum likelihood methods applied to pedigrees with multiple generations are the preferred form of 

analysis, due to their high statistical power. However, model-free methods do have some advantages 

over model-based parametric analysis for the detection of linkage to complex traits. First, they do not 

require specification of the disease model, thereby evading the problem of multiple testing causing by 

analyzing a number of different models. Second, large pedigrees containing multiple affected members 

are usually rare for complex traits, especially those with late onset. This is due to relatively small recur-

rence risks for complex diseases. Small pedigrees, such us nuclear families or affected sib pairs, are rel-

atively common and easier to collect. 
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Chapter 3

ALGORITHMS  FOR THE LIKELIHOOD CALCULATIONS

The calculation of the likelihood is essential in linkage analysis, either parametric and nonpara-

metric. In nonparametric linkage analysis, the likelihood is required to estimate the number of alleles 

shared IBD in affected individuals in large pedigrees, or in the situation of incomplete marker informa-

tion. Only for pedigrees with a simple structure and with a very few genetic markers the likelihood can 

be calculated straightforward by hand. Larger pedigrees, multiple markers and untyped individuals in-

crease drastically the number of possible genotypes in Formula 2.9. In these situations it is necessary to 

use efficient algorithms for the calculation of the likelihood. Thereby, the number of arithmetic opera-

tions is to be reduced as much as possible. Likelihood calculations are generally carried out recursively. 

The data is split into suitable subsets, and calculations are performed on one subset at a time, with the 

results attached to the next subset, and so on. This allows for large data sets to be processed in a se-

quential manner. Two types of recursive procedures are in common usage. The first one, the Elston-

Stewart algorithm (Elston and Stewart, 1971) uses a recursion over members in a pedigree, a procedure 

in which all loci are considered at once. The second one, the  Lander-Green algorithm (Lander and 

Green, 1987) uses recursion over loci, a procedure in which all pedigree members are considered joint-

ly. 

3.1 The Elston-Stewart algorithm

The Elston-Stewart algorithm is based on a particular way of handling the pedigree likelihood 

function, which is expressed as a multiple sum of products of penetrance, populations and transmission 

parameters over the all possible combinations of genotypes of the pedigree members (Equation 2.9). In 

the next section the algorithm is described in detail. It follows mostly the same formulations as present-

ed by Strauch (2002).

3.1.1 Peeling from nuclear families

The key feature of the  algorithm  is to look at the edges of the pedigree  for points where the 

computations should start, in order to limit the number of genotypes to be considered simultaneously. A 

pedigree without loops can be  seen  as a sequence of nuclear families with neighbors connected by a 

single individual i1, this individual is called pivot and is one of the parents of the nuclear family. So, the 
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members of a nuclear family are connected through the pivot to the rest of the pedigree (Figure 3.1). 

The pivot's genotype is denoted by gi1 and the partial likelihood L*
i1(gi1) is computed.  The subindex 1 

indicates the first nuclear family. The star in the likelihood indicates that only the individuals of the nu-

clear family are used and only the genotypes of these members are considered. Then, the likelihood is 

computed in the way as defined in section 2.6.1. Founders contribute by the population genotype fre-

quencies and non-founders by the transmission probabilities. In addition, the likelihood with the pene-

trance is multiplied for each individual. In this way L*
i1(gi1) is computed for each possible genotype gi1 

of the individual i1. The contribution of the likelihoods of the other members are now summarized in 

L*
i1(gi1), and thus the nuclear family is collapsed in its pivot. 

Figure 3.1 illustrates the Elston-Stewart algorithm. The pivots in this pedigree are individuals 4 (i1), who links  
the nuclear family including individuals 3, 4, 7 and 8 to the rest of the pedigree, and individual 5 (i2) who links  
the nuclear family including 5, 6, 9 and 10 to the rest of the pedigree. First the likelihood for the first nuclear  
family, L*

i1(gi1) is computed. This is the likelihood of individuals 3, 7 and 8 conditional on the possible geno-
types of the pivot, individual 4. Then the likelihood of the second nuclear family L*

i2(gi2)  for individuals 6, 9  
and 10 conditional to the possible genotypes of its pivot, individual 5. Now the conditional independence of the  
two nuclear families is used to calculate the likelihood of individuals from 3 to 10 conditional on the possible  
genotypes of the individuals at the top of the pedigree  L*

i3(gi3). Finally the three likelihoods are summed up to 
get the full pedigree likelihood. 

This simplifies the calculations for the next nuclear family which borders with the first nuclear family 

containing the pivot  i1. The second nuclear family has its own pivot  i2. Again the partial Likelihood 

L*
i2(gi2) is computed for each genotype gi2 of the pivot i2, where all members of the second nuclear fami-

ly are considered. L*
i2(gi2) will contain the contributions of the first and second nuclear families, these 

contributions are concentrated on pivot i2. This is the way that the Elston-Stewart algorithm works con-
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sidering all possible nuclear families within a pedigree. At the end, the likelihood for the entire pedi-

gree is the summation of all partial likelihoods. The specification of the order of pivots in which the 

computations are carried out is known as peeling sequence, and in many situations the efficiency of the 

algorithm may be affected by the choice of such sequences (Kong, 1991). An example is illustrated by 

Figure 3.1. For simplicity the calculations are carried out without specifying maker alleles and affection 

status.

3.1.2 Pedigree with loops

A loop is said to exist in a pedigree when a path consists of a complete circle, leaving an indi-

vidual by one line and returning to the same individual by a different line. Two kind of loops can be 

distinguished in pedigrees. A consanguinity or inbreeding loop contains at least two mates who are re-

lated (Figure 3.2 A); in contrast, a marriage loop does not imply mating of related individuals. A com-

mon marriage loop exists when, in two pairs of siblings, each sib of each pair is married to one sib of 

the other pair (Figure 3.2 B), or when several marriages form a closed circle (Figure 3.2 C).  

The presence of loops in pedigrees poses computational problems in likelihood calculation that 

can be solved by creating an equivalent unlooped pedigree. The extension of the peeling algorithm pro-

posed by Lange and Elston (1975) removes a loop by ‘doubling’ one of the participating individuals. 

This virtual doubling consists in fact in creating an exact copy of one of the individuals. The doubled 

individual is called a loop breaker. This approach requires: (1) identifying individuals participating in 

loops; (2) selecting a set of the loop breakers; (3) cloning each of them (copying the genetic and pheno-

typic information) in order to get an unlooped (post-doubling) pedigree.
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Figure 3.2 A) illustrates a pedigree with an inbreeding loop. Any of the individuals 3, 4, 7 and 8 could be used  
as a loop breaker. B) shows a pedigree with a marriage loop, individuals 3, 4, 7 and 8 could be used as loop 
breaker and C) represents another kind of marriage loop where individuals 1, 2, 3 and 4 could be used as loop 
breaker. For pedigrees A and B the loop breaker will have once only the parents and once will have only chil-
dren. For pedigree C the loop breaker will have children once with one partner and once with the other part-
ner. 

Once the loops are broken it is again possible to compute the likelihood for each nuclear family 

by peeling. It has to be noted that the parameters contributed by the loop breaker, i.e. penetrances and 

genotype frequencies has to be counted only once. It is recommended to take a genotyped individual as 

a loop breaker. The selection of loop breakers has a significant impact on the computational efficiency 

of the likelihood computations.

3.1.3 Properties

The Elston-Stewart algorithm follows the principle of Equation 2.9, which formulates the   com-

putation of the likelihood. However, the factors of the individuals are arranged according to nuclear 

families, and the sums are as far as possible moved toward inside. This corresponds to the so-called 

peeling method, summing over all possible genotypes of all individuals (except the pivot) of each nu-

clear family. The Elston-Stewart algorithm is a procedure oriented towards genotypes. It observes all 

possible genotypes for each individual at each locus and then constructs all possible multi-genotype 

combinations. It is repeated for each single nuclear family. That makes the complexity of the algorithm 

to scale linear in the number of individuals, but exponentially in the number of loci. The Elston-Stewart 

algorithm allows to analyze big pedigrees, but due to the exponential increase in computation time and 

memory requirements with the number of loci, it can handle a limited number of multiallelic markers. 
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3.1.4 Implementation

The Elston-Stewart algorithm and its extensions have been implemented in many linkage analy-

sis programs. The early implementations, LIPED (Ott, 1976) and LINKAGE (Lathrop et al., 1984) al-

low for computation of twopoint and multipoint LOD scores of small pedigrees using few markers. 

Their successors, such as later versions of LINKAGE, MENDEL (Lange et al., 1988) and FASTLINK 

(Cottingham et al., 1993) extend the capabilities considerably . The current version of FASTLINK im-

proves the analysis of complex pedigrees by efficient loop-breaking algorithms. Another example of ef-

ficient optimizations is VITESSE (O'Connell and Weeks, 1995), which raises the computational bound-

aries of the Elston-Stewart algorithm and allows for the computation of multipoint LOD scores for sev-

eral polymorphic markers with many unknown genotypes. All these programs can treat complex pedi-

grees with many members, but with a limited number of marker loci.

3.2 The Lander-Green algorithm

The Lander-Green algorithm (Lander and Green 1987; Kruglyak et al., 1995; Kruglyak et al., 

1996) is based on a special representation of inheritance data. These authors point out that the inheri-

tance of a genetic locus in a pedigree can be completely described by identifying from which grand 

parental chromosome each child derives its alleles at that locus. They proposed a unified approach to 

both parametric and nonparametric analysis. The algorithm is constructed in three main steps,

 

1. Enumeration of all possible inheritance vectors in the pedigree. 

2. Iterating over inheritance vectors and markers to calculate

         the probability of the observed genotypes for each marker

         conditioned on a particular inheritance vector. 

         3.  Finally, to define a statistic to test for linkage given the inheritance

              vector (which depends only on the nature of the trait). 

In the next sections the algorithm is described in detail. It follows mostly the same formulations as pre-

sented by Ziegler and König (2006) in their book “A statistical approach to genetic epidemiology: con-

ceps and applications”. 
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3.2.1 Representing and computing inheritance information

The inheritance vector for a single marker

            The first part of the algorithm consists in determining the inheritance pattern for every single 

marker. For each meiosis in a family, it is possible to determine whether an individual passed the pater-

nal or the maternal inherited allele on its descendants. So, the result of a meiosis can be represented by 

a bit, which will take the value "0" for the paternal transmission and "1" for the maternal transmission 

of the inherited allele. More specifically, the inheritance pattern at each locus j can be completely de-

scribed  by a  binary  inheritance  vector v  j = p1 ,m 1 , ... , pi , mi , ... , pn , mn , whose coordinates  de-

scribe the outcome of the paternal and maternal meiosis given rise to the n non-founders in the pedi-

grees. Specially, pi = 0 or 1, depending whether the grandpaternal or grandmaternal allele was transmit-

ted during paternal meiosis giving rise to the  ith non-founder;  mi carries the same information corre-

sponding to the maternal meiosis. In this way, the inheritance vector specifies which of the 2f  founder 

alleles are transmitted to each founder. For n non-founders in a pedigree it will be a total of m=2n meio-

sis and a total of 2m=22n possible inheritance vectors denoted by V. The inheritance vector permits to 

determine whether common alleles in two or several individuals are IBD or only IBS.

In practice, due to incomplete data, it is not feasible to determine the true inheritance vector at every 

point. Incomplete data is when some members are unavailable or/and genetic markers have a low het-

erozygosity, providing only partial information about the inheritance. In  both cases the bit describing 

the meiosis remains undefined. As a consequence, one has to consider to represent partial information 

from a pedigree by a probability distribution over the possible inheritance vectors at each locus, that is 

P(v(j) = w), for all inheritance vectors wєV. The concept of inheritance vectors is illustrated in Figure 

3.3. The probability P posterior , j  (v) refers to the conditional probability for the inheritance vector v given 

the genotype information at a marker j and is denoted as PMarker  j (v). It is identical to the relative likeli-

hood of the vector v:

PMarker j v =P V j=v | M j=
P M j∩V j=v 

PM j
=

L Marker j v 
L Marker j

=Lrel , Marker j v 
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Inheritance vector P prior P posterior TRUE
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16

0
0

1/8
1/8
0
0

1/8
1/8
1/8
1/8
0
0

1/8
1/8
0
0

0
0
0
0
0
0
0
1
0
0
0
0
0
0
0
0

Figure3.3 Illustration of the inheritance vector and its distribution. In pedigree (A) the phase is unknown and  
for each founder it is unknown which of the two alleles are from the father and which from the mother.  Pedi-
gree (B) is the same pedigree but where the  phase is known with the paternal derived allele listed first. The ta-
ble list the 16 possible  inheritance vectors. Bit 1 (and bit 2) correspond to the paternal (and maternal) meiosis  
from which the son has given rise (x1 and x4).  The Meiosis of the father and the mother, determining the geno-
type of the daughter, is represented by bit 3 and bit 4 respectively. The inheritance vectors are formed by '0'  
and '1' in the way defined in the above paragraph. Pprior  denotes the distribution before any genotyping has been  
performed, in this case any vector has the same probability to occur, 1/16. In pedigree (A) one can see that the  
father (indv. 1) transmits allele A to his daughter and allele B to his son. This information corresponds to bit 1  
and bit 3 of the inheritance vector, however,  the parental origin of the two alleles of the father is unclear, giv-
ing two different possibilities to the vector, bit 1 and bit 3 could correspond to the constellation '0' and '1' or to  
the constellation '1' and '0'. The mother (indv. 2) is homozigous and it is impossible to known which of the two  
C alleles have been transmitted to each of the offspring, the mother meiosis in this case is uninformative. So, bit  
2 and bit 4 could take any arbitrary value. Finally, conditionally on the genotype information 8 different inheri-
tance vectors could be possible, which according to Mendel's law each has the same probability, 1/8. On the 
other hand, for pedigree B only one inheritance vector is possible, is the one corresponding to (0111).
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Mj  summarizes the data for the jth marker, using the genotypes of all individuals of the pedigree at this 

marker. Here, V denotes the set of all possible 2m inheritance vectors and qj(v) designates the probability 

of the observed marker data given the inheritance vector v:

q jv=P M j |V j=v  

An extreme situations occurs if the family is completely uninformative at a marker  j. This hap-

pens if all typed individuals in the pedigree are homozygous with the same genotype or the marker is 

untyped, then the bits of the inheritance vector remain for all m meioses undefined. In the absence of 

any genotype information, according to Mendel's first law, all inheritance vectors are equally likely 

with a uniform distribution (Puniform), which corresponds to the prior distribution of the inheritance vec-

tor:

PMarker j v =
1

2m =P prior ∀ v∈V
           

As genotype information is added, the probability distribution is concentrated in some concrete inheri-

tance vectors. Sometimes it is possible to reconstruct untyped individuals using the genotype informa-

tion of relatives. In this way, some bits of the inheritance vector are fixed and this reduces the number 

of possible vectors. When it is not possible to reconstruct the genotype of an untyped individual, then 

one needs to consider all possible constellations of genotypes for that individual. All these compatible 

vectors are used to compute qj(v). Generally, this case is more complicated than the example illustrated 

in Figure 3.3 where all individuals are typed and each of the 8 compatible vectors has the same posteri-

or probability.

The probability qj(v) at a locus j  can be determined with the Lander-Green algorithm which treats all 

2m possible vectors separately. The algorithm follows six steps:

1) A graph is generated to create a specific inheritance vector x=(x1,...,x2f) at a given locus j.

2) The number of nodes is identical to the number of founder alleles, 2f, where f denotes the 

number of founders.

3) Instead of the observed alleles in the founders, symbolical alleles are used 1,2,...,2f.

4) Each individual in the pedigree is represented by an edge connecting his/her two symbol-

ical alleles based on the specific inheritance vector v. Note that two nodes are connected 

by several edges if the inherited parental genotypes of several offspring are identical. 
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5) The observed alleles are matched to the symbolical alleles, complying with Mendelian 

laws. If an individual is genotyped, the edge is marked with the two observed alleles. For 

these individuals, the observed allele has to appear at all edges that are connected to the 

respective node. This assignment determines the orientation of the genotype to its neigh-

boring edge. It also determines the node of the second allele of the genotype.

6) If an assignment leads to an incompatibility, the orientation of the genotype has to be al-

tered in the first step. If the altered orientation also leads to an incompatibility at any po-

sition in the graph, the inheritance vector has probability zero given the marker data.

These steps are taken for all possible inheritance vectors, and the probability qj(v) is determined by us-

ing all compatible inheritance vectors.  However, instead of using equal weights for all compatible in-

heritance vectors, they are weighted by their allele frequencies:

q jv=P M j |V j=v=∑
C
∏
l=1

2f

f j a x l

where C={all founder-alleles compatible with v and all individuals genotypes}. a(xl) denotes the rela-

tionship of the symbolical allele xl to the observed alleles of the founders l=1,...,2f. In the case of a het-

erozygous genotype a factor 2 is not applied because an exchange of a paternal and maternal inherited 

allele would correspond to a different assignment. Since the inheritance vector gives the sample trans-

missions, the conditional probability P(Mj | Vj=v) contains, in difference to the partial likelihood of the 

vector  v, only the genotype frequencies of the founders and not the probabilities of transmission. So, 

qj(v) differs from the partial likelihood by a factor 2m, which corresponds to the inverse of the prior 

probability for each vector:

PMarker j v =P V j=v | M j=
P M j∩V j=v 

PV j=v 
=

L Marker j v 
P prior

=L Marker jv ·2
m

An example to understand the concept of the founder-graph algorithm is illustrated in Figure 

3.4.  It describes the pedigree presented in Figure 3.3 for the calculation of  P(Mj | Vj=v) and PMarker  j(v). 

The algorithm is also applicable to more complex pedigrees with loops.
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Figure 3.4 Pedigree from Figure 3.3A has two founders. Therefore, there are 4 symbolical alleles xl. a) shows  
the corresponding nodes for the symbolical alleles of the graph. The father has alleles x1x2 and the mother has  
alleles x3x4. b) displays the nodes and the parental edges denoted by M (mother) and F (father). c) shows all  
nodes and edges for the 16 theoretical possible inheritance vectors using the symbolical alleles x1 to x4. O1 and 
O2 along the edges denote offspring 1 and offspring 2. We already know from table of Figure 3.3 which inheri-
tance vectors are compatible with the pedigree. d) displays the distribution of the symbolical alleles to the ob-
served alleles, which is clear in this case considering the pedigree from Figure 3.3B. An edge connect allele x1 

and x4 because they both pass through O1 whose genotype is observed, then the allele x4 is transmitted to O2 

jointly with allele x2 from the father and so on. The probability of the marker j given vector v8 is the product of  
the founder alleles for this assignment, i.e. qj(v)=f j(A) · f j(B) · f j (C)².
For the pedigree in Figure 3.3A an analog performance need to be done  for the other 7 compatibly vectors (see  
table from Figure 3.3). In this example, all eight compatible inheritance vectors have the same probability PMark-

er j (v)=1/8. In general, the posterior probability is not the same for all compatible vectors; in particular if geno-
types are missing.

The inheritance vector for multiple markers

The algorithm described above can be used to estimate the probability PMarker j(v)=P(Vj=v | Mj) 

of the inheritance vector at any marker position j for all inheritance vectors v. However, to extract the 

full information from the data set one should calculate the inheritance distribution conditional on the 

genotypes at all marker loci (Pcomplete), i.e., the inheritance distribution at an arbitrary chromosomal posi-

tion x: 
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Pcomplete , x v=P V  x =v | M 1,. .. ,M k 

for markers M1,...,Mk , which are ordered according to their order on the chromosome. To calculate Pcom-

plete , x (v) one needs to use a Markov property. The Markov property relies on the assumption of absence 

of interference. With this assumption, the inheritance pattern of a pedigree at all positions can be de-

scribed by a Markov chain along the markers of a chromosome. The observed states of the Markov 

chain  correspond  to  the  genotypes.  The  inheritance  vectors  are,  however,  hidden.  Therefore,  this 

Markov chain can be interpreted as a Hidden Markov Model (HMM), were the hidden states, i.e., the 

inheritance vectors, can be partly reconstructed using the observed states, i.e, the genotypes. This idea 

for connecting observed and hidden states has already been illustrated for the single marker case, where 

qj(v) has been calculated using the founder-graph approach. In the multi-marker case, one considers in-

heritance vectors  vj and vj+1 at marker  j  and j+1. If the inheritance vectors vj and vj+1 are different, at 

least one transition has occurred between markers j and j+1. Specifically, the difference in a single bit 

between neighboring markers indicates a change in the inheritance patterns that is due to a recombina-

tion in the interval between the two markers. The Hamming distance H(vj ,vj+1) measures the total num-

ber of recombinations for all meiosis  m in a pedigree for inheritance vectors  vj and vj+1. Thus, the  H 

counts the number of bits being different between vj and vj+1. The transition probability from inheritance 

vector vj at marker j to vj+1 at marker j+1 is given by:

T v j , v j1 j , j1 = PV j1=v j1 |V j=v j

=  j , j1
H v j , v j11− j , j1

m−H v j ,v j1

where  j , j1 denotes the recombination fraction between markers j and j+1. These probabilities for all 

pairs (vj , vj+1) form the (2mx2m)transition matrix T  j , j1   from marker j to j+1 with  j and j+1 denoting 

rows and columns, respectively. Due to the next relationship, the matrix T  j , j1  is symmetric:

PV j1=v j1 |V j=v j = P V j=v j |V j1=v j1

Let's denote  pj
L the (2mx1) vector of probabilities  pj

L(vj) at marker  j given all observed genotypes of 

markers 1,..., j:
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[ p j
L]v j

=p j
L v j=P V j=v j | M 1 ,... , M j

The superscript L indicates that the probabilities at marker j are conditioned to all the left markers. For 

the first marker, one obtains

[ p j
L]v1

=PV 1=v1| M 1=P Marker1
v1

Furthermore, let qj be the (2mx1) column vector of probabilities qj(vj)  for all vj at marker j:

[q j]v j
=q jv j=PM j |V 1=v j

Note that qj is conditioned on Vj = vj  in contrast to Equation (3.9) where the condition is on the markers 

M1,...,Mj. With the notations from above and “°” denoting the  Hadamard product  of element by ele-

ment multiplication (i.e., if a and b are two vectors  ⇒ (a ° b)v= av bv ), p j
L can be calculated for j=2,...,K 

recursively (Lander and Green 1987) as:

p j1
L =

 p j
L T T  j , j1°q j1

 p j
L T T  j , j1q j1

The validity of Equation (3.12) can be proven by writing p j1
L element-wise (Appendix, A2)

Analogously to  pj
L we now define a (2mx1) vector  pj

R comprising the probabilities pj
R (vj) for all 

inheritance vectors at marker j conditional on the observed data at markers j,...,k.

[ p j
R]v j

= p j
R v j =P V j=v j | M 1 , ... , M k 

Here, the superscript R indicates that the probabilities at the marker j are conditioned to the “right”. For 

the right most marker  k,  one specially obtains  [ pk
R ]v k

=PMarker kv k . The recursion formula,  which is 

analogous to  Equation (3.12) is:

p j−1
R =

q j−1
T °T  j−1, j p j

R

q j−1
T T  j−1, j p j

R
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In total, one obtains the following (2mx1) column vector:

Pcomplete , jv j
=P complete , jv j=P V j=v j | M 1 ,... , M k 

of the inheritance vectors at marker j given the genotypes at all markers as 

P complete , j =
 p j−1

L T T  j−1, j ° p j
R

 p j−1
L T T  j−1, j p j

R

The validity of Equation (3.16)  is proven in Appendix A3. Instead of using Equation (3.16), Pcomplete, j 

can also be obtained by

P complete , j =
 p j

LT °T  j , j1 p j1
R

 p j
LT T  j , j1 p j1

R

Equations (3.16) and (3.17) are the original formulations for calculating Pcomplete, j . The recursive nature 

of these formulas is, however, somehow awkward. As with most algorithms, the recursion can be dis-

solved and a direct computation can be used instead (Kruglyak et al., 1995). This forward approach re-

quires only the transmission matrices T  j , j1  and a posteriori probabilities of the inheritance vectors 

qj(vj) at markers j=1,...,k. In the following, let Qj  = diag(qj(vj)) be the 2mx2m diagonal matrix at marker 

j=1,...,k. Furthermore, let 1=(1,...,1)T denote the 2mx1 column vector. Then, the probability Pcomplete, j can 

also be written as:

P complete , j =
1T Q1 T 1,2Q2 ...T  j−1, j °Q j T  j , j1 ... Q k−1 T  k−1, kQ k 1

1T Q1 T 1,2Q2 ...T  j−1, j Q j T  j , j1 ... Q k−1 T k−1, k Q k 1

The Hadamard product could also be used on the right side of Qj because Qj is diagonal. The validity of 

Equation (3.18) is proven in Appendix A4. 

The previous formulations for  Pcomplete,  j  (vj)  are formulated for chromosomal positions that are 

identical to genetic marker positions. The algorithm can be extended to compute Pcomplete, x  (v) at an ar-

bitrary chromosomal position x that may be different from a marker position j. The idea is that a non-in-

formative genetic marker at position x is added to the Markov chain (see Ziegler and König, 2006). 
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Information content

In studying a pedigree, it is useful to known how much of the total inheritance information can 

be extracted at each point of the genome by the typed markers. This information is carried by the mea-

sure called “information content” (IC) (Kruglyak and Lander 1995). IC provides a measure of how 

closely a given study approaches the goal of completely determining the inheritance outcome, and it 

shows where typing additional markers is most useful.

The classical information-theoretic measure of residual uncertainty in a probability distribution 

is its entropy, defined by:

E=−∑
w∈V

P V x =w log 2 P V x =w  

where log2 is used in order for the entropy to be measured in bits (Shannon 1948). The entropy of the 

probability distribution over inheritance vectors thus naturally reflects information content.  In the ab-

sence of genotype data, the probability distribution is uniform  over all 22n-f equivalent classes of inheri-

tance vectors and the entropy is easily seen to be E= 2n-f bits. If the inheritance vector is known with 

certainty, the probability distribution is completely concentrated on a single outcome. The entropy is 

thus E=0. The IC of the inheritance pattern at point x will be defined by:

I E  x =1−E x 
E 0

where E(x) is the entropy of the multipoint inheritance distribution at locus x and where E0= 2n-f  bits is 

the entropy in the absence of genotype data.  IE(x)=1 indicates total  informativeness at  x,  otherwise 

IE(x)=0  indicates total uncertainty about inheritance in the pedigree at locus x. Entropy is an additive 

measure, it can be summed up over all pedigrees in the data set. Equation (3.20)  is then used with total 

entropy to obtain the overall information content of a study.

3.2.2 Evaluation of the positions on the basis of the disease phenotypes

Once the inheritance distribution of P(V(x)=v) at any genetic position x has been computed for a 

given set of markers, the phenotypes of the individuals have to be included. This can be done by speci-

fying a scoring function S v ,d that depends on the inheritance vector  v and the observed phenotype 

d=1
d , ... ,n

d for all the individuals in the pedigree. In this context it is possible to use parametric and 

nonparametric approaches. In the general case multiple inheritance vectors are possible. So,  one can 
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generalize the scoring function by taking its expected value over the inheritance distribution:

S x ,d =∑
w∈V

S w ,d P v x =w

The next two sections present parametric and nonparametric linkage analysis using the concept of in-

heritance vectors. The same formulation as used by Strauch (2002) are introduced. 

Parametric linkage analysis

In parametric analysis the scoring function S v ,d  is determined by the likelihood ratio LR(v) 

for the inheritance vector v (Strauch, 2002):

S v ,d =LRv= P d∣v 
∑
w∈V

P  d∣wP priori w

P d∣v  is the likelihood at the disease locus given the inheritance vector  v. The denominator desig-

nates the likelihood under H0:  disease locus and set  of markers are unlinked.  This corresponds,  as 

shown above, to an uniform distribution of the inheritance vectors. The likelihood at the disease locus 

conditional no the inheritance vector can be expressed as follows:

Pd∣v =∑
g d

P gd∣vPen d∣gd =∑
gd

P gd∣v∏
i=1

n

Peni
d∣gi

d

where gd=(g1
d,...,gn

d) is a combination of genotypes at the disease locus from all the individuals in the 

pedigree. The sum is considered through all possible genotype combinations. P(gd  |v) filters the geno-

types, which are compatible with the inheritance vector  v, and contains the disease allele frequency 

f(m). The last term Pen d∣g d is the product of penetrances Pen i
d∣gi

d for each person i, it can be multi-

plied since the genotype of an individual does not affect the phenotype of other individuals. P d∣v  will 

be determined using the peeling method, i.e. by the application of the Elston-Stewart algorithm. The ex-

pected value of the parametric scoring function S v ,d results in the likelihood ratio LR(x) for HA: dis-

ease locus and the marker loci are linked vs H0: disease locus and marker loci are unlinked (see Ap-

pendix A5).
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S x ,d =
L x 

L x unlinked 
= LRx 

The numerator of the equation designates the entire likelihood L(x), as the probability for the observa-

tion of all markers and phenotypes, given that the disease locus is at position x. The denominator is the 

entire likelihood under the null hypothesis of no linkage between the set of markers and the disease lo-

cus. Using Equation (2.13) defined in the previous chapter for multipoint analysis one obtains:

Z x  = log10 LR x =log10
L  x 

L x unlinked 

= log10

∑
w∈V

P d∣w PV  x =w

∑
w∈V

P d∣w Ppriori w

As demonstrated in the previous chapter, LOD scores from different pedigrees can be added, one needs 

only to sum them up in order to obtain the LOD score of the entire sample.

Nonparametric linkage analysis

Using the context of the Lander-Green algorithm it is simple to conduct nonparametric linkage 

analysis, i.e., NPL analysis. This is because with the symbolical alleles the inheritance vector represents 

the different founder alleles, which has been inherited by each individual in a pedigree. So, it is possi-

ble to read directly from the inheritance vector, how many alleles IBD share two or several affected in-

dividuals. In addition, this has the great advantage that alleles IBD are easy to distinguish from alleles 

IBS. The scoring function S v ,d is a measure for the alleles shared between the individuals assigned 

for a certain vector v. The NPL score in a given genetic position x is again the expected value of the 

nonparametric scoring function relative to the inheritance distribution P(V(x)=v). 

Kruglyak et al. (1996) used two different definitions of S v ,d for nonparametric linkage analy-

sis,  Spairs and  Sall. The function  Spairs sums up the number of common founder-alleles shared IBD be-

tween two individuals given an inheritance vector v over all possible combination of pairs in the pedi-

gree. The score function  Spairs , first suggested by Fimmers et al. (1989), is given by:
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S pairsv ,d = ∑
1≤ii '≤n

si ,i '

where si,i' is one-forth the number of alleles shared IBD by the pair of individuals i and i'. It can be writ-

ten using the following formula:

s i , i '=
1
4
[ a i ,1 , ai ' ,1a i ,1 , ai ' ,2 a i , 2 , a i ' ,1a i ,2 , a i ' ,2]

where ai,1, ai,2 and ai',1, ai',2 are the different founder-alleles of individuals i and i' respectively given for a 

concrete  inheritance  vector.  is  the  Kronecker's  delta  function  defined as ={1 if i≠i ' ,0 if i=i ' } .  si,i' 

takes the values 0, ¼ and ½, corresponding to zero, one and two alleles IBD respectively. The value ½ 

can only occur when a pair shares 2 alleles IBD, so it is only possible in the case of sibling pairs. 

An alternative score function, Sall, was proposed by Whittemore and Halpern (1994b). The sta-

tistical power can be increased by considering larger sets of affected relatives, rather than just pairs. 

They proposed a statistic to capture the allele sharing associated with a given inheritance vector. In ad-

dition, one allele IBD that occur in more than two affected individuals, gives an strong evidence for 

linkage and gets a larger weight. Let a denote the number of affected individuals in a pedigree, and h  a 

collection of alleles obtained by choosing one allele from each of these affected individuals, and let 

bi(h) denote the number of times that i-th founder allele appears in h (for i=1,...,2f). The score function 

Sall is defined as:

 

S all v ,d =
1
2a ∑

h
∏
i=1

2f

b ih!

where the sum is taken over the 2a possible ways to choose h. In effect, the score is the average number 

of permutations that preserve a collection obtained by choosing one allele from each affected person. It 

gives sharply increasing weight as the number of affected individuals sharing a particular allele increas-

es. For affected sib pairs, Sall and Spair , provide the same results. Whittemore and Halpern showed by us-

ing simulations that the NPL considering  Sall has a higher power with recessive inheritance diseases 

than  Spairs. However, for dominant inheritance  Spairs becomes more powerful than  Sall  . Obviously, the 

computation of Sall is substantially more complex than Spairs, in particular, when the number of affected 

individuals in a pedigree is large. For the evaluation of the significance one assumes that the  inheri-
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tance sample of a pedigree could be clearly restored and only one possible inheritance vector exists. 

Then, for either approach a normalized score can be defined:

Z v ,d=
[ S v ,d −]



where  and  are the mean and standard deviation of S v ,d under H0, i.e. P priori. Under the null hy-

pothesis of no linkage, the normalized Z v ,d  has mean 0 and variance 1. For the combined scores 

among t pedigrees, one can take a linear combination:
 

Z=∑
s=1

t

s Z s

where Zs denotes the normalized score for the s-th pedigree, and γs are weighting factors. The weighting 

factors should be chosen so that ∑s s
2=1, so that Z has mean 0 and variance 1 under the null hypothesis 

of no linkage. The statistic Z is referred as the NPL score. 

Statistical significance

Suppose that an analysis involving one or more pedigrees yields an observed NPL statistic of 

Zobs. For the significance level there are two simple approaches:

1. Exact distribution. It is straightforward to compute the exact probability distribution of the overall 

score Z under the null hypothesis of no linkage. Specifically, one can calculate the distribution for 

each pedigree by enumerating all possible inheritance vectors; the distribution for the collection of 

pedigrees is then obtained by convolving these distributions. One can then simply look up the exact 

value, P(Z  ≥ Zobs).

2. Normal approximation. Under the null hypothesis of no linkage, the score Z will tend toward a stan-

dard normal variable as one studies many similar pedigrees. (This follows from the central limit the-

orem, since Z is an appropriately normalized sum of independent random variables). The significant 

level of an observation Zobs can then be approximated by consulting a table of tail probabilities for 

the standard normal. Although less precise than the exact distribution, the normal approximation is 

useful in some settings.    
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3.2.3 Properties

The Lander-Green algorithm computes the likelihood indicated in Equation (2.9); it uses for it 

however, completely different logic than the Elston-Stewart algorithm. Marker loci and disease locus 

are considered independently. First, the inheritance vector is determined for all individuals in a pedi-

gree, using first each marker and then all markers together. Finally, the phenotypes are included. The 

terms of the likelihood are not arranged according to individuals or nuclear families, but rather accord-

ing to loci.

Overall, one can say that the Lander-Green algorithm is not genotype-oriented but rather to in-

heritance vector oriented. The genotypes from all individuals in the pedigree are considered at each lo-

cus, and from this the compatible inheritance vectors are constructed. According to this principle one 

locus is treated after the other. 

The runtime and memory requirements of the Lander-Green algorithm scale exponentially with 

the number of individuals, but linear with the number of loci. A crucial measure for family size is the 

effective number of the bits of the inheritance vectors, thus 2n-f. In a pedigree with f=3 founders and 

n=8 non-founders,  there are 13 effective bits  and 8192 distinguishable  inheritance vectors.  With  6 

founders and 16 non-founders, i.e. 26 effective bits, and one needs to consider over 60 millions inheri-

tance vectors.

Some alternative formulations, similar to the concept of inheritance vectors of Lander-Green, have been 

suggested by Sobel and Lange (1993), Thompson (1994), Whittemore und Halpern (1994a, 1994b) and 

Guo (1995).

3.2.4 Implementations

The original version of the Lander-Green algorithm was first implemented in the software pack-

age  CRI-MAP (Lander and Green 1987). This was followed by the linkage analysis program MAP-

MAKER containing several components for special applications. MAPMAKER/EXP (Lander et al., 

1987) permits the creation of genetic maps. MAPMAKER/HOMOZ (Kruglyak et al., 1995) accom-

plishes the so-called  homozygosity mapping, it  can effectively map recessive diseases in case of in-

breeding. One looks for homozygous individuals having two copies of the allele from the same origin 

(homozygosity by descent). MAPMAKER/QTL (Lander et al., 1987) handles quantitative traits. A non-

parametric  approach using affected sib pairs  is  implemented in MAPMAKER/SIBS (Kruglyak and 

Lander 1995), it can handle qualitative (categorical) and quantitative traits. Since then several improve-

ments have been made on implementations of this algorithm towards more efficient use of computer re-
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sources (runtime and fast memory). Kruglyak et. al. (1996) improved this result by recognizing that in 

ungenotyped founders, there is no way of distinguishing between the maternal and paternal genes. Thus 

inheritance patterns that differ only by phase changes in the founders are completely equivalent in the 

sense that they have the same probability independent of the genotypes. By treating such an equivalence 

class as one pattern, i.e. using founder reduction, the time (and space) complexity reduces by a factor of 

2f  where f  is the number of founders in the pedigree. This version of the algorithm was incorporated in 

the software package GENHUNTER. Idury and Elston (1997) put forward a version where they explore 

the regularity of the transition matrix by writing it as a Kronecker product of simple basic matrices fur-

ther  improving the runtime.  Kruglyak and Lander (1998)  suggested to  use Fast  Fourier  Transform 

(FFT) for additive groups to reduce the complexity. By incorporating the founder reduction they ob-

tained  a version of the algorithm with the same time complexity as the Idury-Elston version with 

founder reduction.  Further, Gudbjartsson et al.  (2000) improved on the performance of the Lander-

Green algorithm by a new technique called founder couple reduction. Symmetry between founder cou-

ples is used to further reduce the size of inheritance vectors and gain additional speed. Furthermore they 

implemented the single point calculation in a top down manner such that inconsistencies in marker seg-

regation are rapidly detected. Their approach is based on the FFTs and is implemented in the software 

package ALLEGRO. The linkage software MERLIN (Abecasis et al., 2001) is based on the Idury-El-

ston algorithm but the inheritance vectors are represented as sparse binary trees.

3.3 Comparison of the algorithms

The Elston-Stewart algorithm and the Lander-Green algorithm have different requirements for 

computing time and fast memory usage. The complexity of the Elston-Stewart algorithm scales linear 

in the number of individuals but exponential in the number of markers. On the other hand, the com-

plexity of the Lander-Green algorithm increases linearly in the number of markers but exponentially in 

the number of individuals in the pedigree.  The Elston-Stewart algorithm is therefore appropriate for 

LOD score analysis with few markers and large pedigrees with none ore few loops. However, for true 

multipoint analysis the Lander-Green algorithm has to be applied, which can accommodate multiple 

markers at the same time. Although, here the pedigrees must not exceed a certain size.  Within the 

framework of genome scans involving genetically complex disease, usually pedigrees of small to medi-

um size are recruited. In this case, the Lander-Green algorithm is a good choice. 

In conclusion of this chapter it should be noted that there are also different possibilities to com-

pute the likelihood in an approximate manner. This offers the solution for large pedigrees with many 
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markers to be analyzed, or for pedigrees with several loops. The difficulty of such algorithms is that 

they do not guarantee a convergence of the likelihood to the accurate value. There exists a random-walk 

method (Lange and Sobel 1991), a sequential-imputation  procedure (Kong et al., 1993; Irvin et al., 

1994) as well as different Monte-Carlo methods (Sheehan 1989; Thompson and Wijsman 1990; Kong 

1991; Thompson and Guo 1991; Guo and Thompson 1992). Another algorithm for approximate com-

putation of the likelihood, based on pedigrees with loops, is given by Stricker et al. (1995). A blocking 

Gibbs sampling method (Jensen and Kong 1999) allows for linkage analysis with large pedigrees and a 

large number of loops. 
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Chapter 4

LINKAGE GENETIC MAPS  

In chapter 3, methods for estimating the recombination fraction between loci  have been in-

troduced and discussed. One of the most important objectives of estimating  is to make a genetic map. 

Traditionally, a linkage relationship among two genes is quantified using the estimated recombination 

fraction,  , and its transform into a genetic distance by a mapping function. However, twopoint analy-

sis may not be efficient for more than two loci. Multipoint analysis is more accurate. For example, in-

formation on intervals between loci A and B and between B and C is included in estimating genetic dis-

tance between A and C if the locus order is ABC. 

4.1 Map and physical distances

The relationship between genetic distance and physical distance is confused. The ultimate physi-

cal distance between two genes can be quantified using the number of DNA base pairs between the two 

genes. The genetic distance is based on a statistical estimate based on crossover events. Genetic dis-

tance differ from species to species and can be different in the sexes of the same specie. Even within a 

single specie, the genetic distance could differ greatly according to genome location. In humans for ex-

ample, crossovers are more frequent in females than in males meiosis. In each linkage map, females 

distances are greater than male distances, providing evidence for a relative increase in female recombi-

nation across the human genome. Usually, females genetic maps are significantly longer than males ge-

netic maps. One exception to this rule are the pseudoautosomal regions in the sex chromosomes.  In 

these regions it has been observed that males exhibit a much higher number of recombination than fe-

males.

The relationship between genetic distance and physical distance may vary greatly at the genome 

segment level. For example, seven genetic markers are shown on a genome segment (Figure 4.1). The 

markers may be evenly spread on the genetic map but not on the physical map (Figure 4.1A), or they 

could be spread evenly on a physical map but not on a genetic map (Figure 4.1B).
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Figure 4.1 illustrates two hypothetical situations to show the relationship between genetic distance 
            (cM) and physical distance (bp). A: Equal genetic map distance may corresponds to different physical 

distances.  B: Different genetic distances (even a distance of 0) may correspond to equal physical dis  
tance. 

4.2 Multipoint genetic maps models

For simplicity let's consider a three locus model with diallelic loci A, B and C. For three linked 

loci there are three possible recombinations fractions AB ,BC and AC (Figure 4.2). 

                               Figure 4.2  Relationship among three ordered loci A, B and C are quantified
                                  using  both pairwise recombination fraction and physical distance.
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If the three loci are in order ABC on the chromosome and crossovers are completely at random, then the 

relationship of the three recombination fractions are: 

AC=ABBC−2ABBC

where 2 ABBC is expected to be the double crossover frequency between A and B and B and C simulta-

neously. However, departure from this expectation has been observed. This departure is the interference 

defined on chapter 1. This phenomenon is quantified by adding a coefficient to Equation (4.1)

AC=ABBC−C 2 ABBC

where C is defined as coefficient of coincidence and 1-C is defined as interference.

If there is no interference and crossover occurs randomly, then the expected double recombinant 

frequency will be 2 ABBC ,  C=1 and Interference=1-C=0. If crossovers in interval AB and BC are not 

independent, the observed double recombinant frequency may not be equal the expectation. If we use 

r12 to denote the true double recombinant frequency, the coefficient of coincidence is:

C=
r12

2ABBC

Interference is:

negative for C > 1 and Interference=1-C < 0

positive for C < 1 and Interference =1-C > 0

absence for C =1 and Interference =1-C = 0

complete for C = 0 and Interference =1-C =1

When there is absence of crossover interference, Equation 4.2 reduces to Equation 4.1.

High level interference has been a limiting factor in developing complete multipoint models. 

Many models have been developed assuming no interference or a low level of interference.

The recombination fraction for a large genome segment is not the sum of the small intervals 

within the large segment. However, if the expected number of crossover in each of the interval can be 

estimated, the expected number of crossovers within the large segment should be the summation over 

the intervals. The expected number of crossovers within a genome segment is used to define a genetic 
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distance. For example, mAC=mAB+mBC can be used to model the three loci in Figure 4.2, where mAB, mBC 

and mAC are map distances between A and B, B and C, and A and C, respectively. The relation between 

number of crossovers and genetic distance is given by a so-called mapping function (section 4.3). 

Configurations

Suppose three diallelic loci A, B and C, whit alleles Aa, Bb, and Cc respectively. There are four 

possible crossover configurations during meiosis. If a parent is heterozygous (ABC/abc) then one of the 

following will happen during meiosis (Figure 4.3):

(1) no crossover happens between A and B

(2) crossover happens between A and B, but not between B and C

(3) crossover happens between B and C, but not between A and B

(4) crossover happens in both between A and B and between B and C

 
              Figure 4.3  represents gametes produced by a heterozygous parent (ABC/abc) for three
             loci A, B and C in order ABC. 

If the parent is heterozygous for the three loci, then the frequency of the four possible crossovers con-

figurations can be observed by genotyping the three loci for a number of individuals in the progeny. 

Figure 4.3 shows the gametes produced by a heterozygous parent in association with the four configura-

tions of crossover. Gametes ABC and abc are produced when no crossover happens during meiosis. A 

single crossover between A and B will produce gametes Abc and aBC and between B and C will pro-
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duce Abc and abC. The double crossover will result in gametes AbC and aBc. If no crossover interfer-

ence  is  assumed,  then  the  probabilities  of  no  crossover,  BC crossover,  AB crossover  and  double 

crossover are:

1−AB1−BC=1−AB−BCABBC

1−AB BC=BC−ABBC

AB 1−BC =AB−ABBC

ABBC

respectively. When the crossover interference is taken into account then Equation 4.4 becomes:

1−AB1−BC=1−AB−BCCABBC

1−AB BC=BC−CABBC

AB 1−BC=AB−CABBC

C ABBC

Double crossover

In some applications of genomic mapping, double crossover is ignored. In practice, gametes 

produced by double crossover have often been treated as potential experimental errors. In many cases, 

this is true. These double crossovers are either corrected after checking the data or discarded for the rea-

son , they are expected to be quite rare. The genetic map built in this way is shorter in length. However, 

the treatment is complex because:

• Double crossovers are sometimes ignored in the likelihood function for the genetic map on 

which the lod score is based.

• The double crossover frequency strictly depend on locus order. So, the double crossovers identi-

fied using one locus order may entirely differ from those identified using another locus order.

• The  expected  double  crossovers  are  usually  treated  the  same  as  the  unexpected  double 

crossovers.

One should be cautious in using the double crossovers as a criteria to identify experimental errors. Any 

wrong doing may result in a biased genetic map. The biases could be an incorrect locus order, an under-

estimated genetic map, or an unrealistic LOD score for the locus order. Today, and in fact since many 

years already, locus order is determined by direct experimental methods, and ultimately by large scale 

sequencing. Thus, inferences on locus order based on linkage analysis is an outdated issue. However, 
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the estimation of recombination rates and thus map distances cannot be replaced by molecular tech-

niques, and for this task linkage analysis still is indispensable.

Likelihood function

Likelihood function for the three locus model is the first step toward multipoint likelihood. Fig-

ure 4.4 shows the segregation of three loci in a pedigree. The  offspring F is produced by a cross of two 

different homozygous parents GF and GM. F can produce eight types of gametes, whereas homozygous 

individual  M produces only one type of gametes. the possible genotypes for O and their expected fre-

quencies are listed in Table 4.2.

                                                                          Figure 4.4 illustrates the possible genotypes for the offspring “O”
                                          given the genotypes of the father, mother, grandfather and grandmother.
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Genotype Observed 
counts

Notation Double crossover No double crossover

AaBbCc f1 p1 0.51−AB−BCC  ABBC  0.51−AB−BC=0.51−AC 

AaBbcc f2 p2 0.5BC−C AB BC  0.5 BC

AabbCc f3 p3 0.5C AB BC 0

Aabbcc f4 p4 0.5AB−CAB BC 0.5 AB

aaBbCc f5 p4 0.5AB−CAB BC 0.5 AB

aaBbcc f6 p3 0.5C AB BC 0

aabbCc f7 p2 0.5BC−C AB BC  0.5 BC

aabbcc f8 p1 0.51−AB−BCC  ABBC  0.51−AB−BC=0.51−AC 

 
Table 4.2 Expected genotype frequencies for the offspring “O” from Figure 4.4. The expected frequencies are  
given     twice, first considering the possibility that  double crossovers may occur and then without considering  
the possibility of double crossovers.

In linkage analysis, two situations have to be considered. When the three loci are located in a 

relatively small genome region, double crossover may have been ignored in some applications. This ap-

proach of ignoring double crossover certainly has potential  problems when the target region is  not 

small.  A full three-locus models should include double crossover and crossover interference. Column 4 

of Table 4.2 shows the expected genotype frequencies considering double crossover and crossover in-

terference.  If the coefficient of interference is set to one, then the events of crossover which occur in 

the segments are considered independent.

A log likelihood function for a three-locus model with locus order ABC is:

 

L AB ,BC = f 1 f 8 logp1 f 2 f 7  logp2 f 3 f 6 logp3 f 4 f 5 logp 4

= f 1 f 8 log 1−AB−BCCABBC  f 2 f 7  logBC−C ABBC 
 f 3 f 6  log C ABBC  f 4 f 5 logAB−C ABBC 

= f 1 f 8 log 1−AC  f 2 f 7  logAC−AB
 f 3 f 6  log C ABBC  f 4 f 5 logAC−BC 

where fi is the observed count, pi is the expected genotype frequency (defined in Table 4.2).  In general 
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the parameters   need to be estimated. If in a pedigree the phase is known then the estimation of the re-

combination fraction is easy to obtain from the pedigree data. Given Table 4.2 and a population size of 

N, then the estimates of the recombination fractions are given by:

 

AB= f 3 f 4 f 5 f 6/N
AC= f 2 f 4 f 5 f 7/N
BC= f 2 f 3 f 6 f 7/N

When in a pedigree the phase is unknown, fi can not be observed directly. Then the estimation of the 

parameters can be carried out by the recursive procedures of the Elston-Stewart or the Lander-Green al-

gorithms which are explained in detail in chapter 3. 

4.3 Mapping functions

Due to the non-additivity of the recombination fraction, they need to be converted into genetic 

distances. Mapping functions have been designed to solve this problem.  These functions may apply to 

general or specific situations.

Ideally, genes or genetic markers are organized linearly on a map and their relative positions on 

the map can be quantified in an additive fashion. For example, considering six loci, A, B, C, D, E and F 

in order ABCDEF, the relationship can be quantified using:

m AF=mAEmEF

=m ADmDEmEF

=m ACmCDmDEmEF

=m ABmBCmCDmDEmEF

where mij is defined as the distance between loci i and j and it is  derived from the expected number of 

crossovers between the two loci.  If the expected number of crossovers is one in a genome segment, 

then the genetic distance between the two loci is 1 Morgan (M) or 100  centiMorgans (cM). For recom-

bination fraction, ij between two loci i and j, if a function

m ij=F ij
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exits for all pairs of loci and is a continuous function, then F ij is defined as a mapping function. 

Equation (4.9) has been commonly used to convert recombination fraction into genetic distance. For 

some mapping functions, the inverse of the function is:

                                                                         ij=F−1m ij

and it is used to convert map distances to recombination fractions. This a a general formulation. How-

ever, there is not always a “closed form” of the inverse function.

Over several decades, a number of mapping functions have been developed. Table 4.3 list some com-

monly used mapping functions and their inverses. 

Reference Map function m=F   Inverse =F−1m

Morgan (1928)  m
Haldane (1919) −0.5log1−2  0.5 1−e−2∣m∣

Kosambi(1944) 1
2

tanh−1 2=
1
4

log 
12
1−2

 1
2

tanh2m=
1
2

1−e4m−1
e4m1

Carter & Falconer (1951) 0.5 tan−12  tanh−1 2  no closed form

Rao et al (1977) * no closed form

Sturt (1976) no closed form
0.5[1−1−m

L
 e

m
L
1−2L ]

Felsenstein (1979) 1
2  k−2 

log
1−2 

1−2 k−1 
1−e2  k−2 m

2 [1−k−1 e2 k−2m ]
Karlin (1984) 0.5N [1−1−2 1 /N ] 0.5[1−1−2m

N


N ]
        
                Table 4.3 List of commonly used mapping functions and their inverses.
                * m=[ p 2p−11−4p log1−2]/6[8p  p−1 2p−1tan−12  ]/3 [2p 1− p4p1tanh−1 2 ]/ 31− p1−2p1−4p 

  

Morgan's function considers complete interference and uses the estimated recombination frac-

tion as genetic distance, =m . When a small segment is considered, the chance that double or multiple 

crossover occur in the segment is low. In such cases the estimated recombination fraction has the same 

expectation as the expected number of crossovers.  So, Morgan's mapping function can be applied 

when small genome segments are considered. Contrary, Haldane's function assumes absence of inter-

ference. If interference is ignored the relationship among the pairwise recombination fractions among 

three ordered loci A, B and C can be quantified as in Equation (4.1). Equation 4.1 can be rewritten as:
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1−2AC=1−2 ABBC−2ABBC 

=1−2AB1−2BC 

If more than three loci are considered, then one can write:

 1−2l=∏
i=1

l−1

1−2i

where  l is the number of loci in the genome segment, l is the recombination fraction between two 

markers flanking the whole segment and i is the recombination fraction between two loci flanking a 

sub-segment. An additive function for Equation (4.11) is:

F =c log 1−2 

where  c is constant. Haldane derived his mapping function from Equation (4.12) by setting  c=-1/2, 

which is:

m=F ={−1
2

log 1−2 for 0≤0.5

∞ for≥0.5

Haldane's function is extensively used. When the recombination fraction is small, the map distances 

and recombination fraction are approximately equal. Haldane's function works for situations with ab-

sence  of  crossover  interference.  However,  experimental  evidence  has  been  found  to  support  that 

crossover interference exists and crossovers occur non-randomly in the genome. Taking into considera-

tion interference, the relationship among pairwise recombination fractions for three ordered loci  A, B 

and  C, can be quantified using Equation (4.2) where C has been defined as the coefficient of coinci-

dence and C -1 as interference. As it was previously discussed, recombination fraction can be consid-

ered a function of the expected number of crossovers or genetic distance,  F(m),  for small  segment 

flanked by A and C one can write:

 
AB=F−1m 
BC=m
AC=F−1mm 
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because recombination fraction and genetic distance are approximately equal for a short segment, Equa-

tion (4.2) can be rewritten, taking −∞ , as:

Equation 4.2 : AC=ABBC−2C ABBC

F−1mm=F−1mm−2CF−1 mm

⇒
F−1 mm−F−1m

m
=1−2CF−1 m

⇒ dF−1m
dm

=1−2C 

⇒ dF 
d 

= 1
1−2C

So, the mapping function is given by:

F =∫
0

 1
1−2C u

du

if one sets C=1, then it becomes the Haldane's function. Kosambi's function takes C=2  and it is writ-

ten as:

F =m

=∫
0

 1
1−4 u2 du

={12 tanh−1 2=
1
4

log
12 
1−2 

for 0≤0.5

∞ for ≥0.5

Kosambi's function considers a moderate interference. The rationale behind this function is that the 

crossovers interference depends on the size of a genome segment. The interference is absent when a 

segment is sufficiently large (e.g., C1 when 0.5 ). The interference increases as the segment de-

creases (e.g., C 0 when 0.0 ). The relationship between the size of the segment and the crossover in-

terference is C=2 .  Carter and Falconer function and  Felsenstein's function are also  derived from 

Equation (4.16) by setting C=83  and C=K−2 K−1 , respectively (see Table 4.4 for the definition 

of K).  The Carter and Falconer mapping function is:
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F =m

=∫
0

 1
1−16u 4 du

=
1
4
 tan−1 2tanh−1 2 

which has no simple inverse. The Carter and Falconer function is commonly used when there is evi-

dence of strong crossover interference. Felsenstein's functions is given by:

F =m

=∫
0

 1
1−2 [K−2 K−1  ]

du

=
1
2 K−2

log
1−2

1−2 K−1

where −∞K∞ is  a parameter  for crossover interference.  If  K=0, Equation  (4.19)  is  the same as 

Kosambi's function and if K=1, then Equation (4.19) is the same as Haldane's function.

Rao's function  is a weighted mean of the Morgan, Haldane, Kosambi and Carter and Falconer 

mapping functions. The Rao's mapping function is formulated as:

F =m
= [p 2p−11−4p log1−2  ]/6
 [8p  p−12p−1 tan−1 2 ]/3
 [2p 1− p4p1 tanh−1 2 ]/3
1− p1−2p1−4p

When p=0, p=0.25, p=0.5, and p=1, Equation (4.20) reduces to Morgan, Carter and Falconer, Kosambi 

and Haldane, respectively. The above discussed mapping functions are all based on Equation (4.16). 

and are summarized on Table (4.4).  Those functions were obtained by setting different values for the 

coefficient of coincidence,C. Table (4.4) list their C values and some comments. 

These are the most commonly used mapping functions, but as mentioned by Karlin (1984) there 

are two difficulties with deriving mapping functions from Equation (4.16):

• First, the mapping functions take into consideration only the genetic distance between markers re-

gardless of the location of these markers on the chromosome.  This consideration is not realistic 

when the mapping functions are applied to a large number of loci.
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• Second, Karlin questions the existence of a global relationship between the marginal pairwise re-

combination fractions and the genetic distance. He suggest that a mapping function should include a 

distance and a parameter for the location of the segment on the genome.

References Coincidence, C Comments

Morgan (1928) 0 complete interference, absence of multiple 
crossover

Haldane (1919) 1 Absence of crossover interference

Kosambi (1944) 2  Crossover interference is a function of re-
combination fraction

Carter & Falconer (1951) 83 Strong crossover interference

Felsenstein (1979) K−K−12
K=1: absence of crossover interference

K<1: Positive interference

K >1: negative interference

   Table 4.4 List of mapping functions based on Equation (4.16).

Karlin concludes that the mapping functions of Kosambi, Carter and Falconer, and  Felsenstein (for K 

not in the range between 1 and 2) are not valid ones for a multilocus structure. He also concludes that 

the mapping function of Haldane, Sturt and Felsenstein (for 1≤K≤2 ) are valid multilocus mapping 

functions if a global relationship between recombination fraction and genetic distance exits. 

The Sturt's function was derived based on the assumption that there is one obligatory crossover 

and an additional crossover following a Poisson process, which is:

 F−1 m =

={12 [1−1−m
L
e

m
L
1−2L], mL

0.5, m≥L

where L is the genetic length of the chromosome arm in Morgans.  This mapping function can be ap-

plied to a genome segment representing a single chromosome arm. 

Karlin's function considers that the number of crossovers in an interval follows a binomial distribution 

B(N,p)   where  N   is the maximum number of crossovers in an interval and p is  the probability of 
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crossover. So, Kalin's function is given by:

F =m

=
1
2

N [1−1−21/N ]

Commonly used mapping functions and the concept of crossover interference are largely de-

rived from a three-locus model  and certain  assumptions  regarding to  the distribution  of crossovers 

events over the genome. The mapping functions have often been used without considerations of experi-

mental conditions and genetic configurations. The difference among the commonly used mapping func-

tions are due to the assumptions of the crossovers distributions on the genome, crossovers interference 

and the length of the chromosome segment considered. If complete interference is assumed, then the 

genetic  distance  is  numerically  equal  to  the  observed  recombination  fraction  because  multiple 

crossovers are ignored. If absence of interference is assumed, then genetic distance is much greater than 

the observed recombination fraction.  

Mapping functions work only for specific conditions. There is no universal mapping function. 

Mapping functions do not estimate physical distance.

It is well known that multilocus models provides more information than twolocus models in 

linkage analysis. Here was presented the formulation for a three-locus model. The formulations are be-

coming more and more complex when the number of loci increases. A multilocus model is based on 

possible crossovers combinations among the loci (Figure  4.5).  For three loci ABC there are 4 possible 

crossover combinations: 11, 10, 01 and 00, if “1” is used to denote that crossover happens in the seg-

ment and “0” to denote that crossover does not happen. For seven loci, there are 81 possible crossover 

combinations (Figure 4.5).  There are 512 possible crossover combinations for 10 loci. In general,  there 

are 2n-1 combinations for n  loci. In this situations is when one need the recursive procedures such us as 

the Elston-Stewart algorithm or the Lander-Green algorithm which are discussed in detail in chapter 3. 
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                         Figure 4.5 illustrates some  of  possible crossover  combinations considering
                       7  loci. “1”denotes the occurrence of crossover in the segment and “0” is 
                       used to denote that the cross-over do not happens.
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Chapter 5

INTRUDUCTION TO ASSOCIATION ANALYSIS

A major new area of genetic analysis that has arisen in the past years relates to association stud-

ies. Associations between diseases and single marker alleles have been reported for many years. How-

ever, the use of large scale association studies has come into play only with the human Genome Project 

and the availability of hundreds of thousands of markers. The increasing recognition of the important 

role of linkage disequilibrium (LD) in the genome and the use of it as a tool has motivated the recent re-

search in the methodology for association studies. 

In population genetics, LD is the non-independent occurrence of alleles at two or more (closely) 

loci. LD describes a situation in which some combinations of alleles occur more or less frequently in a 

population than would be expected from a random formation of haplotypes from alleles based on their 

frequencies. Non-independent occurrence between alleles at different loci are measured by the degree 

of LD.

When a disease mutation first occurs at a locus, it is on one of the two homologous chromo-

somes and therefore associated with all variants at loci close by on the same chromosome. The speed at 

which equilibrium is reached with respect to two or more loci has special importance. Consider two au-

tosomal diallelic loci, with alleles A and a at one locus and alleles B and b at the other. Let the frequen-

cy of allele A in the population be pA so that, under random mating, the genotypic frequencies at this lo-

cus are:

 P(AA)=pA²

          P(Aa)=2pA(1-pA) 

    P(aa)=(1-pA)²

Let the frequency of B be pB so, analogously:

P(BB)=pB²

       P(Bb)=2pB(1-pB)

    P(bb)=(1-pB)²

There are four possible haplotypes, i.e. combinations of two alleles, one from each locus, on the same 

chromosome: AB, Ab, aB, ab. The haplotype frequencies in the absence of linkage disequilibrium (i.e. 

the alleles occur independently on haplotypes) and with LD are: 
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Haplotype
Haplotype  frequencies
without LD       with LD

AB pApB                                  pApB + δ
Ab pA(1-pB)              pA(1-pB) - δ
aB (1-pA)pB                          (1-pA)pB + δ
ab  (1-pA)(1-pB)          (1-pA)(1-pB) -δ

sum 1                       1

In case that alleles A and B are associated, the frequency of haplotype AB would be pApB +δ, where  δ is 

a measure of the strength of LD between the two loci. So, if allele B at locus2 predisposes to some dis-

ease phenotype, then if one ascertains a sample of affected individuals (cases) from the population, and 

a sample of unaffected individuals (controls), then allele  A would be found more frequently in cases 

than in controls. In other words, there will be an association between allele A and the disease pheno-

type. In practice, one can test a large number of marker loci throughout the genome, or a set of poly-

morphisms in or around a candidate gene, in the hope that one of these marker loci would be close 

enough to a disease locus that some marker allele might be associated with the disease allele. Ideally 

one would like to find the individual base pair(s) in the DNA responsible for specific diseases, but there 

are over three billion base pairs in the human genome; the phenomenon of LD enables to test only a 

few hundred thousand, identified as SNPs, to interrogate about 85% of the genome in the mission to lo-

cate a disease mutation. It should be noted that the 85% refers to Caucasian population; current SNP 

platforms cover much less of the genome in other populations, especially older populations such as in 

Africa. that have undergone more recombination in their evolutionary  history.

Association studies have increased precision in localizing a disease susceptibility locus and may 

have increased power compared to linkage analysis, particularly for genes with small individual effects 

(Risch and Merikangas, 1996). Association studies can be performed with samples of unrelated individ-

uals, greatly simplifying the recruitment process, and thus enabling larger sample sizes to be studied.  

Association between genetic markers and a disease phenotype may be missed, despite the pres-

ence of close linkage, if multiple, independent disease mutations are present (whether due to allelic het-

erogeneity or locus heterogeneity). However, LD may still be detectable if a large enough proportion of 

the sample has a common ancestral mutant allele. Allelic heterogeneity is less likely to be present in 

isolated populations with a small founder population. Linkage and association methods require very 
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large sample if there are multiple disease predisposing variants of modest individual effect, gene-gene 

interactions, gene-environment interaction, or allelic or locus heterogeneity.

Unfortunately, association between genetic markers and a disease can be present for reasons 

other than LD, including population stratification and chance, the last one leading to false positive asso-

ciations. Population stratification is a confounding of the relationship between the marker and disease 

status due to the presence of population subgroups that do not intermarry. Among these population sub-

groups there must be differences in both disease and marker allele frequencies for confounding to oc-

cur. Population stratification leads to a 'fake' association between disease and genetic marker. Popula-

tion stratification is of concern in any association study if, for example, individuals have been recruited 

from multiple locations or institutions. For this reason much of the statistical research for association 

analysis has focused on this problem. 

There are several methods to detect and control for population stratification. The transmission 

disequilibrium test (TDT) is a case/control design that uses family controls when parental genotypes are 

known (Spielman et al., 1993; Ewens et al., 2005). Population stratification is controlled by comparing 

frequencies of alleles transmitted by a parent to an affected offspring to those that are not transmitted. 

One of the disadvantages of the TDT is the requirement of parental genotypes, eliminating one of the 

advantages suggested for association mapping.  

Multiple testing, or chance, can always be a reason that association studies suffer from a high 

false positive rate. There are several methods available to adjust for multiple testing. An obvious way is 

to replicate association results in an independent data set. However, if several different associations are 

real, it is unlikely that the same genetic variants will have the strongest signals in independent samples, 

simply because chance fluctuations from sample to sample. More importantly, different alleles may be 

causative, or strongly associated with causative alleles, in different populations, because of genetic vari-

ation. The Bonferroni correction is one of the most commonly used methods to date to adjust for multi-

ple testing. However, this method is known to be conservative, and so many researchers may have been 

tempted to ignore the multiple testing issue out of frustration due to the reduction of power. Anyway, 

other tests have been suggested to be less conservative such as the false discovery rate (FDR)  proposed 

by Benjamini and Hochberg (1995). The FDR is the expected proportion of erroneous rejections among 

all rejections. When many of the tested hypotheses are rejected, indicating that many hypotheses are not 

true, the error from a single erroneous rejection is not always as crucial for drawing conclusions from 

the sample tested, and the proportion of errors is controlled instead. Thus one is ready to tolerate more 

errors when many hypotheses are rejected, but less when fewer are rejected. In many applied problems 
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it has been argued that the control of the FDR is the more appropriate response to the problem of multi-

ple testing.

As stated by Elston and Spence (2006) whether an association study is designed for fine map-

ping as a follow-up to promising linkage results or for the investigation of polymorphisms within a can-

didate gene region, the analysis is complicated by the presence of numerous markers. A large number of 

markers must be evaluated to make disequilibrium mapping feasible, as we want to be sure that we 

have included a marker that is in LD with the disease locus. Because of the large number of markers 

that are required, SNPs, which are now relatively cheap to genotype, are the markers of choice. Howev-

er, because of their diallelic nature, SNPs are individually relatively uninformative. To counter this, 

clusters of very closely spaced SNP markers, i.e. haplotypes, need to be analyzed together, so as to in-

crease the information available at a particular location within the genome. The difficulty with utilizing 

haplotypes for association studies is that haplotypes are usually not known with certainty. Individuals 

who are heterozygous at more than one locus have ambiguous phase, and the probability of this event 

occurring increases with the number of markers being haplotyped. There are several methods available 

to help resolve the ambiguity. The most common used to resolve phase ambiguity is to use statistical 

approach to estimate haplotype frequencies. Numerical methods to compute maximum likelihood esti-

mates of haplotype frequencies from random samples of unrelated individuals have been implemented, 

including the EM algorithm (Long et al., 1995; Hawley et al., 1995; Fallin et al., 2000). In the case of 

estimating haplotype frequencies given genotype information on each person, the ‘missing’ information 

is the phase between the marker alleles. Bayesian approaches have been implemented to approximate 

the maximum likelihood solution when the problem is too large for exact computations. In this ap-

proach, one has a choice of what prior distribution will be used. The uniform Dirichlet prior gives an 

equal weight to each of the possible alternative phases and so gives the same solution as the maximum 

likelihood EM algorithm in situations where exact computations can be performed. An alternative pri-

or, called the ‘pseudocoalescent’ prior, gives greater weight to alternatives that produce similar haplo-

types to those that have already been observed (Stephens et al., 2001). This prior will provide better es-

timates of haplotype frequencies than the equal weight Dirichlet prior in situations where this prior 

more accurately reflects reality, e.g. for tightly linked markers with inter-marker LD. In real data the 

two methods perform similarly when there is low inter-marker LD. 

Once the haplotype estimation has been performed, the haplotype frequencies across popula-

tions  or disease groups have been typically compared one haplotype at a time using the Cochran–Ar-

mitage trend test (Cochran 1954; Armitage 1955) or a logistic regression involving a one degree of 
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freedom test if the mode of inheritance is known (Schaid and Sommer 1993). 

An important issue in association studies is the sample size necessary to detect an association, 

and hence the amount of genotyping that must be performed. For diseases where the loci have a small 

effect, or there are other competing causes of disease, very large sample sizes may be needed to detect 

an association at a particular locus. 

This is the basis of association and LD mapping, which has been shown to work well either in 

the case of simple diseases in populations where there is likely to have been only one disease-predis-

posing allele at this locus and in the case of complex diseases. 

Linkage or association?

There is considerable discussion in the literature about the power of linkage versus association 

studies in identifying disease susceptibility genes. In terms of association studies, current opinion varies 

as to whether family-based association studies are better than case-control studies. Use of SNPs versus 

haplotypes is also being greatly debated. Greenberg (1993) discussed the use of linkage and association 

approaches for localizing a gene influencing a trait when the locus under consideration increases sus-

ceptibility to the disease (as would be the case for elevated blood pressure) instead of being necessary 

and sufficient for the occurrence of disease (as would only be the case for a more simply inherited dis-

ease). He concluded that if the relative risk of having the disease given the associated allele is small, 

then the chance of finding linkage is correspondingly small.  In this case, an association approach is 

much more powerful to detect genetic risk factors than linkage methods. However, there are also clear 

situations in which a linkage study is more suitable for localizing trait loci than an association study. In 

particular, if the disequilibrium between the marker and trait locus is low, association will not have suf-

ficient power, and linkage is the better strategy for localizing genes.
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Chapter 6

THE HUMAN PSEUDOAUTOSOMAL REGIONS

6.1 Introduction

Sex chromosomes have been for decades an issue of interest because of their distinctive patterns 

of transmission and their peculiar structure and function. The human sex chromosomes, X and Y, are 

morphologically and genetically distinct. In humans, females have two X chromosomes which are ho-

mologous and thus are of equal size and genetic content. Meiotic pairing and recombination can occur 

along their entire length. Males have one X and one Y chromosome which have two small regions of 

homology (identical sequence), located at the tips of the short and long arm of the X and Y chromo-

somes, as depicted in Figure 6.1. During male meiosis, pairing and crossover take  place only in these 

                         

Figure 6.1  Illustrates the structure of the human male sex
             chromosomes and the localization of the two homologous

                          regions PAR1 and PAR2.
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these two small regions, which have been termed pseudoautosomal regions “PARs” (Burgoyne, 1982; 

Freije D et al.,  1992).   More precisely PAR1 refers to the tips of the short  arms,  Xp/Yp (Xp22.3-

Yp11.3), and PAR2 refers to the tips of the long arms Xq/Yq (Xq28-Yq12). The physical lengths are 

approximately 2.7 Mb for PAR1 and 0.33 Mb for PAR2. 

The human pseudoautosomal regions have attracted interest from topics in human genetics, cy-

togenetics, and evolutionary biology because of their special features.  Pseudoautosomal nomenclature 

came up due to the unusual genetic behavior of these regions: markers close to the boundaries with the 

sex specific sequences behave as if they were tightly sex-linked, whereas, markers close to the telom-

eres act as if they were autosomal. The pseudoautosomal boundaries (PABs) are the interface between 

pseudoautosomal and sex-chromosome specific DNA sequences. PABs separate regions of intensive 

recombination from non-recombining regions on the Y and a moderately recombining region on the X 

chromosome.

A loss of PAR1 has been observed to be associated with male sterility leading to the theory that 

the existence of PAR1 is necessary for homologous X-Y chromosome pairing and the proper segrega-

tion of gametes (Gabriel-Robez et al., 1990; Mohandas et al., 1992). This is of interest because the re-

gion is physically relatively small. It is estimated that during male meiosis an obligate crossover occurs. 

Crossover activity in PAR1 is much higher in males than in females and also higher than for each of the 

autosomes. As a consequence of the elevated recombination rate in this region  approximately one half 

of male children  carry a recombinant PAR1 on their Y-chromosome whereas the other half inherit a 

non-recombinant PAR1 haplotype from their fathers. The rate of recombination in PAR2 is much lower 

than in PAR1 but still higher than the average of the remainder X-chromosome.

To date 24 genes have been identified in PAR1 and 5 in PAR2. Possible connections with clini-

cal disorders such as short stature, asthma, psychiatric disorders and leukemia have been suggested, but 

only one pseudoautosomal gene,  SHOX (Short Stature Homeobox), has been clearly associated with 

various short  stature conditions and disturbed bone development.   However, in systematic genome-

wide linkage and association analysis, PARs have been largely neglected so far - a systematic “blind 

spot”. The SHOX gene has been correlated to a disease via deletion mapping and not by linkage analy-

sis. 
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This work focuses on statistical methods for genetic map construction, linkage and  association 

analysis in the PARs. It summarizes the estimates of genetic maps, pseudoautosomal markers available 

on SNP-chips, and methodological developments which account for the special characteristics of the 

PARs in parametric and nonparametric linkage analysis as well as genetic association analysis. In addi-

tion a new genetic map for PAR1 and PAR2 is presented in chapter 7.

6.2 Evolutionary origin of the human sex chromosomes

The origin of the human sex chromosomes can be traced by comparing their sequence, gene 

content, and gene function in related species. It was first postulated by Muller in 1914 that X and Y 

chromosomes evolved from a pair of autosomes and have become separated in the course of millions of 

years (illustrated in Figure 6.2). 

Figure 6.2 The degeneration of the  Y occurred in discrete episodes, beginning about 300 million years ago  
(mya) when an ancestor acquired the SRY gene on one of its autosomal chromosomes. Each of the episodes in-
volved a failure of recombination to occur between the X and the Y chromosomes, resulting in subsequent decay  
of some genes in the non-recombining region. Figure adapted from: rediscovering biology “sex and gender”.  
http://www.learner.org/channel/courses/biology
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The evolution of sex chromosomes emerged when one strand of a pair of autosomes obtained a 

male sex-determining gene, which has been identified as SRY (Sex-determining Region Y). Over time, 

additional genes with male specific functions accumulated in this sex-determining chromosome which 

gradually lost the ability to recombine with its counterpart. Subsequently, a degeneration of size started 

due to gene inactivation, mutation, deletion and insertion of junk. All evidence to date indicates that 

each time when a segment of the Y chromosome became separated, most of the genes in that segment 

were then inactivated by nonsense mutations and small deletions. Nevertheless, some few genes have 

refused to go away for hundred of millions of years, in some cases no clear reason for that could be 

found. In other cases, they have become specialized for spermatogenesis.

It is still an open question why the Y chromosome degenerated so quickly and why positive se-

lection of male advantage genes did not work stronger against it. The theory that the Y could even dis-

appear, is maintained by comparative studies in other vertebrates.  With an approximated calculation of 

the average rate of loss of active genes from the human Y, Aitken and Graves (2002) predicted a com-

plete loss of the Y chromosome in about 10 million years. Rather than predicting the extinction of the 

human species, Graves argues that this event could lead to the divergence of the human species in two 

distinct hominid species incapable of reproducing. 

As in mammals the male is the heterogametic sex, this system of chromosomal sex determina-

tion is called X/Y system, as apposed to the W/Z systems realized in birds and (some) reptiles, where 

the male has the W/W and the females the W/Z chromosomal constitution.

 Although, in the last years immense advances have been done in the understanding of the sex 

chromosomes, there are still  a lot of questions unanswered. This enigma will however, be resolved 

within the next years by the availability of new informations as the recently published complete se-

quence of X and Y (Ross et al. 2006).

6.3 Evolutionary of the human pseudoautosomal regions

The first evidence of pairing between parts of the X and Y chromosomes dates about 70 years 

ago. In higher organisms it was first observed in the rat (Koller and Darlington 1934). In 1936, Haldane 

found evidence for partial sex linkage in human (Haldane, 1936), and by studying spermatocytes in 

meiotic prophase, pairing was demonstrated to occur in the short arms of X and Y chromosomes (Pear-

son and Bobrow 1970; Moses et al., 1975). It was claimed that a single obligatory crossover should be 

present in male meiosis between the X and Y chromosomes, restricted to PAR1 (Burgoyne 1982; Rouy-

er et al., 1986a; Page et al., 1987a). This crossover forms the chiasma that keeps the sex chromosomes 
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together during metaphase I of meiosis, and it was settled that it would therefore behave like an autoso-

mal chromosomal segment. Absence of double recombinants in early studies suggested that only single 

recombinant  events  could occur in PAR1,  but  later  studies  reported a few double recombinants  in 

PAR1 (Schmitt et al., 1993; Rappold et al., 1994). About 60 years after the discovery of PAR1, a sec-

ond region of homology at the opposite ends of the X and Y chromosomes was observed, this new re-

gion was termed PAR2 (Freije et al., 1992). Since then PAR1 and PAR2 have provoked a great interest 

in researchers for their  peculiarities.  Comparative studies between the PARs of humans and others 

species have earned much interest in the last years with the objective of resolving the enigma of human 

evolution and human diseases (Graves et al., 1998;  Gianfrancesco et al., 2001; Kohn et al., 2004; Yi 

and Li 2005; Bussell et al., 2005; Charlesworth D. 2005; Graves 2006; Graves et al., 2006). Whereas 

the human PAR1 is homologous to the pseudoautosomal region in several mammalian species, includ-

ing great apes and Old World monkeys, the PAR2 sequence has a much shorter evolutionary history 

and it is specific to humans. 

6.4 Genetic features of the pseudoautosomal regions

Genetic features of the PARs and the X and Y chromosomes are summarized in Table 6.1. Both 

regions, PAR1 and PAR2, although very small in size, display a higher gene density than the rest of the 

X-chromosome. In most genomic regions the recombination rate in females is higher than in males, but 

PAR1 and  PAR2 represent  a  hot  spot  in  males,  exhibiting  the  highest  recombination  frequencies 

throughout the entire genome. In PAR1 male recombination activity is 10 to 20 times more frequent 

than in females (Page et al., 1987). In females, the recombination intensity in PAR1 is within the auto-

somal range. To date, no recombination event has been detected in females in PAR2. 

PAR1 is necessary for homologous X-Y chromosome-pairing during male meiosis and, as with 

autosomes, undergoes one crossover event during this process. Although, PAR2 is not implicated in 

mediating male meiosis and undergoes a lower recombination activity than PAR1, it still represents a 

sixfold higher recombination activity when compared to the average of the autosomes. The sequence of 

PAR2 is completely known whereas in PAR1 six gaps with an estimated combined size of 370 kb 

could not be filled up to now.
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Genetic 
Region

Physical  
length
(Mb)

Known protein  
coding 

Genes/Mb

Males recombi-
nation activity

cM/Mb

Females recombina-
tion activity

cM/Mb

Male/female
quotient of ge-

netic length

PAR1 2.7 10 4.33-20.48 0.30-1.55 2.8-14.6

PAR2 0.33 15 6.06 (not detected so far) -

X 165 6 (no homology) 1.21 -

Y 60 3 (no homology) (not in females) -

Autosomal range 46-245 3-23 0.80-2.40 1.40-2.80 0.57-0.85

Table 6.1 Features of the pseudoautosomal region in comparison to the sex and autosomal chromosomes (Fla-
quer  et  al.,  2008).  Physical  map  lengths  and  known  protein  coding  genes  are  taken  from  the  ensembl  
database58. Genetic map length for autosomes are based on the Rutgers map (Kong et al., 2004).

29 genes lie within the human PARs (24 in PAR1, 5 in PAR2), and these genes exhibit 'autoso-

mal' rather tan sex-specific inheritance. Table 6.2 illustrates the genes located in PAR1 and PAR2 and 

which diseases have been proposed to be associated to those genes. In addition, it is conceivable that 

further genes might reside within the gaps of PAR1. The pseudoautosomal regions display a higher 

gene-content (~10 genes per Mb in PAR1 and ~15 genes per Mb in PAR2) than the remainder of the X 

chromosome (~6 genes  per  Mb)  or  the  Y chromosome (~3 genes  per  Mb).  Due to  an  obligatory 

crossover in male meiosis, pseudoautosomal genes are exchanged frequently between X and Y chromo-

somes. To date, only one gene, SHOX (Short Stature Homebox), has been clearly associated to a dis-

ease, Thunder Syndrome, recently reviewed (Blascke et al. 2006). 
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Region Position Gene Suggested Disease
PAR1 0.15 PLCXD1 None

0.17 GTPBP6 None

0.25 cM56G10.2 None
0.29 PPP2R3B None

0.57 SHOX turner syndrome (Blaschke and Rappold 2006)*

0.92 bA309M23.1 None

1.31 CRLF2 None
1.38 CSF2RA None

1.52 IL3RA None
1.55 SLC25A6 None

1.56 bA261P4.5 None
1.57 CXYorf2 None

1.59 ASMTL None
1.66 P2RY8 mental retardation (Cantagrel et al., 2004)

1.76 CXYorf3 None
1.79 ASMT psychiatric disorders (Yi et al., 1993); epilepsy (Doherty et al., 2003)

1.79 bB297E16.3 None
1.91 bB297E16.4 None

1.93 bB297E16.5 None
2.37 DHRSX None

2.41 ALTE(ZBED1) None
2.54 Em:AC097314.2 None

2.53 Em:AC097314.3 None
2.63 CD99 (MIC2) Ewing's Sacroma (Kreppel et al., 2006); sex cord-stromal tumors 

(Kommoss et al., 2000); Hodgkin's diseases (Kim et al., 2000); breast 
cancer (Byun et al., 2006)

PAR2 154.57 SPRY3 None
154.71 SYBL1 Bipolar disorder (Saito et al., 2000); (Muller et al., 2002) 

154.81 IL9R Asthma (Kauppi et al., 2000)
154.81 Em:AJ271736.5 None

154.82 CXYorf1 None

Table 6.2 lists the homologous genes on the human X and Y chromosomes. Position: distance from the telomere (Mb).
*The only gene clearly associated with a disease. Gene names as given by Ross et al., 2005.
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6.5 Linkage and association analysis in the pseudoautosomal regions

The mode of inheritance for autosomal and X-linked Mendelian diseases can be modeled by 

classical segregation analysis with large samples of families. However, the segregation pattern of loci 

on the PARs depends on their location relative to the pseudoautosomal boundary (PAB). Two extreme 

situations for an affected father are depicted in Figure 6.3. In situation I, the susceptibility gene for a 

certain disease is close to the PAB of PAR1 and no recombination occurs between the gene and the 

sex-specific region. The dotted line indicates the position of a disease gene which could be at a) Y-

PAR1 or b) X-PAR1. In the case that the disease locus is at Y-PAR1 all sons will be affected, due to 

Figure 6.3 illustrates pseudoautosomal segregation for dominant disease depending on the localization of the susceptibility  
gene (Flaquer et al., 2008). Case I) the susceptibility gene is located close to the PAB of PAR1. The way of segregation de-
pends whether the susceptibility gene is at X-PAR1 or at Y-PAR1 . Case II) the susceptibility gene is located close to the  
PAR1 telomere and the way of segregation does not depend in which of the chromosomes is located.  
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non-recombination activity all of them will inherit the locus from the father's Y-chromosome and all 

daughters will be unaffected since they receive the locus from the father's X-chromosome. If the disease 

locus is at X-PAR1 the inverse situation will hold, all daughters will become affected and all sons unaf-

fected.  In case II), the susceptibility gene is located close to the telomere and recombines with respect 

to loci within PAR1, following the same pattern of transmission like any autosomal dominant disease, 

where any offspring, male or female, get the the same chance of being affected or unaffected. Due to 

the small size of PAR2, it is thought that most of the susceptibility genes would follow the same pattern 

similar than in situation I)

Linkage analysis 

In the last years researchers have been performing genome-wide studies to detect genes impli-

cated in complex diseases. These days many methods to carry out multipoint analysis of genome-wide 

data, mainly parametric and nonparametric analysis, are widely available and implemented for autoso-

mal and for X-linked markers. However, markers in PARs display a special behavior. Although, their 

transmission is similar to the autosomal markers, as despited in Figure 6.3, males are more likely to re-

ceive the allele locates on the father's Y chromosome and females are more likely to receive the allele 

located on the father's X chromosome. This occurs more markedly for markers near the boundary of the 

X-specific region. For that reason, an increased sharing of IBD between pairs of the same sex and a de-

creased sharing of IBD between pairs of opposite sex would be expected, independently whether a dis-

ease susceptibility gene is present or not. On the other hand, one has to consider the fact that in PARs 

the recombination events are much higher in male than in female meiosis.

To date only three analytical linkage methods have been suggested to deal specifically with the 

PARs (Ott 1986; Dupuis and Eerdewegh 2000; Strauch et al., 2004). Ott and Strauch et al. focused on 

parametric analytical approaches while Dupuis and Eerdewegh  concentrated on nonparametric strate-

gies. 

The first method, proposed by Ott, covers different situations of sex-linked inheritance using 

parametric linkage analysis on a qualitative trait (dichotomous). In the case of two pseudoautosomal 

loci it is  proposed to carry out linkage analysis as if these two loci were autosomal loci. Then, the male 

recombination fraction measures recombination frequency between the X and the Y chromosome while 

the female recombination fraction measures it between the two X's. In the scenario of linkage between 

an X-linked and a pseudoautosomal locus it is recommended to add a dummy allele to all males' hem-

izygous genotypes for X-linked markers, and to use a special definition of penetrances for the X-linked 
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locus and for the PAR locus. Both models could be carried out by adapting the input data structure to a 

program such as LIPED (Ott 1974, 1976) or LINKAGE (Lathrop et al., 1984).

Strauch et al.  suggested a second approach following the same patterns as Ott. They proposed a 

recoding scheme for linkage programs that can only take codominant markers and a diallelic trait locus 

into account in an autosomal setting. This recoding scheme can be used for X-linked loci only or com-

bined X-linked and pseudoautosomal loci, but it is required that the software offers modeling for im-

printing. Models with imprinting comprise four penetrances; these four penetrances have been imple-

mented into the program GENHUNTER-IMPRINTING (Strauch et al., 2000). 

Both methods, Strauch et al. and Ott, were suggested considering only pseudoautosomal mark-

ers residing at PAR1, although, they could be easily applied to markers at PAR2, as well.

Dupuis  and Eerdewegh  presented a method for markers located at PARs to be applied in the 

field of nonparametric linkage analysis, using the ASP approach. The method takes into account the ex-

pected IBD sharing depending of the sex of the sib pair, the male recombination fraction between the 

marker and the sex specific region, and the presence or absence of a disease susceptibility gene in the 

PARs. For an autosomal marker unlinked to any disease locus,  a sibling pair will share zero, one or 

two alleles IBD with probability ¼ , ½ and ¼ respectively. An increase in IBD sharing in affected sibs 

is taken as evidence for linkage to a disease-susceptibility locus. A similar reasoning is taken for the 

PARs. Under the hypothesis that there is not a disease susceptibility gene in the PARs, the probability 

that a pair shares zero or one alleles IBD from the maternal side in the PARs is ½. However, the proba-

bility of sharing zero or one alleles from the paternal side depends of the male recombination fraction 

between the marker and the X-linked regions and on the sex of the sib pair. A likelihood context is used 

to test for the presence of linkage in the PARs. In their paper, they show with real data how not taking 

the sex into account may lead to false-positives or false-negative results when an excess of sex-concor-

dant affected sib pairs is present. This method looks quite robust although it does not deal with differ-

ences between male and female recombination rates in PARs. Unfortunately, the method is not imple-

mented in any of the existing software programs for linkage analysis.   
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Association analysis

In association studies, besides confounding and bias from several sources (e.g. population struc-

ture, cryptic relatedness, and data errors), statistically significant association can only be found if the 

tested polymorphism has a variant that is causally related to the disease or if it is in strong linkage dise-

quilibrium (LD) with a causal variant. Since LD on the population level only operates over short dis-

tances, a dense set of markers is to be used. As a simple rule at least one tagSNP every 5 kb is recom-

mended to capture most of the common variation in an European sample (Consortium IH 2005). This 

would result in ~540 SNPs in PAR1 and ~60 SNPs in PAR2. However, in PAR1 this might not be 

enough since the LD in PAR1 might be lower than in autosomal regions of the same physical size, due 

to the high recombination rate in males in this region. It has not been analyzed so far, whether it would 

be an advantage to use special analytical methods to detect association with pseudoautosomal markers. 

Evidently, false positives results could arise if a causal variant is strongly associated with one sex, and 

the sex distribution is different among cases and controls.

The current situation regarding to linkage and association analysis in PARs is calling for new 

methods and their implementation. In most of the genome-wide studies, only the 22 autosomal chromo-

somes are analyzed excluding the sex chromosomes. However, some researches started to include the X 

chromosome in the genome-wide analysis but still excluding the pseudoautosomal loci from the analy-

sis. Very few studies are using the PAR. Most of these few studies are analyzing pseudoautosomal loci 

using the general analytical approach described for autosomal loci.  

6.6 Genetic maps for the pseudoautosomal regions

Several genetic maps have been proposed for the PARs, using the techniques of three generation 

pedigrees, single sperm typing, and unrelated individuals (Table 6.3). The first map was created in 1986 

including only PAR1 (Rouyer et  al.,  1986a).  This  map was based on eight  families  and three mi-

crosatellites markers. One year later, a second map was published for PAR1 using forty-four families 

and 5 STR markers (Page et al., 1987). The first genetic map for PAR2 was suggested by Li and Hamer 

(1995) using a total of forty families and four markers.  The estimated genetic length of PAR1 and 

PAR2 vary based on the existing genetic maps. In PAR1, estimated genetic length ranges from 12-55 

cM in males and 0.8-4.18 in females.  
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#markers Male

cM

Female 

cM

Mapping 

function

Sample Reference 

PAR1 5 48.5 5 Identity 8 CEPH families Rouyer et al., 1986b

PAR1 5 49.9 4.18 Identity 44 CEPH families Page et al., 1987 

PAR1 11 49 4 Identity 38 CEPH families Henke et al., 1993

PAR1 4[1] 38 - Identity 2 sperm donors, 900 
sperms cells

Schmitt et al., 1993

PAR1 9 55.3 - Kosambi 4 sperm donors, 1912 
sperms cells

Lien et al., 2000 

PAR1 6 11.7 1.28 Kosambi 40 CEPH and 146 
DECODE families

Matise et al. 2007

PAR1 1400 38[2] 3.8[2] none 269 unrelated individuals HAPMAP Consortium 

(2005)

PAR2 1[1] 2  0 Identity 40 CEPH families Freije et al., 1992 

PAR2 1 0.3 - Identity 2 sperm donors, 900 
sperms cells

Schmitt et al. 1993

PAR2 4 2 0 Identity 40 CEPH families Li and Hamer 1995

PAR2 1 0.7 - Kosambi 4 sperm donors, 1912 
sperms cells

Lien et al., 2000 

PAR2[4] 3 1.6 0 Identity 48 families Matise et al., 2007

PAR2 140 0.7 [3] 0 none 269 unrelated individuals HAPMAP Consortium 

(2005)

Table 6.3 Estimates of  genetic map length in male and female human pseudoautosomal regions (Flaquer et al.,  
2008) . In sperm typing studies male map distance are determined. In Freije et al. study one crossover in female  
was reported among 238 informative meioses but it could no be confirmed. [1]  sex as a marker is not included  
here but used for map estimation.  [2] Assuming a male/ female ratio of genetic length of PAR1 of 10.  [3] two 
times the sex-averaged genetic length. [4] Own analysis based on data from the Matise et al. study (Matise et al.  
2007). Hapmap did not use any mapping function, other method is used, described online supplementary infor-
mation {consortium, 2005 #116}.

Because multipoint linkage analysis is the standard tool in the search for genetic variants that 

predispose to Mendelian and complex genetic diseases, and this method is generally more powerful 

than singlepoint methods, a genetic map is required. Misspecification of the genetic map has the poten-

tial to severely compromise the estimation and testing procedures used in multipoint linkage analysis. 

Specifically, inflation or deflation of the LOD score, loss of power to detect linkage or an increase in 

the false-positive rate, and bias in the disease locus position estimate are possible, depending on type 

and degree of misspecification (Daw et al., 2000; Fingerlin et al., 2006). Marker map misspecification 
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can arise from uncertainty due to the estimation process (sample error) or from over-simplified models 

of the biological process of recombination in this region. The number of meioses, and therefore the 

number of recombination events, used to infer inter-marker distances for genetic maps is often relative-

ly small (<200). As a result, many current genetic maps have wide confidence bounds, particularly for 

dense maker spacing. Most notably, evidence for sex variation in recombination rates indicates that 

sex-averaged maps fail to incorporate relevant information about sex-specific genetic distances. The fe-

male:male  genetic  map  distance  ratio  varies  dramatically  along  chromosomes,  and  particularly  in 

PARs. The biological mechanism(s) for theses differences is not yet well understood, but they are real 

and should be considered in multipoint linkage studies using sex-specific maps instead of sex-averaged 

maps.   

Several attempts have been employed to integrate multiple genetic maps. Most recently, Duffy 

used a method of weighted regression to obtain smoothed local recombination rates to interpolate be-

tween markers in PARs using the genetic distances from Lien et al. (Duffy 2006).  Figure 6.4 illustrates 

the relations among the published genetic maps for males and females in PAR1. The genetic maps for 

males proposed by Lien, Henke and Rouyer seem to be well in agreement for the first 750 kb. The dis-

cordance shown by the Schmitt's and Rutgers' map could be because of the most telomeric marker still 

being at a distance of approximately 750 kb from the telomere. After 750 kb, the maps display different 

tendencies, only the Rouyer's map and Henke's map display a similar trend. 

The differences among these published maps could be due to a systematic map estimation bias, data er-

rors, or an insufficient number of markers or meioses considered for the estimation of the recombina-

tion rate. These differences are less significant when comparing the genetic maps proposed for females. 

Based on these maps the estimated genetic length of PAR1 varies between 26-54 cM in males and be-

tween 2.8-6 cM in females. There is a very small number of genetic maps proposed for PAR2, and all 

of them used a poor number of genetic markers. 

It is true that the international HapMap project used a much larger number of genetic markers (1400
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Figure 6.4 Relations among the sex-specific genetic maps proposed so far for PAR1. Different techniques were  
used for the estimation of recombination rates, three-generation families (FAM) and sperm cell typing (SPR). 
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SNPs in PAR1 and 140 SNPs in PAR2) to estimate a genetic map (HapMap consortium 2005). This 

map was based on the technique of unrelated individuals providing only sex-averaged distances. To be 

comparable with the other maps, we computed sex-specific map distances using a male/female map ra-

tio of 10:1 (data not shown).  HapMap estimates were lower in respect to the other maps, this could be 

because using the technique of unrelated individuals is very difficult to estimate accurate sex-specific 

recombination rates. With this technique a coalescent model of a finite neutrally evolving population 

with constant population size is assumed which cannot be easily confirmed with empirical data, and 

only sex-averaged recombination rates can be estimated. We do not present the map here because re-

cently the new genetic map from HapMap phase 3 has become available where the sex chromosomes, 

and hence the PARs, have been excluded.  

6.7 Coverage of the pseudoautosomal regions by Affymetrix and Illumina ANP arrays

Affymetrix  and  Illumina  are  the  two  big  manufacturers  of  DNA  SNP  microarrays,  called 

“GeneChips”. Both of them offers several GeneChips that contain different number of SNPs covering 

the whole genome. The most of the GeneChips offers a poor coverage of the PARs. Table 6.4 lists the 

available GeneChips by Affymetrix and Illumina and the coverage offered at PAR1 and PAR2. 

Company GeneChips PAR1 PAR2

Affymetrix Genome-Wide Human SNP Array 6.0 391 32

Genome-Wide Human SNP Array 5.0 155 0
Mapping 500K Array Set 262 0
Human Mapping 100K Set 19 0
Mapping 10K 2.0 Array 5 0

Illumina Human 1M 258 42
HumanHap550 10 4
HumanHap300-duo 2 0
HumanHap240S 9 4
Linkage V (6k) 18 5

        Table 6.4 Number of SNPs in PAR1 and PAR2 in the available GeneChips offered 
                                 by Affymetrics and Illumina (Flaquer et al., 2008).

In section 6.5 the suggestion has been put forward, to use for genetic association analysis at least 

one SNP every 5 kb to capture most of the common variation. This would result in 540 SNPs in PAR1 
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and 60 SNPs in PAR2. However, in PAR1 this might not be enough since the linkage disequilibrium 

might be much lower than in autosomal regions of the same physical size, due to the higher recombina-

tion intensity.  
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Chapter 7

A NEW LINKAGE MAP FOR THE HUMAN 
PSEUDOAUTOSOMAL REGIONS

A fundamental problem with constructing human genetic linkage map is that sufficient data is 

often missing. Human geneticists cannot simply count recombinants since typically the necessary infor-

mation is lacking. Consequently, it is most often not possible to specify unambiguously where recombi-

nation events occurred. The reasons could be due to marker homozygosity in parents, missing geno-

types, and other reasons for an uninformative situations in some of the loci of interest. Even when par-

ents are heterozygous, it is often unknown which alleles at linked loci are in cis and which are in trans 

(i.e., the linkage phase is unknown). Another problem is that genotypes cannot always be uniquely in-

ferred from phenotype. To address this problems, theoretical approaches based on the method of maxi-

mum likelihood considering all possibilities for the missing data is applied. These approaches uses the 

genetic distances to maximize the probability that the observed data would have occurred.

Accurate and comprehensive linkage maps are crucial for the success of several types of genetic 

studies. The physical position—and, hence, the order—of the vast majority of polymorphic markers can 

now be readily determined from the assembled sequence of the human genome. However, unless a giv-

en set of markers are all present on a single linkage map, specification of recombination-based genetic 

map distances for any large set of markers remains difficult. In theory, physical map distances can be 

used to interpolate and estimate linkage map distances. However, the existence of extreme variability in 

the genomic distribution of recombination necessitates a painstaking effort to identify and utilize appro-

priate region-specific estimates of the recombination intensity cM/kb, making such large-scale interpo-

lation generally impractical. Accurate estimates of map distance cannot be obtained by any means other 

than linkage analysis using genotype data.

To help to address these issues, we have created a sex-specific genetic map using the technique 

of multipoint linkage analysis and three-generation CEPH pedigrees to estimate recombination rates, 

including the largest set, to the best of our knowledge, of genetic markers in PAR1 and PAR2.

7.1 CEPH pedigrees

Professor Dausset in Paris, Nobel laureate in 1980, proposed and implemented the idea that a 

human genetic map should be constructed on the basis of reference families of specified structure. 
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DNA from family members, isolated from permanent cell lines, would be made available to researches 

world-wide so that the genetics community could participate in this effort. A foundation in France sup-

ports this idea, and a set of originally 40 (later expanded to 64) such families from France and Utah 

formed what became known as the CEPH families  (for Centre d'Etude du Polymorphisme Humain). 

Each family consists of one pair of parents, an average of 8.3 offspring  and up to four grandparents 

(Dausset et al., 1990). With the advent of highly polymorphic markers, most gene mappers did not use 

all families but only a subset of them. 

Genotypes for the pseudoautosomal regions were obtained from the CEPH genotype database 

and from the Department of Genetics from the Rutgers university (Kong et al., 2004). First we selected 

the CEPH families where the pseudoautosomal genotypes were available for three generations. In total, 

22 and 6 genetic markers were available for PAR1 and PAR2 respectively for a total of 29 CEPH fami-

lies. First, to identify genotypes that lead to non-Mendelian transmission and likely to be erroneous, as 

well as to search for problematic pedigrees the PEDCHECK program (O’Connell and Weeks 1998) 

was used. However, all these genotype data have been previously cleaned, either by the groups who de-

termined the genotypes or by other groups who have used these data. Thus, no Mendelian inconsisten-

cies were found and no problematic pedigrees were detected. Anyway, it is well known that some erro-

neous genotypes do not show up as Mendelian inconsistencies. Suppose for example that two parents 

with genotype 1/2 and 2/3 in a locus give birth to a child with genotype 1/2, but for some error the child 

appears in the database with genotype 1/3, the child is still consistent with the parents and this error will 

not be detected as a Mendelian inconsistency. To avoid these type of errors a procedure based on re-

combination events was used. It was argued whether multiple crossover events could occur within the 

small pseudoautosomal regions. Two studies reported a double crossover in male meiosis (Schmitt et 

al. 1993; Rappold et al. 1994) and to date no double recombinant has been reported in female meioses. 

In this study we found 1 double recombinant in a male meioses and 7 in female meioses. The 6 double 

crossovers in female meioses was regarded a warning to potential genotype errors. We took a closer 

look to those individuals and these events; they all were found in 7 different individuals within the 

same family (FAM-66). There was no clear-cut and obvious solution to this problem. The perfect solu-

tion would be to regenotype this family. For the time being we decided to exclude this family from 

analysis. Another warning was given with the detection of a triple recombination in 5 male meioses. 

After taking a closer look to those individuals it was evident that a genotype error occurred. We decided 

to blank the specific genotypes in all members of the pedigree. An example of how to detect genotype 
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errors using crossover events is depicted  in Figure 7.1

At  the  end,  28  CEPH  families  were  included  in  the  analysis  including  the  families: 

13291-13294, 1331-1334, 1340, 1341, 1344, 1346, 1347, 1349, 1350, 1362, 1375, 1377, 1413, 1416,  

1418, 1420, 1421, 1423, 1424, 12, 104 and 884. The characteristics of these families are summarized in 

Table 7.1.

28 CEPH families n
Individuals 413
Founders 112
Nonfounders 301
Females 202
Males 211
Pedigree size 13-21
Generations 3

   
                                       Table 7.1 illustrates the characteristics  of the 28 CEPH 
                                          families used to estimate the genetic maps of PAR1 and PAR2.  
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Figure 7.1 illustrates how genotyping errors can be detected based on multiple recombination events. Because genotyping  
errors may lead apparent double recombinants within a short distance, it can significantly affect the overall recombination  
counts.  Individual  6 has 3 recombinations events between markers DXYS14-GATA151F04,  GATA151F04-DXYS20 and  
DXYS78-DXYS60. Because the second crossover event occurred in a very close locus from the first event, it has a high 
probability to be a genotype error. Having a close look to marker GATA151F04 one can see that for this marker individual  
6 has genotype 3/3. The allele 3 (in dark green) is coming from the mother and it is were the crossover occurred. This allele  
3 in the mother is likely to be correct because is present in 5 other siblings. So, the error should have occurred in individual  
6 which inherited more likely the allele 2 from the mother instead of allele 3. This kind of errors are often in the databases  
when the difference between the real and assigned allele is only 1 or 2 bp. An analogous situation may have occurred in in-
dividual 8. In this situation the best solution would be to regenotype those individuals for the locus GATA151F04. For the  
time being genotypes of individuals 6 and 8 are changed to missing for locus GATA151F04. Using this technique now indi-
viduals 6 and 8 show a single recombination event, which would not give rise to objections.
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7.2 Genetic  markers

All loci included to estimate the genetic map of PAR1 are listed in Table 7.2. These include the 

gene  for  the  granulocyte-macrophage  colony-simulating  factor,  CSF2RA,  as  well  as  other  16  mi-

crosatellite (STR)  markers and 5 SNPs. Table 7.3 lists the genetic markers used to estimate the genetic 

map of PAR2. These include 3 SNPs and 3 STR markers, locus DXYS225 is closely linked to the 

SYBL1 gene and locus DXYS227 is very near to the IL9R gene. Heterozygosity percentages have been 

calculated from the genotypes of unrelated individuals from the 28 CEPH pedigrees (n=112).  Probes 

from PAR1: TSC0240426 ,TSC0240423 and  TSC0551442  and probes from PAR2: TSC0268423 and 

TSC0897419 were obtained from Tara Matise of the Rutgers University, Department of Genetics. The 

rest of the probes are publicly available from the CEPH database under www.cephb.fr.

A concerted effort was made to ensure the uniqueness of the markers in both sets. A comparison 

of marker name aliases and primer sequences were used to identify markers that were represented in 

data set more than once. Whenever possible, multiple lines of evidence, including comparison of physi-

cal positions, were sought to confirm an identified redundancy. These redundancies included only two 

markers that were identified by alias name. For this duplicated marker the one with the higher call rate 

was included in the analysis. One marker, DXYS20, matched more than 2 positions on contig(s) by e-

PCR. The option Build from CRI-MAP was used to identify the most likely location. With this option 

the marker is placed in each possible interval between two flanking markers in the map. The resulting 

orders are then tested for compatibility with the database. Each order not excluded is subjected to a full 

maximum likelihood estimation.  The order having the highest log10 likelihood is found, any order 

whose log10 likelihood is less than this one by more than a specified tolerance is eliminated. Using this 

method DXYS20 was placed between GATA151F04 and DXYS78 supporting the location given by 

Henke et al. (1993). At the end  a set of 22 and 6 loci that, to the best of our knowledge, represent 

nonredundant  loci  within  PAR1 and PAR2,  respectively,  where used to  estimate  a  genetic  map in 

PARs.
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        Table 7.2 Genetic markers included in the analysis to estimate the genetic map for PAR1.

       Table 7.3 Genetic markers included in the analysis to estimate the genetic map for PAR2.
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Locus Probe Enzyme Heterozygosity (%) location (bp)
DXYS14 CEB12 PvuII       4 79.8 364 (175/189) 4471
GATA151F04 GATA151F04B pcr 10 63.6 105 (59/46) 35327
DXYS20 3cos-PP TaqI        8 91.4 333 (182/151) 104476
DXYS78 cMS600 TaqI        4 98.4 395 (199/196) 173624
DXYS60 U7A EcoRI       2 50.5 199 (69/130) 354978
DXYS87 P99 TaqI        3 60.8 267 (148/119) 456112
DXYS161 B6-Pol TaqI        4 66.7 275 (130/145) 473000
D0S17712 UT708 pcr(n)      4 72.1 84 (32/52) 482571
DXYS28 pDP411a TaqI        4 50.8 213 (106/107) 518276
DXYS162 AK1 TaqI        8 91.8 376 (180/196) 585000
GATA42G01 GATA42G01 pcr         5 67.5 132 (51/81) 635103
DXYS15 113D TaqI        7 73.0 181 (85/96) 706747
DXYS233 AFMa284xc9 (AC)n       11 85.2 274 (150/124) 818694
DXS9900 GGAT3F08 pcr         5 69.2 114 (54/60) 1306914
CSF2RA CSF2RA TaqI        8 83.5 361 (180/181) 1389274
DXYS234 AFM273xb9 (AC)n       8 67.5 129 (50/79) 1627916
DXYS89 MS639 HinfI       4 50.1 203 (100/103) 1889000
rs2267 WIAF-2278 SNP         2 30.2 64 (38/26) 1895021
rs924904 TSC0240426 SNP 2 41.9 178 (64/114) 2578904
rs310136 TSC0240423 SNP 2 14.7 53 (22/31) 2621451
rs311071 TSC0551442 SNP 2 41.0 161 (71/90) 2642822
rs3671 WIAF-2434 SNP         2 17.2 47 (34/13) 2743668

No. of 
Alleles

No. of 
informative 

meioses 
(female/male) 

Locus Probe Enzyme location (bp) 
rs802488 TSC0440751 SNP 2 35.0 132 (45/87) 154698840
DXYS154 SDF1 pcr 8 76.3 118 (59/59) 154731517
DXYS225 LH1 pcr 2 51.7 28 (14/14) 154780869
DXYS227 LH2 pcr 4 69.0 22 (8/14) 154826627
rs963311 TSC0268423 SNP 2 49.0 258 (115/143) 154904883
rs188305 TSC0897419 SNP 2 48.0 245 (110/135) 154959677

No. of 
Alleles

Heterozygosity 
(%)

No. of 
informative 

meiosis 
(female/male) 



The physical position of the markers employed in each interval are represented in Figure 7.4. To 

improve the accuracy of the maps, the genomic sequence position of all genetic markers and hence the 

order of the loci were identified. Current sequence positions for 28 markers were readily identified from 

the Ensembl Genome browser  (www.ensembl.org), the National Center for Biotechnology  Informa-

tion (NCBI) (www.ncbi.nlm.nih.gov) or/and from the dbSNP database (www.ncbi.nlm.nih.gov/SNP). 

At the end of PAR1 and thus effectively at the PAB, sex as a phenotypic marker was added to represent 

the SRY (sex determiner) gene. For this marker females were denoted as homozygous with alleles 1/1 

and males as heterozygous with alleles 1/2.

                           Figure 7.4 illustrates the position and density of  markers used to construct  
                               the genetic map in PAR1 and PAR2. Note that the graphs do not use the

                  same scale

7.3 Estimation of the genetic map for PAR1 and PAR2

Phenotypes at pseudoautosomal marker loci follow the same inheritance pattern as autosomal 

loci, becoming progressively more sex-linked as they become proximal to the pseudoautosomal bound-

ary (PAB). Therefore genetic distances can be estimated with standard techniques and computer pro-

gram for linkage analysis. Recombination rates are to be estimated for both sexes separately, since there 

is a marked difference in recombination frequency between males and females. SRY (sex) is included 

in the analysis as an additional two-alllelic  marker in PAR1, homozygous for all females (XX) and het-
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erozygous for males (XY). To establish the genetic maps the software CRI-MAP v2.4 which  allows 

rapid, largely automated construction of multilocus linkage maps was used (Lander and Green 1987). 

CRI-MAP deduces missing genotypes where possible, and computes a likelihood based only on analy-

sis of the known or deduced genotypes. The estimates of recombination fractions are based on the Lan-

der-Green algorithm (chapter 3). Once the recombination fractions were estimated, to convert them into 

cM the identity function was applied. The identity function (1% recombination rate correspond to 1 

cM) has been suggested to be the most suitable mapping function for the PARs (Flaquer et al. 2008).  

The multilocus genetic map was estimated using a total of 23 genetic markers (including the 

sex-marker) in PAR1 and 6 genetic markers in PAR2. For each region 28 CEPH families were ana-

lyzed. In determining the haplotypes of 245 offspring, 112 crossover events in male meioses were ob-

served and 12 crossover events in female meioses. A double recombination event in a male meiosis 

took place in family 13294 for individual 5. This double event was analyzed cautiously for a potential 

genotype error. It was decided to accept  it after finding out that this event could be a replication from 

the double event found by Rappold et al. (1994) in the same individual. It was considered a replication 

after determining that the genotypes came from different labs and were genotyped by different methods.

The resulting genetic maps, for PAR1 and PAR2, are illustrated in Figure 7.3. Black dots repre-

sent the estimated genetic map for males, and gray dots for females. A high rate of recombination in fe-

male meioses is seen only at the Xp telomere within the first 100 kb. Within this telomeric region no 

difference in male and female recombination rates are observed, resulting in similar genetic distances 

for both sexes. After 100 kb, genetic distances are becoming increasingly different between males and 

females as they approach the PAB1. The estimated length of PAR1 is 55 cM for males and 6 cM for fe-

males. On the other hand, PAR2 does not seem to be significantly different in terms of recombination 

events between males and females, resulting in similar genetic maps. We detected one recombination 

event in male meioses and none in female meioses. These numbers are in the range suggested by Freije 

et al. (1994). 
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        Figure 7.3 illustrates the positions of the estimated genetic map (cM) in relation to the positions of         
        the physical map (bp) of PAR1 and PAR2. Black lines represent the male map and the gray lines
        the female map.
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The resulting genetic length for PAR1 was compared with the genetic lengths provided by each of the 

previously published maps. We also compared the genetic length in three subintervals of PAR1, close 

to  the  telomere  (~0.9-580  kb),  in  the  middle  of  PAR1  (~580-1628  kb)  and  close  to  the  PAB1 

(~1628-2750 kb). Pairwise Z-tests (two-tailed) were used to statistically establish differences in recom-

bination rates. P-values from the Z-tests after Bonferroni correction are illustrated in Table 7.4. When 

comparing the entire genetic length of PAR1 in males, large significant differences were detected with 

respect to the genetic lengths suggested by Schmitt and Rutgers (PSchmitt=2.6×10-6,  PRutgers=4.9×10-11). 

The  significant  difference  shown  in  the  genetic  length  suggested  by  Henke  is  at  border  line 

(PHenke=0.04686). The genetic lengths proposed by Rouyer and by Lien did not show statistical differ-

ences with respect to the new genetic length although the Lien's map displayed a significant shorter ge-

netic length close to the telomere and close to the PAB1 (PLien=3.6×10-6,  PLien=0.00460, respectively). 

When comparing the genetic length in females the Rutgers' map was the only one to show a slightly 

shorter length (PRutgers=0.04942).

The map obtained for PAR2 was not statistically compared with the other maps since only one recom-

bination event was detected in male meiosis. This is in the same range as in the already published maps 

for PAR2.   

Lien Rouyer Schmitt Henke Rutgers

Length 
(~kb)

θnew θ P-value θ P-
value

θ P-
value

θ P-
value

θ P-
value

M
al

es
   

   
   

   
   

 0.9-2750
(entire PAR1)

0.55 0.54 0.39621 0.49 0.15836 0.37 2.6x10-6 0.48 0.04686 0.26 4.9x10-11

0.9-580 0.17 0.07 3.6x10-6 0.11 0.30521 n.c. - 0.11 0.08592 n.c. -

580-1628 0.16 0.33 1.00000 0.22 1.00000 0.21 1.00000 0.21 1.00000 0.09 0.04332

1628-2750 0.22 0.14 0.00460 0.16 0.37488 0.16 0.05515 0.16 0.18004 0.17 0.19864

Fe
m

al
es

   
   

   0.9-2750
(entire PAR1)

0.06 n.a. - 0.06 0.50000 n.a. - 0.04 0.17308 0.03 0.04942

0.9-585 0.03 n.a. - 0.00 0.15139 n.a. - 0.01 0.31923 n.c. -

585-1628 0.00 n.a. - 0.02 1.00000 n.a. - 0.02 1.00000 0.00 1.00000

1628-2750 0.03 n.a. - 0.04 1.00000 n.a. - 0.01 0.22349 0.03 1.00000

Table 7.4 Comparison of recombination fractions between our new map and each of the published maps for PAR1. 

Θnew: refers to the recombination fraction estimated in this work.
n.c.: not covered (genetic markers in this interval were not used).
n.a.: not available (map estimates based on sperm cells are only available for males).
P-values from Z-test (two-tailed) after Bonferroni correction for multiple testing. Hypothesis test for differences between 
two proportions (H0: θnew = θ vs H1: θnew ≠ θ ) .
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The relation between the genetic and physical map of the male and female X chromosomes inferred 

from this study is represented in figure 4. The X-specific data is from the study, “A second-generation 

combined linkage-physical map of the human genome” (Matise el al. 2007).

                       Figure 7.4 represents the relation between the genetic and physical map 
                        of the human X chromosome. The X-specific data is from the Kong et al (2004).
                        PAR1 and PAR2 are based on the estimated genetic map of this work. 

The human X chromosome exhibits  some peculiarities  compared to  the autosomal  chromo-

somes since females have two X chromosomes and males only one. Figure 7.4 represents the relation 

between the genetic and physical map of the human X chromosome based on this study. The genetic 

map of the male X chromosome can be only considered where recombination occur.  The  genetic 

length of the male X chromosome is very short because it can only recombine with the Y chromosomes 

in the PARs. the genetic map of the X chromosome in females is much longer because the two X chro-

mosomes  can recombine on their entire length and the genetic length is estimated to be about 193.3 

cM. 
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Chapter 8

SUMMARY AND CONCLUSIONS

This work is concerned with the methods of linkage and association analysis as a techniques to 

map genes for complex diseases. The main intention is how suitable are these methods when a disease 

susceptibility gene is located in the pseudoautosomal regions (PARs) of the sex chromosomes. 

In chapter 6 the two pseudoautosomal regions are presented in detail. The fact that in humans 

exist two different sex chromosomes, females have two X chromosomes and males have one X and one 

Y chromosome, incite to some special peculiarities that have to be carefully considered when using 

linkage and association methods. 

One of the most important features of the PARs regions is the number of crossover events dur-

ing meiosis. In female meioses, the number of crossover stands within the expected range. In male 

meioses, crossover activity increases drastically, resulting on average 7-fold higher than in females. 

These large differences in recombination  rates are translated into different  genetic map lengths for 

males and females. Because accurate and comprehensive genetic maps are crucial in multipoint linkage 

methods and they are constructed based on the number of crossovers during meiosis, it is one of the pri-

orities to use two different linkage maps, one for males and one for females, when using multipoint 

linkage methods for the PARs. 

Another peculiarity is the mode of inheritance. The segregation pattern of a disease susceptibili-

ty gene for a certain disease on the PARs depends on their location relative to the pseudoautosomal 

boundary (PAB). When a father carries a disease susceptibility gene located close to PAB and on his Y 

chromosome, only male offspring will be affected by the disease. If  the disease-causing gene is close to 

PAB but on his X chromosome, only female offspring will be affected by the disease. In case that the 

disease susceptibility gene is close to the telomere it will follow the same pattern of transmission like 

any autosomal dominant disease, where any offspring, male or female, get the same chance of being af-

fected. This feature should be taken into account specially in those methods based on allelic sharing, 

because the expected number of alleles shared IBD in PARs between an affected pair will depend on 

the sex of the pair. 

Another property of the PARs is that due to the high recombination rate in males in this regions 

the LD is much lower than in autosomal regions of the same physical size. So, when testing for associa-
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tion a larger number of loci should be considered. In addition false positive could arise if a causal vari-

ant is strongly associated with one sex, and the sex distribution is different between cases and controls. 

The two PARs have drawn considerable interest from researchers in cytogenetics, cytology, evo-

lutionary biology and developmental genetics. However, theses two regions have been widely ignored 

by the two genetic mapping approaches, linkage and association analysis methods. To date, very few 

analytical methods have been adapted to deal with the peculiarities of these regions, which may have 

led researches to ignore them. At least 29 genes are known to be located in the  PARs, most of them of 

unknown function. Recent advances in large-scales LD analysis and GeneChip technologies for SNP 

genotyping have forwarded genome-wide association studies for complex diseases. However, the avail-

able GeneChips contain still a poor number of SNPs in the PARs. 

Genetic maps are crucial for the success of gene mapping projects and for several other types of 

genetic studies. The physical position - and, hence, the order - of the practically all of polymorphic 

markers can now be readily determined from the assembled sequence of the human genome, and sever-

al  large-scale  genome wide linkage maps  have been published.  Nevertheless,  the PARs have been 

largely neglected in genetic map construction. Several attempts  have been done to construct genetic 

maps for the PARs, resulting in discrepancies. Apparently these discrepancies could be due to an insuf-

ficient number of markers or meioses considered for the estimation of recombination rates. Estimated 

lengths of existing maps for PAR1  varies between 26-54 cM in males and between 2.8-6 cM in fe-

males. Accurate estimates of meiotic map distance can be obtained by linkage analysis using genotype 

data in families and a considerable number of markers to cover the desired chromosomal segment. The 

difference between male and female genetic maps, chromosomal position and population under study, 

are a challenge to genetic map construction in diploid organisms in which sex is determined by a pair of 

different sex chromosomes.

To improve linkage analysis methods for complex diseases caused by pseudoautosomal genes, 

reliable genetic maps in these regions are crucial. Genetic maps increasing in length have been ob-

served in telomeric and subtelomeric regions of different human chromosomes, reflecting a higher re-

combination rate per physical length unit in these regions. PAR1 exhibits these subtelomeric features in 

a particular way. Genetic maps in males are markedly longer than genetic maps in females, as inferred 

here from the comparison of male and female recombination events and from multipoint linkage data. 

The biological process for these differences is not yet well understood, but they exist and should be 

considered in genetic studies using sex-specific maps instead of sex-averaged maps.  The human X 
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chromosome exhibits some peculiarities compared to the autosomes chromosomes since females have 

two X chromosomes and males only one. Based on our map, it is determined how genetically different, 

in genetic size, the female X chromosome is from the male X chromosome.  The genetic map of the 

male X chromosome can be considered only where crossovers occur. The genetic length is therefore 

very short (56 cM) because the X chromosome can only recombine with the Y chromosome in the 

PARs. The genetic map of the X chromosome in females is much longer because the two X chromo-

somes can recombine on their entire length, the genetic length is estimated to be about 198 cM. For this 

reason, the human sex chromosomes cannot be treated like the autosomes when trying to map sex 

linked genes.

Comparisons between the new map and those already published for PAR1 revealed that our map 

provides statistically different estimates for genetic distances. The genetic maps proposed by Rouyer 

and by Lien were the only ones that did not display significant differences when comparing the whole 

PAR1. Nevertheless the latter  showed a significant shorter genetic length close to the telomere and 

close to the PAB1. These differences could be due to the fact that close to the Xp telomere the Lien's 

estimates are based on only 3 genetic markers while the new map estimates are based on 11 genetic 

markers. The same conclusion holds close to the PAB1, this last interval is only covered with 2 genetic 

markers in Lien's map and with 7 markers were used for the new estimates. The differences found in 

the maps suggested by Rutgers and by Schmitt could be due to the lack of genetic markers at the first 

750 kb failing to account for recombination events in this regions and resulting then in a much shorter 

genetic length. Therefore, it is concluded that the new sex-specific map presented in this work is based 

on the largest set of genetic markers in the PARs and thus represents the most accurate resource for ob-

taining genetic map information for these two regions. 

To date, one of the most accurate and widely used genetic maps for the human genome is the Rutgers' 

map v2. However, this map shows a weakness in the PARs since a low number of genetic markers was 

considered in these two regions. To the improvement of genetic mapping projects the new map for the 

PARs presented in this work will be integrate in the Rutgers' map v.2.  Although there is still a long 

way to go for understanding the exact mechanisms and the precise function(s) of the PARs, the new ge-

netic map presented here could be a first step to mapping new pseudoautosomal genes responsible for 

complex diseases. It is hoped that researches will take these two regions into proper account when per-

forming genome wide studies. So far, the PARs are effective gaps in genome wide analyses. In our 

view, in the context of such efforts, screening for pseudoautosomal linkage should not be neglected.  

105



Appendix 

• A1)  Tthe expected distribution of alleles IBD for sib pairs under H0 follows a Binomial distribution 
with probabilities z0=1/ 4, z1=1/ 2 and z 2=1/ 4 :

Two sibling share an allele IBD if there is a founder in the pedigree that has transmitted one of its two 

alleles to both sibs. Consider a pedigree with a sib pair without inbreeding loops and where all founders are un-

related. If each of the two sibs gets one allele from the father, the probability is 0.5 that these two alleles are 

IBD. Similarity, the probability is 0.5 that the two alleles inherited from the mother are IBD. Let N be the total 

number of allele shared IBD by the sibs. Then N can be viewed as the number of successes in two independent 

experiments, where success means that the parent transmits two alleles IBD to the sib pair. Since the probability 

of success is 0.5, then N~Bin(2,0.5) where:

PN=0 =1−0.52=0.25

PN=1=2
1
0.5 1−0.5=0.5

PN=2 =0.52=0.25

       

                                «»
• A2) Validation of Equation (3.13):

 p j1
L v j 1

=
[ p j

L T T  j , j1 ]v j 1
q j1v j 1

 p j
L T T  j , j1 q j1

3.12

=̇
∑
w j∈V

q j1 v j1T w j ,v j1
 j , j1 p j

L w j 

∑
w j , w j1∈V

q j1 v j1T w j , w j1
 j , j1  p j

Lw j 

=̈
∑
w j∈V

P M j1 | V j1=v j1P V j1=v j1 |V j=w j P V j=w j | M 1 , ... , M j 

∑
w j , w j1∈V

P M j1 |V j1=w j1 P V j1=w j1 |V j=w jP V j=w j | M1, ... , M j 

=
P M j1 | V j1=v j1∑

w j∈V
P V j1=v j1∩V j=w j | M 1 , ... , M j 

∑
w j1∈V

P M j1 |V j1=w j1∑
w j∈V

P V j1 | w j1∩V j=w j | M 1 , ... , M j 

¨̈=
P M j1 | V j1=v j1P V j1=v j1 | M 1 , ... , M j

∑
w j1∈V

P M j1 |V j1=w j1P V j1=w j1 | M 1 , ... , M j 

=
P M j1 |V j1 , M1, ... , M j P V j1=v j1 | M 1 , ... , M j

∑
w j1∈V

P M j1 | V j1=w j1 , M 1, ... , M jP V j1=w j1 | M 1 , ... , M j 

= P V j1=v j1 | M1 , ... , M j1
The dots over the equalities stand for : ''·'' element-wise writing of vectors; ''··'' employ definition of probabili-
ties; ''···'' use Markov property  P(Vj+1 =vj+1  | Vj=vj , M1,...,Mj) = P(Vj+1 =vj+1  | Vj=vj )  because  vj+1 depends on 
genotypes of markers 1 to j only via vj ; ''::''  P(Mj+1 | Vj+1=vj+1 ) = P(Mj+1 | Vj+1=vj+1 ,M1,...,Mj ) because Mj+1 de-
pends only on vj+1.   «»
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• A3) Validation of Equation (3.17):

P complete , j v j
=

[ p j−1
L T T  j−1, j ]v j

 p j
Rv j

 p j−1
L T T  j−1, j  p j

R 3.16

=
∑

w j−1∈V
p j

R  v j T w j−1 , v j
 j−1, j  p j−1

L w j−1

∑
w j−1 , w j∈V

p j
R w jT w j−1 , w j

 j−1, j  p j−1
L w j−1

=
∑

w j−1∈V
P V j=v j | M j , ... , M kP V j=v j | V j−1=w j−1PV j−1=w j−1 | M1 , ... , M j−1

∑
w j−1 , w j∈V

P V j=w j | M j , ... , M k P V j=w j |V j−1=w j−1 P V j−1=w j−1 | M 1 , ... , M j−1

=

P V j=v j | M j , ... , M k ∑
w j−1∈V

P V j=v j∩V j−1=w j−1| M 1 , ... , M j−1

∑
w j∈V

P V j=w j | M j , ... , M k ∑
w j−1∈V

P V j=w j∩V j−1=w j−1 | M 1 , ... , M j−1 

=
P V j=v j | M j , ... , M kP V j=v j | M 1 , ... , M j−1 

∑
w j∈V

P V j=w j | M j , ... , M kP V j=w j | M 1 , ... , M j−1

=

P M j , ... , M k |V j=v jP V j=v j 
P M j , ... , M k 

P V j=v j | M1 , ... , M j−1

∑
w j∈V

P M j , ... , M k |V j=w j P V j=w j 
P M j , ... , M k

P V j=w j | M 1 , ... , M j−1

=
P M j , ... , M k |V j=v j , M 1 , ... , M j−1PV j=v j | M 1 , ... , M j−1 

∑
w j∈V

P M j , ... , M k |V j=w j , M 1 , ... , M j−1P V j=w j | M1 , ... , M j−1

= P V j=v j | M 1 , ... , M k

Using  that  P(Vj=vj  |  Vj-1=vj-1)=P(Vj=vj |  Vj-1=vj-1,M1,...,Mj-1)  as  well  as  P(Mj,...,Mk  |  Vj=vj  )  =P(Mj,...,Mk  |  

Vj,M1,...,Mj-1). Further more, P(Vj=vj) is the a priori probability for inheritance vector vj at marker j and given by 

1/2m for all inheritance vectors. «»

• A4) Validation of Equation (3.19) 

P complete , j =
1T Q1 T 1,2Q2 ...T  j−1, j °Q j T  j , j1 ... Q k−1 T k−1, kQ k 1

1T Q1 T 1,2Q2 ...T  j−1, j Q j T  j , j1 ... Q k−1 T k−1, k Q k 1
3.18

For proving the equality, let's first consider the denominator:
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1T Q1 T 1,2Q2 ... T  j−1, j Q j T  j , j1 ... Q k−1 T k−1, kQ k 1

= ∑
v1 , ... v k∈V

q k vk T vk− 1 ,v k
k−1, k qk−1 v k−1 · ...· q2 v 2T v 1 ,v 2

1,2 q1 v1

= ∑
v1 , ... v k∈V

P M k∣V k=v kP V k=v k∣V k−1=v k−1P M k−1∣V k−1=v k−1 · ... ·

· ... ·P M 2∣V 2=v 2PV 2=v2∣V 1=v1 P M1∣V 1=v1
= ∑

v1 , ... v k∈V
P M k∣V k=v kP M k−1∣V k−1=vk−1 · ...· P M 2∣V 2=v2 P M 1∣V 1=v1 ·

P V k=v k∣V k−1=v k−1 · ...· P V 2 d=v 2∣V 1=v1
=̇ ∑

v1 , ... v k∈V
P M k∣M1 , ... M k−1 ,V 1=v 1 , ... ,V k=v k · P M k−1∣M1 , ... M k−2 , V 1=v1 , ... ,V k=vk 

· ...· P M 2∣M1, V 1=v1 , ... ,V k=vk  · P M 1∣V 1=v 1 , ... ,V k=v k ·
P V k=v k∣V 1=v1 , ... ,V k−1=vk−1P V k−1=v k−1∣V 1=v1 , ... ,V k−2=v k−2 

· ...· P V 3=v 3∣V 1=v1 ,V 2=v 2P V 2=v 2∣V 1=v 1P V 1=v1 
1

P V 1=v1 
= ∑

v1 , ... v k∈V
P M 1 , ... , M k∣V 1=v1 , ... ,V k=vk P V 1=v1 , ... , V k=vk 2

m

= ∑
v1 , ... v k∈V

P M 1 , ... , M k∩V 1=v1 , ... ,V k=vk 2
m

=2m P M 1 , ... , M k=2m L all Markers

The equality ''·'' holds because of a conditional independence argument: the marker data Mj depends on geno-

types and inheritance vectors at other markers only via vj so that P(Mj  |Vj)=P(Mj |M1,...,Mk V1,..,Vk). In this step, 

the Markov property is used P(Vj =vj | Vj-1=vj-1) = P(Vj =vj | V1=v1 ,...,Vj-1=vj-1). The numerator is identical to the 

denominator except for the sum over vj from marker j:

[1T Q1 T 1,2Q 2 ... T  j−1, j ]v j
[Q j T  j , j1 ... Q k−1 T k−1, k Q k 1]v j

= ∑
v1 , ... , v j−1 , v j , ... ,v k∈V

P M 1 , ... , M k∩V 1=v1 , ... ,V k=vk 2
m

= 2m P M 1 , ... , M k∩V j=v j  = 2m Lall Markersv j 

Finally one obtains,

[P complete , j ]v j
=

[1T Q1 T 1,2Q 2 ... T  j−1, j ]v j
[Q j T  j , j1 ... Q k−1 T k−1, k Q k 1]v j

1T Q1 T 1,2Q2 ... T  j−1, j Q j T  j , j1 ... Q k−1 T k−1, kQ k 1

=
2m L all markersv j 

2m L all markers

= Lrel , all markers v j 

=
2m P M 1 , ... , M k∩V j=v j 

2m P M 1 , ... , M k 
= P V j=v j∣M 1 , ... , M k  << >>
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• A5) Validation of Equation (3.24) 

S  x ,d=
L  x 

L x unlinked
= LR  x  3.24

S  x ,d=∑
w∈V

LR wP v  x =w=
∑
w∈V

P d∣wP V  x =w

∑
w∈V

P d∣wP priori w
=

∑
w∈V

P d∣wP w∣M 1 , ... , M k , x 

∑
w∈V

Pd∣wP w∣M 1 , ... , M k , x unlinked 

=̇
P d∣M1 , ... , M k , x 

P d∣M 1 , ... , M k , x unlinked 
=

P d∩M 1 , ... , M k∣x 
P d∩M1 , ... , M k∣x unlinked 

·
P M 1 , ... , M k∣x unlinked 

P M 1 , ... , M k∣x 

=
P d∩M1 , ... , M k∣x 

P  d∩M 1 , ... , M k∣x unlinked 
= L  x 

L  x unlinked 
= LR  x 

In  the  first  equality  of  the  second  line  ''·''  considers  that  one  can  replace  the  probability P d∣w  by 

P d∣w , M1 , ... , M k , x and/or P d∣w , M1 , ... , M k , x unlinked  . The reason for this is that the disease phenotypes 

depend only on the inheritance vector of the concerned disease locus. Further, in the last steps the probability of 

the marker genotypes does not depend on the putative position x of the disease locus.  <<>>
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