
Non-Loal Correlations within Dynamial Mean Field Theory
DissertationzurErlangung des Doktorgrades (Dr. rer. nat.)derMathematish-Naturwissenshaftlihen FakultaetderRheinishen Friedrih-Wilhelms-Universität Bonn
vorgelegt vonLi, GangausLiaoning, P.R. ChinaBonn (Otober, 2008)



Diese Dissertation ist auf dem Hohshulshriftenserver der ULB Bonn unterhttp://hss.ulb.uni-bonn.de/diss_online elektronish publiziert
Tag der Promotion: 20. February 2009Ersheinungsjahr 2009
Angefertigt mit Genehmigung der Mathematish-Naturwissenshaftlihen Fakultät derRheinishen Friedrih-Wilhelms-Universität BonnReferent: Prof. Dr. Hartmut MonienKorreferent: Prof. Dr. Rainald Flume



Contents

Contents i

1 Introduction 1

1.1 Hubbard Model: Atomic limit . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Total particle density . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Local moment and total energy . . . . . . . . . . . . . . . . . . . . . 5
1.4 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Dynamical Mean Field Theory and Its Cluster extensions 9

2.1 DMFT equation - Cavity Method . . . . . . . . . . . . . . . . . . . . 10
2.2 Implementations of DMFT . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Quantum Cluster Methods . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 General formulism . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Cellular DMFT and DCA . . . . . . . . . . . . . . . . . . . . 21

3 Continuous-Time Quantum Monte Carlo Methods 25

3.1 General concepts of ct-qmc . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Weak-coupling expansion-Rubtsov method . . . . . . . . . . . . . . . 27

3.2.1 General formulas . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Quantum random walk . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Strong-coupling expansion-Werner method . . . . . . . . . . . . . . . 32
3.3.1 General Formalism . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Multi-Band Implementation . . . . . . . . . . . . . . . . . . . 34
3.3.3 Multi-Site Implementation . . . . . . . . . . . . . . . . . . . . 40

4 Dual fermion approach – long range correlation 47

4.1 Decoupling and dual fermion . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Perturbation theory of dual fermion Green’s function . . . . . . . . . 51

4.2.1 One particle properties . . . . . . . . . . . . . . . . . . . . . . 53
4.3 Calculating susceptibility within dual approach . . . . . . . . . . . . 56

4.3.1 Lattice susceptibility in the DF method . . . . . . . . . . . . . 59
4.3.2 Lattice susceptibility in DΓA . . . . . . . . . . . . . . . . . . 63
4.3.3 Away half filling . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Hubbard Model on the Triangular and Bilayer lattice 71

5.1 Triangular lattice – Frustration effect . . . . . . . . . . . . . . . . . . 71
5.1.1 Metal-Insulator Transition . . . . . . . . . . . . . . . . . . . . 73

i



CONTENTS ii

5.1.2 Magnetic Properties . . . . . . . . . . . . . . . . . . . . . . . 77
5.2 Bilayer Hubbard Model – Band to Mott Insulator transition . . . . . 80

5.2.1 Bilayer Bethe lattice – low temperature investigation . . . . . 81
5.2.2 Bilayer square lattice – CDMFT investigation . . . . . . . . . 83

6 Summary 87

A Fast Update Algorithm for CT-QMC 89

B Direct CT-QMC measurement in frequency space 95

List of Figures 97

References 101

Acknowledgments 105



Chapter 1

Introduction

To understand the properties of many-body interacting systems is one of the fun-
damental problems in condensed matter physics. Many solids are well explained by
either the tight-binding theories or the mean field (especially the time-independent)
treatment of the Coulomb interaction between electrons. These weak-coupling meth-
ods have been proven to satisfactorily describe the material properties when the
electron-electron interaction is not strong. Various band structure theories, for ex-
ample the density functional theory (DFT), especially the local density approxima-
tion (LDA), can make precise predictions for many materials with only demanding
of crystal structure parameters. The energy band theory identifies the metal and
insulator in terms of the filled or partially filled energy band which always character-
izes the system as metal when it is half filled. The discovery of the transition-metal
oxides like V2O3 [Rice and McWhan (1970)] shows the transition between metal and
insulator which is not expected from the band theory. Mott pointed out that this is
due to the electron-electron interaction which could make a crystal insulating even
if the energy band is half filled [Mott (1968)]. The strongly interacting nature of
some materials can generate complicated phases, like this “unusual1” metal insulator
transition, superconducting and magnetically ordered state, localization. More and
more theoretical methods try to go beyond the band theory to explicitly include the
interaction effect between electrons. Based on the Hubbard model which explicitly
includes the interaction effect between the two electrons which stay on the same
crystal site2, a lot theoretical and numerical methods are developed to understand
the competition between the itinerant nature of the electrons and the Coulomb in-
teraction effect. Weakly correlated systems can be described by the mean field or
the perturbative method, like various diagram expansion methods. The strongly
interacting system can be described by mapping the Hubbard model to the effective
t−J model or performing the atomic expansion. While the intermediate interaction
region is difficult to access by these methods.

To seriously understand the metal-insulator transition induced by the Coulomb
effect between electrons, we need a non-perturbative method with respect to the elec-
tron interaction. In this sense, Dynamical Mean-Field Theory (DMFT) [Georges et al.

1Now it is called the Mott insulator which is caused by the strong electron interaction.
2This is simplest Hubbard model which only considers the on-site Coulomb interaction. The

more general description of the Hubbard model is given in the reference. [Hubbard (1963)]

1



1. Introduction 2

(1996)] is a reliable method for describing the electronic correlations. It correctly
yields a weakly correlated metal, a strongly correlated metal, or a Mott insulator.
DMFT is exact in the infinite dimension (or coordination number) limit by mapping
an interacting electron system to an impurity embedded in the non-interacting bath.
The thermal fluctuation is treated exactly while the spatial fluctuation is taken in a
mean field level. The combination of LDA and DMFT has been successfully applied
to the band structure calculation to understand the strongly correlated materials.

The major flaw of DMFT is the neglect of the spacial fluctuation. To go beyond
the local approximation of DMFT, some cluster extentions of DMFT have been
proposed, for a review see [Maier et al. (2005)]. The demand of computational
resources for accessing the larger system becomes heavy with the increase of system
size. The long-range correlation therefore is hard to consider. In this thesis, we are
going to introduce a more easy and reliable method which can take the short and
long range correlation on a equal footing with less computational burden.

Outline

The main topic of this thesis is the determination of the non-local corrections to
DMFT. This thesis is organized in the following way:

In Chapter 1 we offer an very simple introduction of the Hubbard model focusing
on the conceptual explanation of the Metal-Insulator transition. The atomic Hub-
bard model was solved exactly with the help of the partition function, some useful
matrix notations were introduced as a preparation for later use.

Chapter 2 gives a detailed derivation of the single site and cluster DMFT equa-
tions. The cavity construction and the locator expansion methods are adopted,
which are basically similar to each other. The approximation introduced in DMFT
is analyzed. Both C-DMFT and DCA are then formulated in real space in order to
show the comparison between them. The DCA equations can be tranformed to the
widely used form by diagonalizing the one particle matrix. One simple but useful
example is given for both the C-DMFT and DCA to show their difference.

In Chapter 3 two variants of the continuous-time Quantum Monte Carlo method
(CTQMC) are described in detail. The general formulism is presented before going
into the details of the weak and strong-coupling CTQMC. These methods are pow-
erful finite temperature solvers of the DMFT equations. The low temperature and
strong interaction regime can be accessed by these methods relatively easily com-
pared to the other methods, for example the Hirsch Fye method. The performance
of these methods were discussed in a two-layer Hubbard model example.

The extensions of DMFT to include the long range correlation effect are given
in Chapter 4, including the dual fermion (DF) method and the dynamical vertex
approximation (DΓA). They base on the lowest order vertex correction to the DMFT,
where we only consider the vertex from the two-particle scattering process. The
single and two particle properties are studied, the comparison to the larger cluster
DMFT results shows the good performance of these methods. The less demand on
the computational resources and the ability to access the long range correlation are
the major advantages of these methods compared to the general cluster extensions
of DMFT. The DF method has a better convergence and effectively weak-coupling



3 1.1. Hubbard Model: Atomic limit

nature compared to DΓA, which indicates the better convergence and effectively
weak-coupling nature of this method.

In the last chapter, the frustration effect on the Metal-Insulator transition is
studied in a triangular system. The first order metal to insulator transition is
identified by the jump of the double occupancy. The non-local correlations seriously
reduce the critical interaction in the triangular system where one might think the
single site DMFT would be sufficient for describing this frustrated system. The
competition between different magnetic orders in the insulating phase is observed.
There is a (π, π) anti-ferromagnetic insulator to 120-degree state transition at larger
frustration regime. The bilayer Hubbard model was also studied as an toy model
of the High-Tc superconductor. The low temperature phase diagram was given for
both the single site DMFT and C-DMFT calculations focusing on the paramagnetic
metal to paramagnetic insulator transition.

1.1 Hubbard Model: Atomic limit

Being an exactly solvable model, the atomic Hubbard model contains some basic
properties of strongly corrected electron systems. There is no electron hopping term
in this model. To solve more complicated models, one needs to rely on analytical
approximation or numerical methods. Due to the absence of the electron movement,
the atomic Hubbard model is completely controlled by Coulomb interaction effect.
It provides us a very simple way to understand the interaction-driven metal insulator
transition. In this section, we will show some basic notations and results for the
atomic Hubbard model, including the total particle density, double occupancy, total
energy and the one particle Green’s function. Let us start from the discussion of
the partition function of this model.

The Hilbert space in this case has dimension four, with the basis |0 >, | ↑>, | ↓>
, | ↑↓> which correspond to no particle, one spin-up, one spin-down and doubly
occupied states. The Hamiltonian of the atomic Hubbard model has no kinetic
term which can be written as:

H = Un↑n↓ − µ(n↑ + n↓) (1.1)

The above particle number basis is also the eigenbasis of the atomic Hubbard model
with the eigenvalues 0,−µ,−µ,−2µ+ U . Then the partition function is given as

Z = Tre−βH = 1 + 2eβµ + e−β(U−2µ). (1.2)

In principle, once the partition function is known to us, we can determine every
property, for example the one particle Greeen’s function, the density of state, etc.
from it.

1.2 Total particle density

The total particle density is defined as 〈n〉 = 〈n↑ + n↓〉 = 〈n↑〉 + 〈n↓〉. To make our
derivation easily understood and also do some preparations for later use, we write
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down the creation and elimination operator in the above particle number basis as

c†↑ =







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0






, c†↓ =







0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0







(1.3)

With the help of the above definition, we can explicitly evaluate the trace in the
thermal average.

〈n↑〉 =
1

Z Tr[e
−βHc†c]

=
1

Z Tr







1 0 0 0
0 eβµ 0 0
0 0 eβµ 0
0 0 0 e−β(U−2µ)







×







0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1







=
(eβµ + e2βµ−βU )

1 + 2eβµ + e2βµ−βU

(1.4)

It is easy to prove that the spin down particle density has exactly the same form.
Then the total particle density is

〈n〉 = 〈n↑〉 + 〈n↓〉 =
2(eβµ + e2βµ−βU )

1 + 2eβµ + e2βµ−βU
. (1.5)

Note that in the atomic Hubbard model we do not have any hopping term, all
the interesting physics is directly introduced by the Coulomb interaction. A very
important phenomenon of this kind of interaction is the so-called Mott transition.
It is different from the transition between metal and band insulator which is caused
by the different filling of particles. This kind of transition can not be explained by
the traditional band theory. It is one of the typical phenomenon in the strongly
correlated electron systems. It is also the central topic of this thesis which will be
discussed in more detail later. Based on the atomic Hubbard model, we want to
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Figure 1.2: Local moment as a function of temperature T and interaction U . At
strong-coupling and low temperature region, the local moment forms and takes the
value of 1.

look for insights into this kind of transition. In Fig. 1.1, we calculate the average
particle number as a function of chemical potential at U/t = 4.0. In this diagram,
one can see clearly that the transition from metal to insulator appears with the
decrease of the temperature. With the lowering of temperature, the particle density
curve shows a platform at 〈n〉 ≈ 1. In this case in order to increase the particle
density, more energy is needed to overcome the energy gap. In Fig. 1.1, T = 2.0 case
corresponds to metal. When T decreases to 0.25, the energy gap forms completely.

1.3 Local moment and total energy

Another important indicator of Mott type metal insulator transition is the formation
of the local moment. The local moment is definition as < m2 >=< (n↑−n↓)

2 >. In
the classical limit, the local moment takes the value of zero for the states |0 > and
| ↑↓>, but takes the value of 1 for | ↑> and | ↓>. When the spin-up and spin-down
particles have different filling density, the local moment has a non-zero value, which
means the net spin is non-zero. The system is in a magnetic state. Therefore the
local moment can be viewed as magnetic order parameter.

〈m2〉 = 〈(n↑ − n↓)
2〉 = 〈n〉 − 2〈n↑n↓〉 =

2eβµ

1 + 2eβµ + e2βµ−βU
(1.6)

Fig. 1.2 shows the local moment as a function of temperature and interaction
respectively. From this diagram, we can see that at low temperature and strong
interaction region, the local moment forms which takes the value of 1. The system
only has two possible occupied states | ↑> and | ↓>. No empty and doubly occupied
state exist. But at weak-coupling and high temperature regime, all the four basis
states have the same probability to be occupied. Therefore, the local moment takes
the value of 0.53. In this case, the system is totally disordered. In the lower temper-
ature and strong interaction regime, there is an energy gap caused by the Coulomb

3In this single site Hubbard model, the Hilbert space has four basis states, any state has a
probability of 0.25 to be occupied in this case.
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interaction. It requires amount of energy to make two particles stay on the same
site. Therefore, only a singly occupied state exists in this case, where we observed
the formation of local moment. At half filling case, each crystal site is occupied by
one electron which is forbidden to move freely by the interaction between electrons.
The system is in the insulating phase.

The total energy is another useful observable to characterize the metal-insulator
transition. It contains two parts, the kinetic energy and potential energy. Since we
are considering the atomic Hubbard model which does not have the hopping terms,
the total energy equals the potential energy.

E = 〈H + µn〉 =
Ue2βµ−βU

1 + 2eβµ + e2βµ−βU
(1.7)

As shown in figure 1.3, we can see the total energy becomes zero from a finite
value with the decrease of temperature. Since the total energy is just the potential
energy which is always positive in this model, the zero value of total energy in the low
termperature regime indicateds the doubly occupied state is completely suppressed.
At half filling average particle density is one. Each site is averagely occupied by
one particle, the absence of the doubly occupied state means the particle can not
move freely. Therefore the system is an insulator. In contrast, at high temperature
regime, the total energy tends to be constant with the increase of temperature. And
this value is proportional to the interaction strength U . As we know that each of
the four states has the same probability to be occupied which is 0.25 at the high
temperature regime. This disordered state does not change with a further increase
of the temperature. This effect is clearly seen from Fig. 1.3.

1.4 Green’s function

In the previous section, the Mott transition based on the Hubbard model has been
shown from the jump of chemical potential, the formation of local moment and the
change of total energy. In this section, we want to study this phenomenon with
the help of the Green function. The imaginary part of the one particle Green’s
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function has a close relation with the density of states, which will directly show us
the formation of the energy gap in the insulating state.

The Green’s function can be determined by two ways. One way uses the partition
function method to evaluate the thermal average in the Green’s function definition.
The other way is the equation of motion method. Here, we adopt the first one.
Firstly, let us introduce the definition of the Green function in imaginary time
space:

Gσ(τ − τ ′) = − < Tτcσ(τ)c†σ(τ ′) > (1.8)

here, Tτ is time ordering operator and the creation/annihilation operator is defined
in the Heisenberg picture.

c†(τ)/c(τ) = eHτ c†/ce−Hτ (1.9)

The definition of the Green’s function breaks into two parts with respect to the time
ordering operator.

Gσ(τ − τ ′) =

{
−cσ(τ)c†σ(τ ′) if τ > τ ′

c†σ(τ ′)cσ(τ) if τ ′ > τ
(1.10)

It can be written in another form,

Gσ(τ − τ ′) = θ(τ − τ ′) < cσ(τ)c†σ(τ ′) > −θ(τ ′ − τ) < c†σ(τ ′)cσ(τ) > (1.11)

In fact, the absolute time has no meaning, we are only interested in the time dif-
ference. Green function represents the propagation of one particle from imaginary
time τ ′ to τ . If we expand the creation/annihilation operator in Heisenberg picture,

cσ(τ)c†σ(τ ′) = eHτcσe
−H(τ−τ ′)c†σe

−Hτ ′

(1.12)

Under the tracing operation, the above Green function definition is same as

Gσ(τ − τ ′) = − < Tτ−τ ′cσ(τ − τ ′)c†σ > (1.13)

Therefore, normally, we can shift the creation time of particle to zero and the defi-
nition of Green function looks like:

Gσ(τ) = − < Tτcσ(τ)c†σ > (1.14)

The evaluation of the Green’s function from the partition function is easily done
in the matrix form introduced above. With the help of the Heisenberg operator
definition, we have

G↑(τ) = − 1

Z Tr[e
−βHc↑(τ)c

†
↑] =

1

Z Tr[e
−(β−τ)Hc↑e

−Hτc†↑]

= Tr







1 0 0 0
0 e(β−τ)µ 0 0
0 0 e(β−τ)µ 0
0 0 0 e−(β−τ)(U−2µ)







×







0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0







×







1 0 0 0
0 eτµ 0 0
0 0 eτµ 0
0 0 0 e−τ(U−2µ)







×







0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0







= −e
τµ + e(β−τ)µe−τ(U−2µ)

1 + 2eβµ + e2βµ−βU

(1.15)



1. Introduction 8

The corresponding frequency Green’s function can be obtained by Fourier transform

G↑(iωn) =

∫ β

0

eiωnτG↑(τ) =
1

Z [
1 + eβµ

iωn + µ
+
eβµ + e−β(U−2µ)

iωn + µ− U
] (1.16)

Note that (1 + eβµ)/Z = 1 − 〈n↓〉, (eβµ + e−β(U−2µ))/Z = 〈n↓〉, so the imaginary
frequency Green’s function with spin-σ can be further written as

Gσ(iωn) =
1 − 〈nσ̄〉
iωn + µ

+
〈nσ̄〉

iωn + µ− U
(1.17)

Fig. 1.4 shows the imaginary time Green’s function at U/t = 4.0 and four
different temperatures. With the decrease of temperature, G(β/2) becomes zero
from a finite value which indicates the metal-insulator transition.
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Figure 1.4: Imaginary
time Green’s function of the
atomic Hubbard model at
U/t = 4.0 for various temper-
ature.

Single particle Green function has a very important feature in that its imaginary
part has a relation with the density of state which can be obtained directly from
experimental observation.

A(ω) = −1

π
ℑG(ω + i0†) (1.18)

G(ω + i0†) is the analytic continuation of G(iωn)

G(ω+ i0†) = P 1 − n−σ

ω + µ
+P n−σ

ω + µ− U
− iπ[(1− n−σ)δ(ω+ µ) + n−σδ(ω+ µ−U)]4

(1.19)
As one can see, the spectral density only has nonzero value only at two points, µ
and µ − U . The energy gap U in the density of state clearly shows the insulating
nature of this system. In the later chapters, we will see that these two δ-function
will be broadened to energy band, namely the lower and upper Hubbard band, and
Mott transition will occur at some finite critical Coulomb interaction instead of at
zero value.

4P denotes a Cauchy principal value. 1

ω±iη
= P 1

ω
∓ iπδ(ω)



Chapter 2

Dynamical Mean Field Theory and

Its Cluster extensions

This chapter provides a review of the dynamical mean field theory (DMFT), which is
exact in the infinite coordination number limit. There are several ways to derive the
DMFT equations, we give a detailed derivation here by using the cavity construction.

The Hubbard model and its variants have been taken as the standard model
to study the essential physics of the strongly correlated system. Various attempts
have been proposed to solve this type of Hamiltonian. Random Phase Approxi-
mation (RPA), Fluctuation Exchange approximation (FLEX) [Bickers et al. (1989);
Bickers and White (1991)] and Two-Particle Self-Consistent Approximation (TPSC)
[Allen and Tremblay (1995); Vilk et al. (1994)] are the perturbative methods basing
on the certain diagram summation technique. They have been proven as weak-
coupling methods. These methods suffer the same problem that they are only valid
within a certain limit with respect to the Coulomb interaction U . The intermediate
regime cannot be precisely described by these analytical methods. For this reason
the well controlled numerically exact methods like Exact Diagonalization (ED) and
Quantum Monte Carlo (QMC) have been widely accepted. They basically diagonal-
ize the Hamiltonian for a small size system, each property within this small system
can be determined exactly. The whole Coulomb interaction range can be visited
by these methods. But these methods encounter another problem that the compu-
tational burden grows rapidly with the lattice size. Only a number of degrees of
freedom can be considered, and furthermore the finite size inhibits the study of the
low temperature region because of the finite size gaps in the low energy spectrum.

Compared to the above methods and their limitations, DMFT [Georges et al.
(1996)] provides another non-perturbative way to study the Hubbard model and it
has a well defined thermal dynamic limit. DMFT maps a many-body interacting
system to an impurity embedded in a non-interacting bath which is determined self-
consistently. DMFT was first proposed in 1989 by Metzner and Mueller Hartmann
in the limit of infinite dimension [Metzner and vollhardt (1989); Mueller-Hartmann
(1984)]. The resulting dynamics are purely local in this limit. The DMFT equations
can be solved by various well controlled numerical method, like ED and QMC.

9



2. Dynamical Mean Field Theory and Its Cluster extensions 10

2.1 DMFT equation - Cavity Method

Now we are going to derive the DMFT equations for the many-body interacting
system. Take the single band Hubbard Model as example:

H = −
∑

<i,j>,σ

tij(c
†
iσcjσ + h.c.) + U

∑

i

ni↑ni↓ − µ
∑

i

ni (2.1)

c/c† are the creation and annihilation operators which generate/eliminate an electron
at a specific site. The Coulomb interaction is restricted between the on-site spin-up
and spin-down electrons.

It is convenient to write partition function (2.1) as a functional integral over the
Grassman variables:

Z =

∫
∏

i

Dc†iσDciσ exp(−S) (2.2)

with the total action given as:

S =

∫ β

0

[
∑

i,σ

c†iσ(τ)(
∂

∂τ
− µ)ciσ(τ) −

∑

ij,σ

tij(c
†
iσ(τ)cjσ(τ) + h.c.) + U

∑

i

ni↑(τ)ni↓(τ)

]

(2.3)
In the "cavity construction", the full lattice is divided into two parts. One is the
action for the given site which can be seen as a "cavity" after removing it and its
adjacent bonds, the other part is the remaining of the full lattice. So the full action
is broken into three parts, which correspond to the cavity site (S0), the inter-site
interaction between the cavity site and the rest of the system (∆S), and the lattice
action in the presence of the cavity (S(0)).

Figure 2.1: Cavity created
in the full lattice by removing
a single site and its adjacent
bonds.

S0 =

∫ β

0

dτ

[
∑

σ

c†0σ(τ)(
∂

∂τ
− µ)c0σ(τ) + Un0↑(τ)n0↓(τ)

]

(2.4)

∆S = −
∫ β

0

dτ
∑

i,σ

[

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

]

(2.5)
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S(0) =

∫ β

0

dτ

[
∑

i6=0,σ

c†(τ)(
∂

∂τ
− µ)ciσ(τ) −

∑

i,j 6=0,σ

tij(c
†
iσ(τ)cjσ(τ) + h.c.)

]

(2.6)

The partition function can be written as:

Z =

∫
∏

i

Dc†iσDciσ exp
[
−S0 − ∆S − S(0)

]
(2.7)

Now, let us integrate over the degrees of freedom of all sites except for the cavity
(labeled as 0) in the partition function.

Z =

∫

Dc†0σD0σ exp [−S0]

∫
∏

i6=0

Dc†iσDciσexp
[
−S(0) − ∆S

]
(2.8)

here ∆S = −
∫ β

0
dτ∆S(τ), where ∆S(τ) =

∑

i,σ

[

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σciσ(τ)

]

. To

perform the integral over the bath degrees of freedom, we do the series expansion

over exp
[∫ β

0
dτ∆S(τ)

]

which can be written as:

exp

[∫ β

0

dτ∆S(τ)

]

= 1 +

∫ β

0

dτ∆S(τ) +
1

2!

∫ β

0

dτ1

∫ β

0

dτ2 [Tτ∆S(τ1)∆S(τ2)] + · · ·
(2.9)

Now the total action becomes

Z =

∫

Dc†0σD0σ exp [−S0]

∫
∏

i6=0

Dc†iσDciσexp
[
−S(0)

]
(

1 −
∫ β

0

dτ∆S(τ)

+
1

2!

∫ β

0

dτ1

∫ β

0

dτ2 [Tτ∆S(τ1)∆S(τ2)] + · · ·
)

=

∫

Dc†0σD0σexp [−S0]Z(0)

(

1 −
∫ β

0

dτ < ∆S(τ) >(0)

+
1

2!

∫ β

0

dτ1

∫ β

0

dτ2 < Tτ∆S(τ1)∆S(τ2) >
(0) + · · ·

)

(2.10)

Where Z(0) =
∫ ∏

i6=0

Dc†iσDciσexp
[
−S(0)

]
, it is the partition function of the lattice in

the presence of the cavity. And <>(0) means average over Z(0). The condition that
free-energy should be minimized makes all the odd terms in the bracket to be zero.
So one can easily see that the lowest contribution is from the second term, which
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reads:

1

2!

∫ β

0

dτ1

∫ β

0

dτ2
〈
Tτ∆S(τ1)∆S(τ2)

〉(0)

=
1

2!

∫ β

0

dτ1

∫ β

0

dτ2

〈

Tτ

∑

i,σ

[

ti0c
†
iσ(τ)c0σ(τ) + t0ic

†
0σ(τ)ciσ(τ)

]

×
∑

j,σ

[

tj0c
†
jσ(τ)c0σ(τ) + t0jc

†
0σ(τ)cjσ(τ)

] 〉(0)

=
1

2!

∫ β

0

dτ1

∫ β

0

dτ2

〈
∑

ij,σ

Tτ

[

ti0t0jc
†
iσ(τ1)c0σ(τ1)c

†
0σ(τ2)cjσ(τ2)

+t0itj0c
†
0σ(τ1)ciσ(τ1)c

†
jσ(τ2)c0σ(τ2)

]〉(0)

(2.11)

Now, we will show that the two parts in the bracket are equal. As for the first part,
one can take τ1 > τ2, which becomes that

∫ β

0

dτ1

∫ τ1

0

dτ2

〈
∑

ij,σ

Tτ

[

ti0t0jc
†
iσ(τ1)c0σ(τ1)c

†
0σ(τ2)cjσ(τ2)

]
〉(0)

=

∫ β

0

dτ1

∫ τ1

0

dτ2
∑

σ

c†0σ(τ2)
∑

ij

ti0t0j < cjσ(τ2)c
†
iσ(τ1) >

(0) c0σ(τ1) (2.12)

Because τ1 and τ2 are only dummy arguments, we can exchange them freely, which
results in

∫ β

0

dτ2

∫ τ2

0

dτ1
∑

σ

c†0σ(τ1)
∑

ij

ti0t0j < cjσ(τ1)c
†
iσ(τ2) >

(0) c0σ(τ2) (2.13)

At the same time, in the condition of τ1 < τ2, the second part in the bracket becomes

∫ β

0

dτ2

∫ τ2

0

dτ1
∑

σ

c†0σ(τ1)
∑

ij

t0itj0 < cjσ(τ1)c
†
iσ(τ2) >

(0) c0σ(τ2) (2.14)

As for the hopping amplitude, we always take the amplitude of hopping into and
out of the cavity site to be equal, t0i = ti0, it is same for "j". So one finds that
Eq.(2.13) and Eq.(2.14) are same. One can prove that the first term is the same as
the second term in the bracket.

1

2!

∫ β

0

dτ1

∫ β

0

dτ2
〈
Tτ∆S(τ1)∆S(τ2)

〉(0)

=

∫ β

0

dτ1

∫ β

0

dτ2
∑

σ

c†0σ(τ1)
∑

ij

ti0t0j < Tτciσ(τ1)c
†
jσ(τ2) >

(0) c0σ(τ2)

=

∫ β

0

dτ1

∫ β

0

dτ2
∑

σ

c†0σ(τ1)
∑

ij

ti0t0jG
(0)
ij (τ1 − τ2)c0σ(τ2) (2.15)
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Similarly, all the higher order terms can be written down in a similar way. Then
the effective action can be expressed as:

Seff =
∞∑

n=1

∑

i1···jn

∫

η†i1(τi1) · · · η
†
in

(τin)ηj1(τj1) · · · ηjn
(τjn

)G
(0)
i1···jn

(τi1 · · · τin , tj1 · · · τjn
)+S0

(2.16)
where, ηi = ti0c0σ plays the role of a source coupled to c†iσ.

At the limit of d → ∞, this equation can be significantly simplified. Note that
in order to keep the hopping amplitude well defined in this limit, tij should be

scaled as 1/
√
d
|i−j|

. Then only can the first term survive in this case. This can
be understood from the analysis of the first few terms. In the case that only the
nearest neighbor hopping is considered, the pre-factor gives t2 and G

(0)
ij also gives

a factor of t2 in the first expansion term, so the total factor is t4 = 1/d2. But the
d-dimensional summation of i and j gives d2, so the first term is of the order of 1.
The second-order term involves a connected four-point function G

(0)
ijkl which falls off

as (1/
√
d)|i−j|(1/

√
d)|i−k|(1/

√
d)|i−l|. When i, j, k, l are all different, it gives at least

1/d3 in the condition of the nearest neighbor hopping. And the four summations
give another factor of d4. The four t scale as 1/d2. So the total factor of the second-
order term is 1/d which is zero in the limit of d → ∞. Similarly, the terms where
i = j 6= k 6= l contains three summations, which give d3, four factors of t gives 1/d2,
and a factor of 1/d2 is given by G(0). Then this term scales again as 1/d. In the
limit of d→ ∞, the effective action therefore reduces to

Seff = −
∫ β

0

dτ

∫ β

0

dτ ′
∑

σ

c†0σ(τ)G−1
0 (τ − τ ′)c0σ(τ ′) + U

∫ β

0

dτn0↑(τ)n0↓(τ)

= S0 +

∫ β

0

dτ1

∫ β

0

dτ2
∑

σ

c†0σ(τ1)
∑

ij

ti0t0jG
(0)
ij (τ1 − τ2)c0σ(τ2) (2.17)

it yields that

G−1
0 (τ1 − τ2) = −(

∂

∂τ1
− µ)δτ1,τ2 −

∑

ij

ti0t0jG
(0)
ij (τ1 − τ2) (2.18)

In the momentum space, it can be rewritten as

G−1
0 (iωn) = iωn + µ−

∑

ij

ti0t0jG
(0)
ij (iωn) (2.19)

The only assumption we have introduced is the infinite dimension limit under
which DMFT becomes an exact theory. From a diagrammatical point of view, in
the limit D → ∞ the skeleton expansion for Σ collapses onto the local diagram. As
a result the single particle self energy in infinite dimension is purely local in real
space Σij(iωn) = Σ(iωn)δij . The higher order expansion terms represent the vertex
correction which has been omitted in DMFT, which means the two particles coming
into a vertex (for example with momentum k1 and k3) are exactly same as the
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ones going out (for example with momentum k2 and k4). The Laue-function then
reduces to

∆(k1,k2,k3,k4) =
∑

r

ei(k1−k2+k3−k4)·r = Nδk1−k2+k3+K4
(2.20)

Thus the momentum conservation at the internal vertices of irreducible diagrams
can be disregarded in infinite dimensions. DMFT assumes the same Laue-function
even in the finite dimension, resulting in the momentum independent self-energy
function and one particle Green’s function.

G(iωn) =
1

N

∑

k

G(k, iω), Σ(iωn) =
1

N

∑

k

Σ(k, iω) (2.21)

Thus the DMFT contains only local correlations and neglects the contribution for
the non-local fluctuation.

2.2 Implementations of DMFT

The simplification introduced by the DMFT is mapping a many-body interacting
problem to a single impurity problem, the locality of the self-energy function reduces
the full one particle Green’s function

G(k, iωn) =
1

iωn + µ− ǫ(k) − Σ(k, iωn)
(2.22)

to the one which only depends on frequency

G(iωn) =
1

N

∑

k

1

iωn + ǫ(k) − Σ(iωn)
=

1

iωn + µ− ǫ0 − ∆(iωn) − Σ(iωn)
(2.23)

Here, ǫ0 = 1/N
∑

k ǫ(k) and ∆(iωn) describes the hybridization with the remaining
part of the lattice.

In DMFT the lattice geometry comes into calculation through the dispersion
relation ǫk. The momentum sum is performed in the corresponding first Brillouin
zone (B.Z.). Normally, we replace the momentum sum with the integral over energy
ǫ if we know the density of state D(ǫ). Fig. 2.2 shows the density of state for tight-
binding model at d = 2 square lattice, d = 3 cubic lattice, and also d = 4 and
d = 5 lattice which only have hopping between the nearest neighboring sites. At
d = 2 case, the density of state shows the Van Hove singularity at ǫ = 0, with the
increasing of dimensionality, D(ǫ) tends to be smooth and when d→ ∞, it becomes
semicircular.

Since the self-energy function is momentum independent, this problem can be
viewed as an interacting impurity coupled to a dynamic bath ∆(iωn), which has
been extensively studied in the so-called Single Impurity Anderson model (SIAM).

HSIAM =
∑

σ

(ǫ0 − µ)f †
σfσ + Unf

↑n
f
↓ +

1√
N

∑

k,σ

(Vkf
†
σak,σ + V ∗

k a
†
k,σfσ) +

∑

k,σ

ǫka
†
kσak

(2.24)
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Figure 2.2: The density of state for various lattice geometry (see context). To
know bare density of state D(ǫ) for the lattice studied is always the first step one
needs to do in DMFT.
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Figure 2.3: Imaginary part of the local Green’s function for β = 100 and interaction
U from 2.0 to 3.0, with bandwith W = 2.0.

The first two terms belong to the impurity site, the last term is the dispersion
relation for the bath which is described by ∆(iωn) as a conduction band. The third
term represents the hybridization between the impurity site and the conduction
band. Solve this Hamiltonian with the equation of motion, the impurity Green’s
function has the following form

Gf(iωn) =
1

iωn + µ− ǫ0 − ∆(iωn) − Σ(iωn)
with ∆(iωn) =

1

N

∑

k

|V 2
k |

iωn − ǫk

(2.25)
which is identical to the local Green’s function obtained in DMFT. It can also show
that the skeleton diagrams from SIAM is formally identical to that of DMFT [Jarrell
(1992)]. Thus the lattice self energy can be obtained by solving the impurity model
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where the bare Green’s function is replaced by the inverse of Weiss field. Normally,
the DMFT equation can be solved in the following way

1. Start with a guess for the self-energy function Σ(iωn) which is usually taken
as zero.

2. Determine the Green’s function from Eq. (2.23) by performing the momentum
summation1.

3. Construct the Weiss field from the Dyson equation G−1 = G−1 + Σ.

4. By using some kind of impurity solver to calculate the self-energy function
from the dressed Green’s function.

5. Repeat the above procedure until the desired convergence is reached.

 0.001

 0.01

 0.1

 0  0.2  0.4  0.6  0.8  1

-G
(τ

)

τ/β

 

U = 2.0
U = 2.2
U = 2.4
U = 2.6
U = 2.8
U = 3.0

Figure 2.4: Imaginary time Green’s function for β = 100 and various interaction
U from 2.0 to 3.0. G(β/2) drops from a finite value to zero with the increasing of
interaction.

Note, here D(ǫ) is only the density of state for the non-interacting lattice which
is described by the tight-binding model. The non-zero values at ǫ = 0 indicates the
metallic behavior. When the Coulomb interaction is turned on, some interacting
systems gradually change from metal to insulator. With respect to the total density,
the peak at ǫ = 0 gradually smears out, finally a gap opens. The Mott-Hubbard
transition can be observed by calculating the dressed impurity Green’s function. Fig.
2.3 shows the imaginary part of the one particle Green’s function G(iωn) for β = 64,
and U from 2.0 to 3.0. Here the semicircular density of state is used with band width
W = 2. From this diagram, we can see with the increase of interaction strength,

1Normally, if we know the density of state of the bath, we can replace this sum with integral,
see context.
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Figure 2.5: Local density of state for β = 100, U = 2.4 and 2.6. Here the same
band width W = 2 is used. With the increasing of interaction, the peak at ω = 0
disappears and the Mott gap forms.

the lowest frequency point of the imaginary part of the dressed Green’s function
becomes smaller and jumps to a very small value at U around 2.4 - 2.6. This clear
change of Im[G(iω1)] indicates the system gradually changes from metallic phase
(corresponds to curves of U = 2, 2.2, 2, 4) to insulating phase (corresponding to curve
of U = 2.6, 2.8, 3.0) and the critical Uc is between U = 2.4 - 2.6. Similar behavior
can be seen from the imaginary time Green’s function G(τ). In Fig. 2.4, the same
parameter regime was studied. To observe the Metal-Insulator transition in G(τ),
one can compare the value for τ = β/2. For interaction U = 2.0, 2.2, 2.4, G(β/2) has
a small but still non-zero value. Further increasing the interaction, G(β/2) rapidly
dropped to zero which shows the transition.

The clearest way to show the Metal-Insulator transition is to calculate the total
density of state, which is related to the imaginary part of the one particle dressed
Green’s function in real frequency space, see Eq. (1.18). Since we used the Quantum
Monte Carlo method as impurity solver, which works in the imaginary frequency
or imaginary time space. To calculate the real frequency Green’s function, one has
to perform the analytical continuation to change G from imaginary frequency to
real frequency. Here, we used the simple Padé approximation method. The Metal-
Insulator transition is clearly seen from the disappearance of the coherence peak at
Fermi surface.

2.3 Quantum Cluster Methods

The exact formulation of DMFT at infinite dimension ensures the validity of this
method, when it is applied to the system where the spatial fluctuation is not strong.
Strongly correlated electron systems are often characterized by short range dynam-
ical fluctuations. Consequently, local approximations like DMFT successfully de-
scribe many of the qualitative properties. However, in some systems (especially in
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the low-dimensional systems), spatial correlations become increasingly important
and are thought to be responsible for e.g. non-Fermi-liquid behavior and d-wave
superconductivities.

Explicitly including the non-local fluctuations to DMFT method has been stud-
ied extensively [Maier et al. (2005)], such as Cellular Dynamical Mean Field The-
ory (C-DMFT) [Kotliar et al. (2001)], Dynamical Cluster Approximation (DCA)
[Hettler et al. (2000)], Fictive Impurity Model [Okamoto et al. (2003)], Variational
Cluster Approximation which is based on the self-energy functional theory [Potthoff
(2003)], etc. In this chapter we will mainly discuss two methods, C-DMFT and DCA.
These two methods are formulated in different spaces. We will start with a general
extension of single site DMFT. By introducing a cluster in real and momentum
space respectively, we then go into the details of these two methods. The C-DMFT
and DCA implementations of in a square lattice are then given as example.

2.3.1 General formulism

Figure 2.6: LC × LC cluster embedded in the lattice forms a surperlattice. It’s
reduced Brillouin Zone is LC × LC smaller of the first B.Z for the original lattice.
Here we took LC = 2 as example. The position of Each site in the lattice can be
identically expressed as x = x̃+X, correspondingly the wave vector is k = K + k̃.

In the derivation of single site DMFT equations, we employed the cavity method.
By separating impurity degrees of freedom from the remaining degrees of freedoms
which we named as bath, the total action can be written into three parts, where
the non-interacting bath degrees of freedom can be integrated out precisely. In the
end, the effective action is only a function of the impurity degree of freedom which
is local. Now, we apply the same idea to a cluster embedded in lattice. Here the
impurity is replaced by a small cluster, in which way we can partially include the
non-local correlations. But here we will not formulate C-DMFT and DCA via action,
we will perform the locator expansion instead. We will see this method is equivalent
to the cavity construction. We expand the one particle Green’s function over the
inter-cluster coupling by separating the cluster degrees of freedom from those of the
remaining.
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In this section, we derive formalisms of dynamical cluster approximation and cel-
lular dynamical mean-field theory based on the review work of T. Maier [Maier et al.
(2005)]. As discussed in the introduction, after expanding a single impurity to a clus-
ter we want to separate the degrees of freedom within the cluster from the remaining
degrees of freedom. Thus we divide a D-dimensional lattice of N sites into a set of
finite-size clusters, each have Nc sites of linear size Lc such that Nc = LD

c . Here we
take a two-dimensional lattice with Lc = 2 as example. There are Nc = Lc ×Lc = 4
sites in each cluster. Note that it is not necessary to ask for the same Lc at every
dimension. Lc is taken freely in each dimension, Nc =

∏D
i=1 L

i
c. Although each Li

c

is arbitrarily selected, a better choice of cluster should have the same symmetry of
the lattice.

The first Brillouin zone will be divided into a corresponding set of reduced zones
which are called cells. From now on, we use the coordinate x̃ to label the origin
of the clusters and X to label the Nc sites within a cluster, so that the lattice site
can be identically labeled as x = X + x̃. k̃ is the wave vector corresponding to the
super-lattice points x̃. And the wave vector corresponding to the sites X within
a cluster is labeled K, so in the full Brillouin zone, the wave vectors are given by
k = K + k̃.

With these notations, one can easily expand the definition of Fourier transforms
of a given function f(x) as

f(X, x̃) =
Nc

N

∑

k̃

ei(K+k̃)·x̃f(X, k̃) =
Nc

N

∑

k̃

eik̃·x̃f(X, k̃) (2.26)

f(X, k̃) =
∑

x̃

e−i(K+k̃)·x̃f(X, x̃) =
∑

x̃

e−ik̃·x̃f(X, x̃) (2.27)

f(X, k̃) =
1

Nc

∑

K

ei(K+k̃)·Xf(X, k̃) (2.28)

f(K, k̃) =
∑

X

e−i(K+k̃)·Xf(X, k̃) (2.29)

In the first two equations, the identity eiK·x̃ = 1 was used since Ki = i(2π/Lc).

After the separation of cluster, correspondingly, the hopping amplitude t and
the self-energy Σ are also split into two parts, which are called intra-cluster and
inter-cluster parts.

t(xi − xj) = tcδx̃i,x̃j
+ δt(x̃i − x̃j) (2.30)

Σ(xi − xj, z) = Σcδx̃i,x̃j
+ δΣ(x̃i − x̃j, z) (2.31)

tc = t(x̃ = 0) and Σc(x̃ = 0, z) are the intra-cluster hopping and self-energy, δt(x̃)
and δΣ(x̃, z) are the inter-cluster parts of hopping and self-energy. Note it is not
necessary to ask for tc = t. Later on it will become clear that C-DMFT and DCA
are different in the choice of tc.

Analogously to the cavity construction where the coupling between the impurity
site and the remainder of the lattice is expanded, we take an expansion in δt and
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δΣ around the cluster limit to rewrite the Green’s function of super-lattice as

G−1(x̃i − x̃j, z)

= G−1
0 (x̃i − x̃j) − Σ(x̃i − x̃j, z)

= z − [t(x̃i − x̃j) − µ] − Σ(x̃i − x̃j, z)

= [z + µ− tc − Σc(z)] − [δt(x̃i − x̃j) + δΣ(x̃i − x̃j, z)]

= g−1(z) − [δt(x̃i − x̃j) + δΣ(x̃i − x̃j, z)] (2.32)

where g(z) is a Nc×Nc matrix, which is the dressed Green’s function of the isolated
cluster.

g(z) = [(z + µ)Î − tc − Σc(z)]
−1 (2.33)

In the standard notation, the full Green’s function is given as

G(x̃i − x̃j, z) = g(z)δx̃i,x̃j
+ g(z)

∑

l

[δt(x̃i − x̃l) + δΣ(x̃i − x̃l, z)]G(x̃l − x̃j, z)

(2.34)
This equation contains all the expansion order around the cluster limit. The in-
fluence of the correlation beyond the cluster scope becomes the correction to the
cluster dressed Green’s function g(z). The corrections are in two parts, δt and δΣ.
δΣ contains the vertex correction.

In momentum space the above equation can be written into a simpler form,

G(k̃, z) = g(z) + g(z)[δt(k̃) + δΣ̃(k̃, z)]G(k̃, z) (2.35)

This is a general formula for quantum cluster theory. Though every method
focus on different physical consideration, they have a common approximation. They
all truncate the self-energy to the cluster by neglecting δΣ to arrive at:

G(k̃, z) = g(z) + g(z)δt(k̃)G(k̃, z) = [g−1(z) − δt(k̃)]−1 (2.36)

Here it is very clear that various cluster approximations fully consider the correlation
within the cluster (Σc), while taking the spatial fluctuation beyond the cluster in one-
particle mean field approximation2. A further improvement to the current cluster
DMFT methods starts from the reconsideration of δΣ. If we average G(z) over k̃,
then the Green’s function will restrict to the cluster.

Ḡ(z) =
Nc

N

∑

k̃

G(k̃, z) (2.37)

Compared to Eq. (2.28), the coarse graining is equivalent to omit the momentum
conservation law for the super-lattice. The sequence of the coarse graining is that
it smears out the spatial fluctuation in the super-lattice.

2Since the vortex correction from the outside of cluster has been omitted (δΣ), only the one
particle correction has been taken into account (δt)
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2.3.2 Cellular DMFT and DCA

In this section, we will go into the details of the Cellular DMFT and DCA. Here, both
of them will be formulated in real space. The most popular formulation of DCA is in
the reciprocal space. In order to address the difference between C-DMFT and DCA,
we prefer to use the real space formulation. The reciprocal space representation of
DCA will be easily obtained afterwards.

Starting with Eq. (2.36), the basic difference in C-DMFT and DCA as we
discussed in the above section is the choice of t(xi − xj). Both the inter-cluster
hopping and intra-cluster hopping are different in these two methods. In the lattice,
the full dispersion relation can be calculated from the Fourier-Transform of t as
ǫ(k) =

∑

i,j e
−ik·(xi−xj)ti,j. If we only consider the nearest neighbor hopping in the

Hubbard model, it is −2t cos(k). After we divided the lattice into a collection of
clusters, the hopping term becomes of a combination of the inter-cluster and intra-
cluster parts. This results in the violation of the translational invariance in real
space. The inter and intra cluster hopping amplitudes are different. From Eq.
(2.28)

[t(k̃)]XiXj
=

1

Nc

∑

K

ei(K+k̃)·(Xi−Xj)ǫ(k) =
−t
Nc

∑

K

ei(K+k̃)·(Xi−Xj)e−i(K+k̃)·(xi−xj)

= − t

Nc

∑

K

e−i(K+k̃)·(x̃i−x̃j) = −te−ik̃·(x̃i−x̃j) (2.38)

This is the dispersion relation used in C-DMFT. It has different values for the inter
and the intra-cluster hopping. If Xi and Xj are in the same cluster, t(k̃) = −t
which is same as the hopping in the original lattice. If Xi and Xj belong to different

clusters, the pre-factor eik̃·(x̃i−x̃j) is not zero, which means the inter-cluster hopping
is mediated by the super-lattice wave vector k̃.

The C-DMFT cluster problem can be solved self-consistently as shown in Fig.
2.7

1. Start from an initial cluster self-energy Σc which is normally taken as zero.

2. From the dispersion relation for C-DMFT, calculate the cluster Green’s func-
tion Ḡ(z) which is in matrix form3.

3. Construct the Weiss field Ḡ−1 from the cluster Green’s function Ḡ and self-
energy function Σ̄.

4. Determine the dressed cluster Green’s function from a suitable cluster solver.

5. The new self-energy function is given by the Dyson equation.

6. The above iteration will go on until convergence is reached.

In C-DMFT the violation of the translational invariance can be restored in two
possible ways. By introducing periodization for either cluster self-energy, which can

3Note in this step, matrix inversion is needed since t(k̃), Σ̄ are matrices
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Ḡ(z) =
Nc

N

∑

k̃

1

z + µ− [t(k̃)]Xi,Xj
− Σ̄(z)

��

6

- �

6

Ḡ−1 = Ḡ−1 + Σ̄

?

Σ̄ → ΣLatt

Σ̄ = Ḡ−1 − Ḡ−1

6

� - Cluster solver - �

?

Figure 2.7: Sketch of C-DMFT loop. Note the lattice self-energy is calculated when
the DMFT loop reaches the convergence.

generate the spurious mid-gap states in the Mott insulator [Kyung et al. (2006)],
or for the irreducible cumulant [Stanescu and Kotliar (2006)], one can make the
lattice Green’s function to be periodic. More details and discussion can be found in
corresponding references.

Although the only approximation introduced here is the division of the lattice,
this little approximation breaks the translational invariance of the original lattice.
DCA trys to restore the translational invariance even inside the cluster. The viola-
tion is caused by the factor eik̃·(Xi−Xj), thus in DCA this term is explicitly omitted.

[tDCA(k̃)]XiXj
= e−ik̃·(Xi−Xj)[tC−DMFT (k̃)]XiXj

= −te−ik̃·(xi−xj) (2.39)

where tC−DMFT is given in Eq. (2.38). DCA dispersion relation is cyclic both inside
and outside cluster. Basically we can say in C-DMFT the gauge is chosen such
that phase factors appear only in matrix elements involving different clusters, which
breaks the symmetry of the original lattice. DCA distributes this phase factor to
all the matrix elements. In both C-DMFT and DCA, the eigenvalues of H(k̃) are
identical to the eigenvalues of the non-interacting part of H , which can be used as
internal check of C-DMFT and DCA equations.

The DCA equations can be solved in a similar way like the C-DMFT loop. The
execution of DCA loop depends on the specific cluster solver used4. In Fig. 2.7,
one only needs to replace t(k̃) with tDCA. Every property is still in matrix form,
one has to perform matrix inversion for each specific k̃. This is equivalent to the
momentum space implementation since tDCA can be diagonalized by the Fourier
transform. One can also use the diagonal form of tDCA with the advantage that the
full matrix inversion is replaced by the inversion of the diagonal elements. Once
the diagonal form of Ḡ(z) is obtained, one has to Fourier transform it back to real

4While most of the DCA implementation is in momentum space, here we use real space notation
to show the comparison with C-DMFT, it is easy to switch from one to the other, once one has
implemented one of them
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space in order to calculate the dressed Green’s function from the cluster solver. In
DCA, the self-energy function and the dressed Green’s function are in a diagonal
form, therefore one does not need to re-periodize them.

Here we take the 2 × 2 cluster on a square lattice as an example to show the
difference of C-DMFT and DCA. Furthermore, here we consider the more interesting
full frustration case. The real space cluster geometry is given in Fig. 2.8 with the
same Reduced Brillouin Zone (R.B.Z) as shown in Fig. 2.6. The hopping matrices

Figure 2.8: 2 × 2 cluster in a
frustrated square lattice. Here
we take t′ = t.

in real space for C-DMFT and DCA are given as below

tC−DMFT =






0 1 + tx 1 + tx + ty + txty 1 + ty
1 + t∗x 0 1 + ty 1 + t∗x + ty + t∗xty

1 + t∗x + t∗y + t∗xt
∗
y 1 + t∗y 0 1 + t∗x

1 + t∗y 1 + tx + t∗y + txt
∗
y 1 + tx 0







(2.40)

where tx = e2ik̃x , ty = e2ik̃y and every element is in the unit of −t. In DCA it is

tDCA =








0 2 cos k̃x 4 cos k̃x cos k̃y 2 cos k̃y

2 cos k̃x 0 2 cos k̃y 4 cos k̃x cos k̃y

4 cos k̃x cos k̃y 2 cos k̃y 0 2 cos k̃x

2 cos k̃y 4 cos k̃x cos k̃y 2 cos k̃x 0








(2.41)

This equation can be diagonalized easily by the transformation

U =
1

2







1 1 1 1
−1 −1 1 1
−1 1 1 −1
−1 1 −1 1







(2.42)

as Diag[UtDCAU †] = [ǫ(k̃x, k̃y), ǫ(k̃x, k̃y + π), ǫ(k̃x + π, k̃y), ǫ(k̃x + π, k̃y + π)]. k̃x

and k̃y are in the Reduced Brillouin Zone [−π/2, π/2] and ǫ(k̃x, k̃y) = −2t(cos k̃x +

cos k̃y + 2 cos k̃x cos k̃y). The diagonal form of the hopping matrix is the commonly
used form of DCA. The original first Brillouin Zone is divided into 2× 2 parts, with
Kc = (0, 0), (0, π), (π, 0), (π, π) as shown in Fig. 2.6. In the end the real-space and
momentum-space representations of DCA equations are equivalent and relate with
each other through the transformation matrix U .
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The difference of C-DMFT and DCA equations are clearly shown in the expres-
sion of tCDMFT and tDCA. The translational invariance is violated in tCDMFT while
tDCA restores it. The real space formulation of DCA equations ensures that one
can switch from one method to the other easily once the codes for one of them are
avaliable.

Fig. 2.9 shows the Fermi surface and density of states of the Hubbard model on
the 2 × 2 cluster shown in Fig. 2.8 for different ratio of t′/t. Here, we only showed
the non-interacting density of state and Fermi surface from the DCA dispersion
relation, the dressed Green’s function and full density of states can be calculated
straightforwardly in the cluster solver. The non-zero values of t′/t destroyed the
perfect nested Fermi-surface of 2D square lattice. Later on we will see that t′ term
introduces very interesting competition between the (π, π) state and the 120-degree
state.
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Figure 2.9: The Fermi surface and density of state of the Hubbard model on a frus-
trated square lattice with different next nearest neighbor hopping amplitude. When
t′/t = 0, the Fermi surface is nested and the density of state shows the van Hove
singularity at ω = 0 (see the left panel). When t′/t = −0.3, the nested Fermi surface
is destroyed, therefore the antiferromagnetism is suppressed.



Chapter 3

Continuous-Time Quantum Monte

Carlo Methods

The accuracy of DMFT results greatly relies on the impurity solver. The widely used
numerically exact impurity solvers are ED and Hirsch-Fye QMC. Both of them have
their own advantages and disadvantages. ED is a good solver in zero temperature
and suffers the problem of finite number of bath sites. Hirsch-Fye QMC works on
finite temperature, and relatively difficult to approach the lower temperature regime.
The most serious problem of Hirsch-Fye is the well-known minus sign problem.

Hirsch-Fye QMC introduces the discretization parameter L in imaginary time
[0, β), each time slice has a length of ∆τ = β/L. It performs the Trotter decom-
position and decouples the four fermion operator terms by Hubbard-Stratonovich
transformation and introduces a collection of auxiliary fields which only have two
discrete values like the Ising spin. This makes the Monte Carlo Sampling possible
since the whole Hilbert space can now be represented by the configurations of Ising
spins. This method has become a very widely used QMC method in solving the in-
teracting fermion systems. The only error introduced by this method is the Trotter
error which is proportional to ∆2

τ .

With the Hirsch-Fye method it is hard to access the low temperature regime
since the Hilbert Space grows rapidly with the decrease of temperature. In order
to nicely control the Trotter error, one has to use more time grid points L, while
this seriously increases the computational burden. To examine the low temperature
properties of strong coupling systems is a serious challenge to Hirsch-Fye methods.
At the same time, the Hirsch-Fye method cannot be easily extended to include non
density-density interactions, such as spin-spin correlation and pairing interaction in
high-temperature superconductivity.

Recently, another type of Quantum Monte Carlo method has been proposed
based on the series expansion [Rubtsov et al. (2005); Werner et al. (2005); Werner and Millis
(2006)]. Both of these two methods can access the low temperature regime relatively
easily and can be applied to multi-band models with complicated interaction form.
They do not discrete the imaginary time, thus there is no Trotter error introduced.
The central idea of these two methods is to perturbatively expand the partition
function Z and sample basically all the expansion terms by the Monte Carlo ran-
dom walk. The difference between them is that in the weak-coupling expansion

25
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method [Rubtsov et al. (2005)], the Coulomb interaction term is expanded, while
in the strong coupling expansion method [Werner et al. (2005); Werner and Millis
(2006)] the hybridization function is taken as the expansion parameter. In the rest
of this chapter, we will present the details of these two methods including the fast
update algorithm and the sampling method. And some simple but useful examples
are given as illustration of the practical implementation. The performance of these
two methods is also analyzed.

3.1 General concepts of ct-qmc

Here, we use the one band Hubbard Model to illustrate some basic or common
features of these two ct-qmc methods.

H = −t
∑

<i,j>,σ

(c†iσcjσ + h.c.) + U
∑

i

ni↑ni↓ − µ
∑

i

ni (3.1)

As we have discussed in the first chapter, the partition function of a many-body
interacting system governs the basic properties of the system. Once we know the
partition function, we can write down all its thermodynamical properties. Generally
the partition function has the following form:

Z = TrTτe
−S (3.2)

Action S is normally written in the coherent state basis as we did in the derivation
of the DMFT equations. But here we adopt the particle number basis. In this case,
the action has the form:

S = −
∫∫ β

0

t
∑

<i,j>,σ

c†iσ(τ)cjσ(τ ′)dτdτ ′ +

∫ β

0

U
∑

i

ni↑(τ)ni↓(τ) = H0 +HU (3.3)

This partition function is the starting point of both of these two methods. We split
the Hamiltonian into two parts, H = H1 +H2. Here H1(or H2) could be or not be
H0 (or HU), it depends on which term actually we want to expand. Here we want
to keep the generality by using H1 and H2. In the next step, we expand the whole
action over H2.

Z = Tre−βH1Tτe
−

R β

0
dτH2(τ)

∑

k

1

k!

∫ β

0

dτ1 · · ·
∫ β

0

dτnTr[e
−(β−τn)H1(−H2) · · · e−(τ2−τ1)H1(−H2)e

−τ1 ]
(3.4)

and operator H2(τ) with its Heisenberg definition. Suppose we know the value of
H2(τ) in each expansion term, then we can calculate the partition function for each
specific expansion order k. In principle the perturbative expansion yields a power
series up to the infinite order k. But the presence of factor 1/k! ensures only finite
order terms contribute most to the partition. In order to determine the optimal
perturbation order k, we use Monte Carlo random walk to sample basically each
order by the corresponding weight wc

wc = Tr[e−(β−τn)H1(−H2) · · · e−(τ2−τ1)H1(−H2)e
−τ1 ] (3.5)

In the following part, we discuss the two variants of the above scheme.
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3.2 Weak-coupling expansion-Rubtsov method

3.2.1 General formulas

If the interaction is not very strong, one can take the interaction as a small parameter
and expand the partition function over it. This is the basic idea of the Rubtsov
method. For generality, we consider the one band Hubbard model which has the
following action,

S = −
∫∫ β

0

t
∑

<i,j>,σ

c†iσ(τ)cjσ(τ ′)dτdτ ′ +

∫ β

0

U
∑

i

ni↑(τ)ni↓(τ) (3.6)

One important feature of Rubtsov method is that it introduces another parameter
α to decrease the influence of the minus sign problem. It is equivalent to shift the
chemical potential µ. With α, the non-interacting action becomes

S0 =

∫∫ β

0

dτdτ ′
∑

<i,j>σ

(−t+ αiσ̄Uδi,j) c
†
iσ(τ)cjσ(τ

′) (3.7)

The interaction term will be written as:

W =

∫ β

0

U
∑

i

[c†i↑ci↑(τ) − α↑][c
†
i↓ci↓(τ) − α↓]dτ (3.8)

Now split the partition function into two terms H1 and H2, take H2 = HU . Then
the partition function is expanded as

Z = TrTτe
−S0

∞∑

k=0

(−U)k

k!

∑

{a}

∫

dτa1
· · ·

∫

dτak

2k∏

i=1

[c†ai
cai

(τai
) − αai

] (3.9)

Here a represents site index and spin direction. The sum over {a} can be written
explicitly as

∑

i

∑

σ. This is the typical way of doing perturbative expansion over
the Coulomb interaction term. Various analytical methods, like RPA, FLEX and
TPSC, consider a subset of diagrams from this expansion. Here, we are going to
take basically all the expansion orders into account.

The evaluation of trace can be written as thermal average with respect to the
non-interacting action S0.

Zk = 〈T [(c†a1
ca1

(τa1
) − αa1

) · · · (c†a2k
ca2k

(τa2k
) − αa2k

)〉 (3.10)

Now the total partition function becomes

Z = Z0

∑

k

(−U)k

k!

∫ β

0

dτa1
· · ·

∫ β

0

dτ2kZk (3.11)

where Z0 is the partition function for the non-interacting action Z0 = Tre−S0. To
evaluate the trace in Zk, basically one has to rewrite each operator in the eigenstate
basis of H0, and perform matrix production from the beginning to the end according
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to the right time sequence. While here H0 is a non-interacting Hamiltonian, the
Wicks theorem works. Furthermore, the spin-up and spin-down component are
totally independent to each other, thus Zk reduces to the product of that for each
spin

Zk = Z↑
k · Z↓

k (3.12)

With the help of Wicks theorem, each trace can be written as a determinant

Zσ
k = det








Gσ
a1,a1

(τa1
, τa1

) − ασ Gσ
a1,a2

(τa1
, τak

) · · · Ga1,ak
(τa1

, τak
)

Gσ
a2,a1

(τa2
, τa1

) Gσ
a2,a2

(τa2
, τa2

) − ασ · · · Gσ
a2,ak

(τa2
, τak

)
...

... · · · ...
Gσ

ak ,a1
(τak

, τa1
) Gσ

ak ,a2
(τak

, τa2
) · · · Gσ

ak ,ak
(τak

, τaj
) − ασ








(3.13)
where Gσ(τ, τ ′) = −〈Tτcσ(τ)c†σ(τ ′)〉 is the Green’s function measured with respect to
action S0. In each specific order k, the resulting determinant for each spin can be
calculated from a k × k matrix which elements are known to us. The evaluation of
determinant is always time consuming, especially for larger k. While the determinant
for order k can be easily obtained if we know that for order k+1 or k−1, see Appendix
A.

3.2.2 Quantum random walk

In perturbation theory, in principle one has to consider all the perturbation terms in
the series expansion. But in practice, the terms corresponding to the order beyond
some cutoff point contribute little. The most important contribution normally comes
from the lower order terms. Since at each order k we can basically know the partition
function Zk, to obtain the full partition function now only requires the value of k.
From the analysis of the determinant calculation (see Appendix A), it is reasonable
to think that it might be helpful if we calculate the partition function order by order,
and compare their weights to see which terms contribute to the partition function
most. In this way, the optimal order k can be determined. To practically apply this
idea, we perform Monte Carlo random walk in k space.

Z = Z0 + · · · +
k−2

︷ ︸︸ ︷

Zk−2 + Zk−1 + Z
︸ ︷︷ ︸

k−1

k+2
︷ ︸︸ ︷

k + Zk+1
︸ ︷︷ ︸

k+1

+Zk+2 + · · · (3.14)

MC random walk has two possible directions, either increasing k or decreasing k.
In each walk, the weight (or the partition function) of the current order k can be
calculated. The MC walk to each direction is determined by the ratio of these
two adjacent weights w

(k)
c and w

(k±1)
c which is called the detailed balance condition.

Eventually, this condition depends on the determinant ratio Zk+1/Zk. From the
above description, one can notice that this random walk is in one dimensional space,
and normally, the procedure of increasing/decreasing the perturbation order by one
is already enough for the ergodicity1.

1Sometimes, the k → k±2 are needed in order to avoid trapping into only part of configurations,
and globally change the time configuration is also needed sometimes especially in the magnetic
ordered state.
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Once we know the partition function, we can measure the one particle Green’s
function Ga,a′(τ, τ ′) = −〈Tτ ca(τ)c

†
a′(τ ′)〉, here the thermal average is taken with

respect to the full partition function. Under the series expansion over the interaction
term, it becomes

G
(k)
a,a′(τ, τ′) =

〈

Tc†a′(τ ′)ca(τ)(c
†
a′
1

ca1
− α) · · · (c†a′

k
cak

− α)
〉

0〈

T (c†a′
1

ca1
− α) · · · (c†a′

k
cak

− α)
〉

0

(3.15)

Note, now in each Monte Carlo step G depends on order k. Here, we have dropped
the spin index and the evaluation of G only dependents on trace in the same spin
sector. As we have discussed, the thermal average with respect to S0 can be written
as a determinant, thus the above equation is easily written as

G
(k)
a,a′(τ, τ

′) =
Z(k+1)

Z(k)
=

Det

(
Ḡ(k) Gai,a′(τi, τ

′)
Ga,aj

(τ, τj) Ga,a′(τ, τ ′)

)

DetḠ(k)
(3.16)

This determinant ratio is easily calculated from a 2 × 2 block matrix operation,
finally we obtain

Ga,a′(τ, τ ′) = Ga,a′(τ, τ ′) −
∑

i,j

Ga,ai
(τ, τi)Ḡ−1

i,j Gaj ,a′(τj , τ
′) (3.17)

In imaginary frequency space, this equation becomes

Ga,a′(ω) = Ga,a′(ω) − Ga,a′(ω)

[

1

β

∑

i,j

Mi,je
iω(τi−τj)

]

Ga,a′(ω) (3.18)

where M = Ḡ−1, Ḡ is the matrix whose determinant is Zk, see Eq. (3.13).
To get the M-matrix is the central task of this method. We update this matrix

in the incremental and decremental step according to a certain ratio. Normally the
metropolis sampling method is enough for this job. For more details of the update
method, the reader is refereed to Appendix. A. Every time, one gets a new M-
matrix from the previous one. After several MC steps for warmup, one can sample
the M-matrix and get the Green’s function directly from this matrix.

Here, we use a simple example to illustrate the power of this method. Single-
atom Hubbard model is a good choice since we know the exact Green’s function

G(iω) =
1 − n

iω + µ
+

n

iω + µ− U
(3.19)

here, n = (eβµ + eβ(2µ−U))/(1 + 2eβµ + eβ(2µ−U)). At half-filling case n = 0.5. The
following figure illustrates the comparison of the numerical result and the exact one.
Here, we take α as 0.45. The distribution of the history diagram is also presented
below.

From the comparison with analytical results, CTQMC gives satisfactory results
for the one-particle Green’s function. Note in the histogram diagram, each odd order
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U/t = 2 and βt = 16.
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has very low probability since we choose α = 0.45 which is closed to G(0) = 0.5.
Thus the diagonal elements in the determinant matrix are closed to zero. The
determinant value for odd order terms are therefore very small. The move to such
terms is hard to be accepted by the MC random walk.

This method can be used as impurity solver not only for single site DMFT, but
also for various cluster extentions of DMFT which we will discuss later on. In the
remainder this section, we will discuss the functionality of parameter α, which is
introduced for reducing the minus sign problem. The single site Hubbard model
serves as an example.

Corresponding to single atom Hubbard model, the action can be separated into
two parts as following:

S0 =

∫

[(−µ+ Uα↓)n↑(τ) + (−µ+ Uα↑)n↓(τ)]dτ (3.20)

W = U

∫

(n↓(τ) − α↓)(n↑(τ) − α↑)dτ (3.21)

S0 consists of the non-interacting partition function Z0. Since there is no spin
flip term in this model, the operators corresponding to up and down spins can be
separated completely. Therefore, Ωk = (−U)k/k!Zk looks like

Ωk =
(−U)k

k!
detD

(k)
↑ detD

(k)
↓ (3.22)

In the eigenvalues basis (|0 >, | ↑>, | ↓>, | ↑↓>), D
(k)
↑ -function can be written as:







(−α↑)
k

eβ(µ−Uα↓)(1 − α↑)
k

(−α↑)
k

eβ(µ−Uα↓)(1 − α↑)
k







(3.23)

Taking the trace of this matrix, one obtains that detD
(k)
↑ = 2αk

↑[1 + eβ(µ−Uα↓)(1 −
α−1
↑ )k]. Therefore,

Ωk = 4
(−Uα↑α↓)

k

k!
[1 + eβ(µ−Uα↓)(1 − α−1

↑ )k][1 + eβ(µ−Uα↑)(1 − α−1
↓ )k] (3.24)

For the negative interaction(U < 0), Ωk is always positive for any value of α, there is
no minus sign problem. This conclusion is also true for the one dimensional Hubbard
model, see [Assaad and Lang (2007)]. For the repulsion case, if we take α↑ +α↓ = 1,
Ωk has a form like:

Ωk = eβ(µ−Uα) (Uα
2)k

k!
[1 + eβ(µ−U+Uα)(1 − α−1)k][1 + eβ(−µ+Uα)(1 − α−1)k] (3.25)

Ωk is still positive for any α. In conclusion, we have no minus sign problem for
the negative interacting case, and also the positive interacting case if we take the
condition that α↑ + α↓ = 1. The introduction of the parameter α is equivalent to
applying an external Ising field on the system. For spin up and spin down sector, α
takes specific values. One can also take α randomly, which improves the sampling
and allows to retain the original H0. [Assaad and Lang (2007)]
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3.3 Strong-coupling expansion-Werner method

Rubtsov’s method overcomes some drawbacks of Hirsch-Fye algorithm and effec-
tively improves the ability to study the low temperature regime. In this method,
the perturbation order increases with interaction U , it is the same for the computa-
tional burden. Philipp Werner and his collaborators proposed another continuous
time method [Werner et al. (2005); Werner and Millis (2006)] which is slightly dif-
ferent from Rubtsov’s in this sense. Werner’s method is based on the expansion of
the hybridization term between the system and bath. The interaction term is taken
as part of the local term and is evaluated exactly. As a result, the perturbation order
decreases with the increase of the interaction strength. This method is called strong
coupling CTQMC and is especially suitable for investigating the strong interaction
regime.

In this section we discuss two practical implementations of the strong-coupling
CTQMC, which are proposed by P. Werner [Werner and Millis (2006)]2 and K. Haule
[Haule (2007)]3. The similarity and difference will be discussed. The single site and
single band impurity problem turns out to be a very special case in the multi-band
implementation, which allows us to simulate more efficiently in the so-called segment
representation.

3.3.1 General Formalism

Suppose we have a multi-impurity problem with fermions labeled by a = 1, · · · , N ,
this label includes the spin, site and orbital indices. We call them as flavor. Such
a multi-impurity problem is solved in the cluster version of DMFT by separating
the degree of freedom of the cluster in the total Hamiltonian with those of the bath.
Then the total Hamiltonian is given as

H = Hloc +Hbath +Hhyb +H†
hyb (3.26)

The bath is non-interacting with a Gaussian form Hamiltonian. The hybridization
part can be written as Hhyb =

∑

ab Vabc
†
acb. Vab is the hybridization strength between

the cluster and its bath which needs to be determined self-consistently. The total
partition function then is expressed as

Z = TrabTτe
−

R β

0
[Hloc(τ)+Hbath(τ)+Hhyb(τ)+H†

hyb
(τ)] (3.27)

Trace is taken over both the cluster and bath degrees of freedom. Here we expand
the partition function over the hybridization term.

Z = TτTrae
−

R β

0
HlocTrbe

−
R β

0
Hbath

∑

k1

1

k1!
[Hhby(τ)]

k1

∑

k2

1

k2!
[H†

hby(τ)]
k2 (3.28)

It is easily understood that k1 = k2 = k since the integration over the bath degrees of
freedom requires that the creation and annihilation operators are paired. Explicitly

2Here, we call it the multi-band implementation since in this method each flavor decouples to
the other. The hybridization function is given in a diagonal matrix form.

3Here, we call it the multi-site implementation since it does not diagonalize the hybridization
function and is in principle more suitable for the larger cluster implementation.
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write down the expression of Hhyb and H†
hyb in the above equation, the total partition

function looks like

Z =ZbTτTrae
−

R β

0
Hloc

∑

k

1

k!

∫ β

0

k∏

i=1

dτi

∫ β

0

k∏

i=1

dτ ′i
∑

aa′

k∏

i=1

[ca′
i
(τ ′i)c

†
ai

(τi)]×

1

k!

1

Zb
e−

R β

0
Hbath

k∏

i=1

∑

bb′

[Vaibi
Vb′ia

′
i
c†bi

(τi)cb′i(τ
′
i)]

(3.29)

where Zb = Trbe
−

R β

0
Hbath. Since the bath is totally non-interacting, the integration

over the bath degrees of freedom now can be performed exactly, which yields the
hybridization function.

∆aa′(τi, τ
′
i) =

1

Zb

e−
R β

0
Hbath

∑

bb′

[Vaibi
Vb′

i
a′

i
c†bi

(τi)cb′
i
(τ ′i)] (3.30)

The existence of the production from 1 to k in the front of the sum over bb′ makes
the total integral over the bath degree of freedom to be a determinant from the
Wicks theorem. Then the total partition function becomes

Z =ZbTτTrae
−

R β

0
Hloc

∑

k

1

k!

∫ β

0

k∏

i=1

dτi

∫ β

0

k∏

i=1

dτ ′i
∑

aa′

k∏

i=1

[ca′
i
(τ ′i)c

†
ai

(τi)]×

× 1

k!
Det








∆a1a′
1
(τ1, τ

′
1) ∆a1a′

2
(τ1, τ

′
2) · · · ∆a1a′

k
(τ1, τ

′
k)

∆a2a′
1
(τ2, τ

′
1) ∆a2a′

2
(τ2, τ

′
2) · · · ∆a2a′

k
(τ2, τ

′
k)

...
... · · · ...

∆aka′
1
(τk, τ

′
1) ∆aka′

2
(τk, τ

′
2) · · · ∆aka′

k
(τk, τ

′
k)








(3.31)

Now the bath degrees of freedom have been integrated out which turns to be the
hybridization function acting on the cluster degrees of freedom , working like an
external field. Since the hybridization functions are just complex numbers, to know
the total partition function we now need to know the trace over the cluster degrees
of freedom.

TτTrae
−

R β

0
Hloc

k∏

i=1

[ca′
i
(τ ′i)c

†
ai

(τi)] = Zloc < Tτca′
1
(τ ′1)c

†
a1

(τ1) · · · ca′
k
(τ ′k)c

†
ak

(τk) >

(3.32)
Finally, we obtain the following equation for the total partition function

Z =ZbZloc

∑

k

1

k!

∫ β

0

k∏

i=1

dτi

∫ β

0

k∏

i=1

dτ ′i
∑

aa′

〈Tτca′
1
(τ ′1)c

†
a1

(τ1) · · · ca′
k
(τ ′k)c

†
ak

(τk)〉

× 1

k!
Det
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(τk, τ

′
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k
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(3.33)
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Here, Zloc = Trae
−

R β

0
Hloc. The evaluation of the trace over the local variables is

exactly same as we discussed in the introduction of this thesis. One has to know all
the eigenvalues and eigenstates of the local Hamiltonian. The operator c and c† will
be expressed as matrix under the eigenstate basis. The evaluation of trace becomes
the determination the diagonal elements of the total matrix production which we
will discuss more detail later on.

For the current problem, we have N flavors, which could be site, band and spin.
Let’s take flavor as site index now. The local Hamiltonian is given as

Hloc = −t
N∑

<i,j>=1

∑

σ

(c†iσcjσ + h.c.) + U
N∑

i=1

ni↑ni↓ − µ
N∑

i=1

ni (3.34)

The self-consistent condition for such a many-impurity problem dependents on the
specific DMFT methods we are going to use. But no matter which method we
choose, the resulting hybridization function will be a N × N matrix. One simplifi-
cation happens if we can actually diagonalize the hybridization matrix which in the
end results in the multi-band implementation presented in the work of P. Werner
[Werner and Millis (2006)].

3.3.2 Multi-Band Implementation

Suppose we can find a uniform transformation U which does not depend on frequency
and it can actually diagonalize the hybridization function, then it can also diagonal-
ize the hopping matrix in the local Hamiltonian, since they have the same property.
At the same time, we also need to apply this transformation on the interaction part.
H̃loc = UHlocU †. Note that such diagonalization is different from the full diagonal-
ization of the total Hamiltonian, from which we can determine all the eigenvalues
and eigenstates. Here the diagonalization is only for the one particle part in the
local Hamiltonian, since we are going to make the hybridization function diagonal.
Normally, such transformation will lead to a more complicated interaction form in
the end. It might be the spin-spin interaction or the pair-pair interaction which
are difficult dealt with in the other methods, for example Hirsch Fye QMC. But it
does not bring in too much computational burden in the strong-coupling CTQMC
since we keep the local Hamiltonian unchanged during the expansion. And such
diagonalization of the hybridization function introduces a great simplification for
simulation.

Before discussing the advantage of such transformation, we give a simple example
– the two sites Hubbard model. It is local Hamiltonian is obtained easily by taking
N = 2 in Eq. (3.34)

Hloc = −t
∑

σ

(c†1σc2σ + c†2σc1σ) + Un1↑n1↓ + Un2↑n2↓ − µ(n1 + n2) (3.35)

Taking the uniform transformation as U = 1√
2

(
1 1
−1 1

)

. The above local Hamilto-
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nian will be transformed to be

H̃loc = −(µ+t)na−(µ−t)nb +
U

2
[

a,b
∑

i

ni↑ni↓+

a,b
∑

i6=j

ni↑nj↓−(a†↑a
†
↓b↑b↓+a†↓b

†
↑b↓a↑+h.c.)]

(3.36)
Here aσ = 1√

2
(c1σ + c2σ), bσ = 1√

2
(c2σ − c1σ). Now, the one particle part has been

diagonalized. It is equivalent to the single site two-band model. Each band has a
hybridization function which is not coupled to any other band. We can take each
band as a flavor, then all elements in each hybridization function matrix in Eq.
(3.33) must come from the same flavor. In this case, Eq. (3.33) can be written as

Z =ZbZloc

∑

k

1

k!

∫ β

0

k∏

i=1

dτi

∫ β

0

k∏

i=1

dτ ′i〈Tτ

∏

a

ca(τ
′
1)c

†
a(τ1) · · · ca(τ ′k)c†a(τk)〉

×
∏

a

1

ka!
Det
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′
1) ∆a(τ1, τ

′
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′
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∆a(τ2, τ
′
1) ∆a(τ2, τ

′
2) · · · ∆a(τ2, τ

′
k)

...
... · · · ...

∆a(τk, τ
′
1) ∆a(τk, τ

′
2) · · · ∆a(τk, τ

′
k)








(3.37)

Note that the total determinant of the hybridization matrix now becomes the prod-
uct of it in each flavor a. During the simulation, one only needs to calculate the
new determinant in one specific flavor in stead of working for all the flavors. The
total perturbation order (half of the total number of the operators in the trace) is
given as the sum of the perturbation order for each flavor. k =

∑

a ka.

Single Band – Graphical Representation

If there is only one band in Eq. (3.37), we can further simplify it as

Z =ZbZloc

∑

k

1

k!

∫ β

0

k∏

i=1

dτi

∫ β

0

k∏

i=1

dτ ′i〈Tτc(τ
′
1)c

†(τ1) · · · c(τ ′k)c†(τk)〉

× 1

k!
Det








∆(τ1, τ
′
1) ∆(τ1, τ

′
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′
k)

∆(τ2, τ
′
1) ∆(τ2, τ

′
2) · · · ∆(τ2, τ

′
k)

...
... · · · ...

∆(τk, τ
′
1) ∆(τk, τ

′
2) · · · ∆(τk, τ

′
k)








(3.38)

The simulation of this partition function turns to be very simple in the segment
picture, where the determinant and the trace can be efficiently evaluated if there
is only density-density interaction present in the impurity Hamiltonian. This origi-
nates from the fact that ψ and ψ† appear alternatively in the trace after the time
ordering operation4.

Let us take the third order expansion term as example. In the segment repre-
sentation, any order term can be represented as a collection of segments in [0, β).
The segment is the representation of the occupied state. Corresponding to the third
order term, the general configuration is illustrated in Fig. 3.3. Both the trace value
and the determinant can be calculated from this diagram. The empty circle and

4One can easily prove that ψψ = ψ†ψ† = 0 if there only has density-density interaction in the
Hamiltonian.
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.

Figure 3.3: General configuration of a collection of segments. Here k = 3 terms is
taken for example.

solid dot are the creation and annihilation operators respectively. Any connection
between one creation and annihilation operator represents a propagator from the
creation time τ s to annihilation time τ e. The sum of all the possible connections
consists of the determinant of this order. We can illustrate this diagram form in the
following way. The determinant of the third order term takes the form

∣
∣
∣
∣
∣
∣

∆(τ e
1 − τ s

1 ) ∆(τ e
1 − τ s

2 ) ∆(τ e
1 − τ s

3 )
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2 ) ∆(τ e

2 − τ s
3 )

∆(τ e
3 − τ s

1 ) ∆(τ e
3 − τ s

2 ) ∆(τ e
3 − τ s

3 )

∣
∣
∣
∣
∣
∣

(3.39)

Every term in this determinant can be represented by the corresponding diagram
in Fig. 3.4, and the whole determinant is represented by the configuration diagram
3.3. In this graph, one should note that the last diagram in this graph has negative
weight. In fact, all the diagrams which have an odd number of crossing dashed lines
have negative weight. Therefore, any sampling which only considers part of the
diagrams in this segment representation will run into a sign problem. One should
seriously take into account all the diagrams in each order.

To know the optimal value of perturbation order k, we performed Monte Carlo
random walk in the space of perturbation order as we did in the weak-coupling
method. This is realized in the segment representation by two types of update. One
for segment, the other is for anti-segment which is the part between two segments
and it represents an empty state or a hole. For each type of update, one can consider
to insert or remove segment/anti-segment operation. For example, one can insert
a segment in any empty part(or on an anti-segment) which finally increases the
perturbation order by one. One also can remove any existing segment to decrease
the perturbation order. It is similar for the operation of anti-segment. The detailed
update procedure and calculation of the determinant ratio can be found in the
Appendix A.

In Monte Carlo simulation, the random walk in fact is not really random. It is
controlled by the weight function which eventually relates with the so-called detailed
balance condition. Naive random sampling of the whole configuration space does
not work. The solution to this problem has been known for long time. One has
to use the important sampling technique which is designed to draw the configura-
tions according to their Boltzmann weight P [{σi}]. A simpler sufficient and more
frequently used condition for a Markov chain is the detailed balance:

p[{σi}]W ({σi} −→ {σ′
i}) = p[{σ′

i}]W ({σ′
i} −→ {σi}) (3.40)

In order to illustrate this condition in both weak and strong coupling CTQMC, we
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Figure 3.4: Graphical representation of the determinant of the third order term in
the perturbation expansion.

start with a k dimensional M-matrix5 and want to increase the dimension of this
matrix6 by one. From the above general formula of Monte Carlo important sampling,
we can see that

pk→k+1

pk+1→k
=
Wk+1→k

Wk→k+1
(3.41)

This fraction can be easily written as the ratio of the integrand of partition function.
It’s easy to prove that all the conditions are fulfilled by this kind of choice. The
detailed balance for the weak-coupling and the strong-coupling method are in fact

5In strong-coupling CTQMC, it means that we have a collection of segments

sk = (τs
1
, τe

1
; τs

2
, τe

2
, · · · ; τs

k , τ
e
k )

.
6In the weak-coupling method, it means moving k to k + 1, and both the new row and column

will locate at k + 1-th row and k + 1-th column in this M-matrix. In the strong-coupling method,
it means inserting a new segment/anti-segment in this collection of segments.
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the same. In order to show this, we use the following general formula to express the
perturbation expansion of the partition function. One can write it in a more explicit
way with respect to different expansion method.

Z = Z0

∞∑

k=0

Zk (3.42)

here, Z0 is the partition function for the action which is not expanded7. Zk is the
k-th order expansion term of the partition function.

Zk =

∫

dr1

∫

dr′1 · · ·
∫

dr2k

∫

dr′2kPα det(M−1
k ) (3.43)

The pre-factor Pα represents the product of the other terms in this expansion ex-
cept for the determinant and the integral over r is a combination of integral over
imaginary time and summation of spin direction. In the weak-coupling method, this
pre-factor is a constant, see below. In the strong-coupling method it also includes
the influence from the local part of the partition function.8 In this notation, the
detailed balance condition has a form like

pk→k+1

pk+1→k
=
Wk+1→k

Wk→k+1
=
Pk+1 det(M−1

k+1)d
4r

Pk det(M−1
k )

(3.44)

The integral between k-th order and (k + 1)-the order are different by d4r, which
represents dr2k+1, dr

′
2k+1,dr2k+2,dr

′
2k+2. The determinant ratio is obtained in the

fast-update algorithm shown in Appendix A. In the weak-coupling method, we
randomly choose an imaginary time in the range of [0, β), the probability of this
choice is proportional to β. Note that in each expansion order, we have a factor
(−U)k/k!. Thus basically Pk ∝ (−βU)k/k!.

.

Figure 3.5: Graphical representation of inserting a new segment in the collection
of three segments.

In the strong-coupling method, the pre-factor Pk contains two part: 1/k! and
the trace over the local degree of freedom. The trace can also be calculated in the
segment representation. Here, we only take insertion as example. Suppose the num-
ber of existing segments is k. The new segment (τ s

new and τ e
new) does not randomly

7It is the non-interacting part of full partition function in the weak-coupling method but the
local part (normally, the local interaction U and chemical potential in the Hubbard model.) in the
strong-coupling method.

8Explicitly to say, it is the trace over the local degrees of freedom.
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locate in the range [0, β) since there are k segments existing. Note in the single site
DMFT with only density-density type interaction, the creation and annihilation op-
erator can only occur in an alternative way. This means the new inserted segment
can only be accepted if it locates at empty part in this collection. Practically, we
first randomly choose a starting point in the range [0, β), it is accepted when this
point is not occupied by any existing segment, otherwise this insertion is rejected.
The end point is determined by this starting point position and also the other k
existing segments. The possible range for the end point of this new segment is τmax,
see Fig. 3.5. In this figure, suppose there are two segments existing before insertion,
let us say τ s

1 , τ
e
1 and τ s

3 , τ
e
3 . Now we are going to insert the second segment. We first

randomly select the starting point τ s
2 (In Fig. 3.5, it is a acceptable position.), the

position for the end point can be anywhere in the range (τ s
2 , τ

s
2 + τmax). Once τ e

2

is decided, the length of this segment τ̃ is given as τ e
2 − τ s

2 . Then the ratio of this
insertion is given as

ratioW
k→k+1 =

βτmax

k + 1
×

∣
∣
∣
∣

det(M−1
k+1)

det(M−1
k )

∣
∣
∣
∣
× e(τ̃µ−Uτoverlap) (3.45)

Figure 3.6: In the interacting case, the overlap between the spin-up and spin-down
segment represents the on-site Coulomb interaction.

It is easily understood that the probability for the new start and end point
are proportional to β and τmax, respectively. The exponential function comes from
the trace ratio between the new and old configuration, this can be calculated by the
normal matrix production as we showed in the first chapter. The introduction of the
segment representation now greatly simplifies this calculation by only considering
τmax and τ̃ . For the non-interacting Hubbard model, it only contains the chemical
potential term. For the interacting case, one needs to consider two collections of
segments, one for spin-up and one for spin-down. Since segment represents the
occupied state, the overlap between these two collections just means that this part
of state is occupied by spin-up and spin-down particles at the same time. In Hubbard
model, it will give us the interaction U between them. This overlap is graphically
shown as Fig. 3.6. The update ratio depends on the overlap change with respect to
the new inserted segment. In our example, it is given as the blue part in Fig. 3.6.

The result for the removal segment and anti-segment move can be obtained
in the same way. Tabular (3.1) shows the update ratio for the strong-coupling
method in the interacting case. In the high temperature and strong coupling regime,
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insert segment Zk+1

Zk

βτmax

k+1
eτ̃µ−Uτoverlap

remove segment Zk−1

Zk

k
βτmax

e−τ̃µ+Uτoverlap

insert anti-segment
Zk+1

Zk

βτmax

k+1
e−τ̃µ+Uτoverlap

remove anti-segment Zk−1

Zk

k
βτmax

eτ̃µ−Uτoverlap

Table 3.1: Detailed balance condition of strong coupling method in graphical repre-
sentation.

especially for the insulating state, one need to include the move of full and empty
line since in these cases, the optimal perturbation order is relatively small and the
zero dimensional M-matrix makes a great contribution to the sampling.

As for comparison, in the traditional Hirsch-Fye method, the configuration ma-
trix has a dimension proportional to 5βU , but 0.5βU in the weak-coupling method.
In this strong-coupling method, it is lower than both of the above two methods. In
figure 3.8, one can see that for the parameter βt = 50, U/t = 3, the optimal order is
32 in this strong-coupling method, but nearly 150 in Rubtsov’s method and 1500 in
Hirsch-Fye method. And with the increase of the interaction strength, the average
perturbation order in the strong-coupling method becomes smaller. This means that
the strong-coupling method is more suitable than the other methods for studying
the strong interaction region. With respect to the temperature dependence, the
strong-coupling method is the same as the weak-coupling method in the sense that
with the decrease of temperature the average perturbation order k becomes larger,
see Fig. 3.7.

3.3.3 Multi-Site Implementation

In most cases, the hybridization function cannot be diagonalized. One has to work
with the matrix form of it. Eq. (3.33) is the equation we always use during the
simulation. There are three basic Monte Carlo update steps:

1. Insertion of a pair of operators ca and c†a′ at random time τnew and τ ′new. These
two operators are randomly selected from N flavors. The two random time
τnew and τ ′new locate in the range [0, β), therefore the update ratio for the
operation of inserting a pair of time is

Pk→k+1 =

(
βN

k + 1

)2
Trnew

Trold

Dnew

Dold
(3.46)

2. Removal of a pair which is randomly selected from the existing k creation
operators and k eliminating operators. The update ratio is

Pk→k−1 =

(
k

βN

)2
Trold

Trnew

Dold

Dnew
(3.47)

3. At high temperature and strong interaction regime, the average perturbation
order is very small. In this case it is hard to insert or remove one pair. The
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Figure 3.7: Green’s function in the non-interacting case, and the perturbation order
is proportional to the inverse of temperature.
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Figure 3.8: Perturbation order of expansion at βt = 50 for different interaction
strength, and the critical order decreases with the interaction.
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above two operations are quite inefficient. The alternative operation is to shift
the end point of a selected pair. From the existing k annihilation operators,
randomly select one and try to change the value of τ ′. This new changed
time will randomly locate at one of the N flavors at [0, β). The resulting
configuration has the same perturbation order k, but different determinant
and trace. The update ratio for shifting the end point is

Pshift =
Trnew

Trold

Dnew

Dold
(3.48)

Here Dnew/Dold is the ratio of the new and old determinant for the hybridization
matrix. Trnew/Trold is the ratio of the trace for the new and old configuration. In
contrast, in the multi-Band implementation, we have a different update ratio. Take
the insertion as example, since each flavor is decoupled we can only select the new
creation and annihilation operator in the same flavor, so the update ratio is given
as

Pk→k+1 =

(
β

ka + 1

)2
Trnew

Trold

Da
new

Da
old

(3.49)

Note this ratio only relates with the perturbation order in the specific flavor since
the other flavor does not change during the current operation. For the same reason,
the ratio of the total determinant reduces to that in this flavor, as well.

One can easily see that there are two kind of values which need to be evaluated
in order to determine the update ratio. One is the for the trace, the other one is for
the determinant. Let us first discuss the trace evaluation.

Trace =< Tτ ca′
1
(τ ′1)c

†
a1

(τ1) · · · ca′
k
(τ ′k)c

†
ak

(τk) > (3.50)

Time ordering operator moves the smallest time to the far right, in the end after
the time ordering, the above equation might become

Trace =
1

Zloc

∫

D[c, c†]e−
R β

0
Hloc[can1

(τ ′n1
)c†an2

(τn2
) · · · can2k−1

(τ ′an2k−1
)can2k

(τn2k
)]

(3.51)
Here τ ′n1

> τn2
> · · · > τ ′n2k−1

> τn2k
. Note this is only one possible configuration, the

creation and annihilation operator do not necessary appear alternatively. Suppose
we know all the eigenvalues and eigenstates of the local Hamiltonian9. We now use

the eigenstates as basis to rewrite the above equation. e−
R β

0
Hloc becomes a diagonal

matrix with the element e−βEm where m = 1, · · · , Nm
10. Each operator O(τ) has

the form of
∑

m1,m2
eEm1

τŌe−Em2
τ in Heisenberg picture, here operator O has been

rewritten as matrix Ō in the eigenbasis. Then the evaluation of the trace can be
done by multiplying all the matrix one by one.

Trace =
∑

{m}
e−(β−τn1

)Em1

(
can1

)

m1m2

e−(τn1
−τn2

)Em2 · · ·
(

can2k−1

)

m2k−1m2k

e−τn2k
Em2k

(3.52)

9This is straightforward but tedious calculation, especially for the larger cluster, one can use a
simple ED code to do this job.

10Nm is the total number of eigenvalues, which is given as 4N .
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Normally, the above matrix production is quite time consuming since each matrix
has dimension Nm ×Nm. Nm greatly increases with the increase of site numbers in
the cluster. Therefore the greatly increased Hilbert space stops the investigation of
larger cluster in this method. One has to simplify the above implementation, which
is possible sometime. Here we list three possible ways:

eigenValues and eigenStates
N = 0, S = 0 Sz = 0 |0, 0〉 0

N = 1, S = 1
2

Sz = 1
2

1√
2
(| ↑, 0〉 + |0, ↑〉) −µ− t

1√
2
(| ↑, 0〉 − |0, ↑〉) −µ+ t

Sz = −1
2

1√
2
(| ↓, 0〉 + |0, ↓〉) −µ− t

1√
2
(| ↓, 0〉 − |0, ↓〉) −µ+ t

N = 2, S = 1

Sz = 1 | ↑, ↑〉 −2µ

Sz = 0

− 1√
2
(| ↑, ↓〉 − | ↓, ↑〉) −2µ

− 1√
2
(| ↑↓, 0〉 − |0, ↑↓〉) −2µ+ U

1
c′
1

[(| ↑, ↓〉 + | ↓, ↑〉) − c1(| ↑↓, 0〉 + |0, ↑↓〉)] U−4µ+
√

U2+16t2

2

1
c′
2

[(| ↑, ↓〉 + | ↓, ↑〉) − c2(| ↑↓, 0〉 + |0, ↑↓〉)] U−4µ−
√

U2+16t2

2

Sz = −1 | ↓, ↓〉 −2µ

N = 3, S = 1
2

Sz = 1
2

1√
2
(| ↑↓, ↑〉 + | ↑, ↑↓〉) U − 3µ− t

1√
2
(| ↑↓, ↑〉 − | ↑, ↑↓〉) U − µ+ t

Sz = −1
2

1√
2
(| ↑↓, ↓〉 + | ↓, ↑↓〉) U − 3µ− t

1√
2
(| ↑↓, ↓〉 − | ↓, ↑↓〉) U − 3µ+ t

N = 4, S = 0 Sz = 0 | ↑↓, ↑↓〉 2U − 4µ

Table 3.2: The eigenstates and eigenvalues of the local Hamiltonian for a two site
Hubbard cluster.

1. Sparse matrix operation. Since most of the elements in the operator matrix
are zero, much computational time are spent on the multiplication with zero
in the matrix production. The full matrix production can be replaced by the
sparse matrix production, where we only store the nonzero elements and its
corresponding position in the full matrix.

2. Work with the good quantum number. For the Hubbard model we are study-
ing, the total number of particles Nf , the total spin S and its z-component Sz

which are normally the good quantum numbers. The resulting Hilbert space
of the local Hamiltonian can be grouped by these quantum numbers. The
Hilbert space is block diagonal, each block can be identically labeled by those
quantum numbers.

3. Storing the time evolution. In each update step, we have to calculate the
trace for each new configuration, no matter whether it is accepted by the
Monte Carlo random walk or not. And normally most of the attempts are
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rejected. Therefore it is very economical to save the time evolution matrix at
each accepted update from both the left and right sides.

The analysis of good quantum numbers in the Hilbert space brings some incon-
venience in the sense that each operator only can change the eigenstate from one
block to another, which is known to us. For example,

c†a|Nf , S, Sz〉 = |Nf + 1, S ± 1

2
, Sz + σ〉 (3.53)

Then in the matrix production, we can ignore the eigenvalue matrix first.By tracing
each nonzero element in the first operator matrix we can know which one finally
survives in the matrix production11. During this process, one has to remember its
trajectory in each operator matrix. Once we find the surviving element(or elements),
the corresponding eigenvalues at each stop on the trajectory should be multiplied
which finally gives the matrix product results.
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Figure 3.9: Histogram of the two Bethe-plane Hubbard model at temperature βt =
100 and various interaction.

Let us take a two site cluster as example in order to illustrate the implementation
of the above idea. Table (3.2) shows the eigenvalues and eigenstates of the local
Hamiltonian. Where c1 = −(U +

√
U2 + 16t2)/4t, c2 = −(U −

√
U2 + 16t2)/4t, and

c′1 =
√

2 + 2c21, c
′
2 =

√

2 + 2c22. There are eight different operators c†1↑, c1↑, c
†
1↓,

11This process is accelerated by considering the good quantum numbers as we discussed
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c1↓, c
†
2↑, c2↑, c

†
2↓, c2↓. Let us suppose that we are going to calculate the trace for

perturbation order k = 2 with the configuration: c†1↑(τ1)c2↓(τ2)c1↑(τ3)c
†
2↓(τ4). This

example is a possible and acceptable configuration for the two site cluster problem.
Imaginary time has been ordered, τ1 > τ2 > τ3 > τ4. By using the above looking-up
method between different block states, we can finally know that the following block
states contribute to the trace.

|N = 1, S =
1

2
, Sz =

1

2
〉, |N = 2, S = 1, Sz = 1〉

|N = 2, S = 1, Sz = 0〉, |N = 3, S =
1

2
, Sz =

1

2
〉

The trace calculation only need to be performed during these states instead of the
whole Hilbert spaces, which greatly reduces the computational burden.
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Figure 3.10: The on-site Green’s function and the Green’s function for the propa-
gation between two planes.

Now, we present some results from the calculation of a two Bethe-plane Hubbard
model, whose local Hamiltonian has a similar form as the two-site Hubbard cluster.
One only need to replace t with t⊥, which is the inter-plane hopping amplitude and
the intra-plane hopping is still given as t. In this example, we used the Multi-Band
implementation, some results are listed below.

Fig. 3.9 shows the distribution of the perturbation order as a function of on-
site interaction and the inter-plane coupling. The first three curves show that for
the same inter-plane coupling, with the increasing of on-site Coulomb interaction,
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the average perturbation order k becomes smaller. The same thing happens to the
inter-plane coupling. With the increasing of the inter-plane coupling, the average
perturbation order becomes smaller. Fig. 3.10 shows the intra-plane Green’s func-
tion G0 which is just the on-site one in this model12, and the inter-plane Green’s
function G1. The parameters are βt = 100 and U/t = 4.6. For this parameter,
the system is in the coexistence region of the Metal-Insulator transition. Thus we
have two coexisting solutions for G0 and G1. Here, we only plot a narrow range
for τ/β ∈ [0, 0.02]. G0 drops from 0.5 to 0 rapidly, which is difficult to examine
in the Hirsch-Fye method since a large number of time slices are needed. CTQMC
does not introduce any time discretization, therefore the quick dropping behavior
is easily obtained in CTQMC. In the Hirsch-Fye method, L = 256 is a large time
slice number for current PC. Even with this number, in the range of [0, 0.02], there
are only 5 points existing which are not sufficient for smoothly describing the quick
dropping behavior of G0.

12Each plane has been mapped to an impurity.



Chapter 4

Dual fermion approach – long range

correlation

Although various cluster extensions of dynamical mean field method are constructed
from different physics considerations, they are all the natural generations of single
site DMFT. Cellular DMFT is the cluster formulation of DMFT; Dynamical Cluster
Approximation is the momentum cluster extention. Variational Cluster Approxima-
tion uses the variational principle to determine the real system grand potential from
a reference cluster calculation based on the self-energy functional theory. The limi-
tation of these methods is easy to see, only finite sites cluster are accessible under
the restriction of computational burden. Within the finite size cluster, on the one
hand it is not easy to reproduce all the symmetry of the original lattice, on the other
hand it misses the long range correlation.

Recently, some efforts have been made to take the spatial fluctuations into ac-
count in different ways [Toschi et al. (2007); Rubtsov et al. (2008); Kusunose (2007);
Tokar and Monnier (2007); Slezak et al. (2006)]. These methods construct the non-
local contribution of DMFT from the local two-particle vertex. In the self energy
function, only certain diagrams are included, which makes them only approximately
include the non-local corrections. Various cluster extentions of DMFT try to ex-
actly incorporate the non-locality within a small size reference system. References
13-17 considered the momentum dependence in the self energy and vertex function
in an approximate way. In contrast to the cluster DMFT, the long range informa-
tion is naturally included in these methods from the. Our calculations show that
the such approximate momentum dependent self energy and vertex function are
normally sufficient to generate reliable results compared to numerically expensive
calculations.

In this chapter, we will discuss two of these methods, the dual fermion method
(DF) and the dynamical vertex approximation (DΓA). The one particle Green’s
function and the two particle susceptibility are calculated to study the non-local
corrections to the single site DMFT. The discussion of the difference between these
two methods is also given.

47
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4.1 Decoupling and dual fermion

Here, We use the general one-band Hubbard model as example

H =
∑

k,σ

ǫk,σc
†
kσckσ + U

∑

i

ni↑ni↓ (4.1)

c†kσ(ckσ) creates(annihilates) an electron with spin-σ and momentum k. The dis-
persion relation is given as ǫk = −2t(cos kx + cos ky). The corresponding action
is:

S[c∗, c] =
∑

ν,k,σ

(ǫk − µ− iν)c∗kνσckνσ − U
∑

i

∫ β

0

dτni↑(τ)ni↓(τ) (4.2)

Single site DMFT simplifies such lattice action into an effective action which only has
one interacting site while the others serve as non-interacting bath. Cluster DMFT
consider a few interacting sites and takes the remaining lattice degrees of freedom
as bath. The non-interacting remaining degree of freedom can be integrated out
exactly, which yields an effective action of the impurity which couples to the bath
described by an effective hybridization function. Let’s take the single site DMFT
action as example.

Simp =
∑

ν,σ

(∆ν − µ− iν)c∗kνσckνσ − U

∫ β

0

dτn↑(τ)n↓(τ) (4.3)

We can relate the lattice action with the DMFT action by adding and subtracting
a hybridization function.

S[c∗, c] =
∑

i

Si
imp −

∑

ν,k,σ

(∆ν − ǫk)c
∗
kνσckνσ (4.4)

The first term describes a collection of lattice sites which are independent of the
others. Therefore they can be viewed as impurities. It naturally contains the local
information of the system! The last term describes the correlation between different
lattice sites which are non-local. The general idea of the dual fermion method is
to change this term to the coupling to an auxiliary field f(f †). By applying the
Gaussian identity to this bilinear term, the lattice action becomes

S[c∗, c; f ∗, f ] =
∑

i

Si
imp +

∑

k,ν,σ

[g−1
ν (c∗kνσfkνσ + h.c.) + g−2

ν (∆ν − ǫk)
−1f ∗

kνσfkνσ] (4.5)

The partition function of lattice fermion now can be written as

Z = Zf

∫

e−S[c,c∗;f,f∗]D[c, c∗; f, f ∗] (4.6)

where Zf =
∏

kν g
2
ν(∆ν − ǫk). We obtained Eq. (4.5) from the original lattice action

Eq. (4.4) by using the Gaussian identity, which means there’s on any approximation
introduced. The equivalence of Eq. (4.4) and Eq. (4.5) allows us to setup an exact
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relation between the DF Green’s function and the lattice Green’f function. By
differentiating these two actions over the kinetic term, we have

∂

∂ǫk
Z[c, c∗] =

∂

∂ǫk
Z[c, c∗; f, f ∗]

= (
∂

∂ǫk
Zf )

∫

e−S[c,c∗;f,f∗]D[c, c∗; f, f ∗]

−Zf

∫

e−S[c,c∗;f,f∗] ∂

∂ǫk
S[c, c∗; f, f ∗]D[c, c∗; f, f ∗] (4.7)

The derivative of the original action over ǫk is nothing but the lattice Green’s func-
tion

∂

∂ǫk

Z[c, c∗] = −
∫

D[c, c∗]e−S[c,c∗]c∗kνσckνσ = −Z[c, c∗]Gν,k (4.8)

Similarly, the derivative of the new action can be obtained as

−Z[c, c∗; f, f ∗](∆ν − ǫk)
−1 − Zf

∫

D[c, c∗; f, f ∗]e−S[c,c∗;f,f∗]g−2
ν (∆ν − ǫk)

−2f ∗
kνσfkνσ

(4.9)
The second term defines the dual fermion Green’s function Gd

ν,k = −〈fν,kf
†
ν,k〉. The

above two equations form an exact relation between the Green’s function of lattice
electrons and dual fermions.

Gν,k = g−2
ν (∆ν − ǫk)

−2Gd
ν,k + (∆ν − ǫk)

−1 (4.10)

The exact relation of the lattice fermion Gν,k and the dual fermion Gd
ν,k allows us

to determine the lattice Green’s function from the latter. Hence the solving of
an interacting many body problem now turns to be the determination of the dual
propagator Gd

ν,k.

The dual fermion Green’s function Gd
ν,k is determined by integrating Eq. (4.5)

over c∗, c which yields a Taylor expansion series in terms of f ∗ and f . The Grassmann
integral makes sure that f ∗ and f only appear in pairs, associated with the lattice
fermion n-particle vertex obtained from the single site DMFT calculation. The
action corresponding to site ’ i ’ is

Ssite[ci, c
∗
i , fi, f

∗
i ] = Simp[ci, c

∗
i ] +

∑

ν

g−1
ν (c∗iνfiν + f ∗

iνfiν) (4.11)

The summation is only over fermionic frequency since each lattice sites has been
decoupled now. Expanding the last term Si

coup =
∑

ν(c
∗
iνfiν + f ∗

iνciν), we obtain a
Taylors series

∫

e−SsiteD[c, c∗] =

∫

e−SimpD[c, c∗][1 − Scoup +
1

2!
S2

coup + · · · ] (4.12)

In the integral over [c, c∗], only pairs of c and c∗ survives. The first two corrections
come from the second and the fourth order term which have the following form
∫

e−Ssite
D[ci, c

∗
i ] =

∫

e−Simp [1 +
∑

ν

g−2
ν cic

∗
i f

∗
i fi +

∑

1234

g−4
ν c1c

∗
2c3c

∗
4f

∗
1 f2f

∗
3 f4 + · · · ]

= Zimp[1 +
∑

ν

g−1
ν f ∗

i fi + g−4
ν G1234f

∗
1 f2f

∗
3 f4 + · · · ]

= Zimpe
P

ν g−1
ν f∗

ν fν−V [fi,f∗
i ] (4.13)
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V is the effective interaction of dual fermion. Now the total action of the dual
fermion can be written as the following form

Z = Zimp

∫

D[f, f ∗]e−
P

kνσ f∗
kνσ

[g−2
ν (∆ν−ǫk)−1+g−1

ν ]fkνσ+V [f,f∗] (4.14)

The bare dual Green’s function is then read out from the one particle part of this
action as

Gd,−1
0 = −g−1

ν [(∆ν − ǫk)
−1 + gν ]g

−1
ν (4.15)

Up to now, all the above derivations do not rely on any approximation! To
calculate the dual fermion self-energy, we are facing two problems: (1). The de-
termination of the effective interaction V . As we can see from the above equation,
V contains all the vertex correction terms up to infinite order. It also contains
all sorts of combinations of different order vertices. Normally, it is impossible to
be determined precisely. (2). Determination of the dual fermion self energy from
the effective interaction. Since the dual fermion interacts with each other through
V , this many-body interacting problem is as difficult as the original lattice prob-
lem. It seems we didn’t simplify our original problem but introduced an even more
complicated interacting problem. The advantage of all the above transformations
is not easy to see until now. All the secrets of the transformation is that we have
tranformed an strongly interacting problem to an effectively weak-coupling problem,
which will become clear later on.

Let us now focus on the solution of the dual fermion Green’s function in the sim-
plest way. Concerning the first problem listed above, in the dual fermion method
we only determine the effective interaction in the simplest way. The first term in
the effective interaction is the two particle DMFT vertex. Let us only consider its
contribution and suppose that the contribution from all the higher vertex terms are
small. Then the effective interaction is given as −1/4γ4f ∗

1 f2f
∗
3 f4 where γ4 is the two

particle vertex from the DMFT calculation. Even if we only consider the two parti-
cle vertex, the problem is still not easy to solve since there are still lots of feynman
diagrams in the expansion over the two particle vertex. The expansion includes all
the combinations of this two particle vertex with the one particle propagator. This
is the difficulty stated in the second problem. Here we further adapt another ap-
proximation, we only consider the first two order diagrams in the expansion over the
two particle vertex. One can see, here we introduced two approximations. Firstly,
we only consider the two particle vertex contribution in the effective potential. Sec-
ondly, in the expansion of the effective interaction, we only consider the first order
diagrams. This is obviously the simplest approximation.

Rubtsov [Rubtsov et al. (2008)] calculated 2-dimensional Hubbard model in the
dual fermion method, the above approximation gave enough good results compared
with the direct lattice monte carlo calculation. The higher order expansion terms
only improved the resolution. Although there is no direct proof that the expansion
of the dual fermion field is an effectively weak coupling theory, from the numerical
calculation we can believe that only the first two expansion terms which only depend
on the two particle DMFT vertex function are sufficient. In the following context,
we will focus on the non-local correction from the second order term.
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4.2 Perturbation theory of dual fermion Green’s func-

tion

The exact relation between the Green’s function of lattice fermion and dual fermion
gives us another way to determine the lattice properties. This problem now becomes
looking for the Green’s function of dual fermion. This can be achieved by the normal
perturbation method, the only difference with the usual diagram expansion is that
the expansion is in the dual fermion space. Here my calculation is totally based on
the book [Abrikosov et al. (1963)] by using a fully symmetric interaction.

2

1

3

4

(a) (b) (c)

Figure 4.1: (a). first order self energy constructed by local two-particle vertex
function γ(iν1, iν2; iν3, iν4). In the following part, such vertex will be written as a
function of independent two fermionic ν, ν ′ and one bosonic frequency ω. (b) and
(c) are the connected diagram in the second order and the contribution from (c) is
zero in DMFT. Here, the blue line is the dual fermion one particle propagator Gf

0

here. The box represents the two particle vertex.

Known from the Luttinger-Ward functional [Georges et al. (1996)] at infinite
dimension, (c) diagram in Fig. 4.1 contributes nothing to the self energy. Although
(a) diagram survives in large coordinate limit, its contributes nothing, either. The
reason is that this diagram exactly corresponds to the self consistency condition in
DMFT. This can be shown as

∑

k

Gd
0(k) = 0 (4.16)

To prove this relation, it’s better to start from the self consistency condition gν =
∑

k
1

g−1
ν +∆ν−ǫk

. This equation can be easily changed to the following form which is
zero

∑

k

1

gν + (∆ν − ǫk)−1
= 0 (4.17)

This is the same as Eq. (4.16). DMFT self consistency condition ensures that
the first self energy diagram contributes nothing. Note we actually consider this
diagram in the full self-consistent calculation, since starting from the second loop
this diagram has non-zero contribution.
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The first non-local contribution is from the (b) diagram in Fig. 4.1. In the work
of Rubtsov [Rubtsov et al. (2008)] and Hafermann [Hafermann et al. (2007)], they
took this diagram as the main contribution to non-locality of DMFT. It was shown
that the calculation with the first two order diagrams generated results which is in
good agreement with the higher order diagrams calculation. After explicitly writing
down the momentum and frequency indices, the self energy diagram based on the
two particle vertex looks like

k+q,

k, ν k, ν

ν + ωk+q, ν + ω

k’,ν

’ν + ω ’

’

k+q,

Figure 4.2: The first non-local contribution to the dual fermion self energy. For
each vertex, the momentum and frequency conservation law are satisfied.

The corresponding self-energy is

Σ(2)
σ1

(k) = −1

2

T 2

(Nd)2

∑

σ2σ3σ4

∑

k′,q

Gd
σ2

(k + q)Gd
σ3

(k′)Gd
σ4

(k′ + q)

γ(ν, ν + ω; ν ′ + ω, ν ′)γ(ν + ω, ν; ν ′, ν ′ + ω) (4.18)

Here space-time notation is used, k = (~k, ν), q = (~q, ω). Fermion Matsubara fre-
quency νn = (2n + 1)π/β and ω is the bosonic frequency, given as ωm = 2mπ/β.
The above equation has included the conservation law of momentum, frequency.
Take into account all possible spin configurations, the sum over spin index can be
expanded to the following equation

Σ
(2)
↑ (k) = −1

2

T 2

(Nd)2

∑

k′,q

Gd(k + q)Gd(k′)Gd(k′ + q) ×

[γ↑↑↑↑ω (ν, ν ′)γ↑↑↑↑ω (ν ′, ν) + γ↑↑↓↓ω (ν, ν ′)γ↓↓↑↑ω (ν ′, ν) + γ↑↓↓↑ω (ν, ν ′)γ↑↓↓↑ω (ν ′, ν)](4.19)

Here the paramagnetic property G↑ = G↓ has been used in the last step.

Similarly the expression for diagram (a) in Fig. (4.1) is given as

Σ(1)
σ (k) = − T

Nd

∑

σ′,k′

Gd
σ′(k′)γσσ′(ν, ν; ν ′, ν ′) (4.20)

As we discussed, this diagram has no contribution in the sense that the sum over
momentum for Gf

0 is zero. But in a full self-consistent calculation, the dressed dual
fermion Green’s function Gf does not satisfied this condition. Hence from the second
iteration, this diagram gives non-zero contribution.



53 4.2. Perturbation theory of dual fermion Green’s function

Together with the bare dual fermion Green’s functionGd
0(k) = −g2

ν/[(∆ν−ǫk)−1+
gν ], the new Green’s function can be derived from the Dyson equation

[Gd(k)]−1 = [Gd
0(k)]

−1 − Σd(k) (4.21)

where Σ = Σ(1) + Σ(2). The dressed dual Green’s function will be put into the
self-energy calculation again to yield a stationary point with respect to the current
vertex function γ(4) and DMFT Green’s function g(ν) which are not changed. To
find the global converged solution within the current method, one has to perform
a calculation where the DMFT Green’s function and vertex function are also deter-
mined self-consistently. Therefore, after the convergence of the dual fermion Green’s
function calculation, we also need to recalculate the DMFT vertex and Green’s func-
tion.

In order to perform the new DMFT loop, we need to know the new hybridization
function. It is simply done by setting the local full dual Green’s function to be zero,
together with the condition that the old hybridization function makes the bare local
dual fermion to be zero, we obtain a set of equations

1

N

∑

k

[Gν,k − (∆ν − ǫk)
−1]g2

ν(∆
New
ν − ǫk)

2 = 0 (4.22a)

1

N

∑

k

[G0
ν,k − (∆ν − ǫk)

−1]g2
ν(∆

Old
ν − ǫk)

2 = 0 (4.22b)

Which are equivalent to

∆New
ν − ∆Old

ν ≈ 1

N

∑

k

(Gν,k −G0
ν,k)(∆

Old
ν − ǫk)

2 (4.23)

This equation gives us the relation between the new and old hybridization function.

∆New
ν = ∆Old

ν + g2
νG

d
loc (4.24)

4.2.1 One particle properties

The floating chart of the whole calculation is

1. Initially set ∆ν , prepare for DMFT calculation.

2. Determine the converged single-site DMFT Green’s function gν from the hy-
bridization function ∆ν . The self-consistency condition makes sure that the
first diagram of dual fermion self-energy is very small.

3. Run the DMFT program one loop again to calculate the two-particle Green’s
function and corresponding γ-function. The method for determining the γ-
function is implemented for both strong and weak-coupling CT-QMC in the
next section of this paper.

4. Start an inner loop calculation to determine the dual fermion Green’s function,
in the end the lattice Green’s function.
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(a) From Eq. (4.18) and Eq. (4.20), together with the Dyson equation (4.21)
to calculate the self-energy of dual fermions.

(b) Repeating Eq. (4.18) to Eq. (4.21) until one obtains the converged dual
fermion Green’s function.

(c) The lattice Green’s function is given by Eq. (4.10) from dual fermion
Green’s function.

5. Fourier transform the momentum lattice Green’s function into real space, and
from the on-site component Gii to determine a new hybridization function ∆ν .

6. Go back to the Step 3. and iteratively perform the outer loop until the hy-
bridization ∆ν does not change again.

Figure 4.3: The sketch of the DF loop.
The most time consuming part is the
outer loop execution. The inner loop
normally is easy to get converged.

γ(4), gν , ∆ν

?

Gd
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−1 + Σd -

6
�

?
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ν +Gd
loc/g

2
ν

-

6
�

?

END

The most time consuming part of this method is the DMFT calculation of the two
particle Green’s function, the dual fermion perturbation calculation easily converges.
The two particle Green’s function is a fully antisymmetric function. One does not
need to calculate the two particle Green’s function on all the frequency points within
the cutoff in Matsubara space. Only on a few special points the two particle Green’s
function needs to be measured and the value on the other points are given by the
values on those special points through the antisymmetric operation. Another useful
hints is the momentum sum technique. In the dual fermion self energy calculation,
we always have the convolution type of momentum summation which is very easy
to be calculated by FFT (fast Fourier transform).

Fig. 4.4 shows the imaginary part of the one particle local Green’s function
calculated from the DMFT and DF method for various temperature at U/t = 4.0
(upper four) and U/t = 8.0 (lower four) on a 2D square lattice. For U/t = 4.0,
DMFT and DF method generated the qualitatively same results. With the lowering
of temperature, the correction from the non-local effect becomes bigger. At U/t =
8.0 case, the DF method generate very obvious corrections to the DMFT results.
The behavior of the local Green’s function is completely changed by the non-local
correction, where DMFT result shows the metallic behavior while the DF results
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Figure 4.4: The one particle Green’s function from DMFT and DF calculations
for the Hubbard Model on a 2D square lattice. U/t = 4.0(the upper four figures) and
8.0 (the lower four figures) are fixed in each diagram.
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show the more insulating behavior. This correction opens the pseudogap in the
density of states, which is supposed to come from the non-local spin fluctuation
(also see the spin susceptibility results in the next section) effect. For the smaller
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Figure 4.5: Comparison of the DMFT and DF one particle density of state for the
Hubbard model on a 2D square lattice. The left panel is for βt = 4.0 and U/t = 4.0.
The right panel is for parameter βt = 3.0 and U/t = 8.0.

interaction case, the DF density of state is compressed compared to that of DMFT
but the pseudogap does not open. When the interaction is comparable with the
bandwidth (U = W = 8), by including the non-local fluctuation the DF generated
a density of state which shows the pseudogap behavior, while the DMFT result is
still metallic.

4.3 Calculating susceptibility within dual approach

Note that diagram (a) in Fig. 4.1 gives only the local contribution. The first non-
local correction in the DF method is from diagram (b). Momentum dependence
comes into this theory through the bubble-like diagram between the two vertices
which yields the momentum dependence of the DF vertex. The natural way to
renormalize vertex is through the Bethe-Salpeter equation. Since the DMFT vertex
is only a function of Matsubara frequency, the integral over internal momentum
ensures that the full vertex only depends on the center of mass momentum q or
k′ − k. The Bethe-Salpeter equation in the particle-hole channel [Abrikosov et al.
(1963); Nozieres (1964)] are shown in Fig. 4.6.

From the construction of the DF method, we know the interaction of the DF is
coming from the two particle vertex of lattice fermion which is obtained through



57 4.3. Calculating susceptibility within dual approach

���
���
���
���

��
��
��
��

��
��
��

��
��
��

���
���
���

���
���
���

= +
σ

σσ

σ

’

’

σ

σ

σ

σ

σ

σ

σ

σ’

’

’

’ σ

σ

+=
σ σ

σσ

σ

σ

σ

σ

σ

σ

σ

σ

σ

σ

_ _
_

___ _

’’

’’

S

z

z = +_ 1

S   = 0

Figure 4.6: Sz = 0 (ph0) and Sz = ±1 (ph1) particle-hole channels of the DF
vertex, between vertices there are two full DF Green’s function. The Sz = ±1 com-
ponent is the triplet channel, while that for Sz = 0 can be either singlet or triplet.

DMFT calculation. In the Bethe-Salpeter equation, it plays the role as the building-
block. The corresponding Bethe-Saltpeter equation for these two channels are

Γph0,σσ′

q (k, k′) = γσσ′

q (k, k′) − T

N

∑

k′′σ′′

γσσ′′

q (k, k′′)Gd(k′′)Gd(k′′ + q)Γph0,σ′′σ′

q (k′′, k′)

(4.25a)

Γph1,σσ̄
k′−k (k, k + q) = γσσ̄

k′−k(k, k + q) − T

N

∑

q′

γσσ̄
k′−k(k, k + q′)

Gd(k + q′)Gd(k′ + q′)Γph1,σσ̄
k′−k (k + q′, k + q) (4.25b)

Here, the short hand notation of spin configuration is used. γσσ′

represents γσσσ′σ′

,
while γσσ̄σ̄σ is denoted by γσσ̄ where σ̄ = −σ. Γph0(ph1) are the full vertices in the
Sz = 0 and Sz = ±1 channel, respectively. Gd is the full DF Green’s function
obtained from the last section, which is kept unchanged in the calculation of the
Bethe-Salpeter Equation. We solve the above equations directly in momentum space
with the advantage that in this way we can calculate the susceptibility for any specific
center of mass momentum q and it is convenient to use FFT for investigating a larger
lattice. In the above Bethe-Salpeter equations, we used the general form of the
vertex function γ which is the function of frequency and momentum, but in the DF
method, γ is only a function of frequency, for example γσσ′

q (k, k′) = γσσ′

ω (ν, ν ′). This
leads to the fact that the full vertex calculated through the Bethe-Salpeter equation
is a function of a single transfer momentum. The center of mass momentum in the
Sz = 0 and Sz = ±1 channels are q and k′ − k, respectively.

In Eq. (4.25) one has to sum up the internal spin in the Sz = 0 channel which
is not present in Sz = ±1 channel. One can decouple the Sz = 0 channel into the
charge and spin channels γc(s) = γσσ ± γσσ̄ which can be solved separately, and
it turns out that the spin channel vertex function is exactly same as the that in
Sz = ±1 channel, see e.g. P. Nozieres [Nozieres (1964)]. Such relation is true for the
DMFT vertex, and was also verified for the momentum dependent vertex in the DF
method [Brener et al. (2008)]. In our calculation, we solved the Sz = 0 channel by
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decoupling it to the charge and spin components, while the ph1 channel is not used.
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Figure 4.7: Nontrivial part of z-component of dual spin susceptibility defined as
χ̃zz = χzz − χzz

0 . The interaction U/t is fixed as 4. With the increasing of inverse
temperature, the susceptibility grows up dramatically. And divergence at the wave
vector (π, π).

Once the converged momentum dependent DF vertex is obtained, one can de-
termine the corresponding DF susceptibility in the standard way by attaching four
Green’s functions to the DF vertex.

χσσ′

d (q) = χ0
d(q) +

T 2

N2

∑

k,k′

Gd
σ(k)Gd

σ(k + q) × Γσσ′

(q)Gd
σ′(k′)Gd

σ′(k′ + q) (4.26)

The momentum sum over k and k′ can be performed independently by FFT because
the DF vertex Γσσ′

(q) only depends on the center of mass momentum q.
Now the z-component DF spin susceptibility 〈Sz · Sz〉 = 2(χ↑↑

d − χ↑↓
d ) can be

determined from the spin channel component calculated above. In Fig. 4.8, χ̃zz =
χzz − χzz

0 is shown for U/t = 4 at temperatures βt = 4.0 (left panel) and βt = 1.0
(right panel). The momentum qx and qy run from 0 to 2π. The susceptibility is
strongly peaks at the wave vector (π, π) and the peak value becomes larger with the
decrease of temperature. The magnetic instability of the DF system is indicated by
the enhancement of the DF susceptibility. The effect of momentum dependence in
the vertex is clearly visible in this diagram. The bare vertex which is only a function
of frequency becomes momentum dependent through the Bethe-Salpeter equation.
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Later on we will see that such a momentum dependent vertex plays a very important
role in the calculation of the lattice fermion susceptibility.

From this diagram, we also can see that the divergence at (π, π) is the most
important one. Such divergence is more clear to see in the momentum distribution
of χ̃zz. In Fig. 4.8, χ̃zz(Q) as a function of Q is plotted for U/t = 4 and two
different inverse temperatures βt = 1.0, and 4.0. Most of the weights gather at
wave vector (π, π) at the lower temperature case and the peak value becomes higher
and higher. The effect of momentum dependence of the vertex is clearly shown
in this diagram. The bare vertex which is only a function of frequency becomes
momentum dependent through the Bethe-Salpeter equation. Later on, we will see
that such momentum dependent vertex plays a very important role in the calculation
of real fermion susceptibility.
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Figure 4.8: Momentum distribution of nontrivial part of dual spin susceptibility.

4.3.1 Lattice susceptibility in the DF method

The strong anti-ferromagnetic fluctuation in the 2D system is indicated by the en-
hancement of the DF susceptibility at the wave vector (π, π) shown in Fig. 4.8.
This is the consequence of the deep relation between the the Green’s function of the
lattice and the DF, see Eq. (4.10). In order to observe the magnetic instability of
the lattice fermion directly, we calculated the lattice susceptibility based on the DF
method. By differentiating the partition function in Eqns. (4.4, 4.5) twice over the
kinetic term, we obtain an exact relation between the susceptibility of the DF and
lattice fermions. After some simplifications [Brener et al. (2008)], it is given by

χσσ′

f (q) = χ0
f (q) +

T 2

N2

∑

k,k′

G′
σ(k)G

′
σ(k + q)Γσσ′

(q)G′
σ′(k′)G′

σ′(k′ + q) (4.27)

Here G′ cannot be interpreted as a particle propagator, it is defined as:

G′
σ(k) =

Gd
σ(k)

gν [∆ν − ǫ(k)]
(4.28)
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Again, the sum is performed over internal momentum and frequency k, k′ by FFT
and the rough summing up a few Matsubara points. As in Eq. (4.10), this equation
established a connection between the lattice susceptibility and the DF susceptibility.
From this point of view, it is easy to understand that the instability of DF will lead
to the instability of the lattice fermions.

One can also find relations for the higher order Green’s function of the DF and
the lattice fermions in the same way. This emphasizes the similar nature of the DF
and lattice fermions except that DF possess only non-local information, since the
DMFT self-consistency ensures that the local DF Green’s function is exactly zero.

In this paper, we used two different ways to calculate the lattice susceptibility
χm(q) = 2(χ↑↑

f −χ↑↓
f ). First we used the bare vertex γ

(4)
ω (ν, ν ′) which is obtained from

the DMFT calculation. In contrast, the second calculation was performed using the
full DF vertex in the spin channel Γs,q(ν, ν

′). In both of calculations, the full one
particle DF Green’s function was used. The momentum dependent DF vertex is
obtained through the calculation of the Bethe-Salpeter equation. By comparing
these two calculations, we can understand the effect of momentum dependence in
the DF vertex. The lattice susceptibility is expected to be improved if we use the
momentum dependent DF vertex.
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Figure 4.9: The uniform spin susceptibility of the DF using the bare vertex and the
full vertex for half filled 2D Hubbard model at U/t = 4.0 and various temperatures.
These results reproduce the similar solution in comparison with the calculation of
finite size QMC.

In Fig. 4.9 we plotted the results for the uniform susceptibility χm=0(0, 0) by
using both the bare and full DF vertex. The lattice QMC result [Moreo (1993)] is
shown for comparison. The calculation is done for U/t = 4.0 and several values of
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temperature. The momentum sum is approximated over 32 × 32 points here. Both
of these calculations reproduce the well known Curie-Weiss law behavior. Surpris-
ingly enough, the results for the bare vertex fit the QMC results better than that
for the momentum dependent vertex. We attribute it to the finite size effect of
QMC [Moreo (1993)]. A. Moreo showed that χ becomes smaller when increasing
the cluster size N . The 4 × 4 cluster calculation result at the same temperature
are larger than the results from a 8 × 8 cluster calculation. Therefore the results
obtained from the full vertex is expected to be more reasonable.
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Figure 4.10: Uniform spin susceptibility at the wave vector (π, π). The QMC
results are obtained from Ref. [Bickers and White (1991)].

The importance of the momentum dependence in the DF vertex is more clearly
observed in the calculation of χm(π, π) shown in Fig. 4.10. Again, in this diagram
QMC results [Bickers and White (1991)] are shown for comparison. The same pa-
rameters are used as in Fig. 4.9. The result from the DF with bare vertex does not
produce the same results compared to the QMC solution. Even more interesting,
with decreasing temperature the deviation becomes larger. On the other hand, the
calculation with the momentum dependent vertex gives a satisfactory answer. This
shows the importance of the momentum dependence in the DF vertex function.

Fig. 4.11 shows the evolution of χ against q for fixed transfer frequency ωm = 0.
The path in momentum space is shown in the inset. From this diagram we can see
that χm(q) reaches its maximum value at wave vector q = (π, π). Fig. 4.12 shows
the momentum evolution of the lattice susceptibility for U/t = 4.0 and inverse
temperatures βt = 1.0, 4.0. The increasing value at wave vector q = (π, π) shows
the formation of the anti-ferromagnetic order with the decrease of temperature.
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Compared to the DF susceptibility shown in Fig. 4.9, we can see that although the
DF is not a real particle, it has similar nature as the lattice fermion. The magnetic
instability appeared in both DF and lattice fermion. The difference of the DF and
the lattice fermion lies the absence of local property in the DF.
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Figure 4.11: χ(q) vs q at βt = 2.0, U/t = 4.0 for various q which is along the
trajectory shown in the inset.

In summary, the comparison between the DF and QMC results shows the good
performance of the DF method. Our calculation could be done within four hours
for each value of the temperature on average. In this sense, this method is cheap
and reliable compared with the more computationally intensive lattice QMC calcu-
lation. Although we did self-consistent calculations in this paper under the current
construction of the DF method, it is still possible to improve the above results. The
full DF Green’s function is calculated from the first two self energy diagrams shown
in Fig. 4.1 and kept unchanged in the calculation of the Bethe-Salpeter equations.
This is not self consistent in the sense that the momentum dependence of the full
vertex(calculated from the Bethe-Salpeter equation) does not completely come into
the calculation of the full DF Green’s function, in the end the determination of
the full vertex is not fully self consistent. The better way is to consider the ladder
approximation of the DF which can determine the DF Green’s function and the
full vertex on equal footing. In this method, called ladder dual fermion approxima-
tion(LDFA), the DF Green’s function is determined from the full vertex and used
to calculate the new full vertex in the next iteration, this loop is executed until the
full DF Green’s function and vertex are not changed anymore. This approximation
will improve the calculation of both the DF Green’s function and the full vertex,
especially for the 1D Hubbard model where the single site DMFT + DF calculation
does not gave satisfactory results [Hafermann et al. (2007)]. It is supposed to be the
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best approximation or the non-local correction of DMFT based on the two particle
vertex γ(4). More details and corresponding results will be presented elsewhere.
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Figure 4.12: The lattice susceptibility for U/t = 4.0 at two different temperatures
βt = 4.0 and βt = 1.0 as a function of momentum calculated on 32 × 32 lattice.

4.3.2 Lattice susceptibility in DΓA

Similar as the DF method, Dynamical Vertex Approximation (DΓA) [Toschi et al.
(2007)] also bases on the two particle local vertex. It deals with the lattice fermion
directly, without introducing any auxiliary field. The perturbative nature of this
method ensures its validity at weak-coupling regime. Unlike in the DF method,
DΓA takes the irreducible two particle local vertex as building blocks.

γ−1
c(s)(ν, ν

′;ω) = γ−1
c(s),ir(ν, ν

′;ω) − χ0(ν;ω)δν,ν′Γ−1
c(s)(ν, ν

′; q) = γ−1
c(s),ir(ν, ν

′;ω) − χ0(ν; q)δν,ν′

(4.29a)

The spin and charge vertices are defined as γc(s) = γ↑↑ ± γ↑↓. Note that we used a
different definition of the spin and charge channels which is opposite to that in refer-
ence [Toschi et al. (2007)]. We will follow the work of A. Toschi et al. to determine
the non-local self energy function and then to calculate the lattice susceptibility.

The bare susceptibility is defined as

χ0(ν;ω) = −TGloc(ν)Gloc(ν + ω) (4.30a)

χ0(ν, q) = − T

N

∑

k

G0(k)G0(k + q) (4.30b)

And the self-energy is calculated through the standard Schwinger-Dyson equa-
tion

Σ(k) = −U T 2

N2

∑

k′,q

Γf(k, k
′; q)G0(k′)G0(k′ + q)G0(k + q) (4.31)
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Figure 4.13: Comparison with the DΓA susceptibility χ(0, 0) which obtained from
both the DMFT lattice Green’s function (DΓA (G0)) and the full Green’s function
(DΓA (G)), see context for more details.

Here, the full vertex Γf(k, k
′; q) is obtained by summing all the channel dependent

vertices and subtracting the double counted diagrams.

Γf (k, k
′; q) =

1

2

{

[3Γc(ν, ν
′; q) − Γs(ν, ν

′; q)] − [Γc(ν, ν
′;ω) − Γs(ν, ν

′;ω)]

}

(4.32)

which depends only on one momentum argument q. The one particle propagator is
given by the DMFT lattice Green’s function where the self energy is purely local
G0(k) = 1/[iν− ǫ(k)−Σ(ν)], the local Green’s function is Gloc(ν) = 1/[iν−∆(ν)−
Σ(ν)]. Then the Dyson equation gives the lattice Green’s function from the self-
energy function G−1 = G−1

0 − Σ. The lattice spin susceptibility within the DΓA
method is obtained by attaching four Green’s functions on the vertex obtained in
Eq. (4.29).

χ(q) = χ0(q) +
∑

ν,ν′

χ0(ν, q)Γs(ν, ν
′; q)χ0(ν

′, q) (4.33)

There are two possible choices of the lattice Green’s function to construct the bare
susceptibility χ0(q) and χ0(ν, q). One is the DMFT lattice Green’s function G0.
The other one is the Green’s function G constructed by the non-local self-energy
from the Dyson equation. In fact, the former is the way to determine the lattice
susceptibility from DMFT, which is not related with DΓA equation (4.32).

Before presenting the numerical results of the lattice susceptibility in DΓA, we
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Figure 4.14: The comparison of the DF results and that of QMC for the uniform
susceptibility at U/t = 10. 4×4 QMC results [Moreo (1993)] also shows the error
bars.

take a deeper look at the analysis of Eq. (4.29),

Γ−1
c(s)(ν, ν

′; q) = γ−1
c(s)(ν, ν

′;ω) − [χ0(ν; q) − χ0(ν, ω)]δν,ν′ (4.34)

The second term in the brackets on R.H.S. removes the local term from the bare
susceptibility. The whole term in the brackets then represents only the non-local
bare susceptibility. In order to compare with the DF method, we take the inverse
form of Eq. (4.25)

Γ−1
d,cs(ν, ν

′; q) = γ−1
c(s)(ν, ν

′, ω) +
T

N

∑

k

Gd(k)Gd(k + q) (4.35)

The above two equations are the same except for the last term. Since the local
DF Green’s function Gd

loc is zero, the bare DF susceptibility is purely non-local which
coincides with the analysis of DΓA Bethe-Salpeter equation. Therefore, it will not
be surprising if these two methods generate similar results. It is not easy to perform
a term to term comparison between the DF method and DΓA although the bare
susceptibility has no local term in both of these methods, because the one particle
Green’s functions have different meanings in these two methods.

In Fig. 4.13 and 4.15, we presented the DΓA lattice susceptibility calculated
from both the DMFT lattice Green’s function labeled as DΓA(G0) and the full
Green’s function labeled as DΓA(G). The DF result from the calculation with the
full DF vertex is re-plotted for comparison. In Fig. 4.13, the DΓA susceptibility
calculated from the DMFT Green’s function (DΓA(G0)) is basically the same as
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the DF susceptibility with only small deviations. The results for T/t > 1.0 which
are not shown here nicely repeat the DF and QMC results, the deviation between
the DΓA and the DF method becomes smaller with the increase of temperature.
The DΓA susceptibility calculated from the full Green’s function (DΓA(G)) shows a
different behavior at the low temperature regime which reaches its maximum value
at T/t ≈ 0.36. As we know, the Hubbard Model in the strong coupling regime can
be mapped to the Heisenberg model, χ reasches a maximum at T ≈ J where J is the
effective spin coupling constant given as 4t2/U . The calculation uses the parameter
U/t = 4.0 which is in the intermediate coupling regime. In order to investigate the
behavior of χ(0, 0) in the strong coupling region, we further calculated the lattice
susceptibility at U/t = 10.0 which are shown in Fig. 4.14.
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Figure 4.15: DΓA susceptibilities χ(π, π) at U/t = 4.0. The susceptibility is de-
termined from both of the DMFT and full lattice Green’s function together with the
vertex obtained from Eq. (4.32)

.

When the temperature is greater than 0.4, the DF method and DΓA (DΓA(G0))
generate similar results to the QMC calculation. Reducing the temperature further,
the QMC susceptibility greatly drops and peaks at around 0.4 which coincides with
the behavior of the Heisenberg model. The DF femion and DΓA(G0) susceptibility
continuously grow with the decrease in temperature. Although the DΓA with the
full Green’s function (DΓA(G)) shows a peak, it locates at T/t = 0.6667 which is
larger than the peak position of the QMC. And DΓA(G) generated a large deviation
from that of QMC. In this diagram, we only show the results of the DF approach for
T/t > 0.3 and the DΓA results for T/t > 0.4. The Bethe-Salpeter equation of the
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DΓA have an eigenvalue approaching one with the decrease of temperature, which
makes the access of lower temperature region impossible.
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Fig. 4.15 shows the results of DΓA susceptibility at wave vector (π, π). In
contrast to the comparison for χ(0, 0) results, the DΓA susceptibility calculated from
the full Green’s function DΓA(G) yields better results than that from the calculation
with the DMFT Green’s function DΓA (G0). DΓA (G) results are almost on top of
the DF results, the results with DMFT Green’s function DΓA(G0) is large than the
DF results. The deviation becomes larger at lower temperature. Summarizing, the
DΓA calculation using the full Green’s function generated the same result as the
DF method for χ(π, π) while it failed to produce χ(0, 0) correctly. In contrast, the
calculation with the DMFT Green’s function in DΓA nicely produced the results
calculated with the DF method for χ(0, 0) while generating larger deviation for
χ(π, π) at the lower temperature regime. Together with Fig. 4.9 and 4.10, we can
see that the DF fermion calculation with the full DF vertex generated basically the
same results for both χ(0, 0) and χ(π, π) compared to the results of QMC.

The strange behavior of the DΓA lattice susceptibility calculated from the full
Green’s function (DΓA(G)) at q = (0, 0) can be partially attributed to the non
self-consistency introduced in this method. The full vertex is calculated through
the Bethe-Salpeter equation (4.29) with the DMFT lattice Green’s function G0.
While the four Green’s functions which attach on the vertex are the full Green’s
function. The better way is to determine the full vertex self-consistently from the
corresponding full Green’s function. Such nonself-consistent calculation might be
one reason responsible for the unreasonable results at the low temperature region.
The introduction of a Moriyaesque λ correction [Held et al. (2008); Katanin et al.
(2008)] to DΓA will further improve the performance of this method.

In both the DF method and the DΓA, the operation of inverting large matrices is
required for solving the Bethe-Salpeter equation. Fig. 4.16 shows the leading eigen-
value of Eqns. (4.25) and (4.29). As expected, the leading eigenvalue approaches
one with decreasing temperature which directly indicates the magnetic instability
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of 2D system. The eigenvalues corresponding to the DF fermion method always lie
below those from DΓA calculation, which indicates the better convergence of the
DF method. When the leading eigenvalues are closed to one, the matrix inversion in
Eqns. (4.25) and (4.29) are ill defined, which prevents the investigation at very low
temperature. The smaller values of the DF leading eigenvalues also indicate that
compared to the lattice fermion, the DF are weakly coupled to each other. This
is more clearly seen in Fig. 4.17. Globally the curve corresponding to the DF lies
below that of the DMFT which again indicates the better convergence of the DF
method. Furthermore, we observed that in larger interaction regime, the leading
eigenvalue in the DF drops down with the increasing of interaction strength which
indicates the weak-coupling nature of the dual fermion. The weak-coupling nature
ensures the validity of the perturbative solution of the dual fermion self energy. In
contrast, the DMFT leading eigenvalue becomes one when U/t > 6.0.

4.3.3 Away half filling
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Figure 4.18: Uniform magnetic susceptibility is plotted as a function of doping at
βt = 2.5 and U/t = 4.0, 10.0.

We also calculated the uniform susceptibility at away half-filling. In the strong-
coupling limit, the Hubbard model is equivalent to the Heisenberg model with cou-
pling constant J = 4t2/U . The consequence of doping is to effectively decrease the
coupling J , which yields the increasing behavior of χ with doping. The finite size
QMC calculation [Moreo (1993); Chen and Tremblay (1993)] observed a slightly in-
creasing χ with very small doping at strong interaction or in the low temperature
region. Here, we did a similar calculation at βt = 2.5 and U/t = 4, 10. Since the DF
method and the DΓA do not suffer from the finite size problem, we would expect to
observe results similar to those of QMC [Moreo (1993); Chen and Tremblay (1993)].
In ΓA the susceptibility is calculated from the DMFT Green’s function G0 and the
vertex obtained from Eq. (4.32). As shown in Fig. 4.18 at U/t = 4.0, the suscep-
tibility χ slightly increases in the weak doping region where δ is around 0.05, DF
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fermion results clearly showed such behavior, DΓA also gave a signal of it. Further
doping the system, both the DΓA and the DF method reproduce the decrease with
doping as already seen in the QMC. With the increasing of interaction, we would
expect to see the enhancement of this effect, however our calculations indicate that
such increasing-decreasing behaviors dissappear. Both the DΓA and the DF method
give the same decreasing curve which contradict QMC results [Moreo (1993)].

Fig. 4.19 shows the comparison of the DMFT, DF and DΓA spin susceptibility
for 2D square lattice. The parameter is set as U/t = 4.0 and n = 0.875. Here the
QMC(BWS) results are also given as comparison.
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Figure 4.19: Temperature
dependence of spin suscepti-
bility at wave vector q =
(π, π) and Ωm = 0. Coulomb
interaction is set as U/t =
4.0 and hole doping is δ =
0.125. QMC(BWS) results
are obtained from reference
[Vilk and Tremblay (1997)]

At a temperature higher than 0.7, the DF, DΓA results are same as DMFT
susceptibility which have only small deviations from the QMC(BWS) results. Low-
ering the temperature, the corrections to DMFT susceptibility from the DF and
DΓA method become obvious. When the temperature is lower than 0.7, DF, DΓA
and DMFT susceptibility become larger than that of QMC(BWS). And the devia-
tion becomes larger with the decrease of temperature. The DF and DΓA generated
reasonable corrections to DMFT results compared to QMC(BWS) susceptibility,
especially at the lower temperature regime.

Figure 4.20 shows the comparison of the spin susceptibility between the DF cal-
culations and the DCA calculations obtained from a recent work [Honchkeppel et al.
(2008)]. qx and qy are from 0 to 2π. The upper diagram is obtained form the dca
extension [Honchkeppel et al. (2008)]. Basically, the DF result is in good agreement
with that of the extension of DCA [Honchkeppel et al. (2008)] calculation. Here in
the DF calculation 24× 24 momentum grids are used. The above calculations were
done within 4 hours on a single PC. In the DCA calculation, 8× 8 cluster was used,
which is already the maximum cluster site number which can be considered with
respect to the calculation of susceptibility. In this sense, the DF method has a very
good momentum resolution and introduces less computational burden.
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Chapter 5

Hubbard Model on the Triangular

and Bilayer lattice

5.1 Triangular lattice – Frustration effect

In the second chapter, we gave an example of the cluster DMFT implementation
on the square lattice. Where we observed that the perfect nested Fermi surface is
distorted by the introducing of the next nearest neighbor hopping t′. The Fermi
surface cannot be connected by the wave vector Q = (π, π). Finite value of t′ in
the end suppressed the anti-ferromagnetic order. The interplay between the geo-
metrical frustration and the strong electronic correlations leads to the emergence
of unconventional phases. Recently a number of materials have been discovered
where we can actually investigate such interplay, such as the organic charge trans-
fer materials κ-(BEDT-TTF)2Cu2(CN)3 [Shimizu et al. (2003); Tamura and Kato
(2002); Coldea et al. (2003)]. Fig. 5.1 shows the single layer geometry structure of
κ-(BEDT-TTF)2Cu2(CN)3.

Figure 5.1: κ-(BEDT-TTF)2Cu2(CN)3 structure and corresponding triangular lat-
tice representation. Figure is obtained from Ref. [Shimizu et al. (2003)].

The effective structure of κ-(BEDT-TTF)2Cu2(CN)3 can be represented by a
triangular lattice. Compared to the square lattice, the triangular lattice has quite
different properties. At 2D square lattice, the ground state of the Hubbard model is

71
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an anti-ferromagnetic insulator due to the perfect nested Fermi surface. The absence
of the nested Fermi surface in the triangular lattice allows the existence of the param-
agnetic metal. Thus a Metal-Insulator transition is expected to exist in a triangular
lattice. A lot of theoretical attempts have proven this assumption [Ohashi et al.
(2008); Aryanpour et al. (2006); Imai and Kawakami (2002)], the first order Metal-
Insulator transition was observed. At strong coupling regime, the ground state was
suggested as a magnetically ordered state in which neighboring spins are rotated
by 120 degrees relative to one another [Bernu et al. (1994); Capriotti et al. (1999);
Huse and Elser (1988)].

Due to the frustration, the short range correlation is supposed to be dominant
in the triangular lattice. DMFT is then a good approximation in this case. In this
chapter, we will present the calculation of Cellular DMFT, DCA and the DF method
on the triangular lattice. The Metal-Insulator transition is identified as first order
from the jump of the double occupancy. The formation of the magnetic state is
studied by the calculation of the uniform spin susceptibility.

Let us consider the single-band Hubbard model on the triangular lattice which
is given as on right hand of figure in Fig. 5.1. The corresponding Brillouin Zone is
shown in Fig. 5.2.

Figure 5.2: The first Brillouin Zone
of the triangular lattice. The unit vec-
tors b1 and b2 are b1 = (2π, 2π√

3
), b2 =

(0, 4π√
3
). The corresponding real space

unit vectors are a1 = (1, 0), a2 =

(−1
2
,
√

3
2

)

The dispersion relation is given as

ǫk = −2t′ cos(kx) − 4t cos(

√
3

2
ky) cos(

kx

2
) − µ (5.1)

The non-interacting density of state for different t′ is shown in Fig. 5.3. For t′/t = 1,
there is a single peak which splits to two peaks when t′/t = 0.8. Note, the density of
state for t′/t = 1 is similar to that for the square lattice with the next neighboring
hopping term, see Fig. 2.8. When t′/t = 0 it reduces to a lattice without frustration
whose density of state is exactly same as that of the square lattice. The triangular
lattice and the frustrated square lattice are topologically equivalent. Later on for
the interacting case we will use the square lattice geometry instead of the triangular
lattice (see later section for more details).
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Figure 5.3: Density of state ρ(ω) of the triangular lattice for two different t′/t.
The dispersion relation for t′/t = 1 is plotted.

5.1.1 Metal-Insulator Transition

In this section, we will first present the single site DMFT calculation result to get
insight of the Metal-Insulator transition on the triangular lattice. C-DMFT and
DCA results will also be presented in order to see the non-local fluctuation effect on
the transition.

The application of single site DMFT on triangular lattice has been done by
Merino and Aryanpour [Merino et al. (2006); Aryanpour et al. (2006)]. ED and
Fluctuation exchange approximation (FLEX) were used as cluster solver and the
finite size determinant QMC (DQMC) was also performed as comparison. The Meal-
Insulator transition was observed at U/t ≈ 12. Here, we used CTQMC to solve the
DMFT equations which is much more accurate than FLEX. For convenience, from
now on we would like to use the anisotropic square lattice instead of the triangular
lattice. The bare density of state for the anisotropic square lattice is same as the
triangular lattice with the advantage of a simpler first Brillouin Zone. The C-DMFT
and DCA equations are also formulated for this geometry.

Figure 5.4: Anisotropic square lattice
which has the same non-interacting den-
sity of state as the triangular lattice.

In single site DMFT, the dispersion relation for the anisotropic square lattice
with t′ = t is given as

ǫ(k) = −2t(cos(kx) + cos(ky)) − 2t cos(kx + ky) (5.2)

kx and ky are in the first Brillouin zone [0, 2π]. Fig. 5.5 shows the density of states
for different temperatures and interactions. The similar diagrams can be found
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in reference [Aryanpour et al. (2006)]. The analytical continuation is done by a
simple Päde approximation which is not normally numerically stable. Here our high
resolution Green’s function data from the CTQMC ensures the good quality of the
density of states. The Metal-Insulator transition is clearly seen for the formation
of the Mott gap at the large interaction case. The distance of the upper and lower
band is approximately 14 which is the same as the interaction strength in the last
curve.

One Particle Property

As widely known, FLEX is a good approximation in the high temperature and small
interaction regime, it overestimates the spin fluctuation which opens the psecudogap
before it actually does. In the work of Aryanpour [Aryanpour et al. (2006)], the
determinant QMC results were shown as a comparison for U/t = 4 and U/t = 8,
which are smaller than the total band width 9|t| of the triangular lattice. And
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Figure 5.7: The imaginary and real part of the local Green’s function at βt = 5.0
for different interaction strength. The right panel shows the corresponding density
of state. The Mott gap is open when U ≥ 13.0.

with the increase of interaction strength, the deviation between DQMC and FLEX
becomes larger, especially in the low temperature regime. FLEX predicted the
Mott gap was open at U ≈ 12, which was smaller than the ED solution. This
difference could originate with the two following reasons: (1) Spin fluctuation is
overestimated in FLEX, which opens the Mott gap at a smaller interaction region
(2) temperature might play a role here, since being as weak-coupling method, FLEX
is only reliable in the higher temperature regime. While ED is a zero temperature
technique. To understand the difference between FLEX and ED results, we employ
the CTQMC, which is a numerically exact method to solve DMFT equations. If
the temperature really plays a role, the critical interaction Uc should become larger.
First, we calculated the density of state for U/t = 8.0 which is within the metal
region. If the above argument is true, we should be able to see the enhancement
of the coherent peak at ω = 0 with the lowering of temperature since in the lower
temperature case U/t = 8.0 is deeper in the metallic regime than in the higher
temperature case. From Fig. 5.6 we can see that this is true. With the lowering of
temperature, the quasiparticle peak becomes sharper at ω = 0.

Fig. 5.7 shows the density of states at βt = 5 for different interactions. The
Mott gap is completely open at U/t ≈ 13.0, which is within the range of UHT

c /t and
ULT

c /t. Further decreasing the temperature, the critical interaction Uc will become
larger. The right panel of Fig. 5.7 shows the imaginary and real part of the local
Green’s function. Due to non-zero values of the real part, we cannot identify the
transition from the jump of the Im[G(iω1)].
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As a conclusion, the single site DMFT shows the metal-insulator transition in
the interaction range U/t ≈ 12 to 15 at different temperatures. With the lowering of
temperature, the critical interaction becomes larger. From the difference in the phase
diagram from single and cluster DMFT calculations, one can further understand the
role of the non-locality in the triangular system. The complete phase diagram of the
triangular lattice from single site DMFT will be carefully examined in the future.

Double Occupancy

The frustration in the triangular lattice ensures the applicability of DMFT in this
2D system. Still the non-local fluctuation effect cannot be omitted here. Thus
we adopt the C-DMFT and DCA methods to explicitly examine the short-range
correlation effect on the triangular lattice. The double occupancy was examined
by these two cluster DMFT methods, the first order Metal-Insulator transition was
observed from the discontinuity of the double occupancy. Here, C-DMFT and DCA
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generated different critical interaction Uc. It is around 8.7 in C-DMFT and 7.2
in DCA. The difference originates from the different boundary conditions adapted
in these two cluster DMFT methods. In C-DMFT the open boundary condition
is used, the hopping is in the scope of the supper-lattice. In DCA, the periodic
boundary condition is used, electrons hop in the original lattice but the wave vector
is in the Reduced Brillouin Zone. Despite the different boundary condition, these
two methods are supposed to give the same results when the cluster size becomes
large enough. For smaller size cluster, it is reasonable that there is a difference in the
results from C-DMFT and DCA. If the physics in the triangular lattice is dominated
by the local or short range correlations, the single site DMFT or the small size cluster
DMFT should be sufficient to generate the same results. But here, we observed that
C-DMFT and DCA basically gave a quantitatively different critical interaction which
indicates the non-local nature of this problem. Although the frustration is supposed
to suppress the non-local fluctuation and favor the formation of local moments, the
2×2 cluster is still not big enough to include most of the correlations in the triangular
lattice.
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After including the short range correlation effect, the critical interaction Uc be-
comes smaller compared to single site DMFT results which means the non-local
fluctuation cannot be omitted here. To go beyond the local and short range corre-
lation, we are going to use the DF method introduced in the previous chapter.

5.1.2 Magnetic Properties

After observing the Metal-Insulator transition, the next nontrivial problem is to
understand why there is a Metal-Insulator transition in this system, or to know
which states dominate this system when the Mott gap is open.
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Figure 5.9: The non-local correction from the DCA and DF method to the single
site DMFT results for βt = 4, U/t = 6 ((a) and (b) diagrams) and U/t = 10 ((c)
and (d) diagrams).

In the square lattice, DMFT predicts that the Mott transition occurs at around
U/t = 12.0 in the paramagnetic states. After including the anti-ferromagnetic sym-
metry breaking, the 2D square lattice is always insulating in the lower temperature
regime due to the perfect nested Fermi surface. As noted, the frustration in the
triangular lattice destroyed the nested Fermi surface, which allows the existence of
the metallic states. This can also be true even if we take the anti-ferromagnetic
symmetry breaking field into account. Then the Metal-Insulator transition occurs
at finite interaction region.
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Long Range Correction

As we discussed above, the different boundary conditions in C-DMFT and DCA
indicates that 2 × 2 cluster is not big enough. Here we used the DF method to
calculate the non-local corrections to the single site DMFT results. As noted, this
method basically has taken both the short and long range correlation effects into
account in an approximate way. This method does not suffer the finite size problem.

In Fig. 5.9 we showed the comparison of the one particle Green’s function calcu-
lated by DMFT, DCA and DF method. A different cluster size was used in order to
see the effect of the long range correlation. In this figure we showed the imaginary
part of the local Green’s function G0 (the upper two diagrams) and the real part of
the nearest neighboring Green’s function G1 (the lower two diagrams).

These three methods generated quite similar results at smaller interaction case
U/t = 6. The non-local effect is not obvious, the corrections from DCA and DF are
small. We can see that the DF method results are closer to the Nc = 16 cluster
DCA results, which is reasonable since the DF method basically included the long
range correlations. This effect can be seen much clearer at stronger interaction case
U/t = 10. Again the DF method generated a result closer to those from Nc = 16
than Nc = 4. Single site DMFT overestimates the critical interaction Uc due to the
lack of the non-local fluctuation effect. At U/t = 10 case, DMFT shows the metallic
behavior while the DF and DCA reasonably gave the insulating results.

The 120-degree State
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Figure 5.10: The evolution of the spin susceptibility with the interaction strength
at βt = 2.5. With the increasing of interaction, the spin susceptibility diverges at
(2π/3, 2π/3).

In the square lattice, when the anti-ferromagnetic symmetry breaking field is in-
cluded, the system is insulating for any interaction strength in the lower temperature
regime. The spin is anti-parallel to the neighbors. The whole square lattice can be
divided into two subi-lattices which relates with each other through the wave vector
Q = (π, π). For example ǫA(k) = ǫB(k + π), here A and B are the indices of the
two sub-lattice. Consequently the spin susceptibility peaks at Q = (π, π). The for-
mation of the spin susceptibility peak indicates that, on the one hand the magnetic
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state forms and dominates the system, on the other hand the spin configuration for
two neighboring electrons is anti-parallel.
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Figure 5.11: The spin susceptibility at U/t = 10.0 and βt = 2.5, the for-
mation of the magnetic order is indicated by the enhancement of peak value at
Q = (2π/3, 2π/3).

In order to know the dominating state in the insulating phase of the triangular
lattice, we also calculated the spin susceptibility from the DF method. Fig. 5.10
shows the spin susceptibility at βt = 2.5 for different interactions. With the in-
crease of interaction strength, the spin susceptibility gradually peaks at wave vector
(2π/3, 2π/3). This means the state which is characterized by the wave vector 2π/3
dominates the system when the Mott gap is open. This state is the 120-degree state.
As for the square lattice, we write the dispersion relation Eq. (5.1) as two parts
ǫk = δk + δ∗k for t′/t = 1, where

δk = −t(eikx + 2e−ikx/2 cos(
√

3ky/2)) (5.3)

After simple derivation, we can see that

δk+Q = δke
i2π/3 (5.4)

with Q = (2π/3, 2π/
√

3) [Srivastava and Singh (2005)]. Therefore each spin points
to each other with 120 degree. The more natural way is to calculate a three site
cluster where we can explicitly write down the 120-degree state. By measuring the
probability of each state of this three site cluster, we can see which one dominates
when the short range order forms. This project is in progress now. Fig. 5.11 shows
the 3D plot of the uniform spin susceptibility. The right panel shows the comparison
of the spin susceptibility at two different wave vector (2π/3, 2π/3) and (0, 0). The
enhancement of spin susceptibility at (2π/3, 2π/3) is clearly seen from this diagram.

Compared to the square lattice spin susceptibility whose magnetic state is dom-
inated by the (π, π) antiferromagnetism, here the frustration effect favors the 120-
degree state. Thus the transition from (π, π) state to the 120-degree state is expected
to exist in the system. In Fig. 5.12 the comparison of the uniform susceptibility for
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Figure 5.12: The spin susceptibility for different frustration strength displays the
transition from a (π, π) state to a 120-degree state. See context for details of the
parameters.

βt = 2.5, U/t = 10 and three different t′. From right to the left with the decrease
of the frustration strength, the peak of the spin susceptibility gradually moves from
(2π/3, 2π/3) to (π, π). It clearly shows the transition from a (π, π) magnetic state
to the 120-degree state. Whether it is a clear phase transition or just a crossover
is still an open question and needs to be studied carefully. From this diagram, we
can observe that the 120-degree state only dominates the system when t′/t ≈ 1. In
our case, t′/t = 0.8, the spin susceptibility at (π, π) and (2π/3, 2π/3) has almost
similar values. Thus if it is clear phase transition, the phase boundary between the
120-degree state and (π, π) state must be closer to t′/t ≈ 1 in the t′/t - U phase
diagram.

As a summary, in this chapter we investigated the triangular lattice by using
DMFT, C-DMFT, DCA and DF method. The Metal-Insulator transition was ob-
served at different critical interactions in DMFT and the other methods. Frustration
destroys the perfect nested Fermi surface of the 2D system which favors the metallic
states. But this system is not sufficiently described by a small size cluster, for exam-
ple here 2 × 2 cluster was used. The short range order is most probably dominated
by the formation of the 120-degree states which needs more careful investigation.

5.2 Bilayer Hubbard Model – Band to Mott Insula-

tor transition

The Hubbard Model on a bilayer has been extensively studied as a toy model of
the Hight-Tc superconductor. DMFT and cluster DMFT are also applied to this
simple but interesting system. Here is the summary of some conclusions from DMFT
calculation.

1. Single site DMFT observes the first-order Metal-Insulator transition.

2. There is coexistence region with lower and upper critical interaction Ulow/t ≈
4.7 and Uup/t ≈ 5.5.
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3. Metal to Band insulator transition occurs at weak interaction and strong inter-
plane coupling region. It is a second order transition.

4. There is a large deviation for the Metal-Band insulator boundary from finite
and zero temperature calculations.

5. There is smooth crossover from Band to Mott insulator transition from single
site DMFT calculation in infinite dimension.

6. The direct crossover from Band to Mott insulator was observed in a cluster
DMFT calculation at 2D bilayer system.

7. The Mott insulating phase is extended to U/t = 0 with the lowering of inter-
plane coupling when the short-range fluctuation is included.

From conclusion 3 we can see that in single site DMFT the temperature plays
a role in the Metal-Band insulator transition. And the phase boundary between
Metal and Band insulator is supposed to move to the smaller inter-plane coupling
(which is indicated by t⊥) side. And another important feature is that the anti-
ferromagnetic field greatly changes the phase diagram where the metallic phase
gradually disappear with the decrease of the inter-layer coupling. In this chapter,
we are going to clarify these differences by using the more reliable numerical solver
– CTQMC. The single site DMFT equation was solved in the infinite dimension at
a very low temperature from which we can understand the temperature effect on
the Metal-Band insulator transition. The 2D bilayer Hubbard Model was solved
by combining the C-DMFT with CTQMC methods. The paramagnetic metal to
insulator transition was observed at finite interaction region even at zero inter-plane
coupling case (the two layers are decoupled). Conclusion and outlook is given in the
last part of this chapter.

5.2.1 Bilayer Bethe lattice – low temperature investigation

On Bethe lattice each site has a infinite number of neighbors where DMFT becomes
exact. Within the single site DMFT method, each layer is replaced by an impurity.
The coupling between two layers becomes the hopping between these two impurities.
The effective Hubbard action on the bilayer lattice is

Seff =
∑

σ

Ψ†
σ

(
iωn + µ t⊥
t⊥ iωn + µ

)

Ψσ + U
2∑

i=1

ni↑ni↓ − t2
∑

σ

Ψ†
σ

(
G00 G01

G10 G11

)

Ψσ

(5.5)
where Ψ is given as Ψ = (c1, c2)

T . Here, we are going to adapt the strong coupling
CTQMC method. As noted, the strong-coupling CTQMC has a simpler form if the
one particle part of the local Hamiltonian has a diagonal form. This effective action
can be simply diagonalized by the canonical transformation

U =
1√
2

(
1 1
−1 1

)

(5.6)
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The corresponding local Hamiltonian in the new representation is

Hloc = −(µ + t⊥)na − (µ− t⊥)nb +
U

2
(na

↑n
a
↓ + nb

↑n
b
↓) +

U

2
(na

↑n
b
↓ + nb

↑n
a
↓)

−U
2

(a†↑a
†
↓b↑b↓ + a†↓b

†
↑b↓a↑ + h.c.) (5.7)

Its eigenvalues and eigenvectors have already been given in Chapter 3. Here a and
b represent the indices of the new decoupled two planes1. This is same as the bond
and anti-bond notation in the work of A. Fuhrmann [Fuhramann et al. (2006)].

Figure 5.13: The phase diagram of the bilayer Hubbard model at βt = 100. The
higher temperature and zero temperature phase diagrams are shown as comparison.

By using both the strong-coupling and weak-coupling CTQMC we solved the
above DMFT equation at βt = 100 for different interaction strengths and inter-
plane coupling t⊥/t. This is quite a low temperature compared to the work of A.
Fuhrmann [Fuhramann et al. (2006)] where βt = 40 was used. The access of the low
temperature region makes the comparison with the zero temperature results more
reasonable. As already discussed in the work of A. Fuhrmann, one clear difference
between the zero and finite temperature phase diagram is the phase boundary for
the Metal to Band Insulator transition. Different positions of the phase boundaries
were found. To understand the reason for the difference, the low temperature results
will work for this purpose. Fig. 5.13 shows the t⊥ – U phase diagram of the bilayer
Hubbard model.

1The meaning of “decouple” is that there is no one particle hopping between these two plane,
while the density correlation and pairing interaction exist, as one can see from the new Hamiltonian
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The blue line was obtained from reference [Fuhramann et al. (2006)] and the
red line is the zero-temperature results from IPT calculation. The clear Metal to
Band and Mott Insulator transition was observed. Our results (black line) are
basically similar to the higher temperature Hirsch-Fye results (blue line) except
for the smaller interaction and larger t⊥ region where the metal to band insulator
transition happened. The boundary of this transition from our calculation is closer to
the zero-temperature results. The metal to Mott insulator transition phase boundary
also slightly moves to the zero temperature phase boundary, but is not as sensitive
to the temperature as that for the metal to band insulator transition.

5.2.2 Bilayer square lattice – CDMFT investigation

The infinite coordination number in each Bethe plane allows us to map each plane
with an impurity site exactly. With the lowering of dimensionality, DMFT be-
comes approximately correct. Some efforts have applied cluster DMFT to the one-
dimensional lattice to examine the performance of DMFT. Due to the existence of
the exact solution in 1D, it has been taken as benchmark of various cluster methods
[Capone et al. (2004); Balzer et al. (2008)]. Although the single site DMFT fails in
the low dimension case, cluster DMFT results are surprisingly in agreement with the
Bethe ansatz (BA) solutions. Here, we are going to apply the CDMFT to the bilayer
square lattice to study the non-local effect on the phase diagram. We considered a
2×2 cluster in each plane and maped the bilayer system into two coupling CDMFT
clusters problem, which can be graphically demonstrated in Fig. 5.14

t

t’

Figure 5.14: Graphical
illustration of the bilayer
square lattice with one to
one hopping between the
two planes. Each layer is
viewed as an effective 2×
2 cluster in CDMFT.

The inter-plane and intra-plane hopping amplitude are given as t and t⊥. The
corresponding hopping matrix for CDMFT is

Ek =















−µ tyP 0 txP t⊥ 0 0 0
tyN −µ txP 0 0 t⊥ 0 0
0 txN −µ tyN 0 0 t⊥ 0
txN 0 tyP −µ 0 0 0 t⊥
t⊥ 0 0 0 −µ tyP 0 txP

0 t⊥ 0 0 tyN −µ txP 0
0 0 t⊥ 0 0 txN −µ tyN

0 0 0 t⊥ txN 0 tyP −µ















(5.8)

The short notations txP/N , tyP/N are −1− e±2ikx , −1− e±2iky , respectively. The self
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Figure 5.15: Phase diagrams of the bilayer square lattice from ED-CDMFT (the
left panel) and DQMC (right panel).

consistency is done by the following equation together with the Dyson equation.

Ḡ(iωn) =
Lc

2π

∫ π
Lc

− π
Lc

dk

iωn1− Ek − Σ̄(iωn)
(5.9)

with Lc = 2. Here, the bar on top of the arguments indicates the matrix form. Here
in this bilayer model, they are 8 × 8 matrices which can be understood from the
corresponding form of the hopping matrix. Matrix inversion is needed in order to
perform the integral of the above equation. Then the Weiss field is obtained by
matrix inversion again from the following equation.

Ḡ−1
0 (iω) = Ḡ−1(iω) + Σ̄(iω) (5.10)

Generally, in the whole 8×8 matrix, all the 64 elements go into CT-QMC calculation.
Each element should be evaluated independently. The symmetry form of these
matrices simplifies our calculation. We do not need to measure all the 64 elements
during the simulation, only 6 distinct Green’s functions will be measured, three in
plane Green’s functions and three Green’s functions which connect the two layers.
Changing from the measurement of 64 elements to 6 elements, the computational
burden is greatly reduced. Since all these 6 Green’s function have different meaning,
they should be accurately measured independently during simulation. For each
Green’s function, the same number of MC measurement steps is performed. We
also can measure all the 64 elements which seems to be tedious at the first glance,
while after the simulation we average all the Green’s functions which have the same
meaning. Therefore, for each different Green’s function, we totally sampled NMC ×
fsymmetry where fsymmetry is the symmetry factor of each specific Green’s function.
For example, in this bilayer model the symmetry factor for the inner-plane nearest
neighboring Green’s function is 16, for the intra-plane nearest neighboring Green’s
function it is 8. Both of these two simplification are easily implemented in the
simulation. The first method has faster calculating speed and the second one has
better accuracy with respect to the same total monte carlo steps. While they are
exactly same if we focus on the same sampling number for each Green’s function.
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The similar C-DMFT equation has been solved in a recent work at zero tempera-
ture [Kancharlar and Okamoto (2007)]. A different phase diagram was given, there
is no crossover region was found. While with the increase of inter-layer hopping, the
interesting ’Mott Insulator - Metal - Band Insulator’ transition happens. Further
increase the on-site interaction, the metallic phase disappears, the ’Band Insulator -
Mott Insulator’ transition happens. The determinant QMC (DQMC) also showed a
similar phase diagram [Bouadim et al. (2008)]. Here we showed the phase diagram
obtained from these two works in Fig. 5.15

In the left diagram, the dotted line shows the magnetic phase boundary sep-
arating the paramagnetic metal with the anti-ferromagnetic Mott insulator. The
shaded portion shows the extent of the metallic region (paramagnetic metal and
anti-ferromagnetic metal) in the presence of magnetic order. One significant feature
of these phase diagrams is the absence of the metallic phase at smaller inter-layer
coupling region, even in the case of no anti-ferromagnetic symmetry breaking field.
The paramagnetic metal disappears when t⊥/t = 0. The inclusion of the symmetry
breaking field greatly suppresses the metallic phase, as observed in the square lat-
tice. If we focus on the paramagnetic phase, the metallic state is favored. A recent
CDMFT study shows that there is phase transition between the paramagnetic Metal
to paramagnetic Mott insulator in the square lattice [Park et al. (2008)]. This phase
diagram is shown in Fig. 5.16.

Figure 5.16: T −U phase diagram of 2D square lattice, the paramagnetic metal to
Mott insulator transition happens at both a single site DMFT calculation (b) and a
plaquette CDMFT calculation (a). Here Ur = U−UMIT

UMIT
, with UMIT = 6.05t in cluster

case and UMIT = 9.35t in single site case.

In both the single site and plaquette case, the Metal-Insulator transition was
observed in the absence of magnetic order. Therefore it is reasonable to expect that
in the bilayer system with the decrease of inter-layer coupling, the paramagnetic
metal can exist in finite interaction region in the case of no external symmetry
breaking field. And when t⊥/t becomes zero, the similar critical UMIT should be
reproduced since the two layers are completely decoupled. This is the case we
observed from our CTQMC-CDMFT calculation. In Fig. 5.17 the sketch of the
finite temperature phase diagram is shown. The paramagnetic Metal - Insulator
transition occurs at finite interaction region. The phase is determined from the
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local Green’s function by comparing the values corresponding to the lowest two
frequency points. We identified it as insulating phase when G(iω1) becomes same
or smaller than G(iω2) (here, ω1 and ω2 are the two lowest frequency points). We
only have the results at some special parameters shown as empty and solid squares
in the figure. But basically the phase boundary can be estimated from these results.
Obviously, more carefully calculation and more parameters need to be examined.
The initial cluster self-energy was always set to zero which corresponds to start from
the metallic region. Therefore the critical Uc given here corresponds to the upper
critical Uc2. We believe that the coexistence region exist in our calculation, which
can be determined by using the insulating initial Weiss field. With the decreasing
of t⊥/t, the two layers are gradually decoupled. When t⊥/t = 0, it should generate
the same physics as the single layer square lattice.

Figure 5.17: The finite tem-
perature phase diagram ob-
tained from CDMFT. Each
layer is viewed as effective 2
cluster. The finite critical
interaction Uc was observed,
even for t⊥/t = 0.

In Fig. 5.16, there is coexistence region when βt ≤ 10. In our calculation, we set
βt = 20 which is within the coexistence region. Thus the coexistence of the metallic
and insulating solutions at smaller t⊥/t is favorable. The investigation is in progress.
From our sketch of the phase diagram, we can see that the critical interaction Uc at
t⊥/t = 0 is smaller than the prediction from a plaquette CDMFT calculation (see
Fig. 5.16). We believe it is due to the non-local effect. From the comparison of
the single site and plaquette calculation, we can see that the inclusion of the short
range correlation within a 2 × 2 cluster reduces the critical U from 9.35t to 6.05t.
Here the extra dimensionality in z direction introduce more spatial fluctuation than
the single layer, therefore the critical interaction Uc becomes smaller.

In conclusion, in this section we examined the bilayer Hubbard model by using
CTQMC with single site DMFT and CDMFT to understand the phase diagram. The
low temperature phase diagram generated a large correction to the phase boundary
of the Metal - Band insulator transition. The finite temperature CDMFT calcu-
lation shows qualitatively similar results compared to the single layer plaquette
calculation, where the finite critical interaction was observed. More calculations are
being performed to determine the coexistence region and precise phase transition
boundary.



Chapter 6

Summary

To characterize the interaction driven nature of the metal - insulator transition in the
strongly correlated electron systems, an efficient theory which can equally access the
weak and strong coupling region is required. Dynamical mean field theory provides
an exact solution of the electron models in the infinite dimension limit. The single
impurity nature of this method reduces the full self energy to a function which is
independent of momentum. The local fluctuation is fully included in this theory, the
non-local spatial correlation is treated as mean field. To study the finite dimension
systems, the non-local fluctuation effect should be taken into account.

In this thesis, we mainly studied the contributions of the non-local fluctuation
to the single site dynamical mean field theory. Starting from solving the simple
atomic Hubbard model, we illustrated the basic properties of the metal - insulator
transition. The exact partition function was calculated and used to determine the
total energy, local moment and the one particle Green’s function. These observables
can be used to characterize different phases. The introduction of the dynamical mean
field theory started from the cavity construction. The separation of the impurity
degrees of freedom with the remaining of the lattice reduced the total action into
three parts, corresponding to the impurity, bath and the hybridization term. The
Gaussian form of the bath action allows us to integrate out the bath degrees of
freedoms explicitly. The expansion over the hybridization term yields a Taylor series.
By the dimensionality analysis, we showed that only the second order term was non-
zero in the infinite coordination number limit. In the second part of this chapter, we
showed the cluster extensions of the dynamical mean field theory. Cellular DMFT
and DCA were formulated in real space in order to show the similarity and difference
between them. The real space formulation of DCA can be transformed to the widely
used momentum space formula by diagonalization of the dispersion relation. Being
an example, the fully frustrated 2D square lattice calculation was then implemented
in Cellular DMFT and DCA in a 2×2 cluster. The frustration destroyed the perfect
nested Fermi surface.

The recently proposed continuous-time Quantum Monte Carlo method was re-
viewed in detail. Both the weak and strong-coupling CTQMC were discussed.
Both the theoretical and technical details were presented. The implementation of
CTQMC as impurity solver for single site DMFT and cluster DMFT were both dis-
cussed. In the strong-coupling CTQMC, the simulation of the single site multi-band
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model with only the density - density interaction term can be greatly accelerated
by introducing the segment notation. The performance of CTQMC was illustrated
in the example of two plane Hubbard model.

The applicability of the cluster extensions of DMFT suffers two problems: (1)
the correlation length is restricted to the finite range ; (2) the computation is ex-
pensive for larger cluster calculation. To go beyond the short range corrections of
DMFT, we considered the dual fermion method which can equally take the short
and long range fluctuation effect into account. The detailed derivation of the dual
fermion method was given. The approximation introduced in this method was also
discussed. The introducing of the dual fermion allows us to solve a many-body in-
teracting problem in two steps. First to solve the local self energy function from
single site DMFT and then to get the non-local information from solving the dual
fermion systems. This allows us to access both the short and long range correlation
effect on equal footing. The non-local correction to the single particle Green’s func-
tion was discussed. Then the dual fermion nature was studied by calculating the
dual fermion susceptibility. The divergence in the dual fermion susceptibility also
happened in the lattice susceptibility, indicating the similarity of the lattice and
dual fermions. The lattice susceptibility obtained from the dual fermion method
was in good agreement with the lattice QMC solution. Another interesting method,
namely dynamical vertex approximation, was also discussed and compared with the
dual fermion method. Due to the absence of local information of the dual fermion, it
has a better convergence nature than the dynamical vertex approximation. The DF
method demonstrated its advantages in solving the weak and very strong interaction
systems.

The application of the dual fermion method in the triangular lattice showed
the great advantage of this method. The single particle Green’s function calcu-
lated from the dual fermion method showed the better coincidence with the larger
cluster solution. The frustration in the triangular lattice greatly suppressed the anti-
ferromagnetic order, which favors the existence of the metallic phase. The first order
metal - insulator transition was observed from the jump of the double occupancy.
The temperature effect on the critical U in the single site DMFT was analyzed. The
magnetic phase transition was observed from the movement of the peak position
of the lattice spin susceptibility. With the increase of the lattice frustration, the
magnetic phase gradually moved from anti-ferromagnetic state to the 120-degree
state. Both of these two states were inside the insulating phase. The paramagnetic
metal to paramagnetic insulator transition was also studied in a bilayer Hubbard
model. The single site and Cellular DMFT gave similar phase diagrams. The first
order metal - insulator transition and the coexistence region were observed. The
phase boundary for the metal to band insulator transition was greatly changed by
lowering temperature. More calculations are needed to complete the phase diagram
in Cellular DMFT calculation.



Appendix A

Fast Update Algorithm for CT-QMC

Normally, in the fast update procedure we only store and manipulate the inverse of D-
matrix (Rubtsov et al. (2005)) and F-matrix (Werner et al. (2005); Werner and Millis
(2006)). Here we use G to represent this matrix and M for its inverse matrix. The
following procedure can be used to generate a new M-matrix from the old one easily
which represents the movement of perturbation order.

Supposed we have one k-dimensional M-matrix. Its inverse matrix is G. They
have the following form:

G(k) =







G1,1 G1,2 · · · G1,k

G2,1 G2,2 · · · G2,k

· · · · · · · · · · · ·
Gk,1 Gk,2 · · · Gk,k







(A.1)

and

M (k) =







M1,1 M1,2 · · · M1,k

M2,1 M2,2 · · · M2,k

· · · · · · · · · · · ·
Mk,1 Mk,2 · · · Mk,k







(A.2)

In order to move k to k + 1, M and G matrices will be inserted in a new column
and row. In Rubtsov’s method, the new inserted pair locates at the last column
and row of G matrix. Except that the Gk+1,K+1 and Mk+1,k+1 are one, all the other
new elements are zero. Note that these inserted column and row do not change
the determinants of the these two matrices. In Werner’s method, the operation is
different. If one considers inserting a new segment, the index of the new position can
be anywhere from 1 to k + 1 and the new column and row have the same position
index. To insert new anti-segment, one needs to be careful with the position of the
new row and column. If one insert a new row indexed by n then the new column
index will be n + 1. For generality, I just consider the situation that the new row
position is m and new column position is n. Corresponding to Rubsov’s method,
one just need to take m = n = k+1, and to Werner’s method, n = m+1. Note that
in any case, the determinant is not changed. Based on the above considerations,
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one can write G and M matrices as:

G(k) =











n

G′
1,1 G′

1,2 · · · 0 · · · G′
1,k

G′
2,1 G′

2,2 · · · 0 · · · G′
2,k

· · · · · · · · · 0 · · · · · ·
m 0 0 · · · 1 · · · 0

· · · · · · · · · 0 · · · · · ·
G′

k+1,1 G′
k+1,2 · · · 0 · · · G′

k+1,k+1











(A.3)

and

M (k) =











m

M ′
1,1 M ′

1,2 · · · 0 · · · M ′
1,k

M ′
2,1 M ′

2,2 · · · 0 · · · M ′
2,k

· · · · · · · · · 0 · · · · · ·
n 0 0 · · · 1 · · · 0

· · · · · · · · · 0 · · · · · ·
M ′

k+1,1 M ′
k+1,2 · · · 0 · · · M ′

k+1,k+1











(A.4)

Where, for i > m, G′
i,j = Gi−1,j ; for j > n, G′

i,j = Gi,j−1. And for all the other
elements G′

i,j = Gi,j. For the M-matrix, one should notice that the inserted new
column is n and new row is m since M-matrix is the inverse matrix ofG-matrix. The
relation between the elements of the new and old matrix is that: i > n, M ′

i,j = Mi−1,j;
for j > m, M ′

i,j = Mi,j−1. And for all the other elements M ′
i,j = Mi,j.

G(k+1) =











n

G′
1,1 G′

1,2 · · · G′
1,n · · · G′

1,k

G′
2,1 G′

2,2 · · · G′
2,n · · · G′

2,k

· · · · · · · · · G′
i,n · · · · · ·

m G′
m,1 G′

m,2 · · · G′
m,n · · · G′

m,k+1

· · · · · · · · · G′
j,n · · · · · ·

G′
k+1,1 G′

k+1,2 · · · G′
k+1,n · · · G′

k+1,k+1











(A.5)

Here, we use the notation in reference (Rubtsov et al. (2005)) to derive the fast
update formulas.

∆ = M−1
(k+1) −M(k) = G(k+1) −G(k) (A.6)

From the above forms of G(k+1) and G(k), one can easily write down that

∆ =











n

0 0 · · · G′
1,n · · · 0

0 0 · · · G′
2,n · · · 0

· · · · · · · · · G′
i,n · · · · · ·

m G′
m,1 G′

m,2 · · · G′
m,n − 1 · · · G′

m,k+1

· · · · · · · · · G′
j,n · · · · · ·

0 0 · · · G′
k+1,n · · · 0











(A.7)
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This is also a (k + 1) × (k + 1) matrix and only the m row, n column elements are
nonzero. Now, combining the expression of M-matrix, one easily obtains

1 + ∆M

= 1 +











0 0 · · · G′
1,n · · · 0

0 0 · · · G′
2,n · · · 0

· · · · · · · · · G′
i,n · · · · · ·

G′
m,1 G′

m,2 · · · G′
m,n − 1 · · · G′

m,k+1

· · · · · · · · · G′
j,n · · · · · ·

0 0 · · · G′
k+1,n · · · 0











×











M ′
1,1 M ′

1,2 · · · 0 · · · M ′
1,k

M ′
2,1 M ′

2,2 · · · 0 · · · M ′
2,k

· · · · · · · · · 0 · · · · · ·
0 0 · · · 1 · · · 0
· · · · · · · · · 0 · · · · · ·

M ′
k+1,1 M ′

k+1,2 · · · 0 · · · M ′
k+1,k+1











(A.8)

After the production of these two matrices, one will get a new matrix whose
nonzero elements are at m column and m row.

1 + ∆M =











m

1 0 · · · G′
1,n · · · 0

0 1 · · · G′
2,n · · · 0

· · · · · · · · · G′
i,n · · · · · ·

m Rm,1 Rm,2 · · · G′
m,n · · · Rm,k+1

· · · · · · · · · G′
j,n · · · · · ·

0 0 · · · G′
k+1,n · · · 1











(A.9)

Here, Rm,j =
∑

i6=nG
′
m,iM

′
i,j. One should notice that this is a matrix whose diagonal

elements are one except the m-th row and the m-th column element is G′
m,n. Espe-

cially, the n-th column in G(k+1) has been changed to the m-th column in this matrix.
1 + ∆M can be very useful to calculate the determinant ratio between G(k+1) and
G(k). Since ∆ = M−1

(k+1) −M−1
(k) , one can know that M(k+1) = M(k)[1+∆M(k)]

−1.The
determinant ratio can be expressed as:

Z(k+1)

Z(k)

=
detG(k+1)

detG(k)

=
detM(k)

detM(k+1)

= det[1 + ∆Mk] = G′
m,n −

∑

i6=m

Rm,iG
′
i,n (A.10)

Later on, one can know that this determinant ratio is just 1/M
(k+1)
n,m . This deter-

minant ratio is important for determining the detailed balance condition, therefore
the update ratio. In order the obtain M (k+1), one needs to calculate the inverse of
1 + ∆M , it looks like that we cannot avoid the inverse operation which is always
time consuming for numerical calculation. Fortunately, after the above operation,
what we need to inverse is a special matrix which has few nonzero elements. It is
significantly easier than the inversion of general matrix. The inverse of 1+∆M can
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be obtained similarly from a 2 × 2 matrix.

(
1 B
C D

)−1

=

(
(1 − BD−1C)−1 −(1 − BD−1C)−1BD−1

−(D − CB)−1C (D − CB)−1

)

(A.11)

The first row can be simplified as:

(1 − BD−1C)−1 − 1 = (1 − BD−1C)−1 × (1 − 1 +BD−1C)

= (1 − BD−1C)−1BD−1C

= [C−1DB−1(1 −BD−1C)]−1

= [C−1DB−1 − 1]−1 = B(D − CB)−1C (A.12)

(1 −BD−1C)−1BD−1 = [DB−1(1 − BD−1C)]−1 = (DB−1 − C)−1 = B(D − CB)−1(A.13)

Now, replacing these two expressions into the 2 × 2 matrix, one obtains

(
1 B
C D

)−1

=

(
1 +B(D − CB)−1C −B(D − CB)−1

−(D − CB)−1C (D − CB)−1

)

(A.14)

To calculate the inverse matrix of 1 + ∆M , one only needs to replace C with M , B
with G and D − CB with G′

m,n −
∑

i6=mRm,iG
′
i,n = λ = α−1

[1 + ∆M(k)]
−1 =











m

1 +G′
1,nαRm,1 G′

1,nαRm,2 · · · −G′
1,nα · · · G′

1,nαRm,k+1

G′
2,nαRm,1 1 +G′

2,nαRm,2 · · · −G′
2,nα · · · G′

2,nαRm,k+1

· · · · · · · · · −G′
i,nα · · · · · ·

m −αRm,1 −αRm,2 · · · α · · · −αRm,k+1

· · · · · · · · · −G′
j,nα · · · · · ·

G′
k+1,nαRm,1 G′

k+1,nαRm,2 · · · −G′
k+1,nα · · · 1 +G′

k+1,nαRm,k+1











(A.15)

Note again that except that the m-th column and m-th row elements have different
expressions, all the other rows and columns have similar forms. And from the for-
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mula M(k+1) = M(k)[1 + ∆M(k)]
−1,one can obtain the corresponding M(k+1)-matrix.

M(k+1) = M(k)[1 + ∆M(k)]
−1 =











M ′
1,1 M ′

1,2 · · · 0 · · · M ′
1,k

M ′
2,1 M ′

2,2 · · · 0 · · · M ′
2,k

· · · · · · · · · 0 · · · · · ·
0 0 · · · 1 · · · 0
· · · · · · · · · 0 · · · · · ·

M ′
k+1,1 M ′

k+1,2 · · · 0 · · · M ′
k+1,k+1











×











1 +G′
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2,nα · · · G′
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i,nα · · · · · ·

−αRm,1 −αRm,2 · · · α · · · −αRm,k+1

· · · · · · · · · −G′
j,nα · · · · · ·

G′
k+1,nαRm,1 G′

k+1,nαRm,2 · · · −G′
k+1,nα · · · 1 +G′

k+1,nαRm,k+1











=











m

M′
1,1+L1,nαRm,1 M′

1,2+L1,nαRm,2 · · · −L1,nα · · · M′
1,k+1

+L1,nαRm,k+1

M′
2,1+L′

2,nαRm,1 M′
2,2+L′

2,nαRm,2 · · · −L2,nα · · · M′
2,k+1

+L2,nαRm,k+1

· · · · · · · · · −Li,nα · · · · · ·
n −αRm,1 −αRm,2 · · · α · · · −αRm,k+1

· · · · · · · · · −Lj,nα · · · · · ·
M′

k+1,1
+Lk+1,nαRm,1 M′

k+1,2
+Lk+1,nαRm,2 · · · −Lk+1,nα · · · M′

k+1,k+1
+Lk+1,nαRm,k+1











Except for the n-th row and m-th column, all the other elements have the similar
form which can be expressed as

M
(k+1)
i,j = M

(k)
i,j + Li,nαRm,j (A.16)

here,i, j ∈ (1, k + 1), but i, j 6= m. And Li,n =
∑

j 6=mM
′
i,jG

′
j,n. From these expres-

sions, one also can know the fast update formula from k− > k − 1

M
(k+1)
i,j = M

(k)
i,j +

M
(k+1)
i,m M

(k+1)
n,j

M
(k+1)
n,m

(A.17)

therefore

M
(k−1)
i,j = M

(k)
i,j −

M
(k)
i,mM

(k)
n,j

M
(k+1)
n,m

(A.18)

And the determinant ratio can be expressed as:

Z(k−1)

Z(k)
=

detG(k−1)

detG(k)
=

detM (k)

detM (k−1)
= M (k)

n,m (A.19)
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Appendix B

Direct CT-QMC measurement in

frequency space

The imaginary frequency Green’s function can be obtained from the Fourier trans-
form of G(τ). Both weak and strong coupling methods can measure the Green’s
function directly in frequency space. Since the value of G(τ) is measured from the
corresponding ’M matrix’, it seems that the measurement speed is proportional to
the square of ’M matrix’ dimension. In fact, it can be done in a more economical
way where only linear time is needed.

Take strong-coupling method as example. The imaginary Green’s function is
calculated as follows:

G(iωn) =
1

β

∑

i,j

e−iωnτs
i M(i, j)eiωnτe

j (B.1)

The sum runs over the row and column index of ’M-matrix’, which is not economical
when the matrix size is big. In fact, the Fourier transform can be performed in
every monte Cairo update procedure instead of in the final measurement part. This
means the new Green’s function is recalculated only when the update is accepted.
Otherwise it takes the old value. And the calculation burden can be reduced further
by saving the imaginary frequency Green’s function. For every different update
procedure, one has different way to implement it. For example, we consider to
insert a new pair of kinks, ’M matrix’ size is increased by one k → k + 1. And
suppose that the new inserted row and column are at (k + 1, k + 1). The new and
old Green’s function are

GNew(iωn) =
1

β

k+1∑

i,j

e−iωnτs
i MNew(i, j)eiωnτe

j (B.2)

GOld(iωn) =
1

β

k∑

i,j

e−iωnτs
i MOld(i, j)eiωnτe

j (B.3)

Since only one row and column inserted, one can relate the new ’M matrix’ with the
old one. Eventually, the imaginary Green’s function can be calculated from the old
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one. This is the key idea of frequency measurement. The difference of the new and
old Green’s function is

GNew −GOld =
1

β

k∑

i,j

e−iωnτs
i (MNew(i, j) −MOld(i, j))eiωnτe

j

+
1

β

k∑

j=1

e−iωnτs
k+1M(k + 1, j)eiωnτe

j

+
1

β

k∑

i=1

e−iωnτs
i M(i, k + 1)eiωnτe

k+1

+
1

β
e−iωnτs

k+1M(k + 1, k + 1)eiωnτe
k+1 (B.4)
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