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Chapter 1

Introduction

In the last 20 years cosmology has progressed from a data-starving to a prospering science
branch. Today we know that the Universe was in a very dense state at early times and since
then has expanded to its current size. The filamentary structure of galaxies and clusters we ob-
serve today originates from small perturbations in the primordial density field, which grow due
to self-gravitation. The increasing number of cosmological experiments and the huge amount
of high-quality data offer great possibilities to study the structure and evolution of our Universe.
Cosmologists developed the so-calledΛCDM or “concordance” model, based on the assump-
tions of large-scale homogeneity and isotropy, which provides a robust explanation for cosmo-
logical observations and has predicted several of them. Within this picture the energy density of
the Universe consists of 4 components, i.e. baryons (Ωb ≈ 5%), photons (Ωr ≈ 0.005%), cold
dark matter (Ωcdm ≈ 20%), and dark energy (ΩΛ ≈ 75%), where the physical nature of the latter
two is still an open question.
Various cosmological experiments address the issues of dark matter and dark energy; one of
the most promising is weak gravitational lensing by the large-scale structure, also called cosmic
shear. Light bundles emitted from distant galaxies travel through the Universe and are con-
tinuously deflected by the gravitational field of the inhomogeneous matter distribution. As a
consequence the shapes of galaxy images are distorted and the statistical properties of these dis-
tortions reflect those of the matter density field.
In 2000, four different groups independently measured the first cosmic shear signal (Bacon et al.
2000; Kaiser et al. 2000; van Waerbeke et al. 2000; Wittman et al. 2000). Since then it has proven
to be a very powerful method to constrain cosmological parameters, in particular the normaliza-
tion of the power spectrumσ8 in combination withΩm (e.g. Fu et al. 2008). The remarkable
results cosmic shear has achieved so far will improve in the future with large upcoming surveys
like Pan-STARRS, KIDS, DES, JDEM, Euclid or LSST. Soon the first two surveys, starting in
2009, will provide data which enables us to estimate the shear signal with less than 1% statistical
error. These small statistical errors make cosmic shear an ideal tool for future dark energy studies
(see Peacock et al. 2006; Albrecht et al. 2006).
Still, there are unsolved systematics and uncertainties which limit parameter estimation with cos-
mic shear. On the observational side an insufficient PSF-correction is the most important source
of contamination. The (still ongoing) Shear TEsting Program (STEP) has significantly improved

1



2 Chapter 1. Introduction

on this issue (for latest results see Heymans et al. 2006; Massey et al. 2007a). Solutions to this
problem are further discussed in Bridle et al. (2008). Furthermore, astrophysical contaminations
must be removed, such as intrinsic alignment of source galaxies, which can be excluded in the
signal if redshift information is available (King & Schneider 2003). Shape-shear correlation
was predicted by Hirata & Seljak (2004) and detected by Mandelbaum et al. (2006). Recently,
Joachimi & Schneider (2008) showed how to exclude the shape-shear contribution, again if ac-
curate photometric redshifts are available. Besides excluding astrophysical contaminations, red-
shift information significantly increases constraints on cosmological parameters (Massey et al.
2007b); accurate redshifts will be of major importance for future cosmic shear surveys. For
precision cosmology with cosmic shear not only the quality of the data and the removal of as-
trophysical contaminations is important. In addition, we have to improve on theoretical issues
in lensing (e.g. reduced shear approximation, inaccuracy of Limber’s equation or the flat-sky
approximation) and cosmology (models for the non-linear power spectrum, non-Gaussian co-
variances, models for higher-order moments of the density/shear field). These improvements are
important to obtain accurate predictions to which we compare the high-precision data.
Theoretial predictions and observational results meet each other in the likelihood analysis. If
there remain significant problems on either side, the likelihood analysis will give biased results.
In addition, the likelihood analysis itself is of great importance; even with precise data and ac-
curate theoretical predictions the constraints on cosmological parameters can be biased by an
improper likelihood analysis. Developing statistical tools which especially fit the needs of the
considered cosmological probe(s) is therefore of great importance for the inference of cosmo-
logical interpretations.
The subject of my PhD thesis is to improve on theoretical concepts related to the estimation
of cosmological parameters with cosmic shear. This involves the optimization of cosmic shear
data vectors and accurate descriptions of the corresponding covariances as well as the statistical
methods used in the likelihood analysis. Furthermore, I applied my theoretical work on the most
recently developed cosmic shear measure, namely the ring statistics, to cosmic shear data. In
my thesis I optimize the ring statistics’ signal strength and employ it to constrain cosmological
parameters using data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS).
The thesis is structured as follows: In chapter 2 I start with a general introduction to cosmology
and structure formation. Chapter 3 reviews the basic concepts of gravitational lensing with the
focus on cosmic shear, its achievements, problems and future prospects. My research results are
presented in the following chapters starting with an introduction to cosmic shear parameter esti-
mation (chapter 4), in particular, I examine binning effects on cosmic shear covariances and how
these effects influence the parameter constraints. The issue of covariances is further examined
in the chapters 7 and 8. In chapter 7 I investigate the cosmology-dependence of cosmic shear
covariances and develop improved methods for a likelihood analysis, which take the cosmology-
dependence into account. A second problem in the derivation of covariances is the inclusion
of the shear field’s non-Gaussianity. In chapter 8 I examine the impact of non-Gaussianity on
covariances and parameter constraints, in particular regarding dark energy parameters. In this
chapter I also verify the calibration factor formalism introduced by Semboloni et al. (2007) to
account for non-Gaussianity. Results of my research on cosmic shear data vectors are presented
in chapter 5, where I compare and optimize cosmic shear data vectors with respect to their in-
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formation content and robustness against contaminations, and in chapter 6. The latter chapter
contains my personal highlight of this thesis, namely the constraints onσ8 using CFHTLS data.
I summarize all results in chapter 9 and give a brief outlook on future projects in chapter 10.
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Chapter 2

Cosmology

Cosmology aims to describe the Universe as a whole, its structure and evolution in time. Twenty
years ago this goal seemed hardly achievable, when cosmology was a vague and data-starving
science. Nowadays, the situation has completely changed. There exist many different cosmo-
logical experiments providing huge amounts of data and this trend will most likely intensify in
the next years. Cosmologists developed the so-called “standard” or “concordance model” of
cosmology, based on the assumptions of large-scale homogeneity and isotropy, which provides
a robust explanation for cosmological observations and has predicted several of them.
In this chapter we summarize the main aspects of cosmology, with the focus on details which are
most relevant for this thesis. Starting from General Relativity and the dynamics in our Universe,
we explain today’s picture of structure formation and conclude with a description of the main
experiments leading to the concordance model of cosmology. For more details on these topics
we refer the reader to e.g. Peacock (1999) or Schneider et al. (2006).

2.1 The homogeneous and isotropic Universe

2.1.1 Einstein’s Field Equation

By developing General Relativity (1907 to 1915), Albert Einstein set up a theory of gravitation.
Einstein’s field equation relates a matter distribution given by the energy-momentum tensorTµν

to the curvature of four-dimensional spacetime described by the Einstein-TensorGµν

Gµν + Λgµν = −
8πG
c4

Tµν , (2.1)

with G as the gravitational constant,c the speed of light andΛ the so-called cosmological con-
stant. Today one usually shifts this term to the other side of the equation, interpretingΛ as a
vacuum energy density(see Sect. 2.1.6). The tensorGµν is defined as

Gµν = Rµν −
1
2

gµνR , (2.2)

5



6 Chapter 2. Cosmology

with Rµν as the Ricci tensor andR the curvature scalar. Both can be obtained as contractions of
the Riemann tensor which provides a covariant description of the curvature of spacetime and can
be expressed in terms of the metricgµν.

2.1.2 Robertson-Walker Metric

On small scales the Universe is obviously not homogeneous. Galaxies and clusters of galaxies are
large overdensities of matter compared to the intercluster medium. Large galaxy redshift surveys
like the SDSS survey (latest data release from Adelman-McCarthy et al. 2008) indicate that the
matter distribution is nearly homogeneous if we average over scales larger than 300 Mpc. The
strongest evidence that the Universe is isotropic comes from the Cosmic Microwave Background
(Smoot et al. 1991), which show only deviations of order 10−5K from a mean temperature of
2.73K. Both observations strongly support the assumption that the Universe can be considered
homogeneous and isotropic. This assumption, named cosmological principle, implies that any
observer without peculiar velocity (so-calledcomoving observer) makes the same observations
independent from his position. A metric describing such a universe is given by the Robertson-
Walker metric

ds2 = gµνdxµdxν

= c2dt2 − a2(t)
[

dw2 + f 2
K(w)

(

dθ2 + sin2θ dφ2
)]

, (2.3)

wherew is the comoving radial distance andt the time measured by a comoving observer.φ

andθ are angular coordinates. The expansion factora(t) describes the past and future of our
Universe, whether it expands forever, contracts at some point in the future, or is static. The scale
factor at present timea(t0) is normalized to be 1. The functionfK(w) describing the comoving
angular diameter distance (see Sect. 2.1.4) depends on the curvatureK of the metric

fK(w) =






1√
K

sin(
√

Kw) K > 0
w K = 0

1√
−K

sinh(
√
−Kw) K < 0 ,

(2.4)

whereK > 0 stands for a closed,K < 0 for an open, andK = 0 for a spatially flat universe.

2.1.3 Friedmann equations

Inserting the Robertson-Walker metric into Einstein’s field equation one derives the Friedmann
equations which describe the dynamics in our Universe. The energy-momentum tensor takes the
form of a perfect fluidTµν = diag

(

ρc2, p, p, p
)

, whereρ (the density) andp (the pressure) depend
only on time

( ȧ
a

)2

=
8πG

3
ρ − Kc2

a2
+
Λ

3
(2.5)

and
ä
a
= −4πG

3

(

ρ +
3p
c2

)

+
Λ

3
. (2.6)



2.1. The homogeneous and isotropic Universe 7

The l.h.s. of equation (2.5) is the square of the so-calledHubble parameter H(t) and its value
today is calledHubble constant H0 (see also Sect. 2.3). The Hubble constantH0 is often param-
eterized asH0 = h 100(km s−1Mpc−1), whereh expresses the uncertainty in the measurement of
H0. Other measurements, depending onH0 (e.g. distances), are similarly parameterized in terms
of h. As mentioned in Sect. 2.1.1 the cosmological constantΛ, which was originally introduced
by Einstein to allow for static universes, is nowadays interpreted as vacuum energy density. In the
above two equationsρ only accounts for the energy densities of “normal” (pressureless) matter
and radiation. From now on we adapt the concept of a constant vacuum energy density, therefore
drop theΛ-term and extend theρ to ρ = ρm + ρr + ρΛ. This concept is mathematically equiva-
lent to a cosmological constant, but has a reasonable physical interpretation. Note, that there are
alternative theories stating that the vacuum energy density must not necessarily be constant; we
give more details on this topic in Sect. 2.1.6.
In order to determine the scale factor via the Friedmann equations we need information onρ(t).
Differentiating (2.5) and inserting it into (2.6) we derive the so-calledadiabatic equation

d
dt

(

ρa3c2
)

+ p(t)
da3(t)

dt
= 0 . (2.7)

It relates the change of energy density in a comoving volume to the pressure multiplied by the
spatial change in proper volume1 and can be interpreted as a conservation law of energy in the
Universe. The three matter components, pressureless matter, radiation, and vacuum energy den-
sity, evolve differently in time and are dominant through different epochs. Pressureless matter,
characterized as particles with velocities much smaller thanc, has anequation of state (EOS)
which readsp = 0. From (2.7) we derive

ρm ∝ a−3. (2.8)

For particles with velocities close or equal toc the pressure term readsp = ρc2/3. Inserting this
into (2.7) leads to

ρr ∝ a−4 . (2.9)

The corresponding equation for the constant vacuum energy density reads

ρΛ = const. (2.10)

The density for which our Universe is flat is namedcritical density. Assuming thatρ = ρm+ ρr +

ρΛ, hence dropping theΛ-term in (2.5), it can be calculated by insertingK = 0. We obtain

ρcr =
3H2

0

8πG
. (2.11)

Density values are scaled with the critical density, for the three different “sorts of matter” we
define

Ωm :=
ρm

ρcr
, Ωr :=

ρr

ρcr
, ΩΛ :=

ρΛ

ρcr
=
Λ

3H2
0

. (2.12)

1Proper coordinatesr(t) are related to comoving coordinatesx by the scale factora(t), r(t) = a(t)x.
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The main contribution toΩr is given by photons of the Cosmic Microwave Background (CMB)
(see Sect. 2.3) and the energy density of these photons follow a Planck distribution. By measur-
ing the temperature (TCMB = 2.73 K),Ωr can be obtained from the Stefan-Boltzmann law; one
finds thatΩr is fairly small compared toΩm andΩΛ and can be neglected today. However, at ear-
lier times, radiation must have been dominant because its density scales witha(t)−4 whereasΩm

is only proportional toa(t)−3. The time whenΩr equalsΩm is denotedaeq. Using the parameters
defined above and the definition of the Hubble constant we can rewrite (2.5)

H2(t) = H2
0

[

Ωr

a(t)4
+
Ωm

a(t)3
− Kc2

a(t)2H2
0

+ ΩΛ

]

. (2.13)

To describe the curvature of our current epoch we inserta(t) = 1 and derive

K =
(H0

c

)2

(Ωtot − 1) , (2.14)

with Ωtot = Ωr + Ωm + ΩΛ. From this expression of the curvature in terms of density parameters
we see that

• the spatial hypersurfaces of constantt are flat forΩtot = 1 (K = 0)

• hyperbolic forΩtot < 1 (K < 0)

• andK > 0 forΩtot > 1 .

Latest observations indicate that the total curvature of the Universe is small;|Ωtot − 1| . 0.017
(Komatsu et al. 2008), therefore it is generally assumed that the Universe has zero curvature.
Nevertheless, if this assumption is relaxed constraints on other (curvature dependent) parameters
weaken significantly.
The Hubble parameter and therefore the evolution of our Universe is completely determined by
the density parameters, in terms of which we rewrite (2.13)

(

H(t)
H0

)2

=

[

Ωr

a(t)4
+
Ωm

a(t)3
− 1− Ωtot

a(t)2
+ ΩΛ

]

. (2.15)

At very early times we expect the Universe to be hot and dense. Going back in time, density
and temperature further increase until we finally reacha(t) = 0. Since this so-called Big Bang
until today,a(t) was a monotonically increasing function. In order to determine its evolution in
the future we neglectΩr in (2.15) and consider onlyΩm, andΩΛ. Felten & Isaacman (1986)
have shown that the Universe will recollapse in caseΩΛ < 0. If the vacuum energy is positive,
expansion will continue to infinity ifΩm < 1. In caseΩm > 1 the collapse is still avoided ifΩm

does not exceed a certain threshold, which is determined by the value ofΩΛ. These facts are
nicely illustrated in Fig. 2.1, which shows the different states of the Universe (open, closed, flat,
expanding, recollapsing) in dependence of the cosmological parametersΩm andΩΛ. In addition,
we see the most likely parameter regions, constrained by different cosmological experiments (see
Sect 2.3 for further details). The area where the results of the three experiments overlap suggests
that the Universe is (almost) flat, with positiveΩΛ, andΩm much smaller than 1.
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Figure 2.1: From this figure one can deduce the
expansion history and the curvature in our Uni-
verse for givenΩm andΩΛ. The shaded area
corresponds to parameter combinations which
exclude a Big Bang, instead these regions rep-
resent bouncing or loitering universes. The di-
agonal solid line distinguishes parameter sets
which lead to an open, closed, or flat Uni-
verse, respectively. The almost horizontal line
divides expanding and potentially recollapsing
cosmologies. In addition, we see the constraints
on the parameter space obtained from 3 differ-
ent cosmological probes which favor a close to
flat Universe, with positiveΩΛ, andΩm much
smaller than1. (Figure taken from Knop et al.
2003)

2.1.4 Redshift and distances

Due to the expansion of the Universe, photons are redshifted on their way from the source to a
comoving observer. The redshift is defined as

z :=
λ0 − λe

λe
, (2.16)

whereλe is the emitted andλ0 the observed wavelength. For low redshiftsz ≪ 1, we can
relate the redshift of a galaxy to its recession velocity via the standard Doppler formulaz⋍ v/c.
Nevertheless, this description fails when going out to larger redshifts. The reason for this is
that cosmological redshift is a relativistic effect due time dilation which can be seen from the
following derivation. Photons propagate along null geodesics (ds = 0), hence we see from the
comoving metric (2.3) thatc dt = −a dw. Assume that two signals are emitted from a source a
time te andte + ∆t which we observe at timet0 andt0 + ∆t0. The comoving separation between
source and observer is constant; we can set up the following relation

∫ te

t0

cdt′

a(t′)
= w =

∫ te+∆te

t0+∆t0

cdt′

a(t′)
=

∫ te

t0

cdt′

a(t′)
+

c∆t0
1
− c∆te

a(te)
, (2.17)

where the time intervals∆t are small enough to neglect variations ina(t). Comparing the left- and
the right-hand side of the equation we see that∆te is time dilated, more precisely∆te = a(te)∆t0.



10 Chapter 2. Cosmology

The frequenciesνe andν0 of the signal are the inverse of the corresponding time intervals, hence

1
a(te)

=
νe

ν0
=
λ0

λe
= 1+ z . (2.18)

In Euclidian space the definition of distance is unique, meaning that different methods to measure
a distance give the same result. In contrast, there is no unique distance measure in a curved and
expanding Universe, where the definition of distance must always be seen in context with the
method it was obtained.

2.1.4.1 Comoving distance

The comoving distance is characterized as the coordinate distance on a spatial hypersurface be-
tween a comoving source (z2) and a comoving observer (z1). Similar to the above derivation of
cosmological redshift we write

dw = −c
a

dt = − c
a2 H

da , (2.19)

where we use dt = da/ȧ andH(t) = (ȧ/a). Inserting (2.15) we can express the comoving distance
in terms of density parameters as

w(z1, z2) =
c

H0

∫ a(z1)

a(z2)

[

aΩm + a2 (1−Ωm − ΩΛ) + a4ΩΛ

]−1/2
da . (2.20)

2.1.4.2 Angular diameter distance

Of special importance for gravitational lensing is the angular diameter distance which can be
derived by easy geometrical consideration. It is given by the diameter of the source dL at redshift
z2 and the observed angular diameter dθ at redshiftz1. Using dL = a(t) fK(w)dθ, we define

Dang(z1, z2) :=
dL
dθ
= a(z2) fK(w(z1, z2)) , (2.21)

as the angular diameter distance.

2.1.4.3 Luminosity distance

The luminosity distance is defined as

Dlum(z1, z2) :=

√

L
4πS

. (2.22)

S is the observed flux (atz1) andL the luminosity of the source (atz2). A general relation between
luminosity distance and angular diameter distance was found by Etherington (1933) and reads

Dlum(z1, z2) = (1+ z)2Dang(z1, z2) . (2.23)
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2.1.4.4 Horizon

Causal contact between particles in the past is only possible if the comoving distance between
them is smaller than the comoving distance light has travelled since the Big Bang and the con-
sidered cosmic time. This maximum distance is calledcomoving horizonat timet. Using (2.19),
it can be expressed as

rH(a) =
∫ t

0

cdt′

a(t′)
=

∫ a(t)

0

c da′

a′2H(a′)
. (2.24)

We mention two special cases, namely the comoving horizon during matter and radiation-dominated
phase of the Universe

rH(a) = 2
c

H0
√
Ωm

√
a for a≫ aeq , (2.25)

rH(a) =
c

H0
√
Ωr

a for a≪ aeq , (2.26)

whereaeq defines the scale factor at matter-radiation equality

aeq = Ωr/Ωm = (32000Ωmh2)−1 . (2.27)

In the above calculation we assume that the dominant contribution toΩr comes from the CMB
photons and neutrinos (which at this epoch were still relativistic and therefor contribute to the
radiation density), henceΩr = 1.68ΩCMB = 3.2× 10−5h−2.

2.1.5 Big Bang Nucleosynthesis and Cosmic Microwave Background

At very early times the Universe is in an extremely hot and dense state where all constituents
are in thermal equilibrium. Then the radiation field is described by a Planck distribution, and
therefore solely depends on the temperature of the Universe. Note that temperature and energy
uniquely define a cosmic time and are used as synonyms in this section.
At high temperatures, the formation of atomic nuclei is prohibited, as they are immediately de-
stroyed by high energy photons. When the Universe expands and cools, light elements can form.
This process starts with deuterium, which has a binding energy of 2.24 MeV. Still, deuterium
does not form at this energy, due to the much higher number density of photons compared to
baryons. More precisely, for temperatures> 0.07 MeV there are sufficiently many photons in
the high energy tail of the Planck distribution to destroy deuterium via photodissociation. In prin-
ciple, helium could have formed earlier; it is able to sustain high energy photons at temperatures
of T ≈ 0.28 MeV. However, helium is only formed through an intermediate step of deuterium
(deuterium bottleneck). As soon as the deuterium number density is high enough this results in
an immediate burst of helium production, binding nearly all neutrons (T ≈ 0.1 MeV). Due to
this almost instant process, the baryon fraction of helium depends solely on the ratio of protons
to neutrons atT ≈ 0.1 MeV

X4He =
4(nn/2)
nn + np

=
2(nn/np)

1+ nn/np
. (2.28)
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Protons and neutrons have formed earlier during the phase of baryongenesis and are held in
equilibrium only through weak interactions, e.g.

p+ e− ←→ n+ ν and p+ ν̄←→ n+ e+ . (2.29)

From the cross section the above particle interactions, we can estimate the temperature at which
the corresponding reaction rate becomes too low to hold the particle in thermal equilibrium. Via
the above interactions, protons and neutrons are in equilibrium untilT ≈ 0.7 MeV. The ratio of
neutrons to protons at this time is 1/6. For≈ 3 minutes, betweenT ≈ 0.7 MeV andT ≈ 0.1
MeV (when helium forms), the neutrons decay according ton −→ p+ e+ ν̄ (the decaying time
of the neutron is well known to beτn = 886s). This process changes the ratio of neutrons to
protons tonn/np = 1/7. We can now calculate the baryon fraction of helium to beX4He = 1/4,
which is in perfect agreement with today’s observations (see Sect 2.3). In addition to4He, small
amounts of deuterium,3He, 7Li, and 7Be are created during Big Bang nucleosynthesis, but no
heavier elements.
When the Universe cools even more (T ≈ 1 eV), the nuclei (mainly protons) and free electrons
form neutral atoms, mainly hydrogen. This process ofrecombinationtakes place atz ⋍ 1100,
well after matter-radiation equality. The binding energy of hydrogen is 13.6 eV, still it can-
not form at the corresponding time due to the same argument we mentioned in the context of
deuterium formation. Fromz ⋍ 1100 on, the photons and baryons decouple and stream freely
throughout the Universe.The energy density of the photons is described through a Planck dis-
tribution, today we observe this Planck spectrum, highly redshifted, as theCosmic Microwave
Background (CMB). Since its first detection (Penzias & Wilson 1965), many experiments have
analyzed its properties. As an example we mentionWMAP (Wilkinson Microwave Anisotropy
Probe), which is a satellite mission launched in 2001 to measure the anisotropies of the CMB.
After subtracting the temperature differences due to our peculiar velocity and microwave emis-
sion from the galactic plane, we see small fluctuations of order∆T/T = 10−5 around an average
temperature ofT ≈ 2.73 K (see Fig. 2.2). These small temperature perturbations mirror the
fluctuations of density, potential and peculiar velocity of matter at the time of recombination.
WMAP confirmed the foregoing results of the COBE mission (for which John C. Mather and
George F. Smoot were awarded a Nobel prize) with a much higher resolution and had a large
impact on the current picture of our Universe (see Sect. 2.3.2).

2.1.6 Dark Energy

There are two main observations which indicate that there is a third source contributing to the
energy density in our Universe, besides pressureless matter and radiation. First, we now from
CMB measurements that the curvature of the Universe is very close to zero, hence the overall
energy density of the Universe is close to the critical density. The contribution of matter and
radiation toρ can be inferred by observations and is approximately only one quarter ofρcrit; the
rest must be contributed from a third component, namely dark energy. Second, we know from
supernovae experiments (Riess et al. 1998; Perlmutter et al. 1999), that the expansion of the
Universe accelerates (¨a > 0). Using (2.6), ¨a > 0 can only occur if dark energy has negative
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Figure 2.2: The temperature fluctuations of the CMB measured by WMAP over a range of 400
µK around the average of 2.73 K. Blue imprints refer to cold spots, red to warmer regions.
Foreground contaminations (e.g. galaxy dipole) are removed in this picture. (Figure 11 from
Bennett et al. 2003)

pressure, i.e. (ρ+ 3p
c2 < 0). The relation of energy density to pressure is quantified in theequation

of state parameter

w :=
pΛ
ρΛc2

, (2.30)

with which we can rewrite the adiabatic equation (2.7) for dark energy as

dρΛ
dt
+ 3

ȧ
a
ρΛ (1+ w) = 0 . (2.31)

For time dependentw, (2.31) can be integrated to obtain

ρΛ ∝ exp

(

−3
∫ a

1

da′

a′
[

1+ w(a′)
]

)

, (2.32)

which specifies for constantw to

ρΛ(a) = ρΛ0 a−3(1+w) , (2.33)

whereρΛ0 is the energy density measured today. Note that the above statements and derivations
apply similarly to pressureless matter and radiation, obtainingw = 0 for the first case andw =
1/3 for the latter. The favored interpretation of dark energy today is constant vacuum energy
density.

Constant vacuum energy density, corresponds tow = −1. This model has nice properties,
e.g. from the argument that the energy-stress tensor of the vacuum is Lorentz invariant, we
can directly deduceρ = p/c2, which is exactly the behavior of a cosmological constant and
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explains the accelerated expansion. Furthermore, quantum mechanics predicts that in a vacuum,
particles and anti-particles are created and annihilate around a “zero point” energy and that the
lifetime of these particles, although short, gives the vacuum a non-zero ground-state energy. On
first sight, this all seems to be a convincing theory, nevertheless there is a large drawback, when
attempting to estimate the value of vacuum energy density via quantum field theory. Carroll et al.
(1992) show that the theoretical estimate for the vacuum energy density isρΛ ≈ 1092ergs/cm3.
Normalized withρcrit this corresponds toΩΛ ≈ 10120, deviating by 120 magnitudes from the
observedΩΛ ≈ 0.75. In the aforementioned paper,ρΛ is calculated as an integral over the energy
density of quantum fields (leptons, quarks, gauge fields), which is cut off at an energy scale
where quantum field theory breaks down and a new theory of physics (quantum gravity) would
be required. This is the so-called Planck energy (1019 GeV). The cut-off can be shifted towards
lower energy scales which reduces the predicted value ofρΛ. Nevertheless one must cut off the
integral at 10−2 eV to obtainρΛ ≈ 0.7. This is out of question, as physics at this energy level is
perfectly described by quantum mechanics.
Assuming that supersymmetry holds solves part of the problem. Then, fermions and bosons have
SUSY partners with equal energy density but different signs. However, to avoid a perfectly zero
vacuum energy density, SUSY must be broken at a certain mass scaleM, such that the remnant
particles withm< M form today’s vacuum energy density. Still, no supersymmetric particle has
been observed, indicating that they are quite massive, and that SUSY is broken at high energies
(M > 1 TeV). Assuming that particles with higher rest mass cancel, one arrives at a vacuum
energy density ofΩΛ ≈ 1060, which still is an enormous discrepancy to the observed value. We
see that vacuum energy density is far from being understood, we will briefly mention alternative
models.

Quintessence or scalar field models subsume dynamical dark energy models, i.e. the equa-
tion of state parameterw can vary in time. The dynamic is described by a scalar fieldφ with
Langrangian density

L = 1/2∂µφ∂µφ − V(φ) . (2.34)

Therefrom we can calculate the pressure and the density of the scalar field to be

ρ = φ̇2/2+ V(φ) p = φ̇2/2− V(φ) (2.35)

whereφ is supposed to be spatially homogeneous, but time dependent,φ̇2/2 denotes the kinetic
energy of the field andV(φ) is the potential energy. Applying the definition ofw (2.30) we derive
for scalar fields

w =
φ̇2/2− V(φ)

φ̇2/2+ V(φ)
=
−1+ φ̇2/2V(φ)

1+ φ̇2/2V(φ)
. (2.36)

From the above equation we see thatw ≈ −1 if the scalar field acts as a slowly changing vacuum
energy density (̇φ2/2V(φ) ≪ 1) andw ≈ 1 for a rapidly changing energy density. In both cases
w changes in time; Linder (2003) introduced the following parameterization

w(a) = w0 + wa(1− a) . (2.37)
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The above parameterization can be used to distinguish between the two classes of scalar field
models, so-called “thawing” and “freezing” models. To explain these models we introduce the
equation of motion for a scalar field, which is obtained from Einstein’s field equation. It reads

φ̈ + 3Hφ̇ + V′(φ) = 0 , (2.38)

where the prime denotes the derivative with respect toφ. Freezing models are characterized
by a potentialV(φ) which drops more rapidly than the friction term 3Hφ̇ as time progresses.
Hence, the friction term in the above equation starts to dominate at late epochs. Thawing models
have opposite behavior; here the friction term dominates at early times and the field changes
rapidly for late times. The different behavior of both models is reflected inw(a). With the
future precision of cosmological data, we can use the above parameterization (2.37) to distinguish
between thawing or freezing models. There exist also more complicated scalar field models,
obtained by changing the kinetic term in the Lagrangian (e.g. k-essence), nevertheless there is
no compelling physical explanation for either of them.

Modified gravity is another suggested explanation. The basic idea is that the geometrical
part of Einstein’ equation (2.1) must be modified (i.e. the Einstein tensor) rather than adding
something to the energy-momentum tensor. For more details on this topic the reader is referred
to Bekenstein (2004). Note that this theory faces severe problems when explaining the third peak
of the CMB power spectrum (Spergel et al. 2007) or the bullet cluster (Clowe et al. 2006).

Other models basically question the cosmological principle, in particular the assumption of
the Universe being homogeneous. Although this assumption is in good agreement with observa-
tions (Sect 2.1.2), it is not a direct consequence of them. Clarkson et al. (2008) suggest a purely
geometrical method, which is based on the relation of Hubble parameter to a modified angular
diameter distance, to test for the cosmological principle. But even if we can prove that on large
scales the universe is homogeneous, on small scales it is truly inhomogeneous. When describing
the dynamics in the Universe, should not we first estimate the dynamics of local inhomogeneities
and then average over these, instead of first averaging over the inhomogeneities and then calcu-
late the dynamics of this homogeneous average? This question is intensively discussed in the
review of Buchert (2008); it is true that averaging Einstein’s equation on small scales leads to a
repulsive, so-calledbackreactionterm. Such a term mimics the behavior of dark energy, however
the strength of this effect is very much under debate. In very recent work, Wiltshire (2007a,b)
presents a solution for the dynamics in an inhomogeneous universe, which replace the Friedmann
equations. In this work inhomogeneities are incorporated by considering two scales, i.e. voids,
which expand rapidly, and bubble walls containing clusters and galaxies, which surround theses
voids. Wiltshire (2007b) performs several observational tests with this new theory claiming that
it is viable, so far.

Final comment We do not know what drives the expansion of the Universe, whether it is any
of the dark energy models or some General Relativity effect, which has been neglected so far.
Investigating dark energy is one major task of future work and surveys. For more details on
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upcoming dark energy surveys and possibilities how to constrain dark energy models best, the
reader is referred to Albrecht et al. (2006) and Peacock et al. (2006). In this thesis we consider
dark energy parameter estimation with cosmic shear, which is done in chapter 8.

2.2 Structure formation

On large scales the Universe is homogeneous and isotropic. On smaller scales this is obviously
and fortunately not the case. The structure we observe today, like clusters and galaxies, has most
likely evolved from small primordial overdensities, which further increase through gravitational
processes. Due to gravitational instability, an initial overdense region expands slower compared
to the expansion rate of the surrounding Universe, causing a further increase of its density con-
trast. If the initial overdensity was large enough, at some point it decouples from the expansion
of the Universe, collapses and forms a cluster. This scenario is supported by the fact that we ob-
serve imprints of these primordial perturbations in the CMB. The density contrast at comoving
spatial coordinates (x) and cosmic timet is defined as

δ(x, t) :=
ρ(x, t) − ρ̄(t)

ρ̄(t)
, (2.39)

whereρ(x, t) denotes the density at (x, t) andρ̄ is the mean density of the Universe.

2.2.1 Linear structure formation

We start with a qualitative description of the different physical processes, which affect a density
perturbation. This can be done best in Fourier space, we therefore introduce the Fourier transform
of δ(x) as

δ̂(k) =
∫

R3
d3x δ(x) eix·k ←→ δ(x) =

∫

R3

d3k
(2π)3

δ̂(k) e−ix·k (2.40)

with k as the comoving wave vector. These Fourier modes of the density field evolve inde-
pendently as long as the perturbation is in the linear regime, i.e.|δ(x, t)| ≪ 1, furthermore the
evolution of a mode depends only on the magnitude ofk. This magnitude is related to a charac-
teristic length scale in real space, i.e.λ = 2π/k. If this length scale is larger than the comoving
horizon (Sect. 2.1.4.4), the perturbation is not affected by any physical processes. Once this scale
becomes smaller than the comoving horizon (“the mode enters the horizon”), physical processes
start to influence the perturbation. Knowing that the physical conditions during the radiation-
dominated phase of the universe are substantially different compared to the matter-dominated
phase, we deduce that the evolution of a mode which enters the horizon before matter-radiation
equality (see Sect. 2.1.4.4), differs from a mode withaenter≫ aeq, where we defineaenter as the
expansion factor at the time when the mode enters the horizon.
Qualitatively the evolution of a density fluctuation in time is described as

δ̂(k, a) = δ̂i(k) T(k)
D+(a)
D+(ai)

, (2.41)
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where δ̂i(k) denotes the density perturbation at an initial epochai ≪ aeq, T(k) the so-called
transfer functionandD+ is thegrowth factor(the subscript is explained in Sect 2.2.1.1). The
transfer function accounts for the evolution ofδ̂i(k) during the radiation-dominated phase and
through matter-radiation transition (see Sect. 2.2.1.2). The growth factor describes the late-time
evolution in the matter-dominated and dark energy-dominated universe.

2.2.1.1 Growth factor

The evolution of sub-horizon modes can be described by Newtonian gravity. In contrast, we
must refer to General Relativity to describe the super-horizon fluctuations. The dominant particle
species is collisionless dark matter which implies that multi-streams can occur; hence, there is no
well defined velocity field. The proper way of describing such a system employs the collisionless
Boltzmann equations; a thorough treatment can be found in Dodelson (2003). However, we
approximate matter as a pressureless fluid, which is a valid assumption on large scales or at early
times when multi-streams are negligible. The complete set of evolution equations reads

∂ρ(r , t)
∂t

+ ∇r ·
[

ρu(r , t)
]

= 0 Continuity equation, (2.42)

∂u
∂t
+ (u · ∇r) u = −∇rφ Euler equation, (2.43)

∇2
rφ = 4πGρ − Λ Poisson equation, (2.44)

with u as the velocity of the fluid,φ the gravitational potential andr the proper coordinates.
The Poisson equation was modified by theΛ term to allow for a cosmological constant. The
homogeneous solution of the above set of equations reproduces the Friedmann equation (2.5).
We transform equations (2.42) - (2.44) to comoving coordinates usingx = r

a(t) , defining the
comoving densityρ(r , t) = ρ̂( r

a(t) , t) = ρ̂(x, t) and decomposing the velocity into homogeneous
expansion and peculiar velocityu(r , t) = ȧx + v(x, t). In addition, we insert the definition of the
density contrast (2.39) for the comoving density ˆρ into the Continuity equation which yields the
following evolution equations in comoving coordinates

∂δ

∂t
+

1
a
∇x · [(1+ δ)v] = 0 Continuity equation, (2.45)

∂v
∂t
+

ȧ
a

v +
1
a

(v · ∇x) v = −1
a
∇xΦ Euler equation, (2.46)

∇2
xΦ =

3H2
0Ωm

2a
δ Poisson equation, (2.47)

withΦ(x, t) := φ(ax, t)+ äa
2 |x|2 as the comoving gravitational potential. A unperturbed expanding

Universe corresponds to the solutionδ ≡ 0, v ≡ 0,Φ ≡ 0. Recall that we are in the linear regime,
hence|δ| ≪ 1 and similarly the peculiar velocityv is small compared to the homogeneous
expansion of the Universe. We therefore linearize the above equations inδ andv. Taking the
time derivative of the linearized continuity equation and the divergence of the linearized Euler
equation, we combine both with the Poisson equation. Thereby we eliminate the peculiar velocity
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andΦ deriving
∂2δ

∂t2
+

2ȧ
a
∂δ

∂t
−

3H2
0Ωm

2a3
δ = 0 . (2.48)

This homogeneous differential equation describes the evolution of density perturbations in the
linear regime. As the partial derivatives in (2.48) are only taken with respect to time and the
coefficients are independent of time we can factorize the equation and obtain the solution

δ(x, t) = D+(t)δ0+(x) + D−(t)δ0−(x) , (2.49)

with δ0± denoting the density perturbation at a specific time (e.g. today). The functionsD± are
linearly independent solutions of

∂2D
∂t2
+

2ȧ
a
∂D
∂t
−

3H2
0Ωm

2a3
D = 0 . (2.50)

The functionD− decreases in time (decaying mode), even if it was present at early times it does
not contribute to today’s perturbations. We only considerD+ (growing mode) as relevant for
structure formation. Equation (2.49) reduces to

δ(x, t) = D+(t) δ0+(x) , (2.51)

which indicates that the initial shape of the density fluctuations in comoving coordinates does
not change with time. A general solution for (2.51) is given by

D+(a) ∝ H(t)
H0

∫ a

0

da′

[

Ωm/a′ + ΩΛa′2 − (Ωm + ΩΛ − 1)
] 3

2

, (2.52)

with the additional constraint to normalize the function toD+(t0) = D+(a = 1) = 1. With this
normalizationδ0(x) in (2.51) is today’s density contrast according to linear perturbation theory.
The normalized growing mode is called growth factor (see Fig. 2.3). Note that for an EdS-
universe (Ωm = 1.0,ΩΛ = 0), the growth factor scales as the scale factor.

2.2.1.2 Transfer function

The growth factor only describes the evolution of a perturbations inside the horizon and in a
matter-dominated universe. In addition we need a description for superhorizon perturbations,
both in the matter and radiation-dominated phase, and for modes which enter the horizon before
aeq. For such superhorizon perturbations we must refer to perturbation theory of General Relativ-
ity and can no longer use Newtonian gravity. For a detailed derivation the reader is again referred
to Dodelson (2003). Furthermore, if a mode enters the horizon beforeaeq, radiation pressure pre-
vents the perturbation to grow. This meansδ̂ of this mode is constant until the Universe becomes
matter-dominated. In summary, one has to distinguish three phases for a mode of a given length
scale and correspondingaenter

δ̂ ∝ a2 if a≪ aenter< aeq , (2.53)

δ̂ ∝ const if aenter< a < aeq , (2.54)

δ̂ ∝ a if a > aeq . (2.55)
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Figure 2.3: Illustration of the growth factor D+ depending on scale factor (left panel) and red-
shift (right panel) for different density parameters. In case of an Einstein-de Sitter Universe (Ωm

=1,ΩΛ=0) D+ evolves similarly to the scale factor. (Figure from Schneider et al. 2006)

We define the transfer function as

δ̂(k, a = 1)

δ̂(ksmall, a = 1)
:= T(k)

δ̂(k, aearly)

δ̂(ksmall, aearly)
, (2.56)

where the l.h.s. expresses today’s ratio of two density perturbations, and the r.h.s. shows the
same ratio at early times. The transfer function relates both epochs and accounts for a possible
suppression of growth. Note that in the above definitionk is variable, whereasksmall is fixed to
the scale of a perturbation which enters the horizon at late times. The scale factoraearly is fixed
such that all scales of interest are outside the horizon at this time. Two limits of the transfer
functions are easy to derive. First, for smallk it approaches unity. Second, largek perturbations
are suppressed, which is illustrated in Fig. 2.4. We see that the perturbation is reduced by a factor
of T(k) = (aenter(k)/aeq)2. Fora≪ aeq we can relatek to aenter as follows

k ≈ 1/rH(aenter(k)) =
H0
√
Ωr

c aenter
(2.57)

where in the last step we use (2.25). We see thatk ∝ 1/aenter, henceT ∝ k−2 for largek.
Last, the transfer function depends on the type of dark matter which is dominant in the Universe.
If the Universe was dominated by particles with relativistic velocities, so-calledHot Dark Matter
(for example massive neutrinos), small potential well would not attract enough particles to form
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Figure 2.4: A schematic sketch
of the transfer function. Modes
which enter the horizon before
aeq are suppressed by the factor
(aenter/aeq)2. (Figure taken from
Schneider 2006)

a perturbation due to the high velocity of the particles. Thisimplies that large perturbations
such as clusters and superclusters of galaxies should have formed first. However, when going to
higher redshift, we do not observe the clusters and superclusters, but many isolated galaxies. For
this reason we conclude that Hot Dark Matter only contributes a small fraction toΩm and prefer
the model ofCold Dark Matter(CDM) where particles move with velocities which are highly
non-relativistic.
In this thesis we use the transfer function fitting formula found by Efstathiou et al. (1992) which
reads

T(k) =
[

1+
(

6.4q+ (3.0q)3/2 + (1.7)2
)ν]−1/ν

with ν = 1.13 . (2.58)

The definitions of q reads

q :=
kMpc

hΓ
, (2.59)

and for the shape parameterΓ we use the expression given in Sugiyama (1995)

Γ = Ωmh exp
[

−Ωb(1+
√

2h/Ωm)
]

. (2.60)

2.2.2 Statistical properties of the density field

Structure formation is not able to describe the specific density field in our Universe, we can only
achieve a description of its statistical properties as a function of time. We consider the density
field of our Universe as one realization of a random field, whose statistical properties we want
to determine. In principle, this determination requires an averaging process over many indepen-
dent realizations, however we have only one observable Universe, hence theensemble average
must be replaced by avolume average. We average over different regions of the Universe with
a separation that is large enough to consider these regions as independent. Then, the statistical
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properties of this random field are described through itsmoments(mean, two-point correlation
function, three-point correlation function, etc.).
For the special case of a Gaussian density field the statistical properties are fully described by the
mean and two-point correlation function (or its Fourier-space equivalent, the power spectrum).
The WMAP 5-years analysis of CMB fluctuations by Komatsu et al. (2008) show no measure-
able deviations from Gaussianity (note that this is questioned by the result of Yadav & Wandelt
2008). If structure growth was linear, today’s density field is a Gaussian random field. However,
structure growth is driven by gravitational instability which is a non-linear process and the ap-
proximation of linear perturbation theory only holds in case the density contrast (2.39) is small.
On small scales, whenδ grows larger than 1, non-linear structure growth becomes non-negligible
and causes a coupling of Fourier modes, which implies a non-Gaussian density field today even
if the initial field was Gaussian. Here, structure growth becomes non-linear. We have to consider
non-linear models and higher-order moments of the density field.

2.2.2.1 Power spectrum

The mean of the density field vanishes(〈δ(x)〉 = 0); we define its two-point correlation function
as

〈δ(x)δ∗(y)〉 := Cδδ(|x − y|). (2.61)

The homogeneity and isotropy of the density field imply that the two-point correlation function
only depends on the separation|x − y|. Defining the Fourier transform ofδ(x) as in (2.40) and
using expression (2.61), we can calculate

〈δ̂(k)δ̂(k′)〉 = (2π)3δD(k − k′)Pδ(|k|) , (2.62)

where we defined the power spectrumPδ as the Fourier transform of the correlation function

Pδ(|k|) =
∫

R3
d3y eiy·kCδδ(|y|) . (2.63)

The relation (2.41) together with (2.61) and (2.63) enables us to relate a power spectrum at time
t to today’s power spectrumP0(k)

Pδ(k, a) = T2(k)
D2
+(a)

D2
+(ai)

Pi , (2.64)

with Pi being the initial power spectrum. Due to the fact that in the very early universe no
characteristic length scale is preferred and that a power law is the only scale invariant function,
one choosesPi = Akns (see Sect. 2.2.2.2), whereA is a normalization constant andns is the
spectral index, which is assumed to be≤ 1. The normalization must be determined through
observations. The dispersion of the density field smoothed on scalesR is defined as

σ2(R) =
〈

δ2
R(x)

〉

=

∫

d3 k
(2π)3

∣
∣
∣W̃R(k)

∣
∣
∣
2

Pδ(k) , (2.65)
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with

W̃R(k) = 3
sin(kR) − kRcos(kR)

(kR)3
. (2.66)

The above function is the Fourier transform of a spherical top-hat filter function with radiusR. If
the dark matter distribution follows the galaxy distribution one can measureσ(R) simply through
counting galaxies inside spheres of comoving radiusR and calculating the dispersion as

σ2(R) =

〈

(N(R) − 〈N(R)〉)2
〉

〈N〉2
. (2.67)

Commonly the power spectrum is normalized byσ8 which is defined as

σ8 =
√

σ2(R= 8h−1Mpc). (2.68)

This parameter describes the dispersion of density fluctuations in a sphere with radius 8h−1 Mpc.

2.2.2.2 Inflation and initial power spectrum

In the framework of the standard model two main problems occur, theflatness problemand
the horizon problem. The first questions the extreme fine tuning of the curvature toK = 0 in
the early Universe, which is required to explain CMB constraints onΩtot ∈ [0.97; 1.04]. The
second problem addresses the uniform temperature of the CMB. Although different patches of
the sky have never been in causal contact (the horizon size was smaller than 2◦ at the time of
recombination), there exist only small fluctuations. An explanation for both questions is provided
by inflation (Guth 1981), which predicts that the Universe had a very rapid phase of expansion, at
a very early time. This implies a much larger horizon size before inflation which then decreases
due to the rapid expansion. If all scales of the observed CMB were in causal contact before
inflation (which solves the horizon problem) the Universe must have expanded exponentially by
≈ 64 e-folds during this epoch. Note, that this also solves the fine tuning of the flatness at the
beginning of the radiation-dominated phase, because any curvature is smoothed out during the
rapid expansion. Very similar to the quintessence dark energy models (see Sect. 2.1.6), one
assumes that inflation is driven by a scalar fieldφ with negative pressure and a potential. This
potential must be sufficiently flat for the energy density ofφ to be approximately constant, as the
field rolls down the potential to its energy ground state (e.g. Linde 1982). Note, that inflation
predicts a scale-free power spectrum with a spectral index slightly smaller than 1. This small
deviation fromns = 1 quantifies the flatness of the potentialV(φ), with the limit of ns = 1 for
V(φ) being flat. The WMAP-5years results indicate a slight deviation from a Harrison Zel’dovich
power spectrum, i.e.ns ≈ 0.96+0.014

−0.013.

2.2.2.3 The non-linear power spectrum - HKLM method

As mentioned above, the assumption of a Gaussian density field breaks down on small scales. In
this section, we describe a method to obtain a non-Gaussian power spectrum using a fit-formula
which is calibrated from numerical simulations, the so-called HLKM-method (Hamilton et al.
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1991).
Considering a virialized cluster of galaxies, the internal density structure of such an object stays
constant in time (hypothesis of stable clustering). It is not affected by the expansion of the uni-
verse, therefore in comoving coordinates we can consider a virialized object to collapse. Hamil-
ton et al. (1991) introduced two different scalings, the linear one (rL) which refers to the evolution
of the cluster before its decoupling from the expansion and the nonlinear one (rNL) referring to
the time after the collapse. The collapse of a cluster is described as a transition from linear to
non-linear scale. The matter content of the cluster is constant; this matter conservation yields a
relation between the two scales

r3
L = (1+ δNL)r3

NL . (2.69)

An important step in the ansatz of Hamilton et al. (1991) is to relate the densityδNL to the volume
averaged correlation function̄ξ(r) = r−3

∫ r

0
dx3ξ(x). In order to collapse, the cluster has to exceed

a certain density threshold. Correspondingly this threshold exists in terms ofξ̄(r); more precisely,
if the averaged correlation function exceeds a critical value the cluster collapses. We can rewrite
(2.69) as

rL = [1 + ξ̄NL(rNL)]
1
3 rNL . (2.70)

Hamilton et al. (1991) conjectured the existence of a general relation between linear and non-
linear correlation functions.

ξ̄NL(rNL) = fNL[ξ̄L(rL)] (2.71)

This assumption was verified by numerical simulations (for EdS andΛCDM) and turns out to be
very effective. From the correlation function one can calculate the corresponding (dimensionless)
power spectrum (Peacock & Dodds 1994) and rewrite (2.70) as

kL = [1 + ∆2
NL(kNL)]−

1
3 k3

NL , (2.72)

with ∆2
NL = k3/(2π2)Pδ denoting the dimensionless power spectrum andkNL is the wavenumber.

When transforminḡξ into Fourier space, one interpretes the volume averaged correlation function
as a measure for the power at an effective scalekeff . The corresponding relation to (2.71) in
Fourier space reads

∆2
NL(kNL) = fNL[∆2

L(kL)] . (2.73)

The functionfNL is fitted from numerical simulations by Peacock & Dodds (1996).
Furthermore, Smith et al. (2003) develop a fit function for the non-linear power spectrum which
is based on the halo model (see Cooray & Sheth 2002, for a review). Here, one assumes that all
mass of the universe is contained in separated spherical or, as an improvement, triaxial objects,
the so-called haloes. These originate from early overdensities in the Universe, which decouple
from the overall expansion, finally collapse and form a halo. By assuming that the typical dis-
tance of two haloes is large compared to their extent, this model allows for the distinction of
two extreme cases, the highly non-linear and the quasi-linear regime. Both are associated with
a power spectrum, i.e.PH for the first andPQ for the second. The power spectrumPH, which
accounts for largek (non-linear scales), is determined solely through the assumed mass profiles
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Figure 2.5: The power spectrum of density fluctuations Pδ. Thin lines correspond to the linear,
thick lines represent the non-linear Pδ (Smith et al. 2003). Solid and dotted lines correspond to
a flatΛCDM model, more precisely, to the cosmology favored by the WMAP 5-years analysis
(table 2.1 last column) for the solid and to the cosmology of the Millennium simulation (Springel
et al. 2005) for the dotted line. The dashed line corresponds to an EdS-universe, the dotted-
dashed line to an open cold-dark-matter (OCDM) universe (Ωm = 0.3,ΩΛ = 0). For the EdS and
the OCDM universe, all other parameters are similar to the WMAP5 results.

of the haloes. In contrast, linear scales (smallk), described byPQ, are given by the spatial distri-
bution of the haloes. Smith et al. (2003) combine the two power spectra into the final non-linear
power spectrum

PNL(k) = PH(k) + PQ(k) (2.74)

Although based on the halo model the two individual terms are fitted to numerical simulations.
Examples of the power spectrum for various cosmological are shown in Fig. 2.5. Note that
the spatial mass distribution of the haloes needed to derivePQ depends on the number density of
haloes which again depends on cosmology; Press & Schechter (1974) give an analytic expression
which quantifies the change in number density of haloes dn with respect to their massM and the
considered cosmic timet. This expression is based on thespherical collapse model(for a detailed
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description see Schneider 2008) and reads

dn
dM

(M, t) = −
√

2Ωmρcrit√
πM

δc0(t)
σ2(R)

dσ(R)
dM

e
−

δ2c0(t)

2σ2(M)) . (2.75)

Here,σ(R) is defined in (2.65), andδc0(t) denotes the critical density contrast today (extrapolated
using linear structure growth) which is needed for a perturbation to collapse before cosmic time
t. The quantityδc0(t) depends on cosmology, for an EdS-universeδc0(t) = 1.68/a(t) holds. The
original Press-Schechter theory underwent several improvements, e.g. by replacing the spherical
with the ellipsoidal collapse, Sheth & Tormen (1999) provide a mass function with much better
agreement to numerical simulations. However, their mass function becomes somewhat inaccu-
rate in case ofΛCDM models. This deficit is removed in the fit-formula of Jenkins et al. (2001a)
which shows excellent agreement to numerical simulations of a broad range of cosmologies and
redshifts.
There are other attempts to derive a non-linear power spectrum, e.g. from perturbation theory
(Bernardeau et al. 2002). Note, that this approach fails in the highly non-linear regime, also the
fit-formula of Smith et al. (2003) is not sufficiently accurate for precision cosmology. We return
to this issue in chapter 8.

2.2.2.4 Higher order moments - the bispectrum

Although the non-linear power spectrum partly describes non-Gaussian features in the density
field, a precise treatment requires knowledge of higher-order moments. The lowest-order di-
agnostic after the power spectrum is the Fourier space equivalent to the three-point correlation
function, the so-called bispectrum. Its definition reads

〈

δ̂(k1, t)δ̂(k3, t)δ̂(k3, t)
〉

= (2π)3δD(k1 + k2 + k3) (Bδ(k1, k2, t) + Bδ(k2, k3, t) + Bδ(k3, k1, t)) .
(2.76)

Assuming an initial Gaussian density field the bispectrum solely originates from non-linear grav-
itational clustering; it can be approximated through second-order perturbation theory (for a de-
tailed derivation see Bernardeau et al. 2002), explicitly

Bδ(k1, k2, t) = F2(k1, k2, cosϕ) Pδ(k1, t) Pδ(k2, t) , (2.77)

wherePδ denotes the linear power spectrum and cosϕ = (k1k2)/(k1k2). In contrast to the power
spectrum, which only depends on the modulus of a wave vector, the bispectrum depends on three
Fourier vectors. For the case of a EdS-universe the kernelF2(k1, k2, cosϕ) can be calculated
analytically

F2(k1, k2, cosϕ) =
10
7
+ cosϕ

(

k1

k2
+

k2

k1

)

+
4
7

cos2 ϕ . (2.78)

The cosmology dependence ofF2(k1, k2, cosϕ) is extremely weak and the bispectrum is propor-
tional toP2

δ
, hence the reduced bispectrum

Q(k1, k2, cosϕ, t) =
Bδ(k1, k2, t) + Bδ(k2, k3, t) + Bδ(k3, k1, t)

Pδ(k1, t) Pδ(k2, t) + Pδ(k2, t) Pδ(k3, t) + Pδ(k3, t) Pδ(k1, t)
(2.79)
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is almost independent of time and cosmology. It solely reflects the dependence on the configura-
tion of the three Fourier vectorsk1, k2, k3. Note that the bispectrum is invariant under rotations
or translations of this Fourier space triangle as a result of statistical homogeneity and isotropy of
the density field.
Similar to the HKLM method there exist methods to calculate a non-linear model for the bis-
pectrum of density fluctuations. This so-called hyper-extended perturbation theory (HEPT) was
first developed for an EdS Universe (Scoccimarro & Frieman 1999) and later extended to vari-
ous CDM models (Scoccimarro & Couchman 2001). In this theory, the coefficients of the kernel
(2.78) are modified by amended fitting functions. These fitting functions are calibrated from nu-
merical simulations, accounting for the non-linear evolution of the bispectrum with an average
accuracy of 15%. Note that recently a new ansatz was proposed by Pan et al. (2007), who cal-
culate the non-linear bispectrum as a function of the non-linear power spectrum, similar to the
corresponding linear relation in (2.77).

2.3 Measurements of cosmological parameters

In the last 20 years the results on cosmological parameters progressed from vague estimates with
large error bars to an impressive accuracy today, which will be improved even more with future
high-precision data. In this section we outline the most important results and give references for
further reading.

2.3.1 The Hubble constant

The first measurement of a cosmological parameter was performed by Edwin Hubble (Hub-
ble 1929), who recognized that the recession velocity of nearby objects is proportional to their
distance and quantified this relation via the Hubble constantH0 (see Sect. 2.1.3). Hubble un-
derestimated the influence of peculiar velocities of the observed objects and overestimated the
Hubble constant, giving a value of 500 km s−1 Mpc−1. More recently, theHST Key Projectmea-
sured the period and brightness of cepheids in other galaxies and determined their luminosity
distance using the fact that we can calculate the maximum luminosity from the period. Plotting
the recession velocity of the observed galaxies against their distance we can determine the Hub-
ble constant (Freedman et al. 2001). In addition to cepheids, Freedman et al. (2001) use various
distance measures to determine the Hubble constant, e.g. Type Ia supernovae, the Tully-Fisher
relation, surface brightness fluctuations, Type II supernovae, and the fundamental plane. They
combine and weight the individual results and find good agreement with

H0 = (72± 8)
km

s Mpc
. (2.80)

This value is confirmed by other experiments. For example, Riess et al. (2005) claim that earlier
disagreement of SN Ia estimates ofH0 was only due to bad data, with their new data sample and
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analysis they give

H0 = 73± 4(statistical)± 5(systematic)
km

s Mpc
. (2.81)

This agrees well with the result from WMAP. In their analysisH0 is not measured directly,
however under the assumption of zero curvature and the existence of a cosmological constant
term, one can put the tightest constraints onH0 (see Komatsu et al. 2008), i.e

H0 = (70.1± 1.3)
km

s Mpc
. (2.82)

Last but not least, the Hubble constant can be obtained from the relative time delays between mul-
tiple images of a lensed quasar. From 10 of such multiple-image systems Kochanek & Schechter
(2004) derive a Hubble constant of

H0 = (71± 3)
km

s Mpc
. (2.83)

For more information on the use of time delays to estimateH0 the reader is referred to the projects
COSMOGRAIL2 andHOLIGRAIL3.

2.3.2 Density parameters from CMB

Due to small inhomogeneities at the time of recombination (see Sect. 2.1.5) one expects small
anisotropies in the CMB. These temperature fluctuations are due to many effects, we distinguish
primary andsecondaryanisotropies. The primary anisotropies result from physical processes
before recombination, secondary anisotropies occur later, while photons propagate through the
Universe (e.g. the Sunyaev-Zel’dovich-effect). The temperature fluctuations are expanded in
spherical harmonicsCℓ, whereℓ is the frequency mode which is inverse proportional to the an-
gular scale. On scales larger than the horizon, the temperature fluctuations can be approximated
analytically (Sachs & Wolfe 1967). The authors calculate thatℓ(ℓ + 1)Cℓ is constant for smallℓ
in an EdS-universe (Sachs-Wolfe effect). This is the reason why CMB scientists plotℓ(ℓ + 1)Cℓ

againstℓ, instead ofCℓ only (see Fig. 2.6). The most prominent features in the CMB power spec-
trum of temperature fluctuations are theacoustic peaks. Before recombination, the baryons and
photons can be described as a perfect fluid. On scales smaller than the horizon, the baryon fluid
is attracted towards the potential wells, formed by the dark matter perturbations. The radiation
pressure counteracts this attraction, as a result the baryon-photon fluid starts to oscillate. When
the photons decouple this oscillation is frozen into the CMB with a characteristic wavelength,
the so-calledsound horizonat the time of recombinationλmax ≃ treccs. Due to the domination of
the photons in the baryon-photon fluid, the sound speed is given bycs ≃ c/

√
3, hence we can

relate the angular scales of the sound horizon to the actual horizon viaθs ≃ θH/
√

3. The size of
the horizon is directly related to cosmological parameters; for a flat universe the sound horizon
corresponds to an angular scale ofθs ∼ 1◦ , which corresponds toℓ ∼ 200 in spherical harmonics.

2http://www.cosmograil.org
3http://www.astro.uni-bonn.de/∽holigrail
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Figure 2.6: The power spectrum of temperature fluctuation as obtained from WMAP. One nicely
sees the acoustic peaks atℓ ∼ 200 and integer multiples thereof. The shaded area to the left
illustrates the uncertainty due to cosmic variance. (Figure from Hinshaw et al. 2003)

Here, and on integer multiples ofℓ ∼ 200, we expect maxima in the CMB power spectrum. For a
positive curvature,θs decreases, shifting the peaks in the power spectrum to higherℓ, for negative
curvature vice versa. This behavior and the dependence of the CMB temperature fluctuations on
other parameters (ΩΛ, Ωb, Ωm) are illustrated in Fig. 2.7. A change inΩΛ hardly has any impact
which indicates that dark energy was not dominant at the time of recombination. Variations in
Ωb andΩm basically changes the amplitude of the acoustic peaks but hardly affect their positions.
Note that the strongest constraints coming from the CMB are on the curvature; the assumption
of a flat Universe is mainly justified by the CMB.

2.3.3 Galaxy surveys and Baryonic Acoustic Oscillations

In Sect. 2.2.1 we describe how the power spectrum of density fluctuationsPδ depends on cos-
mological parameters; models for the power spectrum can be obtained e.g. via the methods
described in Sect. 2.2.2.3. By comparing these models to the measured power spectrum one can
estimate cosmological parameters. Galaxy redshift surveys map the galaxy distribution and as-
sume that this is, up to a constant (bias) factor, a good tracer for the dark matter distribution. The
bias factor relates the power spectum of the number density of galaxies toPδ, i.e. Pδ = b2Pgal.
Strictly speaking, this bias factor cannot be derived from theory, nevertheless it seems reason-
able in the linear regime but definitely breaks down on non-linear scales. With the definition
of σ8 (2.68), we see thatσ8 = σ8,gal/b. The bias factor can be determined through numerical
simulations by measuring the simulated dark matter distribution to the simulated galaxy distri-
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Figure 2.7: Variation of the acoustic peaks in the anisotropy power spectrum of the CMB with
respect to several parameters. (Figure from Hu& Dodelson 2002)

bution. Hence, by measuringσ8,gal from data, one can directly constrainσ8. Simon et al. (2007)
use weak lensing data to constrain the bias factor arriving atb ∼ 0.8 ± 0.11. In addition toσ8,
one can determine the shape parameterΓ (see equation 2.60) from a measuredPδ, and thereby
constrainΩm andΩb. The matter power spectrum is one of the most important quantities in cos-
mology, the level to which we can constrainPδ quantifies our ability to constrain cosmological
parameters. Note that there are several experiments which constrainPδ (see Fig. 2.8), all with
different sensitivities at different scales.
Very recently a new probe for cosmology has emerged from galaxy redshift surveys, the so-

calledBaryonic Acoustic Oscillations (BAOs). Recall that the characteristic acoustic peaks in
the CMB power spectrum occur because the baryons are driven out of the dark matter potential
wells by the photon pressure. After recombination the separation of baryon overdensities remain
separated from the dark matter overdensities by a characteristic comoving scale. As the Universe
evolves both overdensities attract further matter, resulting in overdense regions. Hence, these
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Figure 2.8: The power
spectrum of density fluctua-
tions. This figure especially
illustrates the variety of cos-
mological experiments which
can constrain the power
spectrum. Note that every
experiment has a preferred
scale at which its sensitivity
is high. Only by combining
several experiments we are
able to probe all scales in the
power spectrum. Figure from
Max Tegmark’s homepage.

characteristic scales are also imprinted in today’s matter (or galaxy) density power spectrum,
resulting in the so-called baryonic acoustic peaks. Measuring the characteristic scales in the
CMB temperature fluctuations power spectrum and in today’s matter power spectrum provides
a relation between angular diameter distance and redshift (a so-called “standard ruler”), which
allows us to constrain the geometry and therefore the density parameters in the Universe. The
first of these acoustic peaks has been detected in the matter power spectrum by Eisenstein et al.
(2005); Cole et al. (2005); Huetsi (2005). Recently Gaztanaga et al. (2008a) claim to observe
this peak also in the three-point correlation function of the galaxies. Gaztanaga et al. (2008b)
measure the Hubble constant using BAOs with a result ofH0 = 71.7± 1.6 km

s Mpc and also combine
BAOs with other cosmological probes to constrain the dark energy equation of state parameter
w = 0.96± 0.05. Note that this method strongly depends on the bias factor which again depends
on the wave number (Sánchez & Cole 2008) and varies with redshift. A proper treatment of this
issue is needed for precision cosmology constraints with BAO.

2.3.4 Clusters

Based on the model of spherical collapse, the Press-Schechter mass function predicts the number
density of dark matter haloes depending on their mass and redshift. As mentioned earlier this
model has been improved by numerical simulations (Jenkins et al. 2001b; Evrard et al. 2002); it
depends strongly on cosmology, e.g. in a flat EdS-universe, the growth function has a smaller
amplitude (see Fig. 2.3) compared to aΛCDM model. Going back in redshift one therefore
expects much less structure for an EdS-universe compared to aΛCDM model. By comparing
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the observations of cluster number density to the predictions of various models we can constrain
cosmological parameters (Henry 2004; Kravtsov et al. 2006; Mantz et al. 2008). Allen et al.
(2008) use the gas-to-mass fraction (fgas) inside clusters to probe the accelerated expansion of
the Universe. This method assumes thatfgas is constant in redshift, which has been checked for
by numerical simulations. In addition, one can usefgas to estimateΩm (Allen et al. 2008, and
references therein). Based on the fact that the intra cluster gas contains the dominant fraction of
baryonic matter, and assuming that this fraction is representative for the Universe, one can cal-
culateΩm ≃ Ωb/ fgas. The second assumption is justified by the facts that clusters are the largest
bound structures in the Universe and thatfgas is almost constant for different clusters. Cluster
samples can also be used to constrain the matter power spectrum, similar to galaxy surveys. This
method is especially useful to constrain the large scales of the power spectrum (see Fig. 2.8).

2.3.5 Supernova Type Ia

We already mentioned in Sect. 2.1.6 that SN Ia experiments provided the first evidence for an
accelerated expansion of the Universe and hence for dark energy (Riess et al. 1998; Perlmutter
et al. 1999). A SN Ia is an explosion of a white dwarf which accretes mass and exceeds a critical
mass limit, which is the same for all SN Ia. Therefore, one might assume that the luminosity
of all SN Ia explosions is the same, meaning SN Ia are so-called “standard candles”. In a strict
sense this is not true, since the maximum luminosity of a SN Ia varies, however, there is a relation
between shape of the lightcurve and the luminosity, which enables us to standardize the SN Ia.
Hence, we can measure the luminosity distance of these supernovae, which evolves differently
in redshift for different cosmological models (see Fig. 2.9). As a reference model we consider
the evolution of the luminosity distance in an empty universe. For cosmological models without
cosmological constant (e.g. an EdS universe) the luminosity distance will be lower. The fact
that forz . 1 we observe a higher apparent magnitude compared to an empty universe can only
be explained through an accelerated expansion and therefore implies a dark energy component.
Since the first results in 1998, the search for SN Ia has been extended to a much larger sample
(Astier et al. 2006) and to higher redshift, i.e.z = 1.7 (Kuznetsova et al. 2008). When going
to these high redshifts, the apparent magnitude of SN Ia is lower compared to what one expects
in an empty universe. This can be explained by the fact that the Universe at these redshifts was
matter-dominated in this epoch. The main problem of SN Ia are evolutionary effects, such as a
redshift-dependent critical mass limit for the explosion, which could results in a lower luminosity
for high-redshift SNe Ia.

2.3.6 The concordance model

Table 2.1 shows the most recent highlight in cosmological parameter estimation, i.e. the 5 years
data analysis from WMAP (Komatsu et al. 2008, and references therein). The table is divided
into two parts, the upper describing parameter which are directly observable through WMAP, the
lower contains parameters which are derived including prior information. The third column sum-
marizes the constraints from a joint parameter estimate of WMAP, a combined SN type Ia sample
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Figure 2.9: This figure shows the difference between the distance modulus of SN Ia measure-
ments and that expected in an empty universe as a function of redshift. This function can be
predicted depending on the cosmological models, e.g. EdS (solid line) and aΛCDM model
(dashed line). The data points clearly favor the latter model. (From Riess et al. 2004)

Table 2.1: Cosmological parameters for aΛCDM model from the WMAP 5 years analysis (Ko-
matsu et al. 2008)

Parameter WMAP 5-year ML WMAP 5-year Mean WMAP+BAO+SN Mean
100Ωbh2 2.268 2.273± 0.062 2.265± 0.059
1 Ωch2 0.1081 0.1099± 0.0062 0.1143± 0.0034
ΩΛ 0.751 0.742± 0.030 0.721± 0.015
ns 0.961 0.963+0.014

−0.015 0.960+0.014
−0.013

σ8 0.787 0.796± 0.036 0.817± 0.026
H0 72.4 km/s/Mpc 71.9+2.6

−2.7 km/s/Mpc 70.1± 1.3 km/s/Mpc
Ωb 0.0432 0.0441± 0.0030 0.0462± 0.0015
Ωc 0.206 0.214± 0.027 0.233± 0.013
Ωmh2 0.1308 0.1326± 0.0063 0.1369± 0.0037

1 Ωc denotes the cold dark matter component ofΩm.

(Riess et al. 2004, 2007; Astier et al. 2006; Wood-Vasey et al. 2007), and Baryonic Acoustic Os-
cillations from the SDSS and 2dFGRS (Percival et al. 2007). In chapter 7 we will refer to these
estimates and the corresponding confidence intervals. Combining several cosmological probes
improves the constraints significantly because different probes have different parameter degen-
eracies, which can be broken in a combined analysis. In addition to the cosmological probes
described in this chapter, there exist several others, e.g. Sunyaev-Zel’dovich effect or the Ly-
man alpha forest, which we do not explain in detail. Also cosmic shear is not discussed in this
chapter; we postpone this to chapter 3.3. However, all these cosmological probes agree on the
cosmological model summarized in table 2.1, and this agreement is truly remarkable. Especially,
if we take into account that all the aforementioned experiments test very different physical pro-
cesses, at very different cosmic time, it is astonishing how well theΛCDM model combined with
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our picture of structure formation is able to explain the observations. We therefore consider this
concordance model as a robust theory on which future cosmological projects should be based.
Today’s open questions mainly address the nature of dark matter and dark energy. Especially
dark energy poses one of the most interesting mysteries, for which many future experiments are
proposed. For a detailed analysis which of the different methods is most suitable to constrain the
dark energy parameters, we refer the reader to Albrecht et al. (2006) and Peacock et al. (2006).
Note, that cosmic shear is considered to be one of the most promising methods.
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Chapter 3

Gravitational Lensing and Cosmic Shear

Based on Einstein’s theory of General Relativity, gravitational lensing describes the behavior
of light rays in a gravitational field. It can be used as a direct measure for matter distributions
on all scales, starting from small masses like stars and galaxies up to large mass distributions
like clusters of galaxies or the Large Scale Structure (LSS) of the Universe. Compared to other
methods, gravitational lensing has the advantage to probe all types of matter directly, regardless
whether it is dark or luminous. Depending on the mass of the considered lens, gravitational
lensing is divided into two regimes. Instrong lensing, high mass distributions (galaxies or clus-
ters of galaxies) create multiple distorted and magnified images. In contrast,weak lensingdeals
with numerous background sources which are also distorted and magnified but the effect is much
smaller compared to strong lensing. For this reason weak lensing must be studied statistically
by averaging over a large number of images. This chapter starts with the basic theory of gravita-
tional lensing. We briefly explain strong lensing, but focus in much more detail on weak lensing,
in particular on weak gravitational lensing by the LSS, calledcosmic shear.

3.1 Deflection of light

Consider a light ray which is bend in the gravitational potential of a point massM; the deflection
angle of this ray can be calculated as

α̂(ξ) =
4G
c2

M
ξ
=

2Rs

ξ
, (3.1)

whereξ is the impact parameter andRs the Schwarzschild radius of the massM. This equation
only holds for a small deflection angle ˆα ≪ 1 which is always true in case of a weak Newtonian
gravitational potential (φ/c2 ≪ 1). The deflection angle caused by a mass distribution can be
calculated by the vectorial sum of the deflections caused by the individual mass elements. As-
suming a small deflection angle (weak field assumption), and a mass distribution with an extent
much smaller than the distances between source, lens and observer (thin lens approximation) the
mass distribution of the lens is characterized by thesurface mass density

Σ(ξ) :=
∫

dr3 ρ(ξ1, ξ2, r3) . (3.2)

35
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Here, we choose coordinates such thatr3 points towards the line of sight andξ = (ξ1, ξ2) being
a vector in the plane perpendicular tor3 (see Fig. 3.1).ρ(ξ1, ξ2, r3) is the volume density. In-
tegration over the individual mass elements atr ′ = (ξ′1, ξ

′
2, r3) and inserting the definition of the

surface mass density gives

α̂(ξ) =
4G
c2

∑

dm (ξ′1, ξ
′
2, r
′
3)
ξ − ξ′
|ξ′ − ξ′|2

=
4G
c2

∫

d2ξ′
∫

dr ′3 ρ(ξ′1, ξ
′
2, r
′
3)
ξ − ξ′
|ξ′ − ξ′|2

=
4G
c2

∫

d2ξ′ Σ(ξ′)
ξ − ξ′
|ξ′ − ξ′|2 . (3.3)

This equation can be applied to galaxies and clusters of galaxies which fulfill the condition of
the thin lens approximation, but it becomes inaccurate for cosmic shear.

3.1.1 Lens equation

Observer


Lens plane


Source plane


θ


β


ξ


α̂


η


Dds


Dd


Ds


Figure 3.1: This figure illustrates a typical lensing situation as described in the text. Note that
ξ, η, β, θ, α̂ are two-component quantities. (Figure from Schneider et al. 2006)
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Figure 3.1 shows a light source at distanceDs from the observer and a gravitational lens
lying on the line of sight at distanceDd from the observer. Looking for a relation between the
true positionη of the light source in thesource planeand the observed positionξ of the image in
the lens planewe find

η =
Ds

Dd
ξ − Ddsα̂(ξ) . (3.4)

Using
η = Dsβ and ξ = Ddθ , (3.5)

we are able to express the lens equation in terms of the angular positions

β = θ − Dds

Ds
α̂(Ddθ) ≡ θ − α(θ) , (3.6)

whereα(θ) is the so-calledscaled deflection angle. From the observer’s point of view,β is
the angular position of the unlensed source andθ is the angular image position. The deflection
angle only depends on surface mass density and impact parameter. It is possible to have multiple
images for a source, corresponding to multiple solutionsθ for fixedβ in the lens equation. The
decisive quantity for the occurrencemultiple images is thecritical surface mass density

Σcr =
c2

4πG
Ds

DdDds
, (3.7)

which is used to define theconvergenceκ

κ(θ) :=
Σ(Ddθ)
Σcr

. (3.8)

Multiple images become possible, if the surface mass density exceeds the critical surface mass
density, which is obviously the case forκ > 1. Lenses withκ > 1 are called strong lenses whereas
for κ ≪ 1 we are in the weak lensing regime and multiple images are impossible. We write the
scaled deflection angle in terms ofκ

α(θ) =
1
π

∫

d2θ′κ(θ′)
θ − θ′
|θ − θ′|2 , (3.9)

and by introducing the deflection potentialψ,

ψ(θ) =
1
π

∫

d2θ′ κ(θ′) ln |θ − θ′| , (3.10)

we expressα in terms of the deflection potential

α = ∇ψ . (3.11)

The two-dimensional Poisson equation gives the convergenceκ as second derivative of the de-
flection potential

κ =
1
2
∇2ψ (3.12)

and can be derived from (3.10) using∇2 ln |θ| = 2πδD(θ).
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3.1.2 Distortion and magnification

Liouville’s theorem guarantees conservation of the surface brightness in the absence of absorp-
tion or emission of photons. Hence, we deduceI (θ) = I (s)[β(θ)] with I (θ) and I (s)(β) denoting
the radiation intensity of image and source. Assuming that the angular diameter of the source is
small compared to the scale on which the density of the lens changes, we can locally linearize
the lens mapping and describe the surface brightness of an image around a fixed pointθ0 by

I (θ) = I (s)[β(θ0) +A(θ0) · (θ − θ0)] . (3.13)

Distortion and magnification are then given by the Jacobian of the lens equation (3.6)

A = ∂β
∂θ
=

(

δi j −
∂αi(θ)
∂θ j

)

=

(

δi j −
∂2ψ(θ)
∂θi∂θ j

)

. (3.14)

We define theshearas a complex numberγ := γ1 + iγ2 = |γ|e2iϕ, and the shear components are
related to the deflection potential as

γ1 =
1
2

(∂1∂1ψ − ∂2∂2ψ) and γ2 = ∂1∂2ψ , (3.15)

Using (3.15) and (3.12) the Jacobian matrixA can be parameterized through convergence and
shear

A =
(

1− κ − γ1 −γ2

−γ2 1− κ + γ1

)

. (3.16)

To illustrate the meaning ofκ andγ we decomposeA into a diagonal and a trace-free part

A(θ) = (1− κ)
(

1 0
0 1

)

− γ
(

cos(2ϕ) sin(2ϕ)
sin(2ϕ) −cos(2ϕ)

)

. (3.17)

The convergenceκ magnifies the image isotropically, whereasγ maps a circular source onto an
elliptical image (Fig. 3.3). The ratio of the semi-axes of the ellipse is determined by the eigen-
values ofA. As mentioned at the beginning of this section the surface brightness is conserved,
however the image’s shape and size is distorted. This results in a (de-)magnification, which we
define as the ratio of image fluxS [given by the integral overI (θ)] to source fluxS0 [given by
the integral overI (s)(β)]. This ratio is calculated to be the inverse of the determinant ofA

µ =
S
S0
=

1
detA =

1

(1− κ)2 − |γ|2
. (3.18)

The magnification is given by|µ| but µ in general can have either sign; the sign expresses the
parity of the image with respect to the unlensed source.
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3.1.3 Caustics and critical curves

Curves in the lens plane where the determinant of the Jacobian matrix detA(θ) vanishes are
calledcritical curves. Mapping a critical curve to the source plane using the lens equation gives
a so-calledcaustic. Whenever a source crosses a caustic two images in the lens plane are either
created or destroyed. Every source close to and inside1 a caustic causes two highly magnified
images, one on each side of the critical curve. As proved by Burke (1981) the absolute number of
images created by a lens must be odd, although observations of most lens systems show an even
number. This is due to one highly de-magnified image in most lens systems which is difficult to
observe. In contrast to critical curves which are always smooth, caustics have cusps. A source
just inside and very close to such a cusp produces three highly magnified images. In case of an
extended source lying exactly on a caustic its images will merge. The resulting image is highly
magnified; this effect leads to the giant luminous arcs which we observe for example in the inner
region of the galaxy cluster Abell 1689 (Fig. 3.2).

3.2 Weak lensing

The weak lensing regime is characterized byκ ≪ 1 and|γ| ≪ 1. Here, the Jacobian matrixA
is close to the unit matrix, distortions and magnifications are much harder to identify. To detect
the weak lensing effect we need a statistical approach, i.e. we have to consider a large sample of
galaxy images, from which we determine the shapes. First, we introduce thereduced shear

1 ≡ γ

1− κ =
|γ|

1− κe2iϕ , (3.19)

which is a complex quantity and describes the degree of distortion. The phaseϕ gives the orien-
tation of the distorted image. The JacobianA can be expressed in terms of1

A = (1− κ)
(

1− 11 −12

−12 1+ 11

)

. (3.20)

If the sources were circular their images would be ellipses with a ratio of axes given by (see Fig.
3.3)

a
b
=

1− |1|
1+ |1| . (3.21)

Unfortunately, the source galaxies are not intrinsically round. The image that we observe must
be decomposed into intrinsic ellipticityǫ(s) and the distortion as a result from lensing. In order to
measure the ellipticity of an image and to relate it to the source ellipticity, we define the center
of an object with brightness distributionI (θ) on the sky as

θ̄ :=

∫

d2θ I (θ) qI [I (θ)] θ
∫

d2θ I (θ) qI [I (θ)]
, (3.22)

1“ inside” means the side of a caustic where the number of produced images is larger
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Figure 3.2: This image of the inner region of Abell 1689 was taken with the HST/ACS camera.
One can see the luminous arcs which are highly magnified and distorted images of background
galaxies on a caustic. (Figure credits to the Space Telescope Science Institute)

whereqI (I ) is a weight function in order to suppress the noise coming from the brightness of the
surrounding area. Furthermore, we define the tensor of second brightness moments

Qi j :=

∫

d2θ I (θ) qI [I (θ)] (θi − θ̄i)(θ j − θ̄ j)
∫

d2θ I (θ) qI [I (θ)]
, i, j ∈ {1, 2} . (3.23)
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Figure 3.3: This illustration shows the mapping in case of a circular source. Considering only
the effect of the convergence the source is simply magnified to a larger circle. The shear addi-
tionally distorts the image to an ellipse depending on the phase of the shearϕ. (Figure from
Marusa Bradac)

We can now quantify the complex ellipticity of a galaxy in terms of theQi j as

ǫ = ǫ1 + iǫ2 :=
Q11 − Q22 + 2iQ12

Q11 + Q22+ 2
(

Q11Q22 − Q2
12

)1/2
, (3.24)

and

χ = χ1 + iχ2 =
Q11− Q22 + 2iQ12

Q11 + Q22
, (3.25)

which are related to each other by

ǫ =
χ

1+ (1− |χ|2) 1
2

, χ =
2ǫ

1+ |ǫ |2 . (3.26)

Using the second-order brightness tensor for the unlensed source and the angular coordinatesβ

Q(s)
i j =

∫

d2β I (s)(θ) qI [I (s)(β)] (βi − β̄i)(β j − β̄ j)
∫

d2β I (s)(θ) qI [I (s)(β)]
, i, j ∈ {1, 2} (3.27)

we define a complex ellipticity for the sourceǫ(s) andχ(s), similar to (3.24, 3.25). The relation
between source and image tensor then reads

Q(s) = A(θ̄)QA(θ̄). (3.28)
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Inserting the above relation into the definition of the ellipticities Seitz & Schneider (1995, 1997)
derive the following relation between source and observed ellipticities

ǫ(s) =






ǫ − 1
1− 1∗ǫ for |1| ≤ 1

1− 1ǫ∗
ǫ∗ − 1∗ for |1| > 1

χ(s) =
χ − 21 + 12χ∗

1+ |1|2 − 2Re(1χ∗)
. (3.29)

We assume that there is no preferred intrinsic orientation of galaxy ellipticities in the Universe.
Therefore, the expectation value of the source ellipticities should be zero

〈

ǫ(s)
〉

= 0 =
〈

χ(s)
〉

. (3.30)

With the above relation the expectation value of the observed ellipticityǫ can be calculated as
(Schramm & Kayser 1995; Seitz & Schneider 1997)

〈ǫ〉 =






1 for |1| ≤ 1

1
1∗

for |1| > 1
. (3.31)

In the weak lensing regime (κ ≪ 1 and |γ| ≪ 1) the expression for the reduced shear (3.19)
reduces to1 ≈ γ. Similarly, Seitz & Schneider (1995) have shown that in the weak lensing regime
1/2 〈χ〉 = 〈ǫ〉 holds, which implies that any measured galaxy ellipticity is a (very noisy) measure
of the local shear. The noise is given by the dispersion of theintrinsic ellipticity dispersion, i.e.

σǫ =

√
〈

ǫ(s)ǫ(s)
〉

. (3.32)

By averaging overN galaxy images, which were all distorted by the same local shear,σǫ is
reduced by a factor of

√
N. The value,σǫ/

√
N denotes the 1-σ deviation of observed mean

ellipticity from true shear.

3.3 Cosmic Shear

In contrast to the last sections, where we describe the lensing effect of local mass distributions
like galaxies or clusters, cosmic shear is subject to light deflection of the large-scale structure
(LSS) in the Universe itself. In particular, the concept of a thin lens fails for cosmic shear and
must be replaced by an extended three-dimensional matter distribution. Light bundles emitted
from distant galaxies travel through this inhomogeneous matter distribution and are continuously
distorted. These distortions in shape and size of the galaxy images can be measured statistically
and provide information on the LSS and on cosmological parameters.
In the following we briefly describe the theory of cosmic shear, focussing on its various measures,
their interrelations and covariances. Cosmic shear has progressed into a very important tool in
observational cosmology during the recent years. We therefore conclude this section with a short
review of its main achievements, future prospects and current challenges.
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Figure 3.4: This figure illustrates the principle of cosmic shear. Light rays from source galax-
ies are continuously deflected by the inhomogeneous matter distribution in the Universe. The
observed images are therefore distorted. (Image credit: DESCART project at IAP, France)

3.3.1 Propagation of light in a 3-D matter distribution

This section reviews the technical details of lensing effects in an inhomogeneous matter distri-
bution; for a more thorough treatment on the derivation we refer the reader to Bartelmann &
Schneider (2001) or Schneider et al. (2006).
In order to investigate the propagation of light we consider a situation as illustrated in Fig. 3.5
and examine, how a comoving separation vectorx(θ, χ) of two light rays evolves. We only con-
sider weak gravitational perturbations; for this case the propagation equation forx(θ, χ) reads

d2x
dχ2
+ Kx = − 2

c2

[

∇⊥Φ(x(θ, χ), χ) − ∇⊥Φ(0)(χ)
]

, (3.33)

whereK is the spatial curvature of the Universe as defined in (2.14),∇⊥ is the transverse co-
moving gradient operator andΦ(0)(χ) denotes the Newtonian potential along the fiducial ray. An
exact derivation of (3.33) is given in Bartelmann & Schneider (2001). This differential equation
can be solved using the Green’s function which leads to

x(θ, χ) = fK(χ)θ − 2
c2

∫ χ

0
dχ′ fK(χ − χ′)

[

∇⊥Φ(x(θ, χ′), χ′) − ∇⊥Φ(0)(χ′)
]

. (3.34)

Inserting the comoving separation vector between two light raysx into (2.21) we obtain the
angular separation of the unlensed source and the fiducial rayβ = x/ fK(χ). In order to describe
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Figure 3.5: For a given comoving radial coordinateχ, a light ray is separated from the fiducial
light ray (lower one) byx(χ). This distance corresponds to an angular separation ofβ if there
are no further lensing effects on the way of the light ray from w to the observer. Both light rays
are constantly influenced by a small Newtonian potential and differences in the deflection refer
to different transverse gradients of the potential∇⊥Φ. (Figure from Tim Schrabback)

the lensing effects we define the Jacobian (similar, to the definition in standard lens theory (3.14))
as

A(θ, χ) =
∂β

∂θ
=

1
fK(χ)

∂x
∂θ

. (3.35)

Inserting (3.34) into (3.35), expandingA in powers ofΦ and considering only up to linear terms
in Φ (Born approximation), we derive

Ai j (θ, χ) = δi j −
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

∂2Φi j(x = fK(χ′)θ, χ′)

∂xi∂xj
. (3.36)

With the definition of the deflection potential

ψ(θ, χ) :=
2
c2

∫ χ

0
dχ′

fK(χ − χ′)
fK(χ) fK(χ′)

Φ( fK(χ′)θ, χ′) , (3.37)

we find the same expression for the distortion matrix as in (3.14)

Ai j = δi j −
∂2ψ

∂θi∂θ j
. (3.38)

We see that, when using the weak-field metric, lensing by a 3D matter distribution can be de-
scribed through the deflection potentialψ, similar to standard lens theory. The expressions forκ

andγ also correspond to the standard lensing definitions (3.12) and (3.15).

3.3.2 Power spectrum of convergence

In Sect. 2.2 we show that the field of density fluctuations depends strongly on cosmological
parameters. To constrain the latter with cosmic shear, we have to relate shear quantities (in
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this caseκ) to the matter density field. Starting from the definition ofκ (3.12) we calculate the
2D-Laplacian ofψ (3.37)

∇2ψ(θ, χ) =
2
c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

∇2Φ( fK(χ′)θ, χ′) . (3.39)

White & Hu (2000) show that the two-dimensional Laplacian can be extended to a three-dimensional
one, without inducing a significant error. Adopting this procedure we apply the Poisson equation
in comoving coordinates (2.47) and derive

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0
dχ′

fK(χ − χ′) fK(χ′)
fK(χ)

δ( fK(χ′)θ, χ′)
a(χ′)

. (3.40)

As the source galaxies are not located at one redshift but follow a redshift distributionpz(z)dz=
pχ(χ)dχ, we have to integrateκ overχ to obtain the effective convergence,

κ(θ) =
∫

dχ pχ(χ)κ(θ, χ)

=
3H2

0Ωm

2c2

∫ χh

0
dχ 1(χ) fK(χ)

δ( fK(χ)θ, χ)
a(χ)

, (3.41)

with

1(χ) =
∫ χh

χ

dχ′pχ(χ
′)

fK(χ′ − χ)
fK(χ′)

. (3.42)

The factor1(χ) describes the redshift-weighted efficiency of the density fluctuations just like
Dds/Ds in “normal” lens theory (Sect. 3.1.1). The upper limit of the integral is the comoving
horizon defined in (2.24). We have seen in Sect. 2.2.2.1 that the power spectrum of density
fluctuationsPδ contains all second-order information about the matter density field. In (3.41)
we related the convergence to the matter density; next we seek a similar relation for the power
spectrum.
If δ is an isotropic and homogenous 3-D random field, the projections

1i(θ) =
∫

dχ qi(χ) δ( fK(χ)θ, χ) (3.43)

are also isotropic and homogenous random fields in 2-D (qi are weight functions). Limber’s
equation originally relates the correlation function ofδ (3D) to a line-of-sight projected correla-
tion function (2D). Correspondingly there exists a Fourier space version of Limber’s equation;
Kaiser (1992, 1998) use it to relatePδ to Pκ

Pκ(ℓ) =
9H4

0Ω
2
m

4c4

∫ χh

0
dχ
1

2(χ)
a2(χ)

Pδ

(

ℓ

fK(χ)
, χ

)

, (3.44)

with 1(χ) explained in (3.42). The above expression is essential for lensing, as it explicitly relates
a lensing quantity to cosmological parameters and the power spectrum of density fluctuations
(which again depends on the cosmological model). Figure 3.6 shows the power spectrum of
convergencePκ for the same cosmologies as forPδ in Fig. 2.5. We see thatPκ depends strongly
on the underlying cosmological parameters, enabling us to constrain them, oncePκ is determined
through observations. In the next section we present several real-space measures which are
related toPκ.
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Figure 3.6: The left plot
shows linear (thin lines) and
nonlinear (thick lines) power
spectra Pκ as a function of
the wave vectorℓ. The right
side shows the corresponding
power spectra in dimension-
less form. The cosmologies
used in the calculation are
similar to those of Fig. 2.5.
Furthermore, we assume all
sources to be at a constant
redshift z0 = 1.
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3.3.3 Second-order cosmic shear measures

Considering the Fourier transform of shear and convergence we find the relation

γ̂(ℓ) = e2iφκ̂(ℓ) , (3.45)

which implies

〈γ̂(ℓ) γ̂∗(ℓ′)〉 = 〈κ̂(ℓ) κ̂∗(ℓ′)〉
= (2π)2δ

(2)
D (ℓ − ℓ′)Pκ(ℓ) , (3.46)

with δ
(2)
D (ℓ) as the two-dimensional Dirac delta distribution. Hence, the power spectra of the

convergence and shear are identical and we can determinePκ through the measured shear. The
shear is a polar quantity, which implies that a rotation ofφ = 180◦ is an identity transformation.
By looking at the shear components in a rotated coordinate frame it is useful to decompose the
shear into atangentialγt and across componentγ×.

γt = −Re
(

γe−2iφ
)

= −γ1 cos 2φ − γ2 sin 2φ, (3.47)

γ× = −Im
(

γe−2iφ
)

= γ1 sin 2φ − γ2 cos 2φ . (3.48)

Here,γ1 andγ2 refer to cartesian coordinates andφ specifies a direction relative to which the
shear is measured.
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3.3.3.1 Correlation function

In real space the power spectrum corresponds to the two-point correlation function (2PCF). Con-
sider a pair of galaxies at positionϑ andϑ + θ respectively. Using the above definition of
tangential and cross component of the shear we define the 2PCFs as

ξ±(θ) = 〈γtγt〉 ± 〈γ×γ×〉(θ) , (3.49)

ξ×(θ) = 〈γtγ×〉(θ) . (3.50)

ξ×(θ) vanishes becauseγ× → −γ× under parity transformation and the LSS is parity-symmetric.
Note that the 2PCF only depends on the magnitude of the separation vector but not on the orien-
tation. Practically we can calculateξ± by measuring the ellipticities of many background galaxy
pairs with the same separation. The shear is obtained as described in Sect. 3.2. Furthermore,
there is a relation of the 2PCF and the convergence power spectrumPκ

ξ+(θ) =
∫ ∞

0

dℓ ℓ
2π

J0(ℓθ)Pκ(ℓ) , (3.51)

ξ−(θ) =
∫ ∞

0

dℓ ℓ
2π

J4(ℓθ)Pκ(ℓ) , (3.52)

with J0 as the 0th-order Bessel function andJ4 the 4th-order Bessel function. Recall that there is a
similar relation for the matter power spectrum, with only one difference: the matter distribution
is three-dimensional, whereas the shear only has two dimensions.

3.3.3.2 Aperture mass dispersion

The so-calledaperture masswas introduced by Kaiser (1994) and Schneider (1996) as a measure
of the local surface mass density around a fixed positionϑ. For an aperture of radiusθ the aperture
mass is defined as

Map(θ,ϑ) =
∫

d2ϑ′ κ(ϑ′) Uθ(|ϑ − ϑ′|) , (3.53)

with Uθ being a filter function satisfying the criterion
∫ ∞

0
dϑ Uθ(ϑ) ϑ = 0 . (3.54)

Furthermore, Kaiser (1994) and Schneider (1996) show thatMap can be expressed in terms of
the tangential shear. For each point inside the aperture,γt andγ× are measured relative to the
connecting vector of aperture center to the considered point.

Map(θ,ϑ) =
∫

d2ϑ′ Qθ(|ϑ − ϑ′|) γt(ϑ
′) , (3.55)

with Qθ as a weight function related toUθ by

Qθ(ϑ) =
2
ϑ2

∫ ϑ

0
dϑ′ ϑ′Uθ(ϑ

′) − Uθ(ϑ) . (3.56)
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The importance of this measure for cosmic shear was discovered later (Schneider et al. 1998)
with the dispersion ofMap which is related toPκ via

〈M2
ap〉(θ) =

1
2π

∫ ∞

0
dℓ ℓ Pκ(ℓ)Wap(θℓ) , (3.57)

with

Wap(θℓ) =

(

24J4(ℓθ)
(ℓθ)2

)2

. (3.58)

3.3.3.3 Shear dispersion

Another second-order measure is theshear dispersion. This is obtained by calculating the mean
shear inside a circular aperture of radiusθ. By averaging over many apertures we find the shear
dispersion〈|γ̄|2〉. The relation to the power spectrum is given by

〈|γ̄|2〉(θ) = 1
2π

∫

dℓ ℓ Pκ(ℓ)

(

2J1(ℓθ)
ℓθ

)2

. (3.59)

When taking a closer look (Fig. 3.8) at the filter functions of the three cosmic shear measures,
we just reviewed one sees thatξ+ and the shear dispersion〈|γ̄|2〉 have very broad filter functions.
These imply that for a fixedθ the corresponding measure integrates the over a wide range of the
power spectrum. The filter function ofξ− is more localized, but still broad compared with the
filter function of〈M2

ap〉. The aperture mass dispersion probes the power spectrum very narrowly
giving by far the most localized information but it has a low signal. We will discuss advantages
and disadvantages of the individual second-order measures in detail in chapter 5. Figure 3.7
shows all second-order cosmic shear measures in comparison.

3.3.3.4 Interrelations

All mentioned two-point statistics depend linearly on the power spectrum. Crittenden et al.
(2002) show that they can be related to each other. Using the orthonormality of the Bessel
functions we can invert the relation (3.51) and (3.52) and express the power spectrum in terms of
the two-point correlation function

2π
∫ ∞

0
dθ θ ξ+(θ) J0(ℓθ) = Pκ(ℓ) = 2π

∫ ∞

0
dθ θ ξ−(θ) J4(ℓθ) . (3.60)

Inserting the l.h.s. into (3.52) and the r.h.s. into (3.51), we derive an expression of either corre-
lation function in terms of the other

ξ+(θ) = ξ−(θ) +
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ)

(

4− 12
θ2

ϑ2

)

, (3.61)

ξ−(θ) = ξ+(θ) +
∫ θ

0

dϑϑ
θ2

ξ+(ϑ)

(

4− 12
ϑ2

θ2

)

. (3.62)
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Figure 3.7: The different 2-point statistics of cosmic shear, calculated via (3.51), (3.52), (3.57),
(3.59) for the WMAP5 cosmology (see Tab. 2.1, WMAP+BAO+SN parameters)

Note that in the first equation the integral does not diverge in caseϑ −→ 0. The reason for this
is thatξ− goes faster to zero than 1/ϑ3 to infinity, which can be seen from the filter function J4.
Inserting (3.60) into (3.57) we can express〈M2

ap〉 in terms of the correlation function as

〈M2
ap〉(θ) =

∫ 2θ

0

dϑϑ
θ2

ξ+(ϑ)T+

(

ϑ

θ

)

=

∫ 2θ

0

dϑϑ
θ2

ξ−(ϑ)T−

(

ϑ

θ

)

. (3.63)

From the above formula one sees that in order to calculate〈M2
ap〉 on an aperture of radiusθ, the

2PCF must be measured over a range [0; 2θ]. Both correlation functions can be used for this
calculation. The filter functionsT± are derived in Schneider et al. (2002a).

T+(x) =

{

6(2− 15x2)
5

[

1− 2
π

arcsin
( x
2

)]

+
x
√

4− x2

100π
(120+ 2320x2 − 754x4 + 132x6 − 9x8)





H(2− x) , (3.64)

T−(x) =
192
35π

x3

(

1− x2

4

)7/2

H(2− x) . (3.65)

Similarly, we can express the shear dispersion in terms of the correlation function but with dif-
ferent filter functions

〈|γ̄|2〉(θ) =
∫ 2θ

0

dϑϑ
θ2

ξ+(ϑ)S+

(

ϑ

θ

)

=

∫ ∞

0

dϑϑ
θ2

ξ−(ϑ)S−

(

ϑ

θ

)

, (3.66)
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whereS± is given as

S+(x) =
1
π

[

4arccos
( x
2

)

− x
√

4− x2
]

H(2− x) ,

S−(x) =
x
√

4− x2(6− x2) − 8(3− x2) arcsin (x/2)
πx4

H(2− x)

+
4(x2 − 3)

x4
H(x− 2) .

In either case of the filter functionT± andS±, H denotes the Heaviside step function. The filter
functionsT± andS± are plotted in Fig. 3.8. It is quite important to mention that all second-
order measures can be evaluated from the correlation functions asξ± is easiest to measure. It is
independent of gaps on real data fields, coming from satellite traces, bright stars or CCD-defects.
All this affects the aperture mass dispersion as well as the shear dispersion if they are directly
obtained from the data and not calculated fromξ±. Furthermore, it is worth to mention that〈M2

ap〉
can be calculated from both,ξ+ andξ−, on a finite interval, which means to calculate〈M2

ap〉(θ),
the 2PCF must be measured on an angular scale [0, 2θ]. In case of the shear dispersion, this is
only possible forξ+. The reason for this are again the filter functions, the one of〈M2

ap〉 is very
narrow, hence all information needed can be obtained fromξ+ andξ−, which have much wider
filter functions. However, this is different in case of〈|γ̄|2〉 which also has a broad filter function
and therefore also probes the very power specrum on smallℓ (largeθ). Due to its narrower filter
functionξ− cannot provide this information; it probes the power specrum more locally, therefore
one has to “measure” it to infinity to calculate the shear dispersion. The broad filter function of
ξ+ can still provide this large-scale information.

3.3.3.5 E-modes and B-modes

The shear can be calculated from the deflection potentialψ via (3.15). Noting thatγ is a complex
quantity whereasψ is a scalar field, the two components of the shear cannot be independent of
each other. This can be shown by calculating the gradient ofκ

∇κ =
(

∂1γ1 + ∂2γ2

∂2γ1 − ∂1γ2

)

≡ u . (3.67)

Taking again the derivative, we expect∇×u to vanish, providing a relation between the two shear
components in terms of their second derivatives. However, ifu is measured from a data field,
most cosmic shear surveys measure a non-gradient component in their signal, the so-called B-
modes (Fig. 3.9). B-modes are considered to be a contamination of the pure lensing signal, their
origin is not fully explained. The limited validity of the Born approximation (Jain et al. 2000)
or redshift source clustering (Schneider et al. 2002b) can also create B-modes, although these
effects are small. Intrinsic alignment of source galaxies is another possible source of B-modes.
Predictions coming from numerical simulations differ on the impact of these effects (e.g. Heavens
et al. 2000; Crittenden et al. 2001; Jing 2002). However, the observed B-mode amplitude is
higher than one would expect from these explanations. Most likely, B-modes indicate remaining
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Figure 3.8: The filter functions T+, T−, S+ and S−. x gives the ratio of (θ/ϑ). All filter functions
except S− become zero for x> 2. (Figure from Schneider et al. 2006)

systematics in the observation and data analysis (e.g. insufficient PSF-correction). We further
outline possible contaminations to the shear signal in Sect. 3.5.
To distinguish between the curl and the gradient parts ofu (E-modes), we consider the complex
surface mass densityκ = κE + iκB and define

∇2κE = ∇ · u (3.68)

∇2κB = ∇ × u = ∂1u2 − ∂2u1 . (3.69)

Similarly we define two components of the deflection potential via the Poisson equation

∇2ψE,B = 2κE,B . (3.70)

In general, bothψ andκ are expressed as complex quantities.

ψ = ψE + iψB , (3.71)

κ = κE + iκB . (3.72)

Considering second-order statistics, the decomposition into E-and B-modes can also be applied
to the power spectrum. From (3.46) together with (3.72) Schneider et al. (2002b) calculate

〈κ̂E(ℓ)κ̂∗E(ℓ′)〉 = (2π)2δ
(2)
D (ℓ − ℓ′) PE(ℓ) , (3.73)

〈κ̂B(ℓ)κ̂∗B(ℓ′)〉 = (2π)2δ
(2)
D (ℓ − ℓ′) PB(ℓ) , (3.74)

〈κ̂E(ℓ)κ̂∗B(ℓ′)〉 = (2π)2δ
(2)
D (ℓ − ℓ′) PEB(ℓ) . (3.75)
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E mode

B mode

Figure 3.9: The upper part of this figure shows a typical E-mode pattern which can be expressed
as the gradient part of∇κ. The left panel shows the mapping of galaxies due to a matter over-
density and the right images are produced by an underdensity. In the lower part we see the
corresponding curl component of the shear signal (B-modes). (Figure from van Waerbeke&

Mellier 2003)

The cross power spectrumPEB is expected to vanish for a statistically parity-invariant shear field.
Similar to (3.51) and (3.52), we can now express the correlation function in terms of the decom-
posed power spectrum

ξ+(θ) =
∫ ∞

0

dℓ ℓ
2π

J0(ℓθ) [PE(ℓ) + PB(ℓ))] , (3.76)

ξ−(θ) =
∫ ∞

0

dℓ ℓ
2π

J4(ℓθ) [PE(ℓ) − PB(ℓ)] . (3.77)

Again, similar to the case of E-modes only, the above relations can be inverted

PE,B(ℓ) = π
∫ ∞

0
dθ θ

[

ξ+(θ)J0(ℓθ) ± ξ−(θ)J4(ℓθ)
]

. (3.78)

In order to constrain parameters we want to distinguish between the power spectrum resulting
from E-modes and the one resulting from B-modes. Practically this cannot be done using (3.78),
because this requires a measured correlation function with arguments from 0 to infinity. Instead,
one uses the aperture mass dispersion to separate E-modes and B-modes. More precisely, one
can show that〈M2

ap〉 is sensitive only to E-modes and〈M2
⊥〉 provides a measure of the B-mode
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only and vanishes in its absence

〈M2
ap〉(θ) =

1
2π

∫ ∞

0
dℓ ℓPE(ℓ)Wap(θℓ) , (3.79)

〈M2
⊥〉(θ) =

1
2π

∫ ∞

0
dℓ ℓPB(ℓ)Wap(θℓ) . (3.80)

Again, we can calculate〈M2
ap〉 and 〈M2

⊥〉 directly from the much easier obtainable correlation
functions

〈M2
ap〉(θ) =

1
2

∫ 2θ

0

dϑϑ
θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

+ ξ−(ϑ)T−

(

ϑ

θ

)]

, (3.81)

〈M2
⊥〉(θ) =

1
2

∫ 2θ

0

dϑϑ
θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

− ξ−(ϑ)T−

(

ϑ

θ

)]

. (3.82)

In the absence of B-modes (3.82) vanishes, henceξ+ can be expressed throughξ−, implying that
for the case of a pure lensing signal (only E-modes) we can express〈M2

ap〉 in (3.81) only either
via ξ+ or ξ−.

3.4 Cosmological parameters from cosmic shear

In recent years cosmic shear has become a valuable tool to constrain cosmological parameters.
In this section we briefly outline the most important results and also explain the main difficulties
which cosmic shear parameter estimation faces today. We conclude with a short outlook to future
surveys.
Cosmic shear is an extremely powerful method to determine the normalization of the power
spectrumσ8 in caseΩm can be obtained from a different cosmological probe. Table 3.1 summa-
rizes the most important surveys and their results forσ8 since the detection of cosmic shear in
the year 2000 (Bacon et al. 2000; Kaiser et al. 2000; van Waerbeke et al. 2000; Wittman et al.
2000). Although the obtained values forσ8 deviate slightly, they are in good agreement with
each other and results coming from other cosmological experiments (see Sect 2.3.6). The latest
cosmic shear analysis of Fu et al. (2008) is suited best to illustrate the high quality of parameter
estimation, which can be done with cosmic shear. In this analysis the raw data of the CFHTLS
3-years data release was reduced using two independent pipelines. The estimated shear signals
were in good agreement. The 2PCF was detected out to a scale of 460′ which by far exceeds the
scales on which former analyses were able to measure a signal. From the 2PCF several 2-point
cosmic shear statistics were calculated, such as the aperture mass dispersion,ξE, and the top-hat
shear dispersion. Figure 3.10 illustrates the results for the three aforementioned measures; we
see that the E-mode signal is significantly larger compared to possible contaminations indicated
by the amplitude of the B-mode signal. Furthermore, the latter is consistent with zero on all
scales except around 60 arcmin. In chapter 6 we calculate the ring statistics from the same set
of 2PCF as used in Fu et al. (2008) to check their findings. The remarkable results cosmic shear
has achieved so far will improve in the future with large upcoming surveys like Pan-STARRS,
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Figure 3.10: This figure shows three second-order measures (ξE, 〈M2
ap〉 and 〈|γ|2〉) of the latest

CFHTLS analysis. The red dots correspond to the E-mode signal, the black circles to the B-
mode signal. Note that the latter is almost everywhere consistent with zero. (Figure from Fu
et al. 2008)

KIDS, DES, Euclid or LSST. Already the first two surveys, starting in 2009, provide data which
enables us to estimate the shear signal with less than 1% statistical error. These small statistical
errors make cosmic shear an ideal tool for future dark energy studies (see Peacock et al. 2006;
Albrecht et al. 2006), we examine this more closely in chapter 8. Still, for precision cosmology
cosmic shear has to solve several problems, which we outline in the next section.

3.5 Future challenges - precision cosmology with cosmic shear

Despite past successes and positive future prospects, there are unsolved systematics and un-
certainties which affect parameter estimation with cosmic shear. These issues, though of minor
importance for the current generation of weak lensing surveys, must be solved for the next survey



3.5. Future challenges - precision cosmology with cosmic shear 55

Table 3.1: Summary of weak lensing surveys with constraints onσ8 – assuming a flat universe
with ns = 1. This table is an extension of a similar table in Peacock et al. (2006)

Survey Sky coverage ngal/arcmin2 σ8 (Ωm = 0.3) Ref.

VLT-Descart 0.65 deg2 21 1.05±0.05 Maoli et al. (2001)

Groth Strip 0.05 deg2 23 0.90+0.25
−0.30 Rhodes et al. (2001)

MDS 0.36 deg2 23 0.94±0.17 Refregier et al. (2002)

RCS 16.4+ 7.6 deg2 9 0.81+0.14
−0.19 Hoekstra et al. (2002b)

Virmos-Descart 8.5 deg2 15 0.98±0.06 Van Waerbeke et al. (2002)

RCS 45.4+ 7.6 deg2 9 0.87+0.09
−0.12 Hoekstra et al. (2002a)

COMBO-17 1.25 deg2 32 0.72±0.09 Brown et al. (2003)

Keck+WHT 0.6+ 1.0deg2 27.5/15 0.93±0.13 Bacon et al. (2003)

CTIO 75 deg2 7.5 0.71+0.06
−0.08 Jarvis et al. (2003)

SUBARU 2.1 deg2 32 0.78+0.55
−0.25 Hamana et al. (2003)

COMBO-17 1.25 deg2 R 0.67±0.10 Heymans et al. (2004)

FIRST 10000 deg2 0.01 1.0±0.2 Chang et al. (2004)

GEMS 0.22 deg2 60 0.68±0.13 Heymans et al. (2005)

WHT + COMBO-
17

4.0+ 1.25deg2 15 / 32 1.02±0.15 Massey et al. (2005)

Virmos-Descart 8.5 deg2 12.5 0.83±0.07 van Waerbeke et al. (2005)

CTIO 75 deg2 7.5 0.71+0.06
−0.08 Jarvis et al. (2006)

CFHTLS Deep 2.1 deg2 + 22 0.89±0.06 Semboloni et al. (2006)

CFHTLS Wide 22 deg2 13 0.86±0.05 Hoekstra et al. (2006)

GaBoDS 15 deg2 12.5 0.80±0.10 Hetterscheidt et al. (2007)

ACS parallel +
GEMS+ GOODS

0.018+ 0.027 deg2 63/96 0.52+0.13
−0.17 Schrabback et al. (2007)

COSMOS 1.64 deg2 40 0.866+0.085
−0.068 Massey et al. (2007b)

CFHTLS Wide
(3years)

34.2 deg2 13.3 0.785±0.043
(for Ωm = 0.25)

Fu et al. (2008)

CFHTLS Wide
(3years)

34.2 deg2 13.3 0.698±0.038
(for Ωm = 0.3)

rescaled Fu et al. (2008)
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generation in order to extract the full information from their high-quality data. In the following
we summarize the main issues, with a focus on brevity in the explanation; each of the points can
easily be subject of a complete thesis.

PSF correction and shape measurementsAn insufficient PSF correction causes a bias in the
amplitude of the lensing signal. The strength of this contamination changes with size, surface
brightness, and intrinsic ellipticity of the considered galaxy and is therefore redshift dependent.
The Shear TEsting Program (STEP) has significantly improved on this issue (for latest results see
Heymans et al. 2006; Massey et al. 2007a); still the accuracy of of the ellipticity measurements
does not satisfy the requirements for precision cosmology. The STEP program is ongoing; the
problem is even discussed outside the lensing community (Bridle et al. 2008).

Astrophysical contaminations In Sect. 3.2 we show that each measured ellipticity is a very
noisy measure of the local shear,ǫi = ǫ

(s)
i + γ(θi). When calculating the correlator of two ellip-

ticities the following terms arise (assume thatz1 ≤ z2)

〈

ǫ1ǫ
∗
2

〉

=
〈

ǫ
(s)
1 ǫ

(s)∗
2

〉

︸    ︷︷    ︸

intrinsic alignment

+
〈

ǫ
(s)
1 γ

∗
2

〉

︸  ︷︷  ︸

shape−shear correlation

+
〈

γ1ǫ
(s)∗
2

〉

︸   ︷︷   ︸

≡0

+
〈

γ1γ
∗
2

〉

︸ ︷︷ ︸

cosmic shear signal

(3.83)

Intrinsic alignment If galaxies are physically close their ellipticities are not necessarily
oriented randomly but can align according to the filamentary structure which is present at their
location. This effect mimics a shear and thereby contaminates the signal. This contamination
mainly affects shallow surveys (e.g. SDSS) and becomes less important the higher the mean
redshift of the source galaxies. However, King & Schneider (2003) show how to separate the
cosmic shear signal from intrinsic alignments contaminations if redshift information is available.

Shape-shear correlation Besides intrinsic alignment, Hirata & Seljak (2004) outline that
a the cosmic shear signal can be affected by an additional contamination, namely that the shear
of a background galaxy and the ellipticity of a foreground galaxy can have a non-zero correla-
tion. More precisely, in case the foreground galaxy is hosted in a large-scale structure filament,
which is also responsible for the shear of the background galaxy, the corresponding term in
(3.83) can give a non-zero contribution. The effect was detected by Mandelbaum et al. (2006).
Recently Joachimi & Schneider (2008) developed a method to remove the shape-shear contri-
bution, by introducing a redshift-dependent filter function which excludes the contaminated part
of the measured 2PCF. Similar to the intrinsic alignment removal, this method requires accurate
redshift information.

Source/ lens clustering As outlined in Schneider et al. (2002b) clustering of source galax-
ies induces a B-mode signal as well as an additional contribution to the E-mode. However, the
contamination is only present on scales smaller than one arcminute, which can be discarded in
order to exclude the effect. In addition, the clustering of sources/ lenses affects the amplitude
of higher-order cosmic shear measures (Bernardeau 1998). Remote sources are lensed by high



3.5. Future challenges - precision cosmology with cosmic shear 57

density regions, creating a high shear signal. These high-density regions serve as lenses, but
in addition they host many galaxies which are not sheared by this high-density region. This
preferred accumulation of galaxies results in a different shear signal, than if the galaxies were
distributed uniformely. Note that once again this effect can be removed employing redshift in-
formation, more precisely the effect is negligible in case the redshift distribution is sufficiently
narrow.

Redshift information As mentioned before precise redshift information is necessary for pre-
cision cosmology in order to account properly for astrophysical contaminations. In addition,
one can enormously improve the constraints on cosmological parameters if the shear signal is
examined as a function of the sources’ redshift (shear tomography) instead of considering 2D-
lensing only. For the large sample of galaxies which are observed in future survey, spectroscopic
redshifts are hardly obtainable. Instead, one has to refer to photometric redshifts (e.g. Heymans
et al. 2005), which improve in accuracy the more filter bands are available.

Theoretical tasks Theoretical issues of future cosmic shear surveys can be structured into three
main groups.

• precise lensing predictions (Born approximation, thin lens approximation, inaccuracy of
Limber’s equation or the flat-sky approximation),

• precise cosmological predictions (accurate models for the non-linear power spectrum or
non-Gaussian covariances, models for higher order moments of the density/shear field)

• accurate methods for inference of cosmological parameters (robust estimators of cosmic
shear measures, precise model for the likelihood function, derivation of the covariance)

In this thesis we focus on the latter two theoretical tasks. In particular, we want to improve on the
issues of cosmic shear estimators and covariances. In chapter 5 we analyze the quality of second-
order cosmic shear estimators with respect to their information content and robustness against
B-mode contamination. We develop a new data vector which combines the advantages of the
most commonly used second-order cosmic shear measures and test this new data vector using
ray-tracing simulations. As a second contribution to the topic of estimators, we examine the
so-called ring statistics (chapter 6), which is the most recently developed second-order cosmic
shear measure (Schneider & Kilbinger 2007). Finally, we employ the ring statistics to measure
the shear signal from the CFHTLS 3 years data, which marks the first application of the ring
statistics to real data.
As a second topic we examine the impact of covariances on the parameter constraints from
cosmic shear. In particular, we show that cosmic shear covariances are cosmology dependent,
quantify the impact on parameter constraints when neglecting this effect and provide a method to
incorporate cosmology dependent covariances into a likelihood analysis (chapter 7). In the last
chapter we analyze the impact on parameter constraints when using non-Gaussian covariances.
Here, we focus on the estimation of dark energy parameters as this will play an important role in
future cosmic shear surveys.
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Chapter 4

Parameter estimation

At the end of the last chapter we summarized the recent achievements of cosmic shear in con-
straining cosmology and its future perspectives. In this chapter we introduce the main concepts
of parameter estimation, which we extensively use in the next chapters. It is a very common
situation in science to measure data from an experiment and, in the framework of an underly-
ing theory, to infer information on the parameters which determine this theory. For the case of
cosmic shear this means: we measure the galaxy ellipticities, therefrom calculate the 2PCF (or
other cosmic shear measures), and finally constrain cosmological parameters. The underlying
theory was outlined in the last two chapters; it is given by the cosmological model (if not stated
otherwise, we assume theΛCDM model) and the concepts of gravitational lensing.
We illustrate the concepts of parameter estimation using the basic two-point cosmic shear statis-
tics, i.e. the 2PCF, as a familiar example. Therefore we first explain how estimators and covari-
ances of the 2PCF are obtained, either from the measured galaxy ellipticities or from simulations
and/or analytic expressions. The estimators and similarly the covariances are binned (linearly or
logarithmically); we conclude this chapter with an analysis of binning effects and their impact
on parameter inference.

4.1 Estimators and covariances for the 2PCF

In this section we define the estimators and covariances of the 2PCF. Similar quantities for other
second-order statistics are introduced when needed.
Consider a sample of galaxies with angular positionsθi. For each pair of galaxies we define the
connecting vectorθ = θi − θ j and determine tangential and cross-components of the ellipticities
(ǫt andǫ×) with respect to this connecting vector. From these ellipticities we estimate the 2PCF
in linear or logarithmic bins inϑ with bin width∆ϑ (Schneider et al. 2002a). If the bin width is
small enough an unbiased estimator forξ±(ϑ) is given by

ξ̂±(ϑ) =
1

Np(ϑ)

∑

i j

(ǫitǫ jt ± ǫi×ǫ j×)∆ϑ(|θi − θ j |) , (4.1)
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with Np(ϑ) =
∑

i j ∆ϑ(|θi − θ j |) as the number of galaxy pairs inside a bin, and∆ϑ(|θi − θ j |) is 1 if
|θi − θ j | lies inside binϑ, 0 otherwise.
Obtaining appropriate covariances is an important issue in the context of a precision cosmology
likelihood analysis. For the 2PCF its general definition reads

Cξ

(

ϑi , ϑ j

)

:=
〈(

ξ±(ϑi) − ξ̂±(ϑi)
) (

ξ±(ϑ j) − ξ̂±(ϑ j)
)〉

. (4.2)

As one already sees from (4.2) the 2PCF has four different covariances, denoted as C++, C+−,
C−+, C−−. Only three of them are independent since C+−(ϑi , ϑ j) = C−+(ϑ j , ϑi). We neglect the
indexξ in (4.2) from now on, as we only consider 2PCF covariances in this chapter.
Several methods to derive a covariance are suggested in the literature and have been applied
to cosmic shear data. An analytic expression assuming a Gaussian shear field is derived in
Schneider et al. (2002a) and confirmed in Joachimi et al. (2008) who use a power spectrum
approach which significantly reduces the computational effort in the calculation. This analytic
expression has been used for parameter estimation in many surveys (e.g. van Waerbeke et al.
2005; Semboloni et al. 2006; Hoekstra et al. 2006) and it is also used extensively in this thesis.
Schneider et al. (2002a) and Joachimi et al. (2008) decompose the covariance into three terms,
namely the cosmic variance term (V), the pure shot noise term (S), and the mixed term (M)

C++(ϑi , ϑ j) = V++ + M++ + S , (4.3)

C−−(ϑi , ϑ j) = V−− + M−− + S , (4.4)

C+−(ϑi , ϑ j) = V+− + M+− . (4.5)

The pure shot noise term vanishes in case of C+− and only contributes to the diagonal of C++ and
C−−. It can be calculated as

S =
σ4
ǫ

2πϑi∆ϑiAn̄2
δϑiϑ j , (4.6)

whereA denotes the area the data field,σǫ is the intrinsic ellipticity dispersion, and ¯n the number
density of source galaxies. The cosmic variance term (V) and the mixed term (M) can be either
calculated via the power spectrum or via the 2PCF. According to Joachimi et al. (2008) the power
spectrum expression reads

V±± =
1
πA

∫ ∞

0
dℓ ℓJ0/4(ℓϑi)J0/4(ℓϑ j) P2

E(ℓ) , (4.7)

M±± =
σ2
ǫ

πAn̄

∫ ∞

0
dℓ ℓJ0/4(ℓϑi)J0/4(ℓϑ j) PE(ℓ) . (4.8)

However, on small scales the assumption of a Gaussian shear field breaks down; according to
Kilbinger & Schneider (2005) and Semboloni et al. (2007) non-Gaussian effects already become
important at angular scales. 10 arcmin. To account for this non-Gaussianity, Semboloni et al.
(2007) introduce a calibration factor which is derived from a comparison of Gaussian to ray-
tracing covariances. An application of this method to real data can be found in Fu et al. (2008).
An alternative approach is to derive the covariance matrix from the data (e.g. Hetterscheidt et al.
2007; Massey et al. 2007b). There, the covariance is calculated via field-to-field variation which
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involves a separation of the data set into many independent subsamples. This may lead to a
loss of information on large scales if the survey is not sufficiently large. A third approach is to
estimate the covariance matrix from ray-tracing simulations, a method which circumvents the
aforementioned loss in information. Although in this method the covariance is again derived via
field-to-field variation, we can choose a sufficiently large numerical simulation to create many
independent subsamples of adequate size.
Note that the last two methods involve an estimation process in the determination of the co-
variance matrix, which means that the inverse is biased and one has to correct for this effect
(Anderson 2003; Hartlap et al. 2007). We return to this issue in the next chapter. Nevertheless,
deriving covariance matrices from ray-tracing simulations seems to be a promising method as it
preserves all the information in the data and additionally takes the non-Gaussianity of the shear
field into account. However, the analytic expression and the ray-tracing covariance assume a
specific cosmological model in their derivation. So far, cosmic shear likelihood analyses treat
the covariance matrix as constant with respect to cosmology, hence its underlying cosmologi-
cal model is assumed not to influence the parameter constraints. It is the intention of chapter
7 to check for this assumption and in case it does not hold, to present an improved likelihood
formalism for future surveys.

4.2 Basic theory of statistical inference

In the last section we described how to derive estimators and covariances for the 2PCF, which are
the basic ingredients needed in a cosmic shear likelihood analysis. We now turn to the question
of how to infer cosmological parameters from these ingredients. There are two different schools
for parameter inference, thefrequentistand theBayesian. In many cases the differences hardly
affect the mathematical treatment, but rather the interpretation of the results. Often both theories
can be used complementary. In the following we briefly outline the main differences and the
implications for cosmic shear.
Frequentists define probability asthe frequency of occurrence of an observed random variable
(the data) during repeated experiments. Prior information is not considered in their ansatz. In
contrast, Bayesians start from prior knowledge on the underlying parameters, assume a proba-
bility distribution for the observed data and calculate a posterior probability via Bayes theorem
(see 4.10). This posterior probability expresses thedegree of belief that a specific parameter set
is true, given the prior information and the observed data. Obviously, the Bayesian probability
definition (“degree of belief”) is somewhat subjective, equally unpleasant is the fact that the ana-
lytic form of the likelihood must be assumed. In case the likelihood of the data is not known, this
assumption depends on the data analyst. In order to derive the analytic form of a likelihood ob-
jectively, Bayesians introduced themaximum entropy principle(for details see Loredo 1990, and
references therein). There is also a connection to frequentist theory, namely for the case that an
experiment can be repeated many times, we can infer the Bayesian likelihood from the frequen-
tist probability definition. In particular this applies to the cosmic shear case, where we measure
the ellipticities of many galaxies, which, in the absence of intrinsic alignment or shape-shear cor-
relation, can be treated as independent experiments. Frequentists try to avoid the aforementioned
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deficits, but face other difficulties. These can be illustrated best, when looking at the concepts
of confidence intervals(frequentist) compared tocredible regions(Bayesian). The frequentist
probability definition only allows for statements about the long term behavior of an repeated
experiment. Consider an experiment with true underlying meanµ, which is repeatedn times,
obtaining the means ¯xi. Then, the frequentist e.g. 68% confidence interval denotes the region
aroundµ which in 68% of the repetitions overlaps with the possible outcomes of the experiment
x̄i. In case the experiment can be performed only once, which is true for many astronomical
observations, the above interpretation of confidence intervals is meaningless. In contrast, the
corresponding Bayesian probability definition is based on only one data set obtained from one
experiment. The corresponding 68% credible region defines a range in parameter space which
contains the underlying mean with a probability of 68%; this second interpretation is also what
one intuitively is interested in.
However, in case the data follows a Gaussian likelihood with ¯x being an unbiased estimator of
µ, one can show (e.g. Loredo 1990) that both methods are mathematically equivalent, hence
the intervals constrain the same parameter space. As we explain below, there is good reason
to approximate the 2PCF likelihood to be a multivariate normal distribution, therefore one can,
in principle, base a cosmic shear data analysis on frequentist theory and use theχ2-statistics to
constrain parameters. Nevertheless, this makes the inclusion of prior information more difficult
(strictly speaking: prior information is not considered in frequentist theory); in addition theχ2-
statistics cannot be used in the extended likelihood analysis, which we outline in chapter 7. We
therefore follow Bayesian concepts and interpretations, throughout this thesis.
Consider a cosmic shear data vector consisting of the 2PCF, bothξ+ andξ−

ξ =

(

ξ+

ξ−

)

with ξ+ =





ξ+(ϑ1)
...

ξ+(ϑd/2)





, ξ− =





ξ−(ϑ1)
...

ξ−(ϑd/2)





, (4.9)

hence the data vector has dimensiond. From these data we want to infer information on the
cosmological parameters, subsumed in the parameter vectorπ. According to Bayes theorem the
posterior likelihoodp(π|ξ) is defined as

p(π|ξ) = p(ξ|π)
p(ξ)

p(π) , (4.10)

wherep(π) denotes the prior probability density,p(ξ|π) is the likelihood andp(ξ) the so-called
evidence. The prior usually contains knowledge on the parameter vectorπ coming from former
experiments. If not stated otherwise, we assume flat priors with cutoffs, which meansp(π) is
constant for all parameters inside a fixed interval andp(π) = 0 else. The exact functional form
of the likelihood function is subject to ongoing research. It is state of the art in a cosmic shear
likelihood analysis to assume a multivariate normal likelihood function. This assumption is partly
justified if the 2PCF is measured from many independent patches of the sky and if the estimator of
a bin is calculated from a sufficient number of galaxies. Then, thecentral limit theoremsuggests
that ξ̂ (ϑi) is normally distributed (Kendall & Stuart 1979). If in addition the individualξ̂(ϑi)
were independent, it follows thatξ̂ is distributed as a multivariate normal distribution. Note, that
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the latter assumption does not hold; the fact that we observe off-diagonal terms in the covariance
matrix implies that the individual 2PCFs estimators are correlated (and therefore not independent
of each other). TheIndependent Component Analysis(ICA) is a method to check whether the
assumption of a multivariate normal distribution for the 2PCF data vector holds, and if not it will
improve on this issue. Our (multivariate normal) likelihoodp(ξ|π) reads

p(ξ|π) =
exp

[

−1
2

(

(ξπ − ξ̂)t C−1 (ξπ − ξ̂
)]

(2π)d/2 |C| 12
, (4.11)

where ξ̂ denotes the mean data vector andξπ the model data vector. As these vectors have
dimensiond, |C| is the determinant of ad × d 2PCF covariance matrix (see Sect. 4.1) with the
structure

C =





C++ C+−

Ct
+− C−−




. (4.12)

If the |C| in (4.11) is independent of the parameters (which we examine in chapter 7) all cosmo-
logical information is contained in theχ2-function, which is defined as

χ2(ξ, π) = (ξπ − ξ̂)t C−1 (ξπ − ξ̂) . (4.13)

The evidence is a normalization obtained by integrating the likelihood over the considered pa-
rameter space

p(ξ) =
∫

dπ
exp

[

−1
2

(

(ξπ − ξ̂)t C−1 (ξπ − ξ̂
)]

(2π)d/2 |C| 12
. (4.14)

We express the result of a likelihood analysis through two-dimensional contour plots. We choose
likelihood contours representing the aforementioned credible regions which contain the true pa-
rameter set with 68%, 95%, 99,9% probability. In addition, we quantify the size of these credible
regions through the determinant of the second-order moment of the posterior likelihood (see Kil-
binger & Schneider 2004)

Qi j ≡
∫

d2πp(π|ξ) (πi − πf
i )(π j − πf

j), (4.15)

with πi andπ j as the varied parameters,πf
i as the parameter of the fiducial model. The determinant

is given by

q =
√

|Qi j | =
√

Q11Q22− Q2
12. (4.16)

Smaller credible regions in parameter space correspond to a smaller value ofq. Note, that theq
can only be applied to two-dimensional parameter spaces; when considering more free parame-
ters one first has to marginalize over all but two parameters in order to apply 4.16.
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4.3 The Fisher information matrix

There are several methods to sample the posterior likelihood in a parameter space. In this thesis
we calculate the likelihood on a fixed grid of parameters. Note, that there are more sophisticated
methods, e.g. Monte Carlo methods, importance sampling, or Gibbs sampling (see Gelman et al.
2004, for an introduction and references). The Fisher matrix is an approximation to these meth-
ods which is valuable because of its low computational costs.
The Cramér-Rao inequality states that the Fisher matrix gives lower bounds on the error bars
in parameter space; we use it in chapter 7 in order to quantify the accuracy with which we in-
fer parameters from a data set. The definition reads (Kendall & Stuart 1979; Tegmark et al. 1997)

Fi j =

〈

∂2L
∂πi ∂π j

〉

=

(

∂2L
∂πi ∂π j

)

π=πML

, (4.17)

whereL = − ln p(π|ξ), π = (π1, ..., πn) describes the underlying (cosmological) parameters, and
πML denotes the maximum likelihood parameter vector. If we Taylor-expand the log-likelihood
function in parameter space aroundπML we derive

L(π) = L(πML ) + 0+
1
2

(π − πML)t T−1(π − πML ) +O(∆3
π) , (4.18)

with

(T−1)i j =

(

∂2L
∂πi ∂π j

)

π=πML

, (4.19)

with T being the parameter covariance matrix. The first-order term in (4.18) vanishes since
(∂L/∂π)|πML is zero, hence (4.18) is dominated by the second-order term. Comparing (4.19)
and (4.17) it turns out that the Fisher matrix is the expectation value of the inverse parameter
covariance matrix. More illustratively, it measures the local curvature of the likelihood function
around the maximum likelihood parameter set. To obtain likelihood contours we rewrite (4.18)
replacingT−1) by the Fisher matrix. Hence, for a given fisher matrix we are able to calculate
lower bounds on the likelihood contours. For the case thatp(ξ|π) is Gaussian, which is a good
approximation at least close to the maximum likelihood parameter vector (p(ξ|π) ∝ exp(−L)),
one can directly express the Fisher matrix in terms of the data vectors and the data covariance
matrix (e.g. Tegmark et al. 1997)

Fi j =
1
2

tr
[

C−1C,iC−1C, j + C−1M i j

]

, (4.20)

whereC,i ≡ ∂C/∂πi denotes the derivative of the covariance matrix with respect to thei th compo-
nent of the parameter vector andM i j ≡ ξ̂,i ξ̂t

, j + ξ̂, j ξ̂
t
,i. The first term of (4.20) vanishes in case the

covariance matrix is constant in parameter space, the second term vanishes in case of a constant
mean data vector.
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4.4 Impact of binning effects

As we describe in Sect. 4.1 the 2PCF data vectors are binned versions of a continuous quan-
tity. In this context several questions arise: how much does the binning influence the parameter
constraints? Is there an optimal binning? Does it make any difference if one uses linear or loga-
rithmic bins? It is sensible to assume that there is a minimum threshold of bins, below which the
information contained in the data is not fully transferred to the data vector. When going above
this threshold, there must be a saturation limit in information at some bin number; including
more bins cannot contribute further information.
We consider the angular range [ϑmin = 1′;ϑmax = 180′] and change the number of bins inside this
interval. Note that whenever we refer to “number of bins”, this is equivalent to the number of
data points in onlyξ+. The full data vector consisting ofξ+ andξ− contains twice as many bins,
similarly any statement about e.g. 20 bins implies that we consider a 40× 40 covariance matrix.
We first examine the impact on the trace of the covariance and its inverse and second on the
likelihood contours and values ofq. Finally, we study the stability of the covariance during
the inversion process as a function of bin width and give suggestions how to avoid/correct for
possible numerical artifacts.

4.4.1 Binning effects on the trace of the covariance

The most obvious impact of binning on the covariances can be seen in (4.6), where the bin width
enters explicitly in the shot noise term. In addition to the shot noise, the full covariance matrix
consists of cosmic variance and mixed term (4.6) - (4.8). The bin width does not enter in the
latter two terms, but the arguments in their Bessel functions are different when changing the
bin size. From the analytic expression ofC we expect its trace to increase when increasing the
number of bins. This is clearly seen in Fig. 4.1, similar for linear (left panel) and logarithmic
(right panel) binning. The effect is much stronger in the latter case for the reason that the∆ϑ

for smallϑ are extremely small (such that the shot noise term dominates) in case of logarithmic
binning. More of interest is the trace of the inverse covariance matrix. It is difficult to infer
the behavior of trC−1 from the analytic expressions, because the different covariance terms mix
during the inversion process. For the case of a pure shot noise matrix one can show that the trace
of the inverse is independent of the bin width. Assume that the data vector is binned linearly with
∆ϑ = (ϑmax− ϑmin)/N and thei − th bin can be expressed asϑi = ϑmin +

2i−1
2 ∆ϑ. Then we can
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Figure 4.1: The trace of the covarianceCξ. We compare linear (left panel) and logarithmic
(right panel) binning for the following survey parameters: A= 512 deg2, σǫ = 0.3, and n̄ =
15/arcmin2.

calculate the trace of the inverse shot noise covarianceS as

tr (S−1) =
N∑

i=1

2πAn̄2

σ4
ǫ

∆ϑϑi

=
2πAn̄2

σ4
ǫ

(ϑmax − ϑmin)
N

N∑

i=1

[

ϑmin +
(2i − 1)

2

(ϑmax − ϑmin)

N

]

=
2πAn̄2

σ4
ǫ

ϑmin(ϑmax− ϑmin) +
2πAn̄2

σ4
ǫ

(

(ϑmax − ϑmin)
N

)2 N∑

i=1

2i − 1
2

︸      ︷︷      ︸

N2
2

=
πAn̄2

σ4
ǫ

(

ϑ2
max − ϑ2

min

)

, (4.21)

which shows that the trace of the inverse shot noise covariance depends only on minimum and
maximum angular separation of the 2PCF.
In general, the covariance matrix is non-diagonal, therefore the structure ofC−1 cannot be pre-
dicted, and we have to refer to numerical methods. Figure 4.2 shows the trace ofC−1 as a function
of bin number for linear (left panels) and logarithmic binning (right panels). Furthermore, we
consider two different sets of survey parameters in order to quantify the impact of noise. The
survey parameters in the upper row readA = 512 deg2, σǫ = 0.3, andn̄ = 15/arcmin2 and
correspond to the values we use for the analysis in chapter 8. In the lower row we chooseA = 1
deg2, σǫ = 0.45, andn̄ = 10/arcmin2, which results in a much higher noise contribution to the
covariance, in particular the shot noise term increases. In general, all plots show a strong increase
of tr C−1 at small bin numbers, which slows down significantly when going to narrower binning.
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Figure 4.2: The trace of the inverse covarianceC−1. We compare linear (left panel) and loga-
rithmic (right panel) binning for two different survey parameters: A= 512deg2, σǫ = 0.3, and
n̄ = 15/arcmin2 in the upper panels and A= 1 deg2, σǫ = 0.45, andn̄ = 10/arcmin2 in the lower
panels. The inverse traces are normalized by trC−1 for 300 bins

We can explain this behavior by the fact that a small∆ϑ implies a relatively larger shot noise
term compared to the mixed and cosmic variance term. Therefore, the full covariance matrix
tends to behave as a pure shot noise matrix when arbitrarily increasing the number of bins. For
the latter we have proven in (4.21), that its trace is independent of the binning. This explanation
is supported by the fact that trC−1 reaches its saturation limit earlier when assuming a high shot
noise contribution (lower row of Fig. 4.2) compared to a low shot noise term (upper row of Fig.
4.2).
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4.4.2 Binning effects on the likelihood contours

In order to quantify the impact of binning on the likelihood contours we consider theχ2-function
(4.13). There is good reason to assume that for theχ2-function there exists a saturation limit,
similar to that of trC−1, where a further increase in the binning cannot result in a higher value
of χ2. We can prove this analytically for a simple case, namely when going from one bin to two,
hence∆ϑ1 = 2∆ϑ2 (linear binning). We denote the shot noise term asS and the sum of the mixed
and the cosmic variance term asK = M + V. Theχ2-value for one bin reads

χ2
∆ϑ1
= ∆2

ξ(K + S)−1 , (4.22)

with ∆ξ = ξπ − ξ̂. For the case of two bins the correspondingχ2-value can be calculated via

χ2
∆ϑ2
= (∆ξ1 , ∆ξ2)





K11 + S11 K12

K21 K22 + S22





−1 (

∆ξ1

∆ξ2

)

(4.23)

The inverse of the covariance matrix can be calculated using





K11 + S11 K12

K21 K22 + S22




×





A11 A12

A21 A22




=





1 0

0 1




. (4.24)

For the reason that the covariance is symmetric we denoteA12 = A21 = A; solving the corre-
sponding system of equations (using thatK12 = K21 = K) we calculate

A = − K
(K22 + S22) (K11 + S11) − K2

(4.25)

A11 =
(K22 + S22)

(K22 + S22) (K11 + S11) − K2
(4.26)

A22 =
(K11 + S11)

(K22 + S22) (K11 + S11) − K2
. (4.27)

Using the above expressions, theχ2-value can be calculated as

χ2
∆ϑ2
=
∆2
ξ1

(K22 + S22) + ∆2
ξ2

(K11 + S11)

(K22 + S22) (K11 + S11) − K2
︸                                     ︷︷                                     ︸

diagonal terms

−
2∆ξ1∆ξ2K

(K22 + S22) (K11 + S11) − K2
︸                                ︷︷                                ︸

off−diagonal terms

(4.28)

We explicitly choose the above notation to stress that theχ2-value is a trade-off between diagonal
and off-diagonal terms. If we assume that the bin∆ϑ1 is already very narrow, increasing the
binning further, hardly affects the bin estimators. In this limit we can approximateξ̂ ≈ ξ̂1 ≈ ξ̂2.
Intuitively, this is equivalent to the case where no additional information can be gained from the
estimators. Further implications of this approximation are

K11 = K22 = K and S11 = S22 = 2S , (4.29)
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Table 4.1: The values of q in units of10−4 depending on the number of bins for theΩm vsσ8

likelihood contours.

# bins 4 8 12 16 20 25 35 50 65 80 100 120 150
q (lin bins) 5.69 1.77 1.28 1.17 1.15 1.13 1.08 1.01 0.97 0.95 0.94 0.93 0.93
q (log bins) 1.28 0.97 0.93 0.93 0.92 0.92 0.92 0.92 0.92 0.91 0.91 0.91 0.91

where the last equation results from the fact that∆ϑ1 = 2∆ϑ2 and the shot noise term scales with
the inverse bin width. Using these approximations we arrive at

χ2
∆ϑ2
=

2∆2
ξ(K + 2S) − 2∆2

ξK

(K + 2S)2 − K2
(4.30)

= ∆2
ξ (K + S)−1 , (4.31)

which is equivalent to (4.22). Although one might argue that this calculation is somewhat arti-
ficial for the reason that we consider the limit∆ϑ −→ 0, it nicely illustrates how off-diagonal
terms compensate for the diagonal terms, in case the binning becomes very narrow. For arbitrary
number of bins we again refer to numerical methods and perform a likelihood analysis employing
the above examined covariances and their corresponding 2PCF data vectors. Figure 4.3 shows
a sample of contour plots; we see a small difference for the linear case when going from 8 bins
to 12 and further to 50. Going from 50 to 150 bins does not give any tighter constraints. For
the case of logarithmic binning there is a small deviation between 4 and 8 bins but further differ-
ences cannot be seen by eye. We illustrate all results using the values ofq (see table 4.1 and Fig.
4.4). For both cases we find that theq (and therefore the size of the likelihood contours) hardly
changes when going beyond 35 bins. Note, that the relative change inq for the case of logarith-
mic binning is much smaller compared to linear bins, hence the first samples the information of
the underlying cosmological parameters much better than the latter binning. For this reason we
use logarithmic binning throughout the whole thesis.

4.4.3 Binning effects on the stability of C under inversion

There is another important aspect in the context of binning effects. If one uses too many bins
one might run into numerical difficulties during the inversion process of the covariance matrix.
The reason for this is that a high number of bins, implying a small bin width, results in high cor-
relation terms in the covariance. At some point the covariance matrix becomes unstable under
numerical transformations, so-called ill-conditioned. Note this does not necessarily imply that
the covariance matrix is not invertible; an ill-conditioned covariance matrix can have a unique
inverse, which can be calculated through various methods (e.g. LU decomposition, Gaussian
elimination, etc). Nevertheless, this inverse is dominated by numerical artifacts. As a result,
the likelihood analysis no longer fits the parameters according to the information provided by the



70 Chapter 4. Parameter estimation

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

8 linear Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

12 linear Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

50 linear Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

150 linear Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

4 log Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

8 log Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

50 log Bins

0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
7

0.
8

0.
9

1.
0

1.
1

150 log Bins

σ 8
σ 8

σ 8
σ 8

Ωm Ωm

Figure 4.3: The likelihood contours when increasing the number of bins inside the fixed interval
[ϑmin = 1′;ϑmax = 180′]. The upper four panels show the result for linear binning, the lower
correspond to logarithmic binning. The survey parameters are A= 512 deg2, σǫ = 0.3, and
n̄ = 15/arcmin2.
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linear (left panel) and logarithmic (right panel) binning. The q quantify the size of the likelihood
contours in the consideredΩm vsσ8 parameter space (see Fig. 4.3)

data, but rather fits the numerical artifacts which occur in the inversion process. In order to check
for this, we perform asingular value decomposition (SVD)1 and examine thecondition number,
which is defined as the ratio of maximum to minimum singular value,c = σmax/σmin. Note that
the condition number has the same value for the covariance matrix and its inverse. In case the
condition number exceeds the inverse of the numerical precision (in our case double precision)
the matrix is certainly ill-conditioned. We requirec < 1010, which means that roundoff errors in
the last digit ofσmax would only affectσmin at the 0.0001 percent level.
Figure 4.5 showsc dependending on the number of bins; we see that the condition number is
much larger for logarithmic binning. However, in all cases the condition number is below the
required threshold, hence we are confident that our inverse covariance matrix is not affected by
noise artifacts.
As an additional cross check we consider the eigenvalues of the covariance matrix. For the
case of a positive definite and symmetric matrix an eigenvalue decomposition is equivalent to
an SVD. If a deviation between eigenvalues and singular values occurs, the eigenvalue decom-
position is most likely affected by numerical artifacts (according to Press et al. 1992, the SVD
is stabler). This comparison of eigenvalues and singular values should be performed for the in-

1An SVD decomposes am× n matrix A (m,n are arbitrary) intoA = UΣVt, whereU(m× m) andV(n× n) are
orthogonal matrices (Ut = U−1). Σ(m× n) has zero entries everywhere except on the diagonal which contains the
singular valuesσ in descending order. Note that “diagonal” for the case ofm , n refers to the diagonal of the
[min(m, n) ×min(m, n)] submatrix. For more information see Trefethen & Bau (1997). This relation also holds for
complexA, where the orthogonalU,V are replaced by unitary matrices.
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Figure 4.5: This figure shows the condition number c= σmax/σmin as a function of bin number.
The left panel illustrates the results for linear and the right panel for logarithmic binning.

verse covariance matrix. If one finds a deviation between both, this is a good indication that
the inversion process causes numerical artifacts, which suggests that the original covariance was
ill-conditioned.
In this thesis, this problem occurs in chapter 8, when we compare covariances with and without

shot noise. Noise free covariances become ill-conditioned at much lower bin number compared
to covariances with shot noise. Still, we can derive parameter constraints by excluding the sin-
gular values which are dominated by numerical artifacts. In order to determine the latter, we
compare eigenvalues and singular values, and considered those as contaminated where a devia-
tion occurs. We then calculate the inverse covariance using a singular value decomposition and
set all contaminated inverse singular values to 0. This methods gives the so-called pseudo-inverse
of C. Keeping the contaminated inverse singular values is no alternative; in general these have a
huge impact on the likelihood analysis. The reason for this is that these formerly small singular
values dominate the inverse covariance.



Chapter 5

Improvement of cosmic shear data vectors

Currently, most cosmic shear surveys only consider second-order shear statistics, for which all
information is contained in the power spectrum of the convergence (Pκ). Although Pκ is not
directly measureable, it is linearly related to second-order cosmic shear measures (e.g. the two-
point correlation function and the aperture mass dispersion), which can be estimated from the
distorted ellipticities of the observed galaxies. More precisely, all second-order measures are
filtered versions ofPκ, and the corresponding filter functions determine how the information
content ofPκ is sampled (see Sect. 3.3.3).
In this chapter we compare several data vectors of cosmic shear measures and create an opti-
mal data vector with high information content, largely uncorrelated data points and only little
sensitivity to a possible B-mode contamination. We prove a general statement that a data vec-
tor consisting of 2PCF data points (ξ) always gives tighter constraints on cosmological models
compared to a data vector consisting of〈M2

ap〉 data points (〈M2
ap〉) and we confirm this by a like-

lihood analysis of ray-tracing simulations. The results of this chapter are published in Eifler et al.
(2008a).

5.1 Estimators and covariances

5.1.1 The aperture mass dispersion〈M2
ap〉

For the case of the 2PCF we already introduced estimators and covariances in Sect. 4.1. For
the general case of E- and B-modes and a continuous 2PCF, the aperture mass dispersion can be
calculated via (3.81). Similarly, an unbiased estimator of〈M2

ap〉 can be calculated from̂ξ±(ϑ) via

M(θk) =
I∑

i=1

∆ϑiϑi

2θ2
k

[

ξ̂+(ϑi) T+

(

ϑi

θk

)

+ ξ̂−(ϑi) T−

(

ϑi

θk

)]

, (5.1)
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whereI must be chosen such that the upper limit of theI th bin equals twice the value ofθk. Using
(5.1) we can calculate the covariances of the aperture mass dispersion CM in terms of Cξ:

CM(θk, θl)) =
1
4

I∑

i=1

J∑

j=1

∆ϑi∆ϑ j

θ2
kθ

2
l

ϑiϑ j

×




∑

m,n=+,−
Tm

(

ϑi

θk

)

Tn

(
ϑ j

θl

)

Cmn(ϑi , ϑ j)




. (5.2)

Similar to (5.1),I (J) are chosen such that the upper limit of theI th (Jth) bin equals twice ofθk

(θl). The exact expressions for theT-functions are given in (3.64) and (3.65).

5.1.2 The new data vectorN
We first compare the information content of the two-point correlation function (2PCF) and aper-
ture mass dispersion (〈M2

ap〉). For the 2PCF the data vector reads

ξ =

(

ξ+

ξ−

)

with ξ+ =





ξ+(ϑ1)
...

ξ+(ϑm)





, ξ− =





ξ−(ϑ1)
...

ξ−(ϑm)





(5.3)

In case of the aperture mass dispersion we consider

〈M2
ap〉 =





〈M2
ap〉(θ1)
...

〈M2
ap〉(θn)





. (5.4)

The relation (5.1) can also be written in terms of data vectors and ann× 2m transfer matrixA

〈M2
ap〉 =

(

A+ A−
)

︸         ︷︷         ︸

A

(

ξ+

ξ−

)

, (5.5)

with A+ denoting the part ofA referring toξ+ andA− denotes the corresponding part referring to
ξ−. Eq. (5.5) implies that the information content of〈M2

ap〉 is less than or equal toξ. The amount
of information can be equal if and only if the rank ofA equals the dimension ofξ, hence rank
A = 2m. We explicitly prove these statements in the Appendix A. For the case ofξ and〈M2

ap〉,
n ≤ m holds, which can be seen from (5.1). Therefore the relation (5.5) is not invertible and the
information content of〈M2

ap〉 is smaller compared toξ±. Thatξ± contains more information on
cosmological parameters can also be explained when looking at the filter functions J0, J4, and
Wap relating the corresponding second-order shear measures to the underlying power spectrum.
The 2PCF, especiallyξ+, probes the power spectrum over a broad range of Fourier modes and
also collects information on scales larger than the survey size. In contrast, the aperture mass
dispersion provides a highly localized probe of the power spectrum and does not contain this
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large-scale information. Hence, due to the limited field sizeof a survey, the information content
of 〈M2

ap〉 is smaller compared toξ±. Nevertheless〈M2
ap〉 has important advantages. First, it can

be used to separate E-modes and B-modes (Crittenden et al. 2002; Schneider et al. 2002b); more
precisely〈M2

ap〉 is only sensitive to E-modes. Second, thanks to its narrow filter function, two
different〈M2

ap〉 data points are much less correlated compared to the 2PCF. Third,〈M2
ap〉 can be

easier extended to higher-order statistics (Schneider et al. 2005). These advantages are valuable
and should be maintained, but the information content should be improved. Hence, we extend
the〈M2

ap〉 data vector by one data point ofξ+(θ0), which provides the large-scale information of
Pκ and call this new data vectorN

N =





〈M2
ap〉(θ1)
...

〈M2
ap〉(θn)
ξ+(θ0)





. (5.6)

The corresponding covariance matrix reads

CN =





CM11 · · · CM1n C(M1, ξ+)
...

. . .
...

...

CM1n · · · CMnn C(Mn, ξ+)
C(ξ+,M1) · · · C(ξ+,Mn) C(ξ+, ξ+)





. (5.7)

The upper leftn × n matrix is exactlyCM and the entry for C(ξ+, ξ+) is taken from the corre-
sponding covariance matrix of the correlation function. The cross terms can be calculated using
(5.1) to read

C(M(θk), ξ̂+(θ0)) =
1
2

I∑

i=1

∆ϑi

θ2
k

ϑi

[

T+

(

ϑi

θk

)

C++(ϑi , θ0)

+ T−

(

ϑi

θk

)

C−+(ϑi , θ0)

]

. (5.8)

Similar toCM, CN is almost diagonal, hence data points of different angular scales are weakly
correlated. For the corss terms derived through 5.8, the strength of this correlation varies with the
considered scaleθk, This property vanishes in case we add more than one data point of the 2PCF.
Due to their broad filter functionJ0, two or more 2PCF data points would be strongly correlated,
resulting in large off-diagonal terms inCN . The main intention, namely to include the informa-
tion of the power spectrum on large angular scales, is already fulfilled by adding one data point
of ξ+. For smallℓ the sampling of the power spectrum byξ+(θ) hardly depends onθ, therefore
the gain in information on those scales by adding more than one 2PCF data point would be rather
small. In the following we perform a likelihood analysis forN , examine its ability to constrain
cosmological parameters, and compare it to the two aforementioned data vectors. Note, that we
consider only E-modes until Sect. 5.3.
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5.2 Calculating data vectors and covariances

For the numerical comparison we calculate the data vectorsξ, 〈M2
ap〉,N directly from the power

spectrum of density fluctuationsPδ using (3.44) to obtainPE and then applying either (3.51),
(3.52), or (3.57) depending on the desired cosmic shear measure. To derivePδ we assume an
initial Harrison-Zeldovich power spectrum (Pi(k) ∝ kn

s with ns = 1). The transition to today’s
power spectrum employs the transfer function described in Efstathiou et al. (1992), and we use
the fitting formula of Smith et al. (2003) to calculate the non-linear evolution. In contrast, the
covariances are obtained from ray-tracing simulations. The N-body simulation used for the ray-
tracing experiment was carried out by the Virgo Consortium (Jenkins et al. 2001a); for details
of the ray-tracing algorithm see Ménard et al. (2003). Then,Cξ is calculated by field-to-field
variation of 36 ray-tracing realizations, where each field has a sidelength of 4.27 degrees. The
intrinsic ellipticity noise isσǫ = 0.3 and the number density of source galaxies is given by
n̄ = 25/arcmin2. FromCξ we calculateCM andCN according to (5.2) and (5.7). Our fiducial
cosmological model is determined by the cosmology of the ray-tracing simulations, i.e. a flat
ΛCDM model withΩm = 0.3, σ8 = 0.9, h = 0.7, andΓ = 0.172. Furthermore, the ray-tracing
simulations assume all source galaxies to be at the same redshift, i.e.z0 = 0.98. Using a redshift
distribution instead would not change our results markedly. The data vectors are calculated from
PE, and for a given redshift distribution, one can find a characteristicz0 such thatPE is almost
similar independent of using the redshift distribution or choosing all sources to be atz0.

5.2.1 Difficulties with covariances

5.2.1.1 Underestimation of CM

Kilbinger et al. (2006) have shown that〈M2
ap〉(θ) is biased for smallθ when calculated from the

2PCF using (5.1). This is due to the lack of 2PCF data points on very small angular scales,
which causes a small-scale cutoff in the integral of (3.63). In our specific case the〈M2

ap〉 data
vector is not affected by this bias because we calculate it directly from the power spectrumPE.
However, sinceCM andCN are calculated from the covariance of the 2PCF, they are certainly
affected by this problem. In this subsection we determine theθ-range on which we can calculate
CM with sufficient accuracy; the corresponding data vector of the aperture mass dispersion will
be restricted to this range. Figure 5.1 shows〈M2

ap〉 calculated directly from the power spectrum
using (3.57) compared with〈M2

ap〉 calculated fromξ± using (5.1). We assume that the deviation
shown here yields a measure of the bias inCM and we require an accuracy of 5 % to accept a
θ-value for the〈M2

ap〉 data vector. The deviation on large angular scales in Fig. 5.1 is due to the
limited range of 2PCFs 0.′2− 200.′0 from which〈M2

ap〉 (circles) is calculated. In order to assure
thatCM (5.8) is calculated properly we restrict the data vector to aθ-range of 2.′25− 100.′0.

5.2.1.2 Inversion of the covariance matrix

A second difficulty in the context of covariance matrices is outlined in Hartlap et al. (2007). The
fact that an inversion of an estimated unbiased covariance matrix leads to a biased result can
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Figure 5.1: 〈M2
ap〉 cal-

culated directly from the
power spectrum (crosses)
compared to〈M2

ap〉 calcu-
lated fromξ± (circles).

be overcome by applying a correction factor. According to Hartlap et al. (2007), the correction
factor depends on the ratio of number of bins (B) to number of independent realizations (N) from
which the covariance matrix is estimated. An unbiased estimate of the inverse covariance matrix
is

C−1
unbiased=

N − B− 2
N − 1

C−1 =

[

1− B+ 1
N − 1

]

C−1. (5.9)

Hartlap et al. (2007) prove the validity of this correction factor for the case of Gaussian errors
and statistically independent data vectors. These two assumptions are violated when estimating
the covariance matrix from ray-tracing simulations. As a check of whether the correction factor
corrects the error in our ray-tracing covariance matrices, we perform the following experiment.
We add different Gaussian noise to the ellipticities of the galaxies, which are taken from the
36 independent realizations of the ray-tracing simulations and thereby increase the number of
independent realizations. We hold the binning of the matrices constant, calculate covariances
for 36, 108, 216, 360, 720, 1080, 1440, 1800 realizations and plot 1/tr C−1 depending on the
ratio B/N (Fig. 5.2). Note that this method only creates multiple realizations of Gaussian noise
on the galaxy ellipticities and does not increase the number of realizations that determine the
cosmic variance part of the covariance matrix. Therefore, this method only partly checks for
the non-Gaussianity of the errors in a ray-tracing covariance matrix; nevertheless, the impact of
statistically dependent data vectors is fully taken into account. We find the same linear behavior
of the bias as Hartlap et al. (2007), so are confident that the correction factor is able to unbias
our covariance matrices. By using the corrected inverse covariance matrix we assure that the
log-likelihood is also unbiased; nevertheless, any non-linear transformation of the log-likelihood
will again introduce a bias that influences the results and must be examined.
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Figure 5.2: Illustration of how to correct for the bias occurring in the inverted covariance
matrices. We plot 1/trace (C−1) against the ratio B/N, where B is the number of bins in the
covariance matrix and N the number of independent realizations of the ray-tracing simulations.
We show the correction for the inverse ofCξ (top left),CN (top right), andCM (bottom); each
plot shows the corrected (crosses) and uncorrected (circles) values with the corresponding linear
fits through the data points.

5.2.2 Likelihood analysis

In this section we compare the information content of the three aforementioned data vectors,
using a covariance derived from ray-tracing simulations. To quantify the information content
we perform likelihood analyses for several parameter combinations in two-, three- and four-
dimensional parameter space. In addition we calculate the values ofq which we introduced in
Sect. 4.2. As can be seen from (4.15) and (4.16),q is non-linear in the log-likelihood, therefore
it is also affected from the bias described in the last section. In order to quantify the strength
of this bias, we carry out the same analysis as for the covariance matrices in Sect. 5.2.1.2. For
six different numbers of independent realizations we perform a likelihood analysis in a two-
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Figure 5.3: Dependence of q calculated forξ (triangles),N (circles), 〈M2
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numbers of independent realizations of the ray-tracing simulation. The values of q are calculated
for the case of varyingΩm vs. σ8 in parameter space. The lines are a linear fit through data
points (solid forξ, dashed forN , dotted for〈M2

ap〉). Note that the deviation of q belonging to
different numbers of realizations is much smaller than the difference of q of different data vectors.

parameter space (Ωm vs. σ8) and calculateq for all three cosmic shear measures. The result is
plotted in Fig. 5.3. One clearly sees that theq dependence on the number of realizations is much
weaker compared to the difference betweenq of different cosmic shear measures. Therefore, the
bias is small and we can confidently useq to compare the relative information content of the
different data vectors.

5.2.3 Variation of two parameters

The likelihood analysis in this section was performed in a two-dimensional parameter space; all
other cosmological parameters were fixed to the fiducial values. Before comparing the three data
vectors we optimizedN with respect to theθ0-value of the added 2PCF data point. We added
35 differentξ+(θ0) covering a rangeθ0 ∈ [0 .′2-200.′0] and calculatedq. Figure 5.4 illustrates the
results of this optimization for 3 different pairs of parameters (Γ vs. Ωm, σ8 vs. Ωm, z0 vs. Ωm).
For all parameter combinations considered, the optimalθ0 is close to 10′. This can be explained
from the behavior of the covariance matrix. For small angular scales the covariance is dominated
by shot noise, whereas the signal ofξ+ becomes very small for large angular scales. In both cases
the signal-to-noise ratio is lower than on medium angular scales, where we find the minimum
of q. In our later analysis we always chose the optimal 2PCF data point for the combined data
vector. The results are illustrated by contour plots (Fig. 5.5) and the corresponding values
of q are summarized in Table 5.1. Here, we also list the results for two additional parameter
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Figure 5.4: Values of q of the combined data vectorN depending on the angular separation
(θ0) of the additionalξ+ data point. We consider three different parameter spacesΓ vs.Ωm (top
left), σ8 vs. Ωm (top right), and z0 vs. Ωm (bottom), and for each case we calculated q for 35
differentϑ0. The solid lines indicate a polynomial fit through the data; the minima of these fits
and therefore the optimal values forθ0 are7.′8 (Γ vs.Ωm), 12.′9 (σ8 vs.Ωm), and7.′0 (z0 vs.Ωm).

combinations,σ8 vs.Γ andz0 vs.σ8, not shown in Fig. 5.5. One clearly sees that the 2PCF data
vector gives the tightest constraints on cosmological parameters, whereas constraints from the
aperture mass dispersion are weaker. Although not quite matching the amount of information of
ξ, the combined data vector is a substantial improvement over〈M2

ap〉. This result is consistent
for all parameter combinations we examine; nevertheless, the amount of the improvement varies.
We calculated the difference in information ofξ andN relative to〈M2

ap〉 and denote these values
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Figure 5.5: Likelihood contours when varying only two parameters, while the others are fixed
to the fiducial values. The contours contain 68.3 %, 95.4 %, 99.73 % of the posterior likelihood.
We consider 3 parameter spaces, from top to bottom:σ8 vs. Ωm, Γ vs. Ωm, z0 vs. Ωm. The
constraints ofξ are shown on the left,N is plotted in the middle, and the results of〈M2

ap〉 are
shown on the right.
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Table 5.1: Values of q forξ,N , and〈M2
ap〉 considering various parameter spaces.

Parameter spaceq (〈M2
ap〉) q (N ) q (ξ) ∆q (N) ∆q (ξ)

Γ vs.Ωm 14.7 11.7 9.1 20.4 % 38.1 %
σ8 vs. Γ 23.1 19.0 14.6 17.8 % 36.8 %
σ8 vs.Ωm 376.3 286.9 207.1 23.7 % 45.0 %
z0 vs.Ωm 46.4 41.0 32.9 11.6 % 29.1 %
z0 vs.σ8 95.3 91.4 73.2 4.1 % 23.2 %
σ8 vs.Ωm (z0) 416.9 313.4 230.0 25.8 % 44.8 %
σ8 vs.Ωm (Γ) 780.5 720.9 527.0 7.6 % 32.5 %
Γ vs.Ωm (σ8) 93.7 77.6 61.6 17.2 % 34.3 %
σ8 vs.Ωm (Γ, z0) 983.8 850.6 623.5 13.5 % 36.6 %

Note: Parameters over which we marginalize are mentioned in brackets, theq are given in
units of 10−4. The quantities∆ξ and∆N are explained in (5.10), (5.11) respectively.

as

∆ξ =
q(〈M2

ap〉) − q(ξ)

q(〈M2
ap〉)

, (5.10)

∆N =
q(〈M2

ap〉) − q(N )

q(〈M2
ap〉)

. (5.11)

The results are summarized in Table 5.1. The parameter combinationσ8 vs.Ωm shows a relative
improvement of∆N = 26.4%, whereas the improvement is much less for the casez0 vs. σ8

(∆N = 4.1%). The amount of new information contributed byξ+(θ0) depends on two main
issues. First,ξ+ integrates over a very broad range of the power spectrum and it can happen
that, althoughPE is sensitive to the parameters considered, the integral overPκ is much less. For
example, if one variesΓ, the power spectrum is tilted and looks significantly different, whereas
the correspondingξ+(θ0) might be very similar. Second,〈M2

ap〉 does not contain information
on small Fourier modes, whereasN gains information about these modes from the data point
ξ+(θ0). However, in case these modes of the power spectrum are not sensitive to the parameters
considered, the information that is contributed byξ+(θ0) is mainly redundant, hence∆N is low.
For example, varyingσ8 or Ωm changesPE similarly, i.e. increasingΩm or σ8 increases the
amplitude ofPE on all Fourier modes. Therefore, the integration overPE is as sensitive to
parameter variations asPE itself. Furthermore, the deviation of power spectra with different
values inσ8 andΩm becomes much more significant for small Fourier modes. Information on
these scales is not included in〈M2

ap〉 but is contributed byξ+(θ0), resulting in a large∆N(26,4
%). In contrast to this, a variation inz0 changes the power spectum very little, especially the
dependence is weak on lowℓ-scales. Accordingly, the gain in information for the casesz0 vs.
Ωm andz0 vs.σ8 is rather small.
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Figure 5.6: Dependence of q calculated forξ (triangles),N (circles), and〈M2
ap〉 (squares) on

the numbers of realizations for the case of a marginalized posterior likelihood. The parameter
space isσ8 vs. Ωm (marginalized overΓ and z0). The lines are a linear fit through data points
(solid for ξ, dashed forN , dotted for〈M2

ap〉). Similar to Fig. 5.3, the deviation of q belonging
to different numbers of realizations is much smaller compared to the deviation of q of different
measures.

5.2.4 Variation of three and four parameters - marginalization

In this section we perform a likelihood analysis in three- and four-dimensional parameter space.
To illustrate the results in two-dimensional contour plots, we define the marginalized posterior
likelihood

PmPL(π12|ξ±) =
∫

dπ3

∫

dπ4 PPL(π1234|ξ±) , (5.12)

which is obtained by integrating over the posterior likelihood of the marginalized parameters.
The marginalized likelihood is also biased due to its non-linearity in the log-likelihood. To
examine whether this bias affects our results significantly, we performed the same experiment
as forq in two-dimensional parameter space. We calculatedq for our three different measures
depending on the number of realizations. The results are shown in Fig. 5.6; again, the bias due to
the process of marginalization is small compared to the difference inq of our three data vectors
showing that in the marginalized case we can also useq to compare the information content. We
also optimize the combined data vector, similar to Sect. 5.2.3 and summarize the results in Table
5.2. For the same reasons as in the previous section, the optimal angular scale of the addedξ+ data
point is again around 10′, and we choose this optimizedN for the likelihood analysis in three-
and four-dimensional parameter space. The results of the likelihood analysis are comparable to
those obtained in two-dimensional parameter space. Theq (see Table 5.1) are larger and the
contours (see Fig. 5.7) broader. Again, the relative improvement∆N depends on the parameter
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Figure 5.7: Likelihood contours ofξ, N , and〈M2
ap〉 in three- and four-dimensional parameter

space. From top to bottom we seeΓ vs.Ωm marginalized overσ8, σ8 vs.Ωm marginalized over
z0, andσ8 vs. Ωm marginalized overΓ and z0. The contours contain 68.3 %, 95.4 %, 99.73 %
of the marginalized posterior likelihood. The small scatter of the contours in the last plot is due
to a lower resolution of the grid in four-dimensional parameter space compared to the grids in
two- and three-dimensional parameter space.
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Table 5.2: The optimal angular separationθ0 of the addedξ+ data point inN considering three-
and four-dimensional parameter space.

Parameter space∗ Optimal valueθ0

Γ vs.Ωm (σ8) θ0 = 9′.1
σ8 vs.Ωm (z0) θ0 = 13′.0
σ8 vs.Ωm (Γ andz0) θ0 = 12′.0

∗We marginalize over the parameters mentioned in parenthesis.

space considered. Forσ8 vs. Ωm marginalized overz0, the improvement is very high (25.8 %)
but becomes much lower forσ8 vs. Ωm marginalized overΓ. This can be explained by looking
howPE changes with respect to the variation in parameter space. For the combinationσ8 vs.Ωm,
we already explained this in Sect. 5.2.3 and the influence ofz0 on PE is quite similar. Increasing
z0 also increasesPE, although the effect is not very large. Therefore, the improvement ofσ8 vs.
Ωm marginalized overz0 is comparable to the non-marginalized case. When varying the shape
parameterΓ, PE is tilted and this dependence ofPE onΓ is different compared to the other three
parameters. Scales ofPE which are most sensitive toΓ differ from scales sensitive toσ8,Ωm and
z0 and the same argument holds for the scales of the addedξ+(θ0). Therefore, the optimalθ0 for
the caseσ8 vs. Ωm marginalized overΓ is a compromise and the relative improvement is much
lower (7.6 %) compared toσ8 vs.Ωm marginalized overz0 (25.8 %).

5.3 Simulation of a B-mode contamination on small angular
scales

In this section we simulate a B-mode contamination ofξ,N , and〈M2
ap〉 on small angular scales.

At present there is no model available to describe B-modes; taking into account that B-modes
most likely occur on small angular scales (e.g. Hoekstra et al. 2002b; van Waerbeke et al. 2005;
Massey et al. 2007b), we use the following arbitrary model for a B-mode power spectrum

PB(ℓ) = 0.2PE(ℓ) e−ℓB/ℓ , (5.13)

whereℓB defines a scale below which the B-mode contamination decreases quickly. In this work
we chooseℓB = 1000; we postpone a detailed study of how otherℓB change the results to future
work. The B-mode contribution toξ can be calculated from (3.51) and (3.52) by assumingPE =

0. To calculate the covarianceCB, we assume that the probability distribution of B-modes can
be described by a Gaussian random field. This assumption enables us to calculate the covariance
directly in terms of the power spectrumPB (Joachimi et al. 2008). The covariance of the 2PCF
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Figure 5.8: The likelihood contours for the case that the shear signal is contaminated with B-
modes. We only consider a two-dimensional parameter space (σ8 vs.Ωm) and the contours again
contain 68.3 %, 95.4 %, 99.73 % of the posterior likelihood. The black dot in each plot indicates
the fiducial model.

corresponding to the B-mode contribution is given by

C++B,i j =
1

Aπ

∫

dℓℓJ0 (ℓϑi) J0

(

ℓϑ j

)
(

P2
B(ℓ) + PB(ℓ)

σ2
ǫ

n̄

)

,

C−−B,i j =
1

Aπ

∫

dℓℓJ4 (ℓϑi) J4

(

ℓϑ j

)
(

P2
B(ℓ) + PB(ℓ)

σ2
ǫ

n̄

)

,

C+−B,i j = − 1
Aπ

∫

dℓℓJ0 (ℓϑi) J4

(

ℓϑ j

)
(

P2
B(ℓ) + PB(ℓ)

σ2
ǫ

n̄

)

,

where A defines the area of the survey,σǫ the intrinsic ellipticity noise, andn the number density
of the source galaxies. According to the corresponding values of the ray-tracing simulations we
chooseσǫ = 0.3 andn̄ = 25/arcmin2. Note that C−+B,i j = C+−B, ji . The pure shot noise term ofC±±B
is contained inC±±E , but in case ofC+−B this term vanishes anyway. We further assume that the
contamination is independent of the lensing signal, meaning there is no correlation between E-
and B-modes. This assumption does not hold in case the B-mode signal is caused by insufficient
PSF-correction or other systematics, which we will comment on at the end of this section. For
the case that B-modes are created independently from E-modes, we can define a combined E/B-
mode covariance matrix as

Ctot = CE + CB . (5.14)

Having obtainedCξ as described above, we therefrom calculateCM and CN and perform a
likelihood analysis similar to Sects. 5.2.3 and 5.2.4. We only show the results for theΩm vs.
σ8 plane, which are illustrated in Fig. 5.8 and Table 5.3. As expected,〈M2

ap〉 is not affected
by the contamination at all. According to (3.57), there is no contribution ofPB to the individual
data points of〈M2

ap〉, and the same holds forCM. Therefore, it is no surprise thatq and contour
plots of 〈M2

ap〉 are similar to those in Sect. 5.2.3. In contrast to this, the 2PCF data vector is
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Table 5.3: The results of the likelihood analysis in case the data vectors are contaminated by
B-modes. The fiducial model corresponds toΩm = 0.3 andσ8 = 0.9.

Data vector q (with B-modes) q (without B-modes) ∆q∗ Best-fit parameter set
〈M2

ap〉 376.3 376.3 0.0 σ8 = 0.90,Ωm = 0.30
N 314.4 286.9 9.6 % σ8 = 0.90,Ωm = 0.30
ξ 275.0 207.1 32.8 % σ8 = 0.76,Ωm = 0.39

∗ The relative difference of theq with and without B-mode contamination.

strongly affected by the contamination leading to aq that is 32.8 % higher compared to the case
when only E-modes are present. Furthermore, there is a significant deviation between the best-
fit parameter set (σ8 = 0.76,Ωm = 0.39) and the fiducial cosmological model (σ8 = 0.90 and
Ωm = 0.30). Compared toξ the combined data vectorN is much less contaminated (9.6 %), and
its best-fit parameter set still matches the fiducial model exactly. Considering theq, one might
argue thatξ still gives tighter constraints on the parameters, but this result is biased in favor
of ξ due to considering a parameter space only up toΩm = 1.0. Both measures have different
best-fit parameter sets and the likelihood contours are cut off at the limits of the considered
parameter space. In such a case, an extension of the parameter space might change the result
of comparing theq qualitatively. Compared to〈M2

ap〉, the information content ofN is still
significantly higher, although the relative improvement decreases to∆N = 16.4%, whereas we
obtained∆N = 23.7% when only E-modes were present (see Sect. 5.2.3). This decrease, due to
the contaminatedξ+(θ0) data point inN , is another reason not to include more data points ofξ+.
In the presence of B-modes, additional 2PCF data points would bias the parameter constraints
and weaken the results even more, leading to similar deficits to those obtained from the 2PCF
data vector itself. As already mentioned above, the assumption of B-modes being independent
of the E-mode signal does not always hold. In case the contamination affects both, E-mode
and B-mode signal, the impact on the parameter constraints of the different measures is hard to
quantify. When one measures a B-modes signal, it is a common approach to assume that the
E-mode signal is contaminated in a similar way, hence one correspondingly increases its error
bars. Although this assumption is sensible, there are possible scenarios where the amount of
contamination in E- and B-mode differs and the E-mode contamination cannot be quantified
at all. Under the assumption that B-modes trace the scales of the E-mode contamination, it is
reasonable to exclude those scales from the likelihood analysis. This can be done using〈M2

ap〉

orN , butξ cannot avoid the contamination due to its broad filter functions.

5.4 Conclusions and summary of the comparison of cosmic
shear data vectors

Although the 2PCF and the aperture mass dispersion are both filtered versions of the power spec-
trum, the first contains more information onPE than the latter. The reason for this is thatξ sam-
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ples the power spectrum over a much broader range and also collects information on scales that
are larger than the size of the survey. The data vector〈M2

ap〉 lacks this large-scale information,
but yields highly localized information onPE. Nevertheless,〈M2

ap〉 has other advantages. First,
due to its narrow filter function, the data points are much less correlated compared to the 2PCF
data points. This leads to a mainly diagonal covariance matrix, which is numerically stabler
during the inversion process in a likelihood analysis. Second, when considering higher-order
statistics,〈M3

ap〉 is much easier to handle than the three-point correlation function (Schneider
et al. 2005), and third, the aperture mass dispersion is only sensitive to E-modes. Based on these
considerations we create the combined data vectorN , which preserves the advantages of〈M2

ap〉

and additionally provides large-scale information onPE. This data vector can be optimized with
respect to the angular scale of the added data pointξ+(θ0), but this optimization very likely de-
pends on the survey geometry and must be performed for each survey separately. We compared
the three data vectors in a detailed likelihood analysis and find that the combined data vector is
a strong improvement over〈M2

ap〉 in information content. However, the amount of improvement
depends on the parameter space considered, more precisely, on the dependence ofPE on varia-
tions in those parameters. The combined data vectorN also maintains the other advantages of
the aperture mass dispersion. Its covariance matrix is almost diagonal, and even the cross terms
C(M(θk), ξ̂+(θ0)) are much smaller compared with the off-diagonal terms ofCξ. Comparing the
information content ofξ andN , ξ gives tighter constraints if the shear signal only consists of
E-modes. In the more realistic case, when B-modes are also present, the parameter constraints
of ξ are significantly weakened and, even worse, biased. The data vectorN is much less affected
by the contamination and still gives tighter constraints on cosmological parameters than does
〈M2

ap〉.



Chapter 6

Ring statistics

In chapter 3 we outline the concept of E- and B-modes, where only the former are created through
gravitational lensing and the latter indicate remaining systematics in the shear signal. Therefore,
decomposing the shear field into E- and B-modes is an important check for systematics in cosmic
shear. The most commonly used methods for E- and B-mode decomposition require the 2PCF
to be known down to arbitrary small or up to arbitrary large angular separations. This is not
possible in practice, as a consequence the corresponding methods do not separate E- and B-
modes properly on small angular scales. This issue is further outlined in Kilbinger et al. (2006).
The ring statistics (Schneider & Kilbinger 2007) provides a new method to perform an E-/B-
mode decomposition using a 2PCF measured on a finite interval. In this chapter we improve
the ring statistics with respect to its signal and examine its potential to constrain cosmological
parameters. In addition, we measure the shear signal using the ring statistics with data from
the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS). This marks the first measured
shear signal obtained from the ring statistics. From this measurement we derive constraints on
σ8, namelyσ8(Ωm/0.25)0.49 = 0.82+0.02

−0.04.

6.1 Methods to decompose E-modes and B-modes

Schneider et al. (2002b) outline the following concepts to decompose E- and B-modes:

• E/B mode power spectra

PE/B(ℓ) = π
∫ ∞

0
dϑϑ

[

ξ+(ϑ)J0(ℓϑ) ± ξ−(ϑ)J4(ℓϑ)
]

(6.1)

• E/B mode two-point correlation function (in the “±” notation below the “+” corresponds
to ξE, the “-” corresponds toξB.)

ξE/B,+(θ) =
1
2

[

ξ+(θ) ± ξ−(θ) ±
∫ ∞

θ

dϑ
ϑ
ξ−(ϑ)

(

4− 12
θ2

ϑ2

)]

(6.2)

ξE/B,−(θ) =
1
2

[

ξ+(θ) ± ξ−(θ) +
∫ θ

0

dϑϑ
θ2

ξ+(ϑ)

(

4− 12
ϑ2

θ2

)]

(6.3)

89
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Figure 6.1: The aper-
ture mass dispersion
calculated from the
power spectrum, com-
pared to the case when
〈M2

ap〉 is calculated
from the 2PCF with
ϑmin = 0.01. The
vertical dotted lines
mark 3 differentθi, i.e.
0.′1, 0.′2, and 0.′8 which
are examined more
closely, with respect to
the filter functions T±.
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• Aperture mass dispersion

〈M2
ap/⊥〉(θ) =

1
2

∫ 2θ

0

dϑϑ
θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

± ξ−(ϑ)T−

(

ϑ

θ

)]

(6.4)

The above quantities can be calculated from the 2PCF, however each method requires that the
2PCF is either measured down to arbitrary small or large angular separation, respectively. For
the case of the aperture mass dispersion we already mentioned this problem in Sect. 5.2.1.1; we
will now examine it in more detail. Figure 6.1 is similar to Fig. 5.1, but restricts the range of the
aperture mass dispersion to angular scales ofθ ∈ [0.′1; 10.′0]. We compare〈M2

ap〉 calculated from
the power spectrum via (3.57) and〈M2

ap〉 calculated from a set of 2PCFs withϑmin = 0.′01. The
calculation of〈M2

ap〉 from the 2PCF fails on small angular scales; this behavior can be explained
when looking at the filter functionT± (3.64), (3.65). We mark three different scalesθi in Fig. 6.1,
i.e. 0.′1, 0.′2, and 0.′8. The argument of theT-functions is defined asx = ϑ/θ, which implies that
when calculating〈M2

ap〉 at θi, theT-functions are cut off at xmin = ϑmin/θi. The corresponding
xmin are shown in Fig. 6.2; we see that in case ofT− the cut-off has almost no impact on the value
of 〈M2

ap〉 as the filter function approaches zero for smallx. However, in case ofT+ this cut-off is
important, asT+ has its maximum amplitude atx = 0 and, in addition, the amplitude ofξ+ in-
creases when approachingϑmin. When trying to calculate〈M2

ap〉 from the 2PCF on angular scales
smaller than 0.′05, its values will even drop below zero. For the three scales we consider here the
relative difference between〈M2

ap〉 calculated from the power spectrum and〈M2
ap〉 calculated from

the 2PCF is 54.6% forθ = 0.′1, 9.5% forθ = 0.′5, and less than 1% forθ = 0.′8. The considered
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valueϑmin = 0.′01 is optimistic; note that a higherϑmin increases the inaccuracy when calculating
〈M2

ap〉 from the 2PCF on small scales.
Most cosmic shear analyses use the aperture mass dispersion and the E/B-mode 2PCF to de-

compose E-and B-modes. For example, Massey et al. (2007b) and Fu et al. (2008) account for
the unknown 2PCF in the corresponding integrals by simulating 2PCFs using a theoretical model
for Pκ. This ansatz is problematic, since one explicitly assumes that scales larger than the size of
the survey are free from B-modes. In addition, the assumed cosmology in the theoretical power
spectrum can bias the results. In the next sections we describe the ring statistics which provides
a method to separate E- and B-modes using a 2PCF on a finite interval.

6.2 From circle to ring statistics

In this section we briefly summarize the basic definitions of circle and ring statistics. For more
details on this topic the reader is referred to Schneider & Kilbinger (2007).
Given a circle of radiusθ around the origin, we define the mean tangential and cross component
of the shear on this circle as

C(θ) = Ct(θ) + iC×(θ) =
1
2π

∫ 2π

0
dϕ (γt + iγ×)(θ, ϕ) . (6.5)

According to Crittenden et al. (2002) and Schneider et al. (2002b),Ct is sensitive only to E-
modes, whereasC× only measures B-modes. The correlators ofCt andC× can be expressed as an
integral overϕ. To derive an easy expression through the 2PCF, one transforms the integration
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variableϕ intoϑ and obtains

〈Ct(θ1)Ct(θ2)〉 =
∫ θ1+θ2

θ2−θ1

dϑ
2ϑ

[

ξ+(ϑ)Y+

(

ϑ

θ2
,
θ1

θ2

)

+ ξ−(ϑ)Y−

(

ϑ

θ2
,
θ1

θ2

)]

(6.6)

〈C×(θ1)C×(θ2)〉 =
∫ θ1+θ2

θ2−θ1

dϑ
2ϑ

[

ξ+(ϑ)Y+

(

ϑ

θ2
,
θ1

θ2

)

− ξ−(ϑ)Y−

(

ϑ

θ2
,
θ1

θ2

)]

, (6.7)

where the functionsY+ andY− are given by

Y+(x, η) =
x2

[

(1− x2)2 − 2η2x2 + η4
]

η2π
√

(1+ η)2 − x2
√

x2 − (1− η2)
(6.8)

Y−(x, η) =
(1− x2)2 − 2η2(2− x2) + η4(6+ 2x2 + x4) − 2η6(2+ x2) + η8

x2η2π
√

(1+ η)2 − x2
√

x2 − (1− η2)
. (6.9)

The circle statistics already offers a method for an E-and B-mode decomposition using 2PCFs
which are measured over a finite range. Unfortunately, the filter functionsY+, Y− suffer from two
singularities at the integration boundaries in (6.6) and (6.7), which originate from the variable
transformation ofϕ into ϑ. This property of theY± functions implies that 2PCFs with the inte-
gration boundaries as arguments dominate the circle statistics’ estimator. In particular, the noise
of these boundary 2PCFs strongly affects the estimator, making the circle statistics inapplicable
as a cosmic shear measure.
The ring statistics improves on this issue; when expressing it through the 2PCF, its filter func-
tions do not contain any singularities. This new cosmic shear measure can be expressed as an
integral over the circle statistics, which means that instead of measuring the shear on a circle we
now consider the shear inside an annulus withζ1 ≤ θ ≤ ζ2.

R = Rt + iR× =
∫ ζ2

ζ1

dθW(θ) C(θ) , (6.10)

whereW(θ) is a weight function which fulfills
∫ ζ2

ζ1

dθW(θ) = 1 . (6.11)

We want to calculate the correlator of two rings with the annuliζ1 ≤ θ1 ≤ ζ2 for the first
ring andζ3 ≤ θ2 ≤ ζ4 for the second (see Fig. 6.3). The rings are non-overlapping, more
precisely we requireζi < ζ j if i < j. Outer and inner ring are separated byϑmin = ζ3 − ζ2 which
guarantees that the ring statistics correlator can be calculated properly from 2PCFs covering the
range [ϑmin;Ψ = ζ2 + ζ4]. The correlator is defined as

〈RR〉 =
∫ ζ2

ζ1

dθ1 W1(θ1)
∫ ζ4

ζ3

dθ2 W2(θ2) 〈C(θ1)C(θ2)〉

=

∫ ζ2

ζ1

dθ1 W1(θ1)
∫ ζ4

ζ3

dθ2 W2(θ2) ×
∫ θ2+θ1

θ2−θ1

dϑ
ϑ
ξ−(ϑ) Y−

(

ϑ

θ2
,
θ1

θ2

)

. (6.12)
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Figure 6.3: This fig-
ure illustrates the prin-
ciple of the ring statis-
tics. We calculate the
2PCF for each galaxy
in the inner ring with
all galaxies in the outer
ring, which implies that
the angular separation
of the 2PCF extends
over a range ofϑ ∈
[ϑmin;Ψ]. The ring
statistics is then cal-
culated as an integral
over the 2PCF with the
filter functions Z±.

Changing the order of integration twice, first betweenθ2 andϑ, then betweenθ1 andϑ, one
obtains

〈RR〉 =
∫ ζ2+ζ4

ζ3−ζ2

dϑ
ϑ
ξ−(ϑ)

∫ ζ2

max(ζ1,ϑ−ζ4,ζ3−ϑ)
dθ1 W1(θ1)

∫ min(ζ4,ϑ+θ1)

max(ζ3,ϑ−θ1)
dθ2 W2(θ2) Y−

(

ϑ

θ2
,
θ1

θ2

)

︸                                                                            ︷︷                                                                            ︸

Z−

. (6.13)

The last two integrals define theZ−-function, i.e. the equivalent for theT− function of the aperture
mass dispersion (see 3.65). Similar to Schneider & Kilbinger (2007) we consider the special case

ζ1 =
1− η

8
Ψ , (6.14)

ζ2 =
3(1− η)

8
Ψ , (6.15)

ζ3 =
5η + 3

8
Ψ , (6.16)

ζ4 =
3η + 5

8
Ψ , (6.17)

whereη is the ratio of minimum to maximum separationη = ϑmin/Ψ. In addition one has to
specify the form for the weight functionsW in (6.13). We follow the choice of Schneider &
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Figure 6.4: This plot shows the filter functions Z+ (left panel) and Z− (right panel) depending on
x = ϑ/Ψ for 4 different choices ofη.

Kilbinger (2007)

W1(θ1) =
30(θ1 − ζ1)2 (ζ2 − θ1)2

(ζ2 − ζ1)5
, (6.18)

W2(θ2) =
30(θ2 − ζ3)2 (ζ4 − θ2)2

(ζ4 − ζ3)5
. (6.19)

We examine the ring statistics as a function ofΨ; with the above specifications (and for a given
Ψ) theZ−-function only depend onϑ andη

〈RR〉 (Ψ) =
∫ Ψ

ϑmin

dϑ
ϑ
ξ−(ϑ) Z−(ϑ, η) , (6.20)

and correspondingly

〈RR∗〉 (Ψ) =
∫ Ψ

ϑmin

dϑ
ϑ
ξ+(ϑ) Z+(ϑ, η) , (6.21)

where the filter functionZ+ is defined similar toZ− (6.13) but replacingY− by Y+. The functions
are illustrated in Fig. 6.4. Forη we examine two different cases, it can be either fixed or kept
variable. The first case means thatϑmin in the integral in (6.20) and (6.21) changes withΨ,
whereas a variableη allows for ϑmin to remain fixed. The latter approach includes more and
smallerϑ-bins into〈RR〉. We outline advantages and disadvantages of these methods in more
detail in Sect. 6.3.
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Using (6.10) we see that〈RR〉 and〈RR∗〉 read

〈RR〉 = 〈(Rt + iR×)(Rt + iR×)〉 = 〈RtRt − R×R×〉 (6.22)

〈RR∗〉 = 〈(Rt + iR×)(Rt − iR×)〉 = 〈RtRt + R×R×〉 , (6.23)

(6.24)

where we used the fact that the imaginary terms vanish for a parity invariant shear field. Recall
thatRt is due to E-modes andR× due to B-modes only. Then the E and B-mode decomposition
for the ring statistics reads

〈RRE〉 (Ψ) =
1
2

(〈RR∗〉 + 〈RR〉) (6.25)

=
1
2

∫ Ψ

ϑmin

dϑ
ϑ

[

ξ+(ϑ) Z+(ϑ, η) + ξ−(ϑ) Z−(ϑ, η)
]

(6.26)

〈RRB〉 (Ψ) =
1
2

(〈RR∗〉 − 〈RR〉) (6.27)

=
1
2

∫ Ψ

ϑmin

dϑ
ϑ

[

ξ+(ϑ) Z+(ϑ, η) − ξ−(ϑ) Z−(ϑ, η)
]

. (6.28)

Similar to the case of the aperture mass dispersion,〈RRE〉 and〈RRB〉 can be related to the power
spectra in case it only consists of E-modes. We therefore insert the relation ofξ± to Pκ (3.51),
(3.52) respectively, into (6.26) and obtain

〈RRE〉 (Ψ) =
∫ ∞

0

dℓ ℓ
2π

PEWE(ℓΨ, η) , (6.29)

with

WE(ℓΨ, η) =
∫ Ψ

ϑmin

dϑ
2ϑ

[

J0(ℓϑ) Z+(ϑ, η) + J4(ℓϑ) Z−(ϑ, η)
]

. (6.30)

6.3 Optimization of the ring statistics’ signal

The signal strength of the ring statistics increases with the angular range covered by the 2PCFs
which enter in (6.26). From Fig. 6.3 it becomes clear that the ring statistics’ signal for givenΨ

will be large if the area between the rings is small, henceϑmin is small. In Schneider & Kilbinger
(2007) the authors holdη = ϑmin/Ψ fixed; in order to obtain a high signal this implies thatη must
be chosen as small as possible.
The minimum value ofϑmin is restricted to the smallest possible separation in the 2PCF which
we denote asϑξmin. A fixed η therefore limits a data vector of the ring statistics toΨ ≥ ϑξmin/η.
Choosing a smallη (in order to increase the signal strength) implies that the ring statistics is
restricted to larger scales compared to the case of a largeη. This tradeoff between signal strength
and small-scale sensitivity can be overcome when relaxing the condition of a fixedη. Instead we
suggest a variableη and fixϑmin = ϑξmin for all Ψ. We assume that this choice increases the signal
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Figure 6.5: This figure shows the signal of the ring statistics calculated from a set of theoretical
2PCFs withϑ ∈ [0.05; 470]arcmin. The individual lines correspond to 4 different cases ofη;
from top to bottom we seeη = 0.′05/Ψ, η = 0.1, η = 0.4, η = 0.9.

strength of the ring statistics; in addition, it does not restrict the range ofΨ. The only deficit of
this method is that the filter functionZ± has to be recalculated every time the argument of the ring
statistics (Ψ) changes. Figure 6.5 compares the signal of the ring statistics for several choices
of η to the case of a variableη, which from now on we denote asηvar. Here, the ring statistics
is calculated from a set of theoretical 2PCFs with the same angular range as the 2PCFs from
the CFHTLS which we use in Sect. 6.6, i.e.ϑ ∈ [0.′05; 470.′0]. We clearly see the anticipated
behavior, namely that the ring statistics withηvar gives a stronger signal, which becomes most
obvious on large scales. In addition, it can be measured down to arbitrary small values ofΨ

(aboveϑξmin), which is not possible when choosing a fixedη.
When comparing the ring statistics to other 2-point statistics of cosmic shear (Fig. 6.6), such as

the shear dispersion,ξ± and the aperture mass dispersion, we find that the ring statistics’ signal
is lower. Even the improved version of the ring statistics is on average by a factor of≈ 2 smaller
than the aperture mass dispersion. This low signal can be explained when comparing the filter
functions of〈RRE〉 and〈M2

ap〉, Z± (Fig. 6.4) andT± (Fig. 6.2), respectively. TheZ-functions have
two roots at their boundaries whereas theT+-function becomes particularly large for smallx.
However, more important than the signal strength is the signal-to-noise ratio; the latter quantifies
the ability of a measure to constrain cosmological parameters. In the next section we derive an
expression for the covariance of the ring statistics and employ this expression to compare the
information content of ring statistics and aperture mass dispersion.
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Figure 6.6: This figure shows the ring statistics compared to other second-order cosmic shear
measures, namely the shear dispersion,ξ± and the aperture mass dispersion. We see that even in
the case of the improved ring statistics the signal is low compared to the other measures.

6.4 Covariance of the ring statistics

In order to compare〈RRE〉 and〈M2
ap〉 in a likelihood analysis we have to derive the corresponding

covariances. Both are calculated from the 2PCF covariance; a corresponding expression for
〈M2

ap〉 is given in (5.2). The covariance of the ring statistics is defined as

CR(Ψk,Ψl) =
〈

R̂2
E(Ψk) R̂2

E(Ψl)
〉

− 〈RRE〉(Ψk) 〈RRE〉 (Ψl) , (6.31)

whereR̂2
E denotes the estimator of the ring statistics. To calculate this estimator from a binned

2PCF data vector with bin width∆ϑi we replace the integrals (6.26) by a sum over the bins.

R̂2
E(Ψ) =

1
2

I∑

i=1

∆ϑi

ϑi

[

ξ̂+(ϑi) Z+(ϑi , η) + ξ̂−(ϑi) Z−(ϑi , η)
]

, (6.32)

with ξ̂±(ϑi) denoting the estimator of thei-th 2PCF bin. The upper limitI in (6.32) denotes the
bin up to whichϑi < Ψ. Inserting (6.32) into (6.31) we derive

CR(Ψk,Ψl) =
I∑

i=1

J∑

j=1

∆ϑi∆ϑ j

4ϑiϑ j

×




∑

m,n=+,−
Zm (ϑi ,Ψk) Zn

(

ϑ j ,Ψl

)

Cmn(ϑi , ϑ j)




. (6.33)
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whereI and J denote the bins up to whichϑi < Ψk (ϑ j < Ψl) holds and Cmn is the 2PCF covari-
ance.
In order to illustrate the correlation between the individual data points we calculate the correla-
tion matrixR for 〈M2

ap〉 and〈RRE〉 from the corresponding covariance matrix. ForC being the
covariance of either〈M2

ap〉 or 〈RRE〉 the correlation coefficient is defined as

Ri j =
Ci j

√

CiiCj j

, (6.34)

which implies thatR is one on the diagonal.
The upper row in Fig. 6.7 shows the correlation matrix of ring statistics (left panel) and aperture
mass dispersion (right panel). Here, we calculate the covariance of〈RRE〉 and 〈M2

ap〉 from a
Gaussian 2PCF covariance matrix and then calculate the correlation matrix via (6.34). Starting
from the diagonal, which contains the maximum values, the correlation drops quickly in both
cases. Then-th contour line corresponds to values of 0.11n (hence, “red”≡0.11, “orange”≡
0.0121, etc.). We clearly see that the data points of the ring statistics are much less correlated
than those of the aperture mass dispersion. The contour level depends mainly on the ratioθ1/θ2

andΨ1/Ψ2, respectively. We compare the correlation coefficients forθ1/θ2 = Ψ1/Ψ2 = 0.5 and
find that Ri j (〈M2

ap〉) = 0.35, whereas Ri j (〈RRE〉) = 0.20.
A qualitatively similar result is obtained when performing the same analysis with the 2PCF
covariance matrix used in the latest CFHTLS analysis (Fu et al. 2008). There, the covariance
was calculated from a theoretical model (Ωm = 0.27,ΩΛ = 0.73,h = 0.73,Ωb = 0.044,σ8 = 0.8
andns = 1.0) using the formula given in Schneider et al. (2002a). To account for non-Gaussianity
Fu et al. (2008) applied the calibration factor introduced by Semboloni et al. (2007). From this
2PCF covariance we calculate covariances of the ring statistics and aperture mass dispersion and
derive the corresponding correlation matrices. The result is illustrated in the lower row of Fig.
6.7. Here, then-th contour line corresponds to values of 0.5n (hence, “red”≡ 0.5, “orange”≡
0.25, etc.). Compared to the Gaussian case the contours broaden, which is not directly seen in the
figure due to the different contour levels. Comparing the correlation between the ring statistics
and the aperture mass dispersion we obtain a similar result as in the Gaussian case. The data
points of the ring statistics are significantly less correlated compared to those of the aperture
mass dispersion. However, in the non-Gaussian case the correlation coefficients of〈M2

ap〉 and
〈RRE〉 do not only depend on the ratioθ1/θ2 andΨ1/Ψ2, respectively; they also depend on the
absolute valuesθ1, θ2 andΨ1,Ψ2, respectively. A quantitative comparison similar to the Gaussian
case is more difficult here; we will analyze this in more detail in a future paper.
Note that the angular range of〈RRE〉 and〈M2

ap〉 is different. The first extends fromΨ = 0.1′ to
470′, whereas the second is limited to an angular scale ofθ ∈ [1; 230] arcmin. The lower limit
is a consequence of the E/B-mode mixing of〈M2

ap〉 on small scales (Sect. 6.1). In addition, it
should be mentioned that the scales of the ring statistics and aperture mass dispersion cannot
be compared easily. For example,〈RRE〉 (Ψ) contains information from the 2PCF withϑ ≤ Ψ,
whereas〈M2

ap〉(θ) contains information from the 2PCF up to 2ϑ.
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Figure 6.7: This figure shows the correlation matrices of〈RRE〉 (left panels) and〈M2
ap〉 (right

panels) under the assumption of a Gaussian shear field (upper row) and when taking non-
Gaussianity into account (lower row). The n-th contour line marks values of(0.11)n in the upper
panels and(0.5)n in the lower ones. More precisely, for the Gaussian case: “red” contours
corresponds to 0.11, “orange” to 0.0121, etc. For the non-Gaussian case: “red” corresponds to
0.5, “orange” to 0.25, etc.
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Figure 6.8: This figure shows the result of the likelihood analysis for〈RRE〉 (left panel) and
〈M2

ap〉 (right panel) with simulated data but employing the original covariance matrix of the
latest CFHTLS analysis (Fu et al. 2008).

6.5 Comparison of the information content of〈RRE〉 and 〈M2
ap〉

We now compare the information content of ring statistics and aperture mass dispersion. We
simulate a set of 2PCFs on an angular range which is similar to that of the CFHTLS 2PCFs, i.e.
ϑ ∈ [0.05; 470] arcmin. The 2PCFs are calculated fromPE as described in Sect. 5.2, but with the
transfer function from Efstathiou et al. (1992). From this set of theoretical 2PCFs we calculate
the data vectors of〈RRE〉 (with ηvar) and〈M2

ap〉

R =





〈RRE〉 (Ψ1)
...

〈RRE〉 (Ψn)





and 〈M2
ap〉 =





〈M2
ap〉(θ1)
...

〈M2
ap〉(θn)





, (6.35)

with Ψ ∈ [0.1; 460] andθ ∈ [1; 230] in 20 logarithmic bins each. Our fiducial model is chosen
to be similar to that of the Millennium simulation, i.e.Ωm = 0.25, σ8 = 0.9, H0 = 0.73
andΩb = 0.04; the source galaxies are assumed to be at a constant redshiftz = 1. In the
following likelihood analyses we consider a two-dimensional parameter space, namelyΩm and
σ8. The corresponding covariances of〈RRE〉 and〈M2

ap〉 are calculated from the CFHTLS 2PCF
covariance via (6.33) and (5.2), respectively. Figure 6.8 shows the result of the likelihood analysis
for 〈RRE〉 (left panel) and〈M2

ap〉 (right panel). We see that the ring statistics data vector is a clear
improvement over the aperture mass dispersion. This can be explained by the fact that the ring
statistics can probe much smaller scales than〈M2

ap〉 and, more important, these scales are much
less correlated.
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6.6 Ring statistics with the CFHTLS

In this section we measure the ring statistics signal with CFHTLS data. We perform this analysis
for the optimized ring statistics (withηvar) as well as for seven fixedη, namely 0.1, 0.2, 0.3, 0.4,
0.5, 0.6, and 0.7. The results are illustrated in Fig. 6.9, the black data points correspond to the
E-mode signal calculated via (6.26), the red data points correspond to the B-mode signal calcu-
lated via (6.28). The error bars are calculated from the diagonal elements of the ring statistics
covariance matrix which was calculated from the CFHTLS covariance (see Sect. 6.4 and Fu
et al. 2008). FromCR we calculate the error for thei-th E-mode data point as

√
Cii. This method

accounts for statistical noise and non-Gaussian cosmic variance. The error bars on the B-modes
contain only statistical noise. As pointed out by Fu et al. (2008) this error analysis does not
include systematic errors, which might lead to an underestimation in the error bars .
There are several things to mention regarding Fig. 6.9. First, the improved ring statistics gives a
significantly stronger signal compared to the ring statistics with fixedη. When choosingη > 0.2
hardly any signal is noticeable. Second, we see that the data points forηvar andη = 0.1 are al-
most identical on scales below 2′. This can be explained when looking at Fig. 6.5, which shows
that the difference between both expected signals vanishes on small scales. Third, below 5′ we
measure an E- and a B-mode signal which have approximately the same amplitude. This feature
will be subject of future research; in particular, we will sample these small scales with more data
points in order to verify our preliminary finding.
In Fig. 6.10 (left column) we compare the signal of the ring statistics above 5′ for two cases,
namelyηvar andη = 0.1. We see that the shear signal improves significantly when using the
ηvar; this becomes evident in particular on large scales. This behavior is expected from Fig. 6.5
which shows that the difference between both signals increases at largeΨ. Comparing the signal
obtained from the ring statistics to the aperture mass signal obtained in the analysis of Fu et al.
(2008) (right column of Fig. 6.10) we see a good qualitative agreement between both results.
Similar to the〈M2

ap〉 signal, the ring statistics measures a significant B-mode on larger scales,
more precisely atΨ ≈ 120′. In the 〈M2

ap〉 signal this B-mode occurs atθ ≈ 60′. This is not a
contradiction; it can be explained by the fact that〈RRE〉 (Ψ) contains information from the 2PCF
with ϑ ≤ Ψ, whereas〈M2

ap〉(θ) contains information from the 2PCF up to 2ϑ.

6.6.1 Parameter constraints with the ring statistics

In this section we employ the ring statistics to constrain cosmological parameters; more precisely,
we constrainσ8 depending onΩm under the assumption of a flat universe withh = 0.73,Ωb =

0.044, andns = 1.0. The model data vectors for the ring statistics are calculated from the 2PCF
as described in Sect. 6.5, however we choose a redshift distribution of source galaxies similar to
that of Benjamin et al. (2007)

n(z) =
β

z0Γ ((1+ α) /β)

(

z
z0

)α

exp



−
(

z
z0

)β
 , (6.36)

with α = 0.836,β = 3.425,z0 = 1.171.
In the likelihood analysis we choose a flat prior probability with cutoffs, which meansp(π) is
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Figure 6.9: This figure shows the ring statistics signal measured from the CFHTLS for various
cases ofη. The red data points correspond to the E-mode signal, the black data points to the
B-mode signal.
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Figure 6.10: The ring statistics for the case of a variableη (top left panel) andη = 0.1 (bottom
left panel) compared to the aperture mass dispersion signal from the latest CFHTLS analysis (Fu
et al. 2008).

constant for all parameters inside a fixed interval (i.e.Ωm ∈ [0.01; 1.0], σ8 ∈ [0.4; 1.4]) and
p(π) = 0 else. The ring statistics’ covariance is derived from the 2PCF covariance of the Fu et al.
(2008) analysis as described in Sect. 6.4. The result of the ring statistics likelihood analysis is
shown in Fig. 6.11. For givenΩm we indicate the best-fit value ofσ8 by the dotted red curve.
This curve can be parameterized asσ8(Ωm/0.25)0.49 = 0.82+0.02

−0.04. The error bars, illustrated by
the horizontal dashed lines in Fig. 6.11, correspond to the 1σ limits of σ8 when assuming the
priorΩm = 0.25 (vertical dashed line). A comparison of our results using the ring statistics with
the aperture mass dispersion analysis of Fu et al. (2008) and Benjamin et al. (2007) can be found
in Table 6.1. In both cases the results agree well within the error bars. In addition, our estimates
agree with those of the WMAP5 analysis (see Tab. 2.1). As expected from our analysis in Sect.
6.5 the likelihood contours of the ring statistics are tighter compared to those of the aperture
mass dispersion (compare Fig. 6.11 and Fig. 6.12). This can also be seen when comparing the
error bars of Table 6.1. However, the error analysis is ongoing work and must be improved in the
future, e.g. systematic errors should be taken into account. Furthermore, it will be important to



104 Chapter 6. Ring statistics

Table 6.1: Comparison of theΩm vs. σ8 parameter constraints from the ring statistics to the
〈M2

ap〉 analysis of Fu et al. (2008) and Benjamin et al. (2007).

Prior Analysis Result

Ωm = 0.25 Fu et al. (2008) σ8(Ωm/0.25)0.64 = 0.785± 0.043

Ωm = 0.25 Ring statistics σ8(Ωm/0.25)0.48 = 0.820+0.021
−0.037

Ωm = 0.24 Benjamin et al. (2007)σ8(Ωm/0.24)0.56 = 0.86± 0.06

Ωm = 0.24 Ring statistics σ8(Ωm/0.24)0.48 = 0.837+0.018
−0.035

Figure 6.11: This figure
shows the 68%, 95%, 99.9%
credible intervals in theΩm-
σ8-plane when measuring
the shear from CFHTLS
data with the ring statistics.
For given Ωm the red dots
indicate the value ofσ8

with the highest probability.
The dotted vertical line
corresponds toΩm = 0.25,
the dotted vertical lines
represent the 1σ error of σ8

for a givenΩm = 0.25.
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work on theoretical predictions; the model data vectors derived from the fit-formula of of Smith
et al. (2003) is not sufficient for precision cosmology.

6.7 Concluding remarks on the ring statistics

In this chapter we outlined that the ring statistics improves on deficits of commonly used meth-
ods to decompose E- and B-modes. These methods require knowledge on the 2PCF on scales
which are not measurable; usually this missing information is added in form of 2PCFs calculated
from a theoretical model. In contrast, the ring statistics separates E- and B-modes properly using
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Figure 6.12: This figure
shows the 1σ and 2σ
likelihood contours in the
Ωm-σ8-plane of the 〈M2

ap〉
analysis of Fu et al. (2008)
(purple). The green contours
correspond to the result of
WMAP3 and the yellow con-
tours represent the combined
constraints.

2PCFs measured on a finite interval ofϑ-values. As outlined in Schneider & Kilbinger (2007)
the filter functions of the ring statistics, i.e.Z±, are in general complicated to calculate; the au-
thors restrict the free parameters of the ring statistics to one parameter, namelyη. This parameter
is held fixed, independent of the angular scaleΨ at which the ring statistics is evaluated. In this
chapter, we improve on the condition of a fixedη by choosing a variableη which improves the
ring statistics’ signal, particularly on large scales.
Furthermore, we present a formula to calculate the ring statistics’ covariance from the 2PCF
covariance. This covariance is employed to compare the correlation of data points and the infor-
mation content of ring statistics and aperture mass dispersion. We find that the ring statistics is
less correlated and therefore has a higher information content than the aperture mass dispersion.
A second reason for the high information content of〈RRE〉 is that it can be calculated on smaller
angular scales than〈M2

ap〉 which suffers from E/B-mode mixing on these scales.
We apply the ring statistics to CFHTLS data and measure a shear signal. This signal vanishes
when choosing a fixedη > 0.2; hence, we conclude that the ring statistics withηvar significantly
improves on the signal-to-noise ratio. Above 5′ we measure a clear E-mode shear signal, whereas
the B-mode is mostly consistent with zero. These results agree with the aperture mass dispersion
analysis of Fu et al. (2008); similar to them we only measure a B-mode signal on large scales.
More precisely, we measure a B-mode signal atΨ ≈ 120′ with 〈RRE〉, which is comparable to
the B-mode signal atθ ≈ 60′ measured with〈M2

ap〉. In the last section of this chapter we employ
the ring statistics to measure cosmological parameters, in particularσ8 in combination withΩm.
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Our resultσ8(Ωm/0.25)0.49 = 0.82+0.02
−0.04 is comparable to the results of foregoing cosmic shear

analyses which are based on the aperture mass dispersion or the E/B-mode correlation function,
e.g. Benjamin et al. (2007) or Fu et al. (2008).
Below 5′ we measure an E- as well as a B-mode signal. This region of smallΨ will be examined
closely in the near future, in particular we will sample this range with more data points. The
fact, that data points of the ring statistics have so small correlations enables us to determine the
contaminated scales very accurately.
The noise-level of the ring statistics on small scales can be reduced by increasing the number
of galaxy pairs within the contributing 2PCF-bins. The number of galaxy pairs inside a 2PCF-
bin increases quadratically with ¯n, therefore it would be interesting to test the ring statistics on
a data set with higher ¯n. Similarly, an increased survey volume will significantly enhance the
constraints, for the reason that the cosmic variance scales with 1/A. For example, the CFHTLS
data we consider here covers an area of 34.2 deg2 with n̄ = 13.3. Testing the ring statistics on the
full CFHTLS sample (172 deg2) would be an interesting project in the future.
A second possibility to increase the signal-to-noise ratio, is to optimize the filter function of the
ring statistics. As outlined in Schneider & Kilbinger (2007) the ring statistics is a special case of
a general E- and B-mode decomposition; there exists a large set of filter functions which separate
E-and B-modes using a 2PCF measured over a finite angular range. It will be future work to find
the filter function for an E- and B-mode decomposition on a finite interval with optimal signal
strength.



Chapter 7

Improved Likelihood Analysis for Cosmic
Shear Data

In cosmic shear likelihood analyses the covariance is most commonly assumed to be constant in
parameter space. Therefore, when calculating the covariance matrix analytically or from simula-
tions, its underlying cosmology should not influence the likelihood contours. In this chapter we
examine whether the aforementioned assumptions hold and quantify how strong cosmic shear
covariances vary within a reasonable parameter range. We calculate Gaussian covariances ana-
lytically for 2500 different cosmologies; in order to quantify the impact on the parameter con-
straints we perform a likelihood analysis for each covariance matrix and compare the likelihood
contours. To improve on the assumption of a constant covariance, we use an adaptive covari-
ance matrix, which is continuously updated according to the point in parameter space where the
likelihood is evaluated. As a side-effect, this cosmology-dependent covariance improves the pa-
rameter constraints. We examine this fact more closely using the Fisher-matrix formalism. In
addition, we quantify the impact of non-Gaussian covariances on the likelihood contours using
a ray-tracing covariance derived from the Millennium simulation. In this ansatz we return to the
approximation of a cosmology-independent covariance matrix; in order to minimize the error
due to this approximation, we develop the concept of an iterative likelihood analysis.

7.1 Introduction to covariances

Obtaining appropriate covariances is a crucial issue in this context of a precision cosmology like-
lihood analysis. Several methods are suggested in the literature and have been applied to cosmic
shear data. An analytic expression for covariances assuming a Gaussian shear field is derived
in Schneider et al. (2002a) and confirmed in Joachimi et al. (2008) who use a power spectrum
approach which significantly reduces the computational effort in the calculation. This analytic
expression has been used for parameter estimation in many surveys (e.g. van Waerbeke et al.
2005; Semboloni et al. 2006; Hoekstra et al. 2006). However, the assumption of a Gaussian
shear field breaks down on small scales; according to Kilbinger & Schneider (2005) and Sem-
boloni et al. (2007) non-linear effects already become important at angular scales. 10 arcmin.

107
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To account for non-Gaussianity, Semboloni et al. (2007) obtain a calibration factor which is de-
rived from a comparison of Gaussian to ray-tracing covariances. An application of this method to
real data can be found in Fu et al. (2008). A second approach is the derivation of the covariance
matrix from the data (e.g. Hetterscheidt et al. 2007; Massey et al. 2007b). Here, the covariance
is calculated via field-to-field variation which involves a separation of the data set into many
independent subsamples. This might lead to a loss of information on large scales if the survey
is not sufficiently large. Third, one can estimate the covariance matrix from ray-tracing simu-
lations, a method which circumvents the aforementioned loss in information. Although, in this
method the covariance is again derived via field-to-field variation, we can choose a sufficiently
large numerical simulation to create many independent subsamples of adequate size.
Note, that the last two methods involve an estimation process in the determination of the covari-
ance matrix, which means that the inverse is biased and one has to correct for this effect (An-
derson 2003; Hartlap et al. 2007). Nevertheless, deriving covariance matrices from ray-tracing
simulations seems to be a promising method as it preserves all the information in the data and
additionally takes the non-Gaussianity of the shear field into account.
The analytic expression and the ray-tracing covariance assume a specific cosmological model in
their derivation. So far, cosmic shear likelihood analyses treat the covariance matrix as constant
in parameter space, hence its underlying cosmology is assumed not to influence the parameter
constraints. In the following we check for this assumption and in case it does not hold, to present
an improved likelihood formalism for future surveys.

7.2 Variation of covariances in parameter space

We select a two-dimensional parameter grid with 50× 50 gridpoints ofΩm ∈ [0.2; 0.4] and
σ8 ∈ [0.6; 1.0]. For each grid point we calculate a covariance analytically using (4.3) - (4.8).
The shear power spectraPE are obtained from the density power spectraPδ employing Limber’s
equation. To derivePδ we assume an initial Harrison-Zeldovich power spectrum (Pδ(k) ∝ kns

wherens = 1) with the transfer function from Efstathiou et al. (1992). For the calculation
of the non-linear evolution we use the fitting formula of Smith et al. (2003). Throughout this
chapter, we assume a flat universe and fix all cosmological parameters exceptΩm andσ8, more
preciselyH0 = 0.73 andΩb = 0.04. These values forH0 andΩb together withΩm = 0.25 and
σ8 = 0.9 define our fiducial cosmological model, which we have chosen similar to the cosmology
of the Millennium Simulation (Springel et al. 2005) for a later comparison of Gaussian and ray-
tracing covariances. We assume all source galaxies to be at redshiftz0 = 1.0. Using a redshift
distribution instead would not change our results qualitatively. In addition to cosmology, the
covariance depends on survey parameters. The scaling relations given in Sect. 7.2 are generally
valid and independent of survey parameters. In case of the likelihood analyses in Sects. 7.3
and 7.4 we choose, unless stated otherwise, an intrinsic ellipticity noise ofσǫ = 0.4, a number
density of source galaxies of ¯n = 10/arcmin2 (similar to the values of the Dark Energy survey),
and a survey which coversA = 900 deg2. The angular scale of the 2PCF data vector for which
we calculate the covariances covers a range from 0.1 arcmin to 180 arcmin, which is divided into
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Figure 7.1: The dimensionless shear power spectrumℓ2PE. The solid curves correspond to
variation inΩm andσ8: Ωm = 0.2, σ8 = 0.6 (lower),Ωm = 0.3, σ8 = 0.8 (middle),Ωm = 0.4,
σ8 = 1.0 (top). The dashed curves show variation inσ8 with Ωm = 0.25: σ8 = 0.6 (lower),
σ8 = 0.8 (middle),σ8 = 1.0 (top). The dotted curves show variation inΩm with a constant
σ8 = 0.9: Ωm = 0.2 (lower),Ωm = 0.3 (middle),Ωm = 0.4 (top).

50 logarithmic bins.

7.2.1 A fast method to calculate covariances for arbitraryΩm andσ8

From (4.7) and (4.8) one directly sees that the covariance matrix depends on the cosmological
model, which enters with the power spectrumPE. Figure 7.1 illustrates the change inPE when
varying onlyΩm, orσ8, and both parameters simultaneously; we see that it increases withΩm as
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well as withσ8.
For a given cosmological model we can calculate the covariance directly from (4.3) - (4.8).
Performing this calculation for many sets of parameters is time-consuming; hence we seek a
scaling relation, which relates the covariances of an arbitrary cosmologyCπ to a reference model
Cπ0. A basic theorem in statistics states (e.g. Anderson 2003), that if there is a relation between
two data vectorsx andy which readsy = Ax (A being a matrix), the relation of the covariances
of x andy can be written as

Cy =
〈

(y − 〈y〉)(y − 〈y〉)t
〉

=
〈

(Ax − 〈Ax〉)(Ax − 〈Ax〉)t
〉

= ACxA t . (7.1)

In this derivationA must be independent of the ensemble average. If we apply the above ansatz
to the 2PCF, it seems reasonable to define a scaling relation for parameter dependent covariances
as

Cξπ = ACξπ0A
t , (7.2)

where we can calculate the scaling matricesA using the 2PCF

diag(A) = ξπ/ξπ0 . (7.3)

In contrast to a covariance matrix, the 2PCF can be calculated extremely fast for many different
cosmologies via (3.51) and (3.52). Hence, it would be a fast and convenient method to calculate
the covariance for a reference cosmology and then apply (7.2) to obtain covariances for arbitrary
cosmological parameters. Unfortunately, we cannot transfer this method directly to the cosmic
shear case. Recall, that the 2PCF is derived from the measured ellipticities of galaxies. Schneider
et al. (2002b) have shown that the intrinsic ellipticity terms cancel out in the derivation of the
2PCF estimator, hence the 2PCF is defined only in terms of the shear. In contrast, the 2PCF
covariance does not only consist of terms coming from the shear, but has additional noise terms
which arise from the intrinsic ellipticity of galaxies. The pure shot noise term (4.6) is independent
of cosmology and, as explained below, the mixed term cannot be scaled with relation (7.2), which
is quadratic in the 2PCF.
However, in the limit of a noise-free covariance, i.e. considering only the cosmic variance term,
a scaling relation similar to (7.2) exists. We explicitly prove this below; in particular, we show
that the scaling matrices are independent of the ensemble average. The cosmic variance term can
be calculated via (4.7). Cosmology only enters with the power spectrum, hence the relation ofπ

toπ0 can be described asPE(ℓ, π) = a(ℓ, π)PE(ℓ, π0). Using this relation we transform the cosmic
variance term (4.7) for given binsϑi , ϑ j as follows

V±±(π) =
1
πA

∫ ∞

0
dℓ ℓ J0/4(ℓϑi) J0/4(ℓϑ j) P2

E(ℓ, π)

=
1
πA

∑

ℓ̄

∆ℓ̄ ℓ̄ J0/4(ℓ̄ϑi) J0/4(ℓ̄ϑ j) a2(ℓ̄, π)P2
E(ℓ̄, π0), (7.4)
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where we discretize the integral into a sum ofℓ̄-bins. Next we insert equation (26) of Joachimi
et al. (2008) (see also Kaiser 1998) but withσǫ = 0

〈

∆PE(ℓ̄)∆PE(ℓ̄′)
〉

=
4π

Aℓ̄∆ℓ̄
P2

E(ℓ̄) δℓ̄ℓ̄′ , (7.5)

to rewrite (7.4) as

V±±(π) =
1

4π2

∑

ℓ̄,ℓ̄′

∆ℓ̄2ℓ̄′ℓ̄ J0/4(ℓ̄ϑi) J0/4(ℓ̄
′ϑ j) a(ℓ̄, π) a(ℓ̄′, π)

×
〈

∆PE(ℓ̄, π0)∆PE(ℓ̄′, π0)
〉

. (7.6)

The mean value theorem guarantees that there exist values ¯a(ϑi , π), ā(ϑ j , π) such that (7.6) be-
comes

V±±(π) =
ā(ϑi , π) ā(ϑ j , π)

4π2

〈∫ ∞

0
dℓ ℓ J0/4(ℓϑi)∆PE(ℓ, π0)

×
∫ ∞

0
dℓ′ℓ′ J0/4(ℓ

′ϑ j)∆PE(ℓ′, π0)

〉

= ā(ϑi , π) ā(ϑ j , π) V±±(π0) , (7.7)

where we consider the limit∆ℓ̄ −→ 0 in the first step. Comparing the expressions ofV±±(π) and
V±±(π0) we can calculate the scaling factors as

ā±±(ϑi , π) =

∫ ∞
0

dℓ ℓ J0/4(ℓϑi)PE(ℓ, π)
∫ ∞

0
dℓ ℓ J0/4(ℓϑi)PE(ℓ, π0)

=
ξ(ϑi , π)
ξ(ϑi , π0)

, (7.8)

where we inserted (3.51), (3.51) respectively, in the last step. This provides a fast and convenient
method to scale the cosmic variance term in parameter space, due to the fact we can use a com-
putationally efficient Hankel transformation for the calculation of the 2PCF.
In order to examine whether a scaling relation can be found for the mixed term, we refer to the
corresponding expression derived in Schneider et al. (2002a).

M++ =
2σ2

ǫ

πAn

∫ π

0
dϕ ξ+(|φ|) , (7.9)

M−− =
2σ2

ǫ

πAn

∫ π

0
dϕ ξ+(|φ|) cos(4ϕ) , (7.10)

M+− =
2σ2

ǫ

πAn

∫ π

0
dϕ





4∑

k=0

(

4
k

)

(−1)kϑk
i ϑ

4−k
j cos(kϕ)





× (|φ|)−4 ξ−(|φ|) cos(4ϕ) , (7.11)

where we denote|φ| =
√

ϑ2
i + ϑ

2
j − 2ϑiϑ j cosϕ. From (7.9) - (7.11) we see that the mixed term

M±± scales linearly with the 2PCF which prevents a scaling relation similar to (7.2). Fortunately,
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the direct calculation of the mixed term via (4.8) is comparatively fast, therefore, the scaling
relation for the cosmic variance term already reduces the computational costs significantly.
Nonetheless, we numerically derive a fit-formula for the linear term based on the following
expression

M±±(ϑi , ϑ j , π) = M±±(ϑi , ϑ j , π0)

(

Ωm

0.25

)α (
σ8

0.9

)β

, (7.12)

with π0 being the fiducial model explained at the beginning of Sect. 7.2. The structure of this
fit-formula is motivated by the intention to use as few fit-parameters as possible; additionally
we require that in the limit of the fiducial model,M±±(ϑi , ϑ j, π) = M±±(ϑi , ϑ j, π0) must hold.
The fit-parametersα andβ vary depending on the scaleϑi , ϑ j and are different for the different
parts of the covariance matrix,C++, C−−, andC+−. The tables withα andβ can be found in the
Appendix B.

7.2.2 Variation of the inverse covariance withΩm andσ8

From the variation of the power spectrum withΩm andσ8 (Sect. 7.2.1) it is clear that covari-
ances vary with respect to comological parameters. For simplicity and in order to increase the
readability of the following sections we refer to this variation as CDC-effect (CDC≡Cosmology-
Dependent Covariances). In order to examine the CDC-effect more closely, recall that the struc-
ture of the covariance is given by

C =





C++ C+−

Ct
+− C−−





and the individual parts are calculated from (4.3) - (4.8). From these equations we see that
the covariances are filtered versions of the power spectrum, either filtered by a product of J0’s
(in case ofC++), J4’s (C−−), or a combination of both (C+−). The strength of the CDC-effect de-
pends on these filter functions, as they determine which parts of the power spectrum are sampled.
A change inΩm andσ8 affects all scales of the power spectrum almost similarly (see Fig. 7.1);
therefore, the CDC-effect for the individual parts ofC is also similar. However, this might change
when considering different cosmological parameters, e.g. the shape parameterΓ. I contrast to
a change inΩm andσ8, which increases (decreases) the power spectrum on all scales, a change
in Γ increases (decreases) small scales while decreasing (increasing) large scales. Therefore, a
change inΓ causes a “rotation” in the power spectrum. The covariances are integrals overPE,
and depending on the filter function, such a rotational change inPE can average out. A second
argument why the individual covariance parts have different sensitivity to the CDC-effect is that
C+− is not affected from shot noise, hence a change in cosmology has a stronger impact onC+−
compared toC++ andC−−.
In order to quantify the CDC-effect we examine the trace of the inverse covariance matrixC−1.
The trace of the covariance itself is an improper measure for this effect, as it depends on the
binning, which can be seen from (4.6). The trace ofC becomes arbitrarily large when decreasing
the bin width. In contrast, we checked numerically that for the trace ofC−1 binning effects are
negligible, once one has exceeded a minimum bin number (see Sect. 4.4.1). More precisely, once
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the bin width of the 2PCF data vector is small enough that discretization effects are unimportant,
the trace ofC−1 hardly changes for different binning.
Figure 7.2 shows the trace of the inverse covariance matrix depending onΩm for various con-

stantσ8 (top) and vice versa (bottom). Here, we normalize the survey size toA = 1 deg2; the
other survey parameters areσǫ = 0.4 andn̄ = 10/arcmin2. We postpone a detailed analysis of
how survey parameters influence the CDC-effect to Sect. 7.3. Qualitatively the result does not
change for different survey parameters; the trace ofC−1 decreases with increasingΩm orσ8.
In addition, we perform a singular value decomposition (SVD) for each inverse covariance ma-
trix. For the case of a symmetric and positive definite matrix, such as the inverse covariance
matrix, an SVD yields the eigenvalues in decreasing order. For arbitraryi, we find that thei-th
eigenvalue decreases when increasingΩm orσ8. The strength of the CDC-effect, i.e. the gradient
of the traces, depends on the considered point in parameter space.

7.3 Impact of the CDC-effect on parameter estimation

7.3.1 Results of the likelihood analysis

In Sect. 7.2 we calculate 2500 covariances covering a parameter range ofΩm ∈ [0.2; 0.4] and
σ8 ∈ [0.6; 1.0]. Here, we want to examine how the CDC-effect influences the likelihood contours,
hence for each of the 2500 covariance matrices we perform a likelihood analysis. Throughout the
whole likelihood analysis we assume theΛCDM model. Here, we assume flat priors with cut-
offs, which meansp(π) is constant for all parameters inside a fixed interval (i.e.Ωm ∈ [0.2; 0.4],
σ8 ∈ [0.6; 1.0]) and p(π) = 0 else. In our case we calculateξ̂ from PE via (3.51) and (3.52)
assuming our fiducial cosmology;ξπ is calculated similarly but its cosmological model varies
according to the considered point in parameter space. The result of a likelihood analysis is usu-
ally summarized in contour plots. In a Bayesian approach, these likelihood contours represent
so-called credible regions, i.e. a region in parameter space, where the true parameter is located
with a probability of 68%, 95%, 99,9%, respectively. In addition, we quantify the size of these
credible regions through the values ofq, which we explained in Sect. 4.2. In these analyses, we
consider the same parameter space, similar priors, similarξ̂ andξπ, only the covariance in (4.11)
is changed. The left panel of Fig. 7.3 shows the 95%-credible intervals when choosingΩm = 0.2
andσ8 = 0.6 (solid),Ωm = 0.4, andσ8 = 1.0 (dotted) as a model for the covariance matrix. We
compare these to the (dashed) case when the covariance is calculated from the fiducial model
(Ωm = 0.25, σ8 = 0.9). These examples illustrate that assuming different cosmologies in the
covariance can significantly broaden or narrow the likelihood contours. As expected from the
foregoing analysis of the inverse covariance traces (Sect. 7.2) the contours broaden for increas-
ingΩm andσ8.
Without any information which cosmology to choose in our covariance matrix, it is reasonable

to include prior information coming from other cosmological probes into our covariance cos-
mology. The middle panel of Fig. 7.3 shows the 95% credible intervals when calculating the
covariance from the minimum, mean, and maximum values of the 68% confidence region of the
recent WMAP 5-years analysis (Komatsu et al. 2008). Compared to the left panel the deviation
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Figure 7.2: The trace of the inverse covariance matrixC−1 depending onΩm (top), the individual
lines in each figure correspond to (from top to bottom)σ8 = [0.6, 0.7, 0.8, 0.9, 1.0]. The lower
panel shows the dependence onσ8, the individual lines corresponding to (from top to bottom)
Ωm = [0.2, 0.25, 0.3, 0.35, 0.4].
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Figure 7.3: The 95%-credible intervals obtained from likelihood analyses with different cosmo-
logical models assumed in their covariance matrix. The left panel corresponds to the following
covariance parameters:Ωm = 0.2, σ8 = 0.6 (solid), Ωm = 0.25, σ8 = 0.9 (dashed), and
Ωm = 0.4, σ8 = 1.0 (dotted). The middle panel shows the deviation which occurs when re-
stricting the range of possible covariance models to the 68% confidence interval of the WMAP5
analysis, i.e.Ωm = 0.237,σ8 = 0.74 (solid),Ωm = 0.259,σ8 = 0.796(dashed), andΩm = 0.274,
σ8 = 0.85 (dotted). The right panel shows the same analysis but for the 95% confidence interval
of the WMAP5 analysis, i.e.Ωm = 0.226, σ8 = 0.70 (solid),Ωm = 0.237, σ8 = 0.74 (dashed),
andΩm = 0.288, σ8 = 0.885(dotted).

of the contours reduces significantly, nevertheless it is still noticeable and cannot be neglected in
a precision cosmology analysis. Similarly, the right panel shows the impact of the CDC-effect
when calculating the covariance from parameters within the 95% confidence region of the recent
WMAP5 analysis. For a better comparison we calculate the values ofq (Sect. 4.2) for all contour
plots and summarize them in Table 7.1. Restricting the possible cosmologies for the covariance
to the 68% contour region of the WMAP5 analysis, the values ofq deviate by a factor of≈ 1.84.
This factor increases to≈ 2.76 when considering the minimum and maximum values of the 95%
confidence region of the WMAP5 constraints. In Fig. 7.4 we show the values ofq for all 2500
likelihood analyses depending onΩm (top) andσ8 (bottom). Similar to the parameter depen-
dence of the inverse covariances in Sect. 7.2, the strength of the CDC-effect, i.e. the gradient of
the curves in Fig. 7.4, depends on the considered point in parameter space. At the fiducial model
we calculate (∂q/∂Ωm)fid = 7.5, whereas in case ofσ8 we find (∂q/∂σ8)fid = 3.5.

7.3.2 Impact of survey parameters on the CDC-effect

In the last section we have shown that the CDC-effect non-negligibly affects the likelihood con-
tours. However, we only quantify this for one specific set of survey parameters. In this section we
examine how the impact of the CDC-effect on likelihood contours depends on survey parameters,
namely survey sizeA, ellipticity dispersionσǫ, and number density of source galaxies ¯n, where
in case of the latter two only the combinationσ2

ǫ/n̄ is of interest. We perform likelihood analyses
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Figure 7.4: The values of q depending onΩm (top), the individual lines in each figure correspond
to (from top to bottom)σ8 = [0.6, 0.7, 0.8, 0.9, 1.0]. The lower panel shows the dependence on
σ8, the individual lines corresponding to (from top to bottom)Ωm = [0.2, 0.25, 0.3, 0.35, 0.4].
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Figure 7.5: This figure illustrates the strength of the CDC-effect depending on the ratioσ2
ǫ/n̄

(upper panel) and depending on the survey size A (lower panel). We quantify this strength as the
ratio ∆q = q(πmax)/q(πmin), where q(πmax) is obtained when assuming the maximum parameter
values ofΩm andσ8 in the calculation of the covariance (i.e.πmax = (Ωm = 0.4, σ8 = 1.0)).
Correspondingly, q(πmin) is obtained when assumingπmin = (Ωm = 0.2, σ8 = 0.6).



118 Chapter 7. Improved Likelihood Analysis for Cosmic Shear Data

Table 7.1: Values of q for different covariance models
parameters used for the covariance q [10−4]
Ωm = 0.25,σ8 = 0.9 1.03
Ωm = 0.2,σ8 = 0.6 0.28
Ωm = 0.4,σ8 = 1.0 3.30
Ωm = 0.259,σ8 = 0.796 (WMAP5 68 % CL mean) 0.75
Ωm = 0.237,σ8 = 0.740 (WMAP5 68 % CL min) 0.56
Ωm = 0.274,σ8 = 0.850 (WMAP5 68 % CL max) 1.02
Ωm = 0.226,σ8 = 0.700 (WMAP5 95 % CL min) 0.45
Ωm = 0.288,σ8 = 0.885 (WMAP5 95 % CL max) 1.24

for 9 different combinations ofσ2
ǫ/n̄ and 8 different survey sizes. The strength of the CDC-effect

is quantified by the ratio of maximum to minimum value ofq, which occur within the considered
range ofΩm andσ8, we define∆q = q(πmax)/q(πmin). The minimumq is obtained when choosing
the minimum parameter set in the calculation of the covariance, i.e.πmin = (Ωm = 0.2, σ8 = 0.6).
Correspondingly, choosing the maximum parameter setπmax = (Ωm = 0.4, σ8 = 1.0) results in
the maximalq. The values ofq represent the size of credible intervals, hence∆q can be inter-
preted as their ratio.
Unfortunately, it is not possible to derive an analytical expression for the relation between∆q and
the survey parameters. From (4.6) - (4.8) we see that the individual covariance terms scale dif-
ferently withσ2

ǫ/n̄. This already prohibits an analytically derived relation between∆q andσ2
ǫ/n̄.

Considering the survey sizeA, (4.6) - (4.8) imply that the total covariance scales with 1/A. When
comparing two (inverse) covariances with different cosmologies by taking their ratio, the survey
size cancels, suggesting the strength of CDC-effect to be independent ofA. However, when con-
sidering the likelihood, the inverse covariance enters in the exponent, furthermore the values ofq
are an integral over the posterior likelihood. This non-linearity in the inverse covariance causes
that the strength of the CDC-effect varies with the survey size. An analytic expression of this
dependence cannot be derived, for similar reasons as for the case ofσ2

ǫ/n̄. We therefore calculate
∆q depending on the survey parameters numerically.
The upper panel of Fig. 7.5 shows∆q = q(πmax)/q(πmin) as a function ofσ2

ǫ/n̄. The ratio∆q
changes from 4 to 18 over the considered interval ofσ2

ǫ/n̄. When increasing the survey sizeA
(Fig. 7.5 , lower panel), we find that the impact of the CDC-effect increases from∆q = 2.5 (for
a 25 deg2 survey) up to∆q = 12.3 (for a 2500 deg2 survey). Note that the size of the likelihood
contours, hence the values ofq themselves, decrease with decreasingσ2

ǫ/n̄ and increasingA. In
contrast,∆q increases with decreasingσ2

ǫ/n̄ and increasingA. Hence relatively, the CDC-effect
becomes more important when increasing the survey size or when decreasing the ratioσ2

ǫ/n̄.



7.4. Likelihood analysis with a model dependent covariance 119

7.4 Likelihood analysis with a model dependent covariance

7.4.1 Adaptive covariance matrix

For a given cosmological model we can calculate the covariance directly from (4.3) - (4.8). This
enables us to perform a likelihood analysis, where the covariance is calculated individually for
every point in parameter space. We denote this parameter dependent covariance asCπ and rewrite
the likelihood (4.11) as

p(ξ|π) =
exp

[

−1
2

(

(ξπ − ξ̂)t C−1
π (ξπ − ξ̂)

)]

(2π)d/2 |Cπ|
1
2

. (7.13)

Compared to the case of a constant covariance, there are two main differences. First, the covari-
ance in the exponential term of (7.13) changes according to the considered point in parameter
space. Second,|Cπ|

1
2 is now parameter dependent, therefore the determinant no longer cancels

with a similar term in the evidence. As a consequence, the posterior likelihood does not only
depend on the exponential terms, which basically compareξπ andξ̂, but it is also affected by the
determinants of the covariance matrices, more precisely by their behavior in parameter space. In
the following we quantify the impact of the determinant term.
The upper left panel in Fig. 7.6 shows the likelihood contours for a 84 deg2 survey, where
the posterior probability is calculated via the new likelihood (7.13). For comparison, the right
panel shows the likelihood contours when neglecting the parameter dependence in the determi-
nant terms, hence considering a parameter dependent covariance only in the exponential terms.
One clearly sees that the determinant terms shift the likelihood contours and cause a difference
between the best-fit value and the fiducial model. In order to explain this shift we overlay the
right panels of Fig. 7.6 with the contours of constant|Cπ|−1/2 (for numerical reasons we plot
ln |Cπ|−1/2). We see, that the covariance determinant is a monotonic function ofΩm andσ8; it
decreases with increasingΩm or σ8. Hence,|Cπ|−

1
2 induces a parameter-dependent weighting,

which increases the likelihood at smallΩm andσ8 and vice versa suppresses largeΩm andσ8.
In general, the exponential term dominates the likelihood,|Cπ|−1/2 only has significant impact on
parameter regions where the exponential hardly changes. For the highly degenerate case ofΩm

andσ8, this applies to curves whereσ8 ≈ const×Ω−0.6
m . Compared to these curves, the contours

of constant|Cπ|−1/2 are slightly rotated, which allows for different values of the latter in regions
where the exponential term is constant. As a result, the likelihood contours in the left panel are
shifted and stretched towards regions of larger|Cπ|−1/2 compared to the right panel. Note that
for a different parameter combination this bias might not cause such a large shift of the best-fit
value.
The second row of Fig. 7.6 shows the same analysis but for a 900 deg2 survey. Comparing the
left and right panel, we see that the likelihood contours are, similar to the 84 deg2 survey, shifted
and stretched towards regions of larger|Cπ|−1/2. However, the effect is hardly noticeable and
the bias of the best-fit value has basically vanished. This can be explained when looking at the
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expression of the posterior likelihood

p(π|ξ) =
exp

[

−1
2

(

(ξπ − ξ̂)t C−1
π (ξπ − ξ̂)

)]

∫

dπ′|C−1
π′ Cπ|

1
2 exp

[

−1
2

(

(ξπ′ − ξ̂)t C−1
π′ (ξπ′ − ξ̂)

)] . (7.14)

Compared to the case of a constant covariance the above expression has an additional factor in the
denominator, i.e.|CπC−1

π′ |1/2. Note, that this factor is independent of the survey sizeA, whereas
the importance of the exponential term increases with increasingA. As a result, the cosmology
dependence of the covariance determinant becomes negligible for sufficiently large surveys.

7.4.2 Fisher matrix analysis

We expect tighter constraints on cosmological parameters if the cosmology dependence of both,
mean data vector and covariance matrix, is incorporated into the likelihood analysis, instead of
only using the mean data vector (Tegmark et al. 1997). The Fisher information matrix can be
used to illustrate this effect. In Sect. 4.3 we explained the concept of the Fisher matrix in detail;
recall that for the case thatp(ξ|π) is Gaussian one can directly express the Fisher matrix in terms
of the mean data vector and the data covariance matrix (e.g. Tegmark et al. 1997)

Fi j =
1
2

tr
[

C−1C,iC−1C, j + C−1M i j

]

, (7.15)

whereC,i ≡ ∂C/∂πi denotes the derivative of the covariance matrix with respect to thei-th com-
ponent of the parameter vector andM i j ≡ ξ,iξt

, j + ξ, jξ
t
,i. The first term of (7.15) vanishes in case

the covariance matrix is constant in parameter space, the second term vanishes in case of a con-
stant mean. For cosmic shear we have seen that neither the mean data vector, nor the covariance
matrix are independent of cosmological parameters; hence, when calculating the Fisher matrix
both terms must be taken into account. Recall thatC ∝ 1/A, which also holds for the derivatives
C,i, hence the first term is independent of the survey size. The second term increases proportional
to the survey volume, therefore the information gain on cosmological parameters, through incor-
porating the cosmology dependence of covariances, becomes less important for large surveys
(see also Kilbinger & Munshi 2006, for a similar analysis).
Figure 7.7 shows the results of the Fisher matrix analysis for two different survey sizes (84 deg2

on the left and 900 deg2 on the right). As expected, the left panel (smaller survey) shows a
small improvement, which vanishes completely in case of the larger survey (right panel). Nev-
ertheless, one should keep in mind that we only consider Gaussian covariances. The cosmology
dependence of the covariance becomes larger for the case of non-Gaussian covariances for the
following reason. Non-Gaussianity increases the cosmic variance term, in particular it becomes
important on small scales, which are still dominated by shot noise in the pure Gaussian case.
As the CDC-effect mainly results from the cosmic variance term, its strength also increases in
the non-Gaussian case. A stronger dependence of the covariance on parameters enlarges the first
term in (7.15), which implies that for the case of truly non-Gaussian covariances the improve-
ment on parameter constraints is more significant than shown in Fig. 7.7.



7.4. Likelihood analysis with a model dependent covariance 121

0.20 0.25 0.30 0.35 0.40

0.
6

0.
7

0.
8

0.
9

1.
0

0.20 0.25 0.30 0.35 0.40

0.
6

0.
7

0.
8

0.
9

1.
0

 1362 

 1364 

 1366 

 1368 

 1370 

 1372 

 1374 

 1376 

 1378 

 1380 
 1382 

 1384 

 1386 
 1388 

0.20 0.25 0.30 0.35 0.40

0.
6

0.
7

0.
8

0.
9

1.
0

0.20 0.25 0.30 0.35 0.40

0.
6

0.
7

0.
8

0.
9

1.
0

 1244 

 1246 

 1248 

 1250 

 1252 

 1254 

 1256 

 1258 

 1260 

 1262 
 1264 

 1266 
 1268 

 1270 

σ 8
σ 8

Ωm Ωm

Figure 7.6: The left plots shows the likelihood contours when using a model- dependent co-
variance, more explicitly, when calculating the posterior from (7.13). The cross illustrates the
best-fit value, whereas the circle indicates our fiducial model. The panels on the r.h.s. show the
likelihood contours obtained when neglecting the determinant-terms (7.13). The dotted contours
visualize regions of constantln |Cπ′ |−1/2. The likelihood contours in the upper row correspond to
a survey size of 84 deg2, whereas the lower panels correspond to A= 900deg2.
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Figure 7.7: Likelihood contours from a Fisher matrix analysis for a 84deg2 survey (left), and for
a 900deg2 (right). The solid lines correspond to the case when the Fisher matrix is calculated
from both terms in (7.15); the dashed lines correspond to the case when the parameter depen-
dence of the covariances, i.e. the first term in (7.15), is neglected. The filled circle indicates the
fiducial model at which the Fisher matrix was calculated. Note, that in the right panel dashed
and solid contours are identical

Table 7.2: The ML-parameter sets which occur when choosing different starting cosmologies in
the iterative likelihood analysis.

step run1 run2 run3 run4 run5
Ωm σ8 Ωm σ8 Ωm σ8 Ωm σ8 Ωm σ8

πstart 0.20 0.60 0.237 0.740 0.250 0.90 0.274 0.850 0.40 1.0
πML 1 0.254 0.892 0.254 0.892 0.245 0.914 0.259 0.884 0.277 0.858
πML 2 0.260 0.882 0.260 0.882 0.245 0.914 0.260 0.882 0.259 0.884
πML 3 0.260 0.882 0.260 0.882 converged 0.260 0.882 0.260 0.882
πML 4 converged converged converged converged 0.260 0.882

7.4.3 Iterative likelihood analysis

In Sect. 7.4.1 we have introduced the adaptive covariance, which is a proper way to incorpo-
rate cosmology-dependent covariances into a likelihood analysis. Its disadvantage is the large
computational effort, which is high already for Gaussian covariances. In order to account for
non-Gaussianity, one must employ ray-tracing covariances derived from many numerical simu-
lations with different underlying cosmologies. In a multi-dimensional parameter space, this is
clearly unfeasible with today’s computer power.
In this section we quantify the impact on likelihood contours when using non-Gaussian instead
of Gaussian covariances. We use a ray-tracing covariance taken from the Millennium simulation
(Hilbert et al. 2008), neglect the CDC-effect and approximate the covariance to be constant in
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parameter space. The error in the posterior likelihood caused by this approximation increases
with increasing distance to the cosmology of the ray-tracing simulation. As we are mainly inter-
ested in regions around the maximum likelihood parameter set,πML , this suggests the following
strategy for a likelihood analysis. First, perform an iterative likelihood analysis using Gaussian
covariances in order to deriveπML . Then, start a numerical simulation with this cosmology, de-
rive a ray-tracing covariance, and perform the final likelihood analysis. This ansatz minimizes
the errors due to the CDC-effect in the region of interest and additionally incorporates non-
Gaussianity.
In order to deriveπML iteratively, we start from an arbitrary cosmology, calculate a Gaussian co-
variance matrix therefrom using (4.3) - (4.8), and perform a likelihood analysis. Throughout this
first iteration step the covariance matrix is kept constant. In the second step we choose the ML-
parameter set of the first analysis as the underlying cosmology for the new covariance matrix, and
again perform a likelihood analysis. We continue this iteration process until the ML-parameter
set converges.
The main difficulty of this ansatz is that the choice of the starting cosmology might influence the
final ML-parameter estimate and therefore also the final covariance. In order to check for this, we
take the noise of a ray-tracing data vector, add it to our fiducial data vector and thereby simulate
measurement uncertainties in the latter. When performing the analysis without noise the iteration
converges after one step, as the model data vector (at the fiducial model) exactly fits the fiducial
data vector,ξπfid = ξ̂. Table 7.2 shows the results for 5 iterative likelihood analyses, each starting
from a different cosmology in the covariance. We see that all 5 runs converge quickly, 4 of them
to the same cosmology. Only the run which started from the fiducial model deviates from the
others. Although the suggestedπML are close toπfid, we note that none of the runs converges
to the fiducial model. This implies that the starting cosmology can bias the final outcome of the
iterative likelihood analysis and can shift the ML-estimate. In general, such a bias occurs if the
functionξπ − ξ̂ does not fall off steeply enough around the ML-parameter set, which especially
applies to higher-dimensional likelihood analyses.
Our iterative pre-analysis has converged toΩm = 0.26,σ8 = 0.882, however we “only” have
a ray-tracing simulation withΩm = 0.25, σ8 = 0.9 available. Figure 7.8 shows the result of
our likelihood analysis, when using the ray-tracing covariance of the Millennium simulation
(left panel). Compared to a likelihood analysis using a Gaussian covariance (right panel), the
contours broaden significantly;q increases from 0.44×10−4 in the Gaussian to 0.78×10−4 in the
non-Gaussian case. Note that the value ofq in the Gaussian case does not correspond to that in
Table 7.1, because we use different survey parameters (here,σǫ = 0.3, n̄ = 15/arcmin2) and a
different data vector (here, 30 logarithmic bins from 0.2-130 arcmin) in order to exactly match
the corresponding parameters of the ray-tracing covariance.
The impact of non-Gaussianity depends on the scales probed by the data vector. In our case 20
bins are below 10 arcmin, therefore the impact is relatively high. Choosing linear bins or prob-
ing higherϑ reduces the difference to the Gaussian case. For the data vector considered here,
this difference is of the same order as the impact of the CDC-effect we described in Sect. 7.3.1.
However, the strength of the latter will most likely increase for non-Gaussian covariances, as we
explained at the end of the last section.
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Figure 7.8: The likelihood contours when using a ray-tracing covariance derived from the Mil-
lennium Simulation via field-to-field variation (left panel), compared to the case of a Gaussian
covariance (right panel). Although the original size of each field is only 16deg2, we extrapolated
the covariance to a 900deg2 survey. The values of q are given in units of10−4.

7.5 Concluding remarks on the cosmology dependence of co-
variances

An accurate likelihood analysis plays an essential role in future precision cosmology. We can
only exploit the full potential of upcoming high quality data, if we use appropriate statistical
methods. In this context the derivation of covariances is an important issue in order not to bias
the parameter constraints.
In cosmic shear, there are several methods to derive covariances. First, one can calculateC ana-
lytically assuming a Gaussian shear field. This assumption breaks down on small angular scales
(< 10 arcmin), where non-linearities of the matter density field start to become important. Sec-
ond, covariances can be estimated from ray-tracing simulations. Although computationally more
expensive, this method automatically accounts for the non-Gaussianity of the shear field. In both
methods the covariance is calculated assuming a specific cosmology. In the first case, this cos-
mology enters in the power spectrum from whichC is calculated, in the second case we estimate
C from numerical simulations, which are also based on a given cosmology. Past cosmic shear
data analyses approximate the covariance to be constant in parameter space, therefore assume
that its underlying cosmology does not influence the result of a likelihood analysis significantly.
In this chapter we have shown that the covariance matrix depends non-negligibly on its un-
derlying cosmology and that this CDC-effect significantly influences the likelihood contours of
parameter constraints. To prove this, we calculate 2500 Gaussian covariance matrices for var-
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ious parameters ofΩm ∈ [0.2; 0.4] andσ8 ∈ [0.6; 1.0]; all other cosmological parameter are
held fixed. Even a change ofΩm andσ8 within the WMAP5 68% confidence levels has a non-
negligible impact on the likelihood contours. Here, the value ofq deviates by a factor of 1.84 and
this deviation increases to 2.76 if one considers the WMAP5 95% confidence levels. Further-
more, we show that the impact of the CDC-effect depends on survey parameters. Although the
likelihood contours become smaller, relatively the CDC-effect becomes more important when
increasing the survey size or when decreasing the ratioσ2

ǫ/n̄. Therefore, a proper treatment be-
comes more important in the future, for large and deep surveys.
To take cosmology-dependent covariances into account we present two methods. First, we per-
form a likelihood analysis with an adaptive covariance matrix. Here,C is calculated individually
for every point in parameter space, assuming the corresponding parameters as the underlying
cosmology. For small surveys this method introduces a bias to the best-fit parameter set, which
vanishes when going to larger survey sizes. A disadvantage of this approach is its computational
costs. Using the analytic expression for Gaussian covariances is already time-consuming; us-
ing ray-tracing covariances to include the non-Gaussianity is not feasible with today’s computer
power. For the Gaussian case we present a fast and convenient scaling relation to derive covari-
ances on a parameter grid. As a side-effect this approach enhances the constraints on cosmology,
for the reason that we now incorporate two cosmology-dependent quantities into the likelihood
analysis instead of only the mean data vector.
In a strict sense the second method does not account properly for the CDC-effect, however it
minimizes the error around the maximum likelihood parameter set (πML ). The method consists
of two steps, first deriveπML through an iterative process, then derive a ray-tracing covariance
with πML as underlying cosmology and incorporate this in the final likelihood analysis. Here, the
approximation of a constant covariance is made, however the error in the posterior probability is
minimized in the region of interest; in addition, this ansatz incorporates non-Gaussianity which
is non-negligible for future surveys. A drawback is the fact the the starting point of the iteration
might biasπML . This must be checked carefully before employing this method, otherwise the
approximation of a constant covariance fails aroundπML .
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Chapter 8

Impact of non-Gaussianity and shot noise
on parameter estimation

One of the most exciting discoveries in cosmology was made in 1998, namely that the expan-
sion of the Universe accelerates. This acceleration suggests the existence of an energy density
component which acts repulsively, so-called dark energy (see Sect. 2.1.6). As pointed out by
theDark Energy Task Force(Albrecht et al. 2006) and theESA-ESO Working Group on Funda-
mental Cosmology(Peacock et al. 2006), cosmic shear is an ideal subject for future dark energy
missions such as DES, JDEM, or Euclid. Therefore, I could not resist to carry out one project
related to dark energy parameter estimation with cosmic shear.
At the end of the last chapter we illustrated the impact of non-Gaussianity on parameter con-
straints for the case ofΩm andσ8. In this chapter we extend the analysis to the dark energy
parametersΩΛ, w0, andwa (see Sect. 2.1.6 for more details). In addition to non-Gaussianity we
examine the impact of shot noise on the parameter constraints. The analysis presented in this
chapter is an ongoing project with preliminary results which require more work in the future. We
will indicate open questions and plans how to address them.

8.1 Comparison ofPκ derived from the Smith et al. (2003) fit-
formula to Pκ from the Millennium simulation

In the last chapter we calculated the Gaussian covariances from the shear power spectrum. There-
fore, we obtainPδ via the fit-formula of Smith et al. (2003) and calculatePκ via (3.44). We want
to stress, that the accuracy of this fit-formula is an inherent limitation to the accuracy of covari-
ances and data vectors derived therefrom. Figure 8.1 comparesPκ derived from the Millennium
simulation toPκ derived from the fit-formula of Smith et al. (2003) using the Millennium sim-
ulation cosmology. In the latter case we show the results when using the transfer function of
Efstathiou et al. (1992) (solid) and a dewiggeled version of the transfer function of Eisenstein &
Hu (1999) (dashed). Whereas the impact of the transfer function is comparatively small, the two
Pκ calculated from the fit-formula significantly deviate fromPκ of the Millennium simulation
when going aboveℓ = 1000 (see right panel of Fig. 8.1). For more details on this topic the

127
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reader is referred to Hilbert et al. (2008). This deviation also occurs in the corresponding 2PCF

1e+00 1e+02 1e+04 1e+06

1e
−

08
1e

−
06

1e
−

04

Fourier mode l

l2   P
κ

EB 92
EH 99
Millenium Run 

5e+02 5e+03 5e+04 5e+05
1e

−
04

2e
−

04
5e

−
04

1e
−

03

Fourier mode l

l2   P
κ

EB 92
EH 99
Millenium Run 

Figure 8.1: This figure shows three shear power spectra; the two panels only differ in the con-
sidered range of Fourier modes. The dotted line corresponds to Pκ obtained from the Millennium
Simulation directly, whereas the other two are calculated from the fitting formula of Smith et al.
(2003), employing the transfer function of Efstathiou et al. (1992) (solid) and a dewiggeled ver-
sion of the transfer function of Eisenstein& Hu (1999) (dashed).

covariances calculated via (4.3) - (4.8). In Fig. 8.2 we compare the contour levels of these covari-
ances; the left panel corresponds to the covariance obtained from the fitting formula, whereas the
right was calculated from the Millennium simulation shear power spectrum. For given angular
scales the values of the latter covariance are larger compared to those of the first. This effect is
clearly noticeable in the upper panel (C++); it also exists forC−−, C+−, but is less significant. For
the rest of this chapter, I refer to Gaussian covariances as covariances calculated via (4.3) - (4.8)
usingPκ of the Millennium simulation. Non-Gaussian covariances in this chapter are obtained
via field-to-field variation of 128 independent ray-tracing realizations through the Millennium
simulation.

8.2 Gaussian and non-Gaussian covariances

In Sect. 7.1 we outline three possibilities how to obtain non-Gaussian covariances. First, they
can be estimated from the data directly via field-to-field variation, however this method is in-
appropriate for small surveys. Second, one can employ ray-tracing simulations, a method we
used in the context of the iterative likelihood analysis in Sect. 7.4.3. Third, one can calculate a
Gaussian covariance analytically using the power spectrum (Joachimi et al. 2008) or the 2PCF
(Schneider et al. 2002a). To account for non-Gaussianity one then applies the calibration factor



8.2. Gaussian and non-Gaussian covariances 129

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0
C++ SP03 & EB92

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0

C++ MS 

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0

C−− SP03 & EB92

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0

C−− MS 

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0

C+− SP03 & EB92

0.2 0.5 1.0 2.0 5.0 10.0 50.0

0.
2

0.
5

2.
0

5.
0

20
.0

10
0.

0

C+− MS 

θ1 [arcmin] θ1 [arcmin]

θ 2
 [a

rc
m

in
]

θ 2
 [a

rc
m

in
]

θ 2
 [a

rc
m

in
]

Figure 8.2: This figure compares the contour lines of the 2PCF covariance matrices (C++ (top),
C−− (middle),C+− (bottom)) when using the fitting formula of Smith et al. (2003) (left panel) in
the calculation (4.3) - (4.8) and when using the shear power spectrum of the Millennium Run
(right panel). The contours levels are monotonically decreasing, with red marking the lowest
absolute value in the upper row, and the highest absolute value for the lower two rows, respec-
tively. The x-th contour level of left and right panels are similar, i.e. (5.58× 10−11 × 1.5x) for
C++, 4.6 × 10−8/3.5x for C−−. In case ofC+− the contours correspond to3.6 × 10−8/(1.2x) for
the positive values (solid) and−4.7 × 10−8/5.0x for the negative values (dashed).
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Table 8.1: Comparison of my results for F++(θ1, θ2) to the analysis of Semboloni et al. (2007).

Analysis Functional form α β

This thesis α(θ1θ2)−β 8.100 0.514

Semboloni et al. (2007)α(θ1θ2)−β 16.48 0.56

of Semboloni et al. (2007). This factor was calibrated using ray-tracing simulations, but only
for the case ofC++. In the following, we repeat their analysis using the Millennium simulation.
More precisely, we derive a non-Gaussian covariance matrix from the via field-to-field variation
and compare it to a Gaussian covariance obtained from the shear power spectrum of the Mil-
lennium simulation. Besides the fact that we use the power spectrum approach to calculate the
Gaussian 2PCF covariances whereas Semboloni et al. (2007) employ the 2PCF directly, there are
two main differences between both analyses. First, we do not include a redshift dependence into
the calibration factor, and second the cosmologies of the ray-tracing simulations are different.
The calibration factor is defined as

F±±(θ1, θ2) =
Cnon−Gaussian
±± (θ1, θ2)

CGaussian
±± (θ1, θ2)

. (8.1)

Note that in our derivation we consider a redshift distribution of source galaxies which has the
functional form of (6.36) with parametersα = 0, β = 1.5, z0 = 0.9. The different survey sizesA
(5.49 deg2 of Semboloni et al. (2007) compared to 16 deg2 here) should not influence the results
on F±±(θ1, θ2) significantly, for the reason thatCnon−GaussianandCGaussianshould scale similarly
with A.
Figure 8.3 shows the calibration factor for the diagonal terms ofC++. The result we obtain for
F++(θ, θ) is qualitatively similar to the results in Semboloni et al. (2007) (see Fig. 1 in their
paper). We therefore choose the same parameterization as Semboloni et al. (2007); the results
of the fit are given in Table 8.1. Although our results (α = 8.1, β = 0.51) deviate from the
corresponding parameters of Semboloni et al. (2007) (α = 16.48,β = 0.56) this can be explained
by the different cosmologies of the Millennium simulation and the numerical simulations used
in Semboloni et al. (2007). In particular, their values forΩm = 0.3 andσ8 = 1.0 are higher
compared to those of the Millennium simulation (Ωm = 0.25 andσ8 = 0.9). This leads to a shear
field which is more non-Gaussian compared to that of the Millennium simulation.

We also tried to extend the calibration factor to theC−− andC+− sub-matrices of the 2PCF
covariance, however this is more complicated. On small angular scalesF±−(θ, θ) becomes very
steep which prevents an easy functional form as used forC++. We already started to analyze
this issue, however we did not succeed finding an appropriate functional form for the calibration
factor. We plan to examine this in more detail in the future. As an improvement over the analytic
calculation of the covariance via (4.3) - (4.8) one can simulate Gaussian realizations from the
Millennium power spectrum and obtain a covariance via field-to-field variation of these realiza-
tions. This would exclude uncertainties in the analytic calculation.
As a next step, after deriving calibration factors ofC−− andC+−, we plan to apply the correction
factor to the adaptive likelihood formalism introduced in chapter 7. From Fig. 8.2 we see that the
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Figure 8.3: This figure shows the non-Gaussian calibration factor for the diagonal terms of the
2PCF covariancesC++.

structure of a Gaussian covariance obtained through a power spectrum derived from Smith et al.
(2003) is very similar to that derived fromPκ of the Millennium simulation. This suggests that
applying the correction factor to Gaussian covariances calculated from an analytic model, is in
principle a valid ansatz. However, one must keep in mind that the calibration factor is very likely
to be cosmology-dependent. A comparison to the results of Semboloni et al. (2007) already
showed significant deviation, which could be explained by the different underlying cosmologies
of the ray-tracing simulations. Applying a constant calibration factor in the adaptive likelihood
formalism is therefore probably not the best approach. In collaboration with AstroGrid1 we have
access to ray-tracing simulations for 200 cosmologies, more precisely 200 different combina-
tions ofΩm andσ8. We intend to compare the non-Gaussian covariances obtained by applying a
constantF(θ1, θ2) to the case of deriving non-Gaussian covariances from these ray-tracing simu-
lations.

1http://www.astrogrid.org/
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Figure 8.4: This figure shows the impact of non-Gaussianity on the constraints of dark energy
parameters, namelyΩΛ vs. w0 (bottom panels) and w0 vs. wa (top panels). The left panels
correspond to the result when using Gaussian covariances and the right corresponds to non-
Gaussian covariances.

8.3 Impact of non-Gaussian covariances on parameter esti-
mation

In this section we examine how non-Gaussianity affects the likelihood contours. For the case of
Ωm vs.σ8 we already illustrated the impact in Fig. 7.8. In the following analysis we also examine
dark energy parameters, namelyΩΛ vs. w0 andw0 vs. wa (see Fig. 8.4). All likelihood analyses
in this chapter are performed assuming a cosmology-independent covariance in parameter space;
the data vectors are again calculated from an analytical model (as explained e.g. in Sect. 5.2).
In Fig. 8.4 we show the likelihood contours for a 900 deg2 survey (σǫ = 0.3, ngal = 15) when
using Gaussian (left panels) and non-Gaussian covariances (right panel). It is interesting to note,
that the contours corresponding toCGaussianare more elongated than the likelihood contours of
Cnon−Gaussian. However, in the latter case the contours are significantly broadened; the parameter
space within the individual credible intervals is larger. The goal of this section is to relate the



8.4. Impact of shot noise on parameter estimation 133

importance of non-Gaussianity to the angular range of the considered 2PCF data vector. In Fig.
8.4 the angular range extends fromθ ∈ [0.′2− 108.′0]. In the following analysis we constantly
decrease this interval (by cutting off the small scale data points) and compare the size of the
credible intervals again. From now on we change the survey size toA = 3200 deg2, in order to
assure that the major part of the credible intervals is inside the considered parameter spaces, i.e.
Ωm ∈ [0.15; 0.35] vs.σ8 ∈ [0.8; 1.05] ,ΩΛ ∈ [0.73; 0.77] vs.w0 ∈ [−1.5;−0.7], andw0 ∈ [−3; 2]
vs. wa ∈ [−1.5; 0.0]. As a measure for the size of the credible intervals we again use the values of
q (see Sect. 4.2). The results are summarized in Fig. 8.5. The upper row shows the increase ofq
depending on the angular scale at which the data vector is cut-off (θcut) when using non-Gaussian
covariances, the middle row illustrates the same effect but for non-Gaussian covariances. The
lower panel shows the ratio

∆q =
qGaussian

qnon−Gaussian
, (8.2)

also depending onθcut. For the case ofw0 vs. wa one clearly sees a break in the growth of the
values ofq at θcut ≈ 8′. This is due to the fact that the likelihood contours exceed the considered
parameter space when going above this threshold (see Fig. 8.8 and 8.9). In general one would
expect that the impact of non-Gaussianity becomes less important when going to larger scales.
Therefore, we expected∆q to approach unity asθcut increases. This effect is only noticeable for
theΩm vs. σ8 case; even there it is weak. We assume that the effect becomes more evident
when increasingθcut even further. The decrease of∆q at θcut ≈ 8′ is interesting, as it occurs in all
considered parameter spaces. For the case ofw0 vs. wa, one could explain this behavior by the
fact that a significant part of the posterior likelihood is outside the considered parameter space,
however this explanation fails for the other two parameter combinations. The effect might be an
inherent feature of the covariance matrix related to the choice of the survey parameters, however
the effect also occurred when changing the survey size. We postpone a more detailed analysis of
this behavior to the future.

8.4 Impact of shot noise on parameter estimation

In this section we perform a similar analysis as in Sect. 8.3 but now comparing non-Gaussian
covariances with and without shot noise (σǫ = 0). This implies that in the latter case only the
cosmic variance term of the covariance contributes. Corresponding to (8.2) we define

∆q =
qnonoise

qnoise
(8.3)

and examine the dependence of this ratio on the angular scale of the considered data vector. The
results are summarized in Fig. 8.6. The left column shows the trend ofq when increasingθcut for
the case of a noise-free covariance matrix. Again there is a break atθcut ≈ 8′ for the case ofw0 vs.
wa, for the same reasons as mentioned before. The corresponding plots for noisy covariances are
shown in the middle row of Fig. 8.5. As shot noise is only dominant on small angular scales we
again expected∆q to approach unity when going to higherθcut. This effect indeed occurs in the
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Figure 8.5: This figure illustrates the growth of the credible regions (represented through qs)
depending on the angular range of the considered data vector. This range is determined by
θcut, more precisely the data vector extends from[θcut − 108.′0]. We consider likelihood analyses
employing Gaussian and non-Gaussian covariances (top and middle row, respectively) and show
the dependence of the ratio∆q = qGaussian/qnon−Gaussianon θcut in the last row.
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right panels of Fig. 8.6 where we see an overall increase in∆q throughout all examined parameter
combinations. Still, the ratio does not become unity but stagnates at≈ 0.6. These results imply
that shot noise has a major impact on parameter constraints on small scales, and even on scales
above 10′ it still affects the parameter constraints significantly. For a better illustration of these
effects we included a selection of contour plots in the next section.

8.5 Selected contour plots

In this section we show a selection of contour plots which further illustrate the results presented in
Sects. 8.3 and 8.4 . The three figures in this section correspond to the three considered parameter
spaces, namelyΩm vs. σ8 (Fig. 8.7) ,ΩΛ vs. w0 (Fig. 8.8), andw0 vs. wa (Fig. 8.9). The
left column always corresponds to the non-Gaussian noise-free covariance, the middle column is
the noisy non-Gaussian covariance, and the right column shows the results when using a (noisy)
Gaussian covariance.
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Figure 8.6: This figure illustrates the impact of shot noise on the likelihood contours (q) de-
pending on the considered angular range of the 2PCF data vector (ϑ ∈ [θcut − 108.′0]). The
left column shows the q when using a noise-free non-Gaussian covariance matrix; the right plot
shows the ratio∆q = qnonoise/qnoise, i.e. the ratio of the q when using noisy or noise-free covari-
ances, respectively.
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Figure 8.7: Likelihood contours ofΩm vs.σ8 when using non-Gaussian noise-free covariances
(left column), non-Gaussian noisy covariances (middle column), and noisy Gaussian covari-
ances (right column). From top to bottom the considered angular range constantly decreases; it
extends from[θcut − 108.′0].
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Figure 8.8: Likelihood contours ofΩΛ vs. w0 when using non-Gaussian noise-free covariances
(left column), non-Gaussian noisy covariances (middle column), and noisy Gaussian covari-
ances (right column). From top to bottom the considered angular range constantly decreases; it
extends from[θcut − 108.′0].
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Figure 8.9: Likelihood contours of w0 vs. wa when using non-Gaussian noise-free covariances
(left column), non-Gaussian noisy covariances (middle column), and noisy Gaussian covari-
ances (right column). From top to bottom the considered angular range constantly decreases; it
extends from[θcut − 108.′0].
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Chapter 9

Summary

In my PhD thesis I improve on theoretical aspects related to the estimation of cosmological pa-
rameters with cosmic shear. This involves the optimization of cosmic shear data vectors, accurate
descriptions of the corresponding covariances, and the statistical methods used in the likelihood
analysis. Furthermore, I applied my theoretical work to cosmic shear data. More precisely, I
improve on the most recently developed cosmic shear measure, namely the ring statistics, and
employ this statistics to constrain cosmological parameters using data from the Canada-France-
Hawaii Telescope Legacy Survey (CFHTLS).

Chapter 2: Cosmology
In the first chapter I give an introduction to the basics of cosmology, explaining the theoretical
framework which describes the evolution of our Universe, the details of theΛCDM model, and
the observational pillars on which this model is based. This chapter also contains a brief sum-
mary of the main concepts of structure formation.

Chapter 3: Gravitational lensing and cosmic shear
This chapter contains a summary of the concepts used in gravitational lensing with the focus on
cosmic shear. In the following I summarize the most important information which is required in
this summary.
All second-order statistical information on the shear field is contained in the power spectrum
of the shear (Pγ) or its Fourier transform, the two-point correlation function (2PCF orξ±). The
shear is a two-component quantity; similar to the decomposition of a vector field into a curl-free
and divergence-free component, the shear can be decomposed into E- and B-modes. Whereas
the first originate from lensing only (therefore contain the cosmological information), the second
indicate remaining systematics in the data reduction/analysis. The 2PCF cannot separate E- and
B-modes. In contrast, the so-called aperture mass dispersion (〈M2

ap〉), which measures the amount
of density fluctuations within an aperture, is most commonly used to decompose the E- from the
B-mode signal. In practice,〈M2

ap〉 cannot be measured from the cosmic shear data directly due to

141



142 Chapter 9. Summary

gaps and holes in the data field caused by the masking of stars and satellite tracks. However, one
can calculate〈M2

ap〉 from the 2PCF, the latter being immune to these masking effects. The 2PCF
can be obtained easily from the measured ellipticities of the observed galaxies and is considered
the basic second-order cosmic shear measure.

Chapter 4: Parameter Estimation
In this chapter I introduce the basic concepts of cosmic shear parameter estimation which are
intensively used in the following chapters. I explain the statistical framework using the 2PCF as
a basic quantity and begin the chapter with introducing the 2PCF’s estimators and covariances.
I continue the chapter with a description of Baysian methods to infer parameters and introduce
the concept of a Fisher matrix. The chapter concludes with an analysis of how the data’s binning
influences the parameter constraints and which numerical difficulties can occur when choosing a
too narrow binning.

Chapter 5: Improvement of cosmic shear data vectors
In this chapter I show that, although 2PCF and〈M2

ap〉 are both filtered versions of the power
spectrum, a data vector of the first (ξ) contains more information onPγ than a data vector of the
second (〈M2

ap〉). The reason for this is thatξ samples the power spectrum over a much broader
range and also collects information on scales that are larger than the size of the survey. The
data vector〈M2

ap〉 lacks this large-scale information, but yields highly localized information on
Pγ. Nevertheless,〈M2

ap〉 has other advantages. First, the data points are much less correlated
compared to the 2PCF data points. This leads to a mainly diagonal covariance matrix, which
is numerically stabler during the inversion process in a likelihood analysis. Second, when con-
sidering higher-order statistics,〈M3

ap〉 is much easier to handle than the three-point correlation
function, and third, the aperture mass dispersion separates E- and B-modes. Based on these con-
siderations I develop the combined data vectorN , which preserves the advantages of〈M2

ap〉 and
additionally provides large-scale information onPγ through one data point of the 2PCF (ξ+(θ0)).
Furthermore, the new data vector can be optimized with respect to the angular scale (θ0). I com-
pared the three data vectors in a detailed likelihood analysis and find that the combined data
vector is a strong improvement over〈M2

ap〉 in information content. The combined data vector
N also maintains the other advantages of the aperture mass dispersion. Its covariance matrix is
almost diagonal, and even the cross terms C(M(θk), ξ̂+(θ0)) are much smaller compared to the
off-diagonal terms ofCξ. If B-modes are present,N is clearly less affected by the contamination
compared toξ. For the latter the parameter constraints are significantly weakened and, even
worse, biased. These results are published in Eifler et al. (2008a).

Chapter 6: Ring statistics
As a second project related to data vectors, I examine the ring statistics, the most recently de-
veloped cosmic shear measure (Schneider & Kilbinger 2007). The ring statistics improves on
deficits of commonly used measures to decompose E- and B-modes (e.g.〈M2

ap〉). To calculate
〈M2

ap〉 properly from the 2PCF, the latter must be measured down to arbitrarily small scales which
is not feasible in practice. As a consequence〈M2

ap〉 suffers from mixing of E- and B-modes on
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small angular scales (Kilbinger et al. 2006). In contrast, the ring statistics separates E- and B-
modes properly using the measured 2PCFs, even on small scales. However, calculating the ring
statistics from the 2PCF involves a filter function (Z±), which has many free parameters and
dependencies, and therefore is difficult to obtain. In the original paper the authors consider a
special case ofZ±-functions which, once calculated, are held fixed independent of the consid-
ered scale of the ring statistics. In my thesis I relax this condition and choose a scale dependent
filter function which improves the ring statistics’ signal. A comparison of both methods shows,
that the variable filter function significantly improves the signal strength, in particular on large
scales. Furthermore, I develop a formula to calculate the ring statistics’ covariance from the
2PCF covariance and use this formula to compare the correlation of data points and the informa-
tion content of ring statistics and aperture mass dispersion. I find that the ring statistics is less
correlated and therefore has a higher information content than〈M2

ap〉. In addition, the ring statis-
tics can be calculated on smaller angular scales than〈M2

ap〉 which suffers from E/B-mode mixing
on these scales. Finally, I employ the ring statistics to measure a shear signal from CFHTLS data.
Note that this marks the first measured shear signal using the ring statistics. With the obtained
shear signal I constrain cosmological parameters, in particularσ8 in combination withΩm. As
a result we obtainσ8(Ωm/0.25)0.49 = 0.82+0.02

−0.04. This is comparable to the results of foregoing
cosmic shear analyses which employed the aperture mass dispersion or the E/B-mode correlation
function, e.g. Benjamin et al. (2007) or Fu et al. (2008).

Chapter 7: Improved Likelihood analysis for cosmic shear data
In addition to data vectors, I intensively worked on cosmic shear covariancesC and their impact
on parameter constraints. In cosmic shear, there are several methods to derive covariances. First,
one can calculateC analytically assuming a Gaussian shear field. This assumption breaks down
on small angular scales (< 10 arcmin), where non-linearities of the matter density field start to be-
come important. Second, covariances can be estimated from ray-tracing simulations. Although
computationally more expensive, this method automatically accounts for the non-Gaussianity of
the shear field. In both approaches the covariance is calculated assuming a specific cosmology,
which must be chosen by the data analyst. Past cosmic shear data analyses approximate the co-
variance to be constant in parameter space, therefore assume that the chosen cosmology does not
influence the result of a likelihood analysis significantly.
In my thesis I show that the covariance matrix depends non-negligibly on its underlying cos-
mology and that this “CDC-effect” significantly influences the likelihood contours of parameter
constraints. To prove this, I calculate 2500 Gaussian covariance matrices for various parameters
of Ωm ∈ [0.2; 0.4] andσ8 ∈ [0.6; 1.0]; all other cosmological parameters are held fixed. Even a
change ofΩm andσ8 within the WMAP5 68% confidence levels has a non-negligible impact on
the covariances and the obtained likelihood contours. Furthermore, I show that the impact of the
CDC-effect depends on survey parameters and that a proper treatment will be important in the
future, for large and deep surveys. To account for the cosmology dependence of covariances I
develop a likelihood analysis with an adaptive covariance matrix. Here,C is calculated from the
cosmological model for which the likelihood is evaluated. For small surveys this method intro-
duces a bias to the best-fit parameter set, which vanishes when going to larger survey sizes. A
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disadvantage of this approach is its computational costs, asthe covariance must be recalculated
at every sampled point in parameter space. Using the analytic expression for Gaussian covari-
ances is already time-consuming, using ray-tracing covariances to include the non-Gaussianity
is not feasible with today’s computer power. For the Gaussian case, I derive a scaling relation
for covariances, which reduces the computational costs significantly. An additional effect is
that the adaptive covariance approach enhances the constraints on cosmology. These results are
published in Eifler et al. (2008b).

Chapter 8: Impact of non-Gaussianity and shot noise on likelihood contours
The last chapter of my thesis addresses the impact of non-Gaussian covariances on dark energy
constraints with cosmic shear. I find that even when restricting the data vector to scales above 20′

non-Gaussianity influences the parameter constraints and cannot be neglected. In addition, this
chapter contains an analysis of the impact of shot noise on parameter constraints. As expected,
the impact of shot noise is large if small angular scales (≤ 5′) are included into the data vector.
Considering only 2PCFs above this angular separation reduces the impact of shot noise; however,
even when only considering scales above 20′ shot noise is non-negligible and contributes to the
error bars significantly.



Chapter 10

Outlook

The research projects of this thesis can be continued and extended in the future. In particular,
the work of chapter 6 provides a good starting point for further research, similar to the work of
chapter 7 in combination with chapter 8. I will briefly outline my future plans in this chapter.

Ring statistics:
The ring statistics is a special case of a general E- and B-mode decomposition. I plan to investi-
gate this general decomposition in detail, in particular, I will focus on optimizing the correspond-
ing filter function with respect to the signal strength and the information content. Furthermore,
I want to apply the ring statistics and the general E/B-mode statistics to weak lensing data from
space-based observations (e.g. the COSMOS survey), which is a logical extension of my work
with the CFHTLS data. Here, the ring statistics is especially useful for the following reasons.
The E- and B-mode mixing of the aperture mass dispersion (Kilbinger et al. 2006) mainly occurs
on small scales; the COSMOS analysis of Massey et al. (2007b) compensates for this issue by
extrapolating the data using a theoretical model. The ring statistics is independent of any the-
oretical assumptions, in addition it provides tighter constraints on cosmological parameters. I
consider the ring statistics, respectively the general E/B-mode statistics, a candidate for the best
second-order cosmic shear measure.

Cosmic shear covariances:
Currently, covariances are derived from analytic formula/simulations or from the data itself.
However, there exists another approach, called shrinkage estimation, which combines prior
knowledge from theoretical models (contained in a so-calledtarget) with information obtained
from the data. This ansatz is well known in other science branches (Ledoit & Wolf 2004; Schäfer
& Strimmer 2005). Recently Pope & Szapudi (2008) applied it to derive a power spectrum co-
variance for the matter density spectrum.
I want to apply the shrinkage approach to the 2PCF covariance of cosmic shear in order to derive
an improved estimator. Second, I want to extend the work of Eifler et al. (2008b). As outlined
there, an optimal likelihood analysis requires non-Gaussian covariances for every point in param-
eter space where the likelihood is evaluated (adaptive covariance). Deriving these covariances
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via ray-tracing is computationally too expensive, such a brute-force approach can only be done
for Gaussian covariances. My idea is to extend the concept of an adaptive covariance from Gaus-
sian to non-Gaussian covariances using the shrinkage formalism. More precisely, I define the
shrinkage target as a Gaussian covariance (which can be calculated for arbitrary cosmology) and
incorporate the non-Gaussianity through the covariance estimated from the data. This provides
a method to derive non-Gaussian covariances for arbitrary cosmology, in the next task I explain
how to test the accuracy of this method.
In collaboration with AstroGrid1 the lensing group at the Argelander-Institut für Astronomie
(University Bonn) has access to ray-tracing simulations for 200 cosmologies, more precisely
200 different combinations ofΩm andσ8. I want to derive cosmic shear ray-tracing covariances
from these simulations and compare them to the non-Gaussian covariance derived through the
shrinkage approach.
The above two tasks aim to derive precise models for non-Gaussian covariances for different
cosmologies. By comparing these model covariances with the one estimated from the data one
can infer information on cosmological parameters. This method simply replaces the mean data
vector of an “ordinary” likelihood analysis by a covariance. For the reason that non-Gaussian
covariances are sensitive to higher-order information of the shear field, we can use this ansatz
to incorporate this higher-order information into a likelihood analysis. The final goal is a joint
likelihood formalism for mean data vector and estimated covariance. The main difficulty in this
ansatz is that one has to derive a covariance for covariances. However, the mathematical formal-
ism for this already exists (Basser & Pajevic 2002, 2007). It is hard to predict how much this
ansatz can improve parameter constraints; Kilbinger & Schneider (2005) have shown that the
inclusion of higher-order information can substantially enhance the parameter constraints, e.g.
by a factor of two for the parameter combinationΩm andσ8.

Combining information from di fferent cosmological probes:
Combining information from different cosmological probes in a joint likelihood analysis signif-
icantly improves the parameter constraints. In particular for future dark energy studies a com-
bination of Planck data with cosmic shear data (e.g. JDEM, Euclid) is fruitful, as the CMB is
sensitive toearly dark energy models(Doran et al. 2001), whereas cosmic shear is very sensitive
to dark energy in the late Universe.
Although the concept of a joint likelihood analysis is well-known in cosmology (e.g. Komatsu
et al. 2008; Kilbinger et al. 2008), the currently used methods neglect cross-correlations between
the individual cosmological probes, assuming them to be independent. This assumption can be
true for some cases of cosmological probes; if so, the corresponding likelihood analyses can be
performed independently, and later combined via Bayes theorem, where the result of the first
likelihood analysis enters as prior information into the second likelihood analysis. For the case
of cosmic shear and CMB data this assumption clearly fails, as the CMB is lensed by the large-
scale structure. I want to develop a joint covariance matrix which also contains cross-correlations
of CMB and cosmic shear data. These cross-terms quantify the amount of CMB lensing between
the redshift of the cosmic shear source galaxies and the observer. Estimators for CMB lensing are

1http://www.astrogrid.org/



147

intensively discussed in the literature (e.g. Hu 2002; Hirata & Seljak 2003a,b); they are mainly
based on the CMB observablesT, E, B and therefore account for CMB lensing fromz = 1100
until today. Recently, Marian & Bernstein (2007) constructed an estimator for the CMB lensing
potential using the weak lensing signal of foreground galaxies. This estimator, originally de-
signed to delens the CMB polarization map, can be employed to calculate the CMB lensing in
the required redshift range yielding the desired cross-terms. After incorporating the full covari-
ance matrix into a likelihood analysis, I want to test this method on simulated and, if possible,
on real data.
Furthermore, the field of CMB lensing itself offers many research opportunities (see Lewis &
Challinor 2006,for a review). Its sensitivity to the matter density field at intermediate redshifts,
which are inaccessible to e.g. cosmic shear surveys, indicate the scientific potential. In addi-
tion, the CMB is unaffected from non-linear structure growth and has a precisely known redshift.
Recently, there has been strong evidence for a detection of CMB lensing (Smith et al. 2007; Hi-
rata et al. 2008). With upcoming Planck data (higher resolution, lower noise) CMB lensing can
progress to a “competitive” cosmological probe. Equally interesting is the question how to re-
move lensing contaminations from CMB data properly in order to constrain primordial B-modes
in the CMB polarization map. Their detection would strongly support the theory of inflation;
from the amplitude of the B-modes one can even infer information on inflation’s energy scale.
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Appendix A

Comparison of two measures

We compare the information content of two arbitrary data vectors referring to them as primary
data vectorp and secondary data vectors. We further assume thats can be calculated fromp by
a transfer matrixA (dimensionn×m), with arbitraryn andm

p =





p1

p2
...

pm





and s =





s1

s2
...

sn





with s = A p . (A.1)

We define the covariance matrices of these data vectors as

Cp =
〈

(p− p̂)(p− p̂)t
〉

, (A.2)

Cs =
〈

(s − ŝ)(s − ŝ)t
〉

, (A.3)

where p̂ (ŝ) denotes the estimated andp (s) the true values of primary (secondary) measure.
Using (A.1) we can relate both covariances through

Cs = A Cp A t . (A.4)

The transformation matrixA has to be of rankA = n, otherwise the covariance matrix of the
secondary data vectorCs = (A Cp A t) is singular and not invertible. Furthermore, asA is of
dimension (n × m), rankA ≤ m implying n ≤ m. We take theχ2-functions a measure for the
information content

χ2
p = ∆

t
p C−1

p ∆p and χ2
s = ∆

t
s C−1

s ∆s , (A.5)

where in our case∆p = pf − pπ (∆s = sf − sπ) denotes the difference between the fiducial data
vector pf (sf ) and the data vectorpπ (sπ) depending on the parameter vectorπ. If χ2 is minimal,
the posterior likelihood of the correspondingπ being the correct parameter vector is maximized.
The difference betweenχ2

p andχ2
s characterizes which probability function has a larger curvature,

i.e. which data vector gives tighter constraints in parameter space. Therefore the information
content of primary and secondary data vectors can be compared by calculating

χ2
p − χ2

s = ∆
t
p C−1

p ∆p − ∆t
p A t

(

A Cp A t
)−1

A ∆p , (A.6)
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for arbitrary∆p. In case this difference is always positive, we can conclude that the primary data
vector gives tighter constraints on parameters. We can always find transformation matricesV
(dimensionm×m) andU (dimensionn× n) to rewrite the transfer matrixA as ann×m matrix

(

En 0
)

= S = U A V−1 ←→ A = U−1 S V . (A.7)

We can directly calculate these transformation matrices as a multiplication of elementary ma-
trices (Fischer 1997a). Inserting (A.7) into (A.6), and after some lengthy but straightforward
calculation we derive,

χ2
p − χ2

s = ∆
′t
p C′−1 ∆′p − ∆′tp St

(

S C′ St
)−1

S∆′p (A.8)

with
C′ = V Cp V t and ∆′p = V ∆p . (A.9)

For simpler notation we discard all “′ ” later on. We define

C−1 =





C1 C2

Ct
2 C3





−1

=





D1 D2

Dt
2 D3




, (A.10)

with C1 being ann× n matrix and calculate

St
(

S C St
)−1

S=





C−1
1 0

0 0




. (A.11)

Using (A.10) and (A.11) we can rewrite (A.8) as

χ2
p − χ2

s = ∆
t
p





D1 − C−1
1 D2

Dt
2 D3




∆p . (A.12)

FromC D = Em we deduce

C1 D1 + C2 Dt
2 = En −→ D1 − C−1

1 = −C−1
1 C2 Dt

2 (A.13)

and
C1 D2 + C2 D3 = 0 −→ C2 = −C1 D2 D−1

3 . (A.14)

Inserting (A.14) into (A.13) we can rewrite (A.12) as

χ2
p − χ2

s = ∆
t
p





D2D−1
3 Dt

2 D2

Dt
2 D3




∆p . (A.15)
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The matrixC is positive definite and symmetric, thereforeD3 as a submatrix is positive definite
and symmetric, and the inverseD−1

3 also has these favorable properties (Anderson 2003). Hence,
we can decomposeD3 = LL t and finish our calculation as follows

χ2
p − χ2

s = ∆
t
p





D2(L t)−1

L





(

L−1 Dt
2 L

)

︸        ︷︷        ︸

T

∆p (A.16)

= ∆t
pT

t T∆p

= ||T∆p||2

≥ 0. (A.17)

We now examine the case whereχ2
p− χ2

s = 0. The information content of primary and secondary
measures is considered to be equal if and only if this equality holds forall data vectors∆p. If
there is only one∆p for whichχ2

p − χ2
s > 0, the primary measure contains more information. The

difference between the twoχ2-values is given by (A.6). In case it is zero for all∆p,

C−1
p = A t

(

A Cp A t
)−1

A (A.18)

must hold (Fischer 1997b). The matrixCp is of rankm, hence the lefthandside of (A.18) must
also have rankm. ThenA must have rankm and is therefore a quadraticm×m matrix, which is
of course invertible. This result is intuitively clear, if one is able to calculate∆s from∆p, and vice
versa the information content should be the same. We can summarize the results of the above
calculation in two statements:

1. If a secondary measure can be calculated from a primary by a matrixA as described in
(A.1), the secondary measure has less or equal information.

2. The amount of information is equal in case the rank ofA equals the dimension of the
primary data vector (m) implying thatA is invertible.
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Appendix B

Fit-coefficients for the linear term of the
2PCF covariance
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Table B.1: The fit-coefficients for the linear term of theC++ covariance. For each bin the upper value corresponds toα, the lower
to β. The maximum standard error of the fit is smaller than 0.04 % forβ, smaller than 0.02% forα. In most cases the standard
error is ≈ 0.02 % forβ and≈ 0.01 % forα.
ϑi, j [arcmin] 1.0 4.9 10.3 15.7 33.0 45.4 69.3 85.7 106.0 131.0 162.0 180.0

1.1892 1.3888 1.4163 1.4212 1.4485 1.4726 1.5186 1.5485 1.5841 1.6262 1.6768 1.7063
1.0 2.689 2.4905 2.1437 2.0102 1.9220 1.9198 1.9322 1.9418 1.9522 1.9627 1.9734 1.9781

1.3888 1.2955 1.4126 1.4214 1.4483 1.4723 1.5183 1.5483 1.5838 1.6260 1.6767 1.7061
4.9 2.4905 2.5137 2.1993 2.0283 1.9232 1.9201 1.9322 1.9417 1.9520 1.9628 1.9731 1.9782

1.4163 1.4126 1.3243 1.4190 1.4476 1.4712 1.5173 1.5474 1.5830 1.6253 1.6761 1.7055
10.3 2.1437 2.1993 2.3725 2.1168 1.9283 1.9210 1.9319 1.9414 1.9518 1.9625 1.9729 1.9781

1.4212 1.4214 1.4190 1.3395 1.4465 1.4695 1.5156 1.5458 1.5816 1.6240 1.6750 1.7045
15.7 2.0102 2.0283 2.1168 2.3110 1.9401 1.9230 1.9314 1.9408 1.9513 1.9621 1.9728 1.9778

1.4493 1.4483 1.4476 1.4465 1.3677 1.4607 1.5055 1.5365 1.5733 1.6166 1.6684 1.6982
33.0 1.9222 1.9232 1.9283 1.9401 2.2460 1.9614 1.9301 1.9377 1.9484 1.9598 1.9710 1.9765

1.4726 1.4723 1.4712 1.4695 1.4607 1.3802 1.4944 1.5259 1.5637 1.6082 1.6609 1.6911
45.4 1.9198 1.9201 1.9210 1.9230 1.9614 2.2323 1.9340 1.9351 1.9451 1.9571 1.9691 1.9749

1.5186 1.5183 1.5173 1.5156 1.5055 1.4944 1.396 1.4976 1.5370 1.5845 1.6399 1.6712
69.3 1.9322 1.9322 1.9319 1.9314 1.9301 1.9334 2.2234 1.9491 1.9381 1.9496 1.9634 1.9701

1.5485 1.5483 1.5474 1.5458 1.5365 1.5259 1.4976 1.4023 1.5135 1.5629 1.6208 1.6532
85.7 1.9418 1.9417 1.9414 1.9408 1.9377 1.9351 1.9491 2.2219 1.9433 1.943 1.9580 1.9655

1.5841 1.5838 1.5830 1.5816 1.5733 1.5637 1.5370 1.5135 1.4078 1.5308 1.5922 1.6264
106.6 1.9522 1.9520 1.9518 1.9513 1.9484 1.9451 1.9381 1.9433 2.2218 1.94082 1.9497 1.9583

1.6262 1.6260 1.6253 1.6240 1.6166 1.6082 1.5845 1.5629 1.5308 1.4120 1.5496 1.5864
131.0 1.9627 1.9628 1.9625 1.9621 1.9598 1.9571 1.9496 1.9433 1.9408 2.2226 1.9409 1.9473

1.6768 1.6767 1.6761 1.6750 1.6684 1.6609 1.6399 1.6208 1.5922 1.5496 1.4148 1.5279
162.0 1.9734 1.9731 1.9729 1.9728 1.9710 1.9691 1.9634 1.9580 1.9497 1.9409 2.2242 1.9495

1.7063 1.7061 1.7055 1.7045 1.6982 1.6911 1.6712 1.6532 1.6264 1.5864 1.5279 1.4157
180.0 1.9781 1.9782 1.9781 1.9778 1.9765 1.9749 1.9701 1.9655 1.9583 1.9473 1.9495 2.225
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Table B.2: The fit-coefficients for the linear term of theC−− covariance. For each bin the upper value corresponds toα, the lower
to β. The maximum standard error of the fit is smaller than 0.04 % forβ, smaller than 0.02% forα. In most cases the standard
error is ≈ 0.02 % forβ and≈ 0.01 % forα.
ϑi, j [arcmin] 1.0 4.9 10.3 15.7 33.0 45.4 69.3 85.7 106.0 131.0 162.0 180.0

0.8146 1.1532 1.331 1.4036 0.6502 0.7446 0.6435 1.4427 0.8483 1.115 0.900 0.8539
1.0 2.3102 2.9769 3.1407 3.0122 1.4087 1.5601 0.7488 4.3083 2.0481 5.0329 1.8159 2.6019

1.1532 0.9987 1.3058 1.3935 1.3981 1.3473 0.6796 1.1596 1.1655 1.1080 1.1260 1.063
4.9 2.9769 2.5973 3.1406 2.9523 2.2487 2.0178 3.0619 2.5425 3.0956 3.9419 3.3497 3.2596

1.3307 1.3058 1.0946 1.3548 1.4015 1.375 1.3997 1.4481 1.3982 0.6967 1.2972 1.1362
10.3 3.1407 3.1406 2.777 3.0472 2.280 2.053 1.8821 1.708 1.9703 6.7254 3.6954 7.0468

1.4036 1.3935 1.3548 1.1431 1.4052 1.3816 1.3711 1.3803 1.3884 1.3681 1.4430 1.4899
15.7 3.0122 2.9523 3.0472 2.8242 2.3463 2.0730 1.9219 1.8869 1.8507 2.1066 1.8902 0.8581

0.6519 1.3981 1.4015 1.4052 1.2103 1.3983 1.3711 1.3728 1.3832 1.4006 1.4284 1.4404
33.0 1.4122 2.2487 2.280 2.3463 2.7801 2.2915 1.9407 1.8973 1.8868 1.898 1.8862 1.9033

0.7447 1.3473 1.3750 1.3816 1.3983 1.2321 1.3761 1.3724 1.3813 1.40 1.4244 1.4405
45.4 1.5601 2.0178 2.0530 2.0730 2.2915 2.7192 1.9933 1.910 1.8879 1.8913 1.9095 1.9213

0.64346 0.67964 1.3997 1.3711 1.3711 1.3761 1.2562 1.3808 1.3775 1.3931 1.4193 1.4355
69.3 0.7488 3.0619 1.8821 1.9219 1.9407 1.9933 2.6167 2.0248 1.9049 1.8889 1.8982 1.9059

1.4427 1.1596 1.4481 1.3803 1.3728 1.3724 1.3808 1.2668 1.3793 1.3878 1.4133 1.4298
85.7 4.3084 2.5425 1.7080 1.8869 1.8973 1.910 2.0248 2.5626 1.961 1.8931 1.8964 1.9045

0.8482 1.1655 1.3982 1.3884 1.3832 1.3813 1.3775 1.3793 1.2770 1.3833 1.4045 1.4211
106.6 2.0481 3.0956 1.9703 1.8507 1.8868 1.8879 1.9050 1.961 2.5101 1.9236 1.8944 1.9005

1.1150 1.1080 0.69672 1.3681 1.4006 1.3995 1.3931 1.3878 1.3833 1.2871 1.3931 1.4081
131.0 5.0329 3.9419 6.7254 2.1067 1.898 1.8913 1.8889 1.8930 1.9237 2.4610 1.9060 1.8975

0.90 1.1260 1.2972 1.4430 1.4284 1.4244 1.4193 1.4133 1.4045 1.3931 1.2973 1.3944
162.0 1.8159 3.3497 3.6954 1.8902 1.8862 1.9095 1.8982 1.8964 1.8944 1.9060 2.4166 1.9428

0.8539 1.063 1.1362 1.4899 1.4404 1.4405 1.4354 1.4298 1.4211 1.4081 1.3944 1.3025
180.0 2.6019 3.2596 7.0468 0.8581 1.9033 1.9213 1.906 1.9045 1.9005 1.8975 1.943 2.3965
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Table B.3: The fit-coefficients for the linear term of theC+− covariance. For each bin the upper value corresponds toα, the lower
to β. In contrast toC++ and C−− the standard error here is higher and the fit is less accurate. For most of the coefficients the
standard error is still below 0.1% for bothα andβ, however there are outliers (marked in red) where the standard error exceeds
1%.
ϑi, j [arcmin] 1.0 4.9 10.3 15.7 33.0 45.4 69.3 85.7 106.0 131.0 162.0 180.0

0.9198 1.0776 1.2039 1.2690 1.3444 1.3588 1.3680 1.3720 1.3776 1.3857 1.3968 1.4036
1.0 2.1759 2.7594 2.9587 2.9510 2.6699 2.4892 2.2673 2.1796 2.1105 2.0591 2.0232 2.0098

0.7385 1.8641 1.2002 1.2616 1.3433 1.3585 1.368 1.3721 1.3776 1.3857 1.3968 1.4036
4.9 2.1639 4.6092 2.8784 2.9351 2.6728 2.4916 2.2684 2.1802 2.1109 2.0594 2.0232 2.0099

1.1172 1.0939 0.3245 1.2212 1.3388 1.3572 1.3679 1.3729 1.3777 1.3857 1.3968 1.4036
10.3 3.3921 3.2594 1.5224 3.0572 2.6790 2.4998 2.2725 2.1827 2.1123 2.0601 2.0236 2.0102

1.0298 1.2851 1.2017 0.7253 1.3241 1.3544 1.3678 1.3721 1.3777 1.3857 1.3968 1.4036
15.7 3.9545 3.7686 3.5351 2.2997 2.6384 2.5113 2.2797 2.1871 2.1147 2.0614 2.0243 2.0106

0.7624 1.5316 1.4728 1.4719 0.9712 1.3427 1.3660 1.3730 1.3785 1.3861 1.3968 1.4035
33.0 1.5130 3.5641 3.7076 3.7696 2.8402 2.7344 2.321 2.2166 2.1312 2.0699 2.0284 2.0135

0.7845 1.0214 1.3619 1.4555 1.4584 1.0303 1.3650 1.3824 1.3810 1.3871 1.3970 1.4034
45.4 1.5519 2.2561 3.0393 3.1508 3.6129 2.9527 2.4350 2.2705 2.1564 2.0818 2.0340 2.0173

0.5863 0.9360 -5.4805 1.3951 1.3855 1.4222 1.0895 1.3595 1.3635 1.4203 1.4007 1.4049
69.3 0.6329 2.6217 5.1207 2.3331 2.4026 2.6896 3.0243 2.4258 2.1906 2.1918 2.0579 2.0318

1.1916 1.0523 0.8196 1.4040 1.3075 1.3291 1.4146 1.1132 1.3654 1.3648 1.4387 1.4129
85.7 3.7856 2.9128 3.4400 1.9722 2.0450 2.1320 2.7362 3.0278 2.3185 2.1055 2.1568 2.060

0.8716 1.0998 1.4396 1.3243 1.2660 1.2710 1.3063 1.3641 1.1337 1.3707 1.3699 1.3430
106.6 2.0595 3.5045 2.8142 0.8366 1.8996 1.9017 2.040 2.3663 3.0103 2.2253 2.0447 1.9414

1.1017 1.1333 1.1835 1.1471 1.2451 1.2547 1.2624 1.2748 1.3179 1.1518 1.3768 1.3791
131.0 4.6080 3.7127 3.7228 3.1046 1.9377 1.8477 1.8426 1.8956 2.0997 2.9732 2.1490 2.0619

0.8894 1.1091 1.2446 1.4713 1.2692 1.2635 1.2663 1.2652 1.2674 1.2897 1.1679 1.3794
162.0 1.8539 3.4068 4.2135 1.9034 1.6319 1.9126 1.8088 1.8213 1.8395 1.9450 2.9192 2.2337

1.0537 1.0673 1.3307 1.2411 1.2369 1.2882 1.2774 1.2751 1.2713 1.2731 1.3207 1.1755
180.0 2.5585 3.1909 5.2090 5.6088 1.7140 1.9389 1.8113 1.8261 1.8255 1.8484 2.1093 2.8872
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