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Chapter 1

| ntroduction

In the last 20 years cosmology has progressed from a data-starving to a prospering science
branch. Today we know that the Universe was in a very dense state at early times and since
then has expanded to its current size. The filamentary structure of galaxies and clusters we ob-
serve today originates from small perturbations in the primordial density field, which grow due
to self-gravitation. The increasing number of cosmological experiments and the huge amount
of high-quality data ffer great possibilities to study the structure and evolution of our Universe.
Cosmologists developed the so-calle@DM or “concordance” model, based on the assump-
tions of large-scale homogeneity and isotropy, which provides a robust explanation for cosmo-
logical observations and has predicted several of them. Within this picture the energy density of
the Universe consists of 4 components, i.e. baryohsy 5%), photonsQ, ~ 0.005%), cold

dark matter Q.qm = 20%), and dark energ¥X, ~ 75%), where the physical nature of the latter

two is still an open question.

Various cosmological experiments address the issues of dark matter and dark energy; one of
the most promising is weak gravitational lensing by the large-scale structure, also called cosmic
shear. Light bundles emitted from distant galaxies travel through the Universe and are con-
tinuously deflected by the gravitational field of the inhomogeneous matter distribution. As a
consequence the shapes of galaxy images are distorted and the statistical properties of these dis-
tortions reflect those of the matter density field.

In 2000, four diterent groups independently measured the first cosmic shear signal (Bacon et al.
2000; Kaiser et al. 2000; van Waerbeke et al. 2000; Wittman et al. 2000). Since then it has proven
to be a very powerful method to constrain cosmological parameters, in particular the normaliza-
tion of the power spectrunrg in combination withQ, (e.g. Fu et al. 2008). The remarkable
results cosmic shear has achieved so far will improve in the future with large upcoming surveys
like Pan-STARRS, KIDS, DES, JDEM, Euclid or LSST. Soon the first two surveys, starting in
2009, will provide data which enables us to estimate the shear signal with less than 1% statistical
error. These small statistical errors make cosmic shear an ideal tool for future dark energy studies
(see Peacock et al. 2006; Albrecht et al. 2006).

Still, there are unsolved systematics and uncertainties which limit parameter estimation with cos-
mic shear. On the observational side an ffisient PSF-correction is the most important source

of contamination. The (still ongoing) Shear TEsting Program (STEP) has significantly improved

1



2 Chapter 1. Introduction

on this issue (for latest results see Heymans et al. 2006;eyiasal. 2007a). Solutions to this
problem are further discussed in Bridle et al. (2008). Furthermore, astrophysical contaminations
must be removed, such as intrinsic alignment of source galaxies, which can be excluded in the
signal if redshift information is available (King & Schneider 2003). Shape-shear correlation
was predicted by Hirata & Seljak (2004) and detected by Mandelbaum et al. (2006). Recently,
Joachimi & Schneider (2008) showed how to exclude the shape-shear contribution, again if ac-
curate photometric redshifts are available. Besides excluding astrophysical contaminations, red-
shift information significantly increases constraints on cosmological parameters (Massey et al.
2007b); accurate redshifts will be of major importance for future cosmic shear surveys. For
precision cosmology with cosmic shear not only the quality of the data and the removal of as-
trophysical contaminations is important. In addition, we have to improve on theoretical issues
in lensing (e.g. reduced shear approximation, inaccuracy of Limber’'s equation or the flat-sky
approximation) and cosmology (models for the non-linear power spectrum, non-Gaussian co-
variances, models for higher-order moments of the defssigar field). These improvements are
important to obtain accurate predictions to which we compare the high-precision data.

Theoretial predictions and observational results meet each other in the likelihood analysis. If
there remain significant problems on either side, the likelihood analysis will give biased results.
In addition, the likelihood analysis itself is of great importance; even with precise data and ac-
curate theoretical predictions the constraints on cosmological parameters can be biased by an
improper likelihood analysis. Developing statistical tools which especially fit the needs of the
considered cosmological probe(s) is therefore of great importance for the inference of cosmo-
logical interpretations.

The subject of my PhD thesis is to improve on theoretical concepts related to the estimation
of cosmological parameters with cosmic shear. This involves the optimization of cosmic shear
data vectors and accurate descriptions of the corresponding covariances as well as the statistical
methods used in the likelihood analysis. Furthermore, | applied my theoretical work on the most
recently developed cosmic shear measure, namely the ring statistics, to cosmic shear data. In
my thesis | optimize the ring statistics’ signal strength and employ it to constrain cosmological
parameters using data from the Canada-France-Hawaii Telescope Legacy Survey (CFHTLS).
The thesis is structured as follows: In chapter 2 | start with a general introduction to cosmology
and structure formation. Chapter 3 reviews the basic concepts of gravitational lensing with the
focus on cosmic shear, its achievements, problems and future prospects. My research results are
presented in the following chapters starting with an introduction to cosmic shear parameter esti-
mation (chapter 4), in particular, | examine binnirfipets on cosmic shear covariances and how
these €ects influence the parameter constraints. The issue of covariances is further examined
in the chapters 7 and 8. In chapter 7 | investigate the cosmology-dependence of cosmic shear
covariances and develop improved methods for a likelihood analysis, which take the cosmology-
dependence into account. A second problem in the derivation of covariances is the inclusion
of the shear field’s non-Gaussianity. In chapter 8 | examine the impact of non-Gaussianity on
covariances and parameter constraints, in particular regarding dark energy parameters. In this
chapter | also verify the calibration factor formalism introduced by Semboloni et al. (2007) to
account for non-Gaussianity. Results of my research on cosmic shear data vectors are presented
in chapter 5, where | compare and optimize cosmic shear data vectors with respect to their in-



formation content and robustness against contaminatiowsinachapter 6. The latter chapter
contains my personal highlight of this thesis, namely the constraintg aising CFHTLS data.
| summarize all results in chapter 9 and give a brief outlook on future projects in chapter 10.
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Chapter 2

Cosmology

Cosmology aims to describe the Universe as a whole, its structure and evolution in time. Twenty
years ago this goal seemed hardly achievable, when cosmology was a vague and data-starving
science. Nowadays, the situation has completely changed. There exist rniangndlicosmo-

logical experiments providing huge amounts of data and this trend will most likely intensify in
the next years. Cosmologists developed the so-called “standard” or “concordance model” of
cosmology, based on the assumptions of large-scale homogeneity and isotropy, which provides
a robust explanation for cosmological observations and has predicted several of them.

In this chapter we summarize the main aspects of cosmology, with the focus on details which are
most relevant for this thesis. Starting from General Relativity and the dynamics in our Universe,
we explain today’s picture of structure formation and conclude with a description of the main
experiments leading to the concordance model of cosmology. For more details on these topics
we refer the reader to e.g. Peacock (1999) or Schneider et al. (2006).

2.1 The homogeneous and isotropic Universe

2.1.1 Einstein’s Field Equation

By developing General Relativity (1907 to 1915), Albert Einstein set up a theory of gravitation.
Einstein’s field equation relates a matter distribution given by the energy-momentumTgnsor
to the curvature of four-dimensional spacetime described by the Einstein-Tepsor

8nG
G/JV + Agyv = —FTHV N (21)

with G as the gravitational constamtthe speed of light and the so-called cosmological con-
stant. Today one usually shifts this term to the other side of the equation, interptetinca
vacuum energy densifgee Sect. 2.1.6). The tensgy, is defined as

1
G, =R, - Eg’”R’ (2.2)
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6 Chapter 2. Cosmology

with R,, as the Ricci tensor anfd the curvature scalar. Both can be obtained as contractions of
the Riemann tensor which provides a covariant description of the curvature of spacetime and can
be expressed in terms of the mefyjg.

2.1.2 Robertson-Walker Metric

On small scales the Universe is obviously not homogeneous. Galaxies and clusters of galaxies are
large overdensities of matter compared to the intercluster medium. Large galaxy redshift surveys
like the SDSS survey (latest data release from Adelman-McCarthy et al. 2008) indicate that the
matter distribution is nearly homogeneous if we average over scales larger than 300 Mpc. The
strongest evidence that the Universe is isotropic comes from the Cosmic Microwave Background
(Smoot et al. 1991), which show only deviations of order°kOfrom a mean temperature of
2.73K. Both observations strongly support the assumption that the Universe can be considered
homogeneous and isotropic. This assumption, named cosmological principle, implies that any
observer without peculiar velocity (so-calledmoving observgmakes the same observations
independent from his position. A metric describing such a universe is given by the Robertson-
Walker metric

ds’ = g, dx‘dx’
c?dt? - al(t) [dw? + F2(w) (de? + sirPe dg?)|, (2.3)

wherew is the comoving radial distance ahdhe time measured by a comoving observgr.

and @ are angular coordinates. The expansion fae{ty describes the past and future of our
Universe, whether it expands forever, contracts at some point in the future, or is static. The scale
factor at present tima(ty) is normalized to be 1. The functiofy (w) describing the comoving
angular diameter distance (see Sect. 2.1.4) depends on the cukaitfiiee metric

= sin( VKw) K>0
fu(Ww) =¢ w K=0 (2.4)
ﬁ sinh(vV-Kw) K <0,

whereK > 0 stands for a closedl < O for an open, an& = 0 for a spatially flat universe.

2.1.3 Friedmann equations

Inserting the Robertson-Walker metric into Einstein’s field equation one derives the Friedmann
equations which describe the dynamics in our Universe. The energy-momentum tensor takes the
form of a perfect fluidrl,, = diag(pcz, P, p, p), whereo (the density) angb (the pressure) depend
only on time , -

a 8nG K A
( ) A (2:5)
and

gz__(p+_)+_. (2.6)
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The L.h.s. of equation (2.5) is the square of the so-caHalible parameter Kt) and its value

today is calledHubble constant bi(see also Sect. 2.3). The Hubble constdgts often param-
eterized a#ly = h 100(km s*Mpc1), whereh expresses the uncertainty in the measurement of

Ho. Other measurements, depending-ty(e.g. distances), are similarly parameterized in terms

of h. As mentioned in Sect. 2.1.1 the cosmological constanthich was originally introduced

by Einstein to allow for static universes, is nowadays interpreted as vacuum energy density. In the
above two equations only accounts for the energy densities of “normal” (pressureless) matter
and radiation. From now on we adapt the concept of a constant vacuum energy density, therefore
drop theA-term and extend theto p = pm + pr + pa. This concept is mathematically equiva-

lent to a cosmological constant, but has a reasonable physical interpretation. Note, that there are
alternative theories stating that the vacuum energy density must not necessarily be constant; we
give more details on this topic in Sect. 2.1.6.

In order to determine the scale factor via the Friedmann equations we need informagi@@h on
Differentiating (2.5) and inserting it into (2.6) we derive the so-cal@idbatic equation

3
§ )+ oS -
It relates the change of energy density in a comoving volume to the pressure multiplied by the
spatial change in proper volurhand can be interpreted as a conservation law of energy in the
Universe. The three matter components, pressureless matter, radiation, and vacuum energy den-
sity, evolve diterently in time and are dominant throughtdrent epochs. Pressureless matter,
characterized as particles with velocities much smaller thdras anequation of state (EOS)

which readsp = 0. From (2.7) we derive

0. (2.7)

Pm oca >, (2.8)

For particles with velocities close or equaldthe pressure term reags= pc?/3. Inserting this
into (2.7) leads to
proca™, (2.9)

The corresponding equation for the constant vacuum energy density reads
oA = Const. (2.10)

The density for which our Universe is flat is namedical density Assuming thap = pm +pr +
oA, hence dropping tha-term in (2.5), it can be calculated by insertikg= 0. We obtain
| 3H
Per = % .

Density values are scaled with the critical density, for the thréerdint “sorts of matter” we
define

(2.11)

_ Pm

A
: =& Q=202 . (2.12)
Per

Qn , =
" Per Pecr BHS

Q.

IProper coordinates(t) are related to comoving coordinateby the scale factoa(t), r(t) = a(t)x.



8 Chapter 2. Cosmology

The main contribution t®, is given by photons of the Cosmic Microwave Background (CMB)
(see Sect. 2.3) and the energy density of these photons follow a Planck distribution. By measur-
ing the temperature ¢lys = 2.73 K), Q; can be obtained from the Stefan-Boltzmann law; one
finds thatC), is fairly small compared t®,, andQ, and can be neglected today. However, at ear-
lier times, radiation must have been dominant because its density scalegtyvittwhereas,,

is only proportional ta(t)=3. The time wherf), equalsQy, is denotedie,. Using the parameters
defined above and the definition of the Hubble constant we can rewrite (2.5)

Q, . Qn K s
alt)*  a(t)® a(t)2H?

H?(t) = H3 ONE (2.13)

To describe the curvature of our current epoch we iregyt= 1 and derive

Ho\?
K=(22) @u-D, (2.14)
with Qo = Q; + Qn, + Q4. From this expression of the curvature in terms of density parameters
we see that

¢ the spatial hypersurfaces of constaate flat forQ,; = 1 (K = 0)
e hyperbolic forQ; < 1 (K < 0)
e andK > 0for Qi > 1.

Latest observations indicate that the total curvature of the Universe is $@glk- 1] < 0.017
(Komatsu et al. 2008), therefore it is generally assumed that the Universe has zero curvature.
Nevertheless, if this assumption is relaxed constraints on other (curvature dependent) parameters
weaken significantly.
The Hubble parameter and therefore the evolution of our Universe is completely determined by
the density parameters, in terms of which we rewrite (2.13)

Q  Qn 1-Q

H©\
(Ho) B ECE S O

At very early times we expect the Universe to be hot and dense. Going back in time, density
and temperature further increase until we finally reafth = 0. Since this so-called Big Bang

until today,a(t) was a monotonically increasing function. In order to determine its evolution in
the future we negled®, in (2.15) and consider onl,,, andQ,. Felten & Isaacman (1986)
have shown that the Universe will recollapse in cse< 0. If the vacuum energy is positive,
expansion will continue to infinity if2,, < 1. In case,, > 1 the collapse is still avoided {2,

does not exceed a certain threshold, which is determined by the valag. oThese facts are
nicely illustrated in Fig. 2.1, which shows thefl@irent states of the Universe (open, closed, flat,
expanding, recollapsing) in dependence of the cosmological paramgiensdQ,. In addition,

we see the most likely parameter regions, constrainedftsreint cosmological experiments (see
Sect 2.3 for further details). The area where the results of the three experiments overlap suggests
that the Universe is (almost) flat, with positi®g , andQ2,, much smaller than 1.

+ Q4 . (2.15)
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3\Il\l\ll\l\l\\l\l\\‘\\ll‘l\l\

I No Big Bang Spergel et al. (2003) |

Figure 2.1: From this figure one can deduce the
Supernovae | expansion history and the curvature in our Uni-
verse for giver,, and Q,. The shaded area
corresponds to parameter combinations which
Q, exclude a Big Bang, instead these regions rep-
CMB | resent bouncing or loitering universes. The di-
agonal solid line distinguishes parameter sets
ol— N oty which lead to an open, closed, or flat Uni-

recollapses & verse, respectively. The almost horizontal line
| Clusters o, . divides expanding and potentially recollapsing
%o 1 cosmologies. In addition, we see the constraints
1k o -4 on the parameter space obtained from Fatt

“, \ | ent cosmological probes which favor a close to
e b becnc Lanediesed flat Universe, with positivé),, and Q, much
0 1 2 3 smaller thanl. (Figure taken from Knop et al.
Qy 2003)

2.1.4 Redshift and distances

Due to the expansion of the Universe, photons are redshifted on their way from the source to a
comoving observer. The redshift is defined as
Adog—A4
z:= 22 ¢
Ae

: (2.16)

where A, is the emitted andl, the observed wavelength. For low redshifts< 1, we can
relate the redshift of a galaxy to its recession velocity via the standard Doppler famuwac.
Nevertheless, this description fails when going out to larger redshifts. The reason for this is
that cosmological redshift is a relativistiefect due time dilation which can be seen from the
following derivation. Photons propagate along null geodesiss=(®), hence we see from the
comoving metric (2.3) that dt = —a dw. Assume that two signals are emitted from a source a
timet, andt. + At which we observe at timg andty + Aty. The comoving separation between
source and observer is constant; we can set up the following relation

t te+AL t
e cdt’ e cdt’ ccdt” CAty CAt
f p :W:f —,:f ; —+ 0_ e, (217)
to a(t ) to+Aty a(t ) to a(t ) 1 a(tE)
where the time intervalst are small enough to neglect variations(t). Comparing the left- and
the right-hand side of the equation we see tkiatis time dilated, more preciseWte = a(te)Ato.
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The frequencies, and v of the signal are the inverse of the corresponding time intervals, hence

l Ve /10
=="c-1+z. 2.18
a(te) vo Ae ( )

In Euclidian space the definition of distance is unique, meaning tiateint methods to measure

a distance give the same result. In contrast, there is no unique distance measure in a curved and
expanding Universe, where the definition of distance must always be seen in context with the
method it was obtained.

2.1.4.1 Comoving distance

The comoving distance is characterized as the coordinate distance on a spatial hypersurface be-
tween a comoving source,j and a comoving observer;j. Similar to the above derivation of
cosmological redshift we write

C Cc
dw = —a dt = —az—H da, (219)

where we usetd= da/aandH(t) = (a/a). Inserting (2.15) we can express the comoving distance
in terms of density parameters as

a(z1) _
W(z1,2,) = Hio f( | [a0n+ @ (1-Qn-Q)) +a',] " da. (2.20)
alze

2.1.4.2 Angular diameter distance

Of special importance for gravitational lensing is the angular diameter distance which can be
derived by easy geometrical consideration. It is given by the diameter of the sawatesdishift
Z and the observed angular diametéradi redshiftz;. Using d_ = a(t) fx (w)do, we define

Dand(z1. 2) 1= S = a(z) fe(W(zs, 2) (2.21)

as the angular diameter distance.

2.1.4.3 Luminosity distance

The luminosity distance is defined as

[L
Dum(z1, 2) = 7S (2.22)

Sisthe observed flux (&) andL the luminosity of the source (at). A general relation between
luminosity distance and angular diameter distance was found by Etherington (1933) and reads

Dlum(zl, 22) = (1 + 2)2 Dang(zl’ 22) . (2-23)
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2.1.4.4 Horizon

Causal contact between particles in the past is only possible if the comoving distance between
them is smaller than the comoving distance light has travelled since the Big Bang and the con-
sidered cosmic time. This maximum distance is catlechoving horizomt timet. Using (2.19),

it can be expressed as
cdt’ O ¢da
= _ 2.24
My (a) jO\ a(t/ f arZH(a/ ( )

We mention two special cases, namely the comoving horizon during matter and radiation-dominated
phase of the Universe

C

(@ = 2 a for a > agq, 2.25

H(2) oV Va Beq (2.25)
C

rm(@ = a for a < A, 2.26

H(2) Hove, Beq (2.26)

whereagq defines the scale factor at matter-radiation equality
Beq = Qr/Qum = (32000Q,h?) 7. (2.27)

In the above calculation we assume that the dominant contribution ¢tomes from the CMB
photons and neutrinos (which at this epoch were still relativistic and therefor contribute to the
radiation density), hene®, = 1.68Qcus = 3.2 x 10°°h=2,

2.1.5 Big Bang Nucleosynthesis and Cosmic Microwave Background

At very early times the Universe is in an extremely hot and dense state where all constituents
are in thermal equilibrium. Then the radiation field is described by a Planck distribution, and
therefore solely depends on the temperature of the Universe. Note that temperature and energy
uniquely define a cosmic time and are used as synonyms in this section.

At high temperatures, the formation of atomic nuclei is prohibited, as they are immediately de-
stroyed by high energy photons. When the Universe expands and cools, light elements can form.
This process starts with deuterium, which has a binding energy2df KeV. Still, deuterium

does not form at this energy, due to the much higher number density of photons compared to
baryons. More precisely, for temperature€.07 MeV there are dticiently many photons in

the high energy tail of the Planck distribution to destroy deuterium via photodissociation. In prin-
ciple, helium could have formed earlier; it is able to sustain high energy photons at temperatures
of T ~ 0.28 MeV. However, helium is only formed through an intermediate step of deuterium
(deuterium bottlenegk As soon as the deuterium number density is high enough this results in
an immediate burst of helium production, binding nearly all neutrdns: (0.1 MeV). Due to

this almost instant process, the baryon fraction of helium depends solely on the ratio of protons
to neutrons al ~ 0.1 MeV

4(nn/2) Z(nn/np)
N + Np 1+ Na/Np

Xepso = (2.28)
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Protons and neutrons have formed earlier during the phasargbihgenesis and are held in
equilibrium only through weak interactions, e.g.

P+€ «—n+v and p+ve— n+e. (2.29)

From the cross section the above particle interactions, we can estimate the temperature at which
the corresponding reaction rate becomes too low to hold the particle in thermal equilibrium. Via
the above interactions, protons and neutrons are in equilibriumTntil0.7 MeV. The ratio of
neutrons to protons at this time ig6l For~ 3 minutes, betweell ~ 0.7 MeV andT ~ 0.1

MeV (when helium forms), the neutrons decay according te~ p + e + v (the decaying time

of the neutron is well known to be, = 886s). This process changes the ratio of neutrons to
protons ton,/n, = 1/7. We can now calculate the baryon fraction of helium toXag = 1/4,

which is in perfect agreement with today’s observations (see Sect 2.3). In addifide,temall
amounts of deuteriun¥He, ’Li, and 'Be are created during Big Bang nucleosynthesis, but no
heavier elements.

When the Universe cools even moike £ 1 eV), the nuclei (mainly protons) and free electrons
form neutral atoms, mainly hydrogen. This processeabmbinatiortakes place at = 1100,

well after matter-radiation equality. The binding energy of hydrogen i§ ¥, still it can-

not form at the corresponding time due to the same argument we mentioned in the context of
deuterium formation. From = 1100 on, the photons and baryons decouple and stream freely
throughout the Universe.The energy density of the photons is described through a Planck dis-
tribution, today we observe this Planck spectrum, highly redshifted, aSdkmic Microwave
Background (CMB)Since its first detection (Penzias & Wilson 1965), many experiments have
analyzed its properties. As an example we menWMAP (Wilkinson Microwave Anisotropy
Probe, which is a satellite mission launched in 2001 to measure the anisotropies of the CMB.
After subtracting the temperaturefidirences due to our peculiar velocity and microwave emis-
sion from the galactic plane, we see small fluctuations of osdef = 10~° around an average
temperature off ~ 2.73 K (see Fig. 2.2). These small temperature perturbations mirror the
fluctuations of density, potential and peculiar velocity of matter at the time of recombination.
WMAP confirmed the foregoing results of the COBE mission (for which John C. Mather and
George F. Smoot were awarded a Nobel prize) with a much higher resolution and had a large
impact on the current picture of our Universe (see Sect. 2.3.2).

2.1.6 Dark Energy

There are two main observations which indicate that there is a third source contributing to the
energy density in our Universe, besides pressureless matter and radiation. First, we now from
CMB measurements that the curvature of the Universe is very close to zero, hence the overall
energy density of the Universe is close to the critical density. The contribution of matter and
radiation top can be inferred by observations and is approximately only one quarbgs; othe

rest must be contributed from a third component, namely dark energy. Second, we know from
supernovae experiments (Riess et al. 1998; Perlmutter et al. 1999), that the expansion of the
Universe accelerates (> 0). Using (2.6),a"> 0 can only occur if dark energy has negative
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Figure 2.2: The temperature fluctuations of the CMB measured by WMAP over a range of 400
1K around the average of 2.73 K. Blue imprints refer to cold spots, red to warmer regions.
Foreground contaminations (e.g. galaxy dipole) are removed in this picture. (Figure 11 from
Bennett et al. 2003)

pressure, i.e o+ % < 0). The relation of energy density to pressure is quantified irethtion
of state parameter

. Pa
wi= o=, (2.30)
with which we can rewrite the adiabatic equation (2.7) for dark energy as
dpA a _
For time dependemnt, (2.31) can be integrated to obtain
a da’ ,
oA o expl—3 =~ [1+w@)]], (2.32)
1
which specifies for constamt to
pa(@) = proa ", (2.33)

wherep,o is the energy density measured today. Note that the above statements and derivations
apply similarly to pressureless matter and radiation, obtainirg0 for the first case and =

1/3 for the latter. The favored interpretation of dark energy today is constant vacuum energy
density.

Constant vacuum energy density, corresponds tev = —1. This model has nice properties,
e.g. from the argument that the energy-stress tensor of the vacuum is Lorentz invariant, we
can directly deducg = p/c?, which is exactly the behavior of a cosmological constant and
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explains the accelerated expansion. Furthermore, quantohanics predicts that in a vacuum,
particles and anti-particles are created and annihilate around a “zero point” energy and that the
lifetime of these particles, although short, gives the vacuum a non-zero ground-state energy. On
first sight, this all seems to be a convincing theory, nevertheless there is a large drawback, when
attempting to estimate the value of vacuum energy density via quantum field theory. Carroll et al.
(1992) show that the theoretical estimate for the vacuum energy dengity~is10°?erggcm?®,
Normalized withp; this corresponds t@, ~ 10'?°, deviating by 120 magnitudes from the
observed), ~ 0.75. In the aforementioned papgy, is calculated as an integral over the energy
density of quantum fields (leptons, quarks, gauge fields), which is f€w&#t@n energy scale
where quantum field theory breaks down and a new theory of physics (quantum gravity) would
be required. This is the so-called Planck energy{GxV). The cut-& can be shifted towards

lower energy scales which reduces the predicted valyg oNevertheless one must cut the

integral at 102 eV to obtainp, ~ 0.7. This is out of question, as physics at this energy level is
perfectly described by quantum mechanics.

Assuming that supersymmetry holds solves part of the problem. Then, fermions and bosons have
SUSY partners with equal energy density butetient signs. However, to avoid a perfectly zero
vacuum energy density, SUSY must be broken at a certain masshdcalech that the remnant
particles withm < M form today’s vacuum energy density. Still, no supersymmetric particle has
been observed, indicating that they are quite massive, and that SUSY is broken at high energies
(M > 1 TeV). Assuming that particles with higher rest mass cancel, one arrives at a vacuum
energy density of2, ~ 10°°, which still is an enormous discrepancy to the observed value. We
see that vacuum energy density is far from being understood, we will briefly mention alternative
models.

Quintessence or scalar field models subsume dynamical dark energy models, i.e. the equa-
tion of state parametev can vary in time. The dynamic is described by a scalar fgelith
Langrangian density

L=1/20"p0, 0 - V(9). (2.34)

Therefrom we can calculate the pressure and the density of the scalar field to be

p=¢2+V(p)  p=¢2/2- V() (2.35)

whereg¢ is supposed to be spatially homogeneous, but time depenrggtdenotes the kinetic
energy of the field an¥f(¢) is the potential energy. Applying the definitionw{2.30) we derive
for scalar fields , )

o P2=V(@) _ -1+ 62/2V(9)

¢?/2+V(g)  1+¢%/2V(¢)

From the above equation we see that -1 if the scalar field acts as a slowly changing vacuum
energy density#?/2V(¢) < 1) andw ~ 1 for a rapidly changing energy density. In both cases
w changes in time; Linder (2003) introduced the following parameterization

(2.36)

w(a) = Wp + W,y(1—a). (2.37)
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The above parameterization can be used to distinguish bettheetwo classes of scalar field
models, so-called “thawing” and “freezing” models. To explain these models we introduce the
equation of motion for a scalar field, which is obtained from Einstein’s field equation. It reads

¢+3Hp+V'(¢) =0, (2.38)

where the prime denotes the derivative with respech.td-reezing models are characterized

by a potentialV(¢) which drops more rapidly than the friction terni3 as time progresses.
Hence, the friction term in the above equation starts to dominate at late epochs. Thawing models
have opposite behavior; here the friction term dominates at early times and the field changes
rapidly for late times. The dierent behavior of both models is reflectedwfr). With the

future precision of cosmological data, we can use the above parameterization (2.37) to distinguish
between thawing or freezing models. There exist also more complicated scalar field models,
obtained by changing the kinetic term in the Lagrangian (e.g. k-essence), nevertheless there is
no compelling physical explanation for either of them.

Modified gravity is another suggested explanation. The basic idea is that the geometrical
part of Einstein’ equation (2.1) must be modified (i.e. the Einstein tensor) rather than adding
something to the energy-momentum tensor. For more details on this topic the reader is referred
to Bekenstein (2004). Note that this theory faces severe problems when explaining the third peak
of the CMB power spectrum (Spergel et al. 2007) or the bullet cluster (Clowe et al. 2006).

Other models basically question the cosmological principle, in particular the assumption of
the Universe being homogeneous. Although this assumption is in good agreement with observa-
tions (Sect 2.1.2), it is not a direct consequence of them. Clarkson et al. (2008) suggest a purely
geometrical method, which is based on the relation of Hubble parameter to a modified angular
diameter distance, to test for the cosmological principle. But even if we can prove that on large
scales the universe is homogeneous, on small scales it is truly inhomogeneous. When describing
the dynamics in the Universe, should not we first estimate the dynamics of local inhomogeneities
and then average over these, instead of first averaging over the inhomogeneities and then calcu-
late the dynamics of this homogeneous average? This question is intensively discussed in the
review of Buchert (2008); it is true that averaging Einstein’s equation on small scales leads to a
repulsive, so-callebdackreactiorterm. Such a term mimics the behavior of dark energy, however
the strength of thisféect is very much under debate. In very recent work, Wiltshire (2007a,b)
presents a solution for the dynamics in an inhomogeneous universe, which replace the Friedmann
equations. In this work inhomogeneities are incorporated by considering two scales, i.e. voids,
which expand rapidly, and bubble walls containing clusters and galaxies, which surround theses
voids. Wiltshire (2007b) performs several observational tests with this new theory claiming that

it is viable, so far.

Final comment We do not know what drives the expansion of the Universe, whether it is any
of the dark energy models or some General Relativitgat, which has been neglected so far.
Investigating dark energy is one major task of future work and surveys. For more details on
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upcoming dark energy surveys and possibilities how to caimsttark energy models best, the
reader is referred to Albrecht et al. (2006) and Peacock et al. (2006). In this thesis we consider
dark energy parameter estimation with cosmic shear, which is done in chapter 8.

2.2 Structure formation

On large scales the Universe is homogeneous and isotropic. On smaller scales this is obviously
and fortunately not the case. The structure we observe today, like clusters and galaxies, has most
likely evolved from small primordial overdensities, which further increase through gravitational
processes. Due to gravitational instability, an initial overdense region expands slower compared
to the expansion rate of the surrounding Universe, causing a further increase of its density con-
trast. If the initial overdensity was large enough, at some point it decouples from the expansion
of the Universe, collapses and forms a cluster. This scenario is supported by the fact that we ob-
serve imprints of these primordial perturbations in the CMB. The density contrast at comoving
spatial coordinatesf and cosmic time is defined as

px. 1) - p(t)
plt)

wherep(x, t) denotes the density at,t) andp is the mean density of the Universe.

5(x, 1) = (2.39)

2.2.1 Linear structure formation

We start with a qualitative description of thef@rent physical processes, whidiiezt a density
perturbation. This can be done bestin Fourier space, we therefore introduce the Fourier transform
of §(x) as

5(k) = fR 3 dx 5(x) €** — 5(x) = fR 3 (gj; 5(k) ek (2.40)

with k as the comoving wave vector. These Fourier modes of the density field evolve inde-
pendently as long as the perturbation is in the linear regime|dige,t)] < 1, furthermore the
evolution of a mode depends only on the magnitudie.dfhis magnitude is related to a charac-
teristic length scale in real space, i= 2r/k. If this length scale is larger than the comoving
horizon (Sect. 2.1.4.4), the perturbation is ndééeted by any physical processes. Once this scale
becomes smaller than the comoving horizon (“the mode enters the horizon”), physical processes
start to influence the perturbation. Knowing that the physical conditions during the radiation-
dominated phase of the universe are substantiatfgrdint compared to the matter-dominated
phase, we deduce that the evolution of a mode which enters the horizon before matter-radiation
equality (see Sect. 2.1.4.4) fidirs from a mode Witldgnier > 8eq, Where we defin@ener as the
expansion factor at the time when the mode enters the horizon.

Qualitatively the evolution of a density fluctuation in time is described as

D.(a)
D.(&)’

5(k,a) = 6i(k) T(K) (2.41)
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whereéi(k) denotes the density perturbation at an initial epach« aeq T(K) the so-called
transfer functionand D, is the growth factor(the subscript is explained in Sect 2.2.1.1). The
transfer function accounts for the evolutiondfk) during the radiation-dominated phase and
through matter-radiation transition (see Sect. 2.2.1.2). The growth factor describes the late-time
evolution in the matter-dominated and dark energy-dominated universe.

2.2.1.1 Growth factor

The evolution of sub-horizon modes can be described by Newtonian gravity. In contrast, we
must refer to General Relativity to describe the super-horizon fluctuations. The dominant particle
species is collisionless dark matter which implies that multi-streams can occur; hence, there is no
well defined velocity field. The proper way of describing such a system employs the collisionless
Boltzmann equations; a thorough treatment can be found in Dodelson (2003). However, we
approximate matter as a pressureless fluid, which is a valid assumption on large scales or at early
times when multi-streams are negligible. The complete set of evolution equations reads

t I .
apgt’ ) +V, - [pu(r,t)] =0 Continuity equation, (2.42)
0 .
a_l: +(U-V)u=-V,6 Euler equation, (2.43)
V2¢ = 4nGp — A Poisson equation, (2.44)

with u as the velocity of the fluidg the gravitational potential andthe proper coordinates.

The Poisson equation was modified by theerm to allow for a cosmological constant. The
homogeneous solution of the above set of equations reproduces the Friedmann equation (2.5).
We transform equations (2.42) - (2.44) to comoving coordinates usieg -, defining the

aft)’
comoving density(r,t) = ﬁ(#t),t) = p(x,t) and decomposing the velocity into homogeneous
expansion and peculiar velocityr, t) = ax + v(x, t). In addition, we insert the definition of the
density contrast (2.39) for the comoving dengitynto the Continuity equation which yields the

following evolution equations in comoving coordinates

06 1 - .
ot avx [(@+68)V] =0 Continuity equation (2.45)
ov a 1 1 :
VSV VIv= V0 Euler equation (2.46)
. 3HZQn . :
2 23 ) Poisson equation, (2.47)

with ®(x, 1) := ¢(ax, t) + é‘76‘|x|2 as the comoving gravitational potential. A unperturbed expanding
Universe corresponds to the solutide 0,v = 0, ® = 0. Recall that we are in the linear regime,
henceld| < 1 and similarly the peculiar velocity is small compared to the homogeneous
expansion of the Universe. We therefore linearize the above equatiensndv. Taking the

time derivative of the linearized continuity equation and the divergence of the linearized Euler
eguation, we combine both with the Poisson equation. Thereby we eliminate the peculiar velocity



18 Chapter 2. Cosmology

and® deriving
#s 2a05 3HiQn
a2
This homogeneous filerential equation describes the evolution of density perturbations in the
linear regime. As the partial derivatives in (2.48) are only taken with respect to time and the
codficients are independent of time we can factorize the equation and obtain the solution

(X, 1) = D.(t)d0.(X) + D_(t)d0-(X) , (2.49)

§=0. (2.48)

with 6o, denoting the density perturbation at a specific time (e.g. today). The fun®ioase
linearly independent solutions of

0°D N 2a0D 3H3Qn
otz a ot 2a3
The functionD_ decreases in timalécaying modg even if it was present at early times it does

not contribute to today’s perturbations. We only consiBer(growing modg as relevant for
structure formation. Equation (2.49) reduces to

o(X,1) = D.(t) do.(x), (2.51)

D=0. (2.50)

which indicates that the initial shape of the density fluctuations in comoving coordinates does
not change with time. A general solution for (2.51) is given by

H(t) ? da’

Ho Jo [Qu/ar + Qa2 — (Qm +Qp - 1)F
with the additional constraint to normalize the functioro(t) = D,(a = 1) = 1. With this
normalizationdp(x) in (2.51) is today’s density contrast according to linear perturbation theory.

The normalized growing mode is called growth factor (see Fig. 2.3). Note that for an EdS-
universe ., = 1.0, Q, = 0), the growth factor scales as the scale factor.

D.(a) x

(2.52)

2.2.1.2 Transfer function

The growth factor only describes the evolution of a perturbations inside the horizon and in a
matter-dominated universe. In addition we need a description for superhorizon perturbations,
both in the matter and radiation-dominated phase, and for modes which enter the horizon before
aeq. For such superhorizon perturbations we must refer to perturbation theory of General Relativ-
ity and can no longer use Newtonian gravity. For a detailed derivation the reader is again referred
to Dodelson (2003). Furthermore, if a mode enters the horizon bafgradiation pressure pre-

vents the perturbation to grow. This meaisf this mode is constant until the Universe becomes
matter-dominated. In summary, one has to distinguish three phases for a mode of a given length
scale and correspondif@gyer

5 o a2 if a < Benter < Beqs (2.53)
6 o« const if Benter < @ < Beq» (2.54)
S a if a> agq. (2.55)
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Figure 2.3: lllustration of the growth factor D depending on scale factor (left panel) and red-
shift (right panel) for diferent density parameters. In case of an Einstein-de Sitter Univexge (
=1,Q,=0) D, evolves similarly to the scale factor. (Figure from Schneider et al. 2006)

We define the transfer function as

Sk,a=1) T
8(ksmall, a=1) .

8(k7 aearly)
6(ksmalb aearly) ’

where the |.h.s. expresses today’s ratio of two density perturbations, and the r.h.s. shows the
same ratio at early times. The transfer function relates both epochs and accounts for a possible
suppression of growth. Note that in the above definikas variable, whereaks,, is fixed to

the scale of a perturbation which enters the horizon at late times. The scalezagjos fixed

such that all scales of interest are outside the horizon at this time. Two limits of the transfer
functions are easy to derive. First, for sniait approaches unity. Second, largeerturbations

are suppressed, which is illustrated in Fig. 2.4. We see that the perturbation is reduced by a factor
of T(K) = (qente(K)/8eq)*. FOra < asqwe can relaté to aeneras follows

Ho VO
C Genter

(2.56)

k~ 1/rn(entedk)) = (2.57)

where in the last step we use (2.25). We seekhatl/agne, hencel « k=2 for largek.

Last, the transfer function depends on the type of dark matter which is dominant in the Universe.
If the Universe was dominated by particles with relativistic velocities, so-chltedark Matter

(for example massive neutrinos), small potential well would not attract enough particles to form
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Figure 2.4: A schematic sketch
of the transfer function. Modes <a?
which enter the horizon before
aeq are suppressed by the factor
(%enter/3eq)®.  (Figure taken from

Schneider 2006) Oerter Oeq a

a perturbation due to the high velocity of the particles. Thiplies that large perturbations

such as clusters and superclusters of galaxies should have formed first. However, when going to
higher redshift, we do not observe the clusters and superclusters, but many isolated galaxies. For
this reason we conclude that Hot Dark Matter only contributes a small fractiQp, tnd prefer

the model ofCold Dark Matter(CDM) where particles move with velocities which are highly
non-relativistic.

In this thesis we use the transfer function fitting formula found by Efstathiou et al. (1992) which
reads

TO) = [1+ (6.4 + (300°2 + (1.7) ] " withv = 1.13. (2.58)
The definitions of g reads
. kMpc
qi= (2.59)

and for the shape parameiewe use the expression given in Sugiyama (1995)

T = Qph exp|-Qu(1 + V2h/Qp)] . (2.60)

2.2.2 Statistical properties of the density field

Structure formation is not able to describe the specific density field in our Universe, we can only
achieve a description of its statistical properties as a function of time. We consider the density
field of our Universe as one realization of a random field, whose statistical properties we want
to determine. In principle, this determination requires an averaging process over many indepen-
dent realizations, however we have only one observable Universe, heneesirable average

must be replaced byalume averageWe average over fferent regions of the Universe with

a separation that is large enough to consider these regions as independent. Then, the statistical
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properties of this random field are described througimidsnentgmean, two-point correlation
function, three-point correlation function, etc.).

For the special case of a Gaussian density field the statistical properties are fully described by the
mean and two-point correlation function (or its Fourier-space equivalent, the power spectrum).
The WMAP 5-years analysis of CMB fluctuations by Komatsu et al. (2008) show no measure-
able deviations from Gaussianity (note that this is questioned by the result of Yadav & Wandelt
2008). If structure growth was linear, today’s density field is a Gaussian random field. However,
structure growth is driven by gravitational instability which is a non-linear process and the ap-
proximation of linear perturbation theory only holds in case the density contrast (2.39) is small.
On small scales, whahgrows larger than 1, non-linear structure growth becomes non-negligible
and causes a coupling of Fourier modes, which implies a non-Gaussian density field today even
if the initial field was Gaussian. Here, structure growth becomes non-linear. We have to consider
non-linear models and higher-order moments of the density field.

2.2.2.1 Power spectrum

The mean of the density field vanish@k)) = 0); we define its two-point correlation function
as

(6(x)0"(y)) := Css(Ix = yl). (2.61)

The homogeneity and isotropy of the density field imply that the two-point correlation function
only depends on the separatipn- y|. Defining the Fourier transform @{x) as in (2.40) and
using expression (2.61), we can calculate

0(k)3(K)) = (27)6p(k — K')Ps(K]) , (2.62)

where we defined the power spectridpas the Fourier transform of the correlation function

Ps(IKl) = fR 3 Py €*Cys(lyl) - (2.63)

The relation (2.41) together with (2.61) and (2.63) enables us to relate a power spectrum at time
t to today’s power spectruy(k)

D% (a)
D% (&)

with P; being the initial power spectrum. Due to the fact that in the very early universe no
characteristic length scale is preferred and that a power law is the only scale invariant function,
one choose®, = AK* (see Sect. 2.2.2.2), whereis a normalization constant amy is the
spectral index, which is assumed to el. The normalization must be determined through
observations. The dispersion of the density field smoothed on ®Rédedefined as

Ps(k, @) = T?(K) P, (2.64)

3
7R = (5509) = [ g3 WFROOL P9 (265)
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with

~ _ ,Sn(kR) — kRcoskR)
Wr(K) = 3 KR :

The above function is the Fourier transform of a spherical top-hat filter function with rediéis
the dark matter distribution follows the galaxy distribution one can measiesimply through
counting galaxies inside spheres of comoving raiasd calculating the dispersion as

_ 2
R - (NR) <N<;1(R)>) ) 267)

(2.66)

Commonly the power spectrum is normalizeddyywhich is defined as

og = Vo(R = 8h-1Mpc). (2.68)

This parameter describes the dispersion of density fluctuations in a sphere with radfibdi:.

2.2.2.2 Inflation and initial power spectrum

In the framework of the standard model two main problems occurfl#tieess problenand

the horizon problem The first questions the extreme fine tuning of the curvatur€ te O in

the early Universe, which is required to explain CMB constraint€)gn € [0.97; 104]. The

second problem addresses the uniform temperature of the CMB. Althoffgledt patches of

the sky have never been in causal contact (the horizon size was smaller thath@ time of
recombination), there exist only small fluctuations. An explanation for both questions is provided
by inflation (Guth 1981), which predicts that the Universe had a very rapid phase of expansion, at
a very early time. This implies a much larger horizon size before inflation which then decreases
due to the rapid expansion. If all scales of the observed CMB were in causal contact before
inflation (which solves the horizon problem) the Universe must have expanded exponentially by
~ 64 e-folds during this epoch. Note, that this also solves the fine tuning of the flatness at the
beginning of the radiation-dominated phase, because any curvature is smoothed out during the
rapid expansion. Very similar to the quintessence dark energy models (see Sect. 2.1.6), one
assumes that inflation is driven by a scalar figl@ith negative pressure and a potential. This
potential must be sficiently flat for the energy density @fto be approximately constant, as the

field rolls downthe potential to its energy ground state (e.g. Linde 1982). Note, that inflation
predicts a scale-free power spectrum with a spectral index slightly smaller than 1. This small
deviation fromng = 1 quantifies the flatness of the poteni&lp), with the limit of ng = 1 for

V(¢) being flat. The WMAP-5years results indicate a slight deviation from a Harrison Zel'dovich
power spectrum, i.ens ~ 0.96'301%.

2.2.2.3 The non-linear power spectrum - HKLM method

As mentioned above, the assumption of a Gaussian density field breaks down on small scales. In
this section, we describe a method to obtain a non-Gaussian power spectrum using a fit-formula
which is calibrated from numerical simulations, the so-called HLKM-method (Hamilton et al.
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1991).

Considering a virialized cluster of galaxies, the internal density structure of such an object stays
constant in timelfypothesis of stable clusteripgt is not &fected by the expansion of the uni-
verse, therefore in comoving coordinates we can consider a virialized object to collapse. Hamil-
ton etal. (1991) introduced twoftierent scalings, the linear one Y which refers to the evolution

of the cluster before its decoupling from the expansion and the nonlineargnedferring to

the time after the collapse. The collapse of a cluster is described as a transition from linear to
non-linear scale. The matter content of the cluster is constant; this matter conservation yields a
relation between the two scales

rE = (l + 6N|_)r§“_ . (269)

An important step in the ansatz of Hamilton et al. (1991) is to relate the déqgsitg the volume
averaged correlation functiaigr) = r=3 for dx3£(X). In order to collapse, the cluster has to exceed

a certain density threshold. Correspondingly this threshold exists in teif(r9;ahore precisely,

if the averaged correlation function exceeds a critical value the cluster collapses. We can rewrite
(2.69) as

ro=1[1 +é?NL(rNL)]%rNL . (2.70)

Hamilton et al. (1991) conjectured the existence of a general relation between linear and non-
linear correlation functions.

Enc () = flén(r)] (2.71)

This assumption was verified by numerical simulations (for EASAADDM) and turns out to be
very dfective. From the correlation function one can calculate the corresponding (dimensionless)
power spectrum (Peacock & Dodds 1994) and rewrite (2.70) as

ke = [1+ A2 (k)] 3K, (2.72)

with A2, = k3/(27%)P; denoting the dimensionless power spectrum lapds the wavenumber.
When transforming into Fourier space, one interpretes the volume averaged correlation function
as a measure for the power at dfieetive scaleke;. The corresponding relation to (2.71) in
Fourier space reads

A (k) = Fuc[A7 (k)] - (2.73)

The functionfy, is fitted from numerical simulations by Peacock & Dodds (1996).

Furthermore, Smith et al. (2003) develop a fit function for the non-linear power spectrum which
is based on the halo model (see Cooray & Sheth 2002, for a review). Here, one assumes that all
mass of the universe is contained in separated spherical or, as an improvement, triaxial objects,
the so-called haloes. These originate from early overdensities in the Universe, which decouple
from the overall expansion, finally collapse and form a halo. By assuming that the typical dis-
tance of two haloes is large compared to their extent, this model allows for the distinction of
two extreme cases, the highly non-linear and the quasi-linear regime. Both are associated with
a power spectrum, i.ePy for the first andPq for the second. The power spectritp, which
accounts for larg& (non-linear scales), is determined solely through the assumed mass profiles
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Figure 2.5: The power spectrum of density fluctuations Phin lines correspond to the linear,

thick lines represent the non-lineag PSmith et al. 2003). Solid and dotted lines correspond to

a flat ACDM model, more precisely, to the cosmology favored by the WMAP 5-years analysis
(table 2.1 last column) for the solid and to the cosmology of the Millennium simulation (Springel
et al. 2005) for the dotted line. The dashed line corresponds to an EdS-universe, the dotted-
dashed line to an open cold-dark-matter (OCDM) univef3g &€ 0.3, Q, = 0). For the EdS and

the OCDM universe, all other parameters are similar to the WMAPS5 results.

of the haloes. In contrast, linear scales (srkpltescribed by, are given by the spatial distri-
bution of the haloes. Smith et al. (2003) combine the two power spectra into the final non-linear
power spectrum

Pni(K) = Pu(K) + Po(k) (2.74)

Although based on the halo model the two individual terms are fitted to numerical simulations.
Examples of the power spectrum for various cosmological are shown in Fig. 2.5. Note that
the spatial mass distribution of the haloes needed to dBgv@epends on the number density of
haloes which again depends on cosmology; Press & Schechter (1974) give an analytic expression
which quantifies the change in number density of haloesith respect to their madd and the
considered cosmic tinte This expression is based on t#herical collapse modélor a detailed
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description see Schneider 2008) and reads

_ V2Qupari Solt) dor(R) 50 (2.75)
VaM  o2(R) dM

Here,o(R) is defined in (2.65), anélq(t) denotes the critical density contrast today (extrapolated
using linear structure growth) which is needed for a perturbation to collapse before cosmic time
t. The quantitys.o(t) depends on cosmology, for an EdS-univefgft) = 1.68/a(t) holds. The
original Press-Schechter theory underwent several improvements, e.g. by replacing the spherical
with the ellipsoidal collapse, Sheth & Tormen (1999) provide a mass function with much better
agreement to numerical simulations. However, their mass function becomes somewhat inaccu-
rate in case oACDM models. This deficit is removed in the fit-formula of Jenkins et al. (2001a)
which shows excellent agreement to numerical simulations of a broad range of cosmologies and
redshifts.

There are other attempts to derive a non-linear power spectrum, e.g. from perturbation theory
(Bernardeau et al. 2002). Note, that this approach fails in the highly non-linear regime, also the
fit-formula of Smith et al. (2003) is not fliciently accurate for precision cosmology. We return

to this issue in chapter 8.

dn
W(M’t) -

2.2.2.4 Higher order moments - the bispectrum

Although the non-linear power spectrum partly describes non-Gaussian features in the density
field, a precise treatment requires knowledge of higher-order moments. The lowest-order di-
agnostic after the power spectrum is the Fourier space equivalent to the three-point correlation
function, the so-called bispectrum. Its definition reads

(8(ka, 1)5(Ka, )3(Ks, 1)) = (27)°6p (ke + ko + Ka) (Bo(Ky, Kz, 1) + By(ka. ks, ) + Bs(ka, ks, 1)) .
(2.76)
Assuming an initial Gaussian density field the bispectrum solely originates from non-linear grav-
itational clustering; it can be approximated through second-order perturbation theory (for a de-
tailed derivation see Bernardeau et al. 2002), explicitly

B5(k1? k2’ t) = F2(kl’ k2’ COSQD) Pﬁ(kl’ t) P5(k2’ t) s (277)

whereP;s denotes the linear power spectrum andges(kiks,)/(kikz). In contrast to the power
spectrum, which only depends on the modulus of a wave vector, the bispectrum depends on three
Fourier vectors. For the case of a EdS-universe the ké¥p(@h, ko, cosp) can be calculated

analytically

1 ki, k 4
Fo(Kye, ko, COSg) = 10, Ccosy (—1 + —2) +=cofg. (2.78)
7 ko ki 7

The cosmology dependenceleif(k,, ko, cosy) is extremely weak and the bispectrum is propor-
tional toP3, hence the reduced bispectrum

B(S(kl’ k2’ t) + B(S(kZ, k3’ t) + Bﬁ(k?n kl, t)
Ps(ki, t) Ps(ka, t) + Ps(kz, t) Ps(ks, t) + Ps(ks, t) Ps(ky, t)

Q(k, ko, cosp, 1) = (2.79)



26 Chapter 2. Cosmology

is almost independent of time and cosmology. It solely refldwe dependence on the configura-
tion of the three Fourier vectoikg, k,, k3. Note that the bispectrum is invariant under rotations

or translations of this Fourier space triangle as a result of statistical homogeneity and isotropy of
the density field.

Similar to the HKLM method there exist methods to calculate a non-linear model for the bis-
pectrum of density fluctuations. This so-called hyper-extended perturbation theory (HEPT) was
first developed for an EdS Universe (Scoccimarro & Frieman 1999) and later extended to vari-
ous CDM models (Scoccimarro & Couchman 2001). In this theory, théicmats of the kernel
(2.78) are modified by amended fitting functions. These fitting functions are calibrated from nu-
merical simulations, accounting for the non-linear evolution of the bispectrum with an average
accuracy of 15%. Note that recently a new ansatz was proposed by Pan et al. (2007), who cal-
culate the non-linear bispectrum as a function of the non-linear power spectrum, similar to the
corresponding linear relation in (2.77).

2.3 Measurements of cosmological parameters

In the last 20 years the results on cosmological parameters progressed from vague estimates with
large error bars to an impressive accuracy today, which will be improved even more with future
high-precision data. In this section we outline the most important results and give references for
further reading.

2.3.1 The Hubble constant

The first measurement of a cosmological parameter was performed by Edwin Hubble (Hub-
ble 1929), who recognized that the recession velocity of nearby objects is proportional to their
distance and quantified this relation via the Hubble condtianisee Sect. 2.1.3). Hubble un-
derestimated the influence of peculiar velocities of the observed objects and overestimated the
Hubble constant, giving a value of 500 kit $1pct. More recently, thédST Key Projectea-

sured the period and brightness of cepheids in other galaxies and determined their luminosity
distance using the fact that we can calculate the maximum luminosity from the period. Plotting
the recession velocity of the observed galaxies against their distance we can determine the Hub-
ble constant (Freedman et al. 2001). In addition to cepheids, Freedman et al. (2001) use various
distance measures to determine the Hubble constant, e.g. Type la supernovae, the Tully-Fisher
relation, surface brightness fluctuations, Type Il supernovae, and the fundamental plane. They
combine and weight the individual results and find good agreement with

km

Ho=(72+8 :
0= (72+ )SMpC

(2.80)

This value is confirmed by other experiments. For example, Riess et al. (2005) claim that earlier
disagreement of SN la estimatesthf was only due to bad data, with their new data sample and
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analysis they give
km
Ho = 73 + 4(statistical} 5(systematic : 2.81
0 + 4(statistical}x 5(sy ' ZM—DC ( )
This agrees well with the result from WMAP. In their analysig is not measured directly,

however under the assumption of zero curvature and the existence of a cosmological constant
term, one can put the tightest constraintd-y(see Komatsu et al. 2008), i.e

km
s Mpc’

Ho = (701 + 1.3) (2.82)

Last but not least, the Hubble constant can be obtained from the relative time delays between mul-
tiple images of a lensed quasar. From 10 of such multiple-image systems Kochanek & Schechter
(2004) derive a Hubble constant of

km
s Mpc’

Ho = (71+ 3) (2.83)
For more information on the use of time delays to estinkitthe reader is referred to the projects
COSMOGRAIE andHOLIGRAILS.

2.3.2 Density parameters from CMB

Due to small inhomogeneities at the time of recombination (see Sect. 2.1.5) one expects small
anisotropies in the CMB. These temperature fluctuations are due to rfianfsewe distinguish
primary and secondaryanisotropies. The primary anisotropies result from physical processes
before recombination, secondary anisotropies occur later, while photons propagate through the
Universe (e.g. the Sunyaev-Zel'dovickfect). The temperature fluctuations are expanded in
spherical harmonic€,, wheref is the frequency mode which is inverse proportional to the an-
gular scale. On scales larger than the horizon, the temperature fluctuations can be approximated
analytically (Sachs & Wolfe 1967). The authors calculate tas 1)C, is constant for smalf

in an EdS-universeSachs-Wolfefect). This is the reason why CMB scientists plgf + 1)C,
against, instead ofC, only (see Fig. 2.6). The most prominent features in the CMB power spec-
trum of temperature fluctuations are theoustic peaksBefore recombination, the baryons and
photons can be described as a perfect fluid. On scales smaller than the horizon, the baryon fluid
is attracted towards the potential wells, formed by the dark matter perturbations. The radiation
pressure counteracts this attraction, as a result the baryon-photon fluid starts to oscillate. When
the photons decouple this oscillation is frozen into the CMB with a characteristic wavelength,
the so-calledsound horizorat the time of recombinatiofi,ay = tecCs. Due to the domination of

the photons in the baryon-photon fluid, the sound speed is giveyn byc/ V3, hence we can

relate the angular scales of the sound horizon to the actual horizéng ~ié,/ V3. The size of

the horizon is directly related to cosmological parameters; for a flat universe the sound horizon
corresponds to an angular scal@gof 1°, which corresponds t6~ 200 in spherical harmonics.

2http;//www.cosmograil.org
Shttpy/www.astro.uni-bonn.geholigrail
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Figure 2.6: The power spectrum of temperature fluctuation as obtained from WMAP. One nicely
sees the acoustic peaks@at- 200 and integer multiples thereof. The shaded area to the left
illustrates the uncertainty due to cosmic variance. (Figure from Hinshaw et al. 2003)

Here, and on integer multiples 6% 200, we expect maxima in the CMB power spectrum. For a
positive curvaturefs decreases, shifting the peaks in the power spectrum to higfeemegative
curvature vice versa. This behavior and the dependence of the CMB temperature fluctuations on
other parameterg),, Qy,, Q) are illustrated in Fig. 2.7. A change §, hardly has any impact
which indicates that dark energy was not dominant at the time of recombination. Variations in
Q, andQ, basically changes the amplitude of the acoustic peaks but hafdbt their positions.

Note that the strongest constraints coming from the CMB are on the curvature; the assumption
of a flat Universe is mainly justified by the CMB.

2.3.3 Galaxy surveys and Baryonic Acoustic Oscillations

In Sect. 2.2.1 we describe how the power spectrum of density fluctudjodsepends on cos-
mological parameters; models for the power spectrum can be obtained e.g. via the methods
described in Sect. 2.2.2.3. By comparing these models to the measured power spectrum one can
estimate cosmological parameters. Galaxy redshift surveys map the galaxy distribution and as-
sume that this is, up to a constahigs) factor, a good tracer for the dark matter distribution. The

bias factor relates the power spectum of the number density of galaxigsite. P; = b?Pgy.

Strictly speaking, this bias factor cannot be derived from theory, nevertheless it seems reason-
able in the linear regime but definitely breaks down on non-linear scales. With the definition

of o5 (2.68), we see thats = ogga/b. The bias factor can be determined through numerical
simulations by measuring the simulated dark matter distribution to the simulated galaxy distri-
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Figure 2.7: Variation of the acoustic peaks in the anisotropy power spectrum of the CMB with
respect to several parameters. (Figure from &iDodelson 2002)

bution. Hence, by measuring o from data, one can directly constraig. Simon et al. (2007)
use weak lensing data to constrain the bias factor arrividg~a0.8 + 0.11. In addition toog,
one can determine the shape paramEtésee equation 2.60) from a measuid and thereby
constrainQ),, andQ,. The matter power spectrum is one of the most important quantities in cos-
mology, the level to which we can constrd® quantifies our ability to constrain cosmological
parameters. Note that there are several experiments which coridfrggae Fig. 2.8), all with
different sensitivities at ffierent scales.

Very recently a new probe for cosmology has emerged from galaxy redshift surveys, the so-
called Baryonic Acoustic Oscillations (BAQsRecall that the characteristic acoustic peaks in
the CMB power spectrum occur because the baryons are driven out of the dark matter potential
wells by the photon pressure. After recombination the separation of baryon overdensities remain
separated from the dark matter overdensities by a characteristic comoving scale. As the Universe
evolves both overdensities attract further matter, resulting in overdense regions. Hence, these
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Figure 2.8: The power

spectrum of density fluctua-
tions. This figure especially
illustrates the variety of cos-
mological experiments which
can constrain the power
spectrum. Note that every
experiment has a preferred
scale at which its sensitivity
is high. Only by combining
several experiments we are
able to probe all scales in the
power spectrum. Figure from
Max Tegmark’s homepage.

characteristic scales are also imprinted in today’s matiegélaxy) density power spectrum,
resulting in the so-called baryonic acoustic peaks. Measuring the characteristic scales in the
CMB temperature fluctuations power spectrum and in today’s matter power spectrum provides
a relation between angular diameter distance and redshift (a so-called “standard ruler”), which
allows us to constrain the geometry and therefore the density parameters in the Universe. The
first of these acoustic peaks has been detected in the matter power spectrum by Eisenstein et al.
(2005); Cole et al. (2005); Huetsi (2005). Recently Gaztanaga et al. (2008a) claim to observe
this peak also in the three-point correlation function of the galaxies. Gaztanaga et al. (2008b)
measure the Hubble constant using BAOs with a resutiof 71.7 + 1.6#”:00 and also combine

BAOs with other cosmological probes to constrain the dark energy equation of state parameter
w = 0.96 + 0.05. Note that this method strongly depends on the bias factor which again depends
on the wave number (Sanchez & Cole 2008) and varies with redshift. A proper treatment of this
issue is needed for precision cosmology constraints with BAO.

2.3.4 Clusters

Based on the model of spherical collapse, the Press-Schechter mass function predicts the number
density of dark matter haloes depending on their mass and redshift. As mentioned earlier this
model has been improved by numerical simulations (Jenkins et al. 2001b; Evrard et al. 2002); it
depends strongly on cosmology, e.g. in a flat EdS-universe, the growth function has a smaller
amplitude (see Fig. 2.3) compared tA& DM model. Going back in redshift one therefore
expects much less structure for an EdS-universe compared @DV model. By comparing
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the observations of cluster number density to the predistidivarious models we can constrain
cosmological parameters (Henry 2004; Kravtsov et al. 2006; Mantz et al. 2008). Allen et al.
(2008) use the gas-to-mass fractidg.d inside clusters to probe the accelerated expansion of
the Universe. This method assumes thatis constant in redshift, which has been checked for

by numerical simulations. In addition, one can udggto estimateQ,, (Allen et al. 2008, and
references therein). Based on the fact that the intra cluster gas contains the dominant fraction of
baryonic matter, and assuming that this fraction is representative for the Universe, one can cal-
culateQ, =~ Qp,/fyas The second assumption is justified by the facts that clusters are the largest
bound structures in the Universe and tligt is almost constant for fferent clusters. Cluster
samples can also be used to constrain the matter power spectrum, similar to galaxy surveys. This
method is especially useful to constrain the large scales of the power spectrum (see Fig. 2.8).

2.3.5 Supernova Type la

We already mentioned in Sect. 2.1.6 that SN la experiments provided the first evidence for an
accelerated expansion of the Universe and hence for dark energy (Riess et al. 1998; Perimutter
etal. 1999). A SN la is an explosion of a white dwarf which accretes mass and exceeds a critical
mass limit, which is the same for all SN la. Therefore, one might assume that the luminosity
of all SN la explosions is the same, meaning SN la are so-called “standard candles”. In a strict
sense this is not true, since the maximum luminosity of a SN la varies, however, there is a relation
between shape of the lightcurve and the luminosity, which enables us to standardize the SN Ia.
Hence, we can measure the luminosity distance of these supernovae, which eviérestti

in redshift for diferent cosmological models (see Fig. 2.9). As a reference model we consider
the evolution of the luminosity distance in an empty universe. For cosmological models without
cosmological constant (e.g. an EdS universe) the luminosity distance will be lower. The fact
that forz < 1 we observe a higher apparent magnitude compared to an empty universe can only
be explained through an accelerated expansion and therefore implies a dark energy component.
Since the first results in 1998, the search for SN la has been extended to a much larger sample
(Astier et al. 2006) and to higher redshift, i.e.= 1.7 (Kuznetsova et al. 2008). When going

to these high redshifts, the apparent magnitude of SN la is lower compared to what one expects
in an empty universe. This can be explained by the fact that the Universe at these redshifts was
matter-dominated in this epoch. The main problem of SN la are evolutioffi@st® such as a
redshift-dependent critical mass limit for the explosion, which could results in a lower luminosity
for high-redshift SNe la.

2.3.6 The concordance model

Table 2.1 shows the most recent highlight in cosmological parameter estimation, i.e. the 5 years
data analysis from WMAP (Komatsu et al. 2008, and references therein). The table is divided
into two parts, the upper describing parameter which are directly observable through WMAP, the
lower contains parameters which are derived including prior information. The third column sum-
marizes the constraints from a joint parameter estimate of WMAP, a combined SN type la sample
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Figure 2.9: This figure shows the glerence between the distance modulus of SN la measure-
ments and that expected in an empty universe as a function of redshift. This function can be
predicted depending on the cosmological models, e.g. EdS (solid line) ar@ld model
(dashed line). The data points clearly favor the latter model. (From Riess et al. 2004)

Table 2.1: Cosmological parameters for &CDM model from the WMAP 5 years analysis (Ko-
matsu et al. 2008)
Parameter WMAP 5-year ML WMAP 5-year Mean WMABAO+SN Mean

1000,h? 2.268 2273+ 0.062 2265+ 0.059
Q. 0.1081 01099+ 0.0062 01143+ 0.0034
Qa 0.751 0742+ 0.030 Q721+ 0.015

ne 0.961 09630014 0.960:2914

o 0.787 Q796+ 0.036 Q817+ 0.026
Ho 72.4 km/s/Mpc 71928 kmys/Mpc 701 + 1.3 knys/Mpc
Qp 0.0432 00441+ 0.0030 00462+ 0.0015
Q. 0.206 0214+ 0.027 0233+ 0.013
Qnh? 0.1308 01326+ 0.0063 01369+ 0.0037

1 Q. denotes the cold dark matter componen€xf

(Riess et al. 2004, 2007; Astier et al. 2006; Wood-Vasey et al. 2007), and Baryonic Acoustic Os-
cillations from the SDSS and 2dFGRS (Percival et al. 2007). In chapter 7 we will refer to these
estimates and the corresponding confidence intervals. Combining several cosmological probes
improves the constraints significantly becaud€edent probes have fiierent parameter degen-
eracies, which can be broken in a combined analysis. In addition to the cosmological probes
described in this chapter, there exist several others, e.g. Sunyaev-Zel'd&@char the Ly-

man alpha forest, which we do not explain in detail. Also cosmic shear is not discussed in this
chapter; we postpone this to chapter 3.3. However, all these cosmological probes agree on the
cosmological model summarized in table 2.1, and this agreement is truly remarkable. Especially,
if we take into account that all the aforementioned experiments test viéeyatit physical pro-
cesses, at very filerent cosmic time, it is astonishing how well tN€ DM model combined with
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our picture of structure formation is able to explain the owsons. We therefore consider this
concordance model as a robust theory on which future cosmological projects should be based.
Today’s open questions mainly address the nature of dark matter and dark energy. Especially
dark energy poses one of the most interesting mysteries, for which many future experiments are
proposed. For a detailed analysis which of théedent methods is most suitable to constrain the
dark energy parameters, we refer the reader to Albrecht et al. (2006) and Peacock et al. (2006).
Note, that cosmic shear is considered to be one of the most promising methods.
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Chapter 3

Gravitational Lensing and Cosmic Shear

Based on Einstein’s theory of General Relativity, gravitational lensing describes the behavior
of light rays in a gravitational field. It can be used as a direct measure for matter distributions
on all scales, starting from small masses like stars and galaxies up to large mass distributions
like clusters of galaxies or the Large Scale Structure (LSS) of the Universe. Compared to other
methods, gravitational lensing has the advantage to probe all types of matter directly, regardless
whether it is dark or luminous. Depending on the mass of the considered lens, gravitational
lensing is divided into two regimes. Btrong lensinghigh mass distributions (galaxies or clus-

ters of galaxies) create multiple distorted and magnified images. In comtesest,lensingleals

with numerous background sources which are also distorted and magnified bitiethésanuch
smaller compared to strong lensing. For this reason weak lensing must be studied statistically
by averaging over a large number of images. This chapter starts with the basic theory of gravita-
tional lensing. We briefly explain strong lensing, but focus in much more detail on weak lensing,
in particular on weak gravitational lensing by the LSS, catledmic shear

3.1 Deflection of light

Consider a light ray which is bend in the gravitational potential of a point ivgske deflection
angle of this ray can be calculated as

R AGM 2R
=G
whereé is the impact parameter afy the Schwarzschild radius of the mags This equation

only holds for a small deflection angte< 1 which is always true in case of a weak Newtonian
gravitational potential€/c?> < 1). The deflection angle caused by a mass distribution can be
calculated by the vectorial sum of the deflections caused by the individual mass elements. As-
suming a small deflection angle¢ak field assumptignand a mass distribution with an extent
much smaller than the distances between source, lens and obseirvéar(s approximatioythe

mass distribution of the lens is characterized byshdgace mass density

() = fdfsp(fl,fz, rs) . (3.2)

(3.1)

35
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Here, we choose coordinates such thatoints towards the line of sight adtl= (£1, £,) being
a vector in the plane perpendicularrtp(see Fig. 3.1).0(¢1,&>,13) is the volume density. In-
tegration over the individual mass elements’at (&7, &5, rs) and inserting the definition of the
surface mass density gives

@) = de(flascz’ 3) f i_-,|2

— fdz fdrsp(fl’fz’ rs) f i:/|2

2
fd (§)|§, §’|2' (3.3)

This equation can be applied to galaxies and clusters of galaxies which fulfill the condition of
the thin lens approximation, but it becomes inaccurate for cosmic shear.

3.1.1 Lensequation

Source plane

|

|

| .

: Dds

I :

! ;

| ! /

[ : /

|

g Ds
Lens plane

| B

; D

Observer

Figure 3.1: This figure illustrates a typical lensing situation as described in the text. Note that
&,n, B, 6, @ are two-component quantities. (Figure from Schneider et al. 2006)
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Figure 3.1 shows a light source at distarizgefrom the observer and a gravitational lens
lying on the line of sight at distandgy from the observer. Looking for a relation between the
true positiory of the light source in theource planeand the observed positignof the image in
thelens planewe find

D A
n =3¢~ Dat(f) (3.4)
d
Using
n=DsB and §£=D¢0, (3.5)
we are able to express the lens equation in terms of the angular positions
B=6- %%(Ddo) =0-a(h) (3.6)
S

where a(6) is the so-calledscaled deflection angleFrom the observer’s point of vieyg is

the angular position of the unlensed source @mslthe angular image position. The deflection
angle only depends on surface mass density and impact parameter. It is possible to have multiple
images for a source, corresponding to multiple solut@fer fixed g in the lens equation. The
decisive quantity for the occurrencemultiple images istfitecal surface mass density

ZCT - 47TG DdDds ’ (37)
which is used to define theonvergence
(D
«(0) = (Dab) (3.8)
z"CI’

Multiple images become possible, if the surface mass density exceeds the critical surface mass
density, which is obviously the case for- 1. Lenses withk > 1 are called strong lenses whereas

for k < 1 we are in the weak lensing regime and multiple images are impossible. We write the
scaled deflection angle in terms:of

a(6) = % f d29’K(9’)|00__:,|2 : (3.9)
and by introducing the deflection potential
w(6) = % f d’0’ k(0') In|0 - 6’|, (3.10)
we expresg in terms of the deflection potential
@=Vy. (3.11)

The two-dimensional Poisson equation gives the convergeasesecond derivative of the de-

flection potential

K= %vzw (3.12)

and can be derived from (3.10) usiFgIn |6] = 27 (6).
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3.1.2 Distortion and magnification

Liouville’s theorem guarantees conservation of the surface brightness in the absence of absorp-
tion or emission of photons. Hence, we dedu@ = 19[8(0)] with 1(#) and1®(8) denoting

the radiation intensity of image and source. Assuming that the angular diameter of the source is
small compared to the scale on which the density of the lens changes, we can locally linearize
the lens mapping and describe the surface brightness of an image around a fixég ppint

1(6) = 19[B(60) + A(B) - (6 — 6o)] - (3.13)

Distortion and magnification are then given by the Jacobian of the lens equation (3.6)

A

B dai(6) 0*y(6)
_ P s — —|s5. = _ 3.14
00 ( o6, 106,00 (3.14)
We define theshearas a complex number := y; + iy, = |y|€?¥, and the shear components are
related to the deflection potential as

1
Y1 = é (8181(// - 8282170) and Y2 = 8182170 s (315)

Using (3.15) and (3.12) the Jacobian matrixcan be parameterized through convergence and
shear

l-k-—v =72
A= . 3.16
( —Y2 1—K+7’1) ( )

To illustrate the meaning efandy we decomposé into a diagonal and a trace-free part

A0) = (1—K)( Cl) 2)—7( ansgﬁ)) _Sgg(sz(‘gi) ) (3.17)

The convergence magnifies the image isotropically, whergamaps a circular source onto an
elliptical image (Fig. 3.3). The ratio of the semi-axes of the ellipse is determined by the eigen-
values ofA. As mentioned at the beginning of this section the surface brightness is conserved,
however the image’s shape and size is distorted. This results in a (de-)magnification, which we
define as the ratio of image flu& [given by the integral ovel(6)] to source fluxS, [given by

the integral ovet®)(B)]. This ratio is calculated to be the inverse of the determinarfl of

_E_ 1 1
K So detA (1-k)?-WP

(3.18)

The magnification is given bju| but u in general can have either sign; the sign expresses the
parity of the image with respect to the unlensed source.
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3.1.3 Caustics and critical curves

Curves in the lens plane where the determinant of the Jacobian matri(@tvanishes are
calledcritical curves Mapping a critical curve to the source plane using the lens equation gives

a so-calleccaustic Whenever a source crosses a caustic two images in the lens plane are either
created or destroyed. Every source close to and ihsidmustic causes two highly magnified
images, one on each side of the critical curve. As proved by Burke (1981) the absolute number of
images created by a lens must be odd, although observations of most lens systems show an even
number. This is due to one highly de-magnified image in most lens systems whiéiicisldio
observe. In contrast to critical curves which are always smooth, caustics have cusps. A source
just inside and very close to such a cusp produces three highly magnified images. In case of an
extended source lying exactly on a caustic its images will merge. The resulting image is highly
magnified; this &ect leads to the giant luminous arcs which we observe for example in the inner
region of the galaxy cluster Abell 1689 (Fig. 3.2).

3.2 Weak lensing

The weak lensing regime is characterizedsby 1 and|y| < 1. Here, the Jacobian matrir

is close to the unit matrix, distortions and magnifications are much harder to identify. To detect
the weak lensingféect we need a statistical approach, i.e. we have to consider a large sample of
galaxy images, from which we determine the shapes. First, we introducediheed shear

Yl o

which is a complex quantity and describes the degree of distortion. The plyages the orien-
tation of the distorted image. The Jacobidrcan be expressed in termsgf

A=(1-x) ( 1_‘gfl e ) . (3.20)

If the sources were circular their images would be ellipses with a ratio of axes given by (see Fig.

3.3)
a_ 1-Jg|

b 1+l

Unfortunately, the source galaxies are not intrinsically round. The image that we observe must
be decomposed into intrinsic ellipticief®) and the distortion as a result from lensing. In order to
measure the ellipticity of an image and to relate it to the source ellipticity, we define the center
of an object with brightness distributid(@) on the sky as

2
;. [d?01(6) ai[1 (6)] 0’ (3.22)

J @20 1(6) al1()]

inside” means the side of a caustic where the number of produced images is larger

(3.21)
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Figure 3.2: This image of the inner region of Abell 1689 was taken with the/AGS camera.
One can see the luminous arcs which are highly magnified and distorted images of background
galaxies on a caustic. (Figure credits to the Space Telescope Science Institute)

whereq(l) is a weight function in order to suppress the noise coming from the brightness of the
surrounding area. Furthermore, we define the tensor of second brightness moments

. [P01@) alio)] 6 - 6)0; - )

;i : @016 a0 @] i,j e {1,2. (3.23)

2
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convergence and
shear

o convergence only
€

Figure 3.3: This illustration shows the mapping in case of a circular source. Considering only
the gfect of the convergence the source is simply magnified to a larger circle. The shear addi-
tionally distorts the image to an ellipse depending on the phase of the ghegigure from
Marusa Bradac)

We can now quantify the complex ellipticity of a galaxy in terms of@eas

Qll - sz + 2iQ12

e=q t+ie = , (3.24)
1/2
Qu+Qxp+?2 (Qllez - QiZ)
and
. Qll - sz + 2iQ12
=y1+iys = , 3.25
X =x1+ixz Q100 (3.25)
which are related to each other by
X 2¢ (3.26)

E=——"™—, = .
1+ (1-|yP)z X Th e

Using the second-order brightness tensor for the unlensed source and the angular cogirdinates

[ B 19(6) a[19B)] (5 - B)B; - B;)
[ 28 1606) qi[19(B)]

QY = . ij e L2 (3.27)

we define a complex ellipticity for the soure& andy(®), similar to (3.24, 3.25). The relation
between source and image tensor then reads

Q® = AB) QA6). (3.28)
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Inserting the above relation into the definition of the eitiptes Seitz & Schneider (1995, 1997)
derive the following relation between source and observed ellipticities

€-49g

for g <1
®) 1-ge ©) X—29+g%x
£ _ . . 3.29
1 ge Y= TR - 2Relr) (3.29)
—— for |g|>1
€ —Jg

We assume that there is no preferred intrinsic orientation of galaxy ellipticities in the Universe.
Therefore, the expectation value of the source ellipticities should be zero

(e9)=0=(x"). (3.30)

With the above relation the expectation value of the observed elliptaiyn be calculated as
(Schramm & Kayser 1995; Seitz & Schneider 1997)

g for |g/<1

(€) = 1 ) (3.31)
— for |g|>1
9

In the weak lensing regime: (<« 1 andly] < 1) the expression for the reduced shear (3.19)
reduces t@g ~ y. Similarly, Seitz & Schneider (1995) have shown that in the weak lensing regime
1/2{x) = (e) holds, which implies that any measured galaxy ellipticity is a (very noisy) measure
of the local shear. The noise is given by the dispersion oirttimsic ellipticity dispersioni.e.

T = AJ(e®)e®)). (3.32)

By averaging ovelN galaxy images, which were all distorted by the same local sleais
reduced by a factor of¥N. The value,o./ VN denotes the 1r deviation of observed mean
ellipticity from true shear.

3.3 Cosmic Shear

In contrast to the last sections, where we describe the lenfliect ®f local mass distributions

like galaxies or clusters, cosmic shear is subject to light deflection of the large-scale structure
(LSS) in the Universe itself. In particular, the concept of a thin lens fails for cosmic shear and
must be replaced by an extended three-dimensional matter distribution. Light bundles emitted
from distant galaxies travel through this inhomogeneous matter distribution and are continuously
distorted. These distortions in shape and size of the galaxy images can be measured statistically
and provide information on the LSS and on cosmological parameters.

In the following we briefly describe the theory of cosmic shear, focussing on its various measures,
their interrelations and covariances. Cosmic shear has progressed into a very important tool in
observational cosmology during the recent years. We therefore conclude this section with a short
review of its main achievements, future prospects and current challenges.
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Figure 3.4: This figure illustrates the principle of cosmic shear. Light rays from source galax-
ies are continuously deflected by the inhomogeneous matter distribution in the Universe. The
observed images are therefore distorted. (Image credit: DESCART project at IAP, France)

3.3.1 Propagation of light in a 3-D matter distribution

This section reviews the technical details of lensifig&s in an inhomogeneous matter distri-
bution; for a more thorough treatment on the derivation we refer the reader to Bartelmann &
Schneider (2001) or Schneider et al. (2006).
In order to investigate the propagation of light we consider a situation as illustrated in Fig. 3.5
and examine, how a comoving separation veg{éry) of two light rays evolves. We only con-
sider weak gravitational perturbations; for this case the propagation equati(@,fe) reads
2

% +Kx = —é |V.0(x(8.x).x) - V.0O)] . (3.33)
whereK is the spatial curvature of the Universe as defined in (2.X4)is the transverse co-
moving gradient operator arb(®)(y) denotes the Newtonian potential along the fiducial ray. An
exact derivation of (3.33) is given in Bartelmann & Schneider (2001). Thisréntial equation
can be