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1. Summary 

 

Lymphatic filariasis and onchocerciasis are debilitating human diseases in developing tropical 

countries. Currently implemented treatment strategies are mainly effective against the 

microfilarial stage (first stage larvae) of the nematode parasite. Concerns regarding the 

increasing evidence of the development of drug resistance have stimulated the search for new 

drug targets and drugs. Wolbachia bacteria of filarial nematodes play an important role in the 

reproduction, development and pathogenesis of human filarial nematodes such as Wuchereria 

bancrofti, Brugia malayi and Onchocerca volvulus and are targets for the control of filarial 

infections. 

 

The thesis investigates the endosymbiosis between Wolbachia and their host filarial nematodes. 

The rodent filaria Litomosoides sigmodontis harbour Wolbachia endosymbionts and the pattern 

of infection and migration of these developing parasites mimics that of human filarial parasites 

such as W. bancrofti and O. volvulus.  The first aim of the thesis was to study the effect of 

tetracycline, which depletes Wolbachia, on the development of microfilariae (L1 larvae, MF) to 

L3 larvae in the intermediate mite host Ornithonyssus bacoti, and to observe the development of 

Wolbachia depleted L3 larvae in Mongolian gerbils (Meriones unguiculatus). Microfilaremic 

gerbils were treated with tetracycline for 6 weeks in drinking water (1º Tet) or left untreated (1º 

Con). Naive mites were then fed on the 1º Tet and 1º Con gerbils and were used to infect 

uninfected gerbils (2º Tet, 2º Con). Fewer female worms developed in 2º Tet gerbils but there 

was no significant difference in the number of male worms that developed in 2º Tet and 2º Con 

gerbils, resulting in a male biased sex-ratio. Although 2º Tet male worms had fewer Wolbachia 

than 2º Con males, this did not impair their development. Female worms that developed from 

Wolbachia-depleted MF had numbers of Wolbachia equivalent to worms from 2º Con animals. 

Therefore, tetracycline pre-treatment selected for female worms with higher numbers of 

Wolbachia. Male worms did not show the same dependence on Wolbachia for their 

development, in that all male worms that developed in 2º Tet gerbils had median Wolbachia 

levels significantly lower than 2º Con males. Therefore, female worms require a higher threshold 

of Wolbachia to develop from L3 into adults. The number of MF that developed into L3 larvae in 

naive mites after feeding on the Wolbachia-depleted MF in 1º Tet gerbils was also significantly 

lower than controls. Since the worms analyzed were only exposed to tetracycline as MF, the 
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experimental set-up rules out direct effects of tetracycline during larval development in the mites 

or 2º infected gerbils, suggesting that the initial loss of Wolbachia in MF was the cause of 

impaired larval development, not an antifilarial effect of tetracycline.  

 

The second aim of the thesis was to study the molecular basis governing endosymbiosis between 

Wolbachia and their filarial host - L. sigmodontis. Predictions made from the Wolbachia genome 

of Brugia malayi (wBm) suggests that several metabolic pathways of Wolbachia and the 

nematode host could play an important role in endosymbiosis between them. Previously in our 

research group, Heider et al., 2006 studied the gene expression of L. sigmodontis during 

Wolbachia depletion using differential display which revealed an up-regulation of a phosphate 

permease gene (Ls-ppe-1). We hypothesized that Ls-ppe-1 had an important role in nucleotide 

metabolism as depletion of Wolbachia induced expression of Ls-ppe-1, perhaps to compensate 

for lack of nucleotides in the absence of their endobacteria. To test this hypothesis, firstly, the 

regulation of phosphate permease during Wolbachia depletion was studied at the protein level in 

L. sigmodontis and O. volvulus, and secondly, the localization of phosphate permease and 

Wolbachia in L. sigmodontis and O. volvulus were investigated in untreated and antibiotic treated 

filarial worms. Results of the studies show the up-regulation of L. sigmodontis phosphate 

permease (Ls-PPE) both at the mRNA and protein levels and immunohistology results 

demonstrate that Ls-PPE is localized to areas of the worms that contain Wolbachia. Results also 

demonstrated the up-regulation of O. volvulus phosphate permease (Ov-PPE) at the protein level 

during Wolbachia depletion by doxycycline treatment of onchocerciasis. Ls-PPE and Ov-PPE 

co-localized to compartments of the worms where Wolbachia are in abundance. Hence, the 

results demonstrate that Ls-PPE and Ov-PPE are up-regulated where Wolbachia are located and 

suggests that these proteins could have a direct functional role in the symbiosis between filarial 

nematodes and their Wolbachia. Up-regulation of phosphate permease in response to Wolbachia 

depletion in filarial nematodes suggest that the functions of phosphate permease could involve 

provision or transportation of phosphate to the Wolbachia symbionts, which encode all the genes 

for the de novo synthesis of nucleotides. Further ultrastructural analysis using electron 

microscopy promises to bring insight into the molecular interaction between phosphate 

permeases and Wolbachia. 
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2. Introduction 

 

Filarial infections such as lymphatic filariasis and onchocerciasis, caused by tissue-invading 

parasitic worms of the phylum Nematoda, cause a wide range of clinical signs and symptoms, 

including lymphoedema, hydrocele, elephantiasis or dermatitis and blindness. These filarial 

infections lead to severe morbidity and considerable socio-economic problems throughout the 

tropics. Lymphatic filariasis (LF) affects more than 120 million people (WHO, 2006) and 

onchocerciasis affects as many as 37-40 million people (WHO, 2007).  Filariasis is still 

considered to be the third most important tropical disease worldwide based on Disability 

Adjusted Life Years (DALY) as a measure of disease burden. LF is mainly distributed in 

countries in Latin America, Africa and South East Asia (Fig. 1). 

 

 
 

Fig. 1. Global distribution of lymphatic filariasis showing endemic areas and areas where MDA is implemented. 

Source: WHO/TDR, www.who.int/tdr/. 
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2.1. Lymphatic filariasis 

 

In 2006, the World Health Organisation estimated that over 1.3 billion people are at risk of 

lymphatic filariasis (LF), a devastating parasitic infection spread by mosquitos (WHO, 2006). LF 

is caused by thread-like parasitic worms that damage the human lymphatic system. The main 

causative agents of LF are Wuchereria bancrofti, Brugia malayi and Brugia timori and nearly 

80% of the infection in the endemic areas is due to W. bancrofti (Michael and Bundy, 1997). LF 

is considered as one of the world's most disabling and disfiguring diseases. The disease is 

estimated to infect over 120 million people, with more than 40 million incapacitated or 

disfigured with swelling of the limbs and breasts (lymphoedema) and genitals (hydrocele), or 

swollen limbs with dramatically thickened, hard, rough and fissured skin (elephantiasis). LF 

prevents afflicted individuals from experiencing a normal working and social life, furthering the 

cycle of poverty (WHO, 2005; WHO, 2006). Treatment costs and loss of work time caused LF 

are considerable and leads to major annual economic loss in developing countries such as India 

(Ramaiah et al., 2000). 

 

2.1.1. Life cycle of Wuchereria bancrofti 

 

LF is largely caused by W. bancrofti and is spread from an infected human, i.e. someone with 

worms in their bloodstream, to an uninfected human by mosquitos. Adult worms live in infected 

human's lymphatic vessels. The adult worms are 0.2 mm wide and can be up to 10 cm long. They 

survive for up to 10 years. The female worms release large numbers of very small larvae called 

microfilariae (L1/MF) [250 to 300 µm long and 8 µm wide], which circulate in an infected 

person's bloodstream. When an infected human is bitten by a mosquito, the mosquito ingests the 

L1 larvae. The most important species of vector is Culex quinquefasciatus. The larvae develop in 

the mosquito into an infective stage (L3 larvae) and are then spread to other people via mosquito 

bites (Fig. 2). After a bite, the larvae pass through the skin, travel to the lymphatic vessels and 

develop into adult worms. Approximately 6 to 12 months after infection, MF appear in the 

circulation. Every day, the female worm produces numerous MF (Dreyer et al., 2000). 
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Fig. 2. Life cycle of Wuchereria bancrofti. Source: WHO/www.filariasis.org 

 

2.1.2. Pathogenesis of LF 

 

The clinical manifestations associated with lymphatic filariasis can be asymptomatic or chronic. 

Asymptomatic individuals have detectable microfilaremia but without any outwardly discernible 

manifestations of lymphatic insufficiency on clinical examination, whereas chronic individuals 

have clinical evidence of lymphatic insufficiency or obstruction and are generally 

amicrofilaremic (Freedman, 1998). The adult worm induces severe immunological reaction. The 

basic lesion is a sterile inflammation around the worm, in and around the lymph nodes and 
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lymph vessels. In the case of lymphangitis, there is often retrograde inflammation (centrifugal 

spread). This inflammation leads to obstruction of lymph vessels, resulting in temporary 

lymphostasis and lymphoedema. Research findings also indicate that adult worms can 

themselves directly attack the lymphatics (irrespective of the immunological response). In 

humans with severe symptoms, low or no microfilaraemia is found in most cases, whereas 

humans with high microfilaraemia often have no symptoms (Freedman, 1998). The reason for 

this apparent paradox is that the pathology is caused by the patient’s immunological response to 

the adult worms (Ottesen, 1984; Freedman, 1998; Dreyer et al., 2000). This is presently one of 

the main subjects of interest in LF research. Chronic pathological conditions include: 1. 

Hydrocele, where accumulation of lymph fluid occurs in the tunica vaginalis and 2. 

Lymphoedema, where accumulation of lymph fluid occurs in the legs, scrotum, breasts and arms 

which can progress to elephantiasis due to infection by opportunistic bacteria and fungi. 

 

2.1.3. Treatment of LF 

 

The Global Lymphatic Filariasis Elimination Program (GLFEP) aims to reduce microfilaremia 

levels with filaricidal drugs to a level that is too low to sustain transmission of filarial parasites to 

humans; and to reduce the morbidity associated with chronic filarial disease (Cox et al., 2000). 

Antifilarial drugs such as diethylcarbamazine (DEC) and ivermectin are predominantly active 

against MF, with DEC showing partial activity against adult worms (Noroes et al., 1997; Ramzy 

et al., 2002).  Parallel hygiene management programs are implemented in endemic areas of LF 

where foot care hygiene training is given to lymphoedema patients, which significantly reduce 

the morbidity, associated with lymphoedema (Kerketta et al., 2005). Local limb care is an 

important intervention and together with doxycycline improves the skin integrity with loss of 

deep folds and knobs of lymphoedema patients (Debrah et al., 2006). 

 

2.2. Onchocerciasis 

 

Onchocerciasis, commonly known as river blindness, is caused by the filarial nematode, 

Onchocerca volvulus (WHO, 1987). Major pathological conditions of onchocerciasis are 

blindness and severe dermatitis affecting as many as 37-40 million people (WHO, 2007) and is 

the fourth most common cause of blindness in the world (Soboslay et al., 1997) and the second 
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most frequent cause of preventable blindness in Africa (Hoerauf and Brattig, 2002). Severe 

hyperendemic onchocerciasis can cause blindness in 15% of the population and up to 40% of the 

adults can be visually impaired in African communities. Visual impairment is a major 

occupational obstacle and reduces the life span of affected persons by an average of 10 years 

(Kirkwood et al., 1983; WHO, 1994; WHO, 1998). Hence, like lymphatic filariasis, 

onchocerciasis is also a major socio-economic problem. O. volvulus causes itching, disfiguring 

skin disease, serious eye lesions and blindness in parts of Africa, Latin America and the Arabian 

Peninsula (WHO, 1995) (Fig. 3). 

 

 

 

Fig. 3. Global distribution of onchocerciasis. Source: WHO/TDR, www.who.int/tdr/. 

 

2.2.1. Life cycle of Onchocerca volvulus 

 

O. volvulus is a thin nematode parasite found in humans which is transmitted by blackflies of the 

genus Simulium. The adult worms live in fibrous nodules, some of which are subcutaneous while 

others live deep in the connective and muscular tissues. They have a life span of around 9 – 14 

years (Plaisier et al., 1991b; Duke, 1993; WHO, 1995). The female adult worms produce 

numerous MF (250 – 300 µm in length), which migrate from the nodule to invade the skin, eyes 

and other organs. MF have a life span of about 6– 24 months (Duke, 1993; WHO, 1995). The 

MF are ingested from the skin by blood feeding Simulium vectors develop over 6 – 12 days. The 

MF develops into infective larvae (L3) in these intermediate hosts and are then inoculated into a 
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new host when the blackfly subsequently feeds (Fig.4). In the human host, the L3 moult twice 

into the adult stage. The first microfilariae (MF) produced by adult females may appear in the 

skin 10 – 15 months after infection (WHO, 1995).  About 700 - 1600 MF per female are released 

into the host on average per day of a production cycle (Schulz-Key 1988; Duke, 1993; WHO, 

1995).   

 
Fig. 4. Life-cycle of Onchocerca volvulus. Source: CDC, USA. 

 

2.2.2. Pathogenesis of Onchocerca volvulus 

 

Based on the wide spectrum of clinical manifestations associated with onchocerciasis, signs and 

symptoms of onchocerciasis can be categorized as dermal, lymphatic, systemic and ocular 

(WHO, 1995). In dermal onchocerciasis, skin lesions result from inflammatory reactions around 

damaged or disintegrating MF and hence the clinical manifestations vary according to the MF 

density in the skin, the immune responsiveness of the host, and the duration of the infection 
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(WHO, 1987). Onchocercomata (nodules) are major clinical symptoms associated with 

onchocerciasis where fibrous nodules are formed around the female worm producing MF and 

nodules are normally found subcutaneously or occasionally attached to the skin (WHO, 1987). In 

lymphatic onchocerciasis, people infected in endemic areas have enlargement of superficial 

lymph nodes and lymph nodes draining areas of filarial dermatitis contain small numbers of MF 

and long-standing infections causes severe fibrosis (WHO, 1995; Ottesen, 1995). In systemic 

onchocerciasis, in addition to presence of MF in skin, eyes, and lymph nodes, MF could also be 

seen in peripheral blood, urine, sputum, tears, vaginal smear and cerebrospinal fluid after 

treatment (WHO, 1987). Ocular onchocerciasis and blindness are the major pathological 

conditions caused by O. volvulus where a variety of lesions affect different parts of the eye 

which appears directly or indirectly related to the local death or degeneration of MF that enter 

the eye from the skin through conjunctiva or bloodstream (WHO, 1987; Ottesen, 1995). 

 

2.2.3. Treatment of onchocerciasis 

 

To eliminate the disease by vector control, the Onchocerciasis Control Programme (OCP) was 

established in 11 West Africa countries (WHO, 1987; 1994). The main goal of this programme 

was to eliminate onchocerciasis as a disease of public health. The control strategy was to 

interrupt the transmission of the O. volvulus parasites by seasonal weekly aerial application of 

larvicides to all the breeding sites of the vector. Though the OCP in West Africa was successful 

in the control of onchocerciasis, vector control could not be solely relied on due to the problems 

associated with environmental effects and insecticide resistance (WHO, 1995). In 1995, OCP 

was replaced by the African Programme for Onchocerciasis Control (APOC) where ivermectin is 

used for the treatment of onchocerciasis. The main goal of APOC was to establish within a 

period of twelve (12) years, an effective and self–sustainable community based ivermectin 

treatment throughout endemic areas in Africa. Several studies have demonstrated the 

effectiveness of ivermectin treatment in preventing the development and progression of 

onchocercal lesions (Remme, 1995). 
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2.3. Wolbachia 

 

Wolbachia are gram-negative α-proteobacteria present in many invertebrates and non-insect 

invertebrates including nematodes, mites and spiders (Werren et al., 1995; Werren & Windsor, 

2000). These intracellular bacteria were first reported within the reproductive tissues of the 

mosquito Culex pipiens by Hertig & Wolbach in 1924, and these bacteria were later named as 

Wolbachia pipientis (Hertig, 1936). For many years, Wolbachia were neglected until the 1970s, 

when Yen & Barr established that cytoplasmic incompatibility (CI) in Culex pipens was 

associated with the presence of a rickettsial agent which was eliminated through antibiotic curing 

(Yen and Barr, 1971). The advent of molecular techniques, in particular polymerase chain 

reaction (PCR) rapidly accelerated intensive research on Wolbachia in the 1990s. Wolbachia are 

extremely common with 20-75% of all insect species and other arthropods being infected. 90 % 

of filarial nematodes harbour Wolbachia, including most of the agents of filariasis: Brugia 

malayi, Brugia pahangi, Wuchereria bancrofti, Onchocerca volvulus, Mansonella sp., 

Dirofilaria immitis and Litomosoides sigmodontis (Bandi et al., 1998; Bandi et al., 2001; 

Jeyaprakash & Hoy, 2000; Plantard et al., 1999; Taylor & Hoerauf, 1999; Wenseleers et al., 

1998; Werren et al., 1995; Werren & Windsor, 2000). Wolbachia, formerly known as rickettsiae-

like organisms, are found in reproductive tissues of a wide range of arthropods and nematodes 

(O’ Neil et al., 1992; Rousset et al., 1992; Stouthamer et al., 1999; Werren et al., 1995; Bandi et 

al., 1998; Taylor et al., 1999; Hoti et al., 2003; Sridhar & Pradeep, 2003). Wolbachia have also 

been found in isopods (Rousset et al., 1992) and mites (Johanowicz and Hoy, 1995). 

 

2.3.1. Morphology of Wolbachia 

 

Wolbachia have general morphological characteristics of rickettsiae (Hertig, 1936). They are 

dimorphic, with irregularly formed rod like (0.5–1.3 µm in length) and coccoid forms (0.25–0.5 

µm in diameter). The smaller forms of bacteria also occur in aggregates as larger forms (1-1.8µm 

in diameter). Usually Wolbachia are present in a vacuole enveloped by three layers of 

membranes. The outer layer is of host origin followed by the outer membrane of the bacteria and 

the innermost layer consists of the plasma membrane of the bacteria (Wright, 1979). 
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Fig. 5. Transmission electron micrograph of Wolbachia within an insect cell (Wu et al., 2004). 

 

2.3.2. Phenotypes associated with Wolbachia infections in arthropods 

 

Wolbachia infecting insect invertebrates are not only widespread, but they also cause a variety of 

physiological alterations in their host such as: 

 

Cytoplasmic incompatibility (CI) 

 

Cytoplasmic incompatibility (CI) occurs when uninfected females mate  

with Wolbachia infected males. This mating is incompatible and cannot produce offspring as a 

result of failure in karyogamy, arresting the development of early embryos in diploid insects 

(Tram and Sullivan, 2002). CI can either be unidirectional or bidirectional. 

 

Unidirectional CI 

 

Unidirectional CI occurs in mating between Wolbachia-infected males and uninfected females, 

whereas Wolbachia-infected females are compatible with both Wolbachia-infected and 

uninfected males. Thus, in host populations that include both infected and uninfected individuals, 
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CI provides a reproductive advantage to infected females since they can mate successfully with 

all male types. In contrast, uninfected females are incompatible with infected males, reducing 

their reproductive success. The advantage afforded to females by CI comes at the expense of 

infected males, which are incompatible with uninfected females (Hoffmann and Turelli, 1997). 

 

♀  X ♂  = Normal Hatch Rate 

 

♀*  X ♂* = Normal Hatch Rate*  

 

♀*  X ♂  = Normal Hatch Rate* 

 

♀      X ♂* = Reduced Hatch Rate (0-70%) 

      (* = Wolbachia infected) 

 

Bidirectional CI 

 

Bidirectional CI occurs when insect populations are infected with multiple strains of Wolbachia. 

For example: 

 

A strain infected ♀      X B strain infected ♂  

B strain infected ♀      X A strain infected ♂  

are each incompatible. 

 

The molecular mechanism involved in CI has not yet been completely elucidated and the 

mechanism of CI appears to vary between host species, e.g. in Culex pipiens, incompatibility 

appears to result from failure of sperm bearing a CI Wolbachia to fuse properly with female 

gametes that lack the same Wolbachia. In Drosophila, there is embryo development suppression 

at an early stage and here it is proposed that Wolbachia in eggs of infected females produce a 

substance that renders them immune to the chemical produced by sperm from infected males 

(Snook et al., 2000). In wasp such as Nosonia vitripennis, Wolbachia interferes with 

condensation of the paternal chromosomes set during the first mitotic cell division of the embryo 
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but the way by which CI Wolbachia interacts with the chromosomes of Nosonia, causing 

condensation failure is not clear (Tram et al., 2006). In addition, several other CI models have 

been proposed: Lock-and-key hypothesis, Titration–restitution hypothesis and Slow-motion 

hypothesis (Poinsot et al., 2003). 

 

Other phenotypes associated with Wolbachia infections in arthropods include feminization, male 

killing and parthenogenesis (PI). Feminization occurs in isopod crustaceans and is a phenotype 

induced by Wolbachia where genetic males develop into fully functional females via inhibition 

of the production of androgen from androgenic gland. (Rousset et al., 1992). In male killing, 

selective killing of males is caused by Wolbachia. This causes a sex-ratio distortion and 

reduction in number of progeny. This phenotype has been reported in Tribolium, ladybird 

beetles, Drosophila and Acraea butterflies (Hurst et al, 1999). In parthenogenesis, Wolbachia 

induce asexual reproduction, resulting in all female broods. PI Wolbachia strains have now been 

found in a wide range of parasitic wasp genera, including Trichogramma, Aphytis, Encarsia, 

Leptopilina, and Muscidifurax (Stouthamer et al, 1993; Werren, 1997). 

 

Wolbachia being a reproductive parasite in arthropods, it is generally assumed that these 

vertically inherited symbionts cospeciate with their host but phylogenetic evidence has shown 

that horizontal transfer of these bacteria must have occurred during the course of evolution 

because closely related bacterial strains could be found in unrelated hosts (O’Neill et al., 1992; 

Rousset et al., 1992; Stouthamer et al., 1993; Werren et al., 1995). In addition, Wolbachia can be 

microinjected both intra- and interspecifically in to naïve hosts (Braig et al., 1994; Grenier et al., 

1998) and transfection of Wolbachia strains can cause different phenotypes in different hosts 

(Fujii et al., 2001). Also natural intra- and interspecies horizontal transfer of pathenogenetic 

Wolbachia has been observed in parasitoid wasp (Huigens et al., 2004).  Recently, nearly the 

entire Wolbachia genome (>1 megabase) as short (<500 base pairs) insertions was observed in 

the genomes of 4 insect and 4 nematode species suggesting that the heritable lateral gene transfer 

occurs into eukaryotic hosts from their prokaryote symbionts (Hotopp et al., 2007). Horizontal 

transfer of Wolbachia genes across the species has attracted the attention on Wolbachia as new 

biocontrol agents where genetically modified Wolbachia could be introduced into pest and vector 

species of economic and medical relevance to suppress or modify natural populations (Zabalou 

et al., 2004). 
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2.3.3. Phylogeny of Wolbachia in arthropods and nematodes 

 

The genus Wolbachia is phylogenetically related to the genera Anaplasma, Cowdria and 

Ehrlichia and has been assigned to the alpha 2 subclass of the proteobacteria (O’Neill et al., 

1992). Unlike most other obligate intracellular bacteria, the genus Wolbachia forms a 

monophyletic clade comprising both mutualistic and parasitic lineages that showcase the 

diversity of symbiotic associations. In arthropods, Wolbachia are commonly considered as 

reproductive parasites as they exploit the host reproductive system to enhance their maternal 

transmission into next generation (Werren et al, 1997). Unlike arthropod Wolbachia, the 

Wolbachia bacteria of filarial nematodes are beneficial and required for host reproduction (Bandi 

et al., 1999; Hoerauf, et al., 1999; Hoerauf, et al., 2000; Bandi et al., 2001; Casiraghi, et al., 

2001). 

 

Currently, the phylogenies of the genus Wolbachia are currently sorted into eight major clades 

(A–H), which, in the absence of a formal species description, have been named ‘supergroups’ 

(Lo et al., 2002). Supergroups A and B include most of the parasitic Wolbachia spp. so far found 

in arthropods (Werren et al., 1995). Supergroups C and D include the majority of the Wolbachia 

spp. found in filarial nematodes (Bandi et al., 1998) but some nematodes have been found to lack 

Wolbachia spp.(Bordenstein et al., 2003). The E supergroup consists of Wolbachia spp. from 

primitive wingless insects, the springtails (Collembola) (Vandekerckhove et al., 1999; 

Czarnetzki & Tebbe, 2004). The supergroup F contains Wolbachia bacteria of arthropods 

(termites) and the filarial parasite Mansonella ozzardi (Casiraghi et al., 2001; Lo et al., 2002). In 

addition, supergroup G has been proposed for Wolbachia spp. of certain Australian spiders 

(Rowley et al., 2004) and supergroup H encompasses Wolbachia, different from those in 

supergroup F, in termites. The Wolbachia from the filarial nematode Dipetalonema gracile and 

from the arthropod Ctenocephalides felis have not been designated to any of the existing 

supergroups (Fig. 6). 

 

Phylogenetic analysis of a small number of genes from Wolbachia bacteria of O. volvulus 

(wOvo) with Wolbachia bacteria of Drosophila melanogaster (wMel), Wolbachia bacteria of B. 

malayi (wBm) and related anaplasmataceae has revealed that the ancestor of all the extant 
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Wolbachia would probably be an intracellular parasite as the root mainly falls between the 

arthropod clade A and the nematode clade C and D (Panaram et al., 2007). This suggests that 

nematode Wolbachia share a common ancerstor before they share a common ancestor with main 

arthropod supergroup A and B. Further availability of genome sequence data from other 

Wolbachia clades, such as, E, F, G and H would help in tracking the evolutionary history of 

Wolbachia and especially genome information from clade F could be particularly decisive as 

they include Wolbachia bacteria from both arthropods and nematodes. The presence of closely 

related Wolbachia from arthropods and nematodes in clade F does not rule out the possibility of 

horizontal transfer of Wolbachia between nematodes and arthropods (Fenn et al., 2006). 

 

 
 

Fig. 6. Representation of Wolbachia spp. unrooted phylogeny based on different phylogenetic studies (Lo et al., 

2007). 

 

2.3.4. Wolbachia bacteria of filarial nematodes 

 

Intracellular bacteria were first observed in filarial nematodes 30 years ago (McLaren et al., 

1975; Kozek, 1977; Kozek and Marroquin, 1977). These bacteria were rediscovered in 1994 

during the Filarial Genome Project funded by the World Health Organization (WHO) where the 

analysis of cDNA libraries generated from different life cycle stages of B. malayi revealed the 

presence of alpha-proteobacterial sequences implicating the occurrence of endobacterial DNA 
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(Williams et al., 2000). Phylogenetic analysis allowed these endobacteria to be identified as 

Wolbachia (Sironi et al., 1995). So far Wolbachia have been detected in a variety of filarial 

nematodes with a few notable exceptions such as Acanthocheilonema vitea, Onchocerca 

flexuosa, Setaria equina and Loa loa  (McLaren et al., 1975; Bandi et al, 1998; Bandi et al, 2001; 

Taylor and Hoerauf, 1999; Hoerauf et al., 1999; Casiraghi et al., 2001; Casiraghi et al., 2004; 

Chirgwin et al., 2002; Egyed et al., 2002; Buttner et al., 2003; McGarry et al., 2003). 

 

2.3.4.1. Evidence supporting the importance of Wolbachia in filarial nematode viability, 

development and fertility  

 

In filarial nematodes, Wolbachia are located in the lateral cords of male and female worms and 

also in oocytes. But they are absent from the male reproductive system. Normally in human 

filarial nematodes harbouring Wolbachia, 100% of individual parasites contain Wolbachia 

suggesting the importance of Wolbachia in worm fertility and survival (Bandi et al., 1998; 

Taylor et al., 2000a; Taylor et al., 2000b). Hence, Wolbachia are potential chemotherapeutic 

targets for the control of filariasis. In rodent and human filarial nematodes, antibiotics such as 

tetracycline, doxycycline, rifampicin and azithromycin cause detrimental effect on parasite 

growth, development and fertility (Bosshardt et al., 1993; Genchi et al., 1998; Bandi et al., 1999; 

Hoerauf et al., 1999; Hoerauf et al., 2000; Langworthy et al., 2000; Smith&Rajan, 2000; 

Rao&Weil, 2002; Rao et al., 2002; Casiraghi et al., 2002; Chirgwin et al., 2003; Rajan, 2004). 

Antibiotic treatment leads to Wolbachia depletion in the female reproductive tract of Dirofilaria 

immitis and Brugia pahangi which eventually leads to degeneration of embryos, though reduced 

levels of Wolbachia often still are detected in the lateral cords (Kramer et al., 2003). Reports also 

suggest that antibiotic treatment leads to a 1000 fold reduction in Wolbachia which could still be 

detected by PCR in female hypodermis but not in female reproductive tract (Genchi et al., 2001). 

The embryonic blockade is Wolbachia-dependent as no similar antibiotic effects are seen in 

filarial nematodes devoid of Wolbachia (Hoerauf et al., 1999; Bandi et al., 2001; Volkmann et 

al., 2003). Also these effects are not seen when filarial nematodes harbouring Wolbachia are 

treated with antibiotics which are not efficient in killing Wolbachia (e.g. penicillin, gentamicin or 

ciprofloxacin) suggesting that these effects are associated with the presence of Wolbachia 

(Hoerauf et al., 2000; Taylor & Hoerauf, 2001). Recently, administration of doxycycline to O. 

volvulus and W. bancrofti infected patients has shown promising results of higher 
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macrofilaricidal and embryo toxic activity to these filarial worms and ameliorates some of the 

pathology in lymphatic filariasis (Hoerauf et al., 2000; Hoerauf et al., 2001; Hoerauf et al., 2003; 

Taylor et al., 2005; Debrah et al., 2006; Debrah et al., 2007; Hoerauf et al., 2008; Mand et al., 

2008; Supali et al., 2008). 

 

2.3.4.2. Role of Wolbachia in the pathogenesis of filarial infections 

 

Wolbachia-associated molecules play a role in the host immunological response to filarial 

parasite invasion. Filarial infections are characterized by a humoral immune response, which 

results in B-cell proliferation leading to the generation of antibodies directed towards parasite 

and Wolbachia-specific antigens. So far Wolbachia-derived antigens such as Wolbachia surface 

protein, heat shock protein, aspartate aminotransferase, and Htr serine protease have been 

reported (Bazzocchi et al., 2000; Bandi et al., 2001; Punkosdy et al., 2001; Chirgwin et al., 2003; 

Fischer et al., 2003; Jolodar et al., 2004; Lamb et al., 2004). Wolbachia release during worm 

death can also initiate antigen specific mediation of immune regulatory factors from neutrophils 

and monocytes (Cross et al., 2001; Brattig, 2004; Hise et al., 2003). Drugs such as 

diethylcarbamazine or ivermectin kill microfilaria, which results in release of Wolbachia leading 

to adverse acute post-treatment reactions characterized by increases in plasma TNF-α, IL-6, and 

LPS-binding protein (Njoo et al., 1994; Turner et al., 1994), suggesting that Wolbachia released 

into the bloodstream by degenerating or dead microfilaria contribute to the acute 

adenolymphangitis and fever that occur after administering antifilarial drugs. Previously it was 

conceived that the immune response to Wolbachia-associated molecules mimics 

lipopolysaccharide (LPS)-like response through activation of the toll-like receptor 2 (TLR-2) and 

toll-like receptor 4 (TLR4) pathways (Brattig et al., 2004). Wolbachia endogen mimicking LPS 

appear to be involved in the eye inflammation observed in African river blindness. Infiltration of 

leukocytes such as neutrophils and eosinophils occurs in the cornea as a result of microfilarial 

invasion and death within the eye, leading to a loss of corneal transparency (Hall & Pearlmann, 

1999). A recent report now suggests that the innate immune response to Wolbachia in B. malayi 

and O. volvulus are dependent on TLR-2, TLR-6, MyD88, and Mal but not on TLR-4, TRIF, or 

TRAM (Hise et al., 2007). 
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2.3.5. Genome of Wolbachia bacteria of Brugia malayi (wBm) 

 

The Filarial Genome Project funded by the World Health Organization (WHO/TDR) was 

established in 1994 and in collaboration with Wolbachia consortium aided the annotation of 

complete genome of Wolbachia bacteria of Brugia malayi (wBm). wBm has a genome size of 1.1 

Mb length determined by pulsed-field gel electrophoresis and restriction mapping. The genome 

consists of 1,080,084 nucleotides and has a GC content of 34% (Sun et al., 2001; Foster et al., 

2004). Compared to most other bacteria, wBm has very low density of predicted genes and 

Wolbachia have lost a number of genes from many metabolic pathways in comparison to other 

α-proteobacteria. The wBm genome contains one copy of each of the ribosomal RNA genes 

(16S, 23S, and 5S), which do not form an operon. In comparison to other obligatory α-

proteobacteria, Wolbachia spp. have retained an intact set of genes for translational processes 

and DNA replication and repair. Various functional genes encoded in Wolbachia genome are 

shown in Fig. 7. 

 

wBm encodes complete pathways for the de novo biosynthesis of purines and pyrimidines. The 

Wolbachia genome also has all genes essential for the biosynthesis of fatty acids. wBm contains 

all the enzymes necessary for the biosynthesis of riboflavin and flavin adenine dinucleotide and 

it is postulated that wBm could be an main source of these coenzymes for the host nematodes as 

B. malayi genome lack genes essential for the biosynthesis of riboflavin (Ghedin et al., 2004; 

Ghedin et al., 2007). wBm has genes for the biosynthesis of heme and has all genes for 

maturation of c-type cytochromes. Heme constitutes a prosthetic group of cytochromes, catalase 

and peroxidase. The annotated sequence of the B. malayi genome reveals that they lack genes for 

heme biosynthesis enzymes. Heme could play a crucial role in the filarial parasite reproduction 

and development because of the requirement of heme in cytochromes involved in the production 

of steroid moulting hormones. Hence depletion of Wolbachia from filarial nematode could result 

in loss of availability of heme provided by Wolbachia to host nematodes which eventually result 

in detrimental effect on nematode viability, larval development, and reproduction (Foster et al., 

2005). Genes for biosynthesis of glutathione, which has functions such as detoxification of 

methylglyoxal (Booth et al., 2003) and protection against oxidative stress through activation of 

the glutathione peroxidase–glutathione reductase system, are present in the wBm genome (Li et 

al., 2003; Brenot et al., 2004). wBm also has functional Type IV secretion genes essential for 
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successful persistence of endobacteria within their hosts (Sexton & Vogel, 2002). A similar set 

of genes have also been seen in the genome of Wolbachia pipientis wMel, an endosymbionts of 

Drosophila melanogaster (Wu et al., 2004). 

 

 
 

Fig. 7. Genogram of Wolbachia bacteria of Brugia malayi (wBm) (Foster et al., 2005). 

 



                                                                                                                                                              Introduction 
   
  

 

20 

Like many other endosymbionts, wBm lacks complete pathways for de novo biosynthesis of 

vitamins and cofactors such as Coenzyme A, NAD, biotin, lipoic acid, ubiquinone, folate, and 

pyridoxal phosphate, retaining only a few genes for the finals steps in some of these pathways. 

These incomplete pathways may make wBm dependent upon the supply of those precursors from 

the host. 

 

The completed Wolbachia genomes (wBm and wMel) encode limited metabolic capacity and 

hence the endobacteria might have a reliance on the basic metabolic pathways of their hosts. An 

unusual characteristics of Wolbachia genomes is that they contain a large proportion of repeated 

sequence (Wu et al., 2004; Foster et al., 2005) and in wMel genome, these repeats are associated 

with a large number of insertion elements (Wu et al., 2004). Both the Wolbachia genomes lack 

20 genes for enzymes of cell-envelope LPS biosynthesis though a soluble endotoxin-like 

products of Wolbachia endosymbionts of filarial nematodes, including B. malayi, B. pahangi, L. 

sigmodontis, O. volvulus, and D. immitis, contribute to the immunology and pathogenesis of 

filarial diseases (Brattig et al., 2002; Taylor et al., 2000; Cross et al., 2001; Brattig, 2004; Hise et 

al., 2003; Freedman, 1998) 

 

2.3.5.1. Genomic basis of Wolbachia-host parasitism and mutualism 

 

Wolbachia endosymbionts in arthropod hosts behave as parasites while in nematode hosts, they 

behave as mutualists. Comparing the genomes of Wolbachia (wBm and wMel), it is postulated 

that 3 major group of genes may be directly responsible for parasitism or mutualism: 1) Genes 

involved in Type IV secretion machinery and the proteins that it might secrete; 2) Genes 

encoding an unexpected diversity of proteins containing ankyrin-repeat motifs; 3) Genes from 

mobile bacteriophages (Fenn & Blaxter, 2006). The bacterial Type IV secretion systems play an 

important role in the pathogenesis of many bacterial species by exporting effector proteins, or 

‘virulence factors’. Type IV secretion systems are present in both the annotated Wolbachia 

genomes as two operons (Wu et al., 2004; Foster et al., 2005) and interestingly, one of the 

operons is closely related with a homologue of the Wolbachia surface protein (WSP) and this 

protein could be exported to the vacuole where Wolbachia are confined (Foster et al., 2005).  
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Ankyrin-repeat domains play an important role in protein-protein interaction (Bork, 1993) and 

there are around 110 different ankyrin-repeat-containing (ANK) in D. melanogaster Wolbachia 

(wMel). ANK present in bacteria are implicated to play a crucial role in host-pathogen 

interactions (Caturegli et al., 2000). wMel has 23 ANK genes (Wu et al., 2004), of which some 

of them are secreted, in contrast wBm has only 9 ANK genes and several of these genes appear 

to be pseudogenes (Foster et al., 2005), and of those seeming to be functional, only two are 

orthologues of  wMel ANK proteins. Wolbachia ANK genes might also be involved in regulating 

the host cell cycle and presence of more ANK genes in arthropod Wolbachia and less ANK 

genes in nematode Wolbachia could attribute to the phenotypes they cause in their hosts (Fenn & 

Blaxter, 2006). Analysis of wMel reveal the presence of Wolbachia-specific bacteriophages 

(WO) in contrast, wBm does not contain WO prophages (Foster et al, 2005) and low number of 

ANK genes are related to lack of WO prophages in wBm. WO bacteriophages might also 

influence the parasitic nature of arthropod Wolbachia. Further analysis of the wBm genome 

could assist in identification of metabolic pathways that account for Wolbachia’s mutualism with 

B. malayi. wBm has a complete set of genes for the biosynthesis of riboflavin and heme (Foster 

et al, 2005) whereas B. malayi lack these genes and cannot synthesize riboflavins or heme 

endogenously. Wolbachia could be a source of heme for enzymes participating in biosynthetic 

pathways of hormones or other metabolites needed during moulting (Foster et al., 2005, Pfarr 

and Hoerauf, 2006). However, some nematodes including Caenorhabditis elegans lack the 

ability to synthesize heme but still are not dependent on an endosymbiont as a source of this 

metabolite. Occurrence of Wolbachia negative filarial nematode (Fenn & Blaxter, 2004; Werren 

et al., 1997; Bordenstein et al., 2003; Casiraghi et al, 2001; Grobusch et al., 2003) also suggests 

that there might not be a special role for Wolbachia in providing essential nutrients, although 

these bacteria might supplement other nutrients in restrictive environment. 

 

2.3.6. Targeting Wolbachia as control of filariasis 

 

Conventional strategies to combat filariasis have included vector control in the presence or 

absence of antiparasitic drugs (Hougard et al., 2001; Richards et al, 2001; Mackenzie et al., 

2002; Ottesen, 2003). Anti-parasitic drugs such as diethylcarbamazine, albendazole, and 

ivermectin have been recently used for prevention of filarial infections. These drugs are 

primarily efficient against microfilariae (MF) with little effect on adult worms. Hence, repeated 
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administration of these drugs is required in endemic areas to prevent new infections (Campbell, 

1991; Richards et al., 2001; Hoerauf et al., 2003). Repetitive drug administration can also lead to 

a possibility of development of drug resistance (Prichard, 1994; Prichard, 2001). In the last two 

decades, no new drugs have been developed which are both microfilaricidal and macrofilaricidal 

efficient in permanently sterilizing or killing the adult worms. This has required a search for new 

drugs for the control of filariasis especially targeting Wolbachia as these bacteria play a vital role 

in nematode fertility and pathogenesis. Wolbachia endosymbionts play a crucial role in the 

development and reproduction of their nematode hosts and also contribute significantly to the 

pathogenesis of filarial infection.  Wolbachia are also known to contribute to the major adverse 

reactions observed after anti-parasitic treatment. Many reports suggest that antihelmintic drug 

causes severe systemic inflammatory responses such as fever, headache, dizziness and 

enlargement of lymph nodes which could be associated to the release of Wolbachia from dead 

MF (Boreham & Atwell, 1983; Francis et al., 1985; Cross et al., 2001; Supali et al., 2008). 

Hence, use of anti-Wolbachia chemotherapy against filarial parasites has paved the way to a 

novel approach for filarial disease control and eradication. 

 

2.4. Antibiotic treatment in murine filariasis 

 

Antibiotics active against Rickettsiaceae, particularly tetracyclines, rifampicin and 

chloramphenicol, were effective in reducing the filarial larval molt (from L3 to L4) and larval 

development in vitro (Smith and Rajan, 2000; Rao et al., 2002). The symbiosis between filarial 

nematodes and Wolbachia bacteria in rodent mouse model was exploited to study the efficacy of 

antibiotic therapy of filariasis. Previous studies have shown effects of antibiotics on filarial 

nematodes in experimental animal models (Bosshardt et al., 1993; Roa et al., 2002; Bandi et al., 

1999; Hoerauf et al., 1999; Hoerauf et al., 2000; Langworthy et al, 2000; Townson et al., 2000). 

Depletion of Wolbachia after tetracycline treatment resulted in filarial sterility because of 

interruption of embryogenesis and also inhibited larval development and adult worm viability 

(Volkmann et al., 2003). The success obtained with anti-Wolbachia therapy in experimental 

animal models lead to human clinical field trails. 
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2.4.1. Tetracyclines 

 

Tetracyclines are primarily bacteriostatic affecting multiplying micro-organisms and are believed 

to inhibit the bacterial protein synthesis. The site of action of these antibiotics is the bacterial 

ribosome (Sande and Mandell, 1992). The tetracyclines gain access to the ribosome by directly 

passing through the lipid bilayer by an active transport system that pumps tetracyclines through 

the cytoplasmic membrane. In the bacterial cell, it binds to the ribosome 30S subunit and 

prevents access of aminoacyl t-RNA to the acceptor site on the m-RNA-ribosome complex. This 

inhibits the addition of amino acids to the growing peptide chain thereby blocking prokaryotic 

protein synthesis (Sande and Mandell, 1992). Doxycycline, a semisynthetic derivative of the 

antibiotic tetracycline, is efficient against Wolbachia. 

 

2.4.2. Anti-Wolbachia therapy in human filariasis 

 

Doxycycline was used to test the hypothesis that elimination of Wolbachia could be beneficial in 

reducing human filarial infections. Patients with onchocerciasis infections received a 6 week 

course of daily doxycycline treatment (100 mg/day). Treatment resulted in depletion of 

Wolbachia in worms, and caused extensive degeneration of embryos by 4 months posttreatment 

(Hoerauf et al., 2000). Loss of Wolbachia resulted in sterilization of female worms leading to 

significant low or no microfiladermia (Hoerauf et al., 2000). Use of doxycycline in combination 

with ivermectin also lead to significant reduction in microfiladermia following lower levels of 

Wolbachia in adult worms (Hoerauf et al., 2001; Hoerauf et al., 2003). A double-blind, 

randomised, placebo-controlled field trial of doxycycline (200 mg per day) for 8 weeks in 72 

individuals infected with W. bancrofti resulted in significant activity against adult worms 

(macrofilaricidal activity) and microfilaraemia (microfilaricidal activity) (Taylor et al., 2005). 

Another double-blind, placebo-controlled trial of a 6-week regimen of 200 mg/day doxycycline 

showed that anti-Wolbachia treatment lead to amelioration of supratesticular dilated lymphatic 

vessels and with an improvement of pathology in lymphatic filariasis patients (Debrah et al., 

2006).  Recently, a shorter 4-week regimen of doxycycline seems to be sufficient in killing adult 

W. bancrofti (Debrah et al., 2007). In brugian filariasis, a 6-week regimen of doxycycline (100 

mg/day) followed by diethylcarbamazine (6 mg/kg) plus albendazole (400 mg) lead to a decrease 

in microfilaremia and reduced adverse reactions to antifilarial treatment in B. malayi-infected 
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patients (Supali et al., 2008). Targeting Wolbachia of filarial nematodes with doxycycline have 

macrofilaricidal activity and reduces adverse reactions and early stages of lymphatic pathology 

and hence these endosymbionts represents an ideal target for the development of new antifilarial 

chemotherapies. 

 

2.5. Wolbachia and filarial nematode endosymbiosis and Litomosoides sigmodontis 

phosphate permease (Ls-ppe-1) 

 

As discussed above, several anti-rickettsial antibiotics deplete Wolbachia, leading to worm 

sterility and inhibition of larval and adult worm development. However, the molecular 

mechanism governing the endosymbiosis between Wolbachia and their filarial nematodes is still 

unclear. The annotated wBm genome suggests that wBm could provide essential metabolites to 

the nematode and vice versa. Microarray is a technique which could be used to discover genes 

which might play an important role in the endosymbiosis but alternatively RNA differential 

display can also be used which has an advantage of over microarrays that no prior sequence 

information is required to discover genes that are differentially expressed in response to 

antibiotic treatment.  

 

RNA differential display technique was used to discover nematode gene that are up-regulated in 

response to Wolbachia depletion. Several genes were found to be differentially up-regulated in 

response to Wolbachia depletion and one of the up-regulated genes (Ls-ppe-1) had homology to 

the phosphate permease family of proteins which has orthologues in Caenorhabditis elegans, 

Acanthocheilonema viteae, O. volvulus and B. malayi. In comparison to control (untreated) 

worms, there was threefold up-regulation of Ls-ppe-1 at the mRNA level in tetracycline treated 

worms. In female worms, the Ls-ppe-1 up-regulation showed a bimodal pattern whereas in male 

worms there was only an increase in expression at days 3 and 6 of tetracycline treatment    

(Heider et al., 2006).  

 

The up-regulation of Ls-ppe-1 was shown to be Wolbachia-dependent as A. viteae devoid of 

Wolbachia showed no up-regulation of ppe-1 when treated with tetracycline and also there was 

no up-regulation of Ls-ppe-1 in response to heat shock or oxidative stress, suggesting that the 

death of Wolbachia does not cause the up-regulation (Heider et al., 2006). The full-length cDNA 
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of Ls-ppe-1 is 1729 bp large and has an open reading frame of 523 amino acids. Three variant 

transcripts of Ls-ppe-1 have been identified. They have the same coding potential but differ in 

the 3’ untranslated region after the poly (A) signal. The deduced protein sequence of Ls-ppe-1 

(Ls-PPE) has an N-terminal signal sequence with a predicted cleavage site between amino acid 

positions 49 and 50. Ls-PPE has 12 predicted transmembrane helices suggesting that Ls-PPE is a 

membrane bound protein (Heider et al., 2006). Ls-ppe-1 up-regulated in response to Wolbachia 

depletion could play an important role in the nematode biology and in the endosymbiosis 

between Wolbachia and their filarial nematodes hosts (Pfarr and Hoerauf, 2006). 

 

2.6. Rodent filarial nematode-animal model 

 

The life cycle of the rodent filarial nematode Litomosoides sigmodontis, a close relative of 

human filarial parasites, can be feasibly maintained in rodents. L. sigmodontis is the only filarial 

parasite that produces patent infection in laboratory mice and the pattern of infection and 

migration of developing parasites mimics that of human filarial parasites such as W. bancrofti 

and O. volvulus (Hoerauf et al., 1999).  Like most human filarial nematodes, L. sigmodontis 

worms also harbour Wolbachia endosymbionts (Fig. 8). During a blood meal, mites 

(Ornithonyssus bacoti) carrying infective L3 larvae feed on BALB/c mice, injecting L3 larvae 

into the mice which then develop into male and female adult worms [L3-L4-L5]. Later, the 

fertilized female worms start producing numerous microfilariae which are taken up by mites 

during subsequent blood meal where they undergo moulting to develop into L3 larvae [L1-L2-

L3] (Hoerauf et al., 1999). This nematode-animal model provides an excellent platform to study 

the endosymbiosis involved between Wolbachia and their filarial hosts. 
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Fig. 8. Life-cycle of Litomosoides sigmodontis (Courtesy: Institute for tropical medicine, Tuebingen, Germany).  
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3. Aims of the thesis 

 

Filarial infections are major causes of morbidity in tropical developing countries and 

development of resistance to current drugs has required the search for new drugs. Wolbachia are 

considered excellent targets for the discovery of new anti-filarial drugs because depletion of 

Wolbachia in rodent filarial nematodes results in inhibition of larval moulting (from L3 to L4) in 

vitro (Smith and Rajan, 2000; Rao et al., 2002) and this effect is also seen in vivo where filarial 

sterility occurs due to interruption of embryogenesis resulting in inhibition of larval and adult 

worm development (Hoerauf et al., 1999; Volkmann et al., 2003). Similarly, anti-Wolbachia 

therapy in human filariasis has met with great success where depletion of Wolbachia has 

macrofilaricidal activity (Hoerauf et al., 2001; Hoerauf et al., 2003; Taylor et al., 2005; Debrah 

et al., 2006; Supali et al., 2008). Hence, anti-Wolbachia therapy has proven to be an effective 

treatment strategy in combating filariasis. But still the exact molecular mechanism governing the 

endosymbiosis between Wolbachia bacteria and their filarial nematodes is unclear. Also it is 

unknown what the precise role Wolbachia have in the development of male and female adult 

worms.  The annotation analysis made from the Wolbachia genome sequence suggests that 

several biochemical pathways of Wolbachia can deliver essential metabolites to the nematode 

hosts, and vice versa. Study of mRNA gene expression in Litomosoides sigmodontis during 

Wolbachia depletion revealed up-regulation of several nematode genes and one gene showed 

homology to a phosphate permease gene (Ls-ppe-1) (Heider et al., 2006). Studying regulation of 

Ls-ppe-1 at protein level and structural localization of this protein and Wolbachia can bring an 

insight into role of Ls-ppe-1 in Wolbachia-nematode endosymbiosis. 

 

Therefore, the goals of the present thesis were: 

 

1. To ascertain the role of Wolbachia in the development of male and female adult worms. 

 

2. To demonstrate the up-regulation of L. sigmodontis phosphate permease (Ls-PPE) and 

Onchocerca volvulus phosphate permease (Ov-PPE) at the protein level during 

Wolbachia depletion and to compare its localization with respect to that of Wolbachia in 

filarial worms. 
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4. Materials and Methods 

 

4.1. Chemicals 

 

Advanced protein reagent solution (ADV01)  Cytoskeleton, Denver, USA 

Agarose      Fermentas. St. Leon-Rot, Germany 

Ampicillin      Sigma-Aldrich, Munich, Germany 

1-bromo-3-chloro-propane     Sigma-Aldrich, Munich, Germany  

Bromophenol blue     Sigma-Aldrich, Munich, Germany 

BSA       Roth, Karlsruhe, Germany 

Circle Grow      Q-Biogene, Cambridge, United Kindom 

DEPC-water      Ambion, Darmstadt , Germany 

Ethanol      Merck, Darmstadt, Germany 

Ethidium bromide     Biomol, Hamburg, Germany 

Ethylene diamine tetra acetic acid   Sigma-Aldrich, Munich, Germany 

FCS       PAA, Cölbe, Germany 

Guanidine hydrochloride    Sigma-Aldrich, Munich, Germany 

IPTG       Sigma-Aldrich, Munich, Germany 

Isoforene      Abbot, Wiesbaden, Germany 

Isopropanol      Merck, Darmstadt, Germany 

Potassium dihydrogen phosphate   Merck, Darmstadt, Germany 

LB Agar      Sigma-Aldrich, Munich, Germany 

Methanol      Merck, Darmstadt, Germany 

PMSF       Sigma-Aldrich, Munich, Germany 

Sodium dihydrogen phosphate   Merck, Darmstadt, Germany 

Sodium Chloride     Roth, Karlsruhe, Germany 

Sodium Hydroxide     Merck, Darmstadt, Germany 

RPMI-1640 media with L-glutamine    Sigma-Aldrich, Munich, Germany 

Buffer tablets 1/1     Merck, Darmstadt, Germany 

Hydrochloric acid     Sigma-Aldrich, Munich, Germany 

SOC medium      Invitrogen, Karlsruhe, Germany 

Tetramisole Hcl     Sigma-Aldrich, Munich, Germany 

Tris-hydrochloride     Roth, Karlsruhe, Germany 

Trizol®      Invitrogen, Karlsruhe, Germany 
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TWEEN®20      Sigma-Aldrich, Munich, Germany 

X-GAL      Roth, Karlsruhe, Germany   

 

4.2. Equipment used 

 

Centrifuges      Hettich  Mikro 20’’, Tuttlingen, Germany 

Hettich, Universal 32R, Tuttlingen, 

Germany 

Cuvettes      Eppendorf, Hamburg, Germany 

Disposable pipettes     Copan Innovation, Brescia, Italy 

Digital balance     Sartorius AG, Goettingen, Germany 

Digital pH meter     Mettler Toledo, Columbus, USA 

Electrophoresis set up for agarose gels  Bio-Rad, Munich, Germany  

ELISA plates      Greiner Bio-one, Frickenhausen,  

       Germany 

Eppendorf 5810 R, 5417 R and 5415 D  Eppendorf, Hamburg, Germany 

Eppendorf BioPhotometer    Eppendorf, Hamburg, Germany 

Gel blot system     Bio-Rad, Munich, Germany 

Glass–glass homogenizer  Sartorius BBI Systems, Melsungen, 

 Germany 

Heating block model III Thermostat 5320  Eppendorf, Hamburg, Germany 

Ice machine AF-80     Scotsman, Vernon Hills, USA 

Incubator      Heraeus, Düsseldorf, Germany 

Microscope      Carl Zeiss, Cologne, Germany 

Needles      B. Braun, Melsungen, Germany 

Neubauer cell counter     Brandt, Wertheim, Germany 

Object slides      Engelbrescht, Germany 

Laminar flow system     Kendro, Langenselbold, Germany 

Magnetic stirrer     IKA-Labortechnik, Staufen, Germany 

Polyacrylamide electrophoresis set-up  Bio-Rad, Munich, Germany 

Thermocycler      MWG Primus, Ebersberg, Germany 

Reichert-Jung 1140 Autocut microtome  Leica Microsystems, Wetzlar, Germany 

Rotor gene 6000     Corbett Research, Sydney, Australia 

Spectra Max340 Microwell Reader   Molecular Devices, Sunnyvale, USA 



                                                                                                                         Material and Methods  

 

30 

Syrings (1ml)      B. Braun, Melsungen, Germany 

Trans-blot semi dry transfer cell   Bio-Rad, Munich, Germany 

Vortexer      IKA-Labortechnik, Staufen, Germany 

Water purifier Milli-Q plus    Millipore, Schwalbach , Germany 

 

4.3. Bacterial strain 

 

1. DH5 Fé: (F`/endA1 hsdR17 (rk-mk+) supE44 thi-1 recA1 gyrA (NaIr) relA1 (lacZYAargF) 

u169 (m80lacZ M15) (Invitrogen, Karlsruhe, Germany). 

 

4.4. Animals 

 

Mongolian gerbils- Meriones unguiculatus (WT) and IL-5-deficient BALB/c mice of different 

age were used for the experiments which were raised in the animal house of Instiute for 

Medical Microbiology, Immunology and Parasitology, University of Bonn. All animal 

experiments were performed according to the laws prescribed by the German Federal 

Government and the ethical committee. 

 

4.5. Standard buffers 

 

Table 1 

 

Name of the buffer 

 

Ingredients 

 

Phosphate buffered saline (PBS) 

 

50 mM Na2HPO4/NaH2PO4(pH 7.4) 

150 mM NaCl 

 

Tris-(hydroxymethyl)-aminoethane buffered 

saline (TBS) 

 

20mM Tris-HCl (pH 7.4) 

150 mM NaCl 

 

50X TBE 

 

2M Tris-base 

89 mM Boric Acid 

100mM EDTA (pH 8.0) 
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Table 2 

Destaining solutions 

 

Destaining solution 1 Destaining solution 2 

 

50%(v/v) Methanol 

 

10%(v/v) Methanol 

 

10%(v/v) Acetic acid 

 

10%(v/v) Acetic acid 

 

40%(v/v) Water 

 

80%(v/v) Water 

 

 

 

4.6. Polymerase chain reaction (PCR) and other molecular biology reagents 

 

DNAse     Ambion, Darmstadt, Germany 

DNAse Inhibitor   Ambion, Darmstadt, Germany 

dNTPs  Qiagen, Hilden, Germany 

HotStarTaq® DNA polymerase  Qiagen, Hilden, Germany 

Magnesium chloride (MgCl2)   Qiagen, Hilden, Germany 

Oligo-dTs  Qiagen, Hilden, Germany 

Reverse Transcriptase (RT)  Qiagen, Hilden, Germany 

RNase Inhibitor  PeqLab, Erlangen, Germany 

Sybr Green®  Roche, Mannheim, Germany 

10x Buffer  Qiagen, Hilden, Germany 

Lithium chloride  Ambion, Darmstadt, Germany 

Linear acrylamide   Ambion, Darmstadt, Germany 

 

Primers 

 

Ls-ppe-1 Forward            5´AGGCCAAGTTTACTGGCTGTT3´ 

Ls-ppe-1 Reverse            5´CTGGATGTTCGACAACGAAGT3´ 

Ls-actin-1-1 Forward            5´GTGCTACGTTGCTTTGGACT3´ 

Ls-actin-1-1 Reverse            5´GTAATCACTTGGCCATCAGG3´ 
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Ls-FtsZ Forward            5´CGATGAGATTATGGAACATATAA3´ 

Ls-FtsZ Reverse           5´TTGCAATTACTGGTGCTGC3´ 

Primers were synthesized in Qiagen, Hilden, Germany. 

Taqman Hybridization                   6-FAM-CAGGGATGGGTGGTGGTACTGGAA-TAMRA 

Probe was synthesized in Operon Biotechnologies, Cologne, Germany. 

 

4.7. Animal models 

 

Two rodent nematode models, a) infection of Mongolian gerbils (Meriones unguiculatus) 

with L. sigmodontis and b) infection of mice with L. sigmodontis were used in the study. The 

Mongolian gerbil L. sigmodontis model was used to study the L1 to L3 development and 

subsequent sex-ratio distortion in adult worms following infection of the intermediate mite 

hosts with Wolbachia-depleted L. sigmodontis. The mouse L. sigmodontis model was used to 

study the depletion of Wolbachia and regulation of phosphate permease (Ls-PPE) at the 

protein level. Worms from this model were also used in the localization of Wolbachia and Ls-

PPE using immunohistology. 

 

4.7.1. Infection cycle of L. sigmodontis 

 

The infection cycle of L. sigmodontis was maintained by passage through cotton rats 

(Sigmodon hispidus) and mites (Ornithonyssus bacoti). Mice and gerbils were infected 

naturally through the mite vector. The infected mites were maintained under 80-90% 

humidity and at 26-28°C. Naïve mites were kept in a glass flask filled with 10 cm high layer 

of bedding material and were covered with a removable sieve and 10 days prior to infection of 

mice or gerbils, they were allowed to have a blood meal over night on infected cotton rats 

with microfilareamia of more than 1000 MF/µl blood. Afterwards the mites which fed on 

cotton rats were collected in bedding material. Mites were kept for 10 days during which the 

MF (L1) ingested by the mites developed into infective stage 3 larvae (L3) which are then 

transmitted to mice or gerbils during a blood meal as described above for cotton rats (Fig. 8). 

 

4.7.1.1. L. sigmodontis Mongolian gerbil model and sex-ratio distortion study 

 

Mongolian gerbils (Meriones unguiculatus) are fully permissive to L. sigmodontis infection 

allowing normal development and reproduction of these filarial nematodes. In comparison to 
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BALB/c mice, L. sigmodontis infection in Mongolian gerbils is characterized by higher 

microfilaraemia and worm load and hence makes this system ideal for studying sex-ratio 

distortion. 

 

Primary infection and tetracycline treatment 

 

Mongolian gerbils were maintained at the Institute for Medical Microbiology, Immunology 

and Parasitology, University Clinic Bonn, Germany. Gerbils (8-12 weeks old) were infected 

with Litomosoides sigmodontis by mites (Ornithonyssus bacoti) carrying infective L3 larvae 

as described above (Hoerauf et al., 1999). Tetracycline treatment was started 3 months post-

infection when MF were detectable in the blood. Before tetracycline treatment, the MF count 

was determined using Neubauer cell counter (Hoerauf et al., 1999). The microfilaraemic 

blood was then used to extract MF DNA for Wolbachia quantitative PCR (qPCR) to assess 

the initial Wolbachia load per MF. All the treated animal groups, designated as “1º Tet”, 

received tetracycline dihydrochloride (tetracycline-HCl, Sigma-Aldrich, Taufkirchen, 

Germany) orally at 0.5% (w/v) in drinking water for 6 weeks. The medicated drinking water 

was prepared fresh daily. Controls, designated as “1º Con”, were infected but left untreated. 

These treatment groups were considered primary infections (Fig. 9).  

 

In each primary infection experiment, both 1º Tet and 1º Con groups consisted of 5 gerbils, 2 

males and 3 females. At the end of treatment, blood was collected from gerbils for monitoring 

microfilaraemia as described above. DNA was then extracted from blood-borne MF for 

qPCR. One and 3 months post tetracycline treatment, blood was collected from 1º Con and 1º 

Tet gerbils to monitor microfilaraemia and Wolbachia levels to evaluate tetracycline 

treatment.  

 

Infection of intermediate host-mites with Wolbachia-depleted larvae 

 

After confirming the depletion of endobacteria from the MF by tetracycline treatment, the 1º 

Tet and 1º Con gerbils were used to infect naïve mites (O. bacoti) as described previously 

(Hoerauf et al., 1999). Populations of mites that fed on 1º Tet gerbils and 1º Con gerbils were 

designated as “Tet” or “Con” mites, respectively.  
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Monitoring development of larvae (L1-L3) in intermediate mite hosts 

 

After 14 days, 100 mites from Tet and Con mites were dissected for the presence of L3 larvae 

to monitor the success in molting from L1 to L3. Additionally, 50 L3 larvae isolated from Tet 

and Con mites were pooled in batches of 10. DNA was extracted from the pooled L3 larvae 

and used for quantification of Wolbachia using qPCR.  

 

Secondary infection of gerbils with Wolbachia-depleted larvae 

 

The remaining Tet and Con mites were used to infect naïve gerbils designated as secondary 

infections (2º Tet, 7 gerbils; 2º Con, 7 gerbils) (Fig. 9). These 2º Tet and 2º Con gerbils were 

reared for 3 months to study the outcome of adult worm development. Before necropsy, blood 

was collected from Tet and Con gerbils to monitor microfilaraemia and Wolbachia levels in 

MF.  

 

Worm recovery at necropsy 

 
Three months after the secondary infection, the gerbils were euthanized and the worms taken 

out of the pleural cavity. Worms were washed twice in sterile PBS to remove blood cells and 

other debris. Worms were separated by sex, counted and their length was measured. Worms 

were then frozen at -20 °C for later DNA extraction.  
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Fig.9. L. sigmodontis Mongolian gerbils model and tetracycline treatment. 
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4.7.1.2. Wolbachia depletion and Ls-ppe-1 regulation study 

 

IL-5-deficient BALB/c mice are fully permissive for L. sigmodontis infection allowing 

development and reproduction of filarial worms and hence were used in the study. IL-5-

deficient mice have up to 200-fold higher parasite load and prolonged patency in comparison 

to wild-type mice (Volkmann et al., 2003). This extended filarial infection in IL-5-deficient 

BALB/c mice allows prolonged therapeutic regimes of more than 2 weeks which is not 

possible in wild-type BALB/c mice. Another advantage of using IL-5-deficient BALB/c mice 

instead of wild-type BALB/c mice is the reduction of inflammatory nodule formation around 

the adult worms which facilitates easier recovery for further parasitological and molecular 

analyses.  IL-5-deficient BALB/c mice (6–8 weeks old) were infected with L. sigmodontis by 

mites (Ornithonyssus bacoti) carrying infective L3 larvae as described above (Hoerauf et al., 

1999). 

 

Tetracycline treatment 

 

After infection of mice with infective L3 larvae, it takes 2 months for the mice to attain 

patency when released L1 larvae are detected in the blood. Tetracycline treatment was started 

at the onset of a patent infection, i.e. at day 58 post-infection, mice were intraperitoneally 

injected with 50 mg tetracycline per kg body weight per day (Hoerauf et al., 1999). 

Nematodes were collected from the pleural cavities of mice on days 6, 15 and 36 of the 

treatment (Fig. 10). Adult worms were washed thrice in 1x PBS to get rid of blood and other 

debris. Worms were then separated based on sex and some worms were snap frozen in liquid 

nitrogen and stored at -80°C for further analysis such as RNA extraction. The rest of the 

worms were stored in 4% paraformaldehyde in PBS for immunohistological studies. 
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4.8. Production of anti-peptide antiserum against L. sigmodontis phosphate permease (Ls-

PPE) and Onchocerca volvulus phosphate permease (Ov-PPE) 

 

4.8.1. Anti-peptide antiserum production 

Anti-peptide antiserum production methodology employs the use of synthetic peptide antigens to 

target specific antigenic epitopes. Raising anti-serum to immunogenic peptides is the simplest 

method of obtaining antibodies against non-isolated proteins, for example, against putative 

protein sequences derived from DNA sequence information. This approach is also useful when 

the isolation of the antigen is difficult or time consuming, or when the antigen is a member of a 

large protein family. Anti-peptide sera production was done under contract by Eurogentec in 

Belgium. 

4.8.1.1. Peptide design 

A combination of online prediction software, BepiPred 1.0 Server, NetCTL 1.2 Server and 

NetMHC 3.0 Server, were used to select immunogenic peptide sequences. The overall aim was 

to identify regions of the protein that were most likely to be accessible on the surface of the full 

length protein. Based on the deduced amino acid sequence of L. sigmodontis phosphate permease 

(Ls-PPE) and O. volvulus phosphate permease (Ov-PPE), two potential peptide candidates each 

for Ls-PPE and Ov-PPE were chosen (Table 3). 

Table 3: Potential peptide used for peptide immunization 

Protein Peptides used for immunization 

 

Ls-PPE 

 

CQASKTENVESSTVIK 

ILPTDNRATDNRTMKC 

 

Ov-PPE 

 

CMRKGVIDLAVYNGSE 

DTANSSFGTSVGSKVLC 

 

 



                                                                                                                                        Material and Methods 
   
  

 

39 

 

4.8.1.2. Coupling of peptides to carrier protein 

In order to elicit a strong immune response against the peptides, the peptides were coupled to 

carrier protein. Normally carrier proteins such as KLH, OVA, BSA or THY are used to increase 

the molecular weight of peptide antigen making them capable of eliciting a strong immune 

response. In the immunization protocol, 5 mg of each peptide were coupled to KLH carrier 

protein. 

4.8.1.3. Testing pre-immune rabbit serum for cross reacting nematode antibodies 

Before starting immunization schedule, 10 pre-immune rabbit sera were tested for cross reacting 

nematode antibodies by Western blot (5 rabbit sera for Ls-PPE and 5 rabbit sera for Ov-PPE). 

The serum showing least cross reactivity to nematode antigen in Western blot was chosen for 

immunization. Out of 5 rabbits tested, two rabbits each for Ls-PPE and Ov-PPE were picked for 

immunization with carrier protein coupled peptides. 

4.8.1.4. Immunization schedule 

The immunization schedule used an 87-day protocol with 4 immunizations at day 0, day 14, day 

28 and day 56. Bleeds were collected at 4 time points on day 0, day 38, day 66 and final bleed on 

day 87 (Fig. 11). 

 

Fig. 11. Immunization schedule 

Bleeds were analysed using Western blot to check for presence of anti-peptide antibodies against 

Ls-PPE and Ov-PPE. 

 

 



                                                                                                                                        Material and Methods 
   
  

 

40 

 

4.9. Nematode preparation 

 

4.9.1. Litomosoides sigmodontis  

 

L. sigmodontis adult worms were isolated from the pleural cavities of infected rodent hosts 

(Meriones unguiculatus (WT) and IL-5 deficient BALB/c mice). Worms were washed thrice in 

PBS to get rid of blood and other debris. For RNA and DNA extraction, single adult female 

worms or 10 female worms pooled, were taken in individual eppendorf tubes and were frozen 

immediately in liquid nitrogen and stored at -80°C. For immunohistology, adult female worms 

were stored in 4% formaldehyde at RT. 

 

4.9.2. Onchocerca volvulus  

 

O. volvulus worm nodule samples were kindly provided by Dr. Sabine Specht. Nodules were 

extirpated from doxycycline-treated and untreated control patients at 4 months post 6 weeks 

doxycycline treatment was used for the study (Hoerauf et al., 2003). 

 

4.10. Nematode protein extraction 

 

O. volvulus nodule proteins were extracted from the phenol-ethanol supernatant obtained after 

the extraction of RNA and DNA using Trizol reagent. Proteins were precipitated from the 

phenol-ethanol supernatant with isopropanol (0.8 ml of isopropanol was used per 1 ml of Trizol 

reagent used in initial RNA extraction). The samples were stored for 10 min at 15 to 30ºC and 

the protein precipitates were sedimented at 12,000 x g for 10 min at 8 ºC. The protein pellet was 

washed thrice with 2 ml of 0.3 M guanidine hydrochloride in 95% ethanol. During each wash, 

the protein pellet was stored for 20 min at 30 ºC and centrifuged at 7,500 x g for 5 min at 8 ºC. 

Later, the protein pellet was air dried for 10 min and dissolved in 1% SDS by pipetting at 50 ºC. 

Any insoluble material was sedimented by centrifugation at 10,000 x g for 10 min at room 

temperature and the supernatant transferred to fresh tubes. Proteins were then subjected to 

protein estimation and SDS-PAGE gel electrophoresis.  
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L. sigmodontis adult female worms were solubilised in 1 ml of extraction buffer [1% SDS, 500 

mM NaCl, 5mM EDTA and 1mM PMSF]. Eppendorf tubes were vortexed briefly to bring whole 

worms into extraction buffer. Worms were cut into minute pieces using small sterile scissors and 

then homogenized with a glass–glass homogenizer at 1200 rpm. Tubes containing worm extract 

were heated at 95°C for 5 min with intermediate vortexing every minute. Tubes were then 

centrifuged for 15 min at 12, 000 x g at RT. After centrifugation, supernatant containing the 

soluble protein was collected into fresh eppendorf tubes and the pellet containing the insoluble 

proteins was resuspended with 1 ml of extraction buffer. Proteins were then subjected to protein 

estimation and SDS-PAGE gel electrophoresis. If not immediately used, proteins were frozen in 

small aliquots at -20°C until further use. 

 

4.10.1. Protein estimation 

 

Protein estimation was performed using is a colorimetric assay determining the protein 

concentration following detergent solubilisation. The principle of the assay is based on the gold 

standard Bradford assay (Bradford, 1976) where an absorbance shift in the dye coomassie when 

the previously red form coomassie reagent changed and stabilized into coomassie blue by the 

binding of protein. Different concentrations of universal protein standard, bovine serum albumin 

(BSA) such as 0.125; 0.25; 0.5; 1.0 and 2.0 mg/ml and test protein samples were solubilised with 

Advanced protein reagent solution (ADV01). 10µl of protein standard, protein samples and 

negative control were added in triplicates in a 96 well ELISA plate. To this 300 µl of 1X ADV01 

assay reagent was added and incubated in dark at 37ºC for 30 min. The plate was read at 590 nm 

using Spectra Max340 microwell reader. The protein concentrations were calculated in µg/ml 

using the following formula 

 

Protein concentration (µg/ml) = (measured OD) X (37.5) X 30* 

 

 

* 30 is the dilution of the protein in ADV01 solution (10 µl in 300 µl). 
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4.11. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)  

 

Proteins are charged molecules and hence general electrophoresis techniques such as PAGE 

cannot be used to measure their molecular weight because their mobility in the gel is influenced 

by both charge and size. In order to overcome this, protein samples are treated with sodium 

dodecyl sulfate (SDS) so that they have a uniform charge and then their electrophoretic mobility 

depends primarily on size. The percentages of separating gels and stacking gels were prepared as 

shown in the following tables. 

 

 

 

2-5 µg of total nematode protein was analysed using SDS-PAGE. The protein samples were 

denatured in one fourth the volume of 4x Laemmli sample buffer (4% SDS, 0.5% bromophenol 

blue, 1% β-mercaptoethanol, 0.5 % glycerol, 0.5 M Tris-HCl pH 6.8) at 95°C for 5 min. The 

samples were centrifuged for 10 min at 13000 rpm and then were loaded to 10 % SDS-PAGE gel 

which was submerged in an apparatus containing running buffer (192 mM glycine, 25 mM Tris, 

0.1% SDS, and pH 8.3). A constant voltage of 100 V was applied to the gel until the tracking dye 

entered the separating gel. Then the voltage was increased to 150 V until the dye reached the 

bottom of the gel and proteins were blotted onto PVDF membranes using Trans-blot semi dry 

transfer cell following manufacturer’s protocol. 
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4.11.3. Coomassie staining 

 

The gel was stained with commercially available stain; Rotiphorese Blau R (Carl Roth GmbH, 

Karlsruhe, Germany) for 20 min. The ready to use Rotiphorese Blau R stain contains Coomassie 

Brilliant Blau B, methanol and acetic acid. The gel was destained with destaining solution 1 until 

bands became visible, then destained with destaining solution 2 until background disappeared, 

later dried and photographed when necessary. 

 

4.12. Western Blot 

 

Western blot is a robust technique in biochemistry used to detect a protein by using antibody 

specific to that protein. Western blot also gives information about the molecular weight of the 

protein. The complex protein mixture (such as a cell lysate, extract or a purified protein 

preparation) is fractionated on a SDS-PAGE gel. After electrophoresis, proteins are transferred 

either to nitrocellulose membrane, polyvinylidene fluoride (PVDF) membrane or nylon 

membrane. Specific antibodies (primary antibodies) are used to detect specific protein antigens 

on the membrane. Further these primary antibodies are probed with chemical or fluorescent 

labelled secondary antibodies. 

 

After SDS-PAGE, proteins were transferred onto a PVDF membrane with a pore size of 0.45 µm 

(Schleicher & Schuell) using a Trans-blot semi dry transfer cell. The gel and membrane were pre 

soaked in transfer buffer containing Tris/glycine/methanol (10 mM Tris, 100 mM glycine, and 

pH 8.5 and 20 % methanol). Protein transfer was carried out at 0.8 mA/cm2 for 1 hr. After 

transfer, the membrane was washed twice with TBS (20 mM Tris, 137 mM NaCl, pH 7.6). To 

ensure proper loading and transfer of proteins to the membrane, the membrane was stained for 20 

min with Ponceau S, a reversible protein stain (Carl Roth GmbH, Karlsruhe, Germany). The 

membrane was washed for 10 min with PBS containing 0.5 % Tween 20 (PBS-T) to remove the 

Ponceau S stain. Then the membrane was blocked with 5 % Non-fat milk in PBS-T at RT for 1 

hr or over night at 4°C. After blocking, the membrane was incubated with 1:250 or 1:2000 

dilution of primary antibody overnight at 4°C depending on the protein to be detected. Dilution 

of 1: 250 and 1:2000 was used for the detection of WSP and Ls-PPE/Ov-PPE, respectively. Then 

the membrane was washed thrice for 10 min with PBS-T to remove unbound antibodies. After 
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washing, the membrane was incubated for 1 hr at RT with 1:3000 dilution of goat anti-rabbit IgG 

secondary antibody (Bio-Rad, Munich, Germany) prepared in PBS-T containing 0.5% Non-fat 

milk. The membrane was washed thrice for 10 min with 1X PBS-T to remove unbound 

antibodies. Then the membrane was placed either in Alkaline Phosphatase Blue Membrane 

Solution (Sigma-Aldrich, Munich, Germany) for 10 min to visualise bound antibodies or in 

Immun-star AP substrate (Bio-Rad, Munich, Germany) for 5 min for chemiluminescent detection 

where the blots were wrapped in a heat-sealable bag and exposed to X-ray film at RT for 2 min. 

X-ray film was developed after exposure. 

 

4.13. Molecular biology methods 

 

4.13.1. Extraction and quantification of nucleic acids 

 

DNA extraction 

 

DNA was extracted from MF, L3 larvae and adult worms using the QIAamp DNA Mini Kit 

following manufacturer’s protocol for tissue, except that the worms were incubated overnight at 

56 ºC. DNA from 1000 MF and single adult worms was eluted in 200 µl of AE buffer (10 mM 

Tris, 0.5 mM EDTA, pH 9) while DNA from 10 L3 larvae was eluted in 50 µl of AE buffer. 

 

RNA extraction 

 

L. sigmodontis adult female worms from the pleural cavity of mice were collected and 10 female 

worms were pooled together in eppendorf tubes. Tubes were frozen in liquid nitrogen and stored 

at –80°C. Total RNA was extracted from 10 female nematodes using Trizol reagent following 

manufacturer’s protocol. Ten female worms were suspended in 800 µl of Trizol reagent and were 

finely cut with scissors and later homogenized with a glass–glass homogenizer at 1200 rpm. 80 

ml of 1-bromo-3-chloro-propane was added to separate the homogenate into RNA-containing 

aqueous and DNA and protein-containing organic phases. DNase treatment was performed for 

30 min at 37°C to avoid genomic DNA contamination. Nucleases were removed with RNeasy 

clean up kit (Qiagen, Hilden, Germany).  
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The nucleic acid sample was diluted in nuclease free water or TE buffer and the absorbance was 

then measured at 260 and 280 nm in an Eppendorf BioPhotometer. Diluents were used as a blank 

to calibrate the spectrophotometer. 

 

4.13.2. Reverse transcription 

 

The extracted RNA was reverse transcribed into complementary DNA (cDNA) following 

OmniScript Reverse Transcriptase Kit manufacturer’s protocol in a 20µl reaction. 

 
Table 6: Reagents for reverse transcription 
 
Reagents Vol. in µl 

10x Buffer 2  

dNTP 2  

Oligo Nucleotide 1  

Reverse Transcriptase (RT) 1  

RNase-Inhibitor 0.33 

 

The above reaction mix was set up with 2 µg of RNA was incubated for 1 hr at 37 °C and then 

cooled to 4°C. Reverse transcribed cDNA was diluted to 1:3 with DEPC water and further used 

for quantitative PCR (qPCR).  

 

4.13.3. Polymerase chain reaction amplification of Ls-ppe-1, Ls-actin-1 and Ls-FtsZ genes 

 

In order to generate plasmid standards for quantitative PCR (qPCR), normal PCR was performed 

using cDNA as template to amplify the following genes,  Ls-actin-1 (L. sigmodontis actin gene), 

Ls-ppe-1 (L. sigmodontis phosphate permease gene) and Ls-FtsZ (L. sigmodontis Wolbachia cell-

division protein gene). 
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Table 7: PCR recipe (50µl reaction) 

Reagents Vol. in µl 

H2O 35.5  

10x Buffer 5 

MgCl2 (25mM) 3  

dNTP (40mM) 1 

Forward primer (300nM) 1.5 

Reverse primer (300nM) 1.5  

HotStarTaq® (250 U) 0.5 

cDNA 2  

 

The above reaction mix was set and placed in PCR thermal cycler. Ls-ppe-1 and Ls-FtsZ gene 

amplifications were performed under the following conditions: initial denaturation at 95°C 15 

min, 35 cycles of 94°C 10s; 58°C 15s followed by a final extension of 72°C 15 s. For Ls-actin-1 

the conditions were identical except for the use of an annealing temperature of 52°C. 

 

10 µl of PCR product was run on 2 % agarose gel and stained with ethidium bromide. Bands 

were visualized under UV light. PCR bands were excised from gel and DNA was extracted using 

DNA Clean & Concentrator-5 Kit, Zymo Research, Orange, USA. Purified PCR products were 

used for bacterial cloning. 

 

4.13.4. Cloning of PCR product 

 

PCR products of Ls-actin-1, Ls-ppe-1 and Ls-FtsZ were cloned using pCR®4-TOPO-TA® 

cloning kit following manufacturer’s protocol.  TOPO-TA® cloning reaction mix is described in 

following table. 
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Table 8: TOPO-TA® cloning reaction mix 

Reagents Vol. in µl 

Salt solution 1 

Sterile Water 2 

pCR®4TOPO®-Vector 1 

PCR-Product 2 

 

The reaction mix was gently mixed and incubated for 5 min at RT. 2µl of the TOPO® cloning 

reaction mix was added to a vial of One Shot® Chemically Competent E.coli and mixed gently 

and incubated on ice for 5 min. Heat-shock of cells at 42°C for 30 sec was given and cells were 

immediately transferred to ice. 250 µl of S.O.C medium was added to cells and incubated at 

37°C for 1 hr in a shaker cum incubator. 10-50 µl of cells were plated on LB agar-plates 

containing 100 mg/ml ampicillin, 100 µg/ml IPTG and 100 µg/ml X-Gal which were incubated 

at 37°C overnight. 

 

4.13.4.1. Selection of transformants 

 

Transformants were selected based on their ability to grow on ampicillin agar plates as 

transformed vector contains a gene for the resistance against ampicillin and also insertion of 

foreign gene in TOPO® vector results in insertional inactivation of the LacZ gene which results in 

formation of white colonies in IPTG/X-Gal plates. Hence white colonies were picked and colony 

PCR was performed with same set of primers used previously to screen for positive clones. 

 

4.13.4.2. Plasmid DNA preparation and purification 

 

Positive bacterial clones for Ls-actin-1, Ls-ppe-1 and Ls-FtsZ screened using colony PCR were 

cultured in 4 ml of Circle Grow® liquid medium containing 10 µg/L ampicillin. Cells were 

incubated at 37°C overnight with shaking at 300 rpm/min. On the next day, cells were briefly 

centrifuged to pellet the cells and plasmid DNA was extracted using Qiaprep Spin Miniprep Kit 

(Qiagen, Hilden, Germany) following the manufacturer’s protocol. Plasmids were sequenced at 

MWG Biotech AG (Germany) and sequence for Ls-actin-1, Ls-ppe-1 and Ls-FtsZ was confirmed 

by BLAST search. 
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4.13.4.3. Preparation of plasmid standards for quantitative PCR (qPCR) 

 

Copy number of plasmid containing gene of interest was calculated using following formula 

 

 

  

 

Plasmids were serial diluted so as to get a standard for quantitative PCR (qPCR) and during each 

qPCR run, a serial dilution of linearized plasmid containing Ls-actin-1/Ls-ppe/Ls-FtsZ gene was 

used to make a standard curve. The gene/µl in nematode DNA was calculated from the plasmid 

standards. 

 

4.13.5. Quantitative PCR (qPCR) for Ls-actin-1, Ls-ppe-1 and Ls-FtsZ gene 

 

Quantification of Ls-actin-1 and Ls-ppe-1 was performed using Sybr Green assay whereas 

quantification of Ls-FtsZ gene was performed using Taqman assay. The following are the qPCR 

recipe for Ls-actin-1, Ls-ppe-1 and Ls-FtsZ gene. 

 

Table 9: qPCR recipe for Ls-actin-1 gene (10 µl reaction) 

 

Reagents Vol. in µl 

H2O 4.4 

10x Buffer 1 

MgCl2 (25mM) 0.6 

dNTP(40mM) 0.05 

Ls-actin-1 forward primer (900nM) 0.9 

Ls-actin-1 reverse primer (900nM) 0.9 

SYBR® Green I (1:1000) 0.1 

HotStarTaq® 0.05 

Nucleic acid 2 

 

 

6 x 1023 (Copies/mol) x Plasmid concentration 
(g/µl) 

Molecular weight MW (g/mol) 
= Copies/µl 
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Table 10: qPCR recipe for Ls-ppe-1 gene (10 µl reaction) 

 

Reagents Vol. in µl 

H2O 5.6 

10x Buffer 1 

MgCl2 (25mM) 0.6 

dNTP(40mM) 0.05 

Ls-ppe-1 forward primer (300nM) 0.3 

Ls-ppe-1 reverse primer (300nM) 0.3 

SYBR® Green I (1:1000) 0.1 

HotStarTaq® 0.05 

Nucleic acid 2 

 

Table 11: qPCR recipe for Ls-FtsZ gene (10 µl reaction) 

Reagents Vol. in µl 

H2O 5.0 

10x Buffer 1 

MgCl2 (25mM) 1.2 

dNTP(40mM) 0.05 

Ls-FtsZ forward primer (300nM) 0.3 

Ls-FtsZ reverse primer (300nM) 0.3 

Taqman HybeProbe (5 µM) 0.1 

HotStarTaq® 0.05 

Nucleic acid 2 

 

The above reaction mix was set and performed on RotorGene 3000 (Corbett Research, 

Australia). PCR reactions were performed in triplicate. Ls-ppe-1 and Ls-FtsZ gene amplifications 

were performed under the following conditions: initial denaturation at 95°C 15 min with 35 

cycles of 94°C 10s; 58°C 15s followed by a final extension of 72°C 15 s. For Ls-actin-1 the 

conditions were similar except for the use of an annealing temperature of 52 °C. 
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4.14. Immunohistology 

 

4.14.1. Embedding tissues prior to paraffin processing 

 

L. sigmodontis adult worms were embedded in agar-gelatin. 4 % agar in distilled water at 40°C 

was mixed with a 5 % (w/v) solution of gelatin in distilled water at a 1:1 ratio to generate a 

slightly viscous 2 % agar: 2.5 % gelatin solution. The temperature of this medium was used at 

approximately 40°C to avoid exposing tissues to excessive heat. Worms were arranged or 

oriented as desired on a clean surface and molten agar-gelatin mixture was poured over the top of 

the worm tissues and was allowed to solidify. The agar-gelatin solidifies around the fixed worm 

tissue (pre-embedding) and the fixed worms were taken into plastic cassettes. O. volvulus worm 

nodules were directly taken into plastic cassettes without pre-embedding procedure. The plastic 

cassettes containing worm tissue or nodule were subjected to routine dehydration and paraffin 

infiltration procedures, followed by finally embedding the agar-gelatin-encased tissue in paraffin 

wax. 

 

4.14.2. Sectioning, deparaffining and rehydration. 

 

Paraffin embedded worms were cut into fine sections of 0.5 µM using a Reichert-Jung 1140 

Autocut microtome (Leica Microsystems, Wetzlar, Germany). The sections were placed on glass 

slides and incubated over night at 40°C for proper drying and fixing of sections to the glass 

slides. Then the sections were placed in Xylene for 5 min to deparaffinize and then were placed 

serially in 100%, 96%, 80%, 70% and 50% of ethanol for 5 min each and then followed by 

rehydration in distilled water for 5 min. 

 

4.14.3. Immunostaining 

 

The deparaffinised and rehydrated worm sections were rinsed with distilled water and thereafter 

with TBS. The sections were briefly placed in 0.1% BSA for 5 min and then incubated with 10% 

BSA for 5 min. After incubation, BSA was tapped off and the sections were placed in 0.1% BSA 

for 5 min.  Then the sections were either incubated for 1 hr with rabbit anti-Ls-PPE or anti-Ov-

PPE serum diluted optimally in 0.1% BSA at a dilution of 1:2000 or anti-WSP serum diluted in 
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0.1% BSA at a dilution of 1:250. After incubation, the antibody was tapped off and the slides 

were washed in TBS for 5 min to remove unbound antibodies. Then the sections were incubated 

with monoclonal mouse anti-rabbit immunoglobulins (DAKO Code No. M 0737, Dako 

Cytomation, Glostrup, Denmark) diluted at 1:25 in 0.1% BSA for 30 min. After incubation, the 

antibody was tapped off and slides were washed in TBS for 5 min. Then the slides were 

incubated with polyclonal rabbit anti-mouse immunoglobulins (DAKO Code No. Z 0259, Dako 

Cytomation, Glostrup, Denmark) diluted 1:25 in 0.1% BSA for 30 min and followed by washing 

in TBS for 5 min, slides were incubated with APAAP, mouse monoclonal (alkaline phosphatase 

anti-alkaline phosphatase) (DAKO Code No D 0651, Dako Cytomation, Glostrup, Denmark) 

diluted 1:50 in 0.1 % BSA for 30 min. After incubation, the complex was tapped off and the 

slides were washed in TBS for 5 min. Later the slides were incubated with Sigma Fast Red 

substrate (Sigma-Aldrich, Munich, Germany) for 15-20 min. After incubation, the substrate was 

tapped off and the slides were rinsed in distilled water and counter stained with Mayer’s 

hemalum solution for 10 min. Then the slides were washed in running tap water and coverslips 

mounted with Aquatex for observation with a microscope. 
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5. Results 

 

5.1. Sex-ratio distortion study 

 

To dissect between a direct effect of tetracycline and the absence of Wolbachia on larval 

moulting and adult worm development, I depleted Wolbachia from MF, knowing that 

tetracycline has no effect on MF viability in blood (Chirgwin, et al., 2003; Debrah, et al., 2006). 

Hence, to study the effect of tetracycline, which depletes Wolbachia, on the development of 

microfilariae (L1 larvae, MF) to L3 larvae in the intermediate mite host (O. bacoti), and to 

observe the development of Wolbachia- depleted L3 larvae in gerbils; microfilaremic gerbils 

were treated with tetracycline for 6 weeks in drinking water (1º Tet) or left untreated (1º Con) 

and designated as primary infections. Naive mites were then fed on the 1º Tet and 1º Con gerbils 

and were used to infect uninfected gerbils, designated as secondary infections (2º Tet, 2º Con). 

Hence, the gerbils were infected with mites carrying L3 larvae that developed from Wolbachia-

depleted MF. 

 

5.1.1. Six weeks oral tetracycline treatment leads to a persistent depletion of Wolbachia and 

lower microfilaremia 

 
Pre-treatment blood was collected from patent gerbils and microfilaraemia was determined 

before the start of tetracycline treatment. Gerbils were treated with tetracycline orally and 

microfilaraemia was monitored at the end of treatment (6 weeks), and 1 and 3 months post-

treatment to assess the efficiency of tetracycline treatment. At the end of treatment, there was no 

significant difference in microfilaraemia in 1º Tet and 1º Con gerbils, but 1º Tet gerbils at 1 and 

3 months post-treatment had significantly fewer MF (11- and 5-fold differences, respectively; 

Table 12, column 3). Although at 3 months post-treatment the fold difference in the number of 

MF/µl blood decreases, this is due to a decrease of MF in the 1º Con gerbils and not an increase 

of MF in the 1º Tet gerbils. After 15 months, 1º Con gerbils also became amicrofilaremic (Fig. 

12). DNA was extracted from 1000 MF and the Wolbachia load was quantified by qPCR. At the 

end of oral tetracycline treatment, 1º Tet gerbils had microfilariae with levels of Wolbachia 8.5-

fold lower than controls. The 1º Tet MF collected at 1 and 3 months post-treatment had 11- and 

6-fold fewer Wolbachia than 1º Con MF, respectively. In all cases, the differences in 
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endobacteria levels were significant (Table 12, column 5).  

 

 

 

 

Fig. 12. Microfilaraemia in primary infected gerbils followed to 15 months post infection. At the end of 6 weeks 

tetracycline treatment, there is no significant difference in microfilaraemia in 1º Tet and 1º Con gerbils, but 1º Tet 

gerbils at 1 and 3 months post-treatment had significantly fewer MF. At 15 months post treatment, both 1º Tet and 

1º Con gerbils became amicrofilaraemic. 
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Table 12: Microfilaremia and Wolbachia levels before and after tetracycline treatment of gerbils infected with L. sigmodontis 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

1 Mann-Whitney U Test, P≤0.05, comparing microfilaremia and Wolbachia levels in tetracycline treated gerbils to untreated 
controls. The results are representative of 3 experiments. 
2 End of oral tetracycline treatment. 
3 p.t.: Post treatment.  
* Results are statistically significant. 
 

 

     Treatment Time MF/µl 

median 
(25th;  75th percentiles) 

P value1 Ls-FtsZ/MF 

median 
(25th; 75th percentiles) 

P value1 

Pre-treatment 925 
(706.5; 1163) 

 61 
48.5; 108.5 

 

6 weeks2 950 
(643.5; 1283) 

 34 
(20.8; 42.7) 

 

1 mo. p.t.3 1750 
(643.8; 2063) 

 58 
(25.2; 60.6) 

 

Control 
(N=5) 

3 mo. p.t. 425 
(325;1038) 

 86.06 
(47.5; 124.8) 

 

Pre-treatment 725 
 (531.5; 1250) 

0.69 66 
(47; 88) 

0.69 

6 weeks 1112 
(587; 1169) 

0.69 4 
(1.2; 6.5) 

<0.01* 

1 mo. p.t. 150 
(112.5; 362.5) 

<0.01* 5.2 
(3.1; 10.3) 

0.03* 

Tetracycline 
(N=5) 

3 mo. p.t. 88 
(66.2; 112.5) 

<0.01* 14.8 
(7.5; 45.4) 

0.02* 
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5.1.2. Fewer L3 develop from Wolbachia-depleted L1 larvae 

 

Six weeks after tetracycline treatment naive mites were fed on the 1º Tet or 1º Con gerbils. From 

each infection, 100 mites were collected and dissected for infective L3 larvae. Con mites had an 

infection rate of 54% while Tet mites had an infection rate of 9% (Table. 13, column 2). 

Although there was no difference in microfilaremia (Table 12, column 3) in the gerbils used to 

infect both groups of mites, the percentage of mites with MF that successfully developed into L3 

larvae was significantly lower in the Tet mites. Quantification of Wolbachia levels in these 

larvae showed that the L3 larvae from Tet mites had significantly lower Wolbachia levels than 

L3 larvae from Con mites (Table 13, column 4). Despite the significantly reduced number of 

Wolbachia (Table 13, column 5), L3 larvae were able to develop in the intermediate host, 

suggesting that the larvae that developed still had Wolbachia levels above a minimum threshold 

needed for larval development. 

 

5.1.3. Microfilaraemia and Wolbachia levels in MF from secondary infected gerbils 

 

After confirming a significant reduction in Wolbachia levels in L3 larvae from Tet mites, Tet and 

Con mites were used to infect naive gerbils (2º Tet and 2º Con gerbils). After three months, 

blood was collected from 2º Tet and 2º Con gerbils to monitor microfilaraemia and Wolbachia 

levels in the MF. All 2º Con gerbils were microfilaraemic. Unexpectedly, five of the 2º Tet 

gerbils were microfilaraemic. 2º Tet gerbils infected with Wolbachia-depleted L3 larvae had 

significantly fewer circulating MF in comparison to 2º Con gerbils which were infected with L3 

larvae containing more Wolbachia (Table. 13, column 6). Assessing the Wolbachia levels in MF 

from 2º Tet and 2º Con gerbils revealed that MF from 2º Tet gerbils had significantly fewer (12-

fold) Wolbachia in comparison to MF from 2º Con gerbils  (Table. 13, column 8). Again 

suggesting that the L3 larvae that successfully developed in the intermediate mite host contained 

a minimum number of Wolbachia to develop into sexually mature adult worms. 
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Table 13: Tetracycline treatment after primary infection leads to impaired L1-L3 development in mites, reduced Wolbachia levels in L3 

larvae, low microfilaraemia and reduction of Wolbachia in MF in secondary infected Tet gerbils. 

 
1Mites fed on control and tetracycline gerbils were dissected 14 days after infection and examined for L3 larvae. Significant difference 

was determined by the Fischer’s exact test, P≤0.05. 

2Fifty L3 larvae from Con and Tet mites were pooled in batches of 10 (N=5), DNA was extracted and Ls-FtsZ was quantified by qPCR. 

3Con and Tet mites were used to infect naive gerbils with L. sigmodontis (N=7, secondary infection).  Microfilaraemia was assessed at 3 

months post-treatment. 

4Quantification of Ls-FtsZ gene in MF from secondary infected Con and Tet gerbils. 

* Result is statistically significant, Mann-Whitney U Test, P≤0.05. Results are representative of 3 experiments. 

    Treatment % of 
infective L3 

in mites 

(n=100) 

P value1 Ls-FtsZ /L3 

median 
(25th; 75th percentiles) 

(N=5) 

P value2 MF/µl 

median 
(25th; 75th percentiles) 

(N=5/7) 

P 
value3 

Ls-FtsZ/MF 

median 
(25th; 75th percentiles) 

(N=5/7) 

P value4 

Control 54  2140 
(602.5; 2900) 

 912.5 
(737.5; 1413) 

 61.8 
(41.46; 113) 

 

Tetracycline 9 <0.0001* 40 
(35; 55) 

   0.04* 100 
(62.5; 412.5) 

<0.01* 5.2 
(2.13; 32.6) 

0.02* 
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5.1.4. Depletion of Wolbachia from MF causes a sex-ratio distortion in adult worms from 

2º Tet gerbils 

 

 Adult worms were recovered from the pleural cavities of 2º Tet and 2º Con gerbils and the 

adult worms were analyzed. Fewer female worms developed from Wolbachia-depleted L3 

larvae in 2º Tet gerbils than in 2º Con gerbils. However, there was no significant difference in 

male worm number between 2º Tet and 2º Con gerbils. This lead to an 8-fold lower        

female: male ratio in 2º Tet gerbils compared to 2º Con gerbils (Fig. 13). There was no 

significant difference in the male and female worm length between both groups (Fig. 14 A, 

Fig. 14 B). 

 

 

 
Fig.13. The female: male ratio is significantly lower in 2º Tet gerbils infected with Wolbachia-depleted L3. 

Naive mites took blood meals on gerbils infected with L. sigmodontis treated with tetracycline for 6 weeks (1º 

Tet) or untreated gerbils (1º Con) from the same infection. The mites were then used to infect naive gerbils. After 

3 months, adult worms were recovered from the pleural cavity and counted. Fewer female worms developed 

from Wolbachia-depleted L3 larvae than from control L3 larvae in secondary infected gerbils (P<0.0001), 

leading to an 8-fold lower female: male ratio. Significance was determined using the Mann-Whitney U Test, 

P≤0.05. The graph is representative of 3 experiments. Squares and triangles represent one infected gerbil. The 

line represents the median value. 
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Fig. 14. Adult worm length in secondary infected control and tetracycline treated gerbils. Mites which took blood 

meals on gerbils infected with L. sigmodontis treated with tetracycline for 6 weeks (1º Tet) or untreated gerbils 

(1º Con), were used to infect naive gerbils. After 3 months, adult worms recovered from pleural cavity were 

separated based on sex and the length of male and female worms was measured using. A) Female worm length 

and B) Male worm length. There is no significant difference in male and female worm length between Con and 

Tet groups. Significance was determined using the Mann-Whitney U Test, P≤0.05. The graph is representative of 

3 experiments. 

 

5.1.5. Wolbachia levels in male and female worms developed in 2º Con and 2º Tet gerbils 

 

Naive mites took blood meals on gerbils infected with L. sigmodontis treated with tetracycline 

for 6 weeks (1º Tet) or untreated gerbils (1º Con) from the same infection. The mites were 

then used to infect naive gerbils (2º Con, 2º Tet). After 3 months, adult worms were recovered 

from the pleural cavity. DNA was extracted and Wolbachia levels were quantified by real-

time PCR. Ls-FtsZ levels measured in male worms showed a wide range of distribution that 

differed by 3 logs. There were significantly fewer Wolbachia in male worms from 2º Tet 

gerbils compared to those of male worms from 2º Con gerbils. In the female worms that 

developed in 2º Tet and 2º Con gerbils the range of Wolbachia distribution was ~1 log. There 

was no significant difference in the number of Wolbachia in female worms from 2º Tet 

gerbils, although there was a trend of more Wolbachia in the few female worms that 

developed (Fig. 15). 
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Fig. 15. Wolbachia levels from female and male worms that developed in 2º Con and 2º Tet gerbils. Comparison 

of Wolbachia levels in 2º Tet and 2º Con female worms shows no significant difference (P=0.09) whereas the 

Wolbachia levels in 2º Tet male worms were significantly lower than in 2º Con male worms (P=0.02). The line 

in the boxes represents the median (numerical value of which is given above each box). The top and bottom of 

the boxes represents the 75th and 25th percentiles, respectively; the lines below and above the boxes represent the 

minimum and maximum values. Significance was determined using the Mann-Whitney U Test, P≤0.05. The 

graph is representative of 3 experiments. 

 

5.2. Wolbachia depletion and L. sigmodontis phosphate permease (Ls-PPE) regulation 

study 

 

The information from the annotated wBm genome suggests that important metabolites might 

be provided by wBm to nematodes and vice versa. One way to identify and characterize these 

metabolic pathways would be to study the expression of genes in nematodes during 

Wolbachia depletion. RNA differential display was used to discover genes in L. sigmodontis 

that are differentially regulated in response to Wolbachia depletion during tetracycline 

treatment. Several genes were up-regulated in response to Wolbachia depletion and one of the 

up-regulated genes (Ls-ppe-1) had homology to the phosphate permease class of proteins 

(Heider et al., 2006).  
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The aim of this part of the work was to study the regulation of Ls-ppe-1 gene at the protein 

level and to investigate a possible co-localization of this protein to Wolbachia in L. 

sigmodontis adult worms using immunohistology.  

 

5.2.1. Depletion of Wolbachia in L. sigmodontis during tetracycline treatment 

 

IL-5-deficient BALB/c mice having patent infection with L. sigmodontis were treated 

intraperitoneally with tetracycline. Worms were collected on days 6, 15 and 36 of treatment. 

Wolbachia levels were determined by Ls-FtsZ qPCR. To quantify the worm load, a house 

keeping gene of L. sigmodontis, Ls-actin-1 was also measured by qPCR. There was no 

significant reduction of Wolbachia in worms collected on day 6 of tetracycline treatment and 

Wolbachia levels in worms collected on day 15 of tetracycline treatment showed reduction in 

Wolbachia in comparison to control worms, but this reduction was not statistically significant. 

In comparison to controls, significant depletion of Wolbachia of 97% was observed at day 36 

of tetracycline treatment (Fig. 16A) and no significant difference in Ls-actin-1 levels was 

observed in both the groups during the entire treatment period (Fig. 16B). 

 

 
Fig. 16. Tetracycline treatment leads to significant depletion of Wolbachia bacteria in adult worms at day 36 of 

tetracycline treatment (Tday36). A) Ls-FtsZ and B) Ls-actin-1 copy numbers were determined for each time 

point by qPCR. Significance was calculated by the Mann–Whitney U test, * denotes a significant difference 

between tetracycline-treated L. sigmodontis and untreated controls (p<0.05). 
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5.2.2. Expression levels of Ls-ppe-1 during Wolbachia depletion by tetracycline treatment 

 

Ls-ppe-1 levels were measured in L. sigmodontis worms collected on day 6, 15 and 36 of 

tetracycline treatment using qPCR. Levels of actin gene of L. sigmodontis, Ls-actin-1, was 

measured to quantify the worm load. In comparison to control, 74 % up-regulation of           

Ls-ppe-1 mRNA was observed in worms collected on day 36 of tetracycline treatment (Fig. 

17A) and no significant difference in Ls-actin-1 levels was observed (Fig. 17B) . Notably on 

these days there was also reduction in levels of Wolbachia (Fig. 16A) and confirms previously 

published work (Heider et al., 2006).  

 

 
Fig. 17. Up-regulation of Ls-ppe-1 during Wolbachia depletion by tetracycline treatment in L. sigmodontis adult 

female worms. A) Ls-ppe-1 and B) Ls-actin-1 copy numbers were determined for each time point by qPCR. 

Significance was calculated by the Mann–Whitney U test, * denotes a significant difference between 

tetracycline-treated L. sigmodontis and untreated controls (p<0.05). 

 

5.2.3. Testing of anti-Ls-PPE serum 

 

In order to study the regulation of Ls-PPE at protein level, anti-Ls-PPE serum was developed. 

Two rabbits were immunized with Ls-PPE peptides coupled to carrier protein KLH and 

bleeds were collected from rabbits. 2 µg of L. sigmodontis protein was separated on SDS-

PAGE and transferred to PVDF membrane. Western blot was performed to test the anti-Ls-

PPE serum at different dilutions (1:250, 1:500, 1:1000 and 1:2000).  A protein of the 

predicted molecular weight of 53 KDa corresponding to L. sigmodonits phosphate permease 

(Ls-PPE) was observed (Fig.18). A serum dilution of 1:2000 showed a clear band and had the 

least background, whereas no bands were observed in blots incubated with pre-immune serum 

at the same dilution (Fig. 18). 
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Fig. 18. Detection of Ls-PPE using anti-Ls-PPE serum.  

2µg of L. sigmodontis proteins were separated on SDS-PAGE gel and transferred to PVDF membrane. Lane 1: 

Protein marker and Lane 2: L. sigmodontis protein extract. Blots were incubated with 1:250, 1:500, 1:1000 and 

1:2000 dilutions of anti-Ls-PPE serum and 1:2000 dilution of pre-immune serum followed by goat anti-rabbit 

IgG secondary antibody conjugated to alkaline phosphatase. Specific proteins were detected by incubating the 

blot in Alkaline Phosphatase Blue Membrane Solution (Sigma-Aldrich, Munich, Germany). 

 

5.2.3.1. Testing the specificity of anti-Ls-PPE serum 

 

To test the specificity of anti-Ls-PPE serum against Ls-PPE, a competitive Western blot was 

performed by competing the anti-serum with the soluble peptides (100µg/ml) used for 

immunization. Blots incubated with anti-Ls-PPE serum without the peptides showed a band of 

53 KDa (Fig. 19, lane 1), whereas blots incubated with anti-Ls-PPE serum plus the soluble 

peptides showed no bands (Fig. 19, lane 2), suggesting that the serum was specific for Ls-PPE 

peptides. 

 

 
 

Fig. 19. Anti-Ls-PPE serum is specific for Ls-PPE peptides. 2µg of L. sigmodontis protein was separated on a 

10% SDS-PAGE gel and then transferred to nitrocellulose membrane. Lane 1: Blot incubated with a 1:2000 

dilution of anti-Ls-PPE serum. Lane 2: Blot with 1:2000 dilution of anti-Ls-PPE serum plus free peptides. Blots 

were incubated with goat anti-rabbit IgG secondary antibody conjugated to alkaline phosphatase and Ls-PPE was 

detected by incubating the blot in Alkaline Phosphatase Blue Membrane Solution (Sigma-Aldrich, Munich, 

Germany). 
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5.2.4. Up-regulation of Ls-PPE during Wolbachia depletion by tetracycline treatment at  

the protein level 

 

To study the expression levels of Ls-PPE during Wolbachia depletion, IL-5-deficient BALB/c 

mice with a patent infection of L. sigmodontis were treated with tetracycline intraperitoneally 

for 30 days. Worms were recovered on days 6, 15 and 36 and expression of Ls-PPE at the 

protein level was investigated by Western blot using anti-Ls-PPE serum. Up-regulation of Ls-

PPE was observed on days 15 and day 36 of tetracycline treatment, as was seen at the mRNA 

level (Fig. 20). 

 
 

Fig. 20. Up-regulation of Ls-PPE at protein level on day 15 and day 36 of tetracycline treatment.  2µg of soluble 

L. sigmodontis protein from worms from different time points of tetracycline treatment was separated on a 10% 

SDS-PAGE gel and then transferred to PVDF membrane. Anti-Ls-PPE serum was used to detect Ls-PPE 

followed by goat anti-rabbit IgG secondary antibody conjugated to alkaline phosphatase and a chemilumiscent 

Western blot was performed. Ls-PPE was found to be up-regulated on day 15 and day 36 of tetracycline 

treatment. 

 

5.2.5. Ls-PPE is not up-regulated during treatment of L. sigmodontis with gentamycin, a 

drug known to be inefficient in killing Wolbachia 

 

Gentamycin is known to be inefficient in curing Wolbachia in L. sigmodontis (Heider et al., 

2006). Hence to test the hypothesis of Ls-PPE up-regulation is dependent on Wolbachia 

depletion, IL-5-deficient BALB/c mice with patent infection of L. sigmodontis were treated 

with gentamycin intraperitoneally for 30 days and worms were collected on day 15 and day 

36 post-gentamycin treatment. Nematode proteins were extracted from control and 

gentamycin treated worms and a Western blot was performed to analyse Ls-PPE up-

regulation. There was no up-regulation of Ls-PPE observed on days 15 and day 36 of 

gentamycin treatment (Fig. 21). 
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Fig. 21. Ls-PPE is not up-regulated at the protein in L. sigmodontis during gentamycin treatment. 

2µg of soluble L. sigmodontis protein from worms from different time points of gentamycin treatment was 

separated on a 10% SDS-PAGE gel and then transferred to PVDF membrane. Blot was incubated with anti-Ls-

PPE serum followed by goat anti-rabbit IgG secondary antibody conjugated to alkaline phosphatase. Ls-PPE 

protein was detected by incubating the blot in Alkaline Phosphatase Blue Membrane Solution (Sigma-Aldrich, 

Munich, Germany). Ls-PPE was not found to be up-regulated at the protein level on day 15 and day 36 of 

gentamycin treatment. 

 

5.3. Onchocerca volvulus phosphate permease regulation study 

 

The phosphate permease of L.sigmodontis (Ls-PPE) found to be up-regulated in response to 

Wolbachia depletion, have putative orthologues in the human pathogenic filarial nematode O. 

volvulus (Heider et al., 2006). In addition to filarial growth and reproduction, endosymbiotic 

Wolbachia in O. volvulus also play an important role in the pathogenesis of onchocerciasis 

and are ideal targets for chemotheraphy (Hoerauf, 2000; Taylor et al., 2005). Hence, it was 

worthwhile to study the regulation of phosphate permease in O. volvulus (Ov-PPE) during 

Wolbachia depletion in doxycycline treated onchocerciasis patients and to discover a possible 

role of Ov-PPE in nematode-Wolbachia endosymbiosis.  

 

5.3.1. Testing of anti-Ov-PPE serum and its specificity 

 

Potential immunogenic Ov-PPE peptides were coupled to carrier protein KLH, two rabbits 

were immunized with Ov-PPE peptides, and bleeds were collected. 2 µg of soluble                

O. volvulus nodule proteins were run on SDS-PAGE and transferred to PVDF membrane. To 

test for anti-peptide Ov-PPE serum and its specificity, blots were incubated with 1: 2000  
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dilution of anti-Ov-PPE serum +/- 100 µg/ml of the soluble peptides used for the 

immunizations. Blots incubated with 1: 2000 dilution of anti-Ov-PPE serum without free 

peptides had a protein at the perdicted MW of 52 KDa corresponding to OV-PPE (Fig. 22, 

lane 1) and blots incubated with anti-peptide Ov-PPE serum plus the soluble peptides showed 

no bands (Fig. 22, lane 2) suggests that the anti-serum is specific for Ov-PPE  peptides. 

 

 
Fig. 22. Anti-Ov-PPE serum is specific for Ov-PPE peptides. 2µg of O. volvulus nodule proteins were separated 

on a 10% SDS-PAGE gel and then transferred to PVDF membrane. Lane1: Blot incubated with 1:2000 dilution 

of anti-Ov-PPE serum alone. Lane 2: Blot with 1:2000 dilution of anti-Ov-PPE serum plus free peptides. Blots 

were incubated with goat anti-rabbit IgG secondary antibody conjugated to alkaline phosphatase and Ls-PPE was 

detected by incubating the blot in Alkaline Phosphatase Blue Membrane Solution (Sigma-Aldrich, Munich, 

Germany). 

 

5.3.2. O. volvulus GST-1 western blot assay for the normalization of worm content in 

human O. volvulus nodules 

 

O. volvulus Glutathione S-Transferase-1 (Ov-GST-1) is a house keeping gene expressed in 

cell for essential cellular functions and found to be not regulated in response to oxidative 

stress (Liebau et al., 2000). Therefore, Ov-GST-1 western blot assay was used to normalize 

the worm content and to determine the regulation of Ov-PPE in human nodule sample. 2µg of 

O. volvulus nodule proteins were ran on SDS-PAGE and transferred to PVDF membrane. The 

blot was incubated with a 1:3000 dilution of Ov-GST-1 anti-serum which detected the Ov-

GST-1 protein at the predicted size of 30 kDa (Fig. 23). Ov-GST-1 anti-serum was the kind 

gift of Prof. Eva Liebau, Institute of Animal Physiology, University of Muenster, Germany. 
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Fig. 23. Ov-GST-1 Western blot for the normalization of worm content in human O. volvulus nodules. 2µg of 

O.volvulus nodule proteins transferred to PVDF membrane. The blot was incubated with a 1:3000 dilution of 

anti-Ov-GST-1 serum followed by goat anti-rabbit IgG secondary antibody conjugated to alkaline phosphatase. 

Ov-GST-1 protein of around 30 kDa was detected by incubating the blot in Alkaline Phosphatase Blue 

Membrane Solution (Sigma-Aldrich, Munich, Germany).   

 

5.3.3. Ov-PPE is up-regulated in O.volvulus worms in nodules from doxycycline treated 

patients. 

 

Onchocerciasis patients were treated 6 weeks with doxycycline and nodules were excised 

from patients 4 months post-treatment. 2µg of O.volvulus worm nodule proteins from control 

and 6 weeks doxycycline treated patients were separated on SDS-PAGE gel and then 

transferred to PVDF membrane. Blots were incubated with anti-Ov-GST-1 and anti-Ov-PPE 

sera at dilution of 1:3000 and 1:2000, respectively. With reference to Ov-GST-1 expression, 

there was up-regulation of Ov-PPE at the protein level from 6 week doxycycline treated 

worms in comparison to expression levels of Ov-PPE in control untreated worms (Fig. 24). In 

one untreated O.volvulus worm nodule, no expression of Ov-PPE was observed (Fig. 24, lane 

3). 

 

 

Fig. 24. Up-regulation of Ov-PPE in doxycycline treated worms. 2µg of O.volvulus worm nodule proteins were 

separated on SDS-PAGE and then transferred to PVDF membrane. Lane 1-3 are untreated O. volvulus worm 
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nodule extracts and Lane 4-6 are 6 weeks doxycycline treated O. volvulus worm nodule extracts A) Blot 

incubated with 1:2000 dilution of anti-Ov-PPE serum. B) Blot incubated with 1:3000 dilution of anti-Ov-GST-1 

serum. Blots were incubated with goat anti-rabbit IgG secondary antibody conjugated to alkaline phosphatase 

and specific protein was detected by incubating the blot in Alkaline Phosphatase Blue Membrane Solution 

(Sigma-Aldrich, Munich, Germany). Up-regulation of Ov-PPE is observed in lane 4, 5 and 6, the doxycycline 

treated worms whereas no change in expression levels of Ov-GST-1 is seen in control untreated and doxycycline 

treated worms. 

 

5.4. Immunohistology 

 

5.4.1. Localization of Ls-PPE and Wolbachia in L. sigmodontis. 

 

Localization of Ls-PPE and Wolbachia will reveal their specific location in the worms and 

test the hypothesis of co-localization of Ls-PPE to the vesicles surrounding Wolbachia. After 

determining that anti-Ls-PPE serum only detects one protein of predicted MW of 53 KDa 

corresponding to Ls-PPE, it was used for the localization of Ls-PPE using immunohistology. 

Serial sections of untreated L. sigmodontis worms were stained with anti-Ls-PPE or anti-WSP 

serum for the localization of Ls-PPE and Wolbachia in adult worms, respectively. 

 

Immunohistology results revealed the presence of Wolbachia and Ls-PPE in various worm 

compartments. Staining for Wolbachia was predominantly observed in embryos and 

microfilariae contained in the uterus of female worm and staining was observed to a lesser 

extent in the cuticle of female worm (Fig. 25 A). The staining pattern for Ls-PPE was similar 

to that of Wolbachia but staining intensity was lower. The presence of Ls-PPE was observed 

in embryos and very faint staining was observed in the cuticle and in microfilariae (Fig. 25 B). 

Hence, comparing the staining pattern of Wolbachia and Ls-PPE reveals co-localization of 

Wolbachia and Ls-PPE. No staining was observed in worm sections stained with rabbit pre-

immune serum (negative control) (Fig. 25 C). 
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Fig. 25. Localization of Ls-PPE and WSP in L. sigmodontis. A) L. sigmodontis worm section stained with anti-

WSP serum. B) L. sigmodontis worm section stained with anti-Ls-PPE serum and C) L. sigmodontis worm 

section stained with pre-immune serum (negative control). The bound antibodies were detected by APAAP 

staining (Dako Cytomation, Glostrup, Denmark) and counter stained with Mayer’s hemalum solution. Black and 

orange arrows indicate the presence and location of Wolbachia and Ls-PPE in L. sigmodontis respectively. c, 

cuticle; em, embryos; mf, microfilariae.  
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5.4.1.1. Localization of Ls-PPE and Wolbachia in untreated and tetracycline treated L. 

sigmodontis 

 

Localization of Wolbachia and Ls-PPE in untreated and tetracycline treated adult worms will 

bring an insight into potential role for Ls-PPE in nematode-Wolbachia endosymbiosis. To 

study the depletion of Wolbachia and regulation of Ls-PPE using immunohistology, IL-5-

deficient BALB/c mice having patent infection with L. sigmodontis were treated 

intraperitoneally with tetracycline. Adult female worms collected from Con and Tet groups on 

day 36 were processed for immunohistology. The localization pattern of Ls-PPE and 

Wolbachia in serial sections of untreated and tetracycline treated L. sigmodontis worms was 

investigated using anti-WSP and anti-Ls-PPE sera, respectively.  

 

In the Fig. 26, worm sections A1-A2, B1-B2 and C1-C2 are untreated worms and worm 

sections A3-A5, B3-B5 and C3-C5 are tetracycline treated worms. Worm sections labelled as 

A (A1-A5) were stained with anti-WSP serum, worm sections labelled as B (B1-B5) were 

stained with anti-Ls-PPE serum whereas worm sections labelled as C (C1-C5) were stained 

with pre-immune rabbit serum. In untreated worms, co-localization of Wolbachia and Ls-PPE 

was observed as clear staining for Wolbachia and Ls-PPE could be seen in the embryos of 

female worms (A1, B1) whereas no staining was observed in worms stained with pre-immune 

serum (C1). In contrast, in some of the untreated worm sections, no staining for Ls-PPE was 

observed in cuticle and microfilariae whereas staining for Wolbachia could be seen in cuticle 

and microfilariae revealing lower expression of Ls-PPE in cuticle and microfilariae of 

untreated worms where Wolbachia are in abundance (A2, B2). After tetracycline treatment, 

the staining pattern was reversed. Anti-WSP serum was unable to detect Wolbachia after 

tetracycline treatment revealing the depletion of Wolbachia (A3, A4 and A5). In contrast, 

higher staining for Ls-PPE was observed in the embryos of tetracycline treated worms (B3, 

B4 and B5). Notably, Ls-PPE staining was also observed in microfilariae of tetracycline 

treated worms (B5). The worm sections which were stained with rabbit pre-immune serum 

showed no staining (C3, C4 and C5).  
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Fig. 26. Staining patterns of Wolbachia and Ls-PPE in untreated and tetracycline treated worm sections. A1-A2, B1-B2 and C1-C2 are untreated worms and A3-A5, B3-

B5 and C3-C5 are tetracycline treated worms (Day 36). Worm sections, A1-A5 are stained with anti-WSP serum, B1-B5 are stained with anti-Ls-PPE serum and C1-C5 

are stained with pre-immune serum (negative control). The bound antibodies were detected by APAAP staining (Dako Cytomation, Glostrup, Denmark) and counter 

stained with Mayer’s hemalum solution. Black and orange arrows indicate Wolbachia and Ls-PPE in L. sigmodontis, respectively. c, cuticle; em, embryos; mf, 

microfilariae.  
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5.4.2. Localization of Ov-PPE and Wolbachia in untreated and doxycycline treated              

O. volvulus worm sections 

 

Localization pattern of Wolbachia and O. volvulus phosphate permease (Ov-PPE) could provide 

an insight into the importance of Ov-PPE in the endosymbiosis between Wolbachia and human 

filarial nematode, O. volvulus. Anti-Ov-PPE serum efficient in recognizing protein of predicted 

MW of 52 KDa corresponding to Ov-PPE was used to localize Ov-PPE. Anti-WSP serum was 

used to localize Wolbachia on sections in untreated O.volvulus worm nodules and 6 weeks 

doxycycline treated O.volvulus worm nodules. Human material came from patients with 

onchocerciasis that received 6 weeks of daily doxycycline treatment (100 mg/day). Nodules were 

excised 4 months post-treatment whereas controls did not receive doxycycline.  

 

In untreated worms, staining for Wolbachia could be found in hypodermis and in embryos of 

adult female worms whereas anti-serum to Ov-PPE produced very faint signals (Fig. 27 A1, 27 

B1) revealing lower expression of Ov-PPE in untreated O.volvulus worms. Nodule sections 

incubated with rabbit pre-immune serum were completely negative (Fig. 27 C1).  

 

In doxycycline treated worms, the staining pattern for Wolbachia and Ov-PPE was completely 

inverse to that found in untreated worms. There was a drastic reduction in WSP staining owing 

to depletion of Wolbachia in the hypodermis and in embryos of doxycycline treated worms (Fig. 

27 A2). In contrast to the faint staining for Ls-PPE in untreated worms, strong staining for Ov-

PPE was observed in embryos and hypodermis of doxycycline treated worms (Fig. 27 B2) 

whereas the worm section stained with pre-immune serum was negative (Fig. 27 C2). Hence, 

comparing the staining pattern of Wolbachia and Ov-PPE in untreated and doxycycline treated 

worms reveal that Ov-PPE co-localized to areas where Wolbachia are contained in adult worms 

and is up-regulated after 6 weeks doxycycline treatment in vivo. 
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Fig. 27. Localization of Wolbachia and Ov-PPE in untreated and 6 weeks doxycycline treated O.volvulus worms. 

A1, B1 and C1 are untreated O.volvulus worm sections and A2, B2 and C2 were 6 weeks doxycycline treated 

O.volvulus worm sections. A1 and A2 were stained for Wolbachia using anti-WSP serum, B1 and B2 were stained 

for Ov-PPE with anti-Ov-PPE serum and C1 and C2 were stained with rabbit pre-immune serum. The bound 

antibodies were detected by APAAP staining (Dako Cytomation, Glostrup, Denmark) and counter stained with 

Mayer’s hemalum solution. Black and orange arrows indicate the presence and location of Wolbachia and Ov-PPE, 

respectively. g, gut, h, hypodermis; em, embryos; ut, uterus. 
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6. Discussion 

 

Filarial infections are endemic in several tropical countries and as many as 200 million people 

are infected and 1.3 billion are at risk of being infected (WHO, 2006; WHO, 2007). Filarial 

infections in humans can be broadly subdivided into lymphatic filariasis (LF) and 

onchocerciasis. LF is mainly caused by W. bancrofti and Brugia spp in India, Africa and South 

East Asia and is estimated to affect 44 million people (WHO, 2006). Onchocerciasis, also known 

as river blindness, is caused by O. volvulus and affects 37 million people in Africa (WHO, 2007).  

 

Currently available drugs for control of filariasis are only efficient against microfilarial stage of 

filarial parasite and there are concerns on the development of resistance to these drugs. This 

requires development of new classes of drugs which have microfilaricidal and/or macrofilaricidal 

activity. For a decade, Wolbachia endosymbionts of filarial nematodes have earned major 

attention among researchers due to the profound role they have on nematode biology. Depletion 

of Wolbachia in filarial nematode in experimental animal models results in impairment of L3 to 

L4 larval moulting in vitro (Smith and Rajan, 2000; Rao et al., 2002) and in vivo depletion of 

Wolbachia by antibiotics causes interruption of embryogenesis leading to sterilization and death 

of adult worms (Hoerauf et al., 1999; Volkmann et al., 2003). Hence, Wolbachia are considered 

as potential targets for the discovery of new drugs as depletion of Wolbachia is macrofilaricidal 

and they also play an important role in the pathogenesis of filariasis (Taylor & Hoerauf, 1999; 

Hoerauf et al., 2001; Hoerauf et al., 2003; Taylor et al., 2005; Debrah et al., 2006; Supali et al., 

2008).   

 

The effect of tetracycline on filarial nematodes is not completely understood.  In experimental 

animal models, tetracycline treatment leads to depletion of Wolbachia in nematodes which 

results in filarial growth retardation if the treatment is started at the onset of infection, and 

infertility if the treatment is started after adult worms have developed (Hoerauf et al., 1999; 

Volkmann et al., 2003). Oral tetracycline treatment inhibits Brugia pahangi development from 

L3 to adult worms and this effect occurres during early larval development suggesting that 

tetracycline treatment interferes with the moulting of larvae (Bosshardt et al., 1993; Chirgwin et 

al., 2003). Casiraghi et al. (2002) showed that tetracycline treatment targeting the different time 

points of male and female worm development (i.e., treatment before/after L4 moulting) results in 
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a sex-ratio distortion, suggesting that Wolbachia may play a more active role in female than in 

male worms. 

 

However, the results described above may also have raised from a direct effect of tetracycline on 

the larvae rather than the depletion of Wolbachia leading to reduced larval development. This is 

supported by the shorter treatment times compared to the 3-4 weeks needed to sterilize adult 

worms (Hoerauf, et al., 2003; Debrah, et al., 2006; Turner et al., 2006). Additionally, a modified 

tetracycline with no antimicrobial activity also inhibited the L3-L4 molt, suggesting possible 

direct pharmacological action of tetracycline on the L3 independent of its anti-wolbachial 

activity (Smith and Rajan, 2000). Hence, it is still unclear whether loss of Wolbachia inhibits 

moulting and development or rather it is a direct anti-filarial effect of tetracycline on nematodes, 

which affects the development. The first part of the thesis aims to answer the above question 

where MF were depleted of Wolbachia and gerbils were then infected with mites carrying 

infective L3 larvae that developed from Wolbachia-depleted MF to study the role of Wolbachia 

in the outcome of male and female worm development.  

 

Molecular mechanisms governing the endosymbiosis between Wolbachia and their filarial 

nematode hosts still remain to be elucidated. The annotated genome of Wolbachia bacteria of B. 

malayi (wBm) provides information regarding the basic biochemistry and potential targets of 

wBm, which could be targeted for chemotherapy. It is hypothesized that wBm provide riboflavin, 

flavin adenine dinucleotide, heme and nucleotides to their nematode host- B. malayi and in return 

the nematode host probably provides amino acids essential for growth of Wolbachia (Foster et 

al., 2004). Drugs inhibiting the biochemical pathways of the above biomolecules of wBm could 

lead to sterilization and death of adult worms (Pfarr and Hoerauf, 2005). One way to identify key 

biochemical pathways and biomolecules involved in the Wolbachia-nematode endosymbiosis 

would be to study the expression of nematode genes in response to Wolbachia depletion. RNA 

differential display was used to identify up-regulated filarial genes in L. sigmodontis in response 

to Wolbachia depletion. Several genes were found to be up-regulated in response to Wolbachia 

depletion and one of the up-regulated genes had similarity to the phosphate permease family of 

proteins with orthologues in Caenorhabditis elegans, A. viteae and B. malayi (Heider et al., 

2006). The second part of thesis further defines a potential role for phosphate permease in the 

endosymbiosis between Wolbachia and their filarial hosts. 
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6.1. Sex-ratio distortion study 

 

This study was executed to monitor the influence of Wolbachia endosymbionts on the 

development of L. sigmodontis in Mongolian gerbils. The first aim of the work was to study the 

effect of loss of Wolbachia, achieved by treatment with tetracycline, on MF development to L3 

larvae in the intermediate host - mites. Secondly, to study the development of Wolbachia-

depleted L3 larvae in a definitive host - Mongolian gerbils. Earlier reports on susceptibility to 

tetracycline have shown that tetracycline treatment was stage dependent; hence tetracycline 

treatment initiated before or after the L3-L4 molt affects male and female worm development 

differently (Casiraghi et al., 2002). In these earlier experiments, effects on the development of 

worms in the treated groups could have been due to an anti-parasitic activity of tetracycline 

rather than its anti-wolbachial activity. Similar results with in vitro nematode studies have shown 

that tetracycline is capable of arresting the L3-L4 molt, with no measurable change in levels of 

Wolbachia DNA detected in treated nematodes (Smith and Rajan, 2000). Treating worms in 

culture with a tetracycline modified to have no antibacterial activity also inhibited larval 

moulting, suggesting that part of the action of tetracycline could be a direct pharmacological 

effect on the nematode independent of Wolbachia (Smith and Rajan, 2000).  

 

To determine either a direct effect of tetracycline or the absence of Wolbachia on moulting and 

development of L. sigmodontis, gerbils were infected with L3 larvae that had developed from 

Wolbachia-depleted MF. By this method, only the L1 larvae would be exposed to tetracycline, 

which has been shown to have no apparent harmful effects on MF (Chirgwin, et al., 2003; 

Hoerauf et al., 2003; Debrah, et al., 2006).  

 

6.1.1. Lower Wolbachia levels in MF (L1) impairs the development of L1 to L3 in 

intermediate mite hosts 

 

Tetracycline treatment significantly reduced Wolbachia levels in MF from 1º Tet gerbils in 

comparison to that of 1º Con and greatly affected development of MF to L3 larvae in the 

intermediate host. Mites infected with Wolbachia-depleted MF had a lower prevalence of L3 

larvae (9%) in comparison to Con mites (54%). Because the microfilaremia of the animals used 
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to infect these mites was the same, the low prevalence of L3 larvae in Tet mites probably 

occurred because these mites had fed on Wolbachia-depleted MF. This suggests that a reduction 

in initial levels of Wolbachia in the MF affects the development of L1 to L3 in the intermediate 

host. Also, Wolbachia levels of L3 larvae that developed in 1º Tet gerbils were significantly 

lower than the Wolbachia levels of L3 larvae that developed in 1º Con gerbils.  A similar 

impairment of larval development in the intermediate host was seen in two previous studies. In 

one study, tetracycline treatment of Mastomys coucha infected with B. malayi resulted in 

interference of subsequent development of L3 larvae in the mosquito vector (Srivastava and 

Misra-Bhattacharya, 2003), while in the other tetracycline treatment of  B. pahangi infected 

Aedes togoi mosquitoes, the intermediate host, resulted in lower recovery of L3 (Sucharit et al., 

1978). However, in the first study, Wolbachia levels were not determined and it is unknown if 

the B. malayi L3 were able to develop into adult worms. In the second study, tetracycline 

treatment of infected Aedes togoi resulted in lower L3 recovery, the same effect was also seen in 

our study, but without tetracycline treatment of the intermediate host. This later fact supports the 

conclusion that Wolbachia depletion alone causes the impairment of larval development and is 

not a direct effect of tetracycline on the larvae.  

 

6.1.2. Sex-ratio distortion caused by Wolbachia depleted L3 larvae 

 

Infection of naive gerbils with Wolbachia-depleted L3 larvae resulted in drastic reduction in the 

development of female worms, but did not affect the development of male worms. This male 

biased sex-ratio distortion in Tet gerbils caused by Wolbachia-depleted L3 larvae suggests that 

Wolbachia have more influence on the development of female than male worms. This is 

supported by the fact that male worms with significantly fewer Wolbachia could be selected by 

tetracycline treatment. However, female worms with few Wolbachia could not be selected by 

tetracycline treatment. The few female worms that developed from Wolbachia-depleted MF had 

endobacteria levels equivalent to control worms. We postulate that these worms developed from 

MF that originally had Wolbachia levels above the median level, which were then depleted by 

the tetracycline treatment to a level that still allowed for successful development. Because the 

ranges of Wolbachia content of the control MF are so large, sometimes nearing that of the high 

range of Wolbachia-depleted MF, it was not possible to determine the threshold of Wolbachia 

needed for female worms to properly develop. An experiment that stops tetracycline treatment of 
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the gerbils at various points of time might provide enough statistical power to be able to calculate 

this threshold. 

 

Another possibility that a few female worms with equivalent numbers of Wolbachia as controls 

were able to develop from Wolbachia-depleted L1s is that their endobacteria were resistant to 

tetracycline. However, there is compelling evidence that this is not the case. Firstly is that 

microfilaria levels in the 1º Tet gerbils never recovered after treatment, indicating that the 

antibiotic treatment had successfully blocked embryogenesis. Secondly, from annotation analysis 

of the genome of the filarial endosymbionts, no evidence for extra-chromosomal DNA (i.e. a 

resistance plasmid) has been found (Foster et al., 2005); and, in contrast to Wolbachia of 

arthropods, the endobacteria in filarial worms appear to be under very little selective pressure, 

probably due to their mutualistic symbiosis. Finally, no evidence for recombination, another 

method by which a resistant gene might be acquired, has been identified in filarial Wolbachia 

(Casiraghi et al., 2003). 

 

6.1.3. Importance of Wolbachia in worm development 

 

These results support that not only are Wolbachia necessary for oogenesis and embryogenesis 

(Hoerauf et al., 1999; Hoerauf et al., 2000; Hoerauf et al., 2001; Hoerauf et al., 2003), but they 

are also needed for proper development of female worms, maybe as a source of heme for 

enzymes participating in biosynthetic pathways of hormones or other metabolites needed during 

moulting (Foster et al., 2005, Pfarr and Hoerauf, 2006). Insect hormones such as ecdysone and 

20-hydroxyecdysone affect the moulting of Dirofilaria immitis and B. pahangi larvae in vitro, 

indicating that ecdysone, or a similar molecule, may play a role in moulting (Barker et al., 1991; 

Warbrick et al., 1993). Insect ecdysone induces transcription factors, which carry out moulting. 

A putative D. immitis orthologue of the Drosophila ecdysone response early gene E78 has been 

identified and is expressed in adult females but not males (Crossgrove et al., 2002). Wolbachia 

could serve as a source of heme, since B. malayi apparently lack the necessary genes (Foster et 

al., 2005; Ghedin et al., 2007). These enzymes and hormones are especially necessary for female 

worm development; hence they define a more active role of Wolbachia in the development of 

female worms. In addition, Wolbachia possess all genes for enzymes involved in riboflavin and 

flavin adenine dinucleotide biosynthesis and contain genes for complete de novo synthesis of 
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purines and pyrimidines. The B. malayi genome lacks genes for purine biosynthesis and hence B. 

malayi worms may be dependent on nucleotides provided by Wolbachia as nucleotides play a 

vital role in the embryogenesis (Foster et al., 2005; Pfarr and Hoerauf, 2006; Ghedin et al., 

2007). 

 

6.2. L. sigmodontis phosphate permease (Ls-PPE) and O. volvulus phosphate permease (Ov-

PPE) regulation in response to Wolbachia depletion 

 

Mutualist symbiotic Wolbachia endobacteria found in most filarial nematodes, are essential for 

embryogenesis and for larval development into adults, and thus represent a new target for anti-

filarial drug development. Tetracyclines, rifampicin and chloramphenicol, are efficient in 

inhibiting larval moulting (from L3 to L4) and their development in vitro (Smith and Rajan, 

2000; Rao et al., 2002). Several studies have shown detrimental effects of antibiotics on the 

growth and reproduction of filarial nematodes in experimental animal models. Antibiotic 

treatment leads to blockage in embryogenesis which results in reduction in the number of MF 

released to the blood which occurs after depletion of Wolbachia (Bosshardt et al., 1993; Rao et 

al., 2002; Bandi et al., 1999; Hoerauf et al., 1999; Townson et al., 2000). In Onchocerca ochengi, 

a filarial nematode infecting cattles, tetracycline treatment kills the adult worms (Langworthy et 

al., 2000). Doxycycline, a modified tetracycline, is effective in eliminating Wolbachia in human 

filarial nematodes which reduces filarial infections. Doxycycline treatment of patients infected 

with onchocerciasis resulted in depletion of Wolbachia in adult worms leading to severe 

degeneration of embryos (Hoerauf et al., 2000; Hoerauf et al., 2001; Hoerauf et al., 2003). 

Doxycycline treatment is efficient in killing adult W. bancrofti (Taylor et al., 2005; Debrah et al., 

2007). Anti-Wolbachia therapy also leads to amelioration of supratesticular dilated lymphatic 

vessels and with an improvement of pathology in lymphatic filariasis patients (Debrah et al., 

2006). At present a combination of doxycycline and anti-filarial drugs such as ivermectin 

(onchocerciasis) and diethylcarbamazin (lymphatic filariasis) has been implemented for better 

microfilaricidal and macrofilaricidal activity (Taylor et al., 2005; Debrah et al., 2007; Supali et 

al., 2008). Still little is known about the molecular mechanisms of the symbiotic interaction 

between Wolbachia and their filarial nematodes. Nematode genes that respond to anti-Wolbachia 

antibiotic treatment may play important roles in the symbiosis. Differential display PCR was 
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used to detect and characterize several candidate genes that are up-regulated after 6, 15 and 36 

days of tetracycline treatment (Heider et al., 2006).  

 

One of these genes, Ls-ppe-1, was similar to a family of phosphate permeases with putative 

orthologues in O. volvulus, B. malayi, C. elegans and A. viteae was found to be up-regulated 

during Wolbachia depletion. Ls-ppe-1 steady-state mRNA levels were elevated by day 3–6 of 

treatment, and remained elevated through to 70 days post-treatment. In comparison to untreated 

worms, there was a threefold up-regulation of Ls-ppe-1 in tetracycline treated worms (Heider et 

al., 2006).  

 

6.2.1. Up-regulation of L. sigmodontis phosphate permease (Ls-PPE) at the protein level 

 

To study the up-regulation of Ls-ppe-1 at the protein level, anti-Ls-PPE serum was used in a 

Western blot assay which detected a protein band of 53 KDa, the predicted molecular weight of 

Ls-PPE. Ls-PPE was found to be up-regulated at the protein level on days 15 and 36 of 

tetracycline treatment. In addition, on day 36 of tetracycline treatment, there was significant 

reduction of Wolbachia. There was no up-regulation of Ls-PPE at the protein level observed 

when filarial worms were treated with gentamycin, a drug ineffective in killing Wolbachia. This 

suggests that Ls-PPE is up-regulated in response to Wolbachia depletion, and antibiotic 

treatment itself does not cause an increase in expression of the nematode phosphate permease in 

this species. Thus, the up-regulation of Ls-PPE at the protein level shows that this nematode 

phosphate permease is transcriptionally up-regulated and then translated in response to the loss 

of Wolbachia from the host cells. Ls-PPE could have functional role in the nematode biology and 

Wolbachia-nematode endosymbiosis because in C. elegans, an orthologue of Ls-ppe-1 named 

CeC48A72 phosphate permease is expressed in larval and adult stages of the nematode and 

knockdown of this gene by RNA interference (RNAi) results in a phenotype characterized by 

embryonic lethality and sterility of adult nematodes (Maeda et al., 2001) which are also 

characteristic phenotype occurring as result of Wobachia depletion from filarial nematodes 

(Hoerauf et al., 2003). Therefore, considering the RNAi data from C. elegans, it appears that Ls-

ppe-1 could have a functional role in the endosymbiosis. Hence, the above findings suggest that 

Ls-PPE is up-regulated both at the mRNA and protein levels in response to Wolbachia depletion 
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which is probably not a direct effect of the antibiotic on the parasite and Ls-PPE could have 

functional role in the nematode biology and Wolbachia-nematode endosymbiosis. 

 

6.2.2. Up-regulation of O. volvulus phosphate permease (Ov-PPE) at the protein level 

 

O. volvulus have an orthologue of Ls-PPE and anti-Wolbachia therapy has been implemented in 

the treatment of onchocerciasis where depletion of Wolbachia leads to detrimental effect on 

worm viability and fertility (Hoerauf et al., 2000; Hoerauf et al., 2001; Hoerauf et al., 2003; 

Heider et al, 2006; Debrah et al., 2007; Supali et al., 2008). Hence investigating the regulation of 

O. volvulus phosphate permease (Ov-PPE) during Wolbachia would be interesting as Ov-PPE 

could be considered a possible drug target. Anti-Ov-PPE serum was able to recognize a protein 

band of 52 KDa, predicted molecular weight of Ov-PPE in a Western blot assay in 6 weeks 

doxycycline treated worms. Phosphate permease was also up-regulated during Wolbachia 

depletion in human filarial nematode O. volvulus. The data suggest that Ov-PPE could play a 

pivotal role in worm biology as its expression is up-regulated during Wolbachia depletion with 

Wolbachia being essential for nematode embryogenesis. 

 

6.2.3. Localization of phosphate permease and Wolbachia in L. sigmodontis and O. volvulus 

worm sections 

 

Investigating the location of phosphate permease will test the hypothesis of co-localization of the 

protein with Wolbachia. To test this hypothesis, anti-Ls-PPE and anti-Ov-PPE sera were used to 

localize phosphate permease in L. sigmodontis and O. volvulus worm sections, respectively. 

Anti-WSP serum was used to localize Wolbachia in L. sigmodontis and O. volvulus worm 

sections. Interestingly, both in L. sigmodontis and O. volvulus, phosphate permease was found in 

worm compartments where Wolbachia are found. Both in L. sigmodontis and O. volvulus, the 

localization pattern of phosphate permease and Wolbachia in untreated and antibiotic treated 

worms was similar. In untreated worms, there was an abundance of Wolbachia in the 

hypodermis, in embryos and in microfilariae, whereas there was a very low expression level of 

phosphate permease in the same tissues of the worm. After antibiotic treatment of L. sigmodontis 

and O. volvulus, the localization pattern of Wolbachia and phosphate permease was completely 

reversed. No staining for Wolbachia could be observed in antibiotic treated worms, whereas a 
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stronger expression of phosphate permease was observed in antibiotic treated L. sigmodontis and 

O. volvulus worms. In L. sigmodontis, the localization of Ls-PPE was observed in cuticle, in 

embryos and in microfilariae of tetracycline treated worms, places where Wolbachia are 

abundant in untreated worms, suggesting that the depletion of Wolbachia cause up-regulation of 

Ls-PPE in these tissues. Similarly, staining for Ov-PPE in 6 weeks doxycycline treated worms 

was found in the hypodermis and in embryos inside the uteri of female worms where Wolbachia 

was in abundance in untreated O. volvulus worms.   These results strongly suggest that phosphate 

permease and Wolbachia might be located in close proximity in filarial worms, a requirement if 

Ls-PPE/Ov-PPE is supporting phosphate needs of the endosymbionts. In addition, both in L. 

sigmodontis and O. volvulus, there was increased staining of phosphate permease in antibiotic 

treated worms which had no or very few Wolbachia, hence strengthening the finding that 

phosphate permease is up-regulated at the protein level during Wolbachia depletion by antibiotic 

treatment. 

 

6.2.4. Importance of phosphate permease in Wolbachia-nematode endosymbiosis 

 

The importance of phosphate permease in the symbiosis may relate to a possible involvement in 

nucleotide metabolism. The genome of the Wolbachia bacteria from the filarial nematode B. 

malayi (wBm) provides broad spectrum of information regarding genes which could play an 

important role in the endosymbiosis (Foster et al., 2005). In contrast to most endosymbiotic 

bacteria, wBm is able to make only one amino acid de novo, but has retained all genes necessary 

for the de novo synthesis of nucleotides. It is postulated that wBm may provide nucleotides or 

nucleotide precursors to its host for processes such as embryogenesis (Foster et al., 2005; Pfarr 

and Hoerauf, 2005). Ls-ppe-1 has a predicted secretory signal peptide and the deduced amino 

acid sequence of Ls-ppe-1 has 12 transmembrane helices suggesting that this protein is a 

membrane associated protein. As phosphate is an essential molecule for nucleotide synthesis, one 

can hypothesize that phosphate permease could transport phosphate to Wolbachia for the de novo 

nucleotide biosynthesis. From Western blot and immunohistological results in this study, we now 

know that phosphate permease expression is increased at the protein level during Wolbachia 

depletion and co-localizes with Wolbachia. Wolbachia depletion after tetracycline treatment 

would lead to disturbance in the homeostasis of nucleotide levels and the worm cell might then 

attempt to compensate for the lack of nucleotides by increasing the expression of Ls-PPE, 
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thereby providing more phosphate to the vesicle containing the Wolbachia for nucleotide 

synthesis (Fig. 28). 

 

 

 

Fig. 28. Schematic representation of the role of phosphate permease (PPE) in the Wolbachia-nematode 

endosymbiosis. A) Wolbachia contained in nematode vesicles provides nucleotides to the host cell. B) Depletion of 

Wolbachia by tetracycline treatment leads to lack of nucleotides in nematode cell and the nucleotide homeostasis is 

disturbed. To compensate for this, the nematode cell up-regulates the expression of phosphate permease. 

 

Should future experiments further support a direct role of Ls-PPE in the symbiosis between 

Wolbachia and L. sigmodontis, phosphate permease could be a potential nematode drug target. 

Data from comparative genomics of B. malayi with C. elegans reveal that out of 11771 predicted 

gene products in the data of B. malayi genome, 7435 have an ortholog in C. elegans and of these, 
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3059 were mapped to the RNAi positive map in C. elegans, serving as a predicted essential B. 

malayi genome. The majority of these essential genes from B. malayi have close human 

orthologues and hence can’t be considered as drug targets. The remainder of essential B. malayi 

genes which do not have human orthologues constitute a set of 589 genes which can be 

considered as candidate drug targets. Interestingly, of these 589 genes, phosphate 

transport/permease genes are included (Kumar et al., 2007). Hence, nematode phosphate 

permease not only plays an important role in the Wolbachia-nematode endosymbiosis but also 

could be a potential candidate drug target to combat filariasis. 

 

In conclusion, contributing to the better understanding of the biology of the Wolbachia-nematode 

symbiosis, this is the first report, which shows that depletion of Wolbachia alone causes 

inhibition of moulting and development of the filarial nematode L. sigmodontis, and this effect is 

not an anti-parasitic activity of the tetracycline antibiotic used. This is also the first report to 

show the up-regulation of phosphate permease from L. sigmodontis and O. volvulus (Ls-PPE and 

Ov-PPE) at the protein level in response to Wolbachia depletion. Localization of Ls-PPE, Ov-

PPE and WSP in filarial worms shows that Ls-PPE and Ov-PPE are confined to areas in worms 

where Wolbachia are found and up-regulation of Ls-PPE and Ov-PPE permease in response to 

Wolbachia depletion is seen in the same tissues, further supporting a direct role of phosphate 

permease in the biology of the Wolbachia-nematode endosymbiosis. The importance of 

phosphate permease is further indicated since in C. elegans, knockdown of an orthologous 

phosphate permease results in embryonic lethality, a phenotype seen when filarial nematodes are 

depleted of Wolbachia. Thus, phosphate permease could be considered as a potential drug target 

for the control of filariasis. Further investigations such as electron microscopic ultrastructural 

localization of PPE and Wolbachia and RNAi mediated knockdown of Ls-ppe-1 in                      

L. sigmodontis will elucidate the exact function of PPE in the Wolbachia-nematode symbiosis.  
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