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Zusammenfassung

Fur das globale Verhalten von Festkdrpern in der Strukéwhanik bei nichtlinearen
Prozessen sind lokale Effekte auf atomarer Ebene von webemt Bedeutung. Oftmals
ist eine direkte numerische Simulation des makroskopisd¥erhaltens durch vollstandige
Aufldsung der Mikroskala aus Aufwandsgriinden nicht ricbg|

In den letzten Jahren wurden Methoden zur Mehrskalenstiongn entwickelt, die sowohl
atomistische als auch kontinuierliche Modelle innerhafiee Simulationsgebietes verwenden.
Zeitgleich konnen somit auf der Markoebene Finite Elemantd auf der Mikroebene eine
Molekuldynamiksimulation benutzt werden.

Einer der wichtigsten Aspekte in der Mehrskalensimulaistndabei die Konstruktion von
geeigneten Transferoperatoren welche entsprechendmlafmmen zwischen den beiden
Skalen transportieren. In dieser Doktorarbeit wird einangger schwacher Kopplungsopera-
tor ("weak coupling operator”) entwickelt, der eine Briéckwischen atomistischen Prozessen
und kontinuierlichen Modellen schafft.

Zunachst werden die Newtonschen BewegungsgleichungderiiMolekildynamik und die
der Kontinuumsmechanik mit den jeweiligen Hamiltonschad bagrangeschen Energiebe-
griffen vorgestellt. AnschlieRend werden die fundamemtalnterschiede in der Modellierung
der beiden Skalen und den damit verbundenen Problementiditku

Die in der Literatur Gber Mehrskalenmethoden haufig bésbbnen Reflexionen (“spu-
rious reflections”), werden untersucht und deren Ursachutert. Eine Identifikation
der strukturellen Merkmale der in der Literatur bisher tgienden Mehrskalenmethoden
erlaubt es, eine neue Klassifikation einzufihren. Diedat hervor, dass alle bisherigen
Mehrskalenmethoden einen punktweisen Ansatz verfolgen.

Der in dieser Arbeit entwickelte neue Kopplungsoperataidranicht auf einer punktweisen
Auswertung sondern auf einer Mittelung. Dazu werden loKagsvichtsfunktionen, mittels
einer Partition der Eins, konstruiert. Dieser Ansatz ditags nun, das Mikroskalenver-
schiebungsfeld mit Hilfe eineE? Projektion in einen hochfrequenten und niederfrequenten
Teil aufzuteilen.

Mit dieser Skalendekomposition und dem neuen Transfeat@ebetrachten wir zunachst eine
vollstandigeUberlappung, bei der das Gebiet mit der atomaren Modefiggrine Teilmenge
des Gebietes mit der kontinuumsmechanischen Modellieistngdierzu werden numerische



Beispiele inld und2d préasentiert.

Alternativ zu diesem Ansatz stellen wir eine teilliberlapge Zerlegung vor, bei der die
molekildynamische und die kontinuumsmechanische Stinalén einem Teilgebiet koex-
istieren. Dabei werden die Freiheitsgrade aus der atomargdie der kontinuumsmechanis-
chen Simulation Uber zusatzliche Lagrange Multipliketg die die Einhaltung der Nebenbe-
dingung garantieren, gekoppelt. Der schwache Kopplursggarerlaubt es uns dabei, die
Nebenbedingungen im Funktionenraum zu interpretiereas Bisultiert in einer sehr effizien-
ten Kopplung zwischen den beiden Skalen, wakdired und3d Simulationen gezeigt wird.
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Introduction

Various phenomena in material science involve processesawide range of length scales
from the atomistic to the continuum. A deeper understandihgolids detect that the mul-
tiscale methods, i.e. the coupling of different levels ofa@tion are needed, since each
individual framework is inadequate on its own at the scalguastion.

Here, we consider two scales, which we associate to therntamti mechanics and the
molecular dynamics. In continuum mechanics, which we reféhe coarsescale, atomistic
details are neglected, whereas in molecular dynamics f{igescale) the atoms and their
mechanics are accounted for. The continuum mechanics Edbas partial differential
equations describing the conservation laws and the cotigtitrelations. This approach
is impressively successful in a number of areas like solidharics close to equilibrium.
However, this description may become inaccurate for problim which the detailed atomistic
processes affect the macroscopic behavior of the material.

Linear elasticity, as a prominent representative of a ocomin mechanical description, is
inaccurate when the dynamics of the system are too far frariilegum. One reason for this
can be found in the fact that it is assumed in elasticity, thatmaterials are homogeneous,
even at the smallest scales. If the sample is large enoughagproximation is valid, since one
can effectively average over the inhomogeneities. Thastielty can be seen as a statistical
theory. This averaging in elastic theory becomes inaceuiftve consider smaller length
scales, where the fine grained structure and its effectghibenal fluctuations determine the
system inherently. The authors of [RB05] claim, that thicicuracy appears in sizes smaller
than one micro meter. Then, at these length scales, the dydsolids far from equilibrium
comes into play.

Usually the simulation scene on the fine scale starts with af sgoms.A which are described
as point like masses. The evaluation of this system then g&herebe done by energy
minimization at zero temperature or by Monte Carlo methanlshy molecular mechanics.
The absence of an intrinsic time scale makes the Monte Caethad attractive for the study
of equilibrium states. In molecular dynamics, the interacbetween the atoms is described
by an empirical inter-atomic potential, tailored to repiod some physical properties of a
given material such as the zero temperature lattice paesnagid elastic constants. This
method is preferable for non-equilibrium states or timeeshelent quantities.

However a detailed theoretical description of many maapiscproperties down to the atom-
istic scale, lies far beyond the current possibilities afdations, since the final properties of



real materials depend on the interplay of chemistry, mitmectural evolution, processing his-
tory, and others which show extreme complexity. The thézaktinderstanding of the atomic
level mechanisms of deformation and failure leads to thelosion that atomistic simulation
techniques should be the most appropriate tool, repreggtite “basic” level of description.
The drawback of the fine scale simulation is the overwhelngieignand on calculation speed
and the huge amount of data.

Let us elucidate this problem on an example. In Figures Odt@mistic simulation of a crack
can be seen. The figures show, that waves are reflected on tineldy of the simulation
domain. At a first attempt one would like to enlarge the corapomal domain, in order to
avoid this unwanted effect. However this approach ofteri ligh computational complexity.
Moreover, even a simple enlargement of the domain only delag occurrence of reflection.

Figure 0.1:A fully atomistic example of crack propagation2mimensions

Thus, employing a multiscale strategy for an efficient araieate modelling seems favorable
since by separating the problem into two different framéwprthe accuracy of a fine
scale model can be combined with the advantages of a corignaty efficient model.
A comparably small region of atoms surrounding the crackigipnodelled by molecular
dynamics. Outside of this region, far from the crack tip, alectadvantage of the fact that the
displacement is almost homogeneous and can thus be mod#ilgdntly by a linear elastic
continuum dynamical simulation.

In this scenario the atomistic simulation and the continumechanics must make contact
with each other in order to exchange information. For theodw®mosition of the compu-
tational domain two choices for the design of the transizone are possible. In the first



approach an interface clearly separates the coarse andhéhechile. In contrast to those in-
terface methods, in handshake approaches the coarse dimbtbeale coexists in a subregion.

Clearly, both scales offer fundamentally different dgstoshs of the matter and they use
different simulation methods. Whereas on the continuurfegbea finite element method and
a function space setting is used, the molecular dynamicssiscon the movement of particles
in the Euclidean space.

Additionally, dynamical simulations with a transition zfbetween atomistic systems and
the coarser finite element mesh suffer from unwanted (spsiriceflections, since the finite
element method can not represent short wave length vibedtinodes.

Here we present a completely new approach, which takes t&dy@nf an infinite dimensional
function space for the information transfer between thdescaStarting from a handshake
region, the key idea is to construct a transfer operator é&etmthe different scales. This
transfer operator is based on local averaging taken vallresrder to construct the local
weight functions, a partition of unity is assigned to the ecolar degree of freedom. This
allows us to decompose the micro scale displacement in thdshake region into a small
and large wave number part by means of a weiglitegrojection.

This thesis is structured as follows. In the first chapteffitie scale and coarse scale is given
a precise meaning, by identifying the fine scale with a mdégcdynamics structure and
the coarse scale with a continuum mechanics structure. & miroduction into statistical
mechanics is given to motivate the classical molecular ayos, namely the Newton equa-
tions of motion, the Hamilton and the Lagrangian. The disimrson the structure preserving
properties of the Hamiltonian equations of motion then $etadthe time integration scheme.
Thereby, the interaction between the atoms is described lipt@r-atomic potential.

The second chapter is devoted to the “pathologies” which @ecur, when continuum
mechanics is coupled with molecular dynamics. More prégi$er the harmonic potential,
perturbations in a crystal can be interpreted as a harmoaiew Based on this from an
analytical point of view advantageous formulation, we wouk the dispersion relation which
gives a relationship between the frequency and the wave aeuwfba wave. Thereby, we
explain, that a mismatch of the continuum and atomisticadisipn relation leads to reflection.
Based on the harmonic structure, we can determine the arobraftection, i.e. the reflection
coefficient. At the end of Chapter 2, we consider the generdlpm of imposing boundary
conditions in molecular dynamics. Since we confine the mubdgcdynamics to a bounded
domain, for an atomistic simulation, non reflecting bougdammditions have to be imposed.

Outgoing from the knowledge of the two different scales frima foregoing chapters, we
develop a new classification of multiscale methods. Thissil&ation is based on the



observation, that for a characterization of a multiscalehod, the design of the respective
handshake region or interface is crucial. As it turns outegisting multiscale methods,
coupling molecular dynamics with continuum mechanicgrimtet the displacement fields in
the coupling regions pointwise.

The drawbacks of a point wise approach for the coupling betwthe continuum me-
chanics and the molecular dynamics in the transition regind the great success of a
weak formulation in the theory of Domain Decomposition noelby is the starting point
of our method in Chapter 4. The key idea of our new method isotwsituct a transfer
operator on the basis of weighted local averaging instegubiftwise taken values. How-
ever, this new method requires that the atomistic displacesnhave to be interpreted in
a function space. Therefore, we assign a partition of upitiié molecular degrees of freedom.

In Chapter 5, we exploit this function space oriented imetigtion of the atomistic displace-
ment in the context of a completely overlapping decompmsitMore precisely, we consider
the case, when domain of the handshake region is conformtitdomain of the molecular

dynamics. In order to identify the displacements pertgjriim the atomistic or continuum

level respectively, we employ a multiscale decompositiomparticular, we decompose the
micro scale displacement into a “low frequency” and a “higdgfiency” part in a weak sense.
Several numerical examples at the end of this chapter shevgdlod performance of this
method.

In the last chapter, we match the coarse and the fine scaldéasiomuby constraining the two
displacements in the handshake region. The key issue ircdnitext is, that our function
space oriented approach allows us to interpret the contstrai a weak sense. Moreover we
give numerical examples ibd, 2d and 3d which show that this approach allows molecular
displacements for entering into the continuum domain aadther way round flawlessly.



1 Physical Fundamentals

Real materials have various kinds of mechanical behawvidhd classical context one decides
between fluids (liquids and gases) and solid states. In thiexbof change of volume, both
classes show a similar behavior, whereas their behavidrange of the form is quite different.
More precisely, in contrast to solids the fluids show much fesistance (viscosity) to a change
of form since they flow. However, this difference is only qgtittively, since the solid can
also flow on a long time scale, i.e. solids have a higher vigcaglaterials which can not be
categorized into fluids or solid states are called “soft ergtin example are emulsions.

In this thesis, we consider the multiscale behavior of setites. More precisely, we are
interested in crystalline materials and their differenhdngor over a wide range of length
scales. This requires the knowledge and understanding af isthappening in a material
from the continuum mechanics scale down to the atomistiesca

In the description of the continuum, details on the atomistiale are neglected. We refer to
this continuum scale as tloparse scale

Since for a multiscale material understanding the mecbkasfiatoms in the material has to be
taken into account, we also consider the atomistic levelyha@h we refer as théine scale
Here, empirical models are used, in order to describe teedations between the atoms.

For the further understanding in the coupling of the coarskthe fine scale, in this chapter
the fundamental properties of molecular dynamics (MD) asatiouum mechanics (CM) are
explained. Moreover, since we are interested in the cortipatd problem, we also introduce
the respective discretizations.

1.1 Equations of Motion in the Molecular Setting

The material behavior on the micro scale is now modelled bgmaef an isolated system of
atoms or molecules of a crystalline solid. We identify eathhe atoms in their reference
position with a pointX,, € Re, « € A, whereA is an index set. Under the influence of
external and internal forces, the atoms displace in spauwe positionX,, of the a-th atom in

a deformed configuration is then given as

Xo = Xa+ ¢a, (11)

wheregq,, is the displacement of atom



6 1.1 Equations of Motion in the Molecular Setting

(More Approximations )

(Many Empirical Parameters )

Continuum Models

Empirical Potentials

Tight Binding

Density Functional Theory

Many Electron Density

[Quantum Effects]
(Less Parameters (Adjustable)
[ Less Approximations) Short Times

Figure 1.1:The different physical and modelling scales.

The atomic displacemenis= (¢4 )ac.4 are assumed to obey Newton’s law of motion
MAC] — Finternal_|_ Fexternal’ (12)

where F'nemal gnd Feema gre the internal and external forces. With each atgrwe associate
the massn,, > 0, such that

M 4 = diag(meIdgaxa)aca 1.3)

is the mass matrix on the micro scale. In case a poteVitialgiven, the internal forces acting
on a conservative system can be obtained@¥™ = —V (V(X).

Statistical Mechanics The system in (1.2) hag|.4| degrees of freedom. For a better fur-
ther description, we define thghase spacef the d|.A|-body problem as théd|.A| dimen-
sional set consisting of all possible positioAs = (Xl,...,XW)T and linear momenta
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p = (p1, ...,p|A|)T of the particles, where the latter are defined by
p = Magq.
Then a single variable in the phase spBAde given by

z:=(q,p)7,

whereg, p € R andz e R2dIA

Let us now assume, that we are not especially interestecipdkitions and velocities of the
system, but macroscopic quantities (e.g. temperaturaghvene calculated from the atomistic
configuration. Then it is adequate to consider only the plspsee density(z). Itis a
probability density, that gives the probability of findingsgstem of|.A| atoms in a given
region of the phase space. For the integration over the vdpalee, we get

/,0(2) dpdg =1, z=(p,q).

Since systems of atoms can neither be destroyed nor be drehéestotal derivative of the

density is zero, i.e.

dp Op . Op op

acA

This is also known as thieiouville theorem
Let us consider aergodic systemthat is, when the density in every pointz in the phase
space does not change in time, |% = 0. Then the ergodic hypothesis for such a system
states, that the time average is equal to the ensemble avétage, an ensemble is a collection
of pointsz in the phase space.
As a consequence, for a system in equilibrium, computatetter from the time average
or from the phase space average can be used. In MD averagesnapeited from the time
average on a comparably long time, whereas Monte Carlo atinnok base on the ensemble
averaging.
A micro canonical ensemble or NVE ensembls a closed system with the invariants volume,
energy and number of particles. The measurements in cssichanics are equivalent to
the averages over the micro canonical ensemble.
For a subsystem which has an energy exchange, the invagientise temperature T, the num-
ber of particles and the volume (NVT ensemble). For a givemptraturel’, the probability,
that a certain position state of the particles occurs, ipgntional toe £/(Tk5) wherekp is
the Boltzmann constant arfd the total energy of the system. Férapproaching zero, only
the global minimum has a significant density in the ensemblereas for increasing the
position states get more equally distributed.

'Here NVE stems from the notation, sindgis the number of particled is the volume and is the energy



8 1.1 Equations of Motion in the Molecular Setting

The temperaturd’ is given as the average over instantaneous temperature

~ 1 p2
T = E -
dnkp = Ma

Remark In many applications, the error induced by neglecting tmepierature in the de-
velopment of a model is not significantly compared to thersrioherent in the model of the
inter-atomic potential, which we introduce in the forthdom

Hamilton and Lagrange Description In the Hamiltonian formulation of Newtonian me-
chanics (1.2) is reduced to a system of first order.
Then, for the Newtonian mechanics, the differential eaqunesti

d

_ d
aq = MAlp and EP = —-VV(9), (1.4)

are a Hamiltonian system with tti¢éamiltonian

T -1
p My p
H™(g,p) = T + UMD 1= =—=4= 4+ V(q), (1.5)
where the potential part igM° = V' (¢) and
1 _
TMD .— §pTMA1p (1.6)

is the kinetic part of the energy. This Hamiltonian is consia time, in the sense, that for
solutions alondq(t), p(t)) of (1.4) we have

d

EH“"D(q(t), p(t)) = " M 'p(t) + a(t)" V4V (g(t) = 0.

In order to rewrite (1.4) in a more compact form, we furtherenmtroduce the|.A| x 2|.A]
canonical structure matrix
J = ( 0 Dy ) .
=Ly O

With the above definition we can rewrite the Hamiltonian equmeby

4, IV, HMP (2). (1.7)

dt

Under the assumption, that the potential ene¥gys smooth, there exists at least locally
through any poin{q®, ¢°) of the phase space a unique trajectory of the mechanicarsyst
which is the solution of (1.2) with the initial conditiong0) = ¢° and(0) = ¢". In the
phase space, this means, that the exact iowI' — I maps the initial conditions(0) = 2°

to z(17) = ®,(2°), wherez(t) is the initial solution of (1.7) for initial conditiong®. It is
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a main structure preserving invariant, that the flbwis symplecti¢c which is defined as the
conservation property
(D®)TJ(D®) = J (1.8)

for all 7 and whereD® is the Jacobian of the Hamiltonian flow. It can be illustrated
interpreted as “area preserving” (see Figure 1.2).

®,
- /)

Figure 1.2:An example of the area preserving property of the mapging

Summing up, (1.7) describes a system by2itd|d degrees of freedom, the positions and the
momenta of each atom in each coordinate direction. Latenahi$ chapter we will refer to
this formulation.

We also introduce another way for describing the atomistitesn, namely the Lagrangian. It
is defined by

LY (ga(t), 4a () = T (qa(t), da(t)) = UM (¢a(t))- (1.9)

The Lagrange equations of motion are obtained by Hamiltorireciple. It states that the true
evolutiong(t) of a system between two specified stajés) at timet = ¢; andq(t,) at time
t = to is a stationary point of the action functional

to
S(at) = [ £L™(q(1),4(t)) dt, (1.10)
t1
where£MP (q(t), ¢(t)) is given by (1.9).
To show this, let(t) be a small perturbation that is zero at the endpoints of #jediory. A
first variation of the action functional gives

55 = [ [LVP(a() + el0),d(t) + £(1) — £ (q(0). (0] de

t1

[ OEP 0,00 L, DL d0))
_/tl (g(t) R0 54 )dt+ (e%),

where we have expanded the Lagrangidn(¢), 4(¢), ¢) to first order in the perturbation(t).
After integrating by parts, the boundary condition caubesttoundary term to vanish and we
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obtain

to MD 3 MD .

ss— " . (ac (a(t),d(t) _ d OL <q(t>,q<t>>> i
t 9q(t) dt 9q(t)

As we have already mentioned in Hamiltonian’s Principle itdquired, that the first variation

vanishes for alk. This is satisfied if and only if

d <8£MD(qa(t),q'a(t),t)> _ 9L (ga(t), da(t))
0dalt) 94a(t) ’

dt
which is known as théagrangian equations of motiort can be shown, that the Lagrangian
equations (1.11) are equivalent to the Hamiltonian (1.5).
Having now introduced the equations of motion and in paldicthe term symplectic it seems
natural to consider the time discretization.

(1.11)

Time integration Time integration algorithms are based on finite differene¢hods, where
the time is discretized on a finite grid. The distance betwherconsecutive point on the net
is given by At. With given value and derivative at timean integration scheme gives the
same quantities at time+ A¢. However, since this iteration is an approximation of timeeti
evolution truncation and rounding errors are associatdi tvem.

In contrast to the rounding errors, which are associated particular implementation of
the algorithm, the truncation errors are intrinsic to thgoathm. More precisely, truncation
errors are related to finite difference methods, which amallysbased on a Taylor expansion
truncated at some term.

Here, we only briefly outline the error analysis and addreg®B02] for further details. Of
course, in MD the large number of atoms is a challenging t&3k.the one hand, implicit
methods like implicit Runge-Kutta methods are too expansdn the other hand, for a stable
explicit integrator the time stefAt has to be very small.

Moreover, MD also suffer from theyapunov instability

For an initial statez(0) and a perturbated intial state*(0), the error||z(t) — z*(¢)|| depends
exponentially on the length of the trajectory.

All these facts make the time integration in MD challengin@ne important aspect of the
Hamiltonian equation of motion is theymplecticity A numerical integrato® »,, that is a
discretization with time step\t of @ is symplectic, if for a one step computation

(5 7 (") =

and thus it is area preserving like the continuous flew Further analysis on the symplectic
structure of MD is investigated in [HZ98].
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The above observations of the Hamiltonian system have irapoimplications for the numer-
ical treatment of the symplectic structure of Hamiltoniaeamanics.
In order to obtain a symplectic method, we decompose the ltani@n given by (1.5) into

1 1 - 1
Hi=5V(e), Ha= §PTMA n,  Hz= 5V (@)

ForH; the associated equations are
. 1 .
p=-5VeVi@), ¢=0
which can be solved analytically:

p(t) = p(0) — %VqV(Q)7 q(t) = ¢(0).

It is easy to see, that the flod,, A for some time step sizAt is equal to®, A, thus we
consider®s, as:

p(At) =p(0),  q(At) = q(0) + M4~ "p(0).
Applying the conjunction
DA = Pty © PatH, © ParH,

on some starting point at time stepwhich is given by(¢”, p") leads to(¢"**, p"*+1). This
is exactly equivalent to the widely used Stormer-Verlegrs7, SABW82] algorithm.
The Stormer-Verlet can be written in the following form:

Algorithm 1.1.1 (Stormer-Verlet)

pn+1 — pn+1/2 _ %qu(qn—f—l)

The evaluation of the three steps in Algorithm 1.1.1 is sssiee, thus the scheme is com-

pletely explicit, since no nonlinear system has to be solvEde velocities in the Stormer-

Verlet algorithm can be eliminated to obtain the followingptstep method in the displace-

mentsq only, i.e.

anrl _ 2qn + qnfl
At?

which is known ageap frogscheme.

M = —VV(d"),
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For more details in simulating dynamical systems under fipeet of molecular models, we
refer to the book [LR04] and to [LRS96].

Potential So far we have done no further investigation on the poteirtiedduced in (1.2).
However, from the atomistic point of view, the inter-atomiteraction is an important
issue. The various atomistic methods can be classified by different calculation of the
inter-atomic forces. In the literature several differemtgntials which describe the inter
atomic interactions can be found. These potentials oftey ivetheir accuracy in describing
the quantum mechanics. An example of an accurate potestithe density functional
theory [Sri97] where the full guantum mechanical equatiaressolved to calculate the force.
However, even with nowadays affordable computer power oBly short time scales and
very short length scales can be simulated. Thus, it seerssmahle to reduce these models
in order to decrease computational complexity.

Most of the multibody potentials are empirical descripiarf the binding on the quantum
mechanical level. Here, the potentidl is composed of a sum of different heterogeneous
nonlinear contributions, which depend on the distances.reb\@r, they can vary in their
relative intensity and their functional form. More predyseontributions to the potential can
stem from interactions betweén, 2, .., |.A|) particles, i.e.

V(X1 X)) =) VilXa) + D0 VaXa Xg)+ > Va(Xa, Xg, X)) + ...

a,f>a a,B>a,v>0

The advantage of multibody potentials is that their comiatial burden is by orders of
magnitude less than the one in quantum mechanics. Moresphgcin classical MD where
an empirical potential is assumed, length and time scal¢semange of micrometers and
nanoseconds can be reached [AWGR, Abr86]. Of course these length scales are large
compared to the quantum mechanical length scales.

In this thesis we are interested in the mechanical propgeofienaterials from the classical MD
scale up to the continuum scale. A special class of multitpmtgntials are the pair potentials.
Here, it is assumed, that the force between the atoms cansgeilzb by a function which
only depends on the distance between the corresponding atorthis context we understand
the terms local (short range) as a potential which effelgtivaly involves contributions from
nearby particles, otherwise we call them long range. It lsenlunderstood that for some
materials (e.g. argon) and some interactions (e.g. Coulatebaction) the forces can be best
described by pair potentials [Rah64]The authors of [aBKvS90] showed, that even more
complex materials like silica can be well described by a patential. In general, for pair

2The reference [Rah64] is also one of the first molecular dyoatndies.
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potentials, the potential energy is given by

Al
Vo= Vo(Xa, Xg),
=1

wherer,s = ||go — ggl| is the absolute separation distance between two partiglaadgs.

The harmonic potential The harmonic potential is probably the simplest radial swtnin
body potential. It is given by
V(rag) = C(rap — c)? (1.12)

For smallr,, 5 the harmonic potential is a quite accurate approximatiosuéffciently smooth
pair potentials. This potential is for the simulation of mlémproper. For the first an explicit
knowledge of the neighborhood is required. For the secomtieting unbounded atoms, we
need that the force goes to zero fai — oo, whereas in the harmonic potential the attractive
forces become infinite.

However it is attractive for analytical reasons, since Z1i$ quadratic and thus linear in the
equation of motion formulation. In the next subsection grstalline structures we exploit this
advantageous structure for a rigorous analysis.

The Lennard-Jones Potential A prominent and widely used example of pair potentials is
the Lennard-Jones potential [LJ24]. This short range piaties given by ¢, > 0)

Vis(rag) = & [(é)u . (é)ﬁl . (1.13)

Here, o is called the collision diameter, it is the distance of twomas, at whichl; = 0.
The values corresponds to the minimum of the potential located at thaliegum distance
ro = 21/65. From the physical point of view it can be interpreted as theant of work, that
needs to be done, in order to move the interacting partiglag fom the equilibrium distance
ro. The firsttermin (1.13) is the atomic repulsion, which doat@s for small distances{z <
o). The second term in the Lennard-Jones potential is theibgrdrm and is clearly weaker
than the other. In Figure 1.3 it can be clearly seen, that dbhenpial is singular where particle
positions overlap and the bonding term for e:go = 2.5 is negligible.

In general the interactions in a pair potential include alirp of atoms, regardless of their
distance. However, since the energy decays ke the forces outside some critical radius
(cut off radiug r¢,; are small and are thus neglected in practice , i.e.

12 6
. _ (o <
V(rag) = Vaulrap) = © [(rﬂf@) (Taﬁ) ] Tap = Teut
0 Tag > Teut



14 1.2 Crystalline Structures

With a given cut off radius the force acting on particiefor the Lennard-Jones potential is
given by

| Al 1 N o \6
F, ~ 24e — (=) (1-2(—) |ras
i ; Tap (Taﬂ> ( (Taﬁ)) o
0<rqp=<Tcut

wherer,3 = X3 — X,.

(6]

V(r)

Figure 1.3:The Lennard-Jones potential (blue) compared with the haimpotential
(black).

1.2 Crystalline Structures

In many solids, the particles are arranged in regular, syatie patterns. When this happens
the solids are said to be in crystalline state, or to be aaltirst solid. Their structure, that is
characteristic of the substance is then called crystattsire, formed by a regular repetitive
crystal lattice.

A crystal lattice can be described in terms of small repgathree-dimensional segments
called unit cells. Arranging these unit cells periodicatiyo space results in plane faces and
definite angles between the faces. Such characteristiés ipagnolecular dimensions and re-
peat accordingly as the crystal grows up to macroscopis.s2zemmon examples are crystals
of sodium chloride (table salt), quartz and diamond. Sdlids$ do not present that regularity
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(called symmetry) are amorphous solids.

In other words, crystalline solids are a class of solids lt@@t regular or nearly regular crys-
talline structures. This means that the atoms in thesessaliglarranged in an orderly manner.
Though glass is a solid, it is not crystalline because thessilnits are not boned to each other
in a regular, uniform, repeatable array. The essence ofatlipity is the description of the
regular geometrical arrangement of atoms in space.

In nature the finite regular arrangements of the atoms ofals/&s never perfect, however this
is neglected to describe the crystals by a lattice. The sstahlart of the lattice whose spatial
repetition forms the entire lattice is called primitivelcel

Figure 1.4:Left: A bcc lattice. Right: A fcc lattice.

A Bravais lattice is an infinite set of points generated byta&discrete translation operations.
In d = 3 we have 14 lattices which are distinguished by the symmdttiiesr point groups.
They are classified into seven different crystal systemste kkee consider the cubic crystal
system consisting of three different types, i.e. the sineplaic (sc), the body centered cubic
(bcc) and the face centered cubic (fcc). In Table 1.1, sorameles for materials, which can
be modeled by a bcc or a fcc lattice are shown.

lattice type| Element
bcc Li (at room temp.), Na, K, V, Cr, Fe, Rb, Nb, Mo, Cs, Ba, Eu, Ta
fcc Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Th, Ir, Pt, Au, Pb, Th

Table 1.1:Elements modeled by bcc or fcc lattices

We remark that there are also materials which can be modgladdr as well as a bcc grid.
The total energy of a crystal is the sum over all individuahatatom interactions in the crystal,
however this summation is computationally almost impdssiBor examplelmm? of bulk
material contains approximatelp!'® atoms. Thus, further simplifications have to be done.
Under the assumption, that the binding forces of the ladiigesmall compared to the lattice
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Figure 1.5:Left: A cube with bcc structure. Right: A cube with fcc stunet

distance, the forces can be consideretiarsnonic For ease of notation we consider the case,
that every cell has one particle. At the temperatur@ Kfthe average force on each atom is
zero, which is equivalent to the equilibrium state. It is defl by

OV O
_V:Za ﬁgﬁzo_ (1.14)
a,BfeEA Tap 070

Let us recall, that the errors introduced by the temperadgseimption are often comparably
small to the errors inherent in the inter-atomic potentlathe system is not in equilibrium,
the total energy can be expanded in the deviagipfrom the equilibrium position,

+Z X Q(xdl‘i'% Z

a,di adi a,B,d1,dz

A A
0X, adl@Xg ds

qoz d19B,dy - (1.15)

whereq, 3 are the indices for the particles add d; are the spatial directions.

The second term in (1.15) has to vanish, since in equilibtibenenergy attains its minimum,
i.e. (1.14). Thus, the third term of (1.15) is the leading forethe force. The component in
directiond; of the forceF,, on particlex is:

AQﬁ,d2>

X

P ov 1Z <‘ o*vV
h=—m— =5 —
a,dy 0o dy 26d2 0X0,a,0X3 4,
(Jﬁ dy =+ Z Kapdid8,d: = | — Z Kapqp

Z ' 00X, 1 3X5 do bds 3 ]
1
(1.16)

N ' 0%V
Wy + |
BT 0X5.0,0X 00
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® @& @@

Figure 1.6:The linear chain inld.

The symmetric3|.A| x 3|.A| matrix K is calledharmonic or lattice stiffness mattiits com-
ponents(K,3)q4,4, describe the force constants. The matfixis positive definite, since the
relaxed position is a minimum df (r) with respect to the variation of all atoms in (small)
arbitrary directions.

Due to the translational symmetry, the matrix entri€s; ;,; only depend on the number of
cells between the atoms.

Roughly speaking the entrig¢#(,3)4, 4, depend on the distance and the corresponding cells.
Moreover, a displacement of the whole crystal in an arbitrary spatial directidf, has
no effect on the forces, i.e. foza, = ¢'044, the force isF, 4, = 0 and consequently
> 5 Kapdya, = 0.

Summing up, we can rewrite the equations of motion by

Madn(t) = Fa = — Y Kaggp. (1.17)
B

Under these assumptions we can investigate the harmonétieqs of motion in more detail.

The equation of motion in the one-dimensional case Let us assume that we have a linear
mono-atomic chain, where each atom has a mmassd a distance afy to its neighbors, see
Figure 1.6. Furthermoréd/;(rs) denotes the energy between thh neighbors separated by
distancers = sro. Then, in the case of a one dimensional linear chain the patemergy is

given by
1 9%V, 2
E,=N ES VS(S’I"O) + 5 E ( aqz )rssm (Qa - QCerS) )

a,s

where we have neglected the non harmonic terms. The harrapaigy is given by

1
Eramia = 503((1a - (Ia+s)2> (1-18)
where ) )
Cs = OV, = OV .
0q? or? —

Here, assume that the two ends of the chain are joined, i éwdEccount for the problem
that the atomsr = 1 anda = |.A| only have one neighbor each. This is also known as the
Born-von Karman periodic boundary conditiofBvK12, BvK13].
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Then for this one dimensional case the mafkiof (1.17) is simplified to

0%V 0%V
Kyorsy =5 = Cs = ——F— = Kats)a
(octs) GQQGQOHrp aqa+88qa (ats)
and o2 52
\%4 \%
Koo = =2C;, ——— = K,3 = 0O else.
8QaGQQ 8QaGQB g
Inserting this into (1.17) we obtain
arm 82qa aEharm
ohz =m o2 == YR == ZCP(2QQ — qa—p — QOHrp)' (1.19)

p

Later on we exploit some advantageous properties of thisesgn.

Linked Cell Method The force evaluation for each particle even with a small ¢utaalius
involves all particles within the cut off radius. In genetiaé setA contains a large number
of atoms and a naive approach for summing up the forces isganithim with O(|.A|?). Here
we introduce the linked cell method [GKZCO04], which reduttess computational complexity
from O(].A]?) to O(|A)).

In the linked cell method, the simulation domain is subdddgddnto uniform subset (cells). The
size of the cells is chosen ag;, such that only the interaction with particles on neighhgri
cells is considered. The force on particlén cell Z; is given given by

F, = Z Z Faﬁv

cellZ; Be{Particle of cellZ; }
Z,eN(Zj) BH#a
where N'(Z;) denotes the direct neighboring cells and cgJlitself. In 3d a cell has 26
neighbors. The complexity of the calculation of the forceghe crystal isC|.A| whereC
depends quadratically on the upper bound of the particlesgie

The Linked Cell algorithm is given by

Loop over allZ;
Loop over all particlesy in cell Z;  {
F,—0 /1l setF, zero
Loop over all cellsZ; of N'(Z;)
Loop over all particless in cell Z;
if (o # ()
if (Ta,ﬁ < 7°cut)
F,—Fy,+Fu3 /'l addF,z on F,
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For implementational details like the particle list marmagat for the particles of each chain
and the data structure of the cells we refer to [GKZCO04].

1.3 The Equations of Motion in the Continuum Mechanics Setiig

The most common way to classical elasticity is the axiomaticoduction of the relevant
guantities and the equations of motion (see e.g. [Cia88Rerdin the atomistic structure of
the solid is neglected and the motion of the body is describbeflinctions. Let us consider
Q € R3. In classical elasticity it is assumed, that the motion, tluexternal and internal
forces is given by the mapping

¢:Qx[0,T] — R3,

such that the deformed configuration at titnaf the body is given by
Qf = p(Q,t) t>0, (1.20)
with the displacement(t)
ut) =p(X,t) - X X e, t>0. (1.21)
In the forthcoming we denote points of the deformed confitmeby
2(t) = $(X. 1)

and writez instead ofz(t) andw instead ofu(t) whenever possible. Furthermore, it is as-
sumed, that is locally injective in(2, sufficiently smooth and orientation preserving, which
can be expressed by the pointwise inequality

0¢; - .
X XeQ t> =1,...,3.
det(an>( ) >0, Xe, t>0, 4, b 3

Let us denote the deformation gradient Byi.e.

0 )
F .= < . (1.22)
an i,j=1,...,d

The mass is given by
m(@) = [ w0y
Ot

wherep(z,t) is the mass density. Here, we assume that the mass is coimstane, which
means, that there are no material flows through the boundarymaterial subdomain and we
do not consider mass to energy conversions. For sake ofisitpghe density is given as a
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function onR? x [0, T] by extendingo(-, ) € L (IR3, [0, oc]) by zero outside of)’.
The change of square length of the line segmiant= F'd X due to the deformation is given
by the Green strain tensor:

1 1
E = 5(FTF —I)= 5(vuT + Vu + Vu ' Vu).
Moreover the Cauchy stress is defined by

on(z)dS = dF = gdS

wheren is the normal ang is the traction on any surface segméft For computational and
analytical reasons, we use the Lagrangian descriptiontargddefine the firdeiola-Kirchhoff
tensorP, which is a second order tensor, given by

P:[0,T] x @ = R¥? P(X)ndS™ = dF = gdS,

wheredS™ is the surface segment in the undeformed (reference) coafign. The governing
equations are then derived by conservation of

e mass
e momentum
e angular momentum.

They are be given by

g@ = divP + pb, (1.23)
ot

wherev = @ = du/0t. Here, b is the body force density and € C'([0,7],C°(Q2)) as
well asP € C°([0,T],C*(2)). Let us remark, that for sake of simplicity, we neglected the
boundary conditions in our introduction. However, depagdin the material model and the
pointwise smoothness of the boundé&Xy of (2, the solutions for: may not be smooth enough
to fulfill (1.23).
Thus we introduce the weak formalism. To do soSlet R¢ be measurable. We denote by
LP(Q) the space op-Lebesgue-integrable functions 6én Moreover, we denote the standard
scalar product by-, -) ;2 () and the norm

1/2
lull 2@y = ( / |u|2dﬂ) .

Let o be a multiindex with|«||; := Z‘j:l |a;|, Then, for a bounded domain and form €
N,1 < p < oo we denote by{"™P () the Sobolev space, given by

H™P(Q) := {u € LP(2) | there exist9" v and0®u € LP(Q) V|| < m}
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and equipped with the norm

1/p
HuHHm,p(Q) = ( Z / aaude>

lafli<m ¢

where the weak derivative (if it exists) is defined by
/aawde = (=1)llels / ud*pdQ Yo e O ().
Q Q

Here,C§°(€2) is the set of infinitely differentiable functions with a coamgt support irf2. In
the forthcoming we omit in the cage= 2 the suffix2, i.e. || - [[gm @) = || - |am2(q)-

Let 3 € (0, 1) then we define

2 [v(z) —v(y)?
|’U|H5(F) = /F . W dedFy

We can give a precise meaning to restrictions of componen&slmissible displacements
belonging toH ! (2) to spaces of functions defined on the boundary. For this gerfte trace
map is a useful tool.

The trace theorem taken from [Bra97] is a special case of & meneral trace theorem and
guarantees, that traces are well defined for Sobolev spaces.

Theorem 1.3.1 (Trace Theorem)Let 2 ¢ R? be a bounded Lipschitz domain afid= 052,
then there exists a unique linear continuous trace mapping

v HY(Q) — H'Y2(T)
such thaty(v) = v|r for eachv € H'(Q) N C°(Q) and
Yol ey < vl @)

We assume, thaf) is a polygonal domain and? = T'yUI'p be the disjoint union
of the portionsT'p and I'y. Moreover we assume, that € C°([0,T],L?(Q)),g €
C%([0,T], L*(Tn)),up € C°([0,T], H/?(I'p)) and the initial displacementsy € H'(1).
Then for the weak formulation of (1.23) we seek fowac C2([0, 7], H'(2)) such that
u(+,0) = up, ulr, = up and

/Qil-dQ—i—/P(u):Vde:/gg-de—i—/ t-vdl'y (1.24)
Q Q Q I'n

for allv € C°([0,T); H'(Q2)) vanishing ol p, whereA : B denotes tfA” B).
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Hyperelastic Material By definition a material is hyperelastic, if there existsaat energy
function W :  x R3*3 — R which is differentiable in the second argument such that
ow
X)=——(X,F).

P(X) = 5 (X F)
Obviously, the stored energy function depends on the nadteRor aSt. Venant-Kirchhoff
material which is an isotropic and homogeneous material the stamedyg function is given
by

Wyvk (E) = %(trace(E))2 + 11 tracg E?)

where, i1 € R are the Lamé constants [Cia88].
Then the potential energy of a deformed body is given by

UM () = / W(X,id + Vu) dQ +/ b-ud +/ t-udly.
Q Q 'y
The kinetic energy of the moving deformed body has a formlainid (1.6), more precisely
CMy/ -\ 0.2
TM (i) — / 2142 g,
a2
Thus, the Hamiltonian and Lagrangian for the continuunirgptire
HOM _ 7CM | 2/CM gng £CM _ 7CM _ 7 /CM

respectively.
Having explained the Hamilton and Lagrangian for the attimgcale and for the continuum
scale, we now introduce a link between these two expressamely the Cauchy-Born rule.

Cauchy-Born rule In the Cauchy-Born rule [BH54], it is assumed, that the staaergy
function W can be computed on the basis of the atomistic potential. elyeit is supposed,
that all atoms of the volume of a single crystal follow a giyeantinuum) displacement up to
a certain limit. The validity of the Cauchy-Born rule has bexamined by [FT02]. It turns
out, that the Cauchy-Born rule fails for large deformatiansli an inhomogeneous atomistic
lattice.

The Cauchy-Born rule is useful for deformatiapsvhose modulus does not exceed the plastic
limit. Let us discuss this on a unit cell of a hexagonal lattievhich shall be given by Figure
1.7 and the Lennard-Jones potential with- ¢ = 1.

As a measure for the validity of the Cauchy-Born rule, letnisoduce

b= [mex wherer,, = max{rqog : 3 = 1,...,6}.
ro

By setting the second derivative of the Lennard-Jones fiateaqual to zero, we obtain the
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Figure 1.7:A unit cell of a hexagonal lattice.

1/6

inflection point, at(2—76) . If we assume, that

2% 1/6 2% 1/6
1 <rpm< <7> < 1/ro < rpm/T0 < <7> /7o

and insertrg = 2'/6 to obtain

1 1/6<b< 13 1/6
2 - T \7 )

It can be shown that fak in this range, the Cauchy-Born rule serves as an accuratexapp
mation [FT02]. In particular, fob = 1 we have thaf#’ = I.

The Finite Element Method In order to approximate the continuous displacement field
we now employ a finite element discretization of lower ordeet 7" denote a mesh with
mesh size parametér> 0, such that the familyf{7"},, is shape regular.
Here, we use Lagrangian conforming finite elements of fikéo(P; ) for the displacements
and denote the set of all nodes®f by \;,. The finite element spadg, C H'(€) is spanned
by the nodal basis
Vi = Spar}eNh{¢$}-

The Lagrangian basis functiom/d; € V), are uniquely characterized by the Kronecker-delta
property

wﬁ(Q) = Opq p,q € Ny, (1.25)

whered,, is the Kronecker-delta. Any functiom, € 1}, (£2) can uniquely be written as

up =Y dpY, (1.26)
peEN},

where(u,)pen;, € REWHL 4, € RY, s the coefficient vector. We can identify each element
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of V;, with its coefficient vector(uy,),cn;,. In the forthcoming, we omit the superscript
whenever possible. In space, (1.24) gives a non linear arglidifferential equation ifR?Vx|
which can be solved by e.g. the Verlet algorithm, discussdfdrb. In other words, we do a
spatial discretization followed by a time discretizationethod of lines).

Throughout this thesis, we denote nodes by Latin lettegs, &.s, ¢, . . . and atoms by Greek
letters, e.g.¢v, 5, . . ..



2 Challenges of Coupling Atomistic and
Continuum Models

In the first chapter, we introduced the continuum and the cutde description. When bring-
ing them to practice, either of them exhibits advantagesdisativantages. On the one hand,
atomistic simulations are able to describe defects on thedl svale, however the required
number of atoms - and thus the computational costs - soomimpeohibitively large. On the
other hand, the simulation methods associated with théreamh mechanics (like FEM) are
cheaper with respect to computational costs, but are lessate. In particular, the abstraction
of a continuous body is infeasible under strong local defdioms. Multiscale methods strive
for combining the advantages of both techniques by empdpgticontinuum description of the
whole computational domain and restricting molecular dyica to regions where a highly
resolved simulation is actually needed. The main challéage match these two descriptions
in a sound way.

As we will see in the following section, speed at which waveasppgate is a crucial quantity
if a suitable matching along the interface, where the comitim and the atomistic description
come into contact, is to be achieved. More precisely, we Wattthis velocity is conserved
when the discretization changes. In order to attain thisp@we explore the behavior of waves
in continuum as well as atomistic regions. To do so, let usiciam a simple case on each scale:
a one dimensional mass spring system on the molecular sedlésacorresponding contin-
uum counterpart. Even in this simple model reflections owdwen an unsuitable coupling of
molecular dynamics with continuum mechanics is applied.afalysis of these reflections at
the end of this chapter will be exploited during the develepirof our new coupling strategy.

2.1 The Dispersion Relation

The dispersion relation, which we explain in the followirggves the dependence of the fre-
guency on the wave number [Kit06]. In order to show this retethip, we first briefly intro-
duce the travelling waves in crystals and show then the digperelation for the molecular
dynamics setting. For sake of simplicity we confine our disoon to theld case.

Travelling waves in crystals Recall thatg(X,t¢) denotes the deviation of the atoms from
their starting configuration. A harmonic wave in the atoiistodel is of the form

g(X,t) = Ge'hX = (2.1)
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where g is the amplitude kX — wt is the phasek the wave vector and is the angular
frequency. We also define the wave numketr |k| and the wave length = 1/x. In the
forthcoming we consider two different kinds of velociti@$e phase velocity,, defined as

w
Uph = —.
P K

Moreover, for the other kind of velocity, we define the wavekzae as a wave whose am-
plitude is only in a bounded domain non zero. The velocity ofeae package is thgroup

velocity defined as
Ow

Ugr

We can decide between longitudinal and transverse vilmistid\n example of dd chain in
2d is given by Fig 2.1

Figure 2.1:An example of longitudinal (left) and transversal (righthwes of ald chain in
2d. The arrows show the displacement direction of the pasticle

Remark In 3d the wave vectok has three components and points into the direction of prop-
agation. The atomistic displacements associated with @ w@Y, ¢) whereX is the equilib-
rium position of an atom are simultaneously three dimeradiobpctors. These displacement
vectors may be parallel tb (longitudinal), perpendicular tb (transversal) or along a direc-
tion, that is not directly related to the direction /af

To keep things simple, we assume that the time dependenbmeotithe atoms is a linear
superposition of harmonic waves. The gained insights flwrlihear case then give necessary
conditions for non-linear systems such as typical MD sirioites. In1d eachX can be given
by arg, wherea € Z andrg is the atomistic spacing. Then, for eaehwe have the super
position
Qa(t) _ Z qkei(karofwt)
k

and we can understand the behavior of the solution by examitiie harmonic solutions
independently, i.eq; = 0 for all but onek.

Let us consider a mass spring system with lattice spagjnghassm and spring constank’.
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Then, the atomistic Hamilton for an harmonic system is givgn

1 Al p% K |A|
Hmp = §Z—+EZ(QB_CM—1)2' (2.2)

=1 =2

Thus, analogously to (1.19), the respective equations ebmof Hyp can be stated as

d’u
m dtf = K(qp+1 +a5-1 — 29p)- (2.3)

Then
CmReiharo—wt) — g o=iwt jr(geikaro _ gik(a=1)ro _ gik(a+1)ro)
mw? = K(2 — e~*1o _ cikro)
e—ikro + eikro
)
mw? = 2K (1 — cos(kro)).

mw? = 2K <1—

Furthermore using the relatiein?(z) = 1 — cos(2x) leads us to
k
mw? = 2K sin? (%) ,

which then gives us

Definition 2.1.1 (Dispersion Relation for the Molecular Cas)

w? = 2K sin? <@> . (2.4)

m 2

Apparently it holds that(k) = w <k: + 27?—0”) for anyn € Z. Hence, we only consider the

casek € (—m/ro,m/ro), Which is known as the first Brillouin zone. We chose the open
interval, as fork = m/r the group velocityuy, equals zero, meaning that the solution is a
standing wave. This physical phenomenon is also known aggBReflection [Kit06, Bri53].
For symmetry reasons it is sufficient to restrictite- x > 0.

The Dispersion Relation in the Continuum Setting As we have seen, the continuum me-
chanics as well as the molecular dynamics stem from the sasie physical laws, namely the
Hamiltonian or Lagrangian principles. In this section, vemsider the dispersion relation for
the continuum mechanics. To do so, let us reconsider theamaledispersion relation given
by (2.4) for small wave numbers More precisely lek* be such that

sin(k*rg) = K*ro + o(k"ro), (2.5)
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Figure 2.2:The frequency := 5w in dependence df.

then for all0 < k < k* we have

1 K 1/2
Wrg—0 = 57”0 E K.

Moreover the phase velocit;gi'\" is then given by

w K 1/2
U&M = ; =170 <E> . (26)

A connection to the macroscopic elastic properties can \enddy compressing the one di-
mensional chain from Section 2.1 giving rise to the st@giisuch that the average distance
between the atoms becomes= ro(1 — ¢), wheree < 1. With respect to (1.18) the energy
of the strained chain becomes
1
Eramia = NV (x) + S NK(ro - re)?.
Thus, the strain energy, which can be considered as theemxdrgy per atom is given by

1 1 1.
Egvanra = §K(7"0 - 7"c)2 = §K7°862 = 5[(62

whereK := K13 is the elastic constant. From the velocity given by (2.6) aeeh

WM =5 =—L=— (2.7)

, w? Kr} K
K m m’
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Summing up, for the long wavelength limix & 1/, k < 1), we obtain

Definition 2.1.2 (Dispersion Relation in the Continuum Casg

s Kr? Kr™3
W= ——= .

2.8

2m 2m (2:8)

The meaning of the different dispersion relations (2.4) @8l) becomes clear when the phase
velocity v,, and the group velocity,, are considered. It can be easily be seen, that the molec-
ular phase and the group velocity is given by

2K _: KTQ
o sin(50) K K70
vahD D — and vgf'D =\/ 5,70 cos (7> (2.9)

whereas their continuum counterparts are given by

em _om_ K
o e T\ 9O

Thus, for smalk we have

MD ., CM MD ., CM
vy Ry and vy A ug .

In contrast, for large wave numbers closert® we havecos(“52) ~ 0, which implies that
waves with high frequencies propagate slower than wavéslauit frequencies, which is not

the case in the continuum where the dispersion relatiomést

Consequences of the different dispersion relation for the idcretization  So far we have
shown, that the continuum and the molecular scale haveeliffelispersion relations, which
carries over to the velocities of waves. However, for longelengths these differences are
insignificant. Next, we examine the numerical dispersidatian, i.e. the case when the con-
tinuum is discretized. The finite element model we employtanrhacro scale is based on a
continuum mechanics approximation of the deformation oftmdy 2.

Analogously to the atomistic case we consider a finite elérapproximation for the contin-
uum Hamiltonian of a harmonic systemiid, which is given by

1 oh .o Ch Up — Up—1 2
PEN}, peEN},

where we assumed the standard linear “hat” basis with estaiti mesh spaciniy. Herep is
the mass density,’ the elastic modulus. Moreover we choose

C=Kry and p=m/rg, (2.11)
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which means that the material of the atomistic as well ase€tmtinuum model have the same

parameters. Thus, the respective equations of motiofk/fgrwith a spatial discretization can
be stated as

2 2
d“uy Krg

M- = F(upﬂ + up—1 — 2uy). (2.12)

Hence, if the mesh sizk equals the atomistic spacing we have that (2.3) and (2.12) coin-
cide.

10 x10°
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Figure 2.3:Left: Wave package iid in initial position. Right: propagated initial wave: the
waves with lower frequencies move faster

Let us assume that the solution of (2.12) is given componésg-by
up(t) = de'ker =), (2.13)
wherea is the amplitudew is the frequency anél € (—x/h, 7/h) is the wave vector. Again,

x = m/h would imply that the solution is a standing wave. Analogguslthe molecular case,
we obtain

Definition 2.1.3 (Numeric Dispersion Relation for the Finie Element Discretization)

20 Kkh Kr?
20\ _ .2 _ BT
w(k) = — sin < 5 > l: o (2.14)

Comparing (2.4) and (2.14) one can see, that both relatiolysdiffer by the factori/rg. The
phase and the group velocities for the finite element casgieea by

12K h | K h
UF'J:hE = F% sin (%) and v;E =\/ g, Tocos <%> , (2.15)

since we assume = s > 0.
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Figure 2.4:Smooth wave entering from a faster wave speed region (bwdl ilnto a
slower wave speed region.
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Figure 2.5:Smooth wave entering from a slower wave speed region (bl ilnto
a faster wave speed region.

Moreover, from (2.15) we can see, that for fixethe speed of a wave decreases as the mesh-
sizeh increases. For very largeno representation of the wave is possible, since we need at
least two discretization points per wave length. In Figurkeahd Figure 2.5 an example of a
wave entering a region of slower (faster) wave propagatieed due to a change of the spatial
discretization size is shown. We observe reflections atrttezface (cf.(2.15)).

In Figure 2.6 the dependence of the velocity from the spaserdtization parameter and the
wave number is shown. Here the velocity is the normalizedgivalocity

—1
_ 2K
V= Uph 0 F .

One can clearly see, that far< ro the wave becomes slower.

Consequences of the different dispersion relation for theitne discretization As we have
seen by the molecular dispersion relation (2.4) and the niardispersion relation (2.14) the
difference between the finite element space discretizggimameter, and the reference dis-
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Figure 2.6:The different dependencies between the space paramétenspitmalized
velocity and the wave number.

tancerg in the molecular setting causes a difference in the vetxitHowever, so far we have
not yet examined the behavior when a time discretizatiomigleyed. To do so, we begin by
deriving the dispersion relation with respect to a time ization. For a given time stefst
we assume that we can approximate

d*u_u(t + At) = 2u(t) + u(t — At)
a2 "~ (At)? '

Thus, the equation of motion from (2.12) reads as

ﬁ(up(t + At) — 2u,(t) + uy(t — At)) = %(up_l(t) — 2up(t) + upy1(t)). (2.16)

Let us assume that the harmonic solution forshih time step om is given by
n _ ei(wnAt—p/ih).

Up

Analogously to the derivation of the preceding dispersiations we obtain

o (WAL _(At)2A2.2’f_h . [ Ko
sin ( 5 >— 2 C*sin 5 , C:= ot (2.17)
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In order to obtain a more handable formulation, we employettgansion ofin in w. Taking
the square root of (2.17) gives

[ wAE At -~ . Kkh
sin <T> = TCsm <7> . (2.18)
A linearization then gives
w = Ck + o(k?),

without any time or space parameter dependence.
Using a Taylor expansion of second order in (2.18) yields
w=Ck+ é/-f’(é’Alf — Ch) + O(K®), (2.19)

since thew® = C3x3 4+ O(k%). In order to match the continuum and the molecular dispersio
relation we defineAtMP as the atomistic anc\t“M as the continuum time step and obtain
from (2.19)

C3(AL)? — Cro = CALM — Ch.

Consequently, for different spatial parameteyandh and a given molecular time discretiza-
tion paramete\tMP we can choose a suitablet“™ such that the dispersion relation on both
models is equal. More precisely, we choose

ALCM — AMD C%(ro _h). (2.20)

Thus a wrong dispersion relation caused by laiggan be compensated by choosing larger
time stepsAt“M. An obvious consequence is, that any difference in the digperelation can
be compensated by a suitable large choice of the time sté ifirite element discretization.
However, it is known by th€ourant-Friedrichs-Lewy stability criterigCFL28], that the time

step should be chosen to hold

h

57

otherwise the numerical scheme given by (2.16) is unsta#ik88, Hir90]. Moreover, it also

suffer of the inaccuracy which we have elucidated in Chapter
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2.2 Determining the Reflection Coefficient

So far we have seen the consequences of different lengtbssicalthe molecular as well as
for the finite element case.

We now consider the transition of waves from molecular dyicanto a finite element dis-
cretization.

incoming

—_—

transmitted

reflected , \

—————‘

Figure 2.7:Example of an incoming wave into a medium with a differentiapa
discretization. As a consequence, we obtain a reflected darahamitted part of the wave

Suppose that we have an incoming and a reflected wave in theegibrr and a wave trans-
mitted into the finite element region, separated by an iaterf(thus, inld, a point). In the
MD region, we have a resulting wave as superposition of thenring and reflected waves.
Denote byA; andw the amplitude and frequency of the incoming wave, andiigyand A
the amplitudes of the reflected and transmitted waves, cégply (see Figure 2.7). We de-
mand the solution to be continuous at the interfackhus, it is required that all waves have
the same frequenay, and it holds that

Ar = Ar + Ag. (2.21)

Let us recall, that, denotes the mesh size of the FE lattice. The respective yeflevgs are
given by (cf. [Bri53])
4
¢ =3 w? Ajuy® (w)
4
Qr = 5 w? AP (w)
(I)T Q QA%“U;E( )7

whered;, ®, 1 are the energy flows of the incoming, reflected, and transthitaves. The

For brevity, we refrain from showing that this is also neeegsas a consequence of momentum and energy
conservation.
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energy conservation imposes that
b =Py + Pp.

Upon inserting the respective energy flows we obtain
AFIP(w) = AT E(w) + AR upP (w).

Solving for the transmission coefficiefit := 4~ and for the reflection coefficierft := 4=
yields

2 MD 2 MD
2= Ar _ () < - A_§> Gy (2.22)
A7 vEEw) A7 viE(w)
From (2.21) we obtain the relationship
T? = (14 R)2 (2.23)

We set the two representations@fequal (i.e. (2.22) and (2.23) respectively), which implies
either R = —1 or with the definition

WPWw) _(1+R? _1+R

RES = = , 2.24
/ vFE(w) 1-R? 1-R (2.24)
and solve
1 1—f,
R* + 2R + =0
L+ fo 1+ fy
1 1 1—fy
Rijyy=——+ —
V2T, \/(1+fv)2 1+ fo
Ry=-1
fv—l
R p—
2T frl

since with R = 1 neither (2.22) nor (2.23), involvin@” and R, can be fulfilled. Note that
the solutionR = —1 is trivial, as it describes the case of the reflected wavehilating the
incoming one, resulting in no wave at all. We also see imnieljighat if f, = 1, i.e.,h = ro,
the nontrivial solution has zero reflection.

To get a more explicit description @t, we further simplify (2.24). To do so, we solve the
dispersion relations (2.4) and (2.14) fdf'® and ", respectively. Abbreviating := /2,
we get

2 2 h
wMP = Z arcsin (f) and x"E = Z arcsin (_w) . (2.25)
T c h roc
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We insert into the expressions faf® andvfF given by (2.9) and (2.15), respectively:

fv = UQ:ID (w)

o)

cos (arcsin (%) )

Cos <arcsin <h—) >
cro

where we used thabs arcsin(z) = V1 —z? forall -1 <z < 1.
We conclude that the reflection coefficient is

[i w2 1_ h2w2

c? rac?

R p— .
W 1_ h2w2?
c2 r2c2

To interpret these results in our coupling context, we olestirath shall be significantly larger
thanrg .

For h % ro we can see from (2.26) that we cannot hope to achieve& 1 independent of
w. If wtends to the cut-off, i.e. maximum, frequen€y of the finite element system from
below, R approacheg. Even worse, the maximum frequency of the MD systefof. (2.4))
exceeds the maximum frequency of the finite element dige@ttontinuum by a factor q?g
For any frequency in between we must observe total reflecticior a givenw no solution
exists in the finite element system, it follows that we havdraasmitted wave. In this case
energy conservation requires that we have total reflection.

The remaining possibility in this qualitative analysis H@tq’%—‘i is small. Sinceh > rq, this
means also that is small. Then (2.26) gives thd@t < 1 as desired. Moreover, we also have
thato)P ~ vfF anduoMP ~ ofF from (2.9) and (2.15). Finally (2.25) shows thdf® ~ x&.
Altogether we conclude that if

(2.26)

W< %C (2.27)
we have little reflection and incoming and transmitted wadieade on wavelength, frequency

and amplitude, i.e. the solutions in both systems are négdehtical.

Remark The presented results cover only the special case of a omifame-dimensional grid
together with the linear standard model and a simple harenpotiential. However, it could
be easily extended to higher dimensions, and more complentials which surely does not
improve the situation. One might argue, that a change of ttite felement basis or the grid
may change the behavior of high frequency waves. Reducigehsity of degrees of free-
dom necessarily reduces the dimension of the finite elenpattesand thus the representable
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frequency spectrum. Thus, it is impossible to propagatéulheange of wave frequencies that
are possibly emitted by the MD domain into the finite elemegion. Since the frequencies
which are higher than the finite element cut-off frequengyre@eent thermical energy from
the point of view of the continuum model, they do not contrébsignificantly to the macro-
scopic mechanical behavior of the system in regions whésentiodel and its discretization
are appropriate. Thus, it is desirable to eliminate higkeiss of low frequencies.

2.3 Boundary Conditions in the Molecular Setting and Spurias
Reflections

Even to increasing computer power a complete resolution lafger domain is often not
possible due to the large number of atoms. In contrast, thentmm mechanics simulations
like finite element methods are - compared to atomistic satieis - inaccurate but need less
computational power. The overall aim is to exploit the adaga of each simulation, by using a
coarse description on the whole domain and a atomistic aitionl in small subregions, where
a high resolution is needed. For most coupling methods ietessary to impose boundary
conditions on the molecular domain.
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Figure 2.8:An example on a wave being completely reflected on the righdary

In the first chapter we have explained that the particlest éxexes due to interaction with other
particles. An equilibrium state is reached, when on eactigiathe forces are in equilibrium
(see Figure 2.9) . Let us reconsider the atomiktichain with cut off radius’rg. Figure 2.9
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shows a cut out fronaw = [—7, 7] of an infinite linear chain. The force of particte= 0 is
given by
7
Fy = Z F.s.
B=—1
F_ap = Fop

~N ©

7 6 5 -4 321012 3 4 5 86

Figure 2.9:A cut out of a finiteld lattice

It can easily seen that on both sides the force contributiomgoma = 0 are in equilibrium.
The situation is different in &l chain where all atoms > 0 are eliminated. The consequence
is a miss balance in the forces. In Figure 2.10 this situasaepicted: the particle. = 0
cannot exert the forces obtained from its left hand neighbwits right hand neighbors. As a
consequence the force is reflected back into the left hard(sfd Figure 2.8) of the domain.
In order to retain the equilibrium in the system, externatés have to be added, accounting
for the forces which the missing atoms would have produced.
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w
AO----------
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~N©

Figure 2.10:A finite 1d lattice clipped off between atoms= 0 anda =1
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2.4 The Numerical Treatment of Boundary Conditions

In the molecular dynamics, the equations of motion are pased spatially unbounded do-
main. However, from the implementational point of view angation of the unbounded phys-
ical domain to a bounded computational domain is neces3aig.fact makes it necessary to
impose artificial boundary conditions which do not essdgtater the original problem.

This problem is well known in the context of wave propagatiising in acoustics, elasto-
dynamics and electro magnetics. In the 70’s the first apeséor non reflection boundary
conditions where introduced. Now basically two approadhdierature can be found. The
first class are the kernel based methods, originated forfatitimark paper of Adelman and
Doll [AD74]. The second class consist of the absorbing bampdonditions or sponge layer
methods, where the perfectly matched boundary layer (PR&)94] is a prominent example.

Both methods are originally formulated in the context of tommus waves and thus cannot
be applied directly to the heterogeneous structure of tHeaeuatar dynamics. In other words,
in contrast to the continuous setting, the molecular dypanare discrete and the phonon
specturm spreads over all wave numbers.

In the forthcoming, we give an overview of both approacheth@context of molecular dy-
namics.

Sponge Layer Methods The basic idea of sponge layer methods is to surround theidoma
of interest by some artificial absorbing layers in which vea&ee trapped and attenuated. In the
early 80’s the first approaches in the context of wave egusiian be found, see [Mur81]. For
an overview we refer to [MHO6, Tsy98]. The PML method [Ber®&lpased on the concept
of an analytic continuation of a real function into the compplane. This PML concept
has been extensively studied and analyzed. In the PML, thdeboegion can be matched
perfectly for all angles of incidence and all frequenciestlu® continuum level. However,
under discretization this is no longer true [CTO01]. For tygroach the Fourier transformation
is needed, which we define as

Fiow{up(w) =10 = / u(z)e”“tdt.

R

Moreover, we use the following relationship

In [TLO5, LLATO06] the PML method has been transferred to agiio domains. On the basis
of the definition of the matri¥< in (1.17) we know, that the equations of motion of partiele
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in directiond; are given by
ok = fa,dy = 2.28
Moy = fad = ZaXadlaXﬁdQQﬁdQ (2.28)
By applying a Fourier transform in time on (2.28) we obtain

24
Maw”da; = fa,d; § 8 Xa » 8 Yo -4B,ds (2.29)

As we have seen, the solution of (2.28) is harmonic. Moredvisrreal analytic. Thus, there

Qr
Figure 2.11:A 2d example of the domaifi and its layer=
exists an extension to
Qp = {z e RY|dist(Q,z) < L, L >0} D Q,

see Figure 2.11, such that (2.29) can be rewrittefgras

PPV

24 ~

Maw?Ga, = fay == Y —=——=p.ds (2.30)
Gy 0Xa,d,0Xp.d,

In order to impose the damping on the PML regiBp = Q1 \{2 we introduce a path if2;,
such that the solution of (2.28) is unalteredirand is damped along this pathdy,. Such a
path can be given by

5 if XeQ
VAN g . .
X+ 1 [¥yx)dx if Xegp

Thus, for a wave along the path we obtain

ei(nz—wt) — ei(KX—Wt) fo dX/ (231)
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Since we want no damping if? but only in=; we claimy = 0 onQ2 andy > 0 on Zj.
Furthermore, the damping part depends on the frequenatich ensures that all wavelengths
decay at the same rate.

If we choosey(X’) = (X')?, thend : Q;, — R the relationship betweedX,, 4, anddX, 4,

is given by

~ d
8Xa7d1 = (1 + E)@del . (232)
inserting this into (2.30) we obtain
0*V
24 ~
Maw qd, = — 4B,ds> (2.33)
1 % (1+ £)20X00,0X50, "

which is equivalent to

2
1—j— E
Mot ( Z > ‘ 0X,q dlaXﬁ ds DX 0, 05,0, 2

mawzcjdl — 2diwmaqgq, — deQle = Z X

q ,d
adlaXﬂdz Prda

Applying the inverse Fourier transformation we obtain

ma('jdl - 2dma§ld1 - dzmanl - (234)

q3,d
ZaXadlan,b Pz -

In (2.34) it can clearly seen, that in addition to the aceglen a friction term (depending on
¢) and a stiffness term (depending @nis introduced. Such frictional terms (i.e. depending
of ¢) have been used ever since for temperature control in the Midlgtion of NVT
ensembles [GKZC04, Nos84].

Note, that the coordinate transformation (2.32) dependh®frequency, which ensures that
all wavelength decay approximately at the same rate (n@gdeeffects due to the nonlinear
dispersion relation).

The Kernel Based Methods In the kernel based methods exact boundary conditions are
derived analytically for crystalline solids with lineartémaction and an external system at
rest. The first approach of Adelmann and Doll [AD74] has beieou$sed by the authors of
[CDBYO00] where the first atom outside of the domain is expedsas a convolution of the
time history at the interfacial atom. This method in the eahiof time history kernels has
been extended to more general structures [KWLO05, LKPO6véler, these methods are non
local in space and time since they involve all boundary atantsthe previous history of these
boundary atoms. Here, we follow [LEO6] for the derivationexfact boundary conditions.
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Let us switch from atona to the triple index(d;, d, d3) for the different components in the
selected basis vectors of the lattice. Then, the Newtonteupsaof motion from (1.17), reads
as
MUy dyds = O Ky d dy—dy da—dy Uy .y (2.35)
dydy,dj

Furthermore, we define the basis of the lattice(by, b2, b3). Without loss of generality we
assume, that the basis vectgrcoincides with the normal vector to the interface. Then, by
applying the Fourier transform in directida andbs we obtain

mila, (f2, f3.1) = > Kay_a (fo, f3)ig (fo, f3)
di

wherew denotes the discrete Fourier transformationuof Under the assumption that the
initial values can be neglected, which is reasonable fotéwmperatures, applying the Laplace
transform, which is given by (see [Doe74])

yields
SQmUdl = Z Kdl*dll Ud’l (236)
&

In [LEO5] it is exposed, that for crystalline structuresyoalgenvalues of the kind
s Ml > 1,k =1,...,N™

have to be considered, whef" is the number of interaction partners of each atom. Let
now, ez be an arbitrary eigenvector for, AaAg. Then, we can rewrite the right hand side of
(2.36) by
Ud1 = ch,dl)\glfk-
k

Thus for given displacement$_ yint_1, ..., Uy we obtain

0

d d
Z Ck,dlAklek = Z Cl{;’dl(UiNint+1, e UQ))\klek =: Z 0;.a0,U; .
k k i=—Ninty1

Summing up, for e.gd; = 1 we have

0

Uy = Z%,Mi&?k = Z 0;1U;
%

i=—Nint41
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By applying the inverse Fourier transform and the inverggldee transform, we obtain

t
U1 dy,ds (1) = Z Z /0 Ot dy—dy ds—dy (t — 2) Ui qy a1, (2) dz

Ty,
where
11
Oidy—dyds—dy, = F L (0:1(f2, f3.5))

is the time history kernel. For a further discussion andarad we refer to [KWL05, LKPO06,
LEO5S].

Remark A comparative study of the PML method and the time historynkeas boundary
conditions of crystalline solids can be found in [YLO6]. Forexcellent study of the reflection
rates of both methods, we refer to [Kra09]
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3 A New Classification of Multiscale Methods

Various phenomena on a macroscopic level originate fronmtikeeplay of several atomic scale
mechanisms. Moreover, it has been understood, that malepghEnomena involve processes
over a wide range of length scales. It seems favorable to fideadomistic large scale simu-
lation since they provide the most rich and detailed infdiroma Additionally, this approach is
conceptually simple, since only an increase of the systes giithout imposing any artificial
boundary conditions, is required. Despite the successgd Bomistic computer simulations,
real industrial problems (cf. Figure 3.1) have a vast dem@andomputer power such that a
pure MD simulation is in general not possible.

Multiscale methods, the coupling between molecular dynamaind continuum mechanics
serves as a tool to overcome this difficulty.

The development of different multiscale methods in difféféelds started about twenty years
ago and has been accelerated in the last few years. Alonghistlexpansion several survey
articles have been published in order to classify the nuoatées methods by different aspects
[CMO3, PL04, BCC 04, ELVE04].

The different multiscale methods vary not only in scope d&dunderlying assumptions but
also in their approach to broader questions such as a Hirar@and concurrent multiscale
approach. In the first class, the computations are perfomneghch scale separately. Often,
the scale coupling is done by transferring problem paramsgte. the results obtained on one
scale determine the parameters for the computational nordahother scale [EE03, AGO05].
Thus for instance a continuum model can be derived from thmiatinformation [XCP02].
Another approach is pursued in the concurrent couplingiigcies. Here, the behavior at each
length scale depends strongly on the others and an apgepriadel is solved on each scale
simultaneously, while a smooth coupling between the séglie¢roduced. Here, we focus on
concurrent coupling techniques.

3.1 Demands on Multiscale Methods and Domain Decompositian

In the following, we show, that Domain Decomposition (DD)thws serve as a good mo-
tivation for a classification of multiscale methods. To do we briefly explain some basic
concepts from DD methods.

The term DD [Sch70, LM72] is often used to describe a dataibigton, in which the local
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Figure 3.1:Different Scales in Industrial Problems

data of each process corresponds topologically to a subiddmac €2 of the whole compu-
tational domair(2.

In the following we use a different approach by defining DD again numerical methods,
that split the computational domain into two or more sub dosiaAlthough DD methods
have been developed for the purpose of achieving concysrdray can be used in sequential
as well as concurrent computations.

In their origin DD techniques have been developed as a pahiggfative method for solving
systems of algebraic equations stemming from the disatéiz of partial differential equa-
tions (PDE), i.e. from a continuum description, see [QV98/05] for an overview. Therein
DD is considered as a decomposition of the finite elementesipda a sum of subspaces. Then
these subproblems are solved by a direct or iterative mettmod next step, projection oper-
ators are developed for the information transfer betweerstibspaces. As a matter of fact,
the quality of the approximation on each subdomain dependlecorresponding properties
of the approximation subspace. Vice versa, the DD methasvalto take benefit of the pres-
ence of the subdomains in order to choose the discretizatigthod, which is best adapted to
the local behavior of the solution of the PDE which has to bgraximated. Thus the shape
of the subdomains and their magnitude of overlap (intejfae@ be chosen problem depen-
dent. Summing up, the choice of overlapping or non-oveitapplomains and the choice
of the transfer operators deeply influence the performafiteeoDD method. In particular,
the choice of an overlapping or non-overlapping methodctliyénfluences the choice of the
transfer operator.
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From the DD we can draw conclusions for the multiscale CogplMore precisely, all multi-

scale methods can be interpreted as DD methods except féadhehat in DD methods two
or more continuum models are matched, whereas multiscalgoaieconsider the coupling of
molecular and continuum models.

In the new framework, which we introduce in the followingeeva coupling of two different

molecular models can be considered.

However, let us now confine to the continuum / molecular ciogplThen, the following three
points have to be clarified:

¢ Definition of the domain
e Design of the coupling region

e Design of suitable transfer operators

Let us elucidate this DD motivated classification:

Definition of the Domain Depending on the type of problem and on the considered domain
the regions with highly local interest have to be defined. &ample cracks and similar
defects can involve a global simulation by finite elementd highly localized regions with
strong deformations (e.g. crack tips) which are resolved bolecular dynamics simulation.
More precisely, the domaift ¢ R? is decomposed by

O = QMD UQCM

where inQMP a fine resolution down to the atomistic scale is employed afeM a coarser
representation by finite elements is applied. As afore ropat, since the simulation §MP

is a higher computational burden, the size(®f® plays an important role for the overall
performance of any multiscale scheme. In the existingaftee mainly two approaches can
be found for decomposing the domain i and QM. As a particular advantage of DD
methods the size and shape of the subdomains and thus thiadeter handshake region
Z = QMP 0 Q%M can be chosen arbitrarily. For the different types of irtees we can
distinguish between three cases, these are the

¢ Interface The two scales are separated by an interface, which is afteanifold of
dimensiond — 1 (T = 0"° n Q™).

e Handshake RegionThe atomistic and the continuum part are matched in an ayerl
region= = QMP N QM = c R4 and meag =) > 0.

e Completely Overlapping Methaodhe continuum mechanic description is on the whole
domain(2 and the molecular part is a portion of it. In other words, tteerastic simula-
tion is everywhere accompanied by the continuum simulg@@fP N QM = QMD),
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Omp

Figure 3.2:Types of DDs: Upper: non-overlapping. Middle: overlappipartial
overlapping. Down: overlapping / complete overlapping.

An illustration of the three approaches is given in Figuie 3.

The design of the coupling regions has consequences footi@ieg between the molecular
dynamics and the continuum mechanics. In non-overlappiathoas, the separation of the
fine and the coarse scale is defined by the interface. In otbetsythe interface is the border
between coarse and fine such that a coexistence in somergpugdjion can be excluded.

Design of the Coupling region In the coupling region the two description of the matter have
to be matched. However, in general, the molecular dynarsibased on a description in some
Euclidean space, whereas the continuum mechanics is often o a weak sense, i.e. in
a function space. Thus, it is a priori not clear, whether thepting space is a subset of the
Euclidean space or of a functions space.

Space and Transfer operator Here, two entirely different models (finite elements and
molecular dynamics) are coupled. However, the relatignbbitween their parameters is usu-
ally not direct and thus, care must be taken for the constnuaf suitable transfer operators
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in order to relate them. In other words, any operator has &b\déh the incapability of the
finite element discretization to resolve displacementsrdtmthe atomistic scale (cf. Chapter
2). Moreover the choice of the underlying space for a seardespling has to be chosen
carefully.

Multiscale Decompositioh

overlappinq | non-overlapping

Function Spack | Euclidean Spack | Function Spack |Euclidean Space

Weak Coupling Bridging Scale 7 FEAt , CCLS
Bridging Domain

Figure 3.3:The existing multiscale methods can be divided into ovpitapand
non-overlapping methods. The interfacer the handshake regioB can be chosen as an
Euclidean space or function space. As a matter of fact, nétleecexisting methods uses a

function space oriented approach.

3.2 Overlapping Methods

Mullins and Dokanish In 1982 Mullins and Dokanish [MD82, Mul84] started the firgta
proach in coupling atoms with finite elements in the contéx quasi static calculation of a
crack propagation in a circular domain. The basic idea isttiastresses are evaluated from
the inter-atomic potential under the imposing strains stémy from the finite element nodal
displacements. In a next step, these stresses are transiaterodal forces.

Bridging Scale The authors of [WL03] developed the Bridging Scale (BS) radtfor cou-
pling atomistic and continuum. Inspired by the work of [HFMGIE) the authors of [WLO03]
introduced the Bridging Scale method, where the molecufaachics domain is a subset of
the continuum domain (complete overlapping). Thus in therlapping region the total dis-
placement consists of coarse scale and fine scale displatememultiscale decomposition
relying on a projection operator ranging from the total tispment field into the coarse part,
is then applied in order to separate the two coexisting scale

In Chapter 5 we explain this method in the context of our fiomcspace oriented multiscale
approach. Therein, we discover the method of [WL03] as aiapease of our concept.
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Quasicontinuum Method In the quasicontinuum (QC) method [MT02, MT04] the basic
idea is to systematically coarsening out the atomic deenifpy introducing kinematic con-
straints. In contrast to the convenient atomic descriptiba energy of a solid is computed
as a function of a subset of the atoms, namely the representgbms. Modelled after the
construction of the displacement field in the finite elemerthud, the position of the “non-
representative” atoms are obtained by piecewise lineargntation.

Originally, this method was developed in order to analyzedtatic atomic configurations in

equilibrium. However, in the last years the QC method has lisweloped to handle even
finite temperature and dynamic problems. The overall aimhefdtatic QC method is to

minimize the total energy by finding the corresponding atodisplacements. As a typical

complete overlapping method, the QC scheme is only useditic& sections” since the total

number of degrees of freedom3gA|. The total energy® can be written as the sum over the
energy for all atoms in the body by

E:ZEa

acA

whereF,, is obtained in different ways depending on the approachimikiased. An example,

is the Embedded Atoms Method, wheltg, is determined as an electron-density dependent
embedding plus the sum of a pair potential. A selection ofatds represented by finite
element nodes (representative atoms). The remainingemmesentative atoms are constrained
by the nodes by interpolation. The deformation gradientrafdr interpolation functions can
be transferred to the non-representative atoms by the @d&mim rule.

Coarse Grained Molecular Dynamics The Coarse Grained Molecular Dynamics (CGMD)
[RB98, RBO05] reduces the atomic degrees of freedom by rigygabe atomics lattice with
nodes which represent either a single atom or a weighte@geeamllection of the atoms. The
energy functional on the coarse scale is defined as the asmigy constrained to the nodes
plus a thermal energy term for the degrees of freedom havedmsased out. This substitution
is justified by the equipartition theorem, which states thaihermal equilibrium the energy is
shared equally. Thus, a relationship between the degreeseafom and the thermal field is
given.

The Bridging Domain Method The Bridging Domain (BD) method has been developed by
[BX03, XB04]. Itis based on a Handshake region (partly aygping), where the continuum
and the atomistic description coexist. In this region baties are combined by a weightening
function for the energy. They are glued together by cornstrgithe degrees of freedom in the
bridging zone. Further work on the Bridging Domain methodioontinuum to continuum
coupling context [GBO7], from the theoretical point of vifBPO"07] as well as from th&d
performance aspect [ACR06] can be found in literature.
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3.3 Interface Methods / Non-Overlapping Methods

Flexible Border Method Motivated by crack propagation in a crystal in the Flexiblarder
Method [Sin71, SGHH78], an atomistic simulation in the negighborhood of the crack tip
is used and the remainder of the crystal is considered asaticetontinuum.

In the early applications of these models, the boundary éetvihe atomistic and continuum
was kept fixed, which led to undesirable effects like reftedi In order to avoid this, flexible
boundary conditions [Sin71, SGHH78] have been proposedtrelin, the continuum elastic
solution in the outer region is obtained by using the traxgifrom the inner atomistic region
as a boundary condition. The continuum displacements frenotiter region, in turn, provide
the boundary conditions for the inner region. In e.g. [TZQ]T&n extension of this method is
described by using Greens function approach for the prdigsgaf the perturbation from the
atomistic region into the surrounding. However, these wdttcan hardly be transferred3aé
and non-linear stress strain relations are not possible.

FEAt Nine years after the first approach of Mullins and DokaindiDB2, Mul84] Kohlhoff
et al. [KGF91] developed the FEAt method, where an atomistidel is surrounded by a finite
element mesh with a small overlap region enforcing boundandition on the atomistic as
well as on the continuum domain. In particular, the auth®f&&F91] tried to overcome the
capturing problem described in [MD82, Mul84] by a refinemehthe FE mesh down to the
atomic scale with nodal positions dictated by the crystiilcka structure.

Concurrent Coupling of Length Scale The Concurrent Coupling of Length Scales Method
(CCLS) was developed in 1998 [FBNE98, BABK99]. Even thoutfat the CCLS is an
interface method it can be considered as a dynamic versitredC method.

In the CCLS method, the domain is divided into a molecularagiyits and a continuum me-
chanics region. The choice of a continuum or a molecularriggsm of a region depends on
the required accuracy of the solution. Then an overall Hamién is given by

H(q, 4, u, ) = HVP(q,4) + H"™™(q, ¢,u, @) + HM (u, )

whereHMP (¢, ¢) is the atmomistic Hamiltonian arld“M (u, %) is the continuum mechanical
Hamiltonian [FBNE98]. The intermediate Hamilt">“ (¢, ¢, u, u) accounts for the forces
due to the interaction over the interface where the CM and/tbdorces contribute both with
half of their weight.

However the displacementsand the velocitiesj of the molecular Hamiltor{MP are ele-
ments of the Euclidean space, whereas the displacemrsmd the velocity: of the continuum
Hamilton are elements of a function space. Therefore, ibispossible to simply merge the
different descriptions. Thus the continuum Hamilton iscdiized by finite elements, such
that H“M can be interpreted pointwise.

More precisely, at the interface every nodal displacemanthe considered as a displacement
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of an atom from its equilibrium position and vice versa. Awmgusly the velocities on the
molecular and the continuum scale are equal. Further glosklted work by the same group
can also be found under the synonym Macroscopic, Atomi&tieinitio Dynamics (MAAD)
[FBNEOS].



4 The Function Space Oriented Multiscale
Decomposition

In the foregoing chapter, we classified and introduced diffeexisting approaches for mul-
tiscale coupling, i.e. the coupling between molecular dyica and continuum mechanics
concurrent.

In this section we derive a new approach for the coupling betwmolecular dynamics (fine
scale) and continuum mechanics (coarse scale). Our appisdmased on ideas from non-
conforming domain decomposition methods, namely mortahats. The key ideas of mortar
methods is to provide a stable coupling between differestrdiizations or meshes by means
of using a weak continuity condition on the respective fiatees. Starting from linear prob-
lems [BMP94], mortar methods have been extensively studitite context of elliptic partial
differential equations, see, e.g. [Bel99] and the refegeruited therein.

In the context of multiscale simulations, however, the diogpis often realized by means
of the interpolation operator, since the atoms are in gémeerpreted as points iiR¢, see,
e.g. [WLO1, LKPO6]. This chapter is structured as follows.the first section we show how
the molecular dynamics can be interpreted in a functionesgatting. Thereby we use the
Partition of Unity Method (PUM) [BM97, Sch03] and show somasie results concerning
the approximation properties. In the following sectiore thansfer operator, which interacts
between the coarse and the fine scale is introduced in a dunsgiace setting. Without the
background of molecular dynamics and continuum mechawnies;onsider for the fine scale
the meshfree method (PUM) and for the coarse scale the fieiteemt method. Then, under
some simplifying assumptions, like that there exists a tpatadenergy on each scale, we
interpret the multiscale coupling problem for the statisecas a saddle point problem and
show its stability.

4.1 Design of a Function Space Oriented “Coupling Space”

Let us assume, for sake of simplicity, tHat= QMP = QM Then we consider, that the
configuration given by the equations of motion (1.2) can blsinterpreted as a scattered data
set

X14)(Q) = {(Xa.qa) | € A, 24 € Qg0 € RY} C (R x RY)HAL (4.1)

This motivates to construct an operatoon the basis of the Moving Least Squares (MLS)
approach which originated in scattered data approximatioorder to map the atoms into a
function space.
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The MLS method was introduced in the landmark paper by Laecasd Salkauskas [LS81]
in the context of smoothing and interpolating data. In casttito the standard least square
method in the Backhus-Gilbert sense, the moving least equeathod does not attempt to
minimize the error point wise. The connection between thes¢hods is pointed out in
[BS89].

In the MLS method one wishes to find the best approximatiomfeocertain approximation
space to the data at a some painwith respect to a wighted, inner product. It is important
to note, that in this context the resulting shape functioesnat interpolating, more precisely
they have no Kronecker delta property (1.25). However tleeealso interpolating versions
of the MLS e.g. [LS81, She68].

For the deduction of the MLS function we can use differenttistg points. In the original pa-

per the MLS shape functions are deducted by minimizing a temjkeast-squares functional,
however a deduction by Taylor-Series expansion of direqiosition of the consistency
conditions is also possible. In [Olea96] Onate et al. madrbut that the starting point of all
least squares methods is to minimize the square distanbe efttor at any point with respect
to a weight.

In the engineering literature the approximation space isllys the space of polynomials.
This is due to the fact, that the Gram matrix can be intergretea moment matrix for the
weights. There are also other techniques, which producetidéigraof unity like for example
the Reproducing Kernel Particle Methods (RKPM) for exan{@®w97, LJLF95, LJZ95].
More precisely an equivalence between the MLS and the RKRibeashown. Each of the
approaches described above to construct a partition of/dait be seen as a generalization of
the Shepard functions [She68], which are introduced indHewing.

Our aim is to find a functiom : Q — R, such that

w(Xa) = qqforalla=1,..,|Al. 4.2)

The starting point for our PUM is to build an approximatioraspVs. To do so, a patch
we € R%is attached to each point, such that the union of these pafone an open cover
C,, := {wa taca Of the domain. To this end, we define for each atem patchw,, associated
with X, € Q as

we={z R : || X, — | < hal}. (4.3)

The most basic property, which these patches have to fudfithat they cover the complete
domain(2:
Jwao (4.4)
acA
For an example of a 2D sketch see Figures of 4.1. On the basigbfa suitable cover,, we
can define a partition of unity via data fitting techniques.
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Figure 4.1: Left: A domain with circular patches. Right: A domain witlct@ngular patches

In order to construct a moving least squares (MLS) fit, we id@nghe approximation space

being the spac®,,, of polynomials with the basi$F;}!" , of degreen := <

ables and a set of non-negative weight functions

W, : R — RS with supgW,,) = @a,

and the dilatation parametéy, of W, (z) = W <

Now, we minimize for each fixed the quadratic functional

A

J(r)(x) = Y~ Wal(@)(da — 7(Xa))?
a=1

overallr € P,,.

mea)

o

) in d vari-

(4.5)

In order to minimize (4.5), we set the derivative of (4.5) &lgio zero and obtain the system

of equations

A |A| n

> Wal2)gaPi(Xa) =Y Walz) > Pi(Xa)
a=1 a=1

i=1

i (Xa)e(z)

(4.6)
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With the definitions

P(z) == [Py(x) Po(w) -+ Pa()]"
W (z) == [Wi(x) Wa(z) - Wi (x)]”
B = (Baj)a,_:l’:w\’f\\a B = WQ(ZC)PJ(SC)
fr=laa - qa”
lA|
A(z) = (Aij)ij=1,..n Aij = ZPZ‘(Xa)Wa(x)Pj(Xa)
a=1

c(x) := [e1(z) ea(x) ... en(x)]T,

equation (4.6) can be written as
A(z)ce(x) = B(z) f. 4.7)

The above matrixd(z) is also known as Gram’s matrix. The minimizefz) of (4.5) is given
by the linear combination

A
w(x) = Z anOa(OC), (4.8)
a=1
where the shape functions, are
va(r) = PT(X)[A(Z)] ' Wa(z)P(X,). (4.9)

Properties of the Gram-Matrix Note that (4.9) involves the inverse of the Gram matrix
A(z) for each point of evaluation. Thus, we must be concerned thighregularity ofA(x)

for all z € Q. Here, we attain the positive definitenessAtfr) for all = € 2 from theP,,-
unisolvence of the setg 4 (£2) N w, for all . We say, thaty) 4(£2) N wq is Py, unisolvent

if the only polynomial of total degree at most interpolating zero data o) 4/(2) N w, is
the zero polynomial. However, the regularity also depemdthe particle distribution. This is
elucidated in Section 4.1.2.

Weight Functions and Scaling The size of the support of the weight functiois,, i.e. of
the shape functiong,, can be determined by

wa = {y e R? | [[Xa =yl < ha}

where the dilatation parametéy, can in principle be chosen individually for each data site
X.. However, this choice is closely related to the accuracysaadility of the approximation.
Recall that theP,,,-unisolvence ofy| 4(£2) N w, for all « must be ensured. Note also that the
smoothness of the approximation depends on the smoothh#ss weight function, i.e. if
W, € C"(Q) theny,, € C"(Q).
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Reproduction Properties From (4.8) withg, = ¢(X,) for ¢ € P,,, and (4.9) it is clear that
P,, C span(¢,), thus reproduction of polynomials of orderin MLS is guaranteed.

Partition of Unity and Shepard’'s Approach We denote{y,} as a partition of unity of
orderr if the reproducing property

|A|

Y val@)b(za) = b()

and the derivative reproducing conditions

A
> Do (z)b(xa) = Db(z), |s| <7
a=1

hold for allb € P,,. In the case ofn = 0, the approximation space is given By, = {1} and

the Gram matrix reduces to "
A

Alz) =) Walx).
a=1
Thus the shape functions are given by
_ Ws(=)
Sy Wala)

which is also known as Shepard’s method. One can thus easify,\that

(@) =W(z)- (A(z))™

| A]
0<¢g(x)<1 and Zcpg(:ﬂ) =1Vz e Q.
p=1

The Shepard partition of unity is an efficient method for thpraximation of scattered data,
since the Gram matrix reduces to a scalar, and thus an éxpliai of o, is given. As a draw-
back, the type of information captured in a function spaaisined to displacements and/or
velocities. For gradient based information a higher ordérSMnethod has to be applied,
which requires the implicit representation (4.9).

Thus, the shape functions, are defined as

Wa(x)

Pa(r) = W7 (4.10)

with weight functionsi?,,. Shepard [She68] originally proposed the use of

Wo(z) = [lz — Xo| ™, t>0, zeQ. (4.11)
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It can easily be seen that the weight functions defined inljdhhve a global support and
therefore the functiong,, have also a global support. Consequently, the evaluatiamef
shape function involves all weight function®;. Hence a localized version of Shepard’s
method should be employed to ensure the compact suppgyt k. we assume supp’,) =

o SO that

Yal(z) = Wal(z) T EwW
: > Ws(z) °
wg€{wy 1 wyNwWa#0}
Thus a displacement € L?(Q) can be given by
| A|
w = L(X, Q) = Z QQgpa(x)' (4.12)
a=1

Besides the support of tH&,, the smoothness of the weight functions directly influertbes
smoothness of the shape functions. Here, we use splinesighktiienctions [Sch03]. For
more details concerning the approximation properties ®RbM we refer to [BM97].

Figure 4.2:Example of a partition of unity basis function with triangtdd evaluation points.

Our construction is essentially’ based and so Shepard’s method should be sufficient to obtain
at least first order ifl.2. If we also need to bound the errorifi then MLS of first order should
be employed.
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Numerical Experiment To confirm this assertion, we consider the idealized butesgnmta-
tive reference scattered data approximation problem {4a2he minimization of (4.5) for the
dataf, = u(z,) Whereu(z) = z2. We compare the results obtained via the MLS approach
for the point se{—3, 3] with § = 1 using the approximation spacBg, with m = 0, 1. Here,

we anticipate to find an asymptotic convergence behavia? (&) in the L2-norm form = 0
andO(6?) for m = 1. Hered is related to the maximal atomic distance.

Furthermore, the approximation error will stagnate witspect to the/7 L -norm for the Shep-
ard functions withm = 0 whereas the MLS shape functions with= 1 will provide anO(9)
convergence also if'. This expected convergence behavior can be clearly olbérom
Figure 4.4.
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Figure 4.3: Approximation (top row) by Shepard’s Methodtfland MLS (right) and the
respective derivatives (bottom row).

Thus, the construction of a weak coupling operator aimerhasferring function values may
be based on the Shepard functions (if the error bourd (6§ is acceptable), compare Figure
4.3. However, if the transfer of gradient information isuiqd the use of higher order moving
least squares functions is necessary.
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Figure 4.4: Error in thd.2-norm (left) andH '-norm (right) of Shepard’s method (solid) and
the MLS (dashed).

4.1.1 Approximation Properties

In the foregoing section we explained the technical defaiishe construction of the Shepard
functions, which form a partition of unity.

Here, we are interested in the approximation propertiese§pace spanned by these Shepard
functions. We show, that with the aid of the partition of Wné global conforming space
can be constructed. More precisely it can be shown [BM9#]uhder mild assumptions the

global space inherits the approximation properties of tiwall approximation spaces. In the
following exposition we follow [BM97].
We start with the following definition:

Definition 4.1.1 LetQ c R? be an open set anflu, }, an open overlapping d? satisfying
the following pointwise overlapping condition

dM e NVz € Q {a|z € wa | < M. (4.13)

Moreover, let{ ¢, } be a collection of Lipschitz functions subordinate to thescdw, } satis-

fying
® SUPPY. C Wq
> pa=10nQ
o llvallz=@) < Coo
o [Vpallpe(m) < diagnigwa’

whereC, and C¢ are two constants. Then we calp,, }, a partition of unity subordinate to
the cover{w, }.
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Definition 4.1.2 Let {w,} be an open cover ¢ ¢ R? and let{y,} be a partition of unity
subordinate to{w, }«. LetV, € H'(w, N ) be given. Then we call

Vs = ZSDQVQ = {Z SDaUa|Ua S Va} C Hl(Q)

a PUM-space. We recalb, is proportional to the particle distance. The PUM space iglda
be of degreen € Nif V5 C C™(Q2). The space¥, are referred to as the local approximation
spaces.

Having this, we give the following theorem which enablesaisdnstruct a global approxima-
tion space); from the local approximation spac®s.

Theorem 4.1.3LetQ C R? be a Lipschitz domain. Létw,}, {v.} and {V,} be given by
Definitions 4.1.1, 4.1.2. Let € H'(Q) be the function to be approximated. Assume that the
local approximation space¥,, have the following approximation properties: On each patch
we N Q, u can be approximated by a functieg € V,, such that

(i)
|u — Uoz”L?(meQ) =:e1(a)

(i)

[V (u = va)ll 22 (wane) =t €2(c).

Then the function
Us = Zcpava € Vs C H'(Q)

fulfills for u € H' ()

1/2
|u —usllr2 ) < VMCy <Z 8%(04)) (4.14)

diam(wq,

o 9 1/2
IV (u = us)|| 120 < VoM (Z <7G)> e1(a) + cgogg(a)> . (4.15)

For the proof we refer to [BM97].

Remark The assumption, that the patches are a Lipschitz domain is required to ensure
thatVs; c H'(f). Note, that the constad/ in (4.13) controls the number of overlaps of the
patches. However, the size of the overlap is also cruciaksior M/ = 1 we havep, = xs.,
wherey,, is the characteristic function. Thus, small overlaps cdagge gradients.
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Figure 4.5:An example of an octree.

4.1.2 Particle Distribution and Crystalline Structures

As we have seen, the constructionoftarts with an arbitrary scattered data set. Here, we
consider crystals and thus an almost regular particleiloligion can be expected. We now
seek for an efficient construction of a Partition of Unity fbe molecules in their reference
configuration. This can be best reached hil@nary tree cover [GKZC04].

Starting point of the tree is the construction of the rootenodhis is done, by assigning
an axes parallel cub® with Q2 C @ to the root. Then we partition the domain in each
coordinate direction into two equal parts. Thus2ihafter the first iteration we would have
four subdomains. Then, in a next step, every sub domain is agparated into smaller sub
domain by the same rule. This recursion is terminated, wheretis either no particle or only
one particle in the sub domain. These subs domains are tlied teaves. Thus each leaf
corresponds to a particle (cf. Figure 4.5).

For the patches we proceed as follows: We digsectangular shaped patches, whose bound-
aries are axes parallel. Then, we arrange them, such theaébr node of the tree, which is
not a leaf, the corresponding patch is defined such that:

Wp 2D We for all sonsa. (4.16)

The demand (4.16) on the patches is crucial for the cut deteutith finite elements, which
is explained in the next chapter. More precisely, due togwde can exploit the property that
for each node in the tree and € 7" we have

tNwy=0=>tNw, =10 for all sonsa of p.

Later on we see that this property dramatically increasesdm a cut detection.
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4.2 The Scale Transfer

Our aim is to construct a coarse scale approximatioa ), of the total displacement func-
tion given by (4.12). The coarse scale representation V;, of the molecular displacement
functionw is defined by means of th&?-projections, : L2(2) — V), i.e.

mp(w) € Vi o (mh(w), 1) r2(0) = (w, 1) 2 (0 Y e My, (4.17)
where, the multiplier spac#1,, is defined by
My, = span{us | s € Ny }. (4.18)

Here, the basis functiong,, s € N" are assumed to have the local support supE
supp\s|g. As is the case in the mortar setting, there are severallpessioices for the basis
functionsps of Mj,. We follow the standard approach, see, e.g. [BMP94, Bel9$tting

Hs :ws|§a S 6-/\/’h~ (4-19)

Remark Of course, for the construction of tHe projection the domain and in particular the
boundary of the domain is crucial. Since here, the main aonisethe general construction
of the transfer operator from the coarse to the fine scale, agéeat the domain aspect and
elaborate it in Chapter 5 and 6.

4.3 A Simplified Model Problem and the Saddle Point
Formulation

In this section we elaborate the technical details for dogpdf the two scales. As we have
seen, the transfer operatof couples the coarse and the fine scale idarframework.

Here, we consider this coupling in a more abstract sense ansider the coarse/- fine
coupling problem as a coupling between two different diszation methods. More precisely,
we examine the stability of the? projection between the mesh free partition of unity method
and the mesh based finite element method.

In the literature several approaches for coupling mesh drek mesh based methods have
been proposed. Most of these methods are motivated by tidepraf imposing boundary
conditions in a mesh free method. Indeed, in contrast toliapesfunctions used in the finite
element method, most of the mesh free methods do not satisfilronecker delta property,
i.e. ©p(q) = dpe- One method to overcome this difficulty is to couple them wittite
element close to the domain boundary.

An early approach is the coupling by a ramp function [BOK9Bbater on the coupling by
the Enrichment Technigque [FMHO02] and the coupling by thed@ing Scale [WL01] were
introduced. In a comparison of the Bridging Scale and thécBrrent Technique ([HFMLO4])



64 4.3 A Simplified Model Problem and the Saddle Point Fortinra

it is pointed out that the Bridging Scale method is not addisdor this meshfree and mesh
based coupling.

° °
° °
° b ° ° C
° °
° ° °
[ ] ° [ ] o .
QMD - QCM

Figure 4.6:An example of the intersection of a continuum and a moleaidanain

Here we are interested in examining the stability of thishmdt Based on the domain c R¢
we define
Q:QMDUQCM E:QMDQQCM

where meag =) > 0. In contrast to [HFMLO4] we consider the coupling of a meshfand
meshbased method as a constrained minimization problenasgéane, that we have a static
problem, moreover the energy on the continuum scale andeomttlecular scale are given by
the bilinear forms

acm(-, ) - HH(OQM) x HY(OQM) - R (4.20)
amp (-, ) : HY(QMP) x HY(OMP) - R (4.21)

respectively and the external forces are given by the lifeans fou(-) : H'(Q°M) — R
and fup (+) : HY(QMP) — R. We furthermore define the Lagrange multiplier spaceé/by=
(H'(Z))', where we denote byH'(=))’ the dual of H'(Z). Let us therefore denote by
Hcwmmp the product space dff t(Q°M) and H1(QMP), i.e.

HCM,MD = Hl(QCM) X Hl(QMD),
which is a Sobolev space with the product norm [Ada75]

el = (loemlZs e, + llow 131 o) 2. (4.22)
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Furthermore we define
Hemmo == Hemmo \{0} .

Then we define on this tensor space the bilinear from
a(-,) = acm(’,") + amp (- )

and
f() = fem(:) + fmo(4)

Then we can give the saddle point formulation:

Saddle Point Problem 4.3.1Find (u, \) € Hecmmp x M

a(u, ) + b\ [ e ]) e o € Howuo (4.23)
b(u, [ Z;'\DA ]) =0 Vv € Hemmp (4.24)

where

b\, [ Z;“; }) = (ucm — ump, A) f2(2).

From the saddle point theory it is well known that the choitéhe spacel/ of the Lagrange
multipliers is essential for the well posedness of the sagdint formulation. More precisely
the spaces have to satisfy the inf-sup condition [Bab7378rBF91], which is given by

b(\
35.vae M, sup AW

u€Hem,mp [[wl]]

> Bl =)y - (4.25)

Other choices of the multiplier space can result in non ogitiestimates for the discretized
problem. Here, we show that our choité = (H'(Z))’ fulfills these demands. To do so let
us recall the following facts.

For the relation between an element and its dual, we need

Theorem 4.3.2 (Riesz Representation Theoremlet ) be a Hilbert space and let’ be its
dual. Let furthermoré € V'. Then there exists a uniquec V for which

l(v) = (v,u) Yv e V.

In addition we have
1l = Nlully.

Definition 4.3.3 (Gelfand Triple) LetV C U be Hilbert spaces and let us assume, that the
embedding’ — U is continuous and dense. Furthermore we ideritifywith its Riesz repre-
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sentation of/. Then we have the Gelfand triple

ycuUucV.

Having introduced these tools we can now give

Theorem 4.3.4 Let us assume that there exists a bounded extension openatof ' (Q°M)
(cf. [Ste70][Thm 5, p. 181]) such that far € H'(Z) we have

ucm = E(u) € HY(QM) (4.26)
with
CllEW)[ g (aemy < Nlull g1(z)- (4.27)
then the inf-sup condition
b\, u
d6: VA e M, sup ( ) > ﬁH)‘H(Hl(E))’ (428)
u€Hcm,mp ’HUW
holds.
Proof. Since
b()‘v u) ()‘7 U’CM)LQ(E)

sup

> sup
u€Hcm,mp ’HUW

uemeH QM) (0} [[uem |l g1 qemy

it is adequate to show

)\,U, =
BovaeM, s tewre BNz @)y s (4.29)

ucm€H (2M)\ {0} HUCMHHl(QCM)

then (4.28) follows.
Due to the Gelfand triple 4.3.3 we can write formally [WI082]

(A u)r2E) = (A W) (m1 (=) <5 (2))

where(-, -) is the duality betwee(H ' (Z))’ x H'(Z). Then, by applying the Riesz Represen-
tation Theorem 4.3.2 there exists € H'(Z) such that

AunEyxme = (unu)me),  Yue HY(E),

i.e. uy is the representing element df Thus we write

()\, uCM)L2(E) = (U)\, U)Hl (E) . (430)
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Inserting (4.30) into (4.29) yields

(A uem) L2 (=) (ux, uem) 1 (=)
sup T = sup -
ucm€HL (QM)\ {0} HUCMHHI(QCM) ucm€HL(QEM)\ {0} HUCMHHI(QCM)

By choosingucm = £(u)) we obtain

s (ux, ucm) g1 (=) > (ux, uA) 1 (z) (4.31)
uowert @)\ (o} luemllmr@evy — € ()|l m(qomy
1 Al s
>__ e (4.32)
C luxllgrz)
= >\ =))
. 1 uallm @M@ ) (4.33)
C luxlla (=)
> Bl =)y - (4.34)
Thus we have b\, u)
u
sup —= > Bl =)y
wetiomo 14l e
with 5 =1/C. -

In a next step we want to ensure the stability of the discretenterpart of the saddle point
problem. More precisely, we want to show, that for

Saddle Point Problem 4.3.5Find (up 5, An) € Vis X My,

a(up,s,vn,5) + b(An, [ ZZ ]) = f(unys) Yuns € Vis (4.35)
up |y
b(pns s )=0 Vun € My, (4.36)

the discrete inf-sup condition holds, i.e.

b(An, [ Zh ] )
9
sup > Bl Al my, s (4.37)
Uk, €Vh,s \{0} ’Huhﬁm

whereg is independent ok ands and

Vhﬁ = Vh X V(s



68 4.3 A Simplified Model Problem and the Saddle Point Fortiora

L RN

- |
N\

QMD QCM

(1]

Figure 4.7:The domairf2 whereQMP is described by a meshfree method &fd” is
described by the FE method.

is equipped with the norri| - |||. The multiplier space\1;, is equipped with the norm

I Nl @)y -

In order to show the discrete inf-sup condition, we emplay ¢bntinuous inf-sup condition
and apply the Fortin trick [For77, BF91]:

Lemma 4.3.6 (Fortin Trick) Let the bilinear formb : Hcmymp < M — R fulfill the continu-
ous inf-sup conditior§4.28) Furthermore, assume, that there exists to the subspacesnd
M}, a bounded linear operatot : Hcymp — Vi,s such that

b(v — 7v, up) =0 Yun € My,

If ||7]|]] < ¢ with a constant: > 0 independent of, thenV,, 5 and M, fulfill the discrete
inf-sup condition(4.37)

We define foru = (u®M, uMP)7

F(u) = ( wh(uCMO_ uMD) > |
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Heren, : L?(Z) — V), is defined for suitablg\;, by

(Thw, pn)r2z) = (W ) f2z) Vi€ M.

Thus we have, that

uCM

b= 710 = o | 'y | = 700 = G i — o — i (u

—uMP)) 2z = 0.

We can show, that
N7l <e  c#c(h).
To do so, we consider

~

[[l7oll]

l[7|[[ = sup
vEHem,Mp ’HU’H

—  sup [ 7h (v HHl(E)
vEHcem,mp (HUCMH?{l(QCM) + HUMDHHI(Q’V'D))l/2

CM _ ,MD)

7R M | 1 omy + 17 0™P | g1 omy
1/2

< sup (4.38)

v€Hcm,mp (HUCMHél(QCM) + ||UMD||H1(QMD))

[oM | 1 ey + [[0MP | 171 o)

< < 2. (4.39)
(HUCMH?{I(QCM) + HUMDHHl(Q’\"D))l/2

Sincea + b < 2(a® + b?), a,b > 0 by Young'’s inequality. For the step from (4.38) to (4.39)
we exploited thef/ ! (=) stability of 7r;,. In [BX91] the H' stability of the projectionr;, has
been shown, if the multiplier space is chosem\dg = Vy,.

To show theH! stability for a wider class of multiplier spaces we followl[RVO1]. This
class of multiplier spaces is characterized by the follgrassumptions:

M1 The discrete multiplier spack1;, contains constant functions.
M2 We have that dirt};,) =dim(My,).
M3 There exists a constaft independent of, such that

U ,)\ =
[unll2@z) < C sup Con M)z

Yup € Vi,
ey A2z

Lemma 4.3.7 Let the triangulation7” be globally quasi uniform, that i, > ch for all
t € T". Moreover let the domai& be polygonal, and M1-M3 hold. Then

Imnullme) < Cllulm), — we HY(E)
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whereC' does not depend on the meshsize.

Proof. By our assumption, that the mesh is quasi uniform, theretexa operatoi) :
L?(Z) — V, (Clement interpolation), such that [Cle75]

1QulZ iz + D h2IU = Qullaiy < Cllull?(=). (4.40)
=) () =)
teTh

Let us for fixedu € H'(Z) show, that the operatd) full fills
[(7n — Q)ull (=) < Cllull g (z)- (4.41)
By the inverse inequality, we have
1 = Q)ullfp =) < h72l(mn — QullZa)- (4.42)
Together with M3 and by exploiting that, is a L? projection, we obtain

((mn — Q)u, ¢h)L2(E)

l(m = Qull2z) < C sup

rEM,, l¥nll 2=
I — , =
_C swp (I = Q)u T;Z)h)LQ(_)'
bneMy, ¥nll L2(z)

We then furthermore have that

(I = Q)u,¥n)r2(z) S et b 2T = Q)ull 2y hd 1¥n 2

C sup <C sup

nEMn l¥nll 2z T geM, lnllL2(z)
9 9 1/2 9 9 1/2
(Sier hi 210 = QullZay) - (Sier b lonl2aq,)
< C sup
bneM,, l1¥nll L2z
< Chllullm z)-

In the last step we used (4.40), in particular we only neeat, th

Yier T = Qull ) < Cllulld ).

Thus we obtain (4.41). By the negative triangle inequaligy, ||z| — [|y|| < ||z — y|| and
(4.40) we have

Imnullfn ey < ll(mn — Qulltn e + 1QullE =)

< Cllulp )

Finally, we can now prove
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Theorem 4.3.8 Under the above assumptions, we have that for the discreffiespoint prob-
lem the inf-sup condition holds.

Proof.
Analogously to the Fortin operator [For77], we have

BlArll =)y < S S (4.43)
] b(\, TTu)

" uclionwo 14ll (.44
<c¢ sup ()\hmh(UCMA— UMD))LQ(E) (4.45)

u€Hcm,mp |||7Tu|||
—c sy muwsn) (4.46)

us hE€Vh,s H‘u&hm

0

Summing up, we have developed a new transfer operator basg@veak coupling approach.
The key idea is to construct the transfer operator on thesh#siveighted local averaging
instead of using point wise taken values, which is done - tokmowledge - in all existing
methods. For the construction of the local weight functiamsassign a partition of unity to
the molecular degrees of freedom. This allows for deconmgpaisie micro scale displacements
into a low frequency and a high frequency part by means of ghted L projection. Thus,
the entire formulation is in the setting of a function spalglareover, we have shown for the
static case, that our weak coupling operator for the cogpmina meshfree and a mesh based
method isH' stable.
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5 The Weak Multiscale Method for the
Completely Overlapping Case

In the foregoing chapter we introduced the function spamnted approach, which allows us

to interpret the atoms in a function space and &Rgrojection to separate the displacement
into a coarse and fine scale displacement. Thereby, we adstimagthe coarse scale and the
fine scale domain coincide. However for most applications ftlausible, thaf?MP < QM
wherediam(QMP) < diam(Q°M). Here, we consider this case, more precisely we assume
that the whole domainf) is discretzed by finite elements, i.eQ“M = Q and only in a
small subsef2MP  Q the molecular dynamics is employed. Thus the handshakerrés)i
== QMP,

Note, that in= the molecular description and the continuum descripticexists. Thus the
displacement ofx can be decomposed into a coarse and a fine scale.

5.1 Multiscale Decomposition

In Chapter 2 it has been understood, that a molecular displant can be interpreted as a
superposition of waves. Furthermore on the finite elemet#, $or a given mesh size, there
exists a maximum frequency, which can be represented. lker otrds, for a given finite
element mesh sizk only waves with a wavenumber

™
Kmax = l‘imax(h) < E (5-1)

can be represented. Otherwise effects like aliasing mightro As a consequence of the
dispersion relation, then the maximum frequency for theasgntation of waves is bounded,
too.

This observation is the starting point for a multiscale eeposition, which decomposes the
total displacement field into coarse and fine scale.

More precisely, the total atomistic displacement field isateposed by

g=q4+d, (5.2)

whereq is the coarse part angd is the fine scale part. Here, the difficulty that the atomistic
displacements are given as point-values in the “discrepateR%!, whereas the macro-
scale displacements are usually assumed to be some funationg., a Sobolev space. As a



74 5.2 Multiscale Decomposition in Function Space

consequence, at a first glance a direct sum decompositidre afitderlying function space as
in [HFMQ98] is not possible.

In the bridging scale method [WLO03], the Euclidean spacenhisen as underlying space of
the decomposition (5.2) Then the authors of [WL03] definectiarse scale displacemenas
the mass weighted least squares fityoTo do so, they write

d 1= argmin,,cy, Z Mmalqg — Nv|?, (5.3)
acA

whereN is the interpolation from the finite element nodes to the attimscale, i.e. N, ;, =
Yp(Xa). Herey, is the finite element basis function (see (1.26)). Withy defined in (1.3)
we rewrite (5.3) to obtain

d=(NTMAN)INT Mygq.

Then a linear mapping can be defined by
Pqg=G=Nd= N(NTM4N)"*Myq.
Summing up, the decomposition (5.2) is given by
qg=Pq+Qq=Nd+Qq,

with@ =1 - P.

5.2 Multiscale Decomposition in Function Space

In contrast to this, we consider a scale decomposition imetion space. We therefore employ
the approach introduced in Chapter 4 by interpreting therelis displacementg, € R? as
elements of the function spad¢. Let us recall, that this is done by means of the linear
operator which maps the discrete displacements of the ajgmase A into a function space,
i.e.

L (REx RYM Sy ¢ £2(Q). (5.4)

This embedding can be chosen in a problem-dependent fashébthe properties of the result-
ing multiscale decomposition depend strongly on the choieebasis{ ¢, } for V. Recall, that
the total displacement in function space from (4.12) wasmibyw = «(X,q) = t(q) € V
and thus the displacement is

w=w+w, (5.5)

wherew is the coarse part and’ is the fine scale part.

Remark The origin of this scale decomposition can be found in thetrdmtions to the
variational multiscale decomposition in the context of fooming finite element spaces
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Figure 5.1:Scale decomposition of the total displacement field
[HFMQ98].

5.2.1 The Weak Approach for a Multiscale Decompostion in Fuation Space

Let us reconsider a bod@ c R¢, d = 1,2,3, which, under the influence of external and
internal forces, undergoing some deformation. Here, we givnultiscale approach for the
description of the body’'s deformation.

In the style of Chapter 1 we briefly review the discrete modwisthe continuum and
atomistic scale. Let us start with the micro scale. For nreasd computational efficiency, the
MD-simulation is only applied locally to a portida C 2 of our body. This domain of interest
= might be the neighborhood around a crack tip or at the vigcinfta contact boundary,
where local effects are expected to take place which carm@dresented on the coarser scale.

The material behavior on the micro scale is now modelled bameef an isolated system
of atoms or molecules of a crystalline solid. The atomic ldispments; = (g, )aca- are
assumed to obey Newton’s law of motidd4_.§ = F', where Az := {a € A : X, € E}.
However, for sakes of simplicity, we simply sdt= A=.

In the remaining pai®\ = only the coarse scale model is employed. There FE model geublo
on the macro scale is based on a continuum mechanics ap@tixinof the deformation of
our body2. Following the basic approach of continuum mechanics, emtlcro scale the
body in its reference configuration is identified with the stioand bounded domain ¢ R¢.

In order to approximate the continuous displacement fiekl employ a finite element dis-
cretization of lower order as described in Chapter 1, moeeipely given in (1.26).

Here, we do not incorporate any Dirichlet boundary condgiito the ansatz—spatg (),
since the finite element spat® will only serve as the coarse scale space for the representa-
tion of the total displacement field.

On the basis of the weak coupling concept we now can give tidgiBg Scale method in a
function space based setting. In a next step we define thetsibs 2 where the coarse
as well as the fine scale simulation is present. To do so, weed@ﬁ c T" as the set of
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pEN,

Figure 5.2: Example of a domaif with the complete overlapping.

simplexes having a nonempty intersection with the pasidle.

Th={teTh inx+#0},

and its set of nodes bfy/hE Here,x = x|4 is the set of particles defined in (4.1).

Thus we have
E= |J tandVi(E) = Vil5

teTh

Let us remark that the size and shape of the dorBdsnot predetermined and can be chosen
arbitrary. As a consequence the choice of the size of thedhahke regiorE is a design
decision. In practice this is a balancing of affordable catappower and required accuracy.

Like in the Bridging Scale Method, the coupling between tharse and the fine scale is often
realized by means of the interpolation operator. This segtgal since in general the atoms
are interpreted as points Rr’.

Using the techniques described in the previous chapterehermwe are free to interpret atoms
either as elements R’ or as functions ir.2. This allows for a function space based coupling,
leading to our weak multiscale operator.

In order to perform the decomposition given in (5.5) we defime coarse scale represen-
tationw € V, of the molecular displacement functian by means of thel.-projection
Th - LQ(E) — Vh(E), i.e.

Th(w) € Vi(Z) & (mu(w), w2y = ()2 Vi € My, (5.6)
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where, the multiplier spac#1,, is defined by
M, = span{yu, | s € NF}.

Here, the basis functiong,, s € J\/’hE are assumed to have the local support supg
suppys|z. As is the case in the mortar setting, there are severallgessioices for the basis
functionsps of Mj,. We follow the standard approach, see, e.g. [BMP94, Bel9$tting

ps = sls, sENL. (5.7)

Our coarse scale representation is now defined by extengifg) € V,(Z) tow, i.e. w =
E(mp(w)), where€ : Vi, (Z) — Vy, is an extension operator. Thus we can rewrite (5.5) by

w=w 4+ = (w — Emy(w)) + Elmh(w)). (5.8)

For the extension operatér, different choices are possible cf. [QV99]. Here we choge th
discrete extension

E() = vy with

{vp:wp , pENE,
PEN},

v, =0 , otherwise.

In the spirit of mortar methods, we call the finite-elemerd);, the slave space and the
approximation space spanned by the Shepard functions teenspace.

By construction, our coupling operatat, allows for the decomposition of th&2-kinetic
energy7 into a coarse scale and a fine scale part iLasense, analogue to [WLO03]. In the
caseM;, = V;(E) which is known as the standard multiplier space in the mae#ing, we
moreover have

= 1 .
T = §(waw)L2(E)

- 1. .
(0, w)r2(z) + §(w7wl)L2(E)

1
2
1. . 1
2
1

o 1, )
(w, W) r2(=) + 5( )2z + 5(7«07 (I = mp)) 2 (z)

.. 1 . .
= 5 (@, w)p2(z) + 5 (@, (I = ™)) 125

since the mixed terng (', w) 2 (=) vanishes due to the fact that rattige- ) LM;,.

Relation to the Bridging Scale Method In order to show, that the BS method is a special
case of our framework from Chapter 4, we consider the cas¢hthaomairk is decomposed
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into non overlapping patches, such that

— U wa
acA

On these patches we define basis functighs).c 4 by

- 1 if zew,
Palr) =91 ¢ it

T € wa

(1]

and thus we can replace the underlying Euclidean space freddcomposition (5.2) by

Hps := Z spariy,) C L*(2).
acA

The atomistic density 4 can then be given by4 = > - 4 %%-

In a next step, the projection operator in the original ceintd the bridging scale method is
replaced by arl.? projection on the weighted? scalar product:,-),, = (-, pA")2(z) from
Hgs to V,. More precisely foly € Hpgs the finite element representation df V), is given
by

(d,1)pa = (g, 18)p4 for all 1 € V3, (2). (5.9)

Here, the coarse scale part of the total displacement figjiven byg = Nd, whereN is
defined byNv, = > c 4 ¥p(Xa)@a- Thus the operator form of (5.9) is given by

g=NM"'NTq (5.10)

with the finite element mass matr = () ,gcr=: Mpg = J= patp, and

(Vo = [ pagatyy = measn)p(Xa)byl(Xa) = maty(ta) = (MaN)ap,
Here the usage of the midpoint rule quadrature is justifietiifn (v, ) < diam(t), t € 72

What we have done so far is to replace the discrete space Brithging Scale method by a
function spacefigs C L?(Z). The function space approach assumes a continuous extensio
of the molecular displacement field. Then, in a next step, se=llan approximation of this
extended molecular displacement field for the construaif@projection, which then involves
the evaluation at all spatial poinfs,, € =.

However the construction of piecewise constant basis fmet 2, ).c 4. has a less approxi-
mation order than our function space oriented approach.
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5.2.2 Discrete Representation of the Weak Approach

Let us now describe, how to obtain the discrete representafiour transfer operator. Insert-
iNgw =3_,c 4 qapa @ndm,(w) =3\, 1y, into (5.6), we obtain

Mm = Rq (5.11)

with M = (mys)t,sen;, @NAR = (rsq)seN;, ac.a and

Fow = / lspa and my, — / Wutts (5.12)
Q Q

here, we have set = (¢o)aca @andm = (m,)pcn;, . This gives rise to our weak coupling
operator in its algebraic representation

W=M"R, (5.13)

which transfers the low-frequency information from the fio¢he coarse scale.

In order to compute the algebraic representationrpfin (5.6), we need to assemble two
(generalized) mass matrices. For the mafvix we need to evaluate integrals of the form
Jo tptbq dz, wherep,, are the basis functions spanning the multiplier spad¢g, andq), are
the basis functions of,. Here,p, ¢ are assumed to be in some index &gt with d|\},| =
dim(Vy,). The computation of the resulting mass matrix can be donesimdar fashion as
the assembly of the standard mass matrix.

For assembling the matrik, we need to evaluate integrals of the form

/ HpPe . (5.14)

waSUPH1p)

In order to compute these integrals, the cut between theosuppy, and the patchv, has

to be computed. On the resulting polytope, then the quadrdtas to be carried out. Since,
following our approach, the cut polytopes can be contrdlettheir size but not in their shape,

the quadrature is a challenging task. In order to deal withgroblem we have developed and
implemented the library GrLi8 [DKO08], which allows for cut detection and quadrature on
the resulting cut-polytopes. We explain this in the nexagaaph.

Assembling the rectangular Matrix R The assembling of the transfer operator in dimen-
sionsd > 2 is a subtle task. Due to the large number of atom$§2iwe are in need for
an efficient, yet robust, algorithm for the construction o€ &lgebraic representation of
Since the assembling of the rectangular maRirequires the computation of all intersections
we Nt, t € T", T" being the set of all elements in the finite element mesh, werhakiosen
rectangular/cuboid patches, (see [Sch03]).
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In the engineering literature, often radial patches arel useconnection with a fixed back-
ground mesh for the quadrature. This allows for the use daarddsis functionsp, which

is mathematically very appealing. However, exact intégnatvith a background mesh and
standard quadrature formulas (such as Gauss quadrataast impossible. Rectangular
patches allow for exact quadrature, which is needed forttdglisy of A/ —' R . Furthermore,
the computation of the cuts, Nt can be handled by using ideas from computational geometry
as described below. For representing the projectiome need to assemble the matrides
andR . The assembling o/ and R is similar, even though for special choices.bf;, the
computation of\f is simpler ( e.g., itM;, = V).

For the efficient implementation of the assembling we neegetdorm the following tasks
with (quasi-)optimal complexity:

1. Given a finite element mesh-element 7" find all atomsa such thato, Nt # () .
2. Compute the polytope, N t.

3. Decomposey, Nt into simpler polytopes on which quadrature formulas forekact
integration can be applied.

The use of an quadtree (octree) /ai-trees structure yields quasi-optimal complexity for
queries as in Step 1. For the cut-computations in Step 2 whky dpp quickhull algorithm
[BDH96] along with a simplex method. For each ayt N ¢ we need to compute an interior
point. This is realized by describing each ayt N t as the intersection of finitely many half
planes{z € R?| — n]Tx +g; > 0,5 =1,...,n}. Ford = 3, after the introduction of the two

T
additional variables:4, x5, an interior point(p1, p2,p3)” = (i—i, ;—j, i—i) can be obtained
from the linear constrained maximization problem:

Maximize z; among all tuplesz1, z2, x3, 24, x5) such that

T T .
-n; (r1,22,23)" +gj-r4a—252>0,7=1,..,n

andzs > 0,14 > e withsmalle > 0.

Given such an interior point, the intersection algorithonir[PS85] is applied, which gives a
description ofuv, Nt by means of half planes.

In case of sufficiently smooth basis functions, i.e, € C'(@,), Step 3 could be carried
out by computing a Delaunay triangulation of the polytopen ¢ and applying a quadrature
formula of sufficient high order on each triangle/tetraloedr However, in our application
va € CY(@,) generally is not fulfilled, for the following two reasons:

e The functionsl¥,, are constructed from one-dimensional splines by a tergumwach.
For linear splines, a jump in the derivatives along the cotioas between the center of
mass ofv,, and the midpoints of the edges/sides occurs.

e The derivative ofp, can be discontinuous along, N dwg, a # [ andw, Nwg # 0.
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As a consequence, for the assemblindiahe set
Dyt ={z €t : Vy, discontinuous i}

needs to be resolved for eacks 7". This can be done by either choosing a Delaunay triangu-
lation which conforms to the constraint that, ; is contained in the union of all edges/sides,
or by subdividingw,, prior to the cut detection and applying Step 2 and Step 3 th eab-
rectangle/sub-cuboid separately.

Assembling the Matrix M Due to the definition ofy;, and for suitably chosem,,, the
matrix M has the character of a finite element mass matrix, is well idtondd andM—lu
can be computed easily for apye M,,.

/

Figure 5.3: Two tetrahedra iR3 and Delaunay triangulation of the resulting cut polytope

Relation to the Bridging Scale method In contrast to (5.13), the coarse scale description in
the Bridging Scale Method [WLO3] is given by

W = Mg NT My, (5.15)

with Meon = NTM 4N and M 4 given by (1.3). In the Bridging Scale Method, the transition
from coarse to fine scale is defined by interpolation and tbgption from fine to coarse is
defined as the least squares approximation of the atomisptadements with respect to the
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atomistic mass matrix/ 4. More precisely, the components bf.qn = Ak are given by

Pqe

Tipg = 3 Madp(Xa)Ag(Xa) = 3 23 (X )A(Xa) - measw,) ~ /_ M de

acA acA meagwa)
(5.16)

Thus, assuming that the densﬁ;gm— is one and that the patches,, )oc 4. fulfill woNwg =
) < «+# [, (5.16) can be mterpreted as a summed quadrature rule.

By introducing the scalar produét, -)gs := (M-, -) onRMI x Rl the projection from the
total displacement field to the coarse patt is given by

(Nw, Np)es = (w, N1)es VMGR‘N}ﬂ,

i.e. the bridging scale method can be seen to be based ondiwe W), = spa{\, |p €

NE}. However, the coupling itself uses the discrete scalarymo@, -)ss, which distinguishes

it from our approach, where the? scalar product connected to the coarse scale is used. This
probably seems to be the more natural approach within thé fazenulation of the finite
element method.

For investigating the structure of the bridging scale otmazr@ in more detail, let us consider
the case that the masses of the atoms are equalyi.e: m; = my = ... = m,4). Then, the
atomistic mass matrid/4 reduces ta\/4 = m Id and the coarse scale mass matrix becomes
Meon= NTM4N = mNTN. Thus, the operatdi’ reduces to

W = (NTN)'NT,
which are simply the normal equations stemming from
(Nw—w, Np) =0 p € RV

We now want to explore more differences and commonalitiéadsen (5.15) and (5.13). For
sake of simplicity, we consider the case, that only two pks$iX, and X are in the support
of the two shape functiong; andi,. Then the matrixV in (5.15) as well as the matrik in
(5.13) become quadratic:

_( ni(Xa) ¥1(Xp) I O T R T
V= ( Ya(za) Y2(Xp) ) = ( fwm P2pa waZ g ) ’

wherew;, = SUPY) N wq

In the forthcoming, we consider the condition numbe(r§7) andx (W) in dependence of the
distanced,s := | X, — Xj|. The condition number is indicative of the stability or sévisy
of the transfer operators.

In Table 5.1, the condition number in dependence of themtistés shown. It can be seen that
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() (0

Figure 5.4:Two particles in the support of one element

dog 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

k(W) || 6.1905| 6.9812| 7.9746| 9.2577| 10.9756| 13.3893| 17.0212| 23.0900

k(W) || 3.1027 | 3.2188 | 3.3274 | 3.4186 | 3.5502 | 3.6052 | 3.6559 | 3.7311

Table 5.1:Comparison of the condition number dfand W w.r.t. the distance between the
two particlesa and 3

the condition numbe@(W) is increasing while«(1/) grows very slowly. In fact, the growth
of the condition number of the matrik can be controlled, since the integration domains
w can be chosen individually such that the patches are pardifferent. Obviously, the
argumentation above also holds for the case of more than anles in the support of the
element.

In the following, we compare our new weak transfer operatith the transfer operatdfrlv/ .
As measures for the comparison we chose the ndirmis2 o) and|| - || o q)-

We adopt the numerical example of [LKPO6]:

The interval[—100rg, 100rg] is covered by 40 linear finite elements with mesh gize 5rg.
To each of the 56 atoms betweet28rg and28rg, a patch of sizé).6rg is attached. For the
molecular scale the Lennard-Jones (LJ) potential see)(lk1@ed.

Outside the MD/FE region the nodal forces are calculatedhgaCauchy-Born rule.

The initial amplitude in the molecular part is given by

e*(X/U)Q_qc (27X .
0 if| X| > L,
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Here, A is the amplitudes is the width and truncation at. of the initial wave. It can be
clearly seen, that + b cos (%) is the fine scale contribution, where the length sddlés
small compared te. The parameteb determines the magnitude of the fine scale. Finally

ge = e—(Lc/9) s the unshifted impulse & = L..

Let T, be the total run time of the simulation. We follow [LKP06] bgheancing both sim-
ulations by a time stepj\t € [0,7]. Thus in a single time step the coarse scale simulation is
advanced once and the fine scale simulation is advancéthes. The fractional time steps

in the n-th coarse scale time step is given by := n + % and the sub cycle time step is
given byr,, = . On the fine scale the velocity Verlet and on the coarse shal@xplicit
central difference algorithm are used. We furthermorerassthatp™, ¢, s™ are given, then

the update is given by:

pit = bl 4 gl 417240172 p MD displacement

ity = gy gl q MD velocity
st — Mglf(p[ﬁrl}) s MD acceleration
It = gl %s[ﬂ'“]Tm.

After m = 50 fine scale steps the molecular dynamics quantities of thesedane step + 1
are obtained. In order to advance the coarse scale simulton » to n + 1 the internal
forces are computed by combining the coarse scale dispatemand the fine scale part
Q = (I — NW) of the molecular simulation.

1 .
A"t = dP 0 AL+ 5@”72 d FE displacement
a"™ = M'NTf(Nd+ Qq) aFE acceleration
1 .
oL = 5(@" +a"t)At v FE velocity.

In order to measure the difference between the discretéadmmpent field stemming from the
atomistic scale with the values of the coarse scale, in qumogich we choose the tti& norm.
OnEZ, this error can easily be computed as

[lw — ki(w)H%g(E) = w! Mpymw — 2w’ Rky(w) + ki(w)” Mk;(w), i=1,2, (5.18)

where Mpyw is the PUM mass matrix whose elements are givemliy™ = [ ,05. Here,

k1 is the least squares projectid;ﬁ andks is the weak coupling operatd¥’. For the error in
the|| - ||o NOrm, we simply computed

Jw = N(ki(w)|Z,,  i=1,2, (5.19)

Table 5.2 shows the obtained errors fot 1, 2.
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|- 2 |- lloo
coarse time step bridging scale| weak coupling|| bridging scale| weak coupling
3 6.0-1073 2.7-107% 2.8.1072 6.7-1073
6 3.0-1072 1.1-1074 5.3-1072 4.8-1073
9 6.0-1072 5.7-107% 7.5-1072 4.8-1073
12 8.1-1072 1.2-1073 7.3-1072 3.9-1073
15 8.3-1072 2.3-1073 7.4-1072 6.1-1073
18 7.5-1072 2.1-1073 7.3-1072 51-1073

Table 5.2:Difference between the discrete displacement field steghimim the atomistic
scale with the values of the coarse scale infthe{;>=)- and|| - || norm

5.3 Frequency Sensitivity of the Coupling Operator

Even though our weak coupling operator is designed for @nester of displacements, it has
notable properties with regard to the transfer of energythénforthcoming we show thé?
projection surpresses the energy stored in high frequerasyesvand conserves the energy
stored in low frequency waves. The precise meaning of “hahd “low” in this context is
given by (2.27). Again, for the sake of simplicity we sticka®ingle dimension, a harmonic
potential and the linear standard FE basis for an equidistash.

As starting point for our discussion, let us recall that thkeisons of both system (2.2), (2.10)
in Chapter 2 were of the form

qa(t) = Z gre'FXa=wt) and ,(t) = Z Gigpe’krp—wt) (5.20)
k k

In our simplified setting we consider the projection of amhamic displacement in the molec-
ular dynamics. We sef(z) = cos(kx) and analyze thé? projected image” (¢) € V;,. Note
that here we neglect the approximation error introducedhbymbedding. First we compute
the coefficients:, = [ 6,q dz with
2l for z€[zp_1,2,)
Op(r) = ¢ 1—-252 for x € (xp,2pt1]
0 else
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so thatr”(¢) = M~'r. We find

Op(z)q(z) dx

rp =

|
o~

suppdyp

Tp xr —

Tpt1 _
% cos(kx) dx +/ ’ <1 _— hxp> cos(kx) dx
Tp

I
T

:
E(cos(k(xp_1 + 1)) + cos(k(zpy1 — x))) dx

I
S—

|
=

h
(sin(k(ap-1 + ) = sin(k(ap41 - 2)]
h

+ #(cos(k(:cpq +2)) + cos(k(xpy1 — gg)))] i
= #(cos(kzxp) — cos(kxp_1) + cos(kxzp) — cos(kxpi1)) - (5.21)

Since|cos’(kz)| < k we haver, € [—2/k,2/k]. For a (quasi-)uniform mesh the eigen-
valuesm,, of the mass matrixn, ~ h so that the coefficients, of m;,(¢) are bounded by
O (1/(xh)). Thus we can clearly see, what we have expected.

We now employ the Fourier transform, and use the notationdioiced in the context of Kernel
based methods in Chapter 2, in order to determine the fregsamistivity of the new coupling
operator. In order to describe the spectrum of the functpogerly, we introduce the term
bandlimited where we define a functiamto beébandlimitedif its Fourier transform: vanishes
outside some compact interval Additionally we define a function to bebandlimitedif its
Fourier transformi is less thare outside some compact interval In Figure 5.5 we can see

0.08F
0.07-
0.06"
—0.05}
% 0.04+
0.03F
0.02F

0.01f

-10 -5

gor

Figure 5.5:The Fourier transform of the linear finite element basis fiorc
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the Fourier transform of the linear finite element basis fiomc

Obviously, waves with low wave number are better represe(dmse tox = 0 ) than high
frequencies. This fact is important for the coupling oparasince both, the Bridging scale
operator and the weak coupling operator map into the coaede“svhich can be represented
by a set of basis functions, that is, finite element shapeiturs:*

-3
35X 10

2.5F

0
w

-10 -5

Figure 5.6:The Fourier transform of the initial wave and its projection

For the given initial amplitude the Fourier spectrum is given in Figure 5.6 (blue,dashed).
Moreover the Fourier spectrum of the corresponding pregbdisplacement is given (red).
As expected, only low frequencies, are transferred and idge fnequency, which have no
physical meaning on the coarse scale are neglected.

In a next step we examined the error in the frequency domanwvéhave already mentioned,
the Bridging scale method can be seen as a special case oktdieagupling concept. We
showed, that within our weak framework, the Bridging Scalethnod can be interpreted as
piecewise constant approximation. This is the case, whepdalch sizeéw,, | of each atom is
set torg, i.e. exact the distance between the neighboring atomsiglrd-5.7 we measured
the error between the initial amplitude and the image ofittiteal amplitude under the weak
coupling operator
errr == [|[F(q) — F(7(q))l|e.- (5.22)

In Figure 5.7 it can be seen that in this context, the weak loay@pproach offers more
freedom compared to the Bridging Scale method, since tieecdithe patch is adjustable.

[LKPO6, Chapter 6]



88 5.4 Numerical Examples

piecewise constant

0.018105% /

0.018%

err

0.01809%

05 1 15
Patchsize

Figure 5.7:The Error (5.7) comparing the weak coupling method with the Bridging Scale
method

5.4 Numerical Examples

In this section the performance of the weak coupling mettwdHe complete overlapping
case is presented.

5.4.1 A One Dimensional Example

In our simulation we choosAt = 0.2. And use the same staggered time stepping algorithm,
as explained in Subsection 5.2.2.
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Figure 5.8:FE-MD simulation for the coarse scale time steps- 3,n = 12 andn = 18.

In Figure 5.8, the coupled MD/FE simulation is shown. Theasgumarked line (red) repre-
sents the displacements of the fine scale. The continucaigdine) maps the displacement of
the coarse displacement. For comparison to the multisgal@ation a full atomistic simula-
tion using 420 atoms is shown in Figure 5.9.
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displacement
s ST

S 8 =

2 8

-100 -50 0 50 100 -100 -50 0 50 100 -50 0
partcle position particle posiion partcle positon

Figure 5.9:Full MD simulation, for the fine scale time steps:- n = 150, 600 and 900

5.4.2 A Two Dimensional Example

Here we used the Molecular Dynamics Software Package TREM[GIKZ07, GHO04, GHO6]
for the atomistic simulation. For the simulation of the égonm mechanics we used the
finite element toolbox UG [BBJ97]. A parallelization of the implementational framework
(i.e. the interface between the finite element and the mtdeclynamics) can be found in
[Kra09] and in the context of MACI (Massively Parallel Atostic Continuum Interface) of
the working group Prof. Dr. Rolf Krause.

In this example, we test the performance of our projectiograjorm;, for d = 2. To do so,
we study wave propagation through a small sheet. Consgléha domain2? = [0, 80] x
[400,800] C R? the coupling region chosen B = [0,80] x [400,550] C €. An initial
displacement in the molecular domé&irpropagates out of the coupling zone ifl9=, where
only coarse finite elements are used.

The initial displacement i is a combination of high- and low frequency parts:

A 2
q(z,y) = 1 g (Ae(_(y_t)/a)2 - qc> <1 + bcos (g(y - t))) ey (5.23)

withe, = (0,1)7, ¢t = 510, 0 = 15, H = /4, A = 0.15, b = 0.3, 7. = 5- 0 and
ue = Ae(m/?)2 where we adopted the notation used in [LKP06].

The potential function is the LJ-Potential (1.13) with resarneighbor interaction, i.exqyt =
3/2 - ro. For the coarse scale we employ the standard linear elagitit-8enant material law
with elastic modulugy = 30 and Poisson ratio = 0.2589, discretized on a triangular mesh.
The coupling zone containisl.130 atoms and abouil5 triangles. The patch size is= 1.7
for each atom. Since the focus here is put on the propertigseafiew transfer operator, the
MD block was chosen large enough to avoid spurious reflestidithe boundary.

For the integration in time, we have used the time-steppaigmme given in Subsection 5.4.1
with the following changes:

e The coarse-scale force is calculated by linear elasti€ity F'(d).
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CM MD

Figure 5.10:Geometry of the first example 2a.

e The coupling is done by overwriting the coarse-scale dispteent and velocities in
each time step in the coupling zone by the values obtainexl fihe L? projection of the
values on the fine scale.

We chooseAt = 0.1 andm = 2. Figure 5.11 shows the time-evolution of the absolute value
of the perturbation as it propagates into the coarse regigh. In the coupling region, only
the atomic displacements are shown. It can be seen that iby ts# > projection an almost
seamless transition between the scales can be achievelde setond example we used the
radial symmetric version of (5.23).

Figure 5.11:A 2d example of a coupled simulation with the weak coupling ntettransfer
of a wave from micro (MD) to macro (FE), with a comparably langiesh size in the FE
region
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Figure 5.12:A 2d example of a coupled simulation with the weak coupling ntetAaradial
symmetric initial amplitude starting in the bright blueigi in the middle (MD) entering into
the darker coarse scale (CM) region
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5.4 Numerical Examples




6 The Weak Multiscale Method and Coupling
with Constraints

In this chapter, we consider a partly overlapping multiscalethod. In contrast to the
foregoing Chapter, wher@MP = =, here, we consider the handshake region=as=
OMD N M = £ OMD = £ OCM_ For an illustration consider Figure 6.1.

0
° i b4 ® ° °
°
hd °
° . hd A
° b °
° °
° b ° ° ©
° °
- ° °
°
° ° ° .
QMD - QCM

Figure 6.1:Example of a domaife c R? with a pure molecular parf™P, a pure continuum
part Q°M and a mixed parf?MP 0 QCM,

Once again, by andu we denote the displacement fieldstfP andQ“M respectively.
To couple the MD and continuum system we impose constréjnts) € C whereC is the con-
figuration manifold (linear subspace). This means that ithglacementg andwu at each time
should lie on the manifold’. The shape and orientation 6fdefine the way the constraints
alter the displacements of the individual, uncoupled syste
Obviously, the constraints are only active in the handshiagen=, where we have the co-
existence of the molecular and continuum description. Thigimg domain method has been
introduced by Xiao and Belytschko [XB04], therein the hdrad® region, where constraints
are imposed is called the bridging domain. In their metheg impose point wise constraints,
by

C = {(g,u) | ga = u(X,) for each atomx € A=} . (6.1)

Reformulating the constraints in an algebraic form we find

C = {9 =0} with g(q,u) = ¢ — Nu. (6.2)
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Let us recall the interpolation operatdf : V() — R44=l defined by(Nu),, = u(X,) of
Chapter 5.

The choice of point wise constraints is motivated by the @GgtBorn rule. The constraints
(6.2) are a strong modification of the uncoupled systemsedimey prohibit the existence of
displacement fieldg which are not exactly representable on the coarse finiteeslemesh.
As a consequence high-frequent waves are not permittedeirbitillging domain and are
reflected at the interface= N QMP since energy is conserved.

We can see that the major problem of this approach is thegtass of the constraints which
serve two purposes:

e They deliver the information transfer between the scaleghé Bridging domain both
systems have the same dynamic yielding a globally considisplacement field.

e They avoid the reflection of high-frequent waves (roughlgadpng, those not repre-
sentable on the finite element mesh) at the atomistic boyn@iarby prohibiting the
propagation of such waves in the Bridging Domain.

From our point of view, the failure of the coupling method seeted above is due to the
misuse of the same constraints for both, information temsihd reflection elimination.
In Section 6.2 we show how to decouple these tasks by impasingtraints in a "weak”
sense. Since small-wavelength waves are not affected bgotheraints they can propagate
smoothly in the bridging domain where e.g. non-reflectingrmtary conditions can be used
to eliminate reflections.

In the following we assume the constraint maniféldo be linear. Hence we can find a linear
mappingg so thatC = {g = 0}. The mapy might be written as

9(g,u) = B¢ — B™Mu.

Here, BMP and B°M are linear operators with range in some spBoaver=.
In the Bridging Domain metho® is the space of all atomistic displacements &P = id,
BM =N,

6.1 Deriving Constraints in the Lagrangian Setting

In Chapter 1 we showed, that in general the equations of motiche atomistic as well as on
the continuum level can be derived either from the Hamiliaror the Lagrangian description.
In some situations, the derivation from the Lagrangian &gua is more natural, since the
Hamiltonian approach requires the identification of theocéeal conjugated momenta, which
are derivatives of the Lagrange function with respect toveiecity.
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We assume, that the potential enetgydoes not depend on the velocity. Let us recall the
Lagrangian equations of motion from (1.11), then the tin@w@ion of such a system is given

by
d o 0

dtos™ ~ 9s
Since7 does not depend on the displacement, the right hand side3)figthe negative of
the gradient o/. However, the canonical conjugated momentggrﬁ usually differs from the
kinetic momentumns.

(6.3)

This general formalism applies to the Bridging Domain settexplained before, as follows:
Recall from Chapter 1 that

LM (q,¢) = TP (§) — UM (q)

and
LM, 1) = TM@) — UM (u)

denote the Lagrange function of the molecular dynamic sysiaed the continuum system.
The Lagrangian of the coupled system now is a weighted surheofrtdividual Lagrange
functions plus a contribution due to the constraints.

Since in the overlapping domain the molecular and the coatin description coexist, a
weighting functionw : © — [0,1] is necessary so that energy is not counted twicg.in
We requirew = 1 in QMP \ = so that the equations of motion is not altered in those subdo-
mains where only one model is valid.

Denoting by(+, -)y a scalar product ol the consistent Lagrangiafreads

Llqu,dyi, N) = w- (TP (¢) —UMP(q) )+
(1 =w) - (T™M@) - UMW) + (A gla.w)v . (6.4)
The Lagrange multipliera € V are determined so that the coupled solutign.) lies on the
configuration manifoldq, u) € C,i.e g(q,u) = 0.

Let us remark, that in the above formula the multiplicatignuband (1 — w) is an abuse of
notation. More precisely,

. 1 .
w - TMD(Q) = 5 Zmaw(Xa) : ’CJOzlz

and
1

(1= w)- T) = 5 [ o1~ w)- P da

Inserting the Lagrangian (6.4) into the general Lagrang@mtion (6.3) we obtain the coupled
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eguations of motion

Mi = =VU"P + () Vgg(q,u)),, (6.5)

gii = —VUM+ (X, Vug(q,w)),, )

The equations of motion iR°M should be understood in a weak sense.
In (6.5),(6.6) we introduced the notations

M, = w(Xa)ma7 0= (1 - w)Q

as well as
UMP = - UMP and UM = (1 —w) UM,

Comparing (6.5), (6.6) to the equations of motions of theviddal uncoupled systems we
see that the weighting alters the forces and does not cancel out. As a result one finds
that the waves traveling into the coupling zones are amglifibereas leaving waves are
damped. These effects might be troublesome, e.g. becaeg@tbhibit the usage of exact
non-reflecting boundary conditions. We refer to [ACRZ08]daliscussion of approximations.

Notably we find the canonical conjugated momenta to weigtaedvell, e.g. pM° =
w(Xq)me - Us. Therefore
2
1 ||
w - TMP (MR = = o

2 g maw(Xq)
In [XB04] the weighted Hamiltonian is always written usirgetkinetic momenta rather than
the canonical conjugated momenta. However, when deriviagHamiltonian equations it is

important to reformulate the Hamiltonian using the confadanomenta which is only possi-
ble through the Lagrange formulation.

6.2 Imposing Constraints in a Weak Sense

In the forthcoming we interpret the constraints, introdledove (6.5) and (6.6) in a weak
sense. To do so, we construct a manifald which in contrast to (6.2) does not impose
constraints pointwise but in a weak sense, i.e.

C= {(q,u) | (A g —u)r2 = :0forall)\th} (6.7)

where(-,-)r2(z) is the LL? scalar product oveE and M, the multiplier space introduced in
(4.18).

The choice of the multiplier space ensures, that the higiufrat (large wave number) part
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of a wave, which can not be represented by the finite elemesh e not constrained. As a
consequence these wave with a large wave humber can patsredadhorough the handshake
region=.

The constraints in (6.7) requitec L?(Z), however the displacement on the molecular scale
is given by(g4)ac.4 Which is in the Euclidean space.

° b4 > o
o ° C P
o | [/
°
y4
[ ] L4 7 -~
° .,// //
° hd °
L il
° d ° e <l
. ® . < -
»
° ° ° P
QMD — QCM

Figure 6.2: A2d example of patches overlappiayu QMP

Thus in the fashion of Chapter 4 we define analogue to (4.12)

L(X, Q) = Z daPa (6.8)

acA

Let us note that the truncation of the approximation spadbeabridging domain boundary
leads to a reduced approximation quality near the bound&fpwever these effects are
negligible.

So far we have transferred the molecular displacement iftaction space. By means of the
scale decomposition ofq) (compare to (5.5)) we can reformulate the definitior® ah (6.7)
in a more accessible way. We decompose the total displaddiakehin the functionspace by

u(q) = u(q) + t(q),

where(q) is a coarse scale part anf;)’ is a fine scale part. As a matter of fact not all
information of.(¢) can be represented on the coarse scale.

More precisely, not all wavelengths in the MD soluti@oan be captured by the finite element
space. As stated above constraints should only affect tedses, which can be represented
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on both scales (i.e. in the function spadgsand},).

For this purpose leV;,(Z) denote the space of restrictions of functions frain to the
Bridging domairk.

Analogue to Chapter 5 the coarse scale representation islafimed by.(q) = m,(.(q)) €

Vi(Z), wherer, is the L? projection defined in (5.6), i.er;: L%(Z) — V,(Z). Then the
displacement stemming from the fine scale can be decompgsed b

u(q) = (e(q) = mr (e(q))) + mh ((q)) - (6.9)

Thus we have decomposed the displacemgq) into a part which can be captured by
the coarse scale and into a part which can only be represemdtie fine scale. Since
¢ is bijective, this allows us to compute the fine fluctuatioridfief the MD solution as
1™ Hu(q)) = ¢ H(e(q) — T (e(q))). With this terminology we may write

C:{(q,u)‘u:@inE} . (6.10)

Now, (6.10) gives rigorous meaning to the above statemeatsiely the fact that the high
frequency part(q)’ € ker 7, is not affected by the weak constraints.
Once again, inserting(q) = ., c 4. da¥a aNdm, («(q)) = ZpGNhE mpAp into (5.6), we
obtain

Mm = Rq (6.11)

with M = (mis); sen=r B = (Fsa)senz aca. defined in (5.12) giving rise to the matrix
representation
W=M"1R (6.12)

Hence, we have
C={(q,u) |u=Wq} = {(q,u) | Mu = Rq} (6.13)

so thatBM = id, BMP = W or B°M = M, BMP = R. The spaceD is the finite element
spaceV,(=).

Since the dimension oP determines the computational burden of the coupling mefitod
is the size of the multiplier matrix to be inverted in evemndi step of, e.g., a Shake-Rattle
time integrator) the weak constraints are computationaknefficient than rigorously applied
pointwise constraints of [XB04].

Discretization in time To solve the coupled equations of motion (6.5),(6.6) we heentell
known Shake-Rattle time integration scheme. This is a syatipgl, second order time integra-
tion scheme for constrained systems which is widely useddlecular dynamics simulations
[GKZC04, HLWO2].



6 The Weak Multiscale Method and Coupling with Constraints 9 9

Let {0 < At < 2At < ... < NAt =T} denote a decomposition of the time inter{@&l|7’].
We do not consider multi-rate time integration schemes,we employ the same step si2g
on both scales.

We denote byMwp, Fvp, Mcw, Fem the weighted mass matrices and weighted forces on
the respective scales. Let us recall thigt= M 'R is the algebraic representation of the
L? projectionry, see (5.13). Note, that the mass matkikis truncated mass matrix, since
the operator acts only ovét Starting from the initial valuegg, g, ug, g the Shake rattle
algorithm reads

forn=1,...,N—1
Compute velocity trial valueg, 1/ = ¢n + %AtM,@éFMD(qn,q'n) and i, 419 =
Uy, + %AtM&\%FCM (un)

Compute displacement trial values 1 = g, + Atg,11/2 and upy1 = Upy1 +
Aty 41/

Compute the residugl = Mu,,11 — Rg,11 and solve the linear systef\ = g with
the multiplier matrixA = M Mgy M + RMysR'.

Correct
Qn+1 < qn+1 + MI\;I%RT)‘
dny1/2 < dny1/2 + At~ My RTA
Up41 < Up41 — ME&M}\

?:Ln+1/2 — Tln+1/2 — At_lME,\}lM)\

Compute velocity trial valueg, 1 = g,41/2 + %AtMgéFMD(an,an/g) and
U1 = TUpy1/2 + SALMey Fom(tni1).
Compute the residug = M1, 11 — Rq,11 and solve the linear system\ = g.
Correct

. . —1 pT

dn+1 — qny1 + Myp R A

U1 — Uns1 — Moy MA

end

Figure 6.3: Shake rattle algorithm

Let us remark that the multiplier matrix is positive definite since

2" Az = (Mz)" Mgy, (Mz) + (RTx)T Myd <RT30) (6.14)
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Therefore, all steps in the above algorithm are well defined.

6.3 Numerical Examples

Here, in this section, we validate the method explained eb®s do so, we used the standard
examples inld and2d explained in the foregoing chapter. Thaskand2d examples show
well, that atomistic displacements can propagate into trimuum. In the3d example it

is shown, that due to the symmetry, also continuum displacésncan propagate into the
atomistic region.

We already mentioned that the weak constraints allow srmalebength phonons to enter the
bridging domain without reflection. In order to cope with eefions at the boundayQMP
additional effort is necessary.
In Chapter 2, we already introduced the PML method which gharthe equations of motion
by an additional force term

F—F+M-D(2¢+Dg). (6.15)

Note that (6.15) contains a frictional term and additionathanges the stiffness of the lattice.
Numerical evidence shows that we can omit the last t&f?q if D = (d(Xa)),c 4 iS
chosen appropriately, (cf. Section 6.3). Thus, in our nicaéexamples in Section 6.3, we
use a “pure” frictional term, i.e.,

F — F + M - D24. (6.16)
Recall thatD = (d(X,)),c4 We see that (2.34) and (6.15) are equivalent.

space directioml;

QCM g -

PML PML

Figure 6.4: An example of a domaih C R? and its extensiofi;,

Different choices for the damping zone, i.e., the suppor,adre possible (see Figure 6.4).
The damping zone could be a layer arod@¥®. In this case the full wave spectrum must
be removed. If we us& as the damping zone we must take care to damp only the high
frequency waves in order to not disturb the informationdfanbetween the scales. Although
this approach requires a larger coupling zahét is computationally more efficient, since no
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additional atoms need to be introduced (see Figure 6.4).
Since (6.15) affects phonons of arbitrary wave numbers, fitot appropriate if the damping
zone is equal t&, as mentioned above. Rather we use

F— F+M-D(2Qni+ DQnq) (6.17)

where ), is the algebraic representation idf—N=":, N being the interpolation operator
(cf. (6.2)). Note thatQ);q is an easily computable approximation to the fine fluctuation
).

The waves with high wave numbers (small wavelengths) araffietted by the constraints
and are able to pass through the Bridging domain.

6.3.1 A One Dimensional Example

We consider the propagation of an initial amplitude throaghdimensional slab. On the fine
scale we use a Lennard-Jones potential wits 1, e = 1 and nearest neighbour interaction
so that a lattice of atoms with distaneg = 2!/6 is a minimum of the total energy. To derive
a continuum model for the coarse scale we use the Cauchy+{BEiBH54]. This ensures
matching elastic coefficients. The FE density= 1/r. The initial amplitude in the MD
region was

q= . (AeXp(—(X/J)Q) — qc) (1+b-cos(2nX/H)) (6.18)
with A = 0.015, 0 = 30, b = 0.1, uc = e > and H = o /4. Since the propagation to the left
and to the right is completely symmetric we only consideneavith initial positionsX > 0.

We studied two systems wittD0 and50 atoms each. The finite element size was chosen as
5rg and the bridging domain size wa$8 and 10 elements. Figure 6.5 shows the coupling
geometry of the larger system.

For the PU we usé,, = 0.75r¢. For the numerical integration we use a Shake rattle integra
with At = 0.05. The PML damping functiorl was chosen ag(X) = —log(0.1) - 0.15 -
(dist(X, =)/ diam(Z))?. We use a linear weighting function.

The pictures show that we achieve a smooth transition of ihevrom the fine to the coarse
scale. Especially fodiam = = 100rg we observe no reflections. The energy history (Figure
6.8) supports this observation.

If diam = = 50rg we observe small reflections. As Figure 6.7 shows these ftiefiscare
caused by insufficient damping. At the boundary of the briggiomain no reflections are
visible. Let us note that the strong amplification of highgfrent parts at the MD boundary is
due to the weighting.

The size of the multiplier matrix in both cases2is x 20 and10 x 10 resp. Therefor, even
for the large bridging domain the size of the multiplier mats smaller than the multiplier
matrix in the BD method for typical choices &f (e.g. consisting of more thahelements).
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Additionally, A has a smaller bandwidth.

displacement
o

Figure 6.5:Initial amplitude of theld example.
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Figure 6.6:Displacement afte500 and 800 time steps the larger system.

6.3.2 A Two Dimensional Example

To evaluate our method in higher dimensions we consider thpagation of a radial wave
through & dimensional solid. Again, we use a nearest neighbor Lerhames potential with
o = 1,e = 1 as the atomistic interaction potential. The constitutigaagion of the continuum
is derived by means of the Cauchy-Born rule ang 0.92, the inverse of the volume of the
unit cell.

The number of simulated atoms68000. For comparison we simulated tBelimensional slap
with a pure atomistic simulation with00000 atoms. The finite element mesh contak®§0
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Figure 6.8: Time history of the energy of thhé example.

elements and234 nodes. The number of elements in the bridging domain2vas30 = 480.
Each element contains betwethand20 atoms.

The Shake-Rattle time step size/is = 0.005. The patch sizé, = 0.57ry and the function
d for use in the frictional damping term was chosen ak dimensions except faR = 0.35.

Figure 6.9 shows the simulation geometry. Pictures 6.106@hdl show only the relevant
portion of the domain.

Again, we observe little or no reflection at the bridging damaoundary. Figure 6.10 shows
that the frictional damping efficiently reduces the refi@as at the MD border with only small
disturbance of the transferable displacements. From E€igurO we infer a (visually) good
agreement between the coupled and the pure simulation
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Figure 6.9:2 dimensional coupling geometry.

6.3.3 Three Dimensional Examples

For the3d examples, we considered the block, where the top and botgiorr are discretized
by finite elements and the middle part is atomistic.

On the coarse scale we used 2800 elements and on the fine 208l@ d&toms. The material
law for the continuum part is given by the Cauchy Born rule finite element size i8.2rq

For the atomistic simulation, we employed the Lennard-dqugential with nearest neighbor
interaction, i.e.rqyt = 1.5r9. We computed 10000 time steps the the Shake Rattle algorithm
as time integrator and toakt = 0.005. The size of the overlap region (handshake region) is
four finite elements. In the fist example, we applied a the(op., +1.)” and at the bottom
(0.,0.,—1.)7 as forces. In Figure 6.12 the dynamics of this block at diffietimes is shown,
when external forces at the top and at the bottom are applied.

In the second example we applied at the top a fgre@.2,0,0)” and on the continuum part
on the bottom we applietd.2,0,0)”.
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Figure 6.10:Comparing the weak coupling method with constraints. Lefthout damping.
Right: with damping
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Figure 6.11:Comparing the weak coupling method with constraints. Lgite MD. Right:
coupling with damping.
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Figure 6.12:A 3d example of the weak coupling method with constraints: Exlerertical
forces are applied.
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“‘?‘ 8 “‘

e

Figure 6.13:A 3d example of the weak coupling method with constraints.
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