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Zusammenfassung

Für das globale Verhalten von Festkörpern in der Strukturmechanik bei nichtlinearen
Prozessen sind lokale Effekte auf atomarer Ebene von wesentlicher Bedeutung. Oftmals
ist eine direkte numerische Simulation des makroskopischen Verhaltens durch vollständige
Auflösung der Mikroskala aus Aufwandsgründen nicht möglich.

In den letzten Jahren wurden Methoden zur Mehrskalensimulationen entwickelt, die sowohl
atomistische als auch kontinuierliche Modelle innerhalb eines Simulationsgebietes verwenden.
Zeitgleich können somit auf der Markoebene Finite Elemente und auf der Mikroebene eine
Moleküldynamiksimulation benutzt werden.
Einer der wichtigsten Aspekte in der Mehrskalensimulationist dabei die Konstruktion von
geeigneten Transferoperatoren welche entsprechend Informationen zwischen den beiden
Skalen transportieren. In dieser Doktorarbeit wird ein neuartiger schwacher Kopplungsopera-
tor (”weak coupling operator”) entwickelt, der eine Brücke zwischen atomistischen Prozessen
und kontinuierlichen Modellen schafft.

Zunächst werden die Newtonschen Bewegungsgleichungen inder Moleküldynamik und die
der Kontinuumsmechanik mit den jeweiligen Hamiltonschen und Lagrangeschen Energiebe-
griffen vorgestellt. Anschließend werden die fundamentalen Unterschiede in der Modellierung
der beiden Skalen und den damit verbundenen Problemen diskutiert.
Die in der Literatur über Mehrskalenmethoden häufig beschriebenen Reflexionen (“spu-
rious reflections”), werden untersucht und deren Ursachen erläutert. Eine Identifikation
der strukturellen Merkmale der in der Literatur bisher existierenden Mehrskalenmethoden
erlaubt es, eine neue Klassifikation einzuführen. Diese hebt hervor, dass alle bisherigen
Mehrskalenmethoden einen punktweisen Ansatz verfolgen.

Der in dieser Arbeit entwickelte neue Kopplungsoperator basiert nicht auf einer punktweisen
Auswertung sondern auf einer Mittelung. Dazu werden lokaleGewichtsfunktionen, mittels
einer Partition der Eins, konstruiert. Dieser Ansatz erlaubt es nun, das Mikroskalenver-
schiebungsfeld mit Hilfe einerL2 Projektion in einen hochfrequenten und niederfrequenten
Teil aufzuteilen.

Mit dieser Skalendekomposition und dem neuen Transferoperator betrachten wir zunächst eine
vollständigeÜberlappung, bei der das Gebiet mit der atomaren Modellierung eine Teilmenge
des Gebietes mit der kontinuumsmechanischen Modellierungist. Hierzu werden numerische
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Beispiele in1d und2d präsentiert.
Alternativ zu diesem Ansatz stellen wir eine teilüberlappende Zerlegung vor, bei der die
moleküldynamische und die kontinuumsmechanische Simulation in einem Teilgebiet koex-
istieren. Dabei werden die Freiheitsgrade aus der atomarenund die der kontinuumsmechanis-
chen Simulation über zusätzliche Lagrange Multiplikatoren, die die Einhaltung der Nebenbe-
dingung garantieren, gekoppelt. Der schwache Kopplungsansatz erlaubt es uns dabei, die
Nebenbedingungen im Funktionenraum zu interpretieren. Dies resultiert in einer sehr effizien-
ten Kopplung zwischen den beiden Skalen, was in1d, 2d und3d Simulationen gezeigt wird.
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Introduction

Various phenomena in material science involve processes over a wide range of length scales
from the atomistic to the continuum. A deeper understandingof solids detect that the mul-
tiscale methods, i.e. the coupling of different levels of description are needed, since each
individual framework is inadequate on its own at the scale inquestion.
Here, we consider two scales, which we associate to the continuum mechanics and the
molecular dynamics. In continuum mechanics, which we referto thecoarsescale, atomistic
details are neglected, whereas in molecular dynamics (thefine scale) the atoms and their
mechanics are accounted for. The continuum mechanics is based on partial differential
equations describing the conservation laws and the constitutive relations. This approach
is impressively successful in a number of areas like solid mechanics close to equilibrium.
However, this description may become inaccurate for problems in which the detailed atomistic
processes affect the macroscopic behavior of the material.
Linear elasticity, as a prominent representative of a continuum mechanical description, is
inaccurate when the dynamics of the system are too far from equilibrium. One reason for this
can be found in the fact that it is assumed in elasticity, thatthe materials are homogeneous,
even at the smallest scales. If the sample is large enough, this approximation is valid, since one
can effectively average over the inhomogeneities. Thus, elasticity can be seen as a statistical
theory. This averaging in elastic theory becomes inaccurate, if we consider smaller length
scales, where the fine grained structure and its effects likethermal fluctuations determine the
system inherently. The authors of [RB05] claim, that this inaccuracy appears in sizes smaller
than one micro meter. Then, at these length scales, the dynamic of solids far from equilibrium
comes into play.

Usually the simulation scene on the fine scale starts with a set of atomsA which are described
as point like masses. The evaluation of this system then can either be done by energy
minimization at zero temperature or by Monte Carlo methods,or by molecular mechanics.
The absence of an intrinsic time scale makes the Monte Carlo method attractive for the study
of equilibrium states. In molecular dynamics, the interaction between the atoms is described
by an empirical inter-atomic potential, tailored to reproduce some physical properties of a
given material such as the zero temperature lattice parameter and elastic constants. This
method is preferable for non-equilibrium states or time dependent quantities.

However a detailed theoretical description of many macroscopic properties down to the atom-
istic scale, lies far beyond the current possibilities of simulations, since the final properties of
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real materials depend on the interplay of chemistry, micro structural evolution, processing his-
tory, and others which show extreme complexity. The theoretical understanding of the atomic
level mechanisms of deformation and failure leads to the conclusion that atomistic simulation
techniques should be the most appropriate tool, representing the “basic” level of description.
The drawback of the fine scale simulation is the overwhelmingdemand on calculation speed
and the huge amount of data.

Let us elucidate this problem on an example. In Figures 0.1 anatomistic simulation of a crack
can be seen. The figures show, that waves are reflected on the boundary of the simulation
domain. At a first attempt one would like to enlarge the computational domain, in order to
avoid this unwanted effect. However this approach often is of high computational complexity.
Moreover, even a simple enlargement of the domain only delays the occurrence of reflection.

Figure 0.1:A fully atomistic example of crack propagation in2 dimensions

Thus, employing a multiscale strategy for an efficient and accurate modelling seems favorable
since by separating the problem into two different frameworks, the accuracy of a fine
scale model can be combined with the advantages of a computationally efficient model.
A comparably small region of atoms surrounding the crack tipis modelled by molecular
dynamics. Outside of this region, far from the crack tip, we take advantage of the fact that the
displacement is almost homogeneous and can thus be modelledefficiently by a linear elastic
continuum dynamical simulation.

In this scenario the atomistic simulation and the continuummechanics must make contact
with each other in order to exchange information. For the decomposition of the compu-
tational domain two choices for the design of the transitionzone are possible. In the first
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approach an interface clearly separates the coarse and the fine scale. In contrast to those in-
terface methods, in handshake approaches the coarse and thefine scale coexists in a subregion.

Clearly, both scales offer fundamentally different descriptions of the matter and they use
different simulation methods. Whereas on the continuum scale the finite element method and
a function space setting is used, the molecular dynamics is based on the movement of particles
in the Euclidean space.

Additionally, dynamical simulations with a transition zone between atomistic systems and
the coarser finite element mesh suffer from unwanted (spurious) reflections, since the finite
element method can not represent short wave length vibrational modes.

Here we present a completely new approach, which takes advantage of an infinite dimensional
function space for the information transfer between the scales. Starting from a handshake
region, the key idea is to construct a transfer operator between the different scales. This
transfer operator is based on local averaging taken values.In order to construct the local
weight functions, a partition of unity is assigned to the molecular degree of freedom. This
allows us to decompose the micro scale displacement in the handshake region into a small
and large wave number part by means of a weightedL2 projection.

This thesis is structured as follows. In the first chapter thefine scale and coarse scale is given
a precise meaning, by identifying the fine scale with a molecular dynamics structure and
the coarse scale with a continuum mechanics structure. A brief introduction into statistical
mechanics is given to motivate the classical molecular dynamics, namely the Newton equa-
tions of motion, the Hamilton and the Lagrangian. The discussion on the structure preserving
properties of the Hamiltonian equations of motion then leads to the time integration scheme.
Thereby, the interaction between the atoms is described by an inter-atomic potential.

The second chapter is devoted to the “pathologies” which canoccur, when continuum
mechanics is coupled with molecular dynamics. More precisely, for the harmonic potential,
perturbations in a crystal can be interpreted as a harmonic wave. Based on this from an
analytical point of view advantageous formulation, we workout the dispersion relation which
gives a relationship between the frequency and the wave number of a wave. Thereby, we
explain, that a mismatch of the continuum and atomistic dispersion relation leads to reflection.
Based on the harmonic structure, we can determine the amountof reflection, i.e. the reflection
coefficient. At the end of Chapter 2, we consider the general problem of imposing boundary
conditions in molecular dynamics. Since we confine the molecular dynamics to a bounded
domain, for an atomistic simulation, non reflecting boundary conditions have to be imposed.

Outgoing from the knowledge of the two different scales fromthe foregoing chapters, we
develop a new classification of multiscale methods. This classification is based on the
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observation, that for a characterization of a multiscale method, the design of the respective
handshake region or interface is crucial. As it turns out, all existing multiscale methods,
coupling molecular dynamics with continuum mechanics, interpret the displacement fields in
the coupling regions pointwise.

The drawbacks of a point wise approach for the coupling between the continuum me-
chanics and the molecular dynamics in the transition regionand the great success of a
weak formulation in the theory of Domain Decomposition methods, is the starting point
of our method in Chapter 4. The key idea of our new method is to construct a transfer
operator on the basis of weighted local averaging instead ofpointwise taken values. How-
ever, this new method requires that the atomistic displacements have to be interpreted in
a function space. Therefore, we assign a partition of unity to the molecular degrees of freedom.

In Chapter 5, we exploit this function space oriented interpretation of the atomistic displace-
ment in the context of a completely overlapping decomposition. More precisely, we consider
the case, when domain of the handshake region is conform withthe domain of the molecular
dynamics. In order to identify the displacements pertaining to the atomistic or continuum
level respectively, we employ a multiscale decomposition.In particular, we decompose the
micro scale displacement into a “low frequency” and a “high frequency” part in a weak sense.
Several numerical examples at the end of this chapter show the good performance of this
method.

In the last chapter, we match the coarse and the fine scale simulation by constraining the two
displacements in the handshake region. The key issue in thiscontext is, that our function
space oriented approach allows us to interpret the constraints in a weak sense. Moreover we
give numerical examples in1d, 2d and3d which show that this approach allows molecular
displacements for entering into the continuum domain and the other way round flawlessly.



1 Physical Fundamentals

Real materials have various kinds of mechanical behavior. In the classical context one decides
between fluids (liquids and gases) and solid states. In the context of change of volume, both
classes show a similar behavior, whereas their behavior in change of the form is quite different.
More precisely, in contrast to solids the fluids show much less resistance (viscosity) to a change
of form since they flow. However, this difference is only quantitatively, since the solid can
also flow on a long time scale, i.e. solids have a higher viscosity. Materials which can not be
categorized into fluids or solid states are called “soft matter”, an example are emulsions.

In this thesis, we consider the multiscale behavior of solidstates. More precisely, we are
interested in crystalline materials and their different behavior over a wide range of length
scales. This requires the knowledge and understanding of what is happening in a material
from the continuum mechanics scale down to the atomistic scale.

In the description of the continuum, details on the atomistic scale are neglected. We refer to
this continuum scale as thecoarse scale.

Since for a multiscale material understanding the mechanics of atoms in the material has to be
taken into account, we also consider the atomistic level, towhich we refer as thefine scale.
Here, empirical models are used, in order to describe the interactions between the atoms.

For the further understanding in the coupling of the coarse and the fine scale, in this chapter
the fundamental properties of molecular dynamics (MD) and continuum mechanics (CM) are
explained. Moreover, since we are interested in the computational problem, we also introduce
the respective discretizations.

1.1 Equations of Motion in the Molecular Setting

The material behavior on the micro scale is now modelled by means of an isolated system of
atoms or molecules of a crystalline solid. We identify each of the atoms in their reference
position with a pointXα ∈ R

d, α ∈ A, whereA is an index set. Under the influence of
external and internal forces, the atoms displace in space. The positionX̂α of theα-th atom in
a deformed configuration is then given as

X̂α = Xα + qα , (1.1)

whereqα is the displacement of atomα.
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Figure 1.1:The different physical and modelling scales.

The atomic displacementsq = (qα)α∈A are assumed to obey Newton’s law of motion

MAq̈ = F internal + F external, (1.2)

whereF internal andF external are the internal and external forces. With each atomα, we associate
the massmα > 0, such that

MA = diag(mαIdRd×d)α∈A (1.3)

is the mass matrix on the micro scale. In case a potentialV is given, the internal forces acting
on a conservative system can be obtained asF internal = −∇X̂V (X̂).

Statistical Mechanics The system in (1.2) hasd|A| degrees of freedom. For a better fur-
ther description, we define thephase spaceof the d|A|-body problem as the2d|A| dimen-
sional set consisting of all possible positionsX = (X1, ...,X|A|)

T and linear momenta
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p = (p1, ..., p|A|)
T of the particles, where the latter are defined by

p = MAq̇.

Then a single variable in the phase spaceΓ is given by

z := (q, p)T ,

whereq, p ∈ R
|A| andz ∈ R

2d|A|.

Let us now assume, that we are not especially interested in the positions and velocities of the
system, but macroscopic quantities (e.g. temperature), which are calculated from the atomistic
configuration. Then it is adequate to consider only the phasespace densityρ(z). It is a
probability density, that gives the probability of finding asystem of|A| atoms in a given
region of the phase space. For the integration over the wholespace, we get

∫
ρ(z) dpdq = 1 , z = (p, q).

Since systems of atoms can neither be destroyed nor be created, the total derivative of the
density is zero, i.e.

dρ

dt
=
∂ρ

∂t
+
∑

α∈A

(
q̇α

∂ρ

∂qα
+ pα

∂ρ

∂pα

)
= 0.

This is also known as theLiouville theorem.

Let us consider anergodic system, that is, when the densityρ in every pointz in the phase
space does not change in time, i.e.∂ρ∂t = 0. Then the ergodic hypothesis for such a system
states, that the time average is equal to the ensemble average. Here, an ensemble is a collection
of pointsz in the phase space.

As a consequence, for a system in equilibrium, computationseither from the time average
or from the phase space average can be used. In MD averages arecomputed from the time
average on a comparably long time, whereas Monte Carlo simulations base on the ensemble
averaging.

A micro canonical ensemble or NVE ensemble1 is a closed system with the invariants volume,
energy and number of particles. The measurements in classical mechanics are equivalent to
the averages over the micro canonical ensemble.

For a subsystem which has an energy exchange, the invariantsare the temperature T, the num-
ber of particles and the volume (NVT ensemble). For a given temperatureT , the probability,
that a certain position state of the particles occurs, is proportional toe−E/(TkB), wherekB is
the Boltzmann constant andE the total energy of the system. ForT approaching zero, only
the global minimum has a significant density in the ensemble,whereas for increasingT the
position states get more equally distributed.

1Here NVE stems from the notation, sinceN is the number of particles,V is the volume andE is the energy
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The temperatureT is given as the average over instantaneous temperatureT̂

T̂ =
1

dnkB

∑

α∈A

p2
α

mα
.

Remark In many applications, the error induced by neglecting the temperature in the de-
velopment of a model is not significantly compared to the errors inherent in the model of the
inter-atomic potential, which we introduce in the forthcoming.

Hamilton and Lagrange Description In the Hamiltonian formulation of Newtonian me-
chanics (1.2) is reduced to a system of first order.
Then, for the Newtonian mechanics, the differential equations

d

dt
q = M−1

A p and
d

dt
p = −∇qV (q), (1.4)

are a Hamiltonian system with theHamiltonian

HMD(q, p) = T MD + UMD :=
pTM−1

A p

2
+ V (q), (1.5)

where the potential part isUMD = V (q) and

T MD :=
1

2
pTM−1

A p (1.6)

is the kinetic part of the energy. This Hamiltonian is constant in time, in the sense, that for
solutions along(q(t), p(t)) of (1.4) we have

d

dt
HMD(q(t), p(t)) = pTM−1

A ṗ(t) + q̇(t)T∇qV (q(t)) = 0.

In order to rewrite (1.4) in a more compact form, we furthermore introduce the2|A| × 2|A|
canonical structure matrixJ

J :=

(
0 I|A|

−I|A| 0

)
.

With the above definition we can rewrite the Hamiltonian equation by

d

dt
z = J∇zHMD(z). (1.7)

Under the assumption, that the potential energyV is smooth, there exists at least locally
through any point(q0, q̇0) of the phase space a unique trajectory of the mechanical system,
which is the solution of (1.2) with the initial conditionsq(0) = q0 and q̇(0) = q̇0. In the
phase space, this means, that the exact flowΦτ : Γ→ Γ maps the initial conditionsz(0) = z0

to z(τ) = Φτ (z
0), wherez(t) is the initial solution of (1.7) for initial conditionsz0. It is



1 Physical Fundamentals 9

a main structure preserving invariant, that the flowΦτ is symplectic, which is defined as the
conservation property

(DΦ)TJ(DΦ) = J (1.8)

for all τ and whereDΦ is the Jacobian of the Hamiltonian flow. It can be illustratedor
interpreted as “area preserving” (see Figure 1.2).

Φτ

Figure 1.2:An example of the area preserving property of the mappingΦτ .

Summing up, (1.7) describes a system by its2|A|d degrees of freedom, the positions and the
momenta of each atom in each coordinate direction. Later on in this chapter we will refer to
this formulation.
We also introduce another way for describing the atomistic system, namely the Lagrangian. It
is defined by

LMD(qα(t), q̇α(t)) = T MD(qα(t), q̇α(t))− UMD(qα(t)). (1.9)

The Lagrange equations of motion are obtained by Hamilton’sprinciple. It states that the true
evolutionq(t) of a system between two specified statesq(t1) at timet = t1 andq(t2) at time
t = t2 is a stationary point of the action functional

S(q(t)) :=

∫ t2

t1

LMD(q(t), q̇(t)) dt, (1.10)

whereLMD(q(t), q̇(t)) is given by (1.9).
To show this, letε(t) be a small perturbation that is zero at the endpoints of the trajectory. A
first variation of the action functional gives

δS =

∫ t2

t1

[
LMD(q(t) + ε(t), q̇(t) + ε̇(t)) −LMD(q(t), q̇(t))

]
dt

=

∫ t2

t1

(
ε(t) · ∂L

MD(q(t), q̇(t))

∂q(t)
+ ε̇(t) · ∂L

MD(q(t), q̇(t))

∂q̇(t)

)
dt+ o(ε2),

where we have expanded the LagrangianL(q(t), q̇(t), t) to first order in the perturbationε(t).
After integrating by parts, the boundary condition causes the boundary term to vanish and we
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obtain

δS =

∫ t2

t1

ε(t) ·
(
∂LMD(q(t), q̇(t))

∂q(t)
− d

dt

∂LMD(q(t), q̇(t))

∂q̇(t)

)
dt.

As we have already mentioned in Hamiltonian’s Principle it is required, that the first variation
vanishes for allε. This is satisfied if and only if

d

dt

(
∂LMD(qα(t), q̇α(t), t)

∂q̇α(t)

)
=
∂LMD(qα(t), q̇α(t))

∂qα(t)
, (1.11)

which is known as theLagrangian equations of motion. It can be shown, that the Lagrangian
equations (1.11) are equivalent to the Hamiltonian (1.5).

Having now introduced the equations of motion and in particular the term symplectic it seems
natural to consider the time discretization.

Time integration Time integration algorithms are based on finite difference methods, where
the time is discretized on a finite grid. The distance betweenthe consecutive point on the net
is given by∆t. With given value and derivative at timet an integration scheme gives the
same quantities at timet + ∆t. However, since this iteration is an approximation of the time
evolution truncation and rounding errors are associated with them.

In contrast to the rounding errors, which are associated to aparticular implementation of
the algorithm, the truncation errors are intrinsic to the algorithm. More precisely, truncation
errors are related to finite difference methods, which are usually based on a Taylor expansion
truncated at some term.

Here, we only briefly outline the error analysis and address to [DB02] for further details. Of
course, in MD the large number of atoms is a challenging task.On the one hand, implicit
methods like implicit Runge-Kutta methods are too expensive. On the other hand, for a stable
explicit integrator the time step∆t has to be very small.

Moreover, MD also suffer from theLyapunov instability:

For an initial statez(0) and a perturbated intial statez∗(0), the error‖z(t)− z∗(t)‖ depends
exponentially on the length of the trajectory.

All these facts make the time integration in MD challenging.One important aspect of the
Hamiltonian equation of motion is thesymplecticity. A numerical integratorΨ∆t, that is a
discretization with time step∆t of Φτ is symplectic, if for a one step computation

(
∂Ψ∆tz(0)

∂z(0)

)T
J

(
∂Ψ∆tz(0)

∂z(0)

)
= J,

and thus it is area preserving like the continuous flowΦτ . Further analysis on the symplectic
structure of MD is investigated in [HZ98].
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The above observations of the Hamiltonian system have important implications for the numer-
ical treatment of the symplectic structure of Hamiltonian mechanics.

In order to obtain a symplectic method, we decompose the Hamiltonian given by (1.5) into

H1 =
1

2
V (q), H2 =

1

2
pTMA

−1p, H3 =
1

2
V (q).

ForH1 the associated equations are

ṗ = −1

2
∇qV (q), q̇ = 0

which can be solved analytically:

p(t) = p(0)− t

2
∇qV (q), q(t) = q(0).

It is easy to see, that the flowΦH1,∆t for some time step size∆t is equal toΦH3,∆t, thus we
considerΦH2,∆t:

p(∆t) = p(0), q(∆t) = q(0) + τMA
−1p(0).

Applying the conjunction

Φ∆t := Φ∆t,H3 ◦ Φ∆t,H2 ◦ Φ∆t,H1

on some starting point at time stepn, which is given by(qn, pn) leads to(qn+1, pn+1). This
is exactly equivalent to the widely used Störmer-Verlet [Ver67, SABW82] algorithm.

The Störmer-Verlet can be written in the following form:

Algorithm 1.1.1 (Störmer-Verlet)

pn+1/2 = pn − ∆t
2 ∇qV (qn)

qn+1 = qn + ∆tM−1pn+1/2

pn+1 = pn+1/2 − ∆t
2 ∇qV (qn+1).

The evaluation of the three steps in Algorithm 1.1.1 is successive, thus the scheme is com-
pletely explicit, since no nonlinear system has to be solved. The velocities in the Störmer-
Verlet algorithm can be eliminated to obtain the following two-step method in the displace-
mentsq only, i.e.

M
qn+1 − 2qn + qn−1

∆t2
= −∇qV (qn),

which is known asleap frogscheme.
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For more details in simulating dynamical systems under the aspect of molecular models, we
refer to the book [LR04] and to [LRS96].

Potential So far we have done no further investigation on the potentialintroduced in (1.2).
However, from the atomistic point of view, the inter-atomicinteraction is an important
issue. The various atomistic methods can be classified by their different calculation of the
inter-atomic forces. In the literature several different potentials which describe the inter
atomic interactions can be found. These potentials often vary in their accuracy in describing
the quantum mechanics. An example of an accurate potential is the density functional
theory [Sri97] where the full quantum mechanical equationsare solved to calculate the force.
However, even with nowadays affordable computer power onlyvery short time scales and
very short length scales can be simulated. Thus, it seems reasonable to reduce these models
in order to decrease computational complexity.

Most of the multibody potentials are empirical descriptions of the binding on the quantum
mechanical level. Here, the potentialV is composed of a sum of different heterogeneous
nonlinear contributions, which depend on the distances. Moreover, they can vary in their
relative intensity and their functional form. More precisely, contributions to the potential can
stem from interactions between(1, 2, .., |A|) particles, i.e.

V (X1, ...,X|A|) =
∑

α

V1(Xα) +
∑

α,β>α

V2(Xα,Xβ) +
∑

α,β>α,γ>β

V3(Xα,Xβ ,Xγ) + ... .

The advantage of multibody potentials is that their computational burden is by orders of
magnitude less than the one in quantum mechanics. More precisely, in classical MD where
an empirical potential is assumed, length and time scales inthe range of micrometers and
nanoseconds can be reached [AWG+02, Abr86]. Of course these length scales are large
compared to the quantum mechanical length scales.

In this thesis we are interested in the mechanical properties of materials from the classical MD
scale up to the continuum scale. A special class of multibodypotentials are the pair potentials.
Here, it is assumed, that the force between the atoms can be described by a function which
only depends on the distance between the corresponding atoms. In this context we understand
the terms local (short range) as a potential which effectively only involves contributions from
nearby particles, otherwise we call them long range. It has been understood that for some
materials (e.g. argon) and some interactions (e.g. Coulombinteraction) the forces can be best
described by pair potentials [Rah64]2. The authors of [aBKvS90] showed, that even more
complex materials like silica can be well described by a pairpotential. In general, for pair

2The reference [Rah64] is also one of the first molecular dynamic studies.
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potentials, the potential energy is given by

V2 =

|A|∑

β=1

V2(Xα,Xβ),

whererαβ = ‖qα − qβ‖ is the absolute separation distance between two particlesqα andqβ.

The harmonic potential The harmonic potential is probably the simplest radial symmetric
body potential. It is given by

V (rαβ) = C(rαβ − c)2 (1.12)

For smallrα,β the harmonic potential is a quite accurate approximation ofsufficiently smooth
pair potentials. This potential is for the simulation of metal improper. For the first an explicit
knowledge of the neighborhood is required. For the second, modeling unbounded atoms, we
need that the force goes to zero forrαβ →∞, whereas in the harmonic potential the attractive
forces become infinite.

However it is attractive for analytical reasons, since (1.12) is quadratic and thus linear in the
equation of motion formulation. In the next subsection on crystalline structures we exploit this
advantageous structure for a rigorous analysis.

The Lennard-Jones Potential A prominent and widely used example of pair potentials is
the Lennard-Jones potential [LJ24]. This short range potential is given by (σ, ε > 0)

VLJ(rαβ) = ε

[(
σ

rαβ

)12

−
(
σ

rαβ

)6
]
. (1.13)

Here,σ is called the collision diameter, it is the distance of two atoms, at whichVLJ = 0.
The valueε corresponds to the minimum of the potential located at the equilibrium distance
r0 = 21/6σ. From the physical point of view it can be interpreted as the amount of work, that
needs to be done, in order to move the interacting particles apart from the equilibrium distance
r0. The first term in (1.13) is the atomic repulsion, which dominates for small distances (rαβ <
σ). The second term in the Lennard-Jones potential is the bonding term and is clearly weaker
than the other. In Figure 1.3 it can be clearly seen, that the potential is singular where particle
positions overlap and the bonding term for e.g.r/σ = 2.5 is negligible.

In general the interactions in a pair potential include all pairs of atoms, regardless of their
distance. However, since the energy decays liker−6 the forces outside some critical radius
(cut off radius) rcut are small and are thus neglected in practice , i.e.

V (rαβ) ≈ Vcut(rαβ) =





ε

[(
σ
rαβ

)12
−
(

σ
rαβ

)6
]

rαβ ≤ rcut

0 rαβ > rcut

.
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With a given cut off radius the force acting on particleα for the Lennard-Jones potential is
given by

Fα ≈ 24ε

|A|∑

α=1
0<rαβ≤rcut

1

rαβ

(
σ

rαβ

)6
(

1− 2

(
σ

rαβ

)6
)

rαβ,

whererαβ = Xβ −Xα.

0 0.5 1 1.5 2 2.5 3

−1

0
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V
(r

)

Figure 1.3:The Lennard-Jones potential (blue) compared with the harmonic potential
(black).

1.2 Crystalline Structures

In many solids, the particles are arranged in regular, systematic patterns. When this happens
the solids are said to be in crystalline state, or to be a crystalline solid. Their structure, that is
characteristic of the substance is then called crystal structure, formed by a regular repetitive
crystal lattice.
A crystal lattice can be described in terms of small repeating three-dimensional segments
called unit cells. Arranging these unit cells periodicallyinto space results in plane faces and
definite angles between the faces. Such characteristics begin in molecular dimensions and re-
peat accordingly as the crystal grows up to macroscopic sizes. Common examples are crystals
of sodium chloride (table salt), quartz and diamond. Solidsthat do not present that regularity
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(called symmetry) are amorphous solids.
In other words, crystalline solids are a class of solids thathave regular or nearly regular crys-
talline structures. This means that the atoms in these solids are arranged in an orderly manner.
Though glass is a solid, it is not crystalline because the silica units are not boned to each other
in a regular, uniform, repeatable array. The essence of crystallinity is the description of the
regular geometrical arrangement of atoms in space.
In nature the finite regular arrangements of the atoms of crystals is never perfect, however this
is neglected to describe the crystals by a lattice. The smallest part of the lattice whose spatial
repetition forms the entire lattice is called primitive cell.

Figure 1.4:Left: A bcc lattice. Right: A fcc lattice.

A Bravais lattice is an infinite set of points generated by a set of discrete translation operations.
In d = 3 we have 14 lattices which are distinguished by the symmetry of their point groups.
They are classified into seven different crystal systems. Here we consider the cubic crystal
system consisting of three different types, i.e. the simplecubic (sc), the body centered cubic
(bcc) and the face centered cubic (fcc). In Table 1.1, some examples for materials, which can
be modeled by a bcc or a fcc lattice are shown.

lattice type Element

bcc Li (at room temp.), Na, K, V, Cr, Fe, Rb, Nb, Mo, Cs, Ba, Eu, Ta
fcc Al, Cu, Ni, Sr, Rh, Pd, Ag, Ce, Tb, Ir, Pt, Au, Pb, Th

Table 1.1:Elements modeled by bcc or fcc lattices

We remark that there are also materials which can be modeled by a fcc as well as a bcc grid.
The total energy of a crystal is the sum over all individual atom-atom interactions in the crystal,
however this summation is computationally almost impossible. For example,1mm3 of bulk
material contains approximately1019 atoms. Thus, further simplifications have to be done.
Under the assumption, that the binding forces of the latticeare small compared to the lattice
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Figure 1.5:Left: A cube with bcc structure. Right: A cube with fcc structure.

distance, the forces can be considered asharmonic. For ease of notation we consider the case,
that every cell has one particle. At the temperature of0 K the average force on each atom is
zero, which is equivalent to the equilibrium state. It is defined by

∂V

∂r
=
∑

α,β∈A

∂Vαβ
∂rαβ

∂rαβ
∂r0

= 0. (1.14)

Let us recall, that the errors introduced by the temperatureassumption are often comparably
small to the errors inherent in the inter-atomic potential.If the system is not in equilibrium,
the total energy can be expanded in the deviationqα from the equilibrium position,

V (r) ≈ V (r) +
∑

α,d1

∂V

∂Xα,d1

∣∣∣∣
X̂

qα,d1 +
1

2

∑

α,β,d1,d2

∣∣∣∣
∂2V

∂Xα,d1∂Xβ,d2

∣∣∣∣
X̂

qα,d1qβ,d2 + ... (1.15)

whereα, β are the indices for the particles andd1, d2 are the spatial directions.

The second term in (1.15) has to vanish, since in equilibriumthe energy attains its minimum,
i.e. (1.14). Thus, the third term of (1.15) is the leading onefor the force. The component in
directiond1 of the forceFα on particleα is:

Fα,d1 = − ∂V

∂qα,d1
= −1

2

∑

β,d2

(∣∣∣∣
∂2V

∂Xα,d1∂Xβ,d2

∣∣∣∣
X̂

qβ,d2 +

∣∣∣∣
∂2V

∂Xβ,d2∂Xα,d1

∣∣∣∣
X̂

qβ,d2

)

= −
∑

β,d2

∣∣∣∣
∂2V

∂Xα,d1∂Xβ,d2

∣∣∣∣
X̂

qβ,d2 =: −
∑

β,d2

Kαβ,d1d2qβ,d2 =


−

∑

β

Kαβqβ



d1

.

(1.16)
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Figure 1.6:The linear chain in1d.

The symmetric3|A| × 3|A| matrixK is calledharmonic or lattice stiffness matrix, its com-
ponents(Kαβ)d1d2 describe the force constants. The matrixK is positive definite, since the
relaxed position is a minimum ofV (r) with respect to the variation of all atoms in (small)
arbitrary directions.

Due to the translational symmetry, the matrix entriesKαβ,kl only depend on the number of
cells between the atoms.

Roughly speaking the entries(Kαβ)d1d2 depend on the distance and the corresponding cells.
Moreover, a displacementq′ of the whole crystal in an arbitrary spatial directiond′1, has
no effect on the forces, i.e. forqβ,d1 = q′δd′1d1 the force isFα,d2 = 0 and consequently∑

βKαβ,d2d′1
= 0.

Summing up, we can rewrite the equations of motion by

mαq̈α(t) = Fα = −
∑

β

Kαβqβ. (1.17)

Under these assumptions we can investigate the harmonic equations of motion in more detail.

The equation of motion in the one-dimensional case Let us assume that we have a linear
mono-atomic chain, where each atom has a massm and a distance ofr0 to its neighbors, see
Figure 1.6. Furthermore,Vs(rs) denotes the energy between thes-th neighbors separated by
distancers = sr0. Then, in the case of a one dimensional linear chain the potential energy is
given by

Es = N
∑

s

Vs(sr0) +
1

2

∑

α,s

(
∂2Vs
∂q2

)

rs=sr0

(qα − qα+s)
2,

where we have neglected the non harmonic terms. The harmonicenergy is given by

Eharm,1d =
1

2
Cs(qα − qα+s)

2, (1.18)

where

Cs :=
∂2Vs
∂q2

=

(
∂2Vs
∂r2s

)

rs=sr0

.

Here, assume that the two ends of the chain are joined, in order to account for the problem
that the atomsα = 1 andα = |A| only have one neighbor each. This is also known as the
Born-von Ḱarmán periodic boundary condition[BvK12, BvK13].
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Then for this one dimensional case the matrixK of (1.17) is simplified to

Kα(α+s) =
∂2V

∂qα∂qα+p
= −Cs =

∂2V

∂qα+s∂qα
= K(α+s)α

and

Kαα =
∂2V

∂qα∂qα
= 2Cs ,

∂2V

∂qα∂qβ
= Kαβ = 0 else.

Inserting this into (1.17) we obtain

f harm
α = m

∂2qα
∂t2

= −∂Eharm

∂qα
= −

∑

p

Cp(2qα − qα−p − qα+p). (1.19)

Later on we exploit some advantageous properties of this expression.

Linked Cell Method The force evaluation for each particle even with a small cut off radius
involves all particles within the cut off radius. In generalthe setA contains a large number
of atoms and a naive approach for summing up the forces is an algorithm withO(|A|2). Here
we introduce the linked cell method [GKZC04], which reducesthe computational complexity
fromO(|A|2) toO(|A|).
In the linked cell method, the simulation domain is subdivided into uniform subset (cells). The
size of the cells is chosen asrcut, such that only the interaction with particles on neighboring
cells is considered. The force on particleα in cellZj is given given by

Fα =
∑

cellZi
Zi∈N (Zj)

∑

β∈{Particle of cellZj}
β 6=α

Fαβ ,

whereN (Zj) denotes the direct neighboring cells and cellZj itself. In 3d a cell has 26
neighbors. The complexity of the calculation of the forces in the crystal isC|A| whereC
depends quadratically on the upper bound of the particles per cell.

The Linked Cell algorithm is given by

Loop over allZj
Loop over all particlesα in cellZj {
Fα ← 0 // setFα zero

Loop over all cellsZi of N (Zi)

Loop over all particlesβ in cellZi
if (α 6= β)

if (rα,β ≤ rcut)

Fα ← Fα + Fαβ // addFαβ onFα
}
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For implementational details like the particle list management for the particles of each chain
and the data structure of the cells we refer to [GKZC04].

1.3 The Equations of Motion in the Continuum Mechanics Setting

The most common way to classical elasticity is the axiomaticintroduction of the relevant
quantities and the equations of motion (see e.g. [Cia88]). Therein the atomistic structure of
the solid is neglected and the motion of the body is describedby functions. Let us consider
Ω ∈ R

3. In classical elasticity it is assumed, that the motion, dueto external and internal
forces is given by the mapping

φ : Ω× [0, T ]→ R
3,

such that the deformed configuration at timet of the body is given by

Ωt = φ(Ω, t) t ≥ 0, (1.20)

with the displacementu(t)

u(t) = φ(X, t) −X X ∈ Ω, t ≥ 0. (1.21)

In the forthcoming we denote points of the deformed configuration by

x(t) := φ(X, t)

and writex instead ofx(t) andu instead ofu(t) whenever possible. Furthermore, it is as-
sumed, thatφ is locally injective inΩ, sufficiently smooth and orientation preserving, which
can be expressed by the pointwise inequality

det

(
∂φi
∂Xj

)
(X, t) > 0, X ∈ Ω̄, t ≥ 0, i, j = 1, ..., 3.

Let us denote the deformation gradient byF , i.e.

F :=

(
∂φi
∂Xj

)

i,j=1,...,d

. (1.22)

The mass is given by

m(Ωt) =

∫

Ωt

̺(x, t) dx,

where̺(x, t) is the mass density. Here, we assume that the mass is constantin time, which
means, that there are no material flows through the boundary of a material subdomain and we
do not consider mass to energy conversions. For sake of simplicity the density is given as a
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function onR
3 × [0, T ] by extending̺ (·, t) ∈ L∞(R3, [0,∞]) by zero outside ofΩt.

The change of square length of the line segmentdx = FdX due to the deformation is given
by the Green strain tensor:

E =
1

2
(F TF − I) =

1

2
(∇uT +∇u+∇uT∇u).

Moreover the Cauchy stress is defined by

σn(x)dS = dF = gdS

wheren is the normal andg is the traction on any surface segmentdS. For computational and
analytical reasons, we use the Lagrangian description and thus define the firstPiola-Kirchhoff
tensorP, which is a second order tensor, given by

P : [0, T ]× Ω→ R
3×3, P(X)ndS ref = dF = gdS,

wheredS ref is the surface segment in the undeformed (reference) configuration. The governing
equations are then derived by conservation of

• mass

• momentum

• angular momentum.

They are be given by

̺
∂v

∂t
= divP + ̺b, (1.23)

wherev = u̇ = ∂u/∂t. Here,̺b is the body force density andv ∈ C1([0, T ], C0(Ω)) as
well asP ∈ C0([0, T ], C1(Ω)). Let us remark, that for sake of simplicity, we neglected the
boundary conditions in our introduction. However, depending on the material model and the
pointwise smoothness of the boundary∂Ω of Ω, the solutions forumay not be smooth enough
to fulfill (1.23).
Thus we introduce the weak formalism. To do so, letΩ ⊂ R

d be measurable. We denote by
Lp(Ω) the space ofp-Lebesgue-integrable functions onΩ. Moreover, we denote the standard
scalar product by(·, ·)L2(Ω) and the norm

‖u‖L2(Ω) :=

(∫

Ω
|u|2 dΩ

)1/2

.

Let α be a multiindex with‖α‖1 :=
∑d

i=1 |αi|, Then, for a bounded domainΩ and form ∈
N, 1 ≤ p <∞ we denote byHm,p(Ω) the Sobolev space, given by

Hm,p(Ω) := {u ∈ Lp(Ω) | there exists∂αu and∂αu ∈ Lp(Ω) ∀‖α‖ ≤ m}
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and equipped with the norm

‖u‖Hm,p(Ω) :=


 ∑

‖α‖1≤m

∫

Ω
|∂αu|pdΩ




1/p

where the weak derivative (if it exists) is defined by
∫

Ω
∂αuϕdΩ = (−1)‖α‖1

∫

Ω
u∂αϕdΩ ∀ϕ ∈ C∞

0 (Ω).

Here,C∞
0 (Ω) is the set of infinitely differentiable functions with a compact support inΩ. In

the forthcoming we omit in the casep = 2 the suffix2, i.e. ‖ · ‖Hm(Ω) := ‖ · ‖Hm,2(Ω).

Let β ∈ (0, 1) then we define

|v|2Hβ (Γ) :=

∫

Γ

∫

Γ

|v(x) − v(y)|2
|x− y|3+2β

dΓxdΓy.

We can give a precise meaning to restrictions of components of admissible displacements
belonging toH1(Ω) to spaces of functions defined on the boundary. For this purpose the trace
map is a useful tool.

The trace theorem taken from [Bra97] is a special case of a more general trace theorem and
guarantees, that traces are well defined for Sobolev spaces.

Theorem 1.3.1 (Trace Theorem)Let Ω ⊂ R
d be a bounded Lipschitz domain andΓ = ∂Ω,

then there exists a unique linear continuous trace mapping

γ : H1(Ω) −→ H1/2(Γ)

such thatγ(v) = v|Γ for eachv ∈ H1(Ω) ∩ C0(Ω) and

‖γv‖H1/2(Γ) ≤ c‖v‖H1(Ω).

We assume, thatΩ is a polygonal domain and∂Ω = ΓN ∪̇ΓD be the disjoint union
of the portionsΓD and ΓN . Moreover we assume, thatb ∈ C0([0, T ], L2(Ω)), g ∈
C0([0, T ], L2(ΓN )), uD ∈ C0([0, T ],H1/2(ΓD)) and the initial displacementsu0 ∈ H1(Ω).
Then for the weak formulation of (1.23) we seek for au ∈ C2([0, T ],H1(Ω)) such that
u(·, 0) = u0, u|ΓD

= uD and

∫

Ω
̺ü · dΩ +

∫

Ω
P(u) : ∇v dΩ =

∫

Ω
̺g · v dΩ +

∫

ΓN

t · v dΓN (1.24)

for all v ∈ C0([0, T ];H1(Ω)) vanishing onΓD, whereA : B denotes tr(ATB).
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Hyperelastic Material By definition a material is hyperelastic, if there exists a stored energy
functionW : Ω×R

3×3 → R which is differentiable in the second argument such that

P(X) =
∂W

∂F
(X,F ).

Obviously, the stored energy function depends on the material. For aSt. Venant-Kirchhoff
material, which is an isotropic and homogeneous material the stored energy function is given
by

WVK (E) =
λ

2
(trace(E))2 + µ trace(E2)

whereλ, µ ∈ R are the Lamé constants [Cia88].
Then the potential energy of a deformed body is given by

UCM(u) =

∫

Ω
W (X, id +∇u) dΩ +

∫

Ω
b · u dΩ +

∫

ΓN

t · u dΓN .

The kinetic energy of the moving deformed body has a form similar to (1.6), more precisely

T CM(u̇) =

∫

Ω

̺

2
|u̇|2 dΩ.

Thus, the Hamiltonian and Lagrangian for the continuum setting are

HCM = T CM + UCM and LCM = T CM − UCM,

respectively.
Having explained the Hamilton and Lagrangian for the atomistic scale and for the continuum
scale, we now introduce a link between these two expression,namely the Cauchy-Born rule.

Cauchy-Born rule In the Cauchy-Born rule [BH54], it is assumed, that the stored energy
functionW can be computed on the basis of the atomistic potential. Thereby, it is supposed,
that all atoms of the volume of a single crystal follow a given(continuum) displacement up to
a certain limit. The validity of the Cauchy-Born rule has been examined by [FT02]. It turns
out, that the Cauchy-Born rule fails for large deformationsand an inhomogeneous atomistic
lattice.
The Cauchy-Born rule is useful for deformationsφ whose modulus does not exceed the plastic
limit. Let us discuss this on a unit cell of a hexagonal lattice, which shall be given by Figure
1.7 and the Lennard-Jones potential withσ = ε = 1.
As a measure for the validity of the Cauchy-Born rule, let us introduce

b =
rmax

r0
wherermax = max{rαβ : β = 1, ..., 6}.

By setting the second derivative of the Lennard-Jones potential equal to zero, we obtain the
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Figure 1.7:A unit cell of a hexagonal lattice.

inflection point, at
(

26
7

)1/6
. If we assume, that

1 < rmax <

(
26

7

)1/6

⇐⇒ 1/r0 < rmax/r0 <

(
26

7

)1/6

/r0

and insertr0 = 21/6 to obtain

(
1

2

)1/6

≤ b ≤
(

13

7

)1/6

.

It can be shown that forb in this range, the Cauchy-Born rule serves as an accurate approxi-
mation [FT02]. In particular, forb = 1 we have thatF = I.

The Finite Element Method In order to approximate the continuous displacement fieldu,
we now employ a finite element discretization of lower order.Let T h denote a mesh with
mesh size parameterh > 0, such that the family{T h}h is shape regular.

Here, we use Lagrangian conforming finite elements of first order (P1) for the displacementsu
and denote the set of all nodes ofT h byNh. The finite element spaceVh ⊂ H1(Ω) is spanned
by the nodal basis

Vh = spanp∈Nh
{ψhp}.

The Lagrangian basis functionsψhp ∈ Vh are uniquely characterized by the Kronecker-delta
property

ψhp (q) = δpq , p, q ∈ Nh , (1.25)

whereδpq is the Kronecker-delta. Any functionuh ∈ Vh(Ω) can uniquely be written as

uh =
∑

p∈Nh

ūpψ
h
p , (1.26)

where(up)p∈Nh
∈ R

d·|Nh|, ūp ∈ R
d, is the coefficient vector. We can identify each element
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of Vh with its coefficient vector(up)p∈Nh
. In the forthcoming, we omit the superscripth

whenever possible. In space, (1.24) gives a non linear ordinary differential equation inRd|Nh|

which can be solved by e.g. the Verlet algorithm, discussed before. In other words, we do a
spatial discretization followed by a time discretization (method of lines).
Throughout this thesis, we denote nodes by Latin letters, e.g., p, s, t, . . . and atoms by Greek
letters, e.g.,α, β, . . ..



2 Challenges of Coupling Atomistic and
Continuum Models

In the first chapter, we introduced the continuum and the molecular description. When bring-
ing them to practice, either of them exhibits advantages anddisadvantages. On the one hand,
atomistic simulations are able to describe defects on the small scale, however the required
number of atoms - and thus the computational costs - soon become prohibitively large. On the
other hand, the simulation methods associated with the continuum mechanics (like FEM) are
cheaper with respect to computational costs, but are less accurate. In particular, the abstraction
of a continuous body is infeasible under strong local deformations. Multiscale methods strive
for combining the advantages of both techniques by employing a continuum description of the
whole computational domain and restricting molecular dynamics to regions where a highly
resolved simulation is actually needed. The main challengeis to match these two descriptions
in a sound way.
As we will see in the following section, speed at which waves propagate is a crucial quantity
if a suitable matching along the interface, where the continuum and the atomistic description
come into contact, is to be achieved. More precisely, we wantthat this velocity is conserved
when the discretization changes. In order to attain this, wenow explore the behavior of waves
in continuum as well as atomistic regions. To do so, let us consider a simple case on each scale:
a one dimensional mass spring system on the molecular scale and its corresponding contin-
uum counterpart. Even in this simple model reflections occurwhen an unsuitable coupling of
molecular dynamics with continuum mechanics is applied. Ananalysis of these reflections at
the end of this chapter will be exploited during the development of our new coupling strategy.

2.1 The Dispersion Relation

The dispersion relation, which we explain in the following,gives the dependence of the fre-
quency on the wave number [Kit06]. In order to show this relationship, we first briefly intro-
duce the travelling waves in crystals and show then the dispersion relation for the molecular
dynamics setting. For sake of simplicity we confine our discussion to the1d case.

Travelling waves in crystals Recall thatq(X, t) denotes the deviation of the atoms from
their starting configuration. A harmonic wave in the atomistic model is of the form

q(X, t) = q̃ei(kX−ωt) (2.1)
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where q̃ is the amplitude,kX − ωt is the phase,k the wave vector andω is the angular
frequency. We also define the wave numberκ = |k| and the wave lengthλ = 1/κ. In the
forthcoming we consider two different kinds of velocities.Thephase velocityvph defined as

vph =
ω

κ
.

Moreover, for the other kind of velocity, we define the wave package as a wave whose am-
plitude is only in a bounded domain non zero. The velocity of awave package is thegroup
velocity, defined as

vgr =
∂ω

∂κ
.

We can decide between longitudinal and transverse vibrations. An example of a1d chain in
2d is given by Fig 2.1

Figure 2.1:An example of longitudinal (left) and transversal (right) waves of a1d chain in
2d. The arrows show the displacement direction of the particles

Remark In 3d the wave vectork has three components and points into the direction of prop-
agation. The atomistic displacements associated with a wave q(X, t) whereX is the equilib-
rium position of an atom are simultaneously three dimensional vectors. These displacement
vectors may be parallel tok (longitudinal), perpendicular tok (transversal) or along a direc-
tion, that is not directly related to the direction ofk.

To keep things simple, we assume that the time dependent motion of the atoms is a linear
superposition of harmonic waves. The gained insights from the linear case then give necessary
conditions for non-linear systems such as typical MD simulations. In1d eachX can be given
by αr0, whereα ∈ Z andr0 is the atomistic spacing. Then, for eachα, we have the super
position

qα(t) =
∑

k

q̃ke
i(kαr0−ωt)

and we can understand the behavior of the solution by examining the harmonic solutions
independently, i.e.,qk = 0 for all but onek.

Let us consider a mass spring system with lattice spacingr0, massm and spring constantK.
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Then, the atomistic Hamilton for an harmonic system is givenby

HMD =
1

2

|A|∑

β=1

p2
β

m
+
K

2

|A|∑

β=2

(qβ − qβ−1)
2. (2.2)

Thus, analogously to (1.19), the respective equations of motion ofHMD can be stated as

m
d2uβ
dt2

= K(qβ+1 + qβ−1 − 2qβ). (2.3)

Then

−mω2q̃κe
i(kαr0−ωt) = −q̃ke−iωtK(2eikαr0 − eik(α−1)r0 − eik(α+1)r0)

mω2 = K(2− e−ikr0 − eikr0)

mω2 = 2K

(
1− e−ikr0 + eikr0

2

)

mω2 = 2K(1− cos(kr0)).

Furthermore using the relationsin2(x) = 1− cos(2x) leads us to

mω2 = 2K sin2

(
kr0

2

)
,

which then gives us

Definition 2.1.1 (Dispersion Relation for the Molecular Case)

ω2 =
2K

m
sin2

(
kr0

2

)
. (2.4)

Apparently it holds thatω(k) = ω
(
k + 2πn

r0

)
for anyn ∈ Z. Hence, we only consider the

casek ∈ (−π/r0, π/r0), which is known as the first Brillouin zone. We chose the open
interval, as fork = π/r0 the group velocityvgr equals zero, meaning that the solution is a
standing wave. This physical phenomenon is also known as Bragg-Reflection [Kit06, Bri53].
For symmetry reasons it is sufficient to restrict tok = κ > 0.

The Dispersion Relation in the Continuum Setting As we have seen, the continuum me-
chanics as well as the molecular dynamics stem from the same basic physical laws, namely the
Hamiltonian or Lagrangian principles. In this section, we consider the dispersion relation for
the continuum mechanics. To do so, let us reconsider the molecular dispersion relation given
by (2.4) for small wave numbersκ. More precisely letκ∗ be such that

sin(κ∗r0) = κ∗r0 + o(κ∗r0), (2.5)
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Figure 2.2:The frequencȳω := m
2Kω in dependence ofk.

then for all0 < κ < κ∗ we have

ωκ→0 =
1

2
r0

(
K

m

)1/2

κ.

Moreover the phase velocityvCM
ph is then given by

vCM
ph =

ω

κ
= r0

(
K

m

)1/2

. (2.6)

A connection to the macroscopic elastic properties can be given by compressing the one di-
mensional chain from Section 2.1 giving rise to the straine, such that the average distance
between the atoms becomesrc = r0(1 − e), wheree ≪ 1. With respect to (1.18) the energy
of the strained chain becomes

Eharm,1d = NV (r) +
1

2
NK(r0− rc)2.

Thus, the strain energy, which can be considered as the extraenergy per atom is given by

Estrain,1d =
1

2
K(r0− rc)2 =

1

2
Kr20e

2 =
1

2
K̂e2

whereK̂ := Kr20 is the elastic constant. From the velocity given by (2.6) we have

(vCM
ph )2 =

ω2

κ2
=
Kr20
m

=
K̂

m
. (2.7)
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Summing up, for the long wavelength limit (λ = 1/κ, κ≪ 1), we obtain

Definition 2.1.2 (Dispersion Relation in the Continuum Case)

ω2 =
K̂κ2

2m
=
Kκ2r20

2m
. (2.8)

The meaning of the different dispersion relations (2.4) and(2.8) becomes clear when the phase
velocity vph and the group velocityvgr are considered. It can be easily be seen, that the molec-
ular phase and the group velocity is given by

vMD
ph =

√
2K
m sin(κr0

2 )

κ
and vMD

gr =

√
K

2m
r0 cos

(κr0

2

)
(2.9)

whereas their continuum counterparts are given by

vCM
ph = vCM

gr =

√
K

2m
r0.

Thus, for smallκ we have

vMD
ph ≈ vCM

ph and vMD
gr ≈ vCM

gr .

In contrast, for large wave numbers close toπ/2 we havecos(κr0
2 ) ≈ 0, which implies that

waves with high frequencies propagate slower than waves with low frequencies, which is not
the case in the continuum where the dispersion relation is linear.

Consequences of the different dispersion relation for the discretization So far we have
shown, that the continuum and the molecular scale have different dispersion relations, which
carries over to the velocities of waves. However, for long wavelengths these differences are
insignificant. Next, we examine the numerical dispersion relation, i.e. the case when the con-
tinuum is discretized. The finite element model we employ on the macro scale is based on a
continuum mechanics approximation of the deformation of our bodyΩ.
Analogously to the atomistic case we consider a finite element approximation for the contin-
uum Hamiltonian of a harmonic system in1d, which is given by

HFE =
1

2

∑

p∈Nh

̺h

2
u̇2
p +

Ch

2

∑

p∈Nh

(
up − up−1

h

)2

(2.10)

where we assumed the standard linear “hat” basis with equidistant mesh spacingh. Here̺ is
the mass density,C the elastic modulus. Moreover we choose

C = Kr0 and ̺ = m/r0, (2.11)
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which means that the material of the atomistic as well as of the continuum model have the same
parameters. Thus, the respective equations of motion forHFE with a spatial discretization can
be stated as

m
d2up
dt2

=
Kr20
h2

(up+1 + up−1 − 2up). (2.12)

Hence, if the mesh sizeh equals the atomistic spacingr0 we have that (2.3) and (2.12) coin-
cide.
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Figure 2.3:Left: Wave package in1d in initial position. Right: propagated initial wave: the
waves with lower frequencies move faster

Let us assume that the solution of (2.12) is given component-wise by

up(t) = ũei(kxp−ωt), (2.13)

whereũ is the amplitude,ω is the frequency andk ∈ (−π/h, π/h) is the wave vector. Again,
κ = π/h would imply that the solution is a standing wave. Analogously to the molecular case,
we obtain

Definition 2.1.3 (Numeric Dispersion Relation for the Finite Element Discretization)

ω2(κ) =
2ℓ

m
sin2

(
κh

2

)
ℓ :=

Kr20
h2

. (2.14)

Comparing (2.4) and (2.14) one can see, that both relations only differ by the factorh/r0. The
phase and the group velocities for the finite element case aregiven by

vFE
ph =

√
2K

m

r0
hκ

sin

(
κh

2

)
and vFE

gr =

√
K

2m
r0 cos

(
κh

2

)
, (2.15)

since we assumek = κ > 0.
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Figure 2.4:Smooth wave entering from a faster wave speed region (bold line) into a
slower wave speed region.

Figure 2.5:Smooth wave entering from a slower wave speed region (bold line) into
a faster wave speed region.

Moreover, from (2.15) we can see, that for fixedk the speed of a wave decreases as the mesh-
sizeh increases. For very largeh no representation of the wave is possible, since we need at
least two discretization points per wave length. In Figure 2.4 and Figure 2.5 an example of a
wave entering a region of slower (faster) wave propagation speed due to a change of the spatial
discretization size is shown. We observe reflections at the interface (cf.(2.15)).

In Figure 2.6 the dependence of the velocity from the space discretization parameter and the
wave number is shown. Here the velocity is the normalized phase velocity

v̄ := vph

(
r0

√
2K

m

)−1

.

One can clearly see, that forh≪ r0 the wave becomes slower.

Consequences of the different dispersion relation for the time discretization As we have
seen by the molecular dispersion relation (2.4) and the numeric dispersion relation (2.14) the
difference between the finite element space discretizationparameterh and the reference dis-
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tancer0 in the molecular setting causes a difference in the velocities. However, so far we have
not yet examined the behavior when a time discretization is employed. To do so, we begin by
deriving the dispersion relation with respect to a time discretization. For a given time step∆t
we assume that we can approximate

d2u

dt2
≈ u(t+ ∆t)− 2u(t) + u(t−∆t)

(∆t)2
.

Thus, the equation of motion from (2.12) reads as

m

(∆t)2
(up(t+ ∆t)− 2up(t) + up(t−∆t)) =

Kr0

h2
(up−1(t)− 2up(t) + up+1(t)). (2.16)

Let us assume that the harmonic solution for then-th time step onp is given by

unp = ei(ωn∆t−pκh).

Analogously to the derivation of the preceding dispersion relations we obtain

sin2

(
ω∆t

2

)
=

(∆t)2

h2
Ĉ2 sin2

(
κh

2

)
, Ĉ :=

√
Kr0

m
. (2.17)



2 Challenges of Coupling Atomistic and Continuum Models 33

In order to obtain a more handable formulation, we employ theexpansion ofsin in ω. Taking
the square root of (2.17) gives

sin

(
ω∆t

2

)
=

∆t

h
Ĉ sin

(
κh

2

)
. (2.18)

A linearization then gives
ω = Ĉκ+ o(κ2),

without any time or space parameter dependence.

Using a Taylor expansion of second order in (2.18) yields

ω = Ĉκ+
1

6
κ3(Ĉ∆t− Ĉh) +O(κ5), (2.19)

since theω3 = Ĉ3κ3 +O(κ5). In order to match the continuum and the molecular dispersion
relation we define∆tMD as the atomistic and∆tCM as the continuum time step and obtain
from (2.19)

Ĉ3(∆t)3 − Ĉr0
!
= Ĉ∆tCM − Ĉh.

Consequently, for different spatial parametersr0 andh and a given molecular time discretiza-
tion parameter∆tMD we can choose a suitable∆tCM such that the dispersion relation on both
models is equal. More precisely, we choose

∆tCM = ∆tMD +
1

c2
(r0− h). (2.20)

Thus a wrong dispersion relation caused by largeh can be compensated by choosing larger
time steps∆tCM. An obvious consequence is, that any difference in the dispersion relation can
be compensated by a suitable large choice of the time step in the finite element discretization.
However, it is known by theCourant-Friedrichs-Lewy stability criteria[CFL28], that the time
step should be chosen to hold

∆tCM ≤ h

v
,

otherwise the numerical scheme given by (2.16) is unstable [Hir88, Hir90]. Moreover, it also
suffer of the inaccuracy which we have elucidated in Chapter1.
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2.2 Determining the Reflection Coefficient

So far we have seen the consequences of different length scales for the molecular as well as
for the finite element case.
We now consider the transition of waves from molecular dynamics to a finite element dis-
cretization.

incoming

transmitted

reflected

Figure 2.7:Example of an incoming wave into a medium with a different spatial
discretization. As a consequence, we obtain a reflected and atransmitted part of the wave

Suppose that we have an incoming and a reflected wave in the MD region and a wave trans-
mitted into the finite element region, separated by an interface (thus, in1d, a point). In the
MD region, we have a resulting wave as superposition of the incoming and reflected waves.
Denote byAI andω the amplitude and frequency of the incoming wave, and byAR andAT
the amplitudes of the reflected and transmitted waves, respectively (see Figure 2.7). We de-
mand the solution to be continuous at the interface.1 Thus, it is required that all waves have
the same frequencyω, and it holds that

AT = AI +AR. (2.21)

Let us recall, thath denotes the mesh size of the FE lattice. The respective energy flows are
given by (cf. [Bri53])

ΦI =
̺

2
ω2A2

Iv
MD
gr (ω)

ΦR =
̺

2
ω2A2

Rv
MD
gr (ω)

ΦT =
̺

2
ω2A2

T v
FE
gr (ω) ,

whereΦI ,ΦR,ΦT are the energy flows of the incoming, reflected, and transmitted waves. The

1For brevity, we refrain from showing that this is also necessary as a consequence of momentum and energy
conservation.
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energy conservation imposes that
ΦI = ΦT + ΦR.

Upon inserting the respective energy flows we obtain

A2
Iv

MD
gr (ω) = A2

T v
FE
gr (ω) +A2

Rv
MD
gr (ω).

Solving for the transmission coefficientT := AT
AI

and for the reflection coefficientR := AR
AI

yields

T 2 =
A2
T

A2
I

=
vMD

gr (ω)

vFE
gr (ω)

(
1− A2

R

A2
I

)
=
vMD

gr (ω)

vFE
gr (ω)

(
1−R2

)
. (2.22)

From (2.21) we obtain the relationship

T 2 = (1 +R)2. (2.23)

We set the two representations ofT equal (i.e. (2.22) and (2.23) respectively), which implies
eitherR = −1 or with the definition

fv :=
vMD

gr (ω)

vFE
gr (ω)

=
(1 +R)2

1−R2
=

1 +R

1−R, (2.24)

and solve

R2 +
1

1 + fv
2R +

1− fv
1 + fv

= 0

R1/2 = − 1

1 + fv
±
√

1

(1 + fv)2
− 1− fv

1 + fv

R1 = −1

R2 =
fv − 1

fv + 1

since withR = 1 neither (2.22) nor (2.23), involvingT andR, can be fulfilled. Note that
the solutionR = −1 is trivial, as it describes the case of the reflected wave annihilating the
incoming one, resulting in no wave at all. We also see immediately that iffv = 1, i.e.,h = r0,
the nontrivial solution has zero reflection.

To get a more explicit description ofR, we further simplify (2.24). To do so, we solve the

dispersion relations (2.4) and (2.14) forκMD andκFE, respectively. Abbreviatingc :=
√

2K
m ,

we get

κMD =
2

r0
arcsin

(ω
c

)
and κFE =

2

h
arcsin

(
hω

r0c

)
. (2.25)



36 2.2 Determining the Reflection Coefficient

We insert into the expressions forvMD
gr andvFE

gr given by (2.9) and (2.15), respectively:

fv =
vMD

gr (ω)

vFE
gr (ω)

=
cos
(
arcsin

(
ω
c

))

cos
(
arcsin

(
hω
cr0

))

=

√
1− ω2

c2√
1− h2ω2

c2r20

,

where we used thatcos arcsin(x) =
√

1− x2 for all −1 ≤ x ≤ 1.
We conclude that the reflection coefficient is

R =

√
1− ω2

c2
−
√

1− h2ω2

r20c
2

√
1− ω2

c2
+
√

1− h2ω2

r20c
2

. (2.26)

To interpret these results in our coupling context, we observe thath shall be significantly larger
thanr0 .
For h 6≈ r0 we can see from (2.26) that we cannot hope to achieveR ≪ 1 independent of
ω. If ω tends to the cut-off, i.e. maximum, frequencycr0h of the finite element system from
below,R approaches1. Even worse, the maximum frequency of the MD systemc (cf. (2.4))
exceeds the maximum frequency of the finite element discretized continuum by a factor ofhr0 .
For any frequency in between we must observe total reflection: If for a givenω no solution
exists in the finite element system, it follows that we have notransmitted wave. In this case
energy conservation requires that we have total reflection.
The remaining possibility in this qualitative analysis is that hωr0c is small. Sinceh > r0, this
means also thatωc is small. Then (2.26) gives thatR≪ 1 as desired. Moreover, we also have
thatvMD

ph ≈ vFE
ph andvMD

gr ≈ vFE
gr from (2.9) and (2.15). Finally (2.25) shows thatκMD ≈ κFE.

Altogether we conclude that if

ω ≪ r0c

h
(2.27)

we have little reflection and incoming and transmitted wave coincide on wavelength, frequency
and amplitude, i.e. the solutions in both systems are nearlyidentical.

Remark The presented results cover only the special case of a uniform, one-dimensional grid
together with the linear standard model and a simple harmonic potential. However, it could
be easily extended to higher dimensions, and more complex potentials which surely does not
improve the situation. One might argue, that a change of the finite element basis or the grid
may change the behavior of high frequency waves. Reducing the density of degrees of free-
dom necessarily reduces the dimension of the finite element space and thus the representable
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frequency spectrum. Thus, it is impossible to propagate thefull range of wave frequencies that
are possibly emitted by the MD domain into the finite element region. Since the frequencies
which are higher than the finite element cut-off frequency represent thermical energy from
the point of view of the continuum model, they do not contribute significantly to the macro-
scopic mechanical behavior of the system in regions where this model and its discretization
are appropriate. Thus, it is desirable to eliminate high instead of low frequencies.

2.3 Boundary Conditions in the Molecular Setting and Spurious
Reflections

Even to increasing computer power a complete resolution of alarger domain is often not
possible due to the large number of atoms. In contrast, the continuum mechanics simulations
like finite element methods are - compared to atomistic simulations - inaccurate but need less
computational power. The overall aim is to exploit the advantage of each simulation, by using a
coarse description on the whole domain and a atomistic simulation in small subregions, where
a high resolution is needed. For most coupling methods it is necessary to impose boundary
conditions on the molecular domain.
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Figure 2.8:An example on a wave being completely reflected on the right boundary

In the first chapter we have explained that the particles exert forces due to interaction with other
particles. An equilibrium state is reached, when on each particle the forces are in equilibrium
(see Figure 2.9) . Let us reconsider the atomistic1d chain with cut off radius7r0. Figure 2.9
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shows a cut out fromα = [−7, 7] of an infinite linear chain. The force of particleα = 0 is
given by

F0 =

7∑

β=−7

Fαβ .
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Figure 2.9:A cut out of a finite1d lattice

It can easily seen that on both sides the force contributionsto atomα = 0 are in equilibrium.
The situation is different in a1d chain where all atomsα > 0 are eliminated. The consequence
is a miss balance in the forces. In Figure 2.10 this situationis depicted: the particleα = 0

cannot exert the forces obtained from its left hand neighbors to its right hand neighbors. As a
consequence the force is reflected back into the left hand side (cf. Figure 2.8) of the domain.
In order to retain the equilibrium in the system, external forces have to be added, accounting
for the forces which the missing atoms would have produced.

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����������������

����������������������
��������������������������

76543210-1-2-3-4-5-6-7

F0,1

F0,2

F0,3

F0,4

F0,5

F0,6

F0,7

Figure 2.10:A finite1d lattice clipped off between atomsα = 0 andα = 1
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2.4 The Numerical Treatment of Boundary Conditions

In the molecular dynamics, the equations of motion are posedon a spatially unbounded do-
main. However, from the implementational point of view a truncation of the unbounded phys-
ical domain to a bounded computational domain is necessary.This fact makes it necessary to
impose artificial boundary conditions which do not essentially alter the original problem.

This problem is well known in the context of wave propagationarising in acoustics, elasto-
dynamics and electro magnetics. In the 70’s the first approaches for non reflection boundary
conditions where introduced. Now basically two approachesin literature can be found. The
first class are the kernel based methods, originated form thelandmark paper of Adelman and
Doll [AD74]. The second class consist of the absorbing boundary conditions or sponge layer
methods, where the perfectly matched boundary layer (PML) [Ber94] is a prominent example.

Both methods are originally formulated in the context of continuous waves and thus cannot
be applied directly to the heterogeneous structure of the molecular dynamics. In other words,
in contrast to the continuous setting, the molecular dynamics are discrete and the phonon
specturm spreads over all wave numbers.

In the forthcoming, we give an overview of both approaches inthe context of molecular dy-
namics.

Sponge Layer Methods The basic idea of sponge layer methods is to surround the domain
of interest by some artificial absorbing layers in which waves are trapped and attenuated. In the
early 80’s the first approaches in the context of wave equations can be found, see [Mur81]. For
an overview we refer to [MH06, Tsy98]. The PML method [Ber94]is based on the concept
of an analytic continuation of a real function into the complex plane. This PML concept
has been extensively studied and analyzed. In the PML, the border region can be matched
perfectly for all angles of incidence and all frequencies onthe continuum level. However,
under discretization this is no longer true [CT01]. For thisapproach the Fourier transformation
is needed, which we define as

Ft→ω{u}(ω) := û =

∫

R

u(x)e−iωtdt.

Moreover, we use the following relationship

∂nu

∂tn
F7→ inωnû.

In [TL05, LLAT06] the PML method has been transferred to atomistic domains. On the basis
of the definition of the matrixK in (1.17) we know, that the equations of motion of particleα
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in directiond1 are given by

mαq̈k = fα,d1 = −
∑

β,d2

∂2V

∂Xα,d1∂Xβ,d2

qβ,d2 . (2.28)

By applying a Fourier transform in time on (2.28) we obtain

mαω
2q̂d1 = fα,d1 = −

∑

β,d2

∂2V

∂Xα,d1∂Xβ,d2

.q̂β,d2 (2.29)

As we have seen, the solution of (2.28) is harmonic. Moreover, it is real analytic. Thus, there

ΞL

Ω

ΩL

Figure 2.11:A 2d example of the domainΩ and its layerΞ

exists an extension to

ΩL := {x ∈ R
d |dist(Ω, x) ≤ L, L > 0} ⊃ Ω,

see Figure 2.11, such that (2.29) can be rewritten onΩL as

mαω
2q̂d1 = fα,d1 = −

∑

β,d2

∂2V

∂X̃α,d1∂X̃β,d2

q̂β,d2 (2.30)

In order to impose the damping on the PML regionΞL = ΩL\Ω we introduce a path inΩL

such that the solution of (2.28) is unaltered inΩ and is damped along this path inΞL. Such a
path can be given by

z : X̃ 7→
{
X if X ∈ Ω

X + i
ω

∫ X
0 γ(X ′) dX ′ if X ∈ ΞL

Thus, for a wave along the path we obtain

ei(κz−ωt) = ei(κX−ωt) · e− κ
ω

∫X
0
γ(X′) dX′

. (2.31)
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Since we want no damping inΩ but only in ΞL we claimγ ≡ 0 on Ω andγ > 0 on ΞL.
Furthermore, the damping part depends on the frequencyω, which ensures that all wavelengths
decay at the same rate.
If we chooseγ(X ′) = (X ′)2, thend : ΩL → R the relationship between∂X̃α,d1 and∂Xα,d1

is given by

∂X̃α,d1 = (1 +
d

iω
)∂Xα,d1 . (2.32)

inserting this into (2.30) we obtain

mαω
2q̂d1 = −

∑

β,d2

∂2V

(1 + d

iω )2∂Xα,d1∂Xβ,d2

q̂β,d2, (2.33)

which is equivalent to

mαω
2q̂d1

(
1− i d

ω

)2

= −
∑

β,d2

∂2V

∂Xα,d1∂Xβ,d2

q̂β,d2

mαω
2q̂d1 − 2diωmαq̂d1 − d

2mαq̂d1 = −
∑

β,d2

∂2V

∂Xα,d1∂Xβ,d2

q̂β,d2

Applying the inverse Fourier transformation we obtain

mαq̈d1 − 2dmαq̇d1 − d
2mαqd1 = −

∑

β,d2

∂2V

∂Xα,d1∂Xβ,d2

qβ,d2 . (2.34)

In (2.34) it can clearly seen, that in addition to the acceleration a friction term (depending on
q̇) and a stiffness term (depending onq) is introduced. Such frictional terms ( i.e. depending
of q̇) have been used ever since for temperature control in the MD simulation of NVT
ensembles [GKZC04, Nos84].

Note, that the coordinate transformation (2.32) depends onthe frequencyω, which ensures that
all wavelength decay approximately at the same rate (neglecting effects due to the nonlinear
dispersion relation).

The Kernel Based Methods In the kernel based methods exact boundary conditions are
derived analytically for crystalline solids with linear interaction and an external system at
rest. The first approach of Adelmann and Doll [AD74] has been discussed by the authors of
[CDBY00] where the first atom outside of the domain is expressed as a convolution of the
time history at the interfacial atom. This method in the context of time history kernels has
been extended to more general structures [KWL05, LKP06]. However, these methods are non
local in space and time since they involve all boundary atomsand the previous history of these
boundary atoms. Here, we follow [LE06] for the derivation ofexact boundary conditions.
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Let us switch from atomα to the triple index(d1, d2, d3) for the different components in the
selected basis vectors of the lattice. Then, the Newton equations of motion from (1.17), reads
as

mud1,d2,d3 =
∑

d′1,d
′
2,d

′
3

Kd1−d′1,d2−d
′
2,d3−d

′
3
ud′1,d′2,d′3. (2.35)

Furthermore, we define the basis of the lattice by(b1, b2, b3). Without loss of generality we
assume, that the basis vectorb1 coincides with the normal vector to the interface. Then, by
applying the Fourier transform in directionb2 andb3 we obtain

m̂̈ud1(f2, f3, t) =
∑

d′1

K̂d1−d′1
(f2, f3)ûd′1(f2, f3)

where û denotes the discrete Fourier transformation ofu. Under the assumption that the
initial values can be neglected, which is reasonable for lowtemperatures, applying the Laplace
transform, which is given by (see [Doe74])

L(u)(s) = U(s) =

∫ ∞

0
e−stu(t) dt ,

yields
s2mÛd1 =

∑

d′1

K̂d1−d′1
Ûd′1 . (2.36)

In [LE05] it is exposed, that for crystalline structures only eigenvalues of the kind

{λk, |λk| > 1, k = 1, ..., N int}

have to be considered, whereN int is the number of interaction partners of each atom. Let
now,εβ be an arbitrary eigenvector for

∑
αAαλ

α
β . Then, we can rewrite the right hand side of

(2.36) by
Ud1 =

∑

k

ck,d1λ
d1
k εk.

Thus for given displacementsU−N int−1, ..., U0 we obtain

∑

k

ck,d1λ
d1
k εk =

∑

k

ck,d1(U−N int+1, ..., U0)λ
d1
k εk =:

0∑

i=−N int+1

θi,d1Ui .

Summing up, for e.g.d1 = 1 we have

U1 =
∑

k

ck,1λ
1
kεk =

0∑

i=−N int+1

θi,1Ui
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By applying the inverse Fourier transform and the inverse Laplace transform, we obtain

u1,d2,d3(t) =
∑

i

∑

d′2,d
′
3

∫ t

0
Θi,d2−d′2,d3−d

′
3
(t− z)ui,d′2,d′3(z) dz

where
Θi,d2−d′2,d3−d

′
3

= F−1L−1(θi,1(f2, f3, s))

is the time history kernel. For a further discussion and variants we refer to [KWL05, LKP06,
LE05].

Remark A comparative study of the PML method and the time history kernel as boundary
conditions of crystalline solids can be found in [YL06]. Foran excellent study of the reflection
rates of both methods, we refer to [Kra09]
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3 A New Classification of Multiscale Methods

Various phenomena on a macroscopic level originate from theinterplay of several atomic scale
mechanisms. Moreover, it has been understood, that molecular phenomena involve processes
over a wide range of length scales. It seems favorable to use afull atomistic large scale simu-
lation since they provide the most rich and detailed information. Additionally, this approach is
conceptually simple, since only an increase of the system size, without imposing any artificial
boundary conditions, is required. Despite the success of large atomistic computer simulations,
real industrial problems (cf. Figure 3.1) have a vast demandon computer power such that a
pure MD simulation is in general not possible.
Multiscale methods, the coupling between molecular dynamics and continuum mechanics
serves as a tool to overcome this difficulty.
The development of different multiscale methods in different fields started about twenty years
ago and has been accelerated in the last few years. Along withthis expansion several survey
articles have been published in order to classify the multiscale methods by different aspects
[CM03, PL04, BCC+04, ELVE04].
The different multiscale methods vary not only in scope and the underlying assumptions but
also in their approach to broader questions such as a hierarchical and concurrent multiscale
approach. In the first class, the computations are performedon each scale separately. Often,
the scale coupling is done by transferring problem parameters, i.e. the results obtained on one
scale determine the parameters for the computational modelon another scale [EE03, AG05].
Thus for instance a continuum model can be derived from the atomic information [XCP02].
Another approach is pursued in the concurrent coupling techniques. Here, the behavior at each
length scale depends strongly on the others and an appropriate model is solved on each scale
simultaneously, while a smooth coupling between the scalesis introduced. Here, we focus on
concurrent coupling techniques.

3.1 Demands on Multiscale Methods and Domain Decompositions

In the following, we show, that Domain Decomposition (DD) methods serve as a good mo-
tivation for a classification of multiscale methods. To do so, we briefly explain some basic
concepts from DD methods.
The term DD [Sch70, LM72] is often used to describe a data distribution, in which the local
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Figure 3.1:Different Scales in Industrial Problems

data of each process corresponds topologically to a subdomain ΩS ⊂ Ω of the whole compu-
tational domainΩ.

In the following we use a different approach by defining DD as certain numerical methods,
that split the computational domain into two or more sub domains. Although DD methods
have been developed for the purpose of achieving concurrency, they can be used in sequential
as well as concurrent computations.

In their origin DD techniques have been developed as a powerful iterative method for solving
systems of algebraic equations stemming from the discretization of partial differential equa-
tions (PDE), i.e. from a continuum description, see [QV99, TW05] for an overview. Therein
DD is considered as a decomposition of the finite element space into a sum of subspaces. Then
these subproblems are solved by a direct or iterative method. In a next step, projection oper-
ators are developed for the information transfer between the subspaces. As a matter of fact,
the quality of the approximation on each subdomain depends on the corresponding properties
of the approximation subspace. Vice versa, the DD method allows to take benefit of the pres-
ence of the subdomains in order to choose the discretizationmethod, which is best adapted to
the local behavior of the solution of the PDE which has to be approximated. Thus the shape
of the subdomains and their magnitude of overlap (interface) can be chosen problem depen-
dent. Summing up, the choice of overlapping or non-overlapping domains and the choice
of the transfer operators deeply influence the performance of the DD method. In particular,
the choice of an overlapping or non-overlapping method directly influences the choice of the
transfer operator.
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From the DD we can draw conclusions for the multiscale Coupling. More precisely, all multi-
scale methods can be interpreted as DD methods except for thefact, that in DD methods two
or more continuum models are matched, whereas multiscale methods consider the coupling of
molecular and continuum models.
In the new framework, which we introduce in the following, even a coupling of two different
molecular models can be considered.
However, let us now confine to the continuum / molecular coupling. Then, the following three
points have to be clarified:

• Definition of the domain

• Design of the coupling region

• Design of suitable transfer operators

Let us elucidate this DD motivated classification:

Definition of the Domain Depending on the type of problem and on the considered domain,
the regions with highly local interest have to be defined. Forexample cracks and similar
defects can involve a global simulation by finite elements and highly localized regions with
strong deformations (e.g. crack tips) which are resolved bya molecular dynamics simulation.
More precisely, the domainΩ ⊂ R

d is decomposed by

Ω = ΩMD ∪ΩCM

where inΩMD a fine resolution down to the atomistic scale is employed and in ΩCM a coarser
representation by finite elements is applied. As afore mentioned, since the simulation onΩMD

is a higher computational burden, the size ofΩMD plays an important role for the overall
performance of any multiscale scheme. In the existing literature mainly two approaches can
be found for decomposing the domain intoΩMD andΩCM. As a particular advantage of DD
methods the size and shape of the subdomains and thus the interface or handshake region
Ξ = ΩMD ∩ ΩCM can be chosen arbitrarily. For the different types of interfaces we can
distinguish between three cases, these are the

• Interface: The two scales are separated by an interface, which is oftena manifold of

dimensiond− 1 (Γ = Ω
MD ∩Ω

CM
).

• Handshake Region: The atomistic and the continuum part are matched in an overlap
regionΞ = ΩMD ∩ΩCM, Ξ ⊂ R

d and measd(Ξ) > 0.

• Completely Overlapping Methods: The continuum mechanic description is on the whole
domainΩ and the molecular part is a portion of it. In other words, the atomistic simula-
tion is everywhere accompanied by the continuum simulation(ΩMD ∩ ΩCM = ΩMD).
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ΩMDΩCM

Γ

ΩMDΩCM Ξ

Ξ

ΩCM

Figure 3.2:Types of DDs: Upper: non-overlapping. Middle: overlapping/ partial
overlapping. Down: overlapping / complete overlapping.

An illustration of the three approaches is given in Figure 3.2.
The design of the coupling regions has consequences for the coupling between the molecular
dynamics and the continuum mechanics. In non-overlapping methods, the separation of the
fine and the coarse scale is defined by the interface. In other words, the interface is the border
between coarse and fine such that a coexistence in some coupling region can be excluded.

Design of the Coupling region In the coupling region the two description of the matter have
to be matched. However, in general, the molecular dynamics is based on a description in some
Euclidean space, whereas the continuum mechanics is often given in a weak sense, i.e. in
a function space. Thus, it is a priori not clear, whether the coupling space is a subset of the
Euclidean space or of a functions space.

Space and Transfer operator Here, two entirely different models (finite elements and
molecular dynamics) are coupled. However, the relationship between their parameters is usu-
ally not direct and thus, care must be taken for the construction of suitable transfer operators
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in order to relate them. In other words, any operator has to deal with the incapability of the
finite element discretization to resolve displacements down to the atomistic scale (cf. Chapter
2). Moreover the choice of the underlying space for a seamless coupling has to be chosen
carefully.

Multiscale Decomposition

overlapping

Function Space

Weak Coupling

Euclidean Space

Bridging Scale
Bridging Domain

non-overlapping

Function Space

. . . ? . . .

Euclidean Space

FEAt , CCLS

Figure 3.3:The existing multiscale methods can be divided into overlapping and
non-overlapping methods. The interfaceΓ or the handshake regionΞ can be chosen as an
Euclidean space or function space. As a matter of fact, none of the existing methods uses a

function space oriented approach.

3.2 Overlapping Methods

Mullins and Dokanish In 1982 Mullins and Dokanish [MD82, Mul84] started the first ap-
proach in coupling atoms with finite elements in the context of a quasi static calculation of a
crack propagation in a circular domain. The basic idea is that the stresses are evaluated from
the inter-atomic potential under the imposing strains stemming from the finite element nodal
displacements. In a next step, these stresses are translated into nodal forces.

Bridging Scale The authors of [WL03] developed the Bridging Scale (BS) method for cou-
pling atomistic and continuum. Inspired by the work of [HFMQ98] the authors of [WL03]
introduced the Bridging Scale method, where the molecular dynamics domain is a subset of
the continuum domain (complete overlapping). Thus in the overlapping region the total dis-
placement consists of coarse scale and fine scale displacements. A multiscale decomposition
relying on a projection operator ranging from the total displacement field into the coarse part,
is then applied in order to separate the two coexisting scales.
In Chapter 5 we explain this method in the context of our function space oriented multiscale
approach. Therein, we discover the method of [WL03] as a special case of our concept.
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Quasicontinuum Method In the quasicontinuum (QC) method [MT02, MT04] the basic
idea is to systematically coarsening out the atomic description by introducing kinematic con-
straints. In contrast to the convenient atomic description, the energy of a solid is computed
as a function of a subset of the atoms, namely the representative atoms. Modelled after the
construction of the displacement field in the finite element method, the position of the “non-
representative” atoms are obtained by piecewise linear interpolation.

Originally, this method was developed in order to analyze the static atomic configurations in
equilibrium. However, in the last years the QC method has been developed to handle even
finite temperature and dynamic problems. The overall aim of the static QC method is to
minimize the total energy by finding the corresponding atomic displacements. As a typical
complete overlapping method, the QC scheme is only used in “critical sections” since the total
number of degrees of freedom is3|A|. The total energyE can be written as the sum over the
energy for all atoms in the body by

E =
∑

α∈A

Eα

whereEα is obtained in different ways depending on the approach which is used. An example,
is the Embedded Atoms Method, whereEα is determined as an electron-density dependent
embedding plus the sum of a pair potential. A selection of atoms is represented by finite
element nodes (representative atoms). The remaining non-representative atoms are constrained
by the nodes by interpolation. The deformation gradient of linear interpolation functions can
be transferred to the non-representative atoms by the Cauchy Born rule.

Coarse Grained Molecular Dynamics The Coarse Grained Molecular Dynamics (CGMD)
[RB98, RB05] reduces the atomic degrees of freedom by replacing the atomics lattice with
nodes which represent either a single atom or a weighted average collection of the atoms. The
energy functional on the coarse scale is defined as the atomicenergy constrained to the nodes
plus a thermal energy term for the degrees of freedom have been coarsed out. This substitution
is justified by the equipartition theorem, which states thatin thermal equilibrium the energy is
shared equally. Thus, a relationship between the degrees offreedom and the thermal field is
given.

The Bridging Domain Method The Bridging Domain (BD) method has been developed by
[BX03, XB04]. It is based on a Handshake region (partly overlapping), where the continuum
and the atomistic description coexist. In this region both scales are combined by a weightening
function for the energy. They are glued together by constraining the degrees of freedom in the
bridging zone. Further work on the Bridging Domain method ina continuum to continuum
coupling context [GB07], from the theoretical point of view[BPO+07] as well as from the3d
performance aspect [ACR06] can be found in literature.
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3.3 Interface Methods / Non-Overlapping Methods

Flexible Border Method Motivated by crack propagation in a crystal in the Flexible Border
Method [Sin71, SGHH78], an atomistic simulation in the nextneighborhood of the crack tip
is used and the remainder of the crystal is considered as an elastic continuum.
In the early applications of these models, the boundary between the atomistic and continuum
was kept fixed, which led to undesirable effects like reflections. In order to avoid this, flexible
boundary conditions [Sin71, SGHH78] have been proposed. Therein, the continuum elastic
solution in the outer region is obtained by using the tractions from the inner atomistic region
as a boundary condition. The continuum displacements from the outer region, in turn, provide
the boundary conditions for the inner region. In e.g. [TZCT92] an extension of this method is
described by using Greens function approach for the propagation of the perturbation from the
atomistic region into the surrounding. However, these methods can hardly be transferred to3d

and non-linear stress strain relations are not possible.

FEAt Nine years after the first approach of Mullins and Dokainish [MD82, Mul84] Kohlhoff
et al. [KGF91] developed the FEAt method, where an atomisticmodel is surrounded by a finite
element mesh with a small overlap region enforcing boundarycondition on the atomistic as
well as on the continuum domain. In particular, the authors of [KGF91] tried to overcome the
capturing problem described in [MD82, Mul84] by a refinementof the FE mesh down to the
atomic scale with nodal positions dictated by the crystal lattice structure.

Concurrent Coupling of Length Scale The Concurrent Coupling of Length Scales Method
(CCLS) was developed in 1998 [FBNE98, BABK99]. Even though,that the CCLS is an
interface method it can be considered as a dynamic version ofthe QC method.
In the CCLS method, the domain is divided into a molecular dynamics and a continuum me-
chanics region. The choice of a continuum or a molecular description of a region depends on
the required accuracy of the solution. Then an overall Hamiltonian is given by

H(q, q̇, u, u̇) = HMD(q, q̇) +HMD/CM(q, q̇, u, u̇) +HCM(u, u̇)

whereHMD(q, q̇) is the atmomistic Hamiltonian andHCM(u, u̇) is the continuum mechanical
Hamiltonian [FBNE98]. The intermediate HamiltonHMD/CM(q, q̇, u, u̇) accounts for the forces
due to the interaction over the interface where the CM and theMD forces contribute both with
half of their weight.
However the displacementsq and the velocitieṡq of the molecular HamiltonHMD are ele-
ments of the Euclidean space, whereas the displacementu and the velocitẏu of the continuum
Hamilton are elements of a function space. Therefore, it is not possible to simply merge the
different descriptions. Thus the continuum Hamilton is discretized by finite elements, such
thatHCM can be interpreted pointwise.
More precisely, at the interface every nodal displacement can be considered as a displacement
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of an atom from its equilibrium position and vice versa. Analogously the velocities on the
molecular and the continuum scale are equal. Further closely related work by the same group
can also be found under the synonym Macroscopic, Atomistic,Ab-initio Dynamics (MAAD)
[FBNE98].



4 The Function Space Oriented Multiscale
Decomposition

In the foregoing chapter, we classified and introduced different existing approaches for mul-
tiscale coupling, i.e. the coupling between molecular dynamics and continuum mechanics
concurrent.
In this section we derive a new approach for the coupling between molecular dynamics (fine
scale) and continuum mechanics (coarse scale). Our approach is based on ideas from non-
conforming domain decomposition methods, namely mortar methods. The key ideas of mortar
methods is to provide a stable coupling between different discretizations or meshes by means
of using a weak continuity condition on the respective interfaces. Starting from linear prob-
lems [BMP94], mortar methods have been extensively studiedin the context of elliptic partial
differential equations, see, e.g. [Bel99] and the references cited therein.
In the context of multiscale simulations, however, the coupling is often realized by means
of the interpolation operator, since the atoms are in general interpreted as points inRd, see,
e.g. [WL01, LKP06]. This chapter is structured as follows. In the first section we show how
the molecular dynamics can be interpreted in a function space setting. Thereby we use the
Partition of Unity Method (PUM) [BM97, Sch03] and show some basic results concerning
the approximation properties. In the following section, the transfer operator, which interacts
between the coarse and the fine scale is introduced in a function space setting. Without the
background of molecular dynamics and continuum mechanics,we consider for the fine scale
the meshfree method (PUM) and for the coarse scale the finite element method. Then, under
some simplifying assumptions, like that there exists a quadratic energy on each scale, we
interpret the multiscale coupling problem for the static case as a saddle point problem and
show its stability.

4.1 Design of a Function Space Oriented “Coupling Space”

Let us assume, for sake of simplicity, thatΩ = ΩMD = ΩCM. Then we consider, that the
configuration given by the equations of motion (1.2) can alsobe interpreted as a scattered data
set

χ|A|(Ω) := {(Xα, qα) |α ∈ A, xα ∈ Ω , qα ∈ R
d} ⊂ (Rd × R

d)|A| . (4.1)

This motivates to construct an operatorι on the basis of the Moving Least Squares (MLS)
approach which originated in scattered data approximation, in order to map the atoms into a
function space.
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The MLS method was introduced in the landmark paper by Lancaster and Salkauskas [LS81]
in the context of smoothing and interpolating data. In contrast to the standard least square
method in the Backhus-Gilbert sense, the moving least square method does not attempt to
minimize the error point wise. The connection between thesemethods is pointed out in
[BS89].

In the MLS method one wishes to find the best approximation from a certain approximation
space to the data at a some pointx with respect to a wightedℓ2 inner product. It is important
to note, that in this context the resulting shape functions are not interpolating, more precisely
they have no Kronecker delta property (1.25). However thereare also interpolating versions
of the MLS e.g. [LS81, She68].

For the deduction of the MLS function we can use different starting points. In the original pa-
per the MLS shape functions are deducted by minimizing a wighted least-squares functional,
however a deduction by Taylor-Series expansion of direct imposition of the consistency
conditions is also possible. In [OIea96] Oñate et al. pointed out that the starting point of all
least squares methods is to minimize the square distance of the error at any point with respect
to a weight.

In the engineering literature the approximation space is usually the space of polynomials.
This is due to the fact, that the Gram matrix can be interpreted as a moment matrix for the
weights. There are also other techniques, which produce a partition of unity like for example
the Reproducing Kernel Particle Methods (RKPM) for example[CPW97, LJL+95, LJZ95].
More precisely an equivalence between the MLS and the RKPM can be shown. Each of the
approaches described above to construct a partition of Unity can be seen as a generalization of
the Shepard functions [She68], which are introduced in the following.
Our aim is to find a functionw : Ω→ R, such that

w(Xα) ≈ qα for all α = 1, ..., |A|. (4.2)

The starting point for our PUM is to build an approximation spaceVδ. To do so, a patch
ωα ∈ R

d is attached to each point, such that the union of these patches form an open cover
Cω := {ωα}α∈A of the domain. To this end, we define for each atomα a patchωα associated
with Xα ∈ Ω as

ωα = {x ∈ R
d : ‖Xα − x‖ < hα}. (4.3)

The most basic property, which these patches have to fulfill,is that they cover the complete
domainΩ: ⋃

α∈A

ωα ⊃ Ω. (4.4)

For an example of a 2D sketch see Figures of 4.1. On the basis ofsuch a suitable coverCω we
can define a partition of unity via data fitting techniques.
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Figure 4.1: Left: A domain with circular patches. Right: A domain with rectangular patches

In order to construct a moving least squares (MLS) fit, we consider the approximation space

being the spacePm of polynomials with the basis{Pi}ni=1 of degreen :=
(
m+d
d

)
in d vari-

ables and a set of non-negative weight functions

Wα : R
d → R

+
0 with supp(Wα) = ω̄α,

and the dilatation parameterhα of Wα(x) = W
(
x−Xα
hα

)
.

Now, we minimize for each fixedx the quadratic functional

J(τ)(x) =

|A|∑

α=1

Wα(x)(qα − τ(Xα))2 (4.5)

over allτ ∈ Pm.

In order to minimize (4.5), we set the derivative of (4.5) equal to zero and obtain the system
of equations

|A|∑

α=1

Wα(x)qαPj(Xα) =

|A|∑

α=1

Wα(x)
n∑

i=1

Pi(Xα)Pj(Xα)c(x) j = 1, ..., n. (4.6)
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With the definitions

P (x) := [P1(x) P2(x) · · · Pn(x)]T

W (x) := [W1(x) W2(x) · · · W|A|(x)]
T

B := (Bαj)α=1,...,|A|
j=1,...,n

, Bαj = Wα(x)Pj(x)

f := [q1 q2 · · · q|A|]
T

A(x) := (Aij)i,j=1,...,n, Aij =

|A|∑

α=1

Pi(Xα)Wα(x)Pj(Xα)

c(x) := [c1(x) c2(x) ... cn(x)]
T ,

equation (4.6) can be written as
A(x)c(x) = B(x)f. (4.7)

The above matrixA(x) is also known as Gram’s matrix. The minimizeru(x) of (4.5) is given
by the linear combination

w(x) =

|A|∑

α=1

qαϕα(x), (4.8)

where the shape functionsϕα are

ϕα(x) = P T (Xα)[A(x)]−1Wα(x)P (Xα). (4.9)

Properties of the Gram-Matrix Note that (4.9) involves the inverse of the Gram matrix
A(x) for each point of evaluation. Thus, we must be concerned withthe regularity ofA(x)

for all x ∈ Ω. Here, we attain the positive definiteness ofA(x) for all x ∈ Ω from thePm-
unisolvence of the setsχ|A|(Ω) ∩ ωα for all α. We say, thatχ|A|(Ω) ∩ ωα is Pm unisolvent
if the only polynomial of total degree at mostm interpolating zero data onχ|A|(Ω) ∩ ωα is
the zero polynomial. However, the regularity also depends on the particle distribution. This is
elucidated in Section 4.1.2 .

Weight Functions and Scaling The size of the support of the weight functionsWα, i.e. of
the shape functionsϕα can be determined by

ωα = {y ∈ R
d | ‖Xα − y‖ < hα}

where the dilatation parameterhα can in principle be chosen individually for each data site
Xα. However, this choice is closely related to the accuracy andstability of the approximation.
Recall that thePm-unisolvence ofχ|A|(Ω) ∩ ωα for all α must be ensured. Note also that the
smoothness of the approximation depends on the smoothness of the weight function, i.e. if
Wα ∈ Cr(Ω) thenϕα ∈ Cr(Ω).



4 The Function Space Oriented Multiscale Decomposition 57

Reproduction Properties From (4.8) withqα = q(Xα) for q ∈ Pm and (4.9) it is clear that
Pm ⊂ span〈ϕα〉, thus reproduction of polynomials of orderm in MLS is guaranteed.

Partition of Unity and Shepard’s Approach We denote{ϕα} as a partition of unity of
orderr if the reproducing property

|A|∑

α=1

ϕα(x)b(xα) = b(x)

and the derivative reproducing conditions

|A|∑

α=1

Dsϕα(x)b(xα) = Dsb(x), |s| ≤ r

hold for all b ∈ Pm. In the case ofm = 0, the approximation space is given byPm = {1} and
the Gram matrix reduces to

A(x) =

|A|∑

α=1

Wα(x).

Thus the shape functions are given by

ϕβ(x) =
Wβ(x)∑|A|
α=1Wα(x)

= W (x) · (A(x))−1

which is also known as Shepard’s method. One can thus easily verify, that

0 < ϕβ(x) ≤ 1 and
|A|∑

β=1

ϕβ(x) = 1 ∀x ∈ Ω.

The Shepard partition of unity is an efficient method for the approximation of scattered data,
since the Gram matrix reduces to a scalar, and thus an explicit form ofϕα is given. As a draw-
back, the type of information captured in a function space isconfined to displacements and/or
velocities. For gradient based information a higher order MLS method has to be applied,
which requires the implicit representation (4.9).

Thus, the shape functionsϕα are defined as

ϕα(x) =
Wα(x)∑
βWβ(x)

, (4.10)

with weight functionsWα. Shepard [She68] originally proposed the use of

Wα(x) = ‖x−Xα‖−t , t > 0, x ∈ Ω. (4.11)
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It can easily be seen that the weight functions defined in (4.11) have a global support and
therefore the functionsϕα have also a global support. Consequently, the evaluation ofone
shape function involves all weight functionsWβ. Hence a localized version of Shepard’s
method should be employed to ensure the compact support ofϕα, i.e. we assume supp(Wα) =

ω̄α so that

ϕα(x) =
Wα(x)∑

ωβ∈{ωγ : ωγ∩ωα 6=∅}

Wβ(x)
, x ∈ ωα .

Thus a displacementw ∈ L2(Ω) can be given by

w := ι(X, q) =

|A|∑

α=1

qαϕα(x). (4.12)

Besides the support of theWα, the smoothness of the weight functions directly influencesthe
smoothness of the shape functions. Here, we use splines as weight functions [Sch03]. For
more details concerning the approximation properties of the PUM we refer to [BM97].

Figure 4.2:Example of a partition of unity basis function with triangulated evaluation points.

Our construction is essentiallyL2 based and so Shepard’s method should be sufficient to obtain
at least first order inL2. If we also need to bound the error inH1 then MLS of first order should
be employed.
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Numerical Experiment To confirm this assertion, we consider the idealized but representa-
tive reference scattered data approximation problem (4.2)via the minimization of (4.5) for the
datafα = u(xα) whereu(x) = x2. We compare the results obtained via the MLS approach
for the point set[−3, 3] with δ = 1 using the approximation spacesPm with m = 0, 1. Here,
we anticipate to find an asymptotic convergence behavior ofO(δ) in theL2-norm form = 0

andO(δ2) for m = 1. Hereδ is related to the maximal atomic distance.

Furthermore, the approximation error will stagnate with respect to theH1-norm for the Shep-
ard functions withm = 0 whereas the MLS shape functions withm = 1 will provide anO(δ)

convergence also inH1. This expected convergence behavior can be clearly observed from
Figure 4.4.
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Figure 4.3: Approximation (top row) by Shepard’s Method (left) and MLS (right) and the
respective derivatives (bottom row).

Thus, the construction of a weak coupling operator aimed at transferring function values may
be based on the Shepard functions (if the error bound ofO(δ) is acceptable), compare Figure
4.3. However, if the transfer of gradient information is required the use of higher order moving
least squares functions is necessary.
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Figure 4.4: Error in theL2-norm (left) andH1-norm (right) of Shepard’s method (solid) and
the MLS (dashed).

4.1.1 Approximation Properties

In the foregoing section we explained the technical detailsfor the construction of the Shepard
functions, which form a partition of unity.
Here, we are interested in the approximation properties of the space spanned by these Shepard
functions. We show, that with the aid of the partition of Unity a global conforming space
can be constructed. More precisely it can be shown [BM97] that under mild assumptions the
global space inherits the approximation properties of the local approximation spaces. In the
following exposition we follow [BM97].
We start with the following definition:

Definition 4.1.1 Let Ω ⊂ R
d be an open set and{ωα}α an open overlapping ofΩ satisfying

the following pointwise overlapping condition

∃M ∈ N ∀x ∈ Ω |{α|x ∈ ωα}| ≤M . (4.13)

Moreover, let{ϕα} be a collection of Lipschitz functions subordinate to the cover {ωα} satis-
fying

• suppϕα ⊂ ω̄α

• ∑α ϕα ≡ 1 onΩ

• ‖ϕα‖L∞(Ω) ≤ C∞

• ‖∇ϕα‖L∞(Ω) ≤ CG
diamωα

,

whereC∞ andCG are two constants. Then we call{ϕα}α a partition of unity subordinate to
the cover{ωα}.
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Definition 4.1.2 Let {ωα} be an open cover ofΩ ⊂ R
d and let{ϕα} be a partition of unity

subordinate to{ωα}α. LetVα ⊂ H1(ωα ∩Ω) be given. Then we call

Vδ =
∑

α

ϕαVα = {
∑

α

ϕαvα | vα ∈ Vα} ⊂ H1(Ω)

a PUM-space. We recall,δ is proportional to the particle distance. The PUM space is said to
be of degreem ∈ N if Vδ ⊂ Cm(Ω). The spacesVα are referred to as the local approximation
spaces.

Having this, we give the following theorem which enables us to construct a global approxima-
tion spaceVδ from the local approximation spacesVα.

Theorem 4.1.3 Let Ω ⊂ R
d be a Lipschitz domain. Let{ωα}, {ϕα} and {Vα} be given by

Definitions 4.1.1, 4.1.2. Letu ∈ H1(Ω) be the function to be approximated. Assume that the
local approximation spacesVα have the following approximation properties: On each patch
ωα ∩ Ω, u can be approximated by a functionvα ∈ Vα such that

(i)
‖u− vα‖L2(ωα∩Ω) =: ε1(α)

(ii)
‖∇(u− vα)‖L2(ωα∩Ω) =: ε2(α).

Then the function
uδ =

∑

α

ϕαvα ∈ Vδ ⊂ H1(Ω)

fulfills for u ∈ H1(Ω)

‖u− uδ‖L2(Ω) ≤
√
MC∞

(
∑

α

ε21(α)

)1/2

(4.14)

‖∇(u− uδ)‖L2(Ω) ≤
√

2M

(
∑

α

(
CG

diam(ωα)

)2

ε1(α) + C2
∞ε

2
2(α)

)1/2

. (4.15)

For the proof we refer to [BM97].

Remark The assumption, that the patchesωα are a Lipschitz domain is required to ensure
thatVδ ⊂ H1(Ω). Note, that the constantM in (4.13) controls the number of overlaps of the
patches. However, the size of the overlap is also crucial since forM = 1 we haveϕα = χω̄α ,
whereχω̄α is the characteristic function. Thus, small overlaps causelarge gradients.
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Figure 4.5:An example of an octree.

4.1.2 Particle Distribution and Crystalline Structures

As we have seen, the construction ofι starts with an arbitrary scattered data set. Here, we
consider crystals and thus an almost regular particle distribution can be expected. We now
seek for an efficient construction of a Partition of Unity forthe molecules in their reference
configuration. This can be best reached by ad-binary tree cover [GKZC04].
Starting point of the tree is the construction of the root node. This is done, by assigning
an axes parallel cubeQ with Ω ⊂ Q to the root. Then we partition the domain in each
coordinate direction into two equal parts. Thus, in2d after the first iteration we would have
four subdomains. Then, in a next step, every sub domain is again separated into smaller sub
domain by the same rule. This recursion is terminated, when there is either no particle or only
one particle in the sub domain. These subs domains are then called leaves. Thus each leaf
corresponds to a particle (cf. Figure 4.5).
For the patches we proceed as follows: We used-rectangular shaped patches, whose bound-
aries are axes parallel. Then, we arrange them, such that foreach nodep of the tree, which is
not a leaf, the corresponding patch is defined such that:

ωp ⊇ ωα for all sonsα. (4.16)

The demand (4.16) on the patches is crucial for the cut detection with finite elements, which
is explained in the next chapter. More precisely, due to (4.16) we can exploit the property that
for each nodep in the tree andt ∈ T h we have

t ∩ ωp = ∅ ⇒ t ∩ ωα = ∅ for all sonsα of p.

Later on we see that this property dramatically increases speed in a cut detection.
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4.2 The Scale Transfer

Our aim is to construct a coarse scale approximationw̄ ∈ Vh of the total displacement func-
tion given by (4.12). The coarse scale representationw̄ ∈ Vh of the molecular displacement
functionw is defined by means of theL2-projectionπh : L2(Ω) −→ Vh, i.e.

πh(w) ∈ Vh : (πh(w), µ)L2(Ω) = (w,µ)L2(Ω) ∀µ ∈Mh , (4.17)

where, the multiplier spaceMh is defined by

Mh = span{µs | s ∈ Nh} . (4.18)

Here, the basis functionsµs, s ∈ N h are assumed to have the local support suppµs ⊆
suppλs|Ω. As is the case in the mortar setting, there are several possible choices for the basis
functionsµs ofMh. We follow the standard approach, see, e.g. [BMP94, Bel99] by setting

µs = ψs|Ω , s ∈ Nh . (4.19)

Remark Of course, for the construction of theL2 projection the domain and in particular the
boundary of the domain is crucial. Since here, the main concern is the general construction
of the transfer operator from the coarse to the fine scale, we neglect the domain aspect and
elaborate it in Chapter 5 and 6.

4.3 A Simplified Model Problem and the Saddle Point
Formulation

In this section we elaborate the technical details for coupling of the two scales. As we have
seen, the transfer operatorπh couples the coarse and the fine scale in anL2 framework.
Here, we consider this coupling in a more abstract sense and consider the coarse/- fine
coupling problem as a coupling between two different discretization methods. More precisely,
we examine the stability of theL2 projection between the mesh free partition of unity method
and the mesh based finite element method.
In the literature several approaches for coupling mesh freeand mesh based methods have
been proposed. Most of these methods are motivated by the problem of imposing boundary
conditions in a mesh free method. Indeed, in contrast to the shape functions used in the finite
element method, most of the mesh free methods do not satisfy the Kronecker delta property,
i.e. ϕp(q) = δpq. One method to overcome this difficulty is to couple them withfinite
element close to the domain boundary.

An early approach is the coupling by a ramp function [BOK95].Later on the coupling by
the Enrichment Technique [FMH02] and the coupling by the Bridging Scale [WL01] were
introduced. In a comparison of the Bridging Scale and the Enrichment Technique ([HFML04])
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it is pointed out that the Bridging Scale method is not advisable for this meshfree and mesh
based coupling.

ΩMD Ξ ΩCM

Figure 4.6:An example of the intersection of a continuum and a moleculardomain

Here we are interested in examining the stability of this method. Based on the domainΩ ⊂ R
d

we define
Ω = ΩMD ∪ΩCM Ξ = ΩMD ∩ ΩCM,

where measd(Ξ) > 0. In contrast to [HFML04] we consider the coupling of a meshfree and
meshbased method as a constrained minimization problem. Weassume, that we have a static
problem, moreover the energy on the continuum scale and on the molecular scale are given by
the bilinear forms

aCM(·, ·) : H1(ΩCM)×H1(ΩCM)→ R (4.20)

aMD(·, ·) : H1(ΩMD)×H1(ΩMD)→ R (4.21)

respectively and the external forces are given by the linearforms fCM(·) : H1(ΩCM) → R

andfMD(·) : H1(ΩMD)→ R. We furthermore define the Lagrange multiplier space byM :=

(H1(Ξ))′, where we denote by(H1(Ξ))′ the dual ofH1(Ξ). Let us therefore denote by
HCM,MD the product space ofH1(ΩCM) andH1(ΩMD), i.e.

HCM,MD := H1(ΩCM)×H1(ΩMD),

which is a Sobolev space with the product norm [Ada75]

|||v||| := (‖vCM‖2H1(ΩCM) + ‖vMD‖2H1(ΩMD))
1/2. (4.22)
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Furthermore we define
HCM,MD := HCM,MD\{0} .

Then we define on this tensor space the bilinear from

a(·, ·) := aCM(·, ·) + aMD(·, ·)

and
f(·) = fCM(·) + fMD(·)

Then we can give the saddle point formulation:

Saddle Point Problem 4.3.1Find (u, λ) ∈ HCM,MD ×M

a(u, v) + b(λ,

[
uCM

uMD

]
) = f(u) ∀v ∈ HCM,MD (4.23)

b(µ,

[
uCM

uMD

]
) = 0 ∀v ∈ HCM,MD (4.24)

where

b(λ,

[
uCM

uMD

]
) := (uCM − uMD , λ)L2(Ξ).

From the saddle point theory it is well known that the choice of the spaceM of the Lagrange
multipliers is essential for the well posedness of the saddle point formulation. More precisely
the spaces have to satisfy the inf-sup condition [Bab73, Bre74, BF91], which is given by

∃β : ∀λ ∈M, sup
u∈HCM,MD

b(λ, u)

|||u||| ≥ β‖λ‖(H1(Ξ))′ . (4.25)

Other choices of the multiplier space can result in non optimal estimates for the discretized
problem. Here, we show that our choiceM = (H1(Ξ))′ fulfills these demands. To do so let
us recall the following facts.
For the relation between an element and its dual, we need

Theorem 4.3.2 (Riesz Representation Theorem)LetV be a Hilbert space and letV ′ be its
dual. Let furthermorel ∈ V ′. Then there exists a uniqueu ∈ V for which

l(v) = (v, u) ∀v ∈ V.

In addition we have
‖l‖V ′ = ‖u‖V .

Definition 4.3.3 (Gelfand Triple) Let V ⊂ U be Hilbert spaces and let us assume, that the
embeddingV →֒ U is continuous and dense. Furthermore we identifyU ′ with its Riesz repre-
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sentation ofU . Then we have the Gelfand triple

V ⊂ U ⊂ V ′.

Having introduced these tools we can now give

Theorem 4.3.4 Let us assume that there exists a bounded extension operatorontoH1(ΩCM)

(cf. [Ste70][Thm 5, p. 181]) such that foru ∈ H1(Ξ) we have

uCM = E(u) ∈ H1(ΩCM) (4.26)

with
C‖E(u)‖H1(ΩCM) ≤ ‖u‖H1(Ξ). (4.27)

then the inf-sup condition

∃β : ∀λ ∈M, sup
u∈HCM,MD

b(λ, u)

|||u||| ≥ β‖λ‖(H1(Ξ))′ (4.28)

holds.

Proof. Since

sup
u∈HCM,MD

b(λ, u)

|||u||| ≥ sup
uCM∈H1(ΩCM)\{0}

(λ, uCM)L2(Ξ)

‖uCM‖H1(ΩCM)

.

it is adequate to show

∃β : ∀λ ∈M, sup
uCM∈H1(ΩCM)\{0}

(λ, uCM)L2(Ξ)

‖uCM‖H1(ΩCM)

≥ β‖λ‖(H1(Ξ))′ , (4.29)

then (4.28) follows.

Due to the Gelfand triple 4.3.3 we can write formally [Wlo82]

(λ, u)L2(Ξ) = 〈λ, u〉(H1(Ξ))′×H1(Ξ),

where〈·, ·〉 is the duality between(H1(Ξ))′×H1(Ξ). Then, by applying the Riesz Represen-
tation Theorem 4.3.2 there existsuλ ∈ H1(Ξ) such that

〈λ, u〉(H1(Ξ))′×H1(Ξ) = (uλ, u)H1(Ξ), ∀u ∈ H1(Ξ),

i.e. uλ is the representing element ofλ. Thus we write

(λ, uCM)L2(Ξ) = (uλ, u)H1(Ξ). (4.30)
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Inserting (4.30) into (4.29) yields

sup
uCM∈H1(ΩCM)\{0}

(λ, uCM)L2(Ξ)

‖uCM‖H1(ΩCM)

= sup
uCM∈H1(ΩCM)\{0}

(uλ, uCM)H1(Ξ)

‖uCM‖H1(ΩCM)

By choosinguCM = E(uλ) we obtain

sup
uCM∈H1(ΩCM)\{0}

(uλ, uCM)H1(Ξ)

‖uCM‖H1(ΩCM)

≥
(uλ, uλ)H1(Ξ)

‖E(uλ)‖H1(ΩCM)

(4.31)

≥ 1

C

‖uλ‖2H1(Ξ)

‖uλ‖H1(Ξ)
(4.32)

≥ 1

C

‖uλ‖H1(Ξ)‖λ‖(H1(Ξ))′

‖uλ‖H1(Ξ)
(4.33)

≥ β‖λ‖(H1(Ξ))′ . (4.34)

Thus we have

sup
u∈HCM,MD

b(λ, u)

|||u||| ≥ β‖λ‖(H1(Ξ))′ ,

with β = 1/C. 2

In a next step we want to ensure the stability of the discrete counterpart of the saddle point
problem. More precisely, we want to show, that for

Saddle Point Problem 4.3.5Find (uh,δ, λh) ∈ Vh,δ ×Mh

a(uh,δ, vh,δ) + b(λh,

[
uh
uδ

]
) = f(uh,δ) ∀vh,δ ∈ Vh,δ (4.35)

b(µh,

[
uh
uδ

]
) = 0 ∀µh ∈Mh (4.36)

the discrete inf-sup condition holds, i.e.

sup
uh,δ∈Vh,δ\{0}

b(λh,

[
uh
uδ

]
)

|||uh,δ|||
≥ β‖λh‖Mh

, (4.37)

whereβ is independent ofh andδ and

Vh,δ := Vh × Vδ
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ΩMD Ξ ΩCM

Figure 4.7:The domainΩ whereΩMD is described by a meshfree method andΩCM is
described by the FE method.

is equipped with the norm||| · |||. The multiplier spaceMh is equipped with the norm
‖ · ‖(H1(Ξ))′ .

In order to show the discrete inf-sup condition, we employ the continuous inf-sup condition
and apply the Fortin trick [For77, BF91]:

Lemma 4.3.6 (Fortin Trick) Let the bilinear formb : HCM,MD ×M → R fulfill the continu-
ous inf-sup condition(4.28). Furthermore, assume, that there exists to the subspacesVh,δ and
Mh a bounded linear operator̂π : HCM,MD → Vh,δ such that

b(v − π̂v, µh) = 0 ∀µh ∈Mh.

If |||π̂||| ≤ c with a constantc > 0 independent ofh, thenVh,δ andMh fulfill the discrete
inf-sup condition(4.37)

We define foru = (uCM, uMD)T

π̂(u) =

(
πh(u

CM − uMD)

0

)
.
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Hereπh : L2(Ξ)→ Vh is defined for suitableMh by

(πhw,µh)L2(Ξ) = (w,µh)L2(Ξ) ∀µ ∈Mh.

Thus we have, that

b(µh, u− π̂u) = b(µh,

[
uCM

uMD

]
− π̂u) = (µh, uCM − uMD − πh(uCM − uMD))L2(Ξ) = 0.

We can show, that
|||π̂||| ≤ c c 6= c(h).

To do so, we consider

|||π̂||| = sup
v∈HCM,MD

|||π̂v|||
|||v|||

= sup
v∈HCM,MD

‖πh(vCM − vMD)‖H1(Ξ)

(‖vCM‖2
H1(ΩCM)

+ ‖vMD‖H1(ΩMD))
1/2

≤ sup
v∈HCM,MD

‖πhvCM‖H1(ΩCM) + ‖πhvMD‖H1(ΩCM)

(‖vCM‖2
H1(ΩCM)

+ ‖vMD‖H1(ΩMD))
1/2

(4.38)

≤
‖vCM‖H1(ΩCM) + ‖vMD‖H1(ΩMD)

(‖vCM‖2
H1(ΩCM)

+ ‖vMD‖H1(ΩMD))
1/2
≤ 2. (4.39)

Sincea + b ≤ 2(a2 + b2), a, b > 0 by Young’s inequality. For the step from (4.38) to (4.39)
we exploited theH1(Ξ) stability of πh. In [BX91] theH1 stability of the projectionπh has
been shown, if the multiplier space is chosen asMh = Vh.

To show theH1 stability for a wider class of multiplier spaces we follow [KLPV01]. This
class of multiplier spaces is characterized by the following assumptions:

M1 The discrete multiplier spaceMh contains constant functions.

M2 We have that dim(Vh) =dim(Mh).

M3 There exists a constantC independent ofh, such that

‖uh‖L2(Ξ) ≤ C sup
λh∈Mh

(uh, λh)L2(Ξ)

‖λh‖L2(Ξ)
∀uh ∈ Vh

Lemma 4.3.7 Let the triangulationT h be globally quasi uniform, that isht ≥ ch̄ for all
t ∈ T h. Moreover let the domainΞ be polygonal, and M1-M3 hold. Then

‖πhu‖H1(Ξ) ≤ C‖u‖H1(Ξ), u ∈ H1(Ξ)
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whereC does not depend on the meshsize.

Proof. By our assumption, that the mesh is quasi uniform, there exists an operatorQ :

L2(Ξ)→ Vh (Clément interpolation), such that [Cle75]

‖Qu‖2H1(Ξ) +
∑

t∈T h

h−2
t ‖(I −Q)u‖2L2(t) ≤ C‖u‖2H1(Ξ). (4.40)

Let us for fixedu ∈ H1(Ξ) show, that the operatorQ full fills

‖(πh −Q)u‖H1(Ξ) ≤ C‖u‖H1(Ξ). (4.41)

By the inverse inequality, we have

‖(πh −Q)u‖2H1(Ξ) ≤ h−2‖(πh −Q)u‖2L2(Ξ). (4.42)

Together with M3 and by exploiting thatπh is aL2 projection, we obtain

‖(π −Q)u‖L2(Ξ) ≤ C sup
ψh∈Mh

((πh −Q)u, ψh)L2(Ξ)

‖ψh‖L2(Ξ)

= C sup
ψh∈Mh

((I −Q)u, ψh)L2(Ξ)

‖ψh‖L2(Ξ)
.

We then furthermore have that

C sup
ψh∈Mh

((I −Q)u, ψh)L2(Ξ)

‖ψh‖L2(Ξ)
≤ C sup

ψh∈Mh

∑
t∈T h

−2
t ‖(I −Q)u‖L2(t)h

2
t ‖ψh‖L2(t)

‖ψh‖L2(Ξ)

≤ C sup
ψh∈Mh

(∑
t∈T h

−2
t ‖(I −Q)u‖2L2(t)

)1/2 (∑
t∈T h

2
t ‖ψh‖2L2(t)

)1/2

‖ψh‖L2(Ξ)

≤ Ch‖u‖H1(Ξ).

In the last step we used (4.40), in particular we only need, that∑
t∈T h

−2
t ‖(I −Q)u‖2L2(t) ≤ C‖u‖2H1(Ξ).

Thus we obtain (4.41). By the negative triangle inequality,i.e. ‖x‖ − ‖y‖ ≤ ‖x − y‖ and
(4.40) we have

‖πhu‖2H1(Ξ) ≤ ‖(πh −Q)u‖2H1(Ξ) + ‖Qu‖2H1(Ξ)

≤ C‖u‖2H1(Ξ)

2

Finally, we can now prove



4 The Function Space Oriented Multiscale Decomposition 71

Theorem 4.3.8 Under the above assumptions, we have that for the discrete saddle point prob-
lem the inf-sup condition holds.

Proof.
Analogously to the Fortin operator [For77], we have

β‖λh‖(H1(Ξ))′ ≤ sup
u∈HCM,MD

b(λh, u)

|||u||| (4.43)

= sup
u∈HCM,MD

b(λ, π̂u)

|||u||| (4.44)

≤ c sup
u∈HCM,MD

(λh, πh(u
CM − uMD))L2(Ξ)

|||π̂u||| (4.45)

= c sup
uδ,h∈Vh,δ

b(λh, uδ,h)

|||uδ,h|||
(4.46)

2

Summing up, we have developed a new transfer operator based on a weak coupling approach.
The key idea is to construct the transfer operator on the basis of weighted local averaging
instead of using point wise taken values, which is done - to our knowledge - in all existing
methods. For the construction of the local weight functionswe assign a partition of unity to
the molecular degrees of freedom. This allows for decomposing the micro scale displacements
into a low frequency and a high frequency part by means of a weightedL2 projection. Thus,
the entire formulation is in the setting of a function space.Moreover, we have shown for the
static case, that our weak coupling operator for the coupling of a meshfree and a mesh based
method isH1 stable.
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5 The Weak Multiscale Method for the
Completely Overlapping Case

In the foregoing chapter we introduced the function space oriented approach, which allows us
to interpret the atoms in a function space and andL2 projection to separate the displacement
into a coarse and fine scale displacement. Thereby, we assumed, that the coarse scale and the
fine scale domain coincide. However for most applications itis plausible, thatΩMD ⊂ ΩCM

wherediam(ΩMD) ≪ diam(ΩCM). Here, we consider this case, more precisely we assume
that the whole domainΩ is discretzed by finite elements, i.e.ΩCM = Ω and only in a
small subsetΩMD ⊂ Ω the molecular dynamics is employed. Thus the handshake region is
Ξ = ΩMD.
Note, that inΞ the molecular description and the continuum description coexists. Thus the
displacement onΞ can be decomposed into a coarse and a fine scale.

5.1 Multiscale Decomposition

In Chapter 2 it has been understood, that a molecular displacement can be interpreted as a
superposition of waves. Furthermore on the finite element side, for a given mesh size, there
exists a maximum frequency, which can be represented. In other words, for a given finite
element mesh sizeh only waves with a wavenumber

κmax = κmax(h) ≤
π

h
(5.1)

can be represented. Otherwise effects like aliasing might occur. As a consequence of the
dispersion relation, then the maximum frequency for the representation of waves is bounded,
too.
This observation is the starting point for a multiscale decomposition, which decomposes the
total displacement field into coarse and fine scale.
More precisely, the total atomistic displacement field is decomposed by

q = q̄ + q′, (5.2)

whereq̄ is the coarse part andq′ is the fine scale part. Here, the difficulty that the atomistic
displacements are given as point-values in the “discrete” spaceR

d|A|, whereas the macro-
scale displacements are usually assumed to be some functions in, e.g., a Sobolev space. As a
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consequence, at a first glance a direct sum decomposition of the underlying function space as
in [HFMQ98] is not possible.
In the bridging scale method [WL03], the Euclidean space is chosen as underlying space of
the decomposition (5.2) Then the authors of [WL03] define thecoarse scale displacementq̄ as
the mass weighted least squares fit ofq. To do so, they write

d := argminv∈Vh

∑

α∈A

mα|q −Nv|2, (5.3)

whereN is the interpolation from the finite element nodes to the atomistic scale, i.e.Nα,p =

ψp(Xα). Hereψp is the finite element basis function (see (1.26)). WithMA defined in (1.3)
we rewrite (5.3) to obtain

d = (NTMAN)−1NTMAq.

Then a linear mappingP can be defined by

Pq = q̄ = Nd = N(NTMAN)−1MAq.

Summing up, the decomposition (5.2) is given by

q = Pq +Qq = Nd+Qq,

with Q = I − P .

5.2 Multiscale Decomposition in Function Space

In contrast to this, we consider a scale decomposition in a function space. We therefore employ
the approach introduced in Chapter 4 by interpreting the discrete displacementsqα ∈ R

d as
elements of the function spaceVδ. Let us recall, that this is done by means of the linear
operator which maps the discrete displacements of the atomsqα, α ∈ A into a function space,
i.e.

ι : (Rd × R
d)|A| → V ⊂ L2(Ω). (5.4)

This embedding can be chosen in a problem-dependent fashionand the properties of the result-
ing multiscale decomposition depend strongly on the choiceof a basis{ϕα} for V. Recall, that
the total displacement in function space from (4.12) was given byw = ι(X, q) = ι(q) ∈ V
and thus the displacement is

w = w + w′ , (5.5)

wherew is the coarse part andw′ is the fine scale part.

Remark The origin of this scale decomposition can be found in the contributions to the
variational multiscale decomposition in the context of conforming finite element spaces
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Figure 5.1:Scale decomposition of the total displacement fieldν

[HFMQ98].

5.2.1 The Weak Approach for a Multiscale Decompostion in Function Space

Let us reconsider a bodyΩ ⊂ R
d, d = 1, 2, 3, which, under the influence of external and

internal forces, undergoing some deformation. Here, we give a multiscale approach for the
description of the body’s deformation.

In the style of Chapter 1 we briefly review the discrete modelson the continuum and
atomistic scale. Let us start with the micro scale. For reasons of computational efficiency, the
MD-simulation is only applied locally to a portionΞ ⊂ Ω of our body. This domain of interest
Ξ might be the neighborhood around a crack tip or at the vicinity of a contact boundary,
where local effects are expected to take place which cannot be represented on the coarser scale.

The material behavior on the micro scale is now modelled by means of an isolated system
of atoms or molecules of a crystalline solid. The atomic displacementsq = (qα)α∈AΞ

are
assumed to obey Newton’s law of motionMAΞ

q̈ = F , whereAΞ := {α ∈ A : Xα ∈ Ξ}.
However, for sakes of simplicity, we simply setA = AΞ.

In the remaining partΩ\Ξ only the coarse scale model is employed. There FE model employed
on the macro scale is based on a continuum mechanics approximation of the deformation of
our bodyΩ. Following the basic approach of continuum mechanics, on the macro scale the
body in its reference configuration is identified with the smooth and bounded domainΩ ⊂ R

d.

In order to approximate the continuous displacement field, we employ a finite element dis-
cretization of lower order as described in Chapter 1, more precisely given in (1.26).

Here, we do not incorporate any Dirichlet boundary conditions into the ansatz–spaceVh(Ω),
since the finite element spaceVh will only serve as the coarse scale space for the representa-
tion of the total displacement field.

On the basis of the weak coupling concept we now can give the Bridging Scale method in a
function space based setting. In a next step we define the subset Ξ ⊂ Ω where the coarse
as well as the fine scale simulation is present. To do so, we define T hΞ ⊂ T h as the set of
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Vh

Vh(Ξ)

p ∈ NΞ
h

p ∈ Nh

Figure 5.2: Example of a domainΩ with the complete overlapping.

simplexes having a nonempty intersection with the particles, i.e.

T hΞ = {t ∈ T h, t̄ ∩ χ 6= ∅},

and its set of nodes byNΞ
h . Here,χ = χ|A| is the set of particles defined in (4.1).

Thus we have
Ξ =

⋃

t∈T h
Ξ

t̄ andVh(Ξ) = Vh
∣∣
Ξ

Let us remark that the size and shape of the domainΞ is not predetermined and can be chosen
arbitrary. As a consequence the choice of the size of the handshake regionΞ is a design
decision. In practice this is a balancing of affordable computer power and required accuracy.

Like in the Bridging Scale Method, the coupling between the coarse and the fine scale is often
realized by means of the interpolation operator. This seemsnatural since in general the atoms
are interpreted as points inRd.

Using the techniques described in the previous chapter, however, we are free to interpret atoms
either as elements inRd or as functions inL2. This allows for a function space based coupling,
leading to our weak multiscale operator.

In order to perform the decomposition given in (5.5) we definethe coarse scale represen-
tation w̄ ∈ Vh of the molecular displacement functionw by means of theL2-projection
πh : L2(Ξ) −→ Vh(Ξ), i.e.

πh(w) ∈ Vh(Ξ) : (πh(w), µ)L2(Ξ) = (w,µ)L2(Ξ) ∀µ ∈Mh , (5.6)
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where, the multiplier spaceMh is defined by

Mh = span{µs | s ∈ NΞ
h } .

Here, the basis functionsµs, s ∈ NΞ
h are assumed to have the local support suppµs ⊆

suppψs|Ξ. As is the case in the mortar setting, there are several possible choices for the basis
functionsµs ofMh. We follow the standard approach, see, e.g. [BMP94, Bel99] by setting

µs = ψs|Ξ , s ∈ NΞ
h . (5.7)

Our coarse scale representation is now defined by extendingπh(w) ∈ Vh(Ξ) to w̄, i.e. w̄ =

E(πh(w)), whereE : Vh(Ξ)→ Vh is an extension operator. Thus we can rewrite (5.5) by

w = w′ + w̄ = (w − E(πh(w))) + E(πh(w)). (5.8)

For the extension operatorE , different choices are possible cf. [QV99]. Here we chose the
discrete extension

E(v) =
∑

p∈Nh

vpψp with

{
vp = wp , p ∈ NΞ

h ,

vp = 0 , otherwise .

In the spirit of mortar methods, we call the finite-element spaceVh the slave space and the
approximation space spanned by the Shepard functions the master space.

By construction, our coupling operatorπh allows for the decomposition of theL2-kinetic
energyT̃ into a coarse scale and a fine scale part in anL2 sense, analogue to [WL03]. In the
caseMh = Vh(Ξ) which is known as the standard multiplier space in the mortarsetting, we
moreover have

T̃ =
1

2
(ẇ, ẇ)L2(Ξ)

=
1

2
(ẇ, ˙̄w)L2(Ξ) +

1

2
(ẇ, ẇ′)L2(Ξ)

=
1

2
( ˙̄w, ˙̄w)L2(Ξ) +

1

2
(ẇ′, ˙̄w)L2(Ξ) +

1

2
(ẇ, (I − πh)ẇ)L2(Ξ)

=
1

2
( ˙̄w, ˙̄w)L2(Ξ) +

1

2
(ẇ, (I − πh)ẇ)L2(Ξ)

since the mixed term1
2(ẇ′, ˙̄w)L2(Ξ) vanishes due to the fact that range(I − πh)⊥Mh.

Relation to the Bridging Scale Method In order to show, that the BS method is a special
case of our framework from Chapter 4, we consider the case that the domainΞ is decomposed
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into non overlapping patchesωα such that

Ξ =
⋃

α∈A

ωα.

On these patches we define basis functions(ϕ̃α)α∈A by

ϕ̃α(x) =

{
1 if x ∈ ωα
0 if x 6∈ ωα

and thus we can replace the underlying Euclidean space from the decomposition (5.2) by

HBS :=
∑

α∈A

span(ϕα) ⊂ L2(Ξ).

The atomistic densityρA can then be given byρA =
∑

α∈A
mα

meas(ωα)ϕα.

In a next step, the projection operator in the original context of the bridging scale method is
replaced by anL2 projection on the weightedL2 scalar product(·, ·)ρA = (·, ρA·)L2(Ξ) from
HBS to Vh. More precisely forq ∈ HBS the finite element representation ofd ∈ Vh is given
by

(d, µ)ρA = (q, µ)ρA for all µ ∈ Vh(Ξ). (5.9)

Here, the coarse scale part of the total displacement field isgiven by q̄ = Nd, whereN is
defined byNψp =

∑
α∈A ψp(Xα)ϕ̃α. Thus the operator form of (5.9) is given by

q̄ = NM−1ÑT q (5.10)

with the finite element mass matrixM = (mpq)pq∈NΞ
h
,mpq =

∫
Ξ ρAψpψq and

(Ñ)αp =

∫

Ξ
ρAϕαψp ≈ meas(ωα)ρ(Xα)ψp(Xα) = mαψp(xα) = (MAN)αp.

Here the usage of the midpoint rule quadrature is justified ifdiam(ωα)≪ diam(t), t ∈ T hΞ .

What we have done so far is to replace the discrete space in theBridging Scale method by a
function spaceHBS ⊂ L2(Ξ). The function space approach assumes a continuous extension
of the molecular displacement field. Then, in a next step, we used an approximation of this
extended molecular displacement field for the constructionof a projection, which then involves
the evaluation at all spatial pointsXα ∈ Ξ.

However the construction of piecewise constant basis functions (ϕ̃α)α∈AΞ
has a less approxi-

mation order than our function space oriented approach.
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5.2.2 Discrete Representation of the Weak Approach

Let us now describe, how to obtain the discrete representation of our transfer operator. Insert-
ingw =

∑
α∈A qαϕα andπh(w) =

∑
p∈Nh

πpψp into (5.6), we obtain

Mπ = Rq (5.11)

with M = (mts)t,s∈Nh
andR = (rsα)s∈Nh,α∈A and

rsα =

∫

Ω
µsϕα and mts =

∫

Ω
ψtµs . (5.12)

here, we have setq = (qα)α∈A andπ = (πp)p∈Nh
. This gives rise to our weak coupling

operator in its algebraic representation

W = M−1R, (5.13)

which transfers the low-frequency information from the fineto the coarse scale.
In order to compute the algebraic representation ofπh in (5.6), we need to assemble two
(generalized) mass matrices. For the matrixM , we need to evaluate integrals of the form∫
Ω µpψq dx, whereµp are the basis functions spanning the multiplier spaceMh, andψq are

the basis functions ofVh. Here,p, q are assumed to be in some index setNh with d|Nh| =

dim(Vh). The computation of the resulting mass matrix can be done in asimilar fashion as
the assembly of the standard mass matrix.
For assembling the matrixR, we need to evaluate integrals of the form

∫

ωα∩supp(µp)

µpϕα dx. (5.14)

In order to compute these integrals, the cut between the support of µp and the patchωα has
to be computed. On the resulting polytope, then the quadrature has to be carried out. Since,
following our approach, the cut polytopes can be controlledin their size but not in their shape,
the quadrature is a challenging task. In order to deal with this problem we have developed and
implemented the library CUTL IB [DK08], which allows for cut detection and quadrature on
the resulting cut-polytopes. We explain this in the next paragraph.

Assembling the rectangular Matrix R The assembling of the transfer operator in dimen-
sionsd ≥ 2 is a subtle task. Due to the large number of atoms inΩ we are in need for
an efficient, yet robust, algorithm for the construction of the algebraic representation ofπ.
Since the assembling of the rectangular matrixR requires the computation of all intersections
ωα ∩ t, t ∈ T h, T h being the set of all elements in the finite element mesh, we haven chosen
rectangular/cuboid patchesωα (see [Sch03]).
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In the engineering literature, often radial patches are used in connection with a fixed back-
ground mesh for the quadrature. This allows for the use of radial basis functionsϕα which
is mathematically very appealing. However, exact integration with a background mesh and
standard quadrature formulas (such as Gauss quadrature) isalmost impossible. Rectangular
patches allow for exact quadrature, which is needed for the stability of M−1R . Furthermore,
the computation of the cutsωα∩t can be handled by using ideas from computational geometry
as described below. For representing the projectionπ we need to assemble the matricesM
andR . The assembling ofM andR is similar, even though for special choices ofMh the
computation ofM is simpler ( e.g., ifMh = Vh).
For the efficient implementation of the assembling we need toperform the following tasks
with (quasi-)optimal complexity:

1. Given a finite element mesh-elementt ∈ T h find all atomsα such thatωα ∩ t 6= ∅ .

2. Compute the polytopeωα ∩ t.

3. Decomposeωα ∩ t into simpler polytopes on which quadrature formulas for theexact
integration can be applied.

The use of an quadtree (octree) orkd-trees structure yields quasi-optimal complexity for
queries as in Step 1. For the cut-computations in Step 2 we apply the quickhull algorithm
[BDH96] along with a simplex method. For each cutωα ∩ t we need to compute an interior
point. This is realized by describing each cutωα ∩ t as the intersection of finitely many half
planes{x ∈ R

d | −nTj x+ gj ≥ 0, j = 1, . . . , n}. Ford = 3, after the introduction of the two

additional variablesx4, x5, an interior point(p1, p2, p3)
T =

(
x1
x4
, x2
x4
, x3
x4

)T
can be obtained

from the linear constrained maximization problem:
Maximizex5 among all tuples(x1, x2, x3, x4, x5) such that

−nTj (x1, x2, x3)
T + gj · x4 − x5 ≥ 0, j = 1, .., n

andx5 > 0, x4 ≥ ε with smallε > 0 .
Given such an interior point, the intersection algorithm from [PS85] is applied, which gives a
description ofωα ∩ t by means of half planes.
In case of sufficiently smooth basis functions, i.e.ϕα ∈ C1(ω̄α), Step 3 could be carried
out by computing a Delaunay triangulation of the polytopeωα ∩ t and applying a quadrature
formula of sufficient high order on each triangle/tetrahedron. However, in our application
ϕα ∈ C1(ω̄α) generally is not fulfilled, for the following two reasons:

• The functionsWα are constructed from one-dimensional splines by a tensor-approach.
For linear splines, a jump in the derivatives along the connections between the center of
mass ofωα and the midpoints of the edges/sides occurs.

• The derivative ofϕα can be discontinuous alongωα ∩ ∂ωβ, α 6= β andωα ∩ ωβ 6= ∅.
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As a consequence, for the assembling ofR the set

Dα,t = {x ∈ t : ∇ϕα discontinuous inx}

needs to be resolved for eacht ∈ T h. This can be done by either choosing a Delaunay triangu-
lation which conforms to the constraint thatDα,t is contained in the union of all edges/sides,
or by subdividingωα prior to the cut detection and applying Step 2 and Step 3 to each sub-
rectangle/sub-cuboid separately.

Assembling the Matrix M Due to the definition ofVh and for suitably chosenMh, the
matrixM has the character of a finite element mass matrix, is well conditioned andM−1µ

can be computed easily for anyµ ∈Mh.

Figure 5.3: Two tetrahedra inR3 and Delaunay triangulation of the resulting cut polytope

Relation to the Bridging Scale method In contrast to (5.13), the coarse scale description in
the Bridging Scale Method [WL03] is given by

W̃ = M−1
conN

TMA, (5.15)

with Mcon = NTMAN andMA given by (1.3). In the Bridging Scale Method, the transition
from coarse to fine scale is defined by interpolation and the projection from fine to coarse is
defined as the least squares approximation of the atomistic displacements with respect to the
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atomistic mass matrixMA. More precisely, the components ofMcon = m̃p,q∈Nh are given by

m̃pq =
∑

α∈A

mαλp(Xα)λq(Xα) =
∑

α∈A

mα

meas(ωα)
λp(Xα)λq(Xα) ·meas(ωα) ≈

∫

Ξ
λpλq dx .

(5.16)
Thus, assuming that the densitymα

meas(ωα) is one and that the patches(ωα)α∈AΞ
fulfill ωα∩ωβ =

∅ ⇐⇒ α 6= β, (5.16) can be interpreted as a summed quadrature rule.

By introducing the scalar product〈·, ·〉BS := 〈MA·, ·〉 on R
|A| × R

|A| the projection from the
total displacement fieldw to the coarse part̄w is given by

〈Nw̄,Nµ〉BS = 〈w,Nµ〉BS ∀µ ∈ R
|NΞ

h |,

i.e. the bridging scale method can be seen to be based on the choiceMh = span{λp | p ∈
NΞ
h }. However, the coupling itself uses the discrete scalar product 〈·, ·〉BS, which distinguishes

it from our approach, where theL2 scalar product connected to the coarse scale is used. This
probably seems to be the more natural approach within the weak formulation of the finite
element method.

For investigating the structure of the bridging scale operator W̃ in more detail, let us consider
the case that the masses of the atoms are equal, i.e.m = m1 = m2 = ... = m|A|. Then, the
atomistic mass matrixMA reduces toMA = m Id and the coarse scale mass matrix becomes
Mcon = NTMAN = mNTN . Thus, the operator̃W reduces to

W̃ = (NTN)−1NT ,

which are simply the normal equations stemming from

〈Nw̄ − w,Nµ〉 = 0 µ ∈ R
|NΞ

h |.

We now want to explore more differences and commonalities between (5.15) and (5.13). For
sake of simplicity, we consider the case, that only two particlesXα andXβ are in the support
of the two shape functionsψ1 andψ2. Then the matrixN in (5.15) as well as the matrixR in
(5.13) become quadratic:

N =

(
ψ1(Xα) ψ1(Xβ)

ψ2(xα) ψ2(Xβ)

)
R =

( ∫
ω1α

ψ1ϕα
∫
ω1β

ψ1ϕβ∫
ω2α

ψ2ϕα
∫
ω2β

ψ2ϕβ

)
,

whereωjα = supp(ψ) ∩ ωα
In the forthcoming, we consider the condition numbersκ(W̃ ) andκ(W ) in dependence of the
distancedαβ := |Xα −Xβ |. The condition number is indicative of the stability or sensitivity
of the transfer operators.

In Table 5.1, the condition number in dependence of the distance is shown. It can be seen that
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Figure 5.4:Two particles in the support of one element

dαβ 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3

κ(W̃ ) 6.1905 6.9812 7.9746 9.2577 10.9756 13.3893 17.0212 23.0900

κ(W ) 3.1027 3.2188 3.3274 3.4186 3.5502 3.6052 3.6559 3.7311

Table 5.1:Comparison of the condition number ofN andW w.r.t. the distance between the
two particlesα andβ

the condition numberκ(W̃ ) is increasing whileκ(W ) grows very slowly. In fact, the growth
of the condition number of the matrixR can be controlled, since the integration domains
ω can be chosen individually such that the patches are pairwise different. Obviously, the
argumentation above also holds for the case of more than two particles in the support of the
element.

In the following, we compare our new weak transfer operator with the transfer operator̃W .
As measures for the comparison we chose the norms‖ · ‖L2(Ω) and‖ · ‖L∞(Ω).

We adopt the numerical example of [LKP06]:
The interval[−100r0, 100r0] is covered by 40 linear finite elements with mesh sizeh = 5rEQ.
To each of the 56 atoms between−28r0 and28r0, a patch of size0.6r0 is attached. For the
molecular scale the Lennard-Jones (LJ) potential see (1.13) is used.

Outside the MD/FE region the nodal forces are calculated viathe Cauchy-Born rule.

The initial amplitude in the molecular part is given by

qinit = q(X, t = 0) =

{
Ae−(X/σ)2−qc

1−qc

(
1 + b cos

(
2πX
H

))
if |X| ≤ Lc

0 if |X| > Lc
(5.17)
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Here,A is the amplitude,σ is the width and truncation atLc of the initial wave. It can be
clearly seen, that1 + b cos

(
2πX
H

)
is the fine scale contribution, where the length scaleH is

small compared toσ. The parameterb determines the magnitude of the fine scale. Finally
qc = e−(Lc/σ)2 is the unshifted impulse atX = Lc.

Let Tend be the total run time of the simulation. We follow [LKP06] by advancing both sim-
ulations by a time step∆t ∈ [0, T ]. Thus in a single time step the coarse scale simulation is
advanced once and the fine scale simulation is advancedm times. The fractional time steps
in then-th coarse scale time step is given by[j] := n + j

m and the sub cycle time step is
given byτm = τ

m . On the fine scale the velocity Verlet and on the coarse scale the explicit
central difference algorithm are used. We furthermore assume thatpn, qn, sn are given, then
the update is given by:

p[j+1] = p[j] + q[j]τm + 1/2s[j]τ2
m p MD displacement

q[j+1/2] = q[j] + s[j]τm q MD velocity

s[j+1] = M−1
A f(p[j+1]) s MD acceleration

q[j+1] = q[j+1/2] +
1

2
s[j+1]τm.

After m = 50 fine scale steps the molecular dynamics quantities of the coarse time stepn+ 1

are obtained. In order to advance the coarse scale simulation from n to n + 1 the internal
forces are computed by combining the coarse scale displacement w̄ and the fine scale part
Q = (I −NW ) of the molecular simulation.

dn+1 = dn + vn∆t+
1

2
anτ2 d FE displacement

an+1 = M−1NT f(Nd+Qq) a FE acceleration

vn+1 = vn +
1

2
(an + an+1)∆t v FE velocity.

In order to measure the difference between the discrete displacement field stemming from the
atomistic scale with the values of the coarse scale, in our approach we choose the theL2 norm.
OnΞ, this error can easily be computed as

‖w − ki(w)‖2L2(Ξ) = wTMPUMw − 2wTRki(w) + ki(w)TMki(w), i = 1, 2, (5.18)

whereMPUM is the PUM mass matrix whose elements are given bymPUM
αβ =

∫
ϕαϕβ. Here,

k1 is the least squares projectioñW andk2 is the weak coupling operatorW . For the error in
the‖ · ‖∞ norm, we simply computed

‖w −N(ki(w))‖2∞, i = 1, 2, (5.19)

Table 5.2 shows the obtained errors fori = 1, 2.
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‖ · ‖L2(Ξ) ‖ · ‖∞
coarse time step bridging scale weak coupling bridging scale weak coupling

3 6.0 · 10−3 2.7 · 10−4 2.8 · 10−2 6.7 · 10−3

6 3.0 · 10−2 1.1 · 10−4 5.3 · 10−2 4.8 · 10−3

9 6.0 · 10−2 5.7 · 10−4 7.5 · 10−2 4.8 · 10−3

12 8.1 · 10−2 1.2 · 10−3 7.3 · 10−2 3.9 · 10−3

15 8.3 · 10−2 2.3 · 10−3 7.4 · 10−2 6.1 · 10−3

18 7.5 · 10−2 2.1 · 10−3 7.3 · 10−2 5.1 · 10−3

Table 5.2:Difference between the discrete displacement field stemming from the atomistic
scale with the values of the coarse scale in the‖ · ‖L2(Ξ)- and‖ · ‖∞ norm

5.3 Frequency Sensitivity of the Coupling Operator

Even though our weak coupling operator is designed for the transfer of displacements, it has
notable properties with regard to the transfer of energy. Inthe forthcoming we show theL2

projection surpresses the energy stored in high frequency waves and conserves the energy
stored in low frequency waves. The precise meaning of “high”and “low” in this context is
given by (2.27). Again, for the sake of simplicity we stick toa single dimension, a harmonic
potential and the linear standard FE basis for an equidistant mesh.

As starting point for our discussion, let us recall that the solutions of both system (2.2), (2.10)
in Chapter 2 were of the form

qα(t) =
∑

k

q̃ke
i(kXα−ωt) and up(t) =

∑

k

ũke
i(kxp−ωt) (5.20)

In our simplified setting we consider the projection of an harmonic displacement in the molec-
ular dynamics. We setq(x) = cos(kx) and analyze theL2 projected imageπh(q) ∈ Vh. Note
that here we neglect the approximation error introduced by the embeddingι. First we compute
the coefficientsrp =

∫
θpq dx with

θp(x) =





x−xp−1

h for x ∈ [xp−1, xp]

1− x−xp

h for x ∈ (xp, xp+1]

0 else,



86 5.3 Frequency Sensitivity of the Coupling Operator

so thatπh(q) = M−1r. We find

rp =

∫

suppθp

θp(x)q(x) dx

=

∫ xp

xp−1

x− xp−1

h
cos(κx) dx+

∫ xp+1

xp

(
1− x− xp

h

)
cos(kx) dx

=

∫ h

0

x

h
(cos(k(xp−1 + x)) + cos(k(xp+1 − x))) dx

=
[ x
hκ

(sin(k(xp−1 + x))− sin(k(xp+1 − x)))
]h
0

+

[
1

hk2
(cos(k(xp−1 + x)) + cos(k(xp+1 − x)))

]h

0

=
1

hk2
(cos(kxp)− cos(kxp−1) + cos(kxp)− cos(kxp+1)) . (5.21)

Since | cos′(kx)| ≤ κ we haverp ∈ [−2/κ, 2/κ]. For a (quasi-)uniform mesh the eigen-
valuesmp of the mass matrixmp ∼ h so that the coefficientsπp of πh(q) are bounded by
O (1/(κh)). Thus we can clearly see, what we have expected.

We now employ the Fourier transform, and use the notation introduced in the context of Kernel
based methods in Chapter 2, in order to determine the frequency senistivity of the new coupling
operator. In order to describe the spectrum of the functionsproperly, we introduce the term
bandlimited, where we define a functionu to bebandlimitedif its Fourier transform̂u vanishes
outside some compact intervalΣ. Additionally we define a function to beε-bandlimitedif its
Fourier transform̂u is less thanε outside some compact intervalΣ. In Figure 5.5 we can see
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Figure 5.5:The Fourier transform of the linear finite element basis function
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the Fourier transform of the linear finite element basis function.

Obviously, waves with low wave number are better represented (close toκ = 0 ) than high
frequencies. This fact is important for the coupling operator, since both, the Bridging scale
operator and the weak coupling operator map into the coarse scale“ which can be represented
by a set of basis functions, that is, finite element shape functions”1
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Figure 5.6:The Fourier transform of the initial waveu and its projection

For the given initial amplitudeq the Fourier spectrum is given in Figure 5.6 (blue,dashed).
Moreover the Fourier spectrum of the corresponding projected displacement is given (red).
As expected, only low frequencies, are transferred and the high frequency, which have no
physical meaning on the coarse scale are neglected.

In a next step we examined the error in the frequency domain. As we have already mentioned,
the Bridging scale method can be seen as a special case of the weak coupling concept. We
showed, that within our weak framework, the Bridging Scale method can be interpreted as
piecewise constant approximation. This is the case, when the patch size|ωα| of each atom is
set tor0, i.e. exact the distance between the neighboring atoms. In Figure 5.7 we measured
the error between the initial amplitude and the image of thisinitial amplitude under the weak
coupling operator

errF := ‖F(q)−F(π(q))‖ℓ2 . (5.22)

In Figure 5.7 it can be seen that in this context, the weak coupling approach offers more
freedom compared to the Bridging Scale method, since the size of the patch is adjustable.

1[LKP06, Chapter 6]
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Figure 5.7:The Error (5.7)comparing the weak coupling method with the Bridging Scale
method

5.4 Numerical Examples

In this section the performance of the weak coupling method for the complete overlapping
case is presented.

5.4.1 A One Dimensional Example

In our simulation we choose∆t = 0.2. And use the same staggered time stepping algorithm,
as explained in Subsection 5.2.2.

−50 0 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

particle position

d
is

p
la

c
e

m
e

n
t

−50 0 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

particle position

d
is

p
la

c
e

m
e

n
t

−50 0 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

particle position

d
is

p
la

c
e

m
e

n
t

Figure 5.8:FE-MD simulation for the coarse scale time stepsn = 3, n = 12 andn = 18.

In Figure 5.8, the coupled MD/FE simulation is shown. The square-marked line (red) repre-
sents the displacements of the fine scale. The continuous line (blue) maps the displacement of
the coarse displacement. For comparison to the multiscale simulation a full atomistic simula-
tion using 420 atoms is shown in Figure 5.9.
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Figure 5.9:Full MD simulation, for the fine scale time steps:m · n = 150, 600 and900

5.4.2 A Two Dimensional Example

Here we used the Molecular Dynamics Software Package TREMOLO [GKZ07, GH04, GH06]
for the atomistic simulation. For the simulation of the continuum mechanics we used the
finite element toolbox UG [BBJ+97]. A parallelization of the implementational framework
(i.e. the interface between the finite element and the molecular dynamics) can be found in
[Kra09] and in the context of MACI (Massively Parallel Atomistic Continuum Interface) of
the working group Prof. Dr. Rolf Krause.

In this example, we test the performance of our projection operatorπh for d = 2. To do so,
we study wave propagation through a small sheet. Considering the domainΩ = [0, 80] ×
[400, 800] ⊂ R

2 the coupling region chosen isΞ = [0, 80] × [400, 550] ⊂ Ω. An initial
displacement in the molecular domainΞ propagates out of the coupling zone intoΩ\Ξ, where
only coarse finite elements are used.
The initial displacement inΞ is a combination of high- and low frequency parts:

q(x, y) =
A

A− qc

(
Ae(−(y−t)/σ)2 − qc

)(
1 + b cos

(
2π

H
(y − t)

))
ey (5.23)

with ey = (0, 1)T , t = 510, σ = 15, H = σ/4, A = 0.15, b = 0.3, rc = 5 · σ and
uc = Ae(rc/σ)2, where we adopted the notation used in [LKP06].
The potential function is the LJ-Potential (1.13) with nearest-neighbor interaction, i.e.rcut =

3/2 · r0. For the coarse scale we employ the standard linear elastic Saint-Venant material law
with elastic modulusE = 30 and Poisson ratioν = 0.2589, discretized on a triangular mesh.
The coupling zone contains11.130 atoms and about585 triangles. The patch size ish = 1.7

for each atom. Since the focus here is put on the properties ofthe new transfer operator, the
MD block was chosen large enough to avoid spurious reflections at the boundary.
For the integration in time, we have used the time-stepping scheme given in Subsection 5.4.1
with the following changes:

• The coarse-scale force is calculated by linear elasticityF = F (d).
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MDCM

Figure 5.10:Geometry of the first example in2d.

• The coupling is done by overwriting the coarse-scale displacement and velocities in
each time step in the coupling zone by the values obtained from theL2 projection of the
values on the fine scale.

We choose∆t = 0.1 andm = 2. Figure 5.11 shows the time-evolution of the absolute value
of the perturbation as it propagates into the coarse regionΩ\Ξ. In the coupling region, only
the atomic displacements are shown. It can be seen that by using theL2 projection an almost
seamless transition between the scales can be achieved. In the second example we used the
radial symmetric version of (5.23).
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Figure 5.11:A 2d example of a coupled simulation with the weak coupling method: transfer
of a wave from micro (MD) to macro (FE), with a comparably large mesh size in the FE

region
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Figure 5.12:A 2d example of a coupled simulation with the weak coupling method: A radial
symmetric initial amplitude starting in the bright blue stripe in the middle (MD) entering into

the darker coarse scale (CM) region
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6 The Weak Multiscale Method and Coupling
with Constraints

In this chapter, we consider a partly overlapping multiscale method. In contrast to the
foregoing Chapter, whereΩMD = Ξ, here, we consider the handshake region asΞ =

ΩMD ∩ ΩCM, Ξ 6= ΩMD ,Ξ 6= ΩCM. For an illustration consider Figure 6.1.

ΩCMΞΩMD

Figure 6.1:Example of a domainΩ ⊂ R
2 with a pure molecular partΩMD, a pure continuum

part ΩCM and a mixed partΩMD ∩ΩCM.

Once again, byq andu we denote the displacement fields inΩMD andΩCM respectively.

To couple the MD and continuum system we impose constraints(q, u) ∈ C whereC is the con-
figuration manifold (linear subspace). This means that the displacementsq andu at each time
should lie on the manifoldC. The shape and orientation ofC define the way the constraints
alter the displacements of the individual, uncoupled systems.

Obviously, the constraints are only active in the handshakeregionΞ, where we have the co-
existence of the molecular and continuum description. The bridging domain method has been
introduced by Xiao and Belytschko [XB04], therein the handshake region, where constraints
are imposed is called the bridging domain. In their method they impose point wise constraints,
by

C =
{
(q, u)

∣∣ qα = u(Xα) for each atomα ∈ AΞ

}
. (6.1)

Reformulating the constraints in an algebraic form we find

C = {g = 0} with g(q, u) = q −Nu. (6.2)
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Let us recall the interpolation operatorN : Vh(Ξ) → R
d|AΞ| defined by(Nu)α = u(Xα) of

Chapter 5.
The choice of point wise constraints is motivated by the Cauchy-Born rule. The constraints
(6.2) are a strong modification of the uncoupled systems since they prohibit the existence of
displacement fieldsq which are not exactly representable on the coarse finite element mesh.
As a consequence high-frequent waves are not permitted in the bridging domain and are
reflected at the interface∂Ξ ∩ΩMD since energy is conserved.

We can see that the major problem of this approach is the strongness of the constraints which
serve two purposes:

• They deliver the information transfer between the scales. In the Bridging domain both
systems have the same dynamic yielding a globally consistent displacement field.

• They avoid the reflection of high-frequent waves (roughly speaking, those not repre-
sentable on the finite element mesh) at the atomistic boundary ∂Ξ by prohibiting the
propagation of such waves in the Bridging Domain.

From our point of view, the failure of the coupling method presented above is due to the
misuse of the same constraints for both, information transfer and reflection elimination.
In Section 6.2 we show how to decouple these tasks by imposingconstraints in a ”weak”
sense. Since small-wavelength waves are not affected by theconstraints they can propagate
smoothly in the bridging domain where e.g. non-reflecting boundary conditions can be used
to eliminate reflections.

In the following we assume the constraint manifoldC to be linear. Hence we can find a linear
mappingg so thatC = {g = 0}. The mapg might be written as

g(q, u) = BMDq −BCMu.

Here,BMD andBCM are linear operators with range in some spaceD overΞ.
In the Bridging Domain methodD is the space of all atomistic displacements andBMD = id,
BCM = N .

6.1 Deriving Constraints in the Lagrangian Setting

In Chapter 1 we showed, that in general the equations of motion on the atomistic as well as on
the continuum level can be derived either from the Hamiltonian or the Lagrangian description.
In some situations, the derivation from the Lagrangian equations is more natural, since the
Hamiltonian approach requires the identification of the canonical conjugated momenta, which
are derivatives of the Lagrange function with respect to thevelocity.
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We assume, that the potential energyU does not depend on the velocity. Let us recall the
Lagrangian equations of motion from (1.11), then the time evolution of such a system is given
by

d

dt

∂

∂ṡ
L =

∂

∂s
L . (6.3)

SinceT does not depend on the displacement, the right hand side of (6.3) is the negative of
the gradient ofU . However, the canonical conjugated momentum∂∂ṡL usually differs from the
kinetic momentummṡ.

This general formalism applies to the Bridging Domain setting explained before, as follows:
Recall from Chapter 1 that

LMD(q, q̇) = T MD(q̇)− UMD(q)

and
LCM(u, u̇) = T CM(u̇)− UCM(u)

denote the Lagrange function of the molecular dynamic system and the continuum system.
The Lagrangian of the coupled system now is a weighted sum of the individual Lagrange
functions plus a contribution due to the constraints.

Since in the overlapping domain the molecular and the continuum description coexist, a
weighting functionw : Ω → [0, 1] is necessary so that energy is not counted twice inΞ.
We requirew ≡ 1 in ΩMD \ Ξ so that the equations of motion is not altered in those subdo-
mains where only one model is valid.
Denoting by(·, ·)V a scalar product onV the consistent LagrangianL reads

L(q, u, q̇, u̇, λ) = w ·
(
T MD(q̇)− UMD(q)

)
+

(1−w) ·
(
T CM(u̇)− UCM(u)

)
+ (λ, g(q, u))V . (6.4)

The Lagrange multipliersλ ∈ V are determined so that the coupled solution(q, u) lies on the
configuration manifold(q, u) ∈ C, i.e g(q, u) = 0.

Let us remark, that in the above formula the multiplication by w and(1 − w) is an abuse of
notation. More precisely,

w · T MD(q̇) =
1

2

∑

α

mαw(Xα) · |q̇α|2

and

(1− w) · T CM(u̇) =
1

2

∫
̺(1− w) · |u̇|2 dx

Inserting the Lagrangian (6.4) into the general Lagrangianequation (6.3) we obtain the coupled
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equations of motion

M̄ q̈ = −∇ŪMD +
(
λ,∇qg(q, u)

)
V

(6.5)

¯̺ü = −∇ŪCM +
(
λ,∇ug(q, u)

)
V

(6.6)

The equations of motion inΩCM should be understood in a weak sense.
In (6.5),(6.6) we introduced the notations

M̄α = w(Xα)mα, ¯̺ = (1− w)̺

as well as
ŪMD = w · UMD and ŪCM = (1− w) · UCM.

Comparing (6.5), (6.6) to the equations of motions of the individual uncoupled systems we
see that the weightingw alters the forces and does not cancel out. As a result one finds
that the waves traveling into the coupling zones are amplified whereas leaving waves are
damped. These effects might be troublesome, e.g. because they prohibit the usage of exact
non-reflecting boundary conditions. We refer to [ACRZ08] for a discussion of approximations.

Notably we find the canonical conjugated momenta to weightedas well, e.g. pMD
α =

w(Xα)mα · u̇α. Therefore

w · T MD(pMD) =
1

2

∑

α

∣∣pMD
α

∣∣2

mαw(Xα)

In [XB04] the weighted Hamiltonian is always written using the kinetic momenta rather than
the canonical conjugated momenta. However, when deriving the Hamiltonian equations it is
important to reformulate the Hamiltonian using the conjugated momenta which is only possi-
ble through the Lagrange formulation.

6.2 Imposing Constraints in a Weak Sense

In the forthcoming we interpret the constraints, introduced above (6.5) and (6.6) in a weak
sense. To do so, we construct a manifoldC, which in contrast to (6.2) does not impose
constraints pointwise but in a weak sense, i.e.

C =
{
(q, u)

∣∣ (λ, q − u)L2(Ξ) = 0 for all λ ∈Mh

}
(6.7)

where(·, ·)L2(Ξ) is theL2 scalar product overΞ andMh the multiplier space introduced in
(4.18).

The choice of the multiplier space ensures, that the high frequent (large wave number) part
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of a wave, which can not be represented by the finite element mesh are not constrained. As a
consequence these wave with a large wave number can pass unaltered thorough the handshake
regionΞ.

The constraints in (6.7) requireq ∈ L2(Ξ), however the displacement on the molecular scale
is given by(qα)α∈A which is in the Euclidean space.

ΩCMΞΩMD

Figure 6.2: A2d example of patches overlappingΞ ∪ ΩMD

Thus in the fashion of Chapter 4 we define analogue to (4.12)

ι(X, q) =
∑

α∈A

qαϕα (6.8)

Let us note that the truncation of the approximation space atthe bridging domain boundary
leads to a reduced approximation quality near the boundary.However these effects are
negligible.

So far we have transferred the molecular displacement into afunction space. By means of the
scale decomposition ofι(q) (compare to (5.5)) we can reformulate the definition ofC in (6.7)
in a more accessible way. We decompose the total displacement field in the functionspace by

ι(q) = ι(q) + ι(q)′,

whereι(q) is a coarse scale part andι(q)′ is a fine scale part. As a matter of fact not all
information ofι(q) can be represented on the coarse scale.

More precisely, not all wavelengths in the MD solutionq can be captured by the finite element
space. As stated above constraints should only affect thosevalues, which can be represented
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on both scales (i.e. in the function spacesVδ andVh).
For this purpose letVh(Ξ) denote the space of restrictions of functions fromVh to the
Bridging domainΞ.

Analogue to Chapter 5 the coarse scale representation is nowdefined byι(q) = πh(ι(q)) ∈
Vh(Ξ), whereπh is theL2 projection defined in (5.6), i.e.πh : L2(Ξ) −→ Vh(Ξ). Then the
displacement stemming from the fine scale can be decomposed by

ι(q) = (ι(q)− πh (ι(q))) + πh (ι(q)) . (6.9)

Thus we have decomposed the displacementι(q) into a part which can be captured by
the coarse scale and into a part which can only be representedon the fine scale. Since
ι is bijective, this allows us to compute the fine fluctuation field of the MD solution as
ι−1(ι(q)′) = ι−1(ι(q)− πh(ι(q))). With this terminology we may write

C =
{
(q, u)

∣∣ u = ι(q) in Ξ
}
. (6.10)

Now, (6.10) gives rigorous meaning to the above statements,namely the fact that the high
frequency partι(q)′ ∈ kerπh is not affected by the weak constraints.
Once again, insertingι(q) =

∑
α∈AΞ

qαϕα andπh (ι(q)) =
∑

p∈NΞ
h
πpλp into (5.6), we

obtain
Mπ = Rq (6.11)

with M = (mts)t,s∈NΞ
h

, R = (rsα)s∈NΞ
h ,α∈AΞ

defined in (5.12) giving rise to the matrix
representation

W = M−1R (6.12)

Hence, we have
C =

{
(q, u)

∣∣ u = Wq
}

=
{
(q, u)

∣∣Mu = Rq
}

(6.13)

so thatBCM = id, BMD = W or BCM = M , BMD = R. The spaceD is the finite element
spaceVh(Ξ).
Since the dimension ofD determines the computational burden of the coupling method(it
is the size of the multiplier matrix to be inverted in every time step of, e.g., a Shake-Rattle
time integrator) the weak constraints are computational more efficient than rigorously applied
pointwise constraints of [XB04].

Discretization in time To solve the coupled equations of motion (6.5),(6.6) we use the well
known Shake-Rattle time integration scheme. This is a symplectic, second order time integra-
tion scheme for constrained systems which is widely used in molecular dynamics simulations
[GKZC04, HLW02].
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Let {0 < ∆t < 2∆t < . . . < N∆t = T} denote a decomposition of the time interval[0, T ].
We do not consider multi-rate time integration schemes, i.e., we employ the same step size∆t

on both scales.

We denote byM̄MD , F̄MD , M̄CM, F̄CM the weighted mass matrices and weighted forces on
the respective scales. Let us recall thatW = M−1R is the algebraic representation of the
L2 projectionπh, see (5.13). Note, that the mass matrixM is truncated mass matrix, since
the operator acts only overΞ Starting from the initial valuesq0, q̇0, u0, u̇0 the Shake rattle
algorithm reads

for n = 1, . . . , N − 1

Compute velocity trial valueṡqn+1/2 = q̇n + 1
2∆tM̄−1

MDF̄MD(qn, q̇n) and u̇n+1/2 =

u̇n + 1
2∆tM̄−1

CMF̄CM(un).

Compute displacement trial valuesqn+1 = qn + ∆tq̇n+1/2 and un+1 = un+1 +
∆tu̇n+1/2.

Compute the residualg = Mun+1 − Rqn+1 and solve the linear systemΛλ = g with
the multiplier matrixΛ = MM̄−1

CMM +RM̄−1
MDR

T.

Correct

qn+1 ← qn+1 + M̄−1
MDR

Tλ

q̇n+1/2 ← q̇n+1/2 + ∆t−1M̄−1
MDR

Tλ

un+1 ← un+1 − M̄−1
CMMλ

u̇n+1/2 ← u̇n+1/2 −∆t−1M̄−1
CMMλ

Compute velocity trial valueṡqn+1 = q̇n+1/2 + 1
2∆tM̄−1

MDF̄MD(qn+1, q̇n+1/2) and
u̇n+1 = u̇n+1/2 + 1

2∆tM̄−1
CMF̄CM(un+1).

Compute the residualġ = Mu̇n+1 −Rq̇n+1 and solve the linear systemΛλ = ġ.

Correct

q̇n+1 ← q̇n+1 + M̄−1
MDR

Tλ

u̇n+1 ← u̇n+1 − M̄−1
CMMλ

end

Figure 6.3: Shake rattle algorithm

Let us remark that the multiplier matrixΛ is positive definite since

xTΛx = (Mx)T M̄−1
CM (Mx) +

(
RTx

)T
M̄−1

MD

(
RTx

)
(6.14)
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Therefore, all steps in the above algorithm are well defined.

6.3 Numerical Examples

Here, in this section, we validate the method explained above. To do so, we used the standard
examples in1d and2d explained in the foregoing chapter. These1d and2d examples show
well, that atomistic displacements can propagate into the continuum. In the3d example it
is shown, that due to the symmetry, also continuum displacements can propagate into the
atomistic region.

We already mentioned that the weak constraints allow small wavelength phonons to enter the
bridging domain without reflection. In order to cope with reflections at the boundary∂ΩMD

additional effort is necessary.
In Chapter 2, we already introduced the PML method which changes the equations of motion
by an additional force term

F 7→ F +M · D (2q̇ + Dq) . (6.15)

Note that (6.15) contains a frictional term and additionally changes the stiffness of the lattice.
Numerical evidence shows that we can omit the last termMD2q if D = (d(Xα))α∈A is
chosen appropriately, (cf. Section 6.3). Thus, in our numerical examples in Section 6.3, we
use a “pure” frictional term, i.e.,

F 7→ F +M · D2q̇. (6.16)

Recall thatD = (d(Xα))α∈A we see that (2.34) and (6.15) are equivalent.
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Figure 6.4: An example of a domainΩ ⊂ R
2 and its extensionΩL

Different choices for the damping zone, i.e., the support ofd, are possible (see Figure 6.4).
The damping zone could be a layer aroundΩMD. In this case the full wave spectrum must
be removed. If we useΞ as the damping zone we must take care to damp only the high
frequency waves in order to not disturb the information transfer between the scales. Although
this approach requires a larger coupling zoneΞ, it is computationally more efficient, since no
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additional atoms need to be introduced (see Figure 6.4).
Since (6.15) affects phonons of arbitrary wave numbers, it is not appropriate if the damping
zone is equal toΞ, as mentioned above. Rather we use

F 7→ F +M ·D (2Qhq̇ +DQhq) (6.17)

whereQh is the algebraic representation ofid−Nπhι, N being the interpolation operator
(cf. (6.2)). Note thatQhq is an easily computable approximation to the fine fluctuation
ι−1(q′).
The waves with high wave numbers (small wavelengths) are notaffected by the constraints
and are able to pass through the Bridging domain.

6.3.1 A One Dimensional Example

We consider the propagation of an initial amplitude througha1 dimensional slab. On the fine
scale we use a Lennard-Jones potential withσ = 1, ε = 1 and nearest neighbour interaction
so that a lattice of atoms with distancer0 = 21/6 is a minimum of the total energy. To derive
a continuum model for the coarse scale we use the Cauchy-Bornrule [BH54]. This ensures
matching elastic coefficients. The FE density̺ = 1/r0. The initial amplitude in the MD
region was

q =
A

A− qc

(
A exp(−(X/σ)2)− qc

)
· (1 + b · cos(2πX/H)) (6.18)

with A = 0.015, σ = 30, b = 0.1, uc = e−5 andH = σ/4. Since the propagation to the left
and to the right is completely symmetric we only consider atoms with initial positionsX ≥ 0.
We studied two systems with100 and50 atoms each. The finite element size was chosen as
5r0 and the bridging domain size was20 and10 elements. Figure 6.5 shows the coupling
geometry of the larger system.
For the PU we usehα = 0.75r0. For the numerical integration we use a Shake rattle integrator
with ∆t = 0.05. The PML damping functiond was chosen asd(X) = − log(0.1) · 0.15 ·
(dist(X,Ξ)/diam(Ξ))2. We use a linear weighting function.
The pictures show that we achieve a smooth transition of the wave from the fine to the coarse
scale. Especially fordiam Ξ = 100r0 we observe no reflections. The energy history (Figure
6.8) supports this observation.
If diam Ξ = 50r0 we observe small reflections. As Figure 6.7 shows these reflections are
caused by insufficient damping. At the boundary of the bridging domain no reflections are
visible. Let us note that the strong amplification of high frequent parts at the MD boundary is
due to the weighting.
The size of the multiplier matrix in both cases is20 × 20 and10 × 10 resp. Therefor, even
for the large bridging domain the size of the multiplier matrix is smaller than the multiplier
matrix in the BD method for typical choices ofΞ (e.g. consisting of more than5 elements).
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Additionally, Λ has a smaller bandwidth.

Figure 6.5:Initial amplitude of the1d example.

Figure 6.6:Displacement after500 and800 time steps the larger system.

6.3.2 A Two Dimensional Example

To evaluate our method in higher dimensions we consider the propagation of a radial wave
through a2 dimensional solid. Again, we use a nearest neighbor Lennard-Jones potential with
σ = 1, ε = 1 as the atomistic interaction potential. The constitutive equation of the continuum
is derived by means of the Cauchy-Born rule and̺ = 0.92, the inverse of the volume of the
unit cell.
The number of simulated atoms is60000. For comparison we simulated the2 dimensional slap
with a pure atomistic simulation with200000 atoms. The finite element mesh contains8960
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Figure 6.7: Displacement after400 and700 time steps for the smaller system.

Figure 6.8: Time history of the energy of the1d example.

elements and9234 nodes. The number of elements in the bridging domain was2 ·8 ·30 = 480.
Each element contains between15 and20 atoms.

The Shake-Rattle time step size is∆t = 0.005. The patch sizehα = 0.57r0 and the function
d for use in the frictional damping term was chosen as in1 dimensions except forR = 0.35.

Figure 6.9 shows the simulation geometry. Pictures 6.10 and6.11 show only the relevant
portion of the domain.

Again, we observe little or no reflection at the bridging domain boundary. Figure 6.10 shows
that the frictional damping efficiently reduces the reflections at the MD border with only small
disturbance of the transferable displacements. From Figure 6.10 we infer a (visually) good
agreement between the coupled and the pure simulation
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Figure 6.9:2 dimensional coupling geometry.

6.3.3 Three Dimensional Examples

For the3d examples, we considered the block, where the top and bottom region are discretized
by finite elements and the middle part is atomistic.
On the coarse scale we used 2800 elements and on the fine scale 12000 atoms. The material
law for the continuum part is given by the Cauchy Born rule, the finite element size is2.2r0

For the atomistic simulation, we employed the Lennard-Jones potential with nearest neighbor
interaction, i.e.rcut = 1.5r0. We computed 10000 time steps the the Shake Rattle algorithm
as time integrator and took∆t = 0.005. The size of the overlap region (handshake region) is
four finite elements. In the fist example, we applied a the top(0., 0.,+1.)T and at the bottom
(0., 0.,−1.)T as forces. In Figure 6.12 the dynamics of this block at different times is shown,
when external forces at the top and at the bottom are applied.
In the second example we applied at the top a force(−0.2, 0, 0)T and on the continuum part
on the bottom we applied(0.2, 0, 0)T .
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Figure 6.10:Comparing the weak coupling method with constraints. Left:without damping.
Right: with damping
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Figure 6.11:Comparing the weak coupling method with constraints. Left:pure MD. Right:
coupling with damping.
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Figure 6.12:A 3d example of the weak coupling method with constraints: External vertical
forces are applied.
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Figure 6.13:A 3d example of the weak coupling method with constraints.
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merik, Algorithmen, Parallelisierung, Anwendungen.). Berlin: Springer , 2004.



Bibliography 113

[HFML04] A. Huerta, S. Fernández-Méndez, and W.K. Liu. A Comparison of two Formu-
lations to Blend Finite Elements and Mesh-free Methods.Appl. Mech. Engrg.,
193:1105– 1117, 2004.

[HFMQ98] T. Hughes, G. Feijoo, J. Mazzei, and J. Quincy. The Variational Mutiscale Method
- A Paradigm for Computational Mechanics.Comput. Meth. Appl. Mech., 166:3–
24, 1998.

[Hir88] C. Hirsch.Numerical Computations of Internal and External Flows, Vol. 1. Wiley
interscience, 1988.

[Hir90] C. Hirsch.Numerical Computations of Internal and External Flows, Vol. 2. Wiley
interscience, 1990.

[HLW02] E. Haier, C. Lubich, and G. Wanner.Geometric Numerical Integration. Springer,
2002.

[HZ98] H. Hofer and E. Zehnder.Symplectic Invariants and Hamiltonian Dynamics.
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