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Introduction and Overview

In recent years, our understanding of the evolution of the Universe has made a great leap
forward. A decisive factor for this achievement is that we have collected an enormous
amount of high-quality cosmological data, e.g., the positions and shapes of millions of
galaxies. The improvements in data collection are founded in the design of modern
observational instruments and the ability to store and process large amounts of data on
computers. Along with the progress of the experimental techniques, we have developed
a consistent theoretical framework which accurately reproduces the data. This (ongoing)
progress makes cosmology a precision science where important cosmological parameters
can be constrained with percentage accuracy. However, our improved understanding also
raises new fundamental questions of the physical processes involved. Most importantly,
the nature of dark matter and dark energy, which together comprise 96 per cent of
the energy composition of the Universe, is still unknown. Dark matter is postulated
to explain, among other observations, the flat rotation curves in spiral galaxies. Up
to now, attempts to directly detect dark matter particles or to reproduce them in
high-energy accelerators have failed. Dark energy is a hypothetical form of energy which
is introduced to explain the current accelerated phase in the expansion history of the
Universe. At the moment and in the near future several complementary experiments
are underway and being planned to get an insight into these unsolved issues, making
this a particular exciting time for cosmologists.

A successful cosmological model needs to explain measurements of the early Universe,
such as the abundance of primordial elements and the temperature fluctuations in
the cosmic microwave background (CMB) radiation, as well as measurements of the
local Universe such as the distribution of galaxies. The connection between the two
regimes is that the large-scale structure we observe today is believed to have formed
by gravitational collapse of small density fluctuations that were present in the early
Universe. With the knowledge of the initial distribution of these density perturbations,
which can be accurately measured by observations of the CMB temperature fluctuations,
we can predict the statistical properties of the large-scale structure observed today. To
describe this evolution, we need the physics of gravitational clustering as described by
general relativity or for scales much smaller than the Hubble radius even by a Newtonian
approach. Up to now, theoretical predictions have been essentially limited to dark
matter fluctuations, whereas observations measure the light or galaxy distribution of
the Universe. The difficulty is that, in general, the statistics of galaxy clustering is not
the same as the statistics of dark matter clustering and the scale-dependent difference
between both is known as the galaxy bias. To find a connection between theoretical
predictions and observations, the modeling of the bias is one of the crucial challenges in
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2 Introduction and Overview

modern cosmology.
A promising cosmological probe to infer the bias is galaxy-galaxy lensing which

describes the deflection of light from background galaxies caused by the gravitational
field of foreground galaxies. The gravitational field around the foreground galaxies is
dominated by the dark matter halos in which the galaxies are embedded. The advantage
of galaxy-galaxy lensing compared to other cosmological probes is that it does not rely
on luminous tracers of the underlying mass distribution. Moreover, it can probe the
potential of the dark matter halo out to much larger distances from the halo center
than it is possible with measurements of rotation curves in spiral galaxies. Recently, the
concept of galaxy-galaxy lensing has been generalized to a method which is sensitive to
the distortion pattern around pairs of foreground galaxies rather than the distortion
around a single galaxy. This new method is termed galaxy-galaxy-galaxy lensing
(GGGL). A potentially beneficial application of GGGL is to study the environment of
bound systems which are composed of a small number of galaxies, like galaxy groups.

Theoretical predictions of measurements of galaxy-galaxy lensing need to provide an
accurate model of gravitational clustering. These models necessarily have to include a
treatment of nonlinearities in the matter density field in order to describe the small-scale
regime of the measurements. There are three main approaches to deal with these
nonlinearities: on large to intermediate scales, the dynamical equations can be solved
analytically with a perturbative ansatz which, however, breaks down on small scales.
Alternatively, one can simulate the evolution of the density and velocity fields in dark
matter N -body simulations. The drawback of using simulations is that they are limited
to a specific volume size and are very time-consuming to conduct. Finally, there are
analytic models which combine the results from simulations and theoretical results.
These models allow for a physical interpretation and may help to find a solution of the
gravitational clustering equations valid for the whole range of scales. The drawback is
that they need to be well tested against numerical simulations.

We apply the third approach and consider an analytic model where all the dark
matter of the Universe is bound in spherically symmetric halos. The standard paradigm
for the formation of galaxies is then that baryonic gas can only cool and form stars
in potential wells which are provided by dark matter halos. On large scales, galaxy
clustering is then dominated by the well-known clustering of halos, and on small scales it
is dominated by the clustering of galaxies in their host halo. The latter can be predicted
by modeling the halo occupation distribution which is the mean number of galaxies
contained in a halo of a specific mass. In addition, one needs to specify the radial
distribution of galaxies in their host halo. This analytic approach is known as the halo
model for galaxy clustering. If one considers only dark matter clustering one speaks of
the dark matter halo model.

To extract cosmological information from the observed large-scale structure, the
best we can do is to adopt a statistical approach where our observable Universe is a
stochastic realization of a random field. The key observables are the moments of this
random field which are the n-point correlation functions in real space. Only for the
special case of Gaussian random fields does the two-point correlation function, or its
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Fourier counterpart the power spectrum, encode the full statistical information of the
field. However, the process of structure formation inevitably leads to nonlinearities in
the fields which also give rise to higher-order correlation functions. It is interesting to
study the three-point correlation function, or its Fourier counterpart the bispectrum,
since it is the lowest-order non-vanishing moment which describes non-Gaussian effects.
Furthermore, it is beneficial to study the fourth-order moment, which is the so-called
trispectrum in Fourier space, since it determines the expected statistical errors for
a given power spectrum estimator. In addition to these aspects, the determination
of higher-order spectra allows one to lift cosmological parameter degeneracies and to
enhance the signal-to-noise ratio of observations of galaxy clustering. The halo model
provides a simple framework for analytic calculations of higher-order spectra.

Overview

In this thesis we focus on the modeling and cosmological interpretation of higher-order
spectra. In particular, we aim to develop a quantitative model for the GGGL signal,
combining the dark matter halo model and the halo model for galaxy clustering. In
addition, we want to predict the statistical error matrix for a given unbiased estimator
for the projected matter-galaxy power spectrum which is applicable for the whole range
of scales probed by observations. The results can be used to perform a likelihood analysis
of the galaxy-galaxy lensing signal which shows how well potential future experiments
can constrain cosmological parameters.

The outline of the thesis is as follows:

• In Chapter 1, we derive the important relations of the homogeneous background
Universe and discuss how different cosmological probes can determine the impor-
tant cosmological parameters. In addition, we present the observational evidence
which in recent years has led to the cosmological standard model. As an important
example for a mechanism beyond the standard model, we discuss the inflationary
phase of the early Universe.

• Chapter 2 deals with the physical description of cold dark matter structure
formation via the nonrelativistic fluid equations. We show that these can be solved
with a perturbative approach, first presenting the well-known linear solution, and
then giving a valid general perturbative solution. In addition, we introduce n-point
correlation functions which are used to infer statistical information on the matter
or galaxy clustering.

• In Chapter 3, we first present the ingredients of the dark matter halo model such
as the halo mass function, the halo density profile and the halo bias. Then we
show that we can construct general n-point correlation functions in terms of these
ingredients which are valid on large and on small scales. We give explicit results
for the two-, three- and four-point correlation functions and their corresponding
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Fourier space counterparts, i.e., the power spectrum, the bispectrum and the
trispectrum, which are needed for the subsequent chapters.

• The results of the dark matter halo model are extended to the halo model of
galaxy clustering which is shown in Chapter 4. The main new ingredients are the
halo occupation distribution P (N |m) which is the conditional probability that
a halo of mass m contains N galaxies, and the radial distribution of galaxies in
their host halo. We focus on the development of cross-spectra which are probed
by galaxy-galaxy lensing, and give the explicit relations for the power spectra,
bispectra and trispectra.

• In Chapter 5, we review the basic concepts of gravitational lensing. Then we
focus on cosmic shear as a cosmological probe whose signal is a filtered version
of the angular spectra. The angular and spatial spectra are related by Limber’s
approximation. We use our implementation of the dark matter halo model
developed in Chapter 3 to produce theoretical predictions.

• In Chapter 6, we first discuss galaxy-galaxy lensing and the estimation of its
signal with the halo model. The main emphasis is on the recently introduced
GGGL method for which we show halo model predictions of the signal. For these
predictions we need the results of the halo model for galaxy clustering as given in
Chapter 4.

• Chapter 7 deals with the theoretical modeling of the covariance of the galaxy-
galaxy lensing power spectrum. In particular, we include the non-Gaussian part
which was neglected in previous studies. Moreover, we analyze the influence of
shot and shape noise on the correlations of different scales.

The main new results of this thesis are summarized at the end of Chapter 6 and
Chapter 7. The thesis concludes with a general summary and gives an outlook on future
related work.



Chapter 1

The Cosmological Standard Model

At first sight it seems impossible to describe the evolution of the Universe. Fortunately,
observational data indicate that on the largest scales we live in a highly symmetric
Universe which makes a theoretical description feasible. Going to smaller scales, however,
we see many structures like galaxies that are not distributed isotropically. The standard
paradigm is that these structures originated from small perturbations that were present
in the early Universe and which subsequently grew due to gravitational instability. Here
we focus first on the cosmological model of the homogeneous background Universe
neglecting all perturbations. In the next chapters we will discuss in detail the process of
structure formation leading to the observed inhomogeneous structures on small scales
in the environment of the mean background model. Understanding the properties of
the mean background Universe and the dynamical formation of structure are the key
theoretical concepts that are needed for the interpretation of experimental results of
cosmological probes.

The great improvement of observational techniques, theoretical models and numerical
simulations in recent years helped us to develop a consistent picture of the origin and
evolution of the Universe, the so-called standard model. It is based on the following
observations: the expansion of the Universe first observed by Hubble, the observation of
primordial elements from nucleosynthesis formed in the early Universe and the isotropic
temperature distribution of the photons of the cosmic microwave background (CMB)
radiation. However, there are still many open questions, for example the origin of the
accelerated expansion in the recent history of the Universe, the (particle) nature of
dark matter and the physical process that led to inflation in the early Universe. The
advent of precision cosmology, which allows us to determine cosmological parameters
at percentage-level accuracy, will constrain the concordance model even better with
upcoming surveys. Maybe, taking advantage of the present rapid theoretical and
observational progress, we will then be able to probe the processes that are not (yet)
part of the standard model.

This chapter is organized as follows: In Sect. 1.1 we introduce the concept of a
homogeneous background Universe and derive the most important relations which
describe the kinematical and dynamical properties of this background Universe. We
review then the determination of the cosmological density parameters in Sect. 1.2 that
quantify the energy budget of the Universe. This is followed by Sect. 1.3, where we
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6 1 The Cosmological Standard Model

give a concise presentation of the physical phenomena that are part of the cosmological
standard model and review the history of the Universe from the Big Bang to the current
large-scale structure. Furthermore, we discuss the inflationary phase of the very early
Universe which is a necessary extension of the standard model.

1.1 Homogeneous Background Universe

In this section we derive the most important relations of the homogeneous background
Universe which are used for the rest of the thesis, namely the Friedmann equations, the
cosmological redshift and the distance-redshift relations.

1.1.1 Robertson-Walker Metric

The Copernican principle1 states that the Earth has no special position in the Universe.
A generalization of this concept leads to the assumption that there is no favored position
in space at all. In addition, observations indicate that the Universe looks isotropic
around the Earth. Combining both points, we deduce isotropy around every point in
space. One can show mathematically that global isotropy implies homogeneity of space.
In summary, this leads to the famous statements

1. the Universe is homogeneous,

2. the Universe is isotropic,

which is the so-called cosmological principle. Of course, the homogeneity and isotropy of
the Universe does not apply on small scales because we see a large variety of galactic and
extragalactic structures. It is rather understood as an averaging process over sufficiently
large cells with spatial extent of > 100 Mpc.

When applying the cosmological principle, Robertson and Walker independently
showed that the general metric of space-time ds2 ≡ gµνdx

µdxν can be reduced due to
the underlying symmetry to the simple form of2

ds2 = c2dt2 − a2(t)
[
dw2 + f 2

K(w)dΩ2
]
, (1.1)

with
dΩ2 = dθ2 + sin2 θ dφ2 . (1.2)

These are the coordinates of fundamental observers which move on geodesics with the
cosmic fluid. The spatial coordinates of these fundamental observers are thus called
comoving coordinates here denoted by (w, θ, φ) and t is the cosmic time as measured in

1This goes back to the work of Nicolaus Copernicus who showed that the Earth is not the center of
the solar system but is instead moving around the Sun.

2We assume the Einstein summation convention, namely that we sum over identical upper and lower
indices. Greek indices run over the four relativistic coordinates, e.g., µ = 0 . . . 3.
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the rest frame of a comoving clock. We see that the evolution of the Universe is governed
by the time-dependent scale factor a(t). The form of the metric shows that space-time
can be decomposed into spatial hypersurfaces of constant time and curvature, where
isotropy requires these three-dimensional surfaces to be spherically symmetric. The
comoving angular diameter distance fK(w) is either a trigonometric, linear or hyperbolic
function of w corresponding to the curvature K of the hypersurfaces:

fK(w) =


K−1/2 sin(K1/2w) for K > 0 ,

w for K = 0 ,

(−K)−1/2 sinh[(−K)1/2w] for K < 0 .

(1.3)

Note that in this convention of the Robertson-Walker metric the curvature K has the
units of length−2 and the scale factor is dimensionless.

1.1.2 Cosmological Redshift

Edwin Hubble discovered in 1929 that almost all galaxies are receding from us with a
radial velocity that is on average proportional to their distance from us. As a result of
the expansion of the Universe, the light of distant sources arriving at the Earth appears
redshifted in its wavelength. Let us consider a light ray that is emitted from a comoving
source at time te (“e” for emitter) and reaches a comoving observer at time to (“o” for
observer). Since light rays travel on null geodesics we have ds2 = 0. In addition, we
assume that we have radial light rays which are characterized by a constant value of θ
and φ. If we apply these conditions to the metric (1.1) we find

c|dt| = a(t)dw . (1.4)

The coordinate distance for both comoving observers remains constant by definition:

weo =

∫ to

te

dw =

∫ to

te

dt
c

a(t)
= const. (1.5)

This equation can be written equivalently as

dto
dte

=
a(to)

a(te)
. (1.6)

Describing the infinitesimal change in time by dt ≡ ν−1, where ν is the frequency of the
light wave, Eq. (1.6) becomes

νe

νo

=
λo

λe

= 1 +
λo − λe

λe

= 1 + z =
a(to)

a(te)
, (1.7)

where the introduced redshift factor z describes the relative change in the wavelength λ.
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For the rest of this work we deal with the situation where the observer is situated on
Earth or in space and the time of the observer is today. The scale factor is normalized
to unity today, i.e., a(t0) = 1. Then the relation between the redshift z and the scale
factor a is

a(z) =
1

1 + z
. (1.8)

1.1.3 Einstein Field Equations

In the previous sections we applied the cosmological principle to achieve a geometrical
description of the Universe. In the following, we want to predict the time dependence of
the scale factor and therefore the dynamics of the Universe. The fundamental equations
used to describe the dynamics of the Universe are the Einstein field equations. In an
enormous intellectual work, Einstein developed an extension of his theory of special
relativity which incorporates also gravity. This theory, known as general relativity,
describes space-time as a four-dimensional manifold with a metric tensor gµν . The
Einstein equations couple the metric with the matter-energy content of the Universe
that is described by the energy-momentum tensor Tµν :

Gµν = −8πGN

c4
Tµν , (1.9)

with the Einstein tensor given by

Gµν = Rµν −
1

2
Rgµν + Λgµν , (1.10)

where Rµν is the Ricci tensor and its contraction R is called the Ricci scalar. Both
depend on first- and second-order derivatives of the metric. The Einstein tensor and
the energy momentum tensor satisfy the Bianchi identity ∇νGµν = 0 and energy
conservation ∇νTµν = 0, respectively. Here ∇ν denotes the covariant derivative. Since
the metric is constant with respect to covariant derivatives (∇αgµν = 0), the stated
conservation laws allow to add a term that is proportional to the metric on either side
of the Einstein equation. This was introduced as the Λ-term by Einstein in 1917 on
the left-hand side of Eq. (1.9) because he wanted to achieve a static Universe, i.e., a
Universe which is not expanding at all. Alternatively, one can also put the Λ-term
on the right-hand side of Einstein’s equation. Then it acts as a source of energy as
Heisenberg already pointed out. In this case theoretical particle physics tells us that the
constant term could be the vacuum energy of the Universe. We will come back to this
point later in this section. Note that we already included the Λ-term in the Einstein
tensor in Eq. (1.10). Taking the weak-field limit of the Einstein equation including the
Λ-term leads to a modification of the Poisson equation of Newtonian gravity which is
discussed in detail in Sect. 2.1.1.

The energy-momentum tensor of the Universe is assumed to be that of a perfect
relativistic fluid

Tµν = (ρ+ p/c2)UµUν − pgµν , (1.11)
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where ρ is the density and p is the pressure of the perfect fluid and Uµ is the relativistic
four-velocity. For comoving coordinates the four-velocity takes the particular simple
form of Uµ = (1, 0, 0, 0).

1.1.4 Friedmann Equations

The Einstein equations (1.9) can be solved for a given metric. Choosing the Robertson-
Walker metric (1.1), we obtain the two famous Friedmann equations for a homogeneous
and isotropic Universe:

H2(t) ≡
(
ȧ

a

)2

=
8πGN

3
ρ− Kc2

a2
+

Λ

3
, (1.12)

ä

a
= −4πGN

3

(
ρ+

3p

c2

)
+

Λ

3
, (1.13)

where we have also introduced the Hubble rate H(t). The value of the Hubble rate
today is the so-called Hubble constant

H0 = 100h km s−1 Mpc−1 , (1.14)

where the Hubble parameter h quantifies the uncertainties in the measurements. The
origin of this parameter is founded in the large uncertainties in the measurements of
the Hubble constant several years ago. Today the Hubble key project provides a much
more accurate determination of the Hubble constant (Freedman et al. 2001), where
they find h = 0.72 ± 0.08. We note that we can define a critical point from the first
Friedmann equation (1.12): the curvature of the Universe is flat, implying K = 0, if the
density is equal to the critical density

ρcrit(t) =
3H2(t)

8πGN

, (1.15)

where we neglected the Λ-term in the first Friedmann equation. It is possible to combine
both Friedmann equations to the adiabatic equation

d

dt
(a3ρc2) + p

d

dt
a3 = 0 , (1.16)

which is analog to the first law of thermodynamics. In other words, the change in energy
in a comoving volume element is equal to minus the pressure times the change in volume.
Note that it is possible to find this equation, without solving the Einstein equations,
from the energy-momentum conservation of general relativity, i.e., ∇µT

µν = 0.
We now derive the time dependence or alternatively the dependence on the scale

factor of the density ρ by solving the adiabatic equation (1.16). However, we need
a relation between the pressure and the density. This is obtained by an equation of
state (EOS) similar to the ideal gas in thermodynamics. We parametrize the EOS by



10 1 The Cosmological Standard Model

p = p(ρ) = c2wρ, where w is the equation of state parameter. The most general case we
consider is a time-dependent w, in which case the solution of the adiabatic equation is

ρ(a) = ρ0 exp

{
−3

∫ a

1

da′

a′
[1 + w(a′)]

}
, (1.17)

where ρ0 is the density of the considered matter species today, i.e., ρ0 ≡ ρ(a = 1). If w
is constant then the integration in the exponential can be performed and yields

ρ(a) = ρ0a
−3(1+w) . (1.18)

This implies that to find the parameter w, we must specify the equation of state for
certain forms of matter. The matter content in the Universe can be divided into
relativistic and non-relativistic matter which are often called radiation and pressureless
dust, respectively. For radiation the EOS is derived from special relativity as

pr =
ρrc

2

3
, wr =

1

3
. (1.19)

Non-relativistic matter can be approximated by

pm = 0 , wm = 0 . (1.20)

Using these relations, we find from Eq. (1.18)

ρm(t) = ρm,0a(t)
−3 , ρr(t) = ρr,0a(t)

−4 , (1.21)

for matter and radiation density, respectively. These results provide an intuitive
interpretation: The first equation describes the dilution of the number density of
particles with the expanding Universe. Radiation has an additional reductional factor
of a−1 due to the energy dependence on redshift.

In 1998, the accelerated expansion of the present Universe was independently detected
by two groups observing supernova type Ia (SNIa) (Riess et al. 1998; Perlmutter et al.
1999). This came as a surprise because the physical origin of the accelerated expansion
is still unknown and one of the biggest theoretical and observational challenges in
modern physics. The mysterious form of energy that is responsible for the acceleration
is called dark energy. From the second Friedmann equation (1.13) an accelerated
expansion (ä(t) > 0) occurs when the equation of state parameter fulfills wde < −1/3.
In particular, a constant energy density can be achieved when wde = −1 (see Eq. 1.18).
This is the simplest dark energy model and is called cosmological constant. When the
EOS parameter is time dependent, one needs to use the general equation (1.17) and we
speak of quintessence models of dark energy.

Introducing the density parameters Ωi ≡ ρi,0/ρcrit,0 for the i-th species and replacing
ρ→ ρr + ρm = ρm,0a

−3 + ρr,0a
−4, we can rewrite the first Friedmann equation (1.12) as

H2(a) = H2
0

[
a−4Ωr + a−3Ωm − a−2Kc

2

H2
0

+ ΩΛ

]
, (1.22)
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where the density parameter for the cosmological constant is defined by

ΩΛ ≡
Λ

3H2
0

. (1.23)

Setting t = t0 in Eq. (1.22) the parameters today are related by

K =

(
H0

c

)2

(Ωm + Ωr + ΩΛ − 1) ≡
(
H0

c

)2

(Ωtot − 1) , (1.24)

where we defined Ωtot in the second step, which is the total density parameter today.
This equation tells us that the total energy density and the geometry of the Universe
are closely related: for Ωtot = 1 we obtain a flat Universe (K = 0), Ωtot < 1 corresponds
to an open Universe (K < 0) and Ωtot > 1 characterizes a closed Universe (K > 0).

Replacing the curvature in Eq. (1.22) with this relation, the first Friedmann equation
finally reads for the matter-dominated era, i.e., for Ωr � 1:

H2(a) = H2
0

[
a−3Ωm + a−2(1− Ωm − ΩΛ) + ΩΛ

]
. (1.25)

Scale-factor dependent density parameters Ωi(a) can also be defined. Their evolution
can be written explicitly by using Eq. (1.25):

Ωm(a) ≡ ρm(a)

ρcrit(a)
=

8πGN

3H2(a)
ρm,0a

−3 =
Ωm

a+ Ωm(1− a) + ΩΛ(a3 − a)
, (1.26)

ΩΛ(a) =
Λ

3H2(a)
=

ΩΛa
3

a+ Ωm(1− a) + ΩΛ(a3 − a)
, (1.27)

where we also neglected the contribution from Ωr. These equations have the asymptotic
behavior Ωm(a) → 1 and ΩΛ(a) → 0 as a→ 0 independent of the values of Ωm and ΩΛ

today.

1.1.5 Cosmological Distance Measures

Here we introduce the main distance measures used in cosmology and derive their
distance-redshift relations.

The comoving distance Dcom is the distance between two observers comoving with
the cosmic flow, thus Dcom ≡ w. We found in Sect. 1.1.2 that radial light rays fulfill
c dt = −a dw. We rewrite this relation in terms of the scale factor

dw = − c
a
dt = − c

a

(
da

dt

)−1

da = − c

a2H(a)
da , (1.28)

where we used the definition of the Hubble rate in Eq. (1.12) in the last step. Thus, the
comoving distance for an observer at a = 1 to a source located at the scale factor a is

w(a) =
c

H0

∫ 1

a

da′ [a′Ωm + a′
2
(1− Ωm − ΩΛ) + a′

4
ΩΛ]−1/2 . (1.29)
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Since in cosmology one often uses the redshift dependence instead, we rewrite the
comoving distance as

w(z) =
c

H0

∫ z

0

dz′ [(1 + z′)3Ωm + (1 + z′)2(1− Ωm − ΩΛ) + ΩΛ]−1/2 . (1.30)

The pre-factor is the so-called Hubble distance and has a value of c/H0 = 2998h−1 Mpc.
However, the comoving distance is not directly accessible to observations. Instead,
observations measure the angular extent or the luminosity of an object which lead to
the definition of the angular diameter distance and luminosity distance, respectively.
Both quantities depend on the comoving distance. Thus, the comoving distance is the
most basic distance quantity.

In Euclidean space, the angular extent ∆θ of a source of size l that is located at
distance D from the observer is given by

∆θ =
l

D
, (1.31)

where we used the small-angle approximation. We can use this relation to define the
angular diameter distance

DA =
l

∆θ
(1.32)

for an arbitrary metric. Suppose the observer is located at a redshift z1, and the source
is lying at a redshift z2 with z1 < z2. From the angular part of the Robertson-Walker
metric (see Eq. 1.1) we find then l = a(z2)fK [w(z1, z2)]∆θ. Therefore, the angular
diameter distance is given by

DA(z1, z2) = a(z2)fK [w(z1, z2)] . (1.33)

The luminosity distance is especially important for the evidence of dark energy from
supernova observations. If we have a source with absolute luminosity Le at a distance
D then an observer at t = t0 receives a flux F given by

F =
Le

4πD2
(1.34)

in Euclidean space. Therefore, we define the luminosity distance as

DL =

(
Le

4πF

)1/2

. (1.35)

Now we want to calculate the flux for a Robertson-Walker metric. We find that the
area of the sphere of the emitted light which reaches the observer at t = t0 is given by
A = 4πa2(t0)[fK(w)]2. Hence, the observed flux is given by

F =
L0

4π[a0fK(w)]2
(1.36)
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Due to the redshift of photons, the connection between emitted and received luminosity
is

Le = (1 + z)2L0 . (1.37)

Finally, combining Eqs. (1.35), (1.36) and (1.37) the expression for the luminosity
distance is (setting a0 = 1)

DL(z) =
1

a(z)
fK [w(z)] . (1.38)

These different distance measures lead in general to different results because the
concept of distance is ambiguous in curved space-time in contrast to Euclidean or
Minkowski space. For small redshifts (z � 1) all distance measures can be described by
the local Hubble law

d(z) =
v

H0

=
c

H0

z (1.39)

because the curvature of the Universe is negligible in this case. The relation between
the redshift and the velocity v is due to the linear non-relativistic Doppler effect. The
linear behavior between distance and receding velocity was first discovered by Edwin
Hubble in 1929 after a long period of measurements of nearby cepheids. It was one of
the first hints that the Universe is expanding.

1.2 Energy Composition of the Universe

We review the status of the determination of today’s energy composition of the Universe
quantified by the dimensionless density parameters. Ideally, we have many different
and/or complementary measurement methods to reduce systematic effects and break
parameter degeneracies. This is indeed the case for most parameters and the agreement
between different methods strengthens our evidence that we live in a flat Universe
dominated by non-baryonic dark matter and dark energy. Finally, we discuss different
time evolutions of the expansion of the Universe, so-called world models. With the
measurements of today’s cosmological parameters we can infer that the Universe started
from a Big Bang singularity. In some parts we follow the discussion in Dodelson (2003).

1.2.1 Radiation Density

The term radiation density refers to the energy density of relativistic particles. Today,
the temperature of the Universe dropped significantly compared to the hot plasma after
the Big Bang. Hence, the relativistic density today is dominated by massless particles
where the most abundant are CMB photons and relic neutrinos. Therefore we define

Ωr = Ωγ + Ων . (1.40)

In the following we determine the amount of both components today.
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Photons

The CMB radiation measured by the COBE3 satellite mission has a perfect Planck
spectrum with a temperature Tγ = 2.725± 0.002 K (Mather et al. 1999). We can then
infer the energy density of photons:

ργ = 2

∫
d3p

(2π)3

p

exp(p/Tγ)− 1
=
π2

15
T 4

γ , (1.41)

where we used the fact that photons have two degrees of freedom corresponding to the two
polarization states and that the rest mass of the photons is zero, i.e., E =

√
m2 + p2 = p.

Note that we used natural units in Eq. (1.41) where ~ = c = kB = 1. Inserting the
observed CMB temperature, we can deduce the value of the photon density parameter:

Ωγ =
ργ

ρcrit

= 2.47× 10−5 h−2 . (1.42)

Note that in addition to the isotropic CMB temperature, the COBE satellite found
tiny fluctuations in the angular distribution of the CMB temperature of the order
∆T/T ∝ 10−5. We will discuss this observation in Sect. 1.3.3 where we talk about the
origin of the CMB radiation.

Neutrinos

In contrast to the CMB radiation, the relic neutrino radiation has not been directly
observed because of the small interaction cross sections of these low energy neutrinos.
However, using relatively simple theoretical arguments, we can derive the temperature
of the neutrinos from the temperature of the CMB photons.

In the early Universe neutrinos were kept in equilibrium with electrons by weak
interactions. Hence, they are part of a thermal bath where the particles share the same
temperature. At an energy slightly above 1 MeV the neutrino interaction rates become
so small that they decouple from the thermal bath. Shortly thereafter, at the energy
of E = 2me ' 1 MeV, the pair production of electrons and positrons γγ → e+e− stops
and because neutrinos are absent from the thermal bath the annihilation energy of the
electron-positron pairs is only transferred to the photons. As a consequence, photons
are hotter than the neutrinos. Using the conservation of the entropy density we find

Tν

Tγ

=

(
4

11

)1/3

, (1.43)

where Tν and Tγ denote the neutrino and photon temperature, respectively. Plugging
this result into Eq. (1.41) leads to

ρν = 3
7

8

(
4

11

)4/3

ργ , (1.44)

3Cosmic Background Explorer.
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where the factor 7/8 is due to the fact that neutrinos obey Fermi-Dirac statistics in
contrast to the photons which obey Bose-Einstein statistics. In addition, considering
that there are 3 generations of neutrinos and anti-neutrinos, they have 6 degrees of
freedom4 compared to the 2 degrees of freedom of photons. This results in the factor of
3 for the density of neutrinos. Finally, we find for the density parameter of neutrinos

Ων = 1.68× 10−5 h−2 . (1.45)

Combining the results from photons (1.42) and neutrinos (1.45), we get Ωr = 4.15 ×
10−5 h−2.

We have to keep in mind that the derivation of this result is only valid for massless
neutrinos. Recently, however, there is strong evidence for massive neutrinos from
atmospheric (Fukuda et al. 1998) and solar neutrino oscillation experiments (Ahmad
et al. 2001). The result of the experiments is that at least one of the neutrinos has a rest
mass above mν = 0.05 eV. The effect of massive neutrinos is that at high temperatures
they behave relativistically, whereas at low temperatures there is a turnover in the
density evolution, where neutrinos act as non-relativistic matter with a scaling ρν ∝ a−3.
This behavior makes massive neutrinos a natural candidate for non-baryonic dark
matter (see also next section below). However, intensive studies on structure formation
using numerical simulations show that relativistic neutrinos (so-called hot dark matter)
cannot reproduce the statistical properties of the large-scale structure we observe today.
Neutrinos would “wash out” perturbations of the background cosmology and significantly
reduce the formation of bound objects like galaxies and galaxy clusters. Hence, at least
partly, dark matter must be composed of an unknown type of matter which is able to
reproduce the statistical properties of the observed large-scale structure.

1.2.2 Matter Density

The matter density is composed of non-relativistic particles. Today, this includes
ordinary baryonic matter and non-baryonic dark matter (plus a small contribution from
massive neutrinos), and thus the density parameter is Ωm = Ωb + Ωdm.

Baryon Density

There are many established ways to infer the baryon density of the Universe. The
simplest method is to determine the amount of gas in groups and clusters of galaxies.
Note that the contribution from the intergalactic medium is larger than the contribution
from individual stars. Another method are measurements of spectra of distant quasars,
where the amount of absorbed gas is a measure of the intervening hydrogen, and thus
an estimate of the baryon density. However, the two most precise predictions come
from measurements of the CMB temperature fluctuations and of the abundance of
primordial elements. Changing the baryon density of the Universe leaves characteristic

4Each neutrino has one spin degree of freedom (gν = 1).
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imprints in the temperature fluctuations of the CMB radiation making it one of the
easiest parameters to extract.

The amount of primordial deuterium predicted from nucleosynthesis is very sensitive
to the assumed baryon-to-photon ratio. Thus, measurements of primordial deuterium
can be compared to model predictions to infer the photon-to-baryon ratio. Since we
know the photon density very well from the CMB radiation, we obtain an estimate
for the baryon density. We can measure the deuterium abundance by determining the
absorption of light from distant QSOs by intervening neutral hydrogen systems (Burles
& Tytler 1998). The main absorption feature is the Lyα-transition, which is slightly
different for hydrogen and deuterium due to the different masses of the nuclei. Hence,
in the absorption spectrum, deuterium leaves a clear feature which is shifted relative to
the hydrogen spectrum and is less damped because of the small amount of deuterium.

Remarkably, the result from the presented methods agree and yield Ωbh
2 ≈ 0.02. For

a fiducial value of h = 0.7, we obtain Ωb ≈ 0.04.

Dark Matter Density

The presented methods to obtain the baryon density all involve the interactions between
matter and radiation. In contrast, measurements that are sensitive to the gravitational
field of bound systems only depend on the total mass of the system. Surprisingly, there
is very strong evidence that both mass estimates disagree leading to the proposal of an
unknown form of matter that does not interact with electromagnetic radiation. In the
following we present different probes that measure the total mass.

One of the first probes to infer an estimate was the measurement of the mass-to-
light ratio of bound systems (e.g., Tinker et al. 2005). For small to intermediate size
systems, the mass-to-light ratio is an increasing function of the length scale. However,
on the largest scales corresponding to galaxy clusters and superclusters the mass-to-light
ratio approaches a constant value. Hence, if we assume that the matter content in
superclusters is representative of the matter content of the Universe, we can infer the
total mass density Ωm.

More recent methods involve observations of the distribution of galaxies which depends
on the matter density of the Universe (Cole et al. 2005). A very similar method is the
determination of the peculiar velocity field which can be simply related to the density
field by using the continuity equation (Hawkins et al. 2003). Finally, the distribution
of the temperature fluctuations of the CMB radiation is sensitive to the combination
Ωmh

2.
Another approach is to use methods that depend on the ratio Ωb/Ωm. Then using

the result of the baryon density of the previous section, we can deduce the total
matter density. An example are galaxy clusters, where most of the baryonic mass is
situated in the intercluster medium in the form of hot gas. Measurements of the X-ray
emission of the hot gas or the scattering of CMB photons of the electrons in the plasma
(Sunyaev-Zel’dovich effect) are sensitive to the amount of gas relative to the total mass
(LaRoque et al. 2006). Clusters collapse from a large volume of the order of 1000 Mpc
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and thus their composition should reflect the baryon-dark matter ratio of the Universe.
Furthermore, baryonic acoustic oscillations in the baryon-photon plasma in the early
Universe leave characteristic imprints in the galaxy distribution that can be used to
infer the density ratio (Eisenstein et al. 2005).

This is only an excerpt of the various number of cosmological probes. Most notably,
we left out the discussion of the cosmic shear power spectrum which is introduced in
Sect. 5.2. All different probes obtain Ωm ' 0.3 for the total matter density of the
Universe. Hence, this result requires in addition to the baryonic matter another form
of matter that interacts only gravitationally, dubbed as dark matter. Furthermore,
compared to the result of the baryon density in the previous section, this unknown form
of matter clearly dominates the total matter density.

1.2.3 Dark Energy

The recent Universe undergoes a phase of accelerated expansion rather than a slowdown
which can be explained by a recent domination of a new energy component, termed
dark energy. We show the evidence for dark energy and give results to its contribution
to the energy budget of the Universe.

Measurements of the CMB temperature fluctuations determine at high accuracy that
the density of the Universe is very close to critical implying that the Universe is flat.
However, the total matter density only contributes roughly a third to the critical density
and the amount of the radiation density is negligible today. Hence, to achieve the
observed flatness, where Ωtot = 1 (see Eq. 1.24), we need to propose another dominating
energy form that fulfills ΩΛ = 1− Ωm.

The other evidence comes from cosmological probes that are sensitive to distance-
redshift relations (see Eqs. 1.33 and 1.38) and/or the Hubble rate H(z) (see Eq. 1.25)
because they directly depend on the amount of ΩΛ. An example is the observation
of SNIa as standard candles to obtain the distance-redshift relation of the luminosity
distance. In particular, the results suggest that the luminosity distance is best fitted
by a theoretical model with a dominant contribution from a cosmological constant. In
contrast an Einstein-de Sitter model5, where Ωm = 1 and ΩΛ = 0, is strongly disfavored
by the data. Especially the large amount of dark energy came as a big surprise to
most cosmologists. However, there were also still doubts about the evidence because
of the partly unknown amount of systematics in the measurements, for example in
the understanding of supernova explosions. From then on, we have collected ever
growing evidence on dark energy as a result of the availability of larger data sets and
improvements in the modeling of systematics. In addition, complementary probes
like gravitational lensing caused by the large-scale structure (cosmic shear), the CMB
temperature fluctuations, observations of galaxy clustering, baryonic acoustic oscillations,
cluster mass function, etc., also need dark energy. Hence, the new evidence put the
recent dark energy domination on a firm foundation, and the different probes find
ΩΛ ≈ 0.7.

5For a long time this was the standard cosmological model of the Universe.
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On the theoretical side there are fundamental problems to find a model that predicts
the observed amount of dark energy. The first idea is to assume that dark energy
corresponds to the energy of the vacuum of the Universe. However, standard quantum
field theory predictions are about 10121 orders of magnitude larger than the observed
value. This is known as the famous cosmological constant problem. These difficulties
lead to the proposal of a time-varying dark energy component, which is described by
so-called quintessence models. Nevertheless, the problems to produce a theory that
solves the cosmological constant problem and is falsifiable remains and a lot of effort is
put in new theoretical models and in observations that obtain improved constraints on
the amount and the EOS of dark energy. In particular, the main goal is to determine
the EOS of dark energy at percentage-level accuracy to be able to distinguish between
cosmological constant and dynamical (time-varying) dark energy models.

Basically there are three types of theoretical models to explain dark energy. The first
idea is to change the right-hand side of the Einstein equation (1.9), which is equivalent
to changing the energy density of the Universe. On the other hand, we can also change
the left-hand side side of the Einstein equation which corresponds to a modification
of gravity. Both solutions have their own difficulties. For example a modification of
gravity still needs to converge to Einstein’s theory on small scales because it is very
well tested on solar system scales. The third approach to explain dark energy are the
so-called backreaction models, where inhomogeneities in the large-scale structure lead
to a breakdown of the cosmological principle. In this scenario we have to modify the
Friedmann equation and need to introduce averaging schemes over the inhomogeneities
of the large-scale structure. For comprehensive reviews of the work on theoretical models
and future experiments we refer to the report of the dark energy task force (Albrecht
et al. 2006) and the reviews by Copeland (2007) and Frieman et al. (2008).

1.2.4 Cosmological World Models

With the knowledge of the energy composition, we can now constrain the past and
future global evolution of the Universe and provide evidence for the presence of a Big
Bang. This problem involves solving the first Friedmann equation (1.25) for the scale
factor a as a function of cosmic time t. In general this can be done only numerically.
Today we can neglect the radiation density parameter due to its smallness (Ωr ' 10−5).
Qualitatively, we have then an interplay between the attractive gravitational force acting
on matter and the repulsive or attracting6 force of the cosmological constant. There are
three types of world models:

• an eternally expanding Universe,

• a Universe that will recollapse in the future, i.e., the expansion of the Universe
stops and turns into a contraction,

6We are also considering negative values for ΩΛ, in which case dark energy is an attractive force.
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Figure 1.1: Ωm-ΩΛ-plane with confidence regions for three cosmological probes: SNIa, CMB
temperature fluctuations and galaxy clustering. Each individual probe show large degeneracies
between the two parameters and is thus not capable to give tight constraints on the cosmological
model. However, the combination of all three observations clearly favors a flat ΛCDM model
with a dominant contribution from a cosmological constant. In addition, the diagram is
separated into regions corresponding to different geometries of the Universe. Taken from
Aldering et al. (2002).

• a bouncing Universe, i.e., a Universe that started without a Big Bang singularity
at the scale factor a then contracted due to matter domination and turned over
to expansion at a < 1. A subclass of this model is the loitering Universe which is
the critical case between bouncing and eternally expanding Universe. It lingers
for a long time at a constant redshift zmax when the influence of the Λ-term takes
over and yields an expanding Universe.

To illustrate the dependence of these different world models on cosmological parameters,
we show in Fig. 1.1 the Ωm-ΩΛ-plane. One can read off the following results:

• A negative Λ always implies recollapse, which is clear because Λ supports in this
case the gravitational attraction of matter.

• For ΩΛ > 0 and Ωm < 1 the Universe always expands to infinity.

• For Ωm � ΩΛ the recollapse is still possible with a positive ΩΛ < 1,

• For ΩΛ > 1 it is possible to find a bouncing Universe depending on the matter
content of the Universe.
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Bouncing models can be ruled out by observations of high-redshift objects. Depending
on the matter content Ωm, one can calculate a maximal redshift that is obtained in
this model. For example, a conservative lower limit of Ωm ≥ 0.1 rules out a bouncing
Universe once objects are seen at redshifts beyond z = 2. This is indeed the case as
observations of high-redshift quasars beyond z > 6 show. Hence, we conclude that the
Universe started from a Big Bang singularity. In addition, the combination of results
from SNIa, galaxy clusters and CMB experiments in Fig. 1.1 show that we are living in a
flat, dark energy dominated Universe. Hence, the scenario that the Universe recollapses
in the future with a Big Crunch is strongly ruled out by the data.

1.3 The Cosmological Standard Model and Extensions

The cosmological standard model is based on three important observations: the expan-
sion of the Universe discovered by Hubble, primordial nucleosynthesis and the cosmic
microwave background radiation. After reviewing the important epochs in the history
of the Universe, we present the predictions of primordial nucleosynthesis and of the
CMB radiation released at recombination. We conclude this section with an important
extension of the standard model: the inflationary phase of the very early Universe.

1.3.1 History of the Universe

The history of the Universe begins at the Big Bang singularity. Very shortly thereafter
it undergoes an accelerated expansion due to inflation. In addition, inflation amplifies
the quantum fluctuations to build the seeds of structure formation. The early Universe
is composed of a hot and dense plasma, where particles are maintained in thermal
equilibrium by the rapid rate of particle interactions. On the other hand, the expansion
of the Universe results in a subsequent cooling which leads to a reduction in the particle
interaction rates. As a consequence, particles for which the Hubble expansion is larger
than their corresponding interaction rate are not able to maintain equilibrium anymore
and freeze out. The next important epoch is the process of nucleosynthesis, where the
temperature is low enough that neutrons and protons can form deuterium which leads
in the end to the formation of helium nuclei. Going back to the solution of the energy
density for matter and radiation in Eq. (1.21), we note that there is a time in the past
where both components are of the same size which is known as matter-radiation equality.
Combining the result of Sect. 1.2.1 with the definition of the matter density, we find

aeq = 4.15× 10−5 Ω−1
m h−2 . (1.46)

Hence, the larger the mass density the earlier the time of matter-radiation equality.
At around 300 000 years (z ' 1100) after the Big Bang the Universe cooled enough to
allow electrons and protons to combine to build neutral hydrogen7. This epoch is called

7The recombination of helium atoms occurs at higher redshifts.
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Figure 1.2: Distribution of galaxies observed in the Two Degree Field Galaxy Redshift Survey
(2dF) (Colless et al. 2001). As can be seen in the figure, the survey probes in this data release
the galaxy distribution up to redshifts of z ≈ 0.2.

recombination and is the origin of the CMB radiation as the photons can now travel
freely through the Universe. From then on until the formation of the first objects we are
unable to probe the structure of the Universe and this epoch is therefore called the dark
ages. The only indirect observable is the light emitted from the 21 centimeter transition
of neutral hydrogen8. During the dark ages the hierarchical growth of structure due to
selfgravity leads to the first giant metal-poor stars, the so-called population III stars,
or AGNs. Subsequent explosions of these first giant stars lead then to an ionization
of the surrounding gas. These ionized regions begin then to grow and overlap. The
metal enrichment of the explosions of population III stars lead to the possibility that
population II stars can be formed which also contribute to the ionization of the Universe.
Observations of distant quasars and of the CMB radiation show the reionization takes
place around z ' 6–15 in the history of the Universe (see the review Barkana & Loeb
2007). Ongoing structure formation results in the large-scale structure we observe
today composed of galaxies, clusters, voids, filaments etc. (see results of the galaxy
distribution of the 2dF in Fig. 1.2). Only very recently the Universe changed from a
slowdown due to the matter domination to an acceleration of the expansion due to dark
energy domination.

8The 21 centimeter line comes from the transition of the two hyperfine lines in the 1s ground state.
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1.3.2 Primordial Nucleosynthesis

The theory of Big Bang nucleosynthesis (BBN) mainly predicts the fraction of helium
nuclei produced in the early Universe through the following reaction chain

p+ n→ D + γ , D + D → n+ 3He , 3He + D → p+ 4He . (1.47)

However, the number density of baryons is much smaller than the number density
of photons and thus any time a nucleus is formed in a reaction it is destroyed by a
high-energy photon. The formed nuclei can only remain stable when the temperature of
the Universe drops below a critical temperature. The first reaction of the chain (1.47)
indicates that the neutron-to-proton ratio is a key quantity for the formation of helium.

The following weak interactions keep neutrons and protons in equilibrium until
T ≈ 1 MeV:

p+ ν̄ ↔ n+ e+ , p+ e− ↔ n+ ν , n→ p+ e− + ν̄ . (1.48)

In equilibrium the neutron-to-proton ratio in the nonrelativistic limit is given by

n
(0)
n

n
(0)
p

= e−Q/(kBT ) , (1.49)

where Q = (mn − mp)c
2 = 1.293 MeV is the energy of the mass difference between

neutrons and protons. Hence, at high temperatures the number density of neutrons is
equal to the number density of protons. On the other hand, as the temperature drops
below 1 MeV, the neutron fraction gets reduced. Considering only the equilibrium case,
where weak interactions are completely efficient, the neutron fraction would drop to
zero. However, at temperatures below 1 MeV we have to consider out-of-equilibrium
processes which involves solving the Boltzmann equation for the reactions in Eq. (1.48)
to obtain the neutron-to-proton ratio (see Dodelson 2003). The (integrated) Boltzmann
equation describes the fact that the rate of change in the abundance of a given particle is
equal to the difference between the production and elimination rates of that particle. At
temperatures below 0.1 MeV the decay of neutrons (n→ p+ e−+ ν̄) and the production
of deuterium (n + p → D + γ) become important resulting in a strong reduction of
neutrons. To quantify this reduction, we define the ratio

Xn ≡
nn

nn + np

. (1.50)

Numerical solutions of the Boltzmann equation show that at a temperature around
Tnuc = 0.07 MeV the formation of deuterium and very shortly thereafter of helium
begins, and the fraction is reduced to Xn(Tnuc) = 0.11. All neutrons present combine to
the stable nucleus of 4He which has the highest binding energy of light nuclei. Since
each helium nuclei is composed of two neutrons, we have n4He = nn/2. The ratio of 4He
to the total baryon density is given by (Cyburt et al. 2005)

Y =
4n4He

4n4He + nH

=
2nn

nn + np

= 2Xn = 0.22 . (1.51)



1.3 The Cosmological Standard Model and Extensions 23

where nH = np − nn is the number density of protons after the formation of helium
because helium is composed of the same number of neutrons and protons. Thus, the
central prediction of BBN is that about 1/4 of the elements in the Universe should
be in the form of helium. This is in excellent agreement with observational results of
unprocessed systems usually identified by low metallicities.

However, not all of the deuterium combines to form helium nuclei. A tiny fraction of
10−5–10−4 is still left at the end of the helium production. The resulting primordial
deuterium abundance is very sensitive to the baryon fraction of the Universe. This
is due to the fact that the reactions become rarer if we reduce the baryon density in
the early Universe. Hence, the depletion of deuterium is reduced which results in an
enhancement of the deuterium abundance.

As there are no stable nuclei with mass number 5 or 8, nucleosynthesis basically
stops at 4He, with the exception of a tiny amount of 7Li. In stars heavier elements are
produced by triple alpha processes, where 4He + 4He + 4He → 12C. But for collisions
between three nuclei the baryon density in the early Universe is far too low.

1.3.3 Origin of the CMB Radiation

The combination of free electrons with nuclei produced during BBN leads to the
formation of neutral atoms. Naively, we would expect that if the temperature drops
slightly below the binding energy of neutral hydrogen, the Rydberg energy of ERyd =
13.6 eV, the formation takes place. However, as was the case for the formation of nuclei,
the abundance of high-energy photons directly ionizes each neutral atom and thus the
temperature needs to be significantly below the Rydberg energy.

The onset of recombination can be estimated from considering that the reaction

e− + p↔ H + γ (1.52)

remains in equilibrium. We define the ionization fraction as

Xe ≡
ne

ne + nH

=
np

np + nH

, (1.53)

where nH is the number density of neutral hydrogen and in the second step we assumed
that the Universe is charge neutral resulting in ne = np. If no neutral hydrogen is
produced the ratio goes to Xe = 1. From the equilibrium condition we can derive Saha’s
equation (e.g., Dodelson 2003):

X2
e

1−Xe

≈ 1

ηbnγ

[(
meT

2π

)3/2

e−ERyd/T

]
, (1.54)

where ηb ≡ nb/nγ is the photon-to-baryon ratio. Numerical solutions of Saha’s equation
for Xe show that at T ≈ 1/4 eV or at redshift z ≈ 1000 the number density of free
electrons begins to drop which marks the beginning of recombination. This reduction of
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free electrons hampers the maintenance of equilibrium and thus results in a breakdown
of Saha’s equation. Then, at lower redshifts, we need to consider out-of-equilibrium
processes and solve the Boltzmann equation. Note that recombination to the ground
state leads to the emission of a photon that immediately ionizes another neutral atom.
Hence, this process does not provide a net result of neutral atoms. Instead, recombination
takes place through the extremely rare 2γ-transition. In this case, the energy of each of
the two emitted photons is too low to ionize another atom.

Another time that is closely related to recombination is the decoupling or last scattering
of photons from matter (electrons). We can roughly estimate the redshift of decoupling
as the time when the Compton scattering rate becomes smaller than the expansion
of the Universe. Clearly, this depends crucially on the ionization ratio Xe, i.e., the
number density of free electrons. The result is that photons decouple from matter
when Xe drops below 10−2. From the Boltzmann equation of recombination we know
that the ratio drops quickly from unity to 10−3 and thus decoupling takes place during
recombination. The photons released at recombination can travel freely from z ≈ 1000
to us without interactions. Hence, the photons of this early phase of the Universe should
be still observable today. This cosmic background radiation was already predicted in
1948 by Alpher and Hermann as a direct consequence of the hot, dense Universe and
was 16 years later serendipitously detected (Penzias & Wilson 1965).

Theoretical models predict that the CMB radiation before decoupling follows a
Planck spectrum. One can show that the expansion of the Universe results in CMB
photons with a reduced temperature that are still described by a Planck function
with the corresponding temperature. The COBE mission showed for the first time
that the CMB temperature indeed is almost perfectly fitted by the predicted Planck
function. This remarkable result led to the general acceptance of the hot Big Bang
scenario. Furthermore, the COBE satellite measured the first full-sky map of the CMB
temperature distribution and showed that the temperature of the CMB radiation is
isotropic to a high precision. However, by removing the radiation from the galactic plane,
COBE found in 1992 small deviations from isotropy in the temperature distribution. In
particular, they measured small temperature fluctuations at a level of ∆T/T ≈ 10−5.
These temperature fluctuations provide a snapshot of the fluctuations in the baryon-
photon plasma at recombination. The evolution of these fluctuations results in the end
in the large-scale structure we observe today. Both discoveries, the blackbody radiation
and the anisotropy of the CMB, led in 2006 to the Nobel prize jointly awarded to John
C. Mather and George F. Smoot as they provided an important step for cosmology to
become a precision science.

The successor satellite mission of COBE is the Wilkinson Microwave Anisotropy Probe
(WMAP) which yields much improved measurements of the temperature fluctuations.
As the distribution of the observed temperature fluctuations depend on cosmological
parameters, like Ωm and ΩΛ, we can use the improved measurements to constrain
cosmological models of the Universe (Spergel et al. 2003). Established theoretical models
for predictions of the CMB fluctuations and a good understanding of observational
systematics makes the measurements of the CMB one of the most important cosmological
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probes which gives up to now the most accurate constraints (see the latest WMAP 5
year release in Komatsu et al. 2009).

1.3.4 Inflation

We present two problems of the standard model namely the horizon and flatness problem
and show that a very short period of accelerated expansion in the early Universe, a
so-called inflationary phase, can solve both problems.

Horizon Problem

The comoving distance of a photon emitted at time t1 and received at t2 is

rh(t1, t2) =

∫ t2

t1

c dt

a(t)
. (1.55)

As information cannot be exchanged faster than the speed of light, the comoving distance
determines the maximal distance between a region at time t1 and a region at time t2
to have been in causal contact. Therefore, if the integral is finite photons can only
propagate a finite distance and if the integral diverges everything is in causal contact.
We define the particle horizon as the limit t1 → 0 and t2 ≡ t which is the comoving
distance a photon could have traveled since the Big Bang. On the other hand, the event
horizon is the largest distance a photon can travel starting at time t until infinity, where
t1 ≡ t and t2 →∞. For our purposes only the particle horizon is interesting. Rewriting
the particle horizon in terms of the scale factor yields

rh(a) =

∫ a

0

c

H(a′)a′2
da′ . (1.56)

We find a simple solution for this integral considering aeq � a � 1, which is the
matter-dominated era well before dark energy and curvature domination:

rh(a) = 2
c

H0

√
a

Ωm

' 6000√
Ωmz

h−1 Mpc . (1.57)

We can apply this approximation to calculate the size of the horizon at the time of
the origin of the CMB radiation. We find for z ≡ zrec ' 1100 a comoving distance of
the order 100 Mpc, which corresponds to an angle of 1◦ on the sky. However, today we
measure the temperature of the CMB to be nearly completely isotropic although huge
parts of the CMB photons were never in causal contact. This is the well known horizon
problem which is a generic feature of the hot Big Bang model.

Flatness Problem

We can rewrite the Friedmann equation (1.22) in the following form:

|Ωtot(a)− 1| = Kc2

a2H2(a)
, (1.58)
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where Ωtot(a) is the total density parameter, i.e., the sum of the individual scale-
dependent density parameters. We note that if the Universe is flat at some time, where
Ωtot = 1, it will remain flat for all subsequent time. In the matter-dominated era the
time dependence of the scale factor is a(t) ∝ t2/3 and thus we find

|Ωtot(t)− 1| ∝ t2/3 . (1.59)

The deviation of Ωtot from unity is a growing function of cosmic time. Today, we
measure Ωtot = 1.011(12) (Amsler et al. 2008) which is close to spatial flatness. Hence,
for example at nucleosynthesis when the Universe was 1 s old the deviation from flatness
is

|Ωtot(tnuc)− 1| . 10−16 . (1.60)

Going to earlier times, the deviation from flatness is even smaller. This is the flatness
problem, where the initial conditions set up after the Big Bang need to be extremely
fine-tuned to reach the present day flatness.

The Inflationary Mechanism

The inflationary mechanism provides a solution to the horizon and flatness problem as
shown in the following. At first, we rewrite the comoving horizon in the form:

rh(a) ∝
∫ a

0

da′

a′
1√
ρa′2

. (1.61)

To solve the horizon problem described above, the integral needs to diverge. This is
the case when the product ρa2 is an increasing or constant function of the scale factor
at early times. However, the two standard energy density forms of radiation ρ ∝ a−4

and matter ρ ∝ a−3 do not fulfill this condition. Hence, we need to propose another
unknown form of energy density dominating at early times to solve the horizon problem.
Using Eq. (1.18), we see that such an energy density needs to have an equation of state
of w < −1/3 implying a negative pressure. Then we obtain from the second Friedmann
equation (1.13) that ä > 0, i.e., accelerated expansion. Thus, we say at very early times
the Universe underwent a phase of inflationary expansion.

Another equivalent way to define inflation is that the comoving Hubble radius is a
decreasing function of cosmic time:

d

dt

(
c

H(a)a

)
< 0 . (1.62)

This is exactly the condition to solve the flatness problem as the right-hand side of
Eq. (1.58) gets smaller with increasing cosmic time.

A scalar field φ naturally fulfills the condition of negative pressure needed to start
inflation, where the scalar field is sometimes known as the inflaton. Because inflation
starts at very early times, the energy at that time is well beyond the energy range
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accessible to particle physics colliders. Hence, we can only try to match the predictions
of inflation with cosmological observations to verify the theory. The Lagrangian of a
scalar field φ with potential V (φ) is given by

L =
1

2
∂µφ∂

µφ− V (φ) , (1.63)

where the first term is the kinetic energy and the second term the potential energy.
From the Euler-Lagrange equations, we obtain the equation of motion of the scalar field

φ̈+ 3Hφ̇+
dV

dφ
= 0 , (1.64)

where we assumed a homogeneous field that only depends on time, i.e., φ = φ(t). The
energy density and pressure are obtained from the energy-momentum tensor

Tµν = ∂µφ∂νφ− gµνL . (1.65)

In the end, we find

ρφ =
φ̇2

2
+ V (φ) , pφ =

φ̇2

2
− V (φ) . (1.66)

Hence, we infer the important result that as long as φ̇2/2 � V (φ), we find ρφ = −pφ

leading to the desired accelerated expansion. This condition is for example fulfilled
by a scalar field that is trapped in a false vacuum which is the original interpretation
of inflation developed by Guth (1981). However, in this model the field never attains
the true vacuum necessary for ending the phase of inflation. To avoid this problem,
subsequent models proposed that the field is slowly rolling down its potential to the
true vacuum. This scenario also fulfills the condition that the kinetic energy of the field
is much smaller than the potential energy. In addition, the equation of motion of a
time-varying field in Eq. (1.64) has to satisfy the slow roll conditions :

ε =
m2

pl

16π

(
V ′

V

)2

� 1 , η =
m2

pl

8π

(
V ′′

V

)
� 1 , (1.67)

where a prime denotes the derivative of the potential with respect to φ and mpl is the
Planck mass given by

mpl =

√
~c
GN

≈ 2.43× 1018 GeV/c2 . (1.68)

Besides solving the horizon and flatness problem inflation provides a mechanism to
explain the origin of tiny density fluctuations that were present in the early Universe
and which built the seeds of structure formation. In fact, quantum fluctuations of
the inflaton field are amplified during inflation such that at the end of inflation the
perturbations are sufficiently large to grow by gravitational instability. The next chapter
will describe in detail how the large-scale structure we observe today is formed out of
these fluctuations.
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Chapter 2

Cosmological Perturbation Theory and
Correlation Functions

Cosmological linear perturbation theory is one of the pillars for predictions of the
temperature and polarization anisotropies of the cosmic microwave background. This is
due to the fact that the temperature fluctuations are only of the order 10−5 and are
thus well modeled by a linear perturbative approach. However, probes of the large-scale
structure of the Universe like cosmic shear and galaxy redshift surveys use scales that
are also in the nonlinear regime. A lot of effort was put into a perturbative approach
that is still accurate in the mildly nonlinear or quasilinear regime (see the comprehensive
review by Bernardeau et al. 2002, and references therein). Nevertheless, the nonlinear
regime cannot be accessed with a perturbative approach since the description of the
fluid equations breaks down. Several approaches try to cure this problem. Dark matter
N -body simulations start from a Gaussian distribution of the density field and then
evolve the density and velocity fields according to the Vlasov equation (which we
introduce below). The caveat is that they are computationally costly and lack a physical
interpretation of the process of structure formation via gravitational instability. They
are also limited by the resolution of the simulation. Due to the large computational
requirements, fitting functions were developed to interpolate between simulation results
(most notably the fitting formulas for the dark matter power spectrum by Peacock
& Dodds 1996; Smith et al. 2003). Another approach is the dark matter halo model
which combines results from simulations for dark matter halos and theoretical models
for gravitational clustering. We will discuss this model in detail in the next chapter.

Recently, we have seen a revival of perturbation theory mainly due to the feature
of baryonic acoustic oscillations observed in the galaxy two-point correlation function
(Eisenstein et al. 2005). The so-called baryonic acoustic peak is important at scales
which essentially lie in the quasilinear regime. This regime can be modeled within
1% accuracy (Jeong & Komatsu 2006) using perturbation theory. In addition, the
importance of baryonic acoustic oscillations to break parameter degeneracies has led to
a remarkable progress in perturbation theory, e.g., in the development of renormalized
perturbation theory and the renormalization group approach (Crocce & Scoccimarro
2006; McDonald 2007). Furthermore, these techniques may help to find a model which
is also applicable in the nonlinear regime.

29
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The outline of this chapter is as follows: In Sect. 2.1, we derive the basic equations
governing cosmological structure formation and present a general perturbative solution
scheme to these nonlinear equations. We present the concept and properties of n-point
correlation functions in Sect. 2.2. In particular, we show the perturbative results for the
two-, three- and four-point correlation function in lowest order of the density field. As
perturbation theory breaks down in the nonlinear regime, we give fitting functions for
the dark matter power spectrum and the dark matter bispectrum in Sect. 2.3 . Finally,
in Sect. 2.4 we show the effect of radiation on structure formation, and introduce the
transfer function which describes the transition of the radiation-dominated era to the
matter-dominated era.

2.1 Perturbation Theory

This section provides the basic framework of cosmological perturbation theory in
the matter-dominated regime. First, we derive the fundamental equations governing
the process of structure formation, namely the fluid equations, from the collisionless
Boltzmann equation which describes the conservation of the number of dark matter
particles in a given phase-space element. The resulting fluid equations are highly
nonlinear and are in general not analytically solvable. Nevertheless, it is possible to find
a closed solution in the linear regime. For the nonlinear regime we apply a perturbative
ansatz around this linear solution. Most of the presented results and further issues can
be found in the review paper by Bernardeau et al. (2002) which provides a thorough
introduction to this field.

2.1.1 The Vlasov Equation

When we describe the process of structure formation, we deal with a dynamical system
of a large number of particles interacting only via gravitational forces. Here we formalize
this problem and derive the basic differential equations, namely the continuity, the
Poisson and the Euler equation. The discussion is based on the book by Peebles (1980)
and on the well-known physics of classical fluid dynamics. A general introduction into
this field is provided by Landau & Lifshitz (1959). Most of the ingredients needed for a
description of structure formation can be found already in this work.

Weak field approximation

The underlying theory of cosmology is general relativity. Therefore, we need to formulate
structure formation in this framework. Fortunately, we can apply Newtonian physics in
regions of length R that are small compared to the Hubble length, i.e., R� cH−1. The
rest of the Universe can affect this region only through a tidal field φ. This behavior
can be described using the weak field approximation

gµν = ηµν + hµν , (2.1)
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where ηµν is the Minkowski metric of flat space-time (see Eq. A.1) and hµν is a small
perturbation to this metric. Using this perturbed Minkowski metric, we can compute
the components of the Einstein equation (1.9) assuming an ideal gas for the energy-
momentum tensor in Eq. (1.11). As a result, we obtain the Poisson equation from the
zero-zero-component of the Einstein equation:

∇2
rφ = 4πGN

(
ρ+

3p

c2

)
− Λ , (2.2)

where φ is the gravitational potential and ∇r denotes the nabla operator with respect
to r, i.e., ∇r = ∂/∂r. The first term is the result we would also get using Newtonian
physics from the start. In addition, we get two terms describing the influence of the
pressure p and the cosmological constant Λ. In this section, we analyze cosmological
structure formation after recombination, i.e., we are considering the limit p � ρc2.
Then the Poisson equation simplifies to

∇2
rφ = 4πGNρ− Λ . (2.3)

One can show that the weak field approximation implies the non-relativistic limit. Now
we want to derive the classical potential and equation of motion noting that the result
of Eq. (2.3) is the Newtonian result plus a constant.

Newtonian approach

The Universe after recombination can be described as a system of N particles of mass m
interacting only gravitationally. The particles themselves can be dark matter particles
like WIMPs1 or bound systems like dark matter halos. Note that it is not necessary
to assume a certain particle species because the final equations are independent of the
particle mass. The equation of motion of a single particle at position r is given by a
superposition of the forces from all particles

dv

dt
= GNm

N∑
i=1

ri − r

|ri − r|3
, (2.4)

where v denotes the proper particle velocity and ri the position of the i-th particle.
Note that we assumed all particles to have the same mass m. By introducing the
Newtonian gravitational potential

φ(r) = −GN

∫
d3r′

ρ(r′)

|r′ − r|
, (2.5)

we can write the equation of motion in the compact form

dv

dt
= −∇rφ(r) . (2.6)

1Weakly Interacting Massive Particles.
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We already showed in Sect. 1.1.2 that the expansion of the Universe is governed by a
time-dependent scale factor. It is a good practice to adopt comoving coordinates that
stay constant for the normal Hubble expansion. They are defined as

r(t) = a(t)x , (2.7)

where x denotes the comoving distance, and a(t) is the scale factor of the Universe. In
addition, we introduce the conformal time

dt = a(τ)dτ , (2.8)

for notational convenience. Using conformal time coordinates the Friedmann equations
(1.12) and (1.13) change to

Kc2 = [Ωm(τ) + ΩΛ(τ)− 1]H2 , (2.9)

dH
dτ

=

(
ΩΛ(τ)− Ωm(τ)

2

)
H2 , (2.10)

where we have defined the conformal Hubble rate H ≡ d ln a/dτ = Ha. The dimension-
less density parameters change accordingly to

Ωm(τ) =
8πGN

3H2
ρ̄ =

8πGNa
2

3H2
ρ̄ , (2.11)

ΩΛ(τ) =
Λ

3H2
= a2 Λ

3H2
. (2.12)

We define the dark matter density contrast

δ(x, τ) ≡ ρ(x, τ)− ρ̄(τ)

ρ̄(τ)
, (2.13)

where ρ̄ is the mean matter density of the Universe. Applying comoving coordinates,
the Poisson equation (2.3) changes to

∇2φ = a2(4πGNρ− Λ) = H2

[
3

2
Ωm(τ)(1 + δ)− 3ΩΛ(τ)

]
, (2.14)

where we used Eqs. (2.11), (2.12) and (2.13) in the second step. Here and in the
following we will use the nabla operator in comoving coordinates, i.e., ∇x ≡ ∇ = ∂/∂x.

Performing the time derivative of Eq. (2.7), yields the proper velocity in terms of τ :

v(x, τ) = Hx + u(x, τ) . (2.15)

The first term on the right-hand side of this equation is the Hubble flow, whereas the
second term describes departures from the mean expansion of the Universe. This is
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the so-called peculiar velocity defined as u ≡ ẋ. We define the scaled cosmological
gravitational potential by

Φ(x, τ) ≡ φ(x, τ) +
1

2

dH
dτ

x2 . (2.16)

Using the identity

∇2Φ(x, τ) = ∇2φ(x, τ) + 3
dH
dτ

, (2.17)

we find that the new potential fulfills the Poisson equation

∇2Φ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ) , (2.18)

where we used the Poisson equation for φ in comoving coordinates (2.14) and the second
Friedmann equation (2.10). Rewriting the equation of motion (2.6) in terms of the
newly introduced variables, i.e., the peculiar velocity u (see Eq. 2.15) and the potential
Φ (see Eq. 2.16), we get the following result

dp

dτ
= −am∇Φ(x, τ) , (2.19)

where we defined the peculiar momentum

p = amu . (2.20)

To study the motion of N dark matter particles analytically, one needs to solve N
three-dimensional differential equations of the same type as Eq. (2.19). However, the
huge number of particles makes it impossible to follow the motion of each individual
particle. Therefore, we need to employ a different approach. A classical way out is
to study the distribution function f(x,p, τ) of all particles rather than the individual
equations. The distribution function is defined such that

dN = f(x,p, τ) d3x d3p (2.21)

is the number of particles at time τ contained in the infinitesimal six-dimensional phase-
space volume d3x d3p. The general Boltzmann equation describes the time evolution of
this distribution function:

df

dt
= Ccoll , (2.22)

where Ccoll contains all possible collision terms. As we are considering collisionless dark
matter, we can set this term to zero. Then the Boltzmann equation simplifies to the
Vlasov equation:

df

dτ
=
∂f

∂τ
+ ẋ · ∇f + ṗ · ∂f

∂p
= 0 . (2.23)

This equation is a special case of Liouville’s theorem which describes the conservation
of the phase-space density f(x,p, τ) over time. As a consequence, particles contained
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in an initial region move in phase-space such that the region will continue to occupy
the same volume but with altered shape. Inserting the equations of motions (2.19) and
(2.20) in the Vlasov equation yields

∂f

∂τ
+

p

ma
· ∇f − am∇Φ · ∂f

∂p
= 0 . (2.24)

This equation is highly nonlinear which is induced by the potential Φ. This can be seen
from the fact that the potential Φ depends through the Poisson equation (2.18) on the
matter density. But the density is proportional to the integral over the distribution
function f itself (see Eq. 2.25).

The common ansatz to solve the Vlasov equation (2.24) is to take velocity moments
of the equation. The first three moments are defined as

∫
d3u,

∫
d3uu and

∫
d3uuiuj

and higher-order moments can be defined accordingly. To identify the moments with
physical quantities, we define the proper density as the zeroth moment:

ρ(x, τ) = ma−3

∫
d3p f(x,p, τ) , (2.25)

the peculiar velocity as the first moment:

〈u(x, τ)〉 =

∫
d3p

( p

ma

)
f(x,p, τ)

/∫
d3p f(x,p, τ) , (2.26)

and the second velocity moment:

〈uiuj〉 ≡ [〈ui〉〈uj〉+ σij] =

∫
d3p

( pi

ma

)( pj

ma

)
f(x,p, τ)

/∫
d3p f(x,p, τ) , (2.27)

where σij is the stress tensor which is defined as σij ≡ 〈uiuj〉 − 〈ui〉〈uj〉. In the
single-stream approximation one sets σij and all higher-order velocity moments to
zero. Multiple streams occur in cosmology at nonlinear scales, for example during the
virialization process of a halo.

For notational convenience we will omit to write the average over the velocity 〈· · · 〉
in the following and simply denote 〈u〉 ≡ u. Taking the zeroth moment of the Vlasov
equation (2.24) yields

∂

∂τ

∫
d3p f +∇i

∫
d3p

pi

ma
f −ma∇Φ ·

∫
d3p

∂f

∂p
= 0 , (2.28)

where ∇i ≡ ∂/∂xi is the i-th component of the nabla operator and we assumed
summation over multiple occurring indices. The third term vanishes because the
distribution function is zero at infinity. Using the definitions (2.25) and (2.26), one
obtains the continuity equation

∂δ

∂τ
+∇ · [(1 + δ)u] = 0 . (2.29)
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We analogously get the Euler equation by taking the first velocity moment of the
Vlasov equation

∂u

∂τ
+Hu + (u · ∇)u = −∇Φ− 1

ρ
∇j(ρσij) , (2.30)

where we used Eqs. (2.25), (2.26) and (2.27). In combination with the Poisson equation
(2.18), the continuity and the Euler equation build the fundamental set of equations for
our analytical study of structure formation.

A complementary approach to taking moments of the Vlasov equation is to assume
an ideal fluid (see Peebles 1980), which is characterized by its density ρ and isotropic
pressure p. The results of both methods are the same when using the equation of state
ρσij = δijp. The Vlasov equation approach is more general in the sense that one also
obtains differential equations for higher-order moments. Note that the moments of the
Vlasov equation all have a similar feature: they couple the (N − 1)-th moment to the
N -th moment. For example, taking the second moment of the Vlasov equation one
gets a differential equation for the stress tensor that is coupled to a third-order velocity
tensor.

Up to now, there is no approach for solving the fluid equations for nonlinear scales,
where the contribution from the stress tensor σij becomes important. Recent studies
try to use renormalized perturbation theory (see Crocce & Scoccimarro 2006) and a
renormalization group approach (see McDonald 2007) to solve the fluid equations in
the quasilinear regime. Maybe one can extend this kind of calculations also into the
nonlinear regime, where multi-streaming is important. This would be a breakthrough
in the study of structure formation. But it is more likely that perturbation theory
will provide results that can be used as a startup configuration for subsequent N -body
simulations.

2.1.2 Vorticity Perturbations

The peculiar velocity field u, as any arbitrary (differentiable) vector field, can be
decomposed into a divergence field θ = ∇ · u and a vorticity field w = ∇× u which
is know as Helmholtz’s theorem. For a proof of the theorem we refer to the detailed
discussion in Appendix B.2. In particular, the decomposition is helpful if one can neglect
one of the components reducing the complexity of the fluid equations. This is indeed
the case for the velocity of the cosmological fluid, as is shown in the following.

Taking the curl of the Euler equation (2.30), we obtain an evolution equation for the
vorticity2

∂w

∂τ
+ wH−∇× [u×w] = −∇×

[
1

ρ
∇j(ρσij)

]
. (2.31)

If we set σij = 0, and start with the initial condition w = 0 we get

∂w

∂τ
= 0 , (2.32)

2The result is obtained using the calculus identity A× (∇×A) = 1
2∇(A ·A)− (A · ∇)A.
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meaning w remains zero at all subsequent times even in the nonlinear regime. This
conservation law is known as Kelvin Circulation Theorem in fluid mechanics (see e.g.,
Landau & Lifshitz 1959). In fact, the peculiar velocity field after the time of inflation
is assumed to be irrotational. Therefore, we deal in cosmology with potential peculiar
velocity flows that are characteristic for divergence fields. Note that this way of reasoning
is only valid if we neglect the right-hand side of Eq. (2.31). At small scales, where one
needs to include dissipative processes (heating, cooling and shock waves) this assumption
breaks down. Nevertheless the large-scale behavior is unaffected by these effects.

Neglecting nonlinear terms, the vorticity equation simplifies to

∂w

∂τ
+ wH = 0 (2.33)

with the solution w(x, τ) = F (x, 0)a−1, where F (x, 0) is an arbitrary time-independent
function. Hence, in the linear regime vorticity perturbations decay with the expansion
of the Universe. That means that even if a non-vanishing contribution of vorticity
modes exists in the primordial era, it will vanish in the linear regime with the expansion
of the Universe.

Both effects lead us to the conclusion that we can safely neglect the vorticity of the
velocity field. Nevertheless, we have to keep in mind the limitations of this assumption
especially in the nonlinear regime of the density and velocity field.

2.1.3 Fluid Equations

To describe the evolution of the dark matter density field in general, one needs to
solve the relativistic Boltzmann equation, i.e., the Vlasov equation. We made several
approximations in the previous section: we assumed that the matter distribution
can be approximated by a pressureless fluid, the peculiar velocity of the fluid is non-
relativistic and the region of interest is much smaller than the Hubble distance cH−1.
Furthermore, we assume from now on that the stress tensor σij is equal to zero. This is
a good approximation if we are considering the linear to quasilinear regime of structure
formation as discussed in the previous section. We saw that with these approximations
it is possible to use a non-relativistic Newtonian approach. The pressureless fluid is
then described by a coupled system of three equations: the continuity equation

∂δ

∂τ
+∇ · [(1 + δ)u] = 0 , (2.34)

the Euler equation
∂u

∂τ
+Hu + (u · ∇)u = −∇Φ , (2.35)

and the Poisson equation

∇2Φ =
3

2
Ωm(τ)H2(τ)δ(x, τ) . (2.36)
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We can use a single scalar field θ = ∇ · u to describe the irrotational peculiar velocity
field. By taking the divergence of the Euler equation (2.35), one can combine it with
the Poisson equation (2.36). At the end, one is left with two coupled equations for the
fields δ and θ:

∂δ

∂τ
+ θ = −∇ · (δu) , (2.37)

∂θ

∂τ
+Hθ +

3

2
ΩmH2δ = −∇ · [(u · ∇)u] . (2.38)

However, even with the inclusion of the aforementioned approximations, Eqs. (2.37) and
(2.38) are still highly nonlinear. The nonlinear part is written on the right-hand side of
the equations. In general, the equations are only solvable with a perturbative ansatz
for the density contrast δ and the divergence of the velocity field θ. In this case, it is
convenient to perform a Fourier transformation of the equations. But first we present
the analytic solution in the linear regime of the fields in real space in the next section.

2.1.4 Linear Solution

Here we discuss the first-order or linear solution of the fluid equations which is applicable
on large scales or at very early times in the history of the Universe, since in these cases
we expect that the fluctuations in the fields are small compared to the homogeneous
background. More specifically, we take the limit |δ| � 1 and consider that also the
peculiar velocity field u is sufficiently small (see Peebles 1980 for a more rigorous
treatment). In this case we can neglect the nonlinear terms on the right-hand side of
Eqs. (2.37) and (2.38) and we find

∂δ

∂τ
+ θ = 0 , (2.39)

∂θ

∂τ
+Hθ +

3

2
ΩmH2δ = 0 . (2.40)

By taking the time derivative of Eq. (2.39) and then inserting Eq. (2.40), we find the
following differential equation for the density contrast

δ̈ +Hδ̇ =
3

2
ΩmH2δ , (2.41)

where dots denote partial derivatives with respect to the conformal time. Noting
that this equation has no derivatives with respect to x, we perform a separation of
variables with the ansatz δ(x, τ) = g(x)D(τ ). Then we can write Eq. (2.41) as ordinary
second-order linear differential equation for the time-dependent function D(τ):

d2D

dτ 2
+

dD

dτ
H =

3

2
ΩmH2D . (2.42)
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Since Eq. (2.42) is a second-order differential equation, it has two independent solutions

δ(x, τ) = D+(τ)A(x) +D−(τ)B(x) , (2.43)

where A(x) and B(x) are arbitrary functions of position x fixed by the initial conditions.
Plugging this result into Eq. (2.39), we find the solution for the divergence of the peculiar
velocity field:

θ(x, τ) = −H[f(Ωm,ΩΛ)A(x)D+(τ) + g(Ωm,ΩΛ)B(x)D−(τ)] , (2.44)

where the cosmology dependence is encoded in

f(Ωm,ΩΛ) ≡ d lnD+(τ)

d ln a
=

1

H
d lnD+(τ)

dτ
, g(Ωm,ΩΛ) ≡ 1

H
d lnD−(τ)

dτ
. (2.45)

For an EdS Universe one finds a simple closed solution to Eqs. (2.42) and (2.44):

D+(a) = a , D−(a) = a−3/2 , (2.46)

and

f(1, 0) = 1 , g(1, 0) = −3/2 , (2.47)

where we used that in this case a ∝ τ 2 and H ∝ 2/τ . The function D+ is the so-called
growth factor because it describes a growing solution, whereas the second function D−
is a decaying solution meaning that it decreases as the Universe expands. Hence, in the
following we neglect the decaying function.

For a general ΛCDM cosmology one finds the following solution (see Heath 1977):

D+(a) ∝ H(a)H2
0

∫ a

0

da′

[H(a′) a′]3

=
H(a)

H0

∫ a

0

da′
[
1 + Ωm

(
1

a′
− 1

)
+ ΩΛ(a′2 − 1)

]−3/2

. (2.48)

The integral has in general no analytic solution. However, an accurate fitting formula is
given in Carroll et al. (1992):

D+(a) =
5

2
aΩm(a)

[
Ω4/7

m (a)− ΩΛ(a) +

(
1 +

Ωm(a)

2

)(
1 +

ΩΛ(a)

70

)]−1

. (2.49)

It is common practice to normalize the growth factor to unity today. Therefore, we
define a new normalized growth factor D(a) ≡ D+(a)/D+(a = 1) that will be used from
now on.
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2.1.5 Formulation in Fourier Space

The whole idea behind transforming the equations into Fourier space is that derivatives
and convolutions become simple algebraic operations. We show in the next section that
the Fourier space transformation of the evolution equation is suitable for a perturbative
solution. A perturbative approach in real space can be found in the pioneering work of
Fry (1984).

We use the following convention for the continuous Fourier transformation

δ̃(k, τ) =

∫
d3x δ(x, τ) eik·x , θ̃(k, τ) =

∫
d3x θ(x, τ) eik·x . (2.50)

Corresponding to the adopted Fourier transformation, the Dirac delta function acting
in Fourier space is given by

δD(k) =

∫
d3x

(2π)3
eik·x . (2.51)

Employing these definitions, we transform the continuity equation (2.37) into Fourier
space:

∂δ̃

∂τ
(k, τ) + θ̃(k, τ) = −

∫
d3x∇(δu)(x, τ) eik·x

= −
∫

d3x eik·x
∫

d3k1

(2π)3

∫
d3k2

(2π)3
δ̃(k2, τ)ũi(k1, τ)∇i

(
e−i(k1+k2)·x)

=

∫
d3k1

(2π)3

∫
d3k2 ũ(k1, τ) · (ik1 + ik2)δ̃(k2, τ)δD(k − k1 − k2) . (2.52)

Here ∇i and ũi are the i-th components of the nabla operator and the Fourier transform
of the peculiar velocity, respectively. We employ the Einstein summation convention,
and sum over identical indices. In the second step we inserted the inverse Fourier
transformation of the density contrast and the peculiar velocity, and performed the
derivative in the last step. In addition, we used the definition of the Dirac delta function
(see Eq. 2.51).

We argued in the previous sections that the rotational component of the velocity field
can be neglected. Therefore, we are able to rewrite the right-hand side of Eq. (2.52)
in terms of the divergence field only. In Fourier space we find for this field θ̃(k, τ) =
−ik · ũ(k, τ). Note that this implies

ũ(k, τ) =
ik

k2
θ̃(k, τ) . (2.53)

The two scalar products in Eq. (2.52) can then simply be identified with the divergence
field using Eq. (2.53):

ũ(k1, τ) · (ik1 + ik2) = −θ̃(k1, τ)

(
1 +

k1 · k2

k2
1

)
. (2.54)
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Combining Eq. (2.52) and Eq. (2.54), we finally find for the differential equation in
Fourier space

∂δ̃

∂τ
(k, τ) + θ̃(k, τ) = −

∫
d3k1

(2π)3

∫
d3k2 δD(k − k1 − k2)α(k1,k2)θ̃(k1, τ)δ̃(k2, τ) ,

(2.55)

where we introduced the function

α(k1,k2) =
(k1 + k2) · k1

k2
1

. (2.56)

Hence, we find a coupling between different Fourier modes mediated by the coupling
function α(k1,k2). This is in contrast to linear perturbation theory, where the right-hand
side is zero of Eq. (2.55) and there is no coupling between Fourier modes.

In an analogous way, one can solve the Euler equation (2.38). Again Fourier trans-
forming the equation leads to

∂θ̃

∂τ
(k, τ) +Hθ̃(k, τ) +

3

2
Ωm(τ)H2δ̃(k, τ) = −

∫
d3x∇ · [(u · ∇)u](x, τ) eik·x . (2.57)

The only difficulty is to calculate the right-hand side of this equation in Fourier space:

−
∫

d3x∇i[(uj∇j)ui](x, τ) eik·x

= −
∫

d3x eik·x
∫

d3k1

(2π)3

∫
d3k2

(2π)3
ũi(k1, τ)ũj(k2, τ)∇i(e

−ik2·x∇j e−ik1·x)

= −
∫

d3k1

(2π)3

∫
d3k2 [ũ(k2, τ) · ik1][ũ(k1, τ) · (ik1 + ik2)]δD(k − k12)

= −
∫

d3k1

(2π)3

∫
d3k2 θ̃(k1, τ)θ̃(k2, τ)

(
1 +

k1 · k2

k2
1

)
k1 · k2

k2
2

δD(k − k12) , (2.58)

where we used Eq. (2.53) in the last step. Furthermore, we introduced the abbreviation
k12 ≡ k1 + k2. As the integrand is symmetric under (k1 ↔ k2) exchange3, we get after
symmetrizing the final result

∂θ̃

∂τ
(k, τ) +Hθ̃(k, τ) +

3

2
Ωm(τ)H2δ̃(k, τ)

= −
∫

d3k1

(2π)3

∫
d3k2 β(k1,k2)θ̃(k1, τ)θ̃(k2, τ)δD(k − k12) , (2.59)

where we introduced the second coupling function

β(k1,k2) =
|k1 + k2|2(k1 · k2)

2k2
1k

2
2

. (2.60)

This function is by definition symmetric in its arguments in contrast to the previous
coupling function α(k1,k2).

3Note that this is different from Eq. (2.52) because of the appearance of the product θ̃(k1)θ̃(k2) in
contrast to θ̃(k1)δ̃(k2) in the integrand.
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2.1.6 Perturbative Solution

So far we have only rephrased the problem of solving the coupled nonlinear fluid
equations. We show in the following that we can separate out the time dependence
in Eqs. (2.55) and (2.59) for an EdS background Universe. In this case the time
dependence of the scale factor is simply a ∝ t2/3 ∝ τ 2. The conformal expansion rate
and its derivative are then given by H = 2/τ and ∂H/∂τ = −H2/2, respectively. We
make the following perturbative ansatz for the fields

δ̃(k, τ) =
∞∑

n=1

an(τ)δ̃n(k) , θ̃(k, τ) = −H(τ)
∞∑

n=1

an(τ)θ̃n(k) , (2.61)

where δ̃1 and θ̃1 are linear in the initial density field, δ̃2 and θ̃2 are quadratic, etc. The
ansatz is constructed such, that we reproduce for n = 1 the dependence of the linear
density contrast on the scale factor. Note that we can already obtain the first-order
solution by inserting the first term in the expansion of δ̃ into the continuity equation
(2.55) (neglecting the coupling term). The additional factor in front of the ansatz for θ̃
then assures that δ̃1 = θ̃1. The equality of the first-order solution of the density contrast
and velocity field will be the initial condition for the recursion relation of the general
n-th-order perturbative solutions.

For the following discussion we need the first-order derivatives of both power series.
They are given by

∂δ̃

∂τ
= H

∞∑
n=1

nanδ̃n ,
∂θ̃

∂τ
= −H2

∞∑
n=1

(
n− 1

2

)
anθ̃n . (2.62)

Now we insert the perturbative ansatz into Eq. (2.55). By comparison of coefficients of
the scale factor a, one gets the relation

nδ̃n(k)− θ̃n(k) = An(k) , (2.63)

which is valid for n > 1. This can be done in a completely analogous way for Eq. (2.59)
(note that Ωm = 1) yielding

(2n+ 1)θ̃n(k)− 3δ̃n(k) = Bn(k) , (2.64)

which is again only valid for n > 1. The right-hand side of both equations is

An(k) =

∫
d3k1

(2π)3

∫
d3k2 δD(k − k12)α(k1,k2)

n−1∑
m=1

θ̃m(k1)δ̃n−m(k2) , (2.65)

Bn(k) =

∫
d3k1

(2π)3

∫
d3k2 δD(k − k12)2β(k1,k2)

n−1∑
m=1

θ̃n−m(k1)θ̃m(k2) , (2.66)
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respectively. A solution to this linear system of equations is simply obtained by writing
both equations in matrix notation(

n −1
−3 2n+ 1

)(
δ̃n
θ̃n

)
=

(
An

Bn

)
, (2.67)

and solving for δ̃n and θ̃n by matrix inversion(
δ̃n
θ̃n

)
=

1

(2n+ 3)(n− 1)

(
2n+ 1 1

3 n

)(
An

Bn

)
. (2.68)

This is a recursion relation for the fields δ̃ and θ̃ giving the n-th order solution in terms
of a product of two lower orders such that the sum of orders is equal to n. Or, in other
words, lower-order results provide source terms for higher-order terms. This expansion is
only valid if the orders in perturbation follow a hierarchical form, i.e., the contributions
from higher orders get subsequently smaller. This ceases to be valid around the value
of δ ' 1. Furthermore, multi-streaming is induced at these nonlinear scales. Therefore,
even the ideal fluid approximation breaks down. We discuss in the next chapter a
possible solution to also model scales where δ > 1.

For a general cosmological ΛCDM model it is impossible to find a separable solution
to Eqs. (2.55) and (2.59). However, Scoccimarro et al. (1998) showed that it is possible
to find a separable solution in any order if one makes an approximation that is valid at
percentage level. In this case one indeed finds the same recursion relation as for the
EdS case. The ansatz is changed according to

δ̃(k, τ) =
∞∑

n=1

Dn(τ)δ̃n(k) , θ̃(k, τ) = −H(τ)
∞∑

n=1

Dn(τ)θ̃n(k) . (2.69)

Therefore, we find that the whole cosmological information (from the parameter ΩΛ and
Ωm) is encoded in the growth function and the Hubble function.

2.1.7 Coupling Functions

One can find a more handy expression for the n-th order density contrast and the
divergence of the peculiar velocity in Eq. (2.68) by defining:

δ̃n(k) =

∫
d3q1
(2π)3

· · · d
3qn−1

(2π)3

∫
d3qn δD(k − q1...n)Fn(q1, . . . , qn)δ̃1(q1) · · · δ̃1(qn) ,

θ̃n(k) =

∫
d3q1
(2π)3

· · · d
3qn−1

(2π)3

∫
d3qn δD(k − q1...n)Gn(q1, . . . , qn)δ̃1(q1) · · · δ̃1(qn) .

(2.70)

Simply by inserting these definitions into the recursion relation (2.68), one finds a
recursion relation for the n-th order coupling functions Fn and Gn (Jain & Bertschinger
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1994):

Fn(q1, . . . , qn) =
n−1∑
m=1

Gm(q1, . . . , qm)

(2n+ 3)(n− 1)
[(2n+ 1)α(k1,k2)Fn−m(qm+1, . . . , qn)

+ 2β(k1,k2)Gn−m(qm+1, . . . , qn)] , (2.71)

Gn(q1, . . . , qn) =
n−1∑
m=1

Gm(q1, . . . , qm)

(2n+ 3)(n− 1)
[3α(k1,k2)Fn−m(qm+1, . . . , qn)

+ 2nβ(k1,k2)Gn−m(qm+1, . . . , qn)] , (2.72)

where k1 ≡ q1 + . . .+ qm and k2 ≡ qm+1 + . . .+ qn. The initial conditions for these
recursion relations are F1 ≡ 1 and G1 ≡ 1. The fundamental mode coupling functions
α(k1,k2) and β(k1,k2) are given by Eqs. (2.56) and (2.60), respectively. To get the

functions F
(s)
n and G

(s)
n that are symmetric in its arguments, one must perform the

following symmetrizing procedure

F (s)
n (q1, . . . , qn) =

1

n!

∑
π

Fn(qπ(1), . . . , qπ(n)) , (2.73)

G(s)
n (q1, . . . , qn) =

1

n!

∑
π

Gn(qπ(1), . . . , qπ(n)) , (2.74)

where the sum is taken over all possible permutations π of the set {1, . . . , n}. These
equations enable us to calculate the density contrast in the n-th order of perturbation
theory by using the iterative equations for the coupling functions.

We present the explicit relations for the second- and third-order coupling functions
as they are needed for the tree-level bispectrum and trispectrum (see Sect. 2.2.6). The
calculation of the second-order coupling functions is straightforward. The result is

F
(s)
2 (q1, q2) =

5

7
+

2

7

(q1 · q2)
2

q2
1q

2
2

+
1

2

q1 · q2

q1q2

(
q1
q2

+
q2
q1

)
, (2.75)

G
(s)
2 (q1, q2) =

3

7
+

4

7

(q1 · q2)
2

q2
1q

2
2

+
1

2

q1 · q2

q1q2

(
q1
q2

+
q2
q1

)
. (2.76)

Note that for two identical vectors with opposite signs the second-order coupling
functions vanish, i.e., F

(s)
2 (q,−q) = G

(s)
2 (q,−q) = 0. This is due to the fact that

the first moment of the density contrast vanishes by definition 〈δ̃〉 = 0 (see Eq. 2.87).
Therefore, the ensemble average of each term in the perturbative expansion needs to
vanish, i.e., 〈δ̃1〉 = 〈δ̃2〉 = 〈δ̃3〉 = . . . = 0. The second-order coupling function is given by

〈δ̃2(k)〉 =
1

(2π)3

∫
d3k1 d3k2 δD(k − k12)F

(s)
2 (k1,k2)〈δ̃1(k1)δ̃1(k2)〉

=

∫
d3k1 δD(k − k12)F

(s)
2 (−k2,k2)P (k1) = 0 , (2.77)
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where we used the definition of the power spectrum (given in Eq. 2.112 below) in the
second step. The uneven higher-order terms, i.e., 〈δ̃3〉, 〈δ̃5〉, . . . , vanish trivially because
the average is over an uneven number of Gaussian fields following Wick’s theorem for
Gaussian fields (see Sect. 2.2.5 below). In addition, the second-order coupling functions
are divergent when one of the arguments goes to zero, i.e., F2(k, q → 0) → ∞ and
G2(k, q → 0) →∞.

The third-order coupling function is given by

F3(q1, q2, q3) =
1

18

{
7α(q1, q23)F2(q2, q3) + 2β(q1, q23)G2(q2, q3)

+ [7α(q12, q3) + 2β(q12, q3)]G2(q1, q2)
}
, (2.78)

where qij ≡ qi + qj. Employing Eq. (2.73), we find the symmetric function

F
(s)
3 (q1, q2, q3) =

7

54
[α(q1, q23)F

(s)
2 (q2, q3) + α(q2, q13)F

(s)
2 (q1, q3) + α(q3, q12)F

(s)
2 (q1, q2)]

+
4

54
[β(q1, q23)G

(s)
2 (q2, q3) + β(q2, q13)G

(s)
2 (q1, q3) + β(q3, q12)G

(s)
2 (q1, q2)]

+
7

54
[α(q12, q3)G

(s)
2 (q1, q2) + α(q13, q2)G

(s)
2 (q1, q3) + α(q23, q1)G

(s)
2 (q2, q3)] .

(2.79)

From now on the symmetry superscript “(s)” will be omitted because we will only
deal with symmetric coupling functions. Note that the coupling function F3 is parity
symmetric, i.e.,

F3(−q1,−q2,−q3) = F3(q1, q2, q3) . (2.80)

For the calculations of the covariance of the power spectrum, as presented in Chapter 7,
one only needs the configuration

F3(q1,−q1, q2) =
7

54
[α(q1, q−)F2(−q1, q2) + α(−q1, q+)F2(q1, q2)]

+
4

54
[β(q1, q−)G2(−q1, q2) + β(−q1, q+)G2(q1, q2)]

+
7

54
[α(q−, q1)G2(−q1, q2) + α(q+,−q1)G2(q1, q2)] , (2.81)

where we have defined the difference of the vectors as q− ≡ q2 − q1 and the sum of the
vectors as q+ ≡ q1 + q2.

We already mentioned in the previous section that it is possible to find a solution for
an arbitrary cosmology if one makes a small approximation. In the literature one can find
closed solutions for the second- and third-order coupling functions. The second-order
coupling function changes to

F2(q1, q2) =
1

2
(1 + ε) +

1

2

q1 · q2

q1q2

(
q1
q2

+
q2
q1

)
+

(
1

2
− ε

2

)
(q1 · q2)

2

q2
1q

2
2

, (2.82)
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where ε ≈ (3/7)Ω
−2/63
m for Ωm & 0.1 (Bernardeau et al. 2002). For a fiducial choice

of Ωm = 0.3, we get Ω
−2/63
m ≈ 1.039 and thus ε ≈ 3/7. Hence, within a few percent

correction to the first and last terms, the second-order coupling function is independent
of cosmological parameters. In addition, one can show that also the influence of
cosmological parameters on the third-order coupling function is small (Bernardeau et al.
2002).

2.2 Correlation Functions

In the previous sections we showed how the density contrast evolves with the expansion
of the Universe. However, to predict density fluctuations at a certain time we need to
know the initial conditions set after the time of inflation. These primordial fluctuations
subsequently grow through gravitational instability to build the current large-scale
structure. However, we do not have direct observational access to primordial fluctuations.
In addition, we are not able to observe the evolution of single astronomical objects (for
example a cluster of galaxies) due the large time-scales involved. Rather we observe
the part of the Universe accessible through our past light cone at different snapshots
or redshifts. The best we can hope is to infer statistical information of characteristic
variables of the Universe like the density distribution. In other words, we assume that
our observable Universe is a stochastic realization of an underlying continuous random
field. Thus, we have to propose an ensemble of different realization of a random field,
where each realization characterizes a different hypothetical Universe. The probability
distribution function of attaining a certain realization is the functional P [φ]. We can
then try to build theoretical models which match the observed statistical properties of
the random field. A detailed discussion of random fields can be found in the book by
Adler (1981).

This section shall introduce the notion of correlation functions as a description of the
statistical properties of the density field of the Universe.

2.2.1 Cosmological Random Fields

A random field is a set of functions {φ : RN → R}, where an element is called a
realization of the random field. The infinitesimal joint probability that the field at n
considered positions lies within the interval φ1 and φ1 + dφ1, φ2 and φ2 + dφ2 etc., is
given by

dP = P (φ1, φ2, . . . , φn) dφ1 dφ2 · · · dφn , (2.83)

where φ1 = φ(x1) etc., and this defines the n-point probability distribution function
P (φ1, φ2, . . . , φn). The moments of this probability distribution function are defined by
taking the average over the ensemble:

〈φm1
1 φm2

2 · · ·φmr
r 〉 =

∫
dφ1 dφ2 · · · dφn φ

m1
1 φm2

2 · · ·φmr
r P (φ1, φ2, . . . , φn) , (2.84)
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where r ≤ n and {m1,m2, . . . ,mr} ∈ N. However, in general only the limit n → ∞
ensures that the distribution function becomes the functional P [φ], providing a complete
statistical description of the random field.

In practice it is impossible to calculate moments with the presented formalism because
we only observe one realization of the whole ensemble of random fields. Hence, we need
to consider ergodic fields, where we can replace the ensemble average by a volume average
over different parts of the sky. To still fulfill the condition of statistical independence,
the fields need to be causally disconnected. Thus, the experimental strategy is to observe
different well-separated patches in the sky.

2.2.2 Gaussian Random Fields

In this section we discuss an important subclass of random fields, namely Gaussian
random fields. For such fields we can explicitly write the form of the n-point probability
distribution function. Assuming a zero-mean random field (〈φi〉 = 0) the probability
distribution is given by a multivariate Gaussian:

P (φ1, φ2, . . . , φn) =
1√

(2π)n det(C)
exp

(
−1

2

n∑
i,j=1

φiC−1
ij φj

)
, (2.85)

where the covariance matrix of the random field is Cij ≡ 〈φiφj〉.
Gaussian random fields play a key role in cosmology. Inflationary models predict

that the primordial density fluctuations are randomly distributed. Using the central
limit theorem, the combination of a large number of random processes results in a
Gaussian distribution. Thus, the distribution of density fluctuations after inflation
can be described by a Gaussian. In addition, Gaussian random fields are completely
specified by the two-point correlation function. Both properties show the importance of
Gaussian random fields in cosmological applications. However, the process of structure
formation will inevitably induce nonlinearities. For example the formation of a galaxy
cluster cannot be described by a Gaussian random field.

2.2.3 Density Correlation Functions

We apply in this section the formalism of random fields to the density contrast

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
. (2.86)

In other words, we consider δ as a realization of a random field. Note that for notational
convenience we drop the explicit time-dependence of the density contrast in the following.
The first moment or mean of the density contrast vanishes by definition:

〈δ(x)〉 =

〈
ρ(x)− ρ̄

ρ̄

〉
=
〈ρ(x)〉
ρ̄

− 1 = 0 . (2.87)
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We already mentioned that we need the information of all n-point correlation functions
to determine the complete statistical properties of a general random field. In particular,
it is convenient to define the correlation functions as the connected or irreducible part
of the joint ensemble average which we label in the following by the subscript “c”:

ξ(x1, . . . ,xn) ≡ 〈δ(x1) · · · δ(xn)〉c = 〈δ(x1) · · · δ(xn)〉
− [〈δ(x1)δ(x2)〉c 〈δ(x3) · · · δ(xn)〉c + perm.]

− [〈δ(x1)δ(x2)δ(x3)〉c 〈δ(x4) · · · δ(xn)〉c + perm.]− . . . , (2.88)

where we used the fact that the first moment of the density contrast vanishes, i.e.,
〈δ(xi)〉 = 0. Hence, all contributions from lower-order moments are removed for the
connected moments. As an example we show the decomposition of the four-point density
correlator in Fourier space which is needed for the discussion of the covariance matrix
of the power spectrum:

〈δ̃1δ̃2δ̃3δ̃4〉 = 〈δ̃1δ̃2δ̃3δ̃4〉c + 〈δ̃1δ̃2〉〈δ̃3δ̃4〉+ 〈δ̃1δ̃3〉〈δ̃2δ̃4〉+ 〈δ̃1δ̃4〉〈δ̃2δ̃3〉 , (2.89)

where δ̃i ≡ δ̃(ki) with i = 1 . . . 4. Here and throughout we will use 〈δ̃δ̃〉 = 〈δ̃δ̃〉c, since
the first moment of the density field vanishes.

The first four connected moments of the density contrast field are

〈δ(x)〉c = 0 , (2.90)

〈δ(x1)δ(x2)〉c ≡ ξ(x1,x2) , (2.91)

〈δ(x1)δ(x2)δ(x3)〉c ≡ ζ(x1,x2,x3) , (2.92)

〈δ(x1)δ(x2)δ(x3)δ(x4)〉c ≡ η(x1,x2,x3,x4) , (2.93)

which define the two-point correlation function ξ, the three-point correlation function
ζ and the four-point correlation function η. For a homogeneous random field the two-
point correlation function depends only on the separation vector of the two points, i.e.,
ξ(x1,x2) = ξ(x1−x2). Analogously, assuming homogeneity, the three-point correlation
function only depends on two vectors that build the two sides of the triangle, e.g.,
ζ(x1,x2,x3) = ζ(x12,x13), where x12 = x1 − x2 and x13 = x1 − x3. The same is true
for the homogeneous four-point correlation function η(x1,x2,x3,x4) = η(x12,x23,x34),
where x12, x23 and x34 are three sides of the quadrangle. If we considering in addition
isotropic random fields the spectra depend only on the length of the corresponding
sides.

Alternative Definition of Correlation Functions

We present in this section an intuitive alternative definition of the correlation functions
following Peebles (1980).

Suppose we divide the continuous density field ρ(x) into a discrete number of in-
finitesimal small cells dVi such that each cell contains either one or no particle. The
probability that we find a particle in a single volume dV is then

dP = ρ̄dV . (2.94)
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The joint probability to find a pair of particles separated by the distance x12 = x1−x2,
where one particle is in the volume dV1 and the other particle in the volume dV2 simply
is

dP = ρ̄2 [1 + ξ(x12)] dV1 dV2 . (2.95)

Due to the assumed homogeneity and isotropy the correlation function depends only on
the modulus of the distance. Considering a uniform Poisson point process, the joint
probability is just the product of the individual probabilities of finding a particle in
each volume (see Eq. 2.94):

dP = ρ̄2dV1 dV2 . (2.96)

We note that in this case the correlation function vanishes, i.e., ξ = 0. Using this result,
we interpret ξ as the excess probability over a random probability.

The definition of the two-point correlation function in Eqs. (2.91) and (2.95) is very
similar. Considering the continuous density function ρ(x), the probability to find a
particle is

dP = ρ(x)dV . (2.97)

This is characteristic for a Poisson process, where the probability density is a function
of the position. The joint probability to find particles in two volume elements is

dP = ρ(x1)ρ(x2)dV1 dV2 . (2.98)

Averaging over the ensemble using Eq. (2.91) yields again

dP = ρ̄2 [1 + ξ(x12)] dV1 dV2 , (2.99)

where now ξ(x12) = 〈δ(x1)δ(x2)〉.
We can easily generalize the discrete definition of the correlation function in Eq. (2.95)

to a larger number of points. Considering three points, we find

dP = ρ̄3 [1 + ξ(x12) + ξ(x13) + ξ(x23) + ζ(x1,x2,x3)] dV1 dV2 dV3 . (2.100)

Hence, we can interpret the reduced three-point correlation function ζ as the excess
correlation over the probability of finding a triplet described by the two-point correlation
function. Finally, the probability of finding a quartet of points in four different cells is
given by

dP = ρ̄4[1 + ξ12 + ξ13 + ξ14 + ξ23 + ξ24 + ξ34 + ξ12ξ34 + ξ13ξ24 + ξ14ξ23

+ ζ123 + ζ124 + ζ134 + ζ234 + η1234]dV1 dV2 dV3 dV4 , (2.101)

where we used the compact notation ξij ≡ ξ(xi,xj), ζijk ≡ ζ(xi,xj,xk) and ηijkl ≡
η(xi,xj,xk,xl). The four-point correlation function can be interpreted as the excess
correlation over the probability of finding a quartet described by the two-point and
three-point correlation functions.
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2.2.4 Power Spectra

We showed in Sect. 2.1 that the perturbative solution to the fluid equations is most easily
done in Fourier space because we can use several convenient mathematical properties
of the Fourier transformation. More specifically, the perturbative solution of the n-th
order density contrast in Eq. (2.70) is given in Fourier space. Hence, to employ the
presented perturbative formalism, we have to transform the correlation functions into
Fourier space as well. The Fourier space counterparts of the correlation functions
contain the same statistical information on the random field as the correlation functions.
In particular, the power spectrum is the Fourier space counterpart of the two-point
correlation function, the bispectrum of the three-point correlation function and the
trispectrum of the four-point correlation function.

Here we use the same convention of the Fourier transform of the density contrast as
in Sect. 2.1, i.e.,

δ(x) =

∫
d3k

(2π)3
δ̃(k) e−ik·x , δ̃(k) =

∫
d3x δ(x) eik·x . (2.102)

The tilde symbol denoting the Fourier transform will be omitted from now on.
Transforming the two-point correlation function into Fourier space yields

〈δ(k)δ(k′)〉 =

∫
d3x eik·x

∫
d3x′ eik′·x′〈δ(x)δ(x′)〉

=

∫
d3x ei(k+k′)·x

∫
d3y eik′·y〈δ(x)δ(x′)〉

= (2π)3δD(k + k′)P (k) , (2.103)

where we employed the substitution x′ = x + y in the second step. Furthermore, we
defined the power spectrum in the last step as

P (k) ≡
∫

d3y e−ik·y ξ(|y|) . (2.104)

In particular, we note that the power spectrum P (k) and the correlation function
ξ(y) are Fourier transformation pairs. Performing the back-transformation yields the
correlation function in dependence of the power spectrum:

ξ(y) =

∫
d3k

(2π)3
P (k) eik·y = 4π

∫
dk

(2π)3
k2P (k)

sin(ky)

ky
. (2.105)

The angular integration in the second step is trivial because the power spectrum depends
only on the modulus of the wave-vector k.

It is convenient to construct a dimensionless form of the power spectrum. We define
the dimensionless or reduced power spectrum via the dispersion of the dark matter field
(i.e., the correlation function for y = 0):

σ2(z) = 〈δ2(x, z)〉 =

∫
d3k

(2π)3
P (k, z) =

∫
dk

k
∆(k, z) . (2.106)
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Hence, the dimensionless power spectrum ∆(k, z) is the contribution to the variance
per logarithmic interval in k:

∆(k, z) =
k3

2π2
P (k, z) . (2.107)

Transforming the three-point correlation function into Fourier space yields

〈δ(k1)δ(k2)δ(k3)〉c =

∫
d3x1

∫
d3x2

∫
d3x3 ei(k1·x1+k2·x2+k3·x3)〈δ(x1)δ(x2)δ(x3)〉c

=

∫
d3x1

∫
d3x2

∫
d3x3 ei(k1·x1+k2·x2+k3·x3) ζ(x12,x13)

=

∫
d3x1 eix1·(k1+k2+k3)

∫
d3y

∫
d3z e−ik2·y e−ik3·z ζ(y, z)

= (2π)3δD(k1 + k2 + k3)B(k1,k2,k3) , (2.108)

where we assumed spatial homogeneity in the second step to parametrize the three-point
correlation function with only two vectors that build up the triangle. Then we employed
a change of variables x12 = x1 − x2 ≡ y and x13 = x1 − x3 ≡ z in the third step.
Finally, the last step defines the relation between the three-point correlation function
and the bispectrum:

B(k1,k2,k3) ≡
∫

d3y

∫
d3z e−ik2·y e−ik3·z ζ(y, z) . (2.109)

Again, we note that the three-point correlation function and the bispectrum are Fourier
transformation pairs. Furthermore, the bispectrum gives only a non-zero contribution if
the wave-vectors form a closed triangle in Fourier space which is a result of the assumed
homogeneity of the random fields.

Analogously, the trispectrum is

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c = (2π)3δD(k1 + k2 + k3 + k4)

×
∫

d3x

∫
d3y

∫
d3z e−ik1·x e−ik2·y e−ik3·z η(x,y, z)

= (2π)3δD(k1 + k2 + k3 + k4)T (k1,k2,k3,k4) . (2.110)

Again, we employed spatial homogeneity to express the four-point correlation function
in terms of three sides of the quadrilateral denoted by x, y and z.

2.2.5 Wick Theorem of Gaussian Random Fields

As already mentioned, Gaussian random fields are completely specified by their two-
point correlation function or power spectrum. Here we show the consequences for
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higher-order moments of Gaussian random fields. The moments of a Gaussian random
field decompose in the following way:

〈δ(k1)δ(k2) · · · δ(k2p)〉 =
∑

P

〈δ(k1)δ(k2)〉〈δ(k3)δ(k4)〉 · · · 〈δ(k2p−1)δ(k2p)〉 ,

〈δ(k1)δ(k2) · · · δ(k2p+1)〉 = 0 , (2.111)

which is known as Wick’s theorem (see Bernardeau et al. 2002). The sum in the first
equation runs over all P distinct permutations of the 2p indices. In other words, n-
point correlation functions of Gaussian random fields resolve into products of two-point
correlation functions if n is even, whereas n-point correlation functions are identical to
zero if n is odd.

The Wick theorem clearly shows that for Gaussian fields the knowledge of the two-
point correlation function or equivalently the power spectrum is sufficient to describe
all statistical properties of the density field δ. However, non-Gaussian fields need to be
described by the full hierarchy of connected moments. Applying the Wick theorem to
Eq. (2.88), we find that all connected n-point functions for n > 2 are equal to zero for
Gaussian fields. Hence, the connected moments intrinsically provide only the nonlinear
statistical information of the random field.

2.2.6 Perturbative Results for the Spectra

We present here the expressions for the power spectrum, bispectrum and trispectrum
using the perturbative approach as developed in Sect. 2.1. In particular, we give the
results only in the lowest non-vanishing order of the perturbative expansion. When we
derive the relations for the spectra we omit the dependence on the scale factor a.

Power Spectrum

The power spectrum of dark matter is defined as

〈δ(k1)δ(k2)〉c = (2π)3δD(k1 + k2)P (k1) . (2.112)

In linear perturbation theory we find for the power spectrum

Ppt(k, a) = [D(a)]2Ppt(k) , (2.113)

where Ppt(k) is the power spectrum we observe today which is multiplied with the
square of the growth factor to obtain the power spectrum at scale factor a.

The next non-vanishing order of perturbation theory is the one-loop power spectrum4.
Writing the perturbative expansion following Eq. (2.69) for the power spectrum yields

P (k) = 〈(δ1 + δ2 + δ3 + . . .)(δ′1 + δ′2 + δ′3 + . . .)〉
= 〈δ1δ′1〉+ 〈δ1δ′2〉+ 〈δ2δ′1〉+ 〈δ2δ′2〉+ 〈δ1δ′3〉+ 〈δ3δ′1〉+O(δ6

1) (2.114)

4In graph theory a one-loop term corresponds to a connected diagram with only one cycle, e.g., in
Feynman diagrams.
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with δi ≡ δ(ki) and δ′i ≡ δ(k′i). The second and third terms on the right-hand side are
composed of an uneven number of Gaussian density fields and are thus equal to zero
due to Wick’s theorem (2.111). Therefore, we define the one-loop power spectrum as5

P1-loop(k) = P13(k) + P22(k) ≡ 2〈δ1δ3〉+ 〈δ2δ2〉 , (2.115)

with the two contributions

P13(k) = 6Ppt(k)

∫
d3q

(2π)3
Ppt(q)F3(k, q,−q) , (2.116)

P22(k) = 2

∫
d3q

(2π)3
Ppt(q)Ppt(|k − q|)[F2(q,k − q)]2 . (2.117)

Introducing spherical coordinates we can write the integral in Eq. (2.116) as

P13(k) = 12πPpt(k)

∫ ∞

0

dq

(2π)3
q2Ppt(q)

∫ 1

−1

d cos θ F3(k, q,−q) , (2.118)

where θ is the angle between the two vectors k and q. In this case we can analytically
perform the angular integration over the third-order coupling function given in Eq. (2.80):∫ 1

−1

d cos θ F3(k, q,−q) =
1

6

1

252

(
k

q

)2
[
100

( q
k

)2

− 158 + 12

(
k

q

)2

− 42
( q
k

)4

+
3

q3k5
(q2 − k2)3(7q2 + 2k2) ln

(
q + k

|q − k|

)]
, (2.119)

and we reproduce the result of Jain & Bertschinger (1994)6 and Jeong & Komatsu
(2006).

Bispectrum

The dark matter bispectrum is defined as

〈δ(k1)δ(k2)δ(k3)〉c = (2π)3δD(k1 + k2 + k3)B(k1,k2,k3) . (2.120)

Since the bispectrum vanishes for Gaussian random fields, it is the first intrinsically
nonlinear moment.

Inserting the perturbative expansion (2.69) for each term results generally in an
infinitely large sequence of correlators. The lowest non-vanishing order is the so-called
tree-level contribution to the bispectrum. The name indicates that in a diagrammatic

5Note that the Dirac delta function in the definition of the two-point correlator (2.112) ensures that
both wave-vectors are equal.

6However, in this work there is a missing factor k2.
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representation the graph has a tree-like structure (see Fig. 2.1). The next non-vanishing
order is called one-loop contribution etc. We find for the tree-level correlator

〈δ(k1)δ(k2)δ(k3)〉tree = 〈δ2(k1)δ1(k2)δ1(k3)〉+ 〈δ1(k1)δ2(k2)δ1(k3)〉
+ 〈δ1(k1)δ1(k2)δ2(k3)〉 . (2.121)

Replacing the second-order density contrast with Eq. (2.70) results in

〈δ2(k1)δ1(k2)δ1(k3)〉 =

∫
d3q1
(2π)3

∫
d3q2 δD(k1 − q1 − q2)F2(q1, q2)

× 〈δ1(q1)δ1(q2)δ1(k2)δ1(k3)〉
= (2π)3δD(k1 + k2 + k3)[2F2(k2,k3)Ppt(k2)Ppt(k3)] , (2.122)

where we applied Wick’s theorem (2.111) to express the four-point correlator of Gaussian
fields in terms of products of power spectra, and performed the two integrations over
the Dirac delta functions. More specifically, the four-point correlator resolves into three
two-point correlators, where one term is zero because of the identity F2(q,−q) = 0. The
other two terms are identical yielding the factor of 2 because we use the second-order
coupling function given in Eq. (2.75) which is symmetric in its arguments. The results
for the other two terms of the tree-level bispectrum are simply obtained by permutations
of the arguments. Finally, the tree-level bispectrum is given by

Bpt(k1,k2,k3) = 2F2(k1,k2)P1P2 + 2F2(k1,k3)P1P3 + 2F2(k2,k3)P2P3 , (2.123)

where Pi ≡ Ppt(ki). We label from now on the first non-vanishing order of the bispectrum
with the subscript “pt”. We note that the general bispectrum obeys parity invariance
(e.g., Smith et al. 2006)

B(k1,k2,k3) = B(−k1,−k2,−k3) (2.124)

and we easily verify that also the tree-level bispectrum in Eq. (2.123) is parity symmetric.

Trispectrum

The dark matter trispectrum is defined as the connected four-point function in Fourier
space:

〈δ(k1)δ(k2)δ(k3)δ(k4)〉c = (2π)3δD(k1234)T (k1,k2,k3,k4) , (2.125)

where k1234 ≡ k1 + k2 + k3 + k4. We find that there are two different non-vanishing
contributions to the tree level:

〈δ(k1)δ(k2)δ(k3)δ(k4)〉tree = 〈δ2(k1)δ2(k2)δ1(k3)δ1(k4)〉+ . . . (6 terms)

+ 〈δ3(k1)δ1(k2)δ1(k3)δ1(k4)〉+ . . . (4 terms) . (2.126)

In total we find 6 terms of the first type and 4 terms for the second type. We wrote only
the first term of each type and the remaining terms are simply obtained by permutations
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of the arguments. All other contributions either vanish or are composed of higher-order
terms in δ1. Note that for the second type of terms we need the results from perturbation
theory up to the third order.

The calculation of each term is a tedious but straightforward calculation. We use
in this section the notation Pi ≡ Ppt(ki), Pij ≡ Ppt(|ki + kj|), kij ≡ ki + kj and
qij ≡ qi + qj. We obtain for the first term of the expansion

〈δ2(k1)δ2(k2)δ1(k3)δ1(k4)〉 =
1

(2π)6

∫ [ 4∏
i=1

d3qi

]
δD(k1 − q12)δD(k2 − q34)F2(q1, q2)

× F2(q3, q4)〈δ1(q1)δ1(q2)δ1(q3)δ1(q4)δ1(k3)δ1(k4)〉
= (2π)3δD(k1234){4P3P4[P13F2(k3,−k13)F2(k4,−k24)

+ P14F2(k3,−k23)F2(k4,−k14)]} , (2.127)

where the six-point correlator resolves into 15 terms consisting of power spectra products.
Performing the integrations over the arising delta functions yields in the end 8 non-
vanishing terms. Similarly, we find for the second type of terms

〈δ3(k1)δ1(k2)δ1(k3)δ1(k4)〉 =
1

(2π)6

∫
d3q1 d3q2 d3q3 δD(k1 − q123)F3(q1, q2, q3)

× 〈δ1(q1)δ1(q2)δ1(q3)δ1(k2)δ1(k3)δ1(k4)〉
= (2π)3δD(k1234){6F3(k2,k3,k4)P2P3P4} . (2.128)

The other terms are easily obtained by permutations, however, we present here the
complete result to avoid confusion with a short-hand notation. Combing the results of
all terms from both types of correlations (Eqs. 2.127 and 2.128) yields the dark matter
trispectrum in first non-vanishing order which is given by (Fry 1984):

Tpt = 4Ta + 6Tb , (2.129)

where

Ta = P1P2 [P13F2(k1,−k13)F2(k2,k13) + P14F2(k1,−k14)F2(k2,k14)]

+ P1P3 [P12F2(k1,−k12)F2(k3,k12) + P14F2(k1,−k14)F2(k3,k14)]

+ P1P4 [P12F2(k1,−k12)F2(k4,k12) + P13F2(k1,−k13)F2(k4,k13)]

+ P2P3 [P21F2(k2,−k21)F2(k3,k21) + P24F2(k2,−k24)F2(k3,k24)]

+ P2P4 [P21F2(k2,−k21)F2(k4,k21) + P23F2(k2,−k23)F2(k4,k23)]

+ P3P4 [P31F2(k3,−k31)F2(k4,k31) + P32F2(k3,−k32)F2(k4,k32)] , (2.130)

and

Tb = F3(k1,k2,k3)P1P2P3 + F3(k2,k3,k4)P2P3P4

+ F3(k3,k4,k1)P3P4P1 + F3(k4,k1,k2)P4P1P2 . (2.131)
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For the covariance matrix of the power spectrum, as we will discuss in detail in
Chapter 7, one only needs the parallelogram configuration of the trispectrum, which
imposes the conditions k2 = −k1 and k4 = −k3 on the wave-vectors. At first glance, it
seems that the terms proportional to F2(ki,±k12) in Eq. (2.130) are divergent for the
parallelogram configuration because k12 → 0. Fortunately, the divergences of the first
four terms cancel in this limit as shown in Appendix B.3. In this case the trispectrum
given by Eqs. (2.129), (2.130) and (2.131) simplifies to

Tpt|pc = 4P 2
1

{
[F2(k1,−k+)]2P+ + [F2(k1,k−)]2P−

}
+ 4P 2

3

{
[F2(k3,−k+)]2P+ + [F2(k3,−k−)]2P−

}
+ 8P1P3[F2(k1,−k+)F2(k3,−k+)P+ + F2(k1,k−)F2(k3,−k−)P−]

+ 12[P 2
1P3F3(k1,−k1,k3) + P1P

2
3F3(k1,k3,−k3)] , (2.132)

where we used the compact notation Tpt|pc ≡ Tpt(k1,−k1,k3,−k3), k− ≡ k3 − k1,
k+ ≡ k1 + k3, P− ≡ Ppt(|k−|) and P+ ≡ Ppt(|k+|).

General Correlation Function

The calculation of higher-order spectra than the trispectrum is a very tedious algebraic
exercise. An alleviation to this repetitive calculation is to use a diagrammatic approach
as presented in Scoccimarro & Frieman (1996). This method is already well developed
in classical field theory (e.g., Feynman diagrams) and allows to easily read off the result
for each perturbative term. In addition, topologically equivalent diagrams need to
be calculated only once. We show the diagrams of the tree-level terms of the power
spectrum, bispectrum and trispectrum in Fig. 2.1. Each diagram contains n vertices
and n− 1 lines connecting them. Each link carries a power spectrum of the particular
wave-number. We can infer from the figure that the scaling of the n-point tree-level
correlation function Tn is

Tn ∝ (Ppt)
n−1 , (2.133)

which is a consequence of Wick’s theorem.

2.3 Fitting Functions

We present in this section the fitting functions of the nonlinear power spectrum and
bispectrum.

2.3.1 Nonlinear Power Spectrum

We showed that theoretical models of the power spectrum break down at nonlinear
scales. Hence, we need to rely on results obtained from N -body simulations or analytical
models like the halo model. Using the results from many simulations, one can develop
fitting functions that are dependent on the adopted cosmological model. Here we
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Figure 2.1: Graphical representation of the tree-level power spectrum, bispectrum and
trispectrum. The trispectrum consists of two topologically different contributions, the so-
called snake and star terms. The bullets correspond to different positions k1, k2, . . . Each
vertex with n outgoing lines gets a factor of Fn, and each link carries a power spectrum of the
particular wave-number. Furthermore, at each vertex momentum conservation is imposed, i.e.,
k1 + . . . + kn = 0. A comprehensive treatment of the diagrammatical representation in the
context of cosmological perturbation theory is given in Scoccimarro & Frieman (1996).

describe the widely used fitting function from Peacock & Dodds (1996). There is an
improved fitting function by Smith et al. (2003) based on the dark matter halo model.

The main idea is that the nonlinear power spectrum is connected to the linear one
through the transformation

∆nl(knl) = fnl[∆nl(kl)] , knl = kl[1 + ∆nl(knl)]
1/3 , (2.134)

where “nl” refers to nonlinear and “l” to linear scales, respectively, and ∆(k) is the
reduced power spectrum as defined in Eq. (2.107). The function fnl has the form

fnl(x) = x

[
1 +Bβx+ (Ax)αβ

1 + ([Ax]αg3(Ω)/[V
√
x])β

]1/β

, (2.135)

where the parameters are fitted to simulations. The growth function g(Ω) is described
by the fitting function from Carroll et al. (1992) given in Eq. (2.49). The resulting
parameters are

A = 0.482(1 + neff/3)−0.947 , B = 0.226(1 + neff/3)−1.778 ,

α = 3.310(1 + neff/3)−0.244 , β = 0.862(1 + neff/3)−0.287 ,

V = 11.55(1 + neff/3)−0.423 ,
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where the effective spectral index of the power spectrum is taken at neff = neff(k′ = k/2).
The fit function in Eq. (2.135) has the asymptotic behavior

fnl(x) =

{
x for x� 1 ,

x3/2 for x� 1 .
(2.136)

This scaling ensures that for large scales the fitting function resembles the result from
perturbation theory, i.e., the linear power spectrum, and on small scales we recover the
result of stable clustering. The stable clustering hypothesis states that on very small
scales where the clustering process reaches virial equilibrium the mean velocity between
particle pairs exactly cancel the Hubble expansion.

2.3.2 Nonlinear Bispectrum

For the fitting function of the nonlinear bispectrum it is convenient to define the reduced
bispectrum, which shows a reduced scale dependence compared to the bispectrum itself:

Q(k1,k2,k3) =
B(k1,k2,k3)

P1P2 + P1P3 + P2P3

, (2.137)

where Pi ≡ P (ki). Recalling that the bispectrum is only non-zero for closed triangles
in Fourier space, we can parametrize the bispectrum by the length of two sides of the
triangle and the angle θ between them. First we want to discuss the configuration
dependence of the reduced bispectrum in tree-level perturbation theory which depends
mostly on the second-order coupling function given in Eq. (2.75). The coupling function
is composed of three different terms and we give in the following an interpretation of
each term. The first term gives an isotropic contribution that is independent of the
configuration of the bispectrum. The middle term arises from the gradient of the density
field in the direction of the flow (u ·∇δ) as given on the right-hand side of the continuity
equation (2.37). The last term arises from the gradient of the velocity divergence in
direction of the flow (∇ · (u · ∇)u) in the modified Euler equation (2.38). Hence, we
conclude that the configuration dependence of the bispectrum reflects the anisotropy of
structures and flows generated by gravitational instability. We show in the left panel
of Fig. 2.2 the reduced tree-level bispectrum as a function of the angle θ for a fixed
ratio of the two wave-vectors such that k1 = k2/2. We choose four different values of
k2 as indicated in the figure that cover the small-scale and large-scale behavior of the
reduced bispectrum. All curves show a similar behavior, i.e., a minimum at θ ≈ 0.6π
and the curves are maximal for collinear configuration (θ = 0, π). The enhancement
of correlations for collinear configurations reflects the fact that density and velocity
divergence gradients generated by gravitational instability are preferentially oriented
parallel to the flow. This particular feature can be seen in the large-scale distribution
of galaxies (see Fig. 1.2) and in the distribution of cold dark matter as obtained in
simulations which builds a filamentary structure.
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Numerical simulations indicate that on small scales the bispectrum is nearly inde-
pendent of θ and approaches a constant value (Scoccimarro et al. 1998). This constant
is approximately equal to the collinear configuration on large scales. Using these re-
sults Scoccimarro & Frieman (1999) developed a semi-analytic ansatz that they called
hyper-extended perturbation theory (HEPT) for the strongly nonlinear regime of the
bispectrum. They conjectured that in the strongly nonlinear regime or hierarchical
limit (|δ| � 1) the reduced bispectrum Q is equal to the collinear configuration Q in
tree-level perturbation theory. To calculate the reduced bispectrum in HEPT we choose
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Figure 2.2: Reduced bispectrum in dependence of the angle θ between the two wave-vectors
k1 and k2. We show the predictions for four different values of k2 as indicated in the figure
and choose k1 according to k1 = k2/2. The left panel shows the predictions from tree-level
perturbation theory and the right panel shows the result of the HEPT fitting formula.

k1 = k2 ≡ q and k3 = −2q since in tree-level perturbation theory the collinear value of
Q depends only very weakly on the ratio r12 = k1/k2. Then we find for the reduced
bispectrum in tree-level perturbation theory

Qpt(q) =
Bpt(q, q,−2q)

[Ppt(q)]2 + 2Ppt(q)Ppt(2q)
. (2.138)

Using a scale-free power spectrum ansatz Ppt(k) ∝ kn, where n denotes the spectral
index, we find

Q(n) =
4− 2n

1 + 2n+1
. (2.139)

Analogous to the nonlinear power spectrum, one can now interpolate between the
perturbative (weakly nonlinear regime) and the hierarchical regime (strongly nonlinear
regime). To get the behavior of the bispectrum for intermediate scales, one uses N -body
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simulations. For a ΛCDM cosmology Scoccimarro & Couchman (2001) calculated a
fitting formula that can be used for all scales and fits the results of N -body simulations
to an accuracy of 15 per cent. The fitting function replaces the second-order coupling
function defined in Eq. (2.75) which is used in the definition of the linear bispectrum in
Eq. (2.123) with the effective coupling function

F eff
2 (k1,k2) =

5

7
a(neff , k1)a(neff , k2) +

1

2

k1 · k2

|k1||k2|
b(neff , k1)b(neff , k2)

(
k1

k2

+
k2

k1

)
+

2

7

(k1 · k2)
2

k2
1k

2
2

c(neff , k1)c(neff , k2) , (2.140)

where the fitting parameters are given by

a(neff , k) =
1 + σ−0.2

8 (z)
√

0.7Q(neff)(q/4)neff+3.5

1 + (q/4)neff+3.5
, (2.141)

b(neff , k) =
1 + 0.4(neff + 3)qneff+3

1 + qneff+3.5
, (2.142)

c(neff , k) =
1 + 4.5[1.5 + (neff + 3)4]−1(2q)neff+3

1 + (2q)neff+3.5
, (2.143)

and where we defined the ratio q = k/knl. The nonlinear wave-number knl is defined as
the scale where the dimensionless power spectrum is equal to 1, i.e., ∆(knl, z) = 1. Note
that this is a different definition for the nonlinear wave-number as in Eq. (2.134). Both
the nonlinear wave-number and the normalization of the power spectrum are redshift
dependent, where σ8(z) = D(z)σ8. For large scales (k � knl) the fitting function
converges to a = b = c = 1 which is the result from tree-level perturbation theory. For
small scales (k � knl) we find b = c = 0 and a = σ−0.2

8 (z)
√

0.7Q(neff) which resembles
the behavior of the bispectrum in the strongly nonlinear regime as given in Eq. (2.139).

In the right panel of Fig. 2.2 we show the results of the reduced bispectrum in HEPT.
Compared to the results of perturbation theory the scale dependence is clearly reduced.
On the smallest scales the reduced bispectrum approaches a constant value which is not
predicted by tree-level perturbation theory.

2.4 Transfer Function

Up to now, we discussed only perturbations in the matter-dominated regime that
are smaller than the comoving horizon (recall that we are then able to use a simple
Newtonian approach). However, in the radiation-dominated regime we have to include
pressure terms originating from the coupled photon-baryon fluid. Hence, for baryonic
perturbations in the radiation-dominated regime we have to include pressure terms in the
description of the fluid equations. Also the behavior of the dark matter perturbations
is changed in the radiation-dominated phase because the scale-dependence of the
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mean background density is different compared to the matter-dominated phase. In
addition, we show the behavior of perturbations that are larger than the horizon of the
Hubble expansion. A common approach is to include all of these different effects in a
scale-dependent function, the so-called transfer function.

2.4.1 Jeans Equation

When we include pressure, the Euler equation changes to

∂u

∂τ
+Hu + (u · ∇)u = −1

ρ
∇p−∇Φ . (2.144)

Taking the divergence of this equation and only keeping terms linear in u yields

∂θ

∂τ
+Hθ +

3

2
H2Ωmδ = −1

ρ
∇2p . (2.145)

To relate the pressure to the density, we perform a Taylor expansion of the pressure
around the mean background density. Up to linear order in ρ we find

p(ρ) = p(ρ̄) +
dp

dρ

∣∣∣∣
ρ=ρ̄

(ρ− ρ̄) ≡ p(ρ̄) + c2s ρ̄δ (2.146)

where we defined the sound speed in the second step. Then we find for the derivative

dp

dρ
= c2s , (2.147)

and we can rewrite the pressure term as

∇2p = ρ̄c2s∇2δ . (2.148)

Combining Eqs. (2.39), (2.145) and (2.148), we find the equation of the linear growth
of fluctuations including pressure (compare with the pressureless differential equation
in 2.42):

∂2δ

∂τ 2
+H∂δ

∂τ
= 4πGρ̄a2δ + c2s∇2δ . (2.149)

Transforming the differential equation into Fourier space results in

∂2δ

∂τ 2
+H∂δ

∂τ
=
[
4πGρ̄a2 − c2sk

2
]
δ . (2.150)

The right-hand side of this equation shows that we have two competing effects: gravity
leading to an amplification of the density perturbation (see discussion on the linear
growth factor) and an opposing pressure term. It depends on the wave-length of the
perturbations which of both effects is dominant. Large-scale fluctuations are unaffected
by pressure effects as k → 0, whereas for small-scale fluctuations the pressure term is
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the dominant contribution. For small-scale fluctuations the solutions to Eq. (2.150) are
oscillating functions. Both effects compensate each other for perturbations with the
characteristic Jeans wave-length:

λJ =

√
π

Gρ̄
cs . (2.151)

For modes with λ > λJ gravity is dominating the right-hand side of Eq. (2.150). In
particular, taking the limit λ� λJ, we retain the solution of the linear growth factor
given in Eq. (2.48). On the other hand, modes with λ < λJ are affected by the pressure
term, and the perturbations begin to oscillate like acoustic waves with sound velocity cs.

2.4.2 Matter Perturbations in a Radiation-Dominated Background

The radiation component has also an effect on the matter density perturbations. To
study this effect, we need to solve Eq. (2.149) neglecting the pressure term and using for
the mean density the sum of the matter and radiation density. Rewriting the equation
in terms of the new variable y = a/aeq yields

∂2δ

∂y2
+

2 + 3y

2y(1 + y)

∂δ

∂y
− 3

2y(1 + y)
δ = 0 . (2.152)

The growing solution to this equation is given by

D(a) =
a

aeq

+
2

3
. (2.153)

During radiation domination, we have y � 1 and the growth of matter perturbation
effectively stops and goes to a constant, which is the so-called Meszaros effect. However,
in the matter-dominated regime, where y � 1, we retain the solution of the linear
growth factor in the EdS Universe discussed in Sect. 2.1.4.

2.4.3 General Fluctuation

For the following discussion we consider the evolution of a single fluctuation of wave-
length λ during the transition of the radiation- to the matter-dominated phase of the
Universe. Therefore, we can neglect any contribution from a cosmological constant that
is only dominating the expansion of the Universe at late times.

At first, we consider the evolution of a single perturbation in the collisionless cold
dark matter density component. As long as the wave-length is larger than the comoving
horizon (see definition in Eq. 1.56), i.e., λ > rh, the perturbation is unaffected by causal
physics like pressure of the baryon-photon fluid. A general relativistic consideration
shows that the density contrast grows like δ ∝ a2 for these superhorizon fluctuations.



62 2 Cosmological Perturbation Theory and Correlation Functions

When the perturbation enters the horizon7 in the radiation-dominated era, the growth
of the density contrast stops due to the Meszaros effect. The perturbation starts to
grow again at the time of matter-radiation equality with δ ∝ a. In summary, small-
scale perturbations are suppressed relative to large-scale fluctuations. To quantify the
suppression, we consider two different perturbations: the first enters the horizon at
aenter in the radiation-dominated era and the second only in the matter-dominated era.
Then the former one is reduced by a factor (aenter/aeq)

2 in comparison to the latter one.
Considering a perturbation in the baryonic density component is more complicated

because we need to include the effect of pressure. At early times, the evolution follows
that of the matter component: a superhorizon fluctuation first grows and then stagnates
when it enters the horizon. However, if λ < λJ then the perturbation starts to oscillate
like an acoustic wave. This oscillation originates from the competing effects of pressure
in the photon-baryon fluid and the gravitational instability: gravitational forces cause
the baryons to fall into their potential wells, whereas the radiation pressure drags them
out if the fluctuation is smaller than λJ, i.e., if the pressure is strong enough. Then the
baryons fall into their potential wells and the cycle starts again leading to oscillations
in the form of acoustic waves. In addition, the amplitude of the oscillation is reduced
by Silk damping. This reduction is caused by the diffusion of photons which drag the
baryons with them. After the time of recombination photons and baryons decouple. In
this case, we can neglect pressure effects and the baryonic perturbation grows like the
dark matter perturbation.

We discussed here only the basic effects on matter and baryonic perturbations in the
radiation- and matter-dominated phase of the Universe. A detailed analysis needs to
be done in the framework a general relativity (see the book of Dodelson 2003, which
focuses on the derivation of the CMB anisotropy power spectrum). In principle, one
needs to solve the (coupled) relativistic Boltzmann equation for each of the components:
photons, baryons, cold dark matter, massive neutrinos, etc. However, in general, this
can only be done numerically. A number of relativistic Boltzmann codes is publically
available (for example the CMBFAST code introduced by Seljak & Zaldarriaga 1996
and the CAMB software presented in Lewis et al. 2000).

To account for the scale-dependent effects occurring during horizon crossing and
matter-radiation transition, we define the transfer function:

δ(k, a = 1)

δ(kLS, a = 1)
≡ T (k)

δ(k, ai)

δ(kLS, ai)
(2.154)

where kLS is a sufficiently large perturbation that entered the horizon only in the
matter-dominated phase and thus has not been affected by growth suppression. In
addition, we consider an initial time or scale factor ai such that all perturbations are
outside the horizon. Building the ratio of an arbitrary fluctuation with wave-number k

7More correctly, the horizon grows with the expansion of the Universe and thus there is a time where
the horizon size is equal to the size of the perturbation. Then we say that the perturbation entered
the horizon.
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to a large-scale fluctuation which never entered the horizon, we can quantify the growth
suppression of δ(k). Hence, the transfer function describes the change of this ratio from
an early initial time to today. Note that the transfer function is independent on the
reference variables ai and kLS. Using this formalism, we easily see that for large scales
the transfer function goes to 1 as k → kLS. On the other hand, the behavior for small
scales can be inferred from the condition that a perturbation δ entered the horizon in
the radiation-dominated era:

λ = rh(aenter) ≈
c

aenterH(aenter)
. (2.155)

For a � aeq, the second Friedmann equation (1.22) yields H(a) ∝ a−2 and thus
k ∝ a−1

enter. Hence, as the suppression of modes for small scales is (aenter/aeq)
2, we find

T (k) ∝ k−2.
A widely used transfer function for cold dark matter perturbations is (Bardeen et al.

1986)

T (k) =
ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
, (2.156)

with the dimensionless variable q = [k/(hMpc−1)]Γ−1, and where Γ is the shape
parameter. The shape parameter reflects the characteristic scale of the horizon size
at matter-radiation equality. For a Universe without baryons the shape parameter is
simply

Γ = Ωmh . (2.157)

This equations is modified in the presence of baryons (Sugiyama 1995)

Γ = Ωmh exp[−Ωb(1 +
√

2h/Ωm)] . (2.158)

This equation fails if Ωb is too large and the transfer function develops oscillations.
For these situations it is better to use the improved Eisenstein and Hu fitting function
(Eisenstein & Hu 1998, 1999).

2.4.4 Power Spectrum

So far, we considered only the late-time behavior of the linear power spectrum. With
the help of the transfer function, we have access to the primordial power spectrum Pprim

set up after inflation:
Ppt(k) = APprim(k)T 2(k) , (2.159)

where A is the amplitude of the power spectrum. We still need to specify the primordial
power spectrum. Most models of structure formation assume Gaussian initial conditions
for the primordial fluctuations after inflation. In this case, the power spectrum contains
all statistical information on the density field. However, recently there is a growing
interest in constraining primordial non-Gaussianity as predicted by some inflationary
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models, and which is potentially strong enough to be observed. Naturally we can study
this effect by considering higher-order correlation functions. Hence, it is very important
to put tight limits on the observed level of non-Gaussianity. The best limits come from
CMB measurements (Komatsu et al. 2009).

Right after the time of inflation basically all perturbation modes were larger than the
horizon. Hence, without a characteristic length scale the primordial spectrum needs to
be of the form of a power law, i.e., Pprim ∝ kns , where ns is the spectral index of the
primordial spectrum. Inflationary models provide estimates for this power-law index.
One can show that the spectral is fixed by the slow roll parameters (ε and η) of inflation
given in Eq. (1.67) such that (Peacock 1999)

ns = 1− 6ε+ 2η . (2.160)

For most models in which the potential of the inflaton is a smooth function we have
|ε| = |η|. Thus, a prediction of inflation is to have a tilted primordial power spectrum
which is characterized by a spectral index which is slightly smaller than 1. A special case
is the primordial power spectrum for ns = 1 which is the so-called Harrison-Zel’dovich
spectrum.

We showed in Sect. 2.1.4 that the late-time evolution of the density contrast is in
linear perturbation theory proportional to the growth function, i.e., δ(k, a) = D(a)δ(k).
Then, the power spectrum at redshift z or scale factor a is

Ppt(k, a) = Akns T 2(k)D2(a) . (2.161)

The amplitude A of the power spectrum still needs to be fixed. This amplitude cannot
be predicted from theory but needs to be determined from observations of the power
spectrum at a certain redshift. One particular way8 is to use the result that we measure
today that the variance of number counts of galaxies in spheres of radius R = 8h−1 Mpc
is about unity, i.e., σ2

8,gal ≈ 1. To apply this result for the dark matter power spectrum,
we need to translate the variance to the variance in the dark matter fluctuations σ2

8.
However, we need to include the difference in the clustering of dark matter and galaxies
known as the galaxy bias. On large scales we can assume that we have a simple linear
deterministic bias factor leading to σ2

8,gal = b2σ2
8, where σ2

8 ≡ σ2(R = 8h−1 Mpc) is the
variance of the dark matter fluctuations which is given by

σ2
8 =

∫
d3k

(2π)3
|W8(k)|2 Ppt(k, a = 1) =

A

(2π)2

∫
dk k2W 2

8 (k)T 2(k)kns , (2.162)

where W8(k) is the top-hat filter function in Fourier space at scale R = 8h−1 Mpc given
in Eq. (B.23). In addition, we inserted the power spectrum (2.161) and performed the
angular integration in the second step. Hence, the amplitude of the power spectrum is
fixed by

A = σ2
8

/[ 1

(2π)2

∫
dk k2W 2

8 (k)T 2(k)kns

]
. (2.163)

8The CMB community uses another method to fix the amplitude of the power spectrum (e.g., Dodelson
2003).
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Today most cosmological probes like measurements of the cosmic shear two-point
correlation functions (Fu et al. 2008), of the CMB anisotropy spectrum (Komatsu et al.
2009) and of the abundance of galaxy clusters (e.g., the forecast of the constraints which
are expected to be obtained from the XMM-Newton Cluster Survey9 is given in Sahlén
et al. 2008), find values around σ8 ≈ 0.8. However, the measurements show strong
degeneracies between σ8 and Ωm.

The asymptotic behavior of the Fourier-mode dependence of the power spectrum is
determined by the asymptotic behavior of the transfer function and is given by

Ppt(k) =

{
k for small k ,

k−3 for large k .
(2.164)

On large scales the density fluctuations are not suppressed and the power spectrum
traces the scale-dependence of the primordial power spectrum. Using the behavior of
the transfer function on small scales, we find that the power spectrum decreases ∝ k−3.
Imprinted in the linear power spectrum is the characteristic size of the horizon at aeq,
where we see the turnover in the power spectrum.

9X-ray Multi-Mirror Mission.
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Chapter 3

The Dark Matter Halo Model

So far we discussed the linear and the quasilinear regime of the dark matter density
field which is well described by cosmological perturbation theory (see Chapter 2). As we
already mentioned, the perturbative expansion breaks down when the density contrast
becomes close to unity marking the onset of the nonlinear regime of the density field.
This is a problem because many interesting astrophysical objects like groups and clusters
of galaxies are nonlinear objects. The study of the nonlinear regime is usually examined
with numerical simulations. However, we will go another way and adopt an analytic
model which combines results from simulations and theoretical models of gravitational
clustering. This approach allows us to predict the form of correlation functions in the
linear and the nonlinear regime in a fairly accurate way. The main idea is that dark
matter is only distributed in spherically symmetric dark matter halos. The clustering
of dark matter which is described by the density contrast is then fully replaced by the
clustering of halos and their individual properties. This is a powerful model because
the properties of dark matter halos are well constrained by simulations.

The idea to explain gravitational clustering with an analytic approach has a long
history. The first models were already developed in the 1950s and they described galaxy
clustering as a superposition of randomly distributed objects with a range of masses and
density profile models (Neyman & Scott 1952; Peebles 1974; McClelland & Silk 1977).
Recently, the remarkable results of high-resolution dark matter N -body simulations for
the abundance of halos (halo mass function), the density run around a halo of mass m
(halo density profile) and the clustering of halos (halo bias) have renewed the interest
in analytic models. Especially, the concept of halo clustering was not contained in the
original models. Combining the new results from simulations and theoretical results of
perturbation theory yields the halo model, independently developed by Seljak (2000),
Ma & Fry (2000) and Scoccimarro et al. (2001). In principle, the halo model can be
extended and/or updated by the inclusion of new results from simulations.

The outline of this chapter is as follows: First, we introduce the spherical collapse
model in Sect. 3.1 which provides the necessary conditions for the formation of dark
matter halos. In Sect. 3.2, the number density of virialized objects of mass m, the
so-called halo mass function, is introduced. The universal radial density profile of a
halo is discussed in Sect. 3.3. The clustering of halos is the topic of Sect. 3.4, where we
introduce the halo bias. Finally, using the properties of dark matter halos as building
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blocks, we derive in Sect. 3.5 the halo model correlation functions and their Fourier
space counterparts. In particular, we provide expressions for the power spectrum, the
bispectrum and the trispectrum that are needed for the rest of this thesis.

3.1 Spherical Collapse Model

In this section we analyze the formation of nonlinear objects like galaxies and clusters
of galaxies as they break away from the general Hubble expansion of the Universe.
We use the spherical collapse model as a description of the necessary conditions for
the formation of dark matter halos. In this picture, halos originate from the spherical
collapse of small perturbations in the surrounding background matter. This is an overly
simplistic model that gives only a rough guideline for the formation of halos as the
formation of halos is not spherical. Nevertheless, simulations use the results from the
spherical collapse model to select virialized objects and get reasonable results compared
to observations.

The dynamics of a gravitating shell of radius r(t) of a spherical mass distribution is
governed by the Newtonian differential equation

d2

dt2
r(t) = −GNM

r2(t)
, (3.1)

where M is the mass contained in the spherical shell and GN is Newton’s constant. The
first integral of the equation of motion is given by(

dr(t)

dt

)2

=
2GNM

r(t)
+ E , (3.2)

where we used the fact that the mass is time independent and E is the constant of
integration. Clearly, for E > 0 the shell will expand forever as the kinetic energy is
always larger than the potential energy. However, when E < 0 there is a turning point
and the shell will only expand until a maximal radius and then contract again. As we
are interested in the spherical collapse and the building of virialized objects, we consider
the case where E < 0 in the following. The solution to Eq. (3.1) for the radius r and
the time t is given by the cycloid solution

r(θ) = A(1− cos θ) , (3.3)

t(θ) = B(θ − sin θ) , (3.4)

where A and B are constant parameters. Plugging this ansatz into Eq. (3.1) gives the
constraint

A3 = GNMB2 . (3.5)

In the following we consider three different cases for the parameter θ and show the
results for the radius of the sphere and the corresponding time using Eqs. (3.3) and
(3.4). We find
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• θ = 0 → r = 0 ; t = 0 ,

• θta = π → rta = 2A ; tta = πB ,

• θcoll = 2π → rcoll = 0 ; tcoll = 2πB .

These relations demonstrate that the parametric solution describes a sphere which
is expanding until it reaches a maximal radius at turnaround (subscript “ta”). This
is followed by a contraction which results formally in a vanishing minimal radius at
collapse (subscript “coll”), i.e, rcoll = 0 . Note that the three different values of θ
denote a time evolution because the time is increasing as θ is increasing. Expanding
the parametric solution given by Eqs. (3.3) and (3.4) in a power series for θ � 1 and
keeping terms up to O(θ5), we find the radius in the linear regime:

rlin '
A

2

(
6t

B

)2/3
[
1− 1

20

(
6t

B

)2/3
]
. (3.6)

The corresponding density in the linear regime then simply follows from

ρlin =
3M

4πr3
lin

' 1

6πGN t2

[
1 +

3

20

(
6t

B

)2/3
]
, (3.7)

where we performed a Taylor expansion for small times t keeping only the lowest-
order term and used the constraint (3.5) in the second step. Note that the pre-factor
corresponds to the mean density in an EdS Universe since ρ̄EdS = ρcrit = 3H2/(8πGN)
with H = 2/(3t). Hence, we can identify the linear density contrast as the second term
in square brackets by using the relation ρ = ρ̄(1 + δ):

δlin =
3

20

(
6t

B

)2/3

. (3.8)

Results for a flat ΛCDM model are discussed at the end of this section. Note that the
results of the linear spherical collapse model in Eq. (3.8) agree with the results of linear
perturbation theory where the perturbation grows proportional to the scale factor, i.e.,
δlin ∝ a ∝ t2/3.

The general density which is also valid in the nonlinear regime is given by

ρnl =
3M

4πr3
=

3

4π

M

A3(1− cos θ)3
=

1

6πGN t2
9(θ − sin θ)2

2(1− cos θ)3
, (3.9)

where we inserted the parametric solution for the radius given in Eq. (3.3) in the second
step and used the constraint (3.5) in combination with the parametric solution for the
time (3.4) in the last step. By noting that the pre-factor is again the mean background
density we identify the nonlinear density contrast as

δnl =
9

2

(θ − sin θ)2

(1− cos θ)3
− 1 . (3.10)
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We are now able to calculate the linear and nonlinear density contrast using Eqs. (3.8)
and (3.10), respectively, for the two particular times at turnaround and collapse. At
turnaround we find

δ
(ta)
lin ' 1.06 ; δ

(ta)
nl =

9

16
π2 − 1 ' 4.55 , (3.11)

and the ratio of the density to the mean density is

ρ
(ta)
nl

ρ̄(ta)
= 1 + δ

(ta)
nl =

9

16
π2 ' 5.55 . (3.12)

Hence, at turnaround the sphere is 5.55 times more dense than the mean background
density of the Universe. Since the perturbative result of the linear density ratio
(ρ

(ta)
lin /ρ̄

(ta) = 2.06) contrast underestimates the general density contrast by more than
50 per cent, we are already in the nonlinear regime.

After turnaround the spherical region begins to contract until it collapses formally to
a point of infinite density. However, this will not occur in reality because we neglected
dissipative physics in the simplified model above. The kinetic energy of the infalling
matter will be transferred into a random motion of the mass particles which is called
violent relaxation. This random motion leads to a virialization where the spherical
region reaches a constant virial radius rvir corresponding to a finite density. This radius
can be estimated using the virial theorem

Uvir = −2Tvir , (3.13)

where U denotes the potential energy and T the kinetic energy. At the point of
turnaround the kinetic energy of the shell vanishes, i.e., Tta = 0. Conservation of
the total energy yields Evir = Tvir + Uvir = Uvir/2 = Eta = Uta, where we used the
virial theorem in the second step. This leads to a relation of the potential energy at
virialization and turnaround, i.e., Uvir = 2Uta. As U ∝ 1/r we find that the radius of
objects at virialization is half as large as the maximal radius, i.e., rvir = rta/2. This
enables us to calculate the density of a virialized object in terms of the density at
turnaround as ρ

(vir)
nl = 8ρ

(ta)
nl . In addition, we need to compute the background density

at collapse

ρ̄(tvir) =
1

6πGN t2vir

=
ρ̄(tta)

4
, (3.14)

where used tvir ≡ tcoll = 2tta in the second step. Finally, we find for the density contrast
at collapse

δ
(vir)
nl =

ρ
(vir)
nl

ρ̄(vir)
− 1 = 32

ρ
(ta)
nl

ρ̄(ta)
− 1 = 18π2 − 1 , (3.15)

where we inserted Eq. (3.12) for the density ratio at turnaround in the last step.
Therefore the density ratio at virialization is

∆vir ≡
ρ

(vir)
nl

ρ̄(vir)
= 1 + δ

(vir)
nl = 18π2 ' 178 . (3.16)
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Hence, in the spherical collapse model, virialized objects are characterized by a density
that is roughly 180 times larger than the mean background density. The linear density
contrast at collapse is easily calculated because Eq. (3.8) is still applicable. Inserting
the time of collapse tcoll = 2πB yields

δ
(coll)
lin =

3

20
(12π)2/3 ' 1.686 . (3.17)

Thus, a linear density contrast of 1.69 marks roughly the point where the virialization
of a spherical halo occurs. We will label the corresponding linear density contrast at
collapse with δc in the following.

In summary, the spherical collapse model provides two important numbers: the linear
density contrast at the time of collapse δc and the density ratio of a virialized halo
∆vir = ρvir/ρ̄. If we consider virialized objects today we take ρ̄ = ρcritΩm which is the
mean matter density today. For an EdS Universe we obtained for both parameters

δ(EdS)
c ' 1.686 , (3.18)

∆
(EdS)
vir = 18π2 ' 178 . (3.19)

Note that for a general cosmological model both parameters are redshift- and cosmology-
dependent. Calculations for a flat cosmological ΛCDM model in Henry (2000), where
Ωm + ΩΛ = 1, give the following results

δc(z) = δ(EdS)
c [1− 0.0123 ln(1 + x3)] , (3.20)

∆vir(z) = ∆
(EdS)
vir (1 + 0.4093x2.71572) , (3.21)

where the redshift and cosmology dependence is encoded in the parameter x with

x ≡ (Ω−1
m − 1)1/3

1 + z
. (3.22)

Note that the value of the threshold δc is only weakly dependent on cosmology. Therefore
we use the EdS value in Eq. (3.18) for the subsequent calculations. However, for the
density ratio we use the redshift and cosmology dependence as given in Eq. (3.21) in
the following which is valid for a flat ΛCDM model.

3.2 Halo Mass Function

Using the results of the spherical collapse model presented in the previous section, we
want to calculate the mass function of virialized objects such as dark matter halos or
galaxy clusters. More precisely, we want to obtain an equation for the comoving number
density of objects at redshift z with masses in the range m and m+ dm. We derived in
the previous section that a virialized object is characterized by a linear density contrast
larger than a threshold density contrast such that δlin > δc ' 1.69.
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First we present the pioneering work by Press-Schechter (see Press & Schechter 1974)
on the mass function in Sect. 3.2.1 which showed good agreement with observations
at that time. However, high-resolution N -body simulations showed that the Press-
Schechter mass function while capturing the rough features of the simulation fails in
detail. In the advent of precision cosmology we need more reliable models for the mass
function. We present such improved models in Sect. 3.2.2 including the most used
parametrization, namely the Sheth-Tormen mass function (Sheth & Tormen 1999).

3.2.1 Press-Schechter Model

The Press-Schechter approach to calculate the mass function of virialized objects is
based on the assumption that objects form in the so-called hierarchical clustering or
bottom-up picture. In this case small structures form first and then subsequently merge
to form larger structures.

We can assign a characteristic length scale R to a halo of mass m defined as the
comoving radius of a homogeneous sphere with mean matter density ρ̄

4π

3
R3ρ̄ = m, R(m) =

(
3m

4πρ̄

)1/3

. (3.23)

The mean density contrast within this volume needs to be larger than δc to form
a virialized structure. Therefore, we will smooth the density contrast δ over the
characteristic scale R with a filter function. We are free to choose the form of this
filter function. Here we will adopt a top-hat function defined in Eq. (B.22). Appendix
B.5 provides a complete description of the smoothing of Gaussian density fields. For
an initially Gaussian random field, as assumed for simple inflationary models, the
probability of finding the smoothed density contrast δ is given by

pR(δ) =
exp[−δ2/2σ2

R(m)]√
2πσ2

R(m)
, (3.24)

where the variance of scale R is denoted by σ2
R(m) and is given by

σ2
R(m) =

∫
dk

k

k3Ppt(k, z = 0)

2π2
|WR(k)|2 , (3.25)

where WR(k) is the filter function in Fourier space and Ppt(k, z = 0) is the linear power
spectrum at redshift z = 0. Note that σ2

R(m) is a monotonically decreasing function of
the halo mass m.

The fraction of the Universe contained in virialized objects with mass larger than m
(δ > δc) is estimated as

F>(m) =

∫ ∞

δc

pR(δ)dδ =
1

2
erfc

[
δc√

2σR(m)

]
, (3.26)
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where erfc(x) is the complementary error function. However, there is a serious problem
with this approach as the considered mass of bound objects goes to zero. In this case
the total fraction should be 1, whereas the Press-Schechter approach gives a fraction of
1/2, i.e.,

F>(0) =
1

2
erfc

[
δc√

2σR=0(m = 0)

]
=

1

2
, (3.27)

where we used the fact that the top-hat function is WR(0) = 1 for R = 0 and thus
σ2

R(m) →∞. To solve this problem, Press & Schechter simply multiplied the final result
in Eq. (3.29) below with the missing factor of 2. We convert the fraction (3.26) to the
fraction of the cosmic volume filled with halos with masses between m and m + dm
using

f(m) = −∂F>

∂m
dm, (3.28)

where we introduced a minus sign since F>(m) is a decreasing function of m. The
number density n(m) per comoving volume is obtained by dividing Eq. (3.28) with the
mean occupied volume V of a halo with mass m

n(m)dm =
f(m)

V
= −ρ̄∂F>

∂m

dm

m
, (3.29)

where ρ̄ is the mean comoving density. Finally, after performing the partial derivative
in Eq. (3.29) we find the halo mass function

dn

dm
≡ nPS(m) = −2

ρ̄

m

δc
σ2

e−δ2
c/2σ2

√
2π

dσ

dm
=

ρ̄

m

e−δ2
c/2σ2

√
2π

δc
σ3

∣∣∣∣dσ2

dm

∣∣∣∣ , (3.30)

where we emphasized the equality of dn/dm and n(m) in the first step as both notations
are used in the literature. In addition, we use from now on the compact notation σR ≡ σ
and only write the mass dependence when necessary. The ad-hoc factor of 2 can be
derived from extended Press-Schechter theory (e.g., Zentner 2007). The dependence
of the mass function on cosmological parameters enters through the variance σ2 which
depends on the linear power spectrum (see Eq. 3.25) and through the mean density of
the Universe which depends on Ωm.

To get insight into the behavior of the mass function, it is useful to consider a
scale-free power spectrum as we can then find an analytical expression for the mass
function. For a scale-free power spectrum P (k) ∝ kn we find that the variance is given

by σ2(m) = (m/m∗)
−n+3

3 δ2
c . Here we write the result in terms of the nonlinear mass

scale m∗ defined as
σ2(m∗) = δ2

c , (3.31)

which provides a natural way to divide the mass function into two regimes. We find

nPS(m) =
A

m2

(
m

m∗

)(3+n)/6

exp

[
−1

2

(
m

m∗

)1+n/3
]
, (3.32)
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Figure 3.1: Comparison of the different halo mass function parametrizations. Shown is the
multiplicity function νf(ν) (see Eq. 3.33 for the connection to the mass function) against the
dimensionless variable ν. The solid line shows the Press-Schechter mass function in Eq. (3.35),
the dashed line the Sheth-Tormen mass function in Eq. (3.36) and the dotted line the Jenkins
mass function in Eq. (3.37).

where A = ρ̄√
2π

(
3+n

3

)
. For m� m∗ we find nPS(m) ∝ m−2m(3+n)/6 meaning that at low

masses the mass function diverges like a power law. For large masses the exponential
takes over leading to a cutoff for masses m & m∗.

Up to now the expression for the mass function is limited to the current time z = 0.
If we want to know the mass function of halos at a specific redshift z we simply need to
modify the variance as σ2(m, z) = D2(z)σ2(m), where we used the redshift dependence
of the linear power spectrum (see Eq. 2.48 for the expression of the growth factor D(z)).

3.2.2 General Halo Mass Function

We can write the differential number density of halos in the following compact form

n(m, z) =
ρ̄

m2
νf(ν)

d ln ν

d lnm
, (3.33)

where we defined the dimensionless variable ν as

ν =
δc(z)

D(z)σ(m)
. (3.34)

Thus, part of the mass function can be expressed by the multiplicity function νf(ν),
which has a universal shape, i.e., independent on cosmological parameters and redshift.
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The universal shape is one of the main nontrivial results from simulations. However,
there is very recent indication of a redshift dependence of the multiplicity function as
reported in Tinker et al. (2008).

In the literature one finds a number of different parametrizations of the multiplicity
function. The most popular ones are

• Press-Schechter mass function (Press & Schechter 1974)

νf(ν) =

√
2

π
ν exp(−ν2/2) . (3.35)

• Sheth-Tormen mass function (Sheth & Tormen 1999)

νf(ν) = A

√
2

π
[1 + (qν2)−p]

√
qν2 exp(−qν2/2) , (3.36)

where the two parameters are given by q = 0.707 and p = 0.3 and A denotes the
amplitude of the mass function that is fixed by mass conservation as shown in
Eq. (3.38) below.

• Jenkins mass function (Jenkins et al. 2001)

νf(ν) = 0.315 exp(−| lnσ−1 + 0.61|3.8) . (3.37)

The Sheth-Tormen and Jenkins functions are directly fitted to numerical simulations.
For small ν we find νf(ν) ∝ ν0.4 for the Sheth-Tormen mass function and νf(ν) ∝ ν for
the Press-Schechter mass function. This limit corresponds to small halo masses because
the variance is largest for small masses. We present the three different multiplicity
functions in Fig. 3.1. The largest difference is seen for small ν (or small m) which thus
affects the small scales of the halo model spectra. This will be explained in detail in
Sect. 3.3.

In the following we will focus on the Sheth-Tormen mass function as it provides
the best agreement with simulations. In addition, it was shown to be connected to a
physical model that describes an ellipsoidal mass collapse in contrast to a spherical
mass collapse (see Sheth et al. 2001). The amplitude A in Eq. (3.36) is determined by
assuming mass conservation, such that the integral over the mass function times the
halo mass gives the mean density of the Universe:

1

ρ̄

∫ ∞

0

n(m, z)m dm =

∫ ∞

0

f(ν) dν = 1 , (3.38)

where we have used the definition of the mass function in terms of the variable ν as in
Eq. (3.33) in the first step. The integral can be solved analytically for p < 1/2 and we
obtain for the amplitude

A(p) =

[
1 + 2−p Γ

(
1

2
− p

)/√
π

]−1

, (3.39)
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where Γ(x) is the Gamma function. Note that the amplitude only depends on the
parameter p. For our fiducial choice of p = 0.3 the amplitude is A = 0.322. The general
form of the Sheth-Tormen mass function contains the Press-Schechter mass function as
a special case choosing the parameters p = 0 and q = 1. In this case we get A = 0.5
resembling the result in Eq. (3.35).

3.3 Halo Density Profile

The next ingredient we need for our halo model description of dark matter clustering
is the halo density profile. Especially high-resolution dark matter N -body simulations
are suited to determine the density profiles of halos. A nontrivial result from different
simulations is that they find an approximately universal form of the mass profile, i.e.,
independent of the halo mass. However, different groups report a different functional
form of the universal density profile. Ongoing theoretical work and improved simulations
are needed to test the universality of the density profile and its functional form. In
addition, the results from simulations can be compared to mass estimates from rotation
curves of galaxies, weak lensing and X-ray observations of clusters. However, the
observations still need to be improved to give tight constraints on the form of the density
profile.

The simplest analytic model is the singular isothermal sphere, which describes a
spherically symmetric, self-gravitating system of non-interacting particles. The kinetic
energy of the particles is Ekin = kBT , where T is the temperature and kB denotes the
Boltzmann constant. The density profile is then given by

ρ(r) =
σ2

v

2πGNr2
, (3.40)

where σv is the velocity dispersion of the particles

σ2
v =

kBT

m
. (3.41)

However, results from improved N -body simulations indicate that the halo density
profile is described by a broken power law. As already mentioned there are a number of
different profiles and we give only the most important ones in the following:

• Navarro-Frenk-White (NFW) (see Navarro et al. 1996)

ρ(r) =
ρs

(r/rs)[1 + (r/rs)]2
, (3.42)

• M99 (see Moore et al. 1999)

ρ(r) =
ρs

(r/rs)3/2[1 + (r/rs)3/2]
, (3.43)
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• Hernquist (see Hernquist 1990)

ρ(r) =
ρs

(r/rs)[1 + (r/rs)]3
, (3.44)

• Einasto (see e.g., Gao et al. 2008)

ρ(r) = ρs exp

{
− 2

α

[(
r

rs

)α

− 1

]}
, (3.45)

where ρs is the central density parameter and rs the scale radius. The scale radius divides
the density profile into its inner and outer part that have a different power-law behavior.
The NFW and M99 density profiles differ only on small scales (r . rs). For large radii
(r � rs, i.e., the outer profile) they have the same asymptotic behavior ρ(r) ∝ r−3.
Most of the results from simulations agree on this scaling behavior of the outer profile.
However, the form of the inner profile is still under debate as high-resolution simulations
are needed. The newest results from the Millennium Run simulation prefer the Einasto
parametrization for the inner part of the profile and they constrain the parameter α
in (3.45) to be approximately 0.15 with a weak mass dependence (Neto et al. 2007).
The four different profiles are plotted in Fig. 3.2 as a function of the radius. We can
clearly see the different scaling of the inner and outer part of the profiles. The difference
between the NFW profile and the Einasto profile is most significant for the inner part
of the profiles.

The density profiles are usually expressed in terms of the halo mass, which can be
derived from the density through

m =

∫
d3r ρ(r) =

∫ rvir

0

dr 4πr2ρ(r) , (3.46)

where we assumed a spherical symmetric profile in the second step. In addition, we
introduced a cutoff radius rvir, the so-called virial radius which defines the virial mass
of a halo, i.e., the mass of a halo in virial equilibrium. The virial radius can be easily
computed from

rvir(z) =

(
3

4π

m

∆vir(z)ρ̄

)1/3

, (3.47)

where ∆vir is the ratio of the density of a virialized halo to the mean density and is
calculated using the spherical collapse model. For a ΛCDM model we found that ∆vir is
redshift dependent as given in Eq. (3.21). In the literature one can find several different
definitions of the cutoff radius and therefore of a virial mass of a halo. Instead of using
∆vir in Eq. (3.47) one can find the EdS inspired values (compare with Eq. 3.16)

∆200 = 200 , ∆180 = 180 , (3.48)

independent of cosmology and redshift. The NFW paper even used the combination
∆200ρcrit instead of the product of ∆vir with the mean background density. All these
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Figure 3.2: Different functional forms of the dark matter density profile in terms of the scaled
density ρ/ρs as a function of the scaled radius r/rs. We plot the NFW- (solid line), the M99-
(long-dashed line), the Hernquist- (short-dashed line) and the Einasto profile (dotted line)
as given in Eqs. (3.42), (3.43), (3.44) and (3.45), respectively. Current numerical simulations
favor the NFW-profile or the Einasto profile. At r/rs = 1 the transition from the power-law
behavior of the inner to the outer part of the profile is clearly visible.

different combinations show that it is up to now not exactly clear what is the best way
to define a halo. Hence, caution is needed before interpreting results from simulations
because one needs to know their virial radius definition.

Formally one needs to integrate Eq. (3.46) up to infinity, but the mass of the M99
and the NFW profile is logarithmically divergent for large radii. Therefore one needs
to introduce an arbitrary cutoff radius. Here we will adopt rvir as a cutoff radius to
be consistent with the results from the spherical collapse model. Strictly speaking the
results of different simulations for the density profile are only tested for radii smaller
than the virial radius. The Hernquist profile is constructed in a way that it cures this
problem. For large r the density is proportional to r−4 so that it is not divergent.

The integration in Eq. (3.46) can be done analytically for the NFW and M99 profiles
yielding

• NFW

m = 4πρsr
3
s

[
ln(1 + c)− c

1 + c

]
≡ 4πρsr

3
s

f(c)
, (3.49)
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• M99

m = 4πρsr
3
s

[
2 ln(1 + c3/2)

3

]
≡ 4πρsr

3
s

g(c)
, (3.50)

where we have defined the halo concentration parameter

c ≡ rvir/rs . (3.51)

For convenience we defined the function in square brackets as 1/f(c) and 1/g(c),
respectively. Finally, we rewrite the NFW profile defined in Eq. (3.42) as

ρ(r,m) =
m

4π

c3f(c)

r3
vir

1

x(1 + x)2
, (3.52)

where we replaced ρs using Eq. (3.49) and defined x ≡ c r/rvir. Hence, we parametrized
the density profile with the virial mass (or equivalently the virial radius) and the
concentration parameter. For the formulation of the halo model correlation functions it
is convenient to define the normalized density profile

u(r,m) ≡ ρ(r,m)

m
, (3.53)

where
∫

d3r u(r,m) = 1.
In the following, we will need the expression of the density profile in Fourier space

because we want to calculate the halo model power spectrum defined as the Fourier
space counterpart of the two-point correlation function and also higher-order spectra.
We find for the normalized dark matter density profile

ũ(k,m) =

∫
d3r ρ(r,m)eik·r∫

d3r ρ(r,m)
. (3.54)

For spherical symmetric profiles we can perform the angular integration and the equation
simplifies to

ũ(k,m) =

∫ rvir

0

dr 4πr2 sin(kr)

kr

ρ(r,m)

m
, (3.55)

where r = |r|. Note that we need to truncate the integration at the virial radius rvir to
be consistent with the definition of the halo mass in Eq. (3.46). For the NFW profile in
Eq. (3.52) it is then possible to find a closed solution given by

ũ(k,m) = f(c)

[
sin η {Si[η(1 + c)]− Si(η)}+ cos η{Ci[η(1 + c)]− Ci(η)}

− sin(ηc)

η(1 + c)

]
, (3.56)

where the sine- and cosine-integrals are defined as

Si(x) =

∫ x

0

dt
sin t

t
, Ci(x) = −

∫ ∞

x

dt
cos t

t
, (3.57)
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and we introduced η = krvir/c. The profile has the asymptotic behavior ũ(k,m) → 1 for
large scales which is easily verified using the limit k → 0 in Eq. (3.54). Going to smaller
scales the amplitude begins to decrease, i.e., ũ(k,m) . 1. This decline begins earlier for
high-mass halos compared to small-mass halos. Finally, for small scales the profile goes
asymptotically as ũ(k,m) ∝ k−2. We derive this result in the following. First we take
the limit of Eq. (3.56) for small halo masses, which results in large concentrations (see
Eq. 3.62 below). Thus, for the limit c� 1 we find (Scoccimarro et al. 2001)

ũ(k,m) = (ln c)−1 [− sin η si(η)− cos ηCi(η)] , (3.58)

where we defined si(x) ≡ Si(x)−π/2, and used the fact that Si(∞) = π/2 and Ci(∞) = 0.
Now taking the limit for small scales, i.e., η � 1 (note that k grows faster than c) we
find

ũ(k,m) ' (ln c)−1

[
sin2 η

η2
+

cos2 η

η2

]
= (ln c)−1η−2 ∝ k−2 , (3.59)

where we used the asymptotic expansion of the sine- and cosine-integrals for x � 1.
The expansion is given by

si(x) = −cosx

x

(
1− 2!

x2
+

4!

x4
− . . .

)
− sin x

x2

(
1− 3!

x2
+

5!

x4
− . . .

)
, (3.60)

Ci(x) =
sin x

x

(
1− 2!

x2
+

4!

x4
− . . .

)
− cosx

x2

(
1− 3!

x2
+

5!

x4
− . . .

)
, (3.61)

which is found by successive partial integrations of the functions in Eq. (3.57).
We show the normalized density profile in Fourier space in Fig. 3.3 as a function

of the wave-number k for six different halo masses ranging from m = 1011 h−1M� to
m = 1016 h−1M�. The plot shows that massive halos contribute power only on large
scales, whereas smaller halos contribute power also on small scales.

3.3.1 Halo Concentration Parameter

The halo model spectra are strongly dependent on the concentration parameter defined
in Eq. (3.51). In order to get an equation for the concentration one must again resort
to N -body simulations. The general result is that high-mass halos are less concentrated
than low-mass halos. A good fitting formula for the mass- and redshift-dependence of
the concentration of NFW halos is given by Bullock et al. (2001)

c(m, z) =
c0

1 + z

[
m

m∗(z = 0)

]−α

, (3.62)

with the parameters c0 = 9 and α = 0.13. On the other hand, Takada & Jain (2003)
used c0 = 10 and α = 0.2 instead which gave better results for a halo model applied to
estimate higher-order weak lensing correlation functions. We already introduced the
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Figure 3.3: Fourier transform of the normalized NFW dark matter density profile ũ(k, m) as
defined in Eq. (3.56) against the wave-number k for six different halo masses m. Shown is the
important halo mass range from m = 1011 h−1 M� at the right to m = 1016 h−1 M� at the
left.

mass m∗ in Eq. (3.31) which is defined by ν = 1. In the next section we will demonstrate
the influence of m∗ on the halo bias.

Simulations show that different halos of the same mass have a distribution of concen-
trations which is well fitted by a log-normal distribution with dispersion σln c

p(c|m)dc =
1√

2πσ2
ln c

exp

[
−(ln c− ln c̄)2

2σ2
ln c

]
d ln c , (3.63)

where c̄ ≡ c̄(m, z) is the mean concentration parameter given by Eq. (3.62). The width
of this distribution is obtained from simulations to be σln c ≈ 0.2 − 0.4 (for example
Bullock et al. 2001). Note that the width of the distribution is independent of the halo
mass.

3.4 Halo Bias

Cosmological structure formation models predict that the clustering of dark matter
halos is different from the clustering of the general dark matter background. Here
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we will quantitatively discuss this so-called halo bias. Understanding halo bias is an
important step forward to infer the bias between galaxy and dark matter clustering as
dark matter halos are the environment for the formation of galaxies.

In this section we will sometimes use the short-hand notation si ≡ σ2(mi). In addition,
we consider here that the variance σ2(m) is constant in time and make the linear collapse
density contrast time dependent, i.e., δc → δc(z) = δc/D(z). This is justified by the fact
that the mass function depends only on the ratio ν of both quantities (see for example
Eq. 3.36).

We consider a halo of mass m2 at time δ2 (δi ≡ δc(zi)) corresponding to a redshift
z2. The fraction of mass that was in halos of mass m1 at an earlier time at redshift z1

(where z1 > z2 or equivalently δ1 > δ2) is given by the conditional mass function:

f(s1, δ1|s2, δ2)
ds1

dm1

dm1 =
δ1 − δ2√

2π(s1 − s2)3/2
exp

[
− (δ1 − δ2)

2

2(s1 − s2)

]
ds1

dm1

dm1 , (3.64)

where m1 < m2 and thus s2 < s1. The mass m2 is growing through merger and accretion
of the surrounding halos. This relation can be derived from extended Press-Schechter
theory (see the pioneering work of Bond et al. 1991; Lacey & Cole 1993, and the
comprehensive review by Zentner 2007) and is the basis for the following derivation of
the halo bias.

Now we want to use the conditional mass function to relate the density contrast
of halos δh to the dark matter density contrast δ. The presented approach was first
developed by Mo & White (1996) and Mo et al. (1997). We consider a region of mass
M and volume V that has a corresponding density of

ρ = M/V = ρ̄(1 + δ) . (3.65)

The region is assumed to be massive enough to fulfill the condition σ2(M) � σ2(M∗) =
δ2
c , so that we can take the approximate limit σ2(M) → 0. This region will become a

halo in the future. With this setup we can describe the fraction of mass in halos of mass
m that collapse at time δc contained in the region of mass M with the density contrast
δ. This quantity is given by the approximate form of the conditional mass function in
Eq. (3.64):

f(m, δc|M, δ)
dσ2

dm
≈ δc − δlin(δ)√

2πσ3(m)
exp

[
−(δc − δlin(δ))

2

2σ2(m)

]
dσ2

dm
. (3.66)

Here δlin(δ) is the linear collapse density contrast for the region of mass M characterized
by the density contrast δ. From this expression the average number of halos with mass
m in a region of mass M is given by

N(m|M, δ) =
M

m
f(m, δc|M, δ)

∣∣∣∣dσ2

dm

∣∣∣∣ . (3.67)
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We can then define the halo density contrast in analogy to the dark matter density
contrast as the ratio of the number density of halos of mass m contained in a region of
mass M to the general number density of halos provided by the halo mass function, i.e.,

1 + δh =
N(m|M, δ)

V

1

n(m)
. (3.68)

Inserting the number of halos, Eq. (3.67), and using Eq. (3.65) we find

1 + δh =
ρ̄

m

f(m, δc|M, δ)

n(m)
(1 + δ)

∣∣∣∣dσ2

dm

∣∣∣∣ . (3.69)

For δ � 1 we can expand the function f in Eq. (3.66) in a Taylor series:

f(m, δc|M, δ) =

[
δc + (ν2 − 1)δlin(δ) +

ν2(ν2 − 3)

δc

δ2
lin(δ)

2
+ . . .

]
e−ν2/2

√
2π

1

σ3(m)
(3.70)

where we used the definition of ν in Eq. (3.34). Inserting the Press-Schechter mass
function (3.30) and the expansion (3.70) into Eq. (3.69) yields

1 + δh = (1 + δ)

[
1 +

ν2 − 1

δc
δlin(δ) +

ν2(ν2 − 3)

2δ2
c

δ2
lin(δ) + . . .

]
. (3.71)

From the spherical collapse model we find

δ(δlin) = δlin +
a2

2
δ2
lin +

a3

3!
δ3
lin + . . . , (3.72)

where the coefficients ai are given in the Appendix B.1. Up to quadratic order in δ this
equation can be inverted to:

δlin(δ) ' δ − a2

2
δ2 +O(δ3) . (3.73)

Inserting this into Eq. (3.71) yields the desired relation between δh and δ:

1 + δh ' (1 + δ)

[
1 +

(
δ − a2

2
δ2
) ν2 − 1

δc
+
ν2(ν2 − 3)

2δ2
c

δ2 + . . .

]
. (3.74)

Furthermore, we introduce the halo bias functions bhi (m) as coefficients of a power-series
expansion of δh:

δh(δ) ≡ δh(x;m) = bh1(m)δ(x) +
bh2(m)

2
δ2(x) +

bh3(m)

6
δ3(x) + . . . (3.75)

We can identify each term by comparing equal orders of δ in Eq. (3.74) with Eq. (3.75).
Using this approach we find the bias between halos and the surrounding dark matter:

bh1(m) ≡ 1 +
ν2 − 1

δc
, (3.76)

bh2(m) ≡ 2
(
1− a2

2

) ν2 − 1

δc
+
ν2(ν2 − 3)

δ2
c

. (3.77)
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These expressions represent the linear and quadratic bias of halos with respect to the
underlying dark matter field. There is a characteristic mass associated with the linear
bias factor. If ν = 1 the correspondence between the underlying dark matter field
and halo clustering is unbiased in linear order, i.e., bh1(m) = 1. The corresponding
mass is called m∗, and can be calculated from δc = σ(m∗). This characteristic mass is
also important for the description of the halo concentration as we saw in Sect. 3.3.1.
For m > m∗ (i.e., ν > 1) the linear bias factor is bh1(m) > 1 meaning these halos are
biased. But halos with m < m∗ are anti-biased, i.e., bh1(m) < 1. Similarly we find for
the quadratic bias factor that bh2(m) < 0 for m . m∗ and bh2(m) > 0 for m & m∗. The
presented formalism allows us to calculate halo bias factors of any order.

The discussion of the halo bias was up to now limited to the Press-Schechter mass
function. The above calculation can be used for any given mass function, but one needs
to use the corresponding conditional mass function. Here we are especially interested
in the Sheth-Tormen mass function which is directly fitted to numerical simulations.
The linear and quadratic bias functions are then dependent on the parameters q and p
of the Sheth-Tormen mass function in Eq. (3.36). In this case, the result for the first
three orders of the halo bias expansion are (see Scoccimarro et al. 2001)

bh1(m) = 1 + ε1 + E1 , (3.78)

bh2(m) = 2
(
1− a2

2

)
(ε1 + E1) + ε2 + E2 , (3.79)

bh3(m) = 6
(
−a2

2
+
a3

6

)
(ε1 + E1) + 3(1− a2)(ε2 + E2) + ε3 + E3 , (3.80)

where

ε1 =
qν2 − 1

δc
, ε2 =

qν2

δc

(
qν2 − 3

δc

)
, ε3 =

qν2

δ3
c

(q2ν4 − 6qν2 + 3) , (3.81)

and

E1 =
2p

1 + (qν2)p

1

δc
, E2 =

(
1 + 2p

δc
+ 2ε1

)
E1 , (3.82)

E3 =

(
4(p2 − 1) + 6pqν2

δ2
c

+ 3ε21

)
E1 . (3.83)

For the Press-Schechter mass function the parameters are p = 0 and q = 1. In this
case E1 and therefore also E2 vanish and we reproduce the result of the corresponding
bias factors in Eqs. (3.76) and (3.77). A general bias factor bhi (m) obeys the following
consistency relations (Scoccimarro et al. 2001)

1

ρ̄

∫
dmmn(m)bhi (m) =

∫ ∞

0

dν f(ν)bhi (ν) =

{
1 for i = 1 ,

0 for i > 1 .
(3.84)
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Figure 3.4: First three orders of the halo bias factor expansion in Eq. (3.75) calculated using
the Sheth-Tormen mass function at redshift z = 0 as a function of the halo mass. The solid
line shows the linear halo bias bh

1(m) (see Eq. 3.78), the dashed line bh
2(m) (see Eq. 3.79) and

the dotted line bh
3(m) (see Eq. 3.80).

We can easily show that these relations are fulfilled for the first three halo bias factors
of the Press-Schechter mass function using the following identities∫ ∞

0

dν f(ν) = 1 ,

∫ ∞

0

dν ν2f(ν) = 1 , (3.85)∫ ∞

0

dν ν4f(ν) = 3 ,

∫ ∞

0

dν ν6f(ν) = 15 . (3.86)

The consistency relations are important for the formulation of the halo model. The halo
model correlation functions should resemble the results of lowest-order non-vanishing
perturbation theory on large scales. We will discuss this issue in Sect. 3.5 where we
construct halo model spectra.

We depict the halo bias factors bh1 , b
h
2 and bh3 in Fig. 3.4 using the Sheth-Tormen mass

function plotted against the halo mass. The higher-order halo bias factors need to have
a zero crossing to fulfill the integral constraint in Eq. (3.84) as seen in the figure.
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3.5 Halo Model Correlation Functions

The aim of this section is to derive equations for the two-point, three-point and four-
point correlation functions of the dark matter field using the properties of dark matter
halos obtained from simulations. We presented the results for the spherical collapse
model, the halo mass function, the halo density profile and the halo bias in the previous
sections. All these different ingredients are now combined to the dark matter halo
model to predict the statistical properties of the dark matter density field. Transforming
the equations for the correlation functions into Fourier space, yields the corresponding
Fourier space counterparts, i.e., the power spectrum, the bispectrum and the trispectrum.
The general approach for the calculation of n-point spectra is the so-called Scherrer-
Bertschinger formalism (Scherrer & Bertschinger 1991) developed for a density field
that is composed of a superposition of discrete seed masses (here halo masses). The
alternative approach replaces the ensemble average with an integral over the joint
probability density distribution (PDF) (McClelland & Silk 1977; Smith & Watts 2005;
Smith et al. 2006) which is the way we derive the correlation functions in the following.

3.5.1 Two-Point Correlation Function

The two-point auto-correlation function is defined as

ξ(x,y) = 〈δ(x)δ(y)〉 , (3.87)

where we considered a general anisotropic and inhomogeneous density field. For a
homogeneous and isotropic random field we find

ξ(r) = 〈δ(x)δ(y)〉 , (3.88)

where r = |y − x|. Rewriting Eq. (3.87) in terms of the density ρ, using the relation

ρ(r) = ρ̄[1 + δ(r)] , (3.89)

yields
〈ρ(x)ρ(y)〉 = ρ̄2[1 + ξ(x,y)] . (3.90)

Similarly, one can define the two-point cross-correlation function as

〈ρa(x)ρb(y)〉 = 〈ρa〉〈ρb〉[1 + ξab(x,y)] , (3.91)

which describes the correlation between two different continuous functions ρa and ρb.
The halo model assumes that all matter is bound to dark matter halos. The density

field at a position x can then simply be obtained from a superposition of all halos:

ρ(x) =
N∑

i=1

ρ(x− xi,mi) =
N∑

i=1

miu(x− xi,mi) , (3.92)

where we used the definition of the normalized density profile u(x,m) given by Eq. (3.53)
in the second step. Here N is the total number of halos, mi and xi are the mass and
the position of the center of the i-th halo, respectively.
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Stochastic Approach

We characterize each halo by a set of stochastical parameters: here we consider the
position of the i-th halo center xi and the mass of the i-th halo mi. Making the assump-
tion of triaxial halos we would get additional parameters describing the orientation of
the halo (see Smith & Watts 2005). The ensemble average needed for the calculation
of the correlation functions is then given by an integral over all N halo positions and
halo masses that form the density field weighted by the PDF. In addition, we sum over
the probability for obtaining the N halos given a volume V which we label by p(N |V ).
Hence, the ensemble average over some quantity F is given by

〈F 〉 ≡
∑

j

p(Nj|V )

∫ Nj∏
i=1

d3xi dmi

 p(x1, . . . ,xNj
;m1, . . . ,mNj

|Nj)F , (3.93)

where p(x1, . . . ,xNj
;m1, . . . ,mNj

|Nj) is the PDF of the stochastical parameters given
the number of Nj halos. For a large volume the probability p(N |V ) is very sharply
peaked around N = n̄hV , where n̄h is the mean number density of halos. In this case, we
can replace P (N |V ) with a Kronecker delta function and find for the ensemble average

〈F 〉 ≡

[∫ N∏
i=1

d3xi dmi

]
p(x1, . . . ,xN ;m1, . . . ,mN |N)F . (3.94)

In the following, we restrict our analysis to this case only. For a single halo, we assume
that the halo mass and halo position are independent random variables. Then we have

p(x1;m1) = p(x1)p(m1) =
1

V

n(m)

n̄h

, (3.95)

where n(m) is the halo mass function which is the number density of halos per unit
mass. Then the first moment of the density field is

〈ρ(r)〉 =
N∑

i=1

〈miu(r − xi)〉 =
N

V n̄h

∫
dmn(m)m

∫
d3x u(r − x,m) = ρ̄ , (3.96)

where we used Eq. (3.92) in the first step to express the density field by a discrete sum
over halos, and then applied the ensemble average given in Eq. (3.94). In addition,
we used the normalization of the mass function (see Eq. 3.38) and the fact that u is
normalized to unity. Similarly, the two-point correlation function of the density field is

〈ρ(r1)ρ(r2)〉 =
N∑
i,j

〈mimju(r1 − xi,mi)u(r2 − xj,mj)〉 . (3.97)

From now on, we use the following notation convention: the vector ri labels the
considered position of the density field and xi labels the position of the i-th halo center.
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We split the double sum into a sum over correlations in a single halo (i = j) and into a
sum over correlations in two distinct halos (i 6= j):

〈ρ(r1)ρ(r2)〉 =
N∑
i

〈m2
iu(r1 − xi,mi)u(r2 − xi,mi)〉

+
N∑

i6=j

〈mimju(r1 − xi,mi)u(r2 − xj,mj)〉

=
N

V n̄h

∫
dmn(m)m2

∫
d3x u(r1 − x,m)u(r2 − x,m)

+N(N − 1)

∫
dm1 dm2 d3x1 d3x2m1m2u(r1 − x1,m1)u(r2 − x2,m2)

× p(x1,x2;m1,m2) , (3.98)

where the joint probability of two distinct halos is

p(x1,x2;m1,m2) = p(x1;m1)p(x2;m2) [1 + ξhh(x1,x2;m1,m2)]

=
n(m1)n(m2)

n̄2
h

1

V 2
[1 + ξhh(x1,x2;m1,m2)] . (3.99)

Here ξhh(x1,x2;m1,m2) is the two-point correlation function of halo centers. Assuming
that the number of halos is large (N � 1), the second term in Eq. (3.98) becomes∫

dm1 dm2 d3x1 d3x2 n(m1)n(m2)m1m2u(r1 − x1,m1)u(r2 − x2,m2)

× [1 + ξhh(x1,x2;m1,m2)] . (3.100)

Finally, we apply Eq. (3.90) to rewrite the density correlator (3.98) in terms of the
two-point correlation function yielding

ξ1-h(r1, r2) =

∫
dmn(m)

(
m

ρ̄

)2 ∫
d3x u(r1 − x,m)u(r2 − x,m) , (3.101)

ξ2-h(r1, r2) =

∫
dm1 dm2 d3x1 d3x2 n(m1)n(m2)

(
m1

ρ̄

)(
m2

ρ̄

)
× u(r1 − x1,m1)u(r2 − x2,m2)ξhh(x1,x2;m1,m2) . (3.102)

The first term is due to density correlations in a single halo and is therefore found in
the literature as one-halo term. The second term is due to density correlations in two
different halos and is referred to as two-halo term. The geometric interpretation of the
two terms is shown in Figs. 3.5 and 3.6.

3.5.2 Power Spectrum

Since the two separate halo contributions to the two-point correlation function involve
convolutions of the normalized density profiles and for the two-halo term also with
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Figure 3.5: Shown is the one-halo contri-
bution to the two-point correlation function.
The halo center is labeled by x1. The filled
black circles show two different positions la-
beled by the position vectors x and y for
the calculations of the correlation. The two
points are separated by the vector r. They
probe the normalized density profile u at two
different positions in the same halo.

y

x1

x

u(x− x1)

u(y − x1)
r = y − x

x2

y

r = y − x

u(y − x2)

u(x− x1)

x

x1

ξhh(|x2 − x1|)

Figure 3.6: Shown is the two-halo contribution to the two-point correlation function. We
consider again two points as in Fig. 3.5 but now in two different halos. Therefore, we have to
include the clustering of halos described by the correlation ξhh of the two halo centers x1 and
x2.
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the halo correlation function, it is easier to work in Fourier space. In this case, the
convolutions become simple multiplications. Fourier transforming Eqs. (3.101) and
(3.102) yields

P1-h(k) =

∫
dmn(m)

(
m

ρ̄

)2

|ũ(k,m)|2 , (3.103)

P2-h(k) =

∫
dm1 n(m1)

(
m1

ρ̄

)
ũ(k,m1)

∫
dm2 n(m2)

(
m2

ρ̄

)
ũ(k,m2)

× Phh(k;m1,m2) , (3.104)

where Phh(k;m1,m2) is the power spectrum of halo centers. This can be related to the
underlying dark matter power spectrum using the concept of the halo bias introduced
in Sect. 3.4. We find from transforming the halo-bias expansion given in Eq. (3.75) into
Fourier space

Phh(k;m1,m2) ≡ 〈δh(k,m1)δh(k,m2)〉 = bh1(m1)b
h
1(m2)Ppt(k) +O(δ4

lin) , (3.105)

where the first term is the lowest-order contribution and depends on the linear power
spectrum Ppt(k). In principle this relation is only applicable on large scales. Going
to smaller scales the one-loop power spectrum and higher orders contribute to the
power spectrum of halo centers. Nevertheless, we use only the lowest-order contribution
because on small scales the one-halo term is dominant. Applying Eq. (3.105) the
two-halo term is

P2-h(k) =

∫
dm1 n(m1)

(
m1

ρ̄

)
ũ(k,m1)b

h
1(m1)

×
∫

dm2 n(m2)

(
m2

ρ̄

)
ũ(k,m2)b

h
1(m2)Ppt(k) . (3.106)

3.5.3 Three-Point Correlation Function

The three-point correlation function is defined as

ζ(r1, r2, r3) ≡ 〈δ(r1)δ(r2)δ(r3)〉 . (3.107)

We can relate this to the three-point correlation function of the density field using
Eq. (3.89) and find

〈ρ1ρ2ρ3〉 = ρ̄3[1 + 〈δ1δ2〉+ 〈δ1δ3〉+ 〈δ2δ3〉+ 〈δ1δ2δ3〉] . (3.108)

Here we employed the short-hand notation ρ1 ≡ ρ(r1) and δ1 ≡ δ(r1), etc. Inserting
the halo model representation of the density field given in Eq. (3.92) yields

〈ρ1ρ2ρ3〉 =
N∑

i,j,k

〈mimjmku(r1 − xi,mi)u(r2 − xj,mj)u(r3 − xk,mk)〉 . (3.109)
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Again, we split the triple sum into three terms: contributions from a single halo
(i = j = k), contributions from two distinct halos (i 6= j) and contributions from three
distinct halos (i 6= j 6= k):

〈ρ1ρ2ρ3〉 =
N∑

i=1

〈m3
iu(r1 − xi,mi)u(r2 − xi,mi)u(r3 − xi,mi)〉

+
N∑

i6=j

[
〈m2

imju(r1 − xi,mi)u(r2 − xi,mi)u(r3 − xj,mj)〉

+ 〈m2
imju(r1 − xi,mi)u(r2 − xj,mj)u(r3 − xi,mi)〉

+ 〈m2
imju(r1 − xj,mj)u(r2 − xi,mi)u(r3 − xi,mi)〉

]
+

N∑
i6=j 6=k

〈mimjmku(r1 − xi,mi)u(r2 − xj,mj)u(r3 − xk,mk)〉

≡ Γ1-h(r1, r2, r3) + Γ2-h(r1, r2, r3) + Γ3-h(r1, r2, r3) . (3.110)

Using the ensemble average in Eq. (3.94), the one-halo term of the three-point density
correlator becomes

Γ1-h =

∫
dmn(m)m3

∫
d3x u(r1 − x,m)u(r2 − x,m)u(r3 − x,m) . (3.111)

The two-halo term is

Γ2-h = N(N − 1)

∫
dm1 dm2 d3x1 d3x2m

2
1m2

× u(r1 − x1,m1)u(r2 − x1,m1)u(r3 − x2,m2)p(x1,x2;m1,m2) + cyc.

= ρ̄3 [ξ1-h(r1, r2) + ξ1-h(r2, r3) + ξ1-h(r1, r3)]

+
[ ∫

dm1 dm2 d3x1 d3x2 n(m1)n(m2)m
2
1m2u(r1 − x1,m1)

× u(r2 − x1,m1)u(r3 − x2,m2)ξhh(x1,x2;m1,m2) + cyc.
]
, (3.112)

where we used Eq. (3.99) to rewrite the joint probability in the second step. The one-halo
term of the two-point correlation function turns up because of the position-independent
term in Eq. (3.99). This allows us to perform the integration

∫
d3x2 u(r3 − x2,m2)

which is equal to 1 because we used the normalized density profile. Then we identify
the remaining part with the result of the one-halo term of the two-point correlation
function given in Eq. (3.101). There are two analogous terms that are given by cyclic
permutations of the positions of the halo centers in the halo density profiles. More
specifically, we replace the set {x1,x1,x2} by {x1,x2,x1} and {x2,x1,x1} in the
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argument of the three normalized density profiles. Finally, the three-halo term is

Γ3-h = N(N − 1)(N − 2)

∫ 3∏
i=1

dmi d
3xi p(x1,x2,x3;m1,m2,m3)m1m2m3

× u(r1 − x1,m1)u(r2 − x2,m2)u(r3 − x3,m3) , (3.113)

where the joint PDF for the characteristics of three halos is

p(1, 2, 3) = p(1)p(2)p(3) [1 + ξhh(1, 2) + ξhh(2, 3) + ξhh(3, 1) + ζhhh(1, 2, 3)] , (3.114)

where we used the compact notation p(i) ≡ p(xi;mi), ξhh(i, j) ≡ ξhh(xi,xj) and
ζhh(1, 2, 3) ≡ ξhhh(x1,x2,x3). Then the three-halo term is

Γ3-h = ρ̄3 [1 + ξ2-h(r1, r2) + ξ2-h(r2, r3) + ξ2-h(r1, r3)]

+

∫ 3∏
i=1

[dmi d
3xi n(mi)miu(ri − xi,mi)]ζhhh(1, 2, 3) , (3.115)

where we used the expression for the two-halo term of the two-point correlation function
given in Eq. (3.102). Rewriting all halo functions in terms of the density contrast using
Eq. (3.108) yields

ζ(r1, r2, r3) ≡ ζ1-h(r1, r2, r3) + ζ2-h(r1, r2, r3) + ζ3-h(r1, r2, r3) , (3.116)

where

ζ1-h(r1, r2, r3) =

∫
dmn(m)

(
m

ρ̄

)3 ∫
d3x u(r1 − x,m)u(r2 − x,m)u(r3 − x,m) ,

(3.117)

ζ2-h(r1, r2, r3) =

∫
dm1 dm2 d3x1 d3x2 n(m1)n(m2)

(
m1

ρ̄

)2(
m2

ρ̄

)
× u(r1 − x1,m1)u(r2 − x1,m1)u(r3 − x2,m2)ξhh(1, 2) + cyc. ,

(3.118)

ζ3-h(r1, r2, r3) =

∫ 3∏
i=1

[dmi d
3xi n(mi)

(
mi

ρ̄

)
u(ri − xi,mi)]ζhhh(1, 2, 3) . (3.119)

We note that the additional one- and two-halo terms of the two-point correlation function
in Eqs. (3.112) and (3.115) exactly cancel with the terms in Eq. (3.108) leaving only
the reduced three-point correlation function.

3.5.4 Bispectrum

Fourier transforming the halo model three-point correlation function which is composed
of the three halo terms in Eqs. (3.117), (3.118) and (3.119) using the relation between
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the three-point correlation function and the bispectrum defined in Eq. (2.109) yields

B1-h =

∫
dmn(m)

(
m

ρ

)3
[

3∏
i=1

ũ(ki,m)

]
, (3.120)

B2-h = Ppt(k2)

[∫
dm1 n(m1)

(
m1

ρ̄

)2

bh1(m1)ũ(k1,m1)ũ(k3,m1)

]

×
[∫

dm2 n(m2)

(
m2

ρ̄

)
bh1(m2)ũ(k2,m2)

]
+ cyc.{k1,k3,k2} , (3.121)

B3-h =

∫ 3∏
i=1

[
dmi n(mi)

(
mi

ρ̄

)
ũ(ki,mi)

]
Bhhh(k1,k2,k3;m1,m2,m3) . (3.122)

We used Eq. (3.105) for the two-halo term of the bispectrum to replace the power
spectrum of halo centers with the dark matter power spectrum times the two first-order
halo bias factors. Note that the bispectrum is only non-zero for closed triangles in
Fourier space owing to the assumed homogeneity (see the definition of the three-point
correlator in Eq. 2.108).

The bispectrum of halo centers in lowest non-vanishing order of the linear density
contrast is given by (Matarrese et al. 1997)

Bhhh(k1,k2,k3;m1,m2,m3) = bh1(m1)b
h
1(m2)b

h
1(m3)Bpt(k1,k2,k3)

+ [bh1(m1)b
h
1(m2)b

h
2(m3)P1P2 + perm.] +O(δ6

lin)

' bh1(m1)b
h
1(m2)b

h
1(m3)Bpt(k1,k2,k3) , (3.123)

with Pi ≡ Ppt(ki). Note that in the second step we neglected all terms proportional to
the second-order halo bias factor as they only provide a small contribution (Ma & Fry
2000). This is justified by the fact that on large scales the contribution to the three-halo
term of the bispectrum is zero due to the consistency relation for bh2 in Eq. (3.84).
Furthermore, smaller scales are dominated by the two-halo and one-halo term. In this
case the three-halo term of the dark matter bispectrum is

B3-h = Bpt(k1,k2,k3)

∫ 3∏
i=1

[
dmi n(mi)b

h
1(mi)

(
mi

ρ̄

)
ũ(ki,mi)

]
. (3.124)

3.5.5 Building Blocks for Dark Matter Halo Model Spectra

One can build general n-point spectra with the halo model function defined by (Cooray
& Hu 2001)

Iij(k1, . . . , kj) =

∫
dmn(m)

(
m

ρ̄

)j

bhi (m)[ũ(k1,m) · · · ũ(kj,m)] . (3.125)
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A halo concentration distribution can be easily incorporated into this model by

Iij(k1, . . . , kj) =

∫ ∫
dm dc p(c|m)n(m)

(
m

ρ̄

)j

bhi (m)[ũ(k1,m, c) · · · ũ(kj,m, c)] ,

(3.126)
where the log-normal distribution of the concentration parameter was introduced in
Eq. (3.63).

Using the building blocks the halo model power spectrum is

P (k) = I02(k, k) + [I11(k)]
2Ppt(k) . (3.127)

Furthermore, we can write the bispectrum in the following compact form:

B1-h = I03(k1, k2, k3) , (3.128)

B2-h = P1I11(k1)I12(k2, k3) + P2I11(k2)I12(k3, k1) + P3I11(k3)I12(k1, k2) , (3.129)

B3-h = Bpt(k1,k2,k3)I11(k1)I11(k2)I11(k3) , (3.130)

with Pi ≡ Ppt(ki). For general n-point spectra we find the same simple behavior for the
one-halo term

T
(n)
1-h (k1, . . . ,kn) = I0n(k1, . . . , kn) . (3.131)

3.5.6 Trispectrum

The halo model trispectrum which is the Fourier space counterpart of the four-point
correlation function consists of four terms: the one-halo, two-halo, three-halo and
four-halo terms (see Cooray & Hu 2001; Cooray & Sheth 2002):

T = T1-h + T2-h + T3-h + T4-h . (3.132)

The different terms are shown schematically in Fig. 3.7. We see the correlation between
different halo centers for the two-, three- and four-halo terms. For the two- and three-halo
terms we need to account for the possible orderings of the points.

By adopting the machinery presented explicitly for the two- and three-point correlation
functions, we are able to calculate the different terms of the halo model four-point
correlation function which are then transformed into Fourier space using Eq. (2.110) to
obtain the trispectrum. The trispectrum is only non-zero when the wave-vectors from a
closed quadrilateral in Fourier space. We will leave out the explicit calculation and only
show the results. It is easy to guess the form of the one- and four-halo term given by

T1-h =

∫
dmn(m)

(
m

ρ̄

)4
[

4∏
i=1

ũ(ki,m)

]
, (3.133)

T4-h =

∫ [ 4∏
i=1

dmi n(mi)

(
mi

ρ̄

)
ũ(ki,mi)

]
Thhhh(1, 2, 3, 4) , (3.134)
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2-halo

3-halo 4-halo

1-halo

Phh Phh

Bhhh

Thhhh

Figure 3.7: Diagrammatic plot of the halo model trispectrum. Shown are the different halo
contributions, namely one-halo, two-halo, three-halo and four-halo term. On large scales the
mass is distributed in four different halos, and thus the four-halo term is dominant. In the
intermediate regime the three-halo and the two-halo term become dominant. On small scales
most of the mass is situated in only one halo. The straight lines represent the correlation of
halo centers. Using the halo bias description they can be linked to the underlying dark matter
spectra.
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where we used Thhhh(1, 2, 3, 4) ≡ Thhhh(k1,k2,k3,k4;m1,m2,m3,m4). For the one-halo
term that is dominant on small scales one gets:

T1-h = I04(k1, k2, k3, k4) , (3.135)

and for the four-halo term we need the trispectrum of halo centers.

Thhhh(1, 2, 3, 4) = bh1(m1)b
h
1(m2)b

h
1(m3)b

h
1(m4)Tpt(k1,k2,k3,k4)

+ [b1(m1)b
h
1(m2)b

h
1(m3)b

h
3(m4)P1P2P3 + perm.] +O(δ8

lin)

' Tpt(k1,k2,k3,k4)

[
4∏

i=1

bh1(mi)

]
, (3.136)

where Tpt is the lowest-order perturbation theory contribution of the trispectrum as
given in Eqs. (2.130) and (2.131). Here we again neglected higher-order bias factors
in the second step since on large scales bh3 is zero due to the consistency relation in
Eq. (3.84). Hence, the four-halo term is given by

T4-h = Tpt(k1,k2,k3,k4)

∫ [ 4∏
i=1

dmi n(mi)

(
mi

ρ̄

)
bh1(mi)ũ(ki,mi)

]
, (3.137)

or in terms of the building blocks

T4-h = I11(k1)I11(k2)I11(k3)I11(k4)Tpt(k1,k2,k3,k4) . (3.138)

The two-halo term is given by two separate contributions, since there are two possible
combinations to distribute four points in two halos: three points in the first and one in
the second halo or two points in each halo. We denote the first contribution by T31 and
the second by T22, respectively. Hence, the two-halo term is

T2-h = T31 + T22 , (3.139)

with

T31 =
1

ρ̄4

∫
dm1 dm2 n(m1)n(m2)m1m

3
2 ũ(k1,m1)ũ(k2,m2)ũ(k3,m2)ũ(k4,m2)

× Phh(k1;m1,m2) + cyc.{k1,k2,k3,k4} , (3.140)

T22 =
1

ρ̄4

∫
dm1 dm2 n(m1)n(m2)m

2
1m

2
2 ũ(k1,m1)ũ(k2,m1)ũ(k3,m2)ũ(k4,m2)

× Phh(|k1 + k2|;m1,m2) + cyc.{k1,k2,k3,k4} . (3.141)

Here Phh is the halo center power spectrum of the two halos. Including the cyclic
permutations, T31 consists of four terms and T22 of three terms. Inserting Eq. (3.105)
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Figure 3.8: Mass contributions of the “square-
configuration” of the dark matter trispectrum
defined in Eq. (3.146) at redshift z = 0. Shown is
the effect on the one-halo term from halos in the
mass range of 1014 h−1 M� < m < 1016 h−1 M�,
1013 h−1 M� < m < 1014 h−1 M�, 1012 h−1 M� <
m < 1013 h−1 M� and 1011 h−1 M� < m <
1012 h−1 M� as indicated by the line color. The
black line shows the total trispectrum.

for the power spectrum of halos, we can write both equations in terms of the building
blocks:

T31 = P1I11(k1)I13(k2, k3, k4) + P2I11(k2)I13(k3, k4, k1)

+ P3I11(k3)I13(k4, k1, k2) + P4I11(k4)I13(k1, k2, k3) , (3.142)

T22 = P1+2I12(k1, k2)I12(k3, k4) + P1+3I12(k1, k3)I12(k2, k4)

+ P1+4I12(k1, k4)I12(k2, k3) , (3.143)

where we used the compact notation Pi ≡ Ppt(ki) and Pi+j ≡ Ppt(|ki + kj|).
Similarly, the three-halo term is

T3-h =
1

ρ̄4

∫ [ 3∏
i=1

dmi n(mi)
]
m1m2m

2
3 ũ(k1,m1)ũ(k2,m2)ũ(k3,m3)ũ(k4,m3)

×Bhhh(k1,k2,k3 + k4;m1,m2,m3) + cyc.{k1,k2,k3,k4} , (3.144)

where Bhhh describes the correlation of the three halo centers given in Eq. (3.123). In
terms of the building blocks we find then

T3-h = I11(k1)I11(k2)Bpt(k1,k2,k34)I12(k3, k4) + I11(k3)I11(k4)Bpt(k3,k4,k12)I12(k1, k2)

+ I11(k2)I11(k4)Bpt(k2,k4,k13)I12(k1, k3) + I11(k2)I11(k3)Bpt(k2,k3,k14)I12(k1, k4)

+ I11(k1)I11(k4)Bpt(k1,k4,k23)I12(k2, k3) + I11(k1)I11(k3)Bpt(k1,k3,k24)I12(k2, k4)
(3.145)

with kij = ki + kj.
We show the total dark matter trispectrum in Fig. 3.8 and additionally the different

mass contributions to the one-halo term. To make a two-dimensional plot, we define
the square configuration of the trispectrum by

∆sq(k) ≡
k3

2π2
[T (k1,−k1,k2,−k2)]

1/3 , (3.146)
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where k1 · k2 = 0 and |k1| = |k2| ≡ k. Up to k ' 20hMpc−1 the trispectrum is
dominated by the most massive halos (1014 h−1M� < m < 1016 h−1M�). On the other
hand, the small-scale trispectrum (k & 300hMpc−1) is dominated by small mass halos
in the interval 1011 h−1M� < m < 1012 h−1M�.



Chapter 4

Halo Model for Galaxy Clustering

The angular correlation function of galaxies is one of the basic observables for constraining
cosmological models. Observational results from large galaxy surveys like the SDSS
(Sloan Digital Sky Survey)1 or the 2dF-survey report that the angular galaxy correlation
function is well described by a simple power law over a wide range of scales2. As the
angular correlation function is a projection of the three-dimensional correlation function
also the three-dimensional galaxy correlation function and its Fourier counterpart, the
galaxy power spectrum, are described by a power law. However, the dark matter power
spectrum cannot be described by a single power law. Thus, theoretical and observational
work need to clarify the scale-dependent difference between galaxy and dark matter
clustering, which is also known as the galaxy-dark matter bias. Additionally, experiments
find that the galaxy correlation function is strongly dependent on color. For example on
small scales, red galaxies have a steeper correlation function than blue galaxies. Hence,
the bias also depends on the type of the considered galaxies.

Due to its complementary and unique features compared to the dark matter correlation
function, it is important to find reliable theoretical models for the galaxy correlation
function. Also, historically the galaxy correlation function was measured first as
it basically traces the light distribution of the Universe which is directly measurable.
However, theoretical models are mostly available for the dark matter correlation function,
and thus careful modeling of the bias influenced by non-linear physics is needed. In
addition, galaxy redshift surveys observe galaxies in redshift space and thus need to
include the effect of peculiar velocities of galaxies on the correlation function which
lead to the so-called redshift-space distortions. Leaving this complication aside we need
to know the physics of galaxy formation to model the bias. The basic picture for the
formation of galaxies (see the pioneering work of White & Rees 1978) is that baryonic
gas can only cool and form stars if it is in potential wells, for example provided by
virialized dark matter halos. In this picture, more massive halos contain on average
more galaxies than less massive halos as they allow more gas to cool. In addition, we

1www.sdss.org
2Recent results in Zehavi et al. (2004) show small deviations from a power law, in particular a change

of the slope at r ∼ 1− 2h−1 Mpc. With the same number of parameters as a power law the halo
model for galaxy clustering provides a significantly better fit which is one of the reasons for its
popularity. Note that we assume here that the parameters of the dark model halo are fixed by the
results of simulations.
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assume a threshold mass above which the formation of galaxies in halos is possible.
This is due to the fact that the gravitational potential of the halo needs to be strong
enough to oppose the energy feedback from supernova explosions which follow an initial
burst of star formation. In summary, the physics of galaxy formation involves the
following processes: gas cooling, star formation, stellar evolution, stellar feedback etc.
Recent N -body simulations start to include baryons into their dissipationless dark
matter simulations. The challenge is to model all these effects to provide realistic
density and velocity fields at each redshift output. However, these simulations are very
time-consuming and face fundamental problems, for example the so-called overcooling
problem that the stellar masses of the galaxies in the simulation outputs are larger than
the ones in observed galaxies (see for example Nagai & Kravtsov 2004). Moreover, these
simulations can cover only small comoving volumes due to the large computational
requirements and are thus strongly affected by sample variance. Therefore, precision
forecasts from simulations including baryons are not expected in the near future. This
explains the need for analytic models like the halo model which provides an interplay
between theoretical results and results from simulations. Furthermore, halo model
calculations are much faster to perform than simulations and thus permit the rapid
exploration of a large parameter space. Contrary to the partly problematic results
of baryonic simulations, dissipationless dark matter simulations provide much more
stable and reliable results. We expect to have precision forecasts from dark matter-only
simulations in the near future replacing the dark matter halo model calculations. On
the other hand, the halo model turns out to be a suited model to describe galaxy
clustering – on large scales only the clustering between different dark matter halos play
an important role – on small scales gas-dynamics, radiative cooling and star formation
influence the distribution of galaxies within halos. Therefore, it naturally splits the
problem of modeling the galaxy correlation function into the well-known properties of
dark matter halos and the theory of galaxy formation on small scales.

In this chapter, we want to model the correlation functions of galaxies using the
methods of the dark matter halo model as described in the previous chapter. The halo
model for dark matter can be easily extended to account for this case. We present these
extensions in the following and comment on their limitations.

The outline of this chapter is as follows: In Sect. 4.1, we introduce the basic extensions
of the halo model for dark matter such that it can be used to describe galaxy clustering.
After we established the new formalism, we show the results of the galaxy power
spectrum in Sect. 4.2. Section 4.3 provides a short introduction of the general form
of the galaxy-dark matter cross-spectra using the halo model and shows the results of
the cross-power spectrum. In Sect. 4.4, we derive the expressions for the galaxy-dark
matter cross-bispectrum that is probed by galaxy-galaxy-galaxy lensing surveys. We
then derive the expression for the cross-trispectrum in Sect. 4.5 that is needed for
the calculation of the errors of the galaxy-galaxy lensing signal. Finally, in Sect. 4.6
we present the results of a concentration parameter distribution for the galaxy and
cross-spectra and compare them with the corresponding dark matter spectra.
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4.1 Building Blocks for Galaxy Clustering

We presented the building blocks of dark matter clustering, i.e., the spherical collapse
model, the halo mass function, the clustering of halos and the halo density profile in the
previous chapter. Here we show the extensions of the dark matter halo model, namely
the building blocks for galaxy clustering.

In the introduction of this chapter we argued that galaxies form only in the environ-
ment of dark matter halos as they allow the gas to cool3. To incorporate galaxies into
the halo model one replaces the weighting by the halo mass m with the weighting of
the number of galaxies by the so-called halo occupation distribution (HOD) P (N |m),
which is the conditional probability that a halo of mass m contains N galaxies. Note
that we make the assumption that the HOD depends only on the halo mass and is
independent of the environment of the halo, i.e., if the halo is situated in low-density or
high-density regions. Furthermore, we assume that the first galaxy within each halo
above a threshold mass is placed at the center of the halo. Subsequent galaxies are
placed around the halo center following the galaxy distribution profile ug(r,m):

ug(r,m) ≡ ρg(r)∫
d3r ρg(r)

, (4.1)

where ρg describes the average spatial distribution of these galaxies around the halo
center which is normalized by the expected number of galaxies. The form of this profile
can be approximated by the distribution of dark matter subhalos because galaxies
condense in these subhalos. Substructure or subhalos originate in massive halos via the
hierarchical merging and accretion of smaller progenitors. We need to accurately know
the distribution of the dark matter substructure to estimate the subhalo profile which is
beyond the resolution limit of most simulations. In addition, galaxy density profiles are
almost certainly different from dark matter density profiles due to tidal stripping which
introduces a radial bias as the effect is stronger near the core of the host halo and weaker
near the virial radius (see Nagai & Kravtsov 2005). In particular, it is possible to model
a difference in both profiles by adopting different parameters for the concentration-mass
relation of the NFW profile in Eq. (3.62). To simplify things, we assume that the dark
matter and the galaxy density distribution follow the same density profile, i.e., in terms
of the normalized profile in Fourier space ũdm(k,m) = ũg(k,m) ≡ ũ(k,m). However,
in the following sections we formulate the equations without assuming equal density
profiles to distinguish between terms coming from dark matter and galaxy clustering.

We also need to replace the mean mass density in the dark matter halo model in
Eq. (3.38) by the mean number density of galaxies to correctly normalize the spectra.
The mean galaxy number density is given by the completeness relation

n̄g =

∫
dmn(m)〈N(m)〉 . (4.2)

3Recall that the halo model assumes that all mass is contained in dark matter halos.
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In summary, the changes from the dark matter halo model to the halo model including
galaxies are from a technical point of view only minor. The properties of the dark matter
halos which contain the galaxies and the clustering between the halos are unchanged
compared to the dark matter spectra. For the case of halos that contain only satellite
galaxies, we can simply extend the construction of n-point spectra of dark matter
clustering in Eq. (3.125) by using the following galaxy building blocks

Gnc
ij (k1, . . . , kj) =

∫
dmn(m)

〈N (j)(m)〉
n̄j

g

bhi (m)[ũg(k1,m) · · · ũg(kj,m)] , (4.3)

and the correlations of halo centers as before. The superscript “nc” indicates that we
assume that the halos contain only satellite galaxies. We derive the building blocks
for the realistic case of an additional central galaxy contribution in Sect. 4.1.2 below
considering a specific HOD parametrization. The result in Eq. (4.3) is just an adaptation
of the results from the previous chapter with the replacements

mj → 〈N (j)(m)〉 , ρ̄j → n̄j
g . (4.4)

The j-th factorial moment of the HOD is defined as

〈N (j)(m)〉 ≡

〈
j∏

l=1

(N + 1− l)(m)

〉
=

∞∑
N=0

N(N − 1) · · ·N(N + 1− j)P (N |m) , (4.5)

where we replaced in the second step the ensemble average by an average of the
conditional probability P (N |m). Of particular interest for the subsequent analysis are
the first three factorial moments that characterize the spectra we use below. The first
factorial moment is given by

〈N (1)(m)〉 = 〈N(m)〉 ≡
∞∑

N=0

NP (N |m) , (4.6)

and is for example probed by the one-halo term of the cross-power spectrum. The
second factorial moment is

〈N (2)(m)〉 = 〈N(N − 1)(m)〉 ≡
∞∑

N=0

N(N − 1)P (N |m) (4.7)

which describes the mean number of possible pairings of two galaxies (counting each
pair twice) probed for example by the one-halo term of the galaxy power spectrum and
the third factorial moment

〈N (3)(m)〉 = 〈N(N − 1)(N − 2)(m)〉 ≡
∞∑

N=0

N(N − 1)(N − 2)P (N |m) . (4.8)

quantifies the mean number of possible galaxy triplets (counting each triplet 6 times)
as probed for example by the one-halo term of the galaxy bispectrum. Higher-order
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correlation functions probe also higher-order moments of the HOD in this formalism
and they are defined accordingly. Note that the probability is normalized such that∑∞

N=0 P (N |m) = 1. Note that by using the factorial moments we neglect self-correlations
of galaxy pairs, triplets, etc., which lead to shot noise terms. We need to add these shot
noise terms because in contrast to the continuous dark matter field the observed galaxy
distribution is a discrete field.

The only missing component for calculating galaxy spectra explicitly is a model for
the HOD. The next section provides a comprehensive description of the HOD including
its parametrization. Using these results we are able to model the galaxy auto- and
galaxy-dark matter cross-spectra at arbitrary order. The results up to the fourth order
which are needed for the rest of this thesis will be presented in subsequent sections.

4.1.1 Halo Occupation Distribution

The HOD formalism has emerged as one of the most powerful frameworks for modeling
galaxy clustering in recent years. As it is a model for understanding galaxy clustering, it
can also be used to constrain the bias between dark matter and galaxies which depends
on the physics of galaxy formation that is rather poorly understood. Referring to
Berlind & Weinberg (2002) the HOD is composed of three different components: the
conditional probability distribution P (N |m) that a halo of virial mass m contains N
galaxies, the radial distribution of galaxies in their host halo, and the relative velocity
dispersion of galaxies. As the latter two parts are usually assumed to follow the dark
matter case, we will put the emphasis on the first component, i.e., the conditional
halo probability distribution. Most notably the HOD framework provides a complete
description of the bias factor as mentioned by Berlind & Weinberg (2002). To achieve
this goal we need to determine the information contained in all factorial moments of
the HOD. Note that by defining the HOD we assume a luminosity threshold to select
specific galaxy samples.

Furthermore, we can define representations of the HOD corresponding to specific
galaxy samples that are defined by luminosity, color, morphology etc. One can for
example separate the contributions from red and blue galaxies (defined according to
their stellar composition) to the average total number of galaxies:

〈N(m)〉 = 〈Nblue(m)〉+ 〈Nred(m)〉 . (4.9)

Having defined the mathematical properties of the HOD we will now focus on its
determination. The HOD is obtained from N -body simulations4 or fitted to results
from galaxy surveys. The simulations find for the first moment of the HOD an extended
plateau at low halo masses, where there is on average only 1 galaxy inside the halo,

4There are three types of simulations: simulations resolving subhalos which are supposed to be good
tracers of the galaxy positions, dark matter N -body simulations that populate the dark matter
halos with galaxies using semi-analytic models of galaxy formation and simulations that include
the coupled baryonic-dark matter differential equations.
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i.e., 〈N(m)〉 ' 1. Considering a halo threshold mass of m = 1011 h−1M� the plateau
extends to m = 1013 h−1M�. For m > 1013 h−1M� the halo is populated by satellite
galaxies which are well described by a power law in halo mass. Note that the stated
halo masses shift accordingly with increasing of the threshold mass.

Results of different simulations for higher-order moments of the HOD find that the
distribution P (N |m) is sub-Poissonian (that is, the distribution is narrower than a
Poisson distribution, or more precisely the corresponding variance is smaller than the
variance of a Poisson distribution) around the threshold mass and Poissonian5 for large
host halo masses. Several simple functions have been considered for the shape of the
HOD distribution, and we present now the two most important ones.

The first results to model higher-order moments of the HOD were done using halo
model fits to results of the APM (Automatic Plate Measuring Facility) galaxy survey
(Scoccimarro et al. 2001). They assumed that the HOD is described by a binomial
distribution, in which case higher orders are completely specified by the first and second
moments of this distribution. In addition, they relate the second-order moment to the
first-order moment by introducing the function α(m) which fulfills

〈N(N − 1)(m)〉 ≡ α2(m)〈N(m)〉2 , (4.10)

and is given by

α(m) =

{
1 for m ≥ 1013 h−1M� ,

log10

(√
m/m11

)
for m < 1013 h−1M� .

(4.11)

In this model the threshold mass is m11 = 1011 h−1M�. The function α(m) describes
the departure from a Poisson distribution of the HOD. We see that for large masses the
galaxies follow a Poisson distribution, but for small masses there are deviations from
the Poisson statistics.

The second approach developed by Kravtsov et al. (2004) separates the number of
galaxies in halos into two different contributions: central galaxies hosting the dark
matter halo and a number of satellite galaxies that subsequently populate the halo.
The motivation for this decomposition comes partly from results of simulations and
studies of central elliptical galaxies in groups and clusters which are often considered as
a separate population from the rest of the galaxies in the observed group or cluster6.
This separation turns out to naturally reproduce the observed sub-Poissonian behavior
for small masses where the correlations of central galaxies dominate, as well as the
change to the Poissonian behavior for large masses where satellite correlations dominate.

5For a Poisson distributed random variable X the ensemble average of X is equal to the variance of
X, i.e., 〈X〉 = 〈X2〉 − 〈X〉2.

6The galaxy sitting in the center of the cluster is in the majority of cases the most luminous and
massive one in the cluster and therefore called the brightest cluster galaxy (BCG). These galaxies
are generally old ellipticals and except for those undergoing major mergers, they lie at the bottom
of the cluster potential well and close to the X-ray emission peak.
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Furthermore, Kravtsov et al. assume that each halo hosts one central galaxy only if it
has a mass above the minimal mass mmin. Below this minimal mass there will not be
enough cold gas to form galaxies as mentioned before. Therefore, the number of central
galaxies Ncen(m) can be approximated by a step function:

Ncen(m) = Θ(m−mmin) , (4.12)

where Θ(m) is the Heaviside step function. In practice flux-limited galaxy samples are
defined by a lower luminosity threshold Lmin rather than a minimal host halo mass.
Therefore, we need to find a conversion of Lmin to mmin. The stochastic nature of galaxy
formation induces scatter in the central galaxy luminosity at a fixed halo mass m which
is well modeled by a log-normal distribution. This scatter in the luminosity translates
into a scatter in the host halo mass. We can model the scatter by convolving the step
function with a log-normal distribution of variance σ2

ln m and zero mean. The result is7

(e.g., Zheng et al. 2007)

〈Ncen(m)〉 =
1

2
erfc

[
ln(mmin/m)√

2σln m

]
. (4.13)

This more realistic modeling comes at the expense of an additional parameter, i.e., the
dispersion σln m. Using this approach, on average half of the halos in the sample with a
mass of m = mmin host a central galaxy.

After the placement of the central galaxy the halo is populated by satellite galaxies.
The mean number of satellite galaxies follows approximately a Poisson distribution,
where the first moment is well described by

〈Nsat(m)〉 =

(
m

m1

)β

Θ(m−mmin) , (4.14)

where we use a simple power law with the amplitude and slope as free parameters.
Here m1 is linearly related to the minimal mass, i.e., m1 = Asmmin with the parameter
As > 1. In summary, the HOD is characterized by four parameters: the minimal mass
mmin above which halos are populated with galaxies, the scatter of the mean number of
central galaxies σln m, and the two parameters β and As that specify the power law of
satellite galaxies. Note that the minimal mass is not a free parameter but is fixed by
matching the mean number density in Eq. (4.2) to that of a given survey sample defined
by a minimal luminosity. Recent simulations indicate (Zheng et al. 2005) that at low
masses the mean number of satellite galaxies drops below the power-law extrapolation
from high masses. This behavior is well modeled by introducing an additional cut-off
parameter m0 that can differ from the minimal mass of central galaxies. Then the first
moment of the satellite galaxies in Eq. (4.14) is replaced by

〈Nsat(m)〉 =

(
m−m0

m′
1

)β

Θ(m−m0) , (4.15)

7Sometimes the dispersion σln m is defined including a factor
√

2.
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with the two new parameters m′
1 and m0. As this results only in a minor change in the

galaxy power spectrum we will adopt the four-parameter model.
Combining the contributions from the central and satellite galaxies we get the total

number of galaxies, i.e., N = Ncen +Nsat. Using the different statistical properties of
centrals and satellites, we are able to relate higher-order factorial moments of the total
number of galaxies to first-order moments of central and satellite galaxies. We show
explicitly the results of the first four orders of the HOD:

〈N(N − 1)〉 = 〈Nsat(Nsat − 1)〉+ 〈Ncen(Ncen − 1)〉+ 2〈NcenNsat〉
= 〈Nsat〉2 + 2〈Ncen〉〈Nsat〉 , (4.16)

〈N(N − 1)(N − 2)〉 = 〈Nsat〉3 + 3〈Ncen〉〈Nsat〉2 , (4.17)

〈N(N − 1)(N − 2)(N − 3)〉 = 〈Nsat〉4 + 4〈Ncen〉〈Nsat〉3 . (4.18)

The distribution of central galaxies can be described by a nearest-integer or Bernoulli
distribution as halos contain either one central galaxy or none. Therefore, all factorial
moments involving only central galaxies vanish. The factorial moments of satellites are
easily calculated remembering that they follow a Poisson distribution, e.g., 〈Nsat(Nsat−
1)〉 = 〈Nsat〉2. Furthermore, we need to deal with terms involving cross-correlations of
central and satellite species. These are easily determined, since by definition Ncen = 0
implies that also Nsat = 0. Thus, the cross-correlations split into the averages of the
individual components, e.g., 〈NcenNsat〉 = 〈Ncen〉〈Nsat〉.

Using the approach of separating contributions from central and satellite galaxies
is much simpler than assuming a binomial distribution because we need only the first
moment of each species to calculate higher-order moments. The Poissonian nature of
the satellite HOD which is the key ingredient of the model was tested in Kravtsov et al.
(2004) up to the third-order moment, and observational results verify this behavior,
e.g., Yang et al. (2005).

We still need to specify our input parameters for the HOD model which are provided
by results from simulations and observations. Hydrodynamic N -body simulations and
pure dark matter N -body simulations resolving subhalos find that the satellite HOD is
approximately proportional to the mass of the host halo, i.e., β ≈ 1. Note that in this
case m = m1 is the characteristic mass where a halo hosts on average one satellite galaxy.
All parameters for the fiducial model of the HOD we use in our analysis are summarized
in Table A.1 (Model A). The minimal mass of mmin = 1012 h−1M� corresponds to a
mean number density of galaxies of n̄g = 4.96×10−3 h3 Mpc−3. Note that the parameters
describing the HOD (β, As and σln m) are cosmology- and redshift-independent. However,
one expects a dependence on cosmological parameters that has not yet been quantified
and is possibly small. One would need a large ensemble of hydrodynamical simulations
with varying cosmological models to test for this case which has not been done up to
now. The form of the first moment of the HOD using the fiducial model is shown in
Fig. 4.1. One clearly sees the smoothed-out step function from the contribution of
central galaxies and the power-law behavior of satellite galaxies. Also shown is the
dimensionless form of the halo mass function for the two redshifts z = 0 and z = 1
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Figure 4.1: First moment of the HOD, i.e., 〈N(m)〉 using the parameters of the fiducial model
(see Model A in Table A.1) as a function of halo mass showing the individual contributions of
central and satellite galaxies (see Eqs. 4.13 and 4.14, respectively). One can clearly distinguish
the contributions from central galaxies around the threshold mass mmin = 1012 h−1 M� (we
also show a pure step function in magenta) and the power-law behavior of the satellite galaxies
for large masses. Also shown is the dimensionless form of the halo mass function for the
redshifts z = 0 and z = 1 which bracket the range essentially probed by weak gravitational
lensing observations.

which correspond approximately to the redshift range used for current cosmic shear
experiments. We see that the number density of halos drops off significantly for masses
around m = 1014 h−1M� and m = 1015 h−1M� for z = 1 and z = 0, respectively.
Shifting the threshold mass for the central galaxy to higher masses will move the HOD
to higher masses. As the halo mass function has an exponential cutoff for high-mass
halos, the satellite galaxies contribution will be suppressed.

Dependence of the HOD on Galaxy Color

Results from observations and simulations indicate that the HOD is strongly dependent
on galaxy color. Hence, different samples that are divided by color, e.g., in blue and red
galaxies, should yield a different form of the HOD. Fits to results from semi-analytic
models of galaxy formation (see for example Kauffmann et al. 1999) yield the following
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power laws for red and blue galaxies, which are parametrized in Sheth & Diaferio (2001):

〈Nblue(m)〉 = 0.7

(
m

mblue

)αb

, 〈Nred(m)〉 =

(
m

mred

)αr

. (4.19)

For blue galaxies the power-law index is given by

αb =

{
0 for mmin ≤ m ≤ mblue ,

0.8 for m > mblue ,
(4.20)

where we introduced the threshold mass mmin = 1011 h−1M� and the cutoff for blue
galaxies mblue = 4× 1012 h−1M�. For red galaxies the power-law index is

αr = 0.9 , for m ≥ mmin , (4.21)

where mred = 2.5× 1012 h−1M�. The total number of galaxies is then the sum of blue
and red galaxies, i.e.,

〈N(m)〉 = 〈Nblue(m)〉+ 〈Nred(m)〉 . (4.22)

Note that these relations follow the HOD approach of Scoccimarro et al. outlined in
the previous section and are not applicable for the Kravtsov et al. formalism which
distinguishes between the contributions from central and satellite galaxies. For high
halo masses the red galaxy HOD is steeper than the one for blue galaxies.

The parametrization of the HOD is not unique. A recent description of the HOD of
early- and late-type galaxies can be found in Zheng et al. (2005).

4.1.2 Central Galaxy Correlations

For the calculation of higher-order moments of the HOD we use the Kravtsov et al.
method described in detail in Sect. 4.1.1 which distinguishes between two different
galaxy populations in halos.

Since the first galaxy in each halo is placed at the center of the host halo, terms
involving correlations with central galaxies are reduced by a factor of one density
profile compared to terms involving correlations with only satellite galaxies (see detailed
discussion in Appendix B.7). In the following we will adopt the compact notation
〈Nsat(m)〉 ≡ N̄sat and 〈Ncen(m)〉 ≡ N̄cen. Including correlations with central galaxies we
need to perform the following replacements in the building blocks of Eq. (4.3):

〈N (j)(m)〉

[
j∏

i=1

ũg(ki,m)

]
→

Sj(k1, . . . , kj,m) =

[
j∏

i=1

ũg(ki,m)

][
N̄ j

sat + (N̄sat)
j−1

j∑
i=1

1

ũg(ki,m)

]
, (4.23)
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Figure 4.2: Color dependence of the average number of galaxies as a function of halo mass.
We use the parametrizations of Eq. (4.19) for red galaxies (dashed line) and for blue galaxies
(dotted line) with the corresponding power-law indices (see Eqs. 4.20 and 4.21). In addition,
we depict the sum of red and blue galaxies (solid line).

where we used the definition of the j-th factorial moment as given in Eq. (4.5). The
first term in square brackets represents the j satellite-only correlations and the second
term the correlations of (j − 1) satellite galaxies with one central galaxy. We have to
change the building blocks defined in Eq. (4.3) accordingly:

Gij(k1, . . . , kj) =

∫
dmn(m)

Sj(k1, . . . , kj,m)

n̄j
g

bhi (m) . (4.24)

These are the building blocks we will employ in our subsequent predictions of the
spectra.

4.2 Galaxy Power Spectrum

In this section we derive the explicit form of the galaxy power spectrum using the halo
model formalism.

The galaxy power spectrum is defined by the two-point correlator

〈δg(k)δg(k
′)〉 = (2π)3δD(k + k′)P gg(k) . (4.25)

The one-halo term of the galaxy power spectrum is weighted by the mean number of
pairs (including repetition) and in order to correctly normalize the equation we divide by
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the square of the mean number density of galaxies. Considering a halo which contains
only satellite galaxies we find

P gg
1-h (nc)(k) =

∫
dmn(m)

〈N(N − 1)(m)〉
n̄2

g

ũ2
g(k,m) . (4.26)

and we label this contribution with the subscript “(nc)” in the following. When we
furthermore assume that the first galaxy in each halo is placed at the center of the host
halo, terms involving correlations with central galaxies are reduced by a factor of one
density profile compared to terms involving correlations with only satellite galaxies (see
discussion in Appendix B.7). Under this assumption the one-halo term of the galaxy
power spectrum is given by

P gg
1-h(k) =

∫
dmn(m)

[
[N̄satũg(k,m)]2 + 2N̄cenN̄satũg(k,m)

n̄2
g

]
, (4.27)

where we used Eq. (4.16) to relate the second-order moment of the HOD to the first-order
moments of satellite and central galaxies. The first term in the integrand originates
from satellite-satellite correlations and the second from central-satellite correlations.
Note that there is no central-central correlation because each halo contains only one
central galaxy. Similarly, the two-halo term is given by

P gg
2-h (nc)(k) =

[∫
dmn(m)

〈N(m)〉
n̄g

ũg(k,m)bh1(m)

]2

Ppt(k) . (4.28)

Assuming that each halo contains a central galaxy, the two-halo term is given by

P gg
2-h(k) =

[∫
dmn(m)

[
N̄cen + N̄satũg(k,m)

]
n̄g

bh1(m)

]2

Ppt(k) , (4.29)

where we have satellite-satellite, central-satellite and central-central correlations. The
first term in square brackets is sometimes neglected because the contribution of central
galaxies only dominates the two-halo term on small scales where the one-halo term is
anyway larger than the two-halo term. This is due to the fact that on small scales the
dominant contribution comes from small mass halos, which is discussed in detail at
the end of this section. The total galaxy power spectrum is the sum of the one- and
two-halo terms

P gg(k) = P gg
1-h(k) + P gg

2-h(k) . (4.30)

Using the building blocks, introduced in Eq. (4.24), we can write both terms in the
compact form

P gg(k) = G02(k, k) + Ppt(k)[G11(k)]
2 . (4.31)

where

G11(k) =

∫
dmn(m)

[
N̄cen + N̄satũg(k,m)

]
n̄g

bh1(m) (4.32)
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and

G02(k, k) =

∫
dmn(m)

[
N̄satũg(k,m)

]2
+ 2N̄cenN̄satũg(k,m)

n̄2
g

. (4.33)

Note that for large scales (k � knl)
8 the one-halo term (4.27) does not go to zero but

converges to a constant scale-independent white noise spectrum since ũ(k,m) → 1 in this
case. As the linear power spectrum is proportional to k at small k, the constant one-halo
term eventually gives the dominant contribution making the halo model inconsistent
with linear perturbation theory on the largest scales9. In the review paper by Cooray
& Sheth (2002), we find an ansatz to solve this problem by using compensated density
profiles which are constructed such that ũ(k,m) = ũg(k,m) → 0 at small k. However,
in this case there will be no power on large scales, since the two-halo term also depends
on the density profile. Thus, this weakness of the halo model remains and it is not
clear how to solve this problem. On the other hand, the two-halo term (4.29) is in
accordance with the results from perturbation theory since on large scales we find
P gg

2-h(k) = b2Ppt(k), where b is the linear bias factor defined by the large-scale limit of
G11 in Eq. (4.32).

In the presented formalism several processes have been neglected. First of all, we did
not account for the effect of halo exclusion. Different halos in simulations are never
separated by distances smaller than the sum of their virial radii since otherwise they
would have been linked to one larger halo. This effect is not included in our description
of the two-halo terms of the dark matter and galaxy power spectra. To correct for this
effect, we need to exclude overlapping halos in the two-halo terms. Secondly, simulations
indicate that the halo bias is scale-dependent, whereas the halo model calculation in
Sect. 3.4 predicts a scale-independent halo bias (see for example the Press-Schechter halo
bias in Eq. 3.76). One possibility is to determine the scale-dependent bias factor directly
from simulations. However, then we would need to use the nonlinear dark matter
power spectrum for the clustering of halo centers that is obtained from simulations for
consistency instead of Ppt. The drawback of using simulations to obtain the halo bias is
that there is no simple way to generalize the results to higher-order spectra, like the
galaxy bispectrum. In addition, the cosmology dependence of the scale-dependent halo
bias is not well tested. A detailed description of all these effects can be found in the
appendix of Tinker et al. (2005). We refrain from using these halo model extensions
because they are only valid and tested at the two-point level. As we mainly aim at
modeling higher-order correlation functions there is no simple extension of this formalism.
Also, all these corrections are only important for the transition of the two-halo to the
one-halo term at intermediate scales. In particular, the nonlinear part which is probed
by the one-halo term is unaffected by these corrections.

The dimensionless galaxy power spectrum (see definition of dimensionless power

8Here, knl is the nonlinear wave-number defined as the scale where the dimensionless power spectrum
is 1.

9Note that the one-halo term of the dark matter power spectrum (see Eq. 3.103) suffers from the
same inconsistency.
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Figure 4.3: The plot shows in the left panel the dimensionless galaxy power spectrum defined
in Eq. (2.107) and in the right panel the dark matter power spectrum against wave-number
k at redshift z = 0. Both plots show the separate contributions from the one- and two-halo
terms to the total power spectrum.

spectrum in Eq. 2.107) is plotted in the left panel of Fig. 4.3 and the right panel shows
the dimensionless dark matter power spectrum for comparison. Both panels show the
one- and the two-halo term contributions to the corresponding total power spectrum
for z = 0. The first point to note is the approximate power-law behavior of the galaxy
power spectrum over the whole range of scales. The change from the large-scale regime
described by the two-halo term to the small-scale regime dominated by the one-halo
term at around k ' 0.5hMpc−1 is not well modeled by our halo model method and
results in a small dip in the total power spectrum. The dark matter power spectrum is
clearly not described by a single power law. Furthermore, we note both power spectra
have a similar amplitude on large scales. The ratio of the dark matter and galaxy power
spectrum will be quantified in Sect. 4.3.3 where we introduce the scale-dependent bias
between galaxy and dark matter clustering.

In summary, the halo model reproduces the observed power-law behavior of the galaxy
power spectrum. The origin of this behavior is best seen by comparing the one- and
two-halo terms of the galaxy power spectrum in Eqs. (4.27) and (4.29) to the dark
matter power spectrum in Eqs. (3.103) and (3.106). Both power spectra are similar if
the radial distribution of galaxies trace the dark matter density profile, the HOD is
described by a Poisson distribution over the whole mass range (i.e., there is no minimal
mass) and the first moment of satellites, N̄sat, depends linearly on the host halo mass.
The only difference left between the power spectra is the different normalization either
by the mean galaxy density or by the mean dark matter density.

To illustrate the importance of specific assumptions made in the galaxy halo model,
we show in the left panel of Fig. 4.4 the one- and the two-halo terms of the dimensionless
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power spectrum by dropping specific assumptions as indicated in the figure caption.
We find that the one- and two-halo term drop below the “real” galaxy power spectrum
on small scales if the halos contain only satellite galaxies. This is due to the fact that
on small scales the normalized halo density profile begins to decrease from unity as we
showed in Fig. 3.3. In particular, central galaxy correlations are dominant on small
scales because they are weighted by only one density profile. Therefore, the suppression
of the halo terms due to the density profile on small scales is reduced for central galaxy
correlations. If we further assume that the HOD distribution is Poissonian for all halo
masses and in addition neglect the threshold mass for the central galaxy, we obtain a
one-halo term which is proportional to the one-halo term of the power spectrum in the
right panel of Fig. 4.3.

The right panel in Fig. 4.4 depicts the mass contributions to the one-halo term from
halos divided into certain mass ranges as indicated in the figure. On large scales the
dominant contributions come from high-mass halos 1014 h−1M� < m < 1016 h−1M�.
Going to smaller scales, also smaller mass halos begin to dominate. On the smallest
scales the largest contributions come from low-mass halos. This is due to the fact
that low-mass halos contain only a very small number of galaxies, which enhances the
probability to have central-satellite correlations in the one-halo term. Note that for the
right panel of Fig. 4.4 we changed the minimal mass to mmin = 1011 h−1M�. Reducing
mmin leads to a higher number density of galaxies n̄g resulting in a suppression of the
one-halo term which is normalized by the inverse square of the number density.

4.3 Galaxy-Dark Matter Cross-Spectra

The cross-power spectra of galaxies and the underlying dark matter field reveal statistical
information about galaxies and their local environment, namely the dark matter halos.
The lowest-order statistic is the second-order correlation, i.e., the cross-power spectrum.
The projected two-point cross-spectrum has been probed by a number of galaxy-galaxy
lensing studies and also by studies of the magnification bias of background galaxies.
Furthermore, it is beneficial to study higher-order spectra which contain independent
information about the relation between galaxies and dark matter that is not contained
in the two-point level. Therefore, it is natural to study the next higher-order spectrum,
namely the galaxy-dark matter cross-bispectra10. Recently, Schneider & Watts (2005)
introduced the projected form of these cross-bispectra that are probed in studies of
galaxy-galaxy-galaxy lensing. Furthermore, the covariance of the cross-power spectrum
estimator depends on the four-point spectrum, the cross-trispectrum. Similar to the
galaxy power spectrum, there exists no theoretical model from first principles for
the cross-power spectrum. This is due to the nonlinear physics of galaxy formation.
Especially higher-order cross-spectra have not yet been tested in simulations and thus
there are no fitting functions available that could be used to calculate them for a given

10One can build two cross-bispectra, namely the dark-matter-dark-matter-galaxy and the galaxy-
galaxy-dark matter bispectra.
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Figure 4.4: Dimensionless galaxy power spectrum at redshift z = 0. The left panel depicts
the influences on the one- (red line) and two-halo terms (blue line) by neglecting particular
assumptions of the galaxy halo model. First the green and the magenta curve show the results
for the one-halo and two-halo terms if we consider halos that contain only satellite galaxies.
The light blue curve shows the effect of additionally neglecting the sub-Poissonian nature of the
HOD at low halo masses. Finally, the black curve shows the effect of neglecting the threshold
mass for building galaxies. The right panel shows the contributions to the one-halo term (red
line) as thin black lines from halos in a particular mass range: for large scales (k . 1 h Mpc−1)
the dominant contribution comes from the most massive halos in the range 1014 h−1 M� <
m < 1016 h−1 M�. The contribution for the mass ranges 1013 h−1 M� < m < 1014 h−1 M�,
1012 h−1 M� < m < 1013 h−1 M� and 1011 h−1 M� < m < 1012 h−1 M� becomes successively
smaller. However, on the smallest scales (k ' 102 h Mpc−1) this behavior is reversed and the
dominant contribution comes from small mass halos. For both panels we used the fiducial
model (see Model A in Table A.1) but for the right panel we changed the minimal mass from
mmin = 1012 h−1 M� to mmin = 1011 h−1 M� which reduces the power spectrum.



4.3 Galaxy-Dark Matter Cross-Spectra 115

cosmological model. Here we employ the halo model formalism for dark matter and
galaxy clustering as developed in the previous sections. Encouraged by the agreement
of the results from the halo model and simulations on the two-point level (e.g., Zehavi
et al. 2004) we want to extend it to the three- and four-point levels which are needed for
galaxy-galaxy-galaxy lensing (see Chapter 6) and to quantify the errors for galaxy-galaxy
lensing (see Chapter 7), respectively.

The halo model for dark matter and galaxy clustering can be combined to calculate
the cross-spectra without introducing new concepts. More precisely, the cross-spectra
in any order can be constructed using the building blocks of the dark matter spectra in
Eq. (3.125) and the building blocks of galaxy clustering in Eq. (4.24) discussed in the
previous sections.

4.3.1 Galaxy-Dark Matter Cross-Power Spectrum

The cross-power spectrum P δg(k) is defined as the two-point correlator of the dark
matter and the galaxy density contrast, i.e.,

〈δ(k)δg(k
′)〉 = (2π)3δD(k + k′)P δg(k) . (4.34)

We present the explicit form of the cross-power spectrum making use of the clustering
formalism of galaxies and dark matter developed above. The one-halo term is given as

P
δg (nc)
1-h (k) =

∫
dmn(m)

(
m

ρ̄

)
〈N(m)〉
n̄g

ũdm(k,m)ũg(k,m) . (4.35)

When we place one galaxy in the center of the halo the result is

P δg
1-h(k) =

∫
dmn(m)

(
m

ρ̄

)
ũdm(k,m)

[
N̄cen + N̄satũg(k,m)

n̄g

]
. (4.36)

Similarly, we find for the two-halo term including central galaxies

P δg
2-h(k) = Ppt(k)

[∫
dmn(m)

(
m

ρ̄

)
ũdm(k,m)bh1(m)

]
×

[∫
dmn(m)

[
N̄cen + N̄satũg(k,m)

]
n̄g

bh1(m)

]
. (4.37)

Using the building blocks for the dark matter and galaxy spectra we can write the
two-halo term in the compact notation

P δg
2-h(k) = I11(k)G11(k)Ppt(k) , (4.38)

where we used Eq. (4.32) and

I11(k) =

∫
dmn(m)

(
m

ρ̄

)
ũdm(k,m)bh1(m) . (4.39)



116 4 Halo Model for Galaxy Clustering

10-5
10-4
10-3
10-2
10-1
100
101
102
103
104
105

10110010-110-2

∆gδ
(k

,z
=

0)

k [h Mpc-1]

1-halo
2-halo

Total

10-2 10-1 100 101 102

∆δδ
(k

,z
=

0)

k [h Mpc-1]

Figure 4.5: The plot shows the dimensionless galaxy-dark matter cross-power spectrum (left
panel) and the dark matter power spectrum (right panel) against wave-number k at redshift
z = 0. Both plots show the separate contribution from the one- and two-halo term to the
total power spectrum.

The total cross-power spectrum is then the sum of the one- and two-halo terms

P δg(k) = P δg
1-h(k) + P δg

2-h(k) . (4.40)

The dimensionless cross-power spectrum is shown in the left panel of Fig. 4.5. The
right panel depicts the dimensionless dark matter power spectrum for comparison. The
cross-power spectrum is well described by a single power law and is very similar to the
galaxy power spectrum. This is due to the fact that both power spectra have the same
dependence on the normalized density profile if galaxies follow the dark matter profile.
In addition, they are both influenced by the low-mass cutoff mmin. We will analyze the
ratio of both spectra in detail in Sect. 4.3.3 where we discuss scale-dependent bias.

4.3.2 Large-Scale Galaxy Bias Parameters

The theoretical prediction of the bias between galaxy and dark matter clustering from
first principles is not feasible up to now because the bias is in general nonlinear and
stochastical. But on sufficiently large scales one can assume that galaxy formation is a
local process and thus depends only on the local matter density field. Hence, in this
case there is a local mapping of the dark matter density contrast to the galaxy density
contrast

δg(x) ≡ f [δ(x)] , (4.41)

where the function f describes the mapping. As on large scales |δ| � 1, one can expand
the galaxy overdensity δg at comoving position x in a Taylor series (see Fry & Gaztanaga
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1993) around δ = 0 of the underlying matter overdensity, i.e.,

δg(x) = bL1δ(x) +
bL2
2
δ2(x) +

bL3
6
δ3(x) + . . . , (4.42)

where we introduced the constant first-, second- and third-order bias parameters bL1 , bL2
and bL3 , respectively. The bias parameters are defined by the derivatives of the mapping
function:

bLi ≡
di

dδi
f(δ)

∣∣∣
δ=0

. (4.43)

Transforming Eq. (4.42) into Fourier space yields

δg(k) = bL1δ(k) +
bL2
2

∫
d3q1
(2π)3

δ(q1)δ(k − q1)

+
bL3
6

∫
d3q1
(2π)3

∫
d3q2
(2π)3

δ(q1)δ(q2)δ(k − q1 − q2) + . . . (4.44)

Using this expression, we can easily calculate the galaxy two-point correlator to lowest
order in δ and we find for the galaxy power spectrum (see definition in Eq. 4.25)

P gg(k) =
(
bL1
)2
Ppt(k) . (4.45)

The cross-power spectrum defined in Eq. (4.34) is accordingly

P δg(k) = bL1Ppt(k) . (4.46)

Similarly, we find for the galaxy bispectrum (Matarrese et al. 1997)

Bggg(k1, k2, k3) = (bL1 )3Bpt(k1, k2, k3) + (bL1 )2bL2 [Ppt(k1)Ppt(k2) + Ppt(k1)Ppt(k3)

+ Ppt(k2)Ppt(k3)] . (4.47)

Note that we define the galaxy bispectrum in Eq. (4.54) below.
The framework of the galaxy halo model allows us to calculate these large-scale bias

parameters. On large scales the n-point spectra are dominated by the n-point halo
correlation function between the n halo centers. As the normalized density profile goes
asymptotically to ũg(k = 0,m) → 1, we find for the i-th order large-scale galaxy bias
factor (Scoccimarro et al. 2001)

bLi (z) =
1

n̄g

∫
dmn(m, z)〈N(m)〉bhi (m) , (4.48)

where bhi is the bias between halos and the underlying dark matter field and we explicitly
wrote the redshift dependence. This equation allows the determination of the large-scale
galaxy bias parameters from the well-known halo bias parameters that are extensively
tested in dissipationless simulations. This method circumvents the modeling of galaxy
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clustering to compute the bias parameters. For example setting ũg(k,m) → 1 in
Eq. (4.29) yields

P gg
2-h(k, z) =

[
bL1 (z)

]2
Ppt(k, z) (4.49)

with the first-order bias parameter

bL1 (z) =
1

n̄g

∫
dmn(m, z)[N̄sat + N̄cen] b

h
1(m) . (4.50)

Similar we can derive the results for the higher-order bias parameters which fulfill
Eq. (4.48).

4.3.3 Scale-Dependent Power Spectrum Bias

In the previous section we explored the large-scale bias between galaxies and the dark
matter field. Here, we extend this concept with the help of the halo model now to small
scales. On large scales the bias goes to a constant value as described by Eq. (4.48).
However, on small scales the bias factor is non-monotonic and scale-dependent, as will
be shown below.

The relation between the galaxy and the dark matter power spectra can be parame-
trized by

P gg(k, w) = b2(k, w)P δδ(k, w) , (4.51)

where b(k, w) is the in general scale- and redshift-dependent bias parameter where the
redshift dependence is encoded in the comoving distance, i.e., w ≡ w(z). Similarly, the
relation between the cross- and the dark matter power spectra is given by

P δg(k, w) = b(k, w)r(k, w)P δδ(k, w) , (4.52)

where we additionally introduced the scale- and redshift-dependent galaxy-mass cor-
relation coefficient r(k, w). For large scales the bias factor is described by the linear
deterministic bias, where b(k, w) → bL1 (w), and the correlation coefficient goes to 1. This
follows from the large-scale solutions in Eqs. (4.45) and (4.46). We build the following
ratios

b(k, w) =

√
P gg(k, w)

P δδ(k, w)
,

b(k, w)

r(k, w)
=
P gg(k, w)

P δg(k, w)
, (4.53)

and present them in dependence of the wave-number k in Fig. 4.6. The figure shows
both quantities for three different minimal masses. The galaxy bias and the ratio b/r
resemble the linear deterministic bias on large scales. On small scales the galaxy bias
becomes highly scale-dependent, whereas the ratio of the galaxy and cross-power spectra
is nearly constant over the scales considered. We note that a higher threshold mass
results in a smaller number density n̄g which leads to an enhancement of the galaxy
power spectrum.
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Figure 4.6: The left panel shows the scale-dependent bias between galaxies and dark matter.
The right panel shows the ratio of the galaxy power spectrum to the cross-power spectrum (see
definitions in Eq. 4.53). Both functions are evaluated at z = 0 and shown for three different
threshold masses mmin as indicated in the figure.

4.4 Galaxy Auto- and Cross-Bispectrum

The power of the halo model is best demonstrated by considering higher-order correlation
functions. This section provides the halo model description of the galaxy bispectrum
and its cross-spectra with the dark matter field. The bispectrum is the lowest-order
statistic that describes non-Gaussianity and is thus of particular interest. The galaxy
auto-bispectrum is probed in galaxy redshift surveys. The projected cross-bispectrum is
probed in surveys that measure galaxy-galaxy-galaxy lensing. This section provides the
basic equations for the three-dimensional bispectra following the halo model approach.
The projected spectra can then easily be obtained by using Limber’s approximation
(see Eq. 5.65 in the next chapter).

The galaxy auto-bispectrum is defined by the connected three-point correlator

〈δg(k1)δg(k2)δg(k3)〉c = (2π)3δD(k1 + k2 + k3)B
ggg(k1,k2,k3) . (4.54)

Owing to the assumed homogeneity and isotropy of the Universe, we can parametrize
the bispectrum with the length of the three sides that build a triangle in Fourier space
such that Bggg(k1,k2,k3) → Bggg(k1, k2, k3).

Generalizing the result of Eq. (3.120) for the one-halo term of the dark matter
bispectrum yields for the one-halo term of the galaxy bispectrum

Bggg
1-h (nc)(k1, k2, k3) =

∫
dmn(m)

〈N(N − 1)(N − 2)(m)〉
n̄3

g

3∏
i=1

ũg(ki,m) . (4.55)
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This weighting changes if we place a galaxy in the center of each halo above a certain
mass (for details see Appendix B.7):

Bggg
1-h (k1, k2, k3) =

1

n̄3
g

∫
dmn(m)

[
N̄3

sat + N̄cenN̄
2
sat

(
3∑

i=1

1

ũg(ki,m)

)]
3∏

i=1

ũg(ki,m) ,

(4.56)
where the two terms in square brackets correspond to the two possible triplet correlations,
i.e., satellite-satellite-satellite correlations and central-satellite-satellite correlations,
respectively. For the two-halo term we find by adopting the halo model of galaxy
clustering to Eq. (3.129)

Bggg
2-h (k1, k2, k3) = G11(k1)G12(k2, k3)Ppt(k1) +G11(k3)G12(k2, k1)Ppt(k3)

+G11(k2)G12(k1, k3)Ppt(k2) , (4.57)

where we used the definition of G11(k) in Eq. (4.32) and we introduced the function

G12(k1, k2) =
1

n̄2
g

∫
dmn(m)

[
N̄2

sat + N̄cenN̄sat

(
1

ũg(k1,m)
+

1

ũg(k2,m)

)]
× ũg(k1,m)ũg(k2,m)bh1(m) . (4.58)

This function describes the two-point correlation of galaxies in one of the halos weighted
by the halo bias factor between the two halo centers. Finally, the three halo term is
(compare with Eq. 3.130 for dark matter)

Bggg
3-h (k1, k2, k3) = G11(k1)G11(k2)G11(k3)Bpt(k1, k2, k3) . (4.59)

Note that we neglect terms involving the second-order halo bias factor as they provide on
most scales only a small correction (Ma & Fry 2000; Takada & Jain 2003). Furthermore,
the perturbative expansion of the correlation function of halo centers breaks down on
nonlinear scales (Smith et al. 2007) and thus one needs more elaborated models than
our presented approach.

In addition to the dark matter and galaxy auto-correlation functions, we can define
two cross-correlation functions, namely the galaxy-galaxy-dark matter bispectrum

〈δg(k1)δg(k2)δ(k3)〉c = (2π)3δD(k1 + k2 + k3)B
ggδ(k1,k2; k3) , (4.60)

and the dark matter-dark matter-galaxy bispectrum

〈δ(k1)δ(k2)δg(k3)〉c = (2π)3δD(k1 + k2 + k3)B
δδg(k1,k2; k3) . (4.61)

For the first function we denote with k1 and k2 the two galaxies and with k3 the dark
matter position. On the other hand, for the second function we label k1 and k2 as dark
matter particles and k3 as a galaxy position. The semicolon indicates the symmetry of
the function under permutations of its arguments, i.e., Bggδ(k1,k2; k3) = Bggδ(k2,k1; k3)
and Bδδg(k1,k2; k3) = Bδδg(k2,k1; k3).
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First we show the halo terms for the galaxy-galaxy-dark matter bispectrum. The
one-halo term is given by the cross-correlation of two galaxy positions with one position
in the dark matter field. The weighting by the mean number of galaxy pairs is replaced
equivalently to the one-halo term of the power spectrum when we include central galaxies
(see also Eq. B.34 in the Appendix B.7). In addition the dark matter contribution has
the same weighting as in the one-halo term of the cross-power spectrum in Eq. (4.36).
Combining both weightings yields

Bggδ
1-h (k1, k2; k3) =

∫
dmn(m)

1

n̄2
g

[
N̄2

sat + N̄cenN̄sat

(
1

ũg(k1,m)
+

1

ũg(k2,m)

)]
×
(
m

ρ̄

)
ũg(k1,m)ũg(k2,m)ũdm(k3,m) , (4.62)

where the two terms in the integrand represent satellite-satellite-dark matter correlations
and central-satellite-dark matter correlations. The two-halo term of the galaxy bispec-
trum in Eq. (4.57) can be easily extended to the galaxy-galaxy-matter cross-bispectrum:

Bggδ
2-h (k1, k2; k3) = G11(k1)Ggδ

12(k2; k3)Ppt(k1) + I11(k3)G12(k2, k1)Ppt(k3)

+G11(k2)Ggδ
12(k1; k3)Ppt(k2) , (4.63)

where we defined the cross-function

Ggδ
12(k1; k2) =

1

n̄g

∫
dmn(m)

[
N̄sat(m)ũg(k1,m) + N̄cen(m)

]
×
(
m

ρ̄

)
ũdm(k2,m)bh1(m) . (4.64)

Note that the first-order halo bias appears because we express the halo power spectrum in
terms of the linear dark matter power spectrum. The first term in Eq. (4.63) corresponds
to a correlation of a single galaxy in one halo with a galaxy and dark matter position in
a second halo, where Ppt describes the correlation between the two halo centers. The
other two terms are then obtained by permutations of the three wave-numbers, which
then also leads to a change in the building blocks. For example in the second term we
have a two-point correlation of two galaxies in one halo with a dark matter position in
the second halo. Finally, the three-halo term is (compare with Eq. 4.59)

Bggδ
3-h (k1, k2; k3) = G11(k1)G11(k2)I11(k3)Bpt(k1, k2, k3) . (4.65)

In accordance with the derivation of the halo model representation of Bggδ we can
extend this model to Bδδg. The one-halo term is given by

Bδδg
1-h (k1, k2; k3) =

∫
dmn(m)

(
m

ρ̄

)2

ũdm(k1,m)ũdm(k2,m)

× 1

n̄g

[
N̄satũg(k3,m) + N̄cen

]
, (4.66)
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where we the first term represents dark matter-dark matter-central correlations and the
second term dark matter-dark matter-satellite correlations. The two-halo term is

Bδδg
2-h (k1, k2; k3) = I11(k1)Ggδ

12(k3; k2)Ppt(k1) +G11(k3)I12(k2, k1)Ppt(k3)

+ I11(k2)Ggδ
12(k3; k1)Ppt(k2) . (4.67)

Note that the order of the three wave-numbers is different compared to Eq. (4.63)
because of the cross-function in Eq. (4.64) which is not symmetric in its arguments.
Finally, the three-halo term is

Bδδg
3-h (k1, k2; k3) = I11(k1)I11(k2)G11(k3)Bpt(k1, k2, k3) . (4.68)

4.4.1 Reduced Bispectra

For the three-point correlation function ζ(x1,x2,x3) it is useful to define the following
dimensionless hierarchical or reduced three-point correlation function (see Appendix
B.4 for more information)

Q(x1,x2,x3) =
ζ(x1,x2,x3)

ξ12ξ13 + ξ12ξ23 + ξ13ξ23
, (4.69)

where ξij ≡ ξ(xi,xj) is the two-point correlation function. If the value of Q is constant
then we find after transforming this relation into Fourier space

Q =
B(k1,k2,k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
, (4.70)

with the same value of Q. To study the scale dependence of the bispectrum, it is thus
convenient to extend the equation to

Q(k1,k2,k3) ≡
B(k1,k2,k3)

P (k1)P (k2) + P (k1)P (k3) + P (k2)P (k3)
. (4.71)

Note that by assuming isotropy and homogeneity we can parametrize the reduced
bispectrum by the modulus of the two triangle sides and the angle between them, i.e.,
Q(k1,k2,k3) → Q(k1, k2, cos θ) where θ is the angle between k1 and k2. On large scales
perturbation theory predicts that the bispectrum scales as Bpt ∝ P 2

pt (see Eq. 2.123)
and Q converges to a constant. On small scales, the hierarchical ansatz also predicts
that the bispectrum is proportional to the power spectrum squared. It is not clear if
higher-order correlation functions follow the hierarchical ansatz in detail. However, even
if the bispectrum follows only roughly the hierarchical ansatz the reduced bispectrum
has a much weaker scale dependence than the bispectrum itself. We will use Eq. (4.71)
for dark matter and galaxy clustering by simply using the corresponding bispectrum
and power spectra. Note that we use the nonlinear bispectrum and power spectra to
consistently calculate the reduced bispectrum. A generalization of this concept yields
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Figure 4.7: Reduced halo model bispectrum Qeq in equilateral configuration (see text for
detailed information) as a function of wave-number k at redshift z = 0. The two upper panels
show the auto-spectra defined in Eq. (4.71): on the left side the dark matter bispectrum and
on the right side the galaxy bispectrum. The two lower panels depict the cross-spectra: on
the left side the dark matter-dark matter-galaxy as defined in Eq. (4.73) and on the right
side the galaxy-galaxy-dark matter bispectrum of Eq. (4.72). All plots show the individual
contributions from the one-, two- and three-halo terms to the total bispectrum as indicated
in the plots. The three bispectra which include galaxy correlations show a similar scale
dependence. The bump feature at intermediate scales (k ' 1h Mpc−1) might be related to
our simple halo model implementation (see text for further details).
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for the two cross-bispectra

Qggδ(k1,k2; k3) =
Bggδ(k1,k2; k3)

P δg(k1)P δg(k2) + P gg(k1)P δg(k3) + P gg(k2)P δg(k3)
, (4.72)

Qδδg(k1,k2; k3) =
Bδδg(k1,k2; k3)

P δg(k1)P δg(k2) + P δδ(k1)P δg(k3) + P δδ(k2)P δg(k3)
. (4.73)

Again we assume isotropy and homogeneity to parametrize the reduced bispectra by
k1, k2 and the angle between the corresponding vectors. Furthermore, to make a
two-dimensional plot of the bispectrum, we define the equilateral configuration of the
reduced bispectrum Qeq(k, z) where k1 = k2 = k3 ≡ k and thus the angle between k1

and k2 is θ = π/3.

We depict the reduced auto-bispectra in the two upper panels of Fig. 4.7 in dependence
of the wave-number k. The upper left panel shows the dark matter bispectrum and the
upper right panel the galaxy bispectrum. On the two lower panels we show the cross-
spectra, where the lower left panel is the dark matter-dark matter-galaxy bispectrum
and the lower right panel the galaxy-galaxy-dark matter bispectrum. The reduced dark
matter bispectrum is increasing for small scales, whereas the three reduced bispectra
including galaxy correlations are decreasing for small scales. This is in general agreement
with the results of the dark matter bispectrum in the literature (Scoccimarro et al.
2001; Ma & Fry 2000; Cooray & Sheth 2002). The bump feature in the bispectrum at
intermediate scales (k ∝ 1hMpc−1) is probably related to inaccuracies in the halo model
as reported in Takada & Jain (2003) where they analyzed the three-point correlation
function. Partly the feature is a result of halo exclusion which is not included in our
halo model. In real space the bump is around 1 Mpc which is of the order of the virial
radius of massive halos that make a significant contribution to the mass integrals in
this regime. Hence, our halo model might overestimate the contributions from the two-
and three-halo terms at these scales. The bump feature is persistent in the plots of the
galaxy bispectrum and the cross-bispectra. The other uncertainty in the halo model is
related to the truncation of the integration of the density profile ũ(k,m) in Eq. (3.55)
at the virial radius. Ma & Fry (2000) showed that using the density profile without a
cutoff results in bispectra without a bump feature. However, this would violate mass
conservation. Including both effects Takada & Jain showed that the maximum in Q
nearly vanishes. In summary, we should be cautious with the results of the halo model
as presented here at intermediate scales.

4.4.2 Scale-Dependent Bispectrum Bias

In analogy to the galaxy bias factor in Eq. (4.53) we introduce the third-order scale-
and redshift-dependent bias parameter b3 and two galaxy-mass correlation coefficients
r1 and r2 to get a relation of the galaxy auto-bispectrum and the two cross-bispectra to
the dark matter bispectrum. We follow here the definitions of the work of Schneider &
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Figure 4.8: Ratios of the galaxy bispectrum to the two cross-bispectra in dependence of the
scale k at redshift z = 0 and for equilateral triangles. The ratios are shown for three different
minimal masses, i.e., mmin = 1011 h−1 M�, mmin = 1012 h−1 M� and mmin = 1013 h−1 M� as
indicated by the line color. The left panel shows the ratio Req

1 and the right panel shows the
ratio Req

2 (see definitions in Eq. 4.78).

Watts (2005):

Bggg(k1,k2,k3;w) =
[
b33B

δδδ
]
(k1,k2,k3;w) , (4.74)

Bggδ(k1,k2; k3;w) =
[
b23r2B

δδδ
]
(k1,k2; k3;w) , (4.75)

Bδδg(k1,k2; k3;w) =
[
b3r1B

δδδ
]
(k1,k2; k3;w) . (4.76)

Using these relations we build the following ratios

b3 = (Bggg/Bδδδ)1/3 , (4.77)

R2 ≡
b3
r2

=
Bggg

Bggδ
, R1 ≡

b3√
r1

=

√
Bggg

Bδδg
, (4.78)

r1 =
Bδδg

Bδδδ

(
Bδδδ

Bggg

)1/3

, r2 =
Bggδ

Bδδδ

(
Bδδδ

Bggg

)2/3

, (4.79)

where we suppressed the dependence on the scales and comoving distance. Note that
for the bispectrum the bias parameter and the correlation coefficients depend on the
considered triangle configuration in Fourier space. For large scales the bias again
converges to the case of the linear deterministic bias, i.e., b3 → bL1 and r1 = r2 = 1.
We label the ratios in Eqs. (4.77), (4.78) and (4.79) with the superscript “eq” when we
consider equilateral triangle configurations of the Fourier modes in the following.

The results for the equilateral configuration of the two cross-correlation coefficients are
shown in Fig. 4.8 and in Fig. 4.10 for the third-order bias parameter. All ratios are shown
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Figure 4.9: Correlation coefficients r1 and r2 as a function of the scale k at redshift z = 0
and for equilateral triangles. We plot the same minimal masses as in Fig. 4.8. The left panel
shows the ratio req

1 and the right panel shows the ratio req
2 (see definitions in Eq. 4.79).

for three different threshold masses, i.e., mmin = 1011 h−1M�, mmin = 1012 h−1M� and
mmin = 1013 h−1M�. The left panel of Fig. 4.8 depicts the ratio Req

1 and the right
panel shows Req

2 defined in Eq. (4.78). Both ratios have a very similar behavior on
all scales noting that we use a linear ordinate. On large scales both ratios resemble
the large-scale bias parameter bL1 , whereas on small scales Req

2 shows a weaker scale
dependence than Req

1 . The reason for this behavior is that on small scales the central-
satellite correlations of the one-halo terms in Eqs. (4.56), (4.62) and (4.66) dominate
the different bispectra. In this regime all integrals are the same (if we consider that
the HOD of centrals is a step function) and we find for the ratio of both correlation
parameters Req

2 /R
eq
1 =

√
3/2 ≈ 0.87. More specifically the two cross-bispectra probe

different moments of the HOD which leads to the difference in the small-scale regime.
We see that at the characteristic scale of k ' 1hMpc−1 both correlation parameters
attain a minimum. Again, we have to be careful with the interpretation at this particular
scale because it is sensitive to the halo-biasing scheme for which we use only a simple
model. Furthermore, we note that for 10 < k/(hMpc−1) < 1 the increase in the
correlation function is due to the satellite-satellite-satellite correlations of the one-halo
terms. Around k = 10hMpc−1 the slope gets flatter which is induced by the transition
to the dominance of central-satellite-satellite correlations.

In Fig. 4.9 we depict the ratio req
1 (left panel) and req

2 (right panel) defined in Eq. (4.78)
as a function of k. On large scales we recover the case of the linear deterministic bias
where both ratios req

1 = req
2 = 1, whereas on small scales req

1 shows a stronger scale
dependence than req

2 .

The third-order bias parameter b3 shows a similar behavior compared to the power
spectrum bias factor in the left panel of Fig. 4.6. The major difference is the weaker
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Figure 4.10: The figure depicts the third-
order scale-dependent bias parameter of
the bispectrum in dependence of the wave-
number k at redshift z = 0 and for equilat-
eral triangles as defined in Eq. (4.77). We
show the results for three different minimal
masses, i.e., mmin = 1011 h−1 M�, mmin =
1012 h−1 M� and mmin = 1013 h−1 M� as in-
dicated by the line color. The third-order
bias parameter has a similar scale depen-
dence compared to the results of the power
spectrum bias factor depicted in the left
panel of Fig. 4.6.

scale-dependence of b3 on small scales.

4.5 Cross-Trispectrum

We define the matter-galaxy-matter-galaxy cross-trispectrum as

〈δ(k1)δg(k2)δ(k3)δg(k4)〉c ≡ (2π)3δD(k1 + k2 + k3 + k4)T
δgδg(k1,k2,k3,k4) , (4.80)

where k1 and k3 are assigned to the dark matter and k2 and k4 to the galaxy field.
Note that this definition of the cross-trispectrum is symmetric under exchanging k1 and
k3, and k2 and k4. The cross-trispectrum quantifies the error matrix for the cross-power
spectrum estimator or, in the projected case, the covariance matrix for galaxy-galaxy
lensing. Since we need only parallelogram configurations (this will be the topic of
Chapter 7, in particular see Eq. 7.73) for the calculation of the covariance matrix, we
present our model of the cross-trispectrum only for this particular case. We parametrize
the trispectrum with the length of the two sides of the parallelogram k1 and k2 and the
angle θ between them, i.e.,

T δgδg(k1,−k1,k2,−k2) ≡ T δgδg
pc (k1, k2, cos θ) , (4.81)

with cos θ = k1 · k2/(k1k2). We reiterate that this configuration is symmetric under
permutations of k1 and k2, i.e., T δgδg

pc (k1, k2, cos θ) = T δgδg
pc (k2, k1, cos θ). In the following

we will drop the subscript “pc” labeling our parallelogram configuration.
To model the cross-trispectrum, we extend the halo model results of the dark matter

trispectrum. Again we neglect all terms involving the second- and third-order halo
bias factors as they provide only small contributions. We obtained in the previous
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chapter the following expression for the one-halo term of the dark matter trispectrum
in parallelogram configuration

T δδδδ
1-h (k1, k2) =

∫
dmn(m)

(
m

ρ̄

)4

ũ2
dm(k1,m)ũ2

dm(k2,m) , (4.82)

which is independent of the angle between the two vectors. Generalizing this result to
the cross-trispectrum yields

T δgδg
1-h (k1, k2) =

∫
dmn(m)

(
m

ρ̄

)2 〈N(N − 1)(m)〉
n̄2

g

× ũdm(k1,m)ũdm(k2,m)ũg(k1,m)ũg(k2,m) , (4.83)

Including a central galaxy population instead of a pure satellite population the weighting
of the number of pairs changes to (see also Eq. B.34)

T δgδg
1-h (k1, k2) =

∫
dmn(m)

(
m

ρ̄

)2

ũdm(k1,m)ũdm(k2,m)

× 1

n̄2
g

{
N̄2

satũg(k1,m)ũg(k2,m) + N̄satN̄cen[ũg(k1,m) + ũg(k2,m)]
}
.

(4.84)

The two-halo term is composed of two different terms

T δgδg
2-h (k1, k2, cos θ) = T δgδg

(31) (k1, k2, cos θ) + T δgδg
(22) (k1, k2, cos θ) . (4.85)

The first term describes a correlation of particles (galaxies/dark matter) which are
contained in two halos where three particles are in one halo and the fourth particle is in
the other halo. A generalization of the corresponding dark matter relation in Eq. (7.66)
gives

T δgδg
(31) (k1, k2, cos θ) = P1Ggδg

13 (k1, k2, k2)I11(k1) + P1Gδgδ
13 (k2, k2, k1)G11(k1)

+ P2Ggδg
13 (k2, k1, k1)I11(k2) + P2Gδgδ

13 (k1, k1, k2)G11(k2) , (4.86)

where Pi ≡ Ppt(ki) and we need the cross-correlations of galaxy-matter-galaxy Ggδg
13 and

matter-galaxy-matter Gδgδ
13 , respectively. They are defined by

Ggδg
13 (k1, k2, k2) =

∫
dmn(m)

(
m

ρ̄

)
ũdm(k2,m)bh1(m)

× 1

n̄2
g

[
N̄2

satũg(k1,m)ũg(k2,m) + N̄cenN̄sat[ũg(k1,m) + ũg(k2,m)]
]
,

(4.87)

Gδgδ
13 (k1, k1, k2) =

∫
dmn(m)

(
m

ρ̄

)2

ũdm(k1,m)ũdm(k2,m)bh1(m)

× 1

n̄g

[
N̄satũg(k1,m) + N̄cen

]
. (4.88)
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The second contribution to the two-halo term (4.85) corresponds to the situation where
each halo contains two particles. From the corresponding dark matter relation (3.139)
we deduce

T δgδg
(22) = P+

12I12(k1, k2)G12(k1, k2) + P−
12G

gδ
12(k2; k1)Ggδ

12(k1; k2) , (4.89)

with P+
12 ≡ Ppt(|k1 + k2|) and P−

12 ≡ Ppt(|k1 − k2|) and Ggδ
12 is given in Eq. (4.64).

Starting from Eq. (3.145) the three-halo term of the cross-trispectrum is given by

T δgδg
3-h (k1, k2, cos θ) = G11(k1)G11(k2)I12(k1, k2)Bpt(k1,k2,−k1 − k2)

+G11(k1)I11(k2)Ggδ
12(k2; k1)Bpt(k1,−k2,k2 − k1)

+ I11(k1)G11(k2)Ggδ
12(k1; k2)Bpt(k1,−k2,k2 − k1)

+ I11(k1)I11(k2)G12(k1, k2)Bpt(k1,k2,−k1 − k2) . (4.90)

Finally, the four-halo term in Eq. (3.137) changes to

T δgδg
4-h (k1, k2, cos θ) = I11(k1)I11(k2)G11(k1)G11(k2)Tpt(k1,−k1,k2,−k2) . (4.91)

Note that the perturbation theory trispectrum depends for this configuration only on
k1, k2 and cos θ and it is given in Eqs. (2.129)-(2.131).

4.5.1 Reduced Trispectrum

Again it is useful to introduce the reduced cross-trispectrum which shows a weaker
scale-dependence. It is defined as (see Appendix B.4)

Qδgδg(k1,k2,k3,k4) ≡
T δgδg(k1,k2,k3,k4)

dsnake(k1,k2; k3,k4) + dstar(k1,k2; k3,k4)
, (4.92)

where dsnake and dstar are the two topologically different contributions of the hierarchical
model of the trispectrum which we showed in Fig. 2.1. A special case of the cross-
trispectrum which is useful for plotting is the square configuration, where all sides have
equal length and the angle between two vectors is π/2, more precisely

T δgδg
sq (k) ≡ T δgδg

pc (k, k, cos θ = 0) . (4.93)

Using this configuration we define the dimensionless trispectrum

∆sq(k) ≡
k3

2π2

[
T δgδg

sq (k)
]1/3

, (4.94)

and the reduced trispectrum

Qδgδg
sq (k) =

T δgδg
sq (k)

d
(sq)
snake(k) + d

(sq)
star(k)

. (4.95)



130 4 Halo Model for Galaxy Clustering

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

k [h Mpc-1]
10-2 10-1 100 101 10-2 10-1 100 101 102

Qδδδδ

2-halo

3-halo

4-halo

1-halo

k [h Mpc-1]
10-2 10-1 100 101 10-2 10-1 100 101 102

Qδgδg

2-halo

3-halo

4-halo
1-halo

Total

Figure 4.11: Reduced trispectrum in the square configuration at redshift z = 0 splitted
into the individual contributions from the one-halo, two-halo, three-halo and four-halo term.
The left panel depicts the reduced dark matter trispectrum and the right panel the reduced
cross-trispectrum defined in Eq. (4.95).

For the square configuration the terms in the denominator are given by

d
(sq)
snake(k) =

{
2P δg(

√
2k) + P gg(

√
2k) + P δδ(

√
2k)
}

[P δg(k)]2

+ 4P δg(
√

2k)P δδ(k)P gg(k) , (4.96)

d
(sq)
star(k) = 2P gg(k)[P δg(k)]2 + 2P δδ(k)[P δg(k)]2 . (4.97)

On large scales we find

Qδgδg(k) =
b2 Tpt(k, x = 0)

(2b+ b2 + 1 + 4b3)Ppt(
√

2k)P 2
pt(k) + 2b2(b2 + 1)P 3

pt(k)
, (4.98)

where we used the notation b ≡ bL1 . For the case of unbiased galaxies (b = 1) we resemble
the result for the reduced dark matter trispectrum (see Cooray & Sheth 2002):

Qδδδδ(k) =
Tpt(k, x = 0)

8Ppt(
√

2k)P 2
pt(k) + 4P 3

pt(k)
. (4.99)

The two reduced trispectra are shown in Fig. 4.11 splitted into the four halo terms.
The left panel depicts the dark matter trispectrum and the right panel the cross-
trispectrum. Compared to the reduced cross-bispectrum in Fig. 4.7 the general behavior
of the cross-trispectrum is very similar. For large scales it is smaller than 1 and then
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Figure 4.12: Mass contributions to the
cross-trispectrum in square configuration de-
fined in Eq. (4.94) at redshift z = 0. Shown is
the effect on the one-halo term from halos in
certain mass intervals as indicated by the line
color. Note that the black line shows the to-
tal cross-trispectrum including all halo terms
which explains the deviation of the green line
to the black line on large scales. Compared
to the results of the galaxy power spectrum
in the right panel of Fig. 4.4, the trispectrum
is dominated by higher mass halos.

rises until k ' 1hMpc−1 where it slowly decreases for small scales. On large scales
the reduced trispectrum goes to a constant that is different from that for the reduced
bispectrum. The peak at k ' 1hMpc−1 is approximately one magnitude larger than for
the cross-bispectrum, whereas on small scales it drops below 1. On the other hand, the
dark matter trispectrum is rising for small scales in the same way as the dark matter
bispectrum depicted in the upper left-hand panel of Fig. 4.7.

In Fig. 4.12 we show the different mass contributions to the one-halo term of the cross-
trispectrum defined in Eq. (4.94). As expected, the dimensionless cross-trispectrum is
dominated by more massive halos compared to the results of the galaxy power spectrum
in Fig. 4.4 because it has a stronger mass-weighting. This can be seen for example by
comparing the mass factors of the one-halo terms in Eqs. (4.82) and (4.27).

4.6 Inclusion of a Stochastic Concentration Parameter

In this section we explore the effect of a stochastical concentration parameter on the
power spectrum, bispectrum and trispectrum. We already discussed that halos of the
same mass have a distribution of concentrations which is well described by a log-normal
distribution around the mean concentration with dispersion σln c. In particular, we want
to study the impact on the dark matter, galaxy and cross-spectra. The stochastical
concentration parameter has an impact on the density profile of dark matter and galaxies.
Since the density profile affects the spectra mostly on small scales we only need to
analyze the influence on the one-halo terms of the spectra. In all subsequent figures
we show the effect on the relevant dark matter spectrum in the left panel for reference.
To quantify the influence of a concentration parameter distribution we define the ratio
of the one-halo term including a stochastic concentration to the one-halo term with a
deterministic concentration. For the one-halo term of the power spectrum we define the
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Figure 4.13: Ratio of the one-halo term of the power spectrum including a concentration
parameter distribution to the one-halo term with a deterministic concentration parameter
as a function of the wave-number. On the left panel we show the ratio for the dark matter
power spectrum and on the right panel the ratio for the galaxy power spectrum. We display
the results for four different concentration parameter dispersion, i.e., σln c ∈ {0.1, 0.2, 0.3, 0.4}
indicated by the different line color. Note that a ratio of 1 corresponds to perfect agreement
between both spectra.

ratio

R1h(k, z;σln c) ≡
∆1h(k, z;σln c)

∆1h(k, z;σln c = 0)
. (4.100)

The result is depicted in Fig. 4.13, where we have plotted the ratio as a function of
the wave-number. We show the results for four different choices of the concentration
dispersion, i.e., σln c ∈ {0.1, 0.2, 0.3, 0.4}. Results from simulations prefer values around
σln c = 0.2–0.3 (see Jing 2000 and the recent results from the millennium run in Neto
et al. 200711). These values are bracketed by the two extremes of a low and high value
of the dispersion. A higher concentration dispersion leads also to an enhanced power
spectrum on small scales. We see that the influence of a concentration distribution
starts around k ' 1hMpc−1 for both panels. However, the impact of the dispersion is
negligible also on small scales, especially for the galaxy power spectrum.

We define analogously the ratio of the one-halo term of the bispectrum as

R1h
eq(k, z;σln c) ≡

∆1h
eq(k, z;σln c)

∆1h
eq(k, z;σln c = 0)

, (4.101)

11Note that they quote best-fit values for a log-normal distribution with base 10. Therefore one needs
to transform the dispersion using σln c = ln(10)σlog10 c.
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where we defined the dimensionless form of the bispectrum for equilateral triangles

∆eq(k, z) ≡
k3

2π2

√
B(k, k, k, z) . (4.102)

The results of the ratio for the one-halo term of the bispectrum are shown in Fig. 4.14
as a function of the wave-number. On the upper left panel we depict the dark matter
bispectrum and on the upper right panel the galaxy bispectrum. The dark matter
bispectrum ratio grows in the extreme case of σln c = 0.4 to R1h

eq = 1.5 for the smallest

considered scale of k = 102 hMpc−1. For σln c = 0.2 we find R1h
eq = 1.1 and for σln c = 0.3

the ratio is R1h
eq = 1.26 for the smallest scale. On the other hand, we find smaller ratios

for the galaxy bispectrum, i.e., R1h
eq = 1.05 for σln c = 0.2 and R1h

eq = 1.1 for σln c = 0.3.
Clearly, the influence of a stochastic concentration parameter is less pronounced for
the galaxy bispectrum. This is expected since on small scales the galaxy bispectrum
is dominated by central-satellite-satellite correlations in Eq. (4.56) which are weighted
by one density profile less compared to the dark matter density profile. Hence, the
galaxy bispectrum is less affected by the enhancement of the density profile due to the
log-normal distribution of the concentration parameter. Thus on the smallest scales
we have the approximate relation that the ratio of the dispersion for σln c = 0.2 and
σln c = 0.3 for dark matter corresponds to σln c = 0.3 and σln c = 0.4 for galaxy clustering,
respectively. We find similar results for the two cross-bispectra (not shown) which is
due to the fact that the bispectra including galaxy correlations have on small scales the
same dependence on the density profiles.

Finally, we define the ratio for the one-halo term of the dark matter and cross-
trispectrum

R1h
sq (k, z;σln c) ≡

∆1h
sq (k, z;σln c)

∆1h
sq (k, z;σln c = 0)

, (4.103)

where we used the definition of the dimensionless trispectrum in Eq. (4.94). The results
are shown in Fig. 4.14 in dependence of the Fourier mode, where the lower left panel
shows the predictions of the dark matter trispectrum and the lower right panel the
results for the galaxy-dark matter cross-trispectrum. Compared to the predictions
in Fig. 4.14 the influence of a stochastic concentration is enhanced. This is due to
the fact that the trispectrum is weighted by four density profiles in contrast to the
bispectrum which is only weighted by three density profiles. We find R1h

sq = 1.16 for
dark matter and R1h

sq = 1.08 for the cross-trispectrum for σln c = 0.2 at the smallest
scale. Furthermore, we find for σln c = 0.3, R1h

sq = 1.4 for the dark matter and R1h
sq = 1.2

the cross-trispectrum, respectively.
In summary, we find that the inclusion of a concentration parameter distribution is

less important for galaxy and galaxy-dark matter cross-spectra compared to dark matter
spectra. We showed this effect for the power spectrum, bispectrum and trispectrum.
The effect is most important for the trispectrum.
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Figure 4.14: Ratio of the one-halo term of the equilateral bispectra including a concentration
parameter distribution to the one-halo term with a deterministic concentration parameter
as defined in Eq. (4.101) as a function of the Fourier mode k and at redshift z = 0 (upper
panels). Additionally, we give the corresponding ratio for the one-halo terms of the trispectra
in square configuration as a function of the wave-number k as defined in Eq. (4.103) (lower
panels). All left-hand panels give the results for the dark matter spectra for reference. In
the right-hand panels we plot the ratio of the galaxy bispectrum (upper right panel) and the
cross-trispectrum (lower right panel). The four models of the concentration dispersion have
different line colors as indicated in the figure. On large scales we see no deviations, whereas
on small scales the ratio is larger than one.



Chapter 5

Weak Gravitational Lensing

Traditional probes of the large-scale structure like angular and redshift galaxy surveys
basically measure the distribution of luminous matter in the Universe. However, as
we already mentioned, the matter distribution of the Universe is dominated by non-
luminous dark matter. A recent promising tool is weak gravitational lensing which
is sensitive to the total mass distribution. The method makes use of the fact that
inhomogeneities of the matter distribution induce multiple distortions of the shape
of distant galaxies. Analyzing the statistics of this distortion pattern of galaxies is
directly proportional to the dark matter power spectrum when we consider Gaussian
fluctuations. This is a clear advantage over the analyses of galaxy surveys since it is
then not necessary to consider the bias which involves the modeling of complex baryonic
effects.

The deflection of light rays by mass concentrations is a prediction of general relativity.
Already in 1919, Eddington performed empirical tests of this theory by observing the
light of stars passing close to the Sun during a solar eclipse. He found that the light of
the stars was slightly displaced and that the measured deflection could be explained
by general relativity predictions1. Soon afterwards, it was suspected that in ideal
source-lens configurations massive astronomical objects could lead to multiple images
of high-redshift sources. However, only in 1979 the first double imaged quasar was
observed (Walsh et al. 1979). Today the most prominent observed lensing features are
giant arcs around the central region of massive galaxy clusters (discovered by Lynds &
Petrosian 1986). They can be used to estimate the mass of the lensing galaxy cluster
and the results can be compared to dynamical X-ray estimates. These strong effects are
rare, however, less distorted images of background galaxies, so-called arclets, can be
identified in many galaxy clusters. A perfectly alignment of source, lens and observer
allows for a ring-like image around the lens, the so-called Einstein ring (e.g., Impey
et al. 1998). All these effects occur in the regime of strong gravitational lensing.

Another method which uses the gravitational lensing effect is microlensing. It utilizes
the fact that a moving object shows an enhanced magnification when it enters the line
which connects a background source with our line-of-sight. This can be utilized for
the search of non-luminous massive compact halo objects (MACHOs) in our Galaxy.

1In fact, a Newtonian consideration yields a deflection angle which is half as large as the general
relativity prediction.
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Intensive observations revealed that stellar-mass MACHOs cannot explain the amount
of dark matter in our Galaxy (Alcock et al. 2000). Furthermore, the method can be
used for the detection of extrasolar planets (e.g., Beaulieu et al. 2006). In summary,
gravitational lensing applications provide us with a wealth of information of the matter
distribution of the Universe at different length scales.

Although this chapter deals with the weak gravitational lensing effect, we first need
to introduce the basic concepts of gravitational lensing which is done in Sect. 5.1.
Subsequently, Sect. 5.2 provides a discussion of weak gravitational lensing induced by
the large-scale structure of the Universe which is commonly referred to as cosmic shear.

5.1 Basic Concepts of Gravitational Lensing

Here we lay out the basic lensing formalism needed for the subsequent sections, most im-
portantly the deflection angle of a mass distribution, the lens equation and magnification
and distortion of source images caused by lensing.

5.1.1 The Deflection Angle of a Point-Mass Lens

The deflection angle describes the bending of a light ray in the presence of a gravitational
field Φ induced by a mass distribution. In the limit of weak gravitational fields, where
|Φ| � c2, one can use a slightly perturbed Minkowski space-time (Schneider et al. 1992)

ds2 =

(
1 +

2Φ

c2

)
c2dt2 −

(
1− 2Φ

c2

)
dl2 , (5.1)

where the three-dimensional spatial line element is defined by dl2 ≡ dxidx
i = dx2 +

dy2 + dz2. As light rays travel on null geodesics, the line element fulfills the condition
ds2 = 0. We find then from Eq. (5.1)

dt =
1

c

√
1− x

1 + x
dl =

1

c
(1− x) dl +O(x2) , (5.2)

where we took only linear terms in x ≡ 2Φ/c2 into account in the second step. The
speed of light is changed due to the presence of the potential Φ according to

c′ =
dl

dt
=

c

1− x
, (5.3)

where c′ is the speed of light in the presence of the potential. It is then common to
introduce in analogy to classical optics the refraction index n as the ratio of the vacuum
speed of light to the speed of light changed by a medium:

n ≡ c

c′
= 1− 2Φ

c2
. (5.4)
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As the potential fulfills Φ ≤ 0 (defining the potential such that it approaches zero at
infinity), the refraction index is always larger than 1, i.e., n ≥ 1. Hence, the velocity of
light near a mass concentration is smaller than the vacuum speed of light, i.e., c′ < c.

The analogy to classical optics is further used to apply Fermat’s principle to derive an
expression for the deflection angle. Fermat’s principle states that light waves of a given
frequency propagate along stationary-time paths with fixed end points. In other words,
the integral along a light ray becomes stationary compared to all other hypothetical
paths. Denoting the light path with x(l) we find

δ

∫ B

A

n[x(l)] dl = 0 , (5.5)

where A and B denote the fixed start and end points and δ the variation of the light
path. Parametrizing this curve with λ yields for Eq. (5.5)

δ

∫ B

A

n[x(λ)]|ẋ| dλ = 0 , (5.6)

where ẋ ≡ dx/dλ is the tangent vector of the curve. We can set ẋ = e, where e is a
unit vector because the parameter λ can be chosen arbitrarily. From the variation of
Eq. (5.6), we get the Euler-Lagrange equations

d

dλ

∂L

∂ẋ
− ∂L

∂x
= 0 , (5.7)

where the Lagrangian is given by L = n[x(λ)]|ẋ|. Performing the derivatives, and
rearranging the terms yields

nė = ∇n− e(∇n · e) ≡ ∇⊥n(x) . (5.8)

The term e(∇n · e) is the derivative along the light path. Thus, the whole expression is
the derivative perpendicular to the light path which we have denoted by ∇⊥. Finally,
we have

ė =
d2x

dλ2
=

1

n
∇⊥n = ∇⊥ lnn = ∇⊥ ln

(
1− 2Φ

c2

)
≈ − 2

c2
∇⊥Φ , (5.9)

where we inserted the index of refraction given by Eq. (5.4) in the fourth step and the
expansion ln(1 + x) ≈ x (valid for x� 1) in the last step. We can then calculate the
total deflection angle of the light ray as the integral of ė along the light path because it
describes the total change of the direction of the tangent vector e:

α̂ =
2

c2

∫ B

A

∇⊥Φ dl . (5.10)

As the potential and therefore the individual deflection angles are small, we integrate in
first order along the unperturbed straight path instead of the true curved one. This is
the so-called Born approximation according to scattering theory in quantum mechanics.
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ξ

S

O

M

α̂(ξ)

Figure 5.1: Shown is a point-mass lens system. The light ray coming from the source S
with the impact parameter ξ is bent by the presence of the point mass M and arrives at
the observer O. The total deflection angle of the light ray is α̂ which depends on the impact
parameter.

5.1.2 Deflection Angle of a Mass Distribution

For a given potential, we are now able to calculate the deflection angle according to
Eq. (5.10). The simplest case is a point-mass lens with the potential Φ(r) = −GNM/r
sketched in Fig. 5.1. Inserting this potential into Eq. (5.10), results in the deflection
angle of a point-mass lens

α̂(ξ) =
4GNM

c2
ξ

ξ2
, (5.11)

which exactly resembles the result one would obtain from general relativity. Note that
here ξ is a two-dimensional vector in the plane perpendicular to the line-of-sight. Due
to the linear mass dependence of α̂, one can easily calculate the deflection angle of a
distribution of point masses by superposition. Let us suppose we have a distribution of
N point lenses on a plane with positions and masses ξi and Mi (i = 1 . . . N), respectively.
Then superposing the deflection angles using Eq. (5.11) yields for the deflection angle
of a light ray crossing the plane at ξ

α̂tot(ξ) =
N∑

i=1

α̂(ξ − ξi) =
4GN

c2

N∑
i=1

Mi
ξ − ξi

|ξ − ξi|2
. (5.12)

We can generalize the concept of a deflection angle for a three-dimensional mass
distribution of lenses. The distances between the source, lens and observer are typically
much larger than the extent of the mass distribution of the lens. Therefore, one applies
the approximation that the mass distribution can be projected onto a plane, the lens
plane. This is the so-called thin-screen or thin-lens approximation. The distribution of
matter is then fully described by the surface mass density

Σ(ξ) =

∫
dz ρ(ξ, z) , (5.13)

where ρ is the three-dimensional density, and it is assumed that the plane lies perpen-
dicular to the line-of-sight. Note that in this expression the coordinate system is chosen
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such that z denotes the coordinate which lies in direction of the line-of-sight. In the
continuous limit, the deflection angle then becomes

α̂(ξ) =
4GN

c2

∫
d2ξ′ Σ(ξ′)

ξ − ξ′

|ξ − ξ′|2
. (5.14)

We obtain again the discrete result in Eq. (5.12) by inserting

Σ(ξ) =
N∑

i=1

MiδD(ξ − ξi) (5.15)

into the continuous equation.

5.1.3 The Lens Equation

Foreground mass distributions deflect light rays from distant sources as shown in the
previous section. Therefore, the true source position is different from the observed
position of the source on the sky in the presence of gravitational lensing. However,
using simple geometrical arguments, we can find a relation between the true and the
observed position known as the lens equation as shown below.

A typical lens system is shown in Fig. 5.2, where η is the two-dimensional position of
the source and ξ is the impact parameter of the light ray passing the lens plane. Due
to the large distances between observer, lens and source one can approximate that the
source and lens are lying in a two-dimensional plane, the source plane (Πs) and the lens
plane (Πl), respectively. From the figure we infer that η = Dsβ and ξ = Dlθ, where Ds

is the distance from the observer to the source plane and Dl is the distance from the
observer to the lens plane. Using the geometrical configuration shown in Fig. 5.2, we
derive the lens equation

Dsθ = Dsβ +Dlsα̂(ξ) , (5.16)

where Dls is the distance between lens and source plane. Defining the reduced deflection
angle

α(θ) ≡ Dls

Ds

α̂(Dlθ) , (5.17)

yields a simple relation between the image and the source plane

β = θ −α(θ) . (5.18)

The lens equation is also applicable on cosmological scales. Then the distances need to
be calculated using the angular diameter distance relation in Eq. (1.33).

Using Eq. (5.14) for the deflection angle, the reduced deflection angle can be expressed
by

α(θ) =
1

π

∫
d2θ′ κ(θ′)

θ − θ′

|θ − θ′|2
, (5.19)
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η

η
′

ξ
(S)

α̂

(O) β

Ds

Dl Dls

θ

(I)

ΠsΠl

(L)

Figure 5.2: Sketch of a typical gravitational lens system. The light emitted by a source
(S) is deflected by the gravitational field of the lens (L). An observer (O) therefore sees the
object at the image position (I). Due to the large distances between observer, lens and source
one can approximate that the source and lens is lying in a two-dimensional plane, the source
plane (Πs) and the lens plane (Πl), respectively. The source has a separation of η from the
line-of-sight. Afterwards the light ray passes the lens at a distance of ξ. The path of the light
ray is indicated by the arrows. The source is at an angle β from the line-of-sight and the light
ray passes the source plane at an angle of θ.

where the convergence κ is a scaled dimensionless version of the surface mass density

κ(θ) ≡ Σ(Dlθ)

Σcrit

, (5.20)

and the critical surface mass density is given by

Σcrit ≡
c2

4πGN

Ds

DlDls

. (5.21)

The scaled deflection angle can be written as the gradient of the deflection potential2,
i.e., α = ∇θψ with

ψ(θ) =
1

π

∫
d2θ′ κ(θ′) ln |θ − θ′| . (5.22)

2Since the identity ∇θ ln |θ − θ′| = (θ − θ′)/|θ − θ′|2 holds.
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Using the identity3 ∆ ln |θ| = 2πδD(θ), we get the two-dimensional Poisson equation

∆ψ = 2κ . (5.23)

This equation is the analog to the (three-dimensional) Poisson equation in electrostatics,
where the convergence κ is replaced by the charge density ρ.

5.1.4 Convergence and Shear

The lens equation is in general a nonlinear mapping of the true position of the source
to its observed position. However, if the deflection angles involved are small we can
perform a Taylor expansion of the lens equation

βi(θ) = βi(0) +
∂βi

∂θj

∣∣∣∣
θ=0

θj +
1

2

∂2βi

∂θj∂θk

∣∣∣∣
θ=0

θjθk + . . . , (5.24)

where summation over multiply occurring indices is assumed and βi is the i-th component
of the vector β. We neglect higher-order terms in the following and consider only the
first two terms of the expansion. However, the terms proportional to the second-
order derivatives give rise to the so-called weak lensing flexion (Bacon et al. 2006).
The distortion matrix which is the Jacobian of the mapping between source and lens
coordinates is given by

Aij ≡
∂βi

∂θj

=

(
δij −

∂2ψ

∂θi∂θj

)
≡ (δij − ψij) , (5.25)

where we used the lens equation (5.18) in the second step and defined the compact
notation for the derivative of the potential in the last step. Here δij denotes the
Kronecker delta. The trace-free part of this matrix is the so-called shear matrix

Γij ≡ Aij −
δij
2

trA =

(
−1

2
(ψ11 − ψ22) −ψ12

−ψ12
1
2
(ψ11 − ψ22)

)
. (5.26)

This is a symmetric matrix that describes the distortion of background sources. For a
compact notation we define γ = (γ1, γ2) which is a two-dimensional pseudo vector on
the lens plane with the two components

γ1(θ) ≡ 1

2
(ψ11 − ψ22) , γ2(θ) ≡ ψ12 . (5.27)

In terms of these components the shear matrix reads

Γ =

(
−γ1 −γ2

−γ2 +γ1

)
. (5.28)

3For θ 6= 0 the Dirac delta function and also the left-hand side of the identity vanishes. For θ = 0
there is a point of non-differentiability. However, integrating both sides over a unit 2-sphere and
applying the divergence theorem for the left-hand side yields in both cases 2π, which proves the
identity.
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The total Jacobian is the sum the shear matrix in Eq. (5.28) and the remainder

δij
2

trA = (1− κ)δij , (5.29)

where we used two-dimensional Poisson equation (5.23) to rewrite the remainder in
terms of the convergence. Hence, the Jacobian is given by

A =

(
1− κ 0

0 1− κ

)
+

(
−γ1 −γ2

−γ2 +γ1

)
. (5.30)

The first matrix is responsible for an isotropic magnification of the lensed image and
depends only on the convergence field. The second matrix leads to distortions of the
image in a preferred direction which depends on the two shear components.

As already mentioned, the shear is a pseudo vector or spin-2 field which has the
following characteristic transformation behavior under rotations:

Γ′ = RTΓR (5.31)

where the superscript “T” denotes the transposed of a matrix, and R is the two-
dimensional rotation matrix given by

R =

(
cosα − sinα
sinα cosα

)
. (5.32)

We find then from Eq. (5.31) that after a rotation of α = π the spin-2 field is the same
as the original one which is in contrast to a vector which transforms into itself after a
full rotation of 2π. This behavior also reflects the fact that an ellipse is transformed
into itself after a rotation of π. We can also write the two shear components as one
complex quantity:

γ = γ1 + iγ2 = |γ|e2iϕ , (5.33)

where the factor 2 in the exponential accounts for the polar behavior of the shear.

5.1.5 Shear in a Rotated Coordinate System

In most measurements of the distortion of galaxy shapes it is best to define the shear
in a coordinate-system-independent way. We determine in the following the shear
with respect to the direction given by a vector θ with polar angle φ. Using the setup
sketched in Fig. 5.3 and the definition of the shear in complex notation in Eq. (5.33),
we determine the tangential - and cross-component of the shear. Note that the shear
has a relative orientation ϕ with respect to the Cartesian reference frame and α and β
denote the angles of the rotated axes with respect to the Cartesian coordinate system
onto which we want to project the shear. We find

γt = Re[|γ| e2i(ϕ+α)] = Re[|γ| e2iϕ eiπ e−2iφ] = −Re[γ e−2iφ] , (5.34)

γ× = Re[|γ| e2i(ϕ+β)] = Re[|γ| e2iϕ eiπ/2 e−2iφ] = − Im[γ e−2iφ] , (5.35)
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ϕ

γ = |γ|e
2iϕ

φ

α

θ

π/4 β

Figure 5.3: Illustration of the two shear
components in a coordinate system defined by
the vector θ with polar angle φ with respect
to a Cartesian reference coordinate system.
We project the shear γ (indicated by the
red arrow) onto the two dashed lines which
enclose an angle of α and β with the abscissa
of the Cartesian system. From the figure
we find that the relations α + φ = π/2 and
β + φ = π/4 hold.

where we first rotate the complex shear vector onto the tangential (i.e., with an angle of
ϕ+ α) and cross direction (i.e., with an angle of ϕ+ β) as indicated by the two dashed
lines in the figure and then project the shear by taking its real part. In the subsequent
sections we define the shear two- and three-point correlation functions in terms of the
defined tangential- and cross-component of the shear.

5.1.6 Kaiser-Squires Relation

The Kaiser-Squires relation provides the important link between the observed shear and
the convergence κ which we present here in Fourier space. Transforming the convergence
into Fourier space yields

κ̃(l) =

∫
d2θ κ(θ) eil·θ =

1

2

∫
d2θ

[
∂2ψ

∂θ1∂θ1

+
∂2ψ

∂θ2∂θ2

]
eil·θ = −1

2
(l21 + l22)ψ̃(l) , (5.36)

where we employed the lensing Poisson equation (5.23) in the second step and computed
the derivatives in the last step. Analogously, we find for the two components of the
shear defined in Eq. (5.27)

γ̃1(l) = −1

2
(l21 − l22)ψ̃(l) =

l21 − l22
l2

κ̃(l) , (5.37)

γ̃2(l) = −l1l2ψ̃(l) =
2l1l2
l2

κ̃(l) , (5.38)

where l2 = l21 + l22 is the modulus of the two-dimensional Fourier vector l. By combining
both components the shear is given by

γ̃(l) = γ̃1(l) + iγ̃2(l) = −
[
1

2
(l21 − l22) + il1l2

]
ψ̃(l) =

[
(l21 − l22) + 2il1l2

l21 + l22

]
κ̃(l)

≡ D̃(l)κ̃(l) , (5.39)
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where the function defined in the last step obeys D̃(l)D̃∗(l) = 1 or equivalently
D̃∗(l) = D̃−1(l). Here a “*” denotes the complex conjugate of the corresponding
term. Furthermore, we can express the relation in the following useful form:

γ̃(l) = D̃(l)κ̃(l) =
(l1 + il2)

2

l2
κ̃(l) = e2iβ κ̃(l) , (5.40)

where we used the representation of the two-dimensional vector l as a complex number
in the second step with the corresponding polar angle β.

5.2 Cosmic Shear

In this section we study the effect of small density perturbations on the propagation
of light rays in a cosmological context, i.e., as they travel through a significant part
of the Universe. The light rays are then multiply bend by the inhomogeneities of
the large-scale structure, and thus the concept of scattering in a single lens plane as
developed in the previous sections cannot simply be applied. Furthermore, we literally
have to deal with cosmological scales in this problem making a description by general
relativity mandatory.

To simplify the problem, we consider first the propagation of a thin light bundle
neglecting the influence of inhomogeneities. The propagation of the light bundle is then
described by the geodesic deviation equation. This is a second-order differential equation
for the varying distance between two geodesics depending on the Riemann curvature
tensor. A derivation of this equation can be found in most standard general relativity
books, e.g., Weinberg (1972). In the review paper by Bartelmann & Schneider (2001),
we find an application of this formalism to gravitational lensing. In this case, we study
the evolution equation of the two-dimensional transverse separation vector ξ given by

d2ξ

dλ2
= T ξ , (5.41)

where T is the optical tidal matrix which quantifies the influence of the space-time
curvature on the propagation of light rays. Note that this equation is applicable for a
general metric. The tidal matrix becomes especially simple if we consider the isotropic
and homogeneous background Universe described by the Robertson-Walker metric (see
Eq. 1.1). In this case the tidal matrix is proportional to the Ricci tensor. Computing
the Ricci tensor for this metric and introducing the comoving transverse separation
vector x = a−1ξ, yields

d2x

dw2
+Kx = 0 . (5.42)

This is the familiar equation of a free harmonic oscillator. The solution is then a linear,
trigonometric or hyperbolic function depending on the curvature K of the Universe. In
order to solve the equation, we need to apply boundary conditions. Here we employ the
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conditions that all light rays start at the coordinate origin at w = 0, and that the angle
between the two light rays is given by θ at w = 0, i.e.

x|w=0 = 0 ,
dx

dw

∣∣∣
w=0

= θ . (5.43)

Applying the initial conditions, we find the solution

x = fK(w)θ . (5.44)

Now we add small perturbations to the propagation of the light bundle produced
by the inhomogeneities of the large-scale structure. Formally, the mass concentrations
change the metric. In order to apply the results from Sect. 5.1.1, we have to make a
few assumptions about the inhomogeneities: their gravitational potential needs to be
small (Φ � c2), they need to be localized in the sense that the potential Φ changes
on scales much smaller than the curvature K of the Universe and the velocity of the
perturbations need to be much smaller than the speed of light. In this case we can
neglect the cosmic expansion and are able to use the flat perturbed Minkowski metric.
Locally, we found for the deflection of light rays (see Eq. 5.9)

d2x

dw2
= − 2

c2
∇⊥Φ , (5.45)

where we made a change of variables from λ to the comoving distance w. We consider
now two light rays that arrive at the observer. The fiducial ray is situated at angular
position θ = 0 and the deflected ray arrives at the observer at angular position of θ 6= 0.
With this setup, we can use the difference of the local propagation equation combined
with the equation for the background Universe yielding

d2x

dw2
+Kx = − 2

c2
[
∇⊥Φ(x(θ, w))−∇⊥Φ(0)(w)

]
, (5.46)

which is the sought-after propagation equation of light including inhomogeneities. The
solution of the perturbed propagation equation is the sum of the homogeneous solution
(5.44) and a particular solution to the inhomogeneous equation, which can be found by
the method of Green’s functions. The result is

x(θ, w) = fK(w)θ − 2

c2

∫ w

0

dw′ fK(w − w′)[∇⊥Φ(x(θ, w′))−∇⊥Φ(0)(w′)] . (5.47)

A simple cross-check of this solution is obtained by inserting it into the differential
equation (5.46). This is an implicit nonlinear equation for the separation x(θ, w)
because the solution depends on the perturbed photon path x(θ, w′) in the Newtonian
potential. More precisely, it is a Volterra integral equation of the second kind.

In the absence of lensing, the source is located at an angle of β = x/fK(w) which is
just the definition of the comoving angular diameter distance4. Thus, we introduce in

4Note that in the absence of lensing source and lens coordinates are equal, i.e., β = θ.
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analogy to Eq. (5.25) the Jacobian

A(θ, w) =
∂β

∂θ
=
∂β

∂x

∂x

∂θ
=

1

fK(w)

∂x

∂θ
, (5.48)

which describes the linear mapping from lens to source coordinates. Applying this to
the solution (5.47) yields5

Aij(θ, w) = δij −
2

c2

∫ w

0

dw′ fK(w − w′)

fK(w)

∂

∂θj

Φ,i(x(θ, w′), w′)

= δij −
2

c2

∫ w

0

dw′ fK(w − w′)fK(w′)

fK(w)
Φ,ik(x(θ, w′), w′)Akj(θ, w

′) , (5.49)

where we used the chain rule in the second step, and the extra factor of fK(w′) appears
to rewrite the inner derivative in terms of the Jacobian using Eq. (5.48). In addition,
we implicitly assumed summation over identical indices. We can solve this equation by
expanding the gradient of the potential around the solution for an unperturbed ray. To
first order, the Jacobian in the integrand becomes the identity matrix and the potential
is evaluated at the unperturbed light path, i.e., x(θ, w′) = fK(w′)θ. The first order of
the expansion is the so-called Born approximation in analogy to scattering theory. The
next order involves terms that are proportional to Φ2 giving rise to so-called lens-lens
coupling terms (Cooray & Hu 2002) which are suppressed relative to the first-order
solution by the smallness of the potential. By using the Born approximation, we find

Aij(θ, w) = δij −
2

c2

∫ w

0

dw′ fK(w − w′)fK(w′)

fK(w)
Φ,ij(fK(w′)θ, w′) . (5.50)

This result enables us to introduce the lensing potential for cosmic shear:

Ψ(θ, w) ≡ 2

c2

∫ w

0

dw′ fK(w − w′)

fK(w)fK(w′)
Φ(fK(w′)θ, w′) , (5.51)

and write the solution in analogy to basic lensing as

Aij(θ, w) = δij −Ψij(θ, w) . (5.52)

Due to the complete analogy of Eqs. (5.25) and (5.52), we can decompose this matrix
as in Eq. (5.30), where the convergence and shear are now defined as

κ =
1

2
(Ψ11 + Ψ22) , (5.53)

γ =
1

2
(Ψ11 −Ψ22) + iΨ12 . (5.54)

5We denote derivatives with respect to xi with Φ,i ≡ ∂Φ
∂xi

. To distinguish between derivatives of the
lensing potential with respect to θ, we use the definition of Eq. (5.25), i.e., with no commas.
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Hence, we obtain the convergence by calculating the two-dimensional Laplacian of
the potential Ψ. As it turns out, we can add the term Ψ33 to Eq. (5.53) which is
the second-order derivative of the potential along the unperturbed light path. This is
justified by the fact that the integral in Eq. (5.51) vanishes as can be seen by integration
by parts. This enables us to use the three-dimensional Poisson equation in comoving
coordinates (compare also with Eq. 2.18)

4Φ =
3H2

0Ωm

2a
δ , (5.55)

where δ is the linear density contrast and a denotes the scale factor. Finally we get

κ(θ, w) =
3H2

0Ωm

2c2

∫ w

0

dw′ fK(w′)fK(w − w′)

fK(w)

δ[fK(w′)θ, w′]

a(w′)
, (5.56)

which is a relation between the convergence in terms of the three-dimensional density
contrast projected along the line-of-sight.

Up to now we only considered a source at a fixed redshift or comoving distance w.
However, in general the sources have a redshift distribution ps(w). The total convergence
is then the integral over the redshift distribution and the redshift-dependent convergence:

κ(θ) =

∫ wH

0

dw ps(w)κ(θ, w) . (5.57)

Changing the order of integration in Eqs. (5.56) and (5.57), we find

κ(θ) =

∫ wH

0

dw fK(w)G(w)δ[fK(w)θ, w] , (5.58)

where the weight function or lensing efficiency function is given by

G(w) ≡ 3

2
Ωm

(
H0

c

)2

a−1(w)

∫ wH

w

dw′ ps(w
′)
fK(w′ − w)

fK(w′)
. (5.59)

The weight function is the angular diameter distance ratio Dls/Ds weighted over the
source redshift distribution at a fixed lens redshift. Furthermore, it depends through
the Poisson equation on the matter density parameter Ωm.

Now, we want to find a relation between the shear- and the convergence power
spectrum. This is of particular interest since cosmic shear observations are sensitive to
the shear power spectrum whereas theoretical models predict the convergence power
spectrum. The shear power spectrum is defined by

〈γ̃(l)γ̃∗(l′)〉 = (2π)2δD(l− l′)Pγ(l) , (5.60)

and the convergence power spectrum is defined by

〈κ̃(l)κ̃∗(l′)〉 = (2π)2δD(l− l′)Pκ(l) . (5.61)

Using the Kaiser-Squires relation in Eq. (5.39), we can relate the shear- and the
convergence two-point correlators:

〈γ̃(l)γ̃∗(l′)〉 = D̃(l)D̃−1(l)〈κ̃(l)κ̃∗(l′)〉 . (5.62)

Thus, we find that both power spectra are equal, i.e., Pγ(l) = Pκ(l).
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5.2.1 Limber’s Equation

We showed in the previous three chapters how perturbation theory, the dark matter halo
model and the halo model for galaxy clustering predict general three-dimensional spectra.
However, cosmic shear measures a two-dimensional projection of the three-dimensional
spectrum. To relate the measured projected two-point correlation function on the sky
to the theoretically predicted three-dimensional correlation function, one uses Limber’s
approximation (Limber 1953). A generalization of the concept for the power spectrum
is developed in Kaiser (1998). For cosmic shear we deal with general projections of
the three-dimensional density contrast field to two-dimensions of the form (see e.g.,
Eq. 5.58)

gi(θ) =

∫ wH

0

dw qi(w)δi[fK(w)θ, w] , (5.63)

where qi(w) denotes the weight function of type i. The integral extends from w = 0
to the horizon at w = wH. The auto-correlation (i = j) and cross-correlation (i 6= j)
functions of the projected fields are

Pij(l) =

∫ wH

0

dw
qi(w)qj(w)

f 2
K(w)

PIJ

(
l

fK(w)
;w

)
. (5.64)

In this thesis we differentiate between galaxies (i = g) and dark matter (i = κ). Here
the indices (I, J) are the corresponding three-dimensional counterparts of the projected
fields (i, j). For example if i = κ then I = δ. This approximation is applicable if the
weight functions are not considerably varying over the considered range (see Bartelmann
& Schneider 2001; Simon 2007 for a comprehensive discussion).

We can generalize the Limber approximation to higher-order correlation functions
(Bernardeau et al. 2002). Considering the projection of the n-th order spectrum yields

Ti1...in(l1, . . . , ln) =

∫ wH

0

dw

∏n
k=1 qik(w)

[fK(w)]2(n−1)
TI1...In (k1, . . . ,kn;w) , (5.65)

where ki = li/fK(w). Again (I1, . . . , In) denote the three-dimensional counterparts of
the projected fields (i1, . . . , in). In the following we give the explicit relations for the
convergence power spectrum, bispectrum and trispectrum.

Convergence Spectra

We showed in Eq. (5.58) that for cosmic shear the convergence field is a weighted
projection of the three-dimensional density contrast field where the weight function is
given by

G(w) =
3

2
Ωm

(
H0

c

)2

a−1(w)

∫ wH

w

dws ps(z)
dz

dws

fK(ws − w)

fK(ws)
, (5.66)

where we used that ps(w)dw = ps(z)dz. Here we consider a redshift distribution of
source galaxies of the form

ps(z) = A

(
z

z0

)α

exp[−(z/z0)
β] , (5.67)
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where α, β and z0 are the parameters of the distribution function. This is a generalization
of the distribution considered by Brainerd et al. (1996) who used α = 2. From
the requirement that the distribution is normalized,

∫∞
0

dz ps(z) = 1, we find the
normalization constant

A =
β

z0 Γ
(

1+α
β

) , (5.68)

where Γ denotes the Gamma function.
If the background sources all reside at a redshift of zs then the weight function

simplifies to

G(w) =
3

2
Ωm

(
H0

c

)2

a−1(w)
fK(ws − w)

fK(ws)
, (5.69)

where ws = w(zs).
With the help of Limber’s equation (5.64), one gets a simple expression for the power

spectrum of the projected field. This so-called convergence power spectrum is given by

Pκκ(l) =

∫ wH

0

dwG2(w)Pδδ

(
l

fK(w)
;w

)
, (5.70)

where Pδδ is the three-dimensional power spectrum.
Applying Limber’s approximation in Eq. (5.65) for the dark matter bispectrum yields

Bκκκ(l1, l2, l3) =

∫ wH

0

dw
G3(w)

fK(w)
Bδδδ(k1,k2,k3;w) , (5.71)

where ki = li/w.
The projection of the dark matter trispectrum is given by (using Eq. 5.65)

Tκκκκ(l1, l2, l3, l4) =

∫ wH

0

dw
G4(w)

f 2
K(w)

Tδδδδ(k1,k2,k3,k4;w) , (5.72)

where ki = li/w.

5.2.2 Shear Two-Point Correlation Functions

We can define two shear two-point correlation functions:

ξ+(ϑ) = 〈γ(θ;ϕ)γ∗(θ + ϑ;ϕ)〉 , ξ−(ϑ) = 〈γ(θ;ϕ)γ(θ + ϑ;ϕ)〉 , (5.73)

where the shear γ at an angle of ϕ with respect to a Cartesian frame is given by the
sum of the tangential and the cross component:

γ(θ;ϕ) = γt(θ;ϕ) + iγ×(θ;ϕ) = −Re(γc e−2iϕ)− i Im(γc e−2iϕ) = −γc e−2iϕ . (5.74)

The shear with respect to a Cartesian base is in the following denoted by γc ≡ γ1 + iγ2.
Combining these relations we are able to calculate the correlation functions from the
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ϕ

Figure 5.4: Angles of the Fourier vector l and cor-
relation separation vector ϑ with respect to a fixed
coordinate system. Note that the angle between ϑ and
l is ϕ′.

convergence power spectrum. We first show the proof for ξ−:

ξ−(ϑ) = 〈γ(θ;ϕ)γ(θ + ϑ;ϕ)〉 = e−4iϕ〈γc(θ)γ∗c (θ + ϑ)〉

= e−4iϕ

∫
d2l

(2π)2

∫
d2l′

(2π)2
e−iθ·l e−i(θ+ϑ)·l′〈γ̃(l)γ̃(l′)〉

=

∫
d2l

(2π)2
Pκκ(l) e4i(β−ϕ) eiϑ·l

=

∫ ∞

0

dl

(2π)2
lPκκ(l)

∫ 2π

0

dϕ′ eiϑl cos ϕ′
[cos(4ϕ′)− i sin(4ϕ′)]

=
1

2π

∫ ∞

0

dl lPκκ(l) J4(lϑ) , (5.75)

where we employed Eq. (5.74) in the first step, transformed then the shear into Fourier
space and expressed the two shears in terms of the convergence using the Kaiser-Squires
relation in Eq. (5.40). In the last two steps we substitute the angles following the sketch
in Fig. 5.4 and rewrite the angular integral in terms of the Bessel function. With this
knowledge we can easily calculate the relation for the second correlation function:

ξ+(ϑ) = 〈γ(θ;ϕ)γ∗(θ + ϑ;ϕ)〉 = 〈γc(θ)γ∗c (θ + ϑ)〉

=

∫
d2l

(2π)2

∫
d2l′

(2π)2
e−iθ·l ei(θ+ϑ)·l′〈γ̃(l)γ̃∗(l′)〉

=

∫
d2l

(2π)2
Pκκ(l) eiϑ·l =

1

2π

∫ ∞

0

dl lPκκ(l) J0(lϑ) .

(5.76)

The result is that both correlation functions are filtered versions of the convergence
power spectrum (5.70), where the filter is given by the Bessel function of zeroth and
fourth order, respectively.



Chapter 6

Galaxy-Galaxy and
Galaxy-Galaxy-Galaxy Lensing

Galaxy-galaxy lensing describes the distortion pattern of the images of background
galaxies induced by weak gravitational lensing of individual foreground galaxies. The
galaxy lensing induces a mean tangential alignment of the shear distortions of background
galaxies around foreground galaxies, which is the main observational signature. However,
the weak lensing distortions around a single galaxy are very small compared to their
intrinsic ellipticity. Therefore, we need to average over a large sample of foreground
and background pairs to extract the tangential alignment of background galaxy images.
Statistically galaxy-galaxy lensing determines then the cross-correlation of the tangential
shear with the position of the foreground galaxy which is directly sensitive to the
projected galaxy-dark matter cross-correlation function. Recently, this concept has been
extended to third-order galaxy-shear correlations which is the so-called galaxy-galaxy-
galaxy lensing effect.

We present here theoretical predictions of the galaxy lensing signal by combining the
halo model for dark matter and for galaxy clustering. In particular, we use results from
Sect. 4.3 where we derived the expressions for the three-dimensional cross-spectra. The
chapter is organized as follows: We review the formalism of galaxy-galaxy lensing in
Sect. 6.1 deriving the most important quantities. This provides us with the necessary
background to define the galaxy-galaxy-galaxy lensing signal in Sect. 6.2. We give an
overview of the most important observational and theoretical results at the beginning
of each section for these young cosmological probes. Throughout this chapter we will
adopt Model B, depicted in Table A.1, as the fiducial cosmological model.

6.1 Galaxy-Galaxy Lensing

Measurements of galaxy-galaxy lensing (GGL) can be used to determine the mass
properties of the environment of galaxies. For small angular separations the signal
is dominated by the galaxy halo, whereas for larger angular scales the measurements
receive substantial contributions from the host group or cluster halo. These dependencies
can give valuable constraints on the properties of dark matter halos of different masses,
like their shape, the extent of the halo, the functional form of the halo density profile,
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the concentration-mass relation etc. Another advantage is that the results are comple-
mentary to traditional probes that rely on luminous tracers of the mass distribution like
measurements of the rotation curves of stars in spiral galaxies or the velocity dispersion
in elliptical galaxies, which provide important evidence for dark matter halos around
galaxies. However, with luminous tracers one can only probe the dark matter halo out
to distances of roughly 100h−1 kpc. On the other hand, GGL is sensitive to the total
mass and allows for measurements beyond 1h−1 Mpc. Furthermore, since GGL depends
on the matter-galaxy cross-correlation function it can shed light on the scale-dependent
galaxy bias. For example one can extract the galaxy bias by combining measurements
of the cosmic shear and the GGL two-point correlation functions (Hoekstra et al. 2002).

The first attempt to measure the GGL signal failed due to the use of scans of
photographic plates and the poor seeing (Tyson et al. 1984). We had to wait for more
than 10 years until the breakthrough of the first detection of the GGL signal mostly due
to the improvement of observational techniques (Brainerd et al. 1996). The advent of
high-resolution telescopes and wide-field galaxy surveys greatly increased the number of
useable foreground-background pairs thereby significantly reducing the statistical errors
and improving the constraints on halo parameters. Current experiments can be divided
into two main classes: shallow (low-redshift) and large-area surveys like the SDSS
(Fischer et al. 2000; McKay et al. 2001) or relatively deep (higher-redshift) experiments
like the RCS1 (Hoekstra et al. 2002). At the moment, the tightest constraints on halo
profiles are provided by results from the SDSS since this survey consists of a large field
with exquisite redshift information of fore- and background galaxies in five different
filters (e.g., Mandelbaum et al. 2006a,c,b). The main drawback is that the relatively
bad seeing prevents cosmic shear analyses in the SDSS. Hence, the best galaxy bias
constraints from GGL come from the RCS survey where one can combine cosmic shear
and GGL measurements (Hoekstra et al. 2002).

6.1.1 Projected Power Spectrum

The three-dimensional number density contrast of galaxies at comoving position x and
comoving distance w is defined as

δg(x, w) ≡ ng(x, w)− n̄g(w)

n̄g(w)
, (6.1)

where n̄g(w) is the mean number density of galaxies at distance w. Considering a popu-
lation of foreground galaxies with spatial number density ng(x, w), the corresponding
number density on the sky is then a projection

N(θ) =

∫ wH

0

dw f2
K(w)ν(w)ng[fK(w)θ, w] , (6.2)

1Red-Sequence Cluster Survey.
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where ν(w) is a selection function accounting for the fraction of objects that are included
in the galaxy sample. Furthermore, we introduce the mean number density on the sky:

N̄ =

∫ wH

0

dw f2
K(w)ν(w)n̄g(w) . (6.3)

These definitions lead to the redshift distribution of foreground galaxies (denoted by
the subscript “f”), or more precisely, their distribution in comoving distance

pf(w) =
f 2

K(w)ν(w)n̄g(w)

N̄
, (6.4)

which is normalized by definition, such that
∫

dw pf(w) = 1.
Employing Eq. (6.1), we get a relation between the two- and the three-dimensional

number density contrast

N(θ)/N̄ = 1 +

∫ wH

0

dw pf(w)δg[fK(w)θ, w] . (6.5)

This allows us to define the fractional density contrast of the number density of fore-
ground galaxies on the sky as

κg(θ) ≡ N(θ)− N̄

N̄
=

∫ wH

0

dw pf(w)δg[fK(w)θ, w] , (6.6)

where we used Eq. (6.5) in the last step.
We can now build cross- and auto-power spectra of the convergence κ(θ) and the

fractional density contrast κg(θ) by using Limber’s equation (5.64). The projected
cross-power spectrum is defined by the two-point correlator

〈κ̃(l)κ̃g(l
′)〉 = (2π)2δD(l + l′)Pκg(l) . (6.7)

The possible combinations are the dark matter auto-power spectrum

Pκκ(l) =

∫ wH

0

dwG2(w)Pδδ

(
l

fK(w)
;w

)
, (6.8)

the galaxy auto-power spectrum

Pgg(l) =

∫ wH

0

dw
p2

f (w)

f 2
K(w)

Pgg

(
l

fK(w)
;w

)
, (6.9)

and the dark matter-galaxy cross-power spectrum

Pκg(l) =

∫ wH

0

dw
G(w)pf(w)

fK(w)
Pδg

(
l

fK(w)
;w

)
. (6.10)
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Figure 6.1: Redshift distribution of foreground galaxies shown for four different minimal
HOD masses as indicated in the figure, where we use m′

min ≡ mmin/(h−1M�). We find that
higher threshold masses lead to an enhancement of the probability for low redshifts and to a
reduction for higher redshifts. Note that we employ a maximal redshift of zmax,f = 0.4 for the
lenses. Moreover, we assume that all sources are located at a single redshift zs = 1.

Assuming that the distributions of foreground (lenses) and background galaxies (sources)
are given by Dirac delta functions at redshift zl (pf(z) = δD(z − zl)) and at zs (ps(z) =
δD(z − zs)), respectively, the projected cross-power spectrum (6.10) simplifies to

Pκg(l) =
3

2
Ωm

(
H0

c

)2

(1 + zl)
w(zs)− w(zl)

w(zl)w(zs)
Pδg

(
l

w(zl)
; zl

)
, (6.11)

where we inserted the weight function (5.69) valid for a single source redshift. Note
that we assumed in a flat Universe in the derivation of Eq. (6.11). Then the projected
spectrum is directly proportional to the three-dimensional spectrum times geometrical
factors that describe the distances of the lensing system. Note that we cannot derive
an expression of the projected galaxy power spectrum (6.9) considering a Dirac delta
distribution for the foreground redshift distribution because of the occurrence of the
factor p2

f (w). The cause of this problem is that Limber’s approximation is not valid
anymore for this product of weight functions (Schneider 1998).

Having laid out the concept of projected spectra, we want to adopt our halo model
to predict their dependence on the Fourier mode l. First, we give the distribution of
foreground galaxies (6.4) in terms of redshift using pf(z)dz = pf(w)dw. In this case we
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find

pf(z) =
c

H(z)

w2(z)n̄g[w(z)]

N̄
Θ(zmax,f − z) , (6.12)

where we assumed a flat Universe and the selection function ν(z) = Θ(zmax,f − z) for
simplicity, and Θ(x) denotes the step function. Here zmax,f is the selected maximal
redshift of a foreground galaxy sample. In addition, we could set a minimum redshift
which is accessible in a potential experiment. The mean number density of galaxies
n̄g is connected to the adopted form of the HOD by the completeness relation in
Eq. (4.2). We depict the distribution in Fig. 6.1 for four different minimal masses
mmin where we adopt the Kravtsov et al. (2004) parametrization of the HOD given
in Eqs. (4.13) (central galaxies) and (4.14) (satellite galaxies). The corresponding
angular number densities which define our galaxy samples are N̄ ' 1.66 arcmin−2 for
mmin = 1011h−1M�, N̄ ' 0.19 arcmin−2 for mmin = 1012h−1M�, N̄ ' 0.019 arcmin−2

for mmin = 1013h−1M� and N̄ ' 9.71 × 10−4 arcmin−2 for mmin = 1014h−1M�. Note
that we truncate the foreground distribution at a maximal redshift of zmax,f = 0.4. As
one can see, the difference between the four curves is small. Since the distribution
is normalized an enhancement (reduction) for small redshifts results in a reduction
(enhancement) for large redshifts. We will employ this foreground redshift distribution
for the following plots and assume that the background galaxies are located at a single
redshift of zs = 1 (approximately twice as large as the maximal foreground redshift)
unless otherwise stated2.

We define for the three introduced projected power spectra their reduced (dimension-
less) form as

∆XY(l) ≡ l2

2π
PXY(l) . (6.13)

Here the two subscripts can take the values (X,Y) ∈ {κ, g}. The reduced spectra have
a much weaker scale dependence than the spectra themselves. The three-dimensional
spectra are calculated with our halo model implementation, in particular see Eqs. (3.103)
and (3.106) for the dark matter, Eqs. (4.27) and (4.29) for the galaxy and Eqs. (4.36)
and (4.37) for the cross-power spectrum. We depict them in Fig. 6.2 as a function of l for
mmin = 1012 h−1M�. Most notably, the galaxy and cross-spectrum can be approximately
described by a single power law in l, whereas the convergence spectrum is first increasing
and then decreasing for small scales. Hence, the form of the three-dimensional spectra is
approximately maintained by the projections (compare with Fig. 4.3 and Fig. 4.6). On
the other hand, at first sight it might be surprising that the (scale-dependent) difference
between the galaxy, convergence and the cross-spectrum is very large (up to three to
four orders of magnitude). To further analyze this difference, we define according to
Eq. (4.53) the projected bias factor and the projected correlation coefficient by

b̄(l) ≡

√
Pgg(l)

Pκκ(l)
, r̄(l) =

Pκg(l)√
Pκκ(l)Pgg(l)

,
b̄(l)

r̄(l)
≡ Pgg(l)

Pκg(l)
, (6.14)

2This is similar to the redshift distribution used by Simon et al. (2008) in the analysis of the RCS
field with maximal foreground redshift zf = 0.4 and mean background redshift of z̄s ≈ 0.85.
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Figure 6.2: Reduced projected power spectra (6.13) versus Fourier mode l for mmin =
1012 h−1 M�. We show the convergence power spectrum (solid red line), the projected cross-
power spectrum (dotted blue line) and the projected galaxy power spectrum (dashed green
line). In addition, we depict on the upper abscissa the correspondence to the real-space Fourier
conjugate of l defined as θ = 2π/l which is given in units of arcmin.

where the last relation quantifies the difference of the galaxy and cross-spectrum. Note
that these quantities additionally depend on the redshift distribution of foreground and
background galaxies. We show the results in Fig. 6.3 for the same l-range as before
but for four different minimal masses as indicated in the figure. Now we can compare
the left-hand panel which shows the projected bias factor with the left-hand panel of
Fig. 4.6, where we plot the three-dimensional scale-dependent bias between galaxy and
dark matter clustering. We find that the shape of the curves is similar. However, the
amplitude is clearly enhanced for the projected spectra. This is mainly due to the
different weight functions used in Limber’s equation (compare the weightings in Eqs. 6.8
and 6.9). In addition, we note that b̄(l) does not converge to a constant on the largest
depicted scales in contrast to the three-dimensional bias factor. Clearly, this is an effect
of the redshift weighting of the projected spectra. On the right-hand panels of Fig. 6.3
and Fig. 4.6 we show the ratio b̄/r̄ of the projected and b/r of the three-dimensional
correlation parameter, respectively. In this case the scale dependence is strongly reduced
compared to the bias since the galaxy and the cross-spectrum have a similar shape
especially on small scales. Furthermore, the form of the curves are slightly different
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Figure 6.3: Projected bias factor (left panel) and ratio of the projected bias to the correlation
coefficient (right panel) versus Fourier mode l (see definitions in Eq. 6.14) for four different
minimal masses as indicated in the figure.

compared to their three-dimensional counterparts because of the redshift weighting of
the projection.

We showed in Sect. 4.3.3 that for the three-dimensional spectra the amplitudes of
the bias and correlation coefficient are enhanced for larger minimal masses mmin. This
is due to the fact that considering a larger minimal mass leads to a smaller number
density of galaxies. Since the spectra are normalized by the mean number of galaxies a
larger minimal mass results in an enhancement of the amplitudes. In Fig. 6.3 we see
that this trend is preserved for the projected bias factor and correlation coefficient.

6.1.2 Mean Tangential Shear

Here we will define the real-space observable of galaxy-galaxy lensing. Galaxy-galaxy
lensing is measured by cross-correlating the shear of background galaxies around
foreground galaxy positions. We define the mean tangential shear signal around a
foreground galaxy as

〈γt(ϑ)〉 ≡ 〈κg(θ)γ(θ + ϑ;ϕ)〉 , (6.15)

where ϕ is the polar angle of the connection vector ϑ. Again we can compute this
cross-correlation with the techniques used in Eqs. (5.75) and (5.76) where we calculated
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the shear correlation functions:

〈γt(ϑ)〉 = 〈κg(θ)γt(θ + ϑ;ϕ)〉+ i〈κg(θ)γ×(θ + ϑ;ϕ)〉
= − e−2iϕ〈κg(θ)γc(θ + ϑ)〉

= −
∫

d2l

(2π)2
Pκg(l) eiϑ·l e2i(β−ϕ)

= − 1

(2π)2

∫ ∞

0

dl l

∫ 2π

0

dφ′ eiϑl cos φ′
[cos(2φ′) + i sin(2φ′)]

=
1

(2π)

∫ ∞

0

dl lPκg(l) J2(lϑ) . (6.16)

In the second step we used the decomposition of Eq. (5.74). We set the correlator
including γ× to zero as it is a parity-violating term. Then we transform the fractional
density and the shear into Fourier space, use the Kaiser-Squires relation (5.40) and
insert Eq. (6.7) for the resulting two-point correlator. In the last step we evaluate
the angular integral over the cosine-term which is equal to the negative second-order
Bessel function, and the integral over the sinus-term is equal to zero. Thus, the mean
tangential shear measures a filtered version of the projected cross-power spectrum of
galaxies and dark matter, where the filter function is given by the second-order Bessel
function of first kind.

The mean tangential shear measured on the circle of radius θ is related to the averaged
convergence inside the circle and the azimuthally-averaged surface convergence at θ
(Schneider et al. 2006)

〈γt(θ)〉 = κ̄(< θ)− 〈κ(θ)〉 =
Σ̄(< Dlθ)− 〈Σ(Dlθ)〉

Σcrit

, (6.17)

where we used in the last step that the convergence is a scaled version of the surface
mass density (see Eq. 5.20). The averaged surface mass density inside the circle is given
by

κ̄(< θ) =
2

θ2

∫ θ

0

dθ′ θ′〈κ(θ′)〉 . (6.18)

Note that this relation is also valid for non-azimuthally symmetric density profiles.
From the sketch of a general lens system in Fig. 5.2, we find that the distance transverse
to the line-of-sight of the lensing galaxy is given by the physical distance R ≡ ξ = Dlθ,
and inserting this into (6.17) yields

Σcrit〈γt(R/Dl)〉 = Σ̄(< R)− 〈Σ(R)〉 ≡ ∆Σ(R) , (6.19)

where we defined the excess surface mass density ∆Σ in the last step which is the
observable in GGL experiments. We can easily evaluate the left-hand side of Eq. (6.19)
by inserting into the mean tangential shear (6.16) the expression for the projected
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Figure 6.4: Mean tangential shear as a function of θ in arcmin (left panel) and the projected
surface mass density as a function of the distance from the halo center (right panel). We
show the results for three different minimal masses as indicated in the figure with m′

min =
mmin/(h−1M�). Here we assume that the lenses and the sources are located at a single
redshift z̄f = 0.29 and zs = 1, respectively. Moreover, we show for mmin = 1012 h−1 M� the
contributions of the one-halo (dotted magenta line) and two-halo terms (dot-dashed light blue
line).

cross-spectrum for a single foreground (located at zl) and background galaxy (located
at zs) as given in Eq. (6.11). In this case we find

Σcrit〈γt [R/Dl]〉 =
ρ̄c

H0

π

∫
dk

k

(
H0

ck

)
k3Pδg(k; zl)

2π2
J2(kR) . (6.20)

Here we used the fact that the inverse critical surface mass density can be expressed in
terms of comoving distances which is valid for a flat Universe:

Σ−1
crit =

4πGN

c2
DlDls

Ds

=
3

2

(
H0

c

)2
Ωm

ρ̄
(1 + zl)

w(zl)[w(zs)− w(zl)]

w(zs)
. (6.21)

Furthermore, we wrote the integrand in (6.20) in dimensionless terms such that the
dimensions of the whole expression are specified by ρ̄c/H0 ≈ 832 ΩmhM� pc−2.

All this is valid if we have perfect spectroscopic and photometric redshift information
for the foreground and background galaxies, respectively. If at least spectroscopic
redshifts for the foreground galaxies are available (which is the case for the SDSS- and
RCS analyses) we have to average the mean tangential shear over the source redshift
distribution:

〈γt(R/Dl)〉 =

∫
dzs ps(zs)

Σ̄(< R)− 〈Σ(R)〉
Σcrit

. (6.22)
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Figure 6.5: Contributions of the central-matter (c-δ)
and satellite-matter (s-δ) correlations to the one-halo
term of the mean tangential shear as a function of
θ. Note that the one-halo term is the same as in the
left-hand panel of Fig. 6.4.
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In Fig. 6.4 we plot the GGL signal for three different minimal masses where we depict
the mean tangential shear as a function of the angular position on the sky (left panel) and
the projected surface mass density as a function of the separation from the halo center
(right panel). Note that we assume that all lenses and sources are located at z̄f = 0.29
and zs = 1, respectively. We choose the single foreground redshift as the mean redshift of
the foreground galaxy distribution shown in Fig. 6.1, i.e., z̄f =

∫∞
0

dz z pf(z). Taking the
mean redshift value is a good approximation for the projected cross-spectrum including
the full distribution. Moreover, this enables us to employ Eq. (6.11) which simplifies
the calculation. We show the one- and two-halo contributions to the mean tangential
shear for mmin = 1012 h−1M�. The two-halo term only becomes important for large
transverse distances from the halo center (R > 1h−1 Mpc) and thus is excluded in some
analyses (e.g., Guzik & Seljak 2002). Note that the excess surface mass density in the
right-hand panel shows the same functional form as the mean tangential shear because
both quantities directly probe the three-dimensional cross-spectrum. Furthermore, note
that the mean tangential shear becomes more steep at approximately θ = 5 arcmin
which is clearly visible for mmin = 1014 h−1M�. At these scales the angular radius
resolves the scale radius of the halo profile (Hu & Jain 2004).

In Fig. 6.5 we show the contributions from central-mass and satellite-mass correlations
on the one-halo term of the mean tangential shear. The former dominate the signal on
small scales, whereas the latter give the dominant contribution for scales larger than
θ ≈ 4 arcmin. At these scales we see a change in the slope of the one-halo term.

6.2 Galaxy-Galaxy-Galaxy Lensing

With current and planned large-area surveys it is possible to reliably measure higher-
order correlation functions. This inspired Schneider & Lombardi (2003) to define the
natural components of the third-order cosmic shear correlation functions which probe
the dark matter bispectrum (Schneider et al. 2005). However, the higher-order shear
correlation functions are hard to measure because the shear is a polar which depends
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on 2 independent components. These developed techniques can also be applied to
generalize the concept of GGL which probes the two-point cross-correlation function to
third-order correlations between galaxies and dark matter which are characterized by
the corresponding three-point cross-correlation functions. These quantities are defined
in Schneider & Watts (2005) where also practical estimators of the cross-correlation
functions are developed. Moreover, they derive the connections to their Fourier-space
counterparts and define higher-order aperture mass correlators which are useful since
they can separate systematic B-modes and parity-violating modes from the cosmological
E-mode signal. The physical interpretation of the newly developed galaxy-galaxy-galaxy
lensing (GGGL) signal was analyzed in Watts & Schneider (2005). In the language
of the halo model of galaxy clustering as introduced in Chapter 4, higher-order cross-
spectra probe also higher-order moments of the HOD and additionally show a stronger
dependence on the radial distribution of galaxies ũg. This is in contrast to GGL which
is only sensitive to the first moment of the HOD. We emphasize again that the moments
of the HOD are the key quantities to understand the dark matter-galaxy bias and thus
constrain theoretical models of galaxy formation. Furthermore, the analysis of the GGGL
signal can help us to learn more about the distribution of galaxies in their host halos
which could finally lead to a parametrization of the galaxy density profile. Apart from
the halo model interpretation, it was pointed out that galaxy-galaxy-shear correlations3

are a measure for the shear pattern around pairs of foreground galaxies. Thus, their
determination is a promising tool for studying the environment of gravitationally bound
systems which contain a small number of galaxies like galaxy groups (Watts & Schneider
2005; Johnston 2006).

Only very recently, the first detection of GGGL was reported in Simon et al. (2008)
using data from the RCS fields (Gladders & Yee 2005) and utilizing the detailed
photometric redshift information of the background galaxies. They determined the
galaxy-galaxy-shear and the shear-shear-galaxy correlation functions from the data
and computed from these the corresponding aperture mass statistics to separate the
cosmological from the systematic signal. The obtained results were compared to halo
model predictions which revealed that at least the galaxy-galaxy-shear correlations are
of cosmological origin. Future wide-field surveys which are substantially larger than the
RCS fields should yield significantly improved results making GGGL a promising future
cosmological tool. Furthermore, we can use the well-known methods of GGL, for example
dividing the sample in early- and late-type galaxies, studying low- and high-density
environments etc., which provide us with a wealth of cosmological information. A related
work is presented in Johnston (2006) who determines the galaxy-galaxy-mass three-point
correlation functions from a large N -body simulation (populated with galaxies using
the HOD formalism) and estimates mass and shear maps. The author points out that
already current SDSS weak-lensing data should be sufficient to determine the three-point

3These build only one part of the GGGL signal. In addition, one could measure shear-shear-galaxy
correlations. However, the physical interpretation of these correlations yet has to be determined.
Nevertheless, we will include them in our subsequent halo model analysis.
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Figure 6.6: Sketch of the geometry of the GGGL correlation functions. We show the shear-
shear-galaxy correlations G±(ϑ1, ϑ2, φ3) in the left panel (see Eqs. 6.23 and 6.24) and the
galaxy-galaxy-shear correlation G(ϑ1, ϑ2, φ3) in the right panel (see Eq. 6.30). Each filled
circle corresponds to a foreground galaxy and each stick indicates the tangential shear at the
corresponding position. Note that the sign of the angle φ3 = ϕ2 − ϕ1 is important. The figure
is adapted from Schneider & Watts (2005).

cross-correlation function. Future theoretical work for this new cosmological tool is
mandatory which includes extended studies with N -body simulations (ideally including
baryons) and detailed predictions of the analytic halo model which might give more
physical insights. A major part of this thesis is to provide an analytical treatment
for the GGGL signal showing all needed assumptions and parameters. Even though
Simon et al. showed halo model predictions for the GGGL aperture statistics, a detailed
presentation of the model is missing.

We define in the following the two observables of GGGL, namely the galaxy-galaxy-
matter and the matter-matter-galaxy correlation functions. Both quantities depend
on the corresponding projected cross-bispectra which we predict with our halo model
implementation. These results enable us to compute the aperture mass correlators
which are of key importance for future experiments. Our findings can be used as a
guidance for the results of future experiments to test if their signal is of cosmological
origin. A major goal is to constrain different theoretical HOD models by comparison
with observational data which enables us to empirically test different physical models of
galaxy formation.

6.2.1 Correlation Functions

Schneider & Watts (2005) extended the concept of two-point cross-correlations between
galaxies and shear as measured by GGL to third-order galaxy-shear correlations. They
showed that one can define three third-order correlators. The first two describe the
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cross-correlation of the shear of two background galaxies at positions θ1 and θ2, with a
foreground galaxy at position θ3:

G+(ϑ1,ϑ2) = G+(ϑ1, ϑ2, φ3) = 〈γ(θ1;ϕ1)γ
∗(θ2;ϕ2)κg(θ3)〉 , (6.23)

G−(ϑ1,ϑ2) = G−(ϑ1, ϑ2, φ3) = 〈γ(θ1;ϕ1)γ(θ2;ϕ2)κg(θ3)〉 , (6.24)

where the separation vectors between the two background galaxies and the foreground
galaxy are denoted by ϑi = θi − θ3 with i = {1, 2}, and ϕi denotes the corresponding
polar angle. For a sketch of the vectors and angles we refer to the left-hand panel of
Fig. 6.6. Note that we parametrized the scale dependence of the correlation functions by
the modulus of the two connection vectors, ϑ1 and ϑ2, and the angle φ3 between them4

which is valid for homogeneous and isotropic correlations. However, for the construction
of practical estimators it is better to use the slightly modified correlators which are
defined by

G̃+(ϑ1, ϑ2, φ3) ≡
1

N̄
〈γ(θ1;ϕ1)γ

∗(θ2;ϕ2)N(θ3)〉

= G+(ϑ1, ϑ2, φ3) + 〈γ(θ1;ϕ1)γ
∗(θ2;ϕ2)〉 , (6.25)

G̃−(ϑ1, ϑ2, φ3) ≡
1

N̄
〈γ(θ1;ϕ1)γ(θ2;ϕ2)N(θ3)〉

= G−(ϑ1, ϑ2, φ3) + 〈γ(θ1;ϕ1)γ(θ2;ϕ2)〉 , (6.26)

where we used N(θi)/N̄ = 1 + κg(θi) in the second step of both equations to express
the modified correlators in terms of the original definitions of the correlation functions.
We see that the modified correlators depend also on the second-order shear correlation
functions. First, however, we need to calculate the correlation of the shear at two
different angles. We note that

γ(θ;ϕ1) = γ(θ;ϕ2) e2i(ϕ2−ϕ1) , (6.27)

which can be seen by inserting (5.74) for γ(θ;ϕ2). Then we can rewrite the shear
two-point correlator in (6.25) by rotating the two shear terms onto the separation vector
of the background galaxies (i.e., rotation by ϕ∆θ, see Fig. 6.6):

〈γ(θ1;ϕ1)γ
∗(θ2;ϕ2)〉 = e2i(ϕ∆θ−ϕ1) e2i(ϕ2−ϕ∆θ)〈γ(θ1;ϕ∆θ)γ

∗(θ2;ϕ∆θ)〉
= 〈γ(θ1;ϕ∆θ)γ

∗(θ2;ϕ∆θ)〉 e2iφ3 = ξ+(∆θ) e2iφ3 , (6.28)

where ∆θ = ϑ2−ϑ1 is the separation vector of the two background galaxies and ϕ∆θ is
the corresponding polar angle. In addition, we see from Fig. 6.6 that φ3 = ϕ2 − ϕ1 and
in the last step we used the definition of the shear two-point correlation function given

4Another possible way is to parametrize the correlation function by the length of the three triangle
sides.
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in Eq. (5.73). Similarly, we can derive the other two-point shear correlator in (6.26):

〈γ(θ1;ϕ1)γ(θ2;ϕ2)〉 = ξ−(∆θ) e4iϕ∆ e−2i(ϕ1+ϕ2)

= ξ−(∆θ)

[
ϑ2 eiφ3/2−ϑ1 e−iφ3/2

]4
(∆θ)4

, (6.29)

where we used the fact that we can represent two-dimensional vectors by complex
numbers such that ϑi → |ϑi| eiϕi (for i = 1, 2) and ∆θ → |∆θ| eiϕ∆θ in the last step. In
particular, we can then show that ϑi e

iφ3/2 = ei/2(ϕ1+ϕ2) ϑi e
iϕi which proofs the relation.

The third correlation function, besides Eqs. (6.23) and (6.24), quantifies the shear
around pairs of galaxies:

G(ϑ1,ϑ2) = G(ϑ1, ϑ2, φ3) =

〈
κg(θ1)κg(θ2)γ

(
θ3;

ϕ1 + ϕ2

2

)〉
. (6.30)

Note that the shear in Eq. (6.30) is projected onto the line which bisects the angle φ3

because we cannot project the shear onto both separation vectors ϑ1 and ϑ2. Again,
we define the modified correlator by

G̃(ϑ1,ϑ2) = G̃(ϑ1, ϑ2, φ3) =
1

N̄2

〈
N(θ1)N(θ2)γ

(
θ3;

ϕ1 + ϕ2

2

)〉
, (6.31)

which is related to the original correlator by

G̃(ϑ1, ϑ2, φ3) = G(ϑ1, ϑ2, φ3) + 〈κg(θ1)γ (θ3;ϕ12/2)〉+ 〈κg(θ2)γ (θ3;ϕ12/2)〉 . (6.32)

Here we defined ϕ12 ≡ ϕ1 + ϕ2. Now we project the shear onto the vectors ϑ1 and ϑ2

which connect each of the two foreground galaxies with the background galaxy. This
results in γ(θ3;ϕ12/2) = γ(θ3;ϕi) e2i(ϕi−ϕ12/2) = γ(θ3;ϕi) e±iφ3 with a minus sign in the
exponential for i = 1 and plus sign for i = 2. Finally, the modified three-point correlator
is

G̃(ϑ1, ϑ2, φ3) = G(ϑ1, ϑ2, φ3) + 〈γt(ϑ1)〉 e−iφ3 +〈γt(ϑ2)〉 eiφ3 , (6.33)

where we used the definition of the mean tangential shear (6.15). Again the modified
correlation function depends on two-point correlation functions which are in this case
GGL signals. Hence, for a purely Gaussian density field the modified correlation function
measures the mean tangential shear around each foreground galaxy times phase factors.

6.2.2 Projected Cross-Bispectra

Similar to the two-point shear correlation functions, we can write the GGGL correlation
functions as a weighted integral over the corresponding projected bispectra. For a
detailed derivation of these relations we refer to Schneider & Watts (2005). We analyze
here the behavior of the two cross-bispectra which are probed by GGGL surveys and
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Figure 6.7: Reduced projected bispectra as a function of Fourier mode l for an equilateral
configuration (see text for details). We show the four possible auto- and cross-bispectra which
are the galaxy bispectrum (dotted magenta line), the dark matter bispectrum (solid red line)
and the two cross-bispectra, namely Qκκg (long dashed green line) and Qggκ (short dashed blue
line). We use a minimal mass mmin = 1012 h−1 M� for the HOD. A higher (lower) threshold
mass results in a reduction (enhancement) of the scale-dependence of the spectra including
galaxies and the maximum is shifted to lower (higher) l. The left- and right-hand panels show
two different definitions of the dimensionless bispectrum (see text for details).
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compare the results with the two auto-bispectra probed in galaxy and in cosmic shear
surveys. We show predictions for all of these spectra with our halo model implementation.

The four projected auto- and cross-bispectra are defined by the following connected
three-point correlators:

〈κ̃(l1)κ̃(l2)κ̃(l3)〉c = (2π)2δD(l123)Bκκκ(l1, l2, l3) , (6.34)

〈κ̃(l1)κ̃(l2)κ̃g(l3)〉c = (2π)2δD(l123)Bκκg(l1, l2; l3) , (6.35)

〈κ̃g(l1)κ̃g(l2)κ̃(l3)〉c = (2π)2δD(l123)Bggκ(l1, l2; l3) , (6.36)

〈κ̃g(l1)κ̃g(l2)κ̃g(l3)〉c = (2π)2δD(l123)Bggg(l1, l2, l3) , (6.37)

with l123 ≡ l1 + l2 + l3. Applying Limber’s approximation (5.65) to the two three-
dimensional cross-spectra in Eqs. (6.35) and (6.36) yields the corresponding projected
cross-spectra:

Bκκg(l1, l2; l3) =

∫ wH

0

dw
G2(w)pf(w)

w2
Bδδg

(
l1
w
,
l2
w

;
l3
w

;w

)
, (6.38)

Bggκ(l1, l2; l3) =

∫ wH

0

dw
G(w)p2

f (w)

w3
Bggδ

(
l1
w
,
l2
w

;
l3
w

;w

)
, (6.39)

and the projected galaxy bispectrum

Bggg(l1, l2; l3) =

∫ wH

0

dw
p3

f (w)

w4
Bggg

(
l1
w
,
l2
w

;
l3
w

;w

)
. (6.40)

Note that the expression for the convergence bispectrum is given in the previous chapter
in Eq. (5.71). If all foreground galaxies are located at a single redshift zl and background
galaxies at zs the first projected bispectrum (6.38) simplifies to

Bκκg(l1, l2; l3) =
9

4
Ω2

m

(
H0

c

)4

(1 + zl)
2 (ws − wl)

2

w2
sw

2
l

Bδδg

(
l1
wl

,
l2
wl

;
l3
wl

; zl

)
, (6.41)

where wl = w(zl) and ws = w(zs). Note that we cannot derive such an expression for
the galaxy and the galaxy-galaxy-mass bispectrum since Limber’s approximation is not
valid in this case.

We define the two reduced projected cross-bispectra according to the three-dimensional
reduced bispectra introduced in Eqs. (4.72) and (4.73):

Qggκ(l1, l2; l3) ≡
Bggκ(l1, l2; l3)

Pκg(l1)Pκg(l2) + Pgg(l1)Pκg(l3) + Pgg(l2)Pκg(l3)
, (6.42)

Qκκg(l1, l2; l3) ≡
Bκκg(l1, l2; l3)

Pκg(l1)Pκg(l2) + Pκκ(l1)Pκg(l3) + Pκκ(l2)Pκg(l3)
. (6.43)

Accordingly, we define the two reduced projected auto-bispectra following Eq. (4.71).
Note that we parametrize in the following the reduced bispectra by the length of the
three sides, l1, l2 and l3 that build a closed triangle in Fourier space.



6.2 Galaxy-Galaxy-Galaxy Lensing 167

In Fig. 6.7 we depict the four reduced bispectra as a function of Fourier mode l for
an equilateral configuration defined such that Qeq

XYZ(l) ≡ QXYZ(l, l, l) where (X,Y,Z) ∈
{κ, g} (left panel). Furthermore, we show another definition of the dimensionless
bispectrum given by ∆eq

XYZ(l) ≡ (l2/2π)
√
BXYZ(l, l, l) (right panel). As already seen for

the projected power spectra, the difference between the projected bispectra is much
larger than their non-projected three-dimensional counterparts that are depicted in
Fig. 4.7. This can be easily explained by the different weight functions used in the
projections. The shape of the three-dimensional bispectra is roughly conserved by the
projections. In particular, we find that the reduced convergence bispectrum is increasing
for small scales, whereas the bispectra including galaxy correlations are decreasing
for small scales. For the three-dimensional spectra we pointed out that the different
behavior on small scales stems from the dependence of the bispectra on the density
profile. More specifically, the bispectra including galaxy correlations are on small scales
dominated by central galaxy correlations which are only weighted by two density profiles.

Projected Bispectrum Bias

To clarify this issue, we define analogous to the three-dimensional bispectrum bias
factors (see Eqs. 4.77, 4.78 and 4.79), the projected bispectrum bias factors :

b̄3 =

(
Bggg

Bκκκ

)1/3

, R̄2 ≡
b̄3
r̄2

=
Bggg

Bggκ

, R̄1 ≡
b̄3√
r̄1

=

√
Bggg

Bκκg

, (6.44)

r̄1 =
Bκκg

Bκκκ

(
Bκκκ

Bggg

)1/3

, r̄2 =
Bggκ

Bκκκ

(
Bκκκ

Bggg

)2/3

, (6.45)

where the functions depend on the triangle sides l1, l2 and l3. We illustrate b̄eq3 (l) ≡
b̄3(l, l, l) in Fig. 6.8 for equilateral configurations as a function of l for three different
minimal masses (left panel). Furthermore, we depict R̄eq

1 (l) ≡ R̄1(l, l, l) (left panel)
and R̄eq

2 (l) ≡ R̄2(l, l, l) (right panel) in Fig. 6.9. We see that for small l the functions
do not converge to a constant value in contrast to the three-dimensional functions
(compare with Fig. 4.8 and Fig. 4.10) and are rather decreasing. On small scales b̄eq3
becomes highly scale-dependent, whereas R̄eq

1 and R̄eq
2 approximately converge to a

constant. In addition, all curves have a bump feature at l ≈ 60 which is not seen for the
three-dimensional spectra. To analyze the origin of the bump feature, we employed an
approximation of the galaxy and convergence bispectra which is composed of the one-
halo terms and the large-scale limit of the three-halo terms (e.g., the projected tree-level
bispectrum for the convergence bispectrum). We find that the bump is still persistent
for this approximation of b̄3 which means that it cannot be explained by our lack of
modeling halo exclusion (which affects the two- and three-halo terms). In the right-hand
panel of Fig. 6.8 we study the dependence of the bump feature by varying specific input
parameters of the halo model keeping the minimal mass mmin = 1013 h−1M� fixed.
Enhancing (reducing) Ωm and σ8 results in a reduced (enhanced) amplitude of the bias
with a stronger effect for variations of Ωm. The position of the bump is approximately
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Figure 6.8: Equilateral configuration of the projected bias factor b̄eq
3 (see Eq. 6.44) as a

function of l for three different minimal masses (left panel). The dotted magenta line gives the
result for mmin = 1013 h−1 M� when approximating the bispectra by a sum of their one-halo
contribution and the large-scale limit of the three-halo terms. We showed the corresponding
three-dimensional bispectrum bias factor in Fig. 4.10. In the right-hand panel we study
the dependence of the bump feature at small l by varying specific input parameters of the
halo model keeping mmin = 1013 h−1 M� fixed. We analyze the dependence on the redshift
distribution of fore- and background galaxies depicting the results for an SDSS-like survey
with zmax,f = 0.2 and zs = 0.4 (thick long-dashed line) and for a future deep survey (MAX)
with zmax,f = 0.6 and zs = 1.5 (thin long-dashed line). Additionally, we show the influence on
the cosmological parameters Ωm and σ8, namely Ωm = 0.2 (thin dotted line) and Ωm = 0.4
(thick dotted line), and σ8 = 0.8 (thin dot-dashed line) and σ8 = 1 (thick dot-dashed line).
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Figure 6.9: Square root of the ratio of the projected galaxy to the convergence-convergence-
galaxy bispectrum (left panel), and ratio of the projected galaxy to the galaxy-galaxy-
convergence bispectrum (right panel) (see Eq. 6.44). In particular we depict the ratios in
equilateral configuration as a function of l for three different minimal masses as indicated in
the figure.

invariant under these variations. However, changing the redshift distribution of sources
and lenses (here we study an SDSS-like survey and a potential future deep survey which
we termed MAX-like) results in a change of the amplitude and slope of the curves
and an off-set of the position of the bump. For a larger lens and source redshift the
bump feature is strongly reduced and shifted to larger values of l, whereas for smaller
redshifts it is strongly enhanced. Hence, we conclude that the bump mainly depends
on the adopted redshift distributions. The difference between the three-dimensional
and the projected bias is then due to the redshift-dependent weight factors in Limber’s
approximation.

In Fig. 6.10 we give the results for the two projected correlation coefficients r̄eq
1 and r̄eq

2

as a function of l. On large scales both quantities converge to a constant value, whereas
they are increasing on small scales. In addition, the amplitude of r̄eq

1 is larger than
r̄eq
2 on small scales which is the behavior we already found for their three-dimensional

counterparts (see Fig. 4.9). However, on large scales the projected coefficients do not
converge to 1 due to the redshift weighting of the projections.

Configuration Dependence

The configuration dependence of the reduced projected bispectra is shown in Fig. 6.11
as a function of the three sides of the triangle l1, l2 and l3. We keep l2 fixed to a
value indicated in each panel, whereas l1 and l3 vary from 50 to 2× 105. We show four
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Figure 6.10: Projected correlation coefficients r̄eq
1 (left panel) and r̄eq

2 (right panel) as defined
in Eq. (6.45). In particular, we depict the coefficients in equilateral configuration as a function
of l for three different minimal masses as indicated in the figure.

columns which illustrate the results for Qggg(l1, l2, l3), Qggκ(l1, l2; l3), Qκκg(l1, l2; l3) and
Qκκκ(l1, l2, l3) going from left to right. Each column consists of three panels where we
fixed l2 = 10, l2 = 103 and l2 = 105 going from bottom to top. Note that we chose these
combination of parameters to study the amount of asymmetry when we interchange l1
and l3 in the two cross-spectra. Moreover, we show contour lines for the amplitudes
102, 104, 106, 108, 1010, 1012 and 1014 in each panel. First of all we notice that the reduced
bispectra cover a large range of scales. We see that the amplitude of Q is enhanced if
we go from the left panels to the right panels which is best visible for large l1 and l3. If
we compare the bottom to the top panels of each row the yellow region that corresponds
to small values of Q is extended and shifted to larger l. Moreover, in the two middle
columns we can study the asymmetry inherent in the cross-spectra. The asymmetry
amounts to a factor of 2 for large l1 and l3 (and l2 = 103, 105) and is reduced for small
l. In all the plots (also for the cross-spectra) we have to keep in mind that the plots
for different l2 carry not completely independent information because of the symmetry
properties of the functions.

In Fig. (6.12) we compare the results of the configuration dependence of the conver-
gence bispectrum obtained with tree-level perturbation theory (left panel) and the full
halo model (right panel). We find that the halo model result is in accordance with
perturbation theory on large scales, whereas the perturbative result underestimates the
result of the halo model on small scales as expected.
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Figure 6.11: Configuration dependence of the reduced bispectra shown as a contour plot. We
vary l1 and l3 by keeping l2 fixed as indicated in each panel. The different rows show the four
different bispectra. Note that the two-cross spectra are not symmetric under interchanging l1
and l3. We refer to the text for detailed explanations.
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Figure 6.12: Configuration dependence of the reduced convergence bispectrum shown as a
contour plot. We vary l1 and l3 and set l2 = 103. The left-hand panel depicts the convergence
bispectrum using only tree-level perturbation theory and the right-hand panel shows the full
halo model result of the bispectrum.

6.2.3 Aperture Statistics

The aperture mass is defined as the filtered surface mass density κ inside an aperture of
radius θ (Schneider 1996):

Map(θ) =

∫
d2ϑUθ(ϑ)κ(ϑ) =

∫
d2ϑQθ(ϑ)γt(ϑ) . (6.46)

In the second step we see that the aperture mass can also be expressed in terms of the
tangential shear which is measured with respect to the direction ϑ. Note that we need
to assume that Uθ is a compensated filter function which means that∫

d2ϑUθ(ϑ) = 2π

∫ ∞

0

dϑϑUθ(ϑ) = 0 . (6.47)

The second filter function Qθ can be obtained from Uθ by

Qθ(ϑ) =

[
2

ϑ2

∫ ϑ

0

dϑ′ ϑ′Uθ(ϑ
′)

]
− Uθ(ϑ) . (6.48)

Furthermore, we define the aperture number counts of galaxies as (Schneider 1998)

N (θ) =

∫
d2ϑUθ(ϑ)κg(ϑ) =

1

N̄

∫
d2ϑUθ(ϑ)N(ϑ) , (6.49)
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where we used the fact that Uθ is a compensated filter function in the second step. There
are several reason to prefer the aperture statistics over the correlation functions. First of
all, the aperture statistics allow for a separation of the cosmological signal (E-mode) and
systematic effects (B-modes). In addition, they provide very localized measurements of
the corresponding spectra. This is in contrast to the shear correlation functions which
weight the corresponding spectra with a broad filter function (see e.g., the expression for
ξ+ in Eq. 5.76). The third-order aperture correlators contain essentially all information
of the bispectra due to this property (Schneider et al. 2005).

We employ here the filter function introduced in Crittenden et al. (2002) by writing
Uθ(ϑ) = θ−2u(ϑ/θ). The dimensionless function is then given by

u(x) =
1

2π

(
1− x2

2

)
e−x2/2 . (6.50)

This particular form of the filter function has the advantage of having a simple analytic
Fourier transform:

ũ(l) =

∫
d2x u(|x|) eil·x =

l2

2
e−l2/2 . (6.51)

On the other hand, the filter function has no finite support. However, in practice the
exponential factor makes the filter function very small for x & 3 resulting in an effective
finite support.

We can now build three-point correlators of the aperture mass (6.46) and aperture
number counts (6.49). First we consider the correlator

〈Map(θ1)Map(θ2)N (θ3)〉 ≡ 〈MapMapN〉(θ1, θ2; θ3)

=

∫
d2ϑ1 Uθ1(ϑ1)

∫
d2ϑ2 Uθ2(ϑ2)

∫
d2ϑ3 Uθ3(ϑ3)

× 〈κ(ϑ1)κ(ϑ2)κg(ϑ3)〉

=

[
3∏

i=1

∫
d2ϑi Uθi

(ϑi) e−ili·ϑi

]∫
d2l1
(2π)2

∫
d2l2
(2π)2

∫
d2l3
(2π)2

× 〈κ̃(l1)κ̃(l2)κ̃g(l3)〉

=

∫
d2l1
(2π)2

∫
d2l2
(2π)2

ũ(l1θ1)ũ(l2θ2)ũ(|l1 + l2|θ3)

×Bκκg(l1, l2;−l1 − l2) , (6.52)

where we replaced the κi by their Fourier transforms, and in the last step we used the
fact that∫

d2ϑUθ(ϑ) e−il·ϑ = θ−2

∫
d2ϑu(ϑ/θ) e−il·ϑ =

∫
d2x u(x) e−iθl·x = ũ(lθ) . (6.53)

Additionally, we inserted the definition of the cross-bispectrum (6.35) which allows us
to carry out the l3-integration. The expression (6.52) can be further simplified using
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polar coordinates for the l1- and l2-integrations. In this case one angular integral is
trivial yielding 2π and we are left with

〈MapMapN〉(θ1, θ2; θ3) =
1

(2π)3

∫ ∞

0

dl1 l1

∫ ∞

0

dl2 l2

∫ 2π

0

dϕ

× ũ(l1θ1)ũ(l2θ2)ũ(|l1 + l2|θ3)Bκκg(l1, l2;−l1 − l2) , (6.54)

where ϕ is the angle between the vectors l1 and l2.
In complete analogy, we can express the other possible correlations in terms of the

corresponding bispectra

〈NNMap〉(θ1, θ2; θ3) =

∫
d2l1
(2π)2

∫
d2l2
(2π)2

ũ(l1θ1)ũ(l2θ2)ũ(|l1 + l2|θ3)

×Bggκ(l1, l2;−l1 − l2) , (6.55)

〈MapMapMap〉(θ1, θ2, θ3) =

∫
d2l1
(2π)2

∫
d2l2
(2π)2

ũ(l1θ1)ũ(l2θ2)ũ(|l1 + l2|θ3)

×Bκκκ(l1, l2,−l1 − l2) , (6.56)

〈NNN〉(θ1, θ2, θ3) =

∫
d2l1
(2π)2

∫
d2l2
(2π)2

ũ(l1θ1)ũ(l2θ2)ũ(|l1 + l2|θ3)

×Bggg(l1, l2,−l1 − l2) . (6.57)

The presented aperture mass three-point correlators can also be calculated from the
corresponding three-point correlation functions introduced above (see Schneider & Watts
2005)

We employ the following approximations for the three-dimensional bispectra

Bggg(k1, k2, k3; z) ≈ Bggg
1-h (k1, k2, k3; z) + [bL1 (z)]3Bpt(k1, k2, k3; z) , (6.58)

Bggδ(k1, k2; k3; z) ≈ Bggδ
1-h (k1, k2; k3; z) + [bL1 (z)]2Bpt(k1, k2, k3; z) , (6.59)

Bδδg(k1, k2; k3; z) ≈ Bδδg
1-h (k1, k2; k3; z) + bL1 (z)Bpt(k1, k2, k3; z) , (6.60)

Bδδδ(k1, k2, k3; z) ≈ Bδδδ
1-h (k1, k2, k3; z) +Bpt(k1, k2, k3; z) , (6.61)

where bL1 (z) is the first-order large-scale bias factor as given in Eq. (4.48) and Bpt is the
lowest-order bispectrum in perturbation theory (see Eq. 2.123). Inserting these relations
in the corresponding Limber equation (5.65) yields the projected bispectra. In total,
we need to perform a 6-dimensional integration for the one-halo terms of the aperture
statistics (i.e., with respect to the halo mass m, concentration c, redshift z, l1, l2 and
ϕ)5 and 4-dimensional integration for the perturbation theory terms of the aperture
statistics (i.e., with respect to the redshift z, l1, l2 and ϕ). For the calculation of the
aperture statistics we use adaptive multi-dimensional Monte Carlo integration routines

5For the bispectra including galaxy correlations the concentration distribution has only a small effect
on the one-halo terms (see Sect. 4.6) and thus we need only a 5-dimensional integration.
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which are much faster to perform than adaptive Gaussian quadrature routines. However,
we checked that both integration methods give the same results. The approximations
are much faster to numerically calculate than the full halo model. This is due to the fact
that the two- and three-halo terms of the three-dimensional bispectrum are composed
of products of integrals, whereas the one-halo term is only composed of a single mass
integral. The approximation is especially suited in time-consuming computation, e.g.,
the determination of the information content of the aperture statistics.

In Fig. 6.13 we show the two cross-aperture statistics, i.e., 〈NNMap〉(θ, θ; θ) (upper
panel) and 〈MapMapN〉(θ, θ; θ) (lower panel) as a function of the aperture radius
assuming that the three radii are equal, i.e., θ1 = θ2 = θ3 ≡ θ. For each panel we show
the individual contributions of the one-, two- and three-halo terms, and the sum of
all terms (Full halo model). In addition, we employ the corresponding approximations
for the three-dimensional bispectra, (6.59) and (6.60), which are composed of a sum
of the one-halo term and the result of the large-scale limit of the three-halo term.
The ratio of the approximation to the full halo model is shown in the lower part
of each panel. We find that for the angular range covered the deviation peaks at
approximately 30 per cent for θ ≈ 10 arcmin. The peak is at slightly larger angular
radii for 〈MapMapN〉(θ, θ; θ). This is not surprising since at these scales the two-halo
term gives a significant contribution to the total function. Note that up to θ ≈ 2 arcmin
the difference in using the approximation or the full halo model is only 10 per cent.
Both panels show that for a broad range of scales one can apply the approximation if
one wants to get a rough estimate of the aperture statistics. Moreover, the assumption
that one can use tree-level perturbation theory for calculating the correlations of halo
centers, as is done for the full halo model, is almost certainly wrong (Smith et al. 2007;
Takada & Jain 2008). For example the clustering of two distinct non-overlapping halos
which have a small separation is not well described by the linear power spectrum. In
this case one should take higher-order terms in the perturbative expansion into account.

In Fig. 6.14 we depict for comparison the two auto-aperture statistics, namely
〈MapMapMap〉 (upper panel) and 〈NNN〉 (lower panel) as a function of the aperture
radius θ. We basically recover the results for the ratio of the full halo model to the
approximation as in Fig. 6.13. We note that the shape of the dark matter aperture
statistics is different from the other three functions which include galaxy correlations.
Most notably, for small aperture radii the dark matter aperture statistics is a slowly
decreasing function of θ. In addition, we find that the two-halo term gives still an
important effect on large scales making the approximation to the full halo model less
accurate.

We note that we can divide the behavior of the aperture statistics involving galaxies
into four regimes: for 0 . θ/arcmin . 4 the one-halo term is dominant. In Fig. 6.15 we
study this regime for the galaxy-galaxy-mass aperture statistics in detail splitting the
one-halo term into contributions from central-satellite-mass and satellite-satellite-mass
correlations. We see that the former dominates the one-halo term for 0 < θ/arcmin . 0.3,
whereas the latter takes over for 0.3 . θ/arcmin . 4. The change manifests itself in
a small turnover of the slope at approximately 0.3 arcmin. At intermediate scales,
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Figure 6.13: Comparison of the aperture statistics 〈NNMap〉(θ, θ; θ) (upper panel) and
〈MapMapN〉(θ, θ; θ) (lower panel) computed with the approximation and with the full halo
model as a function of the aperture radius θ. We assumed for both panels a minimal mass of
mmin = 1011 h−1 M�. We depict the individual contributions of the one-, two- and three-halo
terms, and of the bispectrum in lowest-order perturbation theory (PT). In the lower part of
each panel we give the ratio of the approximation to the full halo model.
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Figure 6.14: Aperture statistics 〈MapMapMap〉(θ, θ, θ) (upper panel) and 〈NNN〉(θ, θ, θ)
(lower panel) as a function of the aperture radius θ. We included a concentration distribution
for the calculation of the dark matter bispectrum with σln c = 0.3, and we assumed a minimal
mass of mmin = 1011 h−1 M�. For details on the different lines and the ratios see caption of
Fig. 6.13.
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Figure 6.15: Contributions of the central-satellite-
matter (c-s-δ) and satellite-satellite-matter (s-s-δ) cor-
relations to the one-halo term of the galaxy-galaxy-
mass aperture statistics as a function of aperture radius
θ. Note that the one-halo term is the same as in the
upper panel of Fig. 6.13.
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4 . θ/arcmin . 30, the amplitudes of one-, two- and three-halo terms are comparable.
Note that we see in this regime a small dip of the aperture statistics which is an
effect of our missing modeling of halo exclusion. Finally, for large aperture radii
(θ & 30 arcmin) the results are well described by the perturbation theory bispectrum
(times corresponding factors of the large-scale bias parameter).

For a higher minimal mass mmin of the HOD, we also find a higher signal of the
aperture statistics including galaxies (not shown). This is due to the fact that more
galaxies are contained in more massive halos.

In the following we analyze the dependence of the galaxy-galaxy-mass and mass-mass
galaxy aperture statistics which are probed by GGGL on specific assumptions made in
the halo model. In particular, we study the behavior on variations of the first moment
of satellite galaxies, a change of foreground and background redshifts, a modification of
the radial galaxy distribution from the dark matter density profile and the inclusion of
the color dependence of the HOD.

Variations in the first-order moment of satellite galaxies

In Fig. 6.16 we study the dependence of the cross-aperture statistics on the mean
number of satellite galaxies populating a halo of mass m. The mean number can be
described by a simple power law in halo mass with two parameters that determine the
amplitude (fixed by As) and the slope (fixed by β) of the power law (for details see
Eq. 4.14). Note that our fiducial choice of the parameters in the previous plots was
As = 30 and β = 1. We only allow for the variation of one parameter keeping the other
fixed to its fiducial value. First of all, we find that 〈NNMap〉 has a stronger dependence
on variations of the HOD compared to 〈MapMapN〉. This is due to the fact that the
former has a stronger dependence on the HOD than the latter. For example the one-halo
term of the galaxy-galaxy-mass bispectrum depends on the second-order moment of
the HOD, whereas the mass-mass-galaxy bispectrum depends only on the first-order
moment of the HOD. For large aperture radii all models approximately converge to
the fiducial model since in this regime the three-halo term is dominant which shows
only a small dependence on the HOD. An exception of this general trend is the β = 1.2
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Figure 6.16: Dependence of the third-order aperture statistics on the two HOD parameters
As and β that define the form of the first moment of satellite galaxies (see Eq. 4.14). We
depict the fiducial model with As = 30 and β = 1. The curves show variations of either
As and β keeping the other parameter fixed to the fiducial model. We show the effect on
the galaxy-galaxy-mass (left panel) and the mass-mass-galaxy correlators (right panel) as a
function of θ.

model. A higher value of β yields a stronger weighting of massive halo. In this case
the one-halo term gives an important contributions to the aperture statistics up to
larger radii (compared to a lower value of β) overcoming the strong reduction caused
by the exponential decrease of the halo mass function. Thus, the transition of the
one-halo term to the two- and three-halo terms occurs on larger scales. Also on the
smallest depicted scales the curves approximately converge to the fiducial model since
the one-halo terms are dominated by central galaxy correlations and thus show a weaker
dependence on the mean number of satellites. Moreover, we see that a variation in As

results in an off-set of the amplitude keeping the shape of the curve approximately fixed,
whereas a variation in β changes the shape of the curve. A higher (smaller) value of β
results in an enhancement (reduction) of the amplitude of the corresponding curves and
additionally to a flatter (steeper) curve for the small-scale regime (θ . 3 arcmin). In
contrast to this behavior, we observe an enhancement (reduction) for a smaller (larger)
value of the parameter As. A higher β gives more weight to more massive halos and
thus the signal is enhanced. On the other hand, a higher As reduces the amplitude of
the mean number of satellite galaxies and thus results in a reduction of the signal.

At θ ≈ 2 arcmin the difference between the amplitude of the β = 0.8 and β = 1.2
models is approximately two orders of magnitude for the galaxy-galaxy-mass aperture
statistics (left panel). Hence, future observations of the GGGL signal should be able
to distinguish between these two cases setting tight constraints on the shape of the
first-order moment of the satellite HOD.
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Influence of the redshift distributions

So far, we employed the redshift distribution of foreground galaxies as plotted in Fig. 6.1
and assumed a single source redshift. Here we want to explore the dependence of the
aperture statistics on the redshift distribution analyzing three cases: an RCS-like survey
with lenses in the redshift range 0 ≤ zl ≤ 0.4 and sources at a single redshift zs = 1
which is our fiducial model, an SDSS-like survey with 0 ≤ zl ≤ 0.2 and zs = 0.4, and a
(hypothetical) future deep survey with 0 ≤ zl ≤ 0.6 and zs = 1.5.

In Fig. 6.17 we give the results for the SDSS-like survey in the two left-hand panels
and for the deep survey in the two right-hand panels. The upper panels depict the
galaxy-galaxy-mass and the lower panels the mass-mass-galaxy aperture statistics. In
each panel we show the contributions from the one-, two- and three-halo terms. The
results should be compared to the relevant plots of the fiducial model depicted in
Fig. 6.13. For 〈NNMap〉 we get the surprising result that the signal is enhanced
for the low-redshift survey and reduced for the high-redshift survey compared to the
fiducial RCS-like survey. This is in contrast to 〈MapMapN〉 where the signal is enhanced
(reduced) for the high (low) redshift survey.

The origin of this behavior is that there are two competing effects if one lowers
the redshifts: the smaller path-length reduces the lensing efficiency, whereas a given
angle corresponds to a smaller length scale at the lens redshift which results in an
enhancement of the signal. It depends on the redshift dependence of the bispectra and
the redshift dependence of the weights in Limber’s equation which of the two effects is
stronger. This particular effect was mentioned in Jain et al. (2003). They studied, with
a simple power-law toy model for the galaxy-matter cross-power spectrum, the effect on
the angular quasar-galaxy cross-correlation function.

Radial distribution of galaxies

Up to now, we assumed for simplicity that the radial distribution of galaxies (galaxy
density profile) follows exactly the dark matter density profile. However, results from
simulations resolving subhalos and observations of galaxy groups and clusters find that
the radial profile of the distribution of subhalos or galaxies is shallower than the dark
matter density profile. For example Nagai & Kravtsov (2005), who performed NFW fits
to 8 simulated clusters at redshift z = 0, find that the radial distribution of galaxies
is described by a concentration parameter of cgal ≈ 2− 3, whereas the corresponding
dark matter halos have cdm ≈ 10. The difference between the two concentrations is
explained by tidal stripping effects of the subhalos in the dense environment of cluster
cores. Ongoing observational and theoretical work is needed to constrain the redshift
and mass dependence on the concentration parameter for the radial distribution of
galaxies. Hence, we consider only a variation of the amplitude of the NFW concentration
parameter, which is given by the concentration-mass relation of the Bullock et al. (2001)
parametrization given in Eq. (3.62). More specifically, we assume a concentration
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Figure 6.17: Influence of the redshift distribution of foreground and background galaxies on
the galaxy-galaxy-mass (upper panels) and the mass-mass-galaxy aperture statistics (lower
panels) as a function of the aperture radius θ. The left-hand panels present the results for
the foreground redshift range of 0 ≤ zl ≤ 0.2 and a single background redshift at zs = 0.4
(SDSS-like survey), whereas the right-hand panels use 0 ≤ zl ≤ 0.6 and zs = 1.5 (Deep survey).
We show the contributions of the three halo terms to the total aperture statistics.
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Figure 6.18: Variation of the radial galaxy distribution ũg parametrized by the concentration-
mass relation from Bullock et al. (2001) which is a power law with two free parameters (see
Eq. 6.62). We only show variations of the power-law amplitude c0,gal. We depict the fiducial
model for comparison which assumes that galaxy and dark matter profiles are equal (ũg = ũdm)
with c0,gal = c0 = 9. In addition, we give the results for less concentrated profiles with c0,gal = 3
(short-dashed line) and more concentrated profiles with c0,gal = 15 (long-dashed line).

parameter relation of

cgal(m, z) =
c0,gal

1 + z

[
m

m∗(z = 0)

]−αgal

, (6.62)

with the parameters c0,gal and αgal, and m∗ is the nonlinear mass scale as defined in
Eq. (3.31). We consider only variations in the amplitude c0,gal keeping the power-law
index fixed to the dark matter relation (αgal = α). The results are shown in Fig. 6.18 for
the galaxy-galaxy-mass (left panel) and the mass-mass-galaxy (right panel) correlations
as a function of θ. We consider a small (c0,gal = 3) and a large (c0,gal = 15) concentration
parameter. For both aperture statistics we find that the signal is enhanced (reduced) for
more (less) concentrated profiles. This is due to the fact that taking a more concentrated
galaxy distribution, more galaxies are closer to the cluster center where the halo density
is higher. For large scales all curves in the corresponding panel converge to the fiducial
model since the density profile is 1 in this regime, i.e., ũ(k → 0,m) = 1. Another
feature that is worth mentioning is that the curves converge also on the smallest
depicted scales for the mass-mass-galaxy signal in contrast to the galaxy-galaxy-mass
signal. On these scales central galaxy correlations dominate the signal as shown for
example in Fig. 6.15 for 〈NNMap〉. Hence, the special case of 〈MapMapN〉 is on the
smallest scales independent of the radial distribution of galaxies since it is dominated
by central-mass-mass correlations.
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Figure 6.19: Dependence of the cross-aperture statistics on galaxy color. We give results for
red galaxies (long-dashed line), blue galaxies (short-dashed line) and the sum of the HOD of
both components (solid line).

Color dependence of the signal

We already discussed in Sect. 4.1.1 that different simulations and observations show
that the form of the HOD is different for different galaxy colors. In the following
we analyze the color dependence of the GGGL signal employing the parametrization
of Sheth & Diaferio (2001) which divides the total HOD in individual contributions
from red and blue galaxies (see Eq. 4.19). The halo mass dependence of this HOD
was shown in Fig. 4.2. We found that in small-mass halos the mean number of blue
galaxies is dominant. Furthermore, the mean number of blue galaxies is constant up
to 4× 1012 h−1M�. For higher masses it is a power law with spectral index αb = 0.8.
Red galaxies, on the other hand, have a steeper power law in halo mass (αr = 0.9) and
their mean number becomes dominant for masses larger than 2× 1012 h−1M�. Hence,
the mean number of galaxies in group- and cluster-sized halos are predominantly red
galaxies as is also observationally established.

To calculate the second-order moment of the HOD, we use the ansatz of Eq. (4.10) as
developed in Scoccimarro et al. (2001). This means that here we make an exception from
using the Kravtsov et al. ansatz for the HOD which distinguishes between contributions
from central and satellite galaxies. We do this mainly for simplicity since otherwise
we have to model four HOD components, namely red and blue central and satellite
galaxies.

The results are depicted in Fig. 6.19 for 〈NNMap〉 (left panel) and for 〈MapMapN〉
(right panel). First of all, we find that the signal of red galaxies is larger than for blue
galaxies which is due to the fact that red galaxies are more strongly clustered as they
preferentially reside in galaxy groups and clusters. This is also observationally measured,
see e.g., the study of the galaxy two-point correlation function of red and blue galaxies
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Figure 6.20: Contour plot of the configuration dependence of 〈NNMap〉(θ1, θ2; θ3) as a
function of θ1 and θ2 keeping θ3 fixed to a value given above each panel. Note that the
function is symmetric under exchanging θ1 and θ2. We employ the approximation (6.59) for
the calculation of the galaxy-galaxy-mass bispectrum.

in the SDSS survey by Zehavi et al. (2005). In addition, we find that the variation of
the curves is larger in the left-hand panel. As mentioned above, this is an effect of the
stronger dependence of the galaxy-galaxy-mass signal on the moments of the HOD (it
depends on the variance of the HOD, whereas the mass-mass-galaxy signal depends on
the mean of the HOD). Furthermore, we note that the slope of the curves is steeper for
blue galaxies and flatter for red galaxies on small scales compared to the sum of both
HOD components. The signal for red galaxies is even decreasing for scales smaller than
1 arcmin in the right-hand panel. Moreover, we note that on large scales the curves in
both panels approximately converge to a common curve. The strong variation of the
curves are encouraging for getting constraints on HOD of different galaxy colors using
fits to current and future observations.

Configuration dependence

The defined third-order aperture statistics in Eqs. (6.52), (6.55), (6.56) and (6.57)
depend on three aperture radii. So far, we restricted our analysis of the aperture
statistics to the “diagonal” case where θ1 = θ2 = θ3. However, the general case provides
valuable and independent information on HOD models.

We study the configuration dependence of the two cross-aperture statistics in Fig. 6.20
for 〈NNMap〉 and in Fig. 6.21 for 〈MapMapN〉. For each figure, we vary θ1 and θ2

keeping the value of θ3 fixed to a specific value as indicated above each panel. We
consider three values for θ3 which roughly correspond to the regime of the one-halo
term, the intermediate regime and the regime of the three-halo term (compare with
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Figure 6.21: Contour plot of the configuration dependence of 〈MapMapN〉(θ1, θ2; θ3) as a
function of θ1 and θ2 keeping θ3 fixed to a value given above each panel. We employ the
approximation (6.60) for the calculation of the mass-mass-galaxy bispectrum.

Fig. 6.13), namely θ3 = 0.5, θ3 = 5 and θ3 = 40 (depicted from left to right in both
figures). To calculate the configuration dependence of the aperture statistics, we employ
the approximations of the corresponding three-dimensional bispectra since we showed
above that they maximally deviate by 30 per cent from the full halo model. We use a
logarithmic color-coding of the amplitude since we cover a large range of scales in each
figure. Hence, the difference between the full halo model and the approximation is too
small to be visible in these plots. Note that the contours of both figures are symmetric
with respect to θ1 and θ2 which reflect the symmetry properties of the two aperture
statistics. We find for the galaxy-galaxy-mass and the mass-mass-galaxy function that
enhancing θ3 also moves the maximum of the aperture statistics to larger angular scales.
In addition, we note that the signal of 〈NNMap〉 is larger than 〈MapMapN〉 as we
found already in the diagonal case. We could now also study the dependence on HOD
parameters for the general aperture statistics which could be done when measurements
of the configuration dependence are available.

6.3 Projected Cross-Trispectrum

For the covariance of the GGL power spectrum estimator we need the projected dark
matter-galaxy cross-trispectrum which is discussed in the next chapter. In particular we
give in Eq. (7.73) an analytic expression of the covariance. Moreover, for the covariance
of the convergence power spectrum we need the projected convergence trispectrum (see
Eq. 7.61 below).
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Figure 6.22: Reduced projected trispectra as a function of Fourier mode l for a square
configuration (see text for details). We show the dark matter trispectrum (solid red line) and
the cross-trispectrum (dashed green line). We use a minimal mass mmin = 1012 h−1 M� for the
HOD. On the left panel a higher (lower) threshold mass results in a reduction (enhancement)
of the scale-dependence of the spectra including galaxies and the maximum is shifted to lower
(higher) l.

The projected cross-trispectrum is defined by the four-point correlator

〈κ(l1)κg(l2)κ(l3)κg(l4)〉c = (2π)2δD(l1234)Tκgκg(l1, l2, l3, l4) (6.63)

with l1234 ≡ l1 + l2 + l3 + l4. The projection of the three-dimensional cross-trispectrum
Tδgδg is obtained using Limber’s approximation (5.65) which in this case is given by

Tκgκg(l1, l2, l3, l4) =

∫ wH

0

dw
G2(w)p2

f (w)

f 4
K(w)

Tδgδg(k1,k2,k3,k4;w) , (6.64)

where ki = li/w. An analogous expression was already defined for the convergence
trispectrum in Eq. (5.71).

In accordance with the definition of the reduced three-dimensional cross-trispectrum,
as given in Eqs. (4.95), (4.96) and (4.97), we define the projected cross-trispectrum
Qκgκg by replacing the three-dimensional spectra in the equations by their projected
counterparts. We do the same to define the convergence trispectrum Qκκκκ following its
three-dimensional counterpart in Eq. (4.99). Moreover, we define another dimensionless
form of the trispectrum by ∆sq

XYXY(l) ≡ l2/(2π)[TXYXY(l, l, l, l)]1/3 where (X,Y) ∈ {κ, g}.
Note that we assumed here the square configuration of the trispectrum.

We illustrate the two reduced trispectra as a function of l in Fig. 6.22, where we
assumed a minimal mass of mmin = 1012 h−1M�. In the left panel we depict Qsq

XYXY and
in the right panel ∆sq

XYXY. Basically we get the same qualitative behavior as obtained
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for the projected power spectra and bispectra. The difference between the two projected
spectra is enhanced compared to the unprojected spectra. The right-hand panel shows
that the cross-trispectrum is larger than the matter trispectrum, whereas this trend
is reversed for the reduced trispectra depicted in the left-hand panel. The origin of
this different behavior is that the galaxy power spectra in the denominator of the
reduced cross-trispectrum are much larger than the convergence power spectra in the
denominator of the reduced trispectrum (see Fig. 6.2).

6.4 Summary and Conclusions

In this chapter, we studied many aspects of GGL and GGGL using theoretical models
of the nonlinear clustering of the continuous dark matter field and the discrete galaxy
distribution. We showed that the observational signal of GGL probes the projected
galaxy-mass cross-power spectrum and the signal of GGGL probes the projected mass-
mass-galaxy and galaxy-galaxy-mass bispectra. Hence, for the predictions, we employed
a combination of the dark matter halo model and the halo model for galaxy clustering
as developed in Chapter 3 and Chapter 4.

First, we studied the l-dependence of the projected galaxy, galaxy-convergence cross
and convergence power spectrum. To better illustrate the difference between the spectra,
we introduced in analogy to the three-dimensional spectra a projected bias factor and
correlation coefficient. We found that the difference between the spectra is enhanced
compared to their three-dimensional counterparts which we explained by the different
weight functions used in the projections (Limber’s equations). Furthermore, on large
scales the projected bias factor is a slowly decreasing function of l and thus does not
converge to a constant.

Then we investigated real-space observables of GGL, namely the mean tangential shear
and the excess surface mass density which are linearly related. We showed predictions
for single foreground and background redshifts. In accordance to previous studies, we
found that the two-halo term is only important for scales larger than 1h−1 Mpc. Most
current experiments use only small to intermediate scales and thus one needs only a
reliable model for the one-halo term. We showed that the one-halo term itself receives
contributions from central galaxy-mass correlations which are dominant on the smallest
scales and satellite galaxy-mass correlations which take over on larger scales. We did
not introduce an additional parameter in our halo model for the fraction of galaxies
which are part of group- and cluster-sized halos as is done for example in Guzik &
Seljak (2002).

The main new results of this chapter are related to the modeling of the recently
proposed GGGL signal which was already measured in the RCS field. We presented in
detail the observables which are the galaxy-galaxy-shear and the shear-shear-galaxy three-
point correlation functions. These are filtered versions of the corresponding projected
cross-bispectra (shown in Schneider & Watts 2005). Hence, we studied in detail the
properties of the projected bispectra. Again, we found that the difference between
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the projected spectra is larger than the difference between their three-dimensional
counterparts. We explained this fact by the different weight functions used in the
projections. To further analyze the scale-dependence of the spectra, we introduced
a projected third-order bias factor and two correlation coefficients which should fully
encode the difference between dark matter and galaxy clustering. Since the bispectra
depend on three different wave-vectors which build up a triangle in Fourier space, we
investigated the configuration dependence of the two cross-bispectra in comparison to
the galaxy and convergence bispectra.

We motivated that it is better to study third-order aperture statistics than the
correlation functions since they allow for a clean separation of the cosmological signal
(E-modes) and systematic effects (B-modes). This is the reason why we concentrated
on analyzing the dependence of the galaxy-galaxy-mass and mass-mass-galaxy aperture
statistics on specific assumptions made in the halo model. In particular, we studied the
behavior on variations of the first moment of satellite galaxies, a change of foreground
and background redshifts, a modification of the radial galaxy distribution from the
dark matter density profile and the inclusion of the color dependence of the HOD. In
general, we found that the variation of the considered parameters have a stronger effect
on the galaxy-galaxy-mass than on the mass-mass-galaxy aperture statistics. This is
due to the fact that the former depends on the second-order moment of the HOD,
whereas the latter depends only on the first-order moment of the HOD. In addition, the
galaxy-galaxy-mass statistics has also a stronger dependence on the radial distribution
of galaxies. These distinct features of the two cross-aperture statistics can be used in
future GGGL experiments to constrain the different galaxy formation models which is
one of the key goals of modern cosmology. Our results could be used as input fitting
functions to the data. Moreover, we computed the configuration dependence of the two
cross-aperture statistics which provides more information than the diagonal term where
the three aperture radii are equal. However, up to now observations of the GGGL signal
have not utilized the full configuration dependence in their analyses.

We developed approximations of the three-dimensional bispectra which are composed
of the one-halo terms which are dominant on small scales and the bispectrum in lowest-
order perturbation theory which is dominant on large scales. To test this approach, we
compared the approximations to the corresponding full halo model which includes the
one-, two- and three-halo terms. In all cases, we showed that the deviation is maximally
30 per cent around 10 arcmin. This is because at intermediate scales the two-halo
term gives a significant contribution to the signal. Up to θ ≈ 2 arcmin the deviation
is smaller than 10 per cent. The approximations can be applied to computationally
costly numerical calculations like the determination of the information content of the
cross-aperture statistics which involves computing the covariance of a given bispectrum
estimator.

Finally, we studied the scale dependence of the projected mass-galaxy-mass-galaxy
trispectrum which determines the non-Gaussian part of the GGL covariance. This will
be examined in detail in Chapter 7.



Chapter 7

Covariance of Galaxy-Galaxy Lensing
Power Spectrum Estimator

Galaxy and weak lensing surveys measure correlation functions of galaxies and cosmic
shear, respectively. The limited number of galaxies and their unknown intrinsic ellipticity
induce statistical errors that hamper the determination of cosmological parameters,
namely the so-called shot noise and shape noise. Moreover, the fact that cosmological
experiments only use a finite patch of the sky to estimate statistical quantities like
the power spectrum leads to an additional error source, the so-called cosmic variance
or sample variance term. Both error sources enter in the covariance of the power
spectrum estimator which is essential to calculate the likelihood function. These errors
are inevitable also for the planned and ongoing large area surveys. But with increasing
the number of galaxies or enlarging the survey area these errors will become smaller. Due
to this effect the main emphasis for weak lensing studies is recently the quantification
of systematic errors, for example the determination of intrinsic alignments of galaxies
(Heymans & Heavens 2003; Hirata & Seljak 2004). However, we will not consider this
complication here and focus on defining correlation function estimators. We show that
the covariance of these estimators receives three different contributions, namely shape
and shot noise and cosmic variance errors. The direct observables of the experiments are
the real-space correlation functions whereas theoretical models are most easily expressed
in terms of the corresponding spectra. Hence, we first construct real-space estimators
which we then transform into Fourier space.

A simple way to determine the cosmic-variance dominated covariance from theoretical
models is to assume that the corresponding (dark matter, galaxy, shear, etc.) field is
Gaussian (e.g., Schneider et al. 2002 for cosmic shear). In this case the covariance of
the power spectrum becomes diagonal and the amplitude is proportional to the power
spectrum squared. However, galaxy and weak lensing experiments also use small scales
to enhance their signal where this approximation will inevitably break down. It is thus
important to determine the influence of non-Gaussianity on small scales.

The first theoretical study of the effect of the non-Gaussian density field on the error
determination of cosmological parameters was done by Scoccimarro et al. (1999). They
find an enhancement in the diagonal of the dark matter power spectrum covariance
in combination with significant cross-correlations between small- and large-scale band
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powers which is given by the dark matter trispectrum. To model the nonlinear regime,
they applied the hierarchical ansatz for higher-order correlation functions (see Appendix
B.4) which they also compared to the covariance as obtained from an ensemble of 20
numerical simulations. The comparison showed that the hierarchical ansatz does not
accurately reproduce the configuration dependence of the trispectrum as determined
in simulations. Furthermore, they generalized this concept to the covariance of the
convergence power spectrum which tends to reduce the importance of non-Gaussian
clustering due to projection effects. Following the main ideas of this work Eisenstein &
Zaldarriaga (2001) use the hierarchical ansatz for higher-order moments to determine
the covariance of the angular two-point correlation function of galaxies for the APM
(Automated Plate Measuring) galaxy survey.

A significant improvement in the modeling of higher-order spectra is given in Cooray
& Hu (2001) who applied the halo model of dark matter clustering to study the nonlinear
regime. Their results are tested against results from simulations by Meiksin & White
(1999) for the dark matter power spectrum covariance and the results from ray-tracing
simulations given in White & Hu (2000) for the convergence power spectrum covariance.
Both comparisons showed in general a good agreement which motivated subsequent
semi-analytic studies to also adopt the halo model. Recently, Takada & Bridle (2007)
provide estimates of the joint constraints of cluster counts and lensing power spectrum
tomography modeling the full cross-covariance using the halo model. Moreover, Takada
& Jain (2008) determine the covariance of the convergence power spectrum including the
beat-coupling effect which was previously only studied in three-dimensional simulations
(Rimes & Hamilton 2006). Beat-coupling is an effect due to the finite survey area (it
induces a nonlinear coupling of products of closely spaced Fourier modes to a large-
scale mode between them) which can enhance the amount of non-Gaussian errors. By
using ray-tracing simulations Semboloni et al. (2007) determined the covariance of the
two-point shear correlation functions and provided a fitting formula which reproduces
the simulation results at 20 per cent accuracy for diagonal elements and becomes less
accurate for off-diagonal elements. To achieve the goal of precise parameter forecasts,
ongoing work on the determination of the covariance from simulations and theoretical
models is mandatory.

In this chapter we combine the dark matter and galaxy halo model as developed
in Chapter 3 and Chapter 4 to estimate the covariance for the projected galaxy-dark
matter cross-power spectrum. The result can then be used to determine the errors
of cosmological parameters estimated in galaxy-galaxy lensing surveys. The chapter
is structured as follows: we derive unbiased estimators for the convergence power
spectrum, galaxy power spectrum and cross-power spectrum in Sect. 7.1 and obtain
their corresponding statistical noise contributions. To determine the non-Gaussian
contribution of the covariance for the convergence and cross-power spectrum estimator,
we define in Sect. 7.2 simplified estimators without shot- and shape-noise contributions.
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7.1 Estimator of the Power Spectrum

We introduce the estimator of the convergence power spectrum in Sect. 7.1.1 and the
estimator of the angular power spectrum of galaxies in Sect. 7.1.2, and show that their
statistical noise is given by shape and shot noise, respectively. Combining the results
from both sections, we construct an unbiased estimator for the projected cross-power
spectrum in Sect. 7.1.3 and calculate the covariance matrix of this estimator. Note that
we will distinguish from the start between background and foreground galaxies although
it is only needed for the cross-power spectrum. Moreover, we employ throughout this
section the Gaussian approximation for the sample variance of the covariance matrix
and discuss the influence of a non-Gaussian part in the next section.

7.1.1 Convergence Power Spectrum

In this section we follow Joachimi et al. (2008) for the construction of the convergence
power spectrum estimator. Let us consider a hypothetical survey where the measured
data consists of Nb background galaxies at positions θi contained in a field of area A
with measured complex ellipticities

ε(θi) = ε1(θi) + iε2(θi) ≡ ε1,i + iε2,i , (7.1)

where we introduced the short notation εα,i ≡ εα(θi) in the second step with α = 1, 2
denoting the two ellipticity components. From the weak lensing limit we know that the
galaxy ellipticity is the sum of shear and intrinsic ellipticity:

εα(θi) = γα(θi) + εsα(θi) . (7.2)

The ensemble average is
〈εα(θi)〉 = 〈γα(θi)〉 , (7.3)

where the ensemble average of the second term in Eq. (7.2) vanishes because we assume
that galaxies have a random intrinsic orientation. As we seek an estimator for the power
spectrum, we need to transform Eq. (7.2) into Fourier space. Note that we need to apply
the discrete Fourier transform because of the limited sample of ellipticity measurements:

ε̃α(l) =

Nb∑
i=1

εα(θi)e
il·θi , (7.4)

where a tilde denotes the Fourier transformed quantity. Inserting Eq. (7.2), we find

ε̃α(l) =

∫
d2θ eil·θn(θ)γα(θ) +

Nb∑
i=1

εsα,ie
il·θi , (7.5)

where the number density of background galaxies is

n(θ) =

Nb∑
i=1

δD(θ − θi) . (7.6)
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Fourier transforming the shear field yields

ε̃α(l) =

∫
d2l′

(2π)2
γ̃α(l′)ñ(l− l′) +

Nb∑
i=1

εsα,ie
il·θi , (7.7)

with

ñ(l) =

∫
d2θ n(θ)eil·θ =

Nb∑
i=1

eil·θi , (7.8)

where the definition of n(θ) (Eq. 7.6) is inserted in the second step. The ensemble
average of the estimator in Eq. (7.7) splits into an average over the intrinsic ellipticities
and an average over the galaxy positions. We assume for simplicity that the background
galaxies are randomly distributed in space1. In this case, the ensemble average E[ ] of
the number density is obtained by an average over all Nb galaxy positions θj:

E[n(θ)] ≡

[
Nb∏
j=1

∫
d2θj

]
p(θ1, . . . ,θNb

)n(θ)

=

Nb∏
j=1

[
1

A

∫
d2θj

] Nb∑
i=1

δD(θ − θi) =
Nb

A
= n̄ , (7.9)

where we used in the second step that the joint PDF resolves into a product of individual
PDFs, each giving p(θj) = 1/A for uncorrelated galaxies. In the last step, we defined
the mean number density of background galaxies in the field n̄ . Furthermore, we
assumed a simple field geometry, namely a connected field where all relevant angles
are smaller than the extent of the field, i.e., |θ|2 � A. For this approximation we
find ñ(l) = (2π)2δD(l) n̄ using Eq. (7.8). The final result for the estimator of galaxy
ellipticities in Fourier space is

ε̃α(l) = n̄γ̃α(l) +

Nb∑
i=1

εsα,ie
il·θi . (7.10)

For the discussion of the covariance matrix we need the intrinsic ellipticity dispersion

〈εsiεs∗j 〉 = δijσ
2
ε , 〈εsiεsj〉 = 0 . (7.11)

The first relation states that intrinsic ellipticities at different positions are uncorre-
lated. The second relation vanishes due to the assumed isotropy of the Universe, as
a non-vanishing result would yield a net orientation of galaxies. Using the individual
components of the ellipticities, we deduce from the two relations above

〈εsα,iε
s
β,j〉 = δijδαβ

σ2
ε

2
. (7.12)

1This ceases to be valid for the foreground galaxies which are correlated.
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The Kaiser-Squires relation provides the connection between the cosmic shear and
the convergence field (also see the discussion in Sect. 5.1.6). In Fourier space it is given
by

γ̃(l) = e2iβκ̃(l) , (7.13)

where β is the polar angle of the Fourier mode vector l. To include B-modes we write
the convergence as a complex quantity, i.e., κ̃(l) = κ̃E(l) + iκ̃B(l), where κ̃E is the
curl-free E-mode and κ̃B is the divergence-free B-mode. We obtain

κ̃E(l) = γ̃1(l) cos(2β) + γ̃2(l) sin(2β) , (7.14)

κ̃B(l) = −γ̃1(l) sin(2β) + γ̃2(l) cos(2β) , (7.15)

and define their correlation functions

〈κ̃E(l)κ̃∗E(l′)〉 = (2π)2δD(l− l′)PE(l) , (7.16)

〈κ̃B(l)κ̃∗B(l′)〉 = (2π)2δD(l− l′)PB(l) , (7.17)

〈κ̃E(l)κ̃∗B(l′)〉 = (2π)2δD(l− l′)PEB(l) . (7.18)

The cross-power spectrum PEB vanishes when assuming parity invariance of the Universe.
With the tools developed, we construct the estimators for the E-mode and B-mode
power spectra. They are given by

P̂E(l̄) =

[
1

n̄2AAr(l̄)

∫
Ar(l̄)

d2l |κ̂E(l)|2
]
− σ2

ε

2n̄
, (7.19)

P̂B(l̄) =

[
1

n̄2AAr(l̄)

∫
Ar(l̄)

d2l |κ̂B(l)|2
]
− σ2

ε

2n̄
, (7.20)

where we introduced the estimators

κ̂E(l) = ε̃1(l) cos(2β) + ε̃2(l) sin(2β) , (7.21)

κ̂B(l) = −ε̃1(l) sin(2β) + ε̃2(l) cos(2β) . (7.22)

One easily verifies that the ensemble average of both estimators is given by 〈κ̂E(B)(l)〉 =
n̄κ̃E(B)(l) by inserting the ellipticity estimators defined in Eq. (7.10) and the fact that
the ensemble average of intrinsic ellipticities is equal to zero. The estimators of the
power spectra are constructed by averaging over annuli with mean radius l̄ and area
Ar(l̄) = 2πl̄∆l, where ∆l denotes the bin-width. These are unbiased estimators as
we show explicitly for the E-mode power spectrum. After rewriting the estimator in
Eq. (7.21) as

κ̂E(l) = n̄κ̃E(l) +

(
Nb∑
i=1

εs1,ie
il·θi

)
cos(2β) +

(
Nb∑
j=1

εs2,je
il·θj

)
sin(2β) , (7.23)

we get for the correlator of the integrand in Eq. (7.19)

〈|κ̂E(l)|2〉 = n̄2〈κ̃E(l)κ̃∗E(l)〉+Nb
σ2

ε

2
, (7.24)
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where we used the properties of the intrinsic ellipticity correlator given in Eq. (7.12).
Finally, we find

〈P̂E(l̄)〉 =
1

AAr(l̄)

∫
Ar(l̄)

d2l 〈κ̃E(l)κ̃E(−l)〉

=
(2π)2

AAr(l̄)

∫
Ar(l̄)

d2l δD(0)PE(l) = PE(l̄) , (7.25)

which proves that the estimator is unbiased for small bin sizes. Additionally, the
correspondence of the Dirac delta distribution function for a finite field size A was used
for the derivation, namely δD(0) = A/(2π)2.

In order to find an expression for the covariance of the cross-power spectrum we also
need the two-point correlator for E- and B-mode spectra at different scales (see Eq. 7.42
below). By using the estimator of κ̂E in Eq. (7.23) we find for the E-mode

〈κ̂E(l)κ̂∗E(l′)〉 = n̄2〈κ̃E(l)κ̃∗E(l′)〉+
σ2

ε

2

(
Nb∑
i=1

ei(l−l′)·θi

)

= (2π)2δD(l− l′)n̄2

[
PE(l) +

σ2
ε

2n̄

]
. (7.26)

In complete analogy we find the B-mode two-point correlator. Thus, the final result is

〈κ̂X(l)κ̂∗X(l′)〉 = (2π)2δD(l− l′)n̄2

[
PX(l) +

σ2
ε

2n̄

]
, (7.27)

for X = {E,B}. The last term in squared brackets originates from the intrinsic ellipticity
dispersion and is mnemonically called shape noise.

7.1.2 Galaxy Power Spectrum

The estimator for the foreground galaxies in real space is simply

N̂(θ) =

Nf∑
i=1

δD(θ − θi) , (7.28)

where θi is the i-th foreground galaxy position and Nf is the number of foreground
galaxies. Accordingly, the fractional density contrast estimator is

κ̂g(θ) =
N̂(θ)− N̄

N̄
. (7.29)

Here caution is advisable to distinguish between the number density of background
galaxies denoted by n̄ and the number density of foreground galaxies denoted by N̄ .
Transforming this relation into Fourier space yields

κ̂g(l) =

∫
d2θ eil·θ κ̂g(θ) =

Ñ(l)

N̄
− (2π)2δD(l) =

1

N̄

Nf∑
i=1

eil·θi − (2π)2δD(l) , (7.30)
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where Ñ(l) is the Fourier space counterpart of N̂(θ). The two-point correlator is then

〈κ̂g(l)κ̂
∗
g(l

′)〉 =
1

N̄2

[
Nf∑
i=1

〈ei(l−l′)·θi〉+

Nf∑
i6=j

〈eil·θie−il′·θj〉

]
− (2π)2

N̄
δD(l)

Nf∑
i=1

〈e−il′·θi〉

− (2π)2

N̄
δD(l′)

Nf∑
i=1

〈eil·θi〉+ (2π)4δD(l)δD(l′) , (7.31)

where we split the double sum into parts where i = j and where i 6= j in the first step.
For the derivation of the correlator we use the identities:

〈eil·θi〉 =

(
Nf∏
j=1

∫
d2θj

A

)
eil·θi =

(2π)2

A
δD(l) , (7.32)

〈eil·θie−il′·θj〉 =

∫
d2θi

A

∫
d2θj

A
[1 + w(θi,θj)]e

il·θie−il′·θj

=

∫
d2θi

A
eil·θi

∫
d2θj

A
e−il′·θj +

∫
d2θi

A
ei(l−l′)·θi

∫
d2r

A
w(r)e−il′·r

=
(2π)4

A2
δD(l)δD(l′) +

(2π)2

A2
δD(l− l′)Pgg(l) , (7.33)

where w(θi,θj) denotes the angular galaxy two-point correlation function which is
related to the angular galaxy power spectrum by

Pgg(l) =

∫
d2r w(r)e−il·r . (7.34)

We assumed in this expression that the correlation function is homogeneous and isotropic
such that it only depends on r = |θj−θi|. In the second step of Eq. (7.33) we performed
a change of variables to r = θj − θi. The correlator (7.31) finally becomes in the limit
of a large number of foreground galaxies (Nf � 1)

〈κ̂g(l)κ̂
∗
g(l

′)〉 = (2π)2δD(l− l′)

[
Pgg(l) +

1

N̄

]
. (7.35)

The second term is the so-called shot noise which is a result of the finite number of
galaxies in the field. We can now define analogously to the E-mode convergence power
spectrum estimator given in Eq. (7.19) an estimator of the angular power spectrum of
galaxies by

P̂gg(l̄) =

[
1

AAr(l̄)

∫
Ar(l̄)

d2l |κ̂g(l)|2
]
− 1

N̄
. (7.36)

and we can show that the estimator is unbiased, i.e. 〈P̂gg(l̄)〉 = Pgg(l̄), by applying
Eq. (7.35) for the two-point correlator. This is a simple form of the galaxy power
spectrum estimator since a more realistic approach requires to include finite-field effects
(such as the survey window function), selection effects and weights (e.g., Feldman et al.
1994).
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7.1.3 Galaxy-Galaxy Lensing Power Spectrum

In analogy to the definition of the three convergence power spectra in Eqs. (7.16),
(7.17) and (7.18), one defines the E- and B-mode cross-power spectrum between the
convergence and the fractional density contrast which we defined in Eq. (6.6) as

〈κ̃E(l)κ̃∗g(l
′)〉 = (2π)2δD(l− l′)PE

κg(l) , (7.37)

〈κ̃B(l)κ̃∗g(l
′)〉 = (2π)2δD(l− l′)PB

κg(l) . (7.38)

The second correlator defines a parity violating mode. Therefore, measurements of
PB

κg allow us to check for systematic effects in the data. Inspired by the previous two
sections, we introduce the two cross-power spectrum estimators

P̂E
κg(l̄) =

1

n̄AAr(l̄)

∫
Ar(l̄)

d2l κ̂E(l)κ̂∗g(l) , (7.39)

P̂B
κg(l̄) =

1

n̄AAr(l̄)

∫
Ar(l̄)

d2l κ̂B(l)κ̂∗g(l) . (7.40)

In analogy to the convergence power spectrum estimator in Eq. (7.25) we can show that
both estimators are unbiased.

The final goal is to calculate the covariance matrix of the cross-power spectrum which
is defined by

C
[
P̂E(B)

κg (l̄i); P̂
E(B)
κg (l̄j)

]
≡ 〈P̂E(B)

κg (l̄i)P̂
E(B)
κg (l̄j)〉 − PE(B)

κg (l̄i)P
E(B)
κg (l̄j) . (7.41)

Focussing first on the correlator, we find from the definitions of the estimators

〈P̂E(B)
κg (l̄i)P̂

E(B)
κg (l̄j)〉

=

∫
Ar(l̄i)

d2l

n̄AAr(l̄i)

∫
Ar(l̄j)

d2l′

n̄AAr(l̄j)
〈κ̂E(B)(l)κ̂g(−l)κ̂E(B)(l

′)κ̂g(−l′)〉

=

∫
Ar(l̄i)

d2l

n̄AAr(l̄i)

∫
Ar(l̄j)

d2l′

n̄AAr(l̄j)

[
〈κ̂E(B)(l)κ̂g(−l)〉〈κ̂E(B)(l

′)κ̂g(−l′)〉

+ 〈κ̂E(B)(l)κ̂E(B)(l
′)〉〈κ̂g(−l)κ̂g(−l′)〉+ 〈κ̂E(B)(l)κ̂g(−l′)〉〈κ̂E(B)(l

′)κ̂g(−l)〉
]
,

(7.42)

where we assumed Gaussian fields and used the Wick theorem (see Eq. 2.111) to express
the four-point correlator as products of two-point correlators. The first term in square
brackets cancels the second term on the right-hand side in the covariance matrix (7.41).
The correlators of the second term are given by the results of the previous sections, see
Eqs. (7.26) and (7.35), respectively:

〈κ̂E(B)(l)κ̂E(B)(l
′)〉〈κ̂g(−l)κ̂g(−l′)〉 = (2π)2δD(l + l′)n̄2

[
PE(B)(l) +

σ2
ε

2n̄

]
× (2π)2δD(l + l′)

[
Pgg(l) +

1

N̄

]
(7.43)
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The last term is proportional to the product of the two cross-power spectra. For example

〈κ̂E(B)(l)κ̂g(−l′)〉 =
〈
Eε[κ̂E(B)(l)] E[κ̂g(−l′)]

〉
= 〈κ̃E(l)κ̃g(−l′)〉

= (2π)2δD(l− l′)PE(B)
κg (l) , (7.44)

where we splitted the total ensemble average in an expectation over realization of the
density contrast fields (angle brackets), an expectation over the intrinsic ellipticities
(denoted by Eε[ ]) and an expectation over the ensemble of point processes (denoted by
E[ ]). Note that we assumed in the first step that the shape noise of background and
the shot noise of foreground galaxies are uncorrelated. The final result is

C
[
P̂E(B)

κg (l̄i); P̂
E(B)
κg (l̄j)

]
=

(2π)2

AAr(l̄i)
δl̄i l̄j [P̄E(B)(l̄i)P̄gg(l̄i) + PE(B)

κg (l̄i)P
E(B)
κg (l̄i)] , (7.45)

where we defined the power spectra including the statistical noise as

P̄E(B)(l̄i) ≡ PE(B)(l̄i) +
σ2

ε

2n̄
, (7.46)

P̄gg(l̄i) ≡ Pgg(l̄i) +
1

N̄
. (7.47)

7.2 Covariance of the Power Spectrum Estimator

In this section we want to compare the covariance of the convergence power spectrum
with the covariance of the galaxy-galaxy lensing power spectrum. We first show the
results for the dark matter power spectrum covariance and then we consider the
covariance of the projected power spectrum, which can be treated analogously.

7.2.1 Dark Matter Power Spectrum Covariance

Let us assume a given survey of a connected volume V and that Fourier space is divided
into a number of bins ki of a corresponding bin width ∆ki. In the following we assume
that we have a constant shell width ∆k. Using this setup, we define an unbiased
estimator of the dark matter power spectrum as (Scoccimarro et al. 1999)

P̂ (ki) =
1

V

∫
ki

d3k

Vs(ki)
δ(k)δ(−k) , (7.48)

where we estimate the power spectrum by averaging over all wave-vectors k within a
thin shell of width ∆k with radius ki. Here Vs(ki) (“s” stands for shell) is the volume of
the i-th shell in Fourier space which can be easily computed from

Vs(k) =

∫
k

d3q = 4π

∫ k+∆k/2

k−∆k/2

dq q2 = 4πk2∆k

(
1 +

∆k2

12k2

)
≈ 4πk2∆k , (7.49)
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where we can neglect the second term in brackets for small bin widths ∆k as assumed
in the last step. The covariance matrix of the power spectrum estimator in Eq. (7.48)
is defined as

C
[
P̂i; P̂j

]
≡ Cij =

〈(
P̂i − 〈P̂i〉

)(
P̂j − 〈P̂j〉

)〉
= 〈P̂iP̂j〉 − 〈P̂i〉〈P̂j〉 , (7.50)

where we used the compact notation P̂i ≡ P̂ (ki). Combining Eqs. (7.48) and (7.50), the
covariance matrix of the power spectrum estimator can be computed (Scoccimarro et al.
1999, Cooray & Hu 2001):

Cij =
1

V 2

∫
ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj)

[
〈δ(k1)δ(−k1)δ(k2)δ(−k2)〉

− 〈δ(k1)δ(−k1)〉 〈δ(k2)δ(−k2)〉
]

=
1

V 2

∫
ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj)

[
〈δ(k1)δ(−k1)δ(k2)δ(−k2)〉c

+ 〈δ(k1)δ(k2)〉〈δ(−k1)δ(−k2)〉+ 〈δ(k1)δ(−k2)〉〈δ(−k1)δ(k2)〉
]

=
(2π)3

V 2

∫
ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj)

{
δD(0)T (k1,−k1,k2,−k2)

+ (2π)3P 2(k1)[δD(k1 + k2)δD(−k1 − k2) + δD(k1 − k2)δD(−k1 + k2)]
}

=

[
(2π)6

V 2

∫
ki

d3k1

Vs(ki)Vs(kj)
2P 2(k1)δD(0)δkikj

]
+

1

V
T̄ (ki, kj)

=
1

V

[
(2π)3

Vs(ki)
2P 2(ki)δkikj

+ T̄ (ki, kj)

]
, (7.51)

where we expanded the four-point correlator in terms of two-point correlators and the
connected fourth-order moment (denoted by the subscript “c”) in the second step and
defined the bin-averaged dark matter trispectrum in the fourth step as

T̄ (ki, kj) =

∫
ki

d3k1

Vs(ki)

∫
kj

d3k2

Vs(kj)
T (k1,−k1,k2,−k2) . (7.52)

In the last step we assumed that the power spectrum is approximately constant over
the shell integral valid for small bin sizes. In addition, we used the discrete form of
the Dirac function, δD(0) = V/(2π)3, in the last step. Furthermore, δkikj

denotes the
Kronecker delta. Hence, we found that the covariance of the power spectrum estimator
is given by

C
[
P̂ (ki); P̂ (kj)

]
≡ Cij =

1

V

[
(2π)3

Vs(ki)
2P 2(ki)δkikj

+ T̄ (ki, kj)

]
≡ CG

ij + CNG
ij , (7.53)

which is composed of two statistically different terms: a Gaussian part CG which is
proportional to the power spectrum squared and only contributes to diagonal elements
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of the covariance, and a non-Gaussian part CNG which depends on the trispectrum
and contributes to diagonal and off-diagonal elements. The off-diagonal elements
correspond to correlations between different band powers which is a unique signature
of the non-Gaussian density field. As the covariance is inversely proportional to the
survey volume, one survey strategy to reduce statistical errors is to cover a large volume
in the observations. In addition, the Gaussian term depends on the adopted binning
scheme such that enhancing the bin size results in a smaller Gaussian part. On the
other hand, the non-Gaussian part is independent of the binning since the shell volume
cancels with the integration in Eq. (7.52). Moreover, the covariance depends only on a
specific configuration of the trispectrum, namely the parallelogram configuration where
the trispectrum depends only on two wave-vectors that can have an arbitrary relative
orientation.

We can parametrize the trispectrum by T (k1,−k1,k2,−k2) ≡ T (k1, k2, x), valid for
homogeneous and isotropic spectra, where x ≡ cos(θ) = k1 · k2/k1k2 is the cosine of
the angle between the two vectors k1 and k2. Introducing spherical coordinates in
Eq. (7.52) leads to

T̄ (ki, kj) =
1

2

1

(kikj∆k)2

∫ ki+
∆k
2

ki−∆k
2

dk1 k
2
1

∫ kj+
∆k
2

kj−∆k
2

dk2 k
2
2

∫ 1

−1

dxT (k1, k2, x) , (7.54)

where we selected the coordinate system such that one angular integration becomes
trivial.

Studying the dark matter power spectrum covariance is the basis for the statistical
error estimates of cosmological probes which analyze the three-dimensional matter
distribution in the Universe, like galaxy redshift surveys. However, one needs a model
for the galaxy-dark matter bias factor. In the following we consider the covariance of
projected power spectra.

7.2.2 Convergence Power Spectrum Covariance

The power spectrum and trispectrum for the convergence field κ in the flat-sky approxi-
mation are defined analogously to the three-dimensional case as

〈κ(l1)κ(l2)〉 = (2π)2δD(l12)Pκκ(l) , (7.55)

〈κ(l1)κ(l2)κ(l3)κ(l4)〉c = (2π)2δD(l1234)Tκ(l1, l2, l3, l4) , (7.56)

where l12 ≡ l1 + l2 and l1234 ≡ l1 + l2 + l3 + l4. In the following we neglect B-modes and
consider only the E-mode power spectrum which is here denoted by Pκκ in contrast to
the original definition in Eq. (7.16). Additionally, we study in this section the sample-
variance dominated part of the covariance without any shape noise contribution which
simplifies the calculation of the non-Gaussian part of the covariance. The shape-noise
contribution of the Gaussian part, which we studied in Sect. 7.1.1, can be included in
the final result.
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Table 7.1: Initial cosmological parameters used by the Virgo N -body simulation (Jenkins
et al. 1998). The simulation employs the BBKS transfer function (Bardeen et al. 1986) for
the linear power spectrum. We use this particular simulation as we compare the halo model
covariance results with results from convergence maps obtained with ray-tracing through the
Virgo simulation in Pielorz et al. (2009).

Simulation Ωm ΩΛ h Ωb σ8 ns Γ zs T (k)

Virgo 0.3 0.7 0.7 0.0 0.9 1.0 0.21 1 (2) BBKS

We construct the following estimator for the projected power spectrum

P̂κκ(li) =
1

A

∫
li

d2l

Ar(li)
κ(l)κ(−l) , (7.57)

with the area of the survey A = 4πfsky, where fsky is the fractional sky coverage. The
area of the two-dimensional shell of the bin li is given by

Ar(li) =

∫
li

d2l = 2π

∫ li+∆li/2

li−∆li/2

l dl = 2πli∆li (7.58)

or

Ar(li) =

∫
li

d2l = 2π

∫ li+∆li

li

l dl = 2πli∆li + π(∆li)
2 , (7.59)

depending on the binning scheme. The width of the bin li is given by ∆li. The ensemble
average of the estimator is

〈P̂κκ(li)〉 =
1

A

∫
li

d2l

Ar(li)
〈κ(l)κ(−l)〉

=
1

A

∫
li

d2l

Ar(li)
(2π)2δD(0)Pκκ(l) = Pκκ(l) , (7.60)

where we assumed that Pκκ is only slowly varying over the bin width and used the
discrete limit of the two-dimensional Dirac delta function δD(0) = A/(2π)2 in the third
step. This proofs that we have defined an unbiased estimator.

The covariance of the convergence power spectrum estimator in Eq. (7.57) is

C[P̂κκ(li); P̂κκ(lj)] ≡ Cκκ
ij =

1

A

[
(2π)2

Ar(li)
2P 2

κκ(li)δlilj + T̄κ(li, lj)

]
, (7.61)

with the bin-averaged projected trispectrum

T̄κ(li, lj) =

∫
li

d2l1
Ar(li)

∫
lj

d2l2
Ar(lj)

Tκ(l1,−l1, l2,−l2) . (7.62)
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We see that the covariance of the convergence power spectrum again decomposes into
Gaussian part and a non-Gaussian part.

Using the assumed homogeneity and isotropy of the Universe, we can parametrize
the convergence trispectrum with the modulus of the two wave-vectors and the angle ϕ
between them which is given by cosϕ = l1 · l2/l1l2. We can then define Tκ(l1, l2, cosϕ) ≡
Tκ(l1,−l1, l2,−l2). We are free to choose the coordinate system such that one angular
integration is trivial for the bin-averaged trispectrum, leading to

T̄κ(li, lj) = 2π

∫ li+∆l/2

li−∆l/2

dl1
Ar(li)

l1

∫ lj+∆l/2

lj−∆l/2

dl2
Ar(lj)

l2

∫ 2π

0

dϕTκ(l1, l2, cosϕ) . (7.63)

The integration can be approximated by a simple one-dimensional integral over the
angle ϕ if the trispectrum is only slowly varying over the chosen bin size:

T̄κ(li, lj) '
1

2π

∫ 2π

0

dϕTκ(li, lj, cosϕ) . (7.64)

Parallelogram Configuration of the Halo Model Trispectrum

To determine the covariance matrix in Eq. (7.61) for a fiducial survey, we need a model
for the dark matter trispectrum. We employ here the dark matter halo model as
developed in Chapter 3 where we showed that the trispectrum depends on four halo
terms which are dominant on different scales. However, we need only the special case of
the parallelogram configuration of the trispectrum, where k2 = −k1 and k4 = −k3. In
this case the equations for the trispectrum simplify considerably. The one-halo term in
Eq. (3.133) changes to

T pc
1-h =

∫
dmn(m)

(
m

ρ̄

)4

ũ2(k1,m)ũ2(k3,m) . (7.65)

Note that the angle-independent one-halo term is simply equal to its bin-averaged
counterpart without having to perform an integration at all. The two-halo term is
composed of two different contributions defined in Eqs. (3.142) and (3.143). For the
parallelogram configuration we find

T pc
2-h = 2Ppt(k1)I13(k1, k3, k3)I11(k1) + 2Ppt(k3)I13(k1, k1, k3)I11(k3) ,

+ [Ppt(|k1 + k3|) + Ppt(|k1 − k3)][I12(k1, k3)]
2 . (7.66)

Accordingly the three-halo term in Eq. (3.145) is

T pc
3-h = 2I11(k1)I11(k3)I12(k1, k3)[Bpt(k1,k3,−k1 − k3) +Bpt(k1,−k3,−k1 + k3)] ,

(7.67)

Finally, the four-halo in Eq. (3.137) simplifies to

T pc
4-h = [I11(k1)]

2[I11(k3)]
2Tpt(k1,−k1,k3,−k3) . (7.68)
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Results for the covariance

We define the correlation coefficients of a given covariance matrix by

rXY
ij ≡

CXY
ij√

CXY
ii CXY

jj

, (7.69)

where we consider two kinds of correlation coefficients, namely X = κ and Y ∈ {κ, g}.
These coefficients are a measure for the relative strength of off-diagonal elements
compared to diagonal elements and are normalized such that rXY

ii = 1. In the case of
the convergence power spectrum covariance the rij-elements describe the correlation
strength between band powers at different lengths.

In addition to the “full” covariance matrix in Eq. (7.61) calculated with the halo
model approach which includes all four halo terms of the trispectrum, we employ an
approximation for the non-Gaussian part of the covariance matrix following Takada
& Jain (2008). In the approximation they use for the trispectrum only those terms
that are dominant in the large-scale and small-scale regime. The four-halo term gives
the dominant contribution to the trispectrum on large scales. On the largest scale the
consistency relation of the first-order halo bias ensures that I11(k) → 1 in Eq. (3.138)
and thus the four-halo term converges to the trispectrum in tree-level perturbation
theory given in Eqs. (2.130) and (2.131):

T δδδδ
4-h (k1,k2,k3,k4; z) → Tpt(k1,k2,k3,k4; z) = D6(z)Tpt(k1,k2,k3,k4; 0) , (7.70)

where the redshift-dependence is governed by the growth factor (given in Eq. 2.48) to
the power of 6 since Tpt ∝ (Ppt)

3 ∝ D6(z). The small-scale regime is dominated by the
one-halo term of the trispectrum. Thus, the approximation for the non-Gaussian part
of the covariance is given by

T̄κ(li, lj) ≈ T 1-h
κκκκ(li, lj) +

1

2π

∫ 2π

0

dϕT κ
pt(li, lj, cosϕ) , (7.71)

where T κ
pt denotes the projected tree-level trispectrum in parallelogram configuration

which is computed from inserting Eq. (7.70) into the Limber’s approximation given in
Eq. (5.65).

We consider in the following a fiducial survey with intrinsic ellipticity dispersion
of σε = 0.22 and mean number density of background sources of n̄ = 3.55 × 108 sr−1

which corresponds to n̄ ' 30 arcmin−2. With this setup, we can determine the amount
of shape noise in the covariance of the convergence power spectrum in Eq. (7.61) by
replacing the convergence power spectrum with the relation (7.46).

In Fig. 7.1 we show the results of the correlation coefficients for the convergence power
spectrum covariance for 40 logarithmically-spaced bins in the range 50 ≤ l ≤ 6000 which
roughly corresponds to 3.6 . θ/arcmin . 430 in real space where we used θ = 2π/l. For
this binning scheme we have checked that the approximation (7.64) for the bin-averaged
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Figure 7.1: Correlation coefficients rκκ
ij (see Eq. 7.69) of the covariance matrix of the

convergence power spectrum estimator for 40 logarithmically-spaced bins in l in the range
50 ≤ l ≤ 6000. In the left panels we show the approximation of the covariance as given in
Eq. (7.71) whereas the right panels show the covariance including all four halo terms (here
denoted by “Total”). The cosmological model is adapted from the Virgo simulation as given
in Table 7.1. In the upper (lower) triangle of each plot we depict the results with (without)
shape noise of the power spectrum. In addition, we show the correlation coefficients for a
source redshift of zs = 1 and zs = 2 as marked in the panels.
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trispectrum works well (< 1% deviation from the exact relation 7.63) and thus we will
employ this approximation in the following. We included a stochastic concentration
parameter in the one-halo term of the trispectrum with a dispersion of σln c = 0.3
which enters in the log-normal distribution in Eq. (3.63). For li . 500 the off-diagonal
elements are well below rij = 0.4. Going to smaller scales, we note that the correlation
coefficients increase until rij ' 0.6 on the smallest scales depicted which corresponds to
a strong correlation of the corresponding Fourier modes. This is due to the fact that in
the small-scale regime lensing is more affected by the nonlinear clustering.

In each plot we show the correlation coefficients with shape noise in the upper triangle
and without shape noise in the lower triangle. The inclusion of shape noise reduces the
effect of cross-correlations between different band powers. This is due to the fact that it
enters only in the power spectrum which only contributes to the diagonal part of the
covariance matrix. Hence, an enhancement of the diagonal part leads to a reduction
of the correlation coefficient as it is normalized by the diagonal part. We see that at
l ' 103 shot noise becomes important which suppresses the importance of including the
non-Gaussian part in the covariance. Furthermore, we show the correlation coefficients
for a single source redshift at zs = 1 and zs = 2. Clearly, rij is reduced if we increase
the source redshift.

In the left panels we show the covariance approximation in Eq. (7.71) and in the right
panels the full covariance matrix. The approximation reproduces the results of the full
halo model trispectrum quite well. The only significant deviations occur on intermediate
scales where the two-halo term is important. We thus expect that one can safely use the
approximation for the covariance to determine the errors of cosmological parameters.
In addition, using the approximation results in significantly reduced computation times.
This is crucial if one needs to compute the covariance many times, for example if one
wants to explore the dependence of the covariance matrix on cosmological parameters.

7.2.3 Galaxy-Galaxy Lensing Power Spectrum Covariance

We neglect for the derivation of the non-Gaussian part the shot and shape noise
contribution as given in Eqs. (7.46) and (7.47) and define the following estimator for
the two-dimensional cross-power spectrum

P̂κg(li) =
1

A

∫
li

d2l

Ar(li)
κ(l)κg(−l) , (7.72)

which is a generalization of the estimator of the convergence power spectrum in Eq. (7.57)
and thus we can show accordingly that this is an unbiased estimator. Using this
estimator, we can perform an analogous calculation to the full dark matter power
spectrum covariance matrix presented in Sect. 7.2.1. Then the covariance matrix of the
cross-power spectrum estimator is given by

Cκg
ij =

1

A

{
(2π)2

Ar(li)

[
Pκκ(li)Pgg(li) + P 2

κg(li)
]
δlilj + T̄κgκg(li, lj)

}
, (7.73)
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where we introduced the bin-averaged convergence cross-trispectrum

T̄κgκg(li, lj) =

∫
li

d2l1
Ar(li)

∫
lj

d2l2
Ar(lj)

Tκgκg(l1,−l1, l2,−l2) . (7.74)

We infer from the definition of the cross-trispectrum in Eq. (6.63) that the bin-averaged
cross-trispectrum and the full covariance are symmetric under permutations of li and
lj. The result of the covariance can be compared to the result obtained in Eq. (7.42)
where we used the Gaussian approximation for the four-point correlator and included
shape and shot noise. We see that the auto- and cross-power spectra contribute only
to the diagonal of the covariance matrix whereas the bin-averaged cross-trispectrum
contributes to diagonal and non-diagonal elements. When we consider shot and shape
noise, we have to replace the auto-power spectra in Eq. (7.73) by

Pκκ(li) → P̄κκ(li) = Pκκ(li) +
σ2

ε

2n̄
, Pgg(li) → P̄gg(li) = Pgg(li) +

1

N̄
, (7.75)

as was shown in Sect. 7.1.3. The large-scale limit of the four-halo term of the cross-
trispectrum in Eq.(4.91) is

T δgδg
4-h (k1,k2,k3,k4; z) → Tpt(k1,k2,k3,k4; z) =

[
bL1 (z)

]2
D6(z)Tpt(k1,k2,k3,k4; 0) ,

(7.76)
where bL1 is the first-order large-scale bias parameter given in Eq. (4.48) and the growth
factor dependence originates from the tree-level trispectrum which is proportional to the
linear power spectrum cubed. In accordance with the approximation of the covariance
of the convergence power spectrum in Eq. (7.71) we employ an approximation for the
galaxy-galaxy-lensing covariance matrix in Eq. (7.73):

T̄κgκg(li, lj) ≈ T 1-h
κgκg(li, lj) +

1

2π

∫ 2π

0

dϕ T κgκg
pt (li, lj, cosϕ) , (7.77)

where T κgκg
pt is the projected form of the trispectrum defined in Eq. (7.76).

In Fig. 7.2 we plot the correlation coefficients for the galaxy-galaxy lensing covariance
matrix for 40 logarithmically distributed bins in the range 50 ≤ l ≤ 6000. We assume
that all the source galaxies are located at a single redshift of zs = 1. In contrast to the
convergence covariance we neglect the influence of a stochastic concentration parameter
as it provides only a small contribution (see discussion in Sect. 4.6 and in particular
Fig. 4.14). All left-hand panels display the approximation (7.77) whereas all right-hand
panels show the full model (7.73). Each row corresponds to a specific minimal mass, i.e.,
mmin = 1011h−1M�, mmin = 1012h−1M� and mmin = 1013h−1M� from top to bottom.
In the upper triangle of each individual plot we included shot and shape noise whereas
the lower triangle is without noise contributions. For the lens galaxies, we limit the
population to the range 0 ≤ zl ≤ 0.4 (this means that we cut off the redshift integration of
the projection at zl). Note that our choice of the maximal lens redshift is approximately
half as large as the source redshift. The total lens population then has an angular
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Figure 7.2: Correlation coefficients rκg
ij (see Eq. 7.69) of the galaxy-galaxy lensing power

spectrum covariance as defined in Eq. (7.73) for 40 logarithmically-spaced bins in l. We
show the results for the approximation of the covariance given in Eq. (7.77) (left panels)
and the result for the full covariance (right panels). In addition, we depict the plots for
three different minimal masses for the HOD: mmin = 1011h−1 M�, mmin = 1012h−1 M� and
mmin = 1013h−1 M� as indicated in the plots, where we use dimensionless parameters defined
by m′

min = mmin/(h−1M�). In each panel we include shot and shape noise in the upper
triangle and no noise in the lower triangle.
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number density of N̄ ' 1.66 arcmin−2 for mmin = 1011h−1M�, N̄ ' 0.19 arcmin−2 for
mmin = 1012h−1M� and N̄ ' 0.019 arcmin−2 for mmin = 1013h−1M�. As the shot
noise terms enter only in the diagonal of the covariance, the correlation coefficients are
reduced in the upper triangles compared to the lower triangles.

We note that the approximation in the left panels reproduces the result of the full
covariance in the right panels on small and large scales well. Comparisons of the
obtained results to the covariance of the convergence power spectrum plotted in Fig. 7.1
reveal that the approximation is in both cases quite accurate. Increasing the minimal
mass leads to a reduction of cross-correlations of the covariance. This seems surprising
at first sight since the amplitude of the power spectra and the cross-trispectrum are
larger for a larger minimal mass (see e.g., the projected third-order bias depicted in
Fig. 6.8). However, the Gaussian part of the covariance enters only in diagonal elements
of Cκg and is on the considered scales larger than the non-Gaussian part. Since rκg

ij

is normalized by the diagonal elements of the covariance its entries are reduced when
enhancing mmin.

To illustrate the composition of the covariance, we depict in Fig. 7.3 the contributions
of the trispectrum halo terms to the correlation coefficients with the same binning scheme
as above. We find that the two-halo term gives rise to large off-diagonal correlations at
intermediate scales which are not accounted for in the approximation. The maximal
contributions of the three- and four-halo terms to the correlation coefficients are on small
scales roughly a factor of 10 smaller than the one- and two-halo terms. Furthermore,
the three-halo term shows a strong enhancement of the correlation coefficients near the
diagonal which is not present in the other halo terms.

7.2.4 Ratio of the non-Gaussian to the Gaussian Contribution of
the Covariance

Here, we analyze the amount of the non-Gaussian compared to the Gaussian contribution
of the covariances studied in the previous sections. Since the Gaussian part only gives a
contribution to diagonal elements, we determine the ratio only for diagonal entries of
the covariance. We derived in Sect. 7.2.3 the following expression for the covariance of
the cross-power spectrum estimator

Cκg
ij =

1

A

{
(2π)2

Ar(li)

[
Pκκ(li)Pgg(li) + P 2

κg(li)
]
δlilj + T̄κgκg(li, lj)

}
≡ Cκg(G)

ij + Cκg(NG)
ij ,

(7.78)

where we defined the Gaussian and non-Gaussian contribution to the covariance in
the second step. Using this partition of the covariance, we define the non-Gaussian to
Gaussian ratio as

Rκg(l) ≡
Cκg(NG)

ij

Cκg(G)
ij

=
T̄κgκg(l, l)

2π
[
Pκκ(l)Pgg(l) + P 2

κg(l)
] ∆l · l , (7.79)
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Figure 7.3: Contributions of the individual terms of the halo model trispectrum to the
correlation coefficients of the galaxy-galaxy lensing power spectrum estimator for the same
l-binning as in Fig. 7.2 neglecting shot and shape noise. For all plots we use the minimal mass
mmin = 1011h−1 M�. Note that the three- and four-halo term contributions are much smaller
(approximately a factor of 10) than the one- and two-halo terms. Thus, we use for the two
lower panels a smaller interval in the color-coded rij value.
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Figure 7.4: Ratio of the non-Gaussian to the Gaussian part of the diagonal covariance
elements as a function of l. Thick lines give the results without shot and shape noise, whereas
the thin lines with the same linestyle as the corresponding thick lines give the results including
shot and shape noise. We show the ratio of the projected cross-power spectrum covariance for
three different minimal masses (left panel). For reference, we give the ratio of the convergence
power spectrum covariance considering two different source redshifts (right panel).

which depends on the employed binning scheme but is independent on the survey area.
Additionally, we derived in Sect. 7.2.2 the covariance for an unbiased convergence power
spectrum estimator as

Cκκ
ij =

1

A

[
(2π)2

Ar(li)
2P 2

κκ(li)δlilj + T̄κ(li, lj)

]
≡ Cκκ(G)

ij + Cκκ(NG)
ij , (7.80)

and we define the corresponding non-Gaussian to Gaussian ratio as

Rκκ(l) ≡
Cκκ(NG)

ij

Cκκ(G)
ij

=
T̄κκκκ(l, l)

4πP 2
κκ(l)

∆l · l . (7.81)

In Fig. 7.4 we give the results for the ratios defined in Eqs. (7.79) and (7.81) as
a function of the bin l. We consider the same logarithmic binning scheme as in the
previous sections. The left panel depicts the ratio for the covariance of the cross-power
spectrum for three different minimal masses. A higher (lower) minimal mass leads to a
reduction (enhancement) of the ratio. As expected, we find that the ratios are increasing
with l which means that the non-Gaussian part gives the largest contribution on small
scales. For mmin = 1011 h−1M� and mmin = 1012 h−1M� the ratios reach a plateau for
large l. If we include the shot and shape noise contributions to the Gaussian part of the
covariance the ratios reach a maximum at l ≈ 103 and then begin to decrease. Thus,
the inclusion of shot and shape noise reduces the importance of non-Gaussian errors on
small scales.
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The right panel shows the ratio for the covariance of the convergence power spectrum
estimator considering two different source redshifts, i.e., zs = 1 and zs = 2. We find
that a larger source redshift reduces the amount of non-Gaussian contributions. Note
that we already observed a similar behavior for the correlation matrix (see Fig. 7.1).
The amplitude of both the convergence power spectrum and trispectrum is enhanced
for a larger source redshift since the projections extend over a larger redshift range.
However, the inverse squared convergence power spectrum enters in the non-Gaussian
to Gaussian ratio which results in a reduction of the ratio for larger zs.

In addition, we give results for the ratios considering the shape noise contribution
to the Gaussian part. Similar to the results of the cross-covariance, we find in this
case that the ratios reach a maximum at l ≈ 103 and l ≈ 2 × 103 for zs = 1 and
zs = 2, respectively, and are decreasing for smaller scales. In summary we find that the
importance of non-Gaussian errors crucially depends on the considered survey sample
(number density or redshift distribution). Furthermore, we find that the non-Gaussian
part is of the same size as the Gaussian contribution on the smallest depicted scales. We
refrain from giving absolute values for the ratios since all of the obtained results depend
on the adopted binning scheme. Future weak lensing and galaxy surveys will yield
reduced amounts of shot and shape noise and thus the modeling of the non-Gaussian
part of the covariance will be more important as we showed in Fig. 7.4.

7.2.5 Covariance of the Bispectrum

The covariance of the convergence bispectrum can be calculated with the techniques
that we already used for the power spectrum (Sefusatti et al. 2006). First we need an
estimator for the bispectrum from which we can calculate the covariance using

CB
ij = 〈B̂iB̂j〉 −BiBj , (7.82)

where the indices i = (i1, i2, i3) and j = (j1, j2, j3) label complete triangles with sub-
components i1, i2 and i3 which label the three sides of the corresponding triangle. To
make a rough estimate which terms are involved in the calculation, we can make a simple
qualitative analysis for the first term, i.e., we perform an expansion into connected
moments of the six-point correlator as in Eq. (2.88):

〈κκκκκκ〉 = 〈κκ〉〈κκ〉〈κκ〉+ 〈κκκ〉c〈κκκ〉c
+〈κκκκ〉c〈κκ〉+ 〈κκκκκκ〉c . (7.83)

Hence, the calculation of the covariance matrix of the bispectrum involves the knowledge
of the two-point, three-point, four-point and six-point spectrum. As a first approxi-
mation, one can use the one-halo term in each of the n-point functions as this is the
dominant term in the nonlinear regime. In the Gaussian approximation only the first
term is contributing.



7.3 Summary and Conclusions 211

7.3 Summary and Conclusions

In this chapter we have studied the effect of non-Gaussian errors on the measurements
of weak lensing and for the first time for galaxy-galaxy lensing power spectra. The
non-Gaussian errors emerge from the nonlinear gravitational clustering of dark matter
and galaxies. To estimate the importance of this effect, we employed the halo model as
developed in Chapters 3 and 4.

We started this chapter with a review of the construction of an unbiased estimator
for the convergence power spectrum and for the projected galaxy power spectrum. We
combined the results of both cases to develop an unbiased estimator of the projected
matter-galaxy cross-power spectrum and calculated its covariance. For the calculation
we assumed that the four-point correlator resolves into products of two-point correlators
which is valid for Gaussian random fields. The resulting covariance is composed of several
different contributions: a shape-noise term which arises from the intrinsic ellipticity
dispersion of foreground galaxies and a shot-noise term due to the limited number of
galaxies in the field. These two terms are dominant on small scales. On the other hand,
the error budget on large scales is dominated by the cosmic variance term which is
composed of a product of the convergence and the galaxy power spectrum plus the
cross-power spectrum squared. Additionally, there are two mixed terms which are
products of both contributions. We emphasized that all these terms contribute only to
diagonal elements of the covariance.

Next we took the neglected connected fourth-order moment or trispectrum for the co-
variance of the convergence and the convergence-galaxy cross-power spectrum estimator
into account following an approach introduced by Scoccimarro et al. (1999). This led to
a new term in each covariance which depends on the corresponding bin-averaged trispec-
trum in parallelogram configuration. The non-Gaussian terms contribute in contrast to
the Gaussian terms to both diagonal and non-diagonal elements. We tested that for
small bin width the non-Gaussian part can be computed as a simple one-dimensional
angular average of the projected trispectrum.

For the theoretical predictions we considered a fiducial survey with a single source
redshift zs = 1, intrinsic ellipticity dispersion of σε = 0.22 and a mean number density
of background galaxies of n̄ ' 30 arcmin, where the last two components determine the
amount of shape noise. To present the results, we considered the correlation coefficients
rij which are independent of the survey area. Additionally, we employed a reference
cosmology adapted to the Virgo simulation since they are used for a comparison of
results from ray-tracing simulations and the dark matter halo model (Pielorz et al. 2009).
The results were shown for 40 logarithmically-spaced bins in the range of 50 ≤ l ≤ 6000
which are roughly the scales accessible to current experiments. Going to smaller scales,
the influence of baryonic effects becomes important which are theoretically not well
understood. We showed that the covariance of the convergence power spectrum on large
scales (l . 500) has small off-diagonal elements and thus modeling the covariance with
the Gaussian part is sufficient in this regime. However, the cross-correlations significantly
increase on smaller scales up to rij ' 0.6 on the smallest considered scales which reflects
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the fact that on small scales lensing is more affected by nonlinear clustering. Hence, in
this regime it is mandatory to take the non-Gaussian part into account. The inclusion
of shot noise significantly reduced the strength of cross-correlations for scales smaller
than l ' 103.

To optimize the time for the calculation of the halo model trispectrum, we developed
an approximation which is composed of the one-halo term of the trispectrum and the
trispectrum in lowest-order perturbation theory. The former term is dominant on
small scales, whereas the latter is dominant on large scales. We emphasized that it
is convenient to adopt the approximation when the full halo model calculation of the
covariance becomes computationally too costly. Comparison of the approximation to the
full halo model calculation showed a good agreement in the considered range of scales.
Naturally, for intermediate scales where the two- and three-halo term are important
the approximation is less accurate. Furthermore, we analyzed the dependence of the
covariance on the source redshift. A larger source redshift zs = 2 resulted in a reduction
of the cross-correlations.

In addition to the fiducial survey and background cosmology we needed to specify
the lens redshift distribution for the covariance of the cross-power spectrum. We chose
an RCS-like survey with foreground galaxies in the range 0 ≤ zl ≤ 0.4. Moreover, we
considered three different minimal masses mmin = 1011 h−1M�, mmin = 1012 h−1M�
and mmin = 1013 h−1M� which define three different foreground galaxy samples of
decreasing number density and showed that the correlation coefficients are reduced
for larger minimal masses. In analogy to the convergence covariance, we developed
an approximation of the non-Gaussian part. Subsequent comparisons revealed good
agreement of the covariance calculated with the full halo model and the approximation
for all three minimal masses.



Summary and Outlook

In this thesis we focused on the modeling of higher-order spectra of cosmological random
fields, in particular galaxy and dark matter density fields, and on the interpretation of
the results in terms of cosmological parameters. We applied these results to the study of
two distinct projects related to galaxy-galaxy lensing (GGL) as a particular example of a
powerful cosmological probe and to the analysis of higher-order galaxy-mass correlations.
The GGL effect measures the distortion pattern of the images of background galaxies
induced by weak gravitational lensing by individual foreground galaxies. Its main
observational signature is the mean tangential alignment of the shear distortions of
background galaxies around individual foreground galaxies. This signature can be used
to study the bias between dark matter and galaxy clustering and to constrain the
properties of dark matter halos.

In our first project, we have analyzed the recently proposed and measured method of
galaxy-galaxy-galaxy lensing (GGGL) which is sensitive to the shear pattern around
pairs of foreground galaxies and is thus a promising tool to constrain the properties of
the environment of galaxy groups. We developed detailed theoretical predictions of the
observational GGGL signal.

To study the predictive power of current and future GGL surveys, we dedicated our
second project to the determination of statistical errors in matter-galaxy cross-power
spectrum measurements. These results can be used to additionally constrain the errors
of the GGL signal since it is a filtered version of the cross-power spectrum. We put the
main focus on developing an analytical model which is applicable to the whole range of
scales probed by observations.

For both projects an in-depth knowledge of the physics of nonlinear gravitational
clustering is mandatory. We have devoted a significant part of this thesis, more precisely
Chapters 2–4, gathering information from the literature to build a reliable theoretical
model of gravitational clustering. The first important step toward the modeling of the
nonlinear regime is addressed in Chapter 2. There we gave a comprehensive review on
cosmological perturbation theory which provides an ansatz to solve the coupled dark
matter fluid equations as long as the dark matter density contrast and the peculiar
velocity field are small (following Bernardeau et al. 2002). Transforming the fluid
equations into Fourier space revealed that in the linear regime different Fourier modes
evolve independently of each other, whereas the nonlinear clustering induces a coupling of
different Fourier modes. We showed that for an Einstein-de Sitter background Universe
one can separate the time dependence of the equations and find a general solution in the
single-flow approximation which is valid on large to intermediate scales. On small scales,
however, the perturbative approach inevitably breaks down. In addition, we introduced
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in Chapter 2 a statistical description of the Universe in terms of moments of random
fields which are the so-called correlation functions in real space and spectra in Fourier
space. The n-point correlation functions are the central observables to determine the
statistical information of the Universe.

Studies of the small-scale regime either involve detailed numerical simulations, semi-
analytic models or analytic models. In Chapter 3, we adopted an analytic model, the
so-called halo model, which combines the results of cosmological perturbation theory
on large scales with the well-known properties of dark matter halos on small scales.
The properties of these halos are obtained from theoretical models and results from
simulations. The main result of this chapter is that we can express general n-point
correlation functions of the dark matter field in terms of the abundance of halos, the
halo density profile and the clustering of halos.

To complete our theoretical description of the cosmological fields probed by GGL,
we introduced in Chapter 4 the halo model for galaxy clustering. The model is an
extension of the dark matter halo model with two additional ingredients, namely the halo
occupation distribution (HOD) and the radial distribution of galaxies in their host halo.
We adopted the approach that central and satellite galaxies give different statistical
contributions to the HOD, following Kravtsov et al. (2004). In order to investigate the
reliability of our halo model implementation, we calculated several three-dimensional
spectra and compared our results to the literature when possible. We showed that the
halo model predicts the observed scale dependence of the galaxy power spectrum, which
approximately follows a single power law in wave-number k. On the other hand, we
stressed that the dark matter power spectrum cannot be described by a single power
law over the whole range of scales. This behavior is reflected in the scale dependence of
the matter-galaxy bias. We illustrated that the bias converges to a constant on large
scales and is strongly scale-dependent on small scales.

Most importantly for our two projects, we developed in Chapter 4 expressions for
various galaxy-matter cross-spectra which can be obtained by a combination of the
dark matter and galaxy halo models. In particular, we obtained explicit relations for
the cross-power spectrum and for the first time for the two cross-bispectra Bggδ and
Bδδg, and the cross-trispectrum T δgδg. The matter-galaxy cross-power spectrum has
a similar scale dependence compared to the galaxy power spectrum. We explained
these results in terms of the halo model since on small scales both spectra have the
same dependence on the halo density profile. Subsequently, we studied the scale
dependence of the four bispectra, namely the galaxy and dark matter auto-bispectra
Bggg and Bδδδ, and the two cross-bispectra. In agreement with previous studies (e.g.,
Scoccimarro et al. 2001) we found that, on small scales, the reduced bispectra which
include galaxy correlations decrease with the wave-number k, whereas the reduced
dark matter bispectrum increases. We interpreted the difference of the bispectra in
terms of the halo model, showing that on small scales the one-halo terms of the galaxy
spectra are dominated by correlations with central galaxies. These correlations are
weighted by two density profiles, in contrast to the dark matter bispectrum which is
always weighted by three density profiles. This property of the halo model explains the
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difference between galaxy and dark matter clustering on small scales. Comparing the
scale dependence of the reduced dark matter trispectrum T δδδδ to the matter-galaxy
cross-spectrum T δgδg, yielded the same qualitative behavior as observed for the reduced
bispectra.

Since numerical simulations indicate a significant scatter in the concentration-mass
relation of the halo density profile, we analyzed the impact of a stochastic concentration
parameter on the various spectra. In general, the inclusion of a stochastic concentration
led to an enhancement of the spectra on small scales compared to a deterministic
concentration-mass relation. The enhancement is less pronounced for galaxy spectra
and galaxy-matter cross-spectra as compared to dark matter spectra. The effect is most
important for higher-order spectra which have a stronger dependence on the density
profile. Thus, in subsequent analysis we only included the scatter for the dark matter
trispectrum calculation.

In Chapter 5, we introduced the basic quantities needed to describe gravitational
lensing. Subsequently, we presented cosmic shear as a powerful cosmological probe, e.g.,
it is one of the most promising tools to investigate the nature of dark energy. The shear
spectra are obtained by projections (using Limber’s approximation) of the corresponding
three-dimensional dark matter spectra for which we adopted the halo model predictions
as developed in Chapter 3. This chapter mainly serves as a reference for comparisons
to the results obtained for GGL and GGGL in Chapter 6.

One of the main new results of this thesis is the modeling of the GGGL signal in terms
of the aperture statistics, which are filtered versions of the two projected cross-bispectra
Bκκg and Bggκ. We analyzed the dependence of the signal on various halo model input
parameters such as the power-law quantifying the mean number of satellite galaxies
contained in a halo of mass m, the radial distribution of galaxies in their host halo
and the dependence on galaxy color. We discovered that, for small aperture radii,
the galaxy-galaxy-mass correlations depend more strongly on the parameters than the
mass-mass-galaxy correlations. This is due to the fact that the one-halo term of the
former is weighted by the second-order moment of the HOD, whereas the latter is
weighted by the first-order moment of the HOD. We stressed that fitting measurements
of the GGGL signal with our halo model results can put tight constraints on physical
models of galaxy formation. Moreover, we developed approximations for calculating the
three-dimensional halo model bispectra which allow for a rapid exploration of the large
parameter space of the halo model. The approximations deviate on small and large
scales by less than 10 per cent from the full halo model, and they are less accurate on
intermediate scales, where the deviation is up to 30 per cent.

Our second project, discussed in detail in Chapter 7, focused on the theoretical
predictions of the statistical errors of GGL power spectrum measurements. The errors
are determined by the covariance of the GGL power spectrum and also depend on the
observed galaxy sample. We showed that the covariance of an unbiased cross-power
spectrum estimator splits into a Gaussian part, which is proportional to the auto- and
cross-power spectra, and a non-Gaussian part, which depends on the connected fourth-
order moment. We modeled for the first time the non-Gaussian part and showed that it
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introduces an enhancement of the diagonal elements of the total covariance. Additionally,
it introduces significant non-diagonal elements on small scales, corresponding to cross-
correlations of different Fourier mode bins. The amount of cross-correlations depends on
the galaxy sample used, for example considering a survey with a larger angular number
density results in an enhancement of cross-correlations. In addition, we developed
an approximation for the time-consuming calculations of the cross-trispectrum which
describes with good accuracy the large- and small-scale regimes of the covariance. The
results can be used to perform likelihood analyses of GGL measurements which quantify
how well future experiments can constrain cosmological parameters.

Outlook

Most of the ingredients of the halo model are directly obtained from numerical sim-
ulations. However, combining these ingredients to build general n-point spectra is a
highly non-trivial task. The results of the halo model and simulations are roughly in
agreement for two-point function predictions, i.e., for the power spectra and correlation
functions (e.g., Pielorz et al. 2009). On the other hand, there are only few studies
that compare the results from simulations and the halo model for the bispectra and
trispectra. This is due to the fact that the simulations need to test the complete
configuration dependence of the bispectra and trispectra. The bispectra and trispectra
depend, considering homogeneous and isotropic random fields, on the three sides of
the triangle and the four sides of the quadrilateral, respectively. Furthermore, these
analyses require high-resolution and large-volume simulations since small box sizes have
a deficit of massive halos which give the main contributions to higher-order spectra
(Scoccimarro et al. 2001). Besides these difficulties, we need to test our main results
for the covariance of the cross-power spectrum and for the GGGL aperture statistics
against suited numerical simulations which are populated with galaxies following a
semi-analytic model.

The next generation of galaxy and weak lensing surveys such as the RCS22 (ongoing;
Yee et al. 2007), the SDSS-II (data already released in Abazajian et al. 2008), and the
SDSS-III3, especially the BOSS4 project (taking data from 2008-2014; see Weinberg
et al. 2007), will yield significantly improved measurements of the GGL and GGGL
signals. In particular, we expect an enhancement of the observed number of galaxies and
an optimization of the reconstruction of galaxy shapes. These improvements will lead to
a reduction of shape and shot noise which currently dominate the error budget on small
scales. Hence, to accurately estimate the amount of cross-correlations in the statistical
errors of cross-power spectrum measurements (which are important on small scales),
one should employ our approach for the non-Gaussian part of the sample-variance
dominated covariance. The results of the full covariance, including the Gaussian and
non-Gaussian parts, can be applied to make realistic forecasts of the ability of future

2http://www.rcs2.org/.
3http://www.sdss3.org/.
4Baryon Oscillation Spectroscopic Survey.
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GGL surveys to constrain cosmological parameters. For example, studies of the cosmic
shear power spectrum show that the inclusion of the non-Gaussian part results in a
degradation of cosmological parameters constraints in comparison to employing the
Gaussian approximation (Scoccimarro et al. 1999; Takada & Jain 2008). Due to the
crucial role of the covariance in the estimation of parameter constraints, we plan to
construct a fitting formula which significantly reduces the computation time of the
covariance and is easy to employ. We can find a fitting function for the cross-power
spectrum covariance using the same techniques that we already employed for the fitting
function of the covariance of the convergence power spectrum (Pielorz et al. 2009). In
addition, we would like to test the accuracy of our developed approximation of the
non-Gaussian part of the covariance, which is composed of the one-halo term of the
trispectrum and the trispectrum in lowest-order perturbation theory (times the squared
large-scale bias parameter). Similar to the fitting formula, the approximation allows for
a fast computation of the covariance, and it needs to be also tested against the results
from numerical simulations. Another approach is to obtain the covariance directly
from a number of realizations of ray-tracing simulations. However, this is very time
consuming since one needs more than 1000 realizations to estimate the covariance to
better than 10 per cent accuracy (Takahashi et al. 2009). To obtain the cosmological
parameter dependence of the covariance with this approach is computationally even
more demanding.

Since the next generation of galaxy and weak lensing surveys will measure the GGGL
correlation functions to unprecedented accuracy, one can fit halo model parameters
to the data using our developed halo model implementation. This will put important
constraints on the halo occupation distribution and on the radial distribution of galaxies
that are complementary to the results obtained from other cosmological probes like
galaxy surveys.

A challenging future project is to extend the halo-model based approach for the
determination of the information content of the power spectrum to higher-order spectra
(e.g., Kilbinger & Schneider 2005 for a study of cosmic shear). As a particular example,
we would like to study the covariance of the third-order aperture statistics of the GGGL
signal using their full configuration dependence. This requires the modeling of connected
correlators up to 6-order, which should be feasible using the halo-model based approach.

New results from simulations on the properties of dark matter halos, the HOD and
the radial distribution of galaxies can be used to improve our theoretical model of
dark matter and galaxy clustering. In addition, substantial progress has been recently
made in the theoretical modeling of nonlinear gravitational clustering via cosmological
perturbation theory (e.g., Crocce & Scoccimarro 2006; Smith et al. 2007; McDonald
2007). Up to now, this mainly has been used for the modeling of baryonic acoustic
oscillations, but could be adapted and applied to gravitational lensing.

Measurements of GGGL correlation functions just have started since the cosmological
origin of the signal has only recently been verified (Simon et al. 2008). We hope that
our work can contribute to the theoretical modeling of future observational results.
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Appendix A

General Background Information

We give in this appendix the general background information on our thesis project,
namely our adopted sign convention of the Einstein equation in Sect. A.1, the astro-
nomical units used in this thesis in Sect. A.2, and in Sect. A.3 the fiducial cosmological
models used throughout this thesis.

A.1 Sign Convention in General Relativity

There is no accepted general sign convention for general relativity. The dynamic
equations (i.e., the Friedmann equations) are invariant under these different conventions.
Although one needs to be careful not to mix different conventions which can lead to
“hard to spot” errors in the calculations. In general, one finds in the literature several
sign conventions. For the sake of clarity, we will give a review of the essential quantities
used in general relativity and point out the conventions that are used for our approach.
We will follow here Peacock (1999).

The Minkowski metric of special relativity is

ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (A.1)

One is free to introduce a global minus sign and choose instead ηµν = diag(−1, 1, 1, 1).
This choice influences the global sign of the Robertson-Walker metric which then is
given by

ds2 = c2dt2 − a2(t)
[
dw2 + f 2

K(w)dΩ2
]
. (A.2)

The Christoffel symbols that are needed for the calculation of the Einstein tensor are
defined as

Γµ
αβ =

gµν

2
(gαν,β + gβν,α − gαβ,ν) , (A.3)

which are symmetric in their two lower indices. Here and in the following we will denote
covariant derivatives with

gαν,β ≡
∂gαν

∂xβ
. (A.4)
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The Riemann tensor describes the curvature of a given manifold and is defined as

Rµ
αβγ = Γµ

αγ,β − Γµ
αβ,γ + Γµ

σβΓσ
αγ − Γµ

σγΓ
σ
αβ , (A.5)

where it is possible to change the global sign (e.g., Weinberg 1972). It has the following
symmetries

Rabcd = −Rbacd , Rabcd = −Rabdc , Rabcd = Rcdab , (A.6)

meaning that it is antisymmetric in the first and last two lower indices. Using the first
relation, we find that the contraction

Ra
acd = gabRbacd = −gabRabcd = −Ra

acd = 0 (A.7)

vanishes. The Ricci tensor is thus defined as a different contraction

Rµν = −Rα
µαν = Rα

µνα , (A.8)

where we note that two different definitions of the contraction lead to different signs.
The Ricci scalar is the contraction of both indices of the Ricci tensor:

R = gµνRµν . (A.9)

Using these conventions, leads to the Einstein equation

Gµν = −8πGN

c4
Tµν , (A.10)

where the Einstein tensor is

Gµν = Rµν −
1

2
Rgµν + Λgµν , (A.11)

and the energy-momentum tensor of a perfect fluid

T µν = (ρ+ p/c2)uµuν − pηµν . (A.12)

A.2 Important Astrophysical Constants

We give in the following a list of the astrophysical constants used in this work:

• Solar mass M� = 1.9889× 1030 kg

• Parsec 1pc = 3.085677581× 1016 m = 3.262 ly

• Newtons constant GN = 6.673× 10−11 m3 kg−1 s−2

• Critical density today ρcrit =
3H2

0

8πGN
≈ 2.775× 1011 h2M� Mpc−3
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A.3 Fiducial Cosmological Model

In this work we applied two fiducial cosmological models, and we present the adopted
parameters in Table A.1. We used Model A in Chapter 3 and Chapter 4, where we
presented the results of the various three-dimensional spectra. We applied Model B
in the two chapters, which give the main new results of this thesis, namely Chapter 6
where we discuss galaxy-galaxy lensing and higher-order galaxy-mass correlations, and
Chapter 7 which gives results for the covariance of the projected cross-power spectrum.

Table A.1: Cosmological parameters of our two adopted fiducial models.

Model A Model B

Cosmological parameters

Ωm 0.28 0.3

ΩΛ 0.72 0.7

Ωb 0.046 -

Γ - 0.21

σ8 0.8 0.9

ns 0.96 1

Halo model parameters

∆vir(0) 200 334

δc(0) 1.686 1.686

p 0.3 0.3

q 0.707 0.707

α 0.13 0.13

c0 11 9

HOD model parameters

As 20 30

β 1 1

σln m 0.2 0.1

Source redshift distribution

z0 - 1

β - -

The table is divided in cosmological parameters that characterize the homogeneous and
isotropic background Universe (given in Chapter 1), dark matter halo model parameters
(given in Chapter 3), galaxy HOD parameters (given in Chapter 4) and source redshift
distribution parameters (given in Chapter 5). The cosmological parameters of Model A
are adopted following the latest WMAP 5-year release (Komatsu et al. 2009), whereas
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we use the parameters of Model B since the same model is adopted for the first results
of the galaxy-galaxy-galaxy lensing signal (Simon et al. 2008) and of many numerical
N -body simulations (here we use the cosmology of the Virgo simulation).

For the cosmological parameters we consider the matter density parameter Ωm and
the density parameter of a cosmological constant ΩΛ, which determine the Hubble
expansion via the Friedmann equation (1.25). Furthermore, we give the baryon density
parameter Ωb or the shape parameter Γ depending on the adopted transfer function
(Eisenstein & Hu 1998 or Bardeen et al. 1986). The linear dark matter power spectrum
(2.161) is specified by the amplitude σ8 and the spectral index of the primordial power
spectrum ns (see Eq. 2.163).

The first depicted halo model parameters are related to the spherical collapse model,
namely the linear density contrast at the time of collapse δc and the density ratio of
a virialized halo ∆vir (see Eqs. 3.18 and 3.21). For the halo mass function we applied
the parametrization of Sheth & Tormen (1999) with the parameters p and q (see
Eq. 3.36). Finally, we give the parameters of the power law of the concentration-mass
relation with the amplitude c0 and the slope α following Bullock et al. (2001) (see
Eq. 3.62). Our fiducial halo occupation distribution model follows the Kravtsov et al.
(2004) approach, which assumes that central and satellite galaxies give two statistically
different contributions to the mean number of galaxies. The mean number of central
galaxies follows a smooth-out step function with scatter σln m (see Eq. 4.13) and mean
number of satellite galaxies is described by a power law with amplitude As and slope β
(see Eq. 4.14).

To get the cosmic shear and galaxy-galaxy lensing spectra, we have to perform
projections of the corresponding three-dimensional spectra. For the projections we need
to give a redshift distribution of the sources (see Eq. 5.67). We consider for simplicity
that all sources are located at a single redshift zs ≡ z0 in both fiducial models.



Appendix B

Perturbation Theory and Halo Model

B.1 Perturbative Solution to the Spherical Collapse
Model

This discussion follows mainly the work in Fosalba & Gaztanaga (1998). We already
discussed the equation of motion of a spherical mass distribution in Sect. 3.1. It is given
by

d2r

dt2
= −GNM(r)

r2
= −4π

3
GNρr , (B.1)

where we adopt that the mass is confined to a spherical region in the second step. We
can define a spherical density perturbation δ according to

(1 + δ) =

(
r(a)

r0

)−3

=

(
r

ar0

)−3

. (B.2)

Rewriting the equation of motion in terms of δ with the use of both Friedmann equations
(Eqs. 1.25 and 1.13), yields the differential equation

δ̈ + 2Hδ̇ − 4

3

δ̇2

1 + δ
=

3

2
Ωm(a)H2δ(1 + δ) . (B.3)

For the numerical solution of the equation it is useful to introduce the new variable
η = ln a. For an EdS universe we obtain then

δ′′ +
1

2
δ′ − 3

2
δ =

4

3

(δ′)2

1 + δ
+

3

2
δ2 , (B.4)

where δ′ ≡ dδ/dη. For δlin � 1 we can make the following power series ansatz

δ(δlin) =
∞∑

n=1

an

n!
(δlin)

n . (B.5)

Note that for an EdS universe we have δlin = a = eη and the initial condition a1 = 1.
We find for the next three coefficients

a2 =
34

21
, a3 =

682

189
, a4 =

446440

43659
. (B.6)

Note that the power-series ansatz is only valid for δlin � 1, i.e., in the quasilinear regime.
But it is also possible to find a solution for all scales.

223
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B.2 Helmholtz’s Theorem

Helmholtz’s theorem states that any differentiable vector field v(r) can be decomposed
into a curl-free part v‖ and a divergence-free part v⊥ such that v(r) = v‖(r) + v⊥(r).
A curl-free field can be represented by the scalar potential φ with v‖ = −∇φ and
a divergence-free field by the vector potential A with v⊥ = ∇ × A. Hence, the
decomposition of a general vector field is

v = −∇φ+∇×A . (B.7)

This decomposition is used heavily in physics. For example, the decomposition of the
electric field into contributions from electrostatics described by a scalar potential and
the divergence-free magnetic field.

The proof of this theorem is made by construction. We define the fields θ and w as
the divergence and the curl of the known field v, respectively:

∇ · v ≡ θ , (B.8)

∇× v ≡ w . (B.9)

The two potentials can be calculated from this new fields using the relations

φ(r) =
1

4π

∫
θ(r′)

|r − r′|
d3r′ , A(r) =

1

4π

∫
w(r′)

|r − r′|
d3r′ . (B.10)

Using the identity

∇2

(
1

|r − r′|

)
= −4πδD(r − r′) , (B.11)

we easily verify Eq. (B.8). To prove the second relation (B.9), we need the following
calculus identity

∇× v = ∇× (∇×A) = −∇(∇ ·A) +∇2A . (B.12)

The first term is equal to zero which can be shown by integration by parts. The second
term can be treated analogously to the first proof and we finally get ∇× v(r) = w(r).
For a complete discussion of Helmholtz’s theorem we refer to Arfken & Weber (2001).
In particular, this decomposition is helpful for the evolution equations of structure
formation.

B.3 Divergent Terms of the Tree-Level Trispectrum

The problematic terms in the trispectrum (see Eq. 2.130) are

Tpt ∝ P1P3P12F2(k1,−k12)F2(k3,k12) + P1P4P12F2(k1,−k12)F2(k4,k12)

+ P2P3P12F2(k2,−k12)F2(k3,k12) + P2P4P12F2(k2,−k12)F2(k4,k12) , (B.13)



B.4 Hierarchical Model of Higher-Order Correlation Functions 225

where Pi ≡ Ppt(ki), Pij ≡ Ppt(|ki +kj|) and kij ≡ ki +kj. In the case of a parallelogram
configuration one gets

Tpt ∝ P1P3PεF2(k1,−ε)F2(k3, ε) + P1P3PεF2(k1,−ε)F2(−k3, ε)

+ P1P3PεF2(−k1,−ε)F2(k3, ε) + P1P3PεF2(−k1,−ε)F2(−k3, ε) , (B.14)

with the limit ε→ 0. All divergent terms cancel and the remaining ones are equal to
zero. This is easy to show when one assigns a variable to each of the three terms of F2

(see Eq. 2.75). For example

F2(k1,−ε) =
5

7
− 1

2

k1 · ε
k1ε

(
k1

ε
+

ε

k1

)
+

2

7

(k1 · ε)2

k2
1ε

2
≡ A−B + C , (B.15)

F2(k3, ε) =
5

7
+

1

2

k3 · ε
k3ε

(
k3

ε
+

ε

k3

)
+

2

7

(k3 · ε)2

k2
3ε

2
≡ A+D + E , (B.16)

and similar for the other terms. The second term of both equations (denoted by the
variables B and D) is divergent as ε goes to zero. But these terms cancel with each
other:

Tpt ∝ (A−B + C)(A+D + E) + (A−B + C)(A−D + E)

+ (A+B + C)(A+D + E) + (A+B + C)(A−D + E)

= 4A2 + 4AE + 4CA+ 4CE . (B.17)

The remaining terms vanish because they are multiplied with P0 = 0.

B.4 Hierarchical Model of Higher-Order Correlation
Functions

In the hierarchical model the connected N -point correlation function ξN resolves into a
number of products of two-point correlation functions (e.g., Peebles 1980; Fry 1984):

ξN ≡ 〈δ(x1) · · · δ(xN)〉c =

T (N)∑
a=1

QN,a

∑
labelings

N−1∏
edges

ξij = QN

T (N)∑
a=1

∑
labelings

N−1∏
edges

ξij , (B.18)

where each different contribution is weighted by the constant factors QN,a. The product
runs over all N−1 connections or edges that link the N positions, where each connection
stands for a two-point correlation function ξij ≡ ξ(xi,xj) (see also Fig. 2.1). These
links thus form in the language of quantum field theory a tree-like structure. The first
sum runs over the number of trees with different topologies, where T (2) = 1, T (3) = 1,
T (4) = 2, . . . The second sum runs for each tree over the number of possible relabelings.
In the second step, we assumed that each topologically different tree has the same
constant Q. In this model the reduced three-point correlation function is given by

〈δ(x1)δ(x2)δ(x3)〉c = Q[ξ12ξ23 + ξ12ξ13 + ξ13ξ23] . (B.19)
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This model was successfully applied to early angular galaxy surveys which led to the
conjecture that the model also applies to higher-order correlation functions (Groth &
Peebles 1977; Fry & Peebles 1978). However, newer observational results show that
the hierarchical model does not hold meaning that Q becomes configuration dependent.
Nevertheless, the configuration dependence of Q is much smaller than the dependence of
the correlation functions and spectra. This is the basis for the definition of the reduced
correlation functions and spectra (e.g., Eq. 4.71).

We consider now the four-point cross-correlation function which is defined by ηδgδg =
〈δ(x1)δg(x2)δ(x3)δg(x4)〉c in detail, where we place two galaxies at the positions x2 and
x4 and probe the dark matter field at the positions x1 and x3. We show all different
diagrams that contribute to the four-point function. In addition, we transform each
product of two-point correlation functions into Fourier space. Hence, in the end we
have a representation of the cross-trispectrum in the hierarchical model. The cross-
trispectrum consists of two different contributions which we call “snake” (joining 4
points by an unbroken line) and “star” (joining three points to a common fourth one)
diagrams. We show the contribution of each term in the following first in real space
and then give its Fourier transform:
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We used the compact notation ξAB
ij ≡ 〈δA(xi)δB(xj)〉, PAB

i ≡ PAB(ki) and PAB
ij ≡

PAB(|ki + kj|), where A,B ∈ {g, δ}. In the parallelogram configuration four snake
terms vanish and the rest of the terms can be partially combined to yield Eqs. (4.96)
and (4.97).

B.5 Smoothing of Gaussian Random Fields

The dark matter density field needs to be smoothed with a filter function WR of a
given size R when one wants to compare with results obtained from observations and
simulations which are limited to a specific resolution. The smoothing of the density
field in real space is a convolution

δR(x) =

∫
d3yWR(|y − x|)δ(y) . (B.20)

Transforming this relation into Fourier space and using the convolution theorem yields

δR(k) = WR(k)δ(k) . (B.21)

The smoothed density field is still a Gaussian random field because the integral can be
seen as a sum of Gaussian random variables. For the filter one usually takes a Gaussian
or spherically-symmetric top-hat function. Here we will use the top-hat function which
is given by

WR(x) =

{
3/(4πR3) for x ≤ R ,

0 for x > R .
(B.22)

Note that the top-hat function is defined such that it is normalized to unity. The Fourier
transform of the top-hat function is

WR(k) =
3

(kR)3
[sin(kR)− kR cos(kR)] . (B.23)
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Then the filtered power spectrum is

PR(k) = P (k)W 2
R(k) . (B.24)

The result of this procedure is a Gaussian random field with variance

σ2
R(m) =

∫
dk

k

k3P (k, z = 0)

2π2
|WR(k)|2 . (B.25)

B.6 Implementation of the Halo Mass Function

For programming it is useful to rewrite the definition of the mass function in Eq. (3.33)
as

dn

d lnm
=

ρ̄

m
νf(ν)

d lnσ−1

d lnm
. (B.26)

The next step is to calculate

d lnσ−1

d lnm
= − m

2σ2

∫
dk

k
∆(k, z = 0)

d

dm
|W (kR)|2 . (B.27)

Finally, we rewrite the mass derivative as:

d

dm
|W (kR)|2 =

d(kR)

dm

d

d(kR)
|W (kR)|2 =

d(kR)

dm
2W (kR)

dW

d(kR)
,

and perform the derivative of the weight function

dW

dx
= 3

sin x

x2
− 9

sin x− x cosx

x4
and

dR

dm
=

1

R24πρ̄
.

B.7 Central Galaxy Contribution

In this section we will investigate the impact of a central galaxy population on the
small-scale clustering of galaxies following the derivation in Cooray & Sheth (2002) and
Smith et al. (2006). First, we derive the behavior for a general HOD and then adopt
the Kravtsov et al. (2004) parametrization described in Sect. 4.1.1.

Let us consider that we have a halo of mass m containing N galaxies. In addition,
we assume that one galaxy is always placed in the center of the halo and the other
(satellite) galaxies are placed around the center. Using this setup, we first consider the
effect on the correlation of two points in a single halo. In this halo we have (N − 1)
central-satellite correlations and (N − 1)(N − 2)/2 satellite-satellite correlations. Pairs
that include the central galaxy are weighted by the density profile, whereas satellite
pairs are weighted by the squared density profile. This is due to the fact that the
probability of finding a satellite galaxy at distance r from the center follows the density
profile of galaxies. We define for the following discussion the weight factor

W nc(k1, k2,m) ≡ 〈N(N − 1)(m)〉ũg(k1,m)ũg(k2,m) . (B.28)
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Setting in this expression k1 = k2 ≡ k we get the weight factor for the one-halo term of
the galaxy power spectrum (see Eq. 4.26). Including a central galaxy this weight factor
is replaced by

W g
12(m) = 2!

∑
N>1

P (N |m)

[
(N − 1)

2
(ũ1 + ũ2) +

1

2
(N − 1)(N − 2)ũ1ũ2

]
=
∑
N>1

P (N |m) [N(N − 1)ũ1ũ2 + (N − 1)(ũ1 + ũ2 − 2ũ1ũ2)]

= 〈N(N − 1)(m)〉ũ1ũ2 + [〈N(m)〉 − 1 + P (0|m)][ũ1 + ũ2 − 2ũ1ũ2] , (B.29)

where we employed the short-hand notation ũi ≡ ũg(ki,m) and W g
12(m) ≡ W g(k1, k2,m).

Note that the sum starts from N > 1 because we consider correlations of pairs and
thus there must be at least two galaxies in the halo. The factor of 2! is introduced
because the term ũgũg is normalized by the total number of pairs including double
counting. Furthermore, we have to symmetrize the central-satellite correlations in
order to ensure that the weight function is symmetric in the two wave-numbers, i.e.,
W g(k1, k2,m) = W g(k2, k1,m) which results here in a factor of 1/2. In the last step
we used the definition of the first- and second-order moments of the HOD given in
Eqs. (4.6) and (4.7), and the relation

∞∑
N>1

(N − 1)P (N |m) =
∞∑

N=1

NP (N |m)− P (1|m)−
∞∑

N=0

P (N |m) + P (0|m) + P (1|m)

= 〈N(m)〉 − 1 + P (0|m) , (B.30)

where we used the normalization of the HOD,
∑∞

N=0 P (N |m) = 1, and the definition
of the first moment in the second step. Here P (0|m) is the probability of finding no
galaxies in a halo of mass m. Applying the HOD parametrization of Kravtsov et al.
(2004) which separates the contributions from central and satellite galaxies we showed
that the first- and second-order moments are given by

〈N(m)〉 = N̄sat + N̄cen , (B.31)

〈N(N − 1)(m)〉 = N̄2
sat + 2N̄cenN̄sat . (B.32)

In addition to these moments, we need a model for the probability of P (0|m). When
the number of galaxies in a halo is large we can set P (0|m) = 0. On the other hand, if
the number of galaxies in the halo is very small, the HOD is dominated by the central
galaxy. The central galaxy population in a halo follows a Bernoulli distribution because
there is either one central or none:

Pcen(1|m) = 1− Pcen(0|m) = N̄cen ≡
∞∑

N=1

NPcen(N |m) , (B.33)

where in the last two steps we used the fact that we have only one central galaxy
per halo implying that Pcen(2|m) = Pcen(3|m) = . . . = 0. In the following we set for
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simplicity N̄cen = Θ(m−mmin). In this case we find

W g
12(m) = N̄2

satũg(k1,m)ũg(k2,m) + N̄sat[ũg(k1,m) + ũg(k2,m)] , (B.34)

When we want to apply this weighting to the one-halo term of the power spectrum we
need to set k1 = k2 ≡ k.

Next we consider the weight factor of triplets of galaxies in a single halo which is
needed for the one-halo term of the galaxy bispectrum (see Eq. 4.55):

W nc(k1, k2, k3,m) ≡ 〈N(N − 1)(N − 2)(m)〉ũg(k1,m)ũg(k2,m)ũg(k3,m) . (B.35)

With the same setup as above we have (N − 1)(N − 2)/2 central-satellite-satellite
correlations and (N − 1)(N − 2)(N − 3)/6 satellite-satellite-satellite-correlations giving

W g
123(m) = 3!

∑
N>2

P (N |m)

{
1

6
(N − 1)(N − 2) (ũ1ũ2 + ũ1ũ3 + ũ2ũ3)

+
1

6
(N − 1)(N − 2)(N − 3)ũ1ũ2ũ3

}
=
∑
N>2

P (N |m)

{
[N(N − 1)(N − 2)− 3N(N − 1) + 6(N − 1)] ũ1ũ2ũ3

+ [N(N − 1)− 2(N − 1)](ũ1ũ2 + ũ1ũ3 + ũ2ũ3)

}
= 〈N(N − 1)(N − 2)(m)〉ũ1ũ2ũ3

+ 6

[
1

2
〈N(N − 1)(m)〉 − 〈N(m)〉+ 1− P (0|m)

]
×
[
1

3
(ũ1ũ2 + ũ1ũ3 + ũ2ũ3)− ũ1ũ2ũ3

]
, (B.36)

where W g
123(m) = W g(k1, k2, k3,m). The factor of 3! accounts for the fact that the

profiles are normalized by the total number of triplets including repetition. The sum
is for N > 2 because there must be at least 3 galaxies in the halo to calculate the
three-point correlation function. Again, we have to symmetrize the central-satellite-
satellite correlations in order to ensure that the weight function is symmetric in its
three wave-numbers which results here in a factor of 1/3. Employing Eq. (4.17) for the
third-order moment results in

W g
123(m) = N̄3

sat

3∏
i=1

ũg(ki,m) + N̄2
sat

[
ũg(k1,m)ũg(k2,m) + ũg(k1,m)ũg(k3,m)

+ ũg(k2,m)ũg(k3,m)

]
, (B.37)

where we assumed for simplicity that N̄cen = Θ(m−mmin).
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