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1 Introduction

According to Einstein’s General Theory of Relativity, light is deflected by gravitational fields.
This effect is omnipresent on cosmological scales: light rays emitted by distant galaxies are con-
tinuously deflected by the large scale structure of the Universe, leading to a coherent distortion
of the images of the galaxies. This pattern directly encodes information about the properties of
the mass distribution between the observer and the source galaxies.

Since its first detection in the 1990s, this so-called weak gravitational lens effect has become
a powerful method to constrain cosmological parameters and to study the matter distribution
in the Universe. It does not rely on assumptions on the relation between luminous and dark
matter or the dynamical state of the objects under consideration; therefore, it constitutes an
important, independent complement to other cosmological probes such as, e.g., the clustering of
galaxies. In fact, this property of weak lensing makes it an ideal method to study the relation
of galaxies to the underlying dark matter distribution, the so-called galaxy bias.

In the near future, several large observational campaigns such as the Kilo-Degree Survey
(KIDS) and the Panoramic Survey Telescope and Rapid Response System survey (PanSTARRS)
will allow measurements of weak gravitational lensing with unprecedented signal-to-noise levels.
To make optimal use of these data sets, it is mandatory to have accurate theoretical predictions
for the weak lensing effects for various cosmological models to which the measurements can
be compared. Presently, however, this prerequisite is not yet fulfilled: modelling the non-
linear gravitational evolution of the matter distribution in the Universe is difficult and can only
be done using costly numerical simulations. For this reason, only fitting formulae of limited
accuracy are available at present to describe the dependence of the statistical properties of the
large-scale structure on the cosmological parameters. The transition from the properties of
the matter distribution to analytical predictions for weak gravitational lensing requires further
approximations that are not accurate enough in all cases.

In this thesis, we make a step towards increasing the quality of the theoretical predictions of
the weak lensing effect. We use one of the largest and most current simulations of structure for-
mation, the Millennium Simulation, in combination with a semi-analytic model for the formation
of galaxies, to carry out ray-tracing simulations of weak gravitational lensing by the cosmological
large-scale structure. The improvement of the theoretical predictions can only be translated into
more accurate constraints on cosmological parameters if adequate statistical tools are available
to compare theoretical results to observational data. Therefore, we complement our simulation
effort with a discussion of several aspects of the statistical methods that are currently used to
analyze weak lensing measurements.

In detail, this thesis is organized as follows:

• In Chapter 2, we review the cosmological framework relevant for this thesis and discuss
the most important aspects of structure formation in the Universe.

• Chapter 3 presents the formalism of weak gravitational lensing. We introduce several
two-point statistics of the distortion field and relate them to the properties of the matter
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distribution in the Universe. Furthermore, we discuss weak gravitational lensing by galax-
ies and the influence of weak gravitational lensing on the angular clustering of galaxies.

• Chapter 4 contains an overview of the most important techniques for simulating the struc-
ture formation in the Universe. We also briefly describe algorithms for the identification
of gravitationally bound structures, so-called halos, and semi-analytic methods to popu-
late these halos with galaxies. Finally, we introduce the N -body simulations used for this
thesis.

• In Chapter 5, we describe the multiple-lens-plane algorithm, which is the essence of ray-
tracing simulations of weak gravitational lensing. We discuss two different implementa-
tions, suited for N -body simulations of different sizes. As a first application, we study the
accuracy of current theoretical predictions for weak lensing two-point statistics.

• Chapter 6 is concerned with the statistical analysis of weak lensing surveys. We report on a
method to obtain an unbiased estimate of the inverse covariance matrix from simulations or
observational data, which is needed to compute the likelihood function for the estimation
of cosmological parameters. We investigate the accuracy of the Gaussian approximation
to the cosmic shear likelihood using both a large set of ray-tracing simulations and a
novel method to estimate high-dimensional probability distributions. We quantify the
effect of the non-Gaussianity on the constraints on cosmological parameters and apply our
technique to re-analyze cosmic shear data obtained from the Chandra Deep Field South.

• In Chapter 7, we use our ray-tracing simulations to gain a deeper understanding of weak
lensing by galaxies and develop a simple halo model. Furthermore, we compare our simu-
lation results to measurements from the Sloan Digital Sky Survey.

• Chapter 8 focuses on the relation of the distribution of galaxies to that of the dark matter
component. Within the framework of linear stochastic biasing, the galaxy bias is described
by two scale-dependent parameters. We study how accurately these functions can be
predicted from N -body simulations directly and how well they can be measured using
weak lensing.

The thesis concludes with a summary and an outlook.



2 The Cosmological Standard Model

In the past decade, cosmology has seen a dramatic development. Huge data sets have become
available through the advent of large-scale surveys such as the Sloan Digital Sky Survey (SDSS,
e.g. York et al. 2000), which have greatly increased our knowledge of the distribution of galaxies,
or experiments such as COBE (Smoot et al. 1991) the Wilkinson Microwave Anisotropy Probe
(WMAP, Bennett et al. 1997), which have mapped the Cosmic Microwave Background (CMB)
anisotropies with unprecedented accuracy. The remarkable agreement on the properties of our
Universe achieved by all those very different observations has led to the establishment of the
cosmological standard model. It states that ordinary baryonic matter, as seen mostly in the
form of stars and gas, only constitutes about four percent of the total energy-matter content
of the Universe. About 23% of the total energy density is in the form of non-baryonic, “dark”
matter, which reveals its presence only by its gravitational interaction. The remaining ≈ 73% are
contributed by the mysterious dark energy, which is held responsible for the observed accelerated
expansion of the Universe at late times.

In this section, we will review the basics of the cosmological standard model as far as they are
relevant for this thesis. More detailed treatments can be found in, e.g., Peacock (1999), Dodelson
(2003), Schneider (2006a) or Weinberg (1972, 2008), from which also most of the material in
this section was drawn.

2.1 Homogeneous and isotropic world models

The theoretical foundation of the standard model is the General Theory of Relativity (Einstein
1916), which is the fundamental theory of gravity – the only known force effective on length scales
relevant for cosmology. Together with the Cosmological Principle, it determines the geometry
and dynamics of the universe of the standard model.

2.1.1 The field equations of General Relativity

In General Relativity, gravity is an effect of the geometrical properties of the space-time, a
(3 + 1)-dimensional Riemannian manifold. Its geometry is described by the symmetric metric
tensor gµν , which obeys the field equations of General Relativity:

Gµν + Λgµν = −8πG

c4
Tµν . (2.1)

Here, the Einstein tensor Gµν is a function of the metric tensor only and encodes the geometry
of space-time. On the other side of the equation is the energy-momentum tensor, which specifies
the energy and matter content of the Universe. Finally, Λ denotes the cosmological constant.
Originally introduced into the field equations by Einstein to allow for a static solution, it has
been revived in recent times by the discovery of the accelerated expansion of the Universe.

The presence of matter changes the geometry of space-time. Since particles travel on geodesics
of the space-time manifold, the presence of a massive body will alter the trajectories compared
to empty space. In the Newtonian limit this is interpreted as the effect of a gravitational force.
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2.1.2 The Friedmann-Lemaitre-Robertson-Walker model

The Cosmological Principle states that the Universe is homogeneous and isotropic for a certain
class of observers. These are the so-called fundamental observers, which are free-falling and
therefore comoving with the mean motion of matter in the Universe. The claim of isotropy has
been verified by observations of the large-scale distribution of galaxies and radio sources, as well
as by CMB experiments (Smoot et al. 1991). The step from the observed isotropy to homogeneity
is then made by assuming that the Earth is not located at a special place. This means that any
fundamental observer sees an isotropic Universe, which in turn implies homogeneity.

The high symmetry of the space-time imposed by the Cosmological Principle simplifies the
solution of the field equations (2.1) considerably. It has been shown by Robertson (1935) and
Walker (1936) that the form of the line-element ds = gµν dxµ dxν, which is the space-time
interval between two events separated by the infinitesimally small vector dxµ, is constrained to
be of the form

ds2 = c2dt2 − a2(t)
[

dw2 + f2
K(w)

(

dθ2 + sin2 θ dφ2
)]

. (2.2)

The spatial coordinates are given by the comoving radial distance w and the angular coordinates
θ and φ. The function a(t) is called the scale factor, and it describes the global expansion of
the Universe. By definition, a(t0) = 1 at the present time. The function fK depends on the
curvature of the Universe, parametrized by the curvature constant K:

fK(w) =











1/
√
K sin(

√
Kw) K > 0

w K = 0

1/
√
−K sinh(

√
−Kw) K < 0

(2.3)

It can be shown (Weinberg 1972) that isotropy and homogeneity require the energy-momentum
tensor to take the perfect fluid form:

Tµν =

(

ρ(t) +
p(t)

c2

)

uµuν − p(t) gµν . (2.4)

Here, uµ is the four-velocity, ρ(t) is the density and p(t) is the pressure of the fluid. The fluid
is characterized by its equation of state

p(t) = weos ρ(t)c
2 . (2.5)

With the Robertson-Walker metric (Eq. 2.2) and Eq. (2.4) for the energy-momentum tensor,
the field equations (2.1) reduce to two independent equations which, together with the equation
of state (2.5), completely determine a(t), p(t) and ρ(t):

(

ȧ(t)

a(t)

)2

=
8πG

3
ρ(t) − Kc2

a2(t)
+

Λ

3
, (2.6)

ä(t)

a(t)
= −4πG

3

(

ρ(t) +
3p(t)

c2

)

+
Λ

3
. (2.7)

From these Friedmann equations, the adiabatic equation can be obtained:

d(a3ρc2)

dt
+ p

da3

dt
= 0 . (2.8)
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This relation allows one to determine dependence of the density of the various matter components
on the scale factor. With the ansatz ρ ∝ aν and Eq. (2.5), the result is

ρ(a) = ρ0a
−3(weos+1) . (2.9)

For nonrelativistic particles, for which the pressure is essentially zero (“dust”), and which are
usually referred to as the matter component, one obtains ρm ∝ a−3. All relativistic particle
species like photons or neutrinos are subsumed under the term radiation, and their density
evolves as ρr ∝ a−4, since p = ρc2/3. Finally, from Eq. (2.6) it can be seen that Λ 6= 0
corresponds to a constant density of ρΛ = Λ

8πG . From Eq. (2.5) it follows directly that such a
contribution would lead to pΛ = −ρΛc

2.

Eq. (2.6) allows the determination of the curvature constant. First, let K = 0, then it follows
that

ρ(t) =
3H(t)2

8πG
≡ ρcr(t) , (2.10)

where the critical density ρcr(t) and the Hubble parameter H(t) = ȧ/a were defined. The Λ-term
was absorbed into the density, so that ρ(t) = ρm(t)+ρr(t)+ρΛ + ... The critical density defines
a natural density scale, corresponding to a universe with a flat geometry. It therefore makes
sense to define the density parameter for species i:

Ωi(t) ≡
ρi(t)

ρcr(t)
=

8πGρi(t)

3H2(t)
. (2.11)

Furthermore, the total density parameter is given by Ω0 ≡ ∑

i Ωi. Usually, these parameters
are given for the present time, in which case the argument is simply omitted. Going back to
the Friedmann-Eq. (2.6) and evaluating it at t = t0, one finds with the definition of the Hubble
constant H0 = H(t0) that

Kc2 = H2
0 (Ω0 − 1) . (2.12)

Thus, the total density determines the geometry of the Universe (see Eqns. 2.2 and 2.3). Uni-
verses with Ω0 > 1 ⇔ K > 0 are called closed, such with Ω0 = 1 ⇔ K = 0 flat, and universes
with Ω0 < 1 ⇔ K < 0 open.

With these definitions, Friedmann’s equation can be rewritten as

H2(t) = H2
0

(

Ωr

a4
+

Ωm

a3
+

1 − Ω0

a2
+ ΩΛ

)

. (2.13)

From this it can be seen that in universes in which a increases with time, cosmic evolution
at early times (a ≪ 1) must have been totally dominated by radiation. Later, the radiation
contribution diminishes and other components successively come to dominate the expansion. In
the standard model (see Tab. 2.1 for a recent compilation of the relevant model parameters),
the radiation era is followed by a matter-dominated epoch. The transition between these two
is determined by the time at which matter and radiation have equal density parameters. The
corresponding scale factor is

aeq =
Ωr

Ωm
≈ 3.2 × 10−5 Ω−1

m h−2 , (2.14)
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zL=1

zL=2

Ωm

Ω
Λ

open

expands forever

closed

0 1 2 3
−2

2

0

1

−1

loiteringno Big Bang

Figure 2.1: Expansion behaviour for
different density parameters (following
Peacock 1999). Combinations of
matter and dark energy density that
yield a flat universe are given by the
thick diagonal line. The maximum
redshift in loitering models is denoted
by zL.

where h is defined by H0 = 100h km s−1 Mpc−1.

From Eq. (2.13), the future of a universe that has H0 > 0 – like ours – can be determined.
For the case that the radiation density has become negligible, the dependence of the fate of
the Universe on matter and vacuum energy density can be read off from Fig. 2.1. All of these
models require an initial singularity (a(0) = 0), except in the case of a large ΩΛ and small matter
density. In the special case of a loitering universe, the scale factor attains a finite minimum value
in the past (corresponding to the maximum redshift zL in Fig. 2.1). Given reasonable values
for Ωm, loitering models can be ruled out strongly, because objects at redshifts as high as z ≈ 7
have been observed – far beyond the maximum possible redshift predicted by these models.

2.1.3 Properties of FLRW models

Hubble Law

Comoving coordinates x are related to physical or proper (spatial) coordinates r by

x = r/a(t) . (2.15)

Considering a galaxy located at the origin, and another galaxy separated from the first one by
r, the time evolution of the separation vector is given by

dr

dt
= ȧ(t)x =

ȧ(t)

a(t)
r . (2.16)

With the Hubble parameter H(t) = ȧ(t)
a(t) and the Hubble constant H0 = H(t0), one directly

obtains the Hubble Law for the expansion in the local Universe (t ≈ t0):

u(r) = H0r . (2.17)
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Redshift

Light rays travel along null geodesics, i.e. ds2 = 0. For a radial light ray one has in addition
dΩ = 0. Eq. (2.2) gives the relation between comoving radial distance and the cosmic time t
when the photon arriving at the observer at t0 was emitted:

cdt = −a(t) dw ⇒ w =

∫ t0

t

cdt

a(t)
. (2.18)

The negative sign in Eq. (2.18) was chosen because on the photon path to the observer at w = 0,
dt > 0, but dw < 0. Now let a source at distance w emit two photons at t and t+ dtem, which
the observer detects at t0 and t0 + dtobs. Employing Eq. (2.18) for both photons, it follows that
dtem = a(t) dtobs, or expressed in frequencies:

νem

νobs
=

1

a(t)
≡ 1 + z , (2.19)

where the redshift z was defined.

Distance measures

In a curved and expanding universe, the notion of “distance” is not a well-defined concept. In
fact, the distance to an object depends on the measurement method used. Two important ways
of distance determination in cosmology are to measure the apparent size of a standard ruler (an
object of known physical size) or the apparent brightness of a standard candle (an object of
known luminosity). While in an Euclidean space both methods yield the same result, they differ
in a curved Robertson-Walker space-time.

Consider two light rays emitted simultaneously from the edges of a source with diameter dl,
which arrive at the observer enclosing an angle dθ. The angular diameter distance is defined as

D< ≡ dl

dθ
= a(t) fK(w) , (2.20)

where the last equality can be read off from the metric (Eq. 2.2).
The method using a standard candle requires knowledge of the luminosity L of a given

source. Assuming that the source radiates isotropically, its photons have spread out over an
area 4πf2

K(w) when arriving at the observer, are redshifted by a factor (1 + z)−1 and their
arrival frequency is reduced by the same factor. The flux measured by the observer is then

F =
L

4π(1 + z)2f2
K(w)

. (2.21)

The luminosity distance is defined analogously to Euclidean space as

DL ≡
√

L

4πF
= (1 + z)fK(w) = (1 + z)2D< . (2.22)

The horizon

Since the Big Bang, photons can have travelled only a finite distance, which is called the
horizon dh. Its physical size at given cosmic time t or scale factor a can be computed from
cdt = −adw:

dh = a(t)

∫ t

0

cdt

a(t)
= a(t)

∫ a

0

cda

a2H(a)
. (2.23)
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Regions which are separated by a distance larger than the horizon size can not have been in
causal contact. However, this may change at later times as the horizon size increases.

2.2 Structure formation

The FLRW model accounts for the overall evolution of a homogeneous, isotropic universe.
This is a good description for our Universe when smoothed out on scales larger than ≈ 200Mpc.
However, there is a wealth of structures on small to intermediate length scales, such as galax-
ies, galaxy clusters and filaments. While it is generally being assumed that the formation of
structures does not notably influence the overall expansion history of the smooth Universe, the
statistical properties of the large-scale structure depend strongly on the background cosmology.
In this section, we review some basic aspects of structure formation, focusing mainly on the
evolution of the dark matter component.

2.2.1 The origin of structure

The origin of the small deviations from a homogeneous density which developed into the
large-scale structure observed today is currently believed to be a phase of exponential expansion
(“Inflation”, see e.g. Linde 2005, and references therein) shortly after the Big Bang. In the
simplest scenario, this expansion is driven by a hypothetical scalar field. During this period,
initially subhorizon-sized quantum fluctuations of this field were blown up to superhorizon sizes
by the rapid expansion of the Universe and therefore were imprinted permanently to the density
field. At the end of the inflationary period, these small perturbations start to grow and so form
the seeds of the structures observed today.

2.2.2 Linear perturbation theory

Structure growth can be roughly divided into three regimes. Shortly after the end of inflation,
essentially all density fluctuations are larger than the horizon size at that time, and therefore
require a treatment within the framework of General Relativity. At this time, however, the
perturbations are very small, so that linear perturbation theory is sufficient to describe their
evolution. As time goes by, fluctuations on larger scales enter the horizon, then allowing for a
simpler linear Newtonian description. Eventually small-scale perturbations will grow so large
that linear theory fails. This regime is difficult to describe analytically, and therefore is usually
studied using N -body simulations.

Newtonian theory

First, we will focus on perturbations that are well inside the horizon during the matter domi-
nated era. In this case, Newtonian physics can be used to study the evolution of these structures.
Observations indicate that dark matter is non-relativistic and collisionless, so that the evolu-
tion of its phase-space density f(r,u) is determined by the collisionless Boltzmann (or Vlasov)
equation

∂f

∂t
+ u

∂f

∂r
− ∇Φ

∂f

∂u
= 0 (2.24)

and the Poisson equation

∇2φ = 4πGρ(r, t) − Λ . (2.25)
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Here, r and u are the physical position and velocity, respectively, and φ is the gravitational po-
tential. The dark matter density is related to the phase space density by ρ(x) = mDM

∫

du f(x,u),
where mDM is the mass of a dark matter particle. This system of equations is highly non-linear,
and no analytic solution is known. However, on large scales or at early times, it is possible to
treat the dark matter as an ideal fluid with a unique velocity at each point in space. This is
a good approximation if the density fluctuations are small, so that the dark matter particles
mainly follow the mean flow determined by the large-scale gravitational potential. It breaks
down when high density regions form, where particle trajectories cross frequently and no unique
velocity field exists.

In the fluid approximation, the evolution of density, velocity field and gravitational potential
are governed by the three coupled equations

∂ρ(r, t)

∂t
+ ∇r · [ρ(r, t)ū(r, t)] = 0 (Continuity Eq.), (2.26)

∂ū(r, t)

∂t
+ [ū(r, t) · ∇r] ū(r, t) = −∇rφ(r, t) (Euler Eq.), (2.27)

∇
2
rφ(r, t) = 4πGρ(r, t) − Λ (Poisson Eq.) . (2.28)

Here, ū =
∫

d3u f(x,u)u/
∫

d3u f(x,u) is the mean velocity within the volume element d3x.
Eqs. (2.26) and (2.27) can be derived from the Boltzmann equation by taking moments of the
phase space density. The continuity equation follows from Eq. (2.24) by intergrating over the
velocity, whereas the Euler equation results from multiplication of Eq. (2.24) with u followed
by velocity integration, making the additional assumption that dark matter is cold, i.e. that its
velocity dispersion vanishes.

These equations can be expressed in terms of comoving coordinates

x =
r

a(t)
, (2.29)

ρ(r, t) = ρ̂

(

r

a(t)
, t

)

, (2.30)

ū(r, t) =
ȧ(t)

a(t)
r + v

(

r

a(t)
, t

)

, (2.31)

where in the last equation the velocity field was decomposed into the Hubble flow and the peculiar
velocity. It is useful to introduce quantities that describe the deviation from a homogeneous
Universe: the density contrast is defined by

δ(x, t) =
ρ̂(x, t) − ρ̄

ρ̄
(2.32)

and the comoving gravitational potential by

Φ(x, t) = φ[a(t)x, t] +
äa

2
|x|2 . (2.33)

Substituting all these into Eqns. (2.26)-(2.28), one eventually obtains

∂δ

∂t
+

1

a
∇x · [(1 + δ)v] = 0, (2.34)

∂v

∂t
+
ȧ

a
v +

1

a
(v · ∇x)v = −1

a
∇xΦ, (2.35)

∇
2
xΦ =

3H2
0Ωm

2a
δ . (2.36)
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For δ ≪ 1, these equations can be simplified considerably by neglecting all terms of higher
than linear order in δ and v. This leaves the Poisson equation (2.36) unchanged, while the
continuity and Euler equations become

∂δ

∂t
+

1

a
∇x · v = 0 (2.37)

∂v

∂t
+
ȧ

a
v = −1

a
∇xΦ . (2.38)

Finally, taking the divergence of Eq. (2.38) and the time derivative of Eq. (2.37) and replacing
Φ using Eq. (2.36), one obtains

∂2δ

∂t2
+

2ȧ

a

∂δ

∂t
− 3H2

0Ωm

2a3
δ = 0 . (2.39)

Since there is no explicit spatial dependence in Eq. (2.39), every solution can be written as

δ(x, t) = D+(t)∆+(x) +D−(t)∆−(x) . (2.40)

This means that in the linear regime the shape of a given perturbation remains unchanged in
comoving coordinates, only the density contrast de- or increases. One solution of Eq. (2.39) is
the Hubble parameter H(t) = D−(t), which for an expanding, matter-dominated Universe is a
monotonically decreasing function of time. Any contribution of this solution to δ in Eq. (2.40)
will die out quickly, and is therefore irrelevant for structure formation. The second solution can
be expressed through the first one using the Wronski determinant and is given by

D+(t) = const.×H2
0 H(t)

∫ t

0

dt′

a2(t′)H2(t′)
. (2.41)

The function D+, constituting the growing mode, is called the the growth factor and is nor-
malized such that it is unity at the present time. For the special case of an Einstein-de-Sitter
universe (Ω0 = Ωm = 1), the exact solution D+(t) = a(t) can be found.

The evolution of a dark matter perturbation depends on the cosmological epoch. If one
considers a dark matter perturbation in a radiation-dominated background (neglecting curvature
and dark energy contributions to H(t)), one can show from Eq. (2.39) that

D+(a) ∝ a

aeq
+

2

3
. (2.42)

The density contrast is basically constant while a ≪ aeq; structure growth in this era is sup-
pressed by the expansion of the Universe. Only when the matter density starts to dominate the
cosmic expansion, perturbations in the dark matter density start to grow with D+ ∝ a.

Suppression of structure growth

If a perturbation is of a size comparable to or larger than the horizon size, the Newtonian
description breaks down. One finds from a fully relativistic treatment that δ ∝ a2 while radiation
is the dominant species, and δ ∝ a during the matter dominated era. Together with the results
of linear Newtionian theory, this means that there is a characteristic scale in structure growth,
namely the horizon size at matter-radiation equality, corresponding to a length scale of dH(aeq) ≈
16(Ωmh)

−2 Mpc: the growth of perturbations smaller than this length scale is suppressed because
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aenter
(1) aeq aenter

(2) a

δ

(1)

(2)

Figure 2.2: Evolution of two pertur-
bations; the small-scale perturbation

(1) enters the horizon at a
(1)
enter < aeq,

the large-scale perturbation (2) enters

the horizon at a
(2)
enter > aeq.

structure growth stalls for sub-horizon fluctuations during the radiation dominated era. From

Fig. 2.2, it can be seen that a perturbation which enters the horizon at a
(1)
enter < aeq does not

grow until the time of matter-radiation-equality. In contrast, a larger-scale perturbation that
is still outside the horizon long after aeq can grow continuously. Therefore, at late times it is

denser by a factor of
(

aeq/a
(1)
enter

)2
.

Fourier analysis of density perturbations

It is often useful to think of the density contrast as being composed of perturbations to which
a particular length scale can be assigned. In the case of a flat geometry and if one works in
comoving coordinates, a decomposition of δ into Fourier modes is a natural way to achieve this.
In other geometries, the Fourier modes do not form a complete set of basis functions. However,
this difference only becomes important on scales comparable to the horizon size and therefore
is normally neglected (Peacock 1999). Throughout, we will denote the Fourier transform of
a quantity f with f̃ . We illustrate our convention for the Fourier transform with the density
contrast:

δ(x, t) =

∫

d3k

(2π)3
eik·x δ̃(k, t) , (2.43)

where k is the comoving wave-vector.
Rewriting the linear evolution equations (Eqs. 2.36–2.38) in Fourier space, we find

∂δ̃

∂t
+

i

a
ṽ · k = 0 , (2.44)

∂ṽ

∂t
+
ȧ

a
ṽ =

−ik

a
Φ̃ , (2.45)

−k2Φ =
3H2

0Ωm

2a
δ̃ . (2.46)

This shows another benefit of working in Fourier space: in the linear regime, all Fourier modes
of density and velocity evolve independently of each other. This ceases to be true when δ
approaches unity and one has to expand Eqs. (2.34)–(2.36) to higher orders in δ.
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Transfer functions

The picture of structure formation we have given so far is strongly simplified: besides the
a suppression of small-scale perturbations due to their horizon-entry while the Universe was
dominated by radiation, several other effects exist that lead to a scale-dependence of the growth
of structure. For example, small-scale perturbations can be erased as soon as they enter the
horizon due to fast particles streaming out of the shallower potential wells. Depending on the
nature of the dark matter particles, this effect is more or less pronounced. If dark matter consists
of light particles that are relativistic for quite a long time (hot dark matter), only the largest
perturbations will survive this so-called free streaming. To account for these complications, one
compares perturbations with wavenumber k to a reference perturbation with wavenumber kr

that enters the horizon well after aeq. At a very early time ti, all fluctuations of interest are larger
than the horizon. The transfer function T (k) connects the ratio of the fluctuation amplitudes
at early times to the amplitude ratio today, taking into account the scale-dependent effects of
causal physics:

δ̃(k, t0)

δ̃(kr, t0)
= T (k)

δ̃(k, ti)

δ̃(kr, ti)
. (2.47)

An approximation to the transfer function can be obtained by the following argument: large-
scale fluctuations enter the horizon long after matter-radiation equality and therefore grow
unhindered. Therefore, T (k) should approach unity for sufficiently small k. One finds from
Eq. (2.23) for the comoving horizon size during the radiation-dominated era xh(a) ∝ a. A
fluctuation with comoving wavelength λ enters the horizon when λ ∼ 1/k ∼ xh(aenter); therefore,
aenter ∝ 1/k. Since the density contrast of such a fluctuation is suppressed by a factor of
(aenter/aeq)

2, the transfer function should decline asymptotically ∝ k−2. Thus,

Tk =

{

1 for 1/k ≫ xh(aeq)

[k xh(aeq)]
−2 for 1/k ≪ xh(aeq) .

(2.48)

More accurate fitting functions have been given in Bardeen et al. (1986) or Eisenstein & Hu
(1999), who also include corrections due to baryonic effects.

2.2.3 Statistics of the density field

No model of structure formation will be able to predict the exact density field in the Universe
as we observe it today, mainly because the initial conditions are subject to stochasticity and
therefore unknown. However, inflationary scenarios predict the statistical properties of the initial
density field. The main goal of the theory of structure formation therefore can only be to give
a description of these properties and their evolution.

Stochastic processes and random fields

The density field in the Universe can be thought of as a particular realization of an underlying
stochastic process with certain statistical properties that are determined by the cosmological
parameters. A stochastic process with index space T is a collection of random variables R =
{Y (t), t ∈ T}. A particular realization of R is denoted by {y(t), t ∈ T}. The properties of a
stochastic process can be described by its finite-dimensional distribution functions

pt1,...,tm(y1, . . . , ym) = Prob [Y (t1) = y1, . . . , Y (tm) = ym] for m ≥ 1 , (2.49)
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which give the probability of occurrence of a specific realization of the process. Another possi-
bility to characterize R is by its moments. The m-th moment of a stochastic process is defined
by

〈Y (t1) · · · Y (tm)〉 =

∫

dy1 · · · dym pt1,...,tm(y1, . . . , ym) y1 · · · ym . (2.50)

The first moment is the mean, higher moments are called the m-point correlation functions. The
brackets 〈·〉 denote the ensemble average, which is the average over many realizations of R.

If T = Rn, the stochastic process is called a random field, in which case we shall denote
the members of the index space with x. A random field is said to be homogeneous, if all of
its finite-dimensional distribution functions are invariant under simultaneous translations. Of
particular interest is the two-point correlation function ξY ≡ 〈Y (x1)Y (x2)〉, which then only
depends on x1 − x2. The field is called homogeneous and isotropic, if its finite-dimensional
distribution functions are additionally invariant under simultaneous rotations. In this case, the
two-point correlation function ξY ≡ 〈Y (x1)Y (x2)〉 depends only on |x1 − x2|. A Gaussian
random field is a random field whose finite-dimensional distribution functions are multivariate
Gaussian distributions. Therefore, a Gaussian random field is fully specified by its first and
second moments.

It proves to be convenient to decompose a homogeneous and isotropic random field into its
Fourier components,

Y (x) =

∫

d3k

(2π)3
eik·x Ỹ (k) . (2.51)

Computing the Fourier-space correlation function, one finds that

〈

Ỹ (k) Ỹ ∗(k′)
〉

= (2π)3 δD(k − k′)

∫

d3x′ e−ix′·k ξY (|x′|)

= (2π)3 δD(k − k′)PY (k) . (2.52)

Here, we have defined the power spectrum PY (k) as the Fourier transform of the two-point
correlation function.

For a Gaussian random field, the uncorrelatedness of the Fourier modes expressed by Eq. (2.52)
also implies mutual statistical independence. Furthermore, the probability density for each mode
is a Gaussian with a variance proportional to the power spectrum.

The power spectrum of density fluctuations

As any random field, the density contrast δ(x) can be characterized by its m-point correlation
functions. Since the density contrast is defined to have vanishing mean, the first non-trivial
moment is the two-point correlation function, or, equivalently, the power spectrum Pδ(k), which
is defined through

〈

δ̃(k) δ̃∗(k′)
〉

= (2π)3 δD(k − k′)Pδ(k) . (2.53)

The importance of the power spectrum in cosmology originates from the prediction of theories
of Inflation that the initial density fluctuation field is a Gaussian random field. It therefore
contains all information about δ at early times. A further generic property of these theories
is that the initial power spectrum (i.e., at times when all density fluctuations of interest are
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Figure 2.3: Matter power spectra for
z = 0 and z = 4, computed using the fit
formula by Smith et al. (2003). Thick
lines show non-linear power spectrum,
whereas thin lines give Pδ in linear
perturbation theory.

outside the horizon) is given by a power law, Pi(k; ti) = Akns , where the spectral index ns ≈ 1
and A is a normalization constant. The power spectrum at later times can be computed using
linear perturbation theory (see Sec. 2.2.2) and the transfer function defined by Eq. (2.47):

Pδ(k, t) = AT 2(k)
D2

+(t)

D2
+(ti)

kns . (2.54)

The normalization A of the power spectrum cannot be predicted from theory, but has to be
measured. By convention, this is done in terms of the dispersion of the density field smoothed
with a normalized, spherical top-hat filter of radius R:

σ2(R) =

∫

d3k

(2π)3
|W̃R(k)|2 Pδ(k) , (2.55)

where W̃R(k) is the Fourier-transform of the filter function. The usual choice is R = 8 h−1 Mpc,
and the resulting dispersion is denoted by σ8.

The statements in the previous paragraph cease to be valid when the density contrast ap-
proaches unity and non-linear effects become important. One possibility to predict the evolution
of Pδ in this case is to employ perturbation theory to compute higher-order corrections to the
linear evolution equations (see e.g. Bernardeau et al. 2002). A further, more popular way to ob-
tain a prediction for Pδ is to measure the power spectrum in N -body simulations (see Chapter 4)
for various redshifts and cosmologies, and then to inter- or extrapolate the power spectrum to
other cosmologies using fitting formulae. This has been done in Peacock & Dodds (1996), and
more recently in Smith et al. (2003). Finally, simplified models of structure formation have been
developed which allow the computation of the power spectrum and higher-order moments of the
density field. In the halo model, it is assumed that all matter in the Universe is in the form of
gravitationally bound objects, so-called halos. Using input from simulations, such as the mass
spectrum of these halos or the halo density profile, and results from linear perturbation theory,
this model is very successful in predicting properties of the density field for a large variety of
cosmological models (for a review, see Cooray & Sheth 2002).

In Fig. 2.3, we compare the matter power spectrum for z = 0 and z = 4 obtained from linear
perturbation theory with the fit formula by Smith et al. (2003). The linear power spectrum
grows ∝ k on large scales. On smaller scales, the effects described by the transfer function lead
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Description Symbol WMAP5 only WMAP5+BAO+SN

Age of universe [Gyr] t0 13.69 ± 0.13 Gyr 13.72 ± 0.12 Gyr

Hubble constant [km s−1 Mpc−1] H0 71.9+2.6
−2.7 70.5 ± 1.3

Baryon density Ωb 0.0441 ± 0.0030 0.0456 ± 0.0015

Dark matter density Ωdm 0.214 ± 0.027 0.228 ± 0.013

Dark energy density ΩΛ 0.742 ± 0.030 0.726 ± 0.015

Fluctuation amplitude at 8h−1 Mpc σ8 0.796 ± 0.036 0.812 ± 0.026

Spectral index ns 0.963+0.014
−0.015 0.960 ± 0.013

Redshift of matter-radiation equality zeq 3176+151
−150 3253+89

−87

Table 2.1: Cosmological parameters for the standard model as determined from the WMAP5 CMB data
alone and from the combination with baryonic acoustic oscillation data (BAO) and supernovae type Ia
data (SN) (extracted from Hinshaw et al. 2008). Note that Ωm = Ωdm + Ωb.

to a decline ∝ k−3. The non-linear evolution of the density field leads to an increase of power
on small scales; the length scale at which the transition between the linear and the non-linear
regime occurs is larger at later times.
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3 Gravitational Lensing

3.1 Introduction

Gravitational lensing is concerned with the deflection of light in the gravitational field of
massive objects. Einstein’s General Theory of Relativity predicts that the deflection angle,
i.e. the angle between incoming and outgoing light ray, caused by a point mass M , is given by

α =
4GM

c2
r

r2
, (3.1)

where r is the impact vector of the light ray. This causes background sources whose light passes
close to a massive body (the “lens”) to appear at slightly different positions and compared to
the case where the lens is absent. If the source is extended, image distortions by differential
deflection can be observed. Gravitational lensing has first been observed by Eddington and
Dyson (1919) during a Solar eclipse, which allowed them to measure the apparent positions of
stars very close to the obscured Sun and compare them to the unlensed positions recorded earlier.
In a cosmological context, however, gravitational lensing was a purely theoretical matter until
the discovery of the “double quasar” (Walsh et al. 1979), which proved to be a pair of images
of the same source, lensed by a galaxy in the foreground. As of today, several hundreds of
such multiple image systems are known. Gravitational lensing by galaxy clusters was discovered
by Lynds & Petrosian (1986) in the form of strongly distorted and highly elongated images of
galaxies located behind the cluster, dubbed “giant luminous arcs”. Both multiple image systems
as well as giant arcs are manifestations of “strong” gravitational lensing. To occur, it requires
an accurate alignment of source and lens along the line of sight and/or a very massive lens.

But even in less favorable situations, lensing has its impact on the observed images of distant
sources. Galaxy images at larger distances from a mass concentration will be distorted, too,
although this effect cannot be detected in a single image anymore. In most cases, the distortions
caused by lensing are much smaller than the shape noise caused by the fact that the source
galaxies are not intrinsically round. This is the domain of “weak” gravitational lensing. To
measure this effect requires the use of statistical methods applied to a large number of galax-
ies. Tyson et al. (1990) for the first time found systematic distortions of background galaxies
near galaxy clusters. Weak lensing by galaxies, or galaxy-galaxy lensing, has been detected by
Brainerd et al. (1996). Finally, cosmic shear, i.e. weak lensing by the large-scale structure in
the Universe, was observed for the first time in Bacon et al. (2000), Kaiser et al. (2000), van
Waerbeke et al. (2000) and Wittman et al. (2000).

In this chapter, we will briefly discuss the basics of gravitational lensing (mostly following the
reviews of Bartelmann & Schneider 2001; Schneider 2006b), before focusing in more detail on
cosmic shear and galaxy-galaxy lensing.
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Figure 3.1: Geometry of a typical lens
system

3.2 The thin lens approximation

3.2.1 Formalism

In most cases of strong lensing, the radial extent of the lens is much smaller than the dimen-
sions of the whole lens system. For example, compare the size of a typical galaxy (d . 1 Mpc)
to the typical distances between source, lens and observer, which can be of the order of 1 Gpc.
Therefore, it is an excellent approximation to project the lensing mass distribution onto a plane
perpendicular to the line of sight and to assume that light deflection occurs only where the ray
intersects that plane. The overall setup of such a lens system is shown in Fig. 3.1. Throughout,
we will denote with β and θ the angular coordinates in the source and lens plane, respectively.
Physical distances on the source plane are labelled with η, distances in the lens plane with ξ.
The angular diameter distances to the lens plane, to the source plane and between lens and
source plane are given by Dd, Ds and Dds.

The deflection angle by the extended mass distribution on the lens plane can be computed as
a superposition of point mass contributions:

α̂(ξ) =
4G

c2

∫

R2

d2ξ′
ξ − ξ′

∣

∣ξ − ξ′
∣

∣

2 Σ(ξ′) , (3.2)

where Σ(ξ′) is the surface mass density on the lens plane.

Assuming that the angular extent of the lens system on the sky is small, one can read off from
Fig. 3.1 the lens equation

η =
Ds

Dd
ξ −Ddsα̂(ξ) . (3.3)

Transforming to angular coordinates, so that η = Dsβ and ξ = Ddθ, and introducing the scaled
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deflection angle α ≡ Dds
Ds

α̂, the lens equation takes the simple form

β = θ − Dds

Ds
α̂(θ) = θ − α(θ) . (3.4)

Given a fixed source position β, this is a nonlinear equation for the image position θ. If the
lens is massive enough and lens and source are well aligned along the optical axis, Eq. (3.4) will
have more than one solution and therefore yield multiple images of a single source.

Lens theory takes a very convenient form if expressed in terms of the convergence κ and the
lensing potential ψ:

κ(θ) ≡ Σ(Ddθ)

Σcrit
, (3.5)

ψ(θ) ≡ 1

π

∫

d2θ′ κ(θ′) ln |θ − θ′| , (3.6)

where we have defined the critical surface mass density

Σcrit(zd, zs) =
c2

4πG

Ds

DdDds
. (3.7)

Then, the scaled deflection angle is given by

α(θ) =
1

π

∫

d2θ′ κ(θ′)
θ − θ′

∣

∣θ − θ′
∣

∣

2 = ∇ψ(θ) . (3.8)

Since ∇
2 ln |θ| = 2πδD(θ), taking the two-dimensional Laplacian of Eq. (3.6) yields the Poisson

equation

∇
2ψ = 2κ . (3.9)

3.2.2 The lens mapping

Eq. (3.4) defines a mapping θ → β(θ) from the image plane to the source plane, which in the
case of multiple images is not globally invertible. If the images of the lensed object are small
compared to the scales on which the deflection angle varies considerably, local information may
be obtained by linearizing the lens mapping. Its Jacobian is given by

Aij(θ) =
∂βi

∂θj
= δij −

∂2ψ(θ)

∂θi∂θj
. (3.10)

Lensing changes the solid angle subtended by the source compared to the unlensed case. Since
surface brightness is conserved, the flux ratio of a lensed image and unlensed source is given by
the ratio of the respective solid angles. Therefore, the magnification µ is defined as

1

µ
=
S(without lens)

S(with lens)
=

∣

∣

∣

∣

∣

d2β

d2θ

∣

∣

∣

∣

∣

=
∣

∣detA
∣

∣ . (3.11)

If detA = 0, the magnification becomes formally infinite. This of course does not happen in
reality: in this case finite source size and so far neglected effects of wave optics become important



20 Chap. 3: Gravitational Lensing

(see Schneider et al. 1992). The set of points θ for which detA = 0 forms closed curves, the
so-called critical curves. Their images in the source plane are called caustics. If a source lies
near or on such a curve, Eq. (3.11) tells that its images will be highly magnified and distorted.
The giant luminous arcs found in clusters of galaxies provide a prominent example for this.

Exploiting the mapping between R2 and the complex numbers, any 2 × 2-matrix T can be
written as x ⊗ y, where x, y ∈ C and x = x1 + ix2. We set xiyj = Tij. This allows us to
identify linear combinations of the elements of T with specified transformation properties under
rotations. Note that xy 7→ xy e−2iα and xy∗ is invariant under a rotation by the angle α.
Therefore, we call xy a spin-2 quantity and xy∗ a spin-0 quantity. In general, a spin-n quantity
z transforms as z 7→ z e−niα.

In terms of the matrix elements Tij , we have

Spin 0: xy∗ = (T11 + T22) + i(T21 − T12)

Spin 2: xy = (T11 − T22) + i(T12 + T21) (3.12)

Applying this to the case of the symmetric Jacobian of the lens mapping, we can define a spin-0
and two spin-2 quantities:

κ = 1 − 1

2
(A11 + A22) =

1

2
(ψ,11 + ψ,22) , (3.13)

γ1 =
1

2
(A22 − A11) =

1

2
(ψ,11 − ψ,22) , (3.14)

γ2 = −A12 = ψ,12 . (3.15)

(3.16)

Here, γ1 and γ2 are the components of the shear, which are often combined to form the complex
shear

γ = γ1 + iγ2 = |γ|e2iφ . (3.17)

The factor 2 in the exponential in Eq. (3.17) can also be understood by noting that an ellipse is
transformed into itself after a rotation by 180◦, not 360◦. With these definitions, the Jacobian
matrix can be written as

A =

(

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

= (1 − κ)

(

1 − g1 −g2
−g2 1 + g1

)

, (3.18)

where the reduced shear g is given by g = γ/(1 − κ).
If we consider a small, intrinsically circular source centered on β0 = β(θ0) and with intensity

Is(β), we can linearize the lens mapping and write for the observed intensity

I(θ) = Is [β0 + A(θ0)(θ − θ0)] . (3.19)

We see that in the linear approximation, the image of a circular source will be isotropically
(de-)magnified and stretched into a elliptical shape, the axis ratio of which is given by the ratio
of the eigenvalues of A.

Since both κ and γ are second partial derivatives of the deflection potential (Eqs. 3.9, 3.14
and 3.15), it is possible to write down a relation between them in Fourier space (Kaiser-Squires
relation, Kaiser & Squires 1993):

γ̃(ℓ) =

(

ℓ2ℓ − ℓ22
|ℓ|2 + 2i

ℓ1ℓ2
|ℓ|2

)

κ̃(ℓ) = e2iφℓ κ̃(ℓ) , (3.20)
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Figure 3.2: Illustration of the tangential and cross components of the shear (Eq. 3.21), measured with
respect to the reference point θr at the center of the circles. Left panel: γ× = 0 and γt = 1 (outer ellipses),
γt = −1 (inner ellipses). Right panel: γt = 0 and γ× = −1 (outer ellipses), γ× = 1 (inner ellipses).

where φℓ is the polar angle of ℓ.

For many applications, it is useful to express the shear relative to a specified direction instead
of looking at the Cartesian components. One defines the tangential and cross components of
the shear:

γt(θ;θr) = −Re
[

γ(θ)e−2iΦ
]

; γ×(θ;θr) = −Im
[

γ(θ)e−2iΦ
]

, (3.21)

where θr is a reference point and Φ is the polar angle of θ−θr. As illustrated in Fig. 3.2, γt = ±1,
γ× = 0 means a tangential or radial alignment of the shear with respect to the reference point,
whereas γ× = ±1, γt = 0 describes curl-like patterns.

3.2.3 Ellipticity measurements

In particular in the weak lensing regime, where κ≪ 1 and |γ| ≪ 1, the information about the
lensing mass is hidden in the shapes of background galaxies, which of course are not intrinsically
round. At present, most weak lensing analyses rely on measuring the quadrupole moment of the
light distribution of each background galaxy.

The center of the brightness distribution I(θ) of a particular image is given by

θ̄ =

∫

d2θ qI [I(θ)]θ
∫

d2θ qI [I(θ)]
, (3.22)

where qI is a weight function which can account for details of how photometry and object
detection are performed. The second brightness moment is defined as

Qij ≡
∫

d2θ qI [I(θ)](θi − θ̄i)(θj − θ̄j)
∫

d2θ qI [I(θ)]
, i, j = 1, 2. (3.23)

One possibility to define the (complex) ellipticity of a galaxy is

ǫ ≡ Q11 − Q22 + 2iQ12

trQ + 2
√

detQ
. (3.24)
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For a source with elliptical isophotes with axis ratio r, this yields

|ǫ| =
1 − r

1 + r
. (3.25)

The quadrupole tensors for unlensed source and the observed, lensed image are related by the
linearized lens mapping, Q(s) = AQAt. This leads to the relation between source and image
ellipticities (Schneider & Seitz 1995)

ǫ(s) =

{

ǫ−g
1−g∗ǫ if |g| ≤ 1
1−gǫ∗

ǫ∗−g∗ if |g| > 1 .
(3.26)

The inverse relation is obtained by interchanging ǫ and ǫ(s) and changing the sign of g. If the
intrinsic ellipticities ǫ(s) are oriented randomly (

〈

ǫ(s)
〉

= 0, where 〈. . .〉 is the expectation value
of the ellipticity), one can show that

〈ǫ〉 =

{

g if |g| ≤ 1

1/g∗ if |g| > 1 .
(3.27)

This means that the actual observable is the reduced shear (and not γ), since each image
ellipticity is an unbiased estimate of g. In the weak lensing regime, however, the convergence is
small, so that g ≈ γ and 〈ǫ〉 = γ.

3.2.4 The mass-sheet degeneracy

Observable quantities for a typical strong lens system are usually lens and image positions,
image fluxes, and for some lens systems also image shapes can be measured. The aim then is to
construct a lens model (i.e. a model for κ(θ)), which reproduces the observed image properties.
Unfortunately, if such a model is found, it is by no means unique, since

κλ(θ) = 1 + λ (κ(θ) − 1) (3.28)

will provide an equally good fit to the data. Indeed, applying this transformation changes the
lens equation to

β

λ
= θ − α(θ), (3.29)

which is identical to the untransformed equation except for an unobservable rescaling of the
source position. The Jacobian transforms as Aλ = λA, so that γλ = λγ and 1−κλ = λ(1−κ). The
last two equations show that the observable reduced shear remains unchanged. This degeneracy
can only be broken if an absolute measurement of a property of the source that is affected
by lensing (e.g. luminosity) is available. If the source is variable, a measurement of the time
delay ∆t between two different images also allows the determination of λ (provided the Hubble
constant is known), since ∆t 7→ λ∆t under the mass sheet degeneracy.

3.3 Light propagation in an inhomogeneous Universe - Cosmic Shear

So far, we have considered an isolated lens in a homogeneous background, which is a good
approximation only when the lens effect of the system under consideration is sufficiently strong.
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In addition to these strong lensing effects, which only occur if the alignment of source and lens
is nearly perfect, every light ray coming from a distant galaxy passes through the filamentary
large-scale structure and is deflected continuously. The shear resulting from the differential
deflection of neighboring light rays is too weak to be detected in an individual galaxy image.
However, the large-scale structure imprints a coherent distortion pattern on the image shapes
of distant galaxies, which is amenable to statistical methods.

3.3.1 The Jacobian matrix

If we consider lensing by large-scale structure, deflections occur everywhere along the light
path. For this reason, the single lens plane formalism introduced in the previous section cannot
be applied here. In particular, in general it will not be possible to write the deflection angle
α = θ − β as the gradient of a scalar potential. However, we can decompose α into a gradient
field and a divergence-free field (e.g. Hirata & Seljak 2003):

α(θ, w) = ∇ψE(θ, w) + ∇×ψ
B(θ, w) , (3.30)

where ∇× = (∂2,−∂1). The lens equation for a source galaxy at comoving distance w is then
given by

β(θ, w) = θ − ∇ψE(θ, w) − ∇×ψ
B(θ, w) , (3.31)

and the Jacobian matrix of the lens mapping reads

A(θ, w) =

(

1 − ψE
,11 − ψB

,12 −ψE
,12 − ψB

,22

−ψE
,12 + ψB

,11 1 − ψE
,22 + ψB

,12

)

. (3.32)

As in the case of a single lens plane, it is desireable to rewrite the Jacobian in terms of quantities
with a physical significance. Two variants based on different decompositions of the Jacobian
exist in the literature:

Polar decomposition. Any invertible matrix A can be uniquely decomposed as A = RS,
where R is a rotation matrix and S a symmetric, positive-semidefinite matrix (e.g. Schneider
et al. 1992). Alternatively, one can also write A = S′R, with S′ = RSR−1. Applied to the
lensing Jacobian, this means that cosmic shear manifests itself by a rotation of a galaxy image,
followed by the action of a symmetric matrix (just as in the case of a single lens plane). However,
the rotation is not observable because the intrinsic orientation of the source is unknown. It is
therefore meaningful to define

A(θ, w) =

(

cosφ sinφ
− sinφ cosφ

) (

1 − κ− γ1 −γ2

−γ2 1 − κ+ γ1

)

. (3.33)

Decomposition according to spin. As for the symmetric case (Eq. 3.12), we can write the
Jacobian matrix of cosmic shear in terms of spin-0 and spin-2 quantities. We define

κ′ = 1 − 1

2
(A11 + A22) =

1

2

(

ψE
,11 + ψE

,22

)

, (3.34)

γ′1 = −1

2
(A11 − A22) =

1

2

(

ψE
,11 − ψE

,22

)

+ ψB
,12 , (3.35)

γ′2 = −1

2
(A12 + A21) = ψE

,12 −
1

2

(

ψB
,11 − ψB

,22

)

, (3.36)

̟′ = −1

2
(A12 − A21) =

1

2

(

ψB
,11 + ψB

,22

)

, (3.37)
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in terms of which the Jacobian is given as

A(θ, w) =

(

1 − κ′ − γ′1 −γ′2 −̟′

−γ′2 +̟′ 1 − κ′ + γ′1

)

. (3.38)

This is analogous to thin lens theory, except for the fact that there is now the additional spin-0
quantity ̟. From Eq. (3.30) and Eqs. (3.34) and (3.37), one finds (Hirata & Seljak 2003):

κ′ =
1

2
∇ · α , (3.39)

̟′ =
1

2
∇× · α . (3.40)

Note that shear and convergence in Eq. (3.38) are different from those defined for the polar
decomposition (Eq. 3.33). To find the relations of primed and unprimed quantities, we compute
the matrix product in the polar decomposition (Eq. 3.33) and determine κ, γ and ̟ from the
resulting matrix according to Eqs. (3.34) – (3.37). We obtain

κ′ = 1 + (κ− 1) cosφ , (3.41)

γ′1 = γ1 cosφ+ γ2 sinφ , (3.42)

γ′2 = γ2 cosφ− γ1 sinφ , (3.43)

̟′ = (κ− 1) sinφ . (3.44)

However, we will assume throughout that the lensing effects are weak, i.e. κ≪ 1, γi ≪ 1 and
̟ ≪ 1. In this case, κ′ = κ, γ′i = γi and ̟ = −φ, as can be seen by expanding the trigonometric
functions in Eqs. (3.41) – (3.44) and keeping only terms of linear order. For what follows, it will
be convenient to use the form of Jacobian matrix as given in Eq. (3.38), where we from now on
drop the primes on convergence and shear for simplicity of notation.

3.3.2 E- and B-modes

The Kaiser-Squires relation (Eq. 3.20) can be used to derive a useful decomposition of the
shear field. If there is only a single lens plane, we expect the reconstructed convergence field κKS

to be real. A non-zero imaginary part of κKS that is not compatible with noise is either a sign
for uncorrected systematic effects or for the breakdown of the single-lens-plane approximation.
The Fourier transforms of the real and imaginary parts of the reconstructed convergence are
given by

κ̃E(ℓ) =
1

2
[κ̃KS(ℓ) + κ̃∗KS(−ℓ)] , κ̃B(ℓ) =

1

2i
[κ̃KS(ℓ) − κ̃∗KS(−ℓ)] . (3.45)

Using Eq. (3.20) to replace κ̃KS with the shear components, we find

κ̃E(ℓ) =
1

2

[

e−2iφℓ γ̃(ℓ) + e2iφℓ γ̃∗(−ℓ)
]

, (3.46)

κ̃B(ℓ) =
1

2

[

e−2iφℓ γ̃(ℓ) − e2iφℓ γ̃∗(−ℓ)
]

, (3.47)

(3.48)

where φℓ is the polar angle of the wave vector ℓ. Since γ1 and γ2 are real functions, γ̃1,2(ℓ) =
γ̃∗1,2(−ℓ), which finally leads to

κ̃E = cos(2φℓ) γ̃1 + sin(2φℓ) γ̃2 , (3.49)

κ̃B = − sin(2φℓ) γ̃1 + cos(2φℓ) γ̃2 . (3.50)
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Writing γ in terms of ψE,B (Eqs. 3.35 and 3.36), we find that

κE = κ and κB = ̟ , (3.51)

so that κKS = κ+ i̟.
The E-/B-mode decomposition of the shear field can be obtained by again using the Kaiser-

Squires relation (Eq. 3.20) to replace κE and κB:

γ̃E(ℓ) =
1

2

[

γ̃(ℓ) + e4iφℓ γ̃∗(−ℓ)
]

, (3.52)

γ̃B(ℓ) =
1

2

[

γ̃(ℓ) − e4iφℓ γ̃∗(−ℓ)
]

. (3.53)

3.3.3 The cosmic shear power spectrum

As noted above, weak lensing by large-scale structure can only be detected with statistical
methods. The central quantity here is the power spectrum of the shear field, to which all other
commonly used two-point statistics of γ are related in a relatively simple fashion. For the
derivation of the E- and B-mode power spectra we mainly follow the method given in Hirata &
Seljak (2003).

The E- and B-mode power spectra Pκ and P̟ are defined by

〈κ̃(ℓ) κ̃(ℓ′)〉 = (2π)2 δD
(

ℓ + ℓ′
)

Pκ(ℓ) , (3.54)

〈 ˜̟ (ℓ) ˜̟ (ℓ′)〉 = (2π)2 δD
(

ℓ + ℓ′
)

P̟(ℓ) . (3.55)

The starting point for the computation of these statistics is a slightly perturbed Robertson-
Walker metric, which we write as

ds2 = a2(τ)

[(

1 +
2Φ

c2

)

c2dτ2 −
(

1 − 2Φ

c2

)

(dw2 + f2
K(w)dΩ2)

]

, (3.56)

where w is the radial comoving distance, τ the conformal time, defined by dτ = dt/a, fK(w) the
comoving angular diameter distance and Φ the peculiar gravitational potential. If one considers
an infinitesimally thin light bundle converging at the observer, then as shown in Bartelmann
& Schneider (2001), the comoving separation vector x of a ray enclosing an angle θ with the
fiducial ray at the observer evolves as

d2x

dw2
+Kx = − 2

c2

[

∇⊥Φ[x(θ, w), w] − ∇⊥Φ(0)(w)
]

. (3.57)

Here, ∇⊥ = (∂1, ∂2) denotes the transverse comoving gradient operator, i.e. the two-dimensional
gradient in the plane perpendicular to the corresponding light ray, K = (H0/c)

2(Ωm + ΩΛ − 1)
is the spatial curvature, and Φ(0)(w) the gravitational potential along the fiducial ray. If ∇Φ →
0, we have the special case of light propagation in an unperturbed universe, and the above
differential equation becomes homogeneous. The solution with boundary conditions x(0) = 0
and dx

dw

∣

∣

w=0
= θ is given by the angular diameter distance between the rays:

x(θ, w) = fK(w)θ . (3.58)

Since Eq. (3.57) is linear, the solution in the inhomogeneous case can be calculated by the
method of Green’s function, which in this case is fK(w):

x(θ, w) = fK(w)θ− 2

c2

∫ w

0
dw′ fK(w−w′)

[

∇⊥Φ[x(θ, w′), w′] − ∇⊥Φ(0)(w′)
]

. (3.59)
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This equation may as well be written in terms of the angular separation of the two rays:

β(θ, w) =
x(θ, w)

fK(w)
= θ − 2

c2

∫ w

0
dw′ Gw,w′

[

∇⊥Φ[x(θ, w′), w′] − ∇⊥Φ(0)(w′)
]

, (3.60)

where we have defined Gw,w′ = fK(w−w′)
fK(w) . Since the gravitational potential has to be computed

along the perturbed ray, Eq. (3.59) is an implicit equation for the photon trajectory. A solution
that is of first order in the potential can be obtained by integrating along the unperturbed light
ray (Born approximation), which yields

β(θ, w) ≈ θ − 2

c2

∫ w

0
dw′ Gw,w′

[

∇⊥Φ
[

fK(w′)θ, w′
]

− ∇⊥Φ(0)(w′)
]

. (3.61)

We can derive a solution that is correct to second order in Φ by integrating Eq. (3.60) over the
photon trajectory given by Eq. (3.61) and expanding the potential into a Taylor series:

βi(θ, w) = θi − α
(1)
i − α

(2)
i −O(Φ3) , i ∈ {1, 2} , (3.62)

where

α
(1)
i =

2

c2

∫ w

0
dw′ Gw,w′ Φ,i

[

fK(w′)θ, w′
]

(3.63)

α
(2)
i =

2

c2

∫ w

0
dw′ Gw,w′ fK(w′) Φ,ia

[

fK(w′)θ, w′
]

α(1)
a [fK(w′)θ, w′]

= − 4

c4

∫ w

0
dw′

∫ w′

0
dw′′ Gw,w′ Gw′,w′′ fK(w′)

× Φ,ia

[

fK(w′)θ, w′
]

Φ,a

[

fK(w′′)θ, w′′
]

. (3.64)

Here, we use the notation Φ,i = ∂Φ/∂xi, with i ∈ {1; 2}. Note that we are using the Einstein
summation convention, i.e. a summation over the duplicate index a is implicit in Eq. (3.64). For
notational convenience, we have dropped the terms involving the potential along the fiducial ray.
Since we are only interested in derivatives of the deflection angle, they are in any case irrelevant
to our calculations.

We briefly digress to derive an expression for κ in the Born approximation, which we denote
with κ(1). Using Eqs. (3.39) and (3.63), we have

κ(1)(θ, w) =
1

c2

∫ w

0
dw′ Gw,w′ fK(w′) (Φ,11 + Φ,22)

[

fK(w′)θ, w′
]

. (3.65)

We now write Φ,11 + Φ,22 = ∇
2Φ − Φ,33. This allows us to use the Poisson equation (2.36) to

replace ∇
2Φ with the density contrast δ. The line-of-sight integral over Φ,33 is negligibly small,

as has been shown in Jain et al. (2000) and White & Hu (2000). We find that to first order, κ
is a projection of the three-dimensional density contrast:

κ(1)(θ, w) =
3H2

0Ωm

2c2

∫ w

0
dw′ Gw,w′ fK(w′)

a(w′)
δ
[

fK(w′)θ, w′
]

. (3.66)

This equation applies for sources at a single redshift z. The more realistic case of source galax-
ies distributed in redshift according to a distribution function p(z), or equivalently p(w) =
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p(z)|dz/dw|, can be obtained as follows. The total convergence is the sum of the convergence
for each source redshift, weighted by the redshift distribution:

κ(θ) =

∫

dw p(w)κ(θ, w)

=
3H2

0Ωm

2c2

∫ w

0
dw′ g(w) fK(w′)

a(w′)
δ
[

fK(w′)θ, w′
]

, (3.67)

where wh is the comoving horizon distance and

g(w) =

∫ wh

w
dw′ pw(w′)

fK(w′ − w)

fK(w′)
. (3.68)

Returning to the computation of the power spectra, we now make use of Eqs. (3.39) and (3.40),
which in Fourier space read κ̃ = −(i/2)ℓ · α̃ and ˜̟ = −(i/2) ℓ × α̃ (with a × b = a1b2 − a2b1),
to compute κ̃, ˜̟ and their power spectra from the deflection angle as given by Eq. (3.62). We
begin with the computation of α̃(1). We first carry out the two-dimensional transform of α(1)

and then express Φ by its three-dimensional Fourier transform:

α̃
(1)
i (ℓ, w) =

∫

d2θ e−iθ·ℓ α
(1)
i (θ, w)

=
2

c2

∫ w

0
dw′ Gw,w′

∫

d2θ e−iθ·ℓ Φ,i

[

fK(w′)θ, w′
]

=
2

c2

∫ w

0
dw′ Gw,w′

∫

d2θ e−iθ·ℓ

∫

d3k

(2π)3

× ei[fK(w′)k⊥·θ+k3 fK(w′)] (−i ki) Φ̃(k;w′) (3.69)

The θ-integration yields (2π)2 δD (ℓ − fK(w′)k⊥). Carrying out the integral over k⊥, we set
k⊥ = ℓ/fK(w′). The result is

α̃
(1)
i (ℓ, w) = − 2i

c2

∫ w

0
dw′ Gw,w′

f3
K(w′)

∫

dk3

2π
eifK(w′)k3 ℓi Φ̃

(

ℓ

fK(w′)
, k3;w

′

)

. (3.70)

To simplify the notation, we introduce the operator

Ek3
w =

∫

dk3

2π
eifK(w)k3 . (3.71)

Following the same procedure as for α
(1)
i , we find for the second order correction to the deflection

angle

α̃
(2)
i (ℓ, w) =

2

c2

∫ w

0
dw′ Gw,w′ fK(w′)

∫ w′

0
dw′′ Gw′,w′′

∫

d2θ e−iθ·ℓ

∫

d3k

(2π)3

∫

d3k′

(2π)3

× ei[fK(w′)k⊥·θ+k3 fK(w′)] ei[fK(w′′)k′
⊥
·θ+k′

3 fK(w′′)]

× (−kika)(−i k′a) Φ̃(k;w′) Φ̃(k′;w′′) . (3.72)

Now, the angular integration results in the term δD
(

ℓ − fK(w′)k⊥ − fK(w′′)k′
⊥

)

. We define
λ = fK(w′)k⊥ and ℓ′′ = ℓ − λ, and carry out the integral over k′

⊥:

α̃
(2)
i (ℓ, w) = − 4i

c4

∫ w

0
dw′

∫ w′

0
dw′′ Gw,w′Gw′,w′′

f3
K(w′) f3

K(w′′)

∫

d2λ

(2π)2
Ek3

w′ E
k′
3

w′′

× λi(λ · ℓ′′) Φ̃

(

λ

fK(w′)
, k3;w

′

)

Φ̃

(

ℓ′′

fK(w′′)
, k′3;w

′′

)

. (3.73)
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We can now write down the Fourier transforms of κ and ̟:

κ̃(1)(ℓ, w) = − 1

c2

∫ w

0
dw′ Gw,w′

f3
K(w′)

Ek3
w′ ℓ

2 Φ̃

(

ℓ

fK(w′)
, k3;w

′

)

(3.74)

κ̃(2)(ℓ, w) = − 2

c4

∫ w

0
dw′

∫ w′

0
dw′′ Gw,w′Gw′,w′′

f3
K(w′) f3

K(w′′)

∫

d2λ

(2π)2
Ek3

w′ E
k′
3

w′′

× (λ · ℓ) (λ · ℓ′′) Φ̃

(

λ

fK(w′)
, k3;w

′

)

Φ̃

(

ℓ′′

fK(w′′)
, k′3;w

′′

)

(3.75)

˜̟ (1)(ℓ, w) = 0 (3.76)

˜̟ (2)(ℓ, w) =
2

c4

∫ w

0
dw′

∫ w′

0
dw′′ Gw,w′Gw′,w′′

f3
K(w′) f3

K(w′′)

∫

d2λ

(2π)2
Ek3

w′ E
k′
3

w′′

× (ℓ × λ) (λ · ℓ′′) Φ̃

(

λ

fK(w′)
, k3;w

′

)

Φ̃

(

ℓ′′

fK(w′′)
, k′3;w

′′

)

(3.77)

We see that to the lowest (i.e. second) order in the potential, which corresponds to the Born
approximation, cosmic shear does not create a B-mode.

The E-mode power spectrum in Born approximation is given by the correlator

〈κ̃(1)(ℓ) κ̃(1)(ℓ′)〉 =
1

c4

∫ w

0
dw′

∫ w

0
dw′′ Gw,w′Gw,w′′

f3
K(w′)f3

K(w′′)
Ek3

w′ E
k′
3

w′′

× ℓ2ℓ′2
〈

Φ̃

(

ℓ

fK(w′)
, k3;w

′

)

Φ̃

(

ℓ′

fK(w′′)
, k′3;w

′′

)〉

. (3.78)

Now, we can use the Poisson equation (Eq. 2.36) in Fourier space

Φ̃

[

ℓ

fK(w)
, k3;w

]

= −3H2
0Ωm

2a(w)

1

[ℓ/fK(w)]2 + k2
3

δ̃

[

ℓ

fK(w)
, k3;w

]

(3.79)

to replace the potential with the density contrast. Since the three-dimensional matter power
spectrum declines ∝ k on large scales, we can make the approximation that there is no correlation
on scales larger than a certain coherence scale. This in turn is much smaller than the length
scales for which the cosmological evolution of the density field becomes important. This means
that we can set w′ ≈ w′′ in the correlator in Eq. (3.78), as well as in the function G. However, we
have to retain the distinction between w′ and w′′ for the quickly varying exponential functions
in the operator E. Eq. (3.78) now becomes

〈κ̃(1)(ℓ) κ̃(1)(ℓ′)〉 =

(

3H2
0Ωm

2c2

)2 ∫ w

0
dw′

G2
w,w′

f2
K(w′) a2(w′)

∫ w

0
dw′′

∫

dk3

2π

∫

dk′3
2π

× eik3 w′

eik′
3 w′′ ℓ2

[ℓ/fK(w′)]2 + k2
3

ℓ
′2

[ℓ
′
/fK(w′)]

2
+ k

′2
3

×
〈

δ̃

(

ℓ

fK(w′)
, k3;w

′

)

δ̃

(

ℓ′

fK(w′)
, k′3;w

′

)〉

. (3.80)

The integral over w′′ gives 2π δD (k′3), which means that only modes perpendicular to the line
of sight contribute to the convergence power spectrum. If we replace the correlator of the density
contrasts with the definition of the matter power spectrum, 〈δ̃(k)δ̃(k′)〉 = (2π)3δD

(

k + k′
)

Pδ(k),
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we obtain the delta functions (2π)3 f2
K(w′)δD

(

ℓ + ℓ′
)

δD (k3 + k′3). This finally enables us to
carry out the integration over k3 and k′3. The result is

Pκ(ℓ, w) =

(

3H2
0Ωm

2c2

)2 ∫ w

0
dw′

G2
w,w′

a2(w′)
Pδ

(

ℓ

fK(w′)
;w′

)

. (3.81)

This equation applies only to source galaxies at a single redshift z(w). If the sources are dis-
tributed in comoving distance, the total convergence is given by

κ(θ) =

∫

dw p(w)κ(θ, w) . (3.82)

Averaging Eq. (3.74) accordingly, the derivation given above stays essentially the same, except
for a change in the distance weight factors. We obtain

Pκ(ℓ) =

(

3H2
0Ωm

2c2

)2 ∫ wh

0
dw

g2(w)

a2(w)
Pδ

(

ℓ

fK(w′)
;w′

)

, (3.83)

where g(w) is the weight function defined in Eq. (3.68).

In a very similar manner, we can compute the power spectrum of the B-mode. Since ̟(1) = 0,
the first non-vanishing contribution to the power spectrum is given by 〈 ˜̟ (2) ˜̟ (2)〉. This is of the
order Φ4, and therefore much smaller than the E-mode, which is of order Φ2. We find

P̟(ℓ, w) = 4

(

3H2
0Ωm

2c2

)4 ∫ w

0
dw′

G2
w,w′

a2(w′)

∫ w′

0
dw′′

G2
w′,w′′

a2(w′′)

∫

d2λ

(2π)2

×(ℓ × λ)2 (λ · ℓ′′)2
λ4 ℓ′′4

Pδ

(

λ

fK(w′)

)

Pδ

(

ℓ′′

fK(w′′)

)

, (3.84)

where ℓ′′ = ℓ − λ.
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In Fig. 3.3, we have plotted Pκ and P̟ for three different source redshifts. The B-mode is
≈ 6 orders of magnitude smaller than the E-mode, becoming slightly more important towards
smaller scales.

Finally, note that in the derivation of Eqs. (3.81) and (3.84), the same approximations have
been made that lead to Limber’s equation (Limber 1953), which is used explicitly in the deriva-
tion of Pκ given in, e.g., Bartelmann & Schneider (2001) or Schneider (2006c).

3.3.4 Other two-point statistics of cosmic shear

The shear correlation functions

With the two components of the shear one can define in total four shear correlation functions.
In practice, one uses γt and γ× for a particular pair of galaxies instead of the Cartesian shear
components, because the former ones are tailored to reflect the statistical isotropy of the shear
field. The four possible correlation functions are 〈γt(θ)γt(θ

′)〉, 〈γ×(θ)γ×(θ′)〉, 〈γt(θ)γ×(θ′)〉 and
〈γ×(θ)γt(θ

′)〉, the latter two of which vanish due to parity invariance of the shear field (under
a parity transformation, γ× → −γ×, but γt → γt). The non-vanishing correlators usually are
combined to form the two shear correlation functions

ξ±(θ) = 〈γt(ϑ)γt(θ + ϑ)〉 ± 〈γ×(ϑ)γ×(θ + ϑ)〉 . (3.85)

Writing these definitions in Fourier space, ξ± can be related to the shear power spectrum (Kaiser
1992):

ξ±(θ) =
1

2π

∫ ∞

0
dℓ J0,4(ℓθ)Pκ(ℓ) . (3.86)

Practical estimators for the correlation functions are given by (Schneider et al. 2002a)

ξ̂±(θ) =
1

Np(θ)

∑

ij

(ǫitǫjt ± ǫi×ǫj×)∆|ϑi−ϑj |,θ . (3.87)

Here, ǫit and ǫi× are the tangential and radial ellipticities of the i-th galaxy, which is located at
ϑi. The symbol ∆|ϑi−ϑj |,θ is equal to one if |ϑi−ϑj | falls into the angular bin centered on θ, and
zero otherwise; Np(θ) is the number of pairs of galaxies that contribute to the bin considered.

The aperture mass statistic

Weak lensing observations are usually plagued by the mass sheet degeneracy, which in the
regime of κ ≪ 1 corresponds to adding a constant surface mass density. The aperture mass
statistic Map (Schneider et al. 1998) was designed to be insensitive to this degeneracy. To
remove any constant contribution to the convergence, κ is smoothed with a compensated filter
function Uθ(ϑ) with

∫

dϑϑUθ(ϑ) = 0:

Map(ϑ) =

∫

d2ϑ′ κ(ϑ′)Uθ(|ϑ − ϑ′|) . (3.88)

Here, θ is a characteristic radius of the filter function, the exact meaning of which depends on
the choice of U .



3.3 Light propagation in an inhomogeneous Universe - Cosmic Shear 31

The aperture mass can also be related to the tangential shear with respect to the aperture
center at ϑ:

Map(ϑ) =

∫

d2 ϑ′ Qθ(|ϑ′|) γt(ϑ
′;ϑ) , (3.89)

with Qθ(ϑ) = 2
ϑ2

∫ ϑ
0 dϑ′ ϑ′ Uθ(ϑ

′) − Uθ(ϑ). A similar definition can be made for the cross
component of the shear:

M⊥(ϑ) =

∫

d2ϑ′ Qθ(|ϑ′|) γ×(ϑ′;ϑ) . (3.90)

The variances of of Map and M⊥ are both related to the convergence power spectrum through
a linear relation (Schneider et al. 2002b):

〈

M2
ap

〉

(θ) =
1

2π

∫ ∞

0
dℓ ℓ Pκ(ℓ)W 2

ap(θℓ) , (3.91)

〈

M2
⊥

〉

(θ) =
1

2π

∫ ∞

0
dℓ ℓ P̟(ℓ)W 2

ap(θℓ) , (3.92)

where W 2
ap depends on the choice of the filter function in Eq. (3.88). In general, W 2

ap is a rather
sharply peaked, which makes the aperture mass dispersion a good proxy of the power spectrum.
Furthermore, Eq. (3.91) shows that the aperture mass dispersion has the useful property that
〈

M2
ap

〉

is only sensitive to the E-mode, and
〈

M2
⊥

〉

only to the B-mode.
Given a real data set, it is most straightforward to estimate the correlation functions Eq. (3.85),

because they can be computed irrespectively of holes and gaps in the CCD image. Computation
of Map, on the other hand, requires placing apertures on the data field, which therefore must not
contain any gaps or masked regions. This is usually not possible without discarding a significant
part of the CCD frame. Therefore, the best way to obtain

〈

M2
ap

〉

from a real data set is through
the correlation functions, using (Schneider et al. 2002b):

〈

M2
ap,⊥

〉

(θ) =

∫ ∞

0

dϑϑ

2θ2

[

ξ+(ϑ)T+

(

ϑ

θ

)

± ξ−(ϑ)T−

(

ϑ

θ

)]

. (3.93)

The functions T+ and T− depend on the choice of U in Eq. (3.88).
Popular filter functions have been proposed in Schneider et al. (2002a) and Crittenden et al.

(2002). The first is a polynomial filter with finite support:

Uθ(ϑ) =
9

πθ2

(

1 − ϑ2

θ2

)(

1

3
− ϑ2

θ2

)

H(θ − ϑ) . (3.94)

For this filter, the functions relating
〈

M2
ap

〉

to the other two-point statistics are

W 2
ap(x) =

576J2
4(x)

x4
, (3.95)

T+(x) =

{

6(2 − 15x2)

5

[

1 − 2

π
arcsin

(x

2

)

]

(3.96)

+
x
√

4 − x2

100π

(

120 + 2320x2 − 754x4 + 132x6 − 9x8
)

}

H(2 − x), (3.97)
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T−(x) =
192

35π
x3

(

1 − x2

4

)7/2

H(2 − x). (3.98)

T+ and T− vanish for x > 2, so that
〈

M2
ap

〉

can be obtained from the correlation functions by
integration over a finite interval.

The second filter function has somewhat more convenient analytical properties, at the expense
of no longer having finite support. It is given by

Uθ(ϑ) =
1

2πθ2

(

1 − ϑ2

2θ2

)

exp

(

− ϑ2

2θ2

)

, (3.99)

and its auxiliary functions are

W 2
ap(x) =

x4

4
exp

(

−x2
)

, (3.100)

T+(x) =

(

x4

128
− x2

8
+

1

4

)

exp

(

−x
2

4

)

, (3.101)

T−(x) =
x4

128
exp

(

−x
2

4

)

. (3.102)

To compute
〈

M2
ap

〉

(θ) from ξ± for this choice of filter function, it is in principle necessary to
evaluate an integral from 0 to ∞. However, T± approach zero very quickly, so that in practice
it is sufficient to integrate only to ≈ 3θ.

3.4 Galaxy-Galaxy-Lensing

In contrast to cosmic shear, galaxy-galaxy lensing (GGL) is not concerned with the large-scale
distribution of matter, but with the mass associated with galaxies and the dark matter halos
the galaxies reside in. Gravitational lensing is a unique tool to study these structures, because
it allows probing the matter distribution directly, without additional assumptions about the
dynamical state of the system under consideration.

However, a single galaxy is not massive enough to create a detectable GGL effect. For this
reason, the lensing signal around many galaxies, ideally of similar type, is superposed statisti-
cally. This is done by splitting the galaxy sample into fore- and background objects, either using
redshift information or simply a magnitude cut. The ellipticities of the background galaxies are
expected to be tangentially aligned with respect to the lensing foreground object, and therefore
usually γt and γ× are estimated as functions of angular separation from the lens. This is done
for each foreground-background pair, and the resulting signals are averaged, leading to a rota-
tionally symmetric mean shear profile. This can then be compared to predictions from models
of the mass distribution of and associated with the lens galaxies.

This idea can be formalized by defining the GGL signal to be the correlator of the fractional
lens galaxy number density κg(ϑL) = ng(ϑL)/n̄ − 1, where ng is the galaxy number density
and n̄ the mean number density on the sky, and the tangential or cross component of the shear
(Hoekstra et al. 2002; Schneider 2006c):

〈γt,×(θ)〉 ≡ 〈γt,×(ϑS;ϑL)κg(ϑL)〉 , (3.103)
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where ϑL and ϑS are the lens and source galaxy positions, respectively, and θ = |ϑL−ϑS|. Since
the galaxy distribution is a homogeneous random field, Eq. (3.103) can also be written as

〈γt,×(θ)〉 = 〈γt,×(θ;0)κg(0)〉 . (3.104)

An estimator for the galaxy-galaxy lensing signal is given by

γ̂t,×(θ) =
1

NL

NL
∑

l=1

1

NS(θ;ϑl)

NS
∑

s=1

ǫt,×(ϑs;ϑl)∆|ϑl−ϑs|,θ . (3.105)

Here, ǫt,×(ϑs;ϑl) is the tangential/radial ellipticity measured from the s-th background galaxy
at ϑs with respect to a lens at ϑl. The symbol ∆|ϑl−ϑs|,θ is equal to one if |ϑl − ϑs| falls into
the angular bin centered on θ, and zero otherwise. Finally, NS(θ;ϑl) is the number of source
galaxies in an annulus of radius θ which is centered on ϑl, and NL is the total number of lens
galaxies.

Noting that γt + iγ× = −γ e−2iΦ, where Φ is the polar angle of θ, we can relate the GGL
signal to the statistics of the underlying galaxy and dark matter density fields:

〈γt(θ)〉 + i 〈γ×(θ)〉 = −e−2iΦ 〈κg(0)γ(θ)〉

= −
∫

d2ℓ

(2π)2

∫

d2ℓ′

(2π)2
e−iθ·ℓ′e−2iΦ

〈

κ̃g(ℓ)γ̃(ℓ
′)
〉

= −
∫

d2ℓ

(2π)2

∫

d2ℓ′

(2π)2
e−iθ·ℓ′e2i(β′−Φ)

〈

κ̃g(ℓ)κ̃(ℓ′)
〉

.

(3.106)

In the last step, the Kaiser-Squires relation (Eq. 3.20) was used in the form γ̃ = e2iβ′

κ̃, where β′ is
the polar angle of ℓ′. Note that α ≡ β′−Φ is the angle enclosed by θ and ℓ′. Introducing the cross
power spectrum of the galaxy distribution and convergence, Pκg(ℓ) = (2π)2δD(ℓ − ℓ′)

〈

κ̃g(ℓ)κ̃
∗(ℓ′)

〉

,
this becomes

〈γt(θ)〉+i 〈γ×(θ)〉 = −
∫ ∞

0

dℓ

(2π)2
ℓ

∫ 2π

0
dα eiℓθ cos α [cos(2α) + i sin(2α)] Pκg(ℓ) . (3.107)

The imaginary part of this integral, which corresponds to 〈γ×(θ)〉, vanishes, since the integrand
consists of a product of an even and an odd function (a non-zero 〈γ×(θ)〉 would define a preferred
sense of rotation on the sky). The remaining expression gives the tangential shear around the
foreground galaxies and can be cast into its final form by introducing the Bessel function J2:

〈γt(θ)〉 =
1

2π

∫

dℓ ℓ J2(θℓ)Pκg(|ℓ|) . (3.108)

Since the shear signal of many galaxies is averaged to obtain the GGL signal, it makes sense
to subdivide the foreground sample into subsamples of similar galaxy type, so that the halos of
the galaxies in a particular subset can be expected to have quite similar properties. For each
subsample, one can now try to obtain a model for the surface mass density Σ(ξ) associated with
a lens galaxy, where ξ is the physical separation from the lens, that fits the observed 〈γt(θ)〉
best. The central equation for the interpretation of the GGL-signal relates the mean tangential
shear on a circle of radius θ to the mean convergence κ̄(< θ) inside the circle and the mean
convergence 〈κ(θ)〉 on the circle (for a derivation, see Schneider 2005):

〈γt(θ)〉 = κ̄(< θ)− 〈κ(θ)〉 . (3.109)
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The convergence is given by κ = Σ/Σcrit, where the critical surface mass density depends on
the distances or redshifts of source and lens (Eq. 3.5). In the case that there is no information
about the redshift of any particular galaxy, it is only possible to measure an average over the
redshift distributions pL(zL)and pS(zS) of the fore- and background samples:

〈γt(θ)〉 =

∫

dzL p(zL)

∫

dzS p(zS)
Σ̄ [< DL(zL)θ] − 〈Σ [DL(zL)θ]〉

Σcrit(zL, zS)
. (3.110)

Here, we denote with DL the proper angular diameter distance to the lens. Even if one assumes
that all lenses have the same mass distribution, the resulting signal at fixed θ comes from light
rays probing the lens galaxy’s halo at different physical impact parameters DL(zL)θ.

If photometric or even spectroscopic redshifts are available for the foreground sample and
the redshift distribution of the background galaxies is known, one can measure the GGL signal
directly as a function of the physical impact parameter ξ = DLθ:

〈γt(ξ, zL)〉 =
[

Σ̄ (< ξ) − 〈Σ (ξ)〉
]

∫

dzS
p(zS)

Σcrit(zL, zS)
= ∆Σ(ξ, zL)Σ−1

crit(zL) , (3.111)

where the excess surface mass density ∆Σ was defined. This technique has been successfully
applied to SDSS data in Sheldon et al. (2004), using spectroscopic redshifts for the lenses and
photometric redshift estimates for the source galaxies.

Computing Pκg

In order to relate the GGL signal to the three-dimensional distributions of lens galaxies and
dark matter, we have to compute the cross power spectrum Pκg. First of all, we express the
two-dimensional number density of galaxies, ng, in terms of the three-dimensional comoving
galaxy density, n3D

g , by using the fact that lensing conserves the number of galaxies:

ng(θ;S) =

∫ wh

0
dw ν (w,θ;S) f2

K(w) n3D
g [x(θ, w);w]

∣

∣

∣

∣

∣

d2β

d2θ

∣

∣

∣

∣

∣

. (3.112)

The factor f2
K(w) accounts for the fact that the field of view corresponds to a larger comoving

volume at larger distances. Since we wish to go beyond the Born approximation, we distinguish
between the image coordinates θ as measured by the observer, and the source plane coordinates
β. The photon trajectory along which the projection of the galaxy distribution is performed
is denoted by x(θ, w). The selection function ν quantifies the fraction of galaxies at comoving
distance w that are included in the lens sample. For a flux-limited sample of lens galaxies with
flux limit S, it is given by

ν (w,θ;S) =
n3D

g [> S/µ (θ) , w]

n̄3D
g (w)

, (3.113)

where n3D
g (> S,w) is the three-dimensional number density of galaxies with flux larger than

S at distance w and n̄3D
g (w) is the mean galaxy number density at w. The selection function

depends on the position through the magnification µ = 1/det A. In the weak lensing limit, we
can write |det A| ≈ 1 − 2κ, and thus

n3D
g [> S/µ (θ) , w] ≈ n3D

g (> S,w) − 2
dn3D

g (> S,w)

d lnS
κ(θ, w) . (3.114)
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The number density of galaxies which are above the flux limit can be expressed in terms of the
observer-frame luminosity function ΦL(L,w) = d2N/dLdV :

n3D
g (> S,w) =

∫ ∞

D2
L(w) S

dL ΦL(L,w) . (3.115)

With this, the selection function is

ν(w,θ;S) = ν(0)(w;S) + ν(1)(w,θ;S) , (3.116)

ν(0)(w;S) =
n3D

g (> S,w)

n̄3D
g (w)

, (3.117)

ν(1)(w,θ;S) = 2
D2

L(w)S ΦL[D2
L(w)S,w]

n̄3D
g (w)

κ(θ, w) . (3.118)

We now proceed by expressing Eq. (3.112) in terms of the 3D density contrast δg:

ng(θ;S) =

∫ wh

0
dw ν(w,θ;S) f2

K(w) |det A| n̄3D
g (w)

+

∫ wh

0
dw ν(w,θ;S) f2

K(w) |det A| n̄3D
g (w) δg [x(θ, w);w] .

(3.119)

Introducing the mean galaxy density on the sky (using that 〈ν(1)(w,θ;S)〉 = 0),

n̄g(S) =

∫ wh

0
dw ν(0)(w) f2

K(w) n̄3D
g (w) , (3.120)

the average lens galaxy distribution in comoving distance,

pf(w;S) =
ν(0)(w;S) f2

K(w) n̄3D
g (w)

n̄g(S)
, (3.121)

and the function

q(w;S) =
ν(1)(w,θ;S) f2

K(w) n̄3D
g

n̄g(S) κ(θ, w)
= 2f2

K(w)
D2

L(w)S ΦL[D2
L(w)S,w]

n̄g(S)
, (3.122)

Eq. (3.119) can be expressed as

κg(θ;S) =

∫ wh

0
dw [pf(w;S) + q(w;S)κ(θ, w)] (|det A| − 1) +

∫ wh

0
dw q(w;S)κ(θ, w)

+

∫ wh

0
dw [pf(w;S) + q(w;S)κ(θ, w)] δg [x(θ, w);w] |detA| , (3.123)

with κg(θ;S) = ng(θ;S)/n̄g(S) − 1.
Here, we have used that

∫

dw pf(w) = 1. If we only keep terms that are of order Φ, we obtain

κ(1)
g (θ;S) =

∫ wh

0
dw pf(w;S)

[

δg[fK(w)θ, w] − 2κ(1)(θ, w)
]

+

∫ wh

0
dw q(w;S)κ(θ, w) (3.124)

The first term of κ
(1)
g is the galaxy density contrast in Born approximation; the second term

accounts for the fact that the magnification effect will cause the number density on the sky to
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fluctuate even for a uniform distribution of lens galaxies. This happens because in the presence
of a mass overdensity, a given patch on the source plane will be stretched out to a larger area
on the image plane, thus reducing the observed galaxy number density, and vice versa. The
third term de- or increases the contribution to the projected density contrast from distance w
depending on the sign of κ(θ, w). This is due to the de- or increase of the observed flux due
to the magnification effect: if κ > 0 (and therefore µ > 1), intrinsically fainter galaxies can be
detected than in the case of κ < 0.

The Fourier transform of κ
(1)
g is (dropping the dependence on S from now on)

κ̃(1)
g (ℓ) = κ̃(1A)

g (ℓ) + κ̃(1B)
g (ℓ) + κ̃(1C)

g (ℓ)

=

∫ wh

0
dw pf(w;S)

[

Ek3
w

f2
K(w)

δ̃g

(

ℓ

fK(w)
, k3;w

)

+
2

c2

∫ w

0
dw′ Gw,w′

f3
K(w′)

Ek3
w′ ℓ

2 Φ̃

(

ℓ

fK(w′)
, k3;w

′

)]

− 2

c2

∫ wh

0
dw q(w;S)

∫ w

0
dw′ Gw,w′

f3
K(w′)

Ek3
w′ ℓ

2 Φ̃

(

ℓ

fK(w′)
, k3;w

′

)

. (3.125)

The projected galaxy-dark-matter cross power spectrum for source galaxies at distance ws is
given by

〈κ̃g(ℓ) κ̃(ℓ′, w)〉 = (2π)2 δD
(

ℓ + ℓ′
)

Pκg(ℓ, w) . (3.126)

To second order in the gravitational potential, the correlator in Eq. (3.126) consists of three

terms. The first, 〈κ̃(1A)
g (ℓ) κ̃(1)(ℓ′;ws)〉, is the cross power spectrum in Born approximation. The

calculation is analogous to the one that lead to the Born level cosmic shear power spectrum
(Eq. 3.81), and yields

P (1A)
κg (ℓ, ws) =

3H2
0Ωm

2c2

∫ wh

0
dw

pf(w;S)Gws ,w

fK(w) a(w)
Pδg

(

ℓ

fK(w)
;w

)

. (3.127)

If the source galaxies are distributed in comoving distance, we obtain

P (1A)
κg (ℓ) =

3H2
0Ωm

2c2

∫ wh

0
dw

pf(w;S) g(w)

fK(w) a(w)
Pδg

(

ℓ

fK(w)
;w

)

, (3.128)

where g(w) was defined in Eq. (3.68). The second term of order Φ2 that contributes to Pκg is

〈κ̃(1B)
g (ℓ) κ̃(1)(ℓ′;ws)〉, resulting in

P (1B)
κg (ℓ, ws) = −2

(

3H2
0Ωm

2c2

)2 ∫ wh

0
dw pf(w;S)

∫ w

0
dw′ Gws,w′ Gw,w′

a2(w′)
Pδ

(

ℓ

fK(w′)
;w′

)

.

(3.129)

Finally, for 〈κ̃(1C)
g (ℓ) κ̃(1)(ℓ′;ws)〉, we find

P (1C)
κg (ℓ, ws) = 2

(

3H2
0Ωm

2c2

)2 ∫ wh

0
dw q(w;S)

∫ w

0
dw′ Gws,w′ Gw,w′

a2(w′)
Pδ

(

ℓ

fK(w′)
;w′

)

.

(3.130)
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Figure 3.5: Galaxy-Galaxy lensing signal
(Eq. 3.108) for three different lens redshift distri-
butions. Shown are the Born level predictions (thin
lines) and the signal including the second order
corrections from Eqs. (3.128) and (3.129) (thick
lines). All source galaxies are at z = 2.
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Figure 3.6: Angular correlation functions for
three different redshift distributions. Shown are
the Born level predictions (thin lines) and the
signal including the second order corrections from
Eqs. (3.137) and (3.139) (thick lines).

All further corrections are of fourth and higher order in the gravitational potential and there-
fore much smaller than the two terms considered here. For the case of a volume-limited survey,

i.e. in the absence of a flux limit, Fig. 3.5 illustrates the importance of the correction term P
(1B)
κg

for different lens redshift distributions. For low redshifts, the magnification effect is too weak
to produce any noticeable deviation from the Born approximation. However, for mean redshifts
beyond z ≈ 0.7, the Born level prediction is accurate only to ≈ 7%.

3.5 Effects of gravitational lensing on the angular clustering power

spectrum

In this section, we will derive lensing corrections to the angular clustering of galaxies, described
by the angular correlation function ω(θ) = 〈κg(ϑ)κg(ϑ + θ)〉. This has already been investigated
by, e.g., Villumsen (1995), Moessner et al. (1998) and Loverde et al. (2008); here, we give an
alternative derivation based on our previous results for the corrections to the galaxy-galaxy
lensing signal.

Since the correlation function is the Fourier transform of the angular power spectrum Pω, the
following relation holds:

ω(θ) =
1

2π

∫

dℓ ℓ J0(θℓ)Pω(ℓ) . (3.131)

With Eq. (3.125), it is now straightforward to compute Pω and the lowest order lensing correc-
tions. To second order in Φ, the power spectrum is given by

〈κ̃(1)
g (ℓ)κ̃(1)

g (ℓ′)〉 = (2π)2δD
(

ℓ − ℓ′
)

Pω(ℓ) , (3.132)

where
〈

κ̃(1)
g κ̃(1)

g

〉

=
〈

κ̃(1A)
g κ̃(1A)

g

〉

+
〈

κ̃(1B)
g κ̃(1B)

g

〉

+
〈

κ̃(1C)
g κ̃(1C)

g

〉

+ 2
〈

κ̃(1A)
g κ̃(1B)

g

〉

+ 2
〈

κ̃(1A)
g κ̃(1C)

g

〉

+ 2
〈

κ̃(1B)
g κ̃(1C)

g

〉

, (3.133)
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and hence

P (1)
ω (ℓ) = P (1A)

ω (ℓ) + P (1B)
ω (ℓ) + P (1C)

ω (ℓ) + P (1AB)
ω (ℓ) + P (1AC)

ω (ℓ) + P (1BC)
ω (ℓ) . (3.134)

The first correlator in Eq. (3.133) yields the angular power spectrum in the Born approximation:

P (1A)
ω (ℓ) =

∫ wh

0
dw

p2
f (w)

f2
K(w)

Pg

(

ℓ

fK(w)
;w

)

, (3.135)

where Pg is the three-dimensional power spectrum of the galaxy density contrast δg.

For P
(1AB)
ω , we obtain
〈

κ̃(1A)
g (ℓ)κ̃(1B)

g (ℓ′)
〉

=
2

c2

∫ wh

0
dw

∫ wh

0
dχ

∫ χ

0
dχ′ pf(w)

f2
K(w)

pf(χ)
Gχ,χ′

f3
K(χ′)

× Ek3
w E

k′
3

χ′ ℓ
2

〈

δ̃g

(

ℓ

fK(w)
, k3;w

)

Φ̃

(

ℓ′

fK(χ′)
, k′3;χ

′

)〉

= −3H2
0Ωm

c2

∫ wh

0
dw

∫ wh

0
dχ′

∫ wh

χ′

dχ
pf(w)

f2
K(w)

pf(χ)Gχ,χ′

fK(χ′) a(χ′)

× Ek3
w E

k′
3

χ′

〈

δ̃g

(

ℓ

fK(w)
, k3;w

)

δ̃

(

ℓ′

fK(χ′)
, k′3;χ

′

)〉

, (3.136)

where in the last step we have used the Poisson equation (Eq. 2.36) and interchanged the order
of the integrals over χ and χ′. Again assuming that the correlator 〈δg δ〉 is different from zero
only if w ≈ χ′, we can replace χ′ with w everywhere (including the lower limit of the χ-integral),

except in E
k′
3

χ′ . From here, we can proceed as before to obtain the final result

P (1AB)
ω (ℓ) = −6H2

0Ωm

c2

∫ wh

0
dw

pf(w) gf (w)

fK(w) a(w)
Pδg

(

ℓ

fK(w)
;w

)

, (3.137)

where we have defined in analogy to Eq. (3.68)

gf(w) =

∫ wh

w
dχ pf(χ)Gχ,w . (3.138)

In the same manner, the third contribution to P
(1)
ω can be shown to be

P (1B)
ω (ℓ) = 4

(

3H2
0Ωm

2c2

)2 ∫ wh

0
dw

g2
f (w)

a2(w)
Pδ

(

ℓ

fK(w)
;w

)

. (3.139)

Note that κ̃
(1C)
g (ℓ) is of the same form as κ̃

(1B)
g (ℓ) (see Eq. 3.125). The power spectrum

corrections P
(1AC)
ω , P

(1BC)
ω and P

(1CC)
ω can therefore be obtained from P

(1AB)
ω and P

(1B)
ω by

replacing pf(w) with −q(w;S) accordingly. Defining

h(w;S) =

∫ wh

w
dχ q(χ;S)Gχ,w , (3.140)

we find

P (1AC)
ω (ℓ) =

6H2
0Ωm

c2

∫ wh

0
dw

pf(w)h(w;S)

fK(w) a(w)
Pδg

(

ℓ

fK(w)
;w

)

, (3.141)

P (1BC)
ω (ℓ) = −4

(

3H2
0Ωm

2c2

)2 ∫ wh

0
dw

gf(w)h(w;S)

a2(w)
Pδ

(

ℓ

fK(w)
;w

)

, (3.142)

P (1C)
ω (ℓ) = 4

(

3H2
0Ωm

2c2

)2 ∫ wh

0
dw

h2(w;S)

a2(w)
Pδ

(

ℓ

fK(w)
;w

)

. (3.143)
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The correction terms P
(1B)
ω and P

(1AB)
ω to the Born-level clustering power spectrum can be

interpreted as follows: P
(1B)
ω is present even if κg = 0, and accounts for the correlation induced

by the magnification effect caused by the large scale structure in the foreground. If κg 6= 0,

P
(1AB)
ω reduces the power spectrum and therefore the angular correlation of the lens galaxies.

This can be understood by considering a concentration of galaxies at distance wg. If the galaxy
distribution is correlated with the dark matter distribution (Pδg 6= 0), there will also be an
overdensity of dark matter at this location. The magnification effect caused by this galaxy
cluster will then reduce the observed number density of galaxies which are behind the cluster.
This also reduces the total observed number density at this position compared to the unlensed
case. Thus, as was the case for the GGL signal, the magnification bias causes an anti-correlation
between galaxy populations at different distances. This effect is absent if all lens galaxies are at
the same distance wg, because then gf(wg) = 0 in Eq. (3.137).

The importance of the lensing corrections for a volume limited sample (i.e., ignoring the
corrections that involve the luminosity function) can be assessed from Fig. 3.6. The Born ap-
proximation works well below mean redshifts of z̄ ≈ 0.3. Beyond this redshift, P 1AB

ω (Eq. 3.137)
becomes increasingly important, resulting in a negative correction of ≈ 10% at z̄ ≈ 0.7. Com-
pared to this, the contribution from P 1B

ω (Eq. 3.137) is completely neglegible.
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4 Simulations of structure formation

We have seen in Sec. 2.2 how a description of the evolution of the matter distribution in the
Universe can be achieved in the linear regime (|δ| ≪ 1). The full non-linear case, however, is
considerably more difficult. The evolution of the phase-space distribution of the dark matter
f(r,u, t) is described by the Vlasov equation

df

dt
=
∂f

∂t
+ u

∂f

∂r
− ∇Φ

∂f

∂u
= 0 , (4.1)

supplemented by the Poisson equation for the gravitational field:

∇2Φ = 4πGρ(r, t) − Λ , where ρ(r, t) = mDM

∫

d3u f(r,u, t) . (4.2)

No analytical solution to these equations is known in a cosmological context, and even a nu-
merical solution is very difficult to obtain. The simple approach of discretizing phase space
and solving the system on a six-dimensional grid is doomed to fail because of the considerable
computational requirements. For instance, the memory consumption of such a grid code is pro-
portional to N6

g , which means that already for Ng = 64 grid cells per dimension, storing the
phase space density f would require 256 GB of memory. This makes simulations of this kind of
a cosmological volume with reasonable small-scale resolution virtually impossible.

Fortunately, it is not necessary to maintain the same numerical resolution everywhere in the
simulation, as would be the case when using a single grid. Gravitational clustering will cause
matter to concentrate in rather small volumes, leaving large, almost featureless regions nearly
devoid of matter. It is therefore sufficient to concentrate most of the available computational
resources on high-density regions. This can be exploited by a Monte-Carlo integration of the
Vlasov-Poisson system. At early times, when the density in the simulation volume still is very
smooth, the phase space is divided into a number of cells, and the mass in each cell is assigned
to a pseudo-particle. These particles are evolved in time according to their equations of motion.
The phase-space density f can then be estimated at any desired time from the distribution of
the pseudo-particles. Since regions of high density are sampled by more particles, the resolution
of the simulation automatically adapts to the matter distribution in the simulation volume. All
N -body simulations used in this thesis are particle-based, which is why in this section we focus
exclusively on this approach.

The simplest algorithm to evolve the particle distribution in time is to compute the grav-
itational force for every pair of particles, followed by a time integration step. However, this
brute-force method very quickly becomes prohibitively expensive as the number of particles N
grows, since the amount of operations for each time-step scales as N2. In the following, we dis-
cuss more sophisticated algorithms that allow simulations with a much larger number of particles
to be carried out than it would be possible by direct computation of the forces.

4.1 The Particle-Mesh algorithm

The particle-mesh (PM) algorithm (e.g. Hockney & Eastwood 1988) overcomes the N2-scaling
of the force computation by assigning the particles to a grid and solving the Poisson equation
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using the Fast Fourier Transform (FFT, Cooley & Tukey 1965; Frigo & Johnson 1998). The
operations count for the potential computation in this method is ∝ N3

g logN3
g , where Ng is the

number of grid cells in each direction.

4.1.1 Setting up the initial conditions

The density contrast at sufficiently early times is well described by linear perturbation theory
(Sec. 2.2.2). For this case, analytical predictions for the power spectrum are readily available
and can be used to generate initial conditions for the N -body simulation. To obtain the initial
density and velocity field, given the power spectrum from linear theory, one makes use of the
Zel’Dovich-approximation (Zel’Dovich 1970), which is a generalization of the concept of comov-
ing coordinates: in a perfectly homogeneous universe, the comoving density is constant and all
information about the evolution of ρ(r) is contained in the mapping from comoving to proper co-
ordinates, r(t) = a(t)x(t). In the presence of small density fluctuations, one can make use of the
fact that in the linear regime the density contrast is a separable function of x and t (Eq. 2.40).
Therefore, one can relate Eulerian comoving coordinates x to Lagrangian coordinates q by the
ansatz

x(t) = q − b(t)f(q) . (4.3)

Because of the conservation of mass, the densities in Lagrangian and Eulerian coordinates are
related through the determinant of the Jacobian matrix of the mapping q(x):

ρ(x) = ρ0 det

(

E − b(t)
∂f

∂q

)−1

= ρ0 {[1 − b(t)α(q)][1 − b(t)β(q)][1 − b(t)γ(q)]}−1

≈ ρ0 {1 − b(t)[α(q) + β(q) + γ(q)]} ,

(4.4)

where ρ0 is the mean density in the Universe, and α, β and γ are the eigenvalues of the Jacobian
(the Jacobian is symmetric and hence can be diagonalized provided f is irrotational). In the
last step we have assumed that the eigenvalues are small. We can rewrite Eq. (4.4) in terms of
the density contrast:

δ(x) = −b(t) [α(q) + β(q) + γ(q)] , (4.5)

which by comparison with Eq. (2.40) allows the identification of b(t) with the negative of the
growth factor, b(t) = −D+(t), since this is the only time-dependent term on the right-hand side.
In the basis which diagonalizes the Jacobian, α(q) + β(q) + γ(q) is the same as the divergence
of f . Since the divergence is invariant under rotations, Eq. (4.4) can be rewritten as

δ(x, t) = D+(t)∇qf(q) . (4.6)

The Fourier transform of δ(x, t) is

δ̃(k, t) =

∫

d3q exp {−ik · [q +D+(t)f(q)]} D+(t)∇qf(q)

≈
∫

d3q exp (−ik · q) D+(t)∇qf(q)

= −iD+(t)k · f̃(k) , (4.7)
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where we have neglected all terms of higher than linear order in the perturbation f . Multiplying
by k, we finally find

f̃(k) =
ik

|k|2
δ̃(k, t)

D+(t)
. (4.8)

With this, it is possible to create a realization of each component of fk in Fourier space. This is
done by drawing the real and imaginary parts of δ̃k from a Gaussian random number generator
with dispersion

√

L3 Pδ(k)/2, where Pδ(k) is the desired power spectrum of the density field and
L is the side length of the simulation volume. Transforming back to real space, one obtains f(q).
This can then be applied to the particles using Eq. (4.3), which before that were distributed
uniformly in the simulation volume. This yields not only the particle positions in Eulerian space,
but by differentiation with respect to t also the initial velocities.

The initial particle placement deserves some attention in order to avoid numerical artifacts.
The simplest method is to start the particles from a uniform grid, but this is believed to create
unrealistic structures at later times (see e.g. Smith et al. 2003). A uniform random distribution,
on the other hand, will give rise to shot noise due to the Poisson sampling of the continuous
density fields. A better method is to start from a glass distribution (White 1993), in which a
random particle distribution is evolved with sign-reversed gravity into a sub-random distribution.

4.1.2 Solving the Poisson equation

At each time step, the particles are assigned to a Ng ×Ng ×Ng grid. This is done by giving
each particle a shape S(x) and assigning to each grid cell the fraction of mass that falls into the
cell (Hockney & Eastwood 1988):

ρ(xa) =
mp

∆3

N
∑

n=1

W (xn − xa) , (4.9)

where

W (xn − xa) =

∫ xi+∆/2

xi−∆/2
dx

∫ yj+∆/2

yj−∆/2
dy

∫ zk+∆/2

zk−∆/2
dz S(x − xn) . (4.10)

Here, ∆ is the grid spacing, mp is the particle mass, xn is the position of the n-th particle and
xa = (xi, yj , zk) is the location of the grid point with indices a = (i, j, k). Common particle
shapes are the nearest-grid-point (NGP) scheme, where S(x − xn) ∝ δD(x − xn), the cloud-in-
cell (CIC) scheme with S(x−xn) ∝ Π(x−xn) and the triangular-shaped-cloud (TSC) scheme,
for which S(x − xn) ∝ (Π ∗ Π)(x − xn). Here, we have used the rectangle function

Π(x) =

{

1 if − ∆/2 ≤ {x, y, z} < ∆/2

0 otherwise .
(4.11)

Higher order schemes yield smoother density and force estimates, but become increasingly
costly as more grid points are involved. Most commonly used is the CIC scheme, which provides
a good compromise between smoothness and computational efficiency.

Transforming Eq. (4.2) to Fourier space, we can write the potential as

Φ̃k = G̃(k) δ̃k , (4.12)
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where G̃ is the Fourier transform of Green’s function. In the case of a continuous density and
potential, G(k) ∝ |k|−2. On a grid, however, G̃ depends on the discretization scheme adopted.
If one uses the symmetric seven-point approximation to ∇

2 (e.g. Abramowitz & Stegun 1964),
it reads

G̃(k) ∝ 1

sin2(kx ∆/2) + sin2(ky ∆/2) + sin2(kz ∆/2)
. (4.13)

Thus, the computation of Φ requires two Fourier transforms: δ → δ̃ and Φ̃ → Φ.
The gravitational forces at the grid points are obtained by finite differencing of the potential.

Finally, the forces are interpolated back to the particle positions. In order to avoid particle
self-forces (i.e. to conserve momentum), it is important to choose the same interpolation scheme
as used for the assignment of the particles to the grid.

4.1.3 Time integration

The equations of motion of the particles in the simulation can be found by requiring the
conservation of the phase-space density along the trajectory τ (s) = [r(s),u(s)]t of a particle:

df [τ (s)]

ds
=
∂f

∂r

dr

ds
+
∂f

∂u

du

ds
+
∂f

∂t

dt

ds
= 0 . (4.14)

Comparison to the Vlasov equation (Eq. 4.1) then yields

dr

ds
= u ,

du

ds
= −∇Φ ,

dt

ds
= 1 . (4.15)

With the initial conditions and the gravitational potential computed as described in the previous
section, these equations can now be solved in discrete time-steps. A common time-stepping
scheme is the leapfrog scheme, which is accurate to second order in the time step. This integration
scheme proves to be superior to other schemes of the same order, such as the Runge-Kutta
integrator (Springel 2005). It therefore represents a good compromise between accuracy and
computational cost. Explicitly, the leapfrog integrator is given by

u(t+ ∆t/2) = u(t− ∆t/2) + ∇Φ(t)∆t , (4.16)

r(t+ ∆t) = r(t) + u(t+ ∆t/2)∆t . (4.17)

4.2 Improvements: P3M, TreePM and AMR

Although being a significant improvement over the direct summation approach in terms of
computational efficiency, the PM algorithm suffers from several drawbacks. The small-scale
resolution of a PM simulation is limited by the size of the cells of the Fourier mesh; structure on
scales smaller than the grid spacing is smoothed out. Since the memory consumption scales as
N3

g , it quickly becomes infeasible to simulate large boxes with sufficient small scale resolution.
Furthermore, the gravitational force is anisotropic on scales comparable to the grid constant,
which can cause artifacts in structures slightly larger than the grid spacing.

These problems are solved in the P3M algorithm (Hockney & Eastwood 1988) by splitting the
gravitational potential of a particle into a short-range and a long-range component:

Φ(r) = Φl(r) + Φs(r) , (4.18)
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where

Φl(r) = −Gmp

r
erf

(

r

2rs

)

(4.19)

Φs(r) = −Gmp

r
erfc

(

r

2rs

)

. (4.20)

Here, mp is the particle mass, erf and erfc are the error function and its complement, and rs
is the split radius. Since the long range potential is very smooth, it can still be computed on
the PM grid. The short range potential is only important for particle separations smaller than
≈ 4rs, meaning that all particles more distant than this from a given point will not contribute to
Φs at that point. Therefore, one constructs a sphere around each particle within which the short
range contribution to the potential at the particle position is computed by direct summation
over all other particles in the sphere. Therefore, the small scale resolution is no longer limited by
the FFT mesh. At the same time, the computational burden is significantly decreased compared
to the brute force approach by the possibility to compute the contribution to Φ from remote
particles using the FFT.

In the P3M algorithm, a new issue arises due to the finite sampling of the phase space with
particles of large masses. If one used the gravitational potential of a point mass to compute the
short range potential, hard binary systems would form and scattering events with very large
deflections of the particle trajectories would occur. This is in contradiction with the collisionless
nature of dark matter. To avoid this unphysical behaviour, the gravitational potential of a
particle is softened (Hockney & Eastwood 1988; Dehnen 2001) according to

Φsoft(r) =
Gmp

r + ǫ
, (4.21)

where ǫ is the softening length. Since the potential approaches a constant value for r . ǫ, the
force between two particles tends to zero. Therefore, even in high-density regions the resolution
of the simulation is limited to scales above ≈ 2ǫ. Note that this problem is not present in the
PM algorithm because of its inherent smoothing due to the FFT mesh.

However, the P3M algorithm is not in widespread use for cosmological simulations. The reason
for this is that when non-linear clustering starts in earnest, the number of particles contributing
to Φs at a given point can still become very large, and so the simulation stalls due to the
inefficiency of the direct potential computation. A remedy to this problem is provided by the
TreePM algorithm, where the direct summation is replaced with a tree-based procedure. A
tree code combines particles into a hierarchy of cells. The computation is sped up by grouping
more distant particles together and treating them as a new, more massive pseudo-particle. This
reduces the number of summations significantly, at the cost of introducing a small error due to
the averaging involved. More details can be found in, e.g., Springel (2005).

A different approach to improve the small-scale resolution of the PM algorithm is adaptive
mesh refinement (AMR), as implemented for example in ART (Gottlöber & Klypin 2008, and
references therein). Here, the computation of the potential is always carried out on a grid.
However, grid cells in high-density regions can be recursively subdivided into smaller cells,
hence increasing spatial resolution where needed. This leads to a hierarchy of grid refinements,
the geometry of which fully adapts to the density field. The FFT can only be used to compute
the potential on the zeroth-order refinement, which is always a regular cubic grid. This provides
boundary conditions for the irregular regions where the grid has been refined. The potential for
the first refinement level is then obtained by solving the Dirichlet boundary value problem. This
solution, in turn, provides boundary conditions for the next higher refinement level, and so on.
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4.3 Halo identification

A generic feature of cosmological structure formation is the formation of well-defined, self-
bound structures, so-called dark matter halos. Since these halos and possible substructures
within the halos mark the location of galaxies, galaxy groups and clusters, their identification
in a N -body simulation is of great interest.

Several algorithms exist to identify dark matter halos. The probably most common approach
is the Friends-of-Friends (FoF) algorithm (Davis et al. 1985). After specifying a linking length l
(typically 20% of the mean separation of two particles in the simulation), particles are said to be-
long to a particular halo if they are not further away from a halo member than the linking length.
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Figure 4.1: An example for a merger his-
tory (merger tree) of a dark matter halo
(taken from Stewart et al. 2008). The re-
sulting halo has a mass of 3.1 × 1012M⊙

at z=0. Solid black lines correspond to iso-
lated field halos, dashed red lines to subha-
los that merge with the main halo.

The halos formed by the FoF algorithm approximately
correspond to regions within the isodensity contour with
density ∝ 1/l3 (Springel et al. 2001). The standard
FoF technique has several shortcomings: it cannot de-
tect substructures within halos and tends to artificially
link together physically distinct objects. The hierar-
chical FoF algorithm by Gottlöber et al. (1999) ad-
dresses these problems by reducing the linking length
in several steps, subsequently revealing substructures of
higher density contrast. However, there still is a consid-
erable false detection rate, in particular in high-density
regions. Therefore, in the DENMAX (Bertschinger & Gelb
1991) and SKID (Governato et al. 1997) algorithms, the
geometrical information from the FoF algorithm is com-
plemented with dynamical information to help decide
whether a halo is real and to remove unbound particles
from the halo. Additional information can be obtained
by checking whether the candidate halo also exists at
later times in the simulation. The SUBFIND algorithm
(Springel et al. 2001), which has been used to construct
the halo catalogues of the Millennium Simulation, starts
with the groups detected by the FoF method. A local
density estimate is computed at the position of each par-
ticle in the FoF halo, and local overdensities are found
by looking for isodensity contours that pass through a
saddle point of the estimated density. Finally, also in
this algorithm unbound particles are removed based on
dynamical information.

The algorithms described do not only result in halo
and subhalo catalogs for each snapshot redshift, but also allow the reconstruction of the merger
histories of all halos identified in the simulation at z = 0. These merger trees (an example is
given in Fig. 4.1) are a key ingredient to the semi-analytic modelling of galaxy formation, as is
described in the next section.
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4.4 Semi-analytic models of galaxy formation

It is not yet possible to satisfactorily simulate the formation of galaxies in a cosmological
volume. On the one hand this is because of the computational resources necessary to fully
treat the baryonic physics and the dark matter simultaneously, and on the other hand because
the physics of galaxy formation is not yet fully understood. Semi-analytic models of galaxy
formation (SAMs) deal with these difficulties by combining a simple analytical parametrization
of galaxy formation with the merger trees obtained numerically for halos and subhalos in N -
body simulations. This approach has the advantage that the effect of variations in the model
parameters can be investigated with comparably little computational effort, because it only relies
on the dark matter merger trees. By matching the model to observations it is then possible to
identify physical processes that lead to a certain property of the galaxy distribution and to assess
their relative importance.

Since we will use the resulting mock galaxy catalogues in Chapter 7 for our simulations of
galaxy-galaxy-lensing, we now give a simplified description of the model that has been imple-
mented by Croton et al. (2006) and De Lucia & Blaizot (2007) for the Millennium Simulation:

• When a dark matter halo forms, a certain mass fraction of baryons will collapse with it.
This fraction is assumed to be the global baryon fraction in the Universe. The gas initially
has primordial composition, but can at later times be enriched by stellar mass loss.

• The gas in the halo cools by radiation. The cooling rate, i.e. the rate of change of the cold
gas mass in the halo, is determined by the metallicity of the gas and the mass of the dark
matter halo. Cool gas is assumed to form a disk at the center of the halo.

• Star formation takes place in the cool gas disk, either quiescently or in bursts:

– For quiescent star formation to occur, it is necessary for the gas disk to exceed a
certain surface mass density, or, assuming a homogeneous cold disk, a critical cold
gas mass. This results in an estimate for the star formation rate. The efficiency of
star formation in the disk can be controlled by a model parameter.

– Starbursts occur when two galaxy host halos merge. A certain, adjustable fraction
of the total cold gas mass of the merging halos is converted into stars.

• Several feedback processes that reheat the gas in a halo can be accounted for:

– A certain fraction of newly formed stars will explode as supernovae. These inject
energy into the halo and heat the gas. The rate of change of the hot gas mass is
assumed to be proportional to the mass of stars formed over some finite time interval
(and thus to the supernova rate). In low-mass halos, it is possible that some gas is
ejected from the halo, either to fall back later or to be lost permanently.

– Supermassive black holes at the centers of halos accrete gas and release some of the
energy of the infalling matter as radiation. This can occur in the “radio mode”,
where steady, quiescent accretion takes place, or in the more violent “quasar mode”,
which is activated in halo mergers. In either case this counteracts the gas cooling and
converts cool gas to hot gas.

• The morphology of galaxies (i.e. the sizes of disks and bulges) is determined by disc growth
through accretion, bulge growth due to disk instabilities and bulge formation through
mergers. Mergers of galaxies occur in the model between halo or subhalo central galaxies
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Parameter Millennium Simulation WMAP-5

L [h−1 Mpc] 500 150
N 21603 2563

mp [h−1M⊙] 8.6 × 108 1.2 × 1010

ǫ [h−1 kpc] 5.0 20.0

Ωm 0.25 0.25
ΩΛ 0.75 0.75
Ωb 0.045 0.04
σ8 0.9 0.78
h100 0.73 0.7
ns 1.0 1.0
Transfer function CMBfast1 Eisenstein & Hu (1999)

Table 4.1: Parameters of the simulations used in this thesis. The side length of the simulation volume
is denoted by L, the number of particles by N , the particle mass by mp and the smoothing length by ǫ.
All lengths given are comoving.

and satellite galaxies in the same (sub)halo which have lost their own subhalo. This
happens when a subhalo is tidally stripped and eventually is below the detection threshold
of the halo finding algorithm. The orphan galaxies merge with the central galaxy after
a time set by the dynamical friction timescale. If the merger is an unequal-mass merger,
then the stars of the satellite galaxies are transferred to the bulge of the central galaxy,
while the cold gas is added to the disk. If the masses of the two galaxies are comparable,
then both discs are destroyed and all stars end up in the spheroidal component.

• The spectral properties of the galaxies can be modelled using population synthesis, since
the ages of the different stellar populations and their metallicities are known.

This recipe leads to a system of coupled differential equations for the galaxy properties (such as
gas and stellar masses) which can be solved numerically, traversing the merger tree from early
to late times. The result is a mock galaxy catalogue that contains besides observable properties
of the galaxies such as magnitudes in various filter bands also the properties of their host halos.

Finally, it should be noted that the galaxies in a SAM are massless point particles (usually
the central particles of dark matter halos and subhalos), whose presence does not alter the
matter distribution in the N -body simulation in any way. Therefore, within the framework of
these models it is not possible to study, e.g., the effect of baryonic physics on the matter power
spectrum.

4.5 N-body simulations used in this thesis

Finally, we briefly describe the simulations used in this thesis. The main parameters are also
summarized in Tab. 4.1.

4.5.1 The Millennium Simulation

The Millennium Simulation (Springel et al. 2005) is one of the largest simulations of structure
formation so far. It was run using a modified version of the publically available TreePM code

1Seljak & Zaldarriaga (1996)
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GADGET-2 (Springel 2005). It tracks the evolution of 21603 (≈ 1010) dark matter particles from
z = 127 to z = 0. Snapshots of the particle distribution are provided at 64 redshifts within this
interval. The size of the simulation box is L = 500h−1 Mpc, which is big enough to contain rare
massive objects, while the large number of particles and their low mass of 8.6×108 h−1M⊙ allow
one to resolve structures equivalent the size of the Small Magellanic Cloud. These structures and
their substructures were identified using the SUBFIND algorithm. The price paid for this large
dynamic range is the data volume: storage of all 64 snaphots requires ≈ 20 TB of disk space.
A large amount of the simulation data, such as the halo and subhalo catalogs, and also the
results of the galaxy formation model by De Lucia & Blaizot (2007), have been made publically
available through an online database (Lemson & The Virgo Consortium 2006), which we have
made extensive use of for Chapters 5, 7 and 8.

4.5.2 Smaller simulations

We have run a set of 10 smaller N -body simulations (CDFS simulations henceforth) using the
public version of GADGET-2. All simulations are realizations of the same WMAP-5-like cosmology
(Ωm = 0.25, ΩΛ = 0.75, Ωb = 0.04, ns = 1.0, σ8 = 0.78, h100 = 0.7). The simulation boxes
are Lbox = 150h−1Mpc on a side, populated by Np = 2563 dark matter particles with masses
of mp = 1.2 × 1010 h−1M⊙. We have started the simulations at z = 50 and obtained snapshots
from z = 0 to z = 4.5 in intervals of ∆z corresponding to the box size. The initial particle
distribution was created by perturbing a glass distribution using the Zel’Dovich approximation.
Halos were identified using a FoF code kindly provided by V. Springel.
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5 Ray-Tracing Simulations

Analytical predictions for weak gravitational lensing necessarily involve simplifications, such
as the Born approximation where the deflections of the light rays are neglected. Depending on
the context, these approximations may not be accurate enough; as we have seen in Sec. 3.3,
in some situations correction terms for these approximations can be derived. However, all
analytical predictions currently are based in one way or another on fitting formulae to N -body
simulations, and therefore have a limited accuracy (currently ≈ 10% for two-point statistics;
the uncertainties can be considerably larger for higher-order measures). Thus, whenever higher
precision is needed or the problem at hand simply evades an analytical description, one has
to resort to ray-tracing simulations, where the propagation of light rays through the (suitably
discretized) large-scale structure is studied explicitly. These simulations can also be coupled
with semi-analytic models of galaxy formation, so that it is possible to obtain realistic mock
observations including effects of the galaxy sample selection. Recent efforts in this field were
undertaken by e.g. Jain et al. (2000) or Vale & White (2003).

The actual implementation of a ray-tracing simulation depends on the properties of the N -
body simulation from which the matter distribution along the line of sight (l.o.s) is constructed.
In this section, we first describe what we will call the “standard” ray-tracing algorithm, which
is suited for work with N -body simulations with smaller boxes (L . 200h−1 Mpc). Our im-
plementation of this method, called RTsuite, has already been discussed in detail in Hartlap
(2005), and simulations produced with RTsuite have been used in Dietrich et al. (2007), Eifler
et al. (2008), Pielorz (2008) and Chapter 6 of this thesis. We then describe a code that we have
developed for the Millennium Simulation, whose large simulation volume and at the same time
excellent small scale resolution require some modifications to the standard ray-tracing algorithm.
The code has been thoroughly tested and applied to some aspects of weak gravitational lensing
in Hilbert et al. (2008a). Furthermore, it has been used to study the statistics of strong lensing
events (Hilbert et al. 2007b, 2008b) and for an investigation of possible benefits of using the 21
cm radiation of pre-galactic hydrogen in Hilbert et al. (2007a).

5.1 The multiple-lens-plane algorithm

We first consider the standard implementation of the multiple-lens-plane algorithm (see, e.g.,
Blandford & Narayan 1986; Schneider et al. 1992; Seitz et al. 1994; Jain et al. 2000), which
basically comprises a discretization of Eq. (3.60).

The first step towards simulating the propagation of light rays in an inhomogeneous universe
is to construct the density field along the backwards lightcone of the observer. The matter distri-
bution is taken from N -body simulations, which provide snapshots of the simulation volume at
different redshifts. If the side length of the simulation volume is not too large (L . 200h−1 Mpc),
the density along the l.o.s. from the observer can be constructed in a straight-forward way: the
snapshots are lined up along the line of sight (which is assumed to be parallel to one of the coor-
dinate axes of the snapshots), using snaphots of higher redshift as the distance to the observer
increases. However, measures have to be taken to avoid the repetition of the same structures
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along the l.o.s.: a snapshot for z = z1 contains essentially the same matter distribution as a
snapshot for z2 > z1, even though at a slightly different stage of evolution. If the snapshots
were simply lined up, the light rays would encounter the same objects every time after covering
a distance of ≈ L. Therefore, one makes use of the periodic boundary conditions of the N -body
simulation and randomly applies rotations by 90◦ about the coordinate axes, translations and
and parity transformations to the particle distribution in the snapshots.

The matter distribution of each snapshot is then projected plane-parallely along one of the
coordinate axes onto a lens plane, and light deflections are assumed only to occur when a light
ray intersects one of these planes. The matter distribution on the lens planes is periodic, which
is a consequence of the periodic boundary conditions of the N -body simulation. This allows for
the computation of the deflection angle and its derivatives from the projected density on each
plane by two-dimensional FFT methods.

After these preparations, the light rays are shot into the stack of lens planes, starting at the
observer. This is usually done in a way such that the light rays form a uniform grid on the
first lens plane (the “sky” seen by the observer). The light rays are propagated from lens plane
to lens plane using the precomputed deflection angles on the lens planes (interpolated onto the
ray positions) and a recursion formula for the angular position of each ray. A similar recursion
relation also yields the Jacobian matrix of the lens mapping from the observer to the lens planes.
With this, the effective convergence κ and the shear γ can be computed at the positions of the
light rays. Several (quasi-)independent realizations of the convergence and shear fields can be
obtained by choosing a different observer position with respect to the first lens plane and/or by
repeating the simulation with different random transformations applied to the snapshots before
projection onto the lens planes.

Besides the discretization of the matter distribution, the multiple-lens-plane algorithm involves
several approximations:

• It is assumed that the density field does not evolve much during the time a light ray needs
to traverse a snapshot.

• The geometrical weight functionG in Eq. (3.60) is assumed to be a slowly changing function
of redshift, and therefore can be assumed to be constant within a snapshot.

• The projection is done plane-parallely. The validity of this approximation implies that the
angles enclosed by the light rays with the l.o.s. are small, limiting the angular size of a
simulated patch of the sky to ≈ 10◦ × 10◦. This is also called the flat sky approximation.

• Eq. (3.60) requires the gradient of the gravitational potential to be computed perpendicular
to the light ray. In the multiple-lens-plane algorithm, this gradient is computed in the plane
of the sky, however. This is valid within the flat sky approximation, with the additional
assumption that the deflections suffered by the light rays are small.

We will now discuss the particular steps of the multiple-lens-plane algorithm in more detail.
To simplify the notation, we introduce the following abbreviations: for the comoving angular

diameter distance fK(w(k)) to the k-th lens plane we write f
(k)
K , and the distance fK(w(k)−w(l))

between plane k and plane l (k > l) is abbreviated by f
(l,k)
K . Furthermore, a(k) = a(w(k)).

5.1.1 Construction of the lens planes

To construct the lens planes, the particles in a particular snapshot are projected along one of
the coordinate axes onto a two-dimensional grid, using one of the assignment schemes described
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in Sec. 4.1.2. We parametrize the projected matter distribution on the k-th lens plane by the
dimensionsless surface mass density σ(k):

σ(k)(β(k)) =
3H2

0Ωm

2c2
f

(k)
K

a(k)

∫ w
(k)
U

w
(k)
L

dw′ δ
(

β(k), w′
)

. (5.1)

Here, β(k) is the angular position on the lens plane and δ the three-dimensional matter density

contrast as defined in Sec. 2.2.2. The integration limits w
(k)
L and w

(k)
U define the lower and

upper boundaries, respectively, of the slice of the matter distribution which is projected onto

the k-th lens plane (with w
(k)
U = w

(k+1)
L ). In the standard implementation of the ray-tracing

algorithm, w
(k)
L and w

(k)
U are simply given by the boundaries of the simulation volumes; as we

will discuss further below, we have to make a different choice for the Millennium Simulation.
The positions of the lens planes within the slices are usually chosen to correspond to the mean
redshifts (e.g. Jain et al. 2000) or mean comoving distances (e.g. Wambsganss et al. 2004) of the
slice boundaries. The exact choice becomes unimportant for sufficiently small spacings between
the lens planes.

The deflection α(k)(β(k)) of a light ray intersecting the k-th lens plane at angular position
β(k) can be expressed as the gradient of a lensing potential ψ(k) (see Eq. 3.8):

α(k)(β(k)) = ∇
β(k) ψ(k)(β(k)) , (5.2)

which is related to the dimensionless surface mass density through the Poisson equation:

∇
2
β(k)ψ

(k)(β(k)) = 2σ(k)(β(k)) . (5.3)

For later use, we also define the shear matrix for the k-th lens plane

U
(k)
ij =

∂2ψ(k)(β(k))

∂β
(k)
i ∂β

(k)
j

=
∂α

(k)
i (β(k))

∂β
(k)
j

. (5.4)

Since the matter distribution on a lens plane is periodic, it is convenient to compute the deflection
potential, the deflection angle and the shear matrix in Fourier space:

ψ̃(k)(ℓ) = −2
σ̃(k)(ℓ)

|ℓ|2 , (5.5)

α̃(k)(ℓ) = −iℓ ψ̃(k)(ℓ) = 2i σ̃(k)(ℓ)
ℓ

|ℓ|2 , (5.6)

Ũ
(k)
ij = −ℓiℓj ψ̃(k)(ℓ) =

2ℓiℓj
|ℓ|2 σ̃(k)(ℓ) , (5.7)

for ℓ 6= 0. This allows for a fast computation of the deflection angles and the shear matrices
from the surface mass density using the Fast Fourier Transform.

5.1.2 Ray-Tracing

Given the deflection angles on the lens planes, we can compute the angular position β(k) of a
particular light ray (reaching the observer from angular position θ ≡ β(1)) using the generalized
lens equation

β(k)(θ) = θ −
k−1
∑

i=1

f
(i,k)
K

f
(k)
K

α(i)(β(i)) , k = 2, 3, . . . (5.8)
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Figure 5.1: Schematic view of the observer’s backward light cone in the multiple-lens-plane approxima-
tion. A light ray (red line) experiences a deflection only when passing through a lens plane (solid blue

lines). The deflection angle α(k−1) of a ray passing through the lens plane at distance f
(k−1)
L from the

observer is obtained from the matter distribution between f
(k−1)
U and f

(k−1)
L projected onto the plane.

Using the deflection angle α(k−1) of the light ray at the previous lens plane and the ray’s positions x(k−1)

and x(k−2) on the two previous planes, the position x(k) on the current plane can be computed (figure by
S. Hilbert).

In the case of k = 2, this reduces to the ordinary lens equation (Eq. 3.4). Eq. (5.8) defines a
series of lens mappings from the image plane (i.e. the first lens plane) to the other lens planes:

θ 7→ β(k) = β(k)(θ) , k = 1, 2, . . . (5.9)

Differentiating Eq. (5.8) with respect to θ, we obtain a corresponding equation for the Jacobian
of the lens mapping to the k-th lens plane :

A(k)(θ) = E −
k−1
∑

i=1

f
(i,k)
K

f
(k)
K

U(i)(β(i))A(i)(θ) . (5.10)

Since Eqs. (5.8) and (5.10) require the storage of the ray positions and Jacobians on all previous
lens planes, it is not practical for tracing rays through many lens planes at high resolution.

An alternative expression can be obtained by the following geometrical consideration (see,
e.g., Schneider et al. 1992; Seitz et al. 1994; Hartlap 2005): The transverse comoving position
x(k) of a light ray on the lens plane k is related to the positions x(k−2) and x(k−1) on the two
previous lens planes by (see Fig. 5.1):

x(k) = x(k−1) + f
(k−1,k)
K

[

ǫ − α(k−1)(x(k−1))
]

, where

ǫ =
x(k−1) − x(k−2)

f
(k−2,k−1)
K

.
(5.11)
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Using x(k) = f
(k)
K β(k), this can be written in terms of angular coordinates:

β(k) =
1

f
(k)
K

[(

1 +
f

(k−1,k)
K

f
(k−2,k−1)
K

)

f
(k−1)
K β(k−1)

−f (k−1,k)
K α(k−1)(β(k−1)) − f

(k−1,k)
K

f
(k−2,k−1)
K

f
(k−2)
K β(k−2)

]

. (5.12)

For a light ray reaching the observer from angular position θ on the first lens plane, we can
compute its angular position on the other lens planes by iterating Eq. (5.12) with the initial
values β(0) = β(1) = θ. In App. A, we give an alternative derivation of this equation by directly
discretizing the differential equation for the comoving separation vector between two light rays
(Eq. 3.57). Differentiating Eq. (5.12) with respect to θ, we obtain a recurrence relation for the
Jacobian matrix of the lens mapping (Eq. 5.9):

A(k)(θ) =

(

1 +
f

(k−1,k)
K

f
(k−2,k−1)
K

)

f
(k−1)
K

f
(k)
K

A(k−1)(θ)

−f
(k−1,k)
K

f
(k)
K

U(k−1)(β(k−1))A(k−1)(θ) − f
(k−1,k)
K

f
(k−2,k−1)
K

f
(k−2)
K

f
(k)
K

A(k−2)(θ) . (5.13)

With the initial values A(0) = A(1) = E, this equation allows us to iteratively compute the
Jacobian for a particular light ray from the observer to any lens plane. It requires in practice
much fewer arithmetic operations and memory than the commonly used recurrence relations (e.g.
by Jain et al. 2000) based on Eq. (5.8).

5.1.3 Construction of mock observations

From Eq. (5.13), we can compute the Jacobian matrix for any given source redshift: we denote

with f
(k+λ)
K the comoving angular diameter distance to the source plane, where λ ∈ [0, 1] and

f
(k)
K ≤ f

(k+λ)
K ≤ f

(k+1)
K , and with A(k+λ)(θ) the corresponding Jacobian matrix. The latter can

be computed from A(k) and A(k−1) using the recursion relation Eq. (5.13):

A(k+λ)(θ) =

(

1 +
f

(k,k+λ)
K

f
(k−1,k)
K

)

f
(k)
K

f
(k+λ)
K

A(k)(θ)

−f
(k,k+λ)
K

f
(k+λ)
K

U(k)(β(k))A(k)(θ) − f
(k,k+λ)
K

f
(k−1,k)
K

f
(k−1)
K

f
(k+λ)
K

A(k−1)(θ) . (5.14)

Subtracting this expression from the analogous one for A(k+1), the terms involving the shear
matrices and A(k−1) cancel out. Rearranging the remaining terms, we find

A(k+λ)(θ) =
f

(k,k+λ)
K

f
(k+λ)
K

f
(k+1)
K

f
(k,k+1)
K

A(k+1)(θ) +
f

(k)
K

f
(k+λ)
K

(

1 − f
(k,k+λ)
K

f
(k,k+1)
K

)

A(k)(θ) . (5.15)

With this, we can obtain the shear, convergence, etc. on a grid using Eq. (3.33). We prefer the
definition of κ and γ by the polar decomposition of A over the definition using the decomposition
according to spin (Eq. 3.38). This is because κ′ and γ′ as defined by Eq. (3.34) can in general
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Figure 5.2: Interpolation scheme
used for determining image positions of
galaxies. The regular grid of rays in the
image plane (left filled circles) is used
to partition the image plane into trian-
gles (right blue lines). The image po-
sition (left open circle) of a source in-
side a triangle (left blue lines) formed
by the backtraced rays on the source
plane (right filled circles) is then deter-
mined by linear interpolation (figure by
S. Hilbert).

not be related to observables in a simple way, whereas the unprimed quantities in Eq. (3.33) are
directly related to the observed image distortions.

If the source galaxies are distributed in redshift according to the redshift distribution function
pz(z) (or, equivalently with a distribution in comoving distance pw(w) = pz(z) |dz/dw|), we
have to compute shear and convergence from an average of the Jacobian matrices for different
redshifts. We note that, given the discretization scheme of the multiple-lens-plane algorithm,
the most sensible location for the source galaxies are the back sides of the slices of the matter

distribution that are projected onto the lens planes (i.e., at w
(k)
U ). The reason for this is that the

deflections at a lens plane account for the effects of all matter in the respective slice. If a source
galaxy were located somewhere within the slice, the shear assigned to it with the procedure
outlined above would therefore contain contributions from matter that is actually at higher z
than the source. To avoid this kind of conceptual difficulties, we use the Jacobians A(k+1/2) for
the lens mapping to the back sides of the slices (obtained from Eq. 5.15) to compute the average
over the source galaxy redshift distribution:

A(θ) =

kmax
∑

k=1

pw(w(k))A(k+1/2)(θ)
(

w(k+1) − w(k)
)

. (5.16)

Here, kmax is given by the redshift of the most distant source. A generic distribution, which we
will frequently make use of in this thesis, was proposed by Smail et al. (1995) and is given by

p(z) = A

(

z

z0

)α

exp

[

−
(

z

z0

)β
]

, (5.17)

where A is a normalization constant and α, β and z0 are free parameters.

5.1.4 Including galaxies from semi-analytic models

In order to realistically model galaxy-galaxy lensing, we need a method to include galaxies
from semi-analytical models of galaxy formation in our simulation. In particular, the task is to
translate the galaxy positions on the lens planes into observed, lensed positions on the sky. We

therefore have to compute the image positions θg given the galaxies’ source positions β
(k)
g (i.e.

the positions on the lens planes). Note that this is the exact opposite of the problem we have
solved with the multiple-lens-plane algorithm, where we have computed the ray positions on the
lens planes given the ray positions on the image plane.
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During the ray-tracing, we store the positions of the light rays on every lens plane. We
partition the region of the image plane that is covered by the grid of rays into triangles formed
by rays of adjacent grid points (Schneider et al. 1992), as is illustrated in Fig. 5.2. Using the
stored ray positions, we are able to “backtrace” these triangles to the lens planes. On each lens
plane, we then identify for each such triangle all galaxies which are located inside the backtraced
triangle. The image positions of these galaxies and the magnifications at their positions are then
computed by linear interpolation of the Jacobian matrices of the three rays forming the triangle.
If a particular galaxy is covered by more than one triangle, the galaxy is multiply imaged; the
method therefore can to a certain degree also account for strong lensing (see the discussion in
Schneider et al. 1992).

Furthermore, gravitational lensing affects the observed magnitudes of the galaxies through
the magnification effect. We take this into account by correcting the apparent magnitude in the
filter band X according to

m
(lensed)
X = m

(unlensed)
X − 2.5 log(µ) , (5.18)

where µ is the previously computed magnification.

5.1.5 Ray-Tracing with the Millennium Simulation

We now discuss several modifications of the standard ray-tracing algorithm outlined in the
previous section which are necessary to deal with high-resolution N -body simulations with large
simulation boxes, such as the Millennium Simulation. These affect in particular the construction
of the lens planes; the actual ray-tracing part of the algorithm can be used essentially as described
in Sec. 5.1.2.

Construction of the lens planes

With a comoving size of L = 500h−1 Mpc, the simulation box of the Millennium Simulation
is too big to be projected onto a single lens plane; doing so would result in an unacceptably
large discretization error. Neither can the evolution of the matter distribution within the light
travel time through the box be neglected, nor can the geometrical weight factors in Eq. (3.60)
be approximated to be constant. Therefore, it is necessary to construct the lens planes from
slices that are smaller than the simulation volume. This immediately raises the issue of how
to deal with dark matter halos that are located close to or even on a slice boundary. Simply
slicing through halos would result in one part of a galaxy cluster to appear on the k-th lens
plane, and the remaining part on the k + 1-st plane, spreading the halo over a length of the
order of ∼ 100h−1 Mpc. For this reason, the slice boundaries have to be adaptive so that halos
are either completely included or excluded from a slice. Furthermore, large-scale correlations
that extend beyond the slice boundaries have to be taken into account and to be preserved in
the slicing procedure. Neglecting any of these issues would detract from the goal of making
the best possible use of the large dynamic range of the Millennium Simulation. Therefore, the
method for the construction of the lens planes described in the previous section cannot be used
here. The random transformations of the matter distribution in the slices, applied to avoid the
repetition of structures along the l.o.s., would be incompatible with the adaptive slice boundaries
and destroy any large-scale correlations.
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Figure 5.3: Schematic view of the orientation of the line-of-sight (red line) and the lens planes (blue
area) relative to the simulation box (indicated by black lines; figure by S. Hilbert).

To avoid these problems, we exploit the periodic boundary conditions of the N -body simula-
tion by arranging replicas of the simulation volume in a cubic lattice (Fig. 5.3). We then choose
the l.o.s. at a skewed angle relative to the box axes. For certain choices of the direction of the
l.o.s., the length of periodicity of the matter distribution along the l.o.s. can be made sufficiently
large. At the same time, the matter distribution is continuous across the slice boundaries, pre-
serving structures that are larger than the slices. On the other hand, we still wish to be able to
apply Fourier methods for the calculation of the light deflection at the lens planes. This requires
a matter density that is periodic perpendicular to the l.o.s. For an arbitrary choice of the l.o.s.,
this is clearly not the case. However, if one chooses the angles enclosed with the coordinate axes
carefully, the lens planes can be made periodic again, even though with an area of periodicity
that is in general much larger than the original 500 × 500h−2 Mpc2.

To see this, we choose the origin of our coordinate system to be located at one of the box
corners in the lattice of replicas of the simulation volume (see Fig. 5.3). If we set L = 1 for the
moment, the positions of other box corners (lattice points) are then given by lattice vectors of
the form p = (p1, p2, p3)

t, where pi ∈ Z. We now choose two linearly independent lattice vectors
p and q with p = (p1, p2, p3)

t and q = (q1, q2, q3)
t. These two vectors span a plane which is

perpendicular to the lattice vector n with n = (n1, n2, n3)
t = p × q, ni ∈ Z. Since p and q

are lattice vectors, the plane is itself periodic along the directions of p and q with a length of
periodicity of |p| and |q|, respectively. The total area of the parallelogram constructed from p

and q is |p × q| = |n|. We show in App. B that there is no set of vectors spanning the same
plane, but yielding a smaller area of periodicity, if the integer coefficients n1, n2, and n3 are
coprime. This also means that there is no shorter non-zero lattice vector perpendicular to the
plane than n in this case, and hence, the shortest periodicity along the normal direction is |n|.

Our choice p = (3,−1, 0)t and q = (1, 3,−1)t yields for the direction of the l.o.s. n = (1, 3, 10)t,
so that in physical units |n| = 5.244h−1 Gpc. With this, the lens planes are rectangular with
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Figure 5.4: Schematic view of the adaptive slice boundaries to avoid the truncation or double inclusion
of halos that are located near a slice boundary. Halos near the boundary of slice k and k + 1 are either
included as a whole in slice k or completely excluded depending on the positions of their centres (a). Halos
that are included (excluded) in slice k, are excluded (included) from slice k + 1 even if they have crossed
the slice boundary between redshift k and k + 1 (b) (figure by S. Hilbert).

an area of periodicity of 1.581h−1 Gpc × 1.658h−1 Gpc. Moreover, any directions with shorter
periodicity are at least 1.81◦ away from n, and a light cone with a 1.7◦ × 1.7◦ field of view
does not intersect with itself up to redshift z = 3.87 when folded back into the simulation cube.
The resulting orientation of the l.o.s and the lens planes with respect to the simulation box are
illustrated in Fig. 5.3.

We choose the redshifts of the lens planes to be the same as the redshifts of the available snap-
shots for the Millennium Simulation. The slice boundaries are chosen to be located at the average
redshifts between two lens planes. The boundary between two redshift slices with snapshot red-

shifts z(k) and z(k+1) is thus a plane at comoving distance w
(k)
U = w

(k+1)
L = w

[(

z(k) + z(k+1)
)

/2
]

(with w
(0)
L = 0). This means that in the special case of the slice for z = 0, we project the matter

distribution onto a lens plane at z(0) = z(1)/2 = 0.01.

Special care is taken for the particles near the boundary of two slices. In order to avoid that
a dark matter halo is only partially included into a slice (and hence would be only partially
projected onto a lens plane), a halo is either included as a whole if its central particle is inside
the slice as defined by boundary planes, or completely excluded otherwise. A complication may
arise if a halo has moved across a slice boundary between two snapshots. In this case, we proceed
as follows: if the halo is included into the slice of the snapshot with redshift z1, its progenitors
in the snapshot with redshift z2 > z1 are excluded from the slice for z2 even if their central
particles lie on the z2-side of the slice boundary. This procedure is illustrated in Fig. 5.4.

As in the standard implementation, the lens planes are constructed from the matter slices by
projection of the particle distribution parallel to the l.o.s. onto a rectangular mesh. In dense
regions, the spatial resolution of the Millennium Simulation is effectively determined by the force
softening, which is ǫ = 5h−1 kpc (see Tab. 4.1). Thus, a mesh spacing of 2.5h−1 kpc for the
lens planes is required to avoid a degradation of the resolution for the projected matter density.
However, a single mesh covering the full periodic area of the lens plane (i.e. 1.58Gpc/h ×
1.66Gpc/h comoving) with such a small mesh spacing would be computationally too demanding.
We therefore adopt a strategy using a low resolution mesh covering the whole lens plane and
several high-resolution meshes that can be computed on demand. Similar to the force calculation
in the P3M algorithm (Sec. 4.2), we split the lensing potential ψ on the lens planes into a long-
range part ψl and a short-range part ψs. The split is defined in Fourier space by (see also
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Eq. 4.19):

ψ̃l(ℓ) = ψ̃(ℓ) exp
(

−θ2
splitℓ

2
)

, (5.19)

ψ̃s(ℓ) = ψ̃(ℓ)
[

1 − exp
(

−θ2
splitℓ

2
)]

. (5.20)

Here θsplit = xsplit/f
(k)
K , where xsplit is the comoving splitting length. We first assign the particles

in a slice to the coarse mesh (16 384×16 384 mesh points) using the CIC assignment scheme (see
Sec. 4.1.2). We then use Eqs. (5.5) and (5.19) to compute the long-range potential ψl using FFT.
The splitting length xsplit = 0.175Mpc/h is chosen to be slightly larger than the coarse mesh
spacing (0.096h−1 Mpc and 0.101h−1 Mpc in the directions given by p and q, respectively), so
that the coarse mesh samples ψlong with sufficient accuracy. This is done only once for each lens
plane, and the results are stored to disk for later use.

The short-range potential ψs is calculated during the actual ray-tracing only for that part of
the lens plane which is intersected by light rays. If this area is larger than 40h−1 Mpc, it is
subdivided into several sub-meshes. Each sub-mesh has a mesh spacing of 2.5h−1 kpc and up to
16 384× 16 384 mesh points. The fine meshes have to be slightly larger than the area defined by
the light rays in order to take into account all matter within the effective range of ψs, which is
given by ≈ 5xsplit. Due to these extra margins, the potential can be computed for the region of
interest using the FFT, even though the matter distribution in that patch is not periodic. This
strategy leads to a significant speed-up in particular for low-redshift planes, where the comoving
cross-section of the bundle of light rays is much smaller than the lens planes.

In order to reduce the shot noise from the individual particles, we employ two different smooth-
ing schemes to construct the fine meshes. For the first, the particles are assigned to the fine
mesh and subsequently smoothed with a Gaussian kernel of fixed comoving size. The second
method is an adaptive, SPH-like smoothing scheme. Each particle contributes

Σp(x) =











3mp

πr2p

(

1 − |x − xp|2
r2p

)2

if |x − xp| < rp,

0 if |x − xp| ≥ rp,

(5.21)

to the surface mass density on the fine mesh. Here, x denotes comoving position on the lens
plane, xp is the projected comoving particle position, and rp denotes the comoving distance to
the 64th nearest neighbour particle in three dimensions (i.e. before projection). The adaptive
smoothing is essentially equivalent to the assumption that, in three-dimensional space, each
simulation particle represents a spherical cloud with a Gaussian density profile and an rms
radius that is half the distance to its 64th nearest neighbour. This agrees with the notion that
each particle actually represent a phase-space cell (see Chapter 4), the size of which is inversely
proportional to the local phase-space density. The Gaussian smoothing scheme serves mostly
for testing purposes; we choose the adaptive smoothing for all later applications.

Finally, the long- and short-range contributions to the deflection angles and shear matrices
are calculated on the coarse and fine mesh by finite differencing of the potentials. The values
between mesh points are obtained by bi-linear interpolation.

5.2 Applications

5.2.1 The convergence power spectrum

The convergence power spectrum is a central quantity in the analysis of cosmic shear mea-
surements: on the one hand it can be computed directly from the three-dimensional matter
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Figure 5.5: Convergence power spec-
tra for sources at z = 1 and with Gaus-
sian smoothing (smoothing length ls)
on the lens planes (symbols with error-
bars), compared to the prediction (dot-
ted/dashed lines) obtained by projection
of the measured power spectra of the
actual mass distribution. The power
spectrum from the runs using adaptive
smoothing is given by the filled squares.
The spectrum for the adaptive smooth-
ing has been shifted slightly to the left
for better visibility. The error bars were
estimated from the field-to-field vari-
ance.

power spectrum, for which theoretical models and fitting formulae are available. On the other
hand, any commonly used two-point statistic can be computed from it. It is therefore of great
interest to check the accuracy of the theoretical predictions for Pκ against ray-tracing simula-
tions. Furthermore, the power spectrum constitutes a good tool to check the ray-tracing code
as a whole.

If no ray-tracing simulation is at hand, Pκ is usually computed using Eq. (3.81), where for the
three-dimensional matter power spectrum the fit formulae by Peacock & Dodds (1996) or Smith
et al. (2003) are used. These, however, are based on N -body simulations that are comparable
to the Millennium Simulation neither in box size nor in small-scale resolution. Furthermore,
their accuracy even when compared the the original simulations is only of the order of a few
percent. Therefore, this approach is not the optimal solution if we wish to explore the limits
of our ray-tracing code. Instead, we make use of the three-dimensional matter power spectrum
computed directly from the mass distribution in the Millennium Simulation. This guarantees
that possible deviations of the simulated power spectra from the prediction are caused either
by the failure of the Born approximation or by problems with our ray-tracing code. We use a
discretization of Eq. (3.81) to obtain a prediction for Pκ (see also Vale & White 2003):

P̂κ(ℓ) =

(

3H2
0Ωm

2c2

)2 kmax
∑

k=1

(

w
(k)
U − w

(k)
L

) g2(w(k))

a2(w(k))
P̂δ

(

ℓ

fK(w(k))
;w(k)

)

, (5.22)

where w(k) is the comoving distance corresponding to the redshift of the k-th lens plane and
P̂δ(k;w

(k)) is the three-dimensional power spectrum measured from the k-th snapshot.
In Fig. 5.5, we present the results of several simulation sets with different smoothing schemes.

In addition to the adaptive smoothing, which is intractable analytically, we have also employed
Gaussian smoothing on the lens planes. The power spectrum measured from the adaptive
smoothing runs shows excellent agreement with the prediction from Eq. (5.22) up to ℓ ≈ 104,
where the smoothing becomes important. The simulations with Gaussian smoothing display
a larger sampling variance (due to the smaller area of 80 deg2 compared to 180 deg2 for the
simulations with adaptive smoothing). In this case, the error bars obtained from the field-to-
field variances seem to underestimate the scatter due to cosmic variance in some cases; clearly,
a larger set of simulations would be needed to improve the error estimates. This, however, does
not affect the main conclusion from Fig. 5.5: in the case of Gaussian smoothing, which can be
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Figure 5.7: Three-dimensional matter power
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made using the fit formula of Smith et al. (2003)
are shown as solid curves, the shot-noise-corrected
power spectra measured in the Millennium Simula-
tion as dashed curves.

modelled analytically, the power spectrum from the simulation is well understood on all scales
and agrees with our prediction. Only the spectrum for the smallest smoothing length shows
some aliasing effects on very small scales.

We note that it is not straightforward to make a statement about the small-scale resolution of
our simulations. Even though the spectrum of the adaptive smoothing runs happens to match
the spectrum for a Gaussian smoothing length of 10 kpc/h, this should not be interpreted as an
“effective” smoothing length, because the smoothing scale of the adaptive scheme and therefore
the small-scale resolution of the κ-maps is spatially variable. Furthermore, the resolution is
a function of the source redshift distribution: if the mean source redshift is low, the lensing
signal is created by low-redshift lens planes. Since the physical spacing of the light rays can
become comparable to the spacing of FFT meshes on the first few planes, the finite resolution
on the lens planes is more important than for sources at higher redshift. This is apparent from
the fact that the measured power spectrum in Fig. 5.6 for sources at z = 1 deviates earlier
from the prediction on small scales than for the sources at z = 2. Finally, also the prediction
based on Eq. (5.22) is only of limited use in determining a scale beyond which the results of our
simulations cannot be trusted, because the P̂δ(k;w

(k)) were measured directly from the particle
distribution in the simulation. As discussed before, this does not take into account the nature
of the particles as tracers of phase-space elements of varying volume and therefore most likely
overestimates the power on small scales. Therefore, a deviation of the measured power spectrum
from Eq. (5.22) is not necessarily caused by numerical limitations and should not be used for
defining the resolution of the ray-tracing simulation.

In Fig. 5.6 compare simulated power spectra for sources at z = 1 and z = 2 with predictions
based on the popular fitting formulae by Peacock & Dodds (1996) (with the transfer function
by Eisenstein & Hu 1999) and Smith et al. (2003). Both prescriptions strongly underpredict
the power on small scales. This effect is already seen for the three-dimensional matter power
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spectra (see Fig. 5.7) and therefore seems to be a problem related to the fitting formulae for
Pδ. Given their importance for the estimation of cosmological parameters from weak lensing
surveys, a revision of the fitting formulae using more up-to-date N -body simulations would be
highly desireable. We might even speculate that the lack of small-scale power in the predictions
for Pδ is partly responsible for the discrepancy between weak lensing and other, independent
methods (e.g. the analysis of the CMB), which seem to indicate a lower value of σ8 than is found
from lensing. Note that these considerations do not include the effects of baryonic physics on
the power spectrum. Simulations indicate that this might increase the small-scale power even
further (Rudd et al. 2008).

5.2.2 B-Modes

Finally, we wish to quantify the non-lensing systematic effects in our simulation. A suitable
measure for this is the B-mode of the aperture mass dispersion M2

⊥ (see Sec. 3.3.4).

As we have seen in Sec. 3.3.3, in the Born approximation cosmic shear does not create B-
modes. This is no longer true in the full ray-tracing, where ray deflections are fully taken into
account. We have given a theoretical prediction for the B-mode power spectrum that is accurate
to the fourth order in the gravitational potential in (Eq. 3.84) by expanding the deflection angle.
An equivalent approach was followed in Cooray & Hu (2002), who instead expanded the Jacobian
matrix starting from the equation

Aij(θ, w) = Eij −
2

c2

∫ w

0
dw′ G(w,w′) fK(w′)Φ,ik[x(θ, w′), w′]Akj(θ, w

′) , (5.23)

which can be obtained from Eq. (3.60) by differentiation with respect to θ. This allowed them
to make a (slightly artificial) decomposition of the B-mode into a contribution from terms that
are obtained by taking multiple deflections of the light rays into account (i.e. by expanding x

in Eq. 5.23 using Eq. 3.59) and a contribution that arises from expanding A on the r.h.s. in
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Eq. (5.23) in powers of Φ (which yields coupling terms of the potentials at different w, hence
lens-lens coupling). Since the derivation of the B-mode power spectra due to these two effects
involves basically the same steps and approximations as the derivation of the full B-mode that
we have given in Sec. 3.3.3, we will not repeat it here and refer the reader to Cooray & Hu
(2002) instead.

Fig. 5.8 shows the aperture mass dispersion measured from our set of simulations. As for the
convergence power spectrum, we find excellent agreement of our prediction for the E-mode, based
on the actual matter distribution in the Millennium Simulation, with the ray-tracing results. As
expected from our theoretical considerations in Sec. 3.3.3, we also detect a significant B-mode.
It is at least three orders of magnitude smaller than the E-mode, on larger scales their ratio
even drops to more than 10−5.

To disentangle possible numerical artifacts and true B-modes from physical higher-order ef-
fects, we switch off ray-deflections (i.e. we set A(k−1) = E in the second term on the l.h.s. of
Eq. 5.13) or lens-lens-coupling (i.e. we set θ(k) = θ ∀ k in Eq. 5.12) to determine the contributions
of the individual effects to the total B-mode signal in Fig. 5.8.

The result is shown in Fig. 5.9, together with the theoretical predictions from Cooray &
Hu (2002), for which we have also used the measured three-dimensional power spectra of the
Millennium Run. Although the predictions are of the correct order of magnitude and reproduce
some qualitative features of the simulations, the match is far from being perfect. While the
B-mode on small scales is underpredicted by a factor of ≈ 2, the measured signal declines much
more quickly on larger scales.

We have used both the polar decomposition (Eq. 3.33) and the spin decomposition (Eq. 3.38)
of the Jacobian matrix to compute the shear field. We find that this does not lead to significant
changes of the B-mode. Furthermore, we have excluded numerical effects in the estimation
procedures as the reason for this discrepancy by applying different ways of estimating M2

⊥ in
real and Fourier space, as well as different methods of numerical integration for the theoretical
predictions. To rule out a significant contribution of numerical artifacts from the ray-tracing code
itself, we have run another set of simulations where both ray deflections and lens-lens-coupling
were switched off. Only a very small B-mode (at least 6 orders of magnitudes smaller than the
E-mode) remains. The origin of this tiny signal is found to be the interpolation of the shear
matrices (see Eq. 5.13) from the meshes on the lens planes onto the light ray positions. This
can be understood as follows: the sampling of an originally B-mode free, continuous shear field
onto a grid and subsequent interpolation between the grid points again yields a continuous shear
field. This, however, agrees with the original field exactly only at the grid points. Therefore, it
will in general contain a small B-mode contribution, depending on the grid resolution and the
interpolation scheme used.

The origin of the discrepancy therefore remains unclear. Possible reasons are the quality of
some of the approximations made in the derivation of the B-mode power spectrum, or the fact
that we have computed the shear field from the simulations using the form of the Jacobian as
defined in Eq. (3.33), whereas for the theoretical prediction the definition in Eq. (3.38) was used.
These two agree in the limit of weak lensing (κ≪ 1), which, however, is not fulfilled everywhere
in the simulations.

Nevertheless, the relatively small difference between theory and simulation does not affect the
main conclusion of Shapiro & Cooray (2006): the cosmic shear B-mode signal is undetectable
for any realistic weak lensing survey. Therefore, it is a valid approach to use M2

⊥ as an indicator
for systematic effects resulting from the data reduction when working with real weak lensing
data.



6 Weak Lensing and Statistics

Statistical methods play a very important role in any weak lensing study: the detection of the
weak distortion patterns can only be achieved by looking at large samples of background galaxies;
furthermore, the underlying shear and density fields can only be described by their statistical
properties. Finally, the methods of statistical inference are needed to extract information about
cosmological parameters from the data and to quantify their uncertainties. In this chapter,
we discuss several aspects related to the inference problem. We first review the basic theory
of Bayesian inference, followed by a discussion of how to obtain good estimates of the inverse
covariance matrix and therefore of the errors on inferred parameters. We then investigate the
accuracy of approximating the cosmic shear likelihood function by a Gaussian and provide a
method to estimate the likelihood function from simulations. Finally, we apply our results to
cosmic shear measurements in the Chandra Deep Field South (CDFS), for which in Schrabback
et al. (2007) an extraordinarily low power spectrum normalization σ8 has been found. We
investigate what role the non-Gaussianity of the likelihood might play in this, and what share
cosmic variance and the criteria according to which the CDFS was selected have in this matter.

6.1 Statistical inference

Until today, statisticians have not agreed on a common definition of probability. The field
of statistics is therefore divided into two schools: orthodox statisticians (“frequentists”) define
probability strictly as the frequency of the occurrence of an event, whereas in the Bayesian
paradigm probability quantifies the plausibility of a proposition. A discussion of the relative
merits and shortcomings of either point of view is considerably beyond the scope of this thesis
(but see, e.g., Jaynes 2003, 1983; MacKay 2003; Loredo 1989), and since cosmologists mostly
adhere to the latter school of thought, we will perform our analysis within the Bayesian paradigm
(for more details, see e.g. Gelman et al. 2004; Jaynes 2003; MacKay 2003).

6.1.1 Parameter estimation

Let us assume that we have measured some data d ∈ Rp and now wish to infer the parameters
π of a model that provides us with a prediction m(π) for the data. The model also has to provide
the mechanism by which the data are generated, i.e. it includes the probability distribution
p(d|π) of the data given a certain set of model parameters. This probability distribution is
called the likelihood. Adopting a Bayesian point of view, our aim is to compute the posterior
likelihood, i.e. the probability distribution p(π|d) of the parameter vector π given the information
provided by the data d. We can relate the posterior to the likelihood using Bayes’ theorem:

p(π|d) =
p(π)

p(d)
p(d|π) . (6.1)

Here, p(π) is the prior distribution of the parameters, which incorporates our knowledge about
π prior to looking at the data; such can originate from previous measurements or theoretical
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arguments. Several methods exists even to express total ignorance about the value of π, the
simplest being to choose a uniform prior p(π) = const. The evidence p(d) in this context simply
serves as a normalization factor, but becomes important for Bayesian model comparison.

In the field of weak gravitational lensing, it is almost universally assumed that the likelihood
p(ξ|π) is a Gaussian distribution:

p(d|π) ∝ exp

{

−1

2
[d − m(π)]t C−1(π) [d − m(π)]

}

, (6.2)

where C(π) is the covariance matrix of d as predicted by the underlying model. Usually, however,
the dependence of the covariance matrix upon cosmological parameters is not taken into account.
Rather, the covariance that is computed for a fixed fiducial set of parameters π0 is used in
Eq. (6.2). Under this approximation, the likelihood is a function of the difference ∆(π) =
d − m(π) only:

p(d|π) = Lπ0 [∆(π)] . (6.3)

Sometimes, one is only interested in a subset π1 of π = (π1,π2)
t. This is the case for example

if the parameters in π2 are so-called nuisance parameters (e.g. parametrizing systematic effects)
or if one wishes to reduce the dimensionality of the parameter space for purposes of visualization
of the posterior density. The “uninteresting” parameters can be eliminated by marginalization:

p(π1|d) =

∫

dπ2 p(π|d) . (6.4)

Note that p(π1|d) is different from the posterior that would have been obtained by only fitting
for π1 and keeping π2 fixed (i.e. using π1 in Eq. 6.1 instead of π): the marginalized posterior
in Eq. (6.4) still accounts for the uncertainties of the nuisance parameters.

All information about π provided by the data is contained in the posterior distribution.
It is, however, customary to quote “best-fit” parameters and corresponding error estimates.
Such point estimates of the parameters can be obtained from the posterior in several ways,
minimizing different risk functions. The risk of a point estimate π̂ is the expected value of a loss
function, which quantifies the “loss” of making a wrong estimate. Common loss functions are
the quadratic loss, L2(π̂,π0) = (π̂ − π0)

2, where π0 is the true parameter vector, the L1-loss
L1(π̂,π0) = |π̂ − π0| and the 0 − 1–loss L01(π̂,π0) = 1 if π̂ = π0 and = 0 else. In Bayesian
statistics, the risk function R(π̂) then is the expectation value of the loss over the posterior
distribution:

R(π̂) =

∫

dπ p(π|d)L(π̂,π) . (6.5)

Minimizing the three risks of the three loss functions introduced above with respect to π̂, we
find the following point estimates:

• The quadratic risk is minimized by the expectation value of the parameters, defined by

π̂ = E(π) =

∫

dπ′ π′ p(π′|d) . (6.6)

• If π ∈ R, i.e. if only one parameter is considered, the median of the posterior minimizes
the risk based on the loss function L1.
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• The maximum a posteriori (MAP) estimate is determined by the maximum of p(π|ξ) and
minimizes the 0 − 1-risk. Note that in the case of a uniform prior, this point estimate is
equivalent to the maximum likelihood estimate.

In Bayesian inference, error estimates are given by so-called credible intervals/regions. An α%
credible region is defined as the region containing a fraction α/100 of the probability around a
point estimate. To make this definition unique, further conditions are needed. For the highest-
posterior-density (HPD) intervals, those regions of the parameter space are used which contain
the highest values of the posterior, including the mode. These intervals are the narrowest
possible. Another possible choice in one dimension is to choose the interval such that the
probability of the parameter value being larger than the upper interval boundary is as large as
the probability for it to be below the lower limit.

6.2 Unbiased estimation of the inverse covariance matrix

In this section, we investigate possible biases that may arise if the covariance matrix for the
Gaussian likelihood function (Eq. 6.2) is estimated from simulations or from the data instead
of using a model prediction. We distinguish between the population covariance Σ, which is the
true covariance matrix of the data d, and the estimated sample covariance matrix, which we
denote by Ĉ. For notational convenience, we also introduce the log-likelihood

L(d|π) ∝ −1

2
[d − m(π)]t Σ−1 [d − m(π)] . (6.7)

For the evaluation of the likelihood the population covariance matrix Σ and its inverse Σ−1 or
estimates thereof are needed. In most cases, no exact analytical expression for Σ can be given,
although numerous authors make use of analytical approximations. An example from the field
of weak gravitational lensing is Semboloni et al. (2006), who use the Gaussian approximation
to the covariance matrix of the shear correlation functions given by Schneider et al. (2002a).
Other possibilities are to estimate Σ from the data themselves (e.g. Hetterscheidt et al. 2005;
Budavári et al. 2003) or to obtain it from a simulated data set whose properties are comparable
to the original data (e.g. Pan & Szapudi 2005). In the latter paper, the authors observed that
the estimated covariance matrix becomes singular if p, the number of entries of the data vectors,
exceeds the number of observations / simulated data vectors. As a remedy, they propose to
use the Singular Value Decomposition (SVD, Press et al. 1992) to obtain a pseudo-inverse of
the covariance matrix, but do not investigate the properties of the resulting estimate of Σ−1 in
detail. In the following, we prove analytically that the rank of the standard estimator of the
covariance matrix cannot exceed the number of observations. We then point out that, even if
this estimator is not singular, simple matrix inversion yields a biased estimator of Σ−1. This
may, if not corrected for, cause a serious underestimate of the size of the credible regions; a
fact which – to our knowledge – has not been reported before in the astronomical literature.
We report on the existence of a method to remove this bias, which can be derived for Gaussian
noise and statistically independent data vectors, and test the validity of this method when these
assumptions are violated.
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6.2.1 The covariance matrix

Estimators

Let d be a vector of p random variables with components di, drawn from a multi-variate
Gaussian distribution with population covariance matrix Σ and mean µ:

P (d) =
1

(2π)p/2
√

detΣ
exp

(

−1

2
(d − µ)tΣ−1(d − µ)

)

. (6.8)

Furthermore, let d(k) denote the k-th realization of this random vector, where k ∈ [1, N ] and
N is the total number of realizations. The well-known maximum-likelihood estimator for the
components of the covariance matrix is given by (e.g. Barlow 1991)

ĈML
ij =

1

N

n
∑

k=1

(

d
(k)
i − µi

)(

d
(k)
j − µj

)

, (6.9)

which in the case of a known mean vector µ is unbiased. If, however, µ has to be estimated
from the data, a correction factor of N/(N − 1) has to be applied to Eq. (6.9).

The rank of ĈML

In the following, we prove that ĈML is singular for p > N in case of known mean vector, and
for p > N − 1 if the mean vector is obtained from the data as well. For the first case, this can
be seen by rewriting Eq. (6.9) as

ĈML =
1

N

N
∑

k=1

d(k) d(k)t , (6.10)

where we presume, without loss of generality, that the mean vector is zero. Since the data vectors
d(k) are statistically independent, we can safely assume that they are linearly independent for
N ≤ p (for a continuous distribution, the probability to draw linearly dependent data vectors

is zero). Therefore,
{

d(k)
}

span an N -dimensional subspace U of Rp. To check whether ĈML

is singular we now try to find a vector y 6= 0 for which ĈML y = 0. Looking at Eq. (6.10), we
see that this is only possible for p > N , since in this case we can always choose a vector y from

the subspace orthogonal to U , for which d(k) · y = 0 ∀ k. If p ≤ N ,
{

d(k)
}

already spans the

whole of Rp, and no vector can be found that is orthogonal to all d(k). This proves that ĈML is
singular for known mean vector if p > N .

We now prove our statement for an unknown mean vector µ, which is estimated from the
data using

µ =
1

N

N
∑

k=1

d(k) . (6.11)

For this, we define a new set of independent data vectors
{

w(k)
}

by forming linear combinations

of
{

d(k)
}

, specified by the orthogonal transformation B, of which we demand that the last
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(N -th) row be given by (1/
√
N, . . . , 1/

√
N) (Anderson 2003):

w(k) =

N
∑

l=1

Bkl d
(l) . (6.12)

Thanks to our choice of BNl, we have w(N) =
√
N µ. Next, we rewrite ĈML by means of the

new data vectors:

ĈML =
1

N

N
∑

k=1

d(k) d(k)t − µµt (6.13)

=
1

N

N
∑

k=1

w(k) w(k)t − 1

N
w(N) w(N)t (6.14)

=
1

N

N−1
∑

k=1

w(k) w(k)t . (6.15)

The last expression is of the same form as Eq. (6.10) (except for the sum, which has one addend
less), and so the same line of reasoning as above can be applied to show that ĈML is singular
for p > N − 1.

Another interesting implication of Eq. (6.15) is that the mean vector and the estimated co-
variance matrix are distributed independently (again see Anderson 2003), although they are
computed from the same data vectors. First, note that w(i) and w(j) are statistically indepen-
dent for i 6= j. This can be seen by computing the covariance between the two vectors:

Cov
(

w(i),w(j)
)

=

〈

(

w(i) − ν(i)
)(

w(j) − ν(j)
)t
〉

(6.16)

=

N
∑

k,l=1

BikBjl

〈

(

d(k) − µ
)(

d(l) − µ
)t
〉

(6.17)

=

N
∑

k,l=1

BikBjl δkl Σ (6.18)

= δij Σ (6.19)

Here, 〈·〉 denotes the expectation value and ν(i) = µ
∑N

j=1 Bij is the mean value of w(i). Since

ĈML does not depend on w(N), which in turn is statistically independent of the remaining w(i),
this shows the independence of estimated mean and covariance.

6.2.2 The inverse covariance matrix

An unbiased estimator for Σ−1

From Eq. (6.9), an estimator for Σ−1 can be obtained by matrix inversion:

Ĉ−1
∗ =

(

ĈML
)−1

. (6.20)

This estimator is consistent, but not unbiased due to noise in ĈML: the inverse of an unbiased
estimator for some statistical variable X is in general not an unbiased estimator forX−1. Indeed,
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Figure 6.1: Ratios of the trace of Σ−1 to the

traces of C−1
∗ (triangles) and Ĉ−1 (squares), respec-

tively. The dashed line is for the covariance model
Eq. (6.23), the solid line for Eq. (6.24) and the
dot-dashed-line for Eq. (6.25). The original data
vectors had p1 = 240 bins, and were re-binned by
subsequently joining 2, 3, . . . of the original bins.
The number of independent observations is N = 60.
Error bars are comparable to the symbol size and
therefore omitted.

in our case of Gaussian errors and statistically independent data vectors one can show (Anderson
2003) that the expectation value of Ĉ−1

∗ is not the inverse of the population covariance, but

〈

Ĉ−1
∗

〉

=
ν

ν − p− 1
Σ−1 for p < ν − 1 , (6.21)

where ν = N if µ is known and ν = N − 1 if the mean is estimated from the data. In the
following, we will only pursue the latter case. The bias in Ĉ−1

∗ thus depends essentially on the
ratio of the number of entries p in the data vectors (henceforth referred to as the number of
bins) to the number of independent observations N . From Eq. (6.21) it follows that an unbiased
estimator of Σ−1 is given by1

Ĉ−1 =
N − p− 2

N − 1
Ĉ−1
∗ for p < N − 2 . (6.22)

6.2.3 Monte-Carlo experiments

To illustrate Eq. (6.22), we perform the following experiment: First, we choose an analytical
form for the population covariance Σ. We use three different models:

Σd,c
ij = σ2 δij , (6.23)

Σd,l
ij = σ2 [1 − i/(1 + p1)] δij and (6.24)

Σnd
ij = σ2/(1 + ǫ|i− j|) , (6.25)

which initially are p1 × p1 matrices. ǫ can be used to tune the degree of correlation in model
(6.25); we choose ǫ = 0.05.

1Note that there is a typing error in Anderson’s book, where he gives an expression corresponding to

Ĉ
−1 =

N − p − 2

N − 2
Ĉ
−1
∗ for p < N − 2.
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We then create N data vectors of length p1 according to d(k) = m + γ(k) (Σ1), where γ(k) (Σ1)
is a noise vector drawn from a multivariate Gaussian distribution with mean zero and covariance
Σ1. The choice of the model vector m is arbitrary, and in fact for the present purpose it would
be sufficient to set m = 0. For later use, however, we choose the linear model mi = axi + b,
where xi = (xmax − xmin)(i + 1/2)/p1 is the value of the free variable corresponding to the centre
of the i-th bin.

The noise vectors are constructed by means of the Cholesky decomposition (Press et al. 1992)
of Σ, which yields a lower triangular matrix T such that Σ = TTt. Noise vectors with the desired
distribution can then be obtained by γ(k) = T r(k) (Hu & Keeton 2002), where r(k) is a vector
of independent random numbers drawn from the normal distribution.

From this synthetic set of observations we estimate the mean data vector and the covariance
matrix, which yields the estimator ĈML. Next, both Σ and ĈML are inverted using the Singular
Value Decomposition (see below). Finally, we compute the unbiased estimate Ĉ−1 of the inverse
covariance as given in Eq. (6.22).

To probe the dependence of the bias of the estimators for Σ−1 on the number of bins, we
create samples of N new data vectors each for several values of p. For that, we assume that the
new data vectors, denoted by (j)d, with pj = p1/j (j = 2 . . . p1/2) bins are obtained by averaging
over j bins of the original data vector (1)d:

(j)di =
1

j

j−1
∑

k=0

(1)dj·i−k . (6.26)

The population covariance (j)Σ for a data vector with pj bins is obtained from the original (1)Σ
by averaging over (j × j)-sub-blocks of (1)Σ:

(j)Σab =
1

j2

j−1
∑

k=0

j−1
∑

l=0

(1)Σja−k,jb−l . (6.27)

This strategy of re-binning has the advantage that the true covariance is known exactly for
all pj. Strictly speaking, this way of re-binning is only optimal if the errors in the bins which
are joined are uncorrelated and equal. If this is not the case, one should perform a suitably
weighted average over the sub-blocks, which would slow down the simulations considerably.
However, testing has shown that this does not change our results significantly, which is why we
use unweighted averaging also for the covariance models (6.24) and (6.25). Furthermore, note
that in practice we do not re-bin the original data vectors, but create new noise realizations for
each binning to avoid correlations between data points for different p.

Since the bias in Eq. (6.21) is just a scalar factor, we record the traces of the estimators Ĉ−1
∗

and Ĉ−1 for each number of bins p. To improve our statistics, we repeat the procedure outlined
above 104 times and average over the traces computed in each step.

In Fig. 6.1, we plot the ratios of the trace of Σ−1 to the traces of Ĉ−1
∗ and Ĉ−1, respectively.

Not using the bias-corrected Ĉ−1 can have considerable impact on the size of confidence regions
of parameter estimates: for p < N − 2, the components of Ĉ−1

∗ will be too large compared to
those of the true inverse covariance, and the log-likelihood will decrease too steeply. This leads
to confidence contours too small; the errors of the parameter estimates are underestimated the
more, the closer one gets to p = N − 1. As expected, for p < N − 2 the bias of Ĉ−1

∗ does not
depend on the covariance model.
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We also plot the traces of Ĉ−1
∗ for the different covariance models beyond p ≥ N − 1, where

the estimator ĈML is singular. These data points have been obtained using the Singular Value
Decomposition to invert the covariance matrix, yielding a decomposition of the form

C = UWVt , (6.28)

where U and V are orthogonal matrices and W is a diagonal matrix containing the singular
values. Since C is symmetric, one has in addition U = V, while W contains the absolute values
of the eigenvalues of C. The inverse of C is then given by C−1 = VW−1U−1. If C is singular,
some of the entries of W will be zero or comparable to machine precision. We therefore can only
compute a pseudo-inverse of C by replacing the inverses of these singular values in W−1 by zero,
as has been suggested in Press et al. (1992) and Pan & Szapudi (2005). Fig. 6.1 shows that the
bias of Ĉ−1

∗ in this regime depends significantly on the covariance model chosen and does not
depend on binning in a simple way. Therefore we strongly discourage from the use of the SVD
for p > N − 1.

6.2.4 Implications for likelihood analysis

Bias of the log-likelihood function

Having obtained an unbiased estimator of the inverse covariance matrix, one may still be
concerned about a possible bias in the log-likelihood function, since it consists of the product of
(d − µ) and Ĉ−1 (Eq. 6.7), both of which are estimated from the same set of observations. In
other words, the question is if it is possible to write

〈L(d|π)〉 = −1

2

〈

(µ − m)t Ĉ−1 (µ − m)
〉

= −1

2

〈

(µ − m)t
〉

〈

Ĉ−1
〉

〈

(µ − m)
〉

. (6.29)

This is indeed the case, since we have shown at the end of Sect. 6.2.1 that mean vector and
covariance matrix are distributed independently.

Again, we verify this result using our simulation. During the course of the procedure given
above, we also compute the log-likelihood function for the straight-line fit on a grid in parameter
space, using both Ĉ−1 and Ĉ−1

∗ . To detect a possible bias without introducing an additional one
through the measurement, we need a function which is linear in the log-likelihood. An obvious
choice is the sum over all grid cells of the log-likelihood grid. In Fig. 6.2, we show the ratio of the
likelihood sum, computed using the biased and unbiased estimators of the covariance matrix, to
the true likelihood sum. Consistent with what we said in the preceding section, the estimator
Ĉ−1
∗ leads to a likelihood function which is too steep, and therefore to the underestimation of

the size of the confidence regions. In contrast, no such effect is present if one uses Ĉ−1 instead.

Marginalized likelihood

If we marginalize over all but one model parameter, the marginalized log-likelihood is given
by

Li(d|πi) = log











∏

j 6=i

∫

dπj



 exp [L(d|π)]







. (6.30)
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Figure 6.2: Ratios of the sums over all grid
points of the log-likelihood functions computed us-
ing the inverted ML-estimator Eq. (6.20) (open
squares) and the de-biased estimator Eq. (6.22)
(crosses) to the sum over all grid points of the
true log-likelihood.

Figure 6.3: Triangles, solid lines: Ratio of the
sum over all pixels of the marginalized likelihood
computed using Ĉ−1 to the one obtained using
the true likelihood. Filled triangles are for the
power-law fit (marginalized over the power law
index), open triangles are for the straight line
fit (marginalized over the intercept). Squares,

dashed lines: Ratio of
√

detF−1 using Ĉ−1 to
the true one, computed with Σ. For both cases,
Σ = Σd,c (Eq. 6.23).

There is no reason to believe that the marginalized log-likelihood, and with it the size of the
errors on πi bars, are unbiased, even if one uses the unbiased Ĉ−1. We demonstrate this by
means of our simulated fitting procedure, where we now use not only the straight line model,
but perform a second simulation using a power law model of the form mi = axb

i . We marginalize
over the intercept of the line and the power law index, respectively. Similar to what we did in
the case of the full parameter space, we record the sums over all pixels of the (one-dimensional)
grid of the marginalized log-likelihood functions, which we compute using the true Σ−1 and
the estimator Ĉ−1. For Σ, we choose the model (6.23). We average over ≈ 3 × 104 repetitions
of these experiments. We plot the ratio of true to estimated log-likelihood sums in Fig. 6.3
(triangles and solid lines). The plot shows a bias of maximally ≈ 8% for the straight line and
even less for the power law, in a direction which would lead to an overestimation of the error
bars on slope and amplitude. Although the effect is not very large, this is not guaranteed to
remain so for models different from the ones considered here.

Measuring the size of credible regions

For some applications, it is useful to have a simple measure of the size of the credible regions.
As an example, we make use of the Fisher information matrix F (Fisher 1935), which is defined
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by (e.g. Kendall et al. 1987)

F ≡
〈

∂2L
∂πi ∂πj

〉

, (6.31)

where the derivative is to be evaluated at the true parameter value π0 (which on average coincides
with the maximum-likelihood point if the maximum-likelihood estimator is unbiased, as is the
case here). F can be interpreted as an estimate of the inverse covariance matrix of the parameter
estimates, provided the likelihood is well approximated by a Gaussian close to the maximum
likelihood point. The square root of the determinant of F−1 therefore is a good measure of
the volume of the 1σ-credible region. For instance, Simon et al. (2004) use this quantity to
investigate the gain in cosmological information for different numbers of redshift bins for cosmic
shear tomography.
To demonstrate the bias in

√
detF−1, we compute the Fisher matrix for the straight line and

power law fits using (Tegmark et al. 1997)

Fij =

p
∑

α,β=1

∂mα

∂πi

∂mβ

∂πj
C−1

αβ , (6.32)

which is valid if the covariance matrix does not depend on the parameters πi; m is the model
vector.

In Fig. 6.3, we give the ratio of
√

detF−1, already computed using the unbiased estimated
covariance Ĉ−1, to the value computed using the true covariance (boxes and dashed lines). One
sees that in this case the size of the confidence regions is significantly overestimated, for p/N
approaching unity by as much as ≈ 30% for the straight line case, and by a comparable, albeit
slightly smaller factor for the power law fit.

6.2.5 Bootstrapping

The derivation of the unbiased estimator Ĉ−1 rests on the assumptions of Gaussian noise
and statistically independent data vectors. To test the performance of this estimator a realistic
situation, where one or both of these assumptions may be violated, we make use of an example
from the field of weak gravitational lensing. We simulate a weak lensing survey consisting of
one single field, containing Ng galaxies, which are assigned a random ellipticity ǫ. The two
components of the ellipticity are drawn from a Gaussian distribution with dispersion σǫ/

√
2.

The goal of the survey is to measure the shear correlation function ξ+(ϑ) (see Sec. 3.3.4) and
to fit a model prediction to it. An estimator for ξ+ is given by (Schneider et al. 2002a)

ξ̂+(ϑ) =

∑

ij

(

ǫ
(i)
1 ǫ

(j)
1 + ǫ

(i)
2 ǫ

(j)
2

)

∆ϑ (|θi − θj |)
2np(ϑ)

, (6.33)

where the galaxies are labelled with i and j and have the angular positions θi and θj . ∆ϑ(φ) is
unity if ϑ−∆ϑ/2 < φ ≤ ϑ+∆ϑ/2, where ∆ϑ is the bin width, and zero otherwise. Finally, np(ϑ)
is the number of pairs of galaxies contributing to the correlation function in the bin centred on
ϑ (the factor two in the denominator in Eq. 6.33 appears because the sum in the numerator
counts every pair of galaxies twice).

We also need the covariance matrix of ξ+(ϑ), which, since we only have one measurement, is
estimated using the Bootstrapping algorithm (e.g. Efron & Tibshirani 1993): First, we create
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Figure 6.4: Ratio of the traces of Ĉ−1
∗ and Ĉ−1

to the trace of Σ−1. The covariances have been
estimated using bootstrapping. Error bars are
comparable to the symbol size and therefore omitted.

a catalogue of all Np = Ng(Ng − 1)/2 possible pairs of galaxies in the field. We then create
Nbs bootstrap realizations of the survey by repeatedly drawing Np pairs with replacement from
the catalogue. From these, we estimate the mean data vector and the covariance matrix of the
shear correlation function. As before, we do this for various numbers of bins, where we record
the dependence of the traces of Σ−1, Ĉ−1

∗ and Ĉ−1 on binning. For the simple case of pure
shape noise, which we will consider here, the population covariance is diagonal and can be easily
computed using (Schneider et al. 2002a)

Σij =
σ4

ǫ

2np(ϑi)
δij , (6.34)

where ϑi is the angular position corresponding to the centre of the i-th bin. We precompute the
function np numerically from a large set of independent data fields for all binning parameters
we wish to use in the simulation.

In principle, both of the assumptions made for the derivation of Eq. (6.22) are violated: The
noise in the shear correlation function is χ2-distributed, because ξ+ ∝ ǫǫ, where ǫ is drawn from
a Gaussian. However, the number of degrees of freedom of the χ2-distribution, which equals
the number of pairs, is very large, so that it is very well approximated by a Gaussian (central
limit theorem). We therefore do not expect any significant influence on the performance of Ĉ−1.
We expect a larger impact by the fact that the data vectors resulting from the bootstrapping
procedure are not statistically independent, since different bins necessarily contain the identical
galaxy pairs. Strictly speaking, also the requirements for the application of the bootstrap pro-
cedure are not met, since the pairs of galaxies which we use to sample the distribution of the
shear correlation function are not statistically independent. However, we argue that drawing
individual galaxies instead of pairs is not correct, since this would sample the distribution of ǫ,
and not the distribution of ξ+.

The outcome of ≈ 2 × 104 realizations of this experiment is given in Fig. 6.4, with Ng = 500
and Nbs = 40. The figure shows that, in spite of the correlations among the pairs of galaxies and
the data vectors, Ĉ−1 is wrong by only ≈ 1%, and may well be used in bootstrap applications
like this.
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6.3 The non-Gaussianity of the Cosmic Shear likelihood

In the near future, a new generation of weak lensing surveys like KIDS or Pan-STARRS
(Kaiser & Pan-STARRS Collaboration 2005) will allow cosmic shear to be measured with sta-
tistical uncertainties much smaller than the systematic errors both on the observational and the
theoretical side. Large efforts are now being undertaken to find sources of systematics in the
process of shape measurement and shear estimation (e.g. Massey et al. 2007a). In addition, new
methods of shape measurement are being explored, such as the shapelet formalism (Refregier &
Bacon 2003) or the method proposed in Bernstein & Jarvis (2002).

It is equally important to have accurate theoretical model predictions which can be fit to the
expected high-quality measurements. Currently, these models are all based on fitting formulae
for the three-dimensional matter power spectrum derived from N -body simulations as given by
Peacock & Dodds (1996) and more recently by Smith et al. (2003). However, as we have shown
in Sec. 5.2.1, these are only accurate at best to the percent level when compared to ray-tracing
simulations based on state-of-the-art N -body simulations such as the Millennium Simulation.
Therefore, there is a great need for a large ray-tracing effort to obtain accurate semi-numerical
predictions for a range of cosmological parameters.

While a tremendous effort is currently dedicated to the solution of these problems, the ac-
tual process of parameter estimation so far has received relatively little attention. Obviously,
the statistical data analysis has to achieve the same accuracy as the data acquisition if the
aforementioned efforts are not be wasted. The standard procedure to convert measurements of
second-order cosmic shear statistics into constraints on cosmological parameters is to write down
a likelihood function and to determine the location of its maximum for obtaining estimates of
the cosmological parameters of interest. To make this feasible, several approximations are com-
monly made. Despite the fact that the shear field is non-Gaussian due to non-linear structure
growth, lacking an analytical description, the likelihood is most often approximated by a multi-
variate Gaussian distribution. The covariance matrix for the Gaussian likelihood then remains
to be determined, which is an intricate issue by itself. In all previous studies, the dependence
of the covariance matrix on cosmological parameters has been ignored. Instead, it was kept
fixed to some fiducial cosmological model. While this is not expected to change the degeneracies
between different cosmological parameters, it will changes the error estimates perpendicular to
the directions of degeneracy (Eifler et al. 2008). There are several approaches to determine the
covariance for the fiducial set of parameters: Hoekstra et al. (2006) use the covariance matrix
derived for a Gaussian shear field. Although this is rather easy to compute (Joachimi et al.
2008), the errors are strongly underestimated particularly on small scales. Another option is to
estimate the covariance from the data itself (e.g. Massey et al. 2007b). This will become sen-
sible and feasible mostly for the upcoming large surveys, which can be safely split into smaller
subfields without severely underestimating cosmic variance. A third possibility, which currently
seems to be the most accurate, is to measure the covariance matrix from a large sample of
ray-tracing simulations. Semboloni et al. (2007) have provided a fitting formula which allows
one to transform Gaussian covariances into non-Gaussian ones. Another promising way, which
would also easily allow one to take into account the dependence on cosmological parameters, is
the semi-analytical computation using the halo model (Cooray & Hu 2001a).

However, all these methods are based on the assumption that the likelihood is well approxi-
mated by a Gaussian. In this section, we study the impact of this assumption on the shape of the
posterior probability distribution of the matter density parameter Ωm and the power spectrum
normalization σ8. Furthermore, we compute Fisher matrix constraints for the four-dimensional
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parameter space spanned by Ωm, σ8, h100 and ΩΛ. We propose a method to numerically com-
pute the likelihood function from a large set of ray-tracing simulations based on the technique
of Independent Component Analysis (ICA, e.g. Jutten & Hérault 1991; Comon et al. 1991). ICA
is a technique for the separation of independent source signals underlying a set of observed ran-
dom variables, a statistical method related to factor analysis and Principal Component Analysis
(PCA). Since our method depends on certain assumptions, we check our results by comparing
to a related, but independent method (Projection Pursuit Density Estimation; Friedman et al.
1984).

6.3.1 The simulations

We have performed ray-tracing trough the the ten CDFS simulations (see Sec. 4.5.2) using
RTsuite to create 9600 quasi-independent realizations of a field very similar to the Chandra
Deep Field South. We have used the redshift distribution

p(zs) = A

(

zs
z0

)α

exp

[

−
(

zs
z0

)β
]

,

where z0 = 1.55, α = 0.59, β = 1.35 (as estimated from the CDFS source catalogues) and A is a
normalization constant. We then created the mock source catalogue by randomly sampling the
shear maps from the ray-tracing simulations with Ns = nsΩ

2 galaxies, where ns = 68 arcmin−2

is the number density of sources and Ω = 0.5◦ is the side length of the simulated field.

6.3.2 Estimating the likelihood

Let us assume that we have measured the shear correlation functions ξ±(θi) for various angular
separation bins θi and now wish to infer some parameters π of our model m(π) for ξ±(θi). For
what follows, we define the joint data vector ξ = (ξ+, ξ−)t, which in total is supposed to have
p entries.

Our aim is to compute the posterior likelihood (see Eq. 6.1)

p(π|ξ) =
p(π)

p(ξ)
p(ξ|π) . (6.35)

Hitherto, it has been assumed in the literature that the likelihood p(ξ|π) is a Gaussian distri-
bution:

p(ξ|π) ∝ exp

[

−1

2
(ξ − m(π))t C−1(π) (ξ − m(π))

]

, (6.36)

where C(π) is the covariance matrix of ξ as predicted by the underlying model. Usually, however,
the dependence of the covariance matrix upon cosmological parameters is not taken into account.
Rather, the covariance that is computed for a fixed fiducial set of parameters π0 is used in
Eq. (6.36). Under this approximation, the likelihood is a function of the difference ∆(π) =
ξ − m(π) only:

p(ξ|π) = Lπ0 [∆(π)] . (6.37)

The choice of the functional form of the likelihood as given by Eq. (6.36) is only approximate.
Since the underlying shear field in the correlation function measurement becomes non-Gaussian
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in particular on small scales due to non-linear structure formation, there is no good reason to
expect the distribution of the shear correlation function to be Gaussian. Our aim therefore is
to use our large sample of ray-tracing simulations to estimate the likelihood L and explore the
effects of the deviations from a Gaussian shape on cosmological parameter constraints. However,
we have to sustain the approximation that the functional form of the likelihood does not depend
on cosmology in order to keep computation time manageable.

Our ray-tracing simulations were all done for identical cosmological parameters, which com-
prise our fiducial parameter vector π0. Thus, as in Eq. (6.37) the likelihood depends on cosmol-
ogy only through the difference ∆(π) = ξ − m(π). Since L is the probability of obtaining the
data ξ given the model m, we in principle have to estimate the p-dimensional distribution of
ξ from our sample of N simulations. However, due to the high dimensionality of the problem,
a brute force approach to estimate the full joint distribution is hopeless. The problem would
simplify considerably if we could find a transformation

s = f [∆(π)] , (6.38)

such that

ps(s|π0) =

nIC
∏

i=1

psi
(si|π0) . (6.39)

Here, f is in general a mapping from Rp to RnIC (nIC ≤ p) and s ∈ RnIC is our new data vec-
tor. This would reduce the problem to estimating nIC one-dimensional probability distributions
instead of a single p-dimensional one. Eq. (6.39) is equivalent to the statement that we are
looking for a new set of basis vectors of RnIC in which the components si of the shear correlation
function are statistically independent. It is virtually impossible to find the (in general nonlinear)
mapping f . However, it is possible to make progress if we make the ansatz that f is linear:

s = A∆(π) , (6.40)

where A ∈ RnIC×p is the transformation or “un-mixing” matrix.
Our likelihood estimation procedure is as follows: the first step is to remove first-order cor-

relations from the data vector by performing a PCA (e.g. Press et al. 1992). This yields a
basis in which the components of ξ are uncorrelated. If we knew that the distribution of ξ

were Gaussian, this would be sufficient, because in this case uncorrelatedness is equivalent to
statistical independence. However, for a general distribution, uncorrelatedness is only a neces-
sary condition for independence. Since we suspect that the likelihood is non-Gaussian, a second
change of basis, determined by the ICA technique (described in detail in the next section), is
carried out which then results in the desired independence. We use a kernel density method
(see e.g. Hastie et al. 2001; Venables & Ripley 2002, and references therein) to estimate and
tabulate the one-dimensional distributions psi

(si|π0) in this new basis. The density estimate is
constructed by smoothing the empirical distribution function of the observations of si,

pemp
si

(x) =
N
∑

j=1

δD

(

x− s
(j)
i

)

, (6.41)

where s
(j)
i is the j-th of N observations of si, with a smooth kernel K. The estimate p̂si

of the
desired density psi

then is given by

p̂si
(x) =

1

Nb

N
∑

j=1

K

(

x− s
(j)
i

b

)

, (6.42)
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where b is the bandwidth. For the kernel K we use a Gaussian distribution. It has been shown
that the shape of the kernel K is of secondary importance for the quality of the density estimate;
much more important is the choice of the bandwidth b. If b is too small, p̂si

is essentially unbiased,
but tends to have a high variance because the noise is not properly smoothed out. On the other
hand, choosing a bandwidth that is too large results in a smooth estimate with low variance,
but a higher bias, because real small scale features of the probability density are smeared out.
Our choice of the bandwidth is based on the “rule of thumb” (Scott 1992).

Constraints on cosmological parameters can then be derived as follows: we transform our set
of model vectors and the measured correlation function to the new ICA basis:

m̆(π) = A m(π) , (6.43)

ξ̆ = A ξ , (6.44)

so that s = A [ξ − m(π)]. The ICA posterior distribution is then given by

p(π|ξ) ∝ p(π)

nIC
∏

i=1

psi
(ξ̆i − m̆i(π)|π0) . (6.45)

6.3.3 Independent Component Analysis

Information theory

Before discussing the ICA algorithm in detail, we briefly review some relevant aspects of
information theory. A more thorough discussion of these concepts can be found in, e.g., MacKay
(2003) or Hyvärinen et al. (2001).

The entropy of a discrete-valued random variable X is defined as

HX = −
∑

i

P (X = xi) logP (X = xi) (6.46)

where the xi are the possible values ofX and P (X = xi) is the probability of the outcomeX = xi.
The entropy can be interpreted as the information content of X: the more unpredictable the
value of X is, the larger is the entropy. In fact, it can be shown that the entropy assumes its
maximum if P (X = xi) = P (X = xj) for all i, j. On the other hand, the entropy is very small
if P (X = xi) is close to zero for all but one i. Therefore, a low value of H means that there is
little randomness in X. Eq. (6.46) can be extended to a continuous random vector y by defining
the differential entropy

Hy = −
∫

dy′ p(y′) log p(y′) . (6.47)

Here, p is the probability distribution function of y. Unlike Eq. (6.46), the differential entropy
is no longer positive semi-definite. If we introduce a new random vector z = My, where M is an
invertible matrix, it can be seen immediately that the differential entropy of z is given by

Hz = Hy + log |det M| . (6.48)

A “distance measure” between two probability distribution functions p and q is provided by
the Kullback-Leibler divergence (Kullback & Leibler 1951):

DKL[p, q] =

∫

dx p(x) log
p(x)

q(x)
. (6.49)
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The interpretation of the K-L divergence DKL as a distance is sensible because it is non-negative
and zero only if p ≡ q, albeit not symmetric.

The mutual information between the n components of a random vector x is defined to be

Ix1,...,xn =

n
∑

i=1

Hxi
−Hx , (6.50)

where Hxi
is the entropy of the continuous random variable xi (the i-th component of x) only,

whereas Hx is the entropy of the full random vector x.

Mutual information can be expressed in terms of the K-L divergence: if the components of x

were statistically independent, their joint density would be given by p′(x) = p1(x1) · · · pn(xn),
where pi(xi) is the (marginalized) distribution function of xi alone. It is therefore obvious that
a measure of the independence of the xi can be constructed by computing the K-L divergence
of the factorized density p′ and the full joint density p:

DKL[p, p′] =

∫

dx p(x) log
p(x)

p1(x1) · · · pn(xn)

=

∫

dx p(x) log p(x) −
n
∑

i=1

∫

dx p(x) log pi(xi)

= −Hx −
n
∑

i=1

∫

dxi pi(xi) log pi(xi)

= Ix1,...,xn , (6.51)

where in the second-last step we have used that

∫

dx p(x) log pi(xi) =

∫

dxi log pi(xi)

∫

dx1 · · · dxi−1dxi+1 · · · dxn p(x)

=

∫

dxi log pi(xi) pi(xi) = −Hxi
. (6.52)

From the positive semi-definiteness of DKL it therefore follows that I(x1, . . . , xn) ≥ 0, where the
equality only holds if the xi are statistically independent.

In what follows, we shall need a measure of non-Gaussianity of a probability distribution
function. It can be shown that the Gaussian distribution has the largest entropy among all
distributions with fixed variance (in other words, the Gaussian distribution is the maximum-
entropy distribution for this case). Therefore, one defines the negentropy :

Jx = HxGauss
−Hx , (6.53)

where xGauss is a Gaussian random vector with the same covariance matrix as x. The negentropy
is always non-negative and zero if x is Gaussian.

The method

We now describe the ICA method (Hyvärinen et al. 2001; Hyvärinen & Oja 2000), which we
use to find the new basis in RnIC in which the components of ∆ are (approximately) statistically
independent.
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ICA is best introduced by assuming that the data at hand were generated by the following
linear model (using the notation of Eq. 6.40):

∆ = Ms , (6.54)

where s is a vector of statistically independent source signals with non-Gaussian probability
distributions and M is the p × nIC mixing matrix. The goal of ICA is then to estimate both M
and s from the data.

For simplicity, we will from now on only consider the case nIC = p. In this case, the mixing
matrix M is simply the inverse of the un-mixing matrix A in Eq. (6.40).

An intuitive, though slightly hand-waving way to understand how this estimation problem can
be solved is to note that a set of linear combinations yi of independent, non-Gaussian random
variables xj will usually have distributions that are more Gaussian than the original distributions
of the xj (by virtue of the central limit theorem). Reversing this argument, this suggests that
the xj could be recovered from a sample of the yi by looking for linear combinations of the
yi that have the least Gaussian distributions. These linear combinations will also be close to
statistically independent.

For a more rigorous justification, consider the random vector of source signals s = M−1∆.
Using the transformation property of the entropy as given in Eq. (6.48), we can write the mutual
information of the si as

Is1,...,snIC
=

nIC
∑

i=1

Hsi
−H∆ − log |det M|−1 (6.55)

As will be discussed below, the each source signal si can only be determined up to a mul-
tiplicative constant using ICA. We choose these factors such that 〈sst〉 = E, where E is the
unit matrix. In this case, detM is constrained to be constant, because det〈sst〉 = det E =
detM−1 〈∆∆t〉 det M−1, and 〈∆∆t〉 does not depend on M. Thus, the only term in Eq. (6.55)
that depends on the choice of the transformation matrix is the first. On the other hand, note
from Eq. (6.53) that for a random vector of unit variance, negentropy and entropy only differ
by a constant (the entropy of the corresponding Gaussian random variable) and the sign. We
can therefore write Eq. (6.55) as

Is1,...,sp = const.−
p
∑

i=1

Jsi
. (6.56)

This shows that finding a linear transformation M that minimizes the mutual information (as a
measure of statistical dependence) of the resulting source vector s is equivalent to maximizing
the negentropy of the components of s (a measure of non-Gaussianity). This agrees with the
intuitive argument in the previous paragraph.

The ICA algorithm consists of two parts, the first of which is a preprocessing step: after
subtracting the mean ∆̄ = 〈∆〉 from ∆, the data is whitened, i.e. a linear transformation

∆̃ = L∆ is introduced such that 〈∆̃∆̃
t〉 = E. This can be achieved by computing the eigen-

decomposition of the covariance matrix C = UDUt of ∆ and by choosing L = D−1/2Ut, where
U is orthonormal, D = diag(d1, . . . , dp) and di ≥ 0 for all i. The effect of the whitening is that
the new mixing matrix M̃ = LM between ∆̃ and s is orthogonal. This can be seen as follows:

E = 〈∆̃∆̃
t〉 = M̃〈sst〉M̃t, and since we have 〈sst〉 = E, the claim follows.
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After the preprocessing, the components of ∆̃ are uncorrelated. This would be equivalent to
statistical independence if their distributions were Gaussian. However, as this is not the case
here, a further step is needed. It consists of finding a new set of orthogonal basis vectors wi

(the row vectors of M̃) such that the distributions pzi
(zi) of

zi = ∆̃i · wi (6.57)

maximize the negentropy of the zi. Starting from randomly chosen initial directions wi, the
algorithm tries to achieve this goal iteratively (in practice, it is sufficient to use a simple ap-
proximation to the negentropy). For more details on the practical implementation, the reader
is referred to Hyvärinen et al. (2001).

ICA suffers from several ambiguities, none of which, however, is crucial for this work. First
of all, the variances (weights) of the source signals cannot be determined, since any prefactor λ
to the signal si can be cancelled by multiplication of the corresponding column of the mixing
matrix by 1/λ. Secondly, the order of the independent components is not determined, since
any permutation of the si can be accommodated by corresponding changes to M. Thirdly, ICA
does not yield a unique answer if at least some of the si are Gaussian – the subset of Gaussian
signals is only determined up to an orthogonal transformation. This is not an issue in our
context, since the Gaussian signals will be uncorrelated thanks to the preprocessing steps, and
uncorrelatedness implies statistical independence for Gaussian random variables.

Several interpretations of ICA and algorithms exist and are described in detail in Hyvärinen
et al. (2001). In this work, we use an implementation of the fastICA algorithm (Hyvärinen &
Oja 1997) for the R language (R Development Core Team 2007)1.

6.3.4 Tests

Statistical biases

In this section, we present the results of a number of tests we have performed to insure that
the results obtained with the ICA method are not affected by convergence issues or statistical
biases of any kind.

As discussed in Sec. 6.3.3, the fastICA algorithm requires a set of randomly chosen directions
wi as initial conditions. It then iteratively computes corrections to these vectors in order to
increase the negentropy of the projections of the data vectors onto these directions (Eq. 6.57),
followed by an orthonormalization step. Therefore, it is not clear a priori whether the algorithm
will settle in the same negentropy maxima for different sets of initial vectors. This concern is
backed by the fact that at least some of the psi

(si|π0) might be very close to Gaussian, which
might hamper convergence even further due to the inability of ICA to uniquely distinguish
between Gaussian source signals. We have therefore tested whether we obtain the same set of
basis vectors from a large number of different initial vectors wi. Indeed, we reliably recover
those basis vectors for which the distribution of pzi

(zi = ∆̃ · wi) departs significantly from a
Gaussian. As expected, the directions leading to a rather Gaussian pzi

are different for different
starting values. As discussed before, this is no reason for concern, since projections zj of the
data onto these “Gaussian” directions have been decorrelated already through the whitening
transformation. Since the ICA mixing matrix M̃ is orthogonal, the observed mixing of these
components will preserve the uncorrelatedness. We find indeed that the posterior distributions
derived using our algorithm do not differ notably when using different starting vectors. This

1http://www.r-project.org/
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Figure 6.5: Area of the 68% (dashed lines)
and 99% (solid lines) credible regions in the
Ωm-σ8-plane as function of the sample size
N , for the Gaussian likelihood (red) and the
likelihood computed using the ICA algorithm
(black). Blue lines are the predicted areas based
on Eq. (6.58).

is even true if the fastICA algorithm does not formally converge (i.e. when the differences of
some of the basis vectors between two iterations is not small): after a few hundred iterations,
the non-Gaussian directions are determined and do not change anymore. The reason for not
reaching convergence is that the algorithm still tries to find negentropy maxima in the subspace
of Gaussian directions.

As has been noted in Sec. 6.2.1, statistical biases can become significant already for the
Gaussian approximation of the likelihood (Eq. 6.36): care has to be taken if the covariance
matrix of the correlation function (given on p bins) is estimated from a finite set of N simulations
or observations. Inverting the estimated covariance yields a biased estimate of the inverse (see
Eq. 6.22):

〈

Ĉ−1
〉

=
N − 1

N − p− 2
Σ−1 for p < N − 1 , (6.58)

where Ĉ is the estimated and Σ the true covariance matrix. This bias leads to an underestimation
of the size of credible regions by a factor of (N − p − 2)/(N − 1) ≈ 1 − p/N . We suspect that
a similar bias occurs in our likelihood estimation procedure. In Fig. 6.5, we therefore plot the
area of the 68% and 99% credible regions of the posterior distribution for Ωm and σ8 (keeping
all other cosmological parameters fixed to their fiducial values) as functions of the number N of
observations of the correlation functions used to estimate the ICA transformation (black curves).
To exclude noise effects from the analysis, we use the theoretical prediction of the correlation
function for the fiducial cosmological parameters as data vector. We set p = 30 throughout. For
comparison, we also show the areas computed using the Gaussian likelihood (red curves). In the
latter case, the bias predicted by Eq. (6.58) is clearly visible as a decrease of the area when N
becomes small. The ICA method suffers from a similar bias, although the behaviour at small N
seems to be slightly different. More important, though, is the fact that this bias is unimportant
for reasonably large sample sizes (N & 2000). Since we always use the full sample (N = 9600)
in the following, this bias is completely negligible.
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Figure 6.6: Kullback-Leibler di-
vergences between the estimated
probability distributions of the ICA
components and the best fitting Gaus-
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the black curve, the weak lensing limit
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nents have been ordered according to
their K-L divergence.

Non-Gaussianity from the reduced shear

The intrinsic ellipticity ǫ(s), reduced shear g = γ/(1 − κ) and observed image ellipticity ǫ are
related by (see Eq. 3.26):

ǫ =

{

ǫs+g
1+g∗ǫs

if |g| ≤ 1
1+gǫ∗s
ǫ∗s+g∗ if |g| > 1 .

(6.59)

Since this relation is non-linear, it can introduce additional non-Gaussianity to the likelihood,
even if the distribution of the intrinsic ellipticities is Gaussian. To test this, we have created two
mock galaxy catalogues from our ray-tracing simulations, one using Eq. (3.26) to compute the
observed galaxy ellipticities (case A), the other one using the linear weak lensing limit of this
equation, given by ǫ = γ + ǫ(s) (case B). We use both catalogues to estimate the ICA likelihood
and compare the resulting psi

. A convenient measure of non-Gaussianity is the Kullback-Leiber
divergence between the kernel-density estimate of psi

(Eq. 6.42) and the best-fitting Gaussian
distribution. In Fig. 6.6, we plot the K-L divergences for the ICA components for both cases.
We do not find any significant additional non-Gaussianity that is caused by Eq. (3.26), and
also do not see any noteworthy differences in the parameter constraints based on the likelihoods
estimated from the two galaxy catalogues.

ICA performance

As a first check of how well the ICA does in separating the independent components of the
correlation function, we compare the probability distributions of the twelve most non-Gaussian
components with respect to the PCA and ICA basis vectors (Fig. 6.7). As expected, using
the ICA we find many more significantly non-Gaussian PDFs than just performing a PCA.
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Figure 6.7: Distributions of the components of the shear correlation function with respect to the PCA
basis (left panel) and the ICA basis (right panel). Since the scales of the si are irrelevant, we omit the
axis labels except for the location of si = 0, which is indicated by vertical black lines. The solid red lines
are the kernel density estimates, the dashed black lines are the best-fitting Gaussian distributions. For
each component, we also give the Kullback-Leibler divergence (Eq. 6.49) between the Gaussian and the
measured distributions as a measure of non-Gaussianity.

ICA PCA

Components 1 − 2
ICA PCA

Components 9 − 10

Figure 6.8: Comparison of the joint distributions p(si, sj) (black dashed contours) and the product
psi

(si) psj
(sj) (solid red contours) for the two most non-Gaussian components ((i, j) = (1, 2)) and two

rather Gaussian ones ((i, j) = (9, 10)). The labels i and j correspond to the ordering of components of
Fig. 6.7. In the right panel of each plot, the distributions with respect to the PCA basis vectors are shown
and in the left panel, the distributions in the ICA basis are displayed. Statistical independence is indicated
by p(si, sj) = psi

(si) psj
(sj).
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Furthermore, the tendency of the PDFs to be more peaked than a Gaussian, which is visible
already in the PCA basis, becomes much clearer. This trend persists also for the remaining
components not shown in the figure: while several PCA components are indistinguishable from
a Gaussian, no such PDF is found in the ICA case. This shows that the ICA indeed yields an
improved separation of non-Gaussian components of the shear correlation function.

Our method to estimate the likelihood crucially depends on the assumption that a linear
transformation makes the components of the shear correlation vectors statistically independent.
A necessary condition for mutual statistical independence of all si is to compare the joint pairwise
distributions p(si, sj) to the product distributions psi

(si) psj
(sj). The components i and j are

pairwise statistical independent if p(si, sj) = psi
(si) psj

(sj). We estimate p(si, sj) using a two-
dimensional extension (using a bi-variate Gaussian kernel) of the kernel density method given
by Eq. (6.42). We give two examples in Fig. 6.8, where we compare the joint and product
distributions of the two most-non-Gaussian components and two nearly Gaussian components.
As expected, a simple PCA is not enough to achieve pairwise statistical independence in the non-
Gaussian case. Only after performing the ICA, pairwise independence is achieved. In addition,
Fig. 6.8 nicely illustrates the futility of an attempt to estimate the full p-dimensional likelihood
directly: the two-dimensional estimates of the joint densities are already significantly noisier
than the product densities.

A more rigorous test for mutual statistical independence for the multivariate, continuous case
was proposed by Chiu et al. (2003). It is based on the observation that if x is a continuous random
variable and P (x) is its cumulative distribution function (CDF), then z = P (x) is uniformly
distributed in [0, 1]. If we are given a set of statistically independent random variables si, this
means that the joint distribution of zi = Pi(si), where again Pi is the CDF of si, is uniform in the
multidimensional unit cube. On the other hand, if the assumption of statistical independence
of the si is violated, the joint density pz of the zi is given by

pz(z) = pz [P1(s1), . . . , Pn(sn)]

= ps(s1, . . . , sn)

∣

∣

∣

∣

∂z

∂s

∣

∣

∣

∣

−1

=
ps(s1, . . . , sn)
∏n

i=1 pi(si) .
(6.60)

Here, pi(si) is the distribution function of si only and ps is the joint distribution function of
s1, . . . , sn. This means that the joint distribution of the zi is not uniform if the si are statistically
dependent. Therefore, we can test if the si we obtain from the ICA procedure are indeed
independent by computing their empirical cumulative distribution functions, carrying out the
above transformation and finally testing for multivariate uniformity. Such a test was described
in Liang et al. (2001), a discussion of which, however, is considerably beyond the scope of this
thesis. Applying the test to the si that we have obtained from our ICA procedure, we have to
reject statistical independence at 99% confidence. This means that the ICA does not remove all
dependencies between the components of the shear correlation function. This result, however,
does not give an indication of how these residual dependencies affect our likelihood estimate and
the conclusions regarding constraints on cosmological parameters.

We therefore compare the constraints derived from the ICA likelihood with the constraints
from the likelihood estimated using an alternative method, called projection pursuit density
estimation (Friedman et al. 1984), which we describe in detail in App. C. This method is free
from any assumptions regarding statistical independence and therefore provides an an ideal
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cross-check for the ICA method. For the comparison, we have computed the shear correlation
functions with p = 10, and we also use nIC = 10 independent components. The resulting contours
in the Ωm-σ8-plane are shown in Fig. 6.9. Both posterior likelihoods are very similar, although
the credible regions of the PPDE posterior have a slightly smaller area than the contours of the
ICA posterior (which actually supports the findings presented in the next section). Given the
good agreement of the two methods, we will henceforth only make use of the ICA procedure,
which is considerably faster and numerically less contrived than PPDE.

6.3.5 Results on the posterior

The most interesting question is how much the posterior distribution computed from the non-
Gaussian ICA likelihood will differ from the Gaussian approximation. We have investigated this
for the case of the CDFS and the parameter set (Ωm, σ8). For the data vector, we do not use the
correlation functions from our simulations, but take the theoretical prediction for our fiducial
parameter set instead. This allows us to study the shape of the posterior likelihood independent
of noise in the data and biases due to the fact that the fiducial theoretical model does not quite
match the mean correlation function from the simulations. In Fig. 6.10, we show the contours
of the posterior computed in this way from the shape-noise-free likelihood (left panel) and the
likelihood estimated from simulations with σǫ = 0.45 (right panel). The shape of the ICA
posterior is different from that of the Gaussian approximation in three respects: it is steeper,
the maximum is shifted towards higher σ8 and lower Ωm, and the contours are slightly tilted.
The first two differences can be traced back to the shape of the distributions of the individual
ICA components (Fig. 6.7): most the distribution functions are generally slightly steeper than
a Gaussian and most of the non-Gaussian components are in addition strongly skewed, thus
shifting the peak of the posterior. Generally, these differences are more pronounced in the
direction of the Ωm–σ8-degeneracy and towards lower values of both parameters, where the
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Figure 6.10: Comparison of the posterior likelihoods for (Ωm, σ8), computed using the ICA likelihood
(thick black contours) and the Gaussian approximation (dotted red contours). Shown are the contours
of the 68% and 99% credible regions. The mode of the ICA posterior is denoted by I. The mode of the
posterior based on the Gaussian likelihood coincides with the fiducial parameter set and is marked by the
symbol C.

posterior is shallower. Note that the differences between the Gaussian and the ICA likelihood
are much larger than the differences between the ICA and the PPDE likelihood shown in Fig. 6.9.

Of more practical relevance is how the parameter constraints change when the ICA likelihood
is used for the analysis of large weak lensing surveys. Here, we consider surveys consisting of
Nf CDFS-like fields. Bayesian theory states that if Nf is large enough, the posterior probability
distribution of the parameters becomes Gaussian, centred on the true parameter values, with
covariance matrix (Nf F)−1 (e.g. Gelman et al. 2004). Here, F is the Fisher matrix (see Eq. 6.31),
which can be written as (Kendall et al. 1987)

Fαβ =

〈

∂ logL

∂πα

∂ logL

∂πβ

〉

, (6.61)

where 〈·〉 denotes the expectation value with respect to the likelihood function. If the likelihood
is Gaussian and if the covariance matrix C does not depend on cosmology, one can show that
(Tegmark et al. 1997)

Fαβ =
∑

i,j

C−1
ij

∂mi(π)

∂πα

∂mj(π)

∂πα
. (6.62)

Eq. (6.61) provides us with a way to estimate the Fisher matrix for the non-Gaussian likeli-
hood. For each ray-tracing realization of the CDFS, we compute the logarithm of the posterior
distribution log p(π|ξ) and its derivatives (by finite differencing; see e.g. Abramowitz & Stegun
1964) with respect to the cosmological parameters at the fiducial parameter values. Since we use
uniform priors for all cosmological parameters, the derivatives of the log-posterior are identical
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Figure 6.11: Fisher matrix constraints for a hypothetical 1500-deg2 survey without shape noise. The
plots on the diagonal show the 1D marginals, the off-diagonal plots the 2D marginals derived from the full
4D posterior. The red dashed (black solid) lines/contours have been computed using the Fisher matrix
of the Gaussian likelihood (the ICA likelihood). In each plot, we give the ratio r of the area of the 68%
credible intervals derived from the ICA likelihood to those derived from the Gaussian likelihood.
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Figure 6.12: Same as Fig. 6.11, but including shape noise (σǫ = 0.45). Note that the scales of the axis
are different from those in Fig. 6.11.
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to those of the log-likelihood. We can then compute the Fisher matrix by averaging over all
realizations:

F̂αβ =
1

N

N
∑

k=1

∂ log p(π|ξ(k))

∂πα

∂ log p(π|ξ(k))

∂πβ
, (6.63)

where ξ(k) is the correlation function estimated from the k-th realization. In App. D, we show
that the expression for the Fisher matrix of the ICA likelihood can be evaluated further to be

Fαβ =
∑

i

∂m̆i

∂πα

∂m̆i

∂πβ

∫

dsi psi
(si)

(

∂ log psi
(si)

∂si

)2

. (6.64)

This equation allows a simpler, alternative computation of F from the estimated psi
(si), although

it is not free of numerical difficulties, as discussed in App. D.
We use Eqns. (6.62) and (6.63) to compute the Fisher matrices for a 1500-deg2 survey

(Nf = 6000) and find an excellent agreement of the two methods. We fit for four cosmolog-
ical parameters (Ωm, σ8, h100, ΩΛ), keeping all other parameters fixed to their true values. To
visualize the posterior, we compute two-dimensional marginalized posterior distributions for
each parameter pair as well as the one-dimensional marginals for each parameter. The results
are shown in Fig. 6.11 for a hypothetical survey without shape noise and in Fig. 6.12 including
shape noise with σǫ = 0.45. A general feature of the ICA likelihood, which has already been
apparent in the 2D-analysis (Fig. 6.10), is that the credible intervals are significantly smaller
than the ones derived from the Gaussian likelihood. For the two-dimensional marginal distri-
butions, the area of the 68% credible regions derived from the ICA likelihood are smaller by
≈ 30−40%. The one-dimensional constrains are tighter by ≈ 10−25%. In addition we find that
the ICA Fisher ellipses in some cases are slightly tilted with respect to those computed using
the Gaussian likelihood. This is particularly apparent for the case without shape noise and for
parameter combinations involving the Hubble parameter. Note that the shift of the maximum
observed in the two-dimensional case for a single CDFS-like field does is absent here because it
was assumed for the Fisher analysis that the posterior is centred on the true parameter values.

We conclude that the non-Gaussianity of the likelihood has a considerable effect on the con-
straints on cosmological parameters derived from cosmic shear measurements. Although our
method is only approximate in that it assumes that a linear transformation suffices to remove
statistical dependencies from the data vectors, the statement that the credible regions are smaller
than for a Gaussian likelihood seems secure (and is confirmed by our results using the PPDE
likelihood). Currently, considerable effort is dedicated to properly account for non-linear con-
tributions to the covariance matrix of cosmic shear (e.g. Takada & Jain 2008; Cooray & Hu
2001b), which increases the size of the error bars on cosmological parameters compared to using
a covariance derived for a Gaussian shear field. Our findings suggest that the accurate knowledge
of the covariance matrix does not necessarily lead to better error estimates if the non-Gaussian
nature of the likelihood is not taken into account.

6.4 How odd is the Chandra Deep Field South?

In their cosmic shear analysis of the combined HST GEMS and GOODS data of the Chandra
Deep Field South, Schrabback et al. (2007) (S07 from hereon) have found a very low value
of σ8(Ωm = 0.3) = 0.52+0.11

−0.15. We refer the reader to the original publication for details on
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Figure 6.13: Posterior distributions
for σ8 as computed from the CDFS
data. The solid line corresponds to
the ICA likelihood, the dashed line is
from the Gaussian likelihood whose
covariance matrix was estimated from
the ray-tracing simulations. The
dot-dashed line was computed from the
Gaussian likelihood with an analytically
computed covariance matrix, assuming
that the shear field is Gaussian.

the data and weak lensing analysis. Here, we present a re-analysis of the cosmic shear data
based on a revised source catalogue (work by T. Schrabback), taking into account a previously
undetected bias in the shear recovery process. Using our estimate of the non-Gaussian likelihood,
we investigate whether cosmic variance alone is responsible for producing the low σ8-estimate
or whether the criteria applied by Giacconi et al. (2001) to select a field suitable for deep X-ray
observations have a share in this.

6.4.1 Cosmic Shear analysis of the CDFS

In Fig. 6.13, we show the posterior distribution for σ8 based on the revised source catalogue.
For the fit, all other cosmological parameters were held fixed at the fiducial values chosen for our
ray-tracing simulations. We choose a flat prior for σ8, with a lower boundary of σ8, min = 0.35
to cut off the tail of the posterior distribution towards small values of the power spectrum
normalization, which is caused by the fact that the difference (and therefore the likelihood)
between the data and the model vectors changes only very little when σ8 (and therefore the
shear correlation function) is very small. We have performed the fit for the ICA likelihood as
well as for the Gaussian approximation to the likelihood. For the latter, the covariance matrix
was in one case estimated from the full sample of our ray-tracing simulations, and in the other
case computed analytically assuming that the shear field is a Gaussian random field (Joachimi
et al. 2008). The striking similarity of the posterior densities derived from the ICA likelihood
and using the Gaussian covariance matrix for this particular data vector is merely a coincidence
and is in general not seen for our set of simulated correlation functions.
For estimates of σ8, we use the maximum of the posterior (henceforth we write ICA-MAP for
the maximum of the non-Gaussian likelihood, and Gauss-MAP if the Gaussian approximation
is used), although we also quote the median (ICA median) for comparison with S07. In the first
case, our α% credible intervals are highest posterior density intervals, whereas for the median
we choose to report the interval for which the probability of σ8 of being below lower interval
boundary is as high as being above the upper boundary. The results are summarized in Tab. 6.1.
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6.4.2 Cosmic Variance

The original estimates for σ8 given in S07 and those found in the previous section for the Gaus-
sian likelihood are rather low compared to the value reported by the WMAP5 team (Dunkley
et al. 2008). This problem appears less severe when the full non-Gaussian likelihood is used, but
the σ8-estimate is still rather low. It is therefore interesting to know whether this can be fully
attributed to cosmic variance or whether the way in which the CDFS was originally selected
biases our estimates low.

To begin, we determine the probability of finding a low σ8 in a CDFS-like field when the
pointing is completely random. We estimate the sampling distribution of the σ8-MAP estimators
for Gaussian and ICA likelihoods from the full sample of our ray-tracing simulations. We
compute the posterior likelihood for σ8 using a uniform prior in the range σ8 ∈ [0.35; 1.8]
and determine the MAP estimator σ̂8. As in the previous sections, we do this using both the
Gaussian and the ICA likelihoods. To separate possible biases of the estimators from biases
that might arise because the model prediction based on Smith et al. (2003) does not quite fit
our simulations, we correct the simulated correlation functions for this: if ξ(i) is the correlation
function measured in the i-th realization, then

ξ(i)
rc = ξ(i) − 〈ξ〉 + m(π0) , (6.65)

is the “re-centred” shear correlation, where 〈ξ〉 is the mean of all realizations and m(π0) is our
fiducial model.

The resulting sampling distributions of σ̂8 are shown in Figs. 6.14 (original ξ) and 6.15 (re-
centred ξ). Remarkably, all the distributions are well fit by a Gaussian. With the original
correlation functions, we obtain estimates σ̂8 which are too high on average. This reflects the
fact that the power spectrum fitting formula by Smith et al. (2003) underpredicts the small scale
power in the simulations (see Sec. 5.2.1). If we correct for this, we see that the maximum of the
ICA likelihood is a nearly unbiased estimator of σ8 in the one-dimensional case considered here,
and in addition has a lower variance than the maximum of the Gaussian likelihood.

We estimate the probability of obtaining a power spectrum normalization as low as the one
measured in the CDFS or lower, Prob(σ̂8 < σ̂CDFS

8 ), by the ratio of the number of realizations
which fulfil this condition to the total number of simulations. These estimates agree very well
with those computed from the best fitting Gaussian distribution. The results for the MAP and
median estimators are summarized in Tab. 6.2. As expected from the above considerations, we
find higher probabilities for the re-centred correlation functions. In this case, the ICA-MAP
estimator yields 13% for the probability of obtaining an equally low or lower σ8 than the CDFS.
This reduces to ≈ 5% when the uncorrected correlation functions are used, because the misfit of
our theoretical correlation functions to the simulations biases the σ8-estimates high. If we assume
that our simulations are a reasonable representation of the real Universe, we can expect the same
bias when we perform fits to real data. Therefore, Prob(σ̂8 < σ̂CDFS

8 ) ≈ 0.05 as derived from the
uncorrected correlation functions is most likely closest to reality. The probabilities computed
from the Gauss-MAP estimates are generally smaller than the ICA-MAP values because of the
lower value of σ̂CDFS

8 found using these estimators, even though the sampling distributions of
the Gauss estimators are broader.
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Figure 6.14: Sampling distributions of the MAP estimators of σ8, derived from 9600 realizations of
the CDFS. All other parameters were held fixed at their fiducial values for the fit. The histogram with
red dashed lines has been obtained from the Gaussian likelihood, the one with solid lines from the ICA
likelihood. Also shown are the best fitting Gaussian distributions. We indicate the fiducial value of σ8

and our estimates from the CDFS with vertical lines.
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Figure 6.15: Same as Fig. 6.14, but using re-centred correlation functions
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ICA likel. Gaussian likel. Gaussian likel.
(ray-tracing cov.) (Gaussian cov.)

MAP 0.68+0.09
−0.16 0.59+0.10

−0.19 0.68+0.10
−0.14

Median 0.62+0.11
−0.11 0.57+0.15

−0.15 0.64+0.10
−0.14

Table 6.1: Estimates of σ8 from the CDFS

Gauss Gauss ICA ICA
(MAP) (median) (MAP) (median)

re-centred CF 6.8% 8.6% 12.9% 9.0%
original CF 1.8% 3.0% 5.4% 3.4%

Table 6.2: Prob(σ8 < σ̂CDFS
8 ) for the CDFS

6.4.3 Influence of the CDFS selection criteria

We now investigate if and by how much the way in which the CDFS was selected can bias our
estimates of the power spectrum normalization low. Several local criteria had to be fulfilled by
the future CDFS, such as a low galactic HI density, the absence of bright stars and observability
from certain observatory sites. Since these conditions do not reach beyond our galaxy, we do
not expect them to affect the lensing signal by the cosmological large-scale structure.

Furthermore, the field was chosen such that no extended X-Ray sources from the ROSAT
All-Sky Survey (RASS), in particular galaxy clusters, are in the field of view. This is potentially
important, since it is known from halo-model calculations that the cosmic shear power spectrum
on intermediate and small scales is dominated by group- and cluster-sized halos. Therefore, the
exclusion of X-ray clusters might bias the selection of a suitable line of sight towards underdense
fields. On the other hand, the RASS is quite shallow and thus only contains very luminous,
nearby clusters, which have a limited impact on the lensing signal due to their low number and
low lensing efficiency. We quantify the importance of this criterion using the halo catalogues
of our N -body-simulations. To each halo, we assign an X-ray luminosity in the energy range
from 0.1 to 2.4 keV using the mass-luminosity relation given in Reiprich & Böhringer (2002)
and convert this into X-ray flux using the halo redshift. We then compute the average of the σ8

estimates from all fields which do not contain a cluster brighter than a certain flux limit. It is
difficult to define an exact overall flux limit to describe the CDFS selection, because the RASS
is rather heterogeneous. However, it is apparent from Fig. 6.16 that even a very conservative
limit of 10−13 ergs/sec/cm2 will change the average σ8 estimate by at most 3− 5%. This bias is
therefore most likely not large enough to explain our CDFS result alone.

Finally, the CDFS candidate should not contain any “relevant NED source”. This is very
hard to translate into a quantitative criterion, in particular because our simulations contain
only dark matter. We model the effect of imposing this requirement by demanding that there
be less than ng group- or cluster-sized halos (M > 1013 h−1M⊙) in the redshift range from
z = 0 to z = 0.5 in a CDFS candidate. The impact of this criterion on the estimated value of
σ̂8 using the ICA- and Gauss-MAP estimators is shown in Fig. 6.17. As expected, the median
σ̂8 is a monotonically increasing function of ng. For fields with less than ≈ 12 massive halos,
the probability of obtaining a power spectrum normalization as low as in the CDFS rises above
≈ 20%. Given that the average number of massive halos in the specified redshift range is 18.5,
it does not seem to be too unreasonable that fields with less than ≈ 12 such halos could be
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obtained by selecting “empty” regions in the NED. From Fig. 6.17, we therefore estimate that
this selection criterion can cause a bias of σ8 of another 5-10%.

Note that the two criteria discussed in this section are not strictly independent. However,
it is highly improbable that a single field will contain more than one massive halo that would
exceed the X-ray flux limit. Therefore, selecting fields without an X-ray-bright cluster prior to
performing the steps that lead to Fig. 6.17 would change the halo numbers that go into the
analysis by at most one and would not significantly influence our estimate of the bias.

We include these biases as a systematic error of 15% in the error budget of our estimate of the

power spectrum normalization from the CDFS, which then reads σ8 = 0.68
+0.09(stat.) +0.1(sys.)
−0.16(stat.) .
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Figure 6.17: Dependence of the ICA-MAP-estimator for σ8 on the number of group- and cluster-sized
halos n between z = 0 and z = 0.5. For each n-bin, we summaries the distribution of the corresponding
subsample of simulated CDFS-fields by giving a box plot: The thick horizontal line in each box denotes
the median, the upper and lower box boundaries give the upper and lower quartiles of the distribution of
the sample values. The error bars (“whiskers”) extend to the 10% and 90% quantiles, respectively. The
values outside of the 5% and 95% quantiles are given as points. The width of each box is proportional to
the square root of the sample size. For comparison, we also show for each subsample the median of the
Gauss MAP estimators as red crosses. The solid black horizontal line indicates the true value of σ8, the
black dashed line the ICA-MAP estimate for the CDFS and the red dotted line the Gauss-MAP estimate.
The average number of halos with M > 1013 h−1M⊙ and z ≤ 0.5 in a CDFS-like field is n̄ = 18.5.



7 Galaxy-Galaxy-Lensing with the Millennium

Simulation

Much work is currently dedicated to improving the understanding of the formation and evo-
lution of galaxies within the cosmological standard model. The general picture is widely agreed
on: at early times, baryonic matter essentially follows the dark matter distribution until the
gas density is high enough for the gas to cool efficiently. The baryons then condense at the
centers of the dark matter halos and there form stars and galaxies. The details of this picture,
such as the conditions under which star formation occurs and the role of feedback from quasar
activity and supernovae, however, are still little understood. The importance of these effects on
the evolution of a galaxy strongly depends on the properties of the dark matter halo hosting
the galaxy. Galaxy-galaxy lensing offers the opportunity to link the observed properties of the
lens galaxies to their dark matter environment and therefore can be used to put constraints on
galaxy evolution models such as the semi-analytic models discussed in Sec. 4.4.

In this Chapter, we apply the ray-tracing code that we have developed for the Millennium
Simulation to gain a basic understanding of what information is encoded in the GGL signal.
We make predictions for realistic lens samples and compare our results to the measurements of
Sheldon et al. (2004) in the SDSS. Previous studies of this kind have been undertaken by Guzik
& Seljak (2001) and Yang et al. (2003), who used the semi-analytic model by Kauffmann et al.
(1999), or Tasitsiomi et al. (2004), who do not use a full galaxy evolution model but assign a
luminosity to halo central particles based on the maximum circular velocity of a halo. Our work
constitutes a significant improvement over these previous efforts, not only because we are using
the Millennium Simulation with its unprecedented dynamic range, but also because for the first
time we combine a complete ray-tracing with a semi-analytic model of galaxy formation.

The results presented in this Chapter are derived from the Millennium Simulation and the
semi-analytic model of galaxy formation by De Lucia & Blaizot (2007) throughout. Unless stated
otherwise, we use 128 realizations of a 2◦ × 2◦ field, for which we have performed ray-tracing up
to z = 1.

7.1 Galaxy-galaxy lensing as function of the lens sample

7.1.1 Contributions to the galaxy-galaxy lensing signal

The GGL signal can be used to infer the average properties of the dark matter halos hosting
the lens galaxies (e.g. Mandelbaum et al. 2008; Johnston et al. 2007; Limousin et al. 2005; Wilson
et al. 2001; Schneider & Rix 1997). However, most of these halos are not isolated; they are likely
to be embedded into galaxy groups and clusters, which will likewise contribute to the tangential
shear profile with respect to the lenses. To understand the effects of the environment of the lens
halo, we first study the GGL signal for lens samples selected according to mass and environment
before turning to more realistic situations.

In Fig. 7.1, we plot the excess surface mass density ∆Σ (see Eq. 3.111) around a lens as a
function of the projected proper separation R from the lens, varying the mass Mg of the galaxy
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Figure 7.1: Galaxy-galaxy lensing signal for lens samples selected according to the mass of the subhalo
containing the lens galaxy. Only galaxies with z < 0.4 were included. The background galaxies are located
at z = 0.9. For better visibility, the data points have been connected with lines. The errors are estimated
from the field-to-field variance, no shape noise was included.
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data points have been connected with lines. The errors are estimated from the field-to-field variance, no
shape noise was included.
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halos, i.e. of the (sub-)halos the lens galaxies reside in. We use five mass bins in the range
1011 M⊙/h ≤ Mg < 1013M⊙/h, where for each bin ∆M/M = 0.4. On small scales, the GGL
signal increases roughly proportional to Mg. However, ∆Σ displays a clear break on larger
scales, beyond which the signal is significantly flatter and depends only weakly on the mass of
the lens halo. The location of this break is seen at smaller separations for lens halos with lower
mass. For the lowest-mass bins, even a secondary maximum becomes visible. Clearly, at these
scales the GGL signal is no longer dominated by the dark matter halo of the lens galaxy but by
its large-scale environment.

This becomes particularly apparent if we select lens galaxies that are satellite galaxies of
massive host halos (Mh ≥ 1014M⊙/h), as is shown in Fig. 7.2 with the blue dashed curve. In
this case, the secondary maximum becomes the dominant feature of the GGL signal, only on very
small scales (below ≈ 100h−1 kpc) the actual lens halo is important. On large scales, on the other
hand, ∆Σ becomes very similar to the signal obtained from the central galaxies of the massive
host halos (solid red curve): thus, if R is much larger than the separation between lens and host
halo center, ∆Σ essentially probes the shear profile of the host halo. The same effect is seen –
with lower amplitude – for the satellite galaxies of less massive host halos (Mh < 1014 M⊙/h,
dotted black curve). The signal from the central galaxies of these halos (short dashed orange
curve), however, now also displays a pronounced break at ≈ 1h−1 Mpc. Since we are already
looking at central galaxies, this can not be interpreted as the contribution of a possible host
halo. Rather, this has to be caused by other correlated structures in the vicinity of the lens
galaxy halo which are not well described with the simple two-halo description employed above
for the more massive halos.

7.1.2 Modelling the galaxy-galaxy lensing signal

The observations made in the previous section motivate a simple model, in which we interpret
the galaxy-galaxy lensing signal as being composed of contributions by the lens galaxy halo, a
possible group or cluster environment (the host halo) and projected large-scale structure that
is correlated with the lenses. Similar or related models have been proposed in Johnston et al.
(2007) and Yang et al. (2006). Both works mainly aim to model the shear signal of galaxy groups
and clusters. Our model differs from these works in that we compute the host halo contribution
as an average over all possible host halo positions, whereas in Johnston et al. (2007) only central
galaxies are considered and Yang et al. (2006) assume fixed separations between subhalos and
host halos.

The model

To model the mass distribution associated with the lens galaxies, we assume that each galaxy
is located at the center of a dark matter halo. This halo can be an isolated halo, or a subhalo of
a more massive host halo. The average surface mass density associated with a lens as function
of the projected proper separation R is then composed of three different contributions:

Σ(R; z) = Σg(R; z) + (1 − pc)Σh(R; z) + ΣLSS(R; z) . (7.1)

Here, pc is the probability that the lens galaxy is the central galaxy of an isolated halo (as
opposed to being a galaxy at the center of a subhalo). The surface mass density profile of an
isolated halo or subhalo with the galaxy at its center is given by Σg. In the case that the galaxy
halo is embedded in a larger host halo (which occurs for a fraction of 1− pc of all lens galaxies),
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the host halo contribution is denoted by Σh(R). Finally, ΣLSS accounts for the projection of
additional large-scale structure that is correlated with the lens. For now, we assume that all lens
galaxies are located at the same redshift z. The GGL signal for a lens population that extends
over a certain redshift range can then be obtained by averaging ∆Σ(R; z) over the redshift
distribution of the lens galaxies.

In order to compute Σg and Σh, we have to specify the density profiles of the dark matter
halos involved. We will employ the NFW profile, which has been found (Navarro et al. 1997)
to provide a good match to the mean density profile of dark matter halos for a wide range of
cosmologies.

The NFW profile

The three-dimensional NFW density profile ρ(r) is given by

ρNFW(r; z) =
δc ρcrit(z)

r/rs(1 + r/rs)2
. (7.2)

Here, δc is a characteristic density contrast and ρcrit(z) is the critical density of the Universe at
redshift z (Eq. 2.10). For small radii r, the density decreases ∝ r−1, whereas beyond the scale
radius rs the profile steepens, so that ρ ∝ r−3. Instead of parametrizing the density profile with
the two free parameters rs and δc, it is more convenient to use the virial mass M200 within the
virial radius r200, and the concentration parameter c, which is defined by c = r200/rs. Note that
several similar parametrizations of the NFW profile with different definitions of the virial radius
exist in the literature. In choosing r200 to be the virial radius, we adopt the conventions used in
the Millennium Simulation database. The virial radius r200 is defined as the radius inside which
the mean mass density of the halo is 200ρcrit, so that the virial mass can be computed using

M200 =
800π

3
ρcrit(z) r

3
200 . (7.3)

The mass within radius r is given by

M(< r) =
4π

c3
δc ρcrit(z)

[

1

1 + cx
+ log (1 + cx) − 1

]

, where x =
r

r200
. (7.4)

From this, one can derive a relation between the characteristic density contrast in Eq. (7.2) and
the concentration parameter:

δc =
200

3

c3

ln(1 + c) − c/(1 + c)
(7.5)

by demanding that 3M(< r200)/(4πr
3
200) = 200ρcrit. An undesirable consequence of Eq. (7.4) is

that the mass of a NFW halo for r → ∞ is infinite. For this reason, we use a truncated NFW
profile of the form (e.g. Baltz et al. 2007)

ρNFW,t(r; z) =
δc ρcrit(z)

r/rs(1 + r/rs)2
1

1 + (r/rt)
2 , (7.6)

where rt is the truncation radius. We choose rt = 3r200, which roughly corresponds to the radius
at which the halo density is comparable to the mean density.
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Contributions to the surface mass density
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Figure 7.3: Configuration of galaxy and
host halos in the plane of the sky.

We now discuss the individual contributions to our
model for ∆Σ(R) in detail. We proceed in two steps:
we first compute the contributions to the projected sur-
face mass density Σ(R), from which then ∆Σ(R) can
be computed using Eq. (3.111).

We obtain the surface mass density due to a dark
matter halo by projecting the three-dimensional density
profile according to

Σ(R) = 2

∫ ∞

0
dz ρ

(

√

R2 + z2
)

, (7.7)

where z is the coordinate in the direction of the line
of sight. This equation can be immediately applied to
obtain the projected density Σg due to the galaxy halo.

For a possible host halo, the situation is more compli-
cated: since the position of the host halo with respect
to the galaxy halo is different for each lens galaxy, we
have to average over all possible host halo locations.
The geometry of the configuration of host and subhalo
is illustrated in Fig. 7.3. Writing the two-dimensional
probability distribution of finding a host halo at proper
separation x from the galaxy halo in the plane of the sky in polar coordinates,

p(x) d2x = pR(Rh)Rh dRh
dϕ

2π
, (7.8)

the host halo contribution to Σ is given by (see Fig. 7.3)

Σh(R) =

∫ ∞

0
dRh Rh pR(Rh)

∫ 2π

0

dϕ

2π
Σhost

(

√

R2 +R2
h − 2RRh cosϕ

)

, (7.9)

where Σhost is the projected density profile of the host halo according to Eq. (7.7). To obtain
pR, we have measured the two-dimensional, spherically averaged distribution of subhalos with
galaxies in the Millennium Simulation at z = 0. For that, we selected all halos with M >
1013 h−1M⊙, projected the galaxy distribution onto an arbitrary face of the simulation box and
counted the number of satellite galaxies within annuli centered on the host halo. As can be seen
from Fig. 7.4, the distribution is almost flat near the center of the host halo and declines quickly
beyond the virial radius. Since the distribution is very smooth on the relevant length scales, we
directly use it for our model by interpolating between the tabulated measured values.

The final ingredient for our model is the contribution by projected large-scale structure that
is not accounted for by the galaxy and host halos. In three dimensions, the average density
distribution near a lens galaxy is given by the cross-correlation function of galaxies and dark
matter, ξg,DM(r):

ρ(r; z) = ρ̄m(z) [1 + ξg,DM(r)] , (7.10)

where ρ̄m(z) is the mean matter density at redshift z. We relate ξg,DM to the correlation function
of the dark matter distribution by ξg,DM = b r ξDM, where b and r are the linear stochastic bias
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Figure 7.4: Two-dimensional radial
distribution pR of the galaxies from
the model of De Lucia & Blaizot
(2007) at z = 0 within halos with mass
M > 1013 h−1M⊙.

and correlation factors, respectively (see Chapter 8 for details). We assume that b and r can be
approximated to be constant, since the projection of large-scale structure becomes important
for our model only on large scales. Furthermore, we approximate ξDM with the prediction from
linear perturbation theory. This is justified because this contribution becomes important only on
scales far beyond 1h−1 Mpc, where effects of non-linear structure formation can be neglected.
With these approximations, the resulting surface mass density can be found by a projection
similar to Eq. (7.7):

ΣLSS(R) = b r ρcrit,0 Ωm (1 + z)3 × 2

∫ ∞

0
dz
[

1 + ξ
(

√

R2 + z2
)]

. (7.11)

With this, the surface mass density associated with lens galaxies is fully specified. The next
step is to compute the mean mass within a radius R using

Σ̄(< R) =
2

R2

∫ R

0
dR′ R′ Σ(R′) . (7.12)

The excess surface mass density is then given by Eq. (3.111):

∆Σ(R) = Σ̄(< R) − Σ(R) . (7.13)

In total, our model has six free parameters: the virial masses Mg and Mh and concentration
parameters cg and ch of the galaxy and the host halo, respectively, the probability pc that a lens
galaxy is the central galaxy of an isolated halo, and the product br of the bias and correlation
parameters.

The model is approximate in several respects: we do not take into account the scatter in halo
masses and concentration parameters, which in realistic lens samples can be quite substantial
(e.g. Neto et al. 2007). Since the model depends non-linearly on these parameters, it can not be
expected to yield particularly good estimates of the “mean” masses and concentrations if the
lens sample is very heterogeneous. Furthermore, we assume that the halo profiles of subhalos
are well described by the same NFW profile that is used for the isolated lens halos. However,
the subhalo profiles are likely to be heavily truncated by tidal stripping within their host. We
therefore can only obtain an average lens halo profile to which these effects are folded in. Finally,
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in practice we compute the model prediction for ∆Σ for the mean redshift of the lens galaxies,
which we find be accurate to within a few percent for the lens samples considered here. If the
lens galaxies extend over a larger redshift range, the model would have to be properly averaged
over the lens redshift distribution.

Comparison to the simulation

We have tested the model described in the previous section on various lens galaxy samples,
the properties of which are summarized in Tab. 7.1. To minimize the effect of the scatter of the
halo mass and the concentration parameters, we first apply the model to the five mass-selected
samples M1-M5 (see also Fig. 7.1). We then proceed to fit the model to two more realistic
lens samples (called blue and red sample henceforth), which we have selected according to their
observer-frame u−r color. Since the galaxies in the semi-analytic model show a clearly bimodal
color distribution with a minimum at u− r = 2.2, we choose this number to separate red from
blue galaxies.

We first obtain a best-fit-solution by minimizing the following χ2-function with respect to the
parameter vector π = (logMg/hM⊙, Mh/h M⊙, cg, ch, pc, br)

t:

χ2(π) =

p
∑

i,j=1

(

∆Σ(π) − ∆Σ̂
)t

C−1
ij

(

∆Σ(π) − ∆Σ̂
)

, (7.14)

where ∆Σ̂ = (∆Σ̂(R1), . . . ,∆Σ̂(Rp))
t is the estimate of ∆Σ from the simulation in the radial

bin centered on Ri, ∆Σ(π) is the corresponding model prediction and p is the number of radial
bins. In writing Eq. (7.14), we have implicitly assumed a Gaussian likelihood function for the
GGL signal.

We have estimated the covariance matrix C from the field-to-field variance of our 128 ray-
tracing realizations. Since we are using p = 20 radial bins, it is important to de-bias the inverse
of this matrix using Eq. (6.22). In Figs. 7.5 and 7.6, we show the correlation matrices for the
blue and red lens galaxy samples, respectively. The matrices display a block-diagonal structure,
each block showing a different correlation structure. The different sub-blocks can be associated
with the three contributions to our model: on scales where the lens galaxy halo dominates the
GGL signal, the correlation matrices show a narrow, band-diagonal structure. In the red sample,
two further sub-blocks can be identified, each corresponding to the ranges over which the host
contribution and the large-scale structure term are important. In the blue sample, the host
halo term is almost always neglegible, and consequentially the corresponding block is absent in
the correlation matrix. Adding shape noise due to the ellipticities of the background galaxies
(σǫ = 0.3, where σǫ is the dispersion of each ellipticity component) makes the correlation matrix
significantly more diagonally dominated.

To obtain the full posterior distribution of our model parameters, we use the parameter esti-
mates from these fits as starting points for Monte-Carlo-Markov-Chains (e.g. Robert & Casella
2005). We derive error estimates for the individual parameter estimates by marginalizing over
all other parameters and computing the highest-posterior-density credible regions.

The best-fit parameters can then be compared to the halo properties directly inferred from
the halo trees in the Millennium Simulation database. While this is straightforward for the
halo masses, for which we compute the mean mass of the halos in the lens galaxy sample, the
concentration parameters are not directly provided by the database. One possibility to obtain
them is from the ratio of the maximum rotation velocity vmax of a halo to the rotation velocity
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at the virial radius, v200. The rotation curve for the NFW profile is given by (Navarro et al.
1997)

v(r)

v200
=

(

1

x

log(1 + cx) − cx/(1 + cx)

log(1 + c) − c/(1 + c)

)1/2

. (7.15)

The value of x that maximizes Eq. (7.15) can be determined numerically for a range of values
of c, which then yields vmax/v200 as a function of the concentration parameter. Unfortunately,
it turns out that this function is not invertible even for reasonable values of c. However, we do
not have to compute the concentration parameter for every halo individually, since our model
only yields halo properties that are averages over the whole halo population in the lens sample.
We therefore use the fitting formula for the concentration-mass relation provided by Neto et al.
(2007),

c(M200, z) =
4.67

1 + z

(

M200

1014 h−1M⊙

)−0.11

(7.16)

to compute c from the mean halo mass.

The best fitting models for the mass-selected lens samples are shown in Fig. 7.7 and for the
color-selected samples in Fig. 7.9. The best-fit parameters are summarized and compared to
the “true” average values in the Millennium simulation in Tab. 7.3. In Fig. 7.8, we show as
representative examples the two- and one-dimensional marginalized posterior distributions of
the model parameters for M1 and the blue sample. We find that our model fits the GGL signal
of the samples M1-M5 very well. As expected, the galaxy halo contribution dominates ∆Σ out
to larger distances from the lens the higher Mg. The mass of the galaxy halo is very accurately
predicted by the model, generally with an accuracy of 6% or better. The estimated concentration
parameters for the lens galaxy halos are compatible with the predictions from Eq. (7.16) for the
samples, albeit with a larger uncertainty of ≈ 15%. The properties of the host halos are less well
constrained. This is in parts because in most samples ∆Σh never comes to fully dominate the
GGL signal, in contrast to the lens halo contribution. Furthermore, both host halo mass and
concentration parameter are strongly degenerate with the fraction pc of lens galaxies in isolated
halos, because an increase the host halo mass can be compensated by reducing the fraction of
lens galaxies that are in subhalos. The estimates of br are essentially independent of the other
model parameters. Since the large-scale structure contribution becomes important only for large
R, where the measurement errors are large due to cosmic variance, this parameter cannot be
constrained very accurately.

As expected, the performance of the model is less good for the more heterogeneous blue and red
samples (Fig. 7.9 and Tab. 7.3). The model completely fails to reproduce the break in ∆Σ of the
blue sample at ≈ 1h−1 Mpc, which the model attributes entirely to large-scale structure. This
explains the very weak constraints on the host halo properties seen in Fig. 7.8. For both samples,
in particular the estimates of the galaxy halo masses and concentrations are incompatible with
the values obtained from the halo catalogs of the Millennium Simulation. Clearly, a more
accurate description taking into account the scatter of the parameters characterizing the dark
matter halos involved is needed in order to make unbiased statements about the properties of
the matter associated with galaxies. A natural candidate to achieve this is the halo occupation
distribution (HOD) formulation (e.g. Seljak 2000), which we will test against our simulations in
future work.
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Figure 7.5: Correlation matrix for the GGL signal of the blue sample without (left panel) and with shape
noise (right panel). Light colors indicate high correlation.
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Figure 7.6: Correlation matrix for the GGL signal of the red sample without (left panel) and with shape
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Figure 7.8: Two- and one-dimensional marginalized posterior distributions (off-diagonal and diagonal
panels, respectively) for the M1 and blue lens galaxy samples. In the axis labels, we use the abbreviations
mg,h = Mg,h/(hM⊙).
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Name Selection criteria

M1 11.0 ≤ log10 (Mg/hM⊙) < 11.4, z < 0.4
M2 11.4 ≤ log10 (Mg/hM⊙) < 11.8, z < 0.4
M3 11.8 ≤ log10 (Mg/hM⊙) < 12.2, z < 0.4
M4 12.2 ≤ log10 (Mg/hM⊙) < 112.6, z < 0.4
M5 12.6 ≤ log10 (Mg/hM⊙) < 13.0, z < 0.4
Blue u− r ≤ 2.2, r < 20.0
Red u− r > 2.2, r < 20.0

Table 7.1: Definitions of the lens galaxy samples used in Sec. 7.1.

Name Absolute magnitude Name Absolute magnitude

u1 −19.6 < Mu < −15.0 i1 −22.0 < Mr < −17.0
u2 −20.0 < Mu < −19.6 i2 −22.5 < Mr < −22.0
u3 −22.0 < Mu < −20.0 i3 −24.0 < Mr < −22.5

g1 −21.0 < Mg < −16.5 z1 −22.2 < Mz < −17.0
g2 −21.4 < Mg < −21.0 z2 −22.6 < Mz < −22.2
g3 −23.5 < Mg < −21.4 z3 −24.0 < Mz < −22.6

r1 −21.7 < Mr < −17.0 For all samples:
r2 −22.2 < Mr < −21.7 14.5 < r < 17.77
r3 −24.0 < Mr < −22.2

Table 7.2: The lens galaxy samples used for the comparison to the SDSS (Sheldon et al. 2004).

Sample log10
Mh

h M⊙
ch log10

Mg

h M⊙
cg br pc

M1 (fit) 13.9 ± 0.2 1.4 ± 0.5 11.17 ± 0.02 6.7 ± 0.9 1.4 ± 0.2 0.88 ± 0.06
M1 (true) 13.57 4.00 11.19 7.32 0.82

M2 (fit) 13.9 ± 0.3 1.0 ± 0.5 11.55 ± 0.02 7.9 ± 0.7 1.7 ± 0.2 0.86 ± 0.09
M2 (true) 13.64 3.94 11.59 6.62 0.83

M3 (fit) 13.9 ± 0.3 1.2 ± 0.7 11.96 ± 0.02 6.7 ± 0.7 1.74 ± 0.3 0.83 ± 0.09
M3 (true) 13.71 3.86 11.98 5.98 0.86

M4 (fit) 14.0 ± 0.3 1.7 ± 0.5 12.35 ± 0.01 6.4 ± 0.2 1.86 ± 0.3 0.87 ± 0.14
M4 (true) 13.78 3.80 12.39 5.41 0.88

M5 (fit) 14.1 ± 0.3 1.0 ± 1.0 12.73 ± 0.02 6.4 ± 0.3 1.8 ± 0.4 0.89 ± 0.11
M5 (true) 13.89 3.67 12.79 4.89 0.90

Blue (fit) 14.8 ± 0.4 4.3 ± 1.5 11.49 ± 0.03 3.0 ± 0.1 2.4 ± 0.1 0.99 ± 0.02
Blue (true) 13.64 3.93 11.85 6.20 0.93

Red (fit) 14.3 ± 0.1 4.9 ± 0.8 12.35 ± 0.02 2.74 ± 0.07 2.2 ± 0.3 0.67 ± 0.17
Red (true) 13.87 3.71 12.67 5.12 0.56

Table 7.3: Best fit parameters for the model Eq. (7.1) for the various lens galaxy samples. Also given
are the “true” values inferred directly from the Millennium Simulation database.
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Figure 7.9: Model fits to the GGL signals of the blue and red lens galaxy samples. The conventions for
the line styles are the same as in Fig. 7.7.

7.2 Comparison to the SDSS

So far, the most accurate measurements of galaxy-galaxy lensing have been made in the
SDSS, in particular by Sheldon et al. (2004). The large area of the SDSS and the availability
of spectroscopic redshifts for their lens galaxies allowed them to measure the GGL signal ∆Σ
out to a distance of ≈ 10h−1 Mpc with high signal-to-noise ratio for three different luminosity
bins in all SDSS filter bands (Fig. 7.10). Since these observations comprise an ideal test ground
for semi-analytic models of galaxy formation, we have simulated galaxy-galaxy lensing in mock
galaxy samples that closely resemble those used in Sheldon et al. (2004). The selection criteria for
the lens galaxies are summarized in Tab. 7.2. For the background population, we use randomly
placed galaxies that are distributed uniformly on the sky. We use the same redshift distribution
as in Sheldon et al. (2004), which was estimated by the authors using photometric redshifts.
Since we are aiming for a prediction of the GGL signal from our simulations, we do neither take
into account the errors on the photometric redshift estimates, nor do we assign shape noise to
the background galaxies.

As discussed in Sec. 5.2.1, it is difficult to quote a single number for the small-scale resolution of
the simulation. As a conservative estimate, we assume that the effects of the adaptive smoothing
scheme become unimportant on scales larger than ≈ 30 − 40h−1 kpc.

The galaxy-galaxy lensing signals estimated from the simulations are shown in Fig. 7.11 and
are compared to the SDSS data in Fig. 7.12. The differences between our results and the SDSS
measurements are hardly significant – with one exception: the trend apparent in the SDSS data
that galaxies with higher luminosities yield a higher ∆Σ is well reproduced only in the redder
filter bands. In the u- and g-bands, this trend seems to reverse; the signal of the most luminous
galaxies is comparable to or smaller than the signal of the intermediate samples on all scales. The
reason for this behaviour can be seen in Fig. 7.14, where we show the distributions of halo masses
for the different samples in the u- and r-band. While in the r-band more luminous galaxies reside
in significantly more massive halos (log10 M̄g/hM⊙ = 13.8, 13.2 and 12.3 for the samples r1,
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r2 and r3), this is not true in the u-band, where log10 M̄g/hM⊙ = 13.3, 13.3 and 12.6 for the
samples u1, u2 and u3, respectively. This can explain why ∆Σ for the u1-lenses is comparable to
the signal from the u2 lenses on scales below ≈ 0.5h−1 Mpc, where according to our model from
the previous section the galaxy halo dominates the signal. Furthermore, Fig. 7.14 shows that
the masses of the host halos are significantly lower in the u1 sample (log10 M̄h/M⊙ = 13.8) than
in the u2-sample (log10 M̄h/M⊙ = 14.2) in the case of the galaxy halo being a subhalo. Since
the fraction 1 − pc of such cases is approximately the same in both samples, this is the reason
for the lower GGL signal of the u1-lenses on large scales. From the information at hand, it is
not possible to say with certainty which aspect of the semi-analytic model of galaxy formation
is responsible for these discrepancies. However, since this problem is confined to the blue filter
bands, and in addition the galaxies in the u1-sample are significantly bluer in color than those in
the r1-sample (u− r=1.3 for the u1-galaxies and u− r=2.2 for the r1-galaxies), it is reasonable
to suspect a problem with the recipes for star formation. Since recently formed massive stars
dominate the blue light of a galaxy, the properties of the galaxies with high blue luminosities are
very sensitive to the implementation of star formation in the model. In fact, Croton et al. (2006)
find an excess of luminous blue galaxies when comparing the semi-analytic model to observed
luminosity functions. These are galaxies that are experiencing a burst of star formation due to
an ongoing merger. The authors argue that these most likely correspond to the ultraluminous
infrared galaxies (ULIRGs), since they show a similar star-formation rates and abundance, with
the important difference, however, that in ULIRGs most of the light from the newly formed stars
in absorbed by dust and re-emitted in the infrared. The excess of luminous blue galaxies in the
Croton et al. (2006) model, upon which the model by De Lucia & Blaizot (2007) is based, is
therefore most likely caused by sub-optimal dust modelling. Thus, it is likely that star-forming
galaxies in less massive halos have blue luminosities that are significantly too high and therefore
are falsely included in the u1 and g1 samples, lowering the respective galaxy-galaxy lensing
signals.

If we set aside the problematic u- and g-band samples, we only find differences at the level of
one or two standard deviations. There is a slight trend for the SDSS measurements of ∆Σ from
the most and least luminous lens samples to lie below the simulation predictions. Furthermore,
the signal seems to be slightly steeper in the SDSS, in particular for the least luminous samples.

Two issues have to be kept in mind when comparing the simulation data to the SDSS mea-
surements: first, the Millennium Simulation has been run with σ8 = 0.9, a value of the power
spectrum normalization which is too high compared to the current best fit value σ8 ≈ 0.8
obtained from combining CMB measurements with other cosmological probes (see Tab. 2.1).
Second, the Millennium Simulation follows the evolution of the dark matter distribution only,
and thus does not take into account the effects of cooling baryons and the formation of stars
and galaxies. In principle, a comparison of the simulation to the SDSS data would allow us to
put constraints on the amplitude of these baryonic effects. The latter, however, are partially
degenerate with the effects of the high value of σ8 in the simulation: the gravitational potential
in the inner parts of a halo is dominated by the baryons condensing at the halo center, and
they are therefore expected to lead to an increase of the dark matter density there (e.g. Gnedin
et al. 2004, and references therein). Increasing the value of σ8 increases the amount of matter
that is associated with galaxies (e.g. Yoo et al. 2006). Therefore, at least on certain scales both
effects lead to an increase of the galaxy-galaxy lensing signal. The situation is complicated
further because the semi-analytic model by De Lucia & Blaizot (2007) has been tuned such that
it reproduces the properties of galaxies observed in the local Universe. This approach might
partially compensate for the effects of the high power spectrum normalization and the absence of



7.2 Comparison to the SDSS 111

baryons in the Millennium Simulation, bringing the simulated GGL signal in better agreement
with the SDSS data and making a precise comparison of simulation and observations difficult.

The dependence of ∆Σ on the values of Ωm and σ8 has been studied in Yoo et al. (2006)
using the halo model and the HOD prescription. Specifically, the authors study the change of
the GGL signal with σ8 while for each value of σ8 choosing the HOD parameters such that
the angular correlation function of the model matches the SDSS observations by Zehavi et al.
(2005). This situation is very similar to the Millennium Simulation, where the free parameters of
the galaxy formation model have been tuned such that the properties of the simulated galaxies
match the those of local galaxies in the Universe. In fact, as is shown in Springel et al. (2005),
the spatial correlation function of the simulated galaxies matches the measurements from large
redshift surveys, such as the 2dFGRS (Hawkins et al. 2003) or the SDSS. It is therefore plausible
to estimate the effect of the high power spectrum normalization in the Millennium Simulation
from the results of Yoo et al. (2006). Based on the HOD prescription, the authors present a
scale-dependent fit formula of the form

∆Σ(R)

∆Σfid(R)
=

(

Ωm

0.3

)α(R)
( σ8

0.8

)β(R)
(7.17)

where ∆Σfid(R) is the GGL signal for the fiducial cosmology with Ωm = 0.3 and σ8 = 0.8. The
values given for β(R) vary between ≈ 0.8 and 1.5 for R between 0.1 and 10h−1 Mpc. Even
though the lens samples for which they studied these effects do not precisely match the ones
considered here, we can estimate from their results that the high value of σ8 in the simulation
should lead to a GGL signal that is maximally ≈ 10 − 20% higher than the signal measured in
the SDSS1.

We now investigate the effect of the lack of baryons in the Millennium Simulation. For their
study of strong lensing optical depths, Hilbert et al. (2008b) added a stellar mass component at
the centers of dark matter halos hosting galaxies. The authors used parametric stellar density
profiles, the parameters of which were set for each galaxy according to predictions of the stellar
mass and morphology of the galaxies by the semi-analytic model of De Lucia & Blaizot (2007).
To balance the mass added at the halo centers, dark matter particles were removed (in an
ad-hoc fashion) at the outer parts of the halos. This certainly works well in the inner parts
of the halos where the stellar component dominates the mass budget. Galaxy-galaxy lensing,
however, generally probes much larger scales than strong lensing, and the approach of Hilbert
et al. (2008b) can therefore only be viewed as a reasonable first approximation. We use this
enhanced matter distribution to produce a smaller set of 64 ray-tracing realizations to explore
the importance of baryonic effects on the scales considered here. As shown in Fig. 7.13, the
added stellar mass leads to a steepening of ∆Σ and to an increase of the GGL signal on small
scales of maximally ≈ 10%. Overall, there is little impact on scales & 100h−1 kpc. For the least
luminous lens samples, this effect improves the agreement between the simulation and the results
of Sheldon et al. (2004); however, the fact that the observational errors are of a comparable size
and the uncertainties of the semi-analytic model prevent us from making more quantitative
statements.

In summary, we can say that our simulations and the data of Sheldon et al. (2004) agree
reasonably well; the discrepancies in the blue filter are most likely due to deficiencies of the
treatment of star formation and dust attenuation in the semi-analytic model. The slight over-
prediction of ∆Σ for the samples u3, g3, r1,3, i1,3 and z1,3 are compatible with the consequences

1Since the value of Ωm in the simulation agrees well with the measured value quoted in Tab. 2.1, we do not
expect that the increase of ∆Σ due to a high value σ8 can be cancelled out this way.
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expected from the high value of σ8 in the simulation; it is not clear, however, why this is not
observed for the lens galaxies with intermediate luminosities. Finally, we predict a slight steep-
ening of the GGL signal due to the presence of baryons. Tentative evidence for this can be found
for the low-luminosity lens samples, but the effect is too small to be detected with certainty on
the length scales considered here.



7.2 Comparison to the SDSS 113

   
0.1

1

10

102

∆Σ
 [h

 M
O •
 p

c−2
]

u

   
 

 

 

 
g

0.1 1 10
R [h−1 Mpc]

 

 

 

 
r

0.1 1 10
R [h−1 Mpc]

0.1

1

10

102

∆Σ
 [h

 M
O •
 p

c−2
]

i

0.1 1 10
R [h−1 Mpc]

 

 

 

 
z

Figure 7.10: GGL signal measured in the SDSS (figure taken from Sheldon et al. 2004). The lens
galaxies were selected to be brighter than r = 17.77. They were split into three subsamples according to
absolute magnitude (high, intermediate, low luminosity: dot-dashed red curves, dotted blue lines and solid
black lines, respectively) in a particular filter (u, g, r, i, z).
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Figure 7.11: GGL signal from the Millennium Simulation, computed for lens galaxies selected in exactly
the same way as for Fig. 7.10 (high, intermediate, low luminosity: dot-dashed red curves, dotted blue lines
and solid black lines, respectively). In addition to Fig. 7.10, we show in the lower right panel the signal
from the joint sample containing all lens galaxies with 14.5 < r < 17.77. The error bars are estimated
from the field-to-field variations.
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Figure 7.12: Comparison of the GGL signals from the SDSS (Sheldon et al. 2004), shown as points
with error bars, with our simulation results (lines). The data are the same as in Figs. 7.10 and 7.11 and
are replotted here to facilitate the comparison.
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Figure 7.14: Distributions of halo masses for the simulated SDSS lens samples in the u (left column)
and r filterbands (right column). The most luminous samples are given in the top row, the least luminous
in the bottom row. In each panel, we show the distributions of the masses of the lens galaxy halos (p(Mg),
dashed red histograms) and the masses of the host halos if the galaxy halo is a subhalo (p(Mh), solid black
histograms).
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8 Bias and correlation factors from weak

lensing

The formation of galaxies is closely linked to the underlying dark matter distribution; baryons
condense at the centers of dark matter halos, and therefore it can be expected that the galaxy
distribution in some way traces the overall matter distribution in the Universe. However, it
cannot be expected that this relation is simple. The local density is certainly not the only
parameter controlling galaxy formation: for example, the ability of the pre-galactic gas to cool
depends on its metallicity, and the cooling is most likely regulated by feedback processes involving
supernovae and quasar activity. Furthermore, galaxies with different properties are found to
be distributed in different ways; red, early type galaxies are predominantly found in dense
environments, whereas blue, late-type galaxies are mostly field galaxies (e.g. Goto et al. 2003).

Therefore, galaxies are biased tracers of the distribution of the dark matter. Not only does this
galaxy bias encode information about the environmental dependence of the processes involved
in the formation of galaxies, but a detailed understanding of this effect is vital for the precise
determination of cosmological parameters from the distribution of luminous matter, such as
galaxy redshift surveys (e.g. Percival et al. 2007).

Since weak gravitational lensing is sensitive to the overall matter distribution, the galaxy bias
can be studied by combining it with observations of the luminous matter. In this Chapter, we
investigate the possibilities and limitations of this approach, using a method that was proposed
in van Waerbeke (1998) and Schneider (1998) and was extended and successfully applied to the
Red-Sequence Cluster Survey (RCS) by Hoekstra et al. (2001, 2002) and to the GaBoDS survey
by Simon et al. (2007).

8.1 The relation of galaxies and dark matter

Several suggestions have been made in order to quantify the relation between galaxies and
dark matter. In this section, we only describe the parametrization relevant to this work, the
linear stochastic bias following Dekel & Lahav (1999) and Tegmark & Peebles (1998), and refer
the reader to Simon (2005) for a thorough review of the topic.

We denote by δR the three-dimensional matter density contrast smoothed with a filter function
WR with filter scale R, and correspondingly by δg,R the smoothed galaxy density fluctuation field.
Both are homogeneous and isotropic random fields (see Sec. 2.2.3), which we treat as components
of the vector d = (δR, δg,R)t. The probability distribution of d contains all information about
the relation of δ̃R and δ̃g,R for a fixed smoothing scale R. By definition of the density contrasts,
the first non-vanishing moment of p(d) is the covariance matrix, which we write as

〈

ddt
〉

= σ2
R

(

1 b(R) r(R)
b(R) r(R) b2(R)

)

, (8.1)

where σ2
R is the variance of δR. In Eq. (8.1), we have defined the two linear bias parameters b(R)

(the bias factor) and r(R) (the correlation factor). If δ and δg were Gaussian random fields,
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these two quantities would be sufficient to fully describe the relation between galaxies and dark
matter. While this is approximately true for large smoothing scales, higher moments of p(d)
become important if |δ| & 1.

For what follows, it will be convenient to work in Fourier space. The second moment of pk(d̃),
the joint probability distribution function of d̃ = (δ̃, δ̃g)

t, can be written in analogy to Eq. (8.1)
as

〈

d̃(k) d̃
t
(k′)

〉

= (2π)3 δD
(

k − k′
)

Pδ(|k|)
(

1 b(k) r(k)
b(k) r(k) b2(k)

)

, (8.2)

so that

b(k) =

√

Pg(k)

Pδ(k)
, (8.3)

r(k) =
Pδ,g(k)

√

Pg(k)Pδ(k)
. (8.4)

Thus, b(k) parametrizes the scale-dependent ratio of the clustering strength of galaxies and
dark matter, whereas the correlation factor r(k) is a measure of the stochasticity in the relation
between δ and δg. The latter takes into account that the process of galaxy formation and
evolution does not only depend on the local dark matter density, but also on many other hidden
parameters. For example, the efficiency with which gas can cool and form stars depends on its
chemical composition; furthermore, the properties of present day galaxies are the results of the
individual mass accretion histories, which in turn depend on the environment of the galaxy halo,
etc. For these reasons it cannot be expected that there exists a deterministic function δg(δ).
However, as shown in Dekel & Lahav (1999), r is also sensitive to non-linearities in the relation
δg(δ), which become important in particular on small scales where the fields can no longer be
approximated as being Gaussian.

As has been noted in Simon et al. (2007), the relation between the bias parameters in real
and Fourier space can be written down once a filter function WR has been specified:

b2(R) =

∫

dk k2 b2(k)Pδ(k) |W̃R(k)|2
∫

dk k2 Pδ(k) |W̃R(k)|2
, (8.5)

r(R) =
1

b(R)

∫

dk k2 b(k) r(k)Pδ(k) |W̃R(k)|2
∫

dk k2 Pδ(k) |W̃R(k)|2
, (8.6)

where W̃R(k) is the Fourier transform of WR.

8.2 Aperture statistics

To obtain the linear stochastic bias parameters b and r, the power spectra Pg, Pδ and Pδg or
related quantities have to be measured. The strategy that we will follow in this Chapter is as
follows: we divide the galaxy catalogue into a fore- and a background sample. The cosmic shear
signal of the background galaxies can be used to infer the projected matter power spectrum
Pκ. The galaxy-galaxy lensing signal of the foreground sample yields the cross-correlation of
the lenses with the dark matter distribution, whereas the angular clustering power spectrum Pω

can be obtained directly from the positions of the foreground galaxies.
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However, it is difficult to measure the projected power spectra directly. As pointed out before,
the aperture mass dispersion (Eq. 3.91) provides a very convenient measure of Pκ, which can be
computed from the shear correlation functions and for this reason are much easier to estimate.
Therefore, we now define aperture statistics analogous to M2

ap that are measures of the angular
clustering of the lens galaxies and of their cross-correlation to the dark matter distribution.

Using the notation of Sec. 3.4, the fractional number density of galaxies is defined as

κg(θ) =
ng(θ) − n̄

n̄
=

∫

dw pf(w) δg [fK(w)θ, w] , (8.7)

where ng(θ) is the number density of lens galaxies on the sky, n̄ is the projected mean number
density and pf(w) is the distribution of the lenses in comoving distance. Note that we are
working in the Born approximation throughout.

With this, the aperture number count statistic can be defined in analogy to Map:

N (ϑ) =

∫

d2ϑ′ Uθ(|ϑ − ϑ′|)κg(ϑ
′) , (8.8)

where the aperture defined by U has a radius of θ and is centered on ϑ.
With this definition, we can now define the following aperture dispersions:

〈

N 2(θ)
〉

=

∫

d2ϑUθ(|ϑ|)
∫

d2ϑ′ Uθ(|ϑ′|)
〈

κg(ϑ)κg(ϑ
′)
〉

, (8.9)

〈

M2
ap(θ)

〉

=

∫

d2ϑUθ(|ϑ|)
∫

d2ϑ′ Uθ(|ϑ′|)
〈

κ(ϑ)κ(ϑ′)
〉

, (8.10)

〈N (θ)Map(θ)〉 =

∫

d2ϑUθ(|ϑ|)
∫

d2ϑ′ Uθ(|ϑ′|)
〈

κg(ϑ)κ(ϑ′)
〉

. (8.11)

The correlation functions 〈κκ〉 in the integrands are the Fourier transforms of the angular clus-
tering power spectrum Pω, the convergence power spectrum Pκ and the cross power spectrum
Pκg, respectively. Since our goal is to relate these statistics to the three-dimensional bias param-
eters, we express these projected power spectra by their three-dimensional counterparts using
Limber’s equation (Limber 1953): let

gi(θ) =

∫

dw qi(w) δi[fK(w)θ, w] (8.12)

be projections of the three-dimensional density contrasts δi with weight functions qi, i = 1, 2.
Then, Limber’s equation states that the (cross-) power spectra of g1 and g2 are given by

P2D,ij(ℓ) =

∫

dw
qi(w) qj(w)

f2
K(w)

Pij

(

ℓ

fK(w)
, w

)

. (8.13)

Reading off the appropriate weight functions for κ and κg from Eqs. (3.67) and (8.7), the
projected power spectra are given by

Pκ(ℓ) =
9H4

0Ω2
m

4c4

∫ whor

0
dw

g2(w)

a2(w)
Pδ

(

ℓ

fK(w)
, w

)

,

Pω(ℓ) =

∫

dw
p2
f (w)

f2
K(w)

b2
(

ℓ

fK(w)
, w

)

Pδ

(

ℓ

fK(w)
, w

)

,

Pκg(ℓ) =
3H2

0Ωm

2c2

∫

dw
g(w)pf (w)

a(w)fK(w)
b

(

ℓ

fK(w)
, w

)

r

(

ℓ

fK(w)
, w

)

Pδ

(

ℓ

fK(w)
, w

)

.
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In the latter two equations, Eqs. (8.3) and (8.4) were used to express Pg and Pδg in terms Pδ

and the linear bias parameters.

In analogy to Sec. 3.3.4, the aperture statistics defined in Eqs. (8.9)-(8.11) can now be related
to the three-dimensional power spectra and the bias and correlation factors:

〈

N 2(θ)
〉

=
1

2π

∫

dℓ ℓ Pω(ℓ)W 2
ap(θℓ) (8.14)

=
1

2π

∫

dk k

∫

dw p2
f (w) b2 (k; w) Pδ (k; w) W 2

ap [fK(w)θ k] ,

〈

M2
ap(θ)

〉

=
1

2π

∫

dℓ ℓ Pκ(ℓ)W 2
ap(θℓ) (8.15)

=
9H4

0Ω2
m

4c4
1

2π

∫

dk k

∫

dw f2
K(w)

g2(w)

a2(w)
Pδ (k; w) W 2

ap [fK(w)θ k] ,

〈N (θ)Map(θ)〉 =
1

2π

∫

dℓ ℓ Pκg(ℓ)W
2
ap(θℓ) (8.16)

=
3H2

0Ωm

2c2
1

2π

∫

dk k

∫

dw fK(w)
g(w)pf (w)

a(w)
b (k; w) r (k; w)

×Pδ (k; w) W 2
ap [fK(w)θ k] .

For the polynomial weight function Uθ (Eq. 3.94) for the aperture statistic, the filter function
W 2

ap is given by W 2
ap(η) = 576 J2

4(η)/η
4.

Eqs. (8.14)-(8.16) are useful to make theoretical predictions of the aperture statistics. Since
the power spectra in these equations are hard to measure in practice, it is desireable to express
the aperture statistics in terms of more easily observable quantities. A relation of

〈

M2
ap

〉

to
the shear correlation functions has already been given in Eq. (3.93). Similarly,

〈

N 2
〉

can be
expressed in terms of the angular correlation function ω(ϑ) of the lens galaxies:

〈

N 2(θ)
〉

=

∫ 2θ

0

dϑϑ

θ2
ω(ϑ)T+

(

ϑ

θ

)

, (8.17)

where T+ is given by Eq. (3.96) or Eq. (3.101) for the polynomial or exponential weight functions
Uθ, respectively. We compute ω(ϑ) using the Landy-Szalay estimator (Landy & Szalay 1993)

ω(ϑ) =
DD(ϑ) − 2DR(ϑ) +RR(ϑ)

RR(ϑ)
. (8.18)

Here, DD(ϑ) is the number of pairs of galaxies in the data set that fall into the separation bin
centered on ϑ, and RR is the number of pairs in a mock catalog of randomly placed galaxies
with a uniform distribution, which has the same geometry as the data catalog. Finally, DR(ϑ)
is the number of pairs that can be formed using one galaxy from the data set and one from the
mock catalog.

In an analogous way, 〈NMap〉 can be obtained from the galaxy-galaxy lensing signal (see
Sec. 3.4):

〈N (θ)Map(θ)〉 =

∫ 2θ

0

dϑϑ

θ2
〈γt(θ)〉T2

(

ϑ

θ

)

, (8.19)

where, for the polynomial filter function, T2 is given by

T2(x) = 567

∫ ∞

0

dt

t3
J2(xt) [J4(t)]

2 . (8.20)
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8.3 Recovering bias and correlation factor

Since we wish to construct functions of the aperture statistics that are as close as possible to
the linear bias parameters, b and r have to be extracted from the integrals in Eqns. (8.14)–(8.16).
Clearly, this is only possible for averages of b and r. We begin by defining the k-averages of b2

and br:

b2 [fK(w)θ; w] =

∫ ∞

0
dk Wk(k, θ, w) b2 (k; w) , (8.21)

br [fK(w)θ; w] =

∫ ∞

0
dk Wk(k, θ, w) b (k; w) r (k; w) , (8.22)

where

Wk(k, θ, w) =
k Pδ (k; w) W 2

ap [fK(w)θ k]
∫∞
0 dk k Pδ (k; w) W 2

ap [fK(w)θ k]
. (8.23)

These averages account for the fact that since the aperture statistics only measure a smoothed
version of the power spectrum, only a smoothed version of the bias parameters can be recovered.
The relevant aperture dispersions can then be written as

〈

N 2(θ)
〉

=
1

2π

∫

dw
p2
f (w)

f2
K(w)

b2 [fK(w)θ; w] P(w, θ) and (8.24)

〈N (θ)Map(θ)〉 =
3H2

0Ωm

2c2
1

2π

∫

dw
g(w)pf (w)

a(w)fK(w)
br [fK(w)θ; w] P(w, θ) , (8.25)

where we have introduced

P(w, θ) ≡
∫

dk k f2
K(w)Pδ (k,w) Wap[θkfK(w)] . (8.26)

For notational convenience, we define the following auxiliary functions:

hκκ(w, θ) ≡ 9H4
0Ω2

m

4c4
g2(w)

a2(w)
P(w, θ) , (8.27)

hgg(w, θ) ≡ p2
f (w)

f2
K(w)

P(w, θ) and (8.28)

hκg(w, θ) ≡ 3H2
0Ωm

2c2
g(w)pf(w)

fK(w)a(w)
P(w, θ) . (8.29)

Since the angular clustering and the GGL signal of the lens galaxies are averages over the lens
redshift distribution, the resulting bias parameters will be redshift averages, too. Thus, we
define

[

b2
]

gg
(θ) =

∫

dw b2 [fK(w)θ; w] hgg(w, θ)
∫

dw hgg(w, θ)
(8.30)

[

br
]

κg
(θ) =

∫

dw br [fK(w)θ; w] hκg(w, θ)
∫

dw hκg(w, θ)
. (8.31)
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This finally allows us to pull the averages
[

b2
]

gg
and

[

br
]

κg
out of the integrals over k and w,

so that we can write

〈

N 2(θ)
〉

=
1

2π

[

b2
]

gg
(θ)

∫

dw hgg(w, θ) , (8.32)

〈N (θ)Map(θ)〉 =
1

2π

[

br
]

κg
(θ)

∫

dw hκg(w, θ) and (8.33)

〈

M2
ap(θ)

〉

=
1

2π

∫

dw hκκ(w, θ) . (8.34)

By rearranging Eqns. (8.32)–(8.34), we can define the projected bias parameters

b2D(θ) ≡
√

[

b2
]

gg
(θ) =

√

〈N 2(θ)〉
〈

M2
ap(θ)

〉 fb(θ) , (8.35)

r2D(θ) ≡

[

br
]

κg
(θ)

√

[

b2
]

gg
(θ)

=
〈N (θ)Map(θ)〉

√

〈N 2(θ)〉
〈

M2
ap(θ)

〉

fr(θ) , (8.36)

where

fb(θ) =

∫

dwhκκ(w, θ)
∫

dwhgg(w, θ)
, (8.37)

fr(θ) =

√

∫

dwhκκ(w, θ)
√

∫

dwhgg(w, θ)
∫

dwhκg(w, θ)
. (8.38)

The aperture dispersions serve as proxies for the power spectra, and thus the functions b2D
and r2D can be considered to be the two-dimensional analogs of the definitions of the three-
dimensional bias parameters (see Eqs. 8.3 and 8.4). Note that the integrals over hκκ, hgg

and hκg in Eqs. (8.37) and (8.38) are just the aperture dispersions
〈

M2
ap(θ)

〉

,
〈

N 2(θ)
〉

and
〈N (θ)Map(θ)〉 for the case of unbiased (b = r = 1) galaxies. Since fb and fr can be computed
theoretically from the dark matter power spectrum, b2D and r2D can be obtained directly from
measurements of the angular clustering and the GGL signal of the lenses and the cosmic shear
signal of galaxies in the background. As in Chapter 5, we will base our computations of fb and
fr on the three-dimensional power spectrum measured in the Millennium Simulation instead of
resorting to fit formulae.

8.4 Predicting the two-dimensional bias parameters

The two-dimensional bias parameters given in Eqs. (8.35) and (8.36) are rather complicated

functions of b and r, in particular because in general br 6= br,

√

[

b2
]

gg
6=
[

b
]

gg
and [·]gg 6= [·]κg.

However, Eqs. (8.35) and (8.36) can in principle be used to predict the projected bias parameters
for any desired lens galaxy sample even if no ray-tracing simulations are available, provided the
redshift distributions of lens and source galaxies and the three-dimensional bias factors b(k)
and r(k) are known. The latter can be measured directly from the N -body simulation and the
semi-analytic galaxy formation model using Eqs. (8.3) and (8.4). In this section, we investigate
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this approach in more detail. We compare the predictions obtained in this way to the results
obtained from the ray-tracing simulations using the weak lensing method in Sec. 8.5.

To estimate the three-dimensional b and r, we first estimate the three-dimensional power
spectra Pδ , Pg and Pδg using the “chaining-the-power” technique proposed by Jenkins et al.
(1998) and Smith et al. (2003), which we have also discussed in detail in Hartlap (2005). We
then use Eqs. (8.3) and (8.4) to obtain estimates of b(k) and r(k). This can only be done for a
limited range in k. On large scales, the limitation arises from the finite size of the simulation
box; the bias parameters cannot be estimated for k . 2π/L. The limiting factor on small
scales is the galaxy power spectrum. Since the number of galaxies is generally much smaller
than the number of dark matter particles, shot noise becomes important first for Pg. The scale
kshot where shot noise begins to dominate the power spectrum can be estimated by solving
Pg(kshot) = 1/ng, where ng is the number density of galaxies in the simulation. Even if the shot
noise is subtracted from the power spectrum, it is generally not possible to obtain a meaningful
estimate of the power spectrum significantly beyond this scale. In particular, it seems that
the shot noise correction based on the assumption that the galaxy distribution results from the
Poisson sampling of an underlying continuous density field is slightly too large, resulting in a
negative power spectrum (see also, e.g., Desjacques et al. 2008).

In Fig. 8.1, we show as an example the bias parameters estimated using Eqs. (8.3) and (8.4)
for three different redshifts for the blue and the red galaxy sample. While the blue sample
is anti-biased (b < 1) with respect to the dark matter, the bias factor for the red sample is
generally larger than unity. This is consistent with the fact that red galaxies are predominantly
found in groups and clusters, whereas the blue galaxies are mostly field galaxies. Note that the
increase of both bias and correlation factor on small scales is a real feature of the simulation; it
can be explained in terms of the halo model (see e.g. Seljak 2000). Furthermore, the fact that
the correlation factor exceeds unity in some cases is a consequence the shot-noise correction
applied to the galaxy power spectrum. This can be seen as follows: the shot noise contribution
is negligible for the estimated dark matter power spectrum P̂δ (due to the large number of dark
matter particles in the Millennium Simulation) and is completely absent in the estimated cross
power spectrum P̂κg. Our estimate of the correlation factor can therefore be written as

r̂(k) =
P̂κg(k)

√

[

P̂g(k) − 1/ng

]

P̂δ(k)

=
P̂κg(k)

√

P̂g(k) P̂δ(k) − P̂g(k)/ng

. (8.39)

The term P̂g(k)/ng is most important for large k, because P̂g P̂δ declines more quickly than P̂g

as k increases, and can therefore cause the correlation factor to become larger than unity on
these scales.

Fig. 8.1 also illustrates the limits imposed by the finite number of galaxies: the value of k
to which we can estimate the bias parameters decreases with increasing redshift. The reason
for this is that due to the flux limit of r < 20 there are fewer galaxies at higher redshifts, and
therefore the shot noise comes to dominate on larger scales. Furthermore, since the blue galaxies
show very little clustering, shot noise is relatively more important than for the red galaxies. This
explains that the bias parameter estimates are much better for the red sample, even though there
is approximately the same number of galaxies in each sample.

Given the three-dimensional bias parameters, we can now in principle use the first equalities
in Eqs. (8.35) and (8.36) to predict b2D and r2D. However, as discussed above, the galaxy power
spectrum cannot always be estimated over the range in k that would be necessary to carry out
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Figure 8.1: Three-dimensional bias parameters for the red and blue samples (with r < 20). For better
visibility, the data points have been connected by lines. We only plot the bias parameters up to the scale
where shot-noise begins to dominated the galaxy power spectrum. The error bars were computed by error
propagation from the errors on the power spectra, which in turn reflect the scatter within the individual
k-bins.
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Figure 8.2: The filter function Wk(k) (Eq. 8.23)
for three different aperture radii.
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Figure 8.3: Width of the filter Wk(k) as function
of the aperture radius, for three different lens
redshifts. Here, the width ∆k is defined as the
interval that contains 90% of the total weight.

the averaging operations over the function Wk in Eqs. (8.21) and (8.22). In Fig. 8.2, we plot the
weight function Wk for three different angular scales and lens galaxies at wL = 600h−1 Mpc.
We define the width ∆k of Wk as size of the symmetric interval centred on the maximum of Wk

which contains 90% of the weight. Note that the apparent scaling behaviour ∆k ∝ 1/θ is only
approximate due to the presence of the power spectrum in Eq. (8.23).

As can be seen from Fig. 8.3, the filter function is wider for smaller aperture radii and lower lens
redshifts. Since for smaller aperture radii the filter function will eventually pick up contributions
from the shot-noise dominated regime at large k (see Fig. 8.2), there is a fundamental limit to
the accuracy of predictions for realistic lens galaxy samples on small scales.

We therefore investigate the accuracy of replacing Wk with a Dirac-δ function, as was done
in Hoekstra et al. (2002) in a different context. If the resulting error were reasonably small, this
would allow us to make predictions of b2D and r2D on angular scales were Wk would already
be affected by the shot-noise related problems. The quality of this approximation obviously
depends on how quickly the bias parameters change with scale. We have therefore obtained a
fit to b(k) and r(k) for the red sample that describes well the general features seen in Fig. 8.1.
We have then used this fit to compute b2(k) and b(k) r(k) according to Eqs. (8.21) and (8.22),
in one case replacing Wk with δD (k − 4.11/fK(w)θ) (Bartelmann & Schneider 2001), and in the
other case using the exact Wk. The results are given in Fig. 8.4. Above θ ≈ 10′, where the bias
parameters are approximately constant, the accuracy of the approximation is generally better
than one percent. For smaller aperture radii, where b(k) and r(k) vary more quickly, the quality
of the approximations begins to degrade.

We conclude that predictions of the two-dimensional bias parameters b2D and r2D from the
three-dimensional power spectra measured from N -body simulations are difficult both on the
smallest and largest scales. For small θ, the filter function Wk is rather broad and therefore is
non-negligibly small on scales that are dominated by shot-noise even for aperture radii of the or-
der of arcminutes (the details depend on the galaxy sample under consideration). Unfortunately,
replacing Wk with a delta-function to avoid this problem is not a solution, since in particular on
small scales the three-dimensional bias and correlation factors vary quickly. A similar problem
occurs on very large scales, where b(k) and r(k) can not be computed due to the finite size of
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the simulation box. In this case, however, the bias parameters are almost constant, so that the
approximation Wk ∝ δD (k − 4.11/fK(w)θ) can be used without introducing a significant error.

8.5 Estimating the two-dimensional bias parameters

We now turn to the practical aspects of estimating the projected bias parameters using weak
gravitational lensing. There are two possible ways to obtain b2D and r2D from our simulation
data. The first is to compute estimates of the projected bias parameters for each of the Nr

individual realizations and to subsequently average over all realizations (compare to Eqs. 8.35
and 8.36):

b̂
(Nr)
1 (θ) =

f
1/2
b (θ)

Nr

Nr
∑

i=1

√

[N 2(θ)]i
[

M2
ap(θ)

]

i

, (8.40)

r̂
(Nr)
1 (θ) =

fr(θ)

Nr

Nr
∑

i=1

[N (θ)Map(θ)]i
√

[N 2(θ)]i
[

M2
ap(θ)

]

i

, (8.41)

where
[

N 2
]

i
,
[

M2
ap

]

i
and [N Map]i are the estimates of the aperture statistics for the i-th

realization. The second method consists of averaging the aperture statistics over all realizations
and computing b and r from these averages:

b̂
(Nr)
2 (θ) = f

1/2
b (θ)

√

{N 2(θ)}Nr
{

M2
ap(θ)

}

Nr

, (8.42)

r̂
(Nr)
2 (θ) = fr(θ)

{N (θ)Map(θ)}Nr
√

{N 2(θ)}Nr

{

M2
ap(θ)

}

Nr

, (8.43)

where we have defined

{A}Nr
=

1

Nr

Nr
∑

i=1

[A]i . (8.44)

Eqs. (8.40) and (8.41) have the advantage that the errors on b̂
(Nr)
1 and r̂

(Nr)
1 can be estimated

from the field-to-field variations. On the other hand, b̂
(Nr)
1 and r̂

(Nr)
1 can be severely biased
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due to the non-linear dependence on
[

N 2
]

i
,
[

M2
ap

]

i
and [N Map]i; in fact, they are not even

asymptotically unbiased (i.e. limNr→∞ b̂
(Nr)
1 6= b2D and limNr→∞ r̂

(Nr)
1 6= r2D). This can be seen

by expanding Eqs. (8.40) and (8.41) into Taylor series around the expectation values
〈

M2
ap

〉

,
〈NMap〉 and

〈

N 2
〉

and taking the expectation value 〈. . .〉 of the resulting expression. To second
order, we find

〈

b̂
(Nr)
1

〉

= b2D − b2D

8 〈N 2〉2
σ2

[N 2] +
3b2D

8
〈

M2
ap

〉2σ
2
[M2

ap] −
Cov

(

[N 2] [M2
ap]
)

4b2D 〈N 2〉
〈

M2
ap

〉 fb + . . . (8.45)

〈

r̂
(Nr)
2

〉

= r2D +
3r2D

8〈N 2〉2σ
2
[N 2] +

3r2D
8〈M2

ap〉2
σ2

[M2
ap] +

r2D

4〈N 2〉
〈

M2
ap

〉Cov
(

[N 2] [M2
ap]
)

−
Cov

(

[NMap] [M2
ap]
)

2〈N 2〉1/2
〈

M2
ap

〉3/2
fr +

Cov
(

[NMap] [N 2]
)

2〈N 2〉3/2
〈

M2
ap

〉1/2
fr + . . . . (8.46)

Here, b2D =
√

fb 〈N 2〉 /
〈

M2
ap

〉

and r2D = fr 〈NMap〉 /
√

〈N 2〉
〈

M2
ap

〉

are the true values of the

bias and correlation factors. The quantities σ2
[·] are the variances of

[

N 2
]

i
, [N Map]i and

[

M2
ap

]

i
,

respectively. Since the σ2
[·] are independent of Nr, the terms depending on the moments of the

aperture statistics in b̂
(Nr)
1 and r̂

(Nr)
1 do not decrease as the number of realizations increases.

The situation is different for the estimators b
(Nr)
2 and r

(Nr)
2 . In this case, we find expansions
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that are almost identical to Eqs. (8.45) and (8.46),
〈

b̂
(Nr)
2

〉

= b2D − b2D

8 〈N 2〉2
σ2
{N 2} +

3b2D

8
〈

M2
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〉2σ
2
{M2

ap}

−
Cov

(

{N 2} {M2
ap}
)

4b2D 〈N 2〉
〈

M2
ap

〉 fb + . . . , (8.47)

〈
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(Nr)
2

〉

= r2D +
3r2D

8〈N 2〉2σ
2
{N 2} +

3r2D
8〈M2

ap〉2
σ2
{M2

ap}
+

r2D

4〈N 2〉
〈

M2
ap

〉Cov
(
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with the important difference, however, that the σ2
{·} are now the variances of the means of

[

N 2
]

i
,

[N Map]i and
[

M2
ap

]

i
over Nr realizations, which do decrease with the number of realizations

(∝ 1/Nr). Therefore, the estimators b
(Nr)
2 and r

(Nr)
2 are asymptotically unbiased.

This is illustrated in Fig. 8.5, where we show a rough estimate of the bias of b̂
(Nr)
2 and r̂

(Nr)
2 as

function of Nr for various aperture radii θ. To obtain these estimates, we fitted the distributions
of
[

N 2
]

i
,
[

M2
ap

]

i
and [N Map]i found from the ray-racing simulations of the blue sample with a

log-normal distribution function. In doing so, we omit the few cases where one of the aperture
measures is negative due to noise. This biases the means of the distributions slightly upwards,
which, however, is unimportant for our purpose. By sampling from the fitted distributions,
we created a large number of mock samples of the aperture measures for various values of Nr

(neglecting possible correlations between
[

N 2
]

i
,
[

M2
ap

]

i
and [N Map]i for fixed aperture radius).

From these, we have computed the estimators b̂
(Nr)
2 and r̂

(Nr)
2 . Finally, the expectation value of

these estimators for a given Nr was estimated by averaging over their values computed from the
different mock samples. The “true” values of b2D and r2D are known because we know the means
of the fitted log-normal distribution functions. Fig. 8.5 shows that for our setup the bias of the

two estimators b̂
(Nr)
2 and r̂

(Nr)
2 is of the order of ≈ 1% for all aperture radii if Nr & 50. Since we

have neglected possible correlations between the different aperture statistics in our numerical
experiment, we can therefore not be sure that this bias is negligibly small (i.e. ≪ 1%). We
therefore experimentally subtract the second order terms in Eqs. (8.47) and (8.48) from our
estimates of b and r when using data from the ray-tracing simulations. The effect of this is
negligible for both red and blue samples, indicating that the bias is indeed small.

We estimate the variance of the estimators b̂2 and r̂2 for a particular angular bin from the
variances of the aperture statistics using standard error propagation, also taking the correlations
between

{

N 2
}

,
{

M2
ap

}

and {N Map} into account. For that, we expand b̂2 and r̂2 into Taylor
series to linear order in

{

N 2
}

,
{

M2
ap

}

and {N Map} around their expectation values, square the

resulting expression and take the expectation value to obtain the variance. The result for b̂2 is

Var(b̂2)(θ) = dt
b(θ)C(θ)db(θ) , where db(θ) =

(
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(8.49)

Here, the covariance matrix C is given by

C(θ) =

(
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. (8.50)
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Figure 8.6: Redshift distributions
of the blue and red lens samples and
the assumed distribution of source
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We estimate the variances and covariances of the means of the aperture statistics in Eq. (8.50) by
computing σ2

[M2
ap], σ

2
[N 2] and Cov

(

[N 2] [M2
ap]
)

from the field-to-field variations and subsequently

dividing by Nr. An equation similar to Eq. (8.49) applies to the variance of r̂2.

Finally, we discuss the implications of our findings for realistic survey geometries. In the case
that the survey consists of a large number of unrelated telescope pointings (such as in Simon
et al. 2007), the discussion of this section applies and the estimators given in Eqs. (8.42) and
(8.43) should be used. The situation is different if the survey consists of a single large, contiguous
field, as will be the case for the upcoming surveys such as KIDS and Pan-STARRS (Kaiser &
Pan-STARRS Collaboration 2005). Breaking up the survey area into several smaller sub-units
would result in a degradation of the estimates of the correlation functions and the galaxy-galaxy
lensing signal due to the overall smaller number of galaxy pairs in a given angular separation
bin. For these surveys, however, the variances and higher moments in the expansions for the
estimators b̂1 and r̂1, as given by Eqs. (8.45) and (8.46), are most likely small enough so that
the resulting bias becomes negligible.

8.6 Accuracy of fb and fr

In order to estimate the projected bias parameters b2D and r2D, the functions fb(θ) and fr(θ)
have to be computed from theory. In Sec. 8.3, we have derived expressions for these functions
using the Born approximation. However, as we have seen in Secs. 3.4 and 3.5, higher-order
lensing effects can not always be neglected, in particular for volume-limited lens galaxy samples.
The resulting error in fb and fr leads directly to a bias in the estimates of the bias parameters.

We begin with a validation of the results for the higher-order corrections to the GGL signal
given in Sec. 3.4. For this, we have computed 〈γt(θ)〉 for unbiased lens galaxies (i.e. b = r = 1,
drawn randomly from the dark matter particles), both using full ray-tracing and switching
light deflections and non-linear effects off in the ray-tracing code. In Fig. 8.7, we compare the
measured ratios 〈γBorn

t 〉/〈γfullRT
t 〉 to the theoretical predictions based on Eqs. (3.128)-(3.130)

for three different lens redshifts zL. Within the error bars of the simulations, we find that our
theoretical predictions reproduce the behaviour seen in the simulations very well.

We show a similar comparison for the more realistic blue and red lens galaxy samples in
Fig. 8.8. Whereas the difference between Born approximation and full ray-tracing is . 2% for
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the red sample, it can be as large as 10% for the blue sample. While these effects can in principle
be modelled if the luminosity function of the lens galaxies is known (see Sections 3.4 and 3.5),
for now we constrain ourselves to the discussion of volume-limited samples.

As discussed in 3.5, also the angular correlation function, and therefore 〈N 2〉, is affected by
higher-order effects. In 8.9, we show the ratio of the predictions using the Born approximation
to the predictions made including the higher-order correction terms both for the galaxy-galaxy
lensing signal and for the angular correlation function. For a given lens redshift distribution,
the error made by using the Born approximation for ω(θ) is roughly the square of the error
for 〈γt(θ)〉, relatively independent of the redshift distribution of the background galaxies. Since
the function fr is proportional to

√

〈N 2〉/〈NMap〉, this means that these errors approximately
cancel out. This is not the case for fb ∝ 〈N 2〉−1. Since the Born approximation overpredicts
the angular correlation function, fb will be too small, biasing the estimate of b2D low.

In addition to higher-order lensing effects, it has to be taken into account that the functions
fb and fr depend on the cosmological parameters, even though b2D and r2D (Eqs. 8.35 and 8.36)
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have been constructed to minimize this dependence (they depend only on ratios of the power
spectra). Using the fit formula by Smith et al. (2003) for the power spectrum, we explore the
dependence on Ωm and σ8 in Figs. 8.10 and 8.11, respectively, with the additional constraint that
the Universe remain flat. We plot the fractional changes with respect to our fiducial cosmology,
Ωfid

m = 0.25 and σfid
8 = 0.9. Since fb is by construction proportional to Ω2

m through its dependence

on hκκ (Eq. 8.37)1, we use the re-scaled function f ′b =
(

Ωfid
m /Ωm

)2
fb for the comparison. The

figures show that the two functions are indeed remarkably stable with respect to changes of the
cosmological parameters; for the range of values we consider for Ωm and σ8, the difference never
exceeds 4%. The oscillations seen in Fig. 8.11 come about since by varying σ8 one does not only
alter the amplitude of the power spectrum but also its shape by changing the wave number at
which the transition between the linear and non-linear regimes occurs. These findings imply that
uncertainties of the cosmological parameters will have little practical impact on the measured
projected bias and correlation parameters.

8.7 Comparison to the ray-tracing simulations

In the previous sections, we have discussed in isolation several systematic effects that can
have an influence on the accuracy with which the projected bias parameters b2D and r2D can be
measured. To investigate their combined effect, we now compare the projected bias parameters
measured from our ray-tracing simulations to the predictions based on the three-dimensional
bias parameters.

In Fig. 8.12, we show the results for the red and blue samples, as well as for both samples
joined (i.e. using all lens galaxies with r < 20). For this plot, we did not add shape noise
to the background galaxies, for which we assume the redshift distribution given by Eq. (5.17)
with α = 2.0, β = 1.5, z0 = 0.3 and a sharp cut-off at z = 0.9 (the maximum redshift of
the ray-tracing simulations), and a number density of n = 15/arcmin2. As before, we use 128
realizations of a 2◦ × 2◦ field.

1Note that this dependence cancels out again when computing b2D
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Figure 8.13: Same as Fig. 8.12, but including shape noise (σǫ = 0.3).
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The bias factor b2D measured from the ray-racing simulations using the estimator b̂2 (Eq. 8.47)
agrees with the prediction from the three-dimensional bias parameters within ≈ 3%, even though
b2D is slightly biased low. A similar accuracy is achieved for the correlation factor r2D; also here,
slight systematic deviations from the predictions are visible.

Note that we only plot the predictions for b2D and r2D obtained by replacing the filter Wk in
Eqs. (8.21) and (8.22) with a delta-function to avoid the problems caused by the finite width of
Wk (as discussed in Sec. 8.4). Comparing these approximate predictions to the ones obtained
using the exact form of Wk (Eq. 8.23) in the limited range of scales where shot noise in Pg

and the finite size of the simulation volume are unimportant, we find that in general the delta-
function approximation of Wk is very good. The only exception is the correlation factor of the
blue sample, which varies rapidly at θ ≈ 10′. In this case we also show the exact prediction
(i.e. using the exact form of Wk) as dot-dashed light blue line in addition to the approximate
one (dark blue solid line). In the range where this can be computed accurately (10′ . θ . 30′),
the agreement to the estimates from the weak lensing method is very good. On smaller and
larger angular scales, Wk picks up significant contributions from wave-numbers where the galaxy
power spectrum and thus the three-dimensional bias parameters cannot be estimated reliably.

As can be seen from Fig. 8.13, where we now include shape noise for the background galaxies
(σǫ = 0.3 for each ellipticity component), intrinsic ellipticities constitute only a small part of
the total error budget for a survey of the size considered here.

Besides the effects discussed in the previous section, the systematic deviations seen in Figs. 8.12
and 8.13 can be explained by two further factors. The first is that we might slightly underes-
timate the size of the error bars by using Eq. (8.49), which relies on the linearizability of the
estimators b̂2 and r̂2. This suspicion is supported by the observation that the field-to-field vari-
ances of the estimators b̂1 and r̂1 (Eqs. 8.40 and 8.41) yield error estimates that are indeed
larger by a factor of ≈ 1.5. However, it is not clear how to relate the variances of these biased
estimators to the variances of b̂2 and r̂2.

The second possible (and probably most important) reason for the deviations is the fact that
the weak lensing estimation of b2D and r2D requires the computation of the aperture statistics
from the measured GGL signal 〈γt〉, the angular correlation function ω and the shear correlation
functions ξ±. However, the fact that the latter can only be estimated above a certain minimal
angular scale introduces a bias in the estimates of the aperture statistics, since the integrals in
Eqs. 8.19, 8.17 and 3.93 extend down to zero angular separation. In our simulation, this is not
possible because we do not find pairs of galaxies with arbitrarily small angular separation due
to the finite number of lens and background galaxies. In practice, further issues arise such as
the finite size of the observed galaxies.

The implications of this have been investigated in detail for 〈M2
ap〉 by Kilbinger et al. (2006).

We extend this study to the cases of 〈N 2〉 and 〈NMap〉 by computing the aperture statistics
from the theoretical predictions of ω(θ) and 〈γt(θ)〉 for unbiased galaxies; since these are known
also for θ = 0, we can compare the case where the lower integration limits are zero to the case
with a finite small-scale cutoff. We find a similar susceptibility of 〈N 2〉 and 〈NMap〉 to a small
scale cut-off as for the aperture mass dispersion. This is illustrated for the case of 〈N 2〉 in
Fig. 8.14, where we plot the error for various values of the small scale cutoff θmin that roughly
correspond to the limitations found using our mock galaxy catalogs. The aperture dispersion
is biased low on all relevant angular scales, eventually even becoming negative. A similar effect
is observed for 〈NMap〉. However, θmin is much smaller in this case because the GGL signal
can be estimated reliably down to much smaller angular scales. The reason for this is that
we have many more background galaxies than lens galaxies, and for the computation of 〈γt〉
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we form foreground-background pairs instead of foreground-foreground pairs as for the angular
clustering.

We explore the impact of these biases on the projected bias and correlation parameters in
Fig. 8.15, choosing θmin = 10′′ or θmin = 15′′ for the angular clustering and θmin = 5′′ for the
galaxy-galaxy lensing. Furthermore, we have assumed unbiased lens galaxies with b = r = 1.
The Figure shows that the bias factor can be biased low by several percent on scales of ≈ 10′′.
The opposite is true for the correlation factor, which is found to be consistently too large. These
findings indeed explain some of the qualitative features of the systematic deviations in Figs. 8.12
and 8.13, in particular the rapid increase of r̂2 for the blue sample on small angular scales.

The results of splitting the lens samples into low-redshift (z ≤ 0.2) and high-redshift (z > 0.2)
subsamples (again not including shape noise) are shown in Figs. 8.16 and 8.17, respectively.
The aforementioned biases become even more apparent here due to the lower number density of
lens galaxies in each sample; the bias factor of the red sample is now low by as much as ≈ 7%,
and a similar trend can also be seen on small scales for the joint samples. The estimates of the
projected correlation factors b2D degrade particularly strongly. In addition, for the blue sample
a reliable prediction from the three-dimensional bias parameters becomes impossible on scales
below θ ≈ 10′.

We now address the question whether a possible evolution of the bias parameters with redshift
can be detected using the weak lensing method. In Fig. 8.18, we plot the predictions for b2D and
r2D for the various low- and high-redshift lens samples. While the red lens galaxies are more
strongly biased at low redshifts, the opposite is true for the blue lenses. Accordingly, the bias
factor of the joint sample does not show any significant time evolution. The correlation factors
show little changes on large scales; the increase of r2D with z seen for the red and joint samples
is most likely explained by the increasing importance of the shot noise correction for the galaxy
power spectrum at higher redshifts (see Sec. 8.4). Since the amplitudes of the evolutionary
effects on the bias are similar for red and the blue galaxies, we will in the following focus only on
the red sample. We present our results for a survey of with a total area of 128 deg2, composed of
32 fields of the size of 2◦ × 2◦, in Fig. 8.19. The survey is thus roughly comparable to currently
ongoing projects such as the CFHTLS. The evolution of the bias factor b2D can be detected at
high significance on angular scales larger than ≈ 5′. For smaller θ, systematic effects, most likely
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due to the small scale cut-off of the angular correlation function, begin to dominate. Since these
are the only scales where the correlation factor displays appreciable time evolution, no definite
detection can be made for r2D.

8.8 Summary

In summary, we can say that the ability of the weak lensing method explored in this chapter
to measure the projected bias parameters strongly depends on the lens sample selection and the
design of the weak lensing survey. We have identified several sources of bias:

• If the number of independent fields or the size of a contiguous survey is small, both
estimators for the projected bias parameters (Eqs. 8.40, 8.41 and 8.42, 8.43) are biased;
we have estimated that the bias for b̂2 and r̂2 is small once the number of independent
fields exceeds ≈ 50.

• In order to compute b2D and r2D, the cosmology-dependent functions fb and fr have to
be known. We have shown that these are rather insensitive to changes of the cosmological
parameters; the present-day uncertainty about the values of Ωm and σ8 leads to errors of
maximally 5%.

• The functions fb and fr are usually computed using the Born approximation. We find that
the error caused by neglecting higher-order corrections tends to cancel out for fr, whereas
fb is generally underestimated. For the red sample, this amounts to a bias of . 1% in b2D,
whereas for the blue sample a bias of ≈ 4% has to be expected.

• Probably the most important source of systematic effects on small angular scales is the
fact that the angular correlation function cannot be measured below a certain angular
separation due to the lack of close lens-lens pairs. This effect depends on the number
density of lens galaxies and the strength of the angular clustering of the lens galaxies. A
solution to this problem could be provided by the so-called ring statistics (Schneider &
Kilbinger 2007), which have been originally developed to cleanly separate between cosmic
shear E- and B-modes if the shear correlation functions are known only on a finite interval.
These statistics can be generalized to the case of angular clustering and galaxy-galaxy
lensing and could be used replace the aperture statistics. It remains to be seen, however,
whether the ring statistics are sufficiently good proxies of the projected power spectra and
how localized the resulting projected bias parameters will be.

• A related problem is encountered when predicting the projected bias parameters from the
three-dimensional bias parameters measured in the N -body simulation. On small scales,
this is limited by shot noise in the lens galaxy power spectrum, on large scales by the finite
size of the simulation volume. For this reason, the smoothing of b(k) and r(k) with the
filter Wk cannot be carried out on all scales of interest; instead, Wk has to be approximated
with a delta-function.

Given this list of possible difficulties, it is surprising that the weak lensing method yields b2D and
r2D with an accuracy of a few percent, provided the full lens samples are used. The situation
deteriorates quickly of the samples are subdivided further, in particular for the blue sample due
to its low clustering amplitude. However, when splitting the red sample in two redshift bins,
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Figure 8.16: Same as Fig. 8.12, but only for the low-redshift subsamples (z ≤ 0.2). No shape noise
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the accuracy is still sufficient to significantly detect the evolution of the bias parameter using a
survey that is roughly comparable to the CFHTLS.

In spite of this, we argue that in order to properly account for the issues listed above, observa-
tional measurements of b2D and r2D should be compared to the results of ray-tracing simulations
that closely mimic the data reduction process, and not to the predictions based on the three-
dimensional bias parameters, even though they are much simpler to obtain.



9 Summary and Conclusions

Chapter 2: The Cosmological Standard Model

In this chapter, we have reviewed the the basics of the cosmological standard model and the
structure formation in the Universe. According to the standard model, only about four percent
of the matter-energy content of the Universe is in the form of normal, baryonic matter. There
is strong evidence that more than a fifth of the energy budget is constituted by dark matter,
which does not interact via the electro-magnetic interaction and is only noticeable through its
gravitational effects. Furthermore, the observed current accelerated expansion of the Universe is
best explained by the presence of a component with negative pressure, the so-called dark energy,
accounting for the remaining ≈ 75% of the Universe’s energy content. The total energy density
is very close to the critical density, implying that the Universe has a nearly flat geometry.

The Universe appears homogeneous only when averaged over sufficiently large volumes. On
length scales below a few hundred Mpc, a wealth of structures, such as filaments, galaxy clusters
and galaxies, exists. These structures have evolved from initially very small perturbations of the
almost homogeneous early Universe by gravitational collapse. Dark matter is the driving agent
of structure formation; baryons initially follow the dark matter distribution and later condense
at the center of the potential wells to form stars and galaxies. We discussed the most important
aspects of the theory of structure formation and its implications for the statistics of the density
field, which can be described as a homogeneous and isotropic random field. Its statistical
properties are usually characterized by the n-point correlation functions or, equivalently, by its
polyspectra. We discussed in particular the power spectrum, which is the most important and
best understood representative of these statistics.

Chapter 3: Gravitational Lensing

In chapter 3, we reviewed the formalism of gravitational lensing for the cases of an isolated
thin lens and of continuous light deflection by the large-scale structure in the Universe. In the
latter case, the gravitational tidal field of the matter distribution imprints a weak, systematic
distortion pattern (shear field) on observed images of background galaxies. To first order, this
makes the images of intrinsically round sources having elliptically shaped isophotes. Even though
for individual galaxies this signal is much smaller than the noise caused by the intrinsic galaxy
shapes, it can be recovered using statistical methods, assuming that the intrinsic orientations of
the galaxies are random. We discussed two ways to extract cosmological information from this.

In the first approach, called cosmic shear, one studies the correlations between the ellipticities
of different background galaxies. This allows one to infer the statistical properties of the matter
distribution that causes the distortions. We discuss the decomposition of the shear field into E-
and B-modes. While it can be shown that gravitational lensing does not create a B-mode in the
case of a single, thin lens, this is no longer true for lensing by the large-scale structure. We gave
expressions for both the E- and B-mode power spectra of the cosmic shear distortion field and
related these quantities to the power spectrum of the matter distribution.

A second way to study the matter distribution in the Universe using weak lensing is galaxy-
galaxy lensing. Each foreground galaxy leads to a distortion of the images of galaxies in the
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background. This effect is too weak to be detectable for individual galaxies; nonetheless, by
stacking the signal of many lens galaxies the noise due to the intrinsic shapes of the background
objects can be beaten down. The resulting azimuthally averaged shear profile can be used
to study the average mass distribution associated with the lens galaxies. This galaxy-galaxy
lensing signal is also a measure of the cross-correlation between galaxies and the underlying dark
matter distribution and can be predicted from the cross-power spectrum of galaxies and dark
matter. Usually, this is done in the Born approximation, assuming that the deflections of the
light rays emitted by the background galaxies caused by the large-scale structure are negligible.
We derived correction terms to this approximation that take into account the magnification
effect: gravitational lensing by a given lens galaxy magnifies nearby patches of the sky, without
changing the number of higher-redshift lens galaxies in that patch. Therefore, close to the lens,
fewer lens galaxies at higher redshifts are observed than on average, leading to a decrease of the
galaxy-galaxy lensing signal. On the other hand, lensing also boosts the flux of more distant lens
galaxies and therefore, in a flux-limited lens galaxy sample, more high-redshift lenses are above
the detection threshold. The relative importance of these effects depends on the lens redshifts
and their luminosity function; for a volume-limited lens sample, the galaxy-galaxy-lensing signal
changes by more than 5% for lenses with a mean redshift z̄ & 0.4. We also discussed the impact
of the magnification effect on the observed angular clustering of galaxies. We found that the
error made by using the Born approximation is slightly larger than in the case of galaxy-galaxy
lensing.

Chapter 4: Simulations of Structure Formation

In Chapter 4, we described numerical methods to solve the Vlasov-Poisson system of equations
that governs the formation of dark matter structures in the Universe. The basic idea of these
N -body simulations is to sample the six-dimensional phase space with pseudo-particles each
representing the mass contained in a particular phase space cell. The distribution of particles
is then evolved in time using their equations of motion. We described the basic Particle-Mesh
(PM) algorithm and several of its descendants, such as the P3M and TreePM algorithms, which
significantly improve on the small-scale resolution.

A general feature of such simulations is the formation of self-bound dark matter structures,
so-called halos. We described several algorithms to identify these structures and discussed their
relative merits and shortcomings. The halo catalogs obtained in this way can be used to build
semi-analytic models of galaxy formation, assuming that galaxies reside at the centers of halos
or subhalos. These models use simple, but physically motivated recipes for the complex baryonic
physics involved, such as the cooling and heating of gas, the formation of stars, energy injection
by supernovae and active galactic nuclei, to follow the build-up of galaxies in the simulation.
We described in some detail the model by De Lucia & Blaizot (2007) that we have used in this
thesis for our study of galaxy-galaxy lensing.

Finally, we briefly introduced the N -body simulations used in this thesis: the Millennium
Simulation, which is one of the largest and most current dark-matter-only simulations available,
and in addition a set of ten smaller simulations which we have run using the publically available
TreePM code GADGET-2 to study the non-Gaussianity of the cosmic shear likelihood (Chapter
6).
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Chapter 5: Ray-Tracing Simulations

Simulations of weak gravitational lensing are performed using the multiple-lens plane algo-
rithm: the matter distribution along the line of sight from an observer to a distant source is
divided into a number of redshift slices which are thin enough (typically ≈ 100h−1 Mpc) for
cosmic evolution to be negligible during the time a light ray needs to traverse the slice. These
slices are projected onto lens planes, and it is assumed that light deflections only occur at these
planes. Light rays are then shot through the array of lens planes, using recursion relations for
their positions at the planes and for the Jacobian matrix of the lens mapping from the observer
to each plane.

We discussed two implementations of this algorithm, which differ in the way the matter
distribution along the line of sight is constructed from the outputs (snapshots) of an N -body
simulation. The first, suitable for small N -body simulation volumes, simply uses the complete
N -body simulation volumes at different times for the redshift slices. Repetition of structure
along the line of sight is avoided by applying random rotations and translations to the particle
distribution in each snapshot. A different approach is necessary for the Millennium simulation
due to the large size of the simulation box. In this second implementation, the line of sight is
supposed to be tilted with respect to the faces of the simulation volume, and the thickness of
the redshift slices is chosen to be only a fraction of the box size. A careful choice of the line of
sight avoids seeing the same structures repeatedly and at the same time retains the periodicity
of the matter distribution on the lens planes. In this case, however, special care has to be taken
to avoid slicing through dark matter halos when constructing the lens planes. We also described
an algorithm for obtaining the lensed positions of galaxies from semi-analytic models of galaxy
formation, combining for the first time realistic galaxy catalogues with a complete ray-tracing
code.

We applied our code to study the accuracy of predictions of the convergence power spectrum
using the widely-used fitting formulae for the three-dimensional matter power spectrum by
Peacock & Dodds (1996) and Smith et al. (2003) as well as the halo model. We found that
the fitting formulae significantly underpredict the small-scale power found in the ray-tracing
simulations, which undermines their use for deriving constraints on cosmological parameters.
Furthermore, we compared the cosmic shear B-mode signal predicted using the formalism in
Chapter 3 to the B-mode measured in the simulations. We found that both agree within a
factor of ≈ 2, where the origin of the discrepancy remained unclear. However, the order-of-
magnitude agreement confirms that the B-mode will be undetectable in any near-future weak
lensing survey.

Chapter 6: Weak Lensing and Statistics

In this Chapter, we addressed several aspects of the statistical analysis of cosmic shear data.
Constraints on cosmological parameters are usually derived from weak lensing surveys by mea-
suring functions of the shear power spectrum, in our case the shear correlation functions ξ±. A
best fitting model prediction is then determined either using a Bayesian approach or the max-
imum likelihood technique. In both approaches, the likelihood function has to be specified. It
is commonly assumed that the likelihood is a multivariate Gaussian distribution. In this case,
the inverse of the covariance matrix of the shear correlation functions has to be obtained. We
discussed the case where it is estimated either from the data themselves (from N independent
observations of the correlation functions) or from simulations (from N ray-tracing realizations).
We proved analytically that the covariance matrix is singular if the number of bins p for which
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the correlation functions have been measured exceeds N (if the mean is known) or N −1 (in the
more realistic case where the mean of ξ± is unknown). We noted that even if p < N , the inverse
of the estimated covariance matrix is a biased estimate of the inverse population covariance. If
uncorrected, this bias can lead to a severe underestimation of the size of confidence/credible re-
gions. We reported on the existence of a simple correction for this bias, which is valid for p < N
provided the measurement errors are Gaussian and the observations are indeed independent. We
conducted Monte-Carlo experiments to verify this correction formula; we found that it is also
sufficiently accurate in the case where the covariance matrix has been estimated from a single
weak lensing observation by bootstrapping (in this case, the bootstrapping realizations are not
independent). It has been suggested in the literature that a pseudo-inverse of the covariance
matrix can be obtained in the case of p > N using the Singular Value Decomposition. We found
that the pseudo-inverse can be severely biased in a way that cannot be easily corrected for.

We then proceeded to study the validity of the assumption that the likelihood function for
the shear correlation functions is Gaussian. Since the likelihood is by definition the probability
distribution of measuring a certain realization of ξ±, we developed and tested a method to
estimate the likelihood function from a large set of ray-tracing simulations. Our approach,
therefore, is to reduce the dimensionality by finding a linear transformation ξ̆± = Aξ± that
makes the components of the transformed ξ̆± approximately statistically independent. In this
case, the likelihood factorizes into the product of p one-dimensional probability distributions
which can be estimated using standard techniques. Even though the method fails to fully remove
statistical dependencies, we found by testing against an alternative method (Projection Pursuit
Density Estimation) that this does not affect our conclusions. As a case study, we applied the
method to 9600 ray-tracing realizations of a field similar to the Chandra Deep Field South.
We found that the likelihood function is indeed significantly non-Gaussian; most strikingly, this
leads to credible regions that are considerably smaller than in the Gaussian case.

Currently, there is considerable effort to obtain reliable theoretical predictions of the covari-
ance matrix of cosmic shear (e.g. Cooray & Hu 2001b; Semboloni et al. 2007; Takada & Jain
2008; Pielorz 2008), assuming that the likelihood is Gaussian. Taking into account that the
shear field is a non-Gaussian random field, these authors find that the credible regions increase
compared to the case where the shear field is assumed to be a Gaussian random field. We
argued that in order to accurately study the ability of future surveys to constrain cosmological
parameters, the effect of the non-Gaussianity of the likelihood function has to be taken into
account, since it might partially or even fully compensate this increase.

Finally, using the non-Gaussian likelihood, we re-derived constraints on the power spectrum
normalization σ8 from the cosmic shear data obtained from the Chandra Deep Field South by
Schrabback et al. (2007), who originally had found an extraordinarily low value. Using the
ray-tracing simulations, we also quantified possible systematic effects due to the criteria that
were used to select the CDFS. We estimated that the requirement that the CDFS contain
no significant X-ray source (assuming a flux limit similar to that used for the ROSAT All-
Sky Survey) can bias σ8 low by ≈ 3 − 5%, whereas demanding the absence of a significant
extragalactic source might lead to a decrease of ≈ 10%. This analysis leads to an estimate of

σ8 = 0.68
+0.09(stat.) +0.1(sys.)
−0.16(stat.)

.

Chapter 7: Galaxy-Galaxy Lensing with the Millennium Simulation

Galaxy-galaxy lensing allows one to infer the average excess surface mass density around lens
galaxies. In Chapter 7, we studied the GGL signal as a function of the mass of the lens galaxy
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halo and its environment. We found that on small scales, the signal is dominated by the lens
galaxy halo. If a significant fraction of lens galaxies are satellite galaxies of a group or cluster
halo, the host halo contributes most to the surface mass density on intermediate scales. Finally,
on the largest scales, large-scale structure correlated with the lenses dominates the galaxy-galaxy
lensing signal. The covariance matrix of the GGL signal displays a similar three-part structure.
A simple halo model based on these three components indeed recovers well the properties of
the galaxy and host halos when fitted to the GGL signal of lens galaxies that lie in a narrow
mass interval. The model fails, however, for more heterogeneous lens samples, since it does not
account for the considerable scatter in the halo properties.

Currently, the best measurements of galaxy-galaxy lensing have been obtained using SDSS
data (Sheldon et al. 2004). We obtained the GGL signals from our simulations and the galaxy
formation model by De Lucia & Blaizot (2007) for lens galaxy samples selected in the same way as
in Sheldon et al. (2004). The comparison to the SDSS data revealed a significant discrepancy in
the blue filter bands, where the simulations underpredict the signal for luminous blue galaxies.
This is most likely due to the insufficient modelling of dust attenuation in the semi-analytic
model. The high value of σ8 = 0.9 in the Millennium Simulation is expected to lead to an
overprediction of the galaxy-galaxy lensing signal by ≈ 10%. That we did not observe this
effect is probably due to the fact that the galaxy formation model has been tuned to match
the properties of observed galaxies, which makes a quantitative comparison of simulation and
observation difficult. We also investigated the influence of baryons on the GGL signal using a
semi-analytic modelling of the stellar mass (Hilbert et al. 2008b). In our simulations, this leads
to a steepening of the excess surface mass density, for which we found tentative evidence when
comparing to the SDSS measurements.

Chapter 8: Bias and Correlation Factors from Weak Lensing

Even though dark matter is the driving agent of cosmological structure formation, the distri-
bution of galaxies is not the same as the distribution of the dark matter; moreover, it depends
on the properties of the galaxy sample under consideration. This is described by the concept
of galaxy bias: the density field of galaxies is a (not necessarily deterministic) function of the
dark matter density. In the linear stochastic bias prescription, it is assumed that the power
spectra of dark matter and galaxy distribution and their cross power spectrum are linearly re-
lated. Using weak lensing, corresponding aperture statistics, i.e., averages over wave number
and redshift of the projected power spectra, can be obtained. Therefore, it provides means to
estimate projected versions of the linear stochastic bias parameters.

In Chapter 8, we investigated how accurately the bias parameters can be predicted from
N -body simulations and measured from realistic data sets. The prediction from the three-
dimensional power spectra measured from the N -body simulation is limited by shot noise in the
galaxy power spectrum on small scales and by the finite simulation box size on large scales. This
prevents the smoothing of the three-dimensional bias parameters over the wave number. Re-
placing the corresponding smoothing kernel with a delta-function is a reasonable approximation
for realistic lens samples only on scales larger than ≈ 10′.

We studied two estimators for the projected bias parameters obtained from the weak lensing
method, suitable for surveys consisting of a single contiguous field or several independent fields.
Neither estimator is unbiased; however, the bias decreases with increasing field size or with
increasing number of independent fields, respectively. Several other systematic effects can affect
the accuracy of the weak lensing method. To obtain the projected bias parameters, the aperture
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statistics for unbiased lens galaxies have to be computed from theory. This causes the estimates
of the bias parameters to depend on the values of the cosmological parameters. We found,
however, that this dependence is rather mild (the estimates change by at most 4% if Ωm and
σ8 are varied within reasonable intervals). In addition, these computations are done using the
Born approximation. Neglecting of higher order corrections mostly affects the bias factor (by
a few percent for realistic lens samples), whereas for the correlation factor the errors tend to
cancel out. The most important systematic effect on small angular scales is due to the fact that
the angular correlation function and the galaxy-galaxy lensing signal cannot be measured below
a certain angular scale. This leads to biased estimates of the aperture statistics and thus results
in the under- and overestimation of the projected bias and correlation factors, respectively. This
is most severe for small lens samples with little angular clustering.

Despite these potential sources of error, we found that for lens galaxies with r < 20, the
projected bias parameters can be measured with an accuracy of a few percent. Dividing the
lenses into a red (u−r > 2.2) and a blue sample (u−r ≤ 2.2), the situation begins to deteriorate,
in particular on small scales and for the blue sample. Finally, we investigated the detectability
of the time evolution of the projected bias parameters by further splitting the lens samples
into low- (z ≤ 0.2) and high-redshift parts (z > 0.2). Only the projected bias factors show
significant evolution on scales where the systematic effects of the method are small. The bias
factor decreases (increases) with z for the red (blue) galaxies. We found that this evolution is
clearly detectable using a lensing survey of ≈ 130 deg2.



A An alternative derivation of the ray-tracing

formalism

In the case of equal spacings ∆w between the lens planes and flat geometry, it is possible to
derive the recursion formula for the light ray positions on the lens planes (Eq. 5.12) in a way
that makes particularly clear that ray-tracing amounts to solving a discretized version of the
equation for the comoving separation vector of two light rays (Eq. 3.57)

d2x

dw2
= − 2

c2

[

∇⊥Φ[x(θ, w), w] − ∇⊥Φ(0)(w)
]

. (A.1)

We approximate the second derivative on the l.h.s by finite differencing. We form the first
derivative of x as follows:

dx

dw

∣

∣

∣

∣

w(k)

≈ x(w
(k)
U ) − x(w

(k)
L )

∆w
, (A.2)

where ∆w is the spacing between two lens planes, and w
(k)
U and w

(k)
L are the upper and lower

boundaries of the slice that is projected onto the k-th plane, respectively. For the second
derivative, we find using w(k−1), w(k) and w(k+1) as sampling points:

d2x

dw2

∣

∣

∣

∣

w(k)

≈ x(w(k+1)) − x(w(k))

∆w2
− x(w(k)) − x(w(k−1))

∆w2

=
x(w(k+1)) − 2x(w(k)) + x(w(k−1))

∆w2
. (A.3)

We discretize the r.h.s. of Eq. (A.1) by replacing it by its mean value in the interval [w
(k)
L , w

(k)
U ]:

ᾱ(k)(β(k)) =
2

c2
1

∆w

∫ w
(k)
U

w
(k)
L

dw ∇⊥Φ[x(θ, w), w] , (A.4)

where β(k) = x(θ, w)/w(k). We then assume that all light deflections in the k-th slice occur at
w = w(k), with a deflection angle α(k) = ∆w ᾱ(k). Putting these results together, the discrete
form of Eq. (A.1) is given by

x(w(k+1)) = +2x(w(k)) − ∆wα(k)(β(k)) − x(w(k−1)) , (A.5)

or in angular coordinates,

β(k+1) = +2
f

(k)
K

f
(k+1)
K

β(k) − ∆w

f
(k+1)
K

α(k)(β(k)) − f
(k−1)
K

f
(k+1)
K

β(k−1) . (A.6)

This is just Eq. (5.12) for the special case f
(k−1,k)
K = f

(k−2,k−1)
K = ∆w.



B The minimum area of periodicity of lattice

planes

If p = (p1, p2, p3)
t and q = (q1, q2, q3)

t are lattice vectors with pi, qi ∈ Z ∀ i, then p and
q span a parallelogram Ppq that is periodic along the directions of p and q with a length of
periodicity of |p| and |q|, respectively. The total area of the parallelogram constructed from p

and q is |p × q| = |n|. Here, we show that there is no set of vectors spanning the same plane,
but yielding a smaller area of periodicity, if the integer coefficients n1, n2, and n3 are coprime.

To see this, we assume that the components of n = p × q are coprime. Now let r and s be
two lattice vectors lying in the same plane spanning a parallelogram Prs with smaller area than
the parallelogram spanned by p and q. We can write

r = α1p + α2q (B.1)

s = β1p + β2q , (B.2)

where αi, βi ∈ Q. The area of Prs is given by the modulus of n′ = (n′1, n
′
2, n

′
3)

t = r×s (ni ∈ Z),
for which we find

n′ = (α1β2 − β1α2)n ≡ An , A ∈ Q . (B.3)

Since we have assumed that Prs has a smaller area than Ppq, we have A < 1, so that we can
write A = a/b, with a, b ∈ Z, b > a and a and b coprime. For Eq. (B.3) to hold, b must be a
common divisor of n1,n2 and n3, which contradicts our assumptions. Therefore, there can not
be a parallelogram with smaller area of periodicity than Ppq.



C Projection Pursuit Density Estimation

In order to have an independent check of the ICA-based likelihood estimation algorithm
described in Chapter 6, we employ the method of projection pursuit density estimation (PPDE;
Friedman et al. 1984). Like our ICA method, PPDE aims to estimate the joint probability
density p(x) of a random vector x, given a set of observations of x. As starting point, an
initial model p0(x) for the multidimensional probability distribution p(x) has to be provided,
for which a reasonable choice is e.g. a multivariate Gaussian with a covariance matrix estimated
from the data. The method then identifies the direction θ1 along which the marginalized model
distribution differs most from the marginalized density of the data points and corrects for the
discrepancy along the direction θ1 by multiplying p0 with a correction factor. This yields
a refined density estimate p1(x), which can be further improved by iteratively applying the
outlined procedure.

More formally, the PPDE density estimate is of the form

pM (x) = p0(x)
M
∏

m=1

fm(θm · x) , (C.1)

where pM is the estimate after M iterations of the procedure and p0 is the initial model. The
univariate functions fm are multiplicative corrections to the initial model along the directions θm.
The density estimate can be obtained iteratively using the relation pM (x) = pM−1(x) fM (θM ·x).
At the M -th step of the iteration, a direction θM and a function fM are chosen to minimize
the K-L divergence (Eq. 6.49) between the actual data density p(x) and the density estimate
pM (x),

DKL[p, pM ] =

∫

dx p(x) log
p(x)

pM (x)
, (C.2)

as a goodness-of-fit measure. Only the cross term

W (θM , fM ) = −
∫

dx p(x) log pM (x) (C.3)

of the K-L divergence is relevant for the minimization, all other terms do not depend on θM

and fM . By using Eq. (C.1), one sees that the minimum of W is attained at the same location
as the minimum of

w(θM , fM ) = −
∫

dx p(x) log fM (θM · x) , (C.4)

which is the expectation value of log fM with respect to p(x). The data density p(x) is unknown;
however, the data comprise a set of N samples from this distribution. The expectation value of
log fM can therefore be estimated by

ŵ(θM , fM ) = − 1

N

N
∑

i=1

log fM (θM · xi) . (C.5)
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For fixed θM , the minimum of Eq. (C.4) is attained for

fM (θM · x) =
pθM (θM · x)

pθM

M−1(θM · x)
, (C.6)

where pθM and pθM

M−1 are the marginal densities of the data and of model density from the
(M − 1)-st iteration along the direction θM , respectively. With this, the iterative process that
leads to estimates of θM and fM schematically consists of:

• choosing a direction θM ,

• computing the marginal densities pθM and pθM

M−1,

• computing fM(θM · x) according to Eq. (C.6),

• computing ŵ(θM , fM )

• choosing a new θM that decreases ŵ

• continuing from step 2 until a convergence criterion is fulfilled.

To efficiently compute the marginals pθM and pθM

M−1, Monte Carlo samples of these densities are

used. Note that the data already comprise a sample of p(x); a sample of pθM

M−1 can be obtained
efficiently by an iterative method: since pM−1 is similar to pM−2, a subset of the sample from
pM−1 can be obtained by rejection sampling from the sample from the (M − 2)-nd step. The
remaining data vectors are then drawn by rejection sampling from p0. For more technical details
of the estimation procedure, we refer the reader to Friedman et al. (1984).

Note that the PPDE technique, although using very similar methodology as our ICA-based
procedure, is different in the important point that it does not rely on the assumption that
a linear transformation of the data leads to statistical independence of the components of the
transformed data vectors. It therefore comprises a good test of the validity of this approximation.



D Fisher matrix of the ICA likelihood

In this appendix, we give the derivation of Eq. (6.64). In the general case, the Fisher matrix
is given by (e.g. Kendall et al. 1987)

Fαβ =

〈

∂ logL

∂πα

∂ logL

∂πβ

〉

. (D.1)

In our case, the likelihood depends on cosmological parameters only through the difference
between data and model vector, i.e. s = ξ̆− m̆ (see Eqs. 6.43 and 6.44). This allows us to write

∂ logL(s(π))

∂πα
=

∂ logL(s)

∂si

∂si

∂πα
(D.2)

=
d log psi

(si)

dsi

∂si

∂πα
, (D.3)

where in the last step we have made use of the fact that the likelihood factorizes in the ICA
basis. The expression for the Fisher matrix then can be written as

Fαβ =
∑

i,j

〈

d log psi
(si)

dsi

d log psj
(sj)

dsj

〉

∂m̆i

∂πα

∂m̆j

∂πβ
(D.4)

To compute the expectation value in this equation, we have to average over the likelihood
function: 〈. . .〉 =

∫

ds L(s) . . . We obtain

Fαβ =
∑

i6=j

∂m̆i

∂πα

∂m̆j

∂πβ

∫

dsi
dpsi

(si)

dsi

∫

dsj
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(sj)

dsj
(D.5)

+
∑

i

∂m̆i

∂πα

∂m̆i

∂πβ

∫

dsi psi
(si)

(

d log psi
(si)

dsi

)2

. (D.6)

The integrals in the first term of the right-hand side vanish since the psi
drop to zero for very

large and small values of si. This leaves us with

Fαβ =
∑

i

∂m̆i

∂πα

∂m̆i

∂πβ

∫

dsi psi
(si)

(

d log psi
(si)

dsi

)2

. (D.7)

The derivatives in Eq. (D.7) can be strongly affected by noise in the estimated psi
(si), in partic-

ular in the tails of the distributions. For their numerical computation, we therefore choose the
following four-point finite difference operator (Abramowitz & Stegun 1964):

dp

ds
=
p(s− 2h) − 8p(s− h) + 8p(s+ h) − p(s+ 2h))

12h
+ O(h5) , (D.8)

which we find to be more stable against this problem than its more commonly used two-point
counterpart. Because of this potential difficulty, we cross-check our results with the alternative
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method provided by Eq. (6.63). This method is significantly slower, but numerically simpler.
This is because the derivatives of the log-likelihood in Eq. (6.63) are on average computed close
to the maximum-likelihood point, where the likelihood estimate is well sampled. Reassuringly,
we find excellent agreement between the two methods. Finally, we have investigated the influence
of the choice of the Kernel function K in Eq. (6.42), which might affect the computation of the
numerical derivatives. Our results prove to be stable against variation of K, provided that we
chose a differentiable Kernel function.
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Jutten, C. & Hérault, J. 1991, Signal Processing, 24, 1

Kaiser, N. 1992, ApJ, 388, 272

Kaiser, N. & Pan-STARRS Collaboration. 2005, in Bulletin of the American Astronomical So-
ciety, Vol. 37, 465

Kaiser, N. & Squires, G. 1993, ApJ, 404, 441



156 BIBLIOGRAPHY

Kaiser, N., Wilson, G., & Luppino, G. 2000, astro-ph/0003338

Kauffmann, G., Colberg, J. M., Diaferio, A., & White, S. D. M. 1999, MNRAS, 303, 188

Kendall, M. G., Stuart, A., & Ord, J. K. 1987, Kendall’s advanced theory of statistics (New
York: Oxford University Press, Inc.)

Kilbinger, M., Schneider, P., & Eifler, T. 2006, A&A, 457, 15

Kullback, S. & Leibler, R. A. 1951, Annals of Mathematical Statistics, 22, 79

Landy, S. D. & Szalay, A. S. 1993, ApJ, 412, 64

Lemson, G. & The Virgo Consortium. 2006, astro-ph/0608019

Liang, J.-J., Fang, K.-T., Hickernell, F. J., & Li, R. 2001, Math. Comput., 70, 337

Limber, D. N. 1953, ApJ, 117, 134

Limousin, M., Kneib, J.-P., & Natarajan, P. 2005, MNRAS, 356, 309

Linde, A. 2005, New Astronomy Review, 49, 35

Loredo, T. 1989, in Maximum-Entropy and Bayesian Methods, ed. P. Fougere (Dartmouth:
Kluwer Academic Publishers), 81–142
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