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1 INTRODUCTION 

1.1 Siglecs 

1.1.1 Definition and nomenclature of Siglecs 

Animal glycan-recognizing proteins can be broadly classified into two groups: lectins, 
which typically contain an evolutionarily conserved carbohydrate-recognition domain 

(CRD), and sulfated glycosaminoglycan (SGAG)-binding proteins, which appear to have 

been evolved by convergent evolution. Proteins other than antibodies and T-cell receptors 

that mediate glycan recognition via immunoglobulin (Ig)-like domains are called “I-type 

lectins”. The major homologous subfamily of I-type lectins with sialic acid (Sia)-binding 

properties and characteristic amino-terminal structural features are called the “Siglecs” 

(Sia-recognizing Ig-superfamily lectins).  

Criteria for the inclusion of the immunoglobulin superfamily-related proteins as Siglecs 

were defined as:  (1) the ability to recognize sialylated glycans mediated by the N-terminal 

V-set domain via well-characterized molecular interactions, including a key arginine (Arg) 

residue that forms a salt bridge with the carboxylate group of sialic acid, and (2) significant 

sequence similarity within the N-terminal V-set and adjoining C2-set domains.  

There are currently 14 human and 9 mouse molecules that fulfill these criteria (Crocker, 

Paulson et al. 2007; Cao, Lakner et al. 2008) (Figure 1-1). Scientists in the field established 

the Siglec nomenclature of naming the members in order of discovery. Thus sialoadhesin 

(Sn) was given the designation Siglec-1, because it was the first member characterized as a 

Sia-binding lectin. Furthermore, categorizing CD22 as Siglec-2 and CD33 as Siglec-3, 

respectively, was useful as a “memory aid”. Mammalian myelin-associated glycoprotein 

(MAG) and avian Schwann cell myelin protein (SMP) were grouped together as Siglec-4a 

and -4b, respectively, because they are structurally and functionally related. Complexity in 

nomenclature arises from the fact that orthologs of some Siglecs in certain species have 

undergone mutations in an “essential” Arg residue required for optimal Sia binding and 

therefore no longer fulfill all the criteria to be called Siglecs. The first of these was found in 
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humans and initially called Siglec-L1 (Siglec-like molecule-1) (Angata, Varki et al. 2001). 

This molecule has a Sia-binding (“essential Arg”-containing) ortholog in the chimpanzee, 

designated as chimpanzee Siglec-12 (cSiglec-12). The international nomenclature group 

thus agreed to change the name of hSiglec-L1 to hSiglec-XII (the Roman numeral indicates 

that it is the Arg-mutated ortholog of cSiglec-12) (Angata 2004). Likewise, the Arg-mutated 

ortholog of hSiglec-5 in the chimpanzee is designated cSiglec-V, and the Arg-mutated 

Siglec-6 ortholog in baboon is bSiglec-VI. A primate molecule deleted in humans was 

discovered by sequencing the chimpanzee Siglec gene cluster and designated as Siglec-13 

(Angata, Margulies et al. 2004). In case of rodent CD33/Siglec-3-related Siglecs, 

alphabetical designations were applied, because it was difficult to assign the human 

orthologues of all rodents CD33/Siglec-3-related Siglecs. 

 

 
Figure 1-1.  Siglec-family proteins in humans and rodents. The brackets indicate low 
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levels of expression. Siglec-12 in humans has lost the ability to bind sialic acids and is, 
hence, designated as Siglec-XII (not shown). Abbreviations: B, B cells; Ba, basophils; cDCs, 
conventional dendritic cells; Eo, eosinophils; GRB2, growth-factor-receptor-bound protein 
2; ITIM, immunoreceptor tyrosine-based inhibitory motif; Mac, macrophages; Mo, 
monocytes; MyP, myeloid progenitors; N, neutrophils; ND, not determined; NK, natural 
killer cells; OligoD, oligodendrocytes; pDCs, plasmacytoid dendritic cells; Schw, Schwann 
cells; Troph, trophoblasts. Figure modified from (Paul R. Crocker, 2007). 

 

1.1.2 Subfamilies of Siglecs 

On the basis of their sequence similarity and evolutionary conservation, Siglecs can be 

broadly divided into two groups: an evolutionary conserved subgroup, which includes 

Siglec-1, -2, -4 and -15, and a CD33/Siglec-3-related subgroup, which appears to be rapidly 

evolved (Table 1-1). The members of the first group are quite distantly related (~25–30% 

sequence identity), and have clear orthologues in all mammalian species examined. In 

comparison, the CD33-related Siglecs share ~50–99% identity but seem to be evolved 

rapidly by multiple processes, including gene duplication, exon shuffling, exon loss and 

gene conversion. This has resulted in important differences in the repertoires of 

CD33-related Siglecs among mammalian species. In humans, there are ten CD33-related 

Siglecs and one Siglec-like protein, including the recently defined Siglec-16 which was 

recognized as a pseudogene in the past (Cao, Lakner et al. 2008), whereas in mice there are 

five CD33-related Siglecs (Siglec-3 and E–H). 

Table 1-1. Evolutionary comparison of the two major subgroups of Siglecs. (Vaki et al. 

2006) 
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1.1.3 Expression pattern of human Siglecs 

Each human Siglec is expressed in a cell type-specific fashion, suggesting involvement in 

discrete functions. The selective expression of Sn/Siglec-1, CD22/Siglec-2, and 

MAG/Siglec-4 on tissue macrophages, mature B cells, and glial cells, respectively, appears 

to be conserved amongst all mammalian species studied so far.   

The CD33-related Siglecs appear to be variably distributed amongst cell types in the 

immune system, with significant overlaps (Figure 1-2). The striking exception are T cells in 

which very low expression of Siglecs is seen (Razi and Varki 1998), primarily Siglec-7 and 

-9 on a subset of CD8+ T cells in some humans (Nicoll, Ni et al. 1999; Zhang, Nicoll et al. 

2000; Ikehara, Ikehara et al. 2004). Also, Siglec-6 is expressed in placental trophoblast cells 

(Patel, Brinkman-Van der Linden et al. 1999).  

The cell type-specificity of human and mouse CD33-related Siglecs often do not follow 

their presumed orthologous relationships, for example, although human CD33/ Siglec-3 is 

highly expressed on mature monocytes, mouse CD33/Siglec-3 is expressed only on 

granulocytes (Brinkman-Van der Linden, Angata et al. 2003). Most CD33-related Siglecs 

are found on multiple leukocyte types to varying extents, for example, human 

CD33/Siglec-3, -5, -7, -9, and -10 are expressed on circulating monocytes. When monocytes 

are differentiated into macrophages or stimulated with lipopolysaccharide (LPS), they retain 

the expression of these Siglecs (Lock, Zhang et al. 2004). In comparison, monocyte-derived 

dendritic cells down-modulate Siglec-7 and -9 following maturation with LPS, and 

plasmacytoid dendritic cells in human blood express only Siglec-5. In a few instances, 

certain CD33-related Siglecs show expression predominantly restricted to one cell type. 

Although human Siglec-7 is found at low levels on granulocytes and monocytes, relatively 

high levels are found on a major subset of NK cells and a minor subset of CD8+ T cells 

(Nicoll, Ni et al. 1999). Siglec-8 could be detected only on eosinophils (Floyd, Ni et al. 

2000).  
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Figure 1-2. Expression pattern of human Siglecs within the hematopoietic system. 
Abbreviation: NK, natural killer. Figure modified from (Crocker and Varki 2001).  

 

1.1.4 Ligands of Siglecs 

1.1.4.1 Sialic acid 

Sialic acid (Sia) refers to a family of sugars that are typically found at the outermost end of 

glycan chains of all cell types (Schauer 2000; Angata and Varki 2002; Varki 2007). These 

acidic sugars with a nine-carbon backbone are mostly derived from N-acetylneuraminic acid 

(Neu5Ac). Although there are more than 50 forms of naturally occurring sialic acid, 

mammals mainly express Neu5Ac, N-glycolylneuraminic acid (Neu5Gc) and 5, (7)9-N, 

O-diacetylneuraminic acid (Neu5,(7)9Ac2) (Figure 1-3). Humans lack Neu5Gc owing to a 

mutation in the CMAH (cytidine monophosphate-N-acetylneuraminic acid hydroxylase) 
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gene, which encodes the enzyme required for the conversion of Neu5Ac to Neu5Gc. Sialic 

acids are usually located at the exposed, non-reducing ends of oligosaccharide chains, and 

are transferred using α2-3, α2-6 or α2-8 linkages to subterminal sugars by a family of about 

20 sialyltransferases. 

 

 
Figure 1-3. Sialic acids. a. Sketch of sialic acid with a nine-carbon backbone. In mammals 
sialic acid is commonly modified at the R and R′ positions with the substituents indicated. b. 
Two common sialoside sequences recognized as low-affinity ligands by many Siglecs are 
shown. Figure modified from (Crocker, Paulson et al. 2007). 

 

Sialic acids decorate all cell surfaces and most secreted proteins of vertebrates and ‘higher’ 

invertebrates, mediating or modulating a variety of normal and pathological processes. First, 

by virtue of their negative charge and hydrophilicity, sialic acids have many structural and 

modulatory roles. In a second category of functions, sialic acids serve as components of 

binding sites for various pathogens and toxins (Schauer 2000; Lehmann, Tiralongo et al. 

2006), such as human influenza A and C, or Helicobacter pylori. In most such interactions, a 

pathogen binding protein recognizes certain forms of sialic acids presented in specific 

linkages to a defined underlying sugar chain. Although this recognition is detrimental to the 

host expressing the cognate sialic acids, these molecules have nevertheless persisted on all 

cell types in all vertebrates for a long evolutionary time. Thus, a third set of function is the 

interaction with sialic acid binding proteins, which are intrinsic to the organisms. A final 

class of functions is “molecular mimicry”, in which successful microbial pathogens decorate 

themselves with sialic acids, which assist in evasion of host immunity (Vimr, Kalivoda et al. 

2004). 
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1.1.4.2 Structural feature of Siglecs for Sia-binding 

Most of the functional Siglecs studied to date have a conserved Arg residue in the V set 

domain that is required for optimal recognition of sialic acids. All Siglecs (other than 

Siglec-XII) contain an odd number (typically 3) of cysteine residues in the first and second 

Ig-like domains. Several other amino acid residues have also been defined to have direct 

contacts with sialylated ligands. For example, Trp2 and Trp106 in Sn/Siglec-1, and tyrosine 

26 (Tyr26) and tryptophan 132 (Trp132) in Siglec-7 (Yamaji, Teranishi et al. 2002) are 

reported to be involved in direct contacts with sialylated ligands. However, these features 

are not always common to the other siglecs. 

 

1.1.4.3 Recognition of Sias and their linkages by Siglecs 

In general, Siglecs show low affinity (a Kd of 0.1-3 mM) for the sialic acid Neu5Ac α2-3 

and α2-6 linkages to galactose ((Neu5Ac(α2-3)Gal and Neu5Ac(α2-6)Gal) that are 

commonly found as terminal sequences on glycans of glycoproteins and glycolipids of most 

mammalian cells (Bakker, Piperi et al. 2002; Blixt, Collins et al. 2003). And Siglecs have an 

overlapping specificity for such sialosides (sialic acid-containing glycans). However, when 

examined for their ability to recognize a diverse set of natural sialoside structures found in 

mammalian species, each Siglec shows a characteristic specificity profile for the types of 

sialic acid (Neu5Ac or Neu5Gc) and also for the types of linkage to subterminal sugars. For 

example, CD22 is unique in having a strong preference for Neu5Ac (α2-6) Gal and 

Neu5Gc(α2-6)Gal structures (Powell, Sgroi et al. 1993; Kelm, Schauer et al. 1994). Siglec-7 

and Siglec-11 prefer sialosides with the Neu5Ac (α2-8) Neu5Ac structure (Yamaji, 

Teranishi et al. 2002; Hayakawa, Angata et al. 2005). Of particular interest is the 

evolutionary loss of Neu5Gc in humans, as Neu5Gc is the preferred ligand for at least some 

Siglecs in the closely related great apes (Sonnenburg, Altheide et al. 2004).  

Furthermore, other aspects of the Sia molecules (Figure 1-4) could also affect the binding of 

Siglecs. The negatively charged carboxyl group of Sias is required for recognition by most 

Siglecs. A requirement of the glycerol-like side chain of Sias at C7-C9 for Siglec binding so 

far seems to be a general rule (Barnes, Skelton et al. 1999; Angata and Varki 2000; Angata 
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and Varki 2000; Brinkman-Van der Linden and Varki 2000) with exceptions such as 

Siglec-6 (Brinkman-Van der Linden and Varki 2000) and Siglec-11 (Angata, Kerr et al. 

2002).  

 

 
Figure 1-4. Structural features of sialic acids (Sias) affecting recognition by Siglecs. 
The most common Sia (Neu5Ac) is depicted with the nine carbon atoms numbered. The 
figure points to various structural features of Neu5Ac (and other Sias) that are known to 
affect recognition by Siglecs. The site of action of sialidases (neuraminidases) is also shown. 
(Varki, 2006) 

 

1.1.4.4 The interaction of Siglecs and sialosides 

It is of high significance that Siglecs can interact with ligands both in cis and in trans 

(Figure 1-5). Most Siglecs are masked at the cell surface owing to cis interactions with 

abundantly expressed sialic acids on the same cell (Freeman, Kelm et al. 1995; Hanasaki, 

Varki et al. 1995; Razi and Varki 1998). This interaction with cis ligands may dominate 

over interactions with trans ligands in modulating the biological activities of Siglecs 

(Crocker 2005). One exception to this rule is sialoadhesin/Siglec-1, which owes to its 

extended structure (16 V-set Ig domains), is thought to project its sialic-acid-binding site 

away from the plasma membrane and reduces its cis interactions (Munday, Floyd et al. 
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1999).  

Despite the likely importance of cis-ligand interactions in Siglec function, they do not 

necessarily prevent the binding of ligands in trans. Following exposure of cells to sialidase, 

which cleaves the cis-interacting Siglec ligands (Figure 1-4), or in some cases following 

cellular activation, Siglecs become unmasked, which allows them to make interactions with 

ligands in trans. Even when Siglecs are masked by cis interactions, trans interactions might 

occur during an encounter with another cell or a pathogen expressing higher affinity ligands 

that can out-compete the cis interactions.  

The most extensively characterized CD22/Siglec-2 on B cells serves as a good example to 

illustrate this. In B cells, owing to the interaction of CD22 in cis with sialic acids, CD22 is 

largely inaccessible to soluble, multivalent sialoside probes, in another word, CD22 is 

“masked”. However, the access to the CD22 receptor can be restored (unmasking) to bind 

ligands expressed on another cell (Collins, Blixt et al. 2004) when sialic acids are removed 

by sialidase treatment or in mice lacking the sialyltransferase ST6GAL1, which transfer 

sialic acids to galactose in α2-6 linkages (Collins, Blixt et al. 2002). Moreover, high-affinity 

synthetic sialoside probes can out-compete cis ligands for binding to CD22 on native B cells 

(Collins, Blixt et al. 2006). These results show that cis ligands down-regulate, but do not 

preclude, binding of ligands in trans, and that equilibrium-based binding of Siglecs to trans 

ligands can occur dynamically in the presence of cis ligands. 
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Figure 1-5. Cis and trans interactions of Siglecs. a. Most Siglecs are masked at the cell 
surface owing to cis interactions with abundantly expressed sialic acids. Following exposure 
of cells to sialidase, which cleaves the cis-interacting Siglec ligands, or in some cases 
following cellular activation, Siglecs become unmasked, which allows them to make 
interactions with ligands in trans. b. Even when Siglecs are masked by cis interactions, trans 
interactions might occur during an encounter with another cell or a pathogen expressing 
higher affinity ligands that can out-compete the cis interactions. (Crocker, 2007) 

 

1.1.4.5 Siglec recognition of other specific macromolecules 

Several studies have identified other specific ligands (or “counter receptors”) for Siglecs. 

These can be classified into ligands that interact with Siglecs via the sialylated glycans 

expressed on them and those interact independent of glycans, that is, via protein-protein 

interactions. 

For example, Sn/Siglec-1 was shown to be a counter receptor for the mannose receptor (a 

macrophage lectin) and the macrophage Gal-binding lectin (Martinez-Pomares, Crocker et 

al. 1999). The interaction was dependent on sulfated glycans on Sn, which served as a large 

carrier of glycan ligands for these lectins, rather than as Sia-binding Siglec (Fiete, Beranek 

et al. 1998). 
On the other hand, CD22/Siglec-2 was found to associate efficiently with IgM and CD45 at 

the surface of B cells independently of sialic acid recognition, despite the fact that these 
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proteins carry α2-6-linked sialic acids recognized by CD22 (Zhang and Varki 2004). 

Siglec-6 was also reported to interact with leptin independent of leptin glycosylation (Patel, 

Brinkman-Van der Linden et al. 1999). However, there has been no definitive report so far 

on glycan-dependent spedific-binding partner(s) for CD33-related Siglecs. 

 

1.1.5 Siglecs and intracellular signaling 

With the exception of a few ones, Siglecs generally have conserved immunoreceptor 

tyrosine-based inhibitory motif (ITIM) and/or ITIM-like motif in their cytosolic tails. The 

ITIMs are characterized by a typical 6-amino acid sequence described as (I/L/V) xYxx(L/V), 

where x denotes any amino acid (Vely and Vivier 1997). Once phosphorylated by a 

Src-family tyrosine kinase, this motif can interact with the Src homology domain 

2-containing phosphatases 1 (SHP-1, also known as protein tyrosine phosphatase (PTP)-1C 

or PTPN6) and SHP-2 (also known as PTP-1D or PTPN11), as well as with the 

SH2-domain-containing inositol polyphosphate 5-phosphatase (SHIP) (Figure 1-6). 

Transmembrane proteins with this motif in their cytoplasmic domains are generally 

considered to have inhibitory functions, dampening activating signals emitted by other 

cellular receptors with immunoreceptor tyrosine-based activatory motifs (ITAMs, with 

typical motif described as YxxLx6-8YxxL). 

In contrast, mouse CD33/Siglec-3 and Siglec-H, and human Siglec-14, Siglec-15, and 

Siglec-16 lack ITIM motifs. But they have a positively charged residue within the 

transmembrane region that is required to bind to the ITAM-containning adaptors, such as 

DAP12 and the Fc receptor γ-chain (Tomasello and Vivier 2005). These Siglecs thus might 

deliver activating signals through ITAM-dependent pathways (Figure 1-6). 

 

1.1.6 Function of Siglecs in the immune system 

In general, the most widely accepted explanation for the function of Siglecs is the detection 

of the “self sialome” and down regulation of the immune system via their ITIM motifs. 

Numerous studies point to important roles of CD33-related Siglecs in modulating leukocyte 
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behaviour, including inhibition of cellular proliferation (Vitale, Romagnani et al. 1999; 

Balaian, Zhong et al. 2003) induction of apoptosis (Nutku, Aizawa et al. 2003; von Gunten, 

Yousefi et al. 2005), inhibition of cellular activation (Paul, Taylor et al. 2000; Ulyanova, 

Shah et al. 2001; Avril, Floyd et al. 2004; Ikehara, Ikehara et al. 2004; Avril, Freeman et al. 

2005), induction of proinflammatory cytokine secretion (Lajaunias, Dayer et al. 2005) and, 

in the case of Siglec-H on plasmacytoid dendritic cells (pDCs), suppression of interferon-α 

(IFNα) production (Blasius, Cella et al. 2006) (Figure 1-6). CD33-related Siglecs can also 

function as endocytic receptors that could be important in the clearance of sialylated 

antigens and/or in promoting or inhibiting antigen presentation (Lock, Zhang et al. 2004; 

Walter, Raden et al. 2005; Nguyen, Ball et al. 2006; Zhang, Raper et al. 2006; Biedermann, 

Gil et al. 2007). Other functions that are well defined including the contribution for 

sialoadhesin in the pro-inflammatory functions of macrophages, CD22 as a regulator of 

B-cell signaling, homeostasis and survival by helping to set a threshold for antigen-induced 

activation of B cells (Doody, Justement et al. 1995). 

In addition, sialoadhesin and several CD33-related Siglecs can interact with sialic acids on 

Neisseria meningitidis, Campylobacter jejuni, group B Streptococcus and Trypanosoma 

cruzi (Jones, Virji et al. 2003; Monteiro, Lobato et al. 2005; Avril, Wagner et al. 2006; 

Carlin, Lewis et al. 2007). Siglec-dependent uptake of these pathogens could potentially 

benefit the host by promoting pathogen destruction and antigen presentation. 

 

Figure 1-6.   Signalling and fuctions mediated by CD22 and the CD33-related Siglecs. 
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↑, increased; ↓, decreased; IFNα, interferon-α. (Crocker, 2007) 

 

1.1.7 Siglec-11 

The recently discovered Siglec-11 belongs to the CD33-related subfamily of Siglecs 

(Angata, Kerr et al. 2002). The protein deduced from the full-length cDNA of Siglec-11 

consists of 5 extracellular Ig-like domains, a single pass transmembrane domain, and a 

cytosolic tail. Like most of the members of the CD33-related Siglecs, it has immunoreceptor 

tyrosine-based inhibitory motifs (ITIM) in the cytosolic domain, which have been shown to 

interact with protein-tyrosine phosphatases SHP-1 and/or SHP-2 (Src homology domain 

2-containing phosphatases 1 and/or 2), which are known to be involved in 

anti-inflammatory signalling of microglia (Horvat, Schwaiger et al. 2001) upon tyrosine 

phosphorylation (Angata, Kerr et al. 2002). However, Siglec-11 also has several novel 

features relative to the other CD33-related Siglecs. First, it binds specifically to alpha 

2-8-linked sialic acids, but the ligand molecule modified by 2-8-linked sialic acids and 

recognized by Siglec-11 has not been identified. Second, expression of Siglec-11 was not 

found on peripheral blood leukocytes, but on tissue macrophages in various tissues, such as 

liver Kupffer cells and brain microglia.  

Siglec-11 is identified as a human-specific gene expressed in microglia (Hayakawa, Angata 

et al. 2005). Analysis of genome data bases indicated that Siglec-11 has no mouse ortholog. 

Siglec-11 converted from a pseudogene in humans and chimpanzee, but not in bonobo, 

gorilla and orangutan. Histopathology demonstrated the expression of Siglec-11 on tissue 

macrophages in various human tissues, such as liver Kupffer cells, lamina propria 

macrophages in intestine, microglia in brain, and perifollicular cells in spleen. In 

inflammatory stomach, the infiltrating cells were also stained intensely. However, the 

expression of Siglec-11 was not found on peripheral blood leukocytes (Angata, Kerr et al. 

2002).  
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1.2 Microglia 

1.2.1 Microglia: parenchymal macrophage of the central nervous system 

(CNS) 

Microglia are one of the glial cells of the CNS. The term “glia” derived from the Greek 

word for “glue,” suggests that microglia share with astroglia and oligodendroglia the 

property of brain support and, more particularly, the support of neurons. However, such a 

supportive role in the healthy brain is better appreciated for astroglia, which make important 

contributions to neurotransmitter metabolism, and for oligodendroglia, which are the source 

of myelin, than for microglia. In the early 1980s, the macrophagic nature of microglia was 

formally established (Perry, Hume et al. 1985). Microglia are now known as the major 

immune cells of the CNS. They reside within the parenchyma of the nervous system sharing 

many, if not all the properties of macrophages in other tissues. And their role was defined as 

the first line of immune defense in CNS parenchyma (Kreutzberg 1996). 

Although microglia are “brain macrophages,” they are distinguished by their parenchymal 

location, morphology and phenotype from other types of brain macrophages such as 

meningeal and perivascular macrophages (Polfliet, Zwijnenburg et al. 2001; Nguyen, Julien 

et al. 2002; Polfliet, van de Veerdonk et al. 2002) and perivascular cells or pericytes 

(Thomas 1999; Williams, Alvarez et al. 2001), which are enclosed by a perivascular 

basement membrane within blood vessels and are not part of the CNS parenchyma. In 

particular, only microglia localize within the CNS parenchyma itself, in close contact with 

neurons, astrocytes and oligodendrocytes. Interestingly, a subpopulation of microglia, 

referred to as juxtavascular microglia, directly contacts the basal lamina of CNS blood 

vessels, at the blood–brain barrier (Lassmann, Zimprich et al. 1991; Gehrmann, Matsumoto 

et al. 1995). It is noteworthy that, despite their localization along blood vessels, 

juxtavascular microglia are phenotypically and morphologically distinct from perivascular 

macrophages (Kida, Steart et al. 1993). Under normal conditions, the adult mouse brain 

contains an average of 3.5x 106 microglial cells (Lawson, Perry et al. 1990). On a weight 

to-weight basis, microglia are thus as numerous as other tissue macrophages such as 
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Kupffer cells in the liver. 

 

1.2.2 Origin and turnover of microglia 

In rodents and humans, postnatal microglia are thought to arise from two different pools of 

myeloid cells that successively colonize the developing CNS. The first wave of microglial 

progenitors invades the embryonic and fetal CNS and derives essentially from 

extramedullary sources of hematopoiesis, including the yolk sac (Rezaie and Male 1999; 

Kaur, Hao et al. 2001). The second wave of microglial progenitors is formed by bone 

marrow (BM)–derived monocytic cells that colonize the CNS during the early postnatal 

period (P0–P15) in rodents, or before birth in humans (Cuadros and Navascues 1998). But 

the precise identity of these monocytic cells is yet not formally established. Passed the late 

phases of CNS development, the traffic of leukocytes from blood to CNS parenchyma is 

exquisitely controlled by the blood–brain barrier (BBB) (Bechmann, Galea et al. 2007). In 

the adult brain, resident microglia have a slow turnover at rest and are capable of 

proliferation and self-renew. Thus, the population of microglia in the adult under normal 

conditions is replenished intrinsically and does not require significant turnover from 

circulating blood progenitors (Lassmann and Hickey 1993; Kennedy and Abkowitz 1997).  

However, numerous reports showed that bone marrow stem cells (BMSCs) have the ability 

to populate the CNS and differentiate into functional parenchymal microglia as well as 

perivascular macrophage (Priller, Flugel et al. 2001; Priller, Persons et al. 2001; Vallieres 

and Sawchenko 2003; Simard and Rivest 2004; Massengale, Wagers et al. 2005). Even 

though BMSCs can enter the brain parenchyma throughout the CNS in normal mice, it 

seems that they are preferentially attracted to regions afflicted by neurodegeneration or 

neurological insults. In the case of cerebral ischemia, round donor-derived cells (most likely 

blood monocytes) enter the brain at the site of injury, and then migrate from the infiltration 

site and become ramified microglial cells. This is also true in models where the BBB is not 

compromised, such as in the case of facial nerve axotomy and hypoglossal nerve axotomy. 

It is reported that prion neuroinvasion is accompanied by a major recruitment of 

BM-derived microglia. Indeed, more than 50% of all brain microglia were replaced by 
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BM-derived cells before clinical disease onset and that in terminally sick mice, microglia 

density increased threefold to fourfold. These findings suggest that blood monocytes 

infiltrate the brain and later differentiate into ramified microglia, and that they are able to 

enter the CNS even if the BBB is intact and they can massively colonize the CNS in 

particular diseases. More importantly, these cells are recruited as a consequence of the 

disease and are not involved in the progression of the neuropathology (e.g. prion 

neuroinvasion). However, the exact mechanisms regulating microglia homeostasis remains a 

subject of debate.  

 

1.2.3 Role of microglia in the CNS 

The most characteristic feature of microglia is their rapid activation in response to 

pathological change in the CNS. They respond not only to changes in the brain parenchymal 

integrity but also to very small alterations in their microenvironment, such as imbalances in 

ion homeostasis that precede pathological changes (Gehrmann and Kreutzberg 1993). 

In the normal mature brain, microglia typically exist in a resting state characterized by 

ramified morphology, and monitor the brain environment by extending their processes over 

a multitude of nonoverlapping territories that cover the entire neural parenchyma. They are 

called quiescent microglia in this state. However, under a number of pathological conditions, 

quiescent ramified microglia will activate and engage a series of morphological alterations 

that lead to a hypertrophy of microglia cell body and a retraction of their ramifications. By 

the end of such a process, fully activated microglia, also called reactive microglia, harbor a 

similar morphology than any activated macrophage. Activated microglia were found to 

exert functions commonly assigned to all tissue-resident macrophages under inflammatory 

conditions. These include notably phagocytosis (Bauer, Sminia et al. 1994), antigen 

presentation (Perry 1998) and secretion of proinflammatory cytokines such as interleukin 6 

(IL-6), IL-1 or tumor necrosis factor α (TNF-α) (Banati, Gehrmann et al. 1993). 

The outcomes of the microglial activateion towards harmful or beneficial effect depend on 

the activating conditions. On the one hand, they have a critical role in host defense by 

removing invading microorganisms and neoplastic cells, or by secreting neurotrophic 
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factors. On the other hand, microglia may aggravate the effects of inflammation and cause 

neuronal degeneration. Over activated microglia could damage or induce apoptotic death of 

neurons, either directly through the release of toxic mediators such as cytokines and free 

radicals or indirectly by attracting activated T cells, monocytes, and neutrophils into the 

CNS. It is generally accepted that activated microglia function as a “double-edged sword,” 

with neuroprotective features predominating in the healthy nervous system and 

neurodestructive properties observed in various disease states such as in Alzheimer’s 

disease (AD), Parkinson’s disease, and Huntington’s disease etc (Stoll and Jander 1999; 

Hanisch and Kettenmann 2007). 

 

1.2.4 Molecules and signaling pathways involved in microglial activation 

LPS (abd-el-Basset and Fedoroff 1995; Kim and Joh 2006), an endotoxin from the 

gram-negative bacterial cell wall, is a potent immunostimulantor of microglia. Its 

recognition involves the binding of LPS to the serum protein LBP (LPS binding protein) 

and transfer of the complex by CD14 to the cognate receptor toll-like receptor 4 (TLR4) and 

the accessory protein MD-2. A variety of intracellular signaling molecules, such as protein 

tyrosine kinases, nitrogen-activated protein kinases, protein kinase C, small G proteins, and 

ceramide-activated protein kinase are involved in LPS-mediated activation. Through 

different signal transduction pathways, LPS activates transcription factors including NF-κB, 

NF-IL6, C/EBP and Fos/Jun families, and induces cytokine genes such as induced nitric 

oxide synthase (iNOS), TNF-α, IL-1β, IL-6, transforming growth factor β (TGF-β) (Sweet 

and Hume 1996). 

Interferon γ (IFN-γ), released from activated Th1 and NK cells, activates microglia to 

increase expression of MHC class I and class II molecules. With LPS, it synergistically 

induces IL-12 production from microglia. IFN-γ-mediated activation involves the 

JAK-STAT pathway. Briefly, IFN-γ stimulates the activation of receptor associated Jak1 and 

Jak2. This leads to the phosphorylation of a single receptor tyrosine residue, which is then 

recognized by the SH2 domain of Stat. It causes Stat phosphorylation followed by 

homodimerization, translocation into nucleus and induction of GAS (gamma-activation site) 
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driven target genes (Schindler 1999). 

Chemokines are small proteins (8 to 10 kDa) that induce chemotaxis, tissue extravasation 

and functional modulation of a wide variety of leukocytes during inflammation (Taub 1996). 

More than 40 distinct members are divided into 4 families typified by conservation of 

cysteine residues in the N-terminal sequence (Lusti-Narasimhan, Chollet et al. 1996). 

Chemokines mediate their effects via G protein-coupled receptors of the seven 

transmembrane domains. A number of chemokines are expressed in the CNS. They are 

related to a number of diseases of the CNS including stroke, multiple sclerosis (MS) and 

AD. Fractalkine/ neurotactin is a unique member of CX3C chemokine family which was 

discovered in 1997 (Bazan, Bacon et al. 1997). In the CNS, several populations of neurons 

express fractalkine mRNA constitutively that is not affected by stimuli such as cytokines, 

LPS and toxic stimuli (Amyloid β, glucose deprivation or glutamate). Membrane-bound 

fractalkine protein levels were decreased after excitotoxic glutamate stimuli (Chapman, 

Moores et al. 2000). Its receptor, CX3CR-1 is expressed at high levels in microglia 

(Nishiyori, Minami et al. 1998). Through its receptor, fractalkine induces intracellular Ca2+ 

mobilization, ERK activation and PI3-K-mediated PKB activation in microglia.  

CD40 is a 45-50 kDa transmembrane protein, which is a member of the TNFR (tumor 

necrosis factor receptor) superfamily (Vogel and Noelle 1998). It has been shown that CD40 

is constitutively expressed at low levels on microglia, and binding of microglial CD40 by 

CD40 ligand (CD40L) leads to marked TNF- secretion, which is neurotoxic at such levels 

(Aloisi, Penna et al. 1999). Activation of ERK1/2 is involved in CD40-CD40L mediated 

microglial activation (Tan, Town et al. 2000). Interestingly, stimulation with Amyloid β 

peptides (Aβ) and CD40L results in increased CD40 expression on microglia followed by 

TNF-α secretion. It has also been demonstrated that CD45 suppresses CD40L-induced 

microglial activation via negative regulation of the Src/ERK1/2 cascade. 

Aβ is the principal component of the extracellular deposits in AD (Selkoe 1989). Aβ 

promotes neurite outgrowth, generates reactive oxygen intermediates, induces cytotoxic 

cellular oxidative stress, and microglial activation (Koo, Park et al. 1993; Behl 1997; Sasaki, 

Yamaguchi et al. 1997). Although the mechanism by which Aβ causes enhanced expression 

of proinflammatory cytokines from microglia is not fully understood, there is evidence that 
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Aβ may interact with cell-surface receptors, including receptors for advanced glycosylated 

endproducts and scavenger receptors (El Khoury, Hickman et al. 1996; Yan, Chen et al. 

1996). Additionally, calcium, protein kinase C, and protein tyrosine kinase-dependent 

second messenger pathways have been postulated in Aβ receptor-mediated signal 

transduction (Lorton 1997; Combs, Johnson et al. 1999). Aβ activates microglia through 

these signal transduction pathways to induce the secretion of neurotoxic substances 

including TNF-α and IL-1, enhancing likely neuroinflammation in AD brain (Mrak and 

Griffin 2001; Smits, de Vos et al. 2001).  

Gangliosides, the sialic acid-containing glycosphingolipids, have also been reported as 

microglial activators (Pyo, Joe et al. 1999). Gangliosides exist in mammalian cell 

membranes and are particularly rich in the neuronal cell membrane. Gangliosides induce 

production of nitric oxide (NO), TNF- and cyclooxygenase-2 (COX-2) in microglia by 

activation of MAPKs (mitogen-activated protein kinases). Studies show that signals are 

released from neurons when they start to die. Upon potassium deprivation, cerebellar 

granule cells release signal molecules that can activate microglia (Tanaka, Suzuki et al. 

1998). Supernatant from serum-deprived immortalized motor neurons can also activate 

microglia and induce release of NO that causes neuronal death. These signals from dying 

neurons may be potent candidates for microglial activation.  

Thrombin-mediated microglial activation has been reported (Moller, Hanisch et al. 2000). 

Thrombin is generated from the precursor prothrombin that is endogenously expressed in 

human, mouse, and rat brain, including dopaminergic neurons in the CNS (Dihanich, Kaser 

et al. 1991; Soifer, Peters et al. 1994; Weinstein, Gold et al. 1995). Thrombin-induced 

microglial activation involves protease-activated receptor-1 (PAR-1) (Suo, Wu et al. 2002). 

Studies demonstrated that direct injection of thrombin into various brain regions including 

hippocampus and substantia nigra results in induction of iNOS, COX-2 and NADPH 

oxidase-mediated superoxide generation from microglial and subsequent neuronal 

degeneration (Choi, Lee et al. 2003; Choi, Lee et al. 2005).  
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1.3 Lentiviral vector system 

1.3.1 General concept of viral vectors 

Viruses are dependent on their host cell to carry their genome. They are intracellular 

parasites that have developed efficient strategies to invade host cells and, in some cases, 

transport their genetic information into the nucleus either to become part of the host’s 

genome or to constitute an autonomous genetic unit. Viral vectors are the widely used 

vehicles developed from some natural virus to deliver genes to target cells. Viral vector 

comprises the viral sequences that are required for the assembly of viral particles, the 

packaging elements that can package the viral genome into the particles, the cassettes that 

are required to deliver the gene of interest (also termed transgene) to the target cells, and the 

transgene. Dispensable genes from the viral genome are deleted to reduce patho- and 

immunogenicity.  

Viral vectors can be divided into two general categories (Pfeifer and Verma 2001): (a) 

integrating vectors, capable of providing life-long expression of the transgene, and (b) 

non-integrating vectors. Examples for integrating vectors are retroviral and 

adeno-associated virus (AAV)–derived vectors. The major non-integrating vector currently 

employed is based on adenoviruses, and the viral DNA is maintained as an episome in the 

infected cell. Each of these vectors has specific advantages and major limitations. It is 

accepted that an ideal vector should fulfill the following requirements (Somia and Verma 

2000): 

1. Efficient and easy production. High-titer preparations of vector particles should be 

reproducibly available. The efficient transduction of cells is only possible if a sufficient 

number of infectious particles reach the target cells. For the widespread use of viral vectors, 

facile production procedures have to be developed. 

2. Safety aspects. The vector should neither be toxic to the target cells nor induce unwanted 

effects, including immunological reactions against the viral vector or its cargo. The latter 

carries not only the threat of eliminating the vector and/or the infected cells but also may 

lead to life-threatening complications, such as septic shock. 
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3. Sustained and regulated transgene expression. The gene delivered by the viral vector has 

to be expressed in a proper way. Permanent or even life-long expression of the therapeutic 

gene is desired only in a minority of diseases (e.g., treatment of hemophilia). Controlled 

expression of the transgene in a reversible manner would be highly desirable in many cases. 

4. Targeting of the viral vectors. Preferential or exclusive transduction of specific cell types 

is very desirable. 

5. Infection of dividing and nondividing cells. Because the majority of the cells in an adult 

human being are in a postmitotic, nondividing state, viral vectors should be able to 

efficiently transduce these cells. 

6. Site-specific integration. Integration into the host genome at specific site(s) is especially 

helpful in gene targeting. 

 

1.3.2 Constitution of lentiviral vectors 

Lentiviruses belong to complex retroviruses, a group of RNA virus. The term “lenti” derives 

from “lente” in Latin, which means slow. Two outstanding features of lentiviruses make 

them a very attractive tool for gene delivery. The first is their ability to infect nondividing, 

terminally differentiated mammalian cells. HIV (human immunodeficiency virus)-derived 

lentiviral vectors transduce a broad spectrum of nondividing cells in vivo and in vitro, such 

as neurons (Naldini, Blomer et al. 1996), retinal cells (Miyoshi, Blomer et al. 1998; 

Takahashi, Miyoshi et al. 1999), muscle cells (Kafri, Blomer et al. 1997), and hepatocytes 

(Pfeifer, Kessler et al. 2001). And the second is the ability to efficiently deliver large (»8 kb) 

and complex transgenes to the target cells and tissues (Trono 2000). 

Lentiviral vectors have been derived from HIV-1 (Naldini, Blomer et al. 1996; Poeschla, 

Corbeau et al. 1996; Reiser, Harmison et al. 1996), HIV-2 (Poeschla, Gilbert et al. 1998), 

feline immunodeficiency virus (FIV) (Poeschla, Wong-Staal et al. 1998), equine infectious 

anemia virus (Olsen 1998), simian immunodeficiency virus (SIV) (Mangeot, Negre et al. 

2000), and maedi/visna virus (Berkowitz, Ilves et al. 2001). But most of the lentiviral 

vectors presently in use for gene therapy approaches are HIV-derived vectors.  

To increase safety in practice, the lentiviral vector system is divided into vector constructs 
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and helpful packaging vectors (Figure 1-7). Cis- and trans-acting factors of lentiviruses are 

separated into different plasmids while preserving their functions. The vector constructs 

contain the viral cis elements, packaging sequences (ψ), the Rev response element (RRE), 

the central polypurine tract (cPPT), and the transgene and its expression regulatory elements, 

while the lentiviral packaging systems provide in trans the viral proteins that are required 

for the assembly of viral particles in the packaging cells.  

The long terminal repeats (LTRs) are viral sequences containing many cis-acting control 

elements for reverse transcription of the vector RNA and integration of the proviral DNA. 

The LTRs are divided into the U3, R, and U5 regions. In lentivirus, the U3 region in the 5’ 

LTR is replaced with the immediate early region of the human cytomegalovirus (CMV) 

enhancer-promoter. The CMV/LTR hybrid has a high transcriptional activity, especially 

when introduced in the appropriate cell lines (Finer, Dull et al. 1994), e.g., human 

embryonic kidney (HEK), 293 cells. This cell line expresses the adenoviral E1 gene 

products (Graham, Smiley et al. 1977) that superactivate the CMV promoter (Gorman, Gies 

et al. 1989). The 3’ LTR contains the cis-acting control elements involved in 

posttranscriptional processing of the 3’ end of the viral RNA (e.g., polyadenylation). The 

promoter/enhancer sequences of the U3 region of the 3’LTR is deleted or mutated so that 

the viral vectors are self-inactivating (SIN). This could avoid the problem of insertional 

activation of cellular oncogenes through the promoter and enhancer elements of the proviral 

LTR.  

The packaging sequences (ψ) are required for encapsidation of the vector RNA. The Rev 

response elements (RRE) could be recognized by the Rev protein of HIV which promotes 

the efficient transport of unspliced RNAs containing RRE from the nucleus to the cytoplasm. 

The central polypurine tract (cPPT) is to enhance nuclear translocation of the vector in the 

target cell.  

The transgene in lentiviral vectors is normally regulated by internal promoters such as CMV 

promoter or other tissue specific promoter to restrict the expression to a specific cell type or 

tissue. In addition, this approach allows the incorporation of regulatable transcriptional 

elements that may be switched on and off via exogenous stimuli, for example the 

tetracycline-regulated system, in which the transgene expression is induced in a 
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tet-dependent manner. Another example is the inclusion of Flap elements, which could work 

together with Cre to regulate the expression of transgene.  

An important improvement of the lentiviral vectors compared to other retroviral vectors is 

the inclusion of cis-acting transcriptional regulatory elements, such as the WPRE (wood 

chuck hepatitis virus post-transcriptional regulatory element), which enhances transgene 

expression in the target cells. The WPRE has to be present within the transgene transcript in 

sense orientation and is placed 3’ of the transgene cDNA upstream of the 3’ LTR. 

To package the replication-defective vector into virions, the necessary viral proteins are 

provided in trans in the packaging cell. Studies on HIV-1 demonstrated that structural 

components of lentiviruses can be provided in trans by packaging plasmids, and viral 

particles can be assembled by expressing viral proteins in packaging cells. The third 

generation of lentiviral packaging constructs includes three plasmids. One plasmid carries 

gag, pol (the two necessary viral gene), and the HIV RRE. A separate expression plasmid 

encodes Rev, which facilitates the expression of gag and pol. The third plasmid incorporates 

the G protein of the vescular stomatitis virus (VSV-G). The major advantages of 

incorporation of the VSV-G protein are (a) the extremely broad host range of VSV, which 

enters the host cell by membrane fusion via the interaction with phospholipid components of 

the cell membrane (Mastromarino, Conti et al. 1987) and (b) the ability to concentrate 

VSV-G pseudotyped particles more than 1000-fold (titers >109 IU/ml) by 

ultracentrifugation (Burns, Friedmann et al. 1993), which has important practical 

implications. Splitting the packaging genome into multiple units not only increases the 

safety of lentiviral vectors but also facilitates pseudotyping of lentiviral vectors with the 

envelope of different viruses. 
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Figure 1-7. Sketch of lentivial vectors system. A. key components of lentiviral vectors. B. 
sketch of packaging vectors. (Pfeifer and Verma 2001) 

 

 

1.4 Transgenic mice 

1.4.1 Transgenic mouse as an invaluable model 

A transgenic animal is one that carries a foreign gene that has been deliberately inserted into 

its genome. The ability to introduce and express exogenous genes of interest in animals has 

become an indispensable tool to modern biologists (Jaenisch 1988). Using transgenic 

techniques, a characterized genetic sequence may be evaluated within the specific genomic 

background of the whole animal. Currently the most common uses of transgenic animals are 

(1) for studies of tissue-specific and developmental-stage-specific gene regulation and (2) 

for experiments of the phenotypic effects of transgene expression. Among the experimental 

animals, mouse is chosen as a widely used model for good reasons (Gondo 2008). Not only 

because it is closely related to humans but also because it has more than 100 years of history 
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in genetic analysis. Over this period many mutants were identified, a number of inbred lines 

were established and gene mapping had been conducted more extensively than in any other 

mammalian species. Mouse exhibits a short life span with the large litter size that is suitable 

for genetic studies. In addition, mouse is currently the only species for which embryos can 

be manipulated using available ES-cell (embryonic stem cell) technologies. Furthermore, 

technologies for freezing embryos and gametes are well established in mouse, allowing in 

vitro fertilization to be combined with embryo transfer methods. Thus, valuable mouse lines 

can be easily and stably maintained in liquid nitrogen for many years while requiring 

minimal space and manpower. 

Plenty of technologies have been developed to control the expression of interested genes 

and facilitated the generation of transgenic mouse, among them are gene targeting (Smithies, 

Gregg et al. 1985; Wong and Capecchi 1986; Capecchi 2005) including knockout and 

knockin, specific expression of trangene using tissue specific promoters, introduction of 

dominant negative mutations to eliminate the activities of the wild-type gene products, 

insertion of a transgene as a mutagen, and disruption of the gene functions by RNA 

interference. Furthermore, the employment of inducible regulation approaches (Lewandoski 

2001), such as the Cre/loxP (Akagi, Sandig et al. 1997), the Flp/Frt (Theodosiou and Xu 

1998) and the tetracycline system (Berens and Hillen 2003), have greatly expanded the 

spectrum of transgenic mice. In cases where mutations could provoke lethality during 

development or invalidation of wildly expressed genes might lead to a complex phenotype 

affecting multiple tissues, it was limited to create mouse carrying such kinds of mutations. 

However, when applying inducible systems, the expression of such mutations could be 

rendered conditional, thus make it possible to generate mouse expressing the transgenes or 

mutations only in a specific time period or in one of the interested tissue. 

Two methods of producing transgenic mouse are widely used, one is injecting the desired 

gene into the pronuclear of a fertilized mouse egg (Rulicke and Hubscher 2000), and the 

other is using transformed ES cells with the desired DNA (Robertson 1991). 
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1.4.2 Generation of transgenic mouse through pronuclear injection 

The pronuclear microinjection method (Rulicke and Hubscher 2000) is the most extensively 

and successfully used method of gene transfer in mouse. It means microinjection of a 

purified double-stranded DNA sequence directly into the pronuclei of fertilized zygotes to 

produce a transgenic animal. If this transgene is integrated into one of the embryonic 

chromosomes, the animal will be born with a copy of this new information in every cell. 

The animal that develops after receiving the transgene DNA is referred to as the founder (F0) 

of a new transgenic lineage. If the germ cells of the founder transmit the transgene stably, 

then all descendants of this animal are members of a unique transgenic lineage. A 

homozygous genotype may be produced by the mating of a pair of hemizygous F1 siblings 

(Fig 1-8).  

Despite the relatively simpleness, this method has some shortcomings. Firstly, integration of 

foreign DNA into the embryonic genome generally is a random event with respect to the 

chromosomal locus. Therefore the probability of identical integration events in two embryos 

receiving the same transgene is overwhelmingly unlikely. Secondary, it is impossible to 

regulate exactly how many copies of the transgene will be introduced into the embryo and 

how many will join together to integrate. In addition, the transgene can insert into functional 

endogenous genes and interrupt the normal expression of them, which may be 

inconsequential or lethal. Alternatively, observable insertional mutagenesis might be 

apparent when the insertion interferes with the expression of an endogenous 

developmentally active gene. Thus the identification of the locus of transgene insertion is of 

great value when analyzing these transgenic animals. 
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Fig 1-8. Generation of transgenic mice through pronuclear injection. The construct 
containing a promoter, the target transgene and a poly A sequence is microinjected to the 
pronuclei of zygotes from donor mice. The injected embryos are transplanted into 
pseudopregnant foster mothers. Fonders are verified and further breed to establish 
transgenic lines. (From http://www.imbim.uu.se) 

 

1.4.3 ES cell-mediated transgenic mice 

ES cells are pluripotent cells derived from the inner cell mass of blastocyst-stage embryos. 

They can be maintained in culture as undifferentiated under the proper growth conditions. A 

broad spectrum of strategies has been designed to create genomic alterations in these cells. 

Homolougous recombination-based gene  targeting, heterologous site-specific 

recombinases (Cre recombinase, Flp recombinase), positive and negative selectable markers, 
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reporters, and the availability of the mouse genome sequence have created an arsenal of 

tools that allow tailoring the mouse genes and genomes at will. When the genetically altered 

ES cells are injected into a host blastocyst, or aggregated within a morula-stage embryo, 

they have the capacity to contribute to all tissues of the resultant chimeric mouse or fully ES 

cell–derived F0 generation mouse (Poueymirou, Auerbach et al. 2007) (Figure 1-9). Most 

important, ES cells can contribute to germ cells and transmit the genetic mutations in vivo, 

allowing development of established mouse lines in which the altered gene(s) are carried.  

ES cell-mediated transgenesis has several advantages over the standard pronuclear DNA 

injection. ES cells make the site specific gene targeting possible. They provide a higher 

frequency of low-copy numbers or even single copy of transgene integration. In addition, 

modified ES cell clones can be tested in vitro for cell type specific expression by ES cell 

differentiation assays. 

 
Figure 1-9. Production of trangenic mice by ES cell-mediated methods. Genetically 
modified ES cells were aggregated to the 8-cell embryos or microinjected into the 
blastocysts. Chimeras could derive from both ways. But it is also possible to generate F0 
generation mice fully derived from ES cells by laser assisted injection of ES cells to 8-cell 
embryos.  
 

1.4.4 The Cre/loxP system 

The Cre protein is a recombinase identified in the P1 bacteriophage, which reacts when it 

recognizes a sequence of 34 base pairs (called loxP) in a segment of DNA (Kilby, Snaith et 

al. 1993) (Figure 1-10). When two loxP sites are oriented in the same direction, the Cre 

recombinase induces the deletion of the DNA segment placed between them. Conversely, if 
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the loxP sites are oriented in opposite direction, recombination induces its inversion. Cre 

recombinase activity does not require a DNA co-factor or particular topology. Moreover, it 

is active in the eukaryote cells (Sauer and Henderson 1988) in vitro and in vivo.   

To take the advantage of the Cre/loxP system to establish conditioned transgenic mice, the 

first step is to create mice carrying alleles in which two loxP sites surround the gene or 

sequence to be studied without disrupting its activity. These mice are then crossed with a 

transgenic mouse expressing the Cre recombinase in a particular cell type. In the resulted 

offsprings, the Cre recombinase promotes the deletion of the sequences located between the 

loxP sites and induces a null mutation in the cell type in which the transgene is expressed. 

So as long as a line of transgenic mice expressing protein Cre in the tissue concerned is 

available, tissue specific transgenic mice can be easily derived (Tsien, Chen et al. 1996; 

Shibata, Kanamaru et al. 1997; Kulkarni, Bruning et al. 1999)  

 

 
Figure 1-10. The Cre/loxP system and its application. The loxP site, symbolized by a 
triangle is a sequence of 34 base pairs composed of palindromic sequences of 13 bp 
separated by a sequence of 8 bp (a). Cre recombinase specifically recognizes this sequence, 
provokes the cleavage in DNA (vertical arrows, a) and induces the recombination of DNA 
between the two loxP sites as illustrated in (b). Recombination could result in gene deletion 
or inversion(c). If the two loxP sites have the same orientation, the DNA region situated 
between these sites is deleted during recombination. If the orientation of the two loxP sites 
is opposed, recombination leads to the inversion of the region comprised between the two 
sites. (Chales Babinet 2001) 
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1.5 Aim of the study 

Siglec-11 is a recently identified CD33-related Siglec. It is identified as a human-specific 

gene expressed in microglia. When considering the features of the CD33-related Siglec 

family and the specific expression pattern of Siglec-11 on tissue macrophages, particularly 

in brain microglia, one can imagine that this evolutionally new Siglec might be developed in 

humans as an important microglial-specific molecule to create an immunosuppressive 

milieu in the CNS. Thus, we were asking the following questions: Is Siglec-11 involved in 

anti-inflammatory signaling in microglia? Does Siglec-11 have anything to do with 

neuroinflammatory diseases such as multiple sclerosis and Alzheimer’s disease?  

To reveal the answer to these questions, we set out to study the function of Siglec-11 in 

microglia. Due to the limitation in acquiring human microglial cell, our functional assay was 

based on mouse cells. First, we aimed to establish a microglial cell model which expresses 

Siglec-11 for functional assays in vitro. Second, functional study of Siglec-11 was focused 

on microglia. Third, the ligand that Siglec-11 might bind was investigated. Fourth, we 

aimed to generate a transgenic mouse model which expresses Siglec-11 specifically in 

microglia and macrophages to study the function of Siglec-11 in vivo.  
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2 MATERIALS AND METHODS 

2.1 Materials 

2.1.1 Buffers and Solutions 

10X (0.125M) Phosphate buffered saline (PBS), pH 7.3 

Components Concentration Company 

NaH2PO4*H2O 0.007M Roth, Germany 

NaH2PO4*7H2O 0.034M Roth, Germany 

NaCl 0.6M Roth, Germany 

ddH2O up to 1 liter Roth, Germany 

 

4% Paraformaldehyde (PFA), pH 7.3  

Components Amount Company 

PFA 20g Sigma, Germany 

NaOH 30ml Roth, Germany 

PBS (10X) 50ml  

ddH2O up to 1 liter Roth, Germany 

 

10X TBE buffer 

Components Concentration Company 

Tris-Base 1.78M Roth, Germany 

Boric Acid 1.78M Sigma, Germany 

EDTA 0.04M Roth, Germany 

ddH2O up to 2 liter Roth, Germany 

 55550X TAE buffer (pH 8.5) 

Components Amount Company 

Tris-Base 242 g Roth, Germany 

Acetic acid 57.1 ml Sigma, Germany 0.5 M EDTA 100 ml Roth, Germany 

ddH2O up to 1 liter Roth, Germany 

 

6X Loading buffer 

Components Concentration Company 

EDTA 0.5M Roth, Germany 
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Sucrose 60% Roth, Germany 

Bromphenol Blue 0.04% Sigma, Germany 

Xylene Cyanole 0.04% Sigma, Germany 

Ficol-400 2% Bio-Rad, Germany 

 

1% Agarose gel  

Components Amount Company 

Agarose 0.5g Biozym, Germany 

Ethidium Bromide 1.25µl Roth, Germany 

TBE (1X) 50ml  

 

Reverse transcription (RT) mix  

Components Amount Company 

Total RNA 5µg  

Hexanucleotide Mix (10X) 1µl Roche, Germany 

dNTP mix (10mM) 1µl Sigma, Germany 

DTT mix (10mM) 2µl Invitrogen, Germany 

5X RT 1st Strand Buffer 4µl Invitrogen, Germany 

RT enzyme (200U/ml) 1µl Invitrogen, Germany 

ddH2O up to 20µl Roth, Germany 

 

Real time RT-PCR mix  

Components Amount Company 

cDNA (200ng/µl) 1µl  

SYBR Green Master Mix (2x) 12.5µl Applied Biosystems 

Primer mix (20pmol/µl) 1µl MWG, Germany 

ddH2O 10.5µl Roth, Germany 

 

PCR reaction mix (50 µl ) 

Components Amount Company 

Buffer (10X) 5µl Roche, Germany 

dNTP mix (10mM) 1µl Amersham Bioscience, USA 

Primer pair mix (20 pmol/ul) 2µl MWG, Germany 

Taq polymerase(100U/20ul) 1µl Roche, Germany 

ddH2O Up to 50µl Roth, Germany 

 

Digestion reaction mix (20 µl sample) 
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Components Amount Company 

Buffer (10X) 2µl Roche, Germany 

Enzyme  10 U Roche, Germany 

Plasmid/insert Up to 1 µg  

ddH2O Up to 20µl Roth, Germany 

 

Ligation reaction mix (20 µl sample) 

Components Amount Company 

Buffer (10X) 2µl Roche, Germany 

T4 Ligase (1U/ul)  

Or T4 Ligase (2000 1U/µl) 

4 µl 

1 µl 

Roche, Germany 

NEB, Germany 

Plasmid and insert fragment In correct ratio  

ddH2O Up to 20µl Roth, Germany 

 

Protein lysis buffer 

Components Concentration Company 

RIPA buffer Cat.no.R2078 Sigma, Germany 

PMSF  1 mM (174 µg/ml) Sigma, Germany 

Aprotinin  5 µg/ml Sigma, Germany 

Leupeptin 5 µg/ml Sigma, Germany 

Phosphatase inhibitors  Sigma, Germany 

Na3VO4  NEB, Germany 

 

Buffers for SDS-PAGE and Western Blot 

Components Cat. No  Company 

NuPAGE LDS Sample Buffer (4x) NP0007 Invitrogen, Germany 

NuPAGE® MES SDS Running 

Buffer (20X) 

NP0002 Invitrogen, Germany 

NuPAGE® Tris-Acetate SDS 

Running Buffer (20X) 

LA0041 Invitrogen, Germany 

NuPAGE® Transfer Buffer (20X) NP0006 Invitrogen, Germany 

BenchMark® Protein Ladder 10747-012 Invitrogen, Germany 

SeeBlue® Pre-Stained Standard LC5625 Invitrogen, Germany 

 

PBS-Tween-20 (PBST) 

Components amount Company 

Tween-20 500 µl  

1x PBS 1000 ml  
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Membrane blocking solution 

Components concentration Company 

BSA 3% Sigma, Germany 

Or Milk powder 5 % Sigma, Germany 

PBST 100 ml  

 

2.1.2 Cell culture media and reagents 

DMEM medium (for MEFs, 293FT cells) 

Components Concentration Company 

DMEM, high glucose  Gibco, Germany 

Fetal bovine serum 10% Gibco, Germany 

Na-pyruvate 0.1mM Gibco, Germany 

L-glutamine 4mM Gibco, Germany 

Non-essential amino acids 0.1mM Gibco, Germany 

Penicillin/Streptomycin (100X) 1% Gibco, Germany 

 

Basal medium  

Components Concentration Company 

BME  Gibco, Germany 

Fetal bovine serum 10% Gibco, Germany 

L-glutamine 1% Sigma, Germany 

D-glucose (45%) 1% Sigma, Germany 

Penicillin/Streptomycin (100X) 1% Gibco, Germany 

 

BME-based neuronal medium  

Components Concentration Company 

BME  Gibco, Germany 

Fetal bovine serum 10% Gibco, Germany 

B-27 2% Gibco, Germany 

L-glutamine 1% Sigma, Germany 

D-glucose (45%) 1% Sigma, Germany 

Penicillin/Streptomycin (100X) 1% Gibco, Germany 

 

Embryonic stem cell (ES) medium  

Components Concentration Company 
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DMEM, high glucose  Gibco, Germany 

Fetal bovine serum 15% Gibco, Germany 

Na-pyruvate 0.1mM Gibco, Germany 

L-glutamine 4mM Gibco, Germany 

Non-essential amino acids 0.1mM Gibco, Germany 

L-alanin-L-glutamine 2mM Gibco, Germany 

β-mercaptoethanol 0.1mM Millipore, Germany 

Leukemia inhibitory factor  1000U/ml Millipore, Germany 

 

RPMI medium  

Components Concentration Company 

RPMI1640  Gibco, Germany 

Fetal bovine serum 10% Gibco, Germany 

 

Macrophage GM-CSF conditioned medium 

Components Concentration Company 

Fetal bovine serum 5% Gibco, Germany 

Supernatant of 5637 cultured medium 45%  

RPMI medium 50%  

 

Other cell culture reagents  

Opti-MEM Gibco, Germany 

Trypsin-EDTA (0.05%) Gibco, Germany 

Chicken serum Gibco, Germany 

Gelantine (0.1%) Sigma, Germany 

Poly-L-lysine Sigma, Germany 

PBS (1X) Gibco, Germany 

Tryptan blue Gibco, Germany 

Normal goat serum Sigma, Germany 

LPS Sigma, Germany 

Recombinant mouse Interferon γ HyCult Biotechnology, Germany  

Fluoresbrite Polychromatic Red Microspheres Polysciences, Germany 

TPA Sigma, Germany 

G418 (neomycin) Sigma, Germany 

M16 and M2 medium Sigma, Germany 

EndoN AbCys S.A, France 

Fluoresbrite polychromatic red 1.0 micron microspheres 

(the beads for phagocytosis assay) 

Polysciences, USA 
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2.1.3 Cells and animals 

Cell Common name Source 

ES-129-MPI MPI  kindly provided by Ahmed 

Mansouri, MPI Göttingen 

ES-Bruce4 Bruce4 kindly provided by Frank Edenhof 

and Anke Leinhaas, RNB, Bonn 

Murine embryonic fibroblasts (MEF) MEF isolated from CD1 mice 

(E14.5);kindly donated by Anke 

Leinhaas 

293FT 293FT Invitrogen, Germany 

Primary murine microglia  Primary microglia isolated from C57Bl/6J newborns 

(p3-5) 

U937 monocytic cell U937 ATCC, Germany 

Human urinary carcinoma cell line 

(ATCC 5637) 

5637 ATCC, Germany 

 

 

Mouse strain Source 

CD1 Charles River Laboratories, Germany 

C57Bl/6J Charles River Laboratories, Germany  

B6D2 F1 Charles River Laboratories, Germany 

 

 

2.1.4 Antibodies 

Primary antibodies  

Antibody Host reactivity Conjugation Company 

CD16/CD32 (FC-Block) rat     BD pharmingen, Germany 

CD45 rat  biotin BD pharmingen, Germany 

Flag mouse   Sigma, Germany 

Flag mouse  Cy3 Sigma, Germany 

IgG1κ isotype mouse   BD pharmingen, Germany 

Whole rabbit serum rabbit   Dianova, Germany 

Siglec-11 goat human Biotin R&D, Germany 

Iba1 rabbit mouse  Wako, Germany 

GFP rabbit mouse  Abcam, Germany 

β III tubulin mouse mouse  Sigma, Germany 

β- actin mouse   Millipore, Germany 
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Biotin IgG1κ isotype mouse  Biotin BD pharmingen, Germany 

 

Secondary antibodies for flow cytometry 

Antibody Reactivity Host Conjugation Company 

PE biotin    streptavidin Dianova, Germany 

Alexa 488  rabbit goat           Invitrogen, Germany 

 

Secondary antibodies for immunostaining 

Fluorophore Reactivity Host Company 

Cy3 mouse goat Dianova, Germany 

Cy3 rabbit goat Dianova, Germany 

Alexa 488  rabbit goat Invitrogen, Germany 

Alexa 488  mouse goat Invitrogen, Germany 

FITC mouse goat Dianova, Germany 

FITC rabbit goat Dianova, German 

FITC- Strepvidin biotin  Dianova, German 

Cy3- Strepvidin biotin  Dianova, German 

 

Secondary antibodies for Western blot 

Antibody Reactivity Host Conjugation Company 

streptavidin biotin  HRP Millipore, Germany 

IgG goat rabbit HRP         Dianova, Germany 

 

Other staining reagents 

DAPI  Sigma, Germany 

Propidium iodide  Sigma, Germany 

 

 

2.1.5 Primer (purchased from MWG, Germany) 

Primers used for real-time PCR 

Target Orientation Sequence 

GAPDH forward 5’- AACTTTGGCATTGTGGAAGG -3’ 

 reverse 5’- GGATGCAGGGATGATGTTCT -3’  

NOS2 forward 5’- AAGCCCCGCTACTACTCCAT -3’ 

 reverse 5’- GCTTCAGGTTCCTGATCCAA -3’ 

TNF-α forward 5’- TCTTCTCATTCCTGCTTGTGG -3’ 
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 reverse 5’- AGGGTCTGGGCCATAGAACT -3’ 

IL-1β forward 5’- CTTCCTTGTGCAAGTGTCTG -3’ 

 reverse 5’- CAGGTCATTCTCATCACTGTC -3’ 

TGF-1β forward 5’- CAATTCCTGGCGTTACCTTG -3’ 

 reverse 5’- GCTGAATCGAAAGCCCTGTA -3’ 

 

Primers used for cloning 

Target Orientation Sequence 

Eco47III_XhoI_Siglec-11 
forward 5’-ATATTAGCGCTCTCGAGGCCACCATGC

TGCTGCTGCCCCTGCTGCT -3’ 

EcoRI_Siglec-11 
reverse 5’-CCGGGTGAATTCTTCGAATCATCACTT

TGGAACCATCCCTGACATCCCTG -3’ 

SfuI_4Gly_Siglec-11 
reverse 5’-ATTTCGAATCCTCCTCCTCCTCCTCCCT

TTGGAACCATCCCTGACATCTC -3’ 

 

Primers used for RT-PCR of Siglec-11 

Primer pair Orientation Sequence 

1 forward 5’-TCTCAGCCTCTCCGTGCACT-3’ 

 reverse 5’-CAAGGCAGGAACAGAAAGCG-3’ 

2 forward 5’-ACAGGACAGTCCTGGAAAACCT -3’ 

 reverse 5’-AGGCAGGAACAGAAAGCGAGCAG -3’ 

3 forward 5’-TGCTACCAGGGAAGCTGGAGCAT -3’ 

 reverse 5’-AGGCATAGTGGAGCTCCTGCTCTT -3’ 

 

Primers used for sequencing 

Target Orientation Sequence 

Siglec-11 forward 5’-CCTGAGCAATGCGTTCTTTC-3’ 

  5’-ACAGGACAGTCCTGGAAAACCT-3’ 

  5’-TGCTACCAGGGAAGCTGGAGCAT-3’ 

 reverse 5’-ATAAGCAGCAGTAGACTCGTCC-3’ 

  5’-AACACACAGATGACCGTCACCG-3’ 

  5’-AGGCAGGAACAGAAAGCGAGCAG-3’ 

  5’-AGGCATAGTGGAGCTCCTGCTCTT-3’ 

PLL backbone reverse 5’-GGGTACAGTGCAGGGGAAAGAATAGTAG-3’ 

Iba1 promoter forward 5’-ATCGATTACTATAGGATGCATCGTG-3’ 

  5’-GGGAGTTAGCAAGGGAATGAGT-3’ 

  5’-CAAGGCTATCCCTGGTATGAG-3’ 

  5’-CTCCGGGAGCTGATCTAAGTCTTTC-3’ 

 reverse 5’-CTCATACCAGGGATAGCCTT-3’ 

  5’-GTGTGGAAAGGCACCAGGAT-3’ 

  5’-CTGAACTTGTGGCCGTTTAC-3’ 
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  5’-GTTTCCTGTTTGCAGGGTACAC-3’ 

CMV promoter forward 5’-AAAATGTCGTAACAACTCCG-3’ 

PGK promoter forward 5’-TAGCACGTCTCACTAGTCTCG-3’ 

 reverse 5’-GCGAAGGAGCAAAGCTGCTATT-3’ 

Neo forward 5’-GGCTATGACTGGGCACAACAG-3’ 

  5’-GATGATCTCGTCGTGACCCATG-3’ 

  5’-TTTCTCGGCAGGAGCAAGGT-3’ 

 reverse 5’-TTTCTCGGCAGGAGCAAGGT-3’ 

GFP forward 5’-ACGTAAACGGCCACAAGTTCAG-3’ 

  5’-ACCACTACCAGCAGAACACC-3’ 

 reverse 5’-TGCAGATGAACTTCAGGGTCAG-3’ 

 

2.1.6 Consumables 

6-well culture plates Cellstar, VWR International, Germany 

15ml tubes Cellstar, VWR International, Germany 

50ml tubes Sarstedt, Germany 

5ml, 10ml, 25ml pipets Sarstedt, Germany 

Chamber slides Nunc, Germany 

Cryovials VWR International, Germany 

75cm2, 175 cm2  culture flasks Sarstedt, Germany 

5ml polystyrene round-bottom tubes BD Falcon, Germany 

3cm, 5cm, 10cm culture dishes Sarstedt, Germany 

500µl, 1000 µl plastic tube Eppendorf, Germany 

PCR tubes Biozym Diagnostics, Germany 

10µl, 100µl, 1000µl tips Eppendorf, Germany 

5ml, 10ml syringes Braun,Germany 

Needles Braun, Germany 

Glass slides for cryosectioning Menzel, Germany 

Bottle top filters (0.25µm pore) Millipore, Germany 

Filters (0.45µm, 0.2µm pore) Sarstedt, Germany 

Transwell (8µm pore filter) Millipore, Germany 

 

2.1.7 Equipment 

Centrifuges Sorvall Discovery 90SE, Hitachi, Germany   

Megafuge, 1.OR. Heraeus, Germany   

Biofuge Fresco, Heraeus, Germany 

Cryostat Microtom HM560, Microm Int., Germany 

Flow cytometer FACSCalibur, BD Bioscience, Germany 

Electrophoresis gel chambers Blomed Analytik GmbH, Germany 
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Power supply Amersham Bioscience, Germany 

Heating block Stuart Scientific, Germany 

Incubators Heracell240, Heraeus, Germany 

Laminar air flow workbench Herasafe, Heraeus, Germany 

Microscopes Axiovert40CFL, Zeiss, Germany       

 Axiovert200M, Zeiss, Germnay 

 Fluoview1000 Confocal Microscope, Olympus, 

Germany 

 Olympus SZXZ-ILLT, Olympus corporation, Japan 

pH Meter Hanna Instruments, Germany 

Photometer Eppendorf, Germany 

Real time thermocycler ABI Prism 5700 Seqeunce Detection System, 

Applied Biosystems, UK 

Thermocycler T3, Biometra, Germany 

Vortex 2X2, VelpScientifica, Germany  

Transplantationsequipment Fine Science Tools, Germany 

 

2.1.8 Software 

Openlab4.0.1  Improvision, Germany 

CorelDRAW Graphics Suite 11, Germany 

EndNote X Thomson ISI ResearchSoft, USA 

Microsoft Office Microsoft USA, USA 

Olympus FluoView1.4 Olympus, Germany 

SDS 2.2.2 Applied Biosystems, USA 

Cellquest Pro BD Biosciences, USA 

FlowJo 6.4.7 Tree Star, USA 

KaleidaGraph 4.0 Synergy, USA 

SPSS 16.0 SPSS, USA 

Axiovision 4.6.3 Carl Zeiss Imaging Solutions, Germany 

ImageJ 1.39u NIH, USA 

CorelDRAW Graphics Suite 12, USA 

Vector NTI Advance 10 Invitrogen, USA 

Gene Runner Hasting Software, Inc. USA 

Primer Premier 5.0 Premier Biosoft International, USA 
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2.1.9 Kits and additional reagents 

RNA and DNA isolation kit 

RNeasy Mini Qiagen, Germany 

RNeasy Mini for lipid tissue Qiagen, Germany 

RNAse free DNAse Kit Qiagen, Germany 

QIAprep Plasmid Miniprep Qiagen, Germany 

Endofree Plasmid Maxiprep Qiagen, Germany 

Min iElute Gel extraction Qiagen, Germany 

QIAquick Gel extraction Qiagen, Germany 

Red Extract-N-Amp Tissue PCR Kit Sigma, Germany 

 

Additional reagents 

Lipofectamine2000 reagent Invitrogen, Germany 

Ampicilin Sigma, Germany 

LB agar and LB media Fluke Biochemika 

DMSO Sigma, Germany 

Propidium Iodide Sigma, Germany 

Glycerol Sigma, Germany 

Tissue tek O.C.T. compound Sciences Services, Germany 

Ethanol Sigma, Germany 

Vectashield Vector Laboratories, USA 

Bovine serum albumin Sigma, Germany 

Hexamer random primers  Roche, Germany 

Trizol Reagent Invitrogen, Germany 

 

2.1.10 Anesthethics 

Animals were anesthetized with Ketamin intraperitoneal (i.p.) (Ketamin 100 mg per kg 

body weight) before embryo transplantation or perfusion.   

 

2.2 RT-PCR analysis of Siglec-11  

RNA was isolated from human brain tissue derived from patients undergoing epilepsy 

surgery (kindly provided by the Department of Neurosurgery and Epileptology of the 

University Hospital Bonn) using RNeasy Mini for lipid tissue Kit or from cultured cells 
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using Trizol Reagent. Reverse transcription of RNA was performed with SuperScript III 

reverse transcriptase and hexamer random primers using 5µg total mRNA. Primer pairs 

designed according to the coding region of Siglec-11 gene were used to detect the 

expression of Siglec-11. PCR was amplified for 40 cycles. Amplified product was 

electrophoresed on 1% agrose gel. 

 

2.3 Plasmids construction 

PLL3.7 (provided by L. van Parijs, MIT, Cambridge, MA) was modified to contain a 

neomycin selection marker by replacing the U6 promoter with a cassette of 

phosphoglycerate-kinase (PGK) promoter and neomycin resistant gene. Plasmids 

expressing GFP (Invitrogen), Siglec-11 (RZPD, Deutsches Ressourcenzentrum fuer 

Genomforschung GmbH), flag and GFP tagged Siglec-11 were cloned based on the 

modified pLL3.7 back bone behind a cytomegalovirus (CMV) promoter. In some cases 

the CMV promoter was replaced by ionized calcium-binding adaptor molecule 1 (Iba1) 

promoter. Described genes or fragment were obtained from corresponding constructs by 

PCR using extended primers allowing the product to be inserted into the following vectors 

by specific restriction sites. Digested vector backbone and insert were ligated and 

transformed to Top10 competent cells. Positive colonies selected by antibiotics were 

inoculated in a small volume. Plasmid DNA was isolated and restrictively digested using 

the corresponding enzymes. Colonies having the insert were expanded and purified using 

EndoFree Maxi Kit (Qiagen,Germany). The sequence of each plasmid was verified 

further by sequencing. 

 

2.4 Viral particle production 

The 293FT (purchased from Invitrogen and expanded in the laboratory) packaging cell 

line was kept in Dulbecco's Modified Eagle's Medium (DMEM; Gibco) with 1% 

penicillin/streptomycin and glucose at 37°C in 10% CO2. Viral particles were produced in 
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10 cm dishes precoated with poly-L-Lysine. Three µg of targeting plasmid together with 

3µg of each of the three packaging helper plasmids were co-transfected using 

Lipofectamine 2000 reagent (Invitrogen) to 6 million 293FT cells, which were expanded 

at least once before transfection. Cells were transfected in Opti-MEM medium without 

antibiotics containing 10% FBS. Medium was replaced by fresh DMEM 6 to 16 hours 

post-transfection. Viral supernatant (10 ml) was collected at 48-72 hrs post-transfection. 

Viral particles were then ultracentrifuged using a Sorvall DiscoveryTM 90SE 

ultracentrifuge at 25000 g (19600 rpm) for 90 min at 4°C to increase titers. Concentrated 

viral particle pellet were resuspended in 300 µl PBS by slightly shivering overnight at 4°C. 

Viral particles were either immediately applied to transduce cells or stored at -80°C in 

small aliquots for further usage. 

 

2.5 Lentivial transduction of cells 

To transduce adherent cells, cells were normally seeded at a density of 5x105cells/ml in 

6-well dish and incubated overnight to 24 hours with 108 Transducing Units (TU)/ml of 

lentiviral particles (50 µl viral particle per ml medium).  

To transduce cells in suspension, viral particles were added to 5x105cells/ml cells in 

6-well dish and first centrifuge at 2400 rpm, 32°C for 90 min. After centrifugation step, 

cells were kept in 37°C and 5% CO2 incubator. 24 hours post-transduction, medium were 

refreshed into complete culture medium. In cases to enrich the positively transduced cells, 

neomycin (also know as G418) selection was applied at a concentration of 400 to 1000 

µg/ml (according to the cell killing curve of different cell types) from 48 hours 

post-transduction for 5 days. 

To transduce mouse ES cells, cells were plated at a density of 3 x105cells/well in 6-well 

dish with MEF feeders. Six hours later, when the ES cells were attached but still in 

single-cell condition, the medium was refreshed with 50 µl viral particle in 1 ml medium 

and incubate for 24 hours. Medium was changed afterwards and cells were spilt into 10 

cm dish 48 hours post-transduction. G418 was applied then as to the other cell types for 

10 days at a concentration of 230 µg/ml. Single ES cell colony surviving the selection 
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were picked out manually to 96-well plate with MEF feeder cells. After verifying the 

incorporation of the target gene by PCR, the positively transduced colonies were 

expanded and used for further experiments.  

 

2.6 PCR analysis of the incorporation of the lentiviral vector to the 

transduced cells 

Genomic DNA was isolated from the cells using QIAmp DNA Mini Kit. GAPDH was 

used as a positive control for the quality and quantity of DNA. Primers specific for 

Siglec-11 gene were used to detect the incorporation of the gene to the genome of the 

target cells. PCR was amplified for 40 cycles. Amplified DNA was electrophoresed on 

1% agrose gel.  

  

2.7 Culture of primary microglia 

Primary microglia were prepared from brains of postnatal day 3 or 4 (P3 or P4) of 

C57BL/6 mice. In brief, meninges were removed mechanically. Cells from hippocampus 

and cortex were isolated and dissociated by triturating and cultured in basal medium for 

14 days to form a confluent mixed glial monolayer. To collect microglial cells, the 

cultures were shaken on a rotary shaker (350 rpm) for 3 hours. The detached microglial 

cells were seeded on PLL coated culture dishes. Purity of the isolated microglia was 

determined by flow cytometry analysis with antibody directed against CD11b.  

 

2.8 Culture of 5637 cell line (human urinary bladder carcinoma)  

5637 is a growth factor producing cell line established from a human primary bladder 

carcinoma. The supernatant of the cell line was used as a substitute for the rhGM-CSF. 

The cells were cultured in tissue culture flasks in RPMI medium at 37°C with 5% CO2. 

Confluent cells were split in a 1:5 ratio. The supernatant of the cell line was collected 
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every 3rd days. Dead cells and cell debris were removed from the supernatant by 

centrifuging for 10 minutes at 1000rpm. The supernatant was then passed through a 

0.2µm filter and used as a substitute for rhGM-CSF to prepare macrophage GM-CSF 

conditioned medium.  

 

2.9 Culture and differentiation of human monocytic cell line 

The human monocytic cell lines U937 (ATCC, Germany) was maintained in RPMI 

medium supplemented with 10% FBS. New cultures of 2x105/ml were made when the 

cell density was about 10x 105/ml. To differentiate the suspending cells into macrophages, 

cells were treated with 200 ng/ml of TPA (Sigma, Germany) in macrophage GM-CSF 

conditioned medium for 24 hours. Attached cells were further maintained in macrophage 

GM-CSF conditioned medium. Trypsin was applied to detach the cells from the dish 

when necessary.  

 

2.10 Culture of ES cells 

One or two days before starting the culture of ES cells, irradiated MEF feeders were 

prepared in tissue culture plates pre-coated with gelatin (0.1%) at a density of 0.5x 105 

cells/cm2 to form a monolayer. ES cells were seeded to the feeder cultures at a density of 

3 x 106 cells / 100 mm plate in ES culture medium, kept at 37°C with 5% CO2. The cells 

were examined and media was changed daily. To split the cells, 0.25% trypsin-EDTA was 

used for MPI ES cells (MPI, Göttingen), while 2% of chicken serum was added to the 

0.25% trypsin-EDTA when splitting the Bruce4 ES cells (Frank Edenhof and Anke 

Leinhaas, Bonn).   

 

2.11 Immunocytochemistry of cultured cells 

Cells were fixed in 4% PFA for 15 min at room temperature (RT), blocked by 5% bovine 
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serum albumin (BSA), 5% normal goat serum (nGS) and 0.1% Triton-X for 30 min, and 

then immunostained with a primary antibody diluted in the blocking solution at the right 

concentration for overnight at 4°C or for 1 hour at RT. A chromophore-conjugated 

secondary antibody was prepared in blocking solution and applied to the cells at RT for 1 

hour. Double-labeling was performed by mixing the primary antibodies from different 

producer species followed by chromophore-conjugated secondary antibodies that could 

avoid the overlap of emission length. For example Cy3 (3 µg/ml) /Alexa488 (2.5 µg/ml) 

combination were used. Nuclei of immunostained cells were subsequently labeled with 4', 

6-diamidino-2-phenylindole (DAPI) (0.1 µg/ml). Images were collected by confocal laser 

scanning microscopy (Fluoview 1000, Olympus) or fluorescence microscopy (Axioskop2, 

Zeiss). 

 

2.12 Analysis of cytokine gene transcripts by real-time RT-PCR 

RNA was isolated with the RNeasy Mini Kit from 0.5 x 105 primary microglia after 

stimulation with 500ng/ml LPS for 24 hours. Reverse transcription of RNA was 

performed with SuperScript III reverse transcriptase and hexamer random primers. 

Quantitative RT-PCR with specific oligonucleotides was performed with SYBR Green 

PCR Master Mix using the ABI 5700 Sequence Detection System and amplification 

protocol for the ABI 5700 Sequence Detection System. Amplification specificity was 

confirmed by the analysis of the melting curves. Results were analyzed with the ABI 5700 

Sequence Detection System v.1.3 after establishing the reaction efficiency for each primer 

pair. Quantification using the delta-CT method was carried out. 

 

2.13 Western blot analysis of the protein expression 

Total protein was isolated from human brain tissue using Trizol Reagent, followed by  

chloroform，ethanol and isopropanol precipitation. Briefly, the tissue was homogenized in 

Trizol Reagent at 1ml per 1mg tissue. Chloroform was added to the homogenate to 

separate it into aqueous and organic phases after centrifugation. The interphase and the 
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organic phase contained DNA and proteins. Sequentially DNA was precipitated with 

ethanol. Proteins were isolated from the phenol-ethanol supernatant obtained after 

precipitation of DNA and washed with 3 times of 0.5 ml of 0.3 M guanidine 

hydrochloride in 95% ethanol and one time of 100% ethanol. The protein pellet was then 

resuspended in 1% SDS and stored at -80 0C. To prepare protein lysate from cultured cells, 

cells in culture dish were rinsed once with PBS at RT. RIPA buffer (Sigma, 107cells/ml) 

was added to homogenize the cells on ice. Adherent cells were further removed with a cell 

scraper. The resulting lysate was transfered to a microcentrifuge tube and gently rocked at 

4° C for 15 minutes. Afterwards, cell lysate was centrifuged at 10,000 g for 10 minutes at 

4° C. The supernatant was collected to a new microcentrifuge tube as the whole cell lysate.  

Protein concentration was measured using the BCA Kit from Thermo Scientific Pierce 

Protein Research Products. 50 µg of protein was loaded to 10% NuPAGE® Novex 

Bis-Tris Gels. SDS-PAGE was carried out using the NuPAGE® Electrophoresis System 

according to the manufacture. Biotinylated anti-Siglec-11 antibody and anti-β-actin 

antibody was used at 0.2 ug/ml and followed by proper secondary antibody to blot the 

target proteins. Antibody binding was visualized with SuperSignal West Pico 

Chemiluminescent Substrate Kit (Pierce Biotechnology). 

 

2.14 Removal of PSA by EndoN treatment 

EndoN (AbCys S.A, France) was diluted in the medium of the culture at a concentration 

of 0.5 U/ml and added to the cells. Cells were incubated at 37oC for at least 5 hours. 

 

2.15 Microglia-neuron co-culture 

Primary neuronal cultures were prepared from hippocampus and cortex of C57BL/6 mice 

embryos (E15) as described previously (Neumann H. et al, 2002). Briefly, neurons were 

isolated from whole brains of embryonic day 16 mice, and the meninges were removed. 

Cells (5 x 103/ml) were plated into dishes that had been pre-treated with poly-L-ornithine 

(0.5 mg/ml; Sigma, St. Louis, MO) and were cultured in BME-based neuronal medium. 
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Neurons at day 4 post-preparation were used to co-culture with micrglial cells. Microglia 

were added to the neuron culture at the ration of 1:10 (micorglia to neuron) in the 

BME-based neuronal medium. 48 hours later, cells were fixed with 4% PFA at RT for 15 

minutes.  

 

2.16 Neurite and neuroal cell body evaluation 

Immunocytochemistry was performed after fixation with 4% PFA. Cells were stained 

with β-tubulin-III antibody followed with Cy3 conjugated secondary antibody and 

subsequently DAPI labeling of the neulei. Five randomly selected areas in each dish were 

scanned and analyzed by confocal microscopy. β-tubulin-III positive neuritis, which 

crossed two of four 500-µm-long parallel lines (distance of 100 µm), were counted. Total 

number of nuclei stained with DAPI and double labeled with antibodies directed against 

β-tubulin-III was counted in five microscopic fields. Value of the co-cultures with 

Siglec-11 expressing microglia was normalized to that of the the co-cultures with control 

vector expressing microglia. 

 

2.17 Aβ phagocytosis assay 

Biotinylated Aβ 42 peptide was kept at RT to allow the formation of aggregates. To 

analyze the phagocytosis capacity, cells were treated with Aβ (10 µg/ml) for 1.5 hour. 

Cells were fixed in 4% PFA and then permeabilized with 0.1% Triton X-100. Fixed cells 

were stained with Cy3-conjugated streptavidin. Microglial cells were visualized by 

staining of CD45 antibody followed with the FITC conjugated secondary antibody. 

Analysis was made using fluorescence microscopy. 5 photographs were taken of each 

well and cells emitting a yellow signal were classified as phagocytosing and counted 

accordingly. 
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2.18 Generation of transgenic mice from embryo-stem cell 

aggregation 

CD-1 mice were used as embryo donors. 4-week old CD-1 femals (Charles River) were 

superovulated by administering intraperitoneally pregnant mare’s serum (PMS), which is 

used to mimic follicle-stimulating hormone (FSH), and 47 hours later human chorionic 

gonadotropin (hCG), which is used to mimic luteinizing hormone (LH), each at a dose of 

5 IU/mice. The females were then mated with stud males. Next, females with a copulation 

plug were picked out for embryo collecting. 8-cell stage embryos were collected from 2.5 

days post-coitum (dpc) females. The zona pellucida of the embryos was removed using an 

acidic tyrode solution. Small drops (50 µl) of M16 medium (Sigma) were placed on the 

bottom of a 60-mm sterile plastic culture dish. Six or more depressions in each microdrop 

were punched with aggregation needles. Zona pellucida free embryos were washed 3 

times in M2 medium and transferred into these microdrops, one embryo inside each 

depression. ES cells lentiviral transduced with Siglec-11 and positively picked by PCR 

analysis were trypsinized for short time (1 minute) to detach from the culture dish but 

avoid dissociating them into single cells. ES cell clumps formed after incubating in M2 

medium on ice for 20 minutes. Clumps with around 16 ES cells in each were placed on 

the top of the embryo in a depression in the microdrop. The aggregates were culture 

overnight at 37o C, 5% CO2. The next day, 10-15 blastocyts and/or compact morulas were 

transferred into one uterine horn of each 2.5 dpc pseudopregnant recipient CD-1 mouse. 

Chimerical mice with 30% or more ES cell derived coat color were breed with CD-1 mice 

at age of 6 weeks to check for germ-line transmission.  

 

2.19 Generation of transgenic mice from pronuclear injection 

The pronuclear injection experiments were carried out in HET (Haus für Experimentelle 

Therapie) by the facility. For the pronuclear injection, the Iba1 promoter, cDNA of 

Siglec-11, together with WPRE cassette were separated from the vector by NotI and BsiEI 

digestion followed by 1% agrose gel electrophoresis. DNA fragment was isolated from 
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gel using the QIAquick Gel extraction kit (Qiagen) according to the manufacture’s 

instructions and supplied to the facility upon request. Otherwise, DNA was stored at a 

concentration of about 100ng/ul at -80 o C. 3-5 ng/µl of DNA was used to inject into E0.5 

zygotes collected from superovulated femal zygotes donors and transferred to 

pseudopregnant recipient CD-1 mouse according to established procedures. Newborns 

were genotyped at age of 2 to 4-week by PCR of DNA from the tail tip using primer pair 

3 of Siglec-11. Founders with the transgene were further breed to establish germ-line 

transmitting lines. 

 

2.20 Genotyping of mice 

Mouse tail tips were cut at the age of 2 to 4 weeks. DNA was prepared using the Red 

Extract-N-Amp Tissue PCR kit (Sigma) according to the manufacture’s instruction. PCR 

reaction was carried out using the Siglec-11 specific primers with 40 cycles. Amplified 

DNA was electrophoresed on 1% agrose gel. 

 

2.21 Statistics 

Data are presented as mean ± SEM of at least 3 independent experiments. Data were 

analyzed by ANOVA using SPSS computer software. 
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3 RESULTS 

3.1 Detection of splice variant 2 of Siglec-11 in human brain tissue  

In order to confirm the expression of Siglec-11 in human microglia, we analyzed human 

brain tissue by RT-PCR. In literature, it is described that Siglec-11 consists of 11 exons 

separated by introns. Three distinct primer pairs derived from different exons of Siglec-11 

gene were designed (Table 3-1) to check the transcription of Siglec-11. Human brain 

tissue was kindly provided by the Department of Neurosurgery and Epileptology of the 

University Hospital Bonn and was derived from patients undergoing epilepsy surgery. 

Total RNA was isolated freshly from three human brain tissue samples. Reverse 

transcription was carried out immediately afterwards to avoid any degradation of RNA. 

Siglec-11 was detected in all the samples tested (Figure 3-1). However, the detected gene 

product was 288 bp shorter than the product that was firstly described in literature. 

Further analysis showed that the amplified gene product was derived from the second 

splice variant of Siglec-11 (Clark, H.F. et. al., 2003). This variant 2 of Siglec-11 lacks one 

exon (exon 8 as indicated in Figure 3-1), which is coding one out of the five Ig-like 

domains (the Ig-like domain 5) in the extracellular part. 

Table 3-1. Primers used for RT-PCR analysis of Siglec-11 

Primer pair Orientation Product size (bp) 

Forward: 5’-TCTCAGCCTCTCCGTGCACT-3’ 
1 

Reverse: 5’-CAAGGCAGGAACAGAAAGCG-3’ 
103 

Forward: 5’-ACAGGACAGTCCTGGAAAACCT -3’ 
2 

Reverse: 5’-AGGCAGGAACAGAAAGCGAGCAG -3’ 
352 

Forward: 5’-TGCTACCAGGGAAGCTGGAGCAT -3’ 
3 

Reverse: 5’-AGGCATAGTGGAGCTCCTGCTCTT -3’ 
294 
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Figure 3-1. Detection of splice variant 2 of Siglec-11 in human brain tissue by 
RT-PCR. A: cDNA and protein structure of Siglec-11 as first reported by Angata T., et.al. 
The arrows show the sites of the forward and reverse primers used to detect the Siglec-11 
gene expression corresponding to the protein and cDNA. Three different human brain 
tissues were checked. RNA from the human brain tissue and cDNA from mouse brain 
tissue were used as negative control.  
 

To confirm the expression of Siglec-11 at protein level, Western blot analysis was carried 

out. Total protein isolated from three human brain tissue samples was analyzed. Protein 

lysate from 293 cells lentivirally transduced with or without the splice variant 2 of 

Siglec-11 was used as control. Results showed that Siglec-11 expression was detected in 

all the three samples (Figure 3-2). Furthermore, the protein size of the human brain 

samples was the same compared to the one in 293 cells, indicating that in these human 

brain samples the variant 2 of Siglec-11 was predominately expressed. 

 



                                                               Results 

 60 

  

Figure 3-2. Detection of splice variant 2 of Siglice-11 in human brain tissue by 
Western blot. Three different human brain tissues were analyzed. Protein lysates from 
293 cells transduced with or without Siglec-11 were used as negative and positive control. 
 

3.2 Induction of Siglec-11 in macrophages differentiated from 

human monocytes 

It was reported that Siglec-11 was detected in human tissue macrophages but not in 

peripheral blood cells. Monocytes in the blood circulation have the ability to differentiate 

into tissue macrophages. Therefore, we checked whether Siglec-11 can be induced in 

macrophages differentiated from monocytes. The human monocytic cell line U937 was 

differentiated into macrophages by stimulation with 200 ng/ml TPA 

(12-O-tetradecanoylphorbol-13-acetate) for 24 hours. Afterwards, the differentiated cells 

were treated with either LPS or INF-γ for 48 hours and RNA was subsequently isolated. 

RT-PCR showed that Siglec-11 was not detected in undifferentiated monocytes, but was 

detectable in the differentiated macrophages (Figure 3-3). However, the expression levels 

of Siglec-11 were quite low and undetectable by flow cytometry analysis (data not 

shown). 
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Figure 3-3. Induction of Siglec-11 in macrophages. The human monocytic cell line 

U937 was differentiated into macrophages and analyzed by RT-PCR. 
 

3.3 Lentiviral expression of Siglec-11 

3.3.1. Molecular cloning of the lentiviral vectors 

Siglec-11 was tagged with three time flag at the C-terminal and GFP at the N-terminal 

which was shortly termed as fSiglec-11-GFP. In detail, the CMV-3xflag cassette was 

obtained from pReceiver-M12a (RZPD, Germany) by PCR which added the restriction 

sites of NotI and EcoR47III to replace the CMV promoter in the PLL3.7 vector by 

subcloning. Then, the Siglec-11 gene lacking the stop codon was subcloned in front of the 

GFP using the SfuI and EcoR47III restriction sites. Four times of GGA bases were added 

by PCR to make a 4-time glycine linker between the Siglec-11 and GFP protein. 

Siglec-11 tagged with or without GFP under the control of CMV promoter (shortened as 

CMV-Siglec-11-GFP and CMV-Siglec-11) was modified on the basis of fSiglec-11-GFP 

by removing the flag tag and GFP tag in subcloning.  

Siglec-11 tagged with or without GFP was also cloned to the PLL3.7 lentiviral vectors 

under the control of Iba1 promoter using similar strategies.  

All these vectors were also having a PGK-Neomycin selection marker in front of the 

Sigelc11 related expression cassette. All transgenes and their associated promoters were 

flanked by two loxP sites (Figure 3-4). 
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Figure 3-4. Sketch map of the lentiviral vectors. Top: schematic map of 
PLL-PGK-Neo-CMV-GFP. Bottom: all cloned lentivral vectors to over-express Siglec-11 
tagged or non-tagged with flag and/or GFP under different promoters in the backbone of 
PLL-PGK-Neo-CMV-GFP. 
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3.3.2 Verification of Siglec-11 expression in 293 cells 

The efficiency of the vectors was tested in 293 cells except the vectors in which the 

transgene was under the Iba1 promoter, which is known as a microglial specific promoter. 

293 cells were lentivirally transduced with the corresponding vectors, and stained with 

anti-Siglec-11 antibody followed by flow cytometry analysis. Results showed that the 

transduced 293 cells were positively stained indicating that all three vector variants 

(fSiglec-11-GFP, Siglec-11-GFP and Siglec-11) led to an expression of Siglec-11 on the 

cell surface (Figure 3-5). However, the efficiency of the vectors differed. Transduction of 

293 cells with fSiglec-11-GFP (17.3%) was less effective compared to Siglec-11-GFP 

(98.3%) and Siglec-11 (97.5%).  

Transduced 293 cells were further analyzed by immunofluorescent staining with 

anti-Siglec-11 antibody. Siglec-11 was detected on the cell surface of 293 cells after 

lentiviral transduction (Figure 3-6). 

 

 
Figure 3-5. Verification of Siglec-11 expression in 293 cells. Representative flow 
cytometry results showed that Siglec-11 was expressed in 293 cells after lentiviral 
transduction.  
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Figure 3-6. Immunocytochemistry of 293 cells after lentiviral transduction with 
Siglec-11. Cells were transduced with CMV-Siglec-11 vector and stained with 
biotinylated anti-Siglec-11 antibody followed by Cy3 conjugated secondary antibody. 
Scale bar: 50 µm.  
 

3.3.3 Transduction of primary mouse microglia 

Primary mouse microglia were isolated from glial cultures which were derived from 

neonatal mice. Cells were transduced with lentiviral vectors by centrifugation for 90 

minutes. The expression of Siglec-11 was verified by RT-PCR using the Siglec-11 

specific primer pair 3 (Figure 3-7). 
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Figure 3-7. Verification of the expression of Siglec-11 in mouse primary microglia. 
Primary mouse microglia were transduced with fSiglec-11-GFP, CMV-Siglec-11 and 
Iba1-Siglec-11-GFP. RT-PCR was carried out using the Siglec-11 specific primer pair 3.  
 
 

3.4. Functional analysis of Siglec-11 in primary microglia  

3.4.1 Cytokines profile after antibody cross-linking of fSiglec-11 in 

primary microglia 

Primary microglia were isolated from mixed glial culture and transduced with lentiviral 

particles to overexpress fSiglec-11-GFP or GFP. Afterwards, cells were stimulated with 

flag antibody or isotype control antibody for 48 hours in combination with or without LPS 

treatment. Cytokine profile was analyzed by real-time PCR. Values collected from cells 

after LPS stimulation were normalized to those of without LPS stimulation. Cross-linking 

with the flag antibody inhibited the expression of IL-1β and NOS2 in Siglec-11 

transduced primary microglial cells (1.81±0.11 and 1.21±0.59, n=4) when compared to 

the control vector transduced cells (28.375±3.53 and 7.06±2.39, n=4). While there was no 

significant difference observed on the relative expression level of TGF-β1 and TNF-α 

(0.69±0.07 and 1.22±0.75 in fSiglec-11-GFP cells versus 1.03±0.15 and 3.85±0.88 in 

GFP cells, n=4) (Figure 3-8).  
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Figure 3-8. Cytokine profile after antibody cross-linking of fSiglec-11 in primary 
microglia. Primary murine microglial cells were lentivirally transduced with 
fSiglec-11-GFP vector or GFP vector. Transduced cells were cultured on plates pre-coated 
with antibodies directed against the flag-tag or a control antibody and stimulated with or 
without 500 ng/ml LPS. Gene transcripts of microglial cells were studied after 48 hours of 
culture by real-time RT-PCR. The values of the LPS stimulated cells were normalized to 
those of the cells without LPS stimulation. Data are shown as means +/- SEM, n=4. * P﹤
0.05. 
 

3.4.2 Aβ phagocytosis assay of Siglec-11 expressing primary microglia 

To investigate whether Siglec-11 has a role in Aβ phagocytosis, primary microglia were 
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transduced with Siglec-11 or the control vector. 48 hours post-transduction, Aβ was added 

to the cells for 1 hour. Cells were then fixed and visualized by staining of CD45-FITC and 

Aβ-Cy3. The percentage of phagocytosing cells out of the total cells captured in one 

visual field was calculated. Data showed that Siglec-11 transduced cells had a significant 

lower ratio of phagocytosing cells (44.17±10.1%) when compared to control cells which 

had 60.77±5.4% of the cells phagocytosing (Figure 3-9).  

 
Figure 3-9. Aβ phagocytosis assay of primary microglia transduced with Siglec-11 or 
control vector. A. Siglec-11 transduced cells. B. Control vector transduced cells. C. A 
representative confocal picture showing microglial cells phagocytosing Aβ peptides. D. 
Statistical analysis showed less Aβ phagocytose in Siglec-11 transduced microglia 
compared to control vector transduced cells. * P﹤0.05, n=4. 
 

3.4.3. Co-culture of Siglec-11 transduced microglia and primary neurons 

Microglia are known for their ability to control the death and synaptic properties of 

neurons (Alain Bessis, 2007). To investigate whether Siglec-11 plays a role in  
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neuron-microglia interactions, microglia were transduced with Siglec-11 vector and 

co-cultured with neurons. It has been shown that Siglec-11 binds weakly but specifically 

to α-2–8-linked sialic acids (NeuAc-alpha 2-8) (Angata, 2002). While the natural ligand 

of Siglec-11 is unknown yet, polysialic acid (PSA), which is present prominently in the 

nervous system, emerges as a possible ligand candidate for Siglec-11. PSA is the linear 

homopolymers of α-2, 8-linked Nacetylneuraminic acid (NeuAc-alpha 2-8)n, with n more 

than 10. In mammalian cells, most PSA is associated with neural cell adhesion molecule 

(NCAM). Expression of PSA-NCAM is abundant in embryonic nervous system. Using a 

monoclonal antibody specific to PSA-NCAM, we identified the expression of PSA not 

only in embryonic neurons (Figure 3-10), but also in neonatal microglia (Figure 3-11). To 

investigate whether Siglec-11 functions through PSA, EndoN was applied to remove PSA 

from NCAM in the cultures. The density of neurite and neuronal cell bodies was 

measured after co-culturing neurons and microglia transduced with Siglec-11 or control 

vector. It showed that when PSA was present in the neurons, co-cultures with Siglec-11 

expressing microglia had relatively higher neurite density and neuronal cell body density 

compared to the control co-cultures where microglia expressed control vector (Figure 

3-12). Particularly, the relative neurite density of co-cultures with Siglec-11 expressing 

microliga compared to those of control co-cultures was 1.6±0.2 times (mean±SEM) and 

1.8±0.2 times (mean±SEM) respectively when microglial PSA was or was not present. 

And the relative neuronal cell body density of co-cultures with Siglec-11 expressing 

microglia compared to those of control cultures was 2.1±0.4 times (mean±SEM) and 

2.1±0.3 times (mean±SEM) respectively when microglial PSA was or was not present. 

However, when PSA was removed from the neurons, the difference in the density of 

neurons was not observed anymore. Particularly, the relative neurite density of co-cultures 

with Siglec-11 expressing microliga compared to those of control cultures was 1.1±0.2 

times (mean±SEM) and 1.1±0.3 times (mean±SEM) respectively when microglial PSA 

was or was not present. And the relative neuronal cell body density compared to those of 

control cultures was 1.3±0.3 times (mean±SEM) and 1.0±0.2 times (mean±SEM) when 

microglial PSA was or was not present. This indicated that PSA expressed on the neurons 

but not on microlia might contribute to the neuronal protective function of Siglec-11. 



                                                               Results 

 69 

 

Figure 3-10. Immunostaining of PSA-NCAM on cultured primary neurons. The 
mouse monoclonal anti-PSA-NCAM antibody and FITC conjugated secondary antibody 
were used to stain PSA-NCAM on embryonic neurons. Neurons were doubled stained 
with anti-β-tubulin III antibody and Cy3 conjugated secondary antibody. One the right 
panel, EndoN was applied the culture for 5 hours, which removed the PSA-NCAM from 
the neurons. Scale bar: 50 µm. 
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Figure 3-11. Immunostaining of PSA-NCAM on cultured primary microglia. The 
mouse monoclonal anti-PSA-NCAM antibody and Cy3 conjugated secondary antibody 
were used to stain the PSA-NCAM expression on primary microglia. Microglia were 
doubled stained with anti-Iba1 antibody and FITC conjugated secondary antibody. One 
the right panel, EndoN was applied the culture for 5 hours, which removed the 
PSA-NCAM from the microglia. Scale bar: 50 µm. 
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Figure 3-12. Co-culture of primary microglia with neurons. Microglia were 
lentivirally transduced with Siglec-11 or the control vector. PSA was removed from 
neurons and/or microglia by EndoN treatment for 5 hours at 37 0C. Cells were co-cultured 
for 48 hours. The fluorescence intensity of neurites stained with β-tubulin III was 
measured and statistically analyzed. Data are shown as mean +/- SEM, N=5, *: P<0.05. 
 

 

3.5 Generation of Siglec-11 expressing transgenic mice  

3.5.1 ES cell-embryo aggregation 

3.5.1.1 Establishment of ES cell lines for transgenic mice  

The MPI ES cell line and Bruce4 ES cell line were transduced with lentiviral particles 

carrying Iba1-Siglec-11. 48 hours post-transduction cells were selected in G418 for 10 

days. Colonies that survived were picked manually, and insertion of the vector was 
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verified by PCR amplification of the neomycin marker. Three lines of MPI ES cells 

(MPI-Siglec-11 ES cells) and 15 lines of Bruce4 ES cells (Bruce4-Siglec-11 ES cells) 

positively transduced with the transgene were established (Table 3-2). 

Table 3-2. Establishment of Siglec-11-ES cell lines 

ES cell line vector Number of established lines 

MPI Iba1-Siglec-11 3 

Bruce4 Iba1-Siglec-11 15 

 

3.5.1.2 Generation of chimeric mice  

Aggregation experiment was first carried out with the MPI ES cells. ES cells were 

aggregated to 8-cell-stage CD1 embryos. The non-modified ES cells were used as a 

control. From the control experiment, 2 chimeras with about 40-50% chimerism 

according to the hair color were generated. And one of these 2 mice showed germline 

transmission. Aggregation of MPI-Siglec-11 ES cells resulted in in total 8 chimeras with 

chimerism differing from about 20% to 80%, but none of these chimeras gave germline 

transmission. From the Bruce4-Siglec-11 ES cells, in total 17 chimeras were generated 

ranging from low chimerism (about 5%) to high chimerism (90%) (Figure 3-13). 

Unfortunately, also no germline transmisstion were established from these animals (Table 

3-3).  

Table 3-3 ES cell-embryo aggregation results 

ES cell line Vector Number of 

chimeras 

Percentage of 

Chimerism 

Germline 

transmitter 

MPI no 2 40-50% Yes 

MPI-Siglec-11 Iba1-Siglec-11 8 20-80% No 

Bruce4-Siglec-11 Iba1-Siglec-11 17 5-90% No 
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Figure 3-13. Representive photos of Siglec-11 chimeric mice generated from ES 
cell-embryo aggregation experiment with chimerism ranging from 5% to 90% according 
to the color of the hair. 
 

3.5.2 Transgenic mouse strains generated by pronuclear injection 

PLL-Iba1-Siglec-11 plasmid was digested with restriction enzymes BsiEI and Not1 to 

separate the Iba1 promoter, the cDNA of Siglec-11 together with the WPRE sequence 

from the plasmid backbone. The WPRE was kept to replace the function of poly A signal. 

The purified DNA fragment was injected into B6D2 F1 (F1 generation of DBA and 

C57/Bl6) mice zygotes. In total 21 founders were established according to genotyping by 

PCR (Table 3-4).  

 

Table 3-4 Generation of transgenic mice expressing Siglec-11 by pronuclear 
injection 
Zygote background Gene construct Founder Germline 

transmission 

Male Female B6D2 F1 (F1 generation of DBA + 

C57 Bl6 ) 

Iba1-Siglec-11-WPRE 

11 10 

Yes 

 

Ten of the founders were bred to C57/Bl6 mice. Germline transmission of Siglec-11 in the 

new generation was comfirmed by genotyping. The expression of Siglec-11 mRNA was 

confirmed by RT-PCR of the brain tissue. Furthermore, Western blot analysis verified 

that Siglec-11 was expressed in the brain tissue of transgenic mice (Figure 3-14). 
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Figure 3-14. Analysis of 3 representative strains of the F1 generation of the Siglec-11 
expressing transgenic mice. A. Genotyping of Siglec-11 from the mouse tails. B. 
RT-PCR analysis of the mRNA expression of Siglec-11 in the brain tissue. C. Western blot 
analysis of Siglec-11 in the brain tissue. 
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4 DISCUSSION 

4.1 Detection of a splice variant of Siglec-11 in the human brain 

In 2002, Siglec-11 was first described by Angata and coworkers (Angata, Kerr et al. 2002). 

In the search for novel Siglec candidates in human genomic DNA sequences, they 

identified a Siglec-like putative gene which was proven to be actively transcribed. They 

isolated the full-length coding region of the cDNA of this gene, which was denoted as 

Siglec-11, by PCR from a human fetal liver cDNA library and obtained the sequences of 

untranslated regions by 3’- and 5’- rapid amplification of cDNA ends (RACE). The 

structure of Siglec-11 was then digged out as having five extracellular Ig-like domains 

(one V-set Ig-like domain followed by 4 C-set Ig-like domains), a single-pass 

transmembrane domain, and a cytosolic tail. It contains almost all of the defined features 

of Siglecs including conserved amino acids (an Arg residue and an aromatic amino acid 

near the N terminus), and three conserved cysteine residues in the first and second Ig-like 

domans. By RT-PCR analysis of human multiple tissues cDNA panel using Siglec-11 

specific primers, they showed that the expected 400-bp band was prominent in cDNA 

from brain, placenta, lung, liver and pancreas, but undetectable in heart, skeletal muscle, 

and kidney. When using a monoclonal antibody 4C4 against Siglec-11 developed by 

themselves to analyze the protein expression in human tissues, they identified low but 

distinct expression of Siglec-11 in Kupffer cells in liver, intestinal lamina propria 

macrophages, brain microglia, and perifollicular cells in spleen, as well as in cells from 

tonsil and appendix, in a pattern similar but not completely overlapped to that of CD68. 

Based on their findings, we set out to study the function of Siglec-11 on brain microglia. 

We designed Siglec-11 specific primers from different exons from the coding region to 

verify the transcription of Siglec-11 in human brain tissue. However, the transcript we 

obtained from human brain tissue was different from what was reported by Angata and 

coworkers. A 288-bp long exon coding the 5th extracellular Ig-domain (the last C-set 

Ig-like domain next to the transmembrane domain) was missing. This was consistent in all 

of the three samples from different patients we analyzed. Interestingly, the cDNA 



                                                               Discussion 

 76 

sequence of Siglec-11 which was derived from human placenta that we obtained from the 

German genetic material source center was identical to our finding. When we compared 

the protein size of the human brain Siglec-11 with the Siglec-11 overexpressed in 293 

using the short version of cDNA we obtained, there was no difference between them as 

determined by Western blot analysis. This comfirmed that the splice variant of Siglec-11 

(variant 2) we identified was expressed in all the human brain samples we were able to 

examine. After checking literature, indeed, the shorter version of Siglec-11 cDNA was 

reported somewhere else previously (Clark, Gurney et al. 2003). The reason why Angata 

and coworkers did not detect this variant was due to their design of the primers for 

RT-PCR. Actually, their primers were derived from the sequence coding the intracellular 

domain and the 3’- untranslated region of Siglec-11 cDNA, while we used primers 

derived from various exons including not only the extracellular domains but also the 

intracellular domain, which enabled us to detect the variation in the transcript of 

Siglec-11.  

However, it is also possible that the transcription of Siglec-11 differs in different tissue. 

The used brain tissue and the obtained placenta cDNA might have a shorter transcript, but 

other tissues which we did not analyze further might have a longer transcript of Siglec-11.  

From a structural point of view, the 5th Ig-like domain missing in the detected splice 

variant 2 of Siglec-11 does not seem to be a key factor affecting the function of Siglec-11. 

The so far known key elements of the Siglecs are mainly the N-terminal first V-set Ig-like 

domain, which recognizes and binds sialic acid, the second C-set Ig-like domain which 

might be required for effective recognizing of sialic acid by the V-set domain, and the 

intracellular tail which contains the ITIMs that might be involved in the signal 

transduction. The V-set like Ig-like domains are generally thought to only have the 

function of pointing the V-set domain away from the cell surface. Thus, it was reasonable 

for us to use the cDNA of the shorter variant of Siglec-11 in our further study. 

 

4.2 Siglec-11, an inhibitory immune receptor? 

Siglecs are emerging as important regulators of the immune system. One prominent 
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feature of the CD33 related family members including Siglec-11 is the two conserved 

ITIM-like motifs in the cytoplasmic regions. Numerous studies have showed that the 

ITIM containing Siglecs could function as inhibitory receptors that modulate leukocyte 

behaviour, including inhibition of cellular proliferation, induction of apoptosis, inhibition 

of cellular activation, induction of pro-inflammatory cytokine serection, and suppression 

of interferon-α production (Crocker, Paulson et al. 2007). 

 

4.2.1 Regulatory function of Siglec-11 on microglia 

Microglia have been implicated as active contributors to neuron damage in 

neurodegenerative diseases, in which the overactivation and dysregulation of microglia 

might result in disastrous and progressive neurotoxic consequences. 

Our study of Siglec-11 was focused on microglia, the brain macrophage. It was reported 

that in peripheral blood cells Siglec-11 was not detectable (Angata, Kerr et al. 2002) or 

only at a very low expression level (Nguyen, Hurtado-Ziola et al. 2006) by FACS. We 

check the expression of Siglec-11 in a human monocytic cell line. Indeed, no Siglec-11 

was detected. However, when we differentiate this cell line into macrophage, Siglec-11 

transcript was detected by RT-PCR. It is known that under some disease conditions, bone 

marrow derived monocytes could be recruited to the brain and differentiated into 

microglia. The induction of Siglec-11 in macrophages differentiated from monocytes 

implies a specific function of Siglec-11 in microglia/macrophage. 

LPS is the endotoxin derived form Gram-negative bacterial and is commonly used to 

mimic the infection condition. It is reported that LPS induces microglial activation in vivo 

and in vitro. In our study, under the stimulation of LPS, primary microglia transduced 

with Siglec-11 showed reduced expression of pro-inflammatory cytokines, namely IL-1β 

and NOS2, when a flag antibody was used to crosslink the Siglec-11, indicating an 

inhibitory effect of Siglec-11.  

The ability of phagocytosing the corpses of apoptotic cell is one of the key features of 

microglia. It was reported that glial phagocytic activity is mediated by ITAM signaling 

transducted by Src and Syk family kinase signaling (Ziegenfuss, Biswas et al. 2008). 
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There was also evidence that phagocytosis of apoptotic bodies by macrophages was 

inhibited with sialooligosaccharide ligands of siglec-5 and monoclonal antibodies (mAbs) 

to siglec-5 (Rapoport, Sapotko et al. 2005). In our study, the Aβ phagocytosis ability was 

impaired in Siglec-11-expressing primary microglia. Since the cytosolic tail of Siglec-11 

was very closely related to that of Siglec-5, which contains two ITIM motifs, it is possible 

that activation of these Siglecs triggered ITIM-mediated signalling which counteracted the 

ITAM signaling and lead to the inhibition of the phagocytosis.  

Activated microglia are known to be toxic to neurons by releasing a wide range of factors 

including glutamate, TNF-α, nitric oxide (NO) and IL-1β, which can actively trigger 

apoptosis in neuronal cell cultures (Bessis, Bechade et al. 2007). Here, we showed that 

Siglec-11 expressing microglial cells seem to have a less toxic impact to the integrity of 

neurons. This is consistent to our findings that Siglec-11 could inhibit the secretion of 

some of these factors such as IL-1β, and NOS2. 

 

4.2.2 ITIM mediated signaling in Siglecs 

  The importance of balancing positive and negative signals within the immune system is 

an emerging topic of discussion. When cellular activation is triggered by receptors with 

ITAMs, counteracting inhibitory signals are delivered through receptors bearing ITIMs. 

Following phosphorylation by Src-family kinases, ITIMs recruit phosphatases, either Src 

homology 2 domain-containing inositol polyphosphate 5’ phosphatase (SHIP), or more 

commonly SHP-1 and SHP-2. These phosphatases inhibit signaling pathways by distinct 

mechanisms, resulting in raised activation thresholds. The presence of two conserved 

ITIM-like motifs in the cytoplasmic regions of CD33-related Siglecs and the differential 

expression of these proteins on leukocytes suggests a role in regulating cellular activation. 

Functional evidence that Siglecs can mediate inhibitory signals has been obtained using 

mAbs to co-crosslink CD33 or mSiglec-E with an activating human receptor, FcγR1. This 

resulted in reduced Ca2+ influx compared with crosslinking FcγRI alone. Similarly, 

Siglec-7 was identified as an inhibitory NK-cell receptor in a redirected killing assay in 

which anti-Siglec-7 mAb was used to cluster Siglec-7 at the interface between NK cell 
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and target cell. In other functional studies, the addition of intact anti-CD33 or 

anti-Siglec-7 mAbs to hematopoietic cell cultures led to reduced cell growth and 

prevented the development of DCs (Crocker and Varki 2001). 

Siglec-11 has been shown to be able to recruit SHP-1 and SHP-2. When mouse 

macrophage-like cells RAW 264.7 stably transfected with Siglec-11 were treated with 

pervanadate, a potent inhibitor of tyrosine phosphatases, tyrosine phosphorylation was 

clearly evident, and this was accompanied by co-immunoprecipitation of both SHP-1 and 

SHP-2. And low levels of SHP-2 could even be seen in immunoprecipitates from 

non-pervanadate-treated cells, under conditions where phosphorylation of Siglec-11 was 

undetectable (Angata, Kerr et al. 2002). Our findings that human Siglec-11 expressed in 

microglia inhibited phagocytosis, reduced pro-inflammatory cytokine transcription and 

prevented neuronal damage enabled us to assign Siglec-11 as an inhibitory receptor in the 

immune system, in which ITIM signal transduction might be an important player. 

However, ingenious experiments need to be carried out to further comfirm the 

contribution of ITIM signaling. 

 

4.3 PSA, an endogenous ligand of Siglec-11? 

Siglec-11 has previously been shown to bind weakly but specifically to α-2–8-linked 

sialic acids (Neu5Ac-alpha 2-8), but the ligand molecule modified by 2-8-linked sialic 

acids and recognized by Siglec-11 has not been identified (Angata, 2002). PSA, which is 

present prominently in the nervous system, emerges as a possible ligand candidate for 

Siglec-11.  

PSA is the long linear homopolymers of α-2,8-linked Nacetylneuraminic acid 

( Neu5Ac-alpha 2-8). In mammalian cells, most PSA is associated with NCAM (Cremer, 

Lange et al. 1994). Expression of PSA is abundant in embryonic nervous system and is 

drastically reduced in the adult. PSA modification of NCAM during neuronal 

development has been shown to play a significant role in cell migration, axonal guidance, 

synapse formation, and functional plasticity by preventing the formation of stable cell 

contacts mediated by NCAM and other cell surface molecules (Bonfanti 2006). Although 
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overall PSA levels are greatly reduced in the adult brain, high levels of PSA persist in 

distinct regions that retain neurogenic capacity, such as the SVZ (Rousselot, Lois et al. 

1995) and the granule cell layer of the hippocampus (Seki and Arai 1991), or that exhibit 

physiological plasticity, such as regions of the hypothalamus, the entorhinal–hippocampal 

complex, the thalamus, the habenular nuclei, the mesencephalic central grey, the lateral 

geniculate nucleus and dorsal spinal laminae (Seki and Arai 1993; Bonfanti 2006). 

Perturbation of PSA levels has been shown to influence a wide range of CNS functions 

and PSA is revealed to be associated with cellular elements that are known to be directly 

involved in behavioural plasticity. Indeed, altered PSA levels are associated with various 

neuropathological conditions (Rousselot, Lois et al. 1995), including chronic stress (Pham, 

Nacher et al. 2003), Alzheimer’s disease (Mikkonen, Soininen et al. 1999), schizophrenia 

(Barbeau, Liang et al. 1995) and temporal lobe epilepsy (Mikkonen, Soininen et al. 1998).  

When studying possible ligands of Siglecs, one should always be cautious that these 

molecules might work both “in cis” and “in trans”. Although little PSA has been found in 

adult non-neural tissues, the immune system is the exception. For example, PSA is 

reported to be associated with dendritic cells, where expressed neuropilin-2 is 

polysialylated and influences the activation of T cells (Curreli, Arany et al. 2007). PSA is 

also found on the surface of natural killer cells (Moebius, Widera et al. 2007). Using a 

monoclonal antibody specific to PSA-NCAM, we also identified the expression of 

Siglec-11 in neonatal microglia. 

With the help of EndoN, which specifically removes PSA from NCAM, we were able to 

show that Siglec-11 appeared to have protective effect on neurons, which was associated 

with the presence of PSA on the neurons, but not on microglia. Thus, in our system, 

Sigelc-11 and PSA interact in a trans way, but not in cis.  

The common sialic acids of mammalian cells are Neu5Ac and Neu5Gc. Humans lack 

Neu5Gc owing to a mutation in the CMAH (cytidine monophosphate-N-acetylneuraminic 

acid hydroxylase) gene, which encodes the enzyme required for the conversion of 

Neu5Ac to Neu5Gc (Sonnenburg, Altheide et al. 2004). The loss of Neu5Gc in human has 

been proved to may alter biological processes of the siglecs, including siglec-1, and 

possibly, siglec-4a or -5 (Brinkman-Van der Linden, Sjoberg et al. 2000). Siglec-11 is a 
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receptor evolutionary appeared very late. In this regard, one can also postulate that 

Siglec-11 might adapt to the abundant Neu5Ac in the human CNS. Interestingly, PSA 

does not exist in invertebrate (Rutishauser 2008), which share many fundamental aspects 

of vertebrate neuronal function and circuitry. Given the correlation of PSA with physical 

and structural plasticity, it seems likely that the evolution of a less hardwired and more 

adaptive CNS has taken the advantages of PSA, thereby improving the ability to respond 

to changing environments. 

 

4.4 Transgenic mice expressing Siglec-11, a tool to study Siglec-11 

 In the effort to generate transgenic mice that express Siglec-11 specifically in brain 

microglia and tissue macrophages, we first tried the ES cell-mediated technology. 

However, the chimeras generated from the aggregation of modified ES cells and mouse 

embryos did not show gremline transmission ability. And the chimeras themselves were 

not ideal to study. So we applied the pronuclear injection technology later. Quite a few of 

founders were successfully generated. And by breeding of the founders to C57/BL6 mice, 

we have established more than five strains of transgenic mouse lines expressing Siglec-11 

in the brain which are valuble tools to study the function of Siglec-11. 

 

4.4.1 A source of Siglec-11 expressing cells for in vitro study 

The research on the function of microglial Siglec-11 was aggravated due to the difficulty 

of getting human microglial cells. Although mouse lacks the ortholog of Siglec-11, mouse 

microglia still would be a good system to study the signaling via Siglec-11 and the 

resulting effects since the intracellular signaling pathways are almost identical between 

mice and humans. Primary microglia expressing Siglec-11 without additional genetic 

modification steps such as viral transduction would save time and energy from the tedious 

but also critical preparation of the virus and the subsequent transduction. Furthermore, the 

difference of the cells used from experiments to experiments will be minimized. Data 

obtained from the in vitro study on these cells would provide insightful indication to the 
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features of Siglec-11. 

 

4.4.2 Facilitating the study of Siglec-11 in vivo  

As a human specific gene, Siglec-11 is found only in human and its unique expression 

pattern adds difficulty to the employment of human cells for analyzing its natural 

functions. However, the Siglec-11-expressing transgenic mice will make the functional 

study of Siglec-11 in vivo feasible. Particularly, the transgenic mice expressing Siglec-11 

in microglia facilitate the study of neuronal immunological diseases such as MS, AD, 

since mouse models are already available. For example, experimental autoimmune 

encephalomyelitis (EAE) can be induced in the Siglec-11 transgenic mice to see whether 

Siglec-11 has any impact on the disease process. Data obtained then will elucidate the 

functions of Siglec-11 in brain micrglia and its possible impact on the development or 

therapy of inflammatory and degenerative CNS diseases.  
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5 SUMMARY 

Siglec-11 is a recently identified human-specific CD33-related Siglec expressed on 

microglia. The full-length cDNA of Siglec-11 encodes 5 extracellular Ig-like domains, a 

single pass transmembrane domain, and a cytosolic tail, which contains ITIMs. In human, 

histopathology demonstrated the expression of Siglec-11 on tissue macrophages in 

various tissues, including microglia in brain. We studied Siglec-11 in microglia. A 

Siglec-11 splice variant, but no full length Siglec-11 was identified in human brain tissue 

samples. Functional analysis was performed in cultured mouse microglial cells lentivirally 

transduced with this splice variant of human Siglec-11. Under stimulation with LPS, gene 

transcription of IL-1β and NOS2 of microglia was reduced after cross-linking of 

Siglec-11. The Aβ phagocytosis ability was impaired in Siglec-11 expressing microglia. 

PSA-NCAM as a putative ligand of Siglec-11 was detected on microglia and neurons. 

Co-culture of microglia expressing Siglec-11 and neurons demonstrated neuroprotective 

function of Siglec-11. Neurite density and neuronal cell body density were higher in 

co-cultures with Siglec-11 expressing microglia than those of control co-cultures. 

Neuroprotective effect was dependent on sialic acid residues on neurons, but independent 

on polysialylated residues of microglia. Transgenic mice were generated expressing 

Siglce-11 under the microglial Iba1-promoter. Chimeric mice were obtained from 

aggregation of genetically modified ES cells and embryos, but no germline transmission 

was achieved. Germline transmission was obtained from pronuclear injection of Siglec-11 

DNA. Several strains of transgenic mice expressing Siglec-11 in the brain have been 

sucessfully established. Thus, data show that Siglec-11 is an inhibitory receptor of 

microglia that might help to create an immunosuppressive milieu in the CNS and alleviate 

microglial neurotoxicity. Humanized transgenic mice expressing Siglec-11 we have 

generated serve as a good model to provide valuble information on the natural features of 

Siglec-11. 
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