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Abstract

The most widely studied supersymmetric scenario is the minimal supersymmetric standard
model (MSSM) with more than a hundred free parameters. However for detailed phenomeno-
logical studies, the minimal supergravity (mSUGRA) model, a restricted and well-motivated
framework for the MSSM, is more convenient. In this model, lepton- and baryon-number
violating interactions are suppressed by a discrete symmetry, R-parity or proton-hexality,
to keep the proton stable. However, it is sufficient to forbid only lepton- or baryon-number
violation. We thus extend mSUGRA models by adding a proton-hexality violating operator
at the grand unification scale.

This can change the supersymmetric spectrum leading on the one hand to a sneutrino,
smuon or squark as the lightest supersymmetric particle (LSP). On the other hand, a wide
parameter region is reopened, where the scalar tau (stau) is the LSP. We investigate in detail
the conditions leading to non-neutralino LSP scenarios. We take into account the restrictions
from neutrino masses, the muon anomalous magnetic moment, b → sγ, and other precision
measurements. We furthermore investigate existing restrictions from direct searches at LEP,
the Tevatron, and the CERN pp̄ collider.

It is vital to know the nature of the LSP, since supersymmetric particles normally cascade
decay down to the LSP at collider experiments. We present typical LHC signatures for
sneutrino LSP scenarios. Promising signatures are high-pT muons and jets, like-sign muon
events and detached vertices from long lived taus. We also classify the stau LSP decays
and describe their dependence on the mSUGRA parameters. We then exploit our results for
resonant single slepton production at the LHC. We find novel signatures with like-sign muon
and three- and four-muon final states. Finally, we perform a detailed analysis for single
slepton production in association with a single top quark. We show that the signal can be
distinguished from the background at the LHC.
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1. Introduction

1.1. Motivation

The Standard Model (SM) of particle physics [1, 2] provides an extremely successful and
precise description of nearly all known phenomena [3]1. It was developed over the last
decades by an effective interplay between theory and experiment. On the experimental side,
especially particle accelerators lead to continuous progress. Only the Higgs particle has not
been discovered yet.

However, several issues remain open. Among those, the “hierarchy problem” is one of the
most problematic [8, 9, 10, 11, 12]. The Higgs mass parameter mH in the SM is very sensitive
to nearly all new physics. For example, even if a new fermion with mass mF couples only
indirectly to the Higgs field via gauge interactions, m2

H receives the radiative corrections [13]

∆m2
H ∝ m2

F + . . . . (1.1)

We expect at the Planck scale, MP l = O(1019 GeV), new physics including fermions which
couples somehow to the Higgs. Therefore, m2

H receives corrections of O(M2
P l). In contrast,

the SM predicts the physical Higgs mass to be
<∼ 1 TeV to preserve unitarity [14, 15, 16].

We thus need to unphysically fine-tune counterterms to cancel corrections like Eq. (1.1) on
the one side and to obtain the correct physical Higgs mass on the other side.

Supersymmetry (SUSY), a symmetry between bosons and fermions, solves the hierarchy
problem in an elegant way. Each particle has now an additional superpartner with its spin
differing by 1/2. All quadratic contributions to the Higgs mass squared cancel now. This
is true even if SUSY is (softly) broken. In this case, to avoid fine-tuning, the superpartners

of the SM fields need to have masses of
<∼ O(1 TeV); see for example the discussion in

Refs. [8, 13].

There are further theoretical as well as experimental facts that point to SUSY and espe-
cially to a supersymmetric extension of the SM (SSM) with minimal particle content:

• Supersymmetry is the only allowed spacetime symmetry besides Lorentz invariance
[17, 18].

• Local gauge invariance requires the introduction of a gauge boson. Similarly, local
SUSY requires the introduction of a massless spin-2 field, the graviton (and its spin-
3/2 superpartner, the gravitino) which mediates gravitational interactions. We have
thus a connection to general relativity [19, 20, 21, 22, 23, 24, 25].

1Probably the most important discrepancy between an SM prediction and electroweak precision measure-
ments has been found for the anomalous magnetic moment of the muon [4, 5, 6, 7]. Here, a deviation of
more than 3σ has been established.

1



2 Introduction

• Supersymmetry is needed for the construction of realistic string models, although this
does not necessarily imply weak-scale SUSY; see for example Refs. [26, 27, 28, 29, 30]
and references therein.

• Although many theories exist which predict a unification of the gauge interactions,
the gauge couplings due not unify within the SM. However, the gauge couplings will
meet at a scale of O(1016 GeV) in the SSM as long as the SUSY particle masses are of
O(100 GeV − 10 TeV) [31, 32, 33, 34, 35].

• Within the SSM, a positive Higgs mass parameter squared of O(1002 GeV2) at a scale of
O(1016 GeV) can run to a negative value at the electroweak scale, MZ . This mechanism
thus provides a natural explanation for the origin of electroweak symmetry breaking
and the large difference between MP l and MZ . It is called radiative electroweak sym-
metry breaking (REWSB) [36]. The superpartners of the SM fields are then required
to be not heavier than a few TeV.

• Precision fits to electroweak data show that the physical (SM) Higgs mass needs to
be < 191 GeV at 95% C.L. [37]. In addition, a SM Higgs with a mass between 160
GeV and 170 GeV has recently been excluded at the Tevatron at 95% C.L. [38]. The
SSM predicts the lightest CP-even Higgs mass to be not larger than roughly 140 GeV
[39, 40].

• The SSM contributions to the anomalous magnetic moment of the muon can explain the
more than 3σ discrepancy between the SM prediction and experimental observations

[4, 5, 6, 7]. For this, at least parts of the SSM mass spectrum must be
<∼ 1 TeV.

• If lepton- and baryon-number violating interactions are prohibited, the SSM contains
a good cold dark matter candidate, the neutralino [41]2.

• The SSM possesses an elegant mechanism to generate neutrino masses if lepton number
is violated [45, 46, 47, 48, 49]3.

It is remarkable that several arguments for SUSY point to superpartners of the SM fields

with masses of O(
<∼ 1TeV). Therefore, SUSY should be immently testable at the Tevatron

[55] and the Large Hadron Collider (LHC) [56, 57], which will start collecting data this year.

1.2. Goals of the Thesis

In the collider search for SUSY at colliders, it is essential to know the nature of the lightest
supersymmetric particle (LSP), because SUSY particles, if produced, normally cascade decay
down to the LSP within the detector. The LSP is thus a central ingredient of almost all
SUSY signatures. It is the purpose of this thesis to investigate the possible candidates for
the LSP and its phenomenology at hadron colliders. We will focus on the proton-hexality,

2There are also other dark matter candidates which are valid, even if lepton- or baryon-number are violated.
One example is the axino, the supersymmetric partner of the axion, which is also a suitable candidate
for dark matter [42, 43, 44].

3If we extend the SSM by right-handed neutrinos, we can also generate neutrino masses via the seesaw
mechanism [50, 51, 52, 53, 54]. However, this introduces an additional scale in our theory, namely the
Majorana mass of the right handed neutrinos.

2



1.3 Organization of the Thesis 3

P6, violating minimal supergravity (mSUGRA) model [58] and its low-energy SSM spectrum.
We give for the first time a complete list of all possible LSP candidates within this model.

Lepton- and baryon-number are conserved in the SM. But this is only an accidental conse-
quence of gauge invariance and the SM particle content. In contrast, renormalizable lepton-
and baryon-number violating interactions are possible in the SSM. In the upcoming years,
the LHC will probably decide if and which version of SUSY is realized in nature. To pro-
vide some guidance on what might be expected at the LHC, we will present novel collider
signatures which are unique to the lepton-number violating SSM.

1.3. Organization of the Thesis

This thesis is organized as follows. In Sect. 2, we give a short introduction to the relevant
parts of the SSM and the mSUGRA model with and without P6. We point out distinguishing
features between the P6 conserving and violating SSM which can have a strong impact
on collider phenomenology. We especially focus on the renormalization group running of
sparticle masses from the grand unification scale to the electroweak scale. In Sect. 3, we
consider all possible LSPs within P6 violating mSUGRA. We first investigate the mechanism
leading to new LSP candidates. We then show the respective mSUGRA parameter space.
In Sect. 4, we concentrate on the sneutrino LSP. We analyze the allowed sneutrino LSP
parameter space and give examples for characteristic signatures at the LHC. We present
new signatures which can help to discover SUSY as well as to distinguish P6 conserving
from P6 violating mSUGRA. In Sect. 5, we investigate the scalar tau (stau) as the LSP. We
classify its decay modes (2- and 4-body decays) as a function of mSUGRA parameters. We
then exploit our results for single slepton production at the LHC. We show novel collider
signatures with like-sign dimuons and three and four muons in the final state. Finally, in
Sect. 6, we consider single slepton production in association with a single top quark. We
compute event rates for the Tevatron and LHC and show that the signal can be distinguished
from the background. We summarize and conclude in Sect. 7.

In Appendix A, we give the low energy spectrum of mSUGRA models relevant for this
work. In Appendix B we calculate for the first time the three-body slepton decay ℓ̃−i →
W−b̄dk. In Appendix C, we give branching ratios and production cross sections relevant for
Sect. 5.

1.4. Publications

Most of the results contained in this thesis have already been published. In Ref. [59], we
investigate all possible LSP candidates in P6 violating mSUGRA models. In Refs. [60, 61], we
focus on the sneutrino LSP and show characteristic LHC signatures. The work on stau LSP
decays as a function of mSUGRA parameters and its impact on single slepton production
has been published in Ref. [62]. Finally, in Ref. [63] we investigate single slepton production
in association with a top quark.
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2. The Model

A very detailed introduction to supersymmetry (SUSY) and the supersymmetric standard
model (SSM) can be found in several textbooks, review articles and lecture notes. See, for
example, Refs. [8, 13, 28, 64, 65, 66, 67, 68, 69, 70, 71, 72]. We briefly describe in this section
our notation and the SUSY models relevant for this work.

In Sect. 2.1, we shortly introduce global SUSY. In Sect. 2.2, we introduce the SSM. Then,
in Sect. 2.3, we present the superpotential of the SSM. We introduce possible discrete sym-
metries, like proton-hexality, P6, to avoid proton decay. We also point out the differences
between the P6 conserving and violating SSM. Finally, in Sect. 2.4, we introduce the minimal
supergravity (mSUGRA) model with and without P6. Here, we will focus on the renormal-
ization group running of the SUSY particle masses.

2.1. Global Supersymmetry

A SUSY transformation changes a bosonic state into a fermionic one and vice versa:

Q |boson〉 = |fermion〉 , Q |fermion〉 = |boson〉 . (2.1)

Here, Q is the generator of the SUSY transformation. Q must transform as a spinor, because
it changes the spin of a field by 1/2. The SUSY generators satisfy the following algebra of
anticommutation and commutation relations1

{Qα, Q̄β̇} = 2σµ

αβ̇
Pµ, {Qα, Qβ} = 0, {Qα̇, Q̄β̇} = 0,

[Qα, P µ] = 0, [Q̄α̇, P µ] = 0, (2.2)

where Q (Q̄) is a left-handed (right-handed) two-component Weyl spinor with α, β (α̇, β̇) =
1, 2. We have σµ = {1, ~σ} with 1 the identity matrix and ~σ the Pauli matrices. P µ is the
momentum operator, i.e. the generator of spacetime translations. In principle it is possible
to have more than only one SUSY generator Q. However, these models are phenomenological
excluded for a four dimensional field theory, although (N=1/N=2) hybrid models with an
interesting phenomenology are possible; see, for example, Refs. [73, 74, 75, 76]

Each SM particle belongs to an irreducible representation of the SUSY algebra, the so-
called supermultiplets, and has a superpartner with its spin differing by 1/2. The superpart-
ners of the SM fields must have the same gauge quantum numbers, because Q commutes
with the generators of gauge interactions. As can be seen from Eq. (2.2), Q also commutes
with P 2 = M2. All fields in a supermultiplet thus posses the same mass. Therefore, if SUSY

1We do not show the commutators involving rotation generators, because they play no role in our discussion.

4



2.2 The Supersymmetric Standard Model 5

SM (SUSY) particles superfield spin 0 spin 1/2 spin 1 SU(3)C , SU(2), U(1)Y

Qi (ũLi, d̃Li) (uLi, dLi) (3, 2, +1/6)
quarks

Ūi ũc
Ri uc

Ri (3̄, 1, −2/3)
(squarks)

D̄i d̃c
Ri dc

Ri (3̄, 1, +1/3)

leptons Li (ν̃i, ℓ̃Li) (νi, ℓLi) (1, 2, −1/2)

(sleptons) Ēi ℓ̃c
Ri ℓc

Ri (1, 1, +1)

V1 B̃0 B0 (1, 1, 0)
gauge bosons

V2 W̃±, W̃ 0 W±, W 0 (1, 3, 0)
(gauginos)

V3 g̃a ga (8, 1, 0)

Higgs Hu (H+
u , H0

u) (H̃+
u , H̃0

u) (1, 2, +1/2)

(Higgsinos) Hd (H0
d , H−

d ) (H̃0
d , H̃−

d ) (1, 2, −1/2)

Table 2.1.: Fields (with their gauge representation) of the SSM. i = 1, 2, 3 are generation indices.

exists in nature, it must be broken, because no superpartners of the SM particles were ob-
served so far [3]. One can also show, by using Eq. (2.2), that the number of bosonic degrees
of freedom in a supermultiplet are equal to the number of fermionic degrees of freedom; see
e.g. Ref. [13].

Relevant for the construction of a minimal supersymmetric extension of the SM are two
kinds of supermultiplets: A chiral supermultiplet, which contains a single two-component
Weyl fermion (spin 1/2) and a complex scalar field (spin 0); a vector supermultiplet with a
massless vector boson (spin 1) and a two-component Weyl fermion. For gravity to be in-
cluded, we need an additional supermultiplet with the graviton (spin 2) and its superpartner
the gravitino (spin 3/2).

In addition, each supermultiplet contains an auxiliary field, which allows the SUSY alge-
bra, Eq. (2.2), to close off-shell (when the classical equations of motion are not satisfied).
These fields can be expressed in terms of the physical fields with the help of the equations
of motion.

The supermultiplets can be written in a compact form using the so-called superfield for-
malism. A superfield is made up of the bosonic, fermionic and auxiliary fields. The superfield
formalism is especially helpful for the systematic development of supersymmetric theories.
A more detailed description of this formalism can be found, for example, in the references
given at the beginning of Sect. 2.

2.2. The Supersymmetric Standard Model

In order to extend the SM to a supersymmetric theory, we need at least the fields shown
in Table 2.1. This model is known as the supersymmetric SM (SSM) with minimal particle
content.

The left- and right-handed SM fermions belong to different chiral supermultiplets and have
therefore different superpartners called sfermions. We have three generations, i = 1, 2, 3, of

5



6 The Model

left-handed (right-handed) squarks, ũLi, d̃Li (ũRi, d̃Ri), which are the spin-0 superpartners
of the left-handed (right-handed) up- and down-type quarks, respectively; the left-handed
(right-handed) charged sleptons, ℓ̃Li (ℓ̃Ri), which are the superpartners of the left-handed
(right-handed) charged leptons; and the superpartners of the neutrinos, the so-called sneu-
trinos, ν̃i. Following the convention in the standard literature (see references given at the
beginning of Sect. 2), all SM fermions are described by left-handed Weyl spinors. We thus
show the conjugates of the right-handed quarks and leptons in Tab. 2.1, which are left-handed
spinors.

Each gauge boson belongs to a vector supermultiplet. The superpartners are called gaug-
inos. In Table 2.1 we have the bino, B̃0, the superpartner of the U(1)Y gauge boson; the
neutral and charged winos, W̃ 0, W̃±, the superpartners of the SU(2) gauge bosons; and the
gluinos, g̃a, a = 1..8, the superpartners of the SU(3)C gauge bosons.

In Table 2.1, we also observe that we need at least two Higgs doublets and their superpart-
ners to embed the SM into a supersymmetric theory. On the one hand, the fermionic partner
of a single Higgs doublet would lead to a gauge anomaly of the electroweak symmetry [72].
With two Higgs doublets with opposite U(1)Y charge, cf. Table 2.1, the contributions to the
anomaly cancel. On the other hand, SUSY requires the superpotential to be a holomorphic
function of the chiral superfields. We thus need two Higgs doublets to be able to give mass
to the up- and down-type quarks via the Higgs-mechanism.

As argued in the last section, if SUSY exists, it must be broken. SUSY is broken explicitly
when we add the following interactions to the supersymmetrized SM Lagrangian [58]

−Lsoft =

(

1

2
M1B̃B̃ +

1

2
M2W̃ W̃ +

1

2
M3g̃g̃ + h.c.

)

+ m2
Hd

H†
dHd + m2

Hu
H†

uHu

+L̃†
i(mL̃

2)ijL̃j + ˜̄Ei(mẼ
2)ij

˜̄E†
j + Q̃†

i (mQ̃
2)ijQ̃j + ˜̄Ui(mŨ

2)ij
˜̄U †

j + ˜̄Di(mD̃
2)ij

˜̄D†
j

+
[

−B̃HdHu + (hE)ijL̃iHd
˜̄Ej + (hD)ijQ̃iHd

˜̄Dj + (hU)ijQ̃iHu
˜̄Uj + h.c.

]

. (2.3)

We sum over repeated indices and keep the gauge indices implicit.

The first three terms give mass to the gauginos; the mass M1 to the bino, the mass M2 to
the three winos, and the mass M3 to the eight gluinos. The other two terms in the first row
of Eq. (2.3) are the mass terms for the Higgs scalars.

In the second row of Eq. (2.3), we introduce the 3 × 3 mass matrices of the left-handed
sleptons, mL̃, the right-handed sleptons, mẼ, the left-handed squarks, mQ̃, the right-handed
down squarks, mD̃, and the right-handed up squarks, mŨ. The slepton and squark fields (cf.

Table 2.1) are expressed in terms of 3-vectors in generation space, e.g. ˜̄E = (ℓ̃c
R1, ℓ̃

c
R2, ℓ̃

c
R3)

and L̃ = [(ν̃1, ℓ̃L1), (ν̃2, ℓ̃L2), (ν̃3, ℓ̃L3)].

Finally, in the third row, we show the scalar interactions that correspond to the super-
potential, Eq. (2.5). The first (bilinear) interaction contributes to the Higgs masses. The
three trilinear scalar interaction terms will contribute, among other things, to the slepton
and squark masses. They mix the left- and right-handed sleptons and squarks after elec-
troweak symmetry breaking (EWSB). The trilinear scalar interactions are 3 × 3 matrices

6



2.2 The Supersymmetric Standard Model 7

in generation space. Note that we can also add lepton- and baryon-number violating (but
gauge invariant) interactions to Lsoft; see next section for details.

The supersymmetrization of the SM (aside from the extended Higgs sector) introduces no
additional new parameters. Lsoft however, leads to more than 100 new, a priori unknown
parameters [77]. It is very difficult to do detailed phenomenological studies in this extensive
parameter space. We therefore need a guiding principle. We will address this topic in
Sect. 2.4.

It is clear by taking a look at Eq. (2.1) that the soft breaking Lagrangian, Eq (2.3),
breaks SUSY, because Lsoft involves only fields without their superpartners. It was shown
in Ref. [78] that a Lagrangian like Eq. (2.3) is free of quadratic divergencies from quantum
corrections to scalar masses and thus called soft. The hierarchy problem can therefore still be
solved. However, logarithmic divergencies arise. To avoid fine-tuning, the mass parameters
in Eq. (2.1) are restricted to be no larger than O(1 TeV), cf. Sect. 1.1.

After EWSB, some of the fields in Table 2.1 will have the same quantum numbers. Thus,
they can mix. If lepton-number is conserved, the resulting mass eigenstates are [65, 79, 80]

• The neutralinos, χ̃0
n, with n = 1, 2, 3, 4. The neutralinos are admixtures of the bino,

the neutral wino and the neutral Higgsinos.

• The charginos, χ̃+
l , with l = 1, 2. The charginos are admixtures of the charged winos

and the charged Higgsinos.

• Sleptons and squarks. The squark and slepton fields in Table 2.1 are given in the flavor
basis. They can mix on the one hand between different generations and on the other
hand between different “helicities”, i.e. left- and right-handed fields will mix. For
example, the up- and down-type squarks each posses a 6 × 6 mass matrix. However,
mixing between different generations of sleptons and squarks is highly restricted due
to the non-observation of large flavor changing neutral currents (FCNCs) [81, 82]. In
addition, the (squared) mass terms which mix left- and right-handed states within one
generation are normally assumed to be proportional to the respective SM fermion mass
(see Sect. 2.4.1). We therefore consider in the following only L-R mixing for the third
generation of sleptons and squarks.

We see in Table 2.1 that the lepton and Higgs superfields have the same gauge quantum
numbers after EWSB. Note that lepton number is only conserved accidentally in the SM, i.e.
lepton-number conservation is only a consequence of gauge invariance and the SM particle
content. The lepton and Higgs superfields can mix if we assume that lepton number is
violated. We then have [58]

• Mixing between neutralinos and neutrinos. We now have a 7 × 7 mass matrix.

• Mixing between charginos and charged leptons. The respective mass matrix is thus a
5 × 5 matrix.

• Mixing between charged sleptons and charged Higgs bosons resulting in a 8 × 8 mass
matrix. One mass eigenstate is zero. This field is a Goldstone boson from EWSB.

• Mixing between sneutrinos and neutral Higgs scalars. If CP is conserved, we have
two 5 × 5 mass matrices: One matrix mixes the CP-even part of the sneutrino fields
with the CP-even Higgs fields and one matrix mixes the CP-odd sneutrinos with the

7
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Figure 2.1.: Proton decay P → π0e+ via non-vanishing couplings λ′
112 × λ′′

112 (left figure) and
P → K+ντ ν̄eν̄µ via non-vanishing couplings λ123 × λ′′

112 (right figure).

CP-odd Higgs fields. The latter mass matrix again has a zero mass eigenstate, due
to the presence of a Goldstone boson. The CP-even sneutrinos can also develop non-
vanishing vacuum expectation values (vevs) after EWSB. However, these vevs must be
small to avoid unphysically large neutrino masses [58].

In the following, we can neglect the additional mixing due to lepton number violation. All
terms in the SSM Lagrangian, which mix (at tree-level) components of the Higgs superfields
with components of the lepton superfields are either proportional to the sneutrino vevs or
proportional to the parameters κi, D̃i or m2

L̃iHd
; see next section for more details. The vevs

and κi, D̃i, and m2
L̃iHd

must be small to be consistent with small neutrino masses [46, 47, 58].

We will therefore only check that neutrino-neutralino mixing does not introduce too large
neutrino masses.

2.3. Superpotential and Discrete Symmetries

With the fields given in Table 2.1 we can write down many possible interactions. The Yukawa
interactions, for example, can be described with the help of the so-called superpotential. The
most general gauge invariant and renormalizable superpotential of the SSM is [83, 84]

WSSM = WP6 + W6P6 , (2.4)

WP6 = ǫab

[

(YE)ijL
a
i H

b
dĒj + (YD)ijQ

ax
i Hb

dD̄jx + (YU)ijQ
ax
i Hb

uŪjx + µHa
dHb

u

]

, (2.5)

W6P6 = ǫab

[

1

2
λijkL

a
i L

b
jĒk + λ′

ijkL
a
i Q

bx
j D̄kx + κiL

a
i H

b
u

]

+
1

2
ǫxyzλ

′′
ijkŪ

x
i D̄ y

j D̄ z
k . (2.6)

where i, j, k = 1, 2, 3 are generation indices. We have employed the standard notation of
Ref. [85].

The superpotential, Eq. (2.4), consists of two different parts. WP6 involves the lepton, YE,
down-quark, YD, and up-quark, YU , 3× 3 Yukawa matrices, which give mass to the leptons
and quarks after EWSB. A more detailed description of the structure of Yukawa matrices is
given in Appendix A.1. µ is the Higgs mixing parameter, which contributes, among other
things, to the Higgs masses.

W6P6 consists of lepton- and baryon-number violating operators, which together can lead
to rapid proton decay in contradiction to experimental observations [86, 87, 88, 89, 90]. In

8



2.3 Superpotential and Discrete Symmetries 9

Fig. 2.1 we show two examples. In the left figure (right figure), proton decay is mediated via
a non-vanishing product λ′

112×λ′′
112 (λ123×λ′′

112). The resulting bounds from non-observation
of proton decay are [89]

λ′
112 × λ′′

112
<∼ O(10−25) , λ123 × λ′′

112
<∼ O(10−14) , (2.7)

assuming an universal SUSY particle (sparticle) mass of 1 TeV. Thus, even if the decay is
loop suppressed (e.g. right process in Fig. 2.1), proton decay puts an extreme upper bound
on (all) products of lepton- and baryon-number violating couplings [89].

To keep the proton stable, one needs to suppress either the lepton- or the baryon-number
violating operators in Eq. (2.6). This can be achieved with the help of a discrete symmetry.
It was shown in Refs. [91, 92, 93, 94], that there are three discrete symmetries which are
consistent with an underlying anomaly-free U(1) gauge theory2 and which allow a Majorana
neutrino mass term LHuLHu: R-parity (Rp), baryon-triality (B3), and proton-hexality (P6).
The most widely assumed symmetry is the Z2-symmetry Rp (or equivalently matter-parity)3

(Li, Ēi, Qi, Ūi, D̄i) → −(Li, Ēi, Qi, Ūi, D̄i) , (Hd, Hu) → (Hd, Hu) , (2.8)

where the superfields are given in Table 2.1. Rp thus prohibits W6P6. However, Rp allows
dangerous dimension-five proton decay operators such as QQQL [86]. A second possibility
is B3 (or equivalently baryon-parity)

(Qi, Ūi, D̄i) → −(Qi, Ūi, D̄i) , (Li, Ēi, Hd, Hu) → (Li, Ēi, Hd, Hu) . (2.9)

B3 is a Z3-symmetry which prohibits only the ŪD̄D̄ operators in Eq. (2.6) but also the
dangerous dimension five operators. Finally, we have P6, a Z6 = Z2×Z3-symmetry. It only
allows for interactions which are consistent with Eq. (2.8) and Eq. (2.9) at the same time.
P6 has therefore the same effect on the renormalizable interactions as Rp but forbids, in
addition, the dangerous dimension-five operators. It is thus preferred in comparison to Rp.
The SSM with conserved Rp or P6 is conventionally denoted the minimal supersymmetric
standard model (MSSM).

We also obtain a stable proton, if we only allow for the baryon number violating ŪD̄D̄
interactions4. This can be achieved by the discrete symmetry lepton-parity [94]:

(Li, Ēi) → −(Li, Ēi) , (Qi, Ūi, D̄i, Hd, Hu) → (Qi, Ūi, D̄i, Hd, Hu) . (2.10)

However, lepton parity cannot be written as a remnant of a broken anomaly-free gauge
symmetry [91, 92, 93]. One therefore expects that quantum gravity effects violate lepton-
parity [95, 96]. As pointed out above, B3 can be written as the remnant of an anomaly free
U(1) gauge symmetry. Lepton-number violation within the SSM is thus, from a theoretical
point of view, better motivated then baryon-number violation. We will therefore mainly
concentrate on B3 SUSY models in the following.

2Note that anomalies can also be canceled by introducing additional fields.
3R-parity is often defined as Rp = (−1)2S+3B+L. Here S denotes the spin, B the baryon-number, and L

the lepton-number of a particle.
4In addition, the LSP should be heavier than the proton. For example, the baryon number violating part

of the right diagram in Fig. 2.1 will lead to proton decay if mχ̃0
1

< mP − mK .

9



10 The Model

The P6 violating SSM has some distinguishing features compared to the MSSM, which can
have a strong impact on (hadron) collider phenomenology [89, 94, 97, 98]:

• The renormalization group equations (RGEs) receive additional contributions [58, 99,
100, 101, 102, 103, 104, 105]. This can alter the sparticle mass spectrum and the SUSY
couplings at the electroweak scale MZ [58, 101, 106].

• Neutrino masses can be generated as experimentally observed [45, 48, 107, 108, 109,
110].

• The LSP can decay into SM particles via the P6 violating couplings. In principle, any
sparticle can now be the LSP, because the cosmological bound on stable LSPs no longer
holds [41].

• Sparticles may be produced singly, possibly on resonance; see e.g. Refs. [89, 111, 112,
113, 114] and Sect. 4.3.3, Sect. 5, and Sect. 6.

• The decay patterns of the sparticles can change due to changes in the mass spec-
trum and the additional P6 violating interactions; see Ref. [106], and Sect. 4.3.1, and
Appendix C for explicit examples.

We will address all of these aspects in the following sections.

If we allow for lepton- and baryon-number violation, we also need to add additional bilinear
and trilinear interactions to the soft breaking Lagrangian, Eq. (2.3), [58]

−L 6P6

soft =
[

−D̃iL̃iHu + (hEk)ijL̃iL̃j
˜̄Ek + (hDk)ijL̃iQ̃j

˜̄Dk + (hU i)jk
˜̄Ui

˜̄Dj
˜̄Dk + h.c.

]

+L̃†
i (m

2
L̃iHd

)Hd + H†
d(m

2
HdL̃i

)L̃i . (2.11)

We sum over repeated indices again and keep the gauge indices implicit. The scalar fields are
described in Sect. 2.2. The mass dimension one [two] trilinear [bilinear] couplings (hEk)ij,
(hDk)ij, (hU i)jk [D̃i] are the soft breaking analogue to the trilinear [bilinear] couplings λijk,
λ′

ijk, λ′′
ijk [κi] of the superpotential, Eq. (2.4). The terms in the second row of Eq. (2.11) are

mass terms, which contribute to the slepton Higgs mass matrices.

The P6 violating part of the superpotential, Eq. (2.6), and of the soft breaking Lagrangian,
Eq. (2.11), introduces roughly 100 new unknown parameters in addition to the more than
100 unknown P6 conserving soft breaking interactions, Eq. (2.3)! It is almost impossible to
do detailed phenomenological studies in this huge parameter space. We thus urgently need
a guiding principle, which reduces the number of free parameters. We will address this issue
in the following section.

2.4. mSUGRA with and without Proton Hexality P6

2.4.1. Motivation

The slepton and squark mass matrices in the soft breaking Lagrangian, Eq. (2.3), need to
be hermitian in order to have a real Lagrangian. One might generically assume that the
generational diagonal and off-diagonal matrix elements in Eq. (2.3) have the same order of
magnitude. However, in this case, the SSM (and MSSM) is phenomenological excluded if

10



2.4 mSUGRA with and without Proton Hexality P6 11

one assumes that the SUSY breaking scale is
<∼ O(1 TeV)5. Large generational off-diagonal

matrix elements would lead to large FCNCs in contrast to experimental observations [81, 82].
For example, the non-observation of the process µ → eγ puts strong constraints on matrix-
elements which couple the scalar muon (smuon), µ̃, to the scalar electron (selectron), ẽ
[81, 115, 116]. In the squark sector, experimental constraints from meson-antimeson mixing
like K0–K̄0, D0–D̄0, B0–B̄0 mixing and from processes like b → sγ strongly restrict the
magnitude of the generational off-diagonal masses [81, 117, 118, 119, 120]. Note that bounds
involving fields of the third generation are in general less restrictive than those involving
only the first and second generation.

If we assume in Eq. (2.3) that

mL̃ = mL̃ × 1, mẼ = mẼ × 1, mQ̃ = mQ̃ × 1, mŨ = mŨ × 1, mD̃ = mD̃ × 1, (2.12)

i.e proportional to the identity matrix at MZ , we avoid dangerous FCNCs. Note that also
other solutions exist [121, 122, 123, 124, 125, 126].

The trilinear couplings hE ,hD,hU in Eq. (2.3) will, after EWSB, also contribute to the
slepton and squark mass matrices. They couple left- and right-handed fields to each other.
To avoid large FCNCs, one can make the ansatz

hE = AE × YE, hD = AD × YD, hU = AU × YU , (2.13)

i.e. assume that the trilinear couplings are proportional to the respective Yukawa matrices
at MZ . Their contribution is thus only significant for the third generation.

As pointed out in Sect. 1.1, a strong motivation for SUSY is the unification of gauge
couplings at a scale of O(1016 GeV). If we assume that the SSM is embedded into a grand
unified theory (GUT), we can naturally have a common gaugino mass, cf. Eq. (2.3), at the
GUT scale MGUT. This is the case because the gauginos all live in the same representation
of the unified gauge group [11, 127, 128, 129, 130]. We thus have

M1 = M2 = M3 ≡ M1/2 at MGUT . (2.14)

Then it also seems natural to assume the boundary conditions, Eq. (2.12) and Eq. (2.13),
at MGUT. We can further simplify our model by assuming an universal soft breaking scalar
mass, M0, for all the sfermions and Higgs fields and an universal trilinear interaction, A0,
i.e.

mL̃ = mẼ = mQ̃ = mD̃ = mŨ = mHd
= mHu ≡ M0 at MGUT , (2.15)

AE = AD = AU ≡ A0 at MGUT . (2.16)

We now need only two additional parameters to be able to determine the complete spec-
trum of the MSSM at MZ via the RGEs6. A convenient choice for these parameters is tan β

5The Higgs mass needs to be fine-tuned, if the soft breaking masses are
>∼ O(10 TeV), cf. Sect. 1.1.

6Note that in general there is no universal scalar mass and trilinear interaction at MZ . This can lead to
FCNCs. However these are small and consistent with experimental observation as long as P6 is conserved
[131]. If P6 is violated, we need to make sure that we do not produce too large FCNCs. This will be
checked throughout this thesis.
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12 The Model

and sgn(µ). tanβ = 〈Hu〉 / 〈Hd〉 is the ratio of the vevs of the two Higgs doublets. sgn(µ)
is the sign of the Higgs mixing parameter µ, cf. Eq. (2.5). The magnitude of µ (and the
corresponding soft breaking coupling B̃) at MZ can then be derived from EWSB, i.e. from
minimizing the scalar potential [132]. This well-motivated and strongly restricted model for
the MSSM is known as the minimal supergravity (mSUGRA) model.

We have not introduced new CP-phases in addition to the one in the SM. However, the
MSSM offers in principle 40 additional physical phases [133]. But these are strongly restricted
by experimental observations [3, 81, 118, 120, 134, 135, 136, 137, 138, 139, 140]. Our ansatz
is thus well motivated.

SUSY is a local symmetry in so-called supergravity models [19, 20, 21, 22, 23, 24, 25]. This
allows gravity to be taken into account. By making certain simplifying assumptions about
the supergravity Lagrangian, we obtain the minimal supergravity model [141, 142, 143, 144]7.
Our assumptions from phenomenological considerations can therefore also be motivated from
a purely theoretical side.

Up to now, we have only discussed the MSSM. The more general case of the SSM with P6

violating interactions and its incorporation in the mSUGRA framework will be addressed in
Sect. 2.4.3.

2.4.2. Mass Spectrum of P6 mSUGRA Models

The P6 conserving mSUGRA model reduces the more than 100 free parameters of the MSSM
to only five:

M0, M1/2, A0, tanβ, sgn(µ) , (2.17)

where M0, M1/2 and A0 are defined at MGUT, cf. Eqs. (2.14)-(2.16). We obtain the (experi-
mentally accessible) spectrum at MZ with the help of the RGEs. One can derive approximate
expressions for the sparticle masses in terms of the mSUGRA parameters, Eq. (2.17). The
masses relevant for this work are given in Appendix A.2

Fig. 2.2 shows the running of the slepton (blue lines), squark (red lines) and gaugino soft
breaking masses (black lines) from MGUT to MZ . Note that the soft breaking masses give the
dominant contribution to the (physical) sparticle masses. In addition, we show the running
of the quantities (µ2 + m2

Hd
)1/2 and (µ2 + m2

Hu
)1/2 (green lines) which appear in the Higgs

potential. The dashed lines correspond to third generation masses. The input parameters
are M0 = 80 GeV, M1/2 = 250 GeV, A0 = −500 GeV, tanβ = 10 and sgn(µ) = +1. Fig. 2.2
is from Ref. [13].

In Fig 2.2 we observe that the squarks at MZ are much heavier than the sleptons although
they have equal masses at MGUT. This can easily be understood by taking a look at the dom-
inant one-loop contributions to the RGEs for the squared slepton and squark soft breaking

7In principle, we should use the boundary conditions, Eqs. (2.14), (2.15) and (2.16), at MPl, where SUSY
is broken, instead of MGUT. However, we know little about the RGEs between MGUT and MPl. It is
thus popular to assume all boundary conditions at MGUT. Furthermore, the resulting error should only
be a loop factor times ln(MPl/MGUT) which is expected to be small.
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Figure 2.2.: Running of slepton (red lines), squark (blue lines) and gaugino (black lines) soft
breaking masses from MGUT to MZ . We also show the running of the quantities (µ2 +m2

Hd
)1/2 and

(µ2 + m2
Hu

)1/2 (green lines). Third generation masses correspond to dashed lines. This figure has
been taken from Ref. [13].

masses, cf. Eq. (2.3), of the first two generations (i = 1, 2) [58]

16π2d(mẼ
2)ii

dt
= −

(

24

5
g2
1|M1|2 −

6

5
g2
1S
)

, (2.18)

16π2d(mL̃
2)ii

dt
= −

(

6

5
g2
1|M1|2 + 6g2

2|M2|2 +
3

5
g2
1S
)

, (2.19)

16π2d(mŨ
2)ii

dt
= −

(

32

15
g2
1|M1|2 +

32

3
g2
3|M3|2 +

4

5
g2
1S
)

, (2.20)

16π2d(mD̃
2)ii

dt
= −

(

8

15
g2
1|M1|2 +

32

3
g2
3|M3|2 −

2

5
g2
1S
)

, (2.21)

16π2
d(mQ̃

2)ii

dt
= −

(

2

15
g2
1|M1|2 + 6g2

2|M2|2 +
32

3
g2
3|M3|2 −

1

5
g2
1S
)

, (2.22)

with

S ≡ Tr[mQ̃
2 −mL̃

2 − 2mŨ
2 + mD̃

2 + mẼ
2] + m2

Hu
− m2

Hd
. (2.23)

Here g1, g2 and g3 are the U(1)Y , SU(2) and SU(3)C gauge couplings, respectively. t = ln Q
with Q the renormalization scale. Note that the main contributions come from the terms
proportional to the gaugino masses squared, M2

1 , M2
2 and M2

3 , because S, which can be
negative, is identical to zero at MGUT for universal scalar masses. In addition, the coefficients
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of the M2
1 , M2

2 and M2
3 , terms are larger compared to the S term. The right hand side of

Eqs. (2.18) - (2.22) is therefore negative at every scale.

A negative slope in the RGEs leads to an increase of the slepton and squark masses running
from MGUT down to MZ . This can be seen in Fig. 2.2. The various magnitudes of the slopes
are mainly due to the different gauge charges. They are largest for the strongly interacting
sparticles. This explains why the squarks are so much heavier then the sleptons. A similar
effect leads to a mass splitting between the left- and right-handed sleptons, which is also
observable in Fig. 2.2. The right-handed sleptons couple only via their U(1)Y gauge charges
whereas the left-handed sleptons couple also via their SU(2) charges and thus get larger
contributions from the gaugino masses.

Fig. 2.2 also implies for the mass ordering of the gauginos M1 < M2 < M3 at MZ . This
can easily be understood by noting that the coefficients bi, which describe the running of the
gaugino masses and the gauge couplings, are the same [99]

16π2dMi

dt
= 2big

2
i Mi , (2.24)

with bi = {33/5, 1,−3} for i = 1, 2, 3; cf. also Eq. (5.14). As for the gauge coupling g3, the
mass of the SU(3)C gaugino, M3, increases when going from MGUT to MZ . The masses of
the bino, M1, and winos, M2, decrease. We find at every scale (up to small two-loop effects)
the following ratios [99]

M1

g2
1

=
M2

g2
2

=
M3

g2
3

=
M1/2

g2
GUT

, (2.25)

with gGUT ≃ 0.71 the universal gauge coupling at MGUT. It directly follows that M3 : M2 :
M1 ≃ 7 : 2 : 1 at MZ .

The masses of the sleptons and squarks of the third generation are generally lighter then
the first and second generation masses, cf. dashed lines in Fig. 2.2. On the one hand,
this is due to the Higgs-Yukawa interactions. For the third generation, they are roughly as
strong as the gauge interactions. For example, the dominant contribution to the RGE of the
right-handed (soft breaking) stop mass squared is [58]

16π2d(mŨ
2)33

dt
= −

(

32

15
g2
1|M1|2 +

32

3
g2
3|M3|2 +

4

5
g2
1S
)

+(YU)2
33

[

4(mŨ
2)33 + 4(mQ̃

2)33 + 4m2
Hu

]

+ 4(hU)2
33, (2.26)

with (hU)33 = (YU)33 × A0 at MGUT. Compared with Eq. (2.20), the running of the right-
handed stop mass is now additionally affected by the the large top-Yukawa coupling, (YU)33,
and the corresponding trilinear scalar interaction, (hU)33. These new terms in Eq. (2.26) are
always positive and therefore tend to decrease the stop mass going from MGUT to MZ . We
thus expect the third generation sfermions to be the lightest generation. We will see, in the
next sections, that additional lepton- and baryon-number violating Yukawa couplings, and
the corresponding trilinear scalar couplings, can affect the running in a significant way, such
that we even get new candidates for the LSP. On the other hand, we can have large L-R
mixing for the third generation which additionally decreases the mass of the lighter mass
eigenstate.
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1
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The up-type Higgs also directly couples to the top-Yukawa operator. This leads to a large
decrease of the up-type Higgs mass, mHu , cf. Fig. 2.2. The quantity (µ2 + m2

Hu
) even runs

to negative values. This effect leads to radiative electroweak symmetry breaking (REWSB)
[36]8. Having fixed tan β, Eq. (2.17), we can derive the magnitude of the Higgs mixing
parameter µ and the corresponding soft breaking coupling B̃ from the minimization of the
scalar Higgs potential [132]9. As pointed out in Sect. 1.1, the dynamical breaking of the
electroweak symmetry is one strong motivation for SUSY.

We finally expect from Fig. 2.2 that the LSP must be a bino-like neutralino, χ̃0
1. For the

mSUGRA parameters of Fig. 2.2 we obtain M1 = 95 GeV, M2 = 190 GeV and µ = 440
GeV at MZ . Mixing of the bino with the wino and the Higgsinos is thus small [79, 80]. The
next-to-lightest LSP (NLSP) is a slepton. According to the discussion above, this slepton
must be the lighter (mainly right-handed) scalar tau (stau), τ̃1, due the rather large tau
Yukawa coupling and due to L-R mixing, cf. Eq. (A.16). One can now imagine from Fig. 2.2
that increasing M1/2 will at some point lead to a spectrum in which the τ̃1 becomes the LSP
instead of the χ̃0

1. This is indeed the case, as can be seen in Fig. 2.3.

We show, in Fig. 2.3, the LSP content in the M1/2–tan β plane. The black contour separates
the areas with a χ̃0

1 LSP and a τ̃1 LSP. The other mSUGRA parameters are those of SPS1a
[146]. We employed SOFTSUSY2.0.10 [145, 147] to calculate the masses at MZ . We indeed
observe that the τ̃1 becomes the LSP instead of the χ̃0

1 when we increase M1/2. Increasing
M1/2 increases the mass of the (bino-like) χ̃0

1 faster than the mass of the (mainly right-
handed) τ̃1, cf. Eq. (A.17) and Eq. (A.15), respectively. Apart from that, we can also get a
τ̃1 LSP by increasing tanβ. Increasing tanβ increases on the one hand the magnitude of the

8A negative value of (µ2 +m2
Hu

) will help, but is not strictly necessary for EWSB; see for example Ref. [13,
66].

9To calculate µ and B̃ (numerically) at MGUT, we can, for example, employ an iterative procedure, as it is
done in the program SOFTSUSY [145].
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16 The Model

tau Yukawa coupling, (YE)33. This increases the (negative) effect of (YE)33 on the running
of the τ̃ mass; cf. the discussion after Eq. (2.26). On the other hand, tanβ increases the
mixing between τ̃L and τ̃R; see Appendix A.2 for details.

2.4.3. The P6 violating mSUGRA model

In Sect. 2.4.1 and Sect. 2.4.2 we discussed the mSUGRA model and its MSSM mass spectrum
at MZ . We now want to extend our discussion to the more general SSM with additional
lepton- or baryon number violating-interactions, Eq. (2.6) and Eq. (2.11). For that purpose
the P6 violating (6 P6) mSUGRA model10 was proposed in Ref. [58]. We now have the six
parameters

M0, M1/2, A0, tanβ, sgn(µ),Λ , (2.27)

with

Λ ∈ {λijk, λ
′
ijk, λ

′′
ijk} at MGUT , (2.28)

i.e. we assume one additional (real) trilinear coupling at MGUT. According to Ref. [58] it
is natural that the bilinear 6 P6 operators can be rotated away at MGUT. However this is no
longer possible at lower scales due to different running of κi and D̃i [58]; cf. Sect. 4.1.1.
Analogous to Eq. (2.13) and Eq. (2.16), we have, at MGUT, also one non-vanishing 6 P6

term in the soft breaking Lagrangian, Eq. (2.11), namely hΛ = A0 × Λ. We have thus
reduced the more than 200 free parameters of the 6 P6 SSM to only six. The 6 P6 mSUGRA
model is therefore well suited for detailed phenomenological studies. Note that B3 (and P6)
is incompatible with a GUT gauge symmetry, since the quark and lepton superfields are
treated differently, cf. Eq. (2.9). However, B3 operators can be generated after the GUT
symmetry is broken, see Ref. [58] for details.

From a phenomenological point of view, a single dominating Λ coupling is well motivated.
Bounds on products of two different 6 P6 couplings are in general stronger than bounds on
single couplings [89, 148]. However, one 6 P6 coupling at MGUT will generate additional 6 P6

couplings at MZ [58, 85, 100, 102, 103, 104, 105]. We will take this effect into account in
this thesis. Note that also the SM offers an extreme hierarchy between different Yukawa
couplings.

As pointed out in Sect. 2.3, an important difference between 6 P6 mSUGRA compared to
P6 mSUGRA is that every sparticle is allowed to be the LSP, because it will decay. A τ̃1 LSP
in 6 P6 mSUGRA is therefore as well motivated as a χ̃0

1 LSP; see Fig. 2.3 and Ref. [58, 106].
In addition, the RGEs get new 6 P6 contributions which can effect the running of the sparticle
masses in a significant way.

For example, the RGE of the soft breaking sneutrino (and left-handed charged slepton)
mass, Eq. (2.19), receives additional one-loop contributions in the presence of λ′

ijk|GUT 6= 0

10We also refer to the P6 violating mSUGRA model as the B3 mSUGRA model, if only lepton-number is
violated, cf. Sect. 2.3.
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[58]11:

16π2d(mL̃
2)ii

dt
= −6

5
g2
1M

2
1 − 6g2

2M
2
2 − 3

5
g2
1S

+ 6λ′2
ijk

[

(mL̃)2
ii + (mQ̃)2

jj + (mD̃)2
kk

]

+ 6(hDk)2
ij (2.29)

with

(hDk)ij ≡ λ′
ijk × A0, at MGUT . (2.30)

Here (hDk)ij is the soft breaking coupling corresponding to λ′
ijk, cf. Eq. (2.11). There is no

summation over repeated indices in Eq. (2.29).

The running of (mL̃
2)ii is governed by two different sets of terms. The first three terms in

Eq. (2.29) are proportional to the gauge couplings squared. We found in the last section that
the sum of these three terms is negative at every scale. They therefore lead to an increase
in (mL̃

2)ii, going from MGUT to MZ .

The remaining contributions are proportional to λ′2
ijk and (hDk)2

ij; the latter is also pro-
portional to λ′2

ijk at MGUT, cf. Eq. (2.30). These terms are positive and will therefore reduce
(mL̃

2)ii, going from MGUT to MZ . They are also new to the 6 P6 mSUGRA model compared
to minimal mSUGRA. The influence of these new contributions on (mL̃

2)ii depends on the
magnitude of 6 P6 λ′

ijk and also on the other mSUGRA parameters, Eq. (2.27), especially on
A0, as we will show in Sect. 4.2.1.

In Fig. 2.4, we demonstrate the impact of a non-vanishing λ′
231|GUT on the running of

the sneutrino mass. The other mSUGRA parameters are that of SPS1a [146]. In the P6

11For i = 3, we can also have significant terms proportional to (YE)233, i.e. proportional to the tau Yukawa
coupling squared.
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18 The Model

conserving case, the χ̃0
1 is the LSP and the τ̃1 is the NLSP. See also Ref. [106] for the

case of λ′
331|GUT. The mass of the muon sneutrino, ν̃µ, decreases for increasing λ′

231|GUT, as
described by Eq. (2.29). Furthermore, the mass of the left-handed smuon, µ̃L, decreases, as it
belongs to the same SU(2) doublet. The running of the µ̃L mass squared is also described by
Eq. (2.29). But note that the mass difference between ν̃µ and µ̃L, is not the same at all values
of λ′

231|GUT, as can be seen in Fig. 2.4. This is due to the different D-term contributions to
mν̃µ and mµ̃L

, cf. Eq. (A.11), for different λ′
231|GUT. The mass difference is approximately 20

GeV (50 GeV) for λ′
231|GUT = 0.0 (0.14). The µ̃L is also always heavier than the ν̃µ, as long

as tan β > 1. We calculated the sparticle masses in Fig. 2.4 with a 6 P6 version of SOFTSUSY
[149, 150, 147].

At one-loop order, the masses of the χ̃0
1 and the τ̃1 are not changed, as can be seen in

Fig. 2.4. They do not directly couple to the L2Q3D̄1 operator, in contrast to ν̃µ, µ̃L, cf.
Eq. (2.29). The RGEs of the χ̃0

1 and the τ̃1 mass get thus no contributions (at one-loop)
which depend on λ′

231. We therefore obtain for the parameter set SPS1a with λ′
231|GUT > 0.12

a new candidate for the LSP, namely the sneutrino! In Sect. 4, we systematically investigate
the conditions which lead to a ν̃i LSP in 6 P6 mSUGRA models. From Eq. (2.29) it is clear
that we need a coupling λ′

ijk|GUT 6= 0. The smallest λ′
ijk|GUT coupling which we found leading

to a ν̃i LSP is λ′
ijk|GUT = 0.054. Otherwise, the new contributions in the RGE, Eq. (2.29),

are not large enough to reduce the ν̃i mass significantly.

A non-vanishing λ′
ijk|GUT also reduces the left-handed squark masses of generation j, and

the right-handed down-squark masses of generation k, because these squarks couple directly
to the LiQjD̄k operator [58, 106]. One might worry that this effect leads to unwanted FCNCs
when we rotate the quarks and squarks from the flavor-basis to their mass-basis. But, for
example for SPS1a with λ′

231|GUT = 0.13, the respective squark masses are reduced by less
than 4%, thus avoiding FCNCs which are in contradiction with experiment [81, 82].
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3. All Possible LSP Candidates in P6
Violating mSUGRA Models

As pointed out in Sect. 2.3, the LSP is no longer stable if lepton- or baryon-number violating
interactions, Eq. (2.6), are present. The LSP is then also not restricted to be the lightest
neutralino, χ̃0

1, and can in principle be any SUSY particle

χ̃0
1, χ̃±

1 , ℓ̃±L/Ri, τ̃1, ν̃i, q̃L/Rj , b̃1, t̃1, g̃a ; (3.1)

see Sect. 2.2 and Table 2.1. We have separately listed the lightest stau, τ̃1, sbottom, b̃1, and
stop, t̃1, as they are promising LSP candidates.

In the collider search for supersymmetry at colliders, it is essential to know the nature
of the LSP, because SUSY particles, if produced, normally cascade decay down to the LSP
within the detector. The LSP is thus a central ingredient of almost all SUSY signatures.

In Eq. (3.1), we have a bewildering array of potential LSPs. We thus need a guiding
principle. A well motivated restricted framework for detailed studies is the proton-hexality,
P6, violating mSUGRA model; see Sect. 2.4.3. We thus have a simple well-motivated frame-
work, in which we can systematically investigate the nature of the LSP. In Ref. [58, 106] it
was shown that in such models there are two different LSP candidates if the 6 P6 coupling Λ,

Eq. (2.28), is
<∼ O(10−2): the χ̃0

1 and the τ̃1; see also Fig. 2.3. However, as we saw in Fig. 2.4

for the example of a sneutrino, ν̃i, LSP, Λ
>∼ O(10−1) can significantly alter the renormal-

ization group running such that we obtain a non-χ̃0
1 and non-τ̃1 LSP. It is the purpose of this

section to determine all possible LSPs in the 6 P6 mSUGRA model. This is very important
for SUSY searches at the LHC.

We describe in Sect. 3.1 the mechanism which produces non-χ̃0
1 and non-τ̃1 LSPs. We

also give a complete list of all LSP candidates in 6 P6 mSUGRA. In Sect. 3.2 (Sect. 3.3) we
discuss the LSPs which can be obtained via a non-vanishing LiLjĒk (ŪiŪjD̄k) operator, cf.
Eq. (2.6). In Sect. 3.4 we conclude.
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20 All Possible LSP Candidates in P6 Violating mSUGRA Models

coupling Λ LSP coupling Λ LSP
λ132 µ̃R λ121,λ131,λ231 ẽR

λ′
ijk ν̃i λ′′

212 s̃R/d̃R

λ′′
123, λ

′′
213, λ

′′
223 b̃1 λ′′

323 t̃1

Table 3.1.: All possible non-χ̃0
1 (and non-τ̃1) LSP candidates in 6 P6 mSUGRA via a non-vanishing

Λ = O(10−1), consistent with the experimental bounds, cf. Refs. [85, 89, 94, 148].

3.1. Non-χ̃0
1 LSP Parameter Space

If a sparticle directly couples to Λ, the dominant contributions to the RGE of the running
sparticle mass m̃ are [58]1:

16π2d(m̃2)

dt
= −aig

2
i M

2
i − bg2

1S + Λ2F + ch2
Λ , (3.2)

hΛ ≡ Λ × A0 at MGUT . (3.3)

Here we sum over repeated indices. S and F are linear functions of products of two soft
breaking scalar masses and ai, b, c are constants of O(10−1 − 101) [58]; see Eq. (2.29) for an
explicit example.

The sum of the first two P6 terms in Eq. (3.2) is negative and thus increases m̃ when
running from MGUT to MZ . In contrast, the last two 6 P6 terms proportional to Λ2, h2

Λ, are
always positive and therefore decrease m̃. We thus expect new LSP candidates beyond χ̃0

1

and τ̃1 if these latter terms contribute substantially. This is the case if Λ = O(10−1), i.e.
Λ = O(gi); see Fig. 2.4. We can strengthen the (negative) contribution of h2

Λ, by choosing a
negative A0 with a large magnitude; for moderate positive A0 there is a cancellation in the
RGE evolution of hΛ. We will discuss this effect in detail in Sect. 4.2.1. The other terms are
not significantly affected by A0. Note that we also need M1/2 (tanβ) large (small) enough
to avoid a χ̃0

1 (τ̃1) LSP, cf. Fig. 3.2. In Ref. [58, 106] it was shown that λ′
ijk|GUT = O(10−1)

can lead to a ν̃i LSP. Ref. [58, 101] gives the example of a ẽR LSP via λ231|GUT = O(10−1).

Here we investigate all possible LSP candidates in 6P6 mSUGRA via a non-vanishing cou-
pling Λ = O(10−1). Our results are shown in Table 3.1 and are explained in the follow-
ing. We only consider couplings for which Λ = O(10−1) is consistent with existing bounds
[85, 89, 94, 148]. We argue that Table 3.1 gives a complete list of all possible non-χ̃0

1 (and
non-τ̃1) LSP candidates in 6 P6 mSUGRA. We refer to Sect. 4 for a very detailed discussion
of the ν̃i LSP via λ′

ijk|GUT 6= 0.

We now investigate the non-χ̃0
1 (and non-τ̃1) LSP parameter space of 6P6 mSUGRA. We

calculate the sparticle mass spectra with a 6 P6 version of SOFTSUSY [149, 150, 147]. In the
figures, we show (green) contour lines corresponding to the 2σ windows for BR(b → sγ)
[151],

2.74 × 10−4 < BR(b → sγ) < 4.30 × 10−4 , (3.4)

1For third generation sparticles we also need to take into account the contributions from the Higgs-Yukawa
interactions. Their effect is similar compared to Λ and hΛ in Eq. (3.2); cf. the discussion after Eq. (2.26)
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3.2 Non-χ̃0
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Figure 3.1.: Mass difference, ∆M , between the NLSP and LSP. The LSP candidates are explicitly
mentioned. The blackened out region on the left and bottom corresponds to parameter points, which
posses a tachyon or which violate other constraints as described in the text. The green contour
line is described in the text. The other mSUGRA parameter are λ132|GUT = 0.09, M0 = 170 GeV,
A0 = −1500 GeV and sgn(µ) = +1.

and for the SUSY contributions to the anomalous magnetic moment of the muon [4, 5, 6]

11.9 × 10−10 < δaSUSY
µ < 47.1 × 10−10 . (3.5)

See Sect. 4.2 for more details. We employ the LEP exclusion bound on the light Higgs mass
[152], mh > 114.4 GeV, which we reduce by 3 GeV to account for numerical uncertainties of
SOFTSUSY [40, 106, 153, 154].

3.2. Non-χ̃0
1 LSPs via LLE

The least constrained couplings of the LiLjĒk operator, Eq. (2.6), are [85, 89, 94, 148]

λ121, λ131 < 0.15, λ123 < 0.05 × (mτ̃R
/100 GeV) ,

λ132(λ231) < 0.07 × (mµ̃R,ẽR
/100 GeV) , (3.6)

where the bounds apply at MZ . Note, that λijk is reduced by roughly a factor of 1.5 when
running from MZ to MGUT [85].

We give in Fig. 3.1 the µ̃R LSP region in the M1/2–tanβ plane for a λ132-coupling. We
show the mass difference, ∆M , between the NLSP and LSP. We have employed a lower
bound of 190 GeV on the µ̃R mass to fulfill the strong bound on λ132. The remaining SUSY
particles are then so heavy within 6 P6 mSUGRA, that other collider constraints from LEP
and the Tevatron are automatically fulfilled.

We see that the µ̃R LSP exists in an extended region of 6 P6 mSUGRA. We find a µ̃R LSP
for all M1/2 > 480 GeV, because M1/2 increases the mass of the (bino-like) χ̃0

1 faster than
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Figure 3.2.: Same as Fig. 3.1, but with λ′′
212|GUT = 0.5, A0 = −3700 GeV, tan β = 19 and

sgn(µ) = +1.

the mass of the µ̃R, cf. Eq. (A.11) and Eq. (A.17). The complete µ̃R LSP region in Fig. 3.1
agrees with BR(b → sγ) at 2σ. But only a tiny region is consistent with δaSUSY

µ at 2σ, i.e.
lies above the green line. The mass spectra are rather heavy and thus δaSUSY

µ is suppressed
[7, 155].

If we use λ231, λ121 or λ131 instead of λ132 in our parameter scans, we obtain a ẽR as the
LSP. We can not obtain a ℓ̃L as the LSP in 6 P6 mSUGRA with λ|GUT 6= 0. On the one hand,
the P6 contributions to the RGEs of m2

ℓ̃L
have a larger magnitude compared to m2

ℓ̃R
. On the

other hand, the (negative) 6 P6 contributions to m2
ℓ̃L

are smaller in magnitude compared to

those for m2
ℓ̃R

[58].

3.3. Non-χ̃0
1 LSPs via UDD

The following baryon-number violating couplings, λ′′
ijk, are only constrained by perturbativ-

ity [85, 89, 94, 148]

λ′′
212 , λ′′

123 , λ′′
213 , λ′′

223 , λ′′
323

<∼ O(1) . (3.7)

We can obtain right-handed squark, q̃R, LSPs via these λ′′
ijk couplings.

We assume that the weak- and mass-eigenstates of right-handed quarks are the same.
With this assumption we avoid the RGE generation of additional couplings λ′′

lmn at MZ out
of λ′′

ijk|GUT, which might be in contradiction with experiment [85, 89, 94, 148]. We also avoid
large FCNCs [81, 82]. Note that we only have experimental information about mixing in the
left-handed quark sector; see Sect A.1.

We show in Fig. 3.2 the d̃R/s̃R LSP region via λ′′
212|GUT = 0.5 in the M1/2–M0 plane. The

d̃R and s̃R are degenerate in mass, because both sparticles interact the same via the gauge
interactions and via λ′′

212 [58]. We impose a lower bound of 380 GeV on the d̃R/s̃R mass,
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Figure 3.3.: Same as Fig. 3.1, but with λ′′
223|GUT = 0.5, M0 = 120 GeV, M1/2 = 400 GeV and
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consistent with the non-observation of the d̃R/s̃R in resonance searches in the dijet channel
at the Tevatron [156]2.

We can not get a c̃R LSP via λ′′
212|GUT 6= 0. The 6 P6 contributions to the RGEs of the d̃R,

s̃R and c̃R mass are the same [58]. But the c̃R couples stronger to the U(1)Y gaugino than
the d̃R and s̃R and is therefore always heavier than d̃R and s̃R

3, cf. Eq. (A.12). For example,
the c̃R in Fig. 3.2 is roughly 60 GeV heavier than the d̃R/s̃R.

Due to md̃R/s̃R
> 380 GeV, we need M1/2 = O(1 TeV), as can be seen in Fig. 3.2, to obtain

also a heavy χ̃0
1. This results in such a heavy mass spectrum that δaSUSY

µ lies beyond the

experimental 2σ window. However the complete d̃R/s̃R LSP region in Fig. 3.2 is consistent
with BR(b → sγ) at 1σ.

Only small M1/2 intervals are allowed in Fig. 3.2, because md̃R/s̃R
at MZ increases very

rapidly with increasing M1/2, cf. Eq. (A.12). The dependence on M0 is weaker, i.e. M0

intervals up to 100 GeV (for constant M1/2) are allowed in Fig. 3.2. These are general features
of most of the squark LSP regions. We thus concentrate on A0 and tan β in what follows.
tanβ is important, because increasing tan β increases [decreases] δaSUSY

µ [BR(b → sγ)], cf.
Ref [106].

We give in Fig. 3.3 the b̃1 LSP region via λ′′
223|GUT = 0.5 in the A0–tan β plane. The b̃1

LSP mass lies between 77 GeV and 180 GeV. The lower value corresponds to the strongest
LEP bound [157]. Note, that there is no bound on the b̃1 LSP mass from Tevatron searches.
The single b̃1 production cross section via λ′′

223|GUT = 0.5 lies below the exclusion limits for
a dijet resonance, cf. Ref. [156], due to the small incoming parton luminosity.

2It is not clear if Ref. [156] can exclude md̃R/s̃R
< 380 GeV. They did not search for single squark resonances.

A more detailed analysis is required, including NLO corrections to single d̃R/s̃R production.
3The c̃R can in principle be lighter than the d̃R and s̃R if M1/2

<∼ 200 GeV due to different D-term
contributions, see Eq. (A.12) for details. However, the c̃R LSP parameter space is in that case excluded
by constraints from LEP [157, 152].
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Figure 3.4.: Same as Fig. 3.1, but with λ′′
323|GUT = 0.35, M0 = 120 GeV, M1/2 = 480 GeV and

sgn(µ) = +1.

Most of the b̃1 LSP region in Fig. 3.3 is also consistent with BR(b → sγ) (below upper green
line) and δaSUSY

µ (above lower green line) at the 2σ level. We observe that A0 = O(−1 TeV)

is vital to obtain a b̃1 LSP. Increasing A0 reduces the (negative) effect of λ′′
223|GUT on the

running of the b̃1 mass and we re-obtain the χ̃0
1 or τ̃1 LSP, see Sect. 4.2.1.

We can also obtain a b̃1 LSP, if we use λ′′
123|GUT, λ′′

213|GUT 6= 0. But now there are addi-
tional constraints from the Tevatron on dijet resonances [156]. The couplings λ′′

123 and λ′′
213

unlike λ′′
223 allow for single b̃1 production via a valence quark or antiquark, which enhances

the hadronic cross section. Note, that these three couplings can only lead to a b̃1 LSP, be-
cause the b̃1 mass (compared to the q̃R masses of the first two generations) is further reduced
by the large bottom Yukawa coupling and by larger left-right mixing.

For λ′′
323|GUT = 0.35, we obtain a t̃1 LSP as shown in Fig. 3.4 for the A0–tanβ plane. The

t̃1 LSP mass ranges from 94 GeV to 200 GeV. The lower bound corresponds to the LEP
bound on mt̃1 [157]4. The t̃1 LSP region between the upper and lower green line is also
consistent with BR(b → sγ) and δaSUSY

µ at 2σ.

We need in general a smaller coupling λ′′
ijk|GUT to obtain a t̃1 LSP than b̃1 LSP, because the

t̃1 mass is further reduced by the large top Yukawa coupling; see discussion after Eq. (2.26).
This effect is enhanced by a negative A0 with a large magnitude, see Sect. 4.2.1. A0 =
O(−1 TeV) also leads to large left-right mixing, which further reduces the t̃1 mass. For the
same reasons we can not obtain another squark LSP than the t̃1 via λ′′

323|GUT 6= 0.

The complete t̃1 LSP region in Fig. 3.4 should be testable at the Tevatron [158]. The
authors found that t̃1 masses up to 190 GeV (210 GeV) can be explored at the Tevatron
for an integrated luminosity of 2 fb−1 (8 fb−1). However, this analysis has not yet been
performed by the Tevatron collaborations.

4Unlike the b1 LSP, the t̃1 LSP has a large left-handed component due to left-right mixing. As a conservative
approach, we take the (stronger) mass bounds from Ref. [157] for purely left-handed up-type squarks.
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3.4. Conclusion of Section 3

We have investigated for the first time all possible non-χ̃0
1 (and non-τ̃1) LSPs in P6 violating

mSUGRA models; see Table 3.1. We have found that a non-vanishing LiLjĒk operator at the
GUT scale can lead to a ẽR (i = 1) or µ̃R (i = 2) LSP; cf. Fig. 3.1. A non-vanishing LiQjD̄k

operator can lead to a ν̃i LSP. We can also obtain squark LSPs, namely the s̃R, d̃R, b̃1 and
t̃1 via a non-vanishing ŪiD̄jD̄k operator; see Fig. 3.2, Fig. 3.3 and Fig. 3.4, respectively. We
have found µ̃R, ν̃i, b̃1 and t̃1 LSP scenarios consistent with the observed anomalous magnetic
moment of the muon and b → sγ as well as consistent with collider constraints from LEP and
the Tevatron. According to Ref. [158], t̃1 LSPs up to a mass of 190 GeV can be tested at the
Tevatron with 2 fb−1 of data. We therefore want to encourage the Tevatron collaborations
to investigate the t̃1 LSP parameter space of P6 violating mSUGRA, as well as to look for
squark LSP resonances in dijet events.
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4. Sneutrino LSPs in B3 mSUGRA

Models and Signals at the LHC

We have shown in Sect. 2.4.3 that a non-vanishing coupling λ′
ijk at the grand unification scale,

MGUT, can affect the supersymmetric spectrum at the electroweak scale, MZ , such that a

sneutrino, ν̃i, is the LSP. This requires λ′
ijk

>∼ 0.05 at MGUT corresponding to λ′
ijk

>∼ 0.15
at MZ . In this section we consider in detail the case of a ν̃i LSP within baryon-triality, B3,
mSUGRA1, cf. Sect. 2.3 and Sect. 2.4.3. In Ref. [106] only one example scenario with a ν̃τ

LSP was presented. We go beyond this work and systematically investigate the B3 mSUGRA
parameter space with a ν̃i LSP.

In Sect. 4.1, we analyze the experimental bounds, especially on the LiQjD̄k operator,
Eq. (2.6), which restrict the ν̃i LSP parameter space. We then investigate in Sect. 4.2 in
detail the conditions at MGUT leading to a ν̃i LSP. Finally, in Sect. 4.3, we simulate SUSY
events at the LHC within one ν̃µ LSP scenario. We focus on signatures, which are special
for ν̃i LSP scenarios. We conclude in Sect. 4.4.

4.1. Experimental Bounds on Sneutrino LSP Models

We now investigate for which couplings λ′
ijk|GUT the upper bounds are sufficiently weak such

that a ν̃i LSP can be generated. For the bounds, we first take into account the generation of
tree level neutrino masses. Then we review other indirect bounds on these couplings. Finally
we discuss the restrictions from direct searches for supersymmetric particles at LEP, at the
Tevatron and the CERN pp̄ collider.

4.1.1. Bounds from Tree Level Neutrino Masses

If λ′
ijk|GUT 6= 0 and the bilinear coupling κi|GUT = 0, cf. Eq. (2.6), κi|MZ

6= 0 will be
generated via the RGEs [58, 100, 102, 103, 104, 105]

16π2dκi

dt
= −3µλ′

ijk(YD)jk + . . . . (4.1)

Furthermore, λ′
ijk|GUT will generate the corresponding soft breaking term of κi, namely D̃i,

Eq. (2.11), via [58, 100, 102, 103, 104, 105]

16π2dD̃i

dt
= −3

[

2µ(hDk)ij + B̃λ′
ijk

]

(YD)jk + . . . . (4.2)

1We also refer to the P6 violating mSUGRA model as the B3 mSUGRA model, if only lepton-number is
violated.
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4.1 Experimental Bounds on Sneutrino LSP Models 27

Here, B̃ is the soft breaking coupling corresponding to µ and is determined by REWSB
[36, 58], cf. Eq. (2.3). Since the RGEs are different for κi and D̃i, they are not aligned at
the weak scale and can not be rotated away through a field redefinition.

The sneutrino of generation i will develop a vacuum expectation value vi due to the non-
vanishing couplings κi and D̃i. The vacuum expectation value vi, and the κi operator will
mix the neutralino fields with the neutrino fields which generates one massive neutrino, mνi

,
for non-vanishing λ′

ijk|GUT at tree-level [45, 58, 105, 159, 160].

Demanding that this neutrino mass is smaller than the cosmological bound on the sum of
neutrino masses, determined by the combination of the WMAP data [161] and the 2dFGRS
data [162],

∑

i

mνi
< 0.71 eV , (4.3)

results in upper bounds on λ′
ijk|GUT, which were calculated in Ref. [58] for the parameter

point SPS1a [146].

It was found in Ref. [58], assuming quark mixing solely in the down-sector, Eq. (A.5),
and assuming no accidental cancellations, that the bounds on λ′

ijk|GUT are of the order of
O(10−3 − 10−6). However, if quark mixing is solely in the up-sector, Eq. (A.4), than (YD)jk

vanishes at MZ for j 6= k. This suppresses the right hand side of Eq. (4.1) and Eq. (4.2).
The neutrino masses and therefore the bounds on λ′

ijk|GUT are significantly softened. Taking
also two loop effects into account, we summarize in Table 4.1 the λ′

ijk couplings, which are
unrestricted by the neutrino mass bound, Eq. (4.3), as long as quark mixing is dominantly
in the up-sector, cf. Eq. (A.4). We also include the strictest experimental bound, which we
discuss in the following subsection.

4.1.2. Indirect Bounds on λ′
ijk

In this section, we review the relevant indirect bounds on the couplings λ′
ijk from electroweak

precision measurements. In Table 4.1, we present the strongest bounds on the single λ′
ijk

couplings at the 2σ level [85, 89, 94, 148, 163]. The bounds apply to the couplings at MZ . To
obtain the respective bound at MGUT one has to divide the corresponding bound in Table 4.1
by roughly a factor of three, cf. Sect. 5.2. For each coupling the bound depends linearly
on the sfermion mass of the virtual particle exchanged in the relevant process. In the right
column, we show which sneutrino can become the LSP. We see that an electron sneutrino
LSP, ν̃e, is disfavored due to the strong bounds on the couplings λ′

1jk, which stem from
atomic parity violation measurements and pion decays [89]. We have found that only in a
small range of mSUGRA parameter space a ν̃e LSP is found, although large squark masses
weaken the bounds. In the following we will thus concentrate on muon sneutrinos, ν̃µ, and
tau sneutrinos, ν̃τ , as LSP candidates.

One non-vanishing λ′
ijk|GUT will also generate additional (LQD̄ and LLĒ) B3 operators,

Eq. (2.6), at MZ , which violate the same lepton number; see Sect. 5.2. For example, for
one λ′

2jk|GUT 6= 0, we will generate all other muon number violating operators at MZ via
one and two loop effects. Since bounds on products of two different B3 couplings are often
much stronger than on only one B3 coupling [85, 89, 94, 148, 163], we have also checked that
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coupling upper bounds at MZ LSP
λ′

121 0.03 × (mc̃L
/100 GeV) ν̃e

λ′
131 0.02 × (mt̃L/100 GeV) ν̃e

λ′
112 0.02 × (ms̃R

/100 GeV) ν̃e

λ′
221 0.18 × (ms̃L

/100 GeV) ν̃µ

λ′
231 0.18 × (mb̃L

/100 GeV) ν̃µ

λ′
212 0.06 × (ms̃R

/100 GeV) ν̃µ

λ′
321 0.52 × (md̃R

/100 GeV) ν̃τ

λ′
331 0.32 × (md̃R

/100 GeV) ν̃τ

λ′
312 0.11 × (ms̃R

/100 GeV) ν̃τ

Table 4.1.: Upper bounds on single couplings λ′
ijk from electroweak precision measurements.

Only couplings are shown, which are consistent with the cosmological bound on neutrino masses,
Eq. (4.3); see also Ref. [58]. The bounds depend strongly on the masses of the relevant squarks, mq̃.
The third column shows the ν̃i LSP, which can be generated via the respective λ′

ijk|GUT coupling.

all generated products of the dominant λ′
ijk coupling with a generated coupling satisfy the

bounds. All products lie at least one order of magnitude below the strongest upper bounds
if λ′

ijk|GUT = 0.1.

After REWSB, the single coupling scheme, which was assumed in deriving the bounds in
Table 4.1, cannot be realized in the quark mass eigenbasis [164]. In Sect. 4.1.1, we stated
that quark mixing must be dominantly in the up-sector, Eq. (A.4), to fulfill the cosmological
bound on the sum of neutrino masses, Eq. (4.3). Therefore, in the quark mass basis we will
generate the following B3 couplings

λ̃′
imk = (V∗

CKM)mjλ
′
ijk . (4.4)

λ̃′
imk with m = 1, 2, 3 couples an up-quark superfield of generation m (in the mass basis)

to a lepton and down-quark superfield of generation i and k, respectively. These effective
couplings can give rise to D0–D̄0 mixing if m = 1, 2 [164, 165, 166]. D0 oscillations were
investigated by the BABAR [167, 168], Belle [169, 170] and CDF [171] collaborations. The
Heavy Flavor Averaging Group combined all experimental results and obtained windows for
the allowed mass difference and the allowed lifetime difference of the D0–D̄0 system [172].

Ref. [166] employed the experimental 2σ errors on the D0–D̄0 mass difference to obtain
the following bounds on λ′

ijk

|λ̃′
i21 λ̃′

i11| = |λW λ′2
i21| ≤ 0.0029

[

(

100 GeV

mℓ̃Li

)2

+

(

100 GeV

md̃R

)2
]−1/2

, (4.5)

where λW = 0.23 is the Wolfenstein parameter [173, 174] and i = 1, 2, 3. For the evaluation
of Eq. (4.5), Ref. [166] assumed that the mass splitting arises solely from B3 contributions.
Note that the first equality of Eq. (4.5) only holds if quark mixing is solely in the up-sector,
Eq. (A.4). The corresponding upper bound on |λW λ′2

i12| can be obtained from Eq. (4.5) by
replacing md̃R

with ms̃R
.
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4.1 Experimental Bounds on Sneutrino LSP Models 29

The experimentally allowed range for the difference in lifetime of the D0–D̄0 system was
used in Ref. [165] to obtain the bounds

|λ̃′
i21 λ̃′

i11| = |λW λ′2
i21| ≤ 0.082

( mℓ̃Li

100GeV

)2

. (4.6)

These are valid for i = 1, 2. Unlike Ref. [166], Ref. [165] also took (destructive) interference
between the B3 and SM contributions into account. The bound on |λW λ′2

i12| is the same.

If we assume a ℓ̃Li with a mass of 200 GeV and squarks with a mass of 500 GeV, we
obtain the upper bounds λ′

i21, λ
′
i12 ≤ 0.15 at MZ from the D0–D̄0 mass difference, Eq. (4.5),

and λ′
i21, λ

′
i12 ≤ 1.2 at MZ from the D0–D̄0 lifetime difference, Eq. (4.6). Thus the ν̃i

LSP parameter space is strongly restricted by the D0–D̄0 mass difference. However it was
pointed out in Ref. [165] that destructive interference, for example between P6 violating and
P6 conserving contributions, may significantly weaken the bounds of Eq. (4.5), as in the case
of the D0–D̄0 lifetime difference.

In the following, we mainly focus on the couplings λ′
231 and λ′

331 leading to a ν̃µ and ν̃τ

LSP, respectively. These couplings are not restricted by D0–D̄0 mixing, because the relevant
CKM matrix elements to generate λ̃′

i21 and λ̃′
i11 out of λ′

i31 are too small, cf. Eq. (4.4).

4.1.3. Collider Constraints

4.1.3.1. Constraints from LEP

We now determine bounds on the ν̃i LSP mass from LEP. For the case of a non-vanishing
λ′

ijk coupling the ν̃i LSP will dominantly decay into two jets:

ν̃i → d̄jdk. (4.7)

Here, dk (d̄j) is a (anti) down quark of generation k (j). This decay will occur instantaneously
in the detector, i.e. with no detached vertex, since in our model λ′

ijk is bounded from below
by the requirement of a ν̃i LSP. ν̃i pair production followed by the decay, Eq. (4.7), would
lead to four jet events at LEP.

Bounds on the total ν̃i pair production cross section, with the ν̃i decaying via λ′
ijk were

obtained by the OPAL collaboration [175] and also by the ALEPH collaboration [157].
From these we can obtain lower bounds on the mass of the ν̃i LSP. We calculated the
pair production cross section using the formulas given in Ref. [176], with the fine structure
constant equal to its value at MZ , i.e. α = 1/128. We show in Table 4.2 the strongest lower
bounds on the ν̃i LSP masses for different lepton flavors i.

The ν̃i LSP mass bounds for the second and third generation (i = 2, 3) are universal.
The ν̃e mass bound, in contrast, depends also on the chargino parameters. The chargino
parameters enter through t-channel diagrams to the sneutrino pair production cross section.
We calculated the different bounds on the electron sneutrino mass by assuming, that the
lightest chargino is wino-like. This is the case for most mSUGRA scenarios. We then varied
its mass between 120 GeV and 1000 GeV to obtain the numbers in Table 4.2.
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mν̃e mν̃µ mν̃τ

OPAL > 68 − 89 GeV > 74 GeV > 74 GeV
ALEPH > 75 − 95 GeV > 79 GeV > 79 GeV

Table 4.2.: Lower bounds on the ν̃i LSP masses from direct ν̃i decay via λ′
ijk. The bounds

were obtained from the OPAL [175] and ALEPH [157] analyses, respectively. The ν̃µ and ν̃τ mass
bounds are universal. The ν̃e mass bound depends on the chargino parameters due to potential
interference effects.

In the following, we investigate the ν̃µ LSP and ν̃τ LSP parameter space in detail. A ν̃e LSP
is less favored due to the stronger bounds on the λ′

1jk couplings, cf. Table 4.1. We employ
a lower mass bound of 78 GeV. This corresponds to the bound obtained by the ALEPH
collaboration, see Table 4.2, reduced by 1 GeV to account for numerical uncertainties in
SOFTSUSY [153].

Only the mass bounds of the directly decaying ν̃i LSP need to be considered, because all
the other bounds from LEP on direct and indirect decays of heavier sparticles (compared to
the ν̃i LSP) are automatically fulfilled. In addition, the LEP exclusion bound on the light
Higgs, h, is mh > 114.4 GeV at 95% confidence level [152]. Anticipating a numerical error
of 3 GeV of SOFTSUSYs prediction of mh [40, 106, 153, 154], we have imposed a lower bound
of 111.4 GeV.

4.1.3.2. Constraints from the Tevatron

At the Tevatron, a non-vanishing λ′
ijk coupling allows for resonant single ℓ̃−Li and ν̃i production

leading to dijet events

ūjdk → ℓ̃−Li → ūjdk , (4.8)

d̄jdk → ν̃i → d̄jdk . (4.9)

The expected reach for the slepton resonance search at the Tevatron in the dijet channel
is estimated in Ref. [177] as a function of the hadronic cross section for the processes in
Eq. (4.8) and Eq. (4.9) and the slepton mass. In Ref. [177], the discovery potential for
slepton masses between 200 GeV and 1200 GeV is given assuming an integrated luminosity
of 2 fb−1 and 30 fb−1. We have checked that all the couplings shown in Table 4.1, assuming
λ′

ijk|GUT = 0.1, lead to production cross sections which lie at least one order of magnitude

below the expected discovery region for 2 fb−1 given in Ref. [177]. We have employed the
QCD and SUSY-QCD next-to-leading order (NLO) cross section [114].

Tevatron searches for new resonances in the dijet channel have indeed been performed by
the D0 collaboration [178] and the CDF collaboration [156, 179, 180]. Although B3 models
were not considered, bounds on the production cross section of additional vector bosons, W ′

and Z ′, which decay into two jets, were obtained. These processes are very similar to the
B3 processes, Eq. (4.8) and Eq. (4.9). W ′ and Z ′ masses between 180 GeV and 1400 GeV
were probed. In this mass region, the production cross section for a single ℓ̃−Li and ν̃i with
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process cross section [pb]
PP̄ → W (Z) → qq̄ 2.7 × 104 (7.9 × 103)

PP̄ → µ̃L → qq̄ 9.2 × 102 (5.7 × 102)
PP̄ → ν̃µ → qq̄ 1.3 × 103 (8.0 × 102)

Table 4.3.: Hadronic cross section for dijet production via an on shell W (Z) boson in comparison
to B3 violating dijet production via µ̃L, Eq. (4.8) and ν̃µ, Eq. (4.9), with a mass equal to the W (Z)
mass. We assumed λ′

221|GUT = 0.1. The charge conjugated processes are also taken into account.

subsequent decay into two jets, lies at least one order of magnitude below the experimental
limits on W ′ and Z ′ production. We assumed λ′

ijk|GUT = 0.1 and one coupling of Table 4.1.

We now estimate if the Tevatron has a chance to observe dijet pair production for ℓ̃−Li and ν̃i

masses below 180 GeV. We show in Table 4.3 the hadronic cross sections for dijet production
via an on-shell W (Z) boson [181, 182]. We also give the NLO production cross section for
a ℓ̃−Li and ν̃i with a mass equal to the Z and W mass [114], assuming λ′

221|GUT = 0.1. We
see that the B3 cross sections are roughly one order of magnitude smaller than the SM cross
sections. We conclude that the processes, Eq. (4.8) and Eq. (4.9), for slepton masses below
180 GeV can not be seen at the Tevatron because the Z and the W have not been observed
at the Tevatron in the dijet channel so far.

Singly produced charged sleptons, Eq. (4.8), may also cascade decay into a lepton ℓi, two
jets and missing energy:

ℓ̃−Li →χ̃0
1ℓ

−
i

→֒ ν̃iν̄i

→֒ d̄jdk . (4.10)

In principle, this signature could be more easily distinguished from the (QCD) background
than pure dijet events, due to the additional isolated lepton in the final state. However the
cascade decay, Eq. (4.10), is kinematically forbidden in most regions of the ν̃i LSP parameter
space, as we show in Sect. 4.2. In that case one might think about the 3-body decay, ℓ̃−Li →
ℓ−i ν̄iν̃i, via a virtual neutralino. However, this process can only occur at a significant rate,
if the 2-body decay mode into two jets, Eq. (4.8), is forbidden or kinematically suppressed.
This is the case for j = 3, i.e. a top quark in the final state. But the ℓ̃−Li can then not be
produced as a single resonance, because we also need a top quark in the initial state, see
Eq. (4.8). Furthermore the 3-body decay, ℓ̃−Li → ℓ−i ν̄iν̃i, is heavily suppressed compared to
the 3-body decay via a virtual top-quark, as we will see in Sect. 4.3.1.

A non-vanishing λ′
i31 coupling can lead to B3 top-quark decay at the Tevatron [164, 183,

184, 185, 186, 187]. For example t → d ℓ̃Li if mℓ̃i < mt. However, the Tevatron can only test
couplings λ′

i31 via top decay, which lie at their upper bounds [187], see Table 4.1. We use
smaller λ′

i31 couplings in the following.

A non-vanishing λ′
i31 coupling contributes also to top-pair production, see Refs. [187, 188,

189]. The top quarks in the tt̄ events are polarized, since the B3 operator couples only to
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left-handed top quarks. It is shown in Refs. [187, 188, 189], that the Tevatron at the end of
Run II can only test couplings λ′

i31, which lie near their current upper bounds, cf. Table 4.1.
The LHC will be able to probe couplings λ′

i31 down to λ′
i31 = 0.2 via top polarization [189].

4.1.3.3. Constraints from the CERN pp̄ Collider

Unlike D0 and CDF, the UA2 collaboration at the CERN pp̄ collider was able to measure
the hadronic decay mode of the Z and W [190]. They also searched for a W ′ and Z ′ decaying
into two jets. They found no excess over the SM background and therefore set exclusion
limits for W ′ and Z ′ production with masses between 80 GeV and 320 GeV [190, 191].

We compared the exclusion limits with our NLO cross section predictions for single slepton,
Eq. (4.8), and sneutrino, Eq. (4.9), production assuming again λ′

ijk|GUT = 0.1 and one of
the couplings shown in Table 4.1 [114]. Our cross section prediction is at least one order of
magnitude smaller than the exclusion limits in the relevant mass range.

4.2. Sneutrino LSP Parameter Space

We have shown in Sect. 2.4.3, that one non-vanishing coupling λ′
ijk|GUT = O(10−1) may lead

to a ν̃i LSP in B3 mSUGRA models, cf. Fig 2.4. We also presented the λ′
ijk couplings, which

have sufficiently weak upper bounds to allow for a ν̃i LSP, see Table 4.1. All lepton flavors
are possible, although a ν̃e LSP is disfavored due to the stronger bounds on the λ′

1jk. Thus
we concentrate on ν̃µ and ν̃τ LSPs in the following.

In this section, we investigate in detail the dependence of the ν̃i LSP parameter space on
the mSUGRA parameters M0, M1/2, A0 and tan β. We explore 2-dimensional parameter
spaces, where our scans are centered around the following points

Point I: M0 = 50GeV, M1/2 = 500GeV,

A0 = −600GeV, tanβ = 10,

sgn(µ) = +1, λ′
231|GUT= 0.11,

Point II: M0 = 200GeV, M1/2 = 290GeV,

A0 = −550GeV, tanβ = 12,

sgn(µ) = +1, λ′
331|GUT= 0.12.

(4.11)

We perform our parameter scans with a B3 version of SOFTSUSY [149, 150, 147].

Point I results in a ν̃µ LSP with a mass of 130 GeV. The next-to-LSP (NLSP) is the
left-handed smuon, µ̃L, with a mass of 159 GeV. Note that the µ̃L mass is also reduced due
to λ′

231|GUT 6= 0, and the µ̃L is always heavier than the ν̃µ for tan β > 1, see Eq. (A.11) and
Fig. 2.4. The masses of the other LSP candidates, namely the τ̃1 and the χ̃0

1, are 186 GeV
and 205 GeV, respectively. Due to the rather large mass difference between the ν̃µ LSP on
the one side, and τ̃1 and χ̃0

1 on the other, we expect an extended ν̃µ LSP parameter space.
This is indeed the case, as shown in the following.
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Point II results in a ν̃τ LSP with a mass of 107 GeV. The NLSP is the χ̃0
1 with a mass of

116 GeV. The next-to-NLSP (NNLSP) is the τ̃1, which has a large left-handed component
here, because the soft breaking mass (mL̃)33, Eq. (2.3), is also reduced via the non-vanishing
λ′

331|GUT coupling, cf. Eq. (2.29). In contrast, (mẼ)33 is not affected. The τ̃1 mass is 120
GeV.

The mass difference between the ν̃τ LSP and the τ̃1 is smaller for Point II than Point I,
because λ′

331|GUT also reduces the mass of the τ̃1, which is an admixture of τ̃L and τ̃R. This
competes with the ν̃τ to be the LSP; cf. Ref. [106]. In contrast, λ′

231|GUT 6= 0 reduces the
mass of the µ̃L. But the µ̃L is always heavier than the ν̃µ. We therefore expect a smaller ν̃τ

LSP parameter space around Point II than the ν̃µ LSP parameter space around Point I.

It is worth mentioning, that Point I leads to a heavier sparticle mass spectrum than Point
II. This stems from the fact, that we have chosen our central scan points, such that the
SUSY contributions to the anomalous magnetic moment of the muon, δaSUSY

µ , can explain
the observed discrepancy, δaµ, between experiment, aexp

µ , and the SM prediction, aSM
µ ,

δaµ = aexp
µ − aSM

µ = (29.5 ± 8.8) × 10−10 , (4.12)

which corresponds to a 3.4σ deviation [4, 5, 6]. In the following, we show in our parameter
scans in Figs. 4.2 –4.5 contour lines, where the SUSY contributions, δaSUSY

µ , correspond to
the

central value : δaSUSY
µ = 29.5 × 10−10

⇔ yellow line, labeled with“ 0 ” ,

central value ± 1σ : δaSUSY
µ = (29.5 ± 8.8) × 10−10

⇔ blue line, labeled with“ ± 1” ,

central value ± 2σ : δaSUSY
µ = (29.5 ± 17.6) × 10−10

⇔ green line, labeled with“ ± 2” ,

central value ± 3σ : δaSUSY
µ = (29.5 ± 26.4) × 10−10

⇔magenta line, labeled with“ ± 3” .

(4.13)

Yellow (labeled with “ 0 ”), green (labeled with “ ± 1”), blue (labeled with “ ± 2”) and
magenta (labeled with “±3”) are the colors of the contour lines in the plots, which we show
in the following sections.

The SUSY contributions to the anomalous magnetic moment of the muon, δaSUSY
µ , enter

starting at the one loop level, see for example Refs. [7, 155], and involve the µ̃L and ν̃µ.
Thus, they are enhanced if the µ̃L and ν̃µ are light. As a consequence, δaSUSY

µ increases if
we switch on λ′

231|GUT, because the mass of the µ̃L and ν̃µ decrease. In contrast, λ′
331|GUT

does not affect δaSUSY
µ . Note, that we have not included B3 contributions to δaSUSY

µ , because
they are at most at the percent level and can therefore be neglected [192].

We also consider the constraints from the BR(b → sγ). The current experimental value
is [151]

BR(b → sγ) = (3.52 ± 0.25) × 10−4 . (4.14)

33



34 Sneutrino LSPs in B3 mSUGRA Models and Signals at the LHC

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

-600

-400

-200

0

200

400

A0 = -500 GeV
A0 = 0 GeV
A0 = 500 GeV
A0 = 1000 GeV
A0 = 1500 GeV
A0 = 2000 GeV
A0 = 2500 GeV

Q [GeV]

(h
D

k
) i

j
[G

eV
]

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

0

1×10
5

2×10
5

3×10
5

4×10
5

5×10
5

A0 = -500 GeV
A0 = 0 GeV
A0 = 500 GeV
A0 = 1000 GeV
A0 = 1500 GeV
A0 = 2000 GeV
A0 = 2500 GeV

Q [GeV]
(h

D
k
)2 ij

[G
eV

2
]

Figure 4.1.: Running of (hDk)ij (left figure) and (hDk)2ij (right figure) from MGUT to MZ for
different values of A0. At MGUT, we choose M1/2 = 500 GeV and λ′

ijk = 0.1.

Here we have added the statistical and systematic errors in quadrature [151]. If we also
include the combined theoretical error of 0.3 × 10−4 [193, 194] we obtain the 2σ window

2.74 × 10−4 < BR(b → sγ) < 4.30 × 10−4 , (4.15)

where we have now added theoretical and experimental errors in quadrature.

The complete ν̃µ LSP parameter space, which we will show in the following, i.e. Figs. 4.2,
4.4(a), 4.5(a), is consistent with BR(b → sγ) at the 2σ level, Eq. (4.15). The ν̃τ LSP
parameter space in the A0–tan β [M1/2–M0] plane, Fig. 4.4(b) [Fig. 4.5(b)], is consistent

with BR(b → sγ) at 2σ, Eq. (4.15), for tan β
<∼ 11 [M1/2

>∼ 290 GeV] corresponding to the
dashed black line in Fig. 4.4(b) [Fig. 4.5(b)]. We will show mainly contour lines for δaSUSY

µ

in the following, cf. Eq. (4.13), because the experimental value of aµ is in general more
restrictive on the ν̃i LSP parameter space than BR(b → sγ).

We finally want to point out that the complete ν̃µ and ν̃τ LSP parameter space, which we
will show in the next three sections posses a branching ratio for Bs → µ+µ−, which lies at
least one order of magnitude below the current experimental upper bound [151],

BR(Bs → µ+µ−) < 4.7 × 108 . (4.16)

We have employed micrOMEGAs1.3.7 [195] to calculate δaSUSY
µ , BR(b → sγ) and BR(Bs →

µ+µ−). According to Ref. [106], B3 contributions to BR(b → sγ) and BR(Bs → µ+µ−) can
also be neglected for only one dominant λ′

ijk|GUT.

4.2.1. A0 Dependence

We have chosen two scenarios, Point I and Point II, Eq. (4.11), which we use as central values
for 2-dimensional mSUGRA parameter scans. For both points A0 < 0, with a magnitude of
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a few hundred GeV. We now show that this choice of A0 enhances the negative contribution
to the ν̃i mass, which originates from a non-vanishing λ′

ijk|GUT coupling, cf. Eq. (2.29).

According to Eq. (2.29) and Eq. (2.30), A0 enters the running of mν̃i
via the B3 soft-

breaking, trilinear scalar coupling (hDk)ij , Eq. (2.11). Thus (hDk)ij gives a negative con-
tribution to m2

ν̃i
, as t is decreased. It is proportional to the integral of (hDk)2

ij over t, from
tmin = ln(MZ) to tmax = ln(MGUT).

We show in Fig. 4.1 (left figure) the running of the trilinear scalar coupling (hDk)ij. We
assume one non-vanishing coupling λ′

ijk|GUT= 0.1 and a universal gaugino mass M1/2 = 500
GeV. Different lines correspond to different values of A0. We have employed the one-loop
contributions from gauge interactions [58], as well as the B3 leading interaction

16π2d(hDk)ij

dt
= −(hDk)ij

(

7

15
g2
1 + 3g2

2 +
16

3
g2
3

)

+λ′
ijk

(

14

15
g2
1M1 + 6g2

2M2 +
32

3
g2
3M3

)

. (4.17)

The running of (hDk)ij is dominated by the strong interaction, i.e. by the strong coupling
g3 and the gluino mass M3. The running is governed by two terms with opposite sign in
Eq. (4.17), one proportional to λ′

ijk and one proportional to (hDk)ij .

The term proportional to λ′
ijk is always positive and thus decreases (hDk)ij when we go

from MGUT to MZ . Note, that we assume λ′
ijk is positive. Furthermore, the gluino mass M3

will increase by a factor of roughly 2.5 and also λ′
ijk will increase by roughly a factor of 3

when we run from MGUT to MZ . Therefore this term gets relatively more important towards
lower scales.

The sign of the term proportional to (hDk)ij depends on the sign of A0, according to
Eq. (2.30). At MGUT, this term is positive (negative) for negative (positive) A0. Therefore,
for positive A0, the term proportional to (hDk)ij increase (hDk)ij when we run from MGUT

to MZ .

We can now understand the running of (hDk)ij in Fig. 4.1. Looking at the solid red line,
A0 = 2500 GeV, we see that (hDk)ij first increases when we go from MGUT to smaller scales.
Due to the large A0 at MGUT, the negative term proportional to (hDk)ij dominates and
increases (hDk)ij. Going to lower scales the positive term proportional to λ′

ijk grows faster
and starts to dominate at Q ≈ 106 GeV. From this scale on, (hDk)ij decreases. In contrast,
if we start with negative A0 (solid black line), both terms give negative contributions to the
running of (hDk)ij. Then, (hDk)ij decreases with a large slope.

The resulting running of (hDk)2
ij is shown in Fig. 4.1 (right figure). Recall Eq. (2.29), m2

ν̃i

is reduced proportional to the integral of (hDk)2
ij over t. A negative value of A0 therefore

leads to a smaller mν̃i
compared to a positive value of A0 with the same magnitude. We

expect from Fig. 4.1, that a ν̃i LSP in B3 mSUGRA is preferred for negative values of A0

with a large magnitude. We also expect, that mν̃i
in the A0 direction has a maximum at

A0 = 1000 GeV, if M1/2 = 500 GeV. In general, there should be a line in the M1/2–A0 plane,
where mν̃i

is “maximal”, falling to either side.
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Figure 4.3.: Mass of the ν̃µ in GeV for the ν̃µ LSP region shown in Fig. 4.2.

We show in Fig. 4.2 the mass difference in GeV between the NLSP and the LSP as a
function of M1/2 and A0. The other mSUGRA parameters are M0 = 0 GeV, tanβ = 10,
sgn(µ) = +1 and λ′

231|GUT= 0.16. The yellow (labelled with “ 0 ”), blue (labeled with “±1”)
and green (labeled with “±2”) line indicate the SUSY contributions to the anomalous mag-
netic moment of the muon as described in Eq. (4.13). The blackened out region corresponds
to mSUGRA points, which lead to tachyons or where mν̃µ or mh lies below the LEP bound,
see Sect. 4.1.3.1. In Fig. 4.3, we give the mass of the ν̃µ in GeV for the ν̃µ LSP region shown
in Fig. 4.2.

We see in Fig. 4.2 a region with a ν̃µ LSP and a region with a τ̃1 LSP. The cross over region
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is marked in black. We get a ν̃µ LSP for small and very large values of A0, as expected from
Fig. 4.1. We also see in Fig. 4.3 that mν̃µ is maximal for M1/2 = 500 GeV and A0 ≈ 1000
GeV in the A0 direction. The region of negative A0 is not shown in Figs. 4.2 and Fig. 4.3,
because the influence of λ′

ijk|GUT on mν̃µ is so enhanced, that we violate the mass bound of
78 GeV or even obtain a tachyonic ν̃µ in large regions of A0 < 0 GeV. In the following, we
choose smaller values of λ′

ijk|GUT.

4.2.2. A0–tanβ Plane

We investigate in this section the sneutrino LSP parameter space in the A0–tanβ plane. As
central values for our 2-dimensional scans, we choose the points given in Eq. (4.11).

We show in Fig. 4.4(a) [Fig. 4.4(b)] the ν̃µ LSP [ν̃τ LSP] parameter space in the A0–
tanβ plane. We have chosen λ′

231|GUT= 0.11 [λ′
331|GUT= 0.12]. Both figures show the mass

difference between the NLSP and the LSP in GeV. The solid contour lines correspond to
different SUSY contributions to the anomalous magnetic moment of the muon, δaSUSY

µ , as
described in Eq. (4.13). The dashed black line in Fig. 4.4(b) corresponds to BR(b → sγ) =
2.74 × 10−4, Eq. (4.15), i.e. the parameter space below that line is consistent with b → sγ
at 2σ. The blackened out region is excluded due to the presence of tachyons or by the LEP
ν̃µ/τ and Higgs mass bound, see Sect. 4.1.3.1.

We observe that the ν̃µ LSP lives in an extended region of B3 mSUGRA parameter space.
For tanβ = 6, we find a ν̃µ LSP between A0 = −750 GeV and A0 = −300 GeV. For
A0 = −700 GeV, we find a ν̃µ LSP between tanβ = 4 and tan β = 21. We also observe that
most of the ν̃µ LSP region is consistent with the observed anomalous magnetic moment of
the muon at the 1σ (blue lines) and 2σ (green lines) level, cf. Eq. (4.13). Recall, that the
complete ν̃µ LSP region in Fig. 4.4(a) is also consistent with BR(b → sγ) at 2σ, Eq. (4.15).
The large region of ν̃µ LSP parameter space is a consequence of the choice of our central
scan point, i.e. Point I of Eq. (4.11). Here, the mass difference between the ν̃µ LSP and the
τ̃1 (χ̃0

1), i.e. the other LSP candidates, is rather large, namely 56 GeV (75 GeV).

We see in Fig. 4.4(a) that we obtain a τ̃1 LSP if we increase A0. We explained this in the
last section. A large magnitude and negative value of A0 enhances the (negative) effect of
λ′

231|GUT on the ν̃µ mass via the soft breaking trilinear coupling (hD1)23. The τ̃1 mass on the
other hand, depends only weakly on A0. The dependence is via the tau Yukawa-coupling,
Eq. (A.15), and due to left-right-mixing, Eq. (A.13). According to the last section, there
should also be a ν̃µ LSP for large values of A0. But in this case the Higgs mass lies below
the LEP bound.

We also obtain a τ̃1 LSP, when we increase tanβ. tan β hardly affects the mass of the ν̃µ but
affects the τ̃1 mass in two ways. First, increasing tan β increases the tau Yukawa coupling,
which reduces the τ̃1 mass going from MGUT to MZ . This is parametrized by Eq. (A.15).
Second, increasing tan β increases the absolute value of the off diagonal elements of the stau
mass matrix, Eq. (A.13). This leads to larger left-right mixing and thus also reduces the τ̃1

mass.

Fig. 4.4(a) shows no region with a χ̃0
1 LSP. The entire allowed A0–tanβ plane in Fig. 4.4(a)

has a τ̃1 LSP for vanishing λ′
231 because M1/2 ≫ M0.
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Figure 4.4.: Sneutrino LSP parameter space in the A0–tan β plane. The left panel [right panel]
shows the ν̃µ LSP [ν̃τ LSP] region obtained via λ′

231|GUT = 0.11, M0 = 50 GeV, M1/2 = 500 GeV
and sgn(µ) = +1 [λ′

331|GUT = 0.12, M0 = 200 GeV, M1/2 = 290 GeV and sgn(µ) = +1]. The
plots show from top to bottom the mass difference between the NLSP and LSP [Fig. 4.4(a) and
Fig. 4.4(b)], the mass of the sneutrino LSP [Fig. 4.4(c) and Fig. 4.4(d)], and the mass difference
between the χ̃0

1 and µ̃L [Fig. 4.4(e)] and between the χ̃0
1 and τ̃1 [Fig. 4.4(f)]. We have in Fig. 4.4(e)

and Fig. 4.4(f) mµ̃L/τ̃1 > mχ̃0
1

(denoted by µ̃L/τ̃1 > χ̃0
1) and mµ̃L/τ̃1 < mχ̃0

1
(denoted by µ̃L/τ̃1 <

χ̃0
1). The yellow (labeled with “ 0 ”), blue (labeled with “ ± 1”), green (labeled with “ ± 2”)

and magenta (labeled with “ ± 3”) contours correspond to different SUSY contributions to the
anomalous magnetic moment of the muon as described in Eq. (4.13). The dashed black line (right
panel) corresponds to BR(b → sγ) = 2.74 × 10−4, Eq. (4.15).
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We show in Fig. 4.4(b) the ν̃τ LSP parameter space. We observe a “smaller” ν̃τ LSP region
compared to the ν̃µ LSP region, Fig. 4.4(a). We only find a ν̃τ LSP between A0 = −630 GeV
and A0 = −540 GeV for tanβ = 8. In addition, the experimental 2σ windows for δaSUSY

µ ,
Eq. (4.13), and BR(b → sγ), Eq. (4.15), restrict the allowed ν̃τ LSP region in Fig. 4.4(b) to
lie between tan β = 7 and tanβ = 11.

We again obtain in Fig. 4.4(b) the τ̃1 as LSP when we go to larger values of tan β
(tanβ ≈ 17). Although the ν̃τ mass will also be reduced by a larger tau Yukawa cou-
pling, cf. Eq. (A.15), the squared mass of the right-handed stau is reduced twice as much as
the ν̃τ mass. In addition, tan β increases mixing between the τ̃R and τ̃L, Eq. (A.13). But it
is not possible to find a B3 mSUGRA point, where the mass difference between the ν̃τ LSP
and the τ̃1 is large, because λ′

331|GUT also reduces the mass of the τ̃1.

We also obtain in Fig. 4.4(b) a χ̃0
1 LSP instead of a ν̃τ or τ̃1 LSP if we increase A0 beyond

a certain value. The parameter space shown in Fig. 4.4(b) posses a χ̃0
1 LSP for vanishing

λ′
331|GUT. Increasing A0 reduces the effect of λ′

331|GUT on the ν̃τ and τ̃1 mass, but leaves the
(bino-like) χ̃0

1 mass unaffected. Thus, if the influence of λ′
331|GUT on the ν̃τ and τ̃1 mass is

getting smaller, we re-obtain the χ̃0
1 as the LSP.

Finally we want to mention in our discussion of Fig. 4.4(b) that we have a “triple-point”,
where the ν̃τ , the τ̃1 and the χ̃0

1 are degenerate in mass. The existence of this “triple-point” is
a general feature of the sneutrino LSP parameter space. This has important consequences for
the LHC phenomenology, because close to a “triple-point”, we effectively have three nearly
degenerate LSPs at the same time. There are also large regions in Fig. 4.4(a) and Fig. 4.4(b),
where two of the three LSP candidates are nearly degenerate in mass, i.e. ∆M ≤ 5 GeV.

We present in Fig. 4.4(c) [Fig. 4.4(d)] the mass of the ν̃µ [ν̃τ ] for the corresponding sneutrino
LSP regions of Fig. 4.4(a) [Fig. 4.4(b)]. The lightest sneutrino LSPs have a mass of 78 GeV
stemming from LEP bounds, cf. Sect. 4.1.3.1. The heaviest sneutrino LSPs, consistent
with aexp

µ , Eq. (4.12), and BR(b → sγ), Eq. (4.15), are found in Fig. 4.4(c) and posses a
mass of roughly 200 GeV. If one wants to have a sneutrino LSP scenario consistent with
the anomalous magnetic moment of the muon, than the sneutrino mass is not allowed to be
much larger than 200 GeV (see also the next section).

We show in Fig. 4.4(e) [Fig. 4.4(f)] the mass difference in GeV between the χ̃0
1 and the

µ̃L [mainly left-handed τ̃1]. Whether, mχ̃0
1

> mµ̃L
[mτ̃1 ] or mχ̃0

1
< mµ̃L

[mτ̃1 ] has important

consequences for collider phenomenology. For example, the µ̃L can not decay into a µ and χ̃0
1

if mχ̃0
1

> mµL
. This is the case in most of the ν̃µ LSP parameter space. The cascade decay,

Eq. (4.10), is then forbidden and can not be explored at the Tevatron or LHC, as stated in
Sect. 4.1.3.2. We discuss further phenomenological implications in Sect. 4.3.

4.2.3. M1/2–M0 Plane

We present in Fig. 4.5(a) [Fig. 4.5(b)] the ν̃µ LSP [ν̃τ LSP] region in the M1/2–M0 plane.
We have chosen λ′

231|GUT= 0.11 [λ′
331|GUT=0.12]. The figures show the mass difference in

GeV between the NLSP and the LSP. The solid contour lines correspond again to SUSY
scenarios, which contribute to aµ the amount described in Eq. (4.13) and the dashed black
line in Fig. 4.5(b) corresponds to BR(b → sγ) = 2.74 × 10−4, Eq. (4.15).
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Figure 4.5.: Sneutrino LSP parameter space in the M1/2–M0 plane. The left panel [right panel]
shows the ν̃µ LSP [ν̃τ LSP] region obtained via λ′

231|GUT = 0.11, A0 = −600 GeV, tan β = 10 and
sgn(µ) = +1 [λ′

331|GUT = 0.12, A0 = −550 GeV, tan β = 12 and sgn(µ) = +1]. The plots show
from top to bottom the mass difference between the NLSP and LSP [Fig. 4.5(a) and Fig. 4.5(b)],
the mass of the sneutrino LSP [Fig. 4.5(c) and Fig. 4.5(d)], and the mass difference between the χ̃0

1

and µ̃L [Fig. 4.5(e)] or between the χ̃0
1 and τ̃1 [Fig. 4.5(f)]. We have in Fig. 4.5(e) and Fig. 4.5(f)

mµ̃L/τ̃1 > mχ̃0
1

(denoted by µ̃L/τ̃1 > χ̃0
1) and mµ̃L/τ̃1 < mχ̃0

1
(denoted by µ̃L/τ̃1 < χ̃0

1). The yellow

(labeled with “ 0 ”), blue (labeled with “ ± 1”), green (labeled with “ ± 2”) and magenta (labeled
with “ ± 3”) contours correspond to different SUSY contributions to the anomalous magnetic
moment of the muon as described in Eq. (4.13). The dashed black line (right panel) corresponds
to BR(b → sγ) = 2.74 × 10−4, Eq. (4.15).
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The ν̃µ LSP lives in an extended region of B3 mSUGRA parameter space. This stems
from the fact, that we were able to choose a central scan point, Point I of Eq. (4.11), where
the mass difference between the ν̃µ LSP and the other LSP candidates, τ̃1 and χ̃0

1, is large,
namely 56 GeV and 75 GeV, respectively. We find a ν̃µ LSP between M1/2 = 350 GeV
and M1/2 = 600 GeV for M0 = 140 GeV, which is consistent with aexp

µ , Eq. (4.12), and
BR(b → sγ), Eq. (4.15), at 2σ. For M1/2 = 500 GeV, we obtain a consistent ν̃µ LSP for
M0 < 170 GeV.

Nearly the entire ν̃µ LSP region of Fig. 4.5(a) is consistent with the observed value of aµ

at the 1σ (blue lines) and 2σ (green lines) level, cf. Eq. (4.13). It is also consistent with
BR(b → sγ) at 2σ, Eq. (4.15).

We see in Fig. 4.5(a), all three LSP candidates, the ν̃µ, the τ̃1, and the χ̃0
1. If we increase

M0, we re-obtain at M0 ≈ 150 GeV the χ̃0
1 LSP instead of the ν̃µ or the τ̃1 LSP. This is easy

to understand. M0 increases the mass of all the sfermions, see Eq. (A.11), but leaves the
mass of the (bino-like) χ̃0

1 unaffected, cf. Eq. (A.17).

We get a τ̃1 LSP instead of a ν̃µ LSP for M1/2 > 650 GeV and M0 < 140 GeV. Remem-
ber that the τ̃1 is mainly right-handed for non-vanishing λ′

231|GUT (not for large λ′
331|GUT).

According to Eq. (A.15), the right-handed stau mass increases more slowly with M1/2 than
the left-handed ν̃µ mass, Eq. (A.11), because the right-handed sfermions couple only to the
U(1)Y gaugino, whereas the left-handed sfermions couple also to the SU(2) gauginos.

For M0 between 140 GeV and 180 GeV, we obtain a χ̃0
1 LSP instead of a ν̃µ LSP if we

increase M1/2. In this region of parameter space, i.e. M0 between 140 GeV and 180 GeV and
M1/2 < 700 GeV, we have a χ̃0

1 LSP for vanishing λ′
231|GUT. With λ′

231|GUT= 0.11, we must
retrieve the χ̃0

1 LSP for increasing M1/2, because the (left-handed) ν̃µ couples stronger via
the gauge interactions than the (bino-like) χ̃0

1; see Eq. (A.11) and Eq. (A.17) respectively.

The M1/2–M0 plane showing the ν̃τ LSP region, Fig. 4.5(b), looks similar to the ν̃µ LSP
region, Fig. 4.5(a): We again get a χ̃0

1 LSP when we increase M0, and a τ̃1 LSP for larger
values of M1/2. Most of the ν̃τ LSP region is also consistent with the observed value of aµ

at the 1σ (blue line) or 2σ (green line) level, Eq. (4.13). But we must have M1/2
>∼ 290 GeV

[dashed black line in Fig. 4.5(b)] to be consistent with BR(b → sγ) at 2σ, cf. Eq. (4.15). The
allowed ν̃τ LSP region in the M1/2–M0 plane is therefore “smaller” compared to the ν̃µ LSP
region. It is worth mentioning, that one can also obtain a ν̃τ LSP via λ′

331|GUT consistent
with aexp

µ , Eq. (4.12), and BR(b → sγ), Eq. (4.15), within 1σ; see an example in Ref. [106].
However the allowed ν̃τ LSP region in the M1/2–M0 [A0–tanβ] plane is smaller in that case
compared to Fig. 4.5(b) [Fig. 4.4(b)].

As explained before, λ′
331|GUT reduces also the mass of the τ̃1, which is also a candidate

for the LSP. We can see this in Fig. 4.5(b) by noting that the mass difference between the

ν̃τ LSP and the τ̃1 NLSP is rather small, i.e. ∆M
<∼ 15 GeV. A way to increase this mass

difference is to decrease tan β; see the discussion in Sect. 4.2.2.

Another difference between the ν̃τ LSP region, Fig. 4.5(b), and the ν̃µ LSP region, Fig. 4.5(a),
is that the corresponding SUSY mass spectra for a ν̃µ LSP scenario are in average heavier
than the SUSY mass spectra for a ν̃τ LSP scenario. For example, M0 = 100 GeV (200 GeV)
and M1/2 = 500 GeV (320 GeV) lead to squark masses of roughly 1000 GeV (700 GeV) in
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the ν̃µ LSP (ν̃τ LSP) parameter space. The reason is, that we have chosen our scenarios
consistent with the measured value of aµ; see discussion after Eq. (4.13).

We have again in Fig. 4.5(a) as well as in Fig. 4.5(b) a “triple-point”, where the three LSP
candidates are degenerate in mass.

We give in Fig. 4.5(c) [Fig. 4.5(d)] the mass of the ν̃µ LSP [ν̃τ LSP] for the sneutrino LSP
region of Fig. 4.5(a) [Fig. 4.5(b)]. The sneutrino LSP masses, which lead to SUSY scenarios
in agreement with aexp

µ (and b → sγ), range from 78 GeV (LEP bound, Sect. 4.1.3.1) up to
roughly 250 GeV. Relaxing this bound, we claim that aexp

µ puts an upper bound of roughly
300 GeV at the 2σ level on the mass of a sneutrino LSP within B3 mSUGRA. Note that
BR(b → sγ) increases if we increase M1/2, whereas δaSUSY

µ decreases, cf. for example Fig. 4
and Fig. 5 in Ref. [106]. The upper bound on the sneutrino LSP mass is thus due to aexp

µ .

We finally show in Fig. 4.5(e) [Fig. 4.5(f)] the mass difference in GeV between the χ̃0
1

and the µL [mainly left-handed τ̃1]. We again observe that the χ̃0
1 is heavier than the µ̃L in

most regions of the ν̃µ LSP parameter space. The cascade decay, Eq. (4.10), is therefore not
observable at the Tevatron. Further phenomenological consequences at hadron colliders will
be discussed in Sect. 4.3.

4.2.4. Sneutrino LSPs with λ′
ijk|GUT 6= λ′

231 or λ′
331

We investigated in the last three sections in detail the ν̃µ LSP (ν̃τ LSP) parameter space
with λ′

231|GUT= 0.11 (λ′
331|GUT= 0.12). We briefly consider the other couplings of Table 4.1.

For λ′
131|GUT, we obtain nearly the same parameter space as in Fig. 4.4(a) and Fig. 4.5(a),

where λ′
231|GUT= 0.11. We now have a ν̃e LSP instead of a ν̃µ LSP. Also the mass of the

left-handed selectron, ẽL, (for λ′
131|GUT= 0.11) equals the mass of the µ̃L (for λ′

231|GUT= 0.11)
and vice versa. But note, that the ν̃e LSP parameter space is much more restricted than the
ν̃µ LSP parameter space due to the stronger bounds on λ′

131, cf. Table 4.1. Also the LEP
bound on mν̃e is more model dependent, see Table 4.2.

We also obtain a ν̃µ LSP scenario via λ′
221|GUT and λ′

212|GUT. If we choose λ′
221|GUT or

λ′
212|GUT= 0.097, we find similar regions to Fig. 4.4(a) and Fig. 4.5(a), where the ν̃µ is the

LSP. The effect of λ′
221|GUT and λ′

212|GUT on mν̃µ is stronger, because the running of both
couplings involves no loops containing the large top Yukawa coupling. In contrast, the top
Yukawa coupling weakens the running of λ′

231 (j=3!) when we go from MGUT to MZ [58],
see also Sect. 5.2.

Analogously, similar to Fig. 4.4(b) and Fig. 4.5(b), we find parameter regions, where the
ν̃τ is the LSP. We now have to choose λ′

321|GUT or λ′
312|GUT= 0.104 instead of λ′

331|GUT= 0.12.

Note however, that different couplings λ′
ijk lead to a different collider phenomenology,

because the LiQjD̄k operator couples to different generations of lepton and quark superfields.
We discuss this topic in the next section.
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4.3. Hadron Collider Phenomenology

We have shown in the last section, that a sneutrino LSP exists in an extended region of
B3 mSUGRA parameter space. We now investigate the corresponding phenomenology at
hadron colliders, especially at the LHC. The main phenomenological differences between a
P6 mSUGRA scenario with a stable χ̃0

1 LSP and a B3 mSUGRA scenario with an unstable
sneutrino LSP are:

• The mass spectrum is changed. We now have a sneutrino LSP. Also some of the
sleptons might be lighter than the χ̃0

1, for example the µ̃L in the presence of λ′
231|GUT;

see Fig. 4.4(e) and Fig. 4.5(e). Thus the decay chains and final state topologies are
different.

• The LSP is not stable anymore and directly decays to SM particles via the B3 coupling.
In the following analysis, with λ′

231|GUT 6= 0, we have two extra jets from each ν̃µ LSP
decay. This also results in less missing transverse momentum, p/T .

• We have shown, that λ′
ijk|GUT = O(10−1) is needed to obtain a ν̃i LSP. This large

coupling can lead to direct and dominating B3 decays of heavy sparticles; namely of
left-handed charged sleptons of generation i, of left-handed squarks of generation j and
of right-handed down-type squarks of generation k. The SM decay products naturally
have large momenta.

• Single sparticle production via λ′
ijk is possible; for example, single charged slepton and

sneutrino production.

In the following, we investigate these aspects in detail. We perform a Monte Carlo simu-
lation at the parton level using the HERWIG event generator [196, 197, 198, 199, 200].

4.3.1. Example Spectrum and Branching Ratios

To investigate the sneutrino LSP phenomenology at the LHC, we choose as an example a
scenario with a ν̃µ LSP:

λ′
231|GUT= 0.11, M0 = 100GeV, M1/2 = 450GeV,

A0 = −600GeV, tan β = 10, sgn(µ) = +1 . (4.18)

This benchmark point can be found in Fig. 4.5(a) and is consistent with aexp
µ , Eq. (4.12),

and BR(b → sγ), Eq. (4.15), at 1σ. See also Ref. [106] for a benchmark scenario with a ν̃τ

LSP.

The resulting sparticle masses and branching ratios (BRs) are given in Table 4.4. The B3

decays are shown in bold-face. Sparticle masses which are significantly affected by λ′
231|GUT

are also bold-face. We calculate the decay rates by piping the output of SOFTSUSY through
ISAWIG1.200. This is linked to ISAJET7.75 [201] in order to calculate the decay widths of
the SUSY particles. This output is later fed into HERWIG to simulate events at the LHC.

We find that the decay of the ν̃µ LSP with a mass of 124 GeV is completely dominated
by the λ′

231 coupling. Each LSP decay leads to a bottom and a down quark and no p/T

[202, 203]. However, p/T can be obtained from cascade decays of heavy sparticles. In principle,
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mass [GeV] channel BR channel BR

ν̃µ 124 b̄d 100%

µ̃−

L 147 W−b̄d 79.0% c̄d 21.0%

χ̃0
1 184 ν̃∗

µνµ 36.0% ν̃µν̄µ 36.0%

µ̃+
Lµ− 14.0% µ̃−

Lµ+ 14.0%

τ̃−

1 188 χ̃0
1τ

− 100%

ẽ−R (µ̃−

R) 206 χ̃0
1e

−(µ−) 100%

ν̃τ 316 χ̃0
1ντ 67.3% W +τ̃−

1 32.7%

ν̃e 319 χ̃0
1νe 100%

ẽ−L 329 χ̃0
1e

− 100%

τ̃−

2 329 χ̃0
1τ

− 65.1% h0τ̃−

1 18.2%

Z0τ̃−

1 16.7%

χ̃0
2 350 ν̃µν̄µ 23.7% ν̃∗

µνµ 23.7%

µ̃−

Lµ+ 22.4% µ̃+
Lµ− 22.4%

ν̃τ ν̄τ 1.1% ν̃∗
τ ντ 1.1%

χ̃−

1 350 ν̃∗
µµ− 49.7% µ̃−

L ν̄µ 42.6%

ν̃∗
τ τ− 2.3% ν̃∗

e e− 1.8%

τ̃−

1 ν̄τ 1.6%

χ̃0
3 691 χ̃−

1 W + 29.7% χ̃+
1 W− 29.7%

χ̃0
2Z

0 26.1% χ̃0
1Z

0 8.3%

χ̃0
1h

0 1.7% χ̃0
2h

0 1.7%

t̃1 650 χ̃+
1 b 42.1% χ̃0

1t 33.5%

χ̃0
2t 13.8% µ+d 10.6%

χ̃−

2 702 χ̃0
2W

− 28.0% χ̃−

1 Z0 26.6%

χ̃−

1 h0 23.8% χ̃0
1W

− 7.9%

t̃∗1b 4.1% µ̃−

L ν̄µ 2.5%

τ̃−

2 ν̄τ 2.0% ẽ−L ν̄e 1.7%

ν̃∗
τ τ− 1.3%

χ̃0
4 702 χ̃−

1 W + 28.3% χ̃+
1 W− 28.3%

χ̃0
2h

0 22.3% χ̃0
1h

0 7.0%

χ̃0
2Z

0 2.0% χ̃0
1Z

0 1.8%

ν̃µν̄µ 1.2% ν̃∗
µνµ 1.2%

mass [GeV] channel BR channel BR

b̃1 842 W−t̃1 35.8% χ̃−

1 t 31.3%

χ̃0
2b 18.8% ν̄µd 12.4%

χ̃0
1b 1.2%

d̃R 897 νµb 45.3% µ−t 42.1%

χ̃0
1d 12.6%

t̃2 906 Z0 t̃1 28.2% χ̃+
1 b 23.7%

h0 t̃1 11.7% χ̃0
2t 10.2%

µ+d 9.0% χ̃0
4t 7.5%

χ̃+
2 b 5.4% χ̃0

1t 2.6%

χ̃0
3t 1.7%

b̃2 919 χ̃0
1b 41.3% W−t̃1 25.3%

χ̃−

2 t 14.4% χ̃0
4b 5.3%

χ̃0
3b 5.0% ν̄µd 3.4%

χ̃−

1 t 3.2% χ̃0
2b 1.9%

s̃R 928 χ̃0
1s 99.8%

ũR (c̃R) 932 χ̃0
1u(c) 99.8%

ũL (c̃L) 963 χ̃+
1 d(s) 65.6% χ̃0

2u(c) 32.6%

χ̃0
1u(c) 1.2%

d̃L (s̃L) 966 χ̃−

1 u(c) 64.5% χ̃0
2d(s) 32.5%

χ̃0
1d(s) 1.6% χ̃−

2 u(c) 1.0%

g̃ 1046 t̃1 t̄ 15.0% t̃∗1t 15.0%

b̃1b̄ 9.2% b̃∗1b 9.2%

d̃Rd̄ 5.2% d̃∗
Rd 5.2%

b̃2b̄ 3.9% b̃∗2b 3.9%

s̃Rs̄ 3.4% s̃∗Rs 3.4%

ũRū (c̃Rc̄) 3.2% ũ∗
Ru (c̃∗Rc) 3.2%

ũLū (c̃Lc̄) 1.7% ũ∗
Lu (c̃∗Lc) 1.7%

d̃Ld̄ (s̃Ls̄) 1.6% d̃∗
Ld (s̃∗Ls) 1.6%

Table 4.4.: Branching ratios (BRs) and sparticle masses for the example scenario defined in
Eq. (4.18). BRs smaller than 1% are neglected. B3 decays are shown in bold-face. Masses which
are reduced by more than 5 GeV (compared to the P6 spectrum) due to λ′

231|GUT = 0.11 are also
shown in bold-face.

reconstruction of the ν̃µ mass should be possible, although combinatorial backgrounds might
complicate this task.

The µ̃L with a mass of 147 GeV is the NLSP. This is the case in most of the ν̃µ LSP
parameter space, cf. Fig. 4.4(e) and Fig. 4.5(e). The µ̃L decays mainly via the L2Q3D̄1

operator into SM fermions, in principle to t̄d. If this decay mode is not kinematically
allowed, like for the benchmark point under study, we obtain a dominant 3-body decay into
W−b̄d; see Appendix B for details. We thus have at least two jets, where one of the jets is
a b-jet. As mentioned in Sect. 4.1.3.2, another possible 3-body decay is µ̃−

L → µ−ν̄µν̃µ via a
virtual neutralino. But this decay is suppressed by four orders of magnitude compared to the
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3-body decay via a virtual top quark. The reasons are: small couplings (left-handed sleptons
couple to a bino-like χ̃0

1), less phase space (mµ̃L
− mν̃µ = 23 GeV), destructive interferences

between diagrams with a virtual χ̃0
1 and χ̃0

2, and the decay via the virtual top is enhanced
by a color factor of 3, cf. Appendix B. However, there is an additional 2-body decay mode,
µ̃L → c̄d, in Table 4.4. This decay proceeds via a non-vanishing λ′

221 coupling, which is
generated out of λ′

231|GUT via RGE running [58, 102].

The electroweak gauginos decay dominantly via P6 conserving gauge interactions to 2-body
final states. The lightest gaugino is the χ̃0

1, which is only the NNLSP within our benchmark
scenario; mχ̃0

1
= 184 GeV. It decays into either the LSP or NLSP. These then undergo direct

B3 decays, as discussed before. So, the χ̃0
1 decays lead to dijet events with p/T or a muon.

Due to the Majorana nature of the χ̃0
1, negatively and positively charged muons are possible.

Cascade decays of pair produced sparticles can therefore lead to like sign-muon events via
χ̃0

1 decays; see Sect. 4.3.2. Note, that ν̃µ LSP scenarios exist where the χ̃0
1 is also heavier

than the τ̃1 or even the right-handed smuon, µ̃R, and selectron, ẽR. These scenarios can lead
to multi-lepton final states. We will not consider these scenarios here, because the relevant
µ̃R and ẽR decays into the ν̃µ LSP and the µ̃L NLSP are not implemented in HERWIG.

The χ̃0
2 also has a significant BR to µ̃±

Lµ∓ and ν̃µνµ. Similarly, the lightest chargino, χ̃−
1 ,

decays either predominantly into ν̃∗
µµ− or µ̃−

L ν̄µ, leading to either a muon or missing energy
in the final state. The χ̃0

2 and χ̃−
1 are wino-like in mSUGRA models. They thus decay

predominantly to the left-handed µ̃L and ν̃µ. The decays of the heavier chargino, χ̃−
2 , and

neutralinos, χ̃0
3/4 are similar to P6 mSUGRA scenarios.

The τ̃1 in Table 4.4 is the next-to-NNLSP (NNNLSP) with a mass of 188 GeV and almost
degenerate with the χ̃0

1. The τ̃1 can in general be the NLSP, the NNLSP or NNNLSP in B3

mSUGRA scenarios with a sneutrino LSP. Here we have τ̃−
1 → χ̃0

1 τ−.

The µ̃R, ẽR, ẽL, ν̃e, ν̃τ and τ̃2 in Table 4.4 decay into the χ̃0
1 or, in the case of the τ̃2 and

ν̃τ , also into the τ̃1 similar to P6 mSUGRA scenarios. But as mentioned above, the τ̃1, the
µ̃R and the ẽR can in general be lighter than the χ̃0

1 in ν̃µ LSP scenarios. These particles
then decay preferentially into the ν̃µ LSP via a 3-body decay.

The masses of the top-squarks, t̃1,2, and the bottom-squarks, b̃1,2, are slightly reduced due
to the presence of λ′

231 in the corresponding RGEs. The t̃1 is the lightest squark with a mass
of 650 GeV and has four 2-body decay modes with appreciable BRs. Three decays are via
gauge interactions and one via λ′

231. Since the electroweak gauge couplings and λ′
231 have

the same order of magnitude, we also expect P6 conserving and violating decays at a similar
rate. The situation for the t̃2, b̃1 and b̃2 is similar to t̃1. All of these particles couple via
their left-handed component to the L2Q3D̄1 operator and can therefore decay into two SM
particles.

The masses of the left-handed and right-handed squarks of the 1st and 2nd generation are
around 900 GeV. The right-handed down-squark (md̃R

= 897 GeV) is lighter than the right-
handed strange-squark (ms̃R

= 928 GeV). In contrast both squarks are degenerate in mass
in P6 mSUGRA. However, they are so heavy, that no problems should occur with FCNCs.
λ′

231|GUT couples only to the right-handed down squarks and not to the right-handed strange
squarks. So, md̃R

is reduced, keeping ms̃R
unchanged. For the same reason, there exist no
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Figure 4.6.: p/T distribution due to neutrinos in the final state for the example scenario Eq. (4.18).
The distribution is normalized to one. Note that events with no p/T in the final state are not shown.

B3 decays of s̃R via λ′
231 at tree-level. In contrast, d̃R has dominant direct B3 decays to SM

particles, which than have large momenta, see Sect. 4.3.2.

The heaviest sparticle is the gluino, g̃, with a mass of 1046 GeV. It decays only via the
strong interaction. The allowed decay modes and their relative BRs depend upon the sum
of the final state masses. For example, g̃ → t̃1t has the largest BR, since the t̃1 is the lightest
squark.

We conclude that the heavy part of the mass spectrum looks very similar to P6 mSUGRA
scenarios with a stable χ̃0

1 LSP. However, a non-vanishing λ′
ijk coupling, which has the same

order of magnitude as the gauge couplings, allows for additional 2-body B3 decays of some
of the squarks. Which squarks are allowed to decay via λ′

ijk depend on the indices j, k. The
masses and compositions of the electroweak gauginos are also very similar to P6 mSUGRA.
However, the χ̃0

1 is no longer the LSP. Depending on the specific ν̃i LSP scenario, the χ̃0
1

can decay into charged sleptons and sneutrinos of different generations. Therefore, the main
difference can be found in the light part of the mass spectrum where we have the ν̃i LSP.
The ν̃i LSP decays preferentially into two jets via λ′

ijk.

4.3.2. Sparticle Pair Production

We have investigated in the last section the mass spectrum and the BRs of SUSY particles for
one representative B3 mSUGRA scenario with a ν̃µ LSP, described by Eq. (4.18). We have
pointed out the general differences compared to mSUGRA scenarios with a stable χ̃0

1 LSP.
We now explore signatures at the LHC which arise from pair production of sparticles via the
gauge interactions, i.e. mainly squark and gluino production via the strong interaction. For
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Figure 4.7.: pT distribution of the muon from the decays d̃R → µt and t̃1/2 → µd (cf. Table 4.4)
at the LHC. The distribution is normalized to one.

this purpose we use the HERWIG event generator. We investigate single sparticle production
in Sect. 4.3.3.

The masses of the strongly interacting sparticles are roughly 1 TeV. We therefore obtain
from HERWIG a total sparticle pair production (leading order) cross section at the LHC of

σtotal = 3.0 pb . (4.19)

So, one can expect approximately 300 000 SUSY pair production events for an integrated
luminosity of 100 fb−1. The sparticle decays follow those in Table 4.4. The different decay
chains lead to different final states. Moreover, the pT distributions of the final state particles
and the p/T can be very distinctive compared to P6 mSUGRA with a stable χ̃0

1 LSP.

We show in Fig. 4.6 the p/T distribution due to neutrinos in the final state. Note, that
here roughly 20% of all SUSY events posses no p/T in contrast to P6 mSUGRA scenarios.
For example, if the decay chains of the pair produced sparticles into the ν̃µ LSP contain
no neutrino than there is no p/T . The p/T distribution in Fig. 4.6 peaks at roughly 90 GeV.
Thus, p/T might still be used to distinguish the SUSY signal from its SM background. Large
amounts of p/T , i.e. p/T of a few hundred GeV, can arise if a squark decays directly via λ′

231

into a quark and a neutrino. For example d̃R → νµb, cf. Table 4.4. This decay also leads to
a high-pT b-jet, i.e. pT of O(100 GeV).

Instead of high-pT neutrinos, we can also have high-pT muons from the direct decays of d̃R

and t̃1/2 via λ′
231, see Table 4.4. We show in Fig. 4.7 the pT distribution of these muons. The

distribution peaks at 340 GeV. The large momenta are a consequence of the large squark
masses. Nearly the entire mass of the squarks is transformed into the momenta of two SM
particles. These high-pT SM particles might also be used to reconstruct the squark mass.
The muon pT -distribution will peak at smaller values, if the squarks are lighter than in
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Figure 4.8.: pT distribution of the top quark from the decay d̃R → µt (cf. Table 4.4) at the LHC.
The distribution is normalized to one.

our benchmark scenario. But at the same time we will produce more squarks and muons
compared to the cross section, Eq. (4.19). If the mass spectrum is heavier compared to our
example point, the cross section will be smaller. But the muon pT -distribution will now peak
at larger values. Thus stronger cuts on the muon pT can be applied. We conclude that the
high-pT muons might be used on the one hand to distinguish the SUSY signal from the SM
background and on the other hand to distinguish the B3 mSUGRA model with a ν̃µ LSP
from mSUGRA with a stable χ̃0

1 LSP. For our benchmark scenario Eq. (4.18), we find that
11% of all sparticle pair production events lead to at least one high-pT muon from a squark
decay. A fraction of roughly 10% is a general feature of our ν̃µ LSP scenarios.

The neutrino or muon from the squark decay will be accompanied by a quark with roughly
the opposite pT . These quarks lead to high-pT jets, which might be b-jets depending on the
flavor indices of λ′. For our benchmark point, we obtain high-pT b-jets from the B3 decay
d̃R → νµb. We also can get a top-quark, t, from the decay d̃R → µ−t. We show in Fig. 4.8
the pT -distribution of this top-quark. The distribution peaks at 360 GeV. The top decay
will also produce a b-jet and a W . The W might produce additional jets or leptons with
p/T . These decay products will be boosted due to the large top momentum. Thus isolated
leptons can most likely not be used to reconstruct the top quark.

Finally we want to mention an effect arising from the mass ordering in the light part of
the spectrum. We have shown in Fig. 4.4(e) and Fig. 4.5(e) that the µ̃L is lighter than the
χ̃0

1 in most regions of ν̃µ LSP parameter space allowing for the decay χ̃0
1 → µ̃±

Lµ∓. Since
many decay chains in Table 4.4 involve the χ̃0

1, we expect more muons in the final state than
in mSUGRA with a stable χ̃0

1 LSP2. For example, all right-handed squarks, which do not
directly couple to the L2Q3D̄1 operator will predominantly decay into the χ̃0

1. Thus pair

2Note, that also the χ̃0
2 and χ̃−

1 decay to a muon with a BR of roughly 50%, see Table 4.4.
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Figure 4.9.: pT distribution of the muon from the decay χ̃0
1 → µ̃Lµ (cf. Table 4.4) at the LHC .

The distribution is normalized to one.

production of right-handed squarks, q̃R, has a large fraction of the signature

q̃Rq̃R → µ±µ± jjjjjj (WW ) . (4.20)

We have six jets, j, where two jets rise from the q̃R decays and four jets from the decays
of the two µ̃L. If the µ̃L decay via the 3-body decay (see Table 4.4), two jets will be b-jets
and we will also have two W s in the final state. We also find two muons from χ̃0

1 decay,
where all charge combinations of the muons are possible due to the Majorana nature of the
χ̃0

1. We therefore have a new source for like-sign dimuon events, which does not exist in P6

mSUGRA scenarios with a stable χ̃0
1 LSP. In principle, it should be possible to reconstruct

the full event, Eq. (4.20), although we have large combinatorial backgrounds due to the
many jets in the final state.

We show in Fig. 4.9 the pT -distribution of the muons arising from χ̃0
1 decay within our

example scenario, Eq. (4.18). The distribution peaks at 20 GeV and therefore we expect that
most of the muons will pass standard experimental cuts. However, the position of the peak
is restricted by the mass difference of the µ̃L and χ̃0

1. In our example the mass difference is
37 GeV. In general we find in Figs. 4.4(e), 4.5(e) mass differences of up to 90 GeV.

In a ν̃i LSP scenario with λ′
ijk|GUT 6= λ′

231|GUT we get the following differences. Now
left-handed (right-handed down-type) squarks of generation j (k) will couple to the LiQjD̄k

operator. These squarks can now decay into a quark of generation k (j) and into a lepton of
generation i. In addition, the masses of these squarks will be reduced via the B3 interaction.
For i = 1, we have to replace the muons in the discussion above by electrons. For i = 3, we
have taus instead of muons. We will get taus with large momenta, i.e. pτ = O(100 GeV),
from the decays of the squarks via the B3 interaction. These taus have a boost factor of
γ = O(100) and are thus long lived leading to detached vertices of O(1 cm). We finally see
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process cross section
PP → ν̃µ + X 2.2 × 106 fb
PP → χ̃0

1νµ + X 4.2 × 101 fb
PP → χ̃0

2νµ + X 6.2 × 100 fb
PP → χ̃−

1 µ+ + X 1.3 × 101 fb
PP → µ̃−

Lt + X 1.3 × 104 fb

Table 4.5.: Total hadronic cross sections for single sparticle production at the LHC within the
ν̃µ LSP scenario, Eq. (4.18), with λ′

231|GUT = 0.11. The cross sections include also the charge
conjugated processes.

in Fig. 4.4(f) and Fig. 4.5(f) that also in large regions of ν̃τ LSP parameter space the τ̃1 is
lighter than the χ̃0

1. This might lead to like-sign tau events from two decay chains involving
a χ̃0

1.

4.3.3. Single Sparticle Production

Here we explore single sparticle production, which is not possible if P6 is conserved. We
expect high rates due to the large λ′

ijk coupling in ν̃i LSP scenarios.

We show in Table 4.5 the hadronic cross sections for different single sparticle production
processes. We again consider the example scenario, Eq. (4.18), with λ′

231|GUT = 0.11. The
first four cross sections are calculated with HERWIG and the last cross section is taken from
Sect. 6.2. The first four processes involve a real or virtual ν̃µ, which is the LSP. The cor-
responding processes with the µ̃L are not possible, because one parton in the initial state
has to be a top-quark. A single µ̃L can therefore be produced only in association with a SM
particle, for example with a top-quark [184, 204, 205]; see also Sect. 6.

We indeed observe in Table 4.5 a large cross section for the resonant production of single
ν̃µs due to the large λ′

231 coupling, high parton luminosity (due to small Bjorken x) and large
phase space. For 10 fb−1 integrated luminosity we will produce more than two million ν̃µ

LSPs. However, the ν̃µ can only decay into two jets, cf. Table 4.4, where one jet is a b-jet
[202, 203]. This process thus suffers from large QCD background and it will be very hard to
observe an excess over the SM background at the LHC [177].

The process in Table 4.5 with the second largest cross section is single µ̃L production in
association with a top quark. This process suffers in general from the large SM tt̄ + jet
background, cf. Sect. 6.3. However it might be possible to see an excess over the SM in
small regions of ν̃µ LSP parameter space, where the χ̃0

1 is lighter than the µ̃L, cf. Figs. 4.4(e),
4.5(e). The µ̃L can decay in this case to χ̃0

1µ and we might employ the charge asymmetry of
the muons to distinguish the signal from the background, see Sect. 6.3.

The production of a χ̃0
1 [χ̃0

2] in association with a neutrino, Table 4.5, can lead to a muon
with jets and p/T in the final state, because 28% [44.8%] of the χ̃0

1s [χ̃0
2s] decay into a µ̃Lµ

pair. However the respective production cross sections are rather small, namely 42 fb [6.2
fb].
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The production of charginos and muons, χ̃−
1 µ+, seems more promising. Roughly 50% of

the produced χ̃−
1 will decay into ν̃∗

µµ
− leading to a final state with a pair of muons, and two

jets, where one jet is a b-jet. But again the cross section is small, 13 fb.

In ν̃i LSP scenarios, where λ′
ijk|GUT 6= λ′

231|GUT, the main difference arises if j 6= 3. In

this case also resonant single charged slepton, ℓ̃Li, production, Eq. (4.8), is possible via an
up-type quark of generation j. Therefore, if the χ̃0

1 is lighter than the ℓ̃Li, we expect a
high rate of leptons from ℓ̃Li decay to χ̃0

1ℓi. But this is only possible in small regions of ν̃i

LSP parameter space, see Figs. 4.4(e), 4.4(f), 4.5(e) and 4.5(f). A further bottleneck for
the observation of these leptons is the small mass difference between the χ̃0

1 and ℓ̃Li leading
to small lepton momenta. The mass difference will not exceed roughly 30 GeV. Large λ′

ijk

couplings with j 6= 3 are also disfavored by D0–D̄0-mixing, cf. Sect. 4.1.2.

We conclude, that pair production of SUSY particles and their subsequent decays lead to
much more promising signatures than single sparticle production. On the one hand, resonant
single sneutrino production, which occurs at a high rate, lead mainly to jets in the final state
and thus suffers from the large QCD background. On the other hand, processes with one or

two leptons in the final state have small cross sections, i.e.
<∼ O(10 fb).

4.4. Conclusion of Section 4

In supersymmetric models it is essential to know the nature of the LSP, since it is involved in
practically all collider signals. In the MSSM the LSP is necessarily the lightest neutralino.
However, in B3 mSUGRA models this is not the case. In Sect. 4 we have analyzed in
detail which B3 mSUGRA parameter region leads to a sneutrino LSP. In particular, we
have found that a coupling λ′

ijk = O(10−1) at the GUT scale will lead to a sneutrino LSP
due to additional B3 terms in the RGEs. We have shown, that such a large coupling can
still be consistent with experiment, for a ν̃µ,τ LSP. A ν̃e LSP is disfavoured due to the
strong low energy bounds on the couplings λ′

1jk from, for example, atomic parity violation
measurements, see Table 4.1.

We have explored which conditions at the GUT scale lead to a sneutrino LSP. We have
shown that a negative trilinear scalar coupling A0 with a large magnitude enhances the
negative B3 contribution to the sneutrino mass. We have found large regions in the B3

mSUGRA parameter space, where the sneutrino is the LSP and which are consistent with
the observed anomalous magnetic moment of the muon, aexp

µ , as well as with the experimental
value for the BR(b → sγ), see Fig. 4.4 and Fig. 4.5. The allowed ν̃µ LSP parameter space
is hereby larger than the ν̃τ LSP parameter space. We have also shown that aexp

µ puts an
upper bound of roughly 300 GeV on the sneutrino LSP mass.

We have next investigated the phenomenology of sneutrino LSP models at the LHC. We
have considered one benchmark scenario of supersymmetric parameters with a ν̃µ LSP which
is obtained via λ′

231|GUT = 0.11. Within this scenario, we have found that direct decays of
light as well as heavy SUSY particles lead to an excess of muons beyond the SM expectation
in the final state, cf. Table 4.4. We also have found that signatures from pair production
of SUSY particles are more promising than from single sparticle production, since the latter
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mainly involve hadronic final states. Promising pair production signatures are high-pT muons
of a few hundred GeV, cf. Fig. 4.7, high-pT jets, like-sign dimuon events and long-lived taus
with a detached vertex of O(1cm).

These signatures should be investigated by the experimental groups in order to find su-
persymmetry as well as to distinguish B3 mSUGRA with a sneutrino LSP from “normal”
mSUGRA with a stable neutralino LSP.
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5. τ̃1 LSP Phenomenology: Two- versus

Four-Body Decay Modes and

Resonant Single Slepton Production

at the LHC as an Example

If they exist, supersymmetric particles are typically much heavier than their SM partners and
at colliders will mostly decay rapidly. This leads to cascade decay chains in the detector to the
LSP. The nature of the LSP and its possible decay modes is thus an essential feature for all
supersymmetric signatures. It is the purpose of this section to study a novel supersymmetric
phenomenology, namely with the scalar tau (stau), τ̃1, as the LSP [58, 106]; see also Fig. 2.3.
In particular, we analyze in detail the potential τ̃1 decays in baryon-triality, B3, mSUGRA
models1, cf. Sect. 2.3 and Sect. 2.4.3. We concentrate on scenarios, where we have a dominant
LiQjD̄k operator, Eq. (2.6), at the grand unification scale. Since the LSP is not stable, we
are not restricted to the neutralino as the LSP [41]. We then study the discovery potential
of a specific signature in this framework, namely resonant single slepton production at the
LHC, resulting in multiple muons in the final state.

τ̃1 LSP scenarios have been studied in the literature in Refs. [58, 106, 110, 206, 207, 208,
209, 210, 211]. As we now discuss, we go beyond this work in several aspects.

5.1. New Phenomenology and Outline

The τ̃1 LSP might decay via the dominant LiQjD̄k operator, Eq. (2.6); for example via a
4-body decay in the presence of a non-vanishing λ′

211

τ̃−
1

λ′
211−→ τ−µ−ud̄ . (5.1)

An important feature of B3 mSUGRA models is that additional B3 couplings are generated
via the renormalization group equation (RGE) running [58, 85, 100, 102, 103, 104, 105].
These new couplings can lead to 2-body decays of the τ̃1 LSP. For example, λ′

211 will generate
λ233 which allows for the decay

τ̃−
1

λ233−→ µ−ντ . (5.2)

Even though λ233 ≪ λ′
211, this might be the dominant decay mode. The decay, Eq. (5.1),

is suppressed by phase space and heavy propagators.

1We also refer to the P6 violating mSUGRA model as the B3 mSUGRA model, if only lepton-number is
violated.
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We analyze in the following in detail the conditions for a dominance of the 2-body decay
over the 4-body decay. We provide for the first time an extensive study of B3 τ̃1 LSP
decays and extend and specify thus the results of Ref. [211], where a first estimate has been
performed. This is useful when studying both pair produced and singly produced SUSY
particles within the B3 mSUGRA model. Typically all heavy SUSY particle decay to the
(τ̃1) LSP.

In the second half of Sect. 5, we consider the B3 mSUGRA model with a τ̃1 LSP and
focus on resonant single (left-handed) charged slepton, ℓ̃Li, and sneutrino, ν̃i, production at
hadron colliders, which proceeds via a dominant LiQjD̄k operator:

ūjdk

λ′
ijk−→ ℓ̃−Li , (5.3)

d̄jdk

λ′
ijk−→ ν̃i. (5.4)

Here, uj (dk) is an up-type (down-type) quark of generation j (k).

Single slepton production allows us also to study two B3 couplings at a time, depending
on the scenario. The slepton is always produced via a λ′ whereas the decay of the τ̃1 LSP in
the decay chain of the slepton might proceed via a generated λ, cf. Eq (5.2).

Single slepton production within a χ̃0
1 LSP scenario leads to like-sign dileptons in the final

state and has thus a very promising signature for experimental studies, see Refs. [112, 212,
213, 214, 215]. Here we show that for a τ̃1 LSP, we also obtain like-sign dilepton events and
additionally events with three or four leptons in the final state. We give event rates for the
LHC for two representative sets of B3 mSUGRA parameters, see Appendix A.3. We also
discuss the background, although a detailed signal over background analysis is beyond the
scope of this work. This is the first study of single slepton production in τ̃1 LSP scenarios.

We assume in the following that only one non-vanishing λ′
ijk is present at the grand

unification (GUT) scale, MGUT, similar to the dominant top Yukawa in the SM. Allowing
for more than one coupling leads to stricter bounds [85, 89, 94, 148, 163, 164]. The bounds
for a single λ′

ijk lie between O(1) and O(10−4) depending on the flavor indices and sparticle
masses. These bounds can be up to four orders of magnitude stronger at MGUT if one includes
the generation of neutrino masses [58, 85], cf. Sect. 4.1.1. We therefore assume below that

λ′
ijk

<∼ O(10−2) and require it to be consistent with the observed neutrino masses. However,

as we have shown in Sect. 4.1.1, λ′
ijk

>∼ O(10−1) is possible if one assumes quark mixing
dominantly in the up-sector.

Resonant slepton production at hadron colliders via the LiQjD̄k operator was first in-
vestigated in [111, 216], using tree-level production cross sections. Three-lepton final states
and like-sign dilepton events were investigated in Refs. [112, 212, 213, 214, 215]. Ref. [217]
considered scenarios with a gravitino LSP. Experimental studies by the D0 collaboration at
the Tevatron were performed in Refs. [218, 219] assuming a χ̃0

1 LSP and a non-vanishing
λ′

211. The NLO QCD corrections to the cross section were computed in [114, 220, 221, 222].
The SUSY-QCD corrections were included by [114]. The latter can modify the NLO QCD
prediction by up to 35%. In Refs. [184, 204, 205] single slepton production in association
with a single top quark was considered; see also Sect. 6.
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The outline is as follows. We derive in Sect. 5.2 approximate equations for the RGE
generation of λ from λ′. In Sect. 5.3, we classify the different decay modes of the τ̃1 LSP
and investigate the conditions for a dominance of the 2-body decay over the 4-body decay
and vice versa. In Sect. 5.4, we classify all possible signatures for resonant single slepton
production in B3 mSUGRA models with a τ̃1 LSP. In Sect. 5.5 we calculate event rates for
like-sign dimuon events as well as for three- and four-muon events, at the LHC. For that
purpose, we define two B3 mSUGRA scenarios with a τ̃1 LSP in Appendix A.3, as a reference
for phenomenological studies. We also discuss backgrounds and cuts for like-sign dimuon
events. We conclude in Sect. 5.6.

5.2. Renormalization Group Running of λ′
ijk and λi33

In the scenarios considered here, the dominant coupling is a λ′
ijk; for i 6= 3 it does not couple

to the τ̃1 LSP. However, due to the mixing of different quark flavors, described by the CKM
matrix (see Appendix A.1) the RGEs of the B3 couplings are not independent, but highly
coupled. Therefore, a single non-zero λ′

ijk at the GUT scale generates a set of other non-
zero B3 couplings at lower scales. Assuming a diagonal charged lepton Yukawa matrix YE,
Eq. (2.5), only those couplings can be generated which violate the same lepton number as
λ′

ijk, i.e. λ′
imn and λill. Among those, we want to focus on the λi33 which do couple directly

to the τ̃1 LSP. No additional source of lepton number violation is introduced.

The aim of this section is to study the RGEs of the dominant λ′
ijk and to quantitatively

determine the generated λi33. We then use these results to predict the low energy spectrum
of B3 mSUGRA scenarios, Eq. (2.27), with λ′

ijk|GUT 6= 0. We will also derive approximate
formulæ that allow for a numerical implementation of the running of the couplings.

5.2.1. Renormalization Group Equations

The full renormalization group equations for the B3 couplings λ′
ijk and λi33 are [58, 99, 100],

16π2 d

dt
λ′

ijk = λ′
ijl γ

Dk
Dl

+ λ′
ilk γ

Qj

Ql
+ λ′

ljk γLi
Ll

−
(

YD

)

jk
γLi

H1
, (5.5)

16π2 d

dt
λi33 = λi3l γ

E3
El

+ λil3 γL3
Ll

+ λl33 γLi
Ll

−
(

YE

)

33
γLi

H1
+
(

YE

)

i3
γL3

H1
, (5.6)

with t = ln Q, Q being the renormalization scale. The anomalous dimensions γ are listed
in Ref. [58] at one-loop level and in Ref. [100] at two-loop level. The RGEs simplify con-
siderably under the assumption of a single dominant B3 coupling. Products of two or more
B3 couplings including quadratic contributions of the dominant coupling can be neglected
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for λ′ <∼ O(10−2). In this limit, the one-loop anomalous dimensions read

γQi

Qj
=
(

YDY+
D

)

ij
+
(

YUY+
U

)

ij
− δi

j

( 1

30
g2
1 +

3

2
g2
2 +

8

3
g2
3

)

,

γDi
Dj

=2
(

Y+
DYD

)

ji
− δi

j

( 2

15
g2
1 +

8

3
g2
3

)

,

γLi
Lj

=
(

YEY+
E

)

ij
− δi

j

( 3

10
g2
1 +

3

2
g2
2

)

,

γEi
Ej

=2
(

Y+
EYE

)

ji
− δi

j

(6

5
g2
1

)

,

γLi
H1

= − 3λ′
iaq

(

YD

)

aq
− λibq

(

YE

)

bq
.

(5.7)

From Eq. (5.6) and Eq. (5.7), we see that the terms related to γLi
H1

allow for the dynamical
generation of λi33 by a non-zero λ′

iaq coupling [and vice versa for Eq. (5.5)]. All other terms
in Eq. (5.6) only alter the running of λi33 once it is generated. The RGEs can be further
simplified. At one-loop level, all B3 couplings but the dominant λ′

ijk and the generated λi33

can be neglected in the RGEs since they must be generated first by λ′ and thus contribute
at two-loop level only.

Since we work in a diagonal charged lepton Yukawa basis, the last term in Eq. (5.6),
proportional to

(

YE

)

i3
does not contribute to the running of λi33. It is only non-zero if i = 3,

but owing to the ij-antisymmetry of λijk no coupling is generated in this case (λ333 = 0).

Next, a general ordering of the parameters in the anomalous dimensions is2

g2
3 >

(

YU

)2

33
> g2

2 > g2
1 >

(

YD

)2

33
>
(

YE

)2

33
, (5.8)

and all other entries of the Y matrices are smaller by at least one order of magnitude3. The
contributions to the RGEs are thus largest for diagonal anomalous dimensions.

As a result, the RGEs for a non-zero λ′
ijk at the GUT scale and a generated λi33 reduce to

16π2 d

dt
λ′

ijk =λ′
ijk

[

− 7

15
g2
1 − 3g2

2 −
16

3
g2
3 +

(

YD

)2

33

(

2δk3 + δj3 + 3δj3δk3

)

+
(

YU

)2

33
δj3 +

(

YE

)2

33
δi3

]

,
(5.9)

16π2 d

dt
λi33 =λi33

[

− 9

5
g2
1 − 3g2

2 + 4
(

YE

)2

33

]

+ 3λ′
ijk

(

YE

)

33

(

YD

)

jk
. (5.10)

A similar analytical approximation for the generation of λ is derived in Ref. [211]. But the
effect of the gauge couplings is neglected there. See also Ref. [102].

The last term in Eq. (5.10) induces the dynamical generation of λi33. Diagrammatically,
this process can be understood as shown in Fig. 5.1. We see that at one-loop the lepton-
doublet superfield mixes with the Higgs doublet superfield Hd via the B3 coupling λ′

ijk and

2tan β will increase
(

YD

)

and
(

YE

)

, cf. Eqs. (A.6)-(A.8). Thus for tanβ
>∼ 30, the ordering of the

parameters can change to
(

YD

)2

33
>
(

YE

)2

33
> g2

1 .
3Note that the charm Yukawa coupling

(

YU

)

22
is roughly equal to the tau Yukawa coupling

(

YE

)

33
if

tan β = O(1). We have neglected the charm Yukawa coupling, because we will assume that tan β = O(10).
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Li

Qj

D̄k

Hd

L3

Ē3

λ′
ijk

(

YD

)

jk

(

YE

)

33

Figure 5.1.: Superfield diagram for the dynamical generation of λi33 by λ′
ijk at one loop order,

see Eq. (5.10).

the down quark Yukawa coupling
(

YD

)

jk
. Hd then couples via the tau Yukawa coupling

(

YE

)

33
purely leptonically. The resulting effective interaction is of the λi33-type.

It is important to notice that the generation is related to
(

YD

)

jk
. Whether a given λ′

ijk

can generate λi33 or not depends on whether
(

YD

)

jk
6= 0. For j 6= k it thus depends

crucially on the origin of the CKM mixing: is it dominantly down-type or up-type mixing,
cf. Appendix A.1. In case of down-type mixing, all entries of the YD matrix are non-zero
and all λ′

ijk can therefore generate a λi33. In contrast, if the quark mixing takes place in the
up-sector, only the diagonal entries of YD are non-zero and j = k is required. The flavor
and size of the generated coupling depends on tan β and on the precise j, k configuration.
A strong ordering is expected that goes along with the ordering of the entries of the YD

matrix.

In order to study the running of the B3 couplings, the RGEs for the Yukawa matrix
elements

(

YD

)

jk
,
(

YU

)

33
, and

(

YE

)

33
and the gauge couplings are also needed. The full

RGEs for the Yukawa couplings are given in Refs. [58, 99]. Applying the single coupling
dominance hypothesis, neglecting quadratic terms in λ′

ijk, and considering only the dominant
terms, Eq. (5.8), they read

16π2 d

dt

(

YU

)

33
=
(

YU

)

33

[

− 13

15
g2
1 − 3g2

2 −
16

3
g2
3 + 6

(

YU

)2

33
+
(

YD

)2

33

]

, (5.11)

16π2 d

dt

(

YE

)

33
=
(

YE

)

33

[

− 9

5
g2
1 − 3g2

2 + 4
(

YE

)2

33
+ 3
(

YD

)2

33

]

, (5.12)

16π2 d

dt

(

YD

)

jk
=
(

YD

)

jk

[

− 7

15
g2
1 − 3g2

2 −
16

3
g2
3 +

(

YD

)2

33

(

3 + δj3 + 2δk3

)

+
(

YU

)2

33
δj3 +

(

YE

)2

33

]

. (5.13)

The one-loop order RGEs for the three gauge couplings within the SSM are given by [99]

16π2 d

dt
gi = bi g

3
i , (5.14)

with bi = {33/5, 1, −3} for i = 1, 2, 3. Thus in total, a set of nine coupled differential
equations, Eq. (5.9) - Eq. (5.14), has to be solved4.

4In case of j = k = 3 only 8 equations need to be solved. But this implies that the slepton has to be
produced by parton quarks of the third generation which is strongly suppressed due to their negligible
parton density.
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Figure 5.2.: Running of B3 couplings assuming a single non-zero λ′ = 0.01 coupling at the GUT
scale (upper panel) leading to a non-zero λ233 coupling (lower panel) at lower scales within the B3

mSUGRA scenario Set A (Appendix A.3) for down-type mixing.

5.2.2. Numerical Results

For the numerical implementation of the RGEs we start from the framework provided by
SOFTSUSY2.0.10 [145, 147]. First, SOFTSUSY evaluates all necessary parameters at the SUSY
scale

Qsusy =
√

mt̃1(Qsusy) mt̃2(Qsusy) . (5.15)

In a second step, we apply the (proton-hexality conserving) RGEs, Eq. (5.11)-Eq. (5.14), to
run the Yukawa couplings and gauge couplings up to the GUT scale. Here we add the B3

couplings λ′
ijk|GUT 6= 0 and λi33|GUT = 0 and evolve these couplings down to the scale Q

using the above given B3 RGEs, Eq. (5.9) and Eq. (5.10). We have implemented the RGEs
using a standard Runge Kutta formalism [223].
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Figure 5.3.: Same as Fig. 5.2, but for quark mixing in the up-sector.

In Fig. 5.2 and Fig. 5.3, we show the running of different λ′
2jk couplings, starting with

λ′
ijk|GUT = 0.01, for the case of down- and up-mixing respectively, cf. Appendix A.1. In the

corresponding lower panel, we show the scale dependence of the generated λ323 = −λ233 cou-
pling. Here, we use the mSUGRA parameters of Set A (tanβ = 13), cf. Appendix A.3.

We see that the dominant λ′
ijk coupling grows by about a factor of 3, running from the

GUT scale to the weak scale. This effect is mainly due to the gauge couplings, see Ref. [102],
where the Yukawa couplings were omitted. Including the Yukawa couplings reduces this
effect, maximally for j = k = 3. The generated λ233 coupling is at least two orders of
magnitude smaller than the original λ′ coupling. Furthermore it depends sensitively on the
flavor structure (ijk) of the original λ′ coupling. This reflects the dependence on the Yukawa
matrix

(

YD

)

jk
. In case of down-type mixing, the ordering of the corresponding entries is

(

YD

)

33
>
(

YD

)

23,32
>
(

YD

)

22
>
(

YD

)

12,21
>
(

YD

)

13,31
>
(

YD

)

11
, (5.16)
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Set λ′
ijk λi33 (down-type mixing) λi33 (up-type mixing)

A Eq. (5.9) SOFTSUSY Eq. (5.10) SOFTSUSY Eq. (5.10) SOFTSUSY

λ′
211 2.82 × 10−2 2.85 × 10−2 −3.96 × 10−7 −3.89 × 10−7 −2.17 × 10−7 −2.13 × 10−7

λ′
231 2.58 × 10−2 2.61 × 10−2 −4.65 × 10−7 −4.80 × 10−7 0 +2.06 × 10−12

λ′
223 2.81 × 10−2 2.83 × 10−2 −5.55 × 10−6 −5.73 × 10−6 0 −8.45 × 10−9

λ′
233 2.55 × 10−2 2.58 × 10−2 −1.41 × 10−4 −1.42 × 10−4 −1.42 × 10−4 −1.43 × 10−4

λ′
311 2.81 × 10−2 2.84 × 10−2 0 0 0 0

Table 5.1.: Comparison between our results, Eq. (5.9) and Eq. (5.10), and the results of the B3

version of SOFTSUSY [149, 150, 147] for λ′
ijk and the generated coupling λi33 at the SUSY scale,

Eq. (5.15). We choose different couplings λ′
ijk = 0.01 at the GUT scale as given in the first column

of the table. The running of λ′
ijk is the same for down- and up-type quark mixing, cf. Appendix A.1.

The generation of λi33 depends on the quark mixing assumptions and the values at the SUSY scale
are given separately. The remaining mSUGRA parameters are these of Set A, Eq. (A.18).

reflecting precisely the ordering of the generated couplings in Fig. 5.2. Small differences
between the couplings generated by λ′

i23 (λ′
i13) or λ′

i32 (λ′
i31) are related to the different

running of the respective λ′
ijk and

(

YD

)

jk
coupling, depending in turn on whether j or k

equals 3.

In the case of up-type mixing, Fig. 5.3, not all λ′ couplings can generate a λ. Since the
down Yukawa coupling is diagonal, j = k is required. Other couplings can generate λi33 at
higher loop levels only and are not included in our approximations.

Our results can easily be translated to other scenarios: The running of the dominant
coupling λ′ is mainly driven by gauge interactions, Eq. (5.9), and thus depends only weakly
on the specific SUSY parameters. The dependence of the generated coupling λ on SUSY
parameters is more involved but we expect tanβ to have the largest impact. In general, the
generated λ coupling scales with tan2 β,

λi33 ∝ tan2 β , (5.17)

if tan2 β ≫ 1. This is because the down-quark Yukawa couplings,
(

YD

)

jk
[and the tau

Yukawa coupling,
(

YE

)

33
], are proportional to 1/ cosβ =

√

1 + tan2 β, which directly fol-
lows from Eqs. (A.6)-(A.8). Therefore the magnitude of the generated λ coupling for other
scenarios can be estimated by rescaling λ of Fig. 5.2 and Fig. 5.3 according to Eq. (5.17).

5.2.3. Comparison with the Program SOFTSUSY

In this section, we compare our results for λ′
ijk and the generated coupling λi33 at the SUSY

scale, Eq. (5.15), with the B3 version of SOFTSUSY [149, 150, 147]. This version of SOFTSUSY
contains the complete one loop RGEs for λ′

ijk, Eq. (5.5), and λi33, Eq. (5.6), without our
approximations.

We show in Table 5.1 our results and the results of SOFTSUSY for the case of down-type
mixing and up-type mixing (see Appendix A.1) assuming different couplings λ′

ijk = 0.01 at
the GUT scale. For the other parameters, we consider the Set A of Eq. (A.18).
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At the SUSY scale, the differences between our results and SOFTSUSY for the case of down-
type mixing, are less than 2% for all λ′

ijk couplings and less than 4% for the λi33, respectively.
In case of up-type mixing, we find the same for the couplings λ′

ijk with j = k. However for
j 6= k and up-type mixing, we observe a discrepancy between our results and SOFTSUSY for
the coupling λ233 generated by λ′

223|GUT 6= 0 and λ′
231|GUT 6= 0, respectively. This behavior

can easily be understood.

The off-diagonal Yukawa matrix elements (YD)jk are equal to zero at the weak scale
for up-type mixing. Running from the weak scale to the GUT scale generates Yukawa
couplings (YD)jk, j 6= k, at the one loop level [58, 99]. The generation of λ233 via Eq. (5.10)
occurs therefore formally at two-loop level and has been neglected in our approximation. In
SOFTSUSY this two-loop effect is taken into account and small couplings are generated also
for j 6= k and up-type mixing. Compared to the case of down-type mixing, see Table 5.1, the
λ233 couplings are suppressed by five (with λ′

231|GUT= 0.01) and three (with λ′
223|GUT= 0.01)

orders of magnitude. Note that the generation of (YD)jk is not the only two loop effect that
enters the full RGEs [58, 99, 100].

Therefore, our approximation for the generation of λi33 by a non-zero λ′
ijk at the GUT scale,

Eq. (5.10), breaks down in the case of up-type mixing and j 6= k. But concerning τ̃1 LSP
decays, the corresponding 2-body decay branching ratio for λi33 is negligible compared to
the 4-body decay branching ratio via λ′

ijk and our approximations are applicable for such
phenomenological studies. For example, the 2-body decay branching ratio for up-type mixing
and λ′

231|GUT = 0.01 or λ′
223|GUT = 0.01 is less than 10−4 in Set A.

We conclude that our approximations are valid for the signal and decay rates that we
study in this work. We also note that we have provided an independent check of the B3

version of SOFTSUSY [149, 150]. Using a different set of mSUGRA parameters leads to a
similar level of agreement.

5.3. τ̃1 LSP Decays in B3 mSUGRA

5.3.1. General LSP Decay Modes

As we showed in Sect. 5.2, a non-vanishing coupling λ′
ijk at the GUT scale generates an

additional coupling λi33 at the weak scale which is roughly at least two orders of magnitude
smaller than λ′

ijk, cf. Fig. 5.2 and Fig. 5.3. In this section, we compare the possible decay
modes of the LSP via these two couplings for different B3 scenarios.

First, let us discuss χ̃0
1 LSP scenarios. The leading order decay modes of the χ̃0

1 LSP via
the dominant λ′

ijk and the generated λi33 couplings are all three body decays5,

χ̃0
1

λ′
ijk−→
{

ℓ+
i uj dk

ℓ−i uj dk

, χ̃0
1

λ′
ijk−→
{

ν̄i d̄j dk

νi dj dk

, (5.18)

5We have neglected the decay χ̃0
1 → νγ [224], which is suppressed except for very light neutralino masses

[225, 226, 227].
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Figure 5.4.: Feynman diagrams contributing to the 4-body decay τ̃−
1 → τ−µ−uj d̄k of the τ̃1 LSP

via λ′
2jk. In this example the τ̃1 decays via a virtual neutralino χ̃0

l (l = 1, 2, 3, 4) into a tau, τ−, a

muon, µ−, an up-type quark, uj , of generation j and a down-type anti-quark, d̄k, of generation k.
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Figure 5.5.: Feynman diagrams leading to the 2-body decays of the τ̃1 LSP via the generated
coupling λ233. The τ̃1 decays either into a muon, µ−, and a neutrino or into a τ− and a neutrino.

and

χ̃0
1

λi33−→
{

ℓ+
i ν̄τ τ−

ℓ−i ντ τ+
, χ̃0

1
λi33−→

{

ν̄i τ
+ τ−

νi τ
− τ+

. (5.19)

The corresponding partial widths depend quadratically on λ′
ijk and λi33, respectively [80,

199, 228, 229, 230]. Therefore, the χ̃0
1 decay via λi33 is heavily suppressed and a χ̃0

1 LSP
decays predominantly via λ′

ijk into SM particles.

The situation changes if one considers B3 mSUGRA scenarios with a τ̃1 LSP, where the
τ̃1 couples not directly to the LiQjD̄k operator, i.e. i = 1, 2. In this case, the τ̃1 must first
couple to a virtual gaugino. The gaugino then couples to a virtual sfermion which then
decays via λ′

ijk, resulting in a 4-body decay of the τ̃1 LSP. The possible decay modes via a
virtual neutralino are

τ̃−
1

λ′
ijk−→



















τ− ℓ+
i uj dk

τ− ℓ−i uj dk

τ− ν̄i d̄j dk

τ− νi dj dk

. (5.20)

4-body decays via a virtual chargino are also possible but they are suppressed due to the
higher chargino mass in comparison to the lightest neutralino mass, m(χ̃±

1 ) > m(χ̃0
1). Fur-

thermore, the (mainly right-handed) τ̃1 LSP couples stronger to the (bino-like) lightest neu-
tralino than to the (wino-like) lightest chargino.
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On the other hand, the τ̃1 can directly decay via λi33 into only two SM particles

τ̃−
1

λi33−→







τ− ν̄i

τ− νi

ℓ−i ντ

. (5.21)

We show in Fig. 5.4 (Fig. 5.5), example diagrams for the 4-body (2-body) decay of a τ̃1 LSP
via λ′

2jk (λ233). Although the 2-body decay suffers from the small coupling, the 4-body decay
is phase space suppressed as well as by heavy propagators. Which decay mode dominates
depends strongly on the parameters at the GUT scale. We will discuss in detail this topic
in the next section.

As a third type of B3 mSUGRA scenarios we want to mention τ̃1 LSP scenarios with a
dominant λ′

3jk coupling. Here, the dominant B3 operator couples directly to the τ̃1 LSP and
allows for a 2-body decay of the τ̃1 into two jets,

τ̃−
1

λ′
3jk−→ ūjdk . (5.22)

λ′
3jk can not generate λ333 via the RGEs, because λijk has to be anti-symmetric in the indices

i, j. λ3nn with n 6= 3 will be generated by the muon (n = 2) or electron (n = 1) Higgs Yukawa
coupling, cf. Eq. (5.10). But since these Yukawa couplings are so small, the decay via λ3nn

is too small to be seen.

For j = 3, the up-type quark in Eq. (5.22) is a top quark and hence the decay Eq. (5.22)
is kinematically forbidden for mτ̃1 < mt. The τ̃1 LSP than decays in a 3-body decay mode
via a virtual top quark into a W boson and two jets, where at least one jet is a b jet,

τ̃−
1

λ′
33k−−→ W− b̄ dk . (5.23)

We present the squared matrix element and the partial width of this process in Appendix B,
which to our knowledge has not been given in the literature so far.

5.3.2. Dependence of τ̃1 Decays on mSUGRA Parameters

In this section, we investigate the conditions at the GUT scale that lead to 2-body decays of
the τ̃1 LSP. We assume a non-vanishing λ′

2jk coupling at the GUT scale. This can easily be
generalized to λ′

1jk. We point out that the branching ratios of the τ̃1 LSP do not depend on
the magnitude of λ′

ijk, since they cancel in the ratio. The following discussion is therefore
also applicable to scenarios where the couplings are too small to produce a significant number
of single slepton events at the LHC but where the τ̃1 LSP is produced in cascade decays of
pair produced SUSY particles.

For the numerical implementation we use SOFTSUSY2.0.10 [145, 147] to calculate the
mass spectrum at the SUSY scale, Eq. (5.15). In addition, we use our own program to
calculate λ′

ijk and λi33 at the SUSY scale as described in Sect. 5.2.2. We than pipe the
mass spectrum and the couplings through ISAWIG1.200, which is linked to ISAJET7.75

[201]. ISAJET calculates the 2-body partial width of the SUSY particles and produces an
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Figure 5.6.: 2-body decay branching ratio as a function of tanβ for different dominating λ′
2jk cou-

plings at the GUT scale. The quark mixing is in the down sector and the mSUGRA parameters
are M0 = 0 GeV, M1/2 = 500 GeV, A0 = 600 GeV, sgn(µ) = +1.

output for HERWIG [196, 197, 198, 199]. We use a special version of HERWIG6.510 which also
calculates the 4-body decays of the τ̃1 LSP [200]. As an output, we consider the total 2-body
decay branching ratio of the τ̃1 LSP, BR2. It is defined as

BR2 =
1

1 + Γ4/Γ2
, (5.24)

where Γ2 and Γ4 denote the sums of the partial widths for the 2- and 4-body decays, respec-
tively.

We first show in Fig. 5.6 (Fig. 5.7) the tanβ dependence of the 2-body decay branching
ratio. We give values for different non-vanishing couplings λ′

2jk at the GUT scale and we
assume quark mixing in the down (up) sector, cf. Appendix A.1.

Nearly all τ̃1 LSPs will decay via a 2-body decay for large values of tanβ, i.e. tan β
>∼ 30,

and down-type mixing. In the case of up-type mixing this is also true for λ′
211, λ′

222 and λ′
233.

This behavior can be easily explained with the help of Eq. (5.24). The partial widths Γ2, Γ4

can be approximated by [58]

Γ2 ∝ λ2
233 mτ̃1 , (5.25)

Γ4 ∝ λ′2
2jk

m7
τ̃1

m2
χ̃m4

f̃

. (5.26)

mχ̃ denotes the mass of the relevant gaugino and mf̃ denotes the mass of the virtual sfermion

which couples directly to L2QjD̄k, cf. Fig. 5.4.
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Figure 5.7.: 2-body decay branching ratio as a function of tanβ for different dominating λ′
2jk cou-

plings at the GUT scale. The quark mixing is in the up sector and the mSUGRA parameters are
M0 = 0 GeV, M1/2 = 500 GeV, A0 = 600 GeV, sgn(µ) = +1. Couplings λ′

2jk for which the 2-body
decay branching ratio nearly vanishes are not shown.

As we argued in Sect. 5.2.2, the generated coupling λ233 scales roughly with tan2β, cf.
Eq. (5.17). Therefore, Γ2 scales with tan4β. At the same time, λ′

211 is hardly affected by
tanβ. This is the main effect that enhances BR2 for large tan β.

Furthermore, increasing tan β increases the contribution from the tau Yukawa couplings
to the various RGEs. This is encoded in the function Xτ , Eq. (A.15), which is proportional
to (1 + tan2 β). As can be seen in Eq. (A.15), increasing tanβ and Xτ reduces the mass
of the right- and left-handed stau and therefore, with Eq. (A.16), the mass of the τ̃1 LSP,
mτ̃1 . Furthermore, the off-diagonal matrix elements of the stau mass matrix, Eq. (A.13),
also increase with tanβ. This leads to a stronger mixing between the right- and left-handed
stau and lowers the mass of the τ̃1, cf. Eq. (A.16).

Note that Γ4/Γ2 is proportional to m6
τ̃1

. According to Eq. (5.24), the 2-body decay branch-
ing ratio therefore strongly increases for decreasing mτ̃1 .

We observe in Fig. 5.6 also a large hierarchy between the different couplings λ′
2jk. For

example, a dominant λ′
233 coupling leads to BR2 ≈ 100% for any value of tanβ, whereas for

λ′
211 this is only the case for tan β

>∼ 25. This hierarchy reflects the hierarchy of the down
quark Yukawa matrix elements, Eq. (5.16), which enter as the dominant term in the RGE
of λ233, Eq. (5.10).

For up-type quark mixing, Fig. 5.7, and j 6= k the down-quark Yukawa matrix elements
and therefore BR2 are nearly vanishing.

We investigate the dependence of BR2 on A0 in Fig. 5.8, for a dominant coupling λ′
211 and
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Figure 5.8.: 2-body decay branching ratio as a function of A0 for non-vanishing λ′
211 at the GUT

scale and different tan β. We assume down-type quark mixing. The other mSUGRA parameters
are M0 = 0 GeV, M1/2 = 500 GeV, sgn(µ) = +1. The solid red curve corresponds to tan β = 7.

down-type mixing. We see a minimum at A0 ≈ 250 GeV. Here, BR2 is reduced by up to 70%
compared to A0 = ±1 TeV. The minimum and the position of the minimum is dominated
by the following two effects.

The right-handed stau couples to a left-handed stau (tau sneutrino) and a neutral Higgs
(charged Higgs) via a trilinear scalar interaction (hE)33, cf. Eq. (2.3). The coupling (hE)33

has dimension one and in mSUGRA models it is equal to A0 × (YE)33 at the GUT scale.
The RGE of the right-handed scalar tau mass, mτ̃R

, depends in the following way on (hE)2
33

[58]:
dm2

τ̃R

dt
= +4(hE)2

33 + . . . . (5.27)

This term decreases mτ̃R
when we go from the GUT scale to the SUSY scale, Eq. (5.15),

due to the plus sign. The (negative) contribution of this term to m2
τ̃R

is proportional to the
integral of (hE)2

33 from tmin = ln(MSUSY) to tmax = ln(MGUT). For the mSUGRA parameters
given in Fig. 5.8, M0 = 0 GeV, M1/2 = 500 GeV, sgn(µ) = +1, the integral of (hE)2

33 is
minimal at A0 ≈ 180 GeV and, therefore, mτ̃R

is maximal. For mτ̃1 = mτ̃R
this also leads

to a maximum of Γ4/Γ2 ∼ m6
τ̃1

and hence to a minimum of BR2; see also the discussion in
Sect. 4.2.1.

But the lightest stau is an admixture of the right- and left-handed stau. The off-diagonal
mass matrix elements BLR, Eq (A.13), depend also on the value of (hE)33 at the SUSY scale,
Eq. (5.15), through Aτ = (hE)33/(YE)33. For A0 = 180 GeV we find Aτ ≈ −110 GeV. A
negative value of Aτ enhances the effect of L–R-mixing which decreases mτ̃1 . Therefore, the
maximum of mτ̃1 as a function of A0 is shifted to A0 ≈ 250 GeV compared to mτ̃R

. Note
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Figure 5.9.: 2-body decay branching ratio as a function of M1/2 for non-vanishing λ′
211 at the

GUT scale and different tan β. We assume quark mixing in the down sector. The other mSUGRA
parameters are M0 = 0 GeV, A0 = 600 GeV, sgn(µ) = +1. The solid red curve corresponds to
tan β = 7.

however that the Aτ dependence of stau L–R-mixing is sub-dominant around the minimum
because of µ tanβ ≫ Aτ .

Next, we study the dependence of BR2 on the universal gaugino mass M1/2. We show this
behavior in Fig. 5.9, again for a dominant λ′

211 and down-type mixing. The 2-body decay
branching ratios approach a constant value for increasing M1/2. Both, the squared mass of
the gauginos, cf. Eq. (A.17), and the squared masses of the sfermions, cf. Eq. (A.11) and
Eq. (A.12), depend linearly on M2

1/2. Therefore,

lim
M1/2→∞

Γ4/Γ2 ∝
m6

τ̃1

m2
χ̃m4

f̃

= constant . (5.28)

The dependence of BR2 on M1/2 for M1/2
<∼ 1 TeV is more involved, because the ratio

Γ4/Γ2 depends also on the other mSUGRA parameters, mainly through the running sfermion
masses, cf. Eq. (A.11) and Eq. (A.12). For example, we observe in Fig. 5.9 that the slope

of BR2 for M1/2
<∼ 1 TeV strongly depends on tanβ. For tan β = 10, the slope is small

and positive whereas for tan β
>∼ 13 the slope is negative. The magnitude of the slope also

increases when we consider larger values of tanβ. This behavior is again related to the tau
Yukawa coupling (YE)33, Eq. (2.6), and its effects on the τ̃1 mass described by the function
Xτ , Eq. (A.15). For large values of M1/2, the influence of Xτ on the τ̃1 mass nearly vanishes.
But as we go to smaller values of M1/2 the (negative) contributions due to (YE)33 become
more and more important. For example, for tanβ = 22 and M1/2 = 1 TeV (M1/2 = 400 GeV)
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Figure 5.10.: 2-body decay branching ratio as a function of M0 for non-vanishing λ′
211 at the

GUT scale and different tan β. We assume quark mixing in the down sector. The other mSUGRA
parameters are M1/2 = 1400 GeV, A0 = 600 GeV, sgn(µ) = +1.

the Xτ term reduces the mass of the right-handed stau by 3% (10%) compared to vanishing
(YE)33. This reduction of mτ̃1 will also reduce Γ4/Γ2 resulting in an increase of BR2. This
effect is more pronounced for large tanβ because Xτ is proportional to (1 + tan2 β). If we
neglect the effect of (YE)33, the BR2 curves in Fig. 5.9 all get a small positive slope.

Finally, we show in Fig. 5.10 the dependence of BR2 on the universal softbreaking scalar
mass M0. Here, we have chosen a rather large value of M1/2, M1/2 = 1400 GeV, because
otherwise a τ̃1 LSP would exist only in a small interval of M0.

The behavior of BR2 can easily be understood. Increasing M0 increases the mass of the
sfermions, Eq. (A.11) and Eq. (A.12), but not the mass of the gauginos. Therefore, the nom-
inator of Γ4/Γ2 ∝ m6

τ̃1
/(m2

χ̃m4
f̃
) is a polynomial of order O(M6

0 ), whereas the denominator

is only a polynomial of order O(M4
0 ). Therefore, the 2-body decay branching ratios fall off

for increasing M0 as shown in Fig. 5.10. The lines in the figure terminate at values of M0

above which the τ̃1 is no longer the LSP.

5.4. Resonant Single Slepton Production in τ̃1 LSP

Scenarios

We now apply the previous discussion to resonant single slepton production in B3 mSUGRA
scenarios with a τ̃1 LSP. Charged sleptons, ℓ̃Li, and sneutrinos, ν̃i, can be produced singly
on resonance at the LHC via qk q̄j annihilation processes, Eq. (5.3) and Eq. (5.4). The

68



5.4 Resonant Single Slepton Production in τ̃1 LSP Scenarios 69dk�uj ~��L ��~�01 �+~��1 �����02jk �233
dk
�uj ~��L ��~�01 ��~�+1 �+~�01 ��~�+L uj�dk

�02jk
�02jk

Figure 5.11.: Example Feynman graphs for single slepton production in τ̃1 LSP scenarios where
the slepton decay proceeds via the generated λ233 coupling (2-body decay mode, left graph) and
via the dominant λ′

2jk coupling (4-body decay mode, right graph).

production cross section is proportional to |λ′
ijk|2 and therefore large slepton production

rates are expected in scenarios with a dominant λ′
ijk coupling. The RGE generation of λi33

is important for the subsequent slepton decay in τ̃1 LSP scenarios. As discussed in the
previous section, a non-vanishing λi33 introduces new 2-body decay channels for the τ̃1 LSP.
The interplay of these 2-body decays and the 4-body decays via λ′

ijk determines the final
state signatures. In Fig. 5.11, example Feynman graphs for single slepton production and
the subsequent decay in τ̃1 LSP scenarios are shown.

It is the aim of this section to first give a general overview of the possible final states for
these reactions and second to discuss the special cases λ′

2jk 6= 0|GUT and λ′
3jk 6= 0|GUT in

more detail (Sects. 5.4.2 and 5.4.3).

5.4.1. General Signatures

In the last section, the ratio of 2- to 4-body τ̃1 LSP decay rates and its dependence on various
SUSY parameters has been studied. Now, we focus on single slepton production in τ̃1 LSP
scenarios and are interested in the general decay patterns, independent of the precise SUSY
parameters. We first give an overview over all possible final states and signatures which
could be used as the starting point for an experimental analysis.

A (left-handed) charged slepton or sneutrino can be produced directly via λ′
ijk and has

several decay modes:

ūj dk → ℓ̃−Li →







ūjdk

ℓ−i χ̃0
m

νi χ̃
−
n

, (5.29)

d̄j dk → ν̃i →







d̄j dk

νi χ̃
0
m

ℓ−i χ̃+
n

. (5.30)
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Both can decay via the B3 coupling, which is the inverse production process. It is however
suppressed by |λ′

ijk|2. If λ′
ijk ≤ O(10−2), it contributes typically at the percent level. The

dominant decay channels are 2-body decays into a lepton-gaugino pair. Further 3- and
more-body decays are expected to be negligible, due to phase space suppression and heavy
propagators.

In case of j = 3, the hadronic production of a charged slepton cannot proceed via two
quarks as given in Eq. (5.29), due to the vanishing top-quark parton density inside a proton.
Instead, the slepton can for example be produced via a gd̄k initiated Compton process in
association with a single top quark, cf. Sect. 6. Furthermore, the decay into td̄k may be
kinematically forbidden. In this case, the slepton decays via a virtual top. The corresponding
decay width is given in Appendix B. Sneutrino production for j = 3 is possible, Eq. (5.30),
but due to the low bottom-quark density small cross sections are expected. We do not
consider j = 3 any further here and refer the reader to [184, 204, 205] and Sect. 6 for a
detailed investigation of this topic.

For the following discussion, we assume that the produced slepton predominantly decays
into a lepton and the lightest neutralino. This assumption is motivated by the fact that
we consider τ̃1 LSP scenarios. In these scenarios, sleptons are light compared to gauginos
and decays into heavier neutralinos or charginos will be kinematically excluded or strongly
suppressed. See also the computed branching ratios in explicit SUSY models in Ref. [106]
and in Appendix C.

The produced χ̃0
1 is not the lightest SUSY particle and will decay further into the τ̃1 LSP,

χ̃0
1 → τ∓ τ̃±

1 . (5.31)

Since the neutralino is a Majorana fermion, both charge conjugated decays are possible. In
most τ̃1 LSP scenarios this is the only possible decay mode of the neutralino. However,
in some scenarios, the right-handed sleptons µ̃R and ẽR are lighter than the χ̃0

1 and the
additional channels χ̃0

1 → ℓ̃±Rℓ∓ are open (for ℓ = µ, e). The ℓ̃R subsequently decays into the
τ̃1 LSP, a τ , and a lepton via a virtual neutralino

χ̃0
1 → ℓ∓ ℓ̃±R, ℓ̃±R →

{

ℓ± τ∓ τ̃±
1

ℓ± τ± τ̃∓
1

. (5.32)

These decay chains have smaller BRs than the decays in Eq. (5.31). However, they lead to
an additional lepton pair in the final state and could be, therefore, of special interest for
experimental analyses.

5.4.2. λ′
2jk|GUT 6= 0, λ233 ≪ λ′

2jk

Let us now study more detailed the final state signatures in a scenario with λ′
2jk|GUT 6= 0

and a generated λ233 coupling which is small but non-zero at lower scales. In these scenar-
ios, resonant single µ̃L production and resonant single ν̃µ production at hadron colliders is
possible,

ūj dk → µ̃−
L → ūj dk/µ

− χ̃0
1,

d̄j dk → ν̃µ → d̄j dk/νµ χ̃0
1.

(5.33)
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ūj dk
λ′

−→ µ̃−
L −→ ūj dk/µ

−χ̃0
1

or

d̄j dk
λ′

−→ ν̃µ −→ d̄j dk/νµχ̃
0
1

χ̃0
1 → τ+ τ̃−

1 χ̃0
1 → τ− τ̃+

1
[

χ̃0
1 → τ+ τ̃−

1 ℓ+ℓ−
] [

χ̃0
1 → τ− τ̃+

1 ℓ−ℓ+
]

λ′
2jk τ̃−

1 → τ−µ− uj d̄k τ̃+
1 → τ+µ+ ūj dk

τ̃−
1 → τ−µ+ūjdk τ̃+

1 → τ+µ− uj d̄k

τ̃−
1 → τ−νµ dj d̄k τ̃+

1 → τ+ν̄µ d̄j dk

τ̃−
1 → τ−ν̄µ d̄j dk τ̃+

1 → τ+νµ dj d̄k

λ233 τ̃−
1 → τ−νµ τ̃+

1 → τ+ν̄µ

τ̃−
1 → τ−ν̄µ τ̃+

1 → τ+νµ

τ̃−
1 → µ−ντ τ̃+

1 → µ+ν̄τ

Table 5.2.: Slepton decay chains with all possible final states for single µ̃−
L and single ν̃µ production

via λ′
2jk, respectively. The charge conjugated processes are not shown explicitly. Slepton decays

into heavier neutralinos or charginos are neglected. The χ̃0
1 decays predominantly into a τ̃1 LSP

and a τ . In some scenarios, decays as in Eq. (5.32) are possible, they are cited in brackets. Owing
to the Majorana type nature of the χ̃0

1 two charge conjugated decays of the χ̃0
1 are possible (second

and third column). In the first column the B3 coupling involved in the subsequent 4- or 2-body τ̃1

decays are given.

As explained above, a small fraction of the sleptons decay via the inverse production process.
Predominantly they decay into a lepton and the lightest neutralino, χ̃0

1. The decays involving
heavier neutralinos or charginos are typically not accessible.

The difference between µ̃L and ν̃µ production concerns the flavor of the initial quarks
involved (which is related to different parton density functions and is thus important for
the hadronic cross sections), and the nature of the lepton resulting from the slepton decay.
In both processes a neutralino is produced in the predominant decay, which in turn decays
into the τ̃1 LSP, as given in Eq. (5.31) and Eq. (5.32). Finally, the τ̃1 decays either via the
dominant λ′

2jk coupling (4-body decay) or via the generated λ233 coupling (2-body decay).
For the 4-body decays, only the decays via virtual neutralinos have to be considered. Decay
modes via virtual charginos are suppressed due to the larger mass and their weaker couplings
to the predominantly right-handed τ̃1 LSP. The complete cascade decay chains are listed in
Table 5.2.

A classification of all possible final state signatures is given in Table 5.3, for µ̃L and for
ν̃µ production. For completeness, we include here the direct B3 decays via λ′

2jk, which usually
contribute at the percent level for couplings at the order of O(10−2). Neutrinos do not give
a signal in a detector and are denoted as missing transverse energy, E/T . Final state quarks
are treated as indistinguishable jets, j.

The 4-body decays via λ′
2jk and the 2-body decays via the inverse production process lead

to two jets in the final state. In contrast, the 2-body decays via λ233 are purely leptonic.
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µ̃−
L production

λ′
2jk τ+ τ− µ− µ± jj

τ+ τ− µ− E/T jj
[ τ+ τ− µ− µ− µ± µ+ jj ]
[ τ+ τ− µ− µ− µ+ E/T jj ]
[ τ+ τ− µ− µ± e+e− jj ]
[ τ+ τ− µ− e+ e− E/T jj ]

λ233 τ± µ− µ∓ E/T

τ+ τ− µ− E/T

[ τ± µ− µ− µ∓ µ+ E/T ]
[ τ+ τ− µ− µ−µ+ E/T ]
[ τ± µ− µ∓ e+ e− E/T ]
[ τ+ τ− µ− e+ e− E/T ]

inv. prod. jj

ν̃µ production

λ′
2jk τ+ τ− µ± E/T jj

τ+ τ− E/T jj
[ τ+ τ− µ− µ± µ+ E/T jj ]
[ τ+ τ− µ− µ+ E/T jj ]
[ τ+ τ− µ± e+ e− E/T jj ]
[ τ+ τ− e+ e− E/T jj ]

λ233 τ± µ∓ E/T

τ+ τ− E/T

[ τ± µ− µ∓ µ+ E/T ]
[ τ+ τ− µ− µ+ E/T ]
[ τ± µ∓ e+ e− E/T ]
[ τ+ τ− e+ e− E/T ]

inv. prod. jj

Table 5.3.: Summary of all possible final states for single slepton production via λ′
2jk. Decays

involving the dominant λ′
2jk coupling and involving the generated λ233 coupling are listed separately,

cf. Tab. 5.2. If kinematically allowed, the χ̃0
1 may also decay into a light-flavor lepton-slepton pair

which gives rise to an additional µ+µ− or e+e− pair in the final state. The corresponding signatures
are given in brackets. The decay via the inverse production process is also listed.

Many cascade decay chains provide missing transverse energy. Furthermore, since we are
considering τ̃1 LSP scenarios, there is always at least one τ among the final state particles.
The experimentally most promising signatures are most likely those involving a large number
of muons, for example like-sign dimuons and three or four final state muons. If the χ̃0

1 decays
only into τ̃1τ , there are two signatures including like-sign dimuons for µ̃L production. For
ν̃µ production, muons can be produced singly only. But if the decays, Eq. (5.32), are open,
both slepton production processes allow for dimuon and trimuon production. In case of
µ̃L production, even four final state muons are possible. Additionally, depending on how
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easily taus will be identified, an analysis could be based on like-sign µτ -pairs.

The final state signatures depend sensitively on which particle is the LSP. Compared to
slepton production in the χ̃0

1 LSP scenarios [111, 112, 212, 213, 214, 215, 216, 218, 219],
there are three main differences here. First, for a τ̃1 LSP we have always one or two taus in
the final state, which in χ̃0

1 LSP scenarios is only possible for smuon production if heavier
neutralinos are involved in the decay chain. These heavy neutralinos then decay into the
lightest neutralino and possibly taus. Second, the generation of a λ coupling can be neglected
in χ̃0

1 LSP scenarios. As argued above, λ only allows for additional 3-body decays which are
thus not phase-space enhanced compared to the 3-body decays via the dominant λ′ coupling.
As a consequence, purely leptonic final state signatures are absent in χ̃0

1 LSP scenarios.
Third, due to the modified spectra in χ̃0

1 LSP scenarios, also ν̃µ production can provide
like-sign dimuon events. In this case, ν̃µ can often decay into a µ and a chargino. Like-sign
dimuons arise either if the chargino directly decays via λ′ into a µ and two quarks, or if the
chargino first decays into the χ̃0

1 LSP and then the χ̃0
1 LSP decays via λ′ into a µ and two

quarks.

This discussion can easily be translated to scenarios with λ′
1jk 6= 0 by replacing the muons

by electrons (and vice versa). Since there is typically no difference in mass between sleptons
of the first and second generation, respectively, the kinematics are the same. Note however
that the bounds on the B3 couplings are stronger for λ′

1jk than for λ′
2jk for example due to

the non-observation of neutrinoless double beta decays [85, 89, 94, 148].

5.4.3. λ′
3jk|GUT 6= 0

Some additional remarks are in order for a dominant λ′
3jk B3 coupling. These couplings allow

for resonant single ν̃τ production and, owing to the L-R-mixing in the stau-sector, also both
resonant τ̃1 and τ̃2 production (j 6= 3).

For τ̃1 production, we refer to the discussion of LSP decay modes in Sect. 5.3.1. Here the
LSP couples directly to the B3 operator and the inverse production process dominates the
decay rate,

ūj dk → τ̃−
1 → ūj dk . (5.34)

This decay is kinematically accessible if j 6= 3. For j = 3 the stau decays via a virtual
top-quark, cf. Eq. (5.23), for mτ̃1 < mt. Note that j = 3 requires associated production, e.g.
g dk → τ̃ t, due to the absence of top quarks inside the proton, cf. Refs. [184, 204, 205] and
Sect. 6.

For τ̃2 and ν̃τ production, there are the following 2-body decay modes:

ūj dk → τ̃−
2 →







ūj dk,
τ− χ̃0

1

τ̃−
1 h0/Z0

, (5.35)

d̄j dk → ν̃τ →







d̄j dk,
ντ χ̃0

1

τ̃−
1 W

. (5.36)
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The inverse production process contributes and leads to a jj final state. The decay into a

lepton and a neutralino often dominates for small tanβ (tanβ
<∼ 10). The neutralino decays

further into the τ̃1 LSP which directly decays into two quarks:

χ̃0
1 → τ± τ̃∓

1 , τ̃−
1 → ūj dk , (5.37)

where we have included the two charge conjugated decays of the neutralino. The final states
of these decay modes are τ−τ±jj, and there is the possibility of like-sign tau events. If the
χ̃0

1 decay, Eq. (5.32), is kinematically allowed, we can have an additional pair of electrons or
muons in the final state.

The singly produced slepton can also decay into the τ̃1 LSP and a SM particle, Z0, h0, or
W , respectively (final states: h0/Z0/W jj). This decay mode is special for singly produced
sleptons of the third generation because they are L-R mixed eigenstates. It can be the
dominant decay mode of the τ̃2 and ν̃τ , depending on the parameters.

The branching ratios for all B3 conserving τ̃2 and ν̃τ 2-body decay modes are given in
Table C.3 in Appendix C, for the SUSY parameter sets A and B.

5.5. Single Smuon Production: An Explicit Numerical

Example

In this section, we present explicit calculations of promising signal rates for resonant slepton
production at the LHC in the B3 mSUGRA model with a τ̃1 LSP, focussing on parameter
sets A and B, cf. Eq. (A.18). First, we consider in Sect. 5.5.1 (exclusive) like-sign dimuon
events, i.e. events with exactly two muons of the same charge in the final state. An analysis
of SM and SUSY backgrounds for the like-sign dimuon signature is given in Sect. 5.5.2.
Second, in Sect. 5.5.3, we present event rates for single smuon production leading to three
or four muons in the final states, which are kinematically accessible within sets A and B.

5.5.1. Like-Sign Dimuon Events

Following Refs. [112, 212], we first concentrate on events with exclusive like-sign dimuons.
Here events with more than two muons are rejected. In this sense, in τ̃1 LSP scenarios, only
single smuon production leads to exclusive like-sign dimuon pairs, cf. Table 5.3. It has been
shown in Refs. [112, 212] that this selection criterion enhances the signal to background ratio
considerably. In Refs. [112, 212] it was shown that using a set of cuts, the SM background
rate at the LHC, ΓB|SM, can be reduced to

ΓB|SM = 4.9 ± 1.6 events/10 fb−1. (5.38)

At the same time the cut efficiency, i.e. the number of signal events which pass the cuts,
lies roughly between 20% and 30%. Note that Refs. [112, 212] assume a χ̃0

1 LSP. As we will
argue in Sect. 5.5.2, similar cuts are also applicable in τ̃1 LSP scenarios. For the numbers
presented in this section, however, no cuts are applied and full cross sections and event rates
are given.
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The total cross section for like-sign dimuon events is given by the resonant µ̃+
L or µ̃−

L

production cross section multiplied by the respective branching ratios leading to like-sign
dimuon final states. Both decays via the dominant λ′

2jk coupling and a generated λ233 cou-
pling contribute. For a negatively charged smuon they are:

ūj dk
λ′

−→ µ̃−
L → µ−χ̃0

1,

→֒ τ+ τ̃−
1

λ′

→֒ τ−µ− uj d̄k ,

λ→֒ ντ µ− ,

→֒ τ− τ̃+
1

λ′

→֒ τ+µ− uj d̄k ,

(5.39)

plus the analogous decay chains where the neutralino decays first into an ẽ±R-e∓ pair, cf.
Eq. (5.32). The couplings depicted on the arrows indicate the employed B3 coupling. The
decay chain for a positively charged smuon can be obtained by charge conjugation. However,
one should keep in mind that the production cross sections for µ̃+

L and µ̃−
L differ at pp colliders,

since charge conjugated quarks (and corresponding parton densities) are involved.

The cross sections for the exclusive like-sign dimuon final states are presented in Table 5.4
for Set A and in Table 5.5 for Set B. The smuon production cross sections, σprod.(µ̃

∓
L) (see

also Table C.1 and Table C.2), include NLO QCD and SUSY-QCD corrections [114]. For
the numerical analysis, we only consider couplings λ′

2jk that involve partons of the first
generation leading to large production cross sections at the LHC.

As already discussed, the τ̃1 LSP can either decay via λ′ (4-body decay) or via λ (2-body
decay). A list of the respective branching ratios is given in Appendix C, Tables C.4 and C.5,
for sets A and B and for several λ′

2jk couplings. Here we show the resulting cross section
times branching ratio, σprod. × BRλ′ and σprod. × BRλ, for like-sign dimuon events involving
τ̃1 decays via λ′ and λ, respectively, as described in Eq. (5.39).

The total number of exclusive like-sign dimuon events is given by the integrated luminosity
multiplied by the total cross section. In Set A with up-type (down-type) quark mixing
(Appendix A.1), we obtain per 10 fb−1

N(µ−µ− + µ+µ+)/10 fb−1 =
[

σprod.(µ̃
−
L) + σprod.(µ̃

+
L)
]

×
[

BRλ′ + BRλ

]

× 10

=



















325 (330)

110 (115)

195 (210)

110 (115)

/10 fb−1 for



















λ′
211|GUT

λ′
221|GUT

λ′
212|GUT

λ′
213|GUT

= 0.002.
(5.40)

Note that for up-type mixing, some larger couplings may be considered. From the neutrino
mass bounds, also λ′

211, 221, 212, 213|GUT = 0.01 (and even larger) are allowed. The cross sections
are proportional to |λ′|2 and thus a five times larger coupling implies cross sections and event
numbers multiplied by a factor of 25 compared to those of Table 5.4.
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up-type mixing down-type mixing
Set A

σprod.(µ̃
∓
L ) [fb] σprod. × BRλ′ σprod. × BRλ σprod. × BRλ′ σprod. × BRλ

µ− µ− 61.6 11.1 0.71 9.81 2.09
λ′

211|GUT = 2 × 10−3

µ+ µ+ 108 19.4 1.25 17.2 3.66

µ− µ− 42.0 7.84 − 4.51 3.88
λ′

221|GUT = 2 × 10−3

µ+ µ+ 16.2 3.03 − 1.74 1.50

µ− µ− 18.6 3.46 − 1.99 1.71
λ′

212|GUT = 2 × 10−3

µ+ µ+ 86.0 16.1 − 9.23 7.94

µ− µ− 8.80 1.67 − 1.32 0.40
λ′

213|GUT = 2 × 10−3

µ+ µ+ 49.8 9.43 − 7.43 2.24

Table 5.4.: Cross sections for exclusive like-sign dimuon (µ−µ− or µ+µ+) final states at the LHC
within Set A. In the left column, we present the single-smuon production cross sections, σprod.(µ̃

∓
L ),

see also Tables C.1 and C.2. In the right column, we have folded in the relevant decay branching
ratios, in order to obtain like-sign dimuons. All cross sections are given in fb. Where they exist,
we have assumed always a cascade of 2-body decays. We consider in turn quark mixing in the up-
and down-sector (Appendix A.1), when determining the dominant τ̃1 decay mode. The τ̃1 LSP can
either decay via λ′ (4-body decay) or via λ (2-body decay), cf. Table 5.2, which leads to different
like-sign dimuon cross sections, σprod. × BRλ′ and σprod. × BRλ, respectively. The λ′

2jk couplings
are in accordance with neutrino mass bounds [58]. In case of up-type mixing, larger values of λ′

2jk

for the four considered couplings are allowed by the neutrino mass bounds. The cross sections scale
with |λ′|2 and the corresponding rescaling can easily be performed.

up-type mixing down-type mixing
Set B

σprod.(µ̃
∓
L ) [fb] σprod. × BRλ′ σprod. × BRλ σprod. × BRλ′ σprod. × BRλ

µ− µ− 476 1.04 101 0.21 102
λ′

211|GUT = 1 × 10−2

µ+ µ+ 885 1.93 188 0.39 189

µ− µ− 309 62.8 − − 66.2
λ′

221|GUT = 1 × 10−2

µ+ µ+ 105 21.4 − − 22.5

µ− µ− 123 25.1 − − 26.3
λ′

212|GUT = 1 × 10−2

µ+ µ+ 681 139 − − 146

µ− µ− 54.6 11.2 − 0.02 11.7
λ′

213|GUT = 1 × 10−2

µ+ µ+ 370 75.6 − 0.16 79.4

Table 5.5.: Same as Table 5.4 but for single slepton production within Set B. The neutrino mass
bounds are less restrictive in the case of Set B and λ′

2jk|GUT = 0.01 are considered for both up-
and down-type quark mixing. All cross sections are given in fb.
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For Set B, λ′
2jk|GUT = 0.01 is allowed for both up- and down-type mixing. The numbers

of like-sign dimuon events are,

N(µ−µ− + µ+µ+)/10 fb−1 =



















2920 (2920)

840 (890)

1640 (1720)

870 (910)

/10 fb−1 for



















λ′
211|GUT

λ′
221|GUT

λ′
212|GUT

λ′
213|GUT

= 0.01, (5.41)

for up-type (down-type) quark mixing, respectively.

As can be seen in Eq. (5.40) and Eq. (5.41), for each non-zero λ′ coupling the total event
numbers for up- and down-mixing are of the same order. But as Table 5.4 and Table 5.5
show, the parts contributing to the event rate can be quite different. In case of up-type
mixing and j 6= k, the 4-body decays via λ′ dominate and the contributions of the 2-body
decay are negligible [since the size of the necessary λ coupling is proportional to

(

YD

)

jk
,

Eq. (2.5)]. In contrast, for down-type mixing all four considered couplings can generate a
relatively large λ233, cf. Fig. 5.2, and the 2-body decay modes contribute considerably. In
Set B, where tanβ is large and where thus the fraction of 2-body decays is especially high
(see discussion of Fig. 5.6), reliable event numbers are only obtained if the generation of λ233

is included in the theoretical framework. Moreover, a measurement of the ratio of 2-body to
4-body τ̃1 decays can reveal information about where the quark mixing takes place.

For j = k, the generation of a λ coupling is also possible in case of up-type mixing. In
Set A, the generated λ233 is not large enough to allow for large 2-body decay rates. However
in Set B, due to the large tan β value, the 2-body decays dominate over the 4-body decays.
Thus, the different τ̃1 decay modes contain also information about tanβ.

We present in Table 5.4 and Table 5.5 also the total hadronic cross sections for single
smuon production, σprod.(µ̃

∓
L). Within one parameter set, the cross sections vary strongly for

different λ′
2jk. This is of course related to corresponding required parton density functions.

The largest cross section is obtained for λ′
211 6= 0, i.e. for the processes ū d → µ̃−

L and
u d̄ → µ̃+

L . Smaller cross sections are obtained for λ′
212 6= 0 (involving an up quark and a

strange quark) and the smallest cross section for λ′
221 6= 0 (charm quark and down quark)

and λ′
213 6= 0 (up quark together with bottom quark).

Since the LHC is a pp collider, there is an asymmetry between the µ̃+
L and µ̃−

L production
cross sections. If experimentally a distinction between µ+µ+ and µ−µ− event rates is found,
the ratio can be used to constrain the indices of the non-zero λ′

2jk coupling. For example, a
non-vanishing coupling λ′

211 leads to a ratio of N(µ+µ+) : N(µ−µ−) ∼ 2 : 1 in sets A and B,
whereas for non-vanishing λ′

221 the ratio is 1 : 2.5 in Set A and 1 : 3 in Set B. The highest
event rates are obtained for processes that involve the valence quarks u and d. The charge
conjugated processes, involving ū or d̄, are suppressed in comparison. Thus, a larger fraction
of µ+µ+ events goes along with j = 1 (where the production process is u d̄k → µ̃+

L) and a
larger fraction of µ−µ− events is related to k = 1 and j 6= 1 (production process ūj d → µ̃−

L).
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5.5.2. Discussion of Background and Cuts for Like-Sign Dimuon Final

States

In this section, we discuss the background for like-sign dimuon events from the SM and from
SUSY particle pair production via gauge interactions. We follow Refs. [112, 212] closely.
There, single smuon production via λ′

211 was investigated assuming a χ̃0
1 LSP. A detailed

signal over background analysis was performed based on like-sign dimuon events. We argue
that a similar or even the same set of cuts might be used to suppress the background in our
case and we compare background and signal rates to determine the discovery potential of
our analysis.

The main SM background sources are tt̄ production, bb̄ production, single top production,
and gauge boson pair production, i.e. WW , WZ and ZZ production. In Refs. [112, 212],
the dominant signature from single smuon production including like-sign dimuon events is

µ̃−
L → µ−χ̃0

1 → µ−(µ−ud̄), (5.42)

The two muons of the signal, Eq. (5.42), are isolated because they stem from different decays
of SUSY particles. In addition, the muons carry large momenta since they originate from
the decay of (heavy) SUSY particles. The following cuts were proposed to improve the signal
over SM background ratio at the LHC:

• The muon rapidity |η| < 2.0, thus requiring all the leptons in the central region of the
detector,

• a cut on the transverse momentum on each muon: pT |µ ≥ 40 GeV,

• an isolation cut on each of the muons,

• a cut on the transverse mass of each of the muons, 60 GeV < MT < 85 GeV,

• a veto on the presence of a muon with the opposite charge as the like-sign dimuons,

• a cut on the missing transverse energy, E/T ≤ 20 GeV .

These cuts reduce the SM background to 4.9 ± 1.6 events per 10 fb−1 at the LHC , cf.
Eq. (5.38). Among the above cuts, the isolation and pT cut lead to the strongest suppression
of the SM background.

We now investigate the case of a τ̃1 LSP. If the 4-body decays, Eq. (5.20), of the τ̃1 LSP
dominate, the leading signature of resonant single smuon production including like-sign
dimuon events can be written as

µ̃−
L → µ−χ̃0

1 → µ−τ∓τ̃±
1 → µ−τ∓(τ±µ−ud̄), (5.43)

As above, the muons originate from the decay of heavy particles (τ̃1 and µ̃L), are in general
well isolated, and carry large momenta. Thus, for both signals, Eq (5.42) and Eq. (5.43),
the same cuts should allow to discriminate between the signal and the SM background.
Furthermore, the additional pair of taus in Eq. (5.43) allows to require one or two isolated
taus. This might additionally improve the signal to background ratio.

If the τ̃1 LSP predominantly decays via 2-body decay modes, Eq. (5.21), the situation is
a bit different. The like-sign dimuon signature is now

µ̃−
L → µ−χ̃0

1 → µ−τ+τ̃−
1 → µ−τ+(µ−ντ ), (5.44)
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Set A σ(− − +) σ(+ + −) σ(−− ++) σ(+ + +−) σ(− −−+)
∑

σ(−− . . . )
∑

σ(+ + . . . )

λ′
211 = 2 × 10−3 9.38 (9.39) 12.9 (13.0) 5.32 (5.26) 3.39 (3.35) 1.93 (1.91) 16.6 (16.6) 21.7 (21.6)

λ′
221 = 2 × 10−3 5.77 (5.77) 3.84 (3.74) 1.89 (1.77) 0.53 (0.49) 1.36 (1.27) 9.02 (8.81) 6.26 (6.00)

λ′
212 = 2 × 10−3 4.02 (3.93) 9.05 (9.24) 3.39 (3.17) 2.79 (2.61) 0.60 (0.56) 8.01 (7.66) 15.2 (15.0)

λ′
213 = 2 × 10−3 2.04 (2.02) 5.14 (5.19) 1.85 (1.80) 1.57 (1.53) 0.28 (0.27) 4.17 (4.09) 8.56 (8.52)

Table 5.6.: Cross sections for signals with three or four final state muons within parameter Set A,
assuming down-type (up-type) quark mixing. The couplings λ′

2jk are given at MGUT. We show the
cross sections as defined in Eqs. (5.45)-(5.48) and the sums for two negatively or positively charged
muons,

∑

σ(−− . . . ) or
∑

σ(+ + . . . ), respectively. All cross sections are given in fb.

We again have two isolated muons with large momenta and the same isolation and pT |µ
cuts as before should be useful to suppress the SM background. But the neutrino of the
τ̃1 decay leads to high missing transverse energy E/T in the signal and an upper bound on
E/T is not appropriate anymore. Alternatively we propose a cut that requires a minimum
missing energy, e.g. E/T ≥ 60 GeV. This would also reduce the SM background where the
main source of E/T are low-energetic neutrinos from W decays. Furthermore, we can again
require an additional tau in the final state. Finally, one can exploit the fact that the 2-body
decays lead to a pure leptonic final state and a jet veto can be applied.

In Refs. [112, 212], the SUSY background on like-sign dimuon events is suppressed by
vetoing all events with more than two jets of pT |jet > 50 GeV. This cut will also work if the
4-body decay mode of the τ̃1 LSP, Eq. (5.20), dominates. The 2-body decay modes lead to
purely leptonic final states and even no high-pT jet may be required.

We conclude that for τ̃1 LSP scenarios, the background for like-sign dimuon events can be
suppressed similarly as it has been proposed for χ̃0

1 LSP scenarios in Refs. [112, 212].

We thus compare our signal, as given in Eq. (5.40) and Eq. (5.41) for sets A and B respec-
tively, to the background, assuming that cuts as discussed above reduce the SM background
to less than 5 events per 10 fb−1, cf. Eq. (5.38). For the signal efficiency, we assume 20%,
i.e. 20% of signal events pass the cuts. We neglect systematic errors, at this stage of the
analysis.

For Set A a more than 5σ excess over the SM background can be obtained for an integrated
luminosity of 10 fb−1 for all couplings given in Eq. (5.40). For Set B, a cut efficiency of 20%
for the signal corresponds to an excess between 100 σ and 300 σ for the number of like-sign
muon events over the SM background! Therefore, within Set B, couplings can be tested
at the LHC down to λ′

2jk|GUT∼ O(10−3). But a detailed Monte-Carlo based signal over
background analysis remains to be done.

5.5.3. Final States with 3 and 4 Muons

To round off our studies, we consider in this section final states with more than two muons.
For example, for parameter sets A and B, the χ̃0

1 cannot only decay into a τ̃1-τ pair but
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Set B σ(− − +) σ(+ + −) σ(−− ++) σ(+ + +−) σ(− −−+)
∑

σ(−− . . . )
∑

σ(+ + . . . )

λ′
211 = 1 × 10−2 20.8 (20.8) 29.1 (29.1) 13.4 (13.4) 8.73 (8.73) 4.69 (4.69) 38.9 (38.9) 51.3 (51.3)

λ′
221 = 1 × 10−2 11.9 (12.0) 7.77 (7.59) 4.08 (3.88) 1.04 (0.98) 3.05 (2.89) 19.1 (18.7) 12.9 (12.4)

λ′
212 = 1 × 10−2 8.14 (7.98) 19.5 (19.9) 7.93 (7.53) 6.72 (6.39) 1.21 (1.15) 17.3 (16.7) 34.2 (33.8)

λ′
213 = 1 × 10−2 3.94 (3.85) 10.4 (10.6) 4.20 (4.00) 3.66 (3.48) 0.54 (0.51) 8.68 (8.36) 18.3 (18.1)

Table 5.7.: Same as Table 5.6 but for single slepton production within Set B. All cross sections
are given in fb.

also into a µ̃R-µ or ẽR-e pair. These are kinematically accessible and have non-negligible
branching ratios (Set A: 7.0%, Set B: 2.2%; see Table C.3). As we have shown in Table 5.3,
these decays lead to three or even four muons of mixed signs in the final state. Each of the
muons stems from the decay of a different SUSY particle. Especially the four-muon final
state cannot be found at a high rate in χ̃0

1 LSP scenarios and its observation could be a hint
for a τ̃1 LSP. Therefore, we analyze the three- and four-muon final states in this section. All
necessary branching ratios and production cross sections are given in Appendix C.

The four–muon events may be classified into µ−µ−µ−µ+, µ−µ−µ+µ+, and µ−µ+µ+µ+

signatures and we introduce the notations σ(− − −+), σ(− − ++), and σ(+ + +−), for
the respective cross sections. The four-muon final states require a long decay chain and
many different decays contribute at various stages. For smuon production, summing up all
contributions, the cross sections can be written in the following compact form

σµ̃(−−−+) = σprod.(µ̃
−
L) × BR(µ̃−

L → χ̃0
1 µ−) × BR(χ̃0

1 → µ̃+
R µ−) × Pτ̃1(1µ) ,

σµ̃(+ + +−) = σµ̃(−−−+) × σprod.(µ̃
+
L)/σprod.(µ̃

−
L) ,

σµ̃(−− ++) = σµ̃(−−−+) + σµ̃(+ + +−),

(5.45)

where Pτ̃1(1µ) = BR(τ̃−
1 → µ− . . . ) + BR(τ̃+

1 → µ− . . . ) denotes the probability of a neg-
atively charged final state muon in a τ̃1 decay. The difference between σµ̃(− − −+) and
σµ̃(+ + +−) stems from the different partons and parton densities involved in the produc-
tion cross sections.

Smuon production can also lead to exactly three final state charged muons, µ−µ−µ+ or
µ+µ+µ−. The corresponding cross sections now involve the probability Pτ̃1(0µ) for a τ̃1 decay
without a final state muon,

σµ̃(−− +) = σprod.(µ̃
−
L) × BR(µ̃−

L → χ̃0
1 µ−) × BR(χ̃0

1 → µ̃+
R µ−) × 2Pτ̃1(0µ) ,

σµ̃(+ + −) = σµ̃(−− +) × σprod.(µ̃
+
L)/σprod.(µ̃

−
L) .

(5.46)

There are 16 different decay chains of the µ̃−
L leading to a µ−µ−µ+ final state. The factor of

2 in Eq. (5.46) is a consequence of summing over all these decay chains.

The same final state signatures (exactly three muons) can be obtained via ν̃µ production.
The decay chain is similar to that of a produced smuon. The missing muon from the slepton
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decay is here replaced by demanding a muon in the final τ̃1 decay,

σν̃(−− +) =
[

σprod.(ν̃µ) + σprod.(ν̃
∗
µ)
]

× BR(ν̃µ → χ̃0
1 νµ) × BR(χ̃0

1 → µ̃+
R µ−) × Pτ̃1(1µ) ,

σν̃(+ + −) = σν̃(−− +) .

(5.47)

The total cross sections for (exactly) three final state muons are then given by

σ(∓∓±) =σµ̃(∓∓±) + σν̃(∓∓±). (5.48)

Table 5.6 and Table 5.7 give an overview over the numerical results. The same λ′ couplings
as in the previous Table 5.4 and Table 5.5 are considered. The generation of λ233 has been
taken into account for the τ̃1 decays and the cross sections give total numbers, including
both 4- and 2-body τ̃1 decays.

We see that the sum of three– and four-muon events is in the same order of magnitude as
the results for purely like-sign dimuons. For Set A, where BR(χ̃0

1 → µ̃R µ) = 7%, the event
numbers are even larger. In Set B, with BR(χ̃0

1 → µ̃R µ) = 2%, the total contributions are
smaller by a factor of about three. Depending on the experimental goals, these channels thus
give important contributions and should be included in an analysis. On the other hand, these
events also suggest to use three or four final state muons as a signal for slepton production
since the background is expected to be very low.

5.6. Conclusion of Section 5

B3 interactions allow for LSP decays and thus reopen large regions in the SUSY parameter
space, where the LSP is charged. We have investigated for the first time in detail the
phenomenology of B3 mSUGRA models with a τ̃1 LSP. We have hereby assumed only one
non-vanishing B3 coupling λ′

ijk at the GUT scale.

An essential feature of the B3 mSUGRA signatures is the decay of the τ̃1 LSP. Given only
one B3 coupling at MGUT, we would expect either a 4-body or 2-body decay of the τ̃1 LSP
depending on whether it couples directly to the dominant B3 operator or not. However, in
B3 mSUGRA models the RGEs are highly coupled and further couplings are generated at
the weak scale. These are of course suppressed relative to the dominant coupling but may
lead to 2-body decays, which have larger phase space and do not involve heavy propagators.

We have here numerically investigated the generation of λi33 couplings via dominant
λ′

ijk couplings. The generated couplings are typically smaller by at least two orders of
magnitude; see Fig. 5.2 and Fig. 5.3. We have then performed a first detailed analysis of
the parameter dependence of the τ̃1 LSP decay modes. It turned out that in large regions
of parameter space the 2-body decay dominates over the 4-body decay, see Figs. 5.6-5.10.

In the second part of Sect. 5, we applied our results to resonant single slepton production
at the LHC, which is possible in B3 scenarios with a non-zero λ′

ijk coupling. We first studied
the general decay signatures. From the experimental point of view, the final states with two
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like-sign or even more charged leptons are of special interest. Each event is also accompanied
by at least one tau.

We further investigated numerically single smuon production for λ′
2jk 6= 0 within two

representative τ̃1 LSP scenarios, i.e. for two sets of B3 mSUGRA parameters. We include
the 2-body τ̃1 LSP decays via the generated λ233 couplings in our analysis. The cross sections
for like-sign dimuon final states are given in Table 5.4 and Table 5.5 and those for final states
with three or four muons in Table 5.6 and Table 5.7. For example, we found resulting cross
sections for exclusive like-sign dimuon events of O(100 fb) for λ′

2jk|GUT = 0.01. Additional
three- and four-muon events can occur with the same rate. This is a novel supersymmetry
discovery mechanism for the LHC and should be investigated in more detail, also by the
LHC experimental groups.
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6. Single Slepton Production in

Association with a Single Top Quark

at the Tevatron and LHC

We have seen in Sect. 5 that a non-vanishing LiQjD̄k operator, Eq. (2.6), allows for resonant
single charged slepton and sneutrino production, Eq. (5.3) and Eq. (5.4), at hadron colliders.
As pointed out in Sect. 5, the case j = 3 in Eq. (5.3) is special, as there are no top quarks
in the incoming proton. Instead, one must consider the production of a single slepton in
association with a SM particle.

In this section, we calculate the total cross section for single charged slepton production
in association with a top quark at hadron colliders via a non-vanishing LiQ3D̄k operator,
Eq. (2.6), in the baryon-triality, B3, supersymmetric standard model, cf. Sect. 2.2 and
Sect. 2.3. We compute event rates for the Tevatron and LHC. We study the signatures
for different supersymmetric scenarios including neutralino and stau LSPs. We perform a
detailed analysis with basic cuts for the B3 operator λ′

231 using Monte Carlo simulations to
show that the signal can be distinguished from the background at the LHC. In particular
we employ the resulting lepton charge asymmetry.

6.1. Introduction and Outline

Several mechanisms for associated single supersymmetry production, e.g. djd̄k → χ̃+
1 ℓ−i ,

have been studied in the literature, see for example Refs. [113, 204, 215, 231, 232]. In the
following, we investigate in detail the case of the operator LiQ3D̄k. Here, single charged
slepton production is only possible in association with a top quark. Before studying the
phenomenological details, we first recall the strongest experimental bounds on the couplings
λ′

i3k at the 2σ level. They are shown in Table 6.1 [85, 89, 94, 148, 163]. We neglect bounds,
which assume a specific (SM) quark mixing between the three generations [164] (see also
Appendix A.1) or bounds using the renormalization group running of λ′

i3k [58, 85, 100].

At leading order there are two production mechanisms for slepton production in association
with a top quark. The first mechanism includes the Compton-like processes

g + dk → ℓ̃−i + t , (6.1a)

g + d̄k → ℓ̃+
i + t̄ . (6.1b)

The relevant leading-order diagrams are given in Fig. 6.1. Here, g denotes an incoming gluon
in the proton and t a final-state top quark.
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λ′
131 0.019 × (mt̃L/100 GeV) λ′

132 0.28 × (mt̃L/100 GeV)
λ′

231 0.18 × (mb̃L
/100 GeV) λ′

232 0.45 (ms̃R
= 100 GeV)

λ′
331 0.45 (mq̃ = 100 GeV) λ′

332 0.45 (mq̃ = 100 GeV)
λ′

i33 O(10−4)

Table 6.1.: Upper 2σ bounds on λ′
i3k. The strong bounds on λ′

i33 stem from neutrino masses mν ,
assuming mν < 1 eV and left right mixing in the sbottom sector. The limits depend on the squark
masses; mq̃L(R)

is the mass of the left- (right-) handed squark q̃L(R).

g

dk

t

ℓ̃−i

dk

g

dk

t

ℓ̃−i

t

Figure 6.1.: Feynman diagrams contributing to the partonic process g + dk → t + ℓ̃−i .

The second slepton production mechanism is tt pair production followed by the t or t̄
decaying into ℓ̃+

i or ℓ̃−i , respectively. The main production mechanisms for tt̄ production, at
O(α2

s), are
q + q̄ → t + t̄
g + g → t + t̄

}

, t → ℓ̃+
i + dk (6.2)

where q (q̄) is a (anti-)quark. This is only kinematically allowed if

mt > mℓ̃i
+ mdk

. (6.3)

Since, as we shall see, the branching fraction for the B3 top quark decay is small, we only
consider one B3 decay, for either the top or the anti-top quark.

In Ref. [204], single slepton production was considered for the specific case of λ′
333 6= 0.

This process is however disfavored due to the strict bound on the relevant coupling from
neutrino masses, cf. Table 6.11. Thus the work was extended to the couplings λ′

331 and
λ′

332 [205]. We go beyond this work to include a signal over background analysis. We also
present the analytic formula for the cross section, Eq. (6.6), for the first time, and analyze
the resulting signatures. We give a detailed phenomenological analysis for the special case
λ′

231 which can be generalized to λ′
131.

In Ref. [184], top quark pair production and subsequent top decay via λ′
i3k was considered.

Off-shell top quark effects were also taken into account. A signal over background analysis

1Even if one assumes that the one-loop contributions to the neutrino mass are suppressed, two loop con-
tributions lead to a bound on λ′

333 of 10−2 [233], which still leads to a suppressed cross section.
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was performed for two scenarios. The first scenario assumed maximal stop-scharm mixing.
It was pointed out that associated slepton production with slepton masses 150 GeV and 200
GeV can be measured, depending on the magnitude of λ′

i3k. The second scenario assumed
no flavor violation in the squark sector. Ref. [184] claimed that in this regime sleptons with
mass 200 GeV can not be measured. We go beyond the work of [184]. We show that it
is possible to detect associated slepton production even for slepton masses larger than 300
GeV, if λ′

231 or λ′
131 is of O(0.1). We will achieve this with the help of the Compton-like

process, Eq. (6.1).

The outline of Sect. 6 is as follows. In Sect. 6.2 we calculate the cross section for the
production of a charged slepton in association with a top quark, at leading order. In Sect. 6.3
we systematically present the possible resulting signatures at the LHC. In Sect. 6.4 we discuss
in detail a case study for the operator λ′

231L2Q3D̄1. We study the dominant tt̄ and W±

backgrounds. Using the HERWIG Monte Carlo program [196, 197, 198, 199, 200], we devise
a set of cuts in order to distinguish the two. We do not include a simulation of the detector.
Our conclusions are presented in Sect. 6.5.

6.2. Single Slepton Production via λ′
i3k

6.2.1. Partonic Cross Sections

The spin and color averaged matrix element squared for the Compton-like process, Eq. (6.1),
is given at leading order by

|M |2 =
πλ′2

i3kαsCF |Lℓi
1α|2

4

{

m2
t − t̂

ŝ
+

2[m2
t ŝ + (t̂ − m2

ℓ̃i
)(m2

ℓ̃i
− m2

t − ŝ)]

ŝ(t̂ − m2
t )

+
(m2

ℓ̃i
− m2

t )(m
2
ℓ̃i
− ŝ − t̂) − (3m2

t − m2
ℓ̃i

+ ŝ)(t̂ − m2
ℓ̃i
)

(t̂ − m2
t )

2

}

, (6.4)

where αs is the QCD coupling constant, CF = 4/3 is the quadratic Casimir of SU(3)C , mℓ̃i

is the mass of the slepton and Lℓi
1α is the relevant matrix element of the left-right slepton

mixing matrix. The explicit form as a function of the mixing angle is given, for example, in
Refs. [80, 199]. In accordance with the parton model, we have neglected the mass of dk. We
have made use of the partonic Mandelstam variables

ŝ = (dk + g)2 = (t + ℓ̃i)
2 , (6.5a)

t̂ = (dk − ℓ̃i)
2 = (g − t)2 , (6.5b)
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86 Single Slepton Production in Association with a Single Top Quark

where we denote the particle four momenta by the particle letter. Integrating over phase
space, we obtain the total partonic cross section:

σ̂ =
λ′2

i3kαsCF |Lℓi
1α|2

64ŝ2

{

1

2ŝ

[

2m2
t (t̂+ − t̂−) − (t̂2+ − t̂2−)

]

+ (ŝ + 2m2
t ) ln

(

ρ−

ρ+

)

+
2m2

t (m
2
ℓ̃i
− m2

t )(t̂+ − t̂−)

ρ+ρ−

+
2(m4

ℓ̃i
+ m4

t − 2m2
tm

2
ℓ̃i
− m2

ℓ̃i
ŝ)

ŝ
ln

(

ρ−

ρ+

)

+
2(t̂+ − t̂−)(m2

ℓ̃i
− m2

t − ŝ)

ŝ

}

, (6.6)

where

ρ± = m2
t − t̂±, (6.7)

t̂± = m2
ℓ̃i
− 1

2
[ŝ + m2

ℓ̃i
− m2

t ∓ λ
1
2 (ŝ, m2

ℓ̃i
, m2

t )], (6.8)

with the phase-space function given by λ(x, y, z) = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The tree-level partonic matrix element squared for top quark pair production is given
for example in Ref. [234]. We shall only consider on-shell top quark pair production. The
slepton then arises through the decay of a real top quark. In order to obtain the signal rate,
we thus also require the partial decay width of the top quark, via the LiQ3D̄k operator. It
is given by

Γt→dk ℓ̃+i
=

λ′2
i3k|Lℓi

1α|2
32πmt

(

1 +
m2

dk

m2
t

−
m2

ℓ̃i

m2
t

)

λ1/2(m2
t , m

2
dk

, m2
ℓ̃i
) . (6.9)

See also Refs. [164, 183, 184, 204, 235]. We obtain a branching ratio of 8.2 × 10−4 for
the B3 top decay, Eq. (6.9), for λ′

i3k = 0.1, mt = 175 GeV, top width Γt = 1.5 GeV and
mℓ̃i

= 150 GeV. We neglect the mass of dk and set Lℓi
1α = 1.

6.2.2. Total Hadronic Cross Section

In Fig. 6.2 (Fig. 6.3), we show the hadron level cross section at the Tevatron (LHC) for
single slepton production in association with a top quark, as a function of the slepton mass
including both production mechanisms. We set λ′

i3k = 0.1 and assume it is the only non-
vanishing B3 coupling. We vary the index k and the charge of the final state slepton, which
correspond to different parton density functions (PDFs). Here we use the CTEQ6L1 PDFs
[236], corresponding to ΛLO

5 = 165 MeV at the one-loop level of the strong coupling αs(µR)
using αs(MZ) = 0.130. We use the same running αs to calculate the cross section Eq. (6.6).
The renormalization, µR, and factorization, µF , scales are taken to be equal, µR = µF = m,
where m ≡ 2mt [≡ mℓ̃i

+ mt] in the case of slepton production via a tt̄ pair, Eq. (6.2) [via
the Compton-like process, Eq. (6.1)]. Furthermore, we set the L-R slepton mixing matrix
element Lℓi

1α equal to one. Results for other values of λ′
i3k and mixing matrix elements

Lℓi
1α are easily obtained by rescaling according to Eq. (6.6) and Eq. (6.9). The top mass is
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Figure 6.2.: Single slepton production in association with a top at the Tevatron. The cross
sections for ℓ̃+

i t̄ production are equal to the cross sections for ℓ̃−i t production.

taken to be 175 GeV and the total (SM) top quark decay width to be 1.5 GeV. We take
md3 = mb = 4.5 GeV, if we have a b quark in the final state and neglect the masses of the d
and s quarks.

In both figures, we see a kink in the cross section when mℓ̃i
= mt − mdk

. For smaller
slepton masses the top quark pair production mechanism dominates; for larger masses the
Compton-like processes dominate, since the slepton can no longer be produced on-shell in
top decay.

For comparative discussions later, Fig. 6.4 (Fig. 6.5) shows the NLO hadronic cross section
for resonant sneutrino production, cf. Eq. (5.3), at the Tevatron (LHC) via λ′

i3k = 0.1,
including NLO QCD corrections [114, 220, 221, 222]2. We employ the MS renormalization

scheme and the (NLO) CTEQ6M PDFs [236], corresponding to ΛMS
5 = 226 MeV at the

two-loop level of αs(µR) with αs(MZ) = 0.118. The renormalization and factorization scales
are taken to be the sneutrino mass, µR = µF = mν̃i

.

In Fig. 6.2, we see that at the Tevatron, even for small slepton masses, mℓ̃i
= 100 GeV, we

expect only 25 (25) charged slepton events with negative (positive) charge, i.e. ℓ̃−i (ℓ̃+
i ), for

2For simplicity, we do not include the supersymmetric QCD corrections given in Ref. [114], since we must
then include a discussion of the dependence on the soft supersymmetry breaking parameters.
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Figure 6.3.: Same as Fig. 6.2, but for the LHC. The cross section for ℓ̃+
i t̄ production via λ′

i32

(λ′
i33) is equal to the cross section for ℓ̃−i t production via λ′

i32 (λ′
i33), as it always involves incoming

sea quarks.

an integrated luminosity of 1 fb−1 and the (relatively large) coupling λ′
i31 = 0.1. The cross

section is dominated by the tt̄ pair production, Eq. (6.2). Only 10% of the above sleptons
at the Tevatron are produced by the Compton-like process, Eq. (6.1). At the Tevatron, the
cross section is symmetric in the slepton charge due to the charge symmetry of the incoming
state.

As we can see in Fig. 6.3, we have a significantly larger hadronic cross section at the
LHC for a given slepton mass. In particular, for mℓ̃i

= 100 GeV and λ′
i31 = 0.1 the LHC

will produce more than 31 000 (26 000) sleptons ℓ̃−i (ℓ̃+
i ) for an integrated luminosity of

10 fb−1. Of these sleptons, 27% (11%) are produced via the Compton-like process. For the
same coupling and for mν̃i

= 100 GeV, we will produce approximately 14 000 sneutrinos at
the Tevatron (Fig. 6.4) for 1 fb−1 and 3 800 000 at the LHC (Fig. 6.5) for 10 fb−1, via the
partonic process Eq. (5.3). Thus, depending on the decays, we might expect this to be the
discovery mode, for equal supersymmetric masses. Here we focus on the potential of the
charged slepton production cross section.

For heavier charged sleptons, mℓ̃i
= 800 GeV, we expect no events at the Tevatron and

more than 110 (25) ℓ̃−i (ℓ̃+
i ) events at the LHC with 10 fb−1. Above the threshold of mℓ̃i

=
mt−mdk

, practically all slepton events are produced via the Compton-like process, since the

88



6.2 Single Slepton Production via λ′
i3k 89

100 200 300 400 500 60010
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

b dbar
bsbar
b bbar

√
S = 1.96 TeV

PP̄ → ν̃i via λ′
i31

PP̄ → ν̃i via λ′
i32

PP̄ → ν̃i via λ′
i33

σ
[f

b]

mν̃i [GeV]

Figure 6.4.: Single sneutrino production cross section at the Tevatron. The cross sections for ν̃∗
i

production are equal to the cross sections for ν̃i production.

other process only proceeds via off-shell top quarks. The cross section is so small because the
parton luminosity is too small at the required high values of the proton/anti-proton fractional

momenta, x
>∼ 0.1. This situation changes at the LHC, where we probe significantly smaller

values, x < 0.1, for the same slepton mass. Furthermore, the Tevatron will produce no
sneutrinos, for λ′

i31 = 0.1, and mν̃i
= 800 GeV. For the same set of B3 parameters, the LHC

will produce about 3 200 sneutrinos for 10 fb−1.

At the LHC, there is an asymmetry between the hadronic cross sections for ℓ̃−i and ℓ̃+
i

production via the LiQ3D̄1 operator (k = 1!). This is perhaps not surprising, as the initial
state is asymmetric under charge reversal. In the case of the Compton-like process, Eq. (6.1),
the asymmetry is due to the negatively charged slepton being produced by an incoming
valence d-quark, while the positively charged slepton is produced by a d̄ sea quark. The
latter has a lower luminosity in the proton. In Sect. 6.4 we will use this asymmetry to
separate the B3 process from the SM background.

In order to estimate the influence of higher order corrections on the production cross
section, we vary the renormalization and factorization scales independently between m/2
and 2m. At the Tevatron, Fig. 6.6 (left figure), the hadronic cross section for ℓ̃−i t production
via λ′

i31 changes by up to 40%. At the LHC, Fig. 6.6 (right figure), the scale uncertainties
are reduced to approximately 25%. In the domain where mℓ̃i

< mt − mdk
, we have a
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Figure 6.5.: Same as Fig. 6.4, but for the LHC. The cross section for ν̃∗
i production via λ′

i32 (λ′
i33)

is equal to the cross section for ν̃i production via λ′
i32 (λ′

i33), since only initial-state sea quarks are
involved.

stronger dependence on the renormalization scale compared to mℓ̃i
> mt − mdk

, because tt̄
production is O(α2

s(µr)). According to Refs. [237, 238], NLO-QCD corrections, including a
NLL resummation, increase the tt̄ production cross section by approximately 40% (80%) at
the Tevatron (LHC).

Due to the large scale uncertainties a NLO calculation is called for. In the case of non-
vanishing λ′

i33 the Compton-like process, Eq. (6.1a), is similar to associated charged Higgs
production [204] via the partonic process

g + b → H− + t , (6.10)

with the replacement ℓ̃−i → H−. This process has first been calculated at NLO in QCD in
Refs. [239, 240]. It was shown that the NLO contributions enhance the total hadronic cross
section between 30% and 80%. It was also shown that the perturbative behavior is well under
control and that the higher order contributions reduce the scale uncertainties significantly.
However, for λ′

i31(2), the correspondence to the Higgs production process, Eq. (6.10), at the

hadron level no longer holds due to the light quark, i.e. d-quark (s-quark), instead of the
heavy b-quark in the initial state. The parton-level calculation for different couplings λ′

i3k

is the same. We conclude that, particularly for the case of non-vanishing λ′
i31, where the
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Figure 6.6.: Factorization scale µF = f ·m and renormalization scale µR = r ·m dependence of the
hadronic ℓ̃−i t production cross section via λ′

i31 at the Tevatron (left figure) and LHC (right figure).
µF and µR are independently taken equal to 2 and 0.5 times m, where m ≡ 2mt [≡ mℓ̃i

+ mt] in
the case of slepton production via a tt̄ pair, Eq. (6.2) [via the Compton-like process, Eq. (6.1)].

lepton charge asymmetry can be observed at the LHC, a NLO calculation has to be done.
It is, however, beyond the scope of this work.

The hadronic cross section for single stau, τ̃ , production via a non-vanishing λ′
333 coupling,

was also considered by Borzumati et. al. [204]. There, the 2 → 2 processes, Eq. (6.1), were
included, together with the (tree-level) 2 → 3 slepton-strahlung processes

g + g

q + q̄

}

→ t + b̄ + τ̃− , (6.11)

which are shown, for mτ̃ < mt−mb, to be equivalent to the 2 → 2 processes, Eqs. (6.2). The
b̄ and τ̃− are produced via a virtual top. They employed the CTEQ4L [241] PDFs and all
matrix elements were multiplied by the CKM factor Vtb. We have calculated the hadronic
cross sections using the same PDFs and the same parameter set [242]. We agree exactly,
where single slepton production is dominated by the tt̄ process, i.e for mτ̃ < mt − mb.
For mτ̃ > mt − mb, we underestimate the total cross section at the Tevatron by 20% for
mτ̃ = 300 GeV and by a factor of roughly two for mτ̃ = 200 GeV, compared to Ref. [204]. In
this region the above 2 → 3 processes, where the slepton is produced by a quark-antiquark
pair, can give the main contribution compared to the gb → τ̃ t partonic process, where a
gluon and/or sea-quark is needed with large Bjorken x. However, in this region where there
are large discrepancies, practically no sleptons are produced at the Tevatron. Our prediction
for the LHC differs by +30% for mτ̃ > mt − mb.

Borzumati et. al. extended their analysis to the λ′
332 and λ′

331 couplings [205]. They
presented the results for the 2 → 2 process, Eq. (6.1), and the 2 → 3 process, Eq. (6.11),
separately. For mτ̃ < mt −mdk

, we agree exactly at the Tevatron as well as at the LHC. For
mτ̃ > mt − mdk

, our predictions cöıncide exactly with their cross section predictions for the
2 → 2 process. Furthermore, it is shown in Ref. [205] that for mτ̃ > mt − mdk

, the 2 → 3
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Tevatron LHC

mℓ̃i
= 100 GeV 25.5 fb 3180 (2620) fb

mℓ̃i
= 250 GeV 2.10 × 10−1 fb 259 (80.0) fb

mℓ̃i
= 800 GeV 2.86 × 10−5 fb 11.6 (2.54) fb

Table 6.2.: Hadronic cross section predictions for ℓ̃−i t (ℓ̃+
i t) production via λ′

i31 = 0.1 at the
Tevatron (

√
S = 1.96 TeV) and the LHC (

√
S = 14 TeV). Results are presented for the CTEQ6L1

[236] PDF parametrization.

contributions are small or even negligible. At the Tevatron, the 2 → 3 process contributes
roughly 35% (5%) to the total hadronic cross section for λ′

332 6= 0 (λ′
331 6= 0). At the LHC

these contributions are 25% (5%). The reason is that the cross sections induced by the 2 → 3
process have similar sizes for any value of k. But the 2 → 2 process for λ′

332 6= 0 (λ′
331 6= 0)

is enhanced by a factor of 5 (
>∼ 10) due to a s-quark (valence d-quark) in the initial state.

We conclude, that our LO approximation is valid in the phenomenologically relevant
region, where one is able to produce a single slepton in association with a top quark. We
have not included the 2 → 3 processes as they are formally higher order. Furthermore, the
essential ingredient in our phenomenological analysis below is the lepton charge asymmetry
due to a non-vanishing λ′

i31 coupling. The 2 → 3 processes do not contribute, as their initial
states are charge symmetric and their contributions to the hadronic cross section are only
5%.

We end this section by presenting in Table 6.2 selected cross section predictions for slepton
production with mℓ̃i

= 100 GeV, mℓ̃i
= 250 GeV and mℓ̃i

= 800 GeV at the Tevatron and
the LHC via λ′

i31 = 0.1.

6.3. Possible LHC Signatures

Apart from the B3 process, the sleptons and sneutrinos can decay through gauge interactions.
Neglecting mixing between left- and right-handed sleptons the possible tree-level decays are
[see also Eq. (5.29) and Eq. (5.30)]:

ℓ̃−i →











t̄ dk

ℓ−i χ̃0
m

νiχ̃
−
n

, ν̃i →











b̄ dk

νiχ̃
0
m

ℓ−i χ̃+
n

. (6.12)

The branching ratios depend on the masses of the sparticles, the admixtures of the gauginos
and on the size of the λ′

i3k coupling. We shall first assume, that the lightest neutralino, χ̃0
1,

is the LSP. Possible decay modes via the λ′
i3k interaction are:

χ̃0
1

λ′

−→
{

ℓ+
i t dk

ℓ−i t dk

, χ̃0
1

λ′

−→
{

ν̄ib̄ dk

νib dk

; (6.13)

92



6.3 Possible LHC Signatures 93

cf. Eq. (5.18). Here the branching ratios depend mainly on the admixture of the lightest
neutralino. The heavier neutralinos χ̃0

2,3,4 and the charginos χ̃+
1,2 dominantly decay into

lighter gauginos via gauge interactions, as in the P6-MSSM.

In SUSY scenarios, where the slepton (sneutrino) mass is of the order of a few hundred
GeV, the slepton (sneutrino) will decay dominantly into the lightest neutralino and a lepton
(neutrino). However, significant chargino decay modes are also possible, if they are kinemat-
ically accessible. Furthermore, decay chains involving a top quark in the final state are either
phase-space suppressed or kinematically forbidden, unless the slepton is very heavy. This
affects the neutralino decays, Eq. (6.13), involving charged leptons. Therefore, the dominant
hadron collider signatures of single slepton production in association with a top quark are

gdk → ℓ̃−i t → ℓ−i χ̃0
1 t →

{

ℓ−i (ν̄ib̄dk) [bW+]
ℓ−i (νibd̄k) [bW+]

. (6.14)

In parentheses are the neutralino LSP decay products, Eq. (6.13); the particles in brackets
arise from the top quark decay. As mentioned before, for k = 1 there is an asymmetry
between the number of positively and negatively charged leptons ℓ±i at the LHC.

The dominant signatures for a resonantly produced single sneutrino are

b̄ dk → ν̃i →







b̄ dk

νi (ν̄ib̄ dk)
νi (νib d̄k)

, (6.15)

again the neutralino decay products are in parentheses. Although the sneutrino production
cross section at the LHC (Fig. 6.5) is up to two orders of magnitude larger than the slep-
ton plus top quark cross section (Fig. 6.3), the event signature, Eq. (6.15), is much harder
to extract above the SM background. It involves only two jets and possibly some missing
transverse energy. It therefore suffers from a large QCD background. However, if the sneu-
trino decays into charginos and heavier neutralinos are possible, Eq. (6.12), we can have
(additional) charged leptons in the final state.

We now consider SUSY scenarios, where the stau, τ̃1, is the LSP instead of the lightest
neutralino, cf. Fig. 2.3 and Sect. 5. In this scenario the lightest neutralino dominantly
decays into a tau and the stau LSP, χ̃0

1 → τ̃±
1 τ∓. For i = 1, 2, the stau will dominantly decay

into a tau and a virtual neutralino [see also Eq. (5.20)], leading to a four-body decay of the
stau LSP. The signatures for a stau LSP are

gdk → ℓ̃−i t →
{

ℓ−i τ± (τ∓ν̄ib̄dk) [bW+]

ℓ−i τ± (τ∓νibd̄k) [bW+]
. (6.16)

The particles in parentheses are now the stau LSP decay products and the particles in
brackets are from the top quark decay. The difference between the final states in Eq. (6.16)
and Eq. (6.14) is, that for a stau LSP, the event is accompanied by an additional pair of taus
compared to scenarios with a neutralino LSP. We find the same behavior for the sneutrino
decay chains. It is therefore easier to distinguish the signal from the background in stau
LSP scenarios as long as one is able to reconstruct the tau pair in the final state.
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Note that for i = 3 the two-body stau decay is kinematically suppressed, or forbidden, due
to the large top quark mass. The stau LSP will in this case decay via a virtual top quark;
see Appendix B for details. Furthermore, we can produce heavy staus, τ̃2, as well as light
staus, τ̃1, due to L-R mixing in the stau sector. In this case the signatures are

gdk → τ̃−
2 t →











τ−τ+ (b̄dkW
−) [bW+]

τ−τ− (bd̄kW
+) [bW+]

Z0/h0 (b̄dkW
−) [bW+]

, (6.17)

and

gdk → τ̃−
1 t → (b̄dkW

−) [bW+] . (6.18)

The particles in parentheses are the stau LSP decay products and those in brackets are
from the top quark decay. We see in Eq. (6.17) that one of the τ̃2 decay chains involves
like-sign tau events. This can help to distinguish signal from background although poor tau
identification could limit this possibility.

6.4. Numerical Study for λ′
231 6= 0 and a χ̃0

1 LSP

6.4.1. The Scenario and Basic Cuts

We now perform an explicit numerical study of single associated slepton production. We
focus on the more difficult case of a neutralino LSP and restrict ourselves to λ′

231 6= 0, as
the dominant B3 coupling. We assume that similar results can be obtained for λ′

131 6= 0. A
central analysis criterion will be the lepton charge asymmetry of the final state.

According to Eq. (6.14), the final-state signature to examine is

ℓ̃∓L + t −→ ℓ∓ + (b + d + ν) + [b + W±] , (6.19)

with the W± decaying hadronically. We thus have one charged lepton, some missing pT , and
five jets, where two are b-quark jets. In our specific scenario, the charged lepton is a muon.

The main background for this process is tt̄ + j production (which has been calculated at
NLO in Ref. [243]) followed by the semi-leptonic decay of one of the top quarks. The second
background we examine is bb̄ + W± + jets production followed by the leptonic decay of the
W boson.

For our simulation, we assume an SPS1a′ similar scenario [244]. We take the SPS1a′

spectrum and couplings and add one B3 coupling, λ′
231. The relevant SPS1a′ masses are:

mℓ̃±L
= 190 GeV; mν̃µ = 173 GeV; (6.20a)

mχ̃0
1

= 98 GeV; mχ̃0
2

= 184 GeV; (6.20b)

mχ̃±

1
= 183 GeV. (6.20c)
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λ′
231 0 0.1 0.2 0.3 0.4

Br(µ̃−
L → t̄ + d) 0.0% 2.2% 8.4% 17.1% 26.8%

Br(µ̃−
L → µ− + χ̃0

1) 90.9% 88.9% 83.3% 75.4% 66.5%
Br(µ̃−

L → µ− + χ̃0
2) 3.2% 3.1% 2.9% 2.6% 2.3%

Br(µ̃−
L → νµ + χ̃−

1 ) 5.9% 5.8% 5.4% 4.9% 4.3%

Table 6.3.: Relevant branching ratios for SPS1a′ for different couplings λ′
231.

 1e-05

 1e-04

 0.001

 0.01

 0.1

 0  50  100  150  200  250

[GeV]pT

 1e-04

 0.001

 0.01

 0.1

 0  50  100  150  200  250

[GeV]pT

Figure 6.7.: Relative pT distribution of the final-state signal ℓ± for SPS1a′ (left figure) and the
final-state ℓ± from tt̄ + j background (right figure) at the LHC. We employ only the isolation cut
on the lepton.

All the charged slepton decays of Eq. (6.12) are therefore kinematically possible. The cor-
responding branching ratios are given in Table 6.3 for various couplings λ′

231. Note that
kinematically the sneutrino can only decay via the neutralino or via the λ′

231 coupling. The
potential signature would then be two jets possibly with some missing energy, cf. Eq. (6.15).

For the simulation of the single slepton plus top quark signal we have written our own
Monte Carlo program using the Les Houches accord [245] and linked this to HERWIG6.5

[196, 197, 198, 199, 200]. The averaging of the color flow in the s- and t-channel single
slepton production diagrams is implemented by the method developed in Ref. [246]. The
supersymmetric particle spectra are produced with SOFTSUSY [145]. The tt̄-background is
simulated using the MC@NLO program [247, 248]. The bb̄+W± +jets background is simulated
by using MadEvent [249] to generate a sample of bb̄+W±+2 jet events which are then show-
ered and hadronized using HERWIG6.5. We use the CTEQ61 parton distribution functions
[236]. The top quark mass is set to mt = 175 GeV.

Since our signature is very similar to the final state and distributions of tt̄ + j production
followed by the semi-leptonic decay, we use the standard set of CMS cuts for tt̄ production
followed by the semi-leptonic decay, given in Ref. [250] and require an additional jet. This
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simulated ℓ− events after cuts ℓ+ events after cuts Events × pb−1

signal 99 900 5 042 1 664 0.0108
W−+ bb̄ + jets bg 994 000 28 600 0 0.0431
W++ bb̄ + jets bg 993 500 0 29 700 0.0625

tt̄ + 1 j bg 9 990 500 135 330 136 360 22.00

Table 6.4.: Results of simulating SPS1a′ with cuts given in the text. The number of leptons and
the expected event rates are after cuts.

set of cuts leaves the large semi-leptonic tt̄ + j production, for which the cuts are designed,
and fewer bb̄ + W± + jets events as backgrounds for the signal process. The precise cuts are
summarized below.

The main difference between the semi-leptonically decaying top pair and our signal is the
pT distribution of the lepton stemming from the slepton compared to the one from the W±

from one of the top decays. We therefore compare in Figs. 6.7 the pT distributions of the
leptons arising from the signal and the tt̄ + j background processes, respectively. We see,
that the pT of the signal leptons has a peak around 50 GeV. This peak corresponds to the
mass difference between the slepton and the neutralino with the energy carried away by the
lepton subtracted. The background lepton distribution peaks at 25 GeV and then falls more
steeply than the signal distribution for increasing pT . We thus harden the CMS semi-leptonic
tt̄ cut for the isolated observed lepton from pT ≥ 20 GeV to pT ≥ 35 GeV.

In addition to the charged lepton in the final state, we require two tagged b-jets, as well
as two further jets. Thus, the employed cuts are

• 1 isolated lepton with pseudo-rapidity η < 2.4, pT > 35 GeV. The isolation cut
required less than 2 GeV of transverse energy in a cone of radius 0.4 around the lepton
direction.

• 2 isolated b jets and 2 non-b jets, pseudo-rapidity η < 2.4, pT > 30 GeV.

The jets are defined using PXCONE [251] which uses the mid-point between two particles as a
seed in addition to the particles themselves to improve the infrared behavior of the algorithm.
A cone radius of 0.5 was used to define the jets. For the bottom and charm quarks produced
in the perturbative stage of the event the nearest jet in (η, φ) is considered to have been
produced by that quark if the distance in (η, φ) was less than 0.2. We employ a b-tagging
probability of 0.6 and the probability for mistagging a c-quark or light quark as a b-quark
of 0.05 and 0.02, respectively.

For the signal, we simulated 105 events. Employing all cuts, including pT (ℓ±) ≥35 GeV,
we have 5×103 surviving ℓ− events and 1.7×103 surviving ℓ+ events. For the bb̄+W±+jets
background we simulated 106 events for both W− and W+ production. After all cuts we are
left with 2.9× 104 ℓ− and 3.0× 104 ℓ+ events, respectively. 107 tt̄ + j events were simulated
resulting in 1.35×105 events for ℓ− production and 1.36×105 events for ℓ+production. This
is summarized in Table 6.4.

For the simulated signal, we set λ′
231 = 0.053. In the following we will estimate the signal
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1 LSP 97

for other values of λ′
231 by taking into account the λ′2

231 dependence of the cross section. We
also employ the λ′

231 dependence of the the µ̃−
L → µ−χ̃0

1 branching ratio.

6.4.2. Lepton Charge Asymmetry

In order to distinguish the signal from the background at the LHC after these cuts, we
propose as the decisive observable the lepton charge asymmetry

Aℓ± ≡ Nℓ+ − Nℓ−

Nℓ+ + Nℓ−
. (6.21)

Here Nℓ+ and Nℓ− are the number of events with a positively or negatively charged lepton,
respectively. In Fig. 6.3, we can see the separate signal cross sections for ℓ+ and ℓ− production
at the LHC. For mℓ̃±L

> mt − md, the ℓ− cross section is significantly larger. This is due to

the fact that the d-quark PDF luminosity is significantly larger than that of the d̄-quark for

x
>∼ 10−2.

We would expect the lepton charge asymmetry to be zero for the tt̄ + j background, as
we have an equal number of top quarks and anti-top quarks. For the background process
bb̄ + W± + jets, we expect a positive asymmetry, since the (valence) u-quark luminosity is
significantly larger than the (valence) d-quark luminosity in the proton. For the signal, as
we have seen, we expect a negative asymmetry.

However, in general, inclusive tt̄ production has a charge asymmetry in the final state
at the LHC. It has been shown to be in the range [−0.025%; 0], if the detector has a sym-
metric acceptance in the rapidity range [−y0; y0]. For y0 → ∞ (0) the asymmetry goes to
0 (−0.025%) [252, 253, 254]. This stems from the asymmetry in qq̄ induced tt̄ production,
which in turn is due to the interference of C-odd and C-even modes, where C is the charge
conjugation operator. In the following, we will neglect this small asymmetry because the
statistical fluctuations lead to an even larger asymmetry. The number of ℓ± events in Ta-
ble 6.4 for the tt̄ + j background are consistent with a lepton charge asymmetry of zero
within two sigma.

In Fig. 6.8, we show the significance, Σ, of the signal for the SPS1a′ spectrum as a function
of λ′

231, where

Σ ≡ (ASM − ASM+S)

∆ASM

. (6.22)

Here ASM is the SM lepton charge asymmetry. ASM+S is the asymmetry for the signal and
the SM background combined. ∆ASM is the error of the SM asymmetry prediction assuming
purely statistical errors for the number of positive and negative charged leptons for each pro-
cess separately, i.e.

√
Nℓ+ and

√
Nℓ−. The significance is shown for integrated luminosities

at the LHC of 30 fb−1 (lower curves), 100 fb−1, 300 fb−1, and 1000 fb−1, respectively. We
vary the cross section by ±20% (grey region) to show possible effects due to higher order
corrections for the signal, cf. Fig. 6.6.

In Fig. 6.8, we see that for 30 fb−1 we can probe couplings down to about 0.3 for the SPS1a′

spectrum. In the SPS1a′ spectrum the squark mass is 544 GeV, thus the experimental bound
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Figure 6.8.: Significance at the LHC as a function of λ′
231 for SPS1a′ with lepton pT ≥ 35 GeV.

We show the significance for an integrated luminosity of 30 fb−1 (lower curve), 100 fb−1, 300 fb−1,
and 1000 fb−1, respectively. Furthermore, we varied the signal cross section by ±20% (gray region).

λ′
231 0 0.1 0.2 0.3 0.4

Br(µ̃−
L → t̄ + d) 0.0% 22.0% 53.0% 71.8% 81.9%

Br(µ̃−
L → µ− + χ̃0

1) 60.9% 47.5% 28.6% 17.2% 11.0%
Br(µ̃−

L → µ− + χ̃0
2) 13.8% 10.8% 6.5% 3.9% 2.5%

Br(µ̃−
L → νµ + χ̃1

−) 25.3% 19.7% 11.9% 7.1% 4.6%

Table 6.5.: Relevant branching ratios for SPS1b for different couplings λ′
231.

is λ′
231 < 1.0, cf. Table 6.1. For 300 fb−1 we can probe couplings down to about 0.15. In the

extreme case of 1000 fb−1 this improves to about λ′
231 = 0.1.

We have repeated the above analysis for the parameter set SPS1b [146]. Here we have the
following masses:

mµ̃L
= 342 GeV; mν̃µ = 333 GeV; (6.23a)

mχ̃0
1

= 163 GeV; mχ̃0
2

= 306 GeV; (6.23b)

mχ̃±

1
= 306 GeV . (6.23c)

We show the branching ratios for different λ′
231 in Table 6.5. We see, that the B3 decay into

a d quark and a top quark is the dominant decay for large λ′
231, i.e. λ′

231 > 0.19. One might
thus consider an analysis based on this decay mode. However the signature is tt̄ + j, which
has a very large background. We thus continue to consider the neutralino decay mode. The
significance will then approach a constant value for a constant luminosity and large λ′

231,
because the cross section and the B3 decay both scale with λ′2

231. Furthermore the slepton
mass is now significantly larger, but so is the lightest neutralino mass. The mass difference
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Figure 6.9.: Same as for Fig. 6.8, but for the parameter set SPS1b with lepton pT ≥ 70 GeV.

λ′
231 0 0.1 0.2 0.3 0.4

Br(µ̃−
L → t̄ + d) 0.0% 23.7% 55.4% 73.6% 83.2%

Br(µ̃−
L → µ− + χ̃0

1) 100% 76.3% 44.6% 26.4% 16.8%

Table 6.6.: Relevant branching ratios for the high pT scenario for different couplings λ′
231. The

scenario is described in the text.

however has grown, leading to significantly higher charged lepton pT ’s compared to SPS1a′,
cf. Fig. 6.7. We thus impose the stricter cut on the lepton transverse momentum

pT (ℓ±) ≥ 70 GeV . (6.24)

The results are shown in Fig. 6.9. In this case, for the relatively low integrated luminosity
of 30 fb−1 we have no chance of observing the signal via the lepton asymmetry; the neutralino
branching fraction is too small to have enough events. In fact, it is only for the extremely
high integrated luminosity of 1000 fb−1 that we have a significant sensitivity range, down to
about λ′

231 = 0.2.

In order to see what can be probed at the LHC, we have chosen as a third example a mass
spectrum which optimizes our signal. For this we considered a modified SPS1b spectrum,
where we first lowered the mass of the lightest neutralino to

mχ̃0
1

= 80 GeV , (6.25)

in order to obtain a larger mass difference between the smuon and the lightest neutralino.
We can then harden the pT cut to

pT (ℓ±) ≥ 120 GeV . (6.26)
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Figure 6.10.: Same as for Fig. 6.8, but for the high-pT scenario and with lepton pT ≥ 120 GeV.
The scenario is described in the text.

This leads to a better signal to background ratio compared to SPS1b. Second, we increased
the masses of χ̃0

2 and χ̃±
1 to

mχ̃0
2

= mχ̃±

1
= 450 GeV . (6.27)

This increases the µ̃−
L → µ− + χ̃0

1 branching ratio compared to SPS1b, because decays
into heavier neutralinos and into charginos are now kinematically forbidden. We show the
relevant branching ratios for different λ′

231 in Table 6.6. We refer to this scenario as the
high-pT scenario. The resulting significance for the high-pT scenario is shown in Fig. 6.10.

As can be seen, for an integrated luminosity of 30 fb−1 we still have no sensitivity in λ′
231.

But now for an integrated luminosity of 300 fb−1, we can probe couplings down to 0.19, well
below the experimental bound of 1.5, cf. Table 6.1 where now mb̃L

= 830 GeV in SPS1b.
For an integrated luminosity of 1000 fb−1 we can probe couplings down to 0.11.

The influence of systematic errors in the background cross section on our sensitivity are
small. Varying the tt̄ + j cross section by +10% (−10%) changes the asymmetry by roughly
−9% (+11%). Varying the bb̄+W± +jets cross section by ±10% only effects the asymmetry
by ∓1.6% for SPS1a′ with λ′

231 = 0.3 and by ∓1.2% for the high-pT scenario with λ′
231 = 0.3.

Yet, detector effects resulting in an error on the observed charge asymmetry are a problem.
Misalignment in the detector can lead to a difference in pT measurement of positive and
negative leptons, respectively. This will lead to an observed, effective charge asymmetry after
a cut on the lepton pT [255]. An analysis of this must be performed by the experimentalists
and is well beyond the scope of this work.

For SPS1a′ with λ′
231 = 0.3, a simulated detector based charge asymmetry of 0.66% leads

to an asymmetry of the tt̄ background of the same size as that of the signal. For the special
case chosen with high pT leptons in the final state, i.e. the high-pT scenario with λ′

231 = 0.3,
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a simulated asymmetry of 0.89% would lead to the same effect. Therefore, a higher pT cut
is less sensitive to systematic errors, due to the high pT cut effecting the tt̄ background.

6.5. Conclusion of Section 6

In Sect. 6, we have investigated single charged slepton production due to the B3 couplings
λ′

i3k. These couplings are special, because for resonant charged slepton production they
require an incoming top quark, which is not available. Instead single charged slepton pro-
duction must proceed via associated production with a final state top quark. In Sect. 6.2, we
have computed the cross section for the Tevatron and the LHC assuming λ′

i3k = 0.1. At the
Tevatron we obtain a sizeable cross section only for slepton masses below about 200 GeV. At
the LHC we have a sizeable cross section, greater than about 10 fb, up to about 800 GeV in
slepton mass, cf. Fig. 6.3. It should be kept in mind that the resonant sneutrino production
via the same coupling is substantially larger, see Fig. 6.4, and Fig. 6.5. However the signa-
ture is not necessarily as promising (because of a lack of charged leptons), depending on the
nature of the LSP and the dominant sneutrino decay mode. We furthermore showed that
the QCD scale uncertainties in the predictions for the associated charged slepton production
cross sections are quite large, see Fig. 6.6, and therefore a NLO calculation is called for in
the future.

Next we classified the possible signatures of associated slepton production with a top quark
at the LHC for a neutralino or a stau LSP. We found several promising cases. In Sect. 6.4, we
then analyzed the specific case of a dominant λ′

231 or λ′
131 coupling and a neutralino LSP. As

the decisive observable, we propose the lepton charge asymmetry at the LHC, which stems
from the different parton luminosities involved. We then analyzed the SM background in
detail, which stems mainly from tt̄ + j production, followed by the leptonic decays of one of
the top quarks. We proposed a set of cuts and showed that slepton masses up to 350 GeV
can be explored at the LHC depending on the scenario, see Figs. 6.8-6.10.
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7. Summary and Conclusions

Supersymmetry (SUSY) is a potential solution of the hierarchy problem and is thus one of
the most promising extensions of the standard model (SM) of particle physics. Its simplest
form, the supersymmetric standard model (SSM) is also consistent with several phenomeno-
logical observations, like unification of gauge couplings or precision fits to electroweak data.
However, the SSM has more than two hundred free parameters and is thus intractable for
detailed phenomenological studies.

A well motivated and restricted framework for the SSM is provided by the proton-hexality,
P6, violating mSUGRA model. It reduces the number of free parameters to six. In super-
symmetric models it is essential to know the nature of the lightest supersymmetric particle
(LSP), since it is involved in practically all SUSY collider signals. In this thesis, we have
investigated all possible LSP candidates of the P6 violating mSUGRA model and their sig-
natures at hadron colliders.

We have found that a non-vanishing LiLjĒk operator at the grand unification (GUT) scale
can lead to a right-handed selectron, ẽR, (i = 1) or right-handed smuon, µ̃R, (i = 2) LSP; cf.
Fig. 3.1. A non-vanishing LiQjD̄k operator can lead to a sneutrino, ν̃i, LSP; cf. Figs. 4.2-4.5.
We can also obtain squark LSPs, namely the s̃R, d̃R, b̃1 and t̃1 via a non-vanishing ŪiŪjD̄k

operator; see Fig. 3.2, Fig. 3.3 and Fig. 3.4 respectively. We have found µ̃R, ν̃i, b̃1 and t̃1
LSP scenarios consistent with the observed anomalous magnetic moment of the muon and
b → sγ as well as consistent with collider constraints from LEP and the Tevatron.

We have also analyzed the phenomenology of ν̃i LSP models at the LHC. We have consid-
ered one benchmark scenario with a ν̃µ LSP. Within this scenario, we have found that direct
decays of light as well as heavy SUSY particles lead to an excess of muons in the final state
compared to SM rates, see Table 4.4. In general, promising pair production signatures are
high-pT muons of a few hundred GeV, cf. Fig. 4.7, high-pT jets, like-sign muon events and
long-lived taus with a detached vertex of the order of 1 cm. These signatures can be used
to discover SUSY as well as to distinguish P6 violating from P6 conserving models.

In addition, we have investigated for the first time in detail the phenomenology of baryon-
triality, B3, mSUGRA models with a stau, τ̃1, LSP. We have hereby assumed only one
non-vanishing B3 coupling λ′

ijk at the GUT scale. We would expect either a four-body or
two-body decay of the τ̃1 LSP depending on whether it couples directly to the dominant B3

operator or not. However, in B3 mSUGRA models the renormalization group equations are
highly coupled and further couplings are generated at the weak scale.

We have numerically investigated the generation of λi33 couplings via dominant λ′
ijk cou-

plings. λi33 will always lead to a two-body decay of the τ̃1 LSP whereas λ′
ijk for i = 1, 2

leads to a four-body decay. We have found that the generated λi33 couplings are typically
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at least two orders of magnitude smaller than the dominant λ′
ijk coupling, cf. Fig. 5.2 and

Fig. 5.3. However, it turned out that in large regions of parameter space the two-body decay
dominates over the four-body decay; see Figs. 5.6-5.10.

We have applied our results to resonant single slepton production at the LHC. We have
investigated numerically single smuon production for λ′

2jk 6= 0 within two representative
τ̃1 LSP scenarios. We have included the two-body τ̃1 LSP decays via the generated λ233

couplings in our analysis. We have found as promising signatures like-sign dimuon events
and three- and four-muon final states, cf. Table 5.3. Within our example scenarios the
respective cross sections are of the order of 100 fb; see Tables 5.4-5.7.

For the special case of dominant B3 couplings λ′
i3k, resonant single charged slepton produc-

tion is not possible at hadron colliders, as there are no incoming top quarks in the proton.
Instead we have to consider the associated production with a top quark. We have analyzed
this difficult signature in detail. As the decisive observable for λ′

131 and λ′
231 we have pro-

posed the lepton charge asymmetry. We have shown that the signal can be distinguished
from the SM background for slepton masses up to 350 GeV depending on the scenario; see
Figs. 6.8-6.10

We want to encourage the experimental groups to look for the new LHC signatures which
we have found in this thesis. Especially the signatures which involve muons in the final
state might be explored with early LHC data, i.e. high-pT and like-sign dimuon events in ν̃µ

LSP scenarios and like-sign dimuon and three- and four-muon final states for single slepton
production with a τ̃1 LSP.
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A. The Low Energy Spectrum of

mSUGRA

A.1. Fermion Mixing

All parameters in the superpotential, Eq. (2.4), are given in the weak-current eigenstate
basis. This includes the quark and lepton Yukawa coupling matrices YU , YD, YE and
the corresponding mass matrices mu, md, me. Since, in general, these matrices are not
diagonal, we need to rotate the (charged) lepton and quark fields from the weak into the
mass eigenstate basis,

fmass
L,R = Vf L,R fweak

L,R , (A.1)

with fL,R denoting the left- and right-handed fermion fields, respectively and Vf L,R denoting
the corresponding rotation matrices. The mass matrices in the mass eigenstate basis are then
given by

VuL mu V+
uR = diag(mu, mc, mt),

VdL md V+
dR = diag(md, ms, mb),

VeL me V+
eR = diag(me, mµ, mτ ),

(A.2)

defined at the weak scale MZ . The rotation matrices Vf L,R are not directly experimentally
accessible but only the CKM matrix VCKM,

VCKM = VuLV
+
dL. (A.3)

In general, the rotation matrices for the left-handed fields differ from those for the right-
handed fields. However, we can simplify the structure of the Yukawa couplings, if we assume
real and symmetric Yukawa coupling matrices, thus Vf L = Vf R. Furthermore we neglect
neutrino masses in this context and assume that YE is diagonal in the weak-current basis.
Correspondingly, VeL,R = 13×3.

To further constrain the quark Yukawa couplings, we can restrict ourselves to the ex-
treme cases of quark mixing taking place completely in the up- or the down-quark sector,
respectively. We will refer to it as “up-type mixing” if

VuL,R = VCKM, VdL,R = 13×3, (A.4)

at the weak scale MZ and as “down-type mixing” if

VuL,R = 13×3, VdL,R = V+
CKM (A.5)
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A.2 Sparticle Spectra 105

at the weak scale. Therefore, in up-type mixing scenarios, the Yukawa matrices are

YU(MZ) × vu = V+
CKM · diag(mu, mc, mt) · VCKM,

YD(MZ) × vd = diag(md, ms, mb), (A.6)

and in down-type mixing scenarios, the Yukawa matrices are

YU(MZ) × vu = diag(mu, mc, mt), (A.7)

YD(MZ) × vd = VCKM · diag(md, ms, mb) · V+
CKM,

respectively. In Sect. 4 and Sect. 5, we will consider these two extreme cases. vu (vd) is the
vacuum expectation value of the up-type (down-type) neutral CP-even Higgs with

vu = v sin β , vd = v cos β , (A.8)

where v = 174 GeV is the SM vacuum expectation value1.

As a consequence of the non-trivial quark rotation matrices, the λ′
ijk coupling in Eq. (2.6)

also has to be rotated from the weak basis into the quark mass basis for a comparison with
experimental data. In case of up-type mixing, the LiQjD̄k interactions of the superpotential,
Eq. (2.6), in the quark mass basis are in terms of SU(2) component superfields

λ′
ijk[NiD

m
j − Ei(V

+
CKM)jlU

m
l ]D̄m

k . (A.9)

In the case of down-mixing they are

λ′
ijk[Ni(VCKM)jlD

m
l − EiU

m
j ](V+

CKM)nkD̄
m
n . (A.10)

See also Ref. [164]. However for the slepton production cross sections, we do not take into
account these CKM effects. If needed, the corresponding rescaling of the λ′ coupling can be
done easily. Furthermore the sub-dominant interactions, which include non-diagonal matrix
elements of VCKM, do not allow for large production cross sections since λ′ enters only
quadratically.

A.2. Sparticle Spectra

We cite here approximate expressions for the relevant SUSY particle masses in terms of the
P6 mSUGRA parameters, Eq. (2.17), as given in Ref. [256], cf. also the original work in
Ref. [257]. The masses of the sleptons and squarks of the first and second generation are

m2
ℓ̃R

= M2
0 + 0.15M2

1/2 − sin2 θW M2
Z0 cos 2β,

m2
ℓ̃L

= M2
0 + 0.52M2

1/2 −
(

1

2
− sin2 θW

)

M2
Z0 cos 2β,

m2
ν̃ = M2

0 + 0.52M2
1/2 +

1

2
M2

Z0 cos 2β,

(A.11)

1In B3 SUSY models, (A.8) is in general modified by additional sneutrino vacuum expectation values vi.
But vi ≪ v in order to be consistent with neutrino masses [58]. We therefore neglect vi in Eq. (A.8).
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m2
ũR

= M2
0 + (0.07 + cg̃)M

2
1/2 +

2

3
sin2 θW M2

Z0 cos 2β,

m2
d̃R

= M2
0 + (0.02 + cg̃)M

2
1/2 −

1

3
sin2 θW M2

Z0 cos 2β,

m2
ũL

= M2
0 + (0.47 + cg̃)M

2
1/2 +

(

1

2
− 2

3
sin2 θW

)

M2
Z0 cos 2β,

m2
d̃L

= M2
0 + (0.47 + cg̃)M

2
1/2 −

(

1

2
− 1

3
sin2 θW

)

M2
Z0 cos 2β,

(A.12)

where θW denotes the electroweak mixing angle and MZ0 is the mass of the Z boson. The
third terms in Eq. (A.11) and Eq. (A.12) originate from the D-term quartic interactions.
The coefficient cg̃ varies between approximately 4.5 and 6 for squark masses between 100
GeV and 1 TeV.

For sfermions of the third generation, the mixing between left- and right-handed gauge-
current eigenstates has to be taken into account. The stau mass matrix squared M

2
τ̃ is given

by [79]

M
2
τ̃ =

(

m2
τ + ALL mτBLR

mτBLR m2
τ + CRR

)

, (A.13)

with mτ denoting the tau lepton mass and, expressed in terms of left- and right-handed third
generation softbreaking parameters (mL̃)33 and (mẼ)33, Eq. (2.3), respectively,

ALL = (mL̃)2
33 − (0.5 − sin2 θW )M2

Z0 cos 2β ,

BLR = Aτ − µ tanβ ,

CRR = (mẼ)2
33 − sin2 θW M2

Z0 cos 2β,

(A.14)

where Aτ is the trilinear coupling of the left- and right-handed stau to the Higgs. In
mSUGRA, Aτ = A0 at the GUT scale. The softbreaking parameters depend on the
mSUGRA parameters as follows [256],

(mẼ)2
33 = M2

0 + 0.15M2
1/2 −

2

3
Xτ ,

(mL̃)2
33 = M2

0 + 0.52M2
1/2 −

1

3
Xτ , (A.15)

Xτ ≡ 10−4(1 + tan2 β)
(

M2
0 + 0.15M2

1/2 + 0.33A2
0

)

,

where Xτ parameterizes the influence of the tau Yukawa coupling. Note, that Xτ can have a
strong impact on the stau masses due to its tan2 β dependence, even though Xτ is suppressed
by a factor 10−4.

The stau mass eigenstates τ̃1,2 are obtained from the gauge eigenstates by a unitary rotation
U such that U diagonalizes the mass matrix, UM

2
τ̃U

† = diag
(

m2
τ̃1 , m

2
τ̃2

)

, yielding for the
masses mτ̃1,2

m2
τ̃1,2

= m2
τ +

1

2
(ALL + CRR) ∓ 1

2

√

(ALL − CRR)2 + 4m2
τB

2
LR . (A.16)
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The gaugino masses can be approximated in terms of the universal gaugino mass M1/2

[256],

mχ̃0
1
≃ M1 = 0.41M1/2,

mχ̃0
2
≃ M2 = 0.84M1/2.

(A.17)

Here it has been used that the lightest neutralino, χ̃0
1, is bino-like in many mSUGRA models

and that its mass can be approximated by the bino mass parameter M1 at the weak scale.
Accordingly, the second lightest neutralino, χ̃0

2, is mainly wino-like and its mass governed by
the wino mass parameter M2.

A.3. Reference Scenarios with a τ̃1 LSP

For the purpose of numerical studies and as future reference points, we define two specific
sets of B3 mSUGRA scenarios with a τ̃1 LSP:

Set A: M0 = 0GeV, M1/2 = 500GeV,

A0 = 600GeV, tanβ = 13, sgn(µ) = +1,

a single λ′
ijk|GUT 6= 0,

Set B: M0 = 0GeV, M1/2 = 700GeV,

A0 = 1150GeV , tanβ = 26, sgn(µ) = +1,

a single λ′
ijk|GUT 6= 0.

(A.18)

They are chosen in accordance with the following bounds (see also Sect. 4.2 and Sect. 4.1.1
for more details)2:

• BR(Bs → µ+µ−) < 4.7 × 10−8 at the 95% C.L. [151].

• 2.74 × 10−4 < BR(b → sγ) < 4.30 × 10−4 [151, 193, 194].

• The discrepancy between experiment and the SM prediction of the anomalous magnetic
moment of the muon is δaµ = aexp

µ −aSM
µ = (29.5±8.8)×10−10, i.e. 3.4σ [4, 5, 6]. The

sets Eq. (A.18) are chosen such that δaSUSY
µ = aMSSM

µ −aSM
µ agrees with δaµ within 2σ.

• Higgs mass mh0 ≥ 114.4 GeV [152] which we reduce by 3 GeV to account for numerical
uncertainties [40, 106, 153, 154].

• All couplings λ′
ijk in the following are chosen such that the tree-level neutrino mass is

smaller than 0.71 eV [161, 162]. A corresponding comprehensive set of bounds for the
mSUGRA parameter set SPS1a [146] with one non-vanishing coupling λ′

ijk is given in
Ref. [58]. Note, that the generated tree-level neutrino mass depends on all mSUGRA
parameters, Eq. (2.27). The neutrino mass bounds on λ′

ijk for Set A and Set B are
weaker compared to those for SPS1a.

We use micrOMEGAs1.3.7 [195] to calculate BR(Bs → µ+µ−), BR(b → sγ), and δaSUSY
µ . This

program does not include the B3 couplings. But the corresponding effects are negligible for
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108 The Low Energy Spectrum of mSUGRA

masses [GeV] masses [GeV]
Set A Set B Set A Set B

τ̃1 179 146 χ̃0
1 203 290

ẽR 193 266 χ̃0
2 380 544

τ̃2 340 453 χ̃0
3 571 754

ẽL 340 471 χ̃0
4 587 765

ν̃τ 326 437 χ̃±
1 383 549

ν̃e 329 461 χ̃±
2 583 761

t̃1 841 1160 h0 113 115

b̃1 970 1300 H0 643 795
ũR 1010 1370 A0 642 795
t̃2 1010 1340 H+ 648 799

b̃2 995 1340
ũL 1040 1410 g̃ 1150 1560

Table A.1.: Sparticle masses for the B3 mSUGRA sets A and B as defined in Eq. (A.18), evaluated

for a renormalization scale Qsusy =
√

mt̃1
(Qsusy)mt̃2

(Qsusy) using SOFTSUSY2.0.10 [145, 147]. The

variation due to different λ′
ijk|GUT 6= 0 and quark mixing (see Sect. A.1) is below the percent level.

The masses in the second generation coincide with those in the first generation.

only one dominant λ′
ijk

<∼ O(10−2) [106].

We show in Table A.1 the supersymmetric mass spectra of the parameter sets A and B,
Eq. (A.18). We have neglected the mass dependence on the different non-zero B3 couplings

which is valid if λ′
ijk

<∼ O(10−2) [106], cf. Fig. 2.4. The main B3 effect on the spectrum is
that we allow for a τ̃1 LSP.

One naturally obtains a τ̃1 LSP spectrum for M1/2 ≫ M0. The large M1/2 raises the lightest
neutralino mass, Eq. (A.17), faster than the right-handed slepton masses, Eq. (A.11). It also
drives the gluino and indirectly via the RGEs the squark masses up, cf. Fig. 2.2. We thus

see in Table A.1 squark and gluino masses
>∼ 1 TeV, while the slepton masses are below 500

GeV. Another general feature of a τ̃1 LSP scenario is that the second lightest neutralino
and the lightest chargino are also heavier than the sleptons. Therefore the only conventional
supersymmetric decays of the left-handed sleptons are via the lightest neutralino. Depending
on the dominant B3 coupling and its size, the left-handed sleptons can also decay into two
jets.

Nearly all sparticles in Set B (M1/2 = 700 GeV) are heavier than in Set A (M1/2 =
500 GeV). The most important difference for the phenomenology at colliders arises from the
different values of tanβ (tan β = 13 in Set A, tan β = 26 in Set B). According to Eq. (A.15),
the soft breaking parameters of the stau decrease for increasing tanβ and thus both stau

2In Ref. [106], specific benchmark scenarios with a τ̃1 LSP where proposed. We do not consider them here
because even the weakest bounds on λ′ assuming down-type quark mixing, Eq. (A.5), are at the order of
O(10−3) for which the rate of resonant slepton production is suppressed.
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mass eigenstates are reduced for large values of tan β. Furthermore, the mass of the lighter
stau is reduced due to the larger L–R-mixing, cf. Eq. (A.13). This effect can be seen in
Table A.1, where the mass of the τ̃1 LSP is 179 GeV in Set A but only 146 GeV in Set B.
The τ̃1 mass and tanβ strongly influence the possible 2- and 4-body τ̃1 LSP branching ratios.
We investigate this topic in detail in Sect. 5.3.
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B. The B3 Slepton Decay ℓ̃−i → W−b̄dk

A non-vanishing LiQ3D̄k operator, Eq. (2.5), allows for slepton decay into a top quark, t,
and a down-type quark, dk, of generation k,

ℓ̃−i → t̄dk . (B.1)

However, this decay mode is kinematically only allowed if mℓ̃i
> mt + mdk

. For mℓ̃i
<

mt + mdk
, the slepton decays via a virtual top quark,

ℓ̃−i → W−b̄dk. (B.2)

This 3-body decay has not been considered in the literature yet and is not implemented in
the P6 violating version of Herwig [196, 197, 198, 199, 200], either. We complete the picture
by calculating the 3-body decay, Eq. (B.2), in the following.

The relevant parts of the supersymmetric Lagrangian are [80]

LLiQ3D̄k
= λ′

i3kL1β ℓ̃−iβ d̄k PL t + h.c. ,

LbWt = − g√
2

W+
µ t̄ γµ PL b + h.c. ,

(B.3)

where Lαβ is the slepton mixing matrix, α labels the left/right current eigenstate, and β
labels the mass eigenstate. From Eq. (B.3), the squared matrix element (summed over final
state polarizations and colors) can be derived,

∣

∣

∣
M
(

ℓ̃−iβ → W−b̄dk

)

∣

∣

∣

2

=
3

2

λ
′2
i3kL

2
1βg2

[(W + b)2 − m2
t ]

2 + m2
tΓ

2
t

{

4(dk ·W )

[

m2
b + 2(W ·b) − m2

b

(W ·b)
m2

W

]

+ 2(dk ·b)
[

m2
b − m2

W + 4(W ·b) +
4(W ·b)2

m2
W

]

}

. (B.4)

We denote the particle four-momenta by the particle letter, and mt, mb, and mW , are the
top, bottom and W mass, respectively. Γt is the total width of the top quark.

From the squared matrix element, Eq. (B.4), we obtain easily the partial width for the
3-body decay, Eq. (B.2), see e.g. [80, 199]. We show in Fig. B.1 the partial width Γ(ẽL →
W−b̄d) as a function of the left-handed selectron mass, mẽL

. Here we take λ′
131 = 0.01 and

L11 = 1, in Eq. (B.4).

In comparison to the 3-body decay, Eq. (B.2), the possible 4-body decays via λ′
i3k are

negligible. For example for the parameter Set B (see Appendix A.3) with non-vanishing
λ′

331, the branching ratio of the 3-body τ̃1 LSP decay is larger by five orders of magnitude
than the branching ratio of the 4-body τ̃1 LSP decays.
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Figure B.1.: Partial width in GeV for the 3-body decay ẽL → W−b̄d as a function of the selectron
mass, mẽL

. We take λ′
131 = 0.01 and L11 = 1, in Eq. (B.4).
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C. Cross Sections and Branching Ratios

for Slepton Production and Decay

In this Appendix we give the necessary cross sections and branching ratios to calculate rates
of all possible decay signatures for single slepton production at the LHC, within the B3 sets
A and B with a τ̃1 LSP, cf. Eq. (A.18).

In Table C.1 and Table C.2, all hadronic production cross sections of resonant single
sleptons within parameter Set A and Set B, respectively, are given. We consider here
λ′

ijk|GUT = 0.01, but the cross section scales with |λ′
ijk|2. The running of λ′

ijk is taken
into account according to Eq. (5.9), leading to the following values at the SUSY scale, Qsusy,
cf. Eq. (5.15):

Set A: λ′
2jk = 0.0282, λ′

3jk = 0.0282,

λ′
23k = 0.0258, λ′

33k = 0.0257,

λ′
2j3 = 0.0281, λ′

3j3 = 0.0280,

λ′
233 = 0.0255, λ′

333 = 0.0254;

(C.1)

Set B: λ′
2jk = 0.0274, λ′

3jk = 0.0271,

λ′
23k = 0.0249, λ′

33k = 0.0247,

λ′
2j3 = 0.0269, λ′

3j3 = 0.0266,

λ′
233 = 0.0238, λ′

333 = 0.0236,

(C.2)

where j, k = 1, 2 and Qsusy = 893 GeV for Set A and Qsusy = 1209 GeV for Set B.

The production cross sections include NLO SUSY-QCD corrections [114]. The latter
depend on the trilinear quark-squark-slepton coupling, (hDk)ij, defined in Eq. (2.11). Nu-
merically, it is (hDk)ij = −23.4 GeV (−21.2 GeV) within Set A (Set B) at the SUSY scale.
We incorporated the running of (hDk)ij by using the one-loop contributions from gauge
interactions, Eq. (4.17).

Second, for the calculation of the rate for a given signature of resonant single slepton
production, the branching ratios for the slepton decay and for the subsequent decay chains
down to the τ̃1 LSP are needed. For all dominant λ′

ijk couplings these branching ratios are
universal within parameter Set A and Set B, respectively, and are given in Tab. C.3.

Finally, we show in Table C.4 (Table C.5) all branching ratios of τ̃1 LSP decays for dif-
ferent couplings λ′

2jk at the GUT scale. Branching ratios within scenarios with λ′
1jk 6= 0
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Set σprod. [fb] σprod. [fb]
A ẽ+

L/µ̃+
L ẽ−L/µ̃−

L ν̃∗
e/µ ν̃e/µ τ̃+

2 τ̃−
2 τ̃+

1 τ̃−
1 ν̃∗

τ ν̃τ

λ′
i11|GUT= 0.01 2700 1540 1860 1860 2620 1500 434 272 190 190

λ′
i22|GUT= 0.01 268 268 410 410 2600 2600 64.5 64.5 421 421

λ′
i12|GUT= 0.01 2150 464 1430 602 2090 451 360 103 1460 616

λ′
i21|GUT= 0.01 405 1050 602 1430 393 1020 91.9 197 616 1460

λ′
i13|GUT= 0.01 1240 220 788 292 1210 214 216 51.3 806 299

λ′
i23|GUT= 0.01 119 119 191 191 116 116 30.0 30.0 196 196

λ′
i31|GUT= 0.01 − − 247 666 − − − − 253 681

λ′
i32|GUT= 0.01 − − 161 161 − − − − 166 166

λ′
i33|GUT= 0.01 − − 69.3 69.3 − − − − 71.1 71.1

Table C.1.: Complete list of hadronic cross sections for resonant single slepton/sneutrino produc-
tion via λ′

ijk|GUT= 0.01 at the pp collider LHC (
√

S = 14 TeV) within the parameter Set A. The
cross sections include QCD and SUSY-QCD corrections at NLO [114]. For λ′

i3k, sleptons cannot
be produced because of the vanishing top-quark density in the proton.

Set σprod. [fb] σprod. [fb]
B ẽ+

L/µ̃+
L ẽ−L/µ̃−

L ν̃∗
e/µ ν̃e/µ τ̃+

2 τ̃−
2 τ̃+

1 τ̃−
1 ν̃∗

τ ν̃τ

λ′
i11|GUT= 0.01 885 476 559 559 949 515 1168 750 657 657

λ′
i22|GUT= 0.01 67.3 67.3 102 102 74.7 74.7 192 192 124 124

λ′
i12|GUT= 0.01 681 123 414 155 735 136 976 301 490 187

λ′
i21|GUT= 0.01 105 309 155 414 117 337 269 548 187 490

λ′
i13|GUT= 0.01 370 54.6 214 70.2 401 60.6 572 146 255 85.4

λ′
i23|GUT= 0.01 28.2 28.2 44.4 44.4 31.4 31.4 87.2 87.2 54.3 54.3

λ′
i31|GUT= 0.01 − − 60.4 184 − − − − 73.5 219

λ′
i32|GUT= 0.01 − − 38.2 38.2 − − − − 46.7 46.7

λ′
i33|GUT= 0.01 − − 14.8 14.8 − − − − 18.2 18.2

Table C.2.: Same as Tab. C.1 but for parameter Set B.
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114 Cross Sections and Branching Ratios for Slepton Production and Decay

BRs [%]

λ′
2jk|GUT = 0.01 λ′

3jk|GUT = 0.01
Set A Set B Set A Set B

µ̃−
L → χ̃0

1 µ− 91.1 91.3 100 100
µ̃−

L → ūj dk 8.9 8.7 − −
ν̃µ → χ̃0

1 νµ 91.7 91.5 100 100
ν̃µ → d̄j dk 9.3 8.4 − −
χ̃0

1 → τ̃±
1 τ∓ 36.0 45.7 36.0 45.7

χ̃0
1 → µ̃±

R µ∓ 7.0 2.2 7.0 2.2
χ̃0

1 → ẽ±R e∓ 7.0 2.1 7.0 2.1

µ̃−
R → τ̃+

1 µ− τ− 54.3 64.1 54.3 64.1
µ̃−

R → τ̃−
1 µ− τ+ 45.7 35.9 45.7 35.9

τ̃−
2 → χ̃0

1 τ− 58.4 14.7 55.5 14.5
τ̃−
2 → τ̃−

1 h0 22.5 41.8 21.4 41.2
τ̃−
2 → τ̃−

1 Z0 19.1 43.5 18.1 42.9
τ̃−
2 → ūj dk − − 5.0 1.3

ν̃τ → χ̃0
1 ντ 62.2 13.6 58.8 13.4

ν̃τ → τ̃−
1 W+ 37.8 86.4 35.8 85.2

ν̃τ → d̄j dk − − 5.4 1.4

Table C.3.: Table of branching ratios, BRs, that are relevant for single slepton production and
decays within the B3 mSUGRA scenarios Set A and Set B. Two different non-zero B3 couplings are
considered, λ′

2jk|GUT = 0.01 for columns 2 and 3 and λ′
3jk|GUT = 0.01 for columns 4 and 5. The

branching ratios for λ′
1jk 6= 0 can be obtained from those for λ′

2jk 6= 0 by interchanging muon and
electron flavor in the first four decay channels. The branching ratios for ẽL (ν̃e, ẽR) in scenarios
with λ′

ijk 6= 0, i 6= 1 are equal to those of µ̃L (ν̃µ, µ̃R) with λ′
3jk 6= 0. The branching ratios for

τ̃1 LSP decays are listed separately in Table. C.4 and Table C.5.
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are analogous and can be obtained from the tables by replacing µ by e in the final state
signatures.

In the case of a non-vanishing λ′
3jk, the τ̃1 LSP directly couples to the dominant L3QjD̄k

operator and decays predominantly via the inverse production process, see also the discussion
in Sect. 5.3.1. For the special case of λ′

33k 6= 0 and mτ̃1 < mt, however, the τ̃1 decays into a
W boson and two jets, cf. Eq. (5.23). The corresponding matrix element and partial width
are calculated in Appendix B.
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Set τ̃−
1

λ→ νµτ−

A [= τ̃−
1

λ→ ντµ
−]

τ̃−
1

λ→ ν̄µτ− τ̃−
1

λ′

→ τ−µ−uj d̄k τ̃−
1

λ′

→ τ−µ+ūjdk τ̃−
1

λ′

→ τ−νµdj d̄k τ̃−
1

λ′

→ τ−ν̄µd̄jdk

λ′
211 7.9% (2.7%) 0.2% (0.1%) 11.8% (13.3%) 25.3% (28.5%) 15.2% (17.1%) 31.6% (35.6%)

λ′
212 21.5% (−) 0.5% (−) 7.9% (14.2%) 17.1% (29.3%) 10.2% (18.1%) 21.3% (38.4%)

λ′
213 10.5% (−) 0.2% (−) 11.1% (14.1%) 23.8% (30.2%) 14.3% (18.1%) 29.6% (37.6%)

λ′
221 21.5% (−) 0.5% (−) 7.9% (14.2%) 17.1% (29.3%) 10.2% (18.1%) 21.3% (38.4%)

λ′
222 46.8% (46.8%) 1.1% (1.1%) 0.7% (0.8%) 1.6% (1.6%) 1.0% (1.0%) 2.0% (2.0%

λ′
223 48.2% (−) 1.1% (−) 0.4% (14.2%) 0.8% (29.3%) 0.5% (18.2%) 1.0% (38.4%)

λ′
231 17.9% (−) 0.4% (−) − (−) − (−) 20.7% (32.1%) 43.0% (67.9%)

λ′
232 48.8% (−) 1.1% (−) − (−) − (−) 0.4% (32.5%) 0.8% (67.5%)

λ′
233 49.4% (49.4%) 1.1% (1.1%) − (−) − (−) − (−) − (−)

Table C.4.: Branching ratios of the τ̃1 LSP for different non-zero λ′
2jk couplings at the GUT

scale. The branching ratios are calculated within the mSUGRA parameter Set A for the SUSY
breaking scale Qsusy = 893 GeV. We assume down-type (up-type) quark mixing. Branching ratios
for non-vanishing λ′

1jk are analogous, with µ replaced by e.

Set τ̃−
1

λ→ νµτ−

B [= τ̃−
1

λ→ ντµ
−]

τ̃−
1

λ→ ν̄µτ− τ̃−
1

λ′

→ τ−µ−uj d̄k τ̃−
1

λ′

→ τ−µ+ūjdk τ̃−
1

λ′

→ τ−νµdj d̄k τ̃−
1

λ′

→ τ−ν̄µd̄jdk

λ′
211 49.0% (48.6%) 1.7% (1.7%) − (0.1%) 0.1% (0.4%) − (0.1%) 0.1% (0.5%)

λ′
212 49.1% (−) 1.7% (−) − (5.6%) − (41.1%) − (6.3%) − (46.9%)

λ′
213 49.0% (−) 1.7% (−) − (5.7%) 0.1% (41.0%) − (6.4%) 0.1% (46.9%)

λ′
221 49.1% (−) 1.7% (−) − (5.6%) − (41.0%) − (6.3%) − (47.0%)

λ′
222 49.1% (49.1%) 1.7% (1.7%) − (−) − (−) − (−) − (−)

λ′
223 49.1% (−) 1.7% (−) − (5.7%) − (41.0%) − (6.4%) − (47.0%)

λ′
231 49.1% (−) 1.7% (−) − (−) − (−) − (12.0%) 0.1% (88.0%)

λ′
232 49.1% (−) 1.7% (−) − (−) − (−) − (12.0%) − (88.0%)

λ′
233 49.1% (49.1%) 1.7% (1.7%) − (−) − (−) − (−) − (−)

Table C.5.: Branching ratios of the τ̃1 LSP for different non-zero λ′
2jk couplings at the GUT

scale. The branching ratios are calculated within the mSUGRA parameter Set B for the SUSY
breaking scale Qsusy = 1209 GeV. We assume down-type (up-type) quark mixing. Branching ratios
for non-vanishing λ′

1jk are analogous, with µ replaced by e.
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