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Summary/Abstract 

 

 

The most common characteristics of diverse age-related neurodegenerative diseases are ag-

gregation and accumulation of the misfolded protein in the brain. All of the known neurode-

generative diseases are associated with folding of proteins in fatal ways which finally lead to 

neuronal death. Alzheimer’s disease (AD) is one of these protein conformational diseases 

characterized by two major neuropathological hallmarks: extracellular accumulation of amy-

loid-β (Aβ) peptide in the form of plaques and intracellular tangles consisting of hyperphos-

phorylated tau protein. AD associated extracellular amyloid plaques contain aggregated forms 

of the Aβ in the brain derived from the proteolytic processing of the amyloid precursor pro-

tein (APP) by β- and γ-secretases. The combined activity of β-and γ-secretases results in the 

secretion of Aβ into conditioned media of cultured cells or extracellular fluids of the brain or 

the periphery. Secreted Aβ includes two major variants with 40 (Aβ40) or 42 (Aβ42) amino 

acids. The elongated variant Aβ42 shows an increased aggregation as compared to Aβ40. Ag-

gregation of Aβ is believed to be critical for its neurotoxicity and pathogenesis of AD. This is 

supported by the identification of mutations in APP and presenilins 1 and 2 that increase Aβ 

generation or more importantly, the generation of Aβ42 with an increased propensity for ag-

gregation. However, such mutations are very rare and account for only a very small number 

of cases (<5%). The mechanisms that increase the aggregation and accumulation of Aβ and 

cause the much more common sporadic forms of AD (>95%) are largely unknown. Thus, one 

could assume that the aggregation of Aβ in AD is induced by unknown post-translational 

modification. Therefore, identification of such modifications and molecular mechanisms that 

promote the aggregation of wild-type Aβ in the brain could play important roles in the patho-

genesis of sporadic AD. 

 

 

The purpose of the thesis work was to investigate whether Aβ could undergo phosphorylation 

and to study the extracellular phosphorylation of Aβ and its role in Aβ aggregation. I first car-

ried out in silico analysis to identify the potential phosphorylation sites in Aβ. In vitro phos-

phorylation experiments were carried out using synthetic Aβ variants and purified kinases to 

verify the identified phosphorylation sites and the protein kinases (PKs). The results from the 

in silico analysis indicate that Aβ contains two putative phosphorylation sites (Ser-8 and Ser-

26) and the neighboring amino acids can conform the consensus sequences for variety of PKs. 

In vitro phosphorylation experiments further confirmed that the Aβ40 and Aβ42 can undergo 

phosphorylation by the respective PKs. 

 

 

The second set of experiments were performed to identify the PK expression in human AD 

brain and to study the mechanism of Aβ phosphorylation by extracellular PKs which are pre-

sent at the surface of cultured cells. Several PKs are present at the surface of living cells or 

secreted into extracellular fluids and can phosphorylate cell-surface proteins and soluble ex-

tracellular substrates. In vivo and ex vivo phosphorylation experiments were carried out using 

intact cultured cells, mouse cerebellar neurons and in cerebrospinal fluid (CSF) of AD pa-

tients to identify and characterize the extracellular PKs activity. The extracellular protein 

kinase A (PKA) activity was identified in cultured cells and primary neurons, which could 

phosphorylate the extracellular Aβ. In addition, the presence of PKA like kinase activity was 

identified in CSF of AD patients. These results suggest that Aβ can undergo phosphorylation 

extracellularly by PKA-like kinase. 
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The third part of the work elucidates the effect of phosphorylation on Aβ folding, self-

assembly and its aggregation. Increasing evidence shows that, despite the generic nature of 

amyloid structures, the propensity to form aggregates is strongly influenced by the nature of 

the amino acid side chains along with the properties of the environment in which aggregation 

occurs. Therefore, it was hypothesized that phosphorylation of Aβ could influence the struc-

tural transition resulting in alteration of Aβ folding, assembly and its aggregation. Different 

biophysical studies were carried out using synthetic phosphorylated and non-phosphorylated 

variants of Aβ peptides to document the effect of phosphorylation on Aβ misfolding, oli-

gomerization and aggregation. The results indicate that phosphorylation increases the propen-

sity of Aβ to adopt a β-sheet conformation, resulting in faster self-assembly and thereby pro-

moting oligomerization. These small phosphorylated Aβ (pAβ) oligomeric aggregates could 

serve as a seed or nucleus and increased the rate of aggregation. 

 

 

The fourth part of the thesis work documents the occurrence of phosphorylated Aβ and its 

preferential aggregation and deposition in vivo. To assess the phosphorylation of Aβ in vivo, 

the polyclonal phosphorylation-state Aβ specific antibody was generated and characterized. 

Biochemical and immunohistological staining were carried out using brains of AD transgenic 

(tg) mice and human AD patients employing phosphorylation-state Aβ specific antibody. The 

specific detection of phosphorylated and non-phosphorylated Aβ species in tg mice and hu-

man AD brain indicates the enrichment of pAβ in oligomeric assemblies and preferential ag-

gregation of phosphorylated Aβ in vivo. The quantitative analysis of pAβ in aged tg mice re-

vealed that about 20-25% of extracted monomeric Aβ is in a phosphorylated state. This find-

ing is further supported by the detection of pAβ in neuritic plaques of AD patients which 

could strongly argue in favour of a critical role of pAβ in AD-related neurodegeneration. 

 

 

In summary, the undertaken study shows that extracellular Aβ is phosphorylated by protein 

kinases present at the cell surface and in the cerebrospinal fluid of the human brain. The 

phosphorylation at serine residue 8 increases the propensity of Aβ to adopt β-sheet conforma-

tion and promotes the formation of small oligomeric aggregates that could seed aggregation 

into larger oligomeric and fibrillar assemblies. The specific detection of phosphorylated and 

non-phosphorylated Aβ species in tg mice and human AD brain indicates the preferential ag-

gregation of phosphorylated Aβ in vivo. Thus, the present work highlights the importance of 

extracellular phosphorylation of Aβ which can lead to misfolding and may promote soluble 

oligomeric and fibrillar aggregate formation and thereby trigger the pathogenesis of sporadic 

AD. Hence, targeting extracellular phosphorylation of Aβ could be explored for therapeutic 

or preventive strategies to decrease Aβ aggregation in sporadic AD. In addition, the detection 

of phosphorylated and non-phosphorylated Aβ in biological fluids could also be explored for 

evaluation as biomarkers. Finally, the demonstration of protein kinases in human CSF might 

also stimulate further studies on the physiological and pathophysiological implications of the 

extracellular phosphorylation of peptides and proteins in the human brain. Based on the cur-

rent findings, if more conclusive evidences can be generated employing transgenic animal 

models, which might help to understand the physiological and pathophysiolgical role of pAβ 

in AD. 
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1. INTRODUCTION 

1.1. Protein misfolding, aggregation and age-related neurodegenerative diseases 

Diverse human disorders, including most neurodegenerative diseases are thought to 

arise from misfolding and aggregation of proteins. The pathology of these diseases is be-

lieved to develop from the effect of intra- or extracellular aggregates of misfolded proteins 

(Agorogiannis et al., 2004; Selkoe, 2003; Soto and Estrada, 2008). The information required 

for a polypeptide chain to fold correctly into a three-dimensional structure (‘native structure’) 

which allows it to carry out intricate biological functions is encoded in its primary amino acid 

sequence (Anfinsen, 1973; Fawzi et al., 2008; Herczenik and Gebbink, 2008). The amino 

acid sequence that gives rise to a structural ensemble are thermodynamically stable at physio-

logical pressures, temperatures and solution conditions existent in the normal cellular or ex-

tracellular environment. Destabilizing sequence mutations, chemical modifications or 

changes in protein concentration and solution environment of the protein can shift the equi-

librium from the native state in favor of aggregates, i.e., misfolded states (Dobson, 2003; 

Goedert and Spillantini, 2006; Cellmer et al., 2007; Finder and Glockshuber, 2007; Roy-

chaudhuri et al., 2009). The misfolded aggregates that escape the cellular quality-control 

mechanisms such as chaperone assisted refolding, proteosomal degradation, autophagy and 

ER-associated degradation (ERAD) is the underlying pathology of a wide range diseases 

(Kaganovich et al., 2008; Dobson, 2003; Gregersen et al., 2006). Aggregation of proteins 

could also impair the function of the ubiquitin–proteasome system (UPS), which in turn in-

creases the production of aggregated proteins (Bence et al., 2001; Forloni et al., 2002; Gre-

gersen et al., 2005). The protein aggregates can occur in various different structural appear-

ances with intermediates (oligomers) varying from unordered amorphous aggregates to 

highly ordered fibrils that are called amyloid (Yoshiike et al., 2008). They are generally ‘en-

riched with’ cross-β structures (Fig. 1). These misfolded protein structures (oligomers, amor-

phous aggregates, protofibrils and fibrils) have been found to be associated with various dis-

ease states including age-related neurodegenerative diseases (Selkoe, 2003; Santucci et al., 

2008; Winklhofer et al., 2008; Selkoe, 2004b). Insoluble protein deposits contribute to the pa-

thology of a variety of human brain diseases (Table 1), including the amyloidoses (Fink, 

1998). They can appear as amorphous structures like inclusion bodies or as ordered fibers 

(straight, unbranched, 10 nm wide fibrils) such as amyloid plaques and prion particles 

(Davies et al., 1999; Soto et al., 2006; Prusiner, 1998; McLaurin et al., 2000). 
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Fig. 1: Protein misfolding and aggregation.  
Each protein has an ensemble of possible structures. Proteins undergo conformational changes un-
der certain circumstances and results in unfolding and partial misfolding that is associated with the 
tendency to aggregate. During aggregation, proteins can obtain a range of different structural appear-
ances, which are generally enriched with cross-β sheet structure, including intermediates varying from 
unordered oligomers, amorphous aggregates to ordered protofibrils and fibrils that are called amyloid 
(Figure adapted from Herczenik and Gebbink, 2008). 

 
 

Age-related neurodegenerative diseases are some of the most debilitating disorders, 

affecting thinking, skilled movements, feelings, emotions, cognition, memory and other abili-

ties (Table 1). This pathologically diverse group of diseases includes Alzheimer’s disease 

(AD) and Parkinson’s disease (PD) as well as rarer disorders such as Huntington’s disease 

(HD), amyotrophic lateral sclerosis (ALS), spinocerebellar ataxias and transmissible spongi-

form encephalopathies (TSE). Despite their differences in clinical manifestation and disease 

progression, these disorders share some common features such as, i) their appearance in later 

life, ii) the neuronal loss and synaptic abnormalities and iii) the presence of cerebral deposits 

of misfolded protein aggregates. Compelling data from biochemical, neuropathological and 

genetic studies identifying the mutations in the respective disease-related proteins that are 

found in AD, PD, HD, ALS and TSE respectively, support the involvement of protein mis-

folding, aggregation and amyloid formation (Fig. 2). The fundamental cause of these diseases 

is the cellular inability to degrade misfolded and damaged proteins and formation of cyto-

toxic intracellular and extracellular oligomers and aggregates. The pathology in these dis-

eases is predominantly determined by the cell damage associated with the aggregation proc-

ess, thus exhibiting what can be considered a “gain-of-toxic function” or “loss-of-biological 

function” (Gregersen et al., 2006; Winklhofer et al., 2008). In support of this hypothesis, sev-

eral pathological and clinical features have been observed in transgenic animal models that 



Introduction 

 3 

develop protein aggregates (Hsiao et al., 1990; Gurney, 1994; Games et al., 1995; Schenk et 

al., 1995; Games et al., 1995; Mangiarini et al., 1996; Davies et al., 1997; Masliah et al., 

2000; Gotz and Ittner, 2008; Sathasivam et al., 1999; Davies et al., 1999; Price DL, 2000; 

Chapman et al., 1999). 

 

Table 1: Clinical, pathological and biochemical features of neurodegenerative disorders char-
acterized by the deposition of misfolded abnormal protein aggregates. 

 

 

Disease 

Toxic pro-

tein in-

volved 

Cellular location 

of toxic aggre-

gates 

Affected brain 

regions 
Clinical features 

Alzheimer’s dis-

ease (AD) 
Amyloid-β 

(Aβ) and Tau 

Extracellular Aβ 

plaques and Intra-

cellular tangles 

 

Cerebral cortex, 

Hippocampus, en-

torhinal cortex 

and altered ves-

sels 

Progressive de-

mentia 

Parkinson’s disease 

(PD) 
α-Synuclein Cytoplasmic 

(Lewy bodies) 

Substantia nigra, 

hypothalamus 

Movement disor-

der and dementia 

 

Huntington’s dis-

eases (HD) 

Huntington Nuclear and Cy-

toplasmic inclu-

sions 

Striatum, cerebral 

cortex 

Dementia, motor 

and psychiatric 

problems 

 

Amylotrophic lat-

eral sclerosis 

(ALS) 

 

Superoxide 

dismutase 

Cytoplasmic 

Bunina bodies 

Motor cortex, 

brainstem 

Movement disor-

der 

Transmissible 

spongiform en-

cephalopathies 

(TSE) 

 

Prion protein Extracellular pri-

ons plaques 

Various regions 

depending on the 

disease 

Dementia, ataxia, 

psychiatric prob-

lems or insomnia 

 

Neurodegenerative 

Tauopathies 

For eg., Progres-

sive supranuclear 

palsy (PSP), Corti-

cobasal degenera-

tion (CBD), Pick’s 

disease (PiD) and 

Frontotemporal 

dementia (FTD)  

Tau protein Intracellular 

abnormal 

filamentous tau 

inclusions 

Different regions 

of the brain de-

pending on the 

disease 

Dementia, brain 

degeneration, 

movement disor-

der 
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Alzheimer‘s Aβ plaques and 
Neurofibrillary tangles

AββββNFT

Parkinson‘s Lewy bodies

Amyloid fibrils
Huntington‘s 

intranuclear inclusions

Amyotrophic lateral 

sclerosis aggregates

Prion amyloid plaques

Alzheimer‘s Aβ plaques and 
Neurofibrillary tangles

AββββNFT

Alzheimer‘s Aβ plaques and 
Neurofibrillary tangles

AββββNFT

Parkinson‘s Lewy bodiesParkinson‘s Lewy bodies

Amyloid fibrilsAmyloid fibrils
Huntington‘s 

intranuclear inclusions

Huntington‘s 

intranuclear inclusions

Huntington‘s 

intranuclear inclusions

Amyotrophic lateral 

sclerosis aggregates

Amyotrophic lateral 

sclerosis aggregates

Prion amyloid plaquesPrion amyloid plaques

 

 
 
 
Fig. 2: Misfolded protein aggregates in various neurodegenerative diseases.  

Extracellular amyloid plaques (Aβ) and intracellular neurofibrillary tangles (NFTs) are the neuropa-
thological signature of the Alzheimer’s disease. Intracytoplasmic aggregates are typically present in 
the neurons of people affected by Parkinson’s disease and Amyotrophic lateral sclerosis. Intranuclear 
inclusions of Huntington protein are observed in Huntington’s disease. Transmissible spongiform en-
cephalopathy cases show extracellular prion amyloid plaques in different brain regions. In spite of the 
different protein compositions, the final ultra structure of these protein deposits seems to be similar 
and contain amyloid fibrillar structure under electron microscope (Figure modified from Soto and 
Estrada, 2008). 
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The aggregation of proteins implicated in neurodegenerative disorders have been 

modelled in vitro as well as in vivo. There is accumulating evidence to suggest that the aggre-

gates formed by the different proteins have the similar morphological, structural and staining 

characteristics (Cohen and Calkins, 1959; Sunde and Blake, 1997; Sunde et al., 1997; Kim 

and Takahashi, 2006; Serpell et al., 2000; Serpell and Smith, 2000; Lyubchenko et al., 2006; 

Breydo et al., 2008). Despite the difficulties in high-resolution studies of aggregated proteins 

via conventional methods due to their insolubility and noncrystalline nature, recent studies 

using nuclear magnetic resonance spectroscopy, X-ray diffraction, atomic force microscopy 

and cryoelectron microscope studies have confirmed the cross-β sheet rich structure of pro-

tein aggregates (Dahlgren et al., 2005; Tycko, 2006; Nelson et al., 2005; Sawaya et al., 2007; 

Eisenberg et al., 2006; Serpell et al., 2000; Serpell and Smith, 2000; Makin and Serpell, 

2002).  

Aggregation is well-described as a multi-stage process involving misfolding of free 

monomers, along with one or more assembly steps to form soluble or insoluble protein ag-

gregates (Fig. 3). Generally, the native monomeric protein is mainly composed of α-helical 

and/or unordered structure, whereas the misfolded polymers are rich in β-sheet conformation. 

The conformational changes leading to the formation of extended β-sheets promotes homo-

philic interactions and eventually leads to fibrillogenesis. The fibrils are typically 7–12 nm 

wide and stabilized by an extensive β-sheet structure in which the β-strands are perpendicular 

to the fibril axis (Sunde and Blake, 1997; Sachse et al., 2006; Takano, 2008). Amyloid fibrils 

share certain defining properties which include an unbranched morphology in electron micro-

scope images, pronounced and typically green optical birefringence after Congo Red staining, 

fluorescence after binding to Thioflavin T dye (Kirschner et al., 1987; Inouye et al., 1993; 

Sunde et al., 1997; Serpell and Smith, 2000).  

Kinetic studies have suggested that the protein misfolding occurs first, and then for-

mation of protein oligomer which is a critical event. These oligomers then act as seeds/nuclei 

to further accelerate the protein aggregation. This nucleation-dependent polymerization is the 

basis for the currently accepted model of amyloid formation (Soto et al., 2006; Harper and 

Lansbury, Jr., 1997; Gajdusek, 1994). According to this model, aggregation into fibrils is de-

pendent on both time and concentration of the respective protein. Amyloid fibrils formation 

analogues to protein crystallization are a highly ordered process. Aggregation processes are 

characterized by (a) a slow nucleation phase/lag phase, in which the protein undergoes a se-

ries of unfavorable association steps to form an ordered oligomeric nucleus, (b) a growth 

phase/elongation phase, in which the nucleus rapidly grows and forms larger polymers in the 

saturation phase. Interactions between monomers determine a slow phase (‘lag phase’) in 
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which oligomers are formed, providing an ordered nucleus to catalyze the further growth of 

the polymers finally resulting in mature fibrils (Fig. 3; green line). The initial, slow phase of 

primary nucleation can be shortened by seeding (Fig. 3; Red line), with preformed nuclei 

(Jarrett et al., 1993b; Jan et al., 2008).  

 

 

 

 

 

 
Fig. 3: Kinetics of nucleation dependent amyloid aggregation. 
Amyloid formation consists of three phases; lag phase, elongation phase and saturation phase. In the 
‘lag phase’, oligomeric nuclei are formed in a slow process that involves misfolding of the protein and 
unfavorable intermolecular interactions. Once these seeds are formed, a much more rapid ‘elongation 
phase’, results in amyloid aggregates formation leading to protofibrils and fibrils in saturation phase 
(green line). The rate limiting step in the process is the formation of seeds to direct further aggregation. 
Amyloid formation can be substantially speedup by the addition of preformed seeds (nuclei). The ad-
dition of seeds (nuclei) reduces the lag time and induces faster aggregate formation (red line). 
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1.2. Alzheimer’s disease (AD) 

 AD is a progressive and insidious neurodegenerative disorder of the central nervous 

system and is the most common cause of dementia (Hof et al., 1995; Lobo et al., 2000; 

Schoenberg et al., 1987; Selkoe, 2001a). The German psychiatrist Alois Alzheimer (1864-

1915), after whom the disease was named, first described the clinical and pathological symp-

toms of a case of presenile dementia in a 51 year old female patient (named Auguste Deter) 

almost a century ago. His first presentation of the typical clinical and morphological features 

of AD in a meeting was not considered to be valuable at that time, but it was published a year 

later (Alzheimer, 1907). Clinically, AD is characterized by progressive memory impairment, 

disordered cognitive function as well as altered behavior including paranoia, delusions, im-

pairments of attention, perception, reasoning, loss of social appropriateness and a progressive 

decline in language function (Selkoe, 2001a; Price et al., 1993; Morris, 1996). The daily ac-

tivities, mental functions and normal living become progressively impaired (Forstl and Kurz, 

1999). A state of dementia is identified when these deficits undermine the capacity for inde-

pendent living (Linn et al., 1995; Fox et al., 1998). 

AD directly affects millions of people and indirectly affects the lives of ten millions 

of others who have to deal with many years of cognitive declines of their loved ones (Neet 

and Thinakaran, 2008). It is the most common form of dementia in the elderly accounting for 

over 50% of the typical, late-onset cases of dementia. There are about 28 million AD patients 

world wide with 4.5 million in the USA and 7 million in Europe. The numbers are expected 

to rise as the current population ages. Epidemiological studies indicate that AD type of de-

mentia occurring in mid-to-late life, affects 7–10% of individuals >65 years of age and ap-

proximately 40% of persons >80 years of age (Pfeffer et al., 1987; McKhann et al., 1984; 

Bachman et al., 1992; Evans et al., 1989; Hy and Keller, 2000). It has been known for several 

decades that AD can occur in familial AD (FAD) forms which have an autosomal dominant 

mode of inheritance (<5%). However, the largest proportion of AD cases are sporadic (>95%), 

occurring without a clearly defined etiology (Selkoe, 1994; Lendon et al., 1997). FAD is 

clinically and pathologically indistinguishable from sporadic AD, except for the early age of 

onset (Lehtovirta et al., 1996; Lippa et al., 1996). 
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1.2.1. Neuropathological hallmarks of AD    

Microscopically, the AD brain is characterized by the presence of extracellular amy-

loid plaques and intraneuronal neurofibrillary tangles (Fig. 4). Extracellular amyloid plaques 

display a broad range of morphological and biochemical characteristics and contain numer-

ous proteins, the principle amongst them being the Aβ (Glenner and Wong, 1984a; Masters et 

al., 1985; Glenner et al., 1984). Classical senile or neuritic plaques are multicellular lesions 

containing extracellular deposits of Aβ that include abundant β-amyloid fibrils (7-12 nm) in-

termixed with non-fibrillar forms of the Aβ peptide. Aβ is a ~ 4 kDa protein with a common 

core sequence but heterogeneous N- and C-termini. The most common form of Aβ is 40 

amino acids long and is called Aβ1-40. A less abundant form i.e., Aβ1-42, differs only by 

having two additional amino acid residues at the C-terminus, is particularly associated with 

the disease (Jarrett et al., 1993b; Burdick et al., 1992; Jarrett et al., 1993a; Bentahir et al., 

2006). Compact, neuritic amyloid plaques stained by thioflavin T and Congo red–positive fi-

brillar deposits contains both Aβ1-40 and Aβ1-42 peptides (Iwatsubo et al., 1994). Neuritic 

plaques are surrounded by variable numbers of dystrophic neurites, both axonal terminals and 

dendrites. Many such plaques contain activated microglial cells situated near the amyloid 

core, as well as reactive astrocytes around the periphery of the plaque (Itagaki et al., 1989; 

Wisniewski et al., 1989; Meda et al., 2001; Farfara et al., 2008). Although many plaques with 

these features can be found in the AD brain, an even larger number of deposits seem to lack 

surrounding dystrophic neurites or glia. These lesions are called preamyloid or diffuse 

plaques, where the Aβ occurs in a non-fibrillar, less dense and amorphous form in the neu-

ropil (Tagliavini et al., 1988; Yamaguchi et al., 1988; Yamaguchi et al., 1989). These imma-

ture deposits are detected in the brains of young patients with Down’s syndrome before the 

manifestation of AD-type dementia (Lemere et al., 1996). As a result, diffuse plaques are 

considered to be precursors of mature neuritic plaques. Besides diffuse and compact plaques, 

extracellular Aβ deposits often occur in the walls of cerebral and microvascular lesions asso-

ciated with cerebral amyloid angiopathy (Mandybur, 1975; Vinters et al., 1988; Kumar-Singh, 

2008; Thal et al., 2008).  

The second neuropathological hallmarks are the neurofibrillary tangles (NFTs). They 

are intracellular cytoplasmic accumulations consisting of hyperphosphorylated isoforms of 

the microtubule-associated protein tau and are found frequently proximate to amyloid depos-

its (Wood et al., 1986; Kosik et al., 1986). They are filamentous structures composed of 

straight filaments and paired helical filaments (PHFs) of 10 nm and are located in cell body 

inclusions, neuritic structures and dystrophic neurites associated with plaques (Goedert et al., 
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1988; Braak et al., 1999). NFTs generally occur in large numbers in the AD brain, particularly 

in limbic and paralimbic structures such as the entorhinal cortex, hippocampus and amygdala. 

Intensive studies have shown that the tau protein, which normally enhances the polymeriza-

tion of tubulin into microtubules and acts to stabilize these organelles in neurons, becomes 

excessively phosphorylated, which reduces binding to microtubules (Lovestone and Reynolds, 

1997). The tau and tangle hypothesis argues that in AD the normal role of tau in stabilizing 

microtubules is impaired, and in diseased neurons microtubules are replaced by tangles (Gray 

et al., 1987). The resultant microtubule dysfunction in these neurons eventually leads to the 

degeneration of dendrites and a loss of synapses at their axonal projection targets. The obser-

vation that NFT form in some cell bodies whose axons terminate in regions containing amy-

loid-bearing neuritic plaques, suggests that NFT formation in some perikarya and neurites 

may be related to events associated with amyloid plaque formation in the AD brain (Hyman 

et al., 1986; Rasool et al., 1986). Indeed, a growing body of genetic and biochemical evi-

dence suggests that NFTs are downstream of Aβ (Oddo et al., 2003). Specifically, experimen-

tal evidence suggests that abnormal Aβ accumulation triggers tau pathology (Gotz et al., 

2001; Lewis et al., 2001), and tau has been proposed as an essential mediator of Aβ-induced 

neurotoxicity (Alexander et al., 2002). Aβ has been shown to induce the calpain-mediated 

cleavage of tau, leading to the generation of a toxic 17-kDa fragment (Park and Ferreira, 

2005), and to induce abnormal tau phosphorylation at disease-relevant sites (Busciglio et al., 

1995; Greenberg et al., 1994). However, the existence of prominent filamentous tau inclu-

sions and brain degeneration in the absence of Aβ deposits are also shown to be the hallmarks 

of neurodegenerative tauopathies such as sporadic corticobasal degeneration, progressive su-

pranuclear palsy and Pick’s disease, as well as by hereditary frontotemporal dementia and 

parkinsonism linked to chromosome-17 (FTDP-17) (Lee et al., 2001). Tau appears to play a 

central role in the memory deficits in certain transgenic mouse models of AD (Roberson et al., 

2007). A recent study even suggests that tau phosphorylation is the limiting factor in Aβ-

induced neurotoxicity (Leschik et al., 2007). Thus, recent findings led to the proposal of a 

hypothesis called "dual pathway" model of causality in AD, whereby Aβ and tau can be 

linked by mechanisms driven by a common upstream molecular defects (Small and Duff, 

2008).  
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Fig. 4: Neuropathological hallmarks of AD.  

A) Immunohistochemical staining of a brain section from human AD patient using anti-Aβ antibody 

demonstrating classic neuropathological lesions – Aβ plaques. B) Bielschowsky’s silver staining of an 

AD brain section, depicting Aβ plaque (red arrows) and NFTs (red arrow heads) respectively. C) Draw-
ings indicating the progressive neuronal cell loss and the related reduction of specific synaptic con-
nections (Figure A, B and C are adapted from Selkoe et al.,1998 and http://www.alzforum.org/). 

 

 

Neuronal loss, synaptic alteration and cholinergic deficits 

In addition to plaques and tangles, AD is predominantly characterized by progressive 

neuronal loss and neuronal degeneration in the brain. AD has been suggested to be a form of 

neuroplasticity failure (Mesulam, 1999; Selkoe, 2002). Consistent with this, the potential 

neuroplasticity in the adult brain occurs unevenly in different regions, with synaptic plasticity, 

axonal and dendritic remodeling and synaptogenesis (Arendt, 2001). Recent research has ex-

amined the potential importance of soluble species of Aβ in synaptic dysfunction, long before 

fibrillary Aβ is deposited and neurodegenerative changes occur (Lue et al., 1999; McLean et 

al., 1999; Lacor et al., 2007). In addition, cognitive decline can also be related to the disrup-

tion of the structural integrity of synapses, with most significant decrease in presynaptic ter-

minal densities in the frontal cortex and the hippocampus. Also in regions with many neuritic 

plaques, synaptic density is strongly decreased (Terry et al., 1991; West et al., 1994; Gomez-

Isla et al., 1996; Scheff et al., 1990). Neuronal loss has been observed in a number of cortical 

and subcortical regions within the neocortex, the frontal and the temporal lobes. Further, 

massive neuronal loss is regularly observed in superficial enthorinal cortex and in the hippo-

campal efferent area, the subiculum. Neuronal loss, vulnerability of particular memory-

focused synapses to degeneration (Selkoe, 2002; Scheff and Price, 2003), and synapse loss 

are considered to be the best correlate of AD dementia (DeKosky and Scheff, 1990; Terry et 

al., 1991).  

Besides neuronal loss, AD has also been correlated with a synaptic dysfunction in the 

cholinergic system (Bowen et al., 1992). A deficit in central cholinergic transmission caused 

by degeneration of the basal forebrain nuclei is an important pathological and neurochemical 
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feature of AD. The brains of AD patients exhibit a significant loss of choline acetyltransferase 

(ChAT) activity and this decrease correlates with the cognitive impairments (Whitehouse et 

al., 1986). Selective loss of different subtypes (α7 or α4β2) of nicotinic ACh receptors 

(nAChRs) in AD brains have been reported (Teaktong et al., 2004; Wevers and Schroder, 

1999; Pakaski and Kalman, 2008). There is evidence of a role for these receptors in the defi-

cits in memory and cognition. Progressive loss of nicotinic receptors over the disease course 

of AD has also been described (Newhouse et al., 1997). Recent evidences show that choli-

nesterase (ChE) inhibitors can interfere with the progression of AD, proving the cholinergic 

hypothesis in AD (Sugimoto, 2008). 

 

1.2.2. The Amyloid Precursor Protein (APP) and generation of Aββββ 

 The partial purification of Aβ peptides from the microvasculature of AD brains by 

Glenner and Wong initiated AD research at the molecular level (Glenner and Wong, 1984a). 

The purification of the Aβ protein from meningovascular amyloid deposits in AD and Down’s 

syndrome as well as its sequencing and the successive observation that Aβ was also the sub-

unit of the plaque amyloid (Masters et al., 1985; Selkoe et al., 1986), enabled the successful 

cloning of the gene encoding the APP (Kang et al., 1987). APP is a type I single-

transmembrane, receptor-like glycoprotein that is expressed ubiquitously in neuronal and 

non-neuronal cells. Aβ is derived from its large precursor protein by sequential proteolytic 

cleavages (Fig. 5). The heterogeneity of APP arises from alternative splicing (yielding 3 ma-

jor isoforms of 695, 751, and 770 residues) as well as by a variety of posttranslational modi-

fications, including the addition of N- and O-linked sugars, sulfation, and phosphorylation 

(Selkoe, 2001a). Alternatively spliced forms of the APP containing 751 or 770 amino acids 

are widely expressed in cells throughout the body and occur in neurons. However, neurons 

express much higher levels of the 695-residue isoform, which is generally observed at very 

low abundance in nonneuronal cells (Haass et al., 1991). The difference between the 751-, 

770- and 695-residue forms is the presence of an exon that codes for a 56-amino acid motif 

that is homologous to the Kunitz-type of serine protease inhibitor (KPI) domain, indicating 

one potential function of these longer APP isoforms (751-, 770-). Indeed, the KPI domain 

containing forms of APP found in human platelets serve as inhibitors of factor XIa, which is a 

serine protease in the coagulation cascade (Smith et al., 1990).  

 APP has been identified in many vertebrate species and is a member of an evolution-

arily conserved protein family. Search for genes implicated in AD led to the identification of 

the mammalian homologues, APLP1 (amyloid precursor-like proteins 1) and APLP2 (Wasco 

et al., 1993; Wasco et al., 1992). APP-like proteins (APPL) have also been identified in Dro-
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sophila melanogaster (Rosen et al., 1989; Luo et al., 1990), and Caenorhabditis elegans 

(APL-1) (Daigle and Li, 1993). All of the three mammalian proteins (APP, APLP1 and 

APLP2) display substantial homology at the primary amino acid level, especially within a 

part of the ectodomain encoded by exons 1 and 2 and their intracellular domains. However, 

both APLPs lack the Aβ domain (Walsh et al., 2007). 

 A variety of physiological properties of APP and their metabolites have been de-

scribed, however, a definitive cell biological role has yet to be ascribed to APP, APLP and its 

metabolites (Reinhard et al., 2005; Zheng and Koo, 2006). The physiological roles for APP in 

transmembrane signal transduction (Nishimoto et al., 1993), calcium metabolism (Mattson et 

al., 1993b; Mattson et al., 1993a), neuritic outgrowth (Perez et al., 1997), and synapse forma-

tion have been suggested (Priller et al., 2006). Potential functional motifs within APP, identi-

fied by the presence of consensus sequences, suggest roles in metal ion binding (Bush et al., 

1993), heparin binding (Schubert et al., 1989b), cell adhesion as a receptor for a currently un-

recognized ligand (Schubert et al., 1989a), and in regulating cell growth (Saitoh et al., 1989). 

Recently, studies have suggested that Aβ, in addition to its neurotoxic effects, also may play a 

beneficial role, e.g., by limiting neuronal excitation (Kamenetz et al., 2003).  

 Various researchers have generated APP- or APLP- knock-in and knock-out trans-

genic animals to better understand the in vivo function of these proteins (Anliker and Muller, 

2006; Reinhard et al., 2005; Nikolaev et al., 2009). Single disruption of APP, APLP1 or 

APLP2 each cause minor abnormalities that are largely distinct for the different family mem-

bers (Heber et al., 2000; Seabrook et al., 1999). The phenotypes of the single KO (knockout) 

mice were relatively mild, in vivo and in vitro studies suggest that APP, APLP1 and APLP2 

function to promote neurite outgrowth, neural cell migration and copper homeostasis and that 

the rather benign phenotypes seen in KO mice may results from functional redundancy be-

tween APP, APLP1 and APLP2 (Walsh et al., 2007; Zheng and Koo, 2006). In contrast, 

APLP2
-/-

/APP
-/-

 mice and APLP2
-/-

/APLP1
-/-

 mice each show a lethal phenotype (postnatal 

day 1), where as APLP1
-/-

/APP
-/-

 mice are apparently normal. Interestingly, no detectable 

gross or histopathological abnormalities were observed in any of double knock-out lines, 

where as triple KO mice (APP
-/-

/APLP1
-/-

/ APLP2
+/-

 and APP
-/-

/APLP1
-/-

/ APLP2
-/-

), which 

die in utero and show cortical dysplasia resembling lissencephaly and cranial abnormalities. 

Recent study using knock-in mice report that APPsα domain is sufficient to rescue prominent 

abnormalities of APP-KO mice and suggest that APPsα is sufficient to mediate the (postnatal) 

physiological functions of APP (Ring et al., 2007; Tamboli et al., 2008). These results from 

different transgenic mice provide genetic evidence for at least some distinct physiological 

roles for APP and APLP2 and suggest that APLP2 might have key physiological role among 
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the family members. This physiological key role of APLP2 is further corroborated by the le-

thality of APP
-/-

/APLP1
-/-

/ APLP2
+/-

 mice revealing haplosufficiency of a single APLP2 allele 

in the absence of APP and APLP1 (Herms et al., 2004). 

 APP is trafficked through the secretory and recycling/endocytic pathways, where it 

undergoes posttranslational processing including a variety of proteolytic cleavage events. The 

signal peptide is cleaved after the co-translational translocation to the membrane of the endo-

plasmic reticulum (ER). Classical N- and O-glycosylation, tyrosine sulfation, sialylation and 

phosphorylation occur during transit through the ER and the Golgi apparatus (Hung and 

Selkoe, 1994; Suzuki et al., 1994; Weidemann et al., 1989). APP is also shown to be phos-

phorylated in both the extracellular and intracellular domains (Hung and Selkoe, 1994; Walter 

et al., 1997a; Flajolet et al., 2007; da Cruz e Silva EF and da Cruz e Silva OA, 2003). In addi-

tion, some APP molecules are chondroitin-sulfated in their ectodomains (Shioi et al., 1993). 

 The proteolytic processing events underlying APP metabolism and Aβ generation 

have been studied intensely. Both during and after its transport through the secretory pathway 

to the cell surface, a subset of APP molecules undergoes specific endoproteolytic cleavage by 

the secretases termed α-, β- and γ-secretases. APP has a short half-life and is metabolized 

rapidly by two different pathways in all cells: the non-amyloidogenic/α-secretase pathway or 

the amyloidogenic/β-secretase pathway (Fig. 5). The proteolytic pathways are mediated by 

three distinct cleavage events. The first cleavage of APP by either α- or β-secretase is a pre-

requisite for the γ-secretase cut, which takes place after either of the proteolytic processing (α 

or β) (Walter et al., 2001b).   

 α-secretase cleaves APP between amino acid residues Lys
16

 and Leu
17

 of the Aβ re-

gion (Lys612 and Leu613 of full length APP695), and therefore precludes Aβ production 

(Esch et al., 1990). This cleavage creates a large, soluble ectodomain fragment (APPsα) 

which is subsequently released into vesicle lumens and eventually secreted, and a membrane-

bound 83 amino acid long C-terminal fragment (CTF; CTFα; C83; α-stub). This cleavage is 

mediated by members of the ADAM (a disintegrin and metalloproteinases) family of zinc 

metalloproteases, the most relevant of which appear to be ADAM 10 (Lammich et al., 1999) 

and ADAM 17 (Buxbaum et al., 1998). The CTFα undergoes subsequent cleavage by γ-

secretase to generate p3 and the intracellular C-terminal domains (ICDs) (Selkoe, 2001a). 

 

 

 

 



Introduction 

 14 

   

 Non-amyloidogenic pathway       |  Amyloidogenic pathway   

 

APPS-ββββ

p3

Aß

APP

αααα

ββββ

γγγγ

CTFαααα CTFββββ

APPs-αααα

AICD AICD

γγγγ

β-secα-sec γ-secγ-sec

γγγγ

ζζζζ εεεε

 

 
 
 
Fig. 5: Proteolytic processing of APP by secretases.  

In non-amyloidogenic pathway, APP is first cleaved by α-secretase within the Aβ domain and then by 

γ-secretase to generate non-amyloidogenic p3 (red). In the amyloidogenic pathway APP is first 

cleaved by β-secretase and then by γ-secretase to generate Aβ (green and red). Additionally γ-

secretase can also cleave APP at ε- and ζ-cleavage site as indicated. ε-cleavage of CTFα/β 
generates AICD. Arrowheads indicate the respective cleavage sites within APP molecule (Figure 
adapted from Walter et al., 2001b). 
 

  

In contrast, the cleavage leading to Aβ production is mediated by a single aspartyl 

protease named BACE1 (β-site APP Cleaving Enzyme-1; β-secretase). The β-secretase cuts 

immediately N-terminal to the Aβ domain (Met596 and Asp597 of full length APP695). 

Thereby producing a slightly smaller, truncated form of soluble APP (APPsβ); which is se-

creted (shedding) from the cell surface (Roch et al., 1993), leaving a 99 amino acid (CTFβ; 

C99; β-stub) membrane bound fragment (Cai et al., 2001; Vassar et al., 1999). This C-

terminal 99–amino acid stub is subsequently cleaved by γ-secretase to produce Aβ and gener-

ate AICD (Schroeter et al., 2003). In addition, BACE1 can also cleave within the Aβ domain 

(β′ cleavage site). This second cleavage is less-favored and takes place at a site 11 residues 

further C-terminal (between Tyr606 and Glu607 of full length APP695), producing C89 and a 

slightly longer APPsβ. γ-secretase cleaves at multiple sites within the transmembrane domain 

of APP, generating Aβ peptides ranging in length from 38-43 residues. Depending on the ex-

act point of cleavage by γ-secretase, two main forms of Aβ, comprising of either 1-40 or 1-42 
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amino acid residues, are produced. Nearly 90% of secreted Aβ ends in residue 40 (Aβ1-40) 

whereas Aβ1-42 accounts for less than 10% of secreted Aβ. Moreover, minor amounts of 

shorter Aβ peptides such as Aβ1-38 and Aβ1-37 have also been detected. The proportion of 

Aβ1-42 to Aβ1-40 formed is particularly noteworthy, because the Aβ1-42 is far more prone to 

oligomerize and form fibrils than the more abundantly produced Aβ1-40 peptide. FAD-linked 

mutations in APP just beyond the C-terminus of Aβ domain increase Aβ1-42 production. In-

triguingly, FAD-linked mutations in PS1 and PS2 influence γ-secretase cleavage by elusive 

mechanisms that variably influence the cleavage site specificity, in general favoring cleavage 

at position 42 relative to that of 40, thus increasing the Aβ1-42/1-40 ratio (Selkoe and Wolfe, 

2007). In addition there are several N-terminal heterogenous truncated Aβ isoforms that have 

been detected in human brain and such heterogeneity is known to affect the toxicity of Aβ 

peptides (Pike et al., 1995; Thal et al., 2006; Schilling et al., 2008). For eg., several isoforms 

truncated at the N-terminus [Aβ4-40/42, Aβ8-40/42, Aβ12-40/42, and Aβ17-42(p3)] aggre-

gate more readily and are more toxic than Aβ1-42 (Geddes et al., 1999; Tekirian, 2001). 

          

1.2.3. Genetic factors of AD 

AD is a genetically complex and heterogeneous disorder. In spite of the complete etio-

logical picture of AD remaining unresolved; the inheritance of some genetic factors appears 

to play a major role in predisposing the disease. Three genes are currently known to cause 

familial early-onset AD (<65 years): the APP and the presenilins (PS1 and PS2). The muta-

tions in these genes cause over production of total Aβ or Aβ1-42 generation, resulting in 

change in Aβ1-42/Aβ1-40 ratios and aggregational properties of Aβ. For the much more 

common late-onset disease (>65 years), only the ApoE gene has repeatedly associated to AD 

where the e4 allele increases disease risk and decreases the age of onset (Selkoe, 2000). The 

four genes are located on the chromosomes 21, 14, 1 and 19 respectively (Table 2). 

Studies on the APP as a genetic determinant of AD began with the observation that 

individuals with Down’s syndrome developed the clinical and pathological features of AD 

(Mann et al., 1985; Mann, 1988). These data pointed to the involvement of chromosome 21 

in AD, leading to the first genetic linkage discovery between a locus on chromosome 21q and 

autosomal dominant early-onset FAD (St George-Hyslop et al., 1987). Sequencing of the APP 

gene and screening for mutations led to the discovery of several missense mutations in fami-

lies with the early onset AD (Goate et al., 1991; Hendriks et al., 1992; Mullan et al., 1992). 

Although the APP mutations account for less than 0.1% of all AD cases (Tanzi and Bertram, 

2001), they proved to be highly informative about the general mechanisms of the disease. 

Missense mutations in PS1 and PS2 proteins also cause early onset of AD, usually between 
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35 and 60 years of age (Levy-Lahad et al., 1995; Sherrington et al., 1995). Until now, more 

than 150 missense mutations have been identified in PS1 and at least 6 have been identified 

in PS2. These tend to cluster within and adjacent to the 8 transmembrane domains of PS pro-

tein (Selkoe, 2004a). The apolipoprotein E4 (ApoE4) allele was discovered as a genetic 

polymorphism which conferred an increased risk of Alzheimer disease (Schmechel et al., 

1993; Strittmatter et al., 1993; Saunders et al., 1993). Inheritance of 1 or 2 apolipoprotein E4 

alleles is a far more prevalent genetic basis for Alzheimer disease. ApoE4 hasten the disorder 

primarily in patients who are in their sixties and seventies, thereby lowering the typical age of 

onset of late-life AD (Saunders et al., 1993). 

 

Table 2: Genetic factors predisposing to AD: Relationships to the Aβ phenotype (Adapted from 
Selkoe, 2004a). 

 

 

Fault in the Gene Chromosome 
Age of onset 

(years) 
Aβ phenotype 

Amyloid precursor 

protein (APP) muta-

tions 

21 43-62 

 

Altered APP processing, 

Increased Aβtotal production 

and leading to aggregation. 

Aβ1-42/Aβ1-40 ratio increased 

Presenilin 1 (PS1) 

mutations 
14 29-62 

 

Increased Aβ1-42 production 

and reduction in Aβ1-40 re-

sulting increase in  

Aβ1-42/Aβ1-40 ratio 

Presenilin 2 (PS2) 

mutations 
1 40-88 

 

Increased Aβ1-42 production 

and reduction in Aβ1-40 re-

sulting increase in  

Aβ1-42/Aβ1-40 ratio 

Apolipoprotein E4 

(ApoE4) polymor-

phism 

19 >65 

 

Increased Aβ plaques den-

sity and vascular deposits 

and Aβ fibrillization 

 

 

A large number of additional genes have been suggested to be associated with AD.  

However, most lack confirmation in independent studies or their replications have been in-

consistent. AlzGene database provide a comprehensive, unbiased and regularly updated col-

lection of genetic association studies performed on Alzheimer’s disease.  

(http://www.alzforum.org/res/com/gen/alzgene). 
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1.2.4. Aβ toxicity: The importance of structure 

 

 Aβ is generated during normal cellular metabolism and is present in the brains and se-

creted to the extracellular space of the human brain and also found in cerebrospinal fluid 

(CSF) of normal humans throughout life (Haass et al., 1992; Seubert et al., 1992; Tamaoka et 

al., 1997; Brody et al., 2008). Several lines of evidence indicate the physiological role of Aβ 

in neuronal activity (Pearson and Peers, 2006). Thus, the presence of Aβ in the CSF of non-

demented individuals and in the media from neuronal cell cultures during normal metabolism 

indicates that Aβ has a role in the central nervous system in addition to having a potential 

pathological role in AD (Brody et al., 2008). Therefore, the mere presence of Aβ simply does 

not cause neurodegeneration; rather neuronal injury appears to develop because of the or-

dered self-association of Aβ molecules rich in β-sheet structures and becoming neurotoxic. 

This self-association of Aβ may differ either quantitatively or qualitatively from its effects 

when the levels are elevated that are normally seen during disease conditions (Pike et al., 

1991; Pike et al., 1993; Busciglio et al., 1992). 

 In the past decade, Pike et al., (Pike et al., 1991), in a landmark discovery established 

that innocuous monomers of Aβ become neurotoxic and this was further confirmed from 

studies by Yanker et al., (Lorenzo and Yankner, 1994), indicating that monomeric Aβ become 

neurotoxic only upon self-association. This is well supported by the recent research on amy-

loid toxicity in resolving the specific neurotoxic structures derived from Aβ’s self-association 

and their relative contributions to AD pathogenesis (Haass and Selkoe, 2007).  

Due to limitations in the characterization of the assemblies that were formed in vitro, 

it was assumed that since amyloid fibrils were detectable; these assemblies mediated the ob-

served toxicity. Current in vitro, in vivo and ex vivo studies provide evidence of the involve-

ment of soluble, non-fibrillar oligomeric Aβ in toxicity. These findings are further supported 

by recent studies showing the robust correlation between soluble Aβ levels and the extent of 

synaptic loss and severity of cognitive impairment (Lacor et al., 2007; Lacor et al., 2004; 

Haass and Selkoe, 2007). Both control and AD brain contain a continuous distribution of Aβ 

species from monomer up to oligomers of higher MW of 100 kDa, with the major contribu-

tion coming from low molecular weight (MW) oligomers ranging from dimers to octamers. 

Western blot analysis of AD brain extracts revealed the presence of variable proportions of 

monomeric, dimeric and trimeric Aβ species and showed their potential toxic nature (McLean 

et al., 1999). Such sodium dodecyl sulfate (SDS)-stable low MW oligomers have also been 

detected in human CSF by LC-MS and appear to represent highly stable non-covalently asso-

ciated dimers (Vigo-Pelfrey et al., 1993). Genetically modified Chinese Hamster Ovary 
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(CHO) cell line expressing human APP  also forms similar SDS-stable oligomers (Walsh et 

al., 2002a). The presence of similar SDS-stable dimers and trimers in the soluble fraction of 

the human brain and in extracts of amyloid plaques, suggests that SDS-stable low MW oli-

gomers of Aβ are the fundamental building blocks of insoluble amyloid deposits and could be 

the earliest mediators of neuronal dysfunction (Shankar et al., 2008; Townsend et al., 2006; 

Roher et al., 1996).  

Studies using synthetic Aβ peptides provide additional support for the role of prefi-

brillar and fibrillar Aβ assemblies in AD pathogenesis. The first nonfibrillar assemblies iden-

tified were protofibrils; these heterogeneous structures range from spherical assemblies of ∼5 

nm in diameter to short, flexible rods of up to 200 nm in length (Harper et al., 1997; Walsh et 

al., 1997). The protofibrils and fibrils are principally different from each other depending on 

their size and relative solubility. The protofibrils appear to behave as true fibrils intermediates 

in that they can both form fibrils and dissociate to low MW species. They are known to be 

neurotoxic, acute application of protofibrils in vivo rapidly alter the synaptic physiology, 

whereas chronic application causes cell death (Hartley et al., 1999; Walsh et al., 1999; Hart-

ley et al., 2008). The second soluble, nonfibrillar assemblies of synthetic Aβ-derived diffus-

ible ligands (ADDLs), appears in the form of spheres with a diameter of ∼5nm. ADDLs are 

formed only under certain specific in vitro conditions but can cause neuronal death and block 

long-term potentiation in ex vivo preparations (Lambert et al., 1998). A recent study reported 

that synthetic ADDL preparations can bind excitatory synapses and cause a reduction in spine 

density, similar to the findings observed with soluble Aβ oligomers secreted in cell culture 

(Lacor et al., 2007). 

Over the past decade, increasing attention has been turning towards small oligomeric 

aggregates before they could assemble into amyloid fibrils or plaques (Ross and Poirier, 

2005; Deshpande et al., 2006). Data that have emerged from various in vitro (Oda et al., 

1995; Walsh et al., 1997; Lambert et al., 1998; Hartley et al., 1999; Townsend et al., 2006), 

and in vivo studies suggest that oligomeric, pre-fibrillar Aβ intermediate assemblies are po-

tent neurotoxins and are therefore thought to be the key effectors of neurotoxicity in AD 

(Haass and Selkoe, 2007; Selkoe, 2008; Klein et al., 2001; Walsh and Selkoe, 2007). In trans-

genic mice expressing the human APP, neurological deficits develop even before amyloid de-

posits occur (Mucke et al., 2000). It has been shown recently that oligomers of Aβ inhibit 

long-term potentiation in vivo (Walsh et al., 2002a). 

Various reports indicating the conversion of peptides from their soluble monomeric 

functional forms to soluble oligomers later into well-defined fibrillar aggregates are a charac-

teristic process in the AD pathogenesis (Roychaudhuri et al., 2009; El-Agnaf et al., 2003; 
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Walsh and Selkoe, 2007; Walsh et al., 2002b; Walsh and Selkoe, 2004). It is now recognized 

that the low MW soluble oligomers which are capable of forming high MW aggregates are 

the most toxic Aβ peptide species, found in the brains of patients with AD could contributes 

to the pathogenesis of the disease (Shankar et al., 2008; Klyubin et al., 2008). Dynamic solu-

ble oligomeric Aβ pools exist in AD and are well correlated to disease severity. Thus, con-

verging lines of evidence suggest that progressive accumulation of the Aβ and its self-

association to form several different assembly forms (aggregates) plays a central role in the 

pathogenesis of AD (Fig. 6). The pathological accumulation of Aβ in brain includes not only 

the self-association and formation of toxic Aβ aggregates but also decreased capability of the 

body to degrade Aβ oligomers by different proteases (Tanzi et al., 2004; Selkoe, 2001b). Pro-

teolysis of Aβ by variety of proteases is reported to be highly dependent upon aggregation 

state. It is shown that Aβ oligomers and aggregates tend to be resistant to variety of proteases 

(Betts et al., 2008; Hartley et al., 2008).  

There is an increasing evidence that amyloid fibrils and soluble oligomeric intermedi-

ates have a common structure and pathway of aggregation in many of the observed degenera-

tive diseases. Although such diseases are associated with different proteins, they share similar 

pathological features. Evidences have come from the discovery of antibodies that recognize 

generic epitopes on all types of amyloid fibril (O'Nuallain and Wetzel, 2002; Kayed et al., 

2007)  and soluble oligomers (Kayed and Glabe, 2006), independently of their specific amino 

acid sequences. These similarities might be due to underlying commonalities in the pathway 

of aggregation and the structures of the various aggregation products. This realization not 

only indicates that assemblies produced by different disease-causing amyloid proteins might 

initiate similar cytotoxic mechanisms, but also raises the possibility of targeting their com-

mon structures for therapeutic treatment  (Glabe, 2006).  
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Fig. 6: The conformational alteration and formation of toxic Aββββ intermediates. 
Conformational change of the monomer, perhaps with several possible abnormal conformations, initi-
ates the aggregation process. The misfolded monomer acquires the ability to self assemble into 
higher-order structures. Aggregation starts as soon as there is an association of two or more abnor-
mal monomeric proteins including dimers, trimers, tetramers and larger oligomers. Fibrils are formed 
by the linear addition of monomers through intermediate oligomeric assemblies, or species called pro-
tofibrils. Oligomers or protofibrils might be capable of forming ADDLs. It is currently proposed that the 
early species in the aggregation process are more toxic than large aggregates (fibrils). 
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1.2.5. The “Amyloid hypothesis” or “Aββββ hypothesis” 

 The understanding of molecular mechanisms involved in AD has increased signifi-

cantly over the past two decades. This has led to the proposal of several hypotheses responsi-

ble for the AD disease pathogenesis. Especially the “Aβ hypothesis” and “neuronal cytoskele-

ton degeneration hypothesis”, have been widely discussed, which emphasize the critical role 

of Aβ in neurodegeneration and tau in axonal transport respectively (Hardy and Selkoe, 2002). 

In spite of other hypotheses such as cholinergic system dysfunction (Francis et al., 1999), 

Ca
2+ 

signaling deficits (Mattson, 2002), NMDA receptor hypofunction, disruption of APP 

signaling and cell cycle abnormalities, and mitochondrial dysfunction have been put forward 

(Swerdlow and Khan, 2004). However, none of the hypotheses is clinically proven. Despite 

the several perspectives on the deficiencies in hypotheses, a large body of evidences from 

neuropathological, biochemical, genetic, cell biological and even therapeutic studies in hu-

mans during the last 25 years support the “Aβ hypothesis”(Hardy, 2006). 

 The “Aβ hypothesis” states that AD is initiated by the accumulation, aggregation and 

deposition of the toxic Aβ peptide, leading to an impaired cell-cell communication, compro-

mising the synaptic function, and eventually causing the death of the neurons in the brain (Fig. 

7). The strongest evidence for the “Aβ hypothesis” comes from the studies of rare FAD cases. 

Based on the fact that all the identified FAD mutations in the APP gene which are found clus-

tered around or within the Aβ region affect total Aβ production, increase Aβ1-42/Aβ1-40 ra-

tio and increase the aggregation properties of Aβ (Levy et al., 1990; Chartier-Harlin et al., 

1991; Goate et al., 1991; Citron et al., 1992). Other multiple factors which affect Aβ genera-

tion, clearance and deposition are believed to be in the onset of sporadic forms of AD. In 

support, experiments employing transgenic animal models such as APP tg mice and Droso-

phila harboring human mutant APP showed a time-dependent increase in extracellular Aβ 

production and aggregation and develop certain neuropathological and behavioral changes 

similar to those observed in AD (Gotz and Ittner, 2008). In vivo, seeded aggregation of Aβ is 

seen after injecting AD brain extracts into the brains of nonhuman primates (Ridley et al., 

2006) or APP-transgenic mice (Kane et al., 2000). Finally, cerebral β-amyloidogenesis in 

transgenic mice was induced by exogenously injected Aβ purified from AD patients and 

transgenic mice (Meyer-Luehmann et al., 2006).Various factors such as the age, ischemia, 

higher caloric intake, head injury, inflammation, etc. either in concert with ApoE or alone 

could further modify Aβ metabolism and deposition (Behl, 2005). The toxicity of the Aβ pep-

tide has been demonstrated by its ability to interfere with many physiological processes such 

as apoptosis, Ca
2+

 storage and release, proteosomal activity, receptor endocytosis as well as 
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synaptic functions such as the long-term potentiation (LTP). There are reports indicating the 

role of Aβ in oxidative stress and disruption of metabolism and function of various membrane 

proteins and lipids upon Aβ binding to membrane lipids (Marchesi, 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: The “Aβ hypothesis” cascade.   
The sequence of pathogenic events leading to AD as proposed by the “Aβ hypothesis”. The environ-
mental factors, genetic predisposition and mutations in APP and PS can affect the metabolism of Aβ. 
Initially, small and soluble oligomeric assemblies of Aβ1-42 are produced, which then cause synaptic 

dysfunction as well as an induction of the Aβ cascade. Note the ‘shortcut’ to tau pathology and FTLD 
via chromosome 17-linked tau mutations (Figure modified from Winklhofer KF et al., 2008).  
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The “Aβ hypothesis” is further extended to accommodate more recent findings such 

as the predominant role of Aβ oligomers in the disease (Walsh and Selkoe, 2007), and the 

presence of intracellular Aβ (Ohyagi, 2008), as well as the modulation of tau phosphorylation 

by Aβ through regulation of kinases and phosphatases (Huang and Jiang, 2009). In its most 

recent iteration in supporting the formal proposal, the “Aβ hypothesis” states that the gradual 

accumulation and aggregation of the small hydrophobic peptide initiates a slow but deadly 

cascade that leads to synaptic alterations, microglial and astrocytic activation, the modifica-

tion of the normally soluble tau protein into oligomers and then into insoluble PHFs, and pro-

gressive neuronal loss with multiple neurotransmitter deficiencies and cognitive failure 

(Haass and Selkoe, 2007). The emerging collective data from biochemical, genetic and tg 

animal models studies corroborating that Aβ plays a central role in initiating the AD.  

 In spite, the “Aβ hypothesis” is gaining a more widespread acceptance and it is the 

predominant scientific explanation for the cause of AD over the past two decades, it has also 

been constantly criticized and challenged by the new studies. The development of AD thera-

peutics has been plagued with many failed and equivocal clinical trial outcomes. Although 

amyloid immunotherapy has been a particular focus of almost all large pharmaceutical efforts, 

there has been limited progress in that area (Thakker et al., 2009; Schroeter et al., 2008; 

Golde et al., 2009). Thus, recent clinical findings from a growing number of Aβ-reducing 

drug trials in sporadic AD cases suggest the alternative models linking Aβ with tau and pro-

posing “Dual pathway hypothesis” (Small and Duff, 2008). In addition, recent clinical trial 

findings regarding the outcome of passive immunization and Aβ lowering strategies in hu-

mans challenging the acceptance of “Aβ hypothesis”. However, the recent new findings 

needs to be further investigated and validated by future studies in human patients and animal 

models to refute, confirm, or modify the existing “Aβ hypothesis”. 

 

1.3. Protein phosphorylation 

Protein phosphorylation is a covalent post-translational modification event that is es-

sential for regulation and maintenance of most biological processes in eukaryotes (Cohen, 

1992). Since the breakthrough discoveries of reversible protein phosphorylation [Edmond H. 

Fischer and Edwin G. Krebs 1992 Nobel Prize in physiology or medicine 

(http://nobelprize.org/nobel_prizes/medicine/laureates/1992/press.html)], research on protein 

phosphorylation in general and on the dynamic interplay between kinases and phosphatases 

has been gaining increasing interest. Reversible phosphorylation can modify the function of a 

protein in almost every conceivable way. For example, regulating the biological activity of 
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proteins, by stabilizing it or marking it for destruction, by facilitating or inhibiting movement 

between subcellular compartments, or regulation of protein– protein interactions (Manning et 

al., 2002b; Manning et al., 2002a). It has extended from initial studies describing single 

phosphorylation events to the complex regulations involving multisite phosphorylation in 

signalling cascades, which are accepted as major regulatory principle of life (Cohen, 2002). 

In higher eukaryotes, phosphorylation occurs on serine, threonine and tyrosine residues in 

majority. However, phosphorylation can also take place on histidine and aspartic acid  resi-

dues (Saito, 2001). In eukaryotes phosphoserine, -threonine, and -tyrosine are estimated to 

occur at a relative abundance of ~90 % to ~10 % to ~0.05 %, respectively.  
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Fig. 8: Reversible protein phosphorylation and its effect. 
A) Dynamic interplay between kinases and phosphatases on hydroxyl groups of amino acids in re-
versible protein phosphorylation. Addition of negatively charged phosphoryl group from ATP to the 
protein is catalyzed by protein kinases and protein phosphatases remove the phosphate group. B) 
Conformation changes caused by phosphorylation. 
(Adapted from http://www.scq.ubc.ca/protein-phosphorylation-a-global-regulator-of-cellular-activity) 

 

Phosphorylation refers to the addition of a phosphoryl group from ATP to one of the 

amino acid side chains of a protein (Fig. 8A). The reaction is catalyzed by enzymes called 

protein kinases (Krebs and Beavo, 1979). The phosphate group can be removed by protein 

phosphatase activities (Ingebritsen and Cohen, 1983a; Ingebritsen and Cohen, 1983b; In-

gebritsen et al., 1983; Cohen, 1989). Phosphates are negatively charged under physiological 

conditions (with each phosphate group carrying two negative charges) and addition to a pro-
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tein could change the characteristics of the protein (Fig. 8B). This change is presumably by 

alteration of structure (conformation) resulting in alteration of the protein function 

(Jeganathan et al., 2008; Mondragon-Rodriguez et al., 2008; Eidenmuller et al., 2000). 

Many proteins could be phosphorylated at multiple sites. Multisite phosphorylation 

enables the cell to develop and maintain complex regulatory pathways contributing to the dif-

ferent levels of hierarchical organization (Soderling, 1979). In such proteins in general, phos-

phorylation at different sites is not completely independent. It is frequently observed that 

phosphorylation at one site enhances or suppresses phosphorylation at another site (Roach, 

1991). Multisite phosphorylation is a key mechanism for achieving signal integration and 

fine-tuning of the phosphorylation events in cells (Cohen, 2000). More than 500 protein 

kinases, and perhaps half as many protein phosphatases, are thought to be present in the hu-

man genome (Manning et al., 2002b), and 30% of all proteins in any eukaryotic cell are 

thought to be phosphorylated at any time (Mann et al., 2002), many on multiple sites. There-

fore, one can assume that phosphorylation is not simply used to switch on or switch off the 

activity of a protein, but can have many additional roles.  

 

1.3.1. Protein phosphorylation in the human brain 

In the last 25 years, substantial evidence has appeared that strongly suggesting that 

protein phosphorylation also plays an important role in neuronal function in the brain (Nestler 

and Greengard, 1983). Extensive studies indicate the implication of protein phosphorylation 

as the molecular mechanism by which many extracellular signals regulate brain functions. 

The proteins which undergo phosphorylation appear to be particularly important in neuronal 

function including intermediary metabolism, neuronal excitability, neurotransmitter biosyn-

thesis and release as well as neuronal growth, differentiation, and morphology (Nestler and 

Greengard, 1983; Nestler et al., 1984; Walaas and Greengard, 1991). Most of the earlier stud-

ies indicated that many of the protein phosphorylation systems take place primarily in the 

neuronal body. Recent studies indicate protein phosphorylation also being highly concen-

trated in synaptic junctions, the part of the nerve cell anatomically specialized for intercellu-

lar communication. 

 

1.3.2. Phosphorylation of proteins by extracellular protein kinases 

Intracellular protein phosphorylation by protein kinases plays a significant role in the 

regulation of numerous biological processes (Hunter, 1987). In addition to intracellular 

kinases, the existence of a novel class of protein kinases, which are located extracellularly, 

has been shown to phosphorylate the extracellular protein substrates. In 1974, Agren and 
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Ronquist reported that intact glia and glioma cells can catalyze the transfer of the gamma 

phosphate from extracellular ATP to exogenously added protein substrates suggesting the ex-

istence of cell surface protein kinases (Agren and Ronquist, 1974). Stimulation of a protein 

kinase activity at the surface of glioma cells by cyclic AMP was reported soon after 

(Schlaeger and Kohler, 1976). Subsequent reports have provided the evidence of extracellular 

protein kinase activity in a variety of cellular systems. In 1982, Kubler et al., reported rigor-

ous study of protein phosphorylation at the surface of the cloned human HeLa cells and pro-

vided convincing evidence for the existence of extracellular protein kinase in this cell line 

(Kubler et al., 1982). These protein kinases are termed ecto-protein kinases (ecto-PKs) and 

exo-protein kinases (exo-PKs). The ecto-PKs have been localized at the external surface of 

the plasma membrane (membrane bound) where they exert their catalytic activity. They use 

extracellular nucleoside triphosphate as co substrates, which can be released by intact cells in 

response to certain stimuli to phosphorylate membrane bound protein as well as soluble ex-

tracellular proteins (Dubyak and el-Moatassim, 1993; Gordon, 1986; el-Moatassim et al., 

1992). Exo-PKs are secreted/shedded to the extracellular milieu and can phosphorylate the 

extracellular matrix proteins and soluble proteins (Kubler et al., 1992; Walter et al., 1996b; 

Rodriguez et al., 2005).  

Ecto-PKs activity has also been characterized on the membrane surfaces of neuronal 

cells (Ehrlich et al., 1986; Tsuji et al., 1988). A critical role of these ecto-protein kinases in 

the regulation of the synaptic plasticity in the mammalian hippocampus has been shown 

(Chen et al., 1996). On the basis of their localization and substrate specificity these ecto or 

exo-PKs might play a significant role in the regulation of cell–cell interactions, ligand bind-

ing, and signal transduction. Phosphorylation of cell-surface proteins by exo-PKs has been 

implicated in the regulation of certain cellular functions, including long-term potentiation and 

synaptogenesis (Muramoto et al., 1994). The developments in this area of investigation con-

tribute to the expanding understanding on the importance of extracellular protein phosphory-

lation systems in the regulation of cellular function of neurons (Ehrlich et al., 1990). Conclu-

sive demonstration and further understanding of ecto-domains phosphorylation of cell mem-

brane proteins and proteins in the extracellular milieu suggests physiological significance of 

an ecto-phosphorylation mechanism.  

 

1.3.3. Altered protein phosphorylation in AD 

Dysregulation of phosphorylation and dephosphorylation events is associated with 

several diseases and malignancies in humans. Altered signal transduction is thought to be one 

of the unifying aspects of a wide variety of disorders, including neurodegenerative conditions 
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such as AD (Mattson D, 2004). Several studies have reported abnormal protein kinase (Jin 

and Saitoh, 1995), and protein phosphatase expression and as well as their activities in the 

brains of AD patients as compared to the normal cohort (Gong et al., 1993). Such altered ac-

tivities, as well as altered protein levels of specific kinases and/or phosphatases, support the 

hypothesis that abnormal or aberrant phosphorylation and malfunctioning of various signal-

ing cascades results in AD pathogenesis. The overall result of such dysfunctional signaling 

activity would be expected to be the association of neurodegenerative conditions with abnor-

mal phosphorylation of specific key proteins. This is well documented for tau phosphoryla-

tion, a key protein which is involved in AD. In addition to phosphorylation of tau, the kinases 

themselves have been shown to be affected in AD diseased brain. For example, in AD there is 

evidence of altered activities of the major isoforms of protein kinase C (PKC) in the vascula-

ture and in neurons. In addition, report describe that Aβ peptide might play an essential role 

in the down-regulation of PKC seen in the AD cerebral vasculature and exposure of cultured 

brain endothelial cells to Aβ peptide stimulate the translocation of PKCα from the membrane 

to the cytosol (Pakaski et al., 2002). Activation of PKC was shown to lead to a relative in-

crease in nonamyloidogenic cleavage of APP (da Cruz e Silva OA et al., 1993; Gandy et al., 

1993), and a decreased Aβ production (Buxbaum et al., 1993; Buxbaum et al., 1990). It is 

therefore likely that a protein phosphorylation cascade is involved in Aβ toxicity (Tan et al., 

1997). 

  

1.3.4. Phosphorylation of AD related proteins 

Numerous proteins having a variety of physiological functions appear to be relevant 

to the AD condition, and a considerable number of these are shown to be phosphorylated, in-

cluding tau, BACE1, the presenilins and APP. The major pathophysiological role of phos-

phorylation in AD disease is confined to hyperphosphorylated tau protein. Phosphorylation of 

tau has been well documented in AD (Grundke-Iqbal et al., 1986; Gustke et al., 1992; Delo-

bel et al., 2002). In AD, tau is abnormally hyperphosphorylated at several Ser/Thr sites. In-

deed, hyperphosphorylation and accumulation of neurofilament (NF) subunits is a typical fea-

ture of the AD brain (Wang et al., 2001; Mi and Johnson, 2006; Chun and Johnson, 2007). 

BACE1 is shown to undergo phosphorylation and plays a critical role in its trafficking, 

endocytosis and interaction with adapter proteins (Walter et al., 2001a; Wahle et al., 2005; 

Wahle et al., 2006). Phosphorylated BACE1 at serine residues are identified in the human 

brain suggesting the serine phosphorylation of BACE1 is a physiologically relevant post-

translational modification that regulates trafficking (von Arnim et al., 2004).  
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Presenilins are shown to be constitutively phosphorylated in transiently transfected 

cells (Walter et al., 1996a; De et al., 1997; Walter et al., 1998). Phosphorylation sites and re-

sponsible kinases have been identified by in vitro and in vivo studies. It is reported that poten-

tial PKC recognition sequences are present within the Presenilin amino acid sequence (Walter 

et al., 1997b; Fluhrer et al., 2004). Reports indicate the PKC-dependent phosphorylation of 

the PS proteins in regulation of βAPP processing and Aβ generation.  

APP is a phosphoprotein carrying several phosphorylatable amino acid residues in its 

cytoplasmic and luminal regions. The phosphorylated forms of APP present in each tissue are 

mAPP (mature APP) in neurons and imAPP (immature APP) in dividing cells (Suzuki and 

Nakaya, 2008). By using phosphorylation-state specific antibody, it is shown that mAPP695 

(mature APP-695 isoform) species can undergo phosphorylation in mouse and in human brain 

(Iijima et al., 2000). The physiological role of the phosphorylation state of APP has been in-

vestigated in the brain, postmitotic differentiating neuronal cells, and dividing cells (Iijima et 

al., 2000; Suzuki et al., 1994; Ando et al., 1999; Kimberly et al., 2005).  

The intracellular domain of APP can undergo phosphorylation by different kinases 

(Suzuki et al., 1994; Suzuki et al., 1997; Oishi et al., 1997). Using phosphorylation state-

specific antibodies, Oishi et al., provided evidence for the in vivo phosphorylation of Thr654, 

Ser655 and Thr668 on the cytoplasmic domain of APP (Gandy et al., 1988; Suzuki et al., 

1992).  Studies are also showing the role of stress activated kinase such as c-Jun NH2-

terminal kinase (JNK) in Thr668 phosphorylation in APP (Kimberly et al., 2005; Standen et 

al., 2001; Taru et al., 2002). APP-CTFs are also found to be phosphorylated at Thr668 and de-

tected as phosphopeptides pC99, pC89 and pC83 (Sano et al., 2006). These pCTFs are re-

ported to be involved in signal transduction events via interaction with Shc/Grb2 adaptor pro-

teins in reactive astrocytes of Alzheimer's disease brain (Russo et al., 2002a; Russo et al., 

2002b). Several identified phosphorylation sites are localized within known amino acid mo-

tifs such as 
667

VTPEER
672

, 
681

GYENPTY
687

 and 
653

YTSI
656 

and play a critical role in APP 

endocytosis, polarized sorting and subcellular trafficking of APP. Furthermore, phosphoryla-

tion could regulate the interaction with cytosolic adaptor proteins such as Fe65 and probably 

other intracellular adapter proteins like Dab1, Dab2, Jip1b, Numb, PATI and X11 (Kerr and 

Small, 2005). Recent report shows the association of phosphorylated CTFs with PS1. Phos-

phorylated CTFs can be the substrates of the γ-secretase and an increase in the phosphoryla-

tion of APP-CTFs facilitates their processing by γ-secretase (Vingtdeux et al., 2005). Clearly, 

phosphorylation-dependent events are important in AD, spanning APP phosphorylation, 

phosphorylation-dependent interactions of APP with other proteins, and related events that af-

fect APP trafficking and metabolism and are associated with signal transduction cascades. 
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In addition to phosphorylation of cytoplasmic and intracellular domain, several 

groups identified phosphorylatable amino acids residues in ectodomain of APP. APP under-

goes phosphorylation within its ectodomain at two distinct subcellular localizations of the 

secretory pathway, namely in secretory vesicles and at the cell surface. The phosphorylation 

sites within the ectodomain of APP have been identified as serine residues 198 and 206, and 

protein kinases phosphorylating APP as ecto-CK1- and ecto-CK2 are known (Knops et al., 

1993; Walter et al., 1997a; Walter et al., 2000). These kinases have been previously shown to 

be located at the cell surface (Walter et al., 1996b; Walter et al., 1994). These kinases can 

phosphorylate membrane-bound as well as soluble forms of APP (Walter et al., 2000). 

 The Aβ domain contains two serine residues at positions 8 and 26 that represent po-

tential phosphorylation sites for different protein kinases (PK) A, (PK) C, cdc2, CK1, and 

CK2. Although these kinases are known to exist mainly in the cytosol, recent studies indicate 

that these kinases also occur at the cell surface and in extracellular fluids (Walter et al., 

1996b; Walter et al., 1997b; Walter et al., 2000; Redegeld et al., 1999; Cho et al., 2000; Rod-

riguez et al., 2005; Kubler and Barnekow, 1986; Kubler et al., 1989). This is important be-

cause Aβ is also secreted into extracellular fluids where it could aggregate and form extracel-

lular plaques. It is also important to note that ATP, the co substrate of protein kinases, can be 

secreted from neuronal and non-neuronal cell types and metabolized by different ecto-

enzymes, including ecto-nucleotide kinases/phosphatases (Inoue et al., 2007). Recently, Aβ 

and APP have been shown to interact with an ATP synthase localized at the cell surface, 

thereby modulating extracellular ATP synthesis (Schmidt et al., 2007). However, whether the 

Aβ domain of APP or Aβ itself is also phosphorylated has not been clearly demonstrated. In 

spite, by using phosphoserine specific antibodies and purified kinase, it was suggested that 

Aβ could be phosphorylated on Ser26 by cdc2 in vitro (Milton, 2001; Milton, 2005). On the 

other hand, some kinases including CK1, CK2 and PKC failed to phosphorylate Aβ in vitro 

(Chauhan et al., 1993). 
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2.  AIM OF THE STUDY 
 

 Genetic mutations that cause early onset familial AD, although found in at least three 

different genes (APP, PS1 and PS2), commonly increase the generation and/or aggregation of 

Aβ. Specifically, several mutations within the APP gene that lead to amino acid substitutions 

in the Aβ domain promote its aggregation leading to formation of extracellular amyloid 

plaques in the brain and cause early onset AD. However, such mutations are very rare and ac-

count for only a very small number of cases (<5%). Mechanisms that increase the aggrega-

tion of wild-type Aβ and cause the much more common sporadic forms of AD (>95%), are 

largely unknown. It is plausible that certain post-translational events may render the Aβ pep-

tide amyloidogenic in sporadic AD cases. In this context, especially the impact of changed 

environmental conditions that can trigger these structural conversions has especially attracted 

the interest of many researchers in recent years. Changes in environmental conditions such as 

pH, ionic strength, metal ions, protein concentration, oxidative stress, proteolysis, glycosyla-

tion and transglutamination have been shown to induce a conformational transition that shifts 

the equilibrium from the functional, mostly unfolded or partially α-helical structure to the β-

sheet rich aggregation prone structures. 

 

Protein phosphorylation is a key post-translational modification and it plays an impor-

tant role in neuronal function. Numerous proteins having a variety of physiological functions 

appear to be relevant to the AD condition, and a considerable number of these are shown to 

be phosphorylated, including APP, BACE, the presenilins, and tau. Various reports show the 

role of different kinases and phosphatases in the regulation of Aβ production. In addition, 

several lines of evidence indicated abnormal protein kinase and protein phosphatase activities 

in the brains of AD patients compared to the normal cohort. In spite of the major role of 

phosphorylation of AD related proteins and their physiological role, the role of phosphoryla-

tion is still placed downstream of Aβ deposition, i.e., the pathophysiological role of phos-

phorylation in AD disease is just confined to hyperphosphorylated tau protein and aggrega-

tion intermediates linked to neurodegeneration. Although, the Aβ domain contains several po-

tential phosphorylation sites, whether the Aβ domain of APP or Aβ itself is also phosphory-

lated has not been clearly demonstrated. In addition, several kinases are known to present at 

the surface of living cells or are secreted into extracellular fluids. Thus, such kinases could 

potentially phosphorylate extracellular Aβ and could modulate its aggregation.  
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The aim of the present work was to understand the role of extracellular Aβ phosphory-

lation and its role in AD pathogenesis. Specifically, the following aims were followed: 

 

1) Determination of potential phosphorylation sites of Aβ and the responsible protein kinases.  

2) Identification of the role of extracellular kinases in phosphorylation of Aβ in vivo. 

3) Elucidation of the effect of phosphorylation on Aβ conformation and its role in   

oligomerization and aggregation. 

4) Detection of phosphorylated Aβ in vivo. 
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3. MATERIALS AND METHODS 

3.1. MATERIALS 

3.1.1. Chemical used 

Unless otherwise stated, chemicals were purchased from Sigma (Steinheim, Germany), 

Roche (Basel, Switzerland), Fermentas (St.Leon-Rot, Germany), New England Biolabs 

GmbH (Frankfurt am Main, Germany), Merck (Darmstadt, Germany), Fluka (Deisenhofen, 

Germany), Invitrogen Life Technologies (Karlsruhe, Germany), or Applichem (Darmstadt, 

Germany). 

 

[γ-
32

P]ATP was obtained from Hartmann Analytic GmbH (Braunschweig, Germany). 

 

All cell culture solutions, buffers, antibiotics were from Sigma (Deisenhofen, Germany), In-

vitrogen/Life technologies (Karlsruhe, Germany) & GibcoBRL (Karlsruhe, Germany). 

 

3.1.2. Ready-to-use solutions / reagents 

Acetic Acid 

Acrylamide solution (37.5:1) Acrylamide/bis-acrylamide for protein-SDS-gel 

Chloroform 

DAB substrate (Biogenex, DC138R006) 

Dimethylsulfoxide (DMSO) 

Ethanol 

Ethidiumbromide, 10mg/ml 

Formaldehyde, 37% 

Isopropanol 

Methanol 

TEMED for protein-SDS gel 

Tween-20 

Triton-X100 

DPX Mountant for histology (Fluka, 44581) 

 

3.1.3. Kits 

BCA
TM

 Protein Assay Kit (Thermo Scientific) 

Chemiluminescence’s Kit (Amersham, GE Healthcare) 
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3.1.4. Buffers and Solutions for Protein Biochemistry 

Name 
Final Concen-

tration 
Constituents and their amounts 

Stacking gel buffer 

(Upper Tris) 

0.5 M 

0.4% 

 

Tris-base 15.1 g 

1 g SDS 

Volume made up to 250 ml with Dist. H20 after 

adjusting pH to 6.8, sterile filtered and stored 

at 4 °C. 

Separating gel buffer 

(Lower Tris) 

1.5 M 

0.4% 

181.7 g Tris 

4 g SDS 

Volume made up to 1 L after adjusting to pH 

8.8, sterile filtered and stored at 4 °C. 

SDS-running buffer  23 mM 

190 mM 

0.1% 

2.78 g Tris Base 

14.26 g Glycine 

5 ml 20% SDS stock 

The contents were mixed in 1 L Dist. H20 and 

pH was adjusted to 8.8. Stored at room tem-

perature (RT). 

5x Laemmli sample 

buffer 

50 mM 

5% 

40 mM 

5 mM 

5 mM 

20% 

0.01% 

Sodium phosphate pH 6.8 

SDS 

DTT 

EDTA 

EGTA 

Glycerol 

Bromophenol blue 

Mixed thoroughly, the solution was aliquoted, 

was stored at -20 °C, and freeze/thawed not 

more than 5 times. 

APS 10% 1 g Ammonium persulphate in 10 ml water. 

Stored at 4 °C for not longer than 1 month. 

Transfer buffer  

(10x) 

 

390 mM 

480 mM  

96 g Tris 

72 g Glycine 

The contents were dissolved in 1 L Dist. H20, 

and pH was adjusted to 8.0. Solution was 

stored at 4 °C. 

Transfer buffer (1x) 1 x 

10% 

100 ml 10 x Transfer buffer 

Methanol 

Volume was made up to 1 L with Dist. H20. 

10x Tris buffered 

saline (TBS) 

0.1 M 

1.5 M 

12.1 g Tris 

87.6 g NaCl 

Contents were dissolved in 750 ml Dist. H20, 

pH was adjusted to 7.5 and the volume was 

made up to 1 L. Solution was sterilized by 

autoclaving and stored at RT. 

Western blot washing 

buffer 

1x 

0.1% 

100 ml 10x TBS 

1 ml Tween 20  

Volume was made up to 1 L with Dist. H20. 

NuPAGE Gel running 

buffer 

1x 50 ml 20x NuPAGE MES SDS Running buffer 

resuspended and volume was made up to 1 L 

with Dist. H20. 

NuPAGE LDS Sam- 1x 2.5 µl of LDS sample buffer (4x) 
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ple buffer (1x) 1x 1 µl of NuPAGE reducing agent (10x) 

x µl of Sample and final volume made up to 

10µl with Dist. H20. 

Tricine Running 

buffer (10x) 

1 M 

1 M 

1%  

60.5 g Tris-Base, pH 8.3 

89.5 g Tricine 

10 g SDS 

The salts were dissolved in 900 ml Dist. H20, 

adjusted the pH to 8.3 and volume made up to 

1.0 L with Dist. H20. 

Tricine Running 

buffer (1x) 

1x 

 

100 ml 10x Tricine Running buffer 

Volume was made up to 1 L with Dist. H20. 

Coomassie staining 

solution 

0.4% 

5% 

40% 

1.0 g Coomassie Brilliant Blue G-250 

25 ml Acetic Acid 

200 ml Methanol 

Volume was adjusted to 500 ml with Dist. H20, 

filtered through a Whatman filter paper and 

stored at RT. Solution was used more than 

once. 

Coomassie destaining 

solution 

10% 

30% 

50 ml Acetic Acid 

150 ml Methanol 

Solution made up to 500 ml with Dist. H20. 

Ponceau S staining 

solution 

0.5% 

1% 

0.5 g Ponceau S 

1 ml Acetic acid 

Contents were dissolved in 100 ml of Dist. H20 

and filtered; Solution was stored in dark at RT. 

Blocking solution 5% 

1x 

0.5% 

5 g Non-fat Skimmed milk powder  

100 ml 10x TBS/PBS 

1 ml Tween 20 

Always prepared fresh for the usage. 

Alternative blocking 

solution 

5% 

1x 

0.5% 

5 g BSA fraction V 

100 ml 10x TBS/PBS 

1 ml Tween 20 

Always prepared fresh for the usage. 

Protease inhibitor 1x Complete Protease Inhibitor Cocktail Tablets. 

25x stock solution was prepared by dissolving 

one tablet in 2 ml Dist. H20, aliquoted and 

stored up to 6 months at -20 °C. 

Phosphatase inhibitor 1x Phosphatase Inhibitor Cocktail Tablets. 10 x 

stock solution was prepared by dissolving one 

tablet in 1 ml Dist. H20, aliquoted and stored 

up to 6 months at -20 °C. 

2% SDS Buffer 2% 2 g SDS 

Volume was made up to 100 ml with Dist. H20.  

Sucrose Buffer 320 mM 10.95 g Sucrose 

Dissolved in 100ml of sterile Dist. H20. 

STEN- Buffer (1x) 50 mM 

150 mM 

2 mM 

0.2% 

 

Tris-HCl pH 7.6 

NaCl 

EDTA 

NP-40 (Igepal CA-630) 

pH 7.6 @ 25 °C 

STEN-NaCl Buffer 

(1x) 

50 mM 

500 mM 

Tris-HCl pH 7.6 

NaCl 
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2 mM 

0.2% 

EDTA 

NP-40 (Igepal CA-630) 

pH 7.6 @ 25 °C 

STEN-Lysis Buffer 

with BSA (1x) 

50 mM 

150 mM 

2 mM 

1% 

1% 

2% 

1 x  

Tris-HCl pH 7.4 

NaCl 

EDTA 

Triton X-100 

NP-40 (Igepal CA-630) 

BSA 

Complete Protease inhibitor 

Hypotone buffer 10 mM 

1 mM 

1 mM 

100 mM 

25mM 

1 mM 

Tris-HCl, pH 7.4 

EDTA 

EGTA 

KF 

Glycerol phosphate 

Sodium Orthovandate 

Phosphorylation assay 

buffer (P-Mix) 

30 mM 

70 mM 

5 mM 

0.5 mM 

83 mM 

5 mM 

 

Tris; pH 7.3 

NaCl 

Magnesium Acetate 

EDTA 

D(+) Glucose 

KH2PO4/K2HPO4 

pH adjusted to 7.3 using acetic acid; Osmomo-

larity: 290 ± 10 mOsm. 

PKA Reaction buffer 

(1x) 

20 mM 

0.5 mM 

5 mM 

Tris pH 7.6 

Calcium Chloride 

Magnesium acetate 

CK1 Reaction Buffer 

(1x) 

50 mM 

10 mM 

5 mM 

Tris-HCl 

Magnesium Chloride 

DTT 

pH 7.5 @ 25 °C 

CK2 Reaction Buffer 

(1x) 

20 mM  

50 mM  

10 mM  

Tris-HCl 

Postassium Chloride 

MgCl2 

pH 7.5 @ 25 °C 

Protein A/G sepharose 

suspension (Zymed) 

 100 mg/ml protein A/G bound sepharose beads 

were washed with STEN buffer and resus-

pended in it. If required beads were blocked 

with 2 mg/ml BSA to avoid non-specific bind-

ing. 

10x Phosphate Buff-

ered Saline (PBS)  

137 mM 

2.7 mM 

10 mM 

2 mM 

40 g NaCl 

1 g KCl 

89 g Na2HPO42H2O 

12 g KH2PO4 

Salts were dissolved in 4.5 L Dist. H20, pH was 

adjusted to 7.4 with HCl, and volume made up 

to 5 L with Dist. H20 and autoclaved. Stored at 

RT. 

Congo-Red (CR) so-

lution 
100 µM Stock solution prepared in filtered PBS and 

10% Ethanol.  

Thioflavin-T (ThT) 

solution 
20 µM Prepared in Millipore H20. 
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3.1.5. Solutions for Histochemistry and Immunofluorescence 

 

Name 
Final Concen-

tration 
Constituents and their amounts 

20% PFA 20% 

 

100 g paraformaldehyde 

1.9 ml 10 N NaOH 

DEPC (Diethylpyrocarbonate) water to 500 ml 

Solution was heated to 56 °C until solution was 

almost clear, filtered through a Whatman filter 

paper and stored as 10 ml or 50 ml aliquots at          

-20°C. The solution was diluted to 4% in 1x 

PBS before use. 

2.6% Phosphate 

buffer paraformalde-

hyde solution (PFA) 

2.6% 

0.1 M 

 

26 g PFA 

500 ml of 0.2 M PBS 

Dissolved above constituents in 400 ml Dist. 

H20, heat to 60 ºC, neutralized with 1M NaOH, 

adjust pH to 7.6 and final volume adjusted to 1L.  

Eosin 1% 1 g in 100 ml of distilled water. Filtered and 

used for a maximum of 3 weeks 

Citrate buffer 0.1 M 

0.1 M 

10.5 g Citric acid in 500 ml water (Solution A) 

14.71 g Sodium citrate in 500 ml water (Solution 

B). Before use, 9 ml of solution A and 41 ml of 

solution B was added to 450 ml distilled water. 

pH was adjusted to 6.0. 

Reduction solution 10% 

30% 

0.05 M  

Methanol 

H2O2 

TBS, pH 7.6 

Hydrogen peroxide 1% (or 3%) 3.3 ml or (10 ml) of 30% Hydrogen peroxide 

100ml water. Always prepared fresh and used. 

Washing solution 

(TBS-T) 

1x 

0.1% 

100 ml 10x TBS 

1ml Tween 20 

Volume was made up to 1L with water. 

Blocking solution 0.1 M 

0.25% 

10% 

DL-Lysine 

Triton-X 

BSA 

 

 

3.1.6. Solutions for eukaryotic cell culture and primary mouse neuronal cell culture 

 

Cell lines used Media and Constituents 

HEK293 

DMEM (Dulbecco's Modified Eagle Medium) Glutamax
TM

 con-

taining 4.5 g/L of D-Glucose supplemented with 10% FCS and 

1% Pen Strep (Final concentration-Penicillin:100 units/ml; 

Streptomycin:100 µg/ml) 

A 172 (Human neuro-

glioblastoma) 

DMEM Glutamax
TM

 containing 4.5 g/L of D-Glucose supple-

mented with 10% FCS and 1% Pen Strep (Final concentration-

Penicillin:100 units/ml; Streptomycin:100 µg/ml) 
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SH-SY5Y 

RPMI (Roswell Park Memorial Institute) Glutamax
TM

 contain-

ing 4.5 g/L D-Glucose supplemented with 15% FCS and 1% Pen 

Strep. 

HeLa cells (Immortalized 

human epithelial cells from 

a fatal cervical carcinoma) 

DMEM Glutamax
TM

 containing 4.5 g/L of D-Glucose supple-

mented with 10% FCS and 1% Pen Strep (Final concentration-

Penicillin:100 units/ml; Streptomycin:100 µg/ml) 

H4 cells 

DMEM Glutamax
TM

 containing 4.5 g/L of D-Glucose supple-

mented with 10% FCS and 1% Pen Strep (Final concentration-

Penicillin:100 units/ml; Streptomycin:100 µg/ml) 

Primary mouse cortical neu-

ronal cultures 

DMEM medium without Glutamine supplemented with 15% 

FCS and sterile filtered potassium chloride (20 mM). 2 mM of 

glutamine (Final concentration) was supplemented before use in 

the required amount of medium. 

 

3.1.7. Antibodies 

3.1.7.1 Primary antibodies 

Dilution 
Name Antigen Species 

WB IHC/IF 
Source 

4G8 Aβ17-24  mouse 1:1000  SIGNET/Covance 

82E1 Aβ1-16 mouse 1:1000  IBL Corporation, Japan 

2964 Fibrillar Aβ1-40 rabbit 1:500  Raised in lab 

Bap-1a Aβ 1-40 mouse 1:1000  Gift from Elan 

3D6 Aβ 1-40  mouse 1:1000  Gift from Elan 

β-actin hβ-actin-CT mouse 1:1000  Sigma 

5313 MBP-hAPP695-NT 

(a.a. 444-592) 

rabbit 1:1000  Walter et.al., 2000 

PKAβ cat 

(C-20) 

C-terminus of PKAβ 

catalytic subunit 

rabbit 1:1000  Santa Cruz Biotechnology, 

Inc. 

SA5434 Aβ1-16 (pSer-8) rabbit 1:50 1:5 Raised in lab 

6E10 Aβ1-16  mouse 1:1000 1:5 SIGNET/Covance 

22C11 rAPP fusion protein mouse  1:100 Chemicon International 

CD68 Anti CD-68, KP1 mouse  1:100 DakoCytomation, Denmark. 

GFAP GFAP from human 

brain 

mouse  1:400 DakoCytomation, Denmark. 

  

3.1.7.2 Secondary antibodies 

Name Species Antigen Application Dilution Source 

anti-rabbit-HRP goat Rabbit IgG WB 1:20,000 Sigma 

anti-mouse-HRP rabbit Mouse IgG WB 1:20,000 Sigma 

Alexa Fluor 594 goat Rabbit IgG IHC/IF 1:1000 Molecular Probes 

Alexa Fluor 594 goat Mouse IgG IHC/IF 1:1000 Molecular Probes 

Alexa Fluor 488 goat Rabbit IgG IHC/IF 1:1000 Molecular Probes 

Alexa Fluor 488 goat Mouse IgG IHC/IF 1:1000 Molecular Probes 

anti-mouse Cy2 donkey Mouse IgG IHC/IF 1:50 Dianova, Germany 

anti-rabbit Cy3 donkey Rabbit IgG IHC/IF 1:50 Dianova, Germany 
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3.1.8. Mouse lines 

 

Genotype Short Description Source 

C57BL/6 
Wild type mice with black color for breeding and back 

crossing 

Charles River, 

Germany 

APP/PS1 

Amyloid pathology that develops in these mice derives 

from the proteolytic processing of the human APP 

transgene product that harbors the Swedish double mu-

tation (K595N/M596L) and ∆E9 knock-out mutation in 

presenilin 1, that in combination, lead to the marked 

overproduction and progressive accumulation of Aβ 

plaques (Borchelt et al., 1997). 

Jax Laboratories, 

USA (Strain 

Name: B6C3-Tg, 

Stock # 004462) 

 

3.1.9. General Lab Materials 

All sterile cell culture plastic-ware were purchased from Corning.  

Pipette Tips and tubes were purchased from Sarstedt 

Fuji Medical X-Ray film (Kodak) 

Phosphor Imager screens (Kodak) 

Hybond-N- blotting membrane 30cm x 3m (Amersham, RPN303B) 

Microscope slides 76 x 26 mm (Engelbrecht) 

Sterile filters 0.45 µm, 0.2 µm, 0.1 µm (Schleicher & Schuell) 

SuperFrost® Plus microscope slides (Menzel #041300) 

Universal agarose 

0.2 µm PROTRAN Nitrocellulose membrane (Whatman GmbH, Germany) 

0.2 µm Polyvinylidene Difluoride (PVDF) membrane (Whatman GmbH, Germany) 

 

3.1.10. Laboratory Devices 

Thermomixer      Eppendorf 

Block heater      Stuart Scientific  

Photometer (Genesis)     ThermoSpectronic  

-80 ºC freezer      ThermoForma 

-20 ºC freezer      AEG Electrolux 

Refrigerator      LIEBHERR 

Ultrasonic Bath     Merck Eurolab 

Sonicator      Bandelin Sonopuls 

Weighing Balance     Metler Toledo 

pH Meter      Metler Toledo 

Orbital Shaker      Biometra 

Autoclave      H+P 

37 ºC CO2 incubator     Binder 

Cell culture hood     Thermo 

Nitrogen tank      Linde 

Centrifuge      Eppendorf 

SpeedVac concentrator    Eppendorf 

Vortexer      Scientific Industries 

Cryo tubes      Nunc 

Western-blotting unit     Amersham Biosciences 

Electrophoresis power supply consort  Amersham Biosciences 

Microwave       LG 
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Overhead rotor     Scientific Industries 

Water bath      Medigen 

Phosphor imager     Fuji Inc.  

Chemiluminiscence imager    Biorad 

Centrifuge      Eppendorf 

Ultracentrifuge     Beckman 

Ultracentrifuge rotor (SW40Ti)   Beckman 

Fluorescence microscope     Leica 

Cary Eclipse Fluorescence Spectrophotometer Varian 

Circular Dichroism Spectroscopy   Jasco 

NMR       Brucker 

DynaPro Titan      Wyatt Technology Corporation 

Transmission Electron Microscope   FEI 
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3.2. APPLIED METHODS 

 A series of bioanalytical, biophysical and immunohistological techniques were ap-

plied for the characterization of phosphorylation of Aβ in in vitro and in vivo, effect of phos-

phorylation on biophysical properties of the Aβ peptide and finally to show the occurrence of 

pAβ  in vivo in brains of AD tg mouse  and in human AD patients. Following section will 

briefly summarize and describe the analytical techniques applied here. Further detailed in-

formation on the particular method can be obtained from the cited literatures. 

 

3.2.1. In silico analysis of putative phospho-sites of Aβ and the responsible kinases 

 A variety of web-based computational prediction tools (applications) are available for 

the prediction of phospho-sites of a particular peptide/protein such as Scansite (Obenauer et 

al., 2003), NetphosK (Blom et al., 2004; Hjerrild et al., 2004), PREDIKIN (Brinkworth et al., 

2003), PredPhospho (Kim et al., 2004) and idenfication of kinase specificity for the substrates 

such as GPS (Xue et al., 2005), PPSP (Xue et al., 2006), and KinasePhos (Wong et al., 2007). 

The above mentioned tools differ among each other with relation to the type of data that they 

use for the predictions. Basically, these web-based computational methods rely on i) experi-

mental identification of the consensus sequence motifs recognized by the active site of 

kinases and ii) verified phosphorylation sites as reported in the literature as well as in curated 

databases (Swiss-prot database). These tools are freely available on world-wide-web (www). 

The predictions from these prediction tools are generally reliable while these neural networks 

based prediction tools evaluates the identified phosphorylation sites iteratively comparing the 

results with other prediction programmes, the experimentally verified phosphorylation sites 

as reported in the literature and the data in curated databases such as the Swiss-Prot database. 

 The identification of the phosphorylation sites of Aβ and responsible kinases were 

carried out using NetPhosK 1.0 (Blom et al., 1999), and NetPhos 2.0 sever (Blom et al., 

2004). These two prediction programmes employ neural network based algorithms prediction 

processes which are based on the evolutionary information obtained from sequence similarity 

of the phosphorylation site and taxonomy. The NetPhosK 1.0 is a kinase specific eukaryotic 

phosphorylation site predictions server. The kinase predictions are verified with homologues 

phosphorylation sites obtained from other protein homologues from higher eukaryotes. The 

NetPhos 2.0 server is a generic (non kinase specific) phosphorylation predictions server and 

perform the predictions for serine, threonine and tyrosine phosphorylation sites in pro-

tein/peptides. The input sequences of any protein/peptide in the one-letter amino acid code in 

FASTA format can be used for carrying out the predictions. The instructions for the usage of 

the programme are provided with the respective tools. 
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3.2.2. In vitro Aββββ phosphorylation assay 

 Recombinant rat CK1 (1000 u/µl; New England Biolabs), recombinant subunits of 

human CK2 (500 u/µl; New England Biolabs) and the catalytic subunits of PKA purified 

from bovine heart (gift from Dr. D. Bossemeyer) were used for in vitro phosphorylation as-

says in a respective kinase reaction buffer. The phosphorylation assay reaction mixture (28 µl 

kinase buffer) consisted of 1 µl synthetic Aβ 1-40 or Aβ 1-42 (Stock concentration: 1 mg/ml) 

and 1 µl of kinase. The phosphorylation reactions were started by addition of 3 µl of 100 µM 

[γ-
32

P]ATP and allowed to proceed for 15 min at 32 °C. Reactions were stopped by the addi-

tion of 7 µl Laemmli sample buffer (5x) and boiling for 5 min. After boiling, 10 µl of sample 

aliquots were electrophoresed and western-blotted onto 0.2 µm Polyvinylidene Difluoride 

(PVDF) membranes. After blotting, the membranes were air dried and exposed to a Phoshor 

Imager screen/X-ray films for 1-2 days. 
32

P Phosphate incorporation was analyzed by autora-

diography and Phoshor Imaging.  

 

3.2.3. Kinetic and Stoichiometry of Aββββ phosphorylation 

 For Aβ phosphorylation kinetics, 1 µl of Aβ (Stock concentration: 1 mg/ml) was 

phosphorylated by different kinases (1 µl of PKA/CK1/CK2) at 32 °C in a reaction mixture 

(28 µl). In stoichiometry experiments, different concentrations of Aβ (0.05, 0.1, 0.2, 0.5, 1.0, 

1.5 and 2.0 µg/µl) were phosphorylated by respective kinases for 15 min at 32 °C. In vitro 

phosphorylation and radioactive phosphate incorporation was carried out as described in 

3.2.4. The Km and Vmax values were calculated by using phosphate incorporation data em-

ploying Michaelis-Menten and Lineweaver-Burk plots. 

 

3.2.4. Phosphoamino acid analysis 

 Phosphoamino acid analysis was carried out by one-dimensional high voltage electro-

phoresis (Jelinek and Weber, 1993). Radiolabeled proteins electrotransferred onto 0.2 µm 

PVDF membrane and after the transfer the radiolabeled protein bands were cut and hydro-

lyzed in 6 M HCl for 90 min at 110 °C. The hydrolysates were spinned down shortly, col-

lected the supernatants and dried in a SpeedVac concentrator. The vaccum dried pellets were 

dissolved in 10 µl of pH 2.5 buffer (5.9% glacial acetic acid, 0.8% formic acid, 0.3% pyridine, 

and 0.3mM EDTA) and spotted onto 20 x 20-cm cellulose TLC plates (Merck) together with 

unlabeled phosphoamino acids (1 µg each of Ser(P), Thr(P), and Tyr(P); Sigma). High volt-

age electrophoresis was carried out for 45 min at 20 mA. Radioactive phosphoamino acids 

were localized by autoradiography and identified by comparison with co migrating phos-

phoamino acids after ninhydrin staining. 
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3.2.5. In vivo phosphorylation of Aβ by cultured cells  

 Phosphorylation of Aβ by cell-surface located PKA in cultured cells was carried out 

as described earlier (Walter et al., 1998). Sub confluent monolayer cell cultures (HEK293, 

SH-SY5Y and human glioblastoma A172 cells) grown on respective medium were washed 

twice with prewarmed (37 °C) isotonic phosphorylation buffer mix (P-mix; 5 ml/6-cm plate) 

and incubated for 10 min at 37 °C in the same buffer (2ml/6-cm plate). Phosphorylation reac-

tions were started by addition of 10 µM [γ-
32

P]ATP and synthetic Aβ peptide (5 µg/ml) and 

were incubated for 30 min at 37 °C in C02 incubator (5% C02). To activate cell surface PKA 

during in vivo labeling, reactions were carried out in the presence of 2.5 µM of cAMP, a se-

lective PKA modulator (Biomol, Germany). To inhibit PKA activities, 1 µM of H-89, a selec-

tive inhibitor (Calbiochem, USA) was added to the medium during periods of labeling. After 

30 min, the phosphorylation reactions were terminated by removing cell supernatants, fol-

lowed by two immediate washes of the cells with ice-cold phosphorylation buffer containing 

2 mM unlabelled ATP. Subsequently, cells were lysed in the presence of 2 mM ATP for 10 

min on ice using ice-cold STEN-Lysis buffer containing 1 µM Okadaic acid (Alexis Bio-

chemicals, Switzerland). Cell lysates and cell supernatants were clarified by centrifugation 

(14,000 x g for 10 min). Phosphorylated Aβ from cell supernatant and in cell lysates were iso-

lated by immunoprecipitation using polyclonal anti-Aβ specific antibody (2964). The im-

munoprecipitated radiolabeled Aβ was separated by SDS-PAGE and western-blotted onto 0.2 

µm PVDF membranes. Radiolabeled Aβ were detected by autoradiography or by phosphori-

maging. Cell viability upon Aβ addition during phosphorylation assays was evaluated by 

measuring the uptake of fluorescent stain ethidium bromide as described in Kubler et al., 

(Kubler et al., 1982). 

 

3.2.6. Primary culture of mouse cortical neurons and phosphorylation of Aβ in vivo 

 Cortical neurons were isolated from embryonic C57BL/6J mice at the development 

stage of 18−19 d as previously described (Hama et al., 2001). Cells (2-2.5 x 10
6
 cells) were 

cultured on poly-L-lysine (PLL) coated glass cover slips (12 mm/0.12−0.17 mm thickness; 

Marienfeld, Germany) in 6-well plate (Corning). AraC (final concentration, 10µM) was 

added after the first 1 day of culture, and the culture medium was changed once per week 

thereafter and 4 hours before treatment. After 14 days in vitro (DIV), cultured neurons were 

used for the in vivo phosphorylation experiment. Phosphorylation of Aβ by cell-surface lo-

cated PKA by primary neuronal cultures were carried out as described in Section 3.2.5. The 

cell viability upon Aβ addition during phosphorylation assays was evaluated in the parallel 
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culture (with similar phosphorylation reaction mixture using non-radiolabeled ATP for the re-

action) by microscopic observation of tryphan blue exclusion. 

 

3.2.7. Stimulation and induced release of ecto-PKA from intact cells 

 Subconfluent monolayer cell cultures of HEK293, SH-SY5Y, HeLa, H4 and human 

glioblastoma A172 cells were grown on respective cell culture medium washed twice with 

prewarmed 1x PBS and adapted to and finally cultivated in serum-free DMEM medium. 

Stimulated release of ecto-PKA from the plasma membrane of intact cells in to the culture 

supernatant was carried out in the presence of 5 µM Forskolin (Calbiochem, USA) for 30 min 

at 37 °C. After incubation, the cell supernatant was collected and centrifuged to remove the 

detached cells or any other particular matter. The cleared supernatants were electophoresed to 

purify the released ecto-PKA and western-blotted onto 0.2 µM PROTRAN nitrocellulose 

membrane. The membranes were immunoprobed with rabbit polyclonal anti-PKAβ catalytic 

subunit antibody (PKAβ cat; Santa Cruz Biotechnology Inc, USA). 

 

3.2.8. Cell surface biotinylation of ecto-PKA 

Cell surface biotinylation using EZ-link Sulfo-NHS-Biotin was carried out according 

to Tamboli et al., (Tamboli et al., 2005). Cells grown on the poly-l-lysine coated dishes up to 

70-80% confluence were washed with ice cold 1x PBS (5 ml/6-cm plate) for two times. Cells 

were then incubated with the addition of freshly prepared EZ-link Sulfo-NHS-Biotin solution 

(50 mg/ml in DMSO) to final concentration of 50 µg/ml and 0.2 % DMSO on ice for 30 min. 

After 30 min of incubation time, the cell supernatants were aspirated, and cells were washed 

three times (10 min each) with 20 mM Glycine (in 1x PBS) to remove or to quench the ex-

cess of biotin. After washing with Glycine, cells further washed with ice cold 1x PBS two 

times and then cells were lysed in STEN-lysis buffer with BSA and biotinylated cell surface 

proteins were isolated using streptavidin sepharose beads. The immunoprecipitated proteins 

were separated by SDS-PAGE and western-blotted onto nitrocellulose membrane. The detec-

tion of biotin-labeled ecto-PKA was done by incubating the membrane in primary antibody 

rabbit polyclonal anti-PKAβ catalytic subunit antibody (PKAβ cat; Santa Cruz Biotechnology 

Inc, USA). For detection of cell surface FL-APP, total FL-APP were first immunoprecipitated 

from lysates after biotinylation and detection of biotinylated FL-APP was performed by prob-

ing the blot with primary polyclonal antibody (5313; specific against N-terminal FL-APP). 
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3.2.9. Human CSF (huCSF) handling and Ex vivo phosphorylation 

The huCSF study was approved by the local ethical committee and also rules and 

regulation of the university klinik Bonn. CSF samples were collected by lumbar puncture 

through the L3/L4 or L4/L5 interspace. The CSF were collected in a polypropylene tube, 

immediately transported to the laboratory for centrifugation at 5000 x g at 4 °C for 10 min 

and aliquoted in 2–5 ml portions that were stored at -80°C for further testing purpose. The 

samples were collected from patients received a diagnosis of AD using the DSM-IIIR (Diag-

nostic and Statistical Manual of Mental Disorders, third edition, revised) (American Psychi-

atric Association, 1987) and National Institute of Neurological and Communicative Disorders 

and Stroke-Alzheimer’s Disease and Related Disorders Association criteria of dementia and 

probable AD, respectively (McKhann et al., 1984). 

Ex vivo phosphorylation were carried out using CSF as a reaction assay buffer (Total 

reaction volume: 30 µl). For Aβ phosphorylation, 1 µl of Aβ (Stock concentration: 1 mg/ml) 

was phosphorylated by 1 µl of different kinases (PKA, CK1 and CK2) at 32 °C using CSF as 

a reaction mixture (28 µl). Phosphorylation reactions was started by addition of 3 µl of 10 

µM [γ-
32

P]ATP and allowed to proceed for respective time intervals at 32 °C. After incuba-

tion at 32 °C the reaction was stopped by the addition of 7 µl of Laemmli sample buffer (5x) 

and boiling for 5 min. After boiling, 10 µl of samples were electrophoresed and western-

blotted onto 0.2 µm PVDF membranes. After blotting, the membranes were air dried and ex-

posed to a Phoshor Imager screen for 1-2 days and radiolabeled Aβ were detected by phos-

phorimaging. 

To characterize the endogenous protein kinase activity in huCSF, reactions were car-

ried out in the presence or absence of kinase specific substrates such as Histone (Stock con-

centration: 0.5 µg/µl), Phosvitin (Stock concentration: 0.5 µg/µl) and Aβ (Stock concentra-

tion: 1 µg/µl) employing the huCSF as a reaction assay buffer (Reaction volume: 30 µl). As a 

control, 1x PBS was used as a reaction buffer. To study the modulation (activation or inhibi-

tion) of endogenous protein kinase activities in huCSF, the reactions were performed in the 

presence of 2.5 µM of cAMP (a selective PKA modulator) and 1 µM of H-89 (a selective in-

hibitor) in reaction mixture. Phosphorylation reactions was started by addition of 3 µl of 10 

µM [γ-
32

P]ATP and allowed to proceed for 15 min at 32 °C. After incubation at 32° C the re-

action was stopped by the addition of 7 µl of Laemmli sample buffer (5x) and boiling for 5 

min. After boiling, 10 µl of sample aliquots were electrophoresed and western-blotted onto 

0.2 µm PVDF membranes. After blotting, the membranes were air dried and exposed to a 

Phoshor Imager screen for 1-2 days and detected the radiolabeled by phosphorimaging. 
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3.2.10. Preparation of Aβ stock solutions 

Stock solutions (Concentration: 230 µM) of Aβ prepared by resuspending 1 mg of lyophi-

lized Aβ peptides in 1 ml of 10 mM NaOH (sterile filtered), vortexed shortly and sonicated in 

Ultrasonic Bath for 1 min. After sonication, 100 µl of peptide solution aliquoted into screw 

cap tubes and were flash frozen using liquid nitrogen and stored at -80 °C until used. The 

concentration of the stock solution was checked using extinction coefficient estimation by the 

method of Gill and von Hippel (Gill and von Hippel, 1989). For the aggregation reactions, the 

stocks were diluted in respective assay buffers to the required concentrations and studies were 

carried out. 

 

3.2.11. Quantifying Aβ Aggregation by CR and ThT dye binding studies 

Dye binding strategies have been used as a diagnostic tool to identify amyloid fibrils 

in tissues more than 150 years and are still one of the most common techniques applied on a 

routine basis. CR and ThT are the two dyes that are widely used as a postmortem histological 

indicator of Aβ peptide deposition in AD brain tissue. CR and ThT undergo characteristics 

spectral alterations after binding to variety of amyloid fibrils, that do not occur on binding to 

the precursor polypeptides, monomers, or amorphous aggregates of the peptide (LeVine, III, 

1999). Both the dyes have been adapted to in vitro measurements of amyloid aggregates for-

mation.  

Aggregation reaction solutions (Final volume: 300 µl and Final concentration: 100 

µM) were made by resuspending the required amount of npAβ and pAβ stock solutions (230 

µM) in filter-sterilized 2x PBS (pH 7.4) with 0.01% sodium azide. The aggregation reaction 

solutions was magnetically stirred at 200 rpm, incubated for 3 days at 37 °C and sample ali-

quots were removed at different incubation time for the CR binding assays. CR binding ex-

periments were performed as described previously (Klunk et al., 1999). Briefly, 6 µl sample 

from aliquots of an aggregation reaction was added to 69 µl solution of CR (10 µM) in 1x 

PBS and incubated at room temperature for 15 min. After 15 min, the test solution was trans-

ferred to a quartz cuvette (Hellma, Germany) and absorbance’s were read at 540 nm and 480 

nm using a Spectrophotometer interfaced with computer (Varian, Australia). The amount of 

CR-bound (Cb) was calculated as described in Wood SJ et al., (Wood et al., 1996). 

Real time ThT binding assay kinetic measurements was performed as described 

(Bourhim et al., 2007; Klement et al., 2007). The aggregation assay reaction mixture contain-

ing 100 µM of npAβ and pAβ peptides in 50 mM of sodium phosphate buffer (pH 7.4), 50 

mM NaCl, 20 µM of ThT solution and 0.01% Sodium azide was taken in quartz fluorescence 

microcuvette (Hellma, Germany) with a small magnetic stirrer. The aggregation assay reac-
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tion solutions was magnetically stirred at 200 rpm and incubated at 37 °C. The real time ThT 

fluorescence data points were recorded every 15 min by measuring fluorescence at 446 nm 

(Ex. Wavelength) and 482 nm (Em. Wavelength) in Cary Eclipse Fluorescence Spectropho-

tometer (Varian, Australia) equipped with a thermostat. 

 

3.2.12. Circular Dichroism (CD) Spectroscopy 

 The structural transition from α-helix/random coil to β-sheet which usually occurs 

during the process of amyloid formation can be easily monitored qualitatively by CD. Secon-

dary structure can be determined by CD spectroscopy in the far-UV spectral region (190-250 

nm). At these wavelengths, the chromophore is the peptide band, and the signal arises when it 

is located in a regular, folded environment. Alpha (α)-helix, beta (β)-sheet, and random coil 

structures each give rise to a characteristics shape and magnitude of CD spectrum. This is il-

lustrated in the Fig. 9, which shows spectra for poly-lysine in these three different conforma-

tions. Therefore, this method was employed to follow the conformational transitions of npAβ 

and pAβ peptides. To follow npAβ and pAβ conformational changes, a quartz cuvette of 0.2 

cm path length was filled with  ∼500 µl of protein solution (230 µM). Temperature control 

with an accuracy of ± 0.5 °C was achieved with a heating/cooling accessory using a Peltier 

element. CD spectra were recorded in the range of 190-260 nm at regular intervals for the so-

lution with a Jasco 810 spectropolarimeter (Jasco, Gross-Umstadt, Germany). Secondary 

structure calculations were made by CONTIN-LL. 

 

 

 

Fig. 9: Characteristics far-UV CD spectra of ββββ-sheets (red), αααα-helices (black), and random coils 

(green). Typical bands are: β-sheet – negative at 216 nm (π-π
*
), positive at 195-198 nm (n-π

*
); α-helix 

– positive at 192-195 nm (π-π
*
), negative at 208 nm (π-π

*
) and 222 nm (n-π

*
); random coil – negative 

at 200 nm (n-π
*
). 
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3.2.13. Aggregation kinetics analysis 

 Aggregation kinetic measurements were carried out as described previously. The ki-

netic data were fitted using a logistic equation as described (Naiki and Gejyo, 1999), 

 

dF/dt=kF(Flim-F) (1) 

 

where F is ThT fluorescence as a function of time t, Flim is its limiting value when t ap-

proaches infinity and k is a tentative rate constant. This model may be physically sensible, as 

far as the number concentration of the growing aggregates is proportional to total concentra-

tion of proteins found in protein aggregates. Integrating equation 1 gives, 

 

ln(F/(Flim-F))=kFlimt+C (2) 

 

where C is a constant value. Employing this linear semi-logarithmic plot, the time required 

for F to reach at half of the maximal value, i.e. t1/2, was conveniently obtained from the time-

intercept of the line (i.e. –C/kFlim). Also, the maximal rate of aggregation, occurring at t=t1/2 

when F=Flim/2, was calculated as kF
2

lim/4. The lag time tlag was calculated as the time-

intercept of the line best fitted to the linear portion of F vs. t plot. 

 

3.2.14. Nuclear magnetic resonance (NMR) 

 A novel method using solution NMR was employed to gain information about the 

structural information and dynamical properties of effect of phosphorylation on monomer 

consumption. NMR samples contained 100 µM of npAβ or pAβ in 90% H2O /10% D2O, 50 

mM Sodium phosphate buffer at pH 7.4, 50 mM NaCl and 0.01% Sodium azide. The tem-

perature was set at 37 °C. 1D 
1
H-NMR spectra were acquired at the specified times on a 

Bruker 600 MHz NMR spectrometer equipped with a cryogenic probe. Each NMR experi-

ment consisted of 256 scans, and 16 K complex points were obtained with a spectral width of 

7200 Hz. NMR data were processed uniformly by TOPSPIN 2.0 and calibrated using the 

known chemical shift of water. Three signals within the aliphatic region of proton spectra 

(0.754, 1.258 and 2.096 ppm), which revealed an evident intensity decay with time were se-

lected for further analysis. Relative intensities of these three peaks, as referenced by the in-

tensity of solvent peak at each spectrum, were monitored with time and employed as a probe 

of peptide monomer consumption during the early phases of peptide aggregation. 
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3.2.15. Analysis of size of the Aββββ aggregates by Dynamic Light Scattering (DLS) 

 The npAβ and pAβ peptide aggregation assay solution were made by diluting the 

stock solution (230 µM) to a concentration of 100 µM, in 50 mM sodium phosphate buffer 

pH 7.4, containing 50 mM NaCl and 0.01% sodium azide. The aggregation assay solutions 

were filtered through a Microcon-10 centrifugal device at 12,000 x g for 15 minutes. Imme-

diately after centrifugation the peptides were transferred to a DLS cuvette and continuing for 

2 hours, the intensity autocorrelation functions were automatically measured at 5 min inter-

vals. DLS experiments were performed at 37 °C, on a DynaPro Titan DLS instrument, with a 

laser of 827.08 nm. The scattering angle was 90°. Each DLS measurement consisted of 

twelve 20 s long acquisitions, with 1 min waiting time between them. Refractive index (RI) 

of the solution was set at 1.333 at 589 nm and 20 °C, and the RI at the studied wavelength 

was obtained through Cauchy equation, with a coefficient of 3119 nm
2
. The viscosity was 

1.019 cp at 20 °C and the temperature-dependent variations were calculated by an aqueous 

model. The size distribution was determined by a constrained regularization method. Size dis-

tributions have been displayed after excluding the outlier peaks, located below 0.5 and above 

2000 nm during the whole process. 

 

3.2.16. Analysis of Aβ oligomers by Dot blot assay 

 Dot blotting technique was employed to monitor the appearance of oligomeric species 

in the fibrillization process during aggregation. The aggregation assay reaction mixture con-

taining 100 µM of npAβ and pAβ peptide samples in 1 x PBS was incubated at 37 °C for 3 

days. Sample aliquots were taken at different time intervals during incubation were flash fro-

zen using liquid N2. At the end of the aggregation assay, dot blot analysis was carried out. 2 

µL of the respective Aβ forms in PBS was applied to a nitrocellulose membrane and allowed 

to dry. The membrane was blocked in 5% non-fat milk powder/BSA in Tris-buffered saline 

(TBS) containing 0.01% Tween 20 (TBS-T), at room temperature for 1 h. After incubation, 

the blots were washed three times for 5 min each with TBS-T and incubated for 1 hr at room 

temperature with the polyclonal rabbit anti-oligomer Aβ antibody serum (2964) in 3% non-fat 

milk powder/BSA in TBS-T. The membranes were washed three times for 5 min each with 

TBS-T, incubated with horseradish peroxidase conjugated anti-rabbit IgG (Sigma, Germany) 

in 3% non-fat milk powder/BSA in TBS-T and incubated for 1 hour at room temperature. The 

blots were washed three times with TBS-T and developed with ECL chemiluminescence’s re-

agent. 
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3.2.17. Transmission Electron Microscopy (TEM) 

 TEM was used for the characterization of npAβ and pAβ peptide samples in the 

course of aggregation. Aliquots of Aβ samples used in the CR and ThT dye binding experi-

ments collected at different time intervals during aggregation reaction were employed for the 

TEM studies. Samples were deposited on a carbon-coated copper grid and adsorbed for ap-

proximately for one minute. Remaining moisture was discarded by soaking with filter paper. 

Subsequently, the samples were covered with a droplet of 1% aqueous uranyl acetate stain. 

After few seconds the drop was blotted dry and the samples were analyzed with FEI CM120 

transmission electron microscope (FEI, USA) operated at 120 kV. 

 

3.2.18. Generation of phosphorylation-site specific Aβ antibody 

 The polyclonal phosphorylation-specific Aβ antibody (SA5434) was generated against 

phosphorylated Aβ (pSer-8) using a short peptide containing the phosphorylated residue 

(NH2-DAEFRHDpSGYEVHHQK-COOH) as an immunogen. The phosphospeptide was 

coupled to a carrier protein such as keyhole limpet hemocyanin (KLH) and injected into rab-

bits to generate polyclonal antiserum. After the scheduled immunization, the rabbits were sac-

rificed and polyclonal serum was collected. The antibodies from serum were then purified by 

two step affinity chromatography. In first step, the serum was run over a protein A column 

containing non-phosphospecific peptide. Thus, antibodies that bind in a phosphorylation-

independent fashion are retained on the column and removed while antibodies for which the 

phosphate is an essential part of the epitope will flow through the column. The flow through 

of the first column was run through a second purification step using a phosphopeptide affinity 

column which can further purify the phospho-specific antibodies. The polyclonal phospho-

specific antibody SA5434 was generated like above with rabbit as a host (Eurogentec, Bel-

gium). After double affinity purification, the phospho-specific antibody is first screened by 

ELISA to determine affinity and phospho-selectivity. After confirming the phospho-

selectivity of the SA5434 by ELISA, the SA5434 antibody was tested against their pAβ 

specificity by SDS-PAGE and Western-blotting of npAβ and pAβ peptides. 

 

3.2.19. Transgenic mice, protein extraction and immunohistochemistry 

  APPswe/PS1∆exon9 double transgenic mice (tg) were obtained from Jax Laboratories, 

USA (Strain Name: B6C3-Tg, Stock Number: 004462). Amyloid pathology that develops in 

these mice derives from the proteolytic processing of the human APP transgene product that 

harbors the Swedish double mutation (K595N/M596L) and ∆E9 knock-out mutation in pre-

senilin 1 that, in combination, lead to the marked overproduction and progressive accumula-



Materials and Methods 

 50 

tion of the Aβ (Borchelt et al., 1997). Transgenic mice and nontransgenic littermates were 

sacrificed at 2, 6, 9, 12, 18 and 24 months. The brains were perfused transcardially with ice-

cold saline, and removed from the skull. Brain hemispheres were either frozen in liquid nitro-

gen until further use or fixed in 4% paraformaldehyde dissolved in PBS overnight. One half 

of the brain hemisphere was used for immunohistochemical studies and the other half was 

used for sequential protein extraction. At each step, the brains were mechanically homoge-

nized (Eppendorf douncer; 10 repeats) followed with sonication (20 stroke, max powerout-

put: 70%, 20 seconds intervals) in an appropriate buffer was followed by 30 minutes incuba-

tion on ice and centrifugation at 14,000 x g for 30 minutes at 4 °C. The supernatant was then 

removed, and the pellet was sonicated in the next solution used in the sequential extraction 

process. For two-step extraction, homogenization and sonication of the frozen brain began in 

1000 µl of 0.32 M Sucrose in millipore H2O, supplemented with complete protease inhibitor 

cocktail and protein phosphatase inhibitor tablet (Roche Diganostics GmbH, Germany). The 

next sequential extraction step used 1000 µl of 2% SDS in 50 mM Tris buffer (pH 7.3) con-

taining protease and phosphates inhibitors (Roche Diagnostics, Germany). After each step of 

extraction, the respective supernatants were collected in fresh eppendorf tubes and kept on 

ice. After the sucrose soluble-Aβ and SDS soluble-Aβ extraction procedure, the total protein 

concentrations were determined with the BCA
TM 

protein assay kit (Thermo Scientific, USA).  

 For immunohistochemical analysis, paraformaldehyde fixed brains were cut into 40 

µm thick sagittal sections using a vibratome (LeicaVT1000S). Sections were treated with 

50% methanol in PBS for 15 min, washed 3x with PBS for 10 min and blocked with 3% BSA 

in PBS, 0.1% Triton X-100 (blocking buffer). Next, sections were incubated with primary an-

tibodies (6E10, SA5434) in blocking buffer overnight at 4 ºC, washed three times with block-

ing buffer for 10 min and incubated with Alexa Fluor 488 goat anti-mouse and 594 goat anti-

rabbit antibodies (1:500). Subsequently, sections were washed three times in blocking buffer, 

brought onto Superfrost glasses in tap water, dried overnight and mounted in Mowiol. Im-

munofluorescence images of the sections were obtained with standard fluorescent microscope 

or spinning disk confocal microscope. Deconvoluted images of 3 µm thick stacks were ob-

tained with standard fluorescent microscopy using Cell-P software. 

 

3.2.20. Dephosphorylation of mouse brain lysates and synthetic pAβ samples 

 The reaction mixture containing (50 µl) containing 100 µg of mouse whole brain hy-

drolysates and 500 ng of pAβ 1-40 in 1x SAP reaction buffer were enzymatically dephos-

phorylated using 3 µl Shrimp-Alkaline Phosphatase (SAP) (1u/µl; Fermentas) at 37 °C for 5 
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hours. The samples were then electrophoresed and immunoblotted using anti-Aβ antibody 

(6E10). The immunoblots were quantified with Quantity One software (BioRad). 

 

3.2.21. Immunohistochemistry and double-label confocal microscopy of human AD 

brain  

 Ten human autopsy brains were received from the University Hospital Bonn in accor-

dance with the laws and under affirmation of the local ethical committee (Table 3). Post-

mortem diagnosis of Alzheimer's disease was carried out according to the NIA-Reagan Crite-

ria (The National Institute on Aging 1997: Neurobiol Aging, 18: S1-2.). In two cases, double-

label immunohistochemistry on AD brain sections was performed using polyclonal anti-pAβ 

antibody (SA5434, (Eurogentec, Belgium), 1/5) combined with a monoclonal antibody di-

rected against APP (22C11, (Chemicon, USA), 1/75). The primary antibodies were visualized 

with carbocyanin 2 (Cy2)-labeled antibodies directed against mouse IgG and Cy3-labeled an-

tibodies against rabbit IgG (1:50; Cy2 and Cy3; Dianova, Hamburg, Germany). These sec-

tions were mounted in Corbit without counterstaining. The remaining eight brain sections 

were immunohistochemically labeled for anti-pAβ. The antibody reaction was visualized 

with the Biomeda ABC-Complex-kit (Biomeda, Foster City, CA). Immunolabeled sections 

were analyzed with a Leica DMLB fluorescence microscope. Pictures were taken digitally 

with a Leica DCF500 camera. 

 

Table 3: Ten human autopsy brains were received from the University Hospital Bonn in accor-
dance with the laws and under affirmation of the local ethical committee. 

 

Case No. Age Gender Braak-Stage Aβ-phase Post mortem diagnosis 

1 64 Male I 2 Normal aged brain 

2 72 Male III 2 Normal aged brain 

3 83 Female III 3 Normal aged brain 

4 84 Female III 3 Normal aged brain 

5 87 Male III 3 Normal aged brain 

6 82 Male III 3 AD 

7 76 Male IV 4 AD 

8 83 Male IV 4 AD 

9 89 Female V 4 AD 

10 86 Female VI 4 AD 

 

 

3.2.22. SDS-PAGE and Western blotting 

 
 Pre-cast NuPAGE 4-12% bis-Tris Gel (Invitrogen, USA) or 16% Tris-Tricine Anamed 

gels (Anamed Elektrophorese GmbH, Germany) or 10% self made gels of were used for the SDS-

PAGE. 50 µg of protein per sample (brain lysates) was resuspended with 4x NuPAGE LDS Sam-
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ple buffer and 10x NuPAGE Reducing agent. Samples were mixed and were heated to 70 °C for 

10 minutes. After heating, samples were spinned down shortly and loaded the samples in respec-

tive gels and done the electrophoresis. After electrophoresis, the proteins were transferred onto 

0.2 µm nitrocellulose membranes. Membranes were boiled for 10 min in 1x PBS and blocked in 

PBS-T (Phosphate-Buffered Saline-Tween 20) containing 5% BSA or non-fat milk powder (ECL 

Advance blocking agent; GE Healthcare) and probed with appropriate antisera/antibodies diluted 

in 1% BSA/non-fat milk powder. Blots were developed with an Amersham ECL detection system 

(Amersham, GE Healthcare). Blots were quantified with Quantity One software (BioRad). 
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4. RESULTS 
 

 

4.1. Phosphorylation of Aβ 

 

 

The Aβ sequence contains two serine residues at 8
th

 (604 aa of APP695) and 26
th

 posi-

tion (622 aa of APP695), a tyrosine (610 aa of APP695) residue at 10
th

 position which could 

possibly undergo phosphorylation. The primary goal of the thesis work was to identify the 

role of phosphorylation in Aβ aggregation and pathogenesis of AD. Therefore, investigations 

were carried out to predict/identify/determine putative phosphorylation sites of Aβ. 

 
 

4.1.1 In silico analysis of putative phosphorylation sites of Aβ 

 

  

The preliminary identification of the putative phosphorylation sites of Aβ and identi-

fication of the responsible kinases were carried out by in silico analysis using freely available 

world wide web (www) based computational tools. These prediction tools are neural net-

work-based methods for predicting potential phosphorylation sites (serine, threonine or tyro-

sine residues) in any given protein/peptide sequences.  

The prediction of putative Aβ phosphorylation sites was performed by using the Net-

phos 2.0 computational tool (www.cbs.dtu.dk/services/NetPhos). The results from the in 

silico analysis indicate that Ser-8, Ser-26 and Tyr-10 residues might be potential phosphoryla-

tion sites in Aβ sequence (Fig. 10). The serine at 8
th

 position had the highest prediction score 

of 0.963. The serine at 26
th

 position had a prediction score of 0.787. The tyrosine at 10
th

 posi-

tion has a score of 0.870. In general, the higher the prediction score, the higher is the confi-

dence level of the prediction and also the predicted sites are comparable to one or more of the 

already known phosphorylation consensus sequences used in neural network algorithms of 

the prediction tool. The phosphoprediction scores above the threshold value (>0.5) is consid-

ered to be significant according to the prediction programme and has the highest probability 

to undergo phosphorylation. 
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Method: NetPhosK 2.0 server 
 

a) Aβ Sequence    Length: 40aa 

     

 DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVV                                 

 .......S.Y...............S..............                                 

  

Phosphorylation sites predicted: Ser: 2, Thr: 0 and Tyr: 1 

 

 

b)                Serine predictions 
 

 Name               Pos   Context    Score  Pred. 

 _________________________   v_________________ 

 Aβ Sequence         8   FRHDSGYEV   0.963   *S* 

 Aβ Sequence        26   EDVGSNKGA   0.787   *S* 

 _________________________   ^_________________ 

 

                 Tyrosine predictions 

 

 Name               Pos   Context    Score  Pred. 

 _________________________   v_________________ 

 Aβ Sequence        10   HDSGYEVHH   0.870  *Y* 

 _________________________   ^_________________ 

 

 
 

c)  Graphical illustrations of the phoshopredictions 

 

  
 
 
Fig. 10: In silico analysis of putative phosphorylation sites of Aβ. 
Protein sequences of human Aβ1-40 sequences were analyzed by using NetPhos 2.0 computational 
prediction tool (www.cbs.dtu.dk/services/NetPhos). The result from NetPhosK contains three parts for 
each of the protein/peptide sequence analyzed. The first part indicates the name, length of the aa se-
quence and predicted phosphosites (a). The second part shows the predicted phospho residues, their 
positions in the sequence and the respective phospho prediction score (b). The third part shows the 
graphical illustrations of phosphorylation potential of predicted phosphosites (c). 
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4.1.2. Identification of kinase-specific consensus sequences in Aβ and responsible kinases  

 

Consensus sequences/motifs refers to the sequence of amino acids immediately sur-

rounding the phosphorylated site(s) by given protein kinases. They act as critical substrate 

recognition determinants and most probably form a reflected image of the corresponding sub-

strate binding domains. They are considered essential for substrate recognition and phos-

phorylation by respective kinases (Kennelly and Krebs, 1991). KinasePhos prediction tool 

was used to predict the kinase-specific consensus motifs in Aβ sequence (Fig. 11). 

 

 

      

1              5                   10                 15        20                 25                 30            35 40  42

AAAAββββββββ 40/4240/4240/4240/42: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
1              5                   10                 15        20                 25                 30            35 40  42

AAAAββββββββ 40/4240/4240/4240/42: DAEFRHDSGYEVHHQKLVFFAEDVGSNKGAIIGLMVGGVVIA
 

 
 
 
 
Fig. 11: Human Aβ sequence with predicted phosphosites, consensus motifs and responsible 
kinases.  
The boxed residues (Ser-8 and Ser-26) indicate putative phosphorylation sites for the indicated pro-
tein kinases (PKA, CK1, CK2 and PKC). Residues determining the kinase-specific consensus motifs 
are shown in red color (underlined). The identified kinases which can conform phosphorylation con-
sensus are indicated above the amino acid sequence. The predicted phosphosite are indicated by 

zero. The numbers below the Aβ sequence indicate the position of the amino acid residues towards 
N-terminal (-) and C-terminal (+) in the sequence.  

 

 

The KinasePhos prediction tool showed the occurrence of kinsase-specific consensus 

sequences around the identified phosphorylation sites. Ser-8 with a consensus sequence 

(FRHDSGYEV) could undergo phosphorylation by protein kinase A (PKA) or casein kinase 

2 (CK2). Likewise, Ser-26 with a consensus sequence (EDVGSNKGA) might undergo phos-

phorylation by casein kinase 1 (CK1) or protein kinase C (PKC). The resemblance of kinase-

specific consensus sequences in Aβ further supports that Aβ might undergo phosphorylation 

by PKA, CK1, CK2 and PKC (Table 4). All of these identified kinases are reported to be im-

plicated in AD (Chachin et al., 1996a; Jicha et al., 1999; Moore et al., 1998; Schwab et al., 

2000; Su et al., 2003; Yasojima et al., 2000).  
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Table 4: Summary of the consensus sequences most frequently recognized by different pro-
tein kinases and resemblance of such consensus in Aβ sequence. 
The amino acid indicated by an asterisks (also highlighted in red) denotes the phosphoacceptor 

(S*/T*). The P in parentheses is to denote pre-existing phosphoamino acid residue. Interchangeability 
of two amino acids function is indicated by listing both residues with a slash (/) separating them. X is 
any amino acid which is neutral for the recognition sequence. The numbers in subscripts refer to the 
amino acid positions. 
 

 
 

4.1.3.  In vitro phosphorylation of Aβ 

 

To test the potential phosphorylation sites of Aβ, in vitro phosphorylation studies were 

carried out using synthetic Aβ1-40 peptide and purified catalytic units of PKA, CK1 and CK2. 

As the present study aimed at identifying the phosphorylation events taking place extracellu-

larly, investigations were carried out  with the extracellular kinases which are reported to oc-

cur at cell surfaces (PKA, CK1 and CK2) (Kubler et al., 1982; Kubler et al., 1992; Redegeld 

et al., 1999; Walter et al., 1996b; Walter et al., 2000). 

 

The results of in vitro phosphorylation of Aβ by different kinases are shown (
32

P) 

(Fig. 12A). Aβ1-40 peptide can undergo phosphorylation by PKA, CK1 and CK2. The cata-

lytic subunits of different kinases were also found to undergo autophosphorylation. The auto-

phosphorylation signals were observed to be reduced when the substrate (Aβ) was supple-

mented to the reaction indicating the authenticity of Aβ phosphorylation correspondingly by 

the respective kinases. This further confirms the substrate competition in the phosphorylation 

reaction.  The amount of radiolabeled 
32

P phosphate incorporation was quantified using phos-

phorimager and results indicate that phosphorylation of Aβ is in the order PKA > CK2 > CK1 

(Fig. 12B). 

 

 

 

 

Protein Kinases Preferred consensus sequences (motifs) 
Resemblance of consensus 

motifs in Aββββ sequence 

cAMP-dependent pro-
tein kinase A (PKA) 

R-R/K-X-S*/T* > R-X2-S*/T* = R-X-S*/T* DAEFRHDSS**  (Ser-8) 

Casein kinase 2 (CK2) S*/T*- (D/E/S(P)
1-3

-X
2-0

) DAEFRHDSS**GYE (Ser-8) 

Casein kinase 1(CK1) S(P)-X
2
-S*/T* > S(P)-X

1 or 3
-S*/T*>> (D/E

2-4, 

X
2-0

)- S*/T* 

EDVGSS**NKG (Ser-26) 

Protein kinase C (PKC) (R/K1-3,X2-0)-S*/T*-(X2-0,R/K1-3)>S*/T*-(X2-

0,R/K1-3) ≥ (R/K1-3,X2-0)-S*/T* 
EDVGSS**NKG (Ser-26) 
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A.        B. 

 

         

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 12: In vitro phosphorylation of Aβ1-40 by PKA, CK1 and CK2 kinases. 

In vitro phosphorylation reactions were carried out by incubating synthetic Aβ1-40 (1 µg) with radio-

labeled [γ
32

P]ATP (10 µM) in the presence of respective catalytic subunits of kinases for 15 min at 
32 °C. Radiolabeled proteins were separated by SDS-PAGE and western-blotting. 

32
P-labeled Aβ was 

detected by autoradiography. A) The autoradiograph showing the phosphorylation of Aβ by all the 
three kinases (phosphosignals at 4 kDa). The asterisks indicate autophosphorylation signals of the 
PKA, CK1 and CK2 kinases. The lower panel indicates immunosignals of Aβ by western-blotting con-

firming the equal amount of Aβ taken for the reactions (WB). B) The relative 
32

P phosphate incorpora-
tion of Aβ by the kinases was quantified by phosphorimaging. The phosphorylation reactions were car-
ried out in duplicates in two independent experiments. Values represent mean ± s.d. of two independ-
ent experiments. 
 

 

4.1.3.1. Phosphoamino acid analysis of in vitro phosphorylated Aβ 

 

To further characterize the phosphorylation site, phosphoamino acid analysis was car-

ried out. In vitro phosphorylated Aβ was hydrolyzed to release the phosphoamino acids and 

separated them on cellulose-TLC plates. The location of the phosphoamino acid standards 

was mapped by ninhydrin staining and the presence of 
32

P-amino acids by autoradiography. 

The results indicate the presence of only 
32

P-labeled phospho-Ser;  the same position and 

shape for the P-Ser (pS) spot using ninhydrin detection and autoradiography was apparent. 

The phosphorylation was targeted mainly on serine residues of Aβ by the used kinases (Fig. 

13). 
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Fig. 13: Phosphoamino acid analysis of 
32

P labeled Aβ peptide by thin-layer electrophoresis. 
In vitro phosphorylated Aβ was subjected to acid hydrolysis and the released phosphoamino acids 
were resolved by one-dimensional thin layer electrophoresis using cellulose-TLC plates. The position 
of radiolabeled phosphoamino acids were detected by autoradiography. The positions of ninhydrin-
stained phosphorylated amino acids are indicated by circles: phosphoserine (pS), phosphothreonine 
(pT), and phosphotyrosine (pY). The migration of the 

32
P labeled serine with the ninhydrin-stained 

cold phosphoamino acids standards can be seen.   
 

 

4.1.3.2. Stoichiometry and kinetics of phosphorylation 

 

The stoichiometry and kinetics of phosphorylation of Aβ1-40 by PKA, CK1 and CK2 

was examined. The autoradiograms show the time course of phosphorylation of Aβ1-40 by 

PKA, CK1 and CK2 kinases (Fig. 14A). Phosphorylation of the Aβ1-40 increased with in-

crease in reaction time and reached saturated levels after about 15-30 min. Rapid incorpora-

tion of radiolabeled 
32

P was observed with PKA and CK2 as compared to slower incorpora-

tion by CK1. Phosphate incorporation followed a typical hyperbolic curve. Quantitative 

analysis revealed that PKA mediated incorporation of 
32

P phosphate reached plateau at ∼1 

mol of phosphate/mol of Aβ1-40, whereas CK2 incorporates about ∼0.6 mol of phos-

phate/mol of Aβ1-40. The CK1 mediated 
32

P phosphate incorporation was ∼0.2 mol of phos-

phate/mol of Aβ1-40 respectively (Fig. 14B). 
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A.      B. 

 

 

 

 

 

                                                                                                                                                      

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 14: Stoichiometry of Aβ1-40 phosphorylation by PKA, CK1 and CK2. 

A) Synthetic Aβ1-40 (1 µg) was incubated with [γ-
32

P]ATP (10 µM) in the presence of PKA, CK1 and 
CK2. In vitro phosphorylation reactions were carried out for the indicated time points. Phosphorylation 
reactions were terminated by the addition of SDS-sample buffer. The reaction products were electro-
phoresed and western-blotted onto PVDF (polyvinylidene difluoride) membrane. Radiolabeled pro-
teins were detected by autoradiography. Autoradiographs show the phosphosignals of Aβ by PKA, 
CK1 and CK2 kinases at different time intervals (indicated by arrow head). The autophosphorylation 
signals of kinases are also shown (+, - and asterisks). B) The stoichiometry of the phosphorylation 

was calculated on the basis of the specific radioactivity of the [γ
32

P]ATP used and the amount of Aβ (in 

µM) used for the reaction. Quantification by phosphorimaging revealed that PKA incorporates ∼1 mol 

of phosphate/mol of substrate, while CK2 incorporates ∼0.6 mol of phosphate/mol of substrate. The 

CK1 incorporates ∼0.24 mol of phosphate/mol of substrate. The phosphorylation reactions were car-
ried out in duplicates each time. The values indicate mean ± s.d. of four data points from two experi-
ments. 
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A.        B. 

 

 

                                                                                                                                               

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Fig. 15: Determination of Km of Aβ1-40 phosphorylation by PKA, CK1 and CK2 kinases. 
A) Aβ1-40 (0.05, 0.1, 0.2, 0.5, 1.0, 1.5 and 2.0 µg) was phosphorylated by PKA, CK1 and CK2 
kinases for 15 min at 32 °C. After incubation, the reactions were stopped by addition of SDS-sample 
buffer and aliquots of samples were electrophoresed and western-blotted onto PVDF membrane. Ra-
diolabeled proteins were detected by autoradiography. Autoradiograph shows the phosphorylation 

signals of different concentrations of Aβ used for the reaction. The phosphorylation reactions were 
carried out in duplicates.  B) Radiolabeled 

32
P incorporation was quantified by phosphorimaging and 

Km was calculated by Lineweaver-Burk double reciprocal plot analysis. The calculated Km values for 

PKA was 21 µM and Km values for CK1 and CK2 were 310 µM and 468 µM. The assays were carried 
out in duplicates each time. The values indicate mean ±s.d. of four data sets from two experiments. 
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Different concentration of synthetic Aβ1-40 (0.05- 2.0 µg/µl) was phosphorylated by 

PKA, CK1 and CK2 kinases (Fig. 15A). The 
32

P phosphate incorporation was quantified by 

phosphorimaging. The Km values were calculated by Lineweaver-Burk double reciprocal 

plot analysis. The Km value for PKA for Aβ was 21 µM and Km values for CK1 and CK2 

were 310 and 468 µM respectively (Fig. 15B). Notably, the Aβ1-40 appears to be a better 

substrate for PKA and CK2 kinases, as indicated by the stoichiometry and kinetic analysis. 

 

 

4.1.3.3. In vitro phosphorylation of Aβ1-42 

 

The previous results showed that Aβ1-40 can undergo phosphorylation by PKA, CK1 

and CK2. In human brain, two major forms of Aβ such as Aβ1-40 (90%) and Aβ1-42 (10%) 

exists (Iwatsubo et al., 1996). Therefore, phosphorylation of Aβ1-42 was also tested.  Like 

Aβ1-40, all the three kinases phosphorylated the Aβ1-42. In addition to phosphorylation of 

monomeric Aβ, Aβ dimer was also found to undergo phosphorylation by PKA and CK1, little 

if any phosphorylation of Aβ dimer was observed with CK2 (Fig. 16). This indicates either 

the kinase specificity towards oligomer is different or phosphorylation by PKA or CK1 

kinase could induce oligomerization of Aβ (
32

P signals of Aβ dimer were significantly ob-

served with PKA and CK1 as compared to CK2).  

 

   

 

 

 

 

    
 
 
 
Fig. 16: In vitro phosphorylation of Aβ1-42 by PKA, CK1 and CK2. 

In vitro phosphorylation were carried out using synthetic Aβ1-42 (1 µg) incubated with radiolabeled 

[γ
32

P]ATP (10 µM) in the presence of respective kinases for 15 min at 32 °C. Radiolabeled proteins 
were separated by SDS-PAGE and western-blotting. 

32
P-labeled Aβ was detected by autoradiography. 

The autoradiograph (
32

P, upper panel) shows phosphorylation signal of Aβ1-42 monomer by all the 
three kinases (phosphosignals at 4 kDa). Significant amount of phosphorylation of Aβ1-42 dimer by 
PKA and CK1 are observed (phosphosignals at 8 kDa). The lower panel indicates Aβ1-42 immunosig-
nals after western-blotting using anti Aβ1-42 specific antibody showing the equal amount of peptide 
employed for the assay (WB).  
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4.1.3.4. Localization and characterization of the PKA, CK1 and CK2 phosphorylation 

sites of Aβ  
 

To identify the exact phosphorylation sites of the kinases, in vitro phosphorylation as-

says were carried out using truncated, full-length and phospho variants of synthetic peptides 

by PKA, CK1 and CK2 kinases (Aβ1-16, Aβ17-40, Aβ1-40, pAβ1-40 (pre-phosphorylated at 

Ser-8) and Aβ1-42).  

 

A 

 

            

           PKA 

 

 

B 

 

             
            

           CK1 
 

 

C 

 

 

            

           CK2 

 

 

 
 
Fig. 17: Localization of PKA, CK1 and CK2 specific phosphosites of Aβ.  
In vitro phosphorylation assays were carried out using different variants of synthetic Aβ peptides (1 

µg), [γ-
32

P]ATP (10 µM) and purified PKA, CK1, and CK2 (A, B and C). Radiolabeled proteins were 
separated by SDS-PAGE and western-blotting. 

32
P-labeled Aβ was detected by autoradiography. A) 

PKA phosphorylated Aβ1-16, Aβ1-40, and Aβ1-42. No phosphosignals were observed for Aβ17-40 
and pAβ1-40 (pSer-8) by PKA indicate that PKA exclusively phosphorylates Ser-8 residue in Aβ se-
quence. B) CK1 phosphorylated Aβ17-40, Aβ1-40, pAβ1-40 (pSer-8) and Aβ1-42 but not Aβ1-16. The 
results indicate that CK1 phosphorylates the Ser-26 residue in Aβ sequence. C) CK2 phosphorylated 
Aβ1-16, Aβ1-40, and Aβ1-42. A minor (not significant) incorporation of 

32
P phosphate is observed for 

Aβ17-40 and pAβ1-40 (pSer-8). Results indicate that CK2 can phosphorylate the Ser-8 residue in Aβ 
sequence. The lower panel indicates immunosignals of Aβ after western blotting and confirms the 
equal amount of Aβ taken for the reactions (WB). 
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 PKA readily phosphorylated the Aβ1-16, Aβ1-40 and Aβ1-42 excluding the Aβ17-40 

and pAβ1-40. The use of synthetic peptide Aβ1-16 (contains Ser-8) and Aβ17-40 (contains 

Ser-26) showed that PKA exclusively phosphorylates Aβ at Ser-8 residue. In addition, PKA 

failed to phosphorylate the synthetic pAβ1-40 which was pre-phosphorylated at Ser-8 (pAβ-

Ser8) further confirming the specificity of PKA to Ser-8 residue (Fig. 17A). CK1 phosphory-

lated the Aβ17-40, Aβ1-40, pAβ1-40 and Aβ1-42 but not Aβ1-16 indicating the specificity of 

CK1 to Ser-26 residue (Fig. 17B). CK2 readily phosphorylated the Aβ1-16, Aβ1-40, Aβ1-42 

except Aβ17-40 and pAβ1-40 indicate that CK2 can phosphorylate Ser-8 of Aβ (Fig. 17C). 

Together, these data indicate that Ser-8 residue in Aβ can undergo phosphorylation by PKA 

and CK2 while CK1 can phosphorylate Ser-26 residue in Aβ sequence. 
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4.2. Characterization of extracellular kinase activity 

 

4.2.1. Differential expression of PKA in human AD brain 

 

 The cAMP/protein kinase A (PKA) pathway is responsible for the most cAMP-

mediated physiological functions in the brain and has long been known for its essential role 

in memory formation (Walaas and Greengard, 1991; Horiuchi et al., 2008). Biochemical 

analyses were carried out to check the PKA expression in human healthy (control) and dis-

eased (AD) brain. Consistent with the results from cultured cells and human brain tissue 

(Orstavik et al., 2001; Orstavik et al., 2005), different catalytic subunits (Cα1; 40 kDa and 

Cβ2; 47 kDa) of PKA were detected in the control as well as AD human brain lysates. The 

expression of Cα1 catalytic subunit was predominant in AD as well as in controls as com-

pared to Cβ2. Interestingly, the expression level of both the catalytic subunits was found to be 

significantly altered in AD brain as compared to controls (Fig. 18). 

 

 

A)            B)   

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 18: Detection of endogenous PKA expression in human control and AD brain.  
The brain lysates prepared from human AD patients (AD) and age-matched controls (C) brains were 

electrophoresed and western-blotted (50 µg of protein lysate/lane). Endogenous PKA expression was 
detected using anti-PKA catalytic subunit antibody. The expression of the Cα1 catalytic subunit of PKA 
(40kDa) is higher as compared to Cβ2 (47kDa) in AD as well as in controls. The expression of both 
the catalytic units are seems to be altered in AD patients brain as compared to controls (Cβ2 was 
more evident). B) Densitometric analysis of the alteration of different catalytic subunits. The bar 
graphs indicate the alteration of Cβ2/Cα1 expression in AD patients as compared to age-matched 
controls. The values indicate mean ± s.d (*p<0.05; n = 6). Statistical significance was evaluated by 
student t-test (n=3).The expression analysis is normalized to endogenous β-actin levels. 
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4.2.2. Detection of extracellular PKA in cultured cells 

 
In addition to abundant source of intracellular kinases, existence of different extracel-

lular PKs on the cell surface of a wide variety of cells have been reported (Nestler and 

Greengard, 1983; Walaas and Greengard, 1991; Redegeld et al., 1999; Walter et al., 1996). 

The extracellular PKs activity and the shedding of these kinases are known to be modulated 

by adenylate cyclase modulators. Forskolin has been used extensively to stimulate the ade-

nylate cyclase to increase the cAMP level and to elicit cAMP-dependent physiological proc-

esses (Awad et al., 1983). Different monolayer intact cell cultures (HEK293, SH-SY5Y, HeLa, 

H4 and Glial cells) were used to confirm the occurrence of extracellular PKA and to check 

whether forskolin can modulate PKA secretion (shedding). The results indicated the expres-

sion of two catalytic subunits of PKA from the cells (Cα1 and Cβ2) and are shedded to the 

charged medium. The relative expression levels of PKA catalytic subunits were considerably 

different among the cells which were employed for the assay. The stimulation of the cells by 

forskolin did not alter the secretion/shedding of PKA significantly as compared to non-treated 

controls (Fig. 19). 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 19: Detection of extracellular PKA at the cell surface of cultured cells. 
Subconfluently grown intact cell cultures (HEK293, SH-SY5Y, HeLa, H4 and Glia) were incubated with 

(F) or without (C) forskolin (5 µM) and incubated for 2 hours. After incubation, the conditioned medium 
was collected. Aliquots of conditioned medium were electrophoresed and western-blotted. The blots 
were detected using polyclonal anti-PKA catalytic subunit antibody. The secretion of catalytic subunit 
of PKA is observed to be significantly different among the cell cultures employed in the assay. The 
shedding of the PKA catalytic subunits was not altered in forskolin treated cells (F) as compared to 
non-treated cells (C). The secretion of catalytic subunit of PKA is found to be varied depending upon 
the cell type employed in the assay. The secretion of Cβ2 was found to be relatively higher as com-

pared to Cα1. 
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4.2.3. Phosphorylation of exogenous Aβ by cell surface protein kinases of cultured cells 

 
The ecto-PKs on the cell surface of a wide variety of cells are shown to phosphorylate 

both extracellular (soluble) substrates and cell-surface proteins (Hogan et al., 1995; Walter et 

al., 2000). Experiments were carried out to check the presence of kinases activity at the cell 

surface of different cultured cells and to check whether these kinases are capable of phos-

phorylating exogenously added Aβ1-40.  

  

A)             B)   

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 20: In vivo phosphorylation of exogenous Aβ by cell surface kinases of cultured cells. 
In vivo phosphorylation studies were carried out using subconfluently grown intact cultures of HEK293, 
SH-SY5Y and Glial cells (A172). Cultures were washed twice with the phosphorylation mix and incu-

bated with [γ-
32

P]ATP (10 µM) in the presence or absence of Aβ1-40 (1 µg) and cAMP (2 µM) at 37 °C 
with 5% CO2 for 30 min. After incubation, the cell supernatants were collected and the Aβ was im-
munoprecipitated from cell supernatants using anti-Aβ antibody (2964). The immunoprecipitated Aβ 
was separated by SDS-PAGE and western-blotting. The radiolabeled 

32
P Aβ was detected by phos-

phorimaging (
32

P). Exogenously added Aβ was phosphorylated by the activity of cell surface located 
protein kinases. The phosphorylation of Aβ is found to be significantly higher in SH-SY5Y and Glial 
cells as compared to HEK293 cells. Addition of cAMP did not alter the phosphorylation levels of Aβ. 
The western-blotting (WB) signals indicate the equal amount of Aβ employed in the assay. B) The ex-
tent of 

32
P incorporation was estimated by phosphorimaging. Values indicate the mean ± s.d. of the 

four data points from two sets of experiments. 
 
 

 The autoradiograph (Fig. 20A; 
32

P) indicate the phosphorylation of Aβ by the cell sur-

face kinases of different cells. The phosphorylation of Aβ was found to be relatively higher 

with SH-SY5Y and Glial cells as compared to HEK293 cells. The addition of cAMP did not 

alter the phosphorylation of Aβ. The extent of 
32

P incorporation was calculated by phos-

phorimaging (Fig 20B). The plasma membrane integrity and its damage upon addition of Aβ 
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were checked by monitoring the uptake of tryphan blue dye. The results showed a low per-

centage of cells with instant uptake of tryphan blue (<2%; data not shown), indicating that 

there was no damage of cells and release of intracellular kinases due to addition of Aβ. These 

results confirm that the observed kinase activity is exclusively due to cell surface located 

kinases and not of the intracellular origin.  

 

There are also reports indicating the occurrence of cell surface kinases in neuronal 

cells (Ehrlich et al., 1986a; Ehrlich et al., 1986b; Hogan et al., 1995). Primary cultures of 

mouse cerebellar neurons were used to verify whether the cell surface located kinases of neu-

ronal cells are capable of phosphorylating the exogenously added Aβ. The radiolabeled Aβ 

(
32

P) signals were observed only in the cell supernatant showing that Aβ can undergo phos-

phorylation by the activity of cell surface located kinases of neuronal cells (Fig. 21A). The 

radiolabeled Aβ signals were not observed in the corresponding cell lysates indicating that the 

Aβ was not internalized in the experimental paradigm (Fig. 21B). The results were further 

confirmed by the western-blotting (WB) showing the occurrence of Aβ in the cell super-

natants and absence of Aβ signals in the cell lysates. 

  

 

A)      B) 

 

    

 

 

 

 
 
 
Fig. 21: In vivo phosphorylation of exogenous Aβ by mouse cerebellar neurons. 
The primary cultures of mouse cerebellar neurons were grown in a chemically defined, serum-free 
medium for 14 days in vitro (14 Div; cell density: 2 x 10

6
 cells). During the day of the analysis, the 

cells were rinsed twice with a phosphorylation mix. Cultures were incubated at 37 °C with 5% CO2 for 

30 min with [γ-
32

P]ATP (10 µM) in the presence or absence of synthetic Aβ1-40 (1 µg). After incubation, 
the cell supernatant was collected and washed the cells twice with cold PBS. The cells were lysed 
with STEN-lysis buffer and collected the cell lysates. Radiolabeled Aβ was immunoprecipitated from 
cell supernatants (A) as well as from cell lysates (B), were electrophoresed and western-blotted. Pho-
shorylated Aβ was detected by autoradiography (

32
P). The presence of Aβ in cell supernatants and 

absence of Aβ in cell lysates were confirmed by western-blotting (WB) and detection using anti-Aβ an-
tibody (3D6). 
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4.2.4. Identification of extracellular PKA activity in primary mouse neuronal cultures 

 
To identify whether the observed Aβ phosphorylation is mediated due to extracellular 

PKA, experiments were carried out with mouse primary neuronal cultures using the method 

of cell surface labeling with biotin. After cell surface-biotinylation, the biotinylated proteins 

were purified by SDS-PAGE and western-blotting. PKA was detected by immunoblotting us-

ing polyclonal anti-PKA catalytic subunit antibody. The cell surface located endogenous PKA 

was biotin labeled and was selectively recovered from the cell lysate by immunoprecipitation 

using streptavidin conjugated beads (Strep. IP). The higher PKA signals were observed in the 

direct loading of whole cell lysates indicating the abundant source of intracellular PKA. The 

biotin labeled PKA catalytic subunits were shown to migrate as similar to purified catalytic 

subunit of PKA. As a control, the endogenous cell surface APP was biotinylated. The bioti-

nylated APP was immunoprecipitated with streptavidin beads and immunodetected with APP 

specific antibody. The biotinylated mature endogenous APP was also detected in the strepta-

vidin immunoprecipitated samples. This result indicated the presence of extracellular PKA at 

the cell surface of primary neurons which can undergo biotinylation and was selectively de-

tected in Strep. IP immunoprecipitates (Fig. 22). 

  

 

 

 

 

 

 

 

 

 

 
 
 
 
Fig. 22: Biotinylation of cell surface located PKA and APP.  
Primary cultures of mouse cerebellar neurons (14 Div, Cell density: 2 x 10

6
) were surface-biotinylated 

using sulfo-NHS-biotin for 30 min. Cell lysates (15 µl/lane) were loaded directly onto a 12 % SDS-gel 
(lane 1, 2 & 3) or immunoprecipitated (750 µl/immunoprecipitate) by using streptavidin-conjugated 
agarose beads (lane 4, 5 & 6). Biotinylated cell surface PKA and FL-APP was detected with the use of 
rabbit anti-PKA-catalytic subunit and anti-APP antibodies. The cell surface located catalytic subunit of 
PKA as well as FL-APP is biotinylated and can be observed in streptavidin immunoprecipitated sam-
ples confirming the cell surface localization (Strep. IP). Direct loading of cell lysates indicate abundant 
source of intracellular PKA. Purified catalytic subunit of PKA was used as loading control (lane 7). 

 

FLFLFLFL---- APPAPPAPPAPP

55555555

40404040

130130130130
95959595
72727272

kDakDakDakDa

Direct LoadDirect LoadDirect LoadDirect Load Strept. IPStrept. IPStrept. IPStrept. IP

1111 2222 3333 4444 5555 6666 7777

P
ur

. P
K

A
 

P
ur

. P
K

A
 

P
ur

. P
K

A
 

P
ur

. P
K

A
 

CCCC
αααα

CCCCα1

CCCCβ2
PKAPKAPKAPKA

FLFLFLFL---- APPAPPAPPAPP

55555555

40404040

130130130130
95959595
72727272

kDakDakDakDa

Direct LoadDirect LoadDirect LoadDirect Load Strept. IPStrept. IPStrept. IPStrept. IP

1111 2222 3333 4444 5555 6666 7777

P
ur

. P
K

A
 

P
ur

. P
K

A
 

P
ur

. P
K

A
 

P
ur

. P
K

A
 

CCCC
αααα

CCCCα1

CCCCβ2
PKAPKAPKAPKA



  Results 

 

 69 

 

The results from the biotinylation of cell surface PKA indicate the involvement of ex-

tracellular PKA activity in primary cultures of mouse cerebellar neurons in phosphorylation 

of exogenously added Aβ. To further verify whether the extracellular PKA activity can be 

modulated, in vivo phosphorylation experiments were carried out using primary neuronal cul-

tures employing a selective PKA activator (cAMP) and inhibitor (H-89). The exogenously 

added Aβ can readily undergo phosphorylation by neuronal culture (Control). Significant de-

crease in phosphorylation signals was observed with the addition of the selective PKA inhibi-

tor H-89. However, the addition of extracellular cAMP did not increase the phosphorylation 

of Aβ as compared to controls. (Fig. 23A & B). 

 

 

A)            B) 

 

        

       

 

 

 

 

 

 
 
 
 
 
Fig. 23: Modulation of extracellular PKA activity in primary cultures of mouse cerebellar neu-
rons. 
A) The primary cultures of mouse cerebellar neurons were grown in a chemically defined, serum-free 
medium for 14 days in vitro (14 Div; 1, 1 x 10

6 cells; 2, 2 x 10
6
 cells). During the day of the analysis, 

the cells were washed twice with phosphorylation mix. Cultures were incubated with [γ-
32

P]ATP (10 

µM), synthetic Aβ1-40 (1 µg) in the absence or presence of cAMP (2.5 µM) or H-89 (0.1 µM) at 37 °C 
with 5% CO2 for 30 min. After incubation, the cell supernatant was collected and radiolabeled Aβ was 
immunoprecipitated from cell supernatants. The immunoprecipitates were electrophoresed and west-
ern-blotted. Phoshorylated Aβ was detected by autoradiography (

32
P). The phosphorylation of Aβ was 

not increased upon addition of cAMP, however significant reduction in phosphorylation of Aβ was ob-
served by addition of H-89. The presence of Aβ in cell supernatants was confirmed by western-
blotting (WB) using anti-Aβ antibody. B) 

32
P phosphate incorporation quantified by phosphorimaging. 

32
P values represent mean ± s.d. of three independent experiments (*p<0.05). Statistical significance 

was evaluated by student t-test (n=3).  
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4.2.5. Ex vivo phosphorylation of Aβ 

 

4.2.5.1. Phosphorylation of Aβ in cerebrospinal fluid (CSF) from AD patients 

 
The CSF samples of AD patients were collected from Neurology clinic. Ex vivo phos-

phorylation was carried out to test whether Aβ phosphorylation can take place in CSF or 

components necessary for phosphorylation reaction exists in CSF. Aliquots of human CSF 

were incubated with [γ-
32

P]ATP, Aβ and purified catalytic units of PKA, CK1 and CK2. The 

Aβ1-40 was found to undergo phosphorylation by PKA, CK1 and CK2 kinases in the CSF 

samples. In addition to phosphorylation of Aβ, several endogenous proteins were also found 

to undergo phosphorylation. The phosphorylation of endogenous proteins of CSF are ob-

served to be diverse and showed different specificity among the kinases employed in the as-

say (Fig. 24).  

 
 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
Fig. 24: Ex vivo phosphorylation of Aβ1-40 in human CSF of AD patients. 

Human CSF from AD patients were incubated with [γ-
32

P]ATP (10 µM), Aβ1-40 (1 µg) in the presence 
of different catalytic units of PKA, CK1 and CK2 at 32° C for 15 min. After incubation, the phosphoryla-
tion reaction was stopped by addition of SDS-sample buffer and boiling at 100 °C. Aliquots of samples 
were electrophoresed and western-blotted onto PVDF membrane. The radiolabeled proteins were de-
tected by autoradiography. Phosphorylation of Aβ as well as endogenous CSF proteins can be seen. 
The asterisk indicates the phosphorylation of Aβ1-40 (4 kDa) and arrows indicate the phosphorylation 
of unknown endogenous phosphoproteins of CSF. 
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4.2.5.2. Phosphorylation of exogenous proteins by endogenous kinases of CSF  

 From the previous results, it was observed that CSF can serve as a buffer for the 

phosphorylation reactions by different kinases. Further studies were carried out to identify the 

presence of endogenous kinases activity in CSF. Ex vivo phosphorylation studies were carried 

out using human CSF from AD patients employing different kinase specific substrates (his-

tone and phosvitin). The exogenously added substrates such as histone and phosvitin could 

undergo phosphorylation by the endogenous kinases (Fig. 25). In addition to histone and 

phosvitin, phosphorylation of unknown endogenous proteins of CSF was also observed. The 

phosphorylation signals of endogenous CSF proteins were not observed in control samples 

(PBS) indicating the authenticity of phosphorylation of proteins exclusively by the activity of 

different endogenous kinases of CSF.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Fig. 25: Phosphorylation of exogenous kinase substrates by endogenous kinases of human 
CSF. 

Human CSF from AD patients were incubated with [γ-
32

P]ATP (10 µM) and kinase substrates (histone 
and phosvitin) at 32 °C for 15 min. After incubation, the CSF samples were separated by SDS-PAGE 
and western-blotting. The radiolabeled proteins were detected by autoradiography. The phosphoryla-
tion signals of histone (arrow head; 30 kDa) and phosvitin (arrow: 50 kDa) are indicated. The phos-
phosignals of unknown endogenous CSF proteins are only observed in CSF samples as compared to 
PBS (controls). Analyses were carried out in duplicates in two independent experiments.  
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4.2.5.3. Identification of PKA activity in CSF 

 

 To verify whether the observed endogenous kinase activity in the CSF is due to PKA 

like kinase, ex vivo phosphorylation studies were carried out using CSF from AD patients 

employing histone (cognate PKA substrate), cAMP (specific PKA activator) and H-89 (spe-

cific PKA inhibitor). The histone was found to undergo phosphorylation where as the phos-

phorylation of histone was reduced upon addition of H-89. However, the phosphorylation of 

histone was not increased upon addition of cAMP (Fig. 26A & B).  

 

A)       B) 

 

 

 

 

 

 
 
 
 
Fig. 26: Identification of the endogenous PKA activity in human CSF. 

A) Human CSF from AD patients were incubated with [γ-
32

P]ATP (10 µM) and histone (1 µg) in the ab-
sence or presence of H-89 (0.1 µM) or cAMP (2.5 µM) at 32 °C for 15 min. After incubation, the phos-
phorylation reactions were stopped by adding SDS-sample buffer. The aliquot of sample was electro-
phoresed and western-blotted onto PVDF membranes. The radiolabeled proteins were detected by 
autoradiography (

32
P). The phosphorylation of histone can be observed in control samples. The phos-

phorylation of histone was reduced upon addition of H-89 however, the addition of cAMP do not in-
crease the phosphorylation of histone. Ponceau-S staining (Ponceau-S) shows the histone signals in 
all the lanes. B) The

 32
P phosphate incorporation was quantified by phosphorimaging. 

32
P values rep-

resent mean ± s.d. of the four data points from two independent experiments (duplicate probes/assay). 
Statistical significance was evaluated by student t-test (*p<0.01).  
 

 

3.2.5.4. Ex vivo phosphorylation of Aβ by endogenous PKA of CSF 

 

The results from the previous experiments confirmed the presence of endogenous 

PKA activity in human CSF, and the kinase activity was inhibited upon addition of a PKA in-

hibitor (H-89). To check, whether this endogenous PKA of CSF can phosphorylate the exo-

genously added Aβ, ex vivo phosphorylation studies were carried out using human CSF from 

AD patients. The CSF samples were incubated with [γ-
32

P]ATP and synthetic Aβ1-40 in the 

absence or presence of H-89. The Aβ was found to readily undergo phosphorylation by the 

endogenous PKA and the phosphorylation was suppressed by addition of H-89 (Fig. 27A & 

B).  
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A)        B) 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
Fig. 27: Ex vivo phosphorylation of Aβ by human CSF. 

A) Human CSF from AD patients were incubated with [γ-
32

P]ATP (10 µM) and Aβ1-40 (1 µg) in the ab-
sence or presence of H-89 (PKA inhibitor). After phosphorylation reaction, Aβ1-40 was separated by 
SDS-PAGE, western-blotted onto PVDF membrane and radiolabeled Aβ was detected by autoradio-
graphy (

32
P). Phosphorylation signals of Aβ1-40 are observed and phosphorylation was inhibited by 

addition of H-89. The western-blotting (WB) signals shows the equal amount of Aβ employed in the 
assay. B) The

 32
P phosphate incorporation was quantified by phosphorimaging. 

32
P values represent 

mean ± SD of three independent experiments (*p<0.05). Statistical significance was evaluated by stu-
dent t-test. 

 

 

Taken together, all the combined results from the biochemical, in vivo and ex vivo 

phosphorylation using cells and human CSF studies suggesting that, in addition to crucial role 

of PKA in intracellular functions, it may well have extracellular functions. The in vivo phos-

phorylation studies using cells showed that Aβ can undergo phosphorylation by extracellular 

surface located PKA. Ex vivo phosphorylation studies using CSF from AD patients further 

indicated the existence of endogenous PKA kinase in CSF. The endogenous PKA of CSF 

could phosphorylate exogenously added Aβ. Hence, one could speculate that phosphorylation 

of Aβ is indeed biochemically feasible at the extracellular environment in the human brain. 

Despite the numerous reports describing role of posttranslational modifications of Aβ in ag-

gregation, the role of phosphorylation in Aβ aggregation has not been shown. Therefore, fur-

ther studies were carried out to elucidate the role of phosphorylation in Aβ aggregation 
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4.3. Role of phosphorylation in the aggregation of Aββββ 

 

A series of bioanalytical, biophysical techniques were applied for investigating the  role 

of phosphorylation on Aβ conformation and its effects on aggregation. The circular dichroism 

study was carried out in collaboration with Prof. Dr. Klaus Beyer, Dept. of Biochemistry, 

Ludwig-Maximilians-University, München. The studies such as nuclear magnetic resonance, dy-

namic light scattering and transmission electron microscope documented in this section was car-

ried out in collaboration with Dr. Markus Zweckstetter of the Max Planck Institute for Biophysi-

cal Chemistry, Göttingen. 

 

4.3.1. Effect of phosphorylation on the secondary structure of Aβ 

 

4.3.1.1. Monitoring the conformational transition by circular dichroism (CD) spectroscopy 

 

CD spectroscopy has been previously applied by several authors to study secondary struc-

ture transitions or to define the conformational states of different Aβ peptide variants (Barrow 

and Zagorski, 1991; Barrow et al., 1992; Fabian et al., 1993; Tomaselli et al., 2006). Herewith, 

CD spectroscopy studies were carried out to follow the kinetics of the Aβ secondary structure 

transition upon phosphorylation. 

Conformational transition studies of npAβ (wildtype) and pAβ(pSer-8) were conducted 

by recording CD spectra in the range of 190-260 nm at various incubation times. The CD spectra 

showed the conformation transition from an unordered, random coil to a more β-sheet structure 

at different time intervals (0 hr, 2 hr, and 8 hr). At 0 hr, the initial conformation of npAβ and pAβ 

was found to be similar and is observed with no significant difference in the CD spectrum (Fig. 

28 A & B). The CD spectrum of npAβ peptide sample at the early incubation time (0 hr) revealed 

the characteristic features of a mostly random coil state (negative peak at 200 nm). As the incuba-

tion time increased, a slight change in the CD spectrum was observed with npAβ peptide i.e., at 2 

hr of incubation, the spectrum of npAβ showed a little alteration indicating the α-helical structure 

(with only a slight decrease in intensity in the minimum at 195 nm). The occurrence of β-sheet 

secondary structure was seen after 8 hr of incubation with a typical peak that is characteristic for 

extended β-structure (negative peak at 210-220 nm, Fig. 28A).  

The initial CD spectrum of pAβ(pSer-8) peptide (at 0 hr) was also as expected for an un-

folded peptide, i.e., mostly random coil state. As the incubation time increased, a significant 

change in the CD spectrum was observed. A pattern characteristic of extended β-sheet structure 

was already evident after 2 hrs of incubation (positive at 195 nm and negative at 215 nm). The 

dominance of β-sheet secondary structure after 8 hrs can be clearly indicated by the appearance 
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of a large negative peak at 215 nm and a positive peak at 195 nm with pAβ(pSer-8) peptide (Fig. 

28B). Notably, the occurrence of β-sheet secondary structure can be already seen at 2 hrs of in-

cubation with pAβ(pSer-8) peptide showing a significant difference in conformation as compared 

to npAβ. Together, the CD studies indicate an effect of phosphorylation on the transition from an 

unordered random coil soluble Aβ to the β-sheet rich conformation. Thus, phosphorylation in-

creases the propensity of Aβ to adopt a β-sheet conformation. 

 

 

A)              B)       

             

       

 

 

 

 

 

 

 

 

Fig. 28: Circular dichroism (CD) spectroscopy study of conformational transition of npAβ and 
pAβ. 
The assay solution containing freshly dissolved npAβ and pAβ preparations (100 µM) was taken in quartz 
cuvette and incubated at 37 °C with shaking. CD spectroscopy was employed to monitor the conforma-
tional transition of secondary structures of npAβ (A) and pAβ (pSer-8) (B) samples at different incubation 
time points during aggregation. Graphs show the acquired CD spectra at 0 hr (red), 2 hr (green) and 8 hr 
(blue). At 0 hr, the curves are observed to be similar with both the peptides indicating a random coil state. 
The change in curve pattern is observed in later incubation times (2 hr and 8 hr). The structural conver-
sion from a random coil structures to extended β-sheet structure is observed to be faster with pAβ and β-
sheet transition is prominently observed at 8 hr of incubation with pAβ (a positive peak at 195 nm and a 

broad negative peak at 210-220 nm) as compared to npAβ. Typical bands are: α-helix – positive at 192-

195 nm, negative at 208 nm and 222 nm; random coil – negative at 200 nm; β-sheet – negative at 216 
nm, positive at 195-198 nm. 
 

 

4.3.1.2. Study on thermal stability of phosphorylation induced β-sheet conformation 

 

Many proteins and peptides aggregate or precipitate quickly after they are unfolded at 

high temperature ("melting"), thereby making unfolding irreversible. The structural transition of 

npAβ and pAβ(pSer-8) was investigated over a range of temperatures to predict the thermal sta-

bility of the phosphorylation induced conformational transition and the temperature dependence 

of the hydrophobic interactions (Fig. 29). 
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A)           B)  

 

 

 

  

 

 

 
 
C)           D)  

 

 

 

 

 

 

 
 
 
 
 
Fig. 29: Thermal-dependent CD spectroscopy study of npAβ and pAβ conformations. 
Aggregation assays were carried out using freshly dissolved npAβ and pAβ preparations (100 µM). The 
plots showing the CD spectrum of npAβ (A and C) and pAβ (B and D) that were recorded at different tem-
peratures. The up scan spectra shows the CD spectra that were recorded at increasing in the incubation 
temperature (10 °C interval) step-wise from 10 - 50 °C (A and B). After up scan recordings, the tempera-
ture was decreased step-wise from 50-10 °C and down scan CD spectra were recorded at lower tempera-
tures (C and D). At temperatures below 20 °C, the spectra of npAβ and pAβ are observed to be similar 
and show little β-sheet conformation. The shapes of the spectra are different for npAβ and pAβ at tem-

perature above 20 °C. In particular, the negative peak at 210-220 nm which indicates an extended β-sheet 
conformation. All the scans run through isobestic points at 208 nm. The result indicate the temperature in-

duced large structural transitions from α- to β-conformation with pAβ peptide, and further confirmed that 
phosphorylation of Aβ increases the propensity to adapt β-sheet conformation and this increase was re-
versible by subsequent decrease in temperature (down scans). 
 

  

 The CD spectra showed the conformation transition from an unordered to the β-sheet 

structure and the shape of the spectra was observed to be different for npAβ and pAβ(pSer-8) 

peptide at different incubation temperatures (up scan and down scans). An increase in ellipticity 

which is characteristic for β-sheet conformation was observed in the region of the 210-220 nm 

and it was more pronounced with pAβ(pSer-8) with the increase in temperature (indicated by ar-

rows). Where as, npAβ did not show significant change in structural transition to β-sheet struc-

ture with the rise in temperature. The magnitude of the heat induced structural transition of 

pAβ(pSer-8) was increased at higher temperature indicating a faster unfolding state of Aβ, result-
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ing in higher negative ellipticity. Interestingly, this temperature induced effect was reversible, 

which was seen in the down-scan measurements. The results from CD thermal scans (up scan 

and down scans) further demonstrated the higher propensity of pAβ(pSer-8) to adopt β-sheet 

structure and this increase in β-sheet conformation was largely reversible by subsequent down-

shift of the incubation temperature. 

 

4.3.2. Effect of phosphorylation on Aβ aggregation 

 

4.3.2.1. Congo Red (CR) dye binding assay 

 

 To study the effect of phosphorylation induced β-sheet structure on Aβ aggregation, CR-

Aβ spectroscopic assay was carried out using wild type (npAβ) and phosphorylated variants of 

Aβ (pAβ(pSer-8) and pAβ(pSer-26)). The CR dye binding was significantly increased with 

pAβ(pSer-8) peptide as compared to npAβ peptide (Fig. 30). In contrast, pAβ(pSer-26) peptide 

showed a decreased CR binding as compared to npAβ. These results indicate that phosphoryla-

tion at different phosphosites of Aβ differentially affect the aggregation of Aβ. 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 30: Time course studies of npAβ and pAβ aggregation by Congo Red binding assay. 

The aggregation reaction mixture containing 100 µM of npAβ, pAβ(pSer-8) and pAβ(pSer-26) were incu-
bated at 37 °C with shaking and aliquots of samples were collected at different time points during aggre-

gation. The time course of aggregation of synthetic npAβ (black), pAβ(pSer-8) (red) and pAβ(pSer-26) 
(green) was monitored by congo red (CR) binding assay. CR binding is expressed as µM of CR bound to 
the Aβ aggregates. The curves showing the differences in CR binding to the peptides employed in the as-
say indicating the differences in kinetics of aggregates formation upon phosphorylation. The amount of 

CR bound to pAβ(pSer-8) was more as compared to npAβ, while pAβ(pSer-26) showed reduced CR bind-

ing as compared to npAβ. Each data points indicate mean ± s.d. (n=3). The assays were carried out three 
times independently. 
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To investigate further regarding the observed differences with CR dye binding to different 

Aβ peptides, the samples from the CR-Aβ assay taken at different time points during aggregation 

were analyzed by SDS-PAGE electrophoresis and western-blotting (Fig. 31). The results indi-

cated the formation of low molecular weight (M.W.) aggregates/oligomers (i.e., dimers, trimers) 

was faster with pAβ(pSer-8) as compared to npAβ peptide. In addition to low M.W. oligomers, 

pAβ(pSer-8) showed a faster formation of higher M.W. oligomeric assemblies that were detected 

as a smear at the upper part of the gel. The higher β-sheet structures formation in pAβ(pSer-8) 

peptide due to phosphorylation resulted in increased formation of different oligomeric species 

(dimer, trimer and higher oligomers). In contrast, pAβ(pSer-26) showed pronounced formation of 

low M.W. oligomers (dimer and trimer);however the larger assemblies were not observed. To-

gether with the results from the CR dye binding assay, the  SDS-PAGE analysis further suggests 

that phosphorylation of Ser-26 might stabilizes lower oligomeric assemblies of Aβ and thus re-

duce the formation of protofibrils (high M.W. oligomers). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Fig. 31: SDS-PAGE and Western-blotting analysis of npAβ and pAβ aggregates formation. 

The np-npAβ, p8-pAβ(pSer-8) and p26-pAβ(pSer-26) samples from CR dye binding assay taken at differ-
ent time points during aggregation were analyzed by SDS-PAGE (430 ng/lane) and western-blotting. The 
blots were immunoprobed with anti-Aβ antibody (82E1) which can recognize all the three peptides simi-
larly. Migrations of monomeric and low molecular weight (low M.W.) Aβ aggregates/oligomers such as 
dimer (2mer), trimer (3mer), tetramer (4mer) and higher molecular weight (High M.W.) oligomers are indi-

cated. The faster formations of low and high M.W. oligomers/aggregates are observed with pAβ(pSer-8) 

as compared to npAβ peptide. The formation of low M.W. oligomers although increased with pAβ(pSer-
26) as compared to npAβ, however the high M.W. oligomers are not observed. 
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4.3.2.2. Thioflavin-T (ThT) fluorescence assay 

 
The results from the CR dye binding assay showed the increased β-sheet structure forma-

tion upon phosphorylation and faster formation of different oligomeric Aβ assemblies with 

pAβ as compared to npAβ. The higher β-sheet structure might induce a conformational transi-

tion, thus results in faster self-assembly. The alteration of peptide conformation due to enhanced 

β-sheet structures could promote aggregation and lead to faster formation of fibrils. Therefore, 

ThT fluorescence assays were carried out to study the effect of phosphorylation on Aβ fibril-

logenesis. Increased fluorescence was observed with pAβ(pSer-8) as compared to npAβ. The 

fluorescence signal of pAβ(pSer-26) was observed to be much lower as compared to npAβ (Fig. 

32A). Even though, it showed an increase in fluorescence signals at early incubation time (be-

tween 0.25 to 1 hour) as compared to npAβ, however the fluorescence did not further increased 

(Fig. 32B). 

 

A)                B) 

         

 

 

 

 

 

 

 

 

 
Fig. 32: Time course studies of npAβ and pAβ fibrillization by Thioflavin-T (ThT) fluorescence 
assay. 
The aggregation assay reaction mixture containing npAβ and pAβ peptide (100 µM) with ThT dye (20 µM) 
was incubated at 37 °C with stirring. The real-time ThT fluorescence was monitored for every 10 min in-

tervals with an excitation (λex-450 nm) and emission (λex-450 nm). Graphs show the results from the real-
time ThT fluorescence measurements. Higher fluorescence is observed with pAβ(pSer-8) as compared to 
npAβ where as fluorescence is observed to be lower with pAβ(pSer-26). B) The enlarged image of the 
area indicated in image A with blue colored box. Increased fluorescence signals are observed in early 
phase of fibrillization with pAβ(pSer-26) as compared to npAβ (increase signals between 0.2 to 1 hr), 
however, the signals did not further increased. The curves clearly indicate the differences in ThT fluores-
cence of different peptides confirming the alteration of fibrillization kinetics after phosphorylation. 

 

The ThT fluorescence assay indicated a faster propensity of Aβ to aggregate and speed up 

the fibril formation upon phosphorylation. The phosphorylation induced fibrillization was further 

examined by SDS-PAGE electrophoresis and western-blotting of the samples from ThT fluores-

cence assay (Fig. 33). Consistent with increased fluorescence as observed in ThT fluorescence 
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measurements, the pAβ(pSer-8) peptide also showed a faster formation of low M.W. aggre-

gates/oligomers (dimer, trimer) and fibrils (High M.W. oligomers). Although, the formation of 

low M.W. aggregates/oligomers were increased in pAβ(pSer-26) peptide as compared to npAβ, 

however the fibrils (High M.W. oligomers) was not observed indicating the absence of fibrilliza-

tion process with pAβ(pSer-26) peptide. These results further confirm the phosphorylation of Aβ 

at Ser-26 residue resulting in stabilization of the lower oligomeric assemblies and thus reducing 

the protofibril formation (High M.W. oligomers). 

 

    

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 33: SDS-PAGE and Western-blotting analysis of npAβ and pAβ fibril formation. 

The npAβ, pAβ(pSer-8) and pAβ(pSer-26) sample aliquots from ThT fluorescence assay taken after 30 
hrs of incubation were analyzed by SDS-PAGE electrophoresis (430 ng/lane) and western-blotting. The 
blots were immunodetected with anti-Aβ antibody (82E1), which recognizes all the three peptides simi-
larly. Migrations of monomeric and different low M.W. oligomeric forms (dimer;2mer, trimer;3mer, 

tetramer;4mer) and high M.W. oligomeric Aβ are shown. The formation of high M.W. oligomers is signifi-

cantly higher in pAβ(pSer-8) peptide as compared npAβ. While the formation of high M.W. oligomers are 

completely absent in pAβ(pSer-26) peptide, in spite of increased formation of low M.W. oligomers. 
 

The results from CR and ThT binding assay indicated that the low and high M.W. Aβ ag-

gregates/oligomer formation was accelerated with pAβ(pSer-8) as compared to npAβ and 

pAβ(pSer-26). Further detailed investigations on the role of phosphorylation were carried out us-

ing only npAβ and pAβ(pSer-8) peptides. Therefore, hereon npAβ represents the non-

phoshorylated Aβ (wild type Aβ40) and pAβ represent to phosphorylated Aβ (pSer-8) variants. 

 

4.3.2.3. Effect of phosphorylation on kinetics of Aββββ aggregation 

 

The aggregation assay results of npAβ and pAβ(pSer-8) using CR and ThT showed a 

sigmoidal curve and clearly indicated a characteristic biphasic curve containing well-resolved 
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lag, growth phase and saturation phase. Whereas, the pAβ(pSer-26) peptide showed feature of a 

hyperbolic curve. Since the ThT fluorescence measurements consisted of much more data points 

than CR experiments, ThT fluorescence data was selected for the kinetic analysis. The kinetic 

data were fitted using a logistic equation as described in methods (Naiki and Gejyo, 1999). As 

the first order logistic equation by Naiki et al., (1999) is applicable only to sigmoid type of ag-

gregation kinetic curves. The kinetic analysis was carried out for npAβ and pAβ(pSer-8). 

 

 

  

 

 

 

 

 

 

 

 

 

 

Fig. 34: Kinetic analysis of npAββββ and pAββββ aggregation. 
Graphs show the kinetic analysis using logistic equation by Naiki et al., (1999). The graphs shows the lo-
gistic equation fitting of the data points obtained from time course of npAβ and pAβ fibrillogenesis meas-
ured by ThT fluorescence assay. The tangents are drawn after logistic fitting of the curves. The inset indi-
cate the plot from the data points from ThT fluorescence assay indicating the change in ThT fluorescence 
follows a characteristic sigmoid pattern, in both wild-type and pSer8 peptides. Inset image indicating the 
ThT fluorescence measurements. 
 

The results of kinetic analysis and logistic equation fitting of the ThT fluorescence assay 

is shown (Fig. 34). The change in ThT fluorescence followed a characteristic sigmoid pattern, 

with both the peptides. The lag period was prominently shorter in pAβ as compared to npAβ pep-

tide. The rate of ThT fluorescence enhancement and its limiting value were also found to be sig-

nificantly higher with pAβ peptide. While in the case of pAβ peptide, ThT fluorescence took 100 

minutes to reach 90 percent of its final value, a similar event occurred for the wild-type peptide 

after about 3 hours (Fig. 34, inset). A closer inspection of the kinetic data revealed that, in both 

npAβ  and pAβ  peptides, ThT fluorescence data up to about 60-70 percent of the final values fit-

ted well to the logistic equation (tangent drawn for the respective curves). However, a transition 

to a different regime (from log phase to stationary phase) was observed to be in much slower rate 

than that of expected according to the logistic model. This transition was found to be occurred 
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rather abruptly in both cases. Table 1 shows the kinetic parameters analyzed for ThT fluorescence 

assay of npAβ and pAβ peptides. 

 

Table 5. Kinetic parameters of Thioflavin T fluorescence assay of npAββββ and pAβ β β β peptide sam-
ples. 

 npAββββ pAββββ 

Thioflavin T fluorescence   

Flim (a.u.) 98 230 

k*104 (a.u.-1.min-1) 7.68 6.52 

t
1/2

 (min) 106 36 

Maximal rate of aggregation (a.u.-1.min-1) 1.84 8.63 

Lag time (min) 70 15 

 

 

 

4.3.2.4. Effect of phosphorylation on the ensemble of Aββββ fibril morphologies by transmis-

sion electron microscopy (TEM) 

 

TEM studies were carried out to characterize the assemblies formed from npAβ and pAβ 

during aggregation. Sample aliquots taken at different time points from CR-Aβ aggregation assay 

were used for TEM studies. At 0 hr of incubation, the TEM images of both the peptide samples 

showed a similar morphology showing a little granular structure in both the peptide samples. In 

the early stages of the aggregation (2 hr), circular bodies were detected in npAβ samples. Such 

structures would correspond to small spherical structures of early Aβ aggregates as previously 

reported (Isaacs et al., 2006). Whereas in pAβ samples, a mixture of short protofibrils and larger 

protofibrillar aggregates were already apparent. The samples from elongation phase (16 hr) 

showed the circular bodies and were found to aggregate with each other as a bead of strings. 

Such structures would correspond to high M.W. oligomers or protofibrils as reported 

(Mastrangelo et al., 2006; Goldsbury et al., 2000; Lashuel et al., 2003). These high M.W. oli-

gomeric structures were detected in greater numbers in pAβ samples. In the sample from satura-

tion phase (24 hr), typical amyloid fibrils were clearly detected in both the peptide samples. In-

terestingly, in both the peptide samples the fibrils were detected together with high M.W. oli-
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gomers. Notably, the high M.W. oligomers and protofibrils formation were observed to much 

faster and earlier in the pAβ samples (Fig. 35). 
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Fig. 35: Characterization of Aββββ assemblies formed from npAββββ and pAββββ during aggregation by TEM. 

Sample aliquots from CR-Aβ aggregation assay taken at different time intervals were prepared and ana-

lyzed by TEM. TEM images of CR-Aβ aggregation samples taken at 0, 2, 16 and 24 hr are shown. In 

npAβ samples, a granular structure can be seen in 2 hr sample (C), protofibrils can be seen only after 16 

hr with some longer fibril like structure (E). After 24 hr only mature fibrils are present (G). Where as in pAβ 
samples, at 2 hr, protofibrils are already observed (D) and they are increased at 16 hr (F). At 24 hr, the 

majority of the pAβ sample is fibrillar (H) (Scale bar, 200 nm).  
 

Further studies on the overall topology of the Aβ fibrils using TEM, showed an identical 

granular structure in npAβ and pAβ samples at the initial stage (0 hr) of aggregation, indicating 

the similarity of the early aggregates among the peptides. In the saturation phase (24 hr), typical 
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amyloid fibrils were observed in both the peptide samples. The fibrils showed highly similar 

morphology and size, twisted fibrils of indefinite length and diameters of ∼8 nm. The TEM stud-

ies suggest that in spite of the differences observed with kinetics of oligomerization and fibril-

logenesis between two peptides, the fibrils formed at the end stage are observed to be similar in 

morphology (Fig. 36). 

 

 

 

 

 

 

    
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 36: Morphology of npAββββ and pAββββ assemblies at initial and final stages of fibrillogenesis ob-
served by TEM. 
Electron micrograph images of the npAβ and pAβ sample aliquots from ThT aggregation assay collected 
at 0 hr and 24 hr of incubation during the aggregation. The EM images show a granular structure in 0 hr 
samples. Fibrils are formed by both the peptides and show relatively similar structure (Scale bar, 200 nm). 

 

 

4.3.2.5. Nuclear Magnetic Resonance (NMR) assay 

 
The previous investigations employing variety of techniques gave insight about the phos-

phorylation induced effect on conformation and Aβ aggregation. Further study was carried out 

employing solid state NMR to study the kinetics of monomeric Aβ consumption which can pre-

cede the oligomers and fibril formation. The kinetics of monomeric Aβ consumption for the for-

mation of Aβ intermediates in oligomerization process was studied by 1D 
1
H-NMR spectroscopy. 

The relative intensities of the NMR signals of npAβ remained nearly constant while in pAβ, a 

rapid decrease was observed reaching about 25% of the initial value after six hours (Fig. 37). The 
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faster decay of the pAβ NMR signals indicates a rapid consumption of monomeric Aβ as com-

pared to npAβ. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Fig. 37: Time-dependent decay of npAβ and pAβ by 1D 

1
H-NMR.  

NMR samples containing npAβ (■) and pAβ (○) peptide were incubated at 37 °C and the 1D 
1
H-NMR 

spectra were recorded at different time points as indicated in the diagram. NMR data were processed by 
TOPSPIN 2.0 and calibrated using the known chemical shift of water. The spectrum indicates the signals 
of npAβ and pAβ during six hour incubation at 37°C. Three signals within the aliphatic region of the proton 
1D spectra (0.754, 1.258 and 2.096 ppm) were selected for further analysis. Mean ± s.d. of the three 
peaks are reported. Significant increase in monomer consumption is observed with pAβ as compared to 
npAβ. 
  

 

4.3.3. Effect of phosphorylation on Aβ oligomerization 

 

4.3.3.1. Assessment of Aββββ oligomers assembly by dynamic light scattering (DLS) 

  

The formation of pathogenic, fibrillar protein aggregates (amyloids) requires the self-

assembly of β-sheet enriched oligomeric structures. This self-association mechanism leads to dif-

ferent size distribution of misfolded aggregates (Janek et al., 1999). The kinetics of molecular 

self-assembly of npAβ and pAβ peptides and their size distribution was studied by DLS. This 

methodology has already been employed to characterize monomeric, oligomeric and protofibril-

lar Aβ aggregates (Walsh et al., 1997; Nichols et al., 2002; Janek et al., 1999). The DLS results 

showed the differences in distribution of the molecular size of polymerized npAβ and pAβ oli-

gomers or aggregates in solutions (Fig. 38A & B). 
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 A)           B) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 38: Effect of phosphorylation on the size distribution of Aβ oligomers/aggregates by Dy-
namic Light Scattering (DLS). 
The npAβ and pAβ peptide solutions (100µM) were incubated at 37 °C and the time-dependent variation 
in the size distribution of Aβ oligomers/aggregates were monitored by DLS. A) Size distribution of npAβ 
monomers and oligomers after 15, 30, 45, 60 and 75 min of incubation. Monomeric npAβ peak corre-
sponding to the particle size between 1.1 and 1.5 nm of hydrodynamic radius (RH) is continuously present. 
A second peak can be seen at a RH value of 5.9 nm and shifted to larger values with raise in incubation 
time respectively (RH of 31.7, 97.1, 128.5 nm after 30, 45, 60 and 75 min). As the intensity of scattered 
light was too strong, most likely due to formation of larger aggregates, the measurements were stopped at 
75 min. Interestingly, during the 70 min of incubation more than 95% of the mass is associated with the 
monomeric peak in npAβ. B) Size distribution of pAβ monomers and oligomers after 3, 13, 18, 23 and 33 
min of incubation. The peak corresponding to RH at about 1.4 nm corresponding to monomeric pAβ is re-
placed by a peak of RH at 3.4 nm after 13 min, followed by a complete disappearance of the peak. The 
peaks at increasingly larger sizes appeared with the increase in incubation time respectively (RH of 82.2 
nm, 87.4 nm, and 95.9 nm at 3, 13 and 18 min respectively, and RH of 55.5 nm and 173.4 nm at 23 min, 
132.6 nm and 393.2 nm after 33 minutes). The scattered light was too much due to the formation of larger 
aggregates after 35 minutes. Comparison of the magnitudes of intensities between npAβ and pAβ is not 
meaningful (i.e., it does not indicate the absolute concentration of Aβ aggregates). 
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 At different time points during the aggregation, the size distribution of npAβ aggregates re-

vealed mainly particles with a hydrodynamic radius (RH) of 1-2 nm, 6-8 nm, 20-40nm and 100 

nm (Fig. 38A). All the measurements after 30 min of incubation showed particles with larger RH 

values >100 nm. The RH of 1-2 nm particles observed correspond to monomeric Aβ exists in all 

the indicated time intervals. At 15 min of incubation, npAβ showed monomeric and dimeric Aβ 

peak (RH of 6-8 nm). The particles size above RH of 10 nm corresponds to oligomers, which were 

observed at 30 min of incubation. Protofibrils peak (RH of >100 nm) was appeared after 45 min 

and the peak was persistent after 45 min of incubation time (until 75 min). 

 The size distribution of pAβ aggregates comprised peaks with a RH of 1-2 nm 3-5 nm and 

above 100 nm (Fig. 38B). The monomeric pAβ peak (RH of 1-2 nm) was observed only at 3 min 

of time interval. The dimer peak (RH of 6-8 nm) was seen at 13 and 18 min but disappeared after 

18 min. The protofibrils peak RH of 100 nm size was already apparent at 3 min. After 23 min, the 

particle size of >100 nm was noticeable. These peaks indicate the growth of protofibrils to fibrils 

and this characteristic peak was observed only with pAβ. Phosphorylation induces a shift in the 

molecular size of the aggregates which were clearly observed during early phases of aggregation 

with pAβ. pAβ significantly increased the count rate as compared to npAβ. The count rates of 

npAβ reached plateau after 70 minutes (formation of larger aggregates) whereas the pAβ peptide 

reached plateau after 35 minutes. The observed particle size were in concordance with the al-

ready existing DLS data for Aβ40 (Chen et al., 2006; Bitan et al., 2003). The DLS results were 

very much comparable to the previously shown results indicating that the phosphorylation in-

duces Aβ oligomerization and fibrillization. 

 

4.3.2.2. Characterization of soluble Aββββ oligomers by dot blot assay 

  

The appearance of oligomeric Aβ species during the fibrillization process was also as-

sessed by dot blot assay. Equal amounts of sample aliquots from Aβ aggregation assay taken at 

different time intervals were spotted onto the nitrocellulose membrane and the Aβ oligomers 

were immunodetected using an anti-oligomer specific antibody (2964;anti-oligomer antibody 

recognizes only the high M.W. oligomers and protofibrils). In npAβ, oligomers begin to appear 

after 10 hours of incubation and increased with longer incubation times (until 16 hours). 

Whereas, in pAβ samples the oligomer formation was found to be accelerated and oligomers 

were seen much earlier as compared to npAβ (at 6 hr incubation). The absolute amount of oli-

gomer was also found to be higher in pAβ as compared to npAβ (Fig. 39A). The densitometric 

analysis of the dot blot showed the relative intensity of the pAβ oligomer was higher and found 

to be earlier as compared to npAβ. Soluble oligomer signals were observed to be decreased in 
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both peptide samples after longer incubation times (24 and 48 hours), which could indicate the 

aggregation of the higher oligomer/protofibrils to fibrils (Fig. 39B).  

 

A)      B) 

   

         

 

 

 

 

 

 

 

 
 
 

Fig. 39: Dot blot analysis of soluble Aββββ oligomers and oligomerization kinetics. 

A) Aggregation assays were carried out using 50 µM of npAβ and pAβ peptide solutions, incubated at 37 
°C with stirring. Sample aliquots of npAβ and pAβ were collected at indicated time points and spotted onto 
nitrocellulose membrane (5 µl/spot) and immunodetected with oligomer-specific Aβ antibody (2964) with-
out boiling. The incubation time of the sample aliquots are indicated above the blot. In npAβ, significant 
amount of oligomers begin to appear after 12 hours of incubation and increased until 16 hours, whereas 
in pAβ samples, oligomers are seen already at 6 hours of incubation time and increased with longer incu-
bation (until 16 hours). The signals after 16 hours are observed to be similar in both the peptide samples. 
B) The densitometric analysis of the dot blots using Biorad Quantity One imaging software. Data points 
indicate the mean ± s.d. of three experiments. 

 
 

4.3.4. Spontaneous, Nucleation-dependent aggregation by pAβ seeding 

  

The npAβ and pAβ peptide aggregation kinetics exhibited a profile similar to that found 

for many amyloid fibrils, consisting of an initial lag phase followed by a rapid growth phase ter-

minating at a plateau. The lag period was found to be prominently shorter in pAβ as compared to 

npAβ peptide as observed from the kinetic parameters analysis (Table 5). Reports indicate the ef-

fect of various FAD causing Aβ mutations resulting in misfolding of Aβ and forms various types 

of misfolded oligomers/aggregates and thus serves as a ‘seed/nucleus’ to accelerate the aggrega-

tion (Chiti et al., 2003; Grant et al., 2007; Cruz et al., 2005; Borreguero et al., 2005). Investiga-

tions were carried out to test whether pAβ could serve as an efficient seed as compared to npAβ. 

To quantify the seeding efficiency, preformed npAβ and pAβ aggregates was used to modulate 

the aggregation of freshly dissolved npAβ. Interestingly, both npAβ and pAβ preformed aggre-

gates were found to serve as an effective seeds in npAβ aggregation reaction, as measured by 

ThT fluorescence assay. The npAβ aggregates could reduce the 1 hr lag phase of the non-seeded 

0000 2222 6666 10101010 12121212 16161616 24242424 48484848

npAnpAnpAnpAβ

pApApApAβ

Time (hours)Time (hours)Time (hours)Time (hours)

0000 2222 6666 10101010 12121212 16161616 24242424 48484848

npAnpAnpAnpAβ

pApApApAβ

Time (hours)Time (hours)Time (hours)Time (hours)

0 4 8 12 16 20 24 28 32 36 40 44 48

0

1000

2000

3000

4000

5000

6000

7000

8000

 

 

In
te

n
s
it

y

Time (hr)

 npAββββ

 pAββββ



 Results 

 89 

reaction when added at 5% by weight of total monomeric disaggregated npAβ in the reaction. In 

contrast, the similar amount of pAβ aggregates can completely eliminate the 1 hr lag phase of the 

non-seeded reaction (Fig. 40). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 40: In vitro seeding of disaggregated npAβ with preformed npAβ and pAβ seeds/aggregates. 
In vitro seeding of npAβ solution with npAβ and pAβ seeds and the seeded-aggregation was monitored by 
ThT fluorescence assay. Preformed npAβ and pAβ aggregates of 5% by weight of total monomeric disag-
gregated npAβ were used as seeds/nuclei in the aggregation reaction. The non-seeded reaction shows a 

∼1 hr lag phase during aggregation. However, reduction in lag phase by ∼30 min is observed with npAβ 
seeds where as the lag phase was eliminated with the pAβ seeds/aggregates during aggregation.  
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4.4. Detection of pAβ in vivo in transgenic mouse and human AD brain 

 

4.4.1. Generation of phosphorylation-state specific Aβ antibody and its specificity analy-

sis against different Aββββ oligomers  

 

To facilitate the analysis of Aβ phosphorylation and identification of pAβ peptide in 

vitro or in vivo, it is useful to have the suitable reagent that specifically recognizes the phos-

phorylated forms of Aβ. Therefore, a phosphorylation-state specific Aβ antibody was gener-

ated against pAβ(pSer-8) peptide using rabbit as host as described in Methods. The poly-

clonal phospho-site specific Aβ antibody (SA5434) is screened by ELISA to determine the af-

finity and phospho-selectivity (data not shown). After confirming the phospho-selectivity of 

the SA5434 by ELISA, the antibody was tested for its pAβ specificity by Western-blotting. 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Fig. 41: Specificity assay of the phosphorylation-state specific Aβ antibody (SA5434).  
Synthetic non-phosphorylated (npAβ) and phosphorylated (pAβ) peptides were electrophoresed and 
western-blotted. The blots were probed with polyclonal phosphorylation-state specific antibody 
SA5434 and commercially available monoclonal antibodies 6E10, 82E1 and 4G8 which are generally 
used in the AD research. SA5434 specifically recognizes monomeric and dimeric forms pAβ peptide, 
where as 6E10 is found to be specific for npAβ monomers and dimers. Similar detection of npAβ and 
pAβ monomers and dimers are observed with 82E1 and 4G8 antibodies. 

  

 

Similar amounts of npAβ and pAβ peptides were electrophoresed and western-blotted. 

The blots were then detected with the polyclonal phospho-site specific SA5434 antibody and 

commercially available monoclonal Aβ antibodies such as 6E10, 82E1 and 4G8 which are 

generally used in AD research. The Fig. 41 shows the immunoblot results of the specificity 

analysis of different antibodies against monomeric and dimeric forms of npAβ and pAβ. The 
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SA5434 whereas 6E10 antibody is observed to be only specific to npAβ. The 6E10 antibody 

recognizes an epitope between amino acids 4-12 of the Aβ domain that contains the identified 

phosphorylation site (epitope is mapped to amino acids 4-8 at N-terminus of Aβ). The phos-

phorylation of Ser-8 residue makes this antibody completely insensitive to pAβ peptide. The 

antibodies 82E1 and 4G8 antibodies could recognize both npAβ and pAβ peptide variants 

similarly. The 82E1 antibody recognizes amino acids starting from 1–16 at the N-terminus of 

Aβ (neo-epitope specific), where as 4G8 recognizes amino acids 17–24 near the N-terminus 

of Aβ. As the 82E1 and 4G8 antibodies are shown to recognize the epitopes which are away 

from the phosphorylation site, these two antibodies could recognize both npAβ and pAβ pep-

tides similarly. The antibody specificity analysis result clearly shows the specificity of the 

different antibodies to monomeric as well as dimeric forms of npAβ and pAβ peptides.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 42: Specificity analysis of pAβ specific antibody (SA5434) to Aβ oligomers.  
Aliquots of npAβ and pAβ aggregates were separated by SDS-PAGE and western-immunoblotting. 
The blots were detected with antibodies 6E10, SA5434 and 82E1. Antibody 6E10 specifically detects 
the npAβ where as SA5434 selectively detects pAβ oligomers, while 82E1 detected both npAβ and 
pAβ oligomers. Migrations of monomeric (1mer), dimeric (2mer), trimeric (3mer), tetrameric (4mer) 
and higher oligomeric forms and their detection by different antibodies are shown.  

 

 

Following the identification of the specificities of the polyclonal phospho-site specific 

antibody (SA5434) and other monoclonal antibodies (6E10, 82E1 and 4G8) against npAβ to 

pAβ monomeric and dimeric forms, further analysis were carried out to check whether these 

antibodies can recognize the different soluble low M.W. and high M.W. oligomers. The npAβ 

and pAβ aggregates were taken and the different Aβ oligomeric species were separated by 

electrophoresis and transferred onto nitrocellulose membrane. The membranes were then 
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immunoprobed with SA5434, 6E10 and 82E1 antibodies. The immunoblot paradigm in Fig. 

42 is showing the specificity of the antibodies to different oligomeric species of npAβ and 

pAβ peptides. The 6E10 antibody is shown to be very specific to npAβ peptide (as indicated 

previously) and could recognize npAβ monomer and different oligomers. The phospho-site 

specific antibody SA5434 is found to be very specific to pAβ peptide and this antibody could 

recognize different variants of pAβ oligomers. While the 82E1 antibody is observed to recog-

nize both npAβ and pAβ oligomers. In addition to the detection of monomer and small oli-

gomers, these antibodies also found to recognize high M.W. oligomers that were observed as 

a smear in the upper part of the gels.  

 The antibody specificity analysis clearly indicated the specificity of 6E10 to npAβ 

peptide monomer and oligomers, where as SA5434 antibody is found to be highly specific for 

pAβ peptide monomer and oligomers. The 82E1 recognizes both npAβ and pAβ monomer 

and oligomers similarly. In addition to the specificity of the antibodies to npAβ and pAβ pep-

tides, these data indicate that the antibody SA5434 recognizes also the oligomeric Aβ de-

pending on the phosphorylation state. 

 

 

4.4.2. Immunohistological and biochemical detection of pAβ in transgenic mouse brain 

  

 Immunohistological studies were carried out with APPswe/PS1∆E9 double transgenic 

(tg) mouse brain sections to examine the occurrence of pAβ deposits in vivo. Consecutive 

sections of tg mouse brain were immunostained with antibodies of different specificity (pAβ 

specific antibody-SA5434 and npAβ specific antibody-6E10). The Fig. 43 shows the immu-

nohistological staining of hippocampal region of the brain sections from nine-month old tg 

mice. Strong labeling of amyloid deposits with SA5434 is observed in the hippocampal re-

gion (a; Red). Most of these deposits also contain npAβ as indicated by the co-staining with 

antibody 6E10 (b; Green). In the merged image (c), some individual plaques show a more 

pronounced reactivity of SA5434 in the core region are observed and showing the co-

localization of pAβ positive plaques with npAβ plaques (orange colored plaques indicated by 

arrows). 
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Fig. 43: Immunohistological detection of pAβ in hippocampal brain slices from transgenic 
mouse. 
Immunohistological staining of pAβ and npAβ by antibodies SA5434 (a) and 6E10 (b) using consecu-

tive brain sections from 9-month old APPswe/PS1∆E9 double transgenic (tg) mouse. The pAβ reac-

tive and npAβ reactive plaques are detected in hippocampal regions of tg brains. Co-localization of 
plaques with pronounced reactivity of SA5434 in the core region is indicated by arrows in the merged 
image (c). Scale bar, 100 µm. 

 

  

After the immunohistological detection of pAβ plaques in hippocampus region, the 

age dependent analysis of pAβ deposition was carried out. The tg mice were sacrificed at 2, 6, 

12, 18 months of age and immunohistological staining of the brain sections were carried out 

(n=3 mouse/age). The Fig. 44 shows the immunohistological staining of the cortical regions 

of the consecutive brain sections of tg mouse at different ages (2 m, 6 m, 12m, 18 m) with 

6E10 and SA5434 antibodies. SA5434 reactive pAβ plaques are observed in the cortical re-

gion of tg mouse brain sections of all the ages (SA5434; a, b, c and d). The consecutive sec-

tion from the same region which was stained with 6E10 antibody also shows the npAβ 

plaques in all the ages (6E10; e, f, g and h). Markedly, Aβ deposits are already observed in 

the cortices of 2-month old mice. Although these deposits are reactive for both the antibodies 

(pAβ; SA5434 and npAβ; 6E10), very few small deposits that are selectively detected with 

SA5434 antibody but not with 6E10 can be seen (indicated with arrow head; in image ‘a’ as 

well as in Merged image; ‘i’). The pAβ associated plaque depositions are observed to be 

strongly increased with the increase in age. A large overlap of staining with antibodies 

SA5434 and 6E10 is observed (Merge; i, j, k and l) and pAβ appear to be concentrated to-

ward the centre of individual plaques similar to a senile neuritic plaque morphology (which 

are indicated with arrows). 
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Fig. 44: Age dependent analysis of pAββββ associated plaque deposition in tg. mouse brain. 
Immunohistological staining of cortical regions of brain sections from tg mouse of different ages (2m, 
6m, 12m and 18m) by antibodies SA5434 and 6E10 respectively. At 2m age, some deposits which are 
reactive for both the antibodies (pAβ; SA5434 and npAβ; 6E10) are already observed, however very 
small deposits that are selectively detected with SA5434 antibody can be seen which are indicated 
with arrow head (in image a and i). At this age, we cannot observe the deposits that are selectively 
stained with 6E10 antibody. Plaques with pronounced reactivity of SA5434 in the core region showing 
the senile plaque morphology are indicated by arrows (j, k. l). Scale bars, 50 µm (2m); 200 µm (6-
18m). 

 

  

 To further support the detection of pAβ and age dependent deposition of pAβ in the 

hippocampal and cortical regions of tg mouse brain sections, biochemical analysis was car-

ried out. SDS-soluble Aβ containing brain lysates were prepared by sequential homogeniza-

tion and centrifugation of tg mouse whole-brain homogenates. After the preparation, SDS-

soluble Aβ containing extracts were used for the biochemical analysis by SDS-PAGE and 

western-blotting. Consistent with the immunohistological staining results, the pAβ and npAβ 

are strongly increased with age as shown in the immunoblot paradigm which was detected 

with SA5434, 6E10 and 82E1 antibodies respectively (Fig. 45). Strong reactivity of the oli-

gomeric Aβ can be observed as a smear in the upper regions of the gel with SA5434 and 

82E1 antibodies. These oligomeric species are seen already in two-month old mice and be-

came prominent at six-months. At this age, SA5434 show a very little reactivity to mono-

meric Aβ. In contrast, monomeric Aβ is already detected in six-month old mice with mono-
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clonal antibody 6E10 and it seems strongly increased with the increase in age. The reactivity 

of the antibody 6E10 with oligomeric Aβ assemblies is observed to be much weaker as com-

pared to SA5434 antibody, and it is mainly observed only in 12 and 18-month old animals 

(Fig. 45A). Strong reactivity of the monomer and as well as oligomers are observed with 

82E1 antibody. The bar graphs show the densitometric analysis of the ratio of monomeric and 

oligomeric Aβ detected with different antibodies (Fig. 45B). 
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Fig. 45: Age dependent biochemical analysis of pAββββ in tg mouse brain lysates. 

A) SDS-soluble Aβ containing whole-brain homogenates of tg mouse from 2 to 18 months (n = 3 for 
each age) were analyzed by SDS-PAGE and western-blotting with antibodies SA5434, 6E10 and 

82E1. Migrations of monomeric (mAβ), dimeric (dAβ and oligomeric Aβ (Oligo. Aβ) variants are indi-
cated. Note the pronounced reactivity of SA5434 with smear in the upper part of the gels indicating 

the enrichment of pAβ in oligomeric assemblies signifying the increased oligomerization. B) Densi-

tometric analysis of the ratio of monomeric/oligomeric and oligomeric/monomeric Aβ detected with dif-
ferent antibodies. The statistical significance was evaluated by student t-test (***p<0.001, **p<0.01 
and *p<0.05; n=3). 
 

 

4.4.3. Quantitative analysis of pAβ in tg mouse brain  

 After the age dependent immunohistological and biochemical analysis of phosphory-

lated Aβ in tg mice, the quantitative analysis of pAβ was carried out using tg mouse brain 
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lysates. The SDS-soluble Aβ extracts from 18 month old tg and non-transgenic mouse whole-

brain homogenates (wt littermates; ctr) and different concentrations (10, 25, 50, 100 and 250 

ng) of synthetic npAβ and pAβ peptides were electrophoresed and western-blotted. The im-

munoblot paradigm (Fig. 46) probed with different antibodies indicate the presence of sig-

nificant amount of npAβ and pAβ in the tg mouse as compared to age matched control mouse 

(ctr.). After immunodetection of the blots, densitometric analyses of the immunoblots were 

carried out using Biorad Quantity One software. From the densitometric analysis, approxi-

mately 20-25% of the monomeric Aβ is in phosphorylated state in the total amount of pAβ in 

the SDS-soluble Aβ extracts from tg mice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 46: Quantitative analysis of pAββββ in tg mouse whole-brain homogenates. 
Brain homogenates (total protein: 50 µg) of 18 month old non-transgenic (ctr) and transgenic (tg) 

mouse were separated by SDS-PAGE and western-blotted. Synthetic npAβ and pAβ were used as an 
internal standard. After transfer onto nitrocellulose membranes, the blots were probed with 6E10, 

SA5434 and 82E1 antibodies. A titration standard curve of synthetic pAβ was used to estimate the 

amount of pAβ. Quantitative densitometric analysis revealed that about 20-25% of extracted mono-

meric Aβ is in a phosphorylated state. 

 

  

Additionally, the amount of pAβ was also quantified by employing the technique of 

dephosphorylation of the Aβ peptide by shrimp-alkaline phosphatase (SAP) and detection of 

the dephosphorylated Aβ peptide by phosphorylation-site sensitive antibody. This technique 

was already used in the detection of phosphorylated tau using phosphorylation-state sensitive 

antibody after dephosphorylation (Billingsley and Kincaid, 1997). To detect the pAβ as ac-
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cording to this technique, the tg mouse brain lysates (with specific amount of proteins) were 

dephosphosphorylated using SAP as described in Methods. As a control for the dephosphory-

lation assay, 250 ng of synthetic pAβ peptide was dephosphorylated in a similar condition. 

After dephosphorylation of the brain lysates and synthetic pAβ peptide, the samples were 

electrophoresed blotted onto nitrocellulose membrane. After blotting, the blots were probed 

with a 6E10 antibody (Fig. 47). 

  

 

 

 

 

 

 

    

 

 

Fig. 47: Detection of pAββββ in mouse whole-brain homogenates after dephosphorylation.  

Brain homogenates of 18 month old tg mouse and synthetic pAβ were incubated in the absence or 
presence of SAP for 5 hrs at 37 °C. After incubation, the samples were separated by SDS-PAGE, Aβ 
was detected by western-blotting with 6E10 antibody. The reactivity of the 6E10 antibody is shown to 
be increased after dephosphorylation. The increased reactivity of antibody 6E10 after SAP treatment 

of synthetic pAβ demonstrates the specificity of this antibody for non-phosphorylated Aβ. The relative 
increased intensity after SAP treatment quantified by densitometry analysis is indicated. 

 

 

The Fig. 47 shows the signals for non-dephosphorylated (-SAP) and dephosphory-

lated (+SAP) Aβ immunodetected with 6E10 antibody. The reactivity of the 6E10 antibody to 

synthetic npAβ can be clearly observed. The antibody do not show any reactivity to synthetic 

pAβ (due to the presence of phosphoserine, the epitope is not recognized by the 6E10 anti-

body), but the reactivity can be seen once it is dephosphorylated. The same was observed 

with the tg mouse whole-brain homogenates. The immunoreactivity of the Aβ from tg mouse 

brain lysates is observed to be increased after dephosphorylation (+SAP) as compared to non-

dephosphorylated (-SAP). The relative increase in intensities after dephosphorylation is quan-

tified by densitometric quantification of the signals using Quantity One software from Biorad 

which indicated that about 30 % of monomeric Aβ is in a phosphorylated state in vivo in 

mouse brain. 
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4.4.4. Detection of pAβ in human AD brain and pAβ associated neuronal alterations 

 The occurrence and deposition of pAβ in the human brain has not been shown so far. 

To detect the presence of pAβ deposits in human AD brain, immunohistochemical staining 

was carried out using human control and AD brains sections employing SA5434 and 6E10 

antibodies. Ten human autopsy brains were received from the University Hospital Bonn in 

accordance with the laws and under affirmation of the local ethical committee (Table 3). Post-

mortem diagnosis of Alzheimer's disease was carried out according to the NIA-Reagan Crite-

ria (1997; Mirra, 1997). Immunolabelled sections were analyzed with a Leica DMLB fluores-

cence microscope. Pictures were taken digitally with a Leica DCF500 camera. 

In Fig. 48, the extracellular pAβ deposition was evident in the adjacent sections that 

were stained with the pAβ specific antibody (SA5434; d-f and j-l) and npAβ specific (6E10; 

a-c and d-f) antibody. The deposition of pAβ as detected by SA5434 reveals similar patterns 

of staining to those observed in sections stained with the 6E10 antibody. The co-staining of 

pAβ and npAβ is observed in CA1 region and in entorhinal cortex of human AD brain (indi-

cated by arrows). The reactivity of the SA5434 is found to be weaker as compared to 6E10 

antibody. Largely, an overlapping pattern of the npAβ and pAβ plaques are observed. In addi-

tion to pAβ plaque staining, the staining of the vascular amyloids by SA5434 is also observed 

(indicated by arrow head). These immunohistochemical staining of brain sections from hu-

man AD patients indicate the occurrence of pAβ reactive plaques and staining of vascular 

amyloids in human AD brain. The hippocampal formation exhibits distinct diffused and core 

plaques staining for Aβ and pAβ in the pyramidal cell layer of the subiculum, the Ammon’s 

horn (AH) sectors and CA1-CA4 regions as well as in the molecular layer of the dentate 

gyrus (indicated by arrows). 
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Fig. 48: Immunohistochemical staining of pAβ in human AD brain.  
Detection of Aβ (a-c and g-i) and pAβ (d-f and j-l) using 6E10 and SA5434 antibody in human AD 
cases. The hippocampal formation exhibits distinct core and diffuse plaques staining for Aβ and pAβ 
of the pyramidal cell layer of the subiculum, the Ammon’s horn (AH; a, d, g, j) and CA1-CA4 (b, c, e, f, 
h, i, k and l) as well as in the molecular layer of the dentate gyrus (arrows). Largely, an overlapping 

pattern of npAβ and pAβ are observed. Pictures were taken at x 2.5 (a, d, g and j), x 10 (b, e, h and k) 
and x 40 (c, f, i and l) magnification. The white boxes representation of the selected areas observed at 
higher magnifications.  
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Inflammatory processes have long been posited as serving integral roles in initiating 

and/or propagating AD-associated pathology within the human brain. It has been reported 

that pro-inflammatory cytokine and chemokine expressions are significantly enhanced result-

ing in concomitant increases in region-specific microglial cell numbers in brains of AD pa-

tients. The role of microglia and their accumulation at the sites of dense neuritic plaques has 

been described (D'Andrea et al., 2004; Eikelenboom et al., 2006; Gahtan and Overmier, 

1999). Here in, the status of microglia cells with pAβ were assessed. Double-label immuno-

histochemical staining was carried out using anti-CD68 antibody specific for the micro-

glia/macrophage surface marker and SA5434 antibody specific for pAβ. Immunohistochemi-

cal staining showed a CD68-positive microglia association with pAβ reactive plaques in the 

human AD brain sections. Marked distribution of CD68-positive microglia, appearing to as-

semble into dense pAβ positive aggregates and also found toward the edge of the plaques 

(Fig. 49).  

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
Fig. 49: Association of pAβ plaques with Microglia and Astrocytes in the human AD brain. 
a, b: Double-label immunohistochemical staining of human AD brain sections with SA5434 and CD68 
antibodies. Immunostaining pictures showing the pAβ plaques (brown) and CD68 (black) indicating 
the co-localization and association of the microglial-associated epitope CD68 with pAβ cored plaques 
(white arrows). c, d: Human AD brain sections exhibiting the association of pAβ plaques with astro-
cytes as indicated by double-label immunohistochemical stainings for pAβ plaques (brown) and GFAP 
(blue-black). Note that the astrocytes are often associated with neuritic plaques (black arrows). 
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Astrocytes are reported to be involved in different functions in the brain, including 

structural integrity of the blood brain barrier, support of neuronal synapses by ion regulation 

and removal of glutamate (Cotrina and Nedergaard, 2002). Although it is believed that they 

are not directly responsive to primary insults, astrocytes react to inflammatory events in the 

brain, relying upon pro-inflammatory molecules elaborated from activated microglia (Gahtan 

and Overmier, 1999). Glial fibrillary acidic protein (GFAP) is an intermediate filament (IF) 

protein that is found in glial cells such as astrocytes. GFAP is often employed as a marker of 

astrocytic activation. Double-label immunohistochemical stainings were carried out using 

anti-GFAP antibody specific for reactive astrocytes and SA5434 antibody specific for pAβ. 

GFAP-expressing astrocytes were readily visible in association with pAβ stained plaques 

throughout the hippocampus (Fig. 49). Immunohistochemical examinations of hippocampus 

and cortex regions of brain sections from AD patients revealed increased reactive astrogliosis 

(GFAP immunoreactivity) and activated microglia (CD68 immunoreactivity) in association 

with pAβ reactive plaques, thereby suggesting the probable reminiscent role of pAβ deposits 

in neuroinflammatory process. 

The development of intraneuronal lesions is central to the pathological process in Alz-

heimer’s disease (AD). The lesions consist chiefly of hyperphosphorylated tau protein and in-

clude pretangle material, neurofbrillary tangles (NFTs) in cell bodies, neuropil threads (NTs) 

in neuronal processes and material in dystrophic nerve cell processes of neuritic plaques 

(NPs). The localization of clusters of abnormal neuronal processes is referred to as dystrophic 

neurites (DNs) and their association with cored-neuritic Aβ plaques is a common phenomena 

in AD. These neuritic plaques have been considered as a pathological correlate of AD demen-

tia (Mirra et al., 1991). Double-label immunofluorescence of AD brain sections was per-

formed using SA5434 combined with a monoclonal antibody 22C11, directed against APP. 

The photomicrographs of double-label immunofluorescence labelling with SA5434 shows the 

pAβ immunoreactive plaques (Red) which are associated with abnormal neurites containing 

accumulations of neurofilaments (green) (Fig. 50). Antibody SA5434 readily stained the se-

nile plaques in human AD brain. Importantly, strong reactivity of SA5434 is observed in the 

core of neuritic plaques, while antibody 22C11 against the extracellular domain of APP selec-

tively detected dystrophic neurites in close proximity to the amyloid core of the neuritic 

plaques. The abnormal dystrophic neurites shows either a ring- or bulb-like morphology. 

These studies show the association of abnormal neurites that generally observed in AD with 

the pAβ-amyloid deposits. 
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Fig. 50: Double-label immunofluorescence of pAββββ associated neuronal alterations in human 
AD brain.   
Confocal double-label immunofluorescence photo-micrographs of sections from the entorhinal cortex 

of a human AD brain stained with pAβ-specific antibody (SA5434; green) and APP (22C11; red). The 

preferential staining of the amyloid core by phosphospecific Aβ antibody (SA5434) indicates preferen-

tial deposition of pAβ in these structures. The presence of dense-cored plaque and occurrence of dys-
trophic neurites around plaques indicates typical morphological and neurochemical changes that are 
associated with AD pathogenesis. Bigger box is the magnified image of the area marked in smaller 
box in the image. 
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5. DISCUSSION  
 

 The current investigation was aimed at understanding the role of extracellular 

phosphorylation of Aβ peptide in aggregation. The present work demonstrates the 

phosphorylation of Aβ in silico, in vitro and in vivo. Extracellular kinases which are present at 

the cell surface are shown to phosphorylate the exogenous Aβ. The extracellular kinase 

activity was also observed in the CSF of the human brain. The biophysical data gave an 

insight into the role of phosphorylation at serine residues which is capable of enhancing the 

propensity of Aβ to adopt a β-sheet rich conformation. The phosphorylation induced β-sheet 

rich structures accelerated the formation of small oligomeric aggregates that could seed 

aggregation into larger oligomeric and fibrillar assemblies. By using phosphorylation-state 

specific Aβ antibody, the occurrence of phosphorylated Aβ was documented in tg mice and 

human AD patient’s brains. The specific detection of phosphorylated and non-phosphorylated 

Aβ in tg mice indicate the preferential aggregation of phosphorylated Aβ in vivo. The 

phosphorylated Aβ variants are highly enriched in oligomeric species of Aβ from mouse 

brain, indicating the critical role of phosphorylation in the aggregation of Aβ in vivo. 

Importantly, phosphorylated Aβ is enriched in the core of amyloid plaques in the human brain 

that contains highly aggregated forms of Aβ peptides. These dense core plaques are associated 

with dystrophic neurites, indicating that these assemblies are neurotoxic and lead to 

degeneration of brain neurons. The phosphorylated Aβ was also found to be associated with 

microglia and astrocytic cells. Thus, extracellular phosphorylation of Aβ may promote 

aggregate formation and trigger the pathogenesis of sporadic AD. 

 

5.1. Phosphorylation of Aβ  

 

 It is known that the activity of many kinases and phosphatases are altered in brains of 

patients affected by AD (da Cruz e Silva EF and da Cruz e Silva OA, 2003; Saitoh and 

Iimoto, 1989). In AD, aberrant activation of several kinases has been linked to 

hyperphosphorylation of tau and tangle formation (Jin and Saitoh, 1995; Mi and Johnson, 

2006). In addition to tau phosphorylation, regulation of Aβ production and modulation of APP 

processing by different kinases has been shown (Buxbaum et al., 1990; Flajolet et al., 2007; 

Gandy et al., 1988; Marambaud et al., 1996; Xu et al., 1996). Several phosphorylation sites 

within the cytoplasmic domain of APP and the responsible kinases were identified both in 

vitro and in vivo (Ando et al., 1999; Ando et al., 2001; Aplin et al., 1996; Iijima et al., 2000; 

Isohara et al., 1999; Oishi et al., 1997; Standen et al., 2001; Suzuki et al., 1994; Suzuki et al., 

1997; Suzuki and Nakaya, 2008). The phosphorylation of certain sites regulates the 
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interaction of the numerous cytoplasmic domain proteins and affects the production of Aβ in 

cultured cells (Ando et al., 2001; Lee et al., 2003). Notably, phosphorylation of APP has been 

shown to be up-regulated in AD (Lee et al., 2003). Despite vast studies on the role of 

phosphorylation in AD, it remains unclear if the Aβ domain of APP or Aβ can undergo 

phosphorylation. Using antisense peptide binding methodology, phosphoserine specific 

antibodies and purified kinases, it has been suggested that Aβ undergoes phosphorylation at 

Ser-26 by cdc2 in vitro (Milton, 2001; Milton, 2005). On the other hand, some kinases 

including CK1, CK2 and PKC failed to phosphorylate Aβ in vitro (Chauhan et al., 1993). 

Despite the above mentioned studies the phosphorylation of extracellular Aβ and its 

physiological role in AD remains unknown. 

To ensure the fidelity of phosphorylation, the kinases must be sufficiently specific and 

act solely on their respective substrates (Kennelly and Krebs, 1991; Zhu et al., 2005). In silico 

analysis was carried out using computational prediction tools to predict the potential 

phosphorylation sites of Aβ and their kinases. In silico computational tools are neural network 

based databases that employ powerful algorithms in their predictions and the predicted 

phosphorylation sites are compared rigorously with previously identified phosphorylation of 

various proteins and their kinase specific consensus sequences. These computational tools are 

valuable and straightforward for prediction of phosphosites and kinases as compared to 

conventional procedures. The in silico prediction analysis indicated that Ser-8, Ser-26 and 

Tyr-10 residues of Aβ could be potential phosphorylation sites (Fig. 10). According to the 

KinasePhos computational tool the identified phosphosites of Aβ could undergo 

phosphorylation by PKA, CK1, CK2 and PKC (Fig. 11). Comparison of the results with 

already existing literature on the consensus sequences of a variety of phosphoproteins further 

confirmed the in silico analysis (Table 4).  

Consensus sequences are considered essential for substrate recognition and 

phosphorylation by respective kinases. They act as critical substrate recognition determinants 

and most probably form a reflected image of the corresponding substrate domains (Kennelly 

& krebs, 1991). Arginine at N-terminal to the phosphoacceptor Ser-8 in Aβ sequence (at -3 

position), is a key residue in substrate recognition by PKA. Arginine has been recognized as a 

key determinant (at -2 or -3 positions) in determining the substrate specificity of PKA (Kemp 

et al., 1975; Kemp et al., 1977; Ubersax and Ferrell, Jr., 2007). Thus, the consensus sequence 

R-(X)2-(S
*
) in Aβ could be a preferred phosphoacceptor site for PKA. Notably, a 100% 

conservation of the Arg-5 residue (601 aa of APP695) of Aβ sequence across all mammalian 

species excluding rodents, further supports a possible key role of this amino acid in the 
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phosphorylation of Aβ by PKA. Interestingly, mouse APP695 and human APP695 differ in 

only 17 amino acid residues (De et al., 1991). Three of these amino acids (Gly601 to Arg, 

Phe606 to Tyr and Arg609 to His) are identified in the Aβ peptide sequence, and notably, they 

are located between the β- and the α-cleavage sites. These three residues are identical in all 

species known to develop Aβ plaques with aging except rodents. This led to the hypothesis 

that the lack of Aβ production in rodents might reside in the amino acid differences 

(Johnstone et al., 1991; Selkoe et al., 1987). This hypothesis has been supported by studies 

involving the 'humanized' mouse APP sequence in the Aβ region by mutating these three 

residues and expression of the humanized mouse APP (APP/Mo/GRFYRH) in neurons (De et 

al., 1995). These three substitutions were sufficient to restore Aβ production to levels obtained 

with human APP. Interestingly, mutating the single residue Gly601 to Arg in the mouse APP 

sequence was alone sufficient to increase the ratio of production of Aβ peptide to p3 by 3-

fold. However further investigations in to the functional aspects related to the presence of this 

residue were not reported. From the current observation, one could hypothesize the critical 

role of Arg residue in the phosphorylation of Aβ and related pathogenesis in humans. 

The presence of acidic amino acid residues such as glutamate or aspartate immediately 

C-terminal (+1 to +3) to the phosphoacceptor conform the putative phosphorylation site for 

CK2 (Marin et al., 1992; Songyang et al., 1996). Hence, the consensus (S
*
)-(X)2-E found C-

terminal to Ser-8 in Aβ sequence could possibly be recognized by CK2. A second serine 

residue at the 26
th

 position conforms the consensus sequence for CK1 and PKC. CK1 

normally target sites rich in negatively charged (i.e., acidic or phosphorylated) amino acids N-

terminal to the phosphoacceptor (Marin et al., 2003). For eg., D/E-X-X-S
*
/T

*
 for unprimed 

(no prior phosphorylation) substrate or S/T(p)-X-X-S
*
/T

* 
for primed (prior phosphorylation) 

targets. Therefore, the ED-(X)2-S* sequence of Aβ conforms the consensus sequence for CK1. 

PKC requires basic amino acid residues close to the phosphoacceptor group. Both N- and C-

terminal basic residues can influence PKC. Therefore, consensus sequences such as ED-(X)2-

S*-(X)-K in the Aβ sequence can conform a PKC recognition site. 

The in silico analysis tools indicate that other kinases such as CDK, CDC2 and GSK-3 

which could phosphorylate Aβ in addition to the kinases discussed above. However, these 

kinases are known to be proline-directed kinases. CDK is shown to have a strong preference 

for proline at the +1 position (Consensus for CDK: S
*
/T

*
-P-X-K/R and S

*
/T

*
-P) whereas 

GSK-3 kinase prefers one or more proline residues close to the phosphoacceptor site (-3 to 

+3) (Ubersax et al., 2003). The CDC2 kinase whose consensus sequence is S
*
/T

*
-P requires a 

proline residue near the phosphoacceptor. Besides the prolyl residue, this kinase prefers a 
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basic residue at position +3. The absence of a proline residue in Aβ sequence and the lack of a 

basic amino acid residue at +3 positions make it unlikely that Ser-8 or Ser-26 undergoes 

phosphorylation by CDK, CDC2 and GSK-3. Despite the involvement of these three kinases 

in AD pathogenesis (Bhat et al., 2004; Guo, 2006; Hooper et al., 2008; Lee et al., 1999; 

Monaco, III, 2004; Monaco, III and Vallano, 2005; Vincent et al., 1997), due to the absence of 

consensus sequence for CDK, CDC2 and GSK-3 in Aβ, further systematic analysis were 

carried out only with PKA, CK1, CK2. 

In vitro phosphorylation studies using synthetic Aβ1-40 and Aβ1-42, purified catalytic 

units of PKA, CK1, CK2 and [γ
32

P]ATP showed that Aβ can undergo phosphorylation by 

these three kinases (Fig. 12 & 16). The relative 
32

P phosphate incorporation was found to be 

higher with PKA as compared to CK1 and CK2. Phosphoamino acid analysis indicated that 

the phosphorylation was targeted mainly at serine residues (Fig. 13). Further characterization 

and localization of phosphosites employing a variety of full length and truncated variants of 

synthetic Aβ confirmed the kinase specific phosphorylation sites of Aβ. PKA was found to 

phosphorylate exclusively the Ser-8 residue of Aβ and the current findings were further 

confirmed by the complete absence of phosphorylation when the prephosphorlyated Aβ (pAβ-

Ser8) was used in the in vitro phosphorylation analysis. CK1 exclusively phosphorylates the 

Ser-26 residue in Aβ. In vitro phosphorylation assay by CK2 employing different Aβ variants 

indicated that CK2 phosphorylate Serine-8 residue of Aβ. All together, the results from the in 

vitro phosphorylation studies correlate with the in silico phosphosite predictions. 

The stoichiometry and kinetics analysis of Aβ phosphorylation indicate that the Aβ can 

undergo phosphorylation more efficiently by PKA as compared to CK1 and CK2. The 

stoichiometry of phosphorylation mediated by PKA increased with time and reached a plateau 

at ∼1 mol of phosphate/mol of Aβ1-40. Kinetic analysis of the reaction by PKA showed that 

the phosphorylation was concentration dependent and Michaelis-Mentens (Km) for the 

phosphorylation of Aβ1-40 was 21 µM (Fig. 14 & 15). Further, in vitro phosphorylation 

assays employing Aβ1-42 peptide showed that Aβ1-42 could also undergo phosphorylation by 

these above mentioned three kinases. Notably, the phosphorylation of the Aβ dimer was 

observed and interestingly these dimers were phosphorylated only with PKA and CK1 but not 

with CK2 (Fig. 16). From this observation, one could speculate the distinct specificity of 

kinases in phosphorylation of monomeric and dimeric Aβ. As recent reports suggesting the 

potential role of soluble oligomers in the AD pathogenesis (Haass and Selkoe, 2007), the 

further in depth evaluation of the specificity of the kinases and phosphorylation induced 
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oligomerization might provide more insights into the functional significance of different 

kinases in phosphorylation and phosphorylation induced oligomerization. 

 The activities of different kinases have been reported to be altered in AD brain as well 

as in fibroblasts derived from patients with sporadic AD, familial AD, and Down’s syndrome 

(Bernert et al., 1996; Buxbaum et al., 1990; Cole et al., 1988; Cole et al., 1991; Masliah et al., 

1990; Masliah et al., 1991; Saitoh et al., 1990; Saitoh et al., 1991). Among the identified 

kinases, PKA, PKC, CK1 and CK2 are associated with AD and several reports indicate that 

they have been implicated in the AD pathology (Chachin et al., 1996b; Jicha et al., 1999; 

Moore et al., 1998; Schwab et al., 2000; Su et al., 2003; Yasojima et al., 2000). From the 

current investigation, it was found that PKA can phosphorylate Aβ more efficiently as 

compared to CK1 and CK2 kinase. It is reported that PKA, CK1 and CK2 kinases are present 

at the cell surface and are shedded to the extracellular environment (Kubler et al., 1982; 

Walter et al., 2000; Walter et al., 2001). Therefore, one could speculate the role of such cell 

surface PKA in phosphorylation of Aβ. 

 

5.2. Expression of PKA in Human brain and phosphorylation of Aβ by extracellular 

PKA 

 

PKA is one among the several kinases in the central nervous system involved in 

myriads of functions in the brain (Nairn et al., 1985). PKA is capable of phosphorylating a 

large number of substrates involved in neurotransmitter synthesis and release, gene 

expression, synaptic plasticity, memory, and cell growth and differentiation (Borrelli et al., 

1992; Walaas and Greengard, 1991; Riccio et al., 1999; Lara et al., 2003). Furthermore, PKA 

participates in neurite outgrowth (Song and Poo, 1999), neuronal differentiation (Liesi et al., 

1983), and cell survival (Rydel and Greene, 1988; Li et al., 2000). Intracellular PKA is a 

tetrameric holoenzyme consisting of two catalytic (C) subunits and two regulatory (R) 

subunits in the absence of cAMP (Nairn et al., 1985). Several isoforms of both C subunit (Cα, 

Cβ, and Cγ) and R subunit (RIα, RIβ, RIIα and RIIβ) have been found in mammalian tissue. 

The Cα isoform is expressed ubiquitously in most tissue, whereas the Cβ isoform is highly 

expressed in the brain (Cadd and McKnight, 1989) and Cγ is expressed exclusively in the 

testis (Foss et al., 1992). All four isoforms of the R subunits are expressed in human brain 

(Chang et al., 2003). The expression of both Cα1 and Cβ2 was observed to be significantly 

reduced in the brains of AD patients as compared to control. The altered expression levels 

might indicate the possible dysregulation of PKA function in AD patient’s brain when 

compared with controls (Fig. 18). The current finding is consistent with the previous reports 
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demonstrating the altered mRNA expression of different PKA isoforms in the neurons of AD 

patients brain as compared to control (Bonkale et al., 1999; Miyamoto et al., 1969; Liang et 

al., 2008), as well as decreased PKA activity in AD brain (Kim et al., 2001). 

Alteration of PKA expression is recognized as a key player in age-related cognitive 

decline including AD (Ramos et al., 2003). A recent study demonstrated the importance of 

cAMP/PKA signaling in age-related memory impairment (Yamazaki and Saitoe, 2008). PKA 

is shown to play an important role in maturation of APP and in Aβ production (Su et al., 

2003). PKA is shown to phosphorylate tau at Ser-214 and Ser-409 and primes tau for further 

phosphorylation by another important tau kinase, glycogen synthase kinase-3β (Wang et al., 

2007; Liu et al., 2006). The down-regulation of PKA in AD brain might lead to disturbance in 

the normal functioning of the PKA enzyme and thus in turn affects several downstream 

pathways. Thus, observed alteration in expressions of different C subunits could signify the 

possible physiological role in AD. Studies have also shown the association of the R subunits 

to the C subunits having other several biological roles in addition to keeping the C subunits 

inactive and dynamically regulating the activity, which in turn contributes to the down 

regulation of CREB and impaired cognition and memory (Liang et al., 2007). Further detailed 

studies on R subunits in AD brain might also give insights into the critical role of R subunits 

in the regulation of C subunits. From the current investigation, it is found that Aβ can undergo 

phosphorylation efficiently by PKA. Subcellular targeting of PKA has emerged as a 

mechanism to secure specific signalling by cAMP. The localization of catalytic subunits, 

promotes the specific, differentiated and appropriately timed phosphorylation of substrates. In 

the present context, given the importance of PKA in mediating crucial physiological function 

in the brain, additional studies into the characterization of the PKA subunits expression profile 

and their activity in different areas of brain regions in healthy and as well as AD patients 

might possibly give insight in to the dynamic nature of mechanism(s) underlying the PKA 

disturbances as important neurobiological factors and may be relevant in therapeutic 

intervention. 

 A number of reports document the presence of PKs on the external side of the cellular 

membrane in a wide variety of cells. These kinases were shown to phosphorylate both 

extracellular (soluble) substrates and cell-surface proteins primarily on ecto-domains. On the 

basis of the localization and substrate specificity of these PKs, they might play a significant 

role in the regulation of cell–cell interactions, ligand binding and signal transduction 

(Redegeld et al., 1999). The existence of various types of cAMP-dependent (Behrens and 

Mazon, 1988; Kubler et al., 1989; Kubler et al., 1992; Shaltiel et al., 1993), and cAMP-
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independent types  (Kubler et al., 1983; Skubitz et al., 1991; Walter et al., 1994; Walter et al., 

1996) of extracellular PKs have been reported. These extracellular PKs are either plasma 

membrane bound (ecto-PKs) or can be released from intact cells (exo-PKs) in a process 

termed as secretion/shedding to the extracellular milieu and act on the outer surface of cells 

(Ehrlich et al., 1986a; Tsuji et al., 1988; Muramoto et al., 1994; Kubler and Barnekow, 1986; 

Cho et al., 2000; Walter et al., 2000; Walter et al., 1994; Kubler et al., 1989; Kubler et al., 

1992; Kubler et al., 1983; Paas and Fishelson, 1995). The analysis of extracellular PKs using 

intact cultured cells (HEK293, SH-SY5Y, Hela, H4 and Glial cells) showed the expression of 

Cα1 and Cβ2 catalytic subunits of PKA and is found to be shedded to the medium. The 

differential expression of catalytic subunits of PKA observed amongst the various cell types 

tested supports the evidence of cell specific expressions of PKA among neuronal and non-

neuronal cells. The observed differences in PKA expression in different cell types could 

suggest the involvement of PKA in the regulation of distinct physiological processes (Nairn et 

al., 1985). This cell type specific expression of PKA could also be due to change in specific 

expression of R subunits of PKA as reported previously (Liang et al., 2007). Thus, one could 

speculate the capacity of extracellular PKA expression, stage of maturation and its shedding 

be cell type specific. Further detailed studies might provide valuable information on cell-type 

specific extracellular PKA expression, shedding and their physiological role. 

 The expression, activities and shedding of intracellular and as well as extracellular 

PKs are known to be modulated by activation of adenylyl cyclase by external stimuli (PDBu, 

forskolin), and also by using kinase specific substrates (phosvitin, casein and histone) (Kubler 

et al., 1983; Walter et al., 1996; Jordan and Kubler, 1992; Kondrashin et al., 1999). The 

modulation of adenylate cyclase by forskolin (PKA agonist), increases the intracellular cAMP 

level, thereby activating the intracellular as well as extracellular cAMP dependent PKA (Insel 

and Ostrom, 2003; Insel and Ostrom, 2003; Awad et al., 1983). The shedding of the 

endogenously expressed PKA into the conditioned medium appeared to be different amongst 

the cell type studied for the assay upon forskolin treatment. However, the forskolin treatment 

did not further stimulate the secretion/shedding of PKA, indicating that elevation of 

intracellular cAMP level after forskolin treatment does not stimulate either the expression or 

the shedding of extracellular PKA (Fig. 19). These results might also suggest the expression 

of only the specific catalytic subnits of PKA on cell surface and not the PKA holoenzyme. 

The current observations are consistent with the previous studies showing the shedding of 

PKA catalytic subunits to the extracellular milieu independent of cAMP (Kubler et al., 1983; 

Cho et al., 2000). 
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In vivo phosphorylation studies using intact cultured cells of HEK 293, SH-SY5Y and 

glial cells showed for the first time that Aβ can undergo phosphorylation by extracellular PKs. 

The degree of Aβ phosphorylation was different among the cultures employed in the assay 

further confirming the cell-type specific differential expression of extracellular PKs and their 

activity as discussed earlier. The intensity of Aβ phosphorylation was stronger in SH-SY5Y 

and glial cells as compared to HEK 293 cells indicating the significance of extracellular PKs 

in brain related cells and their critical role in extracellular protein phosphorylation events. The 

addition of extracellular cAMP did not alter the level of Aβ phosphorylation among the cell 

types employed in the assay (Fig. 20). This is consistent with the previous observations 

showing the selective secretion of PKA catalytic subunits on the cell surface which is not 

stimulated by extracellular cAMP addition as observed earlier. However, one cannot exclude 

the role of cAMP-independent kinases in phosphorylation of Aβ under the experimental 

paradigm. Overall, the results showed that Aβ can undergo phosphorylation by the 

extracellular PKs.  

It has been shown that extracellular ATP affects a diverse range of physiological as 

well as pathophysiological processes in neuronal and non-neuronal cells (Gordon, 1986; 

Inoue et al., 2007; Hubschmann and Skladchikova, 2008; Nicholls, 2008; Paas et al., 1999). 

The potential role of extracellular ATP acting as a cofactor for the phosphorylation in different 

cell type has been described (Zhang et al., 1988; Koizumi et al., 2005). There are reports 

suggesting a role of surface protein phosphorylation of different extracellular proteins 

employing kinases and ATP which are present at the cell surface in regulation of the specific 

functions of developing and mature neurons (Ehrlich et al., 1986b; Ehrlich et al., 1990). 

Conclusive evidence has been presented previously for the existence of extracellular PKs 

activity on the external surface of neurons (Hogan et al., 1995). Phosphorylation of cell-

surface proteins by cell surface kinases (Ecto or Exo PKs), using extracellular ATP as 

phosphate donor, is considered to play a role in many of the cellular response (Redegeld et al., 

1999). Nevertheless, the extracellular phosphorylation of Aβ by neuronal cells has not been 

shown. The mouse primary neuronal cultures showed the PKA activity and cell surface 

localization. The activity of this extracellular kinase activity was shown to be altered by 

employing kinase modulators. The extracellular kinases could readily phosphorylate the 

exogenous Aβ. Phosphorylated Aβ was not detected in the corresponding cell lysates, 

suggesting that Aβ was not internalized and phosphorylated by intracellular kinases under the 

experimental conditions (Fig. 21). The biotinylation of cell surface localized PKA further 

confirmed that the observed PK activity of the primary neuronal cell cultures is by ectopically 
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expressed PKA (Fig. 22). The current findings were further substantiated by the differences in 

phosphorylation of Aβ by PKA modulators (selective PKA activator; cAMP and inhibitor; H-

89) further confirming the bona fide ecto-PKA activity (Fig. 23).  

The current study showed the extracellular PKA-like enzyme activity on the cell 

surface of neuronal and non-neuronal cells. This cell surface localized PKA was able to 

phosphorylate the extracellularly added Aβ. Despite the findings regarding the extracellular 

PKA activity, there are few open questions regarding the role of other cell surface localized 

kinases in Aβ phosphorylation and Aβ induced shedding of extracellular kinases. In addition 

to PKA, CK1/CK2 like kinases and tyrosine kinases have also been identified on the cell 

surface(Walter et al., 1994; Paas and Fishelson, 1995). In silico analysis predicted the 

occurrence of tyrosine in addition to serine residues as potential phosphorylation sites. In vitro 

phosphorylation studies indicated that Aβ can undergo phosphorylation by PKA, CK1 and 

CK2. Therefore, understanding the role of other ecto-kinases in phosphorylation of Aβ in 

addition to PKA may be enhanced by further studies using more specific kinase modulators. 

Addition of kinase specific substrates has been shown to influence the shedding of variety of 

membrane-bound kinases (Kubler et al., 1983). Hence, further investigations regarding the Aβ 

induced expression, activity and shedding of extracellular kinases and different phosphatases 

could be of pathophysiological relevance in AD. 

 

5.3. Extracellular kinase activity in CSF and ex vivo phosphorylation of Aβ  

 CSF is a serum-like solution that bathes the brain. CSF is produced in the brain at an 

approximate rate of 500 ml per day in healthy adults, the total volume being about 135 ml. 

With a turnover time of about 6 hr, CSF is in constant flow within the brain ventricles and 

subarachnoid space of the brain and spinal cord, providing buoyancy and protection 

(Sickmann et al., 2002; Thompson and Keir, 1990). It carries nutrients for cells, removes 

products of their metabolism, and serves as a transport medium for hormones. CSF is known 

to contain protein and peptides which pass through the blood-brain barrier or are produced in 

the brain. As a direct recipient of cell-shedding products, it serves as a potential indicator of 

abnormal CNS states such as inflammation, infection, neurodegenerative processes (Zougman 

et al., 2008). 

 Ex vivo phosphorylation studies shows that CSF could serve as a medium for the 

phosphorylation of Aβ by externally added PKA, CK1 and CK2. The endogenous proteins of 

CSF were also found to undergo phosphorylation. The phosphorylation signals of endogenous 

proteins were observed to be varied indicating the presence of proteins with different kinase 
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specificity (Fig. 24). Phosphorylation studies using different PK substrates showed the 

phosphorylation of exogenously added kinase specific substrates (histone and phosvitin). As 

histone and phosvitin are known to be a substrate for PKA-like kinase and CK1/CK2-like 

kinase (Fig. 25), the observed results would indicate the occurrence of endogenous PKA and 

CK1/CK2-like activity in CSF from AD patients. In addition to phosphorylation of 

exogenously added histone and phosvitin, unknown endogenous proteins of CSF were found 

to undergo phosphorylation. The studies using histone and a selective PKA activator (cAMP) 

and inhibitor (H-89) further corroborate the fact that the observed endogenous PK activity 

was due to PKA-like kinases (Fig. 26). The addition of H-89 led to reduction in the 

phosphorylation of histone. However cAMP did not alter the phosphorylation activity, 

suggesting the selective shedding of catalytic subunits of PKA from the neuronal cells and its 

secretion to the CSF. Thus, addition of cAMP had no effect on the escalation of PKA activity. 

Further investigations indicated that endogenous PKA-like kinase of CSF could 

phosphorylate the externally added Aβ. The results indeed confirm that the observed 

endogenous PKA-like kinases activity of CSF was adequate to phosphorylate the externally 

added Aβ and phosphorylation was inhibited upon addition of PKA inhibitor (Fig. 27).  

 CSF has been the focus of interest in AD research during recent years. Published 

reports concentrated on discovering potential CSF biomarkers in neurodegenerative diseases 

(Blennow and Nellgard, 2004; Blennow, 2004; Puchades et al., 2003; Zhang et al., 2005; Abdi 

et al., 2006). Currently three biomarkers, total tau (T-tau), phospho-tau (P-tau), and the Aβ1-

42, have been evaluated. Recent studies have reported that several components of the signal 

transduction pathways including adenylate cyclase, phosphoinositides and protein kinase C, 

are altered in AD brain (Pascale et al., 2007; Yamazaki and Saitoe, 2008). The metabolites 

from various brain regions are known to be secreted into the interstitial space and passed to 

the CSF.  CSF has been shown to contain variety of proteins/peptides that are synthesized in 

the brain (Zougman et al., 2008). Despite the critical role of phosphorylation in brain, analysis 

of the CSF for occurrences of kinases if any and their activity has not been carried out. In 

support to the present findings, additional detailed phosphoproteome analysis of CSF could 

possibly indicate the alteration of phosphorylation events in AD pathogenesis such as 

extracellular kinase/phosphatase activity, toxic phosphoproteins and peptides (including 

phosphorylated Aβ) and thus serve as additional biomarkers of AD.  

 To summarize, the undertaken study confirms the occurrence of endogenous PKA-like 

activity in CSF from AD patients and it could phosphorylate the exogenously added Aβ. 

These findings could substantiate the expression of various ecto-PKs in neuronal cells and 
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their activity at the extracellular environment of the brain (since they could be possibly 

secreted in to the CSF). Thus, overall, the components necessary for phosphorylation reaction 

such as ATP, Aβ and PKs are found to exist extracellulary in the human brain. Therefore, one 

could speculate the phosphorylation of Aβ is biochemically feasible, and extracellular 

phosphorylation of Aβ might affect the functional property of Aβ, which presumably plays a 

key role in pathogenesis of AD. 

 

5.4. Effect of phosphorylation on Aβ conformation and aggregation 

Conformational alteration of proteins/peptides characterized by misfolding, leads to 

self-assembled fibrillar inclusions or aggregates (Dobson, 1999; Rochet and Lansbury, Jr., 

2000; Carrell and Gooptu, 1998; Ross and Poirier, 2004; Selkoe, 2003). The conformational 

transition can be triggered by mutations as well as by changes of the environmental conditions 

such as pH, ionic strength, metal ions, protein concentration, oxidative stress, or a small 

quantity of misfolded protein fragments. Numerous studies have documented all the above 

mentioned conditions that are shown to affect the folding of Aβ, which results in the 

formation of soluble and fibrillar neurotoxic aggregates rich in β-sheet structures (Tew et al., 

2008; Janek et al., 1999; Herczenik and Gebbink, 2008; Finder and Glockshuber, 2007). The 

posttranslational modifications are known to contribute to conformational transition and 

protein misfolding (Rochet, 2007). Covalent modification of proteins such as oxidative 

modification of α-Synuclein via dopamine adducts (Conway et al., 2001), nitration of α-

Synuclein (Giasson et al., 2000), ubiquitin-like modifier SUMO in huntingtin protein (Steffan 

et al., 2004) has shown to facilitate protein misfolding and initiate aggregation (Ross and 

Poirier, 2004). Phosphorylation is also an important posttranslational modification promoting 

protein misfolding leading to aggregates formation that are associated with pathogenesis 

(Schvartz et al., 2002). For e.g., α-Synuclein purified from Lewy bodies is extensively 

phosphorylated and phosphorylation modulate its interaction with other proteins and leads to 

formation of inclusions (Iwatsubo, 2003; Okochi et al., 2000). Phosphorylation is reported to 

be involved in aggregation of ataxin-1 and ataxin-3. Phosphorylation of ataxin-1 markedly 

increased inclusion body formation in vivo (Emamian et al., 2003; Tao et al., 2008). 

Phosphorylation is known to be implicated in AD, hyperphosphorylation of tau by kinases 

leads to the formation of neurofibrillary tangles (NFTs) and accelerates tau-induced 

neurodegeneration. Thus, a huge variety of factors and examples on the crucial role of 

different posttranslational modifications of variety of proteins, thereby influencing the 

destabilization of their native conformation and thus leading to aggregation.  
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A CD spectroscopy study indicates the effect of phosphorylation on conformational 

transition of Aβ. The CD spectrum of npAβ and pAβ(pSer-8) peptide samples at the start of 

incubation time (0 hr) revealed the characteristic features of a mostly random coil state 

indicating the unfolded peptide structure. The increase in incubation time resulted in 

significant change in the CD spectrum on going from a α-helical state to a β-sheet structure (2 

hr and 8 hr). Notably, the α-to-β conformational transition was found to be faster with 

pAβ(pSer-8) peptide (Fig. 28). CD has been previously applied by several researchers to study 

secondary structure transitions or to define the conformational states of Aβ40/42 aggregates 

(Barrow and Zagorski, 1991; Otvos, Jr. et al., 1993; Tomaselli et al., 2006; Fabian et al., 

1993). Structural transition from random coil or α-helical structures to β-sheet structures have 

been observed in amyloid fibrils from protein aggregates such as Aβ, poly-glutamine repeats, 

Huntington protein, lysozyme, prion proteins, and transthyretin repeats (Armen et al., 2004). 

The thermal denaturation CD spectroscopy studies showed that phosphorylation induced 

conformation can be easily shifted towards a α-helix or β-sheet by changing the temperature. 

Phosphorylation induced β-sheet conformation was observed to be very stable at extended 

temperature, and remarkably the phosphorylation induced α-to-β transition was reversible 

upon decreasing the incubation temperature (Fig. 29). The significance of conformational 

transition of the Aβ42 secondary structure from soluble unordered/α-helix to β-sheet rich 

conformers in conformational seeding and self-aggregation has been shown (Walsh et al., 

1997; Walsh et al., 1999; Kirkitadze et al., 2001; Tomaselli et al., 2006; Bartolini et al., 2007). 

Even, some FAD causing mutations such as Flemish, Arctic, Dutch, Italian and Iowa are 

known to affect the conformational transition (D'Ursi et al., 2004; Murakami et al., 2002). The 

critical role of conformational diversity has been described for β2-microglobulin (Yamaguchi 

et al., 2005), prion protein (Bessen et al., 1995), tau (Frost et al., 2009) and for Aβ (Petkova et 

al., 2005). The flexibility of the phosphorylation induced β-sheet conformational transition 

might result in faster folding and unfolding of Aβ and this can result in generation of  several 

possible soluble Aβ aggregates like the reversible nature of the toxic conformers as observed 

in AD (Walsh et al., 2005; Demuro et al., 2005; Lambert et al., 1998). Together, the CD 

results indicate an effect of phosphorylation on the structural transition from the unordered/α-

helical structure to the β-sheet rich conformation. Thus, phosphorylation increases the 

propensity of Aβ to adopt a β-sheet conformation. This could represent the initial step of an 

aggregation process that can lead to toxic oligomers and fibrils formation. 

Growing evidence implicates Aβ oligomerization and fibrillization in the etiology of 

AD. Aggregation process is thought to be initiated by protein segments with hydrophobic 
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amino acid residues, β-sheet predisposition, and low net charge (Linding et al., 2004; 

Schmittschmitt and Scholtz, 2003). Conclusive evidences are reported regarding the critical 

role of certain factors such as pH or temperature change, mechanical stress, glycation, 

oxidation and mutations in the protein which are known to affect the β-sheet conformation 

and modulating the aggregation of Aβ (Murakami et al., 2002; Kirkitadze et al., 2001). The 

structural studies on Aβ peptides suggested that a conformational transition from unordered or 

α-helix structure to a β-sheet rich conformation is the key to forming fibrils and inducing 

cytotoxic effects (Serpell, 2000). Enrichment of β-sheet structures could promote the self-

assembly of β-sheet domains resulting in the formation of pathogenic, fibrillar protein 

aggregates (Janek et al., 1999). CR dye binding and ThT fluorescence assay assessed the 

predisposition of β-sheet structures due to phosphorylation. CR assay indicated the 

phosphorylation dependent formation of β-sheet structures. Specific binding of CR to β-sheet 

structures alters the absorbance spectrum (Klunk et al., 1999). The assay showed that the 

amount of CR dye binding was significantly higher with pAβ(pSer-8) peptide as compared to 

npAβ, confirming the fact that phosphorylation induces β-sheet structure formation. The 

phosphorylation induced effect on Aβ fibrillization was monitored by ThT fluorescence assay. 

ThT fluorescence is a commonly used method to monitor the Aβ fibril formation (Khurana et 

al., 2005). This method is particularly attractive since ThT fluoresces only when the dye binds 

to fibrils and more importantly ThT does not interfere with aggregation of Aβ fibrils (Ban et 

al., 2003). The real-time ThT fluorescence assay showed an increased fluorescence signal 

with pAβ(pSer-8) as compared to npAβ indicating the higher fibrillar content with pAβ(pSer-

8). Immunoblot analysis of the CR and ThT assay samples indicated that the formation of low 

(i.e., dimers, trimers) and high M.W. aggregates/oligomers was more rapid with pAβ(pSer-8) 

as compared to npAβ peptide (Fig. 31 & 32). In contrast, the pAβ(pSer-26) peptide showed a 

faster formation of low M.W. oligomers (dimers and trimers), however larger assemblies were 

not observed. It is intriguing to note that although pAβ(pSer-26) showed a low CR binding 

value and ThT fluorescence values, immunoblot analysis showed faster formation of lower 

oligomers. This can be attributed to phosphorylation induced hydrophobic interaction, thereby 

stabilizing the lower oligomeric assemblies and reducing the formation of fibrils. Ser-26 

residue is reported to be located  in the β-turn of the Aβ peptide and phosphorylation of this 

residue might result in β-sheet independent conformation which favors the Aβ 

oligomerization (Luhrs et al., 2005). Current result supports the recent observation of the 

critical role of Ser-26 in the formation of a turn structure of Aβ and the role of turns in 

nucleating monomer folding and mediating oligomerization (Shankar et al., 2008; Teplow et 
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al., 2006). A recent finding reports the role of FAD causing mutations in this turn region 

altering the stability of the monomer folding nucleus and destabilization of the Aβ folding and 

resistant to proteolysis (Grant et al., 2007). The current findings indicate the effect of 

phosphorylation promoting Aβ aggregation (oligomer and fibril formation). Interestingly, 

phosphorylations at different sites show a variation in the oligomer and aggregates stability 

indicating the difference in conformation. Thus altered conformation induced by the 

phosphorylation of Aβ clearly had an effect on its ability to bind the dyes CR and ThT.  

During Aβ oligomerization, self-association of monomeric Aβ is necessary to produce 

a mixture of metastable, noncovalently associated soluble oligomeric assemblies that 

eventually form fibrils. Recent reports have shown that soluble oligomeric Aβ assembly 

intermediates are potent neurotoxins, and these intermediates may be the key effectors of 

neurotoxicity in AD (Klein et al., 2001). Soluble Aβ oligomers extracted from Alzheimer’s 

disease patient brains as well as from CSF are known to potently impair synapse structure and 

function (Gong et al., 2003; Kayed et al., 2003; Lacor et al., 2004). The 
1
H-NMR 

spectroscopy indicated the rapid loss of signal intensity with pAβ(pSer-8) as compared to 

npAβ, indicating that signal loss is the result of rapid association of monomeric pAβ(pSer-8) 

in the course of oligomerization (Fig. 37). TEM images indicated the presence of small 

oligomers as well as protofibrils during the course of aggregation (Fig. 35). The TEM studies 

showed that phosphorylation indeed accelerated the formation of aggregates which was 

evident from the observation of rapid formation of high M.W. oligomers, and small 

protofibrillar aggregates in pAβ (pSer-8) samples as compared to npAβ. This observation was 

further corroborated by DLS studies. DLS showed the heterogeneity of the soluble Aβ 

oligomers and protofibrillar structures formed during the process of aggregation. The 

transformation of the monomeric Aβ form into protofibrils is accompanied by an increase in 

the apparent RH of the different Aβ aggregates. The increase in RH is accompanied by an 

increase in the oligomerization. The distribution and the size of different soluble oligomers in 

the population were changed with time. The observed change was significantly different upon 

phosphorylation. It was evident by the rapid disappearance of a peak corresponding to 

monomeric Aβ and appearance of soluble oligomeric peak with pAβ(pSer-8). The size of the 

aggregates measured were concordant with existing DLS data of monomeric and oligomeric 

intermediates during Aβ aggregation (Walsh et al., 1997; Tomski and Murphy, 1992; Lomakin 

et al., 1996; Chen et al., 2006; Bitan et al., 2003; Nichols et al., 2002). The appearance of 

assembled forms of soluble oligomeric Aβ species in the course of aggregation was shown by 

dot blotting analysis. In npAβ, oligomers begin to appear at 10 hours of incubation and 



Discussion 

 117 

increased until 16 hours. Whereas in pAβ(pSer-8) samples, oligomers appeared already at 6 

hours of incubation time and increased with longer incubations (until 16 hours). The rate and 

absolute amount of soluble oligomer formation was accelerated with pAβ(pSer-8) as 

compared to npAβ (Fig. 39). These results confirm that the phosphorylation induces 

oligomerization and thus results in the quick shifts in the molecular size of the aggregates that 

were clearly observed during early phases of aggregation. An increasing body of evidence 

arising in recognition of the biological importance of small misfolded assemblies and 

identifying and characterizing these intermediates is central to understanding the mechanism 

of fibril assembly and toxicity in AD (Cardinale and Biocca, 2008). Recent evidence suggests 

that soluble oligomers of Aβ, rather than amyloid fibrils, play a crucial role in synaptic and 

cognitive dysfunction in the early stages of AD. In recent years, the structures of amyloid 

intermediates have attracted broad attention as potential therapeutic targets, particularly at 

early stages of AD. Thus one can suggest that phosphorylation of Aβ could cause dementia by 

enhanced formation of toxic soluble Aβ oligomers. Therefore, further investigation on 

phosphorylation induced Aβ intermediate structures could provide insights into the molecular 

mechanisms of phosphorylation induced aggregation and production of toxic intermediate 

species. 

Extensive studies have been carried out in examining the effect of FAD causing 

mutations (Liu et al., 2004; Soto et al., 1996; Soto and Castano, 1996; Lin et al., 2003; Ban et 

al., 2004), various modifications (Schilling et al., 2006; Johansson et al., 2007; Hou et al., 

2004), and substitutions of different charged groups on conformational transition of Aβ 

(Williams et al., 2004; Morimoto et al., 2004; Wetzel et al., 2007; Williams et al., 2006; Wurth 

et al., 2006; Kim and Hecht, 2006; Kim and Hecht, 2005; Shanmugam et al., 2005; Kaneko et 

al., 2001). These studies show that any disturbance of structural properties of the Aβ is very 

likely to be the cause for aggregation. In support, significance of hydrophobic and 

electrostatic interactions is considered to be crucial in amyloid aggregation (Hilbich et al., 

1991; Hilbich et al., 1992; Harper et al., 1999; Halverson et al., 1990). Protein 

phosphorylation has been shown to promote conformational changes that may be local to, or 

more remote from, the site of phosphorylation and thus could result in changes in secondary 

conformation (Tholey et al., 1999). These changes can influence the surface properties of the 

protein, thus affecting self-association (aggregation) of peptides/proteins (Johnson and 

Barford, 1993; Sprang et al., 1988; Barford and Johnson, 1989; Barford and Johnson, 1992; 

Barford et al., 1991). The physical changes introduced by covalently bound phosphoryl group 

are obvious and could lead to alteration of steric characteristics, charge and the ability to form 
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hydrogen bonds (Hurley et al., 1990; Johnson and Barford, 1994; Johnson, 1994). Recent 

reports showed the effect of charge by SDS, Cu
2+

 and Ca
2+

 in modulating the Aβ1-40/42 

folding (Tew et al., 2008; Bush, 2003; Isaacs et al., 2006). The phosphorylation of serine 

introduces a negatively charged phosphate moiety and results in a structural change of Aβ 

peptide leading to aggregation. 

The present study shows the phosphorylation of serine in facilitating the transition 

from unordered or α-helical to β-sheet structures. Ser-8 is located within the N-terminal side 

of the Aβ peptide which forms α-helical structure, while the Ser-26 is located in C-terminal 

part of the Aβ peptide which forms β-turn. Residues 25–29 contain a bend of the peptide 

backbone that brings the two β-sheets in contact through side chain-side chain interactions 

(Petkova et al., 2002). Previous studies only highlighted the crucial role of amino acid 

substitutions in C-terminal region of Aβ in aggregation. However, recently FAD mutations 

such as English, Tottori and a recessive mutation have been identified in the N-terminal 

region of the Aβ which could affect the aggregation of Aβ (Hori et al., 2007; Di et al., 2009). 

In support, the N-terminal region (1–28) of Aβ is reported to be involved in aggregation 

(Solomon et al., 1997), and the 3–6 sequential epitope EFRH of Aβ is reported to be 

particularly important (Frenkel et al., 1999; Frenkel et al., 2000b; Frenkel et al., 2000a). 

Monoclonal antibody 3D6 directed to the 1–5 sequence is shown to prevent the aggregation of 

Aβ in vitro (Solomon et al., 1997). Thus recent reports highlighting the importance of N-

terminal residues and their modifications in Aβ aggregation. Passive immunization with 3D6 

antibody prevented amyloidosis and vascular amyloid formation in tg mice further supporting 

the critical role of N-terminal region of Aβ in aggregation (Schroeter et al., 2008; Seubert et 

al., 2008; Bard et al., 2000).  

The earliest step of aggregation is described as a conformational change leading to 

different possibilities of polypeptide self-association (Gsponer and Caflisch, 2002; Pellarin 

and Caflisch, 2006). This initial ensemble of aggregates is highly dynamic and aggregates are 

able to dissociate, reassociate and interconvert (Carulla et al., 2005; Cerda-Costa et al., 2007). 

Once the different Aβ conformers are formed and associated in one or the other pathway they 

will be further stabilized upon fibril polymerization or Aβ globulomer maturation. The current 

study shows the effect of phosphorylation in promoting β-sheet structure driven 

conformational transition. Depending upon the phosphorylation of serine either at the N-

terminal (Ser-8) or at C-terminal (Ser-26) of Aβ peptide serves as a decisive conformational 

switch for either fibril formation or alternatively to Aβ globulomer formation (Fig. 51). 
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Altogether, the results indicate that phosphorylation of Aβ results in alteration of 

conformation and this in turn hastens the Aβ aggregation. 
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Fig. 51: Schematic drawing of effect of phosphorylation on Aβ aggregation. 
The phosphorylation of Ser-8 residue may induce polymerization and formation parallel β-sheet 
resulting in generation of amyloid fibrils, whereas phosphorylation of Ser-26 residue can induce 
globulomerization and formation of mixed β-sheet globular aggregates. Modified from (Yu et al., 2009). 

 

 

AD is a heterogeneous neurodegenerative disorder. Whereas only a minority is due to 

genetic abnormalities and mostly with early onset, the majority of all Alzheimer cases is 

sporadic and with late onset. Hence, in recent years the role of Aβ as a causative factor of 

sporadic AD is challenged. Therefore, in the sporadic AD, age-related disturbances in cellular 

metabolism or factors such as alteration of kinases or phosphatases expression, down 

regulation of neuropeptidase expression, variety of posttranslational modifications of Aβ may 

come into focus leading to Aβ misfolding and aggregation. From the current study, one can 

hypothesize that phosphorylation of Aβ results in conformational transition thus leading to 

rapid transition of non-aggregating structure to aggregation prone structures which serve as 

nuclei and accelerate the aggregation (Fig. 52). The current hypothesis is further supported by 

the aggregation kinetic analysis of npAβ (wildtype Aβ) and pAβ. The analysis of aggregation 

kinetics revealed a prominent difference in the duration of the lag phases, pAβ took 15 min 

whereas npAβ took 90 min and took about five times longer to exit the lag phase (Fig. 34 and 

Table 5). Altogether, these data suggest that the higher rate of aggregation for pAβ(pSer-8) is 

predominantly caused by a more efficient nucleation stage during which a higher number of 

small aggregates are formed.  
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Fig. 52: The effect of phosphorylation on amyloidogenesis. 
The kinetics of the amyloid assembly process of npAβ is depicted as a sigmoid curve to reflect the 
three distinct phases characterizing the fibril formation pathway (green curve). A lag phase with low 
molecular weight oligomer formation (dimer and trimer), an exponential phase with a rapid increase in 
high molecular weight oligomers (globular oligomer and protofibrils) and a prevailing plateau phase 
(mature fibrils). When npAβ can undergo phosphorylation, phosphorylation induces structural change 
thus in faster formation of low and high molecular weight oligomers. Oligomers serve as a nuclei and 
ensemble into various assemblies leading to accelerated Aβ aggregation (red curve). The reduction of 
lag phase as well as rate of aggregation can be clearly evident upon phosphorylation. 

 

 

During aggregation, proteins can obtain a range of different structural appearances, 

which are generally enriched in cross-β sheet structure, including intermediates varying from 

unordered amorphous aggregates to ordered fibrils. According to the ‘‘nucleated 

conformational conversion’’ (NCC) model for aggregate formation (Serio et al., 2000), a 

group of monomers initially present in solution coalesces to form ‘‘molten’’ oligomers, which 

can propagate the aggregation process as observed in prion protein and eventually give rise to 

more highly organized oligomers and fibrils rich in β-sheet structure. In agreement with this 

hypothesis, the aggregates of pAβ(pSer-8) were capable of seeding npAβ aggregation in vitro 

much faster than npAβ aggregates clearly showing the significance of phosphorylation 

induced β-sheet rich oligomers in promoting aggregation. The current finding demonstrate 

that phosphorylation of Aβ promotes the nucleation of Aβ and the formation of oligomers by 

increasing the propensity to adopt β-sheet conformation. Thus, phosphorylated variants of Aβ 

could trigger oligomer formation and deposition of Aβ in sporadic AD cases.  
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Models representing several possible structures of aggregated forms have been 

proposed very recently. At the moment, attempts to identify regions of peptide or the 

conditions, prompted by surrounding medium which drive conformational transitions still 

represents a promising approach in understanding the molecular basis of AD. In addition, the 

structural characterization of a partially folded intermediate in the α-to-β transition and vice 

versa, opens many perspectives for the design of molecules that could able to interfere with 

the aggregation process. Therefore, further detailed investigations on phosphorylation induced 

structural transition might give more insight into the pathophysiological role of 

phosphorylation and even suggest the possible role of phosphorylation induced β 

conformation seeding in sporadic AD. 

 

5.5. Detection of pAβ in vivo in tg mouse and human AD brain 

 To assess the phosphorylation of Aβ in vivo, phosphorylation state-specific antibodies 

against pAβ(pSer-8) was generated. The antibody characterization studies indicated that 

antibody SA5434 was found to be highly specific for Aβ phosphorylated at Ser-8 (pAβ(pSer-

8)). In addition, several commercially available monoclonal antibodies showed their reactivity 

to pAβ(pSer-8) and non-phosphorylated Aβ (npAβ). The antibody 82E1 detected both the 

peptides, whereas the antibody 6E10 was found to be highly specific for npAβ (Fig. 41). The 

82E1 antibody specifically reacts with the human Aβ N-terminal end (neo-epitope specific) 

(Horikoshi et al., 2004), whereas 6E10 antibody recognizes an epitope between amino acids 

4-12 of the human Aβ domain that contains the identified phosphorylation site (Kim et al., 

1988). Further evaluation of these antibodies using npAβ and pAβ aggregates indicated their 

specificities to soluble low M.W. and high M.W. oligomers. Notably, the SA5434 recognized 

oligomeric Aβ depending on the phosphorylation state (Fig. 42), and not on the specific 

misfolded conformations that are generally recognized by conformation-dependent antibodies 

(Kayed et al., 2003; Kayed et al., 2007; Kayed and Glabe, 2006). 

 During the past decade, various lines of transgenic mice have been generated to 

mimic, at least in part, some of the pathological lesions in AD. There are multiple transgenic 

mice lines that show Aβ deposits and neuritic plaques (Gotz et al., 2004a; Gotz et al., 2004b; 

Oddo et al., 2003a; Oddo et al., 2003b; Suh and Checler, 2002). To demonstrate the 

occurrence of pAβ deposits in vivo, the APPswe/PS1∆E9 double transgenic (tg) mice that co-

express FAD mutant human PS1-∆E9 and a chimeric mouse-human APP695 harboring a 

human Aβ domain and mutations (K595N, M596L) linked to Swedish FAD pedigrees 

(APPswe) was used (Jankowsky et al., 2001). This transgenic mouse is a well accepted 
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model, as the development of Aβ amyloidosis is observed to be similar to that seen in AD and 

is characterized by age-associated acceleration of Aβ plaque deposition, gliosis and neuritic 

pathology in the hippocampus as well as in the cerebral cortex (Lazarov et al., 2002). 

 The immunohistological studies using tg mouse brain sections with pAβ antibody 

(SA5434) indicated the strong labeling of pAβ amyloid deposits in the hippocampal region of 

nine-month-old animal’s brain. Most deposits also contained npAβ as indicated by the co-

staining with antibody 6E10. In individual plaques, however, a more pronounced reactivity of 

SA5434 in the core was evident, suggesting preferential deposition of pAβ (Fig. 43). Further 

age-dependent analyses showed the pAβ seeded nucleation-dependent oligomerization. The 

deposits containing pAβ and npAβ were already detectable in the cortices of 2 months old 

mice (2m), a very early stage of plaque formation. The detection of very small deposits that 

were selectively detected with the SA5434 at this early age suggests the likelihood of plaques 

with pAβ as seeding agents for the amyloidogenesis. The Aβ deposition was observed to be 

strongly increased with the age of these mice (2m, 6m, 12m and 18m) and a large overlap of 

stainings with antibodies SA5434 and 6E10 was found, indicating co-deposition of pAβ 

together with npAβ in extracellular plaques (Fig. 44). The pAβ appeared to be concentrated 

toward the centre of individual plaques which are similar in morphology to compact plaques 

and characteristics of CR staining (Dickey et al., 2005). Compact Aβ plaques are shown to be 

positive for CR and ThT dyes and are known to be rich in fibrillar β-pleated sheet 

conformation of Aβ, and these extracellular compact plaques were found to induce neuritic 

changes and neuronal loss (Armstrong, 1998). In vivo imaging in transgenic models have 

shown the neuritic dystrophy and  distortion in direct apposition with fibrillar deposits of 

compact plaques (Spires et al., 2005; Tsai et al., 2004), which cause alterations in neocortical 

synaptic responses (Stern et al., 2004). Altogether, immunohistological analysis of brain 

sections of tg mice indicated the pAβ deposits in the hippocampus as well as in the cerebral 

cortex which were readily stained with SA5434. Early onset/appearance of pAβ deposition in 

the cortex was observed already at the age of 2 months and was strongly increased with the 

age of these mice.  

The observations of age-dependent deposition of pAβ in the brains of tg mice was 

further substantiated with biochemical detection of both pAβ and npAβ in the brain extract 

from tg mice by immunoblot analysis. Consistent with the immunohistochemical data, both 

pAβ and npAβ were strongly increased with age. Importantly, SA5434 showed strong 

reactivity to high M.W. oligomeric assemblies of Aβ in brain extracts. These oligomeric 

species were already detected in two-month old mice and became prominent at six-months. At 
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this age, SA5434 detected very little monomeric Aβ. In contrast, npAβ which was detected 

with 6E10 antibody was observed in six-month old mice and they increased further with age. 

As compared to antibody SA5434, the reactivity of antibody 6E10 with oligomeric Aβ 

assemblies was much weaker and was mainly detected in 12 and 18 months old animals. 

Oligomeric assemblies of Aβ have been isolated from young tg mice (Cheng et al., 2007; 

Lesne et al., 2006; Oddo et al., 2006). These soluble Aβ aggregates have been implicated in 

the rapid interference of memory of learned behaviors inhibiting LTP (Cleary et al., 2005). 

The soluble Aβ exhibit potent toxic effects capable of inducing neuronal cell death in 

hippocampal slices (Lambert et al., 1998), and also induces ectopic neuronal cell cycle events 

(Varvel et al., 2008; Yang et al., 2006). In summary, the specific detection of pAβ high M.W. 

oligomers in mouse brain indicates an enrichment of pAβ in oligomeric assemblies and 

suggests that phosphorylation could increase oligomerization of Aβ and could become 

potentially toxic (Fig. 45). 

In support to the above, the quantitative analysis of pAβ in mouse brain extract 

revealed that about 20-25% of extracted monomeric Aβ in 18 months old tg mice was in a 

phosphorylated state (Fig. 46). This was further supported by the detection of pAβ using 

phosphorylation-sensitive monoclonal antibody 6E10 after dephosphorylation. Notably, the 

relative reactivity of monomeric Aβ with antibody 6E10 was markedly increased after 

dephosphorylation with alkaline phosphatase, also indicating that about 30% of monomeric 

Aβ is in a phosphorylated state in vivo (Fig. 47). Biochemical analysis of the Aβ isolated from 

AD brain indicates that Aβ1-42 is the principal species associated with senile plaques and 

accumulates in neurons of AD brain. Expression of FAD mutations in APP or PS has been 

shown to increase the levels of Aβ1-42 production and results in increased levels of the Aβ 

oligomers, further supporting its pathological relevance (Suzuki et al., 1994; Xia et al., 1997). 

Although the relative amount of Aβ1-42 expression is 10% as compared to 90% of Aβ1-40 in 

the human brain, Aβ1-42 is known to be enriched in neuritic plaques, rich in β-sheet 

conformers, appears to seed further amyloid deposition, and seems to be toxic in vitro and in 

vivo (Garzon-Rodriguez et al., 1997; Iwatsubo et al., 1996; Lambert et al., 1998; Nagele et al., 

2002). Thus, robust association of Aβ1-42 with FAD even argues strongly in favor of a 

causative role for Aβ1-42 in the etiology of AD. Altogether, from the current 

immunohistochemical and quantitative analysis of pAβ in tg mice, one could consider the role 

of phosphorylation and pAβ seeded oligomerization, toxicity and neurodegeneration. The 

recent observation on the rapid appearance of amyloid plaques within brains of tg mice might 

hint the possibility and role of phosphorylation dependent Aβ misfolding and seeded growth 
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in vivo (Meyer-Luehmann et al., 2008). Further studies employing other tg mouse models to 

show the occurrence of pAβ might support and validate the current findings regarding the 

crucial role of pAβ in Aβ aggregation in vivo. 

 In recent years, various mechanisms have been proposed which could contribute to the 

pathogenesis of AD. However, cerebral β-amyloid deposition and related toxicity effect is 

considered to be one of the key mechanism in the development of AD, which results in 

neurodegeneration, plaque induced neurite abnormalities and disturbing the synaptic plasticity 

(Braak and Braak, 1991; Knowles et al., 1998; Knowles et al., 1999; Mirra et al., 1991; 

Selkoe, 2008; Vickers et al., 2000). Previous studies have reported that various 

posttranslational modifications of Aβ that takes place in the human brain and it contributes to 

the development of AD (Atwood et al., 2002; Piccini et al., 2005; Saido et al., 1995; Saido et 

al., 1996; Saido, 1998; Schilling et al., 2008; Zhang et al., 2004). Such post-translationally 

modified Aβ peptides have also been identified in the CSF and plasma of individuals (Bahl et 

al., 2008; Bibl et al., 2006; Vanderstichele et al., 2005).  Immunohistochemical studies 

using SA5434 indicated the occurrence of different isoforms of pAβ plaques in the 

hippocampus and entorhinal cortex regions in brain sections from AD patients. However, 

majority of the identified plaques were observed to be dense-cored in morphology. A range of 

hypotheses have been proposed which are based on the presence of different morphological 

isoforms of Aβ plaques (diffuse, dense-cored and fibrillar) and their toxicological properties 

in the development of AD (Armstrong, 1998; Dickson and Vickers, 2001). Antibody SA5434 

readily detected pAβ in senile plaques in the human brain. Importantly, strong reactivity with 

SA5434 was observed in the core of neuritic plaques. Numerous reports indicated the critical 

role of senile plaques in neurodegeneration in AD (Braak et al., 1993; Cruz et al., 1997; 

Dickson and Vickers, 2001). Senile plaques are known to be composed mainly of Aβ  peptide 

in its fibrillar form and triggers a variety of pathological changes including tau 

hyperphosphorylation, leading to neuronal dysfunction and degeneration contributing to 

cognitive dysfunction (Duyckaerts et al., 2008; Nakada et al., 2008; Spires-Jones et al., 2009). 

Immunohistochemical stainings from AD human brain demonstrates that pAβ is highly 

enriched in the amyloid core and these pAβ-positive plaques may cause neurodegeneration of 

plaque-associated neurites in the human brain. In addition, the deposition of the pAβ within 

cerebral blood vessel walls was observed similar to cerebral amyloid angiopathy (CAA) (Fig. 

48). CAA is accepted as an early and integral part of AD pathogenesis. Rare forms of 

hereditary cerebral amyloidosis caused by mutations within the Aβ domain have been 



Discussion 

 125 

identified, where mutant Aβ preferably deposits in vessels (Dickson and Vickers, 2001; 

Kumar-Singh, 2008; Thal et al., 2008; Wegiel et al., 2001).  

 The Aβ is known to activate a variety of cells including microglia (D'Andrea et al., 

2004), and astrocytes in the brains to produce cytokines and neurotoxins (Nagele et al., 2004), 

hence promoting neurodegeneration (Coraci et al., 2002; El Khoury et al., 2003; El et al., 

1996; El and Luster, 2008; Meda et al., 1995). Microglial cells surround aggregated Aβ are 

known to restrict senile plaques formation by phagocytosing Aβ (Simard et al., 2006), and are 

believed to play a role in AD pathogenesis (Streit, 2004; Streit et al., 2004). In the brains of 

AD patients, senile plaques are known to trigger increased level of pro-inflammatory factors 

(cytokines and chemokines) and the activation of the complement cascade which are known 

to contribute to the local inflammatory response. (Farfara et al., 2008). It was imperative to 

continue to monitor any possible association of pAβ positive senile plaques with microglia or 

to astrocytes (Fig. 49). The immunohistochemical stainings of human AD brain indicated the 

association of inflammatory responsible microglia and GFAP-positive astrocytes clustering 

around pAβ deposits. In human AD brain, microglia and astrocytes accumulation with senile 

plaques is an integral part of the disease processes. The present observation might suggest the 

additional role of pAβ in the pathogenesis of AD such as neuroinflammation in addition to 

seeded aggregation. It is also possible that small soluble pAβ aggregates may trigger local 

activation of glial cells as suggested by a recent study of the young APP tg mice that has not 

yet developed Aβ deposits (Heneka et al., 2005). These results suggest that pAβ oligomers 

could initiate the activation of microglia, astrocytes and subsequent release of 

proinflammatory molecules in the AD brain which can lead to neuroinflammation. 

 Senile or neuritic plaques are known to damage the surrounding tissue physically and 

lead to neurofibrillar pathology and are found to be associated with abnormal neuronal 

processes known as dystrophic neurites in human AD brain (Cruz et al., 1997; Vickers et al., 

2000). These dystrophic neurites, in addition to neurofibrillary tangles (NFT) and neuropil 

threads has been proposed to consist of abnormal filamentous structures derived from a 

transformation of normal cytoskeletal proteins (Masliah et al., 1993; Su et al., 1996; Vickers 

et al., 1994; Vickers et al., 2000). The double-label immunofluorescence photomicrographs 

showed a widespread neuronal degeneration and pAβ reactive plaques. Antibody SA5434 

readily detected pAβ in senile plaques and strong reactivity was observed in the core of 

neuritic plaques; while antibody 22C11 against the extracellular domain of APP selectively 

detected dystrophic neurites in close proximity to the amyloid core of the neuritic plaques 

(Fig. 50). These studies confirmed the occurrence of pAβ reactive senile neuritic plaques that 
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causes a physical damage resulting in ring and bulb-like accumulations of neurofilaments 

(Vickers, 1997). 

 In summary, the pAβ exists in vivo and is found in extracellular plaques and in vessels 

in tg mouse brain as well as in human AD brain. pAβ is found to be present at a very early age 

in tg mice and appears to be enriched in oligomeric and aggregated forms. Furthermore, pAβ 

also occurs in senile plaques of tg mice and recent studies have shown that such Aβ deposits 

induce dendritic and plaque-associated neuritic degeneration (Spires et al., 2005; Tsai et al., 

2004). The importance of the present finding is further supported by the detection of pAβ in 

neuritic plaques of AD patients which highlight the critical role of pAβ in AD-related 

neurodegeneration (Braak and Braak, 1991; Mirra et al., 1991). From these findings, one can 

speculate that pAβ might acts as a seed and trigger aggregation. In agreement with this 

hypothesis, the aggregates of pAβ were capable of seeding npAβ aggregation in vitro much 

faster than aggregates of npAβ. These data suggest that AD pathogenesis in sporadic cases 

may be influenced by extracellular phosphorylation of Aβ which modulate the Aβ aggregation 

leading to assembly of the Aβ into soluble oligomers and insoluble β-sheet rich Aβ fibrillar 

aggregates and their subsequent accumulation in affected neurons, eventually resulting in 

neurodegeneration. From the current findings, one can hypothesize that phosphorylated 

variants of Aβ could trigger oligomer formation and deposition of Aβ in the pathogenesis of 

sporadic AD (Fig. 53). 
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Fig. 53: Model for the phosphorylation-dependent aggregation of Aβ. 
1) Aggregation of npAβ peptide having two kinetic phases. In the ‘lag phase’, oligomeric nuclei are 
formed in a slow process. In the ‘elongation phase’, the oligomeric nuclei-seed promotes fibril 
formation, 2) Phosphorylation of Aβ reduces the lag phase of nucleation. 3) Nuclei of pAβ could serve 
as seeds to accelerate the aggregation of npAβ. 
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6. FUTURE OUTLOOK 

 Amyloid formation in AD is conceptualized as a complex process of aggregation. In 

recent years our understanding of the nature and significance of amyloid formation and depo-

sition and the role that these play in AD have taken dramatic leaps forward. Further advances 

in understanding the mechanisms that control extracellular Aβ aggregation and their toxic 

nature are likely to identify new strategies for effective disease therapies. The current work is 

focused on what is unknown about the role of extracellular phosphorylation of Aβ and its role 

in aggregation. 

  The operation of powerful regulatory machinery, the protein phosphorylation exists 

in the human brain. Although the intracellular kinase activities in neurons have been widely 

described, extracellular protein kinase activities and their biological relevance with respect to 

phosphorylation of extracellular Aβ is not known. This is the first investigation reporting an 

important role of extracellular or cell surface-localised protein kinases in the pathogenesis of 

AD. This study identified a modification of Aβ by phosphorylation that strongly promotes its 

aggregation and is found in neurotoxic amyloid deposits in sporadic AD. Thus, the phos-

phorylated Aβ might play a major role in the pathogenesis of the most common, sporadic 

forms of AD. Therefore, pharmacological manipulation by targeting extracellular phosphory-

lation of Aβ could be explored for therapeutic or preventive strategies to decrease Aβ aggre-

gation and toxicity in AD. 

 The current biophysical analyses highlighted the importance of structural transition of 

Aβ upon phosphorylation. They indicate the role of phosphorylation at serine residues, which 

is capable of increasing the propensity to adopt β-sheet conformation and promote oligomeri-

zation and aggregation. Recent reports highlight the existence of highly toxic intermediates 

with high β-sheet structure in AD brain. Phosphorylation induced the misfolding of Aβ and 

thus in turn coalesces to form small soluble oligomers and fibrillar aggregates. The aggrega-

tion property of Aβ oligomers observed upon phosphorylation is consistent with the recent 

two-pathway model showing the production of soluble and insoluble Aβ aggregates. Phos-

phorylation seems to act as a conformational switch for Aβ peptide to proceed to form fibrils 

or soluble globular oligomers. This could result in changes in the ratio of soluble and insolu-

ble forms of the peptide which may then influence the disease. Of further interest, is deter-

mining which pathway is critical for the pathogenesis of AD might help to shape the thera-

peutic strategy that should be used to block the pathogenic Aβ assembly process.  

  Interestingly, phosphorylation of Ser-26 residue showed rapid formation of soluble 

oligomers. Therefore, further detailed investigation on the role of Ser-26 phosphorylation and 
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its detection in vivo could give much more insight in to the pathogenesis of AD. The rele-

vance of soluble oligomers for AD pathology has been underlined by their detection in AD 

patient’s brain. This suggests that phosphorylation induced formation of soluble oligomers of 

Aβ may be pathogenic. If oligomerization indeed causes neuronal impairment, then detection 

of oligomers may facilitate the early diagnosis and treatment. Assays for detection of oli-

gomers could be used for high-throughput screening to identify small molecules that specifi-

cally bind to, and disrupt, the oligomer specific conformation. The detection of phosphory-

lated (pAβ) and non-phosphorylated Aβ (npAβ) in biological fluids could also be explored for 

evaluation as biomarkers. Finally, the demonstration of protein kinases in human CSF might 

also stimulate further studies on the physiological and pathophysiological implications of the 

extracellular phosphorylation of peptides and proteins in the human brain. 

 In addition to Aβ aggregation, the time-dependent accumulation of Aβ in the brain is 

another invariable component observed in AD. Proposed mechanisms for the pathological 

accumulation of Aβ include not only the formation of Aβ aggregates but also an inability of 

the body to degrade and clear Aβ. Thus, identifying the effects of phosphorylation on the 

clearance of pAβ could help to understand the initial pathogenic accumulation of pAβ in AD 

pathogenesis. 

 Certainly, it will be important to evaluate the role of phosphorylation-dependent ag-

gregation of Aβ in a variety of in vivo models. Generation and analysis of phosphomimick-

ing-Aβ mutants could offer an excellent platform to study the physiological and pathological 

behaviour of pAβ in vivo. The expression and detailed analysis of role of phosphomimicking-

Aβ in transgenic animal models could exemplify the toxic role of pAβ in the brain. It may 

facilitate our understanding of pAβ and elucidate the physiological mechanism (s) and may 

lead to development of novel therapeutic agents. 
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