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Abstract

In this thesis we classify non-simply-connected smooth closed 5- and 7-
dimensional orientable manifolds with finite cyclic fundamental group up
to diffeomorphism.
The manifolds which we consider admit transitive actions of Lie groups
and are diffeomorphic to the total space of certain principal U(1)-fibre
bundles over a product of complex projective spaces.
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1 Introduction

The classification of smooth manifolds up to diffeomorphism is a central problem in
mathematics. For manifolds of dimension greater than or equal to four it’s in general
not possible to give a complete answer since one fails to classify their fundamental
groups ([Nov]).
If the interest lies in smooth manifolds with fixed dimension and fundamental group
which maybe fulfill additional homotopical or (differential-) topological properties one
could try to solve the classification problem abstractly under these restricted condi-
tions. We state some classical and pioneering examples which go into this direction:

In 1962 Stephen Smale succeeded in classifying closed smooth simply-connected 5-
manifolds with vanishing second Stiefel-Whitney class [S] and three years later Denis
Barden completed the classification of smooth closed simply-connected 5-manifolds
[Bar].
In 1963 Michel A. Kervaire and John W. Milnor reduced the classification of smooth
closed simply-connected oriented n-manifolds which have the same homology as the
n-sphere, where n is greater than four, to the study of the stable homotopy groups of
spheres [K-M].

In this thesis we classify two classes of closed, smooth, orientable, non-simply-connected
5-and 7-dimensional homogeneous manifolds with finite cyclic fundamental group.

This work is split into three parts and in the following we give a summary of each
one which includes the statements of its main results.

Chapter 2

This chapter deals with differential topological properties of 7-manifolds which in 1981
E. Witten has introduced as homogeneous spaces [W]. These manifolds are constructed
in the following way:

Let

G := SU(3)× SU(2)× U(1),
H := SU(2)× U(1)× U(1)

and i : SU(2)→ G be the homomorphism which sends A ∈ SU(2) to((
A 0
0 1

)
,

(
1 0
0 1

)
, 1
)
.
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Let Φ be a Lie group homomorphism from H to G with finite kernel and the properties:

a) Φ(A, 1, 1) = i(A),

b) the image of the restriction of Φ to

{
(

1 0
0 1

)
} × U(1)× U(1)

lies in 
 x 0 0

0 x 0
0 0 x−2

 ,

(
y 0
0 y−1

)
, z

 |x, y, z ∈ U(1)

 .

We denote the set of such Lie group homomorphisms by F . If Ψ ∈ F , then G
Ψ(H) is

the left coset space {[gΨ(H)]|g ∈ G} considered as a smooth manifold and we call it a
Witten space. We denote the set { G

Φ(H) |Φ ∈ F} by W.

In the first half of the second chapter we compute basic (differential-) topological
invariants of these manifolds which will be used in this and the last part of this thesis.
Furthermore we parametrise W by the set of coprime triples, i.e. an element in W is
denoted by Mpqr, for some coprime p, q, r ∈ Z. It turns out that the fundamental group
of the Witten space Mpqr is isomorphic to Z/gcd(p, q) (where we define gcd(0, 0) to be
0) and that Mpqr and Mpq1 are diffeomorphic. We introduce the following notation:

Mpq := Mpq1.

By construction Mpq has a transitive G-action, thus it’s clear what we mean if we
speak about Riemannian metrics on Mpq which are homogeneous w.r.t. G (which
exist since the isotropy group is compact). The main result of the second chapter is

Theorem 1.0.1. (A classification of the non-simply-connected Witten spaces)
Let s be a natural number greater than 1 and Mpq, Mp′q′ be two Witten manifolds
with π1(Mpq) ∼= π1(Mp′q′) ∼= Z/s. Then the following statements are equivalent:

1) There exist homogeneous metrics m1 and m2 on Mpq and Mp′q′ w.r.t. SU(3)×
SU(2)× U(1) s.t. (Mpq,m1) and (Mpq,m2) are isometric.

2) Mpq and Mp′q′ are diffeomorphic.

3) |p| = |p′| and |q| = |q′|.

The proof applies an equivariant diffeomorphism classification result and makes use
of the so called σ-invariant which Michael F. Atiyah and Isadore M. Singer have de-
fined for smooth cyclic group actions on compact manifolds ([A-S]).

In contrast to the non-simply-connected Witten spaces the classification of the simply-
connected ones by Matthias Kreck and Stephan Stolz [Kr-St] is more complicated. In
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1 Introduction

particular they led to the first examples of homeomorphic but non-diffeomorphic ho-
mogeneous spaces.

Chapter 3

The main part of this chapter is dedicated to the study of 5-dimensional manifolds
which are defined in a similar way as the Witten spaces:

Let

A := SU(2)× SU(2)× U(1) and
T 2 := U(1)× U(1).

Let Ψ be a Lie group homomorphism from T 2 to A with finite kernel and the property
that the image of Ψ lies in{((

x 0
0 x−1

)
,

(
y 0
0 y−1

)
, z

)
|x, y, z ∈ U(1)

}
.

By L we denote the set of smooth manifolds which we obtain as left coset spaces of
the form A

Ψ(T 2) , where Ψ is a homomorphism as described above.

We compute invariants of these manifolds which are analogues to those of the Witten
spaces. As for the Witten spaces there is a parametrisation of the elements in L by
three coprime integers, i.e. an element in L is denoted by Npqr, for some coprime
p, q, r ∈ Z and as in the case of the Witten spaces it turns out that π1(Npqr) ∼=
Z/gcd(p, q) and that Npqr is diffeomorphic to Npq1. We denote Npq1 by Npq and
orient Npq as explained on p. 65.

Theorem 1.0.2. (A diffeomorphism classification of certain 5-manifolds)
Let r be a natural number greater than 1 s.t. gcd(r, 6) = 1 and Npq, Np′q′ ∈ L be-
ing oriented with π1(Npq) ∼= π1(Np′q′) ∼= Z/r. Let further (m,n), (m′, n′) be pairs of
integral numbers s.t. m q

r +npr = 1 = m′ q′
r +n′ p

′

r . Then there exists an orientation pre-
serving diffeomorphism between Npq and Np′q′ if and only if there exist ε, ε′, δ ∈ {±1}
and k, k′ ∈ Z/r s.t.

pq = δp′q′

(εm+ k
p

r
)(εn− k q

r
) ≡ δ(ε′m′ + k′

p′

r
)(ε′n′ − k′ q

′

r
)mod r,

q

r
(εm+ k

p

r
)− p

r
(εn− k q

r
) ≡ q′

r
(ε′m′ + k′

p′

r
)− p′

r
(εn′ − k′ q

′

r
)mod r.

The previous theorem is an application of the following
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Theorem 1.0.3. (A diffeomorphism classification of 5-manifolds)
Let r ∈ N greater than 1 s.t. gcd(r, 6) = 1 and N,N ′ be oriented smooth closed 5-
dimensional spin manifolds with π1(N) ∼= π1(N ′) ∼= Z/r and π2(N) ∼= π2(N ′) ∼= Z.
Then N and N ′ are diffeomorphic if and only if the R-torsions of N and N ′ are equiv-
alent (see [M, p. 405]) and if there is a generator u of H1(N ; Z/r), an isomorphism

α : H1(N ; Z/r) ∼→ H1(N ′; Z/r)

and z ∈ H2(N ; Z) and z′ ∈ H2(N ′; Z) which project to generators of H2(N ;Z)
torsion and

H2(N ′;Z)
torsion resp. s.t.〈

u(βr(u))2, [N ]Z/r
〉
≡

〈
α(u)(βr(α(u)))2, [N ′]Z/r

〉
mod r〈

uβr(u)z, [N ]Z/r
〉
≡

〈
α(u)βr(α(u))z′, [N ′]Z/r

〉
mod r〈

uz2, [N ]Z/r
〉
≡

〈
α(u)z′2, [N ′]Z/r

〉
mod r,〈

ρr(p1(N))u, [N ]Z/r
〉
≡

〈
ρr(p1(N ′))α(u), [N ′]Z/r

〉
mod r,

σ(g ∈ π1(N ′), Ñ ′) = σ(α̃(g), Ñ) for all g ∈ π1(N ′) \ {0},

where α̃ : π1(N ′) ∼→ π1(N) is the isomorphism that corresponds to α under the Kro-
necker isomorphism, βr is the mod-r-Bockstein homomorphism and ρr the mod-r-
reduction in cohomology.

The σ-invariants are the same σ-invariants which we have applied in the proof of
Theorem 1.0.1.

The so called modified surgery theory which Matthias Kreck has developed in [Kr.1]
implies a strategy for proving this theorem. We will explain it in the course of this
chapter and prove Theorem 1.0.3.

Furthermore we show that the non-simply-connected manifolds in L which fulfill the
homotopical assumptions of the previous theorem don’t represent all diffeomorphism
classes of such manifolds.

Chapter 4

The non-simply-connected Witten spaces are interesting examples of 7-manifolds with
cyclic fundamental group and second homotopy group isomorphic to Z. If one is inter-
ested in classifying such manifolds, then one could try to apply the modified surgery.
The first step is the determination of the so called normal 2-type which in the spinc

case is
(K(Z/r, 1)×K(Z, 2)×BSpin, ξ),

where ξ : K(Z/r, 1)×K(Z, 2)×BSpin→ BO is a fibration depending on the second
Stiefel-Whitney class of the tangent bundle of the manifold. The next step is to
decide whether two normal 2-smoothings of manifolds under consideration are normally
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1 Introduction

bordant. This of course requires a study of the corresponding bordism group. We will
carry out the last step for manifolds of the prescribed type where the order of the
fundamental group is coprime to 6.

Theorem 1.0.4. (A bordism classification of certain 7-manifolds)
Let r ∈ N greater than 1 s.t. gcd(r, 6) = 1 and M,M ′ be closed smooth oriented spin
7-manifolds with normal 2-type equal to

(L∞r × CP∞ ×BSpin, ξ),

where ξ : L∞r ×CP∞×BSpin→ BO is a certain fibration (see above). Furthermore let
g := f×νsp : M → L∞r ×CP∞×BSpin and g′ := f ′×ν′sp : M ′ → L∞r ×CP∞×BSpin
be normal 2-smoothings, where νsp resp. ν′sp is the classifying map of the unique spin
bundle over M resp. M ′.
Then (M, g) and (M ′, g′) represent the same element in Ω7(L∞r × CP∞ × BSpin, ξ)
if and only if

〈
ρr(p1(M))f∗(v1zr), [M ]Z/r

〉
≡

〈
ρr(p1(M ′))f ′∗(v1zr), [M ′]Z/r

〉
(r),〈

ρr(p1(M))βrf∗(v1)f∗(zr), [M ]Z/r
〉
≡

〈
ρr(p1(M ′))βrf ′∗(v1)f ′∗(zr), [M ′]Z/r

〉
(r),

f∗([M ]) = f ′∗([M ′]),

where ρr is the mod-r-reduction in cohomology, v1 is a generator of H1(L∞r ; Z/r) ⊂
H2(L∞r × CP∞ × BSpin; Z) and zr is the mod-r-reduction of the standard generator
of H2(CP∞; Z) ⊂ H2(L∞r × CP∞ ×BSpin; Z).

As an application of the previous theorem we obtain

Theorem 1.0.5. (A bordism classification of Witten spaces)
Let r be a natural number with gcd(r, 6) = 1 and Mpq, Mp′q′ be oriented spin Witten
manifolds with π1(Mpq) ∼= π1(Mp′q′) ∼= Z/r and (m,n), (m′, n′) ∈ Z2 s.t. m q

r + npr =
1 = m′ q′

r +n′ p
′

r . There are normal 2-smoothings f×νsp : Mpq → L∞r ×CP∞×BSpin
and f ′×ν′sp : Mp′q′ → L∞r ×CP∞×BSpin s.t. [(Mpq, f×νsp)] = [(Mp′q′ , f ′×ν′sp)] ∈
Ω7(L∞r × CP∞ ×BSpin, ξ) if and only if there exist triples (s, ε, k) and (s′, ε′, k′) in

(Z/r)∗ × {±1} × Z/r s.t
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(1) s2
q

r
≡ s′2 q

′

r
mod r,

(2) s(k
q

r
− εn) ≡ s′(k′ q

′

r
− ε′n′) mod r,

(3) s(εm+ k
p

r
)2(k

q

r
− εn) ≡ s′(ε′m′ + k′

p′

r
)2(k′

q′

r
− ε′n′) mod r,

(4) s(εm+ k
p

r
)((εm+ k

p

r
)
q

r
− 2(εn− k q

r
)
p

r
) ≡ s′ ·

·(ε′m′ + k′
p′

r
)((ε′m′ + k′

p′

r
)
q′

r
− 2(ε′n′ − k′ q

′

r
)
p′

r
) mod r,

(5)
s3

r2
(2pq(εm+ k

p

r
)− p2(εn− k q

r
)) ≡ s′3

r2
(2p′q′(ε′m′ + k′

p′

r
)

−p′2(ε′n′ − k′ q
′

r
)) mod r,

(6) s4
p2q

r3
≡ s′4 p

′2q′

r3
mod r.

Although we do not apply Theorem 1.0.4. in the context of a classification program
it might be useful for later work.
Furthermore it’s interesting to compare the previous result with the diffeomorphism
classification of the Witten spaces, since it reveals non-trivial surgery obstructions
which lie in a monoid called l8(Z[Z/r]) (see [Kr, p. 725] ).

We would like to stress that all the proofs which appear in this thesis
were done by the author and not copied from somewhere else.

Notations and Conventions

• In this thesis the natural numbers start with 1, i.e. N := {1, 2, 3, . . . } and N0

denotes the natural numbers with 0.

• The positive real numbers are denoted by R>0.

• In this work it will always be clear from the context in which category we are
working, e.g. in the category of groups, smooth (oriented) manifolds or (real
or complex) vector bundles. Depending on the category the symbol ∼= relates
objects which are isomorphic.
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1 Introduction

• Let N be a connected smooth manifold. If we have chosen a specific cell decom-
position for N , then we write

N = e0 ∪ · · · .

For example S2 = e0 ∪ e2.
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2 Witten spaces

In 1981 E. Witten introduced a certain class of 7-dimensional smooth manifolds in
the framework of a physical theory [W]. In this chapter we construct these so called
Witten spaces, give two topological characterisations and shed some light on some of
their geometrical properties. Furthermore we compute some of their basic invariants
which will play a role in the next and the last chapter of this work.

2.1 A definition and a parametrisation of the Witten
spaces

We denote the 12-dimensional Lie group

SU(3)× SU(2)× U(1)

by G and the 5-dimensional Lie group

SU(2)× U(1)× U(1)

by H.

Let i : SU(2)→ G be the homomorphism which sends A ∈ SU(2) to((
A 0
0 1

)
,

(
1 0
0 1

)
, 1
)
.

In the following we describe the maps from H to G which Witten has considered in
order to construct the manifolds to play a role in [W]:

Let Φ be a Lie group homomorphism from H to G with finite kernel and the properties:

• Φ(A, 1, 1) = i(A),

• the image of the restriction of Φ to{(
1 0
0 1

)}
× U(1)× U(1)

lies in

S :=


 x 0 0

0 x 0
0 0 x−2

 ,

(
y 0
0 y−1

)
, z

 |x, y, z ∈ U(1)

 .

9



2 Witten spaces

The set consisting of such homomorphisms which we denote by F is not empty:
The map

Ψ : H → G,

(A, z1, z2) 7→
((

A 0
0 1

)
,

(
z1 0
0 z−1

1

)
, z2

)
clearly lies in F .

Definition 2.1.1. Let Φ ∈ F . Then the homogeneous space

G

Φ(H)
:= {[gΦ(H)]|g ∈ G}

considered as a smooth manifold is called a Witten space. We denote the set of all
Witten spaces by W.

Remark 2.1.2. Let l ∈ G then
G

lΦ(H)l−1
is diffeomorphic to a Witten space.

Classification of images

Let Φ, Ψ ∈ F . We identify {1} × U(1) × U(1) with U(1) × U(1) and denote the
restriction of Φ (resp. Ψ) to U(1)× U(1) by Φ|T 2 (resp. Ψ|T 2):

U(1)× U(1)

S

6

U(1)× U(1)× U(1)

�

-
φT 2(, ψT 2)���

���
���

���
���*

Φ|T 2(,Ψ|T 2)

The right vertical map sends (x, y, z) to x 0 0
0 x 0
0 0 x−2

 ,

(
y 0
0 y−1

)
, z


and is clearly an isomorphism. The homomorphism φT 2 (resp. ψT 2) is the unique one
which makes the above diagram commutative.
Since

Φ (SU(2)× {1} × {1}) = Ψ(SU(2)× {1} × {1})

10



2.1 A definition and a parametrisation of the Witten spaces

it follows that

im(Φ) = im(Ψ) ⇔ im(φT 2) = im(ψT 2). (2.1)

We denote the set of Lie group homomorphisms from U(1)×U(1) to U(1)×U(1)×U(1)
with finite kernel by F̄ . Of course the above triangle gives rise to a 1-1 correspondence
between F and F̄ .

Let φ, ψ ∈ F̄ . We further denote the differential of φ (resp. ψ) at the neutral element
e of U(1)×U(1) by (dφ)e (resp. (dψ)e) and by expU(1)×U(1) (resp. expU(1)×U(1)×U(1))
we mean the Lie exponential map of U(1) × U(1) (resp. U(1) × U(1) × U(1)). If we
speak of the Lie algebra of im(ψ), then we mean the Lie subalgebra in the Lie algebra
of U(1)× U(1)× U(1) which is associated to the Lie subgroup im(ψ).

Lemma 2.1.3. im(φ)=im(ψ) if and only if im(dφ)e=im(dψ)e.

Proof. The image of φ (resp. ψ) is a compact and connected Lie subgroup of
U(1)×U(1)×U(1). In this case the Lie exponential map expU(1)×U(1)×U(1) maps the
Lie algebra of im(φ) (resp. im(ψ)) surjectively onto im(φ) (resp. im(ψ)). If the Lie
algebras of im(φ) and im(ψ) are not the same, then the fact that expU(1)×U(1)×U(1)

is a local diffeomorphism around 0 implies that the images of the corresponding Lie
algebras are not the same. Summarizing these considerations yield:

im(φ) = im(ψ)⇔ The Lie algebras of im(φ) and im(ψ) are the same.

Let γ be an arbitrary Lie group homomorphism from U(1)×U(1) to U(1)×U(1)×U(1)
and (dγ)e its differential at the neutral element. Then we have the following fact

γ ◦ expU(1)×U(1) = expU(1)×U(1)×U(1) ◦ (dγ)e (2.2)

([He, Lemma 1.12., p. 110]). This equation allows us to identify the Lie algebra of
im(φ) (resp. im(ψ)) with the image of (dφ)e (resp. (dψ)e). �

Now we equip the Lie algebras of U(1) × U(1) and U(1) × U(1) × U(1) with the
standard bases and identify them with R2 resp. R3 with their standard bases.

The equation (2.2) which we have used in the proof of Lemma 2.1.3. implies that
φ(z1, z2) is of the form (za1

1 zb12 , z
a2
1 zb22 , z

a3
1 zb32 ), where a1

a2

a3

 ,

 b1
b2
b3

 ∈ Z3.

Thus the representation matrix of (dφ)e w.r.t. the chosen basis is a1 b1
a2 b2
a3 b3



11



2 Witten spaces

and since kerφ is finite it has rank two.

Some notations and a convention

• Let’s denote by GrZ
2 (R3) the set of 2-dimensional real subvectorspaces of R3 with

the property that they possess a basis with integer coordinates.

• We denote by Gr2(Z3) the set of all submodules L of Z3 with the property that
Z3/L ∼= Z.

• The set of epimorphisms from Z3 to Z is denoted by E . We say that two elements
of E are equivalent if they differ by a sign. The resulting quotient set is denoted
by E±.

• Let n ∈ N and s1, . . . , sn ∈ Z. The integers s1, . . . , sn are called coprime if
their greatest common divisor is 1, i.e. gcd(s1, . . . , sn) = 1. By a generalisa-
tion of Bézout’s identity ([J-J]) s1, . . . , sn are coprime if and only if there exist
t1, . . . , tn ∈ Z s.t.

∑n
i=1 tisi = 1.

• The set {(p, q, r) ∈ Z3|p, q, r are coprime} is denoted by I. We say that two
elements of I are equivalent if they differ by a sign. The resulting quotient set
is denoted by I±.

• Let Z and Z3 be equipped with the standard bases then we denote the kernel of

the map from Z3 to Z which sends

 s1
s2
s3

 to as1 + bs2 + cs3 by ker(a, b, c).

Let L ∈ Gr2(Z3), vL be one of the two possible isomorphisms between Z3/L and Z
and prL : Z3 → Z3/L be the linear quotient map. Then it’s clear that

α2 := vL ◦ prL : Z3 → Z

defines an element in E± which doesn’t depend on the choice of the isomorphism vL.

Lemma 2.1.4. The following chain of maps is a chain of bijections:

{im(dφ)e|φ ∈ F̄} = GrZ
2 (R3) α1→ Gr2(Z3) α2→ E±

α3→ I±,

where

α1(V ) = V ∩ Z3,

α3(s) = the representation matrix of s w.r.t. the standard basis of Z3 and Z.

12



2.1 A definition and a parametrisation of the Witten spaces

Proof. First of all one observes that all the maps are well defined.
The map α3 is clearly a bijection. The map from E± to Gr2(Z3) which sends an
epimorphism to its kernel is the inverse of α2.
Let L ∈ Gr2(Z3). There is a unique 2-dimensional (real) sub-vectorspace LR of R3

which contains L. The map from Gr2(Z3) to GrZ
2 (R3) which sends L to LR is the

inverse of α1. �

Definition 2.1.5. Let

 e1
e2
e3

 =: e,

 f1
f2
f3

 =: f ∈ Z3.

• We call the map from U(1) to S ⊂ G which maps

z1 to

 ze11 0 0
0 ze11 0
0 0 z−2e1

1

 ,

(
ze21 0
0 z−e21

)
, ze31


the homomorphism which is induced by e.

• We call the map from U(1)× U(1) to S ⊂ G which maps

(z1, z2) to

 ze11 z
f1
2 0 0

0 ze11 z
f1
2 0

0 0 z−2e1
1 z−2f1

2

 ,

(
ze21 z

f2
2 0

0 z−e21 z−f22

)
, ze31 z

f3
2


the homomorphism which is induced by (e, f).

Corollary 2.1.6. Let i be the embedding of SU(2) into G which we have defined on
p. 9. The map

P : I± → {im(Φ)|Φ ∈ F},
(p, q, r) 7→ im(µψ(i× ψ)),

is well defined and a bijection, where ψ is the homomorphism which is induced by two
linearly independent elements of ker(p, q, r) and

µψ : im(i)× im(ψ) → G,

(n, u) 7→ nu

is the multiplication map which is a homomorphism since im(i) and S commute.

Proof. This follows from the fact (2.1) on p. 11, Lemma 2.1.3. and Lemma 2.1.4.
�

Let

 0
0
1

 and
(

1
0

)
be the basepoints of the spheres S5 resp. S3 written in

complex coordinates. Furthermore we denote the homogeneous left coset space

SU(3)
i(SU(2))

13



2 Witten spaces

simply by
SU(3)
SU(2)

.

Let

a :=

 a1

a2

a3

 , b :=

 b1
b2
b3

 ∈ Z3

be a basis of ker(p, q, r) and ψ the homomorphism from U(1) × U(1) to S which is
induced by (a, b), i.e.

ψ(z1, z2) =

 za1
1 zb12 0 0

0 za1
1 zb12 0

0 0 z−2a1
1 z−2b1

2

 ,

(
za2
1 zb22 0

0 z−a2
1 z−b22

)
, za3

1 zb32

 .

This homomorphism induces a U(1) × U(1)-action on
SU(3)
SU(2)

× SU(2) × U(1), just

given by right multiplication. The maps

∆1 :
SU(3)
SU(2)

→ S5,

[L] 7→ L ·

 0
0
1

 and

∆2 : SU(2) → S3,

A 7→ A ·
(

1
0

)
are the standard diffeomorphisms.
The pushforward of the previously described action via the diffeomorphism ∆1×∆2×
idU(1) is the following action on S5 × S3 × U(1):

Fa,b : U(1)× U(1)× (S5 × S3 × U(1)) → S5 × S3 × U(1)

(z1, z2, ((x1, x2, x3), (x4, x5), x6)) 7→ (z−2a1
1 z−2b1

2 (x1, x2, x3), za2
1 zb22 (x4, x5),

za3
1 zb32 x6).

On the other hand the U(1)× U(1)-action which is given by

Ga,b : U(1)× U(1)× (S5 × S3 × U(1)) → S5 × S3 × U(1)

(z1, z2, ((x1, x2, x3), (x4, x5), x6)) 7→ (z2a1
1 z2b1

2 (x1, x2, x3), z2a2
1 z2b2

2 (x4, x5),
z2a3
1 z2b3

2 x6)

is the pushforward of the U(1) × U(1)-action on
SU(3)
SU(2)

× SU(2) × U(1) that comes

from the homomorphism ψD which is induced by −a1

2a2

2a3

 ,

 −b12b2
2b3

 = (Da ,Db),

14



2.2 The universal covering spaces

where D is  −1 0 0
0 2 0
0 0 2

 ∈ Gl(3,Q).

For a technical reason which we will give in section 2.4. we define Mpqr to be

G

im(µψD
(i× ψD))

.

Definition/Lemma 2.1.7. Let (a, b, c) ∈ I±. We define Mabc to be

G

im(µγ(i× γ))
,

where γ is the homomorphism from U(1)×U(1) to G which is induced by two linearly
independent elements of D·ker(a, b, c). There is the following parametrisation of W:

κ : I± → W, (a, b, c) 7→Mabc,

i.e. κ is a bijection.

Proof. This follows from Corollary 2.1.6. and the fact that D ∈ Gl(3,Q) induces
an automorphism of GrZ

2 (R3). �

2.2 The universal covering spaces

From now on we always assume that p, q, r ∈ Z are coprime.

Let Mpqr ∈ W. From Corollary 2.1.6. and Definition 2.1.7. we know that it is suffi-
cient to find two linearly independent elements of Dker(p, q, r) in order to determine
the unique subgroup Hpqr of G s.t.

G

Hpqr
= Mpqr.

If p = q = 0, then r = 1. Two linearly independent elements of Dker(0, 0, 1) are 1
0
0

 and

 0
2
0

. By the construction of the Witten spaces it follows that

M001 =
SU(3)
SU(2)

U(1)
× SU(2)

U(1)
× U(1)

∼= CP 2 × CP 1 × U(1).

15



2 Witten spaces

Now we assume that q 6= 0.

There are the following linearly independent elements of ker(p, q, r):

u :=

 −qp
0

 , v :=

 0
r
−q

 .

Remark 2.2.1. If q = 0 and p 6= 0, then

u∗ :=

 −qp
0

 , v∗ :=

 r
0
−p


are linearly independent elements of ker(p, q, r) and everything we do in the following
with u and v can analoguesly be done with u∗ and v∗.

Let w ∈ Z3 and D be the matrix which we have introduced on p. 15. From now on
we denote in this section Dw ∈ Z3 by w′.

Since S is an abelian group the multiplication map

µ : S × S → S, (s1, s2) 7→ s1s2

is a homomorphism. Let gu′ and gv′ be the homomorphisms from U(1) to G which are
induced by u′ resp. v′ in the sense of Definition 2.1.5. We conclude from the previous
lemmas that

Mpqr =
SU(3)
SU(2) × SU(2)× U(1)

µ ◦ (gu′ × gv′)(U(1)× U(1))

=

SU(3)
SU(2) × SU(2)

gu′(U(1))
× U(1)

gv′(U(1))
.

Lemma 2.2.2.
SU(3)
SU(2) × SU(2)

gu′(U(1))
is diffeomorphic to M

p
gcd(p,q)

q
gcd(p,q) 0.

Proof. Let

ū :=

 − q
gcd(p,q)
p

gcd(p,q)

0

 , v1 :=

 0
0
1

 .
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2.2 The universal covering spaces

As we have defined the maps gu′ , gv′ for u′ and v′ we analoguesly define the maps gū′
and gv′1 for ū′ and v′1 resp. Then

M
p

gcd(p,q)
q

gcd(p,q) 0 =
SU(3)
SU(2) × SU(2)× U(1)

µ ◦ (gū′ × gv′1)(U(1)× U(1))

∼=
SU(3)
SU(2) × SU(2)

gū′
.

But gu′ and gū′ have the same images which finishes the proof. �

In the proof of the last lemma we introduced the map gū′ . By dividing out the kernel

of gū′ we obtain an embedding of U(1) into
SU(3)
SU(2)

× SU(2) and a free and smooth

(right) U(1)-action on
SU(3)
SU(2)

× SU(2) which gives rise to a fibre bundle

U(1)→ SU(3)
SU(2)

× SU(2)→M
p

gcd(p,q)
q

gcd(p,q) 0.

The long exact sequence of homotopy groups for this fibration,

· · · → π2(SU(3)
SU(2) × SU(2))→ π2(M

p
gcd(p,q)

q
gcd(p,q) 0)→

→ π1(U(1))→ π1(SU(3)
SU(2) × SU(2))→ π1(M

p
gcd(p,q)

q
gcd(p,q) 0)→ π0(U(1))→ · · · ,

implies

Lemma 2.2.3. The Witten space M
p

gcd(p,q)
q

gcd(p,q) 0 is simply-connected and
π2(M

p
gcd(p,q)

q
gcd(p,q) 0) is isomorphic to Z.

The diffeomorphism

∆1 ×∆2 :
SU(3)
SU(2)

× SU(2) ∼−→ S5 × S3

and gū′ induce the following action on S5 × S3:

Eū′ : U(1)× (S5 × S3) → S5 × S3,

(z, ((z1, z2, z3), (z4, z5))) 7→ (z−
2q

gcd(p,q) (z1, z2, z3), z
2p

gcd(p,q) (z4, z5)).

The action given by Eū′ induces the following free U(1)-action

Gū′ : U(1)× (S5 × S3) → S5 × S3,

(z, ((z1, z2, z3), (z4, z5))) 7→ (z−
q

gcd(p,q) (z1, z2, z3), z
p

gcd(p,q) (z4, z5)).
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2 Witten spaces

We denote the orbit space of this free U(1)-action by
S5 × S3

∼ū′
and it’s clear that

M
p

gcd(p,q)
q

gcd(p,q) 0 ∼=
S5 × S3

∼ū′
.

Let’s further denote the vector 1
2gcd(q,r)v

′ by v̄′ and gv̄′ is the homomorphism from
U(1) to G which is induced by v̄′ (in the sense of Definition 2.1.5.). We notice that
gv̄′ is an embedding of U(1) into G.
Thus gv̄′ gives rise to a smooth (right) U(1)-action on M

p
gcd(p,q)

q
gcd(p,q) 0 × U(1) and

hence on
S5 × S3

∼ū′
× U(1):

Fv̄′ : U(1)×
(
S5 × S3

∼ū
× U(1)

)
−→ S5 × S3

∼ū
× U(1),

(z, ([(z1, z2, z3), (z4, z5)], z6)) 7−→ ([(z1, z2, z3), z
r

gcd(q,r) (z4, z5)], z−
q

gcd(q,r) z6).

The orbit space of this U(1)-action is denoted by
S5×S3

∼ū′
× U(1)

∼v̄′
and the above con-

siderations make clear that
S5×S3

∼ū′
× U(1)

∼v̄′
and Mpqr are diffeomorphic.

Elements of M
p

gcd(p,q)
q

gcd(p,q) 0 are equivalence classes of matrices, whereas elements

in
S5 × S3

∼ū′
are equivalence classes of points in S5 × S3 which themselves can be writ-

ten as complex vectors. In order to keep notations as simple as possible we prefer to

study the action Fv̄′ on
S5 × S3

∼ū′
× U(1) in order to understand Mpqr better.

Let x := ([(z1, z2, z3), (z4, z5)], z6) ∈ S5 × S3

∼ū′
× U(1). We denote the U(1)-orbit of x

by x ·U(1). Each U(1)-orbit in
S5 × S3

∼ū′
×U(1) intersects

S5 × S3

∼ū′
×{1}. We identify

S5 × S3

∼ū′
× {1} with

S5 × S3

∼ū′
and it is clear what we mean when we speak about

the intersection points of x · U(1) with
S5 × S3

∼ū′
.

The figure on the next page illustrates the last lines in the case of an U(1)-action on
U(1)×U(1) which comes from a Lie group homomorphism from U(1) to U(1)×U(1)
with finite kernel.
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2.2 The universal covering spaces

Figure 2.1: The image of an orbit of an U(1)-action on the 2-torus U(1)× U(1). The
meridian is identified with U(1) × {1} and the little crosses mark the in-
tersection points of the orbit with U(1)× {1}.

We say that x1 and x2 ∈
S5 × S3

∼ū′
are equivalent if there exists a y ∈ S5 × S3

∼ū′
× U(1)

s.t.

x1, x2 ∈ y · U(1) ∩ S
5 × S3

∼ū′
.

Let’s denote the set of intersection points of x · U(1) and
S5 × S3

∼ū′
by Ix.

By multiplying x with z
gcd(q,r)

q

6 (in the sense of the defined action) we obtain

([(z1, z2, z3), z
gcd(q,r)

q
r

gcd(q,r)
6 (z4, z5)], 1).

Thus an element x̄ ∈ S5 × S3

∼ū′
× U(1) lies in the U(1)-orbit of x if and only if there

exists a z ∈ U(1) s. t.

x̄ = ([(z1, z2, z3), z
r

gcd(q,r) z
gcd(q,r)

q
r

gcd(q,r)
6 (z4, z5)], z

q
gcd(q,r) ).

Hence

Ix =

[(z1, z2, z3), e2πi
gcd(q,r)

q
r

gcd(q,r)m︸ ︷︷ ︸
=e

2πi r
q

m

z
r
q

6 (z4, z5)]|0 ≤ m <
q

gcd(q, r)

 . (2.3)

The elements of {
e2πi

r
qm|0 ≤ m <

q

gcd(q, r)

}
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2 Witten spaces

form a cyclic group of order q
gcd(q,r) with a generator given by e2πi

r
q . It’s clear that

the order of this cyclic group doesn’t depend on the choice of x.

The equivalence relation which we have defined on
S5 × S3

∼ū′
induces a smooth Z/ q

gcd(q,r) -

action on
S5 × S3

∼ū′
(compare with Fig. 2.1):

Z/
q

gcd(q, r)
× S5 × S3

∼ū′
→ S5 × S3

∼ū′
,

(m, [(z1, z2, z3), (z4, z5)]) 7→ [(z1, z2, z3), e2πi
r
qm(z4, z5)].

We denote the quotient space under this action by
S5×S3

∼ū′

Z/ q
gcd(q,r)

. By the definition of the

smooth Z/ q
gcd(q,r) -action there is a canonical diffeomorphism between

S5×S3

∼ū′
× U(1)

∼v̄′
and

S5×S3

∼ū′

Z/ q
gcd(q,r)

.

Thus Mpqr and
S5×S3

∼ū′

Z/ q
gcd(q,r)

are diffeomorphic.

If q = 0 and p 6= 0, then Remark 2.2.1. indicates that by going through a similar

procedure as above one deduces the following smooth Z/ p
gcd(p,r) -action on

S5 × S3

∼ū′
:

Z/
p

gcd(p, r)
× S5 × S3

∼ū′
→ S5 × S3

∼ū′
,

(m, [(z1, z2, z3), (z4, z5)]) 7→ [e2πi
r
pm(z1, z2, z3), (z4, z5)].

We denote the quotient space by
S5×S3

∼ū′

Z/ p
gcd(p,r)

and again by the definition of the Z/ p
gcd(p,r) -

action there is a canonical diffeomorphism between
S5×S3

∼ū′
× U(1)

∼ v̄∗′
and

S5×S3

∼ū′

Z/ p
gcd(p,r)

which

shows that Mpqr and
S5×S3

∼ū′

Z/ p
gcd(p,r)

are diffeomorphic.

Proposition 2.2.4. Let p, q ∈ Z s.t. p 6= 0 or q 6= 0. Then Mpqr is diffeomorphic to
the orbit space of a smooth and free Z/gcd(p, q)-action on M

p
gcd(p,q)

q
gcd(p,q) 0.

Proof. Let s := gcd(p, q), k := gcd(q, r), k′ := gcd(p, r) and [(z1, z2, z3), (z4, z5)] be

a point in
S5 × S3

∼ū′
.
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2.2 The universal covering spaces

If q 6= 0 and p = 0, then s = q and k = 1. We analyze which elements of Z/ qk
fix [(z1, z2, z3), (z4, z5)]:

[(z1, z2, z3), e2πim
r
q (z4, z5)] = [(z1, z2, z3), (z4, z5)]

⇐⇒
∃z ∈ U(1) s.t. ((z1, z2, z3), e2πim

r
q (z4, z5)) = (z−

q
s (z1, z2, z3), (z4, z5)).

The last line implies that only the trivial element of Z/ qk fixes x.

If p 6= 0 and q = 0, then s = p and k′ = 1. We conclude by similar arguments
that again only the trivial element of Z/ pk′ fixes x.

Thus in the first two cases we have free Z/s-actions on
S5 × S3

∼ū′
.

If p 6= 0 and q 6= 0, then we study which elements of Z/ qk fix [(z1, z2, z3), (z4, z5)] :

[(z1, z2, z3), e2πim
r
q (z4, z5)] = [(z1, z2, z3), (z4, z5)]

⇐⇒
∃z ∈ U(1) s.t. ((z1, z2, z3), e2πim

r
q (z4, z5)) = (z−

q
s (z1, z2, z3), z

p
s (z4, z5)),

⇐⇒
∃z ∈

{
e2πif

s
q |f ∈ Z

}
s. t. z ∈

{
e2πim

r
q

s
p e2πi

s
pn|n ∈ Z

}
,

⇐⇒
∃f, n ∈ Z s.t. e2πif

s
q = e2πi(m

r
q

s
p + s

pn),

⇐⇒
∃f, n ∈ Z s.t.

s

q
f − r

q

s

p
m− s

p
n ∈ Z. (?)

We define the following map

α : I± → N,

(p, q, r) 7→


| qk | , if p = 0

| pk′ | , if q = 0

min{m|m ∈ N s.t. (?) is fulfilled} , if p 6= 0 and q 6= 0.

We notice that Mpqr is diffeomorphic to the orbit space of a free Z/α(p, q, r)-action

on
S5 × S3

∼ū′
.

It remains to show that

α(p, q, r) = s. (2.4)
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2 Witten spaces

As we have already seen if p = 0 or q = 0 the equality (2.4) trivially holds.

But (2.4) also holds if p 6= 0 and q 6= 0:

Let’s denote by Opqr the set of positive integers m which fulfill (?). We show first
that s lies in Opqr. We notice that there exist coprime integers t and w s.t. p = ts
and q = ws. It’s clear that s is an element of Opqr if and only if there exist n, f ∈
Z s.t. r+nw−ft

tw ∈ Z. Since t, w are coprime there exist n, f ∈ Z s.t. nw − ft = tw − r
which proves that s ∈ Opqr.
The last step is to show that s is the minimum of Opqr. For s = 1 it’s clear. Other-
wise we assume that the minimum m̄ of Opqr is smaller than s. But then there exist
n, f ∈ Z s.t.

r m̄s + nw − ft
tw

∈ Z. (??)

Since s and r are coprime we conclude r m̄s /∈ Z which leads to a contradiction to (??).

The fact that M
p

gcd(p,q)
q

gcd(p,q) 0 and
S5 × S3

∼ū′
are canonically diffeomorphic (compare

p. 18) finishes the proof. �

Corollary 2.2.5. i) The universal covering space of the Witten space Mpqr is
M

p
gcd(p,q)

q
gcd(p,q) 0 if p 6= 0 or q 6= 0 and CP 2 × S2 × R if p = q = 0.

ii) The fundamental group of a Witten space:

π1(Mpqr) ∼=
{

Z/gcd(p, q) , if p 6= 0 or q 6= 0
Z , if p = 0 = q.

Thus each cyclic group is realized as the fundamental group of a Witten space.

iii) The Witten spaces Mpqr and Mpqr′ are diffeomorphic.

Proof. If p 6= 0 or q 6= 0, then Lemma 2.2.3. and Proposition 2.2.4. imply that
M

p
gcd(p,q)

q
gcd(p,q) 0 is the universal covering space of Mpqr. If p = q = 0, then Mpqr is

diffeomorphic to CP 2 ×CP 1 × S1 and its universal covering space is CP 2 ×CP 1 ×R.
This proves i).

Let l ∈ N then π1(M0l1) ∼= Z/l. If p = q = 0, then π1(M001) ∼= Z which proves
ii).

If p = q = 0, then iii) is clearly true. If p, q ∈ Z s.t. p 6= 0 or q 6= 0, then iii)
follows from the definition of the Z/gcd(p, q)-action on M

p
gcd(p,q)

q
gcd(p,q) 0 and the fact

that finite cyclic subgroups of U(1) are determined by their order. �
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2.3 An equivariant diffeomorphism classification

2.3 An equivariant diffeomorphism classification

Let Φ,Φ′ ∈ F and G
Φ(H) and G

Φ′(H) be Witten spaces as we have defined them at the
beginning of this chapter. In this section we consider a Witten space as a homogeneous
space together with the obvious left G-action which comes from the construction. If
β is a Lie group automorphism of G, then we define the β-twisted G-action on G

Φ(H)

which is given by
(g, x) 7→ β(g) · x,

where ” ·” denotes the obvious multiplication of an element of G with a point in
G

Φ(H)
.

If we equip
G

Φ(H)
with the β-twisted G-action we write (

G

Φ(H)
, Gβ) and (

G

Φ(H)
, Gid)

is simply denoted by
G

Φ(H)
.

Definition/Lemma 2.3.1. i) Let A(G; Φ(H),Φ′(H)) be the set of Lie group auto-
morphisms of G which map Φ(H) bijectively to Φ′(H).
ii) Assume that A(G; Φ(H),Φ′(H)) is not empty then for all β ∈ A(G; Φ(H),Φ′(H))
the map

G

Φ(H)
→ (

G

Φ′(H)
, Gβ),

gΦ(H) 7→ β(g)Φ′(H)

is an equivariant diffeomorphism which sends Φ(H) to Φ′(H).

iii) There is the following equivalence relation on the set of Witten spaces. We say

that
G

Φ(H)
and

G

Φ′(H)
are equivalent,

G

Φ(H)
∼G

G

Φ′(H)
, if A(G; Φ(H),Φ′(H)) is not

empty.

Proof. Statement ii) is easily verified. The relation in iii) is clearly an equivalence
relation. �

Proposition 2.3.2. (An equivariant diffeomorphism classification of the Witten spaces)
Let Mpqr, Mp′q′r′ ∈ W. Then Mpqr ∼G Mp′q′r′ if and only if |p| = |p′| and |q| =
|q′| and |r| = |r′|.

Proof. We recall how the Witten space Mpqr was defined: Let a1

a2

a3

 ,

 b1
b2
b3


be a basis of Dker(p, q, r) then Mpqr is the quotient of SU(3)×SU(2)×U(1) divided
by the image of the homomorphism from H to G which sends

(A, z1, z2) to
((

Aza1
1 zb12 0
0 z−2a1

1 z−2b1
2

)
,

(
z2a2
1 z2b2

2 0
0 z−2a2

1 z−2b2
2

)
, z2a3

1 z2b3
2

)
.
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2 Witten spaces

The image of such embeddings lies in
( B 0

0 1

) w 0 0
0 x 0
0 0 w−1x−1

 ,

(
y 0
0 y−1

)
, z

 |B ∈ SU(2);
w, x
y, z

∈ U(1)

 .

We also know from Corollary 2.1.6. that the image of such a homomorphism only de-
pends on p, q, r and not on the choice of two linear independent elements in Dker(p, q, r).
This consideration justifies to denote the image of the map above by Hpqr. In the fol-
lowing we denote the set

{Habc|a, b, c are coprime}

by C.

By definition Mpqr ∼G Mp′q′r′ if and only if A(G;Hpqr,Hp′q′r′) is nonempty.

Let Aut(G) be the group of Lie group automorphisms of G which operates on the
set S of all Lie subgroups of G in the obvious way. Furthermore we denote by
Aut(G) · Hpqr the Aut(G)-orbit of Hpqr in S and by Cpqr we denote the intersec-
tion between Aut(G) ·Hpqr and C.

It’s clear that Mpqr ∼G Mp′q′r′ if and only if Hp′q′r′ ∈ Cpqr. The next aim is to
analyze Cpqr.

We claim that

Aut(G) = Aut(SU(3))×Aut(SU(2))×Aut(U(1)). (?)

It’s clear that Aut(G) ⊇ Aut(SU(3))×Aut(SU(2))×Aut(U(1)).
” ⊆ ”: Each factor of G is a normal subgroup of G and an element of Aut(G) sends
a normal subgroup to a normal subgroup. Assume that there is an automorphism
α which is not an element of the right hand side of (?). Then at least the image of
one of the three factors of G contains an element with nontrivial coordinates in one
of the other factors which we denote by Gi. We further denote by pri the projection
onto Gi. Smoothness of α implies that im(pri ◦ α) =: Ii is a non-discrete Lie sub-
group of Gi. But Ii has to be a normal subgroup of Gi which is a contradiction to the
fact that each of the three factors of G is a simple Lie group (see for expl. [He, p. 451]).

We denote by T 4 the following maximal torus of G
 w 0 0

0 x 0
0 0 w−1x−1

 ,

(
y 0
0 y−1

)
, z

 |w, x, y, z ∈ U(1)

 .

There is the following observation:

Assume that Ψ is a Lie group automorphism of G s.t. Ψ(Hpqr) ∈ Cpqr. Then
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2.3 An equivariant diffeomorphism classification

Ψ(T 4) = T 4.

If Ψ is an inner automorphism, then we know that Ψ(·) = g · g−1 for some g ∈ N(T 4),
where N(T 4) is the normalisator of T 4 in G. We are interested in how N(T 4) acts on
T 4. But since T 4 is abelian it’s enough to know how N(T 4)

T 4 acts on T 4 and hence on

elements in S that belong to C. The group N(T 4)
T 4 which we denote by Ω(T 4), is called

the Weyl group of T 4.
The Weyl group of T 4 is isomorphic to the product of the symmetric group S(3) and
the symmetric group S(2) ([Br-tD, p. 171]) and it acts on T 4 by permuting the ele-
ments factorwise. But the only nontrivial element in Ω(T 4) which sends Hpqr to C is
the nontrivial element in S(2).

Our next aim is to find all outer Lie group automorphisms of G which send Hpqr

to C. From [Mc, p. 6] we know that

• SU(3) has exactly one outer automorphism, namely complex conjugation,

• SU(2) has no outer automorphism (complex conjugation is an inner automor-
phism).

It’s well known that complex conjugation on U(1) is the only outer automorphism
of U(1).

Let c3 and c1 denote the complex conjugation maps in SU(3) respectively in U(1).
From the definition of Hpqr it’s clear that c3×idSU(2)×idU(1) and idSU(3)×idSU(2)×c1
map Hpqr to C.

From (?) it follows that all outer automorphisms of G leave C invariant.

We show that c3×idSU(2)×idU(1) maps Hpqr to H(−p)qr: The map c3×idSU(2)×idU(1)

sends

((
Aza1

1 zb12 0
0 z−2a1

1 z−2b1
2

)
,

(
z2a2
1 z2b2

2 0
0 z−2a2

1 z−2b2
2

)
, z2a3

1 z2b3
2

)
∈ Hpqr

to ((
Āz−a1

1 z−b12 0
0 z2a1

1 z2b1
2

)
,

(
z2a2
1 z2b2

2 0
0 z−2a2

1 z−2b2
2

)
, z2a3

1 z2b3
2

)
.

Since

 a1

a2

a3

 and

 b1
b2
b3

 form a basis of Dker(p, q, r) the vectors

 −a1

a2

a3

 and −b1b2
b3

 form a basis of Dker(−p, q, r) and we realize that c3× idSU(2)× idU(1) maps
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2 Witten spaces

Hpqr bijectively to H(−p)qr.

Studying the other Lie group automorphisms which leave C invariant yields that Cpqr
consists only of those Habc’s with |a| = |p|, |b| = |q| and |c| = |r|. �

Remark 2.3.3. Let Cpqr be the set which we have introduced in the proof of the last
proposition. The only element of Cpqr which is nontrivially conjugated to Hpqr is
Hp(−q)r:

Hp−qr = c2Hpqrc
−1
2 , with c2 :=

 1 0 0
0 1 0
0 0 1

 ,

(
0 −1
1 0

)
, 1

 .

Corollary 2.3.4. There are manifolds in W which are diffeomorphic but not equiva-
riantly diffeomorphic in the sense of Definition 2.3.1.ii).

Proof. By Corollary 2.2.5.iii) M123 and M125 are diffeomorphic but by Proposition
2.3.2. M123 �G M125. �

There is the following problem:

Let M and M ′ be two Witten spaces. Are there metrics m,m′ which are homoge-
neous w.r.t. G on M resp. M ′ s.t. (M,m) and (M ′,m′) are isometric?

We don’t solve this problem but we present some results which are related to it and
which will play a role in the next chapter.

Let E be a compact Lie group and K,K ′ be isomorphic compact Lie subgroups of
E.

Proposition 2.3.5. If
E

K
∼E

E

K ′ , then there exist metrics m,m′ on
E

K
and

E

K ′ which

are homogeneous w.r.t. E s.t. (
E

K
,m) and (

E

K ′ ,m
′) are isometric.

Proof. Let
F :

E

K
→ (

E

K ′ , Eφ)

be an equivariant diffeomorphism for a φ ∈ A(E;K,K ′). Furthermore let m be a met-
ric on E

K which is homogeneous w.r.t. E and m′ := F ∗m be the pushforward metric
on E

K′ . By the construction of the metrics it’s clear that F is an isometry and it is
straightforward to show that the metric m′ is homogeneous w.r.t. E. �

We will apply Proposition 2.3.5. in the next chapter where we prove that Mpq1 and
Mp′q′1 are diffeomorphic if and only if there exist homogeneous metrics m,m′ on Mpq1
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2.3 An equivariant diffeomorphism classification

and Mp′q′1 resp. s.t. (Mpq1,m) and (Mp′q′1,m′) are isometric.

Furthermore we obtain the following

Proposition 2.3.6. Assume that there exist metrics m, m′ on
E

K
resp.

E

K ′ which

are homogeneous w.r.t. E s.t. Isom(
E

K
,m) = Isom(

E

K ′ ,m
′) = E and (

E

K
,m) and

(
E

K ′ ,m
′) are isometric. Then

E

K
∼E

E

K ′ .

Proof. Let
E

K
and

E

K ′ be equipped with homogeneous metrics w.r.t. E s.t. there

exists an isometry f :
E

K
→ E

K ′ . W.l.o.g. we may assume f(K) = K ′, otherwise we

can multiply an appropriate element h ∈ E to f(K) s.t. h · f(K) = K ′. Let g ∈ E.

f
E

K
→ E

K ′
g ↑ � ↑ l
E

K
← E

K ′
f−1

Since Isom(
E

K
,m) = Isom(

E

K ′ ,m
′) = E the commutative diagram above implies that

fgf−1 ∈ E. Hence we get the following Lie group automorphism of E :

φf : E → E, g 7→ fgf−1.

Since f(K) = K ′ and by the definition of φf it is easy to verify that φf (K) = K ′. Thus

we obtain an equivariant diffeomorphism Φf from
E

K
to (

E

K ′ , Eφf
) with Φf (K) = K ′.

�

Corollary 2.3.7. Assume Isom(
E

K
, g) = Isom(

E

K ′ , g
′) = E for each choice of ho-

mogeneous metrics g, g′ w.r.t. E. Then there exist metrics m, m′ on
E

K
resp.

E

K ′

which are homogeneous w.r.t. E s.t. (
E

K
,m) and (

E

K ′ ,m
′) are isometric if and only

if
E

K
∼E

E

K ′ .

Remark 2.3.8. Let n ∈ N. We denote by (S2n+1, h) the (2n+ 1)-dimensional sphere
regarded as the Riemannian submanifold of the euclidean space R2(n+1), obtained as
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2 Witten spaces

the collection of all unit vectors and equipped with the metric h which is the induced
metric of R2(n+1). This metric on S2n+1 makes (S2n+1, h) to a homogeneous space
with isometry group O(2(n+1)). We know that lens spaces are orbit spaces of isometric
actions of finite cyclic groups on (S2n+1, h). Thus lens spaces are homogeneous spaces
with respect to O(2(n + 1)). The homeomorphism and diffeomorphism classification
of all lens spaces ([L, p. 45]) couldn’t reveal any exotic differentiable structures on
non-simply-connected lens spaces.
In [M.1] J. Milnor proves the existence of an ”exotic” involution on S7, i.e. the
existence of a free Z/2-action on S7 s.t. the orbit space is homeomorphic but not
diffeomorphic to RP 7. But it’s not known whether this action respects any geometric
structure.

Thus it seems to be an interesting question whether there exists a homogeneous space
or Riemannian manifold with non-trivial cyclic isometric group actions s.t. the result-
ing orbit spaces are homeomorphic but not diffeomorphic.

2.4 A topological characterisation

The following proposition is of great significance for the main theorem in the next
chapter where we classify the non-simply-connected Witten spaces upto diffeomor-
phism.

Proposition 2.4.1. A Witten space Mpqr is diffeomorphic to the total space of the
principal U(1)-bundle over CP 2 × CP 1,

U(1)→ TS(Epq)
S(Epq)→ CP 2 × CP 1,

which is given by the first Chern class

c1(S(Epq)) = px+ qy ∈ H2(CP 2 × CP 1; Z),

where x ∈ H2(CP 2; Z) and y ∈ H2(CP 1; Z) are the standard generators of the corre-
sponding cohomology groups.

Proof. From Corollary 2.2.5. we know that Mpqr and Mpq1 are diffeomorphic.
Thus w.l.o.g. we prove the proposition for Mpq1. The proof is subdivided into the
following steps:

1) First we define the projection map Π : Mpq1 → CP 2 × CP 1 × CP 0 and show
that the fibre is U(1). Then we prove that there is a smooth and free U(1)-action on
Mpq1 which preserves the fibre.

2) We prove that there is a bundle isomorphism between Π and the sphere bundle
S(Epq) of the following complex line bundle:

Epq : (pr∗1γ
p
2 )⊗ (pr∗2γ

q
1)⊗ pr∗0γ0 → CP 2 × CP 1 × CP 0,
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2.4 A topological characterisation

where γ2 resp. γ1 denotes the tautological bundle over CP 2 resp. CP 1, γ0 is the trivial
complex line bundle over CP 0 and pri : CP 1 → CP 2 × CP 1 × CP 0 is the projection
map onto the i-th factor (i ∈ {0, 1, 2}).

1) Let a := (a1, a2, a3), b := (b1, b2, b3) ∈ Z3 be two linearly independent elements in
Dker(p, q, 1). We recall that

Mpq1 =
SU(3)× SU(2)× U(1)

SU(2)× (U(1)× U(1))pq1
,

where (U(1)× U(1))pq1 is the image of the following homomorphism:

Fa,b : U(1)× U(1)→ SU(3)× SU(2)× U(1), where Fa,b(z1, z2) equals z−a1
1 z−b12 0 0

0 z−a1
1 z−b12 0

0 0 z2a1
1 z2b1

2

 ,

(
z2a2
1 z2b2

2 0
0 z−2a2

1 z−2b2
2

)
, z2a3

1 z2b3
2

 .

Let’s denote by
S5 × S3 × S1

∼ab
the quotient of the following smooth U(1)×U(1)-action

on S5 × S3 × S1:

Ga,b : U(1)× U(1)× (S5 × S3 × S1) → S5 × S3 × S1,

(z1, z2, ((x1, x2, x3), (x4, x5), x6)) 7→ (za1
1 zb12 (x1, x2, x3), za2

1 zb22 (x4, x5), za3
1 zb32 x6).

The diffeomorphisms ∆1 : SU(3)
SU(2)

∼→ S5 and ∆2 : SU(2) ∼→ S3 which we gave on p. 14
induce a diffeomorphism

α : Mpq1 ∼=→ S5 × S3 × S1

∼ab

(compare with p. 18).

Let Π̃ be the map from
S5 × S3 × S1

∼ab
to CP 2×CP 1×CP 0 which maps [(x1, x2, x3), (x4,

x5), x6] to ([x1 : x2 : x3], [x4 : x5], [x6]). We define Π to be Π̃ ◦ α.

Let d, e, f ∈ Z s.t. dp + eq + f = 1. We have the following split short exact se-
quence

1→ U(1)× U(1)


a1

a2

a3

b1
b2
b3


?−→ U(1)× U(1)× U(1)

(p,q,1)?−→
(d,e,f)?←−

U(1)→ 1, (2.5)

where (·)? denotes the induced homomorphisms in the sense of Definition 2.1.5.
From (2.5) we conclude that Π̃ is a U(1)-fibre bundle, where the U(1)-action is given
by

29



2 Witten spaces

[(x1, x2, x3), (x4, x5), x6] ∗ z = [(x1, x2, x3) · zd, (x4, x5) · ze, x6 · zf ].

Hence Π is a principal U(1)-fibre bundle.

2) We denote the total space of S(Epq) by TS(Epq). The following diagram commutes:
S5 × S3 × S1

∼ab
TS(Epq)

CP 2 × CP 1 × CP 0 ,

ψ -

@
@

@@R

Π̃

�
�

�
�	

S(Epq)

where
ψ([(x1, x2, x3), (x4, x5), x6])

equals  x1

x2

x3

⊗ ...⊗
 x1

x2

x3


︸ ︷︷ ︸

p copies

⊗
(
x4

x5

)
⊗ ...⊗

(
x4

x5

)
︸ ︷︷ ︸

q copies

⊗ x6

and

S(Epq)


 x1

x2

x3

⊗ ...⊗
 x1

x2

x3


︸ ︷︷ ︸

p copies

⊗
(
x4

x5

)
⊗ ...⊗

(
x4

x5

)
︸ ︷︷ ︸

q copies

⊗ x6


equals

([x1 : x2 : x3], [x4 : x5], [x6]).

From the exactness of (2.5) it follows that ψ is well defined and bijective and from the
relation dp+eq+f = 1 we derive that ψ is an U(1)-equivariant map. The multiplicative
properties of the (total) Chern classes imply

c1(S(Epq)) = px+ py,

where x = c1(γ2) ∈ H2(CP 2; Z) and y = c1(γ1) ∈ H2(CP 1; Z) are the standard gener-
ators of the corresponding cohomology groups. The fact that CP 0 is a point finishes
the proof. �
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Remark 2.4.2. The reason why we have chosen the parametrisation of the set of
Witten spaces as we have done it on p. 15 is the following: Given a Witten space
Mabc we can according to Proposition 2.4.1. immediately find without any further
calculations a fibre bundle with total space diffeomorphic to Mabc.

Corollary 2.4.3. Let s ∈ N and Mpqr a Witten space with π1(Mpqr) ∼= Z/s. Its
universal covering space M

p
s

q
s 0 is diffeomorphic to the total space of the U(1)-bundle

over CP 2 × CP 1 with p
sx+ q

sy as its first Chern class.
Homotopically π1(Mpqr) acts trivially on M

p
s

q
s 0.

Proof. This follows from the description of the deck transformation on p. 20 and
in the proof of Proposition 2.2.4. and the description of the fibre bundle structure
in the proof of the last proposition. There we see that the action of π1(Mpqr) on
M

p
s

q
s 0 via deck transformation is the restriction of the U(1)-action which comes from

the U(1)-fibre bundle structure of M
p
s

q
s 0 restricted to the gcd(p, q)-th roots. Thus

homotopically π1(Mpqr) acts trivially on M
p
s

q
s 0. �

2.5 Invariants

From Corollary 2.2.5. we know that a Witten space Mabc is diffeomorphic to Mab1.
We simplify the notation and write Mab instead of Mab1.
In this section we are interested in homotopy and diffeomorphism invariants thus
instead of studying the whole set of Witten spaces we may only concentrate on

{Mab|a, b ∈ Z} ⊂ W.

If not otherwise stated we identify Mab with the total space ST (Eab) of the U(1)-fibre
bundle which was given in Proposition 2.4.1.
From Corollary 2.2.5. we know that the only Witten space Mab with infinite cyclic
fundamental group is M00 which is diffeomorphic to the well known manifold CP 2 ×
CP 1 × S1.

In this section we reveal some basic informations concerning the cohomological struc-
ture, compute certain characteristic classes and determine the so called normal 2-type
of each Witten space with finite cyclic fundamental group. All these invariants are
important ingredients for the proof of the classification theorem (Theorem 2.7.9.) and
for the last chapter.

2.5.1 The integral cohomology ring

Let Mpq ∈ W with finite cyclic fundamental group, i.e. (p, q) 6= (0, 0). From the
fact that H1(Mpq; Z) is finite cyclic it immediately follows that H1(Mpq; Z) ∼= 0. The
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2 Witten spaces

main tool for computing the integral cohomology ring of Mpq is the Gysin sequence
associated to the fibre bundle

S1 →Mpq Π→ CP 2 × CP 1 with c1(Π) = px+ qy,

where x and y are the standard generators of H2(CP 2; Z) resp. H2(CP 1; Z). Part of
this sequence is

· · · → Hi−1(Mpq; Z) → Hi−2(CP 2 × CP 1; Z)
∪c1(Π)→ Hi(CP 2 × CP 1; Z) Π∗→

Hi(Mpq; Z) → Hi−1(CP 2 × CP 1; Z)→ · · · .

If i is even, we observe that

Hi(Mpq; Z) ∼=
Hi(CP 2 × CP 1; Z)

im(∪c1(Π))
.

This means in more explicite terms that

H2(Mpq; Z) =
< Π∗(x),Π∗(y) >

< pΠ∗(x) + qΠ∗(y) >
,

H4(Mpq; Z) =
< Π∗(x2),Π∗(xy) >

< pΠ∗(x2) + qΠ∗(xy), pΠ∗(xy) >
,

H6(Mpq; Z) =
< Π∗(x2y) >

< pΠ∗(x2y), qΠ∗(x2y) >
.

The Gysin sequence also implies that H1(Mpq; Z) and H3(Mpq; Z) are trivial and
H5(Mpq; Z) is isomorphic to Z.
In order to understand the dependence of H2k(Mpq; Z) on p, q better we want to know
to what abstract groups they are isomorphic:

By Poincaré duality H6(Mpq; Z) is isomorphic to Z/gcd(p, q).

We claim that H2(Mpq; Z) ∼= Z⊕ Z/gcd(p, q):
First we choose m,n ∈ Z s.t. m q

gcd(p,q) + n p
gcd(p,q) = 1 which is possible since p

gcd(p,q)

and q
gcd(p,q) are coprime integers. Then it’s clear that p

gcd(p,q)Π∗(x) + q
gcd(p,q)Π∗(y)

and mΠ∗(x) − nΠ∗(y) generate H2(Mpq; Z), where mΠ∗(x) − nΠ∗(y) generates a
Z−summand and p

gcd(p,q)Π∗(x) + q
gcd(p,q)Π∗(y) generates the torsion part.

Lemma 2.5.1. Let Mpq ∈ W. If p = 0, then H4(Mpq; Z) ∼= 0 and if p 6= 0, then
H4(Mpq; Z) ∼= Z/ p2

gcd(p,q) ⊕ Z/gcd(p, q).

Proof. Let C :=
(
p 0
q p

)
. We denote

coker
(

(H2(CP 2 × CP 1; Z),Π∗(x),Π∗(y)) C−→ (H4(CP 2 × CP 1; Z),Π∗(x2),Π∗(xy))
)
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by Co. The order of Co has to be det(C) = p2. Thus if p = 0, then H4(Mpq; Z) ∼= 0.
Now we assume that p 6= 0. We prove that Co is isomorphic to Z/ p2

gcd(p,q)⊕Z/gcd(p, q).
It’s enough to show that there are two linearly independent elements in Co of order

p2

gcd(p,q) and gcd(p, q) respectively.

Let m,n ∈ Z s.t. m q
gcd(p,q) + n p

gcd(p,q) = 1. The statement that [(m,−n)] ∈Co is

a nontrivial element of order p2

gcd(p,q) is equivalent to the statement that the smallest
positive integer k s.t.

kC−1

(
m
−n

)
∈ Z2 (2.6)

is p2

gcd(p,q) . But this is clearly the case since

kC−1

(
m
−n

)
= k

(
p 0
q p

)−1(
m
−n

)
= k

1
p2

(
p 0
−q p

)(
m
−n

)

= k


m

p

− (
p

gcd(p, q)
n+

q

gcd(p, q)
m)︸ ︷︷ ︸

=1

gcd(p, q)
p2

 .

We denote [(m,−n)] by g1 and [( p
gcd(p,q) ,

q
gcd(p,q) )] by g2 and realize that they are not

multiples of each other which follows from the fact that (m,−n) and ( p
gcd(p,q) ,

q
gcd(p,q) )

form a basis of Z2. It’s clear that g2 is an element of order gcd(p, q). We claim that
g1 and g2 generate direct summands in Co. Thus if gcd(p, q) = 1, then the claim is
trivially true since g2 = 0 ∈ Co and g1 generates A. Now we assume that gcd(p, q) is
greater than 1. If the claim wasn’t true, then there would exist h ∈ {1, ..., p2

gcd(p,q) − 1}
and j ∈ {1, ..., gcd(p, q)− 1} s.t.

hg1 = jg2.

This is equivalent to

j

(
p

gcd(p,q)
q

gcd(p,q)

)
− h p2

gcd(p, q)

(
m
−n

)
∈ im(C).

We know that

C

(
1
0

)
=

(
p
q

)
,

C

 −pm
qm+ pn︸ ︷︷ ︸
gcd(p,q)

 = −p2

(
m
−n

)
.
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2 Witten spaces

Then the preimage of j

(
p

gcd(p,q)
q

gcd(p,q)

)
− h p2

gcd(p,q)

(
m
−n

)
under C which should be

j

gcd(p, q)

(
1
0

)
−
( h

gcd(p,q)pm

h

)
has to be an element of Z2. But since gcd(p, q) was assumed to be greater than 1 and

h
gcd(p,q)pm ∈ Z this can’t be the case. �

The next proposition summarizes the cohomological properties of Witten spaces with
finite cyclic fundamental groups we have found so far.

Proposition 2.5.2. Let Mpq ∈ W and m,n ∈ Z s.t. m q
gcd(p,q) + n p

gcd(p,q) = 1. We
further denote by x, y the standard generators of H2(CP 2; Z) respectively H2(CP 1; Z).
Then:

• H1(Mpq; Z) ∼= 0.

• H2(Mpq; Z) ∼= Z/gcd(p, q)⊕ Z. The elements

p

gcd(p, q)
Π∗(x) +

q

gcd(p, q)
Π∗(y) and mΠ∗(x)− nΠ∗(y)

form a basis of H2(Mpq; Z).

• H3(Mpq; Z) ∼= 0.

• If p = 0, then H4(Mpq; Z) ∼= 0. If p 6= 0, then H4(Mpq; Z) ∼= Z/gcd(p, q) ⊕

Z/
p2

gcd(p, q)
in this case the elements

p

gcd(p, q)
Π∗(x2) +

q

gcd(p, q)
Π∗(xy) and mΠ∗(x2)− nΠ∗(xy)

form a basis of H4(Mpq; Z).

• H5(Mpq; Z) ∼= Z.

• H6(Mpq; Z) ∼= Z/gcd(p, q). The element Π∗(x2y) generates H6(Mpq; Z).

Remark 2.5.3. i) The cup product of classes of even degree is obvious from the Gysin
sequence. The only nontrivial cup product pairing involving odd degree cohomology
classes is ∪ : H2(Mpq; Z)×H5(Mpq; Z)→ H7(Mpq; Z). But this we understand with
the help of Poincaré duality.

ii) Since H3(Mpq; Z) ∼= 0 it follows that all Witten spaces are spinc manifolds. In
section 2.5.3 we give a criterion to decide whether a Witten space admits a spin struc-
ture or not.
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2.5.2 The mod -(|π1(M
pq)|)-cohomology ring

From now on we always assume that Mpq is an element of W, where π1(Mpq) is finite
cyclic, i.e. (p, q) 6= (0, 0).

The computations in the last section and the Universal Coefficient Theorem (UCT)
enable us to calculate the Z/gcd(p, q)-cohomology groups of Mpq:

H∗(Mpq; Z/gcd(p, q)) ∼=
{

Z/gcd(p, q), if ∗ = 0, 1, 6, 7
(Z/gcd(p, q))2, if ∗ = 2, 3, 4, 5 .

This information determines the differentials in the following E2-term of the Leray-
Serre spectral sequence, associated to the fibration S1 i→ Mpq Π→ CP 2 × CP 1 which
converges to the Z/gcd(p, q)−cohomology of Mpq:

1 Z/gcd(p, q) 0 (Z/gcd(p, q))2 0
↘ d2 ↘ d2

0 Z/gcd(p, q) 0 (Z/gcd(p, q))2 0
0 1 2 3...

All the d2-differentials are trivial especially d2 : E01
2 → E20

2 which has the following
consequence: The multiplicative structure of this spectral sequence implies that there
are ”global classes” a ∈ H1(Mpq; Z/gcd(p, q)) with the property that i∗(a) is a gen-
erator of H1(S1; Z/gcd(p, q)). Thus there are elements in H∗(Mp,q; Z/gcd(p, q)) s.t.
their images under i∗ form a basis of H∗(S1; Z/gcd(p, q)). In such a situation we can
apply the Leray-Hirsch theorem ([Ha, p.432]):

Lemma 2.5.4. Π∗ : H∗(CP 2 × CP 1; Z/gcd(p, q)) → H∗(Mpq; Z/gcd(p, q)) is an in-
jective ring homomorphism and further

H∗(Mpq; Z/gcd(p, q)) = Λ[a]⊗Π∗( H∗(CP 2 × CP 1; Z/gcd(p, q)) )

= Λ[a]⊗ Z/gcd(p, q) [Π∗(x),Π∗(y)]
Π∗(x3),Π∗(y2)

.

2.5.3 Characteristic classes

In this section we want to give explicite formulas for the first and second Stiefel-
Whitney class ω1,2(Mpq) := ω1,2(τMpq ) and the first Pontrjagin class p1(Mpq) :=
p1(τMpq ) of the tangent bundle of a Witten space Mpq.

Let Dpq pr→ CP 2 × CP 1 be the disc bundle over CP 2 × CP 1 associated to the S1-
bundle Mpq Π→ CP 2×CP 1 and j : Mpq ↪→ Dpq the inclusion. It’s clear that pr◦j = Π
and it’s true that τDpq ∼= pr∗(τCP 2×CP 1)⊕ ε21, where ε21 denotes the real 2-dimensional
trivial bundle over Dpq. Hence

τMpq ⊕ ε1 ∼= j∗(τDpq ) ∼= j∗(pr∗(τCP 2×CP 1)⊕ ε21) ∼= Π∗(τCP 2×CP 1)⊕ ε21.
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2 Witten spaces

Let ρ2 : H2(Mpq; Z)→ H2(Mpq; Z/2) be the mod-2-reduction map. Since the charac-
teristic classes we are interested in are stable characteristic classes and the character-
istic classes of CP 1 are trivial we get the following equalities:

ω1(Mpq) = ω1(Π∗(τCP 2)) = Π∗(ω1(CP 2)) = Π∗(ω1(3 · γ)) = 0, (2.7)
ω2(Mpq) = ω2(Π∗(τCP 2)) = Π∗(ω2(CP 2)) = Π∗(ω2(3 · γ)) = 3Π∗ρ2c1(γ), (2.8)
p1(Mpq) = p1(Π∗(τCP 2)) = Π∗(p1(CP 2)) = Π∗(3(γ)2) = 3Π∗(x2), (2.9)

where γ is the dual of the tautological bundle over CP 2 (see [M-S, p. 169]). Formula
(2.7) tells us that all Witten spaces are orientable.

Lemma 2.5.5. Let Mpq be a Witten manifold. Then Mpq is a spin manifold if and
only if gcd(p, q) is odd and q

gcd(p,q) is even.

Proof.”⇐”: We recall that p
gcd(p,q)Π∗(x) + q

gcd(p,q)Π∗(y) generates the torsion and
mΠ∗(x)− nΠ∗(y) a Z-summand of H4(Mpq; Z). We may write 3c1(γ) = 3Π∗(x) as

3{n(
p

gcd(p, q)
Π∗(x) +

q

gcd(p, q)
Π∗(y))

+
q

gcd(p, q)
(mΠ∗(x)− nΠ∗(y))}. (?)

The part of the Bockstein sequence for Mpq associated to 0 → Z ·2→ Z → Z/2 → 0
which is of interest for us is

· · ·H2(Mpq; Z)→ H2(Mpq; Z)
ρ2→ H2(Mpq; Z/2)→ 0 · · · .

From this we observe together with the UCT that the map ρ2 factorizes over
H2(Mpq;Z)

torsion (∼= Z), i.e. ρ2 sends the torsion part of H2(Mpq; Z) to zero. This together
with (?) and (2.8) implies that

ω2(Mpq) =
q

gcd(p, q)
(mΠ∗(x̄)− nΠ∗(ȳ)),

where x̄ and ȳ are the mod-2-reductions of x and y resp. Since q
gcd(p,q) is even the first

part is proven.

”⇒”: If Mpq admits a spin structure, then ω2(Mpq) = 0 and (?) implies that q
gcd(p,q)

is even. This follows from the fact that image of p
gcd(p,q)Π∗(x) + q

gcd(p,q)Π∗(y) and
mΠ∗(x) − nΠ∗(y) under ρ2 generate direct summands of H2(Mpq; Z/2). Now we as-
sume that gcd(p, q) is even which means that gcd(p, q) and q

gcd(p,q) are not coprime.
With the Bockstein sequence mentioned above we observe that the image of the map ρ2

restricted to the torsion part of H2(Mpq; Z) is nonzero in H2(Mpq; Z/2) ∼= Z/2⊕Z/2.
This means that the n appearing in (?) in front of the first term has to be even either.
But m q

gcd(p,q) + n p
gcd(p,q) = 1 implies that n and q

gcd(p,q) have to be coprime. �
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Corollary 2.5.6. Let Mpq be a Witten space.
(i) There are no Witten spaces with fundamental group of even order that are spin
manifolds.
(ii) The existence of a spin structure on the universal covering space M̃pq of Mpq

doesn’t imply that Mpq itself admits a spin structure.
(iii) If a Witten manifold admits a spin structure, then the spin structure is unique.

Proof. The statements (i) and (ii) follow directly from the last lemma. The univer-
sal covering space of M28 is M14 and we see that M14 admits a spin structure where
M28 doesn’t admit one. Statement (iii) is a consequence of the fact that H1(Mpq; Z/2)
is 0 for Mpq a spin manifold. �

2.5.4 The normal 2-type

Matthias Kreck introduced the concept of the normal k-type of a smooth manifold in
the framework of his modified surgery theory [Kr], where k ∈ N. In the next section
we give a very brief outline of the classification program based on Kreck’s surgery
and present a successful application to the classification of the set of simply-connected
Witten spaces.

We start this section with a formal definition of the normal k-type of a smooth mani-
fold and finish it with the determination of the normal 2-type of a Witten space which
will play a central role in chapter four.

Let M be a manifold and ν : M → BO its stable normal Gauss map. Assume
that the following diagram commutes:

M

B

?

BO

ξ

-ν�
�

�
�

�
�

�
�
��

ν̄

with ξ a fibration.

Definition 2.5.7. Let k ∈ N.
i) We call the lift ν̄ over ξ of the normal Gauss map ν a normal k-smoothing of M
in (M, ξ) if ν̄ is a (k + 1)-equivalence.
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2 Witten spaces

ii) If the homotopy groups of the fibre of ξ vanish in the degrees greater than or equal
to k + 1, then we call B k-universal.

The theory of Moore-Postnikov decompositions of maps implies that there is a fi-
bration Bk → BO with Bk is k-universal admitting a normal k-smoothing of M . And
if B and B′ are both k-universal and admitting a k-smoothing of M , then obstruction
theory implies that the fibrations B,B′ → BO are fibre homotopy equivalent. For all
these homotopy theoretic facts we refer to [Kr.1, p. 14-15] and [Bau, p. 306-311].
Thus the fibre homotopy type of the fibration Bk over BO is an invariant of M and
we call it the normal k-type of M .

Determination of the normal 2-type of a Witten space

Let Mpq ∈ W be a Witten space and i ∈ N. We denote the space in the i-th level of
the Postnikov decomposition of Mpq by Pi(Mpq).

.

.

.

Mpq

P2(Mpq)

?

P1(Mpq)

?

* .

�������������1

f0

-f1
PPPPPPPPPPPPPq

f2

.

.

.

In the following we only use the properties of the map f2 : Mpq → P2(Mpq) but in the
last part of this section we are concerned with the explicite shape of P2(Mpq).

Now we assume that Mpq is a spin manifold. In this case there is the following
commutative diagram

38



2.5 Invariants

Mpq

BSpin

?

BO ,

p

-ν�
�

�
�

�
�

�
�
��

νsp

where p is the 3-connected cover of BO, ν : Mpq → BO is the classifying map of the
stable normal bundle νMpq of Mpq and νsp is a lift of ν. We define the following maps:

ν := f2 × vsp : Mpq → P2(Mpq)×BSpin,
ξ := p ◦ pr2 : P2(Mpq)×BSpin→ BO,

where pr2 is the projection map onto the second factor. One can easily check that the
following diagram commutes:

Mpq

P2(Mpq)×BSpin

?
BO

ξ

-
ν

�
�

�
�

�
�

�
��

ν̄

Since p : BSpin → BO is the 3-connected cover of BO it follows that ν induces iso-
morphisms on π1 and π2 and the fibre of ξ has vanishing homotopy groups πn for n
greater than or equal to 3.

But what is the normal 2-type of a Witten Space that is non-spin?

From Remark 2.5.3.ii) we know that Mpq ia a spinc manifold, this means that there
exists a class w̃2 in H2(Mpq; Z) with the property that its mod-2 reduction is the
second Stiefel-Whitney class w2(Mpq) of the tangent bundle of Mpq. Since the map
f2 : Mpq → P2(Mpq) is a 3-equivalence there exists a class w′2 in H2(P2(Mpq); Z) that
corresponds to w̃2 under f∗2 . It’s well known that H2(P2(Mpq); Z) is isomorphic to
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2 Witten spaces

[P2(Mpq),K(Z, 2)](= [P2(Mpq), BSO(2)]) (see [G-M, p. 73]). Now let L′ → P2(Mpq)
be a complex line bundle with first Chern class w′2.
We wonder whether there exists a map g : Mpq → BSpin s.t. the following diagram
commutes up to homotopy:

P2(Mpq)×BSpin� L′ × ηSpin

? ?
w′

2 × id

BSO(2)×BSpin � ηSO(2) × ηSpin

?
?p′ × p

BO(2)×BO � ηO(2) × η

BO � η .
? ?⊕

Mpq -
ν

�
�

�
�

�
�

�
��

f2 × g?

The η’s are the corresponding ”tautological bundles” and ⊕ is the classifying map for
ηO(2) × η → BO(2) × BO. If there was such a g, then f2 × g would be a normal
2-smoothing of Mpq and

(P2(Mpq)×BSpin,⊕ ◦ (p′ × p) ◦ (w′2 × id))

the normal 2-type of Mpq.

Let’s denote the pullback fibration of L′ under f2 by L. If νMpq ⊕ L−1 was spin,
then we could define g as a classifying map of νMpq ⊕ L−1.
We assert that νMpq⊕L−1 is spin. To prove this we use the fact that Mpq is orientable.
The total Stiefel Whitney class w(νMpq ) of νMpq starts as

1 + 0 + w2(Mpq) + · · ·

and the total Stiefel Whitney class w(L) of L equals

1 + 0 + w2(Mpq).

This implies that w(L−1) = 1 + 0 + w2(Mpq) and thus

w(νMpq ⊕ L−1) = 1 + 0 + 0 + · · · ,

which shows that νMpq ⊕ L−1 is spin. This leads to the following

Proposition 2.5.8. Let Mpq be a Witten space. The normal 2-type of Mpq is

(P2(Mpq)×BSpin, ξMpq ),
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2.5 Invariants

where P2(Mpq) is the space in the second stage of the Postnikov tower of Mpq and
depending on ω2(Mpq) the map ξMpq : P2(Mpq)×BSpin→ BO is one of the fibrations
which we have defined above.

What is P2(Mpq)?

From Corollary 2.4.3. we know that homotopically π1(Mpq) acts trivially on M̃pq,
the universal covering space of Mpq and Lemma 2.2.3. implies that π2(Mpq) ∼= Z.
Thus we can construct the Postnikov tower of Mpq with the help of k-invariants. The
Postnikov tower of Mpq begins as follows:

.

.

.

Mpq

P2(Mpq)

?

K(Z/gcd(p, q), 1)

?

* .

-k2 K(π2(Mpq), 3) = K(Z, 3).
������������1

f0

-f1
PPPPPPPPPPPPq

f2

.

.

.

Thus P2(Mpq) is the total space of the pullback fibration induced by k2. Let L∞r de-
note the infinite dimensional lens space with fundamental group isomorphic to Z/r and
we identify K(Z/gcd(p, q), 1) with L∞gcd(p,q) and K(Z, 2) with the infinite dimensional
complex projective space CP∞.
By obstruction theory one can see that the homotopy class [k2] of k2 can be identified
with an element in H3(L∞gcd(p,q); Z). But by the UCT H3(L∞gcd(p,q); Z) is trivial. Hence
k2 is nullhomotopic and this implies that P2(Mpq) is fibre homotopy equivalent to

L∞gcd(p,q) × CP∞.

Thus if Mpq is a Witten space with fundamental group isomorphic to Z/gcd(p, q), then
the normal 2-type of Mpq is

(L∞gcd(p,q) × CP∞ ×BSpin, ξMpq ),

where ξMpq depends only on ω2(Mpq).
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2 Witten spaces

2.6 A diffeomorphism classification: The simply-
connected case

This and the next section deal with the classification of the following set of manifolds:

{Mab := Mab1|a, b ∈ Z} ⊂ W.

With a classification theorem of these manifolds in the hands, we easily obtain via
Corollary 2.2.5. a classification of the set of all Witten spaces.

Modified surgery

The main reason why mathematicians like Browder, Milnor, Wall and others devel-
oped the so called classical surgery theory was given by the following problem:

Find a way to distinguish the diffeomorphism and homeomorphism types within a given
homotopy type (in dimension ≥ 5).

Classical surgery is a very sophisticated mathematical theory which led to many deep
insights, as for example

the calculation of the groups of diffeomorphism classes of oriented homotopy spheres
in dimension greater than or equal to 5 [K-M].

However if one encounters the problem to compare the diffeomorphism type between
two given closed smooth manifolds of dimension greater than or equal to 5, classical
surgery theory implies to decide first whether the given manifolds share the same (sim-
ple) homotopy type. But even if one has ensured the existence of a (simple) homotopy
equivalence between manifolds one needs to know the homotopy equivalence fairly ex-
plicitely in order to continue the surgery program, i.e. in order to tackle the problem
of whether the homotopy equivalence can be covered by bundle maps of the normal
bundles and whether they are normally bordant. However the problem to prove the
existence of a homotopy equivalence between two smooth manifolds is in general a
very hard one.
Thus classical surgery seems to be not that efficient in practical life.
This was maybe one of the reasons why Matthias Kreck developed an extension of
classical surgery which is called modified Surgery [Kr]. Let k, n ∈ N s.t. n is greater
than or equal to 5 and k is greater than or equal to

[
n
2

]
. Sometimes modified surgery

enables to classify n-dimensional smooth closed manifolds up to diffeomorphism (or
homeomorphism) although roughly speaking only the k-skeleton is known.

In the last section we introduced the normal k-type and normal k-smoothings of a
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2.6 A diffeomorphism classification: The simply- connected case

smooth n-manifold. These mathematical objects enable us to formulate the surgery
program which Theorem 3. and Theorem 4. in [Kr] suggest:

1) First we check whether the manifolds under consideration have the same normal
2-type (B, ξ).

2) Then we try to decide whether two normal ([n2 ] − 1)-smoothings are normally
bordant in (B, ξ).

3) The last step is to analyze the obstruction for a B-bordism to be transformed
by surgery into a s-cobordism.

This strategy for classifying manifolds led to the following abstract classification the-
orem for the simply-connected Witten spaces.

Theorem 2.6.1. (A special case of [Kr, Theorem 6 ])
Two simply-connected Witten spaces M and M ′ are diffeomorphic if and only if they

• have the same normal 2-type B,

• admit normal 2-smoothings f : M → B and f ′ : M ′ → B and a B-bordism
(W,F ) between (M,f) and (M ′, f ′) s.t.

i) sign(W ) = 0 and
ii) 〈F ∗(u) ∪ F ∗(v), [W,∂W ]〉 = 0 for all u, v ∈ H4(B; Q).

The condition ii) is to be understood in the following way: From the cohomological
properties of the Witten spaces we conclude that H3(∂W ; Q) ∼= 0 ∼= H4(∂W ; Q).
Hence there is an isomorphism H4(W,∂W ; Q)

∼=→ H4(W ; Q). We identify F ∗(u) and
F ∗(v) as elements in H4(W,∂W ; Q) before taking the cup product.

In [Kr-St] Matthias Kreck and Stephan Stolz succeeded in both the translation of
Theorem 2.6.1. in terms of congruences between integral functions which depend on
the parametrisation of the set of simply-connected Witten spaces and giving a homeo-
morphism classification as well in terms of integral congruences.

Theorem 2.6.2. ([Kr-St, Theorem B])
Suppose Mpq and Mp′q′ are elements of W which are simply-connected. Then Mpq is
homeomorphic to Mp′q′ if and only if p′ = ±p and q′ ≡ q mod app2 where

ap =
{

1, if 2|p and 4 - p
2, otherwise.

And Mpq is diffeomorphic to Mp′q′ if and only if p′ = ±p and q′ ≡ q mod 2λ2(q)7λ7(q)q2,
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2 Witten spaces

where

λ2(p) =


0, if p ≡ 2, 6 mod 8
1, if p ≡ 1, 7 mod 8
2, if p ≡ 3, 5 mod 8
3, if p ≡ 0, 4 mod 8

λ7(p) =
{

0, if p ≡ 1, 2, 5, 6 mod 7
1, if p ≡ 0, 3, 4 mod 7.

Remark 2.6.3. i) With the help of the last theorem Matthias Kreck and Stephan Stolz
discovered the following remarkable phenomenon :

Within the category of homogeneous spaces there are homeomorphic but non-diffeomorphic
manifolds.

ii) Other examples of successful application of modified surgery are:
The classification of the simply-connected Aloff-Wallach spaces [Kr-St.1] and the clas-
sification of complete intersections [Tr].

2.7 A diffeomorphism classification: The
non-simply-connected case

2.7.1 The equivariant signature

Throughout this section we denote by G a nontrivial finite cyclic group. The main
reference for the two subsequent sections is [A-S].

Definition 2.7.1. Let k ∈ N and W be a 2k-dimensional compact smooth oriented
manifold equipped with a smooth and orientation preserving G-action. The boundary
∂W of W inherits an orientation and has the induced G-action. We call W a G-
manifold.

In the last definition the case ∂W = ∅ is not excluded.

We know that there is the following (−1)k-hermitian form called the intersection form
of W :

λ : Hk(W,∂W ; Z)×Hk(W,∂W ; Z)→ Z.

This form is G-invariant, i.e. λ(ga, gb) = λ(a, b). This follows from the assumption
that G acts on W in an orientation preserving way.
The radical rad(λ) of λ equals ker(i∗ : Hk(W,∂W ; Z) → Hk(W,Z)). We easily see
that the form

λ̄ :
Hk(W,∂W ; Z)

rad(λ)
× Hk(W,∂W ; Z)

rad(λ)
→ Z,

44



2.7 A diffeomorphism classification: The non-simply-connected case

given by
λ̄([a], [b]) := λ(a, b),

is a non-degenerate G-invariant (−1)k-hermitian form.
In the following we denote Hk(W,∂W ;Z)

rad(λ) by Ĥ(W ). Tensoring Ĥ(W ) with C over Z
yields a complex vector space which we denote by Ĥ(W )C. We extend λ̄ to Ĥ(W )C

in the following way:

λ̄C : Ĥ(W )C × Ĥ(W )C → C, (x⊗ z1, y ⊗ z2) 7→ λ̄(x, y) · (z1 · z2).

This complex valued quadratic form is a (−1)k-hermitianG-invariant unimodular form.

Now we construct a hermitian form on Ĥ(W )C which is positive definite and G-inva-
riant:

Let (z̃1, ..., z̃l) be a complex basis for Ĥ(W )C and let 〈·, ·〉 be the oriented standard
hermitian form on Ĥ(W )C, i.e. 〈z̃i, z̃j〉 = δij . We define the following G-invariant
hermitian product:

〈·, ·〉G :=
∑
g∈G
〈g(·), g(·)〉 .

We see that (Ĥ(W )C, 〈·, ·〉G) is a unitary G-representation.
In order to define the G-signature of W we need the complex linear map Φ : Ĥ(W )C →
Ĥ(W )C which is characterized by the following equation:

λ̄C(a, b) = 〈a,Φ(b)〉G ∀ a, b ∈ Ĥ(W )C.

Let (z1, ..., zl) be an orthonormal basis with respect to 〈·, ·〉G then we have the following
matrix representation A of Φ (w.r.t. this basis):

(λ̄C(zi, zj)) =: (aij).

The properties of λ̄C which we have mentioned above imply:

A∗ = (−1)kA, (1)
A(gx) = g(Ax) ∀g ∈ G, x ∈ Ĥ(W )C, (2)

where A∗ denotes the adjoint of A.

From the unimodularity of λ̄C we conclude that the eigenvalues of A are non-zero
and if k is even then (1) implies that the eigenvalues of A are real and

Ĥ(W )C = H+ ⊕H−,

where H+ is the eigenspace of the positive eigenvalues and H− is the eigenspace of the
negative eigenvalues. And if k is odd, then (1) implies that the eigenvalues of A are
purely imaginary and

Ĥ(W )C = Hi ⊕H−i,
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2 Witten spaces

where Hi is the eigenspace of the eigenvalues which are positive multiples of i and H−i
is the eigenspace of the eigenvalues which are negative multiples of i. From (2) we
derive that H+,H−,Hi and H−i are all G-invariant. This means that H+ and H− are
orthogonal G-representations hence we get two real valued characters which we denote
by ρ± : G → R. And Hi and H−i are unitary G-representations thus we obtain two
complex valued characters ρ±i : G→ C.

Definition 2.7.2. Let RO(G), RU(G) be the real, complex representation ring of G
resp. The G-signature sign(G,W ) of W is defined as

ρ+ − ρ− ∈ RO(G) or ρi − ρ−i ∈ RU(G)

depending on whether k is even or odd.
Let g ∈ G then

sign(g,W ) =
{
ρ+(g)− ρ−(g) ∈ R f k is even
ρi(g)− ρ−i(g) ∈ iR if k is odd

The G-signature is well defined. This follows from the following three facts:

a) The characters depend continuously on the inner product.

b) The space of all G-invariant hermitian products on Ĥ(W )C is connected.

c) The characters of a compact group are discrete.

We immediately observe that sign(1,W ) equals the classical signature sign(W ).

The G-signature has the following very important property which was proven by
Novikov.

Proposition 2.7.3. ( [A-S, Prop. (7.1)]) Let Y and Y ′ be 2k-dimensional G-manifolds
with ∂Y = X and ∂Y ′ = −X. Let further Z := Y ∪X Y ′ be the closed G-manifold that
one obtains when one glues Y and Y ′ together along the boundary X via the identity.
Then

sign(G,Z) = sign(G, Y ) + sign(G, Y ′).

The fixed point set

Let W be a 2k-dimensional G-manifold and g ∈ G. By W g we denote the fixed
point set of g in W . In general W g is not connected. So we write W g as

⋃̇
j∈IW

g
j ,

the disjoint union of all its connected components. Let x be a point of W g
j , TxW

the tangent space of W at x and (dg)x the differential of the diffeomorphism which
is associated to g at the point x. By standard techniques we can find a metric on W
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2.7 A diffeomorphism classification: The non-simply-connected case

s.t. g acts as an isometry. Since g respects the orientation of W there exists a basis of
TxW s.t. the representation matrix of (dg)x is

1 0 · · · · · · 0

0
. . .

...
... 1

cos(θ1) sin(θ1)
− sin(θ1) cos(θ1)

...

...
. . . 0

0 · · · · · · 0
cos(θk) sin(θk)
− sin(θk) cos(θk)


,

where θl is greater than 0 and less than or equal to π for l ∈ {1, . . . , k}. Of course the
multipicity of the eigenvalue 1 equals the dimension of W g

j . Since W is even dimen-
sional we conclude that for all j ∈ I the manifold W g

j has to be even dimensional.

Let N g
j denote the normal bundle of W g

j in W . Now we look at the action of G
on N g

j .
Since G is cyclic its irreducible real representations are of two types:

(i) one-dimensional with g 7→ ±1 and

(ii) two-dimensional with g 7→
(

cos θ − sin θ
sin θ cos θ

)
.

In (ii) the representations given by θ and −θ are equivalent and we may therefore
restrict to the case 0 < θ < π. Such a two-dimensional real G-module has then a
(canonical) complex structure in which g acts as the complex scalar eiθ.

As above let x be a point in W g
i and N g

x be the restriction of the normal bundle
N g
i to x. We have the following decomposition of N g

x :

N g
x = N g

x (−1)⊕
∑

0<θ<π

N g
x (θ),

where N g
x (−1) is the subvectorspace of N g

x on which g acts by −1 and N g
x (θ) is the

complex subvectorspace of N g
x where g acts by eiθ for some θ ∈ (0, π).

The decomposition of N g
x extends to a decomposition of N g

i :

N g
i = N g

i (−1)⊕
∑

0<θ<π

N g
i (θ),

where N g
i (−1) denotes a real and N g

i (θ) a complex vector bundle over W g
i (see [A-S,

p. 560] or [A, Thm. 1.6.2.]).
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If we have a complex structure on the normal bundle over W g
i , then we orient W g

i

(if orientable) in the following way:
We first choose the orientation of the normal bundle which comes from the complex
structure then we orient the tangent bundle of W g

i in such a way that we obtain the
orientation of the tangent bundle of W restricted to W g

i .

Assume that N g
i (θ) is decomposable into the direct sum of r complex line bundles

over W g
i . We associate to N g

i (θ) the formal power series in r variables which is im-
plicitely given by

Mθ :=
∏

0<l≤r

tanh(i θ2 )

tanh(xl+iθ
2 )

. (2.10)

This means that the formal power series is just the Taylor expansion of the right
handside of (2.10) around zero.
Applying the so called Hirzebruch formalism ([Hi, Ch. 1, §1] or [M-S, §19])) one can
derive certain characteristic polynomials {Mθ

k(N g
i (θ))}k∈N0 associated to Mθ which

depend on the Chern classes of N g
i (θ). Let Mθ(N g

i (θ)) be the formal sum of all
Mθ

k(N g
i (θ))’s, i.e.

Mθ(N g
i (θ)) :=

∞∑
j=0

Mθ
j (N

g
i (θ)).

Assume that N g
i (−1) is decomposable into the direct sum of s real line bundles over

W g
i . Then we associate to N g

i (−1) the formal power series in s variables which is
implicitely given by

L−1 :=
∏

0<l≤s

tanh(xl

2 )
xl

2

.

As above we obtain characteristic polynomials

{L−1
j (N g

i (−1))}j∈N0 ,

but here they depend on the Pontrjagin classes of N g
i (−1). We’ll make use of the

following notation:

L−1(N g
i (−1)) :=

∞∑
k=0

L−1
k (N g

i (−1)).

Let Lk(W g
i ) denotes the k-th Hirzebruch L-polynomial depending on the Pontrijagin

classes of W g
i (see for expl. [M-S, p. 224]). Let’s denote

∑∞
k=0 Lk(W g

i ) by L(W g
i ).

Theorem 2.7.4. ( [A-S, The G-Signature Theorem, Thm. 6.12])
Let W be a closed 2k-dimensional G-manifold, g ∈ G and W g =

⋃̇
nW

g
n the fixed point

set of g in W , N g =
⋃
N g
n the normal bundle of Wg in W and

N g =
⋃
n

(
N g
n (−1)⊕

∑
0<θ<π

N g
n (θ)

)
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2.7 A diffeomorphism classification: The non-simply-connected case

the decomposition of N g determined by the eigenvalue of g. Then N g
j (−1) is a real

vector bundle of dimension 2rj, N g
j (θ) is a complex vector bundle of complex dimension

sj(θ) and by 2tj we denote the dimension of W g
j . Then the following holds:

sign(g,W ) =
∑
j

(2−ri

∏
0<θ<π

(i tan(
θ

2
))sj(θ)L(W g

j )L−1(N g
j (−1))e(N g

j (−1))

∏
0<θ<π

Mθ(N g
j (θ))[W g

j ]),

where e(N g
j (−1)) denotes the ”twisted” Euler class of N g

j (−1) and [W g
j ] is the ”twisted”

fundamental class of W g
j , both twistings being defined by the local coefficient system of

orientations of W g
j .

For a precise explanation of what ”twisted” Euler class and fundamental class really
means and further immediate corollaries of the last theorem we refer to [A-S, pp.
581-603].

2.7.2 h-cobordism invariants

We call a G-manifold where the action of G is free a free G-manifold. In this section
we define an invariant for free G-manifolds. Let W be such a manifold then the
invariant is going to be a map

σ(·,W ) : G \ {0} → C

s.t. two free G-manifolds V,W which differ by a G-equivariant diffeomorphism have
the same invariant.

Let X be a G-manifold with ∂X = W .

Definition/Lemma 2.7.5. Let g ∈ G \ {0} then we define σ(g,W ) to be

L(g,X)− sign(g,X),

where L(g,X) is the expression which appears on the right hand side of the equivariant
signature formula.

Proof. We have to show that σ(g,W ) just depends on W and not on the choice
of the G-bordism X. Let X ′ be another G-manifold with ∂X ′ = W . We denote
L(g,X)− sign(g,X) by σX(g,W ) and L(g,X ′)− sign(g,X ′) by σX′(g,W ). Then we
glue X and −X ′ together along W with the identity map and the result

Z := X ∪W X ′

is a closed G-manifold. By the additivity property of the equivariant signature (Propo-
sition 2.7.3.) we get
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2 Witten spaces

sign(g, Z) = sign(g,X)− sign(g,X ′) (2.11)

and since g has no fixed points in W the fixed point set Zg is the disjoint union of Xg

and X ′g. This implies

L(g, Z) = L(g,X)− L(g,X ′). (2.12)

And we obtain:

(2.12)− (2.11) = {L(g,X)− sign(g,X)} − {L(g,X ′)− sign(g,X ′)}
= σX(g,W )− σ′X(g,W )
= L(g, Z)− sign(g, Z)

Thm.2.7.4.= 0.

�

Proposition 2.7.6. Let V,W be closed (2k−1)-dimensional free G-manifolds and X a
G-manifold with ∂X = V −W . If Xg = ∅ and im(i∗ : Hn(X, ∂X; R)→ Hn(X; R)) =
0, then

σ(g, V ) = σ(g,W ), ∀g ∈ G \ {0}.

Proof. Let Y and Y ′ be G-manifolds with ∂Y = V and ∂Y ′ = W. By glueing X,
Y and −Y ′ together in the obvious way we obtain

Z := Y ∪V X ∪W Y ′.

The assumptions of the proposition and the additivity property of the equivariant
signature imply

L(g, Z) = L(g, Y )− L(g, Y ′)

and

sign(g, Z) = sign(g, Y )− sign(g, Y ′).

By Theorem 2.7.4. it follows that

0 = L(g, Z)− sign(g, Z)
= {L(g, Y )− sign(g, Y )} − {L(g, Y ′)− sign(g, Y ′)}
= σ(g, V )− σ(g,W ).

�
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2.7 A diffeomorphism classification: The non-simply-connected case

Definition/Proposition 2.7.7. Let M be a closed oriented (2k − 1)-dimensional
manifold with nontrivial finite cyclic fundamental group G. Assume that the universal
covering space M̃ of M bounds as an oriented G-manifold another G-manifold, then

σ(·, M̃) : G \ {0} → C

is an h-cobordism invariant of M .

Proof. Let W be an h-cobordism between M and M ′ then W̃ is an h-cobordism
between M̃ and M̃ ′ and let i : M ↪→W and j : M ′ ↪→W be the inclusions.
It’s clear that W̃ g = ∅ and since j∗ : Hk(W̃ ; R) → Hk(∂W̃ ; R) is injective it follows
from the long exact sequence in cohomology for (W̃ , ∂W̃ ) that im(i∗ : Hk(W̃ , ∂W̃ ; R)→
Hk(W̃ ; R)) = 0 and the assumptions of the last proposition are fulfilled. Thus
σ(g, M̃) = σ(g, M̃ ′), where we have identified π1(M ′) with G via (i∗)−1j∗. �

Lemma 2.7.8. Let M be a closed oriented (2k − 1)-dimensional manifold with G as
its fundamental group and g ∈ G \ {0}. If k ≡ 3 mod 4, then σ(g, M̃) ∈ R and if
k ≡ 1mod 4, then σ(g, M̃) ∈ iR.

Proof. The σ-invariant is additive w.r.t. the disjoint union. On the other hand it
follows from the free cobordism theory of Conner and Floyd [C-F, Chapter 3 and 7]
that for a (2k− 1)-dimensional free G-manifold X there exists a natural number l s.t.⋃̇l
i=1Xi bounds an oriented free G-manifold, where Xi is a copy of X. Putting these

facts together leads to the following: Let g ∈ G \ {0}, then

σ(g,
⋃̇l

i=1
Xi) = lσ(g,X).

But this implies that

σ(g,X) = − sign(g,X)
l

.

If dim(X) ≡ 3 mod4, then sign(g,X) ∈ R and if dim(X) ≡ 1 mod 4, then sign(g,X) ∈
iR which finishes the proof.

�

2.7.3 The main result

Theorem 2.7.9. Let s be a natural number greater than 1 and Mpq, Mp′q′ be two
Witten spaces with π1(Mpq) ∼= π1(Mp′q′) ∼= Z/s. Then the following statements are
equivalent:

1) There exist homogeneous metrics m1 and m2 on Mpq and Mp′q′ w.r.t. SU(3)×
SU(2)× U(1) s.t. (Mpq,m1) and (Mpq,m2) are isometric.

2) Mpq and Mp′q′ are diffeomorphic.

3) |p| = |p′| and |q| = |q′|.

51



2 Witten spaces

Proof. Statement 1) obviously implies statement 2).

”3) ⇒ 1)”: In section 5 of this chapter we defined Mpq and Mp′q′ to be Mpq1 and
Mp′q′1 respectively. Proposition 2.3.2. implies that the algebraic condition in 3) im-
plies the existence of an equivariant diffeomorphism between the corresponding Witten
spaces in the sense of Definition 2.3.1. But the existence of such a diffeomorphism and
Proposition 2.3.5. imply 1).

The hard part of the proof is to show that 2) implies 3). We show this by doing
the following steps:

i) Computation of the σ-invariants for Witten spaces with fundamental groups
which have order greater than or equal to three.

ii) Proof of ”2)⇒ 3)” for these manifolds and for those with 2||π1(·)| but |π1(·)| > 4.

iii) Computation of the σ-invariants for Witten spaces with fundamental group iso-
morphic to Z/2 or Z/4.

iv) Proof of ”2)⇒ 3)” for these manifolds.

i) Before we begin with the calculation of the invariants we equip the (orientable)
Witten spaces with an orientation. Therefore we identify them with the total space of
the S1-fibre bundle over CP 2 × CP 1,

S1 →Mab Πab→ CP 2 × CP 1,

with c1(Πab) = ax+ by, where x ∈ H2(CP 2; Z) and y ∈ H2(CP 1; Z) are the standard
generators.
If we speak of Mab being oriented, then Mab is equipped with the orientation which
we obtain in the following way:
First we equip the base CP 2×CP 1 with the standard orientation and then we choose
the orientation of the fibre S1 which is compatible with the orientation of the fibre C
of the complex line bundle

C→ Eab
prab→ CP 2 × CP 1

with c1(prab) = ax+ by.
An oriented Witten space Mab induces an orientation on its universal covering space
which coincides with the orientation of M̃ab considered as an oriented Witten space.

Let s be an odd natural number greater than 3 and Mpq be an oriented Witten space
with |π1(Mpq)| = s and we identify M̃pq with M

p
s

q
s . As we have already mentioned

at the beginning of this section we regard M
p
s

q
s as the total space of a certain fibre

bundle.
In order to compute the σ-invariant for M

p
s

q
s one needs an oriented π1(Mpq)-manifold
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2.7 A diffeomorphism classification: The non-simply-connected case

which has M
p
s

q
s as its boundary s.t. the π1(Mpq)-action on the boundary coincides

with the given one on M
p
s

q
s . An obvious choice of such a bordism is the (oriented) disc

bundle D
p
s

q
s associated to M

p
s

q
s , where the orientation on D

p
s

q
s is chosen in such a

way that it is compatible with the orientation of M
p
s

q
s . From Corollary 2.4.3. we know

that the deck transformation on M
p
s

q
s preserves the fibre thus we may smoothly extend

the π1(Mpq)-action on the boundary to the disc bundle in the most obvious way (”by
smoothly decreasing the radius”). Thus the fixed point set of any nontrivial element
in π1(Mpq) is the base space CP 2 × CP 1. Let x and y be the standard generators of
H2(CP 2; Z) and H2(CP 1; Z) resp. The normal bundle of the base space in D

p
s

q
s is the

complex line bundle over CP 2×CP 1 which is given by ±(psx+ q
sy) ∈ H2(CP 2×CP 1; Z)

as its first Chern class (the sign depends on the complex structure of the normal bun-
dle). Let g ∈ π1(Mpq) be a nontrivial element s.t. g acts on the normal bundle by
fibrewise multiplication with eiθg , where

θg ∈ {
2π
s
j|0 < j ≤

[r
2

]
} =: As ⊂ (0, π).

The orientation of D
p
s

q
s and the complex structure of the normal bundle which is de-

termined by g induce an orientation of the fixed point set.

Let’s denote the (oriented) normal bundle over CP 2 × CP 1 together with the mul-
tiplication with g by Nθg

. The σ-invariant associated on g is:

σ(g,M
p
s

q
s ) = (i tan

θg
2

)−1
∑
i=0

Li(CP 2 × CP 1)
∑
j=0

Mθg

j (Nθg
)
[
CP 2 × CP 1

]
±

−sign(g,D
p
s

q
s ),

where [CP 2 × CP 1]± denotes +1 or −1 times the standard fundamental class of
CP 2 × CP 1, where the sign depends on how g acts on the normal bundle (compare
with p.48, the remark on how we orient the fixed point set).

By the construction of the π1(Mpq)-action on D
p
s

q
s we see that homotopically it o-

perates trivially on D
p
s

q
s . Thus

sign(g,D
p
s

q
s ) = sign(D

p
s

q
s ) ∀g ∈ π1(Mpq).

We show that sign(D
p
s

q
s ) = 0:

The compution of the integral cohomology of Mpq has shown that H3(Mpq; Z) and
H4(Mpq; Z) consist only of torsion (compare with Proposition 2.5.2.). This implies
that the cup product pairing

∪ : H4(D
p
s

q
s ,M

p
s

q
s ; R)×H4(D

p
s

q
s ,M

p
s

q
s ; R)→ R

is unimodular. By Poincaré-Lefschetz duality H4(D
p
s

q
s ,M

p
s

q
s ; R) is isomorphic to

H4(D
p
s

q
s ; R). Since CP 2 × CP 1 is a deformation retract of D

p
s

q
s we conclude that
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H4(D
p
s

q
s ; R) is isomorphic to R2. The homology class

[
CP 2

]
which is representable by

CP 2(∼= CP 2×pt ⊂ CP 2×CP 1), considered as a submanifold of D
p
s

q
s , is a generator of

H4(D
p
s

q
s ; R). Taking the cup product of the Poincaré-Lefschetz dual

[
CP 2

]∗ of
[
CP 2

]
with itself and evaluate it on the relative fundamental class of (D

p
s

q
s ,M

p
s

q
s ) is the same

as the geometric intersection of CP 2 with itself. For this we write:
[
CP 2

]
·
[
CP 2

]
.

But we immediately see that we can move CP 2 within the base in the direction of
CP 1. Thus the ”moved CP 2” and the ”original CP 2” intersect trivially which means
that

[
CP 2

]
·
[
CP 2

]
= 0.

Let’s choose another generator Z of H4(D
p
s

q
s ,M

p
s

q
s ; R) s.t.

[
CP 2

]∗ and Z form a basis
of H4(D

p
s

q
s ,M

p
s

q
s ; R). The representation matrix of the adjoint of the cup product

pairing on H4(D
p
s

q
s ,M

p
s

q
s ; R) w.r.t. the chosen basis is given by

(
0 k
k f

)
,

where k ∈ R>0 and f ∈ R. One eigenvalue of the adjoint is positive and the other is
negative hence sign(D

p
s

q
s ) = 0. Thus

σ(g,M
p
s

q
s ) = (i tan

θg
2

)−1
∑
i=0

Li(CP 2 × CP 1)
∑
j=0

Mθg

j (Nθg
)
[
CP 2 × CP 1

]
± .

Since the fixed point set is 6-dimensional we are only interested in Mθ
r(Nθ) for 0 <

r ≤ 3. We know from the section 2.7.1 that the polynomials Mθ
j are implicitely given

by the formal power series that one obtains from the Taylor expansion of

Mθ(x) :=
tanh(i θ2 )

tanh(x+iθ2 )
= coth(

x+ iθ

2
) · tanh(i

θ

2
)

at 0.

Let Mθ = 1 + λ1 + λ2 + λ3 + · · · be the beginning of the Taylor expansion. We
prove that the following is true:

λ1 =
i

sin θ
, λ2 = − 1

4 sin2( θ2 )
, λ3 = −i

(
1

12 sin θ
+

cos θ2
8 sin3 θ

2

)
. (2.13)

ByMθ,k(0) we denote the k-th derivative ofMθ(x) at x = 0. Then around 0 we have
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Mθ(x) =
∑∞
k=0

Mθ,k(0)
k! xk, where

Mθ,1(0) = coth(
x+ iθ

2
)′|x=0 · tanh(i

θ

2
)

= −
tanh(i θ2 )

2 sinh2(i θ2 )

=
i

sin θ
,

Mθ,2(0) = coth(
x+ iθ

2
)′′|x=0 · tanh(i

θ

2
)

=
cosh(i θ2 )

2 sinh3(i θ2 )
tanh(i

θ

2
)

= − 1
−4 sin2 θ

2

,

Mθ,3(0) = coth(
x+ iθ

2
)′′′|x=0 · tanh(i

θ

2
)

=
1

sinh i θ2 cosh i θ2
−

3 cosh i θ2
4 sinh3 i θ2

=
−i

2 sin θ
−

3i cos θ2
4 sin3 θ

2

.

Thus we have proved assertion (2.13). But actually we are interested in

Mθg

j (Nθg
) =Mθg

r (c1(Nθg
), . . . cr(Nθg

)).

and since ci≥2(Nθg
) = 0 the Hirzebruch formalism (see e.g. [M-S, §19]) implies

Mθg

0 = 1,

Mθg

1 = λ1c1(Nθg
)

=
i

sin θg
c1(Nθg

),

Mθg

2 = λ2c
2
1(Nθg )

= − 1

4 sin2 θg

2

c21(Nθg
),

Mθg

3 = λ3c
3
1(Nθg

)

= −i

(
1

12 sin θg
+

cos θg2
8 sin3 θg

2

)
c31(Nθg

).

The relevant Hirzebruch L-polynomials for the fixed point set are:

L0(CP 2 × CP 1) = 1,

L1(CP 2 × CP 1) =
1
3
p1(CP 2 × CP 1) = x2.
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We denote p
s , p′

s by p̄,p̄′ and q
s , q′

s by q̄, q̄′ resp. Let’s assume that the rotation by θg
respects the orientation of the normal bundle which is given by the first Chern class
p̄x+ q̄y, where the orientation of the normal bundle comes from the complex structure.
Then

σ(g,M
p
s

q
s ) = (i tan

θg
2

)−1(1 + x2)(
1 + i

p̄x+ q̄y

sin θg
− p̄2x2 + 2p̄q̄xy

4 sin2 θg

2

+ i

(
1

12 sin θg
+

cos θg

2

8 sin3 θg

2

)
3p̄2q̄x2y

)
[
CP 2 × CP 1

]
+

= −(tan
θg
2

)−1

(
3

(
1

12 sin θg
+

cos θg

2

8 sin3 θg

2

)
p̄2q̄ +

q̄

sin θg

)
.

Let’s denote

−(tan
θg
2

)−1

(
3

(
1

12 sin θg
+

cos θg

2

8 sin3 θg

2

)
p̄2q̄ +

q̄

sin θg

)

by fp̄2(θg). Then we have
σ(g,M

p
s

q
s ) = q̄fp̄2(θg).

ii) Let s be a natural number greater than or equal to 3. If we show that for any p̄ ≥ 1
there exists a θ ∈ As ∩ (0, π) s.t. fp̄2(θ) 6= 0, then there exists a nontrivial maximum
of the set

{|fp̄2(
2π
s
j)||0 < j ≤

[s
2

]
}

which we call mp̄,s.
Let’s assume that Mpq and Mp′q′ are diffeomorphic. Then since |H4(Mpq; Z)| = p2

(see Proposition 2.5.2.) we conclude that |p| = |p′|. And since Mpq and Mp′q′ are
assumed to be diffeomorphic the following value sets of σ-invariants have to coincide

{q̄fp̄2(
2π
s
j)|0 < j ≤

[s
2

]
} = {q̄′fp̄2(

2π
s
j)|0 < j ≤

[s
2

]
}.

But this implies that |q̄mp̄,s| = |q̄′mp̄,s|, thus |q̄| = |q̄′|.
Now we show that for any p̄ ≥ 1 there exists a θ ∈ As ∩ (0, π) s.t. fp̄2(θ) 6= 0 or
equivalently

−3

(
1

12 sin θ
+

cos θ2
8 sin3 θ

2

)
p̄2 +

1
sin θ︸ ︷︷ ︸

=:f̃p̄2 (θ)

6= 0.

First case: |p̄| = 1:

f̃1(θ) =
3
8

1− 2 cos2 θ
2

sin3 θ
2 cos θ2

.
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2.7 A diffeomorphism classification: The non-simply-connected case

Assume that f̃1(θ) = 0 for some θ ∈ (0, π) then 1 − 2 cos2 θ
2 = 0 which is equivalent

to cos2 θ
2 = 1

2 and thus cos θ2 = ±
√

1
2 . But this implies that θ = π

2 or 3
2π. Since s

is either odd or even but greater than 4, we see that 2π
s ∈ As∩(0, π) is neither π

2 nor 3
2π.

Second case: |p̄| > 1⇔ p̄2 ≥ 4.
Assume f̃p̄2(θ) = 0 for some θ ∈ As ∩ (0, π) which is equivalent to

p̄2 =
1
3

 1
1
12 + sin θ cos θ

2
8 sin3 θ

2


︸ ︷︷ ︸

=:h(θ)

≥ 4.

But this is equivalent to
sin θ cos θ2
8 sin3 θ

2

≤ 0

which is clearly impossible for θ ∈ (0, π).

iii) Suppose Mpq is a Witten space with fundamental group isomorphic either to Z/2
or Z/4. In this case the formula for the σ-invariant associated to the only element in
π1(Mpq) of order 2 is given by

1
4
L(CP 2 × CP 1)L−1(N (−1))e(N (−1))

[
CP 2 × CP 1

]
, (2.14)

whereN (−1) denotes the normal bundle of CP 2×CP 1 inDpq. It’s clear that e(N (−1))
is p̄x+ q̄y Since N (−1) is a 2-dimensional real orientable vector bundle we only have
to know what p1(N (−1)) is:

p1(N (−1)) = e2(N (−1)) = p̄x2 − 2p̄q̄xy.

Let Bj denotes the j-th Bernoulli number. Applying the Hirzebruch formalism to the
formal power series which is given by

tanh x
2

x
2

=
∞∑
n=1

22n(22n − 1)
(2n)!

B2n

(x
2

)2n−2

= 1− 1
12
x2 +

1
120

x4 · · ·

shows that L−1(N (−1)) = 1 − 1
12p1(N (−1)). Plugging all this data into the formula

(2.14) yields that σ-invariant for the element of order 2 is

q̄
1
4

(
1 +

1
12
p̄2

)
︸ ︷︷ ︸

=:hp̄2

.

iv) Since hp̄2 is not 0 for any p̄ the proof of ”1) ⇒ 3)” goes analoguesly as the proof
in ii). �
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2 Witten spaces

Remark 2.7.10. The last theorem resembles much the classification theorem of the
lens spaces which one can find for example in [M.1, p. 406] or in [L, p. 45].
For a proof of the classification of lens spaces which doesn’t use the Reidemeister-Franz
torsion we refer to [A-S.1].

From Corollary 2.2.5. and the last theorem we conclude

Corollary 2.7.11. Let Mpqr,Mp′q′r′ ∈ W. Then Mpqr and Mp′q′r′ are diffeomorphic
if and only if |p| = |p′| and |q| = |q′|.
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3 On a family of homogeneous
5-manifolds with cyclic fundamental
group

3.1 A definition and invariants

In this section we introduce another class of homogeneous spaces which in many ways
resembles the class of Witten spaces. Let’s denote by A the Lie group SU(2)×SU(2)×
U(1), by T 2 the torus U(1)× U(1) and let

φ : T 2 → A

be a Lie group homomorphism with finite kernel. We define A
φ(T 2) to be the left coset

space A divided by the image of B under φ. If not otherwise stated we just consider
A

φ(T 2) as a smooth manifold.

Notation 3.1.1. We define L to be the set of all smooth 5-manifolds obtained in the
way as described above.

All the properties of these manifolds which we’ll mention in this chapter are without
proof since the methods of the proofs can be copied from the corresponding results in
the last chapter. We will just refer to the analogues statements in chapter two.
We can parametrise L by the set of coprime triples: Let p, q, r be coprime integers and
a,b ∈ Z3 be linearly independent elements of ker((p, q, r) : Z3 → Z) then we define
Npqr to be A

φ(T 2) , where φ is the homomorphism from T 2 to A which is induced by
(a,b) in the sense of Definition 2.1.5. Thus

L = {Npqr|p, q, r ∈ Z being coprime}.

Proposition 3.1.2. Let Npqr, Np′q′r′ ∈ L.

i) Then Npqr is diffeomorphic to the orbit space of a smooth and free Z/gcd(p, q)-
action on N

p
gcd(p,q)

q
gcd(p,q) 0.

ii) If we consider Npqr and Np′q′r′ as homogeneous spaces with the A-action coming
from the construction, then Npqr ∼A Np′q′r′ (in the sense of Definition 2.3.1.) if and
only if |p| = |p′|, |q| = |q′|, |r| = |r′|.

Proof. For i) see Proposition 2.2.4. and for ii) see Proposition 2.3.2. �
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

Corollary 3.1.3. i) The fundamental group of Npqris isomorphic to Z/gcd(p, q) and
each finite cyclic group is realized as the fundamental group of a manifold in L.

ii) Let p, q, r and r′ ∈ Z s.t. the triples p, q, r and p, q, r′ are coprime. Then Npqr

and Npqr′ are diffeomorphic.

Proof. See Corollary 2.2.5. �

From now on we denote Npq1 by Npq.

Proposition 3.1.4. i) Let Npq ∈ L. Then Npq is diffeomorphic to the total space of
the principal U(1)-bundle over CP 1 × CP 1 which is given by the first Chern class

c1(S1 → Npq → CP 1 × CP 1) = px+ qy ∈ H2(Npq; Z),

where x, y ∈ H2(CP 1 × CP 1; Z) are the standard generators.

ii) Homotopically the fundamental group of Npq operates trivially on Ñpq which is
diffeomorphic to N

p
gcd(p,q)

q
gcd(p,q) .

Proof. See Proposition 2.4.1. and Corollary 2.4.3. �

Remark 3.1.5. The following follows immediately from the definition of the manifolds
in L.

• Npq ∼= Nqp.

• N01 ∼= S2 × S3.

• N0q>0 ∼= S2×L(q, 1, 1), where L(q, 1, 1) is the standard 3-dimensional lens space
with fundamental group isomorphic to Z/q.

Proposition 3.1.6. Let Npq ∈ L then

• H1(Npq; Z) ∼= 0.

• H2(Npq; Z) ∼= Z/gcd(p, q)⊕ Z.

• H3(Npq; Z) ∼= Z.

• H4(Npq; Z) ∼= Z/gcd(p, q).

Proof. Apply the Gysin sequence as in the proof of Proposition 2.5.2. �

Lemma 3.1.7. All manifolds in L are string manifolds.

Proof. This follows from the fact that the tangent bundle of S2 is stably trivial
and from the considerations we have done on p. 35. �

Let L∞r denote the infinite dimensional lens space with π1(L∞r ) ∼= Z/r.
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3.2 A bordism classification of normal 2-smoothings

Proposition 3.1.8. Let Npq ∈ L then

(L∞gcd(p,q) × CP∞︸ ︷︷ ︸
=:Bgcd(p,q)

×BSpin, ξ)

is the normal 2-type of Npq, where ξ : Bgcd(p,q) ×BSpin→ BO is the fibration which
we explained in section 2.5.4.

Proof. See Proposition 2.5.8. �

3.2 A bordism classification of normal 2-smoothings

Let Nab ∈ L. From now on we identify Nab with the total space of the fibre bundle
which we have given in Proposition 3.1.4.

Let r be an odd natural number and let Npq ∈ L be oriented. A normal 2-smoothing
f × νpqsp : Npq → L∞r × CP∞ × BSpin represents an element in Ω5(L∞r × CP∞ ×
BSpin, ξ). For a detailed description of this (generalized) bordism group we refer to
[St, Ch. 2].

Definition/Lemma 3.2.1. Let L be a n-dimensional smooth closed spin manifold
and h × νLsp : L → P × BSpin a map, where νLsp : L → BSpin is the classifying map
of a spin bundle over L and P is a CW-complex. Then (L, h × νLsp) represents the
zero-element in Ωn(P × BSpin, ξ) if and only if (L, h) represents the zero-element in
ΩSpinn (P ), where N is equipped with the chosen spin structure. Let

(P2(L)×BSpin, ξ)

be the normal 2-type of L, where P2(L) denotes the second level of its Postnikov de-
composition and ξ is the fibration which we have described above.
If h×νLsp : L→ P2(L)×BSpin is a normal 2-smoothing, then we call h a 2-smoothing
of L.

Proposition 3.2.2. Let r ∈ N s.t. gcd(r, 6) = 1 and N,N ′ be smooth oriented closed
5-manifolds equipped with their unique spin structures. Furthermore let f : N →
 L∞r ×CP∞ and f ′ : N ′ →  L∞r ×CP∞ be maps. The bordism group ΩSpin5 ( L∞r ×CP∞)
is isomorphic to (Z/r)4 and (N, f), (N ′, f ′) represent the same element in ΩSpin5 ( L∞r ×
CP∞) if and only if〈

ρr(p1(N))f∗(v1), [N ]Z/r
〉
≡

〈
ρr(p1(N ′))f ′∗(v1), [N ′]Z/r

〉
mod r,

f∗([N ]) = f ′∗([N ′]),

where v1 is a generator of H1( L∞r × CP∞; Z/r), ρr denotes the mod-r-reduction in
cohomology.
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

Proof. We know that

Hj(L∞r ; Z) ∼=

 Z, j = 0
Z/r, j is odd
0, j else.

And this implies that

Hk(L∞r × CP∞; Z) ∼=
{

Z, k is even
(Z/r)j , 2j − 1 = k.

The entries of the E2-term of the AHSS for ΩSpina+b ( L∞r × CP∞) are Ha(L∞r × CP∞;
ΩSpinb (pt.)) and since r ≡ 1 mod 2 it looks for a+ b ≤ 6 as follows:

b
...
6 0
5 0 0
4 Z Z/r Z
3 0 0 0 0
2 Z/2 0 Z/2 0 Z/2
1 Z/2 0 Z/2 0 Z/2 0
0 Z Z/r Z (Z/r)2 Z (Z/r)3 Z

0 1 2 3 4 5 6 . . . a .

What are the∞-terms in the fifth diagonal, i.e. what is E∞a,b(L
∞
r ×CP∞) for a+b = 5?

There is an exterior product

mr : Era,b(L
∞
r )⊗ Ers,t(CP∞)→ E∞a+s,b+t(L

∞
r × CP∞).

And the differentials dr behave as derivations w.r.t. these exterior products, i.e.

dr(mr(x⊗ y)) = mr(drx⊗ y) + (−1)|x|mr(x⊗ dry). (3.1)

From [T, p. 7] we know what the differentials d2 in E2
a,b(L

∞
r ) resp. E2

a,b(CP∞) from
the first to the second row and from the second to the third row are. In the first
case they are just the dual of the Steenrod square Sq2 : H∗(L∞r × CP∞; Z/2) →
H∗+2(L∞r × CP∞; Z/2) precomposed with the reduction map:

red2 : H∗(L∞r × CP∞; Z)→ H∗(L∞r × CP∞; Z/2).

In the second case they are the dual of Sq2. The Steenrod square for lens spaces and
projective spaces is given by:

Sq2(αn) =
(
n
2

)
αn+2 for α ∈ H1(·; Z/2) (see [Ha, p. 490]).
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3.2 A bordism classification of normal 2-smoothings

The relevant part of E5
ab(L

∞
r ×CP∞) for computing the∞-terms in the range a+ b =

1, 3, 5 is given here:

5 0
4 Z/r
3 0 0
2 0 0
1 0 0 0
0 Z/r (Z/r)2 (Z/r)3 Z

0 1 2 3 4 5 6 .

From the facts that d5 : E5
60(L∞r ) → E5

14(L∞r ) and d5 : E5
60(CP∞) → E5

14(CP∞) are
trivial it follows from the Leibniz rule (3.1) that

d5 : E5
60(L∞r × CP∞)→ E5

14(L∞r × CP∞)

also has to be trivial. Thus for a+b = 1, 3, 5 the∞-term of the AHSS equals E5
a,b(L

∞
r ×

CP∞) and we realize that

h1 : ΩSpin1 (L∞r × CP∞) → H1(L∞r × CP∞; Z),
[(S, g)] 7→ g∗([S])

is an isomorphism.
Let K be a Kummer surface equipped with its ususal orientation. We know from [M.2]
that K generates ΩSpin4 (pt.). The construction of the AHSS and its infinity term imply
the following extension problem:

0→ ΩSpin1 (L∞r × CP∞)
µK→ ΩSpin5 (L∞r × CP∞) h5→ H5(L∞r × CP∞; Z)→ 0, (3.2)

where

µK : ΩSpin1 (L∞r × CP∞) → ΩSpin5 (L∞r × CP∞),
[(S, g)] 7→ [(K × S, g ◦ pr2)],

pr2 is the projection onto the second factor and

h5 : ΩSpin5 (L∞r × CP∞) → H5(L∞r × CP∞; Z),
[(N, f)] 7→ f∗([N ]).

Let S1(⊂ C) be equipped with the standard orientation and i : S1 → L∞r be the
inclusion of S1 as the 1-skeleton of L∞r . The fact that h1 is an isomorphism implies
that (S1, i) represents a generator of ΩSpin1 (L∞r × CP∞).
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

Constructing a splitting

First we define a homomorphism n1 from ΩSpin5 (L∞r ×CP∞) to Z/r s.t. n1◦µK([S1, i])
is a unit in Z/r:

Let v1 be a generator of H1(L∞r × CP∞; Z/r) then

n1 : ΩSpin5 (L∞r × CP∞) → Z/r,
[(N, f)] 7→

〈
ρr(p1(N))f∗(v1), [N ]Z/r

〉
,

where ρr is the mod-r-reduction in cohomology and p1(N) the first Pontrijagin class
of the tangent bundle ofN . We assert that the map n1 is a well defined homomorphism:

Assume (N, f) bounds (W,F ), where W is oriented and let i : N ↪→ W be the
inclusion. Then it’s enough to show that n1(N, f) = 0. We know that [N ] = ∂[W,N ],
where ∂ is the boundary homomorphism in the homology long exact sequence and
[W,N ] ∈ H6(W,N ; Z) is the relative fundamental class of the pair (W,N). Further-
more there is the following property of the Kronecker product: Let x ∈ H5(M ; Z/r)
then 〈

x, [M ]Z/r
〉

=
〈
x, ∂[W,M ]Z/r

〉
= 〈δx, [W,M ]〉 ,

where δ is the coboundary map. In order to prove that n1(N, f) = 0 it’s enough to
show that p1(N)f∗(v1) lies in the kernel of δ or equivalently in the image of i∗ which
is the case: Clearly

f∗(v1) = i∗(F ∗(v1))

and since τN ⊕ R ∼= i∗(τW )
p1(N) = i∗(p1(W )).

We claim that n1 ◦ µK([S1, i]) lies in (Z/r)∗:

The Künneth theorem implies

n1 ◦ µK([S1, i]) =
〈
ρr(p1(K × S1))(i ◦ pr2)∗(v1), [K × S1]Z/r

〉
=

〈
ρr(p1(K)), [K]Z/r

〉 〈
i∗(v1), [S1]Z/r

〉
It’s clear that

〈
i∗(v1), [S1]Z/r

〉
is a generator of Z/r.

But what’s
〈
ρr(p1(K)), [K]Z/r

〉
?

By the Hirzebruch signature theorem it’s known that〈p1

3
(K), [K]

〉
= sign(K) = −16.

Thus
〈
ρr(p1(K)), [K]Z/r

〉
≡ −48 mod r is a generator of Z/r if and only if gcd(r, 48) =

1. But gcd(r, 48) = 1 if and only if gcd(r, 6) = 1 which is the case by assumption.
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3.2 A bordism classification of normal 2-smoothings

Thus n1 ◦ µK([S1, i]) ∈ (Z/r)∗ and we can compose n1 with an appropriate isomor-
phism α from Z/r to ΩSpin5 (L∞r × CP∞) s.t. α ◦ n1 is a splitting of the short exact
sequence (3.2).

Thus ΩSpin5 (L∞r × CP∞) ∼= (Z/r)4 and (Npq, f), (Np′q′ , f ′) represent the same el-
ement in ΩSpin5 (L∞r × CP∞) if and only if

n1(Npq, f) = n1(Np′q′ , f ′) and h5(Npq, f) = h5(Np′q′ , f ′).

�

An orientation convention

We know that Npq is orientable. We choose the orientation on Npq in the follow-
ing way:

First we orient the fibre U(1) s.t. it is compatible with the orientation of the corre-
sponding complex line bundle and then we orient the base CP 1×CP 1 by the standard
orientation.

A parametrisation of 2-smoothings

Let Npq ∈ L with π1(Npq) ∼= Z/r, f : Npq → L∞r × CP∞ be a 2-smoothing and Π
denotes the projection map of the corresponding fibre bundle. Furthermore we denote
the standard generators of H2(CP 1 × CP 1; Z) by x, y, i.e. xy ∈ H4(CP 1 × CP 1; Z)
is the Kronecker dual of the (standard) fundamental class of the base. We regard
U(1) ⊂ C as the set of complex numbers with norm 1 and we orient U(1) anticlock-
wise. We denote the mod-r-reduction of the chosen fundamental class of U(1) by
[U(1)]Z/r. Let i : U(1) ↪→ Npq be the inclusion of U(1) as the fibre which preserves
the chosen orientation of the fibre (see above). Let further m,n ∈ Z s.t. m q

r +npr = 1
then H2(Npq; Z) ∼= Z/r⊕Z, where p

rΠ∗(x) + q
rΠ∗(y) is a generator of the torsion part

and mΠ∗(x)−nΠ∗(y) is a generator of a Z-summand (compare with the proof of Prop.
3.1.6. resp. Prop. 2.5.2.). By a we denote the generator of H1(Npq; Z/r) with the
property that 〈

i∗(a), [U(1)]Z/r
〉

= 1.

Let v1, z be the standard generators of H1(L∞r ; Z/r), H2(CP∞; Z) resp. and f :=
f1×f2 : Npq → L∞r ×CP∞ be a 2-smoothing. The map f is up to homotopy uniquely
determined by

f∗(v1) = sa,

for s ∈ (Z/r)∗ a unit in Z/r and

f∗(z) = ε(f)︸︷︷︸
∈{±1}

(mΠ∗(x)− nΠ∗(y)) + k(f,m, n)︸ ︷︷ ︸
∈Z/r

(
p

r
Π∗(x) +

q

r
Π∗(y)).
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

Lemma 3.2.3. Let Npq ∈ L be oriented with π1(Npq) ∼= Z/r. Fixing a choice of
m,n ∈ Z s.t. m q

r + npr = 1 then there is a 1-1 correspondence between the set S of
homotopy classes of 2-smoothings of Npq and the set of triples {(ε, s, k)|ε ∈ {±1}, s ∈
(Z/r)∗, k ∈ Z/r} =: T, where the bijection is given as follows:

C : S → T,

[f ] 7→ (ε(f), s(f), k(f,m, n)).

Proof. It’s clear that C is injective. We claim that C is also surjective, i.e. for fixed
m,n ∈ Z as above any triple (ε, s, k) ∈ T has a preimage under C. We write f as f1×f2
and the homotopy class [f1] of f1 can be seen as an element in H1(Npq; Z/r) ∼= Z/r.
Any automorphism of Z/r is given by a unit s of Z/r, (1 7→ s). Furthermore there is a
1-1 correspondence beween automorphisms of π1(L∞r )(∼= Z/r) and homotopy classes of
self-maps of L∞r . Thus the homotopy classes of self-maps of L∞r correspond bijectively
to automorphisms of H1(L∞r ; Z). Now let g be a self-map of L∞r then ”naturality” of
the UCT implies that

g∗ : H1(L∞r ; Z) ∼= Hom(H1(L∞r ; Z),Z/r) → Hom(H1(L∞r ; Z),Z/r),
h 7→ g∗(h) = h ◦ g∗.

This means that g∗ : H1(L∞r ; Z) → H1(L∞r ; Z) is an automorphism if and only if
g∗ : H1(L∞r ; Z) → H1(L∞r ; Z) is an automorphism. Thus the set of self-maps of L∞r
that induce automorphism on π1(L∞r ) is in 1-1 correspondence to (Z/r)∗ which itself
corresponds bijectively to automorphisms of H1(L∞r ; Z). We conclude via Whitehead’s
theorem that the set of self-maps of L∞r that induce automorphism on π1(L∞r ) corre-
sponds bijectively to the homotopy classes of self-homotopy equivalences of L∞r . Hence
by precomposing the f1 in f = f1×f2 : Npq → L∞r ×CP∞ by a suitable self-homotopy
equivalence one can realize any s in the above sense.

Now we show that the homotopy class of a map h : Npq → CP∞ that realizes (ε, k)
induces an isomorphism on π2. Therefore we gather some facts:

a) Proposition 3.1.4. ii) justifies the application of the cohomology version of the
Leray-Serre spectral sequence for the fibration Ñpq pr→ Npq → L∞r . We obtain the
following:

0 −→ E∞20 −→ H2(Npq; Z) u−→ E∞02 −→ 0
‖ ‖ ‖

0 −→ H2(L∞r ; Z) −→ H2(Npq; Z) u−→ H2(Ñpq; Z) −→ 0 ,

where u = pr∗ (see [McCl, Thm. 5.9.]). Hence pr∗ : H2(Npq; Z) → H2(Ñpq; Z) is
surjective with kernel isomorphic to Z/r.
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3.2 A bordism classification of normal 2-smoothings

b) Again ”naturality” of the UCT implies that the set of homotopy classes of maps
from Ñpq to CP∞ that induce isomorphism on H2(·; Z) equals the set of homotopy
classes of maps that induce isomorphism on H2(·; Z).

c) With the Hurewicz theorem one sees that a map between simply-connected CW-
complexes that induces isomorphism on H2(·; Z) also induces isomorphism on π2(·).

With the facts a)-c) we finish the proof:

There exists the following commutative diagram:

Ñpq

Npq CP∞.
?

-

Q
Q

Q
Q

Q
QQs

pr h̃

h

Applying the Z-cohomology functor H2(·; Z), we get the following commutative dia-
gram:

H2(Ñpq; Z)

H2(Npq; Z) H2(CP∞; Z).

6

�
Q

Q
Q

Q
Q

QQk

pr∗
h̃∗

h∗

Since H2(Ñpq; Z) ∼= Z, H2(Npq; Z) ∼= Z ⊕ Z/r and H2(CP∞; Z) ∼= Z a) implies that
h̃∗ is an isomorphism.

By b) h induces an isomorphism on H2(·; Z) and thus by c) h induces an isomor-
phism on π2(·). This proves that C is surjective. �

Proposition 3.2.4. Let r ∈ N s.t. gcd(r, 6) = 1 and Npq, Np′q′ ∈ L be oriented
with π1(Npq) ∼= π1(Np′q′) ∼= Z/r and (m,n), (m′, n′) ∈ Z2 s.t. m q

r + npr = 1 =
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

m′ q′
r + n′ p

′

r . There exist normal 2-smoothings g : Npq → L∞r × CP∞ × BSpin and
g′ : Np′q′ → L∞r × CP∞ × BSpin s.t. (Npq, g) and (Np′q′ , g′) represent the same
element in Ω5(L∞r × CP∞ × BSpin, ξ) if and only if there exist triples (s, ε, k) and
(s′, ε′, k′) in T s.t.

(1) s(εm+ k
p

r
)(εn− k q

r
) ≡ s′(ε′m′ + k′

p′

r
)(ε′n′ − k′ q

′

r
)mod r,

(2) s2(
q

r
(εm+ k

p

r
)− p

r
(εn− k q

r
)) ≡ s′2(

q′

r
(ε′m′ + k′

p′

r
)− p′

r
(εn′ − k′ q

′

r
))mod r,

(3) s3
pq

r2
≡ s′3 p

′q′

r2
mod r.

Proof. By Lemma 3.2.1. we know that (Npq, g = f×νsp) and (Np′q′ , g′ = f ′×νsp′)
represent the same element in Ω5(L∞r × CP∞ ×BSpin, ξ) if and only if (Npq, f) and
(Np′q′ , f ′) represent the same element in ΩSpin5 (L∞r × CP∞). Thus we are going to
classify 2-smoothings up to bordism.

Proposition 3.2.2. tells us that (Npq, f) and (Np′q′ , f ′) represent the same element
in ΩSpin5 (L∞r × CP∞) if and only if

〈
ρr(p1(Npq))f∗(v1), [Npq]Z/r

〉
≡

〈
ρr(p1(Np′q′))f ′∗(v1), [Np′q′ ]Z/r

〉
mod r

and
f∗([Npq]) = f ′∗([Np′q′ ]).

But since p1(Nab) is zero for each Nab ∈ L (Lemma 3.1.7.) we conclude that (Npq, f)
and (Np′q′ , f ′) represent the same element in ΩSpin5 (L∞r × CP∞) if and only if

f∗([Npq]) = f ′∗([Np′q′ ]).

We observe that

H5(L∞r × CP∞; Z) ∼= (Z/r)3 ∼= H5(L∞r × CP∞; Z/r)

and

H5(L∞r × CP∞; Z/r) ∼= (Z/r)3.

A basis of H5(L∞r × CP∞; Z/r) is given by

v1z
2
r , v1(βr(v1))zr, v1(βr(v1))2,

where v1 is a generator ofH1(L∞r ×CP∞; Z/r), zr is a generator ofH2(L∞r ×CP∞; Z/r)
which comes from the mod-r-reduction of the standard generator z of H2(CP∞; Z).
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3.2 A bordism classification of normal 2-smoothings

Thus

h5(Npq, f) = h5(Np′q′ , f ′) ⇔ f∗([Npq]) = f ′∗([N
p′q′ ]),

⇔ f∗([Npq])Z/r = f ′∗([N
p′q′ ])Z/r,

⇔
〈
b, f∗[Npq]Z/r

〉
=
〈
b, f ′∗[N

p′q′ ]Z/r
〉
,

∀b ∈ H5(L∞r × CP∞; Z/r),

⇔
〈
f∗(b), [Npq]Z/r

〉
=
〈
f ′∗(b), [Np′q′ ]Z/r

〉
,

∀b ∈ H5(L∞r × CP∞; Z/r).

But this is equivalent to the following equations:

(1′)
〈
f∗(v1z2), [Npq]Z/r

〉
=
〈
f ′∗(v1z2), [Np′q′ ]Z/r

〉
,

(2′)
〈
f∗(v1(βr(v1))z), [Npq]Z/r

〉
=
〈
f ′∗(v1(βr(v1))z), [Np′q′ ]Z/r

〉
,

(3′)
〈
f∗(v1(βr(v1))2), [Npq]Z/r

〉
=
〈
f ′∗(v1(βr(v1))2), [Np′q′ ]Z/r

〉
.

Notation: By xa(ya) ∈ H2(CP 1; Z/a) we denote the element of H2(CP 1×CP 1; Z/a)
which is the mod-a-reduction of the standard generator of H2(·; Z) of the first factor
(second factor) of CP 1 × CP 1.

We know that
f∗(βr(v1)) = βr(f∗(v1)) = sβr(a).

Hence in order to compute the Kronecker products above we have to understand what
βr(a) is in terms of Π∗(x) and Π∗(y), i.e.

βr(a) = b1Π∗(xr) + b2Π∗(yr)

for some b1, b2 ∈ Z/r The cohomological structure of L∞r × CP∞ implies that βr(a)
lies in the image of ρr restricted to the torsion part of H2(Npq; Z), i.e.

βr(a) = t(
p

r
Π∗(xr) +

q

r
Π∗(yr)) (3.3)

for some t ∈ (Z/r)∗. We claim that modulo r b1 equals ur pr and b2 equals ur qr and
thus t = ur for some (universal) ur ∈ (Z/r)∗.

Proof of the last claim. An idea to obtain information about the Π∗(xr)-component
of βr(a) is to analyze the ”restricted bundles”

U(1) i→ Npq|CP 1
1

Π̄→ CP 1,

U(1)
j→ Npq|CP 1

2

Π̃→ CP 1,
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

where the first fibre bundle is the restriction of the fibre bundle associated to Npq to
the first CP 1-factor. Its first Chern class is px hence Npq|CP 1

1
is the familiar lens space

L3(p; 1, 1) =: L3
p. The second bundle is the restriction of the fibre bundle associated

to Npq to the second CP 1-factor thus its first Chern class is qx and hence Npq|CP 1
2

is the lens space L3(q; 1, 1) =: L3
q. Let ap ∈ H1(L3

p; Z/p) s.t.
〈
i∗(ap), [U(1)]Z/p

〉
= 1

and aq ∈ H1(L3
q; Z/q) s.t.

〈
j∗(aq), [U(1)]Z/q

〉
= 1. Let ip and iq be the obvious

inclusion of L3
p resp. L3

q in Npq then it’s clear that i∗p(a) = āp and i∗q(a) = āq, where
āp ∈ H1(L3

p; Z/r) and āq ∈ H1(L3
q; Z/r) are the images of ap resp. aq under the

corresponding coefficient homomorphism.
On the other hand we have the following facts: i∗p(Π

∗(x)) = Π̄∗(x), i∗q(Π
∗(x)) = Π̃∗(x)

and i∗p(βr(a)) = βr(i∗p(a)) = βr(ā), i∗q(βr(a)) = βr(i∗q(a)) = βr(ã). Furthermore we
conclude from the construction of the maps together with the long exact sequence in
Z/r-cohomology for the pairs (Npq, L3

p) and (Npq, L3
q) that i∗p(Π

∗(x)) and i∗q(Π
∗(x))

vanish. Summarizing the last considerations leads to the following:

i∗p(βr(a)) = i∗p(t(
p

r
Π∗(xr) +

q

r
Π∗(yr))) = t

p

r
Π̄∗(xr) = βr(āp),

i∗q(βr(a)) = i∗q(t(
p

r
Π∗(xr) +

q

r
Π∗(yr))) = t

p

r
Π̃∗(yr) = βr(āq).

Thus if we knew βr(āp) and βr(āq) in terms of Π̄∗(xr) resp. Π̃∗(yr), then we would
know what βr(a) is.

Assume βp(ap) = upΠ̄∗(xp) for some up ∈ (Z/p)∗. We compare the short exact
sequences associated to βr and βp:

0 - Z/r -

6redp,r

0 - Z/p -

-

-

0

0,

Z/r2 -π̃ Z/r

6redp2,r 6redp,r

Z/p2 -P Z/p

where red·,· denotes the reduction homomorphism. The maps in the squares above
commute, hence we get the following commutative diagram:

H1(L3(p); Z/r) - H2(L3(p); Z/r)βr

H1(L3(p); Z/p) - H2(L3(p); Z/p),
βp

6
ρp,r

6p

r
ρp,r

where ρ·,· is the ”change of coefficient-homomorphism”, i.e

βr ◦ ρp,r =
p

r
ρp,r ◦ βp.
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3.2 A bordism classification of normal 2-smoothings

It’s clear that ρp,r(ã) is a cohomological fundamental class of U(1) in Z/r-cohomology.
Thus βr(āp) = up,r

p
r Π̃∗(xr), where up,r ∈ Z/r is the mod-r-reduction of up. It’s clear

that up,r is a unit in Z/r.
If βq(āq) = uqΠ̃∗(xq) for some uq ∈ (Z/q)∗, then in the same way we obtain:

βr(āq) = uq,r
q

r
Π̃∗(xr),

where uq,r is the mod-r-reduction of uq. By (3.3) the following has to be true:(
up,r 0

0 uq,r

)(
1
1

)
(
p

r
Π∗(xr),

q

r
Π∗(yr)) =

(
t 0
0 t

)(
1
1

)
(
p

r
Π∗(xr),

q

r
Π∗(yr)).

This implies that up,r = uq,r =: ur and thus βr(a) = ur(prΠ∗(xr) + q
rΠ∗(yr)).

By definition we have

f∗(v1) = sa,

f∗(βr(v1)) = sur(
p

r
Π∗(x) +

q

r
Π∗(y)),

f∗(z) = ε(mΠ∗(x)− nΠ∗(y)) + k(
p

r
Π∗(x) +

q

r
Π∗(y)).

Thus

f∗(v1z2) = sa((εm+ k
p

r
)Π∗(x)− (εn− k q

r
)Π∗(y))2

= −2s(εm+ k
p

r
)(εn− k q

r
)aΠ∗(xy),

f∗(v1(βrv1)z) = ursa((εm+ k
p

r
)Π∗(x)− (εn− k q

r
)Π∗(y))(

p

r
Π∗(x) +

q

r
Π∗(y))

= urs((εm+ k
p

r
)
q

r
− (εn− k q

r
)
p

r
)aΠ∗(xy),

f∗(v1(βrv1)2) = au2
rs

3(
p

r
Π∗(x) +

q

r
Π∗(y))2

=
u2
rs

3pq

r2
aΠ∗(xy).

It’s true that 〈
aΠ∗(xy), [Npq]Z/r

〉
=
〈
a,Π∗(xy) ∩ [Npq]Z/r

〉
and by the choice of the orientation of Npq it follows from Propostion 2 in [G] and its
proof that

〈
aΠ∗(xy), [Npq]Z/r

〉
= 1mod r. Hence since 2 and ur are units of Z/r the

equations (1’)-(3’) (p. 69) translate into the following congruences:

(1) s(εm+ k
p

r
)(εn− k q

r
) ≡ s′(ε′m′ + k′

p′

r
)(ε′n′ − k′ q

′

r
)mod r,

(2) s2(
q

r
(εm+ k

p

r
)− p

r
(εn− k q

r
)) ≡ s′2(

q′

r
(ε′m′ + k′

p′

r
)− p′

r
(εn′ − k′ q

′

r
))mod r,

(3) s3
pq

r2
≡ s′3 p

′q′

r2
mod r. �
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

3.3 A diffeomorphism classification: The
simply-connected case

We have the following fundamental result by Stephan Smale concerning the differential
topology of smooth simply-connected closed spin 5-manifolds.

Theorem 3.3.1. ([S]) There is a 1-1 correspondence between the set D5 of diffeo-
morphism classes of smooth simply-connected closed 5-manifolds with vanishing sec-
ond Stiefel-Whitney class and the set Ab of isomorphism classes of finitely generated
abelian groups. The correspondence is given by:

φ : D5 → Ab,

M 7→ F ⊕ 1
2
T,

where H2(M ; Z) = F ⊕ T is a direct sum decomposition of H2(M ; Z) into a free part
and a torsion part and 1

2T ⊕
1
2T is a direct sum decomposition of T .

Corollary 3.3.2. Let Npq, Np′q′ ∈ L be simply-connected then Npq and Np′q′ are
diffeomorphic.

Proof. Since Npq and Np′q′ are simply-connected they fulfill the assumptions of
Smale’s theorem. From Propostion 3.1.6. we know that H2(Npq; Z) ∼= H2(Np′q′ ; Z) ∼=
Z thus Theorem 3.3.1. implies that Npq ∼= S2 × S3 ∼= Np′q′ . �

3.4 A diffeomorphism classification: The
non-simply-connected case

From the first part of this chapter we know that if π1(Nab) ∼= Z, then a = 0 = b. Hence
the classification of the Npq’s with infinite cyclic fundamental group up to diffeomor-
phism (or homotopy) is trivial. In this section we concentrate on the diffeomorphism
classification of the non-simply-connected manifolds in L, where the order of the fun-
damental groups is coprime to 6.

In section 2.6 we gave a rather philosophical description of modified surgery. The
purpose of this section is to introduce the main mathematical objects that enable us
to formulate an abstract version of the classification theorem in the context of the 5-
manifolds we are interested in. Then we classify the non-simply-connected manifolds
in {Nab ∈ L|gcd(|π1(Nab)|, 6) = 1}.

3.4.1 The surgery obstruction

This section deals with the following question:

Let m ∈ N greater than or equal to 3. Does there exist an ”algebraic measure”
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3.4 A diffeomorphism classification: The non-simply-connected case

which helps to decide whether a 2m-dimensional B-bordism (W,F ) between two nor-
mal (m − 1)-smoothings (N, f), (N ′, f ′) can be transformed relative boundary into a
s-cobordism?

A very detailed exposition of the treatment of this problem can be found in [Kr.1].

The Surgery Obstruction Groups

The basic ingredients of the definition of the even dimensional surgery obstruction
groups are quadratic forms. Let Z [π] be a group ring, ω : π → Z/2 a homomorphism
and ¯: Z [π]→ Z [π] be the involution which sends g ∈ π to ω(g)g−1 =: ḡ.
From now on we denote Z [π] by Λ.

Definition 3.4.1. (Form parameter) Let ε ∈ {±1} be fixed. A subgroup Sε ⊂ Λ is
called a form parameter if it fulfills the following properties:

• If a ∈ Sε, then a+ εā = 0.

• If a ∈ Sε, then bab̄ ∈ Sε, ∀b ∈ Λ.

• Sε contains the subgroup {a− εā|a ∈ Λ}.

These properties ensure that for [a] ∈ Λ
Sε

, a+ εā is a well defined element in Λ and
that bab̄ ∈ Λ

Sε
is well defined for any b ∈ Λ. If Sε = {a − εā|a ∈ Λ} we denote Λ

Sε
by

Qε.

Definition 3.4.2. (Quadratic forms) Let ε ∈ {±1} be fixed. An ε-quadratic form
over (Λ, Sε) consists of a triple (M,λ, µ), where

• M is a left Λ−module,

• λ : M ×M → Λ is an ε-hermitian form and

• µ : M → Λ
Sε

is a quadratic refinement of λ.

That means λ and µ have to fulfill the following properties:

• For y ∈M fixed the map M → Λ, x 7→ λ(x, y) is a Λ-homomorphism.

• λ(x, y) = ελ(y, x) ∀x, y ∈M .

• λ(x, x) = µ(x) + εµ(x) ∈ Λ ∀x ∈M .

• µ(x+ y) = µ(x) + µ(y) + [λ(x, y)] ∀x, y ∈M .

• µ(ax) = aµ(x)ā ∀x ∈M and ∀a ∈ Λ.
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

For Sε = {a− εā|a ∈ Λ} such forms were introduced in [Wa, §5].

An important special case are the ε-hyperbolic forms:

Hr
ε (Λ) := Hε(Λ)⊕ · · · ⊕Hε(Λ)︸ ︷︷ ︸

r times

,

where Hε(Λ) =
(

Λ⊕ Λ, λ =
(

0 1
ε 0

)
, µ(e) = µ(f) = 0

)
((e, f) is the canonical basis of Λ⊕ Λ).

Definition 3.4.3. (M,λ, µ) is called

• weakly based if (M,λ, µ) is equipped with an equivalence class of bases, where
two bases are equivalent if the matrix of the base change has vanishing Whitehead
torsion in Wh(π),

• non-singular if the adjoint of λ is an isomophism,

• based if it is weakly based, non-singular and the adjoint of λ is a simple isomor-
phism.

We always assume that Hr
ε (Λ) is based by ei, fi.

Definition 3.4.4. Two quadratic forms (M,λ, µ) and (M ′, λ′, µ′) are called stably
equivalent if for some r and s ∈ N, (M,λ, µ)⊕Hr

ε (Λ) is isomorphic to (M ′, λ′, µ′)⊕
Hs
ε (Λ). If M and M ′ are weakly based we require that the isomorphism is simple.

Definition/Lemma 3.4.5.

• The s-decorated L-group Ls2m(π, ω) is the set of stable equivalence classes of
based non-singular (−1)m-quadratic forms over Λ with group structure given by
orthogonal sum.

• Let S(−1)m be a form parameter then we define Ls2m(π, ω, S(−1)m) to be the set
of stable equivalence classes of based non-singular (−1)m-quadratic forms over
(Λ, S(−1)m).

• We denote the set of stable equivalence classes of weakly based non-singular
(−1)m-quadratic forms over (Λ, S(−1)m) by Ls,τ2m(π, ω, S(−1)m). If S(−1)m = {a−
(−1)ma|a ∈ Λ}, then we denote Ls,τ2m(π, ω, S(−1)m) by Ls,τ2m(π, ω). Orthogonal
sum defines a group structure on Ls,τ2m(π, ω, S(−1)m).

If ω ≡ 1, then we don’t mention the ω in the notation of the various L-groups.

Proof. To show that Ls,τ2m(π, ω, S(−1)m) is a group it is enough to show that
Ls,τ2m(π, ω) is a group. There is the following exact sequence:

0→ Ls2m(π, ω)→ Ls,τ2m(π, ω) τ→Wh(π),
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3.4 A diffeomorphism classification: The non-simply-connected case

where τ(M,λ, µ) equals the torsion of the adjoint w.r.t. to the given equivalence class
of basis. If im(τ) ⊂ Wh(π) is a group, then Ls,τ2m(π, ω) is a group. This is shown in
[Kr.1, p. 36]. �

The surgery obstruction

Let m ∈ N greater than or equal to 3 and (W,F ) be a (2m)-dimensional B-bordism
between two normal 2-smoothings (N0, f0) and (N1, f1) s.t. F is a m-equivalence (see
[Kr, Prop. 4]). Let’s further denote ker(F∗ : πm(W ) → πm(B)) by Kπm(W ) and the
image of ker(fi∗ : πm(Ni) → πm(B)) under i∗ : πm(Ni) → πm(W ) by imKπm(Ni),
where i = 0, 1. On Kπm(W ) there we have the intersection form λ. In [Kr.1, p.54] it
is shown that

• imKπm(N0) = imKπm(N1),

• the radical of λ equals imKπm(N0).

Thus the induced quadratic form

λ̄ :
Kπm(W )

imKπm(N0)
× Kπm(W )

imKπm(N0)
→ Λ

is a non-singular (−1)m hermitian form.

Let’s denote by ξ : B → BO the normal (m − 1)-type of N0 and by γ the stable
tautological bundle over BO. If m 6= 3, 7 or m = 3, 7 and ωm+1(α∗(ξ∗γ)) = 0 for all
α ∈ πm+1(B), then there is a quadratic refinement µ of λ defined on Kπm(W ) and
µ restricted on imKπm(N0) is a homomorphism (compare [Kr.1, p. 54]). We denote
the subgroup of Λ which projects to imµ|imKπm(N0) ⊂ Q(−1)m by S(W ). If m = 3, 7
and there exists an α ∈ πm+1(B) s.t. ωm+1(α∗(ξ∗γ)) 6= 0, we have to work with a
quadratic refinement µ̄ which takes values in Λ

S(W )⊕Z . If we equip Kπm(W )
imKπm(N0)

with a
preferred basis (see [Kr.1, p. 58]), then (λ̄, µ) (resp. (λ̄, µ̄)) represents an element in
Ls,τ2m(π1(B), ω1(B), S(W )) (resp. Ls,τ2m(π1(B), ω1(B), S(W ) ⊕ Z)) and we denote it by
Θ(W,F ).

The following theorem is a reformulation of a part of Theorem 5.2. in [Kr.1].

Theorem 3.4.6. Let (W,F ) be a B-bordism between two normal 2-smoothings (N, f)
and (N ′, f ′), where N,N ′ ∈ L. Then Θ(W,F ) ∈ Ls,τ2m(π1(B), S(W ) or S(W ) ⊕ Z) is
a bordism invariant rel. boundary. Furthermore (W,F ) is bordant rel. boundary to an
s-cobordism if and only if Θ(W,F ) = 0.
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

The multisignature

The multisignature is an important tool for distinguishing elements in Ls2n(π). If
π is the trivial group one knows that

sign : Ls4k({1})→ 8Z

is an isomorphism. It is also true that the so called Arf-invariant gives an isomorphism
between Ls4k+2({1}) and Z/2. A very useful application of the multisignature is the
following

Theorem 3.4.7. ([Wa, Thm. 13A.4.]) Let π be cyclic group of odd order. There is
a decomposition

Ls2k(π) = Ls2k({1})⊕ L̃s2k(π) ([Wa, p. 179]),

where the multisignature maps L̃s2k(π) injectively to the characters (real or imaginary
as appropriate) trivial on 1 and divisible by 4.

For an extensive study of surgery obstruction groups for finite groups we refer to
[H-T].

Definition of the multisignature

The so called multisignature extends the notion of the ordinary signature of a quadratic
form over the integers in a certain sense (see below). The most general definition of the
multisignature which one can find in [Wa.1] or [Wa, p. 174] is applicable to unimodu-
lar forms over group rings of finite groups with either trivial or nontrivial involution.
Since we deal with forms over group rings with trivial involution (”all manifolds are
orientable”) we give a definition of the multisignature which is equivalent to the gen-
eral definition restricted to the orientable case [Wa, p. 175].

Let H be a free Λ-module and λ : H × H → Λ a non-degenerate ε-hermitian form,
where ε lies in {±1}. Let further denote by pc the map from Λ to Z which sends
a0 +

∑
g∈π\{0} ag to a0. The composition pc ◦ λ is an ε-hermitian Z-valued non-

degenerate form. We extend pc ◦ λ to HC := H ⊗Z C in the obvious way which yields
an ε-hermitian unimodular C-valued form φ, i.e.

φ(x, y) = εφ(y, x) ∀x, y ∈ HC.

It is clear that HC inherits a π-action from H and we easily realize that

φ(xg, yg) = φ(x, y) ∀x, y ∈ HC and g ∈ π.

Now we choose a positive definite π-invariant hermitian form 〈·, ·〉 on HC (see p. 45).
There is the following linear map A of HC to itself defined by
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3.4 A diffeomorphism classification: The non-simply-connected case

φ(x, y) = 〈x,Ay〉 ∀x, y ∈ HC.

It follows that A is an ε-hermitian π-equivariant automorphism of HC. If A is (+1)-
hermitian, then all eigenvalues of A are real and nonzero. If A is (−1)-hermitian, then
the eigenvalues of A are purely imaginary and nonzero. Thus

HC = HC
+ ⊕HC

−,

where HC
± is the sum of the eigenspaces corresponding to positive multiples of ±1 or

±i. Since the eigenspaces HC
+ and HC

− are π-invariant they define complex π-represen-
tations. We denote the characters of these π-representations by ρ+ and ρ− resp.

Definition 3.4.8. 1) The multisignature of λ which we denote by MS(λ) is the ele-
ment of the complex representation ring RU(π) given by

ρ+ − ρ−.

2) Let g be an element of π then MS(g, λ) := ρ+(g)− ρ−(g).

The vanishing of the surgery obstruction

Let (W,F ) be a bordism between normal 2-smoothings (N, f) and (N ′, f ′), where
N,N ′ ∈ L with fundamental groups isomorphic to Z/r and F a 3-equivalence. Let
ξ : BSpin→ BO be the 3-connected cover of BO thus ξ∗ : π4(BSpin)→ π4(BO)(∼= Z)
is an isomorphism. From these considerations we conclude that there exists some
α ∈ π4(L∞r × CP∞ × BSpin) s.t. ω4(α∗(ξ∗γ)) 6= 0 which proves that Θ(W,F ) is an
element of Ls,τ6 (Z/r, S(W ) ⊕ Z). Thus Θ(W,F ) = (λ̄ : Λd × Λd → Λ, µ̄) (see p. 75),
where Λd is equipped with some preferred basis.

We have already seen on p. 76 that there is the following decomposition of Ls6(Z/r):

Ls6(Z/r) = Ls6({1})⊕ L̃s6(Z/r).

Let [(Λd, λ, µ)] =: B be an element in Ls6(Z/r). The first coordinate of B w.r.t. the
above decomposition is detected by the Arf-invariant in the following sense:

To an element [(Λd, λ, µ)] in Ls6(Z/r) one can assign an element in Ls6({1}):
As we identify Λ with Zr in a canonical way we regard Λd as a Z-module. Let ε : Λ→ Z
be the augmentation map which is a ring homomorphism and let ε̃ be the projection
of Q−1 to ε(Λ)

ε({2a|a∈Λ})
∼= Z/2.

We compose λ with ε and compose the quadratic refinement µ with ε̃ then we obtain
an integral non-degenerate (-1)-hermitian quadratic form which represents an element
b in Ls6({1}). We define Arf(B) to be the classical Arf-invariant of b (see for expl. [L,
p. 95]).
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

The second coordinate of B w.r.t. the decomposition above is according to Theo-
rem 3.4.7. detected by the multisignature.

The difference between Ls6(Z/r) and Ls6(Z/r, S(W ) ⊕ Z) comes from the different
choices of form parameters. In order to understand Ls6(Z/r, S(W ) ⊕ Z) we do the
same considerations as for Ls6(Z/r). We observe that because of the Z in S(W ) ⊕ Z
elements in Ls6(Z/r, S(W )⊕ Z) are uniquely determined by the multisignature.

If the multisignature of Θ(W,F ) is zero, then this implies that there is a base B of Λd

s.t. the quadratic form (λ̄ : Λd × Λd → Λ, µ̄), where Λd is equipped with the basis B,
represents the zero-element in Ls6(Z/r, S(W )⊕ Z) and hence in Ls,τ6 (Z/r, S(W )⊕ Z).
We call this element Θ(W,F )B and we denote a based (-1)-hyperbolic form over
(Λ, S(W )⊕ Z) again by Hn

−1(Λ) (for some n ∈ N).
If Θ(W,F )B = 0, then there is a r ∈ N s.t. Hr

−1(Λ) ⊕ Θ(W,F )B is isomorphic to
Hs
−1(Λ) for some s ∈ N, where the isomorphism is simple. Let A be the matrix of base

change w.r.t. the base in Hr
−1(Λ) ⊕ Θ(W,F ) and Hr

−1(Λ) ⊕ Θ(W,F )B. The element
in Wh(Z/r) that is represented by A is denoted by τ(A).

Proposition 3.4.9. Let r be an odd natural number and π1(W ) ∼= Z/r. Then

i) Θ(W,F ) ∈ Ls,τ6 (Z/r, S(W )⊕ Z) and

ii) Θ(W,F ) = 0 if and only if MS(Θ(W,F )) and τ(A) are trivial.

The proof of Theorem 5.2. (p. 58) in [Kr.1] implies

Corollary 3.4.10. W is rel. boundary bordant to an h-cobordism (Wh;N,N ′) if
and only if MS(Θ(W,F )) is trivial. Thus the vanishing of the algebraic torsion τ(A) is
equivalent to the vanishing of the so called Whitehead torsion of the inclusion N ↪→Wh

(see next section).

3.4.2 The Whitehead torsion

An elabotate and detailed treatment of the following can be found in [M]. The pur-
pose of this section is rather to give a flavour of the concept of torsion in differential
topology than to state precise and technical definitions.

Let R be an associative ring with unit, GL(A) the infinite general linear group which
is the obvious colimit construction of the finite general linear groups GLn(R). GL(R)
divided by its commutator subgroup yields a group which we call K1(R). The matrix
(−1) defines an element in K1(R). The quotient K1(R)/{0,−1} is denoted by K̄1(R)
and is called the reduced Whitehead group. Whenever there is a based finite acyclic
chain complex over a ring R with unit, i.e. a based chain complex with finitely many
generators and vanishing homology groups, one can associate to it its torsion ([M, §3,
§7]) which lies in K̄1(R) of R. We have the following topological application of this
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algebraic concept:

Let (K,L) be a pair consisting of a finite, connected CW-complex K and a sub-
complex L which is a deformation retract of K. We denote the fundamental group of
K simply by π. For (K,L) there is the chain complex C∗(K,L) defined by setting

Cp(K,L) := Hp(|Kp ∪ L|, |Kp−1 ∪ L|),

where H∗ denotes singular homology with integer coefficients, and |Kp| denotes the
underlying topological space of the p-skeleton of K. This p-th chain group is free
abelian with one generator for each p-cell of K − L. We denote the homology group
HpC∗(K,L) by Hp(K,L). We consider the universal covering complexes L̃ ⊂ K̃ of
K and L, where π operates on K̃ via deck transformation. From the chain complex
C∗(K,L) we obtain a chain complex C∗(K̃, L̃) of the pair (K̃, L̃), as follows: For a
generator ep of Cp(K,L) there are as many cells in Cp(K̃, L̃) as π has elements. The
resulting chain module is Z[π]-free with one generator for each p-cell in K − L. Since
K is finite it follows that C∗(K̃, L̃) is finitely generated over Z[π]. It’s clear that the
homology groups Hj(K̃, L̃) vanish, since |L̃| is a deformation retract of |K̃|. A Z[π]-
basis cp for Cp(K̃, L̃) is given by a choice of lifts of a basis {e1, ..., es} of Cp(K,L),
i.e. cp := {ẽ1, ..., ẽs}. Having chosen such a basis the torsion of the acyclic chain
complex C∗(K̃, L̃) is defined and an element of K̄1(Z[π]). In order to get something
which doesn’t depend on the choice of a lift we map this torsion to the

K̄1(Z[π])/π =: Wh(π)

the Whitehead group of π ([M, p. 377ff]). Thus we have associated to (K,L) a well
defined element τ(K,L) in Wh(π) which we call the Whitehead torsion of (K,L).

There is the following useful result:

Theorem 3.4.11. ([M, Thm. 6.4]) If π is finite abelian, then Wh(π) is a free abelian
group.

Let f : X → Y be a cellular homotopy equivalence between finite CW-complexes
and Mf denotes its mapping cylinder which is equipped with an obvious cell struc-
ture (compare [M, p. 381]). The torsion τ(f) of f is defined to be that element of
Wh(π1(Y )) which corresponds to τ(Mf , X) ∈Wh(π1(Y )) under the isomorphism be-
tween Wh(π1(Mf )) and Wh(π1(Y )) which is induced by the inclusion of Y into Mf .
We call f simple if τ(f) = 0. There are the following properties (compare [M, p. 382]):

Lemma 3.4.12. i) If f : X → Y and g : y → Z are cellular homotopy equivalences,
then

τ(g ◦ f) = τ(g) + g∗(τ(f)).

ii) Let (K,L) be as above and i : L ↪→ K be the inclusion then τ(i) = τ(K,L).

79



3 On a family of homogeneous 5-manifolds with cyclic fundamental group

Let W be a smooth compact and connected manifold with boundary, where ∂W =
N0 ∪ N1 is the disjoint union of closed submanifolds N0 and N1. If N0 and N1 are
deformation retracts of W , then we call (W ;N0, N1) an h-cobordism. By choosing a
C1-triangulation of (W,N) we can associate a Whitehead torsion τ(W,N).

There is the following deep theorem by T.A. Chapman (see [Ch]):

Theorem 3.4.13. Let f : X → Y be a homeomorphism of finite CW-complexes then
τ(f) = 0.

This implies that the Whitehead torsions τ(K,L) doesn’t depend on the choice of the
CW-structure and thus is a well defined invariant which only depends on the inclusion
L ↪→ K.

The Whitehead Torsion of Special Complexes

Definition 3.4.14. A finite complex is called special if its fundamental group is finite
abelian and operates trivially on the rational homology groups of the universal covering
space.

Examples of special complexes are the lens spaces, since the universal covering spaces
of them are spheres. The Witten spaces and the 5-dimensional manifolds which we con-
sider in this chapter are special, since the action of the fundamental groups via deck
transformation on the universal covering spaces is homotopically trivial (see Prop.
3.1.4.ii)).

Let X be a special complex and π1(X) be denoted by π. In the following we de-
fine an invariant of X which lives in the rational group ring Q[π] and furthermore we
present a relation between this invariant and the Whitehead torsion τ(W,N0) associ-
ated to an h-cobordism (W ;N0, N1) between special manifolds of odd dimension.

Let K denote the kernel of the augmentation map

Q[π]→ Q,
∑
g∈π

agg 7→
∑
g∈π

ag

and let Σ denote the sum of all the group elements. Then one can easily check that
Q[π] splits as the direct sum

K ⊕Q[Σ].

The subring K can be thought of as an algebra which is isomorphic to Q[π]/Q[Σ].
The direct sum decomposition of Q[π] gives rise to a decompositions of the chain
complex

C(X̃; Q) = KC(X̃; Q)⊕ ΣC(X̃; Q)
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and the homology modules

H∗(X̃; Q) = KH∗(X̃; Q)⊕ ΣH∗(X̃; Q).

Since X is a special complex π operates trivially on the rational homology groups of
X̃ and thus

KH∗(X̃; Q) = 0,

i.e. KC(X̃; Q) is acyclic. Furthermore KC(X̃; Q) inherits a preferred basis from
C(X̃; Q) via the natural homomorphism

C(X̃; Q)→ C(X̃; Q)/ΣC(X̃; Q) = KC(X̃; Q).

From this acyclic complex we obtain the torsion

τ(KC(X̃; Q)) ∈ K̄1K/im(π), see [M, p. 405].

Since X is a special complex π is a finite abelian group and K is isomorphic to a
cartesian product of cyclotomic fields, and hence K1 can be identified with the group
of units U(K) of K. There is an element ∆(X) ∈ U(K) which projects on τ(KC(X̃; Q)).
We can conclude the following:
To each special complex X we can associate the R-torsion

∆(X) ∈ U(K) ⊂ K ⊂ Q[π]

which is well defined up to multiplication by plus or minus a group element. We in-
troduce the following notation: For two elements ∆ and ∆′ in U(K) we write ∆ ∼ ∆′

if they differ by plus or minus a group element.

There is the following

Lemma 3.4.15. ([M, Lemma 12.5.]) A homotopy equivalence f : X → Y between
special complexes is a simple homotopy equivalence if and only if f∗(∆(X)) ∼ ∆(Y ).

That the R-torsion of a special complex X is up to multiplication with a group ele-
ment an invariant of the topological space X, i.e. doesn’t depend on the CW-structure,
follows from the last lemma, Theorem 3.4.10. and Lemma 3.4.11. Just choose Y to
be X and f = g = idX but it also follows immediately from Chapman’s result Thm.
3.4.12.

If a compact manifold is a special complex we call it a special manifold. There is
the following connection to the Whitehead torsion:

Let (W ;N0, N1) be an h-cobordism between two odd dimensional special manifolds
N0 and N1. We identify all three fundamental groups with π.

Theorem 3.4.16. ([M, Thm. 12.8]) ∆(N1) ∼ u2∆(N0), where u is a unit in Z[π]
and u2 ∼ 1 if and only if τ(W,N0) = 0.
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

3.4.3 The main results

Let r ∈ N and greater than 1 and D5
r be the set of diffeomorphism classes of smooth

closed oriented non-simply-connected 5-manifolds with fundamental group isomorphic
to Z/r and π2(·) isomorphic to Z.
Let N,N ′ be smooth 5-manifolds s.t. they represent elements in D5

r . It follows from
Theorem 3.3.1. that the universal covering space of N is diffeomorphic to S2×S3 and
since r is odd the fundamental group acts trivially on the homology of S2 × S3. The
Leray-Serre SS for computing integral cohomology of N (associated to Ñ → N → L∞r )
together with the UCT implies that H2(N ; Z) ∼= Z⊕ Z/r.

In order to state the first theorem of this section in an uncomplicated way we in-
troduce the following equivalence relation on D5

r . Let u ∈ H1(N ; Z/r) be a generator
then we say that N,N ′ are equivalent,

N ∼ N ′,

if and only if there exist

• an isomorphism
α : H1(N ; Z/r) ∼→ H1(N ′; Z/r)

• and z ∈ H2(N ; Z) and z′ ∈ H2(N ′; Z) which project to a generator of H2(N ;Z)
torsion

and H2(N ′;Z)
torsion resp. s.t.

1)
〈
u(βr(u))2, [N ]Z/r

〉
≡
〈
α(u)(βr(α(u)))2, [N ′]Z/r

〉
mod r;

2)
〈
uβr(u)z, [N ]Z/r

〉
≡
〈
α(u)βr(α(u))z′, [N ′]Z/r

〉
mod r;

3)
〈
uz2, [N ]Z/r

〉
≡
〈
α(u)z′2, [N ′]Z/r

〉
mod r;

4)
〈
ρr(p1(N))u, [N ]Z/r

〉
≡
〈
ρr(p1(N ′))α(u), [N ′]Z/r

〉
mod r,

where ρr is the mod-r-reduction in cohomolgy;
5) σ(g ∈ π1(N ′), Ñ ′) = σ(α̃(g), Ñ) for all g ∈ π1(N ′) \ {0},

where α̃ : π1(N ′) ∼→ π1(N) is Kronecker dual to α.

This relation is indeed an equivalence relation on D5
r : Symmetry and reflexivity are

obvious. Transitivity: If N ∼ N ′ and N ′ ∼ N ′′, then clearly there exists an isomor-
phism α′′ : H1(N ; Z/r) ∼→ H1(N ′′; Z/r) s.t. the conditions 1),4) and 5) are fulfilled.
Since N ′ ∼ N ′′ there exist y′ and z′′ s.t.〈

α(u)βr(α(u))y′, [N ′]Z/r
〉
≡
〈
α′′(u)βr(α′′(u))z′′, [N ′′]Z/r

〉
mod r〈

α(u)y′2, [N ′]Z/r
〉
≡
〈
α′′(u)z′′2, [N ′′]Z/r

〉
mod r.

The Postnikov decomposition of manifolds in D5
r (compare with Proposition 3.1.8.)

implies that y′ has to be z′ + kβr(u′) for some k ∈ Z/r. Let’s denote z + kβr(u) by y.
It’s straightforward to show that the conditions 2) and 3) are fulfilled if we choose y
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and z′′ as the generators of H2(N ; Z) and H2(N ′′; Z) resp.

For manifolds in D5
r it’s obviously true that the fundamental group always acts tri-

vially on the cohomology of the universal covering space. Thus in these cases it makes
sense to speak of the R-torsion of such manifolds, as we have defined it on p. 81.

Theorem 3.4.17. Let r ∈ N greater than 1 s.t. gcd(r, 6) = 1 and N,N ′ be oriented
smooth closed 5-dimensional spin manifolds with π1(N) ∼= π1(N ′) ∼= Z/r and π2(N) ∼=
π2(N ′) ∼= Z. Then N and N ′ represent the same element in D5

r , i.e. are diffeomorphic
if and only if

i) N ∼ N ′,

ii) The R-torsions are equivalent, i.e. ∆(N) ∼ ∆(N ′).

Proof. ”⇒”: Is obviously clear.

”⇐”: If we have proven that condition i) is equivalent to N and N ′ being h-cobordant,
then the proof follows from Theorem 3.4.16.
From the proof of Lemma 3.2.3. it follows that the second stage of the Postnikov
decomposition of such manifolds is L∞r × CP∞. This also follows from the fact that
we can build the Postnikov tower up to the second stage with the help of k-invariants
since the fundamental group acts trivially on the higher homotopy groups in this range.
This leads to the same result (compare with p. 41).

Let’s denote L∞r × CP∞ ×BSpin by Br.

From Corollary 3.4.10. we know that N and N ′ are h-cobordant if and only if there
exist normal 2-smoothings f × νsp : N → Br, f ′ × ν′sp : N ′ → Br and a bordism
(W,F ) beween (N, f × νsp) and (N ′, f ′ × v′sp), where F is a 3-equivalence s.t. the
multisiganture of the surgery obstruction is trivial. From Lemma 3.2.1., Proposition
3.2.2. and the calculations in the proof of Proposition 3.2.4. it follows that there exist
bordant normal 2-smoothings if and only if there exist generators u ∈ H1(N ; Z/r),
u′ ∈ H1(N ; Z/r) and z ∈ H2(N ; Z) and z′ ∈ H2(N ′; Z) s.t. they project to generators
of H2(N ;Z)

torsion and H2(N ′;Z)
torsion with the property that〈
u(βr(u))2, [N ]Z/r

〉
≡
〈
u′(βr(u′))2, [N ′]Z/r

〉
mod r;〈

uβr(u)z, [N ]Z/r
〉
≡
〈
u′βr(u′)z′, [N ′]Z/r

〉
mod r;〈

uz2, [N ]Z/r
〉
≡
〈
u′z′2, [N ′]Z/r

〉
mod r;〈

ρr(p1(N))u, [N ]Z/r
〉
≡
〈
ρr(p1(N ′))u′, [N ′]Z/r

〉
mod r.

We have made use of the facts that a map g from a CW-complex into a product of
Eilenberg Maclane spaces can be identified with certain cohomology classes.
If these conditions are fulfilled, then there exist normal 2-smoothings (N, f × νsp) and
(N ′, f ′ × ν′sp) which are bordant. We may choose the bordism (W,F ) in such a way
that F is a 3-equivalence (see [Kr, Prop. 4]).
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We denote π1(Br) by π. There is a π-action on W̃ , the universal covering space
of W , and on Ñ , Ñ ′, which comes from the identification of the fundamental groups
via the maps into the normal 2-type Br. In the following we relate the multisignature
of Θ(W,F ) to the π-equivariant signature of W̃ .

We equip W and W̃ with basepoints b and b̃ resp. s.t. b̃ is a lift of b under the
universal covering map. We want to study the unimodular skew-hermitian form

λ̄ :
Kπ3(W )
imKπ3(N)

× Kπ3(W )
imKπ3(N)

→ Λ,

which comes from the intersection pairing defined on Kπ3(W ). We recall that

Kπ3(W ) := ker(F? : π3(W )→ π3(B))
π3(B)=0

= π3(W ).

On the other hand there is the following composition of maps

π3(W̃ ) H→ H3(W̃ ; Z)
(∩[W̃ ,∂W̃ ])−1

→ H3(W̃ , ∂W̃ ; Z)

→ H3(W̃ , ∂W̃ ; Z)

ker(i∗ : H3(W̃ , ∂W̃ ; Z)→ H3(W̃ ; Z))︸ ︷︷ ︸
=:Ĥ3(W̃ )

which we call Φ. The map Φ is π-equivariant and since W̃ is 1-connected we know
that the Hurewicz map H is surjective.
We also know from section 2.7.1. that the π-signature for W̃ is defined for the non-
singular pairing

γ : Ĥ3(W̃ )× Ĥ3(W̃ )→ Z

which comes from the cup-product-pairing on H3(W̃ , ∂W̃ ; Z) (see pp. 44-45). We
denote the intersection pairing on Kπ3(W ) = π3(W ) by λ. Let’s recall how λ was
defined. For a detailed exposition of the following we refer to [Wa, Ch.5].

Elements of Kπ3(W ) are (regular) homotopy classes of immersions f : S3 → W .
Now let α1 and α2 ∈ Kπ3(W ) then we find representatives (f1, w1) and (f2, w2) s.t.
the images of these maps intersect (transversally) only in finitely many points. Let’s
call the set of intersection points D. From α1 and α2 we obtain a welldefined element
in Λ, namely

λ(α0, α1) :=
∑
d∈D

ε(d)g(d),

where ε(d) ∈ {±1} and g(d) ∈ π1(W ) ([Wa, p. 45]). There is a unique lift f̃i of fi to
W̃ determined by b̃. Let

λZ([f̃0], [f̃1])
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be the Z-valued algebraic intersection number of the homology classes [f̃0] and [f̃1]
then we alternatively can write λ(α0, α1) as∑

g∈π
λZ([f̃0], [lg−1 ◦ f̃1])g,

where lg−1 denotes the left multiplication by g−1. This means that

pc ◦ λ(α0, α1) = λZ([f̃0], [f̃1]).

But

λZ([f̃0], [f̃1]) = [f̃0]∗ ∪ [f̃1]∗ ∈ H3(W̃ , ∂W̃ ; Z) ∼= Z,
where [f̃i]∗ denotes the Poincaré-Lefschetz dual of [f̃i].
All in all we obtain

pc ◦ λ = γ(Φ(·),Φ(·)).
Thus the radicals of pc ◦ λ, λ and γ(Φ(·),Φ(·)) are the same and equal to kerΦ. But
on the other hand they equal imKπ3(Npq) (see p.75). From the definition of the mul-
tisignature p. 76 and the equivariant signature in section 2.7.1. we conclude:

Computing the multisignature of λ̄ is the same as computing the π-signature of W̃ .

Thus
MS(g,Θ(W,F )) = sign(g, W̃ ) ∀g ∈ π.

In the same way we have done it on p. 84 we identify the fundamental groups of the
bordant manifolds and the bordism with the fundamental group of Br. Let g ∈ π \{0}
then from the above formula and Novikov’s additivity formula for the equivariant
signature it follows that

MS(g,Θ(W,F )) = σ(g, Ñ)− σ(g, Ñ ′).

Since W̃ is 6-dimensional it follows that sign(W̃ ) thus

MS(g,Θ(W,F )) = 0 ∀g ∈ π
⇔

σ(h ∈ π1(N) \ {0}, Ñ) = σ((f∗)−1 ◦ f ′∗(h), Ñ ′) ∀h ∈ π1(N) \ {0}.

The map α is f ′∗◦(f∗)−1 : H1(N ; Z/r)→ H1(N ′; Z/r) and α̃ is (f∗)−1◦f ′∗ : π1(N ′)→
π1(N).

All in all we see that if the conditions 1)-5) on p. 82 are fulfilled for an isomorphism
α : H1(N ; Z/r)→ H1(N ′; Z/r) and z ∈ H2(N ; Z) and z′ ∈ H2(N ′; Z) that project to
generators of H2(N ;Z)

torsion and H2(N ′;Z)
torsion resp. then there exist bordant 2-smoothings of N

and N ′ s.t. one can choose a bordism (W,F ) with the following properties:
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

• F is 3-connected.

• W̃ has trivial π-signature.

It follows that W is bordant rel. boundary to an h-cobordism and we may apply
Theorem 3.4.16. which finishes the proof. �

An application of the last theorem is the following

Theorem 3.4.18. Let r be a natural number greater than 1 s.t. gcd(r, 6) = 1 and Npq,
Np′q′ ∈ L be oriented (see the convention on p.65) with π1(Npq) ∼= π1(Np′q′) ∼= Z/r.
Let further (m,n), (m′, n′) be pairs of integral numbers s.t. m q

r+npr = 1 = m′ q′
r +n′ p

′

r .
Then Npq and Np′q′ are diffeomorphic if and only if there exist ε, ε′, δ ∈ {±1} and
k, k′ ∈ Z/r s.t.

pq = δp′q′

(εm+ k
p

r
)(εn− k q

r
) ≡ δ(ε′m′ + k′

p′

r
)(ε′n′ − k′ q

′

r
)mod r,

q

r
(εm+ k

p

r
)− p

r
(εn− k q

r
) ≡ q′

r
(ε′m′ + k′

p′

r
)− p′

r
(εn′ − k′ q

′

r
)mod r.

Remark 3.4.19. The examples which are given in the following remarks were pro-
duced by a computer program:

i) The first arithmetic condition in the previous theorem doesn’t imply the two other
ones. Example: (p, q) = (66, 385) and (p′, q′) = (165, 154), where r = gcd(p, q) =
gcd(p′, q′) = 11 and pq = 25410 = p′q′.

ii) That Npq and Np′q′ are diffeomorphic doesn’t imply that they are equivariantly
diffeomorphic in the sense of Definition 2.3.1. Example: N5,30 and N10,15, where
r = 5.

iii) Let N be a smooth manifold and φ : U(1) × N → N a smooth and free U(1)-
action on N . Let r ∈ N then φ induces a free Z/r-action on N , namely by restricting
on the r′th roots of unity. We call this action φr. Furthermore we denote the orbit
space w.r.t. φr by N

φr
.

There are smooth and free U(1)-actions γ, ψ on S2 × S3 which are not equivalent,
i.e. they ”don’t differ” by an U(1)-equivariant self-diffeomorphism of S2 × S3 s.t.
S2×S3

γr
and S2×S3

ψr
are diffeomorphic for some r ∈ N. Example: same as in ii).

Proof. Following Theorem 3.4.16. Npq and Np′q′ are diffeomorphic if and only
if Npq ∼ Np′q′ and ∆(Npq) ∼ ∆(Np′q′). The proof of this theorem is organized as
follows:
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3.4 A diffeomorphism classification: The non-simply-connected case

A) We first compute the σ-invariants for an Nab ∈ L fulfilling the assumptions of
the theorem.

B) Then we show that the conditions 1)-5) (p. 82) are fulfilled if and only if there
exists congruences as stated in the theorem.

C) In the last part of the proof we show that the R-torsion of an Npq doesn’t de-
pend on p and q, i.e. ∆(Npq) ∼ ∆(Np′q′).

A) We know that Ñab ∼= N
a
r

b
r is the total space of the U(1)-bundle over S2 × S2,

S1 → N
a
r

b
r

Π→ S2 × S2,

with c1(Π) = a
rx + b

ry. The content of the following passage resmbles much what we
have done in the proof of Theorem 2.7.9., where all the technical details were explained.

Let E
a
r

b
r denote the disc bundle which is associated to Π. Since the π1(Nab)-action on

N
a
r

b
r preserves the fibre there is an obvious π1(Nab)-action on E

a
r

b
r which is compat-

ible with the π1(Nab)-action on the boundary N
a
r

b
r . And for any nontrivial element

g of π1(Nab) the fixed point set (E
a
r

b
r )g is the base space of the disc bundle, namely

S2 × S2. The normal bundle Nab over S2 × S2 is oriented in such a way that it is
compatible with the g-action, thus c1(Nab) = ±(arx + b

ry). Let g be a nontrivial ele-
ment of π1(Nab) then Θg denotes the rotation angle between 0 and π and furthermore
we denote by (Lj)j∈N0 and (Mθ

k)k∈N0 the characteristic polynomials which we have
explained on p. 48. According to Definition 2.7.5. the σ-invariant of N

a
r

b
r for a

nontrivial element g of π1(Nab) is

L(g,E
a
r

b
r )− sign(g,E

a
r

b
r ),

where

L(g,E
a
r

b
r ) = (i tan

θg
2

)−1
∑
j=0

Lj(S2 × S2)
∑
r

Mθg
r (Nθg )

[
S2 × S2

]
± . (3.4)

The signs in
[
S2 × S2

]
± depend on how g operates on N

a
r

b
r (compare with the remark

on how we orient the fixed point set, p.48). We have already computed some L- and
Mθ-polynomials on pp. 54 - 55. The L-polynomial applied to S2×S2 which is relevant
for us is:

L0(S2 × S2) = 1.
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

And the Mθ-polynomials applied to Nθg
which are relevant for us are the following:

Mθg

0 (Nθg
) = 1,

Mθg

1 (Nθg ) =
i

sin θg
c1(Nθg ),

Mθg

2 (Nθg
) = − 1

4 sin2( θg

2 )
c1(Nθg

)2.

Now we show that sign(g,E
a
r

b
r ) = 0 for all g ∈ π1(N

a
r

b
r ):

Since homotopically π1(Nab) acts trivially on E
a
r

b
r it follows that sign(g,E

a
r

b
r ) =

sign(E
a
r

b
r ) for all g ∈ π1(Nab). But sign(E

a
r

b
r ) = 0 as dim(E

a
r

b
r ) is not divisible by 4.

This also follows from the fact that

H3(E
a
r

b
r ; Z) ∼= H3(S2 × S2; Z) ∼= 0.

All in all we conclude the following: If the rotation by θg respects the orientation of
the fiber, then

σ(g,N
a
r

b
r )

(3.4)
= (i tan

θg
2

)−1
∑
j=0

Lj(S2 × S2)
∑
r

Mθg
r (Nθg )

[
S2 × S2

]
= −i

cos( θg

2 )

2r2 sin3( θg

2 )
ab︸ ︷︷ ︸

=:h(θg)

. (3.5)

If ab = 0, then it follows that Nab ∼= N0±r ∼= N±r0. Thus in this case the theorem is
trivially true. In the following we study the case where ab 6= 0.

Therefore we gather some observations:

Let g ∈ π1(Nab) \ {0} then

σ(−g,N a
r

b
r ) = −σ(g,N

a
r

b
r ). (3.6)

This is a consequence of the sign change in the above formula which comes from the
change of the orientation of the normal bundle N a

r
b
r
.

It is also true that the map

σ(·, N a
r

b
r ) : π1(Nab) \ {0} → iR (3.7)

is injective. This follows from the injectivity of the map

h : (0, π) → iR.

From (3.5) and (3.7) we conclude that if the value sets of the σ-invariants of N
p
r

q
r and

N
p′
r

q′
r have to be equal, then |pq| and |p′q′| have to coincide.
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3.4 A diffeomorphism classification: The non-simply-connected case

Proposition 3.2.4. and its proof imply that the conditions 1) to 4)(p. 82) are fulfilled
if and only if there exist s, s′ ∈ (Z/r)∗, k, k′ ∈ Z/r and ε, ε′{±1} s.t. the following
congruences hold:

s3
pq

r2
≡ s′3 p

′q′

r2
mod r,

s(εm+ k
p

r
)(εn− k q

r
) ≡ s′(ε′m′ + k′

p′

r
)(ε′n′ − k′ q

′

r
)mod r,

s2(
q

r
(εm+ k

p

r
)− p

r
(εn− k q

r
)) ≡ s′2(

q′

r
(ε′m′ + k′

p′

r
)− p′

r
(εn′ − k′ q

′

r
))mod r.

(Recall that p1(Nab)=0 thus condition 4) is always fulfilled.)

B) If we further require that condition 5) also has to hold, then (3.6) and (3.7) imply
that s′ = δs if pq = δp′q′, where δ ∈ {±1}. Hence Npq ∼ Np′q′ if and only if

pq

r2
= δ

p′q′

r2
,

(εm+ k
p

r
)(εn− k q

r
) ≡ δ(ε′m′ + k′

p′

r
)(ε′n′ − k′ q

′

r
)mod r,

q

r
(εm+ k

p

r
)− p

r
(εn− k q

r
) ≡ δ2︸︷︷︸

=1

(
q′

r
(ε′m′ + k′

p′

r
)− p′

r
(εn′ − k′ q

′

r
))mod r.

Reflecting Corollary 3.4.10., what we have gained up to now is an h-cobordism classi-
fication of the non-simply-connected oriented manifolds in L with gcd(|π1(·)|, 6) = 1.

C) In the following we compute the R-torsion ∆(Npq) for Npq.

Let’s denote π1(Npq) by π1. In order to compute ∆(Npq) we need a π1-equivariant
CW-structure on Ñpq = N

p
r

q
r , the universal covering space of Npq. We finish the

proof by doing the following steps:

i) We find a CW-structure on Npq ,

ii) lift this CW-structure to a π1-equivariant CW-structure on Ñpq = N
p
r

q
r and then

iii) compute ∆(Npq).

i) For the purpose to detect a CW-structure on Npq we use the fact that Npq is
diffeomorphic to the total space of the U(1)-fibre bundle over S2×S2 with first Chern
class px+ qy. There is the following CW-decomposition of the base S2 × S2:

S2 × S2 = S2 ∨ S2 ∪f e4
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

which is the product CW-structure where S2 is constructed by attaching a 2-cell to a
0-cell. This implies the following decomposition of Npq: Let’s denote by L3

p and L3
q

the standard 3-dimensional lens spaces with fundamental group isomorphic to Z/p,
Z/q resp. which are decomposed in the following way (see [F, §8], [Ha, pp. 144-146]):

L3
p = e0p ∪ e1p ∪ e2p ∪ e3p, di(eip) =

{
0, if i is odd

pei−1
p , else (3.8)

and

L3
q = e0q ∪ e1q ∪ e2q ∪ e3q, di(eiq) =

{
0 , if i is odd

qei−1
q , else. .

(3.9)

With these CW-decompositions of lens spaces in mind we obtain

Npq = L3
p ∪S1 L3

q︸ ︷︷ ︸
=:X3

pq

∪fpq
(e4 × S1),

where X3
pq is the result of glueing L3

p and L3
q together along their 1-cells via the

identity map (respecting the orientation of the 1-cells) and fpq is the glueing map
which is induced by f .
Furthermore we decompose e4 × S1 in the following way:

e4 × S1 = ∂(e4 × S1) ∪ e4 ∪ e5.

Thus we obtain the following cellular decomposition of Npq:

Npq = e0 ∪ e1 ∪ e2p ∪ e2q ∪ e3p ∪ e3q ∪ e4 ∪ e5.

The chain complex associated to this decomposition looks as:

Z d5→ Z d4→ (Z)2 d3→ (Z)2 d2→ Z d1→ Z.

All the differentials except d4 can easily be deduced from the decomposition: d5 and
d1 have to be 0, d3 and d2 come from the differentials in (3.8), (3.9), i.e.

d3(e3p) = 0, d3(e3q) = 0, d2(e2p) = pe1, d2(e2q) = qe1.

What’s d4?

Let gpq be the attaching map of e4 to X3
pq. It’s known that d4(e4) = α1,pe

3
p + α2,qe

3
q,

where

α1,p := deg(S3 fpq→ X3
pq → X3

pq/(X
3
pq − e3p))

α2,q := deg(S3 fpq→ X3
pq → X3

pq/(X
3
pq − e3q)),

where the last maps in the compositions are the corresponding quotient maps from
X3
pq to X3

pq/(X
3
pq − e3p), X3

pq/(X
3
pq − e3q) resp.
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3.4 A diffeomorphism classification: The non-simply-connected case

The differential d4 for N00:

We know that N00 ∼= S1 × S2 × S2 = S1 × S2 ∪S1 S1 × S2 ∪f00 e4 ∪ e5. Since
H4(N00; Z) ∼= Z the differential d4 has to be trivial, thus α1,0 = 0 = α2,0.

The differential d4 for N10:

We know that N10 ∼= S3 × S2 = S3 ∪S1 S1 × S2 ∪f10 e4 ∪ e5 thus H4(N10; Z) is
trivial which means that d4 can not be trivial. Since

α2,0 = deg(S3 f10→ X3
10 → X3

10/(X
3
10 − e31))

= deg(S3 f00→ X3
00 → X3

00/(X
3
00 − e30))

= 0

we conclude that α1,1 has to be ±1. If |α1,1| > 1, then H3(N10; Z) would have
nontrivial torsion which is a contradiction to the fact that H3(N10; Z) ∼= Z. W.l.o.g.
we orient e4 s.t. α1,1 = 1.
In the same way we obtain for general Npq the following:

α1,p = p and α1,q = q.

ii) From i) we obtain for the universal covering space a (non-equivariant) CW-structure,
i.e.

N
p
r

q
r = L3

p
r
∪S1 L3

q
r
∪f p

r
q
r

(e4 × S1)(= e0 ∪ e1 ∪ e2p ∪ e2q ∪ e3p ∪ e3q ∪ e4 ∪ e5)

and we know the covering map:

pr : L3
p
r
∪S1 L3

q
r
∪f p

r
q
r

(e4 × S1)→ L3
p ∪S1 L3

q ∪fpq (e4 × S1).

We choose a basepoint x in Npq and lift it to a point x̃ in N
p
r

q
r . Furthermore we lift

the cells of Npq w.r.t. x̃: The lifted cells are denoted by ê0, ê1, ê2p, ê
2
q, ê

3
p, ê

3
q, ê

4 and
ê5. We choose the preferred generator t of π1 to be the one which corresponds to the
(canonical) generator a ∈ H1(Npq; Z) (see p.65). The π1-equivariant chain complex
that we obtain is of the following form:

Z[π1] d̃5→ Z[π1] d̃4→ (Z[π1])2 d̃3→ (Z[π1])2 d̃2→ Z[π1] d̃1→ Z[π1].

The equivariant cell structure of the universal covering spaces of lens spaces which one
can find in [M, p. 404] together with the knowledge of the π1-action on e4×S1 ⊂ N

p
r

q
r
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

implies:

d̃1(ê1) = (t− 1)ê0,

d̃2(ê2p) =
p

r
(1 + t+ · · ·+ tr−1)ê1,

d̃2(ê2q) =
q

r
(1 + t+ · · ·+ tr−1)ê1,

d̃3(ê3p) = (t− 1)ê2p,

d̃3(ê3q) = (t− 1)ê2q,

d̃4(ê4) =
p

r
(1 + t+ · · ·+ tr−1)ê3p +

q

r
(1 + t+ · · ·+ tr−1)ê3q,

d̃5(ê5) = (t− 1)ê4.

iii) Let C̃odd, C̃even be the nontrivial chain-modules of the equivariant CW-complex
associated to N

p
r

q
r of odd resp. even degrees. According to [M, pp. 405-406] the

torsion is defined to be
det : (dodd∗ : C̃odd → C̃even).

We choose ê5, ê3p, ê
3
q, ê

1 to be a Z[π1]-basis of C̃odd and ê4, ê2p, ê
2
q, ê

0 to be a basis of
C̃even then the representation matrix of dodd∗ is

t− 1 0 0 0
0 t− 1 0 0
0 0 t− 1 0
0 0 0 t− 1


thus ∆(Npq) ∼ (t− 1)4 which finishes the proof. �

Let r ∈ N with gcd(r, 6) = 1. The non-simply-connected manifolds in L with funda-
mental group isomorphic to Z/r don’t represent all diffeomorphism classes of smooth,
closed spin 5-manifolds with second Betti number equal to 1:

Let S3 be the 3-sphere and let q1, q2 ∈ Z with gcd(q1, r) = 1 =gcd(q2, r) and (q1q2)2 6≡
±1 mod r. By L(r; q1, q2) we denote the 3-dimensional oriented lens space which is
the orbit space of the following smooth free Z/r-action on S3:

Z/r × S3 → S3,

(t, (z1, z2)) 7→ (e2πt
q1
r z1, e

2πt
q2
r z2).

Since r is odd it follows that H2(L(r; q1, q2); Z/2) is trivial thus L(r; q1, q2) admits a
spin structure. Let S2 be the 2-sphere then

S2 × L(r; q1, q2) =: S(r; q1, q2)

is an orientable smooth and closed 5-manifold with fundamental group isomorphic to
Z/r which admits a unique spin structure. We claim that S(r; q1, q2) is not diffeomor-
phic to any manifold in L.
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3.4 A diffeomorphism classification: The non-simply-connected case

Proof of the claim: If we show that ∆(S(r; q1, q2) � ∆(Npq) for all p, q ∈ Z,
we are finished. For L(r; q1, q2) there is a CW-decomposition ([F, §8]) of the following
form:

L(r; q1, q2) ∼= e0 ∪ e1 ∪ e3 ∪ e3,
with differentials

d3(e3) = 0, d2(e2) = re1, d1(e1) = 0.

There is a preferred generator t of π1(L(r; q1, q2)) (see [L, p. 39]). Let b ∈ L(r; q1, q2)
be the zero-cell and b̃ ∈ L̃(r; q1, q2) = S3 a lift of b. The choice of b̃ determines
unique lifts of the cells of L(r; q1, q2). Thus we obtain a π1(L(r; q1, q2))-equivariant
CW-structure on S3.

In order to compute the R-torsion of S(r; q1, q2) we first choose the product CW-
structure, where S2 = s0 ∪ s2, i.e.

S(r; q1, q2) = e0 ∪ e1 ∪ (e21 ∪ e22) ∪ (e31 ∪ e32) ∪ e4 ∪ e5,

where e21 = s0 × e2, e22 = s2 × e0, e31 = s0 × e3 and e32 = s2 × e1.
Then we choose the zero-cell as the base point p for S(r; q1, q2) and a lift p̃. As above
the choice of a lift of p determines a unique lift of all the other cells. We obtain a
π1(S(r; q1, q2))-equivariant CW-decomposition of S2 × S3:

Z[π1] d̃5→ Z[π1] d̃4→ (Z[π1])2 d̃3→ (Z[π1])2 d̃2→ Z[π1] d̃1→ Z[π1]

and again as in the proof of the previous theorem it follows from [F, §9] that

d̃1(ê1) = (tq1 − 1)ê0,
d̃2(ê21) = (1 + t+ · · ·+ tr−1)ê1,
d̃2(ê22) = 0,
d̃3(ê31) = (tq1 − 1)ê21,
d̃3(ê32) = (tq2 − 1)ê22,
d̃4(ê4) = (1 + t+ · · ·+ tr−1)ê32,
d̃5(ê5) = (tq2 − 1)ê4.

Thus ∆(S(r; q1, q2)) ∼ (tq1 − 1)2(tq2 − 1)2. If (tq1 − 1)2(tq2 − 1)2 and (t − 1)4 were
equivalent in the sense of Milnor, then there should exist a unit u in Z[Z/r] s.t.
u2(t− 1)4 = (tq1 − 1)2(tq2 − 1)2. We show that this equation is impossible by applying
the following

Lemma 3.4.20. ([M, Lemma 12.10.]) There exists a unit d of Z[Z/r] satisfying the
equation

(tr1 − 1) · · · (trn − 1) = d(ts1 − 1) · · · (tsp − 1)

if and only if n = p and
r1 · · · rn ≡ ±s1 · · · snmod r.
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3 On a family of homogeneous 5-manifolds with cyclic fundamental group

By the choice of q1 and q2 the claim follows from Lemma 3.4.20. and Theorem
3.4.17. An example of such a manifold is S(7; 1, 2).

The author is attracted by the problem to classify more general families of lens space
bundles over S2 up to diffeomorphism. Therefore Theorem 3.4.17. could be very
useful.

Remark 3.4.21. From Corollary 3.1.3.ii) and Theorem 3.4.17. we easily obtain a
diffeomorphism classification of {Nabc ∈ L|gcd(gcd (a, b), 6) = 1}.
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4 A bordism classification of normal
2-smoothings of certain 7-manifolds

The non-simply-connected Witten spaces are interesting examples of 7-manifolds with
cyclic fundamental group and second homotopy group isomorphic to Z. If one is
interested in classifying such manifolds, then one could try to apply the modified
surgery. The first step is the determination of the so called normal 2-type which in
the spinc case is

(K(Z/r, 1)×K(Z, 2)×BSpin, ξ),

where ξ : K(Z/r, 1)×K(Z, 2)×BSpin→ BO is a fibration depending on the second
Stiefel-Whitney class of the tangent bundle of the manifold. The next step is to de-
cide whether two normal 2-smoothings of manifolds under consideration are normally
bordant. This of course requires a study of the corresponding bordism group. We will
carry out the last step for spin manifolds of the prescribed type where the order of the
fundamental group is coprime to 6.

We recall the following fact: Let M be a smooth manifold as above and f × νsp :
M → L∞r × CP∞ × BSpin be a normal 2-smoothing, where νsp is the classifying
map of a chosen spin structure on M . The map f × νsp represents an element in
Ω7(L∞r × CP∞ × BSpin, ξ). As we have already stated in Lemma 3.2.1. the nor-
mal 2-smoothing f × νpqsp represents the zero-element in Ω7(L∞r × CP∞ × BSpin, ξ)
if and only if (M,f) represents the trivial element in ΩSpin7 (L∞r × CP∞), where M is
equipped with the chosen spin structure.

Although we apply the same methods for computing ΩSpin7 (L∞r × CP∞) as for the
calculation of ΩSpin5 (L∞r × CP∞) in the proof of Proposition 3.2.2. we mention the
main techniques again.
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4 A bordism classification of normal 2-smoothings of certain 7-manifolds

4.1 ΩSpin
7 (L∞r × CP∞)

Throughout this chapter we assume that r is an odd natural number. As we have
already noticed in chapter three.

Hk(L∞r × CP∞; Z) ∼=
{

Z, k is even
(Z/r)j , 2j − 1 = k.

The entries of the E2-page of the AHSS for ΩSpin∗ (L∞r × CP∞) is given by: E2
ab =

Ha(L∞r × CP∞); ΩSpinb (pt)). Since r ≡ 1 mod 2 the E2-term in the range a + b ≤ 8
looks like

b
...
8 Z2

7 0 0
6 0 0 0
5 0 0 0 0
4 Z Z/r Z (Z/r)2 Z
3 0 0 0 0 0 0 0
2 Z/2 0 Z/2 0 Z/2 0 Z/2
1 Z/2 0 Z/2 0 Z/2 0 Z/2 0
0 Z Z/r Z (Z/r)2 Z (Z/r)3 Z (Z/r)4 Z

0 1 2 3 4 5 6 7 8 . . . a .

What are the ∞-terms in the seventh diagonal, i.e. what is E∞a,b for a+ b = 7?

The differentials d2 from the 0-row to the 1-row and from the 1-row to the 2-row
are given as follows (see [T, p. 7] ):

In the first case they are just the dual of the Steenrod square

Sq2 : H∗(L∞r × CP∞; Z/2)→ H∗+2(L∞r × CP∞; Z/2)

precomposed with the reduction map:

ρ2 : H∗(L∞r × CP∞; Z)→ H∗(L∞r × CP∞; Z/2).

In the second case they are dual to Sq2.

The Steenrod square properties for lens spaces and projective spaces yield the fol-
lowing result for E∞a,b for a+ b = 1, 3, 5, 7 (compare pp. 62-63):
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4.1 ΩSpin7 (L∞r × CP∞)

7 0
6 0
5 0 0
4 0 (Z/r)2
3 0 0 0
2 0 0 0
1 0 0 0 0
0 Z/r (Z/r)2 (Z/r)3 (Z/r)4

0 1 2 3 4 5 6 7 .

For ΩSpin7 (L∞r × CP∞) we get the following extension problem:

0→ H3(L∞r × CP∞; Z)
µk→ ΩSpin7 (L∞r × CP∞) h7→ H7(L∞r × CP∞; Z)→ 0. (4.1)

The map h7 is a Hurewicz homomorphism, it sends [(M, g)] ∈ ΩSpin7 (L∞r × CP∞) to
g∗([M ]). But what is µk?

Before we give an answer to that we recall some facts:
The E∞-term of the AHSS above implies that the Hurewicz homomorphism

h3 : ΩSpin3 (L∞r × CP∞) → H3(L∞r × CP∞),
[N, f ] 7→ f∗([N ])

is an isomorphism. Thus we may identify (Z/r)2 with ΩSpin3 (L∞r × CP∞). Let L3
r be

the standard 3-dimensional oriented lens space where the orientation comes from its
universal covering space S3 which is oriented in the standard way. Furthermore we
equip S1×S2 with the orientation which we obtain by first orientating S1 and then S2

in the usual way. Generators of ΩSpin3 (L∞r ×CP∞) are (L3
r, i) and (S1×S2, j) where i

is the composition of the following obvious maps: L3
r → L∞r → L∞r ×pt→ L∞r ×CP∞

and j is given as follows: we identify S1 with the 1-skeleton in L∞r and S2 with the
2-skeleton in CP∞ then we define j by the following commuting triangles:

S1 × S2 -
j

L∞r × CP∞ >> L∞r × pt

��������������1

prS1

?

S1 × pt

S1 × S2 -
j

L∞r × CP∞ >> pt× CP∞

��������������1

prS2

?

pt× S2
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4 A bordism classification of normal 2-smoothings of certain 7-manifolds

That these two elements of ΩSpin3 (L∞r × CP∞) are generators can easily be seen by
using h3 and the fact that L3

r and S1 × S2 represent generators of H3(L∞r ; Z) resp.
H1(L∞r ; Z)⊗H2(CP∞; Z), i.e.

h3[(L3
r, i)] = i∗([L3

r]) ∈ H3(L∞r ,Z) ⊂ H3(L∞r ; Z)⊕H1(L∞r ; Z)⊗H2(CP∞; Z)
= H3(L∞r × CP∞; Z),

h3[(S1 × S2, j)] = j∗([S1 × S2]) ∈ H1(L∞r ; Z)⊗H2(CP∞; Z) ⊂ H3(L∞r × CP∞; Z)

form a basis of H3(L∞r × CP∞; Z).
Furthermore we know that a Kummer surface K generates ΩSpin4 (pt.) ([M.2]) and we
introduce the following homomorphism:

µ̃K : ΩSpin3 (L∞r × CP∞)→ ΩSpin7 (L∞r × CP∞), [(N, g)] 7→ [(N ×K, g ◦ prN )],

where prN is the projection onto the first factor. The multiplicative structure of the
AHSS implies that µK is given as

H3(L∞r × CP∞) -
µK

ΩSpin7 (L∞r × CP∞)

�����������1

h3
6

ΩSpin3 (L∞r × CP∞)
µ̃K

If we could show that there is a homomorphism s from ΩSpin7 (L∞r ×CP∞) to ΩSpin3 (L∞r ×
CP∞) s.t. s◦µK = idΩSpin

3 (L∞r ×CP∞), then ΩSpin7 (L∞r ×CP∞) ∼= (Z/r)6 and the maps
s and h7 would decide whether two 7 dimensional spin manifolds as described at the
beginning of this chapter equipped with maps into L∞r × CP∞ represent the same
element in ΩSpin7 (L∞r × CP∞) or not.

Constructing a splitting

An idea for constructing a map from ΩSpin7 (L∞r × CP∞) to ΩSpin3 (L∞r × CP∞) is
to look at certain characteristic numbers.

We want to study two characteristic numbers n1 and n2 that take values in Z/r s.t.
the evaluation of n1 × n2 on µK [(L3

r, i)] = [(L3
r × K, i ◦ pr)] and µK [(S1 × S2, j)] =

[(S1 × S2 × K, j ◦ pr)] yields a basis of (Z/r)2. Before we introduce two candidates
of interesting characteristic numbers, we should understand the Z/r-cohomology of
L∞r × CP∞. We know that H?(L∞r ; Z/r) = Λ[v1] ⊗ Z/r[βr(v1)], where v1 is a gen-
erator of H1(L∞r ; Z/r) and βr(v1) is the mod-r-Bockstein homomorphism evaluated
on v1. We also know that H?(CP∞; Z/r) = Z/r[zr], where zr is the mod-r-reduction
of the standard generator of H2(CP∞; Z). Let ρr be the mod-r-reduction then the
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4.1 ΩSpin7 (L∞r × CP∞)

candidates are:

n1 : ΩSpin7 (L∞r × CP∞) → Z/r,
[(M,f)] 7→

〈
ρr(p1(M))f∗(v1zr), [M ]Z/r

〉

and

n2 : ΩSpin7 (L∞r × CP∞) → Z/r,
[(M,f)] 7→

〈
ρr(p1(M))f∗(v1βr(v1)), [M ]Z/r

〉
,

where p1(M) is the first Pontrijagin class of the tangent bundle of M and [M ]Z/r de-
notes the mod-r-reduction of the integral fundamental class of M .
In order to show that ni : ΩSpin7 (L∞r × CP∞) → Z/r is well defined for i = 1, 2 one
has to show that ni is a bordism invariant. But for this look on p.64.

Now we show that n1 × n2(L3
r × K, i ◦ pr) and n1 × n2(S1 × S2 × K, j ◦ pr) form

a basis of (Z/r)2. First we have a look at

i ◦ pr : L3
r ×K - L∞r × CP∞

@
@

@R
L3
r

�
�

��

and observe that i∗(zr) = 0 which implies that (i◦pr)∗(v1z) = 0 and i∗(v1βr(v1)) gen-
erates H3(L∞r ; Z/r). By looking at

j ◦ pr : S1 × S2 ×K - L∞r × CP∞
@

@
@R
S1 × S2

�
�

��

we observe that (j ◦ pr)∗(v1βr(v1)) = 0. Furthermore via the Künneth formula and
the fact that S1 ⊂ L∞r and S2 ⊂ CP∞ represent the Kronecker duals of the classes
v1 and z resp. it follows that j∗(v1z) is a generator of H3(S1 × S2; Z/r). The prod-
uct formula for Pontrjagin classes implies that for any closed oriented 3-manifold L
p1(L×K) = p1(K) ∈ H4(L×K; Z). In the following we denote (S1 × S2 ×K, j ◦ pr)
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4 A bordism classification of normal 2-smoothings of certain 7-manifolds

by G1 and (L3
r ×K, j ◦ pr) by G2. The Künneth theorem implies that

n1(G1) =
〈
ρr(p1(K)), [K]Z/r

〉 〈
(j ◦ pr)∗(v1zr), [S1 × S2]Z/r

〉︸ ︷︷ ︸
=:AG1

(4.2)

n1(G2) =
〈
ρr(p1(K)), [K]Z/r

〉 〈
(i ◦ pr)∗(v1zr), [L3

p]Z/r
〉︸ ︷︷ ︸

=:AG2

(4.3)

n2(G1) =
〈
ρr(p1(K)), [K]Z/r

〉 〈
(j ◦ pr)∗(v1βr(v1)); [S1 × S2]Z/r

〉︸ ︷︷ ︸
=:BG1

(4.4)

n2(G2) =
〈
ρr(p1(K)), [K]Z/r

〉 〈
(i ◦ pr)∗(v1βr(v1)), [L3

p]Z/r
〉︸ ︷︷ ︸

=:BG2

. (4.5)

Lemma 4.1.1. AG1 generates Z/r, AG2 = 0, BG1 = 0, BG2 generates Z/r.

Proof. That n1(G2) = 0 = n2(G1) is easily verified from one of the above consid-
erations. The fact that j?(v1zr) is a generator of H3(S1 × S2; Z/r) implies that AG2

is a generator of Z/r. We know that

H?(L3
r; Z/r) ∼=

Z/r[a, b]
a2, b2

with |a| = 1, |b| = 2 and the fact that (i ◦ pr)?(v1) is a generator of H1(L3
r; Z/r) and

(i ◦ pr)?(v2) is a generator of H2(L3
r; Z/r) shows that BG2 is a generator of Z/r. �

Proposition 4.1.2. Let r ∈ N s.t. gcd(r, 6) = 1. There exists an isomorphism

α : (Z/r)2 → ΩSpin3 (L∞r × CP∞)

s.t.
α ◦ (n1 × n2) : ΩSpin7 (L∞r × CP∞)→ ΩSpin3 (L∞r × CP∞)

is a splitting of

0→ ΩSpin3 (L∞r × CP∞)
µ̃k→ ΩSpin7 (L∞r × CP∞) h7→ H7(L∞r × CP∞)→ 0.

Thus
ΩSpin7 (L∞r × CP∞) ∼= (Z/r)6.

Proof. By the Hirzebruch signature theorem it’s known that〈p1

3
(K), [K]

〉
= sign(K) = −16.

Thus
〈
ρr(p1(K)), [K]Z/r

〉
≡ −48 mod r is a generator of Z/r if and only if gcd(r, 48) =

1. But gcd(r, 48) = 1 if and only if gcd(r, 6) = 1. In this situation the assertion follows
from the last lemma and the equations (4.2)-(4.5). �

Now we are prepared to prove the following
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Theorem 4.1.3. Let r ∈ N greater than 1 s.t. gcd(r, 6) = 1 and M,M ′ be closed
smooth oriented spin 7-manifolds equipped with their unique spin structures and with
normal 2-type

(L∞r × CP∞ ×BSpin︸ ︷︷ ︸
=:Br

, ξ),

where ξ : Br → BO is a certain fibration (see p.40). Furthermore let νsp : M →
BSpin, ν′sp : M ′ → BSpin be the classifying maps of the corresponding Spin(7)-
bundles. Let g := f ×νsp : M → Br and g′ := f ′×νsp : M ′ → Br be maps then (M, g)
and (M ′, g′) represent the same element in Ω7(Br, ξ) if and only if〈

ρr(p1(M))f∗(v1zr), [M ]Z/r
〉
≡

〈
ρr(p1(M ′))f ′∗(v1zr), [M ′]Z/r

〉
mod r,〈

ρr(p1(M))βrf∗(v1)f∗(v1), [M ]Z/r
〉
≡

〈
ρr(p1(M ′))βrf ′∗(v1)f ′∗(v1), [M ′]Z/r

〉
mod r,

f∗([M ]) = f ′∗([M ′]),

where ρr is the mod-r-reduction in cohomology, v1 is a generator of H1(Br; Z/r) and
zr is the mod-r-reduction of the standard generator of H2(CP∞; Z) ⊂ H2(Br; Z).

Proof. From the short exact sequence (4.1) and Proposition 4.1.2. it follows
that (M,f) and (M,f ′) represent the same element in Ω7(Br, ξ) if and only if n1 ×
n2((M,f)) = n1 × n2((M ′, f ′)) and f∗([M ]) = f ′∗([M ′]). �

4.2 Normal 2-smoothings of non-simply-connected spin
Witten spaces

For the purpose of this section we identify a Witten space Mab with the total space of
the principal U(1)-bundle over CP 2×CP 1 given by the first Chern class px+qy, where
x, y are the standard generators of H2(CP 2; Z) and H2(CP 1; Z) resp. (see Proposition
2.4.1.). In order to classify normal 2-smoothings of Witten spaces up to bordism we
have to take orientations into account.

We orient the Witten spaces as we have done it on p.53.

Let i be the inclusion of the fibre U(1) into Mpq. Furthermore we denote by u the el-
ement in H1(Mpq; Z/r) with the property that

〈
i∗(u), [U(1)]Z/r

〉
= 1, where [U(1)]Z/r

is the mod-r-reduction of the integral fundamental class of U(1).
Let m,n ∈ Z s.t. m q

r + npr = 1 then we know from Proposition 2.5.2. that

H2(Mpq; Z) = 〈mΠ∗(x)− nΠ∗(y)〉︸ ︷︷ ︸
∼=Z

⊕
〈p
r

Π∗(x) +
q

r
Π∗(y)

〉
︸ ︷︷ ︸

∼=Z/r

.

We also know that

H∗(L∞r × CP∞; Z/r) ∼= Λ[v1]⊗ Z/r[βr(v1), zr],
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4 A bordism classification of normal 2-smoothings of certain 7-manifolds

where zr is the mod-r-reduction of the standard generator of H2(CP∞; Z) , v1 a ge-
nerator of H1(L∞r ; Z/r) and βr the mod-r-Bockstein homomorphism.

Let f = f1 × f2 : Mpq → L∞r × CP∞ be a 2-smoothing. Then the map f is up
to homotopy uniquely determined by

f∗(v1) = sa,

for s ∈ (Z/r)∗ a unit in Z/r and

f∗(z) = ε(f)︸︷︷︸
∈{±1}

(mΠ∗(x)− nΠ∗(y)) + k(f,m, n)︸ ︷︷ ︸
∈Z/r

(
p

r
Π∗(x) +

q

r
Π∗(y)).

Lemma 4.2.1. Let Mpq be a non-simply-connected spin Witten space with π1(Mpq) ∼=
Z/r. Fixing a choice of m,n ∈ Z s.t. m q

r +npr = 1 then there is a 1-1 correspondence
between the set S of homotopy classes of 2-smoothings of Mpq and the set of triples
{(ε, s, k)|ε ∈ {±1}, s ∈ (Z/r)∗, k ∈ Z/r} =: T . The bijection is given as follows:

C : S → T,

[f ] 7→ (ε(f), s(f), k(f,m, n)).

Proof. Same proof as of Lemma 3.2.3. �

Theorem 4.2.2. (A bordism classification of Witten spaces)
Let r be a natural number with gcd(r, 6) = 1 and Mpq, Mp′q′ be oriented spin Witten
spaces with π1(Mpq) ∼= π1(Mp′q′) ∼= Z/r and (m,n), (m′, n′) ∈ Z2 s.t. m q

r + npr =
1 = m′ q′

r + n′ p
′

r . There are normal 2-smoothings f × νsp : Mpq → Br and f ′ × ν′sp :
Mp′q′ → Br s.t. [(Mpq, f × νsp)] = [(Mp′q′ , f ′ × ν′sp)] ∈ Ω7(L∞r ×CP∞ ×BSpin, ξ) if
and only if there exist triples (s, ε, k) and (s′, ε′, k′) in T s.t.

(1) s2
q

r
≡ s′2 q

′

r
mod r,

(2) s(k
q

r
− εn) ≡ s′(k′ q

′

r
− ε′n′) mod r,

(3) s(εm+ k
p

r
)2(k

q

r
− εn) ≡ s′(ε′m′ + k′

p′

r
)2(k′

q′

r
− ε′n′) mod r,

(4) s(εm+ k
p

r
)((εm+ k

p

r
)
q

r
− 2(εn− k q

r
)
p

r
) ≡ s′ ·

·(ε′m′ + k′
p′

r
)((ε′m′ + k′

p′

r
)
q′

r
− 2(ε′n′ − k′ q

′

r
)
p′

r
) mod r,

(5)
s3

r2
(2pq(εm+ k

p

r
)− p2(εn− k q

r
)) ≡ s′3

r2
(2p′q′(ε′m′ + k′

p′

r
)

−p′2(ε′n′ − k′ q
′

r
)) mod r,

(6) s4
p2q

r3
≡ s′4 p

′2q′

r3
mod r.
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If we choose Mpq or Mp′q′ with the opposite orientation, then we have to multiply
simultaneously −1 to the corresponding side of all congruences above.

The last theorem enables us to answer the following question:

Are there non-simply-connected oriented Witten spaces which do not admit a diffeo-
morphism of degree −1?

An answer is given by

Corollary 4.2.3. There exists an infinite family of Witten spaces that do not admit
an orientation reversing self-diffeomorphism (they are called chiral).

For an extended treatment of the notion of orientation reversal on manifolds we
refer to [Ml].

Proof of Corollary 4.2.3. Let r ∈ N be as in the previous Theorem. If there
existed such a self-map, then the last part of the theorem and condition (1) imply that
there should exist a unit s of Z/r s.t.

−1 ≡ s2 mod r. (4.6)

Let’s denote by Nr the following set:

{Mpr|gcd(p, r) = r}.

But the equation (4.6) can’t hold for example for r = 7. By Proposition 2.5.2. we
immediately realize that the Witten spaces in N7 represent pairwise different chiral
diffeomorphism-(homotopy-)classes. �

Proof of Theorem 4.2.2. The first part of the statement in the above theorem
is by Lemma 3.2.1. equivalent to [(Mpq, f)] = [(Mp′q′ , f ′)] ∈ ΩSpin7 (L∞r × CP∞).
From Theorem 4.1.3. we know that two 2-smoothings f : Mpq → L∞r × CP∞ and
f ′ : Mp′q′ → L∞r × CP∞ define the same class in ΩSpin7 (L∞r × CP∞) if and only if〈

ρr(p1(Mpq))f∗(v1zr), [Mpq]Z/r
〉
≡
〈
ρr(p1(Mp′q′))f ′∗(v1zr), [Mp′q′ ]Z/r

〉
mod r,〈

ρr(p1(Mpq))βr(f∗(v1))f∗(v1), [Mpq]Z/r
〉

≡
〈
ρr(p1(Mp′q′))βr(f ′∗(v1))f ′∗(v1), [Mp′q′ ]Z/r

〉
mod r,

f∗([Mpq]) = f ′∗([Mp′q′ ]).

We introduce a notational convention: Let l ∈ N then βl is the Bockstein homo-
morphism in Z/l-cohomology, associated to 0 → Z/l → Z/l2 → Z/l → 0 and
a ∈ H1(Mpq; Z/r) is the class with the property

〈
i∗(a), [U(1)]Z/r

〉
= 1.
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4 A bordism classification of normal 2-smoothings of certain 7-manifolds

First we analyze what
〈
ρr(p1(M))f∗(v1βr(v1)), [M ]Z/r

〉
:

Let’s denote by xr, yr the mod-r-reductions x, y resp. and by definition f∗(v1) = sa
for s ∈ (Z/r)∗. From formula (2.9) on p. 36 we know that p1(Mpq) = 3Π∗(x2) hence〈
ρr(p1(Mpq))f∗(v1βr(v1)), [Mpq]Z/r

〉
equals 3

〈
Π∗(x2

r) · sa · sβr(a), [Mpq]Z/r
〉
. In or-

der to understand what this Kronecker product is we have to understand what βr(a)
is in terms of Π∗(xr) and Π∗(yr), i.e.

βr(a) = c1Π∗(xr) + c2Π∗(yr).

The fact that L∞r ×CP∞ is homotopy equivalent to the second stage of the Postnikov
decomposition of Mpq implies that βr(a) comes from a torsion element of H2(Mpq; Z)
under the mod-r-reduction map. This is true since the analogues statement holds for
L∞r × CP∞. Hence

βr(a) = t(
p

r
Π∗(xr) +

q

r
Π∗(yr))

for some t ∈ (Z/r)∗. This means that the Π∗(yr)-coordinate of βr(a) induces the
Π∗(xr)-coordinate of βr(a).
We claim that c2 = dr

q
r and hence t = dr for some (universal) dr ∈ (Z/r)∗. The proof

of the last claim is analogues to the corresponding claim in the proof of Proposition
3.2.4. Thus βr(a) = dr(prΠ∗(x̄) + q

rΠ∗(ȳ)). We know that〈
aΠ∗(x2

ryr), [M
pq]Z/r

〉
=
〈
a,Π∗(x2

ryr) ∩ [Mpq]Z/r
〉
.

And by Proposition 2 in [G] and its proof we obtain that〈
aΠ∗(x2

ryr), [M
pq]Z/r

〉
= 1.

Hence
〈
ρr(p1(Mpq))βr(f∗(v1))f∗(v1), [Mpq]Z/r

〉
= 3dr qr mod r.

By definition we have

f∗(zr) = ε(f)(mΠ∗(xr)− nΠ∗(yr)) + k(f,m, n)(
p

r
Π∗(xr) +

q

r
Π∗(yr)).

Hence 〈
ρr(p1(Mpq))f∗(v1z), [Mpq]Z/r

〉
= 3

〈
Π∗(x2

r) · sa · f∗(zr), [Mpq]Z/r
〉

= 3s(k
q

r
− εn) mod r.

The fact that 3, dr are units in Z/r implies that the first 2 congruences at the beginning
of the proof are equivalent to

(1) s2
q

r
≡ s′2 q

′

r
mod r,

(2) s(k
q

r
− εn) ≡ s′(k′ q

′

r
− ε′n′) mod r.
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Now we calculate f∗([Mpq]): First observe that

redr : H7(L∞r × CP∞; Z)→ H7(L∞r × CP∞; Z/r) ∼= (Z/r)4

is an isomorphism and by the UCT

H7(L∞r × CP∞; Z/r) ∼= Hom(H7(L∞r × CP∞; Z),Z/r) ∼= (Z/r)4.

A basis of H7(L∞r × CP∞; Z/r) is given by

v1z
3
r , v1βr(v1)z2

r , v1(βr(v1))2zr, v1(βr(v1))3.

Thus

f∗([Mpq]) = f ′∗([M
p′q′ ]) ⇔ f∗[Mpq] = f ′∗[M

p′q′ ]

⇔ f∗[Mpq]Z/r = f ′∗[M
p′q′ ]Z/r

⇔
〈
b, f∗[Mpq]Z/r

〉
=
〈
b, f ′∗[M

p′q′ ]Z/r
〉
,

∀b ∈ H7(L∞r × CP∞; Z/r)

⇔
〈
f∗(b), [Mpq]Z/r

〉
=
〈
f ′∗(b), [Mp′q′ ]Z/r

〉
,

∀b ∈ H7(L∞r × CP∞; Z/r).

But this is equivalent to the following equations:

(3′)
〈
f∗(v1z3

r ), [Mpq]Z/r
〉

=
〈
f ′∗(v1z3

r ), [Mp′q′ ]Z/r
〉

(4′)
〈
f∗(v1(βr(v1))z2

r ), [Mpq]Z/r
〉

=
〈
f ′∗(v1(βr(v1))z2

r ), [Mp′q′ ]Z/r
〉

(5′)
〈
f∗(v1(βr(v1))2zr), [Mpq]Z/r

〉
=
〈
f ′∗(v1(βr(v1))2zr), [Mp′q′ ]Z/r

〉
(6′)

〈
f∗(v1(βr(v1))3), [Mpq]Z/r

〉
=
〈
f ′∗(v1(βr(v1))3), [Mp′q′ ]Z/r

〉
.
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Evaluations of f∗:

f∗(v1z3
r ) = sa((εm+ k

p

r
)Π∗(x)− (εn− k q

r
)Π∗(x))3

= 3s(εm+ k
p

r
)2(k

q

r
− εn)aΠ∗(x2y)

f∗(v1(βr(v1))z2
r ) = sdra((εm+ k

p

r
)Π∗(x)− (εn− k q

r
))2(

p

r
Π∗(x) +

q

r
Π∗(y))

= sdr(εm+ k
p

r
)((εm+ k

p

r
)
q

r
− 2(εn− k q

r
)
p

r
)aΠ∗(x2y)

f∗(v1(βr(v1))2zr) = sas2d2
r(
p

r
Π∗(x) +

q

r
Π∗(y))2((εm+ k

p

r
)Π∗(x)− (εn− k q

r
))

=
s3d2

r

r2
(2pq(εm+ k

p

r
)− p2(εn− k q

r
))aΠ∗(x2y)

f∗(v1(βr(v1))3) = sas3d3
r(
p

r
Π∗(x) +

q

r
Π∗(y))3

= 3s4d3
r

p2q

r3
aΠ∗(x2y).

We do the same computations for f ′∗ and since 3 and dr are units in Z/r the conditions
(3’)-(6’) are equivalent to the following congruences:

(3′) ⇔ (3) s(εm+ k
p

r
)2(k

q

r
− 3εn) ≡ s′(ε′m′ + k′

p′

r
)2(k′

q′

r
− 3ε′n′)mod r,

(4′) ⇔ (4) s(εm+ k
p

r
)((εm+ k

p

r
)
q

r
− 2(εn− k q

r
)
p

r
) ≡

s′(ε′m′ + k′
p′

r
)((ε′m′ + k′

p′

r
)
q′

r
− 2(ε′n′ − k′ q

′

r
)
p′

r
)mod r,

(5′) ⇔ (5)
s3

r2
(2pq(εm+ k

p

r
)− p2(εn− k q

r
)) ≡

s′3

r2
(2p′q′(ε′m′ + k′

p′

r
)− p′2(ε′n′ − k′ q

′

r
))mod r,

(6′) ⇔ (6) s4
p2q

r3
≡ s′4 p

′2q′

r3
mod r,

which finishes the proof. �

Remark 4.2.4. With the help of the previous theorem and the diffeomorphism classifi-
cation of Witten spaces (Theorem 2.7.9.) one could try to answer the question whether
there are bordant normal 2-smoothings of Witten spaces which aren’t diffeomorphic but
have diffeomorphic universal covering spaces. If this phenomenon occurs it can be use-
ful for the study of the obstruction monoids l8(Z/r). For a general definition of these
monoids see [Kr, §5].
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low in the column ”former fellows”.

108



Bibliography

[Nov] P.S. Novikov, Algorithmic Unsolvability of the Word Problem in Group Theory,
J. Symbolic Logic, Vol.23, Issue 1, 1958, pp. 50-52.

[Wa] C.T.C. Wall, Surgery on compact manifolds 2nd Edition (edited by A.A. Ran-
icki), Mathematical Surveys and Monographs Vol 69 (1999).

[Wa.1] C.T.C. Wall, Surgery of non-simply connected manifolds, Ann. of Math. 84
(1966), 217-276.

[W] E. Witten, Search for a realistic Kaluza-Klein theory, Nucl. Physics B 186 (1981),
pp. 412-428.

[S] S. Smale, On the structure of 5-manifolds, Ann. of Math. 75 (1962), pp. 39-46

[St] R.E. Stong, Notes on cobordism theory, Princeton University Press, Princeton,
N.J. (1968).

[T] P. Teichner, On the signature of four-manifolds with universal covering spin, Math.
Ann. 295 no. 4 (1993), pp. 745-759.
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