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Abstract

We consider the possibility that string theory vacua with spontaneously broken
supersymmetry and a small positive cosmological constant arise due to hidden
sector matter interactions, known as F-uplifting/F-downlifting. We analyze this
procedure in a model-independent way in the context of type IIB and heterotic
string theory. Our investigation shows that the uplifting/downlifting sector
has very important consequences for the resulting phenomenology. Not only
does it adjust the vacuum energy, but it can also participate in the process of
moduli stabilization. In addition, we find that this sector is the dominant source
of supersymmetry breaking. It leads to a hybrid mediation scheme and its
signature is a relaxed mirage pattern of the soft supersymmetry breaking terms.
The low energy spectra exhibit distinct phenomenological properties and differ
from conventional schemes considered so far.
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Chapter 1

Introduction

1.1 Motivation

The idea that our world is build up from indivisible constituents was formu-
lated, for the first time, by Democritus around 400 B.C. in his famous atomic
hypothesis. With John Dalton, about two thousand years later, the exploration
of the composition of matter began and has grown ever since. Today, we be-
lieve that the fundamental constituents of matter are leptons and quarks and
that there are four fundamental interactions between all elementary particles:
electromagnetism, weak force, strong force and gravity.

Motivated by the desire to find a unified description of nature based on the
smallest possible set of fundamental laws, the enormous progress in theoretical
physics has led to the formulation of the Standard Model (SM) of particle physics
[1–3]: a renormalizable quantum field theory that describes strong, weak and
electromagnetic interactions in terms of the gauge group SU(3)C × SU(2)L ×U(1)Y.
It successfully unifies weak and electromagnetic interactions within the elec-
troweak (EW) theory which, below the EW scale MEW ∼ 100 GeV, gets sponta-
neously broken to electromagnetism by the Higgs mechanism.

Although the predictions of the SM have been confirmed experimentally at
very high precision, the Higgs boson has not been discovered yet. The EW
precision data from the Large Electron Proton Collider (LEP2) suggests that the
Higgs particle, if existent, has a mass between 114 GeV and 200 GeV. This
year, the Large Hadron Collider (LHC) at CERN (Geneva) will be brought into
operation and there is a great deal of hope to discover the Higgs particle.

Despite its powerful predictivity, from the theoretical point of view, there are a
number of pressing issues that cannot be addressed by the SM, if we consider it as
a fundamental theory. For example, the SM only partially supports the concept
of the unification of all fundamental forces. This is because on one hand the
internal symmetries of the SM describing the EW and strong interactions are not
interrelated, and, on the other hand, a quantum description of gravity can not
be consistently accommodated within the SM. It also does not contain any candi-
dates for the cold dark matter (DM), which constitutes a major part of the matter
in the universe. Furthermore, the SM fails to explain the stability of the large
“gap” between the EW scale and the (reduced) Planck scale MP ' 2.4 × 1018 GeV,
known as the hierarchy problem [4].
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Nevertheless, we can avoid running into troubles if we assume that the SM is
not a fundamental but, instead, an effective theory, valid to a certain (cut-off) scale.
Then, in order to address the issues above, one has to find suitable extensions of
the SM.

Supersymmetry

In general, quantum corrections drive the masses of scalar particles to the largest
available scale in the theory. On the other hand, the masses of chiral fermions
and gauge bosons are protected against radiative corrections. This protection
is provided by symmetries: chiral symmetry for fermions and gauge symmetry
for gauge bosons.

In the SM this translates into understanding the stability of the weak scale
against radiative corrections, i. e. the hierarchy between the weak and, say, the
Planck scale. This problem arises from the fact that there is no symmetry pro-
tecting the masses of scalar particles.

For example, 1-loop corrections to the Higgs mass squared from (heavy)
fermions f are proportional to the square of the momentum cut-off scale ΛUV.
Although it is possible to keep the Higgs mass finite by performing unnaturally
precise fine-tuning, this procedure is not stable in perturbation theory and, from
the theoretical vantage point, quite unattractive.

On the other hand, if we assume a scalar field S coupling to the Higgs with the
same coupling constant as f , the 1-loop correction to the Higgs mass squared
from S, precisely cancels the quadratically divergent contribution from f . In
this case, the complete correction to the Higgs mass, δm2

H ∼ |m2
S −m2

f | log ΛUV,
is only logarithmically divergent. In addition, if we claim mS = m f , the 1-loop
correction would neatly vanish. This illustrates the importance and power of
the concept of symmetry in particle physics

In fact, this has led to the invention of supersymmetry (SUSY) [5–13], a symmetry
that relates bosons and fermions:

Q |fermion〉 = |boson〉 , Q |boson〉 = |fermion〉 , (1.1)

where the so-called supercharge Q (transforming as a spinor) denotes the gener-
ator of SUSY transformations. The number of distinct pairs of Q and Q deter-
mines the number N of supersymmetries.1 Infinitesimal SUSY transformations
are described by an anti-commuting spinor parameter ε which is spacetime-
independent in global SUSY.

What makes SUSY so unique is the fact that it is the only graded Lie algebra of
symmetries of the S-matrix consistent with relativistic quantum field theory [14].
This symmetry guarantees the cancellation of quadratic divergences in pertur-
bation theory. Moreover, the non-renormalization theorem [5, 15] ensures that

1Theories with N > 1 are called extended supersymmetries. In 4D only N = 1 SUSY contains
chiral fermions.
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(supersymmetric) masses of scalar particles are not renormalized to any order
in perturbation theory. Single particle states fall into irreducible representations
of the SUSY algebra, called supermultiplets. Bosons and fermions within a su-
permultiplet are called superpartners of each other. Moreover, the generators of
SUSY transformations commute with those of gauge transformations, thus the
superpartners of a supermultiplet are in the same representation of the gauge
group. Each supermultiplet contains the same number of fermionic and bosonic
degrees of freedom (DOF).

In 4DN = 1 SUSY it is convenient to express the supermultiplets as superfields.
These live in the superspace which is spanned by spacetime coordinates and by
four anti-commuting coordinatesθ andθ that transform as spinors. The simplest
superfield is the so-called chiral superfield φi, containing a Weyl fermion ψi, a
complex scalarϕi (sfermion) and a complex auxiliary field Fi (which is necessary
to close the SUSY algebra off-shell). The next to simplest superfield is the so-called
vector superfield Va which, in the Wess–Zumino gauge, contains a vector boson
Aµ, a Weyl fermion λa (gaugino) and a real auxiliary field Da. All couplings
and masses are determined by the superpotential W, a holomorphic function of
chiral superfields. The tree-level scalar potential arises from the auxiliary fields

VSUSY =
∑

i

∣∣∣Fi
∣∣∣2 +

∑

a
g2

a Da Da , (1.2)

where ga denotes the gauge coupling. Observe that in global SUSY the scalar
potential is always non-negative.

Supergravity

SUSY can be promoted to a local symmetry by making the infinitesimal trans-
formation parameter spacetime dependent, ε → ε(x). Then the product of two
local SUSY transformations leads to local spacetime translations, i. e. a general
coordinate transformation. To make the total Lagrangian density locally super-
symmetric requires the gauge field of local SUSY transformations to be a spin-3/2

fermion, called gravitino. Its superpartner is a spin-2 boson, the graviton, which
is the messenger of gravitational force. Therefore, local SUSY is referred to as
supergravity (SUGRA) [7–13,16].The graviton and the gravitino, together with an
auxiliary field, form the so-called SUGRA multiplet.2

SUGRA, however, is a non-renormalizable theory as the gravitational cou-
pling is a dimensionful parameter. In the effective low-energy Lagrangian,
non-renormalizable terms appear suppressed by inverse powers of MP. The
scalar potential in 4DN = 1 SUGRA is given by

VSUGRA = Ki ̄ Fi F
̄ − 3eK(φi,φi)/M

2
P
|W(φ)|2

M2
P

+ M4
P

∑

a

Re fa(φi)
2

Da Da , (1.3)

2The number of the gravitini in the SUGRA multiplet is equal to the number of supersymmetries.
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Superfields Fermions Bosons SU(3)C × SU(2)L × U(1)Y

 

Qi

(
uiL

diL

) (
ũiL

d̃iL

)
(3, 2,+1/6)

ui u†iR ũ∗iR (3, 1,−2/3)

di d†iR d̃∗iR (3, 1,+1/3)

Li

(
νei

eiL

) (
ν̃ei

ẽiL

)
(1, 2,−1/2)

ei e†iR ẽ∗iR (1, 1,+1)

 

Hu = H2

( H̃+
u

H̃0
u

) (H+
u

H0
u

)
(1, 2,+1/2)

Hd = H1

( H̃0
d

H̃−d

) ( H0
d

H−d

)
(1, 2,−1/2)

 

B B̃0 B0 (1, 1, 0)
W W̃0 W̃± W0 W± (1, 3, 0)
g g̃ g (8, 1, 0)

Tab. 1.1 :: Particle/sparticle content of the MSSM.

where the Kähler potential K(φ,φ) describes the kinetic terms of chiral super-
fields, Ki ̄ is the Kähler metric and the gauge kinetic function fa(φ) determines
the kinetic terms of vector multiplets, and in particular the gauge coupling con-
stants. Unlike global SUSY, the scalar potential in SUGRA can be negative.

The Minimal Supersymmetric Standard Model (MSSM)

The MSSM [10,11] is the simplest supersymmetric extension of the SM. It contains
one supercharge and a minimal particle content. Each lepton and quark is accom-
panied by a slepton or a squark, respectively (tab. 1.1). Fermions and sfermions
reside in chiral superfields whereas gauge bosons and gauginos (bino, wino,
gluino) form vector superfields. Unlike the SM, the MSSM requires two Higgs
doublets so as to avoid gauge anomalies. The Higgs bosons and their super-
partners, higgsinos, form chiral superfields. All superfields are labeled the same
way as ordinary SM particles and the sparticles are denoted by a tilde.

In contrast to the SM, the MSSM does not automatically preserve baryon (B)
and lepton (L) number. In order to to avoid B and L violation (in particular
proton decay) one introduces the so-called R-parity, PR = (−1)3(B−L)+2s (s denotes
the spin), a discrete symmetry that does not commute with SUSY. Particles have
R-charge +1 whereas sparticles have −1. If one requires the MSSM to conserve
R-parity, this leads to distinct phenomenological properties. In particular, the
lightest supersymmetric particle (LSP) will be stable. In addition, if the LSP is
neutral it can play the role of a cold DM candidate.
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Breakdown of supersymmetry

If SUSY were an exact symmetry, particles and sparticles would have the same
mass. Since sparticles with SM masses have never been observed, SUSY must be
broken (at low energies) and the main problem is to understand the mechanism
of SUSY breaking.

From the theoretical point of view, it is natural to consider a spontaneous
breakdown of SUSY which occurs if the auxiliary fields of chiral superfields
(F-terms) and/or vector superfields (D-terms) acquire non-zero VEVs. In analogy
to ordinary symmetry, spontaneous breakdown of SUSY leads to the emergence
of massless Weyl fermions, called goldstinos. In SUGRA, the gravitino “eats” the
goldstino and becomes massive. This effect is called super-Higgs mechanism and
is completely analogous to the ordinary Higgs mechanism.

In the context of global SUSY, eq. (1.2) implies that supersymmetric minima
always have zero vacuum energy, i. e. they correspond to Minkowski vacua.
Vacuum configurations with broken SUSY always have positive energy, yielding
a de Sitter (dS) space. On the other hand, SUGRA yields the relation Da ∼ Fi.
Thus, unless W = 0, a supersymmetric minimum has negative energy (eq. (1.3)),
i. e. it corresponds to an anti de Sitter (AdS) vacuum. Furthermore, in SUGRA, the
vacuum energy of non-supersymmetric minima can have a positive, negative
or zero value, depending on the magnitude of Fi. This makes SUGRA models
attractive for the discussion of the inflatory universe since recent observational
data [17, 18] requires a cosmological constant (CC) of order ΛCC ∼ 10−120M4

P. In
SUGRA one can arbitrarily adjust the contribution from SUSY breaking to the CC.

Within the framework of the MSSM, however, the spontaneous breakdown of
SUSY seems rather unfortunate as all members of a superfield carry the same
quantum numbers and a non-zero VEV of an auxiliary field would immediately
break various internal symmetries like color, electromagnetism, etc.

To avoid a phenomenological disaster, the breakdown of SUSY within the MSSM
must be explicit, but cannot be arbitrary. In order for SUSY to remain a solution to
the hierarchy problem (i. e. ensure the cancellation of quadratic divergences) the
explicit breaking terms must contain couplings of positive mass dimension [19].
This so-called soft breaking can be parameterized by L = LSUSY + LSOFT where

LSOFT =

[
− 1

2
Ma λ

aλa − 1
6

Ai jk ϕ
iϕ jϕk − 1

2
Bi j ϕ

iϕ j + h.c.
]
−m2

i j ϕ
iϕ j (1.4)

contains soft gaugino masses (Ma), soft scalar squared masses (m2), soft bilinear
(B) and trilinear (A) couplings. The scale of the soft parameters mSOFT, char-
acterizing the mass splitting in the supermultiplets, should be of order 1 TeV,
otherwise the couplings in the Higgs sector would reach unnatural size [20].

In general, the soft terms in eq. (1.4) can introduce dangerous CP and flavor
violations. These effects can be evaded if one assumes that SUSY breaking is
suitably universal; e. g. if slepton and squark mass matrices are flavor-blind and
the A terms are proportional to the corresponding Yukawa couplings.
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Interestingly enough, MSSM offers a convincing DM candidate through the
weakly interacting neutralino LSP.

Origins of supersymmetry breaking

On general grounds, we expect SUSY to be spontaneously broken by auxiliary
(F-term) components of (chiral) superfields which are singles under the SM gauge
group. Since such fields cannot be part of ordinary matter one assumes that
SUSY breaking occurs in a hidden sector, which is only weakly coupled to the
observable (MSSM) sector. Then in order to connect hidden and observable sector
and mediated the breakdown of SUSY to the MSSM, new physical phenomena are
required.

A natural choice to connect these two sectors would be gravitationally, through
operators suppressed by inverse powers of MP. The realization of this scenario
can be achieved if one couples the MSSM to SUGRA. In this picture, the hidden
sector F-terms acquire non-vanishing VEVs and induce spontaneous breakdown
of (local) SUSY. Since the hidden sector fields communicate only gravitationally
with the MSSM, below MP they decouple from the low energy theory and the
only marks they leave are explicit soft breaking terms of order mSOFT ∼ FX/MP.
These soft terms are renormalized at a scale MIN < MP where gravitational DOF
have been integrated out. For mSOFT = O(1 TeV) the scale of spontaneous SUSY

breakdown is
√

FX ∼ 1011 GeV. The gravitino mass is m3/2 ∼ FX/MP and thus
sets the scale of the soft terms

A dynamical mechanism to explain the hierarchy between the gravitino mass
and the Planck scale is provided by hidden sector gaugino condensation [21–26]. It
is specified by a non-zero VEV of a composite field made up of fermions charged
under some non-Abelian gauge group. In a pure supersymmetric Yang Mills
theory the only candidates for such condensates are gauginos. One expects a
non-vanishing condensate 〈λλ〉 to develop at the renormalization group (RG)
invariant scale Λ ' MP exp(−1/(b0 g2)) � MP, where b0 and g are the β-function
and the gauge coupling of the hidden sector confining gauge group, respectively.
By dimensional analysis, 〈λλ〉 ∼ Λ3. The strong dynamics triggers a breakdown
of local SUSY via F ∼ Λ3/MP, leading to a gravitino mass m3/2 ∼ Λ3/M2

P.

Grand unification

Even though we have no direct experimental sign for SUSY, electroweak preci-
sion data gives a good fit to the MSSM and supports gauge coupling unification.
Consider for example the RG evolution of the three gauge couplings in the frame-
work of the SM model, fig. 1.1.a. This does not reveal any (sign of) unification as
the three curves fail to meet in one point. On the contrary, the MSSM seems to
have just the appropriate particle content which modifies the β-functions such
that the gauge couplings coincide at about 2 × 1016 GeV [27–30], fig. 1.1.b.

This coincidence may be a hint in favor of a grand unified theory (GUT) [31],
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Fig. 1.1 :: RG evolution of the inverse SM gauge couplings α−1
a = 4π/g2

a .
Panel (a) illustrates the situation in the SM. In the MSSM (panel (b))
the slopes are different due to the presence of sparticles. In panel (b)
the sparticle thresholds are varied between 250 GeV and 1 TeV, and
α3(mZ) between 0.113 and 0.123.

a theory where all interactions are described by just one gauge group factor and
one gauge coupling constant. In that sense, in gravity mediation one prefers
to consider the predictions for the MSSM soft parameters as boundary conditions,
imposed at MIN = MGUT ∼ 2 × 1016 GeV. Then, the values of the soft terms at the
TeV scale are obtained via RG evolution.

A particularly simple and predictive scheme is that of minimal supergravity
(MSUGRA) [32], where one assumes universal soft breaking parameters ofO(m3/2)
at the GUT scale. These include a universal gaugino mass m1/2, a universal scalar
mass m0, a universal trilinear coupling A0 and two other (model-dependent)
parameters. In this way, the O(100) parameters of the MSSM are described in
terms of just five parameters. RG evolution of these parameters down to the TeV
scale will allow one to predict the entire MSSM spectrum. The possible numerical
values of these soft terms are only constrained by experimental bounds on
sparticle masses and some indirect theoretical arguments.

However, since gravity is a non-renormalizable theory one might worry about
possible higher dimensional terms appearing in schemes of gravity mediated
SUSY breaking. In order to have control over such terms one needs a meaningful
underlying theory which also justifies the presence of SUSY and hidden sectors.

String theory

Unlike ordinary quantum field theory, the fundamental building blocks in string
theory [33–36] are given by extended one-dimensional oscillating objects, called
strings. Different excitations of strings at their characteristic scale MSTR (which is
expected to be large) can be identified with particles at low(er) energies. Strings
can be open and closed and during their propagation they can split and merge.
Open strings end on spatially extended objects of dimension p, called Dirichlet
branes (Dp branes). One of the remarkable properties is that the spectrum of
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string excitations contains a spin-2 particle, corresponding to the graviton. This
offers a quantized description of gravity [37–39] and, most notably, a unified
description of all fundamental forces. In particular, at low energies string theory
reduces to Einstein’s theory of gravity. Consistency conditions require string
theories to have ten spacetime dimensions as well as to include SUSY at the
string scale [40,41]. There are only five consistent (super)string theories in 10D:
type I, type IIA, type IIB, heterotic SO(32) and heterotic E8 × E8. It has been
realized that these five string theories are related among each other by a web of
dualities and that they seem to be different perturbative limits of an underlying
11D theory called M-theory [42,43].

If our intention is to relate string theory to the observable world, we have to
find a way to reduce the number of spacetime dimension from 10 to 4. One
possibility is to confine the six extra dimensions to some compact manifold
M6 such that the 10D spacetime of the string is given by the direct product
M10 = M3,1 ×M6, where M3,1 denotes our 4D Minkowski spacetime. This pro-
cedure is called compactification. If the length scales associated withM6 corre-
spond to very high energies the extra spatial dimensions appear unobservable
from the 4D perspective. Since we are aiming at a chiral low energy theory
only manifolds ensuringN = 1 SUSY in 4D come into consideration. A possible
class of such manifolds are the so-called Calabi–Yau (CY) manifold [44]. Unfor-
tunately, the metric for (almost all) CY manifolds is still unknown. Therefore in
such compactifications one is led to consider a low energy approximation of the
10D string theories below MSTR. This approximation can be described by an ef-
fective 10DN = 1 SUGRA. After the compactification of the six extra dimensions
one obtains an effective 4D N = 1 SUGRA, valid at energies below the scale of
compactification MCOMP.

The low energy effective 4D SUGRA contains only massless excitations of
strings. The geometry of the compact space (i. e. CY manifolds) is parameterized
by moduli. These are massless, gauge singlet scalar fields and interact only grav-
itationally with ordinary matter. In other words, a hidden sector is naturally
built-in in string theory models. The most important moduli are the Kähler
moduli Ti describing the volume of the compact space, the complex structure
moduli (CSM) Zi parameterizing the shape of CY manifolds and the dilaton S.

Moduli can be considered as the “engine” that drives any string-derived 4D
low energy Lagrangian, as their VEVs determine all couplings. However, moduli
do not have a scalar potential at the perturbative level, i. e. they are flat directions
in the potential.

String phenomenology

If we wish to understand the phenomenology of any string-derived theory, the
important questions we have to address include:

1) What is the dynamics of moduli stabilization?

2) How is SUSY broken and communicated to the observable sector?
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3) Does the vacuum energy take a small positive value consistent with observation?

4) What is the pattern of the soft breaking terms?

To find and, in particular, to understand the answers to these questions is the
heart of string phenomenology.

To generate a potential for the moduli, one has to rely on fluxes [45, 46] and
non-perturbative effects such as gaugino condensation. On the other hand, a
hierarchically small scale of SUSY breaking can be reliably explained by dimen-
sional transmutation, which again, can be realized by gaugino condensation.
Once SUSY is broken, the moduli get a non-trivial potential which might re-
sult in their stabilization. The auxiliary (F-term) components of moduli will
generically take non-vanishing values, thereby indicating in which “direction”
SUSY is broken. Furthermore, in such a scheme one would usually encounter
a situation where the mass of (most of) the moduli is of order the gravitino
mass: mMODULI ∼ m3/2. Since gravity connects the moduli (hidden) and the MSSM
(observable) sector it will be, predominantly, the mediator of SUSY breakdown.

Notice that in non-stringy models, the gauge singlet fields X responsible for
SUSY breaking were introduced “ad hoc”. In string-derived models, however,
these gauge singlet fields are well-motivated through moduli, hence gravity
mediation is usually referred to as modulus mediation.

In this picture, the tree-level contribution from modulus mediation is usually
of order mSOFT ∼ m3/2. Hence moduli mediation is the dominant source of SUSY
breaking, causing the mass pattern mMODULI ∼ m3/2 ∼ mSOFT.

Generically, string-derived models lead to dS and AdS vacua where the contri-
bution to the CC exceed the observed value by orders of magnitude. In order to
obtain a reasonable vacuum energy V0, one needs an additional sector which, in
case of an AdS minimum provides an “uplifting”, and, in case of a dS minimum
a “downlifting” of V0 to the desired value.

It is very important to stress, that the soft breaking terms can only be reliably
computed after all moduli have been stabilized and the vacuum energy has
been adjusted properly. Soft terms obtained at an intermediate stage might
(and usually will) drastically change through the stabilization of the remaining
moduli [47]. Any (additional) source of vacuum energy density generically
affects the soft scalar masses and, therefore, must be taken into account.

This shows how close the three questions are related to each other.

Mirage mediation

The importance of the mechanism of adjusting the vacuum energy has only been
appreciated recently [47, 48]. In its simplest form it has been discovered in the
toy model of Kachru, Kallosh, Linde and Trivedi (KKLT) [49], constructed in the
framework of type IIB string theory.

Although KKLT (for the first time) achieve the stabilization of all moduli they
obtain a deep AdS minimum. To render the vacuum realistic, KKLT introduce
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an “uplifting” sector. However, it turns out that apart from adjusting (uplifting)
the vacuum energy, the uplifting sector has far-reaching consequences for the
explicit pattern of SUSY breaking. In particular, the uplifting sector provides the
dominant source of SUSY breaking and leads to the appearance of the so-called
little hierarchy [50], characterized by the factor log(MP/m3/2) ∼ 4π2.

The tree-level contribution from modulus mediation becomes suppressed by
this factor such that radiative contributions from the SUSY breakdown in the
uplifting sector become competitive. One possible scheme of mediation via ra-
diative corrections is the scheme of anomaly mediation [51, 52]. In this case,
instead of pure modulus mediation one is led to a mixed modulus-anomaly me-
diation, known as mirage mediation [47,53,54]. This scheme exhibits very distinct
phenomenological properties [55, 56] as it allows to retain the attractive fea-
tures of the respective mediation mechanisms while discarding the problematic
aspects. Here, the general mass pattern is mSOFT � m3/2 � mMODULI.

Based on the publications [57–59] we investigate the role of the matter sector
in the context of type IIB and heterotic string theory. As we shall see this leads
to very interesting phenomenological implications.

1.2 Outline

In the following we provide some details about the contents of each chapter.

Chapter 2 In this chapter we present the origin of mirage mediation. First
we review the original construction of KKLT which we subsequently general-
ize. This class of models, obtained in the framework of type IIB string theory
compactifications, uses 3-form fluxes to stabilize the CSM and the dilaton. Non-
perturbative corrections to the superpotential are then used to fix the remaining
Kähler moduli. The process of moduli stabilization leaves the ground state of
the theory supersymmetric with a large negative energy. An “ad hoc” uplifting
sector is introduced to break SUSY and fine-tune the vacuum energy to a desired
value. We review the implications of this uplifting sector for the low energy
phenomenology. Under rather general circumstances one is led to a scenario in
which the mass scales in the low energy theory are endowed with a moderate
hierarchy specified by the logarithm of the large hierarchy between the Planck
scale and the scale of the soft masses. This exhibits a new mediation scheme
which, as we will explain in detail, is called mirage mediation.

Chapter 3 The main drawback of KKLT-type models is that the “ad hoc” up-
lifting sector explicitly breaks SUSY. In such a situation the effective 4D theory
cannot be put into the standardN = 1 SUGRA form, which considerably compli-
cates the analysis. Therefore it is desirable to obtain dS/Minkowski vacua in the
framework of spontaneously broken SUSY. This can be achieved by changing the
uplifting sector. As was pointed out in [60], uplifting within the SUGRA frame-
work requires additional fields in the system which are necessary to provide



1.2 Outline 11

the goldstino which is necessary to make the gravitino heavy. In string theory
models, matter fields are as common as moduli and thus can in principle be
used to uplift supersymmetric AdS minima. In this case, dS/Minkowski vacua
with spontaneously broken SUSY can be obtained due to F-terms of hidden sector
matter fields [57,60]. This mechanisms is known as F-uplifting. In this chapter
we show that this scheme leads to the appearance of the little hierarchy as well.
The matter uplifting sector provides the dominant source of SUSY breakdown
and, unlike KKLT-type models, also affects the soft breaking terms, leading to a
so-called relaxed mirage mediation scenario. Still, the “pure” mirage pattern is
possible as well, but only for certain values of the parameters.

Chapter 4 With the recent success of model building in the framework of het-
erotic orbifold compactifications [61–63], it is important to reconsider the ques-
tion of moduli stabilization. One of the main difficulties of moduli stabilization
in heterotic string theory is the appearance of only one type of fluxes3, while two
of them are available in the type IIB theory. Publication [58] investigated for the
first time the role of the uplifting sector (composed of matter fields) in the context
of heterotic orbifold compactifications. To illustrate the importance of this sector
we consider a simple example: a gaugino condensate in the absence of a flux
background. This is known to lead to a run-away scalar potential for the dilaton
with a large positive vacuum energy. A closer inspection of the interactions be-
tween the moduli and matter fields reveals the surprising fact that the uplifting
sector alone is responsible for both moduli stabilization and “downlifting” the
large positive vacuum energy to a smaller value. Thus in context of the heterotic
string theory the uplifting sector turns out to be a “downlifting” sector. We refer
to this mechanism as F-downlifting. As we shall see it also plays an important
role in SUSY breaking and its mediation. For this class of models we are again
led to a kind of mirage pattern as previously identified in the context of type IIB
string theory. The soft breaking terms, although very similar to those of type IIB
models, exhibit some quantitative differences that will be discussed in detail. At
the end of this chapter we consider one possible application of the downlifting
procedure.

Chapter 5 In this chapter we present a detailed discussion of the low energy
spectra emerging in the scheme of F-uplifting [57] and F-downlifting [58]. We
find that, even though the effective theory contains several parameters, the low
energy spectra is described by just two continuous parameters: the ratio of mod-
uli to anomaly mediation, %, and the gravitino mass, m3/2, which sets the scale
of the soft terms. In this schemes, the soft gaugino masses and the soft A-terms
receive comparable contributions from modulus and anomaly mediation. How-
ever, the soft scalar masses can additionally receive a contribution from the
matter sector. This results in a quite distinctive low energy phenomenology,
which is different from that of pure modulus or pure anomaly mediation. We

3More fluxes can appear if we go beyond CY compactifications [64–66].
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impose several phenomenological constraints and find that they are satisfied in
considerable regions of the parameter space. In particular, we can avoid tachy-
onic boundary conditions (which usually are provided by anomaly mediation)
and find allowed regions in the parameter space with a higgsino dominated LSP.

Chapter 6 concludes this work with a summary and a brief outlook. Afterwards,
some technicalities are presented in the appendices.

1.3 Publications

Parts of this work have been published in scientific journals:

• O. Lebedev, V. Löwen, H. P. Nilles, Y. Mambrini and M. Ratz
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• V. Löwen and H. P. Nilles,
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Phys. Rev. D 77, 106007 (2008)
arXiv:0802.1137 [hep-ph]

• V. Löwen, H. P. Nilles and A. Zanzi
“Gaugino condensation with a doubly suppressed gravitino mass”
Phys. Rev. D 78, 046002 (2008)
arXiv:0804.3913 [hep-th]



Chapter 2

Road to mirage mediation

After a short introduction to the original KKLT construction we present
a generalization of this scheme which captures a large class of string
theory models. The analysis is carried out in the framework of a low
energy SUGRA approximation of type IIB string theory. We identify
the source of the SUSY breakdown by computing the moduli F-terms.
The properties of the emerging soft gaugino and scalar masses as
well as their RG evolution are examined. We identify criteria for the
appearance of the mirage pattern and discuss the implications for the
low energy phenomenology.

2.1 The model of KKLT

The starting point of the construction is the 10D SUGRA expansion (to leading
order in α′ and gSTR) of type IIB string theory [33–36] compactified on CY orien-
tifolds [67] with fluxes1 [45,46]. From here, the analysis of the model is carried
out in the framework of a 4DN = 1 low energy SUGRA approximation just below
the compactification scale MCOMP. We will work with a universal Kähler modulus
T as the generalization to multi Kähler moduli is straightforward.

In the standard N = 1 SUGRA language [7–13] it is convenient to express the
scalar potential and the auxiliary fields in terms of the real Kähler function

G = K + log
(
W W

)
, (2.1)

with K and W being the Kähler potential and the superpotential, respectively, as

V = eG
[
K−1

IJ
GI GJ − 3

]
, (2.2)

where the subscripts I, J denote differentiation with respect to the moduli
(and other hidden sector fields) and K−1

IJ
is the inverse Kähler metric. Here

and from now on (unless stated otherwise), we work in SUGRA units where
MP = (8πG)−1/2 ≡ 1. The SUSY breaking F-terms are found from

FI = eG/2 K−1
IJ

GJ , (2.3)

1Fluxes are vacuum expectation values of certain field strengths in the compact space.
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and the gravitino mass is

m3/2 = eG/2 , (2.4)

both evaluated at the minimum. SUSY is broken spontaneously if one of the FI is
non-zero, which in turn depends on whether GI is non-zero or not. Furthermore,
the gauge kinetic function fa determines the gauge coupling constants ga of the
theory through

1
g2

a
= Re fa . (2.5)

Due to the presence of fluxes a non-trivial superpotential W(S,U) for the
dilaton S and the CSM U is generated [68,69]. The corresponding Kähler potential
at tree-level is given by [48,70–72]

K = − log
(
S + S

)
− 3 log

(
T + T

)
+K (U,U) . (2.6)

This leads to the scalar potential

V = eG K−1
αβ

Gα Gβ ≥ 0 , (2.7)

where the subscripts α, β run over all moduli except T. As the superpotential
is independent of T, the contribution form eq. (2.6) cancels the −3 in eq. (2.2)
resulting in the no-scale structure [73,74] scalar potential eq. (2.7). Since T is not
stabilized by the flux dynamics it has a flat potential.

The dilaton and the CSM are stabilized and acquire certain masses. Their
masses as well as their VEVs depend on the choice of fluxes [47]. At this stage
SUSY is broken, since generically 〈GI〉 , 0 in the minimum. The flux induced
gravitino mass (m3/2)FLUX depends on the alignment of flux vacua [47]. For
a specific alignment of flux vacua, which corresponds to a fine-tuning, one
may achieve that S and U acquire Planckian VEVs and masses of order of the
compactification scale MCOMP which is rather close to MP. At the same time such
alignment of fluxes makes the gravitino much lighter than the dilaton and the
CSM, i. e. (m3/2)FLUX � mS, mU. This is a welcome feature for the realization of
low scale SUSY. In addition to the stabilization of S and U, fluxes also generate a
warped geometry [69]. In the most of the CY the warping is not significant except
for a small region containing the so called Klebanov–Strassler throat [75] where
the warping becomes exponentially large (see fig. 2.1). This ensures that the
dynamics of the moduli (and other bulk degrees of freedom) are not significantly
affected by the warping.

Since T is not stabilized by perturbative dynamics, KKLT introduce non-
perturbative effects in order to violate the no-scale structure. These effects can
originate from gaugino condensates [21–26, 76] and/or instantons [77] on D7
and/or D3 branes. Both of these effects generate an exponential superpotential
for the Kähler modulus. Furthermore, KKLT assume that T is much lighter than
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the super-heavy S and U. This allows one to formulate an effective SUGRA the-
ory just below mS, mU by integrating out S and U. For concreteness, consider
gaugino condensation on D7 branes. This will introduce a superpotential of the
form [47,48]

W = WFLUX − A e−a T, (2.8)

where the quantized constant2 WFLUX = 〈W(S,U)〉 is obtained in the process of
integrating out S and U, A = O(1) and a = 8π2/N for a SU(N) gauge group. The
effective Kähler potential is now given by

K = −3 log
(
T + T

)
. (2.9)

The effective theory described by eqs. (2.8) and (2.9) stabilizes T in an AdS
vacuum (cf. fig. 2.2). Moreover, SUSY is restored by this procedure since in
the minimum GT(T0) = 0 and W(T0) , 0 with T0 denoting the position of the
minimum. ThisN = 1 AdS vacuum exhibits some unique features [47,48]:

a T0 ' log
(

MP

m3/2

)
, (2.10)

(
m3/2

)
FLUX
' WFLUX

M2
P

, (2.11)

mT ' (a T0) m3/2, (2.12)

〈VN=1〉 = −3m2
3/2 M2

P , (2.13)

where T is assumed real. Since we are aiming at low scale SUSY we assume to have
the appropriate flux configuration realizing WFLUX = O(10−14M3

P). Then eq. (2.10)
implies a T0 = O(4π2) and the mass of the T modulus appears to be enhanced by
this moderately large quantity relative to the gravitino mass parameter.

Although KKLT manage to stabilize all moduli under suitable theoretical as-
sumptions, one hurdle is still to overcome: the construction of a phenomeno-
logically desirable SUSY breaking dS/Minkowski vacuum [17, 18]. To this end
KKLT introduce anti D3 branes (D3) [78] which favor [53] to be stabilized at the
tip of the Klebanov–Strassler throat where the geometry is highly warped (see
fig. 2.1). On the other hand, SM fields are assumed to live on D7 and/or D3
branes in a region with negligible warping. On the D3 the N = 1 SUSY, which
is preserved by the combined dynamics of fluxes and gaugino condensation, is
broken explicitly [79].

In order to describe the couplings between the N = 0 sector on the D3 and
the N = 1 sector on the D7/D3 a superconformal (off-shell) formulation [8] of
supergravity is required. Then, the effective action of theN = 1 supersymmetric

2Note that WFLUX is quantized as it originates from fluxes which are quantized objects.
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Fig. 2.1 :: The KKLT setup

with visible fields on D7
branes. The warping along
the compact dimension y
is described by the factor
e2A(y). The D3 brane is
stabilized at the tip of the
KS throat.

part is described by [47]

SN=1 = −
∫

d4x
√

gC

[∫
d4θCC 3e−KEFF/3

−
{∫

d2θ
(1
4

fa Ξaα Ξa
α + C3WEFF

)
+ h. c.

}]
, (2.14)

where gC
µν is the 4D metric in the superconformal frame which is related to

the metric in the Einstein frame via gC
µν = (CC)−1eKEFF/3gE

µν, C = C0 + θ2FC is
the chiral conformal compensator superfield of 4D N = 1 SUGRA and Ξa

α is the
spinorial gauge field strength. The effective Kähler potential and superpotential,
to leading order, are given by

KEFF = K(T,T) + QiQi Zi(T,T) , (2.15)

WEFF = W(T) + λi jk QiQ jQk , (2.16)

where Qi denote visible matter superfields, λi jk are the holomorphic Yukawa
couplings assumed to be moduli independent, Zi describes the Kähler metric of
the visible fields and

K(T,T) = −3 log
(
T + T

)
, (2.17)

W(T) = WFLUX − A e−a T. (2.18)

The impact of the D3 branes on the low energy dynamics of the (light) moduli
and visible fields can be described in 4D SUGRA by spurion operators [47]. These
are non-dynamical fields parameterizing the explicit breakdown of SUSY. Then
to leading order

SD3 =

∫
d4x

√
gC

∫
d4θ

[
− C2C2θ2θ2PD3 + C3 θRD3 + h. c.

]
, (2.19)

where PD3 and RD3 denote the (model-dependent) spurion operators. The spu-
rion RD3 is suppressed with respect to PD3 in terms of the warp factor which at
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Fig. 2.2 :: Schematic rep-
resentation of the KKLT
scalar potential (red)
VTOT = VN=1 + VLIFT as a
sum of the SUGRA potential
(black) and an uplifting
potential (green). Vertical
lines represent the dis-
placement of the minima.
Λ denotes the CC.

the location of the D3 branes is supposed to be exponentially small. As far as D3
branes are concerned we have [47]

PD3 = κ , (2.20)

RD3 = ς, (2.21)

where 0 < ς < κ are related to the warp factor. Including the spurions, the
low energy effective action of KKLT is given by STOT = SN=1 + SD3. The scalar
potential induced by the D3 branes is given by [47,78]

VD3 = e2K/3PD3 (2.22)

=
κ

(
T + T

)2 , (2.23)

implying that the presence of D3 branes provides a positive contribution to the
total scalar potential. Adding the energy from the D3 branes to the negative
vacuum energy induced by gaugino condensation eq. (2.13) thus leads to an
uplifting of the AdS minimum. The adjustment of the vacuum energy to the
observed value of the CC, i. e. 〈VTOT〉 ' 0, is achieved with κ = O(m2

3/2 M2
P).3

Fig. 2.2 illustrates the relevant scales. One should, however, note that such an
adjustment requires a very careful fine-tuning of κ. Since κ is connected to the
warp factor, constraints will be posed on the warping [47].

After uplifting the AdS minimum we obtain a dS/Minkowski vacuum with
broken SUSY. The breaking of SUSY can be understood as follows. Before uplifting
T was stabilized at T0 in a supersymmetric AdS minimum, thus GT(T0) = 0. The
N = 1 SUGRA potential is exponentially steep around T0 unlike the uplifting
potential (cf. fig. 2.2). As a consequence, the addition of the uplifting potential
only slightly moves the position of the T modulus to T0 + δT. At this new

3Even though the CC is not zero but very close to it, for our purposes this “slightly” dS vacuum
can be very well approximated by a Minkowski vacuum.
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minimum GT does no longer vanish, GT(T0 +δT) , 0. Therefore FT is non-zero at
the new minimum, signaling the breakdown of SUSY. The mass of the gravitino,
however, is essentially left intact in going from the AdS minimum to the new
dS minimum. The same applies to the mass of T [47,50]. The only effect of the
uplifting sector is to change (uplift) the vacuum energy to a small positive or
zero value resulting in a SUSY breaking vacuum shift. Moduli stabilization is not
affected by this procedure.

The sources of SUSY breakdown are VEVs of the auxiliary components of the
moduli. In case of KKLT we have FS, FU and FT. In addition to the moduli, the
4D SUGRA multiplet (parameterized by the conformal compensator C) provides
a model-independent source of SUSY breaking. The auxiliary component FC

induces soft terms only at loop level by the mechanism of anomaly mediation
[51,52,80]. In order to identify the dominant sources of the soft breaking terms
one has to solve the equations of motion for the auxiliary fields in the total
STOT = SN=1 + SD3 system. Since S and U acquire huge masses compared to T,
mS, mU � mT, their contribution to SUSY breakdown remains negligible as can
be read off from FI ∼ m2

3/2/mI. Thus we only have to deal with FT and FC.
In the Einstein frame the auxiliary components take the general form [47]

FC

C0
= eG̃/2 +

1
3

FI∂IK , (2.24)

Fm = eG̃/2 K−1
IJ

G̃J , (2.25)

and the (moduli) scalar potential becomes

VTOT = eG̃
[
K−1

IJ
G̃I G̃J − 3

]
+ e2K/3PD3 , (2.26)

with the modified Kähler function

G̃ = K + log
∣∣∣W + RD3

∣∣∣2 . (2.27)

As noticed above, in order to obtain the desired value of the CC a very special
warp factor has to be chosen in the process of fine-tuning κ. As studied in [47],
in a Minkowski/dS vacuum the warp factor will make the RD3 contribution to
eqs. (2.24) – (2.27) negligible. In this case G̃ ' G and the SUSY breaking F-terms
are well approximated by the standard N = 1 SUGRA expressions. The scalar
potential takes the simple structure

VTOT ' VN=1 + VD3 . (2.28)

2.2 Generalization of the KKLT model

It has been observed [47, 48, 53] that the model of KKLT represents a specific
example of a more general scenario with all moduli fixed, realizing low energy
SUSY at the TeV scale with a phenomenologically viable value of the CC. The
construction contains three building blocks:
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ic Most of the moduli are stabilized by high scale dynamics and acquire
super-heavy masses. TheN = 1 SUSY is broken.

iic The remaining few light moduli are stabilized by invoking non-perturbative
effects. These non-perturbative effects dynamically cancel the previously
induced SUSY breaking, yielding aN = 1 supersymmetric AdS vacuum.

iiic This supersymmetric AdS vacuum is lifted to a SUSY breaking dS/Minkowski
vacuum by an appropriate uplifting mechanism which is assumed to be
sequestered from the visible sector.

For models constructed in the framework of type IIB string theory high scale
dynamics (e. g. fluxes) typically generate a potential for the dilaton and the CSM
but not for the Kähler moduli. Under suitable assumptions one can arrange for
a decoupling of S and U and formulate an effective theory for the (light) Kähler
moduli Ti [48,81,82]. For simplicity, we consider one single Kähler modulus T.
This class of models exhibits some interesting features:

n The non-perturbative superpotential providing the stabilization of the light
moduli has the model independent structure [50]

W = W0 − A e−a T, (2.29)

where a is moderately large, A = O(1) and W0 is the remnant from the
stabilization of heavy moduli. Its value has to be chosen small compared
to MP so as to provide low scale SUSY. The parameters A and W0 can in
general be complex and thus present a potential source of dangerous CP
violation. However, the superconformal formulation of the 4D N = 1
SUGRA possesses a U(1)R as well as an axionic shift symmetry which can
be used to make A and W0 real and positive [47,83].

n The supersymmetric AdS minimum appears at

ReTAdS
0 ' −1

a
log

W0

a A
, (2.30)

with the property [47,48]

aReTAdS
0 ' log

(
MP

m3/2

)
, (2.31)

The mass of T is enhanced by this factor with respect to m3/2. This en-
hancement of moduli masses is known to be a rather generic feature of
non-perturbative moduli stabilization [84,85]. In particular it occurs when
the moduli dependence is logarithmic in the Kähler potential and expo-
nential in the superpotential [50].
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n Sequestering4 [51,88,89] of the uplifting sector means that the communi-
cation of the SUSY breakdown is more suppressed than by inverse powers
of MP. The low energy consequence of the sequestered SUSY breaking
can be represented by a spurion operator PLIFT [47] which is a model de-
pendent object. In the effective action PLIFT mimics explicit SUSY breaking
in a sequestered sector and provides a model dependent uplifting scalar
potential

VLIFT = e2K/3PLIFT . (2.32)

As pointed out in [53] the spurion operator may be parameterized by

PLIFT = κ
(
T + T

)np
, (2.33)

where κ is a positive constant and np is a rational number. With the
standard tree-level Kähler potential eq. (2.17) one has

VLIFT =
κ

(
T + T

)2−np
. (2.34)

n In order to describe the present stage of the acceleration of the universe
[17, 18] the vacuum energy of the dS minimum needs to be fine-tuned
to 〈VTOT〉 = V0 ∼ 10−120M4

P. This can be achieved by fine-tuning κ in
eq. (2.34). The obtained dS vacuum (at finite volume) is separated from
the Minkowski vacuum (at infinite volume of the internal space) by a
barrier which is approximately given by the depth of the AdS minimum5

(see fig. 2.2). Thus, in principle, the dS vacuum can be destabilized by
tunneling effects. Given the height of the barrierO(m2

3/2 M2
P) the lifetime of

the dS vacuum was shown to be about 1010120
years [90], thus for all practical

purposes it can be considered as completely stable. This generalizes to any
construction where a dS minimum is separated from the run-away vacuum
by a potential which remains positive.

n The F-terms of the heavy moduli are practically negligible as can be seen
from FHEAVY ∼ m2

3/2/mHEAVY ≪ m3/2. Since SUSY breaking fields in the
uplifting sector are (assumed to be) sequestered, they do not have cross-
couplings with any other sector fields. Hence their F-terms are irrelevant
to visible soft terms. The only relevant effect of sequestered SUSY breaking
is to provide a positive contribution, eq. (2.34), which serves to uplift the

4In general, the SUSY breaking in the uplifting sector would give rise to soft SUSY breaking
terms through effective couplings between visible and uplifting sector fields. Soft terms can
involve flavor violation [86, 87] which is restricted by experiments. Hence, in order to avoid
an additional source of flavor violation, these couplings should be strongly suppressed. In the
KKLT setup sequestering is introduced through warping.

5This is because the uplifting potential is a slowly decreasing function whereas the N = 1
potential exponentially approaches zero at large T.
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minimum of the potential to a dS/Minkowski vacuum. The SUSY breaking
vacuum shift induced by VLIFT is small [50]

δT ∼ 1
a2 = O

(
1

(4π2)2

)
, (2.35)

implying that the minimum of the total scalar potential is at

T0 ≡ T©©SUSY
0 = TAdS

0 + δT ' TAdS
0 , (2.36)

such that T is stabilized close to a supersymmetric point.

n Minimization of the total potential under the fine-tuning for 〈VTOT〉 ' 0
straightforwardly yields [53]

FT

T0 + T0
' 2 − np

2
m3/2

aReT0
, (2.37)

mT ' (aReT0) m3/2 , (2.38)

FC

C0
' m3/2

(
1 − 2 − np

2
1

aReT0

)
, (2.39)

with

aReT0 ∼ log
( A
W0

)
∼ log

(
MP

m3/2

)
. (2.40)

Thus, the mass scales in the low energy effective theory exhibit a moderate
hierarchy. This so called little hierarchy [47, 48, 50] is characterized by the
logarithm of the large hierarchy between MP and m3/2 = O(TeV) and is
numerically O(4π2). The F-term of the light modulus is suppressed by
aReT0 while its mass is enhanced by the same factor with respect to the
gravitino mass. Note that the F-terms of the light modulus and the 4D
SUGRA compensator possess model-dependence through np.

n This scheme, although quite general, leads to a specific pattern of mass
scales [47]

MSTR ' 5 × 1017 GeV, (2.41)

MCOMP ' 1017 GeV, (2.42)

mS,mU ' 1016 GeV, (2.43)

mT ' 106 GeV, (2.44)

m3/2 ' 104 GeV. (2.45)

Given the idiosyncrasy of this scheme we would like to analyze the pattern of
the emerging soft terms and discuss its consequences for phenomenology.
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2.3 Soft masses in the KKLT scheme

The soft terms induced just below the compactification scale MCOMP receive con-
tributions from modulus mediation, superconformal anomaly mediation as well
as loop contributions coming from Kähler anomalies and string threshold correc-
tions. In principle also field theoretic gauge threshold corrections below MCOMP

are possible. In this work we neglect them by assuming that there are no thresh-
olds between MCOMP and the TeV scale. In what follows we denote the energy
range around 1 TeV symbolically by MTeV.

2.3.1 Soft gaugino masses

Let us begin with the soft gaugino masses. Just below the compactification scale
one has [80,91,92]

Ma = MMODULUS
a + MANOMALY

a + MKÄHLER
a + MSTRING

a

=
1

2Re fa
FT∂T fa +

ba g2
a

4
1

4π2
FC

C0 +O
(

FT

4π2

)
, (2.46)

where fa are the gauge kinetic functions of the visible fields, ba are the 1-loop
β-function coefficients at MTeV and ga denotes the gauge coupling at MCOMP.
The modulus/gravity mediated [22, 93–95] contribution (first term in eq. (2.46))
depends on the structure of the gauge kinetic functions and can be present at
tree and/or loop level or even be absent. The anomaly mediated part (second
term in eq. (2.46)) is always present and contributes at loop level [51, 52, 80].
Furthermore, MANOMALY

a is determined by the matter content at the TeV scale.
To proceed further one needs to specify the location of the visible sector. At

tree-level the gauge kinetic functions of the visible gauge fields generically are
given by [47,48,92]

fa = ka Tla , (2.47)

and are related to the gauge coupling constants at the compactification scale via

Re fa =
1

g2
a (MCOMP)

, (2.48)

where a labels the gauge group, ka are integers of order unity and la depends on
the location of the visible gauge fields. If the visible gauge fields originate from
D3 branes la = 0 whereas la = 1 for gauge fields on D7 branes [96–98]. From this
one arrives at

Ma = la
FT

T0 + T0
+

ba g2
a

4
1

4π2
FC

C0
+O

(
FT

4π2

)
. (2.49)

For matter fields on D3 branes two difficulties arise. First, the resulting soft
terms will be dominated by anomaly mediation which is plagued by tachyonic
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sleptons [99,100]. Second, in the KKLT framework the stabilization of the position
of D3 branes appears to be problematic [53]. In view of these difficulties it is
more appealing to consider visible sector fields living on D7 branes (la = 1)
where both FT and FC contribute to the soft terms.

Even though g2
a(MCOMP) are in general non-universal, the modulus mediated

part at leading order provides a universal contribution to the gauginos [92]. On
the other hand, anomaly mediation is non-universal and requires a specification
of the matter content at the TeV scale. As is well known, the extrapolation of
the low energy data within the MSSM yields an almost perfect unification of the
SM gauge couplings at MGUT ' 2 × 1016 GeV with g2

1 = g2
2 = g2

3 ' 1/2 [27–30].
Furthermore, for ReT = O(1) MCOMP is close to MGUT [101–103]. Therefore it is
reasonable to adopt the MSSM particle content and assume that ga are unified at
MCOMP 'MGUT with

g−2
a (MCOMP) ' g−2

a (MGUT) = g−2
GUT ' 2 . (2.50)

Now that we have specified the matter content at MTeV we can continue the
discussion of the gaugino masses, eq. (2.49). The SUSY breaking parameters in
the KKLT setup are controlled by the little hierarchy eq. (2.40). If m3/2 is of order
of the TeV scale, aReT0 = O(4π2) is comparable to a 1-loop suppression factor.
In this case modulus mediated contribution FT/(T0 + T0) is suppressed by this
(loop like) factor against m3/2. On the other hand, since anomaly mediation
enters the soft terms at loop level, the contribution from the SUGRA compensator
is suppressed by a 1-loop factor. From eq. (2.39) we also know FC/C0 ∼ m3/2
and thus the contribution from anomaly mediation becomes equally important
to the tree level modulus mediation.

Since the contributions from Kähler anomalies and string threshold corrections
involve FT at loop level they will be doubly suppressed and thus sub-leading. As
a consequence, the soft gaugino masses at MGUT are dominated by comparable
contributions from modulus and anomaly mediations. However, the balance
between these two contributions to Ma will in general depend on further details
of the particular model.

For the study of the mixed modulus-anomaly mediation it is convenient to
introduce the following parameterization [55]

% ≡ FT

T0 + T0
16π2 C0

FC , (2.51)

M0 ≡
m3/2

16π2 , (2.52)

which by applying eqs. (2.37) and (2.39) becomes

% �
2 − np

2
16π2

log
(
MP/m3/2

) , (2.53)
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FT

T0 + T0
� %M0 , (2.54)

FC

C0
� 16π2M0 . (2.55)

The parameter % measures the ratio between modulus and anomaly mediation
and M0 denotes the characteristic scale of the gaugino/soft masses. Given this
parameterization eq. (2.49) can be recast as

Ma = M0

[
% + ba g2

GUT

]
, (2.56)

with ba = (33/5, 1,−3) for the MSSM matter content (cf. appendix B). Note that
% → 0 corresponds to pure anomaly mediation whereas for % � 1 modulus
mediation is dominating.

The values of the gaugino masses at the TeV scale are obtained via RG evolution
of the boundary condition eq. (2.56) given just below MGUT. Taking into account
1-loop RG running6 (c. f. eqs. (C.1) and (C.2)) the gaugino masses have a simple
relation to the RG of the SM gauge couplings, namely the quantity M2

a/g2
a does

not run at 1-loop. Hence, at the renormalization point MTeV ≤ µ ≤ MGUT one
obtains [53,55]

Ma(µ) = %M0

[
1 +

ba g2
a(µ)

8π2 log
( µ

MGUT
e

8π2
%

)]
, (2.57)

where g2
a(µ) are the running gauge couplings at the scale µ. This result allows

one to draw an immediate conclusion: the gaugino masses unify. However, this
does not happen at MGUT but at the intermediate scale [53,55]

MMIR = MGUT e
− 8π2

% . (2.58)

At this scale the RG evolution of the gaugino masses is canceled by the anomaly
mediated part, leading to a unification of the gaugino masses at MMIR. As there
is no physical threshold associated with this scale, it is called mirage scale [50,53].

From eq. (2.56) we see that at the GUT scale gaugino masses receive a universal
contribution from modulus mediation and a non-universal one from anomaly
mediation which is specified by the respective (1-loop) β-function coefficients ba.
The (1-loop) RG running eq. (2.57) is governed by the same β-functions. Thus,
at an intermediate scale the splitting disappears yielding a mirage unification of
the gaugino masses. This leads to the conclusion that the low energy gaugino
masses in the mixed modulus-anomaly mediation with messenger scale MGUT

are (approximately) the same [53,55] as those of pure modulus mediation with
the intermediate messenger scale MMIR. In order for the mirage scale to be “truly”

6We assume there are no thresholds between the TeV and GUT scale. Evolution of the soft
parameters below MTeV requires threshold corrections from heavy states being integrated out
at the TeV scale.
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mirage % = O(1) otherwise, if % � 1 MMIR coincides with MGUT (pure modulus
mediation) and for % → 0 (pure anomaly mediation) there is no unification at
all. To sum up, in a mixed modulus-anomaly mediation the parameter % tells us
where the gaugino masses coincide and thus the size of MMIR. The precise value
of % is of course model-dependent. In particular, it will depend on the shape
of the uplifting potential and on the values of MSTR and m3/2 [48, 53, 55]. The
original KKLT setup with np = 2 predicts

%(KKLT) ' 4.8 . . . 6 , (2.59)

M(KKLT)
MIR ' 109 . . . 1011 GeV. (2.60)

This particular case is illustrated in figs. 2.3.b and 2.3.c.
Mixed modulus-anomaly mediation exhibits some unique features different

from other mediation schemes. Here, we shall point out two of them by consid-
ering gaugino mass ratios at the GUT and the TeV scales:

@ MGUT :: M1 ÷M2 ÷M3 '
∣∣∣% + 3.3

∣∣∣ ÷
∣∣∣% + 0.5

∣∣∣ ÷
∣∣∣% − 1.5

∣∣∣ , (2.61)

@ MTeV :: M1 ÷M2 ÷M3 '
∣∣∣% + 3.3

∣∣∣ ÷
∣∣∣2% + 1

∣∣∣ ÷
∣∣∣6% − 9

∣∣∣ , (2.62)

where M1 is bino, M2 is wino and M3 is gluino. As already stated above, at
the GUT scale all gaugino masses receive the same contribution from modulus
mediation but different one from anomaly. Due to the large negative β-function
coefficients of the SU(3)c the gluino is the lightest gaugino at the GUT scale.
Clearly, this does not hold in the limiting cases % → 0 and % � 1. For %(KKLT)

eq. (2.59) one typically has M1 ÷M2 ÷M3 ' 2.4 ÷ 1.6 ÷ 1 at MGUT. Due to the
large negative b3 the RG evolution will make the gluino the heaviest gaugino
around the TeV scale. The opposite applies to the bino. It receives a large
positive contribution from anomaly mediation and RG makes it the lightest
gaugino around the TeV scale. Hence, the ratio of the gauginos at the TeV
scale will be inverted with respect to the ratio at the GUT scale. For KKLT this
gives M1 ÷M2 ÷M3 ' 1 ÷ 1.3 ÷ 2.5. Another interesting aspect of the scheme
is that for % ' 2.6 the mirage unification of the gauginos occurs at the TeV
scale providing a striking pattern of the soft parameters7 [53]. It is important
to emphasize that the appearance of mirage unification does not require gauge
coupling unification. Mirage unification of the gaugino masses results from
the RG evolution of the boundary conditions in the mixed modulus-anomaly
mediation where both mediations are of comparable magnitude. Of course one
can include a really unified theory like a SU(5) GUT [31]. In such a case there will
be a unified gauge coupling and the unified soft masses above the GUT scale.
Just below the GUT scale the boundary conditions eq. (2.56) split the gaugino
masses. These two limits are reconciled via threshold effects at the GUT scale.
As illustrated in fig. 2.3.b gaugino masses experience two unifications: the true
unification at/above the GUT scale and a mirage unification at MMIR [104].

7Such value of % could originate from an uplifting potential eq. (2.34) with np = 1.
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Fig. 2.3 :: The RG evolution of various soft parameters in the KKLT
case % ∼ 5.5. Panel (a) shows the unification of the gauge couplings.
Panel (b) emphasizes the “real” and mirage unification of the gaugino
masses [104]. In panels (a) and (b) we use a SU(5) GUT theory above
the unification scale MGUT ' 2 × 1016 GeV. Panel (c) shows the mirage
unification of gaugino and sfermion masses of the first two genera-
tions. The non-mirage unification of the third generation sfermions
and Higgses is displayed in panel (d).

2.3.2 Soft scalar squared masses

The structure of the soft scalar squared masses induced just below the GUT scale
is in general more complicated compared to the gauginos and also involves a
stronger model-dependence [47, 91, 92]. Nonetheless, the contributions from
Kähler anomalies and string threshold corrections are sub-leading due to the
suppression of FT. Thus, the soft scalar squared masses are dominated by
pure modulus contribution at tree-level and pure anomaly as well as mixed
modulus-anomaly contribution at 1-loop and 2-loop levels. Moreover, the soft
scalar squared masses depend on the location of the visible matter fields through
the Kähler metric Zi which in general depends on the moduli through [47,53]

Zi =
(
T + T

)−ni
, (2.63)
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where ni are the so-called effective modular weights. With matter fields on D7
branes ni = 0 and the soft scalar squared masses are given by [47,48]

m2
i =

(
mMODULUS

i

)2
+

(
mANOMALY

i

)2
+

(
mMIXED

i

)2

=

∣∣∣∣∣∣
FT

T0 + T0

∣∣∣∣∣∣
2

−


g4
GUT

8

∑

a
ba Ca

i −
1
16

∑

jk

∣∣∣yi jk

∣∣∣2 byi jk



∣∣∣∣∣∣
1

4π2
FC

C0

∣∣∣∣∣∣
2

+

−g2
GUT

∑

a
Ca

i +
3
2

∑

jk

∣∣∣yi jk

∣∣∣2
 FT 1

4π2
FC

C0
, (2.64)

where Ca
i are the quadratic Casimirs of the matter representation and byi jk are the

β-functions of the Yukawa couplings yi jk eqs. (C.3) – (C.5). Again, from eqs. (2.37)
and (2.39) we know that the tree-level modulus contribution is suppressed
against m3/2 by the little hierarchy which is O(4π2) and FC ∼ m3/2. Hence,
all terms in eq. (2.64) are of comparable size indicating that also the soft scalar
masses experience a mixed modulus-anomaly mediation. Using our parameter-
ization eqs. (2.51) and (2.52) we recover

m2
i = M2

0

%
2 −

2 g4
GUT

∑

a
Ca

i −
∑

jk

∣∣∣yi jk

∣∣∣2 byi jk



+2%
(
T0 + T0

)
−2 g2

GUT

∑

a
Ca

i + 3
∑

jk

∣∣∣yi jk

∣∣∣2


 . (2.65)

As far as the sfermions are concerned we have to distinguish between the first
two generations and the third generation scalars. For the first two generations
the effect of the Yukawa couplings can be neglected8 in eqs. (2.64) and (2.65). In
this approximation the 1-loop RG yields [53,55]

m2
i (µ) � %2M2

0

(
1 +

2Ca
i

ba

)
−

2Ca
i

ba
M2

a(µ) (2.66)

� %2M2
0

1 −
Ca

i g2
a(µ)

4π2 log
( µ

MGUT
e

8π2
%

) , (2.67)

for MTeV ≤ µ ≤ MGUT. From eq. (2.67) we can conclude that at 1-loop RG in
the limit of vanishing Yukawa couplings the sfermion masses of the first two
generations unify at the same intermediate scale MMIR eq. (2.58) as the gaugino
masses do. Moreover, due to Ma(MMIR) = %M0 and m(1),(2)

i ≈ %M0 the masses of
the gauginos and the fermions of the first two generations are approximately the
same (cf. fig. 2.3.c).

8This is obviously a good approximation within the MSSM. See e. g. [10,11].
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For the third generation sfermions and the Higgses we cannot neglect the
Yukawa couplings. In this case (even) the 1-loop RG becomes quite compli-
cated yielding m(3)

i (MMIR) , %M0 , mHIGGS
i (MMIR). Thus, whenever a scalar

feels the effect of Yukawa couplings mirage unification does not hold anymore
(cf. fig. 2.3.d). Same applies to the soft trilinear couplings [53,55].

2.4 Mirage mediation

A generic feature of string theory models with non-perturbative moduli stabi-
lization and sequestered SUSY breaking is the appearance of the little hierarchy
eq. (2.40) which relates the SUSY breaking F-terms as [47,48,50]

FT

T0 + T0
' 1

log
(
MP/m3/2

) FC

C0
' 1

4π2
FC

C0
' m3/2

4π2 . (2.68)

In KKLT-type models with visible fields on D7 branes eq. (2.68) guarantees that
the soft breaking terms are dominated by the tree-level modulus and the loop-
level anomaly mediations. Other (loop) contributions due to Kähler anomalies
and string threshold corrections are negligible.

The contribution from modulus mediation is suppressed by the little hierar-
chy, which in case of a TeV gravitino, is of order of a loop suppression factor.
As a consequence the soft breaking terms are determined by a specific mixed
modulus-anomaly mediation in which the two mediation mechanisms are of
comparable strength. In the framework of the MSSM, the soft terms just below
the GUT scale receive a non-universal contribution from anomaly mediation in
terms of the MSSM β- and γ-functions and a universal contribution from modulus
mediation. In case of the gaugino masses the splitting just below the GUT scale
is provided by the respective β-function coefficients. Since RG evolution of the
gaugino masses is governed by the same β-function coefficients, the splitting
disappears at an intermediate scale eq. (2.58), known as the mirage scale.

Eq. (2.68) also ensures that the soft scalar masses and trilinear couplings are
dominated by contributions from modulus and anomaly mediations. The soft
scalar masses of the first two generations exhibit a similar RG structure as the
soft gaugino masses. Consequently they do (approximately) mirage unify at the
same intermediate scale eq. (2.58) and have (approximately) the same values as
the gaugino masses (cf. fig. 2.3.c). The soft scalar masses of the third generation
and the Higgses as well as the soft trilinear couplings do not share the mirage
unification feature. In addition, soft scalar masses and trilinear couplings show
a stronger model-dependence such that mirage unification for these parameters
is in general unlikely to occur. Thus we are led to the following definitions.

Definition Consider a string theory inspired scheme of SUSY breaking where
little hierarchy log(MP/m3/2) emerges and the soft breaking parameters receive
contributions from modulus and anomaly mediations as well as from other
sources of SUSY breaking.
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n A scheme in which all soft terms are dominated by equally important
modulus and anomaly mediation is called mirage mediation. Gaugino
masses as well as scalar masses of the first two generations unify at the
mirage scale eq. (2.58). The general mass pattern is determined by the little
hierarchy and in case of m3/2 = O(TeV) it is

mMODULI ∼ log
(
MP/m3/2

)
m3/2 ∼ log2

(
MP/m3/2

)
mSOFT ,

mMODULI ∼
(
4π2

)
m3/2 ∼

(
4π2

)2
mSOFT .

(2.69)

n A scheme in which at least the gaugino soft masses are dominated by
equally important modulus and anomaly mediations is called relaxed mi-
rage mediation. In this case only the gaugino masses show mirage unifi-
cation and the general mass pattern for m3/2 = O(TeV) is

mMODULI ∼ log
(
4π2

)
m3/2 ∼

(
4π2

)2
Ma ,

mi ≥Ma .
(2.70)

2.5 General properties of mirage mediation

As we have seen above, mixed modulus-anomaly mediation can lead to the phe-
nomenon of mirage mediation. One of the interesting features of this mediation
scheme is that the soft terms experience modulus and anomaly mediations at
the same strength. Specifically, in the MSSM, the soft breaking terms just below
the GUT scale can be parameterized by (cf. appendix A.3)

Ma = M0

[
% + ba g2

GUT

]
, (2.71)

Ai jk = M0

[ (
−3% + ni + n j + nk

)
+

(
γi + γ j + γk

) ]
, (2.72)

m2
i = M2

0

[
(1 − ni) %2 − γ̇i + 2%ΨT

i

]
, (2.73)

where % = O(1) measures the balance between modulus and anomaly mediation,
M0 sets the scale of the soft terms, ba are the β-function coefficients, γi are the
anomalous dimensions, γ̇i denotes the running of the anomalous dimensions and
ΨT

i describes the T dependence of the anomalous dimension. The parameters
ni are the so-called effective modular weights and depend on the location of the
visible matter fields. For matter fields on D7 branes, ni = 1, whereas ni = 0 for
matter on D3 branes. In case the matter fields live on brane intersections, ni
takes fractional values ni ∈ (0, 1).

The low energy sparticle spectrum in mirage mediation differs from other
SUSY breaking scenarii. This is mainly due to the peculiar correlation between
anomaly mediated contributions and the RG evolution of the soft parameters.
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The former significantly cancels the latter, giving rise to a rather compressed
low energy sparticle spectrum at the TeV. Also the phenomenology of mirage
mediation [53–56, 105] differs from pure modulus (gravity) [106–109] and pure
anomaly mediation [99, 100]. It seems to retain the attractive features of the
particular mediation mechanisms while alleviating the problematic ones. This
leads to quite distinctive properties which we summarize below.

Tachyons :: Pure anomaly mediation suffers from tachyonic sleptons [51,52,80].
In mirage mediation, scalar squared soft masses receive a positive contribu-
tion from modulus mediation which can cancel the tachyons. One should,
however, note that due to the mixed modulus-anomaly term in eq. (2.73)
also squarks might become tachyonic. Thus, absence of tachyonic fields
sets a lower bound on the parameter % which in turn defines a constraint
for model building (e. g. uplifting potential). Moreover, as evident from
eq. (2.73), non-zero ni would enlarge the tachyonic regions. In this regard,
matter fields on D7 branes are favored by phenomenology.

MSSM fine-tuning :: In supersymmetric models a certain fine-tuning is re-
quired to obtain the EW scale from the scale of the soft masses. Due to its
specific structure, mirage mediation provides a possibility to reduce the
MSSM fine-tuning, though it might require an extension to resolve it com-
pletely. Anyway this seems to be a model-dependent feature [105,110].

Flavor problem :: Modular weights ni are in general generation-dependent. If,
however, matter fields with common gauge charge originate from the same
geometrical structure, the modular weighs will be flavor-independent.
Since anomaly mediation is flavor-blind [51,52,80], the soft terms in mirage
mediation preserve the lepton and quark flavors, provided that ni are
flavor-independent.

CP problem :: Soft terms in mirage mediation also preserve CP since the rel-
ative CP phase between FT and FC can in principle be canceled by U(1)R
and U(1)PQ rotations [83]. As a result the CP phase of the gaugino masses
is aligned with the universal CP phase of the A-terms. However, the ex-
treme smallness of various electric dipole moments might require further
alignment of the phases [55].

LSP :: The LSP is the lightest neutralino and is mostly dominated by the bino
component [54–56,105]. The scheme offers an interesting scenario to pro-
duce a correct amount of neutralino dark matter consistent with data [111].

Cosmology :: SUGRA theories are often in conflict with cosmology as they pre-
dict long-lived particles. Late decays of such particles would spoil the
standard nucleosynthesis [112], which has proven to be very successful. In
string inspired models these long-lived particles are (usually) moduli and
gravitini and the associated problems are known as the cosmological grav-
itino and moduli problems [113]. One way to avoid or at least alleviate these
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problems is to make gravitini and moduli sufficiently heavy in order to en-
hance their decay rate. This is exactly what happens in the scheme of (pure)
mirage mediation. The little hierarchy among the soft, the gravitino and
moduli masses, eq. (2.69), implies that a TeV sparticle spectrum requires a
O(30 TeV) gravitino mass andO(103 TeV) moduli masses. Such mass scales
are enough for the gravitini and moduli to decay before nucleosynthe-
sis and to not affect the abundances of light elements [54]. Nevertheless,
there are other challenges from the cosmological point of view which may
require further ingredients
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Chapter 3

Uplifting in Type IIB string theory

In the previous chapter we have studied a method for constructing
dS/Minkowski vacua in type IIB string theory through a combination
of high scale dynamics (e g. fluxes), D-branes and non-perturbative
effects (e. g. gaugino condensation). Although this scheme is able to
provide realistic vacua with quite distinct low energy phenomenology,
it also contains a number of problematic features, one of the most
important being the explicit breaking of SUSY. In this chapter we first
show that in SUGRA theories with a single modulus dS/Minkowski
vacua are not possible. We then review the difficulties of D-term
uplifting. Afterwards, we study the possibility that dS/Minkowski
vacua arise due to superpotential interactions of hidden matter fields,
known as F-uplifting, and analyze the pattern of SUSY breaking.

3.1 No-go theorem

It has been pointed out [60,114,115] that dS/Minkowski vacua in the framework
of spontaneously brokenN = 1 SUGRA are not possible for models with a single
modulus X as long as the Kähler potential takes on its tree-level form

K = −n log
(
X + X

)
, (3.1)

with 1 ≤ n ≤ 3 depending on the nature of the modulus. Using the standard
N = 1 SUGRA formalism [7–13] one obtains

V = eG
[
K−1

XX
GXGX − 3

]

=
1(

X + X
)n

[1
n

∣∣∣∣WX
(
X + X

)
− n W

∣∣∣∣
2
− 3 |W|2

]
, (3.2)

where we leave the superpotential undetermined. The stationary point condition

VX = GXV + eG
[ (

K−1
XX

)
X

GX GX + K−1
XX

GXX GX + GX

]
!
= 0 (3.3)
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is trivially solved for a supersymmetric configuration GX = 0. Imposing eq. (3.3)
for a non-supersymmetric point GX , 0 leads to

0 =
(
WX

(
X + X

)
− n W

) (
WXX

(
X + X

)
+ (1 − n) WX

) X + X
n

−
(
WX

(
X + X

)
− n W

) (
WX

(
X + X

) n − 1
n

+ (3 − n) W
)
. (3.4)

In order to analyze the stability of the stationary point we have to consider the
second derivatives of the scalar potential. Using eqs. (3.2) – (3.4) we can recast
∂2V/∂X∂X at the minimum X0 as

∂2V

∂X∂X
= − 2

(
X0 + X0

)2

V0 +
3 − n(

X0 + X0

)n |W(X0)|2
 , (3.5)

where V0 denotes the vacuum energy. Clearly, for n ≤ 3 and V0 ≥ 0 eq. (3.5)
is non-positive, implying that at least one of the eigenvalues of the Hessian is
negative or zero. Thus we can summarize this obstacle as a [57]

No-go theorem If a modulus X is the only light field in the theory and its Kähler po-
tential K = −n log(X + X) with 1 ≤ n ≤ 3, dS or Minkowski vacua with spontaneously
broken SUSY are not possible for any superpotential.

According to this observation our conclusion is twofold. On the one hand, with
X being the only (light) DOF, corrections to the Kähler potential are necessary so as
to allow for dS/Minkowski vacua [116–118]. On the other hand, with the classical
Kähler potential the existence of dS/Minkowski vacua requires additional DOF
to be implemented within the 4D N = 1 SUGRA [60]. In this work we are going
to analyze the second option.

3.2 D-Uplifting

In our discussion so far we have focused our attention only on the F-term part of
the scalar potential. There is also a contribution coming from the D-terms. The
full 4DN = 1 SUGRA potential in the Einstein frame is given by [7–13]

VN=1 = VF + VD , (3.6)

VF = eG
[
G−1

IJ
GI GJ − 3

]
, (3.7)

VD =
1
2
Re fa DaDa

=
1

2Re fa

(
i ηI

a ∂IK − 3i ra
)2
, (3.8)
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where I, J label the fields, ηI
a denotes the gauge transformation of the chiral

superfields under the gauge group factor Ga, while ra is determined by the
transformation properties of the superpotential under Ga,

δaW = ηI
a∂IW = −3raW . (3.9)

From this equation and for W , 0 one can rewrite the D-terms as [47]

Da =
i

Re fa
1
W
ηI

a

(
∂IW + W ∂IK

)

=
i

Re fa
ηI

a GI . (3.10)

A supersymmetric configuration with 〈Gm〉 = 0, if allowed, is always a stationary
point of VF as can be read off from eq. (3.3). Obviously, if VF admits a super-
symmetric AdS vacuum, i. e. a stable solution with 〈Gm〉 = 0 but W , 0, as is
the case in the KKLT scheme, the D-terms do necessarily vanish. Thus, super-
symmetric minima cannot be uplifted by the D-terms [47]. VD merely improves
the stability of the supersymmetric AdS solution of VF. This solution remains
a good solution of the complete scalar potential. Hence we conclude that only
non-supersymmetric vacua can be uplifted by the D-terms [119,120].

Let us briefly discuss the D-term uplifting of non-supersymmetric minima.
For concreteness consider the D-term coming from an anomalous U(1) [79]

D ∼ E
Re fa

+
∑

i

qi φiφi , (3.11)

where E is a constant related to the trace of the anomalous U(1), φi are matter
fields carrying the anomalous charges qi and for gauge fields on D7 branes we
have fa = T. At the minimum of the complete scalar potential the stationary
point condition ∂T(VF + VD) = 0 together with eq. (3.6) implies symbolically [57]

m2
3/2 + D2 + D ' 0 , (3.12)

where we have neglected all coefficients and assumed that there are no very
large/small factors in this equation. Using m3/2 ∼ 10−14 MP, as favored by phe-
nomenology, this equation is solved by

|D| ∼ m2
3/2 , (3.13)

whereas

|F| ∼ m3/2 MP . (3.14)

Thus we see that for a hierarchically small gravitino mass [121] D-terms are
much smaller than the F-terms and consequently D2 = O(m4

3/2) cannot uplift a
AdS minimum with VAdS

0 = O(−m2
3/2M2

P). This mechanism can only work for a
heavy (Planckian) gravitino mass [122–124].

In this work we are interested in a phenomenologically viable gravitino mass
being in the TeV domain in order to provide a TeV sparticle spectrum. Therefore
we can safely neglect the contribution from VD and study the F-term potential.
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3.3 F-Uplifting

From the restrictions of the no-go theorem and due to the shortcomings of
the D-term uplifting, it appears that uplifting of (supersymmetric) AdS vacua
within the standard SUGRA framework requires extra DOFs in addition to a light
Kähler modulus. Since matter fields are as generic as moduli in string theory
constructions, they are well equipped to play the role of these additional DOFs
we are looking for. In this section we study the possibility that dS/Minkowski
vacua arise due to the F-terms of hidden sector matter fields. This procedure was
shown to be viable and works for a hierarchically small gravitino mass [60]. Our
theoretical framework is 4D N = 1 SUGRA with two sectors: moduli sector and
matter/uplifting sector where SUSY is broken spontaneously in a dS/Minkowski
vacuum. First we study these subsectors separately and analyze thereafter
properties of their combination.

3.3.1 Moduli sector

This sector is responsible for the stabilization of all moduli. In particular, it
represents the first two steps of the KKLT construction (cf. section 2.2). We as-
sume that the dilaton and the CSM are stabilized by fluxes and acquire huge
masses such that they can be integrated out. The effective theory for the remain-
ing (light) Kähler modulus is described by the classical Kähler potential and a
superpotential induced by fluxes and gaugino condensation

KMOD = −3 log
(
T + T

)
, (3.15)

WMOD = W0 − A e−a T, (3.16)

with A = O(1), a� 1 and W0 originates from fluxes. The scalar potential is

VMOD = eG
[
K−1

TT
GT GT − 3

]
. (3.17)

Assuming a real T = O(1) the supersymmetric minimum GT(T0) = 0 appears at

T0 ' −1
a

log
W0

A a
, (3.18)

with a T0 ' log(MP/m3/2) and the corresponding vacuum energy

〈VMOD〉 = −3eG ∼ |WMOD(T0)|2 . (3.19)

3.3.2 Matter sector

Since the moduli stabilization mechanism outlined above does not break SUSY
we introduce matter fields for this purpose. Consider a hidden sector matter
field φ with canonical Kähler potential and a generic superpotential

KMAT = φφ , (3.20)
WMAT = WMAT(φ) . (3.21)
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The corresponding scalar potential

VMAT = eG
[
GφGφ − 3

]
, (3.22)

admits supersymmetric as well as non-supersymmetric solutions. Suppose for
simplicity that the minimum of the scalar potential is at real φ. Then a non-
supersymmetric extremum is found from

∂φVMAT = eGGφ

[
G2
φ + Gφφ − 2

] !
= 0 , (3.23)

with Gφ(φ0) , 0. From stability considerations we obtain

∂φφVMAT = eG
[
G4
φ + 2G2

φ Gφφ + G2
φφ − 2

]

= 2eG > 0 , (3.24)

which confirms that the non-supersymmetric solution is a minimum. Moreover,
the mass of the hidden matter field is of order of the gravitino mass mφ ∼ m3/2.
By adjusting the parameters of WMAT the vacuum energy can be chosen positive
and arbitrarily small

〈VMAT〉 = VMAT(φ0) ≥ 0 . (3.25)

In this minimum SUSY is broken by Fφ = eG/2 Gφ. In a nearly Minkowski vacuum
Gφ = O(1) and consequently

Fφ ' eG/2 ∼
∣∣∣WMAT(φ0)

∣∣∣ . (3.26)

3.3.3 The uplifting

Now we combine the two sectors. That is, we suppose that the low energy
theory involves a single Kähler modulus T and a hidden sector matter field φ.
The corresponding Kähler potential is given by1

K = −3 log
(
T + T

)
+ φφ + φφ

(
T + T

)−nφ
, (3.27)

where nφ denotes the modular weight for the matter field φ. For definiteness,
we choose nφ = 0. The superpotential of the combined system takes the form

W(T, φ) = WMOD(T) + WMAT(φ)

= W0 − A e−a T + WMAT(φ) . (3.28)

The two subsystems have their minima at T0 and φ0, respectively. The question
is now, how much does the minimum of the combined system deviate from the
individual minima?
1A realization of this setup can be found in [125].
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Consider the system in the vicinity of the reference point (T0, φ0). At φ = φ0
the superpotential for T is

W = WMOD(T) + WMAT(φ0) , (3.29)

whereas the superpotential for φ at T = T0 is

W = WMOD(T0) + WMAT(φ) . (3.30)

Thus the constant terms in the superpotential shift relative to those of the original
subsectors. Therefore it makes sense to define T0 as the minimum of the moduli
subsector with the superpotential eq. (3.29) and similarly φ0 as the minimum of
the matter subsector with the superpotential eq. (3.30).

The scalar potential of the combined system is given by

V = eG
[
K−1

TT
GT GT + GφGφ − 3

]
. (3.31)

We would like to see whether the minima of the separate subsectors (T0, φ0) rep-
resent a stationary point of the combined system. The stationary point equations
read

VT = GTV + eG ∂
∂T

(
K−1

TT
GT GT

)
+ eG ∂

∂T

(
Gφ Gφ

)
, (3.32)

Vφ = GφV + eG ∂

∂φ

(
Gφ Gφ

)
+ eGK−1

TT

∂

∂φ

(
GT GT

)
. (3.33)

Consider Vφ. It vanishes at (T0, φ0) because the first two terms represent the
equations of motion for the φ-subsector eq. (3.23) and the third term is propor-
tional to GT which is zero at (T0, φ0). Consider now VT. The first two terms are
zero as they represent the equations of motion for the T-subsector. The last term,
however, does not vanish. To estimate it we recall that a small vacuum energy
ensures Gφ = O(1) and GT = 0 provides WT/W = O(1). Hence

eG ∂
∂T

(
GφGφ

)
= eGGTφGφ ∼ eG = m2

3/2 . (3.34)

Finally, the vacuum energy at (T0, φ0) equals that of the φ-subsector, eq. (3.25).
This shows that the stationary point conditions are “almost” satisfied at

(T0, φ0). Let us now estimate how much the true minimum is shifted com-
pared to (T0, φ0). Suppose the true minimum is at (T0 + δT, φ0 + δφ). At this
point

VT(T0 + δT, φ0 + δφ) = 0 , (3.35)
Vφ(T0 + δT, φ0 + δφ) = 0 . (3.36)

Assume, for simplicity, that the minimum occurs at real T and φ. Expanding
eqs. (3.35) and (3.36) to first order in in δT and δφ gives

VT + VTT δT + VTφ δφ = 0 , (3.37)

Vφ + Vφφ δφ + VφT δT = 0 , (3.38)
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where Vφ(T0, φ0) = 0 as explained above. The solution is

δT =
VT

V2
Tφ/Vφφ − VTT

, (3.39)

δφ = −
VTφ

Vφφ
δT . (3.40)

In the large a limit one obtains [57,60]

δT ∼ 1/a2, (3.41)
δφ ∼ 1/a . (3.42)

Consequently the T modulus only slightly shifts from its previous position T0.
Note that the shift in T is of the same order as in the KKLT case, eq. (2.35).

3.4 The pattern of SUSY breaking in F-uplifting

Let us examine the pattern of SUSY breaking. At the true minimum we have

GT(T0 + δT, φ0 + δφ) = GT + GTT δT + GTφ δφ , (3.43)

Gφ(T0 + δT, φ0 + δφ) = Gφ + Gφφ δφ + GφT δT , (3.44)

where again GT(T0, φ0) = 0 as explained above. Using Gφ = O(1), WT/W = O(1)
and |WTT| = a |WT|we can estimate

GT(T0 + δT, φ0 + δφ) ∼ 1/a , (3.45)
Gφ(T0 + δT, φ0 + δφ) ∼ 1 . (3.46)

This highlights that the SUSY breakdown is now triggered both by FT and Fφ

with the latter providing the dominant contribution,

FT = eG/2 K−1
TT GT ∼

m3/2

a
, (3.47)

Fφ = eG/2 Gφ ∼ m3/2 . (3.48)

The masses of the modulus and the matter fields can be estimated in a similar
way [104]

mT ∼ (a T0) m3/2 , (3.49)
mφ ∼ m3/2 , (3.50)

indicating that T is heavy compared to the gravitino and the matter field. It is
important to note that eqs. (3.47) – (3.50) have been obtained in the limit of a small
vacuum energy in the φ-subsector. In this case, due to the suppression of FT

(eq. (3.47)) the first term in eq. (3.31) is O(1/a2). Thus, the vacuum energy of the
combined system is well approximated by the vacuum energy of theφ-subsector,
eq. (3.22). By adjusting the parameters of the φ-subsector the vacuum energy
can be made positive and arbitrarily small.
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3.4.1 The little hierarchy

This uplifting procedure causes T to change its position only slightly, such that T
is stabilized close to a supersymmetric point. Hence, up to a correction O(1/a2)
the true minimum is well approximated by eq. (3.18), namely

T0 ∼ −1
a

log
(

WMAT(φ0)
a A

)
, (3.51)

implying

WMAT(φ0) ∼ a
(
A e−a T0

)
, (3.52)

in the minimum. Consequently, the gravitino mass

m3/2 = 〈eG/2〉 ∼
∣∣∣WMAT(φ0)

∣∣∣ ∼ a
(
A e−a T0

)
(3.53)

originates from gaugino condensation. Moreover, as T is close to T0 the vacuum
exhibits the unique property

a T0 ∼ log
(

A
WMAT(φ0)

)
∼ log

(
MP

m3/2

)
, (3.54)

which is known as the little hierarchy [47]. For m3/2 lying in the TeV range
a T0 = O(4π2) is comparable to a loop suppression factor. In this case the general
mass pattern is given by

m3/2 ∼ mφ � mT . (3.55)

3.4.2 Comparison with KKLT

Both KKLT and matter uplifting schemes exhibit the appearance of the little
hierarchy a T0 ∼ log(MP/m3/2) which suppresses the F-term of the modulus and
enhances its mass with respect to the gravitino mass. However, there is one
essential difference between these two schemes: in the matter uplifting scenario
the SUSY breaking sector is not (necessarily) sequestered from the T modulus
and the visible matter fields. In this case matter fields in a hidden sector break
SUSY spontaneously. Due to the absence of sequestering the couplings of the
hidden matter to the modulus and the visible matter are “only” suppressed by
MP. This adds authority to the hidden matter sector as it provides the dominant
source of SUSY breaking, Fφ � FT. Rewriting the scalar potential eq. (3.31) at the
minimum as

V0 = KTT

∣∣∣FT
∣∣∣2 +

∣∣∣Fφ
∣∣∣2 − 3m2

3/2 , (3.56)

shows that the F-term of the hidden matter field is responsible for uplifting the
deep AdS minimum to a small and positive value, hence the name F-uplifting.
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Fig. 3.1 :: Scalar potential for the combined modulus-Polonyi model.

c µ2 φ0 FT Fφ m3/2 mT mφ

1× 10−14 3× 10−14 0.71 5× 10−16 8× 10−15 12 TeV 805 TeV 26 TeV

Tab. 3.1 :: Sample spectrum for a hidden SU(5) and A = 1.

3.4.3 An example

As an illustrative example consider a combination of the moduli sector with the
Polonyi model [9,126]. The Kähler potential and the superpotential are given by

K = −3 log
(
T + T

)
+ φφ, (3.57)

W = c + µ2 φ − A e−a T, (3.58)

where c and µ2 are constants and a is related to the β-function of the condensing
gauge group. If observable gauge fields originate from D7 branes the SM gauge
couplings eq. (2.50) require T0 ' 2 at the minimum. A non-supersymmetric
Polonyi vacuum is determined by

G2
φ + Gφφ − 2 = 0 . (3.59)

Choosing

G2
φ = 3 + ε , (3.60)

with ε� 1 the vacuum energy is

V0

µ4
∼ ε . (3.61)
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This puts a constraint on c and µ2. The solution to first order in ε is

c ' µ2
(
2 −
√

3 +

√
3

6
ε

)
, (3.62)

φ0 '
√

3 − 1 +

√
3 − 3
6

ε . (3.63)

The supersymmetric AdS minimum of the T-subsector is given by eq. (3.18).
Combining the two sectors, their minima will shift according to eqs. (3.41) –
(3.42). The shift of the individual minima can also be understood from their
masses. The masses of the Polonyi field and the gravitino are of comparable size

mφ ∼ m3/2 = eG/2 ∼
∣∣∣WMAT(φ0)

∣∣∣ ∼ µ2, (3.64)

with µ2 setting the scale, whereas the mass of the modulus is

mT ∼ (a T0) m3/2 ∼ (a T0)µ2 (3.65)

such that T is heavy. Fig. 3.1 confirms this result: the potential in the T direction
is very steep around the minimum unlike the potential in the φ direction. As a
result T only slightly shifts from the original position and its contribution SUSY
breakdown is suppressed. Finally, the resulting vacuum energy can be made
arbitrarily small by adjusting ε and without affecting other aspects of the system.
A concrete example based on the hidden sector gauge group SU(5) is shown in
fig. 3.1 and tab. 3.1 summarizes the main parameters.

As a final remark we would like to stress that a deviation from the constraints
eqs. (3.62) and (3.63) (which actually only cover the φ-subsector) will cause the
minimum of the potential to move along the T direction. For a delicate choice of
parameters c and µ2 the modulus can be stabilized at ReT0 ∼ 2.

3.4.4 Soft breaking terms

In the scheme of uplifting via matter fields we can identify three sources of
SUSY breakdown coming from the T modulus, the matter field φ and the SUGRA
compensator C, respectively. The auxiliary components are

FT ∼ m3/2

a
, (3.66)

Fφ ∼ m3/2 , (3.67)

FC

C0
∼ m3/2 . (3.68)

This is different from the KKLT scheme where the contribution from the SUSY
breaking fields is sequestered from the T modulus and the visible matter fields.

In the F-uplifting scheme, the uplifting sector is (generically) not sequestered
and affects the mediation of the SUSY breakdown as well as the resulting phe-
nomenology. In section 3.4 we saw that the suppression of FT makes the con-
tribution from the conformal anomaly competitive to the tree-level modulus
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mediation. Furthermore the soft breaking parameters experience loop contribu-
tions from Kähler anomalies and and string threshold corrections which depend
on FT and Fφ. Since FT is suppressed we can neglect its involvement into such
contributions. The unsuppressed Fφ, however, triggers loop contributions that
can become equally important to the contributions from modulus and anomaly
mediations. There are two potential difficulties connected to these additional
loop contributions. First, both introduce model-dependence, thereby lowering
the predictivity of the scheme. Second, string threshold corrections depend on
the detailed ultraviolet physics above the compactification/GUT scale. In prin-
ciple this presents an uncontrollable contribution to the soft terms which could
spoil the predictive power of the scheme. In other words, if such contributions
become sizable no model-independent statement about the soft parameters can
be made. Apart from that there might also be φ-dependent string threshold
corrections to the gauge kinetic functions [57,60].

One possibility to avoid these troubles is to assume a discrete symmetry
φ→ −φ which is broken only by non-perturbative dynamics that is responsible
for SUSY breaking. Such (approximate) symmetry can make the φ-dependent
contributions from Kähler anomalies and string threshold corrections negligible
[92]. Another way out is to consider a class of models realizing φ0 � 1 [57,
60]. In this work we will focus on this kind of models. The construction
of superpotentials realizing this situation is outlined in [57]. Assuming MSSM
gauge fields originating from D7 branes, the (tree-level) gauge kinetic function
and the Kähler potential are [47,48]

fa = T , (3.69)

K = −3 log
(
T + T

)
+ φφ + QiQi Zi , (3.70)

with the Kähler metric for the visible fields

Zi =
(
T + T

)−ni
[
1 + ξi φφ

]
, (3.71)

where Qi are the visible fields with effective modular weights ni and ξi describes
the non-sequestered coupling between the visible fields, the T modulus and the
hidden matter field φ. Using the formulae of appendix A.3, the soft breaking
parameters at the GUT scale are given by

Ma =
FT

T0 + T0
+

ba g2
GUT

4
1

4π2
FC

C0
, (3.72)

Ai jk =
(
−3 + ni + n j + nk

) FT

T0 + T0
+
γi + γ j + γk

4
1

4π2
FC

C0
, (3.73)

m2
i = (3ξi − ni)

∣∣∣FT
∣∣∣2

(
T0 + T0

)2 −
γ̇i

42

∣∣∣∣∣∣
1

4π2
FC

C0

∣∣∣∣∣∣
2

+
FT∂Tγi

2
1

4π2
FC

C0
+ (1 − 3ξi) m2

3/2 , (3.74)
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where ba are the β-function coefficients and γ̇i describes the RG running of the
anomalous dimensions γi.

Compared to KKLT scheme, F-uplifting provides the same pattern for the soft
gaugino masses and the A-terms, i. e. modulus and anomaly mediation are of
comparable size. We have to keep in mind that this result is only valid in
models allowing φ0 � 1 such that additional contributions to eqs. (3.72) – (3.74)
are suppressed. Then, as in KKLT, the non-universality in the gaugino masses
at the GUT scale is given by the respective β-function coefficients. Since the RG
running is described by the same β-functions the splitting disappears at MMIR

eq. (2.58) leading to the mirage unification of gaugino masses.
The structure of the soft scalar scared masses is richer as compared to KKLT.

This is due to the non-sequestered form of the uplifting sector and endows the
scheme with interesting features which we want to address.

Tachyons :: The second and the third term in eq. (3.74) represent pure anomaly
[51, 52, 80] and mixed modulus-anomaly contributions [47], respectively
and provide tachyonic sleptons and squarks. The presence of tachyonic
fields indicates that at the GUT scale the boundary conditions might be
ill-defined. Thus, the absence of tachyons at the GUT scale requires the
modulus contribution to be slightly bigger than the anomaly contribution.
The non-sequestered coupling between φ and the visible fields, however,
gives rise to a positive contribution O(m2

3/2) encoded in the last term of
eq. (3.74). By introducing ξi we are entering the model-dependence sector
which is the price we have to pay to have spontaneous SUSY breaking.
But it has the advantage to provide a tool to remove the tachyons without
affecting other soft terms. Note that in order to keep the last term in
eq. (3.74) positive, 0 ≤ ξi ≤ 1/3 must be fulfilled.

Flavor :: In general, the couplings ξi are flavor dependent and thus present an
additional source of flavor violation. In the KKLT scheme, sequestering en-
sures the absence of additional flavor violations. However, we can easily
resolve this issue by choosing ξi generation independent, too. Further-
more, since the modular weights are in general flavor dependent too, we
choose them to be universal.

Mass pattern :: While a mirage pattern occurs for the gaugino masses this is
not necessarily true for the scalar masses. The reason is the additional
contribution from the matter field φ encoded in the last term in eq. (3.74).
However, mirage unification is still realizable but only in models admitting
ξi = O(1/3). Thus, for ξi � 1/3 F-uplifting shows the relaxed mirage pattern

Ma � mi ∼ m3/2 , (3.75)

whereas for ξi = O(1/3) the pure mirage pattern

Ma ∼ mi � m3/2 (3.76)

is recovered.
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Cosmology :: As in the KKLT scheme, the cosmological moduli and gravitino
problems can be alleviated. The masses of the moduli are enhanced by
the little hierarchy. The masses of the sfermions, however, are in general
O(m3/2). Thus, making the gravitino heavy results in heavy sfermions.
Furthermore, one is also faced with the so-called moduli induced gravitino
problem [127,128], which states that in models like KKLT the branching ratio
for the T decays into gravitini is O(1) which leads to abundant gravitino
production and severe cosmological problems. In F-uplifting such a prob-
lem is usually absent [60,129] since the uplifting fieldφ typically has a mass
O(m3/2). This is because the uplifting potential is not very steep [130–132].
Thus φ dominates the energy density of the universe at late times, but
its decay into gravitini is suppressed and the moduli induced gravitino
problem is absent.

Finally, using our parameterization eqs. (2.51) and (2.52), we can write the
soft parameters eqs. (3.72) and (3.74) in a compact form. Moreover, in order to
compare the last term in eq. (3.74) with the remaining terms we introduce

η2
i = (1 − 3ξi) (16π2)2. (3.77)

Note that ξi = 1/3 corresponds to ηi = 0 which gives a pure mirage pattern. For
ηi = O(1) the deviation from the pure mirage picture is small and increases with
an increasing ηi. The decoupling limit ξi = 0 corresponds to ηi ≈ 158 resulting
in a maximally relaxed mirage pattern. Thus we arrive at (cf. appendix A.3)

Ma = M0

[
% + ba g2

GUT

]
, (3.78)

Ai jk = M0

[ (
−3% + ni + n j + nk

)
+

(
γi + γ j + γk

) ]
, (3.79)

m2
i = M2

0

[
(3ξi − ni) %2 − γ̇i + 2%ΨT

i + η2
i

]
, (3.80)

where ΨT
i denotes the T dependence of the anomalous dimension.



46 Uplifting in Type IIB string theory



Chapter 4

Downlifting in heterotic string theory

In this chapter, we study the impact of the matter sector in the context
of heterotic orbifold compactifications. After specifying the structure
of the low energy SUGRA we first review the difficulties of moduli
stabilization in the this framework. Then we show that moduli stabi-
lization can be achieved quite easily, if we accept the existence of the
so-called downlifting sector (similar to the uplifting sector in the type
IIB case) which is in any case necessary to adjust the vacuum energy to
an acceptable value. Afterwards, we determine the soft breaking pa-
rameters. Finally we present a possible application of this procedure
in the framework of heterotic orbifolds with fluxes.

4.1 Modular invariance

Orbifold1 compactifications of (fluxless) heterotic string theory enjoy the simplic-
ity of torus compactifications [44,133–135], but due to the action of the discrete
orbifold group (e. g.Z3) they leat toN = 1 SUSY in 4D compared toN = 4 in case
of the torus. In addition to the dilaton S, the presence of toroidal geometry gives
rise to moduli which dictate the sizes and relative orientations of the tori. These
moduli will enjoy various symmetry transformations that leave the spectrum
and the equations of motion for the low energy effective theory unchanged. One
usually refers to these symmetries as modular symmetries [136–138]. The sym-
metry group of target space modular transformations depends on the particular
orbifold background. The low energy effective SUGRA from orbifold models
contains (at least) three Kähler moduli Ti which describe the size of the three
complex planes and hence the volume of the compact space. Depending on the
orbifold action imposed, there might be also further Kähler moduli as well as
some number of CSM Ui related to the deformations of the complex structure.
These moduli (together with some charged matter fields) originate from the
untwisted sector of the orbifold [139]. In addition, depending on the particular
orbifold setup, the effective low energy theory usually involves several fields
coming from the twisted sector of the orbifold [139].

1An orbifolds is defined as a manifold divided by a discrete symmetry. In string theory context,
this manifold is usually assumed to be a flat torus. Orbifolds are everywhere Riemann-flat
except at some finitely many points where the curvature becomes singular. In other words,
orbifold is a singular limit of a CY manifold.
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The most important property arising in (fluxless) orbifold compactifications is
the appearance of an exact SL(2,Z) global symmetry2 acting on a generic single
index modulus Mi as [144,145]

Mi → ai Mi − i bi

i ci Mi + di
, ai di − bi ci = 1 , ai, bi, ci, di ∈ Z , (4.1)

and a charged matter field φα transforms as

φα → φα
∏

i

(i ci Mi + di)
−ni

α , (4.2)

where ni
α denotes the modular weight of the matter fields.3 The dilaton S remains

invariant under the modular transformations [71]. This set of transformations
can be generated from the two underlying transformations including duality
Mi → 1/Mi and imaginary shifts Mi → Mi + i. Observe that there exist two
points which are left invariant under these modular transformations. These
so-called self-dual points (SDP) are

M(SDP)
i =

{
1, eiπ/6

}
. (4.3)

In the present work we focus our attention on orbifold models that give rise
to an effective low energy theory with untwisted Kähler moduli. The tree-level
Kähler potential for models with a single untwisted Kähler modulus T is given
by [70–72]

K = − log
(
S + S

)
− 3 log

(
T + T

)
+

∑

α

φαφα
(
T + T

)−nα
, (4.4)

with the effective modular weights nα =
∑

i ni
α beingO(1) integers. Eqs. (4.1) and

(4.2) induce a transformation on the Kähler potential of the form K→ K+K +K ,
with K = 3 log(i c T + d).

The invariance of the effective SUGRA action under modular transformations
implies the invariance of the SUGRA potential and, since the scalar potential is
defined in terms of the Kähler function G, also the modular invariance of G. This
can be achieved, provided that the superpotential transforms as

W → (i c T + d)−3 W . (4.5)

In the fluxless heterotic setup the T moduli cannot be stabilized perturbatively
thus one is let to consider non-perturbative superpotentials consistent with mod-
ular invariance. In [136,137] it was shown that the T-dependence of an effective
non-perturbative superpotential satisfying eq. (4.5) must be of the form

W(T) ∼ η−6(T) , (4.6)

2At the quantum level such symmetries are typically anomalous [140, 141]. This anomaly is
canceled in the effective theory by a sort of Green–Schwarz mechanisms and model-dependent
string threshold corrections [142,143].

3Fields in the twisted sectors with the same modular weight can mix among themselves under
SL(2,Z) transformations [146].
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where η(T) is the Dedekind η-function

η(T) = e−
πT
12

∞∏

n=1

(
1 − e−2πn T

)
, (4.7)

which transforms under eq. (4.1) as

η(T)→ (i c T + d)1/2 η(T) . (4.8)

Moreover it is a periodic function of ImT and vanishes exponentially at ReT→ 0
and ReT→∞. This can be straightforwardly generalized to multi moduli case.

4.2 Dilaton and a modulus

Guided by modular invariance of the effective action in orbifold models, we
want to consider a low energy effective 4D N = 1 SUGRA theory containing the
dilaton S and an overall Kähler modulus T. We will assume that there are no light
(hidden sector) matter fields present (or assume that their VEVs are negligible).
Then the effective theory is described by

fa = S , (4.9)

K = − log
(
S + S

)
− 3 log

(
T + T

)
. (4.10)

Since S and T do not receive a perturbative superpotential we consider a non-
perturbative superpotential induced by gaugino condensation [21–26,76]

W(S,T) =
Ω(S)
η6(T)

, (4.11)

where we leave the form of the gaugino condensate Ω(S) undetermined at this
stage. The S-dependence of the condensate follows from the gauge kinetic
function fa = S. The corresponding F terms and the scalar potential are given by

FS = eG/2K−1
SS

GS

= eG/2

(
S + S

)

Ω

(
ΩS

(
S + S

)
−Ω

)
, (4.12)

FT = eG/2K−1
TT

GT

= −eG/2
(
T + T

)2 E(T,T) , (4.13)

V = eG
[
K−1

SS
GS GS + K−1

TT
GT GT − 3

]

=

∣∣∣∣ΩS

(
S + S

)
−Ω

∣∣∣∣
2

+ 3 |Ω|2
[(

T + T
)2 ∣∣∣E(T,T)

∣∣∣2 − 1
]

(
S + S

) (
T + T

)3 ∣∣∣η(T)
∣∣∣12

, (4.14)
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Fig. 4.1 :: Scalar potential eq. (4.14) in the T-direction. Panel (a) illus-
trates the case FS = 0. In panel (b) the impact of a non-zero FS on the
potential is shown in the ReT direction with ImT = 0. The case α = 0
corresponds to FS = 0. For each value of α the scalar potential has
been rescaled in order to place all plots on the same figure.

where we have introduced the modified Eisenstein function

E(T,T) =
1

T + T
+

2
η(T)

dη
dT

, (4.15)

which vanishes at the SDP and their modular transformed images.
Without any further analysis one can draw a general conclusion from the form

of the scalar potential. In the decompactification limit ReT → ∞ (and its dual
ReT→ 0), the scalar potential diverges, V →∞, due to (T + T)3|η(T)|12 → 0.

Another generic feature is that at the SDP (and their modular transformed
equivalents) the T-modulus does not break supersymmetry as the T auxiliary
field, eq. (4.13), vanishes at these points. Recall from eq. (3.3) that supersym-
metric configurations always correspond to local extrema of the scalar potential.
Such a scenario is typically called dilaton domination [97, 98]. Also supersym-
metric configurations in the S direction extremize the scalar potential. They
correspond to moduli domination scenarios [98]. Apart from that there exist
generically other (non-supersymmetric) configurations.

In case FS = 0, the scalar potential eq. (4.14) has extrema at the SDP which, as
illustrated in fig. 4.1.a, correspond a saddle point in the case of T0 = 1 and a local
maximum for T0 = eiπ/6. Clearly the pure supersymmetric case FS = FT = 0 is
unrealistic as it does not correspond to a stable solution. There are, however,
generically nearby extrema in the ReT direction and some of them correspond
to local minima. The existence of these nearby minima can be inferred from the
properties of theη-function. Consider for instance T0 = 1, which is a maximum in
ReT. Keeping ImT = 0 we obtain V →∞ for 0← ReT→∞ as discussed above.
Thus, for 1 < ReT < ∞ there must exist a minimum and its dual at 0 < ReT < 1.
Since T0 = 1 is a minimum in the ImT, the nearby minima are genuine minima
of the scalar potential. This happens at T0 = 1.23 and T0 = 1/1.23. Note that at
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these points 0 < E < 1 and thus SUSY is broken by FT and the vacuum energy
is large and negative. From the modular invariance of the scalar potential, the
latter is a periodic function of ImT, such that there is a whole family of local
extrema with the same ReT but shifted ImT = ImT + n with n ∈ Z (see fig. 4.1.a).

Introducing a non-zero FS will switch on the first term in the numerator
in eq. (4.14). In case of gaugino condensates, this term will be proportional
to the condensate times a factor proportional to (β-function)−1 � 1. Let us
parameterize the FS contribution to eq. (4.14) by |ΩS(S + S) − Ω|2 = α|Ω|2 with
α = 0 corresponding to FS = 0. As the size of the dilaton F-term increases,
the shape of the scalar potential changes. Along the ReT direction it becomes
increasingly shallow, as displayed in fig. 4.1.b. For some critical value α ∼ 0.5
the nearby extrema in the ReT direction empty into the SDP. Moreover, the SDP
undergo a transition; T0 = 1 becomes a minimum in the ReT direction and
a maximum in ImT, and T0 = eiπ/6 is now a local minimum. Thus, a non-
perturbative superpotential for the dilaton forces the T-moduli to be stabilized
at one of their SDP. In case of gaugino condensation one typically has α � 1,
hence the first term in eq. (4.14) will be energetically favored and provides a
large and positive vacuum energy.

4.3 Stabilization of the dilaton

Let us assume that the T-modulus is fixed at one of its SDP and focus on the
stabilization of the dilaton S. In this case the scalar potential reduces to

V = eG
[
K−1

SS
GS GS − 3

]
. (4.16)

4.3.1 No-go with a single condensate

To generate a superpotential for the dilaton we consider gaugino condensation
in a hidden sector involving a pure SU(N) gauge theory. For a single condensate
the superpotential is given by

Ω(S) = A e−a S, (4.17)

with a = 8π2/N � 1 and A = O(1). To analyze whether such a superpotential
can lead to stable minima we first impose the stationary point condition VS = 0.
This relates the derivatives of G as

0 = GS

[
K−1

SS
|GS|2 +

(
K−1

SS

)
S

GS − 1
]
, (4.18)

=

(
1

S + S
+ a

) [
1 + 2

(
1 + a

(
S + S

))
−

∣∣∣∣1 + a
(
S + S

)∣∣∣∣
2]

(4.19)

Obviously, two sorts of extrema come into consideration: supersymmetric with
GS = 0 and non-supersymmetric corresponding to GS , 0. The condition for a
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supersymmetric extremum leads to

ReS0 = − 1
2a

< 0 . (4.20)

From the phenomenological point of view, eq. (4.20) does not correspond to a
reasonable solution. This can be seen from the fact that the VEV of the dilaton
determines the gauge coupling constant via g−2

a = Re fa = ReS0 and consequently
eq. (4.20) implies imaginary gauge coupling.

On the other hand, non-supersymmetric extrema (vanishing of the square
brackets in eq. (4.19)) appear at

ReS0 = ± 1

a
√

2
, (4.21)

of which only positive solutions are of interest to us. To analyze stability of
the non-supersymmetric extremum we can use the general result in section 3.1.
Plugging eq. (4.21) into eq. (3.5) yields

VSS = −
(
2 +
√

2
)

a3A2e−
√

2 , (4.22)

resulting in at least one negative or zero eigenvalue of the Hessian. This shows
that the non-supersymmetric solution does not correspond to a minimum. This is
schematically shown in fig. 4.2.a. Apart from that, ReS0 = 1/a

√
2� 1 corresponds

to strong (universal) gauge coupling, thus invalidating the perturbative SUGRA
approach. Finally, as ReS → +∞ the dilaton potential eq. (4.16) exponentially
approaches zero.

Therefore, given a single gaugino condensate eq. (4.17) and a tree-level Kähler
potential eq. (4.10), the dilaton either enters in a strong coupling regime or runs
away to infinity (decoupling limit) resulting in a free theory. In order to allow
for a formation of stable minimum additional DOF are necessary.

4.3.2 Racetracks

In a more general situation a hidden sector gauge group is expected to be a
product of simple groups

G =

n∏

a=1

Ga ⊗U(1)m . (4.23)

Some of the Ga will be asymptotically free and can therefore form gaugino
condensates. In absence of (light) charged matter it is natural to assume that
the corresponding superpotential will be a sum of various non-perturbatively
generated superpotentials. For the simplest case of two condensates in the
hidden sector the superpotential takes the form

Ω(S) = A1 e−a1 k1 S + A2 e−a2 k2 S, (4.24)
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Fig. 4.2 :: Dilaton scalar potential from gaugino condensation. One
condensate leads to a run-away potential displayed in panel (a). Ob-
serve that the potential energy is positive and very large. Two (or
more) condensates can lead to a local minimum shown in panel (b).
Here we have assumed a real dilaton field and T to be fixed at one of
the SDP.

with ai = 8π2/Ni for SU(Ni) gauge groups, Ai are assumed real and ki represent dif-
fering affine levels for the gauge groups. Imposing the stationary point condition
VS = 0, a solution with a positive definite Hessian is obtained for [147]

ReS0 ' 1
a2 k2 − a1 k1

log
(
−A2 k2 a2

A1 k1 a1

)
, (4.25)

where the VEV of ImS0 is always such that the coefficients Ai at the minimum
have opposite signs. Superpotentials of the form eq. (4.24) are called racetracks
[148,149], since one has to balance two exponential functions against each other
in a delicate way in order to provide the formation of a minimum for the dilaton.

As an illustrative (toy) example consider a hidden sector comprisingG1 = SU(7)
and G2 = SU(8) with k1 = k2 = 1, A1 = 1.03 and A2 = −1. The corresponding
scalar potential, fig. 4.2.b, develops non-trivial extrema. The asymptotic behav-
ior for ReS → ∞ as well as the unbounded-from-below direction for ReS → 0
are still present. The major achievement over the single condensate is the ap-
pearance of a minimum which is separated by a maximum from the run-away
minimum at +∞.

Without further ingredients, however, the minima are phenomenologically
unattractive. For reasonable choices of Ga and Ai the dilaton is stabilized at
ReS� 1, suggesting a strong coupling regime. Thus, large hidden sector gauge
groups (often beyond the limits of the weakly coupled heterotic strings) would be
necessary to achieveReS = O(1). Another severe problem is that the minima have
a large negative vacuum energy.4 As stated by the no-go theorem of section 3.1

4Even though racetrack models in presence of matter fields can stabilize the dilaton at acceptable
valuesReS = g−2

GUT ' 2, the resulting minima are plagued by the negative vacuum energy [147].
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this is a common difficulty in models with a tree-level Kähler potential. For this
reason we will consider corrections to the Kähler potential in the next section.

4.3.3 Kähler stabilization

To lift the AdS vacua while retaining the classical Kähler potential eq. (4.10) one
would have to include further modifications which could have back-reactions
on the dynamics of moduli stabilization.

An alternative approach5 is to consider quantum corrections to the tree-level
Kähler potential eq. (4.10). Indeed, this mechanism has been extensively studied
in the literature [150–153] under the name of Kähler stabilization.

In principle the Kähler potential can receive perturbative as well as non-
perturbative (S-dependent) corrections. Since in the known examples of orb-
ifold compactifications perturbative corrections to the dilaton Kähler potential
turn out to be very small [150], one is led to explore the non-perturbative ones.
According to the investigation in [154], the dilaton Kähler potential can expe-
rience stringy non-perturbative effects which may be sizable, even in the weak
coupling regime.

The form of such non-perturbative Kähler potentials has been argued to be
[150,154]

KTREE+NP = log


1

S + S
+ d

(
S + S

2

)p/2

e−b
√

S+S
2

 . (4.26)

The first term represents the tree-level contribution and d, p, b > 0 are real num-
bers parameterizing the non-perturbative correction. Eq. (4.26) does not change
the transformation properties of the Kähler potential under SL(2,Z) due to the
invariance of S under these transformations. Observe that in the decoupling
limit ReS → ∞ eq. (4.26) yields the tree-level form whereas for ReS = O(1) the
non-perturbative part can indeed be large in magnitude.

Consider now the run-away situation in the single condensate case of section
4.3.1. The presence of the additional term in the Kähler potential will enable
the Kähler metric to have zeros for some values of the parameters d, p, b as
illustrated in fig. 4.3.a. A vanishing Kähler metric results in the appearance of
singularities in the scalar potential eq. (4.16) as it depends on the inverse Kähler
metric. Requiring a positive kinetic term for the dilaton, KSS > 0 at ReS ∼ 2,
will restrict the values of the parameters d, p, b. The analysis in [153] shows that
physically meaningful choices correspond to p ∼ b = O(1). With d > p, b one can
arrange for a singularity in K−1

SS
and reduce this singularity to a maximum by

fine-tuning d. Then, as evident from fig. 4.3.b, the potential will have a minimum
very close to the barrier. However, for all reasonable values of the parameters
d, p, b the vacuum energy turns out to be positive and large in magnitude [153].

5Yet another possibility is the inclusion of fluxes [45,46].
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Fig. 4.3 :: Panel (a) shows the Kähler metric for different values of the
parameter d. By fine-tuning d one can adjust the minimum very close
to zero. This results in a barrier in the scalar potential displayed in
panel (b). The red (dashed) curve represents negative kinetic terms.

Although non-perturbative corrections to the Kähler potential are capable in
stabilizing the dilaton at ReS ∼ 2 in the presence of a single condensate, dS
vacua with nearly vanishing CC cannot be achieved. It is interesting to note
that in this scenario one can realize a phenomenologically acceptable gravitino
mass m3/2 = O(TeV) while at the same time keeping the dilaton very heavy. This
is because the mass of the dilaton mS = VSS K−1

SS
is proportional to the inverse

Kähler metric which induces an enhancement in the mass of several orders
of magnitude. In the example shown in fig. 4.3.b we have m3/2 ≈ 2 TeV and
mS ≈ 5 × 107 TeV.

Stabilization of the dilaton in this framework crucially depends on the size
of the non-perturbative correction. Fig. 4.3.b shows the sensitivity of the barrier
on the parameter d. If it is too small the barrier will disappear resulting in a
run-away potential for the dilaton. In the multi-condensate case the situation
gets not improved. The characteristic racetrack AdS minimum would still be
present at ReS� 1.

4.4 F-downlifting

In the previous sections we saw that it is quite difficult to simultaneously stabilize
the dilaton at an acceptable VEV and to assure broken SUSY in a dS space with
a nearly vanishing CC. On top of that one has to ensure a reasonable gravitino
mass. In analogy to the type IIB case studied in section 3.3 we would like to
investigate the impact of hidden sector matter fields in the presence of a single
gaugino condensate and a tree-level Kähler potential.
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4.4.1 Introducing matter fields

Consider a low energy effective 4DN = 1 SUGRA theory originating from orbifold
compactifications of weakly coupled (fluxless) heterotic string theory, involving
the dilaton S and a universal Kähler modulus T.6 The new ingredient we want
to introduce is an additional hidden sector containing a (single) matter field φ.
The corresponding tree-level Kähler potential for the STφ system is given by

K = − log
(
S + S

)
− 3 log

(
T + T

)
+ φφ

(
T + T

)−nφ
, (4.27)

where nφ denotes the modular weight of φ. Demanding modular invariance
of the scalar potential requires the superpotential to transform with modular
weight −3 (cf. eq. (4.5)). Thus the field dependence in the superpotential must
generically be of the form

W(S,T, φ) =
Ω(S, η2nφ(T)φ)

η6(T)
, (4.28)

Note that the η-function presents the only possible T-dependence consistent with
modular invariance. In this work we will assume that φ has modular weight
zero. This will forbid possible couplings between T andφ in the Kähler potential
providing a diagonal Kähler metric.

The scalar potential induced by eqs. (4.27) and (4.28) is

V = eG
[
K−1

SS
GS GS + K−1

TT
GT GT + Gφ Gφ − 3

]

=
eφφ

(
S + S

) (
T + T

)3 ∣∣∣η(T)
∣∣∣12

[ ∣∣∣γS
∣∣∣2 +

∣∣∣γφ
∣∣∣2 − 3δ |Ω|2

]
, (4.29)

where we have introduced

γS = ΩS

(
S + S

)
−Ω, (4.30)

γφ = Ωφ + φΩ, (4.31)

δ = 1 −
(
T + T

)2 ∣∣∣E(T,T)
∣∣∣2 , (4.32)

such that

FS = eG/2 S + S

Ω
γS, (4.33)

Fφ = eG/2 1

Ω
γφ, (4.34)

∣∣∣FT
∣∣∣2 = eG

(
T + T

)2
(1 − δ) , (4.35)

6In orbifold compactifications the CSM can be easily fixed through the symmetries of the orbifold.
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with E(T,T) being the modified Eisenstein function defined in eq. (4.15). The
quantities γS and γφ measure the contribution from the dilaton and the matter
field to SUSY breaking and δ does the same for the T modulus. Observe that due
to nφ = 0 the F-terms do not mix.

As in section 4.3.3 we can deduce two general features of the potential from
its modular invariance. First, in the decompactification limit ReT → ∞ (and
its dual ReT → 0) the product (T + T)3|η(T)|12 vanishes exponentially, hence the
scalar potential diverges at those limits. Second, since GT vanishes at the SDP,
they always correspond to extrema of the potential where the T modulus does
not break SUSY, FT = 0. From the phenomenological point of view this presents
an interesting situation since the modulus mediated soft breaking terms might
encompass (additional) flavor violation [86,87]. Thus it is encouraging to study
this particular case and analyze whether and under what circumstances the SDP
do correspond to local minima of the scalar potential.

4.4.2 A matter field and a condensate

As far as the S and φ dependence of the superpotential is concerned we would
like to consider the interaction of a single condensate with one matter field. We
will assume an additive superpotential of the form

Ω(S, φ) = ω(S) + τ(φ) , (4.36)

= A e−a S + τ(φ) , (4.37)

where a = 8π2/N for a pure SU(N) gauge group. We leave the form of the matter
superpotential τ(φ) generic.

The system under consideration consists of three subsectors. In the S-subsector
we have an unstabilized dilaton with a runaway potential. In the T-subsector the
SDP, although corresponding to local extrema, are not necessarily minima of the
potential. Given this setup we would like to analyze the role of theφ-subsector in
the total STφ-system. In particular we would like to know whether the interplay
between S, T and φ can provide local minima of the potential at a reasonable
value of S and with SUSY broken in a nearly Minkowski space.

Let us begin by imposing the stationary point conditions

VS = − V

S + S
+
eK

|η|12

[
ΩS γ

S + ΩSS

(
S + S

)
γS

+ φΩS γ
φ − 3 δΩS Ω

]
!
= 0 , (4.38)

Vφ = φV +
eK

|η|12

[
−Ωφ γ

S + Ωγφ

+
(
Ωφφ + φΩφ

)
γφ − 3 δΩφ Ω

]
!
= 0 , (4.39)
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VT = −3EV + eG
[
6
(
T + T

)
|E|2

+ 3
(
T + T

)2 ET E + 3
(
T + T

)2 EET

]
!
= 0 , (4.40)

where as usual we use the subscripts on V and Ω to denote differentiation with
respect to the fields. In our analysis we are mainly interested in the local behavior
of the scalar potential. Without loss of generality, assume that eqs. (4.38) – (4.40)
are satisfied at

S0 = O(1) , φ0 ≤ O(1) , T0 =
{
1, eiπ/6

}
. (4.41)

To analyze stability of the stationary point we have to compute the eigenvalues
of the Hessian. The corresponding second derivatives of the potential evaluated
at eq. (4.41) are given by

VSS =
eK0

|η0|12

[ (
ΩSSS

(
S0 + S0

)
+ ΩSS

)
γS

+
(
2ΩS

(
S0 + S0

)
− 3Ω0

)
ΩSS + φ0 ΩSS γ

φ

]
, (4.42)

VSS =
eK0

|η0|12

[ ∣∣∣∣ΩSS

(
S0 + S0

)∣∣∣∣
2

+
(∣∣∣φ0

∣∣∣2 − 2
)
|ΩS|2 + ΩSS γ

S + ΩSS γ
S
]
, (4.43)

VSφ =
φ0 V0

S0 + S0
+

eK0

|η0|12

[
φ0 ΩS Ω0 −ΩS Ωφ

]
, (4.44)

VSφ =
φ0 V0

S0 + S0
+

eK0

|η0|12

[
−ΩSS

(
S0 + S0

)
Ωφ

+ ΩS

(
γφ + φ0 Ωφφ +

∣∣∣φ0
∣∣∣2 Ωφ − 3Ωφ

) ]
, (4.45)

Vφφ = −φ2
0 V0 +

eK0

|η0|12

[
−Ωφφ γ

S + 2 Ω0 φ0 Ωφ

+
(
Ωφφφ + φ0 Ωφφ

)
γφ −Ω0 Ωφφ

]
, (4.46)

Vφφ =
(
1 −

∣∣∣φ0
∣∣∣
)2

V0 +
eK0

|η0|12

[ ∣∣∣Ωφφ + φ0 Ωφ

∣∣∣2 + Ω0 φ0 Ωφ

+ Ω0 φ0 Ωφ + |Ω0|2
]
, (4.47)

VTT = −3ETV0 +
eK0

|η0|12

6λ |Ω0|2(
T0 + T0

)2 , (4.48)
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VTT =
3 V0(

T0 + T0

)2 +
eK0

|η0|12

3
(
1 + |λ|2

)
|Ω0|2

(
T0 + T0

)2 , (4.49)

where the subscript 0 denotes the VEV of a quantity and

λ =
3
2
− 2(T0 + T0)2

η0

d2η

dT2 . (4.50)

Note that VTS = VTφ = VTS = VTφ = 0 identically.

Depending on the relation between γS and γφ one can have different scenarii
of SUSY breaking. From the dilaton stationary point conditions eq. (4.38) we
obtain

(
1 + eG0V0

)
GS + 2

(
S0 + S0

)
|GS|2 +

(
S0 + S0

)2
GSSGS = −GSφGφ , (4.51)

at the stationary point. If Gφ = 0, GS = 0 is required by stationarity. This cor-
responds to a purely supersymmetric configuration. Consider now the dilaton
domination scenario where |Gφ| � |GS|. In this limit eq. (4.51) requires an un-
naturally large GSφ. This requirement is difficult to achieve as one usually has
|GSφ| = O(1). In the mixed dilaton-matter case with |GS| ∼ |Gφ|, eq. (4.51) again
requires an unnaturally large GSφ as typically |GSS| � 1 in models with gaugino
condensation. On the other hand, in the matter domination case with |GS| � |Gφ|
eq. (4.51) is easily satisfied due to large GSS. Thus, given our particular setup
eqs. (4.27), (4.28) and (4.36), matter-dominated SUSY breaking scenario seems to
be particularly suited for phenomenological considerations.

4.4.3 Adjusting the vacuum energy

In the light of a vanishing CC, eq. (4.29) yields

K−1
SS
|GS|2 +

∣∣∣Gφ

∣∣∣2 − 3 = 0 . (4.52)

in the stationary point eq. (4.41). For matter dominated SUSY breaking this im-
plies |Gφ| = O(1) since |GS| � |Gφ|. Hence one can parameterize

∣∣∣Gφ

∣∣∣2 = 3 + ε , (4.53)

with ε � 1 yielding e−G0 V0 ∼ ε. By fine-tuning the parameters of the matter
superpotential τ(φ) the vacuum energy can be adjusted arbitrarily small and
positive without affecting other aspects of the system.

4.4.4 Matter dominated SUSY breaking

For matter-dominated SUSY breaking in a Minkowski vacuum, we can already
deduce some features of the superpotentials realizing this situation. With the
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requirements |GS| � 1 and Gφ = O(1) or equivalently |γS| � |Ω0| and |γφ| ∼ |Ω0|,
eq. (4.30) immediately yields |ΩS| = |ωS| ∼ |Ω0| and, since ω contains a gaugino
condensate,

|ΩSS| = |ωSS| = a2 |ω| ∼ a |Ω0| � |Ω0| . (4.54)

From eq. (4.31) we obtain
∣∣∣Ωφ

∣∣∣ =
∣∣∣τφ

∣∣∣ ∼ |Ω0| . (4.55)

Under these circumstances, |VSS| � |Vφφ|, |VSφ| > |VSS|. Higher derivatives of
the superpotential with respect to φ remain undetermined at this stage. To
obtain a particularly transparent expression for the Hessian let us choose (yet
unconstrained) Ωφφφ such that the matrix element Vφφ is small. Then

∂2V
∂xi∂x j

' eK0

|η0|12



|Γ|2 0 0 0 Γθ 0
0 |Γ|2 0 0 0 Γθ
0 0 ∆ Ξ ∆ Υ 0 0
0 0 ∆ Υ ∆ Ξ 0 0

Γθ 0 0 0 ∆ 0
0 Γθ 0 0 0 ∆



, (4.56)

with

Γ = ΩSS

(
S0 + S0

)
, (4.57)

θ = −Ωφ , (4.58)

∆ = |Ω0| , (4.59)

Υ =
6

(
T0 + T0

)2 λ , (4.60)

Ξ =
3

(
T0 + T0

)2

(
1 + |λ|2

)
, (4.61)

where |Γ| � |θ|,∆. For convenience, the indices of the Hessian are defined as
(x1, x2, x3, x4, x5, x6) = (S, S,T,T, φ, φ). The eigenvalues of eq. (4.56) are

1
2

(
∆ + |Γ|2 +

√
|Γ|4 + 4 |Γ|2 |θ|2 − 2∆ |Γ|2 + ∆2

)
' ∆

2
+ |Γ|2 , (4.62)

1
2

(
∆ + |Γ|2 −

√
|Γ|4 + 4 |Γ|2 |θ|2 − 2∆ |Γ|2 + ∆2

)
' ∆

2
, (4.63)

(Ξ − |Υ|) ∆ , (4.64)
(Ξ + |Υ|) ∆ . (4.65)

Note that the first two eigenvalues are degenerate. All eigenvalues are positive
provided Ξ > |Υ|. This poses a constraint on the T-subsector. In particular it
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implies VTT > |VTT| at the minimum. A numerical inspection reveals that at the
SDP (which we assume to be the minima)

Ξ − |Υ|
∣∣∣∣∣
T0 =1

' 0.14 , (4.66)

Ξ − |Υ|
∣∣∣∣∣
T0 =eiπ/6

' 0.77 . (4.67)

Thus indeed the stationary point eq. (4.41) is a minimum!
Moreover, the spectrum consists of six states. Two of them are heavy with

masses of order |Γ| ∼ |WSS| and correspond to the dilaton. The remaining four
states are light and have masses of order

√
∆ ∼ |Ω0|. They correspond to the T

modulus and the matter field φ.
We note that the SDP are not the only minima in the T-direction. There also

exist nearby minima with FT , 0.
In our analysis we have assumed an additive superpotential eq. (4.36). It is also

possible to construct models with more general superpotentials allowing for a
mixing between S and φ along the lines of [57]. In a very recent publication [155]
the case with non-zero modular weights has been studied. It was found that
the requirement of T being stabilized at one of the SDP significantly restricts the
possible values for the modular weights nφ.

4.5 The pattern of SUSY breaking in F-downlifting

Let us examine the structure of the SUSY breaking parameters appearing in the
matter domination case. Since we have stabilized T at one of its SDP, the modulus
subsector is not involved in SUSY breaking, FT = 0. To estimate the size of the
dilaton auxiliary field, we recall that for a Minkowski vacuum the stationary
point conditions eqs. (4.38) – (4.40) yields

ΩSS

(
S + S

)
γS + ΩS γ

S = 3 ΩS Ω0 − φ0 ΩS γ
φ, (4.68)

where ΩSS ∼ a Ω0 � Ω0 and the right-hand side is O(Ω0). Plugging this into
eq. (4.33) gives

FS ∼ m3/2
Ω

ΩSS
∼ m3/2

a
. (4.69)

Therefore, the SUSY breaking contribution from the dilaton is suppressed. For
the matter field we have |γφ| ∼ |Ω0|, hence eq. (4.34) straightforwardly yields

Fφ ∼ m3/2 , (4.70)

implying that φ is the dominant source of SUSY breaking, as expected for matter
domination.
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Next we would like to estimate the masses of the fields involved in the effective
SUGRA. First of all, the mass of the gravitino is given by

m3/2 = eG0/2 = eK0 |W0| ∼ |Ω0| ∼ a |ω0| , (4.71)

where we have used eK0 |η0|−6 = O(1). Hence it is related to gaugino condensa-
tion.

The mass of the dilaton is given by

m2
S =

VSS

KSS
∼

∣∣∣∣ΩSS

(
S + S

)∣∣∣∣
2
∼ (aReS0)2 |Ω0|2 ∼ (aReS0)2 m2

3/2 , (4.72)

indicating that the dilaton is heavy compared to m3/2: its mass is enhanced by
the same factor which suppresses FS. For the matter field φ we obtain

m2
φ = Vφφ ∼ |Ω0|2 ∼ m2

3/2 , (4.73)

verifying that the matter field is indeed a light DOF. This is also consistent with
the fact that its F-term is not suppressed. Finally, for the T modulus we find

m2
T =

VTT

KTT
∼ |Ω0|2 ∼ m2

3/2 , (4.74)

thus T remains light.

4.5.1 The little hierarchy

If we compare the results obtained in the context of (fluxless) heterotic orbifold
models to the type IIB case we, in fact, end up with very similar conclusions.
There is, however one significant difference between these two frameworks. In
the type IIB case the starting point was a supersymmetric theory in an AdS
vacuum with all moduli fixed. The matter sector was then responsible for
breaking SUSY and uplifting the vacuum energy to a desired value. In the
(fluxless) heterotic setup we started with an unstabilized (run-away) dilaton. The
superpotential interaction involving matter fields (together with the requirement
of modular invariance) provides the stabilization of the dilaton and the Kähler
modulus. We would like to emphasize that the stabilization of the dilaton at
the phenomenologically favored value ReS ∼ 2 is possible with just one gaugino
condensate and T can be stabilized at the SDP. Moreover, the matter sector also
indicates the breakdown of SUSY.

Recall from section 4.3.1 that in the absence of the matter sector the vacuum
energy is large and positive. The impact of the matter sector is such that it
changes the shape of the scalar potential as to form local minima and “downlifts”
the vacuum energy to a small positive or zero value. All this results from the
large magnitude of the F-term of the hidden sector matter field. For this reason
we will refer to this procedure as F-downlifting [58].
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Fig. 4.4 :: Scalar potential for the Polonyi superpotential eq. (4.77).

c µ2 φ0 FS Fφ m3/2 mS mφ/mT

5×10−16 2×10−15 0.73 2×10−16 3× 10−15 5 TeV 365 TeV 8 TeV

Tab. 4.1 :: Sample spectrum for a hidden SU(4) and A = 3.

The hierarchical structure among the masses and the F-terms has its origin in
the appearance of the factor

aReS0 ∼ log
(A
Ω

)
∼ log

(
MP

m3/2

)
, (4.75)

known as the little hierarchy [47, 50]. It suppresses the dilaton contribution to
the soft breaking terms and enhances its mass

mS ∼ (aReT0) m3/2 ∼ (aReT0) mT ∼ (aReT0) mφ . (4.76)

4.5.2 Another example

As a concrete realization of the downlifting procedure consider a Polonyi-type
superpotential [9,126]

W = c + µ2φ − A e−a S, (4.77)

where c and µ2 are real constants and we consider a SU(4) hidden sector gauge
group. For simplicity we treat S and φ as real fields. Demanding the condition
V = ∂SV = ∂φV = ∂TV = 0 at S0 = S0 = 2, T0 = 1 will provide a vacuum
configuration with vanishing energy and all moduli fixed in a local minimum
as illustrated in fig. 4.4. The values of parameters of the Polonyi subsector and
the representative quantities in the vacuum are summarized in tab. 4.1. From
the shape of the scalar potential fig. 4.4.a we see that it is much steeper in the S-
direction than in the T-direction (or in theφ-direction) indicating that the dilaton
is heavier that the Kähler modulus.
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4.5.3 Soft breaking terms

In the scheme of F-downlifting in the framework of heterotic string theory, the
situation is (very) similar to the F-uplifting in the type IIB context. The sources
of the soft breaking terms are given by

FS ∼ m3/2

a
, (4.78)

FT = 0 , (4.79)

Fφ ∼ m3/2 , (4.80)

FC

C0
∼ m3/2 , (4.81)

in case if the Kähler modulus is stabilized at the SDP. We recall from the above
discussion that the downlifting sector does not necessary take a sequestered
form. Therefore , in addition to the conformal anomaly mediation, it can induce
contributions to the soft parameters coming from Kähler anomalies and string
threshold corrections. Such contributions affect the predictability of the scheme
and model-independent statements will not be possible [92]. As discussed
in section 3.4.4 one can suppress such dangerous contributions by assigning
discrete symmetries to the downlifting sector. In models realizing φ0 � 1 such
contributions are subleading, too.

Since the T modulus does not communicate the breakdown of SUSY we can
neglect it and formulate an “effective” theory described by

fa = S , (4.82)

K = − log
(
S + S

)
+ φφ + QiQi Zi , (4.83)

with the visible Kähler metric

Zi = 1 + ξφφ , (4.84)

where Qi are visible fields and ξi measures the coupling between visible and
hidden matter in the Kähler potential. As usual we assume MSSM matter content
and require g−2

GUT ∼ 2 at the GUT scale. Using the formulae of appendix A.4 the
soft terms just below the GUT scale are

Ma =
FS

S0 + S0
+

ba g2
GUT

4
1

4π2
FC

C0
, (4.85)

Ai jk = − FS

S0 + S0
+
γi + γ j + γk

4
1

4π2
FC

C0
, (4.86)

m2
i = ξi

∣∣∣FS
∣∣∣2

(
S0 + S0

)2 −
γ̇i

42

∣∣∣∣∣∣
1

4π2
FC

C0

∣∣∣∣∣∣
2

+
FS∂Sγi

2
1

4π2
FC

C0
+ (1 − 3ξi) m2

3/2 , (4.87)
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where ba are the β-function coefficients and γ̇i describes the RG running of the
anomalous dimensions γi.

The soft terms look very similar to the ones obtained in the F-uplifting sce-
nario eqs. (3.72) – (3.74). Since the dilaton contribution is suppressed by the little
hierarchy, anomaly mediation becomes competitive, leading to a mixed dilaton-
anomaly mediation. In case of the gaugino masses we have a universal contri-
bution from the dilaton and a non-universal one from the conformal anomaly in
terms of the MSSM 1-loop β-function coefficients. At 1-loop the gaugino masses
evolve with the same β-functions, hence at an intermediate scale anomaly me-
diation cancels the RG evolution again leading to a mirage unification of the
gaugino masses at MMIR given by eq. (2.58).

The form of the A-terms and the scalar squared masses is similar to eqs. (3.73) –
(3.74), with the difference that the modular weights are now absent. There is,
however, another subtle difference between the results in the type IIB and the
heterotic case: in the heterotic case the anomaly mediated contributions to the
A-terms and scalar squared masses appear enhanced compared to the type IIB
situation, where the modulus mediated part contains a factor of 3 originating
from −3 log(T +T) as compared to − log(S+S). As we shall see in section 5.5, this
will result in a slightly different low energy phenomenology between F-uplifting
and F-downlifting. We can summarize the pattern of the scalar squared masses
as follows.

Tachyons :: Anomaly mediated contributions to the scalar squared masses en-
coded in the second and the third term in eq. (4.87) induce tachyonic
squarks and sleptons [47, 51, 52, 80]. Since the tree-level dilaton contri-
bution is suppressed by a factor of 3 as compared to eq. (3.74), we expect
a larger tachyonic region here. Thus in the heterotic framework models
with a too small FS are disfavored. However, since the matter/downlifting
contribution is not (fully) sequestered, the scalar squared masses are likely
to receive contribution ofO(m2

3/2) from the matter field. Hence, for ξi � 1/3

tachyons do not appear.

Flavor :: In this regard the situation is the same as in the type IIB case. De-
manding flavor-independent couplings ξi = ξ ∀i can avoid additional
flavor violation.

Mass pattern :: Since for φ0 � 1 we neither expect φ-dependent corrections to
the gauge kinetic function nor additional loop contributions beyond that
of conformal anomaly, the soft gaugino masses show a mirage pattern as
illustrated in fig. 2.3.b.

The fate of the scalar masses depends on the parameter ξi. Models with
ξi � 1/3 show a relaxed mirage pattern

Ma � mi ∼ m3/2 , (4.88)
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and those with ξi = O(1) allow for a pure mirage pattern

Ma ∼ mi � m3/2 . (4.89)

Cosmology :: One way to avoid cosmological gravitino and moduli problems
[113] in string derived SUGRA theories, is to make these particles sufficiently
heavy. In the framework of F-downlifting, the little hierarchy enhances the
mass of the dilaton and suppresses the soft masses (at least those of the
gauginos) and thus can serve to alleviate these problems. The T modulus,
however, has a mass comparable to the gravitino and might give rise to the
moduli induced gravitino problem [127, 128]. To mitigate this issue one
has to rely on suitable extensions of the downlifting scheme which goes
beyond the scope of this work.

Using our parameterization eq. (2.51), (2.52) and (3.77) we can recast the soft
parameters eqs. (4.85) – (4.87) as (cf. appendix A.4)

Ma = M0

[
% + ba g2

GUT

]
, (4.90)

Ai jk = M0

[
− % +

(
γi + γ j + γk

) ]
, (4.91)

m2
i = M2

0

[
ξi %

2 − γ̇i + 2%ΨS
i + η2

i

]
, (4.92)

with ΨS
i denoting the S dependence of the anomalous dimension.

4.6 Application

As one possible application of the F-downlifting mechanism we consider the
issue of moduli stabilization in the context of heterotic orbifold compactifications
with fluxes7 [65,156,157].

The presence of fluxes can generate a perturbative superpotential for the Käh-
ler moduli and the CSM, however not for the dilaton. Thus, a non-perturbatively
generated superpotential for the dilaton is required, for which hidden sector
gaugino condensation [21–26, 76] is well equipped. Moreover, it provides a
dynamical mechanism to explain a hierarchically small scale of the gravitino
mass

m3/2 ∼ Λ3

M2
P

, (4.93)

and F ∼ Λ3/M2
P, where Λ denotes the RG invariant scale (condensation scale) of

a hidden sector gauge group. It requires Λ to be at an intermediate scale if m3/2
is at the (multi) TeV scale.
7This setup goes beyond the “standard” CY compactifications. Modular symmetry eq. (4.1) might

in general be absent in such constructions.
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In the framework of heterotic orbifolds with fluxes, Derendinger, Kounnas,
and Petropoulos (DKP) recently identified an even stronger (quadratic) suppres-
sion of the gravitino mass [158]

m3/2 ∼ Λ6

M5
P

. (4.94)

In a rather natural way Λ could be identified with the GUT scale MGUT or the com-
pactification scale MCOMP (typically assumed to be near the GUT scale), thereby
avoiding an intermediate scale. Thus a single Λ might represent MGUT ∼ MCOMP

as well as the hierarchically small scale m3/2.
While fluxes combined with gaugino condensation are sufficient to stabilize

all moduli in many cases, they fail to do so in the model of DKP. The obtained
solution with the doubly suppressed gravitino mass contains two unstabilized
moduli. They appear as a consequence of a restricted no-scale ansatz and it
remains to be seen whether the doubly suppressed solution survives in the
process of moduli stabilization.

In this section we would like to study an alternative approach realizing the
doubly suppressed solution of DKP. The major difference to the DKP is that we
first attempt to stabilize all moduli and then adjust the vacuum energy adopting
the F-downlifting mechanism.

4.6.1 The model of DKP

The low energy effective SUGRA fromZ2×Z2 orbifold compactifications [159–161]
with fluxes [65, 156, 157] involves the dilaton S, three Kähler moduli T1, T2, T3
and three CSM which we will generically denote by U. The tree-level Kähler
potential is given by [158]

K = − log
(
S + S

)
−

3∑

i=1

log
(
Ti + Ti

)
− 3 log

(
U + U

)
. (4.95)

The particular idiosyncrasy of the DKP model is founded in the special form
of the superpotential which is assumed to be generated by fluxes and gaugino
condensation,

W = 3 Â U + D̂ U3, (4.96)

with

Â =
[
α + α′w(S̃)

]
ξ + D w(S̃) , (4.97)

D̂ =
[
δ + δ′w(S̃)

]
ξ + D w(S̃) , (4.98)

where ξ = T1−T2, w(S̃) = e−S̃ describes the gaugino condensate and S̃ = 8π2S/N
for a hidden SU(N) gauge group. The parameters α, α′, δ, δ′, A, D are flux
coefficients.
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Aiming at a no-scale configuration, DKP make a specific ansatz demanding
SUSY broken in Minkowski space, which implies

〈V〉 = 0 , 〈W〉 , 0 , (4.99)

in the minimum. Then, the stationary point condition ∂ jV = 0 ∀ j splits the
moduli into two categories, with either 〈∂ jW〉 = 0 and 〈F j〉 , 0 or 〈F j〉 = 0.
The index j runs over the moduli. The first category contains the three Kähler
moduli responsible for SUSY breaking. The second category contains the dilaton
and the CSM and is not involved in SUSY breaking. Moreover the stationary point
conditions also requires Reξ = 0 [158].

From the stationarity conditions one obtains two conditions: S̃ = s̃ − iπ/2 and
U = u real. Everything is consistent provided α, δ, A, D are real and α′, δ′ are
imaginary [158]. The no-scale requirement allows one to express ξ and u as
functions of s̃ through

u(s̃) =

√
Â
D̂
, (4.100)

ξ(s̃) = −1
4

Dα + A δ + (3 Dα + A δ) w
(α + α′w) (δ + δ′w)

w . (4.101)

As argued in [158] the dilaton can be stabilized at an acceptable VEV provided
that the flux coefficients α, α′, δ, δ′, A, d are large, while their ratios are O(1). If
this requirement is fulfilled, we can define a variable ρ as

ρ = i
Dα − A δ

Dαw
, (4.102)

which can be consistently taken to be O(1) since w is small and Dα/A δ = O(1).
This of course requires a certain amount of fine-tuning for Dα − A δ� 1.

In the limit α′ = iα, δ′ = −i δ, the mass of the gravitino is given by [158]

e−K/2 m3/2 = |W|
≈

∣∣∣∣∣2D e−2 s̃ +
A δ −Dα

α
e−s̃

∣∣∣∣∣ (4.103)

≈
∣∣∣∣∣∣4D

(
−3α
δ

)3/2 s̃
2 s̃ + 1

w2

∣∣∣∣∣∣ ,

where the third line in eq. (4.103) is obtained under the above mentioned fine-
tuning, stating that the gravitino mass scales as w2. As studied in [59] the DKP
fine-tuning is typically of order 10−3 and can be considered as rather mild.8

Eq. (4.103) written in the form shows that the dilaton is stabilized through the
presence of the condensate. Strictly speaking, this is not a racetrack mechanism

8It is worthwhile to recall that this fine-tuning is much less severe than that of the KKLT model
which is of order 10−16 [49].
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proper [148,149], because we only have one condensate. However, the conden-
sate enters into the superpotential eq. (4.96) in a rather complex way, and several
terms are added together. It gives a result which effectively looks like a racetrack
model.

Observe that the left-hand side of eq. (4.103) contains two unstabilized moduli,
namely T1 + T2 and T3. To stabilize these moduli one can assume T-dependent
corrections to the Kähler potential [73, 162], demanding the flatness condition
only locally. However, it is not easy to find a theoretical justification for this kind
of corrections in string theory.

A common difficulty of the no-scale models are vanishing tree-level soft terms,
since FS = 0 in the minimum. Thus, loop-suppressed anomaly mediation will
dominate the soft terms [51,52,80]. As already discussed above, pure anomaly
mediation predicts tachyonic sleptons. To obtain a realistic model one can in-
clude radiative corrections to the gauge kinetic function [140, 163–165] and the
Kähler potential [164, 166, 167]. Generically these corrections induce a mixing
between S and T and can therefore lead to FS , 0, thus reintroducing the tree-
level contribution to the soft terms. The mixing between S and T also induces
a shift in the location of the minimum. Such a shift will generically lead to a
non-vanishing vacuum energy, spoiling the DKP no-scale configuration eq. (4.99).
Thus the vacuum energy has to be tuned a second time. Moreover, the doubly
suppressed solution might not survive this procedure. A more appealing ap-
proach would be to first stabilize all moduli and then take care of (the tuning of)
the vacuum energy once and for all [59].

4.6.2 A benchmark model

In this section we would like to analyze whether the observed double sup-
pression of the gaugino condensate can be realized in a more general setup, or
whether it is tied to the specific ansatz adopted by DKP.

Basic ingredients

Let up recapitulate the basic ingredients needed for the double suppression. The
obvious requirement is the absence of a perturbative superpotential for the dila-
ton. This is automatically fulfilled in the heterotic string theory as the dilaton
appears only through the condensate. We also need some fine-tuning of param-
eters of the superpotential to suppress unwanted/disturbing contributions. One
should also note that terms with e−S in the superpotential need to be multiplied
by nontrivial functions of the T moduli (a generic result obtained in heterotic
string theory originating in world sheet instantons [168,169]). Finally we need
a superpotential with terms that allow large masses for the T moduli, although
the classical superpotential does not include quadratic terms in T (but only con-
stant and linear terms). This requirement has been studied in detail in [47] and
strongly relies on the existence of the CSM.
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Towards a resolution

Given the guidelines above we want to construct and analyze a simpler frame-
work covering the main features of the DKP model. Thus we consider an effective
low energy SUGRA approximation of a heterotic string theory setup with fluxes,
containing the dilaton S, a universal Kähler modulus T and a universal CSM U.
Due to the presence of fluxes a nontrivial superpotential for the CSM is generated,
resulting in the stabilization of U. Following the discussion in [47], integrating
out the U modulus will provide us with an effective superpotential which could
include terms quadratic (and higher order) in T. We therefore assume the effec-
tive superpotential to be of the form [47,59]

W = A0 e−a S T +A1 T +A2 T2 + · · · +An Tn, (4.104)

whereA0,. . . ,An = O(1) and a� 1 are real constants.
As a next step let us fine-tune the coefficient A1 to be very small such that

the term linear in T becomes negligible. From the equation of motion for the T
modulus FT = 0 we obtain

0 = W ∂TK + ∂TW , (4.105)

= A0

(
−3

2
+ 1

)
e−a S +A2

(
−3

2
+ 2

)
T + · · · +An

(
−3

2
+ n

)
Tn−1, (4.106)

where for simplicity we have assumed real fields S and T. For eq. (4.106) to be
satisfied, the smallness of the condensate requires T to be small. This implies
that T3 and higher powers of T can be safely neglected in eq. (4.104). From the
equation of motion eq. (4.106) one obtains

T =
A0

A2
e−a S. (4.107)

Consequently, we can “integrate out” the T field and end up with the effective
superpotential

WEFF = 2
A2

0

A2
e−2a S. (4.108)

This is exactly the double suppression as obtained in the DKP model. The fact
that the only S dependence of the superpotential is encoded in the gaugino con-
densate can be identified as the crucial requirement for the double suppression.

The mild fine-tuning of DKP (A δ−Dα� 1) has a counterpart in our benchmark
model: the coefficient of a possible term linear in T has to be small, otherwise,
the double suppression would be spoiled.

At this stage, however, the dilaton is not yet stabilized since a single condensate
leads to a run-away scalar potential. The remaining task to perform is to stabilize
the dilaton and assure a reasonable vacuum energy. As we saw in section 4.4
these two operations can be done economically in one step by adopting the
downlifting strategy.
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Downlifting the dilaton

Following the discussion in section 4.4, we consider the impact of hidden sector
matter through the interaction with the effective theory obtained after integrating
out U and T moduli. For concreteness and simplicity we will focus on a Polonyi-
type superpotential [9,126] so that the full superpotential is given by

WPOLONYI = −A e−2 a S + c + µ2φ , (4.109)

where we have chosen 2A2
0/A2 = −A, c andµ are real constants, andφ represents

a hidden sector matter field. The effective Kähler potential is

K = − log
(
S + S

)
+ φφ . (4.110)

As we saw above, systems of this type are capable of changing the shape of
the runaway dilaton potential and lead to formation of stationary points. The
stationary point in the configuration eqs. (4.109) and (4.110), turns out to be a
local minimum. By appropriately choosing the parameters of the Polonyi sector
the CC can be adjusted/fine-tuned to the desired value.

The consequence of the F-downlifting is the appearance of the little hierarchy
[58] originating from the factor

2 aReS0 ∼ log
(

MP

m3/2

)
, (4.111)

which is O(4π2) for a (multi) TeV gravitino mass. In particular is leads to the
suppression of the dilaton contribution to the soft terms

FS ∼ m3/2

2 a
= O

(m3/2

4π2

)
, (4.112)

such that SUSY breaking is dictated by the matter sector, Fφ ∼ m3/2. The scale of
the soft terms is set by the gravitino mass

m3/2 = eK/2 |W| ∼ µ2, (4.113)

implying that µ2 sets the scale of the gravitino (and also the mass of the Polonyi
field). However, from eq. (4.71) we immediately conclude that µ2 ∼ 2 a e−2 a S0 ,
consequently, the gravitino mass originates from gaugino condensation and is
doubly suppressed. In tab. 4.2 we present an explicit realization of the dou-
bly suppressed gravitino mass based on the hidden sector gauge group SU(8),
yielding a phenomenologically viable gravitino mass.

Small gravitino mass with a large Λ

In our benchmark model we have considered a hidden sector group SU(8) as-
suming a pure supersymmetric SU(N) gauge theory as well as the equality of
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c µ2 φ0 FS Fφ m3/2 mT mφ

2× 10−15 6× 10−15 0.73 3× 10−16 7× 10−15 9 TeV 707 TeV 16 TeV

Tab. 4.2 :: Sample spectrum with a multi-TeV gravitino for SU(8).

the gauge coupling constants of hidden and observable sector. This group could
originate certainly from the SO(32) heterotic string theory but not so easily [170]
from the E8 ×E8 theory favored by phenomenological arguments [61,62]. String
threshold corrections, however, might enlarge the hidden sector gauge coupling
compared with the observable sector gauge groups and thus reopen many new
ways for model building. In fact, in heterotic M theory [171,172], a larger cou-
pling in the hidden sector might appear in a natural way [173–175]. Such models
might then explain all scales directly from the string scale, without invoking the
existence of an intermediate scale.



Chapter 5

Phenomenology of
uplifting/downlifting

We analyze in detail the phenomenological properties of the F-uplifting
and the F-downlifting scheme. In particular, we discuss the behavior of
the soft parameters at the GUT and the TeV scale. We consider a number
of phenomenological constraints and find that there are considerable
regions in the parameter space where the low energy spectra satisfy
all of the constraints. Although the schemes of F-uplifting and F-
downlifting have a very similar low energy phenomenology, they also
exhibit some quantitative differences.

5.1 Preliminaries

In chapters 3 and 4 we have seen that under suitable theoretical assumptions the
uplifting/downlifting procedure leads to a scenario where the soft SUSY break-
ing terms are induced by a hybrid mediation scheme and exhibit the so-called
relaxed mirage pattern. Depending on a particular string theory setup the ra-
tio between modulus (dilaton) and anomaly mediation, %, will change, thereby
affecting the pattern of the soft terms. The (geometrical) origin of matter fields
influences the soft parameters via the modular weights ni. In addition, the up-
lifting/downlifting sector provides a contribution to SUSY breaking encoded in
the parameter ξi.

For the study of the low energy phenomenology we will not consider a specific
string theory compactification. Instead, we follow a bottom-up approach. That
is, we consider generic effective SUGRA models (which may originate from certain
string theory setups) and treat %, m3/2, ni andξi as free parameters. To be concrete,
we consider a class of models with negligible VEV of the uplifting/downlifting
field φ0 � 1, as well as zero modular weighs ni = 0.

In our analysis henceforth, we will assume a GUT gauge group in the visible
sector which is broken to the SM gauge group, with at least an MSSM chiral
spectrum. For simplicity, we will present our results for SU(5) broken to the SM
with just the MSSM chiral spectrum. All our results should hold for other GUT
group breaking in the same way as well. Because of a GUT-like spectrum, the
MSSM gauge couplings are unified at 2×1016 GeV [27–30]. Since we are assuming
an MSSM visible sector below the GUT scale, the gauge couplings are subject to
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F-uplifting
(Type IIB framework)

F-downlifting
(Heterotic framework)

Ma = M0

[
% + ba g2

GUT

]
Ma = M0

[
% + ba g2

GUT

]

Ai jk = M0

[
− 3% +

(
γi + γ j + γk

) ]
Ai jk = M0

[
− % +

(
γi + γ j + γk

) ]

m2
i = M2

0

[
3ξi %2 − γ̇i + 2%ΨT

i + η2
i

]
m2

i = M2
0

[
ξi %2 − γ̇i + 2%ΨS

i + η2
i

]

Tab. 5.1 :: MSSM soft breaking parameters at the GUT scale, where
ba are the β-functions, γ̇i denotes the running of the anomalous di-
mension γi. The moduli and dilaton dependence of the anomalous
dimension is encoded in ΨT

i and ΨS
i , respectively. M0 ≡ m3/2/16π2.

the constraint g2
GUT ' 1/2.

In tab. 5.1we summarize the soft SUSY breaking parameters which we obtained
in the scheme of F-downlifting (heterotic framework) and in the scheme of
F-uplifting (type IIB framework) with zero modular weights. More details can
be found in appendix A. We recall that these expressions are understood as
boundary conditions just below the GUT scale. The soft breaking terms at the
TeV scale are obtained via RG evolution.

The parameter space

The soft breaking terms we are dealing with are non-universal at the GUT scale
and are described by %, M0 and ηi. The parameter % (cf. eq. (2.51)) measures the
ratio between modulus (dilaton) and anomaly mediation. In the limit % → 0
we recover pure anomaly mediation, while % � 1 corresponds to pure modu-
lus/dilaton mediation. The scale of the soft terms is set by the gravitino mass
m3/2 through the parameter M0 (cf. eq. (2.52)). The quantities ξi and ηi denote the
contribution from the uplifting/downlifting sector. They are related by eq. (3.77),
hence we use them as synonyms.

There are two more parameters. They are the Higgs mass parameters µ
and Bµ responsible for electroweak symmetry breaking (EWSB). As required
by experiment, the minimum of the Higgs scalar potential should break EW
symmetry down to electromagnetism SU(2)L×U(1)Y → U(1)EM. This breakdown
is initiated through the VEV of the MSSM Higgs doublets Hu = (H+

u , H0
u) and

Hu = (H0
d, H−d ). Moreover it is necessary that only electrically neutral Higgs

field components acquire non-zero VEVs. Without loss of generality one can set
〈H+

u 〉 = 〈H−d 〉 = 0 at the minimum using an SU(2)L gauge transformation. Then,
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at tree-level, the neutral part of the Higgs scalar potential reads [10,11]

V =
1
8

(
g2 + g′2

) (∣∣∣H0
u

∣∣∣2 −
∣∣∣H0

d

∣∣∣2
)2

+
(
|µ|2 + m2

Hu

) ∣∣∣H0
u

∣∣∣2 +
(
|µ|2 + m2

Hd

) ∣∣∣H0
d

∣∣∣2 −
(
BµH0

uH0
d + c.c.

)
, (5.1)

with g and g′ being the SU(2)L and U(1)Y gauge couplings, respectively. From the
minimization of eq. (5.1), the condition for a symmetry breaking stable vacuum
yields two relations [176]

|µ|2 =
m2

Hd
−m2

Hu
tan2 β

tan2 β − 1
, (5.2)

∣∣∣Bµ
∣∣∣ =

tan2 β

1 + tan2 β

(
m2

Hd
+ m2

Hu
+ 2|µ|2

)
, (5.3)

where

tan β =
〈H0

u〉
〈H0

d〉
. (5.4)

Since µ and Bµ are responsible for EWSB, their magnitude is bounded by the
scale of the soft masses, that is O(1 TeV). However, models with m3/2 � mSOFT

usually predict B = O(m3/2) [53,105]. Therefore a suitable mechanism is needed
to obtain the desired values forµ and Bµ. Such mechanisms, however, are highly
model dependent [53,105] and also require a certain degree of fine-tuning. Lack-
ing a compelling model of generating µ and Bµ we will treat them as adjustable
parameters. The requirement of correct EWSB eqs. (5.2) and (5.3) determine the
absolute value of |µ|, whereas its sign remains a free parameter. The B-term can
be traded for tan β. Thus, the parameter space for phenomenological studies is
spanned by

{
%, m3/2, ηi, tan β, signµ

}
. (5.5)

5.2 Aspects of the soft terms at MGUT

The class of (string inspired) SUGRA models that we have investigated in chapter 3
and 4 leads to a very distinct structure of the soft breaking parameters. In this
section we study in detail the soft terms at the GUT scale.

Soft gaugino masses

Of all the soft terms gaugino masses have the simplest structure. Moreover they
are exactly the same both in the type IIB and the heterotic framework. There
is one contribution coming from pure modulus (dilaton) mediation and one
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from pure anomaly mediation. Just below the GUT scale the gaugino masses
approximately read

M1 ≈
(
% + 3.3

)
M0 , M2 ≈

(
% + 0.5

)
M0 , M3 ≈

(
% − 1.5

)
M0 . (5.6)

The non-universality of the gaugino masses arises from the pure anomaly-
mediated part which is proportional to the MSSM β-function coefficients ba. At
the GUT scale the gaugino masses are ordered as M1 > M2 > M3 because M3 is
suppressed by the large negative b3. Depending on the value of %, this negative
contribution might become more or less important. At % ≈ 1.5 it leads to a van-
ishing gluino mass. For increasing % the gaugino masses grow linearly whereas
their ratios change such that for %� 1 they unify.

Soft A-terms

The general structure of the A-terms at the GUT scale is the same in both the type
IIB and the heterotic framework. The A-terms contain a universal contribution
from modulus (dilaton) mediation and a non-universal one from anomaly me-
diation. The non-universality is given by the MSSM γ-functions (see appendix
B). As we mentioned in chapter 4, there is one subtle difference between the soft
terms arising in the type IIB framework and those in the heterotic framework.
The dilaton-mediated contribution in the heterotic framework is smaller by a
factor of 3 compared to the type IIB framework. This is due to the fact that
there is only one dilaton but three (or more) Kähler moduli, resulting in differ-
ent effective Kähler potentials eqs. (3.27) and (4.27). Thus the soft terms in the
heterotic framework are reduced. One typically has |Ai jk| ∼ 3|Ma| in the type IIB
framework and |Ai jk| . |Ma| in the heterotic framework.

Soft scalar squared masses

Also the structure of the soft scalar masses is identical between the type IIB and
the heterotic framework.

Unlike the gaugino masses and the A-terms, scalar squared masses receive
four different contributions. The term quadratic in % is a sort of a mixed
modulus(dilaton)-matter mediation. In general, this contribution is non-universal
as ξi may be flavor dependent. The term proportional to γ̇i corresponds to
pure anomaly mediation and gives rise to tachyonic sleptons. Furthermore,
we have a term linear in % which is due to the mixing between modulus (dila-
ton) and anomaly mediation. It comes from the moduli (dilaton) dependence
of the anomalous dimension γi and provides tachyonic squarks. Last but not
least, ηi describes the contribution from the uplifting/downlifting sector. This
contribution is very special as it arises due to the lack of sequestering of the
uplifting/downlifting sector.

Generically, the uplifting/downlifting sector also affects the structure of the
gaugino masses and the A-terms. These additional contributions will be sup-
pressed provided the VEV of the uplifting/downlifting field is small, φ0 � 1.
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Our attention is devoted to precisely this class of models. Finally, the dilaton
mediated contribution to scalar squared masses in the heterotic framework is
smaller by a factor of 3 compared to the type IIB framework.

SUSY CP Problem

Although the sources of SUSY breaking FT(FS), Fφ and FC are in general complex,
all their phases are dynamically aligned to gaugino mass phases [47,48,53,55].
These phases can be rotated away with suitable PQ and R rotations. Thus one
can always choose a field basis in which the gaugino masses and the A-terms
are real. It also ensures that the % parameter eq. (2.51) is real (and positive).

SUSY flavor problem

This problem appears when the modular weights ni and the couplings ξi are
flavor dependent. In our analysis we simply assume ni = 0. The model is free
from dangerous SUSY flavor violation if ξi are chosen to be flavor independent.
In what follows we use the following notation

ξ(SFERMIONS)
i ≡ ξ or η(SFERMIONS)

i ≡ η , (5.7)

ξ(HIGGS)
i ≡ ξ′ or η(HIGGS)

i ≡ η′ . (5.8)

Tachyons

Due to the contributions from anomaly mediation, tachyons do also appear
in the scheme of F-uplifting/F-downlifting but only in a limited region of the
parameter space eq. (5.5). To get rid of the tachyons a positive contribution to
scalar squared masses is required. Such a positive contribution is provided by
the modulus mediated part and is proportional to %2. For η = η′ = 0 (pure mirage
mediation) the absence of tachyons impose a lower bound on the parameter %.
In the type IIB framework, fig. 5.1.a, tachyons are absent for % > 4. Due to the
reduced dilaton contribution in the heterotic framework, fig. 5.1.b, absence of
tachyons requires here % > 12. Such a large value of % exceeds the realm of
mirage mediation as it corresponds to dilaton dominated mediation. Moreover,
an increasing % also affects gaugino masses and A-terms.

Another possibility to get rid of the tachyons is to consider η, η′ > 0 (or
equivalently ξ, ξ′ < 1/3). This presents an interesting possibility which is unique
for the scheme of F-uplifting/F-downlifting. In particular we can perform a
tachyon scan. That is, for every % and tan β we scan over η and η′ and exclude
those values for which tachyons appear. Our results are presented in figs. 5.1.c
and 5.1.d. The absence of tachyons on the type IIB framework poses a rather
weak constraint as it requires

ηTYPE IIB > 1.7 and η′TYPE IIB > 1.5 , (5.9)
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Fig. 5.1 :: Panel (a) shows soft masses squared of some scalar fields
in the case of uplifting (type IIB framework). In panel (b) same mass
squares are shown for the downlifting case (heterotic framework).
For the complete absence of tachyons, panel (c) shows lower bounds
on η and η′ in case of uplifting and panel (d) does the same for the
downlifting.

whereas in the heterotic framework absence of tachyons becomes more stringent

ηHETEROTIC > 3.5 and η′HETEROTIC > 1.7 . (5.10)

Since gaugino masses and A-terms are independent of ηi they are not affected
by this procedure.

5.3 Constraints on the soft terms at MTeV

In the following two section our intention will be to study the phenomenological
properties of the low energy spectra of models arising in the scheme of F-uplifting
(type IIB framework) and F-downlifting (heterotic framework). To verify the
viability of these models we will impose several phenomenological constraints
of theoretical and experimental nature. This section serves to discuss the most
relevant constraints.
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5.3.1 General remarks

As discussed in the previous section, the soft parameters at the GUT scale tab. 5.1
of the SUGRA models under consideration are described by six free parameters
eq. (5.5). Once tan β and signµ have been chosen we remain with four free
parameters.

The primary parameters here are % and m3/2 as they tell us in which regime
the mediation of the SUSY breakdown occurs and what the characteristic scale
of the soft breaking parameters is. If % is too large the soft terms at the GUT
scale unify and the resulting phenomenology resembles the MSUGRA picture
[106–109]. Since our main interest is to study the phenomenology of mixed
modulus(dilaton)-anomaly mediation we will restrict ourselves to 0 ≤ % ≤ 12.
In order to have a sparticle spectrum in the TeV domain, the gravitino mass
parameter m3/2 eq. (2.52) should not be too large. Following this requirement we
consider the interval 0 < m3/2 ≤ 60 TeV.

As far as the parameters η and η′ eq. (3.77) are concerned their range can be
specified by consistency considerations. The requirement of a positive coupling
between visible and hidden matter in the Kähler metric eqs. (3.71) and (4.84)
gives the upper bound η, η′ ≤ 16π2 ≈ 158. On the other hand, demanding a
tachyon-free setup at the GUT scale poses a lower bound eqs. (5.9) and (5.10) such
that η, η′ & O(1) is required. Still, this is a wide range. To further restrict the
values of η and η′ we need a suitable selection scheme to specify those values
which are favored by phenomenological arguments. In section 5.3.6 we will use
the so-called MSSM hierarchy problem as a guideline to constrain η and η′.

5.3.2 Electroweak symmetry breaking

Minimization of the MSSM Higgs scalar potential eq. (5.1) leads to the (tree-
level) relation eq. (5.2). For moderate values of tan β this relation can be well
approximated by

|µ|2 ' −m2
Hu
−

m2
Z

2
, (5.11)

evaluated at the TeV scale. As the right-hand side is always positive the occur-
rence of EWSB requires a negative m2

Hu
at/near the TeV scale. Since we demand

a tachyon-free setup m2
Hu

is positive at the GUT scale. The value of m2
Hu

at the
TeV scale is obtained via its RG evolution from the GUT scale. The relevant
contribution at 1-loop level is

dm2
Hu

d logµ
' y2

t

(
m2

Hu
+ m2

Q̃(3) + m2
t̃R

+ A2
t

)
, (5.12)

with µ denoting the RG scale. Further details are given in appendix C. The RG
evolution is most sensitive to the gluino mass M3 which induces an increase of
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the squark masses m2
Q̃(3)

L

and m2
t̃R

. Solving the 1-loop RG equations (for tan β = 5)

one obtains

m2
Hu

(MTeV) ≈ −2.3M2
3(MGUT) + 0.6m2

Hu
(MGUT)

− 0.4m2
Q̃(3)(MGUT) − 0.4m2

t̃R
(MGUT) , (5.13)

where we have omitted terms with smaller numerical coefficients. This states
that gluino is the leading force in driving m2

Hu
to negative values at the TeV

scale. As evident from eq. (5.6), in the mirage mediation scenario a cancellation
between modulus (dilaton) and anomaly mediation occurs for small values of %
leading to an ultra-light gluino around % ≈ 1.5. There eq. (5.13) is not sufficient
to make m2

Hu
negative and EWSB will not be possible. Thus the requirement of

correct EWSB sets a lower bound on %. However, one can improve this situation
by making the squarks sufficiently heavy. This can be achieved with a non-zero
η parameter.

5.3.3 Color and charge breaking minima

Generically, supersymmetric models exhibit many flat directions in the field
space. Usually, the SUSY breaking terms lift these directions, but may also
induce global or deep color and charge breaking (CCB) minima [177]. Thus it is
important to verify that such minima do not occur. Some of the dangerous CCB
minima appear when the soft A-terms are sufficiently large. The absence of the
CCB minima requires

A2
t . 3

(
m2

Hu
+ m2

Q̃(3) + m2
t̃R

)
, (5.14)

at the GUT scale. The A-terms boundary conditions, tab. 5.1, imply that this
constraint is usually satisfied in the schemes of F-uplifting and F-downlifting.

Another type of constraints comes from the unbounded-from-below (UFB)
directions in the full scalar potential [177]. The most serious constraint involves
the up-sector Higgs and slepton fields. The absence of the UFB direction requires

m2
Hu

+
∑

i∈ sleptons

m2
i > 0 , (5.15)

at the TeV scale. In the framework of mixed modulus(dilaton)-anomaly me-
diation this constraint is respected in viable regions of the parameter space.
This is mainly due to the reduced gluino mass which results from the negative
anomaly-mediated contribution. Thus, we can summarize that the absence of
CCB minima does not constrain the model significantly.

5.3.4 Neutralino dark matter

In the MSSM the neutral higgsinos H̃0
u, H̃0

d mix with the neutral EW gauginos B̃0,
W̃0 and form four eigenstates called neutralinos χ̃0

i=1,2,3,4. In the gauge eigenstate
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basis (B̃0, W̃0, H̃0
u, H̃0

d) the neutralino mass matrix is given by [10,11]

MN =



M1 0 −mZ cβ sW mZ sβ sW
0 M2 mZ cβ cW −mZ sβ cW

−mZ cβ sW mZ cβ cW 0 −µ
mZ sβ sW −mZ sβ cW −µ 0


, (5.16)

with sβ = sin β, cβ = cos β, sW = sinθW, cW = cosθW, β as in eq. (5.4) and θW is
the weak mixing angle. Eq. (5.16) can be diagonalized by an orthogonal matrix
Z such that the lightest neutralino is given by

χ̃0
1 = Z11 B̃0 +Z12 W̃0 +Z13 H̃0

u +Z14 H̃0
d . (5.17)

Using this decomposition one defines

χ̃0
1 =



bino-like |Z11|2 + |Z12|2 > 0.9 ∧ |Z11| > |Z12| ,
wino-like |Z11|2 + |Z12|2 > 0.9 ∧ |Z11| < |Z12| ,

higgsino-like |Z11|2 + |Z12|2 < 0.1 ,
mixed otherwise.

(5.18)

In models we are going to investigate the lightest neutralino happens to be the
LSP in the most of the parameter space. Under the assumption of R-parity conser-
vation it is stable [10,11]. It can be considered as a good cold DM candidate since
it is a weakly interacting particle. To get a consistent DM abundance one has to
make sure that the neutralinos annihilate efficiently enough. Efficient annihila-
tion mechanisms include light neutralinos and light sfermions, co-annihilations,
resonance enhancement in the Higgs exchanges and annihilation into W boson
pairs. In models under consideration the higgsino mass parameter µ can be rel-
atively small depending on the value of %. This is mainly due to the suppressed
gluino mass. Thus the lightest neutralino can contain a significant higgsino
component which may enhance the annihilation cross section.

In the computation of the DM abundance we will assume that the LSP abun-
dance is thermal. The results predicted in our models are compared with the
value inferred from observations. In particular we use the 3σ limit from the
Wilkinson Microwave Anisotropy Probe (WMAP) collaboration on the neutralino
cold DM abundance [111]

0.087 ≤ Ωχ̃0 h2 ≤ 0.138 . (5.19)

Regions of parameter space violating the upper WMAP bound are treated as
forbidden, those within the bounds as favored and those below the lower bound
as allowed. In the latter case the correct cosmological abundance of DM could be
achieved with additional DM particles (beyond the MSSM) and/or a non-thermal
origin.
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5.3.5 Accelerator constraints

Direct collider searches set lower bounds on the sparticle spectrum and Higgs
masses. We implement these bounds by applying the LEP2 constraints. The
most important and restrictive bounds are due to the lightest Higgs boson mass
mh0 > 114 GeV, the lightest chargino mass mχ̃+

1
> 103.5 GeV and the lightest top

squark mass mt̃1
> 95.7 GeV [178–180]. Regions of parameter space deceeding

one of these bounds are called “below LEP”.
Furthermore, the supersymmetric spectrum is constrained indirectly by the

b → sγ decay. The most important supersymmetric contributions involve
chargino–stop loops as well as charged Higgs–top loops. We impose the 3σ
bound from the B-factories [181,182], 2.33 × 10−4 ≤ BR(b→ sγ) ≤ 4.15 × 10−4.

These constraints set a lower bound on the gravitino mass parameter m3/2.

5.3.6 The MSSM hierarchy problem

The so-called MSSM hierarchy problem [183,184] is caused by Higgs sector of the
MSSM. First of all, at tree-level the mass of the lightest Higgs boson is given
by [185,186]

mh0 < mZ
∣∣∣cos 2β

∣∣∣ , (5.20)

with β as in eq. (5.4). Clearly, this badly violates the current experimental lower
bound mh0 > 114 GeV [187]. There are, however, sizeable radiative corrections
to the tree-level value. The most sizable 1-loop contribution comes from top and
stop loops. In case the gauge eigenstate stop masses mt̃1

and mt̃2
are much large

than the top quark mass mt one finds [188]

δ1−LOOPm2
h0 '

3y2
t m2

t

4π2 sin2 β log


mt̃1

mt̃2

m2
t

 , (5.21)

with yt being the top Yukawa coupling. To lift the Higgs mass above the exper-
imental lower bound requires a rather larger stop mass mt̃1,2

& 1 TeV.
On the other hand, the 1-loop RG evolution of the up-sector Higgs boson mass

from the GUT down to the TeV scale is given by

δRGm2
Hu
' − 3

4π2

(
m2

t̃1
+ m2

t̃2

)
log

(
Λ

mt̃

)
, (5.22)

where mt̃ =
√mt̃1

mt̃2
and Λ is the scale at which the boundary conditions set in.

For Λ = MGUT ' 2× 1016 GeV one typically has |δRGm2
Hu
| = O(m2

t̃
) at the TeV scale.

Finally, the requirement of correct EWSB at the TeV scale eq. (5.2) leads (at
tree-level) to

m2
Z

2
' −|µ|2 −m2

Hu
, (5.23)
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indicating that large cancellations are necessary to obtain the experimental value
of the Z boson mass. In particular, with −m2

Hu
= O(1 TeV2), as required by the

Higgs mass bound, the degree of fine-tuning in eq. (5.23) isO(1%) or more severe.
One can rewrite eq. (5.2) in terms of the boundary conditions at the GUT scale

(at 1-loop level) as [189]

m2
Z ≈ −1.8 |µ|2 + 5.9M2

3 − 0.4M2
2 − 1.2m2

Hu
+ 0.9m2

Q̃(3) + 0.7m2
t̃R
,

− 0.6At M3 + 0.4M2 M3

:= −1.8 |µ|2 + m̃2
Z , (5.24)

where we have used tan β = 5 and neglected terms with smaller numerical
coefficients. If all of the parameters on the right-hand side of eq. (5.24) are
O(1002 GeV2) no significant fine-tuning is needed. The soft breaking parameters,
however, are typically in the TeV range. Then the correct value of mZ can be
obtained in two different ways.

The first possibility is to arrange for a cancellation between µ2 and m̃2
Z by

adjusting µ. But then the value of µmight have to be very large. If µ is too large,
the Higgs fields are too massive to play a role in the EWSB. Thus, the second
possibility is to arrange for a cancellation within m̃2

Z such that µ has a value of
the order of the EW scale.

The largest contribution to m̃2
Z comes from the gluino. In order to keep m̃2

Z
small one would have to keep M3 under control [104, 105]. As evident from
eq. (5.6) in mirage mediation the gluino mass is reduced for small % and vanishes
at % ≈ 1.5. Being zero or very small at the GUT scale the gluino mass will be zero
or very small at the TeV scale, too. This is ruled out, as the gluino would be the
LSP. In addition, if the gluino is very light it cannot provide the necessary RG
contribution to m2

Hu
, eq. (5.13), such that eq. (5.2) will no longer be satisfied and

consequently EWSB will not be realized around % ≈ 1.5. Thus larger values of %
are required.

Alternatively one may try to enhance the value of the A-terms such that
At ' 10M3. However, in mirage mediation we cannot vary the soft parameters
independently at the GUT scale. An enhancement in At is connected to larger
values of % which would simultaneously enhance M3.

In order to achieve a cancellation within m̃2
Z for moderate values of % one has

to adjust the masses of the sfermions and Higgses. Here we can use the freedom
of choosing η and η′. As evident from eq. (5.24) the contribution from m2

Hu
is

negative and thus by increasing m2
Hu

at the GUT scale one obtains a sizable term
that could cancel the large contribution of M3. The contribution from squarks
is positive and one has to keep their masses low. However, we cannot choose
η too small; otherwise the squarks might become tachyonic at the GUT scale.
The essential lesson we learn from these considerations is to keep η as low as
possible and then adjust η′. If we want to keep m̃2

Z = O(1002 GeV) a certain
relation between %, m3/2, η and η′ has to be fulfilled. In that sense the MSSM
hierarchy problem can be ameliorated at the expense of a (fine-)tuning of η′.
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5.4 Phenomenological aspects of F-uplifting

Having discussed the phenomenological properties of the soft breaking param-
eters at the GUT scale we would like to compute them at the TeV scale and apply
phenomenological constraints discussed in the previous section.

As explained above we restrict ourselves to the range

0 ≤ % ≤ 12 , (5.25)
0 < m3/2 ≤ 60 TeV. (5.26)

As far as the parameters η and η′ are concerned we use the MSSM hierarchy
problem to pick up a suitable value. We will also consider the so called matter
domination scenario; a scheme where the scalar masses are O(m3/2). This corre-
sponds to ξ = O(1/3) or equivalently ηi = O(16π2). Furthermore we analyze
regimes with low and high values of tan β. For simplicity we fix the sign of the
µ parameter to be positive. Throughout our analysis we take mt = 175 GeV. For
the calculation of low energy data we use the public codes SOFTSUSY [190] and
micrOMEGAs [191].

5.4.1 Aspects of the soft terms at MTeV

In this section we discuss the RG evolution of the non-universal boundary con-
ditions tab. 5.1 arising in the scheme of F-uplifting (type IIB framework). For the
qualitative discussion it is sufficient to use the 1-loop RG equations summarized
in appendix C. We choose η = 1.5 and η′ = 1.7 so as to ensure the absence of
tachyons at the GUT scale.

Soft gaugino masses

The evolution of the gaugino masses Ma is given by the evolution of the gauge
couplings constants ga. At 1-loop level the quantity Ma/g2

a does not run. As
already explained in section 2.3.1 due to mixed modulus anomaly boundary
conditions the gaugino masses unify at the mirage scale eq. (2.58). Fig. 2.3.b
shows the mirage unification of the gaugino masses as well as their true unifi-
cation above the GUT scale.

Observe that for % = 5 the gaugino masses unify in the middle between MGUT

and MTeV. For this reason we will use % = 5 as a benchmark point. At this point
the contributions from modulus and anomaly mediation are of the same size.

For % = 5 the gaugino masses are ordered as M1 ÷M2 ÷M3 ' 1 ÷ 1.3 ÷ 2.5 at
the TeV scale, which differs significantly from the well known MSUGRA pattern
(M1÷M2÷M3 ' 1÷2÷6) and the anomaly pattern (M1÷M2÷M3 ' 3.3÷1÷9). Since
bino is the lightest gaugino at the TeV scale the neutralino LSP is likely to be bino-
like. However, due to the reduction of the gluino mass in the scheme of mirage
mediation, the hierarchy between the gaugino masses is weaker. For small values
of % the µ-term becomes around the masses of the bino and wino. Consequently
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the lightest neutralino can contain a significant higgsino component. We can also
have a higgsino-like neutralino at larger values of % by appropriately adjusting
the masses of the sfermions and the Higgses.

Soft A-terms

Within the MSSM framework we use the notation

At ≡ AQ̃(3)Hu t̃R
, Ab ≡ AQ̃(3)Hdb̃R

, Aτ ≡ AL̃(3)Hdτ̃R
. (5.27)

The RG evolution of the A-terms, eqs. (C.7) – (C.9), involves gauge and Yukawa
couplings. The gauge terms push the already negative A-terms to more negative
values, while the Yukawa terms do the opposite. Fig. 5.2.c illustrates the RG
evolution of the A-terms in the benchmark point % = 5 at tan β = 5. Note that
owing to Yukawa coupling effects the A-terms do not show mirage unification.

The flat running of At is due to the large top Yukawa coupling yt which
counterbalances the contribution from the gauge terms. The smallness of the
bottom and τ Yukawa couplings yb and yτ cannot yield the same effect for Ab
and Aτ such that at the TeV one typically has |At| < |Aτ| < |Ab|.

At large tan β also the bottom Yukawa coupling becomes sizable thereby af-
fecting the RG evolution of Ab and Aτ. For At and also Aτ gauge and Yukawa
terms counterbalance each other providing a nearly flat running.

Soft scalar squared masses

In fig. 5.2.a we present the RG evolution of the scalars of the first two genera-
tions in the benchmark point % = 5 at tan β = 5. The GUT scale mass ordering
m2

ẽR
> m2

L̃(1) > m2
d̃R
> m2

ũR
> m2

Q̃(1) becomes essentially inverted at the TeV scale in
the process of RG evolution. This is mainly due to large RG effects for colored
particles on account of supersymmetric quantum chromodynamics interactions.
Nevertheless, the reduced gluino mass makes sure that RG effects do not sig-
nificantly enhance the masses of colored particles over the uncolored particles.
This clearly differs from the MSUGRA and anomaly mediation schemes where the
mass gap between squarks and sleptons can be sizable.

The masses of the first and second generation scalars are not affected by the
Yukawa couplings. Their RG equation approximately reads (cf. eq. (C.21))

dm2
i

d logµ
∼ −

∑

a
g2

a M2
a Ca

i , (5.28)

where a = 1, 2, 3. Thus the masses of these sparticles behave in the similar way
as the gaugino masses Ma. In particular, they unify at (approximately) the same
mirage scale eq. (2.58) and do not depend on tan β.

The masses of the third generation scalars and the Higgs bosons feel the
effect of the Yukawa couplings. This results in a different RG behavior. As
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Fig. 5.2 :: Evolution of scalar masses of the first two generations is
shown in panel (a) and those of the third generation scalars in panel
(b). The evolution of the A-terms is given in panel (c). Panel (d) repre-
sents the MSSM fine-tuning problem in terms of the parameters η and
η′. Small values of the µ-term favor those values of η and η′ which are
close to the “No EWSB” realm.

shown in fig. 5.2.b the phenomenon of mirage unification is not shared by
these particles. For low tan β the mass ordering at the GUT scale is typically
mt̃R

> mτ̃R > mL̃(3) > mQ̃(3) > mb̃R
with quite small splittings. This ordering be-

comes inverted at the TeV scale with relatively small mass splittings.
The RG evolution of the third generation scalars is governed by the A-terms

which act to suppress their masses. This is most significant for mt̃R
, where the

quantity Xt, eq. (C.10), enters with a larger numerical coefficient in eqs. (C.16)
and (C.17). This effect alongside with the large intragenerational mixing in the
top squark sector leads to t̃1 being the next to lightest supersymmetric particle
(NLSP). As we shall see shortly, for low tan β the lightest top squark can also
be the LSP in some regions of the parameter space. Moreover, observe that for
low tan β the masses of b̃R, τ̃R and L̃(3) are only affected by the smaller Yukawa
couplings yb , yτ � yt and the structure of their RG running is similar to eq. (5.28)

At large tan β the bottom Yukawa coupling becomes relevant and modifies
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the mass ordering at the GUT scale to mt̃R
> mτ̃R > mL̃(3) > mb̃R

> mQ̃(3) . In the
large tan β regime the suppression of mτ̃R is more efficient than the suppression
of mt̃R

such that near the TeV scale the lightest τ slepton often happens to be the
NLSP and, in certain regions of the parameter space, also the LSP. In the large
tan β regime none of the third generation sparticles share the mirage unification
feature due to the effect of Yukawa couplings.

Finally the RG evolution of m2
Hu

is controlled to a large extent by m2
Q̃(3) and At.

Since gluino drives the squark masses it also controls the mass of the up-type
Higgs boson. Both M3 and At push m2

Hu
to large negative values near the TeV

scale. This is the well known mechanism of radiative EWSB.

5.4.2 Dependence on η and η′

As we have stated in section 5.3.1 the main parameters in our scheme are % and
m3/2. Before we perform a parameter space analysis we would like to specify
suitable values of η and η′. As mentioned in section 5.3.6 we use the MSSM
hierarchy problem as a guideline. We proceed as follows. In the benchmark
point % = 5 we choose m3/2 = 30 TeV and fix tan β = 5. We then scan over η and
η′ and apply the constraint for correct EWSB section 5.3.2. Our result is shown in
fig. 5.2.d.

For η = η′ = 0 the µ parameter is quite large such that the fine-tuning in
eq. (5.24) will be large. If we increase η′ the Higgs bosons become heavier. This
in turn reduces m̃2

Z in eq. (5.24) resulting in a reduction of µ. With increasing η′

the large m2
Hu

acts to suppress the masses of the lightest top squark such that (for
small η) it becomes the LSP. For η′ > 8 the mass of Hu exceeds a critical value and
m̃2

Z becomes negative implying that EWSB is not realized.
By increasing ηwe can counteract with heavier scalars, thereby circumventing

the stop LSP. However, the spectrum of sleptons and squarks becomes heavier
as we proceed to increase η and η′. In the consideration of a µ-term of order the
EW scale we have to stay close to the “No EWSB”. As evident from fig. 5.2.d and
also from eq. (5.24), η′ > η can be considered as a rule of thumb.

5.4.3 Low energy spectroscopy

In this section we perform a scan over the parameters % and m3/2 for different
values of η and η′ at different tan β.

Low tan β regime

According to the discussion in the previous section we pick up η = 4 and η′ = 8.5
in the allowed region in fig. 5.2.d. The corresponding parameter space is shown
if fig. 5.3.a.

The most severe constraints here are due to the requirement of correct EWSB.
Around % ≈ 1.5 the gluino is very light and thus too weak to drive m2

Hu
negative
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Fig. 5.3 :: Parameter space {%,m3/2} in the case of F-uplifting for
tan β = 5 (panel (a)) and for tan β = 30 (panel (b)). In the white region
the low energy spectra are consistent with experimental and theoreti-
cal constraints. The brown/ strip satisfied the 3σ WMAP constraint.
Panels (c) and (d) shows the corresponding SUSY as a function of %.

at the TeV scale. Also the RG contribution from the A-terms is not sufficient to
improve the situation, such that for % < 4.5 the condition for EWSB eq. (5.2) can
not be satisfied. Viable spectra are obtained for % > 5.5.

In the region 4.5 . % . 5.5 the large At suppresses via RG the mass of the
lightest top squark mt̃1

and makes it the NLSP. The mass of the lightest chargino
mχ̃+

1
is almost degenerate with the mass of the lightest neutralino mχ̃0

1
. They both

have a significant higgsino component, since |µ| .M1(MTeV).
For 5 . % . 6 the lightest top squark becomes the LSP. This can be understood as

follows. Close to the “No EWSB” region we have |µ| < M1(MTeV). Consequently
the lightest neutralino χ̃0

1 is higgsino-like. On the other hand, the large At
suppresses via RG the mass of t̃1 such that it is very close to mχ̃0

1
. Due to the

higgsino component the mass of χ̃0
1 grows rather fast with % (it tries to follow µ).

For % > 5, mχ̃0
1

overcomes mt̃1
and the stop quark becomes the LSP. As % further

increases the µ-term becomes larger and the neutralino is dominated by the bino
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component. This slows down the increase in mχ̃0
1

whereas the increase in mt̃1

remains unchanged (cf. fig. 5.3.c). Consequently, for % > 6 the neutralino again
becomes the LSP. Thus the intermediate region with a stop LSP is a result of a
higgsino-like neutralino around % ∼ 5 and a suppressed stop mass.

The LEP2mass bounds for mh0 , mχ̃+
0

and mt̃1
are relatively weak compared to the

EWSB constraint. Of all the mass bounds mh0 is most restrictive. The constraint
from BR(b → sγ) does not further restrict the range of parameters. Altogether
these constraints require m3/2 ≥ 4 TeV.

The brown/ strip in fig. 5.3.a satisfies the WMAP bounds eq. (5.19). This
region of the parameter space is favored by the neutralino DM abundance. To
the left of the brown/ strip the neutralino abundance is below the WMAP
bounds but still allowed if the DM production is non-thermal. To the right of
the brown/ strip the neutralino abundance is too large and thus ruled out by
WMAP. In the allowed region the neutralino and the chargino have an important
higgsino component. Fig. 5.3.c explains the shape of the allowed WMAP region
by tracking the sparticle masses as a function of %. For % ∼ 4.5 the mass gap
|mχ̃0

1
− mχ̃+

1
| is very small and the production of the relic abundance proceeds

efficiently through the χ̃0
1 χ̃

+
1 co-annihilation. As % increases mt̃1

comes closer
to mχ̃0

1
such that around % ∼ 5.5 stop co-annihilation is at work. The mass gap

between the neutralino and the chargino grows fast with increasing % and the
annihilation cross section decreases. At % ∼ 6 we enter the WMAP strip. Although
mt̃1
∼ mχ̃0

1
around % ∼ 6 it cannot overcome the decrease of the annihilation cross

section caused by the meanwhile bino-like neutralino. For % > 6 no further
co-annihilation channels are available and the neutralino abundance rapidly
exceeds the upper WMAP bound.

An interesting situation occurs when the soft scalar masses become very heavy.
For concreteness let us consider η = η′ = 112 (ξ = ξ′ = 1/6). Fig. 5.4.a shows
the corresponding parameter space. We are dealing here with relaxed mirage
mediation. That is, all scalar masses are O(m3/2) and the large contributions
from η and η′ make them unify at the GUT scale, while gaugino masses and
A-terms are much lighter. The gaugino masses continue to unify at the mirage
scale MMIR eq. (2.58). The shape of the “No EWSB” area changes. This con-
straint is now less restrictive for small m3/2. Again this can be understood from
eq. (5.24). In the case of heavy scalars, the dominant contribution is given by
−1.2m2

Hu
+ 0.9m2

Q̃(3) + 0.7m2
t̃R

, which must be positive. For small values of % this
opens up a new region in the parameter space. In particular % . 3 becomes ac-
cessible. For such small values of % the mirage unification of the gaugino masses
occurs near the TeV scale MMIR ' MTeV. Therefore for % . 3 and m3/2 ∼ 6 TeV we
have M1(MTeV) 'M2(MTeV) 'M3(MTeV). As usual we have an ultra-light gluino
around % ≈ 1.5. Due to the enhancement of scalar masses accelerator constraints
require now m3/2 ≥ 3 TeV. The brown/ strip in fig. 5.4.a represents the part
of the parameter space favored by the WMAP constraint on the neutralino relic
abundance. In the WMAP allowed region we have M1 ' M2 and mχ̃0

1
' mχ̃+

1
.
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Fig. 5.4 :: Parameter space {%,m3/2} in case of a heavy scalar spectrum
at tan β = 5. In panel (a) both scalars and Higgses have equivalent
masses. In panel (b) scalar masses equals the gravitino mass whereas
the masses of Higgs bosons are smaller. Panels (c) and (d) shows the
corresponding sparticle masses as a function of %.

Thus, strong co-annihilation of bino-like neutralinos with wino-like charginos
gives the right amount of the relic LSP abundance.

Finally, a further increase of sfermion masses will dramatically influence the
low energy phenomenology. In fig. 5.4.b we present the case with η = 158 and
η′ = 112 (ξ = 0 and ξ′ = 1/6). This eliminates the “No EWSB” region since
due to the heavy scalars the quantity m̃2

Z in eq. (5.24) is now positive. Thus also
here low values of % are allowed. The appearance of the gluino LSP, however,
can not be avoided as it is the consequence of the mixed modulus-anomaly
boundary conditions for the gaugino masses. In the region allowed by the
WMAP constraint we recover a mixed wino-bino neutralino, however, without
any higgsino component (since |µ| � M1). Also here the co-annihilation with
charginos is at work. Moreover, for small %we obtain a region where the lightest
chargino is the LSP. Due to the very heavy sfermion spectrum the mass bounds
from LEP2 become less restrictive such that m3/2 ≥ 1.5 TeV is allowed.
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Large tan β regime

If we increase tan β the constraint due to the correct EWSB becomes more severe.
This is because the coefficient of the squark masses in eq. (5.24) decreases with
tan β due to sbottom loops. On the other hand, the LEP2 mass bound for mh0

becomes less restrictive. This comes from the fact that the radiative correction to
the mass of the lightest Higgs boson eq. (5.21) favors large tan β. Consequently
the Higgs mass bound can be exceeded in larger portions of the parameter space.

Let us choose tan β = 30 and analyze the parameter space fig. 5.3.b with η = 4
and η′ = 8.5. Since the scalars are (relatively) light the “No EWSB” region
experiences only a slight expansion compared to tan β = 5. The LEP2 constraints
allow now m3/2 > 2.5 TeV. In the large tan β regime the suppression of the top
squark mass is reduced such that a stop NLSP usually does not occur. Only for
smaller values of m3/2 and moderate % a region with a stop LSP, adjacent to the
“Below LEP” region, emerges. Typically, we find that for moderate values of
% the NLSP is the lightest chargino, whereas for larger values of % the lightest
tau slepton τ̃1 becomes the NLSP. As before there is a region where the lightest
chargino happens to be the LSP.1

In the brown/ region of fig. 5.3.b, favored by the WMAP constraint, both the
neutralino and the chargino have a significant higgsino component. The correct
relic density is achieved due to neutralino annihilation as well as chargino co-
annihilation processes. In addition, for small m3/2 co-annihilation with the
lightest top squark widens the allowed range of the parameter space.

For larger values of η and η′ the phenomenology is essentially the same as in
the low tan β regime. The WMAP allowed range lies on the edge of the “No EWSB”
area. Co-annihilation processes with charginos give acceptable LSP abundance.

5.5 Phenomenological aspects of F-downlifting

In the previous section we saw that the low energy phenomenology of F-uplifting
is quite distinct. Since the boundary conditions in the F-downlifting scheme are
similar to those of F-uplifting we also expect a similar picture to emerge here
as well. But we will also identify some differences. In analogy to the previous
investigation we focus our attention on the range 0 ≤ % ≤ 12, 0 < m3/2 ≤ 60 TeV
and study cases with different tan β and η, η′. As before we keep µ > 0 and
mt = 175 GeV.

1In the region where we find a chargino LSP the gaugino masses and the A-terms feel the effect
of anomaly mediation. A typical feature of anomaly mediation is that the mass gap between
the lightest chargino and the lightest neutralino is O(200 MeV) [10]. This mass degeneracy can
lead in some cases to long lived charginos, as long as anomaly mediation provides a significant
contribution.
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5.5.1 Dependence on η and η′

The scheme of F-downlifting differs from that up F-uplifting in a reduced dilaton
(gravity) mediated contribution to the soft A-terms and scalar squared masses.
Therefore tachyonic fields from anomaly mediation cover a larger portion of the
parameter space. At first sight this might imply that the boundary conditions
are ill-defined. However, there is a (large) positive contribution coming from
the downlifting sector encoded in the parameters η and η′. The main difference
to the uplifting case is that in the mirage mediation regime, % = O(5), non-zero
values of η and η′ are mandatory.

Using the MSSM hierarchy problem as outlined in section 5.3.6 we scan over
η and η′ in the benchmark point % = 5 at tan β = 5. Our result is displayed in
fig. 5.5.d. Like in the case of F-uplifting a small magnitude of the µ-term (less
fine-tuning) requires η′ > η.

As an illustrative example let us consider η = 4 and η′ = 6.

5.5.2 Aspects of the soft terms at MTeV

In models where the contributions from gravity and anomaly mediation are
comparable we experience the phenomenon of mirage unification. The same
happens, of course, in the present case of mixed dilaton-anomaly mediation.

Soft gaugino masses

The GUT scale boundary conditions tab. 5.1 for the gauginos in both frameworks
are exactly the same. Therefore mirage unification of the gaugino masses occurs
at the mirage scale MMIR eq. (2.58).

Soft A-terms

Due to the reduced contribution from dilaton mediation the magnitude of the
A-terms is smaller compared to the F-uplifting scheme. At the GUT scale the
A-terms are negative and typically |Ai jk| . |Ma|. The reduced magnitude of the
A-terms influences their RG evolution. Now the contribution from the gauge
terms in eqs. (C.7) – (C.9) cannot be counterbalanced by the Yukawa terms such
that none of the A-terms has a flat running. As a result the A-terms are pushed
towards more negative values during their RG evolution. Although their magni-
tude increases at the TeV scale, they are still a factor of 2 . . . 3 smaller compared
to the F-uplifting scheme. Fig. 5.5.c the RG evolution of the A-terms in the bench-
mark point % = 5 at tan β = 5. Larger values of tan βdo not significantly influence
the evolution of the A-terms.

Soft scalar squared masses

The masses of the scalars of the first two generations, fig. 5.5.a, behave in the
same way as in the scheme of F-uplifting. However, due to the reduced A-terms
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Fig. 5.5 :: Evolution of scalar masses of the first two generations (panel
(a)) and the third generation (panel (b)). The evolution of the A-terms
is shown inn panel (c). Panel (d) shows the µ-term as a function of η
and η′.

the RG evolution of the masses of the third generation scalars is slightly different.
This mainly affects the mass of t̃R. The reduced A-terms no longer provide the
strong suppression of mt̃R

such that at the TeV scale mt̃R
and mτ̃R are almost

degenerate. We illustrate this in fig. 5.5.b for the benchmark point % = 5 at
tan β = 5. Moreover, the reduced A-terms lead to a smaller intragenerational
mixing. In the large tan β regime the picture is basically the same as in the
F-uplifting scheme with the lightest τ slepton being the lightest sfermion. We
would like to emphasize that due to the reduced A-terms the stop (and in some
regions of the parameter space also the stau) is always heavier than the lightest
chargino such that the stop (and in some cases the stau) cannot be the NLSP (or
LSP).

5.5.3 Low energy spectroscopy

Let us study the parameter space spanned by % and m3/2 for different values of
η, η′ and tan β.
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Fig. 5.6 :: Parameter space {%,m3/2} in the case of F-downlifting for
tan β = 5 (panel (a)) and tan β = 30 (panel (b)). The brown/ strip
represents the part of the parameter space lying within the WMAP
window. Corresponding sparticle masses as functions of % are dis-
played in panels (c) and (d).

Low tan β regime

We start with the case η = 4 and η′ = 6. The corresponding parameter space is
shown in fig. 5.6.a. Correct EWSB and current LEP2 bounds put severe constraints
on % and m3/2. Particularly we find that for tan β = 5 only % ≥ 5 and m3/2 ≥ 8 TeV
are allowed.

The presence of the “No EWSB” region appears because at % ≈ 1.5 the RG
contribution from the gluino is too small to make m2

Hu
negative at the TeV scale.

In contrast to the type IIB framework, in the heterotic framework we do not have
a region with stop LSP. However, a chargino LSP appears here as well.

For % values close to the “No EWSB” region we have |µ| < M1 and the neu-
tralino LSP is higgsino-like. Going to larger % values the LSP becomes a mixed
higgsino-bino state. From % ∼ 7 we have a mostly bino-like LSP and also |µ| > M1.

The brown/ strip in fig. 5.6.a shows the region of the parameter space which
is favored by the WMAP results eq. (5.19). The region to the left/below the strip
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is allowed (lower abundance) and that to the right/above the strip is forbidden
(too large relic abundance). The evolution of the relic density differs from the
F-uplifting case (type IIB framework). For example, at m3/2 = 40 TeV and % ∼ 5
(see fig. 5.6.c) we are close to the “χ̃+ LSP” region and therefore we have χ̃0

1 χ̃
+
1 co-

annihilation, which enhances the annihilation cross section and lowers the relic
abundance. The neutralino in this region is mostly higgsino-like. As % increases,
the neutralino becomes mixed higgsino-bino and the µ-term increases. The co-
annihilation with the chargino gets reduced and the annihilation cross section
decreases leading to a higher relic abundance, so that around % ∼ 6 we reach
the brown/ strip. When we proceed to increase % the neutralino becomes
bino-like. However, we then reach mA/2 ∼ mχ̃0

1
. This happens because the

reduced contribution from dilaton mediation results in a smaller mass for the
pseudo-scalar Higgs A. Here the annihilation proceeds efficiently through the
pseudo-scalar Higgs exchange χ̃0 χ̃0 → A → f f (A-funnel). This enhances
the annihilation cross section and reduces the relic abundance well below the
WMAP bounds. For % > 7 the mass gap |mA/2 − mχ̃0

1
| grows and the efficiency

of the A-funnel reduces rapidly. As there are no other co-annihilation channels
available the cross section decreases and the relic abundance becomes too large.

For larger values of η and η′ the low energy phenomenology is essentially
the same as in the case of F-uplifting in the type IIB framework with the same
conclusions.

Large tan β regime

Consider again η = 4 and η′ = 6 at tan β = 30 (fig. 5.6.b). For large values of tan β,
the LEP2 mass constraints become less restrictive. However, the “No EWSB”
region gets slightly bigger and the “χ̃+ LSP” region covers a larger part of the
parameter space (compared to the case of small tan β). The composition of the
neutralino LSP is similar to the tan β = 5 situation. For low % values (close to the
“No EWSB” region) the neutralino is higgsino-like. Then, for larger % it becomes
more and more bino-like.

The brown/ strip in fig. 5.6.b, satisfying the WMAP limits, differs signifi-
cantly from that at tan β = 5. Now, a larger part of the parameter space is
consistent with the correct amount of neutralino DM. This is because at large
tan β the bottom Yukawa coupling yb becomes non-negligible and acts via RG
effects to further suppress the mass of the pseudo-scalar Higgs. In addition, at
large tan β the A-funnel provides a sizable contribution to the annihilation cross
section. For m3/2 = 30 TeV and % ∼ 5.5 (cf. fig. 5.6.d) we have mχ̃+

1
∼ mχ̃0

1
∼ µ

and chargino co-annihilation enhances the annihilation cross section and low-
ers the relic abundance. When % increases, µ gets larger and the neutralino
becomes bino-like. For % > 7 the mass gap |mχ̃+

1
− mχ̃0

1
| grows; thus the χ̃+ χ̃0

co-annihilation channel no longer provides a sizable effect. As a result, the relic
abundance grows above the upper WMAP bound. At the same time the mass
of χ̃0

1 approaches the value mA/2 and thus the pseudo-scalar Higgs exchange
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begins to contribute. The cross section σ(χ̃0 χ̃0 → bb) grows with tan2 β and so
the A-funnel overcomes the decrease of the annihilation cross section caused
by the bino component of the neutralino. This keeps the relic abundance up to
% ∼ 10 in the allowed range. For still larger % finally the efficiency of the A-funnel
decreases and the relic abundance becomes to large.

Again, for larger values of η and η′ we obtain the same picture as in the
uplifting case.

5.6 Numerical results

In tab. 5.2 we present low energy spectra for selected points from the allowed
region of the parameter space in the scheme of F-uplifting and F-downlifting,
respectively. Compared to e. g. the MSUGRA scheme [106–109] we can clearly
see that the spectra in the mirage mediation regime (small η and η′) and in
relaxed mirage mediation (large η and η′) are rather “compressed” i. e. the mass
splittings between the sleptons and squarks as well as between charginos and
neutralinos are relatively small. Points D and E highlight the difference between
the spectra obtained in the case of uplifting and downlifting for the same set of
parameters.

5.7 Summary

The low energy phenomenology of F-uplifting and F-downlifting exhibits a
rich structure. Apart form the non-universality of the boundary conditions
at the GUT scale we can have a situation where the contribution from gravity
mediation (modulus/dilaton) is comparable to that of anomaly mediation. In
this case gaugino masses and masses of the scalars of the first two generations
unify at an intermediate scale. The values of the gaugino masses and the A-
terms cannot be varied independently (at the GUT scale). However, due to
the unsequestered form of the F-uplifting/F-downlifting sector, the magnitude
of sfermion and Higgs masses can be very different from that of the gaugino
masses and the A-terms. In particular, scalars can be as heavy as the gravitino.
Using the parameters of the F-uplifting/F-downlifting sector we can alleviate the
MSSM fine-tuning problem to a certain degree.

The difference in the phenomenology between F-uplifting (type IIB frame-
work) and F-downlifting (heterotic framework) is mainly due to the reduced
contribution from gravity mediation, which results from different effective Käh-
ler potentials in the respective effective theories. In particular the reduced A-
terms in the scheme of F-downlifting prevent a stop (N)LSP.

The non-universality in the gaugino masses allows for M1(MTeV) ' M2(MTeV)
and leads to efficient chargino-neutralino co-annihilation. We do not observe
any (significant) contribution from the A-funnel to the annihilation cross section
in the scheme of F-uplifting. This is because the mass of the pseudo-scalar
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F-uplifting
(Type IIB framework)

F-downlifting
(Heterotic framework)

A B C D E F
tan β 5 30 5 5 5 30
% 5 6 3 6 6 10
m3/2 30 10 6 40 40 6
η 4 4 112 4 4 4
η′ 8.5 8.5 112 6 6 6

M1 0.681 0.246 0.105 1.044 1.040 0.211
M2 0.832 0.323 0.107 1.323 1.317 0.311
M3 1.465 0.669 0.122 2.406 2.391 0.743

mh 0.120 0.119 0.117 0.124 0.119 0.115
mA 1.996 0.585 4.349 2.949 2.118 0.468
mH 1.996 0.584 4.350 2.949 2.119 0.467
µ 0.443 0.357 0.628 1.819 0.860 0.413

mχ̃0
1

0.430 0.235 0.101 1.038 0.850 0.204
mχ̃0

2
0.451 0.294 0.111 1.355 0.870 0.296

mχ̃+
1

0.434 0.290 0.110 1.360 0.855 0.296
mg̃ 1.525 0.693 0.184 2.510 2.472 0.766

mt̃1
0.508 0.260 2.454 1.266 1.613 0.489

mt̃2
1.309 0.613 3.424 2.169 2.111 0.694

mũL 1.680 0.729 4.181 2.679 2.382 0.719
mũR 1.649 0.715 4.196 2.624 2.322 0.702

mb̃1
1.275 0.522 3.421 2.143 2.089 0.614

mb̃2
1.635 0.621 4.191 2.599 2.300 0.668

md̃L
1.677 0.731 4.189 2.680 2.388 0.725

md̃R
1.644 0.712 4.198 2.613 2.310 0.697

mτ̃1 1.230 0.338 4.225 1.859 1.398 0.233
mτ̃2 1.279 0.449 4.230 1.954 1.520 0.346
mẽL 1.282 0.496 4.229 1.959 1.522 0.349
mẽR 1.238 0.471 4.239 1.871 1.403 0.298

Ωχ̃0 h2 0.039 0.087 0.012 11.20 0.088 0.115

Tab. 5.2 :: Sample spectra. All masses in TeV.

Higgs A is typically too large. Instead, co-annihilation with stops lowers the
neutralino relic abundance. On the other hand, in the F-downlifting scheme the
reduced gravity-mediated contribution results in a slightly different sparticle
spectrum and in particular in heavier stops but a lighter pseudo-scalar Higgs
boson. This activates the A-funnel contribution to the annihilation cross section
and especially in the large tan β regime a large portion of the parameter scape
can fulfill a series of phenomenological requirements. Interestingly, the KKLT
prediction % ∼ 5 is always on the safe side.
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Chapter 6

Conclusions

The key to understanding the low energy manifestation of string physics is un-
derstanding the dynamics that stabilize the moduli in a nearly 4D Minkowski
vacuum. Although it is possible to stabilize all moduli by incorporating non-
perturbative effects and background fluxes, this usually leads to vacuum so-
lutions with unrealistic energy densities. One then needs an additional sector
that adjusts the vacuum energy to a small positive value. In this work we have
considered the possibility that such a sector is provided by hidden sector matter
fields and have investigated its behavior in the framework of type IIB and het-
erotic string theory.

In the framework of type IIB string theory, moduli stabilization typically yields
deep supersymmetric AdS vacua. We have shown that the matter sector can suc-
cessfully “uplift” the vacuum energy to a realistic value without destabilizing
the moduli vacuum configuration. In this context we refer to the matter sector
as the uplifting sector. In the framework of heterotic string theory the situation
is even more dramatic since moduli stabilization in conventional schemes has
proven to be difficult and often yields a too large positive vacuum energy. Using
a single gaugino condensate we have demonstrated that the matter sector can
stabilize all (relevant) moduli. In addition, the matter sector provides a “down-
lift” of the vacuum energy to a smaller value, which is why in this context we
refer to it as the downlifting sector. We have presented explicit examples of
Minkowski vacua with spontaneously broken supersymmetry and a hierarchi-
cally small gravitino mass.

Furthermore, we have shown that the uplifting/downlifting sector is the dom-
inant source of supersymmetry breaking. Under rather general circumstances
this results in a mediation scheme where the tree-level moduli (gravity) medi-
ation compete with loop effects from the uplifting/downlifting sector, leading
to the phenomenon of mirage mediation. The moduli and the gravitino be-
come rather heavy, whereas the soft gaugino masses are suppressed by a factor
of the order log(MP/m3/2) ∼ 4π2. Unlike the gaugino masses, the masses of
squarks and sleptons exhibit a stronger model dependence and can be as large
as the gravitino mass. The MSSM soft masses often show a symptomatic pattern,
known as the mirage pattern, which is especially robust for the gaugino masses.
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Another emphasis of this work has been a study of the low energy spectra
arising in the schemes of F-uplifting and F-downlifting. We have argued that
the soft terms are basically determined by just two continuous parameters and
an additional parameter from the matter sector. This so-called relaxed mirage
mediation scheme differs from the MSUGRA, the anomaly and the “pure” mi-
rage mediation scenario in several phenomenological aspects. First of all, the
scalars can be significantly heavier than the gauginos. This reduces the fine-
tuning needed to suppress excessive CP and flavor violation on one hand, and
can serve to alleviate the MSSM fine-tuning problem on the other hand. Our
numerical analysis shows that there are regions in the parameter space where
the neutralino LSP has a sizable higgsino component which is favored by dark
matter considerations. We also find that charged or colored tachyons are usually
absent. In addition, this scenario yields rather compressed low energy spectra
and can avoid the cosmological moduli-induced gravitino problem.

The scheme of relaxed mirage mediation exhibits very distinct phenomenolog-
ical properties and has a well motivated origin. In this scenario the soft gaugino
masses appear to be least model-dependent and this allows rather robust state-
ments about their masses. Bolstered by the fact that gaugino masses are (often)
closely related to the gauge coupling constants, we hope that gaugino mass re-
lations might play a crucial role in the upcoming searches for supersymmetry
at the LHC. If gauginos (and eventually other particles) are found at the LHC,
this could be the first hint towards the underlying structure of supersymmetry
breaking and might even shed some light on string theory’s involvement in a
unified description of nature.



Appendix A

Soft breaking terms in mixed
modulus-anomaly mediation

We consider models where SUSY is broken spontaneously by fields which are
assumed to be singlets under the SM gauge group, living in the so-called “hidden
sector”. On the other hand, MSSM fields live in the observable sector, where
the breakdown of SUSY should appear explicit but soft. Such hidden sector
models are defined by the fact that the only couplings between the SUSY breaking
(hidden) sector and the MSSM observable sector are gravitational and suppressed
by inverse powers of MP. Moreover, promoting global SUSY to local symmetry
naturally leads to SUGRA, an effective (supersymmetric) theory of gravitation.
Then the underlying scheme of mediating the breakdown via gravity is basically
MSSM coupled to SUGRA. In string theory inspired environment, the fields that
break SUSY spontaneously (through the VEV of an auxiliary field) are represented
by moduli. The effective SUGRA is described by the Kähler potential

KEFF = K(XI,XI) + QiQi Zi , (A.1)

with Zi being the Kähler metric of the visible fields Qi, the superpotential

WEFF = W(XI) +
1
6
λi jk Qi Q j Qk , (A.2)

and the holomorphic gauge kinetic function fa. Here, XI collectively denotes
hidden sector and the constants λi jk may in general depend on these fields.

After integrating out hidden sector fields one obtains of the soft breaking
terms, which in the Einstein frame are given by

LSOFT = −m2
i Qi Qi −

[
1
2

Ma λ
a λa +

1
6

Ai jk yi jk Qi Q j Qk + h. c.
]
, (A.3)

where λa are gauginos, Qi are sfermions and

yi jk =
λi jk√

Yi Y j Yk
(A.4)

denote the canonically normalized Yukawa couplings. The quantities

Yi = e−K/3 Zi (A.5)

are the so-called superspace wave function coefficients (wave function renor-
malization).
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A.1 Soft terms at tree-level

In the following we derive the tree-level mediated soft breaking terms.

Gaugino masses

They are encoded in

L =
1
4

∫
d2θ fa Ξaα Ξa

α + h. c. , (A.6)

where Ξaα is the spinorial gauge field strength and fa denotes the gauge kinetic
function for the ath gauge group. Inserting XI = 〈XI〉 + θ2FI one finds

L =
1
4

∫
d2θ

[
fa + θ2 FI ∂I fa

]
Ξaα Ξa

α + h. c. . (A.7)

The first term yields the kinetic terms

LKIN =
1
4
Re fa Faµν Fa

µν + iRe fa χ
a γµ∂mχ

a , (A.8)

such that g−2
a = Re fa. Since Ξa

α = −iχa
α + . . . [192] the second term leads to the

gaugino mass term

L = −1
4
χaχa FI ∂I fa , (A.9)

and consequently the soft gaugino masses are

MMODULI
a = FI ∂I log

(
Re fa

)

=
1

2Re fa
FI ∂I fa . (A.10)

A-terms

The trilinear couplings are encoded in

L =

∫
d2θλi jk Qi Q j Qk . (A.11)

To arrive at canonical kinetic terms we perform a chiral rescaling of the visible
fields Qi

Qi → Y−1/2
i Qi

[
1 − θ2 1

Yi
FI ∂IYi + θ2 1

Yi
FI ∂IYi

]
, (A.12)
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where we have taken XI = 〈XI〉+θ2FI. Using the canonically normalized Yukawa
couplings eq. (A.4) we obtain

L =

∫
d2θ

λi jk√
Yi Y j Yk

Qi Q j Qk
(
1 − θ2 FI ∂I log Yi

)

×
(
1 − θ2 FI ∂I log Y j

) (
1 − θ2 FI ∂I log Yk

)
+ h. c. . (A.13)

From this one finds

L = LYUKAWA

+
λi jk√

Yi Y j Yk

[
∂Iλi jk

λi jk
− ∂I log Yi − ∂I log Y j − ∂I log Yk

]
+ h. c. . (A.14)

This leads us to the tree-level soft trilinear couplings

AMODULI
i jk = FI ∂I log

(
λi jk

Yi Y j Yk

)

= FI ∂IK − FI ∂I log
(

λi jk

Zi Z j Zk

)
, (A.15)

where the second equality follows from eq. (A.5).

Scalar squared masses

The masses of the scalar fields are encoded in

L =

∫
d4θYi QiQi . (A.16)

Substituting XI = 〈XI〉 + θ2FI yields

L =

∫
d4θ

[
Yi + θ2 FI ∂IYi + θ2 FI ∂IYi + θ2θ2 FI FJ ∂I∂JYi

]
Qi Qi . (A.17)

Using chiral rescaling eq. (A.12) we obtain canonically normalized kinetic terms

L =

∫
d4θ

[
1 + θ2θ2 FI FJ

∂I∂JYi

Yi
− θ2θ2 FI FJ

∂IYi ∂JYi

Y2
i

]
Qi Qi . (A.18)

This leads to the soft scalar squared masses

(
mMODULI

i

)2
= −FI FJ ∂I∂JYi

Yi
+ FI FJ ∂IYi ∂JYi

Y2
i

= −FI FJ ∂I∂J log Yi

=
1
3

FI FJ ∂I∂JK̂ − FI FJ ∂I∂J log Zi , (A.19)
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where we have used eq. (A.5) to arrive at the last equality.
It is important to stress that there is also a contribution from the vacuum

energy to the scalar squared masses such that in total one has [91]

(
mMODULI

i

)2
=

2
3

V0 +
1
3

FI FJ ∂I∂JK − FI FJ ∂I∂J log Zi , (A.20)

with V0 denoting the vacuum energy. Any additional source of vacuum en-
ergy density generically affects the soft scalar masses and should be taken into
account.

A particularly interesting situation arises when the total vacuum energy is
vanishing (Minkowski vacuum). The SUGRA potential eq. (2.2) can be rewritten
as

V = KIJ FI FJ − 3eG ,

where FI = eG/2 K−1
IJ

GJ are the SUSY breaking F-terms. In a Minkowski minimum

we have

V0 = KIJ FI FJ − 3m2
3/2 ≡ 0 , (A.21)

where m3/2 = 〈eG/2〉 is the gravitino mass. Merging eqs. (A.20) and (A.21) we
obtain

(
mMODULI

i

)2
= m2

3/2 − FI FJ ∂I∂J log Zi . (A.22)

Moreover, in Minkowski space the gravitino mass serves as a measure of SUSY
breakdown. In particular, if SUSY is broken (at least one) GI, and with it FI, will
be non-zero at the minimum. Then, eq. (A.21) implies that the gravitino mass
must be non-zero.

A.2 Soft terms at loop-level

Hidden sector models, in which SUSY breaking is communicated via (super)gravity,
also possess the superconformal Weyl symmetry [164,165,193–195] at tree-level.
At quantum level this symmetry becomes anomalous. The superconformal
Weyl anomaly always introduces a coupling of the SUGRA multiplet and the soft
breaking terms. These couplings are determined through the supersymmetric
RG functions.

To describe the effects of the superconformal anomaly it is convenient to use
the off-shell formulation of SUGRA [8]. In this formalism, the auxiliary field of
the SUGRA multiplet is placed inside a non-dynamical chiral superfield C known
as the conformal compensator

C = C0 + θ2 FC . (A.23)
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The auxiliary field FC of the SUGRA multiplet acquires a non-zero VEV through its
coupling to the SUSY breaking sector, and couples to the MSSM fields through the
superconformal anomaly. Therefore, this mechanism of mediating the break-
down of SUSY is called anomaly mediation [51, 52]. Since it occurs at loop-level,
anomaly mediated soft terms will be suppressed by loop factors with respect to
the tree-level gravity (or moduli) mediated soft terms. Thus, if the moduli auxil-
iary fields are not suppressed, FI ' FC, the contribution from anomaly mediation
is negligible.

In chapters 2, 3 and 4, however, we have witnessed models that exhibit the
so-called little hierarchy which suppresses the auxiliary fields of the moduli
appearing in the gauge kinetic function fa. Therefore, these models can lead to
soft breaking terms which are induced by a mixed modulus-anomaly mediation,
also known as mirage mediation [50].

The derivation of the anomaly mediated soft terms is carried out in the off-
shell SUGRA format, following the prescriptions in [51]. To proceed we make the
replacement

fa(XI) −→ fa(XI,C) , (A.24)

Yi(XI,XI) −→ Yi(XI,XI,C,C) . (A.25)

Gaugino masses

Anomaly mediated gaugino masses are obtained from eq. (A.10) by replacing XI
with C

MANOMALY
a =

1
2Re fa

∂ fa
∂ log C

FC

C0
, (A.26)

where we have used

∂ fa
∂C

=
1

C0

∂ fa
∂ log C

. (A.27)

As argued in [51], the C dependence in the gauge kinetic function must be of the
form

fa = fa

(
XI, log

ΛUV C
µ

)
, (A.28)

with ΛUV denoting the ultraviolet cut-off scale and µ is the renormalization scale.
Given its special form, fa has the property

∂ fa
∂ log C

= − ∂ fa
∂ logµ

. (A.29)

From fa = g−2
a + iIm fa we obtain

∂ fa
∂ log C

= − ∂ fa
∂ logµ

=
2
g3

a

∂ga

∂ logµ
= 2

ba

16π2 , (A.30)
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where the last equality follows from the definition of the β-function eq. (C.1).
Thus we arrive at

MANOMALY
a =

1
2Re fa

2
ba

16π2
FC

C0

=
ba g2

a

16π2
FC

C0
. (A.31)

A-terms

To derive the anomaly mediated A-terms we again take the tree-level result
eq. (A.15) and replace XI by C,

AANOMALY
i jk = FC ∂

∂C
log

(
λi jk

Yi Y j Yk

)
. (A.32)

As argued in [51] the C dependence of Yi and λi jk must be of the form

Yi = CC Yi

(
XI,XI, log

ΛUV CC
µ2

)
, (A.33)

λi jk = C3 λ(XI) . (A.34)

The pre-factor CC does not contribute to the soft breaking terms as it can be
rotated away by a chiral rotation C Qi → Qi. Since λi jk comes from the super-
potential it is protected by the non-renormalization theorem [5,15] and hence it
has no RG dependence. Due to its special from Yi has the property

∂ log Yi

∂C
=

1
C0

∂ log Yi

d log C
= − 1

C0

∂ log Yi

∂ logµ2 = − 1
C0

1
16π2 γi , (A.35)

where the last equality follows from the definition of the anomalous dimension
eq. (B.5). This leads to

AANOMALY
i jk =

FC

C0

∂

∂ logµ2 log
(
Yi Y j Yk

)
(A.36)

=
γi + γ j + γk

16π2
FC

C0
. (A.37)

Scalar squared masses

In contrast to the gaugino masses and trilinear couplings, scalar squared masses
arise at 2-loop level. Rewriting the tree-level result eq. (A.19) we obtain

(
mANOMALY

i

)2
+

(
mMIXED

i

)2
= −FC FC ∂

2 log Yi

∂C ∂C

− FC FI ∂
2 log Yi

∂C ∂XI
− FC FI ∂

2 log Yi

∂C ∂XI
, (A.38)
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where the first term corresponds to pure anomaly mediation and the last two
terms arise due to the mixing between the moduli fields XI and the conformal
compensator C. According to [51] the C dependence in Yi must be of the form
eq. (A.25). Again, the pre-factor CC can be rotated away and does not affect
the soft terms. The C and C derivatives in eq. (A.38) can be replaced following
eq. (A.35). We then arrive at

(
mANOMALY

i

)2
+

(
mMIXED

i

)2
= − 1

16π2

∂γi

∂ logµ2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+ FI ∂γi

∂XI

1
16π2

FC

C0
+ FI ∂γi

∂XI

1
16π2

FC

C0

= −γ̇i
1

(16π2)2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+
FI

XI + XI

ΨI
i

16π2
FC

C0
+

FI

XI + XI

ΨI
i

16π2
FC

C0
, (A.39)

where we have introduced the quantities

1
16π2 γ̇i =

∂γi

∂ logµ2 , (A.40)

ΨI
i =

(
X + XI

) ∂γi

∂XI
. (A.41)

Eq. (A.40) describes the RG evolution of the anomalous dimension whereas
eq. (A.41) results from the moduli dependence of the gauge couplings (i e. gauge
kinetic function).

Finally, we summarize the soft breaking parameters induced by the mixed
modulus anomaly mediation:

Ma =
1

2Re fa
FI ∂I fa +

ba g2
a

16π2
FC

C0
, (A.42)

Ai jk = FI ∂IK − FI ∂I log
(

λi jk

Zi Z j Zk

)
+
γi + γ j + γk

16π2
FC

C0
, (A.43)

m2
i =

(
m2

3/2 + V0

)
− FI FJ ∂I∂J log Zi − γ̇i

1
(16π2)2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+
FI

XI + XI

ΨI
i

16π2
FC

C0
+

FI

XI + XI

ΨI
i

16π2
FC

C0
. (A.44)

The explicit form of the parameters λi jk depends on the theory of flavor and can
only be addressed after realistic Yukawa flavor structures have been obtained.
For simplicity, in this work we assume that λi jk are moduli independent.
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A.3 Soft terms in F-uplifting

In the scheme of F-uplifting the effective SUGRA theory (originating from type
IIB string theory) is described by

fa = T , (A.45)

K = −3 log
(
T + T

)
+ φφ , (A.46)

Zi =
(
T + T

)−ni
[
1 + ξi φφ

]
, (A.47)

where we have assumed a universal (real) Kähler modulus T and a single hidden
sector (real) matter field φwith modular weight zero. The parameter ξi describe
the coupling between hidden and observable matter fields and ni denote effective
modular weights. SUSY is broken by FT and Fφ, with the latter providing the
dominant contribution. Plugging eqs. (A.45) – (A.47) into eqs. (A.42) – (A.44) we
obtain

Ma =
FT

T0 + T0
+

ba g2
a

16π2
FC

C0
, (A.48)

Ai jk =
FT

T0 + T0

(
−3 + ni + n j + nk

)
+
γi + γ j + γk

16π2
FC

C0
, (A.49)

m2
i =

(
m2

3/2 + V0

)
− ni

∣∣∣FT
∣∣∣2

(
T0 + T0

)2 − ξi
∣∣∣Fφ

∣∣∣2

− γ̇i
1

(16π2)2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+ 2
FT

T0 + T0

ΨT
i

16π2
FC

C0
, (A.50)

where we have assumed that the uplifting field φ is stabilized at φ0 � 1.
The scalar potential,

V = KTT

∣∣∣FT
∣∣∣2 +

∣∣∣Fφ
∣∣∣2 − 3eG , (A.51)

poses a relation among the SUSY breaking fields. The condition for having a
Minkowski minimum gives

3m2
3/2 = 3

∣∣∣FT
∣∣∣2

(
T0 + T0

)2 +
∣∣∣Fφ

∣∣∣2 . (A.52)

Thus, in a Minkowski vacuum we have

m2
i = (1 − 3ξi) m2

3/2 + (3ξi − ni)

∣∣∣FT
∣∣∣2

(
T0 + T0

)2

− γ̇i
1

(16π2)2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+ 2
FT

T0 + T0

ΨT
i

16π2
FC

C0
. (A.53)
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Note that ξi = 1/3 corresponds to the case of KKLT models where the uplifting
sector is assumed to be sequestered and hence in these models there is no
contribution from the uplifting fields to the soft breaking terms.

Finally, using the parameterization

%M0 ≡ FT

T0 + T0
, (A.54)

M0 ≡
m3/2

16π2 , (A.55)

η2
i ≡ (1 − 3ξi) (16π2)2 , (A.56)

FC

C0
≡ m3/2 +O

( m3/2

16π2

)
≈ m3/2 , (A.57)

we can write the soft terms in a compact form as

Ma = M0

[
% + ba g2

GUT

]
, (A.58)

Ai jk = M0

[ (
−3% + ni + n j + nk

)
+

(
γi + γ j + γk

) ]
, (A.59)

m2
i = M2

0

[
(3ξi − ni) %2 − γ̇i + 2%ΨT

i + η2
i

]
. (A.60)

A.4 Soft terms in F-downlifting

In the scheme of F-downlifting the effective SUGRA theory (originating from
heterotic string theory) is described by

fa = S , (A.61)

K = − log
(
S + S

)
+ φφ , (A.62)

Zi = 1 + ξi φφ , (A.63)

where we have assumed a real dilaton field S and a single hidden sector (real)
matter field φ with modular weight zero. Furthermore, it assumed that the
Kähler moduli Tp with p = 1, 2, 3 are stabilized at FTp = 0. Then the breakdown
of SUSY is initiated through FS and Fφ, with the latter providing the dominant
contribution. Plugging eqs. (A.61) – (A.63) into eqs. (A.42) – (A.44) we obtain

Ma =
FS

S0 + S0
+

ba g2
a

16π2
FC

C0
, (A.64)

Ai jk =
FS

S0 + S0

(
−3 + ni + n j + nk

)
+
γi + γ j + γk

16π2
FC

C0
, (A.65)

m2
i =

(
m2

3/2 + V0

)
− ξi

∣∣∣Fφ
∣∣∣2 − γ̇i

1
(16π2)2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+ 2
FS

S0 + S0

ΨS
i

16π2
FC

C0
, (A.66)
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where we have assumed that the downlifting field φ is stabilized at φ0 � 1.
This time, the condition for having a Minkowski vacuum gives the relation

3m2
3/2 =

∣∣∣FS
∣∣∣2

(
S0 + S0

)2 +
∣∣∣Fφ

∣∣∣2 , (A.67)

which differs by a factor of 3 from eq. (A.52). Thus, in a Minkowski vacuum we
have

m2
i = (1 − 3ξi) m2

3/2 + ξi

∣∣∣FS
∣∣∣2

(
S0 + S0

)2

− γ̇i
1

(16π2)2

∣∣∣∣∣∣
FC

C0

∣∣∣∣∣∣
2

+ 2
FS

S0 + S0

ΨS
i

16π2
FC

C0
. (A.68)

Using eqs. (A.55) and (A.57) together with

%M0 ≡ FS

S0 + S0
, (A.69)

we arrrive

Ma = M0

[
% + ba g2

GUT

]
, (A.70)

Ai jk = M0

[
− % +

(
γi + γ j + γk

) ]
, (A.71)

m2
i = M2

0

[
ξi %

2 − γ̇i + 2%ΨS
i + η2

i

]
. (A.72)
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MSSM parameters

Here we list various parameters which appear in the soft breaking terms eqs. (A.48),
(A.49) and (A.53) as well as in eqs. (A.64), (A.65) and (A.68).

β-function coefficients

The 1-loop β-function coefficients are defined by

ba = −3Ca +
∑

i

Ci
a , (B.1)

for a = 1, 2, 3. The quantity Ca is the quadratic Casimir invariant of the group
being 0 for U(1) and N for SU(N). The Ci

a are the quadratic group theory
invariants for the ith superfield defined in terms of the Lie algebra generators Ta

(Ta Ta) j
i = Ca

i δ
j
i , (B.2)

with the gauge coupling ga. In order to agree with the canonical covariant deriva-
tive for grand unified unification of the SM gauge group SU(3)C × SU(2)L ×U(1)Y

into SU(5) or SO(10) we choose the normalization (see e. g. [31])

g3 = gs , g2 = g , g1 =
√

5/3 g′ , (B.3)

where g′ and g are the EW couplings with e = g sinθW = g′ cosθW.
For the MSSM matter content one has

Superfields C3 C2 C1

Qp 4/3 3/4 1/60
up 4/3 0 4/15
dp 4/3 0 1/15

Lp 0 3/4 3/20
ep 0 0 3/5

Hu 0 3/4 3/20
Hd 0 3/4 3/20

Tab. B.1 :: Quadratic Casimirs for the MSSM fields.
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where Qp denote the quark doublets, up are right-handed up-type quarks, dp
are the right-handed down-type quarks, Lp denote the lepton doublets, e are the
right-handed leptons, Hu and Hd are the two Higgs doublets and p labels the
generation. For this matter content one easily finds

b3 = −3 , b2 = 1 , b1 =
33
5
. (B.4)

Anomalous dimension

The anomalous dimension describes the scale dependence of the wave function
renormalization eq. (A.5)

1
16π2 γi =

d log Yi

d logµ2 , (B.5)

where i labels the MSSM superfields and µ denotes the renormalization scale. In
particular, at 1-loop level one has [10],

γi = 2
∑

a
g2

a Ca
i −

∑

jk

y2
i jk

2
. (B.6)

The first sum runs over gauge group factors and the second sum runs over
all Yukawa couplings that contain the ith fields with appropriate color factors
included. For the MSSM one obtains

Superfields γi
γi(MGUT)

tan β=5
γi(MGUT)

tan β=30

Q3
8
3 g2

3 + 3
2 g2

2 + 1
30 g2

1 − (y2
t + y2

b) 1.84 1.83

Q1,2
8
3 g2

3 + 3
2 g2

2 + 1
30 g2

1 2.14 2.14

u3
8
3 g2

3 + 8
15 g2

1 − 2y2
t 1.01 1.05

u1,2
8
3 g2

3 + 8
15 g2

1 1.62 1.62

d3
8
3 g2

3 + 2
15 g2

1 − 2y2
b 1.36 1.01

d1,2
8
3 g2

3 + 2
15 g2

1 1.42 1.42

L3
3
2 g2

2 + 3
10 g2

1 − y2
τ 0.93 0.87

L1,2
3
2 g2

2 + 3
10 g2

1 0.93 0.93

e3
6
5 g2

1 − 2y2
τ 0.61 0.49

e1,2
6
5 g2

1 0.61 0.61

Hu
3
2 g2

2 + 3
10 g2

1 − 3y2
t 0.02 0.07

Hd
3
2 g2

2 + 3
10 g2

1 − 3y2
b − y2

τ 0.92 0.80

Tab. B.2 :: Anomalous dimension of the MSSM fields.



113

Running of the anomalous dimension

This is simply given by

1
16π2 γ̇i =

dγi

d logµ2 . (B.7)

In the MSSM one has (at 1-loop)

γ̇i = 2
∑

a
g4

a ba Ca
i −

∑

jk

y2
i jk

2
byi jk , (B.8)

where byi jk describes the running of the Yukawa couplings (cf. eqs. (C.3) – (C.5)).
Explicitly one finds

Superfields γ̇i
γ̇i(MGUT)

tan β=5
γ̇i(MGUT)

tan β=30

Q3 −8g4
3 + 3

2 g4
2 + 11

50 g4
1− (y2

t βyt + y2
bβyb ) −0.72 −0.65

Q1,2 −8g4
3 + 3

2 g4
2 + 11

50 g4
1 −1.59 −1.60

u3 −8g4
3 + 88

25 g4
1 − 2y2

t βyt 0.59 0.53

u1,2 −8g4
3 + 88

25 g4
1 −1.15 −1.16

d3 −8g4
3 + 22

25 g4
1 − 2y2

bβyb −1.82 −1.63

d1,2 −8g4
3 + 22

25 g4
1 −1.82 −1.83

L3
3
2 g4

2 + 99
50 g4

1 − y2
τβyτ 0.91 1.03

L1,2
3
2 g4

2 + 99
50 g4

1 0.91 0.91

e3
198
25 g4

1 − 2y2
τβyτ 2.04 2.26

e1,2
198
25 g4

1 2.03 2.02

Hu
3
2 g4

2 + 99
50 g4

1 − 3y2
t βyt 3.52 3.43

Hd
3
2 g4

2 + 99
50 g4

1 − 3y2
bβyb − y2

τ 0.92 1.33

Tab. B.3 :: Running of the anomalous dimension in the MSSM.

Moduli dependence of the anomalous dimension

In string inspired models the (unified) gauge coupling is given in terms of the
gauge kinetic function which is moduli dependent. Thus also the anomalous
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dimension eq. (B.6) is moduli dependent. Generically one finds [47,48]

∂γi

∂XI
= −

∑

jk

y2
i jk

2
∂
∂XI

log
(

λi jk

Yi Y j Yk

)
− 2

∑

a
g2

a Ca
i
∂
∂XI

log
(
Re fa

)
(B.9)

= −
∑

jk

y2
i jk

2
∂
∂XI

log
(
e−K Yi Y j Yk

)
− 2

∑

a
g2

a Ca
i
∂
∂XI

log
(
Re fa

)
, (B.10)

where the second equality is due to the assumption of λi jk being moduli inde-
pendent. For the soft breaking terms it is convenient to consider the quantity
eq. (A.41).

In the scheme of F-uplifting (type IIB strings) the effective SUGRA is described
by eqs. (A.45) – (A.47). This yields

ΨT
i =

∑

jk

y2
jik

2

(
3 − ni − n j − nk

)
− 2

∑

a
g2

a Ca
i . (B.11)

In case of zero modular weights one obtains

Superfields ΨT
i

ΨT
i (MGUT)
tan β=5

ΨT
i (MGUT)
tan β=30

Q3 − 8
3 g2

3 − 3
2 g2

2 − 1
30 g2

1 + 3(y2
t + y2

b) −1.23 −1.21

Q1,2 − 8
3 g2

3 − 3
2 g2

2 − 1
30 g2

1 −2.14 −2.14

u3 − 8
3 g2

3 − 8
15 g2

1 + 6y2
t 0.20 0.09

u1,2 − 8
3 g2

3 − 8
15 g2

1 −1.62 −1.62

d3 − 8
3 g2

3 − 2
15 g2

1 + 6y2
b −1.41 −1.27

d1,2 − 8
3 g2

3 − 2
15 g2

1 −1.42 −1.42

L3 − 3
2 g2

2 − 3
10 g2

1 + 3y2
τ −0.92 −0.76

L1,2 − 3
2 g2

2 − 3
10 g2

1 −0.93 −0.93

e3 − 6
5 g2

1 + 6y2
τ −0.60 −0.27

e1,2 − 6
5 g2

1 −0.61 −0.61

Hu − 3
2 g2

2 − 3
10 g2

1 + 9y2
t 1.80 1.63

Hd − 3
2 g2

2 − 3
10 g2

1 + 9y2
b + 3y2

τ −0.92 −0.53

Tab. B.4 :: Moduli dependence of the anomalous dimension frame-
work of type IIB string theory.

In the scheme of F-downlifting (heterotic strings) the effective SUGRA is de-
scribed by eqs. (A.61) – (A.63). This yields

ΨS
i =

∑

jk

y2
jik

2
− 2

∑

a
g2

a Ca
i . (B.12)
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Explicit values for the MSSM superfields are given in tab. B.5. Note that the
Yukawa terms in ΨS

i are smaller by a factor of 3 compared to ΨT
i due to the

different (effective) Kähler potential.

Superfields ΨS
i

ΨS
i (MGUT)
tan β=5

ΨS
i (MGUT)
tan β=30

Q3 − 8
3 g2

3 − 3
2 g2

2 − 1
30 g2

1 + 3(y2
t + y2

b) −1.84 −1.83

Q1,2 − 8
3 g2

3 − 3
2 g2

2 − 1
30 g2

1 −2.14 −2.14

u3 − 8
3 g2

3 − 8
15 g2

1 + 6y2
t −1.01 −1.05

u1,2 − 8
3 g2

3 − 8
15 g2

1 −1.62 −1.62

d3 − 8
3 g2

3 − 2
15 g2

1 + 6y2
b −1.42 −1.37

d1,2 − 8
3 g2

3 − 2
15 g2

1 −1.42 −1.42

L3 − 3
2 g2

2 − 3
10 g2

1 + 3y2
τ −0.93 −0.87

L1,2 − 3
2 g2

2 − 3
10 g2

1 −0.93 −0.93

e3 − 6
5 g2

1 + 6y2
τ −0.61 −0.49

e1,2 − 6
5 g2

1 −0.61 −0.61

Hu − 3
2 g2

2 − 3
10 g2

1 + 9y2
t −0.02 −0.07

Hd − 3
2 g2

2 − 3
10 g2

1 + 9y2
b + 3y2

τ −0.92 −0.80

Tab. B.5 :: Dilaton dependence of the anomalous dimension frame-
work of heterotic string theory.
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Appendix C

Renormalization group

The soft terms obtained in appendices A.3 and A.4 are given just below the
ultraviolet cut-off scale ΛUV where the effective theory sets in. In this work we
adopt the MSSM matter content which yields an almost perfect unification of the
gauge couplings of the SM gauge group around MGUT ' 2 × 1016 GeV. Thus we
use ΛUV = MGUT. The values of the soft parameters below MGUT (i. e. at MTeV) are
obtained via their RG evolution.

We stress that the framework of the MSSM requires SUSY respecting regulariza-
tion and renormalization schemes. The most appropriate regularization scheme
is the so-called regularization by dimensional reduction (DRED) with modified min-
imal subtraction (DR) [196]. Moreover, the RG equations are governed by the
non-renormalization theorem [5,15]. In particular, it states that the logarithmi-
cally divergent contributions can always be absorbed into the wave function
renormalization.

For a qualitative discussion of the low energy spectra it is sufficient to con-
sider RG equations at 1-loop order (see e. g. [10]). In this work we use the
approximation that only the third generation Yukawa couplings take on non-
negligible values and assume that the soft trilinear couplings are proportional
to the Yukawa matrices. We denote the renormalization scale by µ.

Gauge couplings

dga

d logµ
=

1
16π2 bag3

a , (C.1)

where a = 1, 2, 3 and ba are the 1-loop β-function coefficients eq. (B.4).

Gaugino masses

dMa

d logµ
=

1
8π2 ba g2

a Ma . (C.2)

The quantities Ma/g2
a are each constant and consequently do not run at 1-loop.
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Yukawa couplings

dyt

d logµ
=

yt

16π2

[
6y2

t + y2
b −

16
3

g2
3 − 3g2

2 −
13
15

g2
1

]
(C.3)

dyb

d logµ
=

yb

16π2

[
6y2

b + y2
t + y2

τ −
16
3

g2
3 − 3g2

2 −
7

15
g2

1

]
(C.4)

dyτ
d logµ

=
yτ

16π2

[
4y2

τ + 3y2
b − 3g2

2 −
9
5

g2
1

]
(C.5)

µ-term

dµ
d logµ

=
µ

16π2

[
3y2

t + 3y2
b + y2

τ − 3g2
2 −

3
5

g2
1

]
(C.6)

Note that the µ in the denominator denotes the renormalization scale.

A-terms

We use the abbreviations At ≡ AQ̃(3)Hu t̃R
, Ab ≡ AQ̃(3)Hdb̃R

and Aτ ≡ AL̃(3)Hdτ̃R
.

dAt

d logµ
=

1
16π2

[
12y2

t At + 2y2
b Ab +

32
3

g2
3 M3 + 6g2

2 M2 +
26
15

g2
1 M1

]
(C.7)

dAb

d logµ
=

1
16π2

[
12y2

b Ab + 2y2
t At + 2y2

τ Aτ

+
32
3

g2
3 M3 + 6g2

2 M2 +
14
15

g2
1 M1

]
(C.8)

dAτ

d logµ
=

1
16π2

[
8y2

τ Aτ + 6y2
b Ab + 6g2

2 M2 +
18
15

g2
1 M1

]
(C.9)

The RG equations for the scalar squared masses can be written in a more
suggestive form by using

Xt = m2
Q̃(3) + m2

t̃R
+ m2

Hu
+ A2

t , (C.10)

Xb = m2
Q̃(3) + m2

b̃R
+ m2

Hd
+ A2

b , (C.11)

Xτ = m2
L̃(3) + m2

τ̃R
+ m2

Hd
+ A2

τ , (C.12)

S =
1
2

∑

i

Yi m2
i , (C.13)

where the sum in eq. (C.13) runs over all MSSM scalar fields with hypercharge
Yi. In most realistic models the contributions proportional to S are known to be
relatively small.
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Higgs mass squares

dm2
Hu

d logµ
=

1
16π2

[
6y2

t Xt − 6g2
2 M2

2 −
6
5

g2
1 M2

1 +
3
5

g2
1 S

]
(C.14)

dm2
Hd

d logµ
=

1
16π2

[
6y2

b Xb + 2y2
τ Xτ − 6g2

2 M2
2 −

6
5

g2
1 M2

1 −
3
5

g2
1 S

]
(C.15)

Third generation squark mass squares

dm2
Q̃3

d logµ
=

1
16π2

[
2y2

t Xt + 2y2
b Xb

− 32
3

g2
3 M2

3 − 6g2
2 M2

2 −
2

15
g2

1 M2
1 +

1
5

g2
1 S

]
(C.16)

dm2
t̃R

d logµ
=

1
16π2

[
4y2

t Xt − 32
3

g2
3 M2

3 −
32
15

g2
1 M2

1 −
4
5

g2
1 S

]
(C.17)

dm2
b̃R

d logµ
=

1
16π2

[
4y2

b Xb −
32
3

g2
3 M2

3 −
8

15
g2

1 M2
1 +

2
5

g2
1 S

]
(C.18)

Third generation slepton mass squares

dm2
L̃(3)

d logµ
=

1
16π2

[
2y2

τ Xτ − 6g2
2 M2

2 −
6
5

g2
1 M2

1 −
3
5

g2
1 S

]
(C.19)

dm2
τ̃R

d logµ
=

1
16π2

[
4y2

τ Xτ − 24
5

g2
1 M2

1 +
6
5

g2
1 S

]
(C.20)

First and second generation mass squares

dm2
i

d logµ
= − 1

16π2

[∑

a
8Ca

i g2
a M2

a +
6
5

Yi g2
1 S

]
, (C.21)

where i runs over all first and second generation scalars, Yi denotes the corre-
sponding hypercharge and Ca

i are the quadratic Casimir for the ath gauge group
corresponding to the representation to which the ith superfield belongs.
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