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“Natur ist, vor und nach der Quantentheorie, das mathematisch zu Erfassende; selbst was nicht
eingeht, Unauflöslichkeit und Irrationalität, wird von mathematischen Theoremen umstellt. In
der vorwegnehmenden Identifikation der zu Ende gedachten mathematisierten Welt mit der
Wahrheit meint Aufklärung vor der Rückkehr des Mythischen sicher zu sein.”

Th. W. Adorno, M. Horkheimer: Dialektik der Aufklärung [1].



Multi-scale chiral dynamics

In this work, we examine two possible extensions of the low-energy effective field theory of
quantum chromodynamics (QCD), called chiral perturbation theory (ChPT). Both those ex-
tensions are related to the presence of resonances in the effective field theory, which in its
original formulation contains only the (pseudo-) Goldstone bosons of the spontaneously broken
chiral symmetry of QCD (and, in a further formulation, also the baryon ground-state octet) as
its degrees of freedom. The additional mass scales (the masses of the resonances) generally lead
to complications concerning the structure of the effective theory. In particular, the power count-
ing scheme, which determines the ordering of the perturbation series, can only be maintained
using specific renormalization prescriptions for loop graph contributions. Such renormalization
schemes will be worked out in chapters 2 and 3. In chapters 4 and 5, the resonance fields will
not be included explicitly in the theory. Instead, we will employ a nonperturbative method
(the Bethe-Salpeter integral equation) to describe the meson-baryon scattering amplitude in a
resonance-dominated process (kaon electroproduction). Unlike perturbation theory, this non-
perturbative ansatz is suited to generate resonances dynamically. However, the price to be
paid is that some field-theoretical constraints are usually not met in such nonperturbative ap-
proaches. It is the aim of the analysis in chapter 4 to devise a method which implements the
principle of gauge invariance in this extension of ChPT. In chapter 5, we will apply our method
to the description of kaon electroproduction on the proton, a process under experimental in-
vestigation at several facilities at e.g. MAMI, ELSA, Spring-8 and GRAAL.

i



Contents

1 Introduction 1
1.1 Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Chiral perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Baryon chiral perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Inclusion of resonance fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.5 Unitarized chiral perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Infrared regularization with vector mesons and baryons 1 23
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2 IR regularization in the pion-nucleon system . . . . . . . . . . . . . . . . . . . . 24
2.3 IR regularization for vector mesons and pions . . . . . . . . . . . . . . . . . . . 26
2.4 Pion-nucleon system with explicit meson resonances . . . . . . . . . . . . . . . . 30
2.5 Application: Axial form factor of the nucleon . . . . . . . . . . . . . . . . . . . 34
2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Quark mass dependence of the mass of the Roper(1440) 2 42
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Effective Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Chiral corrections to the Roper mass . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Quark mass dependence of the Roper mass . . . . . . . . . . . . . . . . . . . . . 48

4 Gauge invariance in unitarized ChPT 3 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2 Complex scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Weinberg-Tomozawa term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.4 Higher order interaction kernels . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 Unitarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5 Threshold kaon photo-and electroproduction 4 64
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

1The contents of this chapter have been published in Eur. Phys. J. C. 58 (2008) 407. [arXiv:0808.3174
[hep-ph]](http://arxiv.org).

2The contents of this chapter have been published in Phys. Lett. B 641 (2006) 294 [arXiv:hep-lat/0608001].
3The contents of this chapter have been published in Phys. Rev. C 72 (2005) 065201 [arXiv:hep-ph/0508307].
4The contents of this chapter have been published in Eur. Phys. J. A 34 (2007) 161 [arXiv:0709.3181 [nucl-

th]].

ii



5.2 Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.3 Photo- and electroproduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.5 Conclusions and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Outlook 88

A Explicit expression for IIR

MV
90

B Alternative derivation of IIR

MBV
92

C Decomposition of infrared regularized loop integrals 94

D Ward identity for general interaction kernels 96

E Solution of the Bethe-Salpeter equation 98

F UV-divergences in the Bethe-Salpeter equation 100

G Bethe-Salpeter approach with off-shell kernel 103

H Loop integrals for the electroproduction amplitude 105

I Decomposition of the electroproduction amplitude 110

J Invariant amplitudes for the electroproduction process 115

iii



Chapter 1

Introduction

1.1 Quantum chromodynamics

It is widely believed by theoretical physicists today that all fundamental interactions observed
in Nature so far can be described by quantum field theories. In order to make this assumption
plausible, we shall quote the following ’theorem’ stated by S. Weinberg:

“It is very likely that any quantum theory that at sufficiently low energy and large distances
looks Lorentz invariant and satisfies the cluster decomposition principle1 will also at sufficiently
low energy look like a quantum field theory.” [2]

There is a set of quantum field theories, called the Standard Model, that describes very well
the interactions of the fundamental constituents of matter, fermions called leptons and quarks,
with the force fields pertaining to the electromagnetic, the weak and the strong interaction. By
the time of this writing, there is no clear evidence for observations contradicting the Standard
Model. However, there is little doubt among theoretical physicists that this model will have to
be modified in one way or the other. Notably, gravity is not included in the Standard Model.
In this work, we are mostly concerned with Quantum Chromodynamics (QCD), which is a
non-Abelian gauge field theory. It is the part of the Standard Model that describes the strong
interactions between quarks and gluons, the latter being the gauge field quanta of the theory.
The QCD Lagrangian is given by

LQCD = q̄if{iγµDµ,ij − δijmf}qjf −
1

4
Ga
µνG

a,µν − g2θ

64π2
Ga
µνG̃

a,µν . (1.1)

In the above expression, and in the following, a summation over repeated indices is always
implied (unless stated otherwise). In eq. (1.1), D is the gauge-covariant derivative

Dµ,ij = δij∂µ + igtaijA
a
µ .

The quark fields are collected in the spinor q. There are six different kinds of quarks, labeled
by the ’flavor’ index f = {u, d, c, s, t, b}. To each flavor, a different quark mass parameter

1Loosely speaking, this principle requires that “distant experiments give uncorrelated results” [2]. For a
more rigorous statement, see chapter 4 of [3].
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mf is associated. Quarks of flavor u, c and t carry an electric charge of +2/3, while d, s, b-
quarks have charge −1/3 (in units of the elementary charge e = 1, 602 · 10−19C). Moreover,
there is a quantum number named color assigned to the quarks, labeled by the color indices
{i, j, . . .} which run over three colors r, b, g. It is this color charge which is the source of the
strong interaction mediated by the gluon gauge fields Aaµ. The strength of this interaction is
measured by the coupling parameter g. The gauge group is SU(3)c, the set of special unitary
transformations acting in color space, and the corresponding Lie algebra is spanned by the
generators ta = λa/2, where λa denotes the well-known Gell-Mann matrices. By definition,
the generators are subject to the algebra [ta, tb] = ifabctc, where fabc are the SU(3)c structure
constants. From the gluon fields one can build the gauge-covariant field strength tensor

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAbµA

c
ν

and its dual,
G̃a,µν = ǫµναβGa

αβ .

Due to the presence of the Levi-Civita tensor ǫ in the definition of the dual field strength tensor
G̃, the last term in the QCD Lagrangian of eq. (1.1) would be responsible for CP violation
in strong interaction reactions. As there is no experimental evidence for this, we will assume
henceforth that the so-called vacuum angle θ equals zero.
In the following chapters, our interest will be focused on the analysis of QCD at low energies.
There, the c, t and b quarks, being of considerably larger mass than the remaining three quark
flavors, are frozen, i.e. their presence reflects itself only in the form of local couplings of the other
fields of the theory, as a consequence of the Heisenberg uncertainty principle. Consequently,
the heavy quarks can be integrated out of the theory (in the sense of the path integral), leaving
us with only the light quark flavors u, d, s and the gluons as dynamical degrees of freedom. In
many applications, even the s-quark is integrated out, and only the two lightest flavors u, d
remain as explicit degrees of freedom of the theory.
What is more important is the fact that the coupling g is not a constant, but depends on the
energy scale of the physical reaction under consideration. The reason for this is that g is subject
to renormalization, due to gluon and quark loop contributions to QCD matrix elements. For
energies of at least a few GeV, the coupling is small, so that a perturbative expansion of the
required matrix elements in powers of g will generally be applicable. This situation is usually
referred to as asymptotic freedom: for very high energies (or equivalently, at short distances),
the quarks effectively behave like free particles [4, 5]. In the region of low energies (energies
less than about a GeV), however, the coupling is large, which renders a direct perturbative
treatment of the theory useless. One direct way to proceed is given by the method of Lat-
tice QCD, which is the attempt to evaluate the QCD path integral numerically on a discrete
space-time lattice of finite volume, employing Monte Carlo sampling. Comprehensive intro-
ductions to this field can be found in [6, 7]. At present, most lattice simulations of QCD are
restricted to pion masses Mπ ≥ 250 MeV (whereas in the real world Mπ ∼ 140 MeV), due to
the growth of computational cost with increasing lattice size. One therefore needs a systematic
way to extrapolate the lattice results to physical masses. We will provide an example for such
an extrapolation formula in chapter 3. In this work, we do not make use of lattice simulation
techniques. Instead, we shall follow another path that leads to a model-independent description
of QCD Green functions, which is provided by the framework of effective field theories.
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The effective degrees of freedom at low energies are the hadrons (baryons and mesons) formed
from the quarks and gluons. This observation, together with the theorem by Weinberg cited
above, leads to the following idea. Assuming that QCD is the correct choice as the underlying
theory of strong interactions, and knowing the effective degrees of freedom emerging from
this underlying theory at low energies, we can try to construct the most general quantum field
theory (with the hadrons as fundamental fields appearing in the corresponding Lagrangian) that
is consistent with all the symmetries and symmetry-breaking patterns of LQCD. According to
Weinberg’s approach to quantum field theories (first spelled out in [8]), this is the most general
ansatz for a quantum theory describing low-energy hadron interactions consistent with Lorentz
invariance, the cluster decomposition principle, and the symmetries specific for QCD. The
effective Lagrangian will contain infinitely many terms, which are classified as unrenormalizable
in the usual sense. Therefore, one needs an ordering scheme that allows to select the terms
which give the leading contributions to the low-energy expansion of QCD matrix elements (or,
more generally, to the low-energy expansion of the generating functional Z). Details on the
construction and ordering of the effective Lagrangian will be given in the next section. For the
rest of this section, we will focus on an approximate symmetry of the QCD-Lagrangian, which
will turn out to be of fundamental importance for the construction of the effective field theory.
As mentioned above, it is legitimate to keep only the three lightest quark flavors as active
degrees of freedom when considering QCD at low energies. The masses of the remaining quarks
are known to be very small compared to the typical hadronic scale, taken as e.g. the proton
mass of roughly 1 GeV. In a first step, one can thus approximate the QCD Lagrangian by

L0 = iq̄ /Dq − 1

4
Ga
µνG

a,µν , (1.2)

and treat the mass terms of the light quarks as a perturbation. In the last equation, the
quark spinor q now only contains the light quarks, q = (u, d, s)T . Furthermore, we used the
common abbreviation /D ≡ γµD

µ, and left out color and flavor indices. The quark spinor q
can be decomposed into so-called left-handed and right-handed components, making use of the
chirality projectors for Dirac particles: q = qL + qR, with

qL =
1

2
(1 − γ5)q, qR =

1

2
(1 + γ5)q.

In the full QCD-Lagrangian, left-and right-handed quark fields are coupled by the mass terms.
In L0, however, the components of different chirality do not communicate - they appear in a
completely decoupled form: Standard Dirac matrix algebra yields

iq̄ /Dq = iq̄L /DqL + iq̄R /DqR.

As a consequence, L0 is invariant under independent global unitary transformations of the
left-and right-handed quark fields in flavor space,

qL → LqL, qR → RqR,

where L ∈ U(3)L, R ∈ U(3)R. The full symmetry group can be decomposed according to

U(3)L × U(3)R = SU(3)V × SU(3)A × U(1)V × U(1)A.
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The subscripts V and A stand for vector and axial-vector transformations, defined by R = L
and R = L†, respectively. The symmetry associated with this transformation group is usually
referred to as ’chiral symmetry’, and the limit of the QCD Lagrangian in which mu, md, ms → 0
is called the ’chiral limit’ of QCD.
Given that the strategy to treat the light quark mass term as a small perturbation is valid,
one must now ask whether the above symmetry of the Lagrangian is (at least approximately)
realized in Nature, so that e.g. the hadron spectrum can be organized in multiplets correspond-
ing to the symmetry group. The irreducible subgroup U(1)V can in fact be associated with
baryon number conservation (note that this particular subgroup is not only a symmetry for the
Lagrangian in the chiral limit, but also for nonvanishing quark masses). In contrast to that, the
axial U(1)A symmetry is broken by an anomaly [9,10]. This means that these transformations,
though leaving the classical action invariant, do not form a symmetry of the quantum theory,
because they induce a change in the measure of the path-integral [11].
Let us turn to the remaining symmetry group SU(3)L × SU(3)R = SU(3)V × SU(3)A. As ex-
plained in [12], there are very convincing reasons to believe that the vectorial subgroup SU(3)V
is left unbroken in the chiral limit. Indeed, the observed lowest-lying hadron states form ap-
proximate multiplets of this flavor symmetry. Small violations of this symmetry pattern can
be traced back to light quark mass differences, and to effects due to the electromagnetic inter-
action. There are, on the other hand, strong indications that the SU(3)L × SU(3)R symmetry
is spontaneously broken down to its vectorial subgroup SU(3)V . It can readily be seen from
the hadron spectrum that the full SU(3)L × SU(3)R symmetry can not be realized (not even
approximately), as this would imply a parity-doubling of the hadron-states, which is not ob-
served. This leads us to conjecture that the symmetry in question is not realized in the familiar
Wigner-Weyl mode, leading to symmetry multiplets in the energy spectrum, but in the Nambu-
Goldstone mode [13, 14], in which case the symmetry of the Lagrangian is not shared by the
ground state of the theory. This spontaneous breaking of a symmetry necessarily leads to the
existence of massless spin zero particles, called Goldstone bosons. More precisely, the number of
different Goldstone boson fields present in the theory is given by the number of generators of the
spontaneously broken symmetry group, and the Goldstone bosons have the quantum numbers
of those generators. This is the content of Goldstone’s theorem [14]. The number of generators
of SU(N) is N2 − 1, consequently, in our case of the product group SU(3)L × SU(3)R broken
down to SU(3)V , there would have to be eight massless Goldstone bosons with the quantum
numbers of the generators of SU(3)A, i.e. an octet of eight pseudoscalar mesons. They would
have to be massless in the idealized case where the light quark masses are exactly zero. For
nonvanishing, but small, quark masses, they should still be lighter than the other hadrons, the
masses of which is very roughly of the order of the typical hadronic scale referred to above,
that is, in the GeV range (were this not the case, the treatment of the light quark masses as
a small perturbation would be questionable). Indeed, the lightest hadrons one finds are the
pseudoscalars π±, π0, K±, K0, K̄0, η with masses given by Mπ ≈ 138 MeV, MK ≈ 495 MeV and
Mη ≈ 547 MeV [15]. This has to be compared to the mass of the lowest-lying hadron that
is not an approximate Goldstone boson, the rho resonance, with mass Mρ ≈ 770 MeV. We
can expect that correction terms with respect to the chiral limit are suppressed by factors of
roughly MK/Mρ ≈ 0.65 for chiral SU(3)L × SU(3)R symmetry, while the suppression factors
are of order Mπ/Mρ ≈ 0.18 when considering only chiral SU(2)L × SU(2)R broken down to
SU(2)V . In the latter case, the s-quark is integrated out, and there is only a triplet of Gold-
stone bosons, namely, the pions. Obviously, it is the SU(2)-case where we can expect a better
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convergence of the perturbative expansion around the chiral limit2.
In summary, we are dealing here with a spontaneously broken approximate symmetry [16], with
explicit symmetry breaking given by nonvanishing quark masses. In the next section, we will
show how this symmetry pattern is used to arrive at a systematic low-energy expansion of QCD
matrix elements in terms of an effective field theory involving the lowest-lying hadron states.

1.2 Chiral perturbation theory

In this section, we will see how to construct the effective field theory of QCD which describes
the interaction of the Goldstone bosons at low energies. To this end, it is very useful to promote
the global SU(3)L × SU(3)R-symmetry studied in the previous section to a local symmetry,
by means of the technique of external sources. For a general introduction to functional meth-
ods in quantum field theory, in particular to the method of external sources, we refer to the
textbook [17]. Let us introduce an additional term in L0, eq. (1.2), which contains some exter-
nally assigned sources v, a, s, p, being of vector, axial-vector, scalar and pseudoscalar character,
respectively:

L′ = L0 + q̄[γµ(v
µ + γ5a

µ) − (s− ipγ5)]q. (1.3)

The external fields v, a, s, p are hermitean matrices in flavor space. We do not include the
singlet components of v and a, so that tr vµ = tr aµ = 0. With this condition, the generating
functional, defined by

eiZ[v,a,s,p] = 〈0 | T exp

(

i

∫

d4xq̄[γµ(v
µ + γ5a

µ) − (s− ipγ5)]q

)

| 0〉, (1.4)

is invariant under local SU(3)V × SU(3)A = SU(3)L × SU(3)R transformations, provided that
the external source fields are transformed according to

vµ + aµ ≡ rµ → R(vµ + aµ)R
† + iR∂µR

†, (1.5)

vµ − aµ ≡ lµ → L(vµ − aµ)L
† + iL∂µL

†, (1.6)

s→ RsL†, p→ RpL†, (1.7)

where L ∈ SU(3)L, R ∈ SU(3)R. In eq. (1.4), T is the usual time ordering operator, and
Z is the generating functional of connected Green functions (see e.g. [17]). The quark mass
matrix, given by M = diag(mu, md, ms), will be included in the external scalar field s, so
that s = M + . . ., and is thus treated as an external perturbation. The vacuum expectation
value on the r.h.s. of eq. (1.4) is represented as a path integral over all quark and gluon field
configurations. In a covariant quantization procedure, the measure of the path integral must
also include the Fadeev-Popov determinant. For a detailed account on the quantization of
non-abelian gauge field theories, we again refer to standard textbooks [16–18], and references
cited therein.
The rationale for the introduction of external sources is twofold. First, every Green function of
quark current operators can be derived from the generating functional of eq. (1.4) by applying

2Actually, it turns out that, in the pure mesonic sector of the effective theory, the corrections are suppressed
by factors of (MK/Mρ)

2 ≈ 0.4 and (Mπ/Mρ)
2 ≈ 0.03, so that the above estimates are too pessimistic in that

case.
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multiple functional derivatives with respect to v, a, s and p to this functional. Secondly, the for-
malism of external sources is well suited for the implementation of additional interactions. For
example, an electromagnetic coupling to the quark fields can be introduced via vµ = −eQAµ,
where A is the photon field and Q = diag(2/3,−1/3,−1/3) is the quark charge matrix.

The key idea of the effective field theory treatment of QCD can now be expressed by means of
the formula

eiZ[v,a,s,p] =

∫

[dU ] exp

(

i

∫

d4xLeff(U, v, a, s, p)

)

. (1.8)

The path integral measure is written as [dU ], where U comprises the Goldstone boson fields in
a suitable way, as specified below. By expressing the generating functional of QCD in terms of
a field theory involving only the Goldstone bosons as dynamical degrees of freedom, one makes
use of the assumption that the low-energy structure of QCD is dominated by these particles. It
is important to note that formula (1.8) is not suited for an analysis of QCD at energies where
other degrees of freedom, like e.g. baryons or meson resonances like the rho, become important
for the dynamics. In eq. (1.8), all those high-energy degrees of freedom have been integrated
out, their effects being encoded in the local terms of Leff . Moreover, it is crucial here that QCD
confines the quarks and gluons, so that these never appear as asymptotic states. Otherwise,
massless gluons and light quarks could yield important contributions to the long-range sector
of the strong interaction physics. Due to confinement, the long-range interaction is presumably
dominated by the (approximately) massless Goldstone bosons. We have already seen in the
previous section that the Goldstone bosons can be identified (in the SU(3) case) with the π,K
and η mesons.
It has been shown by Leutwyler [19] that, in the absence of anomalies, the Ward identities
of QCD ensure that the low energy properties of the QCD Green functions can be analyzed
in terms of an effective field theory employing an effective Lagrangian symmetric under local

SU(3)L × SU(3)R transformations. Given that the Goldstone bosons are the only important
degrees of freedom at very low energies, this justifies eq. (1.8), as well as the seemingly artifi-
cial construction involving external source fields and a local version of the SU(3)L × SU(3)R
invariance, which is only a global symmetry for the original Lagrangian of QCD, eq. (1.1).

In the remainder of this section, we will see how to construct the effective Lagrangian Leff

which describes the interaction of the Goldstone bosons. As noted in the previous section,
the effective Lagrangian must share all the symmetries of LQCD. In particular, the Goldstone
boson fields φ should transform under some realization of the chiral symmetry group G ≡
SU(3)L×SU(3)R, and the invariants formed from these fields are then candidates for terms in
the effective Lagrangian (of course, these terms must also be consistent with Lorentz invariance
and invariance under the discrete symmetry transformations C, P and T ).
We start in a fairly general way and write the transformation of the Goldstone boson fields
under the group G as

φ→ φ′ = F (g, φ), g ∈ G, (1.9)

where the function F is required to be continous, and subject to the group homomorphism
property

F (g1, F (g2, φ)) = F (g1g2, φ). (1.10)

Furthermore F is defined such that F (e, φ) = φ, where e is the unit element of G. The vacuum
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is given by the state where no φ excitation is present, φ ≡ 0. Consider the set H of elements
of G that leave the vacuum invariant: h ∈ H ⇔ F (h, 0) = 0. From the composition law of
eq. (1.10) we note that H is a subgroup of G. We have assumed a scenario of spontaneous
symmetry breaking where SU(3)A transformations do not leave the vacuum invariant, while
SU(3)V transformations do. Therefore, the subgroup H must be identified with SU(3)V . Every
configuration φ can be reached by a group transformation acting on the vacuum, so that the
function

g → F (g, 0) = F (gh, 0) ∀h ∈ H

can be seen as a mapping from the coset space G/H to the space of Goldstone boson fields. It
is injective because

F (g1, 0) = F (g2, 0) ⇒ 0 = F (g−1
1 , F (g1, 0)) = F (g−1

1 , F (g2, 0)) = F (g−1
1 g2, 0) ⇒ g−1

1 g2 ∈ H.

Moreover, the dimension of the coset space G/H is equal to the dimension of the space of
Goldstone boson fields, which is given by the number of generators of the transformation group
which does not leave the vacuum invariant. Consequently, we have established a one-to-one
correspondence of the Goldstone boson fields with the elements of G/H .
Every element of G can be written as

g = (gL, gR) = (1, gRg
−1
L )(gL, gL) ≡ qh,

which amounts to the choice of a representation (1, gRg
−1
L ) for q ∈ G/H . The action of the

group G on G/H is then given by

(L,R)(1, gRg
−1
L ) = (L,RgRg

−1
L ) = (1, RgRg

−1
L L−1)(L,L). (1.11)

In the foregoing equations, the subscripts R,L refer to the decomposition SU(3)L× SU(3)R =
SU(3)V × SU(3)A as in the previous section. The last factor in eq. (1.11) can be discarded
in G/H since (L,L) ∈ SU(3)V ∼ H . Therefore, every element of G/H can be represented by
U := gRg

−1
L , which transforms under the full group G according to

U(x) → U ′(x) = RU(x)L†, L, R ∈ SU(3)L, SU(3)R. (1.12)

Since we are dealing here with a local symmetry, U is a function of the space-time coordinates
x. We still have the freedom to choose coordinates on the group manifold G/H . The matrix
U is a unitary element of G/H and a function of the pseudoscalar Goldstone boson fields φ. It
is convenient to choose the field variables such that

U = exp

(

iφ

F

)

, (1.13)

where the hermitean matrix φ is given by

φ = φaλa =
√

2







1√
2
π0 + 1√

6
η π+ K+

π− − 1√
2
π0 + 1√

6
η K0

K− K̄0 − 2√
6
η






, (1.14)

while F is a constant of mass dimension one, which in a further examination of the theory turns
out to be the pion decay constant in the chiral limit, F ∼ 87 MeV [20]. Of course, physical
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observables are always independent of the choice for the field parametrization (off-shell matrix
elements will however depend on this choice in general).
We are now in a position to construct the effective Lagrangian describing the interaction among
the Goldstone bosons. To guarantee simple transformation laws of the various building blocks,
the Lagrangian is written in terms of the field matrix U which transforms linearly under G,
see eq. (1.12). The effective Lagrangian is an infinite series of local terms involving the field
U and multiple derivatives acting on it, as well as the external source fields v, a, s, p. Since we
are attempting a low-energy expansion of the generating functional, Goldstone boson momenta
are to be considered as being small compared to the hadronic scale ∼ 1 GeV, usually referred
to as the scale of chiral symmetry breaking and denoted by Λχ. The effective Lagrangian will
therefore be ordered according to the number of derivatives contained in the respective terms:
terms with higher numbers of derivatives are suppressed by factors of O(q), where q generically
stands for any small Goldstone boson momentum. The corresponding expansion of matrix
elements in powers of q goes by the name of Chiral Perturbation Theory (ChPT) [8, 20, 21].
The suppression factors in higher-order terms turn out to be of the form q/(4πF ), where the
denominator is numerically close to the hadronic scale Λχ. Disregarding the external sources
for the moment, the only term in the effective Lagrangian with no derivatives is an unimportant
constant proportional to some power of U †U = 1. There can be no term with only a single
derivative because of Lorentz invariance (the Lagrangian must of course be a Lorentz scalar).
At second order in the derivative expansion, there is a unique term

L(2)
eff =

F 2

4
〈∂µU †∂µU〉 + . . . . (1.15)

Here the brackets 〈· · · 〉 denote the trace in flavor space, and the dots stand for terms involving
the external fields. The constant prefactor has been chosen such that the standard kinetic term
for the scalar field φ is reproduced when expanding the exponential U , i.e.

L(2)
eff =

1

2
∂µφ

a∂µφa +O(φ4, v, a, s, p).

The field theory specified by eq. (1.15) is usually referred to as the non-linear sigma model.
To make it invariant under local chiral transformations, we introduce a covariant derivative
involving the external fields v and a:

∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ). (1.16)

For consistency, the external fields v, a should thus be counted as O(q), so that ∇µU is of order
q. Derivatives acting on the external fields will also produce factors of order q. For reasons that
will become clear in a moment, the external scalar field s is counted as O(q2), so that it can
only be included linearly in the second order effective Lagrangian. The appropriate invariant
expression for L(2)

eff including s is

L(2)
eff =

F 2

4
〈∇µU

†∇µU〉 +
F 2

2
B〈sU † + Us†〉, (1.17)

where B is a constant and s has to transform as in eq. (1.7) for the last term to be invariant
under chiral transformations. If we fix the external field at the value s = M (remember that M
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stands for the quark mass matrix), we effectively produce the explicit chiral symmetry breaking
given by the quark mass terms of LQCD. The Lagrangian can thus be rewritten as

L(2)
eff =

F 2

4
〈∇µU

†∇µU〉 +
F 2

2
B〈M(U + U †)〉. (1.18)

Expanding the second term in powers of the Goldstone boson fields φ, one finds mass terms for
the π,K and η mesons (first derived by Gell-Mann, Oakes and Renner [22]):

M2
π± = 2Bm̂,

M2
π0 = 2Bm̂+O

(

(mu −md)
2

ms − m̂

)

,

M2
K± = B(mu +ms), (1.19)

M2
K0 = B(md +ms),

M2
η =

2

3
B(m̂+ 2ms) +O

(

(mu −md)
2

ms − m̂

)

,

where m̂ = 1
2
(mu+md). The corrections proportional to (mu−md)

2 are related to π0-η mixing.
These terms are very small compared to the leading ones and can be neglected in most cases.
On-shell Goldstone boson momenta satisfy q2 = M2

φ, which in connection with the above mass
formulae explains the counting rule s ∼ O(q2). Of course, there will be corrections of higher
orders in the quark masses to these mass relations. Letting the functional derivative δ/δs act
on both sides of eq. (1.8) yields, to lowest order in momenta and quark masses,

〈0 | ūu | 0〉 = 〈0 | d̄d | 0〉 = 〈0 | s̄s | 0〉 = −F 2B(1 +O(M)), (1.20)

which expresses the a priori unknown constant B in terms of the scalar quark condensates
〈0 | q̄q | 0〉 and the pion decay constant F . Note that we are employing here the scenario of
standard ChPT, where B is treated as a large quantity of order one. For an alternative scenario,
where the scalar quark condensates are assumed to be small parameters, we refer to [23]. As a
further side-remark, we note that the mass relations of eqs. (1.19) yield the result

3M2
η = 4M2

K −M2
π , (1.21)

to leading order in the quark mass expansion, and in the isospin limit where mu = md. Relation
(1.21) is known as the Gell-Mann-Okubo mass formula and is experimentally found to be
satisfied up to a few percent.
At lowest order, the effective Lagrangian method employing L(2)

eff reproduces all results derived
earlier using the method referred to as current algebra [24]. The method of effective Lagrangians
is, however, much more general, because corrections to the lowest-order results can be derived
in a systematic fashion in that framework. The Lagrangian is an infinite series of terms

Leff = L(2)
eff + L(4)

eff + L(6)
eff + . . .

where the superscript refers to the ’chiral order’ of the operators contained in the Lagrangian,
i.e. the power of q associated to these operators, which is computed using the counting rules
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specified above. For later reference, we write down L(4)
eff , which was first constructed by Gasser

and Leutwyler [20, 21]:

L(4)
eff =

10
∑

i=1

LiPi +

12
∑

i=11

HiPi , (1.22)

where the operator structures Pi are given by

P1 = 〈∇µU
†∇µU〉2, P2 = 〈∇µU

†∇νU〉〈∇µU †∇νU〉,
P3 = 〈∇µU

†∇µU∇νU
†∇νU〉, P4 = 〈∇µU

†∇µU〉〈χ†U + χU †〉,
P5 = 〈∇µU

†∇µU(χ†U + U †χ)〉, P6 = 〈χ†U + χU †〉2,
P7 = 〈χ†U − χU †〉2, P8 = 〈χ†Uχ†U + χU †χU †〉,
P9 = −i〈F µν

R ∇µU∇νU
† + F µν

L ∇µU
†∇νU〉, P10 = 〈U †F µν

R UFL
µν〉,

P11 = 〈FR
µνF

µν
R + FL

µνF
µν
L 〉, P12 = 〈χ†χ〉.

In addition to previously defined building blocks, we have used here the abbreviations

χ = 2B(s+ ip), F µν
R,L = ∂µ(vν ± aν) − ∂ν(vµ ± aµ) − i[vµ ± aµ, vν ± aν ]. (1.23)

The constants Li and Hi are not constrained by the symmetries imposed on the effective La-
grangian. Rather, these so-called low-energy constants (LECs) are in principle determined by
the effects of those degrees of freedom which are not explicitly contained in Leff . From the
viewpoint of the effective field theory, the LECs are free parameters which have to be fixed us-
ing experimental input (there is, however, no guarantee that there exists enough experimental
information so that this can always be done in practice for any LEC in question).

The number of LECs increases when going to higher chiral order. For example, L(6)
eff is paramet-

rized by 90 LECs in the three-flavor case [25]. There is no denying that, in general, the effective
field theory will lose predictive power when considering higher-order effects. On the other hand,
only a subset of operators will contribute to a certain process under consideration, so that it is
not necessary to pin down all the LECs showing up in the effective Lagrangian at a given order.

As mentioned at the beginning of this section, we have restricted the symmetry group to
SU(3)V × SU(3)A, and we have dropped the singlet pieces of the external sources v, a. Other-
wise, we would have to deal with anomalies (the axial U(1)A anomaly mentioned in the previous
section, and the chiral anomaly [26, 27], related to the external singlet fields ∼ tr vµ, tr aµ. In
this more general case, we would have to include an additional piece in the fourth order La-
grangian, which accounts for the chiral anomaly. It was first given by Wess and Zumino [28] (see
also [20,29] for a discussion of these issues). Since we will only treat the non-anomalous sector of
low-energy QCD in this work, we shall disregard these additional contributions in the following.

Now that we have discussed the effective Lagrangian, we must see how to set up the corre-
sponding perturbation theory to compute all kinds of matrix elements. The power counting
scheme for the effective Lagrangian can obviously be translated into a corresponding power
counting for the vertices in Feynman graphs pertaining to this field theory. The propagators
of the Goldstone boson fields φa read, in momentum space,

i∆(q) =
i

q2 −M2
φ
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and should apparently be counted as O(q−2). This rule will also be used when the corresponding
internal line is part of a loop, where the loop momentum q is integrated up to infinity. We
would like to demonstrate that this rule leads to a consistent counting scheme for Feynman
diagrams using dimensional regularization. The simplest loop integral looks like

Iφ =

∫

ddq

(2π)d
i

q2 −M2
φ

(1.24)

and is sometimes referred to as a ’tadpole-type’ integral. Here d is the usual space-time dimen-
sion parameter of dimensional regularization. As an additional rule, the measure of the loop
integration is counted as O(qd). The loop integral Iφ should therefore be of chiral order d− 2.
Indeed, one finds after the usual Wick rotation to Euclidean four-momenta that

Iφ = Md−2
φ

Γ(1 − d
2
)

(4π)
d

2

(1.25)

(remember that Mφ is of order O(q)). It is crucial that we are working here with a mass-
independent regularization scheme - otherwise, possible power divergences would spoil the
counting rules for the loop graphs. To avoid this complication, we will be using dimensional
regularization throughout in this work.
According to the above counting rules, a general Feynman graph with Vn vertices from L(n)

eff ,
I internal Goldstone boson lines and L loops will yield an amplitude A of chiral order qD(A),
where the chiral dimension D is given by

D(A) = dL− 2I +
∑

n

nVn. (1.26)

Using the topological identity

L = I −
∑

n

Vn + 1,

which simply expresses L as the number of momenta in the diagram that are not fixed by
energy-momentum conservation, we find

D(A) = (d− 2)L+
∑

n

(n− 2)Vn + 2. (1.27)

This already shows that, for d ≥ 2, the contributions to the amplitude will be suppressed for
an increasing number of loops. For definiteness, we will put d = 4 in the following. The lowest
possible value of the chiral dimension is then given by D(A) = 2, attributed to graphs with

no loops (tree graphs) and an arbitrary number of vertex insertions from L(2)
eff . At next-to-

leading order, there will be contributions from graphs with one loop and several vertices from
the second-order Lagrangian, and tree graphs with only one insertion from L(4)

eff , and some

insertions from L(2)
eff . At order q6, two-loop graphs and vertices from L(6)

eff enter, etc. It is clear
from the above formula for D(A) that, to every fixed chiral order, only a finite number of
graphs will contribute.
Graphs with loops contain ultraviolet divergences for d → 4 and require renormalization. A
quantum field theory only makes sense if there are counterterms available which absorb these
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divergences3. This is not a problem for the effective field theory considered here: As long
as we include all possible terms consistent with the required symmetries in the Lagrangian,
every divergence generated by loop graphs derived from Leff can be accounted for by a suitable
counterterm derived from the same Lagrangian. Here we have assumed that a regularization
scheme is used which maintains the symmetries of the theory. This is the case for dimensional
regularization. For example, the divergences occuring in a one-loop calculation up to order
O(q4) can always be compensated by renormalizing the LECs Li in L(4)

eff , see eq. (1.22),

Li = Lri (µ) + kiλ̄,

where the finite numerical coefficients ki are given by the corresponding β-function, while the
divergence is contained in

λ̄ =
µd−4

16π2

[

1

d− 4
− 1

2
(ln(4π) + 1 + Γ′(1))

]

.

The subtraction of the term proportional to λ̄ from the one-loop amplitudes specifies a cer-
tain scheme within dimensional regularization, called the modified minimal subtraction scheme
(MS for short). We have also introduced an arbitrary mass parameter µ, known as the scale
of dimensional regularization. The finite (renormalized) parts Lri depend on this scale, as well
as the subtracted loop graphs. The full amplitude, including the loops and all possible coun-
terterms up to a prescribed chiral order, is however independent of the choice for µ.
We have now collected all the tools necessary to start calculations in the meson sector of
ChPT, where only the Goldstone bosons π,K,η are treated as active degrees of freedom. For
many interesting applications in low-energy hadron physics, extensions of this framework are
required. With the effective field theory constructed in this section, meson-baryon scattering at
low energies, for example, can not be examined in a systematic way analogous to meson-meson
scattering, where the above methods can be applied. A pure meson-field theory is simply not
well suited for a treatment of processes where other particles like e.g. baryons play a major
role. In the next two sections, we shall see how the method of evaluating chiral corrections in
such more complicated situations can be systematized.

1.3 Baryon chiral perturbation theory

The aim of this section is to compute strong interaction matrix elements of the form

F(~p ′, ~p, v, a, s, p) = 〈B′(~p ′) | B(~p)〉cv,a,s,p , (1.28)

by means of a low-energy expansion, in analogy to the method explained in the previous
section. B and B′ denote the incoming and the outgoing baryon, with three-momenta ~p and ~p ′,
respectively. The superscript c stands for ’connected’, indicating that only connected Feynman
diagrams contribute to F . In close analogy to eq. (1.4), the above transition amplitude is
evaluated in the presence of external sources v, a, s, p. We restrict ourselves here to the single-
baryon sector, so that e.g. processes like baryon-baryon scattering are not in the scope of the

3The general theory of renormalization is most comprehensively reviewed in [30].
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present section. More specifically, we include in our analysis only the baryon ground state octet
of flavor SU(3), parametrized in matrix form as

B = Baλa =







1√
2
Σ0 + 1√

6
Λ Σ+ p

Σ− − 1√
2
Σ0 + 1√

6
Λ n

Ξ− Ξ0 − 2√
6
Λ






. (1.29)

Under the vectorial subgroup H = SU(3)V , B of course transforms as an octet. There are
various possible choices for the transformation behaviour of B under the full chiral transforma-
tion group, corresponding to field redefinitions of the baryon fields. They all lead to the same
physical results, though off-shell amplitudes in general depend on such choices of field variables.
In the SU(3)-case, it is common use to require the following transformation law,

B → B′ = K(L,R, U)BK†(L,R, U), (1.30)

where the so-called compensator field K is implicitly defined by the transformation law for the
square root of U (written as u),

u→ u′ = RuK† = KuL†, u2 = U. (1.31)

It may be seen that K is itself a unitary matrix. Remembering eqs. (1.5,1.6,1.12), it is straight-
forward to confirm that

uµ := iu†∇µUu
† (1.32)

transforms according to uµ → KuµK
† under local SU(3)L × SU(3)R. Due to the covariant

derivative entering in its definition, it is clear that uµ (sometimes called the ’chiral vielbein’)
is of chiral order O(q). It can be used as a building block in the lowest order effective meson-
baryon Lagrangian. One finds [31, 32]

L(1)
MB = 〈B̄(i /D −m0)B〉 − D

2
〈B̄γµγ5{uµ, B}〉 − F

2
〈B̄γµγ5[uµ, B]〉. (1.33)

Here we introduced the covariant derivative

DµB = ∂µB + [Γµ, B],

Γµ =
1

2
(u†[∂µ − i(vµ + aµ)]u+ u[∂µ − i(vµ − aµ)]u

†), (1.34)

which acts on fields transforming according to eq. (1.30). Moreover, m0 denotes the common
baryon octet mass in the chiral limit, and the coupling constants D and F can be determined
from a fit to semileptonic baryon decays [33],

D ≃ 0.80, F ≃ 0.46.

Their sum is equal to the nucleon axial-vector coupling gA in the chiral limit. Please note that
the coupling F introduced here has nothing to do with the pion decay constant in the chiral
limit.
The superscript (1) on the l.h.s. of eq. (1.33) refers to the fact that the displayed terms in
the leading Lagrangian are of order O(q). The kinetic term (the first term on the r.h.s. of
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eq. (1.33)) is counted as O(q), though the baryon mass m0 is not small and counted as O(1).
This is because the baryon is pushed from its mass shell only by a small amount (of order O(q))
when interacting with low-energy Goldstone bosons. Further counting rules are

B, B̄ = O(1), DµB = O(1), B̄γ5B = O(q), B̄γµB = O(1), B̄γµγ5B = O(1).

Given the counting rules for the vertices from the meson-baryon Lagrangian, we can set up the
ordering of the perturbation series in almost complete analogy to the one in the pure meson
sector treated in the previous section. The only additional rule concerns the baryon propaga-
tors, which are counted as O(q−1), as one would expect after the discussion of the kinetic term
in the foregoing paragraph.
The effective field theory outlined above was worked out to one-loop order by Gasser, Sainio and
Svarc [31], and will henceforth be referred to as baryon chiral perturbation theory (BChPT).
Gasser et al. noted that, in contrast to the meson sector, dimensional regularization in com-
bination with the MS-scheme does not maintain the power counting for the loop graphs: In
general, the loop integrals will yield terms of lower chiral order than one would expect from the
näıve power counting. Therefore, strictly speaking, the ordering principle for the perturbation
series breaks down in this scheme: There is no guarantee that a graph with dozens of loops will
not contribute to the next-to-leading order result (or, for baryon masses, even to the leading
term). This undesirable feature can be traced back to the appearance of an additional mass
scale which is not of order O(q), namely, the baryon mass in the chiral limit. Subsequently,
various approaches were developed to circumvent this complication. The heavy-baryon formu-
lation of BChPT [34, 35] provides a consistent power counting by means of a non-relativistic
expansion in inverse powers of the baryon mass, at the expense of manifest Lorentz invariance,
which is only restored perturbatively in the (1/m0)-expansion. The nucleon momenta are split
into a large piece of the order of the nucleon mass, and a small residual component which
is counted as O(q). This is achieved by a velocity-dependent projector, which also serves to
divide the nucleon fields into a hard momentum component and a residual piece. The hard-
momentum component is then integrated out in the path integral, the corresponding degrees of
freedom being parametrized by an infinite series of local couplings in the new Lagrangian. The
heavy-baryon method has been most widely used in BChPT - for extensive reviews, we refer
to [36, 37]. One obvious drawback of this method is the loss of manifest Lorentz invariance.
Moreover, the non-relativistic expansion of heavy-baryon ChPT in some cases fails to converge
in parts of the low-energy region, see e.g. sec. 4.1 of [36], or sec. 3 of [38].
Taking up some earlier ideas of Ellis and Tang [39,40], Becher and Leutwyler proposed a renor-
malization scheme [38] which has the advantage of maintaining manifest Lorentz invariance,
and reproduces the correct analytic behaviour of the amplitudes in the low-energy region, while
preserving the power counting rules. This scheme was called ’infrared regularization’, and has
in the meantime been applied to many interesting processes and observables. For a recent
review, we again refer to [37]. We will show in this work that the original formulation of in-
frared regularization, designed for the treatment of the low-energy pion-nucleon system, can
be extended to the case of the inclusion of explicit meson and baryon resonance fields in the
effective Lagrangian. The corresponding extension of ChPT is reviewed in the next section.
Variants of the infrared regularization scheme will be discussed in chapters 2 and 3.
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1.4 Inclusion of resonance fields

It was already mentioned in sec. 1.2 that the effects induced by the degrees of freedom inte-
grated out in the path integral of eq. (1.8) are encoded in a string of local couplings in the
effective Lagrangians of (B)ChPT. It is also possible to include the resonance fields explicitly,
as dynamical degrees of freedom in an effective Lagrangian, which is to be constructed fol-
lowing essentially the same lines as in the previous sections, namely, one must construct the
most general Lagrangian including the resonance and Goldstone boson fields (and eventually
the baryon fields) that is consistent with all required symmetry principles. Furthermore, one
has to set up a power counting scheme to specify an ordering prescription for the perturbation
series. Assume that we have done this. In the following, we restrict ourselves to the mesonic
sector, but this restriction is not essential for the argumentation. Let LRes(R,U, v, a, s, p) be our
effective Lagrangian including the resonance fields R. Integrating out the resonances, we arrive
at a generating functional Zind which contains a series of couplings induced by the resonances
R,

∫

[dR] exp

(

i

∫

d4xLRes(R,U, v, a, s, p)

)

= eiZind(U,v,a,s,p). (1.35)

It is important to note that this will not induce any new structures in the effective Lagrangian
describing the interaction among the Goldstone bosons, since all allowed operators are already
included there. Thus the whole effect of the resonances is described by the contributions to
the LECs of Leff which are induced by the exchange of the resonances R, at least at low
energies, where the effective theory can be expected to yield meaningful results. On the level
of reaction amplitudes, this can be qualitatively illustrated as follows. The amplitude for two
soft momentum Goldstone bosons interacting through an exchange of a resonance particle R
will contain a pole at t = M2

R, where t is the momentum transfer variable of the reaction, and
MR is the mass of the resonance. For small momenta, the pole structure can be expanded as a
geometric series,

1

M2
R − t

=
1

M2
R

+
t

M4
R

+
t2

M6
R

+ . . . , t < M2
R. (1.36)

Therefore, at low energies, the resonance exchange is equivalent to a series of local couplings,
producing terms of arbitary high order in the derivative expansion. Keeping the full pole
structure in the amplitude therefore goes beyond the strict perturbative treatment of ChPT: it
amounts to a resummation of higher order terms. The terms of a chiral order beyond the order
one is working in the perturbative treatment can, strictly speaking, only be considered as an
educated guess for the most important contributions at higher chiral order, since of course not
all the higher order terms are determined in that way. Nonetheless, resummations have been
shown to provide an improved description of experimental data in many cases. Resummations
of the above kind, obtained by the inclusion of explicit resonance fields, can be particularly
useful when the included resonances R are phenomenologically known to play an important
role in the reaction under consideration. For example, it is well known for a long time that the
rho meson plays an important role in the description of the electromagnetic form factor of the
nucleon. The latter quantity has been calculated in [41], to order O(q4) in ChPT. In this work,
it was also demonstrated that the inclusion of explicit vector meson degrees of freedom leads,
through the resummation of higher order terms, to an improved description of the data in the
low-energy region, providing a curvature effect of the theoretical prediction that could not be
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generated with the truncated perturbation series.
Chiral Lagrangians with resonances have also been used to examine the numerical values of
the (renormalized) LECs appearing in the effective Lagrangians of (B)ChPT. With the above
discussion in mind, it is quite natural to expect that the lowest-lying resonances not included in
the respective Lagrangian are responsible for the main contributions to the pertinent LECs. In
fact, this so-called principle of resonance saturation has been shown to be valid in the mesonic
sector [42] as well as in the single-baryon sector [43]. Moreover, it turned out that, whenever the
vector mesons can contribute, their contributions dominate those generated by the other (axial
vector,(pseudo-)scalar...) meson resonances. This observation is summarized as vector meson
dominance in phenomenological analyses. In the baryon sector, the ∆(1232) usually yields the
most important contributions (for attempts to include the ∆-field explicitly in BChPT, we refer
to [44–49]).
Motivated by the above-mentioned principle of vector meson dominance, we shall present, in
the rest of this section, the treatment of the lowest-lying vector meson octet in the framework
of ChPT. As an SU(3) octet, the resonance fields collected in the field R transform as in
eq. (1.30), R → KRK†. Following [42,50] we employ an antisymmetric tensor field description
of the spin-1 degrees of freedom, and write

R = Wµν =
1√
2
W a
µνλ

a =







ρ0√
2

+ ω√
2

ρ+ K∗+

ρ− − ρ0√
2

+ ω√
2

K∗0

K∗− K̄∗0 −φ







µν

.

On the r.h.s. of this equation, we have written the resonance octet field in terms of the physical
fields (assuming ideal φ− ω mixing). The corresponding kinetic Lagrangian is

Lkin
W = −1

2
〈DµWµνDρW

ρν〉 +
1

4
M2

V 〈WµνW
µν〉,

The brackets 〈. . .〉 again denote the trace in flavor space, while the covariant derivative Dµ was
defined in eq. (1.34). From Lkin

W , one derives the tensor field propagator in momentum space,

T abµν,ρσ(q) =
iδab

M2
V

gµρgνσ(M
2
V − q2) + gµρqνqσ − gµσqνqρ − (µ ↔ ν)

M2
V − q2

.

Since ChPT results are valid only for soft-momentum Goldstone bosons, we will restrict our-
selves to processes where only those Goldstone bosons, or a single low-energy baryon, appear
as external particles, while the vector mesons only appear as virtual low-energy particles, rep-
resented in Feynman diagrams as internal lines through which only a small momentum of
order O(q) is flowing. Remembering the expansion of the propagator denominator displayed
in eq. (1.36), we conclude that the vector meson propagator T (q) is to be counted as O(1) in
this situation, since the resonance mass MV is O(1). Moreover, derivatives acting on Wµν will
produce powers of soft momenta of order O(q) in corresponding vertex rules.
At lowest chiral order, the interaction of the vector mesons with the Goldstone bosons is then
given by [42]

Lint
W =

FV

2
√

2
〈F+

µνW
µν〉 +

iGV

2
√

2
〈[uµ, uν]W µν〉. (1.37)

In the first term we have used the definition

F±
µν = uFL

µνu
† ± u†FR

µνu, (1.38)
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as well as the definition of uµ, see eq. (1.32). Recall that the external sources vµ, aµ are counted
as O(q), so that F±

µν is of chiral order O(q2). Also, uµ is of O(q). Therefore, Lint
W leads to

vertices of chiral order O(q2).
Of course, at some stage of the calculation of matrix elements using the theory described above,
one will also have to deal with loop graphs, with one or more vector meson internal lines being
part of the loops. In this case, the counting for the resonance propagator does not seem to be
justified, as the momentum flowing through the internal line is integrated up to infinity. In fact,
loop integrals containing resonance propagators will not scale with the chiral order following
from the näıve power counting rules. The reason is essentially the same as in BChPT, namely,
the appearance of an additional mass scale (MV in the present case). The loop integrals will
pick up contributions from the region of the vector meson propagator pole, where the loop
momentum ℓ is of order ℓ ∼ MV , and those contributions will in general not be restricted
by the low-energy counting rules. However, it turns out that the same terms can always be
absorbed in a suitable renormalization of the LECs in the Lagrangian, utilizing an extended
version of the infrared regularization scheme mentioned at the end of the previous section. This
extended scheme was developed in [51], and will shortly be reviewed in the next chapter. Thus,
the power counting for the graphs is well-defined up to a convenient renormalization procedure.
In much the same way, the vector meson octet can be included explicitly in the single-baryon
sector. The corresponding chiral Lagrangian at lowest order has been given in [52]. The
extension of the power counting rules in this case is straightforward. The treatment of loop-
graphs, utilizing a once more extended version of infrared regularization, will be explained in
detail in the following chapter.

1.5 Unitarized chiral perturbation theory

From the viewpoint of the standard treatment of (B)ChPT, the inclusion of the effects of
vector mesons to all orders in the expansion eq. (1.36) is a non-perturbative tool, the use of
which should be justified by some underlying theoretical principle. In the mentioned case, it
was the assumption that, beside the Goldstone bosons, the lowest-lying resonances yield the
most important contributions to low-energy amplitudes, together with the phenomenologically
motivated principle of vector meson dominance. In the present section, we shall explore the
consequences of another guiding principle for the resummation of higher order terms, namely,
exact two-body unitarity. Recall that unitarity of the S-matrix, S†S = 1, is a fundamental
requirement for any quantum field theory, since it expresses the ’conservation of probability’ in
any physical reaction, in the sense that the total probability that something will happen in the
reaction is always equal to one. The number ’1’ in the unitarity statement for the S-matrix
stands for the identity operator in the Hilbert space of the quantum field theory. Writing the
S-matrix as S = 1 − iT , where T is called the reaction matrix, we can express the unitarity
requirement, in operator form, as

T − T † = −iT †T . (1.39)

It will be instructive to study the consequences of eq. (1.39) for a simple toy-model field theory,
which will also be used in connection with gauge invariance in chapter 4. Consider the following
Lagrangian for two complex scalar fields φ and ψ, with (bare) mass m and M , respectively:

Ltoy = ∂µφ
∗∂µφ−m2φ∗φ+ ∂µψ

∗∂µψ −M2ψ∗ψ − g(φ∗φ)(ψ∗ψ). (1.40)
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At lowest order in a perturbation series in the coupling g, the scattering amplitude T for the
process

φ(q1)ψ(p1) → φ(q2)ψ(p2)

is simply given by the coupling g. At order g2, one has to take one-loop graphs into account,
etc. Truncating the perturbative expression for T at some finite order gn, it is clear that the
matrix elements

〈ψ(p2)φ(q2) | T | φ(q1)ψ(p1)〉 = (2π)4δ4(p2 + q2 − p1 − q1)T (s, t, u),

where s, t, u denote the usual Mandelstam variables

s = (p1 + q1)
2, t = (p2 − p1)

2, u = (p2 − q1)
2,

can not obey the unitarity relation eq. (1.39) exactly, but only up to corrections of O(gn+1),
since the quadratic expression T †T on the r.h.s. of that relation contains terms of higher order
than gn, which are not present on the l.h.s. when inserting the truncated form of T . Thus, it
is inevitable that any amplitude T that leads to an S-matrix which is exactly unitary will have
to be constructed in a way that goes beyond perturbation theory.
In the following, we will further specialize to two-body unitarity, and therefore neglect inter-
mediate states with more than two particles. Taking matrix elements of the unitarity relation
for T , and inserting a complete set of two-particle states between the two T -operators on the
r.h.s. of eq. (1.39), we find

T (p1q1 → p2q2) − T ∗(p2q2 → p1q1)

= −i
∫

d4q

(2π)4

d4p

(2π)4
T ∗(p2q2 → pq)δ(q2 −m2)2πθ(q0)δ(p2 −M2)2πθ(p0)T (p1q1 → pq)

×(2π)4δ4(p1 + q1 − (p+ q)). (1.41)

The integration here is nothing than the sum over the complete set of two-particle φψ states.
The delta functions ensure energy-momentum conservation for the intermediate states, as well
as the condition that the particles in the intermediate state are on their respective mass shell.
The Heaviside step functions θ(. . .) ensure that the intermediate particles are of positive energy.
In going from eq. (1.39) to eq. (1.41), we have factored out an overall energy-momentum-
conserving delta-function, so that p1 + q1 = p2 + q2 is understood in the latter equation.
Assume for the moment that the scattering amplitude T only depends on the Mandelstam
variable s, so that it does not contain any dependence on the scattering angle (this would
obviously be a pure s-wave scattering amplitude). The integration over the four-momenta p, q
of the intermediate two-particle state can then be performed in eq. (1.41) to yield

T (s) − T ∗(s) = −2iT ∗(s)Φ(s)T (s). (1.42)

Here

Φ(s) =
|qcm|
8π

√
s
θ(s− (m+M)2) (1.43)

denotes the two-particle phase space factor, where

|qcm| =

√

(s− (m+M)2)(s− (m−M)2)

2
√
s

(1.44)
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is the modulus of the three-momentum in the center-of-mass frame of the φψ particle system.
The statement of two-body unitarity can be formulated in a very compact form,

Im(T−1) = Φ(s), (1.45)

but remember that this simple statement is only valid under the assumption that the scattering
amplitude depends only on the Mandelstam variable s. More generally, the simple condition
eq. (1.45) will only apply for the s-wave part of the amplitude.
Every amplitude T (s) which satisfies eq. (1.45) yields an S-matrix which is exactly unitary in
the subspace of two-particle states. A further requirement which we shall impose is that T (s)
agrees with the perturbative result on tree level, i.e. at lowest order in the coupling g. The
simplest version for such an amplitude would be

T̃ (s) = [g−1 + iΦ(s)]−1.

Such an amplitude has a very important shortcoming. The real and imaginary parts of scatter-
ing amplitudes are not independent of one another, but are linked by analyticity requirements 4,
which can be expressed through so-called dispersion relations. A more refined version of a uni-
tarized amplitude would be to include the full one-loop function

G(s) =

∫

ddl

(2π)d
i

((p1 + q1 − l)2 −m2 + iǫ)(l2 −M2 + iǫ)
, (1.46)

which is however divergent for d → 4. G(s) can be written in a dispersive form, which makes
its analyticity properties in the variable s manifest:

G(s) = G(s0) −
(s− s0)

π

∫ ∞

sthr

Φ(s′)ds′

(s′ − s)(s′ − s0)
, d→ 4, (1.47)

where sthr = (m+M)2 is the two-particle threshold value of the variable s, and s0 is a complex
number that does not lie on the integration contour C = [sthr,∞], but can otherwise be chosen
arbitrarily. The subtraction constant G(s0) contains the divergence as d → 4. For physical
values of s, s ∈ C, one has to approach the integration contour from above. This prescription
is connected to the iǫ-terms displayed in the loop integral in eq. (1.46). Using this prescription,
one finds Im G(s) = −Φ(s) for s ∈ R. The interpretation of the representation eq. (1.47) is that
G is an analytic function in the complex s-plane, except for branch points at sthr and infinity,
so that the corresponding branch cut can be chosen along the contour C. The discontinuity
across the cut is given by 2iΦ(s). Including the full loop function G in T , we restore some of the
analyticity properties which the scattering amplitude should have from general field-theoretical
considerations. So let us write our ansatz as

T (s) = [g−1 −G(s)]−1 = [ḡ−1(s0) −D(s, s0)]
−1. (1.48)

HereD(s, s0) = G(s)−G(s0) is given by the (finite) dispersion integral on the r.h.s. of eq. (1.47),
and we have introduced a ’renormalized’ coupling constant

ḡ(s0) = [g−1 −G(s0)]
−1, (1.49)

4The analytic properties of the S-matrix are reviewed in the textbook [53].Though one usually invokes the
principle of causality to derive those analyticity constraints, it is possible to base the same arguments on Lorentz
invariance, see e.g. the discussion in sections 5.1 and 10.8 of [3].
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which is equal to T (s0). This value must be fixed by some further input, which can be seen
as an analogue of a renormalization condition. Having fixed the value of ḡ(s0), all the other
values of T (s) are direct predictions of the model amplitude eq. (1.48).
It is important to note that the unitarized solution T (s) still has shortcomings and is not
consistent with all fundamental constraints from field theory. One such constraint is given
by crossing symmetry, which in the present case demands that the scattering amplitude be
symmetric under the interchange of Mandelstam variables s ↔ u. There is an easy way to
implement this constraint in the framework of the simple toy model used here. The modified
ansatz would be

T (s, u) = [g−1 −G(s) −G(u)]−1 = T (u, s), (1.50)

but in more complicated field theories like ChPT, it is not so simple to restore crossing symme-
try for unitarized amplitudes. Moreover, though we have included the full analytic function G in
our ansatz, the behaviour of T (s) or T (s, u) could in principle still be at odds with the strictures
of analyticity, because these amplitudes can in general have poles on the first (physical) Rie-
mann sheet in the variable s, which should be absent according to fundamental field-theoretic
considerations. The constraint of the absence of such poles can be used to restrict the values of
the couplings (like ḡ) in the unitarized amplitude, see e.g. the discussion in chapter 2 of [54].
Despite these shortcomings, unitarized amplitudes, similar in form to eq. (1.48), have been
widely used in ChPT, in the meson as well as in the baryon-sector [55–58]. Unitarization pro-
cedures can be particularly useful when resonances are located in the vicinity of low-energy
thresholds. In such cases, the scattering amplitude can not be reproduced using the standard
perturbative treatment of ChPT, since the radius of convergence of the perturbation series
becomes too small due to the nearby presence of the resonance pole (a prominent example is
given by the Λ(1405) resonance in K−p-scattering [59]). It is clear from the general structure
of unitarized amplitudes as e.g. in eq. (1.48) that resonance-like structures can be produced in
this non-perturbative framework, owing to the possible presence of zeroes in the denominator of
such amplitudes, which should be located on the second Riemann sheet for genuine resonances.
In that case the resonance is said to be ’dynamically generated’ in the unitarized approach,
so that one has a clue to examining the nature of the resonance under consideration. In fact,
the model amplitudes of unitarized ChPT have been used to predict resonance poles in the
low-energy regime. However, one should always keep in mind that these amplitudes are not
derived with the same theoretical rigour as standard ChPT results. Namely, chiral symmetry,
in combination with a strict power counting, is not respected by unitarized amplitudes, and
can only be restored perturbatively by matching those amplitudes to the perturbative result,
up to some prescribed chiral order.
There are various methods of unitarization, but the corresponding scattering amplitudes will
all be more or less of the form [K−1 + iΦ(s)]−1, differing only in the choice of K−1, which may
be a real function or a hermitian matrix, depending on the number of channels one includes
in the scattering amplitude (in the latter case, the phase space function Φ(s) is of course also
extended to a matrix in the space of reaction channels). In the analysis of the toy model
presented above, we have already anticipated a justification for our choice of Re T−1, which
basically amounts to the inclusion of the full loop function G(s) for the sake of analyticity. This
choice has a further advantage, which will turn out to be important in chapters 4 and 5, when
implementing the constraint of gauge invariance: It allows us to find a direct connection of our
unitarized amplitude to the framework of Feynman diagrams usually employed in perturbation
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theory. To see this on a formal level, we return once more to our toy model, eq. (1.40). In this
model, the unitarized amplitude constructed in eq. (1.48) is easily seen to be a solution of the
following integral equation, referred to as the Bethe-Salpeter equation (BSE) for the scattering
amplitude:

T (p1q1 → p2q2) = V (p1q1 → p2q2)

+

∫

ddl

(2π)d
T (l, (P − l) → p2q2)

i

((P − l)2 −m2)(l2 −M2)
V (p1q1 → l, (P − l)),

(1.51)

where P = p1 +q1 = p2 +q2, and where the potential V is given in the present case simply by g.
Indeed, under the assumption that the amplitude T depends only on P 2 = s, the BSE reduces
to an algebraic equation, which immediately yields the result of eq. (1.48). The interpretation
in terms of Feynman graphs is then given as an infinite sum of ’bubble’ graphs, in which the
potential V is iterated (see also fig. 1.1). This interpretation is of course already obvious when
T (s) is formally expanded in a Taylor series in the coupling g,

T (s) = g + gG(s)g + gG(s)gG(s)g + . . . ,

but the point here is that the solution of the BSE is also defined when the above expansion in
g is not valid, e.g. when s approaches a resonance pole.
In Unitarized Chiral Perturbation Theory (UChPT), the potential V that is to be iterated in the
BSE must be derived from the relevant chiral Lagrangian. To avoid double counting of contri-
butions, the potential must correspond to the sum of two-particle irreducible graphs, truncated
at a given order in perturbation theory. In general, the potential is momentum-dependent,
and it is then a non-trivial task to solve the integral equation (1.51). Sometimes, the BSE
is directly reduced to an algebraic equation by restricting V to the on-shell potential. This
procedure is referred to as the ’on-shell approximation’. It is usually justified argueing that the
off-shell parts of the potential lead to terms proportional to tadpole-type loop integrals (see e.g.
eq. (1.24)) which can be absorbed in the couplings contained in V . Since this approximation
clearly deviates from the correct field-theoretic treatment of Feynman graphs, we prefer to solve
the BSE with the full potential as derived from the corresponding Lagrangian. However, this
leads to yet another difficulty. The off-shell behaviour of the vertices depends on the choice
of the field variables in the Lagrangian, and is in general ambiguous. Therefore, such off-shell
dependence must drop out in the final result, when it comes to calculating predictions for phys-
ical observables. In the present non-perturbative approach, only a certain subset of Feynman
diagrams, namely, the sum of bubble chain graphs, is selected from the full set of diagrams
contributing to the scattering process. Consequently, there is no guarantee that the off-shell
behaviour of vertices will drop out in the resulting scattering amplitude. So, strictly speaking,
the chiral Lagrangian in connection with the BSE leads to a whole class of unitarized ampli-
tudes T , parametrized by the possible choices for the field variables. The argument we have
just cited as a justification for the use of the on-shell approximation implies that the ambiguity
related to the off-shell dependence of vertices is reflected in the freedom to adjust the coupling
parameters appearing in the potential. This freedom can in turn be related to the appearance
of the arbitrary scale µ showing up in renormalized loop integrals, or equivalently to the choice
of the subtraction point s0 as e.g. in eqs. (1.48) and (1.49). This brings us to the issue of renor-
malization. The momentum integration to be performed in the BSE contains UV-divergences
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Figure 1.1: Graphical illustration of the BSE for the toy-model field theory. The filled circle
represents the scattering amplitude T , while the open square stands for the vertex given by the
coupling g.

as d → 4. In our toy model amplitude eq. (1.48), we have absorbed the resulting divergence
of the solution T in the bare coupling g. It will be shown in app. F that a similar procedure
is possible for the chiral meson-baryon potential that we use in chapters 4 and 5. Though it is
reassuring that one can deal with the occuring divergences by absorbing them in the potential,
it is important to note that this is not directly related to a rigorous field-theoretical treatment
employing counter terms in the Lagrangian. In fact, every counter term vertex derived from
a Lagrangian will show crossing symmetry, while the amplitudes generated by the BSE neces-
sarily violate this symmetry, since the potential is only iterated along the s-channel. To our
knowledge, a rigorous way for a non-perturbative renormalization of the BSE does not exist yet.
For a more detailed discussion of the problems concerning off-shell dependence and UV-divergen-
ces in the BSE-approach to UChPT, we refer to [60]. Details on the solution of the BSE for
the lowest order meson-baryon potential will be given in chapter 5 and app. E.
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Chapter 2

Infrared regularization with vector
mesons and baryons 1

2.1 Introduction

In a recent work [51], the scheme of infrared regularization (developed in its original form by
Becher and Leutwyler [38]) was extended to the case of explicit meson resonances interacting
with soft pions, as e.g. the first step towards a systematic inclusion of vector mesons in the
meson sector of Chiral Perturbation Theory (ChPT). In this chapter, we will provide a further
extension of infrared regularization to the situation where baryons as well as vector mesons are
present. This can be considered as a synthesis of the results in [38] and [51]. Such an extension
is not only of interest in itself, but can be applied to a plethora of observables, where vector and
axial-vector mesons are known to play an important role, such as the electroweak form factors
of the nucleon. As one example we mention the contribution of the πρ loop to the strangeness
form factors of the nucleon [61, 62].
Infrared regularization (IR) is a solution to the following problem. We have already mentioned
in sec. 1.3 that the presence of mass scales which must be considered as ’heavy’ compared to
the masses and momenta of the soft pions will in general mess up the usual power counting
rules of ChPT by which the perturbation series of the effective theory is ordered [8,20,21]. This
observation was first made when baryons were incorporated in the framework of ChPT [31]. The
procedure of infrared regularization separates the (dimensionally regularized) one-loop graphs
of baryon ChPT into a part which stems from the soft pion contribution and a part generated
from loop momenta close to the ’heavy’ scale. The latter portion of the loop graph, called the
’regular’ part, will usually not be in accord with the low-energy power counting, but can always
be absorbed in local terms derived from the effective Lagrangian. It is therefore dropped from
the loop graph, and only the first part, called the infrared singular part of the loop integral,
is kept. Though both the vector mesons and the baryons interact as ’heavy’ particles with the
pions, the power counting is different for the two species, at least for the kinds of Feynman
graphs we consider in this work. There, the vector mesons appear only as internal lines with
small momenta far from their mass shell, so that the resonance propagator is counted as O(q0)
(where q indicates some small momentum scale or Goldstone boson mass), while the baryon

1The contents of this chapter have been published in Eur. Phys. J. C. 58 (2008) 407. [arXiv:0808.3174
[hep-ph]](http://arxiv.org).
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propagator is counted as O(q−1), since the baryon is pushed from its mass shell only by a
small amount due to its interaction with the soft pions and vector mesons. In the graphs we
treat here, only one single baryon is present, with the baryon line running through the diagram
undergoing only soft interactions. The number of the virtual vector mesons, however, is not
fixed. The pion propagator is counted as O(q−2), as usual, both the pion momentum and the
pion mass being of O(q). Appropriate powers of q are also assigned to vertices from the effective
Lagrangian. Finally, the measure of every d-dimensional loop integration is booked as O(qd).
This counting scheme applies, of course, to tree graphs, but also to the infrared singular, or
soft, parts of the loop graphs. The regular parts of the loop graphs are not guaranteed to obey
the power counting rules. These general remarks will be exemplified in the following sections.
Before working out the case where both baryons and vector mesons appear in a Feynman
diagram, we will briefly review the scheme of infrared regularization for loop integrals where
only one heavy scale shows up. This will not only serve to give a unified presentation of the
method, but also provide some results needed for an application of the general scheme to the
axial form factor of the nucleon. In this and the following chapter, we focus on the SU(2) case,
in view of the applications treated in these chapters. The method outlined here can be trivially
extended to the SU(3) framework. Before starting with the presentation of the formalism, let
us mention that the loop integrals studied in this work have also been treated, using a different
regularization scheme which is in some respect complementary to the one used here, in ref. [63].

2.2 IR regularization in the pion-nucleon system

When only pions and nucleons are treated as explicit fields of the effective theory, the funda-
mental loop integral one has to consider is

IMB(p2) =

∫

ddl

(2π)d
i

((p− l)2 −m2)(l2 −M2)
. (2.1)

Here, M is the pion mass (being of chiral order O(q)) and m is the nucleon mass. Applying
the low-energy power counting scheme outlined in the introduction, one would assign a chiral
order of qd−3 to this integral. We will see in a moment that only an appropriately extracted
low-energy part of IMB will obey this power counting requirement.
All the other pion-nucleon loop integrals are either only trivially modified by the infrared
regularization scheme, or they can be derived from eq. (2.1) (see sec. 6 of [38]). For example,
the scalar tadpole integral containing only the pion propagator is not modified at all, as there
is no ’hard momentum’ structure present that could lead to a nonvanishing regular part of this
integral. Thus we have

IIRM = IM =

∫

ddl

(2π)d
i

l2 −M2
,

and a direct calculation gives

IIRM =
Γ(1 − d

2
)

(4π)
d

2

Md−2. (2.2)

Note the typical structure of the d-dependent power of the pion mass. For arbitrary values of
the dimension parameter d, IIRM is in general proportional to fractional powers of M2, and will
even diverge in the so-called chiral limit where the quark masses mu, md go to zero (so that

24



also M → 0, see e.g. eq. (1.19)) for small enough d. Such terms will never occur in the regular
parts of the loop integrals which stem from the high-momentum region of the integration: those
parts are always expandable in the pion mass. The baryon tadpole integral, e.g., is

IB =

∫

ddl

(2π)d
i

l2 −m2
,

and is trivially expandable in M2, since it has no pion mass dependence at all. Therefore
one has IIRB = 0. These remarks may serve to explain the terminology ’infrared singular’ vs.
’regular’.
Returning to eq. (2.1), we must extract the part of this integral that is proportional to some
d-dependent power of M , like in eq. (2.2). One can think of this extraction prescription as
an operational definition of infrared regularization. The method is explained in full generality
in [38]. Here, we concentrate on the case with on-shell momentum p, i.e. p2 = m2. This shows
all the features we need for the demonstration, and also yields the result we will use in our
application of the scheme in sec. 2.4. We introduce a Feynman parameter integration in the
usual way:

IMB =

∫

ddl

(2π)d

∫ 1

0

idz

[((p− l)2 −m2)z + (l2 −M2)(1 − z)]2
. (2.3)

Performing the standard steps, we find for p2 = m2:

IMB = −md−4 Γ(2 − d
2
)

(4π)
d

2

∫ 1

0

dz

(z2 − αz + α)2− d

2

, (2.4)

where we have defined α = M2/m2 (note the difference to ref. [38], where this letter is reserved
for αBL = M/m). Fractional powers of the small variable α will be produced near z = 0:

there, the integrand is approximately (α)
d

2
−2. For small enough d, there would be an infrared

singularity for M → 0 located in parameter space at z = 0. It can already be seen from
eq. (2.3) that the parameter region near z = 0 is associated with the low-energy portion of
the integral: In this region, only the ’soft’ pion propagator is weighted in the loop integration,
while the hard momentum structure of the nucleon propagator dominates near z = 1. The
extraction of the part of the integral proportional to d-dependent powers of α now proceeds as
follows: the parameter integration is split into two parts like

∫ 1

0

=

∫ ∞

0

−
∫ ∞

1

. (2.5)

We will first show that the second integral on the r.h.s. is regular, i.e. expandable, in the
variable α. This is easy to see, because for z ≥ 1, the integrand can be expanded like

(z2 − αz + α)
d

2
−2 = zd−4

∞
∑

k=0

Γ(2 − d
2

+ k)

Γ(2 − d
2
)

αk

k!

(

z − 1

z2

)k

. (2.6)

Interchanging integration and summation (which is a valid operation at least for some range of
d), one gets for the regular part

R ≡ md−4 Γ(2 − d
2
)

(4π)
d

2

∫ ∞

1

dz

(z2 − αz + α)2− d

2

= md−4 Γ(2 − d
2
)

(3 − d)(4π)
d

2

+O(α). (2.7)
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At this point we should make the remark that the extension of the parameter integration to
infinity will lead to divergences as d increases. The infrared singular or regular parts are then
defined as follows: The parameter integrals are computed for the range of d where they are
well-defined, and the result will be continued analytically to arbitrary values of d. This amounts
to the suppression of power divergences of the parameter integrals, which have nothing to do
with the infrared singularity at z = 0, and will be cancelled anyway on the r.h.s. of eq. (2.5).
Next we must show that the first term on the r.h.s. of eq. (2.5) is proportional to a d-dependent
power of α. To see this, we substitute z =

√
αy to get

∫ ∞

0

dz

(z2 − αz + α)2− d

2

=
√
α
d−3
∫ ∞

0

dy

(y2 −√
αy + 1)2− d

2

.

The remaining integral on the r.h.s. will not produce d-dependent powers of α, since the
integrand can be expanded in

√
α similar to eq. (2.6). Thus we have found that the parameter

integral from zero to infinity is proportional to a d-dependent power of α. The infrared singular
part IIRMB of the loop integral therefore equals

IIRMB = −md−4 Γ(2 − d
2
)

(4π)
d

2

∫ ∞

0

dz

(z2 − αz + α)2− d

2

= −m
d−4

√
α
d−3

2(4π)
d

2

∞
∑

k=0

√
α
k

k!
Γ

(

k + 1

2

)

Γ

(

3 + k − d

2

)

. (2.8)

As d→ 4, this has the well-known leading term

IIRMB(d→ 4) =
1

16π

(

M

m

)

+ . . . ,

where the dots indicate terms of higher order in M/m. This is clearly in accord with the low-
energy power counting. In contrast to that, the first term of the expansion of the regular part
R obviously violates this counting when d → 4. The infrared regularization now prescribes
to drop R from the loop contribution and substitute IIRMB for IMB. Moreover, the poles of
IIRMB in d − 4 are also absorbed in a renormalization of the masses and coupling constants of
the effective Lagrangian. Again, for a more general and comprehensive treatment of the IR
scheme in the pion-nucleon system, the reader should consult the original article of Becher and
Leutwyler [38].

2.3 IR regularization for vector mesons and pions

In this section, we consider another case of infrared regularization, first examined in [51].
The internal baryon lines from the preceding section are now replaced by vector meson lines,
however, the vector mesons do not show up as external particles in the graphs we consider
here (an example for the treatment of such a graph can be found in sec. 11 of [51]). The
only external particles here are pions (or, in some cases, soft photons etc.), so that there are
only small external momenta of order O(q) flowing into the loop. The fundamental scalar loop
integral is in this case

IMV (q2) =

∫

ddl

(2π)d
i

((q − l)2 −M2
V )(l2 −M2)

, (2.9)
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where MV is the mass of the heavy meson resonance and q is some small external momentum
(small with respect to the resonance mass MV ). This is, in principle, the same function as in
eq. (2.1), so the reader might ask why we devote this section to the examination of this case.
The point is that the extraction of the infrared singular part of IMV must proceed along different
lines here. As shown in [51], a splitting like that of eq. (2.5) does not amount to a separation
into infrared singular and regular parts as in the preceding section. This can be traced back to
the fact that the extension of the parameter integrals to infinity leads to a singular behaviour
of the loop function near q2 = 0. Of course, also IIRMB has such a singularity as the external
momentum squared goes to zero (see sec. 5.4 of [38]), but the point p2 = 0 lies far outside
the low-energy region in that case. Here, however, the point q2 = 0 lies at the center of the
low-energy region, so the infrared singular and regular parts can not be expressed as parameter
integrals from zero or one to infinity, respectively. For example, a ’regular’ part defined as
being proportional to the parameter integral from one to infinity would not be expandable
around q2 = 0, as it should be in order to be able to absorb the corresponding terms in a
renormalization of the local operators in the effective Lagrangian.
To circumvent this difficulty, we will take up the following simple idea from [51]. We observe
that IMV is analytic at q2 = 0, the only singularity being the threshold branch point at q2 =
(MV + M)2, which is far outside the range of small q2-values. Expanding IMV in q2, the
analyticity properties in that variable are obvious. Each coefficient in this expansion can be
split into an infrared singular and a regular part almost like in eq. (2.5). Extracting the
infrared singular part proportional to d-dependent powers of the pion mass of each coefficient,
and resumming the series, one arrives at a well-defined expression for the infrared singular part
of the loop integral IMV that is (by construction) expandable in the small variable q2/M2

V .
To start with the analysis, let us first consider the special case where the external momentum
vanishes: q = 0. Then we have

IMV (0) =

∫

ddl

(2π)d
i

(l2 −M2
V )(l2 −M2)

=
1

M2 −M2
V

(∫

ddl

(2π)d
i

l2 −M2
−
∫

ddl

(2π)d
i

l2 −M2
V

)

.

In the last step of this equation, we have already achieved the splitting into an infrared singular
and a regular part, which is quite trivial here. The first term is proportional to a d-dependent
power of M (compare eq. (2.2)), while the second part is clearly expandable in M2 (because
M2

V ≫ M2). Moreover, the pion mass expansion of the first term starts withMd−2, in agreement
with the low-energy power counting for IMV : In contrast to the baryon propagator in sec. 2.2,
the resonance propagator is counted as O(q0) since, in the low-energy region, the off-shell
momentum of the internal resonance line is far below its mass shell. The counting for the pion
propagator and the loop measure is the same as before, and one is lead to the power counting
result qd−2 for IMV . Therefore we can write

IIRMV (0) =
1

M2 −M2
V

∫

ddl

(2π)d
i

l2 −M2
. (2.10)

It should be clear that there will only be corrections of O(q2) to this result when we compute
the regularized integral for nonvanishing q. We introduce the following variables,

α̃ =
M2

M2
V

, β̃ =
q2

M2
V

, (2.11)
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which we assume to be small in the sense that α̃, β̃ ≪ 1. Just like in sec. 2.2, we use the
Feynman parameter trick to write

IMV (q2) = −Md−4
V

Γ(2 − d
2
)

(4π)
d

2

∫ 1

0

dz

(β̃z2 + z(1 − α̃− β̃) + α̃)2− d

2

. (2.12)

We rewrite this expression as follows:

IMV (q2) = −Md−4
V

Γ(2 − d
2
)

(4π)
d

2

∫ 1

0

dz

(z(1 − α̃− β̃) + α̃)2− d

2

(

1 +
β̃z2

z(1 − α̃− β̃) + α̃

) d

2
−2

.

This can be expanded according to

IMV (q2) = −M
d−4
V

(4π)
d

2

∞
∑

k=0

Γ(d
2
− 1)

k!Γ(d
2
− 1 − k)

∫ 1

0

Γ(2 − d
2
)dz

(z(1 − α̃− β̃) + α̃)2− d

2

(

β̃z2

z(1 − α̃− β̃) + α̃

)k

.

In the next step, we extract the infrared singular part of each term in the sum. In each
parameter integral, we substitute z = α̃y and extend the integration range to infinity:

Ik ≡
∫ 1

0

dz
z2k

(z(1 − α̃− β̃) + α̃)2+k− d

2

→
∫ ∞

0

dy
α̃

d

2
−1+ky2k

(1 + y(1 − α̃− β̃))2+k− d

2

. (2.13)

Divergences of the parameter integral due to the extension of the upper limit to infinity are
again handled by analytic continuation in d. It can be expressed in terms of Gamma functions:

∫ ∞

0

dy
y2k

(1 + y(1 − α̃− β̃))2+k− d

2

=
Γ(2k + 1)Γ(1 − d

2
− k)

(1 − α̃− β̃)2k+1Γ(2 − d
2

+ k)
.

This is clearly expandable in the small variables α̃ and β̃, so that the r.h.s. of eq. (2.13) in
fact has the proper form of an infrared singular contribution, being proportional to d-dependent
powers of α̃. Moreover, it is not difficult to see that the parameter integrals from 1 to infinity are
completely regular in the small variables. So, putting pieces together, and using the following
identity for Gamma functions:

Γ(d
2
− 1)

Γ(d
2
− 1 − k)

= (−1)k
Γ(2 − d

2
+ k)

Γ(2 − d
2
)

, k ∈ N, (2.14)

we can sum the series of infrared singular terms and write

IIRMV (q2) = −M
d−4
V

(4π)
d

2

(α̃)
d

2
−1

∞
∑

k=0

(−α̃β̃)k

(1 − α̃− β̃)2k+1

Γ(2k + 1)Γ(1 − d
2
− k)

Γ(k + 1)
. (2.15)

Note that the leading term in this result is of chiral order O(qd−2), as predicted by the power
counting scheme. All the terms we have separated off from IMV are regular in both small
parameters, and only the infrared singular terms remain. For β̃ = 0, the result for IIRMV (0),
which was already established in eq. (2.10), is reproduced.
It is perhaps worth noting that the result of eq. (2.15) can be obtained in a different way,
which goes back to Ellis and Tang [39, 40]. Though they use their method in the pion-nucleon
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sector, a variant of it is also applicable here. Their prescription to obtain the soft momentum
contribution of a loop integral is the following: Expand the propagators of the heavy particles
as if the loop momentum were small, and then interchange summation and loop integration.
It is claimed that this prescription eliminates the ’hard momentum’ contributions present in
the full loop graph. If this is true, and the concept of hard vs. soft momentum effects is a
well-defined one, the result of the procedure should reproduce the infrared singular part of
the loop integral in question. Let us see how this works out for our example. Following the
prescription just described step by step, we make the following set of transformations:

IMV (q2) →
∫

ddl

(2π)d
i

l2 −M2

∞
∑

k=0

(2q · l)k
(q2 + l2 −M2

V )k+1

→
∫

ddl

(2π)d
i

l2 −M2

∞
∑

k=0

(2q · l)k
(q2 +M2 −M2

V )k+1

→
∞
∑

k=0

∫

ddl

(2π)d
i(2q · l)k

(l2 −M2)(q2 +M2 −M2
V )k+1

.

While the first step is just the expansion of the vector meson propagator pole imposed by the
prescription, the second step deserves a comment: There, we have used the same trick of partial
fractions to split off some hard momentum contributions as in the treatment of IMV (0), but now
this was performed k+1 times. In the last step, summation and integration were interchanged.
Using the formula

∫

ddl

(2π)d
i(q · l)2n

l2 −M2
= (−q2M2)nMd−2 Γ(n+ 1

2
)

Γ(1
2
)

Γ(1 − d
2
− n)

(4π)
d

2

(2.16)

and the fact that the loop integrals in the series vanish if k is odd, the result of the transfor-
mation is

Isoft
MV (q2) =

Md−2

(4π)
d

2

∞
∑

n=0

(−4q2M2)n

(q2 +M2 −M2
V )2n+1

Γ(n+ 1
2
)Γ(1 − d

2
− n)

Γ(1
2
)

. (2.17)

Extracting a factor of Md−4
V , and using the identity

Γ(2n+ 1)

Γ(n+ 1)
= 4n

Γ(n + 1
2
)

Γ(1
2
)

, (2.18)

we see by comparing to eq. (2.15) that Isoft
MV = IIRMV .

In [51], the result for IIRMV was given in a different form (see eqs. (7.10) and (8.4) of that
reference). Of course, it is equivalent to the result derived above: it is shown in app. A that the
two different forms just amount to a reordering of the corresponding expansions. We will find
that the form of eq. (2.15) is most practical for our purposes, in particular, the chiral expansion
can almost immediately be read off from that formula.
In closing this section, we note that the spin or the parity of the resonance obviously do not
play a major role in the above considerations. Though we will concentrate on the case of vector
mesons, most of what we have said would also apply for other meson resonances, like e.g. scalar
or axial-vector mesons.
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2.4 Pion-nucleon system with explicit meson resonances

Now that we have collected the results for the fundamental one-loop integrals in the pion-
nucleon and the vector meson-pion sector, we are prepared to extend the framework of infrared
regularization once more, and apply it to Feynman graphs where nucleons, pions as well as
vector mesons take part in the same loop. The simplest example where this situation occurs
is the triangle graph consisting of one pion, one nucleon and one vector meson line. Due to
baryon number conservation, the nucleon line must run through the complete diagram. We
shall assume that only a small momentum k (small in the usual sense) is transferred at the
vector meson-pion vertex. Such a graph will typically contribute to some nucleon form factor
in the region of small momentum transfer. With this application in mind, and with the excuse
that it will simplify the presentation a bit, we will further specify to on-shell nucleons. Let p
and p̄ be the four-momenta of the incoming and the outgoing nucleon. Then we have

p2 = m2 = p̄2 = (p+ k)2 ⇒ k2 = 2p̄ · k = −2p · k. (2.19)

Using these kinematic relations, we can rewrite the fundamental scalar loop integral

IMBV (k2) ≡
∫

ddl

(2π)d
i

((p− l)2 −m2)((k + l)2 −M2
V )(l2 −M2)

(2.20)

with the help of the usual Feynman parameter trick, as

∫

ddl

(2π)d

∫ 1

0

∫ 1−y

0

2idxdy

(y((p− l)2 −m2) + x((k + l)2 −M2
V ) + (1 − x− y)(l2 −M2))3

. (2.21)

Doing the loop integration in the usual manner, we get

IMBV (k2) = md−6Γ(3 − d
2
)

(4π)
d

2

∫ 1

0

∫ 1−y

0

dxdy

(y2 − αy + α + β(x2 + xy) + x(γ − α− β))3− d

2

, (2.22)

where the definitions

α =
M2

m2
≪ 1, β =

k2

m2
≪ 1, γ =

M2
V

m2
∼ O(1).

were used. In particular, we have assumed here that the nucleon and the meson resonance
are roughly of the same order of magnitude (in the real world, we have γ ∼ 2/3 for the rho
resonance, which is good enough for our purposes).
We should remark here that there is, of course, a second graph with the same topology, where the
pion and the resonance line are interchanged (see fig. 2.2). The expression for the corresponding
scalar loop integral is

ĨMBV (k2) ≡
∫

ddl

(2π)d
i

((p̄− l)2 −m2)((l − k)2 −M2
V )(l2 −M2)

. (2.23)

However, the reader can convince himself that, due to the on-shell kinematics specified in
eq. (2.19), this will give exactly the same expression as in eq. (2.22). Thus, we can focus on
the integral IMBV .
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Figure 2.1: Illustration of the integration ranges for the infrared singular and the regular part
of IMBV . The shaded triangle is the region integrated over in eq. (2.22). The three rays indicate
the extension of the connections from the soft point at (0, 0) to the hard line from (0, 1) to
(1, 0).

In analogy to sec. 2.3, it will be instructive to begin with the special case where k = 0. Since
we must split off the terms where only propagators of heavy particles occur, we can obviously
apply the same partial fraction method that led to eq. (2.10). The remaining pion-nucleon
integral can be dealt with as in sec. 2.2. This gives

IIRMBV (0) =
IIRMB(m2)

M2 −M2
V

. (2.24)

Having the standard method described in sec. 2.2 in mind, we note that this equals

IIRMBV (0) = md−6 Γ(3 − d
2
)

(4π)
d

2

∫ ∞

0

∫ ∞

0

dxdy

(y2 − αy + α + x(γ − α))3− d

2

=
md−6

(γ − α)

Γ(2 − d
2
)

(4π)
d

2

∫ ∞

0

dy

(y2 − αy + α)2− d

2

(compare the last line with the l.h.s of eq. (2.8)). Once again, the possible divergence for large
d at x → ∞ was regularized by analytic continuation from small d as before. It is reassuring
to see that eq. (2.24) is reproduced in this way.
The extension of both parameter integrations to infinity is the natural generalization of the
prescription used in sec. 2.2. This can be seen as follows. In eq. (2.21), we chose our Feynman
parameters such that the pion propagator contributes with the weight one at x = y = 0, while
the vector meson and the nucleon propagator have their maximum weight at (x, y) = (1, 0) and
(0, 1), respectively. Consequently, the infrared singularity is located in parameter space at the
point (x, y) = (0, 0). Indeed, a look at eq. (2.22) confirms that the integrand in that expression
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is approximately α
d

2
−3 in the region where x ∼ y ∼ 0, thus producing infrared singular terms

there. Far from this region, the integrand is expandable in α, as we will show later. To be more
specific, imagine the positive quarter of the parameter plane, i.e. Q+ ≡ {(x, y) : x ≥ 0, y ≥ 0},
split in two parts, the first being the triangle one integrates over in the full loop integral
(see eq. (2.22)) and the second part its complement in Q+, named R+ (see fig. 2.1 for an
illustration). In the latter parameter region, no infrared singularities are located, hence, the
integration over this region should yield a proper regular part (there is a qualification here, see
below). Geometrically, one might imagine that all lines from the ’soft point’ (0, 0) (the location
of the infrared singularity in parameter space) to the ’hard line’ from (0, 1) to (1, 0) are extended
to infinity to get the infrared singular part of the loop integral. In a more general setting, there
may be soft or hard points, lines, surfaces etc., depending on the number of soft and hard pole
structures in the integral under consideration. Extending all connecting lines from the soft
point, line etc. to the hard point (line. . .) to infinity, one always achieves a splitting in the
original parameter region and a region where no infrared singularities in parameter space are
present, analogous to R+. It is possible to show that this geometric picture leads to the same
results as the prescription given in sec. 6 of [38]. This picture might serve as a guide when trying
to split arbitrary one-loop graphs into infrared singular and regular parts, however, one should
always convince oneself that both those parts have the correct properties, and that their sum
equals the original integral. One has to be a bit careful here, as the following qualification shows.
As explained in sec. 2.3, extending the integration range to infinity might lead to unphysical
singularities in variables in which the original integral is analytic (at least in the low-energy
region). Those singularities will be harmless if they are located far from the low-energy region,
as e.g. the singularity at s = 0 of the infrared singular parts in the pion-nucleon sector, but in
other cases, they can be disturbing. Following the method of [51], we avoided this problem in
sec. 2.3 by expanding the original loop integral in the small variable β̃ beforehand. Only then
could the integration range be extended to infinity, in each coefficient of the expansion. We
must expect that a similar phenomenon will occur in the present case.
To exclude this from the start, we expand IMBV in analogy to eq. (2.15):

IMBV (k2) =
md−6

(4π)
d

2

∞
∑

j=0

Γ(d
2
− 2)

Γ(d
2
− 2 − j)

∫ 1

0

∫ 1−y

0

Γ(3 − d
2
)dxdy(βx(x+ y))j

j!(y2 − αy + α + x(γ − α− β))3− d

2
+j

=
md−6

(4π)
d

2

∞
∑

j=0

Γ(d
2
− 2)

Γ(d
2
− 2 − j)

∫ 1

0

∫ 1−y

0

Γ(3 − d
2
)dxdy(

∑j
l=0

(

j
l

)

βjxl+jyj−l)

j!(y2 − αy + α + x(γ − α− β))3− d

2
+j
.

There is still some β-dependence in the denominator, but in that combination, it will turn out
to be harmless. We extend the parameter integrations to Q+ and define

IIRMBV (k2) =
md−6

(4π)
d

2

∞
∑

j=0

Γ(d
2
− 2)

Γ(d
2
− 2 − j)

∫ ∞

0

∫ ∞

0

Γ(3 − d
2
)dxdy(

∑j
l=0

(

j
l

)

βjxl+jyj−l)

j!(y2 − αy + α + x(γ − α− β))3− d

2
+j
.

Since the denominator is always positive for 0 < α ≪ 1, |β| ≪ 1, the x-integration can readily
be done using the formula

∫ ∞

0

dx
xn

(a + bx)D
=
an+1−D

bn+1

Γ(n+ 1)Γ(D − (n+ 1))

Γ(D)
, (2.25)
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together with eq. (2.14). This gives

IIRMBV (k2) =
md−6

(4π)
d

2

∞
∑

j=0

j
∑

l=0

Γ(j + l + 1)Γ(2 − d
2
− l)

Γ(j − l + 1)Γ(l + 1)

(−β)j

(γ − α− β)j+l+1
×

×
∫ ∞

0

yj−ldy

(y2 − αy + α)2− d

2
−l
.

In the next step, we can write down the chiral expansion of the y-integral, using the same
method as in sec. 2.2. The generalized formula is

∫ ∞

0

dy
yn

(y2 − αy + α)D
=

√
α
n+1−2D

∞
∑

k=0

√
α
k

k!

Γ(n+k+1
2

)Γ(2D+k−(n+1)
2

)

2Γ(D)
. (2.26)

Obviously, the chiral expansion of this integral can straightforwardly be read off from the series
on the r.h.s. Inserting this result, we get

IIRMBV (k2) =
md−6

(4π)
d

2

∞
∑

j,k=0

j
∑

l=0

(−β)j
√
α
d−3+j+l+k

(γ − α− β)j+l+1

Γ(j + l + 1)Γ( j+k−l+1
2

)Γ(3−d−l−j+k
2

)

2Γ(j − l + 1)Γ(k + 1)Γ(l + 1)
. (2.27)

The only expressions we have not expanded in the small variables are the factors of (γ−α−β)
in the denominator, but this can of course be done: the corresponding geometric series is
absolutely convergent due to the assumption that γ ∼ O(1).
To complete the proof that eq. (2.27) is the correct infrared singular part of IMBV , we have to
show that all the terms we dropped in the extraction procedure described above are regular in
α. Those terms are proportional to parameter integrals over the region R+, of the general type

Rj =

∫

R+

dxdy(x(x+ y))j

(y2 − αy + α + x(γ − α− β))3− d

2
+j

=

∫ ∞

z=1

∫ z

x=0

dxdz(xz)j

((z − x)2 − α(z − 1) + x(γ − β))3− d

2
+j
.

Here we have traded the variable y for z ≡ x+ y. One finds that the function

f(z, x) =
(z − x)2 + x(γ − β)

z − 1

has the property
f(z, x) ≥ min{4, (γ − β)}

in R+, provided that the parameters β and γ are in their typical low-energy ranges. This is
already sufficient to ensure that the integrand of Rj can safely be expanded in (z − 1)α, and
that integration and summation of the corresponding series can be interchanged. This proves
the regularity of the integrals Rj in α.
It is also possible to show that the result for IIRMBV can be obtained in a way that is closely
analogous to the prescription of Ellis and Tang (see the end of sec. 2.3). The proof can be
found in app. B.
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2.5 Application: Axial form factor of the nucleon

A typical example for an application where the triangle graph treated in sec. 2.4 shows up is
a contribution to some form factor of the nucleon at low momentum transfer. As a specific
example, we consider the nucleon form factor of the isovector axial-vector current in a theory
with an explicit rho resonance field. A representation for this form factor, using the infrared
regularization scheme in the pion-nucleon sector, has been given by Schweizer [64]. In that
framework, the contributions due to the various baryon or meson resonances are contained in
the low-energy coefficients (LECs) of the effective pion-nucleon Lagrangian, or, more correctly:
The contributions from tree-level resonance exchange can be described as an infinite sum of
contact terms derived from the pion-nucleon Lagrangian. The inclusion of explicit resonance
fields therefore amounts to a resummation of higher order terms, which is often advantageous
(as discussed in detail in ref. [41]). Moreover, a theory with explicit resonance fields can serve
to achieve an understanding of the numerical values of the LECs, relying on the assumption
that the lowest-lying resonances give the dominant contributions to those coefficients. This is
usually called the principle of resonance saturation, and has been very successfull in ChPT,
see e.g. [42, 43]. Assuming this principle to be valid, the pion-nucleon LECs can be expressed
through the masses of the resonances and the couplings of the resonances to the nucleons and
pions. Such relations are most useful, of course, if the resonance masses and couplings are
sufficiently well known. In this section, we will compute the contribution to the axial form
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p−l
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V(l−k) V(l+k)

Figure 2.2: Triangle graphs contributing to the axial form factor of the nucleon. The dashed line
represents the pion, while the double line stands for the vector meson. The letter A indicates
the external axial source, N denotes the nucleon under consideration.

factor of the nucleon that is described by the two triangle graphs of fig. (2.2), with one nucleon,
one pion and one resonance line, in the framework of the extended infrared regularization
scheme developed in the preceding sections. First, we must set up the necessary formalism and
collect the various terms from the effective Lagrangian we need for the computation.
By Lorentz invariance, the matrix element of the axial current

Aiµ(x) ≡ q̄(x)γµγ5
τ i

2
q(x)
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between one-nucleon states can be parametrized as

〈N ′(p̄)|Aiµ(x)|N(p)〉 = ū′(p̄)

(

GA(t)γµ +GP (t)
kµ
2m

+GT (t)
σµνk

ν

2m

)

γ5
τ i

2
u(p)eikx. (2.28)

In the above expressions, q is the quark field spinor, qT = (u, d), N ′ is the outgoing nucleon with
momentum p̄, N labels the incoming nucleon with momentum p, and k = p̄ − p, t ≡ k2. The
symbols τ i denote the usual Pauli matrices. Finally, ū′ and u are the Dirac spinors associated
with the outgoing and incoming nucleon, respectively. Assuming perfect isospin symmetry and
charge conjugation invariance, as we will do here, leads to GT ≡ 0. The relation of GA and GP

to the quantities F1,2 used in [64] is F1(t) = GA(t), 2mF2(t) = −GP (t). For later reference, we
give the representation of GA up to order q3 that can be found in [64]:

GA(t) = gA + 4d̄16M
2 + d22t−

g3
AM

2

16π2F 2

+
gAM

3

24πmF 2

(

3 + 3g2
A − 4c3m+ 8c4m

)

+O(q4). (2.29)

Here F and gA denote the pion decay constant and the nucleon axial charge in the chiral limit,
respectively, while the coefficients ci, di are LECs showing up in the pion-nucleon effective
Lagrangian at order two and three, respectively. For a precise definition of the underlying
Lagrangian see ref. [65].
We now turn to the calculation of the axial form factor in the presence of vector mesons. We
write down the relevant terms in the effective Lagrangian and give the necessary rules for the
vertices and propagators required for the calculation. First, the lowest order chiral Lagrangian
for the pion-nucleon interaction is derived from eq. (1.33) by projection on the SU(2) sector
(i.e. by neglecting all fields except for the pions and nucleons),

L(1)
N = ψ̄(i /D −m)ψ +

gA
2
ψ̄/uγ5ψ. (2.30)

Here, ψ is the nucleon spinor, ψT = (p, n), and gA = D + F . The matrix uµ collects the pion
fields πa via

u = exp

(

i~τ · ~π
2F

)

,

uµ = i{u†, ∂µu} + u†rµu− ulµu
†,

rµ = vµ + aµ, lµ = vµ − aµ.

In the last line, we have introduced external isovector vector and axial-vector sources, vµ and
aµ,

vµ = viµ
τ i

2
, aµ = aiµ

τ i

2
.

The covariant derivative Dµ was defined in eq. (1.34). In the SU(2) framework, it can be
written as

Dµ = ∂µ + Γµ,

Γµ =
1

2
[u†, ∂µu] −

i

2
u†rµu−

i

2
ulµu

†.
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From eq. (2.30), one derives the N̄Nπ vertex rule

gA
2F

/qγ5τ
a

for an outgoing pion of momentum q.
Now we turn to the effective Lagrangians involving the vector meson fields. We choose a
representation in terms of an antisymmetric tensor field Wµν [42, 50, 51]. The corresponding
free Lagrangian is

Lkin
W = −1

2
〈DµWµνDρW

ρν〉 +
1

4
M2

V 〈WµνW
µν〉,

where

Wµν =
1√
2
W i
µντ

i =

(

ρ0√
2

ρ+

ρ− − ρ0√
2

)

µν

.

The brackets 〈. . .〉 denote the trace in isospin space. From Lkin
W , one derives the tensor field

propagator in momentum space,

T ijµν,ρσ(k) =
iδij

M2
V

gµρgνσ(M
2
V − k2) + gµρkνkσ − gµσkνkρ − (µ↔ ν)

M2
V − k2

.

At lowest chiral order, the interaction of the rho meson with the pions is given by the Lagrangian
cited in eq. (1.37),

Lint
W =

FV

2
√

2
〈F+

µνW
µν〉 +

iGV

2
√

2
〈[uµ, uν]W µν〉. (2.31)

We also remind the reader of the following definitions introduced in chapter 1,

F±
µν = uFL

µνu
† ± u†FR

µνu,

FL
µν = ∂µlν − ∂νlµ − i[lµ, lν ],

FR
µν = ∂µrν − ∂νrµ − i[rµ, rν].

As explained in sec. 1.4, the Lint
W leads to vertices of chiral order O(q2). Using the method of

external sources to derive Greens functions from the generating functional, we must extract the
amplitudes linear in the source aµ to compute the matrix element of eq. (2.28). For the triangle
graphs considered here, we need the vertex that connects the vector meson and the pion with
the external axial source. From eq. (2.31), we find the corresponding vertex rule

ǫiac
(

GV

F
(qµgντ − qνgµτ ) −

FV
2F

(kµgντ − kνgµτ )

)

.

Here i, a, c are the isospin indices associated with the axial source aτ , the pion and the vector
meson field Wµν , respectively, q is the four-momentum of the outgoing pion. Since k and q
are counted as small momenta, the chiral order of this vertex rule is in accord with the power
counting for the interaction Lagrangian.
The restrictions of chiral symmetry are not that strong for the interaction of the vector mesons
with the nucleons: Here, there are terms of chiral order O(q0). The leading terms of the

36



interaction Lagrangian have been given in ref. [52]. For the SU(2) case we consider here, the
relevant terms are

LNW = RV ψ̄σµνW
µνψ + SV ψ̄γµDνW

µνψ

+TV ψ̄γµDλW
µνDλDνψ + UV ψ̄σλνW

µνDλDµψ. (2.32)

In the notation of [52], we have RV = RD + RF , SV = SD + SF , etc. The definition of
σµν is standard, σµν = i[γµ, γν ]/2. It turns out that only the piece proportional to GV from
eq. (2.31) and the piece proportional to RV from eq. (2.32) contribute at lowest order to the
diagrams computed here, the chiral expansion of which starts at O(q3) (given that a scheme
like infrared regularization is used that preserves the power counting rules). To keep the
presentation short, we show only the contribution from those terms and therefore neglect some
higher order contributions. However, this will be sufficient to compare our results to the
representation up to O(q3) given by Schweizer [64].
The evaluation of the first graph gives (see fig. (2.2))

I1 =

∫

ddl

(2π)d

(

GV

F
(lµgντ − lνgµτ )ǫ

iac

)

i

l2 −M2

(

− gA
2F

/lγ5τ
a

)

iT µν,ρσcd (l − k)

/̄p− /l −m
iσρστ

dRV√
2
,

and the second one gives

I2 =

∫

ddl

(2π)d
RV√

2
iσµντ

c iT
µν,ρσ
cd (l + k)

/p− /l −m

(

gA
2F

/lγ5τ
a

)

i

l2 −M2

(

GV

F
(lρgστ − lσgρτ )ǫ

ida

)

.

We have left out the Dirac spinors ū, u here. Since we consider on-shell nucleons, we can use
the Dirac equation to simplify the numerators of the integrals, ū(p̄)/̄p = ū(p̄)m, /pu(p) = mu(p).
We will make some remarks on the computation of I1 (the computation of I2 can be done
analogously). In a first step, we reduce the full loop integral to a linear combination of scalar
loop integrals, which have been treated in detail in the preceding sections. Scalar loop integrals
without a pion propagator denominator are dropped using infrared regularization, since they
are pure regular parts. Therefore we can replace l2 →M2 everywhere in the numerator.
With the abbreviation

g1 =
2
√

2gAGVRV

M2
V F

2

we get

I1 = g1τ
i

(
∫

ddl

(2π)d
2im/l((M2 − k · l)(lρ − kρ)σρτ + i

2
(kτ − lτ )(/l/k − /k/l))γ5

((p̄− l)2 −m2)((l − k)2 −M2
V )(l2 −M2)

+

∫

ddl

(2π)d
i((M2 − k · l)(lρ − kρ)σρτ + i

2
(kτ − lτ )(/l/k − /k/l))γ5

((l − k)2 −M2
V )(l2 −M2)

−
∫

ddl

(2π)d
2im/l lρσρτγ5

((p̄− l)2 −m2)(l2 −M2)

)

.

For completeness, we shall give the relevant loop integrals with tensor structures in app. C.
Using the coefficient functions defined there, the result for the first integral I1 can be written
as

I1 = −ig1τ
i(γτI

(γ)
1 + kτI

(k)
1 + p̄τI

(p)
1 )γ5, (2.33)
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where the coefficients read

I
(γ)
1 = 2m(M2

V − k2)C1 +mk2(IAMBV + IBMBV )(M2 +M2
V − k2)

−mM2(M2 +M2
V − k2)IMBV +mM2IMB,

I
(k)
1 = 2m2(M2

V − k2)(3C2 + C3 + 4C4) + 4m2M2(IAMBV + IBMBV )

−2m2(M2
V − k2)(3IAMBV + IBMBV ) + 2m2(IAMBV − IBMBV )(M2 +M2

V − k2)

−4m2M2IMBV + t
(1)
MV + (M2

V − 2k2)I
(1)
MV + (k2 −M2

V )IMV

+(M2 +M2
V − k2)(IMV − I

(1)
MV ),

I
(p)
1 = 2m2(M2

V − k2)(3C2 − C3 − 2C4) + 4m2M2(IAMBV − IBMBV )

−2m2(IAMBV − IBMBV )(M2 +M2
V − k2) + 2t

(0)
MV − 2m2I

(1)
MB

+(M2 +M2
V − k2)(I

(1)
MV − IMV ) − IM .

What concerns the evaluation of I2, we note that it is given by

I2 = −ig1τ
i(γτI

(γ)
2 + kτI

(k)
2 + pτI

(p)
2 )γ5, (2.34)

with
I

(γ)
2 = I

(γ)
1 , I

(k)
2 = I

(k)
1 , I

(p)
2 = −I(p)

1 .

The sum of both graphs therefore gives

I1+2 = I1 + I2 = −ig1τ
i(γτI

(γ)
1+2 + kτI

(k)
1+2)γ5,

with
I

(γ)
1+2 = 2I

(γ)
1 , I

(k)
1+2 = 2I

(k)
1 + I

(p)
1 .

In the sum of the two graphs, the contribution proportional to (p̄ + p)τ cancels, as was to be
expected on general grounds (see the remarks following eq. (2.28)). We are now in a position
to display the decomposition of the graphs as a linear combination of the scalar loop integrals
worked out in the preceding sections:

I
(γ)
1+2 = c

(γ)
MBV I

IR
MBV + c

(γ)
MBI

IR
MB + c

(γ)
MV I

IR
MV , (2.35)

I
(k)
1+2 = c

(k)
MBV I

IR
MBV + c

(k)
MBI

IR
MB + c

(k)
MV I

IR
MV + c

(k)
M IM . (2.36)

The expressions for the coefficients c(γ) read

c
(γ)
MBV =

4m

(d− 2)k2(k2 − 4m2)

[

m2M6
V + (k2((d− 5)m2 +M2) − 2m2M2)M4

V

− ((M2 +m2(2d− 7))k4 − 2(d− 2)m2M2k2 −m2M4)M2
V

+ (d− 3)k2m2(k2 −M2)2

]

,

c
(γ)
MB = − 2m

(d− 2)k2(k2 − 4m2)

[

(M2
V + (d− 3)k2)((2m2 −M2)k2 + 2m2(M2 −M2

V ))

]

,

c
(γ)
MV =

2m

(d− 2)(k2 − 4m2)

[

(M2
V + (d− 3)k2)(k2 −M2 −M2

V )

]

,
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and the coefficients c(k) are given by

c
(k)
MBV =

2m2

(d− 2)k4(k2 − 4m2)

[

((d− 2)k2 − 4(d− 1)m2)M6
V

− 2((d− 2)k4 + (dM2 − 2(d+ 1)m2)k2 − 4(d− 1)m2M2)M4
V

+ ((d− 2)k6 + 4(d− 5)m2k4 − 2(d− 4)M2k4 + ((d− 2)k2 − 4(d− 1)m2)M4)M2
V

− 4(d− 3)k2m2(k2 −M2)2

]

,

c
(k)
MB =

1

(d− 2)k4(k2 − 4m2)

[

(4(d− 3)m2(2m2 −M2) − (d− 2)(2m2 +M2)M2
V )k4

+ 2m2((d− 2)M4
V + (d− 4)M2M2

V + 4m2((d− 3)M2 + 2M2
V ))k2

+ 8(d− 1)m4(M2 −M2
V )M2

V

]

,

c
(k)
MV = − 4m2

(d− 2)k2(k2 − 4m2)

[

(M2
V + (d− 3)k2)(k2 −M2 −M2

V )

]

,

c
(k)
M =

M2
V

k2
.

Here we used the abbreviations k4 ≡ (k2)2 and k6 ≡ (k2)3. In view of the denominators of
the coefficients c(γ,k), which contain powers of k2, it is advantageous to expand the scalar loop
integrals in the small variable β = γβ̃ first. From eqs. (2.15,2.27), we find

IIRMV =
IM

m2(α− γ)
+ β

(

(dγ − (d− 4)α)IM
m2d(α− γ)3

)

+ . . .

and

IIRMBV =
IIRMB

m2(α− γ)

+ β

(

((d− 1)(γ − α)(α− 2) − 2(4α− α2))m2IIRMB + ((d− 3)α− (d− 1)γ)IM
2(d− 1)m4(γ − α)3

)

+ O(β2).

Inserting the β-expansions of the scalar loop integrals in the expressions for I
(γ,k)
1+2 from eqs. (2.35)

and (2.36), one observes that the poles in the variable β ∼ k2 cancel. In the final step, we must
insert the expansion of the scalar loop integral IIRMB in the second small variable α ∼M2, which
can directly be read off from eq. (2.8). The expression for IM is given in eq. (2.2). Doing this,
taking the limit d→ 4 and comparing to the decomposition of the matrix element in eq. (2.28),
one finds the following O(q3)-contribution of I1 and I2 to the axial form factor GA:

G1+2
A = − g1

3π
M3 +O(q4) = −2

√
2gAGVRV

3πM2
V F

2
M3 +O(q4). (2.37)

There are no terms of lower order. This is in accord with the power counting for the two graphs,
which predicts a chiral order of q3 for this contribution to GA. In order to compare this with the
q3-terms in GA worked out in [64], one can proceed as follows. Looking at fig. 2.2, and imagining

39



the vector meson lines shrinking to a point vertex (corresponding to a limit where the mass
MV tends to infinity, with GVRV /MV fixed), it is intuitively clear that the result corresponds
to a pion-nucleon loop graph with an O(q2) contact term replacing the vector meson line. Such
contributions are parametrized by the two LECs c3 and c4 in [64], see eq. (2.29). In fact,
identifying

2
√

2GVRV

M2
V

= −c4, (2.38)

one reproduces exactly the corresponding terms in the representation based on the pure pion-
nucleon theory, cf. eq. (2.29). That eq. (2.38) is a good guess can be seen like that: Comparing
the ρN -coupling used here, namely, the term proportional to RV in eq. (2.32), to a more
conventional one using a vector field representation for the rho field,

LNV =
1

2
gρNN ψ̄

(

γµρµ · τ −
κρ
2m

σµν∂νρµ · τ
)

ψ, (2.39)

one deduces

gρNNκρ = −4
√

2mRV

MV
.

Using this in eq. (2.38), we get

c4 =
gρNNκρGV

2mMV
=

κρ
4m

.

In the last step, we have assumed a universal rho coupling, MVGV ≡ F 2gρππ = F 2gρNN as well
as the KSFR relation M2

V = 2F 2g2
ρNN [66] (see also the recent discussion in the framework of

effective field theory in ref. [67]). This agrees with the rho-contribution to c4 found in [43].
Furthermore, there is no rho contribution to the LEC c3 according to this work.
The result of eq. (2.38) is not surprising for itself, but the agreement of our findings with
previous resonance saturation analyses demonstrates one very important thing, namely, that
the variants of the infrared regularization scheme derived in the previous sections are consistent
with the standard case of infrared regularization in the pion-nucleon sector used in [64].
As a side remark, we note that the leading order result from the triangle graphs shows no
t−dependence and therefore gives no contribution to the axial radius. However, the leading
contribution to the axial radius can also be related to meson resonances, namely, to a tree-
level exchange of an axial-vector meson. The pertinent calculation can be found in [68], where
the axial vector meson-couplings to the pions and nucleons are fitted to experimental data
for GA(t) (for an earlier study based on chiral Lagrangians, see [69]). Equivalently, it can be
parametrized by a certain LEC, named d22 in [64] (see eq. (2.29)). As already mentioned at the
beginning of sec. 2.5, the difference between the two approaches just amounts to a resummation
of higher order terms. Compared to the leading order term, the t-dependent part derived from
the triangle graphs is suppressed by factors of the small variable α, which is a reflection of the
fact that the infrared regularized loop integrals preserve the chiral power counting.

2.6 Summary

In this chapter we have presented an extension of the infrared regularization scheme that
allows for an inclusion of explicit (vector and axial-vector) meson resonances in the single-
nucleon sector of ChPT. For the processes we have considered here, the meson resonances do
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not appear as external particles, and the corresponding power counting rules for the internal
resonance lines are set up such that the resonance four-momentum is considered to be small
compared to its mass. The infrared regularization scheme extracts the part of the one-loop
graphs to which this power counting scheme applies (for any value of the dimension parameter
d used in dimensional regularization), while the remaining parts of the loop graphs will in
general violate the power counting requirements, but can be absorbed in a renormalization of
the local terms of the effective Lagrangian.
After a short review of the infrared regularization procedure used for the pion-nucleon and the
vector meson-pion system in sec. 2.2 and 2.3, respectively, we have combined the analyses of
these sections in sec. 2.4. There, we consider the simplest example of a Feynman graph where
nucleons, pions as well as (vector) meson resonances show up. It is shown how to extract the
infrared singular part of such a graph, and the power counting requirements are verified. It
should be clear from this example how the infrared singular parts of more complicated one-loop
graphs (with more nucleon, pion and resonance lines) can be worked out (some remarks on the
general case can be found at the beginning of sec. 2.4, and in sec. 6 of [38]). Finally, in sec. 2.5,
we have applied the extended scheme to compute a vector meson induced loop contribution to
the axial form factor of the nucleon, and demonstrate that the result agrees with the result for
GA(t) given by Schweizer [64] in combination with the resonance saturation analysis for the
pion-nucleon LECs in [43]. There are, of course, many other possibilities for applications of
the scheme developed here. Finally, we add the remark that a suggestion for an extension of
infrared regularization to the multiloop case was made in ref. [70].
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Chapter 3

Quark mass dependence of the mass of
the Roper(1440) 1

3.1 Introduction

In the previous chapter, we have developed an extension of the standard infrared regularization
scheme [38] to the case of explicitly included vector mesons in baryon ChPT. This extension
was guided by what we called the operational definition of infrared regularization in sec. 2.2,
namely, the extraction of those parts of the loop integrals which are proportional to d-dependent
powers of the small expansion parameters of ChPT. As this principle is fairly general, it might be
interesting to look for other situations where it can be applied. In this chapter, we shall consider
the explicit inclusion of a baryonic resonance in BChPT, namely, the inclusion of the so-called
Roper resonance, the mass of which is about ∼ 1440 MeV [15]. The Roper N∗(1440) is the first
even-parity excited state of the nucleon, and its examination is quite intriguing—it is lighter
than the first odd-parity nucleon excitation, the S11(1535), and also has a significant branching
ratio into a nucleon with two pions. Recent lattice studies, see e.g. [71–77], have not offered a
clear picture about the nucleon resonance spectrum. The findings of ref. [72] indicate a rapid
cross over of the first positive and negative parity excited nucleon states close to the chiral limit.
No such level switching is e.g. found in [74], possibly related to the fact that the simulations
were performed at quark masses too far away from the chiral regime. One has to remember
that lattice QCD operates at unphysical quark (pion) masses and thus a chiral extrapolation is
needed to connect these data to the physical world, as already mentioned in the introduction
to this thesis, sec. 1.1. It should also be noted that so far very simple chiral extrapolation
functions have been employed in most approaches, e.g., a linear extrapolation in the quark
masses, thus ∼ M2

π (with Mπ the pion mass), was applied in [77]. It is therefore important to
provide the lattice practitioners with improved chiral extrapolation functions. This is the aim of
the present investigation. We consider the Roper mass (the real part of the Roper self–energy)
to one-loop in baryon chiral perturbation theory, employing a novel, tailor-made extension of
the standard infrared regularization scheme. This enables us to study the corresponding pion
mass dependence, parametrized by the various low-energy (coupling) constants that appear in
the expression, in a model-independent way. We refrain from analyzing the existing lattice
data—our results apply to full QCD and not to one of the various approximations to QCD

1The contents of this chapter have been published in Phys. Lett. B 641 (2006) 294 [arXiv:hep-lat/0608001].
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employed in the lattice studies.

This chapter is organized as follows. In sec. 3.2, we display the effective chiral Lagrangian
underlying our calculation. The chiral corrections to the Roper mass are calculated in sec. 3.3,
where we also explain the relevant extension of infrared regularization. Sec. 3.4 contains our
results and the discussion thereof.

3.2 Effective Lagrangian

It is our aim to calculate chiral corrections to the Roper mass up to one-loop order. Since
the Roper is the first even-parity excited state of the nucleon, the construction of the chiral
SU(2) effective Lagrangian follows standard procedures, see e.g. [78]. The effective Lagrangian
relevant for our calculation is (see also ref. [79])

L = L0 + LR + LNR , (3.1)

with the free part

L0 = iN̄γµD
µN −mN N̄N + iR̄γµD

µR−mRR̄R , (3.2)

where N,R are nucleon and Roper fields, respectively, and mN , mR the corresponding baryon
masses in the chiral limit. Dµ is the chiral covariant derivative, for our purpose we can set
Dµ = ∂µ, see sec. 1.3 or e.g. [78] for definitions. The pion-Roper coupling is given to leading
chiral order by

L(1)
R =

1

2
gRR̄γµγ5u

µR (3.3)

with an unknown coupling gR, and the superscript denotes the chiral order. The pion fields are
collected in uµ = −∂µπ/F +O(π3), where F is the pion decay constant in the chiral limit (see
also sec. 1.2). At next–to–leading order, the relevant terms in LR are (we work in the isospin
limit mu = md and neglect electromagnetism)

L(2)
R = c∗1〈χ+〉R̄R − c∗2

8m2
R

R̄ (〈uµuν〉{Dµ, Dν} + h.c.)R+
c∗3
2
〈uµuµ〉R̄R , (3.4)

where
χ+ = 2B(u†Mu† + uMu) (3.5)

describes explicit chiral symmetry breaking via the quark mass matrix M = diag (mu, md, ms).
For a complete one loop calculation we also need the fourth order effective Lagrangian, more
precisely, the term

L(4)
R = − e∗1

16
〈χ+〉2R̄R . (3.6)

The interaction piece between nucleons and the Roper reads

L(1)
NR =

1

2
gNRR̄γµγ5u

µN + h.c. . (3.7)

The coupling gNR can be determined from the strong decays of the resonance R, its actual
value is given below. In principle a term of the form

iλ1R̄γµD
µN − λ2R̄N + h.c. (3.8)
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Figure 3.1: One-loop self-energy graphs of the Roper (R) with intermediate Roper-pion (π)
and nucleon (N)-pion states, respectively.

is possible, but applying the equations of motion removes the first term (and its hermitian
conjugate) such that we are left with the terms R̄N and N̄R. These terms induce mixing
between the nucleon and Roper fields, but diagonalization of the N -R mass matrix does not
lead to new operator structures and its effect can be completely absorbed into the couplings
already present in the Lagrangian. We can thus safely work with the Lagrangian in eq. (3.1).
A complete one-loop calculation involves tree graphs with insertion of chiral dimension two and
four and one-loop graphs with at most one insertion from L(2)

R .

3.3 Chiral corrections to the Roper mass

We are now in the position to work out the various contributions to the Roper mass. The
loop diagrams are evaluated making use of (an extension of) the infrared regularization (IR)
method [38]. As we will see, the IR scheme is suited for the study of systems with one light
mass scale Mπ and two heavy mass scales mN , mR with m2

N ≪ m2
R. In the real world, we have

m2
R/m

2
N ≃ 2.4, so that this condition is approximately fulfilled.

1. Tree level: Only the c∗1 and e∗1 terms contribute to the self-energy at tree level

Σtree
R = −4c∗1M

2
π + e∗1M

4
π . (3.9)

These terms could be absorbed into mR, but since we are interested in the explicit dependence
on the pion (quark) mass, we must keep them. The first term is the leading order contribution
to the nucleon-Roper σ-term.

2. Pion-nucleon loop: This is the only new structure compared e.g. to the calculation of the
nucleon self-energy, see fig. 3.1. Here we extend the method of chapter 2 and ref. [51], developed
for IR with vector mesons. Consider first the fundamental scalar integral at one-loop order in
d dimensions with an intermediate pion-nucleon pair and external momentum p

IπN(p2) =

∫

ddl

(2π)d
i

[l2 −M2
π + iǫ] [(p+ l)2 −m2

N + iǫ]
. (3.10)

Employing standard Feynman parameterization leads to

IπN(p2) = −Γ(2 − d
2
)

(4π)d/2
md−4
N

∫ 1

0

dz (β[z − x+][z − x−])
d

2
−2 (3.11)
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in terms of the parameters

x± =
α + β − 1

2β

(

1 ±
√

1 − 4αβ

(α + β − 1)2

)

, α =
M2

π

m2
N

, β =
p2

m2
N

. (3.12)

In the following, we will restrict ourselves to the kinematical region p2 ≫ (mN +Mπ)
2 which is

equivalent to
4αβ

(α + β − 1)2
≪ 1 . (3.13)

This implies that in the chiral limit α → 0 the mass difference p2 − m2
N remains finite and

does not tend towards zero as in the standard case of IR. This constraint is clearly satisfied for
values p2 ≈ m2

R close to the Roper mass. It is also consistent with resonance decoupling in the
chiral limit [80]. The nucleon propagator is thus counted as zeroth chiral order for momenta
p2 ≈ m2

R. Setting β = m2
R/m

2
N one obtains the small parameter

4αβ

(α + β − 1)2
≈ 1

9
, (3.14)

which indicates a fast convergence of the expansion of the loop integral eq. (3.10) in powers of
the pion mass. Expansion of x± in α leads to

x+ =
β − 1

β
− α

β(β − 1)
− α2

(β − 1)3
+ O(α3) ,

x− =
α

β − 1
+

α2

(β − 1)3
+ O(α3) , (3.15)

where x− = O(α) and x+ = O(1). We now divide the parameter integral of eq. (3.11) into
three parts

IπN = −Γ(2 − d
2
)

(4π)d/2
md−4
N

(

I
(1)
πN + I

(2)
πN + I

(3)
πN

)

, (3.16)

with

I
(1)
πN(p2) =

∫ x−

0

dz (β[z − x+][z − x−])
d

2
−2 ,

I
(2)
πN(p2) =

∫ x+

x−

dz (β[z − x+][z − x−])
d

2
−2 ,

I
(3)
πN(p2) =

∫ 1

x+

dz (β[z − x+][z − x−])
d

2
−2 . (3.17)

Note that 0 < x− < x+ < 1. The first integral I
(1)
πN can be rewritten as

I
(1)
πN(p2) = (x−)d/2−1

∫ 1

0

dy (β[x+ − x−(1 − y)])
d

2
−2 y

d

2
−2 . (3.18)

Expansion of the integrand in powers of x− ∼ O(α) and interchanging summation with inte-
gration leads to

I
(1)
πN(p2) =

2

d− 2
(x−)d/2−1(βx+)d/2−2 + O(αd/2) , (3.19)
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where the leading term is of order O(αd/2−1) and thus conserves power counting. The integral

I
(1)
πN contains only fractional powers of α and contributes to the infrared singular part. The

remaining two integrals, on the other hand, are regular in α. For I
(2)
πN one has

I
(2)
πN(p2) = (−β)d/2−2

∫ x+

x−

dz ([x+ − z][z − x−])
d

2
−2 , (3.20)

where β has a small positive imaginary piece. Integration yields

I
(2)
πN(p2) = (−β)d/2−2 (x+ − x−)d−3

(

Γ(d
2
− 1)

)2

Γ(d− 2)
. (3.21)

Obviously, this expression is expandable in powers of x−. The integral I
(2)
πN is complex and does

not conserve power counting. It contributes only to the regular part and will be omitted for
our purposes. More precisely, the imaginary part does not contribute to the resonance mass,
while the real part can be absorbed into the couplings of the effective Lagrangian at the on-shell
momentum p2 = m2

R. In the third integral,

I
(3)
πN(p2) =

∫ 1

x+

dz (β[z − x+][z − x−])
d

2
−2 , (3.22)

one can expand the integrand directly in powers of x−. The expansion coefficients of this series
are integrals of the type (r ∈ R)

∫ 1

x+

dz (z − x+)
d

2
−2 zr = (1 − x+)d/2−1

∫ 1

0

dw (1 − w)
d

2
−2 (1 + w(x+ − 1))r . (3.23)

Since 1 − x+ remains finite in the chiral limit these integrals also contribute only to the reg-
ular part and can be absorbed into the couplings of the Lagrangian at momentum p2 = m2

R.
Therefore, the infrared singular part which stems from small values of the Feynman parameter
z is entirely contained in I

(1)
πN and we can restrict ourselves to the integral

IIRπN ≡ −Γ(2 − d
2
)

(4π)d/2
md−4
N

∫ x−

0

dz (β[x+ − z][x− − z])
d

2
−2

= −m
d−4
N

16π2

{

x−

(

2

4 − d
+ ln 4π − γE + 1

)

−
∫ x−

0

dz ln (β[x+ − z][x− − z])

}

. (3.24)

Expansion in α leads to

IIRπN =

(

2L+
1

16π2
ln

(

M2
π

m2
R

))(

α

β − 1
+

α2

(β − 1)3

)

− 1

32π2

α2β

(β − 1)3
+ O(M6

π) , (3.25)

with

L =
md−4
R

16π2

{

1

d− 4
− 1

2
[ln 4π − γE + 1]

}

, (3.26)

and γE is the Euler-Mascheroni constant. We have chosen the regularization scale to be mR.
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In fact, the same result for the infrared part can be obtained by expanding the baryon propa-
gator in the loop integral (a method first used in ref. [39])

∫

ddl

(2π)d
i

[l2 −M2
π ] [p2 + 2p · l + l2 −m2

N ]
. (3.27)

Counting the loop momentum as l ∼ O(Mπ) and taking p2 ≫ (mN +Mπ)
2, one obtains

1

p2 −m2
N

∫

ddl

(2π)d
i

l2 −M2
π

(

1 − 2p · l + l2

p2 −m2
N

+
(2p · l + l2)2

(p2 −m2
N)2

+ . . .

)

, (3.28)

which reproduces the result of eq. (3.25) after interchanging summation and integration. The
observation that the procedure of ref. [39] reproduces the infrared singular parts of loop integrals
was also made in the previous chapter.

After investigating the scalar loop integral one readily obtains the infrared singular part of the
full one-loop self-energy diagram with an intermediate pion-nucleon pair (see fig. 3.1)

(

ΣN (/p)
)

IR
= i

3g2
NR

4F 2

∫

IR

ddl

(2π)d

/l(/p+ /l −mN )/l

[l2 −M2
π ] [(p+ l)2 −m2

N ]

= −3g2
NR

4F 2

(

/p

[

M4
π

32π2(p2 −m2
N )

ln

(

M2
π

m2
R

)

+
M4

π

64π2(p2 −m2
N)

]

+
mNM

4
π

16π2(p2 −m2
N )

ln

(

M2
π

m2
R

))

, (3.29)

where we have only displayed the finite pieces. The term proportional to L has been absorbed
into the counter terms. Evaluating the integral at /p = mR yields

(

ΣN(mR)
)

IR
= − 3g2

NR

256π2F 2(m2
R −m2

N)
M4

π

[

(2mR + 4mN ) ln

(

M2
π

m2
R

)

+mR

]

. (3.30)

Note that this expression preserves both power counting and chiral symmetry.

3. Pion-Roper loop: This corresponds to the standard IR case and is immediately obtained
from the result in [38] by replacing mN by mR (see fig. 3.1),

(

ΣR(mR)
)

IR
= − 3g2

R

32πF 2
M3

π

[

1 +
Mπ

2πmR

+
Mπ

2πmR

ln

(

M2
π

m2
R

)]

+ O(M5
π) . (3.31)

Again, power counting and chiral symmetry are maintained for the IR singular part of this
diagram.

4. Tadpoles: The tadpoles with vertices from L(2)
R yield

Σtad
R =

(

6c∗1 −
3

4
c∗2 − 3c∗3

)

M4
π

16π2F 2
ln

(

M2
π

m2
R

)

+
3

128π2F 2
c∗2M

4
π . (3.32)

Again, this result agrees with the one for the nucleon by proper substitution of the LECs and
baryon masses.
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5. Total Roper self-energy: Putting all these pieces together, we obtain the following
one-loop correction to the Roper mass

δm
(1−loop)
R =

(

ΣN(mR)
)

IR
+
(

ΣR(mR)
)

IR
+ Σtad

R + Σtree
R (3.33)

in terms of the renormalized couplings c∗1, e
∗
1 and the renormalized mass mR for which we use

the same notation.

We have not explicitly considered loops with a ∆(1232)-pion pair2. If one treats the ∆ on the
same footing as the nucleon field, the contribution will be of the type in eq. (3.30) and amounts
to a renormalization of gNR and e∗1. However, one must keep in mind that the convergence
of the corresponding chiral series is not as good as for the nucleon due to the smaller mass
difference m2

R − m2
∆. If, on the other hand, the Delta mass is considered to be of the same

size as the Roper mass, the loop contribution will be similar to the result in eq. (3.31) and
leads to a modification of gR and the couplings c∗i , e

∗
1. In both scenarios, the effects of the ∆π

loop can be absorbed into a redefinition of the couplings. Since their values are not fixed, we
will vary them within certain regions, see sec. 3.4, such that the inclusion of the ∆ resonance
will not alter any of our conclusions. For a treatment of the ∆ in infrared regularization see,
e.g., refs. [47–49]. We also stress that the explicit inclusion of the ∆ can lead to a complicated
three-small-scales problem (the pion mass and—if considered small—the Roper-Delta and the
Delta-nucleon splitting) that requires theoretical tools that have not yet been developed for
baryon chiral perturbation theory.

3.4 Quark mass dependence of the Roper mass

Before analyzing the pion mass dependence of the Roper mass, we must collect information on
the couplings gR, gNR and the LECs c∗i (i = 1, 2, 3), and e∗1. One obtains gNR = 0.3 . . . 0.4 from
a fit to the branching ratio of the Roper into one pion and a nucleon which is in agreement
with the relation gNR =

√
RgA/2, where gA is the axial-vector coupling of the nucleon and√

R = 0.53 ± 0.04 (for details, see ref. [82]). For gR the naive quark model predicts gR = gA,
and we set here gR = 1.0 so that gA and gR are roughly of the same size, see also [83].

To leading order in the chiral expansion, the LEC c∗1 measures the σ-term in the Roper state
and it is thus bounded from above by the value of the pion-nucleon σ-term. This means
|c∗1| . 1 GeV−1. More realistically, a natural value for c∗1 would be around −0.5 GeV−1 because
σ-terms are expected to become smaller with the resonance excitation energy (see also the
related discussion on the π∆ σ-term in refs. [48, 49, 84, 85]). The sign of c∗1 should be negative
since the quark masses contribute positively to the hadron masses. The nucleon LECs c2 and
c3 are much enhanced compared to the natural values |ci| . 1 GeV−1 because of the nearby
and strongly coupled delta resonance [43]. This is not expected to be the case for the Roper
resonance. Consequently, the LECs c∗2,3 can be bounded conservatively by ±1 GeV−1. The pion
decay constant in the chiral limit is taken to be F = 87 MeV [20,86].

In fig. 3.2 an estimated range for the pion mass dependence of the Roper mass is presented by
taking the extreme values for c∗2,3 and e∗1, while keeping c∗1 = −0.5 GeV−1, gNR = 0.35, gR = 1

2Note that in the Jülich coupled-channels approach, the Roper is dynamically generated with an important
π∆ component besides the σN one [81].
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Figure 3.2: Quark mass dependence of the Roper mass for different parameter sets c∗1 =
−0.5, c∗2,3, e

∗
1. The ci are in units of GeV−1 and e1 is given in GeV−3. The axial couplings

are gR = 1.0, gNR = 0.35. The solid curve corresponds to c∗2 = 1.0, c∗3 = 1.0, e∗1 = 0.5, the
dashed one to c∗2 = −1.0, c∗3 = −1.0, e∗1 = −0.5 and the dot–dashed one to c∗2 = c∗3 = e∗1 = 0.
The dotted curve represents the quark mass dependence of the nucleon, see ref. [87]. The values
of the corresponding LECs are: c1 = −0.9, c2 = 3.2, c3 = −3.45, e1 = −1.0.

fixed. The masses of the baryons in the chiral limit are taken to be mN = 0.885 GeV [87]
and mR = 1.4 GeV, respectively. The dash-dotted curve is obtained by setting the couplings
c∗2,3, e

∗
1 all to zero, and exhibits up to an offset a similar quark mass dependence as the nucleon

result (dotted curve, taken from ref. [87]). It should be emphasized, however, that the one-loop
formula cannot be trusted for pion masses much beyond 350 MeV. For similar results for the
nucleon mass, see also ref. [88].

In the numerical calculation we have employed the pion decay constant in the chiral limit,
F = 87 MeV. However, we could have equally well used the physical pion decay constant,
Fπ = 92.4 MeV, as the difference in the chiral expansions appears either at chiral order O(M6

π)
in eqs. (3.30, 3.32) or at order O(M5

π) for the Roper-pion loop which is beyond the accuracy
of the present investigation. The numerical results for these contributions would change by
the amount of F 2/F 2

π ≈ 0.89 and do not lead to significant changes in the results. Stated
differently, the replacement of F by Fπ in these formulae induces a correction due to the quark
mass expansion of Fπ

Fπ = F

(

1 +
M2

π

16π2F 2
l̄4 + O(M4

π)

)

(3.34)

with l̄4 = 4.33. The modifications at leading order are then

− 3g2
NR

2048π4F 4
π (m2

R −m2
N )

l̄4 M
6
π

[

(2mR + 4mN) ln

(

M2
π

m2
R

)

+mR

]

(3.35)
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for the nucleon-pion loop,

− 3g2
R

256π3F 4
π

l̄4 M
5
π (3.36)

for the Roper-pion loop, and

(

6c∗1 −
3

4
c∗2 − 3c∗3

)

l̄4
M6

π

128π4F 4
π

ln

(

M2
π

m2
R

)

+
3

1024π4F 4
π

c∗2 l̄4 M
6
π . (3.37)

for the tadpoles. These corrections at higher chiral orders are indeed small and can be safely
neglected for small pion masses. In fact, the variations induced by these corrections are within
the band for mR(M2

π) given in fig. 3.2.

To summarize, we have calculated in this chapter the chiral corrections to the Roper mass to
one-loop order. The approach is based on an extension of infrared regularization which allows
for the unambiguous isolation of the infrared singular part of the loop integrals stemming from
the pion poles of the pertaining integrands. At the same time, chiral symmetry is preserved
and a chiral counting scheme emerges. The considered Feynman diagrams contain two different
heavy mass scales mN , mR which we consider to satisfy the relation m2

N ≪ m2
R. The utilized

formalism is in general suited to study systems with two heavy mass scales in addition to a light
mass scale. In this sense, it can be applied to other resonances as well, such as the S11(1535). In
this case, however, an SU(3) calculation is necessary due to the important ηN decay channel.
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Chapter 4

Gauge invariance in unitarized ChPT 1

4.1 Introduction

In the foregoing two chapters, we have examined how the low-energy effective field theory of
QCD, which is usually set up as a theory where only the Goldstone bosons (and possibly the
ground-state baryons) are treated as dynamical degrees of freedom, is affected by the appear-
ance of an additional mass scale, given by the mass of an explicitly included resonance field.
We have shown that, in various cases, the method of infrared regularization can suitably be
generalized to establish a well-defined power counting scheme also for such extended versions
of the original effective field theory, at least at the one-loop level.
In the remaining part of this thesis, we will focus on another (non-perturbative) class of exten-
sions of the standard version of ChPT, which was already introduced in sec. 1.5 as unitarized chi-
ral perturbation theory (UChPT). Over the last years, considerable effort has been undertaken
to combine the effective chiral Lagrangian approach with such non-perturbative methods, both
in the purely mesonic sector [55] and in the meson-baryon sector [56–58]. Recall that the sys-
tematic loop expansion of standard ChPT involves a characteristic scale Λχ ≃ 4πFπ ≈ 1.2 GeV
at which the chiral series is expected to break down. The limitation to very low-energy pro-
cesses is even enhanced in the vicinity of resonances. The appearance of resonances in certain
channels constitutes a major problem for the loop expansion of ChPT, since a resonance cannot
be reproduced at any given order of the chiral series. Nevertheless, at low energies the contri-
bution from such resonances is encoded in the numerical values of certain low-energy constants,
as explained in chapter 1.
The combination with the non-perturbative schemes of UChPT has made it possible to go
to energies beyond Λχ and to generate resonances dynamically (giving up, however, certain
aspects of the rigorous framework constituted by ChPT). Two prominent examples in the
baryonic sector are the Λ(1405) and the S11(1535). The first one is an s-wave resonance just
below the K−p threshold and dominates the interaction of the K̄N system, while the S11(1535)
was identified in [56] as a quasi-bound KΛ-KΣ state.
Such chiral unitary approaches have been extended to photo- and electroproduction processes
of mesons on baryons, see e.g. [89–91]. In these coupled channel models the initial photon
scatters with the incoming baryon into a meson-baryon pair which in turn rescatters (elastically
or inelastically) an arbitrary number of times. The two-body final state interactions are taken

1The contents of this chapter have been published in Phys. Rev. C 72 (2005) 065201 [arXiv:hep-ph/0508307].
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into account in a coupled-channels Bethe-Salpeter equation (BSE) or – in the non-relativistic
framework – Lippmann-Schwinger equation. The coupling of the incoming photon to other
possible vertices is omitted, and although these approaches appear to describe the available
data well, the issue of gauge invariance is not discussed in these chiral unitary approaches. On
the other hand, a method to obtain conservation of the electromagnetic current of a two-nucleon
system is presented in [92] and extended to a resonance model for pion photoproduction in [93].
Alternatively, the so-called “gauging of equations” method has been developed in [94, 95] to
incorporate an external electromagnetic field in the integral equation of a few-body system in
a gauge invariant fashion. Further investigations of gauge invariance in pion photoproduction
within πN models can be found in [96, 97]. Gauge invariance is also of interest in coupled-
channels approaches in the mesonic sector, e.g in radiative φ, ρ decays [98, 99] and in the
anomalous decays η, η′ → γγ, π+π−γ [100, 101]. For related recent work, see also [102].
The purpose of the present chapter is to illustrate how gauge invariance can be maintained
when an external photon couples to a two-particle state described by the BSE within the chiral
effective framework. The method developed here will be applied in the next chapter to construct
an amplitude for meson photo-and electroproduction which fulfills the requirements of exact
two-body unitarity and gauge invariance. We will start in the next section by first outlining
the procedure for the simple scalar field theory we have already introduced in sec. 1.5. With
the insights gained from this example we can then address gauge invariance in meson-baryon
scattering processes with chiral effective Lagrangians. In sec. 4.3 we discuss the case with
the interaction kernel of the BSE derived from the leading order Lagrangian – the Weinberg-
Tomozawa term. The extension to driving terms from higher chiral orders is presented in
sec. 4.4. In section 4.5 it is shown that the corresponding amplitudes also satisfy unitarity
constraints. Our conclusions and outlook are presented in sec. 4.6.

4.2 Complex scalar fields

In this section, we will demonstrate in a simple field theory with complex scalar fields that the
coupling of an external photon to a two-body state, which corresponds to the solution of the
BSE, is gauge invariant. To this end, we consider the (normal-ordered) Lagrangian for complex
fields φ and ψ

L = ∂µφ
∗∂µφ−m2φ∗φ+ ∂µψ

∗∂µψ −M2ψ∗ψ − g(φ∗φ)(ψ∗ψ) , (4.1)

with masses m and M , respectively, which was already used as a toy-model in sec. 1.5. For the
purpose of a self-contained presentation, we shall repeat some of the features of this toy-model
in this section.
For small values of the coupling constant g, the scattering process φ(p1)ψ(p2) → φ(p3)ψ(p4)
may be calculated perturbatively. For general values of g, however, and if one is interested
in bound states, one must resort to non-perturbative techniques such as the BSE. The Bethe-
Salpeter equation for the scattering matrix T of the two-particle scattering process, eq. (1.51),
reduces to a simple algebraic equation in the present case, namely

T (s) = g + T (s)G(s)g , (4.2)

where s = p2 = (p1 + p2)
2 = (p3 + p4)

2 and G is the scalar loop integral from eq. (1.46),

G(p2) = i

∫

l

∆φ(p− l)∆ψ(l) (4.3)
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utilizing the short-hand notation
∫

l

=

∫

d4l

(2π)4
(4.4)

and the propagators

i∆φ(l) =
i

l2 −m2
, i∆ψ(l) =

i

l2 −M2
. (4.5)

The solution of the BSE is given by

T (s) =
g

1 − gG(s)
= g + gG(s)g + gG(s)gG(s)g + . . . (4.6)

which is interpreted as a summation of an infinite series of s-channel loop graphs, the so-called
bubble chain (or bubble sum). From inversion of eq. (4.6) it immediately follows that

ImT−1 = − ImG =
|qcm|
8π

√
s
θ(s− (m+M)2) , (4.7)

which amounts to the statement of two-particle unitarity for the scattering amplitude. Strictly
speaking, the integral G is divergent, but its divergent piece can be absorbed in the coupling
g, as demonstrated in eq. (1.48). In the following, we will thus assume that the scalar loop
integral G has been rendered finite by an appropriate redefinition of the coupling and omit the
divergent pieces henceforth.
Let us now turn to the coupling of an external photon field to the solution of the BSE. By
minimal substitution

∂µ →∇µ = ∂µ + ieφAµ for φ ,

∂µ →∇µ = ∂µ + ieψAµ for ψ , (4.8)

where Aµ is the photon field and eφ (eψ) the charge of the scalar field φ (ψ), one obtains a
locally gauge invariant Lagrangian. The coupling of the photon with incoming momentum k
to the four external legs of a bubble chain leads to the amplitudes

T µ1 = eφ T (s′) ∆(p1 + k) (2p1 + k)µ ,

T µ2 = eψ T (s′) ∆(p2 + k) (2p2 + k)µ ,

T µ3 = eφ(2p3 − k)µ ∆(p3 − k)T (s) ,

T µ4 = eψ(2p4 − k)µ ∆(p4 − k)T (s) , (4.9)

where s′ = (p + k)2. Multiplying these contributions with the four-momentum of the photon,
kµ, and setting the external legs on-shell yields

(eφ + eψ) [T (s′) − T (s)] , (4.10)

which in general does not vanish. This underlines that, in order to achieve gauge invariance, it is
not sufficient to couple the photon only to external legs. One rather has to include contributions
which arise due to the coupling of the photon to intermediate states within the bubble chain,
leading to the additional contributions

T µ5 = ieφT (s′)

∫

l

∆φ(l + k) (2l + k)µ ∆φ(l) ∆ψ(p− l) T (s) ,

T µ6 = ieψT (s′)

∫

l

∆ψ(l + k) (2l + k)µ ∆ψ(l) ∆φ(p− l) T (s) . (4.11)
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By employing the following algebraic identity, equivalent to the Ward-Takahashi identity at
lowest order in e and g,

kµ(2l + k)µ = ∆−1
φ/ψ(l + k) − ∆−1

φ/ψ(l) (4.12)

it is straightforward to show that

kµ (T µ5 + T µ6 ) = (eφ + eψ) T (s′) [G(s) −G(s′)] T (s) . (4.13)

The last expression can be rewritten by making use of the BSE

T (s′)[G(s) −G(s′)]T (s) = T (s′) [g−1T (s) − 1] − [T (s′)g−1 − 1]T (s) = T (s) − T (s′). (4.14)

Adding up all contributions we arrive at

kµ

6
∑

i=1

T µi = 0 , (4.15)

which confirms the gauge invariance of the photon coupling to the bubble chain.
At the same time, insertion of the photon coupling at all possible places in the bubble chain
guarantees unitarity of the scattering matrix up to radiative corrections of order O(e3). To this
end, we remark that in the transition φψγ → φψ we can restrict ourselves to the states |φψ〉
and |φψγ〉. Unitarity of the S-matrix, S = 1 − iT , implies then (compare eq. (1.39))

〈φψ|T − T †|φψγ〉 = −i
∫

PS

{

〈φψ|T †|φ′ψ′〉〈φ′ψ′|T |φψγ〉 + 〈φψ|T †|φ′ψ′γ′〉〈φ′ψ′γ′|T |φψγ〉
}

,

(4.16)
where

∫

PS
denotes the phase space integral for the set of intermediate states |φ′ψ′〉 and |φ′ψ′γ′〉.

We have introduced a superscript for the intermediate particles with running three-momenta,
φ′, ψ′ and γ′, in order to distinguish them from the external particles φ, ψ and γ with fixed
momenta. Note that the last matrix element 〈φ′ψ′γ′|T |φψγ〉 contains a disconnected piece of
order O(e0) in which the photon does not couple to the bubble chain and thus appears in the
O(e) part of the unitarity relation. The remaining connected diagrams of this matrix element
which contain the coupling of the photon to the bubble chain are of order O(e2) and will be
neglected in the following. By making use of the symmetry 〈i|T |j〉 = 〈j|T |i〉 due to time
reversal invariance, eq. (4.16) can be rewritten as

−2 Im〈φψ|T |φψγ〉 =

∫

PS

{

〈φψ|T |φ′ψ′〉∗〈φ′ψ′|T |φψγ〉 + 〈φψ|T |φ′ψ′γ〉∗〈φ′ψ′γ|T |φψγ〉
}

,

(4.17)
where now the phase space integral applies only to the particles φ′ and ψ′. The last equation
represents the Cutkosky cutting rules [103]. At the diagrammatic level this amounts to cutting
a pair of φ and ψ propagators at all possible places in the bubble chain (keeping in mind that
the photon is merely an external particle). The two terms on the right hand side represent the
two possibilities for the photon to couple to the bubble chain before or after the cut. Since
these are the only possible cuts in the bubble chain leading to imaginary pieces in the relevant
kinematic region, one verifies eq. (4.17) and hence unitarity of the S-matrix up to radiative
corrections. However, if the photon couples to a propagator, there is also the possibility to cut
in the corresponding diagram both propagators which are directly connected to the photon.
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For a photon with k2 < 4 min(m2,M2) which is the case both for physical photons and for
virtual photons from electron scattering, these cuts do not yield imaginary values and can be
safely omitted here.
Having convinced ourselves that it is possible to obtain gauge invariant and (up to radiative
corrections) unitary amplitudes by taking into account the coupling of the photon to scalar
fields in all possible ways in the bubble chain, we can now continue by applying this procedure
to the slightly more complicated case of the chiral effective meson-baryon Lagrangian.

4.3 Weinberg-Tomozawa term

The chiral effective Lagrangian describing the interactions between the octet of Goldstone
bosons (π,K, η) and the ground state baryon octet (N,Λ,Σ,Ξ) is given at leading chiral order
by eq. (1.33),

L(1)
MB = i〈B̄γµ[Dµ, B]〉 −m0〈B̄B〉 + . . . . (4.18)

We have only displayed the terms relevant for the present investigation and omitted the two
operators which contain the axial vector couplings of the mesons to the baryons. In the present
investigation, we restrict ourselves to interaction kernels of the BSE given by contact interac-
tions. The axial vector couplings of the mesons to the baryons could in principle contribute via
direct and crossed Born terms, but the crossed Born term corresponds to three-body intermedi-
ate states which are beyond the scope of this work, and we neglect the Born terms throughout.
(The inclusion of Born terms in the interaction kernel is deferred to future work.) In fact,
many coupled-channels approaches only take into account the contact interaction originating
from the Lagrangian in (4.18), see e.g. [104] and references therein.
The covariant derivative of the baryon field was defined in eq. (1.34). Here we only include the
external vector field in the chiral connection, so that

Γµ =
1

2
[u†, ∂µu] −

i

2

(

u†vµu+ uvµu
†
)

. (4.19)

More specifically, we set vµ = −eAµQ, where Q = 1
3
diag(2,−1,−1) is the quark charge matrix.

Expansion of the chiral connection in the meson fields φ yields at leading order a φ2B̄B contact
interaction, the Weinberg-Tomozawa term, which we choose to be the driving term for the BSE
in this section.
We also recall from eq. (1.18) the mesonic piece of the Lagrangian at leading chiral order,

L(2)
φ =

F 2

4
〈∇µU

†∇µU〉 +
F 2

4
〈χ+〉, (4.20)

where we used the definition χ+ = 2B(u†Mu† + uMu) as given in eq. (3.5). Neglecting the
axial-vector field a, the covariant derivative of the meson fields is given by

∇µU = ∂µU − ivµU + iUvµ . (4.21)

In the Bethe-Salpeter formalism we choose to work with the propagators

∆i(p) =
1

p2 −M2
i

,

Sa(p) =
1

/p−ma
, (4.22)
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with flavor indices i, a and physical meson and baryon masses, Mi and ma, respectively. How-
ever, the following calculations are valid for all propagators satisfying the Ward-Takahashi
identities

kµV φ
µ (p+ k, k) = ∆−1(p+ k) − ∆−1(p) ,

kµV B
µ (p+ k, k) = S−1(p+ k) − S−1(p) , (4.23)

where V φ
µ (V B

µ ) are the corresponding γφ2 (γB̄B) three-point functions, with the charge pre-
factors omitted (compare eq. (4.12)).
In the presence of a general interaction kernel A and coupled channels consisting of a meson-
baryon pair the BSE for the process φ(qi)B(pi) → φ(qf )B(pf) generalizes to

Tfi(p; qf , qi) = Afi(p; qf , qi) + i
∑

l

∫

k

Tfl(p; qf , k) ∆j(k)Sa(p+ k) Ali(p; k, qi)

= Afi(p; qf , qi) + i
∑

l

∫

k

Afl(p; qf , k) ∆j(k)Sa(p+ k) Tli(p; k, qi) (4.24)

with p = pi + qi = pf + qf . The index l = {φj, Ba} runs over the channels which couple both
to the initial and final state, i and f . In the second line, we have made use of the symmetry
property of the BSE, which is easily verified by solving the integral equation iteratively, to
an arbitrary order in the kernel A. Also note that we have replaced the common mass of the
ground state baryon octet, m0, by the physical baryon masses ma. This is consistent with
the chiral order of the interaction kernel derived from the Weinberg-Tomozawa term and, in
particular, produces the unitarity cuts at the physical thresholds.

A B C

D E

Figure 4.1: Tree diagrams for the process γφB → φB. Solid, dashed and wavy lines correspond
to baryons, mesons and photons, respectively. The square denotes the vertex from the leading
order Lagrangian.

After setting up the formalism we first calculate the tree level contributions for the coupling
of a photon to meson-baryon scattering. The pertinent Feynman diagrams for the process
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γ(k)φi(qi)Ba(pi) → φj(qf )Bb(pf) are depicted in Figure 4.1. In addition to the coupling of the
photon to the propagators the chiral connection in eq. (4.18) gives rise to a γφ2B̄B vertex,
fig. 4.1 E.
The tree contributions to the transition amplitude read

T (tree) bj,ai
µ = − e

4F 2

{

(/qi + /qf)Sa(pi + k) γµQ̂
a + γµQ̂

bSb(pf − k) (/qi + /qf )

+(/qi + /qf + /k) ∆i(qi + k) [2qi + k]µQ̂
i

+(/qi + /qf − /k) ∆j(qf − k) [2qf − k]µQ̂
j

−γµ
(

Q̂j + Q̂i
)

}

〈

λb†[[λj†, λi], λa]
〉

, (4.25)

where Q̂aλa = [Q, λa] (no summation over a) is the charge of the particle a in units of e and
the λi are the generators of the SU(3) Lie-Algebra in the physical basis. By multiplying the
tree contributions in eq. (4.25) with kµ gauge invariance is easily verified, if the momenta of
the particles are put on-shell.
In order to prove gauge invariance for the coupling of the photon to the bubble chain, it is
convenient to consider first the diagrams presented in fig. 4.2 with the pertinent contributions
given by (a, b, c, d denote baryon flavor indices, whereas i, j,m, n represent meson flavors):

Fig. 4.2A:

Abj,aiµ =
e

4F 2
γµ
(

Q̂j + Q̂i
) 〈

λb†[[λj†, λi], λa]
〉

, (4.26)

Fig. 4.2B:

i2
∫

l

∫

q

T bj,dn(p′; qf , q) Sd(p
′ − q)∆n(q) A

dn,cm
µ Sc(p− l)∆m(l) T cm,ai(p; l, qi) , (4.27)

Fig. 4.2C:

i

∫

l

T bj,cm(p′; qf , l) Sc(p
′ − l)∆m(l) Acm,aiµ , (4.28)

Fig. 4.2D:

i

∫

l

Abj,cmµ Sc(p− l)∆m(l) T cm,ai(p; l, qi) , (4.29)

Fig. 4.2E:

i2
∫

l

T bj,cm(p′; qf , l + k) Sc(p− l)∆m(l + k) (−ieQ̂m(2l + k)µ)∆m(l) T cm,ai(p; l, qi) , (4.30)

Fig. 4.2F:

i2
∫

l

T bj,cm(p′; qf , l) Sc(p
′ − l) (−ieQ̂cγµ)Sc(p− l)∆m(l) T cm,ai(p; l, qi) , (4.31)

with p′ = p+ k = pi + qi + k = pf + qf .
For general meson momenta p, q (i.e. not necessarily on-shell), the quantity Abj,aiµ satisfies the
relation

kµAbj,aiµ = e
{

(

Q̂b − Q̂a
)

Abj,ai(q, p) − Q̂iAbj,ai(q, p+ k) + Q̂jAbj,ai(q − k, p)
}

, (4.32)
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Figure 4.2: Bubble chain diagrams for the process γφB → φB. Solid, dashed and wavy lines
correspond to baryons, mesons and photons, respectively. The square denotes the vertex from
the leading order Lagrangian, the filled circle represents the bubble chain derived from the BSE.

where A is the amplitude deduced from the Weinberg-Tomozawa term

Abj,ai(q, p) = − 1

4F 2
(/q + /p)

〈

λb†[[λj†, λi], λa]
〉

. (4.33)

Making extensively use of eq. (4.32) and the BSE it is straightforward to show that the contri-
butions of eqs. (4.26)-(4.31) multiplied by kµ yield in total

e
{

−Q̂aT bj,ai(p′; qf , qi)+Q̂
bT bj,ai(p; qf , qi)−Q̂iT bj,ai(p′; qf , qi+k)+Q̂

jT bj,ai(p; qf−k, qi)
}

. (4.34)

This compensates exactly the contributions from the remaining four diagrams where the photon
couples to the external on-shell legs of the bubble chain. We have thus confirmed that gauge
invariance is achieved if all possible diagrams of a photon coupling to a bubble chain are taken
into account. In particular, it is not sufficient to consider only the coupling of the photon to
external legs, since this will lead to a gauge dependent amplitude. On the other hand, within
the field theoretical framework applied here it is also not sufficient to take into account only
the coupling of the photon to the interaction kernel. Note that in the proof given here we do
not assume the so-called on-shell approximation for the interaction kernel.
It is also important to stress that an explicit evaluation of the BSE was not necessary and
thus we do not need to specify the regularization scheme to render the loop integral in the
BSE finite. Any regularization procedure which satisfies the Ward identities both for the
propagators, eq. (4.23), and the interaction kernel, eq. (4.32), will maintain gauge invariance
in the BSE as outlined in the proof.
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Finally, the unitarity constraint for the full amplitude Tµ can be proven in analogy to the
treatment in sec. 4.2. The detailed derivation of unitarity is deferred to sec. 4.5. Thus, also in
order to obtain a unitarized amplitude (up to radiative corrections) one must take into account
the coupling of the photon at all possible places in the bubble chain.

4.4 Higher order interaction kernels

In this section, we will consider more complicated structures for the interaction kernel as they
arise at higher chiral orders in the effective Lagrangian. Since we restrict ourselves to φ2B̄B
contact interactions, the most general form of a term without the chiral invariant field strength
tensor F+

µν (see eq. (1.38)) is given by

Lint = B̄ Cµ1···µlµl+1···µmµm+1···µn

(

Dµ1 . . .Dµl φ̃
)(

Dµl+1 . . . Dµmφ†
)(

Dµm+1 . . .DµnB̃
)

, (4.35)

where we have suppressed flavor indices for brevity (we merely kept the symbol “ ˜ ” as a
reminder of the flavor structure indicating that the in- and outgoing baryons and mesons can
be different) and introduced the notation Dµ = ∂µ + iêAµ with ê the charge of the particle Dµ

is acting on. As the contact interactions originate from a gauge invariant Lagrangian, charge
conservation is guaranteed at each vertex. The introduction of explicit flavor indices does not
change any of the following conclusions. Note that the constant C in eq. (4.35) may also contain
elements of the Clifford algebra. From this Lagrangian one derives both a φ̃(q̃)B̃(p̃) → φ(q)B(p)
contact interaction A(p̃, q̃, q) and a γ(k)φ̃(q̃)B̃(p̃) → φ(q)B(p) vertex ǫµA

µ(p̃, q̃, q, k), where ǫµ
is the polarization vector of the photon. Due to the form of the contact term (4.35), which
can always be obtained by partial integration, the vertices do not depend explicitly on the
momentum p. In app. D it is shown that they satisfy the relation

kµA
µ(pi, qi, qf , k) = êφA(pi, qi, qf − k) − êφ̃A(pi, qi + k, qf )

+ êBA(pi, qi, qf ) − êB̃A(pi + k, qi, qf) (4.36)

for general momenta of the particles. This equation is the analog of eq. (4.32) for the Weinberg-
Tomozawa term. It follows then immediately by applying the same arguments as in the previous
section that the coupling of the photon to the two-particle state of the BSE yields a gauge
invariant amplitude also in the presence of more complicated contact interactions of the type
eq. (4.35).
Note that throughout we have not considered the dimension two magnetic moment coupling
∼ σµνF+

µν and higher order operators involving the chiral covariant field strength tensor F+
µν .

Such terms are of course present in the effective Lagrangian and must be considered at the
appropriate order in the chiral expansion of the interaction kernel. However, these are of the
form ∂νvµ(Oνµ − Oµν) with some operator Oνµ and the pertinent vertex in momentum space
vanishes upon contraction with the photon momentum kµ.
As already mentioned in the previous section, the proof of gauge invariance does not depend on
the specific choice of the meson and baryon propagators, but is rather valid for all propagators
satisfying the Ward-Takahashi identities with the corresponding γφ2 and γB̄B three-point func-
tions. For example, one can define the BSE by employing propagators with the physical masses
for the intermediate states and derive the interaction kernel from the effective Lagrangian to a
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given chiral order. This automatically produces the correct physical thresholds of the unitarity
cuts and we have followed this path in the present investigation.
Alternatively, one may prefer to deduce the propagators from the effective Lagrangian as well.
To leading chiral order this implies a common baryon octet mass shifting the threshold of
the unitarity cuts to unphysical values. At higher chiral orders the inclusion of self-energy
diagrams for the meson and baryon propagators will cure the situation by restoring the physical
thresholds. The self-energy diagrams will modify the simple form of the propagators given in
eq. (4.24); e.g., the meson propagators will acquire the form

∆(p) =
Z

p2 −M2 − ΣR(p)
(4.37)

with M being the physical meson mass, Z the appropriate wave function renormalization
constant, and ΣR(p) the renormalized self-energy.
In order to prove gauge invariance in the latter approach, one must also take into account the
coupling of the photon to the self-energy corrections of the propagators. Since the effective
Lagrangian is gauge invariant, the corresponding propagators and three-point functions satisfy
the pertinent Ward-Takahashi identities and the proof is equivalent to the one given in the
previous section.
We also would like to compare the present investigation with the work of [94, 95]. Although
similar in spirit, the authors study therein an integral equation for the two-body Green’s func-
tion, whereas we prefer to work with an equation for the scattering amplitude. “Gauging” the
integral equation for the Green’s function as outlined in [94, 95], i.e. adding a vector index
µ to all the terms of the equation such that a linear equation in µ-labeled quantities results,
amounts to attaching an external photon everywhere including the external legs. In our frame-
work, the straightforward application of the gauging method to the integral equation for the
scattering amplitude fails, as in this case the procedure does not yield the contributions where
the photon couples to the external legs. (Of course, one could correct this by adding the missing
contributions by hand.) On the other hand, our approach is more convenient within the chiral
effective framework, as it allows a direct comparison with the scattering amplitude derived in
the perturbative scheme of ChPT. Moreover, the authors of [94, 95] restrict themselves merely
to one two-body channel, whereas in the present investigation this is generalized to several
coupled channels. In contrast to [94,95] we explicitly specify the interaction kernel by deriving
the vertices from the chiral effective Lagrangian and utilizing them as interaction kernels in the
BSE.

4.5 Unitarity

After having constructed a gauge invariant amplitude for Bφγ → Bφ with Weinberg-Tomozawa
or more general contact interaction kernels, we would like to investigate unitarity of the obtained
amplitude. The calculation presented in this section generalizes the findings for the scalar field
theory presented at the end of sec. 4.2, as one must take care of the non-commutative nature
of the matrix amplitudes due to the Clifford algebra and coupled channels. Moreover, we do
not assume symmetry of the transition amplitudes under exchange of initial and final states.
In operator form the statement of a unitary scattering matrix amounts to

T − T † = −iT †T . (4.38)

60



For brevity we introduce a short-hand notation for the BSE, eq. (4.24),

T (p) = A+

∫

T (p)G(p)A = A+

∫

AG(p)T (p), (4.39)

where p is the external momentum and G = iS∆. The BSE for the meson-baryon scattering
amplitude T is easily transformed into the unitarity relation

T − T̄ =

∫

T̄ (G− Ḡ)T (4.40)

with Ō ≡ γ0O
†γ0, as both T and G are elements of the Clifford algebra. Note that the adjoint

O† also implies taking the transposed matrix in channel space. We will see that the quantity
G − Ḡ is equal to setting the intermediate meson-baryon pairs on-shell in eq. (4.40). For
invariant energies below the lowest three-particle threshold eq. (4.40) is thus equivalent to the
unitarity constraint (4.38). The reader should compare this also with eq. (1.41) for the case of
spinless particles.
If T is an analytic function, one can apply the residue theorem and rewrite the difference G−Ḡ
as

i(S(p− l)∆(l) + S̄(p− l)∆̄(l)) → i(−2πi)2δ+(l2 −M2)δ+((p− l)2 −m2) [/p− /l +m], (4.41)

where l and p are the loop and external momentum, respectively, and δ+(k2 − µ2) = δ(k2 −
µ2)θ(k0). For a detailed derivation of this replacement, see e.g. sec. 7.3 of [18]. The last
equation can even be generalized to non-analytic T which does not have coinciding poles with
G. In particular, the above replacement is valid if T describes the solution of the BSE with
polynomial interaction kernels, as can be seen by insertion of its defining equation (4.24) into
eq. (4.40), making use of Ā = A. Schematically, the calculation is performed as follows:

∫

T̄ (G− Ḡ)T =

∫

T̄GT −
∫

T̄ Ḡ

(

A+

∫

AGT

)

=

∫

T̄GT − (T̄ −A) −
∫ ∫

T̄ ḠAGT

=

∫

T̄GT + A− T̄ −
∫

(T̄ − A)GT = T − T̄ .

In order to prove unitarity for the transition Bφγ → Bφ, it is convenient to introduce the
amplitude

Mµ
φγ = V µ

disc + T µ (4.42)

with the disconnected piece

V µ
disc = 2Eqi(2π)3δ(3)(qi − qf )V

µ
B + 2Epi

(2π)3δ(3)(pi − pf)V
µ
φ (4.43)

and T µ the transition amplitude calculated in sections 4.3 and 4.4. The energies of the particles

are given by Eqi =
√

q2
i +M2

φ and Epi
=
√

p2
i +m2

B, respectively. The piece V µ
disc is represented

by the two disconnected diagrams in which the photon couples either to the baryon or meson,
while the other particle does not interact at all. Although V µ

disc does not contribute to on-shell
matrix elements and could in principle be omitted in the unitarity relation, its introduction
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generalizes unitarity beyond the physical region. From the amplitude Mµ
φγ one constructs the

reversed amplitude Mµ
γφ for the process B(pf)φ(qf ) → B(pi)φ(qi)γ(k). Neglecting radiative

corrections and below the lowest three-particle (i.e. baryon two-meson) threshold unitarity
implies

Mµ
φγ − M̄µ

γφ =

∫

T̄ (p′)(G(p′) − Ḡ(p′))Mµ
φγ +

∫

M̄µ
γφ(G(p) − Ḡ(p))T (p) , (4.44)

where we have replaced again the two-body phase space integration by the four dimensional
integral over G− Ḡ. Note that in the physical region Mµ

φγ reduces to T µ.
By inserting the amplitudes T µ and T from the BSE and making use of the unitarity statement
for T , eq. (4.40), as well as V̄ µ

φ/B = V µ
φ/B and Āµ = Aµ from eq. (4.26), one can indeed confirm

the unitarity constraint for Mµ
φγ and thus for T µ for on-shell matrix elements.

We refrain from presenting the entire and tedious calculation here, but would like to comment
on two points. First, the contribution of the disconnected graphs drops out on the l.h.s. of the
unitarity statement (4.44) (due to the symmetry of these graphs under interchange of incoming
and outgoing particles and V̄ µ

φ/B = V µ
φ/B). On the r.h.s., they produce terms of the type

∫

l

T̄ (p′) (G(p′) − Ḡ(p′)) 2Eqi(2π)3δ(3)(qi − l)V µ
B

=

∫

l

T̄ (p′) i(−2πi)2 δ+((p′ − l)2 −m2) δ+(l2 −M2) [/p
′ − /l +m] 2Eqi(2π)3δ(3)(qi − l)V µ

B

=

∫

d3l T̄ (p′)(−2πi) δ+((p′ − l)2 −m2) [/p
′ − /l +m] δ(3)(qi − l)V µ

B

= T̄ (p′)(−2πi) δ+((p′ − qi)
2 −m2)[/p

′ − /qi +m] V µ
B

= T̄ (p′) [S(pi + k) − S̄(pi + k)] V µ
B . (4.45)

For on-shell matrix elements (and k 6= 0) this vanishes as ǫ → 0 in the propagators, but it
happens that all terms of this type cancel each other on the r.h.s. of eq. (4.44) even for general
external momenta. Our second comment concerns some contributions from diagrams 4.2E and
F. On the l.h.s. of eq. (4.44) one obtains, e.g., the combination

i

∫

l

T̄ (p′)S(p′ − l) ∆(l)V µ
B S(p− l)T (p) + i

∫

l

T̄ (p′) S̄(p′ − l) ∆̄(l)V µ
B S̄(p− l)T (p) (4.46)

which represents the discontinuity of the transition amplitude stemming from fig. 4.2F (the
two integrals only differ in the sign of the “iǫ” terms in the propagators). According to the
Cutkosky cutting rules and for momenta k2 < 4m2 this discontinuity is given by

∫

l

T̄ (p′) (G(p′) − Ḡ(p′))V µ
B S(p− l)T (p) +

∫

l

T̄ (p′) S̄(p′ − l)V µ
B (G(p) − Ḡ(p))T (p). (4.47)

In the kinematical region which is of relevance here the cut through the two propagators con-
nected to the photon does not contribute to the discontinuity and can be safely neglected.
We conclude by emphasizing that the unitarity constraint (4.44) is only fulfilled if the photon
couples to all possible places in the bubble chain.
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4.6 Conclusions

In the present chapter, we have studied how gauge invariance is obtained for a photon coupling
to a two-body state described by the solution of the Bethe-Salpeter equation. We have discussed
the procedure both for a simple complex scalar field theory and for interaction kernels derived
from chiral effective Lagrangians in the meson-baryon sector. In the latter case, we have first
considered the Weinberg-Tomozawa term and afterwards the most general contact interaction
consisting of two mesons and two baryons which can arise in the chiral effective framework. Our
study underlines that it is not sufficient to take into account only the coupling of the photon
to the external legs as has been done in many calculations based on chiral unitary approaches,
but one rather has to include all possible contributions of the photon coupling to the vertices
and intermediate states. Neither is it sufficient to consider only the coupling of the photon to
the interaction kernel. At the same time, coupling of the photon to the bubble chain at all
possible places is necessary, in order to guarantee a unitary scattering matrix up to radiative
corrections.
For the interaction kernels discussed in the present work we have shown explicitly that gauge
invariance is maintained in this manner. It is accomplished without assuming the on-shell
approximation for the interaction kernel. Moreover, the explicit evaluation of the loop integral
in the Bethe-Salpeter equation is not necessary and hence the proof does not depend on the
chosen regularization scheme. But the regularization procedure is required to be consistent
with the Ward identities both for the propagators and the interaction kernels. This study will
also be of importance for photo- and electroproduction processes of mesons on nucleons and
for radiative decays of baryons and mesons which must be treated in a similar way, in order
to achieve gauge invariant and unitarized amplitudes. One example for an application will be
presented in the next chapter. The method outlined in this chapter has also been applied to
the study of the electromagnetic mean squared radii of the Λ(1405) in [105].
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Chapter 5

Threshold kaon photo-and
electroproduction 1

5.1 Introduction

In the foregoing chapter, we have developed a method that allows to implement the electromag-
netic interaction in a given unitarized amplitude, in a way that is in accord with both gauge
invariance and unitarity. More specifically, we started with amplitudes for elastic two-particle
scattering, which were constructed by means of a Bethe-Salpeter equation (BSE) and therefore
obeyed the requirement of two-body unitarity, see eqs. (4.7) and (4.40). Then we coupled a
photon to the sum of bubble graphs generated by the BSE, employing the prescription (familiar
from quantum field theory textbooks) that the photon has to be attached at every position in
the graphs, wherever this is possible. We also showed that the result of this procedure is an
amplitude for the absorption of the photon by the original two-particle system which again
obeys the strictures of unitarity (projecting on the subspace of two-particle states as usual).
It is the purpose of this chapter to apply this method to a specific process, namely, kaon photo-
and electroproduction off protons. Let us make some general remarks to motivate the selection
of this specific process.

The hadronic spectrum is still the least understood property of QCD. Most theoretical models
predict much more states than are actually observed so far in experiments, see e.g. [106–108].
This is sometimes called the ‘missing resonance problem’. The search for missing resonances
has therefore been an important goal of various experimental efforts. The properties of baryon
resonances are presently under thorough investigation at several facilities, e.g., at ELSA, JLab,
MAMI, GRAAL, COSY and SPring-8. Due to their hadronic decay modes, however, many
baryon resonances have large overlapping widths which makes it a difficult task to study indi-
vidual states. In this respect, polarization observables can be used as a tool to filter out specific
resonances in specific reactions.
A possible explanation of the missing resonances could be that these states do not couple
strongly to the pion-nucleon channels which have provided to a large extent the resonance data.
A strong coupling of these resonances to channels with strange particles could be unraveled in

1The contents of this chapter have been published in Eur. Phys. J. A 34 (2007) 161 [arXiv:0709.3181 [nucl-
th]].
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photoproduction processes of KΛ and KΣ. Such experiments have been recently undertaken
at SAPHIR [109,110] and CLAS [111,112] with high precision. More recently, K0Σ+ has been
measured with the CB/TAPS detector at ELSA [113]. These data indicate that resonances
so far undetected might have been observed, but an unambiguous theoretical interpretation is
still lacking. In addition, the beam polarization asymmetry for γp → K+Λ, K+Σ0 has been
investigated by the LEPS collaboration at SPring-8 [114].
Based on an analysis of cross sections, beam asymmetries, and recoil polarizations, the Bonn-
Gatchina resonance model, e.g., demands among others the P11(1840), D13(1870), D13(2170)
resonances [115, 116], whereas in the model of [117] a P13(1830) is preferred.
Electroproduction experiments are even more sensitive to the structure of the nucleon due to
the longitudinal coupling of the virtual photon to the nucleon spin and might in addition yield
some insight into the possible onset of perturbative QCD, see e.g. [118,119]. But at low photon
virtuality experimental data for γp→ KΛ, KΣ are still not available.
Apparently, there are sufficient data to be met by theoretical approaches. In addition to the
photoproduction data, further experimental constraints are provided by pion-induced reactions
on the proton. Any theoretical approach that aims to describe the photoproduction data ought
to be consistent with the corresponding pion-induced data.
A successful theoretical approach to meson-baryon scattering is provided by chiral unitary
methods, see e.g. [56, 57, 104, 120, 121]. In this framework the chiral effective Lagrangian is
utilized to derive, for example, the interaction kernel in a Bethe-Salpeter equation (BSE) which
iterates meson-baryon rescattering to infinite order. The BSE generates resonances dynamically,
hence, without their explicit inclusion the importance of resonances can be studied. Chiral
unitary approaches have been implemented quite successfully for photoproduction processes,
see e.g. refs. [89–91,122–124], but as a simplification only those diagrams were taken into account
where the photon is absorbed first and then the produced meson-baryon pair undergoes final
state interaction. This simplified treatment violates, in general, gauge invariance. As we have
seen in the previous chapter, diagrams with the photon coupling to any intermediate state of the
meson-baryon bubble chain must be taken into account in order to guarantee gauge invariance.
One goal of the analysis in the present chapter is to study the importance of these additional
contributions which render the amplitude gauge invariant, but have been neglected in most
previous works. Note that in ref. [122], all pertinent diagrams for the process K−p → MBγ
were drawn but not all were actually calculated.
Another simplification in chiral unitary approaches is the reduction of the interaction kernel to
the on-shell point. Although the interaction kernel appears in loops, it has been argued that
the off-shell components can be absorbed by redefining the coupling constants, as discussed
in sec. 1.5 (see also [125]). Here we do not employ the on-shell approximation but present
two alternative methods to retain the off-shell components in the interaction kernel. For a
discussion of these issues, we refer the reader to ref. [60].
In chiral unitary approaches to meson photoproduction, it has been common practice to utilize
s-wave projections for the meson-baryon scattering kernel and the photoproduction multipoles.
We will also analyze the accuracy of this approximation since in our approach some higher
partial waves are generated through the small components of the Dirac spinors describing
the baryon octet fields and through the kaon (baryon) pole term in charged (neutral) meson
production.
The main goal of the present chapter is the construction of a minimal approach to meson
photoproduction based on the chiral effective Lagrangian which is exactly unitary and gauge
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invariant. The presented method fulfills these important requirements from field theory, while
at the same time any subset of diagrams cannot be omitted as this would violate unitarity
or gauge invariance. In this study, we restrict ourselves to the chiral effective Lagrangian at
leading order. The inclusion of higher chiral orders in the interaction kernel is straightforward
and necessary to obtain better agreement with experiment, particularly at higher energies away
from the respective thresholds. This will be the subject of forthcoming work.
This chapter is organized as follows. In the next section, the effective Lagrangian and the
Bethe-Salpeter formalism including off-shell components are introduced. The gauge invariant
extension to photo- and electroproduction processes is discussed in sect. 5.3. Section 5.4 con-
tains the comparison with experimental data on kaon photoproduction. The phenomenological
impact of the violation of gauge invariance and the use of the on-shell approximation is also dis-
cussed. We summarize our findings in sec. 5.5, while lengthy formulae and a second, alternative
method for including off-shell pieces in the interaction kernel are relegated to appendices E-J.

5.2 Bethe-Salpeter equation

The chiral effective Lagrangian incorporates symmetries and symmetry-breaking patterns of
QCD in a model-independent way, in particular chiral symmetry and its explicit breaking
through the finite quark masses. By expanding Green functions in powers of Goldstone boson
masses and small momenta a chiral counting scheme can be established. However, the strict
perturbative chiral expansion is only applicable at low energies, and it certainly fails in the
vicinity of resonances. In this respect, the combination of the chiral effective Lagrangian with
non-perturbative schemes based on coupled channels and the Bethe-Salpeter equation (BSE)
have proven useful both in the purely mesonic and in the meson-baryon sector [56,57,104,120,
121]. Such approaches extend the range of applicability of the chiral effective Lagrangian by
implementing exact two-body unitarity in a non-perturbative fashion and generating resonances
dynamically.
Here we restrict ourselves to the meson-baryon Lagrangian at leading order, given in eq. (1.33).
The electromagnetic interaction is implemented in exactly the same way as in sec. 4.3, i.e.

the external vector field is given by vµ = −eQAµ, where Q = 1
3
diag(2,−1,−1) is the quark

charge matrix, and we also use

uµ = iu†∇µUu
† ,

∇µU = ∂µU − i[vµ, U ] .

The matrices u and U = u2 have been defined in terms of the meson fields in sec. 1.2 and 1.3,
see eq. (1.13). In our numerical work, we use the coupling constants D = 0.8, F = 0.46 [33]
in the leading order meson-baryon Lagrangian. By expanding the chiral connection in powers
of the meson fields, one derives from the effective Lagrangian the leading order φ2B̄B vertex
(the so-called ‘Weinberg-Tomozawa’ (WT) term), which we use as the driving term in our
Bethe-Salpeter equation. Stated differently, this vertex insertion is the ‘interaction kernel’ of
the integral equation. One finds for the corresponding potential V (which is the WT-vertex
graph multiplied by i)

V bj,ai(/q2
, /q1

) = gbj,ai(/q1
+ /q2

) . (5.1)
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Figure 5.1: Graphical illustration of the BSE for meson-baryon scattering. The filled circle
represents the full scattering matrix and the open square the driving meson-baryon vertex.

Here, q1 and q2 are the four-momenta of the incoming and the outgoing meson, respectively,
and the coupling constants are summarized as a matrix in channel space, with the entries

gbj,ai = − 1

4FjFi
〈λb†[[λj†, λi], λa]〉 , (5.2)

where λa are the generators of the SU(3) Lie-Algebra in the physical (particle) basis. In this
representation, a double index bj specifies a particular channel consisting of a baryon b and
a meson j. In the above expressions, ai specifies the channel of the incoming particles, while
bj labels the outgoing meson-baryon state. Note that we use different values for the meson
decay constants Fi (where again i labels the meson in the corresponding channel), instead of
the meson decay constant in the chiral limit. In practice, these three constants Fπ, FK , Fη will
be used as fit parameters, which are allowed to vary in a reasonable range, to be specified in
sec. 5.4. We refer to the latter section for a discussion of this issue.
The baryon and the meson propagator, iS and i∆, are also summarized as (diagonal) matrices
in channel space. They are given by

iSbj,ai(/p) =
iδbaδji

/p−ma
, (5.3)

i∆bj,ai(p) =
iδbaδji

p2 −M2
j

. (5.4)

We can now write down the integral equation for the meson-baryon scattering amplitude T bj,ai in
a rather compact form (suppressing the channel indices, but remembering the matrix character
of the various amplitudes):

T (/q2
, /q1

; p) = V (/q2
, /q1

) +

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)T (/l , /q1
; p) . (5.5)

Here, p ≡ p1 + q1 = p2 + q2 is the overall momentum, where p1 and p2 are the four momenta of
the incoming and outgoing baryon, respectively. The BSE is illustrated in fig. 5.1. Note that
we use dimensional regularization throughout. The solution of the BSE reads

T (/q2
, /q1

; p) = W (/q2
, /q1

; p) +W (/q2
, p̃; p)G(p)[1 −W (p̃, p̃; p)G(p)]−1W (p̃, /q1

; p) (5.6)

with

W (/q2
, /q1

; p) = /q2
g

1

1 + IMg
+

1

1 + gIM
g/q1

− g
1

1 + IMg
IM(/p−m)

1

1 + gIM
g . (5.7)

W (/q2
, p̃; p) can be obtained from eq. (5.7) by replacing /q1

→ /p −m ≡ p̃, and so on, m is the
baryon mass matrix with entries

mbj,ai = δbaδjima , (5.8)
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and the loop integrals are given by

Ibj,aiM =

∫

ddl

(2π)d
i∆bj,ai(l) , (5.9)

Gbj,ai(p) =

∫

ddl

(2π)d
i[∆(l)S(/p− /l)]bj,ai . (5.10)

Note that in eqs. (5.6) and (5.7), the symbol ‘1’ represents the unit matrix in channel space,
while matrix-valued denominators denote matrix inversion. The proof that the above expression
for T is indeed a solution of the BSE can be found in app. E.
It is important to keep in mind that all the involved expressions are matrices in channel space,
so e.g. IM does in general not commute with the coupling matrix g. The on-shell substitutions

/q1,2
→ /p1,2

+ /q1,2
−m = /p−m ≡ p̃ , (5.11)

which occur in the above expressions, provide the connection to the alternative method of
solving the BSE presented in app. G. The solution given there is completely equivalent to the
one described above. Here, again, we note that p̃ is a matrix in channel space due to the matrix
character of the baryon mass matrix m.
Putting the external momenta on their respective mass shells, the form of the solution T of
eq. (5.5) simplifies to

Ton = [1 −WG]−1W , (5.12)

where we used the shorthand notation W ≡W (p̃, p̃; p) and G ≡ G(p). To obtain the complete
on-shell meson-baryon scattering amplitude, this expression has to be sandwiched between
baryon spinors ū(p2) . . . u(p1). Neglecting the tadpole integrals IM in W , one obtains from
eq. (5.12)

T ′
on = [1 − V G]−1V , (5.13)

which is the form for the scattering amplitude usually encountered when utilizing the ‘on-
shell-approximation’ (which consists of setting also internal loop momenta in the potential V
on-shell) to arrive at a simplified version of the BSE. The integral equation eq. (5.5) then
reduces to an algebraic equation that can be solved by matrix inversion to give an expression
like T ′

on above. Retaining the off-shell pieces in the exact solution Ton therefore corresponds to
keeping the terms proportional to IM in the expression for W .
In [125] it was argued that the on-shell reduction of the interaction kernel is justified as the
off-shell pieces can be absorbed into the vertices. While this procedure simplifies the interaction
kernel and the treatment of the BSE, it is in fact not necessary in order to solve the BSE as
explained above. We choose not to discard the off-shell pieces and evaluate the diagrams in the
way dictated by field theory, keeping in mind, however, that the off-shell parts are not uniquely
fixed by any physical requirements and depend on the field parametrization [60]. Recall that
eq. (1.13) is not the only possible choice for the parametrization of the meson fields, and that
the off-shell amplitudes in ChPT depend on this choice.
Another important reason for taking the full off-shell dependence of the interaction kernel
into account is that the implementation of the BSE in a gauge-invariant description of photo-
production processes is then straightforward. This is because we evaluate the occurring loop
graphs according to the rules of field theory which also ensures that gauge symmetry can be
incorporated in a standard way. This is not the case when utilizing the on-shell approximation.
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At present, our interaction kernel is restricted to the lowest order contact term derived from
the effective meson-baryon Lagrangian. The extension to more general vertex structures in the
kernel is possible and will be discussed in future work. For now, it is not our aim to achieve
perfect agreement with experimental data (in which case higher-order terms in the kernel would
be indispensable), but to construct the simplest possible amplitude for kaon photoproduction
that reconciles the framework of chiral unitary approaches with the fundamental principle of
gauge invariance in a straightforward way.
For the sake of completeness, we add some comments on unitarity here. From the expression
for Ton, eq. (5.12), one immediately confirms the condition for two-particle unitarity

Im(T−1
on ) = − Im(G) . (5.14)

The reason that the unitarity condition can be expressed in this simple form (instead of the
general form of eq. (1.41)) is given by the fact that the on-shell scattering amplitude Ton depends
only on the overall momentum p. For the more general unitarity condition, we refer to sec. 4.5,
see e.g. eq. (4.40).
Our approach to photoproduction presented in the next section will be such that unitarity is
also satisfied when the photon is coupled to the meson-baryon bubble chain summed up by
means of the BSE, using the method explained in the previous chapter.
The form of the solution Ton guarantees that the above unitarity statement holds. However, the
careful reader might have noticed that the integrals IM and G(p) occurring in the amplitude
are divergent for d→ 4 and that the introduction of appropriate counterterms might spoil the
simple form of the solution given in eq. (5.12). To deal with this complication, one can show
by means of a rather lengthy calculation, presented in app. F, that the modification

V → V + δV ≡ Vδ , (5.15)

of the interaction kernel V in the BSE, where

Vδ(/q2
, /q1

; p) = Wδ(/q2
, /q1

; p) −Wδ(/q2
, p̃; p)δG(p)[1 +Wδ(p̃, p̃; p)δG(p)]−1Wδ(p̃, /q1

; p) (5.16)

and

Wδ(/q2
, /q1

; p) = /q2
g

1

1 − δIMg
+

1

1 − gδIM
g/q1

+ g
1

1 − δIMg
δIM(/p−m)

1

1 − gδIM
g (5.17)

leads to a new integral equation with a solution Tδ. The solution Tδ is obtained from T by
replacing

G→ G− δG

IM → IM − δIM

in eqs. (5.6) and (5.7). One observes that Vδ has the same form as T , with G and IM replaced by
−δG and −δIM, respectively. The corrections δG and δIM have the form of polynomial terms
which serve to absorb the divergences in the loop integrals. The divergences have thus been
shifted from the loop integrals in T to the new kernel. Of course, this is not a renormalization
scheme in the usual sense, since the additional terms δV in Vδ do not correspond exactly to
counterterms derived from an effective Lagrangian which is obvious from the lack of crossing
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symmetry of the amplitude. It has already been noted in ref. [60] that the solution of the
BSE can not be renormalized within a usual renormalization scheme. However, the foregoing
discussion shows at least that altering the loop integrals appearing in the solution of the BSE
by terms δG and δIM is equivalent to certain modifications of the potential. In practice, we
merely omit the divergences in the loop integrals in our expression for T , which will therefore
depend on the regularization scale µ showing up in the modified loop integrals.
This form of the off-shell BSE solution T is not particularly convenient for the purpose of
implementing it into the photoproduction amplitude. Therefore, we rewrite it by using the
following decompositions:

G(p) = G1(p)/p+G0(p) , (5.18)

W (p̃, p̃; p) = W1(p)/p+W0(p) , (5.19)

where the matrices G0,1 follow straightforwardly from the explicit expression for the loop inte-
gral G which is given in eq. (H.11) of app. H, and

W1(p) = g
2 + IMg

[1 + IMg]2
, (5.20)

W0(p) = g
1

1 + IMg
(IMm)

1

1 + gIM
g −mg

1

1 + IMg
− 1

1 + gIM
gm . (5.21)

Note that Gi(p) and Wi(p) are Lorentz scalars which depend only on the variable p2. Using
these expressions one can derive

1 −W (p̃, p̃; p)G(p) = W̃1/p+ W̃0 , (5.22)

with

W̃1 = −(W1(p)G0(p) +W0(p)G1(p)) , (5.23)

W̃0 = 1 − p2W1(p)G1(p) −W0(p)G0(p) . (5.24)

The above results yield

G(p)[1 −W (p̃, p̃; p)G(p)]−1 = Ω1(p)/p+ Ω0(p) (5.25)

with

Ω1(p) = G0(p)[p
2W̃1 − W̃0W̃

−1
1 W̃0]

−1

−G1(p)W̃
−1
1 W̃0[p

2W̃1 − W̃0W̃
−1
1 W̃0]

−1 , (5.26)

Ω0(p) = p2G1(p)[p
2W̃1 − W̃0W̃

−1
1 W̃0]

−1

−G0(p)W̃
−1
1 W̃0[p

2W̃1 − W̃0W̃
−1
1 W̃0]

−1 . (5.27)

All these results can be combined to provide the decomposition of the off-shell BSE-solution
into the following independent Clifford algebra structures:

T (/q2
, /q1

; p) = /q2/p/q1
T1(p)+/q2/q1

T2(p)+/p/q1
T3(p)+/q2/pT4(p)+/q1

T5(p)+/q2
T6(p)+/pT7(p)+T8(p) .

(5.28)
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The scalar coefficient functions Tn(p) read

T1(p) = L1Ω1(p)L1 ,

T2(p) = L1Ω0(p)L1 ,

T3(p) = [L2Ω0(p) + L3Ω1(p)]L1 ,

T4(p) = T T3 (p) ,

T5(p) = [p2L2Ω1(p) + L3Ω0(p)]L1 + L1 ,

T6(p) = T T5 (p) ,

T7(p) = [p2L2Ω1(p) + L3Ω0(p)]L2

+ [L2Ω0(p) + L3Ω1(p)]L
T
3 − gIML2 ,

T8(p) = p2[L2Ω0(p)L2 + L3Ω1(p)L2 + L2Ω1(p)L
T
3 ]

+ L3Ω0(p)L
T
3 − L3IMg ,

(5.29)

where the superscript T denotes transposition of channel indices and

L1 = g
1

1 + IMg
,

L2 =
1

[1 + gIM]2
g ,

L3 = − 1

1 + gIM
gm

1

1 + IMg
.

Note that LT1 = L1 and LT2 = L2, but in general LT3 6= L3. For external on-shell particles,
we can make the usual substitutions /q1

, /q2
→ /p − m ≡ p̃ to arrive at the on-shell scattering

amplitude
Ton = T (1)

on /p+ T (0)
on (5.30)

with

T (1)
on = p2T1 +mT1m−mT2 − T2m

−T3m−mT4 + T5 + T6 + T7 , (5.31)

T (0)
on = p2(T2 + T3 + T4 − T1m−mT1) +mT2m

−T5m−mT6 + T8 . (5.32)

The functions Tn given in eq. (5.29) depend only on the variable p2. They will enter the
calculation of the various photo- and electroproduction amplitudes in the next section.

5.3 Photo- and electroproduction

The Bethe-Salpeter approach discussed in the last section (or the Lippmann-Schwinger equa-
tion in the non-relativistic framework) can be implemented in electroproduction processes of
mesons on the nucleon. In previous work, the electromagnetic meson production on the nucleon
was calculated at tree level and the produced meson-baryon pair was subject to final-state in-
teractions [56,91]. As the photon does not couple to all intermediate states of the meson-baryon
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bubble chain, gauge invariance is in general violated and must be restored via artificial manipu-
lations. Therefore it seems desirable to develop a formalism which implements the principles of
gauge invariance and unitarity in a most natural and straightforward manner. We follow here
the path which we have already outlined in the previous chapter, in rather general terms, for
the case of a photon coupling to a meson-baryon scattering amplitude. In this work, we shall
be more explicit in evaluating the contributions to the various amplitudes in question. Our ap-
proach for constructing a unitary and gauge invariant electroproduction amplitude decomposes
into two major steps:

(1) Fix the hadronic part of the amplitude by making use of a BSE to implement exact
two-body unitarity.

(2) Couple the photon to the ‘hadronic skeleton’ constructed in step (1) wherever possible,
i.e. to all external and internal lines describing the propagation of the involved particles
as well as to (momentum-dependent) vertices.

The procedure of step (2), which is the most natural way to guarantee gauge invariance of the
amplitude, leads to contributions that were usually not considered in chiral unitary approaches
involving electromagnetic interactions. The importance of these additional contributions which
render the electroproduction amplitude gauge invariant can also be quantified within the scheme
utilized here. The coupling of the photon to internal lines in the bubble chain generated by
the BSE leads to rather involved expressions, since the meson-baryon scattering amplitude T
appears twice in the corresponding amplitudes, as will be made more explicit later when we
give the formal expressions for the various contributions.
Exact unitarity (in the subspace of meson-baryon states) is a fundamental principle satisfied by
our approach. It is important to note that the procedure of step (2) above does not spoil the
requirement of unitarity we built in by means of the BSE in step (1), as we will show below.
First, we have to specify the set of graphs which constitute our amplitude.
We start with the tree level B̄φB amplitude derived from the leading order Lagrangian of
eq. (1.33),

V̂ bi,a = /q γ5 ĝ
bi,a . (5.33)

The last index a labels the incoming baryon (here always the proton), while the double index
belongs to the outgoing pair of baryon b and meson i. For fixed a, V̂ is a vector in channel
space. Furthermore, q is the four-momentum of the outgoing meson and

ĝbi,a = − D√
2Fi

〈λb†{λi†, λa}〉 − F√
2Fi

〈λb†[λi†, λa]〉 . (5.34)

To this tree level amplitude, we add the loop contribution that accounts for the final-state
interaction after the meson has left the vertex, to obtain (cf. fig. 5.2)

Γ(/q, /p) = /qγ5ĝ +

∫

ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)/lγ5ĝ . (5.35)

We call this approximation to the full meson-baryon interaction the ‘turtle approximation’,
because with some imagination the right-most diagram in fig. 5.2 resembles a turtle. Here and

72



���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���������� ���������� �������������������� ����������= +

Figure 5.2: The dressed meson-baryon vertex in the turtle approximation. The filled circle
(open square) denotes the full (tree level) meson-baryon interaction.

in the following we again suppress the channel indices for brevity, and p is the momentum of
the incoming baryon. Using the explicit form of T given in eq. (5.28), we find

Γ(/q, /p) = /qγ5ĝ + T (/q, /p−m; p)[(/p−m)G(p) − IM]γ5ĝ

= [/q/pΓ1(p) + /qΓ2(p) + /pΓ3(p) + Γ4(p)]γ5 (5.36)

with scalar coefficient functions Γn given by

Γ1(p) = T1(p
2H1 −mH0) + T2(H0 −mH1) + T4H0 + T6H1 , (5.37)

Γ2(p) = ĝ + p2T1(H0 −mH1) + T2(p
2H1 −mH0) + p2T4H1 + T6H0 , (5.38)

Γ3(p) = T3(p
2H1 −mH0) + T5(H0 −mH1) + T7H0 + T8H1 , (5.39)

Γ4(p) = p2T3(H0 −mH1) + T5(p
2H1 −mH0) + p2T7H1 + T8H0 , (5.40)

where

H1 = (G0(p) −mG1(p))ĝ ,

H0 = (p2G1(p) −mG0(p) − IM)ĝ .

The functions G0,1(p) have been defined in eq. (5.18).
In order to complete step (1), we still have to specify which meson-baryon channels contribute
in the framework of our electroproduction model. In this first study, we choose to consider
only the ground-state octets of mesons and baryons, respectively. Moreover, from the topology
of the hadronic part of the Feynman graph in fig. 5.2 we can conclude that the meson-baryon
pairs must have the charge and strangeness quantum numbers of the proton. This limits the
number of channels to six:

pπ0, nπ+, pη, ΛK+, Σ0K+, Σ+K0 . (5.41)

The limitation to these channels can only occur because our amplitude is not crossing-symmetric,
otherwise more channels with different quantum numbers must be considered. The violation
of crossing-symmetry is a drawback of the BSE method which we use to iterate the rescat-
tering graphs. To our knowledge, the implementation of both crossing symmetry and exact
(two-body) unitarity on the basis of Feynman diagrams has not yet been accomplished. Other
methods such as, e.g., an analog of the Roy equations (or generalizations thereof) for pion-pion,
pion-kaon or pion-nucleon scattering, see [127–129], might be required to achieve this. Here,
our goal is more modest, and we sacrifice crossing symmetry in favor of unitarity.
By now, we have finished the first part (step (1)) of our program. Our next task is to couple
the photon to the hadronic part of the amplitude in a gauge-invariant fashion. Inserting the
photon coupling at every possible place leads to the set of diagrams displayed in fig. 5.3.
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Figure 5.3: Classes of diagrams for kaon production off the nucleon in the turtle approximation
utilized here.

The first three graphs are generated by coupling the photon to the external lines of the hadronic
part. This leads to the expressions

Sµs = Γ(/q, /p)iS(/p)(ieγ
µ) , (5.42)

Sµu = (ieQBγ
µ)iS(/p1

− /q)Γ(/q, /p1
) , (5.43)

Sµt = ieQM(2q − k)µi∆(q − k)Γ(/q − /k, /p1
) . (5.44)

Here and in the following, k is the four-momentum of the incoming photon, q is the four-
momentum of the outgoing Goldstone boson and p1 and p2 are the four-momenta of the incoming
and outgoing baryon, respectively, while p ≡ p1 + k. We have also introduced the meson (M)
and baryon (B) charge matrices. They are diagonal matrices in channel space and read

QM = diag(0, 1, 0, 1, 1, 0) ,

QB = diag(1, 0, 1, 0, 0, 1) .

The expressions for the three amplitudes Sµs,u,t must be decomposed into their independent
Lorentz structures which is outlined in app. I. Next we consider the coupling of the photon to
internal lines of the bubble chain, leading to those diagrams that are most tedious to work out.
Consider first the coupling of the photon to an internal baryon line, see fig. 5.3E. Using the
pertinent Feynman rules, the contribution of this graph is easily seen to be

SµB = −i
∫

ddl

(2π)d
T (/q, /l ; p)S(/p− /l)∆(l)eQBγ

µS(/p1
− /l)Γ(/l , /p1

) ,

(5.45)

while the coupling of the photon to an internal meson line (fig. 5.3D) leads to

SµM = −i
∫

ddl

(2π)d
T (/q, /p− /l ; p)S(/l)∆(p− l)eQM(2(p1 − l) + k)µ∆(p1 − l)Γ(/p1

− /l , /p1
) .

(5.46)
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Figure 5.4: Illustration of the integral equation (5.52) satisfied by our electroproduction ampli-
tude

Again, the decomposition into independent Lorentz structures can be found in app. I.
The next class of graphs we consider arises due to the ‘Kroll-Ruderman’ (KR) term stemming
from the covariant derivative ∇µU in the chiral Lagrangian. The corresponding tree level vertex
reads (in matrix form)

SµKR,tree = eQM ĝ γµγ5 . (5.47)

We add the loop contribution that accounts for the final-state interaction after the meson has
left the KR vertex, to arrive at (see fig. 5.3 F)

SµKR = SµKR,tree +

∫

ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)SµKR,tree . (5.48)

The remaining graphs are depicted in figs. 5.3G,H. These contributions arise from the terms
proportional to the external vector field in the chiral connection Γµ, leading to a B̄φφγB vertex
rule

−ie γµ{QM, g} , (5.49)

and to the following expressions for the Feynman graphs of fig. 5.3G,H:

SµWT1 = eγµ{QM, g}
∫

ddl

(2π)d
iS(/p1

− /l)∆(l)Γ(/l , /p1
) , (5.50)

SµWT2 =

∫

dd l̃

(2π)d
T (/q, /̃l ; p)iS(/p− /̃l)∆(l̃)SµWT1 . (5.51)

The Lorentz structure decomposition of all the above diagrams and the according contributions
to the invariant amplitudes Bi are given in app. I.
Having finished the construction of the electroproduction amplitude, we return to the issue of
unitarity. The crucial observation here is that every electroproduction amplitude Mµ(q, k; p)
which may be written as (see also fig. 5.4)

Mµ(q, k; p) = Mµ
0 (q, k; p) +

∫

ddl

(2π)d
T (q, l; p)iS(/p− /l)∆(l)Mµ

0(l, k; p) (5.52)

obeys the requirement of two-body unitarity in the subspace of meson-baryon channels. Here,
T is an amplitude for meson-baryon scattering that solves a BSE of the type of eq. (5.5) and
Mµ

0 is a real kernel.
The proof proceeds in close analogy to the one presented in sec. 4.5 of chapter 4. Now we note
that our electroproduction amplitude given above decomposes into five ‘unitarity classes’, each
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of which obey an integral equation of the above type (5.52) by construction (with T = T ):

Class 1 : Sµs
Class 2 : Sµu + SµB
Class 3 : Sµt + SµM
Class 4 : SµKR

Class 5 : SµWT1 + SµWT2.

Hence, each class leads to a electroproduction amplitude that obeys unitarity for itself, though
not gauge invariance. This is because the expressions SµWT1, S

µ
t and Sµu as well as the tree

graphs of SµKR and Sµs are real in the physical region for the electroproduction process and can
therefore constitute a kernel Mµ

0 in eq. (5.52). The sum

Mµ ≡ Sµs + Sµu + Sµt + SµB + SµM + SµKR + SµWT1 + SµWT2 (5.53)

will then also obey unitarity, due to the linearity of the integral equation (5.52) in Mµ
0 .

We will now show that the sum Mµ of the five classes is gauge invariant by proving k ·M = 0
for on-shell mesons and baryons. This might be obvious from our construction, but we include
the proof for completeness. The contraction of k with the different amplitudes yields

k · Ss = −eΓ(/q, /p) ,

k · Su = eQBΓ(/q, /p1
) ,

k · St = eQMΓ(/q − /k, /p1
) ,

k · SB =

∫

ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)eQBΓ(/l , /p1

)

−
∫

ddl

(2π)d
T (/q, /l ; p)eQBiS(/p1

− /l)∆(l)Γ(/l , /p1
) ,

k · SM =

∫

ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)eQMΓ(/l − /k, /p1

)

−
∫

ddl

(2π)d
T (/q, /l + /k; p)eQMiS(/p1

− /l)∆(l)Γ(/l , /p1
) ,

k · SKR = eQMĝ/kγ5 +

∫

ddl

(2π)d
T (/q, /l ; p)iS(/p− /l)∆(l)eQMĝ/kγ5 ,

k · SWT1 = e/k{QM, g}
∫

ddl

(2π)d
iS(/p1

− /l)∆(l)Γ(/l , /p1
) ,

k · SWT2 =

∫

ddl̃

(2π)d
T (/q, /̃l ; p)iS(/p− /̃l)∆(l̃)e/k{QM, g}

∫

ddl

(2π)d
iS(/p1

− /l)∆(l)Γ(/l , /p1
) .

Here, charged external particles are put on-shell. First, we note that the tree graphs are gauge
invariant for themselves, since the tree part of k · (Ss + Su + St) equals

−eĝ/qγ5 + eQBĝ/qγ5 + eQMĝ(/q − /k)γ5 ,

which is exactly canceled by the first term of k · SKR (recall QB + QM = 1). In order to deal
with the loop contributions, it is useful to rewrite the integral equations (5.5) and (5.35) for T
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and Γ, respectively, as

T (/q, /l ; p) = g(/q + /l) +

∫

ddl̃

(2π)d
T (/q, /̃l ; p)iS(/p− /̃l)∆(l̃)g(/̃l + /l) , (5.54)

and

Γ(/̃l , /p1
) = ĝ/̃lγ5 +

∫

ddl

(2π)d
g(/̃l + /l)iS(/p1

− /l )∆(l)Γ(/l , /p1
) . (5.55)

These equations are equivalent to eqs. (5.5) and (5.35). Using eq. (5.54) in the second term of
k · SB and k · SM, and eq. (5.55) in the first term of k · SB and k · SM, it is straightforward to
show that the loop contributions in k · M cancel. This, together with the above result for the
tree contributions, completes the proof of gauge invariance for the full amplitude M.

5.4 Results

In this section, we will perform an overall χ2 fit to available photoproduction and pion-induced
data on the proton near the respective thresholds. In more detail, we fit the differential cross
sections for photoproduction on the proton into the K+Λ, K+Σ0, K0Σ+ final states as well
as of π−p → K0Λ, K0Σ0. Inspection of the differential cross sections reveals that already at
moderate energies away from threshold p- and d-waves become increasingly important. Since
our approach, which is based on the Weinberg-Tomozawa interaction kernel, generates mainly
s-waves (with one important exception discussed below) and thus does not provide a realistic
description for higher partial waves, we expect it to be valid only in the near-threshold regions.
We have thus restricted our fits to energy values for which the differential cross sections are
dominated by s-waves, i.e. center-of-mass energies of about 1.80GeV corresponding to photon
lab momenta of about 1.25GeV or pion lab momenta of about 1.23GeV. Still, we will be
able to extract interesting information from such investigations, in particular, we can study in
detail the commonly appearing approximations made in the literature as already mentioned in
the introduction. The extension to higher energies requires inclusion of higher order counter
terms from the effective Lagrangian in the derivation of the interaction kernel. However, this
is beyond the scope of the present work. In this investigation, we focus on the importance of
gauge invariance and study the on-shell approximation in the driving terms and are satisfied
with a moderate description of both photoproduction and pion-induced data on the proton near
threshold. Our investigation sets the stage for systematic improvements in the future which
will lead to better agreement with experiment.
The free parameters in our approach are, on the one hand, the three meson decay constants
Fπ, FK , Fη which we vary separately within realistic bounds, as the SU(3) symmetry-breaking
differences between them are beyond our working precision of the effective potential. More
precisely, SU(3) symmetry breaking is generated by various higher order terms in the meson-
baryon (meson) Lagrangian starting at chiral order two (four). Since these contributions are
not included in the leading order WT kernel, we simulate such effects by allowing variations in
the various meson decays constants. This, of course, will no longer be done when the higher
order terms in the interaction kernel have been included. One observes that the fitted decay
constants tend to larger values reducing the strength of the Weinberg-Tomozawa interaction.
This is consistent with findings in earlier chiral unitary studies, i.e. the WT interaction in many
cases produces too strong s-waves, see e.g. [91]. We allow Fπ, FK , and Fη to vary between
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Figure 5.5: Differential cross sections for π−p → K0Λ compared to data from [130] (upper
panel) and [131] (lower panel). The number in each plot denotes the respective c.m. energy√
s.
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70MeV and 150MeV. The values we find for the best fits, i.e. the fits with the lowest overall
χ2 values, are

Fπ = (113 . . . 127) MeV ,

FK = (149 . . . 150) MeV ,

Fη = (74 . . . 82) MeV . (5.56)

Note that FK tends towards the upper limit of 150MeV. On the other hand, we fit the four
different isospin-symmetric scales µ in the loop integrals. For the best fits their values are:

µπN = (0.46 . . . 0.54) GeV ,

µηN = (3.29 . . . 4.41) GeV ,

µKΛ = (2.56 . . . 2.86) GeV ,

µKΣ = (3.66 . . . 4.31) GeV . (5.57)

We note that these values are roughly in accordance with the natural size estimate of ref. [57]
(although most of them turn out to be somewhat large).
In figs. 5.5, 5.6 we present the best fit results for the pion-induced differential cross sections
π−p→ K0Λ, K0Σ0, respectively. Although the WT interaction kernel is entirely s-wave, there
are p-wave contributions due to the lower components of the Dirac spinors which are introduced
in the calculation of the scattering matrix T . The corresponding total cross sections and the
one for π−p → K+Σ− are shown in fig. 5.7. We remark that the bands in these figures are
generated by about 20 fits with a χ2 very close to its minimal value. Since with the simple WT
interaction we are not able to describe all these and the photon-induced data to a high accuracy,
we refrain from giving one-sigma error bands as done in our study on K−p scattering [132].
This will be done in future work when the higher order terms in the interaction kernel will be
included.
The processes π−p → K+Σ− and π+p → K+Σ+ are dominated by p- and d-waves already
close to threshold. Hence, a realistic description of these channels cannot be provided by the
leading WT interaction. In order not to overestimate the data we have still included the total
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cross section for π−p → K+Σ− in our fit. We refrain, however, from taking into account data
on π+p → K+Σ+ at all since, regardless of the choice of parameters (within realistic ranges),
our approach clearly overshoots the π+p → K+Σ+ cross section. This indicates that higher
order contact interactions in the interaction kernel are absolutely necessary—particularly for
this process—in order to reduce the strength of the WT term.
Moreover, it is worthwhile mentioning that the presented fits exhibit a peak in the π−p → ηn
cross section due to the S11(1535) resonance. Pion- and photon-induced eta production data
will be included in future work after the interaction kernel has been developed to higher chiral
orders.
Furthermore, we have included in our fit data on differential cross sections of the photopro-
duction processes γp → K+Λ, K+Σ0, K0Σ+. The results are displayed in figs. 5.8, 5.9, 5.10,
respectively, while the corresponding total cross sections are presented in fig. 5.11. A few re-
marks are in order: The SAPHIR and CLAS data on charged kaon photoproduction show some
inconsistencies at forward angles, but this can not be resolved within the approximations made
here. Also, the very different shape of the differential cross sections for the K+Λ and K+Σ0

final states can be traced back to the isospin selectivity of the Λ, see also ref. [135].
To summarize, the results presented here show a reasonable agreement with data on photon-
and pion-induced reactions close to threshold, but more realistic interaction kernels and higher
partial waves are required to obtain better agreement with data, in particular away from thresh-
old. This is however beyond the scope of the present investigation.
Of interest here are gauge invariance violations encountered in previous chiral unitary ap-
proaches which only took a subset of the diagrams in fig. 5.3 into account. In order to estimate
the typical size of gauge symmetry violations, we omit all contributions where the photon cou-
ples to intermediate and final states and retain only those diagrams where the photon is initially
absorbed (figs. 5.3A+F). Note that both the graphs A and F as well as their sum are unitary
as explained in detail in sect. 5.3. For making this comparison, we do not refit the parameters
but use the values obtained in the full approach. Some sample results are compared to the
full approach in fig. 5.12. One clearly observes that violations of gauge invariance are sizable,
although this effect could, in principle, be concealed numerically by readjusting the parameters
of the approach. This indicates that the additional contributions which render the photopro-
duction amplitudes gauge invariant and were omitted in previous work are not negligible and
must be taken into account.
In order to be able to compare our results with previous chiral unitary approaches we have
also worked in the approximations employed in these investigations, see e.g. [91]2. To this
aim, the interaction kernel for meson-baryon scattering is directly sandwiched between Dirac
spinors and projected onto the s-wave which is then iterated to infinite order in a geometric
series. Furthermore, for the photoproduction process only the leading s-wave (the so-called E0+

multipole) is considered. Obviously, this scheme produces pure s-waves and cannot reproduce
the structures from higher partial waves in the differential cross sections, see fig. 5.13. One notes
that these approximations can indeed be sizable. Of course, in ref. [91] higher order terms were
included in the E0+ multipole, but that does not change the observations just made. Again, by
a suitable parameter refitting one might be able to describe the total cross sections, but given
the more sophisticated scheme developed here, such approximations are no longer necessary.

2Note, however, that in ref. [91] the primary goal was the consistent inclusion of the η′ meson in chiral
unitary approaches.
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Overall, we have illustrated that both the on-shell approximation and the omission of certain
classes of diagrams which are required to fulfill gauge invariance constitute crude approxima-
tions utilized within chiral unitary approaches in the past. Although these effects can nu-
merically be concealed to a large extent by readjusting the parameters, important theoretical
constraints are not met in this manner. On the other hand, the approach we have developed
here is in accordance with these criteria. We stress again that our results also show that it
is mandatory to go beyond the leading WT approximation in the interaction kernel and to
properly include higher partial waves in the BSE. Moreover, contributions from three-particle
intermediate states, such as ππN , might play a role in kaon photoproduction, see e.g. [136], but
are beyond the scope of the present investigation and have thus been discarded. For a method
to incorporate such three-particle cuts, see ref. [137].

5.5 Conclusions and outlook

The search for missing resonances is of great importance and actively being pursued at various
experimental facilities. A promising tool to discover new resonances is the photoproduction
of kaons on protons. A strong coupling to channels with open strangeness could reveal new
resonances yet undetected in previous experiments based on pion-nucleon physics. Experiments
with open strangeness are currently performed at ELSA, JLab and at SPring-8 providing a host
of experimental data. The obtained data must be met by theoretical approaches and yield a
set of tight constraints. In this work, a chiral unitary approach based on the combination of
the chiral effective Lagrangian with a coupled-channels Bethe-Salpeter equation is presented.
The method is exactly unitary and satisfies gauge invariance. It improves previous approaches
in this field which employed only a subset of the Feynman diagrams considered here.
We have fitted both the differential cross sections for photoproduction into K+Λ, K+Σ0, K0Σ+

as well as of the meson-baryon scattering processes π−p→ K0Λ, K0Σ0, K+Σ−. In the fits, we
have restricted ourselves to the threshold regions of the respective channels, as we cannot expect
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Figure 5.11: Total cross sections for photoproduction of K+Λ (top), K+Σ0 (middle), K0Σ+

(bottom) as a function of the photon lab momentum klab. The corresponding c.m. energy
√
s

is also given. The data are taken from [110] (circles) and [113] (squares).

to obtain a realistic description of these processes away from threshold due to the increasing
importance of higher partial waves absent in the Weinberg-Tomozawa interaction kernel. In
order to improve the agreement with experimental data, the inclusion of higher chiral orders in
the interaction kernel is necessary. In charged kaon photoproduction, important contributions
to the p and higher partial waves are generated by the kaon pole term, which is already included
at the order we are working.
Our aim was to estimate, on the one hand, the size of gauge invariance violations introduced in
previous coupled-channels analyses by neglecting Feynman diagrams where the photon couples
to intermediate states of the Bethe-Salpeter bubble chain. On the other hand, the simplification
of setting the interaction kernel on-shell and performing s-wave projections on the meson-
baryon and the photon-baryon subsystems is studied. Our investigation suggests that both
approximations are not justified in the treatment of photoproduction processes and lead to
sizable changes in the results. It is thus important to satisfy gauge invariance and include off-
shell terms in the effective potential. The approach presented here fulfills these requirements
in a minimal way, i.e. any subset of the included diagrams cannot be omitted as this would
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Figure 5.12: Sample results which illustrate the importance of contributions which are needed
to fulfill gauge invariance. Left panel: differential cross sections for photoproduction of K+Λ
(top), K+Σ0 (bottom) at c.m. energies stated in the figures compared to data from [112]. Right
panel: total cross sections for photoproduction ofK+Λ (top), K+Σ0 (bottom) compared to data
from [109]. The full result is represented by the solid lines, whereas the dashed lines indicate
the contributions from diagrams A+F in fig. 5.3.

violate either exact unitarity or gauge invariance.
There are three directions in which the approach presented here needs to be improved: First,
the inclusion of higher order terms in the interaction kernel and the resulting better inclusion
of p-waves and higher multipoles is straightforward but tedious. This will allow to include
also the polarization data into the analysis. Note that such higher order terms, in particular
the dimension two magnetic couplings ∼ σµνF

µν , are known to be important from earlier
phenomenological studies of meson electroproduction. In this context, we should also mention
that in the chiral unitary approach not all resonances are generated dynamically, so in fact
one might have to include explicit resonance fields in certain channels to achieve a precise
description. Such a method has already been developed for elastic pion-nucleon scattering, see
ref. [57]. Second, one should also include pion and photon induced η, η′ production data as
already accomplished in [91] and further constrain the scattering and production amplitudes
through matching to the two-flavor sector (as done e.g. in refs. [138, 139]). Last but not least,
the violation of crossing symmetry in the usual BSE-framework (see e.g. sec. 1.5) needs to be
repaired. This could, in principle, be done by formulating Roy-type equations, but is technically
involved.

86



0

0.05

0.1

0.15

0.2

0.25

-1 -0.5 0 0.5 1
0

0.1

0.2

0.3

1.625 GeV

1.730 GeV

d
σ
/d

Ω
[µ

b
/s

r]

cos θ

0

0.5

1.0

1.5

2.0

2.5

0.9 1.0 1.1 1.2
0

0.5

1.0

1.5

σ
to

t
[µ

b
]

klab [GeV]

γp→ K+Λ

γp→ K+Σ0
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ventional coupled-channels analyses. Left panel: differential cross sections for photoproduction
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Chapter 6

Outlook

In this chapter, we shall take the opportunity to indicate some directions in which the work
presented in this thesis can be extended. It is evident that the contributions collected here
can only provide some first steps towards a systematic extension of the range of applicability of
ChPT. The limits of applicability of the low-energy effective field theory are usually determined
by resonances. For example, the presence of the lowest-lying vector meson octet sets the energy
scale for the breakdown of ChPT in the meson sector: p-wave Goldstone-boson scattering at
such energies can certainly not be correctly described by a perturbative treatment employing
the effective Goldstone-boson Lagrangian. There are basically two ways in which resonances
can enter the theoretical description of the effective theory: In chapters 2 and 3, we dealt with
chiral Lagrangians with explicitly included resonance fields, whereas in chapters 4 and 5, we were
concerned with so-called chiral unitary approaches, in which some resonances can be generated
dynamically from the underlying meson-meson or meson-baryon interaction. Both those ways
of implementing resonances in the description are nothing but resummation schemes, where
some physical principles are used to guess the form of higher-order terms that one cannot
rigorously compute in the strict perturbative approach to the effective theory. In view of
the corresponding lack of theoretical rigour, the success of such resummation schemes in the
description of the phenomenology is quite impressive in many cases. Let us, however, make some
remarks concerning possible improvements of the theoretical work presented in the foregoing
chapters.

(1) Infrared regularization with resonances: First of all, the variants of the standard infrared
regularization scheme developed in chapters 2 and 3 can be applied to many other in-
teresting observables where resonances are supposed to play an important role. Some
examples have been mentioned in sec. 2.1, and at the end of chapter 3. Concerning the
analysis in the latter chapter, it would be interesting to repeat that calculation with the
∆-field included explicitly. However, this is presumably complicated due to the fact that
there is no clear separation of scales in that situation. For example, it is not clear a
priori whether the mass splitting between the Roper and the ∆ should be considered
as a small or a large quantity in the counting scheme (see the discussion at the end of
sec. 3.3). We should also stress that the infrared regularization scheme involving reso-
nances is presently limited to one-loop amplitudes. Though it may be only of academic
interest, it would nonetheless be reassuring to see that the method can in principle be
extended to multi-loop (or at least two-loop) amplitudes.
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(2) Gauge invariant chiral unitary approaches: The analysis of kaon photoproduction in
chapter 5, based on the general method outlined in chapter 4, only made use of the
minimal form of an amplitude subject to the constraints of two-body (coupled channel)
unitarity and gauge-invariance. As expected, we could not produce a perfect fit to all
the available experimental data, but nonetheless the result was encouraging, and it seems
worthwile to work on improvements of the minimal ansatz for the amplitude. The most
important building block is the amplitude for meson-baryon scattering, given by the
solution of a BSE with a given kernel. So far, this kernel was given only by the Weinberg-
Tomozawa term, and it is not surprising that our description of meson-baryon scattering
is not yet satisfactory in most channels. It is straightforward (though still requiring quite
some amount of work) to implement higher-order contact terms from the next-to-leading
order meson-baryon Lagrangian in the kernel (of course, this will also lead to additional
photon-couplings by the minimal substitution rule). This should be the first step in future
improvements. However, at this point it seems to be inconsistent to neglect the Born
terms in the meson-baryon potential. Unfortunately, the iteration of the u-channel Born
term leads to multiloop topologies (and three-body intermediate states in the resummed
graphs) and does not seem to be feasible without making some approximation. Moreover,
the coupling of the photon in loop graphs with such u-channel insertions will lead to even
more complicated graphs. Therefore, one has to solve the problem of inventing some
sensible approximation for such terms, which must also be consistent with unitarity and
gauge invariance. This is clearly a formidable task, which must inevitably be solved to
extend the present work in a systematic way. Having achieved a suitable extension of
the meson-baryon scattering amplitude, the photoproduction amplitude can be worked
out along the lines displayed pictorially in figs. 5.2 and 5.3. Furthermore, the coupling
of the photon to the mesons and baryons will have to be supplemented with higher-
order terms, like e.g. couplings proportional to σµνFµν . Finally, the full restoration of
crossing symmetry is obviously impossible in the BSE-framework, and requires different
techniques like Roy-type equations. It is probably fair to say that the application of
such methods to photoproduction processes will not be accomplished in the very near
future. On the other hand, we believe that refined versions of the ’turtle’ model of
chapter 5 will produce sensible results in the near-threshold regions, and will yield an
important contribution to the theoretical understanding of the very complicated process
of low-energy kaon photoproduction.
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Appendix A

Explicit expression for IIR
MV

In eq. (8.4) of ref. [51], a closed expression for IIRMV for d→ 4 was given that looks much simpler
than our result, eq. (2.15), where there is still an infinite sum to be performed. On the other
hand, it is quite tedious to work out the chiral expansion of the result of [51], due to the rather
complicated expressions

x1,2 =
1

2β̃

(

β̃ + α̃− 1 ±
√

(β̃ + α̃− 1)2 − 4α̃β̃

)

(A.1)

used there. These two expressions are nothing but the zeroes of the Feynman parameter integral
encountered in the computation of the loop integral. The corresponding chiral expansions start
with

x1 = −α̃ + . . . ,

x−1
2 = −β̃ + . . . ,

showing that x1 is small and negative, while x2 tends to minus infinity for β̃ → 0+. In order to
show the equivalence of the two results for IIRMV , we employ the following relations,

β̃(x1 + x2) = β̃ + α̃− 1, (A.2)

β̃x1x2 = α̃, (A.3)

to write

(α̃β̃)k

(1 − α̃− β̃)2k+1
= − 1

β̃x2

(x1

x2
)k

(1 + x1

x2
)2k+1

= − 1

β̃x2

∞
∑

m=0

(−1)mΓ(2k +m+ 1)

m!Γ(2k + 1)

(

x1

x2

)k+m

.

Inserting this in eq. (2.15) yields

IIRMV (q2) =
Md−4

V (α̃)
d

2
−1

(4π)
d

2 β̃x2

∞
∑

k=0

∞
∑

m=0

Γ(2k +m+ 1)Γ(1 − d
2
− k)Γ(2k + 1)

Γ(2k + 1)Γ(k + 1)Γ(m+ 1)

(

−x1

x2

)k+m

=
Md−4

V (α̃)
d

2
−2x1

(4π)
d

2

∞
∑

k=0

∞
∑

m=0

Γ(2k +m+ 1)Γ(1 − d
2
− k)

Γ(k + 1)Γ(m+ 1)

(

−x1

x2

)k+m

. (A.4)
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In the second line we made use of eq. (A.3). Now we change the summation indices according
to

j = k +m, l = k = j −m,

and use the following sum formula for Gamma functions,

j
∑

l=0

Γ(j + l + 1)Γ(x− l)

Γ(j − l + 1)Γ(l + 1)
= (−1)j

Γ(x− j)Γ(−x)
Γ(−x− j)

, j ∈ N, (A.5)

for x = 1 − d
2
. We shall give a short outline of a proof for eq. (A.5): Dividing this equation

by Γ(x− j), both sides are just polynomials in x of degree j, with coefficient 1 in front of xj .
Consequently, one only has to prove that both polynomials have the same set of zeroes, namely
{−1,−2, . . . ,−j}. This is not difficult, making use of

j
∑

l=i

(−1)j−lΓ(j − i+ 1)

Γ(j − l + 1)Γ(l + 1)

i−1
∏

p=0

(l − p) =

j
∑

l=i

(−1)j−lΓ(j − i+ 1)

Γ(j − l + 1)Γ(l − i+ 1)

=

j−i
∑

n=0

(

j − i

n

)

(−1)j−i−n = (1 − 1)j−i = 0

for 0 < i < j. These remarks should be sufficient to complete the proof of eq. (A.5).
Returning to eq. (A.4), we employ eq. (A.5) to write

IIRMV (q2) =
Md−4

V (α̃)
d

2
−2x1

(4π)
d

2

∞
∑

j=0

j
∑

l=0

Γ(j + l + 1)Γ(1 − d
2
− l)

Γ(j − l + 1)Γ(l + 1)

(

−x1

x2

)j

=
Md−4

V (α̃)
d

2
−2x1

(4π)
d

2

∞
∑

j=0

Γ(d
2
− 1)Γ(1 − d

2
− j)

Γ(d
2
− 1 − j)

(

x1

x2

)j

. (A.6)

The last line of eq. (A.6) is exactly the result that was derived in sections 7 and 8 of [51]. This
can be seen by substituting

a→ −x1, b→ −x−1
2 , d→ d

2
− 2

in eq. (7.7) of that reference, and multiplying the result with

−Γ(2 − d
2
)Md−4

V

(4π)
d

2

(−β̃x2)
d

2
−2 ,

as explained at the beginning of sec. 8 of [51]. In the limit d → 4, the series of eq. (A.6) can
be summed up to give

IIRMV (q2, d→ 4) = 2x1λ− 1

16π2

(

x1(1 − ln α̃) − (x1 − x2) ln

(

1 − x1

x2

))

, (A.7)

where

λ =
Md−4

V

16π2

(

1

d− 4
− 1

2
(ln(4π) − γ + 1)

)

.

Eq. (A.7) is identical to eq. (8.4) of [51].
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Appendix B

Alternative derivation of IIR
MBV

In this appendix, we present an alternative derivation of the infrared singular part of the loop
integral IMBV (k2) (see eqs. (2.20,2.27)) using the prescription of Ellis and Tang we have already
explained at the end of sec. 2.3. However, at some places we will also use Feynman parameter
integrals, so the derivation outlined here is to some extent a mixture of the standard infrared
regularization procedure and the method of Ellis and Tang. In complete analogy to the steps
performed at the end of sec. 2.3, we start with

IMBV (k2) →
∫

ddl

(2π)d
i

((p− l)2 −m2)(l2 −M2)

∞
∑

j=0

(−2k · l)j
(k2 + l2 −M2

V )j+1

→
∫

ddl

(2π)d
i

((p− l)2 −m2)(l2 −M2)

∞
∑

j=0

(−2k · l)j
(k2 +M2 −M2

V )j+1

→
∞
∑

j=0

∫

ddl

(2π)d
i(−2k · l)j

(k2 +M2 −M2
V )j+1((p− l)2 −m2)(l2 −M2)

. (B.1)

Now we could use the procedure outlined in [39] to expand the nucleon propagator, together
with an interchange of summation and integration. In the present case, however, it is easy to
see that it is equivalent to use the common Feynman parameter trick for the remaining loop
integrals and extend the parameter integration to infinity like in sec. 2.2. For IMB (see eqs. (2.1)
and (2.3)), the splitting of eq. (2.5) corresponds to

1

((p− l)2 −m2)(l2 −M2)
=

1

p2 −m2 − 2l · p+M2

(

1

l2 −M2
− 1

(p− l)2 −m2

)

. (B.2)

This has also been noted in [38], see eqs. (22,23) of that reference. On the other hand, the first
term on the r.h.s of eq. (B.2) is exactly the integrand that gives the soft momentum contribution
in the sense of Ellis and Tang, see e.g. eq. (7) in [39]. Therefore, it is consistent to continue
the series of steps in eq. (B.1) with

. . .→
∞
∑

j=0

∫ ∞

0

dz

(k2 +M2 −M2
V )j+1

∫

ddl

(2π)d
i(−2k · l)j

[((p− l)2 −m2)z + (l2 −M2)(1 − z)]2

≡ Isoft
MBV (k2). (B.3)
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The loop-integration can be done using the following generalization of eq. (2.16):

∫

ddl

(2π)d
i(k · l)2n

(l2 −M2)r
= (−1)r−1(−k2M2)nMd−2rΓ(n+ 1

2
)

Γ(1
2
)

Γ(r − d
2
− n)

(4π)
d

2 Γ(r)
(B.4)

for r, n ∈ N. This gives

Isoft
MVB(k2) =

∞
∑

j=0

j
∑

i=0,i∈2N

md−62i
(

j
i

)

(−β)j−
i

2

(γ − α− β)j+1

Γ( i+1
2

)Γ(2 − d
2
− i

2
)

Γ(1
2
)(4π)

d

2

∫ ∞

0

dzzj−i

(z2 − αz + α)2− d

2
− i

2

.

Here we have also used the on-shell kinematics specified in eq. (2.19). The sum over the even
integers i extends only to j − 1 if j is odd. Defining new indices,

J = j − i

2
, l =

i

2
,

and reordering the series correspondingly gives the following expression for Isoft
MBV (k2):

∞
∑

J=0

J
∑

l=0

md−6(−β)J4lΓ(J + l + 1)Γ(l + 1
2
)Γ(2 − d

2
− l)

(4π)
d

2 (γ − α− β)J+l+1Γ(J − l + 1)Γ(2l + 1)Γ(1
2
)

∫ ∞

0

zJ−ldz

(z2 − αz + α)2− d

2
−l
.

Using eq. (2.18), it is straightforward to see that this equals IIRMBV of eq. (2.27), as expected
(the remaining parameter integral can be done with the help of eq. (2.26)).
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Appendix C

Decomposition of infrared regularized
loop integrals

Here we list the decomposition of the loop integrals with tensor structures in the numerator,
which we need in sec. 2.5. All loop integrals in this appendix are understood as the infrared
singular parts of the full loop integrals, but we will suppress the superscript IR for brevity. As a
consequence, all loop integrals that do not contain a pion propagator are already dropped here,
since they have no infrared singular part. Also, we will use the mass shell condition p2 = m2

for the nucleon momentum p. We start with

∫

ddl

(2π)d
ilµ

((p− l)2 −m2)(l2 −M2)
= pµI

(1)
MB, (C.1)

where

I
(1)
MB =

1

2m2

(

M2IMB − IM

)

.

In complete analogy,

∫

ddl

(2π)d
ilµ

((l − k)2 −M2
V )(l2 −M2)

= kµI
(1)
MV , (C.2)

with

I
(1)
MV =

1

2k2

(

(k2 +M2 −M2
V )IMV − IM

)

.

Integrals of type MB and MV are also needed with a tensor structure lµlν in the numerator.
They are decomposed as

∫

ddl

(2π)d
ilµlν

((l − k)2 −M2
V )(l2 −M2)

= gµνt
(0)
MV (k) +

kµkν

k2
t
(1)
MV (k), (C.3)

where the coefficients of the tensor structures are given by

(d− 1)t
(0)
MV (k) =

4k2M2 − (k2 +M2 −M2
V )2

4k2
IMV +

k2 +M2 −M2
V

4k2
IM ,

(d− 1)t
(1)
MV (k) =

d(k2 +M2 −M2
V )2 − 4k2M2

4k2
IMV − d(k2 +M2 −M2

V )

4k2
IM .
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The corresponding coefficients in the meson-baryon case, t
(0,1)
MB (p), can be derived from these

results by substituting k → p,MV → m.
We turn now to loop integrals with three propagators. First the vector integral:
∫

ddl

(2π)d
ilµ

((p̄− l)2 −m2)((l − k)2 −M2
V )(l2 −M2)

= (k + p̄)µIAMBV + (k − p̄)µIBMBV , (C.4)

with

IAMBV =
1

2k2(4m2 − k2)

[

(2m2M2 + (2m2 − k2)(k2 −M2
V ))IMBV

− k2IMV − (2m2 − k2)IMB

]

,

IBMBV =
1

2k2(4m2 − k2)

[

(2M2(m2 − k2) + (k2 −M2
V )(k2 + 2m2))IMBV

+ 3k2IMV − (k2 + 2m2)IMB

]

.

We remind the reader that we use p̄2 = m2 = (p̄− k)2 here. The scalar loop integral with three
propagators occuring in this decomposition was named ĨMBV in sec. 2.4, eq. (2.23). However,
we noted there that it is equal to IMBV for on-shell nucleon momenta.
The tensor integral

IµνMBV =

∫

ddl

(2π)d
ilµlν

((p̄− l)2 −m2)((l − k)2 −M2
V )(l2 −M2)

(C.5)

can be decomposed as

IµνMBV = gµνC1 +(p̄+k)µ(p̄+k)νC2 +(p̄−k)µ(p̄−k)νC3 +((p̄+k)µ(k− p̄)ν +(p̄+k)ν(k− p̄)µ)C4.

Here the coefficients Ci are given by

C1 =
1

d− 2

[

M2IMBV − 1

2
(k2 −M2

V + 2M2)IAMBV +
M2

V − k2

2
IBMBV

]

,

C2 =
1

k2(4m2 − k2)

[

m2M2IMBV +
M2

V − k2

2

(

m2IBMBV + (k2 −m2)IAMBV

)

− 2m2 − k2

4
I

(1)
MB − k2

4
I

(1)
MV −m2(d− 1)C1

]

,

C3 =
1

k2(4m2 − k2)

[

M2(m2 + 2k2)IMBV − 1

2
(k2 −M2

V + 2M2)((m2 + 2k2)IAMBV

+ (k2 −m2)IBMBV ) +
3k2

4
I

(1)
MV +

2m2 + k2

4
I

(1)
MB − (m2 + 2k2)(d− 1)C1

]

,

C4 =
1

k2(4m2 − k2)

[

M2(m2 − k2)IMBV +
k2 −M2

V

2

(

(2k2 +m2)IAMBV

+ (k2 −m2)IBMBV

)

+
3k2

4
I

(1)
MV − 2m2 + k2

4
I

(1)
MB

− (m2 − k2)(d− 1)C1

]

.
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Appendix D

Ward identity for general interaction
kernels

In this appendix we derive eq. (4.36), which follows from a contact interaction of the type

Lint = B̄ Cµ1···µlµl+1···µmµm+1···µn

(

Dµ1 . . .Dµl φ̃
)(

Dµl+1 . . .Dµmφ†
)(

Dµm+1 . . .DµnB̃
)

(D.1)

with Dµ = ∂µ + iêAµ. The γ(k)φ̃(qi)B̃(pi) → φ(qf)B(pf) vertex is obtained from this La-
grangian by extracting the part linear in Aµ. A partial derivative acting, e.g., on an incoming
meson φ(q) yields a factor −iq in momentum space, while a partial derivative on φ(q)A(k)
(both momenta incoming) leads to −i(q + k). Therefore, one obtains the vertex

Aµ = i

l
∑

s=1

Cµ1···µn

∣

∣

∣

µs=µ
(−i)(2l−2m+n)

[

s−1
∏

t=1

(qi + k)µt

]

(

−êφ̃
)

[

l
∏

t=s+1

qµt

i

][

m
∏

t=l+1

qµt

f

][

n
∏

t=m+1

pµt

i

]

+ i
m
∑

s=l+1

Cµ1···µn

∣

∣

∣

µs=µ
(−i)(2l−2m+n)

[

l
∏

t=1

qµt

i

][

s−1
∏

t=l+1

(qf − k)µt

]

(

−êφ
)

[

m
∏

t=s+1

qµt

f

][

n
∏

t=m+1

pµt

i

]

+ i
n
∑

s=m+1

Cµ1···µn

∣

∣

∣

µs=µ
(−i)(2l−2m+n)

[

l
∏

t=1

qµt

i

][

m
∏

t=l+1

qµt

f

][

s−1
∏

t=m+1

(pi + k)µt

]

(

−êB̃
)

[

n
∏

t=s+1

pµt

i

]

(D.2)

Multiplying this equation with kµ and making use of charge conservation at the vertex which
follows from gauge invariance of the Lagrangian one arrives at

kµAµ = iCµ1···µn
(−i)(2l−2m+n)(−êφ̃)(qi + k)µ1 · · · (qi + k)µlq

µl+1

f · · · qµm

f p
µm+1

i · · · pµn

i

− iCµ1···µn
(−i)(2l−2m+n)(−êφ)qµ1

i · · · qµl

i (qf − k)µl+1 · · · (qf − k)µmp
µm+1

i · · ·pµn

i

+ iCµ1···µn
(−i)(2l−2m+n)(−êB̃)qµ1

i · · · qµl

i q
µl+1

f · · · qµm

f (pi + k)µm+1 · · · (pi + k)µn

− iCµ1···µn
(−i)(2l−2m+n)(−êB)qµ1

i · · · qµl

i q
µl+1

f · · · qµm

f p
µm+1

i · · · pµn

i . (D.3)

On the other hand, the vertex φ̃(qi)B̃(pi) → φ(qf )B(pf) from the Lagrangian (D.1) is given by
the piece without the photon field Aµ and reads

A(pi, qi, qf) = iCµ1···µn
(−i)(2l−2m+n)qµ1

i · · · qµl

i q
µl+1

f · · · qµm

f p
µm+1

i · · ·pµn

i . (D.4)
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This proves the Ward identity (4.36)

kµAµ(pi, qi, qf , k) = êφA(pi, qi, qf − k) − êφ̃A(pi, qi + k, qf)

+ êBA(pi, qi, qf) − êB̃A(pi + k, qi, qf ) . (D.5)
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Appendix E

Solution of the Bethe-Salpeter equation

The solution of the BSE for the Weinberg-Tomozawa potential

V (/q2
, /q1

) = g(/q1
+ /q2

) , (E.1)

T (/q2
, /q1

; p) = V (/q2
, /q1

) +

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)T (/l , /q1
; p) , (E.2)

was claimed in eq. (5.6) to be

T (/q2
, /q1

; p) = W (/q2
, /q1

; p) +W (/q2
, p̃; p)G(p)[1 −W (p̃, p̃; p)G(p)]−1W (p̃, /q1

; p) , (E.3)

with

W (/q2
, /q1

; p) = /q2
g

1

1 + IMg
+

1

1 + gIM
g/q1

− g
1

1 + IMg
IM(/p−m)

1

1 + gIM
g . (E.4)

W (/q2
, p̃; p) can be obtained from eq. (E.4) by replacing /q1

→ /q1
+ /p1

−m = /p −m ≡ p̃, and
similarly for other arguments. Recall that m is the baryon mass matrix, and p1 (p2) is the
four-momentum of the incoming (outgoing) baryon. The propagators S and ∆, as well as the
loop integrals IM and G, have been defined in eqs. (5.3,5.4) and eqs. (5.9,5.10), respectively.
Note that IM and G both commute with m, since these are all diagonal matrices in channel
space. In contrast, the coupling matrix g does not commute with any of those matrices. We
also remind the reader that the symbol ‘1’ in eqs. (E.3) and (E.4) represents the unit matrix
in channel space, while matrix-valued denominators denote matrix inversion. In order to verify
that the above expression for T indeed solves the BSE, we need to prove the relation

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)W (/l , /q; p)

= V (/q2
, p̃)G(p)W (p̃, /q; p) +W (/q2

, /q; p) − V (/q2
, /q). (E.5)

where /q stands for either /q1
or p̃. To proceed, we split the loop momentum l in two pieces

according to /l = p̃− (p̃− /l). The second part in this decomposition cancels the denominator
of the baryon propagator S(/p− /l). One finds

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)W (/l , /q; p) = V (/q2
, p̃)G(p)W (p̃, /q; p)

−V (/q2
, p̃)IMg

1

1 + IMg
− gIMW (p̃, /q; p) + gp̃IMg

1

1 + IMg
.
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Using the identities

IMg
1

1 + IMg
= 1 − 1

1 + IMg
, gIM

1

1 + gIM
= 1 − 1

1 + gIM

and g[1 + IMg]
−1 = [1 + gIM ]−1g in the last three terms then yields

V (/q2
, p̃)IMg

1

1 + IMg
+ gIMW (p̃, /q; p) − gp̃IMg

1

1 + IMg
= V (/q2

, /q) −W (/q2
, /q; p),

which proves eq. (E.5). Inserting the expression for T , eq. (E.3), on the r.h.s. of the BSE,
eq. (E.2), we get

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)T (/l , /q1
; p) =

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)W (/l , /q1
; p)

+

∫

ddl

(2π)d
V (/q2

, /l)iS(/p− /l)∆(l)W (/l , p̃; p)G(p)[1 −W (p̃, p̃; p)G(p)]−1W (p̃, /q1
; p). (E.6)

Now eq. (E.5) can be used in both terms on the r.h.s. of the last equation, to obtain

∫

ddl

(2π)d
V (/q2

, /l)iS(/p−/l)∆(l)T (/l , /q1
; p) = V (/q2

, /q1
)G(p)W (p̃, /q1

; p)+W (/q2
, /q1

; p)−V (/q2
, /q1

)

+ [V (/q2
, p̃)G(p)W (p̃, p̃; p) +W (/q2

, p̃; p) − V (/q2
, p̃)]G(p)[1 −W (p̃, p̃; p)G(p)]−1W (p̃, /q1

; p)

= T (/q2
, /q1

; p) − V (/q2
, /q1

), (E.7)

where in the second step we have used WG[1 − WG]−1 = [1 − WG]−1 − 1, together with
eq. (E.3). This completes the proof that T , as given in eq. (E.3), solves the integral equation
(E.2).
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Appendix F

UV-divergences in the Bethe-Salpeter
equation

We already noted in sec. 1.5 that the loop integration in the BSE develops an ultraviolet
divergence as the dimension d approaches its physical value 4. Therefore, divergent expressions
will appear in the solution T of the BSE. In fact, the expression for T in the previous app. E
contains the divergent loop integrals G and IM , so that it is, strictly speaking, ill-defined at
d = 4. If g is kept fixed, one might argue from the form of T (see eqs. (E.3) and (E.4)) that
T → 0 as d→ 4, but this cannot be the result for the sum of bubble graphs, as displayed e.g. in
fig. 5.1. In practice, one uses the form of the solution of the BSE, but with finite loop functions
G− δG, IM − δIM , where δG and δIM are real polynomials in the momentum variables, which
contain the poles in d − 4 of the respective loop integrals. In the following, we will leave out
the overall momentum p in the arguments of the various functions for brevity. For the same
reason, we will denote W (p̃, p̃; p) simply by the letter W .
Due to the above-mentioned form of the subtractions δG, δIM , it is clear that the unitarity
and analyticity requirements are not spoilt by the replacement T → Tδ, where Tδ contains only
finite loop functions:

Tδ(/q2
, /q1

) = W (/q2
, /q1

) +W (/q2
, p̃)(G− δG)[1 −W (G− δG)]−1W (p̃, /q1

) , (F.1)

where

W (/q2
, /q1

) = /q2
g

1

1 + (IM − δIM)g
+

1

1 + g(IM − δIM)
g/q1

−g 1

1 + (IM − δIM)g
(IM − δIM)(/p−m)

1

1 + g(IM − δIM)
g . (F.2)

It is the purpose of this appendix to demonstrate that Tδ is again the solution of a BSE, with
a modified potential V + δV ≡ Vδ, which can be expressed through the subtractions δG, δIM
as follows:

Vδ(/q2
, /q1

) = Wδ(/q2
, /q1

) −Wδ(/q2
, p̃)δG[1 +WδδG]−1Wδ(p̃, /q1

), (F.3)

where

Wδ(/q2
, /q1

) = /q2
g

1

1 − δIMg
+

1

1 − gδIM
g/q1

+ g
1

1 − δIMg
δIM(/p−m)

1

1 − gδIM
g . (F.4)
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Note that Vδ has the same form as T , with G and IM replaced by −δG and −δIM , respectively
(compare eq. (1.49) for a simpler version of this property of the BSE. There, G(s0) plays the
role of δG).
The addition of the ‘counterterms’ δV to the original potential V is implemented graphically
by iterating also the vertices corresponding to δV : for every graph with a V -vertex at a certain
position, one must also include a graph with an insertion of δV at the same position. In this
way, the divergences present in the loop integrals contained in the solution of the original BSE
are shifted to the kernel. In our opinion, this is the closest one can come to a renormalization
procedure in the framework of the BSE. Nevertheless, let us repeat the remark already made in
secs. 1.5 and 5.2, saying that the terms in δV do not correspond to counterterms as employed
in perturbative ChPT. At the one-loop level, for example, the difference resides in those parts
of the counterterms of ChPT which absorb the divergences of graphs with loops in the u− or
t−channel, as the latter are not present in the BSE approach.
As a side remark, we also note that our on-shell -amplitude, where /q1,2

→ p̃, reduces to the

result one would derive using the on-shell approximation (see the discussion in sec. 5.2) for the
choice δIM = IM . This may be seen as the justification for the use of the on-shell approximation
when considering meson-baryon scattering with the kernel V . However, it is important to note
that the off-shell dependence of T (or Tδ) has to be retained when the scattering amplitude
provides only a building block in more complicated graphs, as it happens in our treatment
of meson photoproduction in chapter 5: Knowing only the on-shell scattering amplitude, we
would not be able to use the tools developed in that chapter in order to obtain a gauge-invariant
description of meson photoproduction.
Let us now proceed with the proof. We must show that

Tδ(/q2
, /q1

) = Vδ(/q2
, /q1

) +

∫

ddl

(2π)d
Vδ(/q2

, /l)iS(/p− /l)∆(l)Tδ(/l , /q1
) . (F.5)

To do this, we need to employ the relation

∫

ddl

(2π)d
Wδ(/q2

, /l)iS(/p− /l)∆(l)W (/l , /q) = Wδ(/q2
, p̃)GW (p̃, /q) +W (/q2

, /q) −Wδ(/q2
, /q) , (F.6)

where /q can stand for /q1
or p̃. The proof of this identity will be deferred to the end of this

appendix. For the moment, let us assume we have shown that eq. (F.6) holds true. Then we
can use it to calculate (see eqs. (F.1) and (F.3))

∫

ddl

(2π)d
Vδ(/q2

, /l)iS(/p− /l)∆(l)Tδ(/l , /q1
) = Wδ(/q2

, p̃)GW (p̃, /q1
) +W (/q2

, /q1
) −Wδ(/q2

, /q1
)

−Wδ(/q2
, p̃)δG[1 +WδδG]−1{WδGW (p̃, /q1

) +W (p̃, /q1
) −Wδ(p̃, /q1

)}
+ {Wδ(/q2

, p̃)GW +W (/q2
, p̃) −Wδ(/q2

, p̃)}(G− δG)[1 −W (G− δG)]−1W (p̃, /q1
)

−Wδ(/q2
, p̃)δG[1 +WδδG]−1{WδGW +W −Wδ}(G− δG)[1 −W (G− δG)]−1W (p̃, /q1

) .

(F.7)

The underlined terms lead to the result Tδ(/q2
, /q1

) − Vδ(/q2
, /q1

) , while the remaining terms on
the r.h.s. of eq. (F.7) add up to zero (this can be seen by straightforward calculation, employing
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simple algebraic identities analogous to the ones used in the proof of the previous appendix).
Recall that omitted arguments of the W -functions indicate that both arguments are equal to
p̃.
To complete the proof of eq. (F.5), we still have to verify eq. (F.6). Let us evaluate the integral
on the l.h.s. of that equation, inserting the appropriate expressions for W and Wδ:

∫

ddl

(2π)d
Wδ(/q2

, /l)iS(/p− /l)∆(l)W (/l , /q) = Wδ(/q2
, p̃)GW (p̃, /q) −

1

1 − gδIM
gIMW (p̃, /q)

−Wδ(/q2
, p̃)IMg

1

1 + (IM − δIM)g
+

1

1 − gδIM
gIM p̃g

1

1 + (IM − δIM)g
. (F.8)

The first term on the r.h.s. already coincides with the one in eq. (F.6). It remains to be shown
that

1

1 − gδIM
gIMW (p̃, /q) +Wδ(/q2

, p̃)IMg
1

1 + (IM − δIM)g
− 1

1 − gδIM
gIM p̃g

1

1 + (IM − δIM)g

= Wδ(/q2
, /q) −W (/q2

, /q). (F.9)

Consider, for example, the term proportional to /q2
on the l.h.s. of the last equation. It is equal

to

/q2
g

1

1 − δIMg
IMg

1

1 + (IM − δIM)g

= /q2
g

1

1 − δIMg
(1 + (IM − δIM)g − (1 − δIMg))

1

1 + (IM − δIM)g

= /q2
g

1

1 − δIMg
− /q2

g
1

1 + (IM − δIM)g
,

which equals the /q2
-dependent term on the r.h.s. of eq. (F.9). In a similar way, the terms

proportional to /q and the remaining terms can be shown to obey eq. (F.9). Together with
eq. (F.8), this confirms eq. (F.6). The proof of eq. (F.5) is thus complete.
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Appendix G

Bethe-Salpeter approach with off-shell
kernel

In this appendix, we present an alternative solution of the Bethe-Salpeter equation with
off-shell pieces in the interaction kernel [140, 141]. In general, the amplitude for a meson-
baryon scattering process Ba(pa) + φi(qi) → Bb(pb) + φj(qj) can be written as a function
V (t− u, /p, /pc −mc, q

2
k −M2

k ) with masses mc (c = a, b) and Mk (k = i, j) for the baryons and
mesons, respectively, the total momentum p = pa + qi = pb + qj and the Mandelstam variables
t = (pa−pb)2, u = (pa−qj)2. It is understood that the off-shell terms /pa−ma have been moved
to the right, whereas the /pb−mb have been moved to the left. We assume that V is analytic in
the variable t − u. This is certainly the case for all polynomial interactions which are derived
from contact interactions. The Taylor expansion of V in t− u reads

V (t− u) =
∞
∑

i=0

(t− u)iVi = V0 + (t− u)V1 + (t− u)2V2 + . . . , (G.1)

where we have suppressed the dependence of V and Vi on /p and the off-shell pieces /pc−mc and

p2
k −M2

k for brevity. In the center-of-mass frame the variable t− u is related to the scattering
angle θ via

t− u = 4|pa||pb| cos θ +
1

p2
(p2
a − q2

i ) (p2
b − q2

j ) , (G.2)

where |pa,b| are the moduli of the c.m. three-momenta. We define a set of orthogonal functions
Jl with l = 0, 1, 2, . . . (or s, p, d, . . .) which are proportional to the Legendre polynomials in the
center-of-mass scattering angle with the first few Jl given by

Js = 1 ,

Jp = |pa||pb| cos θ =
1

4
(t− u) − 1

4p2
(p2
a − q2

i ) (p2
b − q2

j ) ,

Jd = |pa|2|pb|2(cos2 θ − 1

3
) = J2

p −
1

3
|pa|2|pb|2 ,

Jf = |pa|3|pb|3(cos3 θ − 3

5
cos θ) = J3

p −
3

5
|pa|2|pb|2Jp . (G.3)
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The moduli of the three-momenta in the center-of-mass frame can be expressed in terms of
Lorentz scalars as

|pa|2 =
1

4p2
(p2 + q2

i − p2
a)

2 − q2
i ,

|pb|2 =
1

4p2
(p2 + q2

j − p2
b)

2 − q2
j . (G.4)

The expansion of the amplitude V in t − u can now be reformulated as an expansion in Jl,
V =

∑

l VlJl. In order to keep the presentation simple, we restrict ourselves to the Weinberg-
Tomozawa interaction from now on. The generalization to more complicated vertex structures
is straightforward. For the Weinberg-Tomozawa term V does not depend on t− u,

V = V0 = Vs , (G.5)

and the division of V into on- and off-shell pieces can be conveniently accomplished by employing
the matrix notation (for the reaction ai→ bj)

V bj,ai
s = uT

bj V̆
bj,ai
s uai , (G.6)

uT
ai(/pa) = (1, /pa −ma) ,

uT
bj(/pb) = (1, /pb −mb) ,

V̆ bj,ai
s (/p) = gbj,ai

(

2/p−ma −mb −1
−1 0

)

, (G.7)

where gbj,ai is the Weinberg-Tomozawa coupling for the channels under consideration as defined
in eq. (5.2). The amplitude V is utilized as the interaction kernel in the Bethe-Salpeter equation
for the scattering matrix T , cf. eq. (5.5),

T (/qj , /qi; p) = V (/qj, /qi) +

∫

ddl

(2π)d
V (/qj ,

/l)iS(/p− /l)∆(l)T (/l , /qi; p) . (G.8)

For the decomposition into on- and off-shell pieces we make the same ansatz for the partial
wave decomposition of the BSE solution T as for V in eq. (G.6),

T bj,ais = uT
bj T̆

bj,ai
s uai . (G.9)

This yields a BSE for T̆s which is a matrix equation in the combined channel and off-shell space

T̆s = V̆s + V̆sĞsT̆s (G.10)

with a matrix Ğs which is diagonal in channel space with off-shell submatrices

Ğck,ck
s =

∫

ddl

(2π)d
uck(/l)iS(/l)∆(p− l)uT

ck(/l) . (G.11)

Hence, the integral expression in the BSE factorizes also without putting the interaction kernel
V and the solution T on-shell. In order to solve this equation by matrix inversion, it is most
convenient to decompose the matrices T̆s, V̆s, and Ğs into a Dirac scalar and a piece proportional
to /p (see also sect. 5.2).
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Appendix H

Loop integrals for the
electroproduction amplitude

The tadpole integral is given by

Ibj,aiM =

∫

ddl

(2π)d
iδbaδji

l2 −M2
j + i0+

=

(

2M2
j λ̄+

M2
j

8π2
ln

(

Mj

µ

))

δbaδji . (H.1)

Here µ is the scale of dimensional regularization and

λ̄ =
µd−4

16π2

(

1

d− 4
− 1

2
[ln(4π) + Γ′(1) + 1]

)

.

In practice, we will use the MS renormalization scheme, i.e. terms proportional λ̄ will be
dropped from all expressions. In the above result, we have neglected terms of O(4−d) since we
are interested in the limit d → 4. The diagonal entries in the matrix IM of eq. (2.2) are given
by the above expression for the tadpole integral, where Mj is given by the meson mass of the
respective channel. Moreover, the scale µ can vary between the different channels. We shall
also define a diagonal matrix IB with entries given by tadpole integrals where Mj is replaced
by the baryon mass ma of each channel.
Note that we do not make use of the infrared regularization scheme in chapter 5 and in this
appendix. The reason is twofold. First, the BSE framework does not allow for a strict renor-
malization procedure, as we have noted several times, see e.g. sec. 1.5. Here we substitute
MS-renormalized loop integrals for the full loop integrals in all expressions, where the renor-
malization scales µ for the various channels are treated as adjustable parameters that simulate
the contributions from higher-order counterterms. The second reason for suspending the IR
scheme here is a more practical one: experience has shown that the use of the IR scheme in the
three-flavor case does not necessarily lead to an improvement of the convergence properties of
the chiral series (this can of course be traced back to the sizeable kaon masses).
In the following, we will leave out the +i0+ prescription in the loop integrals for brevity. The
fundamental scalar loop integral reads

I0(p) =

∫

ddl

(2π)d
i

[(p− l)2 −m2][l2 −M2]
=

1

16π2

{

− 1 + ln

(

m2

µ2

)

+
M2 −m2 + p2

2p2
ln

(

M2

m2

)

− 4|q|
√

p2
artanh

(

2|q|
√

p2

(m+M)2 − p2

)}

, (H.2)
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where

|q| =

√

(p2 − (m+M)2)(p2 − (m−M)2)

2
√

p2
(H.3)

is equal to the modulus of the center-of-mass three momentum for a system with particle masses
m and M , and p2 the total invariant energy squared of the system.
It is useful to define a diagonal matrix IMB(p), with elements given by the above loop integral
I0 of eq. (H.2), where m is the baryon mass ma and M is the meson mass Mi of the respective
channels. Similarly, we will use matrices IBB and IMM, where m and M are both given by either
the baryon mass ma (for IBB) or by Mi (for IMM), respectively. In the same manner we define

Ibj,aiMBB =

∫

ddl

(2π)d
iδbaδji

[(p− l)2 −m2
a][(p1 − l)2 −m2

a][l
2 −M2

i ]
. (H.4)

An analogous definition applies for IMMB. Only the diagonal elements are needed here, since the
coupling of the photon does not alter the meson-baryon channel. The loop integrals occurring
in IMBB and IMMB can be expressed in terms of Spence functions [142]. In the course of the
calculation, loop integrals with a tensor structure in the integrand are also encountered. For
example,

∫

ddl

(2π)d
iδbaδjilµ

[(p− l)2 −m2
a][l

2 −M2
i ]

= pµ[I
(1)
MB]bj,ai (H.5)

with

[I
(1)
MB]bj,ai =

1

2p2

[

(p2 +M2
i −m2

a)I
bj,ai
MB + Ibj,aiB − Ibj,aiM

]

. (H.6)

The last expression is simplified for equal masses in the propagators, so that, e.g., (in matrix
notation)

∫

ddl

(2π)d
ilµ∆(p− l)∆(l) =

pµ

2
IMM(p) . (H.7)

We also need
∫

ddl

(2π)d
ilµlν∆(p− l)∆(l) = gµνI

(a)
MM(p) +

pµpν

p2
I

(b)
MM(p), (H.8)

where the coefficients of the tensor structures are given by

(d− 1)I
(a)
MM(p) = (M2 − 1

4
p2)IMM(p) +

1

2
IM , (H.9)

(d− 1)I
(b)
MM(p) = (

d

4
p2 −M2)IMM(p) + (

d

2
− 1)IM . (H.10)

Here we have employed the meson mass matrix

M bj,ai = δbaδjiMj .

defined in analogy to the baryon mass matrix m, and the term p2 in the last two equations is
of course to be understood as being multiplied by the identity matrix in channel space.
The matrix G of eq. (5.10) can be given in terms of scalar loop integrals already defined:

G(p) =
/p

2p2

(

[p2 −M2 +m2]IMB(p) + IM − IB

)

+mIMB(p). (H.11)
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Integrals with a vector or tensor structure in the numerator will also be required in the case
of three propagators. In particular, two of the three masses in the propagators will be equal,
as already mentioned above. In the following, we will consider the case MBB, noting that the
other case (MMB) is then given simply by interchanging m and M . First,

∫

ddl

(2π)d
iδbaδjilµ

[(p− l)2 −m2
a][(p1 − l)2 −m2

a][l
2 −M2

j ]
= Abj,ai(p1, p)(p1 + p)µ +Bbj,ai(p1, p)(p1 − p)µ .

(H.12)

The channel matrices A and B defined by this equation read

A =
1

2D

{

(

4M̄2 − ∆p4

k2

)

IMBB + 2IBB(k) −
(

1 − ∆p2

k2

)

IMB(p1) −
(

1 +
∆p2

k2

)

IMB(p)
}

,

(H.13)

B =
∆p2

2k2D

{

(4M̄2 + k2 − 4p̄2)IMBB + 2IBB(k) −
(

1 − 4p̄2 − k2

∆p2

)

IMB(p1)

−
(

1 +
4p̄2 − k2

∆p2

)

IMB(p)

}

. (H.14)

Here we have used the following notation:

p̄2 =
p2

1 + p2

2
, (H.15)

M̄2 =
1

2
(p̄2 +M2 −m2), (H.16)

∆p2 = p2 − p2
1, (H.17)

k = p− p1, (H.18)

D = 4p̄2 − k2 − ∆p4

k2
, (H.19)

and the abbreviation ∆p4 ≡ (∆p2)2. The loop integral with three propagators and tensor
structure is given by

Iµν∆ =

∫

ddl

(2π)d
iδbaδjilµlν

[(p− l)2 −m2
a][(p1 − l)2 −m2

a][l
2 −M2

j ]
= Cbj,ai

1 gµν + Cbj,ai
2 (p1 + p)µ(p1 + p)ν

+ Cbj,ai
3 (p1 − p)µ(p1 − p)ν + Cbj,ai

4 ((p1 + p)µ(p1 − p)ν + (p1 + p)ν(p1 − p)µ) .

The coefficient matrices Ci read as follows:

C1 =
1

d− 2

{

M2IMBB +
1

2
IBB(k) − 2M̄2A+

∆p2

2
B

}

, (H.20)

C2 =
1

k2D

{

k2(M2IMBB + IBB(k)) +
∆p2

2
(k2B − ∆p2A)

− k2

4
(I

(1)
MB(p1) + I

(1)
MB(p)) +

∆p2

4
(I

(1)
MB(p1) − I

(1)
MB(p)) − (d− 1)k2C1

}

, (H.21)
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C3 =
1

k2D

{

(4p̄2 − k2)(M2IMBB +
1

2
IBB(k)) − 2M̄2((4p̄2 − k2)A− ∆p2B)

+
1

4
(4p̄2 − ∆p2 − k2)I

(1)
MB(p1) +

1

4
(4p̄2 + ∆p2 − k2)I

(1)
MB(p) − (d− 1)(4p̄2 − k2)C1

}

, (H.22)

C4 =
1

k2D

{

∆p2(M2IMBB + IBB(k)) − ∆p2

2
((4p̄2 − k2)A− ∆p2B)

+
1

4
(4p̄2 − ∆p2 − k2)I

(1)
MB(p1) −

1

4
(4p̄2 + ∆p2 − k2)I

(1)
MB(p) − (d− 1)∆p2C1

}

. (H.23)

A and B are given in eqs. (H.13) and (H.14), while I
(1)
MB is defined in eq. (H.6). Note that in

the limit d → 4, C1 will aquire an additional finite contribution due to the divergent terms in
the loop integrals. In particular,

C1 → C1(d = 4) − 1

64π2
, (H.24)

(d− 1)C1 → 3C1(d = 4) +
1

32π2
. (H.25)

As already mentioned, the results for the MMB case can be obtained from the above formulae
by interchanging m ↔ M . The corresponding coefficients will be denoted by Ã,B̃ and C̃i.
Finally, the preceding results can be used to derive the decompositions

IF =

∫

ddl

(2π)d
iS(/p− /l)eQBγ

µS(/p1
− /l)∆(l)

= γµF1 + /pγ
µF2 + γµ /p1F3 + /pγ

µ
/p1F4 + pµF5 + pµ1F6 + pµ/pF7 + pµ /p1F8 + pµ1/pF9 + pµ1 /p1F10

(H.26)

and

IF̃ =

∫

ddl

(2π)d
i∆(p− l)eQM(p+ p1 − 2l)µ∆(p1 − l)S(/l)

= γµF̃1 + /pγ
µF̃2 + γµ /p1F̃3 + /pγ

µ
/p1F̃4 + pµF̃5 + pµ1 F̃6 + pµ/pF̃7 + pµ /p1F̃8 + pµ1/pF̃9 + pµ1 /p1F̃10 ,

(H.27)

where the coefficients of the Lorentz structures are given by

F1 = eQB(2C1 + (m2 −M2)IMBB − IBB(k) + p2
1(A+B) + p2(A−B)) ,

F2 = eQBmIMBB ,

F3 = F2 ,

F4 = eQB(IMBB − 2A) ,

F5 = 2eQBm(B − A) ,

F6 = −2eQBm(B + A) ,

F7 = 2eQB(B − A+ C2 + C3 − 2C4) ,

F8 = 2eQB(C2 − C3) ,

F9 = F8 ,
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F10 = 2eQB(C2 + C3 + 2C4 −A−B) ,

F̃1 = −2eQMC̃1 ,

F̃2 = F̃3 = F̃4 = 0 ,

F̃5 = eQM(mIMMB + 2m(B̃ − Ã)) ,

F̃6 = eQM(mIMMB − 2m(B̃ + Ã)) ,

F̃7 = eQM(Ã− B̃ − 2(C̃2 + C̃3 − 2C̃4)) ,

F̃8 = eQM(Ã+ B̃ − 2(C̃2 − C̃3)) ,

F̃9 = eQM(Ã− B̃ − 2(C̃2 − C̃3)) ,

F̃10 = eQM(Ã+ B̃ − 2(C̃2 + C̃3 + 2C̃4)) .

The following relations are helpful, e.g. when checking gauge invariance:

G1(p) = p̄2F4 −
∆p2

2
(F4 + F7 + F9) +

k2

2
(F9 − F7) − F1

=
k2

2
(F̃9 − F̃7) −

∆p2

2
(F̃9 + F̃7) − F̃1 ,

G1(p1) = p̄2F4 +
∆p2

2
(F4 + F8 + F10) +

k2

2
(F8 − F10) − F1

=
k2

2
(F̃8 − F̃10) +

∆p2

2
(F̃8 + F̃10) − F̃1 ,

and also

G0(p) −G0(p1) =
k2

2
(F6 − F5) −

∆p2

2
(2F2 + F5 + F6)

=
k2

2
(F̃6 − F̃5) −

∆p2

2
(F̃5 + F̃6) .

As a further check of the calculation we have utilized the routines provided by the FeynCalc
package [143].
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Appendix I

Decomposition of the
electroproduction amplitude

We start with the amplitudes of eqs. (5.42)-(5.44).

Sµs = (/q/pS
/q/pγ
s + /qS

/qγ
s + /pS

/pγ
s + Sγs )γ

µγ5 (I.1)

with

S
/q/pγ
s =

e

m2
p − s

(Γ2(p) −mpΓ1(p)) ,

S
/qγ
s =

e

m2
p − s

(sΓ1(p) −mpΓ2(p)) ,

S
/pγ
s =

e

m2
p − s

(Γ4(p) −mpΓ3(p)) ,

Sγs =
e

m2
p − s

(sΓ3(p) −mpΓ4(p)) .

Here, mp is the proton mass and s ≡ p2 = (p1 + k)2. Moreover,

Sµu = qµγ5S
q
u + /qγ

µγ5S
/qγ
u + γµγ5S

γ
u (I.2)

with

Squ = −2S
/qγ
u =

2eQB

u−m2
Y3 ,

Sγu =
eQB

m2 − u

(

Γ1(p1)mp(u−m2
p) − Γ2(p1)(u−m2

p

)

+ (m2
p −mpm)Γ3(p1) + (m−mp)Γ4(p1)) ,

and

Sµt =
(

pµSpt + pµ1S
p1
t + qµSqt + /qq

µS
/qq
t + /pq

µS
/pq
t + /qp

µS
/qp
t + /pp

µS
/pp
t + /qp

µ
1S

/qp1
t + /pp

µ
1S

/pp1
t )γ5 , (I.3)

with

Spt =
eQM

t−M2
Y1 , Sp1t = −Spt , Sqt = −2Spt ,

S
/qq
t = − 2eQM

t−M2
Y2 , S

/pq
t = −S/qqt , S

/qp
t =

eQM

t−M2
Y2 ,

S
/pp
t = −S/qpt , S

/qp1
t = −S/qpt , S

/pp1
t = +S

/qp
t .
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The foregoing results deserve some comments. We use the abbreviations

Y1 = m2
pΓ1(p1) −mp(Γ2(p1) + Γ3(p1)) + Γ4(p1) , (I.4)

Y2 = Γ2(p1) −mpΓ1(p1) , (I.5)

Y3 = (m2
p +mpm)Γ1(p1) − (m+mp)Γ2(p1) −mpΓ3(p1) + Γ4(p1) . (I.6)

Furthermore, we have anticipated that the full amplitude will be multiplied by spinors, so we
set /p1

γ5 → −mpγ5. The Mandelstam variables u and t are understood to be diagonal matrices
in channel space and are defined via the center-of-mass (c.m.) relations

t = M2 + k2 − 2EkEq + 2|k||q| cos θ , (I.7)

u = k2 +m2
p +m2 +M2 − s− t , (I.8)

where |q| and |k| are the moduli of the c.m. three-momenta of the outgoing meson and the
incoming photon, respectively (see eq. (H.3)), θ is the scattering angle in the c.m. frame, and
the c.m. energies are given by

Ek =
√

|k|2 + k2 ,

Eq =
√

|q|2 +M2 .

Of course, multiplication of scalar quantities (such as k2 or mp) by the unit matrix in channel
space is implied where necessary and fractions involving matrix-valued denominators denote
matrix inversions.
Now we come to the graphs where the photon couples to internal meson or baryon lines. The
decomposition of SµB reads

SµB =
(

γµSγB + pµSpB + pµ1S
p1
B + /qγ

µS
/qγ

B + /pγ
µS

/pγ

B + /q/pγ
µS

/q/pγ

B + /qp
µS

/qp

B + /pp
µS

/pp

B

+ /q/pp
µS

/q/pp

B + /qp
µ
1S

/qp1
B + /pp

µ
1S

/pp1
B + /q/pp

µ
1S

/q/pp1
B )γ5 (I.9)

with

SγB = mp[T8F3 − T5mF3 − T5eQBG1(p1) + s(T3F3 + T5F4 + T7F4 − T3mF4)]Y3

− T8F1Y3 + T5mF1Y3 + T5eQBG0(p1)Y3

− T5eQBIMY2 + T8G0(p)eQBY2 − T5mG0(p)eQBY2

− s(T3F1Y3 + T5F2Y3 + T7F2Y3 − T3G0(p)eQBY2 − T3mF2Y3 − T5G1(p)eQBY2

− T7G1(p)eQBY2 + T3mG1(p)eQBY2) ,

SpB = mp[T8F8Y3 − T5mF8Y3 + sT3F8Y3] − T8F5Y3 + T5mF5Y3

− s(T3F5Y3 + T5F7Y3 + T7F7Y3 − T3mF7Y3) ,

Sp1B = mp[T8F10Y3 − T5mF10Y3 + sT3F10Y3] − T8F6Y3 + T5mF6Y3

− s(T3F6 + T5F9 + T7F9 − T3mF9)Y3 ,

S
/qγ

B = mp[T6F3 − T2mF3 − T2eQBG1(p1) + s(T1F3 + T2F4 + T4F4 − T1mF4)]Y3

− T6F1Y3 + T2mF1Y3 + T2eQBG0(p1)Y3

− T2eQBIMY2 + T6G0(p)eQBY2 − T2mG0(p)eQBY2

− s(T1F1Y3 + T2F2Y3 + T4F2Y3 − T1G0(p)eQBY2 − T1mF2Y3 − T2G1(p)eQBY2

− T4G1(p)eQBY2 + T1mG1(p)eQBY2) ,
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S
/pγ

B = mp[T5F3 + T7F3 + T8F4 − T3mF3 − T3eQBG1(p1) − T5mF4 + sT3F4]Y3

− T5F1Y3 − T7F1Y3 − T8F2Y3 + T3mF1Y3 + T3eQBG0(p1)Y3 − T3eQBIMY2

+ T5G0(p)eQBY2 + T5mF2Y3 + T7G0(p)eQBY2 + T8G1(p)eQBY2 − T3mG0(p)eQBY2

− T5mG1(p)eQBY2 + s(T3G1(p)eQBY2 − T3F2Y3) ,

S
/q/pγ

B = mp[T2F3 + T4F3 + T6F4 − T1mF3 − T1eQBG1(p1) − T2mF4 + sT1F4]Y3

− T2F1Y3 − T4F1Y3 − T6F2Y3 + T1mF1Y3 + T1eQBG0(p1)Y3 − T1eQBIMY2

+ T2G0(p)eQBY2 + T2mF2Y3 + T4G0(p)eQBY2 + T6G1(p)eQBY2 − T1mG0(p)eQBY2

− T2mG1(p)eQBY2 − s(T1F2Y3 − T1G1(p)eQBY2) ,

S
/qp

B = mp[T6F8 − T2mF8 + sT1F8]Y3 − T6F5Y3 + T2mF5Y3

− s(T1F5 + T2F7 + T4F7 − T1mF7)Y3 ,

S
/pp

B = mp[T5F8 + T7F8 − T3mF8]Y3 − (T5F5 + T7F5 + T8F7 − T3mF5

− T5mF7 + sT3F7)Y3 ,

S
/q/pp

B = mp[T2F8 + T4F8 − T1mF8]Y3

− (T2F5 + T4F5 + T6F7 − T1mF5

− T2mF7 + sT1F7)Y3 ,

S
/qp1
B = mp[T6F10 − T2mF10 + sT1F10]Y3

− T6F6Y3 + T2mF6Y3 − s(T1F6 + T2F9 + T4F9 − T1mF9)Y3 ,

S
/pp1
B = mp[T5F10 + T7F10 − T3mF10]Y3 − (T5F6 + T7F6 + T8F9 − T3mF6

− T5mF9 + sT3F9)Y3 ,

S
/q/pp1
B = mp[T2F10 + T4F10 − T1mF10]Y3 − (T2F6 + T4F6 + T6F9 − T1mF6

− T2mF9 + sT1F9)Y3 ,

while the decomposition of SµM reads

SµM =
(

γµSγM + pµSpM + pµ1S
p1
M + /qγ

µS
/qγ

M + /pγ
µS

/pγ

M + /q/pγ
µS

/q/pγ

M + /qp
µS

/qp

M + /pp
µS

/pp

M + /q/pp
µS

/q/pp

M

+ /qp
µ
1S

/qp1
M + /pp

µ
1S

/pp1
M + /q/pp

µ
1S

/q/pp1
M

)

γ5 , (I.10)

with

SγM = T5mF̃1Y3 − T8F̃1Y3 − T5eQMd1Y2 − sT3F̃1Y3 ,

SpM = mp[T8F̃8Y3 − T5mF̃8Y3 − T5eQMd2Y2 + sT3F̃8Y3] − T8F̃5Y3 + T5mF̃5Y3

− s(T3F̃5Y3 + T5F̃7Y3 + T7F̃7Y3 − T3mF̃7Y3 + T3eQMd2Y2) ,

Sp1M = mp[T8F̃10Y3 − T5mF̃10Y3 + T5eQMd2Y2 + sT3F̃10Y3] − T8F̃6Y3 + T5mF̃6Y3

− s(T3F̃6 + T5F̃9 + T7F̃9 − T3mF̃9)Y3 + sT3eQMd2Y2 ,

S
/qγ

M = T2mF̃1Y3 − T6F̃1Y3 − sT1F̃1Y3 − T2eQMd1Y2 ,

S
/pγ

M = T3mF̃1Y3 − T5F̃1Y3 − T7F̃1Y3 − T3eQMd1Y2 ,

S
/q/pγ

M = T1mF̃1Y3 − T2F̃1Y3 − T4F̃1Y3 − T1eQMd1Y2 ,

S
/qp

M = mp[T6F̃8Y3 − T2mF̃8Y3 + sT1F̃8Y3 − T2eQMd2Y2] − T6F̃5Y3 + T2mF̃5Y3

− s(T1F̃5 + T2F̃7 + T4F̃7 − T1mF̃7)Y3 − sT1eQMd2Y2 ,
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S
/pp

M = mp[T5F̃8Y3 + T7F̃8Y3 − T3mF̃8Y3 − T3eQMd2Y2]

− (T5F̃5 + T7F̃5 + T8F̃7 − T3mF̃5 − T5mF̃7)Y3 − sT3F̃7Y3 − T5eQMd2Y2 ,

S
/q/pp

M = mp[T2F̃8Y3 + T4F̃8Y3 − T1mF̃8Y3 − T1eQMd2Y2]

− (T2F̃5 + T4F̃5 + T6F̃7 − T1mF̃5 − T2mF̃7) − sT1F̃7Y3 − T2eQMd2Y2,

S
/qp1
M = mp[T6F̃10Y3 − T2mF̃10Y3 + sT1F̃10Y3 + T2eQMd2Y2] − T6F̃6Y3 + T2mF̃6Y3

+ sT1eQMd2Y2 − s(T1F̃6 + T2F̃9 + T4F̃9 − T1mF̃9)Y3 ,

S
/pp1
M = mp[T5F̃10Y3 + T7F̃10Y3 − T3mF̃10Y3 + T3eQMd2Y2]

− (T5F̃6 + T7F̃6 + T8F̃9 − T3mF̃6 − T5mF̃9)Y3 − sT3F̃9Y3 + T5eQMd2Y2 ,

S
/q/pp1
M = mp[T2F̃10Y3 + T4F̃10Y3 − T1mF̃10Y3 + T1eQMd2Y2]

− (T2F̃6 + T4F̃6 + T6F̃9 − T1mF̃6 − T2mF̃9)Y3

− sT1F̃9Y3 + T2eQMd2Y2 .

Here we have used the abbreviations Ti ≡ Ti(p) and

d1 = −2

[

1

3

(

(M2 − 1

4
k2)IMM(k) +

1

2
IM

)

+ δ

]

,

d2 =
1

2
IMM(k) − 2

k2

[

1

3

(

(k2 −M2)IMM(k) + IM

)

− δ

]

,

δ =
1

48π2

[

1

6
k2 −M2

]

.

The Ti(p) are defined in eq. (5.28), while the Fi and F̃i are defined in eq. (H.26) and (H.27),
respectively. The term δ stems from the limit d→ 4 in eqs. (H.9) and (H.10).
Next we turn to the class of diagrams derived from the ‘Kroll-Ruderman’-term (called ‘Class 4’
in sect. 5.3):

SµKR = (SγKR + /qS
/qγ

KR + /pS
/pγ

KR + /q/pS
/q/pγ

KR )γµγ5 (I.11)

with

SγKR = eQMĝ + [(T8 − T5m+ sT3)G0(p) + s(T5 + T7 − T3m)G1(p) − T5IM]eQMĝ ,

S
/qγ

KR = [(T6 − T2m+ sT1)G0(p) + s(T2 + T4 − T1m)G1(p) − T2IM]eQMĝ ,

S
/pγ

KR = [(T5 + T7 − T3m)G0(p) + (sT3 + T8 − T5m)G1(p) − T3IM]eQMĝ ,

S
/q/pγ

KR = [(T2 + T4 − T1m)G0(p) + (sT1 + T6 − T2m)G1(p) − T1IM]eQMĝ .

Here, the first term in the first line is the contribution from the tree graph, and Ti ≡ Ti(p).
The last class of graphs is SµWT1 + SµWT2, where

SµWT1 = γµγ5S
γ
WT1 (I.12)

with
SγWT1 = (QMg + gQM)((G0(p1) −mpG1(p1))Y3 − IMY2) ,

and
SµWT2 = (SγWT2 + /qS

/qγ

WT2 + /pS
/pγ

WT2 + /q/pS
/q/pγ

WT2)γ
µγ5 (I.13)
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with

SγWT2 = [s(T3G0(p) + (T5 + T7 − T3m)G1(p)) + (T8 − T5m)G0(p) − T5IM]SγWT1 ,

S
/qγ

WT2 = [s(T1G0(p) + (T2 + T4 − T1m)G1(p)) + (T6 − T2m)G0(p) − T2IM]SγWT1 ,

S
/pγ

WT2 = [(sT3 − T5m+ T8)G1(p) + (T5 + T7 − T3m)G0(p) − T3IM]SγWT1 ,

S
/q/pγ

WT2 = [(sT1 − T2m+ T6)G1(p) + (T2 + T4 − T1m)G0(p) − T1IM]SγWT1 .

Adding the contributions of eqs. (I.1)-(I.3) and eqs. (I.9)-(I.13), we can decompose the full
photoproduction amplitude Mµ (see eq. (5.53)) as follows:

Mµ = γµγ5M1 + qµγ5M2 + pµγ5M3 + pµ1γ5M4 + /qγ
µγ5M5 + /pγ

µγ5M6 + /q/pγ
µγ5M7

+ /qq
µγ5M8 + /pq

µγ5M9 + /qp
µγ5M10 + /pp

µγ5M11 + /q/pp
µγ5M12 + /qp

µ
1γ5M13

+ /pp
µ
1γ5M14 + /q/pp

µ
1γ5M15 . (I.14)

This can be simplified, using the Dirac equation and momentum conservation, to arrive at the
operator basis given by the N µ

k commonly used for photoproduction processes, see eq. (J.1).
The relation between the corresponding coefficients Bk and the functions Mj used in eq. (I.14)
is given in eq. (J.2). The decomposition of the amplitudes into the various Dirac structures is
obtained by employing the FeynCalc package [143].
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Appendix J

Invariant amplitudes for the
electroproduction process

We consider the reaction

γ(k) + p(p1, m1) → B(p2, m2) +M(q,Mφ)

and define the Mandelstam variables as usual,

s = (p1 + k)2 , u = (p1 − q)2 , t = (p2 − p1)
2 .

They obey the constraint
s+ t+ u = m2

1 +m2
2 +M2

φ + k2 .

The amplitude can be decomposed as

Tfi = iǫµū2

8
∑

k=1

BkN µ
k u1 , (J.1)

where the operator basis is given by

N µ
1 = γ5γ

µ/k , N µ
2 = 2γ5P

µ , N µ
3 = 2γ5q

µ ,

N µ
4 = 2γ5k

µ , N µ
5 = γ5γ

µ , N µ
6 = γ5/kP

µ ,

N µ
7 = γ5/kk

µ , N µ
8 = γ5/kq

µ .

Here, P = 1
2
(p1 + p2). The relation to the coefficient functions Mj used in eq. (I.14) is

B1 = −M5 −M6 +m2M7 ,

B2 =
1

2
M3 +

1

2
M4 + M5 + M6 −m2M7

− 1

2
(m1 +m2)M10 −

1

2
m1M11 +

1

2
(s+m1m2)M12

− 1

2
(m1 +m2)M13 −

1

2
m1M14 +

1

2
(s+m1m2)M15 ,
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B3 =
1

2
M2 +

1

4
M3 +

1

4
M4 +

1

2
M5 +

1

2
M6

− 1

2
m2M7 −

1

2
(m1 +m2)M8 −

1

2
m1M9

− 1

4
(m1 +m2)M10 −

1

4
m1M11 +

1

4
(s+m1m2)M12

− 1

4
(m1 +m2)M13 −

1

4
m1M14 +

1

4
(s+m1m2)M15 ,

B4 =
1

4
M3 −

1

4
M4 +

1

2
M5 +

1

2
M6 −

1

2
m2M7

− 1

4
(m1 +m2)M10 −

1

4
m1M11 +

1

4
(s+m1m2)M12

+
1

4
(m1 +m2)M13 +

1

4
m1M14 −

1

4
(s+m1m2)M15 ,

B5 = −M1 + (m2 −m1)M5 −m1M6 − (s−m1m2)M7 ,

B6 = −M10 −M11 +m2M12 −M13 −M14 +m2M15 ,

B7 = −1

2
M10 −

1

2
M11 +

1

2
m2M12 +

1

2
M13 +

1

2
M14 −

1

2
m2M15 ,

B8 = −M8 −M9 −
1

2
M10 −

1

2
M11 +

1

2
m2M12

− 1

2
M13 −

1

2
M14 +

1

2
m2M15 . (J.2)

For a gauge invariant amplitude, the following relations for the Bi hold:

k2B1 + 2(k · P )B2 + 2(k · q)B3 + 2k2B4 = 0,

B5 + (k · P )B6 + k2B7 + (k · q)B8 = 0.

Given these relations, one can eliminate two of the Bi (conventionally, one takes B3 and B5)
and rewrite the amplitude in a manifestly gauge invariant form:

Tfi = iū2

6
∑

i=1

AiMiu1 (J.3)

with the operator structures

M1 =
1

2
γ5γµγνF

µν , M2 = 2γ5Pµ(q −
1

2
k)νF

µν ,

M3 = γ5γµqνF
µν , M4 = 2γ5γµPνF

µν − (m1 +m2)M1 ,

M5 = γ5kµqνF
µν , M6 = γ5kµγνF

µν ,

where F µν = ǫµkν − ǫνkµ. The particular form of M4 has been chosen such that

iū2M4u1 → 2
√
m1m2 q · (k × ǫ)

in the nonrelativistic limit, where the baryon masses are large compared to the meson masses
and three-momenta.
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The Ai are related to the Bi via

A1 = B1 −
1

2
(m1 +m2)B6 ,

A2 =
2

M2
φ − t

B2 ,

A3 = −B8 ,

A4 = −1

2
B6 ,

A5 =
2

s+ u−m2
1 −m2

2

(

B1 −
s− u+m2

2 −m2
1

2(M2
φ − t)

B2 + 2B4

)

,

A6 = B7 .

Following the conventions of Chew, Goldberger, Low and Nambu (CGLN) [144], and Berends,
Donnachie and Weaver [145], we rewrite this once more, making use of the standard represen-
tation of spinors and Gamma matrices. In terms of Pauli spinors and matrices, one obtains

1

8π
√
s
iū2

6
∑

i=1

AiMiu1 = χ†
2Fχ1, (J.4)

where the matrix F reads

F = iσ · bF1 + σ · q̂ σ · (k̂ × b)F2 + iσ · k̂ q̂ · bF3

+ iσ · q̂ q̂ · bF4 − iσ · q̂ b0F7 − iσ · k̂ b0F8 .

Here, the hat over the three-vectors of course means normalization to a unit vector, and the
four-vector bµ is defined as

bµ = ǫµ −
ǫ · k̂
|k| kµ .

By substituting the standard representation of the Dirac spinors and matrices on the left-hand
side of eq. (J.4), one finds the following expressions for the so-called CGLN-amplitudes Fi:

F1 = (
√
s−m1)

N1N2

8π
√
s

[

A1 +
k · q√
s−m1

A3 + (
√
s−m2 −

k · q√
s−m1

)A4 −
k2

√
s−m1

A6

]

,

F2 = (
√
s+m1)

N1N2

8π
√
s

|q||k|
(E1 +m1)(E2 +m2)

[

−A1 +
k · q√
s+m1

A3 + (
√
s+m2 −

k · q√
s+m1

)A4

− k2

√
s+m1

A6

]

,

F3 = (
√
s+m1)

N1N2

8π
√
s

|q||k|
E1 +m1

[

m2
1 − s+ 1

2
k2

√
s+m1

A2 + A3 − A4 −
k2

√
s+m1

A5

]

,

F4 = (
√
s−m1)

N1N2

8π
√
s

|q|2
E2 +m2

[

s−m2
1 − 1

2
k2

√
s−m1

A2 + A3 −A4 +
k2

√
s−m1

A5

]

,

F7 =
N1N2

8π
√
s

|q|
E2 +m2

[

(m1 −E1)A1 −
( |k|2

2k0

(2k0

√
s− 3k · q) − q · k

2k0

(2s− 2m2
1 − k2)

)

A2

+
(

q0(
√
s−m1) − k · q

)

A3 +
(

k · q − q0(
√
s−m1) + (E1 −m1)(

√
s +m2)

)

A4

+ (q0k
2 − k0k · q)A5 − (E1 −m1)(

√
s +m1)A6

]

,
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F8 =
N1N2

8π
√
s

|k|
E1 +m1

[

(E1 +m1)A1 +

( |k|2
2k0

(2k0

√
s− 3k · q) − q · k

2k0
(2s− 2m2

1 − k2)

)

A2

+
(

q0(
√
s+m1) − k · q

)

A3 +
(

k · q − q0(
√
s+m1) + (E1 +m1)(

√
s−m2)

)

A4

− (q0k
2 − k0k · q)A5 − (E1 +m1)(

√
s−m1)A6

]

,

where

Ni =
√

Ei +mi , Ei =
√

p2
i +m2

i , i = 1, 2 .

We remark that, starting from eq. (J.3), we have utilized the Lorentz condition k ·ǫ = 0. This is
also valid when electroproduction is considered, since in that case the object ǫµ is proportional
to the electron-photon vertex of QED, and the condition then follows from current conservation.
Restricting ourselves to s-and p-waves, we can use the CGLN-amplitudes to arrive at the
multipoles E0+, M1+, etc.:









E0+

M1+

M1−
E1+









=

∫ 1

−1

dz









1
2
P0 −1

2
P1 0 1

6
P0,2

1
4
P1 −1

4
P2 − 1

12
P0,2 0

−1
2
P1

1
2
P0

1
6
P0,2 0

1
4
P1 −1

4
P2

1
12
P0,2

1
10
P1,3

















F1

F2

F3

F4









and




L0+

L1+

L1−



 =
k0

|k|

∫ 1

−1

dz





1
2
P1

1
2
P0

1
4
P2

1
4
P1

1
2
P0

1
2
P1





(

F7

F8

)

,

where Pℓ ≡ Pℓ(z) are the usual Legendre polynomials and z is q̂ · k̂, i.e. the cosine of the
scattering angle in the c.m. frame. Furthermore, the abbreviations

P0,2 = P0 − P2 and P1,3 = P1 − P3

were used.
A word on units: Since we use

~ = c = 1 , e2 = 4πα

and normalize our Dirac spinors like ūu = 2m, the invariant amplitude B5 has dimension
GeV−1, as can be seen, e.g., from the contribution of the graph corresponding to the ‘Kroll-
Ruderman‘ term. Therefore, the scattering amplitude Tfi is dimensionless (see eq. (J.1)), while
the CGLN-amplitudes as well as the multipoles have dimension GeV−1.
The unpolarized differential cross section for γp → B M is given in terms of the CGLN-
amplitudes as [145]

dσ

dΩ
=

|q|
|k|

{

|F1|2 + |F2|2 +
1

2
|F3|2 +

1

2
|F4|2 + Re(F1F∗

4 ) + Re(F2F∗
3 )

+
(

Re(F3F∗
4 ) − 2 Re(F1F∗

2 )
)

cos θ −
(1

2
|F3|2 +

1

2
|F4|2 + Re(F1F∗

4 + F2F∗
3 )
)

cos2 θ

− Re(F3F∗
4 ) cos3 θ

}

. (J.5)
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