NEUE PHOSPHATE DER EDELMETALLE

Synthesen, Kristallstrukturen und spektroskopische Untersuchungen

Dissertation zur Erlangung des Doktorgrades (Dr. rer. nat.)

der

Mathematisch-Naturwissenschaftlichen Fakultät

der

Rheinischen Friedrich-Wilhelms-Universität Bonn

vorgelegt von Diplom-Chemiker Konstantinos Panagiotidis aus Bergisch-Gladbach

Bonn, im April 2009

Diese Arbeit wurde mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms Universität Bonn angefertigt.

 Referent: Prof. Dr. R. Glaum
 Referent: Prof. Dr. J. Beck
 Eingereicht am: 16.04.2009
 Tag der mündlichen Prüfung: 21.07.2009
 Diese Dissertation ist auf dem Hochschulschriftenserver der ULB Bonn http://hss.ulb.uni-bonn.de/diss_online elektronisch publiziert.

Inhaltsverzeichnis

ALLGEMEINER TEIL

1	Einleitung	4
2	Grundlagen und Methoden	
2.1	Der chemische Transport	8
2.2	Dreikomponentensysteme	9
3	Präparative Arbeitsweisen	12
3.1	Temperexperimente in Kieselglasampullen	12
3.2	Die multifunktionelle Apparatur	13
3.3	Anfertigen von Presslingen	13
3.4	Öfen	14
3.5	Kristallzüchtung unter hydrothermalen Bedingungen	15
4	Untersuchungsmethoden	18
4.1	Röntgenographische Untersuchungsmethoden	18
4.1.1	Grundlagen	18
4.1.2	Röntgenpulvermethoden	18
4.1.3	Röntgenographische Untersuchungen an Einkristallen	22
4.1.4	Ansätze zur Strukturlösung	28
4.1.5	Verfeinerung der Atomparameter	30
4.1.6	Energiedispersive Mikroanalyse	34
4.2	Neutronenpulverdiffraktometrie	36
4.2.1	Grundlagen	36
4.2.2	Strukturlösung und Verfeinerung aus Pulverdaten	40
4.3	Methoden zur Analyse von Kristallstrukturen	44
4.3.1	Der Madelunganteil der Gitterenergie (MAPLE)	44
4.3.2	Mittlere fiktive und effektive Ionenradien	45
4.3.3	Effektive Koordinationszahl	46
4.4	Spektroskopische Untersuchungsmethoden	47
4.4.1	Schwingungsspektroskopie	47
4.4.2	³¹ P-MAS-NMR Spektroskopie	49

SPEZIELLER TEIL

5	Ausgangsverbindungen	57
5.1	Käufliche Chemikalien	57
5.2	Darstellung wichtiger Edukte	58

1

5.2.1	Gold(III)-oxidhydroxid, "AuO(OH)"	_ 58
5.2.2	Palladiummohr	_ 60
5.2.3	Platin(II)-oxidhydrat, PtO·3H ₂ O	62
5.2.4	Platin(II)-chlorid, PtCl ₂	_ 64
5.2.5	Arsensäure, H ₃ AsO ₄	_ 65
6	Gold(III)-phosphat AuPO4 und Gold(III)-arsenat AuAsO4	67
6.1	Einleitung	_ 67
6.2	Darstellung von AuPO ₄ und AuAsO ₄	_ 67
6.3	Röntgenographische Untersuchungen	_ 70
6.4	Rietveld-Verfeinerung	_ 74
6.5	Schwingungsspektroskopische Untersuchungen	_ 84
6.6	³¹ P-MAS-NMR Untersuchungen an AuPO ₄	_ 87
6.7	Diskussion der Strukturen	_ 88
6.8	Experimente zur Darstellung weiterer ternärer und polynärer Gold(III)-phosphate	93
7	Iridiumphosphate	96
7.1	Iridium(III)-metaphosphate, C-Ir(PO ₃) ₃ und <i>trikl</i> -Ir(PO ₃) ₃	_ 96
7.1.1	Einleitung	96
7.1.2	Das Dreistoffsystem Iridium/Phosphor/Sauerstoff	_ 96
7.1.3	Darstellung der Iridium(III)-metaphosphate	100
7.1.4	Röntgenographische Untersuchungen	103
7.1.5	Der chemische Transport von <i>C</i> -Ir(PO ₃) ₃	112
7.1.6	Beschreibung der Kristallstrukturen	115
7.2	Iridium(IV)-silicophosphat $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$	125
7.2.1	Einleitung	125
7.2.2	Darstellung von $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$	126
7.2.3	Röntgenographische Untersuchungen	127
7.2.4	Diskussion und Strukturbeschreibung von (Ir _(1-x) Si _x) ₃ [Si ₂ O(PO ₄) ₆]	131
8	Platinphosphate	135
8.1	Kalium- <i>tetrakis</i> (Hydrogenphosphato)- <i>di</i> platinat(III)-dihydrat, K ₂ [(Pt ^{III} ₂)(HPO ₄) ₄ (H ₂ O) ₂]	135
8.1.1	Einleitung	135
8.1.2	Darstellung von K ₂ [(Pt ^{III} ₂)(HPO ₄) ₄ (H ₂ O) ₂]	136
8.1.3	Röntgenographische Untersuchungen	137
8.1.4	Ergebnisse und Diskussion	143
8.2	Versuche zur Darstellung ternärer Platinphosphate	148
8.3	Versuche zur Darstellung polynärer Platinphosphate	153

9	Palladium(II)-metaarsenat Pd(AsO ₃) ₂	1
9.1	Einleitung	1
9.2	Darstellung und Kristallisation von Pd(AsO ₃) ₂	1
9.3	Kristallstruktur von Pd(AsO ₃) ₂	1
10	Polynäre Palladium(II)-diphosphate in den quasi-binären Systemen $A_4^I P_2 O_7 / Pd_2 P_2 O_7$	1
10.1	Einleitung	1
10.2	Darstellung mikrokristalliner Pulver	1
10.3	Kristallisation	_ 1′
10.4	Röntgenographische Untersuchungen	_ 1′
10.4.1	Untersuchungen der Pulver	1
10.4.2	Einkristallstrukturanalysen	1
10.5	Ergebnisse und Diskussion	1
11	Polynäre Palladium(II)-phosphate M ^{II} PdP ₂ O ₇ und M ^{II} Pd ₂ (PO ₄) ₂	2
11.1	Einleitung	2
11.2	Darstellung mikrokristalliner Pulver	2
11.2.1	Synthese von Diphosphaten M^{II} PdP ₂ O ₇ ($M = $ Ca, Sr, Ba, Zn, Hg, Pb)	2
11.2.2	Synthese der Orthophosphate $M^{II}Pd_2(PO_4)_2$ ($M = Hg, Ca, Cd$)	2
11.2.3	Experimente zur Darstellung weiterer Metall(II)-palladium(II)-phosphate	2
11.3	Kristallisation der Diphosphate M^{II} PdP ₂ O ₇ ($M =$ Hg, Pb) und PbPdSi(P ₂ O ₇) ₂	2
11.4	Röntgenographische Untersuchungen	2
11.4.1	Untersuchungen an mikrokristallinen Pulvern	2
11.4.2	Kristallstrukturanalysen	2
11.5	Ergebnisse und Diskussion	2
12	Zusammenfassung und Ausblick	2
13	Anhang	2
13.1	Anhang A – Anisotrope Auslenkungsparameter	2
13.2	Anhang B – Indizierung von Guinier-Aufnahmen	2
13.3	Anhang C – Guinier-Aufnahmen polynärer Platinphosphate	2
14	Verzeichnisse	2
14.1	Abbildungsverzeichnis	2
14.2	Tabellenverzeichnis	2
14.3	Literaturverzeichnis	2

ALLGEMEINER TEIL

1 Einleitung

Übergangsmetallphosphate erlangten gegen Ende des letzten Jahrhunderts reges wissenschaftliches Interesse im Bereich der Festkörperchemie sowie der Materialwissenschaften [1, 2, 3]. Man erwartet von dieser Substanzklasse ökonomisch interessante chemische und kristallchemische Eigenschaften. Die katalytisch ablaufende, selektive Oxidation von Alkanen (vgl. Oxidation von n-Butan zu Maleinsäureanhydrid mittels Vanadyl(IV)-diphosphat (VO)₂P₂O₇ [4] bzw. V^{III}V^{IV}₃O₃(PO₄)₃ [5, 6]) und der Korrosionsschutz für Eisenmetalle unter Verwendung von Alkalimetallphosphaten sind zwei Beispiele, bei denen Phosphate bereits zum Einsatz kommen. In jüngster Zeit finden mit der Entwicklung von elektrochemisch delithiierbaren Phosphaten der Zusammensetzung LiMPO₄ (M = Mn, Fe, Co, Ni) [7, 8, 9, 10] stabile und kostengünstige Kathodenmaterialen für Lithium-Ionen Batterien kommerzielle Verwendung.

Mittlerweile kennt man etwa 300 wasserfreie, ternäre (nur ein Metall enthaltende) Übergangs-metallphosphate. Ihre Vielfalt resultiert einerseits aus den unterschiedlichen Oxidationsstufen und Koordinationspolyedern, die von Ionen der Übergangsmetalle angenommen werden und andererseits aus der in sehr weiten Grenzen variablen Zusammensetzung von Phosphaten. Diese reicht beim Eisen von metalloxidreichen Oxidphosphaten (Fe₉O₈(PO₄) [11]) bis hin zu Ultraphosphaten (FeP₄O₁₁ [12]) mit sehr hohem Gehalt an P₄O₁₀. Mit Ausnahme weniger Elemente aus der Gruppe der Edelmetalle sind kristalline, wasserfreie Phosphate von allen Übergangsmetallen bekannt und strukturell charakterisiert [13]. Eine Zusammenstellung der bislang bekannten Phosphate von Edelmetallen gibt Tabelle 1-1.

Zur Synthese und Kristallisation von wasserfreien Edelmetallphosphaten sind bereits unterschiedliche Präparationsmethoden angewendet worden [13, 14]. Als besonders geeignet hat sich bei einer Reihe dieser Phosphate (z.B. RhPO₄ [15], Rh(PO₃)₃ [15], ReP₂O₇ 16] oder Pd₂P₂O₇ [17]) die Methode des chemischen Transports erwiesen [18, [19]. Dagegen erfolgte bei Ru(PO₃)₃ [20, 21] die Kristallzucht aus einer Phosphorsäureschmelze. Die Kristallisation von PtP₂O₇ wiederum erfolgte durch Reaktion von elementarem Platin mit P₄O₁₀ im trockenen Sauerstoffstrom bei hohen Temperaturen [22]. Bis zu Beginn der vorliegenden Arbeit fehlten Informationen zu Phosphaten von Osmium, Iridium und Gold. Die Kenntnis strukturell charakterisierter **Verbindungen des Golds** mit anderen komplexen Oxoanionen war ebenso limitiert.

Metall	Phosphat	Bemerkungen	Lit.
Re	Re ^{IV} P ₂ O ₇	nach Pulverdiagramm isotyp zu SiP ₂ O ₇ [23]	[16]
	$\operatorname{Re}^{\operatorname{IV}}_{3}[\operatorname{Si}_{2}O(\operatorname{PO}_{4})_{6}]$	nach Guinier-Aufnahmen isotyp zu $Si_5O(PO_4)_6$ [24, 25]	[16]
Ru	Ru ^{III} P ₃ O ₉	unterschiedliche Modifikationen ^{a)}	[20, 21]
	Ru ^{III} P ₃ SiO ₁₁		[20]
Os		bislang unbekannt	
Rh	Rh ^{III} PO ₄		[15]
	Rh ^{III} (PO ₃) ₃	C-Typ ^{a)} , <i>catena</i> -Metaphosphat	[15]
	$Rh^{III}P_3Si_2O_{13}$		[26]
Pd	$Pd^{II}(PO_3)_2$		[27]
	$Pd^{II}_{2}P_{2}O_{7}$		[17]
Pt	$Pt^{IV}P_2O_7$		[22]
Ag	Ag ^I ₃ PO ₄		[28, 29, 30]
	$Ag_4^IP_2O_7$	Kristallstruktur unbekannt	[31, 33]
	Ag ^I PO ₃		[32]
	$Ag_{5}^{I}P_{3}O_{10}$	Kristallstruktur unbekannt	[33]
Au	Au ^{III} PO ₄	isotyp zu <i>M</i> -PdSO ₄ [34]	[35]
Hg	$\mathrm{Hg}^{\mathrm{II}}_{3}(\mathrm{PO}_{4})_{2}$		[36]
	$Hg_{2}^{II}P_{2}O_{7}$		[37]
	$\mathrm{Hg}^{\mathrm{II}}(\mathrm{PO}_3)_2$		[38]
	$({\rm Hg}^{\rm I}_{2})_{3}({\rm PO}_{4})_{2}$	α - und β -Modifikation	[39]
	$(\mathrm{Hg}^{\mathrm{I}}_{2})_{2}\mathrm{P}_{2}\mathrm{O}_{7}$		[39]
	$(Hg_3)_3(PO_4)_4$	Triangulare (Hg ₃) ⁴⁺ -Cluster	[40]

Tabelle 1-1. Vor Beginn der vorliegenden Arbeit strukturell charakterisierte, wasserfreie Phosphate der Platinmetalle sowie von Silber, Gold und Quecksilber.

^{a)} Zur Typenbezeichnung von Metaphosphaten der Zusammensetzung MP₃O₉ vgl. [41, 42].

Eine Charakterisierung der Produkte aus der Umsetzung von elementarem Gold mit konzentrierter Selensäure erfolgte erst Anfang der 80er Jahre, obwohl die Reaktion schon lange bekannt war [43, 44, 45]. JONES *et al.* konnten zeigen, dass es sich dabei um Selenite der Zusammensetzungen Au₂(Se₂O₅)(SeO₃)₂ [46] und Au₂O(SeO₃)₂ [47] handelt. In gleicher Weise gelang WICKLEDER *et al.* die Synthese und kristallchemische Charakterisierung eines ungewöhnlichen Selenit-Selenats der Zusammensetzung Au₂(SeO₃)₂(SeO₄) [48]. Bereits 1883 wurde erstmals über Sulfate des Golds berichtet [49], Strukturanalysen an den ternären Sulfaten *M*[Au(SO₄)₂] (*M* = Na [50], K [50], Rb [50], Cs [51]) wurden jedoch erst kürzlich durchgeführt. Ein ähnliches Bild ergibt sich für die Nitrate des dreiwertigen Golds, für die mit K[Au(NO₃)₄] [52], [Au(NH₃)₄](NO₃)₃ [53] und (H₅O₂)[Au(NO₃)₄]·H₂O [54] bisher nur drei Strukturbestimmungen vorliegen. Die erst kürzlich erfolgte Darstellung von AuSO₄, das als $(Au^{II}_2)(SO_4)_2$ formuliert werden sollte [55], steigerte das Interesse an Synthese und Eigenschaften von Goldphosphaten.

Untersuchungen im Dreistoffsystem Pd/P/O sollten neben den bereits bekannten Phosphaten Pd(PO₃)₂ [27] und Pd₂P₂O₇ [17] Hinweise auf weitere ternäre, thermodynamisch stabile Palladiumphosphate liefern. Angetrieben vom Interesse kristallchemisch reizvolle Netzwerkstrukturen aus den für Palladium(II) typischen, quadratisch-planaren [Pd^{II}O₄]-Gruppen mit tetraedrischen Phosphateinheiten aufzubauen, ergab sich zudem auch die Suche nach polynären Palladium(II)-phosphaten. Polynäre Phosphate des zweiwertigen Palladiums waren in der Literatur bislang nur mit einwertigen Elementen in den Zusammensetzungen $M_{2}^{1}PdP_{2}O_{7}$ (*M* = Li [56], Na [57], K [58]), K_{3.5}Pd_{2.25}(P_{2}O_{7})_{2} [58] sowie Cs₂Pd₃(P₂O₇)₂ [59] Gemeinsames. dominierendes dieser bekannt. Strukturmotiv kristallchemisch charakterisierten Palladiumphosphate sind eindimensional fortschreitende Diphosphatopalladat(II)-Bänder $\int_{\infty}^{1} [Pd(P_2O_7)_{2/2}]^{2^-}$, welche durch Metallkationen zu dreidimensionalen Strukturen verknüpft werden. Untersuchungen in Vierstoffsystemen M/Pd/P/O (M = Li - Cs, Ag, Tl) sollten zeigen, inwiefern sich die vorstehend genannten Zusammensetzungen mit anderen Alkalimetallkationen und einwertigem Thallium oder Silber realisieren lassen. Neben dem Einsatz einwertiger Metallkationen wurden aufgrund bislang fehlender Kenntnis zur Strukturchemie polynärer Palladium(II)-phosphate mit zweiwertigen Metallkationen auch Untersuchungen in den Vierstoffsystemen M/Pd/P/O (M = Mg - Ba, Mn, Co Ni, Cu, Zn, Cd, Hg, Pb) durchgeführt. Als Syntheseziele vielversprechend und vergleichsweise leicht kristallisierbar erschienen polynäre Phosphate mit Quecksilber(II) und Blei(II) wegen der leichten Flüchtigkeit dieser Elemente bei chemischen Transportreaktionen.

Außerdem wurden an polynären Palladiumphosphaten ³¹P-MAS-NMR spektroskopische Untersuchungen aufgrund bislang fehlender Kenntnis über chemische Verschiebungen in solchen Phosphaten angestrebt.

Mit der kristallchemischen Charakterisierung der Edelmetall-oxoverbindungen Rh^{III}AsO₄ [60], Rh^{III}PO₄ [15], Rh^{III}(PO₃)₃ [15], Ru^{III}₂(P₆O₁₈) [20] und Ru^{III}(PO₃)₃ [20, 21], ergab sich die Fragestellung nach einer zu Rhodium(III) und Ruthenium(III) ähnlichen **Strukturchemie von Iridium(III)**. Von besonderem Interesse war neben der Darstellung einer zu RhAsO₄ [60] (Rutilstruktur [61]) isotypen Verbindung mit Iridium(III), die Untersuchung der Phasenverhältnisse im Dreistoffsystem Ir/P/O. An den Iridiumphosphaten sollten ³¹P-MAS-NMR chemische Verschiebungsparameter bestimmt und mit jenen anderer ternärer Übergangsmetallphosphate verglichen werden.

Die Darstellung und kristallchemische Charakterisierung von Pd₂P₂O₇ [17] weckte auch das Interesse an vergleichbaren Verbindungen des Platins. In jüngerer Zeit sind, ausgehend von ersten Untersuchungen durch MURAVEISKAYA et al. und COTTON et al. an $K_2[Pt_2(SO_4)_4(H_2O)_2]$ [62, 63], zahlreiche weitere, kristallchemisch charakterisierte, zweikernige Platin(III)-komplexe wie beispielsweise $K_3[Pt_2(SO_4)_4H(HSO_4)_2]$ [64], $(NH_4)_2[Pt_2(SO_4)_4(H_2O)_2]$ [65], $K_4[Pt_2(SO_4)_5]$ [65] oder $Pt_2(SO_4)_2(HSO_4)_2$ [66] publiziert worden. Herzstück dieser sogenannten "paddle-wheel" Komplexe [(Pt^{III})₂(SO)₄]₄²⁻ sind $(Pt_2)^{6+}$ -Einheiten, die chelatartig von $[SO_4]^{2-}$ -Liganden koordiniert werden. WICKLEDER *et al.* konnten zeigen, dass diese Komplexe sowohl monomer wie auch auf unterschiedliche Weise verknüpft vorliegen können. Angetrieben von diesen Arbeiten ergab sich im Rahmen der Untersuchungen an Platinphosphaten die Fragestellung nach einem Austausch der $[SO_4]^{2-}$ durch $[HPO_4]^2$ -Einheiten und der damit verbundenen Stabilisierung von $(Pt_2)^{6+}$ in Phosphaten. Zu diesem Zeitpunkt lagen strukturell charakterisierte "paddle-wheel" Komplexe mit Hydrogen- bzw. Dihydrogenphosphateinheiten als Liganden in $Cs[(Mo^{III})_2(HPO_4)_4(H_2O)_2]$ [67], $(NH_4)_2[(Re^{III})_2(HPO_4)_4(H_2O)_2]$ [68], $[(Rh^{II})_2(H_2PO_4)_4 (H_2O)_2$ [69] und Na₂[(Pt^{III})₂(HPO₄)₄(H₂O)₂] [70] vor.

2 Grundlagen und Methoden

2.1 Der chemische Transport

Die Interpretation natürlicher chemischer Transportvorgänge, bei denen eine sehr langsame Abscheidung aus der Gasphase zur Bildung großer kristalliner Individuen eines Minerals geführt hat, gelang Mitte des 19. Jahrhunderts. So erkannte BUNSEN bei seinen Untersuchungen zum Vulkanismus auf Island, dass Fe₂O₃ im HCl-Strom wandern kann [71] (vgl. Gleichung. 2.1).

$$Fe_2O_{3,s} + 6 HCl_g = 2 FeCl_{3,g} + 3 H_2O_g$$
 Gleichung 2.1

Chemische Transportreaktionen sind seither intensiv untersucht worden und haben auch Einzug in chemisch-technische Verfahren gefunden. So begann 1925 mit E. A. VAN ARKEL und J. H. DE BOER die gezielte Entwicklung des chemischen Transports als Verfahren zur Reindarstellung von Titan und Zirkonium. Sie setzten Titan- bzw. Zirkoniumschwamm in einer geschlossenen Ampulle mit Jod um und erwirkten an einem Glühdraht den Zerfall der flüchtigen Metalliodide unter Abscheidung des reinen Metalls [72] (Gleichung. 2.2). Bereits im Jahr 1889 gelang die Reinstdarstellung von Nickel nach dem Mond-Verfahren [73], das auf die Bildung und Zersetzung von Nickeltetracarbonyl beruht.

$$M_{\rm s} + \frac{1}{2} \text{ n } I_{2,g} = M I_{\rm n,g} (M = \text{Ti}, \text{Zr})$$
 Gleichung 2.2

Chemische Transportreaktionen macht man sich heutzutage zu Nutze um neben einphasigen kristallinen Proben oder Einkristallen auch metastabile Modifikationen darzustellen, welche sich für Röntgenstrukturanalysen oder andere physikalische Untersuchungsmethoden eignen. Darüber hinaus ermöglichen chemische Transportexperimente die Aufklärung der Phasenverhältnisse in komplizierten Mehrstoffsystemen und gestatten orientierende Abschätzungen zu thermodynamischen Daten. Der chemische Transport ist gekennzeichnet durch die Wanderung einer kondensierten Phase A über die Gasphase durch Diffusion oder Konvektion unter dem Einfluss eines bei Transportbedingungen gasförmigen Transportmittels B (vgl. Gleichung. 2.3). Die Reaktion einer oder mehrerer kondensierter Phasen mit einer gasförmigen Komponente erfolgt reversibel und unter ausschließlicher Bildung gasförmiger Reaktionsprodukte C (D, E...).

$$a A_{s,l} + B_g = c C_g (+ d D_g + e E_g + ...)$$
 Gleichung 2.3

Man kann sich eine Transportampulle aus zwei Teilräumen, Quelle und Senke, zusammengesetzt vorstellen. In jedem dieser beiden Teilräume stellen sich für die dort angelegte Temperatur die zugehörigen Gleichgewichtspartialdrücke ein. Aufgrund der daraus resultierenden Partialdruckdifferenzen zwischen beiden Teilräumen, kommt es zu einer Wanderung des Ausgangsbodenkörpers im Temperaturgradienten von der Quelle zur Senke. Vorraussetzung für die Abscheidung des Bodenkörpers im Senkenraum ist die Reversibilität des heterogenen Gleichgewichts (Gleichung 2.3). Den Wanderungsvorgang bei einer chemischen Transportreaktion kann man sich nach SCHÄFER [18] aus mehreren Teilschritten zusammengesetzt vorstellen:

- a) Gleichgewichtseinstellung zwischen Bodenkörper und Gasphase im Quellenraum.
- b) Diffusion der gasförmigen Komponenten C_g (D_g, E_{g...}) von der Quellen- zur Senkenseite aufgrund der bestehenden Partialdruckdifferenz.
- c) Gleichgewichtseinstellung zwischen Gasphase und Bodenkörper auf der Senkenseite unter Abscheidung des Bodenkörpers aus der übersättigten Gasphase (Keimbildung und Kristallwachstum).
- d) Rückdiffusion des Transportmittels B_g zur Senkenseite.

Konventionsgemäß wird nach SCHÄFER [18] für chemische Transportexperimente der Ausgangsbodenkörper auf die linke Seite der Transportgleichung geschrieben und die höhere Temperatur im angelegten Gradienten mit T_2 , die niedrigere mit T_1 bezeichnet. Die Transportrichtung wird durch das Vorzeichen der Reaktionsenthalpie $\Delta_R H$ der Transportreaktion bestimmt. Die Wanderung des Bodenkörpers A_{s,1} von heiss nach kalt (T₂ \rightarrow T₁) erfolgt aufgrund endothermer Transportreaktionen ($\Delta_R H > 0$). Umgekehrt erfolgt eine Wanderung von kalt nach heiss ($T_1 \rightarrow T_2$) aufgrund exothermer ($\Delta_R H < 0$) Reaktion.

2.2 Dreikomponentensysteme

Mit Hilfe chemischer Transportexperimente lässt sich zwischen Bodenkörper und Gasphase eine schnellere Gleichgewichtseinstellung wie auch bessere Kristallinitäten der zu untersuchenden Verbindungen erzielen. Zudem wird durch Quelle und Senke die Auftrennung von Phasengemengen und somit deren Identifizierung erleichtert. Liegen mehrere kondensierte Phasen vor, so können diese aufgrund der räumlichen Trennung von Quelle und Senke identifiziert werden. Im Rahmen dieser Arbeit wurden zur Aufklärung der

Gleichung 2.4

Phasenverhältnisse im Dreistoffsystem Ir/P/O neben Transportexperimenten auch isotherme Temperexperimente unter Zusatz eines Mineralisators (Chlor) durchgeführt.

Für die Interpretation von Phasendiagrammen ist die von J. W. GIBBS aufgestellte Phasenregel [74] von entscheidender Bedeutung. Diese stellt bei vorgegebenen Parametern (im Allgemeinen Druck und Temperatur) eine allgemeine Beziehung zwischen der Anzahl der Freiheitsgrade F, der Anzahl der Komponenten C und der Anzahl der koexistierenden Phasen P eines Systems her und wird durch Gleichung 2.4 beschrieben.

F + P = C + 2

- *F* Anzahl der Freiheitsgrade
- *C* Anzahl der Komponenten

P Anzahl der Phasen

Für Systeme, die aus drei Komponenten bestehen (C = 3), ergibt sich F = 5 - P, so dass vier Freiheitsgrade möglich sind. Lässt man Temperatur und Druck konstant, verbleiben noch zwei Freiheitsgrade, die Molenbrüche von zwei Komponenten. Um die Abhängigkeit der Phasengleichgewichte solcher Systeme von der Zusammensetzung darzustellen, verwendet man sogenannte Gibbs'sche Phasendreiecke. Die mathematischen Beziehungen zwischen den Molenbrüche x_{A} , x_B und x_C einer ternären Phase $A_a B_b C_c$ (Gleichung 2.5 - 2.8), lassen sich durch ein Phasendiagramm in Form eines gleichseitigen Dreiecks graphisch darstellen.

$$x_{A} + x_{B} + x_{C} = 1$$
Gleichung 2.5
$$x_{A} = \frac{n_{A}}{n_{A} + n_{B} + n_{C}} = \frac{n_{A}}{\sum n_{i}}$$
Gleichung 2.6
$$x_{B} = \frac{n_{B}}{n_{A} + n_{B} + n_{C}} = \frac{n_{B}}{\sum n_{i}}$$
Gleichung 2.7
$$x_{C} = \frac{n_{C}}{n_{A} + n_{B} + n_{C}} = \frac{n_{C}}{\sum n_{i}}$$
Gleichung 2.8

 n_A , n_B , n_C , n_i Stoffmengen /mol x_A , x_B , x_C Molenbrüche

Konstruiert man durch einen Punkt P im Inneren des gleichseitigen Dreiecks Parallelen zu allen drei Seiten, so schneiden sie die Dreiecksseiten in der Weise, dass die Summe der Abstände zwischen Punkt P und den Schnittpunkten genau einer Seitenlänge entspricht (Abbildung 2-1). Jeder Eckpunkt kennzeichnet die reine Substanz mit dem Molenbruch 1 (für Eckpunkt C gilt xC = 1, xB = 0, xA = 0). Somit entspricht die dem Punkt C

gegenüberliegende Seite AB dem Molenbruch xC = 0. Jede der drei Seiten gehört demzufolge zu einem der drei möglichen binären Systeme (A, B), (A, C), (C, B). Ein Punkt im Inneren des Dreiecks entspricht einer Zusammensetzung, die alle drei Komponenten enthält. Am Punkt P (Abbildung 2-1) lassen sich die Molenbrüche xA = 0.5, xB = 0.1 und xC= 0,4 ablesen. Verfolgt man die gestrichelte Gerade, welche die Ecke A mit der gegenüberliegenden Seite verbindet, so nimmt der Gehalt an A zu, je weiter man sich der Ecke nähert. Das Verhältnis zwischen B und C bleibt dabei konstant. Will man die Änderung der Zusammensetzung eines Systems untersuchen, wenn man die Komponente A hinzufügt, zeichnet man die Verbindungslinie zwischen der Ecke A und demjenigen Punkt auf der Seite BC, der dem binären Ausgangsstoff entspricht. Jedes mögliche Dreikomponentensystem, das sich bilden kann, wird durch einen Punkt auf dieser Linie repräsentiert, der eine thermodynamisch stabile Phase darstellt. Diese Art der Beschreibung der Phasenverhältnisse ist allerdings nur zulässig, wenn die Verbindungen im Dreistoffsystem unabhängig von der Gasphase betrachtet werden können. Der Gehalt der Gasphase an den Komponenten A, B und C muss vernachlässigbar sein. Im Experiment sind mittels Guinieraufnahmen Fremdphasen ab einem Gewichtsanteil von 3% nachweisbar. Hieraus ergibt sich in einer Grobabschätzung die obere Grenze für den Gehalt der Gasphase an A, B und C.

Abbildung 2-1. Dreieckskoordinatensystem zur Darstellung der Phasenverhältnisse im Dreistoffsystem.

3 Präparative Arbeitsweisen

3.1 Temperexperimente in Kieselglasampullen

Die im Rahmen der vorliegenden Arbeit durchgeführten isothermen Temperversuche und wurden ausschließlich in evakuierten Transportexperimente Kieselglasampullen durchgeführt. Zur Herstellung dieser Ampullen benutzt man Kieselglasrohre der Firma GVB (Aachen) mit einem Innendurchmesser von 16-18 mm und einer Wandstärke von 1-2 mm. Diese werden mit einer Diamantsäge auf eine Länge von etwa 50 cm zugeschnitten und mit einem Knallgasbrenner in der Weise in der Mitte durchgeschmolzen, dass zwei einseitig geschlossene Halbampullen resultierten, an die im Anschluss Kieselglasschliffstücke (NS 19 lang) angesetzt werden. Die so angefertigten Halbampullen werden anschließend mit handelsüblichen Spülmitteln gereinigt, mit demineralisiertem Wasser und Aceton nachgespült und im Trockenschrank bei 105°C zum Trocknen aufbewahrt. Da Kieselglas unter den Versuchsbedingungen erhebliche Mengen an reversibel gebundenem Wasser, das einen störenden Einfluss auf das Reaktionsgeschehen haben kann, abgibt, werden die Halbampullen in einem Röhrenofen etwa vier Stunden bei 900°C im dynamischen Ölpumpenvakuum ($p \approx 10^{-2} - 10^{-3}$ Torr) an einer multifunktionellen Ausheizapparatur (siehe Kap. 3.2) angeschlossen. Ein längeres Ausheizen zeigt keinen wesentlichen Einfluss mehr auf den Wassergehalt des Kieselglases [75]. Nach dem Abkühlen auf Raumtemperatur werden die Halbampullen mit Argon geflutet und zum Befüllen von der Apparatur abgenommen. Die vorbereiteten Edukte werden in Präparategläschen gefüllt und zur Vermeidung von Verunreinigungen der Glaswand mit Hilfe eines langen Glasstabes ("Ladestock") in die Halbampulle eingebracht. Mit dem Knallgasbrenner wird nun an der gewünschten Stelle (üblicherweise ca. 10 cm vom Ampullenende) die Halbampulle zu einer Kapillare verjüngt. Für den Fall, dass die Ampullen mit leicht flüchtigen Substanzen wie Jod befüllt wurden, muss beim Ziehen der Kapillare mit flüssigem Stickstoff gekühlt werden, um so einen Verlust durch entstehende Joddämpfe zu verhindern. Aus diesem Grund ist es empfehlenswert, die Kapillare leicht abzuwinkeln, um beim anschließenden Evakuieren an der Ausheizapparatur das Ampullenende in flüssigen Stickstoff eintauchen zu können. Auf diese Weise kann wiederum ein Entweichen der eingesetzten Jodmenge verhindert werden. Nach dem Evakuieren wird die Ampulle ab- und deren Ende rundgeschmolzen und vor Durchführung der Experimente nochmals gründlich gereinigt um eine Rekristallisation des Glases im Ofen zu vermeiden.

3.2 Die multifunktionelle Apparatur

Zum Abschmelzen der vorbereiteten Kieselglasampullen unter Vakuum oder auch Argon als Schutzgas, steht eine kombinierte Ausheiz- und Chlorierungsanlage zur Verfügung (Abbildung 3-1). Eine detaillierte Beschreibung der Apparatur erfolgte bereits in anderen Arbeiten [76, 77].

Abbildung 3-1. Apparatur zum Ausheizen, Evakuieren und Befüllen von Kieselglasampullen [76].

3.3 Anfertigen von Presslingen

Festkörperreaktionen weisen meist eine geringe Reaktionsgeschwindigkeit auf. Verursacht wird dies durch langsame Diffusionsprozesse im Feststoff. Daher wird zur Beschleunigung von Festkörperreaktionen oftmals ein Mineralisator verwendet. Jedoch kann dieser in die Reaktion eingreifen und im Fall der Verwendung von Chlor können signifikante Mengen an SiO₂ aus der Ampullenwand gelöst werden. Eine andere Möglichkeit die Diffusionswege zu verkürzen, besteht darin, die Proben innig zu vermischen. Hierfür werden die Ausgangssubstanzen in einer Achat-Reibeschale fein miteinander verrieben und aus dem Gemenge wird ein barrenförmiger Pressling angefertigt. Für die Anfertigung der Presslinge füllt man mit einem Trichter etwa 150-200 mg des Reaktionsgemisches in den vorgesehenen Spalt im Presswerkzeug (Abbildung 3-2). Die Form wird anschließend in die hydraulische Presse eingelegt und mit einer Kraft von maximal 20kN 15 Minuten lang gepresst.

Anschließend wird die Presse vorsichtig entspannt und der Pressling wird der Form entnommen. Auf diese Weise können Presslinge der Größe 12 x 2 x 2 mm hergestellt werden. Diese Proben werden anschließend wie in Abschnitt 3.1 beschrieben in die Kieselglasampullen gegeben und getempert. Ein weiterer Vorteil der Presslinge ist der geringe Kontakt zur Ampullenwand, wodurch eine Reaktion der Edukte mit der Wand eingedämmt werden kann.

Abbildung 3-2. Hydraulische Presse mit Presswerkzeug [76].

3.4 Öfen

Für das Ausheizen der Ampullen und die Darstellung von Ausgangsverbindungen und Produkten werden verschiedene Öfen verwendet. Das Ausheizen von Ampullen wird in Einzonen-Röhrenöfen durchgeführt. Diese bestehen aus einem Pythagorasrohr mit einem Innendurchmesser von 40 mm, auf dem von außen in einer Einbettmasse eine Heizwicklung aus Kanthaldraht aufgebracht ist. Die Einbettmasse sorgt für die Vermeidung von Kurzschlüssen und gleichzeitig für einen besseren Wärmeübergang auf das Keramikrohr.

Alle Transportexperimente werden in Zweizonenöfen von 60 cm Länge durchgeführt (zur Durchführung der Transportexperimente siehe [76]). Bei diesen sind im Unterschied zu den Einzonenröhrenöfen auf das Ofenrohr zwei voneinander unabhängig regelbare Heizwicklungen aus Kanthaldraht aufgebracht, so dass auf beiden Ofenseiten unterschiedliche Temperaturen eingestellt werden können. Die Öfen eignen sich für Versuche bei Temperaturen bis maximal 1050°C. Im Idealfall sollte ein sehr scharfer Temperaturabfall (bzw. -anstieg) an der Grenze der beiden Temperaturzonen vorliegen, tatsächlich beobachtet man im Grenzgebiet einen eher kontinuierlichen Temperaturverlauf (Abb. 3-3). Zu den beiden Ofenenden hin ist ein Temperaturabfall trotz Stabilisierung des Temperaturgradienten durch Keramikstopfen zu beobachten. Somit ist bei der Durchführung der Experimente darauf zu achten, dass nur ein kleiner Bereich in der Mitte des Ofens (ca. 15

cm) das gewünschte Temperaturprofil aufweist. Abbildung 3-3 zeigt den ungefähren Temperaturverlauf in einem Zweizonenröhrenofen.

Abbildung 3-3. Schematische Darstellung des Temperaturverlaufs in einem Zweizonenofen mit Transportampulle [76].

Beheizt werden die Öfen über Thyristor-Regler der Firma Eurotherm, die sich mit einer Regelgenauigkeit von \pm 1°C einstellen lassen. Die Temperaturmessung erfolgt über Pt/Pt-Rh-Thermoelemente, die eine Messung der Temperatur mit einer Genauigkeit von \pm 10°C erlauben. Neben den Röhrenöfen kamen für Temperreaktionen bis 1100°C in offenen Ampullen unter Freisetzung von Wasser, Sauerstoff oder nitrosen Gasen sowie für isotherme Temperexperimente in Gold- und Platintiegeln Laborkammeröfen der Firma Lenton Furnaces (Hope Valley, England, Typ: Le16 7PS) und Nabertherm (Lilienthal, Typ: L5/12) zum Einsatz. Diese verfügen über eine integrierte Temperaturregelung, mit der die gewünschte Temperatur mit ausreichender Genauigkeit (\pm 30°C) eingestellt werden kann.

3.5 Kristallzüchtung unter hydrothermalen Bedingungen

Ähnlich wie bei chemischen Transportreaktionen liefert die Natur das Vorbild für hydrothermale Syntheseverfahren. Die unter diesen Bedingungen erfolgte Bildung zahlreicher Mineralien veranlasste die Geowissenschaft durch Simulierung hydrothermaler Prozesse im Laboratorium, Einblick in die Bildungsbedingungen zu bekommen und damit zur Kenntnis geologischer Abläufe beizutragen. Heutzutage spielen hydrothermale Verfahren unter dem Begriff der Hydrometallurgie in der Technik eine Rolle, wie beispielsweise beim Bayer-Verfahren zum Aufschluss von Bauxit. Neben präparativen Anwendungen dient die Methode der Hydrothermalsynthese auch zur Kristallzüchtung. Die Hydrothermalsynthese kann als Spezialfall einer chemischen Transportreaktion angesehen werden [18, 78]. Dabei ist eine solche, heterogen ablaufende Reaktion mit einem Transportvorgang verbunden, z.B. dem Transport von SiO₂ [78] (Gleichung 3.1).

 $SiO_{2,s} + xH_2O_g = (SiO_2 \cdot xH_2O)_g$

Gleichung 3.1

Das Hydrothermalverfahren hat gegenüber konventionellen Methoden u.a. den Vorzug, dass sich Übergangsmetallverbindungen mit Elementen in schwierig einstellbaren Oxidationsstufen im geschlossenen System bei vergleichsweise niedrigen Temperaturen darstellen lassen. Beispielsweise kann CrO₂ durch Oxidation von Cr₂O₃ mit CrO₃ bei 350°C und 440 bar in sehr reiner Form unter Bildung gleichförmiger Kristallite dargestellt werden [79]. Der Begriff der Hydrothermalsynthese umfasst den gesamten Bereich oberhalb von 100°C und 1 bar. Für Reaktionen unter hydrothermalen Bedingungen ist eine Mindestlöslichkeit der schwerlöslichen Komponenten von 2-5% erforderlich [80]. Da man jedoch aufgrund der durch die Autoklaven gegebenen Grenzen einen vergleichsweise niedrigen Temperaturbereich auswählt, wird in reinem Wasser oft nicht die erforderliche Löslichkeit erreicht. Durch Zusatz eines Mineralisators (leicht lösliches Transportmittel) kann die Löslichkeit von schwerlöslichen Verbindungen erhöht werden. Man fügt daher weitere leicht lösliche Komponenten wie Säuren, Basen oder Komplexbildner hinzu. Diese Mineralisatoren bilden besser lösliche Komplexe als reines Wasser [80, 81, 82, 83, 84]. Neben Wasser als wichtigstem solvothermalen Reaktionsmedium für eine Umsetzung oberhalb des Siedepunktes und 1 bar gibt es eine Reihe von weiteren Lösemitteln [85], die ebenfalls für präparative Zwecke in Frage kommen. Obwohl mit Ausnahme von Ammoniak (Ammonothermalsynthese) nichtwässrige Lösungsmittel bis heute wenig Bedeutung erlangt haben [86], bieten sie sich in Fällen an, in denen im wässrigen Medium die erforderlichen Löslichkeiten nicht erreicht werden oder in denen das Lösungsmittel an der Synthese selbst beteiligt ist. Als Lösemittel zur Synthese ternärer und polynärer Phosphate wurden im Rahmen der vorliegenden Arbeit neben Wasser auch verdünnte (0,1 bis 1 molar) und konzentrierte Phosphorsäure (85%, 14,8 molar) verwendet.

Als Autoklaven für Synthesen unter hydrothermalen Bedingungen kamen so genannte Tuttle -,,cold-seal"-Autoklaven [87] zum Einsatz. Diese bestehen aus einem Zylinder aus Turbinenstahl (Kurzname: X5 CrNi 1810, Werkstoffnummer: 1.4301, nichtrostender, austenitischer Stahl, gut kaltumformbar, gut schweißbar), in den ein axiales Loch gedreht ist. Das geschlossene Ende taucht in den Ofen ein, während sich der Verschluss - bei den verwendeten Autoklaven eine konische Dichtung - außerhalb befindet. Der "cold-seal" Autoklav ist für Arbeiten bis 400°C und 200 bar ausgelegt. Im Gegensatz zu der sehr ähnlichen Anordnung nach Morey [88], bei der der Autoklav selbst als Reaktionsgefäß dient, verwendet man aufgrund von deren Beständigkeit gegen neutrale und saure Lösungen beim Tuttle-Autoklaven Ampullen aus Borosilikatglas als Reaktionsgefäße. Dickwandige Borosilikatrohre halten Drücke von mehreren hundert bar und Temperaturen bis maximal 350°C aus [89]. Die hydrothermale Kristallzüchtung erfolgte in der vorliegenden Arbeit über die Temperaturabsenkungsmethode (eingestellte Abkühlrate: 0,2°/min), welche eine Variante zur Temperaturdifferenzmethode [78] darstellt. Anwendung findet diese Methode auch, wenn eine nur in einem bestimmten Temperaturbereich stabile Modifikation erhalten werden soll [90].

Die Anfertigung der Hydrothermalampullen erfolgt an einer Vakuumapparatur. Dabei wird eine mit Substanz und Lösungsmittel gefüllte Halbampulle aus Borosilikatglas zunächst ohne Evakuieren an die Apparatur angeschlossen. Die Halbampulle wird daraufhin von außen solange mit flüssigem Stickstoff gekühlt, bis das Lösungsmittel gefroren ist. Anschließend wird evakuiert und mit einem Butan/Sauerstoff-Brenner die Halbampulle zwischen Füllstand und Quickfit (vgl. Abbildung 3-4a) durch gleichmäßiges Erweichen aller Seiten abgeschmolzen. Die Ampulle ist in Abhängigkeit von der Füllmenge zwischen 7 und 10 cm lang und weist einen Innendurchmesser von 5 mm sowie eine Wandstärke von 2 mm auf. Die vorbereiteten Ampullen werden in einen Halter eingesetzt, welcher für insgesamt 7 Ampullen ausgelegt ist und schließlich in den "cold-seal"-Autoklaven überführt (vgl. Abbildung 3-4b). Um einen Gegendruck außerhalb der Ampullen zu erzeugen, wird der Autoklav mit *n*-Pentan befüllt.

Abbildung 3-4. Abschmelzapparatur für Hydrothermalampullen [91] (a) und schematische Darstellung des verwendeten Autoklaven [91] (b).

4 Untersuchungsmethoden

4.1 Röntgenographische Untersuchungsmethoden

4.1.1 Grundlagen

Neben dem Einsatz von Elektronen- und Neutronenstrahlung für Beugungsuntersuchungen beruht die wichtigste, im Rahmen dieser Arbeit verwendete Untersuchungsmethode auf die Wechselwirkung von Kristallen und pulverförmigen Proben mit Röntgenstrahlung. Analog zur Beugung des Lichts an einem optischen Gitter sind Kristalle mit ihrer regulären, sich wiederholenden Struktur in der Lage, Strahlung mit einer Wellenlänge in der Größenordnung der interatomaren Abstände (~ 1Å) zu beugen. Aus den daraus erhaltenen Interferenzmustern kann man Rückschlüsse über den atomaren Aufbau einer Substanz ziehen. Nach W. H. BRAGG betrachtet man zur Beschreibung der Beugung die Kristalle so, als wären sie aus Ebenen aufgebaut, die als halbtransparente Spiegel fungieren. Einige der Röntgenstrahlen werden an einer Ebene so reflektiert (gebeugt), dass Einfallswinkel und Ausfallswinkel gleich sind. Die restliche Strahlung dringt durch die Ebene und wird an darunter liegenden Schichten reflektiert. Das daraus resultierende BRAGG'SCHE Gesetz (1912) wird in Gleichung 4.1 aufgeführt.

 $n \cdot \lambda = 2 \cdot d \cdot \sin \theta$

Gleichung 4.1

- *n* Beugungsordnung (n = 1, 2, 3...)
- λ Wellenlänger der Röntgenstrahlung /Å
- *d* Netzebenenabstand /Å
- θ Beugungswinkel /°

4.1.2 Röntgenpulvermethoden

4.1.2.1 Die Guiniermethode

Bei der Pulvermethode trifft ein monochromatischer Röntgenstrahl auf eine fein pulverisierte Probe, die im Idealfall Kristallite in einer gleichmäßigen Richtungsverteilung enthält. In einer solchen Pulverprobe sind die verschiedenen Netzebenen dann auch in jeder möglichen Orientierung vorhanden. Für jede Netzebenenschar sind dann zumindest einige Kristallite im Braggwinkel θ zum Primärstrahl orientiert, so dass für diese Kristalline und Netzebenen Beugung auftritt. Bei der im Rahmen der vorliegenden Arbeit angewendeten Guinier-Methode [92], können die gebeugten Strahlen durch eine Folie (image plate), welche die Probe umgibt, detektiert werden. Die verwendete Guinier-Kamera (Typ FR 552, Firma Enraf-Nonius, Delft) arbeitet mit Cu-K α_1 -Strahlung der Wellenlänge 1,54051Å und ist so konzipiert, dass sich die Probe auf dem durch den Filmzylinder mit einem Umfang von 360 mm gegebenen Beugungskreis befindet. Es ist dadurch möglich, den Beugungswinkel der an der Probe gebeugten Röntgenstrahlen in 4 θ direkt auf dem Film in Millimetern abzulesen. Die Guinierkamera (vgl. Abbildung 4-1) wirkt quasifokussierend für Röntgenstrahlung. Intensive, monochromatische und konvergente Strahlung wird durch einen Einkristall-Monochromator erzeugt. Dieser besteht aus einem angeschliffenen 1-2 cm² großen Einkristall von Tiefquarz (α -SiO₂), der so orientiert ist, dass die Netzebenenschar (*101*), die eine intensive Beugungslinie aufweist, im Braggwinkel zum Primärstrahl steht. Dieser Braggwinkel ist für die Wellenlänge K α_1 berechnet, so dass nur K α_1 -Strahlen gebeugt werden. Durch die Divergenz des Primärstrahls würde bei Verwendung eines ebenen Kristallmonochromators ein großer Teil der Intensität verloren gehen. Um die Effektivität des Monochromators zu erhöhen, arbeitet man mit einem gebogenen Kristall. Die verwendete divergente Strahlung ergibt bei der Beugung am gebogenen Kristall einen quasifokussierten Röntgenstrahl (Abbildung 4-1).

Abbildung 4-1. Schematische Darstellung des Strahlenganges in einer Guinier-Kamera [76].

Die Guinier-Methode stellt eine schnelle und einfache Methode zur Charakterisierung von festen Substanzen und Substanzgemischen dar. Neben der Identifizierung der Komponenten mehrphasiger fester Produktgemenge, dienen Pulveraufnahmen auch zur Bestimmung von Gitterkonstanten mit hoher Präzision. Zur Anfertigung der Aufnahmen werden in den drei Fenstern des mit einem amorphen Transparentfilms (Scotch Magic) hinterklebten "Guinier-Schiebers" (Abbildung 4-2), der sich im Probenhalter befindet, die in einer Achatreibeschale fein verriebene zu untersuchende Probe, α -Quarz als interner Standard und eine Mischung

aus beiden aufgetragen. Während der Messung wird der Probenträger im Röntgenstrahl auf und ab bewegt, um eine bessere statistische Verteilung der Kristallite zu erreichen und so Textureffekte zu minimieren.

Abbildung 4-2. Guinierschieber in Originalgröße. Beschickung bei Standardaufnahmen (a) und bei Aufnahmen zur Ermittlung von Gitterkonstanten (b).

4.1.2.2 Image Plate Technik

Die Aufzeichnung der gebeugten Röntgenstrahlung erfolgte über die "image plate" - (IP) Technik [93]. Dabei wird in die Filmkammer der Guinierkamera eine für Röntgenstrahlen empfindliche Folie der Abmessungen 178.35mm vom Typ BAS-TR 2025 der Firma Fuji eingelegt. Der Film besteht aus mehreren flexiblen Schichten. Eine davon enthält mit Eu²⁺ dotiertes BaFBr. Durch Absorption von Röntgenstrahlung wird ein Teil der Eu²⁺-Ionen zu Eu³⁺ oxidiert. Die dabei freigesetzten Elektronen besetzen Leerstellen im Bromid-Ionen Untergitter und bilden sogenannte Farbzentren. Die gespeicherte Energie kann durch Stimulation mit einem Laser ($\lambda = 632,8$ nm) in Form von Licht der Wellenlänger $\lambda \approx 390$ nm wieder freigesetzt werden, wobei die Intensität der UV-Strahlung proportional zur eingestrahlten Röntgenstrahlung ist. Die IP-Folien sind wieder verwendbar. Nach einer, im Vergleich zu herkömmlichen Filmen, kurzen Belichtungszeit (etwa 15 Minuten) wird der Film der Kammer entnommen und mit Hilfe eines Scanners (BAS-Scanner 1800) der Firma Fuji ausgelesen. Zum Auslesen und Auswerten der IP-Folie wurden die Programme BAS READER 2.26 (zur Digitalisierung) und AIDA 2.2 (Advanced Image Data Analyser) [94] (zur Integration) verwendet. Bei der Integration mit dem Programm AIDA wird vom Bediener ein Bereich des Filmstreifens ausgewählt, der für die Auswertung geeignet erscheint. Die Breite der Integrationsfensters ist variabel, so dass auch ein größerer Bereich des Filmstreifens integriert werden kann. Große Integrationsfenster führen allerdings zu breiten, starken Reflexen, während man bei einem schmalen Integrationsfenster schwächere und schärfere Reflexe beobachtet. Das Auslesen der IP-Folien und die Verarbeitung der Daten liefern die absoluten Intensitäten des Pulverdiffraktogramms der untersuchten Substanz mit einer Winkelauflösung von 0.05° in 2θ . Mit einem geeigneten

Computerprogramm (ORIGIN 6.1) [95] können ASCII Daten graphisch dargestellt und anschließend mit Simulationen oder auch früher angefertigten Aufnahmen verglichen werden. Im Programm ORIGIN können auch Beugungswinkel der untersuchten Substanzen bestimmt werden.

4.1.2.3 Simulation und Auswertung von Röntgenpulverdiffraktogrammen

Die aufgenommenen Pulverdiffraktogramme wurden zur Identifizierung der Phasen mit Simulationen der entsprechenden Beugungsmuster verglichen. Die kristallographischen Daten der Verbindungen wurden der ICSD (Inorganic Crystal Structure Database) [96] entnommen. Mit Hilfe des Computerprogramms LAZY PULVERIX [97] lassen sich die Beugungswinkel der zu erwartenden Reflexe und deren relative Intensitäten (I_c) nach Gleichung 4.2 berechnen.

$$I_{C} = \left| F_{C} \right|^{2} \cdot PLG \cdot H \cdot T \cdot A$$

Gleichung 4.2

 F_C berechnete StrukturamplitudePLGPolarisations-, Lorentz- und GeometriefaktorHFlächenhäufigkeitsfaktorTTemperaturfaktorAAbsorptionsfaktor

Das Computerprogramm SOS [98] erlaubt die Bestimmung von Gitterkonstanten anhand der aus Guinieraufnahmen ermittelten Beugungswinkel (vgl. Kapitel 4.1.2.1 und 4.1.2.2). Der Programmteil SOS1 führt eine Korrektur der ausgemessenen Reflexlagen anhand des internen Standards durch. Fehler wie eine nicht korrekte Positionierung der Filme im Filmhalter der Kamera lassen sich auf diese Weise korrigieren. Auf die Korrektur der mit IP-Filmen gewonnenen Aufnahmen, auf der Grundlage eines Polynoms vierter Ordnung (SOS1), kann nicht verzichtet werden. Der Programmteil SOS2 führt nun eine Optimierung der Reflexlagen nach dem Prinzip der kleinsten Fehlerquadrate durch, wobei die Indizierung der Reflexe und die Metrik bekannt sein müssen. Bei neu dargestellten Verbindungen erfolgte die Indizierung entweder aufgrund von Einkristalldaten oder über Indizierungsversuche nach dem "Trial and Error" Prinzip [99] mit dem Computerprogramm TREOR-90 [100] im Programmpaket WinPLOTR [101].

4.1.3 Röntgenographische Untersuchungen an Einkristallen

4.1.3.1 Grundlagen

Wie bei der röntgenographischen Untersuchung von Pulvern, kann man die durch Beugung am Einkristall entstehenden Reflexe mit Filmen registrieren oder mit einem Zählrohr auf einem Diffraktometer bzw. einem Flächendetektor. Zur vollständigen Strukturbestimmung benötigt man neben der Lage der Röntgenreflexe auch deren Intensität. Aus der Intensität der Reflexe lässt sich die atomare Anordnung in der Elementarzelle bestimmen. Die Intensitätsmessung kann auf verschiedenen Wegen erfolgen:

- a) Auf röntgenempfindlichem Fotofilm (Schwärzung) nach verschiedenen Methoden, z.B. Drehkristall, Weißenberg oder Präzessionsmethode.
- b) Messung mit einem Zählrohr (Vierkreisdiffraktometer).
- c) Aufzeichnung mit einem Flächendetektor (CCD, IPDS).

Wegen der scharfen Interferenzbedingungen muss für jeden zu messenden Reflex die entsprechende Netzebene durch Bewegen des Kristalls in "Reflexionsstellung" gebracht werden.

4.1.3.2 Auswahl und Präparation geeigneter Einkristalle

Um für Einkristalluntersuchungen geeignet zu sein, müssen die ausgewählten Kristalle einige Kriterien erfüllen. Damit Absorptions- und Extinktionseffekte klein gehalten werden können, sollten die Kristalle eine Größe von etwa 0,1 mm sowie gut ausgebildete Flächen besitzen und möglichst isometrisch gewachsen sein. Ebenso dürfen bei der Begutachtung unter dem Polarisationsmikroskop keine Aufwachsungen oder Verwachsungsgrenzen von Einzelindividuen vorliegen. Ein geeigneter Kristall wird entweder in einem Markröhrchen aus Lindemannglas (Ø: 0,1 - 0,3 mm, Wandstärke: 0,02 mm) fixiert oder mit Sekundenkleber auf einen dünnen Faden aus Kieselglas angeklebt. Die so vorbereiteten Kapillaren werden anschließend mit Knetmasse oder geschmolzenem Bienenwachs auf einem Träger befestigt, der sich zur Montage auf den Röntgenkameras in den Goniometerkopf einschrauben lässt.

4.1.3.3 Verwendete Röntgenstrahlung

Für die nachfolgend beschriebenen Einkristalluntersuchungen wird monochromatisierte Mo-K α -Strahlung der Wellenlänge $\lambda = 0,71073$ Å verwendet. Die Monochromatisierung der Röntgenstrahlung erfolgt mit Filterfolien (Zirkonium-Folie für Mo-Strahlung), die auf einem drehbaren Rad in die Röhrenhaube eingebaut sind. Für die Verwendung von Mo-K α - Strahlung anstelle von längerwelliger, weicher Cu-K α -Strahlung ($\lambda = 1,54051$ Å) sprechen zwei Gründe:

- a) Energiereiche, "harte" Röntgenstrahlung besitzt ein höheres Durchdringungsvermögen. Demzufolge wird diese Strahlung weniger stark absorbiert, was zur Folge hat, dass ein unregelmäßiger, von der optimalen Kugelform des Kristalls abweichender Habitus, keinen allzu großen Einfluss auf die Reflexintensitäten hat.
- b) Durch Strahlung kürzerer Wellenlänge wird der Radius der "Ewald-Kugel" vergrößert. Dementsprechend werden Reflexe mit höheren Miller'schen Indizes abgebildet.

4.1.3.4 Elektronendichtefunktion, Strukturfaktor, Phasenproblem

Das Ziel der Kristallstrukturanalyse ist die Berechnung der Struktur aus den gemessenen Daten. Die Technik dafür besteht in der FOURIER-Synthese. Die Elektronendichteverteilung in einer Struktur ist eine dreidimensionale periodische Funktion und lässt sich daher in Form einer FOURIER-Reihe wiedergeben (Gleichung 4.3).

$$\rho(x, y, z) = \frac{1}{V} \cdot \sum_{h} \sum_{k} \sum_{l} F_{hkl} \cdot e^{-i2\pi(hx + ky + lz)}$$
 Gleichung 4.3

V Volumen der Elementarzelle /Å³ *F*_{*hkl*} Fourierkoeffizient, Strukturamplitude

Zur Berechnung der Funktionswerte, also der Elektronendichten an den durch die Koordinaten *x*, *y*, *z* gegebenen Punkten in der Elementarzelle bzw. der asymmetrischen Einheit, ist es nach Gleichung 4.3 notwendig, die entsprechenden Strukturamplituden F_{hkl} zu kennen. Nachdem die Elektronendichtemaxima lokalisiert sind, ordnet man diesen die entsprechenden Atome zu und gelangt so zur fertigen Struktur. Das eigentliche Problem liegt nun in der Bestimmung der Strukturamplituden. Diese setzen sich gemäß Gleichung 4.4 aus einem Realteil $|F_{hkl}|$, der Strukturamplitude, und einem Imaginärteil e^{-iΦ}, der Phase, zusammen. Aus Messung der Intensitäten kann jedoch nur der Realteil $(I \propto |F_{hkl}|^2)$ ermittelt werden. Die Phaseninformation geht beim Beugungsexperiment verloren (Phasenproblem).

$$F_{hkl} = |F_{hkl}| \cdot e^{-i\Phi}$$
Gleichung 4.4

4.1.3.5 Einkristallmessungen am Vierkreisdiffraktometer

Die vollautomatische Vermessung des integralen Reflexionsvermögens aller Netzebenen (hkl), deren reziproke Gitterpunkte innerhalb der Ewald-Kugel liegen, erfolgte für einige Datensammlungen mit dem im Arbeitskreis vorhandenen Vierkreisdiffraktometer (CAD4, Firma Enraf-Nonius, Delft). Die Mechanik des CAD4-Diffraktometers (Molybdän-Röntgenröhre, Mo-K α Strahlung, $\lambda = 0.71073$ Å, Graphitmonochromator) beruht auf der sogenannten Kappa - Geometrie [102] (Abbildung 4-3). Das Vierkreisdiffraktometer besteht aus drei Drehachsen, durch die der Kristall über rechnergesteuerte Motoren auf die Weise im Raum bewegt wird, dass für die gewünschte Netzebene die Bragg'sche Gleichung erfüllt ist. Der Reflex wird durch ein Proportionalitätszählrohr registriert, das sich auf einem vierten Kreis (θ -Kreis) befindet und die Reflexposition anfahren kann. Im Gegensatz zur mechanischen Variante der EULER-Geometrie wird bei analog angeordneten ω - und θ -Kreisen anstatt des χ -Kreises eine um 50° gegen die Horizontalebene geneigte κ -Achse verwendet, die den Kristallträgerarm bewegt. Auf diesem ist, wiederum 50° gegen die κ -Achse geneigt, die φ -Achse des Goniometerkopfes angeordnet. Durch die Kombination von κ - und φ -Achse lassen sich dieselben Positionen ansteuern wie durch eine χ -Drehung bei Euler-Geometrie. Der Nachteil der Euler-Geometrie gegenüber der Kappa-Geometrie liegt in der Abschattung und damit Einschränkung von *w*-Winkeln durch den mechanisch massiven χ -Kreis. Zusätzlich ist bei der Kappa-Geometrie ein Anbringen von Zusatzgeräten zur Kristallkühlung ungehindert möglich. Der Goniometerkopf wird zunächst auf dem Diffraktometer befestigt und zentriert. Vorraussetzung für die Messung des reziproken Raums und die Bestimmung der Intensitäten Ihkl ist die sehr genaue Zentrierung des Kristalls im Schnittpunkt der drei Drehachsen ω , φ und κ . Der erste Schritt bei der Vermessung eines Kristalls ist die Bestimmung der Gitterkonstanten der Elementarzelle und deren Orientierung zu den Goniometerachsen. Mit einem Reflexsuchprogramm wird der reziproke Raum in einem bestimmten, kleinen Winkelbereich, willkürlich nach etwa 25 Reflexen abgesucht ("peak hunting"). Nach erfolgter Indizierung dieser Reflexe wird die die Orientierungsmatrix (3 x 3 Matrix) nach der Methode der kleinsten Fehlerquadrate berechnet. Diese enthält die grundlegenden Informationen über Abmessung und räumliche Orientierung der reziproken Elementarzelle. Nach Bestimmung der Orientierungsmatrix muss die Messstrategie festgelegt werden. Dabei sind die Intensitäten der einzelnen Reflexe sowie deren Breite von besonderer Bedeutung. Bei guten Kristallen beträgt die Reflexbreite bis zu 0,8°, sie kann bei schlecht kristallisierten Verbindungen auch größer als 2° werden. Kristalle mit noch schlechterem Profil lassen sich meist nicht mehr sinnvoll vermessen. Die Intensitäten der einzelnen Reflexe geben eine wichtige Auskunft über die zu wählende Geschwindigkeit des Scans, die die Messzeit pro Reflex bestimmt. Sind die Intensitäten der Reflexe gering, ist es hilfreich, nur bis zu kleineren Beugungswinkeln zu messen, aber dafür mehr Messzeit pro Reflex zu verwenden. Die Abtastrate (°/min) ist dabei variabel. Ist die Messstrategie festgelegt, wird mit der Rohdatensammlung nach der *"learnt profile Methode"* [103] begonnen. Dazu werden die über die Orientierungsmatrix errechneten Reflexpositionen durch die Kreise angefahren und der Detektor entlang eines Kreises langsam über die einzelnen Positionen bewegt, wodurch die Intensitätsverteilung gemessen wird. Zur genauen Überprüfung der Konstanz der Intensität des verwendeten Röntgenstrahls werden in regelmäßigen Intervallen sogenannte Intensitätskontrollreflexe vermessen. Für eine semiempirische Absorptionskorrektur werden schließlich noch ausgewählte Reflexe vermessen (Ψ -Scans, siehe Kap. 4.1.5.4). Nach der Datensammlung erfolgt die Datenreduktion, bei der die Rohdaten noch aufbereitet werden müssen, um den eigentlichen Datensatz zu erhalten. Die Datenreduktion besteht aus drei Teilen:

Berechnung der Nettointensitäten: Da die Messung des Untergrunds schneller erfolgt als die des eigentlichen Scanbereichs, muss die Intensität auf die Messzeit normiert werden. Genauso ist zu verfahren, wenn einzelne Reflexe mit unterschiedlich langen Messzeiten registriert werden.

 $I_{\rm N} = [I_{\rm B} - 2 (U_L + U_R)] / t$

Gleichung 4.5

 U_L/U_R : Untergrund links / rechts I_B : gemessene Intensitäten

b) Berechnung des Lorentzfaktors: Bei einem ω-Scan mit konstanter Winkelgeschwindigkeit verweilen kurze Streuvektoren kürzer in Reflexionsstellung als längere. Die so bei der Messung durch die unterschiedlichen Aufenthaltszeiten von Gitterpunkten auf der Oberfläche der Ewald-Kugel zustande kommenden Intensitätsfehler werden durch den Lorentzfaktor L (Gleichung 4.6) berücksichtigt.

$$L = 1 / \sin 2\theta$$
 Gleichung 4.6

Berechnung des Polarisationsfaktors: Der Polarisationsfaktor *P* berücksichtigt Intensitätsfehler, die aufgrund der winkelabhängigen Schwächung bei der Reflexion des senkrecht zur Reflexionsebenen stehenden Strahlungsanteils zustande kommen (Gleichung 4.7). Der Polarisations- und der Lorenzfaktor werden gemeinsam als *LP*-Korrektur über Gleichung 4.8 berücksichtigt.

$$P = (1 + \cos^2 2\theta) / 2$$

$$LP = (1 + \cos^2 2\theta) 2\sin 2\theta$$
Gleichung 4.7
Gleichung 4.8

Die Güte eines Datensatzes bzw. seine innere Konsistenz wird durch Vergleich der F_0 -Werte symmetrieäquivalenter Reflexe ermittelt und durch den in Gleichung 4.9 aufgeführten internen *R*-Wert R_{int} beschrieben.

$$R_{\text{int}} = \sqrt{\frac{\sum [n \cdot \sum (w \cdot (|F_{0m}| - |F_0|)^2)]}{\sum [(n-1) \cdot \sum (w \cdot |F_0|^2)]}}$$
Gleichung 4.9

n Anzahl symmetrieäquivalenter Reflexe

w Wichtungsfaktor

 $|F_0|$ beobachtete Strukturamplitude

 $|F_{0m}|$ Mittelwert der symmetrieäquivalenten $|F_0|$ -Werte

Der erhaltene Datensatz wird im HKLF-4 Format gespeichert und kann für die Strukturlösung und Verfeinerung mit den Computerprogrammen SHELXS-97 [104] und SHELXL-97 [105] verwendet werden. Die benötigten Programme sind im Programmpaket WinGX [106] enthalten.

Abbildung 4-3. Skizze des 4-Achsen *k*–Diffraktometers CAD4 [102].

4.1.3.6 Einkristallmessungen mit dem Flächendetektor

Für die Intensitätsmessung der gebeugten Röntgenstrahlung standen neben dem Vierkreisdiffraktometer die Flächendetektoren IPDS-2T (Image Plate Diffraction System, Fa. Stoe, Darmstadt) und ein Kappa-CCD-System (Charge Coupled Device, Fa. Enraf-Nonius, Delft) zur Verfügung. Während bei der Datensammlung mit einem Zählrohr jeder Reflex einzeln vermessen wird, ist es mit Flächendetektoren möglich, viele Reflexe simultan zu registrieren. Dabei können zwei alternative Techniken verwendet werden. Bei der Aufnahmetechnik eines IPD-Systems [107] wird eine röntgenempfindliche Bildplatte (*imaging plate'*) zur Messung der Beugungsintensitäten ausgenutzt. Auf der Bildplatte werden während der Belichtung (ca. fünf Minuten) die Intensitätsinformationen auftreffender Röntgenquanten in einer mit Eu²⁺ dotierten Schicht aus BaFCl latent in einer Art Farbzentren gespeichert. Diese können in einem sich anschließenden Ausleseschritt durch Laser-Bestrahlung zur Emission von Photonen angeregt werden. Hierdurch wird das Auslesen der Daten über eine Computerschnittstelle ermöglicht. Nach der Belichtung der Farbzentren mit sichtbarem Licht wird die Platte gelöscht und steht für weitere Aufnahmen zur Verfügung. Die Sammlung, Aufbereitung und Ausgabe der Daten erfolgt hierbei mit dem Softwarepaket Stoe-IPDS.

CCD-Systeme [102] verwenden zur Bildspeicherung entwickelte "CCD-Chips" (Charge Coupled Device) wie man sie aus Camcordern oder Digitalkameras kennt. Die Detektoren werden durch eine Beschichtung mit Gadoliniumoxidsulfid für Röntgenstrahlen sensibilisiert. Mit diesen Detektoren ist eine sehr schnelle Registrierung der Reflexe möglich. Die Chips besitzen ein hohes elektrisches Untergrundrauschen, das bei der Messung von schwach streuenden Kristallen ein Problem darstellen kann.

Die Aufnahmetechnik mit Flächendetektoren ähnelt der bei Drehkristallaufnahmen. Der Kristall wird im Gegensatz zum Vierkreisdiffraktometer nur um eine Achse gedreht. Die Registrierung der Aufnahme mit dem Flächendetektor beginnt bei $\omega = 0$ und erfolgt während einer langsamen Drehung des Kristalls um 0,5-2° bei Bildplatten bzw. 0,3° bei CCD-Systemen. Damit stets andere Netzebenen in Reflexionsstellung gelangen, wird für jede weitere Aufnahme ω um 1° vergrößert. Man benötigt so viele Aufnahmen, bis alle für die vermutete Lauegruppe notwendigen symmetrieunabhängigen Reflexe registriert sind.

4.1.4 Ansätze zur Strukturlösung

Da es keine Messmethode gibt, mit der die Phase einer gebeugten Welle ermittelt werden kann, besteht vor einer Strukturlösung die Notwendigkeit, diese Information auf mehr oder weniger komplizierten Umwegen zu erhalten [108]. Als Hilfsmittel zur Bestimmung der Startpunktlagen, die als Basis für die weitere Strukturverfeinerung notwendig sind, dient das Programm SHELXS-97 [104], welches für beide nachfolgend besprochenen Methoden verwendet werden kann.

4.1.4.1 Die Patterson Synthese

Grundlage für diese Methode [109, 110, 111] ist wie bei der Berechnung der Elektronendichte einer FOURIER-Synthese. Der Unterschied besteht darin, dass in die Gleichung der PATTERSON-Funktion P_{uvw} direkt die aus der Intensitätsmessung stammenden $|F_{hkl}|^2$ -Werte als Fourier-Koeffizienten eingesetzt werden. Um zu verhindern, dass es zu Verwechslungen mit der normalen FOURIER-Synthese kommt, bzw. um zu zeigen, dass man sich im Patterson-Raum befindet, werden in der Patterson-Gleichung (Gleichung 4.10) u, v, w als Koordinaten verwendet.

$$P_{u,v,w} = \frac{1}{V} \cdot \sum_{h} \sum_{k} \sum_{l} \left| F_{hkl} \right|^2 \cdot e^{-2i\pi(hu+kv+lw)}$$
 Gleichung 4.10

 $P_{u, v, w}$ Patterson-VektorVVolumen der Elementarzelleu, v, wKoordinatentripel im Patterson-Raum $|F_{hkl}|^2$ Strukturfaktorh, k, lMiller'sche Indizes

Der Vektor zwischen zwei beliebigen Atomen in der betrachteten realen Elementarzelle erzeugt ein Maximum in der Elementarzelle des Patterson-Raums. Die Höhe des Maximums ist proportional zum Produkt der Elektronenzahlen beider Atome. Da ein einzelnes Maximum aufgrund der vielen mehrfach überlappenden Maxima nicht mehr zu erkennen ist, besteht das Hauptproblem darin, aus der Gesamtheit der erkannten Abstandsvektoren auf die reale Struktur zu schließen. Wenn in der Elementarzelle neben wenig schweren Atomen viele Leichtatome vorliegen, ergeben sich wenige Abstandsvektoren zwischen den Schweratomen, die mit ihren sehr hohen Maxima alle anderen Maxima deutlich überragen und so relativ leicht zu lokalisieren sind. Die Besetzung der so ermittelten Startpunktlagen mit Schweratomen führt meist schon zu einem recht guten Strukturmodell. Da die PattersonSynthese unter den genannten Bedingungen gute Ergebnisse liefert, wird sie auch Schweratom-Methode genannt.

4.1.4.2 Direkte Methoden

Als "*Direkte Methoden*" bezeichnet man ein numerisches Verfahren [112, 113, 114], das meist dann angewandt wird, wenn in der Struktur keine Schweratome vorhanden sind. Zum Lösen des Phasenproblems mithilfe "*Direkter Methoden*" nutzt man Zusammenhänge zwischen den gemessenen Intensitäten und den zugehörigen Phasen bestimmter Reflexgruppen aus. Diese Zusammenhänge basieren auf der Überlegung, dass immer dann besonders hohe Strukturamplituden auftreten, wenn die daran beteiligten Atome auf bestimmten Netzebenen liegen, ihre Streuwellen also genau in Phase interferieren, während Atome zwischen den Ebenen weniger stark zur Strukturamplitude beitragen. So wie sich die Lage der Netzebenen zueinander bedingt, bedingen sich damit auch die Phasen der von den entsprechenden Atomen auf diesen Ebenen ausgehenden Streuwellen. Eine mathematische Formulierung dieser Beziehungen liefert die SAYRE-Gleichung [112] (Gleichung 4.11).

$$F_{hkl} = k \sum_{h'k'l'} (F_{h'k'l'} \cdot F_{h-h',k-k',l-l'})$$
 Gleichung 4.11

Alle Produkte $F_{h'k'l'} \cdot F_{h-h',k-k',l-l'}$ die mindestens einen schwachen Reflex enthalten, leisten praktisch keinen Beitrag zur Strukturamplitude, während Produkte zweier starker Reflexe mit einer hohen Wahrscheinlichkeit wesentlich zur Phase von F_{hkl} beitragen. Die daraus abgeleiteten sogenannten Triplett-Beziehungen für die Vorzeichen S_{hkl} dreier starker Reflexe und deren Phasenwinkel Φ_{hkl} (Gleichung 4.12 und 4.13) gehen auf Karlé und Hauptmann zurück [113, 114].

$$S_{hkl} \approx S_{h'k'l'} \cdot S_{h-h',k-k',l-l'}$$
Gleichung 4.12

$$\Phi_{hkl} \approx \Phi_{h'k'l'} \cdot \Phi_{h-h',k-k',l-l'}$$
Gleichung 4.13

So lassen sich mit bestimmten Wahrscheinlichkeiten behaftete Aussagen über die Zusammenhänge zwischen den Phasen formulieren. Ausgehend von einem Startsatz aus bekannten oder willkürlich festgelegten Phasen können nun durch Einsetzen Lösungsansätze berechnet werden, die sich mithilfe höherer Glieder der SAYRE-Gleichung (Quartett- und Quintett-Beziehungen) auf ihre Plausibilität überprüfen lassen, um schließlich zu einem Strukturmodell zu gelangen. Besonders vorteilhaft ist die Anwendung der "*Direkten Methoden*" bei zentrosymmetrischen Strukturen, bei denen das Phasenproblem auf ein reines Vorzeichenproblem reduziert ist.

4.1.5 Verfeinerung der Atomparameter

4.1.5.1 Die Differenzfouriersynthese

Unter Verwendung von Differenzfouriersynthesen (Programm SHELXL-97 [105]) lassen sich aus den nach Abschnitt 4.1.4 ermittelten Startpunktlagen die Atomlagen der leichteren Atome sowie für alle Atome anisotrope Auslenkungsfaktoren berechnen. Das resultierende Strukturmodell enthält jedoch noch Fehler, die in der Unzulänglichkeit der Lösungsmethoden, der Berechnung von Elektronendichtemaxima aus Fouriersynthesen und auch in natürlichen Fehlern innerhalb des Datensatzes zu suchen sind. Daraus folgt, dass die für die Reflexe *hkl* berechneten Strukturfaktoren F_c nicht mit den beobachteten F_o -Werten übereinstimmen. Aus dieser Diskrepanz ergeben sich die für die Differenzfouriersynthese notwendigen FOURIER-Koeffizienten (F_o - F_c) (Gleichung 4.14).

$$\Delta \rho = \rho_{obs} - \rho_{calc} = \frac{1}{V} \cdot \sum_{h} \sum_{k} \sum_{l} (F_o - F_c) \cdot e^{-2i\pi(hx + ky + lz)}$$
 Gleichung 4.14

- $\Delta \rho$ Differenz der Elektronendichte
- $\rho_{obs.}$ beobachtete Elektronendichte
- $\rho_{calc.}$ berechnete Elektronendichte
- V Volumen der Elementarzelle
- *F_o* beobachtete Strukturamplitude
- F_c berechnete Strukturamplitude
- *hkl* Miller'sche Indizes
- x, y, z Lageparameter der Atome

Die Differenzfouriersynthese beschreibt die Differenz zwischen den Elektronendichten der realen, röntgenographisch vermessenen Struktur und des noch unvollständigen, berechneten Strukturmodells. Daraus folgt, dass an den Stellen des Strukturmodells, an denen noch Atome fehlen, deutliche Elektronendichte-Maxima auftreten, die im nächsten Schritt mit entsprechenden Atomen besetzt werden müssen. Je weiter sich das Strukturmodell der realen Kristallstruktur nähert, desto kleiner wird die aus der Differenzfouriersynthese berechnete Elektronendichtedifferenz.

4.1.5.2 Die Methode der kleinsten Fehlerquadrate

Die Verfeinerung der Lageparameter *x*, *y*, *z* und der Koeffizienten der anisotropen Temperaturfaktoren erfolgt mit dem Programm SHELX-97 [105] nach der Methode der kleinsten Fehlerquadrate (*,,least squares*") in der art, dass die Abweichungen der berechneten von den gemessenen Intensitäten ($I_{hkl} \propto |F_{hkl}|^2$) möglichst klein werden. Um zu erkennen, wie gut ein Strukturmodell mit dem gemessenen Datensatz übereinstimmt, werden vom Programm so genannte Zuverlässigkeitsfaktoren (Restwerte, *R*-Werte) berechnet. Es sei als erstes der "konventionelle *R*-Wert" genannt, der die mittlere prozentuale Abweichung zwischen beobachteter und berechneter Strukturamplitude angibt (Gleichung 4.15).

$$R = \frac{\sum_{hkl} \left\| F_o \right| - \left| F_c \right\|}{\sum_{hkl} \left| F_o \right|}$$
Gleichung 4.15

R Restwert (Gütewert)

 $|F_0|$ Betrag der beobachteten Strukturamplitude

 $|F_c|$ Betrag der berechneten Strukturamplitude

Weiter ist der gewichtete R-Wert, der wR_2 -Wert, zu nennen. In diesen gehen die bei der Verfeinerung minimalisierten Fehlerquadratsummen ein.

$wR_2 =$	$\sqrt{\frac{\sum_{hkl} w \cdot (F_o^2 - F_c^2)^2}{\sum_{hkl} w \cdot (F_o^2)^2}}$	Gleichung 4.16
mit w	$=\frac{1}{\sigma^2(F_o^2)+(u\cdot P)^2+v\cdot P}$	Gleichung 4.17a
und σ	$(F_o^2) = \frac{\sigma(I)}{\sqrt{P \cdot L}}$	Gleichung 4.17b
wR_2 w $\sigma(F_o^2)$ $\sigma(I)$ F_o^2 P	gewichteter Gütewert Wichtungsfaktor Standardabweichung von F_o^2 Standardabweichung der Intensität beobachteter Strukturfaktor Polarisationsfaktor ($P = (F_o^2 + 2F_c^2) / 3$)	
F_c^2	berechneter Strukturfaktor	

L Lorentz-Faktor

u, *v* Ausgleichsfaktoren

Der Wichtungsfaktor w berücksichtigt, dass Reflexe mit unterschiedlicher Genauigkeit gemessen werden. Außerdem fließen dabei die Standardabweichungen der gemessenen Intensitäten, welche aufgrund einer Zählstatistik der Diffraktometermessung berechnet werden, mit ein. Je kleiner die *R*-Werte im Verlauf einer Verfeinerung werden, desto sicherer ist das angenommene Strukturmodell. *R*-Werte von gut bestimmten Strukturen liegen in der Regel zwischen 2 und 5%, die wR_2 -Werte zwischen 5 und 15%.

Der "Goof"-Wert ("goodness of fit") ist ein weiteres Qualitätsmaß für die Strukturbestimmung (Gleichung 4.18) und sollte Werte um 1 annehmen. Er berücksichtigt

auch den Grad der Überbestimmung der verfeinerten Parameter (Atomlage, Schwingungstensoren, Berücksichtigung von Extinktion etc).

$$Goof = \sqrt{\frac{\sum_{hkl} w \cdot (F_o^2 - F_c^2)^2}{(n-p)}}$$
Gleichung 4.18

n/p Anzahl Reflexe / Anzahl Parameter

4.1.5.3 Auslenkungsparameter

Um das Strukturmodell möglichst gut an die Realität anzupassen, ist es notwendig, das Schwingungsverhalten der Atome zu berücksichtigen. Die Amplitude einer Teilwelle ist im Fall eines schwingenden Atoms kleiner als beim unbewegten Atom. Je stärker die Atome des Gitters senkrecht zur reflektierenden Netzebenenschar schwingen, desto kleiner wird die Amplitude. Das Schwingungsverhalten der Atome wird durch sechs Parameter, welche als anisotrope Auslenkungskoeffizienten bezeichnet werden, beschrieben. Mit diesen können Schwingungsellipsoide gezeichnet werden, welche die räumliche Ausbreitung und die Richtung der Schwingungen repräsentieren. Die Berücksichtigung dieser anisotropen Bewegung bei der Berechnung der Strukturamplitude $F_c(hkl)$ eines Reflexes *hkl* (Gleichung 4.19) erfolgt durch Einführung eines anisotropen Temperaturfaktors T_j (*hkl*) für jedes Atom *j* (Gleichung 4.20).

$$F_{c}(hkl) = \sum_{j=1}^{n} f_{i} \cdot T_{j}(hkl) \cdot e^{[2i\pi \cdot (hx_{j} + ky_{j} + lz_{j})]}$$
Gleichung 4.19
mit $T_{j}(hkl) = e^{-2\pi^{2} \cdot [U_{11}(ha^{*})^{2} + U_{22}(kb^{*})^{2} + U_{33}(lc^{*})^{2} + 2U_{12}(hka^{*}b^{*}) + 2U_{23}(klb^{*}c^{*}) + 2U_{13}(lhc^{*}a^{*})}$ Gleichung 4.20

anisotroper Temperaturfaktor
reziproke Gitterkonstanten
Miller'sche Indizes
Koeffizienten des thermischen Ellipsoids eines Atoms j/A^2 .

Im rechtwinkligen Achsensystem beschreiben die "geraden" Glieder U_{11} , U_{22} und U_{33} die mittleren Abweichungsquadrate des schwingenden Kristallatoms um seine Gleichgewichtslage in Richtung der Hauptachsen des Ellipsoids. Die Lage desselben zu den reziproken Achsen wird durch die "gemischten" Glieder U_{12} , U_{23} und U_{13} festgelegt. Die sechs anisotropen Schwingungskoeffizienten können bei der Verfeinerung der drei Bei Lageparameter mitoptimiert werden. einer isotropen Verfeinerung (richtungsunabhängiges Schwingungsverhalten) gibt es nur einen Parameter, den isotropen Schwingungskoeffizienten U_{eq} . Bei der graphischen Darstellung von Strukturen können die Atome durch ihre Schwingungsellipsoide dargestellt werden. Dazu werden die Hauptachsen
U_1 , U_2 und U_3 so skaliert, dass das Ellipsoid eine bestimmte Aufenthaltswahrscheinlichkeit (gewöhnlich 50%) des Elektronendichteschwerpunkts umschreibt.

4.1.5.4 Absorptionskorrektur

Verschiedene physikalische Prozesse wie elastische (RAYLEIGH-) oder inelastische (COMPTON-) Streuung sowie Ionisation schwächen die Röntgenstrahlung auf dem Weg durch den Kristall. Zusammen wachsen die erwähnten Effekte mit der vierten Potenz der Ordnungszahl Z der absorbierenden Atome und mit der dritten Potenz der Wellenlänge λ der verwendeten Röntgenstrahlung an. Mit Gleichung 4.21 können diese Zusammenhänge durch den linearen Absorptionskoeffizienten μ beschrieben werden.

$$I = I_0 \cdot e^{-\mu X}$$

Gleichung 4.21

I Intensität der Röntgenstrahlung nach Durchtritt durch den Kristall

*I*₀ Intensität der Röntgenstrahlung vor Durchtritt durch den Kristall

 μ linearer Absorptionskoeffizient /mm⁻¹

X zurückgelegte Strecke im Kristall

Ob eine Absorptionskorrektur erforderlich ist, hängt von der Form des Kristalls und der Ordnungszahl der enthaltenen Elemente ab. Legt der Röntgenstrahl, bedingt durch eine von der Kugel stark abweichenden Kristallform, verschieden lange Wege zurück, so entsteht ein stark richtungsabhängiger Fehler, der eine Korrektur erforderlich macht. Mit verschiedenen Methoden kann für jeden Reflex ein individueller Korrekturfaktor berechnet werden. Im Rahmen dieser Arbeit wurden die folgenden Methoden verwendet:

- a) Semiempirische Absorptionskorrektur mit Ψ -Scans [115]. Um für ein Absorptionskorrekturen notwendiges dreidimensionales Absorptionsprofil zu erstellen, werden zuerst so genannte Ψ -Scans durchgeführt. Man misst dazu die Intensität eines Reflexes bei Variation des *Y*-Winkels in 10°-Schritten, d.h. man steuert den gleichen Reflex aus unterschiedlichen Richtungen an, um die verschiedenen Wege des Röntgenstrahls durch den Kristall zu erfassen. Ungefähr zehn auf diese Weise gemessene Reflexe, die möglichst gut im reziproken Raum verteilt sein müssen, genügen zur Erstellung eines dreidimensionalen Absorptionsprofils, mit welchen der Datensatz korrigiert werden kann.
- b) Semiempirische Absorptionskorrektur mit äquivalenten Reflexen [116]. Bei Meßsystemen mit Flächendetektor werden viele Reflexe bei unterschiedlichen

Orientierungen des Kristalls zum Röntgenstrahl mehrfach aufgezeichnet. Dazu kommen noch die symmetrieäquivalenten Reflexe, die dann ebenfalls bei verschiedenen Orientierungen zum Röntgenstrahl mehrfach gemessen werden. Ein Vergleich von den Intensitäten liefert ebenfalls ein Absorptionsprofil.

Numerische Absorptionskorrektur. Die numerische Absorptionskorrektur wurde in der vorliegenden Arbeit mit dem Programm X-Red [117] durchgeführt. Die Optimierung der Kristallform und -größe gelang mit dem Programm X-Shape [118]. Dazu wurden durch die Symmetrie mehrfach bestimmte Reflexe sowie die räumliche Orientierung bezüglich des Primärstrahls (Richtungskosinusse) im Datensatz verwendet. Die Kristallgestalt wurde mit der Abweichung der Intensitäten verglichen und durch eine Verfeinerung der indizierten Kristallflächen konnten anschließend die auf Absorptionseffekte zurückzuführenden Unterschiede der korrelierenden, mehrfach indizierten Reflexe minimiert werden.

4.1.6 Energiedispersive Mikroanalyse

Wird ein fein gebündelter Elektronenstrahl in einem Raster Punkt für Punkt über die Probe geführt, so löst er an jedem Punkt auf der Oberfläche verschiedene Signale aus, die mit geeigneten Detektoren empfangen und ausgewertet werden. Die Gesamtheit der abgerasterten Punkte erzeugt eine Abbildung auf dem Bildschirm. Durch Anlegen einer Spannung zwischen einer Glühemissionskathode (Wolfram-Glühkathode) und einer Anode, werden die im Wehnelt-Zylinder erzeugten Elektronen als Strahl aus einer gesättigten Elektronenwolke herausgezogen und durch die Elektronenoptik (elektromagnetische Linsen) auf die Probe in der Probenkammer (Hochvakuum) fokussiert. Mit Hilfe eines Scangenerators wird der Elektronenstrahl schrittweise über die Probe bewegt. Die Signale werden dabei detektiert, verstärkt und über eine digitale Videoverarbeitung auf dem Bildschirm dargestellt. Eine Bildvergrößerung wird dadurch erzielt, dass bei konstanter Anzahl der Messpunkte die Rasterfläche verkleinert wird. Bei der Wechselwirkung des Primärelektronenstrahls mit Materie entstehen eine Reihe verschiedener Signale:

- a) Sekundärelektronen (secondary electrons) aus der obersten Objektschicht
- b) Rückstreuelektronen (back-scattered elektrons) aus größerer Tiefe
- c) Kathodenlumineszenz bei lumineszierenden Proben, z.B. Verbindungshalbleitern
- d) Röntgenstrahlen: charakteristische Strahlung, die zur qualitativen und quantitativen Elementanalyse verwendet wird (energy dispersive analysis of x-rays, EDX)

Die schematische Entstehung eines charakteristischen Linienspektrums, dessen energetische Lage für die qualitative und dessen Intensität für die quantitative Analyse verwendet wird, ist in Abbildung 4-4 gezeigt. Wird ein Elektron aus einer inneren Schale herausgeschlagen (Tiefenionisation), so kann die entstandene Lücke durch ein Elektron aus einer äußeren Schale wieder aufgefüllt werden. Dabei wird ein Röntgenquant mit der Differenzenergie dieser beiden Schalen emittiert. Die Benennung erfolgt nach der Schale (z.B. K, L, M), in die das Elektron fällt. Mit griechischen Indizes wird die Herkunft aus verschiedenen höheren Schalen unterschieden. So kennzeichnet eine K α - (bzw. K β -) Linie den Übergang eines Elektrons von der L- in die K- (bzw. von der M- in die K-) Schale. Wegen der weiteren Unterteilung der Schalen (Nebenquantenzahlen) sind mehrere Übergänge für jede Schale (Hauptquantenzahl) möglich, die durch eine Nummerierung in K α_1 und K α_2 unterschieden werden. Dabei ergeben sich Intensitätsunterschiede aus der statistischen Wahrscheinlichkeit, z.B. K α_1 :K $\alpha_2 \approx 2$:1. Aufgrund der Auswahlregeln sind jedoch nicht alle denkbaren Übergänge erlaubt [119].

Abbildung 4-4. Schematische Darstellung der Entstehung charakteristischer Röntgenstrahlung, erlaubte Übergänge.

Die charakteristische Röntgenstrahlung kann entweder durch Beugung an einem Kristall oder einer pulverförmigen Probe mit möglichst glatter Oberfläche mit einem Halbleiterdetektor energiedispersiv (EDX) [120, 121, 122, 123] analysiert werden. Ein klassischer EDX-Detektor (PV9800, Fa. EDAX, Wiesbaden) besteht aus einer Silizium-Diode, die in Sperrrichtung geschaltet ist. Die *p-n*-Gebiete sind durch ein eigenleitendes Gebiet getrennt, das durch Eindiffusion von Li hergestellt wird. Hier herrscht bei angelegter Spannung eine konstante Feldstärke. Ein Strom kann nur fließen, wenn Ladungsträger durch das Abbremsen eines Röntgenquants erzeugt werden. Ein Röntgenquant erzeugt somit einen außerordentlich niedrigen Impuls, der in einem Vorverstärker elektronisch verstärkt werden muss. In einem Analog-Digitalwandler wird die Höhe der Impulse in eine digitale Größe umgewandelt und in einem Vielkanalanalysator sortiert. Das Ergebnis ist ein charakteristisches Linienspektrum mit der Auftragung der Energie (keV) und der Intensität. Für die quantitative Analyse wird nach einer Untergrundkorrektur und Peakentfaltung eine so genannte *ZAF*-Korrektur (Z =Ordnungszahl, A = Absorption, F = Fluoreszenz) durchgeführt. Zur quantitativen Analyse der zu untersuchenden Proben muss eine entsprechende Kalibrierung mit Referenzsubstanzen (Cu) durchgeführt werden. Ein grundsätzliches Problem in der Mikrosondenanalytik ist die Messung und Quantifizierung leichter Elemente. Da diese nur sehr wenig Röntgenenergie emittieren, die sowohl von Schweratomen innerhalb der Probe als auch vom Fenstermaterial (Be) zu einem Großteil absorbiert wird, lassen sich nur Elemente ab einer Ordnungszahl von 12 (Mg) erfassen. Ein weiteres Problem stellt die Wahl der Anregungsspannung dar. Während leichte Elemente ausschließlich Anregungsspannungen von wenigen kV erfordern, werden Schweratome erst bei höheren Spannungen (10-30 kV) angeregt. Im Rahmen dieser Arbeit wurde zur qualitativen und quantitativen EDX-Analyse ein Rasterelektronenmikroskop (REM) DSM 940 (Fa. Zeiss, Jena) verwendet.

4.2 Neutronenpulverdiffraktometrie

4.2.1 Grundlagen

Neben Röntgenstrahlen können auch Elementarteilchen wie Elektronen oder Neutronen [124, 125] am Festkörper gebeugt werden. Bei nichtrelativistischen Geschwindigkeiten kann man Neutronen je nach ihrer Geschwindigkeit v_n eine Wellenlänge λ_n gemäß der DE BROGLIE-Beziehung zuordnen (Gleichung 4.22).

$$\lambda_n = \frac{h}{m_n v_n} = \frac{0.123}{\sqrt{E}}$$
 Gleichung 4.22

 λ_n Wellenlänge der verwendeten Neutronen /m

- *h* Planck'sches Wirkungsquantum /J·s
- m_n Ruhemasse des Neutrons /kg
- *E* kinetische Energie /J

Das erste Beugungsexperiment mit Neutronen wurde 1936 von MITCHEL und POWERS mit einer Radium-Beryllium Quelle an MgO durchgeführt [125]. Kurz nachdem ab 1945 Kernreaktoren einen höheren Neutronenfluß lieferten, wurde am Argonne National Laboratory (Chicago, Illinois, USA) das erste Neutronendiffraktometer gebaut. Die Bedeutung der Neutronenstrahlung [126] für die Kristallstrukturbestimmung ergibt sich dadurch, dass Röntgen- und Neutronenstrahlen auf unterschiedliche Weise an Kristallen gestreut werden. Röntgenstrahlung wird durch Wechselwirkung mit der Elektronenhülle eines Atoms gebeugt, wohingegen Neutronen an den Atomkernen gestreut werden. Da der Durchmesser der Atomkerne etwa 1/1000 der Neutronenwellenlänge beträgt, handelt es sich dabei um Punktstreuung, so dass die Streufaktoren unabhängig vom Beugungswinkel sind. Die Streufaktoren der Kerne variieren von Isotop zu Isotop und damit von Element zu Element, wobei auch negative Werte angenommen werden können [127]. Aus diesem Grund lassen sich banachbarte Elemente im Periodensystem, die nahezu die gleiche Elektronenanzahl besitzen, häufig mittels Neutronenbeugung voneinander unterscheiden. Ausserdem kann man im Gegensatz zur Röntgenbeugung Leichtatome wie Wasserstoff, Bor und Sticktoff auch neben schwereren Elementen in der Elementarzelle lokalisieren. Anders als bei Röntgenquanten besitzen Neutronen als Fermionen ein Spinmoment von 1/2 und weisen daher ein magnetisches Moment auf, so dass sich in Neutronendiffraktogrammen magnetische Überstrukturen bestimmen lassen. Ein weiterer Vorteil auch der Neutronenbeugung liegt im großen Durchdringungsvermögen der Neutronen. Damit können durch die Verwendung großer Probemengen Textur- sowie auch Absorptionseffekte weitgehend ausgeschlossen werden. Nachdem RIETVELD [128, 129] im Jahr 1967 ein neues Verfahren nach der Methode der kleinsten Fehlerquadrate (least-squares) zur Analyse von Neutronenpulverdiffraktogrammen einführte, wuchs das Interesse an der Anwendung der Neutronenbeugung an Pulvern zu deren Strukturverfeinerung. Neutronen werden nach ihrer kinetischen Energie eingeteilt:

< 2 meV
< 100 meV
< 1 eV
< 10 keV
< 20 MeV
>20 MeV

Für Beugungsversuche muss die Wellenlänge der Neutronen im Bereich der Gitterabstände liegen. Nach der DE-BROGLIE-Beziehung entspricht dies thermischen Neutronen mit Energien um 25 meV ($\lambda \approx 2,0$ Å). Als Neutronenquellen für Beugungsexperimente werden Spallationsquellen oder Kernreaktoren verwendet. In Kernreaktoren entstehen schnelle Neutronen im Verlauf von nuklearen Kettenreaktionen aus der Spaltung von ²³⁵U. Diese werden durch Zusammenstöße mit den Atomkernen eines meist aus Leichtelementen bestehenden Moderators (H₂O von 40°C) abgebremst, bis Moderator und Neutronen im thermischen Gleichgewicht stehen. Die Impulsverteilung der so erzeugten thermischen Neutronen ist durch die MAXWELL-BOLTZMANN-Verteilung gegeben. Da bei Kernreaktoren eine große Menge thermischer Neutronen in einem verhältnismäßig engen Energiebereich zur Verfügung steht, bietet es sich an, mit monoenergetischen (monochromatischen) Neutronen und analog zur Röntgenbeugung winkeldispersiv zu arbeiten. Für solche Experimente wird aus der gesamten Wellenlängenverteilung durch einen Monochromator (meist Ge) ein schmales Band von Wellenlängen gewählt. Die Optimierung der Auflösung erfolgt über den Beugungswinkel des Monochromators ($2\theta > 90^{\circ}$). Im Falle von Spallationsquellen als Neutronenquelle wird ein Target aus schweren Elementen wie Tantal oder Blei mit einem hochenergetischen Protonenstrahl ($E_{kin} > 0.6$ GeV) beschossen. Die Protonen durchdringen die COULOMB-Barriere der Targetatomkerne und setzen beim Zusammenstoß etwa 50 Neutronen pro Proton frei. Diese müssen wiederum auf thermische Energien moderiert werden. Verwendet man einen gepulsten Protonenstrahl, so ist die Neutronenquelle ihrerseits gepulst. Die so erzeugte Neutronenstrahlung weist ein hohes Energiespektrum auf ("weiße Neutronenstrahlung"), so dass Beugungsdaten bei Spallationsquellen häufig energiedispersiv erfasst werden.

Alle im Rahmen der vorliegenden Arbeit vorgenommenen Neutronenbeugungsexperimente wurde am Fine Resolution Powder Diffractometer (FIREPOD) [130, 131] in der Forschungsanlage des Berliner Zentrums für Neutronenstreuung (BENSC) am Hahn-Meitner Institut in Berlin-Wannsee durchgeführt. Abbildung 4-5 skizziert den Aufbau des FIREPOD. Über Stahlrohrleitungen gelangen die moderierten Neutronen vom Wasserbecken zu den Instrumenten. Die geringe Entfernung zwischen Reaktor und FIREPOD bedingt einen relativ hohen Neutronenfluss am Instrument. Ein vorgeschalteter Sapphir-Einkristallfilter wird in den Primärstrahl eingesetzt und soll die Anzahl epithermaler Neutronen minimieren und somit die Monochromatizität der Neutronen verbessern. Der Monochromator besteht aus 28 Germanium-Einkristallen und erlaubt die Einstellungen von Wellenlängen zwischen 1,20Å und 2,80Å. Die hohe Qualität der Germaniumkristalle und die Kollimation des Primär- sowie des reflektierten Strahls liefern eine hohe instrumentelle Winkelauflösung (FWHM $\approx 0.28^{\circ}$ 2θ). Das winkeldispersive FIREPOD ist mit 64 ³He-Detektoren im jeweiligen Abstand von 2.5° auf einem 160°-Kreis in 2θ ausgestattet. Die nebeneinander angeordneten Detektoren ermöglichen die simultane Erfassung von 64 Messpunkten und begünstigen so kurze Messzeiten für die Aufnahme eines Neutronendiffraktogramms. Ein komplettes Beugungsdiagramm mit einem 2 θ -Bereich von ca. 0-160° wurde durch die schrittweise Bewegung der Detektoren um 0,05° in 50 Schritten erhalten. Zur Verbesserung der Zählstatistik wurden für jede Probe fünf Beugungsdiagramme mit einem auf dem 2θ -Kreis um jeweils 2,5° verschobenen Startwinkel aufgenommen und schließlich addiert. Als Probenbehälter eignet sich aufgrund der sehr kleinen Streulänge von $b \approx 0$ und der somit extrem schwachen Streuung ein (neutronendurchlässiger) Vanadium-Container mit einem Fassungsvermögen von 5cm³. Tabelle 4-1 gibt eine Übersicht der wichtigsten Geräteparameter des FIREPOD.

Parameter	Wert
Messbereich /2 θ	$4^{\circ} \le 2\theta \le 158^{\circ}$
Maximale Auflösung $\Delta d/d$	2·10 ⁻³
Maximaler Neutronenfluss in der Probe /n·cm ⁻² ·s ⁻¹	10 ⁵
Maximaler Neutronenfluss im Stahlrohr /n·cm ⁻² ·s ⁻¹	10 ¹⁴
Wellenlängenbereich /nm	$0,12 \le \lambda \le 0,28$
Verwendete Wellenlänge /nm	$\lambda = 0,17976$
	(Kalibrierung mit Y ₂ O ₃)
Abstand Shutter-Monochromator /m	<i>d</i> = 8,40
Abstand Probe - Detektor /m	<i>d</i> =1,05
Detektorbank	64 ³ He-Einzeldetektoren,
	$\emptyset = 3.8 \text{ cm}, p = 8 \text{ atm}$

Tabelle 4-1.Instrumentparameter des FIREPOD.

Abbildung 4-5. Schematischer Aufbau des Fine Resolution Powder Diffractometer [130].

4.2.2 Strukturlösung und Verfeinerung aus Pulverdaten

Im Idealfall werden neue Kristallstrukturen aus Einkristallbeugungsdaten bestimmt. Viele Verbindungen können aber nicht als Einkristalle erhalten werden, weshalb ihre Kristallstruktur aus Pulverbeugungsdaten ermittelt werden muss. Das Hauptproblem bei dieser Methode ergibt sich dadurch, dass das dreidimensionale Beugungsbild der Einkristallbeugung auf eine Dimension reduziert wird, was in der Regel zu einer Überlagerung von Reflexen und damit grundsätzlich zu einem Informationsverlust führt. Kristallstrukturen aus Pulverdaten lassen sich somit nicht mit der gleichen Routine bestimmen wie aus Einkristalldaten. $(NH_4)_4[(MoO_2)_4O_3]$ ($C_4H_3O_5)_2$ ·H₂O stellt die erste aus Pulverdaten gelöste Kristallstruktur (Strukturlösung mit der Patterson-Methode) [132] dar. Zur Strukturlösung sind folgende Schritte durchzuführen [133]:

- a) Indizierung des Diffraktogramms
- b) Feststellung der möglichen Raumgruppen
- c) Bestimmung der ungefähren Struktur
- d) Verfeinerung der Struktur mit der Rietveld-Methode

Bei der Indizierung eines Pulverdiffraktogramms werden aus der Position der Beugungsreflexe die Größe der Elementarzelle bestimmt und den Reflexen die Miller'schen Indizes (hkl) zugeordnet. Für die Indizierung sind die Positionen der Reflexmaxima notwendig, die durch die in der Steuersoftware vorhandenen Programme bestimmt werden. Allerdings können diese automatisch bestimmten Positionen aufgrund der Überlagerung von (verbreiterten) Reflexen stark fehlerbehaftet sein. Zusätzliche Schwierigkeiten entstehen, wenn die Reflexe vor allem im vorderen 20-Bereich eine große Asymmetrie besitzen, da aufgrund dessen die Maxima der Reflexe in Richtung kleinerer 20-Werte verschoben werden. In diesem Fall empfiehlt es sich, die Reflexe einzeln mit einer Profilfunktion anzupassen, da dadurch der Schwerpunkt der Profilfläche und damit die eigentliche Reflexposition bestimmt wird. Während es mit der quadratischen Form der BRAGG'SCHEN Gleichung möglich ist, kubische Phasen "per Hand" zu indizieren, haben sich für niedrigsymmetrische Kristallstrukturen verschiedene Indizierungsprogramme bewährt. Im Rahmen der vorliegenden Arbeit wurden die Programme TREOR-90 [100] und DICVOL-04 [134] verwendet, welche mit "trial-and-error" die Miller'schen Indizes der Reflexe permutieren. Um die Verlässlichkeit einer Indizierung beurteilen zu können, werden

Gütefaktoren (*figure of merit*) berechnet. Am häufigsten werden dabei der de-Wolff-figureof-merit M_N [135] und der F_N [136] verwendet (Gleichung 4-23 und 4.24).

$$M_N = Q_N / 2 < \Delta Q > N_{calc}$$
Gleichung 4.23

$$F_N = N / < \Delta(2\theta) > N_{calc}$$
Gleichung 4.24

Q_N :	d^2 des <i>n</i> -ten Reflexes.
< <u>A</u> Q >	durchschnittliche Differenz von beobachtetem Q.
N _{calc.}	die bis zum <i>n</i> -ten beobachteten Reflex mögliche Anzahl von Reflexen.

In den beiden Programmen TREOR-90 und DICVOL-04 werden die Werte für M_{20} und F_{20} angegeben. Dabei gibt M_{20} die Verlässlichkeit einer Indizierung an, während F_{20} ein Maß für die Güte der Beugungsdaten ist. Damit eine Indizierung als zuverlässig angesehen werden kann, sollte M_{20} einen Wert M > 10 annehmen, bei M > 20 ist die Indizierung mit großer Wahrscheinlichkeit korrekt. Anhand der Tabelle 3-2 aus den *International Tables of Crystallography* lassen sich aus den Auslöschungsbedingungen die möglichen Raumgruppen bestimmen [137].

Für die Bestimmung eines Strukturmodells einer unbekannten Struktur verwendet man die klassischen Methoden, welche auch für die Strukturbestimmung aus Einkristallen herangezogen werden und die im reziproken Raum rechnen. Für die Strukturlösung mit Direkten Methoden bzw. mit der Patterson-Synthese müssen die Intensitäten genau bestimmt werden. Da die Intensität eines Reflexes durch seine Fläche gegeben ist, muss das Reflexprofil mathematisch so beschrieben werden, dass eine Integration der Fläche möglich ist. In Programmen zur Extraktion der Intensitäten wird die Lage der erlaubten Reflexe berechnet und die Intensitäten für das gesamte Diffraktogramm bestimmt (whole-pattern*fitting*) [138]. Bei starker Überlappung der Reflexe wird die Intensität zu gleichen Teilen auf die beteiligten Reflexe verteilt. Einen eleganten Lösungsansatz bietet das Programm Endeavour (Fa. Crystal Impact, Bonn) [139, 140]. Bei bekannter Elementarzelle und kristallographischer Summenformel wird zunächst von einer zufälligen Startkonfiguration der Atome ausgegangen. Im Rahmen von "simulated annealing" führt die Kombination zweier verschiedener Kostenfunktionen zu einem globalen Minimum. Die erste Funktion bezieht sich auf die potentielle Energie Epot, der jeweiligen Atomkonfiguration, die zweite auf die Übereinstimmung mit dem beobachteten Pulverdiffraktogramm unter Verwendung des Bragg-R-Wertes, R_B [141]. Die kombinierte Kostenfunktion C berechnet sich nach Gleichung 4.25.

 $C = \alpha \cdot E_{pot} + (1 - \alpha) \cdot R_B$

Über den Faktor α lässt sich die Gewichtung der beiden Unterfunktionen regulieren. Für jeden Schritt wird einerseits die potentielle Energie der Atomkonfiguration, andererseits ihr Beugungsmuster berechnet. Anschließend wird der Wert der kombinierten Funktion *C* ermittelt. Der Prozess wird so häufig wiederholt, bis *C* einen minimalen Wert erreicht hat. Bei guten Pulverdatensätzen lässt sich nach dieser Methode mit hoher Wahrscheinlichkeit eine chemisch und physikalisch sinnvolle Strukturlösung erzielen, die im Anschluß verfeinert werden kann.

Ist ein grobes Strukturmodell bekannt, besteht der nächste Schritt darin, die Struktur nach der RIETVELD-Methode (Kurvenanpassungsmethode) [128, 128, 129, 133, 142, 143] zu verfeinern. Als grobes Strukturmodell können die Atomkoordinaten aus einer *ab initio* Strukturlösung oder einer isotypen Verbindung verwendet werden. Dabei wird die Differenz zwischen dem gesamten gemessenen und dem gesamten berechneten Profil nach dem Verfahren der kleinsten Fehlerquadrate minimiert. Zur Vermeidung von Intensitätsverfälschungen in Folge der Überlappung mehrerer Reflexe wird aus den Einzelintensitäten der Messpunkte ein Reflexprofil erstellt [129] (Gleichung 4.26).

Gleichung 4.26

- *Y_{ic}* berechnete Intensität am Punkt *i*
- *Y_{ib}* Untergrundintensität

 $Y_{ic} = Y_{ib} + \sum_{k=k_1}^{k_2} G_{ik} \cdot I_k$

- *G_{ik}* normalisierte Peakprofilfunktion
- *I_{ik}* Braggintensität des *k*-ten Reflexes
- k_1 , k_2 Reflexe, die Intensität am Punkt *i* beisteuern

Dabei werden Gitterkonstanten, Lageparameter, Koeffizienten zur Beschreibung des Untergrunds, Profilparameter, der Nullpunkt und der Skalierungsfaktor sowie die Temperatur- und gegebenenfalls die Besetzungsfaktoren nach der Methode der kleinsten Fehlerquadrate so lange variiert, bis beobachtetes und berechnetes Pulverdiffraktogramm möglichst genau übereinstimmen. Dabei wird nach Gleichung 4.27 folgende Kostenfunktion minimiert:

$$R = \sum_{i} w_{i} \cdot (Y_{io} - Y_{ic})^{2}$$
Gleichung 4.27a
Mit $w_{i} = \frac{1}{\sqrt{Y_{io}}}$ Gleichung 4.27b
 w_{i} Wichtungsfaktor des *i*-ten Messpunktes
 Y_{io} Y_{ic}Wichtungsfaktor des *i*-ten Messpunktes

Vorraussetzungen für die Anwendung der RIETVELD-Methode sind ein gutes Strukurmodell, das die Startparameter für die Verfeinerung liefert, sowie die Auswahl einer geeigneten Profilfunktion, welche die Form und Breite der BRAGG-Reflexe in Abhängigkeit des Beugungswinkels 2θ beschreibt. Die Wahl der Profilfunktion hängt von gerätespezifischen Parametern wie der Art der Strahlung, der Form des Primärstrahls, der Aufnahmegeometrie sowie dem verwendeten Detektor ab. Auch Intensitätsverfälschungen, die auf Textur- oder Absorptionseffekten beruhen, können gegebenenfalls durch entsprechende Parameter berücksichtig werden. Im Rahmen der am Fine Resolution Powder Diffractometer durchgeführten Neutronenpulvermessungen wurde neben zusätzlichen, gerätespezifischen Asymmetrieparametern als Profilfunktion eine Pseudo-Voigt-Funktion in Kombination mit axialdivergenten Asymmetriefunktion verwendet einer [144]. Die Güte der Strukturverfeinerung wird schließlich durch die folgenden Restwerte ausgedrückt (Gleichung 4.28 bis 4.33):

Der Profil-*R*-Wert
$$R_p = \frac{\sum |Y_{io} - Y_{ic}|}{\sum Y_{io}}$$
 Gleichung 4.28

Der gewichtete Profil-*R*-Wert $R_{wp} = \sqrt{\frac{\sum W_i(Y_{io} - Y_{ic})}{\sum W_i Y_{io}^2}}$

Mit Wichtungsfaktor w_i des i-ten Schrittes $w_i = \frac{1}{Y_i}$ Gleichung 4.30

Der Bragg-*R*-Wert
$$R_B = \frac{\sum |I_{ko} - I_{kc}|}{\sum I_{ko}}$$
 Gleichung 4.31

 I_{ko} beobachtete integrierte Intensität des *k*-ten Reflexes I_{kc} berechnete integrierte Intensität des *k*-ten Reflexes

Der erwartete *R*-Wert
$$R_{exp} = \sqrt{\frac{N-P}{\sum w_i \cdot Y_{io}^2}}$$
 Gleichung 4.32

N, P Anzahl der Messpunkte, Anzahl der freien Parameter

Der Goodness-of-fit
$$Goof = \frac{\sum w_i \cdot (Y_{io} - Y_{ic})^2}{N - P} = \left(\frac{R_{wp}}{R_{exp}}\right)^2$$
 Gleichung 4.33

Zur Rietveldverfeinerung wurde im Rahmen dieser Arbeit das frei zugängliche Programm FULLPROF [101] im Programmpaket WinPLOTR [101] verwendet.

Gleichung 4.29

4.3 Methoden zur Analyse von Kristallstrukturen

4.3.1 Der Madelunganteil der Gitterenergie (MAPLE)

Als molare Gitterenergie E_G eines Ionenkristalls bezeichnet man diejenige Energie, die frei wird, wenn sich Ionen aus unendlicher Entfernung einander annähren. Die Gitterenergie setzt sich zusammen aus der Nullpunktsenergie E_0 , der anziehenden Dispersionskraft (LONDON'SCHE Kraft) E_D , der Abstoßungskraft (BORN'SCHE Abstoßungsenergie) E_A und der elektrostatischen COULOMB-Energie E_C (Gleichung 4.34 - 4.35).

$$E_{G} = -N_{A} \sum \left[\left(\frac{9}{8} h \cdot v_{\text{max}} \right) + \left(-C_{ij} \cdot r_{ij}^{-6} \right) + \left(\frac{B_{ij}}{r_{ij}^{n}} \right) + \left(\frac{q_{i} \cdot q_{j} \cdot e^{2}}{4\pi \cdot \varepsilon_{0} \cdot r_{ij}} \right) \right]$$
Gleichung 4.34
Gleichung 4.35

Avogadro-Konstante /6,022.10²³ N_A Planck'sches Wirkungsquantum /6,626·10⁻³⁴ J·s h maximale Schwingungsfrequenz der Ionen bei 0 K /s⁻¹ V_{max} empirisch zu bestimmende Konstanten B, C, n Abstand zwischen den Ionen r und j/mr_{ij} Ladung der Ionen *i* und *j* q_i, q_j Elektronenladung /-1, $602 \cdot 10^{-19} C$ е Dielektrizitätskonstante des Vakuums /8,854·10⁻¹² As·V⁻¹·m⁻¹ \mathcal{E}_0

Bei ionischen Verbindungen macht aufgrund der starken elektrostatischen Wechselwirkungen die Coulombenergie E_C den Hauptteil der Gitterenergie E_G aus. Hierbei spielt die Koordination des einzelnen Ions eine entscheidende Rolle. Sie geht in den MADELUNG-Faktor A [145] ein, der zur Berechnung der Coulombenergie verwendet wird (Gleichung 4.36).

$$E_{G} = -N_{A} \sum \left(E_{0} + E_{D} + E_{A} + \frac{A \cdot f(z_{i}) \cdot e^{2}}{r_{KA} \cdot 4\pi\varepsilon_{0}} \right)$$
Gleichung 4.36

A	Madelungfaktor
$f(z_i)$	Funktion der Ionenladung
r_{KA}	kürzester Abstand zwischen Kation und Anion

Der MADELUNG-Faktor ist ein rein geometrischer Faktor, der sich nur aus der Umgebung eines Kations durch Anionen und weiteren Kationen umgibt. Aufgrund gleicher Koordinationssphären konvergiert der MADELUNG-Faktor bei isotypen Verbindungen stets zu dem gleichen Wert. Der MADELUNG-Faktor, gibt an, wieviel Mal besser die Coulombenergie eins Ions in einem Kristall verglichen mit der des isolierten Ions ist. Die Summe aller Wechselwirkungen eines einzelnen Ions mit allen anderen Ionen im Gitter ergibt den Madelunganteil der Gitterenergie (**Ma**delung **P**art of Lattice Energy, MAPLE). Der MAPLE-Wert [146] (Gleichung 4.37) stellt nach HOPPE [147] eine Möglichkeit dar, unterschiedliche ionische Strukturen miteinander zu vergleichen. Summiert man die MAPLE-Werte aller Ionen, die in der Struktur vorhanden sind, so erhält man den COULOMB-Anteil der Gitterenergie (Gleichung 4.38).

$$MAPLE = \left(\frac{A \cdot f(z_i) \cdot e^2}{r_{KA} \cdot 4\pi\varepsilon_0}\right)$$
Gleichung 4.37
$$E_C = \sum MAPLE = \sum \left(\frac{A \cdot f(z_i) \cdot e^2}{r_{KA} \cdot 4\pi\varepsilon_0}\right)$$
Gleichung 4.38

Folglich ergibt sich die molare COULOMB-Energie aus Gleichung 4.39.

$$E_{C}^{mol} = -N_{A} \cdot \sum MAPLE = -N_{A} \cdot \sum \left(\frac{A \cdot f(z_{i}) \cdot e^{2}}{r_{KA} \cdot 4\pi\varepsilon_{0}}\right)$$
Gleichung 4.39

4.3.2 Mittlere fiktive und effektive Ionenradien

Die Berechnung des Madelunganteils der Gitterenergie erfolgt mit dem Programm MAPLE v. 4.0 [148]. Dazu wird zunächst ein effektiver Ionenradius (Mean Effective Ionic Radius, MEFIR) [149], der sich aus dem fiktiven Ionenradius (Fictive Ionic Radius, FIR) ergibt, berechnet. Der FIR ist definiert durch:

$$FIR(h \to i)_{j} = d(h \to i)_{j} = \left(\frac{R(h)}{R(h) + R(i)}\right)$$
 Gleichung 4.40

 $d(h \rightarrow i)$ Abstand zwischen einem Atom der Sorte h und einem Atom der Sorte i.

R(h), R(i) Ionenradien der Atome *h* und *i* nach SHANNON [150], bezogen auf $r(O^{2-}) =$ 140 pm bei sechsfacher Koordination.

Wählt man die Atome der Sorte *h* willkürlich als unveränderbare Referenzpunkte, so können die Abstände $d(h\rightarrow i)$ mit größer werdendem Abstand kategorisiert werden, wobei $d(h\rightarrow i)_1$ für den kürzesten Abstand steht. Anhand der Häufigkeit des jeweiligen Abstandes $n[d(h\rightarrow i)]$ lässt sich ein gewichteter mittlerer fiktiver Ionenradius, ¹MEFIR, definieren [151] (Gleichung 4.41).

$${}^{1}MEFIR(h) = \frac{\sum_{i}^{\infty} \sum_{j=1}^{\infty} FIR(h \to i)_{j} \cdot n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{FIR(h \to i)_{1}}\right)^{6}\right]}{\sum_{i}^{\infty} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{FIR(h \to i)_{1}}\right)^{6}\right]}$$
Gleichung 4.41

Es zeigt sich, dass bei Strukturen, die aufgrund von elektronischen Besonderheiten sehr kurze Bindungen aufweisen (z.B. Metall-Sauerstoff Doppelbindungen) eine einfache Additivität der Ionenradien nicht mehr gegeben ist und die oben aufgeführte Rechnung dadurch fehlerhaft wird [151]. Zur Korrektur zieht man eine iterative ⁿMEFIR Berechnung mit einem Abbruchkriterium (ⁿMEFIR(h) - ⁽ⁿ⁻¹⁾MEFIR(h) \leq 0,001Å) heran. Zunächst wird ¹MEFIR für den kürzesten Abstand berechnet und anschließend eine Konvergenzreihe gebildet.

$${}^{n}MEFIR(h) = \frac{\sum_{i}^{\infty} \sum_{j=1}^{\infty} FIR(h \to i)_{j} \cdot n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{p}MEFIR(h \to i)_{1}}\right)^{6}\right]}{\sum_{i}^{\infty} \sum_{j=1}^{\infty} n(h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{p}MEFIR(h \to i)_{1}}\right)^{6}\right]}$$
Gleichung 4.42

Dabei gilt: p = 1, n = 2.

4.3.3 Effektive Koordinationszahl

Mit Hilfe der FIR- und MEFIR-Werte lassen sich nun effektive Koordinationszahlen (Effective Coordination Number, ECoN) berechnen [152, 153] (Gleichung 4.43 und 4.44). Nach dieser Methode können für ECoN auch gebrochene Werte erhalten werden.

$${}^{1}ECoN(h \to i) = \sum_{i} \sum_{j=1}^{\infty} n \cdot (h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{1}MEFIR(h \to i)}\right)^{6}\right]$$
Gleichung 4.43
$${}^{n}ECoN(h \to i) = \sum_{i} \sum_{j=1}^{\infty} n \cdot (h \to i)_{j} \cdot \exp\left[1 - \left(\frac{FIR(h \to i)_{j}}{{}^{n}MEFIR(h \to i)}\right)^{6}\right]$$
Gleichung 4.44

Ein Vergleich des so ermittelten Coulombanteils der Gitterenergie mit demjenigen Wert, der sich aus der Summe der binären Komponenten ergibt, erlaubt für weitgehend ionisch aufgebaute Verbindungen eine recht zuverlässige Überprüfung der Kristallstruktur aufgrund der energetischen Verhältnisse, da in ionischen Verbindungen der Hauptteil der Energie auf den Coulombanteil entfällt, und zusätzliche Beiträge zur Gitterenergie weitgehend vernachlässigt werden können. Die Abweichung bei ionischen Verbindungen, z.B. bei Oxiden, beträgt meistens weniger als 1%. Ternäre Verbindungen mit komplexen Anionen, wie Sulfate oder Phosphate, die erhebliche kovalente Bindungsanteile aufweisen, zeigen größere Abweichungen.

4.4 Spektroskopische Untersuchungsmethoden

4.4.1 Schwingungsspektroskopie

Bei der IR-Spektroskopie [154, 155] wird durch Absorption eines Lichtquants eine Grundschwingung angeregt. Mit Strahlung im infraroten Bereich der elektromagnetischen Spektrums lassen sich hierbei Schwingungen sowohl von Atomen als auch von komplexen Ionen wie $[PO_4]^{3-}$ oder $[P_2O_7]^{4-}$ anregen, so dass deren Anwesenheit in den zu untersuchenden Proben überprüft werden kann. Durch Intensitätsvergleich mit einem Referenzstrahl werden die Frequenzen der absorbierten Strahlung bestimmt. Alle Messungen wurden mit einem FT-IR-Spektrometer (IFS 113v) der Firma BRUKER durchgeführt. Der typische Wellenzahlbereich der aufgenommenen Spektren lag zwischen 400 und 2000 cm⁻¹. Zur Messung wurden etwa 2mg der Probe gründlich mit Kaliumbromid (ca. 0,5 g, > 99%, FT-IR geeignet, Fa. Sigma-Aldrich, Steinheim) verrieben und zu einem Pressling geformt. KBr wird als Dispersionsmittel verwendet, da es selbst keine Absorption im jeweiligen Messbereich zeigt. Die Fourier-Transformations-Infrarot-Spektroskopie zeichnet sich durch eine besonders hohe Auflösung aus. Nur Schwingungen bei denen sich das Dipolmoment ändert, können mit IR-Strahlung angeregt werden. Nimmt man den einfachen Fall eines harmonischen Oszillators an, so gilt für den Zusammenhang zwischen der Energie der absorbierten Strahlung und der Frequenz der Schwingung Gleichung 4.45.

$$E = (v + \frac{1}{2}) \cdot h \cdot v$$

Gleichung 4.45

- v Quantenzahl für das Energieniveau (Auswahlregel: $\Delta v = \pm 1$)
- *h* Planck'sche Wirkungsquantum $/6,626 \cdot 10^{-34}$ J·s

```
v Frequenz /s^{-1}
```

Die Frequenz ist abhängig von der Bindungsstärke, die hier durch die Kraftkonstante k beschrieben wird und der reduzierten Masse μ der an der Schwingung beteiligten Atome (Gleichung 4.46).

$$v = \frac{1}{2\pi} \sqrt{\frac{k}{\mu}}$$
 Gleichung 4.46

 μ reduzierte Masse /kg

k Kraftkonstante der Schwingung /N·m⁻¹

Die Kraftkonstante ist abhängig vom Bindungsgrad, wobei sie sich bei vergleichbaren Bindungsverhältnissen von Ein-, Zwei- und Dreifachbindungen annährend wie 1 : 2 : 3 verhält. So kann über die Frequenz der absorbierten Strahlung eine Aussage über die Bindungsverhältnisse getroffen werden. Im Rahmen dieser Arbeit waren Valenz- und Deformationsschwingungen von anionischen Phosphor/Sauerstoff-Systemen (Ortho- und Diphosphate) von Interesse, da aufgrund der Lage der IR-Banden Aussagen über das Vorliegen von isolierten (PO_4)³⁻-Einheiten bzw. kondensierten Phosphaten getroffen werden konnten.

Bei der Raman-Spektroskopie [154, 155] bestrahlt man die Probe mit energiereichen Quanten, die von den Molekülen nicht absorbiert werden können. Dies führt zu drei Effekten. eingestrahlten Elastische Stöße der Photonen führen zu einem angeregten Schwingungszustand, der sofort wieder in den Grundzustand übergeht, die Energie der Photonen ändert sich nicht. Diese Strahlung wird als RAYLEIGH-Stahlung bezeichnet. Durch inelastische Stöße mit Photonen wird im Molekül eine Schwingung angeregt. Fällt das Molekül anschließend nicht in den Grundzustand, sondern in den ersten angeregten Zustand, so verringert sich die Energie der abgestrahlten Photonen um die Übergangsenergie v = 0nach v = 1. Diese Emission wird als Stokes-Bande bezeichnet. Werden in einem Molekül, das sich im ersten angeregten Zustand befindet, Schwingungen angeregt und fällt dieses in den Grundzustand, so hat das gestreute Photon eine Energie, die um die Übergangsenergie v= 0 nach v = 1 vergrößert ist. Bei einer solchen Form der Emission handelt es sich um anti-Stokes-Banden (Abbildung 4-6). Gemessen wird die intensivere Stokes-Bande. Eine Schwingung ist nach den Auswahlregeln nur dann Raman-aktiv, wenn sich beim Schwingungsvorgang die Polarisierbarkeit ändert. Hierdurch sind viele IR-inaktive Schwingungen mit der Raman-Spektroskopie detektierbar, so dass diese Methode eine sinnvolle Ergänzung zur IR-Spektroskopie darstellt. Für die Messungen stand ein FT-Raman-Spektrometer RFS 100 der Firma Bruker zur Verfügung. Die Probe wird in einem zugeschmolzenen Schmelzpunktbestimmungsröhrchen direkt in den monochromatischen Strahl eines Neodym-YAG-Lasers ($\lambda = 1064$ nm) gebracht. Neben der entstehenden RAYLEIGH-Streuung erfolgte die Messung der Streustrahlung (Raman-Streuung) durch einen mit flüssigem Stickstoff gekühlten Germanium-Detektor. Die Streustrahlung wird in senkrechter Richtung zum Primärstrahl gemessen.

Abbildung 4-6. Entstehung von Raman-Banden.

4.4.2 ³¹P-MAS-NMR Spektroskopie

Für eine bestimmte Kernsorte (z.B. ¹H, ¹³C, ²⁹Si, ³¹P) sind durch NMR-spektroskopische Untersuchungen im flüssigen Zustand Parameter wie "chemische Verschiebung" und "Kopplungskonstante" leicht zugänglich und lassen sich so oft bequem und direkt in chemische Information umsetzen. Wegen des anisotropen Verhaltens von einkristallinen Festkörpern sind nicht nur Resonanzen zu erwarten, die einer unterschiedlichen chemischen Umgebung entsprechen, sondern auch solche Resonanzen, die aus der unterschiedlichen Orientierung der Teilchen relativ zu einem äußeren Magnetfeld B_0 resultieren (zur Anisotropie der chemischen Verschiebung). In der Festkörper-NMR-Spektroskopie [156, 157, 158] wird eine zu untersuchende Probe an dieses äußere Magnetfeld angelegt. Nach der LENZ'SCHEN Regel induziert bewegte Ladung in einem Magnetfeld ein weiteres Magnetfeld, welches dem äußeren Magnetfeld entgegengesetzt ist. Dies hat zur Folge, dass am Kernort ein anderes Magnetfeld wirkt als außerhalb des Atoms. Daraus ergibt sich eine unterschiedliche chemische Verschiebung für gleiche Kerne mit unterschiedlicher chemischer Umgebung. Bei der chemischen Verschiebung wird zwischen isotroper und anisotroper chemischer Verschiebung unterschieden. Die isotrope chemische Verschiebung δ_{iso} ist im Gegensatz zur anistropen chemischen Verschiebung δ_{aniso} unabhängig von der Orientierung der Molekülachsen zum Magnetfeld. Während das Phänomen der Anisotropie ausschließlich in der Festkörper-NMR-Spektroskopie beobachtet wird, misst man bei NMRspektroskopischen Untersuchungen in Lösung lediglich isotrope chemische Verschiebungen, da die Moleküle durch die BROWN'SCHE Molekularbewegung so stark rotieren, dass alle richtungsabhängigen Wechselwirkungen gemittelt werden. Dies führt für Kerne mit $I = \frac{1}{2}$ (d.h. mit symmetrischer Ladungsverteilung im Kern) im allgemeinen zu NMR-Spektren mit sehr hoher Auflösung Die Linienbreite der Resonanzsignale eines NMR-Experiments in

Lösung ist dann sehr gering ($\Delta v_{1/2} \leq 0,1$ Hz). Dagegen können die Linien von Festkörpern bis zu mehreren Kilohertz (kHz) breit sein und resultieren neben der Anisotropie der chemischen Verschiebung auch aus einem Beitrag direkter Dipol-Dipol-Wechselwirkungen zwischen den Kernspins. Das magnetische Moment der Kerne erzeugt ein lokales Magnetfeld welches im Gegensatz zu Lösungen in Festkörpern nicht zu Null gemittelt wird. Zur Umgehung dieser Probleme bedient man sich bei der Festkörper NMR-Spektroskopie einer Methode, bei der durch eine schnelle makroskopische Rotation um einen sogenannten magischen Winkel θ (mit $\theta = 54,74^{\circ}$) die Linienbreite der magnetischen Resonanzen reduziert und eine hohe spektrale Auflösung erreicht werden kann. Dieses Verfahren wird Magic Angle Spinning (MAS) [156] genannt. Der Winkel θ ergibt sich für den Beitrag der chemischen Verschiebung zum HAMILTON-Operator \hat{H}_{CV} (Gleichung 4.47):

$$\hat{H}_{CV} = \delta_{iso} \cdot \gamma \cdot B_0 \cdot \hat{I}_z + (1 - 3\cos^2\theta) \cdot \delta_{aniso}$$

Gleichung 4.47

γ gyromagnetisches Verhältnis eines Kerns

 B_0 angelegtes, äußeres Magnetfeld

 \hat{I}_z z-Anteil des Kernspin-Operators

Beim MAS-NMR Experiment macht man sich zunutze, dass der Term (1- $3\cos^2\theta$), der die Richtungsabhängigkeit sowohl der Dipol-Dipol-Wechselwirkung als auch der Anisotropie der chemischen Verschiebung beschreibt, bei dem magischen Winkel ($\theta = 54,74^\circ$) einen Wert $\theta = 0$ annimmt. In der Praxis lässt man die Probe um diesen Winkel zum angelegten Feld rotieren (Abbildung 4-7). Von entscheidender Bedeutung hierbei ist eine möglichst hohe Rotation (*spinning*) der Probe. Um ausschließlich die isotrope chemische Verschiebung zu erhalten, muss die Rotationsgeschwindigkeiten ω_{Rot} hoch genug sein, um die Anisotropie vollständig rauszumitteln. Bei langsamerer Rotation kommt es zu einer Linienverbreiterung und beträchtlichen Verlusten an Signalintensität, die sich in den sogenannten Rotationsseitenbanden (*"spinning side bands"*) um die Resonanz der isotropen chemischen Verschiebung im Abstand von ganzzahligen Vielfachen der Rotationsfrequenz wiederfinden kann. Eine detaillierte Analyse der Seitenbanden und ihrer Intensität, welche durch die langsamere Probenrotation entstanden sind, ist notwendig, um Informationen über die anisotropen chemischen Verschiebungen enthalten. Für die Aufnahme von MAS-NMR-Spektren sind daher Rotationsgeschwindigkeiten der Probe von $\omega_{rot} \ge 6$ kHz erforderlich.

Abbildung 4-7. Probenrotation um den magischen Winkel.

Besteht eine Probe aus identischen Spin-½-Kernen, so kann der Drehimpuls mit der Quantenzahl $I = \frac{1}{2}$ durch einen Vektor der Länge $(I (I + \frac{1}{2}))^{\frac{1}{2}}$ und der z-Komponente dargestellt werden. Da das Unschärfeprinzip eine exaktere Bestimmung der x- und y-Komponente verbietet, befindet sich der Vektor auf einem Kegelmantel um die z-Achse. Dabei können die Vektoren entweder in der +z-Richtung (α -Zustand) oder -z-Richtung (β -Zustand) orientiert sein. Liegt kein Magnetfeld an der Probe an, sind beide Zustände gleichwertig und es kommt zu einer Gleichverteilung (Abbildung 4-8a). Die Magnetisierung M beschreibt das resultierende magnetische Moment, welches für diesen Fall M = 0 beträgt. Sobald ein Magnetfeld an die Probe angelegt wird, unterscheiden sich die Energien der Spinzustände. Es kommt zu einer Herabsetzung der Energie der α -Spins und zu einer energetischen Anhebung der β -Spins. In Anwesenheit eines Magnetfeldes präzessieren die Spins um die Feldrichtung, so dass die Anzahl an α -Spins gegenüber der an β -Spins überwiegt (Abbildung 4-8b). Die Folge ist eine resultierende Magnetisierung in z-Richtung. Nach BOLTZMANN folgt für die Änderung der Besetzungszahlen des α - und β -Zustands durch das Magnetfeld:

$$\frac{N\alpha}{N\beta} = \exp\left(\frac{-h\nu_L}{kT}\right) = \exp\left(\frac{-\Delta E}{kT}\right) = \exp\left(\frac{-\gamma hB_0}{2\pi kT}\right) \approx 1 - \frac{\gamma hB_0}{2\pi kT}$$
Gleichung 4.48

 N_{α} , N_{β} Besetzungszahlen der Spinzustände

- ΔE Energiedifferenz zwischen den Spinzuständen /J
- *v*_L Larmorfrequenz
- *h* PLANCK'SCHES Wirkungsquantum /J·s
- B_0 äußeres Magnetfeld /T
- *k* BOLTZMANN-Konstante /1,380·10⁻²³ J·K⁻¹
- T Temperatur /K

Unter der Annahme einer geringen Energiedifferenz ΔE herrscht im Gleichgewichtszustand nur ein geringer Überschuss an Kernen im unteren Niveau vor (für ein Feld von $B_0 = 1,2T$ beträgt bei Raumtemperatur $\Delta E = 0,02J$). Diese Differenz in den Besetzungszahlen ist jedoch ausreichend groß, um eine resultierende Magnetisierung der Probe in z-Richtung zu beobachten.

Abbildung 4-8. Magnetisierung einer Probe aus Spin- $\frac{1}{2}$ -Kernen in Abwesenheit (a) und Anwesenheit (b) eines Magnetfeldes [159].

An der Probe wird ein Radiofrequenzfeld mit der Feldstärke *B1* angelegt, welches in der *xy*-Ebene zirkular polarisiert ist und eine Frequenz aufweist, die mit der Larmorfrequenz der Spins in der Probe übereinstimmt. Dabei beginnen die Spins um *B1* zu präzessieren, deren Präzessionsgeschwindigkeit hängt dabei von der Stärke des *B1*-Feldes ab. Klappt die Magnetisierung der Probe durch das Radiofrequenzfeld in die *xy*-Ebene um, so spricht man von einem 90°-Puls. Der Vektor der Magnetisierung rotiert mit der Larmorfrequenz der Probe in der *xy*-Ebene. Dieses Signal wird verstärkt und weiterverarbeitet. Unterschiedliche Präzessionsgeschwindigkeiten der verschiedenen Spinzustände führen jedoch dazu, dass der Betrag der transversalen Magnetisierung exponentiell abnimmt und von der Empfängerspule ein schwächeres Signal gemessen wird. Das beobachtete Signal oszilliert und wird auch als freie abklingende Induktion (*free induction decay*, FID) bezeichnet [156, 159].

Pulssequenzen, die ausschließlich aus 90°-Pulsen bestehen, werden im Saturation-Recovery Experiment [158, 159] eingesetzt. Ziel dieses Experiments ist die Bestimmung der longitudinalen Spin-Gitter-Relaxationszeit T_1 eines Systems. Die Halbwertszeit T_1 gibt Auskunft über die Wiederherstellungsdauer der BOLTZMANN-Verteilung der betroffenen Energiezustände eines Kerns. Bei diesem Prozess wird mit der Umgebung des Kerns Energie ausgetauscht. Die Halbwertszeit T_2 (transversale Spin-Spin-Relaxationszeit) kennzeichnet das Abklingen der Intensität der induzierten Magnetisierung und ist ein entropischer Prozess. Damit bestimmt die Konstante T_2 die Linienbreite $\Delta v_{1/2}$ der Resonanzsignale, während T_1 die Wiederholungsrate des NMR-Experiments determiniert [158, 159].

Die chemische Verschiebung eines Moleküls mit beliebiger Orientierung zum Magnetfeld lässt sich im Allgemeinen mit sechs Parametern beschreiben, den drei Hauptachsen δ_{11} , δ_{22} , δ_{33} (Tensorhauptwerte) und den drei Winkeln $\Theta = \{\alpha, \beta, \gamma\}$, welche die Orientierung relativ zur Magnetfeldachse beschreiben. Die drei Hauptachsen können sehr unterschiedliche Werte annehmen, was zur Folge hat, dass die beobachtete chemische Verschiebung des gemessenen NMR-Signals von der Orientierung des Moleküls relativ zum angelegten Magnetfeld abhängt. In der Festkörper-NMR-Spektroskopie spielen im Gegensatz zur Flüssigkeits-NMR-Spektroskopie alle sechs Komponenten eine wichtige Rolle und lassen sich für Korrelationen mit der Struktur verwenden. Sowohl die Orientierung wie auch die Tensorhauptwerte nehmen baugruppenspezifische Werte an und eignen sich deshalb für die Strukturaufklärung anorganischer Proben. Da bei der Messung pulverförmiger Proben die Orientierung der chemischen Verschiebung bezüglich der z-Achse statistisch verteilt ist, geht die Orientierungsabhängigkeit in Form der Winkel $\Theta = \{\alpha, \beta, \gamma\}$ verloren und es lassen sich nur die drei Tensorhauptwerte δ_{11} , δ_{22} , δ_{33} bestimmen. Für Strukturkorrelationen hat sich die Darstellung der drei Hauptwerte in eine andere Form als günstig erwiesen. Man transformiert von { δ_{11} , δ_{22} , δ_{33} } nach { δ_{iso} , δ_{aniso} , η }, so dass beide Darstellungen nach wie vor den gleichen Gehalt besitzen. Die Darstellung mit isotroper chemischer Verschiebung δ_{iso} , Anisotropie δ_{aniso} und Asymmetrieparameter η lässt sich jedoch leichter in einen chemischen Zusammenhang bringen, als die der Tensorhauptwerte. Die chemische Verschiebung δ ist gemäß Gleichung 4.49 definiert:

$$\delta = \frac{(v - v_{ref})}{v_{ref}}$$
 Gleichung 4.49

 δ chemische Verschiebung /ppm

v Resonanzfrequenz der Probe /Hz

 v_{ref} Resonanzfrequenz eines willkürlich gewählten Standards mit der chemischen Verschiebung $\delta = 0$ /Hz

Man sortiert die Hauptachsenwerte der chemischen Verschiebung nach ihren Frequenzen (Gleichung 4.50):

$$\delta_{11} \ge \delta_{22} \ge \delta_{33}$$
 Gleichung 4.50

Die isotrope chemische Verschiebung δ_{iso} ist definiert als:

$$\delta_{iso} = \frac{(\delta_{11} + \delta_{22} + \delta_{33})}{3}$$
 Gleichung 4.51

Man sortiert bezüglich der Differenz zum isotropen Wert:

$$|\delta_{cc} - \delta_{iso}| \ge |\delta_{bb} - \delta_{iso}| \ge |\delta_{aa} - \delta_{iso}|$$
Gleichung 4.52

Somit lassen sich die Anisotropie δ_{aniso} und der Asymmetrieparameter η berechnen:

$$\delta_{aniso} = \delta_{cc} - \delta_{iso} \text{ und } \eta = \frac{\delta_{bb} - \delta_{aa}}{\delta_{aniso}} \eta \in [0, 1]$$
 Gleichung 4.53

Die ³¹P-MAS-NMR Spektroskopie eignet sich dazu, in Abhängigkeit von der chemischen Umgebung des Phosphor-Kerns in Phosphatgruppen Larmorfrequenzen und somit auch chemische Verschiebungparameter δ_{iso} bzw. δ_{aniso} zu bestimmen. Phosphor mit dem ³¹P-Kern (100% natürliche Häufigkeit, $I = \frac{1}{2}$) ist für NMR-Messungen ein besonders attraktives Element. Die große Anzahl an bereits vorhandenen Strukturinformationen von Phosphaten, ermöglicht häufig eine Korrelation der NMR-Parameter mit den Ergebnissen von Röntgenstrukturanalysen. Die aus NMR-Messungen gewonnenen Erkenntnisse erlauben daher oft einen tieferen Einblick in die Natur der chemischen Bindung. Die nachstehend aufgeführten Tabellen 4-2, 4-3 und 4-4 geben die Werte der isotropen und anisotropen chemischen Verschiebungen von Q_0 -, Q_1 - und Q_2 -Einheiten in den Phosphaten einiger diamagnetischer Kationen wieder. Die ³¹P-MAS-NMR Spektren in dieser Arbeit wurden bei Resonanzfrequenzen von 200 MHz (11,75 Tesla Magnet), 400 MHz (23,2 Tesla) und 500 MHz (29,0 Tesla) mit Rotationsgeschwindigkeiten $6.3 \le \omega_{rot} \le 25.0$ kHz mit einem Varian Infinity Plus NMR-Spektrometer (AuPO₄, Ag₂PdP₂O₇, HgPdP₂O₇ und CaPd₂(PO₄)₂) bzw. einem Bruker Avance DSX Spektrometer (Ir(PO₃)₃) unter Magic-Angle-Spinning-Bedingungen (MAS) gemessen. Dafür wurde ein MAS-Doppelresonanzprobenkopf für Rotoren mit einem Durchmesser von 2,5 mm benutzt. Die Proben wurden unter Stickstoffatmosphäre in einer Glove-Box in die Rotoren gefüllt. Als externer Standard diente 85%-ige Phosphorsäure ($\delta = 0$). Spektren-Anpassungen wurden mit dem PC-Programm SIMPSON [160] ausgeführt.

Orthophosphat	δ_{iso} / ppm	δ_{aniso} / ppm	η	Lit.
Li ₃ PO ₄	10,8			[161]
Na ₃ PO ₄	14,0			[161]
K ₃ PO ₄	10,8			[161]
Rb ₃ PO ₄	0,5, -0,2, -0,9		0	[161]
Cs ₃ PO ₄	-3,1, -5,1, -6,4, -7,1		0	[161]
$\operatorname{Be}_3(\operatorname{PO}_4)_2$	-9,2			[165]
$Mg_3(PO_4)_2 \cdot 8H_2O$	4,6			[165]
$Ca_3(PO_4)_2$	3,0			[165]
$Cd_3(PO_4)_2$	7,9, 10,6, 12,0,		0,72, 0,93, 0,92	[162]
	19,5, 21,5, 22,0		1,00, 0,88, 0,85	
BPO ₄	-29,5			[165]
AlPO ₄	-24,5			[165]
GaPO ₄	-9,8			[165]
YPO ₄	-0,9			[165]
InPO ₄	-4,4			[165]
FePO ₄	-22,2			[165]

Tabelle 4-2. ³¹P-NMR-Verschiebungsparameter von Orthophosphaten (Q_0).

Tabelle 4-3. ³¹P-NMR-Verschiebungsparameter von Diphosphaten (Q_l).

Diphosphat	δ_{iso} / ppm	δ_{aniso} / ppm	η	Lit.
$Na_4P_2O_7$	2,9, 1,3	129, 119	0,25, 0,25	[163]
$K_4P_2O_7$	-1,3	83,3	0,0	[164]
$Ag_4P_2O_7$	7,6			[165]
$Hg_4P_2O_7$	-0,4			[165]
$Mg_2P_2O_7$	-5,9	79,9	0,63	[164]
α -Mg ₂ P ₂ O ₇	-20,2, -13,8	84,0, 71,0	0,30, 0,20	[166]
β -Mg ₂ P ₂ O ₇	-19,2	79,0	0,30	[166]
$Ca_2P_2O_7$	-8,9	84,9	0,48	[164]
α -Ca ₂ P ₂ O ₇	-11,0, -8,1	103, 96	0,3, 0,5	[167]
α -Sr ₂ P ₂ O ₇	-9,8, -7,5	94,0, 87,0	0,30, 0,30	[168]
$Pb_2P_2O_7$	-8,4, -8,9, -11,3, -12,0	82,0, 80,0, 79,0, 80,0	0,25, 0,25, 0,55, 0,55	[169]
α -Zn ₂ P ₂ O ₇	-21,2, -19,1, -15,9	80,7, 71,4, 70,9	0,0, 0,36, 0,38	[165]
$Hg_2P_2O_7$	-2,0, -0,5	71,5, 78,3	0,35, 0,60	[165]
$Pd_2P_2O_7$	28,3	110	0,86	[17]
$In_4(P_2O_7)_3$	-28,2			[165]

Metaphosphat	δ_{iso} / ppm	δ_{aniso} / ppm	η	Lit.
Na ₃ P ₃ O ₉	-17,7	-151,3	0,32	[164]
$Mg(PO_3)_2$	-37,3, -34,9	-210, -195	0,33, 0,43	[166]
$Ca(PO_3)_2$	-32,8, -31,0, -29,8	-206, -197, -190	0,36, 0,60, 0,53	[167]
	-27,7, -24,1, -19,1	-184, -206, -162	0,64, 0,64, 0,48	
$Sr(PO_3)_2$	-31,9, -30,7, -28,6	-191, -185, -180	0,58, 0,68, 0,62	[168]
$Pd(PO_3)_2$	-14,7	-125	0,53	[17]
$Hg(PO_3)_2$	-17,8, -22,0			[165]
$Pb(PO_3)_2$	-27,8, -28,7, -30,5	-117, -115, -128	0,55, 0,54, 0,50	[169]
	-31,5	-122	0,55	
$La(PO_3)_3$	-34,4, -43,7	-85,6, -142,3	0,44, 0,44	[170]
Fe(PO ₃) ₃	-13,6, -29,5			[165]
Al ₄ (P ₄ O ₁₂) ₃	-51	-124	0,48	[170]

Tabelle 4-4. ³¹P-NMR Verschiebungsparameter von Metaphosphaten (Q_2).

SPEZIELLER TEIL

5 Ausgangsverbindungen

5.1 Käufliche Chemikalien

Die in dieser Arbeit verwendeten Chemikalien sind in Tabelle 5-1 aufgelistet. Um einer Verunreinigung mit Sauerstoff und Wasser vorzubeugen, wurden hygroskopische oder oxidationsempfindliche Substanzen (Ir^{III}Cl₃·xH₂O, N₂H₄·2HCl, Sr(OH)₂·8H₂O, Ba(OH)₂·8H₂O) im Exsikkator über Silicagel aufbewahrt. Argon wurde bei der Herstellung von Quarzglasampullen als Schutzgas benutzt und mit der multifunktionellen Apparatur von Feuchtigkeitsspuren befreit.

Substanz	Hersteller	Reinheit
Aceton	Merck, Darmstadt	99%
AgNO ₃	AppliChem, Darmstadt	p. A.
Argon	Air Products, Hattingen	99,996%
As ^{III} ₂ O ₃	Merck, Darmstadt	p. A.
Ba(OH) ₂ ·8H ₂ O	Riedel de Haën, Seelze	reinst
Ca(OH) ₂	Acros, Geel, Belgien	k. A.
CdO	Merck, Darmstadt	reinst
CsNO ₃	Sigma-Aldrich, Steinheim	99,99%
Flusssäure	Merck, Darmstadt	38-40%; reinst
HgO	Merck, Darmstadt	p. A.
Gold		Feingold, 24-Karat
Iridium	Merck, Darmstadt	> 99,9%, Pulver
Ir ^{IV} O ₂	Umicore, Hanau	85,30% Ir
Ir ^{III} Cl ₃ ·xH ₂ O	Degussa, Frankfurt a. M.	53,55% Ir
Ir ^{IV} Cl ₄ ·xH ₂ O	Chempur, Karlsruhe	52,80% Ir
$H_2Ir^{IV}Cl_6 \cdot 6H_2O$	Umicore, Hanau	38,50% Ir
KNO ₃	AppliChem, Darmstadt	p. A.
N_2H_4 ·2HCl	Sigma-Aldrich, Steinheim	> 99,0%
NaNO ₃	Merck, Darmstadt	p. A.
Orthophosphorsäure	Merck, Darmstadt	85-88%, reinst
Palladium	Umicore, Hanau	> 99,0%
Pb ₂ (OH) ₂ CO ₃	Merck, Darmstadt	reinst
Platin	Merck, Darmstadt	>99,9%, Pulver
Kieselglas	GVB, Aachen	

 Tabelle 5-1.
 Käufliche Chemikalien.

RbNO ₃	Sigma-Aldrich, Steinheim	99,99%
Salpetersäure	Merck, Darmstadt	65%, reinst
Salzsäure	Riedel de Haën, Seelze	37% p.A.
Sauerstoff	Air Products, Hattingen	99,9%
Sr(OH) ₂ ·8H ₂ O	Sigma-Aldrich, Steinheim	99,995%
Tiefquarz	Merck, Darmstadt	p. A.
TINO ₃	Sigma-Aldrich, Steinheim	99,99%
Wasserstoff	Air Products, Hattingen	99,9%
ZnO	Riedel de Haën, Seelze	p. A.

Fortsetzung von Tabelle 5-1.

5.2 Darstellung wichtiger Edukte

5.2.1 Gold(III)-oxidhydroxid, "AuO(OH)"

Die Synthese von frisch gefälltem, reaktivem Gold(III)-oxidhydrat erfolgte nach BRAUER [171] ausgehend von Goldfolie (bzw. Goldbarren) und führte über die beiden Zwischenstufen Tetrachlorogold(III)-säure und Kaliumtetrachloroaurat(IV)-hemihydrat zum gewünschten braun-glänzenden, amorphen und säurelöslichen "AuO(OH)". Bei dieser Verbindung kann es sich, statt der in der Literatur [171] oftmals angegebenen Summenformel Au(OH)₃ auch um ein Gold(III)-oxidhydroxid, AuO(OH) bzw. ein wasserhaltiges Goldoxid Au₂O₃·nH₂O handeln. Mit Hilfe der Atomabsorptionsspektroskopie (AAS) konnte vor kurzem die Zusammensetzung bestimmt werden [54]. Die Analyse lässt auf eine im Vergleich zu Au(OH)₃ goldreichere Verbindung schließen, etwa "AuO(OH)".

Tetrachlorogold(III)-säure. In einem repräsentativen Experiment zur Darstellung von HAuCl₄·4H₂O wurden 1,750g (8,88 mmol) Goldfolie in einer Mischung aus konz. HCl und konz. HNO₃ (3:1 Volumenteile, Königswasser) bei Wasserbadtemperatur vollständig gelöst (siehe Gleichung 5.1). Dabei wurde eine tief-orange Lösung erhalten und das Lösungsmittel anschließend im Wasserstrahlvakuum entfernt. Zur vollständigen Vertreibung der Salpetersäure wurde zweimal mit jeweils 15 ml konzentrierter Salzsäure abgeraucht, die überschüssige Salzsäure durch Absaugen entfernt und die resultierende Schmelze in eine Schale gegossen, wo sie zu einer Kristallmasse erstarrte. Vorhandene Mutterlauge wurde abgegossen und die Kristalle zerdrückt, damit sie im Trockenschrank (100°C) schnell getrocknet werden konnten. Mehrmaliges feines Verreiben der Masse während des Trocknens führte dazu, dass die Probe vollständig von Wasser und HCl befreit werden

konnte. Da die erhaltenen, hellgelben Kristallnadeln von HAuCl₄·4H₂O an der Luft rasch zerfließen, war die Aufnahme eines Beugungsdiffraktogramms nicht möglich.

$$Au_s + NO_2^+Cl_{aq.}^- + 3 HCl_{aq} + 3 H_2O \rightarrow HAuCl_4 \cdot 4H_2O_s + NO_g$$
 Gleichung 5.1

Kaliumtetrachloroaurat(III). Eine salzsaure Lösung von 1,640g (4,823 mmol) HAuCl₄·4H₂O wurde in einer Petrischale mit einer konzentrierten wässrigen Lösung von 0,359g (4,823 mmol) Kaliumchlorid versetzt (Gleichung 5.2). Die Mischung wurde daraufhin bei gelinder Wärme (50°C) vorsichtig eingedampft, wobei sich aus der zunehmend gesättigten Lösung mehrere Zentimeter lange, hellgelbe, an der Luft beständige Nadeln ausbildeten (siehe Abbildung 5-1a). *IP*-Guinieraufnahmen der verriebenen Kristalle bestätigten die Reinheit des Produkts. Die Ausbeuten an KAuCl₄·½H₂O beliefen sich bezogen auf die vorgelegte Menge an Gold auf ca. 85%

$$H[AuCl_4] + K^+_{aq.} + Cl^-_{aq.} + \frac{1}{2} H_2O_{aq.} \rightarrow KAuCl_4 \cdot \frac{1}{2} H_2O_s + H^+ + Cl^- \qquad \text{Gleichung 5.2}$$

Gold(III)-oxidhydroxid. 1,840g (4,754 mmol) KAuCl₄·½H₂O wurden vollständig in Wasser gelöst und in einem Becherglas mit einem Überschuss von 0,757 g (7,131 mmol) Na₂CO₃ bei Wasserbadtemperatur etwa eine Stunde lang erhitzt (Gleichung 5.3). Der entstandene, braune Niederschlag wurde abfiltriert und chloridfrei gewaschen, darauf mit warmer verdünnter Schwefelsäure digeriert und schließlich auf einem Glasfiltertiegel sorgfältig mit Wasser behandelt, bis das Filtrat schwefelsäurefrei war. Das erhaltene braune Pulver (Abbildung 5-1b) wurde anschließend im Exsikkator 24 Stunden lang bei Zimmertemperatur über konz. H₂SO₄ getrocknet. Nach Ausweis von Guinieraufnahmen ist das Produkt röntgenamorph. Als eine besonders günstige Eigenschaft von "AuO(OH)" im Hinblick auf die Darstellung eines Goldphosphats durch Fällung aus phosphorsaurer Lösung hat sich dessen leichte Löslichkeit in halbkonzentrierter HNO₃ unter Bildung einer gelbgrünen Lösung der Tetranitratogold(III)säure (H₅O₂)[Au^{III}(NO₃)₄]·H₂O [54] erwiesen. Der beim vorsichtigen Trocknen der salpetersauren "AuO(OH)"-Lösung erhaltene, gelbgrüne Rückstand wurde röntgenographisch charakterisiert und zeigte ausschließlich Reflexe von (H₅O₂)[Au^{III}(NO₃)₄]·H₂O.

$$K[AuCl_4] + CO_3^{2-}_{aq.} + OH_{aq.} \rightarrow ``AuO(OH)_s`` + CO_{2,g} + K^+ + 4 Cl^- \qquad Gleichung 5.3$$

Abbildung 5-1. Aus einer salzsauren Lösung abgeschiedene Nadeln von $KAuCl_4$ · $\frac{1}{2}H_2O$ (a) und röntgenamorphes "AuO(OH)" (b).

Zur thermogravimetrischen Analyse von "AuO(OH)" wurden 65,3mg des amorphen, braunen Reaktionsprodukts 24 Stunden lang bei 500°C in einem Goldtiegel getempert. Das anschließend zurückgewogene Temperprodukt (Gold) zeigte einen Massenverlust von 10,1mg. Damit ergibt sich der Gehalt von Gold in der Probe zu 84,50 Gew.%. Der erhaltene Wert stimmt gut mit dem theoretischen Goldgehalt von 85,65 Gew.% in AuO(OH) überein und deckt sich mit atomabsorptionsspektroskopischen Untersuchungen (AAS) an dieser Verbindung [54]. Der Goldgehalt für die Zusammensetzung Au(OH)₃ beträgt 79,43 Gew.%. Bei allen Ansätzen zur Darstellung von "AuO(OH)" wurden, bezogen auf die eingesetzte Menge an Gold, Ausbeuten zwischen 70 und 74% erzielt. Höhere Ausbeuten wurden unter diesen Präparationsbedingungen nicht erzielt.

5.2.2 Palladiummohr

Auf einigen Chargen von käuflich erworbenem Palladium bildeten sich passivierende Oxidschichten aus, so dass die oxidierende Wirkung reiner, konzentrierter Salpetersäure nicht ausreichte, um das inerte Metall darin zu lösen. In Königswasser hingegen löste sich das Pulver beim Erwärmen auf 150°C unter Bildung einer intensiv roten Lösung der Hexachloropalladium(IV)-Säure (Gleichung 5.4) rasch auf.

$$Pd_s + 2 HNO_{3,aq} + 6 HCl_{aq} + \rightarrow H_2Pd^{IV}Cl_{6,aq} + NO_g + NO_{2,g} + 3 H_2O$$
 Gleichung 5.4

Im Folgeschritt wurde die Lösung mit einem Überschuss an festem K_2CO_3 versetzt und bis zur Trockene eingeengt. Zur Charakterisierung des erhaltenen Feststoffes wurden Guinier-*IP*-Aufnahmen angefertigt, welche die Entstehung von K_2PdCl_6 [172] belegten (Gleichung 5.5).

$$H_2PdCl_{6,aq.} + K_2CO_{3,s} \rightarrow K_2PdCl_{6,s} + CO_{2,g} + H_2O$$
 Gleichung 5.5

Die anschließende Reduktion von Palladium(IV) zum Metall erfolgte unter Zugabe eines Überschusses an festem Hydrazin-Dihydrochlorid zu einer wässrigen Lösung von K₂PdCl₆. (Gleichung 5.6). Dabei fiel ein voluminöser schwarzer Feststoff aus und die Lösung entfärbte sich infolgedessen vollständig. Der Feststoff wurde abfiltriert und solange mit demineralisiertem Wasser chloridfrei gewaschen, bis der Nachweis auf Chlorid-Ionen mit einer Silbernitrat-Lösung im Waschwasser negativ verlief. Trocknen dieses Rückstands bei 200°C (48h) lieferte schwarzes, reaktives Palladiummetall, das sich bereits in kalter, halbkonzentrierter Salpetersäure vollständig löste. Auf diese Weise konnten mehrere Chargen (Ansätze von jeweils ca. 5g) des inerten Metalls in reaktives Palladiumpulver überführt und so nasschemische Reaktionen ermöglicht werden.

$$K_2PdCl_{6,aq.} + N_2H_4 \cdot 2 \text{ HCl}_s \rightarrow Pd_s + N_{2,g} + 2 \text{ KCl} + 6 \text{ HCl}$$
 Gleichung 5.6

Ausgehend von reaktivem Palladiumpulver erfolgte mit PdCl₂ [173] und PdO [174, 175] die nasschemische Darstellung zweier weiterer Edukte. Rotbraunes Palladium(II)-chlorid wurde durch Umsetzung von Palladium mit konzentrierter Salzsäure an Luft und anschließendem Eindampfen der Lösung bis zur Trockenen dargestellt (Gleichung 5.7). Die Darstellung von Palladium(II)-oxid erfolgte über das vollständige Abrauchen des Chlorids im PdCl₂ mit konzentrierter HNO₃ (Gleichung 5.8). Die phasenreine Darstellung stellte sich jedoch infolge von nicht umgesetztem PdCl₂ in einigen Fällen als problematisch heraus. Alternativ gelang die Umsetzung von PdO ausgehend von Pd-Pulver und konzentrierter HNO3 mit anschließendem Eindampfen der salpetersauren Pd(NO₃)₂-Lösung. Bei allen Synthesen zeigte das mikrokristalline PdO stark verbreiterte Beugungsreflexe, was auf schlechte Kristallinität schließen lässt. PdO wurde als Ausgangsstoff bei Versuchen zur Darstellung polynärer Palladium(II)-phosphate in chemischen Transportexperimenten wie auch bei isothermen Temperversuchen eingesetzt. Durch den Zusatz von PdCl₂ in chemischen Transportreaktionen, welches sich bei Temperaturen oberhalb von 500°C thermisch in Palladiummetall und Chlor zersetzt, konnte das Transportmittel Chlor in situ dargestellt werden.

$$Pd_{s} + 2 HCl + \frac{1}{2} O_{2,g} \rightarrow PdCl_{2,s} + H_{2}O$$

$$PdCl_{2,s} + 2 HNO_{3} \rightarrow PdO + 2 NO_{2,g} + Cl_{2,g} + H_{2}O$$

$$Gleichung 5.8$$

5.2.3 Platin(II)-oxidhydrat, $PtO \cdot 3H_2O$

Die Darstellung von frisch gefälltem, reaktivem Platin(II)-oxidhydrat erfolgte nach *Brauer* [171] ausgehend von Platinpulver (bzw. Platinfolie) und führte über die Zwischenstufen Hexachloroplatin(IV)-säure, Kaliumhexachloroplatinat(IV) und Kaliumtetrachloroplatinat(II) zum gewünschten tiefschwarzen, amorphen, wasser- und säureunlöslichen PtO·3H₂O.

Hexachloroplatin(IV)-säure. Setzt man Platinpulver (bzw. Platinfolie) im Wasserstrahlpumpenvakuum bei etwa 150°C in einem Ölbad mit Königswasser um, so färbt sich die Lösung infolge der Anwesenheit von [Pt^{IV}Cl₆]²⁻-Ionen und Stickoxiden gelb-braun (Gleichung 5.9). Hat sich das gesamte Platin vollständig gelöst, wird die entstandene klare Lösung mehrfach bis zur Sirupkonsistenz eingedampft und mehrmals mit HCl aufgenommen, damit gebildetes PtCl4·NOCl zerstört wird [171]. Erst wenn bei der Wiederaufnahme keine Stickoxide mehr entweichen, wird die Lösung weiterverarbeitet. Die konzentrierte Lösung wird entweder bis zur gewünschten Konzentration eingedampft und dann in eine Abdampfschale gegossen, wo sie zu einer gelben Kristallmasse erstarrt oder direkt für weitere Umsetzungen verwendet.

2 Pt_s + 4 HNO₃ + 12 HCl + 6 H₂O \rightarrow 2 H₂[Pt^{IV}Cl₆]·6H₂O_{aq}. + 2 NO_g + 2 NO_{2,g} Gleichung 5.9

Kaliumhexachloroplatinat(IV) [176, 177]. Die salzsaure Lösung von H₂[PtCl₆]·6H₂O wird mit KCl im Überschuss (auf ein Gewichtsteil Pt mindestens 3 Gewichtsteile KCl) versetzt (Gleichung 5.10) und auf dem Wasserbad langsam zur Trockene eingedampft. Die mit dem gefällten Niederschlag vermengten Salzkrusten werden mit einem Glasspatel zerdrückt und unter Umrühren so lange auf dem Wasserbad erhitzt, bis die lockere Salzmasse nicht mehr nach HCl riecht. Der trockene Salzrückstand wird anschließend mit wenig destilliertem Wasser angefeuchtet, mit kaltgesättigter KCl-Lösung aufgenommen und abfiltriert. Das Auswaschen erfolgt zunächst mit KCl-Lösung und schließlich mit Ethanol. Die Mutterlauge sollte nach dem Abfiltrierten farblos sein und bestenfalls Spuren von Platin(IV) enthalten. Ein eleganter Nachweis auf Platin-Ionen in der Lösung erfolgte über die Zugabe einer SnCl₂-Lösung zu einem Teil der Mutterlauge. Bei Anwesenheit von Platin(IV) in der Lösung, fällt infolge einer Redoxreaktion zwischen Platin(IV) und Zinn(II) elementares, schwarzes Platin aus [171]. Unter Zugabe von heißer Natronlauge konnte aus dem Hexachloplatinat(IV)- ein Hexahydroxoplatinat(IV)-Komplex der Zusammensetzung $Na_2[Pt(OH)_6]$ [178] dargestellt werden. Die aus einer salzsauren Lösung von K₂PtCl₆ abgeschiedenen gelben Kristalle sind in Abbildung 5-2 dargestellt.

 $\mathrm{H_2}[\mathrm{Pt^{IV}Cl_6}]{\cdot}6\ \mathrm{H_2O_{aq.}} + 2\ \mathrm{K^+} + 2\ \mathrm{Cl^-} \rightarrow \mathrm{K_2}[\mathrm{Pt^{IV}Cl_6}]_{s} + 2\mathrm{HCl}$

Gleichung 5.10

Abbildung 5-2. Aus salzsaurer Lösung abgeschiedene Kristalle von K₂PtCl₆.

Kaliumtetrachloroplatinat(II) [179, 180]. Zur Darstellung von K₂[Pt^{II}Cl₄] suspendiert man K₂[Pt^{IV}Cl₆] durch lebhaftes Rühren in der 10-fachen Gewichtsmenge Wasser. In kleinen Anteilen wird daraufhin die genaue stöchiometrisch erforderliche Menge N₂H₄·2HCl [181] hinzu gegeben, während die Temperatur innerhalb von 15 Minuten auf etwa 50°C erhöht wird. Unter aufschäumender N₂-Entwicklung wird alles K₂[PtCl₆] in dem nach wie vor gut gerührten Ansatz gelöst, wobei sich die Lösung durch das gebildete [PtCl₄]²⁻-Anion tiefrot färbt (Gleichung 5.11). Nach beendeter Reaktion kocht man die Lösung auf und lässt erkalten. Hat sich bereits braunrotes K₂[Pt^{II}Cl₄] abgeschieden, wird dieses durch Zugabe von Wasser gelöst. Falls nach der Zugabe von Hydrazin-dihydrochlorid ausreduziertes schwarzes Platin oder nicht reduziertes, gelbes K₂[Pt^{IV}Cl₆] vorliegt, so wird dieses abfiltriert. Ein Überschuss an N₂H₄·2HCl reduziert bis zur Bildung von elementarem Platin, ein Unterschuss hinterlässt als Bodenkörper K₂[PtCl₆]. Aufgrund der Oxidationsempfindlichkeit des [Pt^{II}Cl₄]²⁻-Anions ist es angebracht, die erhaltene Lösung entweder unter Schutzgas aufzubewahren oder sie für weitere Umsetzungen direkt zur Reaktion zu bringen.

$$2 K_2[Pt^{IV}Cl_6]_{aq.} + N_2H_4 \cdot 2HCl_s \rightarrow K_2[Pt^{II}Cl_4] + N_{2,g} + 6 HCl \qquad \qquad \text{Gleichung 5.11}$$

Platin(II)-oxidhydrat. Durch Kochen der wässrigen $K_2[Pt^{II}Cl_4]$ -Lösung bei Wasserbadtemperatur auf einer Heizplatte mit tropfenweise zugesetzter Na₂CO₃-Lösung erhält man eine augenblicklich einsetzende schwarze Fällung von PtO·3H₂O (Gleichung 5.12). Das entstandene Produkt wird im Glasfiltertiegel filtriert, kurz mit verdünnter Na₂CO₃-

Lösung gewaschen und anschließend im Exsikkator bei 105°C (48h) getrocknet [171]. Nach Ausweis von Guinieraufnahmen handelt es sich bei PtO·3H₂O um ein röntgenamorphes Oxid.

$$K_2[Pt^{II}Cl_4]_{aq.} + CO_3^{2^-} + 3H_2O \rightarrow PtO\cdot 3H_2O_s + CO_{2,g} + 2K^+ + 4Cl^-$$
 Gleichung 5.12

Aufgrund der bereits erwähnten Schwerlöslichkeit von PtO·3H₂O in Säuren, musste auf nasschemische Methoden zur Darstellung von Platin(II)-phosphaten aus phosphorsaurer werden. das PtO·3H₂O Lösung verzichtet Stattdessen kam in chemischen Transportexperimenten sowie isothermen Temperversuchen zum Einsatz. Da in der Literatur [171] keine konkreten Angaben zum Wassergehalt des Produktes vorliegen (PtO·xH₂O, $x \approx$ 2), wurde zum Zwecke gezielter Einwaagen dessen Zusammensetzung mittels thermischer Analyse ermittelt. Der gravimetrisch bestimmte Platingehalt beträgt 72,2 Gew.% und deckt sich mit dem theoretisch ermittelten Wert von 73,57 Gew.% für die Zusammensetzung PtO·3H₂O.

5.2.4 Platin(II)-chlorid, PtCl₂

PdCl₂ wurde PtCl₂ [182] sowohl Mineralisator Neben als bei isothermen Temperexperimenten wie auch zur in situ Darstellung von Chlorgas als Transportmittel bei chemischen Transportreaktionen eingesetzt. Die Darstellung von PtCl₂ kann auf zwei Wegen erfolgen. Zum einen kann PtCl₂ durch schonendes Eindampfen einer salzsauren Lösung von H₂[Pt^{II}Cl₄] erhalten werden. H₂[PtCl₄] ist nur in Lösung beständig und lässt sich durch Reduktion von H₂[PtCl₆]·6H₂O (s. Abschnitt 5.2.3) mit der äquivalenten Menge N₂H₄·2HCl darstellen (Gleichung 5.13). Dabei wird das Hydrazin-Hydrochlorid in jeweils kleinen Portionen zu der wässrigen Lösung der Hexachloroplatin(IV)-säure hinzugegeben, wobei N₂ unter Aufbrausen der Lösung freigesetzt wird. Nachdem die gesamte Einwaage an N₂H₄·2HCl zugegeben wurde, wird auf dem Wasserbad noch so lange erwärmt, bis die Glasentwicklung beendet ist. Eventuell müssen kleine Mengen an abgeschiedenem schwarzem Platin abfiltriert werden [171].

$$2 H_2[Pt^{IV}Cl_6] \cdot 6H_2O + N_2H_4 \cdot 2HCl \rightarrow 2 H_2[Pt^{II}Cl_4] + N_2 + 6 HCl + 12 H_2O \qquad \text{Gleichung 5.13}$$

Der durch Eindampfen der Lösung von $H_2[Pt^{II}Cl_4]$ erhaltene Feststoff wird 12 Stunden bei 110°C getrocknet, dann fein zerrieben und zur Vertreibung der Salzsäure nochmals vier Stunden lang bei 150°C getrocknet. Schließlich wird das Produkt mehrfach mit heissem Wasser behandelt, um Reste von H₂[Pt^{II}Cl₄] auszuwaschen. Das abschließende Trocknen erfolgt bei 110°C (2h) [171].

Die zweite Möglichkeit zur Darstellung von PtCl₂ erfolgt über die thermische Zersetzung der Hexachloroplatin(IV)-säure H₂[Pt^{IV}Cl₆]·6H₂O bei 150°C. Sobald kein Wasserdampf mehr entweicht, wird der Trockenrückstand im Verlauf von zwei Stunden auf bis zu 300°C erhitzt und 30 Minuten bei dieser Temperatur belassen. Nach dem Abkühlen auf 150°C wird das Produkt rasch in einer Reibschale zerrieben und erneut 30 Minuten lang auf 280°C erhitzt. Das dabei erhaltene PtCl₄ [183] wird noch heiss in ein dicht verschließbares Aufbewahrungsgefäß abgefüllt oder für eine direkte Umsetzung zu PtCl₂ im Luftstrom auf 360°C erhitzt und 48 Stunden lang auf dieser Temperatur gehalten [171]. Man pulverisiert den Rückstand und erhitzt ihn erneut im Luftstrom (96 h) konstant auf 380°C. Das erhaltene, in Wasser unlösliche braungrünstichige PtCl₂ ist phasenrein und kristallisiert in einer trigonal-rhomboedrischen β -Modifikation [182].

5.2.5 Arsensäure, H₃AsO₄

Zur Darstellung von Arsensäure wurden in einem Schliffkolben 10g Arsen(III)-oxid mit 20 ml konz. HNO₃, die man aus einem Tropftrichter langsam zutropfen ließ, im Wasserstrahlvakuum bei Wasserbadtemperatur erhitzt (Gleichung 5.14). Wichtig dabei war die Zugabe von etwa 5 bis 10 ml Wasser, da ansonsten die Oxidation von As₂O₃ [184, 185] sehr langwierig (über 24h) und unvollständig ist Die bei der Reaktion entstandenen Stickoxide wurden zur Disproportionierung in Wasser geleitet. Nach beendeter Bildung der Stickoxide filtrierte man von (geringen Mengen) nicht umgesetztem As₂O₃ ab und dampfte die Lösung bis zur Trockene ein. Der weißgelbe Rückstand wurde mit wenig H₂O aufgenommen, gegebenenfalls durch eine Glasfritte filtriert und die Lösung wiederum eingeengt, bis ein in der Flüssigkeit befindliches Thermometer 130° anzeigte [171]. Die Arsensäure-Lösung, welche im kalten Zustand Honigkonsistenz besaß, wurde zum Auskristallisieren im Eisschrank aufbewahrt. Eine Kristallisation zu H₃AsO₄·1/₂H₂O [186] wurde dabei jedoch nicht beobachtet.

Neben Fällungsreaktionen aus arsensaurer Lösung wurden in dieser Arbeit zur Darstellung von Arsenaten auch Festkörperreaktionen ausgehend von Arsen(V)-oxid durchgeführt. Dazu wurde die H₃AsO₄-Lösung zunächst bei 100°C (48h) erwärmt. Nach Ausweis von Pulverdiffraktogrammen bildete sich bei dieser Temperatur ein Phasengemenge, welches sich neben dem Arsensäure-Hydrat hauptsächlich aus der Triarsensäure H₅As^V₃O₁₀ [187]

zusammensetzte. Fortgesetztes isothermes Tempern des Gemisches bei 250°C an Luft lieferte einphasiges (Guinieraufnahmen), weißes As₂O₅ [188].

$$As_2O_{3,s} + 4 HNO_3 + H_2O \rightarrow 2 H_3AsO_{4,aq.} + 4 NO_{2,g}$$
Gleichung 5.14

6 Gold(III)-phosphat AuPO₄ und Gold(III)-arsenat AuAsO₄

6.1 Einleitung

Mit AuPO₄ und AuAsO₄ wurde in dieser Arbeit das erste Phosphat und Arsenat des Golds erhalten. Die beiden Verbindungen zeigen Isotypie zum M-Typ von PdSO₄ [34]. Von besonderem Interesse waren die Experimente zur Darstellung beider Verbindungen hinsichtlich des Aufbaus von Netzwerkstrukturen bestehend aus einer für Gold(III) typischen, quadratisch-planaren Koordination mit $[XO_4]$ -Tetraedern (X = P, As). Vierfachkooordination von Metallkationen durch Phosphat oder Arsenat ist bislang nur in den seit langem bekannten Strukturen von BPO₄ [189, 190, 191], AlPO₄ [192, 193, 194, 195, 196, 197, 198], FePO₄ [199, 200, 201], AlAsO₄ [202, 203], GaAsO₄ [204, 205] sowie FeAsO₄ [206, 207] mit ausschließlich tetraedrischen Baueinheiten bekannt. AuPO₄ und AuAsO₄ weisen somit ein neues Bauprinzip auf. Darüber hinaus sollten nasschemische, templatgesteuerte Experimente zu modifizierten, zeolithanalogen Strukturen von AuPO4 und AuAsO₄ führen, wie sie bereits in den oben aufgeführten Phosphaten und Arsenaten der dreiwertigen Metalle beobachtet werden. Eine besondere Herausforderung an die experimentellen Bedingungen stellte die thermische Labilität von Gold(III)-oxoverbindungen dar, weshalb klassische Hochtemperatursynthesen keine Anwendung fanden und ein Zugang zu diesen Verbindungen nur über Fällungsreaktionen aus phosphor- bzw. arsensaurer Lösung bei milden Temperaturen möglich war. Da unter diesen Bedingungen AuPO₄ wie auch AuAsO₄ nur als mikrokristalline Pulver zugänglich waren, erfolgte die Verfeinerung von deren Kristallstrukturen aus Röntgen- und Neutronenpulverdaten.

6.2 Darstellung von AuPO₄ und AuAsO₄

Als Ausgangsstoff für die Darstellung von AuPO₄ und AuAsO₄ wurde amorphes, reaktives, frisch hergestelltes Gold(III)-oxidhydroxid "AuO(OH)" [171] eingesetzt. Details zu dessen Synthese sowie dessen gravimetrisch bestimmtem Goldgehalt wurden in Abschnitt 5.2.1 beschrieben.

Gold(III)-orthophosphat wurde durch Reaktion von "AuO(OH)" mit konzentrierter Phosphorsäure in einem Teflonbecher bei 150°C (30 Minuten) erhalten. Dabei konnte sowohl eine äquivalente Menge an konz. H_3PO_4 wie auch ein Überschuss eingesetzt werden. Die Zugabe eines Überschusses an Phosphorsäure zu "AuO(OH)" führte stets zu einphasigem, mikrokristallinem AuPO₄ (Abbildung 6-1a). Röntgenographische Untersuchungen am erhaltenen mikrokristallinen Festkörper gaben keine Hinweise auf die Bildung eines weiteren Goldphosphats.

Der Reaktionsmechanismus zur Bildung von AuPO₄ ist ungeklärt. Es wird jedoch angenommen, dass die konzentrierte Phosphorsäure zunächst das "AuO(OH)" unter Bildung eines intensiv gelben "Phosphatoaurat"-Komplexes löst, aus dem sich mit fortschreitender Reaktionsdauer bei 150°C nach und nach AuPO₄ abscheidet (siehe Abbildung 6-1b). Die Lösung lässt sich bei Raumtemperatur an Luft unbegrenzt lagern. Nach der Fällung von AuPO₄ aus der konzentriert phosphorsauren Lösung wurde das blass-gelbe Pulver mit Wasser gewaschen, mit Aceton nachbehandelt und anschließend bei 100°C im Trockenschrank etwa zwei Stunden lang aufbewahrt. Das Trocknen des Niederschlags hatte aufgrund der Bildung von kolloidalem Gold als Verunreinigung häufig einen Farbwechsel von blass-gelb nach purpurfarben zufolge. Die Ausbeuten an AuPO₄ ausgehend von Gold-Folie beliefen sich hauptsächlich aufgrund von Verlusten bei der Aufarbeitung des ausgefallen AuPO₄ bei allen durchgeführten Experimenten auf etwa 80%.

AuPO₄, welches frei von Verunreinigungen durch elementares Gold ist, lässt sich durch Auflösen von "AuO(OH)" in halbkonzentrierter HNO₃ bei 150°C (blass grüngelbe Lösung) unter Zusatz stöchiometrischer Mengen an P₄O₁₀ und anschließendem Einengen der Lösung bis zur Trockenen (bei 150°C) darstellen. Im Gegensatz dazu - und somit weniger geeignet für die Darstellung von Goldphosphat - führten Festkörperreaktionen ausgehend von "AuO(OH)" und P₄O₁₀ selbst bei Temperaturen um 180°C (5h) zu signifikanten Mengen an elementarem Gold neben AuPO₄. Noch schlechtere Ausbeuten wurden bei der Verwendung der Ammoniumphosphate (NH₄)₂HPO₄ und (NH₄)H₂PO₄ anstelle von H₃PO₄ und P₄O₁₀ als Phosphatquelle erzielt. Offenbar ist der beim Temperprozess freigesetzte Ammoniak in der Lage, Gold(III) quantitativ zum Metall zu reduzieren. Experimente zur Kristallisation von AuPO₄ unter milden solvothermalen Bedingungen (150°C, 7d, Aufheizrate 5°/h, Abkühlrate 1°/h) unter Zusatz von "AuO(OH)" und unterschiedlichen Konzentrationen an H₃PO₄ (0,1mol/l, 1mol/l, 14,8mol/l) (experimentelle Bedingungen s. Kap. 3.7) führten zur ausschließlichen Bildung von elementarem Gold. Untersuchungen zur thermischen Stabilität von AuPO₄ durch isotherme Temperversuche an verschiedenen Proben bei variablen Temperaturen (24h) zeigten eine einsetzende thermische Zersetzung in Au_s, P₄O_{10,g} und O_{2,g} bei 400°C.

Experimente AuPO₄ in Säuren (HCl, HNO₃, H₂SO₄, H₃PO₄) oder Basen (NH₃, NaOH, KOH, Triethylamin) in Lösung zu bringen schlugen fehl. Orientierende Darstellungs-versuche von
AuPO₄ unter Verwendung von konz. H_3PO_4 als Phosphatquelle, die in Borosilikat-Bechergläsern ausgetragen wurden, lieferten neben AuPO₄ signifikante Mengen an Si₅O(PO₄)₆ [24] und BPO₄ [189]. Den Angriff eines solchen Becherglases durch konzentrierte Phosphorsäure zeigt Abbildung 6-1c. Details zu Darstellung und thermogravimetrischen Untersuchungen an AuPO₄ siehe [35].

Abbildung 6-1. Mikrokristallines $AuPO_4$ (a), Reaktionsverlauf bei der Bildung von $AuPO_4$ in einem Teflonbecher (b), Angriff eines Borosilikat-Becherglases durch konz. H_3PO_4 (c).

Die Darstellung von Gold(III)-arsenat, welche jener von AuPO₄ ähnelt, gelingt durch Umsetzung von "AuO(OH)" mit konzentrierter Arsensäure in einem Teflonbecher bei 150°C (30 Minuten). Die Darstellung von H_3AsO_4 wurde in Abschnitt 5.2.4 beschrieben. Pulverförmiges, mikrokristallines, grünlich-gelbes AuAsO₄ wurde nach seiner Fällung aus einer arsensauren Lösung mit Wasser und Aceton behandelt und anschließend bei 100°C eine Stunde lang getrocknet. Längeres Tempern oder Temperaturen oberhalb von 150°C führten stets zu einem thermischen Zerfall von AuAsO4 in As2O3 (Identifizierung durch Guinier-Diffraktogramme), elementares Gold und Sauerstoff. Wie bereits für AuPO₄ beobachtet wurde, führte ein kurzzeitiges Aufbewahren der Probe bei Temperaturen von 100°C an Luft zu einem Farbwechsel von grünlich nach purpurfarben. Im Unterschied zu den Festkörpersynthesen und solvothermalen Darstellungsmethoden von AuPO₄, konnten bei analogen Experimenten zur Synthese von AuAsO₄ ausgehend von "AuO(OH)" und As₂O₅ [188] keine Umsetzungen beobachtet werden. Schwierigkeiten bereitete ein Überschuss an Arsensäure, infolge von konzentrierter der Kondensationsreaktionen stets zu Kontaminationen des Produkts mit gelbem, festem H₅As₃O₁₀ [187] führte. Die Ausbeuten an AuAsO₄ belaufen sich in Abhängigkeit vom Grad der Verunreinigung durch H₅As₃O₁₀ und der damit einhergehenden, zusätzlichen Aufreinigungsschritte auf 65% bis 75%. Wie AuPO₄ ist auch AuAsO₄ in den oben aufgeführten Säuren und Basen unlöslich.

Über energiedispersive Mikroanalyse (EDX, Details siehe Kapitel 4.1.6) ließen sich die prozentualen Atomverhältnisse für die in den Proben AuPO₄ und AuAsO₄ enthaltenen

Nichtsauerstoff-Atome bestimmen. Die Ergebnisse der EDX-Untersuchungen sind in Tabelle 6-1 zusammengestellt. Im Rahmen der Fehlergrenzen stehen die Ergebnisse in guter Übereinstimmung mit den erwarteten Zusammensetzungen.

Probe	Gold / at.%	Phosphor / Arsen / at.%
AuPO ₄		
Probe 1	18,21	15,69
Probe 2	17,05	14,97
Probe 3	18,38	15,31
Mittelwert	17,88	15,32
Theorie	16,67	16,67
AuAsO ₄		
Probe 1	18,56	15,09
Probe 2	18,78	14,84
Probe 3	18,03	16,36
Mittelwert	18,46	15,43
Theorie	16,67	16,67

Tabelle 6-1.EDX-Untersuchungen an mikrokristallinen Pulvern von AuPO₄ und AuAsO₄.

6.3 Röntgenographische Untersuchungen

Als Grundlage für die Indizierung der Reflexe von AuPO₄ bzw. AuAsO₄ dienten die in Abbildung 6-2a bzw. 6-3a aus IP-Guinier-Aufnahmen angefertigten Beugungsdiagramme. Für die Bestimmung der Gitterkonstanten wurden zunächst die Reflexlagen der jeweiligen Substanz wie auch jene von α -SiO₂ im Computerprogramm ORIGIN [95] visuell ausgelesen. Anhand der genau bekannten Reflexlagen von α -SiO₂ erfolgte eine Korrektur der Reflexlagen von AuPO₄ und AuAsO₄ (Programm SOS1 [98]). Anschließend wurden 10 Reflexen anhand bekannter Lage- und Gitterparameter der isotypen Verbindung M-PdSO4 [34] (hkl)-Werte zugeordnet. Anhand dieser Zuordnung konnten mit SOS2 [98] vorläufige Gitterkonstanten bestimmt werden. Durch Indizierung weiterer Reflexe wurden die Gitterkonstanten von AuPO₄ und AuAsO₄ schließlich zufriedenstellend verfeinert. Für AuPO₄ [AuAsO₄] wurden 26 [25] Reflexe im Bereich 39,73° $\leq 4\theta \leq 137,46^{\circ}$ [38,61° $\leq 4\theta \leq$ 144,72°] indiziert (siehe Tabelle 6-2 und 6-3), wodurch sich folgende Gitterkonstanten ergaben: a = 7,7915(8) [8,0488(8)]Å, b = 5,4583(5) [5,6138(9)]Å, c = 7,7254(6)[7,8753(9)]Å, $\beta = 97,005(9)$ $[95,89(1)]^{\circ}$. Insgesamt zeigen beide Guinier-Diffraktogramme eine sehr gute Übereinstimmung mit deren Simulationen, welche mithilfe des Programms LAZY PULVERIX [97] unter Verwendung der verfeinerten Gitterkonstanten auf Basis der zu Au XO_4 (X = P, As) isotypen Verbindung M-PdSO₄ [34] erstellt wurden (Abbildung 6-2b und 6-3b).

Abbildung 6-2. Guinier-Aufnahme von AuPO₄ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 6-3 (b). Rote Pfeile kennzeichnen Reflexe von elementarem Gold in der Probe (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 6-3. Guinier-Aufnahme von AuAsO₄ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 6-3 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

001								
h	k	1	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	I _{calc} ^{a)}	I _{obs} ^{a), b)}	d_{calc} /Å
1	1	0	39,785	39,728	0,08	82	69	4,4657
1	1	-1	44,654	44,610	0,07	649	556	3,9822
2	0	0	45,961	45,923	0,06	189	194	3,8698
0	0	2	46,360	46,354	0,01	183	188	3,8343
1	1	1	47,512	47,537	0,04	1000	1000	3,7403
1	1	-2	59,230	59,199	0,07	35	37	3,0154
2	0	-2	61,494	61,452	0,09	214	220	2,9073
0	2	0	65,573	65,557	0,04	156	66	2,7298
3	1	-1	78,196	78,227	0,09	287	303	2,3010
1	1	-3	78,691	78,737	0,13	137	130	2,2867
0	2	2	81,077	81,067	0,03	278	236	2,2236
1	1	3	83,845	83,858	0,04	194	160	2,1528
4	0	0	93,914	93,936	0,07	88	63	1,9329
0	0	4	94,767	94,775	0,03	80	61	1,9167
3	1	-3	99,833	99,852	0,06	113	111	1,8251
2	0	-4	100,896	100,871	0,09	39	42	1,8079
1	3	1	106,738	106,744	0,02	90	27	1,7151
0	2	4	117,633	117,657	0,09	39	13	1,5684
2	2	-4	122,959	122,976	0,06	94	50	1,5068
5	1	-1	124,141	124,163	0,08	55	33	1,4938
1	1	-5	125,201	125,211	0,04	58	19	1,4825
4	0	-4	128,081	128,044	0,14	28	21	1,4531
1	1	5	131,417	131,424	0,03	66	38	1,4197
4	2	2	132,410	132,392	0,07	59	35	1,4105
2	2	4	132,923	132,891	0,13	72	31	1,4059
0	4	0	137,458	137,457	0,00	26	14	1,3646

Tabelle 6-2. AuPO₄. Indizierung eines Guinier-Diagramms (Abbildung 6-2) mit berechneten und beobachteten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Alle Reflexe im untersuchten Winkelbereich mit $I_{calc} > 5$ wurden beobachtet.

	•••••••						1000.	
h	k	1	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	$I_{\rm calc}^{\ \ a)}$	$I_{ m obs}{}^{ m a),b)}$	d_{calc} /Å
1	1	0	38,587	38,610	0,03	206	211	4,5938
1	1	-1	43,630	43,681	0,08	409	321	4,0659
2	0	0	44,374	44,439	0,11	72	78	3,9974
1	1	1	45,968	45,967	0,00	1000	1000	3,8662
1	1	-2	58,083	58,140	0,12	82	84	3,0691
2	0	-2	60,426	60,427	0,00	256	154	2,9555
1	1	2	61,654	61,696	0,09	43	33	2,8961
0	2	0	63,708	63,724	0,04	98	39	2,8062
2	0	2	67,172	67,101	0,17	185	108	2,6688
3	1	-1	75,988	75,986	0,00	286	223	2,3663
1	1	-3	77,208	77,256	0,13	142	91	2,3289
2	2	0	78,327	78,276	0,14	161	178	2,2997
3	1	1	80,231	80,215	0,05	49	36	2,2463
1	1	3	81,398	81,405	0,02	131	90	2,2148
4	0	0	90,532	90,544	0,04	108	61	2,0013
2	2	2	93,929	93,936	0,02	68	24	1,9329
3	1	-3	97,901	97,917	0,06	73	39	1,8589
1	3	1	103,455	103,421	0,12	45	19	1,7662
3	1	3	108,149	108,165	0,06	88	46	1,6942
4	2	-2	119,075	119,108	0,12	85	35	1,5510
5	1	-1	120,640	120,540	0,00	36	17	1,5343
1	1	-5	122,646	122,663	0,07	37	13	1,5102
5	1	1	125,124	125,127	0,01	81	98	1,4834
1	3	3	125,621	125,628	0,03	110	38	1,4781
6	0	-2	144,736	144,717	0,08	34	17	1,3048

Tabelle 6-3. AuAsO₄. Indizierung eines Guinier-Diagramms (Abbildung 6-3) mit berechneten und beobachteten 4θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Alle Reflexe im untersuchten Winkelbereich mit $I_{calc} > 5$ wurden beobachtet.

6.4 Rietveld-Verfeinerung

Mit der Darstellung von mikrokristallinem AuPO₄ und AuAsO₄ wurden Experimente zur Kristallisation beider Verbindungen durchgeführt. Bedingt durch die thermische Labilität von Gold(III)-oxoverbindungen konnte eine Kristallisation über klassische Festkörperreaktionen (z.B. chemischer Transport) ausgeschlossen werden. Experimente unter milden, solvothermalen Reaktionsbedingungen (siehe Abschnitt 6.2) schlugen ebenso fehl wie Versuche zur kristallinen Abscheidung von AuPO₄ und AuAsO₄ aus ihren "Phosphato-" bzw. "Arsenatoaurat"-Komplexen bei Temperaturen zwischen 20° und 50°C. Somit musste eine Kristallstrukturverfeinerung an beiden Proben über Pulvermethoden erfolgen. Dazu wurden unabhängig voneinander an beiden mikrokristallinen Proben sowohl Röntgenbeugungs- als auch Neutronenstreuexperimente durchgeführt. Aus den daraus erhaltenen Datensätzen sollte die Kristallstruktur von Au XO_4 (X = P, As) über die Rietveld-Methode (siehe Abschnitt 4.2.2) verfeinert werden.

Gerätespezifische Details zur Messung der Neutronenpulverdiffraktogramme am Fine Resolution Powder Diffractometer (FIREPOD) wurden bereits in Abschnitt 4.2.1 aufgeführt. Für die Messung der Röntgenpulverdiffraktogramme wurden die Proben in dünnwandige Glaskapillaren eingefüllt. Die Datensammlung erfolgte an einem Pulverdiffraktometer STADI P2 (Fa. STOE, Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å, Debye-Scherrer Geometrie, Messbereich $3,0^{\circ} \le 2\theta \le 100,30^{\circ}$, Schrittweite $0,005^{\circ}$, T = 293K, Germanium(111)-Monochromator). Pd₂P₂O₇ [17] diente bei den Röntgen- und Neutronenpulvermessungen als Referenz für die Überprüfung der instrumentellen Parameter, die während der Rietveld-Verfeinerung von AuPO₄ und AuAsO₄ erhalten wurden. Die Rietveld-Verfeinerung aus Neutronen- und Röntgenpulverdaten an diesen drei Verbindungen wurde mit dem Programm Fullprof [101] im Programmpaket WinPLOTR [101] ausgeführt. Als Startparameter dienten dabei neben den Lageparametern und der monoklinen Raumgruppe C2/c der zu AuXO₄ (X = P, As) isotypen Verbindung M-PdSO₄ [34] auch die in Abschnitt 6.3 verfeinerten Gitterkonstanten von AuPO₄ und AuAsO₄. Entscheidend für eine stabile Verfeinerung aus (sowohl für Neutronen- als auch für Röntgenpulverdaten) war die schrittweise Erhöhung der zu verfeinernden Parameter. Zu Beginn der Verfeinerung von Au XO_4 (X = P, As) wurden Global-(Nullpunktsverschiebung, Profil-Atom-. Untergrundparameter), (Halbwertsparameter sowie verschiedene, gerätespezifische Formparameter) und Gitterparameter festgehalten und nur der Skalenfaktor frei verfeinert. Diese Vorgehensweise wurde für beide Messverfahren angewendet. Während der Skalenfaktor bei den

Verfeinerungen aus Neutronenpulverdaten für AuPO₄ und AuAsO₄ die Werte S = 1,22 bzw. S = 1,44 annahn, ergaben sich aus Röntgenpulverdaten Werte von $S = 3 \cdot 10^{-4}$ bzw. $S = 7 \cdot 10^{-4}$ (siehe Tabelle 6-4). In den folgenden Schritten wurden gemeinsam mit dem Skalenfaktor auch die Halbwertsparameter u, v, w und der Nullpunkt verfeinert. Für beide Arten der Datensammlung wurden für AuXO4 dieselben Halbwertsparameter als Startwerte benutzt (u = 0.6, v = -0.1, w = 0.1). Im Verlauf der Verfeinerungen (aus Neutronen- und Röntgendaten) änderten sich für AuPO₄ die Halbwertsparameter nicht mehr signifikant von ihrem ursprünglichen Wert. Im Gegensatz dazu wurden aus der Neutronenpulververfeinerung von AuAsO₄ deutlich höhere u, v, w-Werte beobachtet (siehe Tabelle 6-4). Für eine stabile Verfeinerung von AuAsO₄ aus Röntgenpulverdaten musste der Halbwertsparameter v festgehalten werden (v = -0,1), da sich ansonsten chemisch und physikalisch nicht sinnvolle Werte ergaben. Im weiteren Verlauf wurde aus Neutronen- und Röntgendaten für AuXO₄ (X = P, As) neben zehn manuell ausgewählten Untergrundpunkten, die über eine lineare Interpolation verfeinert wurden, auch der Profilformparameter η verfeinert. Dieser nimmt mit $0.67 \le \eta \le 0.8$ Werte an, die typischerweise bei Rietveld-Verfeinerungen beobachtet werden. Die Verfeinerung des Profilformparameters aus Neutronendaten in AuAsO₄ zeigte mit η = 1,2 jedoch eine geringfügige Abweichung. In einem anschließenden Schritt wurden neben allen bislang verfeinerten Parametern zusätzlich auch die Gitterkonstanten sowie die Atomlagen verfeinert. Schließlich erfolgte für AuPO₄ und AuAsO₄ die Verfeinerung der isotropen Auslenkungsparameter B_{iso}. Während aus Röntgenpulverdaten B_{iso} für alle Atome in AuPO₄ bzw. AuAsO₄ zu einem gemeinsamen Wert verfeinert wurde ($B_{iso} = 0.53 \text{\AA}^2$ bzw. $B_{iso} = 1,20$ Å², siehe Tabelle 6-5), musste der aus Neutronenpulverdaten erhaltene isotrope Auslenkungsparameter im Phosphat und im Arsenat festgehalten werden ($B_{iso} = 0.25 \text{\AA}^2$, Tabelle 6-5). Hielt man B_{iso} nicht fest, so führte dies zu instabilen Verfeinerungen mit physikalisch sinnlosen Habwertsparametern u,v,w. Aufgrund der unvermeidlichen Bildung von elementarem Gold bei der Probenpräparation in AuAsO₄ (vgl. Abbildung 6-2) musste ein so genanntes "multiphase-refinement" durchgeführt werden. Die Verfeinerung von nur einer Phase in AuAsO₄ und Pd₂P₂O₇ [17] (notwendiges multiphase-refinement aufgrund von Verunreinigungen durch PdO) resultierte in einer signifikanten Verschlechterung der Restwerte beider Verbindungen. Die Vorgehensweise bei der Verfeinerung von Pd₂P₂O₇ mit bekannter Kristallstruktur entsprach jener für AuPO₄ und AuAsO₄ beschriebenen. Aus Neutronenpulverdaten (Röntgenpulverdaten) ergaben sich für Pd₂P₂O₇ nach der Rietveld-Verfeinerung folgende Parameter: Skalenfaktor S = 1,15 (0,001), Profilformparameter $\eta =$ 0.75 (0.62), Halbwertsparameter u = 0.60 (0.47), v = -0.09 (-0.1), w = 0.15 (0.06, s. Tab. 6-

7). Aus Röntgendaten konnten zwar alle drei Halbwertsparameter zufrieden stellend verfeinert werden, jedoch zeigten die erhaltenen interatomaren Abstände und Winkel in Pd₂P₂O₇ teilweise große Abweichungen von Einkristall- sowie Neutronenpulverdaten (Tabelle 6-10). Während die isotropen Auslenkungsparameter B_{iso} aller Atome in AuXO₄ (X = P, As) aus Röntgenpulverdaten verfeinert werden konnten, mussten diese in $Pd_2P_2O_7$ bei der Verfeinerung aus Neutronen- und Röntgenpulverdaten festgehalten ($B_{iso} = 0.8 \text{\AA}^2$) werden (Tabelle 6-9). Abbildungen 6-4 und 6-5 zeigen die Neutronen- und Röntgenpulverdiffraktogramme von AuPO₄ und AuAsO₄. Details zu den Strukturverfeinerungen von AuPO₄ und AuAsO₄ sind in Tabelle 6-4 zusammengefasst. Die abschließend erhaltenenen Lage- und thermischen Auslenkungsparameter von Au XO_4 (X = P, As) gibt Tabelle 6-5 wieder, interatomare Abstände und Winkel sind in Tabelle 6-6 aufgelistet. Abbildung 6-6 zeigt das Neutronen- und Röntgenpulverdiffraktogramm der Referenzsubstanz Pd₂P₂O₇. Tabelle 6-7 gibt eine Übersicht zur Rietveld-Verfeinerung von Pd₂P₂O₇. Eine Gegenüberstellung der aus Neutronen- und Röntgendaten resultierenden Gitterkonstanten, der isotropen Auslenkungsparameter und Ortskoordinaten sowie der interatomaren Abstände und Winkel von Pd₂P₂O₇ mit jenen aus Einkristalldaten ergibt sich aus den Tabellen 6-8 bis 6-10.

Abbildung 6-4. AuPO₄. Neutronenpulverdiffraktogramm ($\lambda = 1,79764$ Å, T = 293K, nicht verfeinerte Bereiche 0°-18,0°, 139,0°-160,0°) (a) und Röntgenpulverdiffraktogramm ($\lambda = 1,54051$ Å, T = 293K, nicht verfeinerte Bereiche 3,0-19,0°, 80,0-100,0°) (b); beobachtetes Profil (punktiert), berechnetes Profil und Differenzplot (unten). Senkrechte Linien zeigen die Lage der Bragg-Reflexe.

Abbildung 6-5. AuAsO₄. Neutronenpulverdiffraktogramm ($\lambda = 1,79764$ Å, T = 293K, nicht verfeinerte Bereiche 0°-15,0°, 152,0°-160,0°) (a) und Röntgenpulverdiffraktogramm ($\lambda = 1,54051$ Å, T = 293K, nicht verfeinerte Bereiche 3,0°-16,0°, 86,0°-100,0°) (b); beobachtetes Profil (punktiert), berechnetes Profil und Differenzplot (unten). Senkrechte Linien zeigen die Lage der Bragg-Reflexe.

Tabelle 6-4. Rietveld-Verfeineru	ng der Kristallstrukturen vo	n AuPO4 und AuAsO4 aus Ne	utronen- und Röntgenpul	verdaten.
	AuPO ₄		AuAsO ₄	
Daten	Neutronenpulverdiffraktometrie	Röntgenpulverdiffraktometrie	Neutronenpulverdiffraktometrie	Röntgenpulverdiffraktometrie
Kristallsystem	monoklin	monoklin	monoklin	monoklin
Raumgruppe	C2/c (Nr. 15)	<i>C2/c</i> (Nr. 15)	C2/c (Nr. 15)	<i>C2/c</i> (Nr. 15)
Zahl der Formeleinheiten	Z = 4	Z = 4	Z = 4	Z = 4
Gitterparameter /Å	a = 7,783(3) b = 5,4797(2) c = 7,7242(3) $\beta = 97,191(3)^{\circ}$	a = 7,7758(2) b = 5,4742(1) c = 7,7166(2) $\beta = 97,149(1)^{\circ}$	a = 8,0243(11) b = 5,6328(8) c = 7,8884(10) $\beta = 96,218(11)^{\circ}$	a = 8,0247(4) b = 5,6280(2) c = 7,8792(4) $\beta = 96,154(23)^{\circ}$
Volumen /Å 3	326,85(2)	325,91(1)	354,46(9)	353,80(3)
Wellenlänge /Å	$\lambda = 1,79764$	Cu-K α_1 -Strahlung, $\lambda = 1,54051$	$\lambda = 1,79764$	Cu-K α_1 -Strahlung, $\lambda = 1,54051$
Profilfunktion	Pseudo-Voigt (kombiniert mit axial-divergenter Asymmetriefunktion) [144]	Pseudo-Voigt	Pseudo-Voigt (kombiniert mit axial-divergenter Asymmetriefunktion) [144]	Pseudo-Voigt
Untergrundbehandlung	Lineare Interpolation	Lineare Interpolation	Lineare Interpolation	Lineare Interpolation
2 heta Bereich /°	-1,849, 157,811	3,00, 100,30	-1,849, 157,811	3,00, 100,30
Nullpunkt /° 2 θ	-0,077(3)	-0,040(2)	-0,089(8)	-0,019(3)
Halbwertsparameter	u = 0,49(3), v = -0,25(3) w = 0,10(1)	u = 0, 14(1), v = -0, 02(1) w = 0, 041(1), x = 0, 0043(5)	u = 2,5(2), v = -0,7(2) w = 0,18(4)	u = 0,50(1), v = -0,1 w = 0,083(1), x = 0,0061(4)
Profilformparameter	$\eta = 0,80(3)$	$\eta = 0.67(1)$	$\eta = 1,22(4)$	$\eta = 0,72(1)$
Zusätzliche Form- und Asymmetrieparameter	Shp1 = 0,02, Shp2 = 0,071	Asym1 = $0,131(3)$, Asym2 = $0,0494(7)$	Shp1 = 0.02, Shp2 = 0.071	Asym1 = $0,080(4)$, Asym2 = $0,0141(6)$
Anzahl verfeinerter Parameter	Global: 11, Profil: 9, Intensitätsabhängig: 7	Global: 9, Profil:14, Intensitätsabhängig: 8	Global: 11, Profil: 11, Intensitsabhängig: 7	Global: 11, Profil: 13, Intensitätsabhängig: 8
Verfeinerte Phasen	1 (AuPO ₄)	2 (AuPO ₄ , Au)	2 (AuAsO4, Au)	2(AuAsO4, Au)
Anzahl der Reflexe	234	AuPO4:178, Au:6	AuAsO4:259, Au:8	AuAsO4:189, Au:6
Skalenfaktor	1,122(12)	$AuPO_4:7,59\cdot10^4(3)$ $Au:8,8\cdot10^8(1)$	AuAsO ₄ :1,449(23) Au:7,5·10 ⁻⁴ (5)	AuAsO ₄ :3,58 \cdot 10 ⁴ (1) Au:1,30 \cdot 10 ⁷ (1)
Profil-R-Wert Erwartungswert	$R_p = 3, 14, R_{wp} = 4, 02 \ R_{evp} = 2, 73$	$R_p = 4, 15, R_{wp} = 5, 36$	$R_p = 1,75, R_{wp} = 2,18$	$R_p = 3,33, R_{np} = 4,57$
ohne Untergrundkorrektur		$R_{exp} = 2,01$	$R_{exp} = 1,66$	$R_{exp} = 1,90$
Profil-R-Wert Erwartungswert	$R_{ m p} = 19,4, R_{wp} = 18,3$ $R_{ww} = 12.4$	$R_p = 14, 2, R_{wp} = 13, 8$	$R_p = 19, 4, R_{np} = 19, 5$	$R_p = 12, 6, R_{wp} = 13, 4$
mit Untergrundkorrektur		$R_{exp} = 5,17$	$R_{exp} = 14,7$	$R_{exp} = 5,57$
Gewichtetes χ^2	$\chi^2 = 2,23$	$\chi^2 = 7,44$	$\chi^2 = 1,74$	$\chi^2 = 5,78$
Bragg-R-Wert, Strukturfaktor-R-Wert	$R_B = 6,64,R_F = 4,04$	AuPO ₄ $R_B = 5,36$, $R_F = 4,38$ Au $R_B = 3,50$, $R_F = 2,21$	AuAsO ₄ $R_B = 4,73$, $R_F = 2,58$ Au $R_B = 6.34$, $R_F = 3,43$	AuAsO ₄ $R_B = 5,83$, $R_F = 3,95$ Au $R_B = 8,86$, $R_F = 6,05$

		AuPO ₄		AuAsO ₄	
		npd ^{a)}	xpd ^{b)}	npd ^{a)}	xpd ^{b)}
Au (4c)	x	1/4	1/4	1/4	1/4
	у	1/4	1/4	1/4	1/4
	Ζ	0	0	0	0
	B_{iso}	0,25 ^{c)}	0,53(3)	0,25 ^{c)}	1,20(4)
P/As(4e)	x	0	0	0	0
	у	0,0765(14)	0,0861(8)	0,0600(22)	0,0727(4)
	Ζ	1/4	1/4	1/4	1/4
	B_{iso}	0,25 ^{c)}	0,53(3)	0,25 ^{c)}	1,20(4)
O1 (<i>8f</i>)	x	0,4760(5)	0,4826(7)	0,4796(9)	0,4719(8)
	у	0,7363(8)	0,7485(21)	0,7321(14)	0,7328(16)
	Z	0,4082(5)	0,4065(7)	0,4237(9)	0,4102(10)
	B_{iso}	0,25 ^{c)}	0,53(3)	0,25 ^{c)}	1,20(4)
O2 (<i>8f</i>)	x	0,6619(5)	0,6638(9)	0,6764(11)	0,6760(10)
	У	0,4263(8)	0,4427(13)	0,4124(17)	0,4333(15)
	Z	0,2861(6)	0,2950(10)	0,2833(10)	0,2941(11)
	B _{iso}	0,25 °)	0,53(3)	0,25 ^{c)}	1,20(4)

Tabelle 6-5. Atomkoordinaten und thermische Auslenkungsparameter für AuPO₄ und AuAsO₄ aus Neutronen- und Röntgenpulverdaten. Standardabweichungen in Klammern.

^{a)} npd: Neutronen-, ^{b)} xpd: Röntgenpulverdiffraktometrie ^{c)} festlegte isotrope Auslenkungsparameter.

Tabelle 6-6. Ausgewählte interatomare Abstände /Å und Winkel /° in AuPO₄ und AuAsO₄ aus Neutronen- und Röntgenpulvermessungen. Standardabweichungen in Klammern.

	AuPO ₄ npd ^{b)}	AuPO ₄ xpd ^{c)}	AuAsO ₄ npd ^{b)}	AuAsO ₄ xpd ^{c)}
<i>d</i> (Au-O1)	1,979(4) (2x)	2,029(6) (2x)	2,002(8) (2x)	1,988(8) (2x)
d(Au-O2)	1,962(5) (2x)	1,950(8) (2x)	1,972(9) (2x)	1,960(9) (2x)
∠(O1,Au,O2)	92,9(4) (2x)	93,2(5) (2x)	92,2(6) (2x)	93,8(6) (2x)
	87,1(3) (2x)	86,8(5) (2x)	87,8(6) (2x)	86,2(6) (2x)
<i>d</i> (<i>X</i> -O1) ^{a)}	1,534(6) (2x)	1,521(8) (2x)	1,70(1) (2x)	1,587(9) (2x)
<i>d</i> (<i>X</i> -O2) ^{a)}	1,502(6) (2x)	1,499(8) (2x)	1,63(1) (2x)	1,621(8) (2x)
∠(O1, <i>X</i> ,O1) ^{a)}	110,4(5)	108,2(7)	110,5(8)	110,8(8)
∠(O1, <i>X</i> ,O2) ^{a)}	106,1(5)	106,2(8)	105,2(8)	104,5(8)
∠(O1, <i>X</i> ,O2) ^{a)}	110,3(5)	109,5(8)	108,4(9)	107,4(8)
∠(O2, <i>X</i> ,O2) ^{a)}	113,6(5)	116,9(8)	119,1(9)	122,1(8)

^{a)} X = P, As, ^{b)} npd: Neutronen-, ^{c)} xpd: Röntgenpulverdiffraktometrie.

Abbildung 6-6. Pd₂P₂O₇. Neutronenpulverdiffraktogramm ($\lambda = 1,79764$ Å, T = 293K, nicht verfeinerte Bereiche 0°-10,0°, 146,0°-180,0°) (a) und Röntgenpulverdiffraktogramm ($\lambda = 1,54051$ Å, T = 293K, nicht verfeinerte Bereiche 3,0°-14,0°, 92,0°-180,0°) (b); beobachtetes Profil (punktiert), berechnetes Profil und Differenzplot (unten). Senkrechte Linien zeigen die Lage der Bragg-Reflexe.

$Pd_2P_2O_7$	npd ^{a)}	xpd ^{b)}
Kristallsystem	monoklin	monoklin
Raumgruppe	<i>C2/c</i> (Nr. 15)	<i>C2/c</i> (Nr. 15)
Zahl der Formeleinheiten	Z = 4	Z = 4
Wellenlänge /Å	$\lambda = 1,79764$	Cu-K α_1 -Strahlung $\lambda = 1,54051$
Profilfunktion	Pseudo-Voigt (mit axial-divergenter Asymmetriefunktion) [144]	Pseudo-Voigt
Untergrundbehandlung	Lineare Interpolation	Lineare Interpolation
2θ-Bereich /°	-1,849, 157,811	3,000, 100,300
Nullpunkt /° 20	-0,085(3)	-0,055(1)
Halbwertsparameter	u = 0,606(42) v = -0,095(52) w = 0,150(14)	u = 0,474(32) v = -0,104(19) w = 0,069(3)
Profilformparameter	$\eta = 0,754(21)$	$\eta = 0,615(15)$
Zusätzliche Formparameter	Shp1 = 0.02 Shp2 = 0.071	
Anzahl verfeinerter Parameter	Global: 11, Profil: 11 Intensitätsabhängig: 13	Global: 11, Profil: 13 Intensitätsabhängig: 13
Verfeinerte Phasen	2 (Pd ₂ P ₂ O ₇ , PdO)	2 (Pd ₂ P ₂ O ₇ , PdO)
Anzahl der Reflexe	Pd ₂ P ₂ O ₇ : 392, PdO: 29	Pd ₂ P ₂ O ₇ : 314, PdO: 24
Skalenfaktor	1,155(8)	$1,582 \cdot 10^{-3}$ (3)
Profil- <i>R</i> -Werte Erwartungswert (ohne Untergrundkorrektur)	$R_p = 4,45, R_{wp} = 5,78$ $R_{exp} = 2,92$	$R_p = 4,22, R_{wp} = 5,67$ $R_{exp} = 1,91$
Profil- <i>R</i> -Werte Erwartungswert (mit Untergrundkorrektur)	$R_p = 9,80, R_{wp} = 11,50$ $R_{exp} = 5,82$	$R_p = 12,3, R_{wp} = 13,60$ $R_{exp} = 4,59$
Gewichtetes χ^2	$\chi^2 = 3,94$	$\chi^2 = 8,79$
Bragg- <i>R</i> -Wert, Strukturfaktor- <i>R</i> -Wert	Pd ₂ P ₂ O ₇ : $R_B = 4,29, R_F = 2,24$ PdO: $R_B = 4,20, R_F = 1,76$	Pd ₂ P ₂ O ₇ : $R_B = 4,79, R_F = 2,55$ PdO: $R_B = 3,54 R_F = 2,14$

Tabelle 6-7.Rietveld-Verfeinerung von Pd2P2O7 aus Neutronen- und Röntgendaten.

^{a)} npd: Neutronen-, ^{b)} Röntgenpulverdiffraktometrie.

$Pd_2P_2O_7$	Einkristalldaten	Guinier-IP-Daten	npd ^{a)}	xpd ^{b)}				
Gitterparameter	<i>a</i> = 13,149(1)	<i>a</i> = 13,151(2)	<i>a</i> = 13,1690(5)	<i>a</i> = 13,1606(4)				
/Å	b = 5,1529(4)	b = 5,172(1)	b = 5,1701(2)	b = 5,1678(1)				
	c = 8,135(1)	c = 8,139(1)	c = 8,1316(3)	c = 8,1280(3)				
	$\beta = 97,38(1)$	β=97,52(1)°	β=97,396(3)°	$\beta = 97,392(2)$				
Volumen /Å ³	<i>V</i> = 546,6(1)	V = 548, 8(2)	V = 549,05(4)	<i>V</i> = 548,20(3)				

Tabelle 6-8. Pd₂P₂O₇. Gitterkonstanten aus Einkristalldaten, Guinier-*IP*-Aufnahmen, Neutronen- sowie Röntgenpulverdaten. Standardabweichungen in Klammern.

^{a)} Neutronen-, ^{b)} Röntgenpulverdaten.

Tabelle 6-9. Pd₂P₂O₇. Ortskoordinaten und isotrope Auslenkungsparameter aus Einkristall-(EK), Neutronen (npd)- und Röntgenpulverdaten (xpd).

$Pd_2P_2O_7$	EK	npd	xpd
Pd1 (4d)			
x	3/4	3/4	3/4
У	3/4	3/4	3/4
Ζ	1/2	1/2	1/2
U_{iso} / B_{iso} /Å ^{2 a)}	0,00616(7)	0,8 ^{b)}	0,8 ^{b)}
Pd2 (4a)			
x	0	0	0
У	0	0	0
Ζ	1/2	1/2	1/2
U_{iso} / B_{iso} /Å ^{2 a)}	0,00695(7)	0,8 ^{b)}	0,8 ^{b)}
P (<i>8f</i>)			
x	0,60898(4)	0,6075(4)	0,6120(3)
У	0,8802(1)	0,8790(9)	0,8865(6)
Ζ	0,76613(8)	0,7670(7)	0,7637(5)
U_{iso} / B_{iso} /Å ^{2 a)}	0,0062(1)	0,8 ^{b)}	0,8 ^{b)}
O1 (<i>8f</i>)			
x	0,6113(1)	0,6121(3)	0,6132(3)
У	0,7551(4)	0,7559(9)	0,7483(13)
Ζ	0,5912(2)	0,5897(6)	0,5739(10)
U_{iso} / B_{iso} /Å ^{2 a)}	0,0092(3)	0,8 ^{b)}	0,8 ^{b)}
O2 (4e)			
x	1/2	1/2	1/2
У	0,0250(5)	0,0177(13)	0,0256(21)
Ζ	3/4	3/4	3/4
U_{iso} / B_{iso} /Å ^{2 a)}	0,0094(4)	0,8 ^{b)}	0,8 ^{b)}
O3 (<i>8f</i>)			
x	0,6111(1)	0,6109(3)	0,6068(5)
У	0,6835(4)	0,6863(8)	0,6770(13)
Ζ	0,9023(3)	0,9037(6)	0,9065(9)
U_{iso} / B_{iso} /Å ^{2 a)}	0,0132(3)	0,8 ^{b)}	0,8 ^{b)}
O4 (<i>8f</i>)			
x	0,6894(1)	0,6893(3)	0,6940(4)
У	0,0858(4)	0,0846(9)	0,0744(13)
Ζ	0,7881(2)	0,7871(6)	0,7982(7)
$U_{iso} / B_{iso} / {\rm \AA}^2$ a)	0,0102(3)	0,8 ^{b)}	0,8 ^{b)}

^{a)} Verwendung von U_{iso} [B_{iso}] für Einkristalldaten (EK) [Neutronen- (npd) und Röntgenpulverdaten (xpd)], ^{b)} festgelegter isotroper Auslenkungsparameter B_{iso} .

(ipu) a	na rienegenparter	auton (npa): Staniau	
$Pd_2P_2O_7$	ЕК	npd	xpd
<i>d</i> (Pd1-O4) (2x)	1,992(2) (2x)	2,002(5) (2x)	1,935(6)
<i>d</i> (Pd1-O1) (2x)	2,057(2) (2x)	2,043(4) (2x)	1,970(6)
<i>d</i> (Pd2-O3) (2x)	1,994(2) (2x)	1,993(5) (2x)	1,914(8)
<i>d</i> (Pd2-O1) (2x)	2,038(2) (2x)	2,046(4) (2x)	1,999(6)
<i>d</i> (P-O4)	1,494(2)	1,507(7)	1,452(8)
<i>d</i> (P-O3)	1,502(2)	1,490(8)	1,595(8)
<i>d</i> (P-O1)	1,568(2)	1,584(8)	1,70(1)
<i>d</i> (P-O2)	1,607(1)	1,578(6)	1,532(5)
Brückenwinkel ∠(P,O2,P)	124,5(2)	126,0(6)	145,7(5)

Tabelle 6-10. Pd₂P₂O₇. Interatomare Abstände /Å und Winkel /° aus Einkristall- (EK), Neutronen- (npd) und Röntgenpulverdaten (xpd). Standardabweichungen in Klammern.

6.5 Schwingungsspektroskopische Untersuchungen

Für die Aufnahme von Infrarot- wie auch von Raman-Spektren wurden neben dem phasenreinen Phosphat bzw. Arsenat auch die mit kolloidalem Gold verunreinigten, purpurfarbenen Pulver gemessen (siehe Abschnitt 6.2). Verglichen mit jenen der einphasigen Proben unterschieden sich die beobachteten Schwingungsspektren des Phasengemenges nicht voneinander. Details zur Probenpräparation sind in Kapitel 4.4.1 aufgeführt. In den Schwingungsspektren von AuPO₄ und AuAsO₄ (Abbildung 6-7) wird oberhalb von 1600 cm⁻ ¹ keine Absorption beobachtet. Im IR-Spektrum von AuPO₄ wird im Bereich um 1000 cm⁻¹ eine breite, wenig strukturierte Bande beobachtet, die der asymmetrischen Streckschwingung v_3 der Phosphatgruppen zugeordnet werden kann. Die starke Verbreiterung der Bande kann auf die Aufhebung der Dreifachentartung dieser Schwingung (Lagegruppenaufspaltung) zurückgeführt werden. Erwartungsgemäß wird im IR-Spektrum von AuAsO₄ eine ähnlich strukturierte Bande, die nach kleineren Wellenzahlen verschoben ist (ca. 800 cm⁻¹), und die die asymmetrischen Streckschwingungen der [AsO4]-Tetraeder beschreibt, beobachtet. Die symmetrische Streckschwingung v_l der [XO₄]-Einheiten (X = P, As) ist wegen ihrer geringen Intensität in IR-Spektren als schwache Schulter (958 cm⁻¹ in AuPO₄, 782 cm⁻¹ in AuAsO₄) zu beobachten. Bei den IR-Banden bei 629 cm⁻¹ und 681 cm⁻¹ in AuPO₄ sollte es sich um zwei der bei C2-Lagesymmetrie der Phosphatgruppen zu erwartenden asymmetrischen Deformationsschwingungen v_4 der [PO₄]-Tetraeder handeln. Analoge IR-Banden im Arsenat, welche den asymmetrischen Deformationsschwingungen v_4 der [AsO₄]-Tetraeder zugeordnet werden können, werden bei 567 cm⁻¹ und 598 cm⁻¹ beobachtet. Bei den IR-Schwingungen

bei 529 cm⁻¹ und 568 cm⁻¹ in AuPO₄ sollte es sich um die beiden Lagegruppenkomponenten der symmetrischen Deformationsschwingungen v2 handeln. Diese lassen sich im IR-Spektrum von AuAsO₄ wenn überhaupt, dann als sehr schwache Banden im Bereich von etwa 400 cm⁻¹ erfassen. Bei Betrachtung der Raman-Spektren von Au XO_4 (X = P, As) fällt speziell beim Phosphat die im Vergleich zu den P-O-Streckschwingungen (> 900 cm⁻¹) sehr hohe Intensität der langwelligeren Banden auf. Ein Erklärungsansatz beruht darauf, dass sich die Goldatome mit ihrer hohen Elektronenzahl und der großen Polarisierbarkeit an den meisten langwelligen Schwingungen, darunter den symmetrischen und asymmetrischen Deformationsschwingungen v_2 und v_4 der Phosphatgruppen in Form von Au-O-Schwingungen beteiligen. Die Annahme einer Beimischung von Au-O-Schwingungen zu den Deformationsschwingungen der [PO4]-Tetraeder liefert zugleich eine Erklärung für die niedrigeren Wellenzahlen der v_2 - und v_4 -Schwingungen im Raman- (v_2 (PO₄) = 493 cm⁻¹. 569 cm⁻¹ und (v_4 (PO₄) = 607 cm⁻¹, 637 cm⁻¹) verglichen mit dem IR-Spektrum von AuPO₄ $(v_2 (PO_4) = 529 \text{ cm}^{-1} \text{ und } 568 \text{ cm}^{-1} \text{ und } (v_4 (PO_4) = 629 \text{ cm}^{-1} \text{ und } 681 \text{ cm}^{-1})$. Trotz der großen Masse der Goldatome können im langwelligeren Bereich des Ramanspektrums bereits oberhalb von 400 cm⁻¹ (412 cm⁻¹) Banden mit überwiegendem Anteil an symmetrischen Streckschwingungen v(Au-O) beobachtet werden. Hierin zeigt sich die hohe Stabilität der Au-O-Bindungen in AuPO₄. Die Streckschwingungen innerhalb der Phosphateinheiten setzen sich, wie gruppentheoretisch zu erwarten, aus einer symmetrischen Schwingung v_l (P-O) und drei asymmetrischen Valenzschwingungen v_3 (P-O) zusammen. Wie dem Ramanspektrum zu entnehmen ist, handelt es sich bei den drei asymmetrischen Streckschwingungen erwartungsgemäß um intensitätsschwache Banden (1109 cm⁻¹, 1048 cm⁻¹ und 1014 cm⁻¹). Die symmetrische Streckschwingung v_l (P-O) sollte die insgesamt intensitätsstärkste Ramanbande darstellen (965 cm⁻¹), was jedoch nicht beobachtet wird. Auch erscheint die Zuordnung der symmetrischen Streckschwingung v_1 als stärkste Bande der vier Streckschwingungen bei 1109 cm⁻¹ zweifelhaft, da in [PO₄]-Einheiten grundsätzlich $v_1 < v_3$ ist. Die Banden im Ramanspektrum von AuAsO₄ zeigen eine gewisse Ähnlichkeit zu jenen im Phosphat, allerdings werden im Gegensatz zu AuPO₄ nur zwei der vier zu erwartenden As-O-Streckschwingungen beobachtet (721 cm⁻¹ und 805 cm⁻¹). Eine Auflistung der IR- und Raman-Frequenzen beider Verbindungen zeigt Tabelle 6-11.

Abbildung 6-7. Schwingungsspektren von AuPO₄ (a) und AuAsO₄ (b).

Tabelle 6-11. AuPO₄ und AuAsO₄. Schwingungsfrequenzen der IR- und Ramanspektren in Wellenzahlen $/cm^{-1}$. Intensitäten der Banden sind angegeben mit sw (sehr schwach), m (mittel) und s (stark).

AuPO ₄		AuAsO ₄		Zuordnung
Raman	IR	Raman	IR	
309 m 320 sw 366 sw 412 s		244 sw 310 sw 383 s		Streckschwingung v(Au–O) [208].
493 s 569 sw	529 m 568 sw	516 s	≈ 400 sw	symmetrische Deformationsschwingung v_2 (XO ₄) (X = P, As), (A ₁ + A ₂) [209].
607 637	629 s 681 s	589 m	567 598	asymmetrische Deformationsschwingung v_4 (XO ₄) (X = P, As), (A ₁ + B ₁ + B ₂) [209].
968 sw	958 sw	721 m	782 sw	symmetrische Streckschwingung v_1 (X-O) (X = P, As), (A ₁) [209].
1014 sw 1049 sw 1108 sw	≈ 1000 s	805 sw	≈ 800 s	asymmetrische Streckschwingung ν_3 (X-O) (X = P, As), (A ₁ + B ₁ + B ₂), [209].

6.6 ³¹P-MAS-NMR Untersuchungen an AuPO₄

Eine weitere Möglichkeit zur Charakterisierung der Phosphateinheiten in AuPO₄ bietet die hochaufgelöste ³¹P-MAS-NMR Spektroskopie. Die chemischen Verschiebungsparameter wurden durch Anpassung mit numerisch berechneten Spektren (Programm SIMPSON [160], Minuit-Routine in SIMPSON [210]) zu δ_{iso} =30,2ppm, δ_{aniso} = 22,4ppm und η = 0,29 bestimmt (Varian Infinity Plus NMR-Spektrometer, 9,4 Tesla Magnet, 2,5 mm MAS-Doppelresonanzprobenkopf, Rotationsfrequenz 10,0 kHz, Relaxationszeit $T_1 = 166 \pm 15$ Sek.). Die chemischen Verschiebungswerte sind relativ zur ³¹P-Resonanz von 85%iger Übereinstimmung In Neutronen-Phosphorsäure angegeben. mit den sowie Röntgenpulverdaten zeigen die Ergebnisse der ³¹P-MAS-NMR-Messung das Vorliegen einer Phosphorlage. Um die Resonanz der isotropen chemischen Verschiebung lassen sich die charakteristischen Rotationsseitenbanden ausmachen. Für die Charakterisierung des Verknüpfungsgrades der Phosphateinheiten in der Probe hat sich der anisotrope chemische Verschiebungstensor δ_{aniso} als geeignet erwiesen. Der ermittelte, kleine Wert von δ_{aniso} = 22,4ppm deutet, wie aufgrund der Strukturverfeinerung auch zu erwarten ist, auf Orthophosphat-Einheiten hin. Das Ausmaß der Verzerrung von [PO₄]-Gruppen ergibt sich aus dem Asymmetrieparameter η . Der ermittelte Wert von $\eta = 0.29$ spricht für weitgehend unverzerrte Orthophosphat-Einheiten in der Elementarzelle von AuPO₄. Die im Gegensatz zu

Orthophosphaten einiger Haupt- und Nebengruppenelemente [161, 162, 165] (vgl. Tabelle 4-2) hohe isotrope chemische Verschiebung von $\delta_{iso} = 30,2ppm$ deutet auf hohe kovalente Bindungsanteile zwischen Au³⁺ und den PO₄³⁻-Anionen hin. Eine ähnlich hohe chemische Verschiebung wurde bereits für Pd₂P₂O₇ [17] beobachtet.

6.7 Diskussion der Strukturen

Wie aus den Global-, Profil- und Lageparametern sowie den interatomaren Abständen und Winkeln der drei untersuchten Verbindungen hervorgeht (Abschnitt 6.4), ergaben sich bei der Rietveld-Verfeinerung von AuXO₄ (X = P, As) und Pd₂P₂O₇ in Abhängigkeit von der Messmethode qualitative Unterschiede. Während die Verfeinerung der Referenzsubstanz Pd₂P₂O₇ aus Neutronenpulverdaten typische Global- und Profilparameter und verglichen mit Einkristallstrukturdaten nahezu identische Atomparameter sowie interatomare Abstände und Winkel lieferte, ergaben sich bei der Verfeinerung aus Röntgenpulverdaten signifikante Abweichungen. Ähnlich verhält es sich bei der Rietveld-Verfeinerung von AuAsO₄. Während bei der Verfeinerung aus Röntgenpulverdaten einer der Halbwertsparameter festgehalten werden musste, da andernfalls physikalisch wie auch chemisch nicht sinnvolle Werte resultierten, gestatteten Neutronenpulverdaten eine zufrieden stellende Verfeinerung, obwohl die erhaltenen Halbwertsparameter u und v ungewöhnlich hohe Werte aufweisen (Tabelle 6-4). Diese sind offenbar das Ergebnis von schlecht kristallisiertem Probenmaterial, worauf die sehr stark verbreiterten Reflexe von AuAsO4 hindeuten. Lediglich die Verfeinerung von AuPO₄ verlief sowohl aus Neutronen- wie auch aus Röntgenpulverdaten ohne Schwierigkeiten und führte in beiden Fällen zu physikalisch sinnvollen Parametern wie auch zu den typischerweise beobachteten interatomaren Abständen d(P-O) bzw. $d(Au^{III}-O)$ Winkeln \angle (O,P,O). Offensichtlich erschweren Absorptionseffekte, und die aus Neutronenpulvermessungen weitgehend vernachlässigbar bei sind. der Röntgenpulverdiffraktometrie die Strukturverfeinerung von AuAsO₄ und Pd₂P₂O₇ in erheblicherem Umfang als im Fall von AuPO₄. Die insgesamt zufrieden stellende Übereinstimmung zwischen beobachtetem und berechnetem Profil aller drei untersuchten Proben geht aus den Abbildungen 6-4 bis 6-6 hervor. Auf die aus Röntgen- und Neutronenpulverdaten erhaltenen interatomaren Abstände und Winkel von AuXO₄ (X = P, As) wird im Folgenden näher eingegangen.

Die Elementarzelle (Abbildung 6-10) enthält vier Formeleinheiten AuPO₄ bzw. AuAsO₄ mit jeweils einer kristallographisch unabhängigen Lage für Gold. Wie in den Kristallstrukturen von Au₂O₃ [211], Au₂(SeO₃)₂O [47] oder KAu(NO₃)₄ [52] und zahlreichen weiteren

Oxoverbindungen, weist Gold(III) eine quadratisch-planare Koordination der Sauerstoffatome O1 und O2 mit \overline{d} (Au-O) = 1,970Å in AuPO₄ und \overline{d} (Au-O) = 1,990Å in AuAsO₄ auf (Mittelung der interatomaren Abstände d(Au-O) aus Neutronenpulverdaten, Tabelle 6-6, Abbildung 6-8 und 6-9).

Abbildung 6-8. AuPO₄. ORTEP-Darstellung der [AuO₄]-Quadrate und [PO₄]-Tetraeder aus Neutronen- (a) und Röntgenpulverdaten (b).

Abbildung 6-9. AuAsO₄. ORTEP-Darstellung der [AuO₄]-Quadrate und [AsO₄]-Tetraeder aus Neutronen- (a) und Röntgenpulverdaten (b).

In beiden Strukturen ist jedes [Au^{III}O₄]-Planquadrat über vier [XO₄]-Tetraeder (X = P, As) verknüpft. In der gleichen Weise ist jede [XO₄]-Gruppe von vier Gold-Atomen umgeben, was zum Aufbau einer dreidimensionalen Netzwerkstruktur AuO_{4/2}XO_{4/2} führt. Als Folge gleicher Koordinationssphären der beiden kristallographisch unabhängigen Sauerstoffatome O1 und O2 (K.Z.(O1, O2) = 2, Au, P) in den Kristallstrukturen von AuXO₄, sind sehr ähnliche interatomare Abstände \overline{d} (P-O) bzw. \overline{d} (Au-O) zu erwarten. So weist die zu AuXO₄ isotype Verbindung *M*-PdSO₄ [34] mit d(Pd-O2) = 2,001 Å (2x) bzw. d(Pd-O1) = 2,023 Å (2x) und d(S-O2) = 1,475Å bzw. d(S-O1) = 1,483Å erwartungsgemäß nahezu gleiche interatomare Abstände auf. Wie aus Tabelle 6-6 hervorgeht, unterscheiden sich in AuXO₄ (X = P, As) die Abstände in den [Au^{III}O₄]-Einheiten, insbesondere jedoch innerhalb der [PO₄]- und [AsO₄]-Tetraeder signifikant voneinander ($d(P-O2) = 1,50\text{\AA}(2x)$, bzw. $d(P-O1) = 1,53\text{\AA}(2x)$; $d(As-D2) = 1,50\text{\AA}(2x)$ O2) = $1,63\text{\AA}$ (2x) bzw. $d(\text{As-O1}) = 1,70\text{\AA}$ (2x), Abstände aus Neutronenpulverdaten). Offensichtlich wird die Verknüpfung der $[Au^{III}O_4]$ -Planquadrate mit $[XO_4]$ -Tetraedern in AuPO₄ und AuAsO₄ von einer leichten radialen Verzerrung der Tetraeder begleitet. Die Annahme einer radialen Verzerrung wird durch die beobachteten Winkel in AuPO₄ und AuAsO₄ bestätigt. Wie erwartet, führen zwei kürzere interatomare Abstände \overline{d} (X-O) zu einer Aufweitung des Winkels $\angle(O,X,O)$. Nach der Rietveld-Verfeinerung von AuPO₄ aus Neutronenpulverdaten, beobachtet man einen Winkel \angle (O1,P,O1) = 110,4(5)° (d(P-O1) = 1,534(6)Å (2x)), während sich der Winkel \angle (O2,P,O2) = 113,6(5)° bei einem Abstand d(P-O2) = 1,502(6)Å erwartungsgemäß aufweitet. Ähnliche Abstände und Winkel wurden nach der Verfeinerung von AuPO₄ aus Röntgenpulverdaten erhalten (Tabelle 6-6). Eine vergleichbare Korrelation zwischen interatomaren Abständen und Winkeln wird auch in AuAsO₄ aus Neutronenpulverdaten beobachtet (\angle (O1,As,O1) = 110,5(8)° (d(As-O1) = 1,701(10)Å (2x)) und \angle (O2,As,O2) = $119,1(2)^{\circ}$ (d(As-O2) = 1,639(11)Å (2x)). Die im Vergleich zum Winkel \angle (O1,As,O1) starke Aufweitung von \angle (O2,As,O2) geht verglichen mit d(As-O1) mit einer deutlich kürzeren Bindung d(As-O2) einher. Einen solchen Trend beobachtet man auch in *M*-PdSO₄. In entsprechender Weise werden im Sulfat die geringfügig unterschiedlichen Abstände d(S-O1) = 1,483 Å und d(S-O2) = 1,475 Å von leicht unterschiedlichen Winkeln $\angle(O2,S,O2) = 112,4^{\circ}$ und $\angle(O1,S,O1) = 110,6^{\circ}$ begleitet. Die interatomaren Abstände \overline{d} (P-O), welche aus Neutronen- und Röntgenpulveruntersuchungen erhalten wurden, sind stellvertretend für eine ganze Reihe von Orthophosphaten [13, 41]. Die aus Neutronenpulverdaten von AuAsO₄ erhaltenen Abstände \overline{d} (As-O) zeigen ebenso eine gute Übereinstimmung mit jenen von CrAsO₄ [212], GaAsO₄ [204] und FeAsO₄ [206], wie die aus Röntgen- und Neutronenpulverdaten beobachteten Abstände \overline{d} (Au^{III}-O) verglichen mit Abständen d(Au^{III}-O) beispielsweise aus Au₂O₃ [211], AuOCl [213], LaAuO₃ [214] und KAuO₂ [215].

Eine interessante strukturelle Beziehung beobachtet man zwischen vielen binären Verbindungen MX und den komplexen Oxiden MXO₄. Die Kristallstruktur eines komplexen Oxids kann man sich formal ausgehend von der binären Verbindung zusammengesetzt vorstellen, indem man Elektronenpaare durch O²⁻-Anionen substituiert (Tabelle 6-12). In diesem Sinne ergibt sich eine Verwandtschaft der Strukturen von AuPO₄ und AuAsO₄ mit jener von PtS [216]. Ein binäres Goldphosphid "AuP" zum Vergleich ist bislang nicht bekannt. In der PtS-Struktur, in der auch die zweiwertigen Edelmetalloxide und -sulfide Pt^{II}O [217], Pd^{II}O [174] und Pd^{II}S [218, 219] kristallisieren, liegen planare Bänder aus transkantenverknüpften [PtS4]-Quadraten parallel nebeneinander. Diese sind auf beiden Seiten über gemeinsame Schwefelatome mit entsprechenden Bändern, die senkrecht zu ersteren verlaufen, verknüpft. Hiernach ist Platin planar von vier Schwefel-Atomen koordiniert, die ihrerseits tetraedrisch von Platin-Atomen umgeben sind. Vergleicht man die Strukturen von AuXO₄ (X = P, As) mit jener von Cu^{II}O [220, 221] (Tenorit), so ist die Verwandtschaft noch ausgeprägter. In CuO wie auch in AuPO₄ und AuAsO₄ verlaufen die zwei Sätze von Bändern, die sich entlang [110] und [-110] erstrecken, nicht senkrecht zueinander (Abbildung 6-11). Somit lassen sich formal betrachtet AuPO₄ und AuAsO₄ aus der einfachen Struktur des Kupfer(II)-oxids aufbauen.

Tabelle 6-12. Strukturelle Beziehungen zwischen binären Verbindungen MX und den komplexen Oxiden MXO_4 .

Basisstruktur	Ref.	Komplexes Oxid	Ref.
Si, Diamant-Typ	[222]	SiO ₂ , Cristobalit-Typ	[223]
ZnS, Zinkblende	[224]	ZnSO ₄ , Cristobalit-Type	[225]
AlP, Zinkblende-Typ	[226]	AlPO ₄ , Cristobalit-Typ	[227]
VP, Nickelarsenid-Typ	[228]	VPO ₄ , CrVO ₄ -Typ	[229]

Abbildung 6-10. Kristallstruktur von Au XO_4 (X = P, As) mit [XO_4]-Tetraedern (gelb) und Au³⁺ (rot), Sauerstoff: weiße Kugeln (Progr. DIAMOND v3.1f [230]).

Abbildung 6-11. Projektion der Kristallstruktur von Au XO_4 (X = P, As) (a) und CuO (b) entlang [001] mit tetraedrischen [XO_4]-Einheiten (X = P, As) (gelb), Au³⁺ (rot), Cu²⁺ (braun) und O²⁻ (weiß). Bänder erstrecken sich entlang [110] und [-110]. DIAMOND v3.1f [230].

6.8 Experimente zur Darstellung weiterer ternärer und polynärer Gold(III)-phosphate

Nach der Synthese von AuPO₄ und AuAsO₄ wurde auch die Darstellung von "AuSbO₄" und "AuVO4" angestrebt. Da im Gegensatz zu H3PO4 und H3AsO4 weder die Ortho-Antimonsäure H₃SbO₄ noch die Ortho-Vanadiumsäure H₃VO₄ bekannt sind, beschränkten sich die Experimente zur Darstellung von AuSbO₄ bzw. AuVO₄ auf Festkörperreaktionen und Hydrothermalsynthesen. Als Edukte kamen dabei V₂O₅ [231, 232] und Sb₂O₅·xH₂O [233] zum Einsatz. Zur Synthese von "AuSbO₄" wurde ausgehend von K[Sb(OH)₆] mit konz. HNO₃ zunächst das Antimon(V)-oxid-hydrat Sb₂O₅·xH₂O hergestellt (Synthese nach [171]). Dieses wurde mit der äquivalenten Menge an "AuO(OH)" in einer geschlossenen Ampulle für 48h bei 250°C getempert. Röntgenpulveraufnahmen zufolge fand eine Umsetzung in Sb₂O₅ [234] statt ("AuO(OH)" ist röntgenamorph). Höhere Temperzeiten (96h) bzw. höhere Temperaturen (350°C) führten zu einer Zersetzung von Sb₂O₅ wie auch von "AuO(OH)" in Sb₂O₃ [235], elementares Gold und Sauerstoff. Experimente unter hydrothermalen Bedingungen mit den gleichen Edukten und konz. HNO₃ als Lösungsmittel (250°C, 7d) lieferten ebenfalls Sb₂O₃ neben elementarem Gold. Nasschemische Darstellungsversuche aus salpetersaurer Lösung (analog jenen zur Darstellung von AuPO₄ und AuAsO₄) schlugen aufgrund der Schwerlöslichkeit von Sb₂O₅·xH₂O in konz. HNO₃ fehl. In orientierenden Experimenten zur Darstellung von "AuVO4" wurde eine wässrige Lösung von NH₄VO₃ [236] mit einer konz. salpetersauren Lösung von "AuO(OH)" bei 150°C zur Reaktion gebracht. Der beim Eindampfen der Lösung erhaltene rot-braune Rückstand wurde röntgenographisch untersucht und zeigte, vermutlich bedingt durch die reduzierende Wirkung von NH4⁺, ausschließlich Reflexe von elementarem Gold. Die Umsetzung von V₂O₅ mit "AuO(OH)" in geschlossenen Kieselglasampullen (48h, 250°) lieferte neben V₂O₅ ebenfalls nur elementares Gold. Bei tieferen Temperaturen bzw. kürzeren Temperzeiten fand keine Umsetzung statt (nur Reflexe von V₂O₅ im Guinierdiagramm). Ähnliche Ansätze bei Hydrothermalsynthesen mit variierenden Temperaturen (100 - 300° C) und Konzentrationen an HNO₃ lieferten stets V₂O₅ neben Au.

Neben AuPO₄ wurde auch die Synthese polynärer Goldphosphate angestrebt. Nasschemische Reaktionen zur Darstellung von $A^{I}Au^{III}P_2O_7$ (A = Na, K, Ag) aus den Nitraten ANO_3 (A = Na, K, Ag) und "AuO(OH)" (in konz. HNO₃ gelöst) führten unter Zusatz äquivalenter Mengen an 1M H₃PO₄ (alternativ wurde auch AH_2PO_4 (A = Na, K) eingesetzt) nach Ausweis von *IP*-Guinier-Aufnahmen zu Trockenrückständen, die sich aus ANO_3 (A = Na, K, Ag) und AuPO₄ zusammensetzen (vgl. Tab. 6-13). Die Ansätze zur Darstellung von Hg^{II}Au^{III}₂(P₂O₇)₂ bzw.

 $(Hg^{1})_{2}Au_{2}(P_{2}O_{7})_{2}$, bei denen salpetersaure Lösungen von HgO [237] bzw. Hg₂(NO₃)₂ und "AuO(OH)" mit der äquivalenten Menge an 1M H₃PO₄ zur Reaktion gebracht wurden, ergaben beim Eindampfen der Lösung einen hellgrünen bzw. gelben, pulverförmigen Trockenrückstand, der sich *IP*-Guinier-Aufnahmen zufolge aus Hg₂P₂O₇ und Au bzw. AuPO₄ zusammensetzte (vgl. Tab. 6-13). Geleitet vom Interesse Netzwerkstrukturen aus Planquadraten und Tetraedern aufzubauen, wurden auch Experimente zur Darstellung von Pd^{II}Au^{III}₂(P₂O₇)₂ durchgeführt. Der grünlich-graue Trockenrückstand, welcher ausgehend von Pd-Pulver, "AuO(OH)" (beide gelöst in konz. HNO₃, *T* = 150°C) und äquivalenten Mengen an H₃PO₄ erhalten wurde, zeigte Röntgenpulveraufnahmen zufolge Reflexe von AuPO₄ neben geringen Mengen elementarem Au. Während ein Tempern des Trockenrückstands an Luft bei Temperaturen bis 400°C zu keiner Veränderung führte, entstand bei *T* = 500°C ein Gemenge aus Au und schlecht kristallisiertem Pd₂P₂O₇ (Guinieraufnahmen). Tabelle 6-13 gibt eine Übersicht der zur Darstellung polynärer Gold(III)-phosphate durchgeführten Experimente und deren Charakterisierung mittels *IP*-Guinier-Aufnahmen.

Zielverbindung	An-	Ausgangsverbindungen Einwaagen	Temperatur /°C	IP-Guinier-
	satz	/ mg, ml (mmol)	Temperdauer /h	Aufnahmen
NaAuP ₂ O ₇	B ^{a)}	"AuO(OH)" / NaH ₂ PO ₄ ·2H ₂ O	150, 1	$NaNO_3 + AuPO_4$
		100,0 (0,435) / 135,68 (0,87)		
	B ^{b)}	"AuO(OH)" / NaNO ₃ / H ₃ PO ₄	150, 1	$NaNO_3 + AuPO_4$
		100,0 (0,435) / 36,98 (0,435) / 8,7 (0,87)		
	A ^{a)}	AuPO ₄ / NaH ₂ PO ₄ ·2H ₂ O	≤400, 5	$Na_3PO_4 + AuPO_4$
		80,0 (0,274) / 42,75 (0,274)		
KAuP ₂ O ₇	B ^{a)}	"AuO(OH)" / KH ₂ PO ₄	150, 1	$KNO_3 + AuPO_4$
		100,0 (0,435) / 118,40 (0,87)		
	A ^{a)}	AuPO ₄ / KH ₂ PO ₄	≤400, 5	$K_3PO_4 + AuPO_4$
		80,0 (0,274) / 37,29 (0,274)		
AgAuP ₂ O ₇	$\mathbf{B}^{(b)}$	"AuO(OH)" / AgNO ₃ / H ₃ PO ₄	150, 1	$AgNO_3 + AuPO_4$
		100,0 (0,435) / 73,89 (0,435) / 8,7 (0,87)		
	A ^{a)}	AuPO ₄ / Ag ₃ PO ₄	≤ 450, 10	$AuPO_4 + AgPO_3$
		80,0 (0,274) / 114,69 (0,274)		+ Au
$Hg^{II}Au_2(P_2O_7)_2$	$\mathbf{B}^{(b)}$	"AuO(OH)" / HgO / H ₃ PO ₄	≤ 450, 5	$Hg_2P_2O_7 + Au$
		100,0 (0,435) / 47,22 (0,218) / 8,7 (0,87)		
$(Hg^{I})_{2}Au_{2}(P_{2}O_{7})_{2}$	B ^{b)}	"AuO(OH)" / (Hg ₂)(NO ₃) ₂ / H ₃ PO ₄	≤ 400, 5	AuPO ₄ +
		100,0 (0,435) / 114,49 (0,218) / 8,7 (0,87)		$Hg_2P_2O_7$
$PdAu_2(P_2O_7)_2$	B ^{b)}	"AuO(OH)" / Pd / H ₃ PO ₄	≤ 400, 5	$AuPO_4 + Au$
		100,0 (0,435) / 23,20 (0,218) / 8,7 (0,87)	500, 5	$Pd_2P_2O_7 + Au$

Tabelle 6-13. Übersicht der Experimente zur Darstellung polynärer Goldphosphate.

^{a)} isothermes Tempern der Oxide bzw. Phosphate in geschlossener Kieselglasampulle; ^{b)} nasschemischer Darstellungsversuch; Lösen der Edukte in konz. HNO₃; Zusatz von H₃PO₄ (c = 0,0980 mol·l⁻¹).

Hinweise auf die Bildung von Polykationen des ein- und zweiwertigen Quecksilbers mit Gold(III) der Art $\{Hg_2Au\}^{5+}$ oder $\{Hg_2Au\}^{3+}$, wie sie beispielsweise in AgHgSI [238] oder CuHgSCl [239] in Form von $\{AgHg\}^{3+}$ - bzw. $\{CuHg\}^{3+}$ -Polykationen vorkommen, wurden bei keinem der durchgeführten Experimente erhalten.

Bei Versuchen zur Kristallisation von AuPO₄ in Gegenwart von Templaten wurden salpetersaure Lösungen von "AuO(OH)" mit unterschiedlich konzentrierten Lösungen von H₃PO₄ und Tetrabutylammoniumhydroxid bei verschiedenen Temperaturen (50°C $\leq T \leq$ 150°C) und unterschiedlichen pH-Werten (neutral bis leicht alkalisch) zur Reaktion gebracht. Der erhaltene, blassgelbe Trockenrückstand wurde sowohl röntgenographisch wie auch mittels energiedispersiver Mikroanalyse charakterisiert. Die **IP-Guinier-**Pulverdiffraktogramme des Rückstandes zeigten das Beugungsmuster einer bisher noch nicht näher charakterisierten Verbindung (Abbildung 6-12), die jedoch nach Ausweis von EDX-Untersuchungen kein Gold enthält. Vermutlich handelt es sich um ein Tetrabutylammoniumphosphat.

Abbildung 6-12. *IP*-Guinier-Aufnahme des Reaktionsprodukts aus der Umsetzung von Tetrabutylammoniumhydroxid mit phosphorsaurer "Au(NO₃)₃"-Lösung.

7 Iridiumphosphate

7.1 Iridium(III)-metaphosphate, C-Ir(PO₃)₃ und *trikl*-Ir(PO₃)₃

7.1.1 Einleitung

Von Phosphaten der Zusammensetzung $M^{III}P_3O_9$ sind bislang sechs Modifikationen A-F bekannt (Cr^{III}P₃O₉ kristallisiert in allen sechs Modifikationen) [42, 240, 241, 242], von denen für die Formen A-C Einkristallstrukturanalysen vorliegen. In diesen Modifikationen liegen die Metaphosphate in unterschiedlichen Ringen bzw. Ketten vor. Die A-Form, wie in $Sc_4(P_4O_{12})_3$ [243], enthält das *cyclo*-Tetra(metaphosphat) $(P_4O_{12})^3$, die *B*-Form setzt sich, wie in $Cr_2(P_6O_{18})$ [244] oder $Ru_2(P_6O_{18})$ [20], aus Hexametaphosphat-Ringen $(P_6O_{18})^{6-1}$ zusammen. Am weitesten verbreitet und die offenbar thermodynamisch stabilste Modifikation sind die *catena*-Metaphosphate $M^{III}(PO_3)_3$ der C-Form, in der eine Vielzahl von dreiwertigen Metallen (M = A1 [245], Ga [246], In [247], Rh [15], Fe [248], Ru [20, 21], Cr [249, 250], Mo [251], V [252], Ti [253], Sc [254]) kristallisiert. Zusätzlich zu den sechs bislang bekannten Modifikationen der dreiwertigen Metaphosphate wurde kürzlich über die Darstellung und kristallchemische Charakterisierung einer triklinen Modifikation von Ru(PO₃)₃ [20] berichtet. Neben nasschemischen Fällungsreaktionen aus phosphorsaurer Lösung zur Darstellung solcher Modifikationen mit dreiwertigem Iridium, sollten chemische Transportexperimente die Gleichgewichtsbeziehungen im Dreistoffsystem Ir/P/O aufklären. Über die Darstellung und kristallchemische Charakterisierung neuer Iridiumphosphate hinaus, wurden ³¹P-MAS-NMR spektroskopische Untersuchungen aufgrund bislang fehlender Kenntnis über chemische Verschiebungen in Iridiumphosphaten angestrebt.

7.1.2 Das Dreistoffsystem Iridium/Phosphor/Sauerstoff

7.1.2.1 Einleitung

Im Zusammenhang mit der Präparation von wasserfreien Iridiumphosphaten und der thermochemischen Interpretation von deren Transportverhalten, lag eine systematische Untersuchung der Gleichgewichtsbeziehungen im Dreistoffsystem Iridium/Phosphor/ Sauerstoff nahe. Bis Mitte der 90er Jahre waren abgesehen vom System Fe/P/O [255] kaum Informationen über Phasendiagramme M/P/O verfügbar. In den letzten Jahren wurden in der Arbeitsgruppe GLAUM umfangreiche Untersuchungen auf diesem Gebiet durchgeführt. Mittlerweile ist eine Reihe von Phasendreiecken M/P/O der Übergangsmetalle M ganz oder zumindest teilweise aufgeklärt (Ti [256, 257, 258], Zr [259], V [260], Nb [13], Cr [13], Mo

[261], W [262], Mn [263], Co [76], Ni [91], Cu [264], Zn [13]. Im Folgenden werden die im Rahmen dieser Arbeit durchgeführten Experimente zu den Gleichgewichtsbeziehungen im System Ir/P/O vorgestellt und interpretiert. Vor Beginn der Untersuchungen waren wasserfreie Iridiumphosphate unbekannt. Mit Ir₂P [265], IrP₂ [266] und IrP₃ [267] sind bislang drei Iridiumphosphide bekannt. IrO₂ [268] ist das bislang einzige kristallchemisch charakterisierte Iridiumoxid. Iridium(III)-oxid Ir₂O₃ ist in wasserfreier Form unbekannt [269]. Die Annahme einer ähnlichen Strukturchemie von Iridium(III) verglichen mit dessen leichteren Homologen Rhodium(III) und Ruthenium(III) (vgl. Kapitel 7.1.6), ließ die Untersuchungen zur Darstellung von Iridium(III)-phosphaten aussichtsreich erscheinen. Darüber hinaus erschien die Redoxchemie zwischen Iridium(III) und Iridium(IV) und die Frage nach Iridium in höheren Oxidationsstufen besonders reizvoll. Von Interesse war die Dreistoffsystems Ir/P/O Aufklärung des auch deshalb, weil Informationen zu Gleichgewichtsbeziehungen in Edelmetallphosphaten der 5d-Übergangsmetalle bislang fehlten.

7.1.2.2 Durchführung und Auswertung der Temperexperimente

Für die Untersuchungen wurden bis auf IrP₂ alle Ausgangsverbindungen käuflich erworben (siehe Tabelle 5-1). Die Darstellung von phasenreinem, mikrokristallinem IrP₂ gelingt durch isothermes Tempern ($T = 900^{\circ}$ C, 14d) von elementarem Iridium mit rotem Phosphor. Als weitere Edukte wurden IrO₂, Iridium-Pulver, P₄O₁₀ und P_{rot} verwendet. Um eine schnelle Gleichgewichtseinstellung zu bewirken und so die Versuchsdauer zu verringern, wurde in allen Experimenten ca. 10mg Iridium(III)-chlorid IrCl₃: xH_2O ($x \approx 0,1$) als Mineralisator zugesetzt. Bei allen im Rahmen dieser Untersuchungen durchgeführten Temperexperimenten ist daher zu bedenken, dass sowohl durch den Zusatz des Mineralisators als auch durch die Verdampfung von P₄O₁₀ ein Teil des Bodenkörpers irreversibel in die Gasphase überführt wird. Die durch die Einwaage vorgegebenen Molenbrüche sind somit in den Gleichgewichtsbodenkörpern nicht mehr exakt vorhanden. Trotzdem stellt die Darstellung der Gleichgewichtsbeziehungen in einem Gibbs'schen Phasendreieck die übersichtlichste Form zur Veranschaulichung der experimentellen Ergebnisse dar (vgl. Kapitel 2.2). Um Ungenauigkeiten weitestgehend zu minimieren und damit die Ergebnisse der Temperexperimente besser miteinander vergleichen zu können, wurden sowohl die Menge an Mineralisator als auch das Ampullenvolumen ($V = 20 \text{ cm}^3$) innerhalb der Untersuchungen möglichst konstant gehalten. Die Umsetzung erfolgte in geschlossenen Kieselglasampullen (l \approx 10 cm), die vor dem Befüllen im Vakuum bei ca. 800°C ausgeheizt wurden. Nach dem Einbringen der Ausgangssubstanzen mittels eines Wägeröhrchens in die mit Argon befüllten Ampullen, wurden diese evakuiert ($p \le 10^{-2}$ Torr) und anschließend zugeschmolzen. Die bei den Ausgangsbodenkörpern beschickten Ampullen wurden bei 500°C vorgetempert, um so eine Vorreaktion des eingesetzten roten Phosphors mit IrO₂ zu bewirken. Dadurch liegt der größte Teil des Phosphors nichts frei in der Gasphase vor und ein Aufheizen der Ampulle auf die gewünschte Temperatur (800°C) ist so gefahrlos möglich. Alle Experimente wurden im gleichen Temperofen durchgeführt. Nach Beendigung der Temperexperimente (Dauer ~ 7*d*) wurden die Ampullen mit Wasser abgeschreckt und geöffnet, der Bodenkörper mit verd. HF abgelöst, gereinigt und getrocknet (vgl. Abschnitt 3.5). Die festen Gleichgewichtsphasen wurden röntgenographisch über *IP*-Guinier-Aufnahmen identifiziert (vgl. Abschnitt 4.1.2.1).

Im bearbeiteten Phasendreieck treten neben elementarem Iridium die kondensierten binären Phasen IrO₂ und IrP₂ auf. In der Gasphase ist neben P₄O₁₀ mit P₄ und den niederen Phosphoroxiden P₄O_n ($6 \le n \le 9$) zu rechnen. Als ternäre Verbindung liegt Ir(PO₃)₃ vor. In Abbildung 7-1 sind die Temperexperimente bei $T = 800^{\circ}$ C und die daraus abgeleiteten Gleichgewichtslinien dargestellt. Die Versuchsparameter für die einzelnen Experimente und die identifizierten Bodenkörper sind in Tabelle 7-1 zusammengestellt.

Neben der Synthese und strukturchemischen Charakterisierung der Iridium(III)metaphosphate, wurden ausgehend von IrO₂ und konz. H₃PO₄ bzw. P₄O₁₀ Experimente zur Darstellung von Ir^{IV}P₂O₇ durchgeführt. Während nach Ausweis röntgenographischer Untersuchungen bei isothermen Temperexperimenten (in Goldtiegeln an Luft bzw. in evakuierten Kieselglasampullen) bis 600°C keine Umsetzung stattfand, wurde bei 800°C nahezu phasenreines, mikrokristallines *C*-Ir(PO₃)₃ erhalten. Bei Temperaturen zwischen 600°C und 800°C lag ein Phasengemenge von *C*-Ir(PO₃)₃ und nicht umgesetztem IrO₂ vor. Ein unbekanntes Beugungsdiagramm, das auf "Ir^{IV}P₂O₇" hindeutet, wurde bei diesen Experimenten nicht beobachtet. Die Tatsache, dass Ir^{IV}O₂ das bislang einzige strukturell charakterisierte Iridiumoxid darstellt, es aber keine Hinweise auf die Existenz eines Iridium(IV)phosphats gibt, spiegelt die allgemeine Beobachtung einer höheren Neutralisationswärme bei der Darstellung von Phosphaten in niedrigeren Oxidationsstufen wieder.

Nr.	Ausgangsverbindungen / Einwaagen [mg]	$x(\mathbf{Ir}): x(\mathbf{P}): x(\mathbf{O})$	Gleichgewichtsbodenkörper nach Guinieraufnahmen
T1	IrO ₂ , P ₄ O ₁₀ 150,0 / 142,50	0,07 : 0,23 : 0,70	$Ir(PO_3)_3 + IrO_2$
T2	IrO ₂ , P ₄ O ₁₀ 100,0 / 63,31	0,10 : 0,20 : 0,70	$Ir(PO_3)_3 + IrO_2$
Т3	IrO ₂ , P ₄ O ₁₀ 150,0 / 47,50	0,15:0,15:0,70	$Ir(PO_3)_3 + IrO_2$
T4	IrO ₂ , P _{rot} , P ₄ O ₁₀ 250,0 / 6,90 / 63,31	0,17 : 0,17 : 0,66	$Ir(PO_3)_3 + IrO_2$
T5	IrO ₂ , P _{rot} , P ₄ O ₁₀ 250,0 / 6,90 / 221,67	0,08 : 0,23 : 0,69	$Ir(PO_3)_3 + IrO_2$
T6	IrO ₂ , P _{rot} 100,0 / 19,95	0,225 / 0,325 / 0,45	$Ir_2P + IrP_2 + Ir(PO_3)_3$
Т7	IrO ₂ , P _{rot} 100,0 / 35,30	0,18 / 0,46 / 0,36	IrP ₂
Т8	IrO ₂ , P _{rot} 150,0 / 13,19	0,275 / 0,175 / 0,55	$Ir + Ir(PO_3)_3$
Т9	IrO ₂ , P _{rot} 50,0 / 117,41	0,05 / 0,85 / 0,10	$IrP_2 (+ P_xO_y)$
T10	IrO ₂ , Ir, P ₄ O ₁₀ 150,0 / 42,87 / 63,31	0,17 : 0,17 : 0,66	$Ir(PO_3)_3 + IrO_2$
T11	IrO ₂ , Ir, P ₄ O ₁₀ 150,0 / 42,87 / 190,0	0,08 : 0,23 : 0,69	$Ir(PO_3)_3 + IrO_2$
T12	Ir, IrP ₂ 50,0 / 66,11	0,50 : 0,50	Ir +IrP ₂
T13	IrO ₂ , P _{rot} 100,0 / 11,69	0,26 / 0,22 / 0,52	$\operatorname{Ir} + \operatorname{Ir}_2 P + \operatorname{Ir}(PO_3)_3$
T14	IrO ₂ , P _{rot} 100,0 / 4,60	0,30 / 0,10 / 0,60	$Ir + IrO_2 + Ir(PO_3)_3$

Tabelle 7-1. Isotherme Temperexperimente ($T = 800^{\circ}$ C) im Dreistoffsystem Ir/P/O mit 10 mg IrCl₃:xH₂O ($x \approx 0,1$) als Mineralisator (geschlossene Kieselglasampullen, Dauer ca. 7*d*).

Abbildung 7-1. Gleichgewichtsbeziehungen im Phasendreieck Ir/P/O bei $T = 800^{\circ}$ C. Die Kreise ("O") innerhalb des Phasendreiecks symbolisieren die Zusammensetzung (Molenbrüche x(Ir), x(P), x(O)) des Ausgangsbodenkörpers (vgl. Tabelle 7-1). Allen Ansätzen wurden 10,0 mg IrCl₃·xH₂O ($x \approx 0,1$) zur Beschleunigung der Gleichgewichtseinstellung zugesetzt.

7.1.3 Darstellung der Iridium(III)-metaphosphate

C-Typ Iridium(III)-metaphosphat. In einem repräsentativen Experiment zur Darstellung von mikrokristallinem Ir(PO₃)₃ wurden 150,0mg (0,473 mmol) Iridium(III)-chloridhydrat Ir^{III}Cl₃·*x*H₂O [270, 271] ($x \approx 0,1$, Fa. Degussa AG, 53,55% Ir, nach Ausweis von Beugungsdiagrammen röntgenamorph) in einem Teflonbecher zunächst mit destilliertem Wasser versetzt, woraus beim Erwärmen auf etwa 40°C eine intensiv grüne Lösung resultierte. Zur Vertreibung des Chlorids wurde die Lösung anschließend mit konz. HNO₃ versetzt und bei ca. 150°C mehrmals fast bis zur Trockene eingeengt. Dabei fand ein Farbwechsel von grün nach intensiv blauviolett statt. Nach Zugabe eines Überschusses an konz. H₃PO₄ (4,0 ml, 85%, p. A., Fa. Merck) und Erwärmen bei ca. 200°C über mehrere Stunden, resultierte eine zähflüssige, tiefviolette Masse (Abbildung 7-2a). Nach Ausweis röntgenographischer Untersuchungen war dieses violette Zwischenprodukt röntgenamorph. Es wurde anschließend mit wenig Wasser aufgenommen, in einen Goldtiegel überführt und

bei 750°C isotherm getempert (48h), wobei ein homogener, blassrosafarbener Feststoff entstand (Abbildung 7-2b). Bei diesem handelt es sich Röntgenpulveraufnahmen zufolge um mikrokristallines Ir(PO₃)₃ (*C*-Typ, vgl. [245, 42]). Vergleiche mit Simulationsrechnungen des Pulverdiffraktogramms auf Basis der Einkristalldaten (vgl. Tabelle 7-5 und Tabelle 7-6) zeigten, dass die Proben gelegentlich geringfügig verunreinigt waren. Diese Fremdphase *X1* (vgl. Abbildung 7-5, 4 θ (*I*_{obs}): 26,34 (38), 34,96 (100), 36,32 (15), 40,08 (24), 43,34 (44, 47,02 (98), 52,14 (20), 52,96 (46), 56,12 (8), 59,44 (42), 61,04 (45), 71,44 (27), 75,40 (27)) konnte bislang nicht näher charakterisiert werden. Erhitzen des Gemenges aus Fremdphase und *C*-Ir(PO₃)₃ bei 950°C (60h) führte infolge einer Oxidation durch Luftsauerstoff zur Zersetzung in IrO₂ (s) und P₄O₁₀ (g).

Orientierende Experimente zur Darstellung von *C*-Ir(PO₃)₃ zeigten, wie auch im Fall von *C*-Rh(PO₃)₃ [15], dass bei Verwendung von überschüssigem (NH₄)₂HPO₄ anstelle von konz. H₃PO₄ und Ir^{III}Cl₃·*x*H₂O statt einer Lösung von "Ir^{III}(NO₃)₃", stets Produkte erhalten werden, die stark mit elementarem Iridium verunreinigt sind. Offensichtlich verhindert das Nitrat beim anschließenden thermischen Abbau des Zwischenproduktes eine Reduktion von Ir³⁺ durch H₂ bzw. NH₃.

C-Ir(PO₃)₃ konnte über chemische Transportexperimente (900°C → 800°C, Zusatz von 5,0 mg Iridium(III)-chloridhydrat) in evakuierten Kieselglasampullen ($q = 2,0 \text{ cm}^2$, l = 10,0 cm, $V = 20 \text{ cm}^3$), die als Quellenbodenkörper das bereits beschriebene Gemenge aus *C*-Ir(PO₃)₃ und Fremdphase enthielten, kristallisiert werden. Es wurden blass rosafarbene, prismatische Kristalle mit Kantenlängen bis zu 0,3mm erhalten (Abbildung 7-2c). Nach Beendigung der Transportexperimente unterschied sich der Quellenbodenkörper nicht von jenem vor der Reaktion. Alternativ erfolgte die Darstellung von Ir(PO₃)₃ durch isothermes Tempern von Gemengen aus IrO₂ (0,150g, 0,669 mmol) und P₄O₁₀ (0,142g, 0,502 mmol, *n*(Ir):*n*(P) = 1:0,096) bei 800°C (7*d*) unter Zusatz von 6,0mg der Hexachloroiridium(IV)säure, H₂Ir^{IV}Cl₆·6H₂O.

Geht man bei der Darstellung von *C*-Ir(PO₃)₃ anstatt von Ir^{III}Cl₃·*x*H₂O von Ir^{IV}Cl₄·*x*H₂O [271, 272,] (Fa. Chempur, 52,80% Ir, nach Ausweis von Guinieraufnahmen röntgenamorph) oder H₂Ir^{IV}Cl₆·6H₂O (Fa. UMICORE AG, 38,50 % Ir) aus und tempert das erhaltene violette Zwischenprodukt bei 550°C (96h), so liegt in beiden Ansätzen neben der monoklinen Modifikation eine dritte, bislang nicht charakterisierte Phase *X2* vor (Abbildung 7-6, 4*θ* (*I*_{obs}): 35,48 (12), 37,80 (25), 39,50 (8), 40,60 (12), 43,94 (100), 50,97 (23), 56,64 (9), 64,56 (34), 71,37 (12), 77,68 (12)), die bei Verwendung von Ir^{III}Cl₃·*x*H₂O nicht beobachtet wurde. Langsames Erhitzen des Gemenges auf 850°C (7*d*) führte nach Ausweis von Röntgenpulver-

Aufnahmen zu einer teilweisen Umwandlung dieser unbekannten Phase in den C-Typ von Ir(PO₃)₃.

Triklines Iridium(III)-metaphosphat. Stellt man ausgehend von $Ir^{III}Cl_3:xH_2O$ bei analoger Vorgehensweise wie bei der Darstellung von *C*-Ir(PO₃)₃ das amorphe, violette Zwischenprodukt her und tempert dieses vorsichtig bei 430°C in einem Goldtiegel (48h) mit überschüssiger Phosphorsäure, scheiden sich aus der Schmelze dünne, blass rosafarbene Nadeln ab. *IP*-Guinier-Aufnahmen zufolge handelt es sich hierbei um eine trikline Modifikation von Ir(PO₃)₃, welche zu einer Modifikation von Ru(PO₃)₃ [20] isotyp ist. Aus den röntgenographischen Pulveruntersuchungen geht außerdem hervor, dass die trikline Phase mit dem *C*-Typ verunreinigt ist (Abbildung 7-4). Trotz verschiedener Experimente gelang die Synthese von einphasigem, triklinem Ir(PO₃)₃ angestellt, bei der das Metaphosphat stets sowohl mit der monoklinen *C*-Form [20] wie auch mit dem *B*-Typ Ru₂(P₆O₁₈) [20] kontaminiert ist. Tempert man das Gemenge der beiden Phasen von Ir(PO₃)₃ oberhalb von 500°C, so nimmt die trikline Phase zugunsten der monoklinen ab. Bei 750°C liegt nahezu einphasiges, mikrokristallines *C*-Ir(PO₃)₃ vor. Dieses enthält nun jedoch dieselbe unbekannte Phase *X1*, welche bereits bei der Synthese des *C*-Typs beobachtet wurde.

Abbildung 7-2. *C*-Ir(PO₃)₃. Amorpher, zähflüssiger, violetter Rückstand nach Einengen einer phosphorsauren "Ir^{III}(NO₃)₃" bei 200°C (a), mikrokristallines *C*-Ir(PO₃)₃ (b), über chemische Transportexperimente (850°C \rightarrow 750°C) erhaltene Kristalle von *C*-Ir(PO₃)₃ (c).

Die prozentualen Atomverhältnisse für die in den Proben des *C*-Typs und der triklinen Modifikation von Ir(PO₃)₃ enthaltenen Nichtsauerstoff-Atome wurden über energiedispersive Mikroanalyse (EDX, vgl. Abschnitt 4.1.6) bestimmt. Die Ergebnisse der EDX-Untersuchungen sind in Tabelle 7-2 zusammengestellt. Im Rahmen der Fehlergrenzen stehen die Ergebnisse in guter Übereinstimmung mit den erwarteten Zusammensetzungen.

Probe	Iridium / at.%	Phosphor / at.%		
C-Ir(PO ₃) ₃				
Kristall 1	8,12	21,78		
Kristall 2	9,35	22,61		
Kristall 3	8,42	22,09		
Mittelwert	8,62	22,14		
Theorie	7,69	23,08		
triklIr(PO ₃) ₃				
Kristall 1	10,02	24,69		
Kristall 2	9,39	26,41		
Kristall 3	8,08	25,07		
Mittelwert	9,10	25,31		
Theorie	7,69	23,08		

Tabelle 7-2. EDX-Untersuchungen an Kristallen von triklinem und *C*-Typ Ir(PO₃)₃.

7.1.4 Röntgenographische Untersuchungen

7.1.4.1 Untersuchungen am Pulver

Die Vorgehensweise bei der Präzissionsbestimmung der Gitterkonstanten entsprach jener bei AuPO₄ und AuAsO₄ (vgl. Abschnitt 6-3). Die Indizierung der Reflexe aus den Guinieraufnahmen von Ir(PO₃)₃ (Abbildung 7-3a bzw. 7-4a) unter Zusatz von α -SiO₂ erfolgte für beide Metaphosphate auf Basis der aus Einkristallstrukturdaten (Tabelle 7-5 bis 7-7) erhaltenen Lage- und Gitterparameter. Für *C*-Ir(PO₃)₃ [*trikl*-Ir(PO₃)₃] wurden 38 [33] Reflexe im Bereich 32,39° $\leq 4\theta \leq 143,22^{\circ}$ [28,68° $\leq 4\theta \leq 129,02^{\circ}$] indiziert (siehe Tabelle 7-3 und 7-4). Die resultierenden Gitterkonstanten sind in Tabelle 7-5 aufgelistet. Wie bereits in Kapitel 7.1.3 beschrieben, konnte bei keinem der durchgeführten Experimente die trikline Modifikation in phasenreiner Form erhalten werden, so dass beim Vergleich des beobachteten Beugungsdiagramms mit dessen Simulation Zusatzreflexe auftreten, die dem *C*-Typ zugeordnet werden können (Abbildung 7-4). Abbildung 7-3 zeigt die gute Übereinstimmung zwischen phasenreinem *C*-Ir(PO₃)₃ und dessen Simulation.

Abbildung 7-3. Guinier-Aufnahme von *C*-Ir(PO₃)₃ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 7-3 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 7-4. Guinier-Aufnahme von *trikl*- $Ir(PO_3)_3$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 7-4 (b). Zusatzreflexe von *C*- $Ir(PO_3)_3$ sind punktiert dargestellt.

Abbildung 7-5. Guinier-*IP*-Aufnahme von C-Ir(PO₃)₃ aus Ir^{III}Cl₃:xH₂O mit Reflexen der Fremdphase *X1* (punktiert) (a) und Simulation von C-Ir(PO₃)₃ auf Basis von Einkristalldaten (b).

Abbildung 7-6. Guinier-*IP*-Aufnahme von *C*-Ir(PO₃)₃. Rot punktierte Reflexe deuten auf die Entstehung einer zweiten Fremdphase X2 bei Verwendung von Ir^{IV}Cl₄·*x*H₂O hin.

h	k		40-00000000000000000000000000000000000	$\frac{4\theta_{\rm abs}}{4\theta_{\rm abs}}$	Λ	$\frac{I_{\text{calc}} - 3\Pi O_{\text{obs}}}{I_{\text{calc}}}$	$I_{abs}^{a), b)}$	d _{calc} /Å
1	3	0	32 484	32 390	0.11	13	23	5 4683
2	0	0	33,950	34 479	0.00	209	248	5 1393
1	1	1	37.808	37.833	0.04	9	11	4.6873
2	0	-2	38.274	38.305	0.04	324	373	4.6301
1	3	1	46.069	46.035	0.06	1000	1000	3.8606
0	0	2	47.726	47.782	0.10	39	45	3.7214
1	3	-2	48.573	48,545	0.05	33	34	3.6638
3	3	-1	49,832	49,859	0,05	299	348	3,5686
2	4	0	50,396	50,753	0,00	9	7	3,5068
3	3	-2	52,167	52,158	0,02	162	190	3,4139
4	0	-2	54,798	54,788	0,02	196	249	3,2529
0	6	0	55,761	55,771	0,02	35	42	3,1967
3	3	0	58,393	58,360	0,07	41	38	3,0577
0	6	1	60,791	60,819	0,06	12	17	2,9369
3	3	-3	64,304	64,261	0,10	265	309	2,7834
2	6	0	65,644	65,625	0,05	226	222	2,7271
2	6	-2	68,077	68,043	0,08	114	116	2,6329
1	3	-3	69,209	69,237	0,07	111	109	2,5888
2	0	2	74,282	74,323	0,11	87	169	2,4173
5	3	-3	76,918	76,921	0,01	82	102	2,3386
4	0	-4	77,671	77,643	0,08	77	91	2,3177
5	3	-1	79,374	79,378	0,01	108	115	2,2690
6	0	-2	83,892	83,881	0,03	29	32	2,1522
1	9	-1	87,060	87,070	0,03	79	90	2,0770
1	3	3	89,139	89,146	0,02	24	42	2,0310
4	6	0	89,587	89,617	0,09	106	130	2,0209
1	9	1	93,037	93,006	0,10	25	25	1,9511
2	6	2	94,144	94,149	0,02	69	65	1,9288
4	6	-4	96,961	96,956	0,01	27	24	1,8762
3	9	1	111,322	111,289	0,12	42	39	1,6503
1	3	-5	117,598	117,572	0,10	52	38	1,5694
3	3	3	118,062	118,043	0,07	40	33	1,5637
2	12	0	121,038	121,049	0,04	24	35	1,5284
8	0	-6	130,452	130,465	0,05	14	6	1,4290
4	12	0	137,624	137,636	0,05	26	13	1,3630
2	6	4	138,924	138,948	0,10	30	23	1,3518
1	3	5	141,030	141,021	0,04	18	19	1,3344
9	3	-6	143,213	143,224	0,04	12	21	1,3166

Tabelle 7-3. *C*-Ir(PO₃)₃. Indizierung eines Guinier-Diagramms (Abbildung 7-3) mit berechneten und beobachteten 4θ -Werten, $\Lambda = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.
 ^{b)} Stärkster nicht beobachteter Reflex in untersuchtem Winkelbereich: (7 3 -1) mit *I_{calc}* = 43.

h	k	1	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	$I_{\rm calc}^{\rm a)}$	I _{obs} ^{a), b)}	d _{calc} /Å
1	-1	0	28,771	28,680	0,10	1000	530	6,1518
0	2	0	34,628	34,548	0,10	86	123	5,1290
0	1	-1	38,621	38,617	0,01	35	183	4,5929
1	-1	-1	45,226	45,255	0,05	360	954	3,9261
0	2	-1	48,443	48,435	0,01	308	1000	3,6719
0	2	1	50,856	50,844	0,02	202	660	3,5006
2	0	1	64,744	64,771	0,07	80	194	2,7620
1	-3	-1	66,072	66,081	0,02	92	154	2,7087
2	-2	1	68,986	68,961	0,06	67	77	2,5988
0	4	0	70,080	70,101	0,05	50	61	2,5579
0	0	2	71,528	71,501	0,07	82	239	2,5094
1	1	-2	77,128	77,129	0,00	61	362	2,3325
0	2	-2	78,397	78,399	0,01	33	141	2,2962
0	2	2	81,550	81,529	0,06	28	102	2,2115
2	-1	-2	87,783	87,798	0,05	9	18	2,0606
0	5	0	88,419	88,428	0,03	1	12	2,0467
1	2	2	88,843	88,808	0,11	3	13	2,0384
2	3	1	90,300	90,327	0,09	4	14	2,0058
2	-2	-2	92,344	92,367	0,08	31	40	1,9639
1	3	-2	92,759	92,447	0,04	10	5	1,9563
1	3	2	99,214	99,186	0,09	14	136	1,8365
3	2	1	101,232	101,256	0,08	1	14	1,8014
1	-6	0	106,577	106,585	0,03	1	13	1,7174
0	1	-3	110,356	110,355	0,00	1	13	1,6631
3	-5	0	110,874	110,865	0,03	29	64	1,6561
4	0	-1	111,090	111,075	0,05	36	52	1,6532
1	1	-3	112,958	112,985	0,10	12	84	1,6275
1	-1	3	114,700	114,465	0,00	14	102	1,6082
3	-3	-2	114,773	114,755	0,07	24	46	1,6045
0	6	1	115,748	115,775	0,10	11	23	1,5916
4	2	-1	122,124	122,124	0,00	9	54	1,5162
4	2	1	127,234	127,244	0,04	27	59	1,4612
2	6	0	129,055	129,024	0,12	13	7	1,4432

Tabelle 7-4. *trikl*-Ir(PO₃)₃. Indizierung eines Guinier-Diagramms (Abbildung 7-3) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.

^{b)} Stärkster nicht beobachteter Reflex in untersuchtem Winkelbereich: (2 - 2 0) mit $I_{calc} = 28$.

7.1.4.2 Strukturverfeinerungen

Für die Einkristallstrukturbestimmungen wurden unter einem Polarisationsmikroskop Kristalle mit wohl definierten Flächen der monoklinen und triklinen Modifikation von $Ir(PO_3)_3$ ausgewählt und auf einem Glasfaden mit Sekundenkleber (Fa. Uhu) befestigt. Die Datensammlung erfolgte auf einem Einkristall-Röntgendiffraktometer (κ -CCD, Fa. Enraf-Nonius (*C*-Ir(PO₃)₃) bzw. IPDS 2T, Fa. STOE (*trikl*-Ir(PO₃)₃). Am Datensatz von *trikl*-Ir(PO₃)₃ wurde mit dem Computerprogramm X-RED [117] eine numerische

durchgeführt. Absorptionskorrektur Beim C-Typ erfolgte eine empirische unter Verwendung äquivalenter Absorptionskorrektur Reflexe (Multiscans). Die anschließende Strukturlösung und Verfeinerung wurde mit den im Paket WinGX v1.64.05 [106] enthaltenen Programmen SHELXS-97 [104] und SHELXL-97 [105] ausgeführt. Die Strukturverfeinerung konvergierte für *C*-Ir(PO₃)₃ (*trikl*-Ir(PO₃)₃) bei $R_1 = 0,024$ (0,028) bzw. $wR_2 = 0,062$ (0,061). Die Strukturverfeinerung an beiden Metaphosphaten verlief ohne Besonderheiten. Nach den letzten Verfeinerungscyclen erhaltene Auslenkungsparameter zeigten keinerlei Anomalien. Für C-Ir(PO₃)₃, das in der azentrischen Raumgruppe Cc kristallisiert, wurde racemische Verzwilligung berücksichtigt. Die Volumenanteile der beiden Zwillingsindividuen ergaben $V_1:V_2 = 0.51:0.49$. Details zu den Messungen, Strukturbestimmungen und Einkristallstrukturverfeinerungen sind in Tabelle 7-5 zusammengefasst, Lageparameter und interatomare Abstände für beide Modifikationen geben die Tabellen 7-6 bis 7-9 wieder. Listen der anisotropen Auslenkungsparameter finden sich im Anhang A.

Kristallsystem monoklin triklin Raumgruppe Cc (Nr. 9) P_{T}^{-} (Nr. 2) Gitterparameter /Å $a = 13,103(2)$ $a = 6,9574(6), a = 92,28(1)^{\circ}$ $b = 19,183(1)$ $b = 10,3628(9), \beta = 92,80(1)^{\circ}$ $a = 13,103(2)$ $a = 6,9574(6), a = 92,28(1)^{\circ}$ $(aus IP-Guinier-Aufnahmen)$ $c = 9,354(1)$ $c = 5,0288(4), y = 98,60(1)^{\circ}$ $\beta = 127,19(1)^{\circ}$ 2 2 Zahl der Formeleinheiten, Z 12 2 Absorptionskoeffizient /mm ⁻¹ 22,19 19,526 Molmasse /g·mol ⁻¹ 5149,32 858,22 Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichte _{cong} /g·g·cm ⁻³ 4,567 4,018 Farbe rosa rosa Kristallform und Prisma Nadel Kristallform und Q250,10·0,10 0,163·0,017·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K- α -Strahlung, $a = 0,71073Å$, Graphit-Monochromator, C-Ir(PO ₃);: K-CCD-, trikl-Ir(PO ₃);: F-CCD-, trikl-Ir(PO ₃);: F-CCD-, trikl-Ir(PO ₃);: F-CCD-, trikl-Ir(PO ₃);: IPDS-2T-Diffrate	Zusammensetzung	C-Ir(PO ₃) ₃	trikl-Ir(PO ₃) ₃
Raumgruppe Cc (Nr. 9) PT (Nr. 2) Gitterparameter /Å $a = 13,103(2)$ $a = 6,9574(6), a = 92,28(1)^{\circ}$ $b = 19,183(1)$ $b = 10,3628(9), \beta = 92,80(1)^{\circ}$ $a = 127,19(1)^{\circ}$ Zahl der Formeleinheiten, Z 12 2 Absorptionskoeffizient /mm ⁻¹ 22,19 19,526 Molmasse /g·mol ⁻¹ 5149,32 858,22 Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichterong, /g cm ³ 4,567 4,018 Farbe rosa rosa Kristallgröße /mm ³ 0,25-0,10-0,10 0,163-0,017-0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K & Strahlung, $\lambda = 0,71073$, Graphit-Monochromator, C-Ir(PO ₃); κ -CCD-, $tr(H^{-1})$; IPDS-2T-Diffrakto	Kristallsystem	monoklin	triklin
Gitterparameter /Å $a = 13,103(2)$ $a = 6,9574(6), a = 92,28(1)^{\circ}$ $b = 19,183(1)$ $b = 10,3628(9), \beta = 92,80(1)^{\circ}$ $a = 13,103(2)$ $c = 5,0288(4), \gamma = 98,60(1)^{\circ}$ $\beta = 127,19(1)^{\circ}$ Zahl der Formeleinheiten, Z 12 Absorptionskoeffizient /mm ⁻¹ 22,19 Molmasse /g-mol ⁻¹ 5149,32 Stage of Molmasse /g-mol ⁻¹ 5149,32 Veltvolumen /Å ³ 1872,2(14) Staf,64(5) Dichterong, /g-cm ³ Joichterong, /g-cm ³ 4,567 Kristallform und Prisma Kristallgröße /mm ³ 0,25 0,10 0,10 O,163 0,017 0,002 F(000) F(000) 2328 Mo-Kar-Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromator, C-Ir(PO ₃); κ -CCD-, trickI-ir(PO ₃); i: PDS-2T-Diffrakto-meter. Winkelbereich /° 3,46 $\leq \theta \leq 27,49$ 2,00 $\leq \theta \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4\sigma(F_6) 1574, 931 > 4\sigma(F_6) Messbereich $-16 \leq h \leq 16$ $-9 \leq h \leq 9$ $-24 \leq k \leq 24$ $-13 \leq k \leq 13$ <td>Raumgruppe</td> <td><i>Cc</i> (Nr. 9)</td> <td>$P\overline{1}$ (Nr. 2)</td>	Raumgruppe	<i>Cc</i> (Nr. 9)	$P\overline{1}$ (Nr. 2)
$\beta = 127, 19(1)^{\circ}$ Zahl der Formeleinheiten, Z 12 2 Absorptionskoeffizient /mm ⁻¹ 22, 19 19,526 Molmasse /g mol ⁻¹ 5149,32 858,22 Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichtersong, /g cm ⁻³ 4,567 4,018 Farbe rosa rosa Kristallgröße /mm ³ 0,25:0,10:0,10 0,163:0,017:0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-Kac-Strahlung, $\lambda = 0,71073Å$, Graphit-Monochromator, C-Ir(PO ₃) ₃ : κ-CCD-, <i>trikl</i> -Ir(PO ₃) ₃ : IPDS-2T-Diffraktometer. Winkelbereich /° Winkelbereich /° 3,46 $\leq \phi \leq 27,49$ 2,00 $\leq \phi \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 σ (F ₀) 1574, 931 > 4 σ (F ₀) Messbereich -16 $\leq h \leq 16$ -9 $\leq h \leq 9$ -24 $\leq k \leq 24$ -13 $\leq k \leq 13$ -12 $\leq l \leq 12$ Gutefaktoren S4 122 Gutefaktoren S4 122 Gutefaktoren R ₁ ^b = 0,024 R	Gitterparameter /Å (aus <i>IP</i> -Guinier-Aufnahmen)	a = 13,103(2) b = 19,183(1) c = -9,354(1)	$a = 6,9574(6), a = 92,28(1)^{\circ}$ $b = 10,3628(9), \beta = 92,80(1)^{\circ}$ $c = 5,0288(4), v = 98,60(1)^{\circ}$
Zahl der Formeleinheiten, Z 12 2 Absorptionskoeffizient /mm ⁻¹ 22,19 19,526 Molmasse /g·mol ⁻¹ 5149,32 858,22 Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichte _{ronng} /g·cm ⁻³ 4,567 4,018 Farbe rosa rosa Kristallform und Prisma Nadel Kristallgröße /mm ³ 0,25·0,10·0,10 0,163·0,017·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mok-K <i>a</i> -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromator, C-Ir(PO ₃) ₃ : κ-CCD-, trik/-Ir(PO ₃) ₃ : IPDS-2T-Diffrat- Vinkelbereich /° Vinkelbereich /° 3,46 ≤ $\theta \le 27,49$ 2,00 ≤ $\theta \le 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 25721 3428 Unabhängige Reflexe 25721 3428 Unabhängige Reflexe 254 13 -12 ≤ l ≤ 12 -65 l ≤ 6 Benutzte Programme SHELXS-97 [104], SHELXL-97 [105], WinGX [106] Parameter 354 122		$\beta = 127,19(1)^{\circ}$	
Absorptionskoeffizient /mm ⁻¹ 22,19 19,526 Molmasse /g·mol ⁻¹ 5149,32 858,22 Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichte,rong, /g·cm ⁻³ 4,567 4,018 Farbe rosa rosa Kristallform und Prisma Nadel Kristallgröße /mm ³ 0,25·0,10·0,10 0,163·0,017·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K.α-Strahlung, $\lambda = 0,71073Å$, Graphit-Monochromator, C-Ir(PO ₃); κ-CCD-, trikl-Ir(PO ₃); iPDS-2T-Diffratureter. Vinkelbereich /° Winkelbereich /° 3,46 ≤ $\theta \le 27,49$ 2,00 ≤ $\theta \le 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4\sigma(F_0) 1574, 931 > 4\sigma(F_0) Messbereich -16 ≤ h ≤ 16 -9 ≤ h ≤ 9 -24 ≤ k ≤ 24 -13 ≤ k ≤ 13 -12 ≤ l ≤ 12 -12 ≤ l ≤ 12 -6 ≤ l ≤ 6 8 Benutzte Programme SHELXS-97 [104], SHE-LXL-97 [105], WinGX [106] Parameter 354 122 Gütefak	Zahl der Formeleinheiten, Z	12	2
Molmasse /g·mol ⁻¹ 5149,32 858,22 Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichte,rong, /g·cm ⁻³ 4,567 4,018 Farbe rosa rosa Kristallform und Prisma Nadel Kristallgröße /mm ³ 0,25·0,10·0,10 0,163·0,017·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-Ka-Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromator, C-Ir(PO ₃); κ -CCD-, trikl-Ir(PO ₃); IPDS-2T-Diffraturerer. 9,46 $\leq 0 \leq 27,49$ Winkelbereich /° 3,46 $\leq 0 \leq 27,49$ 2,00 $\leq 0 \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 σ (F ₀) 1574, 931 > 4 σ (F ₀) Messbereich -16 $\leq h \leq 16$ -9 $\leq h \leq 9$ $-24 \leq k \leq 24$ -13 $\leq k \leq 13$ -12 $\leq l \leq 12$ Benutzte Programme SHELXS-97 [104], SHEL-X-97 [105], WinGX [106] Parameter 354 122 Güttefaktoren $R_{int}^{in} = 0,049$ $R_{int}^{in} = 0,043$ $R_{i}^{b} = 0,062$ $R_{i}^{b} = 0,023$	Absorptionskoeffizient /mm ⁻¹	22,19	19,526
Zellvolumen /Å ³ 1872,2(14) 354,64(5) Dichterong, /g.cm ³ 4,567 4,018 Farbe rosa rosa Kristallform und Prisma Nadel Kristallgröße /mm ³ 0,25·0,10·0,10 0,163·0,017·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K.cz-Strahlung, $\lambda = 0,71073$, Graphit-Monochromator C-Ir(PO ₃) ₃ : κ-CCD-, <i>trikl-</i> 1r(PO ₃) ₃ : IPDS-2T-Diffratoreter. 2,00 ≤ $\theta \le 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 σ (F ₀) 1574, 931 > 4 σ (F ₀) Messbereich -16 ≤ h ≤ 16 -9 ≤ h ≤ 9 -24 ≤ k ≤ 24 -13 ≤ k ≤ 13 -12 ≤ l ≤ 12 -6 ≤ l ≤ 6 Benutzte Programme SHELXS-97 [104], SHE-XL-97 [105], WinGX [106] Parameter 354 122 Gütefaktoren w_R_2 ^b = 0,024 w_R^2 ^b = 0,028 w _{R2} ^b = 0,024 w_R^2 ^b = 0,023 Wichtungsschema ^{bn}	Molmasse /g·mol ⁻¹	5149,32	858,22
Dichterong, l_{g} cm ⁻³ 4,567 4,018 Farbe rosa rosa Kristallform und Prisma Nadel Kristallgröße /mm ³ 0,25·0,10·0,10 0,163·0,017·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromatur, C-Ir(PO ₃); κ -CCD-, trikl-Ir(PO ₃); IPDS-2T-Diffratureter. Vinkelbereich /° Winkelbereich /° 3,46 $\leq \theta \leq 27,49$ 2,00 $\leq \theta \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 σ (F ₀) 1574, 931 > 4 σ (F ₀) Messbereich -16 $\leq h \leq 16$ -9 $\leq h \leq 9$ -24 $\leq k \leq 24$ -13 $\leq k \leq 13$ -12 $\leq l \leq 12$ -12 $\leq l \leq 12$ -65 $l \leq 6$ 104 Parameter 354 122 Gütefaktoren $\mu_{R_1}^{-1} = 0,049$ $\mu_{R_1}^{-1} = 0,028$ $\mu_{R_2}^{-1} = 0,024$ $\mu_{Q_2}^{-1} = 0,028$ $\mu_{Q_2}^{-1} = 0,023$ Gutefaktoren 1,043 0,	Zellvolumen /Å ³	1872,2(14)	354,64(5)
Farbe rosa rosa Kristallform und Prisma Nadel Kristallgröße /mm³ 0,25 ·0,10 ·0,10 0,163 ·0,017 ·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromatur, C-Ir(PO ₃)3; κ -CCD-, trikl-Ir(PO ₃)3; iPDS-2T-Diffraturerer. Vinkelbereich /° Winkelbereich /° 3,46 ≤ $\theta \le 27,49$ 2,00 ≤ $\theta \le 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 \arb (F_o) 1574, 931 > 4 \arb (F_o) Messbereich -16 ≤ h ≤ 16 -9 ≤ h ≤ 9 -24 ≤ k ≤ 24 -13 ≤ k ≤ 13 -12 ≤ l ≤ 12 -12 ≤ l ≤ 12 -6 ≤ l ≤ 6 Benutzte Programme SHELXS-97 [104], SHEL-XL-97 [105], WinGX [106] Parameter 354 122 Gütefaktoren $\mu_{x_1}^{b_1} = 0,024$ $\mu_{x_2}^{b_1} = 0,023$ $\mu_{x_2}^{b_1} = 0,024$ $\mu_{x_2}^{b_1} = 0,028$ $\mu_{x_2}^{b_1} = 0,028$ $(\mu_{x_2}^{b_1} = 0,024)$ $\mu_{x_2}^{b_1} = 0,0000$ $\mu_{x_2}^{b_1} = 0,0000$ Gutensa of fit	Dichte _{röntg.} /g·cm ⁻³	4,567	4,018
Kristallform und Prisma Nadel Kristallgröße /mm ³ 0,25 ·0,10 ·0,10 0,163 ·0,017 ·0,002 F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromatur, C-Ir(PO ₃) ₃ : κ -CCD-, trikl-Ir(PO ₃) ₃ : IPDS-2T-Diffraturerer. Vinkelbereich /° 3,46 $\leq \theta \leq 27,49$ 2,00 $\leq \theta \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 \Gr(F_0) 1574, 931 > 4 \Gr(F_0) Messbereich -16 $\leq h \leq 16$ -9 $\leq h \leq 9$ $-24 \leq k \leq 24$ -13 \leq k \leq 13 -12 $\leq l \leq 12$ Benutzte Programme SHELXS-97 [104], SHEL'L-97 [105], WinGX [106] Parameter 354 122 Gütefaktoren $R_{int}^{a} = 0,049$ $R_{int}^{a} = 0,043$ $R_{I}^{b} = 0,024$ $R_{I}^{b} = 0,028$ $wR_2^{b} = 0,062$ Goodness of fit ^b 1,043 0,826 Wichtungsschema ^b) A = 0,0349 A = 0,0232 B = 0,8832 B = 0,0000 B = 0,8832	Farbe	rosa	rosa
Kristallgröße /mm³0,25·0,10·0,100,163·0,017·0,002F(000)2328388Temperatur /K293(2)123(2)Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromator, C-Ir(PO3)3: κ -CCD-, trikl-Ir(PO3)3: IPDS-2T-Diffraktometer.C-Ir(PO3)3: κ -CCD-, trikl-Ir(PO3)3: IPDS-2T-Diffraktometer.Winkelbereich /°3,46 $\leq \theta \leq 27,49$ 2,00 $\leq \theta \leq 27,49$ AbsorptionskorrekturMultiscans [116]Numerisch [117, 118]Gemessene Reflexe257213428Unabhängige Reflexe4254, 3879 > 4 σ (Fo)1574, 931 > 4 σ (Fo)Messbereich-16 $\leq h \leq 16$ -9 $\leq h \leq 9$ $-24 \leq k \leq 24$ -13 $\leq k \leq 13$ $-12 \leq l < 12$ $-6 \leq l \leq 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter354122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,024$ $R_{I}^{b)} = 0,062$ $R_{I}^{b)} = 0,023$ $R_{Z}^{b)} = 0,062$ Wa2 ^{b)} 0,061Goodness of fit ^{b)} 1,043Wichtungsschema ^{b)} $A = 0,0349$ $B = 0,8832$ $A = 0,0232$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398 max. +1,300 min2,019min1,370	Kristallform und	Prisma	Nadel
F(000) 2328 388 Temperatur /K 293(2) 123(2) Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromator, C -Ir(PO ₃) ₃ : κ -CCD-, trikl-Ir(PO ₃) ₅ : IPDS-2T-Diffraktometer. Vinkelbereich /° 3,46 $\leq \theta \leq 27,49$ 2,00 $\leq \theta \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 σ (Fo) 1574, 931 > 4 σ (Fo) Messbereich -16 $\leq h \leq 16$ -9 $\leq h \leq 9$ $-24 \leq k \leq 24$ -13 $\leq k \leq 13$ -12 $\leq l \leq 12$ Gütefaktoren SHELXS-97 [104], SHELXL-97 [105], WinGX [106] Parameter 354 122 Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{I}^{b)} = 0,062$ $wR_2^{b)} = 0,061$ 0,028 $wR_2^{b)} = 0,062$ $wR_2^{b)} = 0,061$ 0,0232 Godness of fit ^{b)} 1,043 0,826 Wichtungsschema ^{b)} A = 0,0349 A = 0,0232 B = 0,8832 B = 0,0000 B = 0,8000 Restelektronendichte /e·Å ⁻³ max. +1,398 max. +1,300	Kristallgröße /mm ³	0,25.0,10.0,10	0,163.0,017.0,002
Temperatur /K 293(2) 123(2) Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Graphit-Monochromator, C-Ir(PO ₃) ₃ : κ -CCD-, trikl-Ir(PO ₃) ₃ : IPDS-2T-Diffraktometer. Vinkelbereich /° 3,46 $\leq \theta \leq 27,49$ 2,00 $\leq \theta \leq 27,49$ Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > 4 σ (F _o) 1574, 931 > 4 σ (F _o) Messbereich $-16 \leq h \leq 16$ $-9 \leq h \leq 9$ $-24 \leq k \leq 24$ $-13 \leq k \leq 13$ $-12 \leq l \leq 12$ $-6 \leq l \leq 6$ Benutzte Programme SHELXS-97 [104], SHELXL-97 [105], WinGX [106] Parameter 354 12 Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_L^{b)} = 0,024$ $R_L^{b)} = 0,028$ $wR_2^{b)} = 0,062$ Weichtungsschema ^{b)} A = 0,0349 A = 0,0232 B = 0,8832 B = 0,0000 B = 0,8832 Restelektronendichte /e'Å ⁻³ max. +1,398 max. +1,300 min2,019 min1,370 min1,370	F(000)	2328	388
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Temperatur /K	293(2)	123(2)
Winkelbereich /° $3,46 \le \theta \le 27,49$ $2,00 \le \theta \le 27,49$ AbsorptionskorrekturMultiscans [116]Numerisch [117, 118]Gemessene Reflexe 25721 3428 Unabhängige Reflexe $4254, 3879 > 4\sigma(F_0)$ $1574, 931 > 4\sigma(F_0)$ Messbereich $-16 \le h \le 16$ $-9 \le h \le 9$ $-24 \le k \le 24$ $-13 \le k \le 13$ $-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter 354 122 Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,024$ $R_l^{b)} = 0,028$ $wR_2^{b)} = 0,062$ $wR_2^{b)} 0,061$ Goodness of fit ^{b)} $1,043$ $0,826$ Wichtungsschema ^{b)} $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Mo-K α -Strahlung, $\lambda = 0.71073$ Å <i>trikl</i> -Ir(PO ₃) ₃ : IPDS-2T-Diffrakt	A, Graphit-Monochromator ometer.	r, <i>C</i> -Ir(PO ₃) ₃ : <i>к</i> -ССD-,
Absorptionskorrektur Multiscans [116] Numerisch [117, 118] Gemessene Reflexe 25721 3428 Unabhängige Reflexe 4254, 3879 > $4\sigma(F_0)$ 1574, 931 > $4\sigma(F_0)$ Messbereich $-16 \le h \le 16$ $-9 \le h \le 9$ $-24 \le k \le 24$ $-13 \le k \le 13$ $-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte Programme SHELXS-97 [104], SHELXL-97 [105], WinGX [106] Parameter 354 122 Gütefaktoren $R_{int}^{ab} = 0,049$ $R_{int}^{ab} = 0,043$ $R_I^{bb} = 0,024$ $R_I^{bb} = 0,028$ $wR_2^{bb} = 0,061$ Goodness of fit ^{bb} 1,043 0,826 Wichtungsschema ^{bb} A = 0,0349 A = 0,0232 B = 0,8832 B = 0,0000 B = 0,0000 Restelektronendichte /e·Å ⁻³ max. +1,398 max. +1,300 min2,019 min1,370 min1,370	Winkelbereich /°	$3,46 \le \theta \le 27,49$	$2,00 \le \theta \le 27,49$
Gemessene Reflexe257213428Unabhängige Reflexe $4254, 3879 > 4\sigma(F_0)$ $1574, 931 > 4\sigma(F_0)$ Messbereich $-16 \le h \le 16$ $-9 \le h \le 9$ $-24 \le k \le 24$ $-13 \le k \le 13$ $-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter 354 122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{l}^{b)} = 0,028$ $wR_2^{b)} = 0,024$ $wR_2^{b)} = 0,028$ $wR_2^{b)} = 0,061$ Goodness of fit ^{b)} $1,043$ $0,826$ Wichtungsschema ^{b)} $A = 0,0349$ $A = 0,0232$ B = 0,8832 $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,398max. +1,370	Absorptionskorrektur	Multiscans [116]	Numerisch [117, 118]
Unabhängige Reflexe $4254, 3879 > 4\sigma(F_o)$ $1574, 931 > 4\sigma(F_o)$ Messbereich $-16 \le h \le 16$ $-9 \le h \le 9$ $-24 \le k \le 24$ $-13 \le k \le 13$ $-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter 354 122 Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_I^{b)} = 0,024$ $R_I^{b)} = 0,028$ $wR_2^{b)} = 0,028$ $wR_2^{b)} = 0,062$ $wR_2^{b)} 0,061$ Goodness of fit b) $1,043$ $0,826$ Wichtungsschema b) $A = 0,0349$ $A = 0,0232$ B = 0,8832 $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Gemessene Reflexe	25721	3428
Messbereich $-16 \le h \le 16$ $-9 \le h \le 9$ $-24 \le k \le 24$ $-13 \le k \le 13$ $-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter354122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_I^{b)} = 0,024$ $R_I^{b)} = 0,028$ $wR_2^{b)} = 0,062$ Wichtungsschema^{b)}1,0430,826Wichtungsschema^{b)}A = 0,0349A = 0,0232B = 0,8832B = 0,0000Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Unabhängige Reflexe	4254, 3879 > $4\sigma(F_o)$	$1574, 931 > 4\sigma(F_o)$
$-24 \le k \le 24$ $-13 \le k \le 13$ $-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter354122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{I}^{b)} = 0,024$ $R_{I}^{b)} = 0,028$ $wR_{2}^{b)} = 0,062$ $wR_{2}^{b)} 0,061$ Goodness of fit ^{b)} 1,0430,826Wichtungsschema ^{b)} $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Messbereich	$-16 \le h \le 16$	$-9 \le h \le 9$
$-12 \le l \le 12$ $-6 \le l \le 6$ Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter 354 122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{l}^{b)} = 0,024$ $R_{l}^{b)} = 0,028$ $wR_{2}^{b)} = 0,062$ Wchtungsschema ^{b)} $1,043$ $0,826$ Wichtungsschema ^{b)} $A = 0,0349$ $A = 0,0232$ B = 0,8832 $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370		$-24 \le k \le 24$	$-13 \le k \le 13$
Benutzte ProgrammeSHELXS-97 [104], SHELXL-97 [105], WinGX [106]Parameter 354 122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{I}^{b)} = 0,024$ $R_{I}^{b)} = 0,028$ $wR_{2}^{b)} = 0,062$ $wR_{2}^{b)} = 0,062$ $wR_{2}^{b)} 0,061$ Goodness of fit ^{b)} 1,0430,826Wichtungsschema ^{b)} $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370		$-12 \le l \le 12$	$-6 \le l \le 6$
Parameter354122Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{I}^{b)} = 0,024$ $R_{I}^{b)} = 0,028$ $wR_{2}^{b)} = 0,062$ $wR_{2}^{b)} 0,061$ Goodness of fit b)1,0430,826Wichtungsschema b) $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Benutzte Programme	SHELXS-97 [104], SHEI	LXL-97 [105], WinGX [106]
Gütefaktoren $R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{I}^{b)} = 0,024$ $R_{I}^{b)} = 0,028$ $wR_{2}^{b)} = 0,062$ $wR_{2}^{b)} 0,061$ Goodness of fit b)1,0430,826Wichtungsschema^{b)} $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Parameter	354	122
$R_{int}^{a)} = 0,049$ $R_{int}^{a)} = 0,043$ $R_{I}^{b)} = 0,024$ $R_{I}^{b)} = 0,028$ $wR_{2}^{b)} = 0,062$ $wR_{2}^{b)} 0,061$ Goodness of fit b)1,0430,826Wichtungsschema^{b)} $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	Gütefaktoren		
$R_1^{b} = 0,024$ $R_1^{b} = 0,028$ $wR_2^{b} = 0,062$ $wR_2^{b} 0,061$ Goodness of fit b)1,0430,826Wichtungsschema^{b)} $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370		$R_{\rm int}^{a)} = 0,049$	$R_{\rm int}^{a)} = 0,043$
$wR_2^{(b)} = 0,062$ $wR_2^{(b)} 0,061$ Goodness of fit b)1,0430,826Wichtungsschema b) $A = 0,0349$ $A = 0,0232$ $B = 0,8832$ $B = 0,0000$ Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370		$R_1^{(b)} = 0,024$	$R_{I}^{b)} = 0,028$
Goodness of fit $^{(0)}$ 1,0430,826Wichtungsschema $^{(b)}$ A = 0,0349A = 0,0232B = 0,8832B = 0,0000Restelektronendichte /e·Å ⁻³ max. +1,398max. +1,300min2,019min1,370	· · · · · b)	$wR_2^{(0)} = 0,062$	$wR_2 = 0,061$
Wichtungsschema $^{(0)}$ A = 0,0349A = 0,0232B = 0,8832B = 0,0000Restelektronendichte /e·Å-3max. +1,398min2,019min1,370	Goodness of fit "	1,043	0,826
B = 0,8832 $B = 0,0000$ Restelektronendichte /e·Å-3max. +1,398max. +1,300min2,019min1,370	Wichtungsschema ^{b)}	A = 0,0349	A = 0.0232
Restelektronendichte /e·A \sim max. +1,398max. +1,300min2,019min1,370	D	B = 0,8832	B = 0,0000
	Restelektronendichte /e·A ⁻³	max. +1,398 min2,019	max. +1,300 min1,370

Tabelle 7-5. Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von C-Ir(PO₃)₃ und *trikl*-Ir(PO₃)₃.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 5.4.1.

			ł	01	(2)2
Atom	Position	x	У	z	U_{eq} /Å ^{2 a)}
Ir1	4a	0,23630(5)	0,08060(3)	0,95164(7)	0,0124(1)
Ir2	4a	0,73885(5)	0,08743(3)	0,45555(7)	0,0136(1)
Ir3	4a	0,21656(1)	0,24440(2)	0,42140(1)	0,0120(1)
P1	4a	0,0876(4)	0,3037(1)	0,6072(5)	0,0133(7)
P2	4a	0,0843(4)	0,3623(1)	0,1068(5)	0,0149(7)
P3	4a	0,3647(4)	0,1351(2)	0,7593(6)	0,0159(8)
P4	4a	-0,3980(4)	0,4681(1)	-0,3660(5)	0,0098(6)
P5	4a	-0,0154(4)	0,1866(2)	0,7021(5)	0,0176(7)
P6	4a	-0,0396(3	-0,1451(2)	0,6617(4)	0,0128(7)
P7	4a	-0,1196(4)	0,0265(1)	0,2872(5)	0,0130(7)
P8	4a	0,4995(3)	0,0195(1)	0,7194(5)	0,0164(6)
P9	4a	0,3610(4)	0,1966(1)	0,2531(5)	0,0163(8)
01	4a	-0,1151(9)	0,0958(5)	0,210(1)	0,022(2)
O2	4a	0,0177(8)	0,0229(4)	0,482(1)	0,017(1)
03	4a	-0,2855(8)	0,4491(4)	-0,361(1)	0,016(1)
O4	4a	0,6033(9)	-0,0161(4)	0,891(1)	0,020(1)
05	4a	0,0706(9)	0,1347(4)	0,839(1)	0,026(2)
O6	4a	0,0661(8)	0,2319(4)	0,672(1)	0,019(1)
07	4a	0,0688(9)	-0,1752(5)	0,834(1)	0,023(2)
08	4a	0,5603(9)	0,0609(5)	0,647(1)	0,022(1)
09	4a	-0,0550(9)	-0,2354(5)	0,301(1)	0,020(2)
O10	4a	-0,0440(8)	0,4287(5)	0,3027(1)	0,022(1)
011	4a	0,4532(7)	0,1462(4)	0,413(1)	0,024(1)
012	4a	0,5877(8)	0,1868(4)	0,732(1)	0,028(2)
013	4a	0,1935(9)	0,3608(4)	0,099(1)	0,024(2)
014	4a	0,6032(7)	0,1388(3)	0,223(1)	0,023(1)
015	4a	0,3320(7)	0,1681(4)	0,086(1)	0,019(1)
016	4a	0,3280(7)	0,1664(3)	0,5895(9)	0,016(1)
O17	4a	0,1913(9)	0,2905(5)	0,594(1)	0,022(2)
O18	4a	-0,3665(8)	0,4950(4)	-0,190(1)	0,019(1)
019	4a	-0,2248(8)	0,0313(4)	0,305(1)	0,018(1)
O20	4a	-0,1292(7)	-0,0317(4)	0,179(1)	0,021(1)
O21	4a	0,8654(10)	0,1901(5)	0,013(1)	0,020(1)
O22	4a	0,2556(9)	0,1130(5)	0,760(1)	0,019(1)
O23	4a	0,2449(9)	0,2078(4)	0,243(1)	0,021(1)
O24	4a	0,3957(8)	-0,0214(4)	0,566(1)	0,025(2)
O25	4a	-0,1303(8)	0,1632(4)	0,527(1)	0,019(1)
O26	4a	0,4539(7)	0,1884(3)	0,918(1)	0,021(1)
O27	4a	-0,4930(9)	0,4052(5)	-0,423(1)	0,023(2)

 Tabelle 7-6.
 Atomkoordinaten und isotrope Auslenkungsparameter f
 ür C-Ir(PO₃)₃.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_{i} \cdot a_j$

Atom	Position	x	У	z	U_{eq} /Å ^{2 a)}
Ir1	1a	0	0	0	0,0116(2)
Ir2	1e	1/2	1/2	0	0,0118(2)
P1	2i	0,6741(4)	0,3623(2)	0,5013(6)	0,0117(5)
P2	2 <i>i</i>	0,9614(4)	0,1830(3)	0,5257(5)	0,0123(5)
Р3	2 <i>i</i>	0,6838(3)	0,7728(2)	0,7621(5)	0,0118(5)
01	2i	0,118(1)	0,9266(7)	0,666(1)	0,014(1)
02	2 <i>i</i>	0,128(1)	0,6893(7)	0,544(1)	0,014(1)
O3	2 <i>i</i>	0,525(1)	0,2373(7)	0,376(1)	0,012(1)
O4	2 <i>i</i>	0,296(1)	0,3451(7)	0,084(1)	0,016(1)
05	2 <i>i</i>	0,666(1)	0,4789(7)	0,337(1)	0,015(1)
O6	2 <i>i</i>	0,815(1)	0,7680(7)	0,511(1)	0,015(1)
07	2 <i>i</i>	0,274(1)	0,0959(7)	0,097(1)	0,016(1)
08	2 <i>i</i>	0,070(1)	0,8400(6)	0,189(1)	0,012(1)
09	2i	0,346(1)	0,6220(7)	0,209(1)	0,014(1)

Tabelle 7-7. Atomkoordinaten und isotrope Auslenkungsparameter für *trikl*-Ir(PO₃)₃.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* \mathbf{a}_i \cdot \mathbf{a}_j$

Tabelle 7-8.C-Ir(PO3)3.Interatomare Abstände /Å in den Polyedern [IrO6] und [PO4].Standardabweichungen in Klammern.

[Ir1O ₆]		[Ir2O ₆]		[Ir3O ₆]	
Ir-015	2,016(7)	Ir-O4	2,024(8)	Ir-016	2,015(7)
Ir-O3	2,019(8)	Ir-013	2,026(9)	Ir-O21	2,022(9)
Ir-O24	2,023(8)	Ir-O25	2,027(9)	Ir-O12	2,025(7)
Ir-O18	2,026(8)	Ir-O20	2,032(8)	Ir-O23	2,036(9)
Ir-O5	2,034(10)	Ir-019	2,036(8)	Ir-O17	2,041(10)
Ir-O22	2,049(9)	Ir-O14	2,042(7)	Ir-O7	2,066(9)
[P1O ₄]		[P2O ₄]		[P3O ₄]	
P-O17	1,456(11)	P-O13	1,476(10)	P-O16	1,479(7)
P-O14	1,472(8)	P-O12	1,485(8)	P-O22	1,498(10)
P-O26	1,571(8)	P-O11	1,576(8)	P-O10	1,583(9)
P-O36	1,599(8)	P-O8	1,599(9)	P-O26	1,585(7)
[P4O ₄]		[P5O ₄]		[P6O ₄]	
P-O3	1,493(9)	P-O25	1,471(9)	P-O21	1,457(9)
P-O18	1,519(8)	P-O5	1,472(9)	P-07	1,479(9)
P-O2	1,560(8)	P-O6	1,529(8)	P-O27	1,588(11)
P-O27	1,576(11)	P-09	1,611(9)	P-O1	1,624(9)
[P7O ₄]		[P8O ₄]		[P9O ₄]	
P-O20	1,460(8)	P-O24	1,470(9)	P-O15	1,468(8)
P-O19	1,494(9)	P-O4	1,505(8)	P-O23	1,484(10)
P-O1	1,527(10)	P-O8	1,536(8)	P-O11	1,566(8)
P-O2	1,613(9)	P-O10	1,566(8)	P-09	1,583(10)
Winkel \angle (O _t ,P,O _t) \approx 117,3 ± 3°, \angle (O _b ,P,O _b) \approx 103,9 ± 5°					

	0				
[Ir1O ₆]		[Ir2O ₆]			
Ir-O7 (2x)	2,046(6)	Ir-O5 (2x)	2,043(7)		
Ir-O8 (2x)	2,046(6)	Ir-O4 (2x)	2,045(6)		
Ir-O1 (2x)	2,056(7)	Ir-O9 (2x)	2,052(6)		
[P1O ₄]		[P2O ₄]		[P3O ₄]	
P-09	1,465(8)	P-08	1,477(7)	P-07	1,481(7)
P-O5	1,488(7)	P-O1	1,478(7)	P-O4	1,485(7)
P-O2	1,572(7)	P-O2	1,582(7)	P-O3	1,573(7)
P-O3	1,613(7)	P-06	1,585(7)	P-O6	1,590(8)
Winkel ∠(C	$(0, P, O_t) \approx 1$	$17,6 \pm 2^{\circ}, \angle ($	$O_b, P, O_b) \approx$	$100,7 \pm 2^{\circ}$	

Tabelle 7-9. *trikl*-Ir(PO_3)₃. Interatomare Abstände /Å in den Polyedern [IrO_6] und [PO_4]. Standardabweichungen in Klammern.

7.1.5 Der chemische Transport von C-Ir(PO₃)₃

Im Rahmen der vorliegenden Arbeit wird durch einen Vergleich der experimentellen Ergebnisse mit den Aussagen thermodynamischer Modellrechnungen ein besseres Verständis der bestimmenden heterogenen und homogenen Gleichgewichte bei chemischen Transportreaktionen von Iridium(III)-metaphosphat angestrebt. Grundlage für die Modellrechnungen war ein konstistenter Satz thermodynamischer Daten, die soweit vorhanden, aus den entsprechenden Tabellenwerken [273] entnommen wurden. Für die unter den experimentellen Bedingungen gasförmigen Stoffe konnten die Literaturwerte unverändert übernommen werden. Grundlage für die Abschätzung der Bildungsenthalpie von Iridium(III)-metaphosphat ist die Überlegung, dass diese ternäre Verbindung nur dann gegen Zerfall in die binären Komponenten "Ir₂O₃" und P₄O₁₀ stabil ist, wenn ihre freie Bildungsenthalpie $\Delta_R G_T$ kleiner ist, als die Summe der freien Bildungsenthalpien $\Delta_R G_T$ der binären Komponenten. Diese Summe entspricht also einer Mindeststabilität der Phosphate (freie Mindestbildungsenthalpie). Für Festkörperreaktionen gilt nach KOPP-NEUMANN und DULONG-PETIT [274], dass sowohl die Reaktionsentropie $\Delta_R S_T$ wie auch $\Delta_R C_p(T)$ gegen Null geht. Nach der vereinfachten GIBBS-HELMHOLTZ-Gleichung (Gleichung 7-1) entspricht somit die freie Mindestbildungenthalpie der Mindestbildungsenthalpie und näherungsweise der Reaktionsenthalpie für die Bildungsreaktion der ternären Verbindung aus den binären Komponenten.

 $\Delta_R G_T \approx \Delta_R H_T$ (für Feststoffreaktionen)

Gleichung 7.1

Darüber hinaus ergeben sich die Entropien und die Koeffizienten für die Beschreibung der Temperaturabhängigkeit der Wärmekapazität von polynären Oxiden als Summe der Daten der entsprechenden binären Oxide. Aus den binären Oxiden "Ir₂O_{3,s}" und P₄O_{10,s} wird die Mindeststabilität des Phosphats berechnet. Die Bildungsenthalpie ergibt sich aus der Mindeststabilität und einem zusätzlichen Enthalpiewert, den man als Neutralisationswärme für die Reaktion des basischen Metalloxids mit dem sauren P₄O₁₀ auffassen kann. Die Unsicherheit bei der Abschätzung der Neutralisationswärme wirkt sich im Allgemeinen nur geringfügig auf die Präzission der abgeschätzten Bildungswärme des Phosphats aus. Zunächst wird formal die Bildungsenthalpie des bislang nicht bekannten Iridium(III)-oxids "Ir₂O₃" ausgehend von Literaturdaten zur Bildungsenthalpie von IrO_{2,s} und Ir_s (Tabelle 7-10) berechnet (Gleichung 7-2).

$$3/2 \operatorname{IrO}_{2,s} + \frac{1}{2} \operatorname{Ir}_{s} \rightarrow , \operatorname{Ir}_{2} \operatorname{O}_{3}^{"}$$
 Gleichung 7.2

 $\Delta_{\rm B} {\rm H}^{0}_{298} ({\rm Ir}_2 {\rm O}_3) = 3/2 \cdot (-249, 4) + 0 = -374 \text{ kJ/mol}$

Mit der Festkörperreaktion für die Bildung des Metaphosphats aus den binären Oxiden "Ir₂O₃" und P₄O₁₀ ergibt sich nach Gleichung 7-3 die Mindestbildungsenthalpie $\Delta_B H^{\theta}_{298}$ (Ir(PO₃)₃) = -2437,0 kJ·mol⁻¹. Für die Bestimmung der Entropie von Ir(PO₃)₃, die sich aus der Summe der Entropien der binären Oxide zusammensetzt, wird zunächst $S^{\theta}(,,Ir_2O_3) = 140,0$ J·mol·K⁻¹ ermittelt. Dem Wert liegen Literaturangaben zu α -Bi₂O₃ ($S^{\theta}_{298} = 151,5$ J·mol·K⁻¹) und La₂O₃ ($S^{\theta}_{298} = 127,3$ J·mol·K⁻¹) zugrunde. Mit der Entropie von P₄O_{10,s} ergibt sich S^{θ}_{298} (Ir(PO₃)₃) = 242,0 J·mol⁻¹·K⁻¹.

Die Koeffizienten für die Beschreibung der Temperaturabhängigkeit der Wärmekapazität von "Ir₂O₃" wurden von La₂O₃ ($A = 119,7 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$, $B = 14,23 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-2}$, $D = -1,35 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-3}$) übernommen. Die Koeffizienten von $C_p(\text{Ir}(\text{PO}_3)_3)$ setzten sich additiv aus jenen der binären Oxide "Ir₂O₃" und P₄O_{10,s} zusammen. Eine detaillierte Zusammenstellung der thermodynamischen Daten der an der chemischen Transportreaktion von C-Ir(PO₃)₃ beteiligten Substanzen gibt Tabelle 7-10 wieder.

Substanz	$\Delta_B H^{\theta}_{298}$	S ⁰ 298	$A^{(\mathbf{a})}$	B ^{b)}	<i>C</i> ^{c)}	D ^{d)}	Lit.
	/ kJ∙mol ⁻¹	/ J·mol ⁻¹ ·K ⁻¹					
Cl _{2,g}	0	223,1	36,61	1,08	-	0,27	[273]
H_2O_g	-241,8	188,8	34,38	7,84	-	0,42	[273]
HClg	-92,3	186,9	26,53	4,6	-	0,11	[273]
$O_{2,g}$	0	49,005	7,16	1,00	-	-0,4	[273]
$P_4O_{10,g}$	-3000,9	228,8	149,8	324,7	-	-3,12	[273]
Ir _s	0	35,5	22,88	7,04	-	-	[273]
IrO _{2,s}	-249,4	51,0	61,88	20,42	-	-1,1	[273]
IrCl _{3,s}	-256,8	116,9	84,94	18,83	-	-0,42	[273]
IrCl _{3,g}	102,58	36,67	82,23	1,76	4,19	-	[275]
"Ir ₂ O _{3,s} " ^{f)}	-374,0	140	119,7	14,23	-	-1,35	
IrO _{3,g}	13,4	288,8	76,5	-	-	-	[275]
IrO ₂ Cl _g ^{e)}	-8,0	176,5	-	-	-	-	[275]
$Ir(PO_3)_{3,s}^{g)}$	-2437,0	242,0	172,2	250,64	-	-3,015	d. Arbeit

Tabelle 7-10. Zusammenstellung thermodynamischer Daten der am chemischen Transport von *C*-Ir(PO₃)₃ beteiligten Spezies ($C_p = A + B \cdot T \cdot 10^{-3} + C \cdot T^2 \cdot 10^5 - D \cdot T^2 \cdot 10^6$).

^{a)} /J·mol⁻¹·K⁻¹, ^{b)} /J·mol⁻¹·K⁻², ^{c)} /J·mol⁻¹·K, ^{d)} /J·mol⁻¹·K⁻³, ^{e)} thermodynamische Daten bei 1500°C, ^{f)} Abschätzung der Reaktionsentropie aus Vergleich mit Literaturwerten von La₂O₃ und Bi₂O₃, Koeffizienten der Temperaturabhängigkeit von C_p(Ir₂O₃) wurden von den in La₂O₃ experimentell bestimmten Koeffizienten übernommen, ^{g)} Daten wurden anhand der thermodynamischen Daten von "Ir₂O₃" und Literaturdaten von P₄O₁₀ ermittelt.

In chemischen Transportexperimenten im Temperaturgefälle $850^{\circ}C \rightarrow 750^{\circ}C$ unter Zusatz von IrCl₃·xH₂O wurde die Abscheidung von *C*-Ir(PO₃)₃ aufgrund endothermer Reaktion im Bereich der niedrigeren Temperatur beobachtet (*TR* ~ 0,2 mg/h). Die Verflüchtigung von IrO_{2,s} in einer Chlor und Sauerstoff enthaltenden Gasphase erfolgt über IrO₂Cl_g, IrO_{3,g} und IrCl_{3,g} [275, 276]. Die thermische Zersetzung von Ir^{III}Cl₃·xH₂O (*x* ~ 0,1) bei 900°C liefert nach Aussage von thermodynamischen Modellrechnungen (Computerprogramm CVTRANS [277, 278]), unter Verwendung von Daten aus der Literatur [275, 276], Iridiummetall, Cl_{2,g}, HCl_g, O_{2,g}, und H₂O_g sowie geringe Mengen an IrO₂Cl_g, IrCl_{3,g} und IrO_{3,g} (Gleichung 7-5ae). In dieser Atmosphäre ist ein chemischer Transport von Ir(PO₃)₃ über IrO₂Cl_g und P₄O₁₀ möglich (Gleichung 7-4). Die beobachteten, niedrigen Transportraten stehen in Einklang mit orientierenden thermodynamischen Abschätzungen zur Flüchtigkeit von Ir(PO₃)₃.

$Ir(PO_3)_{3,s} + \frac{1}{2}Cl_{2,g} + \frac{1}{4}O_{2,g} = IrO_2Cl_g + \frac{3}{4}P_4O_{10,g}$	Gleichung 7.4
$IrCl_{3,s} = Ir_s + 3/2 Cl_{2,g}$	Gleichung 7.5a
$Cl_{2,g} + H_2O_g = 2 HCl_g + \frac{1}{2} O_{2,g}$	Gleichung 7.5b
$IrCl_{3,s} = IrCl_{3,g}$	Gleichung 7.5c

$$IrCl_{3,s} + O_{2,g} = IrO_2Cl_g + Cl_{2,g}$$
Gleichung 7.5d
$$IrCl_{3,s} + 3/2 O_{2,g} = IrO_{3,g} + 3/2 Cl_{2,g}$$
Gleichung 7.5e

7.1.6 Beschreibung der Kristallstrukturen

C-Ir(PO₃)₃. Während zahlreiche Oxoiridate(IV) und (V) über Kristallstrukturanalysen charakterisiert werden konnten [96, 279, 280], lagen vor Beginn unserer Untersuchungen mit dem Alaun Cs^IIr^{III}(SO₄)₂·12H₂O [281] und Ba₃Sm^{III}Ir^{III}Ru^{VI}O₉ [282] nur zwei strukturell charakterisierte Oxoverbindungen des dreiwertigen Iridiums vor, in denen Iridium eine oktaedrische Koordination aufweist. In den Nitritokomplexen $A_{3}^{I}[Ir^{III}(NO_{2})_{6}]$ (A = NH₄ [283], K [283], Rb [283], Cs [283], Tl [283], Na [284]) und Ba₃[Ir^{III}(NO₂)₆]₂ [283] hingegen wird Iridium von 12 Sauerstoffatomen in Form eines Kuboktaeders koordiniert. Die Elementarzelle von C-Ir(PO₃)₃ (Abbildung 7-9) enthält 12 Formeleinheiten mit drei kristallographisch unabhängigen Lagen für Iridium. In C-Ir(PO₃)₃ und trikl-Ir(PO₃)₃ liegen die Ir³⁺-Ionen in kaum verzerrter, oktaedrischer Koordination vor $(2,01\text{ Å} \le d(\text{Ir}^{\text{III}}-\text{O}) \le$ 2,06Å, Tabelle 7-8 bzw. 7.9; Abbildungen 7-7a bzw. 7-8a). Diese Abstände stimmen gut mit jenen in CsIr(SO₄)₂·12H₂O [281] und Ba₃SmIrRuO₉ [282] überein. Bemerkenswert ist in diesem Zusammenhang, dass sich die Abstände $d(Ir^{IV}-O)$ und $d(Ir^{V}-O)$ in zahlreichen ternären sowie polynären Oxoverbindungen des vier- und fünfwertigen Iridiums (z.B. Ca₂Ir^{IV}O₄, $d(Ir^{IV}-O) = 2,01\text{\AA}$ [285], Sm₃Ir^VO₇, $d(Ir^{V}-O) = 2,00\text{\AA}$ [286]), nicht signifikant von denen des dreiwertigen Iridiums unterscheiden. Für beide Modifikationen von Ir(PO₃)₃ werden die für Metaphosphate typischen interatomaren Abstände d(P-O) beobachtet (vgl. Tabelle 7-8, 7-9 und Abbildung 7-7b bzw. 7-8b). Alle Sauerstoffatome in den beiden Metaphosphaten sind zweifach koordiniert. Dabei erfolgt die Koordination entweder durch zwei Phosphoratome (Brückensauerstoffatome innerhalb der Metaphosphatketten, $d(P-O_b) \approx$ 1,58Å) oder durch ein Iridium- und ein Phosphoratom ($d(P-O_t) \approx 1,48Å$). Einhergehend mit den unterschiedlichen interatomaren Abständen $d(P-O_b)$ und $d(P-O_t)$ ergeben sich unterschiedliche Winkel in den Metaphosphateinheiten $(C-Ir(PO_3)_3)$: $\angle (O_t, P, O_t) \approx 117, 3^\circ$, $\angle(O_b, P, O_b) \approx 103, 4^\circ$, trikline Modifikation: $\angle(O_t, P, O_t) \approx 117, 6^\circ$, $\angle(O_b, P, O_b) \approx 100, 7^\circ$). Die beobachteten Abstände und Winkel sind typisch für viele Metaphosphate wie z.B. Rh(PO₃)₃ $[15], Ru_2(P_6O_{18})$ [20] oder Sc₄(P₄O₁₂)₃ [243].

Abbildung 7-7. *C*-Ir(PO₃)₃. ORTEP-Darstellung der [IrO₆]-Oktaeder (a) und der [PO₄]-Tetraeder (b) (Abstände in Å). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v3.1f [230]).

Abbildung 7-8. *trikl*-Ir(PO₃)₃. ORTEP-Darstellung der [IrO₆]-Oktaeder (a) und der [PO₄]-Tetraeder (b) (Abstände in Å). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v. 3.1f [230]).

In der Kristallstruktur von *C*-Ir(PO₃)₃ liegen zwei unterschiedliche, sich helixartig in [001]-Richtung erstreckende Metaphosphatketten $\frac{1}{\infty}(PO_3)^-$ vor, welche drei (P6, P4, P7) bzw. sechs (P9, P5, P1, P3, P8, P2) kristallographisch unabhängige Phosphoratome enthalten (Abbildung 7-13a, 7-13b). *C*-Ir(PO₃)₃ ist isotyp zur monoklinen Modifikation ("*C*-Typ") der schon länger bekannten Trimetaphosphate $M^{III}(PO_3)_3$ (M = AI [245], Ga [246], In [247], Sc [254], Ti [253], V [252], Cr [249, 250], Mo [251], Fe [240, 241, 242, 248], Rh [15]). Dabei handelt es sich um eine von sechs polymorphen Formen *A*-*F* (Benennung der Modifikationen nach RÉMY und BOULLÉ [42]). Bemerkenswert ist, dass für Chrom(III)-trimetaphosphat alle sechs Modifikationen bekannt sind [42]. Allerdings liegen bislang nur für das Chrom(III)*catena*(metaphosphat) ("*C*-Typ") [249, 250] und das Chrom(III)-*cyclo*(hexametaphosphat) ("*B*-Typ") [244] Einkristallstrukturverfeinerungen vor. Gemeinsames Strukturmerkmal aller oben aufgeführten Metaphosphate *C*- $M^{III}(PO_3)_3$ ist eine Überstruktur mit einer Verdreifachung der monoklinen *b*-Achse. Bei gleicher Subzelle wie für die anderen Metaphosphate $M^{III}(PO_3)_3$, werden für Ru(PO₃)₃ eine inkommensurabel und eine kommensurabel modulierte Struktur berichtet [21].

Abbildung 7-9. Darstellung der Kristallstruktur von C-Ir(PO₃)₃ mit Projektion entlang [010] mit Koordinationspolyedern [IrO₆] braun und [PO₄] gelb, Sauerstoffatome weiße Kugeln (Progr. DIAMOND v. 3.1f [230]).

Ein wichtiger Apekt bei der kristallchemischen Charakterisierung von C-Ir(PO₃)₃ war die Korrelation der Kristallstruktur mit ³¹P-MAS-NMR spektroskopischen Untersuchungen. Dabei sollte überprüft werden, in wiefern die aus Einkristallstrukturdaten hervorgegangenen neun kristallographisch unanhängigen Phosphorlagen (siehe Tabelle 7-6) über ³¹P-MAS-NMR-Spektroskopie zugeordnet werden können. Darüber hinaus ergab sich die Fragestellung nach einer möglichen Korrelation zwischen Bindungsparametern und chemischen Verschiebungen im C-Typ von Iridium(III)-metaphosphat. Die ³¹P-Festkörper-MAS-NMR Experimente an dieser Verbindung wurden an einem Avance DSX Spektrometer BRUKER durchgeführt, der mit der Firma einem kommerziellen 2.5mm Doppelresonanzprobenkopf (Zirkonium-Rotor) ausgestattet war. Die Spektren wurden bei Resonanzfrequenzen $v_{Res} = 200 \text{ MHz}$ (11,75 Tesla Magnet) bzw. $v_{Res} = 500 \text{ MHz}$ (29,0 Tesla Magnet) mit einer jeweiligen Rotationsgeschwindigkeit $v_{MAS} = 25$ kHz gemessen. Die ermittelten chemischen Verschiebungswerte sind relativ zur ³¹P-Resonanz von 85%iger Phosphorsäure angegeben. Die Anwesenheit von neun kristallographisch unabhängigen Phosphorlagen wird durch das quantitative ³¹P-MAS-NMR Spektrum in Abbildung 7-10 bestätigt ($v_{MAS} = 25$ kHz, $v_{Res} = 200$ MHz). Die fünf Signale B, C, E, I und K mit den isotropen chemischen Verschiebungen δ_{iso} = -4,8, -7,2, -13,0, -27,3 und -30,9ppm entsprechen jeweils einer P-Lage. Eine Entfaltung des Spektrums in elf Gauss/Lorentzkurven

zeigt für diese Signale ein relatives Intensitätsverhältnis von 0,99:1,05:1,03:0,89:1,00 (Normierung auf K) in den Integrationsbereichen [3,79, -5,97], [-5,97, -9,60], [-9,60, -14,76] [-23,15, -29,52] und [-29,52, -40,33] ppm), die nur geringfügig mit anderen Banden überlagert sind. Die überlagerten Banden zwischen -15 und -20ppm müssen demnach vier P-Lagen enthalten. Signal F mit einem Maximum bei -17,3ppm und einer Schulter G bei -18,9ppm besitzen relative Intensitäten von 3,44 bzw. 1,04. Somit repräsentiert Signal F = F₁+F₂+F₃ drei P-Lagen mit sehr ähnlicher chemischer Verschiebung. Die recht große Abweichung zum erwarteten Intensitätswert von 3,0 kann auf die eingangs erwähnte Fremdphase X1 zurückgeführt werden, welche auch die Signale A, D, H und J erklärt. Die Signallagen von XI lassen Q^2 -Phosphate als Baueinheiten vermuten. Auf Basis dieser Phosphor ein Fremdphasenanteil Zuordnung wird für von 13% berechnet $({I(A)+I(D)+I(H)+I(J)+0.44})/I_{Total})$. Das ³¹P-MAS-NMR Spektrum von Ir(PO₃)₃ wurde ein weiteres Mal bei einer Resonanzfrequenz von 500MHz gemessen. Die dabei resultierenden Signallagen und Signalintensitäten unterscheiden sich jedoch nicht signifikant von jenen aus der ersten Messung. Eine weitere Bestätigung für die Zuordnung findet sich im ³¹P-PC7-DQ-2D-Spektrum ($v_{Res} = 200$ MHz, $v_{MAS} = 10$ kHz, 2,5mm Rotor, Abbildung 7-11). Dabei sollten ausgehend von der Anzahl der Korrelationspeaks die miteinander koppelnden Kerne ermittelt und so die zwei unterschiedlichen Metaphosphat-Ketten in C-Ir(PO₃)₃ identifiziert werden. In diesem Spektrum erscheinen Kreuzsignale zwischen räumlich nahen, in der Regel Overbrückten P-Atomen bei derselben Verschiebung in der DQ-Dimension. Die eingezeichneten Hilfslinien lassen in Übereinstimmung mit Einkristallstrukturuntersuchungen zwei kristallographisch unterschiedlichen Metaphosphatketten erkennen, Kette -[-C-E-K-F₁-F₂-F₃-]- und Kette -[-B-G-I-]-, die mit den beiden in Abbildung 7-13a und gezeigten Metaphosphatketten -[-P9-P5-P1-P3-P8-P2-]- und -[-P7-P6-P4-]-7.13b korrespondieren. Das in der elektronischen Zusatzinformation gezeigte INADEQUATE-DQ-2D Spektrum ähnelt dem PC7-DQ-2D Spektrum weitgehend, doch fehlen die Kreuzsignale zwischen E und F bei -15,1ppm in der DQ-Dimension. Dies legt nahe, dass E und F nicht über eine O-Brücke miteinander verbunden sind. Die Beziehung zwischen chemischen Verschiebungen oder Kopplungskonstanten und Bindungsparametern ist Gegenstand weiterer Untersuchungen. Es ist derzeit noch unklar, weshalb an den Phosphoratomen in C-Ir(PO₃)₃ Verschiebungen beobachtet werden, die sich bei sehr ähnlicher chemischer Umgebung (vgl. Tabelle 7-8) des Phosphors in den Metaphosphatketten über einen weiten Bereich von -4,6 bis -30,8ppm erstrecken. Zum Vergleich beobachtet man in α -Ca(PO₃)₂ [287] in Übereinstimmung mit Kristallstrukturdaten insgesamt acht isotrope chemische Verschiebungen, die sich über einen viel kleineren Bereich (-30,7 bis -34,8ppm) erstrecken. Untersuchungen zur Interpretation der chemischen Verschiebungen in $Ir(PO_3)_3$ dauern derzeit noch an.

Abbildung 7-10. Quantitatives ³¹P-MAS-NMR-Spektrum von *C*-Ir(PO₃)₃ ($v_{MAS} = 25$ kHz) mit chemischen Verschiebungsparametern relativ zur ³¹P-Resonanz von 85% iger H₃PO₄. Signale B, C, E, F, G, I, K gehören zu *C*-Ir(PO₃)₃, Signale A, D, H und J zur Fremdphase *X1*.

Abbildung 7-11. Doppelquantengefiltertes ³¹P-MAS-NMR-Korrelationspektrum von *C*-Ir(PO₃)₃ (PC7-DQ-2D; $v_{MAS} = 10$ kHz; Frequenzen der DQ Dimension sind mit dem Faktor ¹/₂ skaliert; Kurven oberhalb des Konturplots vergleichen das Einfachquantenspektrum (EQ) mit der Reihenprojektion des DQ-2D). Die Kreuzsignale erscheinen zwischen räumlich nahestehenden magnetisch-dipolar gekoppelten P-Lagen und bestätigen die Kettenstruktur des Phosphats. Die durchgezogene grüne Linie zeigt die Kette -[-C-E-K-F1-F2-F3-]- an, die gestrichelte rote Linie die Kette -[-B-G-I-]-.

Triklines Ir(**PO**₃)₃. Während zu der monoklinen Modifikation von *C*-Ir(PO₃)₃ eine Vielzahl isotyper Verbindungen vorliegt (siehe oben), gibt es mit Ru(PO₃)₃ bislang nur ein zur triklinen Modifikation von Ir(PO₃)₃ isotypes Metaphosphat. Dessen Kristallstruktur (Abbildung 7-12) setzt sich aus oktaedrisch von sechs Sauerstoffatomen koordinierten Ir³⁺- Ionen sowie aus Metaphosphatketten $\frac{1}{m}(PO_3^{-})$ zusammen (Abbildung 7-13c).

Abbildung 7-12. trikline Modifikation von Ir(PO₃)₃. Kristallstruktur mit Koordinationspolyedern [IrO₆] braun und [PO₄] gelb, Sauerstoffatome weiße Kugeln.

Mit interatomaren Abständen 2,043Å $\leq d(Ir^{III}-O) \leq 2,056Å$ sind die $[Ir^{III}O_6]$ -Oktaeder ähnlich wie im *C*-Typ nahezu unverzerrt. Im Unterschied zur Struktur des *C*-Typs liegt in der triklinen Modifikation ein anderes Koordinationsverhalten der Metaphosphatketten an die $[Ir^{III}O_6]$ -Oktaeder vor. In beiden Modifikationen wird ein $[Ir^{III}O_6]$ -Oktaeder derart von vier Phosphatketten koordiniert, dass zwei Ketten an die beiden axialen Positionen des $[Ir^{III}O_6]$ -Oktaeders jeweils einzähnig gebunden sind, während die beiden anderen Metaphosphatketten chelatartig an die äquatorialen Oktaederpositionen koordinieren. Während in der triklinen Modifikation die chelatartige Koordination der Phosphatkette an die $[IrO_6]$ -Einheit über direkt benachbarte $[PO_4]$ -Tetraeder erfolgt, sind die chelatisierenden Phosphatgruppen in *C*- $Ir(PO_3)_3$ über zwei $[PO_4]$ -Gruppen voneinander getrennt. (Abbildung 7-14). Daraus ergibt sich für die beiden Modifikationen eine unterschiedliche Konformation der Metaphosphat-Anionen. Der Blick entlang der P-P-Vektoren in den Phosphatketten der triklinen Form zeigt eine ekliptische Konformation der $[PO_4]$ -Tetraeder mit einer nahezu linearen Kette. In der

monoklinen Form weist die Kette eine nahezu gestaffelte Konformation der Phosphatgruppen mit einem helixartigen Verlauf auf (Abbildung 13a-c). Ein weiterer signifikanter Unterschied zwischen beiden Modifikationen von $Ir(PO_3)_3$ ergibt sich bei deren Dichten (D_{ro} (C-Typ) = 4,567 g/cm³, D_{ro} (trikl. Form) = 4,018 g/cm³). Dieser sehr deutliche Unterschied, das thermische Verhalten von trikl-Ir(PO₃)₃ und die Beobachtung, dass in chemischen Transportexperimenten unter gleichgewichtsnahen Bedingungen C-Typ Phosphate $M^{\text{III}}(\text{PO}_3)_3$ ($M^{\text{III}} = \text{Ga}$, Ti, V, Cr, Mo, Fe, Rh) erhalten werden, sprechen für die höhere thermodynamische Stabilität des C-Typs. Im Einklang mit der OSTWALD-VOLMER-Regel [288] entsteht bei Kristallisation aus übersättigter Lösung bzw. bei niedrigeren Temperaturen zuerst die metastabile Form. Eine Begründung für die kinetische Begünstigung der um 14% weniger dichten triklinen Phase, könnte im Koordinationsmodus der Metaphosphatketten am Iridium liegen. Die chelatartige Koordination der Ir³⁺-Ionen an Sauerstoffatome zweier benachbarter Phosphatgruppen einer Metaphosphatkette erscheint in Metaphosphorsäureschmelzen sehr viel wahrscheinlicher als die Koordination nach dem Muster im C-Typ (vgl. Abbildung 7-14).

Abbildung 7-13. Ir(PO₃)₃. ORTEP-Darstellung zweier unterschiedlicher Metaphosphatketten im C-Typ jeweils entlang [100] und [001] (a und b) und in der triklinen Modifikation (c). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v. 3.1f [230]).

Abbildung 7-14. ORTEP-Darstellung der Koordinationssphäre um Ir1 und Ir2 in der triklinen Modifikation (a) und in *C*-Typ von $Ir(PO_3)_3$ (b). Ellipsoide mit 50% Wahrscheinlichkeit, (Progr. DIAMOND v. 3.1f [230]).

7.2 Iridium(IV)-silicophosphat $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$

7.2.1 Einleitung

Eine Vielzahl an quaternären Silicophosphaten mit Kationen in den Oxidationsstufen +1 bis +5 sind mittlerweile strukturchemisch charakterisiert; vgl. Zusammenstellung in [289]. In diesen Verbindungen sind im Gegensatz zu den Silicat-Phosphaten $M_5(PO_4)_2(SiO_4)$ (M = Ca [290], Cd [291]), die Kationen nur durch Sauerstoffatome der Phosphatgruppen koordiniert. Die anionischen Teilstrukturen der Silicophosphate zeigen in Abhängigkeit von der Oxidationsstufe des jeweiligen Kations unterschiedliche Strukturmotive. So ergeben sich bei $Rb_{2}^{I}[SiP_{4}O_{13})]$ Schichten $[SiP_{4}O_{13})]^{2}$ mit $[Si^{IV}O_{6}]$ -Einheiten und Tetraphosphatanionen [292]. In M^{II}_{2} [Si(P₂O₇)₂] (M = Mn [293], Fe [76], Co [294], Ni [76], Cu [76], Cd [295]) liegen Bänder $[Si(P_2O_7)_2]^{4-}$ mit tetraedrischen $[SiO_4]$ -Einheiten und Disphosphatanionen vor. Von besonderer Stabilität, und daher dominierendes Strukturmerkmal vieler Silicophosphate drei- und vierwertiger Kationen mit den Zusammensetzungen M^{III}_{4} [Si₂O(PO₄)₆] (M = Ti[258], V [13, 256], Mo [296], In [26] und M^{IV}_{3} [Si₂O(PO₄)₆] (M = Si [24], Ge [297], Re [16]) sind voneinander isolierte Heteropolyanionen $[Si_2O(PO_4)_6]^{12}$. Diese Strukturen können auf dichteste Packungen von Phosphatgruppen zurückführen werden, in denen die Oktaederlücken, die aus sechs Phosphateinheiten ausgebildet werden, mit Kationen M^{III} , M^{IV} oder [Si₂O]-Einheiten gefüllt sind. Im Zusammenhang mit der Untersuchung des Dreistoffsystems Ir/P/O ergab sich die Fragestellung nach der Synthese und kristallchemischen Charakterisierung eines zu M^{III}_{4} [Si₂O(PO₄)₆] bzw. M^{IV}_{3} [Si₂O(PO₄)₆] isotypen Silicophosphats mit einer Besetzung der Oktaederlücken durch drei- bzw. vierwertige Iridium-Ionen. Unter den experimentellen Bedingungen (Experimente in Kieselglasampullen, vgl. Kapitel 7.2.2) erschien die Darstellung eines zu Si₃[Si₂O(PO₄)₆] [24] isotypen Iridium(IV)-silicophosphats besonders aussichtsreich. Einkristallstrukturuntersuchungen sollten zudem Aufschluss darüber geben, ob Iridium(IV) die Oktaederplätze von Silicium(IV) vollständig isomorph ersetzt oder ob es zu einer Mischbesetzung auf den Oktaederlücken kommt. Tatsächlich gelang im Rahmen der vorliegenden Arbeit die Synthese und Kristallstrukturanalyse eines Iridium(IV)silicophosphats. Über die entsprechenden Untersuchungen wird im folgenden Abschnitt berichtet.

7.2.2 Darstellung von $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$

 $(\mathrm{Ir}^{\mathrm{IV}}_{(1-)})$ Orangefarbene Kristalle des Iridium(IV)-silicium-silicophosphats neuen $_{x}$)Si^{IV} $_{x}$)₃[Si₂O(PO₄)₆] 0,54) wurden bei (x = Experimenten zum chemischen Gasphasentransport von C-Ir(PO₃)₃ erhalten. Durch Zusatz von IrCl₃·xH₂O ($x \approx 0,1$) wird nach Aussagen thermodynamischer Modellrechnungen (siehe Abschnitt 7.1.5) aus dessen thermischer in situ Zersetzung bei 900°C neben $Cl_{2,g}$ und H_2O_g auch $O_{2,g}$ erzeugt. Der Sauerstoffpartialdruck in der Kieselglasampulle ist offenbar ausreichend groß, um einen Teil des dreiwertigen Iridiums im Metaphosphat zu Iridium(IV) zu oxidieren. Darüber hinaus werden Bedingungen geschaffen, bei denen das SiO₂ aus der Ampullenwand als SiCl₄ in die Gasphase überführt wird. Das Silicophosphat wird dann als stabiler Bodenkörper aus der Gasphase abgeschieden (Gleichung 7-6). Die Kristallisation von $(Ir^{IV}_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54) gelang auch mittels isothermem Tempern von IrO_2 mit P_4O_{10} bei 850°C (7*d*) unter Zusatz der Hexachloroiridium(IV)-säure, H2IrCl6·6H2O als Mineralisator. Auch unter diesen Bedingungen ist mit der Bildung von SiCl_{4,g} aus dem SiO₂ in der Kieselglasampulle zu rechnen (Gleichung 7-7).

$$3 \text{ Ir}^{\text{III}}(\text{PO}_3)_{3,s} + 2 \text{ SiO}_{2,s} + \frac{3}{4} \text{ O}_{2,g} \rightarrow (\text{Ir}^{\text{IV}}_{(1-x)}\text{Si}_x)_3[\text{Si}_2\text{O}(\text{PO}_4)_6] + \frac{3}{4} \text{ P}_4\text{O}_{10,g} \qquad \text{Gleichung 7.6}$$

$$3 \operatorname{IrO}_2 + 2 \operatorname{SiO}_2 + 3/2 \operatorname{P}_4 \operatorname{O}_{10} \to (\operatorname{Ir}^{\mathrm{IV}}_{(1-x)} \operatorname{Si}_x)_3 [\operatorname{Si}_2 \operatorname{O}(\mathrm{PO}_4)_6]$$
Gleichung 7.7

Versuche, das Silicophosphat bei Temperaturen unterhalb 800°C zu kristallisieren, führten zu keinem Einbau von Silicium. Stattdessen wurde C-Ir(PO₃)₃ erhalten. Offenbar sorgen die höheren Temperaturen bei Anwesenheit von Cl_{2,g} für eine nennenswerte Anreicherung von SiCl₄ in der Gasphase und somit für die Abscheidung des Iridium(IV)-Silicophosphats. Neben den Versuchen zur Einkristallzüchtung von $(Ir^{IV}_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ wurden Experimente zur mikrokristallinen Darstellung des Silicophosphats durchgeführt. Dazu wurde bei Temperaturen 700 $\leq T \leq$ 900°C in geschlossenen Ampullen wie auch in Goldtiegeln an Luft (7 - 14d) IrO₂ mit SiP₂O₇ [298], Si₅O(PO₄)₆ [24] oder reaktivem Kieselgel (SiO₂·xH₂O) und P₄O₁₀ zur Reaktion gebracht. Bei keinem der Experimente wurde die Umsetzung zum gewünschten Silicophosphat oder einer anderen Verbindung beobachtet. Orientierende Untersuchungen zur Bestimmung des Verhältnisses zwischen Iridium und Silicium in $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54) erfolgten über energiedispersive Mikroanalyse. Dabei wurden jene Kristalle auf ihre Zusammensetzung untersucht, an denen vorher Einkristalldaten gesammelt wurden. Die Ergebnisse der EDX-Untersuchungen sind in Tabelle 7-11 zusammengestellt und spiegeln im Rahmen der Fehlergrenzen die aus Einkristalldaten erhaltenene Zusammensetzung gut wieder.

	~	()-E (
Pulverprobe	Ir / at.%	P / at.%	Si / at.%	
Probe 1	4,04	18,05	8,93	
Probe 2	4,84	19,21	9,12	
Probe 3	4,36	17,52	10,23	
Mittelwert	4,41	18,26	9,43	
$(Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6] (x = 0,54)^{a}$	3,83	16,67	10,06	

Tabelle 7-11. EDX-Untersuchungen am Pulver von $(Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6]$.

^{a)} Wert aus Einkristallstrukturverfeinerung.

7.2.3 Röntgenographische Untersuchungen

7.2.3.1 Untersuchungen am Pulver

Die Indizierung der Reflexe von $(Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6]$ erfolgte aus *IP*-Guinier-Aufnahmen (s. Abbildung 7-16) unter Zusatz von α -SiO₂ mit dem Programm SOS [98] auf Basis der aus Einkristallstrukturdaten erhaltenen Lage- und Gitterparameter (Tabelle 7-13 und 7-14). Insgesamt wurden 23 Reflexe im Bereich 21,66° $\leq 4\theta \leq 143,58°$ indiziert (siehe Tabelle 7-12). Die durch die Indizierung resultierenden Gitterkonstanten sind in Tabelle 7-13 aufgelistet. Simulationsrechnungen unter der Annahme unterschiedlicher Verhältnisse Ir : Si (Grenzzusammensetzungen Ir:Si = 3:2 in Ir_3[Si_2O(PO_4)_6] bzw Ir:Si = 0:5 in Si_3[Si_2O(PO_4)_6] [24]) zeigten signifikante Unterschiede in den Reflexintensitäten, insbesondere bei den Reflexe (0 0 3), (1 0 1), (0 0 6), (0, 1 5) und (1 1 -3). Die gute Übereinstimmung zwischen beobachteten und aus Simulationsrechnungen erhaltenen Reflexintensitäten (siehe Abbildung 7-16) sprechen dafür, dass die Zusammensetzung (Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6] (x = 0,54) nicht nur für den gemessenen Einkristall gilt, sondern offenbar im Mittel repräsentativ für die Gesamtheit der neben dem *C*-Typ von Ir(PO_3)_3 entstandenen Kristalle ist.

Abbildung 7-15. Guinier-Aufnahme von $(Ir_{(1-x)}Si_x[Si_2O(PO_4)_6] (x = 0.54)$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 7-12 (b) (Cu-K α_1 -Strahlung, $\lambda = 1.54051$ Å).

(AU	unat	ing /-	-10) IIII 0ei	echneten und	Deobaciliei	en 4 <i>0</i> - werten.	$\Delta = \text{SIII} \ O_{\text{calc}} -$	$SIII O_{obs} ^{-1000}$.
h	k	1	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	I _{calc} ^{a)}	$I_{ m obs}{}^{ m a),b)}$	d_{calc} /Å
0	0	3	21,669	21,662	0,01	732	644	8,1615
1	0	1	26,910	26,837	0,07	709	743	6,5929
0	1	2	29,695	29,759	0,07	2	7	5,9486
1	1	-3	50,144	50,168	0,04	998	1000	3,5470
2	0	5	63,877	63,926	0,11	300	246	2,7976
1	2	2	71,060	71,162	0,26	4	3	2,5210
2	1	4	75,621	75,648	0,07	59	39	2,3765
2	0	8	79,045	78,945	0,28	122	133	2,2809
0	3	3	82,302	82,332	0,08	7	5	2,1909
0	3	6	91,227	91,251	0,08	68	73	1,9866
1	2	8	91,950	91,970	0,06	1	1	1,9719
2	2	3	94,847	94,885	0,12	4	3	1,9147
1	1	12	100,657	100,676	0,06	6	4	1,8111
2	1	10	102,831	102,872	0,14	4	2	1,7750
3	1	8	114,337	114,319	0,07	1	1	1,6101
4	0	7	120,597	120,574	0,08	3	2	1,5339
1	3	10	123,819	123,776	0,16	25	79	1,4980
1	0	16	124,258	124,325	0,26	2	1	1,4920
0	4	8	124,479	124,494	0,06	11	5	1,4902
1	2	14	128,617	128,673	0,22	18	22	1,4467
1	4	6	133,605	133,579	0,10	5	3	1,3994
0	2	16	133,956	133,868	0,35	51	7	1,3968
3	3	0	143,591	143,578	0,05	53	45	1,3138

Tabelle 7-12. $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54). Indizierung des Guinier-Diagramms (Abbildung 7-16) mit berechneten und beobachteten 4θ -Werten. $\Delta = |\sin^2\theta_{calc} - \sin^2\theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.

^{b)} Stärkster nicht beobachteter Reflex in untersuchtem Winkelbereich: (4 0 1) mit $I_{calc} = 29$.

7.2.3.2 Strukturverfeinerung von $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$

Für die Einkristallstrukturanalyse wurden unter einem Polarisationsmikroskop Kristalle mit wohl definierten Flächen ausgesucht und auf einem Glasfaden mit Sekundenkleber befestigt. Die Datensammlung erfolgte an einem *k*-CCD der Firma Enraf-Nonius. Für (Ir₍₁-_{x)}Si_x)₃[Si₂O(PO₄)₆] erfolgte die Messung im Winkelbereich 2,49 $\leq \theta \leq$ 33,26° (5471 davon 1086 symmetrieunabhängige Reflexe). Die empirische Absorptionskorrektur über Multiscans im Programm WinGX [106] wurde durch Indizierung der Kristallflächen durchgeführt. Aufgrund der aus Guinier-Aufnahmen abgeleiteten Isotypie von $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ zu $[M^{IV}_{5}O(PO_{4})_{6}]$ (M = Si [24], Ge [299]) wurde die trigonale Raumgruppe $R\overline{3}$ (Nr. 148) in der hexagonalen Achsenaufstellung angenommen. Durch die Strukturlösung mittels Direkter Methoden mit dem Programm SHELXS-97 [104] im Programmpaket WinGX [106] konnten zunächst die Iridiumpositionen ermittelt werden. In der anschließenden Strukturverfeinerung mit SHELXL-97 [105] wurden die Phosphor-, Silicium- und Sauerstofflagen sukzessive über △-Fouriersynthesen lokalisiert. Die in jenem Stadium der Verfeinerung erhaltenen interatomaren Abstände d(Ir^{IV}-O) ließen vermuten, dass bei mindestens einer von insgesamt zwei kristallographisch unabhängigen Iridiumlagen eine Mischbesetzung mit Silicium(IV) vorliegt. Die freie Verfeinerung unter Annahme von zwei mischbesetzten Wyckhoff-Lagen 6c und 3a von Iridium lieferte die Besetzungsfaktoren s.o.f.(Ir1) = 0,651(3), s.o.f.(Si1A) = 0,348(3), s.o.f.(Ir2) = 0,076(7) und s.o.f.(Si2A) = 0,923(7). Über den SHELX-Befehl EXYZ wurden die beiden Atome der jeweiligen mischbesetzten Lage auf gleiche Positionen gesetzt und gekoppelt mit einem isotropen Auslenkungsparameter von $U_{iso} = 0,0171(2)$ verfeinert. Die restlichen Atome der asymmetrischen Einheit wurden anisotrop verfeinert. Die so erhaltenen Auslenkungsparameter zeigten keinerlei Anomalien. Die Berücksichtigung einer pseudo-meroedrischen Verzwilligung nach [0 0 0 1] (Verzwilligung nach dem Dauphiné-Gesetz), die bei trigonalen Raumgruppen der Lauegruppe $\overline{3}$ auftreten kann, führte zwar nur zu einem Volumenanteil von ca. 2,0% des einen Zwillingsindividuums, verbesserte aber den R_1 -Wert um 1,5%. Die Strukturverfeinerung endete bei $R_1 = 0,061$ bzw. $wR_2 = 0,190$. Es wurde eine vergleichsweise hohe Restelektronendichte $\rho(0, 0, 0, 1622) = 6.6 \text{ e}\cdot\text{Å}^{-3}$ an Ir1/Si1 beobachtet. Alle Indikatoren (anisotrope Auslenkungsparameter, sonstigen Standardabweichungen der Variablen, kristallchemische Schlüssigkeit) sprechen jedoch für eine korrekte Strukturbeschreibung. Vermutlich ist dieser "Restelektronenpeak" mit qualitativen Mängeln des Datensatzes zu erklären. Einzelheiten zu den kristallographischen Daten, der Messung, und der Einkristallstrukturverfeinerung sind in Tabelle 7-13 zusammengestellt, Lageparameter und ausgewählte interatomare Abstände von (Ir₍₁₋

 $_{x_1}Si_x_3[Si_2O(PO_4)_6]$ geben die Tabellen 7-14 und 7-15 wieder. Listen der anisotropen Auslenkungsparameter finden sich im Anhang A.

∠ · · · · · · · · · · · · · · · · · · ·	
Zusammensetzung	$(Ir_{0,46}Si_{0,54})_3[Si_2O(PO_4)_6]$
Kristallsystem	trigonal
Raumgruppe	<i>R</i> 3 (Nr. 148)
Gitterparameter (aus IP-Guinier-A	Aufnahmen)
<i>a</i> /Å	7,8819(8)
c /Å	24,476(4)
Ζ	3
Absorptionskoeffizient /mm ⁻¹	11,407
Molmasse /g·mol ⁻¹	2857,70
Zellvolumen /Å ³	1316,8(3)
Dichte _{röntg.} /g·cm ⁻³	3,604
Farbe	orangerot
Kristallform und	Bruchstück
Kristallgröße /mm ³	0,104.0,060.0,047
F(000)	1340
Temperatur /K	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$ Å	, Graphit-Monochromator, κ-CCD Diffraktometer
Winkelbereich /°	$2,50 \le \theta \le 33,26$
Absorptionskorrektur	Multiscans [116]
Gemessene Reflexe	5471
Unabhängige Reflexe	1086, $1025 > 4\sigma(F_o)$
Messbereich	$-11 \le h \le 12$
	$-9 \le k \le 12$
	$-37 \le l \le 35$
Benutzte Programme	SHELXS-97 [104], SHELXL-97 [105], WinGX [106]
Parameter	56
Gütefaktoren	$R_{int}^{a)} = 0,077$
	$R_I^{(b)} = 0,061$
Coodness of fit ^b	$wR_2 = 0,190$
	1,105
Wichtungsschema	A = 0,0955, B = 83,97
Restelektronendichte /e·A ⁻³	$\max + 6,694$
	11111 4,303

Tabelle 7-13. Kristallographische Daten sowieAngaben zur Datensammlung undStrukturverfeinerung von $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 5.4.1.

Atom	Position	x	у	z	s.o.f.	U_{eq} /Å ^{2 a)}
Ir1	6с	2/3	1/3	0,15238(3)	0,651(3)	0,0171(2)
Si1A	6с	2/3	1/3	0,15238(3)	0,348(3)	0,0171(2)
Ir2	3a	0	0	0	0,076(7)	0,0171(2)
Si2A	3a	0	0	0	0,923(7)	0,0171(2)
Р	18f	0,2835(3)	0,2744(3)	0,0912(1)	1	0,0183(5)
Si	6с	1/3	2/3	0,1024(1)	1	0,0192(8)
01	18f	0,504(1)	-0,131(1)	0,0787(3)	1	0,024(1)
O2	18f	-0,165(1)	0,032(1)	0,0397(2)	1	0,029(1)
O3	18f	0,448(1)	0,242(1)	0,1061(3)	1	0,028(1)
O4	18f	0,530(1)	0,106(1)	0,1967(2)	1	0,023(1)
05	3b	1/3	2/3	1/6	1	0,022(3)

Tabelle 7-14. Atomkoordinaten und isotrope Auslenkungsparameter für $(Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54).

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} \mathbf{a}_i^* \mathbf{a}_j^* \mathbf{a}_i \cdot \mathbf{a}_j$

Tabelle 7-15. $(Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54). Interatomare Abstände /Å in den Polyedern [MO_6] (M = Ir, Si), [SiO₄] und [PO₄]. Standardabweichungen in Klammern.

$[M1O_6]$ (<i>M</i> = Ir, Si)		$[M2O_6] (M = Ir, Si)$		[SiO ₄]		[PO ₄]	
<i>M</i> -O3 (3x)	1,878(8)	<i>M</i> -O2 (6x)	1,744(7)	Si-O5(3x)	1,572(4)	P-O2	1,483(7)
<i>M</i> -O4 (3x)	1,900(7)			Si-O1(3x)	1,597(7)	P-O3	1,485(7)
						P-O4	1,513(7)
						P-O1	1,554(7)

7.2.4 Diskussion und Strukturbeschreibung von $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$

Untersuchungen im Dreistoffsystem Ir/P/O führten bei chemischen Transportexperimenten neben der Darstellung von *C*-Ir(PO₃)₃ auch zur rhomboedrischen Phase (Ir^{IV}₁. _xSi^{IV}_x)₃[Si^{IV}₂O(PO₄)₆] ($x \sim 0,54$), in der Ir⁴⁺-Ionen vorliegen. Die Strukturverfeinerung dieser Verbindung anhand von Einkristalldaten belegt deren Isotypie zu Si^{IV}₅O(PO₄)₆ [24], Ge^{IV}₅O(PO₄)₆ [299] und Re^{IV}₃Si₂O(PO₄)₆ [16]. Die von den Iridium(III)-metaphosphaten deutlich abweichende, blass-orange Farbe des Silicophosphats spricht ebenfalls für das Vorliegen von Iridium(IV). Die Elementarzelle von (Ir_(1-x)Si_x)₃[Si₂O(PO₄)₆] (x = 0,54, Abbildung 7-18) enthält drei Formeleinheiten mit zwei kristallographisch unabhängigen Lagen für Iridium. In dieser Struktur wird Iridium(IV) ähnlich wie in IrO₂ [268] bzw. zahlreichen Oxoiridaten (M^{II} Ir^{IV}O₃ (M =Ca [300], Sr [301], Ba [302]; Ba₄Ir^{IV}₃O₁₀ [303]) oder wie Iridium(III) in Ir^{III}(PO₃)₃ oktaedrisch von Sauerstoffatomen koordiniert. Während die oktaedrische Sauerstoffkoordination für Iridium(IV) nicht ungewöhnlich ist, wird sie für Siliciumatome unter Normaldruck nur selten beobachtet (vgl.: Si^{IV}P₂O₇ [298], Rb₂[Si^{IV}(P₄O₁₃)] [292], Pb^{II}Pd^{II}Si^{IV}(P₂O₇)₂ (s. Kapitel 11) und Si^o₃[Si^t₂O(PO₄)₆] [24]). Im Einklang mit den EDX-Analysen enthält das Silicophosphat erheblich mehr Silicium, als bei

einer ausschliesslichen Besetzung der Tetraederlücken zu erwarten wäre. Wie aus der Strukturverfeinerung hervorgeht, liegt auf den Oktaederplätzen eine Mischbesetzung durch Silicium(IV) und Iridium vor (s. Abb. 7-17 bzw. Tabelle 7-14). Während die Wyckhoff-Lage 6c mit ca. 65% Iridium besetzt wird (35% Silicium), beträgt der Anteil an Iridium auf der Wyckhoff-Lage 3a nur etwa 8% (92% Silicium). Mit dieser Besetzung einhergehend, werden für die beiden mischbesetzten Lagen erwartungsgemäß signifikant unterschiedliche interatomare Abstände $1.74\text{\AA} \le d(\text{Ir}^{\text{IV}}\text{-O}) \le 1.89\text{\AA}$ beobachtet (vgl. Tab. 7-15 bzw. Abb. 7-17a). Zieht man zum Vergleich Abstände $d(Ir^{IV}-O)$ in $Ir^{IV}O_2$ oder in Oxoiridaten(IV) heran, so sind diese mit $d(Ir^{IV}-O) \approx 2,00$ Å erwartungsgemäß länger als jene auf den mischbesetzten Lagen im Silicophosphat, da bei oktaedrischer Sauerstoffkoordination die Abstände d(Si^{IV}-O) deutlich kleiner sind (~1,75Å in Si^{IV₃okt}[Si₂O(PO₄)₆] bzw. 1,76Å in Si^{IV,okt}P₂O₇). Für die Phosphatgruppen ergeben sich nahezu dieselben interatomaren Abstände d(P-O), die bereits in den isotypen Verbindungen $M_5O(PO_4)_6$ (M = Si, Ge) beobachtet werden (vgl. Abb. 7-17b). Ein langer Abstand d(P-O1) = 1.55Å resultiert aus der Koordination des betreffenden Sauerstoffatoms an ein Siliciumatom aus der Disilicat-Einheit, die restlichen drei sehr kurzen Abstände mit $1,48 \le d(P-O) \le 1,51$ ergeben sich aus der Koordination der Sauerstoffatome O2, O3 und O4 an jeweils ein Atom aus der mischbesetzten Wyckhoff-Lage 6c bzw. 3a. Auch die interatomaren Abstände d(Si-O) aus den $[Si_2O_7]$ -Einheiten $(1,57\text{\AA} \le d(Si-O) \le$ 1,60Å) zeigen eine sehr gute Übereinstimmung mit jenen im reinen Siliciumoxidphosphat $Si_5O(PO_4)_6 (1,59\text{\AA} \le d(Si-O) \le 1,61\text{\AA}).$

Abbildung 7-16. $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$. ORTEP-Darstellung der $[MO_6]$ -Oktaeder (M = Ir, Si) mit isotropen Auslenkungsparametern für Ir, Si (a), der $[PO_4]$ -Tetraeder (b) und der $[Si_2O_7]$ -Einheiten (c). Ellipsoide mit 50% Wahrscheinlichkeit (Abstände in Å).

In $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ besetzen die Silicium- und Iridiumatome ausschließlich spezielle Punktlagen auf den dreizähligen Inversionsachsen, so dass sich in dieser Richtung insgesamt eine sich wiederholende Abfolge von drei voneinander isolierten $[M^{IV}O_6]$ -Gruppen (M = Ir, Si) und einer [Si₂O₇]-Einheit ergibt. Die Verknüpfung dieser Anordnung durch [PO₄]-Tetraeder führt zum Aufbau einer dreidimensionalen Netzwerkstruktur (Abbildung 7-18). Dabei verbinden die Phosphatgruppen jeweils zwei auf einer dreizähligen Inversionsachse direkt übereinanderliegende $[MO_6]$ -Oktaeder (M = Ir, Si) mit einem weiteren $[MO_6]$ -Oktaeder sowie einem [SiO₄]-Tetraeder, die beide jeweils auf benachbarten dreizähligen Inversionsachsen liegen. Die Verbindung kann demnach als Iridium(IV)-Silicium(IV)silicophosphat ${}^{3}_{\infty}(Ir_{1-r}Si_{r})_{3}^{[6]}[Si_{2}^{[4]}O(PO_{4})_{6}]$ bezeichnet werden [304]. Eine kristallchemische Besonderheit stellt die [Si₂O₇]-Einheit in der anionischen Teilstruktur, dem Heteropolyanion $[Si^{IV}_{2}O(PO_{4})_{6}]^{12}$ dar. Diese Gruppe weist einen symmetriebedingten Bindungswinkel \angle (Si-O5-Si) = 180° auf (Abbildung 7-18b), während die meisten in Silicaten sowie in Modifikationen von SiO₂ auftretenden Bindungswinkel $128^{\circ} \le \angle$ (Si-O-Si) $\le 166^{\circ}$ betragen. Aus der Strukturverfeinerung gibt es keine Anzeichen für ein Abweichen des verbrückenden Sauerstoffatoms O5 aus der speziellen Punktlage 3b. Außer in den zu $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ isotypen Verbindungen $M_3[Si_2O(PO_4)_6]$ (M = Si, Re) wird ein solcher linearer Bindungswinkel \angle (Si-O-Si) auch in der Thortveitit-Struktur, Sc₂Si₂O₇ [305, 306] beobachtet. Die Kristallstruktur des Silicophosphats kann alternativ auch als hexagonaldichte Packung von Phosphatgruppen beschrieben werden, in welcher die Hälfte der Oktaederlücken durch Ir⁴⁺/Si⁴⁺-Ionen und 1/6 durch (Si₂O)-Einheiten besetzt sind (vgl. [289, 307]). Letztere Besetzung führt zur Ausbildung der Heteropolyanionen [Si^{IV}₂O(PO₄)₆]¹²⁻. Die aus der Verwandschaft zur hexagonal-dichten Kugelpackung folgende. hohe Pseudosymmetrie führt bei wasserfreien Phosphaten (z.B. NASICON-Typ) und Silicophosphaten dieser Strukturfamilie häufig zu komplexen Verzwilligungen und Stapelfehlordnungen. Hierdurch werden Verfeinerungen der Kristallstrukturen in den meisten Fällen stark behindert [289, 307]. In (Ir_{1-x}Si_x)₃[Si₂O(PO₄)₆] führt die zusätzliche Mischbesetzung durch Iridium(IV) und Silicium(IV) auf den Oktaederplätzen zu weiteren Einschränkungen in der Genauigkeit der abgeleiteten Strukturparameter. Die Mängel der vorliegenden Verfeinerung kommen bei den vergleichsweise schlechten Restwerten, wie auch bei erhöhten Restelektronendichten (Tab. 7-13) zum Ausdruck. Trotzdem sind die erhaltenen interatomaren Abstände (vgl. Tab. 7-15) kristallchemisch plausibel.

Abbildung 7-17. Kristallstruktur von $(Ir_{1-x}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54). Projektion entlang [001] (a) und [010] (b) mit Koordinationspolyedern [MO_6] (M = Ir, Si) braun, [SiO₄] orange und [PO₄] gelb.

8 Platinphosphate

8.1 Kalium-*tetrakis*(Hydrogenphosphato)-diplatinat(III)-dihydrat, K₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂]

8.1.1 Einleitung

Zweikernige Übergangsmetallkomplexe mit Bindungsordnungen von eins bis vier wurden seit Anfang der siebziger Jahre eingehend untersucht [308]. So wurde in Chrom(II)tetraacetat-dihydrat Cr^{II}₂(CH₃COO)₄(H₂O)₂ [309] wie auch in zahlreichen zweikernigen dreiwertigen Rheniums (z.B. $Na_2[(Re^{III}_2)(SO_4)_4(H_2O)_8]$ Komplexen des [310]. $(NH_4)_2[(Re^{III}_2)(SO_4)_4(H_2O)_2]$ [311], $K_2[(Re^{III}_2)Cl_8(H_2O)_2]$ [312] mit Hilfe magnetischer Messungen eine Metall-Metall-Vierfachbindung nachgewiesen. Die Elektronenkonfiguration für die $(Re^{III})_2$ -Einheit ist mit $\sigma^2 \pi^4 \delta^2$ zu beschreiben. Auffüllen der antibindenden Molekülorbitale führt zu einer schrittweisen Schwächung der Metall-Metall-Bindung. Der Zusatz von sechs Elektronen, der zur Konfiguration $\sigma^2 \pi^4 \delta^2 \delta^{*2} \pi^{*4}$ führt, lässt aufgrund drei besetzter antibindender Molekülorbitale eine Bindungsordnung BO = 1 erwarten. Für zweikernige Übergangsmetallkomplexe $(Rh^{II}_2)^{4+}$, $(Ir^{II}_2)^{4+}$, $(Pd^{III}_2)^{6+}$ wie auch $(Pt^{III}_2)^{6+}$ ist eine derartige Besetzung der Molekülorbitale zu erwarten. Tatsächlich liegen strukturell charakterisierte Verbindungen bislang nur von $(Rh^{II}_{2})^{4+}$ und $(Pt^{III}_{2})^{6+}$ vor. Während von $(Rh^{II}_{2})^{4+}$ zahlreiche zweikernige Komplexe wie beispielsweise $[Rh^{II}_{2}(HPO_{4})_{4}(H_{2}O)_{2}]$ [69] oder Na₄[(Rh^{II}₂)(SO₄)₄(H₂O)₂]·4H₂O [313] bekannt sind [308], waren zweikernige Komplexe des dreiwertigen Platins bis vor wenigen Jahren nur unzureichend charakterisiert [308, 314]. Ausgehend von $K_2[(Pt^{III}_2)(SO_4)_4(H_2O)_2]$ [62, 63, 63], der ersten Verbindung mit hantelförmigen (Pt^{III}₂)⁶⁺-Einheiten, konnte in der Arbeitsgruppe WICKLEDER eine Vielzahl weiterer Sulfate wie $Pt_{2}^{III}(HSO_{4})_{2}(SO_{4})_{2}$ [66], $Cs[Pt_{2}^{III}(HSO_{4})(SO_{4})_{3}]$ [65], $K_{4}[Pt_{2}^{III}(SO_{4})_{5}]$ [65] sowie das kürzlich publizierte K₃[Pt^{III}₂(SO₄)₄H(HSO₄)₂] [64] dargestellt und strukturell charakterisiert werden [315]. Das gelegentlich als Laternenstruktur bezeichnete Motiv der anionischen Komplexeinheit wurde in der Folgezeit vielfältig variiert, beispielsweise durch den Ersatz der terminalen H₂O-Moleküle durch andere Donoren [316, 317, 318, 319]. Angetrieben von diesen Ergebnissen, wurde in der vorliegenden Arbeit das Ziel verfolgt, einen Austausch der [SO₄]-Gruppen durch isoelektronische [HPO₄]-Einheiten vorzunehmen. Nachdem MURAVEISKAYA im Jahr 1980 erste Hinweise zur Existenz des Komplexanions [(Pt^{III}₂)(HPO₄)₄(H₂O)₂]²⁻ lieferte [320], gelang COTTON die Darstellung und kristallchemiche Charakterisierung von Na₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] [70] und der bereits bekannten Verbindung $Cs_2[(Mo^{III}_2)(HPO_4)_4(H_2O)_2]$ [67]. Im Rahmen der vorliegenden Arbeit gelang die Synthese eines sauren Platinphosphats der Zusammensetzung $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$. Zusätzlich zur Darstellung und kristallchemischer Charakterisierung sollte das gemessene Raman-Spektrum dieser Verbindung das Vorliegen von zweikernigen (Pt₂)-Einheiten bestätigen.

8.1.2 Darstellung von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$

Darstellung von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O_2)]$ wurden 150,0mg (0,361 mmol) Zur mikrokristallines Kalium-tetrachloroplatinat(II) K₂Pt^{II}Cl₄ eingesetzt, welches auf einer Petrischale mit ca. 5,0ml konzentrierter H₃PO₄ versetzt und bei Raumtemperatur im Exsikkator über P₄O₁₀ mehrere Wochen aufbewahrt wurde. Neben rechteckigen, orangeroten Kristallen, die sich aus dieser phosphorsauren Lösung abgeschieden hatten, kam es zur Bildung von elementarem Platin (EDX-Analyse). Der Befund legt nahe, dass bei der Umsetzung von K₂Pt^{II}Cl₄ mit H₃PO₄ eine Disproportionierung in Platin(III) und elementares Platin erfolgt (Gleichung 8.1). Details zur Synthese von K₂Pt^{II}Cl₄ finden sich in Abschnitt 5.2.3. Bei der Darstellung des sauren Platinphosphats hat es sich als vorteilhaft erwiesen, anstatt des Feststoffs, die bei der Reduktion des Kalium-Hexachloroplatinats(IV) (Abschnitt 5.2.3) erhaltene, wässrige Lösung von K₂PtCl₄ zur Reaktion zu bringen. Ein vorsichtiges Einengen einer Lösung von Tetrachloroplatinat(II) bei Temperaturen unter 100°C führte stets zu Verunreinigungen des resultierenden Bodenkörpers durch K₂Pt^{IV}Cl₆. Offenbar kommt es [Pt^{II}Cl₄]²⁻-Anions zur Oxidation des durch Luftsauerstoff. Versuche. dabei $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ als mikrokristallines Pulver darzustellen schlugen bislang ebenso fehl, wie reproduzierende Kristallisationsexperimente an dieser Verbindung.

$$3Pt^{II}Cl_4^{2-} + 4H_3PO_4 + 2H_2O \rightarrow [(Pt^{III}_2)(HPO_4)_4(H_2O)_2]^{2-} + Pt_s + 8H^+ + 12Cl^-$$
 Gleichung 8.1

Nach der Darstellung des Kaliumsalzes $K_2[(Pt^{III})_2(HPO_4)_4(H_2O)_2]$ wurde ausgehend von H_2PtCl_4 die Synthese eines sauren Platin(III)-phosphats angestrebt, das keine weiteren Gegenkationen enthält. Dazu wurde durch Umsetzung von $PtCl_4 \cdot 5H_2O$ [321] mit konz. HCl zunächst eine Lösung der Hexachloroplatin(IV)-säure $H_2PtCl_6 \cdot 6H_2O$ hergestellt. Diese wurde mit Hydrazin-Dihydrochlorid reduziert (vgl. Abschnitt 5.2.3). Aus der so erhaltenen H_2PtCl_4 -Lösung kristallisierten in einem evakuierten Exsikkator über P_4O_{10} trotz Zusatz von konz. H_3PO_4 nach fünf Tagen nur gelbe, würfelförmige Kristalle der bereits bekannten Verbindung $(H_3O^+)_2Pt^{IV}Cl_6$ [322] aus. Offensichtlich kam es nur zu einer unvollständigen Reduktion von $H_2PtCl_6 \cdot 6H_2O$ mit $N_2H_4 \cdot 2HCl$. Experimente, das angestrebte saure Platin(III)-phosphat über eine Komproportionierungsreaktion ausgehend von wässrigen Lösungen von $H_2Ptt^{II}Cl_4$ und $H_2Pt^{IV}Cl_6 \cdot 6H_2O$ mit konz. H_3PO_4 in einem evakuierten

Eksikkator bei Raumtemperatur über P_4O_{10} darzustellen (14*d*), führten bei keinem der Ansätze zu einer Kristallisation. Stattdessen setzten sich geringe Mengen (~10 mg) eines schwarzen Rückstands ab, bei dem es sich Röntgenpulveraufnahmen zufolge um Pt^{IV}O₂ [323] handelte. Dieser unerwartete Befund legt nahe, dass durch die Verwendung von N_2H_4 ·2HCl zur Darstellung von H₂PtCl₄ der pH-Wert der Lösung allenfalls neutral war. Unter sauren Präparationsbedingungen ist mit keinem Ligandenaustausch an [PtCl₄]²⁻ bzw. [PtCl₆]²⁻ zu rechnen.

Abbildung 8-1. Aus einer phosphorsauren Lösung von K_2PtCl_4 abgeschiedene Kristalle von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$.

Die prozentualen Atomverhältnisse für die in $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ enthaltenen Schweratome wurden über energiedispersive Mikroanalyse (EDX, vgl. Abschnitt 4.1.6) bestimmt. Die Ergebnisse sind in der Tabelle 8-1 zusammengestellt. Im Rahmen der Fehlergrenzen stehen die Ergebnisse in guter Übereinstimmung mit der erwarteten Zusammensetzung.

Probe	K / at.%	Pt / at.%	P / at.%
Kristall 1	8,91	10,35	17,65
Kristall 2	9,84	10,02	18,21
Kristall 3	8,76	9,66	18,89
Mittelwert	9,17	10,01	18,25
Theorie	7,69	7,69	15,38

Tabelle 8-1. EDX-Untersuchungen an Kristallen von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$.

8.1.3 Röntgenographische Untersuchungen

8.1.3.1 Untersuchungen am Pulver

Die Indizierung der Reflexe von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ erfolgte aus *IP*-Guinier-Aufnahmen (s. Abbildung 8-2) unter Zusatz von α -SiO₂ und auf Basis der aus der Einkristallstrukturanalyse (Tabelle 8-3 und 8-4) erhaltenen Lage- und Gitterparameter. Details zur Vorgehensweise bei der Präzissionsbestimmung der Gitterkonstanten wurden in Abschnitt 6.3 erläutert. Für $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ wurden insgesamt 63 Reflexe im Bereich 25,79° $\leq 4\theta \leq 121,06°$ indiziert (siehe Tabelle 8-2). Die Indizierung ergab die Gitterkonstanten a = 7,928(1)Å, b = 8,052(1)Å, c = 13,847(1)Å, $\alpha = 82,16(1)°$, $\beta = 81,64(1)°$, $\gamma = 65,64(1)°$. Abbildung 8-2 zeigt die gute Übereinstimmung zwischen phasenreinem K₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] und dessen Simulation.

Abbildung 8-2. Guinier-Aufnahme von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 8-2 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Tabelle 8-2. K₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂]. Indizierung eines Guinier-Diagramms mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	1	1A .	<i>1</i> .	A	L. L. ^{a)}	L , a), b)	d/Å
	17	1	- Vcalc	τ U _{obs}	4	- calc	- obs	wcale / 1
0	0	2	25,918	25,790	0,12	1000	477	6,8256
1	0	1	26,664	26,510	0,15	738	1000	6,6355
0	1	-1	28,418	28,420	0,00	866	449	6,2278
1	0	-1	28,940	28,880	0,07	801	435	6,1160
1	1	2	34,022	33,958	0,08	161	91	5,2078
1	0	-2	37,550	37,467	0,12	2	8	4,7223
1	1	-2	40,351	40,307	0,07	231	127	4,3976
1	-1	0	40,982	40,947	0,05	210	94	4,3305
0	1	3	44,199	44,206	0,01	31	12	4,0188
2	1	0	45,529	45,476	0,09	18	15	3,9029
0	1	-3	47,748	47,755	0,01	162	96	3,7240
1	0	-3	48,275	48,345	0,13	216	219	3,6839
1	2	-1	48,548	48,565	0,03	113	219	3,6636
0	2	0	48,668	48,685	0,03	52	160	3,6546
2	0	0	49,505	49,535	0,06	77	49	3,5938
2	0	1	49,939	50,005	0,12	26	12	3,5630
0	0	4	52,175	52,154	0,04	44	22	3,4128

Fortsetzung von Tabelle 8-2.

2	0	2	53,698	53,684	0,03	102	61	3,3177
2	2	0	53,835	53,854	0,04	120	60	3,3094
1	1	4	54,593	54,654	0,12	117	39	3,2643
1	2	3	55,170	55,204	0,07	105	18	3,2308
2	1	3	55,457	55,464	0,01	75	58	3,2144
2	1	-2	55,973	55,964	0,02	1	26	3,1854
1	-1	3	56,587	56,603	0,03	15	10	3,1516
2	2	-1	57,557	57,573	0,03	2	1	3,0995
0	1	-4	59,581	59,563	0,04	23	8	2,9965
1	1	-4	62,827	62,862	0,08	67	24	2,8453
1	-2	0	63,140	63,082	0,13	16	7	2,8315
1	-2	-1	64,166	64,222	0,13	34	60	2,7874
1	-2	1	64,872	64,902	0,07	60	29	2,7579
0	2	-3	65,348	65,362	0,03	3	14	2,7383
1	-1	4	66,491	66,552	0,15	16	11	2,6926
1	3	0	67,511	67,481	0,07	1	5	2,6530
0	1	5	68,072	68,071	0,00	9	9	2,6318
1	-2	2	69,179	69,131	0,12	3	13	2,5910
2	-1	-2	70,081	70,021	0,15	1	3	2,5586
3	2	1	70,265	70,321	0,14	75	30	2,5521
1	3	-1	70,505	70,531	0,07	10	18	2,5437
0	1	-5	72,095	72,091	0,01	20	6	2,4894
3	1	3	74,582	74,550	0,08	27	97	2,4092
2	3	3	75,264	75,270	0,01	177	27	2,3882
1	-2	3	75,674	75,690	0,04	113	73	2,3757
3	1	-2	77,197	77,220	0,06	51	12	2,3306
3	1	4	81,069	81,069	0,08	74	26	2,2243
3	0	-2	82,211	82,209	0,01	12	35	2,1940
2	1	-5	86,398	86,398	0,00	69	19	2,0924
2	3	5	89,252	89,278	0,08	52	10	2,0288
4	2	0	92,991	93,007	0,05	24	10	1,9515
1	-2	5	93,593	93,597	0,01	9	25	1,9396
1	0	7	94,041	94,017	0,08	35	12	1,9309
2	-1	-5	94,817	94,827	0,03	23	27	1,9160
4	1	3	97,394	97,367	0,09	46	15	1,8683
1	4	-2	99,268	99,267	0,00	17	8	1,8352
1	1	8	106,171	106,206	0,12	28	24	1,7237
1	0	8	107,883	107,856	0,10	1	18	1,6983
1	4	5	108,097	108,076	0,07	12	15	1,6952
3	-1	-5	115,733	115,735	0,01	6	12	1,5921
0	3	7	115,930	115,905	0,09	26	25	1,5897
4	4	-2	119,212	119,205	0,03	9	11	1,5498
3	5	3	119,492	119,455	0,14	5	20	1,5464
1	5	-1	120,871	120,855	0,06	26	14	1,5304
1	5	3	121,013	121,065	0,20	3	9	1,5288

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.
 ^{b)} es werden alle Reflexe im untersuchten Winkelbereich mit *I_{calc}* > 5 auch beobachtet.

8.1.3.2 Kristallstrukturanalyse

Für die Einkristallstrukturanalyse wurden unter einem Polarisationsmikroskop Kristalle mit wohl definierten Flächen ausgesucht und auf einem Glasfaden befestigt. Die Datensammlung erfolgte auf einem IPDS-2T Einkristall-Röntgendiffraktometer der Firma STOE. Für $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ erfolgte die Messung im Winkelbereich $1.49 \le \theta \le 32,50^\circ$ (18915) davon 5589 symmetrieunabhängige Reflexe). Die Intensitätsdaten wurden über eine semiempirische Absorptionskorrektur anhand von Multiscans [116] korrigiert. Durch die Strukturlösung mittels Direkter Methoden mit dem Programm SHELXS-97 [104] im Programmpaket WinGX [106] konnten zunächst die Platinpositionen ermittelt werden. In der anschließenden Strukturverfeinerung mit SHELXL-97 [105] wurden dann die Kalium-, Phosphor- und Sauerstofflagen sukzessive über ⊿-Fouriersynthesen lokalisiert. Die Wasserstoffatome wurden mit isotropen Temperaturfaktoren geometrisch positioniert (SHELX-Befehl HTAB). Dazu wurden die O-H-Abstände auf 0.84Å und die H-H-Abstände auf 1,32Å festgelegt, so dass daraus ein idealer Winkel \angle (H,O,H) = 104,5° resultiert. Alle Nichtwasserstoffatome in asymmetrischen Einheit wurden mit anisotropen der Temperaturfaktoren verfeinert, wobei die erhaltenen Auslenkungsparameter keinerlei Anomalien zeigten. Die Strukturverfeinerung endete bei Restwerten von $R_1 = 0.033$ bzw. $wR_2 = 0.085$. Einzelheiten zu den kristallographischen Daten, der Messung, und der Einkristallstrukturverfeinerung sind in Tabelle 8-3 zusammengestellt, Lageparameter und ausgewählte interatomare Abstände von K₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] geben die Tabellen 8-4 und 8-5 wieder. Listen der anisotropen Auslenkungsparameter finden sich im Anhang A.
Zusammensetzung	$K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$
Kristallsystem	triklin
Raumgruppe	<i>P</i> 1 (Nr. 2)
Gitterparameter (aus Einkristalldat	en)
a /Å, α /°	7,8852(2), 82,358(1)
<i>b</i> /Å, β/°	7,9657(2), 81,509(1)
c /Å, γ /°	13,7739(4), 65,528(1)
Zahl der Formeleinheiten Z	2
Absorptionskoeffizient /mm ⁻¹	19,046
Molmasse /g·mol ⁻¹	1776,65
Zellvolumen /Å ³	776,32(4)
Dichte _{röntg.} /g·cm ⁻³ ; F(000)	3,800; 812
Farbe	orange
Kristallform und	tafelig
Kristallgröße /mm ³	0,24.0,14.0,08
Temperatur /K	123(2)
Mo-K α -Strahlung, $\lambda = 0,71073$ Å,	Graphit-Monochromator, IPDS-2T Diffraktometer
Winkelbereich /°	$1,49 \le \theta \le 32,50$
Absorptionskorrektur	Multiscans [116]
Gemessene Reflexe	18915
Unabhängige Reflexe	5589, $4077 > 4\sigma(F_o)$
Messbereich	$-11 \le h \le 11$
	$-12 \le k \le 12$
	$-19 \le l \le 20$
Benutzte Programme	SHELXS-97 [104], SHELXL-97 [105], WinGX [106]
Parameter	259
Gütefaktoren	
	$R_{\rm int}^{a)} = 0,064$
	$R_1^{(b)} = 0.033$
Coordinance of C (b)	$WK_2 = 0.085$
Goodness-ot-tit ^(*)	0,980
wichlungsschema	A = 0,0417, B = 0,000
Restelektronendichte /e·A ⁻³	$\max + 3,460$
	min. $-2.8/0$

Tabelle 8-3. Kristallographische Daten sowie Angaben zur Datensammlung undStrukturverfeinerung von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 5.4.1.

parameter.	parameter. Standardabweichungen in Klammern.							
Atom	Position	x	У	Z	U_{eq} /Å ^{2 a)}			
K1	2i	0,1241(4)	-0,3657(4)	0,6325(2)	0,0790(8)			
K2	2i	0,3845(3)	-0,1884(3)	0,9085(1)	0,0472(4)			
Pt1	2 <i>i</i>	0,54549(3)	0,09217(3)	0,54947(2)	0,01966(7)			
Pt2	2i	0,09528(3)	0,53533(3)	0,05220(2)	0,01543(6)			
P1	2i	0,6381(2)	-0,3051(2)	0,6381(1)	0,0220(3)			
P2	2i	0,8592(2)	-0,1187(2)	0,3948(1)	0,0214(3)			
P3	2i	-0,3082(2)	0,6280(2)	0,1438(1)	0,0179(3)			
P4	2i	-0,1055(2)	0,8585(2)	-0,0974(1)	0,0186(3)			
O1 ^{b)}	2i	0,6393(7)	0,2464(7)	0,6285(3)	0,028(1)			
O10 ^{b)}	2i	0,2525(6)	0,5992(7)	0,1437(3)	0,024(1)			
O11 ^{c)}	2 <i>i</i>	0,8028(6)	-0,4741(6)	0,6678(3)	0,025(1)			
012	2i	0,6784(6)	-0,1303(6)	0,6372(3)	0,024(1)			
013	2i	0,5849(6)	-0,3215(6)	0,5370(3)	0,0238(9)			
014	2i	0,4659(7)	-0,2760(7)	0,7169(3)	0,030(1)			
O21	2i	0,9903(6)	-0,0893(7)	0,3117(3)	0,029(1)			
O22	2i	0,7832(6)	0,0411(6)	0,4627(3)	0,024(1)			
O23	2i	0,6936(6)	-0,1446(6)	0,3607(3)	0,027(1)			
O24	2i	0,9753(6)	-0,3002(7)	0,4568(3)	0,027(1)			
O31	2i	-0,4037(6)	0,5674(6)	0,2361(3)	0,0230(9)			
O32	2i	-0,1067(6)	0,5907(6)	0,1622(3)	0,0211(9)			
O33	2i	-0,3103(5)	0,5225(6)	0,0566(3)	0,0199(9)			
O34	2i	-0,4077(6)	0,8408(7)	0,1167(3)	0,028(1)			
O41	2i	-0,2455(6)	0,0558(6)	-0,0995(3)	0,0233(9)			
O42	2i	0,0529(7)	0,8329(7)	-0,1816(3)	0,031(1)			
O43 ^{d)}	2i	-0,2058(6)	0,7306(6)	-0,1067(3)	0,0210(9)			
O44	2i	-0,0109(6)	0,8018(6)	0,0001(3)	0,0235(9)			
H1A	2i	0,565(8)	0,29(1)	0,675(3)	0,043			
H1B	2i	0,733(6)	0,174(9)	0,656(4)	0,043			
H10A	2i	0,20(1)	0,718(2)	0,140(4)	0,037			
H10B	2i	0,22(1)	0,581(8)	0,205(1)	0,037			
H14	2 <i>i</i>	0,48(1)	-0,387(4)	0,717(6)	0,045			
H24	2i	0,044(9)	-0,372(9)	0,414(4)	0,041			
H34	2i	-0,519(4)	0,89(1)	0,107(6)	0,042			
H42	2i	0,04(1)	0,929(7)	-0,161(6)	0,046			

Tabelle 8-4. $K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$. Atomkoordinaten und isotrope Auslenkungsparameter. Standardabweichungen in Klammern.

^{a)} $U_{eq} = (1/3)\Sigma_i\Sigma_j U_{ij} \mathbf{a}_i^* \mathbf{a}_j^* \mathbf{a}_i \cdot \mathbf{a}_j$, ^{b)} O1, O10 an H₂O-Moleküle gebunden, ^{c)} OX1 an PX gebunden mit kürzestem Abstand *d*(PX-O), ^{d)} OX4 an PX gebunden mit längstem Abstand *d*(PX-O).

	04)4(1120			(1120)2	o tullaul auc	werenangen in Huannier
[Pt1O ₄ (OH	I ₂)Pt1]		[Pt2O ₄ (O]	H ₂)Pt2]	[P1O ₄]	
Pt1-O22	1,985(4)	Pt2-O32	1,977(4)	P1-O11	1,493(4)
Pt1-O12	1,991(4)	Pt2-O44	2,005(4)	P1-O12	1,548(5)
Pt1-O13	2,010(4)	Pt2-O43	2,013(4)	P1-O13	1,549(5)
Pt1-O23	2,013(4)	Pt2-O33	2,030(4)	P1-O14	1,563(5)
Pt1-O1	2,142(5)	Pt2-O10	2,131(4)		
Pt1-Pt1	2,494 (3	5)	Pt2-Pt2	2,489(5)		
[P2O ₄]			[P3O ₄]		[P4O ₄]	
P2-O21	1,488(4)	P3-O31	1,507(4)	P4-O41	1,499(4)
P2-O22	1,541(5)	P3-O32	1,543(4)	P4-O42	1,540(5)
P2-O23	1,548(5)	P3-O33	1,560(4)	P4-O43	1,553(4)
P2-O24	1,569(5)	P3-O34	1,563(5)	P4-O44	1,555(4)
[D-H ···A]						
01-H1A…(031	0,83(2)/	1,73(2)	O34-H34…O4	1 0,83	(2) / 1,74(3)
O1-H1B…(021	0,84(2)/	2,09(4)	010-Н10А…С	0,86	(2) / 1,94(4)
O14-H14…	O31	0,83(2)/	1,82(5)	О10-Н10В…С	011 0,86	(2) / 1,86(2)
O24-H24…	O11	0,84(2)/	1,73(2)			

Tabelle 8-5. Interatomare Abstände /Å in den zweikernigen Komplexen $[(Pt1)_2(HPO_4)_4(H_2O)_2]^{2-}$ und $[(Pt2)_2(HPO_4)_4(H_2O)_2]^{2-}$. Standardabweichungen in Klammern.

8.1.4 Ergebnisse und Diskussion

Während die bei der Darstellung zahlreicher Sulfate mit zweikernigen Komplexen von $(Pt^{III})_2$ ablaufenden Reaktionen eingehend untersucht wurden [315], ist der Reaktionsverlauf bei der Synthese von K₂[$(Pt^{III}_2)(HPO_4)_4(H_2O)_2$] zum gegenwärtigen Zeitpunkt nicht gesichert. Auch wenn unsere Beobachtungen für eine Disproportionierung des eingesetzten Platin(II) (aus K₂Pt^{II}Cl₄ [179, 180]) in Platin(III) sowie elementares Platin sprechen (EDX-Analysen bestätigen die Entstehung von Pt⁰), schlugen bislang alle Versuche fehl, die Verbindung erneut herzustellen. Analog kommentiert COTTON die Kristallisation der zu K₂[$(Pt^{III}_2)(HPO_4)_4(H_2O)_2$] isotypen Natriumverbindung als ein Zufallsprodukt bei der Präparation und Kristallzucht anderer Zielverbindungen, auf die nicht näher eingegangen wurde [70].

Die doppelte Summenformel soll die zentrale Baugruppe dieser Verbindung, die hantelförmige Pt_2^{6+} -Einheit hervorheben, welche aus der Verknüpfung zweier Pt^{3+} -Ionen (d⁷-Konfiguration) aufgebaut wird. Die trikline Elementarzelle weist zwei Formeleinheiten auf. Die Pt_2^{6+} -Hantel, die erstmalig in der Kristallstruktur von $K_2[(Pt^{III}_2)(SO_4)_4(H_2O)_2]$ [62, 63] beobachtet wurde, wird von vier chelatartig angreifenden Hydrogenphosphat-Gruppen und zwei einzähnigen H₂O-Liganden koordiniert (Abbildung 8-4).

Abbildung 8-3. Binukleare Komplexeinheit $[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ mit anisotropen Auslenkungsparametern (50% Wahrscheinlichkeit). Pt: rot, P: gelb, H: blau, O: weiß, Progr. DIAMOND v. 3.1f [230].

Gemeinsames Merkmal aller bislang bekannten Strukturen, in denen Pt2⁶⁺-Einheiten auftreten, sind anionische Komplexe, die über Kationen stabilisiert werden müssen. In K₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] weist die anionische Komplexeinheit dieselben strukturellen Eigenschaften auf, die bereits für Platin(III)-sulfate beobachtet wurden. Die beiden kristallographisch äquivalenten Platinatome zeigen einen kurzen Bindungsabstand mit \overline{d} (Pt-Pt) = 2,492Å. In der isotypen Verbindung Na₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] [70] ergibt sich ein mit d(Pt-Pt) = 2,486Å nahezu identischer mittlerer Abstand zwischen den beiden Platinatomen. Die Abstände d(Pt-Pt) in den Platin(III)-sulfaten wie auch in Rh₂(HPO₄)₄(H₂O)₂ [69] sind nur unwesentlich kürzer. Wie bereits beschrieben, ist das Pt₂⁶⁺-Ion von vier [HPO₄]-Gruppen umgeben. Dabei ordnen sich die Sauerstoffatome aus den Hydrogenphosphat-Einheiten quadratisch-planar um jedes der beiden Platinatome an (Abbildung 8-3 und 8-4). Die interatomaren Abstände d(Pt-O) liegen zwischen $1,98\text{\AA} \le d(Pt-O) \le 2,03\text{\AA}$ und stimmen mit jenen in Na₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] (\overline{d} (Pt-O) = 2,01Å) und K₃[(Pt₂)(SO₄)₄H(HSO₄)₂] [64] $(\overline{d} (Pt-O) = 2,00\text{Å})$ sehr gut überein. Die Winkel $\angle (O,Pt,O)$ innerhalb der äquatorialen Ebene weichen mit $90^{\circ} \pm 0.5^{\circ}$ nur geringfügig von dem idealen Wert ab, wodurch sich für die $[Pt_2O_8]$ -Einheit annährend C_{4h} -Symmetrie ergibt. Die axialen Abstände d(Pt-O) sind erwartungsgemäß mit $d(Pt1-OH_2) = 2,14\text{Å}$ bzw. $d(Pt2-OH_2) = 2,13\text{\AA}$ elongiert (Abbildung 8-4a). Jedem Platinatom kommt auf diese Weise eine verzerrt oktaedrische Koordination von fünf Sauerstoff- und einem weiteren Platinatom zu. Die Winkel \angle (O1(H₂O),Pt1,Pt1) = bzw. \angle (O10(H₂O),Pt2,Pt2) = 178,6° weichen ähnlich wie jene in 176.5°

Na₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂], \angle (O(H₂O),Pt,Pt) \approx 177,9° oder in K₃[(Pt^{III}₂)(SO₄)₄H(HSO₄)₂], \angle (O(H₂O),Pt,Pt) \approx 177,7°, nur geringfügig von der Linearität ab. Aufgrund ihrer unterschiedlichen Bindung, ergeben sich für die Sauerstoffatome der [HPO₄]-Einheiten signifikant unterschiedliche interatomare Abstände *d*(P-O) (Abbildung 8-4b). So weisen die an Platin gebundenen Atome einen mittleren Abstand \overline{d} (P-O) \approx 1,55Å auf. Für Sauerstoffatome, die ausschließlich an Kalium-Ionen koordinieren, wird erwartunggemäß ein kleinerer mittlerer Abstand \overline{d} (P-O) \approx 1,495 Å beobachtet. Die längsten Abstände *d*(P-O) \approx 1,565Å werden für die Bindung von Phosphor an die OH-Gruppe innerhalb des [HPO₄]-Tetraeders beobachtet.

Abbildung 8-4. $K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$. ORTEP-Darstellung der zweikernigen [(Pt_2O_8) (H_2O)_2]-Einheiten (a) und der [HPO_4]-Tetraeder (b) (Abstände in Å). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v3.1f [230]).

Die Wasserstoffatome H14, H24, H34 und H42 (Nummerierung entspricht jener der Sauerstoffatome, welche die Wasserstoffatome binden) der [HPO₄]-Einheiten und der Wassermoleküle (H1A, H1B, H1OA, H1OB) beteiligen sich mit den Sauerstoffatomen benachbarter [(Pt₂)(HPO₄)(H₂O)₂]²⁻-Einheiten an Wasserstoffbrückenbindungen. Die interatomaren Abstände d(OH····OP), welche sich von 1,73Å bis 2,27Å erstrecken, stimmen gut mit jenen Abständen überein, die für starke Wasserstoffbrückenbindungen beobachtet werden [324]. Die K⁺-Ionen, welche die zweikernigen, anionischen Komplexe zusammenhalten, weisen analog zu Na₂[(Pt^{III}₂)(HPO₄)₄(H₂O)₂] eine siebenfache Sauerstoffkoordination mit interatomaren Abständen 2,75Å $\leq d$ (K-O) \leq 3,15Å auf. Kristallchemisch vergleichbar ist der anionische Strukturteil [(Pt^{III}₂)(HPO₄)₄(H₂O)₂]²⁻ mit zweikernigen Übergangsmetallkomplexen der Zusammensetzung [M₂(HPO₄)₄L₂] oder [M₂(SO₄)₄L₂] [70].

Abbildung 8-5. Projektion der Kristallstruktur von $K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$ entlang [110]. Gestrichelte Linien zeigen die Ausbildung von Wasserstoffbrückenbindungen. [PO₄]-Tetraeder (gelb), Pt₂⁶⁺ (rot), K⁺ (blau), H⁺ (weiß), O²⁻ (grau) (Progr. DIAMOND v. 3.1f [230]).

Zur näheren Charakterisierung der Pt-Pt-Bindung wurde das Raman-Spektrum $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]^{2-}$ aufgenommen (Abbildung 8-6). Eine eindeutige Zuordnung der beobachteten Banden (vgl. Tab. 8-6) ist derzeit nicht möglich. Ein Vergleich mit den Raman-Spektren der In_2^{4+} -Einheit in den Orthophosphaten $In_3(PO_4)_2$ [325] und $In_2O(PO_4)$ [325]

spricht für eine (Pt-Pt)-Valenzschwingung bei $v = 222 \text{ cm}^{-1}$. Die Zuordnung von v(Pt-Pt)zum Signal bei 83cm⁻¹ (vgl. Abb. 8-6) erscheint beim Vergleich mit Valenzschwingungen v(Pt-Pt) aus Komplexen der Zusammensetzung $[(\text{Pt}^{\text{III}})_2L_4L'_2]^{n-}$ [326] nicht sinnvoll. Für die höhere Schwingungsfrequenz von v(Pt-Pt) spricht auch der kurze Abstand d(Pt-Pt) = 2,51 Åin K₂[(Pt^{III}_2)(HPO_4)₄(H_2O)₂]. Dieser liegt an der unteren Grenze des Bereichs von 2,47Å \leq $d(\text{Pt-Pt}) \leq 2,695\text{ Å}$ für eine Reihe zweikerniger Platin(III)-Komplexe [326, 327]. Eine Zuordnung der weiteren Raman-Banden erfolgt in Kapitel 8.3.

Abbildung 8-6. Raman-Spektrum von K₂[(Pt₂)(HPO₄)₄(H₂O)₂].

Tabelle 8-6. $K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$. Schwingungsfrequenzen des Ramanspektrums in Wellenzahlen /cm⁻¹. Intensitäten der Banden sind angegeben mit sw (sehr schwach), m (mittel) und s (stark).

Raman	Zuordnung
83 s, 118 m, 147 m, 177 sw, 222 s	Valenzschwingung v (Pt-Pt) (genaue Zuordnung derzeit nicht möglich)
295 s, 323 sw, 329 sw	Streckschwingung ν (Pt-O) [208].
448 m, 467 sw, 505 s	symmetrische Deformationsschwingung v_2 (PO ₄), (A ₁ + A ₂) [209].
609 s, 650 sw	asymmetrische Deformationsschwingung v_4 (PO ₄), (A ₁ + B ₁ + B ₂) [209].
917 sw	symmetrische Streckschwingung <i>v</i> ₁ (P-O), (A ₁) [209].
966 sw, 1100 sw, 1110 sw	asymmetrische Streckschwingung v_3 (P-O), (A ₁ + B ₁ + B ₂), [209].

8.2 Versuche zur Darstellung ternärer Platinphosphate

Mit Pt^{IV}P₂O₇ [22] liegt das bislang einzige strukturell charakterisierte ternäre Platinphosphat vor. Dieses kristallisiert in der monoklinen Raumgruppe $P2_1/n$ (Z = 4, a = 7,095(2)Å, b = 7,883(2)Å, c = 9,302Å, $\beta = 111,37(3)^{\circ}$) und leitet sich von der kubischen Zr^{IV}P₂O₇-Struktur [328, 329, 330, 331] ab. Die Synthese von PtP₂O₇, die aus elementarem Platin und P₄O₁₀-Dampf in einem trockenen Sauerstoffstrom bei Temperaturen oberhalb von 580°C erfolgte [22], konnte im Rahmen der vorliegenden Arbeit durch Reaktion von 200,0mg röntgenamorphem PtO·xH₂O (gravimetrisch bestimmter Platinanteil 72,2%, $x \sim 3$, Details siehe Abschnitt 5.2.3) mit einem Überschuss an konz. H₃PO₄ bei $T = 200^{\circ}$ C für 96h an Luft in einem Goldtiegel optimiert werden. Dabei entstand einphasig gelbgrünes, mikrokristallines PtP₂O₇. Untersuchungen zur thermischen Stabilität des mikrokristallinen PtP₂O₇ zeigten an Luft einen Zerfall in elementares Platin und P₄O₁₀ erst bei Temperaturen oberhalb von 800°C. PtP₂O₇ ist offenbar wesentlich stabiler als PtO₂ [323], dessen Zersetzung bei $T = 600^{\circ}$ C erfolgt. Wie aus Abbildung 8-7 hervogeht, zeigt die Guinieraufnahme des erhaltenen mikrokristallinen Pt^{IV}P₂O₇ eine sehr gute Übereinstimmung mit deren Simulationsrechnung.

Abbildung 8-7. Guinier-Aufnahme von PtP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung publizierter Daten aus [22] (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Mit der Darstellung und strukturellen Charakterisierung von Pd^{II}₂P₂O₇ [17] ergab sich die Frage nach der Existenz des analogen Platinphosphats. Entsprechende Darstellungsversuche

für "Pt₂P₂O₇" erfolgten durch Umsetzung von PtO·3H₂O mit P₄O₁₀ in evakuierten Kieselglasampullen bei 500°C. Die Synthese des Platin(II)-oxid-hydrats wurde in Abschnitt 5.2.3 beschrieben. Aus der Reaktion von PtO·3H₂O mit P₄O₁₀ wurde ein orangerotes, mikrokristallines Pulver erhalten, dessen Röntgenpulverdiagramm keine Ähnlichkeit zu jenem von Pd₂P₂O₇ zeigt (Abbildung 8-8). Wie in den folgenden Abschnitten gezeigt wird, sprechen verschiedene Untersuchungsmethoden an der dargestellten Verbindung für die Zusammensetzung "(Pt₂)(PO₄)₂" anstatt von "Pt₂P₂O₇". Längeres Tempern der Probe bei $T \ge 550$ °C in geschlossenen Kieselglasampullen führte zur Zersetzung in elementares Platin und vermutlich P₄O_{10,g} und O_{2,g}. Eine energiedispersive Mikroanalyse spricht für ein Atomverhältnis Pt:P = 1:1 (Tabelle 8-6). Die neben Pt und P beobachteten, geringen Mengen an Kalium und Chlor resultieren aus der präparativ bedingten Verunreinigung des Produktes durch diese Elemente (s. Abschnitt 5.2.3).

Pulverprobe	Pt / at.%	K / at.%	P / at.%	Cl / at.%
Probe 1	21,37	2,89	21,01	4,21
Probe 2	20,89	3,93	20,54	3,97
Probe 3	19,25	4,15	21,42	3,56
Mittelwert	20,50	3,66	21,00	3,91
Theorie	18,18	-	18,18	-

 Tabelle 8-7.
 EDX-Untersuchungen am Pulver des Platinphosphats.

Weder chemische Transportexperimente (600 \rightarrow 500°C, Zusatz von PtCl₂, 7*d*) noch Solvothermalsynthesen (0,1 mol/l $\leq c$ (H₃PO₄) \leq 14,8 mol/l, 200°C $\leq T \leq$ 400°C) erlaubten die Kristallisation von "(Pt₂)(PO₄)₂". Dessen Neutronenpulverdiffraktogramm wurde gemessen (Abbildung 8-9) [Fine Resolution Powder Diffractometer (FIREPOD) [130, 131], Berlin Neutron Scattering Center (BENSC) vgl. Abschnitt 4.2]. Versuche zur Indizierung von *IP*-Guinier-Aufnahmen und Neutronenpulverdiffraktogramm blieben erfolglos. Wie aus Abbildung 8-10 hervorgeht, sind die beobachteten Reflexe in "(Pt₂)(PO₄)₂" aufgrund schlechter Kristallinität der Probe stark verbreitert. Hierin kann ein Grund für das Scheitern der Indizierungsversuche liegen.

Abbildung 8-8. *IP*-Guinier-Aufnahme von "(Pt₂)(PO₄)₂". Rote Pfeile kennzeichnen Reflexe von elementarem Pt (Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung 8-9. Neutronendiffraktogramm ($\lambda = 1,79764$ Å) von "(Pt₂)(PO₄)₂". Rote Pfeile kennzeichnen Reflexe von elementarem Platin.

Abbildung 8-10. Neutronenpulverdiffraktogramm von "(Pt₂)(PO₄)₂". ($\lambda = 1,79764$ Å, T = 293K). Angelegte Profil-Fit-Funktion (Pseudo-Voigt-Funktion, durchgezogene Linie) über manuell ausgewählte Reflexe (punktiert) zur Präzissionsbestimmung der 2 θ -Werte. Differenzplot unterhalb der Basislinie zeigt die Abweichung der beobachteten Reflexe zum Profilfit.

Zur weiteren Charakterisierung von $(Pt_2)(PO_4)_2$ wurden schwingungsspektroskopische Untersuchungen durchgeführt. In den IR- und Ramanspektren (Abbildung 8-11) wird oberhalb von 1400 cm⁻¹ keine Absorption beobachtet. Ähnlich wie in AuPO₄ setzen sich die Streckschwingungen innerhalb der Phosphateinheiten aus einer Streckschwingung v_l (P-O) und drei Streckschwingungen v_3 (P-O) zusammen. Im IR-Spektrum des Platinphosphats liegt im Bereich um 1000 cm⁻¹ eine breite, wenig strukturierte Bande vor, die der asymmetrischen Streckschwingung v_3 der Phosphatgruppen zugeordnet werden kann (v_3 (P-O) = 984 cm⁻¹, 1061 cm⁻¹, 1099 cm⁻¹, Tabelle 8-8). Wie dem Ramanspektrum zu entnehmen ist, handelt es sich bei den drei asymmetrischen Streckschwingungen um intensitätsschwache Banden (987 cm^{-1} , 1060 cm^{-1} , 1136 cm^{-1}). Die beobachtete symmetrische Streckschwingung v_1 der [PO₄]-Einheiten geht aufgrund ihrer geringen Intensität in IR-Spektren erwartungsgemäß als schwache Schulter bei 928 cm⁻¹ hervor. Im Unterschied dazu sollte die ramanaktive Streckschwingung v_l (938 cm⁻¹) die intensitätsstärkste Bande im Spektrum darstellen, was jedoch, ähnlich wie bei AuPO₄ (siehe Abschnitt 6-5), nicht beobachtet wird. Die IR-Banden bei 636 cm⁻¹ und 660 cm⁻¹ sollten den zwei zu erwartenden asymmetrischen Deformationsschwingungen v_4 der [PO₄]-Tetraeder zugeordnet werden. Die IR-Banden bei 473, 492, 548 und 567 cm⁻¹ können den symmetrischen Deformationsschwingungen v_2 der

Vergleicht Phosphateinheiten zugeordnet werden. man die Wellenzahlen der Deformationsschwingungen v_2 und v_4 aus dem IR- mit jenen aus dem Ramanspektrum von $(Pt_2)(PO_4)_2$ (v₂ = 457, 474, 573 cm⁻¹, v₄ = 647, 678 cm⁻¹), so ergeben sich nahezu gleiche Werte. Trotz der großen Masse der Platinatome können im langwelligeren Bereich des Ramanspektrums bereits oberhalb von 350 cm⁻¹ Banden mit überwiegendem Anteil an Streckschwingungen v(Pt-O) beobachtet werden. Die Tatsache, dass die für Diphosphate charakteristische IR-Bande bei ca. 750 cm⁻¹, die der Brückenschwingung v(P,O,P)zuzuordnen ist, nicht beobachtet wird, und die signifikante Ähnlichkeit des Ramanspektrums zu jenem von $K_2[(Pt_2)(HPO_4)_4(H_2O)]$ (siehe Abschnitt 8.1.4) deuten darauf hin, dass anstatt des zunächst angenommenen Diphosphats "Pt₂P₂O₇" vermutlich ein Orthophosphat der Zusammensetzung "(Pt₂)(PO₄)₂" mit einer Platin-Platin-Bindung vorliegt. Demnach könnte es sich in Analogie zu K₂[(Pt₂)(HPO₄)₄(H₂O)] zwischen 83 cm⁻¹ und 222 cm⁻¹ um die ramanaktive Valenzschwingung v(Pt-Pt) handeln. Eine genaue Zuordnung ist wie im Fall von K₂[(Pt₂)(HPO₄)₄(H₂O)] derzeit nicht möglich. Eine Auflistung der IR- und Raman-Frequenzen dieser Verbindung zeigt Tabelle 8-7.

Abbildung 8-11. Raman- und IR-Spektrum von "Pt₂(PO₄)₂".

Raman	IR	Zuordnung
83 s, 118 m, 174 m, 222 m		Streckschwingung v(Pt-Pt) (genaue Zuordnung derzeit nicht möglich)
313 m, 344 m, 354 m		Streckschwingung ν (Pt-O) [208].
457 sw, 474 sw, 573 s	473 sw, 492 m, 548 s, 567 m	symmetrische Deformationsschwingung ν_2 (PO ₄), (A ₁ + A ₂) [209].
647 sw, 678 sw	636 s, 660 s	asymmetrische Deformationsschwingung ν_4 (PO ₄), (A ₁ + B ₁ + B ₂) [209].
938 sw	928 sw	symmetrische Streckschwingung v_1 (P-O), (A ₁) [209].
987 sw, 1060 sw, 1136 sw	984 m, 1061 sw 1099 sw	asymmetrische Streckschwingung ν_3 (P-O), (A ₁ + B ₁ + B ₂), [209].

Tabelle 8-8. " $Pt_2(PO_4)_2$ ". Schwingungsfrequenzen des IR- und Ramanspektrums in Wellenzahlen /cm⁻¹. Intensitäten der Banden sind angegeben mit sw (sehr schwach), m (mittel) und s (stark).

³¹P-MAS-NMR Messungen (Varian Infinity Plus, v_{MAS} =11,0 kHz, v_{Res} = 400 MHz, 9,4 Tesla Magnet) liefern nur ein Signal mit der isotropen chemischen Verschiebung δ_{iso} = 44,5ppm. Diese ist im Vergleich zu δ_{iso} der Diphosphate Pd₂P₂O₇ (δ_{iso} = 28,3ppm) [17] bzw. Ag₄P₂O₇ $(\delta_{iso} = 7,7ppm)$ [31] tieffeldverschoben und weist größere Ähnlichkeit zu Orthophosphaten wie AuPO₄ [35] (δ_{iso} = +30,2ppm) oder CaPd₂(PO₄)₂ (δ_{iso} = +32,1ppm, s. Kap. 11.5) auf. Somit sprechen sowohl schwingungs- wie auch ³¹P-MAS-NMR-spektroskopische Untersuchungen am Platinphosphat für das Vorliegen von [PO₄]-Einheiten. Gemeinsam mit den elementanalytischen Befunden bezüglich des Atomverhältnisses Pt:P = 1:1 ist anstatt eines Platin(II)-disphosphats "Pt₂P₂O₇" eher von der Zusammensetzung "Pt₂(PO₄)₂" mit Platin(III) auszugehen. Ein weiteres Indiz für das Vorliegen von Platin(III) in diesem sich nicht Phosphat ist dessen Farbigkeit, die von orangem, kristallinem $K_2[(Pt_2)(HPO_4)_4(H_2O)]$ unterscheidet.

8.3 Versuche zur Darstellung polynärer Platinphosphate

Mit der Charakterisierung von $Pd_2P_2O_7$ [17] und den Experimenten zu "(Pt₂)(PO₄)₂" erschien es reizvoll, ein polynäres Platinphosphat der Zusammensetzung PtPdP₂O₇ darzustellen, in dem quadratisch-planare [Pd^{II}O₄]- und [Pt^{II}O₄]-Gruppen nebeneinander vorliegen. Dazu wurden in einem repräsentativen Experiment 100,0mg (0,817 mmol) PdO in einer geschlossenen Kieselglasampulle bei $T = 500^{\circ}$ C (24h) mit 216,55mg (0,817 mmol) PtO·3H₂O (Details zur Synthese siehe Abschnitt 5.2.3) und 115,99mg (0,409 mmol) P₄O₁₀ zur Reaktion gebracht. Erhalten wurde ein rötlich-braunes Pulver, welches sich nach Ausweis von *IP*-Guinier-Aufnahmen aus "(Pt₂)(PO₄)₂" (vgl. Abb. 8-8) und Pd₂P₂O₇ zusammensetzte (Abbildung 8-12). ³¹P-MAS-NMR Untersuchungen ($\nu_{MAS} = 11,0$ kHz, $\nu_{Res} =$ 200 MHz, 9,4 Tesla Magnet) an der Zielverbindung "PtPdP₂O₇" (Abbildung 8-13) bestätigten die Bildung von Pd₂P₂O₇ neben dem Platinphosphat. Die beobachteten isotropen chemischen Verschiebungen $\delta_{iso} = 44,5$ ppm, sowie $\delta_{iso} = 28,3$ ppm entsprechen den Verschiebungswerten der reinen Verbindungen (s. Kap. 8.2). Zusätzliche Signale bei -12ppm, -22ppm, -27ppm und -45ppm wurden bereits im ³¹P-NMR-Spektrum des Platinphosphats beobachtet und stammen vermutlich aus Verunreinungen.

Abbildung 8-12. *IP*-Guinier-Aufnahme eines Gemenges aus "Pt₂(PO₄)₂" (zugehörige Reflexe sind mit * versehen) und Pd₂P₂O₇ bei Experimenten zur Darstellung von PtPdP₂O₇ (a) und Simulation von Pd₂P₂O₇ (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 8-13. Quantitatives ³¹P-MAS-NMR Spektrum von "PtPdP₂O₇". Isotrope chemische Verschiebungswerte $\delta_{iso} = +44,5$ ppm und $\delta_{iso} = +28,3$ ppm entsprechen jenen des Platinphosphats und Pd₂P₂O₇.

Die optimierte Darstellung von reaktivem, schwerlöslichem PtO·3H₂O eröffnete auch neue Wege zur Synthese von bislang unbekannten polynären Platin(II)-phosphaten. Insbesondere wurde das Ziel verfolgt, analog zu den von Palladium(II) bereits dargestellten und strukturell charakterisierten polynären Phosphaten (siehe Abschnitt 10) die entsprechenden Platin(II)phosphate zu synthetisieren. Experimente zur Darstellung von Platin(II)-phosphaten der Zusammensetzungen $A^{I}_{2}Pt^{II}P_{2}O_{7}$, $A^{I}_{2}Pt^{II}_{3}(P_{2}O_{7})_{2}$ und $A^{I}_{4}Pt^{II}_{4}(P_{2}O_{7})_{3}$ aus ANO₃ (A = Na, K, Ag) mit PtO·3H₂O und der äquivalenten Menge an P₄O₁₀ erfolgten durch Anfertigen von Presslingen, die in evakuierten Kieselglasampullen bei $T = 500^{\circ}$ C getempert wurden (7d). Wie bereits bei der Darstellung von "Pt₂(PO₄)₂" beobachtet, führten orientierende Experimente bei Temperaturen oberhalb von 550°C zu einer einsetzenden thermischen Zersetzung unter Bildung von elementarem Platin. Die bei 500°C erhaltenen, orangefarbenen Reaktionsprodukte waren entweder röntgenamorph (Guinieraufnahmen) oder deren Beugungsdiagramme konnten bislang noch nicht näher charakterisiert werden. Eine Ähnlichkeit zu den analogen Palladium(II)-phosphaten kann ausgeschlossen werden. Der Ansatz "Ag₄Pt₄(P₂O₇)₃" lieferte nach Ausweis von *IP*-Guinier-Aufnahmen mikrokristallines "Pt₂(PO₄)₂" als Reaktionsprodukt. Eine Übersicht der Experimente zur Darstellung polynärer Platin(II)-phosphate gibt Tabelle 8-9.

Experimente zur Züchtung von Kristallen ausreichender Qualität für Einkristallstrukturanalysen zur näheren Charakterisierung der polynären Platinphosphate erfolgten über chemischen Gasphasentransport. Während ein Temperaturgradient 600 \rightarrow 500°C (Zusatz von PtCl₂) zu keiner Kristallisation führte, setzte bei höheren Gradienten (700 \rightarrow 600°C) eine Zersetzung der Platinphosphate infolge der Bildung von elementarem Platin ein.

Zielverbindung Ausgangsverbindungen **IP**-Guinier-Aufnahmen Einwaagen / mg, ml (mmol) "Na₂PtP₂O₇" bislang nicht charakterisiert^{a)} NaNO₃ / PtO·3H₂O / P₄O₁₀ 38,47 (0,452) / 60 (0,226) / 32,12 (0,113) "K₂PtP₂O₇" KNO₃ / PtO·3H₂O / P₄O₁₀ bislang nicht charakterisiert^{a)} 45,76 (0,452) / 60 (0,226) / 32,12 (0,113) bislang nicht charakterisiert^{a)} "Ag2PtP2O7" $Ag_2O / PtO \cdot 3H_2O / P_4O_{10}$ 52,44 (0,226) / 60 (0,226) / 32,12 (0,113) bislang nicht charakterisiert^{a)} "Na₂Pt₃(P₂O₇)₂" NaNO₃ / PtO·3H₂O / P₄O₁₀ 12,82 (0,151) / 60 (0,226) / 21,42 (0,075) bislang nicht charakterisiert^{a)} KNO₃ / PtO·3H₂O /P₄O₁₀ "K₂Pt₃(P₂O₇)₂" 15,25 (0,151) / 60 (0,226) / 21,42 (0,075) Ähnlichkeit zu "Ag₂PtP₂O₇" Ag₂O / PtO·3H₂O / P₄O₁₀ "Ag2Pt3(P2O7)2" 17,48 (0,075) / 60 (0,226) / 21,42 (0,075) bislang nicht charakterisiert a) NaNO₃ / PtO·3H₂O / P₄O₁₀ röntgenamorph "Na4Pt4(P2O7)3" 19,24 (0,226) / 60 (0,226) / 24,09 (0,085) "K₄Pt₄(P₂O₇)₃" KNO3 / PtO-3H2O /P4O10 bislang nicht charakterisiert^{a)} 22,88 (0,226) / 60 (0,226) / 24,09 (0,085) "Ag₄Pt₄(P₂O₇)₃" $Ag_2O / PtO\cdot 3H_2O / P_4O_{10}$ $,,Pt_2(PO_4)_2$ 26,22 (0,113) / 60 (0,226) / 24,09 (0,085)

Tabelle 8-9. Isotherme Temperexperimente zur Darstellung polynärer Platin(II)-phosphate der Zusammensetzungen A_2 PtP₂O₇, A_2 Pt₃(P₂O₇)₂ und A_4 Pt₄(P₂O₇)₃ (A =Na, K, Ag) bei $T = 500^{\circ}$ C.

^{a)} Guinieraufnahme siehe Anhang C (Abschnitt 13.3).

9 Palladium(II)-metaarsenat Pd(AsO₃)₂

9.1 Einleitung

Nach der Darstellung und kristallchemischen Charakterisierung von $Pd_2P_2O_7$ [17], wurde analog zum isomorphen Ersatz von P^V durch As^V in AuPO₄ (siehe Kapitel 6) die Darstellung von $Pd_2As_2O_7$ angestrebt. Nach röntgenographischer Charakterisierung handelte es sich bei dem erhaltenen Produkt um mikrokristallines Palladium(II)-metaarsenat, welches bereits im Jahr 2006 von JANSEN dargestellt und anhand von Röntgenpulverdaten nach der Rietveld-Methode strukturell charakterisiert werden konnte [343]. Zur Überprüfung der Kristallstruktur mit der für Palladium(II) ungewöhnlichen oktaedrischen Koordination sowie aufgrund unzureichender Charakterisierung des gesamten Strukturtyps anhand von Einkristallstrukturuntersuchungen, erfolgten chemische Transportexperimente zur Kristallisation von $Pd(AsO_3)_2$.

Mit den ersten Kristallstrukturuntersuchungen an komplexen Oxoverbindungen der Zusammensetzung $A(BO_3)_2$ (A = zweiwertiges Übergangsmetallion, B = fünfwertiges, diamagnetisches Metallkation, z.B. Ta⁵⁺, Sb⁵⁺, As⁵⁺) durch MAGNÉLI im Jahr 1941 [332], ergab sich im Hinblick auf die Korrelation zwischen strukturchemischen und magnetischen Eigenschaften ein reges Interesse an dieser Verbindungsklasse [333, 334]. Die bislang strukturell charakterisierten Oxoverbindungen $A(BO_3)_2$ kristallisieren in zwei Strukturtypen. Während die meisten der Übergangsmetall(II)-metatantalate sowie der -antimonate mit Ausnahme von Cu(TaO₃)₂ [335], Mn(SbO₃)₂ [336] und Pb(SbO₃)₂ [332] im Trirutilgitter kristallisieren, gehören die Übergangsmetallmetaarsenate der Zusammensetzung $A^{II}(AsO_3)_2$ (A = Ca, Pb, Ni, Mn, Co, Cd, Hg) zur Strukturfamilie des Bleimetaantimonats Pb(SbO₃)₂ [332]. Wie gezeigt werden konnte, hängt die Stabilität für Metaarsenate, die in der Pb(SbO₃)₂-Struktur Radienverhältnis der kristallisieren. vom zweiwertigen Übergangsmetallionen zu den fünfwertigen Kationen ab. Das Existenzgebiet des Strukturtyps liegt im Bereich $1.5 \le r_A/r_B \le 2.6$ [337]. Zweiwertiges Palladium zeigt eine ausgeprägte Präferenz für eine quadratisch-planare Koordination mit einem diamagentischen Grundzustand. Ausnahmen sind bisher nur in der Fluorchemie von Palladium, und zwar in Form der Normaldruck- [338, 339], und der Hochdruckmodifikation [340] von PdF₂, sowie den davon abgeleiteten Fluoropalladaten(II) [341] bekannt. In diesen Verbindungen liegt Palladium(II) sechsfach koordiniert vor und weist Paramagnetismus auf. Für zweiwertiges Palladium in oktaedrischer Sauerstoffumgebung wird in der Literatur mit Ca₂PdWO₆ [342] nur ein Beispiel erwähnt.

9.2 Darstellung und Kristallisation von Pd(AsO₃)₂

Versuche zur Darstellung von mikrokristallinem Pd₂As₂O₇ erfolgten über eine Festkörperreaktion von PdO (hergestellt durch Auflösen von Palladium-Pulver in konz. HNO₃ bei 200°C und Einengen der "Pd^{II}(NO₃)₂"-Lösung bis zur Trockene) mit As₂O₅ im molaren Verhältnis $n(PdO) / n(As_2O_5) = 2:1$ (zur Synthese von As_2O_5 vgl. Abschnitt 5.2.4). Die Edukte wurden innig miteinander vermischt, anschließend zu Presslingen verarbeitet und bei 500°C in evakuierten Kieselglasampullen für 48h zur Reaktion gebracht. Das dabei resultierende mikrokristalline, violettstichige Produkt war feuchtigkeitsund luftunempfindlich und zeigte nach von Guinier-Aufnahmen Reflexe von Pd(AsO₃)₂ [343] neben PdO. Da das Metaarsenat bislang nur in mikrokristalliner Form erhalten werden konnte, erfolgten chemische Transportexperimente zur Kristallisation dieser Verbindung. Die Experimente haben gezeigt, dass der chemische Transport von Pd(AsO₃)₂ unter Zusatz von PdCl₂ aufgrund endothermer Reaktion mit Transportraten von ca. 0,5 mg/h in einem Temperaturgradienten 700 \rightarrow 600°C erfolgt (72h; vgl. Kristalle in Abb. 9-1). Dabei liefert die thermische Zersetzung des Dichlorids das eigentliche Transportmittel Chlor (Gleichung 9.1). Beobachtungen zum chemischen Transport von Arsenaten [344] sprechen bei der Transportreaktion von Palladium(II)-metaarsenat (Gleichung 9.2) für einen nennenswerten Partialdruck von As₄O₆ in der Gasphase. Modellrechnungen zum Transportverhalten von Palladium(II)-oxoverbindungen (z.B. PdO [345], Pd(PO₃)₂ [346], Pd₂P₂O₇ [17]) mit dem Transportmittel Chlor unter Verwendung von Literaturwerten bzw. von abgeschätzten thermodynamischer Daten belegen die Einstellung transportwirksamer Partialdrücke an PdCl_{2,g} und O_{2,g}.

$$PdCl_{2,s} = Pd_s + Cl_{2,g}$$
 Gleichung 9.1

$$Pd(AsO_3)_{2,s} + Cl_{2,g} = PdCl_{2,g} + 4/6 As_4O_{6,g} + O_{2,g}$$
 Gleichung 9.2

Einer Guinieraufnahme von den transportierten Kristallen ist in Abbildung 9-2 eine Simulation gegenübergestellt. Wie aus Tabelle 9-1 hervorgeht, geben EDX-Untersuchungen an Kristallen von Pd(AsO₃)₂ die Zusammensetzung der Arsenats sehr gut wieder.

Abbildung 9-1. Kristalle von Pd(AsO₃)₂ aus chemischen Transportexperimenten.

Abbildung 9-2. Guinier-Aufnahme von Pd(AsO₃)₂ (a) und simuliertes Beugungsmuster unter Verwendung publizierter Strukturdaten [343] (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

		8			
Probe	Kristall 1	Kristall 2	Kristall 3	Mittelwert	Theorie
Pd	9,76	10,15	10,88	10,26	11,1
As	19,46	20,78	21,94	20,73	22,2

9.3 Kristallstruktur von Pd(AsO₃)₂

Zur Einkristallstrukturverfeinerung wurde von $Pd(AsO_3)_2$ ein geeigneter Kristall unter dem Polarisationsmikroskop ausgesucht und auf einen Glasfaden aufgeklebt. Die Messung wurde an einem Vierkreisdiffraktometer mit CCD-Flächendetektor (κ -CCD, Fa. Enraf-Nonius) durchgeführt. Details zur Messung, Strukturbestimmung und Einkristallstrukturverfeinerung sind in Tabelle 9-2 zusammengefasst, Lageparameter und interatomare Abstände geben die Tabellen 9-3 und 9-4 wieder. Eine Liste der anisotropen Auslenkungsparameter findet sich im Anhang A.

Mit der Strukturverfeinerung von Pd(AsO₃)₂ aus Einkristalldaten konnte die Zugehörigkeit dieser Verbindung zur Strukturfamilie des Blei(II)-metaantimonats Pb(SbO₃)₂ [332] bestätigt werden. Die (AsO₃)₂²⁻-Teilstruktur setzt sich aus kantenverknüpften [AsO₆]-Oktaedern zusammen, die in Analogie zu den $\frac{2}{n} \left[AlCl_{6/2} \right]$ -Schichten in AlCl₃ Honigwabenschichten ausbilden (Abbildung 9-3a). Die aus den Einkristalldaten ermittelten interatomaren Abstände d(As-O) = 1,823Å decken sich mit jenen, die aus der Rietveld-Verfeinerung hervorgegangen sind [343] (d(As-O) = 1,807Å), und sind gut vereinbar mit dem mittleren Abstand d(As-O) = 1,82Å in As₂O₅ (siehe Tabelle 9-4). Das signifikante Abweichen der Winkel \angle (O,As,O) von denjenigen in einem regulären Oktaeder führt zu einer Stauchung der [AsO₆]-Oktaeder entlang [001] (parallel zu einer dreizähligen Achse der Oktaeder, Tabelle 9-4). Die (AsO₃)₂-Schichtpakete (2/3 der Oktaederlücken mit As⁵⁺ besetzt) sind in Richtung der kristallographischen c-Achse in einer Weise gestapelt, dass die unbesetzten Oktaederlücken übereinander zu liegen kommen und sich für die Sauerstoffatome eine hexagonal-dichteste Kugelpackung ergibt (Abbildung 9-3b). Von den in den Zwischenschichten resultierenden Oktaederlücken sind genau diejenigen mit Palladiumatomen besetzt, die sich oberhalb bzw. unterhalb einer unbesetzten Lücke der (AsO₃)₂-Schichten befinden. Die [PdO₆]-Einheiten weisen eine nahezu ideal oktaedrische Koordination mit interatomaren Abständen d(Pd-O) =2,220Å auf (zum Vergleich Abstände d(Pd-O) = 2,244Å aus Pulverdaten [343]). Der bei einer quadratisch-planaren Sauerstoffkoordination mit $d(Pd-O) = 2,00\pm0,04\text{ Å}$ (vgl. PdO [174], Pd₂P₂O₇ [17] sowie Kap. 10 und Kap. 11), üblicherweise beobachtete Abstand ist erwartungsgemäß signifikant kürzer.

Zusammensetzung	Pd(AsO ₃) ₂
Kristallsystem	trigonal
Raumgruppe	<i>P</i> 31 <i>m</i> (Nr. 162)
Gitterparameter (aus Einkristalldaten)	
a /Å	4,8122(8)
c /Å	4,6508(7)
Zahl der Formeleinheiten Z	1
Absorptionskoeffizient /mm ⁻¹	22,51
Molmasse /g·mol	352,24
Zellvolumen /Å ³	93,27(3)
Dichte _{röntg.} /g·cm ⁻³	6,271
Farbe	violett
Kristallform und	Prisma
Kristallgröße /mm ³	0,1.0,06.0,12
F(000)	160,0
Temperatur /K	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$ Å, Grap	hit-Monochromator,
κ -CCD-Diffraktometer (Firma Enraf-N	onius).
Winkelbereich /°	$4,38 \le \theta \le 34,55$
Absorptionskorrektur	Numerisch [117]
Gemessene Reflexe	616
Unabhängige Reflexe	154
Messbereich	$-7 \le h \le 7$
	$-3 \le k \le 7$
	$-7 \le l \le 6$
Benutzte Programme	SHELXS-97 [104], SHELXL-97 [105], WinGX [106]
Parameter	12
Gütefaktoren	
	$R_{\rm int}^{\rm a)} = 0.077$
	$R_I^{(b)} = 0.044$
$C = \frac{1}{2} \frac{b}{b}$	$WK_2 = 0.133$
Goodness-oi-iit	1,20/
wichtungsschema	A = 0,0823; B = 0,000
Restelektronendichte /e·A ⁻³	max: + 3,703 (0,75A von Pd) min: - 2,733 (0,55Å von Pd)

Tabelle 9-2. Kristallographische Daten sowie Angaben zur Datensammlung und
Strukturverfeinerung von $Pd(AsO_3)_2$.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 5.4.1.

			-			
Atom	Position	x	У	Z	$U_{eq} [{ m \AA}^2]^{ m a)}$	
Pd	la	0	0	0	0,0035(5)	
As	2d	2/3	1/3	1/2	0,0033(5)	
0	6k	0,371(1)	0	0,2836(8)	0,006(1)	
a)	* *					

Tabelle 9-3. Atomkoordinaten und isotrope Auslenkungsparameter für Pd(AsO₃)₂.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle 9-4. $Pd(AsO_3)_2$.Interatomare Abstände /Å und Winkel /° in den Polyedern [PdO_6]und [AsO_6].Standardabweichungen in Klammern.

[PdO ₆]		[AsO ₆]	
Pd-O (6x)	2,220(4)	As-O (6x)	1,823(2)
∠(O,Pd,O)	180,0 (3x) 91,68 (6x) 88,32 (6x)	∠(0,As,O)	170,07 (3x) 92,48 (3x) 95,08 (6x)

Abbildung 9-3. Kristallstruktur von $Pd(AsO_3)_2$. Blick entlang [001] (a) und [010] (b) mit voneinander isolierten [PdO_6]-Oktaedern (rot) und Schichten aus oktaedrischen [AsO_6]-Einheiten (gelb) (Programm DIAMOND v. 3.1f [230]).

10 Polynäre Palladium(II)-diphosphate in den quasibinären Systemen A^I₄P₂O₇ / Pd₂P₂O₇

10.1 Einleitung

Die kristallchemischen Kenntnisse zu wasserfreien Phosphaten der Edelmetalle konnten anhand der Darstellung und Kristallstrukturverfeinerung von Gold(III)-orthophosphat Au^{III}PO₄ [35] (Kap. 6) und der beiden Modifikationen von Ir^{III}(PO₃)₃ [347] (Kap. 7) erweitert werden. Eingehende Untersuchungen im Dreistoffsystem Pd/P/O lieferten neben den schon bekannten Phosphaten Pd(PO₃)₂ [27] und Pd₂P₂O₇ [17] keine Hinweise auf weitere ternäre, thermodynamisch stabile Palladiumphosphate. Mit den Diphosphaten $A^{I}_{2}PdP_{2}O_{7}$ (A = Li [56], Na [57], K [58]), K_{3.5}Pd_{2.25}(P₂O₇)₂ [58] und Cs₂Pd₃(P₂O₇)₂ [59] lagen zu Beginn der vorliegenden Arbeit nur vier kristallchemisch charakterisierte polynäre Palladium-phosphate vor. Die Kristallstrukturen von K2PdP2O7 bzw K3.5Pd2.25(P2O7)2 sowie $Cs_2Pd_3(P_2O_7)_2$ setzen sich aus Schichten $\sum_{\infty}^{2} [Pd(P_2O_7)]^{2-}$ bzw. einer dreidimensionalen Anordnung von [PdO₄]-Planguadraten und Phosphatgruppen zusammen, die zur Ausbildung von Tunneln in einer kristallographischen Richtung führt. In allen anderen bislang charakterisierten Palladiumphosphaten liegen als gemeinsames, dominierendes Strukturmotiv eindimensional fortschreitende Diphosphato-palladat(II)-Bänder $\int_{\infty}^{1} [Pd(P_2O_7)_{2/2}]^{2-}$ vor, zwischen denen die A^+ -Kationen eingelagert sind. Tabelle 10-1 gibt eine Übersicht zu den Untersuchungen in den quasi-binären Systemen $A_4^{I}P_2O_7$ - Pd₂P₂O₇. Experimente zur Synthese und strukturellen Charakterisierung von polynären Palladium(II)-phosphaten sollten Aufklärung darüber geben, inwiefern solche Phosphate auch mit weichen Kationen wie Ag⁺ und Tl⁺ gebildet werden können. Die im Nachfolgenden vorgestellten Untersuchungen in Vierstoffsystemen A/Pd/P/O (A = Alkalimetall, Ag, Tl) haben gezeigt, dass sich die vorstehend genannten Zusammensetzungen mit weiteren Alkalimetallkationen sowie auch mit einwertigem Thallium und Silber realisieren lassen. Außerdem konnten die bisher bekannten polynären Palladium(II)-diphosphate um die Zusammensetzung $A_{4}^{I}Pd_{4}(P_{2}O_{7})_{3}$ (A = K) erweitert werden. Neben den Versuchen zur Darstellung polynärer Palladium(II)-diphosphate, wurden in Analogie zu Na^IHg^{II}PO₄ [348] oder der Serie $A^{I}Cu^{II}PO_{4}$ (A = Na [349], K [350], Rb [351], Ag [352], Tl [353]) Experimente zur Synthese von bislang unbekannten Palladium(II)-orthophosphaten der Zusammensetzung A^IPd^{II}PO₄ (A = Li, Na, K, Rb, Cs, Ag, Tl) durchgeführt. Aufgrund von bislang fehlender Kenntnis über

chemische Verschiebungen, stellten ³¹P-MAS NMR Untersuchungen eine zusätzliche Motivation für die Synthese polynärer Palladium(II)-phosphate dar.

0, ,								
Zusammen- setzung	$\begin{array}{c} A_4 \mathbf{P}_2 \mathbf{O}_7 \\ \mathbf{P} \mathbf{d}_2 \mathbf{P}_2 \mathbf{O}_7 \end{array}$	Li	Na	K	Rb	Cs	Tl	Ag
$,,A_6Pd(P_2O_7)_2$ "	3:1	^{a)}	^{b)}	^{c)}	d)	^{d)}	^{d)}	^{d)}
A_2 PdP $_2$ O $_7$	1:1	eigener Struktur- typ [56]	eigener Struktur- typ [57]	eigener Struktur- typ [58]	h)	^{h)}	^{h)}	isotyp zu Na ₂ PdP ₂ O ₇ [57] ¹⁾
$A_{3,5}Pd_{2,25}(P_2O_7)_2$ $(A_{14}Pd_9(P_2O_7)_8)$	7:9	^{e)}	^{f)}	eigener Struktur- typ [58]	d)	^{d)}	^{d)}	j)
A_4 Pd ₄ (P ₂ O ₇) ₃	1:2	^{e)}	^{f)}	eigener Struktur- typ ¹⁾	h)	^{h)}	i)	j)
$A_2\mathrm{Pd}_3(\mathrm{P}_2\mathrm{O}_7)_2$	1:3	^{e)}	eigener Struktur- typ ¹⁾	^{g)}	isotyp zu Tl ₂ Pd ₃ (P ₂ O ₇) ₂ $_{m)}$	dimorph ^{k)}	eigener Strukturtyp	isotyp zu Na ₂ Pd ₃ (P ₂ O ₇) ₂ _{m)}

Tabelle 10-1. Diphosphate in den quasi-binären Systemen $A_4P_2O_7 / Pd_2P_2O_7$ (A = Li - Cs, Ag, Tl)

^{a)} Bildung von Li₂PdP₂O₇ und Li₄P₂O₇ (s. Tab. 10.3), ^{b)} Bildung von Na₂PdP₂O₇ und Na₄P₂O₇ (s. Tab. 10.3), ^{c)} Bildung von K₂PdP₂O₇ und K₄P₂O₇ (s. Tab. 10.3), ^{d)} keine Experimente, ^{e)} Bildung von Li₂PdP₂O₇ und Pd₂P₂O₇ (s. Tab. 10.3), ^{f)} Bildung von Na₂PdP₂O₇ und Na₂Pd₃P₂O₇, (s. Tab. 10.3), ^{g)} Bildung von K₄Pd₄(P₂O₇)₃ und Pd₂P₂O₇ (s. Tab. 10.3), ^{h)} bislang nur in mikrokristalliner Form zugänglich; nicht näher charakterisierte Produkte (s. Tab. 10.3), ⁱ⁾ Bildung von Tl₂Pd₃(P₂O₇)₂ und Beugungsmuster von "Tl₂PdP₂O₇" (s. Tab. 10.3), ^{j)} Bildung von Ag₂PdP₂O₇ und Ag₂Pd₃(P₂O₇)₂ (s. Tab. 10.3), ^{k)} kristallisiert in zwei orthorhombische Modifikationen (*Cmc2*₁ [59], und *Imam*, s. Tab. 10.2) (isotyp zu Tl₂Pd₃(P₂O₇)₂, ^{l)} Details s. Tab. 10.2, Kap. 10.3, ^{m)} s. Tab. 10.2.

10.2 Darstellung mikrokristalliner Pulver

Versuche zur Synthese mikrokristalliner, polynärer Palladium(II)-phosphate mit einwertigen Kationen führten zu den neuen Verbindungen Ag₂PdP₂O₇, A^{I}_{2} Pd₃(P₂O₇)₃ (A = Na, Rb, Cs, Ag, Tl) sowie K₄Pd₄(P₂O₇)₃. Deren Darstellung erfolgte ausgehend von Palladium-Pulver (100%, Fa. Umicore AG, Hanau), welches zunächst in konzentrierter HNO₃ bei 150°C vollständig in Lösung gebracht wurde. Die dabei resultierende Pd^{II}(NO₃)₂-Lösung wurde für die jeweiligen Zusammensetzungen mit äquimolaren Mengen an A^{I} NO₃ (A = Na, K, Rb, Cs, Ag, Tl) sowie H₃PO₄ versetzt (Gleichungen 10.1 bis 10.3). Für die nasschemische Synthese der Diphosphate wurde Phosphorsäure der Konzentration c = 0,09975 mol·l⁻¹ verwendet. Die phosphorsauren Lösungen wurden zunächst bis zur Trockene eingeengt und zur Vertreibung nitroser Gase bei 450°C in offenen Kieselglasampullen isotherm getempert (24h). Zur besseren Kristallinität der Proben wurden die Temperaturen schließlich auf bis zu 800°C erhöht (48 - 96h). Die so erhaltenen, phasenreinen Pulver (Guinier-Aufnahmen) von Ag₂PdP₂O₇ bzw. $A^{I}_{2}Pd_{3}(P_{2}O_{7})_{2}$ (A = Rb, Cs, Tl) waren gelb, jene von $A^{I}_{2}Pd_{3}(P_{2}O_{7})_{2}$ (A = Na,

$$Pd^{II}(NO_3)_{2,aq} + 2AgNO_{3,s} + 2H_3PO_4 \rightarrow Ag_2Pd^{II}P_2O_7 + 4HNO_3 + H_2O \qquad \qquad \text{Gleichung 10.1}$$

$$3Pd^{II}(NO_3)_{2,aq} + 2A^INO_3 + 4H_3PO_4 \rightarrow A^I_2Pd^{II}_3(P_2O_7)_2 + 8HNO_3 + 2H_2O (A = Na, Rb, Cs, Ag, Tl)$$
 Gleichung 10.2

$$4Pd^{II}(NO_3)_{2,aq} + 4KNO_3 + 6H_3PO_4 \rightarrow K_4Pd^{II}_4(P_2O_7)_3 + 12HNO_3 + 3H_2O$$
 Gleichung 10.3

Tabelle 10-2. Experimentelle Bedingungen zur nasschemischen Darstellung polynärer Palladium(II)-disphosphate $A_4^{I}P_2O_7 / Pd_2^{II}P_2O_7$ (A = Na, K, Rb, Cs, Ag, Tl).

Zusammensetzung	Ausgangsverbindungen	Temperatur / °C ,	
	Einwaagen / mg, ml (mmol)	Temperdauer / h	
$Ag^{I}_{2}Pd^{II}P_{2}O_{7}^{a)}$	AgNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 319,2 (1,879) / 100 (0,939) / 18,84 (1,879)	600, 72	
$Na_2Pd^{II}_{3}(P_2O_7)_2^{\ a)}$	NaNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 53,24 (0,626) / 100 (0,939) / 12,55 (1,252)	800, 72	
$Ag_{2}^{I}Pd_{3}^{II}(P_{2}O_{7})_{2}^{c}$	AgNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 105,16 (0,626) / 100 (0,939) / 12,55 (1,252)	600, 96	
$Tl_2Pd^{II}_{3}(P_2O_7)_2^{a)}$	TlNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 166,88 (0,626) / 100 (0,939) / 12,55 (1,252)	500, 48	
$Rb_2Pd^{II}_{3}(P_2O_7)_2^{\ c)}$	RbNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 92,38 (0,626) / 100 (0,939) / 12,55 (1,252)	800, 72	
$Cs_2Pd_{3}^{II}(P_2O_7)_2^{c)}$	CsNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 122,10 (0,626) / 100 (0,939) / 12,55 (1,252)	800, 72	
$K_4 P d^{II}_4 (P_2 O_7)_3^{\ a)}$	KNO ₃ / Pd-Pulver / H ₃ PO ₄ ^{b)} 95,00 (0,939) / 100 (0,939) / 14,13 (1,409)	800, 72	

^{a)} *IP*-Guinier-Aufnahmen siehe Abschnitt 10.4, ^{b)} Auflösen der Pulver in konz. HNO₃; Zusatz von H₃PO₄ mit $c = 0,09975 \text{ mol/l}, ^{c)}$ *IP*-Guinier-Aufnahmen siehe Anhang B.

Versuche zur Darstellung der Diphosphate $A_{2}^{I}PdP_{2}O_{7}$ (A = Rb, Cs, Tl) (siehe Tabelle 10-3) ergaben Beugungsdiagramme (Abbildung 10-1a bis 10-1c), die beim Vergleich mit Diagrammen der Nachbarphasen und anderer bereits bekannter Metall(I)-palladium(II)diphosphate keine Ähnlichkeit aufwiesen. Experimente, die Diphosphate $A_{2}^{I}PdP_{2}O_{7}$ (A = Rb, Cs, Tl) über chemischen Gasphasentransport (850 \rightarrow 750°C (Rb, Cs) bzw. 600 \rightarrow 500°C (Tl)) zu kristallisieren, schlugen fehl.

Nasschemische Synthesen wie auch isotherme Temperexperimente, bei denen die Serien der Diphosphate $A_2^{I}Pd_3(P_2O_7)_2$ ($A_4^{I}Pd_4(P_2O_7)_3$) um die Vetreter A = Li, K (A = Li) erweitert werden sollten, führten zu Phasengemengen aus Pd₂P₂O₇ [17] und Li₂PdP₂O₇ bzw. K₄Pd₄(P₂O₇)₃. Bei Versuchen die Diphosphate $A_4Pd_4(P_2O_7)_3$ (A = Na, Ag, Tl) darzustellen, wurden Gemenge aus $A_2Pd_3(P_2O_7)_2$ (A = Na, Ag, Tl) und $A_2PdP_2O_7$ (A = Na, Ag) bzw. das nicht näher charakterisierte "Tl₂PdP₂O₇" erhalten. Die zur Darstellung von Diphosphaten $A^I_4Pd_4(P_2O_7)_3$ (A = Rb, Cs) erhaltenen Beugungsdiagramme konnten aufgrund schlechter Kristallinität der Proben nicht näher charakterisiert werden. Experimente, bei denen die polynären Palladiumphosphate um die metallreiche Zusammensetzung " $A_6Pd(P_2O_7)_2$ " erweitert werden sollten, führten nach röntgenographischer Charakterisierung für A = Li, Na, K zu Gemengen aus $A_4P_2O_7$ und $A_2PdP_2O_7$ (A = Li, Na, K). Tabelle 10-3 fasst die experimentellen Befunde bei der Darstellung der polynären Palladium(II)-disphosphate $A^I_2PdP_2O_7, A^I_2Pd_3(P_2O_7)_2$ und $A^I_4Pd_4(P_2O_7)_3$ (A = Li, Na, K, Rb, Cs, Ag, Tl) zusammen.

Zielverbindung	An-	Ausgangsverbindungen	Temperatur /°C,	<i>IP</i> -Guinier-
	satz	Einwaagen / mg, ml (mmol)	Temperdauer /h	Aufnahmen ^e
"Li ₆ Pd(P ₂ O ₇) ₂ "	A ^{a)}	LiNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	$Li_2PdP_2O_7 +$
		194,37 (2,82) / 50 (0,47) / 18,85 (1,88)		$Li_4P_2O_7$
	B ^{b)}	LiNO ₃ / PdO / P ₄ O ₁₀	800.120	
		168,97 (2,45) / 50 (0,41) /115,95 (0,41)		
"Na ₆ Pd(P ₂ O ₇) ₂ "	A ^{a)}	NaNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	$Na_2PdP_2O_7 +$
		239,62 (2,82) / 50 (0,47) / 18,85 (1,88)		$Na_4P_2O_7$
	B ^{b)}	NaNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		208,3 (2,45) / 50 (0,41) / 115,95 (0,41)		
"K ₆ Pd(P ₂ O ₇) ₂ "	A ^{a)}	KNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	$K_2PdP_2O_7 +$
		285,00 (2,82) / 50 (0,47) / 18,85 (1,88)		$K_4P_2O_7$
	B ^{b)}	$KNO_3 / PdO / P_4O_{10}$	800, 120	
		247,75 (2,45) / 50 (0,41) / 115,95 (0,41)		
$,,M_6Pd(P_2O_7)_2$		keine Experimente		
$(M = \operatorname{Rb}, \operatorname{Cs}, \operatorname{Tl}, \operatorname{Ag})$				
"Rb ₂ PdP ₂ O ₇ "	A ^{a)}	RbNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	bislang nicht
		138,6 (0,94) / 50 (0,47) / 9,4 (0,94)		charakterisiert ^{a)}
	B ^{a)}	RbNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		120,5 (0,82) / 50 (0,41) / 58 (0,20)		
"Cs ₂ PdP ₂ O ₇ "	A ^{a)}	CsNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	bislang nicht
	• •	183,2 (0,94) / 50 (0,47) / 9,4 (0,94)		charakterisiert ^e
	B ^{b)}	CsNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		159,2 (0,82) / 50 (0,41) / 58 (0,20)		
"Tl ₂ PdP ₂ O ₇ "	A ^{a)}	TlNO ₃ / Pd-Pulver / H ₃ PO ₄	500, 72	bislang nicht
	b)	250,3 (0,94) / 50 (0,47) / 9,4 (0,94)		charakterisiert "
	B ⁰⁾	$TINO_3 / PdO / P_4O_{10}$	500, 48	
	. 2)	217,6 (0,82) / 50 (0,41) / 58 (0,20)		
$, L_{1_{3,5}}Pd_{2,25}(P_2O_7)_2"$	A ^a	$LiNO_3$ / Pd-Pulver / H_3PO_4	800, 96	$L_{12}PdP_2O_7 +$
	n h)	50,39 (0,731) / 50 (0,47) / 8,38 (0,836)		$Pd_2P_2O_7$
	B ⁰⁾	$LiNO_3 / PdO / P_4O_{10}$	800, 120	
		43,81 (0,635) / 50 (0,41) / 51,53 (0,18)		
"Na _{3,5} Pd _{2,25} (P ₂ O ₇) ₂ "	A ^{a)}	NaNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	$Na_2PdP_2O_7 +$
	• .	62,12 (0,731) / 50 (0,47) / 8,38 (0,836)		$Na_2Pd_3P_2O_7$
	B ^{b)}	NaNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		54.00 (0.635) / 50 (0.41) / 51.53 (0.181)		

Tabelle 10-3. Experimente zur Darstellung weiterer polynärer Palladium(II)-diphosphate.

Fortsetzung von Tabelle 10.3

$,M_{3,5}Pd_{2,25}(P_2O_7)_2"$ (<i>M</i> = Rb, Cs, Tl)		keine Experimente		
"Ag _{3,5} Pd _{2,25} (P ₂ O ₇) ₂ "	A ^{a)}	AgNO ₃ / Pd-Pulver / H ₃ PO ₄	500, 96	$Ag_2PdP_2O_7 +$
		124,15 (0,731) / 50 (0,47) / 8,38 (0,836)		$Ag_2Pd_3(P_2O_7)_2$
	B ^{b)}	AgNO ₃ / PdO / P ₄ O ₁₀	500, 120	
		107,92 (0,635) / 50 (0,41) / 51,53		
"Li ₄ Pd ₄ (P ₂ O ₇) ₃ "	A ^{a)}	LiNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	$Li_2PdP_2O_7 +$
		51,8 (0,75) / 80 (0,75) / 11,3 (1,13)		$Pd_2P_2O_7$
	B ^{b)}	LiNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		45,0 (0,65) / 80 (0,65) / 69,6 (0,25)		
"Na ₄ Pd ₄ (P ₂ O ₇) ₃ "	A ^{a)}	NaNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	$Na_2PdP_2O_7 +$
		63,9 (0,75) / 80 (0,75) / 11,3 (1,13)		$Na_2Pd_3(P_2O_7)_2$
	$\mathbf{B}^{(b)}$	NaNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		55,5 (0,65) / 80 (0,65) / 69,6 (0,25)		
"Rb ₄ Pd ₄ (P ₂ O ₇) ₃ "	A ^{a)}	RbNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	schlechte
		111 (0,75) / 80 (0,75) / 11,3 (1,13)		Kristallinität
	B ^{b)}	RbNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		96,4 (0,65) / 80 (0,65) / 69,6 (0,25)		
"Cs ₄ Pd ₄ (P ₂ O ₇) ₃ "	A ^{a)}	CsNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	schlechte
		147 (0,75) / 80 (0,75) / 11,3 (1,13)		Kristallinität
	B ^{b)}	CsNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		127 (0,65) / 80 (0,65) / 69,6 (0,25)		
"Tl ₄ Pd ₄ (P ₂ O ₇) ₃ "	A ^{a)}	TlNO ₃ / Pd-Pulver / H ₃ PO ₄	500, 48	$Tl_2Pd_3(P_2O_7)_2 +$
		200 (0,75) / 80 (0,75) / 11,3 (1,13)		"Tl ₂ PdP ₂ O ₇ "
	B ^{b)}	TINO ₃ / PdO / P ₄ O ₁₀	500, 48	
		174 (0,65) / 80 (0,65) / 69,6 (0,25)		
"Ag ₄ Pd ₄ (P ₂ O ₇) ₃ "	A ^{a)}	AgNO ₃ / Pd-Pulver / H ₃ PO ₄	600, 72	$Ag_2Pd_3(P_2O_7)_2$
		128 (0,75) / 80 (0,75) / 11,3 (1,13)		$+ Ag_2PdP_2O_7$
	B ^{b)}	$Ag_2O / PdO / P_4O_{10}$	550, 96	
		75,7 (0,33) / 80 (0,65) / 69,6 (0,25)		
"Li ₂ Pd ₃ (P ₂ O ₇) ₂ "	A ^{a)}	LiNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	$Li_2PdP_2O_7 +$
		34,5 (0,50) / 80 (0,75) / 10,0 (1,00)		$Pd_2P_2O_7$
	B ^{b)}	LiNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		30,0 (0,44) / 80 (0,65) / 61,9 (0,22)		
"K ₂ Pd ₃ (P ₂ O ₇) ₂ "	A ^{a)}	KNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	$K_4Pd_4(P_2O_7)_3 +$
		50,7 (0,50) / 80 (0,75) / 10,0 (1,00)		$Pd_2P_2O_7$
	$\mathbf{B}^{(b)}$	KNO ₃ / PdO /P ₄ O ₁₀	800, 120	
		44,0 (0,44) / 80 (0,65) / 61,9 (0,22)		

^{a)} nasschemische Synthese; Auflösen der Pulver in konz. HNO₃; Zusatz von H₃PO₄ mit c = 0,09975 mol·l⁻¹, ^{b)} isotherme Temperexperimente in evakuierten Kieselglasampullen, ^{c)} Ansatz A und B führt zu gleichem *IP*-Guinier-Diagramm, ^{d)} Abbildung 10-1a, ^{e)} 10-1b, ^{f)}10.1c.

Abbildung 10-1. *IP*-Guinier-Aufnahmen der Produkte aus der nasschemischen Synthese (s. Tab. 10-3) von "Rb₂PdP₂O₇" (a), "Cs₂PdP₂O₇" (b) und "Tl₂PdP₂O₇" (c).

Versuche zur Synthese von Palladium(II)-orthophosphaten der Zusammensetzung $A^{1}PdPO_{4}$ (A = Li, Na, K, Rb, Cs, Ag, Tl) erfolgten analog zur Darstellung der Diphosphate durch isotherme Temperexperimente, welche ausgehend von den Metall(I)-nitraten mit äquivalenten Mengen an PdO und P₄O₁₀ in geschlossenen Kieselglasampullen zur Reaktion gebracht wurden. Ebenso wurden nasschemische Darstellungsversuche durch Fällung aus verdünnter, phosphorsaurer Lösung durchgeführt. Die Versuche zur Darstellung von Orthophosphaten $APdPO_4$ (A = Li, Na, K) führten stets zur Bildung der Diphosphate A_2 PdP₂O₇ (A = Li [56], Na [57], K [58]) neben PdO (vgl. Tab. 10-4). Experimente zur Synthese der Orthophosphate $APdPO_4$ (A = Rb, Cs, Ag, Tl) führte zu Beugungsdiagrammen (Abb. 10-2a bis 10-2d), die weder literaturbekannten ternären Orthophosphaten noch polynären Palladium(II)-diphosphaten zugeordnet werden können (s. Tab. 10-4).

Zielverbindung	Ansatz	Ausgangsverbindungen	Temperatur / °C,	IP-Guinier-
U		Einwaagen / mg, ml (mmol)	Temperdauer / h	Aufnahmen
"LiPdPO4"	A ^{a)}	LiNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	Li ₂ PdP ₂ O ₇
		51,8 (0,75) / 80 (0,75) / 7,5 (0,75)		+ PdO
	B ^{b)}	LiNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		45,0 (0,65) / 80 (0,65) / 46,4 (0,16)		
"NaPdPO4"	A ^{a)}	NaNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	Na ₂ PdP ₂ O ₇
		63,9 (0,75) / 80 (0,75) / 7,5 (0,75)		+ PdO
	B ^{b)}	NaNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		55,5 (0,65) / 80 (0,65) / 46,4 (0,16)		
"KPdPO4"	A ^{a)}	KNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 96	$K_2PdP_2O_7$
		76,0 (0,75) / 80 (0,75) / 7,5 (0,75)		+ PdO
	B ^{b)}	KNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		66,1 (0,65) / 80 (0,65) / 46,4 (0,16)		
"RbPdPO4"	A ^{a)}	RbNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	bislang nicht
		111 (0,75) / 80 (0,75) / 7,5 (0,75)		charakterisiert c)
	B ^{b)}	RbNO ₃ / PdO / P ₄ O ₁₀	800, 120	
		96,4 (0,65) / 80 (0,65) / 46,4 (0,16)		
"CsPdPO ₄ "	A ^{a)}	CsNO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72	bislang nicht
		147 (0,75) / 80 (0,75) / 7,5 (0,75)		charakterisiert ^{c)}
	$\mathbf{B}^{(b)}$	CsNO ₃ / PdO /P ₄ O ₁₀	800, 120	
		127 (0,65) / 80 (0,65) / 46,4 (0,16)		
"AgPdPO4"	A ^{a)}	AgNO ₃ / Pd-Pulver / H ₃ PO ₄	550, 96	bislang nicht
		128 (0,75) / 80 (0,75) / 7,5 (0,75)		charakterisiert c)
	B ^{b)}	$Ag_2O / PdO / P_4O_{10}$	550, 96	
		75,7 (0,33) / 80 (0,65) / 46,4 (0,16)		
"TlPdPO4"	A ^{a)}	TINO ₃ / Pd-Pulver / H ₃ PO ₄	500, 48	bislang nicht
		200 (0,75) / 80 (0,75) / 7,5 (0,75)		charakterisiert c)
	B ^{b)}	$TINO_3 / PdO / P_4O_{10}$	500, 48	
		174 (0.65) / 80 (0.65) / 46,4 (0.16)		

polynärer
 Tabelle 10-4.
 Experimente
 zur Darstellung Metall(I)-palladium(II)-(1 1 1 /

^{a)} nasschemische Synthese; Auflösen der Pulver in konz. HNO₃; Zugabe von H₃PO₄ mit c = 0,09975 mol·l⁻¹, ^{b)} isotherme Temperexperimente in evakuierten Kieselglasampullen, ^{c)} *IP*-Guinier-Aufnahmen siehe Abbildung 10-2.

Abbildung 10-2. *IP*-Guinier-Aufnahmen der bei der nasschemischen Synthese von "RbPdPO₄" (a), "CsPdPO₄" (b), "AgPdPO₄" (c) und "TlPdPO₄" (d) erhaltenen Trockenrückstände (s. Tab. 10-4).

10.3 Kristallisation

Nach der Darstellung der Pulverproben von Ag₂PdP₂O₇, der Diphosphate A_2 Pd₃(P₂O₇)₂ (A = Na, Rb, Cs, Ag, Tl) und K₄Pd₄(P₂O₇)₃ (siehe Abschnitt 10.2) erfolgten isotherme Temperexperimente in Kieselglasampullen zur Kristallisation der Diphosphate. Dabei wurden die Metall(I)-nitrate (M = Na, K, Rb, Cs, Tl) bzw. Ag₂O mit den äquivalenten Mengen an PdO und P₄O₁₀ unter Zusatz von PdCl_{2,s} als Mineralisator in evakuierten Kieselglasampullen bei $T = 500^{\circ}$ C zur Reaktion gebracht (72h). Auf diese Weise konnten die Verbindungen Ag₂PdP₂O₇, Na₂Pd₃(P₂O₇)₂, Tl₂Pd₃(P₂O₇)₂ sowie K₄Pd₄(P₂O₇)₃ kristallin erhalten werden (Gleichung 10.4 bis 10.6, Abb. 10-3). Tl₂Pd₃(P₂O₇)₂ konnte alternativ auch über chemische Transportreaktionen (600 \rightarrow 500°C, Zusatz von PdCl₂, 7*d*, *TR* ~ 0,5 mg/h, Gleichung 10.7b) kristallisiert werden. Durch die thermische Zersetzung von PdCl₂ wurde das eigentliche Transportmittel, Cl_{2,g}, freigesetzt (Gleichung 10.7a).

Die unter den isothermen Temperbedingungen erhaltenen Bodenkörper waren phasenrein und entsprachen der jeweiligen Zusammensetzung der abgeschiedenen Kristalle Eine Kristallisation von Rb₂Pd₃(P₂O₇)₂ und Cs₂Pd₃(P₂O₇)₂ bei Temperaturen zwischen 500 und 800°C und längerer Temperdauer (120h) wurde nicht beobachtet. Isotherme Temperexperimente zur Kristallisation von Ag₂Pd₃(P₂O₇)₂ (500 $\leq T \leq 650$ °C, 72-120h) führten nach Ausweis röntgenographischer Untersuchungen zur Bildung von Kristallen der Zusammensetzung Ag₂PdP₂O₇. Der Bodenkörper wies mikrokristallines Ag₂Pd₃(P₂O₇)₂ neben geringen Mengen an Pd₂P₂O₇ auf. Tabelle 10-5 gibt eine Übersicht zu den Kristallisationsexperimenten.

$$Ag_2O_s + PdO_s + \frac{1}{2}P_4O_{10,s} \rightarrow Ag_2PdP_2O_{7,s}$$
 Gleichung 10.4

$$2 A^{l} NO_{3,s} + 3 PdO_{s} + P_{4}O_{10,s} \rightarrow A_{2}Pd_{3}(P_{2}O_{7})_{2,s} + 2 NO_{2,g} + \frac{1}{2} O_{2,g} (A = Na, Tl)$$
 Gleichung 10.5

$$4 \text{ KNO}_3 + 4 \text{ PdO} + 3/2 \text{ P}_4\text{O}_{10,s} \rightarrow \text{K}_4\text{Pd}_4(\text{P}_2\text{O}_7)_{3,s} + 4 \text{ NO}_{2,g} + \text{O}_{2,g}$$
Gleichung 10.6

$$PdCl_{2,s} \rightarrow Pd_s + Cl_{2,g}$$
 Gleichung 10.7a

 $Tl_2Pd_3(P_2O_7)_2 + 4Cl_{2,g} = 2 TlCl_g + 3 PdCl_{2,g} + P_4O_{10,g} + 2 O_{2,g}$ Gleichung 10.7b

Zusammensetzung	Ausgangsverbindungen	Temperatur / °C,	<i>IP</i> -Guinier- Aufnahmen ^{d)}	
	Einwaagen / mg, ml (mmol)	Temperdauer / h		
Ag ₂ PdP ₂ O ₇ ^{a)}	$Ag_2O / PdO / P_4O_{10}$	500, 120	$Ag_2PdP_2O_7$	
	151 (0,65) / 80 (0,65) / 93 (0,33)			
$Ag_2Pd_3(P_2O_7)_2^{b)}$	$Ag_2O / PdO / P_4O_{10}$	$500 \le T \le 650, 120$	$Ag_2Pd_3(P_2O_7)_2 +$	
	50 (0,22) / 80 (0,65) / 62 (0,22)		$Ag_2PdP_2O_7^{e} + Pd_2P_2O_7$	
$Na_2Pd_3(P_2O_7)_2^{a)}$	NaNO ₃ / PdO / P ₄ O ₁₀	550, 120	$Na_2Pd_3(P_2O_7)_2$	
	37,0 (0,44) / 80 (0,65) / 62 (0,22)			
$Tl_2Pd_3(P_2O_7)_2^{a,c)}$	TlNO ₃ / PdO / P ₄ O ₁₀	500, 120	$Tl_2Pd_3(P_2O_7)_2$	
	116 (0,44) / 80 (0,65) / 62 (0,22)			
$Rb_2Pd_3(P_2O_7)_2^{\ b)}$	RbNO ₃ / PdO / P ₄ O ₁₀	$500 \le T \le 800, 120$	$Rb_2Pd_3(P_2O_7)_2$	
	64,2 (0,44) / 80 (0,65) / 62 (0,22)			
$Cs_2Pd_3(P_2O_7)_2^{b)}$	CsNO ₃ / PdO / P ₄ O ₁₀	$500 \le T \le 800, 120$	$Cs_2Pd_3(P_2O_7)_2$	
	84,9 (0,44) / 80 (0,65) / 62 (0,22)			
$K_4Pd_4(P_2O_7)_3^{a)}$	KNO ₃ / PdO / P ₄ O ₁₀	550, 120	$K_4Pd_4(P_2O_7)_3$	
	66,1 (0,65) / 80 (0,65) / 70 (0,25)			

Tabelle 10-5. Isotherme Temperexperimente zur Kristallisation polynärer Palladium(II)disphosphate der Zusammensetzungen Ag₂PdP₂O₇, A^{I}_{2} Pd₃(P₂O₇)₂ (A = Na, Rb, Cs, Ag, Tl) und K₄Pd₄(P₂O₇)₃.

^{a)} Diphosphat konnte über isotherme Temperexperimente kristallisiert werden ^{b)} Disphosphat liegt in mikrokristalliner Form vor, ^{c)} Kristallisation erfolgte über chemischen Gasphasentransport, ^{d)} *IP*-Guinier-Aufnahmen des Bodenkörpers (siehe Abschnitt 10.4) stimmen mit jenen aus nasschemischer Synthese (Kap. 10.2) überein, ^{e)} Kristallisation von Ag₂PdP₂O₇ bei 500 $\leq T \leq 650$ °C, Bodenkörper enthielt Ag₂Pd₃(P₂O₇)₂ sowie Pd₂P₂O₇.

Abbildung 10-3. Kristalle von $Ag_2PdP_2O_7$ (a), $Na_2Pd_3(P_2O_7)$ (c) und $K_4Pd_4(P_2O_7)_3$ (d) aus isothermen Temperexperimenten. Kristalle von $Tl_2Pd_3(P_2O_7)_2$ (b) aus chemischen Transportexperimenten.

Die prozentualen Atomverhältnisse für die in den Palladium(II)-disphosphaten enthaltenen Nichtsauerstoff-Atome wurden über energiedispersive Mikroanalyse (EDX, vgl. Abschnitt 4.1.6) bestimmt. Die Ergebnisse der Untersuchungen sind in Tabelle 10-5 zusammengestellt. Im Rahmen der Fehlergrenzen stehen die Ergebnisse in guter Übereinstimmung mit den erwarteten Zusammensetzungen.

Probe	Metall(I) / at.%	Palladium / at.%	Phosphor / at.%
Ag ₂ PdP ₂ O ₇			
Kristall 1	16,21	6,45	18,29
Kristall 2	15,78	7,69	20,22
Kristall 3	15,55	7,21	20,39
Mittelwert	15,85	7,12	19,63
Theorie	16,67	8,33	16,67
$Na_2Pd_3(P_2O_7)_2$			
Kristall 1	6,71	10,82	21,45
Kristall 2	7,01	11,01	21,89
Kristall 3	7,22	12,10	19,12
Mittelwert	6,98	11,31	20,85
Theorie	8,70	13,04	17,39
$Tl_2Pd_3(P_2O_7)_2$			
Kristall 1	8,12	9,89	19,95
Kristall 2	9,32	11,41	20,41
Kristall 3	10,21	11,92	21,88
Mittelwert	9,22	11,07	20,75
Theorie	8,70	13,04	17,39
$K_4Pd_4(P_2O_7)_3$			
Kristall 1	8,77	8,56	21,27
Kristall 2	9,23	10,03	21,46
Kristall 3	9,89	12,45	22,31
Mittelwert	9,30	10,35	21,68
Theorie	11,43	11,43	17,14

Tabelle 10-6. EDX-Untersuchungen an Kristallen von $Ag_2PdP_2O_7$, $Na_2Pd_3(P_2O_7)_2$, $Tl_2Pd_3(P_2O_7)_2$ und $K_4Pd_4(P_2O_7)_3$.

10.4 Röntgenographische Untersuchungen

10.4.1 Untersuchungen der Pulver

Nach der Kristallisation und Strukturverfeinerung von Ag₂PdP₂O₇, Na₂Pd₃(P₂O₇)₂, Tl₂Pd₃(P₂O₇)₂ und K₄Pd₄(P₂O₇)₃ (s. Kap. 10.4.2) wurden die auf Basis von Einkristallstrukturdaten simulierten Beugungsdiagramme (Progr. SOS [98]) mit den *IP*-Guinier-Aufnahmen der mikrokristallinen Pulver von A^{I}_{2} PdP₂O₇, A^{I}_{2} Pd₃(P₂O₇)₂ und A^{I}_{4} Pd₄(P₂O₇)₃ (A = Li, Na, K, Rb, Cs, Ag, Tl) verglichen (siehe Tabelle 10-2 und 10-3). Dabei konnte Isotypie von Ag₂Pd₃(P₂O₇)₂ zu Na₂Pd₃(P₂O₇)₂ wie auch von Rb^I₂Pd₃(P₂O₇)₂ und Cs₂Pd₃(P₂O₇)₂ zu Tl₂Pd₃(P₂O₇)₂ festgestellt werden. Simulationsrechnungen an Ag₂PdP₂O₇ zeigten Isotypie zur bereits bekannten Struktur von Na₂PdP₂O₇ [57]. Die mikrokristallinen Pulver von A^{I}_{2} PdP₂O₇ (A =Rb, Cs, Tl, s. Tab. 10-3, Abb. 10-1) zeigen keine Ähnlichkeit zu den Beugungsmustern von Diphosphaten $A_2PdP_2O_7$ (A = Li [56], K [58], Ag). Wie aus Tabelle 10-3 hervorgeht, konnte nach Ausweis röntgenographischer Untersuchungen für die mikrokristallinen Pulverproben von $A_4Pd_4(P_2O_7)_3$ (A = Li, Na, Rb, Cs, Tl, Ag) keine Isotypie zu K₄Pd₄(P₂O₇)₃ beobachtet werden. Die Indizierung der Reflexe von Ag₂PdP₂O₇, $A_2Pd_3(P_2O_7)_2$ (A = Na, Tl) und K₄Pd₄(P₂O₇)₃ erfolgte aus *IP*-Guinier-Aufnahmen (Abbildung 10-4a bis 10-7a) unter Zusatz von α -SiO₂ und auf Basis der aus Einkristallstrukturdaten (Tabelle 10-11 und 10-12) erhaltenen Lage- und Gitterparameter. Die Indizierungstabellen und Beugungsdiagramme der zu Na₂Pd₃(P₂O₇)₂ bzw. Tl₂Pd₃(P₂O₇)₂ isotypen Verbindungen $A_2Pd_3(P_2O_7)_2$ (A = Ag, Rb, Cs) finden sich in Anhang B. Details zur Vorgehensweise bei der Präzissionsbestimmung der Gitterkonstanten wurden in Abschnitt 6.3 erläutert. Eine Übersicht der aus den Indizierungen (Tab. 10-7 bis 10-10 und Tab. B1-B3, Anhang B) resultierenden Gitterparameter von Ag₂PdP₂O₇, $A_2Pd_3(P_2O_7)_2$ (A = Na, Rb, Cs, Ag, Tl) und K₄Pd₄(P₂O₇)₃ gibt Tabelle 10-11 wieder. Abbildungen 10-4 bis 10-7 sowie B-1 bis B-3 (Anhang B) zeigen die gute Übereinstimmung zwischen den beobachteten Diagrammen und deren Simulationen.

Abbildung 10-4. Guinier-Aufnahme von Ag₂PdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 10-7 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 10-5. Guinier-Aufnahme von Na₂Pd₃(P₂O₇)₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 10-8 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 10-6. Guinier-Aufnahme von $Tl_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 10-9 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 10-7. Guinier-Aufnahme von $K_4Pd_4(P_2O_7)_3$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 10-10 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

h	k	1	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	I _{calc} ^{a)}	I _{obs} ^{a), b)}	d _{calc} /Å
2	0	0	25,172	25,207	0,03	248	286	7,0172
1	1	0	33,450	33,482	0,04	295	343	5,2912
1	1	-1	37,867	37,904	0,05	30	42	4,6785
2	0	-2	43,515	43,500	0,02	426	405	4,0827
1	1	1	44,634	44,693	0,10	101	116	3,9750
3	1	-1	46,546	46,517	0,05	327	334	3,8211
3	1	0	49,090	49,104	0,03	144	176	3,6227
4	0	0	50,655	50,628	0,05	394	476	3,5153
1	1	-2	54,331	54,286	0,09	152	156	3,2824
3	1	-2	55,932	55,890	0,09	1000	1000	3,1900
3	1	1	62,207	62,214	0,02	44	50	2,8726
1	1	2	63,990	63,998	0,02	189	244	2,7945
2	0	2	64,534	64,509	0,06	557	643	2,7730
5	1	-1	65,018	64,970	0,11	335	387	2,7538
0	2	1	67,263	67,265	0,00	468	491	2,6624
6	0	-2	69,889	69,850	0,10	168	137	2,5668
5	1	0	71,119	71,123	0,01	154	159	2,5223
6	0	0	76,795	76,763	0,08	47	45	2,3658
4	2	-1	77,828	77,785	0,12	175	157	2,3136
5	1	-3	79,348	79,308	0,11	146	98	2,2709
0	2	2	80,005	79,989	0,05	106	98	2,2524
4	2	0	81,301	81,261	0,11	96	106	2,2186
5	1	1	84,654	84,697	0,13	51	50	2,1325
4	0	2	85,911	85,929	0,05	33	23	2,1033

Tabelle 10-7. Ag₂PdP₂O₇. Indizierung des Guinier-Diagramms (Abbildung 10-4) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.
7	1	-2	86,877	86,860	0,05	251	268	2,0818
4	0	-4	88,706	88,683	0,07	65	44	2,0411
6	2	-1	94,510	94,531	0,07	110	104	1,9214
5	1	-4	96,439	96,434	0,02	140	89	1,8857
0	2	3	98,159	98,176	0,06	59	48	1,8543
1	1	-4	99,807	99,788	0,06	191	165	1,8262
6	2	0	100,634	100,639	0,02	155	136	1,8118
8	0	0	104,022	104,023	0,00	117	127	1,7567
1	3	-2	106,357	106,356	0,00	92	70	1,7209
9	1	-3	112,158	112,202	0,16	62	56	1,6380
6	2	1	112,724	112,752	0,10	96	64	1,6306
8	2	-2	113,553	113,563	0,04	13	23	1,6200
5	3	-2	114,859	114,874	0,05	180	115	1,6030
9	1	-4	120,498	120,509	0,04	103	55	1,5346
1	1	-5	125,913	125,932	0,08	67	31	1,4749
8	2	1	137,193	137,157	0,15	70	28	1,3672

Fortsetzung von Tabelle 10-7.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.
^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (8 2 -4) mit I_{calc} = 32.

Tabelle 10-8. Na₂Pd₃(P₂O₇)₂. Indizierung des Guinier-Diagramms (Abbildung 10-5) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	$I_{\text{calc}}^{a)}$	$I_{\rm obs}{}^{\rm a),b)}$	d_{calc} /Å
1	0	1	22,777	22,752	0,02	184	121	7,7717
0	0	2	26,459	26,455	0,00	452	343	6,6877
1	1	2	37,349	37,327	0,03	883	569	4,7502
1	0	3	43,985	43,995	0,02	1000	1000	
2	0	2	45,782	45,722	0,10	302	170	3,8866
3	0	1	57,702	57,667	0,07	406	305	3,0937
3	1	0	59,208	59,174	0,07	666	731	3,0166
3	1	1	60,730	60,682	0,11	870	628	2,9434
2	0	4	65,375	65,375	0,00	105	46	2,7372
2	1	4	68,094	68,029	0,16	598	289	2,6334
3	0	3	69,268	69,205	0,16	430	226	2,5900
3	1	3	71,857	71,909	0,13	70	29	2,4957
2	2	4	75,738	75,780	0,11	272	124	2,3725
2	1	5	79,496	79,450	0,13	363	235	2,2670
4	1	2	82,552	82,507	0,13	43	25	2,1865
4	2	1	85,844	85,866	0,07	118	52	2,1048
3	2	4	87,205	87,174	0,09	135	29	2,0747
2	0	6	89,703	89,678	0,08	88	44	2,0196
4	2	3	94,437	94,447	0,03	227	81	1,9231
3	1	6	101,809	101,793	0,06	52	90	1,7926
5	1	3	106,134	106,141	0,02	117	30	1,7241
0	0	8	109,746	109,764	0,06	45	15	1,6714
4	4	2	112,478	112,462	0,06	44	46	1,6345
1	1	8	113,365	113,389	0,09	134	42	1,6222
6	1	3	125,576	125,624	0,19	113	46	1,4781

^{a)} Intensität normiert auf 1000 für den stärksten Reflex, ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 2 5) mit $I_{calc} = 60$.

h	k	1	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	I _{calc} ^{a)}	I _{obs} ^{a), b)}	d_{calc} /Å
0	0	2	25,098	25,031	0,06	198	231	7,0666
2	0	0	35,480	35,528	0,06	192	254	4,9887
2	1	1	41,664	41,637	0,04	81	90	4,2632
2	0	2	43,577	43,526	0,08	1000	1000	4,0802
0	3	1	54,907	54,914	0,01	251	442	3,2456
1	3	0	56,360	56,393	0,07	283	384	3,1621
1	3	2	61,908	61,892	0,04	677	729	2,8872
4	0	0	71,848	71,841	0,02	213	192	2,4980
1	4	1	75,151	75,180	0,08	44	134	2,3907
3	3	0	76,306	76,280	0,07	152	227	2,3575
3	3	2	80,634	80,599	0,10	357	171	2,2360
4	1	3	83,820	83,819	0,00	17	64	2,1538
4	0	4	88,838	88,808	0,09	197	144	2,0384
4	1	5	99,122	99,097	0,08	80	207	1,8381
0	0	8	103,693	103,716	0,08	51	44	1,7616
4	0	6	107,004	107,016	0,04	17	49	1,7111
5	3	2	110,182	110,186	0,01	129	99	1,6655
3	2	7	112,990	112,985	0,00	60	98	1,6275
2	4	6	113,560	113,575	0,06	10	46	1,6198
4	4	4	116,711	116,705	0,02	11	20	1,5800
4	1	7	119,297	119,285	0,05	23	88	1,5489
6	2	2	119,900	119,925	0,09	48	52	1,5414
0	4	8	129,295	129,284	0,04	11	43	1,4406
5	3	6	135,189	135,204	0,06	58	22	1,3846
1	4	9	143,307	143,294	0,05	74	43	1,3160

Tabelle 10-9. Tl₂Pd₃(P₂O₇)₂. Indizierung des Guinier-Diagramms (Abbildung 10-6) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Alle Reflexe im untersuchten Winkelbereich mit $I_{calc} > 5$ wurden beobachtet.

Tabelle 10-10 .	K ₄ Pd ₄ (P ₂ O ₇) ₃ . Indizierung des Guinier	er-Diagramms (Abbildung 10-7) mit
berechneten und b	beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - s$	$\sin^2 \theta_{\rm obs} \cdot 1000.$

h	k	l	$4 heta_{ m calc}$	$4 heta_{ m obs}$	Δ	$I_{\text{calc}}^{a)}$	$I_{ m obs}{}^{ m a),b)}$	d_{calc} /Å
2	1	0	31,243	31,339	0,11	1000	998	5,6505
0	2	1	36,531	36,588	0,08	32	32	4,8454
2	1	4	39,416	39,427	0,02	3	1	4,4995
1	2	2	40,103	40,097	0,01	7	3	4,4251
0	2	5	46,949	46,995	0,08	54	25	3,7828
0	0	8	47,969	47,925	0,08	141	99	3,7104
1	2	-5	48,685	48,685	0,00	5	19	3,6534
0	1	8	51,315	51,314	0,00	96	165	3,4691
2	0	-8	54,485	54,484	0,00	253	360	3,2708
0	3	2	55,675	55,715	0,08	69	29	3,1999
1	3	1	56,196	56,183	0,03	8	5	3,1737
2	1	-8	57,478	57,493	0,03	338	472	3,1029
4	1	-4	59,653	59,603	0,11	5	2	2,9954
2	3	0	60,237	60,243	0,01	15	9	2,9643
3	2	5	61,004	61,003	0,00	7	4	2,9283

2	2	7	61,347	61,382	0,08	14	10	2,9106
2	3	-3	62,946	62,912	0,08	19	11	2,8415
4	2	-2	64,249	64,222	0,06	89	171	2,7851
4	2	-3	65,682	65,662	0,05	146	473	2,7256
0	1	11	68,925	68,791	0,00	2	1	2,6051
3	1	9	69,276	69,261	0,04	9	3	2,5880
0	2	10	70,617	70,611	0,02	50	136	2,5400
0	0	12	72,639	72,600	0,10	6	16	2,4727
0	3	8	73,102	73,110	0,02	14	79	2,4560
0	4	2	74,033	74,000	0,09	29	5	2,4275
2	2	10	75,396	75,400	0,01	53	75	2,3840
0	4	5	79,269	79,289	0,06	37	20	2,2714
5	1	7	79,801	79,799	0,01	3	2	2,2575
6	1	0	80,076	80,089	0,04	40	55	2,2497
4	3	5	81,583	81,619	0,10	27	74	2,2093
4	1	10	82,150	82,169	0,06	12	11	2,1951
4	2	-9	83,992	83,989	0,01	20	42	2,1496
3	4	4	86,785	86,778	0,02	4	14	2,0837
0	2	13	87,401	87,418	0,05	27	25	2,0692
5	3	-4	88,884	88,898	0,04	2	1	2,0364
5	2	8	89,512	89,488	0,07	2	4	
4	4	1	90,541	90,508	0,10	18	15	2,0021
5	3	5	90,900	90,888	0,04	18	36	1,9941
4	4	2	91,196	91,188	0,03	23	34	1,9879
6	2	-5	91,897	91,898	0,00	23	53	1,9734
0	2	14	93,287	93,257	0,09	14	5	1,9462
0	1	15	93,657	93,677	0,07	11	7	1,9380
5	0	11	93,976	93,977	0,01	4	2	1,9321
6	1	-8	94,379	94,397	0,06	31	24	1,9240
2	4	-9	95,864	95,877	0,04	4	12	1,8960
6	3	2	97,084	97,107	0,08	56	67	1,8734
6	3	-3	98,082	98,087	0,02	9	19	1,8559
1	5	5	98,373	98,377	0,01	2	6	1,8507
6	3	-4	99,502	99,397	0,00	10	25	1,8329
7	2	-2	99,920	99,907	0,05	2	1	1,8242

Fortsetzung von Tabelle 10-10.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 2 10) mit $I_{calc} = 25$.

<i>n</i> _{beob} : Anzahl der verwendeten Reflexe.							
Phosphat	RG	a / Å	b / Å β / °	c / Å	$V/\text{\AA}^3$	<i>n</i> beob	Winkelbereich / $^\circ$
$Ag_2PdP_2O_7$	C2/c	15,739(2)	5,7177(7) 116,75(1)	8,187(1)	657,9(1)	40	$12,61 \le 2\theta \le 68,58$
$Na_2Pd_3(P_2O_7)_2$	P4/mnc	9,534(1)	9,534(1)	13,373(1)	1215,6(3)	25	$11,38 \le 2\theta \le 62,81$
$Ag_2Pd_3(P_2O_7)_2$	P4/mnc	9,5726(7)	9,5726(7)	13,710(1)	1256,3(2)	30	$11,25 \le 2\theta \le 55,91$
$Tl_2Pd_3(P_2O_7)_2$	Imam	9,9907(8)	10,006(1)	14,0954(8)	1399,8(2)	25	$12,52 \le 2\theta \le 71,65$
$Rb_2Pd_3(P_2O_7)_2$	Imam	9,958(1)	10,0031(9)	14,072(1)	1401,8(2)	28	$10,76 \le 2\theta \le 67,77$
$Cs_2Pd_3(P_2O_7)_2$	Imam	9,9956(4)	10,1279(5)	14,1899(8)	1436,5(1)	32	$21,77 \le 2\theta \le 68,28$
$K_4Pd_4(P_2O_7)_3$	<i>P2</i> ₁ / <i>n</i>	13,867(1)	9,8383(9) 90,06(1)	29,656(2)	4046,2(6)	50	$15,67 \le 2\theta \le 49,96$

Tabelle 10-11. Übersicht zur Bestimmung der Gitterparameter der Diphosphate Ag₂PdP₂O₇, A_2 Pd₃(P₂O₇)₂ (A = Na, Rb, Cs, Ag, Tl) und K₄Pd₄(P₂O₇)₃. *RG*: Raumgruppe, n_{beob} : Anzahl der verwendeten Reflexe.

10.4.2 Einkristallstrukturanalysen

Zur Strukturbestimmung und Verfeinerung von Ag₂PdP₂O₇, K₄Pd₄(P₂O₇)₃, Na₂Pd₃(P₂O₇)₂ und Tl₂Pd₃(P₂O₇)₂ wurde jeweils ein geeigneter Kristall unter dem Polarisationsmikroskop ausgesucht und auf einen Glasfaden aufgeklebt. Die Datensammlung erfolgte für Ag2PdP2O7 (Na₂Pd₃(P₂O₇)₂) an einem Vierkreisdiffraktometer CAD-4 (Fa. Enraf-Nonius) im Winkelbereich 2,90 (2,62) $\leq \theta \leq 29,95^{\circ}$ (29,93°) (1890 (3013), davon 947 (925) symmetrieunabhängige Reflexe). Nach Überprüfung der Kristallqualität und einer vorläufigen Bestimmung der Gitterkonstanten auf dem Vierkreisdiffraktometer CAD-4 wurden zur Reduzierung der Messzeit die Einkristalldatensätze von K₄Pd₄(P₂O₇)₃ $(Tl_2Pd_3(P_2O_7)_2)$ an einem Vierkreisdiffraktometer mit CCD-Flächendetektor (κ -CCD, Fa. Enraf-Nonius) in den Winkelbereichen 2,92 (2,51) $\leq \theta \leq 27,48^{\circ}$ (27,49°) (53994 (4637), davon 9203 (883) symmetrieunabhängige Reflexe) aufgenommen. Nach der Datenreduktion erfolgte für K₄Pd₄(P₂O₇)₃ und Tl₂Pd₃(P₂O₇)₂ eine empirische Absorptionskorrektur über Multiscans [116] im Programm WinGX [106]. An den beiden Datensätzen von Ag₂PdP₂O₇ und Na₂Pd₃(P₂O₇)₂ wurde eine empirische Absorptionskorrektur anhand von ψ -Scans [115] vorgenommen. Bei allen vier Diphosphaten erfolgte die Strukturlösung mit dem Programm SHELXS-97 [104] im Programmpaket WinGX. Über Direkte Methoden konnten für Ag₂PdP₂O₇, Na₂Pd₃(P₂O₇)₂ und Tl₂Pd₃(P₂O₇)₂ so Startpunktlagen für die Palladium- und Phosphoratome ermittelt werden. Nach Lokalisierung der Sauerstoffatome aus sukzessiven △-Fourier-Synthesen wurden die Strukturen schließlich unter Berücksichtigung anisotroper SHELXL-97 [105] zufriedenstellend verfeinert. Auslenkungsparameter mit Die Strukturverfeinerung an den drei Disphosphaten verlief ohne Besonderheiten. Die nach den letzten Verfeinerungscyclen erhaltenen Auslenkungsparameter zeigten keinerlei Anomalien.

Für die Strukturmodelle von Ag₂PdP₂O₇, (Na₂Pd₃(P₂O₇)₂) [Tl₂Pd₃(P₂O₇)₂] wurden Restwerte $R_I = 0,034$ (0,052) [0,064] erreicht. Für Tl₂Pd₃(P₂O₇)₂ wurde eine vergleichsweise hohe Restelektronendichte $\rho(0, 0,223, 0,489) = 3,84 \text{ e}\cdot\text{Å}^{-3}$ in einem Abstand von 1,0Å von einem Thalliumatom beobachtet. Alle sonstigen Indikatoren (anisotrope Auslenkungsparameter, Standardabweichungen der Variablen, kristallchemische Schlüssigkeit) sprechen jedoch für eine korrekte Strukturbeschreibung. Vermutlich ist dieser Restelektronenpeak sowie der hohe Restwert an Tl₂Pd₃(P₂O₇)₂ mit qualitativen Mängeln des Datensatzes zu erklären ($R_{int} = 0,184$). Im Vergleich dazu betrug die maximale Restelektronendichte 1,32 e·Å⁻³ für Ag₂PdP₂O₇ und 2,67 e·Å⁻³ für Na₂Pd₃(P₂O₇)₂. Die höchsten Restelektronendichten lagen alle in der Nähe von Silber- bzw. Palladiumatomen.

Für $K_4Pd_4(P_2O_7)_3$ war anhand der systematischen Auslöschungen und der Intensitätsverteilung der Reflexe keine eindeutige Bestimmung der Raumgruppe möglich. Die Strukturlösung mittels Direkter Methoden erfolgte daher zunächst in der Raumgruppe P1, wodurch die Palladiumpositionen ermittelt werden konnten. Anschließend wurde mit dem Programm KPLOT [354] eine Symmetrieanalyse durchgeführt. Dies lieferte $P2_1/c$ als mögliche Raumgruppe mit höherer Symmetrie. Nachdem die Zelle und die Lageparameter der Palladiumatome transformiert und die Kalium- und Phosphoratome zugeordnet waren, erfolgte die Lokalisierung der Sauerstofflagen über sukzessive ⊿-Fouriersynthesen. Die Gütefaktoren waren in diesem Stadium der Strukturverfeinerung noch sehr hoch ($R_1 = 0,183$) und nicht alle Atome konnten mit physikalisch sinnvollen Werten anisotrop verfeinert werden. Wegen des sehr nahe bei 90° liegenden monoklinen Winkels ($\beta = 90,06^{\circ}$) wurde eine pseudo-meroedrische Verzwilligung nach (1 0 0) in Betracht gezogen. Nach einer Transformation der Zelle in $P2_1/n$ konnten die beiden Zwillingsindividuen durch das Zwillingsgesetz (-1 0 0 0 1 0 0 0 1) ineinander überführt werden. Die Verfeinerung der Volumenanteile der beiden Zwillingsindividuen ergab schliesslich $V_1:V_2 = 62:38$. Bei einem Restwert von $R_1 = 0.032$ zeigten die anisotrop verfeinerten Auslenkungsparameter aller Atome in der Elementarzelle von K₄Pd₄(P₂O₇)₃ keinerlei Anomalien. In der anschließenden Symmetrieanalyse mit KLOT [354] und PLATON [355] wurde die Raumgruppe $P2_1/n$ bestätigt. Einzelheiten zu den kristallographischen Daten, den Messungen und den Strukturverfeinerungen sind in den Tabellen 10-12 und 10-13 zusammengestellt. In den Tabellen 10-14 bis 10-21 werden Lageparameter und ausgewählte interatomare Abstände angegeben.

Zusammensetzung	$Ag_2PdP_2O_7$	$K_4Pd_4(P_2O_7)_3$
Kristallsystem	monoklin	monoklin
Raumgruppe	<i>C2/c</i> (Nr. 15)	$P2_{1}/n$ (Nr.14)
Gitterparameter /Å	<i>a</i> = 15,739(2)	a = 13,867(1)
(aus IP-Guinier-Aufnahmen)	b = 5,7177(7)	<i>b</i> = 9,8383(9)
	c = 8,187(1)	c = 29,656(2)
	$\beta = 116,75(1)^{\circ}$	$\beta = 90,06(1)$
Zahl der Formeleinheiten, Z	4	8
Absorptionskoeffizient /mm ⁻¹	9,080	4,883
Molmasse /g·mol ⁻¹	1984,32	1103,90
Zellvolumen /Å ³	657,9(1)	4046,2(6)
Dichteröntg. /g·cm ⁻³	5,008	3,611
Farbe	gelb	braun
Kristallform und	Prisma	Nadel
Kristallgröße /mm ³	0,075.0,05.0,05	0,30.0,10.0,10
F(000)	904	4144
Temperatur /K	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$ Å Ag ₂ PdP ₂ O ₇ : CAD-4-, K ₄ Pd ₄ (P ₂ O	A, Graphit-Monochromator, 7)3: κ-CCD-Diffraktometer	(Fa. Enraf-Nonius).
Winkelbereich /°	$2,90 \le \theta \le 29,95$	$2,92 \le \theta \le 27,48$
Absorptionskorrektur	ψ-Scans [115]	Multiscans [116]
Gemessene Reflexe	1890	53994
Unabhängige Reflexe	947, 591 > $4\sigma(F_o)$	9203, $8127 > 4\sigma(F_o)$
Messbereich	$-22 \le h \le 22$	$-18 \le h \le 18$
	$-8 \le k \le 0$	$-12 \le k \le 12$
	- 11 ≤ <i>l</i> ≤ 11	$-38 \le l \le 38$
Benutzte Programme	SHELXS-97 [104], SHELX	KL-97 [105], WinGX [106]
Parameter	58	633
Gütefaktoren	$R_{int}^{a)} = 0,079$ $R_{I}^{b)} = 0,034$ $w R_{b}^{b)} = 0.073$	$R_{int}^{a} = 0,060$ $R_{I}^{b} = 0,032$ $wR_{2}^{b} = 0,071$
Goodness of fit ^{b)}	0.969	$WR_2 = 0,071$ 1.012
BASE	-	0.619
Wichtungsschema ^{b)}	A = 0.0249	A = 0.0398
wientungssenema	B = 0,0000	B = 0,0000
Restelektronendichte	max. +1,300 min 1,140	max. +1,750 min 1,493

Tabelle 10-12.Kristallographische Daten sowie Angaben zur Datensammlung und
Strukturverfeinerung von Ag2PdP2O7 und K4Pd4(P2O7)3.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 5.4.1.

Zusammensetzung	$Na_2Pd_3(P_2O_7)_2$	$Tl_2Pd_3(P_2O_7)_2$
Kristallsystem	tetragonal	orthorhombisch
Raumgruppe	P4/mnc (Nr.128)	<i>Imam</i> (Nr. 74)
Gitterparameter /Å	a = 9,534(1)	<i>a</i> = 9,9907(8)
(aus IP-Guinier-Aufnahmen)	c = 13,373(1)	b = 10,006(1)
		c = 14,0954(8)
Zahl der Formeleinheiten, Z	4	4
Absorptionskoeffizient /mm ⁻¹	5,070	27,253
Molmasse /g·mol ⁻¹	713,06	1075,82
Zellvolumen /Å ³	1215,6(3)	1399,8(2)
Dichte _{röntg.} /g·cm ⁻³	3,896	5,105
Farbe	gelb	gelb
Kristallform und	würfelförmig	tafelig
Kristallgröße /mm ³	0,20.0,20.0,20	0,56.0,12.0,04
F(000)	1328	1888
Temperatur /K	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$ A	Å, Graphit-Monochromator,	Na ₂ Pd ₃ (P ₂ O ₇) ₂ : CAD-4-,
Tl ₂ Pd ₃ (P ₂ O ₇) ₂ : к-CCD-Diffraktor	meter (Fa. Enraf-Nonius).	
Winkelbereich /°	$2,\!62 \le \theta \le 29,\!93$	$2,51 \le \theta \le 27,49$
Absorptionskorrektur	ψ-Scans [115]	Multiscans [116]
Gemessene Reflexe	3013	4637
Unabhängige Reflexe	925, 471 > $4\sigma(F_o)$	883, $674 > 4\sigma(F_o)$
Messbereich	$-4 \le h \le 13$	$-8 \le h \le 12$
	$-4 \le k \le 13$	$-12 \le k \le 12$
	$-4 \le l \le 18$	$-18 \le l \le 18$
Benutzte Programme	SHELXS-97 [104], SHELX	KL-97 [105], WinGX [106]
Parameter	58	62
Gütefaktoren	$R_{\rm int}^{\rm a)} = 0,134$	$R_{\rm int}^{a)} = 0,184$
	$R_1^{b)} = 0,052$	$R_1^{b)} = 0,064$
	$wR_2^{b} = 0,105$	$wR_2^{b} = 0,159$
Goodness of fit ^{b)}	1,017	1,005
Wichtungsschema ^{b)}	A = 0,0387	A = 0,0926
	B = 0,0000	B = 0,0000
Restelektronendichte	max. +2,673	max. +3,843
	min2,517	min 2,758

Tabelle 10-13. Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von $Na_2Pd_3(P_2O_7)_2$ und $Tl_2Pd_3(P_2O_7)_2$.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 5.4.1.

Atom	Position	x	У	Z.	U_{eq} /Å ^{2 a)}
Pd	4b	0	0	0	0,0145(2)
Ag	8f	0,23426(5)	0,8589(1)	0,79398(9)	0,0217(2)
Р	8f	0,1011(1)	0,3445(4)	0,8422(2)	0,0137(4)
01	8f	0,8200(3)	0,522(1)	0,5959(7)	0,017(1)
O2	4e	0	0,474(1)	3/4	0,013(1)
O3	8f	0,8948(3)	0,185(1)	0,8056(7)	0,022(1)
O4	8f	0,6030(3)	0,295(1)	0,5045(7)	0,021(1)

Tabelle 10-14.Atomkoordinaten und isotrope Auslenkungsparameter für Ag2PdP2O7.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} \mathbf{a}_i^* \mathbf{a}_j^* \mathbf{a}_i \cdot \mathbf{a}_j$

Tabelle 10-15.	Atomkoordinaten und is	sotrope Ausler	nkungsparameter für	$K_4Pd_4(P_2O_7)_3$.
----------------	------------------------	----------------	---------------------	-----------------------

Tubene 10-15.		7 Romkoordinaten and isotrope		e Rusienkungspurumeter für R4f u4(1 207)3	
Atom	Position	x	У	Z	U_{eq} /Å ^{2 a)}
Pd1	4e	0,87797(4)	0,17960(4)	0,11826(1)	0,0132(1)
Pd2	4e	-0,13938(3)	0,2926(5)	0,84080(2)	0,0139(1)
Pd3	4e	0,37748(4)	0,20545(4)	0,11618(1)	0,0132(1)
Pd4	4e	-0,63657(4)	0,40297(5)	0,98248(1)	0,0147(1)
Pd5	4e	0,38688(4)	0,12117(4)	0,48355(1)	0,0142(1)
Pd6	4e	-0,61307(4)	0,30651(5)	0,84776(2)	0,0143(1)
Pd7	4e	-0,63651(3)	0,22915(4)	0,74189(2)	0,0127(1)
Pd8	4e	0,38508(4)	0,25033(4)	0,23685(1)	0,0122(1)
K1	4e	-0,8795(1)	0,1273(1)	0,79895(4)	0,0204(2)
K2	4e	0,3862(1)	-0,1212(1)	0,20160(5)	0,0222(3)
K3	4e	0,1248(1)	0,2595(1)	0,16808(5)	0,0272(3)
K4	4e	0,6273(1)	0,2547(1)	0,17310(4)	0,0267(3)
K5	4e	0,3716(1)	0,4680(1)	0,50189(5)	0,0345(3)
K6	4e	-0,8664(1)	0,3188(1)	0,92558(7)	0,0559(6)
K7	4e	-0,3769(1)	0,3497(1)	0,90516(6)	0,0382(4)
K8	4e	-0,6247(1)	0,0426(1)	0,00602(5)	0,0337(3)
P1	4e	0,7282(1)	-0,0554(1)	0,11200(7)	0,0157(4)
P2	4e	0,0221(1)	-0,0571(1)	0,10841(7)	0,0146(3)
P3	4e	0,2354(1)	-0,0413(1)	0,11114(7)	0,0159(4)
P4	4e	0,5215(1)	-0,0348(1)	0,11074(7)	0,0155(4)
P5	4e	-0,7707(1)	0,3880(1)	0,05924(6)	0,0140(3)
P6	4e	0,5194(1)	0,1275(1)	0,56201(7)	0,0140(3)
P7	4e	-0,2743(1)	0,4609(1)	0,77637(6)	0,0137(3)
P8	4e	-0,4849(1)	0,4572(1)	0,77722(7)	0,0137(3)
Р9	4e	0,5221(1)	0,3562(1)	0,05575(7)	0,0161(4)
P10	4e	0,5159(1)	0,0307(1)	0,28909(6)	0,0126(3)
P11	4e	-0,7735(1)	0,4454(1)	0,78772(6)	0,0143(3)
P12	4e	-0,7325(1)	0,6599(1)	0,94291(6)	0,0154(3)
01	4e	-0,2761(3)	0,6175(4)	0,7750(1)	0,018(1)
02	4e	0,7274(3)	-0,1997(4)	0,1328(1)	0,022(1)
O3	4e	-0,7322(3)	0,5063(4)	0,9441(1)	0,018(1)
O4	4e	0,5189(3)	-0,0257(4)	0,5556(1)	0,017(1)
05	4e	-0,7807(3)	0,5410(4)	0,0531(1)	0,018(1)
O6	4e	-0,4878(3)	0,6105(4)	0,7727(1)	0,016(1)
07	4e	0,5307(3)	0,5103(4)	0,0531(1)	0,018(1)
08	4e	0,4577(3)	0,2956(4)	0,0192(1)	0,019(1)

09	4e	0,4955(3)	0,2070(4)	0,5191(1)	0,018(1)	
O10	4e	-0,7574(3)	0,7129(4)	0,8964(1)	0,020(1)	
011	4e	0,4472(2)	0,0455(4)	0,3274(1)	0,016(1)	
O12	4e	0,4578(3)	0,0545(4)	0,1402(1)	0,018(1)	
O13	4e	0,5205(3)	-0,1186(4)	0,2750(1)	0,015(1)	
O14	4e	-0,7464(3)	0,3109(4)	0,0162(1)	0,020(1)	
015	4e	0,6279(3)	0,1730(3)	0,5746(1)	0,0165(8)	
O16	4e	-0,5544(2)	0,3961(4)	0,7434(1)	0,017(1)	
O17	4e	0,0265(3)	-0,1794(5)	0,1400(1)	0,022(1)	
O18	4e	-0,7930(3)	0,7261(4)	0,9792(1)	0,019(1)	
O19	4e	-0,7027(3)	0,4549(4)	0,8261(1)	0,020(1)	
O20	4e	0,4971(3)	0,3141(4)	0,1033(1)	0,021(1)	
O21	4e	0,6259(3)	0,2902(3)	0,0453(1)	0,0197(8)	
O22	4e	-0,8788(3)	0,4275(3)	0,8090(1)	0,0169(8)	
O23	4e	0,6277(3)	0,0148(3)	0,1252(1)	0,0180(8)	
O24	4e	-0,2564(3)	0,4044(4)	0,8224(1)	0,022(1)	
O25	4e	-0,2072(2)	0,4074(4)	0,7403(1)	0,017(1)	
O26	4e	0,7996(3)	0,0268(4)	0,1409(1)	0,020(1)	
O27	4e	0,2592(3)	0,0989(4)	0,1304(1)	0,020(1)	
O28	4e	-0,4959(3)	0,4093(4)	0,8247(1)	0,022(1)	
O29	4e	-0,7744(3)	0,5743(4)	0,7597(1)	0,024(1)	
O30	4e	-0,7027(3)	0,3668(4)	0,0981(1)	0,018(1)	
O31	4e	0,9947(3)	0,0681(4)	0,1350(1)	0,022(1)	
O32	4e	0,4987(3)	0,1233(4)	0,2491(1)	0,021(1)	
O33	4e	0,7425(3)	-0,0543(5)	0,0624(1)	0,027(2)	
O34	4e	0,4612(3)	0,1610(4)	0,6029(1)	0,018(1)	
O35	4e	0,1290(3)	-0,0274(4)	0,0910(1)	0,0227(9)	
O36	4e	0,5123(3)	-0,1781(4)	0,1297(1)	0,022(1)	
O37	4e	-0,7606(2)	0,3248(4)	0,7569(1)	0,019(1)	
O38	4e	0,9661(3)	-0,0832(4)	0,0669(1)	0,025(1)	
O39	4e	0,5102(3)	-0,0219(5)	0,0620(1)	0,025(1)	
O40	4e	0,2951(3)	-0,0896(5)	0,0730(1)	0,034(1)	
O41	4e	0,2295(3)	-0,1407(5)	0,1508(1)	0,031(1)	
O42	4e	-0,3799(3)	0,4083(3)	0,7610(1)	0,0178(8)	

Fortsetzung von Tabelle 10-15.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} \mathbf{a}_i^* \mathbf{a}_j^* \mathbf{a}_i \cdot \mathbf{a}_j$

Tabelle 10-16 . Atomkoordinaten und isotrope Auslenkungsparameter für Na_2Pd_2	$_{3}(P_{2})$	O_7)2
---	---------------	-------	----

			_		0.0.)
Atom	Position	x	У	Z	U_{eq} /Å ^{2 a)}
Pd1	4e	0	0	0,3163(1)	0,0093(3)
Pd2	8h	-0,5594(1)	0,1839(1)	1/2	0,0106(3)
Na	δg	-0,6139(4)	0,1139(4)	1/4	0,020(1)
Р	16i	-0,2702(2)	0,1519(2)	0,3939(1)	0,0090(5)
01	8h	-0,2199(9)	0,0916(9)	1/2	0,010(2)
O2	16i	-0,4280(5)	0,1310(6)	0,3876(4)	0,013(1)
O3	16i	0,0641(6)	0,2025(6)	0,3141(4)	0,013(1)
O4	16i	-0,6965(6)	0,2242(7)	0,3896(4)	0,015(1)

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} \mathbf{a}_i^* \mathbf{a}_j^* \mathbf{a}_i \cdot \mathbf{a}_j$

Position	x	у	Z	U_{eq} /Å ^{2 a)}
4e	1/2	0,0608(2)	1/4	0,0287(5)
<i>4b</i>	0	0	1/2	0,0229(4)
4 <i>c</i>	1⁄4	-1/4	1/4	0,0286(5)
8h	0	0,31433(8)	0,52376(8)	0,0523(4)
16j	0,2196(3)	0,0256(3)	0,3506(2)	0,0275(7)
8i	0,167(1)	0,081(1)	1/4	0,032(3)
16j	0,1421(8)	0,0983(8)	0,4273(7)	0,032(2)
16j	0,3654(8)	0,062(1)	0,3587(7)	0,043(2)
16j	0,193(1)	-0,1248(9)	0,3549(7)	0,036(2)
	Position 4e 4b 4c 8h 16j 8i 16j 16j 16j	Position x $4e$ $\frac{1}{2}$ $4b$ 0 $4c$ $\frac{1}{4}$ $8h$ 0 $16j$ 0,2196(3) $8i$ 0,167(1) $16j$ 0,1421(8) $16j$ 0,3654(8) $16j$ 0,193(1)	Position x y $4e$ $\frac{1}{2}$ $0,0608(2)$ $4b$ 0 0 $4c$ $\frac{1}{4}$ $-\frac{1}{4}$ $8h$ 0 $0,31433(8)$ $16j$ $0,2196(3)$ $0,0256(3)$ $8i$ $0,167(1)$ $0,081(1)$ $16j$ $0,1421(8)$ $0,0983(8)$ $16j$ $0,3654(8)$ $0,062(1)$ $16j$ $0,193(1)$ $-0,1248(9)$	Positionxyz $4e$ $\frac{1}{2}$ $0,0608(2)$ $\frac{1}{4}$ $4b$ 00 $\frac{1}{2}$ $4c$ $\frac{1}{4}$ $-\frac{1}{4}$ $\frac{1}{4}$ $8h$ 0 $0,31433(8)$ $0,52376(8)$ $16j$ $0,2196(3)$ $0,0256(3)$ $0,3506(2)$ $8i$ $0,167(1)$ $0,081(1)$ $\frac{1}{4}$ $16j$ $0,1421(8)$ $0,0983(8)$ $0,4273(7)$ $16j$ $0,3654(8)$ $0,062(1)$ $0,3587(7)$ $16j$ $0,193(1)$ $-0,1248(9)$ $0,3549(7)$

Tabelle 10-17.Atomkoordinaten und isotrope Auslenkungsparameter für $Tl_2Pd_3(P_2O_7)_2$.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle 10-18. $Ag_2PdP_2O_7$. Interatomare Abstände /Å und Winkel /° in den Polyedern $[PdO_4]$ und $[PO_4]$. Standardabweichungen in Klammern.

[PdO ₄]		[PO ₄]			
Pd-O4 (2x)	1,987(5)	P-O1	1,505(5)		
Pd-O3 (2x)	2,007(5)	P-O3	1,536(5)		
		P-O4	1,539(5)		
		P-O2	1,604(4)		
Brückenwinkel \angle (P,O2,P) = 124,9(5)					

Tabelle 10-19. $K_4Pd_4(P_2O_7)_3$. Interatomare Abstände /Å und Winkel /° in den Polyedern[PdO4] und [PO4].Standardabweichungen in Klammern.

[PdO ₄]							
Pd1-O26	1,974(4)	Pd2-O41	1,965(4)	Pd3-O12	1,990(4)	Pd4-O7	2,003(4)
Pd1-O34	2,001(4)	Pd2-O17	2,006(4)	Pd3-O27	1,996(4)	Pd4-O8	2,007(4)
Pd1-O31	2,023(4)	Pd2-O11	2,035(4)	Pd3-O30	2,012(4)	Pd4-O3	2,024(4)
Pd1-O10	2,030(4)	Pd2-O24	2,039(4)	Pd3-O20	2,015(4)	Pd4-O14	2,040(4)
Pd5-O4	1,988(4)	Pd6-O2	1,991(4)	Pd7-O29	1,963(4)	Pd8-O6	1,999(4)
Pd5-O5	1,997(4)	Pd6-O36	2,001(4)	Pd7-O16	2,000(4)	Pd8-O25	2,016(4)
Pd5-O18	1,998(4)	Pd6-O19	2,024(4)	Pd7-O13	2,009(4)	Pd8-O1	2,027(4)
Pd5-09	2,029(4)	Pd6-O28	2,035(4)	Pd7-O37	2,017(4)	Pd8-O32	2,048(4)
[PO ₄]							
P1-O33	1,484(5)	P2-O38	1,478(4)	P3-O40	1,482(5)	P4-O39	1,458(5)
P1-O26	1,543(4)	P2-O31	1,513(4)	P3-O27	1,528(4)	P4-O12	1,523(4)
P1-O2	1,548(4)	P2-O17	1,527(5)	P3-O41	1,533(5)	P4-O36	1,523(5)
P1-O23	1,608(4)	P2-O35	1,601(4)	P3-O35	1,601(4)	P4-O23	1,615(4)
P5-O30	1,507(4)	P6-O34	1,495(4)	P7-O24	1,496(4)	P8-O28	1,496(4)
P5-O14	1,520(4)	P6-O4	1,518(5)	P7-O25	1,514(4)	P8-O6	1,512(4)
P5-O5	1,521(4)	P6-O9	1,529(4)	P7-O1	1,539(4)	P8-O16	1,517(4)
P5-O15	1,600(4)	P6-O15	1,618(4)	P7-O42	1,623(4)	P8-O42	1,612(4)

P9-O20	1,511(5)	P10-O11	1,493(4)	P11-O37	1,508(4)	P12-O3	1,510(5)
P9-O7	1,522(5)	P10-O32	1,514(4)	P11-O19	1,510(4)	P12-O10	1,513(4)
P9-08	1,526(4)	P10-O13	1,528(4)	P11-O29	1,515(4)	P12-O18	1,514(4)
P9-O21	1,613(4)	P10-O22	1,632(4)	P11-O22	1,606(4)	P12-O21	1,601(4)
Brückenwinkel $126,8(2) \le \angle(P,O_b,P) \le 136,2(2)$							

Fortsetzung von Tabelle 10-19.

Tabelle 10-20. Na₂Pd₃(P₂O₇)₂. Interatomare Abstände /Å und Winkel /° in den Polyedern $[PdO_4]$ und $[PO_4]$. Standardabweichungen in Klammern.

[PdO ₄]		[PO ₄]		
Pd1-O3	2,025(6) (4x)	P-O3	1,501(6)	
Pd2-O4	2,008(6) (2x)	P-O4	1,510(5)	
Pd2-O2	2,020(6) (2x)	P-O2	1,520(6)	
		P-O1	1,604(4)	
Brückenwinkel \angle (P,O1,P) = 124,3(5)				

Tabelle 10-21. $Tl_2Pd_3(P_2O_7)_2$. Interatomare Abstände /Å und Winkel /° in den Polyedern[PdO4] und [PO4].Standardabweichungen in Klammern.

[PdO ₄]		[PO ₄]			
Pd1-O3	2,032(9) (4x)	P-O3	1,503(9)		
Pd2-O2	2,003(8) (4x)	P-O2	1,511(9)		
Pd3-O4	2,014(9) (4x)	P-O4	1,527(9)		
		P-O1	1,605(6)		
Brückenwinkel \angle (P,O1,P) = 123,7(8)					

10.5 Ergebnisse und Diskussion

Polynäre Phosphate des zweiwertigen Palladiums waren vor Beginn der vorliegenden Arbeit von den Zusammensetzungen A_2 PdP₂O₇ (A = Li [56], Na [57], K [58]), K_{3.5}Pd_{2.25}(P₂O₇)₂ [58] sowie Cs₂Pd₃(P₂O₇)₂ [59] bekannt. Während sich bei den nicht isotypen Diphosphaten Li₂PdP₂O₇ und Na₂PdP₂O₇ als dominierendes Strukturmotiv Diphosphatopalladat(II)-Bänder $\frac{1}{\infty}$ [Pd(P₂O₇)_{2/2}]²⁻ ausbilden, zwischen denen die Alkalimetallkationen eingelagert sind, kommt es mit den größeren Gegenkationen in K₂PdP₂O₇ zur Ausbildung von Diphosphatopalladat(II)-Schichten $\frac{2}{\infty}$ [Pd(P₂O₇)]²⁻. Demgegenüber weisen die Diphosphate der Zusammensetzungen K_{3.5}Pd_{2.25}(P₂O₇)₂ und Cs₂Pd₃(P₂O₇)₂ dreidimensionale Tunnelstrukturen auf, die durch Eckenverknüpfung von quadratisch-planaren [PdO₄]-Gruppen mit [PO₄]-Tetraedern resultieren.

Die Untersuchung der Vierstoffsysteme A/Pd/P/O (A = Li, Na, K, Rb, Cs, Ag, Tl) führte zu den neuen polynären Palladium(II)-diphosphaten Ag₂PdP₂O₇ [356] (isotyp zu Na₂PdP₂O₇ [57]), $A_2Pd_3(P_2O_7)_2$ (A = Na, Rb, Cs, Ag, Tl) und $K_4Pd_4(P_2O_7)_3$ (vgl. Kap. 10.2 und 10.3). Während die Diphosphate Ag₂PdP₂O₇, Na₂Pd₃(P₂O₇)₂ und K₄Pd₄(P₂O₇)₃ nur durch isothermes Tempern kristallisiert werden konnten, gelang die Kristallisation von $Tl_2Pd_3(P_2O_7)_2$ auch über chemischen Gasphasentransport (vgl. Kap. 10.3). Na₂Pd₃(P₂O₇)₂ und Tl₂Pd₃(P₂O₇)₂ sind nicht isotyp. Nach Ausweis röntgenographischer Untersuchungen liegt Isotypie zwischen Na₂Pd₃(P₂O₇)₂ und Ag₂Pd₃(P₂O₇)₂ wie auch zwischen Tl₂Pd₃(P₂O₇)₂, Rb₂Pd₃(P₂O₇)₂ und Cs₂Pd₃(P₂O₇)₂ vor (vgl. Kap. 10.2). Die kristallchemisch charakterisierten Palladium(II)-diphosphate weisen in Übereinstimmung mit Palladium(II)-oxoverbindungen wie PdO [174], M-PdSO₄ [34], PdSeO₃ [357] oder Pd₂P₂O₇ [17] sowie den polynären (siehe Metall(II)-palladium(II)-phosphaten Kap. 11) eine quadratisch-planare Suaerstoffkoordination mit interatomaren Abständen $d(Pd-O) \approx 2,00\text{\AA}$ auf $(Ag_2PdP_2O_7,$ $(Na_2Pd_3(P_2O_7)_2), [Tl_2Pd_3(P_2O_7)_2], \{K_4Pd_4(P_2O_7)_3\}: 1,982Å \le d(Pd-O) \le 2,007Å, (2,008Å \le 1,982Å)$ $d(Pd-O) \le 2,025\text{Å}), [2,003\text{\AA} \le d(Pd-O) \le 2,032\text{\AA}], \{1,965\text{\AA} \le d(Pd-O) \le 2,048\text{\AA}\}, \text{vgl. Tab.}$ 10-18 bis 10-21). Silber(I)-palladium(II)-diphosphat $Ag_2PdP_2O_7$ ist isotyp zu Na₂PdP₂O₇ [57]. Die radiale Verzerrung der Phosphatgruppen mit einem langen (1,604Å), zwei mittleren (1,536 bzw. 1,539Å) und einem sehr kurzen Abstand d(P-O) = 1,505Å ist typisch für viele Diphosphate und resultiert aus der unterschiedlichen Koordination der Sauerstoffatome. Während für das Brückensauerstoffatom O2 (K.Z. = 2, 2 x P) ein Abstand d(P-O) = 1,604Å beobachtet wird, weisen die Sauerstoffatome O3 und O4 (K.Z. = 3, P, Pd, Ag) interatomare Abstände $d(P-O) = 1.536\text{\AA}$ bzw. 1.539 Å auf (s. Abb. 10-8). Der mit 1.505 Å kürzeste

Abstand d(P-O) resultiert aus der zusätzlichen Koordination von O1 an ein weiteres Silberatom anstelle von Palladium (K.Z. = 3, P, 2 x Ag). Ähnliche interatomare Abstände d(P-O) wurden auch in Na₂PdP₂O₇ [57] sowie in der zu Ag₂PdP₂O₇ nicht isotypen Verbindung Li₂PdP₂O₇ [56] beobachtet.

Abbildung 10-8. ORTEP-Darstellung der [PdO₄]-Quadrate und [PO₄]-Tetraeder in Ag₂PdP₂O₇. Ellipsoide mit 50% Wahrscheinlichkeit. Abstände in Å.

Jedes [PdO₄]-Planquadrat in Ag₂PdP₂O₇ wird chelatartig von jeweils zwei [P₂O₇]-Einheiten koordiniert, die beim Blick entlang ihrer P-P-Vektoren eine ekliptische Konformation der [PO₃]-Gruppen aufweisen. Durch die chelatartige Koordination an Pd²⁺ kommt es wie in Li₂PdP₂O₇, Na₂PdP₂O₇, Pd₂P₂O₇ und den Diphosphaten M^{II} PdP₂O₇ (M = Hg, Pb, vgl. Kap. 11), zur Ausbildung von gewellten Diphosphatopalladat(II) Bändern \int_{∞}^{1} [Pd(P₂O₇)_{2/2}]²⁻, die sich entlang der kristallographischen *c*-Achse erstrecken (d(Pd-Pd) = 4,093Å; vgl. Abb. 10-9a). Die dreidimensionale Netzwerkstruktur ergibt sich durch Verknüpfung dieser Bänder über Ag⁺-Kationen, die eine verzerrte oktaedrische Sauerstoffkoordination mit interatomaren Abständen von 2,31Å ≤ d(Ag-O) ≤ 2,69Å aufweisen (Abb. 10-9b).

Abbildung 10-9. Ag₂PdP₂O₇. ORTEP-Darstellung der Diphosphatopalladat(II)-Bänder $_{\infty}^{1}$ [Pd(P₂O₇)_{2/2}]² (a) und Projektion der Kristallstruktur entlang [010] (b). Ellipsoide mit 50% Wahrscheinlichkeit. Palladium: rot, Kalium: dunkelgrau, [PO₄]-Tetraeder:gelb, Sauerstoffatome weiß (Progr. DIAMOND v3.1f [230]).

Die Struktur der Diphosphatgruppen spiegelt sich in den spektroskopischen Untersuchungen wieder. In Übereinstimmung mit den Kristallstrukturdaten zeigen die Ergebnisse der ³¹P-MAS-NMR-Messung (Varian Infinity Plus, 9,4 T Magnet, $v_{MAS} = 3,0$ kHz, $v_{Res} = 160$ MHz) das Vorliegen einer einzigen Phosphorlage. Die chemischen Verschiebungsparameter relativ zur ³¹P-Resonanz von 85% H₃PO₄ wurden zu $\delta_{iso} = 21,6$ ppm, $\delta_{aniso} = 79,0$ ppm und $\eta = 0,87$ bestimmt. Der ermittelte Wert der anisotropen chemischen Verschiebung $\delta_{aniso} = 79,0$ ppm, über den sich der Verknüpfungsgrad der Phosphateinheiten bestimmen lässt, steht in Einklang mit dem Vorliegen von Diphosphateinheiten. In den Diphosphaten Pd₂P₂O₇ [17] und HgPdP₂O₇ (vgl. Kap. 11.5) wurden mit $\delta_{aniso} = 110,0$ ppm bzw. 83,0ppm ähnliche anisotrope Verschiebungen gemessen. Wie bereits für Pd₂P₂O₇ beobachtet, ergibt sich mit $\eta = 0,87$ ein im Vergleich zu anderen Diphosphaten (siehe Tabelle 4-3) hoher Asymmetrieparameter, der, wie man an den stark unterschiedlichen terminalen Abständen d(P-O) erkennt, für eine Aufhebung der elektronischen Gleichartigkeit der terminalen

Sauerstoffatome innerhalb der [P₂O₇]-Einheit spricht. Die ermittelte isotrope chemische Verschiebung $\delta_{iso} = 21,6$ ppm liegt im Vergleich zu δ_{iso} von Diphosphaten der Alkali- und Erdalkalimetalle (vgl. Tab. 4-3) ungewöhnlich hoch. Vergleichbar hohe isotrope chemische Verschiebungen wurde bereits für Pd₂P₂O₇ mit $\delta_{iso} = 28,3$ ppm und Ag₄P₂O₇ mit $\delta_{iso} = 7,7$ ppm gemessen [165]. Als Erklärung könnten ähnlich wie in Pd₂P₂O₇ erhebliche kovalente Bindungsanteile zwischen den Ag⁺ bzw. Pd²⁺-Ionen und den Diphosphateinheiten dienen.

Die bislang aus Einkristall- sowie aus Röntgenpulverdaten charakterisierten polynären Palladium(II)-disphosphate der Zusammensetzungen $A_2^{I}PdP_2O_7$ (A = Li, Na, Ag) und M^{II} PdP₂O₇ (M = Hg, Pb, vgl. Kap. 11) weisen eindimensional gewellte Diphosphatopalladat-Bänder ${}^{1}_{\infty}$ [Pd(P₂O₇)_{2/2}]²⁻ auf, die durch eine chelatartige Verknüpfung zweier [P₂O₇]-Einheiten an ein [PdO₄]-Planquadrat resultieren. Die beiden terminalen Sauerstoffatome einer [P₂O₇]-Einheit, die nicht an Pd²⁺ gebunden sind, werden über A^+ (A = Li, Na, Ag) bzw. M^{2+} (M = Hg, Pb) zu einem dreidimensionalen Strukturverband verknüpft. Abhängig von der Größe des Kations, welches zwischen den Bändern liegt, kann der Abstand der Bänder senkrecht zur Ausdehnungsrichtung ebenso variieren, wie die "Phasen"-Verschiebung benachbarter sinusartig gewellter Bänder gegeneinander. Im Unterschied zu den bislang hier beschriebenen Diphosphaten zeigt K₂PdP₂O₇ [58] ein deutlich anderes Verknüpfungsmuster Diphosphatgruppen. zwischen Palladium und den Statt des chelatisierenden Koordinationsmodus ist jede Diphosphatgruppe an vier Planquadraten [Pd^{II}O₄] gebunden; jedes Planquadrat wird von vier [P₂O₇]-Gruppen umgeben. Es entstehen Diphosphatopalladat(II)-Schichten $\sum_{n=1}^{2} [Pd(P_2O_7)_{4/4}]^{2-1}$ (Abb. 10-10). K₂PdP₂O₇ zeigt im Vergleich zu anderen Diphosphaten A_2 PdP₂O₇ (A = Li, Na, Ag) mit $D_{ron} = 3,34$ g/cm³ eine vergleichsweise geringe rötgenographische Dichte $(D_{rön} (\text{Li}_2\text{PdP}_2\text{O}_7) = 3.48 \text{ g/cm}^3, D_{rön}$ $(Na_2PdP_2O_7) = 3.56 \text{ g/cm}^3$, $D_{ron} (Ag_2PdP_2O_7) = 5.01 \text{ g/cm}^3$). Dass es sich hierbei um eine metastabile Modifikation von K₂PdP₂O₇ handelt, die sich in eine stabile Modifikation bestehend aus Diphosphatpalladat(II)-Bändern umwandeln lässt, kann aufgrund eigener Untersuchungen im Vierstoffsystem K/Pd/P/O (vgl. Kap. 10.2) ausgeschlossen werden. Offenbar führen die zur Ladungskompensation der [Pd(P2O7)]²⁻-Bänder benötigten Gegenionen in K2PdP2O7 zu einem größeren Raumbedarf und somit zur Ausbildung von Schichten. Demnach wären für die kristallchemisch noch nicht charakterisierten Diphosphate "Rb₂PdP₂O₇" und "Cs₂PdP₂O₇" (vgl. Kap. 10.2) keine Diphosphato-palladat(II)-Bänder zu erwarten.

Abbildung 10-10. Blick auf die Kristallstruktur von K₂PdP₂O₇ [58] entlang [100] mit Schichten $_{\infty}^{2}$ [Pd(P₂O₇)_{4/4}]²⁻ und K⁺-Ionen (dunkelgrau) zwischen den Schichten. [PdO₄]-Einheiten: rot, [PO₄]-Tetraeder: gelb.

Polynäre Palladium(II)-diphosphate der Zusammensetzung $A_2^{I_2}Pd_3(P_2O_7)_2$ waren vor Beginn der Untersuchungen nur von Cs₂Pd₃(P₂O₇)₂ (Raumgruppe *Cmc2*₁) bekannt [59]. Die neuen Diphosphate **Na₂Pd₃(P₂O₇)₂** und **Tl₂Pd₃(P₂O₇)₂** kristallisieren im tetragonalen (Raumgruppe *P4/nmc*) bzw. orthorhombischen (Raumgruppe *Imam*) Kristallsystem. Während das Natriumpalladium(II)-disphosphat vier Formeleinheiten Na₂Pd₃(P₂O₇)₂ in der Elementarzelle enthält mit zwei kristallographisch unabhängigen Palladium- und einer Phosphorlage, weist die Thalliumverbindung mit ebenfalls vier Formeleinheiten eine dritte kristallographisch unabhängige Palladiumlage in der asymmetrischen Einheit auf. Aufgrund gleicher Koordination der Sauerstoffatome in Na₂Pd₃(P₂O₇)₂ und Tl₂Pd₃(P₂O₇)₂ entweder an zwei P-Atome (K.Z. = 2, Brückensauerstoff) oder an ein P-Atom, ein Palladium- und ein Thalliumbzw. Natriumatom (K.Z. = 3, terminale Sauerstoffatome) ergeben sich für die Diphosphateinheiten nahezu identische Abstände d(P-O₁) \leq 1,520Å, d(P-O_b) = 1,604Å, Tl₂Pd₃(P₂O₇)₂: 1,503Å \leq d(P-O_t) \leq 1,527Å, d(P-O_b) = 1,605Å, siehe Abb. 10-11).

Abbildung 10-11. ORTEP-Darstellung der [PdO₄]-Quadrate und [P₂O₇]-Gruppen in Na₂Pd₃(P₂O₇)₂ (a) und Tl₂Pd₃(P₂O₇)₂ (b) (Abstände in Å). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v3.1f [230]).

In $Na_2Pd_3(P_2O_7)_2$ wird jede $[P_2O_7]$ -Einheit von vier Palladiumatomen koordiniert (jeweils 2xPd1 und 2xPd2). Umgekehrt erfolgt an Pd1 (Wyckhoff-Lage 4e) eine Koordination von während Pd2 (Wyckhoff-Lage 8h) chelatartig von zwei vier [P₂O₇]-Gruppen, Diphosphateinheiten umgeben ist (Abb. 10-12a). Anhand dieses Verknüpfungsmusters von [P₂O₇]-Gruppen mit quadratisch-planaren [Pd^{II}O₄]-Einheiten kommt es in der Kristallstruktur von Na₂Pd₃(P₂O₇)₂ ähnlich wie in K₂PdP₂O₇ [58] (Schichten $\frac{2}{\infty}$ [Pd(P₂O₇)]²⁻) zur Ausbildung von Schichten $\frac{2}{\infty} [(Pd1(P_2O_7)_{4/4}(Pd2(P_2O_7)_{2/4})_2]^2]^2$, die senkrecht zur *c*-Achse liegen (Abb. 10-12a,b). Zusammengehalten werden die einzelnen Schichten über kristallographisch äquivalente Natriumatome, die oktaedrisch von Sauerstoff koordiniert sind (2,28Å $\leq d$ (Na-O) \leq 2,58Å) und oberhalb bzw. unterhalb einer jeden Diphosphatopalladat(II)-Schicht liegen und somit eine dreidimensionale Netzwerkstruktur aufbauen (Abb. 10-12b,c). Betrachtet man $\sum_{n=1}^{2} \left[(Pd1(P_2O_7)_{4/4}(Pd2(P_2O_7)_{2/4})_2)^2 \right]^{2}$ sich den Schichten befindenden die zwischen Natriumatome als eine weitere Schicht (B), so lässt sich die Schichtabfolge A, B, A', B, A, B, A', B... formulieren.

Abbildung 10-12. Na₂Pd₃(P₂O₇)₂. Verknüpfungsmuster von quadratisch-planaren [PdO₄]-Gruppen und [P₂O₇]-Einheiten (a), Kristallstruktur mit Diphosphatopalladat(II)-Schichten $^{2}_{\infty}$ [(Pd1(P₂O₇)_{4/4}(Pd2(P₂O₇)_{2/4})₂]²⁻ entlang [001] (b) und [010] (c) Palladium: rot, Kalium: dunkelgrau, [PO₄]-Tetraeder: gelb (Progr. DIAMOND v3.1f [230]).

Trotz gleicher Zusammensetzung weist die Kristallstruktur von **Tl₂Pd₃(P₂O₇)₂** eine zu Na₂Pd₃(P₂O₇)₂ völlig unterschiedliche Topologie auf. In Tl₂Pd₃(P₂O₇)₂ werden die [P₂O₇]-Einheiten, welche mit dem P-PVektor stets senkrecht zur (0 0 1) Ebene ausgerichtet sind, von vier Palladiumatomen koordiniert (1xPd1, 1xPd3, 2xPd2, Abb. 10-13a). Pd1 und Pd3 ihrerseits (Wyckhoff Lage *4e* für Pd1, *4b* für Pd3) werden chelatartig von jeweils zwei [P₂O₇]-Gruppen umgeben, während Pd2 (Wyckhoff Lage *4c*) von vier Diphosphatgruppen umgeben ist (Abb. 10-13a). Hierin begründet sich die zu Na₂Pd₃(P₂O₇)₂ unterschiedliche Topologie. Von den zwei kristallographisch unabhängigen Palladiumlagen in Na₂Pd₃(P₂O₇)₂, besitzt Pd2 mit einer chelatartigen Koordination von zwei [P₂O₇]-Gruppen eine achtfache Zähligkeit. Dieselbe Zähligkeit ergibt sich in Tl₂Pd₃(P₂O₇)₂ durch Addition von zwei vierzähligen Palladiumlagen mit einer ebenfalls chelatartigen Koordination zweier [P2O7]-Gruppen um Pd1 und Pd3. Die in Na₂Pd₃(P₂O₇)₂ zweite (Pd1) bzw. in Tl₂Pd₃(P₂O₇)₂ dritte (Pd2) Palladiumlage weist bei derselben Zähligkeit (4e bzw. 4c) eine Koordination von vier [P₂O₇]-Gruppen auf. Durch das Verknüpfungsmuster von [Pd^{II}O₄]-Einheiten mit Diphosphatgruppen in $Tl_2Pd_3(P_2O_7)_2$ werden entlang der kristallographischen c-Achse achtgliedrige, ringförmige Kanäle erzeugt, in welchen Tl⁺-Kationen lokalisiert sind (Abb. 10-13b). Die achtgliedrigen Ringe werden durch alternierende Verknüpfung von vier [P₂O₇]-Gruppen mit vier [PdO₄]-Planquadraten derart aufgebaut, dass sich eine Ringabfolge [P₂O₇]-[Pd3O₄]-[P₂O₇]-[Pd1O₄]-[P₂O₇]-[Pd3O₄]-[P₂O₇]-[Pd2O₄] ergibt (Abb. 10-13b). Alle in der resultierenden dreidimensionalen Tunnelstruktur auftretenden Kanäle sind gleichartig und weisen bei Messung der Abstände gegenüberliegender Palladiumatome in der Ebene (0 0 1) eine Weite von 5,0.6,6Å auf. Die Tl⁺-Ionen inmitten der Kanäle weisen eine verzerrt würfelförmige Sauerstoffkoordination mit interatomaren Abständen 2,91Å $\leq d(TI-O) \leq 3,26$ auf. Eine strukturelle Ähnlichkeit zu Tl₂Pd₃(P₂O₇)₂ ergibt sich für die Kristallstruktur von $Cs_2Pd_3(P_2O_7)_2$ (Raumgruppe $Cmc2_1$) [59]. Analog zur Thalliumverbindung liegen in $Cs_2Pd_3(P_2O_7)_2$ vierfach durch Palladiumatome koordinierte $[P_2O_7]$ -Gruppen sowie insgesamt drei kristallographisch unabhängige Palladiumlagen vor, von denen jedoch im Unterschied zu $Tl_2Pd_3(P_2O_7)_2$ zwei Lagen von jeweils drei $[P_2O_7]$ -Einheiten umgeben sind (1xPd von zwei [P2O7]-Gruppen umgeben, vgl. Tl2Pd3(P2O7)2: 2xPd von zwei, 1xPd von vier [P2O7]-Gruppen umgeben) was eine leicht modifizierte Topologie zur Folge hat. Die aufgrund des Verknüpfungsmusters resultierende Tunnelstruktur von Cs₂Pd₃(P₂O₇)₂ weist Kanäle auf, die durch 12-gliedrige Ringe begrenzt sind und mit Abmessungen von 3,7Å-9,5Å entsprechend größer sind als jene in $Tl_2Pd_3(P_2O_7)_2$.

Abbildung 10-13. Tl₂Pd₃(P₂O₇)₂.Verknüpfungsmuster von quadratisch-planaren [PdO₄]-Gruppen und [P₂O₇]-Einheiten als ORTEP-Darstellung (a), perspektivische Darstellung der Kristallstruktur entlang [001] (b) und [010] (c). Ellipsoide mit 50% Wahrscheinlichkeit. Palladium: rot, Thallium: dunkelgrau, [PO₄]-Tetraeder: gelb.

Die bislang kristallchemisch charakterisierten polynären Palladium(II)-diphosphate konnten bei Untersuchungen in den Vierstoffsystemen A/Pd/P/O (A = Alkalimetall, Ag, Tl) um die Zusammensetzung $A_4^IPd_4(P_2O_7)_3$ (A = K) erweitert werden. **K**₄**Pd**₄(**P**₂**O**₇)₃ kristallisiert im monoklinen Kristallsystem der Raumgruppe $P2_1/n$ und enthält acht Formeleinheiten in der Elementarzelle mit acht bzw. 12 kristallographisch unabhängigen Palladium- bzw. Phosphorlagen in der asymmetrischen Einheit (vgl. Abb. 10-14). Die [P₂O₇]-Gruppen zeigen eine ähnliche radiale Verzerrung wie jene in den Diphosphaten Ag₂PdP₂O₇, Tl₂Pd₃(P₂O₇)₂ und Na₂Pd₃(P₂O₇)₂. Aus den 12 kristallographisch unterschiedlichen Phosphoratomen der asymmetrischen Einheit ergeben sich sechs kristallographisch unabhängige [P₂O₇]-Gruppen. Die Verknüpfung dieser Diphosphatgruppen erfolgt entweder durch Koordination an drei (O₃P1-O-P4O₃, O₃P2-O-P3O₃) oder fünf (O₃P5-O-P6O₃, O₃P7-O-P8O₃, O₃P9-O-P12O₃, O₃P10-O-P11O₃) quadratisch-planare [PdO₄]-Einheiten (vgl. Abb. 10-15a). Die [PdO₄]-Gruppen ihrerseits werden im Fall von Pd1 und Pd3 von jeweils vier [P₂O₇]-Gruppen koordiniert, während die restlichen kristallographisch unabhängigen Palladium-Atome (Pd2, Pd4-Pd8) von jeweils zwei Diphosphateinheiten einzähnig und von einer dritten chelatartig umgeben sind (Abb. 10-15a). Durch diese Art der Eckenverknüpfung von [P₂O₇]-Gruppen mit [PdO₄]-Planquadraten werden in der daraus resultierenden dreidimensionalen Netzwerkstruktur ähnlich wie in den Diphosphaten $Cs_2Pd_3(P_2O_7)_2$ [59] und $Tl_2Pd_3(P_2O_7)_2$ schmale Kanäle parallel zur a-Achse erzeugt, in denen die K⁺-Ionen eingelagert sind. Die Kanäle setzen sich so aus 28-gliedrigen, ringförmig alternierenden [P₂O₇]- und [PdO₄]-Einheiten zusammen, dass sich wie in Cs₂Pd₃(P₂O₇)₂ ein Fischgrätenmuster ergibt (Abb. 10-15b), welches Ähnlichkeit mit jenem in $Cs_2Pd_3(P_2O_7)_2$ aufweist. In Analogie zu $Cs_2Pd_3(P_2O_7)_2$ und $Tl_2Pd_3(P_2O_7)_2$ liegen in der Tunnelstruktur von $K_4Pd_4(P_2O_7)_3$ untereinander gleichartige Kanäle vor, die in der Ebene (1 0 0) eine Weite von etwa 31,0 ·6,0Å (Abmessung von jeweils gegenüberliegenden Palladiumatomen) aufweisen. Innerhalb einer 28-gliedrigen, ringförmigen Einheit befinden sich in der Ebene (1 0 0) sieben der insgesamt acht kristallographisch unabhängigen K⁺-Ionen (Abb. 10-15b), die radial verzerrte [KO₆]-, [KO₇]- und [KO₈]-Einheiten mit interatomaren Abständen von 2,58Å $\leq d$ (K-O) \leq 3,16Å aufweisen. Experimente Darstellung isotyper zur Verbindungen der Zusammensetzung $A_4^{I}Pd_4(P_2O_7)_3$ (A = Li, Na, Rb, Cs, Ag, Tl) schlugen fehl (vgl. Abschn. 10.2). Das mit Tl₄Cu₄(P₂O₇)₃ (Raumgruppe *Pcca*) [358] bislang einzig bekannte Diphosphat mit einer zu $K_4Pd_4(P_2O_7)_3$ analogen Zusammensetzung weist ebenfalls eine dreidimensionale Tunnelstruktur auf, bei der jedoch quadratisch-pyramidale und trigonal-bipyramidale [Cu^{II}O₅]-Polyeder vorliegen.

Abbildung 10-14. ORTEP-Darstellung der [PdO₄]-Quadrate (a) und [PO₄]-Tetraeder (b) in $K_4Pd_4(P_2O_7)_3$ (Abstände in Å). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v3.1f [230]).

Abbildung 10-15. $K_4Pd_4(P_2O_7)_3$. Verknüpfungsmuster der [PdO₄]-Gruppen und [P₂O₇]-Einheiten als ORTEP-Plot (a) und Projektion der Tunnelstruktur entlang [100] (b). Ellipsoide mit 50% Wahrscheinlichkeit. Palladium: rot Kalium: dunkelgrau, [PO₄]-Tetraeder:gelb, Sauerstoffatome weiße Kugeln.

11 Polynäre Palladium(II)-phosphate $M^{II}PdP_2O_7$ und $M^{II}Pd_2(PO_4)_2$

11.1 Einleitung

Mit der Darstellung und strukturchemischen Charakterisierung von polynären Palladium(II)phosphaten mit einwertigen Metallkationen (s. Kap. 10), ergab sich die Fragestellung nach der Existenz polynärer Palladium(II)-phosphate, die mit zweiwertigen Kationen stabilisiert sind. Während mit Li₂PdP₂O₇ [56], Na₂PdP₂O₇ [57], K₂PdP₂O₇ [58], K_{3.5}Pd_{2.25}(P₂O₇)₂ [58] sowie Cs₂Pd₃(P₂O₇)₂ [59] Metall(I)-palladium(II)-phosphate bereits untersucht wurden, waren bis zu Beginn der vorliegenden Arbeit Metall(II)-palladium(II)-phosphate unbekannt. Voruntersuchungen zur Darstellung von Palladium(II)-orthophosphat "Pd₃(PO₄)₂" zeigten, dass die Verbindung unbekannt und als Gleichgewichtsphase zwischen PdOs und Pd2P2O7s nicht darstellbar ist. So wurde neben dem Aufbau neuartiger Netzwerkstrukturen, die sich aus der Verknüpfung der zweiwertigen Metallkationen mit Diphosphatopalladat(II)-Bändern ergeben sollten, insbesondere das Ziel verfolgt, ein Palladium(II)-orthophosphat in Gegenwart von M^{2+} -Ionen zu stabilisieren. Als Syntheseziele vielversprechend und vergleichsweise leicht kristallisierbar erschienen polynäre Phosphate mit Quecksilber(II) und Flüchtigkeit dieser Blei(II) wegen der leichten Elemente bei chemischen Transportreaktionen. Zudem wurden ³¹P-MAS-NMR spektroskopische Untersuchungen an polynären Palladiumphosphaten angestrebt, wegen der bislang fehlenden Kenntnis über chemische Verschiebungen in solchen Verbindungen. Das vorliegende Kapitel berichtet über ³¹P-MAS-NMR Untersuchung Strukturanalyse und Kristallisation, der Synthese, wasserfreien polynären Phosphate $M^{II}PdP_2O_7$ (M = Hg, Pb) und $Hg^{II}Pd_2(PO_4)_2$ [359]. hinaus wird das neue polynäre Blei(II)-palladium(II)-silico-diphosphat Darüber Pb^{II}PdSi^{IV}(P₂O₇)₂ beschrieben [359].

11.2 Darstellung mikrokristalliner Pulver

11.2.1 Synthese von Diphosphaten $M^{II}PdP_2O_7$ (M = Ca, Sr, Ba, Zn, Hg, Pb)

Zur Darstellung polynärer Palladium(II)-diphosphate der Zusammensetzung $M^{II}PdP_2O_7$ (M = Ca, Zn, Hg, Pb) wurde Palladium-Pulver (reinst, UMICORE AG, Hanau) zunächst in konz. HNO₃ bei ca. 180°C vollständig gelöst und mit der äquivalenten Menge an $M^{II}O$ (M = Ca, Zn, Hg, Pb, p. A., Fa. Merck, Darmstadt) und 0,1 molarer Phosphorsäure in einem Becherglas unter vorsichtiger Temperatursteigerung bis auf 200°C erhitzt (Gleichung 11.1). Die intensiv rot-braune Lösung wurde bis zur Trockenen eingedampft und lieferte einen braunen Rückstand, der nach Ausweis von *IP*-Guinier-Aufnahmen bereits aus schlecht kristallisiertem Diphosphat $M^{II}PdP_2O_7$ (M = Ca, Zn, Hg, Pb) bestand. Zur Vervollständigung der Umsetzung, Vertreibung nitroser Gase sowie zur Verbesserung der Kristallinität der mikrokristallinen Trockenrückstände, wurden diese anschließend in einer Kieselglasampulle an Luft bei Temperaturen zwischen 500 (Hg) und 800°C (Ca, Zn, Pb) bis zu 72h isotherm getempert. Hierdurch entstanden einphasige Proben (*IP*-Guinier-Aufnahmen) von mikrokristallinem, gelbem HgPdP₂O₇ bzw. der braunen Diphosphate $M^{II}PdP_2O_7$ (M = Ca, Zn, Pb). Einige der so erhaltenen Pulver waren geringfügig mit PdO verunreinigt. Bereits ein 5% iger Überschuss an H₃PO₄ führte zur Bildung nachweisbarer Mengen (Guinier-Aufnahme) an Metaphosphaten Pd(PO₃)₂ [27] und $M_2P_4O_{12}$ neben den Diphosphaten $M^{II}PdP_2O_7$. Bei Verwendung der in der Literatur häufig als Alternative zur Phosphorsäure verwendeten Ammoniumphosphate (NH₄)₂HPO₄ bzw. (NH₄)H₂PO₄, waren die erhaltenen Produkte in signifikantem Maße mit elementarem Palladium verunreinigt. Offenbar reduziert der beim Tempern der Proben freigesetzte Ammoniak Palladium(II) zum Metall.

In ähnlicher Weise in salpetersaurer Lösung durchgeführte Experimente zur Darstellung der Diphosphate $M^{II}PdP_2O_7$ (M = Sr, Ba) unter Zusatz von $M^{II}CO_3$ (M = Sr, Ba) führten beim Einengen zur Bildung der schwerlöslichen Nitrate $M^{II}(NO_3)_2$ (M = Sr, Ba). Hinweise auf polynäre Diphosphate wurden auch nach Tempern bei 800°C nicht beobachtet. Als weitere Darstellungsmethode für Verbindungen $M^{II}PdP_2O_7$ wurden deshalb Festkörperreaktionen in evakuierten Kieselglasampullen, ausgehend von Pd_2P_2O_7 [17] und den Diphosphaten $M_2P_2O_7$ (M = Ca, Sr, Ba, Zn, Hg, Pb, Gleichung 11.2), herangezogen. Die Darstellung der Ausgangssubstanzen erfolgte nach Literaturangaben. Einwöchiges, isothermes Tempern von Presslingen aus den Ausgangsverbindungen bei Temperaturen zwischen 500 (Hg) und 800°C (Ca, Sr, Ba, Zn, Pb) führte schließlich zu gelben bzw. braunen, mikrokristallinen Pulvern, bei denen es sich nach Ausweis von Guinier-Aufnahmen um die Diphosphate $M^{II}PdP_2O_7$ (M =Hg, Ca, Sr, Ba, Zn, Pb) handelte. Kürzere Temperzeiten bzw. Tempern bei Temperaturen unterhalb von 500°C führte nur zu unvollständiger Umsetzung (*IP*-Guinier-Aufnahmen).

Die Synthese von mikrokristallinen Diphosphaten $M^{II}PdP_2O_7$ (M = Ca, Sr, Ba, Zn, Hg, Pb) gelang auch noch auf einem dritten Reaktionsweg. Dazu wurden PdO (hergestellt durch Auflösen von Palladium in konz. HNO₃ und anschließendem Abrauchen der "Pd(NO₃)₂" -Lösung bei ca. 180°C), $M^{II}O$ (M = Zn, Hg, Pb) bzw. $M^{II}CO_3$ (M = Ca, Sr, Ba) oder Pb₂(OH)₂CO₃ und die äquivalente Menge an P₂O₅ in geschlossenen Kieselglasampullen (Presslinge, T = 500 - 800°C, Gleichungen 11.3 und 11.4) zur Reaktion gebracht. HgPdP₂O₇ wurde auf diese Weise einphasig dargestellt, alle anderen Reaktionsprodukte enthielten signifikante Mengen an PdO. Röntgenographischen Untersuchungen zufolge sind die Diphosphate $M^{II}PdP_2O_7$ (M = Pb, Ca, Sr, Ba, Zn) isotyp. Alle hier synthetisierten polynären Palladiumphosphate sind in verdünnten Mineralsäuren schwerlöslich. Eine detaillierte Übersicht der experimentellen Parameter zur mikrokristallinen Darstellung der Diphosphate $MPdP_2O_7$ (M = Ca, Sr, Ba, Zn, Hg, Pb) gibt Tabelle 11-1. Zusätzlich zur mikrokristallinen Darstellung der Diphosphate konnten die Verbindungen HgPdP₂O₇ und PbPdP₂O₇ in chemischen Transportexperimenten in evakuierten Kieselglasampullen kristallisiert werden. Details zur Kristallisation werden in Abschnitt 11.3 behandelt.

$$\begin{array}{l} Pd^{II}(NO_{3})_{2,aq} + M^{II}O_{s} + 2 H_{3}PO_{4} \rightarrow \\ M^{II}Pd^{II}P_{2}O_{7,s} + 2 HNO_{3} + 2 H_{2}O \ (M = Zn, Hg, Pb) \end{array}$$
Gleichung 11.1

$$Pd_{2}P_{2}O_{7,s} + M^{II}_{2}P_{2}O_{7,s} \rightarrow 2M^{II}PdP_{2}O_{7,s} (M = Ca, Sr, Ba, Zn, Hg, Pb)$$
Gleichung 11.2
$$PdO_{s} + M^{II}O_{s} + P_{2}O_{5,s} \rightarrow M^{II}PdP_{2}O_{7,s} (M = Zn, Hg, Pb)$$
Gleichung 11.3

$$PdO_{s} + M^{II}CO_{3} + P_{2}O_{5,s} \rightarrow M^{II}PdP_{2}O_{7,s} + CO_{2,g} (M = Ca, Sr, Ba)$$
 Gleichung 11.4

Zusammensetzung	Experiment	Ausgangsverbindungen	Temperatur / °C,
		Einwaagen / mg, ml (mmol)	Temperdauer / h
$CaPd^{II}P_2O_7^{\ a),\ f)}$	A ^{b)}	CaCO ₃ / Pd-Pulver / H ₃ PO ₄	800, 72
		94,0 (0,939) / 100 (0,939) / 19,2 (1,879)	
	B ^{c)}	$Ca_2P_2O_7 / Pd_2P_2O_7$	800, 168
		65,7 (0,258) / 100 (0,258)	
	C ^{d)}	$CaCO_3 / PdO / P_2O_5$	800, 120
		81,77 (0,817) / 100 (0,817) / 115,9 (0,817)	
SrPd ^{II} P ₂ O ₇ ^{a), f)}	B ^{c)}	$Sr_2P_2O_7 / Pd_2P_2O_7$	800, 168
		90,3 (0,258) / 100 (0,258)	
	C ^{d)}	SrCO ₃ / PdO / P ₂ O ₅	800, 120
		120,6 (0,817) / 100 (0,817) / 115,9 (0,817)	
BaPd ^{II} P ₂ O ₇ ^{a), f)}	B ^{c)}	$Ba_2P_2O_7 / Pd_2P_2O_7$	800, 168
		115,9 (0,258) / 100 (0,258)	,
	C ^{d)}	$BaCO_3 / PdO / P_2O_5$	800, 120
		161,2 (0,817) / 100 (0,817) / 115,9 (0,817)	
$ZnPd^{II}P_2O_7^{(a), f)}$	A ^{b)}	ZnO / Pd-Pulver / H ₃ PO ₄	800, 72
2 ,		76,48 (0,939) / 100 (0,939) / 19,2 (1,879)	,
	B ^{c)}	$Zn_2P_2O_7 / Pd_2P_2O_7$	800, 168
		78,78 (0,258) / 100 (0,258)	
	C ^{d)}	ZnO / PdO / P ₂ O ₅	800, 120
		66,48 (0,817) / 100 (0,817) / 115,9 (0,817)	

Tabelle 11-1. Experimentelle Bedingungen zur Darstellung polynärer Palladium(II)disphosphate $M^{II}PdP_2O_7$ (M = Ca, Sr, Ba, Zn, Hg, Pb).

A ^{b)}	HgO / Pd-Pulver / H ₃ PO ₄	500, 24
	203,5 (0,939) / 100 (0,939) / 19,2 (1,879)	,
B ^{c)}	$Hg_2P_2O_7 / Pd_2P_2O_7$	500, 168
	148,7 (0,258) / 100 (0,258)	
C ^{d)}	$HgO / PdO / P_2O_5$	500, 120
	176,9 (0,817) / 100 (0,817) / 115,9 (0,817)	
A ^{b)}	PbO / Pd-Pulver / H ₃ PO ₄	700, 48
	166,88 (0,939) / 100 (0,939) / 19,2 (1,879)	
B ^{c)}	$Pb_2P_2O_7 / Pd_2P_2O_7$	700, 168
	152,1 (0,258) / 100 (0,258)	
C ^{d)}	PbO / PdO / P ₂ O ₅	750, 120
	182,3 (0,817) / 100 (0,817) / 115,9 (0,817)	
	A ^{b)} B ^{c)} C ^{d)} A ^{b)} B ^{c)} C ^{d)}	$ \begin{array}{llllllllllllllllllllllllllllllllllll$

Fortsetzung von Tabelle 11-1.

^{a)} *IP*-Guinier-Aufnahme siehe Anhang 12.3, ^{b)} nasschemische Darstellung; Auflösen der Pulver in konz. HNO₃; Zusatz von H₃PO₄ mit c = 0,0980 mol/l, ^{c)} Festkörperreaktion in geschlossener Kieselglasampulle; Umsetzung der Diphosphate ^{d)} Festkörperreaktion in geschlossener Kieselglasampulle; Umsetzung der Oxide bzw. Carbonate ^{e)} *IP*-Guinier-Aufnahme siehe Abschnitt 11.4, ^{f)} Diphosphate sind isotyp.

11.2.2 Synthese der Orthophosphate $M^{II}Pd_2(PO_4)_2$ (M = Hg, Ca, Cd)

Eine Mischung aus 0,1 g (0,939 mmol) PdO (hergestellt durch Abrauchen von PdCl₂ mit konz. HNO3 bei ca. 180°C) und 0,102 g HgO (0,469 mmol) wurde mit einem Überschuss an konzentrierter H₃PO₄ (1,0 ml, 85%, p. A., Fa. Merck) versetzt und in einer evakuierten Ampulle aus Borosilikatglas ($q = 0.5 \text{ cm}^2$, l = 10.0 cm, $V = 5.0 \text{ cm}^3$) in einem cold-seal Autoklaven [87] unter Zugabe von Pentan als Gegendruckmittel 7 Tage bei 400°C ($p \approx 100$ bar) erhitzt (Aufheizrate: 5°/h, Abkühlrate 1°/h). Dabei wurden neben dunkelbraunen, prismatischen Kristallen von HgPd₂(PO₄)₂ (Abbildung 11-3c) mit Kantenlängen bis 0,5mm auch rosafarbene, tafelige Kristalle (bis 2,5 mm Kantenlänge) von Hg₃(PO₄)₂ [36] erhalten. Versuche zur Darstellung von mikrokristallinem HgPd₂(PO₄)₂ durch Eindampfen einer phosphorsauren Lösung und anschließendes isothermes Tempern des erhaltenen Trockenrückstands (Presslinge, 7*d*, $T_{max} = 600^{\circ}$ C) lieferten nicht das angestrebte Produkt. Das so erhaltene Beugungsmuster zeigte stark verbreiterte Reflexe, welche nicht mit jenem von HgPd₂(PO₄)₂ oder dem Muster der literaturbekannten Phosphate von Quecksilber oder Palladium übereinstimmen (Abbildung 11-1). Temperaturen oberhalb von 700°C führten zu einer Zersetzung der unbekannten Phase. Dabei entstand PdO und vermutlich Hgfl., P4O10,g und O_{2,g}. Analoge Experimente (500 $\leq T \leq$ 750°C, 7*d*), in welchen Ca²⁺ und Cd²⁺ (Verwendung von CaCO₃ und CdO) statt Hg²⁺ eingesetzt wurden, führten zu den Phosphaten $M^{II}Pd_2(PO_4)_2$ (M = Ca, Cd). Beide sind isotyp zur Quecksilberverbindung. Alternativ erfolgte die Darstellung der Orthophosphate auch über Festkörperreaktionen aus PdO, CaCO₃ bzw. CdO und P₂O₅ (Presslinge, $T = 700^{\circ}$ C, 7d). Eine detaillierte Übersicht zu den durchgeführten Experimenten bei der Darstellung von $M^{II}Pd_2(PO_4)_2$ (M = Hg, Ca, Cd) gibt Tabelle 11-2.

Abbildung 11-1. *IP*-Guinier-Aufnahme des nicht näher charakterisierten Produkts aus einem Experiment zur "nasschemischen" Darstellung von HgPd₂(PO₄)₂.

Tabelle 11-2. Experimentelle Bedingungen zur Darstellung polynärer Palladium(II)orthophosphate $M^{II}Pd_2(PO_4)_2$ (M = Hg, Ca, Cd).

Zusammensetzung	Experiment	Ausgangsverbindungen Einwaagen / mg, ml (mmol)	Temperatur / °C, Temperdauer / h
$Hg^{II}Pd^{II}_{2}(PO_{4})_{2}^{a), b)$	A ^{c)}	PdO / HgO / H ₃ PO ₄ 100 (0.817) / 88.4 (0.408) / 1.0 (14.8)	400, 168
	B ^{d)}	Pd / HgO / H ₃ PO ₄ 100 (0,939) / 101,8 (0,469) / 9,6 (0,939)	600, 168
$CaPd^{II}_{2}(PO_{4})_{2} \stackrel{e), f)}{\rightarrow}$	B ^{d)}	Pd / CaCO ₃ / H ₃ PO ₄ 100 (0.939) / 47.0 (0.469) / 9.6 (0.939)	750, 168
	C ^{e)}	PdO / CaCO ₃ / P ₂ O ₅ 100 (0,817) / 40,9 (0,408) / 115,94 (0,817)	700, 120
$CdPd^{II}_{2}(PO_{4})_{2} \stackrel{e), f)}{\rightarrow}$	B ^{d)}	Pd / CdO / H ₃ PO ₄ 100 (0,939) / 60,3 (0,469) / 9,6 (0,939)	500, 168
	C ^{e)}	PdO / CdO / P ₂ O ₅ 100 (0,817) / 52,4 (0,408) / 115,94 (0,817)	700, 120

^{a)} *IP*-Guinier-Aufnahme siehe Abschnitt 11.4, ^{b)} Experimente zur Darstellung von mikrokristallinem HgPd₂(PO₄)₂ führten zu bislang nicht näher charakterisiertem Beugungsdiagramm (Abb. 11-1), ^{c)} Hydrothermalexperiment; $c(H_3PO_4) = 14,8 \text{ mol/l}$, ^{d)} nasschemische Darstellung durch Auflösen der Pulver in konz. HNO₃; Zusatz von H₃PO₄ mit c = 0,0980 mol/l, ^{e)} *IP*-Guinier-Aufnahmen siehe Anhang 12.3, ^{f)} Verbindung ist isotyp zu HgPd₂(PO₄)₂.

Nach der Darstellung der polynären Palladium(II)-orthophosphate $M^{II}Pd_2(PO_4)_2$ (M = Hg, Ca, Cd) wurde in weiteren Experimenten versucht, das zweiwertige Kation M^{II} durch Sr²⁺, Ba²⁺, Zn²⁺ oder Pb²⁺ zu ersetzen. Zur Darstellung von $M^{II}Pd_2(PO_4)_2$ (M = Pb, Zn) wurden neben Festkörperreaktionen ausgehend von PdO mit äquivalenten Mengen an $M^{II}O$ (M = Pb, Zn) und P₂O₅ (Presslinge, 700 $\leq T \leq 800^{\circ}$ C, 7d) auch nasschemische Reaktionen durch Eindampfen einer phosphorsauren Lösung ($c(H_3PO_4) = 0,0980$ mol/l) von "Pd(NO₃)₂ und

 $M^{II}(NO_3)_2$ (M = Pb, Zn) und anschließendem isothermem Tempern des erhaltenen Trockenrückstands (Presslinge, 700 $\leq T \leq 800^{\circ}$ C, 5d) durchgeführt. Aufgrund der Schwerlöslichkeit von Sr(NO₃)₂ und Ba(NO₃)₂ erfolgten Versuche zur Darstellung von $M^{II}Pd_2(PO_4)_2$ (M = Sr, Ba) ausschließlich über Festkörperreaktionen (Presslinge aus PdO und $M^{II}CO_3$ (M = Sr, Ba) in geschlossenen Kieselglasampullen, $T_{max} = 800^{\circ}$ C, 5d). Röntgenographischen Untersuchungen zufolge wurde bei allen Ansätzen statt des gewünschten Orthophosphates stets ein Gemenge aus dem Diphosphat $M^{II}PdP_2O_7$ (M = Sr, Ba, Zn, Pb) und PdO erhalten. Tabelle 11-3 gibt eine Übersicht zu den durchgeführten Experimenten und deren röntgenographischer Charakterisierung.

Tabelle 11-3. Experimentelle Bedingungen zur Darstellung polynärer Metall(II)palladium(II)-orthophosphate und deren Charakterisierung anhand von *IP*-Guinier-Aufnahmen.

Zielverbindung	Ausgangsverbindungen / Einwaagen / mg, ml (mmol)	Temperatur / °C, Temperdauer /h	<i>IP</i> -Guinier- Aufnahmen
"SrPd ^{II} ₂ (PO ₄) ₂ "	SrCO ₃ / PdO / P ₂ O ₅ ^{a)} 60,3 (0,41) /100 (0,82) /116 (0,82)	800, 120	$SrPdP_2O_7 + PdO$
"BaPd ^{II} ₂ (PO ₄) ₂ "	BaCO ₃ / PdO / P ₂ O ₅ ^{a)} 80,6 (0,41) /100 (0,82) /116 (0,82)	800, 120	$BaPdP_2O_7 + PdO$
$,,ZnPd^{II}_{2}(PO_{4})_{2}"$	ZnO / Pd / H ₃ PO ₄ ^{b)} 38,2 (0,47) / 100 (0,94) / 9,6 (0,94)	800, 120	$ZnPdP_2O_7 + PdO$
	ZnO / PdO / P ₂ O ₅ ^{a)} 33,2 (0,41) / 100 (0,82) /116 (0,82)	800, 168	$ZnPdP_2O_7 + PdO$
"PbPd ^{II} ₂ (PO ₄) ₂ "	PbO / Pd /H ₃ PO ₄ ^{b)} 104,9 (0,47) /100 (0,94) /9,6 (0,94)	700, 120	$PbPdP_2O_7 + PdO$
	PbO / PdO / P ₂ O ₅ ^{a)} 91,2 (0,41) /100 (0,82) /116 (0,82)	700, 168	$PbPdP_2O_7 + PdO$

^{a)} Festkörperreaktion in geschlossener Kieselglasampulle; Umsetzung der Oxide bzw. Carbonate ^{b)} nasschemische Synthese; Lösen der Pulver in konz. HNO₃; Zusatz von H₃PO₄ mit c = 0,0980 mol/l.

11.2.3 Experimente zur Darstellung weiterer Metall(II)-palladium(II)phosphate

Nach der Synthese polynärer Palladium(II)-diphosphate $M^{II}PdP_2O_7$ (M = Ca, Sr, Ba, Zn, Hg, Pb) wurden auch Experimente zur Darstellung von Diphosphaten $M^{II}PdP_2O_7$ mit zweiwertigen Metallen M^{II} der 3d-Reihe (M = Mn, Co, Ni, Cu) sowie Mg²⁺ und Cd²⁺ durchgeführt. Von besonderem Interesse war die Synthese von $M^{II}PdP_2O_7$ (M = Mg, Mn, Co, Ni, Cu) im Hinblick auf die strukturchemischen Eigenschaften dieser Verbindungsklasse. Dabei wurde speziell mit Kupfer(II) und Nickel(II) das Ziel verfolgt, Netzwerkstrukturen aufzubauen, die sich in Analogie zu Pd₂P₂O₇ aus quadratisch-planaren [$M^{II}O_4$]-Einheiten (M = Pd, Cu, Ni) und [P₂O₇]-Gruppen zusammensetzen. Experimente zur Synthese der

polynären Palladium(II)-diphosphate $M^{II}PdP_2O_7$ ($M = Mg_1$, Mn, Co, Ni, Cu) erfolgten einerseits auf nasschemischem Weg durch Einengen einer phosphorsauren Lösung von "Pd^{II}(NO₃)₂" und $M^{II}(NO_3)_2$ (M = Mg, Mn, Co, Ni, Cu) bis zur Trockenen mit anschließendem Nachtempern der erhaltenen Trockenrückstände an Luft ($600 \le T \le 700^{\circ}$ C. 24h). Nach Ausweis von IP-Guinier-Aufnahmen kommt es dabei zur Bildung der Diphosphate $Pd_2P_2O_7$ und $M_2P_2O_7$ (M = Mn, Ni, Cu, Cd). Für die Zielverbindungen M^{II} PdP₂O₇ (M = Mg, Co) wurden dunkelgrüne, mikrokristalline Feststoffe erhalten, deren Pulverdiffraktogramme keinem der bekannten Palladium- oder Magnesium- bzw. Cobaltphosphate zugeordnet werden können. Nach Ausweis von IP-Guinier-Aufnahmen sind die beiden unbekannten Verbindungen "MPdP₂O₇" (M = Mg, Co) isotyp zueinander (Abbildung 11-2). Tempern dieser Feststoffe bei Temperaturen 700 $\leq T \leq 850^{\circ}$ C (5-7d) führte zur Bildung von $M_2P_4O_{12}$ (M = Mg, Co) und PdO. Sowohl isotherme Temperexperimente ("MgPdP₂O₇": Pressling, $T_{max} = 700$ °C, 168h, Zusatz von 8,0 mg $PdCl_{2,g}$) wie auch Transportreaktionen ("CoPdP₂O₇": Pressling, 700 \rightarrow 600°C, 168h, Zusatz von 8,0 mg PdCl_{2,s}) führten anstatt zu einer Kristallisation nur zu einem Gemenge aus $M^{\text{II}}_{2}P_{4}O_{12}$ (M = Mg, Co) und PdO.

Über diese Synthesen hinaus sollten Festkörperreaktionen durch Umsetzung der Diphosphate $M^{II}_{2}P_{2}O_{7}$ (M = Mg, Mn, Co, Ni, Cu) und $Pd^{II}_{2}P_{2}O_{7}$ (Presslinge in geschlossenen Kieselglasampullen, $700 \le T \le 850^{\circ}$ C, 7*d*, siehe Gleichung 11.5) wie auch der Oxide bzw. Carbonate mit P₂O₅ (Presslinge in geschlossenen Kieselglasampullen, $700 \le T \le 850^{\circ}$ C, 5*d*, siehe Gleichung 11.6) zu den gewünschten Zielverbindungen führen. Mit den Diphosphaten $M^{II}_{2}P_{2}O_{7}$ (M = Mg, Mn, Co, Ni, Cu) reagierte $Pd_{2}P_{2}O_{7}$ unter Bildung der Metall(II)cyclo(tetrametaphosphate) M^{II}P₄O₁₂ und PdO im Sinne einer Umphosphatierungsreaktion. Dieses Reaktionsverhalten ist offenbar Ausdruck für die begrenzte thermodynamische Stabilität von Pd₂P₂O₇ gegen einen Zerfall in PdO und P₄O₁₀. Experimente zur Darstellung von "CdPdP₂O₇" führten stets zur Bildung von CdPd₂(PO₄)₂ neben einer Schmelze von Cd(PO₃)₂ (Gleichung 11.7). Nasschemische Reaktionen bzw. Festkörperreaktionen, bei denen ein Überschuss an H₃PO₄ bzw. P₂O_{5,s} verwendet wurde, führten zu einem Gemenge aus Tetrametaphosphat und Palladium(II)-disphosphat. Details zur Durchführung der Experimente und der röntgenographischen Charakterisierung der erhaltenen mikrokristallinen Pulver sind in Tabelle 11-4 aufgelistet.

Pd₂P₂O₇ +
$$M^{II}_{2}$$
P₂O₇ → M^{II}_{2} P₄O₁₂ + 2 PdO (M = Mg, Mn, Co, Ni, Cu) Gleichung 11.5
2 PdO + 2 M^{II} O + 2 P₂O₅ → M^{II}_{2} P₄O₁₂ + 2 PdO (M = Mg, Mn, Co, Ni, Cu) Gleichung 11.6

$$Cd_2P_2O_7 + Pd_2P_2O_7 \rightarrow CdPd_2(PO_4)_2 + Cd(PO_3)_2$$

Gleichung 11.7

Zielverbindung	Experiment	Ausgangsverbindungen / Einwaagen / mg, ml (mmol)	Temperatur /°C, Temperdauer / h	<i>IP</i> -Guinier- Aufnahmen
"MgPdP ₂ O ₇ "	A ^{a)}	MgCO ₃ / Pd / H ₃ PO ₄ ^{e)} 79,2 (0,94) / 100 (0,94) /19,2 (1,88)	650, 24	bislang nicht charakterisiert ^{b)}
	B ^{c)}	Mg ₂ P ₂ O ₇ / Pd ₂ P ₂ O ₇ 57,5 (0,258) / 100 (0,258)	850, 168	$\begin{array}{l} Mg_2P_4O_{12} + \\ PdO \end{array}$
	C ^{d)}	MgCO ₃ / PdO / P ₂ O ₅ ^{e)} 68,9 (0,82) / 100 (0,82) / 116 (0,82)	850, 120	$Mg_2P_4O_{12} + PdO$
"CoPdP ₂ O ₇ "	A ^{a)}	Co / Pd / H ₃ PO ₄ ^{e)} 55,4 (0,94) / 100 (0,94) /19,2 (1,88)	600, 24	bislang nicht charakterisiert ^{b)}
	B ^{c)}	Co ₂ P ₂ O ₇ / Pd ₂ P ₂ O ₇ 75,4 (0,258) / 100 (0,258)	700, 168	$\mathrm{Co_2P_4O_{12}} + \mathrm{PdO}$
	C ^{d)}	CoO / PdO / P ₂ O ₅ ^{e)} 61,2 (0,82) /100 (0,82) / 116 (0,82)	700, 120	$Co_2P_4O_{12} + PdO$
"MnPdP ₂ O ₇ "	A ^{a)}	MnO / Pd / H ₃ PO ₄ ^{e)} 66,7 (0,94) / 100 (0,94) /19,2 (1,88)	700, 24	$Mn_2P_2O_7 + Pd_2P_2O_7$
	B ^{c)}	Mn ₂ P ₂ O ₇ / Pd ₂ P ₂ O ₇ 73,3 (0,258) / 100 (0,258)	700, 168	$\frac{Mn_2P_4O_{12}}{PdO} + PdO$
	C ^{d)}	MnO / PdO / P ₂ O ₅ ^{e)} 57,9 (0,82) / 100 (0,82) / 116 (0,82)	700, 120	$\frac{Mn_2P_4O_{12}}{PdO} + \frac{PdO_{12}}{PdO} + PdO_$
"NiPdP ₂ O ₇ "	A ^{a)}	Ni / Pd /H ₃ PO ₄ ^{e)} 55.2 (0.94) / 100 (0.94) /19.2 (1.88)	700, 24	$Ni_2P_2O_7 + Pd_2P_2O_7$
	B ^{c)}	$Ni_2P_2O_7 / Pd_2P_2O_7$ 75.3 (0.258) / 100 (0.258)	700, 168	$Ni_2P_4O_{12} + PdO$
	C ^{d)}	NiO / PdO / P ₂ O ₅ ^{e)} 61,0 (0,82) / 100 (0,82) / 116 (0,82)	700, 120	$Ni_2P_4O_{12} + PdO$
"CuPdP ₂ O ₇ "	A ^{a)}	Cu / Pd /H ₃ PO ₄ ^{e)} 59,7 (0,94) / 100 (0,94) /19,2 (1,88)	700, 24	$\begin{array}{l}Cu_2P_2O_7+\\Pd_2P_2O_7\end{array}$
	B ^{c)}	Cu ₂ P ₂ O ₇ / Pd ₂ P ₂ O ₇ 77,8 (0,258) / 100 (0,258)	700, 168	$\begin{array}{l}Cu_2P_4O_{12}+\\PdO\end{array}$
	C ^{d)}	CuO / PdO / P ₂ O ₅ ^{e)} 65,0 (0,82) / 100 (0,82) / 116 (0,82)	700, 120	$Cu_2P_4O_{12} + PdO$
"CdPdP ₂ O ₇ "	A ^{a)}	CdO / Pd / H ₃ PO ₄ ^{e)} (0,94) / 100 (0,94) / 19,2 (1,88)	700, 24	$Cd_2P_2O_7 + Pd_2P_2O_7$
	B ^{c)}	$Cd_2P_2O_7 / Pd_2P_2O_7$ (0.258 / 100 (0.258)	700, 168	$CdPd_2(PO_4)_2 + Cd(PO_3)_2$

Tabelle 11-4. Experimente zur Darstellung polynärer Metall(II)-palladium(II)-diphosphate $M^{II}PdP_2O_7$ (M = Mg, Mn, Co, Ni, Cu).

^{a)} nasschemische Synthese; Lösen der Pulver in konz. HNO₃; Zusatz von H₃PO₄ mit $c = 0,0980 \text{ mol/l}, {}^{b)}$ *IP*-Guinier-Aufnahme siehe Abbildung 11-2, ^{c)} Festkörperreaktion in geschlossener Kieselglasampulle; Umsetzung der Diphosphate, ^{d)} Festkörperreaktion in geschlossener Kieselglasampulle; Umsetzung der Oxide; ^{e)} Überschuss an H₃PO₄ bzw. P₂O_{5,s} führte zur Bildung von Pd₂P₂O₇ neben $M^{II}_{2}P_{4}O_{12}$.

Abbildung 11-2. *IP*-Guinier-Aufnahmen (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å) der nicht näher charakterisierten, dunkelgrünen, mikrokristallinen Festkörper aus nasschemischen Experimenten zur Darstellung von "MgPdP₂O₇" (a) und "CoPdP₂O₇" (b).

11.3 Kristallisation der Diphosphate $M^{II}PdP_2O_7$ (M = Hg, Pb) und PbPdSi(P₂O₇)₂

HgPdP₂O₇ und PbPdP₂O₇ wurden über chemischen Gasphasentransport kristallisiert. Experimente in evakuierten Kieselglasampullen haben gezeigt, dass der chemische Transport offenbar aufgrund endothermer Reaktion (600 \rightarrow 500°C, Zusatz von 10,0 mg Palladium(II)chlorid) mit Transportraten *TR* ~ 1,5 mg/h für HgPdP₂O₇ und (800 \rightarrow 700°C, Zusatz von 10,0 mg PdCl₂) *TR* ~ 2,5 mg/h für PbPdP₂O₇ erfolgt. Dabei liefert die thermische Zersetzung von PdCl₂ (Gleichung 11.8) das eigentliche Transportmittel (TM) Chlor.

$$PdCl_{2,s} \rightarrow Pd_s + Cl_{2,g}$$
 Gleichung 11.8

Der auf diese Weise erzeugte Partialdruck von $Cl_{2,g}$ ist ausreichend hoch, um gemäß der Transportreaktionen (Gleichung 11.9 und 11.10) transportwirksame Drücke an Pd $Cl_{2,g}$, Hg $Cl_{2,g}$, Pb $Cl_{2,g}$, P4 $O_{10,g}$ und $O_{2,g}$ einzustellen.

$$HgPdP_{2}O_{7,s} + 2 Cl_{2,g} = PdCl_{2,g} + HgCl_{2,g} + \frac{1}{2} P_{4}O_{10,g} + O_{2,g}$$
 Gleichung 11.9

$$PbPdP_{2}O_{7,s} + 2 Cl_{2,g} = PdCl_{2,g} + PbCl_{2,g} + \frac{1}{2} P_{4}O_{10,g} + O_{2,g}$$
Gleichung 11.10

Die Quellenbodenkörper bestanden nach Beendigung der Experimente aus nicht transportiertem HgPdP₂O₇ bzw. PbPdP₂O₇. Diese waren, offenbar unter dem Einfluss des Transportmittels, deutlich besser kristallisiert als die Edukte. Die Verwendung größerer Mengen an Chlor (z. B. p^{0}_{298} (Cl₂) = 1 atm) als TM führte in den Transportexperimenten zur Aufzehrung des Phosphatbodenkörpers und der Bildung von PdCl_{2,s}. Für HgPdP₂O₇ und PbPdP₂O₇ wurden gelbe bzw. rotbraune, tafelige Kristalle mit Kantenlängen bis zu 0,25mm erhalten (Abbildung 11-3a und 11-3b).

Beim chemischen Transport von $Pb^{II}PdP_2O_7$ kam es zusätzlich zur Kristallisation eines polynären Palladium(II)-silico-diphosphats der Zusammensetzung $Pb^{II}PdSi(P_2O_7)_2$ (Abbildung 11-3d). Offensichtlich reicht der bei 800°C aus der thermischen Zersetzung von PdCl_{2,s} resultierende Chlordruck aus, um eine geringe Menge SiO₂ aus der Ampullenwand als SiCl₄ in die Gasphase zu überführen. Eine Kristallisation des Silicophosphats bei Temperaturen unterhalb von 800°C wurde ebenso wenig beobachtet wie ein reversibler Transport der Verbindung. Experimente zur einphasigen Darstellung von Pb^{II}PdSi(P₂O₇)₂ schlugen fehl.

Abbildung 11-3. Aus chemischen Transportexperimenten erhaltene Kristalle von $Hg^{II}PdP_2O_7$ (a), $Pb^{II}PdP_2O_7$ (b) und $Pb^{II}PdSi(P_2O_7)_2$ (d). Kristalle von $HgPd_2(PO_4)_2$ (c) waren über Solvothermalsynthesen zugänglich.

Die prozentualen Atomverhältnisse für die in den polynären Palladium(II)-phosphaten HgPdP₂O₇, HgPd₂(PO₄)₂, PbPdP₂O₇ und PbPdSi(P₂O₇)₂ enthaltenen Nichtsauerstoff-Atome wurden über energiedispersive Mikroanalyse bestimmt. Die Ergebnisse der EDX-Untersuchungen sind in Tabelle 11-5 zusammengestellt. Im Rahmen der Fehlergrenzen stehen die Ergebnisse in guter Übereinstimmung mit den erwarteten Zusammensetzungen.

Probe	Metall(II) / at.%	Pd / at.%	P / at.%	Si / at.%
HgPdP ₂ O ₇				
Kristall 1	7,86	11,83	21,54	-
Kristall 2	8,14	10,21	22,02	-
Kristall 3	8,73	7,69	23,41	-
Mittelwert	8,24	9,91	22,32	-
Theorie	9,09	9,09	18,18	-
HgPd ₂ (PO ₄) ₂				
Kristall 1	6,98	12,38	15,13	-
Kristall 2	5,12	13,74	19,87	-
Kristall 3	8,78	16,09	20,44	-
Mittelwert	6,96	14,07	18,48	-
Theorie	7,69	15,38	15,38	-
PbPdP ₂ O ₇				
Kristall 1	6,73	7,80	15,14	-
Kristall 2	7,21	7,45	16,89	-
Kristall 3	10,37	11,12	19,13	-
Mittelwert	8,10	8,79	17,05	-
Theorie	9,09	9,09	18,18	-
PbPdSi(P ₂ O ₇) ₂				
Kristall 1	6,51	5,12	17,89	5,89
Kristall 2	7,01	5,89	24,56	6,02
Kristall 3	7,33	6,54	25,73	6,75
Mittelwert	6,94	5,85	22,73	6,22
Theorie	4,76	4,76	19,05	4,76

Tabelle 11-5. EDX-Untersuchungen an Kristallen von HgPdP₂O₇, HgPd₂(PO₄)₂, PbPdP₂O₇ und PbPdSi(P_2O_7)₂.

11.4 Röntgenographische Untersuchungen

11.4.1 Untersuchungen an mikrokristallinen Pulvern

Nach der Strukturverfeinerung von HgPdP₂O₇, HgPd₂(PO₄)₂, und PbPdP₂O₇ (s. Abschnitt 11.4.2) wurden die auf Basis von Einkristallstrukturdaten (Tab. 11-10 bis 11-14) simulierten Beugungsdiagramme (Progr. SOS [98]) mit den angefertigten *IP*-Guinier-Aufnahmen der mikrokristallinen Pulver von M^{II} PdP₂O₇ und M^{II} Pd₂(PO₄)₂ (M = Ca, Sr, Ba, Zn, Cd) verglichen (s. Tab. 11-1 und 11-2). Dabei konnte Isotypie von PbPdP₂O₇ zu M^{II} PdP₂O₇ (M = Ca, Sr, Ba, Zn) wie auch von HgPd₂(PO₄)₂ zu M^{II} Pd₂(PO₄)₂ (M = Ca, Cd) festgestellt werden. Zu HgPdP₂O₇ existiert bislang kein isotypes polynäres Palladium(II)-disphosphat. Die Indizierung der Reflexe von HgPdP₂O₇, HgPd₂(PO₄)₂ und PbPdP₂O₇ erfolgte aus *IP*-Guinier-Aufnahmen (siehe Abbildung 10-4a bis 11-6a) unter Zusatz von α -SiO₂. Die Beugungsdiagramme der zu PbPdP₂O₇ und HgPd₂(PO₄)₂ isotypen Verbindungen M^{II} PdP₂O₇

(M = Ca, Sr, Ba, Zn) bzw. $M^{II}Pd_2(PO_4)_2$ (M = Ca, Cd) finden sich in Anhang B (Kap. 13.2). Details zur Vorgehensweise bei der Präzissionsbestimmung der Gitterkonstanten wurden in Abschnitt 6.3 erläutert. Eine Übersicht der aus den Indizierungen (Tab. 11-6 bis 11-8 und Tab. B4-B9, Anhang B) erhaltenen Gitterparameter von $MPdP_2O_7$ (M = Hg, Pb, Ca, Sr, Ba, Zn) und $MPd_2(PO_4)_2$ (M = Hg, Ca, Cd) gibt Tabelle 11-9. Abbildungen 11-4 bis 11-6 sowie Abbildungen B4-B9 (Anhang B) zeigen die gute Übereinstimmung zwischen den beobachteten und simulierten Beugungsdiagrammen.

Abbildung 11-4. Guinier-Aufnahme von HgPdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 11-6 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 11-5. Guinier-Aufnahme von PbPdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 11-7 (b). Markierte Reflexe stammen von PdO (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Abbildung 11-6. Guinier-Aufnahme von HgPd₂(PO₄)₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 11-8 (b) (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).
					eure	0001		
h	k	1	$4\theta_{calc}$	$4\theta_{obs}$	Δ	$I_{calc}^{a)}$	$I_{obs}{}^{\mathrm{a}),\mathrm{b})}$	d_{calc} /Å
1	1	0	38,502	38,452	0,07	84	86	4,6126
0	0	2	41,066	41,031	0,05	411	463	4,3254
1	1	-1	42,519	42,527	0,01	277	273	4,1750
2	0	-2	44,130	44,092	0,06	120	150	4,0284
1	1	1	44,828	44,815	0,02	1000	1000	3,9643
2	0	2	52,523	52,512	0,02	18	25	3,3913
3	1	-1	54,243	54,198	0,09	321	316	3,2877
1	1	-2	54,743	54,760	0,03	389	392	3,2546
1	1	2	58,368	58,372	0,01	222	246	3,0572
3	1	-2	62,781	62,746	0,08	54	71	2,8488
1	1	3	75,648	75,697	0,13	162	148	2,3750
3	1	-3	76,473	76,500	0,07	118	105	2,3510
2	2	0	78,149	78,155	0,02	332	211	2,3031
2	2	-2	86,598	86,649	0,15	226	166	2,0866
3	1	3	88,218	88,173	0,14	113	112	2,0523
4	0	-4	90,012	89,998	0,04	118	135	2,0128
3	1	-4	93,446	93,438	0,03	22	21	1,9426
1	1	4	95,096	95,092	0,01	21	21	1,9108
4	2	-2	96,070	96,035	0,11	17	9	1,8931
7	1	-2	100,920	100,907	0,04	30	25	1,8072
3	1	4	106,889	106,902	0,05	37	48	1,7128
6	2	-1	108,347	108,336	0,04	6	27	1,6918
0	2	4	113,690	113,688	0,01	2	9	1,6183
4	2	-4	118,930	118,940	0,04	15	9	1,5530
7	1	-4	120,200	121,024	0,00	17	26	1,5287
10	0	-2	133,602	133,620	0,07	10	21	1,3991

Tabelle 11-6. HgPdP₂O₇. Indizierung des Guinier-Diagramms (Abb. 11-4) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Alle Reflexe im untersuchten Winkelbereich mit $I_{calc} > 5$ wurden beobachtet.

h	k	1	$4\theta_{\rm calc}$	$4\theta_{\rm obs}$	Δ	I _{calc} ^{a)}	$I_{ m obs}$ ^{a), b)}	d_{calc} /Å
1	0	1	27,281	27,479	0,20	293	355	6,4861
2	1	0	39,520	39,613	0,14	8	12	4,4787
2	1	1	46,315	46,388	0,13	1000	1000	3,8316
0	0	2	48,085	48,060	0,05	113	109	3,7002
4	0	0	52,789	52,752	0,07	167	142	3,3761
2	0	2	54,958	54,892	0,13	559	381	3,2469
0	2	0	59,380	59,425	0,10	57	42	3,0042
2	2	0	65,157	65,197	0,10	464	737	2,7445
1	2	1	65,612	65,615	0,01	290	311	2,7275
3	2	1	75,930	75,943	0,04	41	24	2,3676
0	2	2	77,119	77,170	0,14	251	183	2,3313
2	2	2	81,792	81,774	0,05	32	22	2,2052
2	1	3	83,525	83,473	0,15	200	250	2,1623
6	0	1	83,895	83,843	0,15	16	140	2,1532
5	2	1	93,664	93,635	0,09	39	29	1,9388
0	3	1	93,855	93,835	0,06	45	34	1,9349
4	2	2	94,670	94,658	0,04	311	272	1,9190
4	1	3	96,216	96,193	0,08	193	116	1,8902
0	0	4	98,468	98,481	0,04	75	81	1,8489
6	2	0	101,285	101,294	0,03	117	79	1,8008
2	0	4	102,355	102,350	0,02	11	24	1,7835
6	0	3	110,466	110,451	0,05	12	27	1,6618
4	0	4	113,441	113,476	0,12	83	45	1,6211
6	1	3	114,984	115,019	0,13	57	22	1,6012
8	1	1	116,191	116,210	0,07	52	32	1,5862
0	3	3	118,751	118,734	0,06	46	25	1,5554
6	3	1	126,722	127,128	0,00	60	37	1,4624

Tabelle 11-7. PbPdP₂O₇. Indizierung des Guinier-Diagramms (Abb. 11-5) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2_{calc}\theta - \sin^2\theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.

^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (6 3 1) mit $I_{calc} = 59$.

h	k	1	$4\theta_{calc}$	$4 heta_{obs}$	Δ	I _{calc} ^{a)}	Iobs ^{a), b)}	d_{calc} /Å
0	2	2	38,463	38,542	0,11	148	129	4,6019
1	1	3	45,055	45,071	0,03	865	837	3,9420
1	3	1	54,818	54,900	0,16	1000	1000	3,2465
2	0	2	55,990	55,995	0,01	37	49	3,1842
2	2	0	60,232	60,249	0,04	258	279	2,9640
1	1	5	64,002	64,005	0,01	685	737	2,7942
2	2	2	64,421	64,424	0,01	445	426	2,7766
0	2	6	75,089	75,060	0,08	164	171	2,3944
2	2	4	75,750	75,738	0,03	382	352	2,3738
0	4	4	78,067	78,061	0,02	273	227	2,3058
1	3	5	78,525	78,480	0,12	29	29	2,2939
3	1	1	80,128	80,126	0,01	248	216	2,2487
1	5	1	84,506	84,524	0,05	308	345	2,1366
2	4	2	85,314	85,322	0,03	175	165	2,1176
0	0	8	91,568	91,568	0,00	164	144	1,9801
2	2	6	91,981	91,958	0,07	159	153	1,9722
0	6	2	99,057	99,054	0,01	29	32	1,8389
1	5	5	102,387	102,349	0,13	15	11	1,7835
2	6	0	110,516	110,508	0,03	35	26	1,6611
2	2	8	111,559	111,527	0,12	41	35	1,6471
3	1	7	114,857	114,824	0,12	56	79	1,6036
4	0	4	115,726	115,753	0,10	209	155	1,5919
1	5	7	118,245	118,252	0,03	65	139	1,5612
3	5	3	119,184	119,181	0,01	89	79	1,5501
0	6	6	120,297	120,280	0,06	52	38	1,5373
2	6	4	120,762	120,740	0,08	74	55	1,5320
1	7	3	122,498	122,519	0,08	57	47	1,5118
4	4	0	125,220	125,188	0,13	112	75	1,4828
0	8	0	131,622	131,627	0,02	94	44	1,4178
4	2	6	132,783	132,807	0,10	39	30	1,4066
1	1	11	133,582	133,567	0,06	72	51	1,3995
3	1	9	134,460	134,457	0,01	83	47	1,3914

Tabelle 11-8. HgPd₂(PO₄)₂. Indizierung des Guinier-Diagramms (Abb. 11-6) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc} - \sin^2 \theta_{obs}| \cdot 1000$.

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.

^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (2 0 10) mit $I_{calc} = 36$.

Raumgruppe, <i>n</i> _{beob} : Anzahl der verwendeten Reflexe.						
RG	a / Å	b / Å β/ °	c / Å	$V/\text{\AA}^3$	<i>n</i> _{beob}	Winkelbereich / $^{\circ}$
C2/c	14,117(2)	4,884(1) 100,90(1)	8,802(1)	595,9(1)	26	$19,23 \le 2\theta \le 66,81$
Pnma	13,529(2)	6.002(1)	7,407(1)	601,2(1)	32	$13,11 \le 2\theta \le 58,56$
Pnma	13,495(2)	6,012(1)	7,396(1)	600,1(1)	26	$13,74 \le 2\theta \le 63,57$
Pnma	13,851(2)	6,0963(9)	7,5501(9)	637,5(1)	36	$12,84 \le 2\theta \le 63,41$
Pnma	12,972(1)	5,8669(4)	7,2545(6)	552,11(8)	27	$13,99 \le 2\theta \le 71,03$
Pnma	13,453(2)	5,950(1)	7,431(1)	594,9(1)	27	$13,13 \le 2\theta \le 54,96$
Pnma	13,884(1)	6,1232(9)	7,569(1)	643,5(1)	31	$12,87 \le 2\theta \le 67,29$
Fddd	6,9211(5)	11,420(1)	15,639(1)	1234,2(2)	22	$15,95 \le 2\theta \le 71,86$
Fddd	6,954(1)	11,344(2)	15,845(2)	1249,8(2)	32	$19,27 \le 2\theta \le 67,23$
Fddd	6,9090(7)	11,684(1)	15,599(2)	1259,3(2)	25	$15,94 \le 2\theta \le 74,07$
	beob: An RG C2/c Pnma Pnma Pnma Pnma Fnma Fddd Fddd Fddd	beob: Anzahl der ver RG a / Å C2/c 14,117(2) Pnma 13,529(2) Pnma 13,495(2) Pnma 13,851(2) Pnma 13,495(2) Pnma 13,851(2) Pnma 13,453(2) Pnma 13,884(1) Fddd 6,9211(5) Fddd 6,9090(7)	beob: Anzahl der verwendetenRG $a / Å$ $b / Å$ $\beta / °$ $\beta / °$ $C2/c$ 14,117(2)4,884(1)100,90(1)13,529(2)6.002(1)Pnma13,495(2)6,012(1)Pnma13,851(2)6,0963(9)Pnma12,972(1)5,8669(4)Pnma13,453(2)5,950(1)Pnma13,884(1)6,1232(9)Fddd6,9211(5)11,420(1)Fddd6,954(1)11,344(2)Fddd6,9090(7)11,684(1)	beob: Anzahl der verwendeten Reflexe.RG $a/Å$ $b/Å$ $\beta/°$ $c/Å$ C2/c14,117(2)4,884(1) 100,90(1)8,802(1)Pnma13,529(2)6.002(1)7,407(1)Pnma13,495(2)6,012(1)7,396(1)Pnma13,851(2)6,0963(9)7,5501(9)Pnma12,972(1)5,8669(4)7,2545(6)Pnma13,453(2)5,950(1)7,431(1)Pnma13,884(1)6,1232(9)7,569(1)Fddd6,9211(5)11,420(1)15,639(1)Fddd6,954(1)11,344(2)15,845(2)Fddd6,9090(7)11,684(1)15,599(2)	beob: Anzahl der verwendeten Reflexe.RG $a/Å$ $b/Å$ $\beta/°$ $c/Å$ $V/Å^3$ $C2/c$ 14,117(2)4,884(1) 100,90(1)8,802(1)595,9(1)Pnma13,529(2)6.002(1)7,407(1)601,2(1)Pnma13,495(2)6,012(1)7,396(1)600,1(1)Pnma13,851(2)6,0963(9)7,5501(9)637,5(1)Pnma12,972(1)5,8669(4)7,2545(6)552,11(8)Pnma13,453(2)5,950(1)7,431(1)594,9(1)Pnma13,884(1)6,1232(9)7,569(1)643,5(1)Fddd6,9211(5)11,420(1)15,639(1)1234,2(2)Fddd6,954(1)11,344(2)15,845(2)1249,8(2)Fddd6,9090(7)11,684(1)15,599(2)1259,3(2)	beob: Anzahl der verwendeten Reflexe.RG $a/Å$ $b/Å$ $\beta/°$ $c/Å$ $V/Å^3$ n_{beob} C2/c14,117(2)4,884(1) 100,90(1)8,802(1)595,9(1)26Pnma13,529(2)6.002(1)7,407(1)601,2(1)32Pnma13,495(2)6,012(1)7,396(1)600,1(1)26Pnma13,851(2)6,0963(9)7,5501(9)637,5(1)36Pnma12,972(1)5,8669(4)7,2545(6)552,11(8)27Pnma13,453(2)5,950(1)7,431(1)594,9(1)27Pnma13,884(1)6,1232(9)7,569(1)643,5(1)31Fddd6,9211(5)11,420(1)15,639(1)1234,2(2)22Fddd6,954(1)11,344(2)15,845(2)1249,8(2)32Fddd6,9090(7)11,684(1)15,599(2)1259,3(2)25

Tabelle 11-9. Übersicht zur Bestimmung der Gitterparameter von Diphosphaten $MPdP_2O_7$ (M = Hg, Pb, Ca, Sr, Ba, Zn) und Orthophosphaten $MPd_2(PO_4)_2$ (M = Hg, Ca, Cd). RG: Raumgruppe, n_{heab} : Anzahl der verwendeten Reflexe.

11.4.2 Kristallstrukturanalysen

Zur Bestimmung und Verfeinerung der Kristallstrukturen von HgPdP₂O₇, HgPd₂(PO₄)₂, PbPdP₂O₇ und PbPdSi(P₂O₇)₂ wurden unter dem Polarisationsmikroskop Kristalle bzw. Kristallfragmente mit gut ausgebildeteten Flächen ausgewählt, die weder Verwachsungen noch Hinweise auf eine Verzwilligung zeigten. Die Kristalle wurden auf einem Glasfaden befestigt und an einem Einkristall-Röntgendiffraktometer [K-CCD, Fa. Enraf-Nonius (HgPdP₂O₇), bzw. IPDS-2T, Fa. STOE (HgPd₂(PO₄)₂, PbPdP₂O₇, PbPdSi(P₂O₇)₂] gemessen. Die Messung erfolgte für HgPdP₂O₇ (HgPd₂(PO₄)₂) [PbPdP₂O₇] {PbPdSi(P₂O₇)₂} im Winkelbereich $2.92 \le \theta \le 34.93^\circ$ mit 1284 gemessenen Reflexen, wovon 1105 Reflexe symmetrieunabhängig waren (4,42 $\leq \theta \leq 37,05^{\circ}$, 794 bzw. 522 Reflexe) [3,03 $\leq \theta \leq 36,58^{\circ}$, 1551 bzw. 1136 Reflexe) $\{2,37 \le \theta \le 34,99^\circ, 2219 \text{ bzw. 1598 Reflexe}\}$. Während für $HgPdP_2O_7$ und $PbPdSi(P_2O_7)_2$ nach der Datenreduktion eine empirische Absorptionskorrektur über Multiscans [116] erfolgte, wurde an den Datensätzen von PbPdP₂O₇ und HgPd₂(PO₄)₂ eine numerische Absorptionskorrektur mit dem Programm X-SHAPE [118] vorgenommen. Bei allen vier Phosphaten erfolgte die Strukturlösung mit dem Programm SHELXS-97 [104] im Programmpaket WinGX [106]. Über Direkte Methoden [112] konnten Startpunktlagen für die Schweratome ermittelt werden. Die Strukturverfeinerung an $PbPdP_2O_7$ und $HgPd_2(PO_4)_2$ in den zentrosymmetrischen Raumgruppen Pnma bzw. Fddd verlief ohne Besonderheiten. Für die beiden Verbindungen wurden nach Lokalisierung der Sauerstoffatome aus sukzessiven ⊿-Fourier-Synthesen die Strukturen schließlich unter Berücksichtigung anisotroper Auslenkungsparameter mit SHELXL-97 [105] verfeinert. Die nach den letzten Verfeinerungscyclen erhaltenen Auslenkungsparameter zeigten keinerlei Anomalien. Für PbPdP₂O₇ und HgPd₂(PO₄)₂ wurden Restwerte $R_1 = 0,030$ bzw. $R_1 = 0,033$ erreicht.

Aus den Auslöschungsbedingungen und den Intensitätsverteilungen wurden für HgPdP₂O₇ und PbPdSi(P₂O₇)₂ zunächst die nichtzentrosymmetrischen, monoklinen Raumgruppen Cc bzw. P21 angenommen, für die jedoch schlechte Restwerte sowie physikalisch nicht sinnvolle Auslenkungsparameter (non positive difinite) erhalten wurden. Die Suche nach einer höheren Symmetrie mit den Programmen KPLOT [354] und PLATON [355] lieferte schließlich die zentrosymmetrischen Raumgruppen C2/c für HgPdP₂O₇ und $P2_1/m$ für PbPdSi(P2O7)2. Einen weiteren Hinweis für das Vorliegen einer Spiegelebene in PbPdSi(P_2O_7)₂ lieferte in der niedersymmetrischen Raumgruppe $P2_1$ der batch scale factor BASF = 0.500. Die Auslenkungsparameter der nach der Zelltransformation anisotrop verfeinerten Sauerstoffatome nahmen physikalisch sinnvolle Werte an und zeigten keine Anomalien. Für HgPdP₂O₇ wurde eine vergleichsweise hohe Restelektronendichte $\rho = 4,74$ $e \cdot A^{-3}$ mit einem Abstand von 0,7Å von einem Quecksilberatom beobachtet. Die Strukturverfeinerung endete für HgPdP₂O₇ und PbPdSi(P₂O₇)₂ bei $R_1 = 0,036$ bzw. $R_1 =$ 0,029. Einzelheiten zu den Messungen, Strukturbestimmungen und Verfeinerungen sind in den Tabellen 11-10 und 11-11 zusammengefasst. In den Tabellen 11-12 bis 11-17 sind Lageparameter und ausgewählte interatomare Abstände aufgelistet.

Zusammensetzung	HgPdP ₂ O ₇	$HgPd_2(PO_4)_2$
Kristallsystem	monoklin	orthorhombisch
Raumgruppe	<i>C2/c</i> (Nr. 15)	Fddd (Nr.70)
Gitterparameter / Å	a = 14,117(2)	a = 6,9558(8)
(aus IP-Guinier-Aufnahmen)	b = 4,8840(8)	b = 11,3428(9)
	c = 8,802(1)	c = 15,841(1)
	$\beta = 100,90(1)^{\circ}$	
Zahl der Formeleinheiten, Z	4	8
Absorptionskoeffizient / mm ⁻¹	29,09	30,72
Molmasse / g·mol ⁻¹	480,93	603,33
Zellvolumen / Å ³	595,9(1)	1249,8(2)
Dichte _{röntg.} / g·cm ⁻³	5,328	6,412
Farbe	gelb	braun
Kristallform und	Bruchstück, tafelig	Prisma
Kristallgröße / mm ³	0,1.0,05.0,15	0,1.0,1.0,2
F(000)	848	2128
Temperatur / K	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$	Å, Graphit-Monochromator,	
HgPdP ₂ O ₇ : к-CCD (Fa. Enraf-N	onius), HgPd ₂ (PO ₄) ₂ : IPDS-27	T (Fa. STOE)
Winkelbereich / °	$2,92 \le \theta \le 34,93$	$4,42 \le \theta \le 37,05$
Absorptionskorrektur	Multiscans [116]	Numerisch [117]
Gemessene Reflexe	3480	2139
Unabhängige Reflexe	1284,	794,
	1105 mit $ F_o > 4\sigma(F_o)$	522 mit $ F_o > 4\sigma(F_o)$
Messbereich	$-12 \le h \le 22$	$-11 \le h \le 8$
	$-6 \le k \le 7$	$-15 \le k \le 19$
	$-14 \le l \le 14$	$-26 \le l \le 15$
Benutzte Programme	SHELXS-97 [104], SHELXI	97 [105], WinGX [106]
Parameter	55	34
Gütefaktoren	$R_{int}^{a)} = 0,060$	$R_{int}^{a)} = 0,076$
	$R_1^{(b)} = 0,036$	$R_1^{\rm b)} = 0,033$
	$wR_2^{b} = 0,087$	$wR_2^{(b)} = 0,066$
Goodness of fit ^{b)}	0,972	0,885
Wichtungsschema ^{b)}	A = 0,0441	A = 0,0278
D (11) 111	B = 0,0000	B = 0,0000
Kestelektronendichte	max. $+ 4$, $/4 (0, /4A \text{ von Hg})$	max. $+2,16$ (0,89A von O2)
	min. $-3,12$ (0,66A von Hg)	min. $-2,81 (0, /2 \text{ A von Hg})$

Tabelle 11-10.Kristallographische Daten sowie Angaben zur Datensammlung und
Strukturverfeinerung von HgPdP2O7 und HgPd2(PO4)2.

^{a)} Definition siehe Abschnitt 4.1.3.5,^{b)} Definitionen siehe Abschnitt 4.5.1.

Zusammensetzung	PbPdP ₂ O ₇	$PbPdSi(P_2O_7)_2$
Kristallsystem	orthorhombisch	monoklin
Raumgruppe	<i>Pnma</i> (Nr. 62)	<i>P2</i> ₁ / <i>m</i> (Nr. 11)
Gitterparameter / Å	a = 13,495(2)	a = 4,593(1)
	b = 6,012(1)	<i>b</i> = 17,169(2)
	c = 7,396(1)	c = 6,435(1)
	(IP-Guinier-Aufnahmen)	$\beta = 101,71(1)^{\circ}$
		(Einkristalldaten)
Zahl der Formeleinheiten, Z	4	2
Absorptionskoeffizient / mm ⁻¹	32,03	19,584
Molmasse / g·mol ⁻¹	487,53	689,56
Zellvolumen / Å ³	600,1(1)	496,9(1)
Dichte _{röntg.} / g·cm ⁻³	5,480	4,608
Farbe	rotbraun	gelb
Kristallform und	Prisma	Nadel
Kristallgröße / mm ³	0,2.0,2.0,18	0,15.0,025.0,025
F(000)	856	628
Temperatur / K	293(2)	293(2)
Mo-K α -Strahlung, $\lambda = 0,71073$	A, Graphit-Monochromator, IP	PDS-2T (Fa. STOE).
Winkelbereich / °	$3,03 \le \theta \le 36,58$	$2,37 \le \theta \le 34,99$
Absorptionskorrektur	Multiscans [116]	Multiscans [116]
Gemessene Reflexe	8008	8198
Unabhängige Reflexe	1551,	2219,
	1136 mit $ F_{o} > 4\sigma(F_{o})$	1598 mit $ F_{o} > 4\sigma(F_{o})$
Messbereich	$-21 \le h \le 21$	$-7 \le h \le 7$
	$-9 \le k \le 6$	$-26 \le k \le 27$
	$-12 \le l \le 9$	$-10 \le l \le 8$
Benutzte Programme	SHELXS-97 [104], SHELXI	L-97 [105], WinGX [106]
Parameter	62	101
Gütefaktoren	$R_{int}^{a)} = 0,076$	$R_{int}^{a)} = 0,052$
	$R_1^{b)} = 0,030$	$R_1^{b)} = 0,029$
	$wR_2^{b} = 0,066$	$wR_2^{b} = 0,041$
Goodness of fit ^{b)}	0,921	0,832
Wichtungsschema ^{b)}	A = 0,0276	A = 0,0113
	B = 0,0000	B = 0,0000
Restelektronendichte	max. + 2,04 (1,05Å von Pb) min 3,01 (0,69Å von Pb)	max. + 2,12 (0,55Å von Pd) min 1,60 (1,30 Å von Pb)

Tabelle 11-11.Kristallographische Daten sowie Angaben zur Datensammlung undStrukturverfeinerung von PbPdP2O7 und PbPdSi(P_2O_7)2.

^{a)} Definition siehe Abschnitt 4.1.3.5, ^{b)} Definitionen siehe Abschnitt 4.5.1.

			-		-	
Atom	Position	x	У	Z	U_{eq} / Å ^{2 a)}	
Hg	4 <i>d</i>	1/4	3/4	0	0,0208(1)	
Pd	4a	1/2	1/2	0	0,0151(1)	
Р	8f	0,3985(1)	0,1323(3)	0,2257(1)	0,0148(2)	
01	8f	0,3935(3)	0,322(1)	0,0874(5)	0,023(1)	
O2	4e	1/2	-0,025(1)	1/4	0,017(1)	
O3	8f	0,1792(2)	0,584(1)	-0,2041(5)	0,020(1)	
O4	8f	0,1043(3)	0,7725(8)	0,1214(6)	0,022(1)	

 Tabelle 11-12.
 Atomkoordinaten und isotrope Auslenkungsparameter f
 ür HgPdP2O7.

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle 11-13. Atomkoordinaten und isotrope Au	uslenkungsparameter für HgPd ₂ (PO ₄) ₂ .
--	---

Atom	Position	x	У	Z	U_{eq} / ${ m \AA}^2$ a)	
Hg	8b	3/8	3/8	3/8	0,0074(1)	
Pd	16c	0	1/4	1/4	0,0048(1)	
Р	16g	3/8	3/8	0,1697(1)	0,0054(3)	
01	32h	0,5529(6)	0,3733(5)	0,2263(3)	0,0092(7)	
O2	32h	0,3729(7)	0,4873(3)	0,1138(3)	0,0079(8)	

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

 Tabelle 11-14.
 Atomkoordinaten und isotrope Auslenkungsparameter f
 ür PbPdP2O7.

Atom	Position	x	у	z	U_{eq} / Å ^{2 a)}
Pb	4c	0,24200(2)	1/4	0,25843(3)	0,0208(1)
Pd	4a	0	0	0	0,0158(1)
P1	4c	0,1223(1)	1/4	-0,2852(2)	0,0175(3)
P2	4c	0,0881(1)	-1/4	0,3240(2)	0,0172(3)
01	4c	0,1611(3)	-1/4	0,4735(7)	0,028(1)
02	4c	0,0238(3)	1/4	-0,4052(6)	0,020(1)
03	8d	0,0943(2)	-0,0360(6)	0,2082(5)	0,022(1)
O4	4c	0,2099(3)	1/4	0,5919(6)	0,027(1)
05	8d	0,1189(2)	0,0387(6)	-0,1649(4)	0,021(1)

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle 11-15.Atomkoordinaten und isotrope Auslenkungsparameter für PbPdSi(P2O7)2.

Atom	Position	x	у	z	U_{eq} / ${ m \AA}^2$ a)
Pb	2e	0,8991(1)	1⁄4	0,1392(1)	0,0133(1)
Pd	2e	0,3806(1)	1⁄4	0,6421(1)	0,0054(1)
Si	2a	0	0	0	0,0037(2)
P1	4f	0,8832(2)	0,1227(1)	0,6470(1)	0,0062(1)
P2	4f	0,5676(1)	0,0864(1)	0,2228(1)	0,0056(1)
01	4f	0,6775(5)	0,0708(1)	0,4729(49	0,0101(5)
O2	4f	0,0705(5)	0,0673(1)	0,8046(4)	0,0080(5)
O3	4f	0,0737(5)	0,1701(1)	0,5235(4)	0,0107(5)
O4	4f	0,6899(5)	0,1715(1)	0,7636(4)	0,0108(5)
O5	4f	0,8411(4)	0,0752(1)	0,1256(4)	0,0079(5)
06	4f	0,3448(4)	0,0219(1)	0,1594(4)	0,0072(5)
07	4f	0,4644(5)	0,1692(1)	0,1876(4)	0,0115(5)

^{a)} $U_{eq} = (\frac{1}{3}) \Sigma_i \Sigma_j U_{ij} a_i^* a_j^* a_i \cdot a_j$

Tabelle 11-16.	HgPdP ₂ O ₇ und HgPd ₂ (PO ₄) ₂ . Interatomare Abstände /Å und Winkel /° in
den Polyedern [H	IgO ₂₊₂], [HgO ₄₊₄], [PdO ₄] und [PO ₄]. Standardabweichungen in Klammern.

HgPdP ₂ C	\mathbf{J}_7					
$[HgO_{2+2}]$		[PdO ₄]		$[PO_4]$		
Hg-O3	2,053(4) 2x	Pd-O4	1,993(4) 2x	P-O3	1,513(4)	
Hg-O4	2,501(4) 2x	Pd-O1	2,015(4) 2x	P-O4	1,516(4)	
				P-O1	1,522(4)	
				P-O2	1,612(3)	
Brückenv	winkel $\angle(P,O2,P)$	= 122,7(3)				
HgPd ₂ (P	$O_4)_2$					
$[HgO_{4+4}]$		[PdO ₄]		[PO ₄]		
Hg-O2	2,332(4) 4x	Pd-O2	2,013(5)2x	P-O1	1,529(5) 2x	
Hg-O1	2,660(3) 4x	Pd-O1	2,021(5) 2x	P-O2	1,552(4) 2x	

Tabelle 11-17.PbPdP2O7 und PbPdSi(P2O7)2.Interatomare Abstände / Å und Winkel / °in den Polyedern [PbO6], [PdO4], [PO4] und [SiO6].Standardabweichungen in Klammern.

PbPdP ₂ O ₇						
$[PbO_6]$		[PdO ₄]		[P1O ₄]		
Pb-O1 Pb-O4 Pb-O5 Pb-O3 [P2O4]	2,469(5) 2,494(5) 2,603(3) 2x 2,642(3) 2x	Pd-O3 Pd-O5	2,002(3) 2x 2,022(3) 2x	P1-O4 P1-O5 P1-O2	1,485(5) 1,541(3) 2x 1,591(5)	
P2-O1 P2-O3 P2-O2	1,475(5) 1,537(4) 2x 1,620(5)	Brückenwir	ikel ∠(P1,O2,P2) =	124,5(3)		
PbPdSi(P ₂ C	PbPdSi(P ₂ O ₇) ₂					
$[PbO_6]$		$[PdO_4]$		[SiO ₆]		
Pb-O7 Pb-O4 Pb-O3	2,501(2) 2x 2,763(3) 2x 2,799(3) 2x	Pd-O4 Pd-O3	1,997(2) 2x 2,003(2) 2x	Si-O6 Si-O5 Si-O2	1,744(2) 2x 1,759(2) 2x 1,786(2) 2x	
[P1O ₄]		[P2O ₄]				
P1-O2 P1-O4 P1-O3 P1-O1	1,522(2) 1,524(3) 1,529(3) 1,585(2)	P2-O7 P2-O6 P2-O5 P2-O1	1,500(2) 1,507(2) 1,524(2) 1,608(2)			
Brückenwin	Brückenwinkel \angle (P1,O1,P2) = 129,3(1)					

Abbildung 11-7. Simuliertes Beugungsmuster von PbPdSi(P₂O₇)₂ unter Verwendung der Einkristalldaten aus Tabelle 11-11 (Cu-K α_1 -Strahlung, $\lambda = 1,54051$ Å).

Tabelle 11-18. HgPdP₂O₇ und HgPd₂(PO₄)₂. Neben einem Vergleich der idealisierten Koordinationszahlen (K.Z.) mit der nach HOPPE [151] berechneten effektiven Koordinationszahl (ECoN) der Kationen und Anionen werden anhand von Bindungslänge-Bindungsstärke Betrachtungen partielle Bindungsstärken (eine Zeile tiefer) sowie Gesamtbindungsstärken Σ S [360] aufgeführt.

	01	02	03	O4	K.Z.	ECoN	ΣS
					(für die Kationen)		
HgPdP ₂ O ₇							
Hg			$1,17 (2x)^{a}$ $0,81 (2x)^{b}$	0,18 (2x) 0,25 (2x)	2 + 2	2,71	2,12
Pd	0,97 (2x) 0,55 (2x)			1,03 (2x) 0,59 (2x)	4	3,99	2,28
Р	1,04 1,30	0,72 1,03 (2x)	1,09 1,34	1,06 1,32	4	3,92	4,98
K.Z. (O)	2	2	2	3			
ECoN (O)	2,00	2,00	2,00	2,30			
ΣS (O)	1,85	2,06	2,15	2,16			
$HgPd_2(PO_4)_2$							
Hg	$0,48 (4x)^{a)} 0,15 (4x)^{b)}$	1,24(4x) 0,38 (4x)			4 + 4	6,89	2,13
Pd	0,99 (2x) 0,54 (2x)	1,01(2x) 0,55 (2x)			4	3,99	2,18
Р	1,04 (2x) 1,27 (2x)	0,95(2x) 1,19 (2x)			4	3,99	4,92
K.Z. (O)	3	3					
ECoN (O)	2,65	2,99					
ΣS (O)	1,96	2,12					

^{a)} partielle effektive Koordinationszahl δ (ECoN), ^{b)} partielle Bindungsstärke für die Bindung (Hg-O3) bzw. (Hg-O1).

Verbindung	Koordination	Abstände / Å	ΣS	ECoN	MAPLE / Potential	Lit.
HgO	linear	2,04, 2,06	2,09	2,04	481 ^{a)} / -1,45	[237]
$Hg_2P_2O_7$	[2+4],	2,120, 2,148, 2,463,	2,10	4,03	503 / -1,52	[37]
		2,532, 2,542, 2,793				
	[4+2]	2,208, 2,310, 2,276,	2,25	5,60	530 / -1,60	
		2,324, 2,475, 2,509				
$Hg_3(PO_4)_2$	[2+2]	2,056, 2,058,	2,18	2,77	510 / -1,53	[36]
		2,425, 2,573				
	[2+3]	2,113, 2,114,	2,14	3,48	499 / -1,50	
		2,552, 2,581, 2,632				
	[2+3]	2,122, 2,126,	2,14	4,11	493 / -1,49	
		2,423, 2,428, 2,508				
HgPdP ₂ O ₇	[2+2]	2,051 (2x)	2,12	2,71	534 / -1,61	diese
		2,492 (2x)				Arbeit
$HgPd_2(PO_4)_2$	[4+4]	2,333 (4x)	2,16	6,89	515 / -1,55	diese
		2,660 (4x)				Arbeit

Tabelle 11-19. Vergleich der Koordinationspolyeder um Hg^{2+} in HgO, $Hg_2P_2O_7$, $Hg_3(PO_4)_2$, $HgPdP_2O_7$ und $HgPd_2(PO_4)_2$.

^{a)} Angabe in kcal/mol.

Tabelle 11-20. PbPdP₂O₇ und PbPdSi(P₂O₇)₂. Neben einem Vergleich der idealisierten Koordinationszahlen (K.Z.) mit der nach HOPPE [151] berechneten effektiven Koordinationszahl (ECoN) der Kationen und Anionen werden anhand von Bindungslänge-Bindungsstärke Betrachtungen partielle Bindungsstärken (eine Zeile tiefer) sowie Gesamtbindungsstärken Σ S [360] aufgeführt.

PbPdP ₂ O ₇	Pb	Pd	Si	P1	P2	K.Z.	ECoN	ΣS
						(0)	(0)	(0)
01	1,25 ^{a)}				1,23	2	1,79	1,82
	0,36 ^{b)}				1,47			
O2				0,79	0,68	2	2,00	2,07
				1,07	0,99			
O3	0,84 (2x)	1,03 (2x)			0,97 (2x)	3	2,58	2,05
	0,25 (2x)	0,57 (2x)			1,24 (2x)			
O4	1,19			1,20		2	1,79	1,76
	0,34			1,43				
O5	0,93 (2x)	0,97 (2x)		0,96 (2x)		3	2,69	2,03
	0,27 (2x)	0,54 (2x)		1,23 (2x)				
K.Z. (Kation)	6	4		4	4			
ECoN (Kation)	5,91	4,00		3,90	3,82			
ΣS (Kation)	1,73	2,20		4,95	4,94			
$PbPdSi(P_2O_7)_2$								
01				0,82	0,70	2	1,99	2,11
				1,09	1,02			
02			0,92 (2x)	1,06		2	1,56	1,94
			0,65 (2x)	1,29				
O3	0,84 (2x) ^{a)}	0,99 (2x)		1,03		3	2,27	2,01
	0,18 (2x) ^{b)}	0,56 (2x)		1,27				
O4	0,92 (2x)	1,01 (2x)		1,05		3	2,32	2,05
	0,20 (2x)	0,57 (2x)		1,28				

i onsetzung von i	uoene 11 20.							
05	0,44 (2x) 0,12 (2x)		1,01 (2x) 0,69 (2x)		1,01 1,28	2	1,80	2,09
O6			1,06 (2x) 0,72 (2x)		1,08 1,35	2	1,63	2,07
O7	$\begin{array}{c} 1,49~(2x)^{\ c)}\\ 0,63~(2x)^{\ c)}\\ 0,33~(2x)^{\ d)}\\ 0,15~(2x)^{\ d)} \end{array}$				1,11 1,37	3	2,02	1,85
K.Z. (Kation)	10	4	6	4	4			
ECoN (Kation)	8,64	4,00	5,98	3,96	3,90			
ΣS (Kation)	1,95	2,28	4,12	4,93	5,02			

Fortsetzung von Tabelle 11-20.

^{a)} partielle effektive Koordinationszahl $\delta(\text{ECoN})$, ^{b)} partielle Bindungsstärke δS für die Bindung (Pb-O1), ^{c)} $\delta(\text{ECoN})$, ^{d)} δS für die Bindung (Pb-O7).

11.5 Ergebnisse und Diskussion

Die Untersuchungen der quasi-binären Systeme $M_2P_2O_7$ - Pd₂P₂O₇ führten für M = Ca, Sr, Ba, Zn, Hg, Pb zu neuen Diphosphaten der Zusammensetzung $M^{II}PdP_2O_7$. Während Pd₂P₂O₇ mit Diphosphaten $M_2P_2O_7$ (M = Mg, Mn, Co, Ni, Cu) unter Bildung von PdO und $M_2P_4O_{12}$ reagierte, führten Experimente zur Darstellung von "CdPdP₂O₇" stets zur Bildung von CdPd₂(PO₄)₂ neben einer Schmelze von Cd(PO₃)₂ (siehe Abschnitt 11.2.3).

Die neuen polynären Palladium(II)-diphosphate HgPdP₂O₇, PbPdP₂O₇ und PbPdSi(P₂O₇)₂ konnten über chemischen Gasphasentransport kristallisiert werden (s. Kap. 11.3), wohlkristallisiertes HgPd₂(PO₄)₂ ist unter solvothermalen Präparationsbedingungen zugänglich (vgl. Kap. 11.2). Während bislang keine zu HgPdP₂O₇ isotypen Verbindungen dargestellt werden konnten, kristallisieren nach Ausweis von *IP*-Guinier-Aufnahmen die Diphosphate M^{II} PdP₂O₇ (M = Ca, Sr, Ba, Zn) allesamt im hier erstmals beschriebenen PbPdP₂O₇-Strukturtyp. Desweiteren konnte gezeigt werden, dass Quecksilber(II) in HgPd₂(PO₄)₂ durch Ca²⁺ und Cd²⁺ ersetzt werden kann (vgl. Kap. 11.2).

Kristallstrukturen. In Analogie zu PdO [175], den Oxoverbindungen von *M*-PdSO₄ [34], PdSeO₃ [357], Pd₂P₂O₇ [17] und den polynären Palladium(II)-disphosphaten M^{1}_{2} PdP₂O₇ (*M* = Li [56], Na [57], K [58], Ag [356], vgl. Kap. 10) weist Palladium(II) in allen hier beschriebenen Kristallstrukturen die typische, quadratisch-planare Koordination durch vier Sauerstoffatome auf, mit Abständen d(Pd-O) $\approx 2,00$ Å (vgl. Tabelle 11-16 und 11-17). Die Elementarzellen von **HgPdP₂O₇** und **PbPdP₂O₇** enthalten jeweils vier Formeleinheiten mit jeweils einer kristallographisch unabhängigen Lage für Quecksilber bzw. Blei und Palladium. Die Abstände d(P-O_t) und d(P-O_b) liegen in HgPdP₂O₇ und PbPdP₂O₇ in dem für Disphosphate erwarteten Bereich (HgPdP₂O₇ (PbPdP₂O₇): d(P-O_b) = 1,612Å (1,591Å bzw. 1,620Å), 1,513Å (1,475Å) $\leq d(P-O_t) \leq 1,522Å$ (1,541Å), vgl. Tab. 11-16, 11-17 und Abb. 11-8). In HgPdP₂O₇ wird Quecksilber(II) von vier Sauerstoffatomen koordiniert. Das nächste, nichtbindende Sauerstoffatom weist einen Abstand d(Hg-O) = 2,912Å auf (Abb. 11-9a). Zieht man alle Abstände $d(Hg-O) \leq 2,912Å$ heran, so ergibt sich K.Z.(Hg²⁺) = 4. Die Umgebung der Hg²⁺-Ionen kann als eine [2+2]-Koordination mit zwei kurzen und zwei längeren Abständen (2,053Å $\leq d(Hg-O) \leq 2,501Å$, vgl. Tab. 11-16, Abb. 11-8a und 11-9a) beschrieben werden.

Abbildung 11-8. ORTEP-Darstellung der Koordinationspolyeder in HgPdP₂O₇ (a) und PbPdP₂O₇ (b) (Abstände in Å). Ellipsoide mit 50% Wahrscheinlichkeit.

Abbildung 11-9. ORTEP-Plot der Koordinationssphären um Hg^{2+} in $HgPdP_2O_7$ (a) und um Pb^{2+} in $PbPdP_2O_7$ (b). Ellipsoide mit 50% Wahrscheinlichkeit.

Die Abstände d(Hg-O) ähneln jenen in $\text{Hg}_3(\text{PO}_4)_2$ [36] und $\text{Hg}_2\text{P}_2\text{O}_7$ [37]. Die [HgOx]-Polyeder in Hg₃(PO₄)₂ weisen Abstände d(Hg-O) von 2,06Å bis 2,63Å ([2+2]- bzw. [2+3]-Koordination, s. Tab. 11-19) auf. In Hg₂P₂O₇ liegen verzerrte [HgO₆]-Einheiten vor, bei denen die beiden kristallographisch unabhängigen Quecksilberatome eine [4+2]- bzw. eine [2+4]-Koordination mit Abständen 2,12Å $\leq d(Hg1-O) \leq 2,79Å$ bzw. 2,21Å $\leq d(Hg1-O) \leq$ 2,51Å aufweisen (s. Tab. 11-19). Aus Bindungslänge-Bindungsstärke Betrachtungen [361] ergibt sich für Hg²⁺ in HgPdP₂O₇ die Valenzsumme [360] von Σ S(Hg) = 2,12 (s. Tab. 11-18). Berechnungen zur Bestimmung der effektiven Koordinationszahl (ECoN) [151] führten zu ECoN(Hg) = 2.71 und damit zu einer von K.Z. = 4 abweichenden effektiven Koordination um Hg²⁺ (s. Tab. 11-18). Ähnliche Abweichungen findet man auch in der Kristallstruktur von Hg₂P₂O₇ [37], für die bei oktaedrischer Sauerstoffkoordination um Hg1 ein Wert von ECoN = 4,03 ermittelt wurde (s. Tab. 11-19). Valenzsummen sowie effektive Koordinationszahlen, welche weitgehend mit denen aus HgPdP₂O₇ übereinstimmen, wurden in Hg₃(PO₄)₂ [36] bestimmt. Dort weist eine der drei kristallographisch unabhängigen Quecksilberlagen eine [2+2]-Koordination auf mit einer Valenzsumme von $\Sigma S(Hg) = 2,18$ und einer effektiven Koordinationszahl von ECoN(Hg) = 2,77 (s. Tab. 11-19).

Die Verknüpfung der Koordinationspolyeder in HgPdP₂O₇ führt für die Sauerstoffatome zu den Koordinationszahlen K.Z.(O²⁻) = 2 (2 x P (O2), P, Pd (O1) bzw. P, Hg (O3)) und 3 (P, Pd, Hg (O4)). Für das verbrückende Sauerstoffatom O2 resultiert ein Abstand d(P-O2) = 1,612Å, der sich in kleinen Beiträgen der partiellen effektiven Koordinationszahl δ (ECoN) = 0,72 sowie der partiellen Bindungsstärke δ S = 1,03 äußert (vgl. Tab. 11-18). Die mit d(P-O1) = 1,522Å, d(P-O3) = 1,513Å und d(P-O4) = 1,516Å vergleichsweise kürzeren Abstände der terminalen Sauerstoffatome zum Phosphoratom führen erwartungsgemäß zu größeren und untereinander zu ähnlichen Werten δ (ECoN) = 1,04 (δ S = 1,30) für die Bindung P-O1, δ (ECoN) = 1,09 (δ S = 1,34) für die Bindung P-O3 und δ (ECoN) = 1,06 (δ S = 1,32) für die Bindung P-O4 (s. Tab. 11-18). Wie zu erwarten, beobachtet man für den kurzen Abstand d(Hg-O3) = 2,053Å mit δ (ECoN) = 1,17 und δ S = 0,81 eine signifikant höhere effektive Koordinationszahl und partielle Bindungsstärke als für die Bindung Hg-O4 mit d(Hg-O4) = 2,492 (δ (ECoN) = 0,18 bzw. δ S = 0,25, vgl. Tabelle 11-18). Folglich ist für O4 die effektive Koordinationszahl kleiner als drei (ECoN(O4) = 2,30).

In der Kristallstruktur von PbPdP₂O₇ wird Blei(II) von sechs Sauerstoffatomen koordiniert (Abb. 11-9b). Das nächste, nichtbindende Sauerstoffatom weist einen Abstand d(Pb-O) = 3,31Å auf. Zieht man alle Abstände d(Pb-O) \leq 3,31Å heran, so führt dies zu einer nahezu oktaedrischen Sauerstoffkoordination um Pb²⁺ (2,469Å $\leq d$ (Pb-O) \leq 2,642Å, vgl. Tabelle 11-

17 und Abb. 11-8b). Die Abstände d(Pb-O) stimmen gut mit jenen in Pb₂P₂O₇ [362] und Pb(PO₃)₂ [363] überein. Die verzerrten [PbO₇]-Polyeder in Pb₂P₂O₇ weisen Abstände von $2,43\text{\AA} \le d(\text{Pb-O}) \le 2,99\text{\AA}$ auf ([5+2]- bzw. [3+4]-Koordination). In Pb(PO_3)₂ liegen verzerrte [Pb1O₈]- und [Pb2O₇]-Einheiten vor, mit Abständen 2,52Å $\leq d$ (Pb1-O) $\leq 2,94Å$ ([7+1]-Koordination) bzw. $2,42\text{\AA} \leq d(Pb2-O) \leq 2,79\text{\AA}$ ([4+3]-Koordination). Bindungslänge-Bindungsstärke Betrachtungen [361] für Pb²⁺ in PbPdP₂O₇ führten zu einer Valenzsumme [360] Σ S(Pb) = 1,73. Berechnungen zur Bestimmung der effektiven Koordinationszahl (ECoN) [151] von Pb^{2+} führten zu ECoN(Pb) = 5,91 und somit zu einer gerechtfertigten Annahme einer oktaedrischen Sauerstoffkoordination um Pb²⁺ (s. Tab. 11-20). Ähnliche ECoN-Werte wurden in allen vier kristallographisch unabhängigen Bleilagen von Pb₂P₂O₇ beobachtet (ECoN(Pb1) = 6,06, ECoN(Pb2) = 6,27, ECoN(Pb3) = 6,00, ECoN(Pb4) = 6,28). Aus der Verknüpfung der Koordinationspolyeder ergeben sich für die Sauerstoffatome in PbPdP₂O₇ die Koordinationszahlen K.Z.(O^{2-}) = 2 (2 x P (O2), 2 x (P, Pb) (O1, O4)) und 3 (2 x (P, Pd, Pb) (O3, O5)). Für das Brückensauerstoffatom O2 resultieren die für Diphosphatgruppen typischen, langen Abstände d(P1-O2) = 1,591 Å bzw. d(P2-O2) = 1,620 Å(Tab. 11-17). In Anologie zu den Beobachtungen in HgPdP₂O₇ ergeben sich insbesondere für den längeren Abstand d(P2-O2) mit $\delta(ECoN) = 0.68$ und $\delta S = 0.99$ signifikant kleine Beiträge zur partiellen effektiven Koordinationszahl sowie zur partiellen Bindungsstärke verglichen mit jenen Werten der übrigen Abstände d(P-O) (vgl. Tabelle 11-17 und 11-20) Für die terminalen Sauerstoffatome O1 und O4 der Phosphateinheiten ergeben sich durch die Koordination an Pb^{2+} mit d(P-O1) = 1.475Å und d(P-O4) = 1.485Å sehr kurze Abstände. Aufgrund der sehr ähnlichen Abstände d(Pb-O1) = 2,469Å bzw. $d(Pb-O4) = 2,494\text{\AA}$ resultieren nahezu identische δ (ECoN)- und δ S-Werte für die Bindungen P-O1 und P-O4 (s. Tab. 11-20). Die beiden Sauerstoffatome O3 und O5 weisen bedingt durch deren zusätzliche Koordination an Palladium im Sinne einer Bindungslänge-Bindungsstärke Betrachtung mittellange Abstände $d(P-O) \approx 1,54$ Å auf. Erwartungsgemäß ergeben sich dadurch für die Bindungen P-O3 und P-O5 δ (ECoN)- und δ S-Werte, die zwischen jenen Werten liegen, die für die Bindungen P-O2 und P-O1 bzw. P-O4 beobachtet wurden (vgl. Tab. 11-20). In HgPdP₂O₇ und PbPdP₂O₇ wird Palladium von jeweils zwei Diphosphatgruppen chelatartig

In HgPdP₂O₇ und PbPdP₂O₇ wird Palladium von jeweils zwei Diphosphatgruppen chelatartig koordiniert (Abb. 11-10 und 11-11). Die Diphosphat-Einheiten weisen eine ekliptische Konformation mit den, für chelatisierende [P₂O₇]-Gruppen typischen, Brückenwinkeln \angle (P,O2,P) = 122,7° in der Quecksilber- und \angle (P1,O2,P2) = 124,5° auf (vgl. Tab. 11-16 und 11-17) in der Bleiverbindung auf. Durch die chelatartige Koordination von Diphosphat an Palladium(II) ergeben sich gewellte Bänder der Zusammensetzung $\int_{\infty}^{1} [Pd(P_2O_7)_{2/2}]^2$, welche sich in HgPdP₂O₇ (PbPdP₂O₇) entlang der kristallographischen c- (b-) Achse erstrecken (Abb. 11-10 und 11-11).

Abbildung 11-10. Kristallstrukturen von HgPdP₂O₇ in Projektion auf die ac-Ebene (a) und PbPdP₂O₇ mit Blick entlang [001] (b). [PdO₄]-Einheiten: rot, [P₂O₇]-Gruppen: gelb, Hg bzw. Pb: grau.

Abbildung 11-11. ORTEP-Darstellung eines Ausschnitts aus einem Band der Zusammensetzung $[Pd(P_2O_7)_{2/2}]^{2-}$ in HgPdP₂O₇ (a) und PbPdP₂O₇ (b). Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v. 3.1f [230]).

Bemerkenswert ist die topologische Ähnlichkeit dieser Bänder zu jenen mit der Zusammensetzung $[Pd(P_2)_{2/2}]^{2-}$ in K₂PdP₂ [364]. Die geometrische Struktur der Bänder in HgPdP₂O₇ stimmt mit jener in Pd₂P₂O₇ und den Diphosphaten A_2 PdP₂O₇ (A = Li, Na, Ag, s. Kap. 10) überein. In Pd₂P₂O₇ wird ein Netzwerk durch Verknüpfung der $\frac{1}{\infty}$ [Pd(P₂O₇)_{2/2}]²⁻-Bänder über quadratisch-planare [PdO₄]-Einheiten aufgebaut. Die dreidimensionale Netzwerkstruktur in A_2 PdP₂O₇ (A = Li, Na, Ag) resultiert aus der Verknüpfung der Bänder über tetraedrische [LiO₄]- bzw. verzerrt oktaedrische [AO_6]-Gruppen (A = Na, Ag, s. Abb.11-10). Im Unterschied dazu sind die Bänder in PbPdP₂O₇ und den isotypen Verbindungen $MPdP_2O_7$ (M = Ca, Sr, Ba, Zn) stärker gefaltet. Hierdurch ergeben sich in PbPdP₂O₇ im Vergleich zu HgPdP₂O₇ signifikant kürzere Abstände $d(Pd-Pd) \approx 2.98\text{ Å}$ (HgPdP₂O₇: $d(Pd-Pd) \approx 2.98\text{ Å}$ Pd) \approx 4.40Å). Die nahezu parallele Ausrichtung der [PdO₄]-Einheiten in den Diphosphatopalladat-Bändern von PbPdP₂O₇ erinnert an die strukturellen Gegebenheiten in den Krogmann'schen Salzen (z.B. K₂[Pt(CN)₄]·₃H₂O mit d(Pt-Pt) = 3,48Å; K₂[Pt(CN)₄]X_{0.33} (X = Cl, Br) mit $d(Pt-Pt) = 2,87\text{\AA} [365])$. Die Umsetzung von PbPdP₂O₇ mit einer angesäuerten wässrigen Lösung von Kalium-peroxodisulfat liefert bereits nach kurzem Erhitzen PbSO4 und leicht verschobene Reflexe für die Ausgangssubstanz (Guinier-Aufnahme, s. Abb. 11-12). Aus der Guinieraufnahme wurden die Gitterparameter des modifizierten "PbPdP₂O₇" bestimmt (s. Tab. 11-9). Die Aufweitung der a-Achse (senkrecht zum Stapel der [PdO₄]-Planquadrate) bei kaum veränderten Werten für die b- und c-Achse im Vergleich zum unbehandelten PbPdP₂O₇ sprechen für eine topotaktisch verlaufende Ionenaustauschreaktion in Sinne von Gleichung 11.11.

$$PbPdP_2O_7 + x K_2SO_4 \rightarrow K_{2x}Pb_{1-x}PdP_2O_7 + x PbSO_4$$
 Gleichung 11.11

Abbildung 11-12. *IP*-Guinier-Aufnahme des modifizierten "PbPdP₂O₇" (a) und von PbPdP₂O₇ (b). Markierte Reflexe stammen von PdO.

Mit HgPd₂(PO₄)₂ wurde das erste Palladium(II) enthaltende Orthophosphat dargestellt und kristallchemisch charakterisiert. Die kristallchemische Substitution von Hg²⁺ durch Ca²⁺ und Cd²⁺ ist möglich. Die Elementarzelle des Orthophosphats enthält acht Formeleinheiten HgPd₂(PO₄)₂ mit jeweils einer kristallographisch unabhängigen Lage für Palladium und Ouecksilber. Während Pd^{2+} eine quadratisch-planare Koordination mit Abständen $d(Pd-O) \approx$ Hg²⁺-Ionen 2,01Å aufweist. liegt den eine stark verzerrt würfelförmige Sauerstoffkoordination (d(Hg-O2) = 2,332Å (4x) bzw. d(Hg-O1) = 2,660Å (4x)) zugrunde ([4+4]-Koordination, s. Abb. 11-13 und 11-14). Vergleichbare Bindungsabstände d(Hg-O) mit einer achtfachen Sauerstoffkoordination um Hg²⁺ findet man im Quecksilber(II)-sulfat [366] $(2,22\text{\AA} \le d(\text{Hg-O}) \le 2,90\text{\AA})$. Das nächste nichtbindende Sauerstoffatom weist einen Abstand $d(\text{Hg-O}) = 3.280\text{\AA}$ auf. Damit ergibt sich K.Z.(Hg^{2+}) = 8. Aus Bindungslänge-Bindungsstärke Betrachtungen ergibt sich für Quecksilber(II) die Valenzsumme $\Sigma S = 2,13$. Zieht man alle acht (Hg-O)-Bindungen mit einem Abstand d(Hg-O) < 3,280Å heran, so erhält man an Hg^{2+} eine effektive Koordinationszahl ECoN = 6,89. Während für den kürzeren Abstand d(Hg-O2) = 2,332 Å mit $\delta(\text{ECoN}) = 1,24$ und $\delta S = 0,38$ vergleichsweise hohe Werte erhalten werden, sind die Beiträge von δ (ECoN) und δ S an der längeren (Hg-O1)-Bindung erwartungsgemäß kleiner [δ (ECoN) = 0,48. δ S = 0,15, vgl. Tabelle 11-18]. Die Koordinationszahl der beiden Sauerstoffatome O1 und O2 beträgt K.Z. $(O^{2-}) = 3$ (Pd, Hg, P). Folglich ergibt sich für die Phosphateinheiten eine radiale Verzerrung mit zwei kürzeren (d(P-O1) = 1,529Å) und zwei längeren (d(P-O2) = 1,552Å, vgl. Abb. 11-13) Abständen, welche ausschließlich auf die deutlich unterschiedlichen Abstände d(Hg-O1) bzw. d(Hg-O2)zurückgeführt werden können [δ (ECoN) und δ S für *d*(Pd-O1) bzw. *d*(Pd-O2) sind identisch, vgl. Tab. 11-18]. Der im Vergleich zur Bindung (Hg-O2) kleine Beitrag von δ (ECoN) und δS an der Bindung (Hg-O1) führt zu einer Erniedrigung der effektiven Koordinationszahl um Hg²⁺ sowie zu einer Schwächung der partiellen Bindungsstärke an der Bindung (P-O2) im Vergleich zur Bindung (P-O1) (vgl. Tabelle 11-16 und 11-18).

Abbildung 11-13. ORTEP-Darstellung der Koordinationspolyeder in $HgPd_2(PO_4)_2$. Ellipsoide mit 50% Wahrscheinlichkeit. Abstände in Å.

In der Kristallstruktur von $HgPd_2(PO_4)_2$ ist jedes $[PdO_4]$ -Planquadrat von vier Phosphatgruppen umgeben und umgekehrt. Die Zwischenräume, welche durch die räumliche Anordnung entstehen, werden mit Hg^{2+} -Ionen, welche in einer [4+4]-Koordination von Sauerstoffatomen umgeben sind, besetzt. Bedingt durch die unterschiedliche räumliche Anordnung der Planquadrate ergibt sich eine komplexe dreidimensionale Netzwerkstruktur (s. Abb. 11-15a).

Abbildung 11-14. ORTEP-Plot eines Ausschnitts der Kristallstruktur von HgPd₂(PO₄)₂. Ellipsoide mit 50% Wahrscheinlichkeit (Progr. DIAMOND v. 3.1f [230]).

Abbildung 11-15. Kristallstruktur von HgPd₂(PO₄)₂ mit Projektion entlang [100] (a) und Kristallstruktur von AuPO₄ entlang [001] mit quadratisch-planaren [MO_4]-Einheiten ($M = Pd^{2+}$, Au³⁺) (rot) und [PO₄]-Gruppen (gelb). Hg²⁺ graue Kugeln. (Progr. DIAMOND v. 3.1f).

Die hohe Stabilität dieser Netzwerkstruktur äußert sich zum einen in der hohen thermischen Belastbarkeit bis 700°C, zum anderen konnte gezeigt werden, dass Versuche zur Darstellung von CdPdP₂O₇ stets zur Bildung von CdPd₂(PO₄)₂ führten.

Phosphate der Zusammensetzungen $MNi_2(PO_4)_2$ (M = Sr [367], Ba [368]), $MCu_2(PO_4)_2$ (M = Sr [369], Ba [370]) oder $MCo_2(PO_4)_2$ (M = Mg [371], Sr [372], Ba [373]) sind in der Literatur seit langem bekannt. Allerdings weisen diese Verbindungen im Vergleich zu $MPd_2(PO_4)_2$ (M = Ca, Cd, Hg) völlig unterschiedliche Strukturen auf.

Strukturchemisch interessant ist die Ähnlichkeit des anionischen $[Pd_2(PO_4)_2]^{2^-}$ Netzwerks zur Kristallstruktur von AuPO₄ (s. Kap. 6, Abb. 11.15b). HgPd₂(PO₄)₂ kann als gefüllte AuPO₄-Struktur betrachtet werden. Erwartungsgemäß sind die Abstände $d(Pd-O) \approx 2,015$ Å etwas größer als die Abstände $d(Au-O) \approx 1,97$ Å. Die Abstände d(P-O1) = 1,534Å und d(P-O2) = 1,502Å weichen in AuPO₄ ähnlich wie in HgPd₂(PO₄)₂ (d(P-O1) = 1,529Å, d(P-O2) = 1,552Å) signifikant voneinander ab. Während in HgPd₂(PO₄)₂ die unterschiedlichen Abstände d(P-O) auf eine weitere Koordination von O1 bzw. O2 an Hg²⁺ mit unterschiedlichen Abständen d(Hg-O) zurückgeführt werden kann, wird der Aufbau der Netzwerkstruktur von AuPO₄ offenbar nur durch eine radiale und angulare Verzerrung der Phosphatgruppen ermöglicht. Während die Winkel $\angle(O1,P,O1) \sim 109^{\circ}$ und $\angle(O1,P,O2) \sim 108^{\circ}$ (2x)) in beiden Phosphaten ähnlich groß sind, lässt sich der im Vergleich zu HgPd₂(PO₄)₂ große Winkel $\angle(O2,P,O2) = 113,6^{\circ}$ in AuPO₄ mit dem sehr kurzen Abstand d(P-O2) = 1,502Å erklären (HgPd₂(PO₄)₂: $\angle(O2,P,O2) = 110,4^{\circ}$, d(P-O2) = 1,529Å).

Im Verlauf der Untersuchungen zur Kristallchemie wasserfreier polynärer Palladium(II)phosphate, wurde bei chemischen Transportexperimenten mit PbPdP₂O₇ auch die Kristallisation des ersten polynären Palladium-silico-diphosphats **Pb^{II}Pd^{II}Si^{IV}(P₂O₇)**² beobachtet. Polynäre Silico(IV)-diphosphate der Zusammensetzung $M_2^{II}Si^{IV}(P_2O_7)_2$ sind mit M = Mn [293], Fe [76], Co [294], Ni [76], Cu [76], Cd [295]) bekannt und weisen dreidimensionale Netzwerkstrukturen auf, die neben [P₂O₇]-Gruppen noch Doppeloktaeder [M₂O₁₀] und [SiO₄]-Tetraeder enthalten und somit strukturelle Unterschiede zu PbPdSi(P₂O₇)₂ aufweisen. Blei-palladium(II)-silico-diphosphat enthält zwei Formeleinheiten PbPdSi(P₂O₇)₂ in der Elementarzelle mit jeweils einer kristallographisch unabhängigen Lage für Palladium(II), Blei(II), und Silicium(IV). Wie in anderen Palladium(II)-oxoverbindungen, ergeben sich für Pd²⁺ quadratisch-planare [PdO₄]-Einheiten mit Abständen d(Pd-O) = 2,000Å (vgl. Tab. 11-17, Abb. 11-17). Für Blei(II) wurde anhand von MAPLE-Rechnungen eine effektive Koordinationszahl ECoN(Pb²⁺) = 8,64 mit interatomaren Abständen 2,501Å \leq $d(Pb-O) \leq 3,013$ Å ermittelt (vgl. Tab. 11-20). Die Umgebung der Pb²⁺-Ionen kann als [6+4]-

Koordination mit sechs kürzeren $(2,501\text{\AA} \le d(\text{Pb-O}) \le 2,799\text{\AA}, \text{vgl. Tab. 11-17})$ und vier längeren Abstanden aufgefasst werden. Das nächste, nichtbindende Sauerstoffatom weist einen Abstand d(Pb-O) = 3.973Å auf. Eine strukturelle Besonderheit in PbPdSi(P₂O₇)₂ stellen die unter Normaldruck ungewöhnlichen oktaedrischen [SiO₆]-Einheiten dar (vgl. Tab. 11-18, Abb. 11-17 und 11-18). Diese werden auch in Si^{IV}P₂O₇ [23] und in Silicophosphaten der Zusammensetzung $(Ir^{IV,okt.}_{1-x}Si^{IV,okt.}_{x})_3[Si_2O(PO_4)_6]$ [347], $Si^{IV,okt.}_3[Si_2O(PO_4)_6]$ [24] und Rb₂[Si^{IV}(P₄O₁₃)] [292] beobachtet. Die Annahme einer nahezu ideal oktaedrischen Sauerstoffkoordination um Silicium(IV) mit Abständen $1.744\text{\AA} \le d(\text{Si-O}) \le 1.786\text{\AA}$ spiegelt sich in der effektiven Koordinationszahl ECoN(Si^{4+}) = 5,98 gut wider (vgl. Tab. 11-20). Sehr ähnliche Abstände d(Si^{IV}-O) ergeben sich bei oktaedrischer Koordination von Silicium in $Si_5O(PO_4)_6$ (1,744Å $\leq d(Si-O) \leq 1,791Å$) oder SiP_2O_7 (1,733Å $\leq d(Si-O) \leq 1,789Å$). Aus der Verknüpfung der Koordinationspolyeder ergeben sich für die Sauerstoffatome in (2x)), P, Pb, Pb). Während für Diphosphateinheiten ein typischer, sehr langer mittlerer Abstand $d(P-O_b \approx 1,60\text{ Å})$ beobachtet wird, ergeben sich aufgrund von sehr ähnlichen Abständen $1,500\text{\AA} \leq d(\text{P-O}_{t}) \leq 1,529\text{\AA}$ keine nennenswerten radialen Verzerrungen der terminalen Sauerstoffatome in den Phosphateinheiten (vgl. Tab. 11-17).

Abbildung 11-16. ORTEP-Darstellung der Koordinationspolyeder in PbPdSi $(P_2O_7)_2$. Ellipsoide mit 50% Wahrscheinlichkeit. Abstände in Å.

Die Kristallstruktur von PbPdSi(P_2O_7)₂ (Abb. 11-18) kann als kovalentes Netzwerk aus [PdO₄]-Planquadraten, [SiO₆]-Oktaedern und [P_2O_7]-Gruppen aufgefasst werden. Der Ladungsausgleich wird durch die Pb²⁺-Ionen erreicht. Im Sinne glaschemischer Formulierungen wäre PdO als Netzwerkbildner zu beschreiben. Diese Betrachtungsweise wird durch die ungewöhnlich hohen isotropen chemischen Verschiebungen unterstützt, welche für Palladiumphosphate in ³¹P-MAS-NMR Untersuchungen beobachtet werden.

Im Zusammenhang mit den bereits bekannten Strukturen der Zusammensetzung $M^{II}_{2}Si(P_{2}O_{7})_{2}$ (M = Mn, Fe, Co, Ni, Cu, Cd), in denen es bei den oktaedrisch von Sauerstoff koordinierten zweiwertigen Metallkationen zur Ausbildung dimerer [$M_{2}O_{10}$]-Einheiten kommt, ergibt sich die Fragestellung nach einer analogen Verbindung Pd^{II}₂Si(P_{2}O_{7})_{2}, die sich aus voneinander isolierten [PdO₄]-Einheiten zusammensetzt. Ausgehend von PbPdSi(P_{2}O_{7})_{2} erscheint der isomorphe Ersatz von Silicium(IV) durch Germanium(IV) unter Ausbildung von Germanato(IV)-phosphat-Schichten $\int_{\infty}^{1} [Ge(P_{2}O_{7})_{6/3}]^{4-}$ kristallchemisch ebenso reizvoll, wie der Austausch von Pb²⁺ und Si⁴⁺ durch Bi³⁺ und Cr³⁺.

Abbildung 11-17. Perspektivische Ansicht der Kristallstruktur von PbPdSi(P_2O_7)₂ (a) und ein Ausschnitt aus der Silico-phosphat-Schicht $[Si(P_2O_7)_{6/3}]^{4-}$ als ORTEP-Darstellung (b). Ellipsoide mit 50% Wahrscheinlichkeit.

³¹P-MAS-NMR Untersuchungen. In Übereinstimmung mit den Kristallstrukturdaten zeigt das ³¹P-MAS-NMR Spektrum von HgPdP₂O₇ (Abb. 11-18a) das Vorliegen einer einzigen Phosphorlage. Die chemischen Verschiebungsparameter, welche relativ zur ³¹P-Resonanz von 85% iger Phosphorsäure angegeben sind, wurden zu $\delta_{iso} = 24,2$ ppm, $\delta_{aniso} = 83,0$ ppm und n = 0.43 bestimmt. Die isotrope chemische Verschiebung $\delta_{iso} = 24,2$ ppm ist erheblich größer als in Diphosphaten der Alkali- und Erdalkalimetalle [161, 162, 163, 165] (-25ppm $\leq \delta_{iso} \leq$ 0ppm, s. Tab. 4-3) und deutet wie bei Pd₂P₂O₇ ($\delta_{iso} = 28,3ppm$), Ag₂PdP₂O₇ ($\delta_{iso} = 25,1ppm$) und CaPd₂(PO₄)₂ ($\delta_{iso} = 32,1ppm$, $\delta_{aniso} = 36,0ppm$, $\eta = 0,84$) auf hohe kovalente Bindungsanteile zwischen Palladium(II) und Phosphat hin. Die anisotrope chemische Verschiebung von HgPdP₂O₇ (δ_{aniso} = 83,0ppm) steht im Einklang mit dem Vorliegen von Diphosphateinheiten. Für Ag₂PdP₂O₇ [356] wurde mit $\delta_{aniso} = 79,0$ ppm ein nahezu identischer Wert erhalten (vgl. Kap. 10.5). Das Ausmaß der Verzerrung von Phosphateinheiten ergibt sich aus dem Asymmetrieparameter η . Der für HgPdP₂O₇ ermittelte Wert von n = 0.43 spricht für eine weitgehende elektronische Gleichartigkeit der terminalen Sauerstoffatome der Phosphateinheiten $(1.513\text{\AA} \le d(\text{P-O}_t) \le 1.522\text{\AA})$, deren Symmetrie nahe bei $C_{3\nu}$ liegt. Sehr viel höhere Asymmetrieparameter wurden in Pd₂P₂O₇ und Ag₂PdP₂O₇ mit $\eta = 0.86$ bzw. $\eta = 0.87$ beobachtet. In diesen Verbindungen ist die elektronische Gleichartigkeit der terminalen Sauerstoffatome der Diphosphatgruppen aufgehoben $(Pd_2P_2O_7: 1,494\text{\AA} \le d(P-O_t) \le 1,568\text{\AA}; Ag_2PdP_2O_7: 1,503\text{\AA} \le d(P-O_t) \le 1,539\text{\AA}).$

Die isotropen wie auch anisotropen Verschiebungswerte der zu HgPd₂(PO₄)₂ isotypen Verbindung CaPd₂(PO₄)₂ (Spektrum siehe Abb. 11-18b) weisen eine signifikante Ähnlichkeit zu jenen von AuPO₄ auf ($\delta_{iso} = 30,2$ ppm $\delta_{aniso} = 22,4$ ppm, $\eta = 0,29$, siehe Kap. 6.6). Die kleine anisotrope chemische Verschiebung $\delta_{aniso} = 32,1$ ppm ist typisch für Orthophosphat-Einheiten (vgl. δ_{aniso} Pd₂P₂O₇ (HgPdP₂O₇) [Ag₂PdP₂O₇] = 110ppm, (83,0ppm) [79,0ppm]).

Abbildung 11-18. Quantitative ³¹P-MAS-NMR Spektren von HgPdP₂O₇ (a) mit $\delta_{iso} = 24,2ppm$ ($v_{MAS} = 3,0kHz$) und CaPd₂(PO₄)₂ (b) mit $\delta_{iso} = 32,1ppm$ ($v_{MAS} = 2,0kHz$).

12 Zusammenfassung und Ausblick

Im Rahmen der vorliegenden Arbeit wurden umfangreiche Untersuchungen zu Synthesen und kristallchemischen Eigenschaften von ternären Phosphaten der Edelmetalle Gold, Iridium, Palladium und Platin durchgeführt.

Gelbliches Gold(III)-orthophosphat AuPO₄ ist auf nasschemischem Weg ausgehend von Gold(III)-oxidhydroxid "AuO(OH)" konz. H₃PO₄ zugänglich. und Analoge Darstellungsversuche unter Verwendung von H₃AsO₄ führten zu Gold(III)-arsenat, AuAsO₄. Nach Ausweis von *IP*-Guinier-Aufnahmen sind AuPO₄ und AuAsO₄ isotyp zum *M*-Typ von PdSO₄. Bedingt durch die thermische Labilität von Gold(III)-oxoverbindungen schlugen klassische Festkörperreaktionen zur Kristallisation von AuPO₄ und AuAsO₄ fehl. Deren Strukturen wurden aus Röntgen- und Neutronenpulverdaten nach der Rietveld-Methode verfeinert (AuPO₄ [AuAsO₄]: C2/c, a = 7,7915(8) [8,0488(8)]Å, b = 5,4583(5)[5,6138(9)]Å, c = 7,7254(6) [7,8753(9)]Å, $\beta = 97,005(9)$ $[95,89(1)]^{\circ}$). Die Kristallstruktur von AuPO₄ kann von jener des Tenorits (CuO) abgeleitet werden (vgl. Abb. 12.1b,c). Jedes [Au^{III}O₄]-Planquadrat ist mit vier [PO₄]-Tetraedern verknüpft. In der gleichen Weise ist jede Phosphatgruppe von vier Gold-Atomen umgeben, was zum Aufbau einer Netzwerkstruktur AuO_{4/2}*X*O_{4/2} führt (vgl. Abb. 12.1a).

Abbildung 12-1. Kristallstruktur von Au XO_4 (X = P, As). Projektion entlang [010] (a) bzw. [001] (b) und Kristallstruktur von Tenorit (Cu^{II}O) mit Projektion entlang [001] (c) [XO_4]-Tetraeder: gelb, Au³⁺: rot, Cu²⁺: braun und O²⁻: weiß (Progr. DIAMOND v. 3.1f [230]).

Durch isotherme Temperexperimente in geschlossenen Kieselglasampullen mit Chlor als Mineralisator wurden die im **Dreistoffsystem Ir/P/O** geltenden Gleichgewichtsbeziehungen für $T = 800^{\circ}$ C experimentell bestimmt (s. Abb. 12.2). Innerhalb dieser Untersuchungen trat das neue *catena*-Metaphosphat *C*-Ir^{III}(PO₃)₃ auf.

Abbildung 12-2. Das Gibbs'sche Phasendreieck für Ir/P/O bei T = 800°C.

Für Kristallstrukturuntersuchungen wurde die thermodynamisch stabile *C*-Form von Ir(PO₃)₃ sowohl über chemische Transportexperimente (900 \rightarrow 800°C, Zusatz von IrCl₃·xH₂O) wie auch durch isothermes Tempern von Gemengen aus IrO₂ und P₄O₁₀ (800°C, 7d, Zusatz von H₂Ir^{IV}Cl₆·6H₂O) kristallisiert. *C*-Ir(PO₃)₃ [*Cc*, *a* = 13,103(2)Å, *b* = 19,184(1)Å, *c* = 9,354(1)Å, β = 127,19(1)°, 4254 unabhängige Reflexe, 354 Parameter, *R₁* = 0,024, *wR₂* = 0,062) ist isotyp zur monoklinen Modifikation der schon länger bekannten Trimetaphosphate $M^{III}(PO_3)_3$ (*M* = Al, Ga, In, Sc, Ti, V, Cr, Mo, Fe, Rh).

Experimente, C-Ir(PO₃)₃ auch auf nasschemischem Weg, ausgehend von einer Phosphorsäureschmelze bei Temperaturen knapp unterhalb von 450°C zu kristallisieren, führten zu einer im Vergleich zu C-Ir(PO₃)₃ 15% weniger dichten, metastabilen Modifikation von Ir(PO₃)₃. *Trikl*-Ir^{III}(PO₃)₃ [P1, a = 6,9574(6)Å, b = 10,3628(9)Å, c = 5,0288(4)Å, $\alpha =$ 92,28(1)°, $\beta = 92,80(1)°$, $\gamma = 98,60(1)°$, 1574 unabhängige Reflexe, 122 Parameter, $R_1 =$ 0,028, $wR_2 = 0,061$] ist isotyp zur triklinen Modifikation von Ru^{III}(PO₃)₃. Die Kristallstrukturen beider Metaphosphate setzen sich aus oktaedrisch von sechs Sauerstoffatomen koordinierten Ir^{3+} -Ionen sowie aus Metaphosphatketten $\frac{1}{m}(PO_3)^{-}$ zusammen und unterscheiden sich durch die Konformation der Phosphatketten und die Verknüpfung dieser Ketten mit den Ir³⁺-Ionen. Die chelatartige Anbindung von zwei, innerhalb einer Kette benachbarten Phosphatgruppen an ein Iridiumion, wie sie in der erscheint triklinen Form beobachtet wird. bei der Kristallisation einer aus Metaphosphorsäureschmelze kinetisch begünstigt (vgl. Abb. 12.3).

³¹P-MAS-NMR-Untersuchungen belegen für *C*-Ir(PO₃)₃, trotz kristallchemisch ähnlicher Umgebung aller neun kristallographisch unabhängigen Phosphorlagen, eine unerwartet weite Streuung der isotropen chemischen Verschiebungen mit -4,8 ppm $\geq \delta_{iso} \geq$ -30,9 ppm.

Experimente zum chemischen Gasphasentransport von *C*-Ir(PO₃)₃ führten zur Kristallisation des ersten Iridium(IV)-silicophosphats ($Ir^{IV}_{1-x}Si^{IV}_x$)₃[$Si^{IV}_2O(PO_4)_6$] ($x \sim 0.5$, $R\bar{3}$, a =7,8819Å, c = 24,476Å, 1086 unabhängige Reflexe, 56 Parameter, $R_1 = 0,061$, $wR_2 = 0,19$), das Isotypie zu $M^{IV}_3Si_2O(PO_4)_6$ (M = Si, Re) zeigt. Das Auftreten isolierter [$Ir^{IV}O_6$]-Oktaeder lässt vermuten, dass sowohl die drei- wie auch die vierwertige Oxidationsstufe von Iridium in Phosphaten stabilisiert werden kann.

Abbildung 12-3. Koordinationssphäre um Ir1 und Ir2 in der triklinen Modifikation (a) und um Ir1 im *C*-Typ von Ir(PO₃)₃ (b) (Progr. DIAMOND v. 3.1f [230]).

Mit der Darstellung und Einkristallstrukturuntersuchung an Pd^{II}₂P₂O₇ sollten die kristallchemischen Kenntnisse ternärer Edelmetallphosphate um "Pt^{II}₂P₂O₇" erweitert werden. Eine dazu durchgeführte nasschemische Synthese ausgehend von einer konzentriert phosphorsauren Lösung von K2Pt^{II}Cl4 führte bei Raumtemperatur zur Abscheidung orangefarbener Kristalle der Zusammensetzung $K_2[(Pt^{III})_2(HPO_4)_4]\cdot 2H_2O$ (P1, a = 7,928(1)Å, b = 8,052(1)Å, c = 13,847(1)Å, $\alpha = 82,16(1)^{\circ}$, $\beta = 81,64(1)^{\circ}$, $\gamma = 65,64(1)^{\circ}$, 5589 unabhängige Reflexe, 259 Parameter, $R_1 = 0,033$, $wR_2 = 0,064$). Die Struktur ist isotyp zur bereits bekannten Natriumverbindung. Dominierendes Strukturmotiv dieser Verbindung sind Pt_2^{6+} -Einheiten (\overline{d} (Pt-Pt) = 2,492Å), welche durch Verknüpfung zweier Pt^{3+} -Ionen aufgebaut werden. In der zweikernigen, anionischen Komplexeinheit [Pt₂(HPO₄)₄(H₂O)₂]²⁻ wird die Pt2⁶⁺-Hantel von vier chelatartig angreifenden Hydrogenphosphat-Gruppen sowie von zwei einzähnig gebundenden Wassermolekülen koordiniert ("*paddle-wheel"*-Komplex). Die Komplexeinheiten sind durch starke Wasserstoffbrückenbindungen miteinander verknüpft. Eine eindeutige Zuordnung der Raman-Banden (vgl. Abb. 12.4a) zur näheren Charakterisierung der Bindung (Pt-Pt) ist zum gegenwärtigen Zeitpunkt nicht möglich. Isotherme Temperexperimente in geschlossenen Kieselglasampullen zur Darstellung des angestrebten "Pt^{II}₂P₂O₇" führten ausgehend von Pt^{II}O·3H₂O und P₄O₁₀ ($T = 500^{\circ}$ C, 5h,

Zusatz von $PtCl_2$) zu einem orangefarbenen, mikrokristallinen Produkt, das bislang nicht näher charakterisiert werden konnten. Nach Ausweis schwingungsspektroskopischer Untersuchungen zeigt das Raman-Spektrum (vgl. Abb. 12.4b) eine signifikante Ähnlichkeit zu jenem von K₂[(Pt^{III})₂(HPO₄)₄]·2H₂O, was auf ein Orthophosphat der Zusammensetzung "(Pt^{III}₂)(PO₄)₂" hindeutet.

Abbildung 12-4. Raman-Spektrum von $K_2[(Pt^{III})_2(HPO_4)_4] \cdot 2H_2O$ (a) und Schwingungsspektren von "Pt₂(PO₄)₂ (b).

Untersuchungen im Dreistoffsystem Pd/P/O lieferten neben den bereits bekannten Phosphaten Pd(PO₃)₂ und Pd₂P₂O₇ keine Hinweise auf weitere, thermodynamisch stabile Palladiumphosphate. Ein Palladium(II)-orthophosphat "Pd₃(PO₄)₂" ist somit unbekannt und als Gleichgewichtsphase zwischen PdO und Pd₂P₂O₇ nicht darstellbar. Mit den Untersuchungen an polynären Palladium(II)-phosphaten in den Vierstoffsystemen *A*/Pd/P/O (A = Li-Cs, Tl, Ag) und *M*/Pd/P/O (M = Ca, Sr, Ba, Zn, Cd, Hg, Pb) wurde einerseits das Ziel verfolgt, "Pd₃(PO₄)₂" mit ein- (A) bzw. zweiwertigen Kationen (M) zu stabilisieren. Darüber hinaus erschien es kristallchemisch reizvoll Netzwerkstrukturen aus den für Palladium(II) typischen, quadratisch-planaren [Pd^{II}O₄]-Gruppen mit tetraedrischen Phosphateinheiten aufzubauen.

Festkörperreaktionen wie auch das Glühen von Precursoren, die aus phosphorsaurer Lösung gefällt wurden, führten zu den neuen polynären Palladium(II)-phosphaten der Zusammensetzungen Ag₂PdP₂O₇, A_2 Pd₃(P₂O₇)₂ (A =Na, Rb, Tl, Cs, Ag), K₄Pd₄(P₂O₇)₃, MPdP₂O₇ (M = Ca, Sr, Ba, Zn, Pb, Hg), MPd₂(PO₄)₂ (M = Hg, Ca, Cd) und PbPdSi(P₂O₇)₂. Zur Kristallisation eigneten sich neben chemischen Transportreaktionen im Temperaturgefälle auch isotherme Temperexperimente. Wie in den Diphosphaten A_2 PdP₂O₇ (A = Li, Na) und Pd₂P₂O₇ bereits beobachtet, liegen als dominierendes Strukturmotiv in den neuen Diphosphaten Ag₂PdP₂O₇ und MPdP₂O₇ (M = Ca, Sr, Ba, Zn, Pb, Hg) sinusartig gewellte Diphosphato-palladat(II)-Bänder $\frac{1}{\infty}$ [Pd(P₂O₇)_{2/2}]²⁻ vor. Bemerkenswert und

unerwartet ist die erstmalig im PbPdP₂O₇-Typ beobachtete, starke Faltung der Bänder, aus der sehr kurze Abstände d(Pd-Pd) = 2,98Å resultieren (vgl. Abb. 12.5).

Abbildung 12-5. Darstellung eines Ausschnitts aus einem Band der Zusammensetzung $[Pd(P_2O_7)_{2/2}]^{2-}$ in HgPdP₂O₇ (a) und PbPdP₂O₇ (b).

Polynäre Palladiumphosphate weisen im Vergleich zu anderen Oxo-Verbindungen der Edelmetalle eine unerwartet hohe thermische Stabilität auf. Die Schwerlöslichkeit polynärer Palladiumphosphate, und die Ergebnisse von ³¹P-MAS-NMR-spektroskopischen Untersuchungen sprechen für erhebliche kovalente Bindungsanteile in den Palladiumphosphat-Netzwerken. Mit HgPd₂(PO₄)₂ konnte das erste Orthophosphat von Palladium dargestellt und kristallchemisch charakterisiert werden. Die Kristallstruktur von HgPd₂(PO₄)₂ kann als aufgefüllte AuPO₄-Struktur beschrieben werden.

Mit der erstmaligen Synthese und kristallchemischen Charakterisierung von Gold(III)orthophosphat ergibt sich die Frage nach der Darstellung weiterer Goldphosphate. Unter milden Präparationsbedingungen ist in Analogie zu Au^{II}SO₄ die Darstellung von Gold(II)hydrogenphosphat AuHPO₄ mit einer zweikernigen (Au₂⁴⁺)-Einheit denkbar. Bislang ungeklärt sind sowohl der Mechanismus, der zur Fällung von AuPO₄ aus einer "Phosphatoaurat-Lösung" führt, wie auch die chemische Natur der Spezies in der konzentriert phosphorsauren Goldlösung. Präparativ besonders reizvoll erscheint zudem die Frage nach zeolithartigen Netzwerkstrukturen.

Bei den Untersuchungen an Iridiumphosphaten wurden neben den beiden Metaphosphaten *C*- $Ir(PO_3)_3$ und *trikl*- $Ir(PO_3)_3$ zwei weitere mikrokristalline Phasen erhalten, die bislang nicht näher charakterisiert wurden. Deren Kristallisation wie auch die reproduzierbare und

phasenreine Darstellung von *trikl*-Ir(PO₃)₃ stehen ebenso noch aus wie Experimente zur Darstellung des zu RhPO₄ analogen Orthophosphats Ir^{III}PO₄. Der bei der nasschemischen Synthese der Iridium(III)-metaphosphate erhaltene, dunkelblaue, röntgenamorphe Precursor deutet nach Literaturangaben auf das Vorliegen von Iridium(IV) hin und lässt Experimente zur Darstellung von Ir^{IV}P₂O₇ aussichtsreich erscheinen.

Mit Synthesen unter hydrothermalen Bedingungen sollte die Kristallisation des bislang nur anhand schwingungsspektroskopischer Untersuchungen charakterisierten "Pt₂(PO₄)₂" gelingen. Damit könnte ein Beitrag zur Erweiterung der kristallchemischen Kenntnisse von ternären Platinphosphaten geleistet werden. Darüber hinaus sollte die Vielzahl bislang dargestellter polynärer Palladium(II)-phosphate zu eingehenden Untersuchungen zur Darstellung bislang unbekannter polynärer Platin(II)-phosphate veranlassen.

Unter dem Aspekt der engen strukturchemischen Verwandschaft von HgPd₂(PO₄)₂ und AuPO₄, erscheint zudem auch die Substitution von Palladium(II) durch Gold(III) in den polynären Palladium(II)-phosphaten möglich, sowie ferner eine systematische Vorgehensweise zur gezielten Darstellung und kristallchemischen Charakterisierung von metastabilen Palladiumphosphaten unter milden Präparationsbedingungen.

Derzeit liegen zu den d-Elektronenspektren von 4d- und 5d-Übergangsmetallen in oxidischen Festkörpern kaum Informationen vor. UV/VIS/NIR-spektroskopische Untersuchungen zur näheren Charakterisierung der in dieser Arbeit dargestellten Edelmetallphosphate sollten diese Lücken schliessen.

13 Anhang

13.1 Anhang A – Anisotrope Auslenkungsparameter

Atom	U ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	<i>U</i> ₁₃	U ₂₃
Ir1	0,0128(2)	0,0130(2)	0,0132(2)	-0,0001(1)	0,0087(1)	-0,0001(1)
Ir2	0,0131(3)	0,0154(1)	0,0140(3)	0,0016(2)	0,0091(2)	0,0021(2)
Ir3	0,0106(3)	0,0124(2)	0,0121(3)	0,0007(2)	0,0063(2)	0,0014(2)
P1	0,013(1)	0,012(1)	0,013(1)	-0,002(1)	0,007(1)	-0,002(1)
P2	0,015(1)	0,016(1)	0,018(1)	0,001(1)	0,012(1)	0,002(1)
P3	0,016(1)	0,017(1)	0,017(1)	0,0001(13)	0,011(1)	0,001(1)
P4	0,009(1)	0,009(1)	0,008(1)	-0,001(1)	0,004(1)	-0,001(1)
P5	0,019(1)	0,015(1)	0,024(1)	0,001(1)	0,016(1)	0,003(1)
P6	0,012(1)	0,014(1)	0,007(1)	-0,001(1)	0,003(1)	-0,001(1)
P7	0,013(1)	0,012(1)	0,012(1)	-0,001(1)	0,007(1)	-0,001(1)
P8	0,017(1)	0,009(1)	0,028(1)	-0,001(1)	0,017(1)	-0,001(1)
Р9	0,017(1)	0,013(1)	0,017(1)	-0,002(1)	0,010(1)	-0,001(1)
01	0,015(3)	0,014(3)	0,037(5)	0,002(3)	0,015(3)	0,009(3)
O2	0,018(3)	0,017(3)	0,016(3)	-0,003(2)	0,010(3)	0,001(2)
O3	0,017(3)	0,015(3)	0,016(3)	-0,002(2)	0,009(3)	-0,001(2)
O4	0,021(4)	0,025(4)	0,012(3)	0,009(3)	0,008(3)	-0,001(2)
O5	0,024(4)	0,021(4)	0,034(4)	0,005(3)	0,018(3)	0,003(3)
O6	0,023(3)	0,021(3)	0,017(3)	-0,001(3)	0,015(3)	0,008(3)
07	0,020(4)	0,019(4)	0,027(4)	0,010(3)	0,012(3)	0,007(3)
08	0,039(4)	0,012(3)	0,032(4)	-0,001(3)	0,030(4)	0,003(3)
09	0,028(5)	0,018(3)	0,019(4)	-0,006(4)	0,017(4)	0,001(3)
O10	0,031(4)	0,021(3)	0,026(4)	-0,012(3)	0,023(3)	-0,002(3)
011	0,019(3)	0,030(4)	0,015(3)	0,005(2)	0,005(3)	0,001(2)
012	0,026(3)	0,034(4)	0,034(4)	-0,015(3)	0,023(3)	-0,026(3)
O13	0,024(4)	0,024(4)	0,032(4)	0,009(3)	0,021(3)	0,010(3)
O14	0,016(3)	0,024(3)	0,022(3)	0,005(2)	0,008(3)	0,015(2)
O15	0,017(3)	0,022(3)	0,023(3)	-0,009(2)	0,014(3)	-0,008(2)
O16	0,018(3)	0,019(3)	0,015(3)	0,005(2)	0,013(3)	0,004(2)
O17	0,019(4)	0,025(4)	0,025(4)	-0,008(3)	0,015(3)	-0,009(3)
O18	0,029(4)	0,018(3)	0,014(3)	-0,001(3)	0,015(3)	-0,002(2)
O19	0,021(4)	0,019(3)	0,024(4)	-0,001(2)	0,018(3)	-0,002(2)
O20	0,016(3)	0,030(4)	0,015(3)	-0,001(2)	0,009(2)	-0,005(2)
O21	0,026(4)	0,027(4)	0,016(3)	0,012(3)	0,017(3)	0,014(3)
O22	0,016(4)	0,028(4)	0,015(3)	-0,006(3)	0,011(3)	0,002(3)
O23	0,019(3)	0,026(4)	0,022(4)	-0,003(3)	0,015(3)	-0,007(3)
O24	0,011(3)	0,043(5)	0,021(3)	-0,006(3)	0,010(3)	-0,002(3)
O25	0,018(3)	0,027(4)	0,016(3)	-0,001(3)	0,011(3)	-0,005(3)
O26	0,018(3)	0,021(3)	0,015(3)	-0,004(2)	0,006(2)	-0,004(2)
O27	0,023(5)	0,018(4)	0,022(4)	-0,007(4)	0,010(4)	-0,012(4)

Tabelle A-1. Anisotrope Auslenkungsparameter für C-Ir(PO₃)₃/Å².

Atom	<i>U</i> ₁₁	U_{22}	<i>U</i> ₃₃	U_{12}	U_{13}	U ₂₃
Ir1	0,0109(5)	0,0123(4)	0,0122(4)	-0,0001(3)	0,0002(4)	0,0021(3)
Ir2	0,0106(5)	0,0123(4)	0,0116(4)	0,0005(3)	0,0008(4)	0,0015(3)
P1	0,012(1)	0,011(1)	0,010(1)	0,0009(9)	0,001(1)	0,0022(9)
P2	0,012(1)	0,010(1)	0,012(1)	-0,0001(9)	0,001(1)	-0,0011(8)
P3	0,008(1)	0,014(1)	0,012(1)	0,0013(9)	0,001(1)	0,0024(9)
01	0,012(3)	0,016(3)	0,017(3)	-0,004(2)	-0,001(2)	0,004(2)
O2	0,008(3)	0,015(3)	0,015(3)	-0,001(2)	0,002(3)	0,003(2)
O3	0,010(3)	0,018(3)	0,015(3)	-0,002(2)	-0,001(3)	0,010(2)
O4	0,023(4)	0,013(3)	0,009(3)	0,005(2)	0,004(2)	-0,005(2)
O5	0,020(4)	0,012(3)	0,014(3)	-0,005(2)	-0,001(3)	-0,001(2)
O6	0,010(3)	0,014(3)	0,017(3)	-0,001(2)	-0,001(3)	0,002(2)
07	0,005(3)	0,019(3)	0,011(3)	-0,001(2)	0,001(2)	0,004(2)
08	0,013(3)	0,017(3)	0,015(3)	0,001(3)	0,003(2)	0,005(2)
O9	0,016(3)	0,013(3)	0,013(3)	-0,005(2)	0,003(2)	0,001(2)

Tabelle A-2. Anisotrope Auslenkungsparameter für *trikl*-Ir(PO₃)₃ /Å².

Tabelle A-3. Anisotrope Auslenkungsparameter für $(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0.54) /Å².

Atom	U ₁₁	U_{22}	U33	U_{12}	U_{13}	U_{23}
Ir1 ^{a)}	-	-	-	-	-	-
Si1 ^{a)}	-	-	-	-	-	-
Ir2 ^{a)}	-	-	-	-	-	-
Si2 ^{a)}	-	-	-	-	-	-
Р	0,016(1)	0,016(1)	0,0213(9)	0,0080(8)	-0,0002(6)	-0,0001(6)
Si	0,016(1)	0,016(1)	0,023(1)	0,0084(6)	0	0
01	0,019(3)	0,017(3)	0,035(3)	0,006(2)	-0,001(2)	0,002(2)
O2	0,029(3)	0,044(4)	0,024(2)	0,024(3)	0,003(2)	0,004(2)
03	0,025(3)	0,029(3)	0,034(3)	0,017(3)	0,001(2)	0,007(2)
O4	0,017(2)	0,027(3)	0,022(2)	0,008(2)	0,004(2)	0,002(2)
05	0,012(4)	0,012(4)	0,041(8)	0,006(2)	0	0

^{a)} isotrop verfeinerte Auslenkungsparameter.

Tabelle A-4. Anisotrope Auslenkungsparameter für $K_2[Pt_2(HPO_4)_4(H_2O)_2]/Å^2$.

Atom	U ₁₁	U_{22}	U_{33}	<i>U</i> ₁₂	<i>U</i> ₁₃	U_{23}
K1	0,102(2)	0,086(2)	0,069(1)	-0,052(1)	-0,049(1)	0,021(1)
K2	0,052(1)	0,060(1)	0,040(1)	-0,034(1)	0,0051(8)	-0,0131(9)
Pt1	0,0203(1)	0,0199(1)	0,0173(1)	-0,0080(1)	0,0005(1)	-0,0004(1)
Pt2	0,0145(1)	0,0172(1)	0,0143(1)	-0,0070(1)	-0,0011(1)	0,0010(1)
P1	0,0237(8)	0,0199(8)	0,0182(7)	-0,0061(6)	-0,0001(6)	0,0008(6)
P2	0,0193(7)	0,0218(8)	0,0189(7)	-0,0065(6)	0,0020(6)	0,0023(6)
P3	0,0149(6)	0,0203(7)	0,0172(7)	-0,0070(6)	0,0015(5)	-0,0005(5)
P4	0,0166(6)	0,0175(7)	0,0190(7)	-0,0057(6)	-0,0011(5)	0,0032(6)
01	0,029(2)	0,030(2)	0,028(2)	-0,012(2)	-0,001(2)	-0,009(2)
O2	0,029(2)	0,020(2)	0,021(2)	-0,010(2)	-0,003(1)	0,003(1)
O3	0,031(2)	0,028(2)	0,028(2)	-0,013(2)	0,007(2)	0,001(2)
O4	0,028(2)	0,020(2)	0,019(2)	-0,002(2)	-0,002(1)	0,002(1)
O5	0,028(2)	0,018(2)	0,020(2)	-0,005(2)	-0,002(1)	0,001(1)

06	0,019(2)	0,022(2)	0,029(2)	-0,006(1)	0,001(1)	-0,005(1)
07	0,029(2)	0,027(2)	0,017(2)	-0,006(2)	0,002(1)	0,002(1)
08	0,022(2)	0,029(2)	0,029(2)	-0,008(2)	0,005(1)	0,006(2)
09	0,021(2)	0,028(2)	0,025(2)	-0,005(2)	0,003(1)	-0,006(2)
O10	0,027(2)	0,031(2)	0,020(2)	-0,017(2)	-0,006(1)	0,004(1)
011	0,017(2)	0,023(2)	0,019(2)	-0,005(1)	-0,001(1)	-0,001(1)
012	0,017(2)	0,025(2)	0,015(2)	-0,010(1)	0,004(1)	-0,001(1)
013	0,021(2)	0,025(2)	0,036(2)	-0,008(2)	0,001(2)	-0,001(2)
014	0,024(2)	0,025(2)	0,019(2)	-0,012(2)	0,005(1)	-0,003(1)
015	0,021(2)	0,022(2)	0,027(2)	-0,010(1)	-0,007(1)	0,005(1)
016	0,021(2)	0,017(2)	0,031(2)	-0,007(1)	-0,004(1)	0,001(1)
017	0,022(2)	0,020(2)	0,018(2)	-0,007(1)	-0,001(1)	0,002(1)
018	0,025(2)	0,025(2)	0,033(2)	-0,006(2)	0,008(2)	0,004(2)
H1A ^{a)}	-	-	-	-	-	-
H1B ^{a)}	-	-	-	-	-	-
H3 ^{a)}	-	-	-	-	-	-
H7 ^{a)}	-	-	-	-	-	-
H10A ^{a)}	-	-		-	-	-
H10B ^{a)}	-	-	-	-	-	-
H13 ^{a)}	-	-	-	-	-	-
H18 ^{a)}	-	-	-	-	-	-

Fortsetzung von Tabelle A-4.

^{a)} isotrop verfeinerte Auslenkungsparameter.

Tabelle A-5.	Anisotrope Auslenkungsparameter für Pd(AsO ₃) ₂ /Å ² .

Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{12}	U ₁₃	U_{23}	
Pd	0,0031(5)	0,0031(5)	0,0042(7)	0,0015(2)	0	0	
As	0,0026(5)	0,0026(5)	0,0048(7)	0,0012(2)	0	0	
0	0,005(1)	0,002(1)	0,008(2)	0,0014(8)	-0,001(1)	0	

Tabelle A-6. Anisotrope Auslenkungsparameter für $Ag_2PdP_2O_7$ /Å².

Atom	U_{11}	U_{22}	U33	U_{12}	<i>U</i> ₁₃	U_{23}
Ag	0,0197(3)	0,0246(3)	0,0170(3)	-0,0044(3)	0,0050(2)	-0,0016(3)
Pd	0,0102(4)	0,0178(4)	0,0135(4)	-0,0012(3)	0,0035(3)	0,0055(4)
Р	0,0110(9)	0,015(1)	0,0145(9)	-0,0028(9)	0,0055(7)	0,0003(9)
01	0,016(2)	0,016(3)	0,018(2)	0,010(2)	0,006(2)	0,004(2)
O2	0,014(3)	0,011(4)	0,015(3)	0,000(0)	0,005(3)	0,000(0)
O3	0,017(3)	0,027(3)	0,018(2)	-0,002(2)	0,006(2)	0,010(2)
O4	0,011(2)	0,026(3)	0,022(2)	0,003(2)	0,004(2)	-0,011(2)

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Na	0,021(2)	0,021(2)	0,019(3)	0,004(2)	0,001(2)	0,001(2)
Pd1	0,0071(4)	0,0071(4)	0,0138(8)	0	0	0
Pd2	0,0066(6)	0,0117(6)	0,0135(5)	0,0007(4)	0	0
Р	0,007(1)	0,009(1)	0,010(1)	-0,001(1)	0,001(1)	-0,001(1)
01	0,004(5)	0,015(5)	0,012(4)	0,005(3)	0	0
O2	0,006(3)	0,020(3)	0,012(3)	-0,001(2)	-0,002(3)	-0,001(3)
O3	0,021(3)	0,004(3)	0,015(3)	-0,006(2)	-0,006(3)	0,001(3)
O4	0,002(3)	0,026(4)	0,017(3)	0,006(3)	-0,001(3)	0,004(3)

Tabelle A-7. Anisotrope Auslenkungsparameter für $Na_2Pd_3(P_2O_7)_2 / Å^2$.

Tabelle A-8. Anisotrope Auslenkungsparameter für $Tl_2Pd_3(P_2O_7)_2$ /Å².

Atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Tl	0,0710(8)	0,0296(5)	0,0563(7)	0	0	-0,0040(3)
Pd1	0,0172(9)	0,037(1)	0,031(1)	0	0	0
Pd2	0,0180(8)	0,0207(8)	0,030(1)	0	0	-0,0001(7)
Pd3	0,032(1)	0,0213(9)	0,032(1)	0,0038(7)	0	0
Р	0,021(1)	0,025(1)	0,036(1)	0,001(1)	0,001(1)	-0,001(1)
01	0,017(5)	0,024(6)	0,055(9)	0,002(4)	0	0
O2	0,021(4)	0,024(4)	0,053(6)	-0,001(3)	0,005(4)	0,004(4)
O3	0,012(4)	0,075(7)	0,040(6)	0,001(4)	0,004(4)	0,002(5)
O4	0,051(6)	0,026(4)	0,030(5)	0,005(4)	0,001(4)	-0,005(3)

Tabelle A-9. Anisotrope Auslenkungsparameter für $K_4Pd_4(P_2O_7)_3$ /Å².

Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
K1	0,0262(6)	0,0205(7)	0,0203(6)	-0,0016(7)	-0,0004(7)	0,0026(5)
K2	0,0216(8)	0,0244(7)	0,0205(6)	0,0013(7)	-0,0001(7)	0,0004(5)
K3	0,0268(7)	0,0293(8)	0,0256(7)	0,0037(8)	0,0017(8)	-0,0066(6)
K4	0,0265(7)	0,0299(8)	0,0238(7)	0,0024(8)	0,0029(8)	-0,0046(6)
K5	0,0311(8)	0,049(1)	0,0230(7)	-0,007(1)	0,0030(9)	-0,0068(6)
K6	0,0225(9)	0,035(1)	0,110(1)	-0,0050(8)	0,012(1)	-0,035(1)
K7	0,0226(8)	0,0359(9)	0,056(1)	-0,0018(8)	-0,0048(9)	-0,0174(7)
K8	0,0223(7)	0,058(1)	0,0201(7)	-0,0001(9)	-0,0023(8)	0,0055(6)
Pd1	0,0103(2)	0,0131(2)	0,0161(2)	0,0001(2)	0,0001(2)	0,0026(1)
Pd2	0,0105(2)	0,0135(2)	0,0178(2)	-0,0004(1)	0,0002(2)	0,0043(1)
Pd3	0,0101(2)	0,0133(2)	0,0163(2)	-0,0002(2)	0,0008(2)	0,0031(1)
Pd4	0,0105(2)	0,0164(2)	0,0171(2)	0,0001(2)	0,0007(2)	0,0046(1)
Pd5	0,0106(2)	0,0151(2)	0,0169(2)	-0,0001(2)	0,0006(2)	-0,0036(1)
Pd6	0,0101(2)	0,0143(2)	0,0185(2)	-0,0003(2)	0,0001(2)	0,0026(1)
Pd7	0,0099(2)	0,0104(2)	0,0178(2)	-0,0002(1)	0,0004(2)	-0,0022(1)
Pd8	0,0094(2)	0,0097(2)	0,0175(2)	0,0001(1)	0,0004(2)	0,0011(1)
P1	0,0113(8)	0,017(1)	0,0187(9)	-0,0016(7)	0,0004(7)	0,0037(8)
P2	0,0113(8)	0,0130(9)	0,019(1)	0,0010(6)	-0,0005(7)	0,0003(7)
P3	0,0110(8)	0,0142(9)	0,022(1)	-0,0014(7)	0,0025(7)	0,0024(8)
P4	0,0111(8)	0,018(1)	0,017(1)	0,0019(7)	0,0000(7)	0,0010(7)
P5	0,0088(8)	0,0168(9)	0,0164(8)	0,0004(6)	0,0001(6)	0,0050(7)
P6	0,0096(8)	0,0147(9)	0,0176(9)	-0,0004(6)	0,0011(6)	-0,0028(7)

Fortsetzung vo	n Tabelle A-9.					
P7	0,0099(8)	0,0112(9)	0,0200(9)	-0,0001(6)	0,0001(6)	0,0013(7)
P8	0,0095(8)	0,0108(9)	0,0208(9)	-0,0020(6)	0,0004(6)	0,0027(7)
Р9	0,0089(8)	0,0175(9)	0,0217(9)	-0,0008(6)	0,0001(6)	0,0064(7)
P10	0,0088(7)	0,0092(8)	0,0198(9)	0,0017(6)	0,0019(6)	-0,0001(7)
P11	0,0084(8)	0,0099(8)	0,024(1)	0,0004(6)	0,0013(6)	0,0019(7)
P12	0,0108(8)	0,0155(9)	0,0197(9)	0,0003(7)	0,0004(6)	0,0065(7)
01	0,013(2)	0,014(2)	0,028(2)	0,001(1)	0,002(2)	-0,001(2)
02	0,012(2)	0,010(2)	0,044(3)	0,002(1)	0,003(2)	0,005(2)
03	0,014(2)	0,017(2)	0,023(2)	-0,000(9)	-0,003(2)	0,002(2)
O4	0,008(2)	0,018(2)	0,025(2)	0,000(9)	0,004(1)	-0,004(2)
05	0,015(2)	0,014(2)	0,024(2)	0,001(1)	-0,001(1)	0,005(2)
06	0.015(2)	0,008(2)	0,027(2)	-0,003(1)	0.008(1)	-0,005(1)
07	0,008(2)	0,016(2)	0,029(3)	-0,002(1)	0.002(1)	0,007(2)
08	0,012(2)	0,017(2)	0,029(2)	-0,000(1)	-0,001(2)	0,003(2)
09	0.014(2)	0.018(2)	0.022(2)	-0.003(1)	-0.006(2)	0.001(2)
010	0.021(2)	0.021(2)	0.017(2)	0.004(2)	0.004(1)	0.007(2)
011	0.011(2)	0.012(2)	0.026(2)	0.001(1)	0.003(1)	-0.000(2)
012	0.018(2)	0.018(2)	0.018(2)	0.009(1)	0.005(1)	0.004(1)
013	0,010(2)	0,010(2)	0.026(2)	-0.000(1)	0.002(1)	0,001(2)
014	0,010(2)	0.024(2)	0,020(2)	-0.001(2)	0,002(1)	0,001(2)
015	0,017(2)	0,024(2)	0,010(2)	0,001(2)	-0.001(2)	-0.005(1)
015	0,011(2) 0.013(2)	0,010(2)	0,022(2)	-0.000(1)	-0,001(2)	-0,003(1)
017	0,013(2) 0.014(2)	0,011(2)	0,029(2)	0,000(1)	0,001(1)	0,001(2)
018	0,014(2) 0.018(2)	0,024(2)	0,030(2)	0,003(1)	0,000(2)	0,010(2)
019	0,010(2)	0,016(2)	0,020(2)	0,003(1)	-0.003(2)	-0.001(2)
019	0,019(2)	0,010(2)	0,023(2)	0,003(2)	-0,003(2)	-0,001(2)
020	0,013(2)	0,027(2)	0,022(2)	-0,003(1)	0,002(1)	0,000(2)
022	0,009(1)	0,014(2)	0,033(2)	-0,001(2)	0,000(2)	0,00+(1)
022	0,012(2)	0,014(2)	0,025(2)	-0,000(2)	0,000(2)	0,002(1)
023	0,010(1)	0,013(2)	0,025(2)	0,000(2)	-0,001(2)	0,002(1)
024	0,014(2)	0,027(2)	0,023(2)	0,011(2)	0,003(2)	0,009(2)
023	0,010(2)	0,013(2)	0,024(2)	0,002(1)	0,002(1)	-0,001(2)
026	0,020(2)	0,022(2)	0,019(2)	-0,006(2)	-0,005(1)	0,005(2)
027	0,01/(2)	0,018(2)	0,026(2)	-0,007(1)	0,004(2)	-0,002(2)
028	0,016(2)	0,026(2)	0,024(2)	-0,006(2)	-0,000(2)	0,010(2)
029	0,022(2)	0,018(2)	0,031(2)	0,009(2)	0,014(2)	0,010(2)
030	0,017(2)	0,015(2)	0,022(2)	0,004(1)	-0,005(1)	0,000(1)
031	0,019(2)	0,015(2)	0,033(3)	0,008(2)	-0,009(2)	-0,004(2)
032	0,015(2)	0,017(2)	0,030(2)	0,008(1)	0,001(2)	0,008(2)
033	0,020(2)	0,040(3)	0,019(2)	0,000(2)	0,001(2)	0,000(2)
034	0,019(2)	0,015(2)	0,020(2)	0,003(1)	0,00/(1)	-0,000(1)
035	0,011(2)	0,032(2)	0,023(2)	-0,001(2)	-0,002(2)	0,012(1)
036	0,016(2)	0,013(2)	0,036(3)	0,002(1)	-0,007(2)	0,004(2)
037	0,010(2)	0,019(2)	0,027(2)	0,006(1)	0,000(1)	-0,004(2)
038	0,023(2)	0,026(2)	0,025(2)	0,002(2)	-0,011(2)	-0,003(2)
039	0,017(2)	0,045(3)	0,014(2)	0,005(2)	-0,004(1)	-0,003(2)
O40	0,024(2)	0,031(3)	0,046(3)	-0,006(2)	0,015(2)	-0,011(2)
O41	0,026(2)	0,029(3)	0,037(3)	-0,010(2)	-0,014(2)	0,019(2)
O42	0,008(1)	0,012(2)	0,032(2)	0,001(1)	0,001(2)	-0,003(1)

Atom	<i>U</i> ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Hg	0,0149(1)	0,0287(2)	0,0197(1)	-0,0056(1)	0,0051(1)	-0,0073(1)
Pd	0,0115(2)	0,0180(2)	0,0161(2)	0,0017(1)	0,0034(1)	0,0031(1)
Р	0,0115(4)	0,0174(6)	0,0157(5)	-0,0019(4)	0,0031(4)	-0,0011(4)
01	0,015(1)	0,032(2)	0,025(2)	0,002(1)	0,007(1)	0,012(1)
02	0,019(2)	0,023(2)	0,011(2)	0	0,006(1)	0
O3	0,017(1)	0,024(2)	0,021(2)	-0,006(1)	0,004(1)	-0,004(1)
O4	0,013(1)	0,031(2)	0,021(2)	0,006(1)	0,005(1)	0,009(1)

Tabelle A-10. Anisotrope Auslenkungsparameter für HgPdP₂O₇ /Å².

Tabelle A-11. Anisotrope Auslenkungsparameter für $PbPdP_2O_7$ /Å².

Atom	U_{11}	U_{22}	U_{33}	U_{12}	<i>U</i> ₁₃	U_{23}
Pb	0,0185(1)	0,0238(1)	0,0199(1)	0	0,0011(1)	0
Pd	0,0145(1)	0,0147(2)	0,0183(1)	0,0001(1)	0,0005(1)	0,0017(1)
P1	0,0164(7)	0,0186(9)	0,0176(6)	0	0,0028(5)	0
P2	0,0158(7)	0,0195(9)	0,0162(6)	0	-0,0018(5)	0
01	0,023(2)	0,040(3)	0,021(2)	0	-0,007(1)	0
O2	0,018(2)	0,025(2)	0,018(2)	0	0,001(1)	0
O3	0,017(1)	0,022(1)	0,026(1)	-0,001(1)	-0,002(1)	0,003(1)
O4	0,018(2)	0,039(3)	0,023(2)	0	0,003(1)	0
05	0,019(1)	0,018(1)	0,026(1)	0,002(1)	0,002(1)	0,002(1)

Tabelle A-12. Anisotrope Auslenkungsparameter für HgPd2(PO4)2 /Å2.

	1	0	L	0 =(!)=		
Atom	U ₁₁	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
Hg	0,0051(1)	0,0082(2)	0,0088(2)	0	0	0
Pd	0,0037(2)	0,0066(2)	0,0040(3)	-0,0013(1)	-0,0004(2)	0,0013(2)
Р	0,0050(7)	0,0051(7)	0,0060(9)	0,0005(8)	0	0
01	0,007(1)	0,007(1)	0,012(2)	-0,002(1)	-0,003(1)	0,003(2)
02	0,007(1)	0,008(1)	0,007(2)	0,003(1)	0,001(1)	0,003(1)
02	0,007(1)	0,008(1)	0,007(2)	0,005(1)	0,001(1)	0,005(1)

Tabelle A-13. Anisotrope Auslenkungsparameter für PbPdSi(P_2O_7)₂ /Å².

Atom	U ₁₁	U ₂₂	U ₃₃	<i>U</i> ₁₂	U ₁₃	U ₂₃
Pb	0,0147(1)	0,0136(1)	0,0121(1)	0	0,0037(1)	0
Pd	0,0051(1)	0,0045(1)	0,0063(2)	0	0,0007(1)	0
Si	0,0031(4)	0,0050(5)	0,0030(6)	-0,0001(4)	0,0006(4)	-0,0004(4)
P1	0,0070(3)	0,0054(3)	0,0060(4)	-0,0005(3)	0,0009(3)	0,0001(3)
P2	0,0060(3)	0,0057(4)	0,0057(4)	-0,0006(3)	0,0023(3)	-0,0003(3)
01	0,013(1)	0,009(1)	0,007(1)	-0,003(1)	0,001(1)	0,001(1)
O2	0,005(1)	0,010(1)	0,007(1)	0,0032(1)	0,0020(9)	0,0008(9)
O3	0,010(1)	0,012(1)	0,010(1)	-0,0026(9)	0,0037(9)	0,0003(10)
O4	0,014(1)	0,008(1)	0,008(1)	0,005(1)	0,001(1)	-0,0006(9)
05	0,007(1)	0,008(1)	0,008(1)	-0,0007(8)	0,003(1)	-0,002(1)
O6	0,005(1)	0,009(1)	0,006(1)	-0,0016(8)	0,0016(9)	-0,0018(9)
07	0,011(1)	0,008(1)	0,015(1)	0,0017(9)	0,006(1)	-0,0007(10)
Anhang B - Indizierung von Guinier-Aufnahmen 13.2

Tabelle B-1. Ag₂Pd₃(P₂O₇)₂. Indizierung des zu Na₂Pd₃(P₂O₇)₂ (Abschnitt 10.4) isotypen Guinier-Diagramms (Abbildung B-1) mit berechneten und beobachteten 4 θ -Werten. Δ = $|\sin^2\theta_{\rm calc} - \sin^2\theta_{\rm obs}| \cdot 1000.$

h	k	l	$4\theta_{calc}$	$4\theta_{obs}$	Δ	I _{calc} ^{a)}	$I_{obs}^{a), b}$	d _{calc} /Å
1	0	1	22,528	22,490	0,03	115	187	7,8488
1	1	0	26,136	26,147	0,01	520	755	6,7689
2	1	0	41,461	41,459	0,00	353	378	4,2810
1	0	3	43,057	43,073	0,03	646	997	4,1241
2	1	1	43,459	43,434	0,04	478	359	4,0864
2	0	2	45,277	45,238	0,07	278	417	3,9244
2	1	2	48,988	48,966	0,04	112	97	3,6311
0	0	4	51,947	51,912	0,07	132	130	3,4275
3	0	1	57,400	57,364	0,07	249	324	3,1078
3	1	0	58,964	58,938	0,06	715	871	3,0271
3	1	1	60,418	60,381	0,08	540	540	2,9559
2	0	4	64,183	64,160	0,05	103	110	2,7867
3	1	2	64,601	64,561	0,09	65	72	2,7691
2	1	4	66,924	66,916	0,02	1000	870	2,6756
3	2	0	67,460	67,427	0,08	380	382	2,6560
3	0	3	68,489	68,439	0,12	270	258	2,6163
3	2	2	72,506	72,469	0,10	177	174	2,4758
2	2	4	74,613	74,634	0,05	169	142	2,4082
3	2	3	78,418	78,373	0,12	120	213	2,2957
4	0	2	79,729	79,726	0,01	63	103	2,2594
1	1	6	83,365	83,375	0,03	92	81	2,1650
4	1	3	87,386	87,364	0,07	71	74	2,0699
4	0	4	92,453	92,456	0,01	111	64	1,9622
4	2	3	93,654	93,689	0,11	142	92	1,9384
5	1	0	96,892	96,917	0,08	85	77	1,8773
4	3	2	98,763	98,782	0,06	119	111	1,8440
5	1	2	100,703	100,737	0,11	335	246	1,8107
5	1	3	105,325	105,358	0,12	74	32	1,7365
0	0	8	106,834	106,842	0,03	77	35	1,7138
4	4	2	111,836	111,815	0,08	120	55	1,6429

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Alle Reflexe im untersuchten Winkelbereich mit $I_{calc} > 5$ wurden beobachtet.

$\theta_{\rm calc}$	$ \theta_{\rm calc} - \sin^2 \theta_{\rm obs} \cdot 1000. $										
h	k	l	$4\theta_{calc}$	$4\theta_{obs}$	Δ	I _{calc} ^{a)}	$I_{obs}^{a), b)}$	d _{calc} /Å			
0	1	1	21,684	21,521	0,13	145	284	8,1532			
1	1	2	35,570	35,528	0,06	693	593	4,9829			
2	1	1	41,772	41,747	0,04	325	276	4,2495			
2	0	2	43,696	43,676	0,03	1000	1000	4,0645			
0	0	4	50,587	50,635	0,09	198	204	3,5181			
2	1	3	55,162	55,124	0,08	438	302	3,2313			
2	2	2	56,536	56,513	0,05	206	195	3,1543			
2	0	4	62,199	62,192	0,02	530	599	2,8733			
3	2	1	65,953	65,912	0,10	17	44	2,7139			
0	4	0	71,756	71,711	0,12	40	297	2,5008			
4	0	0	72,088	72,091	0,01	248	228	2,4987			
1	4	1	75,196	75,140	0,15	72	168	2,3902			
3	3	2	80,785	80,809	0,07	350	198	2,2311			
2	4	2	84,803	84,789	0,04	145	90	2,1299			
2	0	6	85,143	85,129	0,04	33	20	2,1218			
4	0	4	89,091	89,108	0,05	249	204	2,0323			
1	5	0	92,490	92,498	0,02	2	1	1,9614			
1	3	6	96,543	96,517	0,08	135	88	1,8837			
4	3	3	99,231	99,187	0,15	101	135	1,8358			
2	5	3	106,099	106,100	0,00	70	11	1,7261			
5	3	0	107,095	107,096	0,00	60	27	1,7099			
0	2	8	110,627	110,616	0,04	7	3	1,6594			
6	0	2	113,909	113,915	0,02	44	37	1,6154			
1	4	7	119,377	119,375	0,01	2	1	1,5478			
2	6	2	119,832	119,835	0,01	45	46	1,5425			
0	4	8	129,473	129,494	0,08	27	51	1,4388			
1	7	0	131,971	131,994	0,09	34	5	1,4145			
5	3	6	135,525	135,544	0,08	70	55	1,3817			

Tabelle B-2. Rb₂Pd₃(P₂O₇)₂. Indizierung des zu Tl₂Pd₃(P₂O₇)₂ (Abschnitt 10.4) isotypen Guinier-Diagramms (Abbildung B-2) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta$

^{a)} Intensität normiert auf 1000 für den stärksten Reflex.
 ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 6 2) mit I_{calc} = 118.

Tabelle B-3.	$Cs_2Pd_3(P_2O_7)_2.$	Indizierung	des zu	$Tl_2Pd_3(P_2)$	O ₇) ₂ (Abschni	tt 10.4) is	sotypen
Guinier-Diagr	amms (Abbildu	ng B-3) mit	berecht	neten und	beobachteten	4θ-Werte	n. 🛆 =
$ \sin^2\theta_{\text{calc}} - \sin^2\theta_{\text{calc}} $	$\theta_{\rm obs} $ ·1000.						

			0001			<i>a</i>)	(a) (b)	
h	k	1	$4\theta_{calc}$	$4 \theta_{obs}$	Δ	I _{calc} ^a	$I_{obs}^{(a), b)}$	d _{calc} /Å
2	0	2	43,465	43,526	0,10	1000	999	4,0859
0	3	1	54,255	54,314	0,12	398	279	3,2843
1	1	6	80,292	80,309	0,05	27	21	2,2442
4	0	4	88,600	88,648	0,15	218	241	2,0429
5	1	0	92,498	92,498	0,00	5	13	1,9613
2	5	1	97,796	97,787	0,03	19	79	1,8610
4	3	3	98,489	98,507	0,06	59	54	1,8488
0	0	8	102,952	102,986	0,12	70	36	1,7737
0	3	7	105,236	105,236	0,00	12	18	1,7379
1	1	8	106,346	106,336	0,04	3	8	1,7211
3	5	2	109,051	109,046	0,02	16	26	1,6815
6	0	0	110,157	110,146	0,04	40	27	1,6659
3	2	7	112,154	112,135	0,07	56	14	1,6386
2	4	6	112,543	112,555	0,04	18	5	1,6334
4	2	6	113,052	113,025	0,10	7	20	1,6267
6	0	2	113,419	113,405	0,05	50	21	1,6218
6	2	0	116,504	116,535	0,11	5	11	1,5825
4	1	7	118,719	118,735	0,06	11	7	1,5556
6	1	3	118,959	118,955	0,02	45	19	1,5527
6	2	2	119,654	119,665	0,04	42	22	1,5445
6	3	1	124,910	124,914	0,02	1	4	1,4857
2	6	4	127,568	127,544	0,09	78	57	1,4579
6	2	4	128,825	128,814	0,04	19	34	1,4452
0	5	7	130,073	130,084	0,04	4	5	1,4329
3	4	7	130,423	130,424	0,00	6	20	1,4294
6	1	5	131,143	131,144	0,00	1	8	1,4225
0	0	10	131,503	131,484	0,08	15	15	1,4190
1	7	2	133,128	133,134	0,02	3	6	1,4036
6	4	0	134,419	134,404	0,06	3	9	1,3917
2	7	1	135,361	135,374	0,05	19	9	1,3832
0	6	6	136,396	136,394	0,01	64	15	1,3739
4	6	2	136,574	136,564	0,04	106	26	1,3724

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 6 2) mit $I_{calc} = 105$.

Tabelle B-4. CaPdP₂O₇. Indizierung des zu PbPdP₂O₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-4) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc}$ - $\sin^2\theta_{\rm obs}|\cdot 1000.$

h	k	1	$4\theta_{calc}$	$4\theta_{obs}$	Δ	$I_{calc}^{a)}$	$I_{obs}^{a), b)}$	d _{calc} /Å
1	0	1	27,950	27,980	0,03	1000	1000	6,3317
2	1	1	47,652	47,675	0,04	301	816	3,7314
2	0	2	56,326	56,263	0,13	402	495	3,1658
1	1	2	59,479	59,483	0,01	95	200	3,0015
0	2	0	60,891	60,873	0,04	2	47	2,9335
4	0	2	74,313	74,320	0,02	254	335	2,4176
3	2	1	78,190	78,150	0,11	141	74	2,3021
0	2	2	78,946	78,949	0,01	187	91	2,2809
0	1	3	80,610	80,559	0,14	22	192	2,2357
2	2	2	83,902	83,899	0,01	96	132	2,1517
3	0	3	85,619	85,638	0,06	150	135	2,1106
0	0	4	100,527	100,537	0,03	63	77	1,8136
7	0	1	101,615	101,636	0,07	72	36	1,7955
5	0	3	103,252	103,246	0,02	66	35	1,7689
6	2	0	105,073	105,106	0,11	84	53	1,7404
3	2	3	106,871	106,846	0,09	163	122	1,7132
6	2	1	108,294	108,286	0,03	1	3	1,6924
8	0	0	113,444	113,405	0,14	75	44	1,6214
3	3	2	115,163	115,145	0,07	5	12	1,5993
7	2	1	120,787	120,815	0,10	82	50	1,5314
5	2	3	122,249	122,255	0,02	234	171	1,5148
0	4	0	126,713	126,744	0,12	124	99	1,4667
1	4	1	130,477	130,464	0,05	38	35	1,4289
6	3	1	131,169	131,144	0,10	6	3	1,4222
6	3	2	139,550	139,564	0,06	2	9	1,3467
3	1	5	140,441	140,454	0,05	1	3	1,3392
5	2	4	142,059	142,064	0,02	21	37	1,3259

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 1 3) mit $I_{calc} = 86$.

Tabelle B-5. SrPdP₂O₇. Indizierung des zu PbPdP₂O₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-5) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc}$ - $\sin^2 \theta_{\rm obs} |\cdot 1000.$

h	k	1	$4\theta_{calc}$	$4\theta_{abs}$	Δ	$I_{calc}^{a)}$	$I_{obs}^{(a), b)}$	d _{calc} /Å
2	0	0	26,301	26,249	0,05	193	135	6,7266
1	0	1	27,202	27,179	0,02	1000	811	6,5047
0	1	1	38,181	38,217	0,05	17	12	4,6449
2	1	1	46,504	46,541	0,06	856	830	3,8222
0	0	2	47,858	47,937	0,14	35	40	3,7155
4	0	0	52,957	52,874	0,16	133	96	3,3633
2	0	2	54,798	54,857	0,12	731	472	3,2524
1	1	2	58,150	58,186	0,08	95	75	3,0686
0	2	0	60,014	60,010	0,01	10	15	2,9753
2	2	0	65,775	65,816	0,10	666	998	2,7210
1	2	1	66,158	66,165	0,02	952	742	2,7057
5	0	1	70,903	70,963	0,15	77	33	2,5299
1	0	3	73,730	73,779	0,13	130	75	2,4361
3	2	1	76,472	76,485	0,04	139	74	2,3518
0	2	2	77,477	77,490	0,04	328	188	2,3225
0	1	3	78,734	78,673	0,17	84	64	2,2868
2	1	3	83,359	83,386	0,08	151	121	2,1651
6	0	1	84,112	84,102	0,03	20	39	2,1466
6	1	1	89,696	89,657	0,12	40	56	2,0192
5	2	1	94,223	94,235	0,04	127	64	1,9274
6	0	2	94,621	94,662	0,13	409	314	1,9197
4	2	2	95,074	95,079	0,02	424	216	1,9111
4	1	3	96,143	96,132	0,04	202	109	1,8911
0	0	4	97,980	97,938	0,14	107	94	1,8578
2	3	1	98,810	98,772	0,13	93	26	1,8431
6	2	0	101,908	101,928	0,07	152	73	1,7907
8	0	0	109,042	109,020	0,08	117	76	1,6816

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (5 0 3) mit $I_{calc} = 70$.

Tabelle B-6. BaPdP₂O₇. Indizierung des zu PbPdP₂O₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-6) mit berechneten und beobachteten 4 θ -Werten. $\Delta = |\sin^2 \theta_{calc}$ - $\sin^2\theta_{\rm obs}|\cdot 1000.$

h	k	1	$4\theta_{calc}$	$4\theta_{obs}$	Δ	I _{calc} ^{a)}	$I_{obs}^{a), b)}$	d _{calc} /Å
2	0	0	25,480	25,735	0,25	9	15	6,9423
1	0	1	26,622	26,548	0,08	580	587	6,6458
0	1	1	37,246	37,235	0,01	36	43	4,7605
2	1	1	45,256	45,250	0,01	1000	999	3,9261
0	0	2	46,972	46,953	0,03	77	53	3,7846
4	0	0	51,283	51,318	0,07	164	137	3,4712
2	0	2	53,613	53,600	0,02	671	503	3,3229
2	2	0	63,839	63,815	0,06	584	879	2,8013
1	2	1	64,324	64,365	0,09	572	384	2,7807
5	0	1	68,739	68,740	0,00	46	54	2,6070
1	0	3	72,306	72,313	0,02	76	42	2,4824
3	2	1	74,253	74,302	0,13	83	66	2,4195
0	2	2	75,523	75,571	0,13	300	204	2,3803
0	1	3	77,121	77,139	0,05	106	56	2,3328
2	1	3	81,541	81,534	0,02	187	178	2,2113
6	1	1	86,886	86,906	0,06	77	103	2,0812
5	2	1	91,334	91,338	0,01	78	15	1,9849
6	0	2	91,854	91,847	0,02	330	224	1,9743
4	2	2	92,409	92,445	0,11	381	244	1,9631
4	1	3	93,769	93,792	0,08	207	127	1,9362
6	2	0	98,640	98,650	0,03	140	79	1,8461
3	2	3	101,661	101,642	0,06	101	49	1,7947
8	0	0	105,387	105,401	0,05	97	55	1,7356
4	0	4	110,480	110,463	0,06	96	33	1,6615
6	1	3	111,837	111,898	0,22	43	27	1,6429
5	2	3	115,565	115,524	0,15	137	48	1,5942
2	2	4	117,682	117,675	0,03	241	68	1,5681
2	3	3	119,450	119,448	0,01	63	24	1,5469
6	3	1	123,557	123,530	0,11	50	30	1,5004
8	2	2	133,263	133,221	0,17	174	87	1,4024
2	4	2	134,566	134,573	0,03	138	72	1,3904

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 3 3) mit $I_{calc} = 81$.

Tal	oelle	B-7 .	ZnPdI	P ₂ O ₇ . Indizieru	ng des zu	PbPdP ₂ O ₇ (Absch	nitt 11.4) isot	ypen Guinier-			
Dia	gran	nms (Abbildu	ung B-7) mit b	erechneter	und beobachteter	α 4 <i>θ</i> -Werten. Δ	$\Delta = \sin^2 \theta_{\text{calc}} $ -			
sin ²	$\sin^2 \theta_{\rm obs} \cdot 1000.$										
h	k	1	10	10	٨	L a)	I a), b)	d . /Å			

h	k	1	$4 heta_{ m calc}$	$4\theta_{\rm obs}$	Δ	I _{calc} ^{a)}	I _{obs} ^{a), b)}	d_{calc} /Å
2	0	0	26,153	26,130	0,02	383	43	6,7645
1	0	1	27,235	27,190	0,05	1000	239	6,4969
0	1	1	38,031	37,897	0,19	83	128	4,6631
3	0	1	46,140	46,196	0,09	572	1000	3,8519
4	0	0	52,655	52,614	0,08	86	147	3,3823
2	0	2	54,865	54,784	0,16	568	426	3,2485
1	1	2	58,132	58,213	0,17	96	24	3,0695
4	1	0	60,614	60,623	0,02	21	34	2,9466
3	0	2	62,449	62,402	0,11	8	23	2,8620
1	0	3	73,957	73,960	0,01	129	38	2,4289
3	2	1	75,954	75,900	0,14	143	23	2,3673
0	2	2	77,163	77,170	0,02	259	183	2,3315
0	1	3	78,860	78,909	0,14	51	72	2,2833
4	2	0	80,273	80,259	0,04	11	24	2,2447
2	2	2	81,811	81,739	0,21	46	28	2,2043
2	1	3	83,429	83,439	0,03	92	274	2,1634
4	2	1	84,045	84,069	0,07	1	14	2,1482
6	1	1	89,196	89,198	0,01	16	90	2,0300
4	2	2	94,626	94,607	0,06	340	284	1,9196
1	3	1	95,027	95,077	0,16	1	21	1,9120
4	1	3	96,070	96,087	0,06	144	156	1,8924
0	0	4	98,321	98,297	0,08	85	99	1,8517
5	0	3	99,927	99,907	0,07	70	12	1,8238
6	2	0	101,182	101,216	0,12	120	118	1,8027
3	2	3	104,062	104,006	0,19	167	48	1,7561
6	2	1	104,354	104,386	0,11	3	22	1,7515
1	3	2	104,744	104,726	0,06	45	16	1,7455
7	0	2	106,857	106,836	0,07	5	20	1,7134
6	0	3	110,226	110,186	0,14	15	16	1,6650
3	1	4	11,520	111,545	0,09	1	11	1,6472
4	0	4	113,236	113,275	0,14	78	24	1,6242
6	1	3	114,766	114,795	0,11	10	29	1,6044

a) Intensität normiert auf 1000 für den stärksten Reflex. b) Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (5 0 1) mit $I_{calc} = 77$.

Tabelle B-8.	$CaPd_2(PO_4)_2$.	Indizierung	des zu	HgPd ₂ (PC	(Abschnitt	t 11.4)	isotypen
Guinier-Diagr	amms (Abbild	ung B-8) mi	t berech	neten und	beobachteten	4θ-Wert	ten. $\Delta =$
$ \sin^2\theta_{\rm calc} - \sin^2\theta_{\rm calc} $	$\theta_{\rm obs} $ ·1000.						

h	k	l	$4\theta_{calc}$	$4 heta_{obs}$	Δ	I _{calc} ^{a)}	$I_{obs}^{a), b)$	<i>d_{calc}</i> ∕Å
1	1	1	31,869	31,884	0,02	336	293	5,5571
0	2	2	37,925	37,957	0,05	85	75	4,6760
1	1	3	45,391	45,475	0,14	470	608	3,9146
2	0	2	56,457	56,484	0,06	68	65	3,1586
2	2	0	60,050	60,047	0,01	73	73	2,9736
1	3	3	62,912	62,937	0,06	427	330	2,8415
2	2	2	64,377	64,402	0,06	1000	1000	2,7785
1	1	5	64,752	64,763	0,03	590	645	2.7629
2	2	4	76,041	76,062	0,06	166	177	2,3647
0	4	4	76,941	76,955	0,04	194	128	2,3380
3	1	1	80,592	80,617	0,07	158	129	2,2362
1	5	1	82,300	82,313	0,04	288	145	2,1918
1	1	7	86,640	86,687	0,14	60	43	2,0869
3	1	3	87,277	87,279	0,01	38	17	2,0724
1	5	3	88,880	88,894	0,04	161	87	2,0368
1	3	7	97,705	97,682	0,07	69	76	1,8627
3	3	3	98,285	98,324	0,13	126	114	1,8524
2	4	6	108,256	108,255	0,00	23	19	1,6929
2	6	2	110,752	110,723	0,11	199	110	1,6577
0	4	8	113,419	113,391	0,10	111	89	1,6218
4	0	4	116,762	116,751	0,04	223	156	1,5793
3	3	7	125,336	125,336	0,00	80	77	1,4812
0	8	0	127,311	127,322	0,04	124	50	1,4606
4	4	4	134,687	134,663	0,10	86	60	1,3893

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (3 1 3) mit $I_{calc} = 38$.

sin	$ \sin^2 \theta_{\text{calc}} - \sin^2 \theta_{\text{obs}} \cdot 1000.$										
h	k	l	$4\theta_{calc}$	$4\theta_{obs}$	Δ	$I_{calc}^{a)}$	$I_{obs}^{a), b)}$	d _{calc} /Å			
1	1	1	32,004	31,901	0,12	1	16	5,5337			
1	3	1	54,695	54,674	0,04	1000	756	3,2583			
2	2	0	60,370	60,407	0,08	178	149	2,9582			
1	3	3	63,702	63,718	0,04	112	78	2,8072			
1	1	5	64,694	64,692	0,01	658	1000	2,7652			
2	2	4	76,227	76,243	0,04	292	257	2,3591			
0	4	4	78,145	78,157	0,03	245	173	2,3034			
1	3	5	78,967	78,958	0,03	4	31	2,2803			
1	5	1	84,161	84,216	0,16	304	182	2,1454			
1	5	3	90,600	90,613	0,04	40	28	2,0001			
2	2	6	92,777	92,774	0,01	233	301	1,9557			
1	3	7	98,104	98,065	0,13	101	75	1,8556			
2	4	6	109,065	109,028	0,13	62	30	1,6813			
3	3	5	109,991	109,957	0,12	175	109	1,6682			
2	2	8	112,726	112,743	0,06	13	57	1,6310			
4	0	4	116,523	116,547	0,09	219	133	1,5823			
3	5	3	119,307	119,291	0,06	79	81	1,5486			
4	4	0	125,531	125,545	0,05	109	79	1,4791			
5	1	1	136,969	136,976	0,03	77	24	1,3689			
1	5	9	138,523	138,520	0,00	81	38	1,3554			
3	7	1	142,070	142,074	0,01	46	20	1,3258			
3	5	7	143,740	143,716	0,10	20	7	1,3125			

Tabelle B-9. CdPd₂(PO₄)₂. Indizierung des zu HgPd₂(PO₄)₂ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-9) mit berechneten und beobachteten 4θ -Werten. Δ =

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (0 2 10) mit *I*_{calc} = 14.

	betechnicten und beobachteten 46-weiten und intensitäten. $\Delta = \sin \theta_{calc} - \sin \theta_{obs} \cdot 1000.$							
h	k	1	$4\theta_{\rm calc}$	$4 heta_{ m obs}$	Δ	$I_{\text{calc}}^{(a)}$	$I_{\rm obs}^{\rm (a, b)}$	d_{calc} /Å
2	0	0	25,542	25,693	0,15	1	1	6,9257
1	0	1	26,689	26,870	0,18	493	536	6,6293
0	1	1	37,383	37,481	0,14	49	38	4,7431
2	1	1	45,406	45,473	0,11	1000	1000	3,9134
0	0	2	47,092	47,162	0,12	87	104	3,7751
4	0	0	51,408	51,440	0,06	166	149	3,4628
2	0	2	53,749	53,760	0,02	644	518	3,3147
1	1	2	57,046	57,070	0,05	47	49	3,1267
0	2	0	58,549	58,551	0,00	39	19	3,0481
2	1	2	61,351	61,342	0,02	21	28	2,9120
1	2	1	64,594	64,564	0,07	484	798	2,7694
4	0	2	70,273	70,330	0,14	14	16	2,5519
1	0	3	72,494	72,492	0,00	65	57	2,4762
3	2	1	74,536	74,565	0,08	70	76	2,4106
0	2	2	75,811	75,877	0,18	289	224	2,3716
0	1	3	77,344	77,370	0,07	110	85	2,3263
5	0	2	80,697	80,716	0,06	1	1	2,2334
2	1	3	81,775	81,779	0,01	195	206	2,2052
6	1	1	87,127	87,081	0,14	87	106	2,0758
5	2	1	91,649	91,623	0,08	66	41	1,9785
6	0	2	92,090	92,094	0,01	310	219	1,9695
4	2	2	92,728	92,726	0,01	369	231	1,9567
4	1	3	94,034	94,040	0,02	210	120	1,9310
5	0	3	97,698	97,732	0,11	38	18	1,8628
6	2	0	98,971	98,926	0,15	137	86	1,8403
3	2	3	102,005	101,987	0,06	86	39	1,7891
8	0	0	105,660	105,681	0,07	92	58	1,7314
4	3	1	107,277	107,297	0,07	98	57	1,7072
4	0	4	110,778	110,782	0,01	95	45	1,6573
5	2	3	115,944	115,925	0,07	115	61	1,5895
2	2	4	118,071	118,016	0,21	234	91	1,5634
2	3	3	119,925	119,885	0,15	69	33	1,5414
0	4	0	121,431	121,463	0,12	118	43	1,5241
0	1	5	126,809	126,822	0,05	28	10	1,4657

Tabelle B-10. K_{2x}Pb_{1-x}PdP₂O₇. Indizierung des Guinier-Diagramms (Abb. B-10) mit berechneten und beobachteten 4*θ*-Werten und Intensitäten $\Lambda = |\sin^2 \theta_{rate} - \sin^2 \theta_{rate}|$:1000

^{a)} Intensität normiert auf 1000 für den stärksten Reflex. ^{b)} Stärkster nicht beobachteter Reflex im untersuchten Winkelbereich: (4 1 0) mit $I_{calc} = 23$.

Abbildung B-1. Guinier-Aufnahme von $Ag_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-1 (b).

Abbildung B-2. Guinier-Aufnahme von $Rb_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-2 (b).

Abbildung B-3. Guinier-Aufnahme von $Cs_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-3 (b).

Abbildung B-4. Guinier-Aufnahme von $CaPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-4 (b).

Abbildung B-5. Guinier-Aufnahme von SrPdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von $Pd_2P_2O_7$.

Abbildung B-6. Guinier-Aufnahme von $BaPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b).

Abbildung B-7. Guinier-Aufnahme von $ZnPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).

Abbildung B-8. Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).

Abbildung B-9. Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).

Abbildung B-10. Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).

13.3 Anhang C – Guinier-Aufnahmen polynärer Platinphosphate

Abbildung C-1. Beugungsdiagramm von "Na₂PtP₂O₇" (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung C-2. Beugungsdiagramm von " $K_2PtP_2O_7$ " (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung C-3. Beugungsdiagramm von "Ag₂PtP₂O₇" (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung C-4. Beugungsdiagramm von "Na₂Pt₃(P₂O₇)₂" (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung C-5. Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2$ " (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung C-6. Beugungsdiagramm von "Ag₂Pt₃(P₂O₇)₂" (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

Abbildung C-7. Beugungsdiagramm von "K₄Pt₄(P₂O₇)₃" (siehe Tabelle 8.9, Cu-K α_1 , $\lambda = 1,54051$ Å).

14 Verzeichnisse

14.1 Abbildungsverzeichnis

Abbildung 2-1.	Dreieckskoordinatensystem zur Darstellung der Phasenverhältnisse im Dreistoffsystem.	11
Abbildung 3-1. Abbildung 3-2.	Apparatur zum Ausheizen, Evakuieren und Befüllen von Kieselglasampullen Hydraulische Presse mit Presswerkzeug.	13 14
Abbildung 3-3.	Schematische Darstellung des Temperaturverlaufs in einem Zweizonenofen mit	15
Abbildung 3-4.	Abschmelzapparatur für Hydrothermalampullen (a) und schematische Darstellung des verwendeten Autoklaven (b).	.15
Abbildung 4-1. Abbildung 4-2.	Schematische Darstellung des Strahlenganges in einer Guinier-Kamera Guinierschieber in Originalgröße. Beschickung bei Standardaufnahmen (a) und bei Aufnahmen zur Ermittlung von Gitterkonstanten (b)	19 20
Abbildung 4-3.	Skizze des 4-Achsen κ–Diffraktometers CAD4	26
Abbildung 4-4.	Schematische Darstellung der Entstehung charakteristischer Röntgenstrahlung, erlaubte Übergänge.	.35
Abbildung 4-5.	Schematischer Aufbau des Fine Resolution Powder Diffractometer.	39
Abbildung 4-6.	Entstehung von Raman-Banden.	49
Abbildung 4-7.	Proben rotation um den magischen Winkel.	51
Abbildung 4-0.	(b) eines Magnetfeldes	52
Abbildung 5-1.	Aus einer salzsauren Lösung abgeschiedene Nadeln von KAuCla ^{1/2} H ₂ O (a) und	
	röntgenamorphes "AuO(OH)" (b).	.60
Abbildung 5-2.	Aus salzsaurer Lösung abgeschiedene Kristalle von K ₂ PtCl ₆ .	63
Abbildung 6-1.	Mikrokristallines AuPO ₄ (a), Reaktionsverlauf bei der Bildung von AuPO ₄ in einem Teflonbecher (b), Angriff eines Borosilikat-Becherglases durch konz. H ₃ PO ₄ (c)	.69
Abbildung 6-2.	Guinier-Aufnahme von AuPO ₄ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 6-3 (b). Rote Pfeile kennzeichnen Reflexe von elementarem Gold in der Probe.	.71
Abbildung 6-3.	Guinier-Aufnahme von AuAsO ₄ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle 6-3 (b)	.71
Abbildung 6-4.	AuPO ₄ . Neutronenpulverdiffraktogramm ($\lambda = 1,79764$ Å, $T = 293$ K, nicht verfeinerte Bereiche 0°-18,0°, 139,0°-160,0°) (a) und Röntgenpulverdiffraktogramm ($\lambda = 1,54051$ Å, $T = 293$ K, nicht verfeinerte Bereiche 3,0-19,0°, 80,0-100,0°) (b); beobachtetes Profil (punktiert), berechnetes Profil und Differenzplot (unten). Senkrechte Linien zeigen die Lage der Bragg-Reflexe.	.77
Abbildung 6-5.	AuAsO ₄ . Neutronenpulverdiffraktogramm ($\lambda = 1,79764$ Å, $T = 293$ K, nicht verfeinerte Bereiche 0°-15,0°, 152,0°-160,0°) (a) und Röntgenpulverdiffraktogramm ($\lambda = 1,54051$ Å, $T = 293$ K, nicht verfeinerte Bereiche 3,0°-16,0°, 86,0°-100,0°) (b); beobachtetes Profil (punktiert), berechnetes Profil und Differenzplot (unten). Senkrechte Linien zeigen die Lage der Bragg-Beflexe	78
Abbildung 6-6.	Pd ₂ P ₂ O ₇ . Neutronenpulverdiffraktogramm ($\lambda = 1,79764$ Å, $T = 293$ K, nicht verfeinerte Bereiche 0°-10,0°, 146,0°-180,0°) (a) und Röntgenpulverdiffraktogramm ($\lambda = 1,54051$ Å, $T = 293$ K, nicht verfeinerte Bereiche 3,0°-14,0°, 92,0°-180,0°) (b); beobachtetes Profil (punktiert), berechnetes Profil und Differenzplot (unten). Senkrechte Linien zeigen die Lage der Bragg-Reflexe.	.81
Abbildung 6-7. Abbildung 6-8.	Schwingungsspektren von AuPO ₄ (a) und AuAsO ₄ (b). AuPO ₄ . ORTEP-Darstellung der [AuO ₄]-Quadrate und [PO ₄]-Tetraeder aus	86
Abbildung 6-9.	Neutronen- (a) und Köntgenpulverdaten (b). AuAsO ₄ . ORTEP-Darstellung der [AuO ₄]-Quadrate und [AsO ₄]-Tetraeder aus Neutronen- (a) und Röntgenpulverdaten (b)	89 89
Abbildung 6-10.	Kristallstruktur von Au XO_4 ($X = P$, As) mit [XO_4]-Tetraedern (gelb) und Au ³⁺ (rot), Sauerstoff: weiße Kugeln.	.92

Abbildung 6-11.	Projektion der Kristallstruktur von Au XO_4 ($X = P$, As) (a) und CuO (b) entlang [001] mit tetraedrischen [XO_4]-Einheiten ($X = P$, As) (gelb), Au ³⁺ (rot), Cu ²⁺ (braun) und O ²⁻
	(weiß). Bänder erstrecken sich entlang [110] und [-110]
Abbildung 6-12.	<i>IP</i> -Guinier-Aufnahme des Reaktionsprodukts aus der Umsetzung von Tetrabutylammoniumhydroxid mit phosphorsaurer "Au(NO ₃) ₃ "-Lösung95
Abbildung 7-1.	Gleichgewichtsbeziehungen im Phasendreieck Ir/P/O bei $T = 800^{\circ}$ C. Die Kreise ("O")
	innerhalb des Phasendreiecks symbolisieren die Zusammensetzung (Molenbrüche $(L_{2}) = (D)$) des Aussenschaften im eine (und Tabelle 7.1) Allen Ausstenen
	x(Ir), x(P), x(O)) des Ausgangsbodenkorpers (vgl. Tabelle 7-1). Allen Ansatzen
	wurden 10,0 mg IrCl ₃ ·xH ₂ O ($x \approx 0,1$) zur Beschleunigung der
Abbildung 7-2	C. Ir(PO ₂). Amorpher zähflüssiger violetter Rückstand nach Einengen einer
Abbildung 7-2.	nhosphorsauren $Ir^{III}(NO_2)_2$ " hei 200°C (a) mikrokristallines C-Ir(PO ₂) ₂ (b) über
	chemische Transportexperimente (850°C \rightarrow 750°C) erhaltene Kristalle von C-Ir(PO ₂) ₂
	(c)
Abbildung 7-3.	Guinier-Aufnahme von C -Ir(PO ₃) ₃ (a) und simuliertes Beugungsmuster unter
C	Verwendung der Daten aus Tabelle 7-3 (b)104
Abbildung 7-4.	Guinier-Aufnahme von <i>trikl</i> -Ir(PO ₃) ₃ (a) und simuliertes Beugungsmuster unter
	Verwendung der Daten aus Tabelle 7-4 (b). Zusatzreflexe von C-Ir(PO ₃) ₃ sind
	punktiert dargestellt
Abbildung 7-5.	Guinier- <i>IP</i> -Aufnahme von <i>C</i> -Ir(PO ₃) ₃ aus Ir ^{III} Cl ₃ · x H ₂ O mit Reflexen der Fremdphase
	XI (punktiert) (a) und Simulation von C-Ir(PO ₃) ₃ auf Basis von Einkristalldaten (b) 105
Abbildung 7-6.	Guinier- <i>IP</i> -Aufnahme von C-Ir(PO_3) ₃ . Rot punktierte Reflexe deuten auf die
Abbildung 77	Entsteinung einer zweiten Fremapnase X2 bei Verwendung von Ir $Cl_4:xH_2O$ nin
Abbildung 7-8	$tribl_{17}(PO_3)_3$. OR TEP-Darstellung der [IrO_4]-Oktaeder (a) und der [PO_4]-Tetraeder (b) 117
Abbildung 7-9	Darstellung der Kristallstruktur von C -Ir(PO ₂), mit Projektion entlang [010] mit
Tibblidding 7 5.	Koordinationspolvedern [IrO ₄] braun und [PO ₄] gelb Sauerstoffatome weiße Kugeln 118
Abbildung 7-10.	Ouantitatives ³¹ P-MAS-NMR-Spektrum von C-Ir(PO ₃) ₂ ($v_{H/S} = 25$ kHz) mit
	chemischen Verschiebungsparametern relativ zur ³¹ P-Resonanz von 85% iger H ₃ PO ₄ .
	Signale B, C, E, F, G, I, K gehören zu C-Ir(PO ₃) ₃ , Signale A, D, H und J zur
	Fremdphase X1
Abbildung 7-11.	Doppelquantengefiltertes ³¹ P-MAS-NMR-Korrelationspektrum von C-Ir(PO ₃) ₃ (PC7-
	DQ-2D; $v_{MAS} = 10$ kHz; Frequenzen der DQ Dimension sind mit dem Faktor $\frac{1}{2}$
	skaliert; Kurven oberhalb des Konturplots vergleichen das Einfachquantenspektrum
	(EQ) mit der Keinenprojektion des DQ-2D). Die Kreuzsignale erscheinen zwischen
	Kettenstruktur des Phosphats. Die durchgezogene grüne Linie zeigt die Kette
	K-F1-F2-F3-]- an die gestrichelte rote Linie die Kette -[-B-G-I-]-
Abbildung 7-12.	trikline Modifikation von $Ir(PO_3)_3$. Kristallstruktur mit Koordinations-polyedern
	[IrO ₆] braun und [PO ₄] gelb, Sauerstoffatome weiße Kugeln
Abbildung 7-13.	Ir(PO ₃) ₃ . ORTEP-Darstellung zweier unterschiedlicher Metaphosphat-ketten im C-
	Typ jeweils entlang [100] und [001] (a und b) und in der triklinen Modifikation (c)123
Abbildung 7-14.	ORTEP-Darstellung der Koordinationssphäre um Ir1 und Ir2 in der triklinen
	Modifikation (a) und in C-Typ von $Ir(PO_3)_3$ (b)
Abbildung 7-15.	Guinier-Aufnahme von $(Ir_{(1-x)}S_{1x}[S_{12}O(PO_4)_6] (x = 0.54)$ (a) und simuliertes
Abbildung 7 16	Beugungsmuster unter Verwendung der Daten aus Tabelle /-12 (b)
Abbildung 7-10.	$(\Pi_{(1-x)}SI_x)_3[SI_2O(FO_4)_6]$. OKTEF-Datstellung der $[MO_6]$ -OKtaeder $(M - \Pi, SI)$ lint isotronen Auslenkungsnarametern für Ir Si (a) der $[PO_4]$ -Tetraeder (b) und der
	$[Si_2O_7]$ -Finheiten (c) 132
Abbildung 7-17.	Kristallstruktur von $(Ir_{1,x}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0.54). Projektion entlang [001] (a) und
	[010] (b) mit Koordinationspolyedern $[MO_6]$ ($M = Ir$, Si) braun, $[SiO_4]$ orange und
	[PO ₄] gelb
Abbildung 8-1.	Aus einer phosphorsauren Lösung von K ₂ PtCl ₄ abgeschiedene Kristalle von
	$K_2[(Pt^{III}_2)(HPO_4)_4(H_2O_2)]$
Abbildung 8-2.	Guinier-Aufnahme von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$ (a) und simuliertes Beugungsmuster
	unter Verwendung der Daten aus Tabelle 8-2 (b)
Abbildung 8-3.	Binukleare Komplexeinheit $[(Pt^{**}_{2})(HPO_{4})_{4}(H_{2}O)_{2}]$ mit anisotropen
	Ausienkungsparametern. Pt: rot, P: gelb, H: blau, O: welß

Abbildung 8 1	V [(Dt)(UDO) (UO)] = ODTED Deretallung dar zwaikarnigan [(DtO) (UO)]
Abbildung 8-4.	$K_2[(\Gamma I_2)(\Pi PO_4)_4(\Pi_2 O_2)_2]$. OKTEP-Datstellung der Zweikernigen $[(\Gamma I_2 O_8) (\Pi_2 O_2)_2]$ - Finbeiten (a) und der [HPO.] Tetraeder (b)
Abbildung 8-5	Projektion der Kristallstruktur von $K_{0}(Pt_{2})(HPO_{1})(H_{2}O_{2})$ entlang [110] Gestrichelte
inobildung o c.	Linien zeigen die Ausbildung von Wasserstoffbrückenbindungen [PO ₄]-Tetraeder
	(gelb). Pt_2^{6+} (rot). K^+ (blau). H^+ (weiß). O^{2-} (grau)
Abbildung 8-6.	Raman-Spektrum von $K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$
Abbildung 8-7.	Guinier-Aufnahme von PtP_2O_7 (a) und simuliertes Beugungsmuster unter
0	Verwendung publizierter Daten aus [22] (b)148
Abbildung 8-8.	IP-Guinier-Aufnahme von "(Pt ₂)(PO ₄) ₂ ". Rote Pfeile kennzeichnen Reflexe von
	elementarem Pt150
Abbildung 8-9.	Neutronendiffraktogramm ($\lambda = 1,79764$ Å) von "(Pt ₂)(PO ₄) ₂ ". Rote Pfeile
	kennzeichnen Reflexe von elementarem Platin150
Abbildung 8-10.	Neutronenpulverdiffraktogramm von "(Pt ₂)(PO ₄) ₂ ". ($\lambda = 1,79764$ Å, $T = 293$ K).
	Angelegte Profil-Fit-Funktion (Pseudo-Voigt-Funktion, durchgezogene Linie) über
	manuell ausgewählte Reflexe (punktiert) zur Präzissionsbestimmung der 20-Werte.
	Differenzplot unterhalb der Basislinie zeigt die Abweichung der beobachteten Reflexe
	zum Profilfit
Abbildung 8-11.	Raman- und IR-Spektrum von "Pt ₂ (PO ₄) ₂ "
Abbildung 8-12.	<i>IP</i> -Guinier-Aufnahme eines Gemenges aus " $Pt_2(PO_4)_2$ " (zugehörige Reflexe sind mit *
	version und $Pd_2P_2O_7$ bei Experimenten zur Darstellung von $PtPdP_2O_7$ (a) und Simulation und $Pd_2P_2O_7$ (b)
Abbildung 8-12	Simulation von $Pd_2P_2O_7(0)$
Abbildung o-15.	Variable Va
	Versemeoungswerte $o_{iso} = +44$, sppm und $o_{iso} = +28$, sppm entsprechen jenen des Platinnhosphats und Pd ₂ P ₂ O ₇ 155
Abbildung 9-1	Kristalle von $Pd(\Delta s \Omega_{s})_{s}$ aus chemischen Transnortexperimenten 150
Abbildung 9-2.	Guinier-Aufnahme von Pd(ASO_2) ₂ (a) und simuliertes Beugungsmuster unter
100114411g > 21	Verwendung publizierter Strukturdaten [356].
Abbildung 9-3.	Kristallstruktur von Pd(AsO ₃) ₂ . Blick entlang [001] (a) und [010] (b) mit voneinander
8	isolierten [PdO ₆]-Oktaedern (rot) und Schichten aus oktaedrischen [AsO ₆]-Einheiten
	(gelb)
Abbildung 10-1.	IP-Guinier-Aufnahmen der Produkte aus der nasschemischen Synthese (s. Tab. 10-3)
	von "Rb ₂ PdP ₂ O ₇ " (a), "Cs ₂ PdP ₂ O ₇ " (b) und "Tl ₂ PdP ₂ O ₇ " (c)
Abbildung 10-2.	IP-Guinier-Aufnahmen der bei der nasschemischen Synthese von "RbPdPO4" (a),
	"CsPdPO ₄ " (b), "AgPdPO ₄ " (c) und "TlPdPO ₄ " (d) erhaltenen Trockenrückstände (s.
	Tab. 10-4)
Abbildung 10-3.	Kristalle von Ag ₂ PdP ₂ O ₇ (a), Na ₂ Pd ₃ (P ₂ O ₇) (c) und K ₄ Pd ₄ (P ₂ O ₇) ₃ (d) aus isothermen
	Temperexperimenten. Kristalle von $\Pi_2 Pd_3(P_2O_7)_2$ (b) aus chemischen
Abbildung 10 4	Guiniar Aufnahme, von Ag DdD (a) und simuliartes Beugungsmuster unter
Abbildung 10-4.	Verwendung der Daten aus Tabelle 10.7 (b) 174
Abbildung 10-5	Guinier-Aufnahme von Na ₂ Pd ₂ (P_2 O ₇) ₂ (a) und simuliertes Beugungsmuster unter
Thomas In C.	Verwendung der Daten aus Tabelle 10-8 (b)
Abbildung 10-6.	Guinier-Aufnahme von $Tl_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter
8	Verwendung der Daten aus Tabelle 10-9 (b)
Abbildung 10-7.	Guinier-Aufnahme von $K_4Pd_4(P_2O_7)_3$ (a) und simuliertes Beugungsmuster unter
	Verwendung der Daten aus Tabelle 10-10 (b)176
Abbildung 10-8.	ORTEP-Darstellung der [PdO ₄]-Quadrate und [PO ₄]-Tetraeder in Ag ₂ PdP ₂ O ₇
Abbildung 10-9.	$Ag_2PdP_2O_7$. ORTEP-Darstellung der Diphosphatopalladat(II)-Bänder $[Pd(P_2O_7)_{2/2}]^2$
	(a) und Projektion der Kristallstruktur entlang [010] (b). Palladium: rot, Kalium:
	dunkelgrau, [PO ₄]-Tetraeder:gelb, Sauerstoffatome weiß
Abbildung 10-10.	Blick auf die Kristallstruktur von $K_2PdP_2O_7$ [58] entlang [100] mit Schichten
	$[Pd(r_2 \cup r_7)_{4/4}]$ und K -Ionen (dunkeigrau) zwischen den Schichten. $[PdU_4]$ -Einheiten:
Abbildung 10-11	$101, [\Gamma O_4] - 101 actual genu.$ 192 $OPTEP Dependent lung der [DdO] Ouedrote und [D O] Grumpen in Ne Dd (D O) (e)$
ADDITUUNG IV-11.	und Tl ₂ Pd ₂ (P ₂ O ₇) ₂ (h) 102
Abbildung 10-12	Na ₂ Pd ₂ (P_2O_7) ₂ Verknüpfungsmuster von auadratisch-nlanaren [PdO ₂]-Grunnen und
	$[P_2O_7]$ -Einheiten (a). Kristallstruktur mit Dinhosphatonalladat(II)-Schichten
	$[(Pd1(P_2O_7)_{4/4}(Pd2(P_2O_7)_{2/4})_2]^2$ entlang [001] (b) und [010] (c) Palladium: rot. Kalium:
	dunkelgrau, [PO ₄]-Tetraeder: gelb.

Abbildung 10-13.	$Tl_2Pd_3(P_2O_7)_2$. Verknüpfungsmuster von quadratisch-planaren [PdO_4]-Gruppen und [P_Q_1]-Einheiten als ORTEP-Darstellung (a) perspektivische Darstellung der
	Kristallstruktur entlang [001] (b) und [010] (c) Palladium rot Thallium dunkelgrau
	[PO ₄]-Tetraeder: gelb
Abbildung 10-14.	ORTEP-Darstellung der [PdO ₄]-Quadrate (a) und [PO ₄]-Tetraeder (b) in K ₄ Pd ₄ (P ₂ O ₇) _{3.} .198
Abbildung 10-15.	$K_4Pd_4(P_2O_7)_3$. Verknüpfungsmuster der [PdO ₄]-Gruppen und [P ₂ O ₇]-Einheiten als
	ORTEP-Plot (a) und Projektion der Tunnelstruktur entlang [100] (b). Palladium: rot
	Kanum. dunkeigiau, [PO4]-Teiraedei.gelo, Saueistoffatome weibe Kugem
Abbildung 11-1.	<i>IP</i> -Guinier-Aufnahme des nicht näher charakterisierten Produkts aus einem
	Experiment zur "nasschemischen" Darstellung von $HgPd_2(PO_4)_2$
Abbildung 11-2.	IP-Guinier-Aufnahmen der nicht näher charakterisierten, dunkelgrünen,
	mikrokristallinen Festkörper aus nasschemischen Experimenten zur Darstellung von
4 h h l J	$MgPdP_2O_7^{""}(a) und COPdP_2O_7^{""}(b).$
Abbildung 11-3.	Aus chemischen Transportexperimenten ernattene Kristalle von Hg PdP ₂ O ₇ (a), Ph ^{II} PdP ₂ O ₂ (b) und Ph ^{II} PdSi(P ₂ O ₂), (d) Kristalle von HgPd ₂ (PO ₂), (c) waren über
	Solvothermalsvnthesen zugänglich.
Abbildung 11-4.	Guinier-Aufnahme von HgPdP ₂ O_7 (a) und simuliertes Beugungsmuster unter
	Verwendung der Daten aus Tabelle 11-6 (b)
Abbildung 11-5.	Guinier-Aufnahme von $PbPdP_2O_7$ (a) und simuliertes Beugungsmuster unter
Abbildung 11 C	Verwendung der Daten aus Tabelle 11-7 (b). Markierte Reflexe stammen von PdO212
Abbildung 11-0.	Verwendung der Daten aus Tabelle 11-8 (b) 212
Abbildung 11-7.	Simuliertes Beugungsmuster von PbPdSi $(P_2O_7)_2$ unter Verwendung der
0	Einkristalldaten aus Tabelle 11-11.
Abbildung 11-8.	ORTEP-Darstellung der Koordinationspolyeder in HgPdP ₂ O ₇ (a) und PbPdP ₂ O ₇ (b)225
Abbildung 11-9.	ORTEP-Plot der Koordinationssphären um Hg ² in HgPdP ₂ O ₇ (a) und um Pb ² in Dh D d D (h)
Abbildung 11-10.	225 Kristallstrukturen von HøPdP ₂ O ₇ in Projektion auf die ac-Ebene (a) und PbPdP ₂ O ₇ mit
	Blick entlang [001] (b)
Abbildung 11-11.	ORTEP-Darstellung eines Ausschnitts aus einem Band der Zusammensetzung
ALL91	$[Pd(P_2O_7)_{2/2}]^{2^{-1}} in HgPdP_2O_7 (a) und PbPdP_2O_7 (b).$ 228
Abbildung 11-12.	<i>IP</i> -Guinier-Autnahme des modifizierten "PbPdP ₂ O_7 " (a) und von PbPdP ₂ O_7 (b). Markierte Reflexe stammen von PdO
Abbildung 11-13.	ORTEP-Darstellung der Koordinationspolveder in HgPd ₂ (PO ₄) ₂
Abbildung 11-14.	ORTEP-Plot eines Ausschnitts der Kristallstruktur von HgPd ₂ (PO ₄) ₂ 231
Abbildung 11-15.	Kristallstruktur von HgPd ₂ (PO ₄) ₂ mit Projektion entlang [100] (a) und Kristallstruktur
	von AuPO ₄ entlang [001] mit quadratisch-planaren [MO_4]-Einheiten ($M = Pd^{2+}, Au^{3+}$) (act) und [PO_4] Crumner (aclb) H_{2}^{2+} argue Kugeln
Abbildung 11-16	(rot) und [PO ₄]-Oruppen (geld). Hg grade Kugeln
Abbildung 11-17.	Perspektivische Ansicht der Kristallstruktur von PbPdSi(P_2O_7) ₂ (a) und ein Ausschnitt
0	aus der Silico-phosphat-Schicht [Si(P ₂ O ₇) _{6/3}] ⁴⁻ als ORTEP-Darstellung (b)234
Abbildung 11-18.	Quantitative ³¹ P-MAS-NMR Spektren von HgPdP ₂ O ₇ (a) mit $\delta_{iso} = 24,2ppm$ (v _{MAS} =
	3,0kHz) und CaPd ₂ (PO ₄) ₂ (b) mit $\delta_{iso} = 32,1ppm (v_{MAS} = 2,0kHz)$
ALL91	V_{rest} is the second A-VO (V = D, A-). Design for a sector of [010] (a) have [001] (b)
Abbildung 12-1.	Kristallstruktur von AuXO ₄ (X = P, As). Projektion entlang [010] (a) bzw. [001] (b) und Kristallstruktur von Tenorit (Cu ^{II} O) mit Projektion entlang [001] (c) [YO.]
	Tetraeder: gelb. Au^{3+} : rot. Cu^{2+} : braun und O^{2-} : weiß.
Abbildung 12-2.	Das Gibbs'sche Phasendreieck für Ir/P/O bei $T = 800^{\circ}$ C
Abbildung 12-3.	Koordinationssphäre um Ir1 und Ir2 in der triklinen Modifikation (a) und um Ir1 im C-
ALL91	Typ von $Ir(PO_3)_3$ (b)
Abbildung 12-4.	Raman-Spektrum von $K_2[(Pt_{2}(Pt_{4})_{4}]\cdot 2H_2O$ (a) und Schwingungsspektren von $Pt_2(PO_{4})_{4}$ (b) 240
Abbildung 12-5.	Darstellung eines Ausschnitts aus einem Band der Zusammensetzung $[Pd(P_2O_7)_{2/2}]^{2-}$ in
	$HgPdP_2O_7$ (a) und PbPdP_2O_7 (b)
Abbildung B-1.	Guinier-Aufnahme von $Ag_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter
4 L L 1 J D A	Verwendung der Daten aus Tabelle B-1 (b)
Additiong B-2.	Summer-Aumanme von $KD_2Pd_3(P_2U_7)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-2 (b) 250
	239

Abbildung B-4.Verwendung der Daten aus Tabelle B-3 (b).26Abbildung B-5.Guinier-Aufnahme von CaPdP ₂ O ₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-4 (b).26Abbildung B-5.Guinier-Aufnahme von SrPdP ₂ O ₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von Pd ₂ P ₂ O ₇ .26Abbildung B-6.Guinier-Aufnahme von BaPdP ₂ O ₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b).26Abbildung B-7.Guinier-Aufnahme von ZnPdP ₂ O ₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von CaPd ₂ (PO ₄) ₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von CdPd ₂ (PO ₄) ₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von CdPd ₂ (PO ₄) ₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von ,Na ₂ PtP ₂ O ₇ ".26Abbildung C-2.Beugungsdiagramm von ,Na ₂ PtP ₂ O ₇ ".26Abbildung C-3.Beugungsdiagramm von ,Na ₂ PtP ₃ O ₇) ₂ ".26Abbildung C-5.Beugungsdiagramm von ,Na ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-5.Beugungsdiagramm von ,Na ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-6.Beugungsdiagramm von ,Na ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-5.Beugungsdiagramm von ,Na ₂ Pt ₃ (P ₂ O ₇) ₂ ".26 <t< th=""><th>Abbildung B-3.</th><th>Guinier-Aufnahme von $Cs_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter</th><th></th></t<>	Abbildung B-3.	Guinier-Aufnahme von $Cs_2Pd_3(P_2O_7)_2$ (a) und simuliertes Beugungsmuster unter																																																									
Abbildung B-4.Guinier-Aufnahme von CaPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-4 (b).26Abbildung B-5.Guinier-Aufnahme von SrPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von Pd2P2O7. 26Abbildung B-6.Guinier-Aufnahme von BaPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-5 (b).Markierte Reflexe stammen von Pd2P2O7. 26Abbildung B-6.Guinier-Aufnahme von BaPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b).26Abbildung B-7.Guinier-Aufnahme von CaPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von CdPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von CdPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von K2xPb1-xPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von ,Na2PtP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-3.Beugungsdiagramm von ,Na2PtP2O7 (b).26Abbildung C-3.Beugungsdiagramm von ,Na2PtP2O7 (b).26Abbildung C-5.Beugungsdiagramm von ,Na2Pt3(P2O7)2 (C).26Abbildung C-5.Beugungsdiagramm von ,A2Pt3(P2O7)2 (C).26Abbildung C-6.Beugungsdiagramm von ,K2Pt3(P2O7)2 (C). <th< th=""><th></th><th>Verwendung der Daten aus Tabelle B-3 (b)</th><th>.260</th></th<>		Verwendung der Daten aus Tabelle B-3 (b)	.260																																																								
Abbildung B-5.Verwendung der Daten aus Tabelle B-4 (b).26Abbildung B-6.Guinier-Aufnahme von $SrPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von $Pd_2P_2O_7$.26Abbildung B-6.Guinier-Aufnahme von $BaPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b).26Abbildung B-7.Guinier-Aufnahme von $ZnPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $, Na_2PtP_2O_7^*$.26Abbildung C-2.Beugungsdiagramm von $, Na_2PtP_2O_7^*$.26Abbildung C-3.Beugungsdiagramm von $, Na_2PtP_2O_7^*$.26Abbildung C-5.Beugungsdiagramm von $, Na_2PtP_2O_7^*$.26Abbildung C-5.Beugungsdiagramm von $, Na_2Pt_3(P_2O_7)_2^*$.2	Abbildung B-4.	Guinier-Aufnahme von CaPdP2O7 (a) und simuliertes Beugungsmuster unter																																																									
Abbildung B-5.Guinier-Aufnahme von $SrPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von $Pd_2P_2O_7$. 26Abbildung B-6.Guinier-Aufnahme von $BaPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b).26Abbildung B-7.Guinier-Aufnahme von $ZnPdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-10.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $,Na_2PtP_2O_7$ ".26Abbildung C-2.Beugungsdiagramm von $,Na_2PtP_2O_7$ ".26Abbildung C-3.Beugungsdiagramm von $,Na_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von $,Na_2PtP_2O_7$ ".26Abbildung C-5.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)_2$ ".26Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)_2$ ".26Beugungsdiagramm von $,Na_2Pt_3(P_2$		Verwendung der Daten aus Tabelle B-4 (b)	.260																																																								
Abbildung B-6.Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von $Pd_2P_2O_7$. 26Abbildung B-6.Guinier-Aufnahme von BaPdP_2O_7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b). Uerwendung der Daten aus Tabelle B-7 (b). Verwendung der Daten aus Tabelle B-7 (b). Uerwendung der Daten aus Tabelle B-7 (b). Verwendung der Daten aus Tabelle B-8 (b). Verwendung der Daten aus Tabelle B-9 (b). Verwendung der Daten aus Tabelle B-9 (b). Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Beugungsdiagramm von $X_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $X_{2x}PtP_2O_7$ ". Beugungsdiagramm von $X_{2x}PtP_2O_7$ ". Ed Abbildung C-3. Beugungsdiagramm von $X_{2x}PtP_2O_7$ ". Ed Beugungsdiagramm von $X_{2x}PtP_2O_7$ ". Ed Abbildung C-4. Beugungsdiagramm von $X_{2x}PtP_2O_7$ ". Ed Beugungsdiagramm von $X_{2x}Pt_3(P_2O_7)_2$ ". Ed Abbildung C-5. Beugungsdiagramm von $X_{2x}Pt_3(P_2O_7)_2$ ". Ed Beugungsdiagramm von $X_{2x}Pt_3(P_2O_7)_2$ ". Ed Beu	Abbildung B-5.	Guinier-Aufnahme von SrPdP2O7 (a) und simuliertes Beugungsmuster unter																																																									
 Abbildung B-6. Guinier-Aufnahme von BaPdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-6 (b). Abbildung B-7. Guinier-Aufnahme von ZnPdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b). Abbildung B-8. Guinier-Aufnahme von CaPd₂(PO₄)₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b). Abbildung B-9. Guinier-Aufnahme von CdPd₂(PO₄)₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b). Abbildung B-9. Guinier-Aufnahme von CdPd₂(PO₄)₂ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b). Abbildung B-10. Guinier-Aufnahme von K_{2x}Pb_{1-x}PdP₂O₇ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b). Abbildung C-1. Beugungsdiagramm von ,Na₂PtP₂O₇ (*		Verwendung der Daten aus Tabelle B-5 (b). Markierte Reflexe stammen von $Pd_2P_2O_7$.	.261																																																								
Abbildung B-7.Verwendung der Daten aus Tabelle B-6 (b).26Abbildung B-7.Guinier-Aufnahme von ZnPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von CaPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von CdPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von K2xPb1-xPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7"26Abbildung C-2.Beugungsdiagramm von "Na2PtP2O7"26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7"26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2"26Abbildung C-5.Beugungsdiagramm von "Na2Pt3(P2O7)2"26Abbildung C-6.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-7.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-6.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-6.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-7.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-6.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-7.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-7.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-7.Beugungsdiagramm von "Ag2Pt3(P2O7)2"26Abbildung C-7.Beugungs	Abbildung B-6.	Guinier-Aufnahme von BaPdP2O7 (a) und simuliertes Beugungsmuster unter																																																									
Abbildung B-7.Guinier-Aufnahme von ZnPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von CaPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von CdPd2(PO4)2 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von K2xPb1.xPdP2O7 (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von ,,Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von ,,Na2PtP2O7".26Abbildung C-3.Beugungsdiagramm von ,,Na2PtP2O7".26Abbildung C-4.Beugungsdiagramm von ,,Na2PtP3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von ,,Na2Pt3(P2O7)2".26Abbil		Verwendung der Daten aus Tabelle B-6 (b).	.261																																																								
Abbildung B-8.Verwendung der Daten aus Tabelle B-7 (b).26Abbildung B-8.Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $,Na_2PtP_2O_7$ "26Abbildung C-2.Beugungsdiagramm von $,Na_2PtP_2O_7$ "26Abbildung C-3.Beugungsdiagramm von $,Na_2PtP_2O_7$ "26Abbildung C-4.Beugungsdiagramm von $,Na_2PtP_3(P_2O_7)^2$ "26Abbildung C-5.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-5.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-6.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-5.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-6.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-6.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ "26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ 26Abbildung C-7.Beugungsdiagramm von $,Na_2Pt_3(P_2O_7)^2$ 26<	Abbildung B-7.	Guinier-Aufnahme von ZnPdP2O7 (a) und simuliertes Beugungsmuster unt	ter																																																								
Abbildung B-8.Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-2.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-3.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26 <tr <="" th=""><th>-</th><th>Verwendung der Daten aus Tabelle B-7 (b).</th><th>.262</th></tr> <tr><th>Abbildung B-9.Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-10.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $Na_2PtP_2O_7$".26Abbildung C-2.Beugungsdiagramm von $Na_2PtP_2O_7$".26Abbildung C-3.Beugungsdiagramm von $Na_2PtP_2O_7$".26Abbildung C-4.Beugungsdiagramm von $Na_2PtP_2O_7$".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$".26<!--</th--><th>Abbildung B-8.</th><th>Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter</th><th></th></th></tr> <tr><th>Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-2.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-3.Beugungsdiagramm von "Ag_2PtP_2O_7".26Abbildung C-4.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-5.Beugungsdiagramm von "Na_2Pt_3(P_2O_7)_2".26Abbildung C-5.Beugungsdiagramm von "Na_2Pt_3(P_2O_7)_2".26Abbildung C-6.Beugungsdiagramm von "Ag_2Pt_3(P_2O_7)_2".26Abbildung C-7.Beugungsdiagramm von "K_4Pt_4(P_2O_7)_3".26</th><th></th><th>Verwendung der Daten aus Tabelle B-8 (b)</th><th>.262</th></tr> <tr><th>Abbildung B-10.Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na2PtP_2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP_2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP_2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P_2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P_2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P_2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P_2O7)3".26</th><th>Abbildung B-9.</th><th>Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter</th><th></th></tr> <tr><th>Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na₂PtP₂O₇".26Abbildung C-2.Beugungsdiagramm von "K₂PtP₂O₇".26Abbildung C-3.Beugungsdiagramm von "Ag₂PtP₂O₇".26Abbildung C-4.Beugungsdiagramm von "Na₂Pt₂O₇".26Abbildung C-5.Beugungsdiagramm von "Na₂Pt₃(P₂O₇)₂".26Abbildung C-5.Beugungsdiagramm von "K₂Pt₃(P₂O₇)₂".26Abbildung C-6.Beugungsdiagramm von "K₂Pt₃(P₂O₇)₂".26Abbildung C-7.Beugungsdiagramm von "K₄Pt₄(P₂O₇)₃".26</th><th></th><th>Verwendung der Daten aus Tabelle B-9 (b).</th><th>.263</th></tr> <tr><th>Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)".26Abbildung C-5.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)3".26</th><th>Abbildung B-10.</th><th>Guinier-Aufnahme von K_{2x}Pb_{1-x}PdP₂O₇ (a) und simuliertes Beugungsmuster unter</th><th></th></tr> <tr><th>Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)3".26</th><th>-</th><th>Verwendung der Daten aus Tabelle B-9 (b).</th><th>.263</th></tr> <tr><th>Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)2".26</th><th></th><th></th><th></th></tr> <tr><th>Abbildung C-2.Beugungsdiagramm von ,,$K_2PtP_2O_7$".26Abbildung C-3.Beugungsdiagramm von ,,$Ag_2PtP_2O_7$".26Abbildung C-4.Beugungsdiagramm von ,,$Na_2Pt_3(P_2O_7)_2$".26Abbildung C-5.Beugungsdiagramm von ,,$K_2Pt_3(P_2O_7)_2$".26Abbildung C-6.Beugungsdiagramm von ,,$K_2Pt_3(P_2O_7)_2$".26Abbildung C-7.Beugungsdiagramm von ,,$K_4Pt_4(P_2O_7)_3$".26</th><th>Abbildung C-1.</th><th>Beugungsdiagramm von "Na₂PtP₂O₇"</th><th>264</th></tr> <tr><th>Abbildung C-3.Beugungsdiagramm von ,,$Ag_2PtP_2O_7$".26Abbildung C-4.Beugungsdiagramm von ,,$Na_2Pt_3(P_2O_7)_2$".26Abbildung C-5.Beugungsdiagramm von ,,$K_2Pt_3(P_2O_7)_2$".26Abbildung C-6.Beugungsdiagramm von ,,$Ag_2Pt_3(P_2O_7)_2$".26Abbildung C-7.Beugungsdiagramm von ,,$K_4Pt_4(P_2O_7)_3$".26</th><th>Abbildung C-2.</th><th>Beugungsdiagramm von "K₂PtP₂O₇"</th><th>264</th></tr> <tr><th>Abbildung C-4.Beugungsdiagramm von "Na2Pt₃(P₂O₇)₂"</th><th>Abbildung C-3.</th><th>Beugungsdiagramm von "Ag₂PtP₂O₇"</th><th>264</th></tr> <tr><th>Abbildung C-5.Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2^{\circ\circ}$26Abbildung C-6.Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2^{\circ\circ}$26Abbildung C-7.Beugungsdiagramm von $,,K_4Pt_4(P_2O_7)_3^{\circ\circ}$26</th><th>Abbildung C-4.</th><th>Beugungsdiagramm von "Na₂Pt₃(P₂O₇)₂"</th><th>265</th></tr> <tr><th>Abbildung C-6.Beugungsdiagramm von $,,Ag_2Pt_3(P_2O_7)_2$"</th><th>Abbildung C-5.</th><th>Beugungsdiagramm von "K₂Pt₃(P₂O₇)₂"</th><th>265</th></tr> <tr><th>Abbildung C-7. Beugungsdiagramm von $K_4Pt_4(P_2O_7)_3$"</th><th>Abbildung C-6.</th><th>Beugungsdiagramm von "Ag₂Pt₃(P₂O₇)²"</th><th>265</th></tr> <tr><th></th><th>Abbildung C-7.</th><th>Beugungsdiagramm von $,, K_4 Pt_4 (P_2 O_7)_3$"</th><th>266</th></tr>	-	Verwendung der Daten aus Tabelle B-7 (b).	.262	Abbildung B-9.Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-10.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-2.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-3.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26 </th <th>Abbildung B-8.</th> <th>Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter</th> <th></th>	Abbildung B-8.	Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter		Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-2.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-3.Beugungsdiagramm von "Ag_2PtP_2O_7".26Abbildung C-4.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-5.Beugungsdiagramm von "Na_2Pt_3(P_2O_7)_2".26Abbildung C-5.Beugungsdiagramm von "Na_2Pt_3(P_2O_7)_2".26Abbildung C-6.Beugungsdiagramm von "Ag_2Pt_3(P_2O_7)_2".26Abbildung C-7.Beugungsdiagramm von "K_4Pt_4(P_2O_7)_3".26		Verwendung der Daten aus Tabelle B-8 (b)	.262	Abbildung B-10.Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na2PtP_2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP_2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP_2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P_2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P_2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P_2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P_2O7)3".26	Abbildung B-9.	Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter		Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na ₂ PtP ₂ O ₇ ".26Abbildung C-2.Beugungsdiagramm von "K ₂ PtP ₂ O ₇ ".26Abbildung C-3.Beugungsdiagramm von "Ag ₂ PtP ₂ O ₇ ".26Abbildung C-4.Beugungsdiagramm von "Na ₂ Pt ₂ O ₇ ".26Abbildung C-5.Beugungsdiagramm von "Na ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-5.Beugungsdiagramm von "K ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-6.Beugungsdiagramm von "K ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-7.Beugungsdiagramm von "K ₄ Pt ₄ (P ₂ O ₇) ₃ ".26		Verwendung der Daten aus Tabelle B-9 (b).	.263	Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)".26Abbildung C-5.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)3".26	Abbildung B-10.	Guinier-Aufnahme von K _{2x} Pb _{1-x} PdP ₂ O ₇ (a) und simuliertes Beugungsmuster unter		Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)3".26	-	Verwendung der Daten aus Tabelle B-9 (b).	.263	Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)2".26				Abbildung C-2.Beugungsdiagramm von ,, $K_2PtP_2O_7$ ".26Abbildung C-3.Beugungsdiagramm von ,, $Ag_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von ,, $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-5.Beugungsdiagramm von ,, $K_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von ,, $K_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von ,, $K_4Pt_4(P_2O_7)_3$ ".26	Abbildung C-1.	Beugungsdiagramm von "Na ₂ PtP ₂ O ₇ "	264	Abbildung C-3.Beugungsdiagramm von ,, $Ag_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von ,, $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-5.Beugungsdiagramm von ,, $K_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von ,, $Ag_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von ,, $K_4Pt_4(P_2O_7)_3$ ".26	Abbildung C-2.	Beugungsdiagramm von "K ₂ PtP ₂ O ₇ "	264	Abbildung C-4.Beugungsdiagramm von "Na2Pt ₃ (P ₂ O ₇) ₂ "	Abbildung C-3.	Beugungsdiagramm von "Ag ₂ PtP ₂ O ₇ "	264	Abbildung C-5.Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2^{\circ\circ}$ 26Abbildung C-6.Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2^{\circ\circ}$ 26Abbildung C-7.Beugungsdiagramm von $,,K_4Pt_4(P_2O_7)_3^{\circ\circ}$ 26	Abbildung C-4.	Beugungsdiagramm von "Na ₂ Pt ₃ (P ₂ O ₇) ₂ "	265	Abbildung C-6.Beugungsdiagramm von $,,Ag_2Pt_3(P_2O_7)_2$ "	Abbildung C-5.	Beugungsdiagramm von "K ₂ Pt ₃ (P ₂ O ₇) ₂ "	265	Abbildung C-7. Beugungsdiagramm von $K_4Pt_4(P_2O_7)_3$ "	Abbildung C-6.	Beugungsdiagramm von "Ag ₂ Pt ₃ (P ₂ O ₇) ² "	265		Abbildung C-7.	Beugungsdiagramm von $,, K_4 Pt_4 (P_2 O_7)_3$ "	266
-	Verwendung der Daten aus Tabelle B-7 (b).	.262																																																									
Abbildung B-9.Verwendung der Daten aus Tabelle B-8 (b).26Abbildung B-10.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-2.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-3.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von $Na_2PtP_2O_7$ ".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-5.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von $Na_2Pt_3(P_2O_7)_2$ ".26 </th <th>Abbildung B-8.</th> <th>Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter</th> <th></th>	Abbildung B-8.	Guinier-Aufnahme von $CaPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter																																																									
Abbildung B-9.Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-2.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-3.Beugungsdiagramm von "Ag_2PtP_2O_7".26Abbildung C-4.Beugungsdiagramm von "Na_2PtP_2O_7".26Abbildung C-5.Beugungsdiagramm von "Na_2Pt_3(P_2O_7)_2".26Abbildung C-5.Beugungsdiagramm von "Na_2Pt_3(P_2O_7)_2".26Abbildung C-6.Beugungsdiagramm von "Ag_2Pt_3(P_2O_7)_2".26Abbildung C-7.Beugungsdiagramm von "K_4Pt_4(P_2O_7)_3".26		Verwendung der Daten aus Tabelle B-8 (b)	.262																																																								
Abbildung B-10.Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na2PtP_2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP_2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP_2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P_2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P_2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P_2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P_2O7)3".26	Abbildung B-9.	Guinier-Aufnahme von $CdPd_2(PO_4)_2$ (a) und simuliertes Beugungsmuster unter																																																									
Abbildung B-10.Guinier-Aufnahme von $K_{2x}Pb_{1-x}PdP_2O_7$ (a) und simuliertes Beugungsmuster unter Verwendung der Daten aus Tabelle B-9 (b).26Abbildung C-1.Beugungsdiagramm von "Na ₂ PtP ₂ O ₇ ".26Abbildung C-2.Beugungsdiagramm von "K ₂ PtP ₂ O ₇ ".26Abbildung C-3.Beugungsdiagramm von "Ag ₂ PtP ₂ O ₇ ".26Abbildung C-4.Beugungsdiagramm von "Na ₂ Pt ₂ O ₇ ".26Abbildung C-5.Beugungsdiagramm von "Na ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-5.Beugungsdiagramm von "K ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-6.Beugungsdiagramm von "K ₂ Pt ₃ (P ₂ O ₇) ₂ ".26Abbildung C-7.Beugungsdiagramm von "K ₄ Pt ₄ (P ₂ O ₇) ₃ ".26		Verwendung der Daten aus Tabelle B-9 (b).	.263																																																								
Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)".26Abbildung C-5.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)3".26	Abbildung B-10.	Guinier-Aufnahme von K _{2x} Pb _{1-x} PdP ₂ O ₇ (a) und simuliertes Beugungsmuster unter																																																									
Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)3".26	-	Verwendung der Daten aus Tabelle B-9 (b).	.263																																																								
Abbildung C-1.Beugungsdiagramm von "Na2PtP2O7".26Abbildung C-2.Beugungsdiagramm von "K2PtP2O7".26Abbildung C-3.Beugungsdiagramm von "Ag2PtP2O7".26Abbildung C-4.Beugungsdiagramm von "Na2Pt3(P2O7)2".26Abbildung C-5.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-6.Beugungsdiagramm von "K2Pt3(P2O7)2".26Abbildung C-7.Beugungsdiagramm von "K4Pt4(P2O7)2".26																																																											
Abbildung C-2.Beugungsdiagramm von ,, $K_2PtP_2O_7$ ".26Abbildung C-3.Beugungsdiagramm von ,, $Ag_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von ,, $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-5.Beugungsdiagramm von ,, $K_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von ,, $K_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von ,, $K_4Pt_4(P_2O_7)_3$ ".26	Abbildung C-1.	Beugungsdiagramm von "Na ₂ PtP ₂ O ₇ "	264																																																								
Abbildung C-3.Beugungsdiagramm von ,, $Ag_2PtP_2O_7$ ".26Abbildung C-4.Beugungsdiagramm von ,, $Na_2Pt_3(P_2O_7)_2$ ".26Abbildung C-5.Beugungsdiagramm von ,, $K_2Pt_3(P_2O_7)_2$ ".26Abbildung C-6.Beugungsdiagramm von ,, $Ag_2Pt_3(P_2O_7)_2$ ".26Abbildung C-7.Beugungsdiagramm von ,, $K_4Pt_4(P_2O_7)_3$ ".26	Abbildung C-2.	Beugungsdiagramm von "K ₂ PtP ₂ O ₇ "	264																																																								
Abbildung C-4.Beugungsdiagramm von "Na2Pt ₃ (P ₂ O ₇) ₂ "	Abbildung C-3.	Beugungsdiagramm von "Ag ₂ PtP ₂ O ₇ "	264																																																								
Abbildung C-5.Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2^{\circ\circ}$ 26Abbildung C-6.Beugungsdiagramm von $,,K_2Pt_3(P_2O_7)_2^{\circ\circ}$ 26Abbildung C-7.Beugungsdiagramm von $,,K_4Pt_4(P_2O_7)_3^{\circ\circ}$ 26	Abbildung C-4.	Beugungsdiagramm von "Na ₂ Pt ₃ (P ₂ O ₇) ₂ "	265																																																								
Abbildung C-6.Beugungsdiagramm von $,,Ag_2Pt_3(P_2O_7)_2$ "	Abbildung C-5.	Beugungsdiagramm von "K ₂ Pt ₃ (P ₂ O ₇) ₂ "	265																																																								
Abbildung C-7. Beugungsdiagramm von $K_4Pt_4(P_2O_7)_3$ "	Abbildung C-6.	Beugungsdiagramm von "Ag ₂ Pt ₃ (P ₂ O ₇) ² "	265																																																								
	Abbildung C-7.	Beugungsdiagramm von $,, K_4 Pt_4 (P_2 O_7)_3$ "	266																																																								

14.2 Tabellenverzeichnis

Tabelle 1-1.	Vor Beginn der vorliegenden Arbeit strukturell charakterisierte, wasserfreie Phosphate der Platinmetalle sowie von Silber, Gold und Quecksilber.	5
Tabelle 4-1.	Instrumentparameter des FIREPOD.	39
Tabelle 4-2.	³¹ P-NMR-Verschiebungsparameter von Orthophosphaten (Q_0).	55
Tabelle 4-3.	³¹ P-NMR-Verschiebungsparameter von Diphosphaten (Q_i) .	55
Tabelle 4-4.	³¹ P-NMR Verschiebungsparameter von Metaphosphaten (Q_2)	56
Tabelle 5-1.	Käufliche Chemikalien.	57
Tabelle 6-1.	EDX-Untersuchungen an mikrokristallinen Pulvern von AuPO ₄ und AuAsO ₄	70
Tabelle 0-2.	AuPO ₄ . Indizierung eines Guimer-Diagramms (Abbildung 6-2) mit berechneten und beobachteten 4θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.72
Tabelle 6-3.	AuAsO ₄ . Indizierung eines Guinier-Diagramms (Abbildung 6-3) mit berechneten und beobachteten ABW erten $A = \sin^2 \theta_{\perp} = \sin^2 \theta_{\perp} \sin^2 \theta_{\perp} = 1000$	73
Tabelle 6-4.	Rietveld-Verfeinerung der Kristallstrukturen von AuPO ₄ und AuAsO ₄ aus Neutronen- und Röntgenpulverdaten	79
Tabelle 6-5.	Atomkoordinaten und thermische Auslenkungsparameter für AuPO ₄ und AuAsO ₄ aus Neutronen- und Röntgenpulverdaten. Standardabweichungen in Klammern	.,, 80
Tabelle 6-6.	Ausgewählte interatomare Abstände /Å und Winkel /° in AuPO ₄ und AuAsO ₄ aus Neutropen- und Röntgenpulvermessungen Standardabweichungen in Klammern	80
Tabelle 6-7.	Rietveld-Verfeinerung von $Pd_2P_2Q_2$ aus Neutronen- und Röntgendaten	.00
Tabelle 6-8.	Pd ₂ P ₂ O ₇ . Gitterkonstanten aus Einkristalldaten, Guinier- <i>IP</i> -Aufnahmen, Neutronen-	02
Tabelle 6-9.	$Pd_2P_2O_7$. Ortskoordinaten und isotrope Auslenkungsparameter aus Einkristall- (EK),	.83
	Neutronen (npd)- und Röntgenpulverdaten (xpd).	.83
Tabelle 6-10.	$Pd_2P_2O_7$. Interatomare Abstände /A und Winkel /° aus Einkristall- (EK), Neutronen-	0 1
Tabelle 6-11.	AuPO ₄ und AuAsO ₄ . Schwingungsfrequenzen der IR- und Ramanspektren in Wellenzahlen /cm ⁻¹ . Intensitäten der Banden sind angegeben mit sw (sehr schwach), m	.04
Tabelle 6-12.	(mittel) und s (stark). Strukturelle Beziehungen zwischen binären Verbindungen MX und den komplexen Oxiden MXO_4	.87
Tabelle 6-13.	Übersicht der Experimente zur Darstellung polynärer Goldphosphate	94
Tabelle 7-1.	Isotherme Temperexperimente ($T = 800^{\circ}$ C) im Dreistoffsystem Ir/P/O mit 10 mg IrCl::xH_O (x ~ 0.1) als Mineralisator (geschlossene Kiecelglasampullen Dauer ca. 7d)	00
Tabelle 7-2.	EDX-Untersuchungen an Kristallen von triklinem und C-Typ $Ir(PO_2)_2$	03
Tabelle 7-3.	C -Ir(PO ₃) ₃ . Indizierung eines Guinier-Diagramms (Abbildung 7-3) mit berechneten und beobachteten AA -Werten $A = \sin^2 A + \sin^2 A$. :1000	106
Tabelle 7-4.	trikl-Ir(PO ₃) ₃ . Indizierung eines Guinier-Diagramms (Abbildung 7-3) mit berechneten und habhabhathatan $A \in I_{cin}^2 A$ $sin^2 A$ $la = la $	100
Tabelle 7-5.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von $C_{\rm LI}(P\Omega_{\rm s})_{\rm s}$ und <i>trikl</i> -Ir(P\Omega_{\rm s})_{\rm s}	107
Tabelle 7-6.	Atomkoordinaten und isotrope Auslenkungsparameter für C -Ir(PO ₃) ₂ 1	10
Tabelle 7-7.	Atomkoordinaten und isotrope Auslenkungsparameter für <i>trikl</i> -Ir(PO ₂) ₂	11
Tabelle 7-8.	C-Ir(PO ₃) ₃ . Interatomare Abstände /Å in den Polyedern [IrO ₆] und [PO ₄].	
Tabelle 7-9.	Standardabweichungen in Klammern	11
	Standardabweichungen in Klammern.	12
Tabelle 7-10.	Zusammenstellung thermodynamischer Daten der am chemischen Transport von C- Ir(PO ₃) ₃ beteiligten Spezies ($C_n = A + B \cdot T \cdot 10^{-3} + C \cdot T^2 \cdot 10^5 - D \cdot T^2 \cdot 10^6$)	114
Tabelle 7-11.	EDX-Untersuchungen am Pulver von $(Ir_{1,x}Si_x)_3[Si_2O(PO_4)_6]$.	.27
Tabelle 7-12.	$(Ir_{(1-x)}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54). Indizierung des Guinier-Diagramms (Abbildung 7-16) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	128

Tabelle 7-13.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von (Ir., Si.) [Si-O(PO.).]	130
Tabelle 7.14	Atomkoordinaten und isotrone Auslenkungsparameter für $(Ir, Si)_2[Si_2O(PO_4)_2]$	130
Tabelle 7-15.	$(Ir_1 Si_2)_2[Si_2O(PO_4)_6]$ (x = 0.54). Interatomare Abstände /Å in den Polvedern [MO_6] (M =	151
	Ir, Si), [SiO ₄] und [PO ₄]. Standardabweichungen in Klammern.	131
Tabelle 8-1	EDX Untersuchungen an Kristallen von $K_{\rm e}[({\rm Pt}^{\rm III}_{\rm e})({\rm HPO}_{\rm e})_{\rm e}({\rm H}_{\rm eO})_{\rm e}]$	137
Tabelle 8-2	$K_{2}[(Pt^{III}_{2})(HPO_{4})_{4}(H_{2}O)_{2}]$ Indizierung eines Guinier-Diagramms mit berechneten und	157
Tabene 0-2.	$K_2[(11 \ 2)(11 \ 04)_4(1120)_2]$. Indizierung eines Gumei-Diagramms int bereenneten und beobachteten AAW erten $A = \sin^2 A + \sin^2 A$.	138
Tabelle 8-3.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung	150
Tubene o et	von $K_2[(Pt^{III}_2)(HPO_4)_4(H_2O)_2]$.	141
Tabelle 8-4.	$K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$. Atomkoordinaten und isotrope Auslenkungs-parameter.	
	Standardabweichungen in Klammern.	142
Tabelle 8-5.	Interatomare Abstände /Å in den zweikernigen Komplexen $[(Pt1)_2(HPO_4)_4(H_2O)_2]^{2-}$ und	
	$[(Pt2)_2(HPO_4)_4(H_2O)_2]^2$. Standardabweichungen in Klammern	143
Tabelle 8-6.	K ₂ [(Pt ₂)(HPO ₄) ₄ (H ₂ O) ₂]. Schwingungsfrequenzen des Ramanspektrums in Wellenzahlen	
	/cm ⁻¹ . Intensitäten der Banden sind angegeben mit sw (sehr schwach), m (mittel) und s	
	(stark).	147
Tabelle 8-7.	EDX-Untersuchungen am Pulver des Platinphosphats.	149
Tabelle 8-8.	$_{1}^{1}$ Intensitäten der Benden sind engegeben mit sur (sehr sehweeh) m (mittel) und s (sterk)	152
Tabelle 8-9	Übersicht der Experimente zur Darstellung nolynärer Platin(III)-nhosphate der	155
Tabelle 0-9.	Zusammensetzungen A_2 PtP ₂ O ₇ A_2 Pt ₂ (P ₂ O ₇) ₂ und A_4 Pt ₄ (P ₂ O ₇) ₂ ($A = N_3 K A_9$) bei $T =$	
	500°C	156
Tabelle 9-1.	EDX-Untersuchungen an Kristallen von Pd(AsO ₃) ₂	159
Tabelle 9-2.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung	
	von Pd(AsO ₃) ₂	161
Tabelle 9-3.	Atomkoordinaten und isotrope Auslenkungsparameter für $Pd(AsO_3)_2$	162
1 abelle 9-4.	$Pd(AsO_3)_2$. Interatomate Abstande /A und Winkei /* in den Polyedern [PdO ₆] und [AsO ₆].	167
		102
Tabelle 10-1.	Diphosphate in den quasi-binären Systemen $A_4P_2O_7 / Pd_2P_2O_7 (A = Li - Cs, Ag, Tl)$	164
Tabelle 10-2.	Experimentelle Bedingungen zur nasschemischen Darstellung polynärer Palladium(II)-	
	disphosphate $A_4^{I}P_2O_7 / Pd_2^{II}P_2O_7 (A = Na, K, Rb, Cs, Ag, Tl)$.	165
Tabelle 10-3.	Experimente zur Darstellung weiterer polynärer Palladium(II)-diphosphate	166
Tabelle 10-4.	Experimente zur Darstellung polynärer Metall(I)-palladium(II)-orthophosphate	169
Tabelle 10-5.	Isotherme Temperexperimente zur Kristallisation polynärer Palladium(II)-disphosphate	
	der Zusammensetzungen Ag ₂ PdP ₂ O ₇ , A'_2 Pd ₃ (P ₂ O ₇) ₂ ($A = Na, Rb, Cs, Ag, Tl$) und	1 7 0
Tahalla 10 C	$K_4Pd_4(P_2U_7)_3$	1/2
Tabelle 10-0.	EDA-Ontersuchungen an Kristanen von Ag ₂ PdP ₂ O ₇ , Na ₂ Pd ₃ (P ₂ O ₇) ₂ , Γ_2 Pd ₃ (P ₂ O ₇) ₂ und K.Pd.(P.O.).	173
Tabelle 10.7	$A_{ga}PdP_{a}O_{a}$ Indizierung des Guinier-Diagramms (Abhildung 10-4) mit berechneten und	175
1400HC 10-71	beobachteten 4θ -Werten $\Lambda = \sin^2 \theta_{-1} - \sin^2 \theta_{-1} \cdot 1000$	176
Tabelle 10-8.	$Na_2Pd_2(P_2O_2)_2$ Indizierung des Guinier-Diagramms (Abbildung 10-5) mit berechneten	170
	und beobachteten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{abc} \cdot 1000$.	177
Tabelle 10-9.	$Tl_2Pd_3(P_2O_7)_2$. Indizierung des Guinier-Diagramms (Abbildung 10-6) mit berechneten	
	und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	178
Tabelle 10-10.	K ₄ Pd ₄ (P ₂ O ₇) ₃ . Indizierung des Guinier-Diagramms (Abbildung 10-7) mit berechneten und	
	beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$	178
Tabelle 10-11.	Übersicht zur Bestimmung der Gitterparameter der Diphosphate Ag2PdP2O7,	
	A_2 Pd ₃ (P ₂ O ₇) ₂ (A = Na, Rb, Cs, Ag, Tl) und K ₄ Pd ₄ (P ₂ O ₇) ₃ . <i>RG</i> : Raumgruppe, n_{beob} : Anzahl	
	der verwendeten Reflexe.	180
Tabelle 10-12.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung	102
Tahalla 10-12	von Ag ₂ PdP ₂ O ₇ und K ₄ Pd ₄ (P ₂ O ₇) ₃	182
1 adelle 10-13.	Kristanographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von Na Pd ($\mathbf{P} \cap \mathbf{A}$) und Tl Pd ($\mathbf{P} \cap \mathbf{A}$)	107
Tabello 10-14	VOII $1Na_2\Gamma u_3(\Gamma_2 U_7)_2$ ullu $1I_2\Gamma u_3(\Gamma_2 U_7)_2$.	103 191
Tabelle 10-14.	Atomkoordinaten und isotrope Auslenkungsparameter für K $Pd_{1}(P_{2}\Omega_{2})$	184 184
Tabelle 10-16	Atomkoordinaten und isotrope Auslenkungsparameter für Na $_{1}$ Pd ₂ (P ₂ O ₇) ₂	185
Tabelle 10-17.	Atomkoordinaten und isotrope Auslenkungsparameter für $Tl_2Pd_3(P_2O_7)_2$.	186

Tabelle 10-18. Tabelle 10-19.	$Ag_2PdP_2O_7$. Interatomare Abstände /Å und Winkel /° in den Polyedern [PdO ₄] und [PO ₄] $K_4Pd_4(P_2O_7)_3$. Interatomare Abstände /Å und Winkel /° in den Polyedern [PdO ₄] und [PO ₄]	.186
Tabelle 10-20.	$[PO_4]$ Na ₂ Pd ₃ (P ₂ O ₇) ₂ . Interatomare Abstände /Å und Winkel /° in den Polyedern [PdO ₄] und [PO]	187
Tabelle 10-21.	$Tl_2Pd_3(P_2O_7)_2$. Interatomare Abstände /Å und Winkel /° in den Polyedern [PdO ₄] und [PO ₄].	.187
Tabelle 11-1.	Experimentelle Bedingungen zur Darstellung polynärer Palladium(II)-disphosphate $M^{II}PdP_2O_7$ ($M = Ca, Sr, Ba, Zn, Hg, Pb$)	.202
Tabelle 11-2.	Experimentelle Bedingungen zur Darstellung polynärer Palladium(II)-orthophosphate $M^{II}Pd_2(PO_4)_2$ ($M = Hg, Ca, Cd$).	.204
Tabelle 11-3.	Experimentelle Bedingungen zur Darstellung polynärer Metall(II)-palladium(II)- orthophosphate und deren Charakterisierung anhand von <i>IP</i> -Guinier-Aufnahmen	.205
Tabelle 11-4.	Experimente zur Darstellung polynärer Metall(II)-palladium(II)-diphosphate $M^{II}PdP_2O_7$ ($M = Mg Mn Co Ni Cu$)	207
Tabelle 11-5.	EDX-Untersuchungen an Kristallen von HgPdP ₂ O ₇ , HgPd ₂ (PO ₄) ₂ , PbPdP ₂ O ₇ und PbPdSi(P_2O_7) ₂	.210
Tabelle 11-6.	HgPdP ₂ O ₇ . Indizierung des Guinier-Diagramms (Abb. 11-4) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obc} \cdot 1000$.213
Tabelle 11-7.	PbPdP ₂ O ₇ . Indizierung des Guinier-Diagramms (Abb. 11-5) mit berechneten und beobachteten 4θ -Werten $A = \sin^2 \theta + \sin^2 \theta + \sin^2 \theta$	214
Tabelle 11-8.	HgPd ₂ (PO ₄) ₂ . Indizierung des Guinier-Diagramms (Abb. 11-6) mit berechneten und beobachteten 4θ Werten $4 = \sin^2 \theta - \sin^2 \theta - \sin^2 \theta $	215
Tabelle 11-9.	Übersicht zur Bestimmung der Gitterparameter von Diphosphaten $MPdP_2O_7$ ($M = Hg$, Pb, Ca, Sr, Ba, Zn) und Orthophosphaten $MPd_2(PO_4)_2$ ($M = Hg$, Ca, Cd). RG: Raumgruppe,	215
Tabelle 11-10.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von HaPdP.Q- und HaPd.(PQ.).	210
Tabelle 11-11.	Kristallographische Daten sowie Angaben zur Datensammlung und Strukturverfeinerung von PbPdPa Ω_2 und PbPdSi(Pa Ω_2)a	210
Taballa 11-19	Voli 1 of di $_{2}O_{7}$ und 1 of dSi(1 $_{2}O_{7})_{2}$	219
Tabelle 11-12.	Atomkoordinaten und isotrope Auslenkungsparameter für HgPd (PO)	220
Tabelle 11-13.	Atomicoordinaten und isotrope Austenkungsparameter für $\text{Ph} \text{Pd} \text{P}$	220
Tabelle 11-14.	Atomkoordinaten und isotrope Ausienkungsparameter für PDPdP $_2O_7$	220
Tabelle 11-15.	Atomkoordinaten und isotrope Auslenkungsparameter für PbPdSi($P_2O_7)_2$	220
Tabelle 11-16.	$HgPdP_2O_7$ und $HgPd_2(PO_4)_2$. Interatomare Abstände /A und Winkel / ^o in den Polyedern	
	$[HgO_{2+2}], [HgO_{4+4}], [PdO_4] und [PO_4].$.221
Tabelle 11-17.	$PbPdP_2O_7$ und $PbPdSi(P_2O_7)_2$. Interatomare Abstände / Å und Winkel / ° in den Polyedern [PbO ₆], [PdO ₄], [PO ₄] und [SiO ₆]. Standardabweichungen in Klammern	.221
Tabelle 11-18.	$HgPdP_2O_7$ und $HgPd_2(PO_4)_2$. Neben einem Vergleich der idealisierten	
	Koordinationszahlen (K.Z.) mit der nach HOPPE berechneten effektiven	
	Koordinationszahl (ECoN) der Kationen und Anionen werden anhand von	
	Bindungslänge-Bindungsstärke Betrachtungen partielle Bindungsstärken (eine Zeile	
	tiefer) sowie Gesamtbindungsstärken ΣS aufgeführt	.222
Tabelle 11-19.	Vergleich der Koordinationspolyeder um Hg ²⁺ in HgO, Hg ₂ P ₂ O ₇ , Hg ₃ (PO ₄) ₂ , HgPdP ₂ O ₇ und HgPd ₂ (PO ₄) ₂ .	.223
Tabelle 11-20.	$PbPdP_2O_7$ und $PbPdSi(P_2O_7)_2$. Neben einem Vergleich der idealisierten Koordinationszahlen (K.Z.) mit der nach HOPPE berechneten effektiven Vordinationszahle (ECoN) der Kationen und Anionen worden enhand von	
	Dindungalänga Dindungagtärlen Datrachtungan nartialla Dindungatärlen (aina Zaila	
	tiefer) sowie Gesamtbindungsstärken Σ S aufgeführt	.223
Tabelle A-1.	Anisotrope Auslenkungsparameter für C -Ir(PO ₃) ₃ /Å ²	243
Tabelle A-2.	Anisotrope Auslenkungsparameter für <i>trikl</i> -Ir(PO ₃) ₃ /Å ²	244
Tabelle A-3.	Anisotrope Auslenkungsparameter für $(Ir_{(1,x)}Si_x)_3[Si_2O(PO_4)_6]$ (x = 0,54) /Å ²	244
Tabelle A-4.	Anisotrope Auslenkungsparameter für $K_2[Pt_2(HPO_4)_4(H_2O)_2]/Å^2$.	244
Tabelle A-5.	Anisotrope Auslenkungsparameter für Pd(AsO ₃) ₂ /Å ²	245
Tabelle A-6.	Anisotrope Auslenkungsparameter für Ag ₂ PdP ₂ O ₇ /Å ² .	245
Tabelle A-7.	Anisotrope Auslenkungsparameter für Na ₂ Pd ₂ (P ₂ O ₇) ₂ /Å ²	246
Tabelle A-8	Anisotrope Auslenkungsparameter für $Tl_{P}Pd_{2}(P_{2}\Omega_{2})_{2}/Å^{2}$	246
Tabelle A-9.	Anisotrope Auslenkungsparameter für K_4 Pd ₄ (P ₂ O ₇) ₂ /Å ² .	246

Tabelle A-10.	Anisotrope Auslenkungsparameter für HgPdP ₂ O ₇ /Å ²	248
Tabelle A-11.	Anisotrope Auslenkungsparameter für PbPdP $_2O_7/Å^2$	248
Tabelle A-12.	Anisotrope Auslenkungsparameter für HgPd ₂ (PO ₄) ₂ /Å ²	248
Tabelle A-13.	Anisotrope Auslenkungsparameter für PbPdSi $(P_2O_7)_2$ /Å ²	248
Tabelle B-1.	Ag ₂ Pd ₃ (P ₂ O ₇) ₂ . Indizierung des zu Na ₂ Pd ₃ (P ₂ O ₇) ₂ (Abschnitt 10.4) isotypen Guinier- Diagramms (Abbildung B-1) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{calc} $	249
Tabelle B-2.	Rb ₂ Pd ₃ (P ₂ O ₇) ₂ . Indizierung des zu Tl ₂ Pd ₃ (P ₂ O ₇) ₂ (Abschnitt 10.4) isotypen Guinier- Diagramms (Abbildung B-2) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{calc} $	250
Tabelle B-3.	$Cs_2Pd_3(P_2O_7)_2$. Indizierung des zu $Tl_2Pd_3(P_2O_7)_2$ (Abschnitt 10.4) isotypen Guinier- Diagramms (Abbildung B-3) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2\theta_{calc} $	
Tabelle B-4.	- $\sin^2 \theta_{obs} $ ·1000. CaPdP ₂ O ₇ . Indizierung des zu PbPdP ₂ O ₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-4) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{calc} $ ·1000	.251
Tabelle B-5.	SrPdP ₂ O ₇ . Indizierung des zu PbPdP ₂ O ₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-5) mit berechneten und beobachteten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.	.253
Tabelle B-6.	BaPdP ₂ O ₇ . Indizierung des zu PbPdP ₂ O ₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-6) mit berechneten und beobachteten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obs} \cdot 1000$.254
Tabelle B-7.	ZnPdP ₂ O ₇ . Indizierung des zu PbPdP ₂ O ₇ (Abschnitt 11.4) isotypen Guinier-Diagramms (Abbildung B-7) mit berechneten und beobachteten 4θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{obc} \cdot 1000$.	.255
Tabelle B-8.	$CaPd_2(PO_4)_2$. Indizierung des zu HgPd ₂ (PO ₄) ₂ (Abschnitt 11.4) isotypen Guinier- Diagramms (Abbildung B-8) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{cbc} $:1000.	256
Tabelle B-9.	$CdPd_2(PO_4)_2$. Indizierung des zu HgPd ₂ (PO ₄) ₂ (Abschnitt 11.4) isotypen Guinier- Diagramms (Abbildung B-9) mit berechneten und beobachteten 4 θ -Werten. $\Delta = \sin^2 \theta_{calc} - \sin^2 \theta_{abc} $:1000.	.257
Tabelle B-10.	$K_{2x}Pb_{1-x}PdP_2O_7$. Indizierung des Guinier-Diagramms (Abb. B-10) mit berechneten und beobachteten 4 θ -Werten und Intensitäten. $\Delta = \sin^2\theta_{calc} - \sin^2\theta_{obs} \cdot 1000$.	.258

14.3 Literaturverzeichnis

- [1] A. R. West: "Grundlagen der Festkörperchemie", Verlag Chemie, Weinheim, 1992.
- [2] C. N. R. Rao, J. Gopalakrishnan: "*New Directions in Solid State Chemistry*", Cambridge University Press, Cambridge, U. K., **1986**.
- [3] G. D. Stucky, D. E. Cox, M. M. Eddy, T. E. Gier, N. L. Keder: "Inclusion Tuning of Nonlinear Optical Materials: Sorbates in the KTiO(PO₄) (KTP) Structure", *Inorg. Chem.* 1988, 27, 1856.
- [4] P. T. Nguyen, A. W. Sleight, N. Roberts, W. W. Warren: "Modeling of Extended Defects in the Vanadium Phosphate Catalyst for Butane Oxidation, (VO)₂P₂O₇", J. Solid State Chem. 1996, 122, 259.
- [5] R. Glaum, E. Benser, H. Hibst: "Novell Ternary and Polynary Vanadium(IV) Phosphates as Catalysts for Selective Oxidations of Light Hydrocarbons", *Chem. Ing. Technik* 2007, 79, 843.
- [6] E. Benser, T. Droß, H. Hibst and R. Glaum: "V^{III}V^{IV}₃O₃(PO₄)₃ A New Vanadiumphosphate for Selective Oxidation of Light Alkanes", *Chem. Mater.* 2007, 19, 4341.
- [7] N. N. Bramnik, K. Nikolowksi, C. Baehtz, K. G. Bramnik, H. Ehrenberg: "Phase Transitions Occuring upon Lithium Insertion-Extraction of LiCoPO₄", *Chem. Mater.* 2007, 19, 908.
- [8] A. Amine, H. Yasuda, M. Yamachi: "Olivine LiMPO₄ (M: Co, Cu) as 4.8V and 2V positive electrodes materials for lithium batteries", *Electrochem. Solid State Lett.* 2000, 3, 178.
- [9] S. Okada, S. Sawa, M. Egashira, J. Yamaki, M. Tabuchi, H. Kageyama, T. Konishi, A. Joshino: "Cathode properties of phospho-olivine LiMPO₄ for lithium secondary batteries", *J. Power Sources* **2001**, *97*, 430.
- [10] C. Delacourt, C. Wurm, P. Realle, M. Morcrette, C. Masquelier: "Low temperature preparation of optimized phosphates for Li-battery applications", *Solid State Ionics* 2004, 173, 113.

- [11] G. Venturini, A. Courtois, J. Steinmetz, R. Gerardin, C. Gleitzer: "Préparation et étude d'un oxyphosphate de fèr à valence mixté Fe₉O₈(PO₄)", *J. Solid State Chem.* 1984, 53, 1.
- [12] M. Weil, R. Glaum: "Crystallisation of ultraphosphates via the gas phase. The crystal structures of FeP₄O₁₁, ZnP₄O₁₁ and CdP₄O₁₁", *Eur. J. Inorg. Solid State Chem.* **1998**, *35*, 495.
- [13] R. Glaum: "Neue Untersuchungen an wasserfreien Phosphaten der Übergangsmetalle", Habilitationsschrift, Universität Gießen **1999**. URL: http:bibduni-giessen.de/ghtm/1999/uni/h990001.htm.
- [14] K.-Th. Wilke, J. Bohm: "*Kristallzüchtung*", Verlag Harri Deutsch, Thun, **1988**.
- [15] P. Rittner, R. Glaum: "Kristallzüchtung und Einkristallstrukturverfeinerungen der Rhodium(III)-phosphate RhPO₄ und Rh₃P₃O₉", *Z. Kristallogr.* **1994**, *209*, 162.
- [16] S. Islam: *Teil der geplanten Dissertation*, Universität Bonn.
- [17] K. Panagiotidis, R. Glaum, J. Schmedt auf der Günne, W. Hoffbauer, H. Görzel: "Synthese, Kristallstruktur und spektroskopische Charakterisierung von Palladium(II)-diphosphat Pd₂P₂O₇", Z. Anorg. Allg. Chem. **2005**, 631, 2371.
- [18] H. Schäfer: "Chemische Transportreaktionen", Verlag Chemie, Weinheim, 1962.
- [19] R. Gruehn, R. Glaum: "Neues zum chemischen Transport als Methode zur Präparation und thermochemischen Untersuchung von Feststoffen", *Angew. Chem.* 2000, 112, 706; *Angew. Chem. Int. Ed.* 2000, 39, 692.
- [20] H. Fukuoka, H. Imoto, T. Saito: "New polymorphs of Ru(III)P₃O₉: cyclo-(hexaphosphate) Ru₂P₆O₁₈ and metaphosphate Ru(PO₃)₃ with a novel structure" J. Solid State Chem. **1995**, 119, 107.
- [21] H. Imoto, H. Fukuoka, S. Tsunesawa, H. Horiuchi, T. Amemiya, N. Koga: "Preparation and crystal structure of ruthenium metaphosphate Ru(PO₃)₃ with an 8-fold superstructure. Analysis of structural frustration with a simple model", *Inorg. Chem.* 1997, 36, 4172.

- [22] B. Wellmann, F. Liebau: "The Crystal Structure of Platinum(IV)-Diphosphate", *J. Less-Common Met.* **1981**, 77, 31.
- [23] G. Bissert, F. Liebau: "Die Kristallstruktur von monoklinem Siliziumphosphat SiP₂O₇ (AIII): Eine Phase mit (SiO₆)-Oktaedern", *Acta Crystallogr.* **1970**, *B26*, 233.
- [24] H. Mayer: "Die Kristallstruktur von Si₅O(PO₄)₆", Monatsh. Chem. **1974**, 105, 46.
- [25] D. M. Poojary, R. B. Borade, A. Clearfield: "Structural characterization of silicon orthophosphate", *Inorg. Chim. Acta* 1993, 208, 23.
- [26] M. Hanawa, T. Kobayashi, H. Imoto: "Silicophosphates of rhodium and indium", Z. *Anorg. Allg. Chem.* **2000**, *626*, 216.
- [27] K. K. Palkina, S. I. Maksimova, A. V. Lavrov, N. A. Chalisova: "Synthesis and structure of palladium polyphosphate Pd(PO₃)₂", *Dokl. Akad. Nauk. SSSR* 1978, 242, 829.
- [28] H. N. Ng, C. Calvo, R. Faggiani: "A new investigation of the structure of silver orthophosphate", *Acta Crystallogr.* **1978**, *B34*, 898.
- [29] R. W. G. Wyckhoff: "Die Kristallstruktur von Silberphosphat und Silberarsenat (Ag₃ *X*O₄)", *Z. Kristallogr.* **1925**, *62*, 529.
- [30] J. M. Newsam, A. K. Cheetham, B. C. Tofield: "Structural studies of the high-temperature modifications of sodium and silver orthophosphates, II-Na₃PO₄ and II-Ag₃PO₄, and of the low-temperature form I-Ag₃PO₄", *Solid State Ionics* **1980**, *1*, 377.
- [31] M. Weil: *persönliche Mitteilung*, Universität Wien, 2006.
- [32] K. H. Jost: "Die Struktur des Silber-Polyphosphats (AgPO₃)_x", Acta Crystallogr. 1961, 14, 779.
- [33] E. Hammer: "Neue Kalium- und Silberphosphate" *Examensarbeit*, Universität Bonn, 2007.

- [34] T. Dahmen, P. Rittner, S. Boeger-Seidl, R. Gruehn: "Zum thermischen Verhalten von PdSO₄·2H₂O und PdSO₄·0.75H₂O sowie zur Struktur von *M*-PdSO₄", *J. Alloys Compd.* **1994**, *216*, 11.
- [35] K. Panagiotidis: "AuPO₄ und Pd₂P₂O₇ Neue wasserfreie Phosphate der Edelmetalle" *Diplomarbeit*, Universität Bonn, **2004**.
- [36] K. Aurivillius, B. A. Nilsson: "The crystal structure of mercury(II) phosphate, Hg₃(PO₄)₂", Z. Kristallogr. **1975**, 141, 1.
- [37] M. Weil, R. Glaum: "Mercury(II)-diphosphate, Hg₂P₂O₇", *Acta Crystallogr.* **1997**, C53, 1000.
- [38] M. Weil, R. Glaum: "Mercury(II) polyphosphate, Hg(PO₃)₂", *Acta Crystallogr.* **2000**, *C56*, 133.
- [39] M. Weil, R. Glaum: "Präparation, Kristallstruktur und thermisches Verhalten der Quecksilber(I)-phosphate *alpha*-(Hg₂)₃(PO₄)₂, *beta*-(Hg₂)₃(PO₄)₂ und (Hg₂)₂P₂O₇", *Z. Anorg. Allg. Chem.* **1999**, 625, 1752.
- [40] M. Weil, R. Glaum: "Mercury phosphates with the triangular $(Hg_3)^{4+}$ cluster: $(Hg_3)_3(PO_4)_4$ and $(Hg_3)_2(HgO_2)(PO_4)_2$ ", *J. Solid State Chem.* **2001**, *157*, 68.
- [41] A. Durif: "*Crystal Chemistry of Condensed Phosphates*", Plenum Press, New York, **1995**.
- [42] P. Rémy, A. Boullé: "Phosphates condenses cristallisés de chrome et de fer trivalents" *Bull. Soc. Chim. Fr.* **1972**, *6*, 2213.
- [43] V. Lenher: "Action of Selenic Acid on Gold", J. Am. Chem. Soc. 1902, 24, 354.
- [44] W. E. Caldwell, L. P. Eddy: "The Solution of Gold by Selenic Acid", J. Am. Chem. Soc. 1949, 71, 2247.
- [45] E. Mitscherlich: "Zur Löslichkeit des Golds in Selensäure", Pogg. Ann. 1827, 9, 623.

- [46] P. G. Jones, E. Schwarzmann, G. M. Sheldrick, H. Timpe: "Preparation and crystal structure of *di*-gold(III)*bis*(selenite)(diselenite), Au₂(SeO₃)₂(Se₂O₅)", *Z. Naturforsch.* 1981, *36*, 1050.
- [47] P. G. Jones, G. M. Sheldrick, E. Schwarzmann, A. Vielmaeder: "Darstellung und Kristallstruktur von *di*-gold(III)*bis*(selenit)oxid, Au₂(SeO₃)₂O", *Z. Naturforsch.* 1983, 38, 10.
- [48] M. S. Wickleder, O. Büchner, C. Wickleder, S. El Sheik, G. Brunklaus, H. Eckert: "Au₂(SeO₃)₂(SeO₄): synthesis and characterization of a new noncentrosymmetric selenite-selenate", *Inorg. Chem.* **2004**, *43*, 5860.
- [49] P. Schottländer: "Crystalline form of potassium aurobromide", *Liebigs Ann. Chem.* **1883**, *217*, 337.
- [50] M. S. Wickleder, O. Buechner: "The gold sulfates $MAu(SO_4)_2$ (M = Na, K, Rb)", Z. Naturforsch. 2001, 56, 1340.
- [51] M. S. Wickleder, K. Esser: "Synthese und Kristallstruktur von CsAu(SO₄)₂", *Z. Anorg. Allg. Chem.* **2002**, *628*, 911.
- [52] C. D. Garner, S. C. Wallwork: "The crystal structure of anhydrous nitrates and their complexes. Part V. Potassium tetranitratoaurate(III)", *J. Chem. Soc.* **1970**, 3092.
- [53] M. Weishaupt, J. Straehle: "Kristallstruktur und Schwingungsspektrum des Tetrammingold(III)-Nitrats", Z. Naturforsch. **1976**, 31, 554.
- [54] O. Büchner, M. S. Wickleder: "Tetranitratogoldsäure, (H₅O₂)(Au(NO₃)₄)·H₂O: Synthese, Kristallstruktur und thermisches Verhalten des ersten sauren Nitrates des Goldes", Z. Anorg. Allg. Chem. 2004, 630, 1079.
- [55] M. S. Wickleder: "AuSO₄: a true gold(II)-sulfate with $(Au_2)^{4+}$ ion", Z. Allg. Anorg. Chem. **2001**, 627, 2112.
- [56] Y. Laligant: "Crystal structure of Li₂PdP₂O₇ solved from X-ray powder diffraction", *Eur. J. Solid State Inorg. Chem.* **1992**, *29*, 239.

- [57] Y. Laligant: "Structure determination of Na₂PdP₂O₇ from X-ray powder diffraction", *Eur. J. Solid State Inorg. Chem.* **1992**, *29*, 83.
- [58] A. El Maadi, J. Bennazha, J. M. Réau, A. Boukhari, E. M. Holt: "New palladium phosphate complexes: K₂PdP₂O₇ and K_{3.5}Pd_{2.25}(P₂O₇)₂ synthesis, single crystal structure and conductivity", *Mat. Res. Bull.* **2003**, *38*, 865.
- [59] K.-H. Lii, S.-L. Wang, F.-L. Liao: "Cs₂Pd₃(P₂O₇)₂ and Cs₂Pd₃(As₂O₇)₂: a 3D palladium phosphate with a tunnel structure and a 2D palladium arsenate containing strings of palladium atoms", *Inorg. Chem.* **2004**, *43*, 2499.
- [60] G. Engel: "Über Rhodiumphosphat RhPO₄ sowie über Rhodiumarsenoxid RhAsO₄ mit Rutilstruktur", *J. Less-Common Met.* **1981**, 77, 41.
- [61] D. T. Cromer, K. Herrington: "The structures of anatase and rutile", J. Am. Chem. Soc. 1955, 77, 4708.
- [62] G. S. Muraveiskaya, V. S. Orlova, O. N. Evstaf'eva: "Reaction of platinum potassium nitrite (K₂Pt(NO₂)₄) with sulfuric acid and synthesis of platinum sulfates", *Russ. J. Inorg. Chem.* **1974**, *19*, 1030.
- [63] D. P. Bancroft, F. A. Cotton, L. R. Falvello, S Han, W. Schwotzer: "Dinuclear, metalmetal-bonded platinum(III) compounds. 4. Structural studies of several compounds with sulfate or hydrogenphosphate ions", *Inorg. Chim. Acta* **1984**, *87*, 147.
- [64] M. Pley, M. S. Wickleder: $K_3(Pt_2(SO_4)_4H(HSO_4)_2)$: a platinum(III) sulfate with $(Pt_2(SO_4)_4)$ cores linked by $(H(HSO_4)_2)$ units", Z. Anorg. Allg. Chem. **2005**, 631, 592.
- [65] M. Pley, M. S. Wickleder: "Monomers, chains and layers of [Pt₂(SO₄)₄] units in the crystal structures of the platinum(III) sulfates (NH₄)₂[Pt₂(SO₄)₄(H₂O)₂], K₄[Pt₂(SO₄)₅] and Cs[Pt₂(SO₄)₃(HSO₄)]", *Eur. J. Inorg. Chem.* **2005**, 529.
- [66] M. Pley, M. S. Wickleder: "Pt₂(HSO₄)₂(SO₄)₂, the first binary sulfate of platinum", *Z. Anorg. Allg. Chem.* **2004**, *630*, 1036.
- [67] A. Bino, F. A. Cotton: "The tetrakis(hydrogen-phosphato)dimolybdenum ion (Mo₂(H PO₄)₄). Compounds with a metal-metal triple bond which are easily prepared and permanently stable in air", *Inorg. Chem.* **1979**, *18*, 3562.

- [68] A. V. Shtemenko, V. G. Stolyarenko, K. V. Domasevitch: "Structure and spectral characteristics of (NH₄)₂(Re₂(HPO₄)₄·2(H₂O)", *Russ. J. Inorg. Chem.* **2006**, *51*, 1092.
- [69] L. M. Dikareva, G. G. Sadikov, M. A. Porai-Koshits, I. B. Baranovskii, S. S. Abdullaev, R. N. Schelokov: "Study of the crystal structure of (Rh₂(H₂PO₄)₄(H₂O)₂)", *Russ. J. Inorg. Chem.* **1982**, *27*, 417.
- [70] D. P. Bancroft, F. A. Cotton, L. R. Falvello, S. Han, W. Schwotzer: "Dinuclear, metal-metal-bonded platinum(III) compounds. 4. Structural studies of several compounds with sulfate or hydrogenphosphate ions", *Inorg. Chem.* **1982**, *21*, 1709.
- [71] R. Bunsen: "Vulkanische Exhalationen", J. Prakt. Chem. 1852, 56, 53.
- [72] A. E. van Arkel, J. H. De Boer: "Darstellung von reinem Titanium-, Zirkonium-, Hafnium- und Thoriummetall", Z. Anorg. Allg. Chem. **1925**, 148, 345.
- [73] L. Mond, C. Langer, F. Quincke: "Actions of Carbon Monooxide on Nickel", J. Chem. Soc. 1890, 57, 749.
- [74] I. Müller: "A History of Thermodynamics the Doctrine of Energy and Entropy", Springer-Verlag, 2007.
- [75] G. Schmidt, R. Gruehn: "Zum Absorptions- und Desorptionsverhalten von Quarzglas gegenüber Wasser", J. Cryst. Growth **1982**, 57, 585.
- [76] A. Schmidt: "Phosphide und Phosphate des Cobalts Kristallisation, Thermodynamik, Strukturen und Farben", *Dissertation*, Universität Gießen, **2002**.
- [77] T. Droß: "Neue Vanadiumphosphate und das Redox-Verhalten von Phosphaten des Vanadiums und Urans Phasengleichgewichte, Sauerstoffkoexistenzdrücke und kristallographische Untersuchungen", *Dissertation*, Universität Bonn, **2004**.
- [78] A. Rabenau: "Die Rolle der Hydrothermalsynthese in der präparativen Chemie", *Angew. Chem.* **1985**, *97*, 1017.
- [79] H. Y. Chen, D. M. Hiller, J. E. Hudson, C. J. A. Westenbroek: "Advances in properties and manufacturing of chromium dioxide", *IEEE Trans. Magn.* **1984**, *20*, 24.

- [80] R. A. Laudise: "Hydrothermal synthesis of single crystals", *Prog. Inorg. Chem.* **1962**, *3*, 1.
- [81] R. A. Laudise, E. D. Kolb: "Hydrothermal synthesis of single crystals", *Endeavour*, **1969**, *28*, 114.
- [82] A. N. Lobachev, L. N. Demianets: "Studies in Soviet Science: Crystallization Process under Hydrothermal Conditions", **1973**, 255.
- [83] L. N. Demianets, A. N. Lobachev: "Hydrothermal synthesis of crystals", *Krist. Tech.* **1979**, *14*, 509.
- [84] T. M. Seward: "Metal complex formation in aqueous solutions at elevated temperatures and pressures", *Phys. Chem. Earth* **1981**, *13/14*, 113.
- [85] L. N. Demianets: "*Crystals, Growth, Properties and Applications*", Springer Verlag, Berlin, **1978**.
- [86] J. W. Moody, R. C. Himes: "Crystal growth in hydrothermal systems", *Battelle Tech. Rev.* **1965**, *5*, 3.
- [87] O. F. Tuttle, N. L. Bowen: "The system MgO-SiO₂-H₂O", *Geol. Soc. Am. Bull.* **1949**, 60, 439.
- [88] G. W. Moorey: "Neue kristallisierte Silikate von Kalium und Natrium. Darstellung und allgemeine Eigenschaften", Z. Anorg. Allg. Chem. **1914**, 86, 305.
- [89] G. W. Moorey: "The Properties of Glass", Verlag Reinhold, New York, 1954.
- [90] V. I. Popolitov, A. N. Lobachev: "Chemical synthesis and properties of copper(I) iodide single crystals", *Inorg. Mater. USSR* **1973**, *9*, 949.
- [91] M. Blum: "Untersuchungen der Gleichgewichtsbeziehungen im System Nickel / Phosphor / Sauerstoff und chemischer Transport der Phosphate und Phosphide des Nickels", *Diplomarbeit*, Universität Gießen, **1997**.
- [92] A. Guinier: "*X-Ray Diffraction*", Verlag Freeman, San Francisco, USA, **1963**.

- [93] Y. Amemiya, J. Miyahara: "Imaging Plate Illuminates Many Fields", *Nature* **1988**, 336, 89.
- [94] *BASREADER 2.26* und *AIDA 2.2*, Computerprogramme der Firma Raytest Isotopenmessgeräte GmbH, Straubenhardt, **1999**.
- [95] OriginLab Corporation: *OriginPro 6.1G*, Northhampton, **1991-2000**.
- [96] ICSD-Database FIZ/NIST; Fachinformationszentrum Karlsruhe, National Institute of Standards and Technology, Geithersburg, USA, Vers. 1.4.4, **2008**.
- [97] K. Yvon, W. Jeitschko, E. Parté: "A Computer Program for Calculating X-Ray and Neutron Powder Patterns", *J. Appl. Crystallogr.* **1977**, *10*, 73.
- [98] G. Meyer, J. Soose: "SOS-Programme zur Auswertung von Guinier-Aufnahmen", *Staatsexamensarbeit*, Universität Gießen **1980**.
- [99] P. E. Werner: "Trial-and-error computer methods for the indexing of unknown powder patterns", Z. Kristallogr. **1964**, *120*, 375.
- [100] P. E. Werner, L. Eriksson, M. Westdahl: "TREOR, a semi-exhaustive trial-and-error powder indexing program for all symmetries" *J. Appl. Cryst.* **1985**, *18*, 367.
- [101] J. R. Carvajal, T. Roisnel: "FullProf98 and WinPLOTR: New Windows 95/NT Applications for Diffraction, Commission For Powder Diffraction", International Union for Crystallography, Newsletter N°20, **1998**.
- [102] W. Massa: "*Kristallstrukturbestimmung*", Teubner-Verlag, Stuttgart, 2. Auflage, **1996**.
- [103] W. Clegg: "Faster Data Collection Without Loss of Precision. An Extension of the Learnt Profile Method", *Acta Crystallogr.* **1981**, *A37*, 22.
- [104] G. M. Sheldrick: "*SHELXS-97: Program for Crystal Structure Solution*", Universität Göttingen, **1997**.
- [105] G. M. Sheldrick: "SHELXL-97: A Program Package for Crystal Structure Solution and Refinement", Universität Göttingen, **1997**.
- [106] L. J. Farrugia: "An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data", J. Appl. Cryst. 1999, 32, 837.
- [107] I. Tanaka, M. Yao, M. Suzuki, K. Hikichi: "An Automatic Diffraction Data Collection System with an Imaging Plate", *J. Appl Cryst.* **1990**, *23*, 334.
- [108] E. Keller: "Röntgenstrukturanalyse von Molekülen I", *Chem. unserer Zeit*, **1982**, *3*, 78.
- [109] A. C. Patterson: "A Fourier series method for the determination of the components of interatomic distances in crystals", *Phys. Rev.* **1934**, *46*, 372.
- [110] A. C. Patterson: "A Direct Method for the Determination of the Components of Interatomic Distances in Crystals", *Z. Kristallogr.* **1935**, *A90*, 517.
- [111] D. Harker: "Application of the three-dimensional Patterson method and the crystal structures of proustite, Ag₃AsS₃, and pyrargyrite, Ag₃SbS₃", *Chem. Phys.* **1936**, *4*, 381.
- [112] D. Sayre: "The squaring method: a new method for phase determination", *Acta Crystallogr.* **1952**, *5*, 60.
- [113] H. Hauptman, J. Karlé: "The phases and magnitudes of the structure factors", *Acta Crystallogr.* **1950**, *3*, 181.
- [114] J. Karlé, H. Hauptmann: "An Unified Algebraic Approach to the Phase Problem", *Acta Crystallogr.* **1952**, *10*, 267.
- [115] A. C. T. North, D. C. Phillips, F. S. Mathews: "A Semi-Empirical Method of Absorption Correction", *Acta Crystallogr.* **1968**, *A24*, 351.
- [116] R. H. Blessing: "An empirical correction for absorption anisotropy", *Acta Crystallogr.* **1995**, *A51*, 33.

- [117] X-Red, STOE & Cie GmbH, Darmstadt, 1996.
- [118] X-Shape, STOE & Cie GmbH, Darmstadt, 1996.
- [119] O. Brümmer: "*Mikroanalyse mit Elektronen- und Ionensonden*", VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, **1980**.
- [120] L. Reimer: "Scanning Electron Microscopy", Springer-Verlag, Berlin, 1983.
- [121] D. Newbury: "Advanced Scanning Electron Microscopy and X-ray Microanalysis", Plenum Press, New York, **1987**.
- [122] Bedienungsanleitung: "*PVSUPQ (EDAX-Analysensystem)*" Philips, Eindhoven, Niederlande, **1986**.
- [123] Programmbeschreibung: "*EDAX-Analysensystem*" Philips, Eindhoven, Niederlande, **1986**.
- [124] W. M. Elsasser: "Diffusion of slow neutrons by crystalline substances", C. R. Acad. Sci. **1936**, 202, 1029.
- [125] D. P. Mitchell, P. N. Powers: "Bragg reflection of slow neutrons", *Phys. Rev.* **1936**, 50, 486.
- [126] R. B. von Dreele in D. L. Bish, J. E. Post (Hrsg.): *Reviews on Mineralogy*, Vol. 20: "Modern Powder Diffraction", The Mineralogical Society of America, Washington, 1989.
- [127] V. F. Sears: "An inelastic neutron scattering investigation", *Neutron News*, **1992**, *3*, 26.
- [128] H. M. Rietveld: "A profile refinement method for nuclear and magnetic structures", *J. Appl. Cryst.* **1969**, *2*, 65.
- [129] H. M. Rietveld: "Line profiles of neutron powder-diffraction peaks for structure refinement", *Acta Crystallogr.* **1967**, *22*, 151.

- [130] D. M. Többens, N. Stüßer, K. Knorr, H. M. Meyer, G. Lampert: "E9: The new highresolution neutron powder diffractometer at the Berlin Neutron Scattering Center", *Mat. Science For.* 2001, 378.
- [131] D. M. Többens, M. Tovar: "Peak shape at the axially focusing E9 powder diffractometer - theoretical and experimental description", *Appl. Phys.* 2002, A74, 136.
- [132] J.-E. Berg, P.-E. Werner: "On the use of Guinier-Hagg film data for structure analysis. The crystal structure of tetraammonium aa'-u-oxobis-{[gied'-u3(S)-malato-O(1),O(2),O(4),O(4')]-di-u-oxabis[dioxomolybdate(VI)]}-hydrate", Z. Kristallogr. 1977, 145, 310.
- [133] A. K. Cheetham in R. A. Young (Hrsg.): *"The Rietveld Method*", Oxford University Press, Oxford, U. K., **1993**, S. 276.
- [134] A. Boultif, D. Louer: "Trial and Error Method for the Automatic Indexing of Powder Diffraction Patterns - Variation of Parameters by Successive Dichotomy", J. Appl. Cryst. 2004, 37, 724.
- [135] P. M. deWolff: "A Simplified Criterion for the Reliability of a Powder Pattern Indexing", J. Appl. Cryst. 1968, 1, 108.
- [136] G. S. Smith, R. L. Snyder: "FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing", *J. Appl. Cryst.* **1979**, *12*, 60.
- [137] T. Hahn: *International Tables for Crystallography*, Vol. A: *"Space Group Symmetry*", Kluwer Academic Publisher, Dordrecht, Boston, London, **1995**, S. 42.
- [138] G. A. Pawley: "Unit-cell refinement from powder diffraction scans", *J. Appl. Cryst.* **1981**, *14*, 357.
- [139] K. Brandenburg: "*Endeavour Structure Solution from Powder Diffraction*", Version 1.4, Crystal Impact GbR, Bonn, **2006**.
- [140] H. Putz, J. C. Schön, M. Jansen: "Combined Method for "*Ab Initio*" Structure Solution from Powder Diffraction Data", *J. Appl. Cryst.* **1999**, *32*, 864.

- [141] K. D. M. Harris, M. Tremayne: "Crystal Structure Determination from Powder Diffraction Data" *Chem. Mater.* **1996**, *8*, 2554.
- [142] H. Krischner, B. Koppelhuber-Bitschnau: "*Röntgenstrukturanalyse und Rietveldmethode. Eine Einführung*", 6. Aufl., Vieweg Verlag, Wiesbaden, **2000**.
- [143] J. E. Post, D. L. Bish: *Reviews on Mineralogy*, Vol. 20: "*Modern Powder Diffraction*", The Mineralogical Society of America, Washington, USA, **1989**, S 277.
- [144] L. W. Finger, D. E. Cox, A. P. Jephcoat: "A correction for powder diffraction peak asymmetry due to axial divergence" *J. Appl. Cryst.* **1994**, *27*, 892.
- [145] R. Hoppe: "Über Madelungfaktoren", Angew. Chem. 1966, 78, 52.
- [146] R. Hoppe: "On the Madelung Part of Lattice Energy", Z. Naturforsch. **1995**, 50A, 555.
- [147] M. Serafin: *Diplomarbeit*, Universität Gießen, **1976**.
- [148] R. Hübenthal: MAPLE 4.0, Universität Gießen, 1993.
- [149] R. Hoppe: "Madelung constants as a new guide to the structural chemistry of solids", *Adv. Fluorine Chem.* **1970**, *6*, 387.
- [150] R. D. Shannon: "Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides", *Acta Crystallogr.* **1976**, *A32*, 751.
- [151] R. Hoppe: "Effective coordination numbers (ECoN) and mean fictive ionic radii (MEFIR)", Z. Kristallogr. 1979, 150, 23.
- [152] R. Hoppe: "Die Koordinationszahl ein "anorganisches Chamäleon"" Angew. Chem. 1970, 82, 7.
- [153] R. Hoppe, G. Meyer: "A comment on the description of structure of intermetallic phases", *Z. Metallkunde*, **1980**, *71*, 347.

- [154] J. Weidlein, U. Müller, K. Dehnike: *Schwingungsspektroskopie*, 2. überarbeitete Auflage, Georg Thieme Verlag, Stuttgart, **1988**.
- [155] K. Nakamoto: "Infrared and Raman Spectra of Inorganic and Coordination Compounds", Third Edition, Wiley Interscience, John Wiley & Sons, New York, USA, 1978.
- [156] B. Wrackmeyer: "High-resolution NMR spectroscopy of solids. Cross polarization magic angle spinning NMR spectroscopy", *Chem. unserer Zeit*, **1988**, *22*, 100.
- [157] K. J. D. MacKenzie, M. E. Smith: "Multinuclear Solid-State-NMR of Inorganic Materials", Pergamon Press, Amsterdam, 2002.
- [158] D. D. Laws, H.-M. L. Bitter, A. Jerschow: "Methoden der Festkörper-NMR-Spektroskopie in der Chemie", *Angew. Chem.* **2002**, *114*, 3224.
- [159] P. W. Atkins: "Physikalische Chemie", 2. Auflage, VCH, Weinheim, 1996.
- [160] M. Bak, J. T. Rasmussen, N. C. Nielsen: "SIMPSON. A general simulation program for solid-state NMR spectroscopy", J. Magn. Res. 2000, 147, 296.
- [161] S. Hayashi, K. Hayamizu: "High-resolution solid-state phosphorus-³¹P NMR of alkali phosphates", *Bull. Chem. Soc. Jpn.* **1989**, *62*, 3061.
- [162] M. A. Dollase, M. Feike, H. Förster, T. Schaller, I. Schnell, A. Sebald, S. Steuernagel: "A 2D ³¹P-MAS-NMR Study of Polycrystalline Cd₃(PO₄)₂", J. Am. Chem. Soc. 1997, 119, 3807.
- [163] L. Griffiths, A. Root, R. K. Harris, K. J. Packer, A. M. Chippendale, F. R. Tromans: "Magic-angle Spinning Phosphorous-31 Nuclear Magnetic Resonance of Polycrystalline Sodium Phosphates", J. Chem. Soc. Dalton Trans. 1986, 2247.
- [164] B. Moreno, C. O. Rodrigues, B. N. Bailey, J. A. Urbina, S. N. J. Moreno, R. Docampo, E. Oldfield: "Magic-angle spinning ³¹P-NMR-spectroscopy of condesed phosphates in parasitic protozoa: visualizing the invisible", *FEBS Letters*, **2002**, *523*, 207.
- [165] W. Hoffbauer: persönliche Mitteilung, Universität Bonn, 2008.

- [166] F. Fayon, D. Massiot, K. Suzuya, D. L. Price: "³¹P NMR study of magnesium phosphate glasses", *J. Non-Crystalline Solids*, **2001**, *283*, 88.
- [167] D. Ehrt, C. Jäger: "Investigations of solid state reactions of binary polyphosphatefluoride systems by means of thermal analysis, x-ray diffraction and NMR spectroscopy. II. Systems strontium metaphosphate and strontium fluoride and calcium metaphosphate and calcium fluoride $(Sr(PO_3)_2 + SrF_2 \text{ and } Ca(PO_3)_2 + CaF_2)$ ", Z. Physik. Chem. **1988**, 159, 89.
- [168] D. Ehrt, C. Jaeger: "Investigations of solid state reactions of binary polyphosphatefluoride systems by means of thermal analysis, x-ray diffraction, and NMR spectroscopy. V. Reactions of strontium phosphate (Sr(PO₃)₂) with aluminum fluoride, calcium fluoride, and magnesium fluoride", Z. Physik. Chem. **1989**, 162, 109.
- [169] F. Fayon, C. Bessada, J. -P. Coutures, D. Massiot: "High-resolution double quantum ³¹P-MAS-NMR study of the intermediate-range order in crystalline and glass lead phosphates", *Inorg. Chem.* **1999**, *38*, 5212.
- [170] N. E. Rashid, B. L. Philips, S. H. Risbud: "Solid-state nuclear magnetic resonance study of the structure of lanthanum phosphate crystals and glasses" *J. Mat. Res.* **2000**, *15*, 2464.
- [171] G. Brauer: *Handbuch der Präparativen Anorganischen Chemie*, Ferdinand Enke Verlag, Stuttgart, **1978**.
- [172] J. A. A Ketelaar, J. F. van Walsem: "Die Kristallstruktur des Ammonium-, Kalium-, Rubidium- und Caesiumpalladiumhexachlorids und -bromids", *Recl. Trav. Chim. Pays-Bas*, **1938**, 57, 964.
- [173] A. F. Wells: "The crystal structure of palladous chloride PdCl₂", Z. Kristallogr. **1938**, *100*, 189.
- [174] J. Waser, H. A. Levy, S. W. Peterson: "The Structure of PdO", Acta Crystallogr. 1953, 6, 661.
- [175] W. J. Moore, L. Pauling: "The crystal structures of the tetragonal monoxides of lead, tin, palladium, and platinum", *J. Am. Chem. Soc.* **1941**, *63*, 1392.

- [176] R. J. Williams, D. R. Dillin, W. O. Milligan: "Structure refinement of potassium chloroplatinate by powder and single-crystal methods", *Acta Crystallogr.* **1973**, *B29*, 1369.
- [177] F. J. Ewing, L. Pauling: "The crystal structure of potassium chloroplatinate", Z. Kristallogr. 1928, 68, 223.
- [178] M. Troemel, E. Lupprich: "Die Kristallstruktur von Li₂Pt(OH)₆ und Na₂Pt(OH)₆", *Z. Anorg. Allg. Chem.* **1975**, *414*, 160.
- [179] R. H. B. Mais, P. G. Owston, A. M. Wood: "The crystal structure of K₂PtCl₄ and K₂PdCl₄ with estimates of the factors affecting accuracy", *Acta Crystallogr.* 1972, 28, 393.
- [180] R. G. Dickinson: "The crystal structures of potassium chloroplatinate and of potassium and ammonium chloropalladates", J. Am. Chem. Soc. **1922**, 44, 2404.
- [181] J. Donohue, W. N. Lipscomb: "The Crystal Structure of Hydrazinium Dichloride, (N₂ H₆)Cl₂", J. Chem. Phys. **1947**, 15, 115.
- [182] H. G. von Schnering, J. Chang, K. Peters, E. M. Peters, F. R. Wagner, Yu, Grin', G. Thiele: "Structure and bonding of the hexameric platinum(II) dichloride, Pt₆Cl₁₂", *Z. Anorg. Allg. Chem.* 2003, 629, 516.
- [183] M T. Falqui: "Struttura cristallina di alcuni alogenuri di elementi dell'ottavo gruppo. -Nota II. La struttura cristallina del cloruro platinico", Ann. Chim. Roma, 1958, 48, 1160.
- [184] F. Pertlik: "Die Kristallstruktur der monoklinen Form von As₂O₃ (Claudetit II)", *Monatsh. Chem.* **1975**, *106*, 755.
- [185] P. Ballirano, A. Maras: "Refinement of the crystal structure of arsenolite, As₂O₃", *Z. Kristallogr.* **2002**, *217*, 177.
- [186] H. Worzala: "Die Kristallstruktur des Arsensäurehydrates (H₃AsO₄)₂ H₂O", *Acta Crystallogr.* **1968**, *B24*, 987.

- [187] K. H. Jost, H. Worzala, E. Thilo: "Die Struktur des As₂O₅(H₂O)_{1.6666}", Acta Crystallogr. 1966, 21, 808.
- [188] M. Jansen: "Kristallstruktur von As₂O₅", Angew. Chem. 1977, 89, 326.
- [189] G. E. R. Schulze: "Die Kristallstruktur von BPO₄ und BAsO₄" Z. Phys. Chem. **1934**, 24, 215.
- [190] M. Schmidt, B. Ewald, Yu. Prots, R. Cardoso-Gil, M. Armbrüster, I. Loa, L. Zhang, Ya-Xi Huang, U. Schwarz, R. Kniep: "Growth and characterization of BPO₄ single crystals" *Z. Anorg. Allg. Chem.* **2004**, *630*, 655.
- [191] S. N. Achary, A. K. Tyagi: "Strong anisotropic thermal expansion in cristobalite-type BPO₄", *J. Solid State Chem.* **2004**, *177*, 3918.
- [192] H. N. Ng, C. Calvo: "X-ray study of the *alpha-beta* transformation of Berlinite AlPO₄", *Can. J. Phys.* **1976**, *54*, 638.
- [193] R. C. L. Mooney: "The crystal structure of aluminum phosphate and gallium phosphate, low-cristobalite type", *Phase Transitions* **1992**, *38*, 127.
- [194] J. W. Jr. Richardson, J.V. Smith, J. J Pluth: "Theoretical nets with 18-ring channels: enumeration, geometrical modelling, and neutron diffraction study of AlPO₄-54", *J. Phys. Chem.* **1989**, *93*, 8212.
- [195] J. W. Jr. Richardson, J.V. Smith, J. J Pluth: "Aluminophosphate number 5: Time-offlight neutron powder diffraction study of calcined powder at 295K", *Acta Crystallogr.* **1987**, *C43*, 1469.
- [196] J. W. Jr. Richardson, E. T. C. Vogt: "Structure determination and Rietveld refinement of aluminophosphatemolecular sieve AlPO₄-8", *Zeolites*, **1992**, *12*, 13.
- [197] J. M. Bannett, R. M. Kirchner: "The structure of calcined AlPO₄-31: a new framework topology containing one-dimensional 12-ring pores", *Zeolites*, **1992**, *12*, 338.

- [198] J. de Onate Martinez, L. B. McCusker, C. Bärlocher: "Characterization and structural analysis of differently prepared samples of dehydrated VPI-5", *Microporous Mesoporous Mater.* 2000, *34*, 99.
- [199] H. N. Ng, C. Calvo: "Refinement of the crystal structure of the low-quartz modification of ferric phosphate", *Can. J. Chem.* **1975**, *53*, 2064.
- [200] A. S. Andersson, B. Kalska, L. Haggstrom, J. O. Thomas: "Lithium extraction / insertion in LiFePO₄: an X-ray diffraction and Mossbauer spectroscopy study", *Solid State Ionics*, **2000**, *130*, 41.
- [201] Y. Song, P. Yu. Zavalij, M. Suzuki, M. S. Whittingham: "New iron(III) phosphate phases: crystal structure and electrochemical and magnetic properties", *Inorg. Chem.* 2002, 41, 5778.
- [202] F. Machatschki: "Die Kristallstruktur von Tiefquarz SiO₂ und Aluminiumorthoarsenat AlAsO₄", *Z. Kristallogr.* **1936**, *94*, 222.
- [203] H. Sowa: "The crystal structure of AlAsO₄ at high pressure", Z. Kristallogr. **1991**, 194, 291.
- [204] E. Philippot, P. Armand, P. Yot, O. Cambon, A. Goiffon, G. J. McIntyre, P Bordet: "Neutron and x-ray structure refinements between 15 and 1083K of piezoelectric gallium arsenate, GaAsO₄: temperature and pressure behavior compared with other alpha-quartz materials", *J. Solid State Chem.* **1999**, *146*, 114.
- [205] A. Goiffon, J. C. Jumas, M. Maurin, E. Philippot: "Etude comparée á diverses temperatures (173, 293 et 373K) des structures de type quartz alpha des phases $M^{III}X^{V}O_{4}$ ($M^{III} = AI$, Ga et $X^{V} = P$, As)", J. Solid State Chem. **1986**, 61, 384.
- [206] A. K. Cheetham, W. I. F. David, M. M. Eddy, R. J. B. Jakeman, M. W. Johnson, C.C. Torardi: "Crystal structure determination by powder neutron diffraction at the spallation neutron source, ISIS", *Nature*, **1986**, *320*, 46.
- [207] B. Bazan, J. L. Mesa, J. L. Pizarro, A. T. Aguayo, M. I. Arriortua, T. Rojo: "Thermal transformation of (NH₄)(Fe(AsO₄)F) into the new textural porous orthorhombic Fe(AsO₄) phase. Crystal structures, thermal behavior, spectroscopic and magnetic properties", *Chem. Commun.* 2003, 2003, 622.

- [208] J. Weidlein, U. Müller, K. Denicke: "*Schwingungsspektroskopie*", Georg Thieme Verlag Stuttgart, **1981**.
- [209] C. Farmer: "The Infrared Spectra of Minerals", Mineralogical Society, London, 1974.
- [210] T. Vosegaard, A. Malmendal, N. C. Nielsen: "The Flexibility of SIMPSON and SIMMOL for Numerical Simulations in Solid-and Liquid-State NMR Spectroscopy" *Monatsh. Chem.* 2002, 133, 1555.
- [211] P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick: "Gold(III)-oxide", Acta Crystallogr. 1979, B35, 1435.
- [212] J. P. Attfield, A. K. Cheetham, D. C. Johnson, C. C. Torardi: "Preparation, Structure, and Magnetic Properties of a New Form of Chromium Orthoarsenate: *beta*-CrAsO₄", *Inorg. Chem.* **1987**, *26*, 3379.
- [213] P. G. Jones, H. Rumpel, E. Schwarzmann, G. M. Sheldrick: "Gold(III)-chlorideoxide", *Acta Crystallogr.* **1979**, *B35*, 2380.
- [214] M. Ralle, M. Jansen: "Synthesis and crystal structure determination of LaAuO₃", *J. Solid State Chem.* **1993**, *105*, 378.
- [215] H. D. Wasel-Nielen, R. Hoppe: "Zur Kristallstruktur von Li₃AuO₃, Li₅AuO₄, KAuO₂ und RbAuO₂", Z. Anorg. Allg. Chem. **1970**, 375, 43.
- [216] F. A. Bannister, M. H. Hey: "Determination of minerals in platinum concentrates from the transvall by x-ray methods", *Acta Chem. Scand.* **1960**, *14*, 1879.
- [217] W. J. Moore, L. Pauling: "The crystal structures of the tetragonal monoxides of lead, tin, palladium, and platinum", *J. Amer. Chem. Soc.* **1941**, *63*, 1392.
- [218] T. F. Gaskell: "The structure of braggite and palladium sulphide", Z. Kristallogr. **1937**, *96*, 203.
- [219] N. E. Brese, P. J. Squattrito, J. A. Ibers: "Reinvestigation of the structure of PdS", *Acta Crystallogr.* **1985**, *C41*, 1829.

- [220] S. Asbrink, L. J. Norrby: "A Refinement of the crystal structure of copper(II)-oxide with a discussion of some exceptional E.s.d.'s", *Acta Crystallogr.* **1970**, *B26*, 8.
- [221] N. E. Brese, M. O'Keeffe, B. L. Ramakrishna, R. B. von Dreele: "Low-temperature structures of CuO and AgO and their relationships to those of MgO and PdO", *J. Solid state Chem.* **1990**, *89*, 184.
- [222] D. N. Batchelder, R. O. Simmons: "Lattice constants and thermal expansivities of silicon and of calcium-fluoride between 6 and 322K", J. Chem. Phys. 1964, 41, 2324.
- [223] D. R. Peacor: "High-temperature single-crystal study of the cristobalite inversion" *Z. Kristallogr.* **1973**, *138*, 274.
- [224] J. T. S. van Aswegen, H. Verleger: "Röntgenographische Untersuchung des Systems ZnS FeS", *Phase Transition* **1992**, *38*, 127.
- [225] M. Spieß, R. Gruehn: "*H*-ZnSO₄, das erste Sulfat mit einer kubischen *H*-Cristobalit-Struktur", *Z. Anorg. Allg. Chem.* **1979**, 456, 222.
- [226] D. Richman: "Vapor phase growth and properties of aluminum phosphide", *J. Electrochem. Soc.* **1968**, *115*, 945.
- [227] S. N. Achari, O. D. Jayakumar, A. K. Tiagi, S. K. Kulshreshtha: "Preparation, phase transition and thermal expansion studies on low-cristobalite type $Al_{1-x}Ga_xPO_4$ (x = 0.0, 0.20, 0.50, 0.80 and 1.00)", J. Solid State Chem. **2003**, 176, 37.
- [228] K. Selte, A. Kjekshus, A. F. Andresen: "Structural and magnetic properties of VP and VAs", *Acta Chem. Scand.* **1972**, *26*, 4057.
- [229] R. Glaum, R. Gruehn: "Beiträge zum thermischen Verhalten wasserfreier Phosphate: VI. Einkristallstrukturverfeinerung der Metall(III)-orthophosphate TiPO₄ und VPO₄", *Z. Kristallogr.* 1992, 198, 41.
- [230] K. Brandenburg: DIAMOND, Version 3.1f, Crystal Impact GbR, Bonn, 2008.
- [231] H. G. Bachmann, F. R. Ahmed, W. H. Barnes: "The crystal structure of vanadium pentoxide", Z. Kristallogr. **1961**, 115, 110.

- [232] J. A. A. Ketelaar: "Die Kristallstruktur des Vanadinpentoxyds", *Nature*, **1936**, *95*, 9.
- [233] G. Natta, M. Baccaredda: "Composti chimici interstiziali. Struttura del pentossido di antimonio idrato e di alcuni antimoniati", *Gazz. Chim. Ital.* **1936**, *66*, 308.
- [234] M. Jansen: "Kristallstruktur von Sb₂O₅", Angew. Chem. 1978, 90, 141.
- [235] U. Dehlinger: "Über die Kristallstruktur der Antimonoxyde", Z. Kristallogr. **1927**, 66, 108.
- [236] F. C. Hawthorne, C. Calvo: "The crystal chemistry of the M^+VO_3 (M^+ = Li, Na, K, NH₄, Tl, Rb, and Cs) pyroxenes", *J. Solid State Chem.* **1977**, *22*, 157.
- [237] W. L. Roth: "The Structure of Mercuric Oxide", Acta Crystallogr. 1956, 9, 277.
- [238] J. Beck, H. L. Keller, M. Rompel, L. Wimbert: "Hydrothermalsynthese und Kristallstruktur der Münzmetall-Quecksilber-Chalkogenidhalogenide CuHgSeBr, AgHgSBr und AgHgSI", Z. Anorg. Allg. Chem. 2001, 627, 2289.
- [239] J. Beck, M. Rompel: "Über Münzmetall-Quecksilber-Chalkogenidhalogenide II: Hydrothermalsynthese, Kristallstruktur und Phasenumwandlung von CuHgSCl und CuHgSBr", Z. Anorg. Allg. Chem. 2003, 629, 421.
- [240] F. d'Yvoire: "Aluminum and trivalent iron phosphates. I. The neutral aluminum orthophosphate", *Bull. Soc. Chim. Fr.* **1961**, 1762.
- [241] F. d'Yvoire: "Phosphates of trivalent Al and Fe. II. Monometallic orthophosphates", *Bull. Soc. Chim. Fr.* **1961**, 2277.
- [242] F. d'Yvoire: "Phosphates of trivalent Al and Fe. III. Comparison with the phosphates of Fe of the corresponding group", *Bull. Soc. Chim. Fr.* **1961**, 2283.
- [243] M. Bagieu-Beucher, J. C. Guitel: "Refinement of the crystal structure of scandium tetrametaphosphate: Sc₄(P₄O₁₂)₃", *Acta Crystallogr.* **1978**, *B34*, 1439.
- [244] M. Bagieu-Beucher, J. C. Guitel: "Crystal structure of chromium hexametaphosphate: Cr₂P₆O₁₈", *Acta Crystallogr.* **1977**, *B33*, 2529.

- [245] H. van der Meer: "The crystal structure of a monoclinic form of aluminum metaphosphate, Al(PO₃)₃", *Acta Crystallogr.* **1976**, *B32*, 2423.
- [246] N. Anissimova, R. Glaum: "Refinement of the superstructure of *C*-type gallium tris(metaphosphate), Ga(PO₃)₃", *Z. Anorg. Allg. Chem.* **1998**, *624*, 2029.
- [247] J. Bentama, J. Durand: "Crystal structure of indium trimetaphosphate", Z. Anorg. Allg. Chem. 1988, 556, 227.
- [248] L. K. Elbouaanani, B. Malaman, R. Gerardin: "Structure Refinement and Magnetic Properties of C-Fe(PO₃)₃ Studied by Neutron Diffraction and Mossbauer Techniques", J. Solid State Chem. 1999, 148, 455.
- [249] M. Gruß, R. Glaum: "Refinement of the superstructure of *C*-type chromium(III) tris(metaphosphate), Cr(PO₃)₃", *Acta Crystallogr.* **1996**, *C52*, 2647.
- [250] O. V. Yakubovich, O. V. Dimitrova, G. V. Savina: "Synthesis and crystal structure of chromium polyphosphate Cr(PO₃)₃", *Sov. Phys. Crystallogr.* **1991**, 36, 267.
- [251] I. M. Watson, M. M. Borel, J. Chardon, A. Leclaire: "Structure of the trivalent molybdenum metaphosphate Mo(PO₃)₃", *J. Solid State Chem.* **1994**, *111*, 253.
- [252] N. Middlemiss, F. C. Hawthorne, C. Calvo: "Crystal structure of vanadium(III) tris(metaphosphate)", *Can. J. Chem.* **1977**, *55*, 1673.
- [253] W. T. A. Harrison, T. E. Gier, G. D. Stucky: "Titanium(III) tris(metaphosphate)", *Acta Crystallogr.* **1994**, *C50*, 1643.
- [254] A. I. Domanskii, Yu. F. Shepelev, Yu. I. Smolin, B. N. Litvin: "Crystal structure of the low-temperature form of scandium metaphosphate Sc(PO₃)₃", *Kristallografiya*, 1982, 27, 229.
- [255] C. Gleitzer: "Anhydrous iron phosphates and oxophosphates", *Eur. J. Solid State Inorg. Chem.* **1991**, *28*, 77.
- [256] R. Glaum: "Darstellung und Kristallisation von Phosphiden und wasserfreien Phosphaten der Übergangsmetalle mittels chemischer Transportreaktionen

– Thermochemische, röntgenographische und magnetochemische Untersuchungen" *Dissertation*, Universität Gießen, **1990**.

- [257] F. Reinauer, R. Glaum, R. Gruehn: "Preparation and chemical vapour transport of mixed valent titanium(III, IV)-phosphates. With a note on the crystal structure of titanium(IV)-orthophosphate Ti₅P₄O₂₀", *Eur. J. Solid State Inorg. Chem.* **1994**, *31* 779.
- [258] F. Reinauer: "Untersuchungen im Dreistoffsystem Titan / Phosphor / Sauerstoff mit einem Seitenblick auf Titan(III)-silicophosphat", *Dissertation*, Universität Gießen, 1998.
- [259] R. Bender: "Gleichgewichtsuntersuchungen im System Ta/P/O und Zr/P/O", *Diplomarbeit*, Universität Gießen, **1997**.
- [260] U. Kaiser: "Darstellung und Kristallisation von wasserfreien Germanium- und Vanadiumphosphaten", *Dissertation*, Universität Gießen, **1996**.
- [261] M. Lenz: "Der chemische Transport von Wolfram, WO₂ und den Phosphiden und Phosphaten des Molybdäns mit dem Transportmittel HgBr₂ sowie Gleichgewichtsuntersuchungen im Dreistoffsystem Mo/P/O", Dissertation, Universität Gießen, 1995.
- [262] H. Mathis: "Präparative Untersuchungen im Dreistoffsystem W/P/O und Untersuchungen zum Transportverhalten von MoP₂ und β -WP₂", *Diplomarbeit*, Universität Gießen, **1994**.
- [263] M. Gerk: "Charakterisierung der magnetischen und elektronenspektroskopischen Eigenschaften von Phosphaten $M_2P_2O_7$ (M^{2+} = Cr - Zn, Cd, Mg) und MP_2O_7 (M^{4+} = Ti, Ge, Sn, Zr) sowie chemischer Transport der Diphosphate α -Mg₂P₂O₇ und Mn₂P₂O₇ und Kristallstrukturverfeinerung von σ -Ni₂P₂O₇, β' -Mn₃(PO₄)₂ und α -Cr₂P₂O₇", *Dissertation*, Universität Gießen, **1996**.
- [264] D. Özalp: "Darstellung und chemischer Transport von Phosphiden und Phosphaten des Kupfers. Eingrenzung der Bildungsenthalpien der Kupferphosphide", *Dissertation*, Universität Gießen, **1993**.
- [265] S. Rundqvist: "Iridiumphosphide" Nature, 1960, 185, 31.

- [266] A. Kjekshus: "On the properties of binary compounds with the CoSb₂ type crystal Structure", *Acta Chim. Scand.* **1971**, *25*, 411.
- [267] S. Rundqvist, N. O. Ersson: "Structure and bonding in skutterudite-type phosphides", *Arkiv för Kemi*, **1969**, *30*, 103.
- [268] A. A. Bolzan, C. Fong, B. J. Kennedy, C. J. Howard: "Structural studies of rutile-type metal dioxides", *Acta Crystallogr.* 1997, *B53*, 373.
- [269] L. Gmelin: "Handbook of Inorganic Chemistry", Springer Verlag, Berlin, 1987.
- [270] F. Canziani, F. Zingales: "Hydridotriphenylarsineiridium(III) complexes", *Rend. 1st Lombardo Sci. Lettere*, **1962**, *A96*, 513.
- [271] S. Kida: "Preparation of *cis* and *trans*-dichlorobis(ethylenediamine)iridium(III) chlorides", *Bull. Chem. Soc. Jpn.* **1966**, *39*, 2415.
- [272] D. A. Fine: "Iridium(III) and (IV)-chloride system in acid solution", *J. Inorg. Nucl. Chem.* **1970**, *32*, 2731.
- [273] M. Binnewies, E. Milke: *"Thermodynamic Data of Elements and Compounds"*, Universität Hannover, **1998**.
- [274] G. Kortüm, H. Lachmann: "*Einführung in die chemische Thermodynamik*", VCH, Weinheim, **1981**.
- [275] W. E. Bell, M. Tagami: "Study of Gaseous Oxides, Chloride, and Oxychloride of Iridium", J. Phys. Chem. 1966, 70, 640.
- [276] H. Schäfer, H. J. Heitland: "Gleichgewichtsmessungen im System Iridium-Sauerstoff", Z. Anorg. Allg. Chem. 1960, 304, 249.
- [277] O. Trappe, R. Glaum: *Abstracts P-A47*, 12th International Conference on Solid Compounds of Transition Elements, Saint Malo, April 22-25, **1997**.
- [278] R. Glaum, O. Trappe: "Das Computerprogramm CVTrans zur Modellierung chemischer Transportexperimente", (Programm und Beschreibung im Internet:

http://za0510pc5.chemie.uni-bonn.de/akglhome/cvt/cvtmain.htm) Universität Gießen, **1995**.

- [279] G. Bergerhoff, I. D. Brown: "*Crystallographic Databases*", edited by F. H. Allen, G. Bergerhoff and R. Sievers, **1987**, 77. Chester: International Union of Crystallography.
- [280] G. Bergerhoff, M. Berndt, K. Brandenburg, T. Degen: "Concerning Inorganic Crystal Structure Types", *Acta Crystallogr.* **1999**, *B55*, 147.
- [281] R. S. Armstrong, J. K. Beattie, S. P. Best, B. W. Skelton, A. H. White: "Crystal structures of the α -alums CsM[SO₄]₂·12H₂O (M = rhodium or iridium)", J. Chem. Soc. Dalton Trans. **1983**, 1973.
- [282] M. W. Lufaso, H. C. zur Loyé: "Crystal Structures and Magnetic Properties of Mixed Iridium-Ruthenium Triple Perovskites. 1. Ba₃MRuIrO₉ (M = Lanthanide, Y)" Inorg. Chem. 2005, 44, 9143.
- [283] A. Ferrari, C. Colla: "Iridionitrites of ammonium, potassium, rubidium, cesium, thallium and barium", *Gazz. Chim. Ital.* **1933**, *63*, 507.
- [284] S. A. Gromilov, V. I. Alekseev, I. A. Baidina, S. P. Khranenko: "Crystal structure of sodium hexanitratorhodate(III), -iridate(III) and -cobaltate(III)", *Russ. J. Inorg. Chem.* 1992, 37, 615.
- [285] D. Babel, W. Ruedorff, R. Tschoepp: "Ternary oxides of transition metals. VI. Alkaline earth iridium(IV)-oxide-structure of dicalcium iridium(IV)-oxide", Z. Anorg. Allg. Chem. 1966, 347, 282.
- [286] J. F. Vente, D. J. W. Ijdo: "The orthorhombic fluorite related compounds Ln₃IrO₇", *Mat. Res. Bull.* **1991**, *26*, 1255.
- [287] M. Weil, M. Puchberger, J. Schmedt auf der Günne, J. Weber: "Synthesis, Crystal Structure, and Characterization (Vibrational and Solid State ³¹P-MAS-NMR Spectroscopy) of the High-Temperature Modification of Calcium-catena-Polyphosphate(V)", *Chem. Mater.* 2007, 19, 5067.
- [288] W. Ostwald, "Die chemische Literatur", VDM Verlag, Saarbrücken, 2007.

- [289] M. Schöneborn: "Gruppentheoretische Behandlung kristallchemischer und kristallographischer Probleme. Synthesen und Kristallstrukturen polynärer Phosphate und Silicophosphate des Titans", *Dissertation*, Universität Bonn, **2008**.
- [290] B. Dickens, W. E. Brown: "Crystal structure of Ca₅(PO₄)₂SiO₄ (silico-carnotite)", *Tschermaks Miner. Petrogr. Mitt.* **1971**, *16*, 1.
- [291] G. Engel, U. Fischer: "Cadmium phosphate silicate $(Cd_5(PO_4)_2SiO_4)$ and cadmium phosphate germanate $(Cd_5(PO_4)_2GeO_4)$ with the silicocarnotite type structure", *Z. Kristallogr.* **1985**, *173*, 101.
- [292] K. Koenigstein, M. Jansen: "A simple route to silicon in octahedral oxygen coordination", *Chem. Ber.* **1994**, *127*, 1213.
- [293] R. Glaum, H. Thauern, A. Schmidt, M. Gerk: "Beiträge zum Koordinationsverhalten von Oxidionen in anorganischen Feststoffen. III. Mn₂P₂O₇, Mn₂P₄O₁₂ und Mn₂Si(P₂O₇)₂ - Kristallzüchtung, Strukturverfeinerungen und Elektronenspektren von Mangan(II)-Phosphaten", Z. Anorg. Allg. Chem. 2002, 628, 2800.
- [294] R. Glaum, A. Schmidt: "Cobalt silicon diphosphate, Co₂Si(P₂O₇)₂", *Acta Crystallogr*. 1996, *C52*, 762.
- [295] M. Trojan, D. Brandova, J. Fabry, J. Hybler, K. Jurek, V. Petricek: "Structure of condensed cadmium(II) silicate phosphate", *Acta Crystallogr.* **1987**, *C43*, 2038.
- [296] A. Leclaire, M. Lamire, B. Raveau: "Molybdenum phosphosilicate (Mo₄P₆Si₂O₂₅), a molybdenum(III)-phosphosilicate closely related to vanadium-phosphosilicate (V₃P₅SiO₁₉): oxygen nonstoichiometry in silicophosphates", *Acta Crystallogr.* 1988, *C44*, 1181.
- [297] A. Leclaire, B. Raveau: "Germanosilicophosphate (Ge₃P₆Si₂O₂₅): a cage structure closely related to the intersecting tunnel structure potassium molybdosilicophosphate (KMo₃P₆Si₂O₂₅)", *J. Solid State Chem.* **1988**, 75, 397.
- [298] G. Bissert, F. Liebau: "Kristallstruktur eines monoklinen Siliciumdiphosphats- einer Phase mit 6-fach koordiniertem Silicium", *Naturwissenschaften*, **1969**, *57*, 212.
- [299] H. Mayer, H. Voellenkle: "Die Kristallstruktur von Ge₅O(PO₄)₆", Monatsh. Chem. 1972, 103, 1560.

- [300] F. Rodi, D. Babel: "Erdalkaliiridium(IV)-oxide: Kristallstruktur von CaIrO₃", *Z. Anorg. Allg. Chem.* **1965**, *336*, 17.
- [301] H. W. Schmalle, C. Gurtner, H. R. Oswald, A. Reller: "The crystal structure of SrIrO₃", *Z. Kristallogr.* **1990**, *191*, 239.
- [302] T. Siegrist, B. L. Chamberland: "The crystal structure of BaIrO₃", J. Less-Common Met. **1991**, 170, 93.
- [303] J. Wilkens, H. Mueller-Buschbaum: "Zur Kenntnis von Ba₄Ir₃O₁₀", Z. Anorg. Allg. Chem. **1991**, 592, 79.
- [304] F. Machatschki, "Grundlagen der allgemeinen Mineralogie und Kristallchemie", Springer-Verlag, Wien, **1946**.
- [305] A. F. Reid, C. Li, A. E. Ringwood: "High-pressure silicates pyrochlores, Sc₂Si₂O₇ and In₂Si₂O₇", *J. Solid State Chem.* **1977**, *20*, 219.
- [306] W. H. Zachariasen: "The structure of thortveitite, Sc₂Si₂O₇", Z. Kristallogr. **1930**, 73, 1.
- [307] M. Schöneborn, R. Glaum: "Contributions on thermal behaviour and crystal chemistry of anhydrous phosphates. XXXXI. Refinement of the superstructure of FeTi₄(PO₄)₆ - an example of a highly ordered member of the NASICON structure family", Z. Anorg. Allg. Chem. 2008, 634, 1843.
- [308] F. A. Cotton, R. A. Walton: "Multiple Bonds between Metal Atoms", Wiley Verlag, New York, 1982.
- [309] J. N. van Niekerk, F. R. L. Schöning, J. F. de Wet: "The Structure of Crystalline Chromous Acetate Revealing Paired Chromium Atoms", *Acta Crystallogr.* **1953**, *6*, 501.
- [310] F. A. Cotton, B. A. Frenz, L. W. Shive: "Synthesis and structural characteriziation of sodium tetra-mue-sulfato-dirhenate(III) octahydrate", *Inorg. Chem.* **1975**, *14*, 649.

- [311] P. A. Koz'min, T. B. Larina, M. D. Surazhskaya, A. S. Kotel'nikova, N. S. Osmanov: "The synthesis and the crystal structure of the compound (NH₄)₂Re₂(SO₄)₄(H₂O)₂", *Russ. J. Coord. Chem.* **1980**, *6*, 1264.
- [312] F. A. Cotton, C. B. Harris: "The Crystal and Molecular Structure of Dipotassium Octachlorodirhenate(III) Dihydrate, K₂(Re₂Cl₈)(H₂O)₂", *Inorg. Chem.* **1965**, *4*, 330.
- [313] L. M. Dikareva, Yu. V. Zefirov, A. N. Zhilyaev, I. B. Baranovskii, M. A. Porai-Koshits: "The molecular structures of binuclear rhodium(II) complexes with different numbers of bridging sulphato-groups", *Russ. J. Inorg. Chem.* **1987**, *32*, 118.
- [314] I. B. Baranovskii, R. N. Shchelokow: "Binuclear complexes of platinum metals with a metal-metal bond", *Russ. J. Inorg. Chem.* **1978**, *23*, 3.
- [315] M. Pley: "Zur Umsetzung von Platin und Platinverbindungen mit konzentrierter Schwefelsäure bei hohen Temperaturen Mit einem Anhang zur Struktur von (UO₂)₂(SO₄)(HSO₄)₂", *Dissertation*, Universität Köln, **2004**.
- [316] F. A. Cotton, L. R. Falvello, S. Han: "Dinuclear, metal-metal-bonded platinum(III) compounds. 1. Preparation and structure of K₂[Pt₂(SO₄)₄(OSMe₂)₂]·4H₂O", *Inorg. Chem.* 1982, 21, 2889.
- [317] H. L. Conder, F. A. Cotton, L. R. Falvello, S. Han, R. A. Walton: "Synthesis and properties of diplatinum(III) complexes containing the $[Pt_2(HPO_4)_4(B)_2]^2$ anions (B = a heterocyclic tertiary amine) or the $[Pt_2(H_2PO_4)(HPO_4)_3(py)_2]^2$ ion", *Inorg. Chem.* **1983**, *22*, 1887.
- [318] A. Zipp: "The behavior of the *tetra-μ*-pyrophosphitodiplatinum(II) ion [Pt₂-(P₂O₅H₂)₄]⁴⁻ and related species", *Coord. Chem. Rev.* **1988**, 84, 47.
- [319] J. D. Woollins, P. F. Kelly: "The preparation and properties of compounds containing platinum(III)", *Coord. Chem. Rev.* **1985**, *65*, 115.
- [320] G. S. Muraveiskaya, V. E. Abashkin, O. N. Evstaf'eva, I. F. Golovaneva, R. N. Shchelokow: "Platinum(III)-phosphates with a metal-metal bond", *Russ. J. Coord. Chem.* **1980**, *6*, 463.

- [321] F. Rau, U. Klement, K. J. Range: "Crystal structure of *trans*diaquatetrachloroplatinum(IV)-trihydrate, Pt(H₂O)₂Cl₄(H₂O)₃", *Z. Kristallogr.* **1995**, *210*, 606.
- [322] F. Rau, U. Klement, K. J. Range: "Crystal structure of oxoniumhexachloroplatinate(IV), (H₃O)₂PtCl₆", *Z. Kristallogr.* **1995**, *210*, 684.
- [323] K. J. Range, F. Rau, U. Klement, A. M. Heyns: *"beta*-PtO₂: High pressure synthesis of single crystals and structure refinement", *Mat. Res. Bull.* **1987**, *22*, 1541.
- [324] T. Steiner: "Die Wasserstoffbrücke im Festkörper" Angew. Chem. 2002, 114, 50.
- [325] H. Thauern, R. Glaum: "Synthesis, crystal structure determination and vibrational spectra of indium(II) indium(III) oxidephosphate, $(In_2)^{4+}(In^{3+})_2O_2(PO_4)_2$ ", Z. Anorg. Allg. Chem. 2004. 630, 2463.
- [326] P. Stein, M. K. Dickson, D. M. Roundhill: "Raman and infrared spectra of binuclear platinum(II) and platinum(III) octaphosphite complexes. A characterization of the intermetallic bonding.", *J. Am. Chem. Soc.* **1983**, *105*, 3489.
- [327] C. M. Che, W. P. Schaefer, H. B. Gray, M. K. Dickson, P. Stein, D. M. Roundhill: "Novel binuclear platinum(III) octaphosphite complexes", *J. Am. Chem. Soc.* 1982, 104, 4253.
- [328] H. Völlenkle, A. Wittmann, H. Nowotny: "Pyrophosphates of the type Me^{IV}P₂O₇", *Monatsh. Chem.* **1963**, *94*, 956.
- [329] L. O. Hagman, P. Kierkegaard: "Note on the structures of $M^{IV}P_2O_7$ ($M^{IV} = Ge$, Zr, and U), *Acta Chem. Scand.* **1969**, *23*, 327.
- [330] M. Chaunac: "Crystallographic study of zirconium-pyrophosphate", *Bull. Soc. Chim. Fr.* **1971**, 424.
- [331] C. H. Huang, O. Knop, D. A. Othen, F. W. D. Woodhams, R. A. Howie: "Pyrophosphates of tetravalent elements and a Moessbauer study of SnP₂O₇", *Can. J. Chem.* **1975**, *53*, 79.

- [332] A. Magneli: "The crystal structure of lead metantimonate and isomorphous compounds", *Arkiv Kemi*, **1941**, *15*, 1.
- [333] S. M. Eicher, J. E. Greedan, K. Lushington: "The magnetic properties of iron tantalate (FeTa₂O₆). Magnetic structure and low-dimensional behavior", J. Solid State Chem. 1986, 62, 220.
- [334] J. N. Reimers, J. E. Greedan, C. Stager, R. Kremer: "Crystal structure and magnetism in cobalt antimonate (CoSb₂O₆) and cobalt tantalate (CoTa₂O₆)", *J. Solid State Chem.* **1989**, *83*, 20.
- [335] I. Krabbes, H. Langbein: "Herstellung von CuTa₂O₆ von der Trirutil- zur Perowskit-Struktur", Z. Naturforsch. **1996**, *51*, 1605.
- [336] J. N. Reimers, J. E. Greedan, M. A. Subramanian: "Crystal structure and magnetism in MnSb₂O₆: Incommensurate long-range order", *J. Solid State Chem.* **1989**, *79*, 263.
- [337] R. Hill: "Structure of lead antimonate (PbSb₂O₆) and its relationship to the crystal chemistry of lead dioxide in antimonial lead-acid batteries", *J. Solid State Chem.* **1987**, *71*, 12.
- [338] N. Bartlett, R. Maitland: "The crystal structure of palladium difluoride" *Acta Crystallogr.* **1958**, *11*, 747.
- [339] D. Paus, R. Hoppe: "On the magnetic behavior of palladium difluoride and palladium zinc fluoride (Pd_{1-x}Zn_xF₂) solid solutions", *Z. Anorg. Allg. Chem.* **1977**, *431*, 207.
- [340] B. G. Müller: "High-pressure modifications of palladium difluoride and silver difluoride", *Naturwissenschaften*, **1979**, *66*, 519.
- [341] B. G. Müller: "Zur Struktur von CaPdF₄, CdPdF₄, HgPdF₄ und HP-PdF₂", *J. Flour. Chem.* **1982**, *20*, 291.
- [342] Z. M. Fu, W. X. Li: "Phase transition, phase transition temperature and crystal structure of a new compound Ca₂PdWO₆", *Sci. China*, **1996**, *39*, 981.
- [343] D. Orosel, M. Jansen: "PdAs₂O₆, das erste paramagnetische Palladiumoxid", *Z. Anorg. Allg. Chem.* **2006**, *632*, 1131.

- [344] M. Weil: "Fe^{II}₃Fe^{III}₄(AsO₄)₆, the first arsenate adopting the Fe₇(PO₄)₆ structure type", *Acta Crystallogr.* **2004**, *E60*, 139.
- [345] D. B. Rogers, R. D. Shannon, J. L. Gillson: "Crystal growth and semiconductivity of palladium oxide", *J. Solid State Chem.* **1971**, *3*, 314.
- [346] H. Görzel: "Chemische Transportexperimente und thermochemische Betrachtungen in den Systemen M/P/O/Cl (M = Rh, Pd)", *Dissertation*, Universität Gießen, **1997**.
- [347] K. Panagiotidis, R. Glaum, W. Hoffbauer, J. Weber, J. Schmedt auf der Günne: "Die ersten Iridiumphosphate", Z. Anorg. Allg. Chem. 2008, 634, 2922.
- [348] M. Hata, F. Marumo: "Structure of mercury sodium phosphate", *Acta Crystallogr*. **1982**, *B38*, 239.
- [349] M. Quarton, A. W. Kolsi: "Structure de l'orthophosphate double NaCuPO₄-*alpha*", *Acta Crystallogr.* **1983**, *C39*, 664.
- [350] H. Effenberger: "Synthese und Kristallstruktur des rhombischen Kalium-kupfer(II)phosphates KCuPO₄", *Z. Kristallogr.* **1984**, *168*, 113.
- [351] P. F. Henry, R. W. Hughes, S. C. Ward, M. T. Weller: "RbCuPO₄ a maximum copper tetrahedral framework adopting the zeotype ABW structure", *Chem. Commun.* 2000, 1959.
- [352] M. Quarton, M. T. Oumba: "Proprietés de l'ion Cu²⁺ dans la structure de AgCuPO₄ beta", Mat. Res. Bull. 1983, 18, 967.
- [353] P. Moser, H. M. Schwunck, W. Jung: "Die Schichtstruktur von Tl(CuAsO₄) und Tl(CuPO₄) mit Zwischenschichten aus Thallium(I) mit stereoaktivem Elektronenpaar", Z. Anorg. Allg. Chem. **1998**, 624, 1256.
- [354] R. Hundt: "KPLOT- Ein Programm zum Zeichnen und zur Untersuchung von Kristallstrukturen", Version 9.0, Universität Bonn, **2005**.
- [355] A. L. Spek: "PLATON, A Multipurpose Crystallographic Tool", J. Appl. Cryst. 2003, 36, 7.

- [356] K. Panagiotidis, R. Glaum: "Ag₂PdP₂O₇", Acta Crystallogr. 2008, E64, 84.
- [357] A. Arndt, M. S. Wickleder: "Pd(SeO₃), Pd(SeO₄) and Pd(Se₂O₅): The First Palladium Oxoselenates", *Eur. J. Inorg. Chem.* **2007**, 4335.
- [358] M. Fakhfakh, S. Ammar-Merah, N. Jouini: "The compound Tl₄Cu₄(P₂O₇)₃, a new three-dimensional structure with interconnected tunnels", *Solid State Sciences*, **2000**, *2*, 587.
- [359] K. Panagiotidis, W. Hoffbauer R. Glaum: "Netzwerkbildung aus Planquadraten und Tetraedern am Beispiel polynärer Palladiumphosphate MPd₂(PO₄)₂ (M = Ca, Cd, Hg), MPdP₂O₇ (M = Ca, Sr, Ba, Zn, Hg, Pb) und PbPdSi(P₂O₇)₂", Z. Anorg. Allg. Chem., im Druck, 2009.
- [360] W. H. Zachariasen, "Bond lengths in oxygen and halogen compounds of *d* and *f* elements" *J. Less Common Metals*, **1978**, *62*, 1.
- [361] N. E. Brese, M. O'Keeffe: "Bond-valence parameters for solids", *Acta Crystallogr.* **1991**, *B47*, 192.
- [362] D. F. Mullica, H. O. Perkins, D. A. Grossie, L. A. Boatner, B. C. Sales: "Structure of dichromate-type lead pyrophosphate Pb₂P₂O₇", J. Solid State Chem. **1986**, 62, 371.
- [363] K. H. Jost: "Die Struktur des Bleipolyphosphats (Pb(PO₃)₂)_x und allgemeiner Überblick über Polyphosphatstrukturen", *Acta Crystallogr.* 1964, 17, 1539.
- [364] S. Rozsa, H. U. Schuster: "K₂PdP₂ and K₂PtAs₂, two further compounds with a *M*P₂(As₂)-chain-structure", *Z. Naturforsch.* **1981**, *B36*, 1666.
- [365] K. Krogmann, H. D. Hausen: "Violettes Kaliumtetracyanoplatinat, $K_2(Pt(CN)_4)X_{0.3}$ (H₂O)_{2.6} (X = Cl, Br)", Z. Anorg. Allg. Chem. **1968**, 358, 67.
- [366] K. Aurivillius, C. Stalhandske: "Reinvestigation of the crystal structures of HgSO₄ and CdSO₄", Z. Kristallogr. **1980**, 153, 121.
- [367] B. El Bali, A. Boukhari, J. Aride, F. Abraham: "The crystal structure of SrNi₂(PO₄)_{4/2}", *J. Solid State Chem.* **1993**, *104*, 453.

- [368] N. Faza, W. Treutmann, D. Babel: "Struktur- und magnetochemische Untersuchungen an den ternären Phosphaten $Ba_2M^{II}(PO_4)_2$ ($M^{II} = Mn$, Co) und Strukturverfeinerung von $BaNi_2(PO_4)_2$ ", Z. Anorg. Allg. Chem. **2001**, 627, 687.
- [369] A. A. Belik, M. Azuma, A. Matsuo, M. H. Whangbo, H. J. Koo, J. Kikuchi, T. Kaji, S. Okubo, H. Ohta, K. Kindo, M. Takano: "Investigation of the crystal structure and the structural and magnetic properties of SrCu₂(PO₄)₂", *Inorg. Chem.* 2005, 44, 6632.
- [370] A. Moqine, A. Boukhari, J. Darriet: "Crystal structure and magnetic properties of BaCu₂(PO₄)₂ phosphate", J. Solid State Chem. **1993**, 107, 362.
- [371] A. G. Nord, T. Stefanidis: "The cation distribution in two (Co, Mg)₃(PO₄)₂ solid solutions", Z. Kristallogr. 1980, 153, 141.
- [372] B. El Bali, A. Boukhari, E. M. Holt, J. Aride: "Strontium dicobalt orthophosphate" *J. Cryst. Spectr. Res.* **1993**, *23*, 1001.
- [373] Z. Bircsak, W. T. A. Harrison: "Barium cobalt phosphate, BaCo₂(PO₄)₂", *Acta Crystallogr.* **1998**, *C54*, 1554.

PUBLIKATIONSLISTE

K. Panagiotidis, R. Glaum, J. Schmedt auf der Günne, W. Hoffbauer und H. Görzel, "*Synthese, Kristallstruktur und spektroskopische Charakterisierung von Palladium*(II)-diphosphat Pd₂P₂O₇", Z. Anorg. Allg. Chem. **2005**, 631, 2371.

K. Panagiotidis, R. Glaum, J. Schmedt auf der Günne, W. Hoffbauer, "New Anhydrous Phosphates of Noble Metals", Phosp. Res. Bull. 2005, 19, 77.

K. Panagiotidis, R. Glaum, W. Hoffbauer, J. Weber und J. Schmedt auf der Günne, "Die ersten Iridiumphosphate", Z. Anorg. Allg. Chem. 2008, 634, 2922.

K. Panagiotidis, R. Glaum, "Ag2PdP2O7", Acta Crystallogr. 2008, E64, 84.

K. Panagiotidis, R. Glaum, "Synthesis, Crystal Structure and Raman spectrum of $K_2[(Pt_2)(HPO_4)_4(H_2O)_2]$ containing $(Pt_2)^{6+}$ -ions", Acta Crystallogr. **2009**, E65, 18.

K. Panagiotidis, W. Hoffbauer und R. Glaum, Netzwerkbildung aus Planquadraten und Tetraedern: Polynäre Palladiumphosphate $MPd_2(PO_4)_2$ (M: Ca, Cd, Hg), $MPdP_2O_7$, (M: Ca, Sr, Ba, Zn, Hg, Pb) und PbPdSi(P_2O_7)₂", Z. Anorg. Allg. Chem. **2009**, im Druck.

K. Panagiotidis, R. Glaum, O. Prokhnenko und H. Borrmann, "Network Formation from squareplanar $[Au^{III}O_4]$ and Tetrahedral $[XO_4]$ Groups - Syntheses, Characterization and Crystal Structures of $AuXO_4$ (X = P, As)", Z. Anorg. Allg. Chem. 2009, in Vorbereitung.

Posterbeiträge

K. Panagiotidis, R. Glaum, J. Schmedt auf der Günne, W. Hoffbauer

"New Anhydrous Phosphates of Noble Metals"

5th International Symposium of Inorganic Phosphorous Materials, Kasugai, Aichi, Japan, 2005.

K. Panagiotidis, R.Glaum, M. Schöneborn

"Novel Phosphates of the Noble Metals"

11th European Conference on Solid State Chemistry, Caen, Frankreich, 2007.

FORTBILDUNGEN

"Neutronenstreuung für Kristallographen" des DGK-Arbeitskreises "Neutronenstreuung", GKSS Forschungszentrum, Geesthacht, Oktober 2007.

"27th Tutorial on Neutron Scattering" am Hahn-Meitner Institut, Berlin, Februar **2007**.

"4. Kieler Workshop" "Fehler, Fallen und Probleme in der Einkristallstrukturanalyse" der GDCh-Fachgruppe "Analytische Chemie" und des DGK-Arbeitskreises "Molekülverbindungen", Institut für Anorganische Chemie, Christian-Albrechts Universität, Kiel, Juli **2006**.

"Grundlagen der Einkristallstrukturanalyse" der GDCh-Fachgruppe "Analytische Chemie", Universität Paderborn, September 2004.

Die vorliegende Arbeit wurde in der Zeit von Januar 2005 bis April 2009 am

Institut für Anorganische Chemie

der

Rheinischen Friedrich - Wilhelms-Universität Bonn

unter Leitung von Professor Dr. R. Glaum durchgeführt.

Mein erster Dank gilt meinem hochverehrten Doktorvater Herrn Prof. Dr. R. Glaum für das hochinteressante und reizvolle Thema meiner Arbeit. Seine immer währende Geduld, wie auch die fachliche und persönliche Unterstützung habe ich während der letzten vier Jahre sehr zu schätzen gewusst. Durch seine Anregungen, Erläuterungen und Kritiken hat er mich zu einer selbstständigen Arbeitsweise geführt, in der ich stets die Freiheit besaß, meine eigenen Vorstellungen umzusetzen.

Herrn Prof. Dr. J. Beck danke ich für die Übernahme des Koreferates.

Für die kompetente Erstellung der Einkristalldatensätze danke ich Dr. Gregor Schnakenburg, Dr. Jörg Daniels, Axel Pelka (Kappa-CCD bzw. IPDS 2T) sowie Dr. Marcos Schöneborn (CAD4).

Marcos Schöneborn bin ich darüber hinaus zu besonderem Dank verpflichtet, da er stets darauf bedacht war, mich durch unzählige Telefonate und noch viel mehr ICQ-Mitteilungen aus dem fernen Taiwan in die Tiefen der Kristallographie einzuweisen.

Für eine Reihe weiterer durchgeführter Messungen danke ich Dr. Wilfried Hoffbauer, Dr. Jörn Schmedt auf der Günne (³¹P-MAS-NMR) und Doris Ernsthäuser (Schwingungsspektren). Herrn Dr. Ralf Weisbarth danke ich für die geduldige Einweisung im Umgang mit REM/EDX.

Meinen ehemaligen Forschungspraktikanten Oliver Bauer, Kai Stumpf, Henning Arp, Alexander Kleinsmann und Michael Schneider danke ich für Ihre Arbeiten und wertvollen Ergebnisse.

Der DFG danke ich für die finanzielle Unterstützung meiner Arbeit ebenso wie der UMICORE AG für ihre großzügigen Edelmetallspenden.

Besonderer Dank gilt auch meinen Arbeitskreiskollegen Eva Hammer, Emma Mosimov, Rebecca Groher, Christin Vielmuth, Katharina Gerber, Christian Litterscheid, Sven Titlbach und Volker Dittrich für die harmonische Zeit und die stets freundschaftliche Zusammenarbeit. Bei meinem Laborkollegen Saiful Islam möchte ich mich besonders für die stets gute Arbeitsatmosphäre bedanken.

Der größte Dank gilt meiner Familie für ihre wunderbare Unterstützung während meiner gesamten Ausbildung.