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Abstract

The solution of nonlinear programming problems is of paramount interesafaus applications,
such as for problems arising from the field of elasticity. Here, the objefitivetion is a smooth,
but nonlinear and possibly nonconvex functional describing the ssteais relationship for material
classes. Often, additional constraints are added to model, for instamtact The discretization
of the resulting partial differential equations, for example with Finite Elem@niss rise to a finite
dimensional minimization problem of the kind

ueBCR": J(u) = min! (M)

wheren € N, andJ : R® — R, sufficiently smooth. The set of admissible solutidh#s given by
B={ueR"|¢ <u;<¢foralli=1,...,n} wherep, ¢ € R".

The solution of such a minimization problem can be carried out with various mcethenethods.
From an analytical point of view it is of interest under which assumptionsiraemical solution
strategy computes a (local) solution of the minimization problem. Here, basicallglbdgses of
globalization strategies, Linesearch and Trust-Region methods, exigh wtecable to solve (M)
even if J is nonconvex. Though, the interest of a user lies in the efficiency amastioess of the
employed tool. In fact, it is of great importance that a solution is, indeperafeine employed
parameters, rapidly carried out.

In particular, a modern nonlinear solution strategy must necessarily beécalteapplied for (mas-
sive) parallel computing. The first step would, indeed, be employindlebzad linear algebra for
the Trust-Region and Linesearch strategy. But, to guarantee conegergeaditional solution strate-
gies damp the computed Newton corrections which might slow down the cemeg

Therefore, different extensions for the traditional schemes werdagsd, such as the two (additive)
schemes RRALLEL VARIABLE DISTRIBUTION (PVD) [FM94], PARALLEL GRADIENT DISTRIBU-
TION (PGD) [Man95] and the (multiplicative) schemes MGYO[Nas00], recursive Trust-Region
methods (RMTR) [GST08, GKO08b] and recursive Linesearch methdds) [WGO08]. Both, the
nonlinear additive and multiplicative scheme, aim at a solution of related mallar” minimization
problems to compute corrections or search directions. In particular, thdigem of the PVD and
PGD schemes is to asynchronously compute solutions of local minimization prebldich are
combined to a global correction. The recombination process itself is the sohitianother non-
linear programming problem. The multiplicative schemes, in contrast, aim at iosotf coarse
level problems starting from a projection of the current fine level iterate.ndémerical examples
in [GKO8b, GMSF09] and [WGO08] have shown, combining multiplicative schemes with a “global”
smoothing step yields clearly improved rates of convergence with little compuabtverhead.

In the present thesis we will show that these additive and multiplicative scheamebe regarded as
a nonlinear right preconditioning of a globalization strategy. Moreowrelh generalized nonlinear
additive and multiplicative frameworks are introduced which fit into the noalipeeconditioning
context. In numerous examples, we comment on the relationship to state-aftthemain decom-
position frameworks such as hierarchical and vertical decompositi@hextain how these decom-
positions fit into the presented context. In a second step, Trust-Regidrireesearch variants of the
preconditioning frameworks are presented and first—order convegge shown.
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As it turns out, the presented multiplicative Trust-Region concept is bas#tekdRMTR framework
employed in [GK08b] extending it to more arbitrary domain decompositions. ©rmtter hand,
the multiplicative Linesearch methods are based on the MLS scheme in [WB68], the original
assumptions are weakend allowing for the solution of hon-smooth nonlimegramming prob-
lems. Moreover, we present a novel nonlinear additive preconditidrangework, along with actual
Trust-Region and Linesearch implementations. As it turns out, well-balanpgdri and a posteriori
strategies and a novel subset objective function which allow for stréagivardly implementing the
presented frameworks and showing first—order convergence. Abawilighlighted, these novel ad-
ditive preconditioning strategies are perfectly suited to be employed fonivaassallel computing.
Furthermore, remarks on second—order convergence are stated.

To motivate the presented solution strategies, systems of PDEs and efuivialienization problems
arising from the field of elasto-statics and elasto-dynamics are introdiweckover, we will show
that — after discretization — the resulting objective functions satisfy thergegns stated for show-
ing convergence of the respective globalization strategies. Furthemaoieus numerical examples
employing these objective functions are presented showing the efficmtyobustness of the pre-
sented nonlinear preconditioning frameworks. Comments on the computation tiraesimber of
iterations, the computation of search directions, and the actual implementatienfeimeworks are
stated.
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1 Introduction

Ever since 1958 till the beginning of this millenium, the number of transistorsglatan integrated
circuit has doubled every two years, yielding extremely fast computeparticular, at the end of the
1990s, the computational power of the TOP 500 computers, the 500 fastiésised computers, was
just under 50,000 Gflops. Today, the TOP 500 computers achieve gppdakmance of 25,400,000
Gflops [TOPO08], an annual increase of 2800%. Though, recenidynitrease is in major parts due to
the massive parallelization of computers, rather than due to the acceleraitiolivafual processors.
Therefore, in order to harness the computational power of modermcgupputers, algorithms must
be developed and implemented with the capability to run in parallel.

In case of Finite Elements for the discretization of problems arising from tledfeelasticity, the
parallelization affects the linear algebra, linear solvers, often the geoaradrtherefore, quadrature
rules and the assembling processes. As it turns out, most of the affeatetes can run in parallel
with little parallel communication, such as, for instance, the quadrature. nimas, the iterative
solution of linear systems of equations makes much parallel communicatiorsagceimce locally
computed solutions must be recombined to a global solution, for instancenfmte updated resid-
uals.

Figure 1.1: Domain decomposition methods go back to the4,8viBen H.A. Schwarz proposed an alternating
domain decomposition method [Sch90]. In this original domiecomposition of H.A. Schwarz the domain
is decomposed into an overlapping rectangle and a circle.

As a matter of fact, parallelized linear algebra enables scientists to computautiersof highly
complex problems, such as large-scale nonlinear and possibly nomcarinenization problems
arising, for instance, from the field oonlinearelasticity. As it turns out, if the objective function,
in this case thetored energy functigris highly nonlinear but convex, Newton’s method is able to
compute a solution of the minimization problem. But, in the case of nonconvextivbjfienctions,
the same holds only if the initial iteratessfficiently goodIn this case, it suffices to employ a state—
of-the—art parallelized linear solver to compute Newton corrections. Ruerglly it is unknown
whether the initial iterate is sufficiently good or not. Therefore, one musi@mgglobalization
strategy- e.g., Trust-Region or Linesearch strategies — to ensure convergerritical points.

Both strategies, Trust-Region and Linesearch strategies, combine thetediom of quasi-Newton
corrections, and the computation of adequate damping parameters to emsgegence to critical
points. The damping parameters themselves depend on the “quality” eé#neh directione.g.,
the Newton corrections, and the local nonlinearity of the objective functionturn, in regions
with strong nonlinearities of the objective function often the damping parasgtast be chosen
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Figure 1.2: Different Scales: A minimization problem amgirom nonlinear elasticity, where for given bound-
ary values energy optimal displacements are computed. dlbesaepresent the von-Mises stresses (cf., Sec-
tion 5.6.1) within the deformed configuratioh.eft: here we visualize the von-Mises stresses on the finest
scale which obviously, vary in different parts of the geametherefore, we visualize in thaiddle figurethe
strongest local stresses on the fine scRight: here, we show the coarse scale von-Mises stresses which look
similar to the fine scale stresses. The geometry is from [§lZ01

sufficiently small to ensure an actual decrease of the objective funetem, for sufficiently good
search directions. As it turns out, this problem increases with the numbaekobwns since the step—
length depends on the strongkxstal nonlinearity. This particularly means that even if nonlinearities
occur only locally or in certain spectra they govern the whole solution geo&the minimization
problem.

Thus, in the last decades, two different approaches emerged tosbyypsiproblem by attacking
nonlinearities

e on different scales
e |ocally w.r.t. the domain

To handle nonlinearities on different spectra, in the early 1980s, Andrimtroduced the BLL
APPROXIMATION SCHEME (FAS) [Bra81], the first nonlinear multigrid method. Here, the restricted
“fine scale” gradients are combined with the gradient of an arbitrarilyemasnlinear “coarse level”
objective function. One important difference to linear multigrid strategies st to the nonlin-
earity of the resulting coarse level problem, the choice of an initial iterateeimdles the resulting
coarse level correction. Though, due to the method’s formulation, cgemee may only be proven
for convex minimization problems or for sufficiently well chosen initial iterates.

To overcome this problem S. Nash introduced in 2000 the M&a/@ethod, a reformulation of
the FAS scheme which combines a new objective function with a globalizatickegfrauch as

a Linesearch strategy [Nas00]. By now, several Trust-Region (c&MTR) and further Line-
search (called MLS) implementations of the MG¥tOframework have been introduced by S. Grat-
ton et al. [GST08, GMTWMO8], Z. Wen and D. Goldfarb [WG08] and Gofs and R. Krause
[GKO8b, GKO08c]. Similarly to S. Nash’s approach, the MLS strategy aedRNI TR strategies de-
terministically compute initial iterates on the coarse levels. In fact, it is proptsethploy the
restriction operator to compute an approximation to the fine level iterate. Atepeatirestriction
operators were proposed to improve the rates of convergence {88 Svhich slightly affects the
analysis of the RMTR method. But, as it turns out in the case of nonlinediceélafGK08b] the
L?-projection seems to yield better coarse level corrections and fastegrgemee than employing
the restriction operator.
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The analysis of both, the MLS and the RMTR strategy, is based on the ftcaihinterpolated
coarse level correction can be regarded as a search direction fénéhlevel problem. In turn,
this enables the respective authors to prove convergence undertragdamptions. Though, in
order to derive a multiplicative framework which is also suited alternating doaedoemposition
methods, in the present thesis, we will generalize the recursive TrgstiRecheme in [GK08b] to
a multiplicative Trust-Region framework. Moreover, the multiplicative Lineseacheme in this
thesis will generalize the MLS method to the non—smooth context. In order W@ panvergence
of this scheme, we show that the assumptions for the MLS method can benddaketroducing
different control strategies.

On the other hand, in the 1990s, frameworks for asynchronous amchear globalization strate-
gies called RRALLEL VARIABLE DISTRIBUTION (PVD) and RRALLEL GRADIENT DISTRIBU-
TION (PGD) were introduced by M. C. Ferris and O. L. Managsarian [FM@dn95]. Therefore,
both approaches asynchronously solve local minimization problems aachbéwe the computed
corrections employing a set of damping parameters. The computation of iif@rdaparameters,
though, is the result of the solution of another possibly honconvex minimizationlem. Both
frameworks, the PVD and PGD framework, are globalization strategieshwimi@ddition, can be
employed to resolve local nonlinearities. Moreover, X.-C. Cai and D.dyeK introduced in 2002
the ADDITIVE PRECONDITIONED INEXACT NEWTON (ASPIN) method [CKO02], anonlinear ad-
ditive Schwarz methodbased on a left preconditioning of the first—order conditions. An impbrtan
feature of the ASPIN method is an alternative recombination step, whichriec¢d@ut by solving
a linear system of equations. But, similarly to the full approximation schemegogence of the
ASPIN method may only be proven for sufficiently good initial iterates [CKEI2PS08].

In fact, the asynchronous solution of local nonlinear minimization problerables the respective
method to resolve local nonlinearities without being governed by a globatlstagth constraint.
But, moreover, these additive frameworks are good starting points faldfeation of nonlinear
additively (right) preconditioned globalization strategies which aim atrieesive parallesolution
of nonlinear minimization problems. Since, as far as it is possible to avoid corgpatset of
damping parameters, the ASPIN method and (for certain configurationBMbBéPGD algorithms
reduce the overall parallel communication, as it is desirable for paralldi@o strategies.

In order to avoid the expensive computation of global damping parametensill consider the ad-
ditively computed correction as a search direction in the context of thelgtahanization problem.
This point of view allows for deriving easy implementable standard TrugidReand Linesearch
control strategies reducing the set of damping parameters to one dampamgeper or one Trust-
Region radius. Along with an, in the additive context, novel objectivetianchis results in a novel
additive preconditioning framework. Moreover, under modest assungptiwe are able to prove
convergence of the presented additively preconditioned Trust-RegidriLinesearch strategies to
first—order critical points.

Finally, we will introduce novel combined preconditioned Linesearch angtIRegion strategies
which employ both approaches, the additive and multiplicative approacliidssn one precondi-
tioning framework. Both methods are formulated based on the about to ®enped multiplicative
and additive schemes which enables us to straight-forwardly provemmnce to first—order critical
points. As it will turn out, in numerous computed examples, carried out withimideFElement
framework, these combined preconditioned globalization strategies as@lewably faster than the
traditional schemes. Similarly, also the pure multiplicative and additive scheigldsrymost com-
puted examples faster convergence to critical points, than the traditidrexhes. Here, we imple-
mented exemplarily a nonlinear multigrid method as multiplicative and a nonlineaovestapping
domain decomposition method as additive scheme. Moreover, we will commemploying dif-



4 1.1 The Nonlinear Model Problem

ferent decompositions frameworks within the concept of nonlinear pétioning.

Overview

In the next chapter, Chapter 2, we will present standard implementatidreoaergence proofs for
Trust-Region and Linesearch strategies. This has two purposes. Gmgthand, we can compare the
presented strategies to the novel preconditioned globalization strategi¢se Other hand, we em-
ploy parts of the respective convergence proofs within our analysisedadditive and multiplicative
preconditioning strategies.

In Chapter 3, we will introduce the abstract nonlinear right preconditgpfrimmeworks. Here, we
will present the additive and multiplicative domain decomposition frameworkgalath the transfer
operators. These are, in turn, employed in the multiplicative and additiiextorAlso the subset
objective functions and assumptions on the subset constraints will be l&dadun this chapter
along with the additive and multiplicative update operators. Together, thissftovproving that the
formally defined nonlinear preconditioning operators yield admissible setrections.

Actual nonlinear additively preconditioned globalization strategies will lesgqmted in Chapter 4.
Here the objective function and transfer operators as presented meCBawill be employed within
an additive Trust-Region framework, the APTS method, and an additiveskarch framework, the
APLS method. Both presented novel additive preconditioning strategiebevidinalyzed in this
section and convergence to first—order critical points will be shown. elsti@ 4.3, we will also
comment on the overall parallel communication within the nonlinear additivebopditioned glob-
alization strategies.

In Chapter 5, we will present and analyze multiplicative Trust-Region ameklearch variants. Here,
the RMTR strategy in [GK08b] will be extended to a more general multiplicatas@@&work resulting
in the nonlinear multiplicatively preconditioned Trust-Region strategy (MRMm&hod. Moreover,
we will present the nonlinear multiplicatively preconditioned Linesearchiegiya(MPLS) which
extends the approach of Z. Wen and D. Goldfarb [WGO08] to the non-dnuase. Moreover, we will
introduce and analyze novel combined multiplicatively and additively priioned Trust-Region
and Linesearch methods.

Finally, in Chapter 5.5 and Chapter 6, we will explain the actual implementationeofetfpec-
tive nonlinear additive and multiplicative preconditioners and present ncaheesults. The im-
plemented nonlinear solvers of the present thesis are part of theNIERL 1B toolbox extending
OBsLIB++ [Kra07b] and UG [BBJ97]. In Chapter 5.5, the particular example problems and their
solutions will be introduced. Moreover, we will present numerous coispas considering the rates
of convergence of

e additive, multiplicative, combined and standard Trust-Region strategies

¢ additive, multiplicative, combined and standard Linesearch strategies

1.1 The Nonlinear Model Problem

In the present thesis, we present several globalization frameworik$ &hm at the solution of the
following non—linear, box-constrained minimization problem

ueBCR": J(u) = min! (M)
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wheren € N, andJ : R® — R. The objective functior/ is supposed to be at least continuously
differentiable, but is neither assumed to be quadratic nor convex. Belenotes a set of admissible
solutions with

B={uecR"|¢ <u<¢foralli=1,...,n}

andog, ¢ € R™.

As pointed out in the introduction, the solution of nonlinear programming pnobls usually carried
out employing globalization strategies. Globalization strategies itself are sétehich provably
compute sequences of iterates converging to critical points. As it turns'glahalization” and
“global convergence” refers to the independence of the conveegieam the first iterate’s quality.
In other words, in the present thesis, we present different strategiesh compute critical points
without assumptions on the initial iterate (except, thas defined and the initial iterate is admissi-
ble).

As a consequence of the possible nonconvexity of the objective funttierabout to be presented
nonlinearly preconditioned globalization strategies will only aim at the computafia first—order
critical point which satisfies the followinfiyst—order sufficiency conditions

VJI@i =0 if ¢ <u<g

In fact, such a first—order critical point may be a local minimizer or a statjopaint and can be
computed under modest assumptions. In contrast, globalization strategieseaaind—order con-
vergence properties state more restrictive assumptions on the seanttodg@nd on the objective
functions (see, for instance, [CL96, CL94, CGTO00]). In turn, we sgéié that due to the formulation
of the nonlinearly preconditioned globalization strategies, only a global #rimgostep may ensure
convergence to such a point, but not the multiplicative or additive stratédyection 4.4 and Section
5.5.

Obviously, due to its general formulation, many classes of minimization problem$beeovered
by the model problem (M) and therefore, may be solved by the algorithnsgimied in this thesis,
for instance problems arising from the field of nonlinear solid mechanics.

Due to its ability to predict internal stresses within solid materials, in the last deaagmerical
simulations of elastic materials became increasingly important. In particular.emmgiemploy elas-
tostatic and elastodynamic simulations to cheaply verify designs in the load Taghis end, in
the next section we will present nonlinear material laws which will serveaslective functions
within our numerical examples in Chapter 5.5.

1.2 The Constitutional Equations and their Discretization

In the context of continuum mechanical simulations, in contrast to molecutandigs, the atom-
istic structure of a solid is neglected and just approximated within the model aagsitsnptions.
Therefore, currentlycontinuum mechanicaimulations enable engineers to simulate the behavior of
solids on much larger time and length scales than emplayiagcular dynamicasimulations. In

the present thesis, we aim at the (dynamic) continuum mechanical simulatosobél’s reaction to
large external forces basically following the monographs [Cia88, EGKO08

Therefore, in the presented model, all physical quantities, for instamess, linear momentum, ve-
locity and energy, are considered as mean values. The body itself is a @peadent) domain
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Q(t) c R3 with Lipschitz continuous boundary, given in its reference configuratien in the un-
deformed state. Therefore, the objective is to find an energy optefarmationsubject to given
external and internal forces. Thidastic (internal) energys, in turn, been given as a material law
relating stresses to strains, such as, for instance, Hooke’s law. Iddakedescribes a linear stress
strain relationship yielding a quadratic and coercive energy functiomse/iminimization can be
carried out employing state—of-the—art linear and iterative solvers. ©atlter hand, various non-
linear material laws exist, which incorporate a nonlinear stress strain redaipimplying, in turn,

a nonlinear, possibly non-convex energy function.

1.2.1 Kinematics and Conservation Laws

In the context of elasticity theory, a deformation is a continuously differblgjeorientation pre-
serving and invertible mapping : [to,tend x Q(to) — R3. In turn, the current position of each
pointx € Qy = Q(tp) is given byp(t,x) € Q(t). This sought-after deformation is supposed
to be sufficiently smooth in order to solve the about to be presented systdpidsf, for instance
p(t,-) € HY(Q) for all t € [to, tend-

Following [EGKO08], the sought-after deformatian is the result of theconservation of impulse
subject to a given elastic material law, and two kinds of force densities amitige body(¢),

e volume force densitief’ : [to, tend X Q(t) — R3, like for instance gravity

e surface force densitieg : [to, tend x ['v(t) C 0Q(t) — R3, which will constitute theNeu-
mannboundary conditions

In many cases also additional, pointwise constraints are added, for iastamodel contact between
2 and a rigid obstacle, or constraints to the solution which gives rise to

p(t,)-n(t,-) <Id-n(t,-) + ¢(t,-) a.e. onl'c(t) C 0(t)

wheres : [to, tend x I'c(t) — R andn(t, z) is the outer normal at € I'c. Moreover, often also
fixed displacements are applied to the volutheonstitutingDirichlet boundary conditions, i.e.,

u(t,) =g(t,-) a.e. onlp(t) C ON(t)

whereg : [to, tend x I'p(t) — R3.
Given, the boundary conditions, we may now consider the conservdtimpalse. In the reference
configuration, the conservation of impulse is given by

d
— pﬂdaz—/desc+/ f dsg (1.2.2)
dt Jo Q Ty

whereu = ¢ + Id are calleddisplacementsHere, we introduced the mass dengit¢ [to, tend ¥
L?(£2). To obtain a better understanding how external forces induce intéraases, we will follow
[Cia88] and introduce a stress tengbr: @ — M?3, whereM? is the set of all3 x 3 matrices.

In particular, T is an elasticdesponse functiowhich describes the stress-strain relationship for the
material which iS2 made of. If one assumes that Cauchy’s axiom (cf. Axiom 2.2-1 [Cid&a]s,

1We implicitly consider all variables in the occurring PDEs as Lagrangeblesaand, thus, drop the time-dependency
of the domain and its boundaries. Another point of view is to consider ailbias as calle@&ulervariables, variables
defined in the (sought-after) deformed state.
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(1.2.1) becomes

d .
— [ pudx = / pFdx — T -ndsg
dt Jo Q Ty

If we assume that is constant in time, i.ep = 0, we may apply the divergence theorem giving rise
to

/Q(p'u—pF—divT)dwzo

Since this equality must also be satisfied on each s¥bset() we can deduce that

pit — pF —divT = 0in Q (1.2.2a)
T-n=fae. oy (1.2.2b)
u=ga.e.on'p (1.2.2¢)

u-n<gpae. on'c (1.2.2d)

holds.

1.2.2 Elastodynamic and Elastostatic Model Problems ir/*

To obtain a complete description of the PDE, we must introduce a constitutienfdighe response
function. In our context, the context of large deformations, we are istiedein the material’s re-
sponse on large deformations and we will, therefore, employ the theorypefrélastic materials.
For hyperelastic materials the following relationship holds

T(z, V) = iVi/'(alc C)

9 LP - 80 9

WhereW : Q x S? — R s a continuously differentiablstored energy functioandC is theright
Cauchy-Green strain tensgiiven by

C=NVu+DT(Vu+I1)=Ve!'Vpes?

with S? is the set of all symmetric positive definifex 3 matrices. Now we can combine the
boundary conditions and the initial conditions with the derived constitutionalaiad obtain the
following system of PDEs

Pl + divaacVV —-F=0 ae.inQ (1.2.3a)
T - n=f a.e.onl'y C 09 (1.2.3b)
u-n<o a.e.onl'c C 09 (2.2.3c)

u=g a.e. onl'p (1.2.3d)

Here, we suppose thit UTp UTy = 99Q, T'¢, 'y, I'p are pairwise disjoint and € L?(I'¢). The
initial displacements,y € H'(Q) and velocityiy € L?(2) are assumed to be given a priori which
gives rise to the following initial conditions

u(x,0) = up(x) in Q (1.2.4a)
u(x,0) = up(x) a.e. in{2 (1.2.4b)



8 1.2 The Constitutional Equations and their Discretization

For the analysis presented in the remaining sections of this chapter, it witiala a difference ip

is chosen constant in space. Therefore, in the remainder, we will assithoait loss of generality
thatp = 1.

Moreover, if in thestatic border cas¢he time derivatives vanish, the system of PDEs (1.2.3) becomes

divaacVV —F=0 ae.inQ (1.2.5a)
T n=Ff a.e.onl'y C 002 (1.2.5b)
u-n<qo a.e.onl'c C 9N (1.2.5¢)

u=g a.e.onl'p C 0N (1.2.5d)

Here, we also assume tHap, 'y andT'¢ are pairwise disjoint and th&t, UT' y U T = 992.

An Elasto-Static Minimization Problem and Existence of Solutions

If we now assume thaf and F' are independent ai, Theorem 4.1-1 [Cia88] gives us that (1.2.5)
is formally equivalent to the following constrained minimization problem: find@ H'(2) which
solves

J(u) = min! (1.2.6a)
u-n<ao a.e.onl'¢c C 092 (1.2.6b)
u=g a.e.onl'p C 0N (1.2.6¢)

Here, we have introduced t®nlinear energy functionalonsisting of the elastic (internal) energy
and external work as

J(u)z/g(W(a:,C)—pF-u)da:— FNf'udsz,3

Remark 1.2.1. Here J(u) = min! denotes the local minimizer over the set of @alkatisfying
(1.2.6b) and (1.2.6c). For the ease of notation, in the remainder of thissteswill keep to this
notation and will not explicitly highlight, that we are interested in a local solution.

Since the energy is arbitrarily nonlinear and, thus, possibly non-convex, solutions of themza-
tion problem (1.2.6) generally cannot be shown to exist. Thereforeplha [Cia88] and J. Ball
[Bal77] and introduce stronger assumptions on the stored energy fo#tit ensure the existence
of minimizers.

Definition 1.2.2. A stored energy functiob¥ is polyconvexif there exists for eack € Q) a convex
functionW : M® x M? x (0, 00) — R such that

~ —

W(x,C) =W (x,Ve)=W(x, Ve, CofVe,detVy) Ve € M3

whereCofA = det AA~T. We will call a polyconvex stored energy functiowerciveif there exists
ana > 0 and ang € R such that

W(z,C) = W(x, Vo) > a(|Ve|? + |CofVe|? + (defp)?)+4 ae. inQ and all Vo € M2
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Now, we may cite Theorem 7.8-1 [Cia88] which provides the existence of miamnipr problem
(1.2.6) under certain assumptions on the stored energy function anaggiectige problem setting.

Theorem 1.2.3.Assume thaW is a polyconvex, coercive stored energy function with

lim W(:n,l + Vu) =0
det(I V) \0

LetI'p, 'y, ' be disjoint, relatively open subsetsa@®, I'p # 0 andoQ) —T'p UTc UT'y = 0.
Assume that the following set of energy-admissible solutions

d={ucH(Q) | Cof(l+Vu)c L*(Q),0 < defl + Vu) € L*(Q),
u=g a.e. onl'p,
u-n<o a.e.onl'¢}

is non-empty. Let
L(u):—/F-ud:c— frudsg
Q I'y

be in(H'(Q))’. Moreover, assume that there existsam ® such that

inf 1(@) = igf/ W(z,| + Vi) de + L(%) < +00
uec u [¢)

then there exists at least one function such that

inf I(u) € (—oo,

inf I(u) € (—00, +00)
In fact, this theorem directly applies to elastostatic problems of the kind (1.2d5prvides sound
assumptions on the problem itself, such as the relationship between cassrairDirichlet values,
and assumptions on the surface forces.

1.3 Discretization

A key role in the solution of the system of PDEs in (1.2.3) and (1.2.6) is theiradization. As
it turns out, we will apply the globalization strategies presented in the followlirgters to solve
discretized minimization problems instead of the respective original system.

The discretization of a dynamic system of PDEs like (1.2.3) is usually cartieith dwo steps:

e discretization in time
e discretization in space

Here, one distinguishes between the discretization in time prior to space, Rallee’'s methodor
vice versa, calledhethod of linesIn the method of lines the spatial discretization is chosen fixed for
all time steps, which does not allow for a better resolution of time dependatidlsphenomena. In
contrast, Rothe’s method allows for choosing different spatial disctietizdepending on the current
time step. Moreover, discretizing (1.2.3) in time gives rise to spatial minimizatidsigars. In turn,

in each time step, under similar assumptions as for Theorem 1.2.3, we are jpitdeddhe existence

of solutions for these minimization problems.
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1.3.1 Temporal Discretization

Our aim is the computation of displacementsand velocitiesi which solve the system of PDEs
(1.2.3) at timet. To this end we follow [DKE08] and emploewmark’'s Schemi@ew59] to dis-
cretize (1.2.3) in time. Since the acceleration is already given by Newton;sthésvintegration
scheme enables us to derive additional equations for the velocities atacdiments. In fact, inte-
grating the acceleration term twice yields the sought-after equations (fonplete introduction see,
for instance, [Wri08]). Moreover, Newmark’s scheme allows for intridg a contact stabilization
to avoid artificial oscillations at the contact boundary [DKEO8]. The bpsitciple of the contact
stabilized Newmark method is to compute an additional predictor step. This ntie@nsne employs
the displacements and velocities of the previous timestep and the obstacle tdepnmulicted dis-
placements, already satisfying the contact conditions (1.2.3c). In adstem one employs these
predicted displacements to compute the actual displacements.

For the ease of notation, we now denoteddythe temporal discretized displacements. But note
that the discretized solution generally does not satigfy= wu(t;) wheret; = to + i andr > 0.
Similarly, %.* denotes the temporal discretization of the velocity; at

In order to derive the contact stabilized scheme, we introduce for a gi\tﬂjictoruéfeld € L*(Q)
the following functional

i 1 i
T (u) = §(U7U)L2(Q) — (W, uprag) 12()

where(-, ) 12(q) denotes the.? scalar product. The temporal discretized energy functional is given
by
Ji(u) = / (W(I +Vu) - Fi- u)) de— | f1 udsg
Q I'n

whereF" = F(t;), f' = f(t;). Now, we can introduce the contact stabilized Newmark method as
the following system of PDEs: Find'™! ¢ H'(Q), L andu*! € L?(Q) such that

» “pred
L i i iy il o
(§upred— u' = TU), Upreg = min! (1.3.1a)
L2(Q)
TH (ui 1) + %(1 — 28)J(u!) + 72BJ 7 (wit) = min! (1.3.1b)
‘ o . o .. ,
w7 <(1 — ) g (') + vauJ’“(uZ“)> =a't! (1.3.1c)
ugllym<¢  ae onlg (1.3.1d)
utl . n<¢ ae oo (1.3.1e)
utlt=g ae. onlp (1.3.1f)

wherev, 24 € [0, 1]. The initial conditions are given by

u uo(x) a.e. inQ (1.3.2a)
W(x) = ug(x)  a.e.inQ (1.3.2b)
In the unconstrained case, Newmark’s scheme becemesgy, linear momentum and angular mo-

mentunpreserving if one chooses the constahits as2p = v = % (cf., for instance [ST92]). As a
matter of fact, foRg > v > % the scheme becomes unconditionally stable. Thus, in order to make
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the scheme in the unconstrained case unconditionally stable, one has tarsalg@trary nonlinear,
possibly non-convex, minimization problem in each time step.

Existence of Solutions for the Discretized Dynamical Problem

We will now consider the existence of a local minimizer for the temporally dis@@tizonstrained
minimization problem (1.3.1b). The key concept of this theorem is to reordestifective function
in (1.3.1b) to obtain the actual nonlinear energy functibna linear formZLand a constant pak:
and to prove that under certain assumptions the total energy can be dounde

Theorem 1.3.1.Assume thal is a polyconvex, coercive stored energy function with

o~

lim  Wi(z,|+Vu) =0
def(1+Vu)\0

LetI'y,I'c,I'p be disjoint, relatively open subsets@f®, andoQ) —T'c UT'y UT'p = (). Assume
that for a given obstacle € L?(I'¢) the set of energy admissible solutions

®={uc HY(Q) | Cof(l +Vu)c L*(Q),0 < det(l + Vu) € L*(Q),
u-n<o a.e. onl'¢
u=g a.e.onl'p}

is non-empty. For > 0, define the modified energy by
1 —
H(u) = / <2u cu+ T BW(I + vu)> de
Q

Letu' € HY(Q), ujley F', F'*' e L(Q), f', f*! € L*(Ty), and J'(u') € R be given and
define

Li(u) = / (—uiJrl ‘U — (7—2(1 —26)F' + TZﬁFi+1> u) dx —
Q pred 9

/F (2(1 —26)f + 725]”*1) - udsy

Therefore,L is a linear form onH!(€2). Suppose that there exists @rsuch that
. 7'2 . .
inf I(w) = H(u) + L'(a) + ?(1 —20)J'(u') < o0
then there exists at least one functiare ® such that

&Ié]; I(u) € (—o0,+00)

Proof. Due to the coercivity of/ we obtain that there exist constants> 0, v >0, cp € Rsuch
that e
W(x,Vu) > ofI + Vu||%2(9) + VoI + ¢

(cf. Theorem 7.7.-1 (i) [Cia88]). Moreover, employing the triangle-unsdy we obtain

c1 4 (u,u)20) > 1] 72 (q) + lull72i) > 1D + ul72q
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wherec; > 0. Now, we employLi(u) = Li(u + Id) — L¢(Id) and the continuity of.’ and obtain

. 7-2 . .
I(u) = H(u)+ L'(u)+ ?(1 —206)J" (u')

—_~ . . 2 . .
— %(u,u)Lz(Q) +/ 2 BW (I + Vu) dx + Li(u + Id) — Li(ld) + %(1 —28)J" (u")
Q

v

1 1 )
azgll + Vaulin ) + S ld+ || T2 () = 1L [72(0) 1 + ull 12(0) + €2

wherecy = —3e1 + 2(1 — 28)Ji(u?) — Li(Id) + 728(vol + ¢p) andag = r23a. This, in
particular, yields
I(u) > e3||I + V|3 q) — callld + ull p2(q) + 2 (1.3.3)

wherecz > 0, ¢4 € R. Thus, we obtain for each sequengg®), with ¢, € @& and
klim |\<pk|]H1(Q) = oo (if such a sequence exists) that
—00

k
lim inf I(#7)

— >0
k—o0 H‘PkHHl(Q)

Thus, any minimizing sequence of the total energy is necessarily bounded Now the further
proof is the one of Theorem 7.7.-1 (iii-vi) [Cia88]. O

As it turns out, if one assumes thais given like in (M) the proof of Theorem 7.8-2 [Cia88] directly
applies to our Newmark scheme, since no “directions where the body cape$soccut. On the
other hand, even if such a direction exists, fifescalar product in (1.3.1a) directly yields the strong
coercivity result in (1.3.3), even if no Dirichlet values are set. Thusheae just proven that for
dynamical (contact) problems the assumption that no escape direction eristsiecessary.

1.3.2 Spatial Discretization

Several spatial discretization schemes, such as Finite Volumes (seeBmf7]), Finite Elements
(see, e.g., [Bra07, Lev02]), Finite Differences and Wavelets (sgg [Pah97]) as well as Meshfree
Methods (see, e.g., [Liu03]), are frequently used to solve PDEs on fioite&ins such aQ. Today,
Finite Elements and Finite Differences particularly prevailed as state-airthdiscretization tech-
niques for problems arising from the field of elasticity. Finite Elements and itantar moreover,
prevailed as a spatial discretization technique for complex, possibly CABdhgeometries, which
may not be accurately enough resolved by Finite Differences.

The paradigm of Finite Elements is to discretize and approximate the ddinlayna three dimen-
sional, polyhedral meshed domdd. In many exampled) is a CAD based, polyhedral geometry.
In this case one can assume thgt= €2 and that? is polygonally bounded. In order to (adaptively)
resolve time dependent spatial phenomena, Rothe’s method enables osge tite piecewise poly-
nomial Finite Elemenbasis functionsime dependently a,k;, : 2 — R3 yielding the Finite Element
spacet” = spa{\, },.

2This is a theoretical problem for traction problems with unilateral boundanglitions of place. If the applied forces
press2 against the obstacle, a solution exists. Forces puflireyvay yield the insolvability of the problem.
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With the definition of the Finite Element basis, each elemgne X' can be represented as

up(x) = Z u, A ()

where the coefficient vector is given by = (u;)p € R™ andn; = dim X. In other words, in each
time-stept; there exists a coordinate isomorphisé : R™ — X given by

X'= Ay, AL)

Similarly, one may also define spatial discretized velocitigand predictor&ﬁlvpred.

Constraints and Nodal Basis Functions

For applying nonsmooth iterative solvers, like for instance the preconddiprnojected cg method,
to solve PDEs or optimization problems subject to constraints it is preferabintheonstraints are
pointwise. In our case, we have to deal with generally coupled constgiis by (1.3.1d) and
(1.3.1e). Therefore, to apply the preconditioned projected cg methodpuge alter the standard
discretization slightly. In particular, at the contact boundBgythe (three) nodal basis functions
must be chosen such that one basis function directs in direntiand the other basis function are
orthogonal to the first one [Kra01]. Therefore, in the remainder weag#iume that one is able to
choose the discretization such that

up-n=up < g,onl'c

for a giveng;, € X holds.

The Temporal and Spatial Discretized Minimization Problems

Employing this isomorphism, we can now reformulate the temporal discretizéeinsyaf PDEs
(1.3.1a) into a fully discretized finite dimensional system of PDEs: difid, ;' . @}, € R™ which
solve

1/ . T ) ) ) . .
B (u;:fplred> M”luﬁjplred — (up, — m;L)TM;“u;jplred =min! (1.3.4a)

1 . A r 2 o o
<2u;j1 — u;jplred> Myt %(1 — 2B)J (X u}) — 2B8J (X"}t = min!  (1.3.4b)

X', 47 ((1 — 7)%Ji(Xiu§Z) + viJi+1(Xi+1u;+1)> = X" gytt
(1.3.4c)
Xyt g <ot onTo  (1.3.4d)
Xttt < ¢t onTe  (1.3.4e)
Xyt =gt onl'p  (1.3.4)
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whereg}'jrl : X;1 — R3is given and;S}'Z“ € X411 is an approximation tg in X; 1. In general one
might define both functions as the solution of

g @ A ) = (@), A ) Yp=1,.mi
o (B A ) = (805 12 Vp=1,...,ni41

Moreover, we employed the mass matrices

Mi—i—l — (Xi+1)TXi+1 — (/Q )\;+1(:I:))\é+1(:lz) dac> c R™i+1 XMj41 (1.3.58.)
pq
M = (xHT X = < /Q XL (z) A () da:> € Rxmit1 (1.3.5b)

rq

For givenu?, u° € R” the initial conditions are

u) = ul onR"™ (1.3.6a)
u) = u° onR" (1.3.6b)

As it turns out, the computation of the mass matrices changes slightly if themias®t constant
in space which can easily be implemented in practice. On the other hand, theteﬂimpofM}+1

is more challenging in practice, particularly for strongly changing Finite El¢isaces. Here, one
must put effort in computing the quadrature in (1.3.5).

In the absence of time, the discretization of the resulting minimization problem)tah®e carried
out straight-forwardly. We suppose that a Finite Element space H () along with the isomor-
phismX : R™ — X is given. Then the discretized version of (1.2.6) is given by: fimdaaR™ such
that

J(Xu) = min! (1.3.7a)
Xu < ¢y, onl'c C 092 (1.3.7b)
Xu=gp onT'p C 9N (2.3.7¢)

for givengy,, ¢, € X. Here, the constraints should be understood pointwise.

In many casesT" is chosen by means of Hooke’s law yielding a strictly convex quadratic optimiza
tion problem in (1.3.4b) and (1.3.7a), respectively. But, in our contert) éthe response function

T is chosen based on a polyconvex and coercive stored energy furttigoresulting minimization
problems are generally non-convex. Thus, the solution of these probtersisbe carried out em-
ploying a globalization strategy to provably succeed in computing a local minimizethis end,

in the following chapters we will present different traditional globalizatitrategies and introduce
novel nonlinearly preconditioned globalization strategies which allow fosthetion of nonlinear
programming problems like (1.3.4b) and (1.3.7a).
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The solution of minimization problems like problem (M) is usually carried out enipgpiterative
schemes like, for instance, Newton’s method. Though, for a noncarjextive function/ New-
ton’s method is not globally convergent, which means that in order to prvesegence the initial
iterate must be assumed to be sufficiently close to a local solution. Therefemsure convergence
for arbitrary initial iterates the solution of (M) must be carried out employigtphalization strategy.
In contrast to the direct application of Newton’s method, a globalization giratiens at a scaling of
the current Newton correction’s length to enforce convergence.iBédct, computing and scaling
a correction based on Newton’s method does not suffice to gerdatending search directions
Therefore, two major problems had to be attacked to develop a globallyrgemiesolution strategy
for problem (M):

e the computation of search directions
e the computation of damping parameters

such that the resulting correction, i.e., the rescaled search directionemdwsufficient decrease of
the objective functiony.

The first contribution attacking the problem of computing “good” searcbctions was made by
K. Levenberg in the context of the solution of nonlinear least squaraslgms [Lev44]. Also
D. D. Morrisson [Mor60] considered the solution of quadratic minimizatiarbfgms which in his
formulation were surprisingly solved subject to fixed step—length con&rdfurther contributions
in this field were made by D. W. Marquardt [Mar63], R. E. Griffith and RS#ewart [GS61]. Griffith
and Stewart proposed to successively solve linear problems baseel alj¢iative function.

In the early stages of globalization strategies the correction’s step—lendtth@ model were con-
nected to each other by means of a damping of the Hessian. A first upddéggtior the damping
parameter (which was by then chosen fixed) was provided in [GQT6#&hwtas further developed
by M. Powell [Pow70] and D. Winfield [Win73]. Basically, Goldfeldt et diIGQT66] developed
the update strategy which is employed in today’s Trust-Region methods, tHerguadratic model
is employed to compute predicted reductionvhich is compared to thactual reductiorof the ob-
jective function. Moreover, since the late 1960s and early 1970s gti@dnodel functions for the
successive computation of search directions prevailed an@auehy point was developed as a
measure for sufficient decrease [Pow70].

On the other hand, in the 1940s H. B. Curry [Cur44], and in the 1960% &oldstein [Gol62] and
L. Armijo [Arm66] formulated assumptions on a damping parameter to enfoncesegence of the
steepest descent method. In their articles, Goldstein and Armijo proposadhdor controlling the
step-length and were, due to their formulation of a sufficient decrebleetcashow convergence to
first—order critical points.

As it turns out, both frameworks, the Linesearch and Trust-Region fxanke are closely related
to each other. The fact that Linesearch methods can be regardegesia sase of Trust-Region

1The Cauchy point (2.1.10) is the optimally scaled negative gradientwhiry be employed as sufficiently good search
direction.
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methods was published in [SSB85] and [Toi88]. However, both strategigularly differ in the
step—length control strategy. We will see that, on the one hand, TrugttRegthods employ an a
priori control of the step—length and an a posteriori acceptance critefa the other hand, Line-
search strategies employ an a posteriori step—length control and aecéptorrection.

In this chapter, we will present non—smooth Trust-Region and Lindsé&ameworks for the solution
of pointwise constrained minimization problems of the kind (M) and will prove thresergence of
the respective strategy. These strategies will serve as a basis of thagitned Trust-Region and
Linesearch methods, introduced in Chapter 4 and Chapter 5. Theretwranalysis of this chapter
will also be employed for showing local convergence properties of thegmditioned globalization
strategies.

2.1 The “Traditional” Trust-Region Framework

Similar to Newton’s method, a Trust-Region method is an iterative solution styatéigh in each
iteration computes aorrectionand chooses whether to apply the correction or not. The correction
itself is the (approximate) solution of a constrained quadratic minimization problesgond—order
approximation to the expected reduction of the objective funcfidrom (M). The quadratic func-
tion, calledTrust-Region modetonsists of the gradient and the Hessian, or in general, a symmetric
matrix which approximates or replaces the Hessian. This is in particular @gaeoif the Hessian

is dense or negative definite. For instance, the BFGS method [Bro7®, ef70, Sha70] is a fre-
guently used strategy to directly approximate the inverse of the Hessiam, éx@ensive quadrature
can be avoided by an update just based on the computed gradients.

As it will turn out, not every computed correction, even if it is an exact tsmuof the quadratic
minimization problem, is added to the iterate. In particular, only if the ratio betweemdtual
decrease and the decrease predicted by the Trust-Region modeldestiffilarge, the correction is
applied. This in turn, is an a posteriori control which guarantees cgawee to first—order critical
points, i.e., the solution of (1.1.1) . All together this yields Algorithm 1.

2.1.1 Assumptions on/ and the Trust-Region Model

Surprisingly, the convergence theory of Trust-Region methods camied out with modest as-
sumptions [CGTO0O]. In the present thesis, we will follow T. Coleman and YCL96] and suppose
that the gradient of the objective functioh: R™ — R in (M) is bounded on a compact level set.
Moreover, one has to state assumptions on the Hessian, or its approximation.

(A1) Forthe given initial iteratey € B from (M), we assume that the level set
L=A{ueB|Ju) < J(uy)}
is compact.

(Ay2) We assume thaf is continuously differentiable of. Moreover, onZ, the gradients are
assumed to be bounded by a constant> 0, i.e.,||VJ(u)||2 < C, forall u € L.

(Ay3) There exists a constafitz > 0 such that for all iterateg € £ and for each symmetric matrix
B(u) approximatingv2.J(u) the inequalityl| B(u)||2 < Cp is satisfied.
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u=current iterate

"h=quadratic approximation

J(u) = mir:ﬂ 1/}(:5) = min!

Figure 2.1: A comparison of a highly nonlinear objectivedtion and the quadratic model (illustrated is
¥(s) + J(u)). Obviously, the minimizer of)(s) will not induce a decrease of, i.e., J(u) < J(u + s).
Though, an actual decrease will be computed, if the TrugfidReradius is chosen small enough.

Now, for a given iterate; the Trust-Region modeés given as); : R™ — R with

Uil(s) = (gi, 5) + %(s, Bis) 2.1.1)

whereg, = VJ(u;) andB; = B(u;). A Trust-Region correction; € R" is then computed by
means of

m}%@n »i(s), S.t.||s]|eo < A;andu; +s € B (2.1.2)
seER™

whereA; € R is called Trust-Region radius arilis the set of admissible solutions for problem
(M). As it will turn out, s; is not necessarily an exact solution of (2.1.2). It can rather be axippr
mation to the minimizer, as long as satisfies a sufficient decrease condition like condition (2.1.8).
This is reasonable, since, in fact, from a numerical point of view, thetesaution itself would due

to rounding errors generally be impossible. HoweveR;ifis positive definite, the exact solution of
¥i(s) = min! is a Quasi-Newton step.

2.1.2 Decrease Ratio and Trust-Region Update

Since, on the one hand the correctigris computed approximately and, on the othkis arbitrarily
non-linear, one has to control the “quality” ef. There we define thactual and thepredicted
reductionas

ared;(s;) = J(ui)— J(u; + si)
pred;(si) = —vi(s;)

Now, the decrease ratjg is defined by

ared;(s;)

pi = (2.1.3)

~ pred,(s;)
Note that, in fact, ifB; = V2J (u;), pred;(s) measured (u;) — J (u; + s) employing a second—order
Taylor approximation of/ (u; + s). Moreover, if.J is a quadratic function an®®; = V2.J (u;), the
predicted and actual reduction are the samefired; (s) = ared;(s) and, thusp; = 1. In this case,
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Algorithm: Trust-Region Solver

Input: m,n €N, B,J:R" - R, up € R", A ¢ RT
Constants:y1,v2,1 € (0,1),m € NU {oo}

1 =0
do {
generate); by means of (2.1.1)
solve problem (2.1.2) approximately such that (2.1.7) holds, atalroly € R™

computep; according to (2.1.3)

if (pi = n)

Uitl = Ui + 54
else

Ui+l = Ug

computeA; ;1 by means of (2.1.4)

it (i > m)
returnui+ 1

1=1+1

Algorithm 1: Trust-Region Algorithm

it is mandatory to solve (2.1.2) sufficiently good.
The Trust-Region radiud; is updated based on the decrease ratioe.,

A,y ;] if p >
Ame{( YA if pi>n

. (2.1.4)
(1A, Aq) if pp<n

wherel > n > 0, aswell asy; > 1 > ;1 > 0 are assumed to be given a priori and fixed for
the whole computation. In our examples, we ysé\; and~.A; for computing the new radius.
However, in other works, for instance in [CL96], more complex updatdegies are proposed, in
order to reflect the complexity of (M).
In a last step, if

pi =M (2.1.5)

holds, a correction is added to the current iterate. In this case, a tonrés calledsuccessful
Otherwise, the correction will be rejected and the Trust-Region radiugaeed. These four steps
are summed up in Algorithm 1.

2.1.3 Constraints and Scaling Functions

To measure the first—order sufficient conditions in a constrained comtexgllow [CL96] where it
was shown that the first—order—sufficient conditions of

u € B:J(u) = min!
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are equivalent to
u€B:Du)VJ(u)=0

whereD(u) € R™*™ is a diagonal scaling matrix defined as

D)y = {(¢_ Wi i (TI(w); <0 16
(u—¢)i if (VJ(u));>0

For the sake of notational simplicity, we defifile= D(u;)V.J (u;).

In the next section, we show that Algorithm 1 computes a sequence of #aratwerging to a
first—order critical point. To derive this asymptotic convergence resdtsuppose that an infinite
sequence of iterates is computed by the Trust-Region algorithmyi.e. po.

Moreover, Algorithm 1 will also be employed as an embedded solver in Gh&@ed Chapter 5.
Here, in each call of the Trust-Region algorithm, a limited number of TrusteRegfeps will be
computed.

2.1.4 Convergence to First—Order Critical Points

To ensure convergence to first—order critical points, we search lfawer bound of the actual de-
crease of the objective function depending only on the first—orderittomsl and the Trust-Region
radius. Since the acceptance criterion already bounds the actuahsiedrg the predicted one, it
suffices to assume that for each computed correatidime followingsufficient decrease condition

pred;(s;) > B||gi|l2 min{||g:|l2, A:} (2.1.7)
for 5 > 0 holds. If, in turn, this condition is satisfied, we obtain for each succkssftection
J(ui) — J(u; + s;) > npred;(s;) > nB||gi|l2 min{ || g |2, As} (2.1.8)

Therefore, in order to prove a sufficient decrease of the objeaiivetibn, it suffices to assume that
the quadratic minimization problem is solved sufficiently accurate. In particalleorrection may
satisfy the sufficient decrease condition, even if the quadratic minimizatairigon (2.1.2) is solved
approximately. In fact, the following Cauchy condition can be employed tavlesther a correction
induces a sufficient decrease or not:

w1<81> < sz(szc) w.r.t. HSZHOO < A;andu; +s; € B (2.1.9)
The Cauchy point¢ € R™ is the solution of

! i(5)  llslloo < Ay ui+ 5 € B 2.1.10
{s:—t(anil)IzlgiltZO}{w (s) [l u; + 8 } ( )

Here,3 > 0 is an a priori chosen constant ahg = D(u;) (cf., [CL96] and equation (2.1.11)). Since
an accepted Cauchy point induces a sufficient decrease of the wbjkatction, as will be proven
in the following lemma, each correction satisfying (2.1.9) does also. Henaghettk whether a
computed correction satisfies this criterion or not, one omyst compute the Cauchy point as the
solution of a scalar constrained minimization problem. Exemplary this is done iseadifferentia-

%In the case of dense matrices, this might still be expensive since a mattiar multiplication usually take®(n?)
operations
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tion in the proof of the following lemma.

Lemma 2.1.1. Let assumptions (AL), (A:2) and (Ar3) hold. Then for alk, with «w; € B such that
llg:|l2 > 0 and all s; satisfying (2.1.9) it holds
pred;(si) = c|gill2 min{||gi|2, A} (2.1.11)

1

2 s 1 1

Proof. This proof will be carried out as follows: we will estimate tirevalue reduction, implied by
the Cauchy condition (2.1.9), by a case differentiation.

Criterion (2.1.9) now implies,

—pred,(s;) = ¥i(s;) < mi
pred;(s:) = vi(s:) < §_min_ o(7)

wherep(7) = ¢;(—7(D;)%g;) andt+ = min{75, 7 }. The constant;s is given by

s =max{T >0 : ¢, —u; +7(D;)%g >0,

6 — 1y (D)2, > 0} (2.1.12)
and||(D;)?gillco < [|(Di)llool|illoo, We obtain forra
Ai S A,L > Az
TA = > - > A
[(Di)?gillc — Collgille — Collgill2
whereCp > 0 such that/i : Cp > 51- — Qi. Now, we estimates,
_ : : (fr—uwiki : CL
™ = mln{l:éfil)llrio —((D)2g:).° l:(1£)11n>0 ((Di)Qgi)l}
= (D 2.1.13
(g0 [DDZgi] ( )
> 1 5 1
= Mgillso = llgill2
Next, we employp(7) = —k17 + $ro72 and
k1= ((Di)2gi, i) = |1Gil|3 K2 = ((D;)?g:, Bi(Di)*gi)

This yields to the following case differentiation.
1) If 7* < 71 is the minimizer ofy(7) then we directly obtain,; > 0 and after differentiation

7% = K1/K2. This yields

LA S | Y

2k = 2[(D)2]l2lBill2llgill3 T 2C3Cr

p(m7) =
2a) If 7* = Ao andkg > 0 then we have that, /x2 > 7A and thus
K 1 g3 1
1 HngQ < ||91H2Al

P(T%) = —rima+ 2rf <~y < o B A <
2 2 200||gi||2 200
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2b) If 7 = 7o andks < 0 then we have

1 lgill
o(17) = —k17A < _ETA < 19:]1

1
Ul L
R [ BT e

3) ForT* = 715 with analogous arguments it holds

. K1 l19:l2
< —— < 2202
p(t") < 5 ™ S 2Co

Gathering these results yields (2.1.11).
O

As Taylor's theorem shows, a quadratic or linear approximation to a funbgoomes asymptotically
exact. Therefore, in the following lemma we prove that the predicted redustioomes sufficiently
accurate ifA; becomes sufficiently small.

Lemma 2.1.2. Let assumptions ¢(AL), (Ar2) and (Ar3) hold. Suppose, moreover thgl |2 > ¢ >
0 and A, is sufficiently small. Then we obtain for the decrease ratio induced by &dwn s;
computed in Algorithm 1

pi=n
Proof. Exploiting (A¢1), (Ar2) and the mean value theorem yields for sufficiently small
J(ui + i) — J(ui) = (95, 53)

with g, = VJ(u; + 7s;) wherer € (0, 1). Using the definition of the decrease ratio ahdas well
as (Ar2) and (Ar3) yields

Ipred;(si)||pi — 1| = [J(ui + i) — J(ui) — {gi, 5i) — 3 (s, Bisi)|
|4 (si, Bisa)| + [(Gs — 9i» 83)|

IN

< 3Calsill3 +1lg; — gill2llsil2
< 2Cgsil% + nllgs — gill2llsillso
< 2CB(A)*+nlg; — gill2Ai

Note thatA; # 0 for : € N and that we may employ that (2.1.7) holds and obtainl,(s;) > 0.
Multiplication with (A;)~! yields

(Ai)~'Bemin{e, Ai}pi — 1| < (D)~ |pred,(s)]|p; — 1]
< A +nlg; - gl

Now, we can conclude that if we redugg, the right hand side of this inequality converges to zero
and sincel|s;||2 converges to zerdyu;); converges inC. Therefore, we obtain foA; — 0 that
|pi — 1| — 0 and, in turn,

pi =1
for sufficiently smallA;. O

Finally, we will prove convergence of a subsequence of the iteratestedider critical points.
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Theorem 2.1.3.Let assumptions (Al), (Ar2) and (A-3) hold. Then we obtain that the sequence of
iterates generated by Algorithm 1 has the property

liminf ||gi|]|2 = 0
1—00
Proof. Assume that the proposition does not hold, i.e., there exists:ar) and an index, such
that||g;|[2 > ¢ for all i > vy. If this is the case, the sequence of Trust-Region radii converges

to zero: if there are only finitely many successful corrections the updaézian (2.1.4) directly
impliesA; — 0. If there are infinitely many successful corrections, we have due t@j2.1

J(u;) — J(uiv1) > nBemin{e, A}
for each successful step. On the other hand, the levBlsetompact, we obtain
J(u;) — J(uip1) — 0

which impliesA; — 0.

Now we use Lemma 2.1.2 and obtain that for sufficiently smhalévery correction must be success-
ful, which contradicts thaf\; — 0 and proves the proposition. O

Theorem 2.1.4.Let assumptions (AL), (Ar2) and (Ar3) hold. Then we obtain that the sequence of
iterates generated by Algorithm 1 converges to a first—order critical poat,

lim {[gg[|2 =0
1—00

Proof. We follow the proof of Theorem 6.6 [UUH99] which was carried out bytcadiction. Due
to Theorem 2.1.3 we know that there exists a sequémgg); C (u;); such that

gu;ll2 < &2
Now assume that there exists a subsequenc¢e;df, such that
gilla > e1 > 0forall L; <i < U; (2.1.14)

whereL;,U; € Nande; > e.

Sincegy; # gu,—1, the previous correction must be successful. We employ (2.1.7) and olbéin
the actual reduction is bounded away from zero by a term dependifig fhandA,. In particular,
we obtain for all successful correctionsin < i < Uj

J(ui—1) — J(u;) > nfey min{e1, A;_1} (2.1.15)

Since, is compact,J(u;—1) — J(u;) — 0. This implies that\; must converge to zero for allwith
L; <1i < Uj. Therefore we obtain for sufficiently large

J(ui—1) — J(u;) > nBerli—1 > nPer|lu; — ui—1]|oo

&1
> nﬁﬁuui —ui—1||2
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Now, from the triangle inequality we obtain
€1
J(ur,;) — J(uy;) = nﬁ%\le — ug; [|2
and, thereforeljuy, — uy,|l2 — 0. But,

192, — 9u;ll2 = |9z ll2 — [|gu;ll2 = €1 — €2 > 0 (2.1.16)

Note, due to the definition of the scaling matfi{«) and the assumptions {A) and (As2), we ob-
tain thatg is uniformly continuous orC. Thus, equation (2.1.16) contradicts the uniform continuity
of g and assumption (2.1.14) must be wrong. O

2.1.5 Second-Order Convergence

As we have seen in the previous section, the proposed Trust-Regiaithalg@ims at the com-
putation of first—order critical points, which might, indeed, be no local minirsizefo achieve
convergence to second-order critical points, i.e., paintdich satisfy

(D(w)s, V?J(w)D(T)s)
D@)VJ@) = 0

forall s : w + s € B, more restrictive assumptions on the corrections are necessary.ticulzay
convergence to a second-order critical point can be proven if thdrgii@mminimization problems
(2.1.2) are solved exact andAf; converges t&v2.J (u;) [CL96].

Though, obviously, the exact solution of the quadratic model problems&derably more restric-
tive than the by now stated assumptions. Moreover, if the Hessian is indgdirtitgarily non-convex
constrained quadratic minimization problems must be solved which usually makagptication of
direct solvers necessary. For an overview of solution strategiesdefiiite quadratic minimization
problems we refer to [CGTO00] and to [YZ01].

2.2 The “Traditional” Linesearch Framework

In the previous section, we have seen that solving hon-convex minimizatiiaems by means of
a Trust-Region strategy makes the solution of problems of the type (2.1.833@¥. In case of a
positive definite matrix3(u), this minimization problem reduces to a pointwise constrained system
of linear equations which might easily be solved employing a projected cg—thgtlemmbination
with a good preconditioner. But, as pointed out in the previous section, ifl#fssian orB(u) is
arbitrarily indefinite, the solution of (2.1.2) is computationally expensive.ddeer, if the decrease
ratio is not sufficiently good, the correction is discarded and anothezatarn must be computed on
basis of altered constraints.

Thus, to save computation time, it often is preferable to somehow damp andabpbmputed
corrections. Therefore, in each Linesearch stegearch directions; is computed - often as the
solution of a quadratic minimization problem - and rescaled employistep—length parameter
a; € (0,1]. The next iterate is then given as

Uit1 = Ui + Qi

In contrast to Trust-Region methods, the step—length paramgi®computed independent from the
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solution of the quadratic minimization. But, to ensure convergence the stgph-learameter must
be chosen such that it satisfies a decrease condition of Armijo—type.

2.2.1 Assumptions on the Objective Function

As in the Trust-Region setting, some modest assumptions on the objecti@fuhné¢rom (M) must
be stated. But, since no decrease ratio is computed, it is not necessamtdate assumptions on
the matricesB;. On the other hand, since the acceptance criterion is of Armijo-type it issace
to suppose that the gradients are Lipschitz continuous (., also [NWO06, JS04])

(Aisl) For the given initial iterata® € B, we assume that the level set
L={ueB]|Ju) <Ju}
iSs compact.

(Ais2) We assume that is continuously differentiable o and that the gradient is Lipschitz con-
tinuous with a constant, > 0, i.e.,||VJ(u) — VJ(u + s)||2 < Lgy||s||2 for all u € L.

2.2.2 Assumptions on the Search Direction

As we have seen, in the Trust-Region framework assumptions on thetionig quality are stated in

form of the sufficient decrease condition and the acceptance crit&ath criteria ensure a sufficient
decrease of the objective function, whenever a correction is acce$tedlarly, in the Linesearch

framework, a sufficient decrease of the objective function will be obthif

o the search direction is a sufficiently good descent direction
e the search direction is scaled such that the Armijo condition is satisfied

As it turns out, the following descent condition is too weak to prove comrerg of the resulting
Linesearch method
(5i,9i) <0 (2.2.1)

whereg; = D(u;)VJ(u;) as defined in Section 2.1.3. Thus, we introduce the more restrictive
condition

Isill% < Bisllgill% (2.2.2a)
—(si,9i) > mis||Gill3 (2.2.2b)

whereg;; > n;s > 0 are some positive constants. Similar to the Trust-Region constraint, equation
(2.2.2a) leads to an additional condition for the computatiosy .of

A Practicable Decrease Criterion

Similarly to the argumentation for Trust-Region methods, (2.2.2b) is at leatdoCauchy point
s¢ = —7(D;)?g; satsified which is the solution of the following problem. Find & 0 such that

(2

—(—7(D;)?g;, 9;) = max! w.rt. u; — 7(Di)%g; € B and [|7(D;)?gill2, < Bislldill%, (2.2.3)
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In the following lemma we will show that this Cauchy point satisfies the descentition (2.2.2b).
In turn, if a computed search direction does not satisfy (2.2.2b), one miigiply substitute this
direction by the Cauchy point in order to obtain a valid search direction.

Lemma 2.2.1. Suppose that assumptiongs@A and (As2) hold. Then there exists ap; > 0 such
that for all u; € B with ||g;]|2 > 0 the Cauchy point¢ from (2.2.3) satisfies inequality (2.2.2b).

Proof. In this proof we estimate the maximal possible step—lengt®bviously, we obtain by con-
structionT = min{7g, 7A }. Similarly to Lemma 2.1.1, we define

5 ¢ max{T >0:u; — 7(D;)%g; € B}

A + max{r > 0: |7(Di)gill3 < Bisllgill3}

Now, we employ that there exists &fy, > 0 such that¢ — ¢)? < C and obtain

a2 L g il B
- S

[(Di)?gill% Collg:illz ~ Co

If we suppose that (A1) and (As2) hold, we obtain furthermore that there exists a constant 0
such that|g(u)|]2 < ¢4 for all u € £. Moreover, equation (2.1.13) gives rise to

194113
1D:l|3 M| Digill3

TA = s | > Bis

1 1
> =

TB 2 =
gill2 — ¢4

Both together now yields

ol Bis -
—(—7(D;)?gi, 9i) = 7(D;gi, Digi) > min{—, ="} 4ll3
cg Co
Now choosingy;; = mln{g, o} givesrise to
— (s, 9i) > msldill3
which concludes the proof. O

In fact, employing the negative gradient as search direction goes baitie ttamous work of

L. Armijo [Arm66], who has proven convergence of a steepest déscethod in an unconstrained
setting. Though, the steepest descent method employs a first—ordexiapgron on the actual

decrease ity and therefore, a condition like

m]}%n THEN such that (2.2.2) and; + s; € B hold (2.2.4)
seER™

would generally yield better search directions. Hergis the quadratic model from (2.1.1).

2.2.3 The Armijo Condition as Step Length Control

The second step in computing the actual correction is to ensure a desfélas@bjective function.
Therefore, we employ the following Armijo condition for the identification of @pmpriate step—
lengthay, i.e.,

J(UZ —I—ozz-si) < J(ul) —i—pAai(si,VJ(ui» (2.2.5)
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Figure 2.2: This figure illustrates the Armijo condition. A& can see, the ray(u;) + paa(s;, VJ(u;))
starts at/(u;) and points in directiop 4 (s;, V.J(u;)). Sinceps € (0, 1), there always exists an environment
aroundu; where the Armijo condition is satisfied.

wherep4 € (0, 1). Note that also unacceptable small step—lengths satisfy (2.2.5) which migholea
extremely slow convergence, or, even worse, to an undesirable stai, dtten the Armijo condition
is extended to th#Volfe conditiondy adding the following curvature criterion

(i, VJ (ui + ais;)) > pw (VI (us), si)

with p4 < pw € (0,1). A different approach to ensure sufficient progress is to employ tleving
backtracking algorithmAlgorithm 2, to compute a step—length satisfying (2.2.5).

Backtracking Algorithm

Input: s; € R”
Constants: ag € (0,1], 7,pa € (0,1)
Output: Step lengthy;

i=0
do {
if (u; + a;s; satisfies (2.2.5)]
return «;
} else{
Qi1 = TQ;
i=1+1

Algorithm 2: Backtracking Algorithm

As it turns out, under the presented assumptions, the backtracking aigdeittminates always af-
ter a fixed number of iterations. To this end, we will first show that for ciaffitly small« the
Armijo condition is satisfied and that along with the assumptions (2.2.2) the nurhbackiracking
iterations just depends on the constapisT (from Algorithm 2), L, and3;,.

Lemma 2.2.2. Assume that (AL) and (As2) hold. Then the Armijo condition is satisfied for all
a < &; where
. 2(pa—1)(s:,9:)
Lylsill3

i =
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Moreover, the backtracking algorithm terminates with a step—lengtatisfying
min{ag, 27¢;} < a; < min{ag, 24, }
where, by definitiongy < 1.

Proof. SinceV J is Lipschitz continuous, we might apply Taylor’'s theorem and obtain
1
J(u; + asi) < J(ui) + afsi, gi) + iLga2||s,-||%

Now we exploitp4 € (0, 1) and obtain for allv < &; (by substitutingy in the quadratic part) the
inequality

J(ui + as;) < J(ui) + asi, gi) + a(pa — 1)(si, 9i) = J(ui) + apa(si, g:)

Thus, the Armijo condition is satisfied for sueh Sincera < «, we obtain due to the formulation
of Algorithm 2 that it terminates fat; with

min{ag, 27¢;} < a; < min{ayg, 24;}
]

Next we prove that each step—length parametecomputed in Algorithm 2, is bounded from below
by a constant.

Lemma 2.2.3. Assume that (A1), (As2) and (2.2.2) hold. Then we obtain for eaghcomputed in
Algorithm 2,

2 1-—
o; > min {ao, —77157'( PA) }

nLgﬁls

Proof. Combining Lemma 2.2.2 with (2.2.2) yields

. . . 2(pa — 1)(Si, g
o > mln{a0,27ai}2m1n{a0, (ang||;i<‘|£ogl>}
2(pa — 1)(si, g; 2(1 — 9i |3
> min{ao’ (pa )gsz,zg»}zmn{ao’ ( pA)[IQZZ\z}
nLgBis]|9ill3 nLgBisl|g:ll3
2 1-—
> min {oeo,ms< PA)}
nLg/Bls

2.2.4 Convergence to First—Order Critical Points

In this section, we combine the backtracking algorithm and the assumptions sadrch direction
s; to a Linesearch algorithm for a solution of problem (M), Algorithm 3.

Theorem 2.2.4.Suppose (A1) and (As2) hold. Then the Linesearch algorithm, Algorithm 3, com-
putes a sequence of iterates converging to a first—order critical poirpirslem (M).
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Linesearch Algorithm

Input: uo e R", BCR",J:R" - R
Constants: ;s > 0,81 > 0

i=0
do {
compute a search directien satisfying (2.2.2)
call Algorithm 2 with s; and receive a step—length
setui+1 = u; + @S
i=14+1

Algorithm 3: Linesearch Algorithm

Proof. Due to our assumptions, Lemma 2.2.3 holds and, thus, eammputed in Algorithm 2 is
bounded from below, i.e.,

2 1-—
a > min{ag, 2Tpin } = min {ao, mST(pA)}

NLgﬁls

Moreover, we obtain from the Armijo condition and from (2.2.2a) the followsnificient decrease
condition

J(u;) — J(uir1) > —cipal(si,gi) > cipalldill3
Since (Asl) implies that/(u;) converges inC and sincey; > min{ayg, 27amin } (in all iterations),
we obtain
1gill5 — 0

which proves the proposition. O]

Note that similarly to Trust-Region methods, the combination of step—length t@intthis case:
the Armijo condition as acceptance criterion), assumptions on the objectigédn and quality of
the search directions yield a sufficient decrease condition. Moretbvecompactness @ and the
boundedness af, i.e., the “sufficient progress” of the resulting Linesearch algorithmyigeothe
convergence to first—order critical points.

2.2.5 Second-Order Convergence

Also for Linesearch methods second-order convergence resulpsdiolems of the kind (M) have
been derived. In this section we briefly sketch the approach of T. Colemd Y. Li [CL94]. To
make a Linesearch algorithm second—order convergent, one musikgdst Trust-Region methods)
sharpen the assumption on the search direction. In [CL94], the semectiah must be the exact
solution of the following quadratic, constrained minimization problem:

min{1;(s%) : u; + s € B, [|s%]2 < A} (2.2.6)

whereA > 0 is a fixed constant (replacing (2.2.2a)) and dgr— @ also B, — V2.J(u). Due to
the absence of the a posteriori control structures of Trust-Region dsetiwbich can be employed to
control the second—order behavior of the objective function, the lelegth parameter is computed
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by means of the following second—order Armijo condition
2
J(ui + az8) < J(w;) + pa <<VJ(ui), @is) + %(s, VQJ(uZ-)s>>

As it turns out, the combination of the modified Armijo condition with the new seairelectibn now
suffices to prove convergence to second-order critical points.
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2.2 The “Traditional” Linesearch Framework




3 A Generic Nonlinear Preconditioning
Framework

As we have seen in the previous chapter, in order to ensure coneergbmst-Region and Line-
search strategies damp or rescale the respective search directioesdicig on the nonlinearity of
the objective function. In turn, also the convergence rates dependeomotilinearity of the ob-
jective function. This effect generally holds, even if the search dinestare the exact solutions
of the quadratic minimization problems. Moreover, the (global) rescalingriispen the strongest
nonlinearity on the computational domain which often slows down the conveegef large-scale
optimization problems. Therefore, it would be desirable to avoid a globedlieg and to adaptively
compute search directions within a nonlinear preconditioning step.

Nonlinear preconditioning follows the Krylov-Schwarz paradigm for theatiee solution of linear
systems of equations, where additive or multiplicative preconditionersoanbined with a Krylov
space method. Analogously, in the context of nonlinear fluid dynamics,. XaCand D.E. Keyes
proposed in [CK02] the RECONDITIONED INEXACT NEWTON method (PIN). The PIN method is
a combination of locally applied Newton methods and a global recombination $tiep vogether
constitute anonlinear (left) preconditionerBut, due to the method'’s formulation, one cannot deter-
mine whether or not the nonlinear preconditioning yields corrections wiziokeca decrease of the
objective function.

Eight years earlier, in 1994 M. Ferris and O. Mangasarian introduced®RALLEL VARIABLE
DisTRIBUTION (PVD) [FM94] which can also be regarded as a preconditioned glotialivstrategy
(for a brief outline of the PVD we refer to Section 3.2.4). In fact, this minimizasgorithm asyn-
chronously computes solutions of local minimization problems which are in adetep combined
to a global correction. Moreover, the formulation based on the globatwigefunction allows for
proving convergence. In order to avoid the exact minimization of the Idgjakctive functions with-
out loosing convergence properties, M. Solodov introduced an ihggasion of the PVD [Sol97].
Though, a crucial point of the PVD is the computation of a geettbf damping parameteesnployed
to combine the asynchronously computed corrections. As pointed out BRJFfRese damping pa-
rameters can be the solution of another possibly nonconvex constrainedizaition problem or
simply the best subset correction. The first approach can be realzethploying a filter—based
Linesearch strategy (cf., for instance, [WBO06]) or a SQP Trust-Regjiproach (cf., for instance,
[WTO02]). By simply choosing the best correction, one disposes all heitoorrection.

Similar problems also arised in the beginning of the development of nonlinear rithligthods.
Due to the formulation of the FAS strategy [Bra81], convergence frdaitrary starting points could
not be ensured, too. Only the reformulation based on the objective faratic the introduction of
control strategies within the MG/@x strategy [Nas00] allowed for proving convergence.
Influenced by these concepts, we will introduce nonlinear additive and tizdtipe preconditioning
frameworks employing particular

e domain decompositions

e subset objective functions and obstacles
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As pointed out before, these general and — in the additive contextel framneworks will be ex-
ploited to formulate actual Trust-Region and Linesearch implementations inlktbwifay chapters.

3.1 The Concept behind Nonlinearly Preconditioned Globalization
Strategies

The first concept of a nonlinear preconditioning operator was the Péiegy presented in [CK02].
Here, the operator is formulated by means of the following optimization problem

ucR": G(VJ(W) =0 (3.1.1)

whereG should be easy to implement and speed up the iterative solution proceseg fangimal
optimization problem
ueR":VJu) =0

whereJ : R™ — R is the objective function from problem (M). In fact, this strategy can lgamed
asleft preconditioning Here the original minimization problem is obviously changed to a different
problem. To show that this minimization problem is equivalent to the original minimizatioblem,
restrictive assumptions on the initial iterate and the problem itself must be statédne in [CKO02].

3.1.1 Nonlinear Right Preconditioning

Therefore, we will regard the preconditioning ansatz in the preseristagsright preconditioning
which acts on the pre-image. For linear systems of equations, right gliéioning reads as follows.
For a giveru € R™ find ans € R™ such that

AM(u+s)—b

u

0 (3.1.2a)
M(u+ 5) (3.1.2b)

In the nonlinear case, we are interested in the computation of a criticalpeirth thatv.J(u) = 0
which gives rise to the following unconstrained problem. For a givenR" find ans € R" such
that

VJ(F(u+s))

u

0 (3.1.33)
F(u+s) (3.1.3b)

whereF : R" — R"™ is anonlinear update operatoObviously, if both equations hold,is a critical
point for.J. Therefore, it/ ¢ C?(R") andF € C''(R™) we can apply Newton’s method to equation
(3.1.3a) which gives rise to the following iterative scheme

VA (F(u))F (u)s = —VJ (F(u") (3.1.4a)
u’t = F(u” + s) (3.1.4b)
for a givenu” € R™. Though, a critical point is ensuring a decreasedor!, i.e., J(u’ 1) < J(u").

Therefore, we will now consider two different update strategies inrdalensure that the resulting
method is a globalization strategy.
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Linearized Update Strategy
In this approach we replace the right hand side in the update step (3.&.#ihpas

Fu’ +s) ~ Fu") + F'(u")s
In turn, this equation gives rise to the following nonlinear preconditionimgise

V2J(Fu)F (u”)s = =V J(F(u")) (3.1.5a)
't = Fu¥) + F(u”)s (3.1.5b)

This update scheme has two important advantages. On the one hand, ihécassary to compute
F(u” + s) since the update in (3.1.5b) is based on the already known erfitie’s) and 7' (u”)s.

On the other hand (3.1.5b) splits into two steps which can be analyzed t&iypara

The first step is the computation 8f(«”). As we will see in Chapter 4 and Chapter 5, one important
objective of the present thesis is to define nonlinear update oper&tery which satisfy certain
sufficient decrease conditions. In turn, as we have seen in Chapités 2/ould give rise to

J(F(u”)) < J(u”)

The Newton step in (3.1.4a) will be solved as a Linesearch or Trust-Rstgpn As we have seen,
s = F'(u")s can then be chosen such that a sufficient decrease condition hotdm,lave obtain

J(F”)+s") < J(F")) < J(u")

We will see that this suffices to show global convergence of the iterativense (3.1.5).

Exact Update Strategy

If one employsu’ ™! = F(u” + s), convergence of the method can also be shownigfsufficiently
damped. In particular, as we have just mentioned, we will show that thetopér can be chosen
such that/(F(u”)) < J(u”) holds. Moreover, ifFf € C'(R") we employ a damping parameter
a > 0 and obtain forx — 0 thatF(u” + as) — F(u”). In turn, since/ is continuous we obtain

J(F(u” + as)) < J(u”)

for « sufficiently small. Though, the computation @femploying a backtracking algorithm is quite
expensive, since in each iteratiof(u” + «s) must be computed. Moreover, in order to derive a
convergent schemeys or F(u + as) must induce a sufficient decrease. Though, as we will see,
only for overlapping domain decompositions as in Section 3.1.6, a suffickenéadse forF can be
shown.

Therefore, in the present thesis we will analyze the linearized updategstréioreover, in order to
show convergence, we will introduce novel additive and multiplicativeatgpdperators which allow
for proving a sufficient decrease &f(u").

The Derivative F’

In some contexts, for instance in the context of theDATIVE PRECONDITIONED INEXACT NEW-
TON (ASPIN) method, 7’ can be derived analytically [CK02]. One important assumption in the
analysis of the ASPIN operator is that the local problems are solved exddtlyugh, as we will
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see, in our context this will generally not hold. In this case, it becomes lomatgd and, perhaps,
expensive to computé’, if it exists.

Whereas, as we have seen in the previous chapter, Trust-Regioireserch strategies are able to
compute local minimizers, even if the exact Hessians are replaced byxapptions. Therefore, in
order to avoid the computation @', one might employ approximations such as

Fi(u’) =Y L(V2HY (Peu”) Ry V2T (u”)
k

for additive preconditioning strategies (cf., [CK02]). In a multiplicativétiag one might choose

Fir(w’) = [ [ (V2 Hy (Peu”)) " Rp V2 (u”)
k

3.1.2 Nonlinear Additive and Multiplicative Update Operators

Therefore, we are interested in the construction of nonlinear addittvenaiitiplicative update oper-
atorsF 4, Fur : R™ — R™ which reduce the value of the objective function for a given iterétas
follows

J(Fa(u”) 4+ s")
J(Fpr(u”) +s7)

(u) (3.1.6a)

<J
< J(u") (3.1.6b)
whereJ is the objective function in problem (M). The vectgt = F'(u"”)s results from a possible
global Trust-Region or Linesearch correction as a solution of, forriestahe following problem.
Find ans € R" such that

1
§<8, V2I(Fu))F (u”)s) + (s, VJ(F(u"))) = min! w.rt.u” + F (u”)s € B
As pointed out in the introduction of this chapter, both operat§isand F,; are based on the
minimization, or at least on the reduction of certain nonlinear subdomain olgjdatctions such
that

J(u") (3.1.7a)
J () (3.1.7b)

Since this assumption is too weak to ensure global convergend&bgnd F,;, s¥ must just be
computed by means of a globalization strategy from Chapter 2 in order teedepreconditioned
globalization strategy.

But, from a theoretical point of view this does not answer the questions:

e Can one estimate the reductidiu) — J(Fa(u)) andJ (u) — J(Far(u))?

e Depending on the decompositionlgf, is it possible to just emplogF 4 andF;, from (3.1.6)
to compute a critical point?

An answer to these questions is given in this and the following chaptersurticyar, in (4.1.2) and
in (5.1.4) we will present actual Trust-Region implementations of the absipaeators in (3.1.6).
Actual Linesearch implementations will be introduced in (4.2.2) and in (5.3.7).
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3.1.3 Decomposition of theR™ and Construction of the Transfer Operators

As we have seen in Section 1.3, minimization problems of the kind (M) usually fidse the
discretization of different problems stated in some finite dimensional spécder instance the
LP. For example, in Section 1.3, we employ Finite Elements to discretize systems of g
rise to a problem of type (M). Therefore, the solution of the resulting eisaninimization problem
actually yields a set of coefficients of Finite Element functions.
Therefore, for finite dimensional problems we can generally assume tuatrdinate isomorphism
X : R" — X exists which maps coefficients to elementstin Moreover, if X' can be decom-
posed intoV subsets withY, C X, the original coefficient spadR™ can also be decomposed into
subspaces

Dy = R™ C R® (3.1.8)

with n; < n. In this case, we may also assume that local coordinate isomorplism®;, — X,
exist.
For instance, additive preconditioning strategies usually employ horizdetaimpositions such as

N
U x=x and D,cR" Vk=1,...,N (3.1.9)
k=1

On the other hand, multiplicative preconditioning strategies can employ vedBcaimpositions of
the kind
X=&2...2 XN and Rn:'D()Q...QDN (3.1.10)

3.1.4 The Transfer Operators

Similar to linear preconditioning strategies, the basic principle of the preconiditi@pproaches in
this chapter is to compute search directions for problem (M) by solving elatg less complex
subproblems. In linear Schwarz methods, the starting point for the sulbprcsolution can be
chosen arbitrary since one is free to let the current iterate vanish withiimtee residual. In this
case, the initial iterate on the respective subset is often trivially chosgntlaums, the computed
correction vector is the final subset iterate itself.

In the nonlinear case, this does not hold anymore. Here, beginningafigiveninitial subset iterate

a nonlinear subproblem is solved yieldingabset correction This subset correction is the differ-
ence between first and last subset iterate. Therefore, the choioeiaftthl subset iterate crucially
influences the nonlinear behavior of the employed local objective funatidmakes a proper choice
of a projection operatoifor primal variables, as will be introduced in (3.1.14), important. However,
similarly to the linear case, the resulting subset correction is interpolated th&rgjandard inter-
polation operator as will be introduced in (3.1.11). Figure 3.1 shows theseces and highlights
the influence of different transfer operators, as will be introducederfaiowing sections, to the
resulting subspace corrections.

Construction of the Interpolation and Restriction Operators

As pointed out before, the decompositiori®sf is closely related to the decompositiondf. There-
fore, we define thénterpolation operatorl;, : D, — R"™ as the discretization of the embedding
operator mapping fromt;, to X’ given by

XIpu = Xpu forallu € D, (3.1.11)
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O

u” + Isp

uP + Isp

H h
Uy Ru

Computation on a Subset

Figure 3.1: This figure shows, how the choice of the initidbst iterate influences the resulting subset
correction. In particular, two different subset iteratesehosen, i.e Ru" and Pu". Both subset computations
result in a final subset iteratg” . By definition of the subset iterate, the difference betwiest and last
subset iterate is interpolated and used as correction] s.gand/sp. Applying these subset corrections leads
either tou” 4 I'sp as next fine level iterate or 10 + Is p as next iterate. In general, one of the two corrections
reduces the value of the objective function more than theraihe.

Similarly, if X1 C X} we may define the interpolation operaf(§[H : Dypy1 — Dy as
XpIfqu = Xpy1u (3.1.12)

Since (3.1.11) and (3.1.12) hold aig. is an isomorphism, we have that andI,’j+1 are uniquely
given injections:

I = X 'X;
iy = (X)) ' Xpn

On the other hand, thestriction operatoiis given byRy, = (I;)” andR} ™ = (IF, |)T. Moreover,
there exist constantSg > 0 andc; > 0 such that for alk the inequalities

= < 0 .
[ Rill2 pnax |Rll2 < Cr (3.1.13a)

Amin (Bely) = min  Awin (Rely) 2 ¢1 (3.1.13b)

=1,...,

hold. Here A\in (RiI;.) denotes the smallest eigenvalue of the full-ranked mafix; .

Construction of the Projection Operator

As pointed out before, for nonlinear Schwarz methods initial iterates ar#ipective subsets should
be good approximations to the most current global iterate or the iterate onmebedmg subset,
respectively. Therefore, we assume thatghaection operatorP, : R™ — Dy, satisfies

HX (IkPku — u) ||X § HX (Ikv — u) H)( (3114)
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Fine Level lterate —+—

Restriction ---%---

| A2 Projection ---O---

Paintwise Evaluation -0

05 1
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Rt RRS

Figure 3.2: Comparison of the approximation strength ofstiiterates on a highly frequent global iterate
(solid line) in a multiscale setting. In this example, weudsmn the computation of the value of differently
transferred solutions at Positi¢h The values a) and4 are chosen fixed, i.e., these values are Dirichlet
values. The shown approximations are: A pointwise evaduaif the original iterate (dotted line with squares),
the restricted original iterate (dashed line with cross) tive L2-projection of the original iterate (dashed
line with circle). Note that in this example, th&?-norm of the distance between the respective projected
iterates and the original one ateX; _; (I} 'PE{_,u—u)||> = 2.30 if one evaluates pointwise with PE,

| X1 (IF ' RF_ju — )2 = 1.63 if the iterate is restricted and onlyX;,_ (I} ' PF_,u — u)||p2 = 1.54

if the iterate is projected.

for all u € R" and allv € Dy. Similarly we assume théfk]erl : Dy, — Dy satisfies
1 (TE PE e = ) Il < 1 (T 0 = w) Il (3.1.15)

forallu € Dy and allv € Dy ;.

Remark 3.1.1. Note that the restriction operator does generally not satisfy (3.1.14) or13)1
respectively, and its approximation strength may be poor (cf., Figure 3Bjs is due to the fact
that the restriction operator in standard linear multigrid methods (see forgta [Bra07]) is an
operator acting on dual spaces. Thus, by design, the restriction tgreshould only be applied to
dual quantities as is the linear defect. See Figure 3.3 for an illustration of différensfer methods
for primal variables.
As a consequence, employing the restriction operator to repeatedlyférgmsmal variables from
one subset to another, is numerically instable, since each traagf@sartificial values to the trans-
ferred vector, i.e.,

XkRkaRku 75 XkRku

in contrast to
X Pl Pou = X Pru

The next theorem shows thatif is a Hilbert space, the formulation of the projection operator as the
solution of a least squares problem guarantees that the operator isefiéiet]

Theorem 3.1.2. Assume thai’ and X}, are Hilbert spaces. Then the projected iterate can be com-
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’ Displacemen ts

-
Il ll/TJH\

Initial Mesh Fine Grid Solution Projection Restriction

-0.155

-0.310

-0.466

-0.621

Figure 3.3: Example from continuum mechanics illustrating difference between th&?-projection and
the standard restriction operator in a multiscale settibigre, the sought solution is an “energy” optimal
displacement field. From left to right: initial uniformly releed cube (front view), current fine—level iterate
(displaced mesh)[.2-projection (see also Figure 3.2 and Chapter 5.5) and céetfriof the solution to the
next subset. The restriction operator causes a strongadieplent of the center node. Using the standard
restriction, the value of the displacements at the centée i®obtained by adding the fine level displacements
of all neighbor nodes with a weighting factor vf2 to the given displacement of the mesh’s center node.
Thus, the distortion of the restricted solution is dimensamd connectivity dependent. On the other hand,
the L2-projection operator passes some mean value of the soltithe center node and its neighbors to the
respective node on the subset.

puted as the solution of the following normal equations

(XI)" (X I) Pru = (XI) " Xu (3.1.16a)
(Xerr L) (X L) B e = (X I y) " Xu (3.1.16b)

Therefore, the projection operators are uniquely given by

-1

Py = ((XI)"(XL)  (XIx)"X (3.1.17a)
—1

Pt = ((Xk+1fz’§+1)T(Xk+1I/§+1)) (X1 IF )T X (3.1.17b)

This theorem is a result of Theorem 3.7 in [DHO8]. Note that due to the mauéxsions in (3.1.17),
the projection operator is in general expensive to compute. In partithigprojection operator may
be a dense matrix, even if the interpolation operator is sparse. Thus,tb&eapplication of the
projection is carried out as the solution of a system of linear equationatieq3.1.16).

3.1.5 Example: a Multilevel Decomposition of Finite Element Saces

We consider a multilevel decomposition as given in (3.1.10). For the easgaifam, we will drop
the indexk and denote the coarse level Byand the fine one bj. In the context of Finite Elements,
which are employed to discretize a partial differential equation stated ortaarcdomain) ¢ R¢,
d € N, the coordinate isomorphism is given by

Xh= (Ao NP

Y np
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Figure 3.4: A two dimensional example domain (left imagejiécomposed into four subdomains (right
image). In the setting of a non-overlapping domain decoritiposmethod, usually the nodal basis functions
at subdomain edges are just represented by one domaind(cadister domain). Quadrature, etc. can then
be carried out, if also the neighboring elements are knowtheynaster processor. Therefore, a strip of one
element width is usually also attached to the respectivd@ulin, as a row of ghost elements. In contrast,
sometimes the parallelization in Finite Element packaljks,for instance UG [BBJ97], is designed such
that basis functions at processor edges belong to more ti@processor, yielding that some unknowns are
represented on multiple processors. These unknowns mersthid linearly combined to yield @onsistent
solution.

where ! : Q — R9 are the basis functions. HergX")” X" is the well-known mass matrix/"
with entries
(M")i5 = (A A 120

i1\
Thus, substituting(” into (3.1.16a) yields

1
pH = (RMhI) RM" = (M) 'RM"

As pointed out in the previous section, one wants to avoid inverting a matmx, vt is sparse.
Moreover, since the mass-matrix is well conditioned and symmetric positiveitdefbne may em-
ploy the cg-method, to compute the projected iterate by simply solving

My = R M

on the subseby. Often, for instance for Finite Elements with linear basis functions, it seerms$als
be convenient to substitute the actual mass matrix by the lumped one. Since tlee lonags matrix
is given by

(M), =

{Zk(MH)ik if i = j

0 otherwise

its inversion is cheap which enables us to approximate the projection by

PH = (M")~*RM" (3.1.18)
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3.1.6 Example: (Non-) Overlapping Domain Decomposition Metbds

The easiest possible setting for constructing the respective operatroisoverlapping domain
decompositiorof a Finite Element domain. In this case, the basis functions are usually disttibu
element wise to different subdomains, like shown in Figure 3.4. In our xbihtuffices to distribute
the coefficients. Therefore the set of indi€@s= {1,...,n} is distributed such that

C=JCrwithCinC; = 0iff i # j
k

whereC; C {1,...,n}. Then, we may define the operatBy, as
Ry = (et re,,)" (3.1.19)
where we assume that, = (I1,...,1,,) an(jez- is the:-th Euclidean unit vector ifR"™. Therefore,

we can define?y, = Ry, I, = R andP;, = Ry.

In the case obverlapping domain decompositiomethods (cf. for instance in [Bas96]), the interpo-
lation operator is employed to linearly combine different vectors from diffesubsets as follows

(5); = Zﬂik<3k)ik (3.1.20)
k

wheres;, € Dy. Here, the index,, corresponds to the indexon Dy andy;, € [0,1]. If i & Cy
we simply defingu;, = 0. Often, it is reasonable to assume that the sum of the respective weights

equals one, i.e.,
> iy =1
k

If this is not the case, the interpolation operator will over-relax or umelexx the computed subset
corrections. However, the analysis of the next sections will hold in this,¢ae. In either case, the
interpolation operator for an overlapping domain decomposition is given by

piy ifip =37
L) — : 3.1.21
(Tk)i {O otherwise ( )

Note that by construction, each global unknown is linked to at most oneawrk on each subset.
This means, that
for all i, k there exists at most ore » "(Ij)i; = (Ix)i

J
For this class of overlapping domain decomposition methods, the projectioaitopis given by

s {) E 2

0 otherwise

These assumptions are, for instance, satisfied by the interpolation operé following example.
Here, we decompose tiR’ into two subsets with one node being represented on both subsets. For
an illustration of this example we refer to Figure 3.5. Hence, the corresppimterpolation and
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Global Context

Subdomain D4 Subdomain Dy

Figure 3.5: A one dimensional domain withunknowns is decomposed into two subdomains. Each of the
subsets ha3 unknowns, such that an overlap of one unknown exists. Asateld, the resulting interpolation
at this unknown will be the mean value of the correspondirgdesat the subdomains.

projection operators are given by

1 0 O 0 00

01 0 0 00

IL=10 0 0.5 Ib=105 0 0

00 O 0 10

0 0 O 0 01

and

1 00 00 00100
=101 0 0 O P=10 0 0 1 0
00100 0 0001

3.2 Abstract Formulation of the Nonlinear Additive Preconditioning
Operator

Currently two algorithm classes coexist which may be employed to solve (Mjrallpl and locally
nonlinear: the PVD/PGD framework and the ASPIN framework. Some dootaddests for the
PVD show, that this approach seems to work well at least for elliptic prob]EX898]. Moreover,
the ASPIN method, which does not have a convergence control and ahég employed generally
for the solution of the problem (M), has been tested extensively. Fomicstam [CK02, CKY02,
CKMO02, HXCO05a, HXCO05b] it was shown that ASPIN is efficient and takefor a certain class of
PDEs.

In this section, we will present a (novel) generic framework for nonlimeklitive preconditioning.
Here, we will define nonlinear subset update operat@rahich reduce the value of particular subset
objective functions as will be defined in (3.2.1). The interpolated locakctions are then combined
by a nonlinear recombination operator. The result of this recombinatiaegsds then the nonlinear
update operataf 4. As it will turn out, this concept covers the novel APTS and APLS strasegie
from Section 4.1 and Section 4.2, but also the PVD approach, as showtinis3.2.4.

3.2.1 Derivation of the Additive Subset Objective Function

In this section, we aim at the construction of a nonlinear, additive updamsatop 7 4. We will
see that it is crucial to connect the problems, which are solved wihirto the global minimization
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problem (M). To this end, we follow the approach which S. G. Nash megdor nonlinear multigrid
methods [Nas00], and couple the gradients of the respective objeativBdns with each other.
Let us start with mentioning that if in the-th iterationu” € R™ denotes the current global iterate,
the initial iterate onDj, from (3.1.8) is given byuy , = Py(u”). Moreover, we assume that on
each subset exist sufficiently smooth (arbitrarily chosen) functighs D, — R approximating/
onD;. Note that in many cases also the values of the global itefatmn the neighboring subsets
are necessary to compute a proper approximatiot oh D;, which is taken into account by the
superscriptv in Jy. For instance, in the context of the examples of Chapter 5.5, we employed a
function of the following kind

Ji (ue) = J (up, u)

Whereu% are the components af’ which are not represented @»),.
In the additive case of the present section,dhkset objective functioH; : D, — R for all v > 0
and alll < k < N is given by

H (ug) = J{ (ug) + (0gg, ux — up.o) Yuy, € Dy, (3.2.1)
where, the residualg; € D;, is given by
ogr = RiVJ(u”) = VJi (ug o)

Further assumptions aff;’ and the gradients’ I} are formulated in Chapter 4. The subset objective
function H} from (3.2.1) has the important property that its gradient is dominated by s$técted
global gradient ifu,, is sufficiently close ta.; ,. This means thaV 1}/ (u} ) = R, V.J(u") which
directly yields that the first Newton step d?k is in direction of the restricted gradient. Though, it
turns out that this formulation is broad enough to cover, for instancelapgng domain decompo-
sition methods, or the forget-me-not approach of M.C. Ferris and O.Lgikarian as shown in the
next section.

3.2.2 Example: The Forget-Me-Not Approach

To speed up the rates of convergence of theA.LEL VARIABLE DISTRIBUTION approach, in
particular if only the best subset correction is chosen, M.C. Ferris and\angasarian propose to
solve the following problem

(s Ak) € D X RPF 2 J(ug, u¥ + SpAp) < J(@, ul + SpA) (i, A) € Dy x RP*

Whereu% are the components af” which are not represented @b, p, € N andS; € R"*Px
realizes
SE)‘ = )\18@71 —+ ...+ )\pSEJ?k

such that each search directign, € R" is consistent with the distribution of the variables. Follow-
ing [FM94], this means, that the interpolation operator

I, = (I, S¢) (3.2.2)

has rankn + py. Here, we used, = (R;)”, P, = R), and R, is as defined in equation (3.1.19).
Now, if uy, , = (Pyu”,0) we obtain

Hku(ﬂ,k) = J(uk, U% + SE)‘E)
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wheret, = (uk, )\lc) since
RpV I (u") = V(a0 (i, ug + SEAR) | .0)

whereR;, = (I;,)" from (3.2.2)

A Note on Second Order Coupling Terms

In [GSTO8] it was proposed that one might employ second—order cgums, as far as the ob-
jective functions are twice continuously differentiable. Also in the additimetext, second—order
coupling terms could be employed, such as

rTv v v v 1 v v v
H (ug) = J§ (ug) + (g5, uk — up o) + §<ukz — Uy 0, 6By - (ug — up))
where

égr = RpVJ(W”) = VI (ug)
6By = RpV*J(u")I — V>Jf (uf o)

In fact, if one employs this subset model, one ties the subset problems dkerglobal ones, in
particular, if the objective functiod is not closely related td. But, even if our analysis, in particu-
lar, the arguments in Lemma 4.1.4 and Lemma 4.2.4, still hold, we will, due to negessanthness
assumptions, focus off;/ as objective function. This enables us to prove global convergertbe of
APLS and APTS strategies, Jfand.J; are just continuously differentiable.

3.2.3 The Nonlinear Additive Update and Preconditioning Opeators

Now, the definition of the subset objective function (3.2.1) enables us tudinte a subset update
operatorF;, : D, — R as
Hy (Fi(Pyu”)) < Hy (Ppu") (3.2.3)

whereu” € R™. In the context of the present work the actual implementatiof0 either a Trust-
Region or Linesearch strategy @n.. Therefore, we can define the additive and nonlinear update
operator by

fA(uV) = .AV (Il(}"l(u”) — Pl’u,y), ey IN(.FN(UV) — PNUV), u”) (324)

whereA” : (R")N x R — R" is the nonlinear recombination operator. The particular definition of
the recombination operator depends on the framework it is used within. &aate of Linesearch
methods, the subset correctigh= Fj,(u") — P,u” is computed such that it satisfies a decrease con-
dition and is, thus, a sufficiently good search direction. In turn, in the Aftt&8egy in Section 4.2
the recombination operator is given by

Arprs (I1s], ..., Insy,u”) = u” + aAZIkSZ
k

with a4 € (0, 1] is chosen such that the Armijo condition holds (cf., Section 4.2.1). Note thag as
have seen in Section 2.2, a Linesearch parameter- 1 can cause that the rescaled correction is
not admissible ir3.
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On the other hand, in the context of the APTS strategy in Section 4.1, thebétation operator is
given by

u’ + > sy it Yo, Iisy is “sufficiently good”

Apprs(1sT, ... INsy,u”) = .
Y ’ u? otherwise

In our context, the nonlinear subset update opetatds formulated based on the objective function.
Moreover, in contrast to the concepts in [FM94, CKQZ],(u) is not necessarily a local minimizer
of HY/, butin most examples an approximate solution of the problem

fk(Pku”) € By : HZ(?]C(P]CUV)) = min!

3.2.4 Example: Parallel Variable Distribution

The PVD principle looks similar to the ASPIN method, where in a first step dsgnously local
problems are solved, i.e.,
SZ €Dy : VHZ(P]CUV + SZ) =0

Though, the PVD approach employs the local objective functiQ(iy) = J(u, ug + Sy ;) and
the transfer operators as presented in Section 3.2.2. In the PVD congeatevinterested in finding
a local solution for

(uk, /\k) € Dy x RPF Hk(ak) = J(uk,u%-i- SEAE) = min!

For givenuy, = (uk, A;) ands; = wu, — Pyu” the recombination operator is the solution of the

following nonconvex, constrained minimization problem. Fipd, ..., ux) € RY such that
J (u” + Z 12753 (IkSZ + Sk)‘k)> = min! (3.2.53.)
k
> =1 (3.2.5b)
k
u’ + > pk(Tesy + Sph) € B (3.2.5¢)

k

Therefore, the recombination operator is given by

AEVD(Ilsl + ST)‘Tv oINSy + Sﬁ)\ﬁ, u”) =u” + Z Mk(IkSZ + SE)‘E)
k

In turn, the nonlinear update operator is given by
F(u”) = Apyp (1151 + STAL, - - - INSN + SyAy, u”)

As M.C. Ferris and O.L. Mangasarian show, the approach is a globalyeogent solution strategy.
Though, in order to compute the damping parametdrs(3.2.5) one must solve another minimiza-
tion problem which generally cannot be carried out asynchronously.
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3.2.5 The Construction of the Subset Obstacles in the AdditesSetting

In order to define the subset obstacles, we follow [Man84] and asswahéhthlinear interpolation
operators have the following property

Vi, j

(Ir)ij = 0
SV (3.2.6)

(Illjﬂ)ij

Such an assumption is reasonable, for instance for Finite Elements with lodarbasis functions.
Though, in [GMTWMO08], S. Gratton et al. have shown that multigrid obstackn be derived
even for non—positive interpolation operators, such that the resultimgations are admissible in
the sense of the obstacles/®f Similar arguments also allow for constructing obstacles for additive
decomposition frameworks with non—positive interpolation operators.

However, for the ease of presentation, we restrict ourselves to theélasassumption (3.2.6) holds.
Then, the respective subset obstacles are given by

(@k(u”))j = (Pyu”); + mlax{ﬁi(g —u”); : (1) > 0} (3.2.7a)
(B0 )y = (Peu); + min {06 —u”); : (1) > 0} (3.2.70)
with
o 1
Ll T (I

We also define the set of admissible solutith$u”) C Dy as
By (u”) = {ux € Dy | ?k(uy) <up < 5k(uy)} (3.2.8)

whereu” € R" is the current global iterate. We will see that this definition of the subséadles
has two major advantages. By construction, the projection of each admissihle is admissible
on the subset, i.ey € B = Pyu € Bi(u). Moreover, we will see that if the current global
iterate and the subset iterate are admissible, then the updated global itetateadraissible, i.e.,
u € B= Falu) € B.

Example. In Section 3.1.6, we have seen that the interpolation operator is a permutatiox, ma
if R™ is decomposed int&V non-overlapping subset®y);. In this case, the subset obstacles are
trivially given by

(9,)i = (¢); and(dy)i = (¢),

where we assumed that th¢h index on a subsé®;. represents the global indgx In the context of
the non—overlapping domain decomposition in Section 3.1.6 we have

(¢,)ir = (8); and(¢y)i, = (9);

Here,iy is the index of the unknown which represents the global unknoenmDy.

In a similar fashion like in [Man84], we will prove that the additively updatémbgl iterate 4 (u)
still is admissible forB. As it turns out, the proof is tailored to the recombination operator of the
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PVD approach and the operators in Chapter 4.

Lemma 3.2.1. Assume that. € B, that Fi.(u) € By(u) and that the recombination operator is
defined as

u’ + Y aplysy if >0 ardysy is “sufficiently good”

A(Is1,...,Insn,u”) = ,
(L3 NaN,u’) {u” otherwise

whereqy, € (0,1] ands) = Fi(Pyu”) — Pyu”. Suppose that the new iterate is givenBy(u) =
A(Iys1,...,Insn,u”). Then, we obtain
Falu) € B

Proof. First we will show thatF4(u) > 9. If no correction is applied itF 4, the result is trivial. On
the other hand, due to the definition of the subspace obstacles, equaian, @nd

Fi(uw)j 2 (8,); = (Pi(u)); + max{di(¢ —u)i : (Ir)i; > 0}

we have
(Fr(u) = Pr(u)); 2 max{¥i(¢ —u)i : (I)ij > O}

Now we use the definition af;, ¢, —ui <0 anday < 1 and obtain the following inequality

N ng N
> ap (Z(fk)z‘j max{¥;(¢ —u)i : (Ix)ij > 0}> > Y
k=1

k=1 j=1

ag, (Z(Ik)ijﬁi(qf) — U)i)

Jj=1

N Nk
> Z (Z(Ik)iﬂ%(ef) - u)z)

k=1 \j=1
= (¢—wi
Combining the previous inequalities with the definition of the additive updateatpeyields
N
(Fa))i = wi+> oI (Fe(u”) — Pew));
k=1

= ul—l—Zak (Z Iy, z](]:k( ") - Pku)j)
=1

v

u; + Zak (Z It)ij max{z? (¢ —u)i: (In)ij > 0})
7j=1

v

Similar arguments yieldF4(u)); < (¢); which proves the lemma. O
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3.3 Abstract Formulation of the Nonlinear Multiplicative
Preconditioning Operator

Multiplicative, nonlinear preconditioning strategies are subject to resesmce the introduction of
the FuLL APPROXIMATION SCHEME (FAS) by A. Brandt [Bra81]. Similar to the ASPIN method,
the FAS method provably converges for elliptic problems (see, for ins{iRe@e38a, Reu88hb]).

Almost 20 years later, S. Nash introduced the M@1@cheme, a nonlinear multigrid method with
globalization properties [Nas00]. Moreover, MG#Ohas proven to be efficient and reliable as
presented in various scientific works [LNO5a, LNO5b, LNO6]. Also astens to Trust-Region and
further Linesearch frameworks have been proven to be highly efficied reliable globalization
strategies [GMTWMO08, GM$09, GK08b, GK08c, WG08].

In this section, we will introduce a framework for the multiplicative update a7, which ex-
tends the MG/Opt framework to a more general, constrained framewor&mapbbys the novel pro-
jection operator introduced in Section 3.1.4. But, in contrast to the additivesfivork, the nonlinear
update operator is recursively formulated since, as for multiplicative &chmethods in general,
the computation of each new correction depends on the previous onesn, lthe subset objective
functions and the subset obstacles depend on the current iterate oftimup subset and no longer
on the most current global iterate.

3.3.1 Derivation of the Multiplicative Subset Objective Furction

It will turn out that the multiplicative update operatét,; is based on inclusions of the respective
subsets. Similar to the additive framework, on each subset a local sm@qtieapplied to compute

a new iterate. Then, either a recursion is called¢if > Cy1, or the computed correction is
interpolated to the previous subset. Hefg, is a set of indices represented ®). As we have
seen, in the context of domain decomposition methods, these stand for lradisris which are
represented on thieth subdomain. In contrast, in multiscale methods, these indices stand fa&r node
which are part of the coarse and fine grid.

Therefore, similarly to the objective function used for the nonlinear agdjtreconditioning, the
objective function depends on a restricted gradient and a subsetiobjmction which may be
chosen arbitrarily. Thus, the initial iterate @, # R™ in the v-th iteration is given byu; , =

k . .
Py (uy_,), whereuy_, is the current iterate ofy_;.

Therefore, for a given subset functiofj : D, # R" — R the (multiplicative)subset objective
functionH; : D, — R is given by

Iy (uk) + (6%, uk — u o) if Dy #R"

: (3.3.1)
J(ug) otherwise

HY (ug) = {

forallv > 0andall0 < k < N. If D, # R", the modified residualg; € Dy, is given by
dgy = RZ_1VHZ—1(UZ—1) — VJji (ug )

Note that, in the multiplicative setting, also alternating domain decompaosition methodsseagy
plied yielding that some sef3;, are the global solution spa@¥’, for instance as in the Gaul3-Seidel
scheme in Section 3.3.3. In turn, we obtain a case differentiation in (3.3.1).
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A Note on Second Order Coupling Terms

Also in the multiplicative context, one may employ second—order coupling tesmesnployed in the
following alternative subset objective function

1% 12 12 1% 1 124 1% 1%
HY (ug) = Ji (ug) + (g5, up — up o) + §<Uk — Up 0, 6By - (ug — up )
where

Sof = RELVHY (i) — VIL(uL)
0B, = R11271V2H12171(UZ71)IJ§_1_VQJIZ(“Z,U)

if D, # R™. This second—order coupling term also yields a closer relationship betiveesub-
set objective functions. In this case, the nonlinear multiplicative schenma@scsomehow more
similar to the linear scheme, far; sufficiently close touj , = PF u¥ . However, our analysis
of Chapter 5, in particular the results Lemma 5.1.4 and Lemma 5.3.5, still hold foolfestive
function. But, to keep our assumptions in Chapter 5 as simple as possibld]hjestiemploy the
first-order model (3.3.1).

3.3.2 The Nonlinear Multiplicative Update and Preconditionng Operator

In contrast to the additive preconditioning operator, the multiplicative vensiast be formulated
recursively. As in the additive context the local update operajor D, — Dy has the property

Hy (Fi(u)) < Hy/(u)

However, due to the multiplicative context, the update operator is more comglexhb additive
one and given by
Far(u”) = Ao (So(u”) — u”,u”)

whereA;, : D, x D, — Dy is the nonlinear recombination operator. Here we used the nonlinear
operatorSy, which — by construction — controls the recursions by means of the relaij@isbtween
two succeeding subseR; andDy ;. This operator is defined as follows

S (A (i (St (BE Fulwn) = PEV Fuluwn) ) Fuwn)) )i G 2 Crn
Sk(uk) = Ser1 (F (ur)) if Ck = Chpa
Fie (u) if Cy € Chya

wherery is the index when the recursion returns to the subget Therefore, it is mandatory that
if from C}, a recursion is called, there exists an indgx> k such thatC,, = Cj. Though, in
order to allow for employing pure pre or post-smoothing strategies, thetdefiof 7, also covers
Fr(ur) = ug.

We will consider the respective cases in more detail.

e The first case realizes the recursive part: after calling the nonlinedateperatorF;, a
recursion is called. The resultimgcursively(or multiplicatively) computed correctioiis the
interpolated difference between final and initial iteratelgn 4, i.e.,

I sk = Iy <5k+1(P;f+1fk(Uk)) - P]erle(Uk))
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Algorithm: Multiplicative Update Operator

Input: uro € D,k €N
Output: ur € Dy,

repeat {
ur = Fr(uk,0)
if (Crx+1 D Ch)
return ug,

else if(Cr+1 = Ck) {
Uk+1 = Uk

k=k+1

}else if(Cr11 C Ck) {
call Multiplicative Preconditioning Operatowith ug+1 = Pruk
and receiveit1,m,_, , € R" 1
up = Akl (Wt 1,my ;= Prur),ur)
Upr),, = Uk
k= Tk

Algorithm 4: Multiplicative Preconditioning Operator

Then A, combines the computed correctidﬁf1+1sg+1 with Fj(uy). Finally, in order to con-
tinue with the computatiors,, is called, wheréD,, = Dy, butk < ry.

e The second case realizes a further call of the smoothing operator ouitiensainD;,.

e The third case realizes a final smoothing step on a subset without callinguesican, for
instance when reaching the coarsest grid within a multigrid setting.

An algorithmic formulation of this operator is given in Algorithm 4.

As a matter of fact, the actual definition of the multiplicative recombination opergtas context
dependent. In the context of Trust-Region methods, for instance theSNRd@tegy in Section 5.1,
this operator is given as

ur + sy if sy is “sufficiently good”

A SM,UE) = .
MPTS (521 ) {uk otherwise

Though, Linesearch strategies, such as the MPLS strategy in Sectiorebipldy a rescaling of the
corrections as follows

AwmpLs i (S, uk) = ug + sy
wherea; € (0, 1].
As we will see in the following sections, this multiplicative scheme is well suited to n@d®us

commonly used recursive schemes like V-cycles, W-cycles, but also mudtipécalgorithms of
Gaul3-Seidel type.

3.3.3 Example: A Multiplicative Algorithm of Gaul3-Seidel type

Besides the traditional multilevel scheme, also alternating domain decompositemes or (block)
GauR3-Seidel schemes fit into the just presented multiplicative framewotke liatter case, we de-
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compose th&®"™ employing a non-overlapping domain decomposition as presented in Sectién 3.1
Our Gaul3-Seidel scheme successively computes corrections oissuBse in between, we must
interpolate the corrections to the global context, ensure a descent datkupe global iterate. The
updated iterate, in turn, is then projected to the next subset yielding the initisésiterate. Allto-
gether this is the well-known (block) Gaul3-Seidel scheme.

In this case, we suppose that we can number the respective degfesedoin such that
Cr ={lg,...,ux}fork ={1,...,N;}
whereN; € N, [} =1, < ug, lg+1 = ur + 1 anduy, = n. Now the decomposition is given by
Cy =idx,,Cy = 11,C3 = idX,,,Cy = I,...,Con, = In,, Con, 41 = idXy,

where idx, = {1,...,n} and we defineV = 2N + 1. For instance, if we have = 5 unknowns
and two sets, this would be

C1={1,...,5},Cy = {1,2,3},C5 = {1,...,5},Cs = {4,5},C5 = {1,...,5}

Here, the indices where the recursion return®joare given byr; = 3 andr; = 5. As we have
seen before, within such a decomposition framework, the transfertopesae given as;,, ), and
P, = Ry. Furthermore, we suppose that in each global contgxwvith C; = idx,, the update
operator is given by the identity, i.e.,

Fi=1d

Since a global smoothing is missing, a correction must eventually be compugattioisubsed;, #
R™. This means that i is realized by a Trust-Region method, this means that for a sufficiently
small Trust-Region radius, all corrections are successful and applieds, “eventually” means
an iterationr when the Trust-Region radius becomes sufficiently small. Therefore,nergewe
assume that

Fr. #d

Along with the framework of Algorithm 4 this constitutes the sought-after noalirdock Gaul3-
Seidel framework.

3.3.4 Example: A Multilevel V-Cycle Algorithm

Here, we decompose igx= {1, ...,n} into a sequence of subsets with

ian:C(];Cl 2... ;CN’
Ian = CQN/ 2 CQN’—I 2 2 CN’+1 = CN’

Here we haveV = 2N’ andC; = Cynr1_;. Moreover, the indices where the recursions return to
Dy, are here given by
ro = QNI,Tl =2N' — 1,...,rn21 = N +2

or simplyr; = ronv41—4. This multilevel decomposition may be the result of a successive refinement
of a mesh for a Finite Element discretization. In this case, the indices jnrepresent the Finite
Element basis functions.

We consider a simple example with= 9 which may be the result of a uniform refinement of a
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simple, one dimensional mesh. In this example we have

Co={1,...,9}, C, = {1,3,5,7,9} andC, = {1,5,9}
Cs={1,...,9}, C, = {1,3,5,7,9} andCs = {1,5,9}

Therefore, on each level we compute two smoothing steps, one befb@nanafter the recursion.
As a matter of fact, the coarser levels cannot resolve the fine level wmg 4, 6, 8. Therefore, it
is mandatory to also compute a smoothing steg'gor Cs.

3.3.5 The Construction of the Subset Obstacles in the Multiptiative Setting

As in the additive case, we assume that the interpolation operators satipBriyr(3.2.6), i.e., that
the matrix components are either positive or zero. Now;if ; > Cj and for a given, admissible
iterateuy_1 € Di_1, the set of admissible subset solutions is given by

By (ug-1) = {ur € Dg | ¢, (u—1) < up < ¢p(up—1)} (3.3.2)
with

(Qk(%—ﬂ) = (Bquk—1); +max{di(¢ —up—1)i : (I;")i; > 0}

(@r(un-1)); = (Piyun—1);+min{ds(é —ug_1)i : (I;~")i > 0}

The scaling is defined by
1

> ()i
wheren; = dim Dy, (cf., Lemma 3.2 [GM90]).

As in Section 3.2.3, we will prove that the multiplicatively computed correctioasadmissible in
the context of3.

7

Lemma 3.3.1. Assume that for alk and u;, € By (ui—1) that Fi(ur) € Bi(ux—1). Moreover
assume thaD; = R", u; € B and that]-"J(V]]) (u¥) = A;(I]_ysj-1,u%). Moreover, suppose that the
recombination operator is given by

ug + apIf_ sp—1  if IF | s,_q is “sufficiently good”

A(IF sp_q,up) = )
A {uk otherwise

whereqy, € (0,1]. Then, we obtain
FH () e B

Proof. We will prove the proposition by showing that if the iterate on the previoud is@emissible,

it yields an admissible recursively computed correction.

First we assume thd®?,, is the lowermost subset in the first recursion, such that no recursivety
puted correction was applied yet. In particular this means that eafdr [ < k& was computed by
means ofF(u), and, thus, is admissible, i.ey, € B;(u;—1), which is the induction statement.

Now we consider the case that a recursion was called fopm . By assumption of this lemma, we
have thatF,(ux) € Bi(ug—1). Thus, we have due to the definition of the subspace obstacles for
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up, = Fi(Py~tug_1) on setDy, that
(ur)j > (¢,)5 = (PE_yup—1); + max{¥; (@) — ur—1)i : (Iy")ij > 0}
whereg = ¢, (u") if Dy_y # R™ or ¢ if D, = R™. Then we obtain
(up, — P§_qug—1); > max{di(¢ — uk—1); : (I~ 1) > 0}

Now, we employ the definition of;, thatay, € (0,1] and that(¢, — ux—1); < 0 and obtain the
following estimation

ng
()i + I u = PEyun)i 2 (unen)i + ap Y (I8 max{di(é, —uk—1)i : (IF ")y > 0}
j=1

> (up-1)i + ar(@), — up—1)i = (up—1)i + (¢, — up—1)s

Thus, we obtain
(up—1)i + oDy My, — PE_jug—1); > (0,)i
Employing analogous arguments shows that
(up—1)i + oIy (g — P ug—1)i < () (3.3.3)

This means, that after interpolating the correction to ldvel 1, the resulting new iterate still is
admissible.

Therefore, we can inductively deduce that recursively computagciions are admissible: by as-
sumption of this lemma and induction statement we haveZ&héiy) € By (ux_1) and that

Ap, (Il]§+1 (Sk+1(Pxf+1fk(uk)) - Plf—ka(uk)) ,fk(Uk:))

is admissible. Together this yields that each iteratégns admissible in3; (u;_1) and proves the
proposition. O

Therefore, we have just shown that a certain class of recombinatioatopecan handle the mul-
tiplicative constraints. On the other hand, such results will not hold, if tberdination operator
is based, for instance, on a solution of linear systems of equations. Irags @ne must solve this
linear system subject to the global constraints.

However, in the next two chapters we will introduce particular LineseanchTrust-Region imple-
mentations of the just presented abstract concepts which give rise tatia¢ @udate operators 4
andF,; which were employed for computing the numerical results in Chapter 5.5.



4 Nonlinear Additively Preconditioned
Globalization Strategies

As we have pointed out before, the convergence of globalization seatpgrticularly depends on
the nonlinearities of the objective function and, in turn, on the rescalingeafdirections and search
directions. In our case, the Trust-Region corrections are, due to thieyedy - ||..-norm, rescaled
by means of box-constraints. But, different norms might generally leaabsterf convergence. Thus,
in the late 1970s many researchers focused on reformulating the TrgistrR®nNstraint by employ-
ing scaling matrices and different norms (cf., for instance [Mor78, DS8Biit the Trust-Region
rescaling may make the solution of the constrained quadratic minimization prokfmmsive (cf.,
for instance [Vav91]) and, in turn, the Trust-Region algorithm itself impecable. Similarly, it may
be desirable to compute Linesearch step—length parameters which agajesoale the computed
search-direction.

The purpose of this chapter is to introduce two concrete implementations otidlitev@ precon-
ditioning strategy presented in Section 3.2 which aim at the computation of reehséirections
by the independent solution of local minimization problems. In particular, gncieg the asyn-
chronous solution Trust-Region radii and Linesearch parametersecahdsen independently on
each subset, we derive a locally adaptive globalization strategy for (M).

4.1 Nonlinear Additively Preconditioned Trust—Region Methods

Obviously, the exact solution of local minimization problems as proposed inARalREL VARI-
ABLE DISTRIBUTION framework is expensive and may, for objective functions with arbitrary-n
linearities, result in poor search directions. Therefore, we changpdin¢ of view, and consider
the adaptively computed corrections as corrections for the global pnof\g. In particular, this
enables us to control the local step—length by means of one global Teg&tRradius which, by
construction, reflects the current nonlinearityJofrom (M). In turn, we are not in the need to solve
a global minimization problem to compute a set of damping parameters. Theraferwill just
extend the Trust-Region framework of Section 2.1 to the framework of rearliadditive domain
decomposition methods, as presented in Section 3.2.3 to the following assumptions

(Aapisl) For a given initial global iterate® € B, and for allv > 0, all k € {1,..., N} and all initial
iteratesuy , = Pru” onDy, we assume that the level sets

£ ={ueB|Ju) < Ju))}

and
Ly =A{u € By(u”) | Hy(u) < Hi(ug o)}

are nonempty and compact. Here, the subset objective fundii¢grare given by (3.2.1)P;
is defined as in Section 3.1.4 aBig(u") is given by (3.2.8).
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(Aapt2) We assume thaf is continuously differentiable og?, and that for allv > 0 and all
k € {1,...,N} that H} is continuously differentiable od’}. Moreover, we assume that
there exists a constant, > 0 for all u € £ anduy € £Y such that|V.J(u)|2 < C, and
|\VH{ (ug)|l2 < Cy, respectively.

(Aapts3) We assume that for alt > 0 and allk = {1,..., N} there exists a constadtz > 0
such that the norm of each symmetric matBXu), and B (uy) in (2.1.1) is bounded, i.e.,
|B(u)|]2 < Cp and|| By (ug)||l2 < Cp for all u € £ anduy, € LY.

Remark 4.1.1. In contrast to linear additive Schwarz methods, assumptigpdh — (Axpts3) cannot
be derived from (A1) — (Ar3) since the subset objective function mainly consists of the nonlinear
objective function/;/, which may be chosen arbitrarily.

4.1.1 The APTS Framework

The paradigm of the Nonlineakdditive PreconditionedT rust-RegionStrategy, Algorithm 5, is to
combine a priori and a posteriori strategies to

1. compute sufficiently “good” corrections

2. ensure a sufficient decrease

In fact, we control the step—length of the locally computed corrections byisnefaa global Trust-
Region radiusA”. Moreover, to prevent that the computations on some subsets dominatedige wh
strategy, the computation on a subset will only be carried out, if a certaitioredaip between the
initial local gradient and current global gradient is satisfied, i.e., equéid.6). To control that the
computed corrections really induce a sufficient decrease we introditiceeguation (4.1.1) a new
decrease ratio. In combination with the local and global application of thet-Region algorithm,
Algorithm 1, we obtain a certain implementation of the abstract framework daid®e®.2, the APTS
algorithm, Algorithm 5.

Notation

During the parallel solution process we will empléyinstances of the Trust-Region Algorithm 1.
Therefore, in thes-th APTS cycle, on subsé®y, in iteration: of Algorithm 1 we will denote the
current iterate by, and the Trust-Region radius @y, ,. Trust-Region corrections will be denoted
by si ;. On the other hand, variables in the Trust-Région algorithm employed fossilpe global
post-smoothing are denoted by, ;,, A¢;; andsg,;. The entities before computing the additive
corrections aré\” = A¢, ; andu” = ug .

The Nonlinear Update Operator

In the context of the APTS method, Algorithm 5, the nonlinear subset upgseator?; from
equation (3.2.3) is realized by the applicationnefTrust-Region iterations. Thus, we define for a
given global iterate/” € R™ the local update operator as

fk(PkuV) = uz,m
where,uy . is the final iterate orD;. Thus, the locally computed corrections are defined as

v o __ v v __ 14 14
S = Upm — Pou” = Uk.m — Uk
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Algorithm: APTS — Nonlinear Additively Preconditioned Trust-Region Algorithm

Input: J:R™ = R,B,u’ cR*,A°cR",neN
Constants: 71, 72,7 € R*,m, mg € N

v=20

do {

Additive Preconditioning
On each subset where (4.1.6) holds,
call Algorithm 1 withm, dim Dy, Br(u”) , Hi , Peu”, A”
—— —— N T
=n  =Bcf. (328 =J =ug =40
and modified constraint (4.1.5) and Trust-Region update (4.1.4).

Update and Global Smoothing
computep” by means of (4.1.1)
updateA” by means of (2.1.4)

call Algorithm 1 withmg, n, B, J, Fa(u”) from (4.1.2), A”
~~ N ~—~

=m =ug SA)

lterate withu* ™" = uf ,,, andA* Tt = AL v =v+1

Algorithm 5: APTS — Nonlinear Additively PreconditioneduBt-Region Algorithm

As we have seen, the nonlinear update operatpdirectly depends on a definition of “sufficiently
good”. In the traditional Trust-Region framework, this is measured emgiayia quotient of the
actual reduction in/ and the (by the quadratic model (2.1.1)) predicted reduction. Similarly,
within the context of the RMTR method [GSTO08], the coarse level objectimetfon also serves
as amodelwhich allows for employing the quotient between fine-level reduction agseolevel
reduction as @ecrease ratio

Following this approach, we will consider each subset objective funetiom model forJ. But, in
order to derive a decrease ratio in the additive context we have to takgbakt models into account
giving rise to the following additive decrease ratio

J)H  ecn Tesk) i gy oL gy

o = { Sreov (HE(wf o) —HE (uf ,,)) (4.1.1)

0 otherwise
whereC” = {k=1,...,N | uf,, # ufo}- Thus, in the APTS framework the nonlinear recombi-
nation operator is given by

oo (List . Iysto ) = L&+ Do Tusk 107 2
S$1,...,INSN,U ) = .
APTS L7 NN u? otherwise

Hence, we just defined the nonlinear additive update operator as

.7:A (UV) :AZPTs(Ilslf,...,INS?\f,UV) (412)

The nonlinear preconditioning concept as presented in Section 3.1 inthelesmputation of post-
smoothing steps. In the APTS framework, this is the computation®fe N, global Trust-Region
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smoothing steps.

As we will see, post-smoothing is necessary to ensure convergenagdimaecomposition frame-
works, for instance when employing a multiscale decomposition. In this e&se,computed by
means of a global Trust-Region algorithm starting frém(«"), i.e.,

J(Fa(u”) +57) < J(Fa(u”))

In the context of the linearized right preconditioning scheme (3.1.5) this snébat we compute
mg = 1 Trust-Region steps by means of the modified Hessian in (3.1.5a).

The Local Trust-Region Update in the Additive Context

Since in this parallel Trust-Region framework each solver asyncheeomputes a solution for
the respective local minimization problems (3.2.3), it becomes necessanptilglcontrol the local
step—lengths. To this end, we employ the global Trust-Region radius as mastapalength for
locally computed corrections. In order to ensure that the subset tomestay within the current
global Trust-Region we have to modify the local Trust-Region updatefitstatep, the intermediate
radius is given by

~ AV AT 0 oY (ski) >
AZZ G ( k,l;’yQ l]/c,’L:I I pllf,l(sk‘, ) - 77 (413)
7 ['YIA]W': Ak’,i) if pk;,i(sk,z‘) <n
Then, the new Trust-Region radius will be computed by employing
v min{AZ’i, AY — | e (uf q —upp)llocy i ke{l,...,N}
bitl = 4 = _ (4.1.4)
’ A%, otherwise

whereAY is the current, global Trust-Region radius. On the other hand, to eti&irthe interpolated
subset corrections actually are smaller than the global Trust-Regiorsradiiemploy the following
local Trust-Region constraint

[sk,ille = [Hrsk,illoo < AF, (4.1.5)

Ensuring “Uniform” Convergence of the Parallel Trust-Region Algorithms

The analysis of Trust-Region algorithms (cf., Section 2.1) shows, that iTthst-Region radius
becomes sufficiently small, the decrease ratio which is the comparison bedate@ahand predicted
reduction as defined in equation (2.1.3) becomes sufficiently large. Inwtrds, sufficiently small
corrections are actually applied and convergence can be achiewbd.ddditive framework, we now
have to controlV separate Trust-Region algorithms, which — depending on the currelineanity
of the respective objective function — may behave completely differents,Tihmay be possible that
on some subsets the Trust-Region algorithms straight-forwardly computeriotenizers for H/,
but on different subsets corrections are not applied since the dear#os are not sufficiently large.
Since, by construction of the APTS algorithm, the initial Trust-Region radiusach subset is given
by the current global radius and the number of Trust-Region iteratiorsiom level is limited (cf.,
Algorithm 5), we introduce an additional criterion to enforce “uniform” vergence on all subsets:

19k ollz = rgllg”]l2 (4.1.6)

where0 < £, is a constant, chosen problem dependent, = Dy ,VH}(uy ;) and g” =
D(u”)VJ(u"). Here,Dy ; = Dy (uy ;) is the local scaling matrix oBx(u"”) as given by (2.1.6). In
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generals, must be chosen sufficiently small such that computations on all subsetefitggtake
place. In the case of overlapping domain decomposition methods, astpegesection 3.1.6, we
choose

.
Kg < 7n Hz.l’}gn{:u’ik} (4.1.7)

In the case of non—overlapping methods, we choose

Ky < (4.1.8)

Si-

4.1.2 Convergence to First-Order Critical Points

As we have seen in Lemma 3.2.1, local iterates which do not vidiate”) as defined in (3.2.8)
yield admissible additive corrections, i.e.,

u” + zIszZ =u" + Z (Ik(uzm — Pwu")) € B
k k

By construction the Trust-Region algorithm, Algorithm 1, computes admissilbieesiterates and
yields, in turn, admissible additive corrections. Though, we have to shawitb constraint (4.1.4)
ensures that each locally computed correction

IkSZ = Ik(uzm — Pku”)
does not violate the Trust-Region constrdiffs) | . < A”.

Lemma4.1.2.Forall v > 0, all £ € {1,..., N} and eachs] computed and accepted in algorithm
APTS, it holds
[ T8y ]loo < A (4.1.9)

Proof. Due toA} , = A”, the Trust-Region update criterion (4.1.4) and the Trust-Region cortstrain
(4.1.5) we have

Mk (uy — ug )lloo < [k (ug gy — ug o) lloo + [[ksk -1l
< ||Ik(uz,lfl - “Z,o)”oo +AY — HIk(Uz,zq - “Z,o)”oo =AY

foralll =1,...,m which proves the proposition. O

In Section 2.1.4 we have seen that the sufficient decrease condition isythe jrove convergence
to first—order critical points of Trust-Region methods. Since each TragteR correction in Algo-
rithm 1 satisfies the sufficient decrease condition, we are able to praxadghahe subset corrections
induce a sufficient decrease of the objective function

Lemma 4.1.3. Let assumptions (#sl), (Aapts2) and (Apts3) hold. Then we obtain for all subspace
corrections) _, -~ Ix.sy, which are accepted in Algorithm 5 the following estimation
J(W") = J(Fa(@”)) = 817 > rgllg”llamin {rg|1" 2,7 A"} (4.1.10)
kecv

Here we used” = {k : uy ,, # uf .}, the subsets where corrections were successfully computed.
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Proof. First, we use the definition g from (4.1.1) and obtain
J(u") = J(Fa(u?)) = n Y (Hy(uf o) = Hf (uf 1))
kecv

Let us denote by the index of the first successful (and therefore applied) correctiosubsetk.
Now, we employ the sufficient decrease condition (2.1.7) which providefotlowing estimation

T = IFEa)) 2 0 5 (i) — G )
> 0 Y (HYGue) = HY(ufo + 5k,0))
kecv
>

ﬁanZé 19 oll2 min{[|g¢ o 12, AL .}
E v

Now, we employ that\} , > ~{"A} ,, A}, = A and|| g} ,|l2 > Kg||§”||2 and obtain

J(W”) = J(Fa(u")) = ﬁanXC) Fgllg” ll2 min {rg|g” |2, 7" A"}
E 14

which proves the lemma. O

The following lemma shows that, similarly to Trust-Region corrections, also additirrections are
eventually applied, if the Trust-Region radius becomes sufficiently small. r€bigt is mainly due
to the fact that the modified residual i/ contains the restricted global gradient. Along with the
mean value theorem we will be able to show that the denominator convergesrtorttinator irnp”
from (4.1.1).

Lemma 4.1.4. Let assumptions ()sl), (Aapts2) and (Aypts3) hold and suppose th#@k(uzvi)ug >
¢ > 0 and that (4.1.6) holds for at least one subset. Then, for sufficiently xtaltorrections are
computed additively and are successful, i.e.,

P’ =
wherep” is as defined in (4.1.1).
Proof. Due to the assumptions of this lemma, Lemma 2.1.2 is applicable and we obtainAkasif
sufficiently small, corrections are computedDp.

Next, we analyze the acceptance criterioFin(u). We employ the mean value theorem to refor-
mulate the numerator gt

JW) = J(@ + Y Isp) = —(VJ(E), Y Irsp)

kecv kecv

= =) (VJE), Isp)

kecv

= =) (RVI(E),s})

kecv

for sufficiently smallA”. Here, we defined” = v” + 77 ) s}, the subset correctios;, =
kecv
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u ., — uf g andr” € (0,1). This yields

Y TW) = T+ S Tesh)  — Speer (REVI(E), 50)
3 () — )~ 5 () — HE (o)

Next we addt( Y- (Hy (uf ) — HZ(uf,,))) to the numerator of” which provides
kecv ' '

= (e (Hp (g ) = HY () = Sieer (ReVI(E), )
a Sreer (HE () = HY(0f )

The mean value theorem and the definition of the objective functifhgprovide for sufficiently
smallA” ands}, € Dy,

+1 (4.1.11)

0 < Hy(ugo) — Hy (uf,,)
= J{(ug o) = I () — (095, 8%) (4.1.12)
= (V&) sp) — (Be VI (u”) = VI (ug ), si)
where{; = ug o + T Sk andr; € (0,1). Now, we employ (4.1.12) and reformulate (4.1.11)

v K1+ K2

p = v 14 14 v + 1
> (Hy (uk,O) - HY/ (%m))
kecu
where
reo= Y (VILE) = VI (uf o) s%)
kecv
pa = Y (=RRVIE) + BRVI(W),5) = D (=VI(E) + VI (), Tis])
kecv kecv

Both termsx; andks, will now be estimated byA” and some variables > 0.

SinceVJ” andV J} are continuous on a compact set, we obtain uniform continuity of both fursstio
i.e., for allec > 0 exists aA¢ > 0 such that for all|§] — u] j||cc < AY < Ac and||{” — u”[|oc <
A” < A the following holds ’

V(&) = VI (ugp)ll2 < ec and|[VJ(£") = VJ(u)]ls < ec

We employ Cauchy-Schwarz’s inequality, Lemma 4.1.2 and (3.1.13b) anithobta

—lral = = D IVIRED) = VI (g o)lallsilla = = D ecllsklle
kecv keCv
> — Z eccy | Isyll2 > — Z vnecer H|sEllk > — Z Vnecey TA”
kecv kecv kecv
—lrol = =D ecllsillk ==Y VnecA”
kecv kecv

Thus, we employ the previous inequalities and (2.1.7), i.e., the positivity oféherdinator, and
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obtain
y 1] + |k2|
p = - +1
kﬁci (Hy (ug o) — H (v )
6 174
S (L+c7') Sheer cv/nA” +1
- kZC (Hy (ug o) — HY (v )
E 174

(14 ;YN y/necA? 1
T (Hy(ug) — Hy(u )
kecv

Note that the sufficient decrease condition, equation (2.1.7), givetrise
Hi(uy o) — Hy (uy ) = Hy (ug o) — Hi (ug )

wherex denotes the first successful correction on subgetMoreover, we have due to the definition
of the Trust—-Region update that; . > +{"A”. Therefore we employgy ,ll2 > kgl|§"|l2 > Kge
and (2.1.7) and obtain fak” sufficiently small

Hy (uf o) — HE (up, ) > nBrge min{kge, 7" A} > nfkgeri A

Now, we can conclude

b (14 ¢,V )Ny/necA” ol
"y ()~ H )
S _(1+c;1)N\/ﬁecAV 1> _(l—l—cl_l)N\/ﬁec +1
- kZ(; nBrgeTTAY - nBrgeT
e v

Therefore, we have for sufficiently smaly and A” that p” > n and, thus, each correctiofi =
> recv x5y, is successful, which proves the proposition. O

The next lemma considers the special case of overlapping and ndagpiag domain decomposi-
tion methods, as introduced in Section 3.1.6. In this case, one may provettisaftficiently small
Al/

1. condition (4.1.6) is satisfied for at least one domain
2. on each domain where (4.1.6) holds, a Trust-Region correction wilbjplkeea

Lemma 4.1.5. Let assumptions @#ysl), (Aapts2) and (Apts3) hold, and assume thgg”||2 > ¢ > 0
for all v > 0. Suppose that eithéR™ is overlappingly decomposed and (4.1.7) holds, or ats
non-overlappingly decomposed and (4.1.8) haldsen, ifA” is sufficiently small, we obtain

C#0

whereC” = {k : uy ,, # uy ,} is the set of computed subset corrections in Algorithm 5.

1The respective definitions of these decompositions are given in Sectidh 3
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Proof. To prove the proposition, we have to show that there exists at least bsetgy. where

(4.1.6) holds and where, ,, # uy .

First we consider the case of a non—overlapping domain decompositi@ntoRie definition of the
subsets, the definition dt, ||v]|- < [|v|l2 < V/n|/v|s and, by (4.1.8)k, < ﬁ we obtain that
there exists & € {1,..., N} such that

2 = || Di(uf o) Be VI (u”)]2 1D (ug; ) BiV I (0”) oo
I D)V I (") oo
ZilIPD@)V I (u”)]2

gl D(u”)V I (u”)]|2

19% ol

(4.1.13)

(AVARAVARENLY]

Thus, on this subsé?;, (4.1.6) is satisfied.

Now we consider the overlapping case. Similar to the non-overlappingwasabtain by construc-
tion of the interpolation operator (3.1.21) and assumption (4.1.7) that thiste akleast one subset
k such that the following inequality holds

195 oll2 = 1 Dx(uy o) BV T (u”) |2 1Dk (ug ) BV T (u”) o

min{piy 3| D (") VI ()|
= min{piy }[|.D(u”) VI ()2
rgl | D(u”) VT (u”)|2

v

(4.1.14)

Y

v

In combination withA” sufficiently small and Lemma 2.1.2 we obtain that in both c&$es non—
empty. O

Now, we are able to prove the central result of this section namely that ikigob generates a
sequence of iterates with at least one first-order critical accumulationfpoimtoblem (M).

Theorem 4.1.6.Let assumptions (1), (Aepts2), (Aapts3) hold and suppose that we have either an
overlapping or non-overlapping domain decomposition with constants (doin7) and (4.1.8) or
that mg > 0 global post-smoothing Trust-Region steps are computed. Then forsegcience of
global iterates(ug7i)i7u computed in Algorithm 5 it holds

liminf  [|g(ug;)|l2 =0 (4.1.15)
v—00,i€{0,...,mag} ’

Proof. We prove this proposition by contradiction. Assume that there existg an 0 ande > 0
such that|g(uf. ;)|l2 > e forallv > vy and alli € {0,...,mqg}. We will show, that this assumption
implies thatAg:i — 0forv — coandi € {0,...,mg} and, in turnpg, ;, p¥ — 1 which contradicts
Aé’i — 0.
First, we will prove thatA” — 0 for v — oo. If there is only a finite number of successful correc-
tions, we have due to the definition Af;, ; thatAY{, , — 0 for v — oo.
On the other hand, if the sequence of successful corrections ownigalyfimany terms, (2.1.7) and
Lemma 4.1.3 imply for such corrections

J(ug 1) < J(ug,) andJ (Fa(u”)) < J(u”)
Therefore, we have due to {Adl), i.e., the compactness 6§, that

J(ug ;) = J(uGip1) — 0andJ(uw”) = J(Fa(u”)) — 0
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for v — co. The fact that for all unsuccessful correctiahg, ; ,; < A ;, the respective sufficient
decrease conditions (2.1.7), (4.1.10) dg¢} ;|2 > ¢ now provide that

é,i_’o

In fact, now for sufficiently small\¢, ; Lemma 2.1.2 and Lemma 4.1.4 eventually yield #{at > n
foralli € {0,...,m¢g}. But:

o If mg > 0, this would yield thaid¥*! > A” andAY,;,, > Af,; and, therefore, that the
sequencgAy; ;)i is bounded from below.

e If mg = 0 and the decomposition is overlapping or non-overlapping, then Lemma 4dt.5 pr
vides for sufficiently small\Z, ; thatC* # (). Therefore, this would yield thah*+! > A¥
and that the sequen¢a, ;); , is bounded from below.

Together, this proves the proposition. O

The next theorem is closely related to Theorem 5.1.6 and shows that all limis @we first—order
critical points.

Theorem 4.1.7.Let assumptions (1), (Aepts2) and (Apts3) hold. Then Algorithm 5 generates a
sequence of iterates converging to a first—order critical point, i.e.,

lim [|§”]l2 =0 (4.1.16)

Proof. The proof of this theorem is the same like for Theorem 2.1.4 with the only diffa, that de-
pending on the correction (additively computed, or by means of the globat-Region algorithm),
the sufficient decrease condition looks differently. Therefore, ficad to substitute (2.1.15) by the
following, weaker condition

J(ue;) = J (s in) = 0°B Z g2 min{es, 11" AG ;
kecv

foralli € {0,...,m}, wherei = 0 denotes the additively computed correction. O

4.2 Nonlinear Additively Preconditioned Linesearch Methods

In 1995, O.L.. Mangasarian introduced the parallel gradient distribufgD)), an asynchronous
Linesearch algorithm [Man95]. The paradigm of the PGD method is to &synously compute
local corrections;, which serve as a starting point for the computation of a global update

s € Dy, : J(u + Iksk) — J(u) > pPGDHVJ(UJ)H% (4.2.16\)
seR": J(u+s) < mkin J(u+ Iysy) (4.2.1b)

whereppap > 0. As a matter of fact, this algorithm can be regarded as a globalization strategy
Though, it is not clear, how to cheaply compute the sought-after comectidthin (4.2.1b). Indeed,

one might solve another nonconvex minimization problem to compute a set ofrtapgrameters

or one just employs the “best” correctiep.

To avoid disposingV — 1 corrections and to avoid the solution of another complex minimization
problem, respectively, we will consider the asynchronously computaatiselirections as a search



4 Nonlinear Additively Preconditioned Globalization S&gies 63

direction for the global problem. This allows for employing the traditional backing scheme to
compute a Linesearch parameter as a solution of a scalar problem. Along pvititilassumptions
and the subset objective functidgfy’ from (3.2.1) this allows for proving convergence of a clearly
stated asynchronous Linesearch algorithm.

4.2.1 The APLS Framework

The algorithm of this section, th&dditively Preconditioned.inesearctstrategy, Algorithm 7, is
the second implementation of the abstract additive preconditioning framewmrk Section 3.2.
The APLS consists of three phases: an asynchronous solution ghesmmbination phase and a
possible global Linesearch smoothing phase. Similar to the APTS algorithnrevrgerested in the
framework’s efficiency (cf., Chapter 5.5) and robustness. Surpgtisihesides the actual algorithmic
framework, it suffices to slightly extend the assumptions of Section 2.2 émimy convergence:

(Aapisl) For the given initial global iterate® € B, for all v > 0 and all initial iterates orDy, i.e.,
uy o € Br(u”), itis assumed that the level sets

L ={ueB|Ju)<Ju)}
and
k= {w e Bp(u”) | HY(u) < H(uf o)}
are nonempty and compact. Heif is defined in (3.2.1) anf¥;,(u”) is given by (3.2.8).
(Aapi2) We assume thal is continuously differentiable 082, as well as, for al > 0 and all
k =1,...,N that H; is continuously differentiable of;. Moreover, we assume that for
all w € £2 andu, € LY the respective gradients are Lipschitz continuous with a constant

L,>0,le.,
[VJ(u) = VJ(u+s)|l2 < Lglls]l2

and
IVHY (ug) — VH (ug + s)ll2 < Lyl sk ll2

for s € R" such thatu + s € B, ands;, € Dy such thatu, + s, € Br(u”), respectively.

The Nonlinear Update Operator

Similar to the mechanisms of the previous section, the nonlinear opeFatts the result ofm
iterations of the Linesearch algorithm, Algorithm 6, employedIn In this case, the Linesearch
algorithm stops after computing;m, the final iterate on this subset, which gives rise to the following
definition

fk(Pku”) = U’Z,m

whereu” is the current global iterate. Therefore, we define the locally computedatimn as
sy = Fr(Pyu”) — Pyu” = Uy — Pru”

Since we consider a Linesearch framework, a damping parameter withiecthmlbination operator
FainLemma 3.2.1, now becomes active and corrections will always be dampexpahed. Thus,
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the APLS recombination operator is given by
N
Akprs(ist, ... Insk,u’) =u” +a” > sy
k=1

In particular,a” € (0, ap] with ag < 1 will now be chosen such that the Armijo condition (2.2.5) is
satisfied. Hence, the nonlinear additive update operator is given by

fA(uy) = AZ\PLS(Ilslf7 N 7INSIJ/\7’ U/V) (422)

Notation

We will employ the same notation as in the Trust-Region framework: the adddiudan process
will employ N instances of the Linesearch Algorithm 6. Afterwards we compute > 0 global
Linesearch steps to smooth globally. Thereforepunts the number of APLS cyclésdenotes the
current context, i.ek € {1,..., N} denotes a subset,= G the global post-smoothing context and
the index: will count the Linesearch iterations.

4.2.2 A Modified Armijo Condition for the Additive Context

Similar to the APTS context, we need several assumptions on the algorithm. Enthige extend
the Armijo-Condition (2.2.5) to the additive preconditioning context yielding tiling Armijo
condition:

Hy (up; + o iski) < Hy (up ;1) + pacy i (Sk.is 9 i) (4.2.3)
wherep, € (0,1) (from (2.2.5)) andy; , = VH}/(u} ;). Moreover, on each subset, we demand that
beginning from the second subset iteration the fo7IIowing inequality holds.

<ui’éz - “Z,o + a%,isk,i,giz,d < PR(UZ,I - U%,0>91Z,0> (4.2.4)

where0 < pr < pa < 1. Both conditions, (4.2.3) and (4.2.4), will now ensure that each subset
search direction is a descent direction JorOn the other hand, condition (4.2.4) is weak enough, to
leave space for an iterative minimization processigffon D,.

The following lemma addresses the fact that, if the subset objective fuiscliessians are positive
semi-definite, assumption (4.2.4) is trivially satisfied if the Armijo condition holds.

Lemma 4.2.1. Assume that (4s1) and (Apis2) hold and thatH} is twice continuously differen-
tiable. Moreover assume that the Hessiangigfare positive semi-definite, i.e.,

0 < (s, VZHY (u)s)

forall u € Dy and alls € Dy, : u+ s € Bg(u”). Suppose furthermore that all search directions
satisfy (2.2.2b) and (4.2.3). Then assumption (4.2.4) is satisfigf}, it (0, o] satisfies (4.2.3).

Proof. We employ Taylor’'s theorem along with the positive semi-definiteness of tlssiates and
obtain

12 12 1% 12 v 1 1% v
Hy, (uk,o +5) — Hy (Uk,o) = <579k,0> + §<Sa VQH]{; (&)s) > <579k,0>

forall s : up,+ s € By(u”). Here we employed = uj, + 7s andr € (0,1). Therefore the
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Hy

Figure 4.1: This figure illustrates, how the subset critei(.2.8) works. The initial Linesearch parameter
of , on Dy, is chosen such that just the Armijo condition holds. Note thihin the presented example,
the gradient is a negative scalar and the initial searclctitime is a positive scalar. Therefore, the step—
length constraint prevents moving backip,. On the other hand, the blue dotted line represents the Armij
condition. Both together yield the set of admissible stepgthsa, as indicated by the interval in between the
dotted lines.

following inequality holds

Hy (u ; + o ;ski) — Hi (ug o) > (up; + Qg iSki — Ug.0s Iko) (4.2.5)

On the other hand, we employ the decrease condition (2.2.2b) and the Armddico (4.2.3) and
obtain
0> palaosko, oF o) > Hy (uf o + o5k ) — HY (uf. o) (4.2.6)

Thus, since in every iteration (4.2.3) holds, we obtain
paui1 — o 9r0) = Hi (up ) — Hi (upo) = ... = H (ug ;) — Hi (ug ) (4.2.7)

Thus, we may combine the inequalities (4.2.5), (4.2.7), the fact that in iterdtierArmijo condition
holds andor < p4 to

PR{ULL — U0, Gho) = PA(ULT — Uks ko)
> Hy(uy,) — Hy (ug)
> Hy(up; + ogsk:) — Hi (uf o)
> (up; + O iSki — U059k 0)
which proves the proposition. O

A Practicable Descent Condition

Even if for convex functions assumption (4.2.4) may easily be satisfied,iouisao introduce a
practicable backtracking algorithm which is able to compute an approprigieletgth satisfying
(4.2.4). To this end, we introduce the following, altered descent condivbich will substitute
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Modified Linesearch Algorithm

Input: uy o € Dy, Br, k € NU{G},m,nr €N
Output: uy, ,,, € Dy

i=0
do until (¢ =m) {
if (D, #R™andi > 0) {
compute a search direction ; satisfying (2.2.2a) and (4.2.10a) aag; + sk, € By
call the Backtracking Algorithm 2 to compute a step—length satisfying (4.2.3) and (4.2.8
} else if(Di # R™) {
compute a search direction,; satisfying (2.2.2a) and (2.2.2b) and ; + sk, € Bk
call the Backtracking Algorithm 2 to compute a step-length satisfying (4.2.3)
} else{
compute a search directioi; ; satisfying (2.2.2a) and (2.2.2b) and:; + s¢,; € B
call the Backtracking Algorithm 2 to compute a step-length satisfying (2.2.5)
}
setuy ;11 = uy ; + Qg S,
1=1+1

}

return uy ,,,

Algorithm 6: Modified Linesearch Algorithm

(4.2.4) in our analysis and in the actual implementation of the APLS algorithm:

(ug; — up o+ O iSki> Gko) < pAP(UL; — UL 05 Gk o) (4.2.8)

wherel > pap > 0is chosen such thatg < p’}'p. An illustration of this criterion is given in
Figure 4.1. Moreover, it implies (4.2.4), since

(up; — up o+ iSkir Gro) < paP(UL; — Up oy Gho) < oo <
i—1/ v v v
< Paplug1 — Uk o, 9ro)
< PR(UZJ - UZ707915,0> <0
In particular, we obtain
14 14 14 m 14 14 14 14 14 14
(U — k05 Ik0) < PAP(UL1 — Uk 0 Tk 0) < PRUE1 — Uk 05 I o) (4.2.9)

The following lemma addresses the question, if the backtracking algorithm orifig 6 is able to
compute a Linesearch paramedesuch that both conditions, (4.2.3) and (4.2.8) hold.

Lemma 4.2.2. Assume that (4ys1) and (Apis2) hold. Suppose that> 0 and all computed search
directions onD, were descent directions satisfying (2.2.2b) and that in each iteration conditio
(4.2.3) and (4.2.8) hold. Then, for a given descent directijonc Dy, there exists an , < ag < 1
such thatuy, ; + oy ;s,; satisfies (4.2.3) and (4.2.8). 7

Proof. Since the rayaay (sk,0, 95 o) lies for sufficiently smalky , aboveHy (uj , + af osk,0) —

Hy (uf o) andsyp is @ descent direction, we obtain that (4.2.3) holds.

Now, assume that> 0. Moreover, since (2.2.2b) holds, we obtain that there existg' an 0 such

that for allazd € (0,«'] the Armijo condition, equation (4.2.3), holds. On the other hand, since
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pap < 1, and since (4.2.8) holds for each computed iterate, we obtain

k-1
<UZ—1,1' - UZ,oa 9Z70> < Pap <Uiz‘ - UZ,O»QZ,&

Therefore, for sufficiently small ; also inequality (4.2.8) is satisfied, even(iy ;, gy ,) > 0.
Together this proves the proposition. O

Similar to the argumentation for the APTS algorithm, additively computed correatimploying the
Linesearch algorithm, Algorithm 3 are by Lemma 3.2.1 admissible correctiois fdioreover, like
in the original Linesearch algorithm, we have to ensure that the lengths sifiiset search directions
are limited by the norm of the initial subset gradient. To this end, we introdedellbwing criterion

g s — uf o+ skill2e < Bislldk ollze (4.2.10a)
Iskill% < BuslldllZ (4.2.10b)
foralli=0,...,m—1andk =1,...,N. Hereg;, > 0 is the constant from the initial step—length

criterion (2.2.2a) andy ; = Dy ,;VH} (uy ;). As a matter of fact, (4.2.10a) which gives rise to

i = ui ol < Bisllgi ol

since the step—length parameter SatifﬁieSaZJ- < 1. Moreover, in order to handle both inequalities
in (4.2.10) one might substitute (4.2.10) by

||SZ1 c2>o < min{ﬁlng?Z@ ‘go - ||UZz - UZ,OHgoaﬁlngZ,ngo}

Now, we are able to introduce the APLS algorithm, Algorithm 7, which is an atin@search
implementation of the abstract additive framework of Chapter 3. By conitnyahis nonlinear
solution strategy, combines a priori assumptions on the additively compuechsdirections, i.e.,
(4.2.8) and (4.2.10) to ensure that these search directions are ddseetibns for the objective
function J from (M). As it turns out, together with the Armijo condition as a posteriori-skepgth

control strategy, we are able to show that APLS is a globalization strategy.

4.2.3 Convergence to First—Order Critical Points

Like in Section 2.2, we will show that the APLS algorithm satisfies a sufficientehse condition.
This will be carried out by showing that the step—length parameters arelbddrom below and by
showing that the additive search directions satisfy a descent conditionrsionfia2.2b).

Lemma 4.2.3. Suppose that (£s1) and (Apis2) hold. Then for each global smoothing step and
each initial subset step in Algorithm 7 the Armijo condition (4.2.3) is satisfied for

Mis (1 - PA)
nLgﬁls

Moreover, we obtain for the step—lengitj ; of each global smoothing step and each initial subset
correction

2CVmin =2

min{ g, 2Tamin} < az,z‘

where, by definitiongy < 1.
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Algorithm: APLS — Nonlinear Additively Preconditioned Linesearch Algorithm

Input: J:R" - R,B,u’ € R",neN
Constants: m, mg € N

do {

Additive Preconditioning
On each subsét where (4.1.6) holds,
call the Linesearch algorithm, Algorithm 6, with.»”, Bi(v”) , k, m, dim Dy
N——" N——
=uj.o =By cf. (3.2.8) =ny
Global Smoothing
call Algorithm 6 with F4 (u”) from (4.2.2), B , G , mg, dim Dy
——— N~ N N——

v =B =k =m =n
=ug o k "k

Ilterate withu" ™' = ug, ., v =v+1

}
Algorithm 7: APLS — Nonlinear Additively Preconditionedrigsearch Algorithm

Proof. Due to the assumptions, the proof follows exactly the proof of Lemma 2.2.2emdna 2.2.3.
O

Lemma 4.2.4. Assume that (4s1) and (Aypis2) hold. Then each additively computed correctién
in Algorithm 7 satisfies the descent condition

—(g",8") > K2p"pims min{ao, 27amin }9" 13

wherea,, = W Moreover we employed’ = >~ o Irsy andC” = {k : s = u}  —

uy o # 0}, i.e., the indices of the subsets, where corrections where computed.

Proof. Due to the definition of the subset objective function we hge = VH} (u} ;) = Rig”.
Now we use the definition aR;, ands” and obtain

_<gyv 5V> = - Z <gya Ik(UZ,m - UZ,O))

kecv

— 14 14 v

= - Z (Rig”, ulm — Ugo)
kecv

— 1 14 14

= - Z <9k,07 Ukm — Uk,o)
kecv

Since each correction is a descent direction which satisfies (4.2.8), wieye(2.9) which gives
rise to

—(9",8") = —pip Z (9K.0> % 05k,0)
keCv

Now we may apply Lemma 4.2.3 and obtain

—(9",5") > —plip min{ag, 27 min } Z <9Z,0’ Sk70>
keCv
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Since each (initial) search direction @), satisfies (2.2.2b) and sin(ﬁ@g,ong satisfies (4.1.6), i.e.,
the relationship td(¢”||3, we have

2
2

—(g",s") = plpmsmin{ao, 27amin} Y 11}l
kecv

> ﬁzpfpms min{ag, 27 min }[§”]/3

O]

Lemma 4.2.5. Assume that (4is1) and (Apis2) hold. Then for each Linesearch paramete ,
computed in Algorithm 6, to rescale the additively computed search directiégiorithm 7, we
obtain

Qo = min {ag, 27CAPLS Y min |

where

m
CAPLS = amin% min {ap, 27 Qmin }
whereCr = >, ccv |1k |3 and augin from Lemma 4.2.4.

Proof. Under the assumptions of this lemma, we may apply Lemma 2.2.2 and obtain

v . 2(pA — 1)<Sngu>
Qg > min {ao, 2T nL,ls 2 (4.2.11)

By Lemma 4.2.4, we have
_<SV) gy> > KEPTATLPTNS min {0507 27—Oémin} ”!?VH%

On the other hand, (4.2.10a) and the relationship between the gradiardipad4.1.6), give rise to

Iskl3e = Nl m — uio

50 < Buslldk olle < Busrgllg” 3

Now, we employ this inequality and obtain

Is"13 = I > Ieskl3 < D Mel3llskl3
keCv keCv
< I 2 V|2
< ) I3l
keCv

< nBCrr2llg"|I3
whereCr = 3, .o [|[1x]|3. Now, we combine the estimates fi* ||5 and(s”, g*) and obtain

2(1 = pa)ms Plip
nLyBis  nCy

g ; > min {ao, 27 min {«p, 27'Oémin}}

which proves the proposition. O

Lemma 4.2.6. Let assumptions (#s1) and (Apis2) hold, and suppose thdg” |2 > 0. Moreover
assume that (4.1.7) holds in the case of an overlapping domain decibimpas (4.1.8) for a non-
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overlapping domain decomposition. Then we obtain
Cr#0
whereC” = {k : uy,, # uf o} is the set of computed subset corrections in Algorithm 7.

Proof. Similar to the proof of Lemma 4.1.5, we have to prove that in each iteration atdeaste
subset a correction is computed. This means, in the context of Lineseattlods, that we have

to prove that oneD;, satisfies (4.1.6). Due to the assumptions of this lemma, the argumentation
employed in (4.1.13) and (4.1.14) holds and therefore (4.1.6) is satisfiealsabn one domain.[]

In a similar fashion like Theorem 2.2.4, we will prove the convergence ohtidinear additively
preconditioned Linesearch algorithm, Algorithm 7.

Theorem 4.2.7.Suppose that (4s1) and (Aypis2) hold. Assume furthermore that either the domain
is overlappingly or non-overlappingly decomposed with constants fro7(dand (4.1.8) or that
me > 0 global post-smoothing Linesearch steps are computed. Then the Adgrirfran, Algorithm

7, computes a sequence of iterates converging to a first—order critigat for problem (M), i.e.,

hm AV _ O
v—00,i€{0,...,m+1} HgG’,zHQ

Proof. As in the proof of Theorem 2.2.4, we use that each global step—lengimptera; satisfies
the Armijo condition (4.2.3), i.e.,

J(uéz) - J(Ué,wl) > _aé,z’pA<SG,i’gZ¥,i>

Using, Lemma 4.2.4 and (2.2.2b), respectively, gives,

G /igpzlpms min{ay, 27@min}”§6,i”%> if sq; was comp. additively

J(ug ) —J (UG ip1) 2 '
Z l G, %H@E@H%) otherwise

Now we employ Lemma 2.2.3 and Lemma 4.2.5 which gives
min{ag, 27Qmin, 27CAPLSOmin } < G ;

Note that ifmg = 0 we have due to Lemma 4.2.6 that' # 0 for all v, as long ag|§”||2 # 0.
Together with the compactness 6§, and, thus,J (u¢, ;) — J(ug ;) — 0 we can conclude that
19, ;l2 — 0 which proves the proposition.

0

4.3 A Remark on Parallel Communication
As we have seen in this chapter, the APTS and APLS methods basically spthiietophases:
1. asynchronous local solution phase

2. recombination phase

3. global post-smoothing phase
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As a matter of fact, in the first step communication does not take place. Inyartithe only
communication is needed within the recombination operatovhich combines the interpolated
search-directions and computes the decrease ratio or Linesearafepetaespectively. If one dis-
cretizes the PDEs employing Finite Elements with linear basis functions, the cdioputéthe
decrease ratio or Linesearch parameter is extremely cheap, sincatguadan perfectly be paral-
lelized. Therefore, only within the global post—-smoothing parallel communicatiast periodically
take place. In turn, the overall parallel communication of additively préitmmed globalization
strategies and the traditional ones is more or less the same.

4.4 A Remark on Second-Order Convergence

In the context of Trust-Region methods, T. Coleman and Y. Li have slioy@L96], that second—
order convergence can generally only be ensured by computing the”“cgrrections as was out-
lined in Section 2.1.5. In fact, if the Hessian is indefinite but the gradient &5 pee succeeded in
computing a saddle point. To compute a local minimizer, though, a correctiorsatissyy a stronger
decrease condition as, for instance,

Ve 0(s”) < eéo(smin) Such that|s”[[oc < A” andu” + s¥ € B (4.4.2)

wherec > 0 and .
Yo(s) = (9" 5) + 5 (s, V2 (u")s)
The solution of this quadratic minimization problem is given by

¥6,0(8min) = min{¢go(s) | u” + s € B, [|s]o0 < A"}

As it turns out, the additively computed correction

sV = Z IkSZ = Z Ik(ulz,m _UZQ)

keCv keCv

can hardly solve (4.4.1) without leaving the asynchronous setting. Sephat the local objective
function are quadratic functions given by

1
Hi/(ugo + s1) = Vi (sx) = (Rig”s si) + 5 (sk, Re V2T (u") s,
Furthermore, suppose that each local minimization problem is solved exaily,
1
Vi(sk) = (Brg”ssu) + 5 (sn, Ry V2T (u”) I.si)
= min{yYi(s) [ Pru” + 5 € Bi(u”), [|s]lx < A"}

In this case, we obtain after interpolating and summing up

VeoO> Tesk) = >k (sk) + Y (s, RV I (u”)Tisi)
k k ki

Coupling terms
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As itturns out, the coupling terms may now yield that the exact solution of thdrgti@minimization
problem differs from the additively computed. Suppose that we haveoaroverlapping domain
decomposition and that eagh = 0 and thatR,V2.J (u”)I} is positive definite. Moreover suppose
that eachR, V2.J (u”)I; is negative definite. In this case, the complete HesSias(u”) might be
negative definite, as in the following example

V21 (u”) = (_2 | 24)

Then, either way the solution of the local minimization problems;is= 0 yielding s = 0. But, as
a matter of fact, the minimizer of (4.4.1) for such a Hessian may be

Smin = QT )

min

wherez, ., with |z, |2 = 1 is the eigenvector related to the smallest (negative) eigenvalue of
V2J(u"). The scaling parameter > 0 is the maximal possible step—length such thtat- s,,,;,, € B
and||smin|lco < A¥ holds. Therefore we obtain

(s, V2J(u")s") = 0

but
VA (u")axy,,) = Amina < 0

In this case, the additive corrections will without further assumptions edhé solution of (4.4.1).
Note that this argumentation even holds for more complex subset objeatividius since subspace
correction methods, like the presented, are generally not able to redlabigemvalues of the Hes-
sian.

As outlined in Section 2.2.5, in [CL94] it was shown that also Linesearchegies are able to
resolve the second—order conditions. Then, similarly to Trust-Regicegiea, the search direction
must then satisfy (4.4.1). But, as we have just proven, without furtleemastions, the (4.4.1) can
generally not be satisfied by additively computed corrections.

Therefore, second—-order convergence and, perhaps, tjaadma/ergence rates may just be provided
by the global Trust-Region or Linesearch algorithm. In turn, the additieegnditioning strategy
aims at adaptively determining step—lengths and is designed for massaielpaymputing.

(o

min ?

2Due to the Trust-Region constraint one may also linearly combine diffeiganvectors.



5 Nonlinear Multiplicatively Preconditioned
Globalization Strategies

The solution of discretized elliptic PDEs is due to complexity considerations ofteted out em-
ploying iterative solvers like, for instance, the cg method. In fact, the @ftesnvergence of the
cg method depends on the condition number of the stiffness matrix, which i€ ¢atie of a Finite
Element discretization, closely related to the number of unknowns. As a méfestpthe better
the basis functions resolve high frequency contributions the worsevietite rates of convergence
of the iterative solver. In other words, slower convergence is oftemected to the resolution of
low-frequency contributions by single basis functions.

Thus, in order to improve the resolution of low-frequency contributiongrse (preconditioning-)
techniques were developed, such as Wavelets (for an introductioBab®1]) or multigrid methods
(for an introduction see [Bra07]). In Finite Element methods, multigrid stiesegrevailed as a
preconditioner for the cg method. Here, on each grid, a smoother congststion for a local
linear system of equations, which yields a coarse level correction. ®hisation is then interpolated
and employed within the next cg iteration. As it turns out, this method has optimadleity and
is an optimal preconditioner.

For the parallel solution of positive definite linear systems of equations dieenise of acoarse
grid is suggested (cf. the monograph [TWO05]) to improve the rates of coeneey Here, on one
processor a coarse problem is solved. This particularly enables mathamsti prove logarithmic
dependence between the condition number of the preconditioned stiffradss and the mesh size.
Also in the nonlinear case, the application of multilevel strategies seems todomadde. Intuitively,
in a first step one may employ a linear multigrid strategy to solve the occurrirdyafi@minimiza-
tion problems. But, depending on the Hessian or its approximation, resgggctive convergence of
the linear preconditioner can not be guaranteed. Moreover, limited &ep+femain as a problem,
even if the search directions are computed faster.

In contrast to just applying a better solution strategy for the quadratic minimizatioblems,
S.Nash [Nas00] introduced MGHQ, a nonlinear solution strategy, which

e attacks nonlinear low-frequency contributions of the problem
e is guaranteed to converge to first—order critical points

Since we consider a nonlinear multigrid strategy, the initial iterate is giverdlmaséhe current fine
level iterate. Therefore, for instance, in [Nas00] it was proposediaa@y the restriction operator to
transfer the fine level iterate to the coarse level. Though, as we havegomt in Section 3.1.3, this
may cause numerical problems. Therefore, to speed up convergetheeRMTR strategy, Gratton
et al. propose to damp the computed corrections in the RMTR strategy.

An interesting feature of the RMTR method is that the algorithm is allowed to staycoarse level
until the coarse level problem is solved approximately. But, this has a partdnaw-back: the algo-
rithm must leave the coarse level, if the first—order conditions become sndatharalgorithm must
not go into a recursion, if the gradient is too small. Both is needed to make trtlatlgcomputable
But, as the theory of linear multigrid methods shows, the (desired) asymptatierg@nce behavior
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crucially depends on the recursions. On the other hand, the coneergéGaul3-Seidel-like mul-
tiplicative schemes (cf. Section 3.3.3) can not be guaranteed, if thetqurbbéems are just solved
approximately.

In order to show convergence without constraints on the first—ordutitions, in [GKO8Db] it was
shown that it suffices to ensure that a limited number of iterations takes piabe subsets. There-
fore, based on this RMTR variant, we will introduce a generalized nonlimediplicatively precon-
ditioned Trust-Region strategy for problems of the kind (M). This method imphsrthe abstract
framework of Section 3.3 and can therefore be employed, for instameanaltigrid or Gau3-Seidel-
like scheme. Moreover, the abstract multiplicative preconditioning framewatbows for proving
convergence without assuming that eventually the recursions stop. Alsaliaear multiplicatively
preconditioned Linesearch method will be presented in this chapter. Wenjll follow Z. Wen’s
and D. Goldfarb’s point of view and regard the multiplicatively computedemtion as a search—
direction for the fine—level problem. However, due to significant weakgriori assumptions, our
approach is applicable to the non—smooth context of problem (M).

As we will see, the analysis for multiplicative Trust-Region and Lineseardhads is similar to the
one presented in the additive context. This has the advantage, thatroeasiiy deduce global con-
vergence properties for a combined, nonlinear additively and multiplidagoreconditioned strat-
egy, attacking both, nonlinear low—frequency contributions and loaalmearities.

5.1 Nonlinear Multiplicatively Preconditioned Trust-Region Methods

As for the Trust-Region context in general, we are interested in contrahimdrust-Region radius
by means of the local nonlinearity of the objective function. Since we censite multiplicative
context where the local objective function may or must be chosen difféem the original objective
function J, the Trust-Region radius on the current subset must depend on tlieeaoity of the
local objective function and on the nonlinearity of the preceding objeétimetions. In turn, the
coupling of the objective functions and a “global” control of the TrustiRe radius allows for
proving convergence to critical points.

5.1.1 The MPTS Framework

Following the setting of the abstract formulation of Section 3.3, we deconipog#o a sequence of
spacesDy, . .., Dy) such that there exist projection, interpolation and restriction operattwebe
each of the respective spaces.

Similar to the assumptions on the previous Trust-Region algorithms, we will stateroare as-
sumptions on the respective objective functions.

(Amptsl) For the given initial iterate” € R”, for all v > 0 and all subseté € {1,..., N} with
Dy, # R™ and all initial subset iterates), , = PF ju,_, € R™, whereuy_; € Dy_; is
admissible, it is assumed that the level sets

L= {ueB|J(u) < Ju)}

and
= {u € By(ug—1) | HY (u) < Hy(up o)}

are nonempty and compact. Hei# is from (3.3.1) and3, (ux—1) is from (3.3.2).
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(Ampts2) We assume thal is continuously differentiable ot and that for ally > 0 andk =
1,...,N, D, # R" the functionH} is continuously differentiable od}. Moreover, there
exists a constan', > 0 such that

IV (w)ll2
IV H; (ug) |2

C, forallu € £°
C, forall uy, € Lj,

forallv >0,k=1,...,N,D, # R"™

(Ampts3) We assume that there exists a constapt > 0 such that for allB(u) approximating
V2J(u) and By (u}) approximatingv2HY (u¥) in (2.1.1) the following holds

|B(u)||ls < Cpforallue £
| Br(ug)|l2 < Cpforallu, € £}

forallv >0,k =1,...,N,D, # R"™

The multiplicatively preconditioned Trust-Region strategy, Algorithm 8, nowéments the multi-
plicative framework of Section 3.3. Similar to Algorithm 4, this framework may lierna the cur-
rent subset, call a recursion or return the current iterate. In ordardore convergence, we assume
that in every computation on each subsej, < m Trust-Region smoothing steps are computed,
wherem = maxy—g, .. N M.

Remark 5.1.1. As it turns out, the presented analysis, in particular the convergencétsebold if

e on oneD; = R" at least eithern;, = mg > 0 Trust-Region steps are computed or we have a
domain decomposition as in Section 3.1.6 with > 0 for D, # R"

e on each subset at most Trust-Region steps are computed

We will see that similarly to the additive context, the Trust-Region radius alperdts on the de-
crease ratio induced by the subset correction. Thus, also in the pfesaework it might happen,
that the computations on one subset dominate the whole computation. This meartscular that
the global Trust-Region radius is too large to ensure that global corredienapplied. But, as we
will see, the global Trust-Region radius also depends on the localotioms. If now, computations
onD;, are always successful and applied, the global radius stays too lagsmavergence will not
be achieved. Thus, we introduce the following, slightly modified advaritaion

||§Z+1,0H2 > “gHgllg,mk‘b (5.1.1)
Here, my, is the index when calling the recursiom, < (0,1) and g/, = D{,9{;, =
Dy (uy ;) VHY (uy, ;) with Dy as defined in Section 2.1.3.
The Multiplicative Update Operator

Similar to the additive context, we define the subset correction as the digieilmtween initial and
final iterate on the succeeding subBgt> Dy 4, i.€.,

_ 71k v _ 7k v v
Skmy, = Iy 15 = Ik—l—l(uk—i-l,karLf — Uk i10) (5.1.2)



76 5.1 Nonlinear Multiplicatively Preconditioned Truségion Methods

Algorithm: MPTS — Multiplicatively Preconditioned Trust-Region Stra tegy

Input: k€ {0,..., N}, B, uf o, RE_19F—1,m,_, € Dr—1, k1 € RT U {0}
Output: new iterateuz,mkj € Dy

Smoothing
call Algorithm 1 withuy o, Hy , A o, dim Dy,
N——

~— N
=ug =J =Aq =n

with modified constanin, modified constraint (5.1.7) and Trust-Region update (5.1.6).
receive a new iteratey, ,,,, and a new trust-region radids, .,

if (Cry1 D Ch)

return uzymk’f = UL,y

else if(Cr+1 = Ck) {

Uk+1 0 = ug M Ak+1 0= Af M
k=k+1
gotoSmoothing

}elseif(Crr1 € Cr) {
if ((5.1.1) holds orDy1) {
call MPTSWith & + 1, Biy1(4¥ iy )y Po Tl s BET 9K s Aoy
N——

=Bpiich (332 =ul =Ap
T v
and recelveu,iﬂ,mk'“’f .
C v

setsk,m, = Ik+l(uk+1,mk+1‘f Py ug m,)

Uk mp+1 = AKAPTs,k(Sk,mkauk,mk)

updateAj ., according to (5.1.6)
if (k+#0)

U?,C,o = uz,mk+1! A:k,o = Az,mk+1v k=g
else

v+1 __ v+1 __ v _
u() 0o — uk ,mp+1s A(),() - Ak,mk-ﬁ-lx vV=v+ 1

goto Smoothing

}
Algorithm 8: MPTS — Nonlinear Multiplicatively Precondithed Trust-Region Strategy

wheremy, 1,y denotes the index of the final iterate P ;. In particular, we definak%mk“’f =
uy, Withr, =14 1.

,my
Now, we follow [GSTO08] and define the decrease ratio for the subsetatimns as

Plmy, = Hy q(ugi10) — HZ+1(UZ+1,mk+Lf
0 otherwise

) if uZ—l—LU 7£ uz+l,mk+1,f (513)

Hence,pj ,, compares the reduction of the preceding subset objective functionteetbie one on
the current subset Moreover, similarly to the additive contekf,, allows for proving a sufficient
decrease oti/, if a sufficient decrease can be shown fof ;. Therefore, this quantity is used to
accept or reject a subset correction and to adjust the Trust-Reglws rar hus, we may define the
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subset-dependent nonlinear multiplicative recombination operaligsss ;. as

u%,mk + Sk,my, if pz,mk Z n

Avprsi(sk Ufp ) = '
KA Tk ul otherwise

Now, we can define the nonlinear multiplicative update operator as

F () = Ao (imy s @, (5.1.4)

for all j with D; = R™. Here, we have to distinguish between different update operators, fsom
everyD; = R" a (differently looking) recursion might be called, as for instance in thésstof the
GaulR3-Seidel method in Section 3.3.3.

We define the subset obstacles as in (3.3.2). Therefore, following Leng@ma B suffices to ensure
that each subset iterate is admissible to obtain admissible multiplicatively computedtioms.
Since this is the case by construction of Algorithm 8, Lemma 3.3.1 holds whiels gise touy ; +

k v v
I sy € By

The Local Trust-Region Update in the Multiplicative Context

To ensure that the multiplicatively computed corrections are scaled acgdaodihe nonlinearity of
the respective preceding objective functions, we modify the Trust-Ragpdate (2.1.4) to fit into
the multiplicative context. Similar to the additive context, we compute an intermediaséRegion
radius as follows
- AV oAV ] pr >
Az7i c ( k,zy72 f,z] ' p];,z Z7 (515)
[(nAL AL el <n
In a second step, we either use the intermediate Trust-Region radius oetheug one to update
A} ; as given in the following equality
o Jmin{ Ay Ay — flug L —ul k) i Dy £ RT
ki+l =\ xu ’ ’ ’ _ (5.1.6)
AL, otherwise

Here A,_4 is the current Trust-Region radius on the preceding sulidet;. Moreover, we em-
ployed the following — from the additive context known — multilevel norm

skl = [ 1xSk || o

where I, is as defined in (3.1.11). In Lemma 5.1.2, we will see that together with the modified
Trust-Region constraint
skl < AY; (5.1.7)

substituted in (2.1.2), this formulation ensures that each correction whidmiputed oriD,, stays
within the previous subset’s Trust—Region.

5.1.2 Convergence to First-Order Critical Points

We emphasize that the functiori§ are not required to be twice continuously differentiable to obtain
convergence to first—order critical points. However, the proof ofoféae 5.1.5 crucially depends on
the fact that only finitely many Trust-Region iterations are carried out@t seabset. However, to
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prevent that the algorithm spends too much time for solving subset minimizatibfeprs, it seems
to be reasonable to limit the number of subset Trust-Region steps a priori.

Similar to Lemma 4.1 in [GSTO08], we show that the subset corrections will ndateiache global
Trust-Region constraint.

Lemma 5.1.2. For all v, k and: and eachsy, ,,,, = Il]c€+1(uZ+1,mk+1 ; ~ Uiq10) € Dr computed
recursively in algorithm MPTS the following holds ’

I$k,melle < A (5.1.8)

v
k,my

Proof. We prove the proposition by induction.
Assume thatD,, is a subset from where no recursion is called. Then we obtain for easctieite

14 14
Up s # Up i1

K+ lsk.ille

”uz,l - Uz,o”k < H“Z,z‘q — ’U,Z,O
= kb Apor = [Jugior — ugolle = Bk—1 = Af 1y,

HUZ,H - UZ,U

Therefore, equation (5.1.8) is satisfied. Moreover, we have

k—1
‘|3k717mk71Hk71 = H’[k (uz,mkyf - uz,o)kal = Huz,mkyf - uZ,OHk S Akfl - AZ—Lmk,1

Now, assume thab,, is not the deepest subset. Due to the update formula of the Trust-Region
radius (5.1.6) we may now employ the just used argumentation and obtain teabsetD,, each
recursively computed correction satisfies equation (5.1.8). O

Lemma 5.1.3. Let assumptions (fbtsl), (Anpts2) and (Anpts3) hold and suppose that the correction
sk,i in iteration v is computed recursively. Moreover assume tht. || # 0. Then there exists a
constantesg = c(y1,1, kg, N) > 0 such that the following sufficient decrease condition holds

H}J(UZ@) - Hl?(“%z + Sk,i) > CrsdH@Z,z’”2min{AZ,iv H§mH2} (5.1.9)

Similar to the proof of Lemma 4.3 [GKO08b], we follow the recursion to the deefgsset, where
the first Trust-Region correction was computed and propagated. Down to thistswles derive
estimations for the first-order conditions and the Trust-Region radius.vidbbitelate the respective
local entities to the entities on subg@t. Together with an estimation of the local decrease, this
yields the sought-after sufficient decrease estimation.

Proof. First, we analyze a successful recursion beginning at sd)seSuccessful means that

HY (uf ) = HE (Ug gy, + Skmi) 2 n(Hi 1 (Wi10) = Hi o (Wi m,, ) (5.1.10)

holds. This implies that there must have been a subset and an iteration such that there has a
first successful Trust-Region correctisy). been applied andropagatedo subseD;,. Hence, this
implies that also the gradient did not change on subsdiefore applyings; ... This means

1970ll2 = 197, ll2

Using equation (5.1.1), > x4, > 0, and that there exist at moat subsets before returning to the
global context yields

198112 = (5g) ¥118K 12 = (Kg) N 18Ky I2 (5.1.11)
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To derive a lower bound for the Trust-Region radiis , we suppose that the Trust-Region radii
were only reduced on their propagation to sublégataﬁd to iterationr. Note that at mostn =
maxg—o,.. N My TTust-Region steps are computed on each subset. Therefore, edGali),y; <
1,7 <m+ 1 forall provide

v
L,r

v

TAV __ _TAV
M z,o—’YlAzq,ml,1

2-(m+1 v
7{ ( - ))Al—Q,ml_Q

v

v

7£(N+1).(m+1))AZ,mk >0

Now, sinceuy,., ; was computed in the Trust-Region algorithm, Algorithm 1, we may empjoy>
n and the sufficient decrease condition (2.1.7) and obtain

HY (W) — HY (uf,41) > 18]|3}, [l min{ A, 11,12} (5.1.12a)
AU . N+1)-(m+1 v N
> 168(rg) V1Y s [l min{y DI AY e N gE o)
(5.1.12b)

We still need to estimate the left hand side of this inequalityy(vy ,,, ) — Hy (v ., + Skmy)-
We obtain that at all subsetswith & > p > [ and iterationg at subsep the following inequality
holds

HE (4 + Spamy) = HY (s, 1) > HE (4, ) (5.1.13)

wheres,, ,,, is the recursively computed correction. The acceptance criterion darsieely com-
puted corrections (5.1.10) and (5.1.13) imply

Hy (upm,) = Hy (5, m1)

n(Hy 1 (upy10) — H5+1(UZ+1,mp+17f))

Hy/(uy,0) — Hy (U, ;)

v v

Using this inequality, (5.1.10), the choice @f< 1, and the fact that maximaV recursions take
place yields

v

H;;(UZ’mk) - H.Ili‘/(uz,mk + Sk,mk) n
> ™ (H (u
n

Combining this inequality with equation (5.1.12) yields

wherecrsq = ﬁnN+1n§N7§(N+l)'(m+l)) > 0. This concludes the proof. O

Lemma 5.1.4. Let assumptions (fbtsl), (Anpts2) @and (Anpts3) hold and suppose th#ﬁk(uz’i)ng >
e > 0. Then we obtain for the decrease ratio of each recursively computedation (5.1.3) in
Algorithm 8

Phmy =1
for Ay, sufficiently small.

Proof. Due to the definition of the initial Trust-Region radius o4, and the considerations in
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Lemma 2.1.2 we have that, fax} . sufficiently small, each Trust-Region correction g, is
successful, i.egy,,; > 7.

Now we consider the definition of the recursive decrease ratio (5.1.3), i.e

. (Wf ) = HE (U iy, + S8.m1) (5.1.15)
k/., —_ . .
e H15+1(UZ+1,0) - H15+1(UZ+1,mk+1,f)

Here,s;, , is the multiplicatively computed correction given by

_ 7k v _ 71K v 1
Skomy, = Tk = D (W1 my,y, — Wir1,0)

Employing the meanvalue theorem allows for rewriting the numerator in (5.1s1f6)laws

Hy () = HY () + T 5740) = —(VHY(E) I 5E )

PRk (5.1.16)
= _<RII§+1VH1<; (&), 5%41)
with & = uf,. + 7/ I¢,  s{., and7y € (0,1). Now, we obtain
_ Rk-‘rlvﬂ'll v v
P, = R VHE () s (5.1.17)

HIZ—I—I(“Z-I—I,O) - HIZH(UZH,mHLf)

We will have a closer look at the denominator. The mean value theorem addfthiion of the sub-
set objective functionsl;] from (3.3.1) provide for sufficiently smaJLZ’mk the following inequality

0 < Hyy(upyq0) = Hi (Ui 0+ Ski1)

= JIZ+1(UZ+1,O) - Jllchrl(uZJrl,O + SZH) - <59Z+1a 5Z+1> (5.1.18)
= (VI (&) s540) — <RZ+1VJI?(UZ,W) - v‘]llc/+1(“%+1,o)v Shi1)
where &\, = wup,,, + 785, and 7, € (0,1). To reformulate (5.1.17), we add

+(HY oy (uf 4 o) — H oy (uf o + sf,,)) and obtain

k
_(H§+1(“Z+1,0) - H12/+1(“Z+1,0 + Sll;+1)) - <Rk+1VHIZ(fIZ)v SZ+1>
Hy (i 0) = Hy g (w0 + 854)
k1| + |K2

HIZH(“ZH,O) - HIZH(“ZH,O + SZH)

pZ,mk +1

Here, we used (5.1.16) and (5.1.18) to obtain the following abbreviations

ki1 = <VJIZ+1(§Z+1)_VJ£+1(UZ+1,0)7SZ+1>

ke = (RETIHY(ufl,, )~ RyT'VHE(ED), shiy)

kamk
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Next, we derive estimations ¢ | and|x2|. We employ Cauchy-Schwarz’s inequality and obtain

k1] = |<VJ12/+1(§IZ+1) - VJIZH (“Z+1,o)v 3Z+1>|
< VI &) = VI (g o) l2llsk ll2
kol = [REMVHE(uf ) — BETIVHE (), 80))
< R NIV HE (4 i, ) = VHE(ED 121851412

SinceVJ; andVJy/ | are continuous on a compact set, we obtain uniform continuity of both func-
tions. In particular, for alkc > 0 there exists al\¢ > 0 such that for allA} , < Af, < Ac, the
following holds

—lwl = =V ) = VI (g o) ll2llsiralle = —ecllsgiall2
k+1
— 1R 2V HE (U g, ) = VHE () 2l% 1112 > —ecCrllsk 12

V

—[ra| =
Here, we exploited (3.1.13a), i.¢|.R’,j+1\|2 < Cpg. Assume now, that denotes the first successful
correction at subsé®y ;1. Hence, we employiy, ; (uy | o+ sk+14) = Hy j(uf 1 o+ 8§,1) which
gives rise to

—ec|skyillz — ecCrllsgiall2
Hy o (ui10) — Hipr (Weg10 + Skt

—ecllsiallz —ecCrlisgnll2
Hy q(ugy0) — Hipq (U o + Sk41,0)
Using the result of Lemma 5.1.3 (the MPTS sufficient decrease conditioldsyier sufficiently
smallAy,

v
Pk,my, =

1
(5.1.19)
>

—ec|lspyille — ecCrllsiiall2
Crsd’\§15+1,z\|2 min{AZH,la ”§Z+1,l
—ecllsiqallz — ecCrllsiiall2

Crsde AL 41

DY +1 (5.1.20)

|2}
+1 (5.1.21)

>

Wherel is the first successful correction B ;. Now, we can apply Lemma 5.1.2 and (3.1.13b)
which provides

l N(m+1 N(m+1
k1l = NA%10 2N () N (m )Huzﬂ,mkw—uzﬂ,oy et (5.1.22a)
N(m+1 N(m+1
— A e > e T s 2 (5.1.22b)

Moreover, we use (5.1.1)g . [[2 > ¢ and obtain

19k +10ll2 = 9k+10ll2 = Kgllgim, ll2 = roe (5.1.23)

Combining equation (5.1.23), (5.1.22a) and (5.1.21) provides for smfﬂyiemallAZMk

—ecolls¥ —ecChrllsk
cllsks1llz — ecCrl| k+1||2+1

pz,mk Z (m

N 1
arsarigery " er|lsY 2

—(1+C
_ ( +N rEC
(m+1)
CrsdigEY Cr
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Thus, choosing ¢ andAZ}mk small enough yields

Py =1

which proves the proposition. O]

Theorem 5.1.5.Let assumptions (ftsl), (Ampts2) and (Anpts3) hold. Moreover assume that either
mj = mg > 0 Trust-Region steps are computed on at least one sabset R" or an overlapping
or nonoverlapping domain decomposition is employed. If a domain daexsition is employed,
we assume furthermore that, > 0 holds forD, # R" and that the constants are given as in
(4.1.7) and (4.1.8), respectively. Then we obtain that the MPTS algoritlynrithm 8, computes a
sequence of iterates such that

Vﬁoo,Djlir]lr%lnl,rilEf{O,m-l-l} Hg] i
Proof. We prove the assertion by contradiction.
Assume that there exists an index> 0 ande > 0 such that|gy,[lo > ¢ for all v > v, D; = R"
and alli = 0,...,m + 1. We will show, that this assumption implies tha}; — 0 for » — oo and,
inturn, p¥; — 1 which contradictA, — 0.
First, we will prove thatA?, — 0 for v — oo. If there is only a finite number of successfully
computed corrections we have due to the definitiohtf thatA”, — 0.
On the other hand, if the sequence of successful corrections; ea R" is infinitely long, equation
(2.1.7) and (5.1.9) imply for successful corrections

J( ) > J( jH—l)
for all / > 0 and, therefore, we obtain due toffsl) that
J(uguz) - J(u;{,i—&-l) —0
The sufficient decrease condition in Lemma 5.1.3 ggif || > < give rise to
AY, —0

Now, Lemma 5.1.4 and Lemma 2.1.2, respectively, provide that for sufficientigll A”, each
correction is successful. But,

e if mg > 0, this would yield that eventually all corrections are successful andftireréhat
(A¥;)v,i is bounded from below.

e if mg = 0, we have a domain decomposition and Lemma 4.1.5 applies. For sufficiently small
AY, this yields that in each iterationthe setC” = {D; = R" | s¥,; # 0,Cj+1 C Cj}is
non-empty. In particular, we have that for sufficiently small; each recursively computed

correction is successful. Therefore, due to the Trust-Region updatebtain thatA? ), ; is
bounded from below.

In turn, the assumption must be wrong. O
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Theorem 5.1.6. Let the assumptions of the previous theorem hold. Then the MPTS algofiliyon
rithm 8, computes a sequence of iterates converging to a first—orderatqitoint of (M), i.e.,

5 =0 (5.1.24)

lim gy
v—00,D;=R",i€{0,..,m+1} 195

Proof. This proof is the same like the one of Theorem 2.1.4, except that we mustitatéd the
sufficient decrease condition in inequality (2.1.15) by the weaker condBidrO). O

5.2 Combined Nonlinearly Preconditioned Trust-Region Methods

At least for quadratic and convex minimization problems, often one of theldreks of pure ad-
ditive preconditioning strategies, compared to multigrid strategies, are sagrilficslower rates of
convergence. In particular, depending on the domain decompositioitivagateconditioners suffer
from a delay of “information transfer” of the linear residual’s low fregag contributions. To deal
with this drawback, often a coarse space is employed to improve the ratesvargence (for an
introduction see [TWO05]).

Since problem (M) is arbitrarily nonlinear, we propose to employ the MPTS adedthresolve low
frequency contributions of the nonlinear residual. On each subset, BieSMolver itself may em-
ploy, besides the Trust-Region smoother, the APTS strategy to solve fhectige minimization
problems in parallel.

Thus, in this section, we assume thateatical domain decomposition d&&” exists, as introduced in
Section 3.1.5. This means, that after decompo8ifichierarchically, each of the resulting subsets
D, will also be decomposeorizontally, i.e.,

UDk,l =Dy, (5.2.1)
/

Moreover, we assume that on each suli3gtassumptions (Aptsl)—(Ampts3) hold, as well as as-
sumptions (Aptsl)-(Aapts3) on each subsé, ;. In this case, the MPTS algorithm, Algorithm 8, may
now employ the APTS strategy, Algorithm 5, to solve the local minimization problérhas, the
APTS method substitutes the Trust-Region strategy yielding the combined, emmdidditively and
multiplicatively preconditioned Trust-Region strategy, Algorithm 9.

Convergence to First—Order Critical Points

Similar to the additive and multiplicative contexts, we have to ensure that the Algd6thm is able
to compute the first-order conditions. To this end, either a domain decompaastiarSection 3.1.6
must be employed or at least one Trust-Region stepomust in each iteration be computed. How-
ever, since the convergence of all, within the AMPTS algorithm employethatifation strategies
has been proven, the proof of the following theorem is confined to pyawiat certain sufficient
decrease conditions hold.

Theorem 5.2.1.Assume thaR™ is decomposed into a sequence of nested subspaces, as introduced in
Section 3.1.4 and that the respective sub®gtare decomposed as in (5.2.1). Furthermore, suppose
that (Anptsl)—(Anpts3) hold on each “multiplicative” subsé®;, and that (Aptsl), (Aapts2) and (Aypts3)

hold for the respective subspac®s; ;. Moreover suppose that either each subBgt = R" is
decomposed employing an overlapping or non-overlapping domangaasition or thatng > 0

global smoothing steps within the APTS algorithm are computed. If a donegiontposition is
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Algorithm: AMPTS — Nonlinear Additive and Multiplicative Precondition ed Trust-Region Strategy

Input: &k € {0,..., N}, B, u¥ 0,951 € Dr—1, A1 € RT U {o0}
Output: new iterateuy, ,,, ; € Dy

Smoothing
call theAPTSalgorithm withuy, o, Hy , A o, dim Dy,
~ N~ /™
=ug =J =Ag =n
and receive a new iteratg; ,,, and a new Trust-Region radids; ,,,,
if (Cr+1 2 Ch)
return uy ,,,, ;= Uk my,

else if(Cr+1 = Cr) {
UZH,O = UZ,mkv AZH,O = Az,mk
k=k+1
goto Smoothing

} else if(Ck+1 S Cx and (5.1.1) holds){
call AMPTSWith & + 1, Biei1 (uf . )s Po Tl s BT G s Db
N e N’

kymy s

=Bry1ch (332  =u¥ ' =Ay
and receiveu;H,mk+1 ;
_ 7k ' k+1
setsy,m, = ]k+1(UZ+1,mk+Lf - P u%mk)
Ul mp+1 = Amprs i (Skmy > Uk,m,, ), UpdateAy . according to (5.1.6)

if (k+#£0)
ulTIIwU = u;;,mk+1’ lT/k,O = A%»mk+1‘ k=my
else

v+l _ v v+l __ v _
UGy = Uk my 41, D000 = Al mr v =v+1

goto Smoothing

}

Algorithm 9: AMPTS — Nonlinear Additive and MultiplicativBreconditioned Trust-Region Strategy

employed, we assume furthermore that; > 0 holds for the subset®;; of D; = R™ and that the
constants are given as in (4.1.7) and (4.1.8), respectively.
Then the sequence of iterat(eﬁﬁi)i,pj:ﬂ@n,y, computed in Algorithm 9, satisfies

lim inf g(u” =0 5.2.2
V—»oo,'Djleril,llg{O,...,erl} lg(uzallz ( )

Proof. We start with gathering some important results. Under the assumptions of tbisrihnand
Hg;;i”Q # 0, Lemma 4.1.3 from Section 4.1.2 holds. Therefore, if the APTS strategy \aldliti

computes corrections diy, i.e.,]—"ﬁ“) (uf o) # uy o, we obtain the following decrease condition

V

L N . N
Hy (uf o) = HY (Fh(ui)) = 78y (rglldfollzmin {rg]dF 0
lecy

’2) r)/{nAZ,O})

Y

1 Brigll g oll2 min {rg|g¥ oll2, 7" AF o }

Here,g; , denotes the gradient af , the iterate before calling the APTS method@n Moreover,
CY is the set of eact®; ; where a correction was computed. Since this decrease condition is Weaker

'y andk, are smaller than one
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than the original decrease condition (2.1.8), we now obtain that for alctonss; ; on D, the
following decrease condition holds
Hy(up;) — H (ug; + ski) > VAL (5.2.3)

Therefore, replacing (5.1.12b) in Lemma 5.1.3 by (5.2.3), yields for alirsagely computed correc-
tions

Hy(up ;) — Hy (up; + 8k.i) > camptd| Gk ;12 min{ AL ;. [|g5 112} (5.2.4)
Where we introduce the following constant,

Campts = RN N+2'Y§N+1).m min{ﬁz, KV} >0

Since (5.2.4) is — once more — weaker than (5.2.3), this inequality is a validisoffidecrease
condition for all computed corrections.

Now suppose that the assumption of this theorem does not hold, i.e.,foral, i € {0,...,m+1}
and eactD; = R" there exists an > 0 such that|g(u},)|[2 > €.

If we now employ the same argumentation like |n Theorem 2.1.3, we obtain thabdbe suf-
ficient decrease condition (5.2.4) the Trust-Region raditfs tends to zero. Now, Lemma 2.1.2,
Lemma 4.1.4 and Lemma 5.1.4 directly imply that eventually all corrections — TrgtReor-
rections, additively and multiplicatively computed corrections — are sutdems D, = R", i.e.,
P = m which contradicts\Y; — 0 and proves the proposition. O

Theorem 5.2.2. Suppose that the assumptions of Theorem 5.2.1 hold. Then, we obtain that

li g(uf)]l2 =0 5.2.5
Vﬂoo,DjzR}lglE{O,...,m+l} (w72 ( )

Proof. The proofis similar to the one of Theorem 2.1.4, except that the sufficgemédse conditions
must be replaced by (5.2.4) on each suli3gt= R". O

5.3 Nonlinear Multiplicatively Preconditioned Linesearch Methods

In contrast to Trust-Region algorithms in general, the Linesearch frarkdves the advantage that
each search—direction, as far as it satisfies a decrease conditioaleid and applied. This means
that due to well-balanced a priori and a posteriori descent contréégiea no computation time
is wasted for computing corrections which finally will not be applied. Thisg an the context of
multiplicatively preconditioned globalization strategies, it would be desirablesicate all computed
corrections, rather than disposing them which might lead to faster canezg

5.3.1 The MPLS Framework

Similar to the APLS framework, we will state assumptions on the respectivetsoabjgctive func-
tions. But, even if the following assumptions look equivalent to the ones iticBed.2.1, the
employed objective functions are now the multiplicative objective functidfifrom (3.3.1), Sec-
tion 3.3.1. This gives rise to a recursive formulation of the traditional Liaeteassumptions.

> 0, all subsetsD,, and all initial
iterates oDy, # R", i.e.,uj , = P,ff_luk,l € B (ug—1), andug_1 € Dy is admissible, it

(Ampisl) For the given initial global iterate® € B, for all v >
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is assumed that the level sets
L£0={ueB|Ju)<Ju}

and
k= {u € Br(ur—1) | H (u) < Hy/(uf o)}
are nonempty and compact. Hei is from (3.3.1) and3, (ux—1) is from (3.3.2).

(Ampis2) We assume that is continuously differentiable os?, as well as, for al > 0 and all
subsetsD, # R" that H}/ is continuously differentiable od}. Moreover, we assume that
for allu € £Y andu;, € LY the respective gradients are Lipschitz continuous with a constant
L,>0,ie.,

IVJ(u) = VI (u+5)ll2 < Lg|ls|2

and
IV H (ug) — VH (u + si)ll2 < Ly skll2

foru+ s € B, u + s € Bi(uk—1) respectively.

To allow for employing a GauR3-Seidel like iterative scheme, we will see fais the result of
myj < m Linesearch iterations o®, # R"™ andmg > 0 Linesearch iterations oRR™. Here,

m = maxy—o,.. N Mk, IS the maximal number of Linesearch steps on each subset. Indeedy® der
a convergent scheme, we will see that we must either compugte> 0 global smoothing steps or
have a domain decomposition witty, > 0 local smoothing steps.

5.3.2 A Modified Armijo Condition

Similar to the additive Linesearch approach, we extend the Armijo-Conditi@5(2to the multi-
plicative preconditioning context. Therefore, on each subgetthe step—length parameter must
satisfy the following Armijo condition

H (uy ; + agski) < Hy (up ;) + pacy (Sk.i 9k.4) (5.3.1)

Moreover, on each subsBf, # R", we demand that beginning from the second subset iteration the
following inequality holds

<ull;,i - u%,* + az,isk,th,Q < pR(“Z,l - UZ,*79Z,*> (532)

where0 < pr < pa < 1. Here,uy , denotes the first iterate d, in the sense that} , = uj,
where the indeX is the smallest integer with; = Cj, andC; C C;_; such that there does not exists
aniwithl < i < k, C; = Cy, andC; € C;_;.

In contrast to [WGO08], this condition is stated directly and is not a resultofdition to the objective
function, like, e.g.,

H’Z(UZ,Z + az,i‘slﬁi) > HIZ(UZ,*) + pyMp, <g;c/,*7 u%,i - u%,* + O‘Z,isk,i> (533)

wherel — pa < pyp, < 1. This condition of Wolfe type can be illustrated as in Figure 5.1. In
fact, the formulation of such a condition has the drawback, that local minisnaernot generally
included in the region of feasible step—lengths (cf., [NWO06] and Figurg fT¥en worse, a step—
length parameter satisfying (5.3.3) may d&e> 1 and, therefore, can in general not be computed
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HY

gy (Zf;:;.q);f paalgy

Sk0)

Figure 5.1: lllustration of Z. Wen’s and D. Goldfarb’s stégrgth condition (5.3.3) in the first computation step
on domainD;. As one can see, the local minimizer is not included in théoregf admissible step—lengths
(between the dotted lines). Moreover, in general there moshecessarily exist step—lengthavhich are
smaller than one, in contrast to the step—lengths whickfgdtie Armijo condition. Thus, cheap backtracking
algorithms are generally not applicable. Anillustratidithe step—length criterion within the MPLS algorithm
is given in Figure 4.1.

with the traditional backtracking scheme, when starting frgyn< «. To this end, one must employ
a (possibly expensive) bisection algorithm. As a sideeffect, this may yietcetlea for admissi-
ble search directions the resulting scaled search—direction may not bestuienia the sense of
By (ux—1). Though, as it turns out, only if the subset objective function has a umijopositive
definite Hessian, (5.3.3) as a constraint vanishes, cf. Lemma 3.2 [W@®0&)ntrast, the following
lemma shows that (5.3.2) is always satisfied if the Hessians are just positinelsfinite.

Lemma 5.3.1. Assume that (fpisl) and (Anpis2) hold and suppose thdi; is twice continuously
differentiable. Moreover assume that the HessianH pfare positive semidefinite, i.e.,

0 < (s, V2HY (u)s) Yu € Dy, Vs:u+s € Br(ug—_1)

Suppose furthermore that all search directions satisfy (2.2.2b) and §5Ba&n assumption (5.3.2)
is satisfied for every step—lengtlf ; € (0, o] satisfying (5.3.1).

Proof. The proof is the same as the one of Lemma 4.2.1 (Section 4.2.2). O

A Practicable Descent Condition

As we have seen, in the additive case, the descent criterion (5.3.Xpcamstance, be satisfied by
employing the following descent criterion

<“Z,¢ - UZ,* + az7i3k,i’g;~c’7*> < PMP(UZ7Z' - ’LLZ,*, gli*> (5.3.4)

wherepr < phyp andm = max,—o .y mi. Since, as we will see, such a criterion ensures that
a backtracking algorithm is able to compute an admissible step—length, we will\ye(&801) and
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Modified Linesearch Algorithm

Input: uy g € D, Be, k € Nym,ng €N
Output: uy ,,,, € Dy

i=0
do until (¢ =m) {
if (D # R and uf; # uf..) {
compute a search—directiap ; satisfying (2.2.2a) and (5.3.5) ang ; + s,; € Bx
call the Backtracking Algorithm 2 to compute a step-length satisfying (5.3.1) and (5.3.4
} else if(Di # R™) {
compute a search—directiap ; satisfying (2.2.2a) and (5.3.5) ang ; + s,; € Bx
call the Backtracking Algorithm 2 to compute a step-length satisfying (5.3.1)
} else{
compute a search—directiep,; satisfying (2.2.2a) and (2.2.2b) and ; + sk,; € Bk
call the Backtracking Algorithm 2 to compute a step-length satisfying (2.2.5)
}
setuy ;11 = uy ; + Qg S,
1=1+1

}

return ug .,

Algorithm 10: Modified Linesearch Algorithm

(5.3.4) within our MPLS algorithm, Algorithm 11. However, even if we employ trigerion, the
fact that each search—direction is a descent direction is still a direseqaence and not a result of a
condition of Wolfe type.

Lemma 5.3.2. Assume that (fipisl) and (Anpis2) hold. Suppose that a giver] ; € By (ux—1) was
computed using (5.3.1) and (5.3.4), as well as that each search—d'rlex;tjzoé Dy, is a descent
direction, according to (2.2.2a) and thay; ; + sy € Bg(ux—1). Then there exists ah < of ; <
ap < 1 such that (5.3.1) holds and f@a‘,;i % up such that, both, (5.3.1) and (5.3.4) hold.

Proof. This proof is the same as the proof of Lemma 4.2.2. O

Finally, like in the APLS setting, we have to ensure that the lengths of thetssdeeh directions are
limited by the norm of the initial subset gradient. To this end, we formulate thenfioltp(recursive)
criterion

[uf s = uf o+ skilloe < BisArk (5.3.5a)
kil < Busllgk ill2 (5.3.5b)
foralli=0,...,my—1andk =1,..., N, if D, # R". Here,Ay is given as
I 2 ming (16, % Dy
B = T . T (PN N [ (5.3.6)
00 if Dy = R"

Here,3;s > 0 is the constant from (2.2.2b). As it will turn out, this condition substitutes (8.1
within the modified Linesearch algorithm, Algorithm 10.
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Algorithm: MPLS — Nonlinear Multiplicatively Preconditioned Linesearc h Strategy

Input: k€ {0,...,N}, Ay, B, ug o € Dk, g%
Output: final iteratevuz’mk'f € Dy

Smoothing
call the Linesearch algorithm, Algorithm 10, witl} ,, Br, m , dim Dy
’ N N —

=mg =n

and receiveuy, , , -

if (Cr41 2 Ck)

return u;,mkyf = UL m,

else if(Cr11 = Ck) {
Uk11,0 = Uk m,,
k=k+1
goto Smoothing

}elseif(Cr+1 € Ck and (5.1.1) holds)
computeAy; by means of (5.3.6)
call MPLSWith k + 1, A1, Bt (U, )s Pe Ui s BT K m,, and receiveus sy o, ., |

v

=Bj41 cf. (3.3.2) :u;+l‘0 gy,
_ 7k v k+1_ v
Setskﬁnk - Ik+1(uk+17mk:+1,f - Pk ukﬁnk,)

if (D # R™ anduy ,,,, # ui.) {

call the Backtracking Algorithm 2 to compute a step—length,,, satisfying (5.3.1) and (5.3.4
} else{

call the Backtracking Algorithm 2 to compute a step-length,,, satisfying (5.3.1)

v v v v
Seturk,o = Uk,m,, + Ak my, Sk,my,

if (k#0)

k=rg
else

ua’fgl = U mt1 V=V +1
}

Algorithm 11: MPLS — Nonlinear Multiplicatively Precon@ihed Linesearch Strategy

Numerically both inequalities can be fulfilled by substituting (5.3.5) by
Is%all3e < min{BisAx — l[uf; —ui I3 Bisll ki3 }

On the other hand, the construction of the Linesearch algorithm, Algorithrald@g with the defi-
nition of Bkﬂ(u;m,@) in (3.3.2) satisfies the assumptions in Lemma 3.3.1 and shows that multiplica-
tively computed corrections are admissible3g(u_1).

The Nonlinear Update Operator

The nonlinear operataF,, is the result ofV possible recursions. In the particular framework of this
chapter, we define a recursively computed correction by

— k 14 _ k 14 1
Skmp = Lpy1Sk41 = Ik+1(uk+1,mk+17f - uk+1,0)
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wheremy, is the iteration when a recursion is called afjl , ,, . . is the final iterate orDj;.
Note that we changed our point of view. Now the first iterate on the ndxdeguis well-known, i.e.,
Ujy1,0 = Uiy, bUtthe lastoneis; , . =, wherel =r; —1.

Since we consider a Linesearch framework, the actual implementation of tkiplicative recom-
bination operator is

v v v v
AnpLs k (Skmis Wemy, ) = Wy, T Qg Skomy,

wherea}gm is chosen such that the Armijo condition (5.3.1) holds. Moreovdp. it~ R™ and the
initial iteration onDy, already took place, i.euy ; # uj ., we demand that also (5.3.4) is satisfied.
Thus, the nonlinear multiplicative update operator is given by

7'-](\? (Wim,) = AlpLs,; (Sj,m> Ujm;) (5.3.7)

for all j with D; = R".

5.3.3 Convergence to First—Order Critical Points

Like in Section 2.2, we will prove the convergence of the just presentedSvilgorithm, Algo-
rithm 11 by showing that each multiplicatively computed correction is a desliggttion, each
correction satisfies a sufficient decrease condition and that the stgfi+[mrameters are bounded
from below.

Lemma 5.3.3. Suppose that; ; is a correction which was computed in Algorithm 11. Then we
obtain that the following estimation holds

20 < Busllaril% (5.3.8)

forallk=1,...,Nandalli=0,...,m

Proof. By (5.3.5b) inequality (5.3.8) holds for every correction computed within thedearch
algorithm.

Now we consider the cas€,; = sim,, I.€., & recursively computed correction, and inductively
prove that (5.3.8) holds. First, assume that,, = I} ,s7,, whereD;_, is the lowermost subset.
Due to (5.3.5) we obtain

||$kmk”c2>o = ||II]§+1(UZ+1 M1 f Z+1,0)Hgo
< R Rl mkﬂf Uj4, ollZ0 < 1k 13 Bis A (5.3.9)
< Bis mln{Hgk mkHomAk 1= /Blsluuk mE uk *”2 }

Obviously, (5.3.8) holds.
Now, if £ + 1 is not the lowermost subset, we obtain due to the previous inequﬂji% <ap<1
and the definition o\ that

Huz,mk + az,mksk,mk - u%,*”io < Huz,mk - u%,* go + Haz,mksk,mkugo
< [ e — R + aollskmy Il

2
]

14

go + ﬁlsAk - ||UZ,mk = Uk«

)

< ||UZ,mk - u%,*

Bis Ak

Following the argumentation in (5.3.9) gives rise|fd; ,, — UZ,*HQ < BisAk—1 and proves the
proposition. O
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Next, we show that the Linesearch parameters which satisfy the Armijo camdittobounded from
below by a constant depending on the gradient and the search direétiowe will see, we will
prove this result only for initial subset correctionsDp # R™. Here, we are just interested in the
initial corrections, since condition (5.3.4) enables us to relate subseqgoeattions to the initial
one.

Lemma 5.3.4. Suppose that (fpisl) and (Anpis2) hold. Then for each Linesearch step®@p= R"
and each initial Linesearch step d; # R" with u , = uj , in the MPLS algorithm the Armijo
condition (5.3.1) is satisfied for

2(pa = V)(sk.is 91.a)
Lyglsk13

v
Qpi =

where L, is the Lipschitz constant fov I{;/. Moreover, we obtain for the step—lengtf, of each
smoothing step o®;, the estimation

min{ao, 27y, ;} < ay; < min{ao, 24}, }

Proof. Due to the assumption of this lemma, the proof is the same as the one for Lemma 2.2.2.

Lemma 5.3.5. Assume that (fpisl) and (Anpis2) hold. Then there exists a constant such that for
each corrections;, ; with D;, = R", computed in the MPLS algorithm, Algorithm 11, the inequality
holds

~(9kr sw0) = emprslgn 3

wherecyrprs = cvprs(Bis, Miss @0, prrp, m, N) > 0.

Proof. We prove the proposition inductively by defining;p;s. By assumption (2.2.2a), we obtain
that each Linesearch correction Pp = R™ and each initial Linesearch correction satisfies

v k AV 112 AUV (12
(g% i 50) = ehprsllatal3 = msllak 13
In this case we define(A’})PLs = s > 0 which gives us the induction statement.
Now, we consider a recursively computed correction. Due to the defirofitime subset objective
function we haveyy,, o = VHY, (uf o) = R gy . . Now we use the definition ok}*! and
Sk,m,, and obtain

v _ v k v v
_<gk,mk73k,mk> = _<gk,mk7[k+1 (ukﬂ,mkﬂj - Uk+1,o)>

v

k+1 v v v
_<Rk‘ gk,mw uk—l—l,m;H_Lf - uk+1,0>
— v v 14
= —<9k+1,0auk+1,mk+1,f - “k+1,0>

Since each correction diy, ; is a descent direction which satisfies the descent condition (5.3.4) we
obtain

_<gZ,mk’ Skmy) = _Pqﬁp<gi’§+1,0a 041’2+1,05k+1,0>

Now we may employ the induction statement and obtain

k+1 ~ 2
(G s S} = PPty ot a1 ol13 (5.3.10)
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Next, we will derive a lower bound f(mZJrl o- To this end, we apply Lemma 5.3.4, i.e., the step-
length estimation by means of gradient and the correction, and obtain

27(pa = 1)(8k41,0: G 41,0)
Lgllsk+1,0l3

14
Q1,0 2

Now we estimate the correction’s size by employing Lemma 5.3.3w@ndv; ;1 = dim Dy 1 which
yields
Isk+1,0013 < nllskr10llZ < nBisllh10llze < nBisllgh10ll3

Employing the induction statement, and the previous inequality yields

k+1) |-
2r(1 - pA)CE\/[PL)SHgk—&—LOH%} _ 27(1 - pA)Cg\ZJlglL)S}

- = min{ayg
Lol ol too =

y .
Q11,0 = min{ag,

Now, we combine the estimation for the step—length along with our subset gradidition (5.1.1)
and (5.3.10) which yields

k+1)

. 27(1 — PA)C( S (k+1 2
—<9Z,mk73k,mk> > phrp min{ag, LynBy MPL }e MPL)SHngrl,OH2
S

27 (1_pA)CMPLS} (k+1) Hg H
Lgnﬁs CrrpLS9k,my 112

m 2 s
> phrpky min{ag,

Next, we can define the sought-after constant recursively by empl@ms and the traditional
Linesearch constants as follows

(k) m_ 2 - 27(1—PA)CS\]2;1L)5 (k+1)
CarprLs = Pirpky min{a, 7 Yenrprg >0 (5.3.11)

Together this provides

k ~
(G s ) = Edor 1138 |3

Since the number of recursions is limited byand each constaﬁ)PLS > 0 we can choose

CMPLS = | 1 r(r)un {CMPLS} (5.3.12)

9’ ’

This proves the proposition. O

The following lemma considers the estimationcgfpy,s.

Lemma 5.3.6. Assume that all constants hﬁ’f,)PLS are given as defined in Algorithm 11. Then we

obtain
922(N—k)

( )
o> (10) min{1,72 " "} (5.3.13)

where

. 2(1 = pa) 2
e = ¥
min{ o, Ly Yo pry

withl > 6 > 0.
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Proof. If k is the deepest level in the recursion, we obté@%s = ms > min{1, 57, } which proves
the statement.
Now we considef: < N and employ the definition oﬁ’})PLS, (5.3.13) and that

o(N—k—1) o(N—k)

k+1 .
1> il = (r0) min{1,n2" "} >0

which yields

k+1
27(1 - pA)C§WPL)S }C(k’+1)
Lyn MPLS
2(1 = pa)
Lyn

92(N—k—1)+1

(k) _ m 2
CymMpPLS — PMPﬁgmln{aoy

92(N—k—1)

v

_ 2
p’]\}PnzT min{ay, } ((T@) min{1, 77128(N k>})
2(N—k+1)
Is }

Y

(r0)*(10)

_ (7-(-—))22(]\]7]6)

min{1,7

o(N—k+1)
s }

min{1,n
This proves the proposition. O

As we have seen in the proof of Lemma 5.3.5, one may also estimate each gjéppl@rameter
independent from the gradients and corrections.

Lemma 5.3.7. Assume that (fyisl) and (Anpis2) hold. Then there exists a constant such that each
step—length parameter; , for recursively computed corrections in the MPLS algorithm is bounded
from below, i.e.,

27(1 —
Q. ; > min {0407 ( pA)CMPLS}

Lgnﬁls
whereD,, = R™ andcy/prs is as defined in (5.3.12).

Proof. First, we exploit Lemma 5.3.4 which gives

27(pa — ){skir 95 ) }

5

Now, we employ Lemma 5.3.3 and Lemma 5.3.5 and obtain

2
2 . 27(1 — pg
} > mln{amcMPLSI(/nﬁlp)}
g s

g )t

27(1 = pa)ll gy,
nLg/Bls ||§Z,z Hg

ay,; > min {040, CMPLS

O]

In a similar fashion like Theorem 2.2.4, we will now prove the convergemtesononlinear multi-
plicatively preconditioned Linesearch algorithm, Algorithm 11.

Theorem 5.3.8. Suppose that (Apsl) and (Anpis2) hold. Furthermore, assume that either on one
subsetD; = R" at leastm; = mq > 0 Linesearch steps are computed or an overlapping or non-
overlapping domain decomposition is employed. If a domain decompasigomployed, we assume
furthermore thatn; > 0 holds for eachD;, # R™ and that the constants are given as in (4.1.7) and
(4.1.8), respectively.
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Then the MPLS algorithm, Algorithm 11, computes a sequence of iteratesrging to a first—order
critical point for problem (M), i.e.,

lim : 195:ll2=0 (5.3.14)

v—00,D;=R",i€{0,...,m

Proof. As in the proof of Theorem 2.2.4, we use thatn= R" the Armijo condition (5.3.1) gives
rise to

J(Ugyz) - J(“?,z’ﬂ) > _ajl{,ipA<$j,ivg]V,i>

We employ Lemma 5.3.5 and (2.2.2b), respectively, and obtain

oY enrprsl|gysl3  if s was computed recursively
Qg Mis Hﬁ;’l 13 otherwise

J(uj;) — J(uf;q) > {
Now we employ Lemma 2.2.3 and Lemma 5.3.7, respectively which gives

Lgﬁlsn

min { ap, %} otherwise

min < ag, M} if 5,; was computed recursively

Note that if onD; = R" no Linesearch steps are computed, we have a domain decomposition as
introduced in Section 3.1.6. In this case, Lemma 4.1.5 is valid and in each iteratibieast on

one subset a correction is computed. Together with the compactne¥sasfd, thus,/ (uZi) —

J(u} ;1) — 0 we can conclude tha{g?;[|> — 0 which proves the proposition.

5.4 Combined Nonlinearly Preconditioned Linesearch Methods

To improve the rates of convergence of the traditional Linesearch metbad $ection 2.2, we
introduced the preconditioned Linesearch variants Algorithm 7 and Algorith. In this section,
we will introduce an algorithm which combines both preconditioning strategiesibstituting the
Linesearch solver within MPLS by the APLS solver. Hence, we obtain th&BMalgorithm as
presented in Algorithm 12.

Convergence to First—Order Critical Points

Similar to the traditional Linesearch analysis, we will once more prove thdi eacection com-
puted within the AMPLS algorithm satisfies a sufficient decrease conditioturh, we may use the
standard argumentation and obtain the sought—after convergence result.

Lemma 5.4.1. Assume thaR" is decomposed into a sequence of nested subspaces, as introduced in
Section 3.1.4, and that the respective subBgtare decomposed as in (5.2.1). Moreover, assume that
(Ampisl), (Anpis2) hold on each “multiplicative” subsel;, and that (Apis1) and (Aypis2) hold on the
respective subspac@®, ;. Then for each correctiosy, ,,,, € Dy = R", computed multiplicatively
within the AMPLS algorithm, we obtain

(K > Skamp) = O e PLS2| Gy I3

wherecy prse2 > 0.
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Algorithm: AMPLS — Nonlinear Additively and Multiplicatively Precondit ioned Linesearch Strategy

Input: k£ € {0, ceey N}, AkBk,uZ,o,gZ_l € Dr—1,Ak—1 € RT U {OO}
Output: new iterateuy, ,,, . € Dk

Smoothing

call a modifiedAPLSalgorithm withuj, o, Hy , dim Dy
~ =

=uy =J =n
which ensures that (5.3.1), (5.3.4) and (4.2.4) is satisfied
and receive a new iteratef, ,,,, and a new Trust-Region radidsy ,,,,

if (Cr+1 2 Ck)
return uy ,,,, ;= Uk my,

else if(Cr+1 = Ci) {

UZH,O = uZ,mk
k=k+1
goto Smoothing

} else if(Ck+1 S Cx and (5.1.1) holds)
computedA, by means of (5.3.6)
call MPLSWith k + 1, Axy1, Bt (U, )s Pe Ui s R F m,, and receiveuyyy o, .,

— v
=ugii0 Ik

_ 71k v k+1, v
setSkymk = Ik+1(uk+17mk+l,f - Pk uk,mk)

=Bj 1 cf. (332)

if (Dx # R™ andmy, ,,,, # uj )
call the Backtracking Algorithm 2 to compute a step—length,,, satisfying (5.3.1) and (5.3.4)
else

call the Backtracking Algorithm 2 to compute a step—length,,, satisfying (5.3.1)
setu:k,ﬂ = UZ,mk + a%,mk Sz,mk

if (k#0)
k= Tk
else
u(’ﬂ',l = Uy 1 V=V +1

}

Algorithm 12: AMPLS — Nonlinear Additively and Multiplicately Preconditioned Linesearch Strategy
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Proof. Similar to the proof of Lemma 5.3.5, we prove the proposition by induction. Buegimst
the induction statement changes, we can employ major parts of the proaihofia®.3.5.

By assumption (2.2.2a) and the result of Lemma 4.2.4, we obtain that each immitgedelarch and
APLS correction satisfies

—(g% > Sk,) > min {7, HgPZmes min {ao, 27min } } HQZ@”%

In this case, we dEfinté]\Z)PLSQ = min{n;, /igpﬂpms min{ag, 27amin} } > 0.

Now, we can exploit exactly the same argumentation as in the proof of Lemmaab@dbtain that
for recursively computed corrections the proposition holds with

(k) mo2 27(1 = pa)eliipisn, (k1)
CMpLs2 = PArpkgmin{ag, Lo Yerrprss > 0
gTtPls
Finally we choose
_ : (k)
CMPLS2 = k:I(I)I’{I.I’N C\MIPLS2
which concludes the proof. O

Theorem 5.4.2. Assume thaR" is decomposed into a sequence of nested subspaces, as introduced
in Section 3.1.4 and that the respective sub®gtare decomposed as in (5.2.1). Moreover, assume
that (Anpisl), (Ampis2) hold on each “multiplicative” subseD;, and that (Apis1) and (Aypis2) hold for

the respective subspac®, ;. Moreover suppose that either each suliBet= R" is decomposed
employing an overlapping or non-overlapping or that on @he= R" atleastm; = mg > 0 global
smoothing steps are computed. If a domain decomposition is employadsurae furthermore that

mj,; > 0 holds for the subset®;; of D; = R" and that the constants are given as in (4.1.7) and
(4.1.8), respectively.

Then the sequence of iterat(eq’i)i,pj:m,, computed in Algorithm 9, satisfies

Z Jjill2 =0 5.4.1
”HO@DFR’I‘?G{O,...,mH} 195112 ( )

Proof. As in the proof of Theorem 2.2.4, we use that each global Lineseareimetera; satisfies
the Armijo condition (5.3.1), i.e.,

J(U;z) - JV(“?,z’H) > _a?,iPA<5j,i’g}'j,z’>
Using, Lemma 4.2.4, Lemma 4.2.5 and equation (2.2.2b), respectively, gives,

oY K2 ppms min {ag, 2Tamin} 135113 if 55, was computed additively
J(ufy) = J(Whi0) > { of semprs2l| g3 if 5;; was computed recursively
o sl g4 il13 otherwise

whereapn, > 0 was defined in Lemma 4.2.3. Now we employ Lemma 2.2.3, Lemma 4.2.5 and
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Lemma 5.3.7, and obtain for each Linesearch parameter

min {ag, 27CAPLSOmin } if s;; was computed additively
a%; > { min { ag, W} if 5;; was computed recursively
min { ag, %} otherwise

Note that if, within the APLS algorithmmn = 0, we have a domain decomposition as introduced in
Section 3.1.6. In this case, Lemma 4.1.5 applies and in each iteration at leasthsee correction

is computed.

Together with the compactness©f and, thusJ(uy,;) — J(u},,,) — 0 we conclude that

15:ll2 =0

which proves the proposition. O]

5.5 A Remark on Second-Order Convergence

In order to compute a second—order critical point, the iterative schemebmadtle to “detect” and
handle negative eigenvalues of the Hessians. As a matter of fact, evengféatlient is zero, one
might have just found a saddle point. If a saddle point was computed, oseamoose the right
search direction, to succeed in computing a local minimizer, as pointed outtioi$€.1.5 and
Section 2.2.5.

The presented preconditioning strategies can be considered asibspaction methods, which
may only resolve the eigenvectors and eigenvalues of the Hessian osjketiee subspaces. There-
fore, employing a multiplicative scheme to compute a search—direction whichesatis

VS, (Sj,m;) < e (Smin) (5.5.1)
with ¢ > 0 and )
v _ v 2 v
wj,mj (S) - <gj,mja S> + §<S7 \Y ‘](uj,mj)8>

is generally impossible. Herey,;, is the solution of
R % _ : v v .
s 1P, (s) = minl Wt [[sllec < AY,,anduf,, +sjm; € B

We will briefly show that for some (realistic) examples multiplicative strategiesar able to satisfy
(5.5.1). Suppose th&™ is decomposed non-overlappingly and suppose that the local objective
function is a quadratic function like

1
Hi (ko + k) = ¥ic(sk) = (Bigfm, k) + 5 sk, Ry V2T (uf ) Iesi)

Similar to the argumentation in Section 4.4, we consider the following problem.cSegpat;, = 0
and thatRkV2J(uj’{mj )1}, is positive definite. Furthermore, Iélkvzj(uj’{mj)li for k # i be chosen
such thatVQJ(u]”.mj) is negative definite. In this case, the local correctipis zero, but the solution
of (5.5.1) may be the following vector

Smin = QT )

min



98 5.6 Non-Linear Elasto-Static PDEs

wherez,_ ., with ||z, _, |2 = 1 is the eigenvector related to the smallest (negative) eigenvalue of
VQJ(u;’,mj). In a Trust-Region setting, the scaling parameter 0 is chosen such that]’{mj +
Smin € B and||smin|lcc < A holds. In this case, we obtain that

V5m; (Tkse) = 0

but

Jom;
Which shows, that also multiplicative corrections generally cannot solgel{s
Similarly, in the context of multiplicatively preconditioned Linesearch metho@sséarch directions
must solve (5.5.1) in order to compute a second—order critical point [{CIB4, the same reasoning
shows that this is generally impossible.
Therefore, also multiplicative schemes aim at just improving the convesgafnihe globalization
strategy. On the other hand, only the global smoothing strategy is able teeggsadratic) conver-
gence to second-order critical points.
Complex real life simulations in solid mechanics are challenging in two ways. Tirolesults
which are close to reality, the geometry of the solid, in particular its boundaussbe resolved suf-
ficiently accurate by the computational domain. But, the better the polyhedsal apgroximates the
real geometry, the larger becomes the minimization problem. In addition, realistsical models
generally give rise to nonlinear, and in the case of contact, possiblymumth objective functions.
From the engineer’s point of view, real life simulations must be computed ginplefficient and
reliable strategies. As we have seen in Chapter 2, reliable solution strateglasge scale vari-
ants of our model problem (M) are the traditional Trust-Region and Larebestrategies. However,
efficiency for both globalization strategies may only be achieved, if theeBeadirections can be
computed in parallel. But, if large scale minimization problems with strong nonlinesahniéiee to be
solved, these traditional globalization strategies tend to converge slowlyheQuther hand, the pre-
sented preconditioned globalization strategies truly converge to criticaispdiow, in this chapter
we will consider the convergence behavior of the presented traditiomahanlinearly precondi-
tioned globalization strategies. To this end, we compare in several exanpledeah of convergence
of the respective Trust-Region strategies and Linesearch strategiesastitother and comment on
the convergence rates and computation times.
The presented examples in this chapter arise from the discretization of Bedintroduced in Sec-
tion 1.3. Numerically, the discretization is carried out within thesDIB++ framework [Kra07b].
On the other hand, the presented solution strategies are implemented in ttie WHER 1B which
extends @sLis++. A brief outline of technical aspects of the NoS/ERLIB is given in Chap-
ter 6. GBSLIB++, itself, extends the Finite Element toolbox UG [BBY] in order to assemble and
to solve nonsmooth minimization problems.
The computational domains of the presented examples are CAD basedturstillgrids provided in
Exobpus-1l format [SY94]. Moreover, the boundary conditions and neagsgarameters are given
in Exobus-1l PARAMETER FORMAT [GK08a].

(Smin) = )\mina <0

5.6 Non-Linear Elasto-Static PDEs

The convergence analyses for the presented globalization strategies thfesis have in common,
that we assume that the minimization problem (M) has a solution. In the contthe efatic border
case in elasticity it is sufficient to assume that a stored energy functionesatisé assumptions of
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Figure 5.2: Left: the computational domain for the Diridhl@lue problem of Section 5.6.3. Right: the
computational domain for the contact problem of Sectiont.6

Theorem 1.2.3. As it turns out, the well-known and most simple nonlineardsearergy function,
for St. Venant-Kirchhoff materials does not satisfy these assumptiom8pRand is, thus, not suited
for our numerical examples.

Therefore, we will focus on a class of objective functions, introdumyed.W. Ogden [Ogd97], which
satisfies the assumptions of Theorem 1.2.3:

—~

W(C(u)) =3(a+b)+ (2a +4b) - trE + 2b- (trE)* — 2b - tr(E?) + T(de(Vyp))  (5.6.1)

whereC(u) = (I + Vu)T(I + Vu) is the Green-St.Venant strain tenséit,= 1(C — I) and
o = Id + u is the deformation tensor ant(d) = ci? — dlog § alogarithmic barrier function The
constants are chosen as follows
R A A A A

a—2 8,b_2+4,c_8andal_2+u (5.6.2)
The Lane constantg > 0 and\ > 0 will be chosen problem dependent.
This material law describes the behavior of a compressible Mooney-Rivleriag(cf. Section 4.10
[Cia88]). But, moreover, following Theorem 4.10-2 [Cia88], this matdlaal and its parameters
have the following properties

e for || E|| — 0 this material law converges to the St. Venant-Kirchhoff material law
¢ this material law is polyconvex and satisfies the coercivity inequality froni@et.2.2

Moreover, this stored energy function is twice continuously differentiabke and satisfies the as-
sumption on the levelsets.

Lemma 5.6.1. Suppose thaW : X — Ris given like in (5.6.1), wherd’ is the Finite Element
space from Section 1.3.2. Suppose furthermore that the assumptionssehahadmissible solutions
®;, = X N® stated in Theorem 1.2%old along withl'p # () and.J (ug) < oo withug € ®;,. Then
the levelset

L={ue®,|J(u)<J(uo)}

2The definition of® and that it is non-empty
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where
J(u) = /Q (ﬁ\/(C(u)) —pF-u) do— [ fwdse

is compact.

Proof. Due to Theorem 4.10-2 [Cia88] and the reasoning as in the proof ofréhed.7-1 [Cia88],
the following coercivity relation holds

J(u) > cllu+1d|% ) + [ICOf(Vau + 1) |22y + (deVu + 1)%) +d  forallue @,

wherec > 0 andd € R.

Now assume thaf is not bounded. Then there exists a sequénggy. in £ with [Jul|z2q) — oc.

Due to the coercivity this implies thalt(u) — oo, which contradicts/ (ug) < cc.

Now suppose thaf is not closed. In this case, there exists a sequence of Finite Element fiumctio
(ug)r in £ such thatu, — @ ¢ L. which means thaf (u) > J(ug). This implies that there must
exist for alle > 0 an indexvy such that|a — wug|[2(q) < e for aimost allk > vy. The continuity

of J and the finite dimension ot now gives rise to the fact that for smallalsoJ(uy) > J(u)
holds, which contradicta;, € L. O

Remark 5.6.2. SinceR" is isomorphic taY', we obtain that also the discrete levelsets are compact.
Also for each subsé®?, the compactness af;, can be shown employing the same reasoningy if

and P,f“uk must satisfy the assumptions of this theorem. Though, as pointed out 08k Ke-
stricted iterates in a Finite Element multigrid context might not satisfy thesergsguns. In contrast,

in the presented examples of this section, we obtain that projected iterdisy siae assumptions
which yields that also for the multiplicative strategies the convergence regiits h

Moreover, as we have shown in Theorem 1.3.1, also in the dynamic caseditivity condition
holds. Employing the same argumentation as in the previous lemma, ongedace that each
levelset£(*:) is compact.

Lemma 5.6.3. Suppose thaW : X — Ris given like in (5.6.1), wherd’ is the Finite Element
space with linear basis functions from Section 1.3.2. Suppose furthermar¢hassumptions on
the set of admissible solutiods, = X N ® stated in Theorem 1.2%old along withl'p # () and
J(up) < oo withug € ®;,. Then there exists a constafit> 0 such that for allu € £ as defined in
the previous lemma, -

IV2W(C(u))| < C

Proof. Sincew is an element from the Finite Element spateand sinceFE is a polynomial in the
components oV u, we obtain that there exists an> 0 such that

62
52

for all w € L. On the other hand, we employ

(3(a+b) + (2a +4b) - trE +2b - (rE)* — 2b-tr(E?)) || < ¢

2
%F(deww))(-)(-) = T"(det(Ve))det(Vp)V(-)det(Vp)V () +

I'(det(Vep))det' (Vo) V() V(")

3The definition of® and that it is non-empty
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Since detVp) is a polynomial of degree 3 in the componentsvai, which is in turn a piecewise
polynomial, we obtain thajdet(V)|| and ||det'(V¢)|| have a finite value or. On the other
hand, sinceC is bounded, and the coercivity condition holds, we obtain deatVe) > ¢ > 0 for
allu € L. This in fact, yields that—* andé—2 in I''(§) andT”(§) are bounded inC. Moreover,
also the derivatives of? are bounded i yielding that the norms of the barrier terdisandI’” are
bounded in’.

Alltogether this proves the proposition. O

Remark 5.6.4. Employing the result of the previous Lemma shows that the gradierftﬁr @ire
bounded and Lipschitz continuous. Now we can employ, once mor&'treaid X’ are isomorphic
and obtain that the stated assumptions for the respective globalization stsategjgk and conver-
gence can be guaranteed.

As we have seen, the presented globalization strategies aim at the solutiscrefized optimization
problems of the kind (M). In this section, we will, therefore, focus on tHifdng minimization
problem

J(Xu) = min! in Q (5.6.3a)
Xu-n<o onl'c C 092 (5.6.3b)
Xu=g onl'p C 9N (5.6.3c)

(cf., equation (1.3.7)) where

o~

J(u)z/ﬁ(W(C(u))—pF'u>dm— FNf-udsm

But, note that in all of our examples we will emplpy= 1 and F' = 0.

As a matter of fact, the resulting objective function realizes an interior ppjtcach (for an intro-
duction see [NWO06] and [FM90]) to enforce that element volumes will moinierted. As it turns
out, the logarithmic barrier function is an approximation to the indicator function

(u) = 0 ifueBt
X = % otherwise

of
BT ={uc H (Q)|det(Vu +I) > 0}

But, the employed logarithmic barrier term yields that (5.6.1) becomes a highlinear objective
function, whenever the material is compressed. Therefore, within theiveesolution of a mini-
mization problem which incorporates this barrier function, undamped itersgsiolateB*. Since
the barrier function will depend on the discretization, this constraint is lglostated to the mesh
size. In turn, for relative coarse meshes this constraint does oftgrieldta step-length limitation.
But the finer the mesh becomes, the more problems can be caused by Iewicos. Therefore,
this argument along with the possible non-convexity of the objective funcdinesses the fact that
convergence can only be guaranteed if a globalization strategy is employed
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(—\ von-Mises stress: o,
\) Ul

Figure 5.3: Here, we illustrate the von-Mises stress. I @dplane stress, the principal stress components
T, andT sy, i.€., the first two eigenvalues of the stress tensor thehlises stress describes an ellipse within

theTy; — ng-plane. In particular, we hawmevT||2 = T11 —T11Tos + TQQ, where

5.6.1 Visualization

To visualize the computed results, we employ the von-Mises stress distribuliimh v a well-
known tool in plasticity theory. In particular, the von-Mises stress distribfitioaps from the space
of second—order tensorsfogiven by

. . .1 .
T |[dev = |1~ 5(T: DI

In fact, the stress of a material differs under different loading conditsimce under our assumptions
the stress tensor itself possesses six degrees of freedom. Thush totleaic“equivalent” stresses

would normally yield different visualizations. The von-Mises stress, intresit, maps equivalent

stresses to the same distribution.

Though, the von-Mises stress distribution is a fictitious stress distributiorsamell-suited to make
predictions if a material is bended or skewed. In contrast, this criteriomdinot be applied, if the
stresses in all principal directions, i.e., in direction of the eigenvectoreditthss tensor, are equally
large. In this case, it may occur thadevT'||; ~ 0 but ||T’||2 > 0.

However, the visualization itself was carried out in two steps. We employs@iom OBsSLIB++
(cf., Section 6.3) to export the current mesh, displacements and the is@s-Btress distribution.
This enables us to visualize, in a secnod step, all data employwRgMAEW [Tea09].

Computing Initial Iterates

Stored energy functions of Ogden-type, such as (5.6.1) often yietatylar numerical challenges
if displacements are prescribed for the solutiod’ gt which is the case when solving a so-called
Dirichlet value problem. In the case of linear elasticity, the solution of such miatioiz problems
can be carried out straight-forwardly, independent film The linear elastic material law is given
by

W (u) = %a(u) : e(u) (5.6.4)

4Sometimes also referred to as equivalent tensile stress or distortionesteaiy
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Figure 5.4: Left: the computational domain for the Diridhl@lue problem of Section 5.6.4. Right: the
computational domain for the contact problem of Section/s.6
wheree(u) = 3(Vu 4+ Vu) denotes the linearized Green-St. Venant strain tensor and

v
1—2v

o(e) = HEVs(u) + tr(e(u)) T
Hooke’s tensor [Cia88, Bra07].

However, in the case of nonlinear elasticity and the context of our exantpe®f paramount
importance thatuy € B*. But, even if the initial solution on a relatively coarse mesh does not
violate this constraint, for realistic resolutions of the computational domain, thenisrally not the
case.

Therefore, two different strategies are often employed to compute adhaidsitates for large—scale
optimization problems. On the one hand one might employ nested iteration. In $@s(6a6.3)

is solved based on a certain discretization. Then the underlying mesh isdrefitd the current
solution interpolated yielding a start iterate for the finer problem. On the otled,lone might
first solve an easier computable problem, e.g., with (5.6.4) as stored dnaagipn, which usually
provides an admissible start iterate for the fine level solution processr Bxamples, we, therefore,
solve the linear elastic model problem (employing the same Lame parameterg) aratlest level
and interpolate the computed linear solution to the level, where the nonlinear mitiimipeoblem
(5.6.3) should be solved.

5.6.2 The Nonlinear Update Operator

In our examples, each local update operdpfu) is constituted by four, in the additive case asyn-
chronous, Trust-Region or Linesearch steps, respectively. Ortlibe lmand, we employ four Trust-
Region or Linesearch steps as postsmoother in order to cosipirig3.1.6).

The respective search directions are computed employing a parallelziedtpd cg method along
with a parallel symmetric non-linear Gaul3-Seidel preconditioner [KraOBalsically this Gaul3-
Seidel preconditioner works just like a sequential symmetric non-lineaR&aidel method. On
each processor, the symmetric Gau3-Seidel iteration is performed bututvihrallel communi-
cation. After the local iteration, a parallel update takes place, enhanangvtrall convergence
tremendously. In turn, during the iterative solution process for probleragik thousands of cg
iterations must be computed yielding as many parallel communication calls. Ththwggbverall
method behaves for a small number of processors similar to a cg-method érgptoy traditional
symmetric Gaul3-Seidel method as smoother. The cg-method, itself, is pardljgszemploying
parallelized linear algebra.
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In contrast, during the parallel solution process, we employ the cg methodhibigation with
a local sequential symmetric nonlinear Gaul3-Seidel method, which doesnmpddy any parallel
communication. Both solvers are employed to compute Quasi-Newton corettjomeans of
possibly outdated Hessians. In fact, we reassemble the exact Hesgaewshthe current Hessians
become outdated. This, in turn, is measured by means of (6.1.1), a heuhisticwill be introduced
in Section 6.1. Though, we will empla§’(u) = I within each globalB; , as proposed in Section
3.1. In turn, we compute several Trust-Region or Linesearch stepsidin tw obtain a good global
corrections”.

As a matter of fact, this linear solver is generally not suited for the solutiordefinite and negative
definite linear systems of equations. But, to guarantee convergence)pi@yehe Cauchy criterion
(2.1.9) and (2.2.3), respectively. This means, that if the correctioreociselirection does not satisfy
these conditions, we simply choose the Cauchy point as direction.

However, the symmetric Gaul3-Seidel method cannot handle coupledaiotssstraight-forwardly.
As it turns out, even if the obstacle itself is a plane, the plane’s normal @ignedoes not direct in the
direction of the employed basis functions which yields coupled constraiotavdid this problem,
one might employ the approach from Section 1.3.2 to rotate the basis functionsophe solution
process into the normal tangential system of the obstacle (cf., for ingtaral]).

The Additive Framework

In the additive framework, we decompose the computational dofaimo N non—overlapping
subsetq);, whereN is the employed number of processors. In fact, in all computed examples we
employedN = 8 processors. This yields a decomposition of the coefficient sRécas presented

in Section 3.1.6.

The local objective function is then given by

Ji (ur) = J (ug, uy)

whereu% = (u"){1,...n}—c,, are the coefficients af, which are not represented @).. Note that,
from now on we consider the solution of the discretized system (1.3.7a).

This particular objective function is reasonable in the context of Ogdenrialatesince the barrier
term must be computed employing outdated unknowns at the processoadeterSetting these
unknowns to zero would generally cause that the barrier function isefivted] atu;,.

Moreover, since each basis function has a strictly local support, teenating process can also be
carried out strictly local. Therefore, in order to asynchronously cdengy the assembler just needs
the (outdated) information of the unknowns at neighboring elements.

Remarks on the Expected Numerical Behavior

In Chapter 4, we have seen that both globalization strategies, APTS drfd, APn at a solution of
local minimization problems which are closely related to (M). In case of a donegiordposition, as
presented in Section 3.1.6, the additive preconditioning strategies quickbtistine local nonlinear
residuals. As a consequence, within the interior of éagthe error becomes small. But on the other
hand, at the domain interfaces, the residual might increase since on teredifdomains corrections
were computed without parallel communication.

As it will turn out, in our computations this might have different effects. In twases the conver-
gence rates are significantly improved, even if step-length limitations at theinlartexrfaces might
occur. On the other hand, low frequency contributions of the solutiah as rigid body motions,
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Figure 5.5: Left: the computational domain for the Diridii@alue problem of Section 5.6.5. Right: the
computational domain for the contact problem of Section3.6

are poorly resolved by the additive framework which causes a distudfiagt. Therefore, employ-
ing also a nonlinear multigrid strategy as a multiplicative preconditioning schenesabve these
motions improves the rates of convergence significantly.

The Multiplicative Framework

In the multiplicative framework, the Finite Element spaces hierarchically decomposed as follows
X=XD...0&N

The transfer operator for the primal variables is the approximation to theetlized L? projection
as presented in (3.1.18). The interpolation operator is given as in (3dnt2lhe local objective
function is given by

Ji (ug) = J(Xyug)

As a matter of fact, the coarse level objective function can be evaluatettigion the current level
employing a quadrature rule on the current grid. Moreover, the cdeveeproblems are solved
employing two iterations of the traditional Trust-Region or Linesearch scbeme

Remarks on the Expected Numerical Behavior

In our numerical examples, we observe that the application of a coamslegenerally speeds up
the convergence with less computational overhead. In particular, if wiioe additive and mul-
tiplicative schemes, in most examples we observe the fastest measuredgemoe. This results
from the well-balanced combination of an “exact” solution of local problent®mbination with an

improved resolution of low frequency contributions, such as rigid body mstio

Parameter Choices

Within the sufficient decrease condition (2.1.9) of the Trust-Region algonite employ3 = 0.5.
Together withy = 0.1 andvy; = 0.1 and~, = 2, the constants of the Trust-Region method are given.
Within the Linesearch algorithm we emplegy, = 0.1, as well aspap = ppp = 0.9. Moreover,
we defines;; = 100 andn;; = 0.1. In all algorithms, the additive and multiplicative schemes, we

employk, = n—\l/ﬁ < % in (5.1.1) to ensure a “uniform” convergence of the first-order condition
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mPa
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Figure 5.6: Unconstrained Minimization Problem: Compression of a Cube The computed solution of
problem from Section 5.6.3 with35, 456 degrees of freedom. At the hole’s upper side we applied zero
Dirichlet values in all directions (as indicated by the dotsd at the cube’s lower side displacements0st,
20%, 30% respectively, of the cube’s size (as indicated by the a)yo@olors are the local von-Mises stresses.

Finally, we define a stop-criterion for the respective globalization stregeg@ld@s means, that we stop
our computation if the first—order conditioﬂ%{mj |l2 < e for problem-dependently chosen> 0.

Comparing the Schemes

Due to the computational overhead of the preconditioned schemes, it bebanteto compare the
traditional and the preconditioned globalization strategies with each otherdém to compare the
schemes we measure the employed outer iterations, the cg iterations andhtled rexpected com-
putation time of the schemes. To derive the expected computation time we emplogrstecase
scenario: experiments show that the asynchronous strategies employmgt4Region or Line-
search steps along with 25 cg iterations for the computation of search dieaged 135% of the
time which traditional schemes with 100 cg iterations and 4 globalization stepsrnend herefore
the additive schemes need per cycle 1.35 times the computation time of the traditioaade. Sim-
ilarly the multiplicative strategies need generally 1.15 times longer per iteratiorttibaraditional
schemes.

In fact, in our comparison each asynchronous cg iteration is weighted 8kachronous iteration.
As we have seen in our numerical experiments, this observation holdotraght-core machines,
like the employed ones. Therefore, due to the massively employed parmathehgnication, we
expect that on faster machines with competitive implementations, the computation tiraacfo
APTS/APLS cycle is considerably faster than the factor of 1.35.

5.6.3 Unconstrained Minimization Problem: Compression of &Cube

As the first numerical example, we consider the solution of problem (5.6B)oging a discretiza-

tion with 135,456 unknowns. In this example, we apply displacements at the lower side of the

domain shown in the left image of Figure 5.2. On the other hand, at the uplperfshe geometry’s
hole, we apply zero displacements. All other boundary conditions argeahas natural conditions.
Therefore P is divided intol'p = {(z,y,2)| — 0.5 =2V 0.15 = 2} N 9Q, I'y = 9Q\I'p with

T (d,0,0)7 if z =05
€T,Y,z = .
9((@y,2)7) {O otherwise
where d = 0.2,0.25,0.3. Due to the absence of contact conditions, we chogse=
(—10%,...,-10%7 and¢ = (105,...,10%)7. The material parameters, i.e., the Lawpnstants,

are chosen a& = 300[mPa] andv = 0.3. To deriveX and . one can employ the following
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Example| Outer it. | cg it. (fine level)| acg it. (fine level)| Time
Trust-Region| 20% 11 4,400 0 1.0
APTS 7 2,800 700 0.85
MPTS 7 2,800 0 0.73
AMPTS 7 2,800 700 0.98
Trust-Region| 25% 30 12,000 0 1.0
APTS 22 8,800 2,200 0.99
MPTS 27 10,800 0 1.01
AMPTS 18 7,200 1,800 0.93
Trust-Region| 30% 64 25,600 0 1.0
APTS 42 16,800 4,200 0.88
MPTS 62 24,800 0 1.11
AMPTS 38 15,200 3,800 0.92
Linesearch 20% 8 3,200 0 1.0
APLS 8 3,200 800 1.35
MPLS 7 2,800 0 1.0
AMPLS 6 2,400 600 1.16
Linesearch 25% 21 8,400 0 1.0
APLS 16 6,400 1,600 1.02
MPLS 19 7,600 0 1.09
AMPLS 11 4,400 1,100 0.81
Linesearch 30% 42 16,800 0 1.0
APLS 31 12,400 3,100 0.99
MPLS 34 13,600 0 0.93
AMPLS 20 8,000 2,000 0.73

Table 5.1:Unconstrained Minimization Problem: Compression of a Cube Runtime comparisons of the
globalization strategies for the respective examples

formulas
vE vE

(1+v)(1—2v) (1+v)(1-2v)
Figure 5.6 shows the numerical result of this simulation: the reaction of this-likdbgeometry to
three different kinds of pressure.
This simulation is carried out employing the traditional Linesearch and TregieR strategies, as
well as the preconditioned strategies. The stop criteriarHsle — 4. In Figure 5.7 we compare the
numerical behavior of the Trust-Region and preconditioned Trust-Regjrategies. In Figure 5.8
we compare the Linesearch schemes. Table 5.1 shows the runtime compéoisthre respective
schemes.

A= and) =
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Figure 5.7:Unconstrained Minimization Problem: Compression of a Cube Theleft diagramsshow the
first order sufficient conditions vs. the number of iterasion, i.e., ||§(F(u”) + s¥)||2, for the solution of

the problem in Section 5.6.3 withTaust-Region strategyand thepreconditioned Trust-Region strategies

respectively. Theight diagramsshow the value of the objective function vs. the number oéitens,v, i.e.,
J(F(u¥) + s¥) for both strategies.
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Figure 5.8:Unconstrained Minimization Problem: Compression of a Cube Theleft diagramsshow the
first order sufficient conditions vs. the number of iterasion, i.e., ||§(F(u”) + s*)||2, for the solution of
the problem in Section 5.6.3 with lainesearch strategyand thepreconditioned Linesearch strategies

respectively. Theight diagramsshow the value of the objective function vs. the number ahtiens,v, i.e.,
J(F(u”) + s) for both strategies.



110 5.6 Non-Linear Elasto-Static PDEs

mPa mPa
19.135 19.135
I iSplaicements I
14.360 14.360
9.5840 119.5840
4.8084 4.8084
0.03277 0.03277
Zero Displacements Zero Displacements
mPa mPa
I19.135 I19.135
14.360 14.360
9.5840 119.5840
4.8084 4.8084
0.03277 0.03277
Zero Displacements Zero Displacements
mPa mPa
. - « 19.135 19.135
‘_9[@@{@. I I
14.360 14.360
«
9.5840 119.5840
4.8084 4.8084
0.03277 0.03277
Zero Displacements Zero Displacements

Figure 5.9: Unconstrained Minimization Problem: Simulation of a Can. The computed solution of the
problem from Section 5.6.4 witB30, 999 degrees of freedom. At the visible end of the geometry, wéyapp
zero Dirichlet values (as indicated by the grey lines). Tdiguat the opposite side we apply displacements of
10%, 12, 5% and15% of the geometries length respectively, (as indicated bythaws). In each computation
we obtain two different solution. In the first row, we see twamputed solutions foit0% displacements.
Similarly the second and third line show two possible solusifor12.5% and15% displacements. Colors are
the local von-Mises stresses.

5.6.4 Unconstrained Minimization Problem: Simulation of a Gan

Within this example, we simulate a rectangular structure, as shown in the left oh&ggure 5.4.
Obviously, a mesh, which provides a good approximation to the depictedicifmies has thousands
of degrees of freedom. In our case, the coarse mesh provides<apately 10,000 unknowns. After
uniformly refining this mesh twice we obtain the final problem with 330,999 uwkiso Therefore,
our multilevel hierarchy consists of three levels and the domain decompositeghd domains.

In our computations, we prescribe displacements at the left side of the ggand zero displace-
ments at the opposite side. All other boundary values are left natural. tAs& out, the applied
boundary values cause a compression of the geomett9%f 12.5% and15%. In particular the
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Example| Outer it. | cg it. (fine level)| acg it. (fine level)| Time
Trust-Region| 10% 73 29,200 0 1.0
APTS 60 24,000 6,000 1.10
MPTS 62 24,800 0 0.97
AMPTS 56 22,400 5,600 1.19
Trust-Region| 12.5% 156 62,400 0 1.0
APTS 109 43,600 10,900 0.94
MPTS 48 19,200 0 0.35
AMPTS 40 16,000 4,000 0.39
Trust-Region| 15% 156 62,400 0 1.0
APTS 107 42,800 10,700 0.92
MPTS 105 42,000 0 0.77
AMPTS 84 33,600 8,400 0.83
Linesearch 10% 46 18,400 0 1.0
APLS 43 17,200 4,300 1.26
MPLS 39 15,600 0 0.97
AMPLS 35 14,000 3,500 1.18
Linesearch 12.5% 74 29,600 0 1.0
APLS 90 36,000 9,000 1.64
MPLS 36 14,400 0 0.55
AMPLS 38 15,200 3,800 0.79
Linesearch 15% 118 47,200 0 1.0
APLS 100 40,000 10,000 1.14
MPLS 72 28,800 0 0.70
AMPLS 58 23,200 5,800 0.76

Table 5.2: Unconstrained Minimization Problem: Simulation of a Can. Runtime comparisons of the
traditional and preconditioned strategies for the respeetxamples. Note that bifurcations take place, which
yield heavily varying runtimes.

boundary values are &ty = {(z,y,2) | z € {—1,1}} given by

T (d,0,0)7 ifz=1.0
9@y, 2)7) = {0 if £ = —1.0
whered = 0.20,0.25,0.3. In this example, similarly to the previous one, we emplby =
300[mPa] andv = 0.1, i.e., material parameters for a very soft material. Here, we also choose
¢ = (—10%,...,-10%7 andp = (10, ...,105)T,
This boundary value problem is sensitive for large strains. In fact) eamputation led to two
different solutions of the minimization problems. In turn, this influences theergence behavior
of the respective globalization strategy. In particular, the multiplicativeraesecompute a different
solution than the additive and the traditional schemes. This fact, makes peetigs strategies, in
particular the computation times, hard to compare. However, a survey obtivergence behavior
of the respective methods is given in Figure 5.10 and Figure 5.11. Herstdp criterion was chosen
ase = le — 5. Computation times, cg iterations and outer iterations are shown in Table 5.2.
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Figure 5.10:Unconstrained Minimization Problem: Simulation of a Can. Theleft diagramsshow the first
order sufficient conditions vs. the number of iterationsj.e., ||G(F(u”) + s”)]|2, for the solution of the
problem in Section 5.6.4 with a traditional and the prectiodedTrust-Region strategies, respectively. The
right diagramsshow the value of the objective function vs. the number aftiens,v, i.e., J(F(u") + s¥)
for both strategies.
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Figure 5.11:.Unconstrained Minimization Problem: Simulation of a Can. Theleft diagramsshow the first
order sufficient conditions vs. the number of iterationsj.e., |§(F(u”) + s¥)||2, for the solution of the
problem in Section 5.6.4 with a traditional and the prectiodédLinesearch strategies, respectively. The
right diagramsshow the value of the objective function vs. the number abtiens,v, i.e., J(F(u”) + s*)
for both strategies.
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Figure 5.12: Unconstrained Minimization Problem: Simulation of an Iron wheel This boundary value
problem is solved employing 40,488 unknowns and eight @msmes. As indicated in this figure, we apply
forces (Neumann values) at the inner side of the wheel'st.shdbreover, in a small region on the lower
side of the wheel we have fixed displacements, approximatmgact subject to friction. The colors are the
von-Mises stresses, as introduced at the beginning of tiaigter.

5.6.5 Unconstrained Minimization Problem: Simulation of anlron wheel

The simulation of stresses within tires and wheels is of enormous relevanoaterial scientists. In
some applications it is of particular interest, how a tire or wheel reacts dansstes in our example.
Here, we employ a wheel-shaped geometry [NZ01] and Ogden’s matexiadblaompute strain-
induced stresses, as indicated in Figure 5.12. To simulate the contact bhetveel and track, we
employ Dirichlet values at the lower side of the geometry, but apply fortéiseainterior of the
geometry.

The employed material parameters &fre= 21[gPal, v = 0.3. The forces are applied at the inner
surface of the axis shaft. Here, the force vector itself is given by

fl(z.y.2)") = (=2,0,0)"

At all other boundaries, except for a small region next to the track ppéed zero boundary values.
Here, we also choosg= (—105,...,—10%)7 and¢ = (10°,...,105)7.

Figure 5.13 shows that due to the geometry itself and the stated problem, the natltiplschemes
rapidly compute solutions for the local minimization problem. It seems that thee@arel problem
itself provides a good solution for the fine level problem. On the other reueah, if the APTS strategy

is five times slower than the multiplicative schemes, it succeeds in computing ariogalizer in
iteration 197, right before the limit of 200 outer iterations. Moreover, aaiit loe seen, the stop
criterion is[|g¥;[l < 0.1. This is due to the chosen large Young's modulus which yields large
function values. In turn, we reach the regions of computational acgwiaen the error gets into the
region of10~1.
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Outer it. | cgit. (fine level)| acg it. (fine level)| Time
Trust-Region| >200 > 80,000 1.0
APTS 197 78,800 19,700 < 1.32
MPTS 30 12,000 0 <0.17
AMPTS 28 11,200 2,800 <0.21
Linesearch 181 72,400 0 1.0
APLS 187 74,800 18,700 1.39
MPLS 32 12,800 0 0.2
AMPLS 31 12,400 3,100 0.26

Table 5.3:Unconstrained Minimization Problem: Simulation of an Iron wheel Runtime comparisons of
the globalization strategies for the example of SectiorB5.6
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the problem in Section 5.6.5 with a Trust-Region and Linedeatrategy and the preconditioned strategies,

respectively. Theight diagramsshow the value of the objective function vs. the number aftiens,, i.e.,

J(F(u”) + s) for both strategies.
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Figure 5.14:Contact with a Small Obstacle Left image: Solution of the problem from Section 5.6.6 with
988, 392 degrees of freedom. As indicated, we apply displacement8%fof the cube’s length at the top of
the cube (indicated by the arrows). On the other hand, aadless located at the middle of the cube’s bottom
(as indicated by the grey rectangl®ight image:Here, we double the applied displacement8t# yielding
the displayed result.

5.6.6 Constrained Minimization Problem: Contact with a Smal Obstacle

This it the first example where we employed a linearized obstacle along wislrjired displace-
ments at the Dirichlet boundary. Both together yields a compression ofitbie gilbe-like geometry
of up t020% of the length of the geometry.

The problem description is as follows. In this example, we solved the minimizatodoigm (5.6.3)
on the domain

Q={(z,y,2)] —05<z,4,2<05 A ((z=205)A=(y%+2%2<0.5))
A ((y = 20.5) A= (2?4 22 < 0.5))
A ((z=40.5) A =(z? + 9% < 0.5))}

as shown in the right image of Figure 5.2. The Dirichlet boundary is the empiper side of the
cube,i.e.I'p = {(x,y,2) | z = 0.5} N 9N. The boundary values atgz, y, z) = (0,0, —d) with
d = 0.1 andd = 0.2. All other boundaries have natural Neumann conditions. The contacidaoy
is an unsymmetrical obstacle (visualized by the bar in Figure 5.14) at the bofttme geometry.
The geometry and the obstacle stay initially in contact, ¢g.= 0 andg, = 10°. Here, we choose
[ —105 and¢,, = 10° at all unknownsk which are not related tb¢. Similar to other examples
of this chapter, the material parameters were giverby: 300[mPa] andrv = 0.1, i.e., material
parameters for soft materials. Here, the stop criterion was chiosehe — 4.
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Figure 5.15:Contact with a Small Obstacle The left diagramsshow the first order sufficient conditions

vs. the number of iterations, i.e.,||§(F(u”) + s)||2, for the solution of the problem in Section 5.6.6 with
a traditional and preconditioned strategies, respegtivehe right diagramsshow the value of the objective
function vs. the number of iterations, i.e., J(F(u”) + s¥) for both strategies.
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Example| Outerit. | cgit. (fine level)| acg it. (fine level)| Time
Trust-Region| 10% 13 5,200 0 1.0
APTS 8 3,200 800 0.83
MPTS 12 4,800 0 1.06
AMPTS 7 2,800 700 0.83
Trust-Region| 20% 29 11,600 0 1.0
APTS 22 8,800 2,200 1.02
MPTS 23 9,200 0 0.91
AMPTS 16 6,400 1,600 0.85
Linesearch 10% 9 3,600 0 1.0
APLS 8 3,200 800 1.2
MPLS 7 2,800 0 0.89
AMPLS 6 2,400 600 1.03
Linesearch 20% 15 6,000 0 1.0
APLS 21 8,400 2,100 1.89
MPLS 14 5,600 0 1.07
AMPLS 10 4,000 1,000 0.76

Table 5.4: Contact with a Small Obstacle Runtime comparisons of the globalization strategies Her t
respective examples.
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Example Outer it. cg it. (fine level) | acg it. (fine level)| Time
Trust-Region 5% 151 60,400 0 1.0
APTS 58 23,200 5,800 0.51
MPTS 52 20,800 0 0.39
AMPTS 51 20,400 5,100 0.52
Trust-Region| 10% 137 54,800 0 1.0
APTS 112 44,800 11,200 1.10
MPTS 73 29,200 0 0.61
AMPTS 45 18,000 4,500 0.50
Linesearch 5% > 148 (out of time) > 59,200 0 1.0
APLS 70 28,000 7,000 < 0.63
MPLS 35 14,000 0 < 0.27
AMPLS 75 30,000 7,500 < 0.78
Linesearch 10% 103 41,200 0 1.0
APLS 78 31,200 7,800 1.02
MPLS 80 32,000 0 0.89
AMPLS 44 17,600 4,400 0.66

Table 5.5: Obstacle Problem: Simulation of a Can Runtime comparisons of the traditional and precon-
ditioned globalization strategies for different loads. t&lthat bifurcations take place, which yield heavily
varying necessary iterations.

5.6.7 Constrained Minimization Problem: Simulation of a Can

Within this example, we compute a constrained boundary value problem. &lea®-like structure

is pressed against an obstacle, as shown in Figure 5.16. Due to the dathetlemployed material
parametersF = 300[mPa] andv = 0.1, describe a soft material, the applied deformations yield
two possible minimizers as indicated in the same figure. In turn, the resulting tatiopuimes for
the respective minimization strategies vary tremendously.

In fact, we apply at'p = {(z,y, z) | = = 0.50} the following displacements

9((z,y.2)") = (d,0,0)

whered = —0.1, —0.2. All other boundaries have natural boundary conditions. The cohtaotd-
ary is givenb\'c = {(z,y, 2) | z = —0.50}. Here, similarly to the previous example, the geometry
and the obstacle stay initially in contact , i.@k, = 0 and¢, = 105. At all unknowns which are not

related tol'c, we choose), = —10° and¢;, = 10°. In this example, the stop criterion was chosen
e =1le—>5.
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Figure 5.16:Constrained Minimization Problem: Simulation of a Can. In this figure different results for
the problem of Section 5.6.7 with 323,994 unknowns are ptese The upper images show two possible
energy optimal solutions for the obstacle problem viith applied deformations. The lower images are the
results for10% displacements.
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Figure 5.17:Constrained Minimization Problem: Simulation of a Can. Theleft diagramsshow the first
order sufficient conditions vs. the number of iterationsj.e., ||g(F(u”) + s”)|2, for the solution of the
problem in Section 5.6.7 with the traditional and the preliboned globalization strategies, respectively. The
right diagramsshow the value of the objective function vs. the number ahitens,v, i.e., J(F(u”) + s*)
for both strategies. Note that bifurcations take placegcWlyield heavily varying runtimes.



122 5.6 Non-Linear Elasto-Static PDEs

mPa
l7.5534

Applied Forces

Linearized Obstacle E

Figure 5.18:Constrained Minimization Problem: Intervertebral Disk . This is the annotated result of the
computation employing an intervertebral disc geometrhwi032,000 unknowns. Here, we apply forces at
the upper side of the geometry, standing for forces induad the upper vertebra (as indicated by the upper
blue geometry). On the lower side, simple, linearized nengtration conditions simulate the lower vertebra
(as indicated by the lower blue geometry). Note, that for aemmrrect simulation an elastic multi-body
contact must be taken into account, such as proposed in [[BK

5.6961

Linearized Obstacle 13.8388

1.9815

IG.W?MQ

d

5.6.8 Constrained Minimization Problem: Simulation of an Intervertebral Disk

This is the second example with a more realistic context. Here, we employ Qgaeteérial law
with parameterdy = 1500[m Pa] andv = 0.15 to compute stresses within an intervertebral disc. In
particular, the globalization strategies are employed to compute a tractionmrobleere we apply
forces at the upper side of the geometry, i.e., where the disc stays in aittathe upper vertebra
along with obstacle conditions at the lower side, where the lower vertehrkl e in contact with
the disc. However, note that computing stresses within an intervertebca¢uliploying Ogden’s
material law is a poor approximation due to the fluids located within the disc. COfifarent
material laws are employed to compute stresses within cartilage-like strudturésstance, poro-
viscoelastic material laws [WvDvRD4].

At T'y we apply the following forces

[ (0,-10,0) if y~0.368
H(@y,2)7) {0 otherwise
The contact boundary is given Bye ~ {(z,y,2) | y = —0.773}. Also in this example, the

reference configuration touches the obstacle, which meanajlghai 0 and¢, = 10°. All other
components are chosen = —10° andg;, = 10°.
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Outer it. | cgit. (fine level)| acg it. (fine level)| Time
Trust-Region 4 1,600 0 1.0
APTS 4 1,600 400 1.35
MPTS 1 400 0 0.28
AMPTS 1 400 100 0.38
Linesearch 5 2,000 0 1.0
APLS 5 2,000 500 1.35
MPLS 3 1,200 0 0.69
AMPLS 1 400 100 0.31

Table 5.6:0bstacle Problem: Constrained Minimization Problem: Intervertebral Disk. Runtime com-
parisons of the globalization strategies for the inteefardl disc examples.
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Figure 5.19:Constrained Minimization Problem: Intervertebral Disk . Theleft diagramsshow the first or-

der sufficient conditions vs. the number of iteratiang,e., || §(F (u

)+ s")]|2, for the solution of the problem

in Section 5.6.8 with a Trust-Region strategy and the préitimmed Trust-Region strategies, respectively. The
right diagramsshow the value of the objective function vs. the number ahtiens,v, i.e., J(F(u") + s”)
for both strategies.
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5.7 Non-Linear Elasto-Dynamic PDEs

In this section we will focus on large deformations in the case of elastordignzontact problems.
As we have seen in Section 1.3.1 in each timestep a PDE of the kind (1.3.1b3tlag@nv’, if the
assumptions of Theorem 1.3.1 are satisfied. Moreover, employing a stoeegly function of Ogden
type, in particular (5.6.1) yields the solvability of (1.3.1b). Furthermoreaagss in each time step
the spatial discretized minimization problem (1.3.4b) and the initial iterate satisgsthenptions
of Lemma 5.6.1 and Lemma 5.6.3 we obtain that the assumptions on the globalizatiegistrare
satisfied and convergence can be ensured. Therefore, as intimipreections, we will focus on the
solution of a fully discretized variant of (1.3.1a). In our case, we emploitd~Elements to derive
the minimization problem (1.3.4).

Parameter Choice

As we have pointed out in Section 1.3.1, Newmark’'s scheme becomes utimualty stable if

20 =~ = % In this case, the time discretization is (partially) implicit and a nonlinear minimization
problem must be solved which is carried out employing the AMPLS algorithmyrlgn 12. The
respective constants within this algorithm are chosen as in Section 5.612ifExeemploy Rothe’s
method to discretize the original system of PDEs, we will initially choose a Finiten&é dis-
cretization, which stays fixed during the computation. The computation of dukgbor step (1.3.4a)
was carried out employing the projected cg method along with a nonlinear syim@au3-Seidel

smoother.

5.7.1 Example: Dynamic Simulation of a Can

In this example, we employ the geometry from Section 5.6.7 as shown in Figuré&léré we are
interested in the deformations which occur if this geometry “crashes” dagainsggid obstacle, as
shown in Figure 5.20. Here, we employeg = 0Q—TI"c wherel'c = {(z,y,2)|z = —0.5} with all
natural boundary conditions. On the other hand, the initial velocity is diyem);, = (0,0, —0.05)
for all k, yielding a movement in direction of the obstacle. Initially the displacements aee by
ug = 0 and the gap between geometry and obstacle is slightly larger than zero. ukikalbwns
which are not related ¢, we choose), = —10° and¢,, = 10°.

Here, we computed 1,000 timesteps with= 0.01. The geometry itself is uniformly refined once
giving rise to a nonlinear programming problem, equation (1.3.4b), with appately 54, 000 un-
knowns. The employed material parametersire 1000[m Pa] andv = 0.3.
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Figure 5.20:Dynamic Simulation of a Can Here, the solution of the problem of Section 5.7.1 is shofs.
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5.7.2 Example: Dynamic Simulation of a Hollow Geometry

In this example, we employ the geometry as shown in Figure 5.4. Similar to the psesxample,

this geometry moves towards a planar, rigid obstacle. As one can see im Big0r the geometry is
a hollow cube with a circular structure on top. As can be seen in Figureth@omentum of this
circular structure yields that the whole geometry somehow collapses.

Figure 5.21: The initial geometry of the example from Set#o7.2. Similar to the other examples of this
chapter, we decompose the initial geometry into eight domai

Here, we employed'y = 02 — I'c wherel'c = {(z,y,z)|z = —0.5}. Similar to the previous
example, we apply natural boundary conditionsItf. The initial velocity is given by(i), =

(0,0, —3) for all k, yielding a movement in direction of the obstacle. Initially the displacements are
given byuy = 0 and the gap between geometry and obstacle is slightly larger than zero.

Here, we computed 200 timesteps with= 0.005. The geometry itself is twice uniformly refined
giving rise to a nonlinear programming problem, equation (1.3.4b), @itl942 unknowns. The
material parameters a¥é = 10000[mPa] andr = 0.3.
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Figure 5.22:Dynamic Simulation of a Hollow Geometry. Here, the solution of the problem of Section 5.7.2
is shown. As one can see, a hollow geometry moves in direofitime obstacle as indicated by the grey plane.
Soon, the geometry and the obstacle stay in contact and traejges momentum yields the shown large
deformations. The last shown figure is the final configuraitiathis simulation.
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6 Appendix: Implementational Aspects

The development of new algorithms within modern Finite Element software toedhdike e.g.,
DUNE (in combination with UG) [BBD 08] or OBSL IB++ (in combination with UG), has the major
advantage that necessary core functionalities are already providedngtance, the @sLiB++
toolbox provides

e agrid manager

linear algebra

e numerical methods to assemble the objective functions, gradients andressia
o treatment of the set of admissible solutidfighe obstacles respectively

e parallelization

In this chapter, we will consider implementational aspects of the dINV&RL 1B toolbox, as well as
necessary changes in th&€.1B++ and in the UG core.

6.1 NLSolverLib

All presented algorithms in this thesis, beginning from the Trust-Region araskarch framework
up to the combination of the additive and multiplicative frameworks are implemenitethvthe
NLSoLVveERLIB. This library is a set of numerical procedures caltetn-pros which may be in-
stantiated during runtime and employed to solve arbitrary minimization problems.

The Respective C++ Classes

Object oriented programming allows for inheriting interfaces and functiorslitean already im-
plemented classes in UG. In particular, each instantiated num-proc of anddfgaclass can be
employed as a black-box. In our implementation, we mostly consider nonlinkars inheriting
from NP_.NL_SOLVERTo allow for solving problems like (M), our solvers receive a so-caligdta-
cleBasenum-proc, which is able to generate and handle an obstacle on an aldebehidloreover,
the nonlinear solvers must receive MR_NL_ ASSEMBLEhum-proc which allows for evaluating
and its derivatives.

In particular, during this dissertation project, the following solver classe wnplemented

1. trSolver
2. lineSearchSolver
3. APTS

4. APLS
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NLSOLVERLIB OBsLiB++ / UG
APLS
\
LineSearch
APTS \TrLsSoIverBase NP_NL_Solver
\
TrustRegion /
/
MPTS TrObstacle ObstacleContact
MptsAssemble NP_NL_ASSEMBLE

Figure 6.1: The class structure within Nb8vERLIB. Each of the classes employs the linear algebra provided
by UG and ®BsLie++. Here, we highlight which class inherits from other cisssand the interface between
OBsLIB++/UG and the new NLSLVERLIB.

5. MPTS (realizes MPLS/MPTS within a multigrid framework)

On the other hand, UG allows — independentend from inheritances —dapsulating num-procs
into each other. Therefore, the MPTS solver receiveSlBINL_SOLVERnum-proc which is em-
ployed to solve the local minimization problems. As it turns out, depending orothersthe MPTS

strategy employs the MPLS or the MPTS control routines.

The TrLsSolverBase-Class.

This class provides common methods and fields employed in both, the TrustRegl Linesearch
solver. In particular, this class implements the solution of the quadratic made2)2and allows for
treating complex obstacles employing an SQP approach.

The solution of the quadratic model problem is currently carried out by efimgi@ linear solver. As
pointed out before, we employ the projected cg method in combination with a syimmettinear
Gaul3-Seidel smoother. To guarantee convergence to a first-ortieal groint we have to ensure
that a sufficient decrease takes place. In our implementation, this is reblzedmputing the
Cauchy-point (2.1.10) or (2.2.3) and checking (2.1.9) and (2.2.2bpewtively. If the iteratively
computed search direction does not satisfy the respective conditionistarded and the respective
Cauchy point is employed as search direction.

The TrustRegion-Class.This class realizes along with dnObstaclenum-proc Algorithm 1. Some
special features, such as the treatment of numerical instabilities in the foasending errors have
also been added. For instance, if
|J(u) — J(u+ s)
S €
| (u)]
holds fore = 1072, we cannot trust the decrease ratio (2.1.3). In this case, we have tthieus

correction and simply add it. More information on this topic and different gjr@secan be found in
Chapter 10.6 of the monograph [CGTO0O].
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The LineSearch-Class. This class implements the Linesearch algorithm, Algorithm 3. In
contrast to just treating the Armijo condition (2.2.5), this algorithm is also able &b tihe Armijo
conditions for subdomains, i.e., (4.2.4) and (5.3.4). Finally, also the Lingsafgorithm may suffer
from rounding errors, which is similarly treated as in the Trust-Region class

The APTS/APLS-Classes. Here, we implemented certain variants of Algorithm 5 and Algo-
rithm 7. As a matter of fact, the APTS and APLS implementations themselves depend on the
particular implementation of the domain decomposition but as pointed out in Chapteve aim at

a real parallel speed-up by decomposing the domain in non—overlapgidgmains as introduced
in Section 3.1.6. Therefore, we slightly altered the UG load balancing commantdtsat not
only all necessarynasterelements are transferred from one processor to another but atyoost
elements which have a node in common with a master element. Therefore, wa tte@retical
overlap of one element such that quadrature over all basis functiammafter element is possible
without communicating in parallel.

In the preconditioning steff 4, the APTS/APLS solvers directly employ the respective inherited
Trust-Region or Linesearch solvers as a nonlinear solver. Sincerallghaommunication is allowed

to take place during the solution process, the nonlinear solver itself, the yaddioear solver, the
assembler and the obstacle are not allowed to employ parallel communicatiwmn,Imwe have an
asynchronous solution phase, as described in Algorithm 5 and in Algorithm 7

After the asynchronous solution process, the APTS and APLS method emplixen parallel
nonlinear solver num-proc to computé from (3.1.6).

The MPTS-Class. This class implements the multiplicative frameworks from Chapter 5.
This num-proc switches from Trust-Region to Linesearch behaviorndipg on the class of the
given coarse level NNL_SOLVER.

The TrObstacle-Class.This class extends the functionality of the ObstacleContact class by adding
an additional constraint, the Trust-Region radius. Moreover]tfdstacleClass updates and han-
dles the Trust-Region and Linesearch step-length constraints.

The MPTSAssemble-ClassThis assembler class aims at the computation and management of the
objective function, gradient and Hessian. Due to the formulation of theesubjective functions
(3.2.1) and (3.3.1), itreceives an NFE ASSEMBLE num-proc, which is able to computg and its
derivatives. Therefore, the MPTSAssembler just has to have the abiibnipute and add the linear
correction term to the objective function and gradient. Moreover it imm@ates caching strategies to
prevent avoidable recomputations of gradients and Hessians. In faétefsian is recomputed only

if a certain threshold is exceeded. Following Taylor's theorem we may estimatguality of the
recently computed Hessian by the following expansion.

VHY(u) — VHY (u+ 5) — VEHY (u)s = VEHY (u + 78)s — VZHY (u)s
whereu € Dy is the iterate, when the Hessian was the last time reassembie), 1) ands € Dy,
the difference between the most recent iteratewantherefore, we reassemble the Hessian if
1

]| IV H (u) = VH (u+ 5) = V2H} (w)s]|> > nr (6.1.1)
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with nr > 0. In our examples, we employegk = 0.1. Otherwise we return the more or less up to
date HessialVZHy (u).

Unfortunately, the original UG implementation was not designed for the el@tuaf the objective
function and by now only the Finite Element based assemblers allow for &vglube respective
objective functions/}’.

6.2 Asynchronous Linear Solvers

In addition to the already existing (parallelized) linear solvers and pratomers in GBSLIB++,
an asynchronous projected cg-method (acgpl), an asynchronoasdimiger (als) and asynchronous
symmetric and classical nonlinear Gaul3-Seidel variants were implementahtiast to the original
solvers, the asynchronous versions als and acgpl do not empldiepemanmunication at all. There-
fore, acgpl and als are suitable as a linear solver within the APLS and ARTIgods to solve the
arising quadratic minimization problems — as far as these incorporate a symnesiticepdefinite
Hessian.

6.3 I10Lib

To import CAD-based geometries, aBE)L I1B++ plugin has been developed to impont&us-11
geometries. In combination with thexBbus-1I PARAMETER FORMAT [GKO08a] this allows for
easily defining the computational domdrand the boundary values.

More important is the developed export librarjWMATION SUITE, which is designed for exporting
geometry data and numerical results irdbus-11 format. Even if UG itself has a visualization
unit, since Revision 265 the MIMATION SUITE allows to export computed results as CAD data. In
turn, one can visualize the computed results in professional toolkits like RagaV IEW [Tea09].
Besides the fact that>oDus-11 can be employed to store nodal and element values, it also enables
us to export time dependent nodal data frame-wise. Therefore, in thdizaitian process of All-
MATION SUITE, we just declare the respective vectors, whose values should beexkpBach time

the writeFrame command is called, the current values of all registered s@ctowritten into a tem-
porary file. With the call of writeMesh the geometry information and all data irigh® file is then
written into an Exobus-1l file.

ANIMATION SUITE also enables us to handle geometries which have been exported at the end o
an parallel computation process. It turns out that each dofaaon thei-th processor is exported
separately. Therefore, in order to obtain one result, the C++ - merdeMethod was implemented.
Here, on one processor the exported meshes and data are merged\azhdtitly one file.

6.4 InterpreterLib

The particular treatment of algebraic expression within UG-scripts waspiémented in UG until
OBsLIB++ revision 143. This made the statement of simplest expressionsilike; f complicated
and barely readable. Therefore, we started to implement a speciat paligel SINTAX PARSER
which allows for creating a syntax tree whose recursive evaluation yieddsought-after evaluation
of the algebraic expression. In particular, the evaluation of an expresglits into two steps:

1. Parsing and creating the syntax tree
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Figure 6.2:Application of INTERPRETLIB for Boundary Values. Here, we describe displacements by means
of the coordinates at the respective quadrature pointisliggea rotation of the upper plane of abalit’. The

left image shows the result for linear elasticity, the righage for an Ogden material, as employed in Chapter
5.5.

2. evaluating the syntax tree by successively evaluating intermediate results

Each of the respective nodes of the syntax tree may be a binary operatarariable of type in-
teger, double, string, vector and matrix. Today, all popular unary a&mahp operators, such as
multiplication, scalar product, modulo, comparison operators, pointwise multiplicéor vectors,
string-concatenation, etc., are implemented withiveakly typedramework. Finally, also boundary
values can now be stated algebraically allowing for boundary value pnside shown in Figure 6.2.
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Index

B; = B(u;) ~ V2J(u;) — symmetric approx-
imation to the Hessian, 17, 102, 129

C, C; set of indices, 38

C" — subsets where corrections were com-

puted, 53, 55
D; = D(u;), Dy ; = Dg(uy ;) — scaling ma-
trix, 19

H} —local objective function, 40, 45

I,’jH : Dxy1 — Dy — interpolation operator,
34

I, : D, — R™ —interpolation operator, 33

J — global objective function, 5

N —number of subsets, 33

P,f“ : Dy, — Dy41 — projection operator, 35

P, : R® — Dy, — projection operator, 34

Ry = (IF, )T - restriction operator, 34

Ry, = (I)" — restriction operator, 34

X : R" — X — coordinate isomorphism, 33

X'’ — coordinate isomorphism, 13

X} : D, — A}, — coordinate isomorphism, 33

C = V¢ Ve — right Cauchy-Green strain
tensor, 7, 98

D), = R™ — subset, 33

A; — Trust-Region radius (traditional scheme),
18

A} ; — Trust-Region radius (APTS/MPTS), 52

A}, — Trust-Region radius (MPTS), 75

F — volume force densities, 6

I'p, 'y — Dirichlet/Neumann boundaries, 6

2 — computational domain, 6

T —response function, 7

o~

W - stored energy function, 7

«; — Linesearch parameter (traditional
scheme), 23

amin — Step—length satisfying the Armijo con-
dition, 27, 65

o= Linesearch parameter (APLS), 62
oy, ; — Linesearch parameter (MPLS), 84
015 — step—length threshold (APLS), 65

05 — step—length threshold (MPLS), 86

01s — step—length threshold (Linesearch ), 24

n — threshold for accepting corrections, 18

s — threshold for descent (Linesearch ), 24

f — surface force density, 6

7,72 € (0,1) — Trust-Region rescaling pa-
rameters, 18

3" = g¢. o — first-order conditions before ad-
ditive prec. (APTS), 55

§i = D(u;)VJ(u;) — first-order conditions
(traditional scheme), 19

9v; = Dy, VH{(uy ;) — first-order condi-
tions (subset/global context), 55, 65,
73

kg € (0,1) —threshold for coarse level gradi-
ent, 55, 73

A; —nodal basis function, 13

A — additive recombination operator, 41, 53

A — multiplicative recombination operator,
47,75

B — set of admissible solutions, 5

By (u”) — admissible solutions, 43

By (ur_1) - set of admissible solutions, 49

Fr — multiplicative update operator, 46

}'](\j) —nonlinear update operator (MPTS), 75

Fi. — local update operator, 41, 46

X — original solution space, 33

X, X' — Finite Element space, 12

X, C X — local version of the original solu-
tion space, 33

v — index of current outer iteration, 40

¢, ¢ — obstacle vectors, 5

¥i(s) = (gi, s) + 3 (s, B;s) — quadratic model,
17,25

p —mass density, 6

p” — decrease ratio for additively computed
corrections, 53

pa — threshold Armijo condition, 25, 62, 84

pr — descent threshold (APLS), 62
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Index

pr — descent threshold (MPLS), 84

p; — decrease ratio (traditional scheme), 17

pap — descent threshold (APLS/MPLS), 64

pmp — descent threshold (APLS/MPLS), 85

py.; —local decrease ratio (APTS), 54

pzzmk — decrease ratio for multiplicatively
computed corrections (MPTS), 74

T — reduction factor in the backtracking algo-
rithm, 25

T —time step parameter in Rothe’s method, 10

u = ¢ — Id — displacements, 6

up, — discretized displacements, 12

 — deformation of the ref. configuration, 6

gi = VJ(u;) —gradient at;, 17

gy ; = VHY (uj ;) — gradient, 62

m — maximal number of subset iterations, 73

my, — number of subset iterations, 73, 88

s; — correction vector, 17

si.; — subset correction (APTS/MPTS), 52, 75

s; — subset search direction (APLS/MPLS),

62

si.; — subset search—direction (APLS/MPLS),
84

sk.m,, — Multiplicatively computed correction,
73, 87

u” — global iterate, 40

“Z+Lm_k+,1_,f - the final |t§rate oDy, 88
uy o — initial iterate (additive), 40

uy o — initial iterate (multiplicative), 45
uy, ; —subset iterate, 52, 62, 73, 84

additive preconditioning, 39

additive subset obstacles, 43

advance conditions (APTS/APLS), 54

advance conditions (MPTS/MPLS), 73

AMPLS — Combined Nonlinearly Precondi-
tioned Linesearch Methods, 92

AMPLS algorithm, 93

AMPTS — Combined Nonlinearly Precondi-
tioned Trust-Region Methods, 81

AMPTS algorithm, 82

APLS - Nonlinear Additively Preconditioned
Linesearch Methods, 60

APLS algorithm, 66

APTS — Nonlinear Additively Preconditioned
Trust—Region Methods, 51

APTS algorithm, 53

Armijo condition, 15, 25

Armijo condition (APLS), 62

Armijo condition (MPLS), 84

ASPIN, 3, 29, 39, 45

assumption Trust-Region method, 16
assumptions Linesearch , 24
assumptions APLS, 61

assumptions APTS, 51

assumptions MPLS, 83

assumptions MPTS, 72

backtracking algorithm, 25
barrier function, 98, 100, 103
bisection algorithm, 85
boundednesa (Linesearch ), 26
boundedness (APLS), 65
boundednesa (MPLS), 91

Cauchy Point, 102

Cauchy point, 15, 19, 128

coarse grid, 71

coercive, 97, 98

coercivity of a stored energy function, 8
compressible Mooney-Rivlin material, 98
computation of Trust-Region corrections, 17
conservation of impulse, 6

contact stabilization, 10, 123

decrease ratio (APTS), 53
descent condition - | (APLS), 62
descent condition -1l (APLS), 64
descent direction (Linesearch ), 24
descent direction (APLS), 66
descent direction (MPLS), 89
domain decomposition, 71

exact update strategy, 31

FAS, 2, 29, 45

filter—based Linesearch strategy, 29

Finite Differences, 12

Finite Elements, 12, 33, 35, 48, 98, 99, 104
first—order conditions, 5, 19

forget-me-not approach, 40

Gaul3-Seidel, 47, 72

Hilbert space, 35
Hooke’s law, 101
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horizontal decomposition, 33

indicator function, 100

initial iterate (additive), 34, 40

initial iterate (multiplicative), 45

initial subset iterate, 33

interpolation operator, 33, 38, 39, 43, 48, 53,
62, 74, 75, 86, 88

Krylov-Schwarz, 29

Lamé constants, 98

left preconditioning, 30

linear coupling term, 40, 45

linear multigrid methods, 35

linearized Green-St. Venant strain tensor, 101
linearized update strategy, 31

Linesearch algorithm, 27

Linesearch method, 24

local Trust-Region constraint, 54

local functionJy, 40, 103

local objective function (additive), 40
local objective function (multiplicative), 45
local update operataFy, 52, 61, 84, 102
lumped mass matrix, 37

mass matrix, 14, 37

Meshfree Methods, 12

method of lines, 9

MG/Opt, 2, 29, 45, 71

minimization problem (M), 4

MLS, 2,72, 84

Modified Linesearch Algorithm (APLS), 64

modified Linesearch algorithm (MPLS), 86

MPLS — Nonlinear Multiplicatively Precondi-
tioned Linesearch Methods, 83

MPLS algorithm, 87

MPLS step—length criterion, 86

MPTS — Nonlinear Multiplicatively Precondi-
tioned Trust-Region Methods, 72

MPTS algorithm, 74

multigrid method, 37

multiplicative descent condition |, 84

multiplicative descent condition 11, 85

multiplicative subset obstacles, 49

multiplicatively computed correction, 47

Newmark scheme, 10, 123
Newton’s method, 1

non-overlapping domain decomposition, 38,
55, 58

nonlinear multigrids, 72

nonlinear recombination operatot, 41, 46,
53, 62, 75, 88

nonlinear Schwarz method, 39

nonlinear symmetric Gaul3—Seidel method,
102, 123

nonlinear update operator, 30, 45

nonlinear update operat@i, (APLS), 62

nonlinear update operatdr, (APTS), 53

nonlinear update operator (concept), 32, 41,
46

nonlinear update operator (MPLS), 88

normal equation, 35

Ogden material, 97
orthogonal projection, 34
overlapping domain decompaosition, 38, 55, 58

parallel gradient distribution, 3, 39, 60

parallel variable distribution, 3, 29, 39, 40, 42,
51

ParaView, 101

polyconvex, 97, 98

polyconvexity of a stored energy function, 8

post-smoothing, 32

projection operator, 33, 34, 37-39, 48

recursively computed correction, 47
residualdgy (additive), 40
residualdgy (multiplicative), 45
restriction operator, 35, 38

right preconditioning, 32

RMTR, 2,71

Rothe’s method, 9

second—order coupling (additive), 41
second-order coupling (multiplicative), 46
second-order critical points, 23, 27, 69, 95
sequential-quadratic-programming, 29

St. Venant-Kirchhoff material law, 97, 98
step—length condition Linesearch , 24
subset correction, 33

successful correction, 18

sufficient decrease, 81, 82

sufficient decrease (APTS), 55

sufficient decrease (MPLS), 76
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sufficient decrease condition, 19

transfer operator, 33

Trust—Region algorithm, 18
Trust—Region method (traditional), 16
Trust—Region update, 75
Trust—Region update (APTS), 54

update Trust-Region radius, 18
update operator, 48

V-Cycle, 47, 48

vertical and horizontal decomposition, 81
vertical decomposition, 33

von-Mises stress, 100

W-Cycle, 47
Wavelets, 12, 71
Wolfe condition, 25, 84, 86
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