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Abstract

The solution of nonlinear programming problems is of paramount interest forvarious applications,
such as for problems arising from the field of elasticity. Here, the objectivefunction is a smooth,
but nonlinear and possibly nonconvex functional describing the stress-strain relationship for material
classes. Often, additional constraints are added to model, for instance, contact. The discretization
of the resulting partial differential equations, for example with Finite Elements,gives rise to a finite
dimensional minimization problem of the kind

u ∈ B ⊂ Rn : J(u) = min! (M)

wheren ∈ N, andJ : Rn → R, sufficiently smooth. The set of admissible solutionsB is given by
B = {u ∈ Rn | φ

i
≤ ui ≤ φi for all i = 1, . . . , n} whereφ, φ ∈ Rn.

The solution of such a minimization problem can be carried out with various numerical methods.
From an analytical point of view it is of interest under which assumptions a numerical solution
strategy computes a (local) solution of the minimization problem. Here, basically twoclasses of
globalization strategies, Linesearch and Trust-Region methods, exist which are able to solve (M)
even ifJ is nonconvex. Though, the interest of a user lies in the efficiency and robustness of the
employed tool. In fact, it is of great importance that a solution is, independent of the employed
parameters, rapidly carried out.
In particular, a modern nonlinear solution strategy must necessarily be ableto be applied for (mas-
sive) parallel computing. The first step would, indeed, be employing parallelized linear algebra for
the Trust-Region and Linesearch strategy. But, to guarantee convergence, traditional solution strate-
gies damp the computed Newton corrections which might slow down the convergence.
Therefore, different extensions for the traditional schemes were developed, such as the two (additive)
schemes PARALLEL VARIABLE DISTRIBUTION (PVD) [FM94], PARALLEL GRADIENT DISTRIBU-
TION (PGD) [Man95] and the (multiplicative) schemes MG/OPT [Nas00], recursive Trust-Region
methods (RMTR) [GST08, GK08b] and recursive Linesearch methods (MLS) [WG08]. Both, the
nonlinear additive and multiplicative scheme, aim at a solution of related but “smaller” minimization
problems to compute corrections or search directions. In particular, the paradigm of the PVD and
PGD schemes is to asynchronously compute solutions of local minimization problems which are
combined to a global correction. The recombination process itself is the solution of another non-
linear programming problem. The multiplicative schemes, in contrast, aim at a solution of coarse
level problems starting from a projection of the current fine level iterate. As numerical examples
in [GK08b, GMS+09] and [WG08] have shown, combining multiplicative schemes with a “global”
smoothing step yields clearly improved rates of convergence with little computational overhead.
In the present thesis we will show that these additive and multiplicative schemes can be regarded as
a nonlinear right preconditioning of a globalization strategy. Moreover, novel, generalized nonlinear
additive and multiplicative frameworks are introduced which fit into the nonlinear preconditioning
context. In numerous examples, we comment on the relationship to state-of-the-art domain decom-
position frameworks such as hierarchical and vertical decompositions and explain how these decom-
positions fit into the presented context. In a second step, Trust-Region and Linesearch variants of the
preconditioning frameworks are presented and first–order convergence is shown.
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As it turns out, the presented multiplicative Trust-Region concept is based on the RMTR framework
employed in [GK08b] extending it to more arbitrary domain decompositions. On the other hand,
the multiplicative Linesearch methods are based on the MLS scheme in [WG08].Here, the original
assumptions are weakend allowing for the solution of non-smooth nonlinear programming prob-
lems. Moreover, we present a novel nonlinear additive preconditioningframework, along with actual
Trust-Region and Linesearch implementations. As it turns out, well-balanceda priori and a posteriori
strategies and a novel subset objective function which allow for straight-forwardly implementing the
presented frameworks and showing first–order convergence. As willbe highlighted, these novel ad-
ditive preconditioning strategies are perfectly suited to be employed for massive parallel computing.
Furthermore, remarks on second–order convergence are stated.
To motivate the presented solution strategies, systems of PDEs and equivalent minimization problems
arising from the field of elasto-statics and elasto-dynamics are introduced.Moreover, we will show
that – after discretization – the resulting objective functions satisfy the assumptions stated for show-
ing convergence of the respective globalization strategies. Furthermore, various numerical examples
employing these objective functions are presented showing the efficiencyand robustness of the pre-
sented nonlinear preconditioning frameworks. Comments on the computation times, the number of
iterations, the computation of search directions, and the actual implementation ofthe frameworks are
stated.
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1 Introduction

Ever since 1958 till the beginning of this millenium, the number of transistors placed on an integrated
circuit has doubled every two years, yielding extremely fast computers. In particular, at the end of the
1990s, the computational power of the TOP 500 computers, the 500 fastest,civil used computers, was
just under 50,000 Gflops. Today, the TOP 500 computers achieve a peakperformance of 25,400,000
Gflops [TOP08], an annual increase of 2800%. Though, recently, this increase is in major parts due to
the massive parallelization of computers, rather than due to the acceleration ofindividual processors.
Therefore, in order to harness the computational power of modern supercomputers, algorithms must
be developed and implemented with the capability to run in parallel.
In case of Finite Elements for the discretization of problems arising from the field of elasticity, the
parallelization affects the linear algebra, linear solvers, often the geometryand, therefore, quadrature
rules and the assembling processes. As it turns out, most of the affected routines can run in parallel
with little parallel communication, such as, for instance, the quadrature. In contrast, the iterative
solution of linear systems of equations makes much parallel communication necessary since locally
computed solutions must be recombined to a global solution, for instance, to compute updated resid-
uals.

Figure 1.1: Domain decomposition methods go back to the 1870s, when H.A. Schwarz proposed an alternating
domain decomposition method [Sch90]. In this original domain decomposition of H.A. Schwarz the domain
is decomposed into an overlapping rectangle and a circle.

As a matter of fact, parallelized linear algebra enables scientists to compute the solution of highly
complex problems, such as large-scale nonlinear and possibly nonconvex minimization problems
arising, for instance, from the field ofnonlinearelasticity. As it turns out, if the objective function,
in this case thestored energy function, is highly nonlinear but convex, Newton’s method is able to
compute a solution of the minimization problem. But, in the case of nonconvex objective functions,
the same holds only if the initial iterate issufficiently good. In this case, it suffices to employ a state–
of–the–art parallelized linear solver to compute Newton corrections. But, generally it is unknown
whether the initial iterate is sufficiently good or not. Therefore, one must employ a globalization
strategy– e.g., Trust-Region or Linesearch strategies – to ensure convergenceto critical points.
Both strategies, Trust-Region and Linesearch strategies, combine the computation of quasi-Newton
corrections, and the computation of adequate damping parameters to ensureconvergence to critical
points. The damping parameters themselves depend on the “quality” of thesearch direction, e.g.,
the Newton corrections, and the local nonlinearity of the objective function. In turn, in regions
with strong nonlinearities of the objective function often the damping parameters must be chosen
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Figure 1.2: Different Scales: A minimization problem arising from nonlinear elasticity, where for given bound-
ary values energy optimal displacements are computed. The colors represent the von-Mises stresses (cf., Sec-
tion 5.6.1) within the deformed configuration.Left: here we visualize the von-Mises stresses on the finest
scale which obviously, vary in different parts of the geometry. Therefore, we visualize in themiddle figurethe
strongest local stresses on the fine scale.Right: here, we show the coarse scale von-Mises stresses which look
similar to the fine scale stresses. The geometry is from [NZ01].

sufficiently small to ensure an actual decrease of the objective function,even for sufficiently good
search directions. As it turns out, this problem increases with the number ofunknowns since the step–
length depends on the strongestlocal nonlinearity. This particularly means that even if nonlinearities
occur only locally or in certain spectra they govern the whole solution process of the minimization
problem.
Thus, in the last decades, two different approaches emerged to bypass this problem by attacking
nonlinearities

• on different scales

• locally w.r.t. the domain

To handle nonlinearities on different spectra, in the early 1980s, A. Brandt introduced the FULL

APPROXIMATION SCHEME (FAS) [Bra81], the first nonlinear multigrid method. Here, the restricted
“fine scale” gradients are combined with the gradient of an arbitrarily chosen nonlinear “coarse level”
objective function. One important difference to linear multigrid strategies is that due to the nonlin-
earity of the resulting coarse level problem, the choice of an initial iterate influences the resulting
coarse level correction. Though, due to the method’s formulation, convergence may only be proven
for convex minimization problems or for sufficiently well chosen initial iterates.
To overcome this problem S. Nash introduced in 2000 the MG/OPT method, a reformulation of
the FAS scheme which combines a new objective function with a globalization strategy such as
a Linesearch strategy [Nas00]. By now, several Trust-Region (called RMTR) and further Line-
search (called MLS) implementations of the MG/OPT framework have been introduced by S. Grat-
ton et al. [GST08, GMTWM08], Z. Wen and D. Goldfarb [WG08] and C. Groß and R. Krause
[GK08b, GK08c]. Similarly to S. Nash’s approach, the MLS strategy and the RMTR strategies de-
terministically compute initial iterates on the coarse levels. In fact, it is proposedto employ the
restriction operator to compute an approximation to the fine level iterate. Also damped restriction
operators were proposed to improve the rates of convergence [GMS+09] which slightly affects the
analysis of the RMTR method. But, as it turns out in the case of nonlinear elasticity [GK08b] the
L2-projection seems to yield better coarse level corrections and faster convergence than employing
the restriction operator.
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The analysis of both, the MLS and the RMTR strategy, is based on the fact that an interpolated
coarse level correction can be regarded as a search direction for thefine-level problem. In turn,
this enables the respective authors to prove convergence under modest assumptions. Though, in
order to derive a multiplicative framework which is also suited alternating domaindecomposition
methods, in the present thesis, we will generalize the recursive Trust-Region scheme in [GK08b] to
a multiplicative Trust-Region framework. Moreover, the multiplicative Linesearch scheme in this
thesis will generalize the MLS method to the non–smooth context. In order to prove convergence
of this scheme, we show that the assumptions for the MLS method can be weakend by introducing
different control strategies.
On the other hand, in the 1990s, frameworks for asynchronous and nonlinear globalization strate-
gies called PARALLEL VARIABLE DISTRIBUTION (PVD) and PARALLEL GRADIENT DISTRIBU-
TION (PGD) were introduced by M. C. Ferris and O. L. Managsarian [FM94,Man95]. Therefore,
both approaches asynchronously solve local minimization problems and recombine the computed
corrections employing a set of damping parameters. The computation of the damping parameters,
though, is the result of the solution of another possibly nonconvex minimizationproblem. Both
frameworks, the PVD and PGD framework, are globalization strategies which, in addition, can be
employed to resolve local nonlinearities. Moreover, X.-C. Cai and D. E. Keyes introduced in 2002
the ADDITIVE PRECONDITIONED INEXACT NEWTON (ASPIN) method [CK02], anonlinear ad-
ditive Schwarz method, based on a left preconditioning of the first–order conditions. An important
feature of the ASPIN method is an alternative recombination step, which is carried out by solving
a linear system of equations. But, similarly to the full approximation scheme, convergence of the
ASPIN method may only be proven for sufficiently good initial iterates [CK02,AMPS08].
In fact, the asynchronous solution of local nonlinear minimization problems enables the respective
method to resolve local nonlinearities without being governed by a global step–length constraint.
But, moreover, these additive frameworks are good starting points for thederivation of nonlinear
additively (right) preconditioned globalization strategies which aim at themassive parallelsolution
of nonlinear minimization problems. Since, as far as it is possible to avoid computing a set of
damping parameters, the ASPIN method and (for certain configurations) thePVD/PGD algorithms
reduce the overall parallel communication, as it is desirable for parallel solution strategies.
In order to avoid the expensive computation of global damping parameters,we will consider the ad-
ditively computed correction as a search direction in the context of the global minimization problem.
This point of view allows for deriving easy implementable standard Trust-Region and Linesearch
control strategies reducing the set of damping parameters to one damping parameter or one Trust-
Region radius. Along with an, in the additive context, novel objective function this results in a novel
additive preconditioning framework. Moreover, under modest assumptions, we are able to prove
convergence of the presented additively preconditioned Trust-Regionand Linesearch strategies to
first–order critical points.
Finally, we will introduce novel combined preconditioned Linesearch and Trust-Region strategies
which employ both approaches, the additive and multiplicative approaches,within one precondi-
tioning framework. Both methods are formulated based on the about to be presented multiplicative
and additive schemes which enables us to straight-forwardly prove convergence to first–order critical
points. As it will turn out, in numerous computed examples, carried out within a Finite Element
framework, these combined preconditioned globalization strategies are considerably faster than the
traditional schemes. Similarly, also the pure multiplicative and additive schemes yield in most com-
puted examples faster convergence to critical points, than the traditional schemes. Here, we imple-
mented exemplarily a nonlinear multigrid method as multiplicative and a nonlinear non-overlapping
domain decomposition method as additive scheme. Moreover, we will comment onemploying dif-



4 1.1 The Nonlinear Model Problem

ferent decompositions frameworks within the concept of nonlinear preconditioning.

Overview

In the next chapter, Chapter 2, we will present standard implementations and convergence proofs for
Trust-Region and Linesearch strategies. This has two purposes. On theone hand, we can compare the
presented strategies to the novel preconditioned globalization strategies. On the other hand, we em-
ploy parts of the respective convergence proofs within our analysis ofthe additive and multiplicative
preconditioning strategies.
In Chapter 3, we will introduce the abstract nonlinear right preconditioning frameworks. Here, we
will present the additive and multiplicative domain decomposition frameworks along with the transfer
operators. These are, in turn, employed in the multiplicative and additive context. Also the subset
objective functions and assumptions on the subset constraints will be formulated in this chapter
along with the additive and multiplicative update operators. Together, this allows for proving that the
formally defined nonlinear preconditioning operators yield admissible search directions.
Actual nonlinear additively preconditioned globalization strategies will be presented in Chapter 4.
Here the objective function and transfer operators as presented in Chapter 3 will be employed within
an additive Trust-Region framework, the APTS method, and an additive Linesearch framework, the
APLS method. Both presented novel additive preconditioning strategies willbe analyzed in this
section and convergence to first–order critical points will be shown. In Section 4.3, we will also
comment on the overall parallel communication within the nonlinear additively preconditioned glob-
alization strategies.
In Chapter 5, we will present and analyze multiplicative Trust-Region and Linesearch variants. Here,
the RMTR strategy in [GK08b] will be extended to a more general multiplicative framework resulting
in the nonlinear multiplicatively preconditioned Trust-Region strategy (MPTS)method. Moreover,
we will present the nonlinear multiplicatively preconditioned Linesearch strategy (MPLS) which
extends the approach of Z. Wen and D. Goldfarb [WG08] to the non-smooth case. Moreover, we will
introduce and analyze novel combined multiplicatively and additively preconditioned Trust-Region
and Linesearch methods.
Finally, in Chapter 5.5 and Chapter 6, we will explain the actual implementation of the respec-
tive nonlinear additive and multiplicative preconditioners and present numerical results. The im-
plemented nonlinear solvers of the present thesis are part of the NLSOLVERL IB toolbox extending
OBSL IB++ [Kra07b] and UG [BBJ+97]. In Chapter 5.5, the particular example problems and their
solutions will be introduced. Moreover, we will present numerous comparisons considering the rates
of convergence of

• additive, multiplicative, combined and standard Trust-Region strategies

• additive, multiplicative, combined and standard Linesearch strategies

1.1 The Nonlinear Model Problem

In the present thesis, we present several globalization frameworks which aim at the solution of the
following non–linear, box-constrained minimization problem

u ∈ B ⊂ Rn : J(u) = min! (M)
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wheren ∈ N, andJ : Rn → R. The objective functionJ is supposed to be at least continuously
differentiable, but is neither assumed to be quadratic nor convex. Here,B denotes a set of admissible
solutions with

B = {u ∈ Rn | φ
i
≤ ui ≤ φi for all i = 1, . . . , n}

andφ, φ ∈ Rn.
As pointed out in the introduction, the solution of nonlinear programming problems is usually carried
out employing globalization strategies. Globalization strategies itself are strategies which provably
compute sequences of iterates converging to critical points. As it turns out,“globalization” and
“global convergence” refers to the independence of the convergence from the first iterate’s quality.
In other words, in the present thesis, we present different strategies, which compute critical points
without assumptions on the initial iterate (except, thatJ is defined and the initial iterate is admissi-
ble).
As a consequence of the possible nonconvexity of the objective function, the about to be presented
nonlinearly preconditioned globalization strategies will only aim at the computation of a first–order
critical point which satisfies the followingfirst–order sufficiency conditions

u ∈ B :






∇J(u)i = 0 if φ
i
< ui < φi

∇J(u)i ≤ 0 if ui = φi

∇J(u)i ≥ 0 if ui = φ
i

(1.1.1)

In fact, such a first–order critical point may be a local minimizer or a stationary point and can be
computed under modest assumptions. In contrast, globalization strategies withsecond–order con-
vergence properties state more restrictive assumptions on the search directions and on the objective
functions (see, for instance, [CL96, CL94, CGT00]). In turn, we willsee that due to the formulation
of the nonlinearly preconditioned globalization strategies, only a global smoothing step may ensure
convergence to such a point, but not the multiplicative or additive strategy,cf. Section 4.4 and Section
5.5.
Obviously, due to its general formulation, many classes of minimization problems may be covered
by the model problem (M) and therefore, may be solved by the algorithms presented in this thesis,
for instance problems arising from the field of nonlinear solid mechanics.
Due to its ability to predict internal stresses within solid materials, in the last decades numerical
simulations of elastic materials became increasingly important. In particular, engineers employ elas-
tostatic and elastodynamic simulations to cheaply verify designs in the load case.To this end, in
the next section we will present nonlinear material laws which will serve as the objective functions
within our numerical examples in Chapter 5.5.

1.2 The Constitutional Equations and their Discretization

In the context of continuum mechanical simulations, in contrast to molecular dynamics, the atom-
istic structure of a solid is neglected and just approximated within the model and itsassumptions.
Therefore, currently,continuum mechanicalsimulations enable engineers to simulate the behavior of
solids on much larger time and length scales than employingmolecular dynamicalsimulations. In
the present thesis, we aim at the (dynamic) continuum mechanical simulation ofa solid’s reaction to
large external forces basically following the monographs [Cia88, EGK08].
Therefore, in the presented model, all physical quantities, for instance,mass, linear momentum, ve-
locity and energy, are considered as mean values. The body itself is a (time dependent) domain
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Ω(t) ⊂ R3 with Lipschitz continuous boundary, given in its reference configuration, i.e., in the un-
deformed state. Therefore, the objective is to find an energy optimaldeformationsubject to given
external and internal forces. Thiselastic (internal) energyis, in turn, been given as a material law
relating stresses to strains, such as, for instance, Hooke’s law. Hooke’s law, describes a linear stress
strain relationship yielding a quadratic and coercive energy function, whose minimization can be
carried out employing state–of–the–art linear and iterative solvers. On the other hand, various non-
linear material laws exist, which incorporate a nonlinear stress strain relationship implying, in turn,
a nonlinear, possibly non-convex energy function.

1.2.1 Kinematics and Conservation Laws

In the context of elasticity theory, a deformation is a continuously differentiable, orientation pre-
serving and invertible mappingϕ : [t0, tend] × Ω(t0) → R3. In turn, the current position of each
point x ∈ Ω0 = Ω(t0) is given byϕ(t,x) ∈ Ω(t). This sought-after deformation is supposed
to be sufficiently smooth in order to solve the about to be presented systems ofPDEs, for instance
ϕ(t, ·) ∈ H1(Ω) for all t ∈ [t0, tend].
Following [EGK08], the sought-after deformationϕ is the result of theconservation of impulse,
subject to a given elastic material law, and two kinds of force densities actingon the bodyΩ(t),

• volume force densitiesF : [t0, tend] × Ω(t) → R3, like for instance gravity

• surface force densitiesf : [t0, tend] × ΓN (t) ⊂ ∂Ω(t) → R3, which will constitute theNeu-
mannboundary conditions

In many cases also additional, pointwise constraints are added, for instance to model contact between
Ω and a rigid obstacle, or constraints to the solution which gives rise to

ϕ(t, ·) · n(t, ·) ≤ Id · n(t, ·) + φ(t, ·) a.e. onΓC(t) ⊂ ∂Ω(t)

whereφ : [t0, tend] × ΓC(t) → R3 andn(t,x) is the outer normal atx ∈ ΓC . Moreover, often also
fixed displacements are applied to the volumeΩ constitutingDirichlet boundary conditions, i.e.,

u(t, ·) = g(t, ·) a.e. onΓD(t) ⊂ ∂Ω(t)

whereg : [t0, tend] × ΓD(t) → R3.
Given, the boundary conditions, we may now consider the conservation of impulse. In the reference
configuration1, the conservation of impulse is given by

d

dt

∫

Ω
ρu̇dx =

∫

Ω
ρF dx +

∫

ΓN

f dsx (1.2.1)

whereu = ϕ + Id are calleddisplacements. Here, we introduced the mass densityρ ∈ [t0, tend] ×
L2(Ω). To obtain a better understanding how external forces induce internal stresses, we will follow
[Cia88] and introduce a stress tensorT̂ : Ω → M3, whereM3 is the set of all3 × 3 matrices.
In particular,T̂ is an elasticresponse functionwhich describes the stress-strain relationship for the
material which isΩ made of. If one assumes that Cauchy’s axiom (cf. Axiom 2.2-1 [Cia88])holds,

1We implicitly consider all variables in the occurring PDEs as Lagrange variables and, thus, drop the time-dependency
of the domain and its boundaries. Another point of view is to consider all variables as calledEulervariables, variables
defined in the (sought-after) deformed state.
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(1.2.1) becomes
d

dt

∫

Ω
ρu̇dx =

∫

Ω
ρF dx −

∫

ΓN

T̂ · n dsx

If we assume thatρ is constant in time, i.e,̇ρ = 0, we may apply the divergence theorem giving rise
to ∫

Ω

(
ρü − ρF − div T̂

)
dx = 0

Since this equality must also be satisfied on each subsetΩ′ of Ω we can deduce that

ρü − ρF − div T̂ = 0 in Ω (1.2.2a)

T̂ · n = f a.e. onΓN (1.2.2b)

u = g a.e. onΓD (1.2.2c)

u · n ≤ φ a.e. onΓC (1.2.2d)

holds.

1.2.2 Elastodynamic and Elastostatic Model Problems inH1

To obtain a complete description of the PDE, we must introduce a constitutional law for the response
function. In our context, the context of large deformations, we are interested in the material’s re-
sponse on large deformations and we will, therefore, employ the theory of hyperelastic materials.
For hyperelastic materials the following relationship holds

T̂ (x,∇ϕ) =
∂

∂C
W̃ (x,C)

WhereW̃ : Ω × S3
> → R is a continuously differentiablestored energy functionandC is theright

Cauchy-Green strain tensorgiven by

C = (∇u + I)T (∇u + I) = ∇ϕT∇ϕ ∈ S3
>

with S3
> is the set of all symmetric positive definite3 × 3 matrices. Now we can combine the

boundary conditions and the initial conditions with the derived constitutional law and obtain the
following system of PDEs

ρü + div
∂

∂C
W̃ − F = 0 a.e. inΩ (1.2.3a)

T̂ · n = f a.e. onΓN ⊂ ∂Ω (1.2.3b)

u · n ≤ φ a.e. onΓC ⊂ ∂Ω (1.2.3c)

u = g a.e. onΓD (1.2.3d)

Here, we suppose thatΓC ∪ΓD ∪ΓN = ∂Ω, ΓC ,ΓN ,ΓD are pairwise disjoint andφ ∈ L2(ΓC). The
initial displacementsu0 ∈ H1(Ω) and velocityu̇0 ∈ L2(Ω) are assumed to be given a priori which
gives rise to the following initial conditions

u(x, 0) = u0(x) in Ω (1.2.4a)

u̇(x, 0) = u̇0(x) a.e. inΩ (1.2.4b)
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For the analysis presented in the remaining sections of this chapter, it will notmake a difference ifρ
is chosen constant in space. Therefore, in the remainder, we will assumewithout loss of generality
thatρ ≡ 1.
Moreover, if in thestatic border casethe time derivatives vanish, the system of PDEs (1.2.3) becomes

div
∂

∂C
W̃ − F = 0 a.e. inΩ (1.2.5a)

T̂ · n = f a.e. onΓN ⊂ ∂Ω (1.2.5b)

u · n ≤ φ a.e. onΓC ⊂ ∂Ω (1.2.5c)

u = g a.e. onΓD ⊂ ∂Ω (1.2.5d)

Here, we also assume thatΓD, ΓN andΓC are pairwise disjoint and thatΓD ∪ ΓN ∪ ΓC = ∂Ω.

An Elasto-Static Minimization Problem and Existence of Solutions

If we now assume thatf andF are independent ofu, Theorem 4.1-1 [Cia88] gives us that (1.2.5)
is formally equivalent to the following constrained minimization problem: find au ∈ H1(Ω) which
solves

J(u) = min! (1.2.6a)

u · n ≤ φ a.e. onΓC ⊂ ∂Ω (1.2.6b)

u = g a.e. onΓD ⊂ ∂Ω (1.2.6c)

Here, we have introduced thenonlinear energy functionalconsisting of the elastic (internal) energy
and external work as

J(u) =

∫

Ω

(
W̃ (x,C) − ρF · u

)
dx −

∫

ΓN

f · u dsx

Remark 1.2.1. Here J(u) = min! denotes the local minimizer over the set of allũ satisfying
(1.2.6b) and (1.2.6c). For the ease of notation, in the remainder of this thesis we will keep to this
notation and will not explicitly highlight, that we are interested in a local solution.

Since the energyJ is arbitrarily nonlinear and, thus, possibly non-convex, solutions of the minimiza-
tion problem (1.2.6) generally cannot be shown to exist. Therefore, we follow [Cia88] and J. Ball
[Bal77] and introduce stronger assumptions on the stored energy function W̃ to ensure the existence
of minimizers.

Definition 1.2.2. A stored energy functioñW is polyconvexif there exists for eachx ∈ Ω a convex
functionW : M3 × M3 × (0,∞) → R such that

W̃ (x,C) = Ŵ (x,∇ϕ) = W(x,∇ϕ,Cof∇ϕ,det∇ϕ) ∀ϕ ∈ M3
+

whereCofA = detAA−T . We will call a polyconvex stored energy functioncoerciveif there exists
anα > 0 and anβ ∈ R such that

W̃ (x,C) = Ŵ (x,∇ϕ) ≥ α
(
‖∇ϕ‖2 + ‖Cof∇ϕ‖2 + (det∇ϕ)2

)
+β a.e. inΩ and all∇ϕ ∈ M3

+
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Now, we may cite Theorem 7.8-1 [Cia88] which provides the existence of minimizers for problem
(1.2.6) under certain assumptions on the stored energy function and the respective problem setting.

Theorem 1.2.3.Assume that̂W is a polyconvex, coercive stored energy function with

lim
det(I+∇u)ց0

Ŵ (x, I + ∇u) = ∞

Let ΓD,ΓN ,ΓC be disjoint, relatively open subsets of∂Ω, ΓD 6= ∅ and∂Ω − ΓD ∪ ΓC ∪ ΓN = ∅.
Assume that the following set of energy-admissible solutions

Φ = {u ∈ H1(Ω) | Cof(I + ∇u) ∈ L2(Ω), 0 < det(I + ∇u) ∈ L2(Ω),

u = g a.e. onΓD,

u · n ≤ φ a.e. onΓC}

is non-empty. Let

L(u) = −
∫

Ω
F · u dx −

∫

ΓN

f · u dsx

be in(H1(Ω))′. Moreover, assume that there exists anũ ∈ Φ such that

inf
ũ∈Φ

I(ũ) = inf
ũ

∫

Ω
Ŵ (x, I + ∇ũ) dx + L(ũ) < +∞

then there exists at least one function such that

inf
u∈Φ

I(u) ∈ (−∞,+∞)

In fact, this theorem directly applies to elastostatic problems of the kind (1.2.6) and provides sound
assumptions on the problem itself, such as the relationship between constraints and Dirichlet values,
and assumptions on the surface forces.

1.3 Discretization

A key role in the solution of the system of PDEs in (1.2.3) and (1.2.6) is their discretization. As
it turns out, we will apply the globalization strategies presented in the following chapters to solve
discretized minimization problems instead of the respective original system.
The discretization of a dynamic system of PDEs like (1.2.3) is usually carried out in two steps:

• discretization in time

• discretization in space

Here, one distinguishes between the discretization in time prior to space, calledRothe’s method, or
vice versa, calledmethod of lines. In the method of lines the spatial discretization is chosen fixed for
all time steps, which does not allow for a better resolution of time dependent spatial phenomena. In
contrast, Rothe’s method allows for choosing different spatial discretization depending on the current
time step. Moreover, discretizing (1.2.3) in time gives rise to spatial minimization problems. In turn,
in each time step, under similar assumptions as for Theorem 1.2.3, we are able toprove the existence
of solutions for these minimization problems.
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1.3.1 Temporal Discretization

Our aim is the computation of displacementsu and velocitiesu̇ which solve the system of PDEs
(1.2.3) at timet. To this end we follow [DKE08] and employNewmark’s Scheme[New59] to dis-
cretize (1.2.3) in time. Since the acceleration is already given by Newton’s law, this integration
scheme enables us to derive additional equations for the velocities and displacements. In fact, inte-
grating the acceleration term twice yields the sought-after equations (for a complete introduction see,
for instance, [Wri08]). Moreover, Newmark’s scheme allows for introducing a contact stabilization
to avoid artificial oscillations at the contact boundary [DKE08]. The basicprinciple of the contact
stabilized Newmark method is to compute an additional predictor step. This means,that one employs
the displacements and velocities of the previous timestep and the obstacle to compute predicted dis-
placements, already satisfying the contact conditions (1.2.3c). In a second step, one employs these
predicted displacements to compute the actual displacements.
For the ease of notation, we now denote byui the temporal discretized displacements. But note
that the discretized solution generally does not satisfyui = u(ti) whereti = t0 + iτ andτ > 0.
Similarly, u̇i denotes the temporal discretization of the velocity atti.
In order to derive the contact stabilized scheme, we introduce for a given predictorui+1

pred ∈ L2(Ω)
the following functional

Ii+1(u) =
1

2
(u,u)L2(Ω) − (u,ui+1

pred)L2(Ω)

where(·, ·)L2(Ω) denotes theL2 scalar product. The temporal discretized energy functional is given
by

J i(u) =

∫

Ω

(
Ŵ (I + ∇u) − F i · u)

)
dx −

∫

ΓN

f i · u dsx

whereF i = F (ti), f i = f(ti). Now, we can introduce the contact stabilized Newmark method as
the following system of PDEs: Findui+1 ∈ H1(Ω), ui+1

pred andu̇i+1 ∈ L2(Ω) such that

(
(
1

2
ui+1

pred− ui − τ u̇i),ui+1
pred

)

L2(Ω)

= min! (1.3.1a)

Ii+1(ui+1) +
τ2

2
(1 − 2β)J i(ui) + τ2βJ i+1(ui+1) = min! (1.3.1b)

u̇i + τ

(
(1 − γ)

∂

∂u
J i(ui) + γ

∂

∂u
J i+1(ui+1)

)
= u̇i+1 (1.3.1c)

ui+1
pred · n ≤ φ a.e. onΓC (1.3.1d)

ui+1 · n ≤ φ a.e. onΓC (1.3.1e)

ui+1 = g a.e. onΓD (1.3.1f)

whereγ, 2β ∈ [0, 1]. The initial conditions are given by

u0(x) = u0(x) a.e. inΩ (1.3.2a)

u̇0(x) = u̇0(x) a.e. inΩ (1.3.2b)

In the unconstrained case, Newmark’s scheme becomesenergy, linear momentum and angular mo-
mentumpreserving if one chooses the constantsβ, γ as2β = γ = 1

2 (cf., for instance [ST92]). As a
matter of fact, for2β ≥ γ ≥ 1

2 the scheme becomes unconditionally stable. Thus, in order to make
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the scheme in the unconstrained case unconditionally stable, one has to solvean arbitrary nonlinear,
possibly non-convex, minimization problem in each time step.

Existence of Solutions for the Discretized Dynamical Problem

We will now consider the existence of a local minimizer for the temporally discretized, constrained
minimization problem (1.3.1b). The key concept of this theorem is to reorder the objective function
in (1.3.1b) to obtain the actual nonlinear energy functionH, a linear formLiand a constant partJ i

and to prove that under certain assumptions the total energy can be bounded.

Theorem 1.3.1.Assume that̂W is a polyconvex, coercive stored energy function with

lim
det(I+∇u)ց0

Ŵ (x, I + ∇u) = ∞

Let ΓN ,ΓC ,ΓD be disjoint, relatively open subsets of∂Ω, and∂Ω − ΓC ∪ ΓN ∪ ΓD = ∅. Assume
that for a given obstacleφ ∈ L2(ΓC) the set of energy admissible solutions

Φ = {u ∈ H1(Ω) | Cof(I + ∇u) ∈ L2(Ω), 0 < det(I + ∇u) ∈ L2(Ω),

u · n ≤ φ a.e. onΓC

u = g a.e. onΓD}

is non-empty. Forτ > 0, define the modified energy by

H(u) =

∫

Ω

(
1

2
u · u + τ2βŴ (I + ∇u)

)
dx

Let ui ∈ H1(Ω), ui+1
pred, F i, F i+1 ∈ L2(Ω), f i, f i+1 ∈ L2(ΓN ), andJ i(ui) ∈ R be given and

define

Li(u) =

∫

Ω

(
−ui+1

pred · u −
(
τ2

2
(1 − 2β)F i + τ2βF i+1

)
· u
)
dx −

∫

ΓN

(
τ2

2
(1 − 2β)f i + τ2βf i+1

)
· udsx

Therefore,Li is a linear form onH1(Ω). Suppose that there exists anũ such that

inf
ũ

I(ũ) = H(ũ) + Li(ũ) +
τ2

2
(1 − 2β)J i(ui) < +∞

then there exists at least one functionu ∈ Φ such that

inf
u∈Φ

I(u) ∈ (−∞,+∞)

Proof. Due to the coercivity of̂W we obtain that there exist constantsα > 0, γ > 0, c0 ∈ R such
that

Ŵ (x,∇u) ≥ α‖I + ∇u‖2
L2(Ω) + γvolΩ + c0

(cf. Theorem 7.7.-1 (i) [Cia88]). Moreover, employing the triangle-inequality we obtain

c1 + (u,u)L2(Ω) ≥ ‖Id‖2
L2(Ω) + ‖u‖2

L2(Ω) ≥ ‖Id + u‖2
L2(Ω)
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wherec1 > 0. Now, we employLi(u) = Li(u + Id) − Li(Id) and the continuity ofLi and obtain

I(u) = H(u) + Li(u) +
τ2

2
(1 − 2β)J i(ui)

=
1

2
(u,u)L2(Ω) +

∫

Ω
τ2βŴ (I + ∇u) dx + Li(u + Id) − Li(Id) +

τ2

2
(1 − 2β)J i(ui)

≥ α2
1

2
|I + ∇u|2H1(Ω) +

1

2
‖Id + u‖2

L2(Ω) − ‖Li‖2
L2(Ω)‖Id + u‖L2(Ω) + c2

wherec2 = −1
2c1 + τ2

2 (1 − 2β)J i(ui) − Li(Id) + τ2β(γvolΩ + c0) andα2 = τ2βα. This, in
particular, yields

I(u) ≥ c3‖I + ∇u‖2
H1(Ω) − c4‖Id + u‖L2(Ω) + c2 (1.3.3)

where c3 > 0, c4 ∈ R. Thus, we obtain for each sequence(ϕk)k with ϕk ∈ Φ and
lim

k→∞
‖ϕk‖H1(Ω) = ∞ (if such a sequence exists) that

lim inf
k→∞

I(ϕk)

‖ϕk‖H1(Ω)
> 0

Thus, any minimizing sequence of the total energy is necessarily bounded inΦ. Now the further
proof is the one of Theorem 7.7.-1 (iii-vi) [Cia88].

As it turns out, if one assumes thatB is given like in (M) the proof of Theorem 7.8-2 [Cia88] directly
applies to our Newmark scheme, since no “directions where the body can escape” occur2. On the
other hand, even if such a direction exists, theL2 scalar product in (1.3.1a) directly yields the strong
coercivity result in (1.3.3), even if no Dirichlet values are set. Thus, wehave just proven that for
dynamical (contact) problems the assumption that no escape direction exists isnot necessary.

1.3.2 Spatial Discretization

Several spatial discretization schemes, such as Finite Volumes (see, e.g., [Bra07]), Finite Elements
(see, e.g., [Bra07, Lev02]), Finite Differences and Wavelets (see, e.g., [Dah97]) as well as Meshfree
Methods (see, e.g., [Liu03]), are frequently used to solve PDEs on finitedomains such asΩ. Today,
Finite Elements and Finite Differences particularly prevailed as state-of-the-art discretization tech-
niques for problems arising from the field of elasticity. Finite Elements and its variants, moreover,
prevailed as a spatial discretization technique for complex, possibly CAD based, geometries, which
may not be accurately enough resolved by Finite Differences.

The paradigm of Finite Elements is to discretize and approximate the domainΩ by a three dimen-
sional, polyhedral meshed domainΩh. In many examples,Ω is a CAD based, polyhedral geometry.
In this case one can assume thatΩh = Ω and thatΩ is polygonally bounded. In order to (adaptively)
resolve time dependent spatial phenomena, Rothe’s method enables us to choose the piecewise poly-
nomial Finite Elementbasis functionstime dependently asλi

p : Ω → R3 yielding the Finite Element
spaceX i = span{λi

p}p.

2This is a theoretical problem for traction problems with unilateral boundaryconditions of place. If the applied forces
pressΩ against the obstacle, a solution exists. Forces pullingΩ away yield the insolvability of the problem.
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With the definition of the Finite Element basis, each elementuh ∈ X i can be represented as

uh(x) =
∑

p

ui
pλ

i
p(x)

where the coefficient vector is given byui
h = (ui

p)p ∈ Rni andni = dimX i. In other words, in each
time-stepti there exists a coordinate isomorphismXi : Rni → X i given by

Xi =
(
λi

0, . . . ,λ
i
ni

)

Similarly, one may also define spatial discretized velocitiesu̇i
h and predictorsui

h,pred.

Constraints and Nodal Basis Functions

For applying nonsmooth iterative solvers, like for instance the preconditioned projected cg method,
to solve PDEs or optimization problems subject to constraints it is preferable that the constraints are
pointwise. In our case, we have to deal with generally coupled constraintsgiven by (1.3.1d) and
(1.3.1e). Therefore, to apply the preconditioned projected cg method, wemust alter the standard
discretization slightly. In particular, at the contact boundaryΓC the (three) nodal basis functions
must be chosen such that one basis function directs in directionn and the other basis function are
orthogonal to the first one [Kra01]. Therefore, in the remainder we willassume that one is able to
choose the discretization such that

uh · n = uh ≤ gh onΓC

for a givengh ∈ X holds.

The Temporal and Spatial Discretized Minimization Problems

Employing this isomorphism, we can now reformulate the temporal discretized system of PDEs
(1.3.1a) into a fully discretized finite dimensional system of PDEs: findui+1

h , ui+1
h,pred, u̇

i
h ∈ Rn which

solve

1

2

(
ui+1

h,pred

)T

M i+1ui+1
h,pred− (ui

h − τ u̇i
h)TM i+1

i ui+1
h,pred = min! (1.3.4a)

(
1

2
ui+1

h − ui+1
h,pred

)T

M i+1ui+1
h +

τ2

2
(1 − 2β)J(Xiui

h) − 2βJ(Xi+1ui+1
h ) = min! (1.3.4b)

Xiu̇i
h + τ

(
(1 − γ)

∂

∂u
J i(Xiui

h) + γ
∂

∂u
J i+1(Xi+1ui+1

h )

)
= Xi+1u̇i+1

h

(1.3.4c)

Xi+1ui+1
h,pred≤ φi+1

h onΓC (1.3.4d)

Xi+1ui+1
h ≤ φi+1

h onΓC (1.3.4e)

Xi+1ui+1
h = gi+1

h onΓD (1.3.4f)
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wheregi+1
h : Xi+1 → R3 is given andφi+1

h ∈ Xi+1 is an approximation toφ in Xi+1. In general one
might define both functions as the solution of

gi+1
h : (gi+1

h , λi+1
p )L2(Ω) = (g(ti+1), λ

i+1
p )L2(Ω) ∀p = 1, . . . , ni+1

φi+1
h : (φi+1

h , λi+1
p )L2(Ω) = (φ, λi+1

p )L2(Ω) ∀p = 1, . . . , ni+1

Moreover, we employed the mass matrices

M i+1 = (Xi+1)TXi+1 =

(∫

Ω
λi+1

p (x)λi+1
q (x) dx

)

pq

∈ Rni+1×ni+1 (1.3.5a)

M i+1
i = (Xi)TXi+1 =

(∫

Ω
λi

p(x)λi+1
q (x) dx

)

pq

∈ Rni×ni+1 (1.3.5b)

For givenu0, u̇0 ∈ Rn the initial conditions are

u0
h = u0 onRn (1.3.6a)

u̇0
h = u̇0 onRn (1.3.6b)

As it turns out, the computation of the mass matrices changes slightly if the massρ is not constant
in space which can easily be implemented in practice. On the other hand, the computation ofM i+1

i

is more challenging in practice, particularly for strongly changing Finite Element spaces. Here, one
must put effort in computing the quadrature in (1.3.5).
In the absence of time, the discretization of the resulting minimization problem (1.2.6) can be carried
out straight-forwardly. We suppose that a Finite Element spaceX ⊂ H1(Ω) along with the isomor-
phismX : Rn → X is given. Then the discretized version of (1.2.6) is given by: find au ∈ Rn such
that

J(Xu) = min! (1.3.7a)

Xu ≤ φh onΓC ⊂ ∂Ω (1.3.7b)

Xu = gh onΓD ⊂ ∂Ω (1.3.7c)

for givengh, φh ∈ X . Here, the constraints should be understood pointwise.
In many cases,̂T is chosen by means of Hooke’s law yielding a strictly convex quadratic optimiza-
tion problem in (1.3.4b) and (1.3.7a), respectively. But, in our context, even if the response function
T̂ is chosen based on a polyconvex and coercive stored energy function, the resulting minimization
problems are generally non-convex. Thus, the solution of these problemsmust be carried out em-
ploying a globalization strategy to provably succeed in computing a local minimizer. To this end,
in the following chapters we will present different traditional globalization strategies and introduce
novel nonlinearly preconditioned globalization strategies which allow for thesolution of nonlinear
programming problems like (1.3.4b) and (1.3.7a).
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The solution of minimization problems like problem (M) is usually carried out employing iterative
schemes like, for instance, Newton’s method. Though, for a nonconvexobjective functionJ New-
ton’s method is not globally convergent, which means that in order to prove convergence the initial
iterate must be assumed to be sufficiently close to a local solution. Therefore, to ensure convergence
for arbitrary initial iterates the solution of (M) must be carried out employing aglobalization strategy.
In contrast to the direct application of Newton’s method, a globalization strategy aims at a scaling of
the current Newton correction’s length to enforce convergence. But,in fact, computing and scaling
a correction based on Newton’s method does not suffice to generatedescending search directions.
Therefore, two major problems had to be attacked to develop a globally convergent solution strategy
for problem (M):

• the computation of search directions

• the computation of damping parameters

such that the resulting correction, i.e., the rescaled search direction, induces a sufficient decrease of
the objective functionJ .
The first contribution attacking the problem of computing “good” search directions was made by
K. Levenberg in the context of the solution of nonlinear least squares problems [Lev44]. Also
D. D. Morrisson [Mor60] considered the solution of quadratic minimization problems which in his
formulation were surprisingly solved subject to fixed step–length constraints. Further contributions
in this field were made by D. W. Marquardt [Mar63], R. E. Griffith and R. A. Stewart [GS61]. Griffith
and Stewart proposed to successively solve linear problems based on the objective function.
In the early stages of globalization strategies the correction’s step–length and the model were con-
nected to each other by means of a damping of the Hessian. A first update strategy for the damping
parameter (which was by then chosen fixed) was provided in [GQT66] which was further developed
by M. Powell [Pow70] and D. Winfield [Win73]. Basically, Goldfeldt et al.[GQT66] developed
the update strategy which is employed in today’s Trust-Region methods. Here, the quadratic model
is employed to compute apredicted reductionwhich is compared to theactual reductionof the ob-
jective function. Moreover, since the late 1960s and early 1970s quadratic model functions for the
successive computation of search directions prevailed and theCauchy point1 was developed as a
measure for sufficient decrease [Pow70].
On the other hand, in the 1940s H. B. Curry [Cur44], and in the 1960s A.A. Goldstein [Gol62] and
L. Armijo [Arm66] formulated assumptions on a damping parameter to enforce convergence of the
steepest descent method. In their articles, Goldstein and Armijo proposed criteria for controlling the
step–length and were, due to their formulation of a sufficient decrease, able to show convergence to
first–order critical points.
As it turns out, both frameworks, the Linesearch and Trust-Region framework, are closely related
to each other. The fact that Linesearch methods can be regarded as a special case of Trust-Region

1The Cauchy point (2.1.10) is the optimally scaled negative gradient which may be employed as sufficiently good search
direction.
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methods was published in [SSB85] and [Toi88]. However, both strategiesparticularly differ in the
step–length control strategy. We will see that, on the one hand, Trust-Region methods employ an a
priori control of the step–length and an a posteriori acceptance criterion. On the other hand, Line-
search strategies employ an a posteriori step–length control and accepteach correction.
In this chapter, we will present non–smooth Trust-Region and Linesearch frameworks for the solution
of pointwise constrained minimization problems of the kind (M) and will prove the convergence of
the respective strategy. These strategies will serve as a basis of the preconditioned Trust-Region and
Linesearch methods, introduced in Chapter 4 and Chapter 5. Therefore, our analysis of this chapter
will also be employed for showing local convergence properties of the preconditioned globalization
strategies.

2.1 The “Traditional” Trust-Region Framework

Similar to Newton’s method, a Trust-Region method is an iterative solution strategy, which in each
iteration computes acorrectionand chooses whether to apply the correction or not. The correction
itself is the (approximate) solution of a constrained quadratic minimization problem,a second–order
approximation to the expected reduction of the objective functionJ from (M). The quadratic func-
tion, calledTrust-Region model, consists of the gradient and the Hessian, or in general, a symmetric
matrix which approximates or replaces the Hessian. This is in particular reasonable, if the Hessian
is dense or negative definite. For instance, the BFGS method [Bro70, Fle70, Gol70, Sha70] is a fre-
quently used strategy to directly approximate the inverse of the Hessian. Here, expensive quadrature
can be avoided by an update just based on the computed gradients.
As it will turn out, not every computed correction, even if it is an exact solution of the quadratic
minimization problem, is added to the iterate. In particular, only if the ratio between the actual
decrease and the decrease predicted by the Trust-Region model is sufficiently large, the correction is
applied. This in turn, is an a posteriori control which guarantees convergence to first–order critical
points, i.e., the solution of (1.1.1) . All together this yields Algorithm 1.

2.1.1 Assumptions onJ and the Trust-Region Model

Surprisingly, the convergence theory of Trust-Region methods can be carried out with modest as-
sumptions [CGT00]. In the present thesis, we will follow T. Coleman and Y. Li [CL96] and suppose
that the gradient of the objective functionJ : Rn → R in (M) is bounded on a compact level set.
Moreover, one has to state assumptions on the Hessian, or its approximation.

(Atr1) For the given initial iterateu0 ∈ B from (M), we assume that the level set

L = {u ∈ B | J(u) ≤ J(u0)}

is compact.

(Atr2) We assume thatJ is continuously differentiable onL. Moreover, onL, the gradients are
assumed to be bounded by a constantCg > 0, i.e.,‖∇J(u)‖2 ≤ Cg for all u ∈ L.

(Atr3) There exists a constantCB > 0 such that for all iteratesu ∈ L and for each symmetric matrix
B(u) approximating∇2J(u) the inequality‖B(u)‖2 ≤ CB is satisfied.



2 State of the Art Globalization Strategies 17

Figure 2.1: A comparison of a highly nonlinear objective function and the quadratic model (illustrated is
ψ(s) + J(u)). Obviously, the minimizer ofψ(s) will not induce a decrease ofJ , i.e., J(u) ≤ J(u + s).
Though, an actual decrease will be computed, if the Trust-Region radius is chosen small enough.

Now, for a given iterateui theTrust-Region modelis given asψi : Rn → R with

ψi(s) = 〈gi, s〉 +
1

2
〈s,Bis〉 (2.1.1)

wheregi = ∇J(ui) andBi = B(ui). A Trust-Region correctionsi ∈ Rn is then computed by
means of

min
s∈Rn

ψi(s), s.t.‖s‖∞ ≤ ∆i andui + s ∈ B (2.1.2)

where∆i ∈ R+ is called Trust-Region radius andB is the set of admissible solutions for problem
(M). As it will turn out, si is not necessarily an exact solution of (2.1.2). It can rather be an approxi-
mation to the minimizer, as long assi satisfies a sufficient decrease condition like condition (2.1.8).
This is reasonable, since, in fact, from a numerical point of view, the exact solution itself would due
to rounding errors generally be impossible. However, ifBi is positive definite, the exact solution of
ψi(s) = min! is a Quasi-Newton step.

2.1.2 Decrease Ratio and Trust-Region Update

Since, on the one hand the correctionsi is computed approximately and, on the other,J is arbitrarily
non–linear, one has to control the “quality” ofsi. There we define theactual and thepredicted
reductionas

aredi(si) = J(ui) − J(ui + si)

predi(si) = −ψi(si)

Now, the decrease ratioρi is defined by

ρi =
aredi(si)

predi(si)
(2.1.3)

Note that, in fact, ifBi = ∇2J(ui), predi(s) measuresJ(ui)−J(ui +s) employing a second–order
Taylor approximation ofJ(ui + s). Moreover, ifJ is a quadratic function andBi = ∇2J(ui), the
predicted and actual reduction are the same, i.e.,predi(s) = aredi(s) and, thus,ρi = 1. In this case,
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Algorithm: Trust-Region Solver

Input: m,n ∈ N, B, J : Rn → R, u0 ∈ Rn,∆0 ∈ R+

Constants:γ1, γ2, η ∈ (0, 1),m ∈ N ∪ {∞}

i = 0
do {

generateψi by means of (2.1.1)
solve problem (2.1.2) approximately such that (2.1.7) holds, and obtainsi ∈ Rn

computeρi according to (2.1.3)

if (ρi ≥ η)
ui+1 = ui + si

else
ui+1 = ui

compute∆i+1 by means of (2.1.4)

if (i > m)
returnui+1

i = i+ 1
}

Algorithm 1: Trust-Region Algorithm

it is mandatory to solve (2.1.2) sufficiently good.
The Trust-Region radius∆i is updated based on the decrease ratioρi, i.e.,

∆i+1 ∈
{

(∆i, γ2∆i] if ρi ≥ η

[γ1∆i,∆i) if ρi < η
(2.1.4)

where1 > η > 0, as well asγ2 > 1 > γ1 > 0 are assumed to be given a priori and fixed for
the whole computation. In our examples, we useγ1∆i andγ2∆i for computing the new radius.
However, in other works, for instance in [CL96], more complex update strategies are proposed, in
order to reflect the complexity of (M).
In a last step, if

ρi ≥ η (2.1.5)

holds, a correction is added to the current iterate. In this case, a correction is calledsuccessful.
Otherwise, the correction will be rejected and the Trust-Region radius decreased. These four steps
are summed up in Algorithm 1.

2.1.3 Constraints and Scaling Functions

To measure the first–order sufficient conditions in a constrained context,we follow [CL96] where it
was shown that the first–order–sufficient conditions of

u ∈ B : J(u) = min!
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are equivalent to
u ∈ B : D(u)∇J(u) = 0

whereD(u) ∈ Rn×n is a diagonal scaling matrix defined as

D(u)ii =

{
(φ− u)i if (∇J(u))i < 0

(u− φ)i if (∇J(u))i ≥ 0
(2.1.6)

For the sake of notational simplicity, we defineĝi = D(ui)∇J(ui).
In the next section, we show that Algorithm 1 computes a sequence of iterates converging to a
first–order critical point. To derive this asymptotic convergence result, we suppose that an infinite
sequence of iterates is computed by the Trust-Region algorithm, i.e.,m = ∞.
Moreover, Algorithm 1 will also be employed as an embedded solver in Chapter 4 and Chapter 5.
Here, in each call of the Trust-Region algorithm, a limited number of Trust-Region steps will be
computed.

2.1.4 Convergence to First–Order Critical Points

To ensure convergence to first–order critical points, we search for alower bound of the actual de-
crease of the objective function depending only on the first–order conditions and the Trust-Region
radius. Since the acceptance criterion already bounds the actual decrease by the predicted one, it
suffices to assume that for each computed correctionsi the followingsufficient decrease condition

predi(si) ≥ β‖ĝi‖2 min{‖ĝi‖2,∆i} (2.1.7)

for β > 0 holds. If, in turn, this condition is satisfied, we obtain for each successful correction

J(ui) − J(ui + si) ≥ ηpredi(si) ≥ ηβ‖ĝi‖2 min{‖ĝi‖2,∆i} (2.1.8)

Therefore, in order to prove a sufficient decrease of the objective function, it suffices to assume that
the quadratic minimization problem is solved sufficiently accurate. In particular, a correction may
satisfy the sufficient decrease condition, even if the quadratic minimization problem (2.1.2) is solved
approximately. In fact, the following Cauchy condition can be employed to testwhether a correction
induces a sufficient decrease or not:

ψi(si) ≤ β̃ψi(s
C
i ) w.r.t. ‖si‖∞ ≤ ∆i andui + si ∈ B (2.1.9)

The Cauchy pointsC
i ∈ Rn is the solution of

min
{s=−t(Di)2gi|t≥0}

{ψi(s) : ‖s‖∞ ≤ ∆i, ui + s ∈ B} (2.1.10)

Here,β̃ > 0 is an a priori chosen constant andDi = D(ui) (cf., [CL96] and equation (2.1.11)). Since
an accepted Cauchy point induces a sufficient decrease of the objective function, as will be proven
in the following lemma, each correction satisfying (2.1.9) does also. Hence, tocheck whether a
computed correction satisfies this criterion or not, one only2 must compute the Cauchy point as the
solution of a scalar constrained minimization problem. Exemplary this is done in a case differentia-

2In the case of dense matrices, this might still be expensive since a matrix-vector multiplication usually takesO(n2)
operations
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tion in the proof of the following lemma.

Lemma 2.1.1. Let assumptions (Atr1), (Atr2) and (Atr3) hold. Then for alli, with ui ∈ B such that
‖ĝi‖2 > 0 and allsi satisfying (2.1.9) it holds

predi(si) ≥ c‖ĝi‖2 min{‖ĝi‖2,∆i} (2.1.11)

wherec = β̃min{1, 1
2C2

OCB
, 1

2C2
OCB

, 1
2CO

} andCO > 0.

Proof. This proof will be carried out as follows: we will estimate theψ-value reduction, implied by
the Cauchy condition (2.1.9), by a case differentiation.

Criterion (2.1.9) now implies,

−predi(si) = ψi(si) ≤ β̃ min
τ∈[0,τ+]

ϕ(τ)

whereϕ(τ) = ψi(−τ(Di)
2gi) andτ+ = min{τB, τ∆}. The constantτB is given by

τB = max{τ > 0 : φk − ui + τ(Di)
2gi ≥ 0,

φ
k
− ui − τ(Di)

2gi ≥ 0} (2.1.12)

and‖(Di)
2gi‖∞ ≤ ‖(Di)‖∞‖ĝi‖∞, we obtain forτ∆

τ∆ =
∆i

‖(Di)2gi‖∞
≥ ∆i

CO‖ĝi‖∞
≥ ∆i

CO‖ĝi‖2

whereCO > 0 such that∀i : CO ≥ φi − φ
i
. Now, we estimateτB,

τB = min{ min
l:(gi)l<0

(φk−ui)l

−((Di)2gi)l
, min
l:(gi)l>0

(φ
k
−ui)l

((Di)2gi)l
}

= min
l:(gi)l 6=0

(Di)ll

|((Di)2gi)l|

≥ 1
‖ĝi‖∞ ≥ 1

‖ĝi‖2

(2.1.13)

Next, we employϕ(τ) = −κ1τ + 1
2κ2τ

2 and

κ1 = 〈(Di)
2gi, gi〉 = ‖ĝi‖2

2, κ2 = 〈(Di)
2gi, Bi(Di)

2gi〉

This yields to the following case differentiation.

1) If τ∗ < τ+ is the minimizer ofϕ(τ) then we directly obtainκ2 > 0 and after differentiation
τ∗ = κ1/κ2. This yields

ϕ(τ∗) = − κ2
1

2κ2
≤ −1

2

‖ĝi‖4
2

‖(Di)2‖2‖Bi‖2‖ĝi‖2
2

≤ −1

2

‖ĝi‖2
2

C2
OCB

2a) If τ∗ = τ∆ andκ2 > 0 then we have thatκ1/κ2 ≥ τ∆ and thus

ϕ(τ∗) = −κ1τ∆ +
κ2

2
τ2
∆ ≤ −κ1

2
τ∆ ≤ −1

2

‖ĝi‖2
2

CO‖ĝi‖2
∆i ≤ − 1

2C2
O

‖ĝi‖2∆i
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2b) If τ∗ = τ∆ andκ2 ≤ 0 then we have

ϕ(τ∗) = −κ1τ∆ ≤ −κ1

2
τ∆ ≤ −1

2

‖ĝi‖2
2

CO‖ĝi‖2
∆i ≤ − 1

2C2
O

‖ĝi‖2∆i

3) Forτ∗ = τB with analogous arguments it holds

ϕ(τ∗) ≤ −κ1

2
τB ≤ −‖ĝi‖2

2CO

Gathering these results yields (2.1.11).

As Taylor’s theorem shows, a quadratic or linear approximation to a function becomes asymptotically
exact. Therefore, in the following lemma we prove that the predicted reduction becomes sufficiently
accurate if∆i becomes sufficiently small.

Lemma 2.1.2. Let assumptions (Atr1), (Atr2) and (Atr3) hold. Suppose, moreover that‖ĝi‖2 ≥ ε >
0 and ∆i is sufficiently small. Then we obtain for the decrease ratio induced by a correctionsi

computed in Algorithm 1
ρi ≥ η

Proof. Exploiting (Atr1), (Atr2) and the mean value theorem yields for sufficiently small∆i

J(ui + si) − J(ui) = 〈gi, si〉

with gi = ∇J(ui + τsi) whereτ ∈ (0, 1). Using the definition of the decrease ratio andψi, as well
as (Atr2) and (Atr3) yields

|predi(si)||ρi − 1| = |J(ui + si) − J(ui) − 〈gi, si〉 − 1
2〈si, Bisi〉|

≤ |12〈si, Bisi〉| + |〈gi − gi, si〉|
≤ 1

2CB‖si‖2
2 + ‖gi − gi‖2‖si‖2

≤ n
2CB‖si‖2

∞ + n‖gi − gi‖2‖si‖∞
≤ n

2CB(∆i)
2 + n‖gi − gi‖2∆i

Note that∆i 6= 0 for i ∈ N and that we may employ that (2.1.7) holds and obtainpredi(si) > 0.
Multiplication with (∆i)

−1 yields

(∆i)
−1βεmin{ε,∆i}|ρi − 1| ≤ (∆i)

−1|predi(si)||ρi − 1|
≤ nCB

2 ∆i + n‖gi − gi‖2

Now, we can conclude that if we reduce∆i, the right hand side of this inequality converges to zero
and since‖si‖2 converges to zero,(ui)i converges inL. Therefore, we obtain for∆i → 0 that
|ρi − 1| → 0 and, in turn,

ρi ≥ η

for sufficiently small∆i.

Finally, we will prove convergence of a subsequence of the iterates to first–order critical points.
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Theorem 2.1.3.Let assumptions (Atr1), (Atr2) and (Atr3) hold. Then we obtain that the sequence of
iterates generated by Algorithm 1 has the property

lim inf
i→∞

‖ĝi‖2 = 0

Proof. Assume that the proposition does not hold, i.e., there exists anε > 0 and an indexν0 such
that ‖ĝi‖2 > ε for all i ≥ ν0. If this is the case, the sequence of Trust-Region radii converges
to zero: if there are only finitely many successful corrections the update criterion (2.1.4) directly
implies∆i → 0. If there are infinitely many successful corrections, we have due to (2.1.8)

J(ui) − J(ui+1) ≥ ηβεmin{ε,∆i}

for each successful step. On the other hand, the levelsetL is compact, we obtain

J(ui) − J(ui+1) → 0

which implies∆i → 0.

Now we use Lemma 2.1.2 and obtain that for sufficiently small∆i every correction must be success-
ful, which contradicts that∆i → 0 and proves the proposition.

Theorem 2.1.4.Let assumptions (Atr1), (Atr2) and (Atr3) hold. Then we obtain that the sequence of
iterates generated by Algorithm 1 converges to a first–order critical point,i.e.,

lim
i→∞

‖ĝi‖2 = 0

Proof. We follow the proof of Theorem 6.6 [UUH99] which was carried out by contradiction. Due
to Theorem 2.1.3 we know that there exists a sequence(uUj

)j ⊂ (ui)i such that

‖ĝUj
‖2 ≤ ε2

Now assume that there exists a subsequence of(ui)i, such that

‖ĝi‖2 ≥ ε1 > 0 for all Lj ≤ i < Uj (2.1.14)

whereLj , Uj ∈ N andε1 > ε2.

SinceĝUj
6= ĝUj−1, the previous correction must be successful. We employ (2.1.7) and obtainthat

the actual reduction is bounded away from zero by a term depending on‖ĝi‖2
2 and∆i. In particular,

we obtain for all successful corrections inLj ≤ i < Uj

J(ui−1) − J(ui) ≥ ηβε1 min{ε1,∆i−1} (2.1.15)

SinceL is compact,J(ui−1)− J(ui) → 0. This implies that∆i must converge to zero for alli with
Lj ≤ i < Uj . Therefore we obtain for sufficiently largei

J(ui−1) − J(ui) ≥ ηβε1∆i−1 ≥ ηβε1‖ui − ui−1‖∞
≥ ηβ

ε1√
n
‖ui − ui−1‖2
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Now, from the triangle inequality we obtain

J(uLj
) − J(uUj

) ≥ ηβ
ε1√
n
‖uLj

− uUj
‖2

and, therefore,‖uLj
− uUj

‖2 → 0. But,

‖ĝLj
− ĝUj

‖2 ≥ ‖ĝLj
‖2 − ‖ĝUj

‖2 ≥ ε1 − ε2 > 0 (2.1.16)

Note, due to the definition of the scaling matrixD(u) and the assumptions (Atr1) and (Atr2), we ob-
tain thatĝ is uniformly continuous onL. Thus, equation (2.1.16) contradicts the uniform continuity
of ĝ and assumption (2.1.14) must be wrong.

2.1.5 Second–Order Convergence

As we have seen in the previous section, the proposed Trust-Region algorithm aims at the com-
putation of first–order critical points, which might, indeed, be no local minimizers. To achieve
convergence to second–order critical points, i.e., pointsu which satisfy

〈D(u)s,∇2J(u)D(u)s〉 ≥ 0

D(u)∇J(u) = 0

for all s : u + s ∈ B, more restrictive assumptions on the corrections are necessary. In particular,
convergence to a second–order critical point can be proven if the quadratic minimization problems
(2.1.2) are solved exact and ifBi converges to∇2J(ui) [CL96].
Though, obviously, the exact solution of the quadratic model problems is considerably more restric-
tive than the by now stated assumptions. Moreover, if the Hessian is indefinite, arbitrarily non-convex
constrained quadratic minimization problems must be solved which usually makes the application of
direct solvers necessary. For an overview of solution strategies for indefinite quadratic minimization
problems we refer to [CGT00] and to [YZ01].

2.2 The “Traditional” Linesearch Framework

In the previous section, we have seen that solving non-convex minimization problems by means of
a Trust-Region strategy makes the solution of problems of the type (2.1.2) necessary. In case of a
positive definite matrixB(u), this minimization problem reduces to a pointwise constrained system
of linear equations which might easily be solved employing a projected cg–method in combination
with a good preconditioner. But, as pointed out in the previous section, if theHessian orB(u) is
arbitrarily indefinite, the solution of (2.1.2) is computationally expensive. Moreover, if the decrease
ratio is not sufficiently good, the correction is discarded and another correction must be computed on
basis of altered constraints.
Thus, to save computation time, it often is preferable to somehow damp and applyall computed
corrections. Therefore, in each Linesearch step asearch directionsi is computed - often as the
solution of a quadratic minimization problem - and rescaled employing astep–length parameter
αi ∈ (0, 1]. The next iterate is then given as

ui+1 = ui + αisi

In contrast to Trust-Region methods, the step–length parameterαi is computed independent from the
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solution of the quadratic minimization. But, to ensure convergence the step–length parameter must
be chosen such that it satisfies a decrease condition of Armijo–type.

2.2.1 Assumptions on the Objective Function

As in the Trust-Region setting, some modest assumptions on the objective function J from (M) must
be stated. But, since no decrease ratio is computed, it is not necessary to formulate assumptions on
the matricesBi. On the other hand, since the acceptance criterion is of Armijo-type it is necessary
to suppose that the gradients are Lipschitz continuous onL (cf., also [NW06, JS04])

(A ls1) For the given initial iterateu0 ∈ B, we assume that the level set

L = {u ∈ B | J(u) ≤ J(u0)}

is compact.

(A ls2) We assume thatJ is continuously differentiable onL and that the gradient is Lipschitz con-
tinuous with a constantLg > 0, i.e.,‖∇J(u) −∇J(u+ s)‖2 ≤ Lg‖s‖2 for all u ∈ L.

2.2.2 Assumptions on the Search Direction

As we have seen, in the Trust-Region framework assumptions on the correction’s quality are stated in
form of the sufficient decrease condition and the acceptance criterion.Both criteria ensure a sufficient
decrease of the objective function, whenever a correction is accepted. Similarly, in the Linesearch
framework, a sufficient decrease of the objective function will be obtained if

• the search direction is a sufficiently good descent direction

• the search direction is scaled such that the Armijo condition is satisfied

As it turns out, the following descent condition is too weak to prove convergence of the resulting
Linesearch method

〈si, ĝi〉 < 0 (2.2.1)

where ĝi = D(ui)∇J(ui) as defined in Section 2.1.3. Thus, we introduce the more restrictive
condition

‖si‖2
∞ ≤ βls‖ĝi‖2

∞ (2.2.2a)

−〈si, gi〉 ≥ ηls‖ĝi‖2
2 (2.2.2b)

whereβls > ηls > 0 are some positive constants. Similar to the Trust-Region constraint, equation
(2.2.2a) leads to an additional condition for the computation ofsi.

A Practicable Decrease Criterion

Similarly to the argumentation for Trust-Region methods, (2.2.2b) is at least forthe Cauchy point
sC
i = −τ(Di)

2gi satsified which is the solution of the following problem. Find aτ > 0 such that

−〈−τ(Di)
2gi, gi〉 = max! w.r.t. ui − τ(Di)

2gi ∈ B and ‖τ(Di)
2gi‖2

∞ ≤ βls‖ĝi‖2
∞ (2.2.3)
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In the following lemma we will show that this Cauchy point satisfies the descent condition (2.2.2b).
In turn, if a computed search direction does not satisfy (2.2.2b), one mightsimply substitute this
direction by the Cauchy point in order to obtain a valid search direction.

Lemma 2.2.1. Suppose that assumptions (Als1) and (Als2) hold. Then there exists anηls > 0 such
that for all ui ∈ B with ‖ĝi‖2 > 0 the Cauchy pointsC

i from (2.2.3) satisfies inequality (2.2.2b).

Proof. In this proof we estimate the maximal possible step–lengthτ . Obviously, we obtain by con-
structionτ = min{τB, τ∆}. Similarly to Lemma 2.1.1, we define

τB : max{τ > 0 : ui − τ(Di)
2gi ∈ B}

τ∆ : max{τ > 0 : ‖τ(Di)
2gi‖2

∞ ≤ βls‖ĝi‖2
∞}

Now, we employ that there exists anCO > 0 such that(φ− φ)2i ≤ CO and obtain

τ∆ = βls
‖ĝi‖2

∞
‖(Di)2gi‖2∞

≥ βls
‖ĝi‖2

∞
‖Di‖2∞‖Digi‖2∞

≥ βls
‖ĝi‖2

∞
CO‖ĝi‖2∞

≥ βls

CO

If we suppose that (Als1) and (Als2) hold, we obtain furthermore that there exists a constantcg > 0
such that‖ĝ(u)‖2 ≤ cg for all u ∈ L. Moreover, equation (2.1.13) gives rise to

τB ≥ 1

‖ĝi‖2
≥ 1

cg

Both together now yields

−〈−τ(Di)
2gi, gi〉 = τ〈Digi, Digi〉 ≥ min{ 1

cg
,
βls

CO
}‖ĝi‖2

2

Now choosingηls = min{ 1
cg
, βls

CO
} gives rise to

−〈sC
i , gi〉 ≥ ηls‖ĝi‖2

2

which concludes the proof.

In fact, employing the negative gradient as search direction goes back tothe famous work of
L. Armijo [Arm66], who has proven convergence of a steepest descent method in an unconstrained
setting. Though, the steepest descent method employs a first–order approximation on the actual
decrease inJ and therefore, a condition like

min
s∈Rn

ψi(s), such that (2.2.2) andui + si ∈ B hold (2.2.4)

would generally yield better search directions. Here,ψi is the quadratic model from (2.1.1).

2.2.3 The Armijo Condition as Step Length Control

The second step in computing the actual correction is to ensure a decreaseof the objective function.
Therefore, we employ the following Armijo condition for the identification of an appropriate step–
lengthαi, i.e.,

J(ui + αisi) ≤ J(ui) + ρAαi〈si,∇J(ui)〉 (2.2.5)
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Figure 2.2: This figure illustrates the Armijo condition. Aswe can see, the rayJ(ui) + ρAα〈si,∇J(ui)〉
starts atJ(ui) and points in directionρA〈si,∇J(ui)〉. SinceρA ∈ (0, 1), there always exists an environment
aroundui where the Armijo condition is satisfied.

whereρA ∈ (0, 1). Note that also unacceptable small step–lengths satisfy (2.2.5) which might lead to
extremely slow convergence, or, even worse, to an undesirable stall. Thus, often the Armijo condition
is extended to theWolfe conditionsby adding the following curvature criterion

〈si,∇J(ui + αisi)〉 ≥ ρW 〈∇J(ui), si〉

with ρA < ρW ∈ (0, 1). A different approach to ensure sufficient progress is to employ the following
backtracking algorithm, Algorithm 2, to compute a step–length satisfying (2.2.5).

Backtracking Algorithm

Input: si ∈ Rn

Constants: α0 ∈ (0, 1], τ, ρA ∈ (0, 1)
Output: Step lengthαi

i = 0
do {

if (ui + αisi satisfies (2.2.5)){
return αi

} else{
αi+1 = ταi

i = i+ 1
}

}

Algorithm 2: Backtracking Algorithm

As it turns out, under the presented assumptions, the backtracking algorithm terminates always af-
ter a fixed number of iterations. To this end, we will first show that for sufficiently smallα the
Armijo condition is satisfied and that along with the assumptions (2.2.2) the number of backtracking
iterations just depends on the constantsηls, τ (from Algorithm 2),Lg andβls.

Lemma 2.2.2. Assume that (Als1) and (Als2) hold. Then the Armijo condition is satisfied for all
α ≤ α̂i where

α̂i =
2(ρA − 1)〈si, gi〉

Lg‖si‖2
2
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Moreover, the backtracking algorithm terminates with a step–lengthαi satisfying

min{α0, 2τα̂i} ≤ αi ≤ min{α0, 2α̂i}

where, by definition,α0 ≤ 1.

Proof. Since∇J is Lipschitz continuous, we might apply Taylor’s theorem and obtain

J(ui + αsi) ≤ J(ui) + α〈si, gi〉 +
1

2
Lgα

2‖si‖2
2

Now we exploitρA ∈ (0, 1) and obtain for allα ≤ α̂i (by substitutingα in the quadratic part) the
inequality

J(ui + αsi) ≤ J(ui) + α〈si, gi〉 + α(ρA − 1)〈si, gi〉 = J(ui) + αρA〈si, gi〉

Thus, the Armijo condition is satisfied for suchα. Sinceτα < α, we obtain due to the formulation
of Algorithm 2 that it terminates forαi with

min{α0, 2τα̂i} ≤ αi ≤ min{α0, 2α̂i}

Next we prove that each step–length parameterαi, computed in Algorithm 2, is bounded from below
by a constant.

Lemma 2.2.3. Assume that (Als1), (Als2) and (2.2.2) hold. Then we obtain for eachαi computed in
Algorithm 2,

αi ≥ min

{
α0,

2ηlsτ(1 − ρA)

nLgβls

}

Proof. Combining Lemma 2.2.2 with (2.2.2) yields

αi ≥ min {α0, 2τα̂i} ≥ min

{
α0,

2(ρA − 1)〈si, gi〉
nLg‖ŝi‖2∞

}

≥ min

{
α0,

2(ρA − 1)〈si, gi〉
nLgβls‖ĝi‖2∞

}
≥ min

{
α0,

2(1 − ρA)‖ĝi‖2
2

nLgβls‖ĝi‖2
2

}

≥ min

{
α0,

2ηls(1 − ρA)

nLgβls

}

2.2.4 Convergence to First–Order Critical Points

In this section, we combine the backtracking algorithm and the assumptions on the search direction
si to a Linesearch algorithm for a solution of problem (M), Algorithm 3.

Theorem 2.2.4.Suppose (Als1) and (Als2) hold. Then the Linesearch algorithm, Algorithm 3, com-
putes a sequence of iterates converging to a first–order critical point forproblem (M).
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Linesearch Algorithm

Input: u0 ∈ Rn, B ⊂ Rn, J : Rn → R
Constants: ηls > 0, βls > 0

i = 0
do {

compute a search directionsi satisfying (2.2.2)
call Algorithm 2 withsi and receive a step–lengthαi

setui+1 = ui + αisi

i = i+ 1
}

Algorithm 3: Linesearch Algorithm

Proof. Due to our assumptions, Lemma 2.2.3 holds and, thus, eachα computed in Algorithm 2 is
bounded from below, i.e.,

α ≥ min{α0, 2ταmin} = min

{
α0,

2ηlsτ(1 − ρA)

nLgβls

}

Moreover, we obtain from the Armijo condition and from (2.2.2a) the followingsufficient decrease
condition

J(ui) − J(ui+1) ≥ −αiρA〈si, gi〉 ≥ αiρA‖ĝi‖2
2

Since (Als1) implies thatJ(ui) converges inL and sinceαi ≥ min{α0, 2ταmin} (in all iterations),
we obtain

‖ĝi‖2
2 → 0

which proves the proposition.

Note that similarly to Trust-Region methods, the combination of step–length control (in this case:
the Armijo condition as acceptance criterion), assumptions on the objective function and quality of
the search directions yield a sufficient decrease condition. Moreover,the compactness ofL and the
boundedness ofα, i.e., the “sufficient progress” of the resulting Linesearch algorithm, provide the
convergence to first–order critical points.

2.2.5 Second–Order Convergence

Also for Linesearch methods second–order convergence results forproblems of the kind (M) have
been derived. In this section we briefly sketch the approach of T. Coleman and Y. Li [CL94]. To
make a Linesearch algorithm second–order convergent, one must (justlike for Trust-Region methods)
sharpen the assumption on the search direction. In [CL94], the search direction must be the exact
solution of the following quadratic, constrained minimization problem:

min{ψi(s
C) : ui + sC ∈ B, ‖sC‖2 ≤ ∆} (2.2.6)

where∆ > 0 is a fixed constant (replacing (2.2.2a)) and foruk → u alsoBk → ∇2J(u). Due to
the absence of the a posteriori control structures of Trust-Region methods, which can be employed to
control the second–order behavior of the objective function, the step–length parameter is computed
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by means of the following second–order Armijo condition

J(ui + αis) ≤ J(ui) + ρA

(
〈∇J(ui), αis〉 +

α2
i

2
〈s,∇2J(ui)s〉

)

As it turns out, the combination of the modified Armijo condition with the new search direction now
suffices to prove convergence to second–order critical points.
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3 A Generic Nonlinear Preconditioning
Framework

As we have seen in the previous chapter, in order to ensure convergence, Trust-Region and Line-
search strategies damp or rescale the respective search directions, depending on the nonlinearity of
the objective function. In turn, also the convergence rates depend on the nonlinearity of the ob-
jective function. This effect generally holds, even if the search directions are the exact solutions
of the quadratic minimization problems. Moreover, the (global) rescaling depends on the strongest
nonlinearity on the computational domain which often slows down the convergence of large-scale
optimization problems. Therefore, it would be desirable to avoid a global rescaling and to adaptively
compute search directions within a nonlinear preconditioning step.
Nonlinear preconditioning follows the Krylov-Schwarz paradigm for the iterative solution of linear
systems of equations, where additive or multiplicative preconditioners are combined with a Krylov
space method. Analogously, in the context of nonlinear fluid dynamics, X.-C. Cai and D.E. Keyes
proposed in [CK02] the PRECONDITIONED INEXACT NEWTON method (PIN). The PIN method is
a combination of locally applied Newton methods and a global recombination step which together
constitute anonlinear (left) preconditioner. But, due to the method’s formulation, one cannot deter-
mine whether or not the nonlinear preconditioning yields corrections which cause a decrease of the
objective function.
Eight years earlier, in 1994 M. Ferris and O. Mangasarian introduced the PARALLEL VARIABLE

DISTRIBUTION (PVD) [FM94] which can also be regarded as a preconditioned globalization strategy
(for a brief outline of the PVD we refer to Section 3.2.4). In fact, this minimizationalgorithm asyn-
chronously computes solutions of local minimization problems which are in a second step combined
to a global correction. Moreover, the formulation based on the global objective function allows for
proving convergence. In order to avoid the exact minimization of the local objective functions with-
out loosing convergence properties, M. Solodov introduced an inexact version of the PVD [Sol97].
Though, a crucial point of the PVD is the computation of a goodset of damping parametersemployed
to combine the asynchronously computed corrections. As pointed out in [FR99], these damping pa-
rameters can be the solution of another possibly nonconvex constrained minimization problem or
simply the best subset correction. The first approach can be realized by employing a filter–based
Linesearch strategy (cf., for instance, [WB06]) or a SQP Trust-Region approach (cf., for instance,
[WT02]). By simply choosing the best correction, one disposes all but one correction.
Similar problems also arised in the beginning of the development of nonlinear multigrid methods.
Due to the formulation of the FAS strategy [Bra81], convergence from arbitrary starting points could
not be ensured, too. Only the reformulation based on the objective function and the introduction of
control strategies within the MG/OPT strategy [Nas00] allowed for proving convergence.
Influenced by these concepts, we will introduce nonlinear additive and multiplicative preconditioning
frameworks employing particular

• domain decompositions

• subset objective functions and obstacles
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As pointed out before, these general and – in the additive context – novel frameworks will be ex-
ploited to formulate actual Trust-Region and Linesearch implementations in the following chapters.

3.1 The Concept behind Nonlinearly Preconditioned Globalization
Strategies

The first concept of a nonlinear preconditioning operator was the PIN strategy presented in [CK02].
Here, the operator is formulated by means of the following optimization problem

u ∈ Rn : G(∇J(u)) = 0 (3.1.1)

whereG should be easy to implement and speed up the iterative solution process for the original
optimization problem

u ∈ Rn : ∇J(u) = 0

whereJ : Rn → R is the objective function from problem (M). In fact, this strategy can be regarded
asleft preconditioning. Here the original minimization problem is obviously changed to a different
problem. To show that this minimization problem is equivalent to the original minimization problem,
restrictive assumptions on the initial iterate and the problem itself must be stated,as done in [CK02].

3.1.1 Nonlinear Right Preconditioning

Therefore, we will regard the preconditioning ansatz in the present thesis as aright preconditioning
which acts on the pre-image. For linear systems of equations, right preconditioning reads as follows.
For a givenu ∈ Rn find ans ∈ Rn such that

AM(u+ s) − b = 0 (3.1.2a)

u = M(u+ s) (3.1.2b)

In the nonlinear case, we are interested in the computation of a critical pointu such that∇J(u) = 0
which gives rise to the following unconstrained problem. For a givenu ∈ Rn find ans ∈ Rn such
that

∇J(F(u+ s)) = 0 (3.1.3a)

u = F(u+ s) (3.1.3b)

whereF : Rn → Rn is anonlinear update operator. Obviously, if both equations hold,u is a critical
point forJ . Therefore, ifJ ∈ C2(Rn) andF ∈ C1(Rn) we can apply Newton’s method to equation
(3.1.3a) which gives rise to the following iterative scheme

∇2J(F(uν))F ′(uν)s = −∇J(F(uν)) (3.1.4a)

uν+1 = F(uν + s) (3.1.4b)

for a givenuν ∈ Rn. Though, a critical point is ensuring a decrease foruν+1, i.e.,J(uν+1) < J(uν).
Therefore, we will now consider two different update strategies in order to ensure that the resulting
method is a globalization strategy.
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Linearized Update Strategy

In this approach we replace the right hand side in the update step (3.1.4b) as follows

F(uν + s) ≈ F(uν) + F ′(uν)s

In turn, this equation gives rise to the following nonlinear preconditioning scheme

∇2J(F(uν))F ′(uν)s = −∇J(F(uν)) (3.1.5a)

uν+1 = F(uν) + F ′(uν)s (3.1.5b)

This update scheme has two important advantages. On the one hand, it is notnecessary to compute
F(uν + s) since the update in (3.1.5b) is based on the already known entitiesF(uν) andF ′(uν)s.
On the other hand (3.1.5b) splits into two steps which can be analyzed separately.
The first step is the computation ofF(uν). As we will see in Chapter 4 and Chapter 5, one important
objective of the present thesis is to define nonlinear update operatorsF(uν) which satisfy certain
sufficient decrease conditions. In turn, as we have seen in Chapter 2,this would give rise to

J(F(uν)) < J(uν)

The Newton step in (3.1.4a) will be solved as a Linesearch or Trust-Regionstep. As we have seen,
sν = F ′(uν)s can then be chosen such that a sufficient decrease condition holds. Inturn, we obtain

J(F(uν) + sν) < J(F(uν)) < J(uν)

We will see that this suffices to show global convergence of the iterative scheme (3.1.5).

Exact Update Strategy

If one employsuν+1 = F(uν + s), convergence of the method can also be shown, ifs is sufficiently
damped. In particular, as we have just mentioned, we will show that the operatorF can be chosen
such thatJ(F(uν)) < J(uν) holds. Moreover, ifF ∈ C1(Rn) we employ a damping parameter
α > 0 and obtain forα→ 0 thatF(uν + αs) → F(uν). In turn, sinceJ is continuous we obtain

J(F(uν + αs)) < J(uν)

for α sufficiently small. Though, the computation ofα employing a backtracking algorithm is quite
expensive, since in each iterationF(uν + αs) must be computed. Moreover, in order to derive a
convergent scheme,αs or F(u + αs) must induce a sufficient decrease. Though, as we will see,
only for overlapping domain decompositions as in Section 3.1.6, a sufficient decrease forF can be
shown.
Therefore, in the present thesis we will analyze the linearized update strategy. Moreover, in order to
show convergence, we will introduce novel additive and multiplicative update operators which allow
for proving a sufficient decrease ofF(uν).

The DerivativeF ′

In some contexts, for instance in the context of the ADDITIVE PRECONDITIONED INEXACT NEW-
TON (ASPIN) method,F ′ can be derived analytically [CK02]. One important assumption in the
analysis of the ASPIN operator is that the local problems are solved exactly. Though, as we will
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see, in our context this will generally not hold. In this case, it becomes complicated and, perhaps,
expensive to computeF ′, if it exists.
Whereas, as we have seen in the previous chapter, Trust-Region and Linesearch strategies are able to
compute local minimizers, even if the exact Hessians are replaced by approximations. Therefore, in
order to avoid the computation ofF ′, one might employ approximations such as

F ′
A(uν) ≈

∑

k

Ik(∇2Hν
k (Pku

ν))−1Rk∇2J(uν)

for additive preconditioning strategies (cf., [CK02]). In a multiplicative setting one might choose

F ′
M (uν) ≈

∏

k

Ik(∇2Hν
k (Pku

ν))−1Rk∇2J(uν)

3.1.2 Nonlinear Additive and Multiplicative Update Operators

Therefore, we are interested in the construction of nonlinear additive and multiplicative update oper-
atorsFA,FM : Rn → Rn which reduce the value of the objective function for a given iterateuν as
follows

J(FA(uν) + sν) ≤ J(uν) (3.1.6a)

J(FM (uν) + sν) ≤ J(uν) (3.1.6b)

whereJ is the objective function in problem (M). The vectorsν = F ′(uν)s results from a possible
global Trust-Region or Linesearch correction as a solution of, for instance the following problem.
Find ans ∈ Rn such that

1

2
〈s,∇2J(F(uν))F ′(uν)s〉 + 〈s,∇J(F(uν))〉 = min! w.r.t. uν + F ′(uν)s ∈ B

As pointed out in the introduction of this chapter, both operatorsFA andFM are based on the
minimization, or at least on the reduction of certain nonlinear subdomain objective functions such
that

J(FA(uν)) ≤ J(uν) (3.1.7a)

J(FM (uν)) ≤ J(uν) (3.1.7b)

Since this assumption is too weak to ensure global convergence byFA andFM , sν must just be
computed by means of a globalization strategy from Chapter 2 in order to derive a preconditioned
globalization strategy.
But, from a theoretical point of view this does not answer the questions:

• Can one estimate the reductionJ(u) − J(FA(u)) andJ(u) − J(FM (u))?

• Depending on the decomposition ofRn, is it possible to just employFA andFM from (3.1.6)
to compute a critical point?

An answer to these questions is given in this and the following chapters. In particular, in (4.1.2) and
in (5.1.4) we will present actual Trust-Region implementations of the abstractoperators in (3.1.6).
Actual Linesearch implementations will be introduced in (4.2.2) and in (5.3.7).
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3.1.3 Decomposition of theRn and Construction of the Transfer Operators

As we have seen in Section 1.3, minimization problems of the kind (M) usually arisefrom the
discretization of different problems stated in some finite dimensional spacesX , for instance the
Lp. For example, in Section 1.3, we employ Finite Elements to discretize systems of PDEs giving
rise to a problem of type (M). Therefore, the solution of the resulting discrete minimization problem
actually yields a set of coefficients of Finite Element functions.
Therefore, for finite dimensional problems we can generally assume that acoordinate isomorphism
X : Rn → X exists which maps coefficients to elements inX . Moreover, ifX can be decom-
posed intoN subsets withXk ⊂ X , the original coefficient spaceRn can also be decomposed into
subspaces

Dk = Rnk ⊂ Rn (3.1.8)

with nk ≤ n. In this case, we may also assume that local coordinate isomorphismsXk : Dk → Xk

exist.
For instance, additive preconditioning strategies usually employ horizontaldecompositions such as

N⋃

k=1

Xk = X and Dk ⊂ Rn ∀k = 1, . . . , N (3.1.9)

On the other hand, multiplicative preconditioning strategies can employ verticaldecompositions of
the kind

X = X0 ) . . . ) XN and Rn = D0 ) . . . ) DN (3.1.10)

3.1.4 The Transfer Operators

Similar to linear preconditioning strategies, the basic principle of the preconditioning approaches in
this chapter is to compute search directions for problem (M) by solving related, but less complex
subproblems. In linear Schwarz methods, the starting point for the subproblem solution can be
chosen arbitrary since one is free to let the current iterate vanish within thelinear residual. In this
case, the initial iterate on the respective subset is often trivially chosen and, thus, the computed
correction vector is the final subset iterate itself.
In the nonlinear case, this does not hold anymore. Here, beginning froma giveninitial subset iterate,
a nonlinear subproblem is solved yielding asubset correction. This subset correction is the differ-
ence between first and last subset iterate. Therefore, the choice of the initial subset iterate crucially
influences the nonlinear behavior of the employed local objective functionand makes a proper choice
of a projection operatorfor primal variables, as will be introduced in (3.1.14), important. However,
similarly to the linear case, the resulting subset correction is interpolated usingthe standard inter-
polation operator as will be introduced in (3.1.11). Figure 3.1 shows these aspects and highlights
the influence of different transfer operators, as will be introduced in the following sections, to the
resulting subspace corrections.

Construction of the Interpolation and Restriction Operators

As pointed out before, the decomposition ofRn is closely related to the decomposition ofXk. There-
fore, we define theinterpolation operatorIk : Dk → Rn as the discretization of the embedding
operator mapping fromXk toX given by

XIku = Xku for all u ∈ Dk (3.1.11)
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Figure 3.1: This figure shows, how the choice of the initial subset iterate influences the resulting subset
correction. In particular, two different subset iterates are chosen, i.e.,Ruh andPuh. Both subset computations
result in a final subset iterateuH

mH
. By definition of the subset iterate, the difference betweenfirst and last

subset iterate is interpolated and used as correction, i.e., IsR andIsP . Applying these subset corrections leads
either touh+IsR as next fine level iterate or touH +IsP as next iterate. In general, one of the two corrections
reduces the value of the objective function more than the other one.

Similarly, if Xk+1 ⊂ Xk we may define the interpolation operatorIk
k+1 : Dk+1 → Dk as

XkI
k
k+1u = Xk+1u (3.1.12)

Since (3.1.11) and (3.1.12) hold andXk is an isomorphism, we have thatIk andIk
k+1 are uniquely

given injections:

Ik = X−1Xk

Ik
k+1 = (Xk)

−1Xk+1

On the other hand, therestriction operatoris given byRk = (Ik)
T andRk+1

k = (Ik
k+1)

T . Moreover,
there exist constantsCR > 0 andcI > 0 such that for allk the inequalities

‖Rk‖2 = max
k=1,...,N

‖Rk‖2 ≤ CR (3.1.13a)

λmin(RkIk) = min
k=1,...,N

λmin(RkIk) ≥ cI (3.1.13b)

hold. Here,λmin(RkIk) denotes the smallest eigenvalue of the full-ranked matrixRkIk.

Construction of the Projection Operator

As pointed out before, for nonlinear Schwarz methods initial iterates on therespective subsets should
be good approximations to the most current global iterate or the iterate on the preceding subset,
respectively. Therefore, we assume that theprojection operatorPk : Rn → Dk satisfies

‖X (IkPku− u) ‖X ≤ ‖X (Ikv − u) ‖X (3.1.14)
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Figure 3.2: Comparison of the approximation strength of subset iterates on a highly frequent global iterate
(solid line) in a multiscale setting. In this example, we focus on the computation of the value of differently
transferred solutions at Position2. The values at0 and4 are chosen fixed, i.e., these values are Dirichlet
values. The shown approximations are: A pointwise evaluation of the original iterate (dotted line with squares),
the restricted original iterate (dashed line with cross) and theL2-projection of the original iterate (dashed
line with circle). Note that in this example, theL2-norm of the distance between the respective projected
iterates and the original one are:‖Xk−1(I

k−1

k PEk
k−1u−u)‖L2 = 2.30 if one evaluates pointwise with PEk

k−1
,

‖Xk−1(I
k−1

k Rk
k−1

u− u)‖L2 = 1.63 if the iterate is restricted and only‖Xk−1(I
k−1

k P k
k−1

u− u)‖L2 = 1.54
if the iterate is projected.

for all u ∈ Rn and allv ∈ Dk. Similarly we assume thatP k+1
k : Dk → Dk+1 satisfies

‖Xk

(
Ik
k+1P

k+1
k u− u

)
‖X ≤ ‖Xk

(
Ik
k+1v − u

)
‖X (3.1.15)

for all u ∈ Dk and allv ∈ Dk+1.

Remark 3.1.1. Note that the restriction operator does generally not satisfy (3.1.14) or (3.1.15),
respectively, and its approximation strength may be poor (cf., Figure 3.2). This is due to the fact
that the restriction operator in standard linear multigrid methods (see for example [Bra07]) is an
operator acting on dual spaces. Thus, by design, the restriction operator should only be applied to
dual quantities as is the linear defect. See Figure 3.3 for an illustration of different transfer methods
for primal variables.

As a consequence, employing the restriction operator to repeatedly transfer primal variables from
one subset to another, is numerically instable, since each transferaddsartificial values to the trans-
ferred vector, i.e.,

XkRkIkRku 6= XkRku

in contrast to
XkPkIkPku = XkPku

The next theorem shows that ifX is a Hilbert space, the formulation of the projection operator as the
solution of a least squares problem guarantees that the operator is well-defined.

Theorem 3.1.2.Assume thatX andXk are Hilbert spaces. Then the projected iterate can be com-
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Figure 3.3: Example from continuum mechanics illustratingthe difference between theL2-projection and
the standard restriction operator in a multiscale setting.Here, the sought solution is an “energy” optimal
displacement field. From left to right: initial uniformly meshed cube (front view), current fine–level iterate
(displaced mesh),L2-projection (see also Figure 3.2 and Chapter 5.5) and restriction of the solution to the
next subset. The restriction operator causes a strong displacement of the center node. Using the standard
restriction, the value of the displacements at the center node is obtained by adding the fine level displacements
of all neighbor nodes with a weighting factor of1/2 to the given displacement of the mesh’s center node.
Thus, the distortion of the restricted solution is dimension and connectivity dependent. On the other hand,
theL2-projection operator passes some mean value of the solutionat the center node and its neighbors to the
respective node on the subset.

puted as the solution of the following normal equations

(XIk)
T (XIk)Pku = (XIk)

TXu (3.1.16a)

(Xk+1I
k
k+1)

T (Xk+1I
k
k+1)P

k+1
k u = (Xk+1I

k
k+1)

TXk+1u (3.1.16b)

Therefore, the projection operators are uniquely given by

Pk =
(
(XIk)

T (XIk)
)−1

(XIk)
TX (3.1.17a)

P k+1
k =

(
(Xk+1I

k
k+1)

T (Xk+1I
k
k+1)

)−1
(Xk+1I

k
k+1)

TXk+1 (3.1.17b)

This theorem is a result of Theorem 3.7 in [DH08]. Note that due to the matrix inversions in (3.1.17),
the projection operator is in general expensive to compute. In particular,the projection operator may
be a dense matrix, even if the interpolation operator is sparse. Thus, oftenthe application of the
projection is carried out as the solution of a system of linear equations, equation (3.1.16).

3.1.5 Example: a Multilevel Decomposition of Finite Element Spaces

We consider a multilevel decomposition as given in (3.1.10). For the ease of notation, we will drop
the indexk and denote the coarse level byH and the fine one byh. In the context of Finite Elements,
which are employed to discretize a partial differential equation stated on a certain domainΩ ⊂ Rd,
d ∈ N, the coordinate isomorphism is given by

Xh = (λh
1 , . . . , λ

h
nh

)



3 A Generic Nonlinear Preconditioning Framework 39

Figure 3.4: A two dimensional example domain (left image) isdecomposed into four subdomains (right
image). In the setting of a non-overlapping domain decomposition method, usually the nodal basis functions
at subdomain edges are just represented by one domain (called master domain). Quadrature, etc. can then
be carried out, if also the neighboring elements are known bythe master processor. Therefore, a strip of one
element width is usually also attached to the respective subdomain, as a row of ghost elements. In contrast,
sometimes the parallelization in Finite Element packages,like for instance UG [BBJ+97], is designed such
that basis functions at processor edges belong to more than one processor, yielding that some unknowns are
represented on multiple processors. These unknowns must then be linearly combined to yield aconsistent
solution.

whereλh
i : Ω → Rd are the basis functions. Here,(Xh)TXh is the well-known mass matrixMh

with entries
(Mh)ij = (λh

i , λ
h
j )L2(Ω)

Thus, substitutingXh into (3.1.16a) yields

PH =
(
RMhI

)−1
RMh = (MH)−1RMh

As pointed out in the previous section, one wants to avoid inverting a matrix, even if it is sparse.
Moreover, since the mass-matrix is well conditioned and symmetric positive definite, one may em-
ploy the cg-method, to compute the projected iterate by simply solving

MHuH = RMhu

on the subsetDH . Often, for instance for Finite Elements with linear basis functions, it seems also to
be convenient to substitute the actual mass matrix by the lumped one. Since the lumped mass matrix
is given by

(M̃H)ij =

{∑
k(M

H)ik if i = j

0 otherwise

its inversion is cheap which enables us to approximate the projection by

P̃H = (M̃H)−1RMh (3.1.18)
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3.1.6 Example: (Non-) Overlapping Domain Decomposition Methods

The easiest possible setting for constructing the respective operators isa non-overlapping domain
decompositionof a Finite Element domain. In this case, the basis functions are usually distributed
element wise to different subdomains, like shown in Figure 3.4. In our context it suffices to distribute
the coefficients. Therefore the set of indicesC = {1, . . . , n} is distributed such that

C =
⋃

k

Ck with Ci ∩ Cj = ∅ iff i 6= j

whereCi ⊂ {1, . . . , n}. Then, we may define the operatorR̃k as

R̃k = (el1 , . . . , elni
)T (3.1.19)

where we assume thatCk = (l1, . . . , lnk
) andei is thei-th Euclidean unit vector inRn. Therefore,

we can defineRk = R̃k, Ik = R̃T
k andPk = R̃k.

In the case ofoverlapping domain decompositionmethods (cf. for instance in [Bas96]), the interpo-
lation operator is employed to linearly combine different vectors from different subsets as follows

(s)i =
∑

k

µik(sk)ik (3.1.20)

wheresk ∈ Dk. Here, the indexik corresponds to the indexi on Dk andµik ∈ [0, 1]. If i 6∈ Ck

we simply defineµik = 0. Often, it is reasonable to assume that the sum of the respective weights
equals one, i.e., ∑

k

µik = 1

If this is not the case, the interpolation operator will over-relax or under-relax the computed subset
corrections. However, the analysis of the next sections will hold in this case, too. In either case, the
interpolation operator for an overlapping domain decomposition is given by

(Ik)ij =

{
µik if ik = j

0 otherwise
(3.1.21)

Note that by construction, each global unknown is linked to at most one unknown on each subset.
This means, that

for all i, k there exists at most onel :
∑

j

(Ik)ij = (Ik)il

For this class of overlapping domain decomposition methods, the projection operator is given by

(Pk)ij =

{
1 if (Ik)ij 6= 0

0 otherwise

These assumptions are, for instance, satisfied by the interpolation operator in the following example.
Here, we decompose theR5 into two subsets with one node being represented on both subsets. For
an illustration of this example we refer to Figure 3.5. Hence, the corresponding interpolation and
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Figure 3.5: A one dimensional domain with5 unknowns is decomposed into two subdomains. Each of the
subsets has3 unknowns, such that an overlap of one unknown exists. As indicated, the resulting interpolation
at this unknown will be the mean value of the corresponding nodes at the subdomains.

projection operators are given by

I1 =




1 0 0
0 1 0
0 0 0.5
0 0 0
0 0 0




I2 =




0 0 0
0 0 0

0.5 0 0
0 1 0
0 0 1




and

P1 =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0



 P2 =




0 0 1 0 0
0 0 0 1 0
0 0 0 0 1





3.2 Abstract Formulation of the Nonlinear Additive Preconditioning
Operator

Currently two algorithm classes coexist which may be employed to solve (M) in parallel and locally
nonlinear: the PVD/PGD framework and the ASPIN framework. Some documented tests for the
PVD show, that this approach seems to work well at least for elliptic problems[DS98]. Moreover,
the ASPIN method, which does not have a convergence control and may not be employed generally
for the solution of the problem (M), has been tested extensively. For instance in [CK02, CKY02,
CKM02, HXC05a, HXC05b] it was shown that ASPIN is efficient and reliable for a certain class of
PDEs.
In this section, we will present a (novel) generic framework for nonlinear additive preconditioning.
Here, we will define nonlinear subset update operatorsFk which reduce the value of particular subset
objective functions as will be defined in (3.2.1). The interpolated local corrections are then combined
by a nonlinear recombination operator. The result of this recombination process is then the nonlinear
update operatorFA. As it will turn out, this concept covers the novel APTS and APLS strategies
from Section 4.1 and Section 4.2, but also the PVD approach, as shown in Section 3.2.4.

3.2.1 Derivation of the Additive Subset Objective Function

In this section, we aim at the construction of a nonlinear, additive update operatorFA. We will
see that it is crucial to connect the problems, which are solved withinFA, to the global minimization
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problem (M). To this end, we follow the approach which S. G. Nash proposed for nonlinear multigrid
methods [Nas00], and couple the gradients of the respective objective functions with each other.
Let us start with mentioning that if in theν-th iterationuν ∈ Rn denotes the current global iterate,
the initial iterate onDk from (3.1.8) is given byuν

k,0 = Pk(u
ν). Moreover, we assume that on

each subset exist sufficiently smooth (arbitrarily chosen) functionsJν
k : Dk → R approximatingJ

onDk. Note that in many cases also the values of the global iterateuν on the neighboring subsets
are necessary to compute a proper approximation ofJ on Dk which is taken into account by the
superscriptν in Jν

k . For instance, in the context of the examples of Chapter 5.5, we employed a
function of the following kind

Jν
k (uk) = J(uk, u

ν
k
)

whereuν
k

are the components ofuν which are not represented onDk.
In the additive case of the present section, thesubset objective functionHν

k : Dk → R for all ν ≥ 0
and all1 ≤ k ≤ N is given by

Hν
k (uk) = Jν

k (uk) + 〈δgν
k , uk − uν

k,0〉 ∀uk ∈ Dk (3.2.1)

where, the residualδgν
k ∈ Dk is given by

δgν
k = Rk∇J(uν) −∇Jν

k (uν
k,0)

Further assumptions onHν
k and the gradients∇Hν

k are formulated in Chapter 4. The subset objective
functionHν

k from (3.2.1) has the important property that its gradient is dominated by the restricted
global gradient ifuk is sufficiently close touν

k,0. This means that∇Hν
k (uν

k,0) = Rk∇J(uν) which
directly yields that the first Newton step onDk is in direction of the restricted gradient. Though, it
turns out that this formulation is broad enough to cover, for instance, overlapping domain decompo-
sition methods, or the forget-me-not approach of M.C. Ferris and O.L. Mangasarian as shown in the
next section.

3.2.2 Example: The Forget-Me-Not Approach

To speed up the rates of convergence of the PARALLEL VARIABLE DISTRIBUTION approach, in
particular if only the best subset correction is chosen, M.C. Ferris and O.L. Mangasarian propose to
solve the following problem

(uk, λk) ∈ Dk × Rpk : J(uk, u
ν
k

+ Skλk) ≤ J(ũ, uν
k

+ Skλ̃) ∀(ũ, λ̃) ∈ Dk × Rpk

whereuν
k

are the components ofuν which are not represented onDk, pk ∈ N andSk ∈ Rn×pk

realizes
Skλ = λ1sk,1 + . . .+ λpsk,pk

such that each search directionsk,i ∈ Rn is consistent with the distribution of the variables. Follow-
ing [FM94], this means, that the interpolation operator

Ik =
(
Ĩk, Sk

)
(3.2.2)

has ranknk + pk. Here, we used̃Ik = (R̃k)
T , P̃k = R̃k andR̃k is as defined in equation (3.1.19).

Now, if uν
k,0 = (P̃ku

ν , 0) we obtain

Hν
k (ũk) = J(uk, u

ν
k

+ Skλk)
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whereũk = (uk, λk) since

Rk∇J(uν) = ∇(uk,λk)J(uk, u
ν
k

+ Skλk) |(uν
k,0,0)

whereRk = (Ik)
T from (3.2.2)

A Note on Second Order Coupling Terms

In [GST08] it was proposed that one might employ second–order coupling terms, as far as the ob-
jective functions are twice continuously differentiable. Also in the additive context, second–order
coupling terms could be employed, such as

H̃ν
k (uk) = Jν

k (uk) + 〈δgν
k , uk − uν

k,0〉 +
1

2
〈uk − uν

k,0, δB
ν
k · (uk − uν

k,0)〉

where

δgν
k = Rk∇J(uν) −∇Jν

k (uν
k,0)

δBν
k = Rk∇2J(uν)Ik −∇2Jν

k (uν
k,0)

In fact, if one employs this subset model, one ties the subset problems closerto the global ones, in
particular, if the objective functionJν

k is not closely related toJ . But, even if our analysis, in particu-
lar, the arguments in Lemma 4.1.4 and Lemma 4.2.4, still hold, we will, due to necessary smoothness
assumptions, focus onHν

k as objective function. This enables us to prove global convergence ofthe
APLS and APTS strategies, ifJ andJν

k are just continuously differentiable.

3.2.3 The Nonlinear Additive Update and Preconditioning Operators

Now, the definition of the subset objective function (3.2.1) enables us to introduce a subset update
operatorFk : Dk → R as

Hν
k (Fk(Pku

ν)) ≤ Hν
k (Pku

ν) (3.2.3)

whereuν ∈ Rn. In the context of the present work the actual implementation ofFk is either a Trust-
Region or Linesearch strategy onDk. Therefore, we can define the additive and nonlinear update
operator by

FA(uν) = Aν
(
I1(F1(u

ν) − P1u
ν), . . . , IN (FN (uν) − PNu

ν), uν
)

(3.2.4)

whereAν : (Rn)N ×Rn → Rn is the nonlinear recombination operator. The particular definition of
the recombination operator depends on the framework it is used within. For the case of Linesearch
methods, the subset correctionsν

k = Fk(u
ν)−Pku

ν is computed such that it satisfies a decrease con-
dition and is, thus, a sufficiently good search direction. In turn, in the APLSstrategy in Section 4.2
the recombination operator is given by

Aν
APLS (I1s

ν
1 , . . . , INs

ν
N , u

ν) = uν + αA

∑

k

Iks
ν
k

with αA ∈ (0, 1] is chosen such that the Armijo condition holds (cf., Section 4.2.1). Note that, aswe
have seen in Section 2.2, a Linesearch parameterαA > 1 can cause that the rescaled correction is
not admissible inB.
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On the other hand, in the context of the APTS strategy in Section 4.1, the recombination operator is
given by

Aν
APTS(I1s

ν
1 , . . . , INs

ν
N , u

ν) =

{
uν +

∑
k Iks

ν
k if

∑
k Iks

ν
k is “sufficiently good”

uν otherwise

In our context, the nonlinear subset update operatorFk is formulated based on the objective function.
Moreover, in contrast to the concepts in [FM94, CK02],Fk(u) is not necessarily a local minimizer
of Hν

k , but in most examples an approximate solution of the problem

Fk(Pku
ν) ∈ Bk : Hν

k (Fk(Pku
ν)) = min!

3.2.4 Example: Parallel Variable Distribution

The PVD principle looks similar to the ASPIN method, where in a first step asynchronously local
problems are solved, i.e.,

sν
k ∈ Dk : ∇Hν

k (Pku
ν + sν

k) = 0

Though, the PVD approach employs the local objective functionHk(ũk) = J(uk, u
ν
k

+ Skλk) and
the transfer operators as presented in Section 3.2.2. In the PVD context, we are interested in finding
a local solution for

(uk, λk) ∈ Dk × Rpk : Hk(ũk) = J(uk, u
ν
k

+ Skλk) = min!

For givenũk = (uk, λk) andsν
k = uk − Pku

ν the recombination operator is the solution of the
following nonconvex, constrained minimization problem. Find(µ1, . . . , µN ) ∈ RN such that

J

(
uν +

∑

k

µk

(
Iks

ν
k + Skλk

)
)

= min! (3.2.5a)

∑

k

µk = 1 (3.2.5b)

uν +
∑

k

µk(Iks
ν
k + Skλk) ∈ B (3.2.5c)

Therefore, the recombination operator is given by

Aν
PVD(I1s1 + S1λ1, . . . , INsN + SNλN , u

ν) = uν +
∑

k

µk(Iks
ν
k + Skλk)

In turn, the nonlinear update operator is given by

F(uν) = Aν
PVD (I1s1 + S1λ1, . . . , INsN + SNλN , u

ν)

As M.C. Ferris and O.L. Mangasarian show, the approach is a globally convergent solution strategy.
Though, in order to compute the damping parametersµ in (3.2.5) one must solve another minimiza-
tion problem which generally cannot be carried out asynchronously.
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3.2.5 The Construction of the Subset Obstacles in the Additive Setting

In order to define the subset obstacles, we follow [Man84] and assume that the linear interpolation
operators have the following property

(Ik)ij ≥ 0 ∀i, j
(Ik

k+1)ij ≥ 0 ∀i, j (3.2.6)

Such an assumption is reasonable, for instance for Finite Elements with linear nodal basis functions.
Though, in [GMTWM08], S. Gratton et al. have shown that multigrid obstacles can be derived
even for non–positive interpolation operators, such that the resulting corrections are admissible in
the sense of the obstacles ofB. Similar arguments also allow for constructing obstacles for additive
decomposition frameworks with non–positive interpolation operators.

However, for the ease of presentation, we restrict ourselves to the case that assumption (3.2.6) holds.
Then, the respective subset obstacles are given by

(φ
k
(uν))j = (Pku

ν)j + max
i

{ϑi(φ− uν)i : (Ik)ij > 0} (3.2.7a)

(φk(u
ν))j = (Pku

ν)j + min
i
{ϑi(φ− uν)i : (Ik)ij > 0} (3.2.7b)

with

ϑi =
1

∑N
k=1

∑nk

j=1(Ik)ij

We also define the set of admissible solutionsBk(u
ν) ⊂ Dk as

Bk(u
ν) = {uk ∈ Dk | φ

k
(uν) ≤ uk ≤ φk(u

ν)} (3.2.8)

whereuν ∈ Rn is the current global iterate. We will see that this definition of the subset obstacles
has two major advantages. By construction, the projection of each admissibleiterate is admissible
on the subset, i.e.,u ∈ B ⇒ Pku ∈ Bk(u). Moreover, we will see that if the current global
iterate and the subset iterate are admissible, then the updated global iterate is also admissible, i.e.,
u ∈ B ⇒ FA(u) ∈ B.

Example. In Section 3.1.6, we have seen that the interpolation operator is a permutation matrix,
if Rn is decomposed intoN non-overlapping subsets(Dk)k. In this case, the subset obstacles are
trivially given by

(φ
k
)i = (φ)j and(φk)i = (φ)j

where we assumed that thei-th index on a subsetDk represents the global indexj. In the context of
the non–overlapping domain decomposition in Section 3.1.6 we have

(φ
k
)ik = (φ)j and(φk)ik = (φ)j

Here,ik is the index of the unknown which represents the global unknowni onDk.

In a similar fashion like in [Man84], we will prove that the additively updated global iterateFA(u)
still is admissible forB. As it turns out, the proof is tailored to the recombination operator of the
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PVD approach and the operators in Chapter 4.

Lemma 3.2.1. Assume thatu ∈ B, that Fk(u) ∈ Bk(u) and that the recombination operator is
defined as

A (I1s1, . . . , INsN , u
ν) =

{
uν +

∑
k αkIks

ν
k if

∑
k αkIks

ν
k is “sufficiently good”

uν otherwise

whereαk ∈ (0, 1] andsν
k = Fk(Pku

ν) − Pku
ν . Suppose that the new iterate is given byFA(u) =

A(I1s1, . . . , INsN , u
ν). Then, we obtain

FA(u) ∈ B

Proof. First we will show thatFA(u) ≥ φ. If no correction is applied inFA, the result is trivial. On
the other hand, due to the definition of the subspace obstacles, equation (3.2.7), and

Fk(u)j ≥ (φ
k
)j = (Pk(u))j + max

i
{ϑi(φ− u)i : (Ik)ij > 0}

we have
(Fk(u) − Pk(u))j ≥ max

i
{ϑi(φ− u)i : (Ik)ij > 0}

Now we use the definition ofϑi, φi
− ui < 0 andαk ≤ 1 and obtain the following inequality

N∑

k=1

αk




nk∑

j=1

(Ik)ij max
i

{ϑi(φ− u)i : (Ik)ij > 0}



 ≥
N∑

k=1

αk




nk∑

j=1

(Ik)ijϑi(φ− u)i





≥
N∑

k=1




nk∑

j=1

(Ik)ijϑi(φ− u)i





= (φ− u)i

Combining the previous inequalities with the definition of the additive update operator yields

(FA(u))i = ui +
N∑

k=1

αk (Ik (Fk(u
ν) − Pku))i

= ui +
N∑

k=1

αk




nk∑

j=1

(Ik)ij (Fk(u
ν) − Pku)j





≥ ui +
N∑

k=1

αk




nk∑

j=1

(Ik)ij max
i

{ϑi(φ− u)i : (Ik)ij > 0}





≥ ui +
(
(φ)i − ui

)
= (φ)i

Similar arguments yield(FA(u))i ≤ (φ)i which proves the lemma.
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3.3 Abstract Formulation of the Nonlinear Multiplicative
Preconditioning Operator

Multiplicative, nonlinear preconditioning strategies are subject to research since the introduction of
the FULL APPROXIMATION SCHEME (FAS) by A. Brandt [Bra81]. Similar to the ASPIN method,
the FAS method provably converges for elliptic problems (see, for instance[Reu88a, Reu88b]).

Almost 20 years later, S. Nash introduced the MG/OPT scheme, a nonlinear multigrid method with
globalization properties [Nas00]. Moreover, MG/OPT has proven to be efficient and reliable as
presented in various scientific works [LN05a, LN05b, LN06]. Also extensions to Trust-Region and
further Linesearch frameworks have been proven to be highly efficient and reliable globalization
strategies [GMTWM08, GMS+09, GK08b, GK08c, WG08].

In this section, we will introduce a framework for the multiplicative update operatorFM which ex-
tends the MG/Opt framework to a more general, constrained framework andemploys the novel pro-
jection operator introduced in Section 3.1.4. But, in contrast to the additive framework, the nonlinear
update operator is recursively formulated since, as for multiplicative Schwarz methods in general,
the computation of each new correction depends on the previous ones. Inturn, the subset objective
functions and the subset obstacles depend on the current iterate of the previous subset and no longer
on the most current global iterate.

3.3.1 Derivation of the Multiplicative Subset Objective Function

It will turn out that the multiplicative update operatorFM is based on inclusions of the respective
subsets. Similar to the additive framework, on each subset a local smootherFk is applied to compute
a new iterate. Then, either a recursion is called, ifCk ⊃ Ck+1, or the computed correction is
interpolated to the previous subset. Here,Ck is a set of indices represented onDk. As we have
seen, in the context of domain decomposition methods, these stand for basis functions which are
represented on thek-th subdomain. In contrast, in multiscale methods, these indices stand for nodes
which are part of the coarse and fine grid.

Therefore, similarly to the objective function used for the nonlinear additive preconditioning, the
objective function depends on a restricted gradient and a subset objective function which may be
chosen arbitrarily. Thus, the initial iterate onDk 6= Rn in the ν-th iteration is given byuν

k,0 =

P k
k−1(u

ν
k−1), whereuν

k−1 is the current iterate onDk−1.

Therefore, for a given subset functionJν
k : Dk 6= Rn → R the (multiplicative)subset objective

functionHν
k : Dk → R is given by

Hν
k (uk) =

{
Jν

k (uk) + 〈δgν
k , uk − uν

k,0〉 if Dk 6= Rn

J(uk) otherwise
(3.3.1)

for all ν ≥ 0 and all0 ≤ k ≤ N . If Dk 6= Rn, the modified residualδgν
k ∈ Dk is given by

δgν
k = Rk−1

k ∇Hν
k−1(u

ν
k−1) −∇Jν

k (uν
k,0)

Note that, in the multiplicative setting, also alternating domain decomposition methods maybe ap-
plied yielding that some setsDk are the global solution spaceRn, for instance as in the Gauß-Seidel
scheme in Section 3.3.3. In turn, we obtain a case differentiation in (3.3.1).
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A Note on Second Order Coupling Terms

Also in the multiplicative context, one may employ second–order coupling terms, as employed in the
following alternative subset objective function

H̃ν
k (uk) = Jν

k (uk) + 〈δgν
k , uk − uν

k,0〉 +
1

2
〈uk − uν

k,0, δB
ν
k · (uk − uν

k,0)〉

where

δgν
k = Rk

k−1∇Hν
k−1(u

ν
k−1) −∇Jν

k (uν
k,0)

δBν
k = Rk

k−1∇2Hν
k−1(u

ν
k−1)I

k−1
k −∇2Jν

k (uν
k,0)

if Dk 6= Rn. This second–order coupling term also yields a closer relationship between the sub-
set objective functions. In this case, the nonlinear multiplicative scheme becomes somehow more
similar to the linear scheme, foruk sufficiently close touν

k,0 = P k
k−1u

ν
k−1. However, our analysis

of Chapter 5, in particular the results Lemma 5.1.4 and Lemma 5.3.5, still hold for thisobjective
function. But, to keep our assumptions in Chapter 5 as simple as possible, we will just employ the
first-order model (3.3.1).

3.3.2 The Nonlinear Multiplicative Update and Preconditioning Operator

In contrast to the additive preconditioning operator, the multiplicative version must be formulated
recursively. As in the additive context the local update operatorFk : Dk → Dk has the property

Hν
k (Fk(u)) ≤ Hν

k (u)

However, due to the multiplicative context, the update operator is more complex than the additive
one and given by

FM (uν) = A0 (S0(u
ν) − uν , uν)

whereAk : Dk × Dk → Dk is the nonlinear recombination operator. Here we used the nonlinear
operatorSk which – by construction – controls the recursions by means of the relationships between
two succeeding subsetsDk andDk+1. This operator is defined as follows

Sk(uk) =






Srk

(
Ak

(
Ik
k+1

(
Sk+1(P

k+1
k Fk(uk)) − P k+1

k Fk(uk)
)
,Fk(uk)

))
if Ck ) Ck+1

Sk+1(Fk (uk)) if Ck = Ck+1

Fk (uk) if Ck ( Ck+1

whererk is the index when the recursion returns to the subsetDk. Therefore, it is mandatory that
if from Ck a recursion is called, there exists an indexrk > k such thatCrk

= Ck. Though, in
order to allow for employing pure pre or post-smoothing strategies, the definition of Fk also covers
Fk(uk) = uk.
We will consider the respective cases in more detail.

• The first case realizes the recursive part: after calling the nonlinear update operatorFk, a
recursion is called. The resultingrecursively(or multiplicatively) computed correctionis the
interpolated difference between final and initial iterate onDk+1, i.e.,

Ik
k+1s

ν
k+1 = Ik

k+1

(
Sk+1(P

k+1
k Fk(uk)) − P k+1

k Fk(uk)
)
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Algorithm: Multiplicative Update Operator

Input: uk,0 ∈ Dk, k ∈ N
Output: uk ∈ Dk

repeat{
uk = Fk(uk,0)
if (Ck+1 ⊃ Ck)

return uk

else if(Ck+1 = Ck) {
uk+1 = uk

k = k + 1

} else if(Ck+1 ⊂ Ck) {
call Multiplicative Preconditioning Operatorwith uk+1 = Pkuk

and receiveuk+1,mk+1,f
∈ Rnk+1

uk = Ak(Ik
k+1(uk+1,mk+1,f

− Pkuk), uk)
urk

= uk

k = rk

}
}

Algorithm 4: Multiplicative Preconditioning Operator

ThenAk combines the computed correctionIk
k+1s

ν
k+1 with Fk(uk). Finally, in order to con-

tinue with the computation,Srk
is called, whereDrk

= Dk butk < rk.

• The second case realizes a further call of the smoothing operator on the subdomainDk.

• The third case realizes a final smoothing step on a subset without calling a recursion, for
instance when reaching the coarsest grid within a multigrid setting.

An algorithmic formulation of this operator is given in Algorithm 4.
As a matter of fact, the actual definition of the multiplicative recombination operator Ak is context
dependent. In the context of Trust-Region methods, for instance the MPTS strategy in Section 5.1,
this operator is given as

AMPTS,k(sM , uk) =

{
uk + sM if sM is “sufficiently good”

uk otherwise

Though, Linesearch strategies, such as the MPLS strategy in Section 5.3.2,employ a rescaling of the
corrections as follows

AMPLS,k(sM , uk) = uk + αMsM

whereαM ∈ (0, 1].
As we will see in the following sections, this multiplicative scheme is well suited to model various
commonly used recursive schemes like V-cycles, W-cycles, but also multiplicative algorithms of
Gauß-Seidel type.

3.3.3 Example: A Multiplicative Algorithm of Gauß-Seidel type

Besides the traditional multilevel scheme, also alternating domain decomposition schemes or (block)
Gauß-Seidel schemes fit into the just presented multiplicative framework. Inthe latter case, we de-
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compose theRn employing a non-overlapping domain decomposition as presented in Section 3.1.6.
Our Gauß-Seidel scheme successively computes corrections on subsets. But, in between, we must
interpolate the corrections to the global context, ensure a descent and update the global iterate. The
updated iterate, in turn, is then projected to the next subset yielding the initial subset iterate. Allto-
gether this is the well-known (block) Gauß-Seidel scheme.

In this case, we suppose that we can number the respective degrees offreedom such that

Ck = {lk, . . . , uk} for k = {1, . . . , NI}

whereNI ∈ N, l1 = 1, lk < uk, lk+1 = uk + 1 anduNI
= n. Now the decomposition is given by

C1 = idxn, C2 = I1, C3 = idxn, C4 = I2, . . . , C2NI
= INI

, C2NI+1 = idxn

where idxn = {1, . . . , n} and we defineN = 2NI + 1. For instance, if we haven = 5 unknowns
and two sets, this would be

C1 = {1, . . . , 5}, C2 = {1, 2, 3}, C3 = {1, . . . , 5}, C4 = {4, 5}, C5 = {1, . . . , 5}

Here, the indices where the recursion returns toDk are given byr1 = 3 andr3 = 5. As we have
seen before, within such a decomposition framework, the transfer operators are given as̃Ik, R̃k and
Pk = R̃k. Furthermore, we suppose that in each global contextCj with Cj = idxn the update
operator is given by the identity, i.e.,

Fj = Id

Since a global smoothing is missing, a correction must eventually be computed oneach subsetDk 6=
Rn. This means that ifFk is realized by a Trust-Region method, this means that for a sufficiently
small Trust-Region radius, all corrections are successful and applied. Thus, “eventually” means
an iterationν when the Trust-Region radius becomes sufficiently small. Therefore, in general we
assume that

Fk 6= Id

Along with the framework of Algorithm 4 this constitutes the sought-after nonlinear block Gauß-
Seidel framework.

3.3.4 Example: A Multilevel V-Cycle Algorithm

Here, we decompose idxn = {1, . . . , n} into a sequence of subsets with

idxn = C0 ) C1 ) . . . ) CN ′

idxn = C2N ′ ) C2N ′−1 ) . . . ) CN ′+1 = CN ′

Here we haveN = 2N ′ andCi = C2N ′+1−i. Moreover, the indices where the recursions return to
Dk are here given by

r0 = 2N ′, r1 = 2N ′ − 1, . . . , rN ′−1 = N ′ + 2

or simplyri = r2N ′+1−i. This multilevel decomposition may be the result of a successive refinement
of a mesh for a Finite Element discretization. In this case, the indices in idxn represent the Finite
Element basis functions.

We consider a simple example withn = 9 which may be the result of a uniform refinement of a
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simple, one dimensional mesh. In this example we have

C0 = {1, . . . , 9}, C1 = {1, 3, 5, 7, 9} andC2 = {1, 5, 9}
C5 = {1, . . . , 9}, C4 = {1, 3, 5, 7, 9} andC3 = {1, 5, 9}

Therefore, on each level we compute two smoothing steps, one before and one after the recursion.
As a matter of fact, the coarser levels cannot resolve the fine level unknowns2, 4, 6, 8. Therefore, it
is mandatory to also compute a smoothing step onC0 orC5.

3.3.5 The Construction of the Subset Obstacles in the Multiplicative Setting

As in the additive case, we assume that the interpolation operators satisfy property (3.2.6), i.e., that
the matrix components are either positive or zero. Now, ifCk−1 ⊃ Ck and for a given, admissible
iterateuk−1 ∈ Dk−1, the set of admissible subset solutions is given by

Bk(uk−1) = {uk ∈ Dk | φ
k
(uk−1) ≤ uk ≤ φk(uk−1)} (3.3.2)

with
(
φ

k
(uk−1)

)

j
= (P k

k−1uk−1)j + max
i

{ϑi(φ− uk−1)i : (Ik−1
k )ij > 0}

(
φk(uk−1)

)
j

= (P k
k−1uk−1)j + min

i
{ϑi(φ− uk−1)i : (Ik−1

k )ij > 0}

The scaling is defined by

ϑi =
1

∑nk

j=1(I
k−1
k )ij

wherenk = dimDk (cf., Lemma 3.2 [GM90]).
As in Section 3.2.3, we will prove that the multiplicatively computed corrections are admissible in
the context ofB.

Lemma 3.3.1. Assume that for allk and uk ∈ Bk(uk−1) that Fk(uk) ∈ Bk(uk−1). Moreover

assume thatDj = Rn, uν
j ∈ B and thatF (j)

M (uν
j ) = Aj(I

j
j−1sj−1, u

ν
j ). Moreover, suppose that the

recombination operator is given by

Ak(I
k
k−1sk−1, uk) =

{
uk + αkI

k
k−1sk−1 if Ik

k−1sk−1 is “sufficiently good”

uk otherwise

whereαk ∈ (0, 1]. Then, we obtain

F (j)
M (uν

j ) ∈ B

Proof. We will prove the proposition by showing that if the iterate on the previous level is admissible,
it yields an admissible recursively computed correction.
First we assume thatDk is the lowermost subset in the first recursion, such that no recursivelycom-
puted correction was applied yet. In particular this means that eachul for l < k was computed by
means ofFk(u), and, thus, is admissible, i.e.,ul ∈ Bl(ul−1), which is the induction statement.
Now we consider the case that a recursion was called fromDk−1. By assumption of this lemma, we
have thatFk(uk) ∈ Bk(uk−1). Thus, we have due to the definition of the subspace obstacles for
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uk = Fk(P
k−1
k uk−1) on setDk that

(uk)j ≥ (φ
k
)j = (P k

k−1uk−1)j + max
i

{ϑi(φk
− uk−1)i : (Ik−1

k )ij > 0}

whereφ
k

= φ
k
(uh) if Dk−1 6= Rn or φ if Dk−1 = Rn. Then we obtain

(uk − P k
k−1uk−1)j ≥ max

i
{ϑi(φ− uk−1)i : (Ik−1

k )ij > 0}

Now, we employ the definition ofϑi, thatαk ∈ (0, 1] and that(φ
k
− uk−1)i < 0 and obtain the

following estimation

(uk−1)i + αkI
k−1
k (uk − P k

k−1uk−1)i ≥ (uk−1)i + αk

nk∑

j=1

(Ik−1
k )ij max

i
{ϑi(φk

− uk−1)i : (Ik−1
k )ij > 0}

≥ (uk−1)i + αk(φk
− uk−1)i ≥ (uk−1)i + (φ

k
− uk−1)i

Thus, we obtain

(uk−1)i + αkI
k−1
k (uk − P k

k−1uk−1)i ≥ (φ
k
)i

Employing analogous arguments shows that

(uk−1)i + αkI
k−1
k (uk − P k

k−1uk−1)i ≤ (φk)i (3.3.3)

This means, that after interpolating the correction to levelk − 1, the resulting new iterate still is
admissible.
Therefore, we can inductively deduce that recursively computed corrections are admissible: by as-
sumption of this lemma and induction statement we have thatFk(uk) ∈ Bk(uk−1) and that

Ak

(
Ik
k+1

(
Sk+1(P

k+1
k Fk(uk)) − P k+1

k Fk(uk)
)
,Fk(uk)

)

is admissible. Together this yields that each iterate onDk is admissible inBk(uk−1) and proves the
proposition.

Therefore, we have just shown that a certain class of recombination operators can handle the mul-
tiplicative constraints. On the other hand, such results will not hold, if the recombination operator
is based, for instance, on a solution of linear systems of equations. In this case, one must solve this
linear system subject to the global constraints.
However, in the next two chapters we will introduce particular Linesearchand Trust-Region imple-
mentations of the just presented abstract concepts which give rise to the actual update operatorsFA

andFM which were employed for computing the numerical results in Chapter 5.5.



4 Nonlinear Additively Preconditioned
Globalization Strategies

As we have pointed out before, the convergence of globalization strategies particularly depends on
the nonlinearities of the objective function and, in turn, on the rescaling of the corrections and search
directions. In our case, the Trust-Region corrections are, due to the employed‖ · ‖∞-norm, rescaled
by means of box-constraints. But, different norms might generally lead to faster convergence. Thus,
in the late 1970s many researchers focused on reformulating the Trust-Region constraint by employ-
ing scaling matrices and different norms (cf., for instance [Mor78, DS83]). But the Trust-Region
rescaling may make the solution of the constrained quadratic minimization problem expensive (cf.,
for instance [Vav91]) and, in turn, the Trust-Region algorithm itself impracticable. Similarly, it may
be desirable to compute Linesearch step–length parameters which adaptively rescale the computed
search-direction.
The purpose of this chapter is to introduce two concrete implementations of the additive precon-
ditioning strategy presented in Section 3.2 which aim at the computation of new search directions
by the independent solution of local minimization problems. In particular, sinceduring the asyn-
chronous solution Trust-Region radii and Linesearch parameters can be chosen independently on
each subset, we derive a locally adaptive globalization strategy for (M).

4.1 Nonlinear Additively Preconditioned Trust–Region Methods

Obviously, the exact solution of local minimization problems as proposed in the PARALLEL VARI-
ABLE DISTRIBUTION framework is expensive and may, for objective functions with arbitrary non-
linearities, result in poor search directions. Therefore, we change thepoint of view, and consider
the adaptively computed corrections as corrections for the global problem (M). In particular, this
enables us to control the local step–length by means of one global Trust-Region radius which, by
construction, reflects the current nonlinearity ofJ from (M). In turn, we are not in the need to solve
a global minimization problem to compute a set of damping parameters. Therefore, we will just
extend the Trust-Region framework of Section 2.1 to the framework of nonlinear additive domain
decomposition methods, as presented in Section 3.2.3 to the following assumptions.

(Aapts1) For a given initial global iterateu0 ∈ B, and for allν ≥ 0, all k ∈ {1, . . . , N} and all initial
iteratesuν

k,0 = Pku
ν onDk, we assume that the level sets

L0
G = {u ∈ B | J(u) ≤ J(u0)}

and
Lν

k = {u ∈ Bk(u
ν) | Hν

k (u) ≤ Hν
k (uν

k,0)}
are nonempty and compact. Here, the subset objective functionsHν

k are given by (3.2.1),Pk

is defined as in Section 3.1.4 andBk(u
ν) is given by (3.2.8).
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(Aapts2) We assume thatJ is continuously differentiable onL0
G, and that for allν ≥ 0 and all

k ∈ {1, . . . , N} thatHν
k is continuously differentiable onLν

k. Moreover, we assume that
there exists a constantCg > 0 for all u ∈ L0

G anduk ∈ Lν
k such that‖∇J(u)‖2 ≤ Cg and

‖∇Hν
k (uk)‖2 ≤ Cg, respectively.

(Aapts3) We assume that for allν ≥ 0 and allk = {1, . . . , N} there exists a constantCB > 0
such that the norm of each symmetric matrixB(u), andBk(uk) in (2.1.1) is bounded, i.e.,
‖B(u)‖2 ≤ CB and‖Bk(uk)‖2 ≤ CB for all u ∈ L0

G anduk ∈ Lν
k.

Remark 4.1.1. In contrast to linear additive Schwarz methods, assumption (Aapts1) – (Aapts3) cannot
be derived from (Atr1) – (Atr3) since the subset objective function mainly consists of the nonlinear
objective functionJν

k , which may be chosen arbitrarily.

4.1.1 The APTS Framework

The paradigm of the NonlinearAdditive PreconditionedTrust-RegionStrategy, Algorithm 5, is to
combine a priori and a posteriori strategies to

1. compute sufficiently “good” corrections

2. ensure a sufficient decrease

In fact, we control the step–length of the locally computed corrections by means of a global Trust-
Region radius∆ν . Moreover, to prevent that the computations on some subsets dominate the whole
strategy, the computation on a subset will only be carried out, if a certain relationship between the
initial local gradient and current global gradient is satisfied, i.e., equation (4.1.6). To control that the
computed corrections really induce a sufficient decrease we introduce with equation (4.1.1) a new
decrease ratio. In combination with the local and global application of the Trust-Region algorithm,
Algorithm 1, we obtain a certain implementation of the abstract framework of Section 3.2, the APTS
algorithm, Algorithm 5.

Notation

During the parallel solution process we will employk instances of the Trust-Region Algorithm 1.
Therefore, in theν-th APTS cycle, on subsetDk, in iterationi of Algorithm 1 we will denote the
current iterate byuν

k,i and the Trust-Region radius by∆ν
k,i. Trust-Region corrections will be denoted

by sk,i. On the other hand, variables in the Trust-Region algorithm employed for a possible global
post–smoothing are denoted byuν

G,i, ∆ν
G,i and sG,i. The entities before computing the additive

corrections are∆ν = ∆ν
G,0 anduν = uν

G,0.

The Nonlinear Update Operator

In the context of the APTS method, Algorithm 5, the nonlinear subset updateoperatorFk from
equation (3.2.3) is realized by the application ofm Trust-Region iterations. Thus, we define for a
given global iterateuν ∈ Rn the local update operator as

Fk(Pku
ν) = uν

k,m

where,uν
k,m is the final iterate onDk. Thus, the locally computed corrections are defined as

sν
k = uν

k,m − Pku
ν = uν

k,m − uν
k,0
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Algorithm: APTS – Nonlinear Additively Preconditioned Trust-Region Algorithm

Input: J : Rn → R, B, u0 ∈ Rn,∆0 ∈ R+, n ∈ N
Constants: γ1, γ2, η ∈ R+,m,mG ∈ N

ν = 0
do {

Additive Preconditioning
On each subset where (4.1.6) holds,
call Algorithm 1 withm, dimDk︸ ︷︷ ︸

=n

, Bk(uν)︸ ︷︷ ︸
=B cf. (3.2.8)

, Hk︸︷︷︸
=J

, Pku
ν

︸ ︷︷ ︸
=u0

, ∆ν

︸︷︷︸
=∆0

and modified constraint (4.1.5) and Trust-Region update (4.1.4).

Update and Global Smoothing
computeρν by means of (4.1.1)
update∆ν by means of (2.1.4)

call Algorithm 1 withmG︸︷︷︸
=m

, n, B, J , FA(uν)︸ ︷︷ ︸
=u0

from (4.1.2), ∆ν

︸︷︷︸
=∆0

Iterate withuν+1 = uν
G,mG

and∆ν+1 = ∆ν
G,mG

, ν = ν + 1
}

Algorithm 5: APTS – Nonlinear Additively Preconditioned Trust-Region Algorithm

As we have seen, the nonlinear update operatorFA directly depends on a definition of “sufficiently
good”. In the traditional Trust-Region framework, this is measured employing the quotient of the
actual reduction inJ and the (by the quadratic modelψ (2.1.1)) predicted reduction. Similarly,
within the context of the RMTR method [GST08], the coarse level objective function also serves
as amodelwhich allows for employing the quotient between fine-level reduction and coarse level
reduction as adecrease ratio.
Following this approach, we will consider each subset objective functionas a model forJ . But, in
order to derive a decrease ratio in the additive context we have to take allsubset models into account
giving rise to the following additive decrease ratio

ρν =






J(uν)−J(uν+
∑

k∈Cν Iksν
k)

∑
k∈Cν (Hν

k (uν
k,0)−Hν

k (uν
k,m))

if ∃k : uν
k,0 6= uν

k,m

0 otherwise
(4.1.1)

whereCν = {k = 1, . . . , N | uν
k,m 6= uν

k,0}. Thus, in the APTS framework the nonlinear recombi-
nation operator is given by

Aν
APTS(I1s

ν
1 , . . . , INs

ν
N , u

ν) =

{
uν +

∑N
k=1 Iks

ν
k if ρν ≥ η

uν otherwise

Hence, we just defined the nonlinear additive update operator as

FA (uν) = Aν
APTS(I1s

ν
1 , . . . , INs

ν
N , u

ν) (4.1.2)

The nonlinear preconditioning concept as presented in Section 3.1 includesthe computation of post-
smoothing steps. In the APTS framework, this is the computation ofmG ∈ N, global Trust-Region
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smoothing steps.
As we will see, post-smoothing is necessary to ensure convergence in certain decomposition frame-
works, for instance when employing a multiscale decomposition. In this case,sν is computed by
means of a global Trust-Region algorithm starting fromFA(uν), i.e.,

J(FA(uν) + sν) ≤ J(FA(uν))

In the context of the linearized right preconditioning scheme (3.1.5) this means that we compute
mG = 1 Trust-Region steps by means of the modified Hessian in (3.1.5a).

The Local Trust-Region Update in the Additive Context

Since in this parallel Trust-Region framework each solver asynchronously computes a solution for
the respective local minimization problems (3.2.3), it becomes necessary to globally control the local
step–lengths. To this end, we employ the global Trust-Region radius as maximal step–length for
locally computed corrections. In order to ensure that the subset corrections stay within the current
global Trust-Region we have to modify the local Trust-Region update. In afirst step, the intermediate
radius is given by

∆̃ν
k,i ∈

{
(∆ν

k,i, γ2∆
ν
k,i] if ρν

k,i(sk,i) ≥ η

[γ1∆
ν
k,i,∆

ν
k,i) if ρν

k,i(sk,i) < η
(4.1.3)

Then, the new Trust-Region radius will be computed by employing

∆ν
k,i+1 =

{
min{∆̃ν

k,i,∆
ν − ‖Ik(uν

k,i+1 − uν
k,0)‖∞} if k ∈ {1, . . . , N}

∆̃ν
G,i otherwise

(4.1.4)

where∆ν is the current, global Trust-Region radius. On the other hand, to ensurethat the interpolated
subset corrections actually are smaller than the global Trust-Region radius, we employ the following
local Trust-Region constraint

‖sk,i‖k = ‖Iksk,i‖∞ ≤ ∆ν
k,i (4.1.5)

Ensuring “Uniform” Convergence of the Parallel Trust-Region Algorithms

The analysis of Trust-Region algorithms (cf., Section 2.1) shows, that if theTrust-Region radius
becomes sufficiently small, the decrease ratio which is the comparison betweenactual and predicted
reduction as defined in equation (2.1.3) becomes sufficiently large. In other words, sufficiently small
corrections are actually applied and convergence can be achieved. Inthe additive framework, we now
have to controlN separate Trust-Region algorithms, which – depending on the current nonlinearity
of the respective objective function – may behave completely different. Thus, it may be possible that
on some subsets the Trust-Region algorithms straight-forwardly compute local minimizers forHν

k ,
but on different subsets corrections are not applied since the decrease ratios are not sufficiently large.
Since, by construction of the APTS algorithm, the initial Trust-Region radius on each subset is given
by the current global radius and the number of Trust-Region iterations oneach level is limited (cf.,
Algorithm 5), we introduce an additional criterion to enforce “uniform” convergence on all subsets:

‖ĝν
k,0‖2 ≥ κg‖ĝν‖2 (4.1.6)

where 0 < κg is a constant, chosen problem dependent,ĝν
k,i = Dν

k,i∇Hν
k (uν

k,i) and ĝν =
D(uν)∇J(uν). Here,Dν

k,i = Dν
k(uν

k,i) is the local scaling matrix onBk(u
ν) as given by (2.1.6). In
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general,κg must be chosen sufficiently small such that computations on all subsets frequently take
place. In the case of overlapping domain decomposition methods, as presented in Section 3.1.6, we
choose

κg ≤ 1√
n

min
i,k

{µik} (4.1.7)

In the case of non–overlapping methods, we choose

κg ≤ 1√
n

(4.1.8)

4.1.2 Convergence to First-Order Critical Points

As we have seen in Lemma 3.2.1, local iterates which do not violateBk(u
ν) as defined in (3.2.8)

yield admissible additive corrections, i.e.,

uν +
∑

k

Iks
ν
k = uν +

∑

k

(
Ik(u

ν
k,m − Pku

ν)
)
∈ B

By construction the Trust-Region algorithm, Algorithm 1, computes admissible subset iterates and
yields, in turn, admissible additive corrections. Though, we have to show that the constraint (4.1.4)
ensures that each locally computed correction

Iks
ν
k = Ik(u

ν
k,m − Pku

ν)

does not violate the Trust-Region constraint‖Iksν
k‖∞ ≤ ∆ν .

Lemma 4.1.2. For all ν ≥ 0, all k ∈ {1, . . . , N} and eachsν
k computed and accepted in algorithm

APTS, it holds
‖Iksν

k‖∞ ≤ ∆ν (4.1.9)

Proof. Due to∆ν
k,0 = ∆ν , the Trust-Region update criterion (4.1.4) and the Trust-Region constraint

(4.1.5) we have

‖Ik(uν
k,l − uν

k,0)‖∞ ≤ ‖Ik(uν
k,l−1 − uν

k,0)‖∞ + ‖Iksk,l−1‖∞
≤ ‖Ik(uν

k,l−1 − uν
k,0)‖∞ + ∆ν − ‖Ik(uν

k,l−1 − uν
k,0)‖∞ = ∆ν

for all l = 1, . . . ,m which proves the proposition.

In Section 2.1.4 we have seen that the sufficient decrease condition is the key to prove convergence
to first–order critical points of Trust-Region methods. Since each Trust-Region correction in Algo-
rithm 1 satisfies the sufficient decrease condition, we are able to prove that also the subset corrections
induce a sufficient decrease of the objective functionJ .

Lemma 4.1.3. Let assumptions (Aapts1), (Aapts2) and (Aapts3) hold. Then we obtain for all subspace
corrections

∑
k∈Cν Iks

ν
k which are accepted in Algorithm 5 the following estimation

J(uν) − J(FA(uν)) ≥ βη2
∑

k∈Cν

κg‖ĝν‖2 min {κg‖ĝν‖2, γ
m
1 ∆ν} (4.1.10)

Here we usedCν = {k : uν
k,m 6= uν

k,0}, the subsets where corrections were successfully computed.
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Proof. First, we use the definition ofρν from (4.1.1) and obtain

J(uν) − J(FA(uν)) ≥ η
∑

k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))

Let us denote by∗ the index of the first successful (and therefore applied) correction on subsetk.
Now, we employ the sufficient decrease condition (2.1.7) which provides the following estimation

J(uν) − J(FA(uν)) ≥ η
∑

k∈Cν

(
Hν

k (uν
k,0) −Hν

k (uν
k,m)

)

≥ η
∑

k∈Cν

(
Hν

k (uν
k,0) −Hν

k (uν
k,0 + sk,∗)

)

≥ βη2
∑

k∈Cν

‖ĝν
k,0‖2 min{‖ĝν

k,0‖2,∆
ν
k,∗}

Now, we employ that∆ν
k,∗ ≥ γm

1 ∆ν
k,0, ∆ν

k,0 = ∆ν and‖ĝν
k,0‖2 ≥ κg‖ĝν‖2 and obtain

J(uν) − J(FA(uν)) ≥ βη2
∑

k∈Cν

κg‖ĝν‖2 min {κg‖ĝν‖2, γ
m
1 ∆ν}

which proves the lemma.

The following lemma shows that, similarly to Trust-Region corrections, also additive corrections are
eventually applied, if the Trust-Region radius becomes sufficiently small. Thisresult is mainly due
to the fact that the modified residual inHν

k contains the restricted global gradient. Along with the
mean value theorem we will be able to show that the denominator converges to the nominator inρν

from (4.1.1).

Lemma 4.1.4. Let assumptions (Aapts1), (Aapts2) and (Aapts3) hold and suppose that‖ĝk(u
ν
k,i)‖2 ≥

ε > 0 and that (4.1.6) holds for at least one subset. Then, for sufficiently small∆ν , corrections are
computed additively and are successful, i.e.,

ρν ≥ η

whereρν is as defined in (4.1.1).

Proof. Due to the assumptions of this lemma, Lemma 2.1.2 is applicable and we obtain that if∆ν is
sufficiently small, corrections are computed onDk.
Next, we analyze the acceptance criterion inFA(u). We employ the mean value theorem to refor-
mulate the numerator ofρν

J(uν) − J(uν +
∑

k∈Cν

Iks
ν
k) = −〈∇J(ξν),

∑

k∈Cν

Iks
ν
k〉

= −
∑

k∈Cν

〈∇J(ξν), Iks
ν
k〉

= −
∑

k∈Cν

〈Rk∇J(ξν), sν
k〉

for sufficiently small∆ν . Here, we definedξν = uν + τν
∑

k∈Cν

sν
k, the subset correctionsν

k =
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uν
k,m − uν

k,0 andτν ∈ (0, 1). This yields

ρν =
J(uν) − J(uν +

∑
k∈Cν Iks

ν
k)∑

k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
=

−∑k∈Cν 〈Rk∇J(ξν), sν
k〉∑

k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))

Next we add±
( ∑

k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
)

to the numerator ofρν which provides

ρν =
−
(∑

k∈Cν (Hν
k (uν

k,0) −Hν
k (uν

k,m))
)
−∑k∈Cν 〈Rk∇J(ξν), sν

k〉∑
k∈Cν (Hν

k (uν
k,0) −Hν

k (uν
k,m))

+ 1 (4.1.11)

The mean value theorem and the definition of the objective functionsHν
k provide for sufficiently

small∆ν andsν
k ∈ Dk

0 < Hν
k (uν

k,0) −Hν
k (uν

k,m)

= Jν
k (uν

k,0) − Jν
k (uν

k,m) − 〈δgν
k , s

ν
k〉

= −〈∇Jk(ξ
ν
k ), sν

k〉 − 〈Rk∇J(uν) −∇Jν
k (uν

k,0), s
ν
k〉

(4.1.12)

whereξν
k = uν

k,0 + τν
k s

ν
k andτν

k ∈ (0, 1). Now, we employ (4.1.12) and reformulate (4.1.11)

ρν =
κ1 + κ2∑

k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
+ 1

where

κ1 =
∑

k∈Cν

〈∇Jν
k (ξν

k ) −∇Jν
k (uν

k,0), s
ν
k〉

κ2 =
∑

k∈Cν

〈−Rk∇J(ξν) +Rk∇J(uν), sν
k〉 =

∑

k∈Cν

〈−∇J(ξν) + ∇J(uν), Iks
ν
k〉

Both terms,κ1 andκ2, will now be estimated by∆ν and some variableεC > 0.
Since∇Jν and∇Jν

k are continuous on a compact set, we obtain uniform continuity of both functions,
i.e., for allεC > 0 exists a∆C > 0 such that for all‖ξν

k − uν
k,0‖∞ ≤ ∆ν ≤ ∆C and‖ξν − uν‖∞ ≤

∆ν ≤ ∆C the following holds

‖∇Jk(ξ
ν
k ) −∇Jν

k (uν
k,0)‖2 ≤ εC and‖∇J(ξν) −∇J(uν)‖2 ≤ εC

We employ Cauchy-Schwarz’s inequality, Lemma 4.1.2 and (3.1.13b) and obtain

−|κ1| ≥ −
∑

k∈Cν

‖∇Jk(ξ
ν
k ) −∇Jν

k (uν
k,0)‖2‖sν

k‖2 ≥ −
∑

k∈Cν

εC‖sν
k‖2

≥ −
∑

k∈Cν

εCc
−1
I ‖Iksν

k‖2 ≥ −
∑

k∈Cν

√
nεCc

−1
I ‖sν

k‖k ≥ −
∑

k∈Cν

√
nεCc

−1
I ∆ν

−|κ2| ≥ −
∑

k∈Cν

εC‖sν
k‖k ≥ −

∑

k∈Cν

√
nεC∆ν

Thus, we employ the previous inequalities and (2.1.7), i.e., the positivity of the denominator, and
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obtain

ρν ≥ − |κ1| + |κ2|∑
k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
+ 1

≥ − (1 + c−1
I )

∑
k∈Cν εC

√
n∆ν

∑
k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
+ 1

≥ − (1 + c−1
I )N

√
nεC∆ν

∑
k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
+ 1

Note that the sufficient decrease condition, equation (2.1.7), gives riseto

Hν
k (uν

k,0) −Hν
k (uν

k,m) ≥ Hν
k (uν

k,0) −Hν
k (uν

k,∗)

where∗ denotes the first successful correction on subsetDk. Moreover, we have due to the definition
of the Trust–Region update that∆ν

k,∗ ≥ γm
1 ∆ν . Therefore we employ‖ĝν

k,0‖2 ≥ κg‖ĝν‖2 ≥ κgε
and (2.1.7) and obtain for∆ν sufficiently small

Hν
k (uν

k,0) −Hν
k (uν

k,∗) ≥ ηβκgεmin {κgε, γ
m
1 ∆ν} ≥ ηβκgεγ

m
1 ∆ν

Now, we can conclude

ρν ≥ − (1 + c−1
I )N

√
nεC∆ν

∑
k∈Cν

(Hν
k (uν

k,0) −Hν
k (uν

k,m))
+ 1

≥ −(1 + c−1
I )N

√
nεC∆ν

∑
k∈Cν

ηβκgεγm
1 ∆ν

+ 1 ≥ −(1 + c−1
I )N

√
nεC

ηβκgεγm
1

+ 1

Therefore, we have for sufficiently smallεC and∆ν thatρν ≥ η and, thus, each correctionsν =∑
k∈Cν Iks

ν
k is successful, which proves the proposition.

The next lemma considers the special case of overlapping and non-overlapping domain decomposi-
tion methods, as introduced in Section 3.1.6. In this case, one may prove that for sufficiently small
∆ν

1. condition (4.1.6) is satisfied for at least one domain

2. on each domain where (4.1.6) holds, a Trust-Region correction will be applied

Lemma 4.1.5. Let assumptions (Aapts1), (Aapts2) and (Aapts3) hold, and assume that‖ĝν‖2 ≥ ε > 0
for all ν > 0. Suppose that eitherRn is overlappingly decomposed and (4.1.7) holds, or thatRn is
non-overlappingly decomposed and (4.1.8) holds1. Then, if∆ν is sufficiently small, we obtain

Cν 6= ∅

whereCν = {k : uν
k,m 6= uν

k,0} is the set of computed subset corrections in Algorithm 5.

1The respective definitions of these decompositions are given in Section 3.1.6
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Proof. To prove the proposition, we have to show that there exists at least one subsetDk where
(4.1.6) holds and whereuν

k,m 6= uν
k,0.

First we consider the case of a non–overlapping domain decomposition. Due to the definition of the
subsets, the definition ofRk, ‖v‖∞ ≤ ‖v‖2 ≤ √

n‖v‖∞ and, by (4.1.8),κg ≤ 1√
n

, we obtain that

there exists ak ∈ {1, . . . , N} such that

‖ĝν
k,0‖2 = ‖Dk(u

ν
k,0)Rk∇J(uν)‖2 ≥ ‖Dk(u

ν
k,0)Rk∇J(uν)‖∞

= ‖D(uν)∇J(uν)‖∞
≥ 1√

n
‖D(uν)∇J(uν)‖2

≥ κg‖D(uν)∇J(uν)‖2

(4.1.13)

Thus, on this subsetDk (4.1.6) is satisfied.
Now we consider the overlapping case. Similar to the non-overlapping case, we obtain by construc-
tion of the interpolation operator (3.1.21) and assumption (4.1.7) that there exists at least one subset
k such that the following inequality holds

‖ĝν
k,0‖2 = ‖Dk(u

ν
k,0)Rk∇J(uν)‖2 ≥ ‖Dk(u

ν
k,0)Rk∇J(uν)‖∞

= min
i,k

{µik}‖D(uν)∇J(uν)‖∞
≥ 1√

n
min
i,k

{µik}‖D(uν)∇J(uν)‖2

≥ κg‖D(uν)∇J(uν)‖2

(4.1.14)

In combination with∆ν sufficiently small and Lemma 2.1.2 we obtain that in both casesCν is non–
empty.

Now, we are able to prove the central result of this section namely that Algorithm 5 generates a
sequence of iterates with at least one first-order critical accumulation pointfor problem (M).

Theorem 4.1.6.Let assumptions (Aapts1), (Aapts2), (Aapts3) hold and suppose that we have either an
overlapping or non-overlapping domain decomposition with constants from(4.1.7) and (4.1.8) or
thatmG > 0 global post-smoothing Trust-Region steps are computed. Then for eachsequence of
global iterates(uν

G,i)i,ν computed in Algorithm 5 it holds

lim inf
ν→∞,i∈{0,...,mG}

‖ĝ(uν
G,i)‖2 = 0 (4.1.15)

Proof. We prove this proposition by contradiction. Assume that there exists anν0 > 0 andε > 0
such that‖ĝ(uν

G,i)‖2 ≥ ε for all ν ≥ ν0 and alli ∈ {0, . . . ,mG}. We will show, that this assumption
implies that∆ν

G,i → 0 for ν → ∞ andi ∈ {0, . . . ,mG} and, in turn,ρν
G,i, ρ

ν → 1 which contradicts
∆ν

G,i → 0.
First, we will prove that∆ν → 0 for ν → ∞. If there is only a finite number of successful correc-
tions, we have due to the definition of∆ν

G,i that∆ν
G,i → 0 for ν → ∞.

On the other hand, if the sequence of successful corrections owns infinitely many terms, (2.1.7) and
Lemma 4.1.3 imply for such corrections

J(uν
G,i+1) < J(uν

G,i) andJ(FA(uν)) < J(uν)

Therefore, we have due to (Aapts1), i.e., the compactness ofL0
G, that

J(uν
G,i) − J(uν

G,i+1) → 0 andJ(uν) − J(FA(uν)) → 0
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for ν → ∞. The fact that for all unsuccessful corrections∆ν
G,i+1 < ∆ν

G,i, the respective sufficient
decrease conditions (2.1.7), (4.1.10) and‖ĝν

G,i‖2 ≥ ε now provide that

∆ν
G,i → 0

In fact, now for sufficiently small∆ν
G,i Lemma 2.1.2 and Lemma 4.1.4 eventually yield thatρν

G,i ≥ η
for all i ∈ {0, . . . ,mG}. But:

• If mG > 0, this would yield that∆ν+1 > ∆ν and∆ν
G,i+1 > ∆ν

G,i and, therefore, that the
sequence(∆ν

G,i)i,ν is bounded from below.

• If mG = 0 and the decomposition is overlapping or non-overlapping, then Lemma 4.1.5 pro-
vides for sufficiently small∆ν

G,i thatCν 6= ∅. Therefore, this would yield that∆ν+1 > ∆ν

and that the sequence(∆ν
G,i)i,ν is bounded from below.

Together, this proves the proposition.

The next theorem is closely related to Theorem 5.1.6 and shows that all limit points are first–order
critical points.

Theorem 4.1.7.Let assumptions (Aapts1), (Aapts2) and (Aapts3) hold. Then Algorithm 5 generates a
sequence of iterates converging to a first–order critical point, i.e.,

lim
ν→∞

‖ĝν‖2 = 0 (4.1.16)

Proof. The proof of this theorem is the same like for Theorem 2.1.4 with the only difference, that de-
pending on the correction (additively computed, or by means of the global Trust-Region algorithm),
the sufficient decrease condition looks differently. Therefore, it suffices to substitute (2.1.15) by the
following, weaker condition

J(uν
G,i) − J(uν

G,i+1) ≥ η2β
∑

k∈Cν

ε2 min{ε2, γm
1 ∆ν

G,i}

for all i ∈ {0, . . . ,m}, wherei = 0 denotes the additively computed correction.

4.2 Nonlinear Additively Preconditioned Linesearch Methods

In 1995, O.L.. Mangasarian introduced the parallel gradient distribution (PGD), an asynchronous
Linesearch algorithm [Man95]. The paradigm of the PGD method is to asynchronously compute
local correctionssk which serve as a starting point for the computation of a global update

sk ∈ Dk : J(u+ Iksk) − J(u) ≥ ρPGD‖∇J(u)‖2
2 (4.2.1a)

s ∈ Rn : J(u+ s) ≤ min
k
J(u+ Iksk) (4.2.1b)

whereρPGD > 0. As a matter of fact, this algorithm can be regarded as a globalization strategy.
Though, it is not clear, how to cheaply compute the sought-after correction s within (4.2.1b). Indeed,
one might solve another nonconvex minimization problem to compute a set of damping parameters
or one just employs the “best” correctionsk.
To avoid disposingN − 1 corrections and to avoid the solution of another complex minimization
problem, respectively, we will consider the asynchronously computed search directions as a search
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direction for the global problem. This allows for employing the traditional backtracking scheme to
compute a Linesearch parameter as a solution of a scalar problem. Along with apriori assumptions
and the subset objective functionHν

k from (3.2.1) this allows for proving convergence of a clearly
stated asynchronous Linesearch algorithm.

4.2.1 The APLS Framework

The algorithm of this section, theAdditively PreconditionedL inesearchStrategy, Algorithm 7, is
the second implementation of the abstract additive preconditioning frameworkfrom Section 3.2.
The APLS consists of three phases: an asynchronous solution phase,a recombination phase and a
possible global Linesearch smoothing phase. Similar to the APTS algorithm, we are interested in the
framework’s efficiency (cf., Chapter 5.5) and robustness. Surprisingly, besides the actual algorithmic
framework, it suffices to slightly extend the assumptions of Section 2.2 for proving convergence:

(Aapls1) For the given initial global iterateu0 ∈ B, for all ν ≥ 0 and all initial iterates onDk, i.e.,
uν

k,0 ∈ Bk(u
ν), it is assumed that the level sets

L0
G = {u ∈ B | J(u) ≤ J(u0)}

and
Lν

k = {u ∈ Bk(u
ν) | Hν

k (u) ≤ Hν
k (uν

k,0)}
are nonempty and compact. HereHν

k is defined in (3.2.1) andBk(u
ν) is given by (3.2.8).

(Aapls2) We assume thatJ is continuously differentiable onL0
G, as well as, for allν ≥ 0 and all

k = 1, . . . , N thatHν
k is continuously differentiable onLν

k. Moreover, we assume that for
all u ∈ L0

G anduk ∈ Lν
k the respective gradients are Lipschitz continuous with a constant

Lg > 0, i.e.,
‖∇J(u) −∇J(u+ s)‖2 ≤ Lg‖s‖2

and
‖∇Hν

k (uk) −∇Hν
k (uk + sk)‖2 ≤ Lg‖sk‖2

for s ∈ Rn such thatu+ s ∈ B, andsk ∈ Dk such thatuk + sk ∈ Bk(u
ν), respectively.

The Nonlinear Update Operator

Similar to the mechanisms of the previous section, the nonlinear operatorFk is the result ofm
iterations of the Linesearch algorithm, Algorithm 6, employed onDk. In this case, the Linesearch
algorithm stops after computinguν

k,m, the final iterate on this subset, which gives rise to the following
definition

Fk(Pku
ν) = uν

k,m

whereuν is the current global iterate. Therefore, we define the locally computed correction as

sν
k = Fk(Pku

ν) − Pku
ν = uν

k,m − Pku
ν

Since we consider a Linesearch framework, a damping parameter within the recombination operator
FA in Lemma 3.2.1, now becomes active and corrections will always be damped and applied. Thus,
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the APLS recombination operator is given by

Aν
APLS(I1s

ν
1 , . . . , INs

ν
N , u

ν) = uν + αν
N∑

k=1

Iks
ν
k

In particular,αν ∈ (0, α0] with α0 ≤ 1 will now be chosen such that the Armijo condition (2.2.5) is
satisfied. Hence, the nonlinear additive update operator is given by

FA(uν) = Aν
APLS(I1s

ν
1 , . . . , INs

ν
N , u

ν) (4.2.2)

Notation

We will employ the same notation as in the Trust-Region framework: the additive solution process
will employ N instances of the Linesearch Algorithm 6. Afterwards we computemG ≥ 0 global
Linesearch steps to smooth globally. Therefore,ν counts the number of APLS cycles,k denotes the
current context, i.e.,k ∈ {1, . . . , N} denotes a subset,k = G the global post-smoothing context and
the indexi will count the Linesearch iterations.

4.2.2 A Modified Armijo Condition for the Additive Context

Similar to the APTS context, we need several assumptions on the algorithm. To thisend, we extend
the Armijo-Condition (2.2.5) to the additive preconditioning context yielding the following Armijo
condition:

Hν
k (uν

k,i + αν
k,isk,i) ≤ Hν

k (uν
k,i−1) + ρAα

ν
k,i〈sk,i, g

ν
k,i〉 (4.2.3)

whereρA ∈ (0, 1) (from (2.2.5)) andgν
k,i = ∇Hν

k (uν
k,i). Moreover, on each subset, we demand that

beginning from the second subset iteration the following inequality holds.

〈uν
k,i − uν

k,0 + αν
k,isk,i, g

ν
k,0〉 ≤ ρR〈uν

k,1 − uν
k,0, g

ν
k,0〉 (4.2.4)

where0 < ρR ≤ ρA < 1. Both conditions, (4.2.3) and (4.2.4), will now ensure that each subset
search direction is a descent direction forJ . On the other hand, condition (4.2.4) is weak enough, to
leave space for an iterative minimization process ofHν

k onDk.
The following lemma addresses the fact that, if the subset objective function’s Hessians are positive
semi-definite, assumption (4.2.4) is trivially satisfied if the Armijo condition holds.

Lemma 4.2.1. Assume that (Aapls1) and (Aapls2) hold and thatHν
k is twice continuously differen-

tiable. Moreover assume that the Hessians ofHν
k are positive semi-definite, i.e.,

0 ≤ 〈s,∇2Hν
k (u)s〉

for all u ∈ Dk and all s ∈ Dk : u + s ∈ Bk(u
ν). Suppose furthermore that all search directions

satisfy (2.2.2b) and (4.2.3). Then assumption (4.2.4) is satisfied ifαν
k,i ∈ (0, α0] satisfies (4.2.3).

Proof. We employ Taylor’s theorem along with the positive semi-definiteness of the Hessians and
obtain

Hν
k (uν

k,0 + s) −Hν
k (uν

k,0) = 〈s, gν
k,0〉 +

1

2
〈s,∇2Hν

k (ξ)s〉 ≥ 〈s, gν
k,0〉

for all s : uν
k,0 + s ∈ Bk(u

ν). Here we employedξ = uν
k,0 + τs andτ ∈ (0, 1). Therefore the
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Figure 4.1: This figure illustrates, how the subset criterion (4.2.8) works. The initial Linesearch parameter
αν

k,0 on Dk is chosen such that just the Armijo condition holds. Note that within the presented example,
the gradient is a negative scalar and the initial search direction is a positive scalar. Therefore, the step–
length constraint prevents moving back touν

k,0. On the other hand, the blue dotted line represents the Armijo
condition. Both together yield the set of admissible step–lengthsα, as indicated by the interval in between the
dotted lines.

following inequality holds

Hν
k (uν

k,i + αν
k,isk,i) −Hν

k (uν
k,0) ≥ 〈uν

k,i + αν
k,isk,i − uν

k,0, g
ν
k,0〉 (4.2.5)

On the other hand, we employ the decrease condition (2.2.2b) and the Armijo condition (4.2.3) and
obtain

0 ≥ ρA〈αν
k,0sk,0, g

ν
k,0〉 ≥ Hν

k (uν
k,0 + αν

k,0s
ν
k,0) −Hν

k (uν
k,0) (4.2.6)

Thus, since in every iteration (4.2.3) holds, we obtain

ρA〈uν
k,1 − uν

k,0, g
ν
k,0〉 ≥ Hν

k (uν
k,1) −Hν

k (uν
k,0) ≥ . . . ≥ Hν

k (uν
k,i) −Hν

k (uν
k,0) (4.2.7)

Thus, we may combine the inequalities (4.2.5), (4.2.7), the fact that in iterationi the Armijo condition
holds andρR ≤ ρA to

ρR〈uν
k,1 − uν

k,0, g
ν
k,0〉 ≥ ρA〈uν

k,1 − uν
k,0, g

ν
k,0〉

≥ Hν
k (uν

k,1) −Hν
k (uν

k,0)

≥ Hν
k (uν

k,i + αν
k,isk,i) −Hν

k (uν
k,0)

≥ 〈uν
k,i + αν

k,isk,i − uν
k,0, g

ν
k,0〉

which proves the proposition.

A Practicable Descent Condition

Even if for convex functions assumption (4.2.4) may easily be satisfied, our aim is to introduce a
practicable backtracking algorithm which is able to compute an appropriate step–length satisfying
(4.2.4). To this end, we introduce the following, altered descent condition,which will substitute
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Modified Linesearch Algorithm

Input: uν
k,0 ∈ Dk, Bk, k ∈ N ∪ {G},m, nk ∈ N

Output: uν
k,m ∈ Dk

i = 0
do until (i = m) {

if (Dk 6= Rn and i > 0) {
compute a search directionsk,i satisfying (2.2.2a) and (4.2.10a) anduk,i + sk,i ∈ Bk

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,i satisfying (4.2.3) and (4.2.8)

} else if(Dk 6= Rn) {
compute a search directionsk,i satisfying (2.2.2a) and (2.2.2b) anduk,i + sk,i ∈ Bk

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,i satisfying (4.2.3)

} else{
compute a search directionsG,i satisfying (2.2.2a) and (2.2.2b) anduG,i + sG,i ∈ B
call the Backtracking Algorithm 2 to compute a step–lengthαν

k,i satisfying (2.2.5)
}
setuν

k,i+1 = uν
k,i + αν

k,is
ν
k,i

i = i+ 1
}

return uν
k,m

Algorithm 6: Modified Linesearch Algorithm

(4.2.4) in our analysis and in the actual implementation of the APLS algorithm:

〈uν
k,i − uν

k,0 + αν
k,isk,i, g

ν
k,0〉 ≤ ρAP 〈uν

k,i − uν
k,0, g

ν
k,0〉 (4.2.8)

where1 > ρAP > 0 is chosen such thatρR ≤ ρm
AP . An illustration of this criterion is given in

Figure 4.1. Moreover, it implies (4.2.4), since

〈uν
k,i − uν

k,0 + αν
k,isk,i, g

ν
k,0〉 ≤ ρAP 〈uν

k,i − uν
k,0, g

ν
k,0〉 ≤ . . . ≤

≤ ρi−1
AP 〈uν

k,1 − uν
k,0, g

ν
k,0〉

≤ ρR〈uν
k,1 − uν

k,0, g
ν
k,0〉 < 0

In particular, we obtain

〈uν
k,m − uν

k,0, g
ν
k,0〉 ≤ ρm

AP 〈uν
k,1 − uν

k,0, g
ν
k,0〉 ≤ ρR〈uν

k,1 − uν
k,0, g

ν
k,0〉 (4.2.9)

The following lemma addresses the question, if the backtracking algorithm in Algorithm 6 is able to
compute a Linesearch parameterα such that both conditions, (4.2.3) and (4.2.8) hold.

Lemma 4.2.2. Assume that (Aapls1) and (Aapls2) hold. Suppose thati > 0 and all computed search
directions onDk were descent directions satisfying (2.2.2b) and that in each iteration condition
(4.2.3) and (4.2.8) hold. Then, for a given descent directionsk,i ∈ Dk, there exists anαν

k,i ≤ α0 ≤ 1
such thatuν

k,i + αν
k,isk,i satisfies (4.2.3) and (4.2.8).

Proof. Since the rayρAα
ν
k,0〈sk,0, g

ν
k,0〉 lies for sufficiently smallαν

k,0 aboveHν
k (uν

k,0 + αν
k,0sk,0) −

Hν
k (uν

k,0) andsk,0 is a descent direction, we obtain that (4.2.3) holds.
Now, assume thati > 0. Moreover, since (2.2.2b) holds, we obtain that there exists anα′ > 0 such
that for allαν

k,i ∈ (0, α′] the Armijo condition, equation (4.2.3), holds. On the other hand, since



4 Nonlinear Additively Preconditioned Globalization Strategies 67

ρAP < 1, and since (4.2.8) holds for each computed iterate, we obtain

〈uν
k−1,i − uν

k,0, g
ν
k,0〉 ≤ ρk−1

AP 〈uν
1,i − uν

k,0, g
ν
k,0〉

Therefore, for sufficiently smallαν
k,i also inequality (4.2.8) is satisfied, even if〈sk,i, g

ν
k,0〉 > 0.

Together this proves the proposition.

Similar to the argumentation for the APTS algorithm, additively computed corrections employing the
Linesearch algorithm, Algorithm 3 are by Lemma 3.2.1 admissible corrections forB. Moreover, like
in the original Linesearch algorithm, we have to ensure that the lengths of thesubset search directions
are limited by the norm of the initial subset gradient. To this end, we introduce the following criterion

‖uν
k,i − uν

k,0 + sk,i‖2
∞ ≤ βls‖ĝν

k,0‖2
∞ (4.2.10a)

‖sk,i‖2
∞ ≤ βls‖ĝν

k,i‖2
∞ (4.2.10b)

for all i = 0, . . . ,m− 1 andk = 1, . . . , N . Hereβls > 0 is the constant from the initial step–length
criterion (2.2.2a) and̂gν

k,i = Dν
k,i∇Hν

k (uν
k,i). As a matter of fact, (4.2.10a) which gives rise to

‖uν
k,m − uν

k,0‖2
∞ ≤ βls‖ĝν

k,0‖2
∞

since the step–length parameter satisfies0 < αν
k,i ≤ 1. Moreover, in order to handle both inequalities

in (4.2.10) one might substitute (4.2.10) by

‖sν
k,i‖2

∞ ≤ min{βls‖ĝν
k,0‖2

∞ − ‖uν
k,i − uν

k,0‖2
∞, βls‖ĝν

k,i‖2
∞}

Now, we are able to introduce the APLS algorithm, Algorithm 7, which is an actual Linesearch
implementation of the abstract additive framework of Chapter 3. By construction, this nonlinear
solution strategy, combines a priori assumptions on the additively computed search directions, i.e.,
(4.2.8) and (4.2.10) to ensure that these search directions are descentdirections for the objective
functionJ from (M). As it turns out, together with the Armijo condition as a posteriori step–length
control strategy, we are able to show that APLS is a globalization strategy.

4.2.3 Convergence to First–Order Critical Points

Like in Section 2.2, we will show that the APLS algorithm satisfies a sufficient decrease condition.
This will be carried out by showing that the step–length parameters are bounded from below and by
showing that the additive search directions satisfy a descent condition similar to (2.2.2b).

Lemma 4.2.3. Suppose that (Aapls1) and (Aapls2) hold. Then for each global smoothing step and
each initial subset step in Algorithm 7 the Armijo condition (4.2.3) is satisfied for

2αmin = 2
ηls(1 − ρA)

nLgβls

Moreover, we obtain for the step–lengthαν
k,i of each global smoothing step and each initial subset

correction
min{α0, 2ταmin} ≤ αν

k,i

where, by definition,α0 ≤ 1.
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Algorithm: APLS – Nonlinear Additively Preconditioned Linesearch Algorithm

Input: J : Rn → R, B, u0 ∈ Rn, n ∈ N
Constants: m,mG ∈ N

do {

Additive Preconditioning
On each subsetk where (4.1.6) holds,
call the Linesearch algorithm, Algorithm 6, withPku

ν

︸ ︷︷ ︸
=uν

k,0

, Bk(uν)︸ ︷︷ ︸
=Bk cf. (3.2.8)

, k,m, dimDk︸ ︷︷ ︸
=nk

Global Smoothing
call Algorithm 6 withFA(uν)︸ ︷︷ ︸

=uν
G,0

from (4.2.2), B︸︷︷︸
=Bk

, G︸︷︷︸
=k

, mG︸︷︷︸
=m

, dimDk︸ ︷︷ ︸
=nk

Iterate withuν+1 = uν
G,mG

, ν = ν + 1
}

Algorithm 7: APLS – Nonlinear Additively Preconditioned Linesearch Algorithm

Proof. Due to the assumptions, the proof follows exactly the proof of Lemma 2.2.2 and Lemma 2.2.3.

Lemma 4.2.4. Assume that (Aapls1) and (Aapls2) hold. Then each additively computed correctionsν

in Algorithm 7 satisfies the descent condition

−〈gν , sν〉 ≥ κ2
gρ

m
AP ηls min{α0, 2ταmin}‖ĝν‖2

2

whereαmin = 2ηls(1−ρA)
nLgβls

. Moreover we employedsν =
∑

k∈Cν Iks
ν
k andCν = {k : sν

k = uν
k,m −

uν
k,0 6= 0}, i.e., the indices of the subsets, where corrections where computed.

Proof. Due to the definition of the subset objective function we havegν
k,0 = ∇Hν

k (uν
k,0) = Rkg

ν .
Now we use the definition ofRk andsν and obtain

−〈gν , sν〉 = −
∑

k∈Cν

〈gν , Ik(u
ν
k,m − uν

k,0)〉

= −
∑

k∈Cν

〈Rkg
ν , uν

k,m − uν
k,0〉

= −
∑

k∈Cν

〈gν
k,0, u

ν
k,m − uν

k,0〉

Since each correction is a descent direction which satisfies (4.2.8), we employ (4.2.9) which gives
rise to

−〈gν , sν〉 ≥ −ρm
AP

∑

k∈Cν

〈gν
k,0, α

ν
k,0sk,0〉

Now we may apply Lemma 4.2.3 and obtain

−〈gν , sν〉 ≥ −ρm
AP min{α0, 2ταmin}

∑

k∈Cν

〈gν
k,0, sk,0〉
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Since each (initial) search direction onDk satisfies (2.2.2b) and since‖ĝν
k,0‖2

2 satisfies (4.1.6), i.e.,
the relationship to‖ĝν‖2

2, we have

−〈gν , sν〉 ≥ ρm
AP ηls min{α0, 2ταmin}

∑

k∈Cν

‖ĝν
k,0‖2

2

≥ κ2
gρ

m
AP ηls min{α0, 2ταmin}‖ĝν‖2

2

Lemma 4.2.5. Assume that (Aapls1) and (Aapls2) hold. Then for each Linesearch parameterαν
G,0

computed in Algorithm 6, to rescale the additively computed search direction inAlgorithm 7, we
obtain

αν
G,0 ≥ min {α0, 2τcAPLSαmin}

where

cAPLS= αmin
ρm

AP

nCI
min {α0, 2ταmin}

whereCI =
∑

k∈Cν ‖Ik‖2
2 andαmin from Lemma 4.2.4.

Proof. Under the assumptions of this lemma, we may apply Lemma 2.2.2 and obtain

αν
G,0 ≥ min

{
α0, 2τ

2(ρA − 1)〈sν , gν〉
nLg‖sν‖2

2

}
(4.2.11)

By Lemma 4.2.4, we have

−〈sν , gν〉 ≥ κ2
gρ

m
AP ηls min {α0, 2ταmin} ‖ĝν‖2

2

On the other hand, (4.2.10a) and the relationship between the gradients, equation (4.1.6), give rise to

‖sν
k‖2

∞ = ‖uν
k,m − uν

k,0‖2
∞ ≤ βls‖ĝν

k,0‖2
∞ ≤ βlsκ

2
g‖gν‖2

2

Now, we employ this inequality and obtain

‖sν‖2
2 = ‖

∑

k∈Cν

Iks
ν
k‖2

2 ≤
∑

k∈Cν

‖Ik‖2
2‖sν

k‖2
2

≤ n
∑

k∈Cν

‖Ik‖2
2‖sν

k‖2
∞

≤ nβlsCIκ
2
g‖ĝν‖2

2

whereCI =
∑

k∈Cν ‖Ik‖2
2. Now, we combine the estimates for‖sν‖2

2 and〈sν , gν〉 and obtain

αν
G,i ≥ min

{
α0, 2τ

2(1 − ρA)ηls

nLgβls

ρm
AP

nCI
min {α0, 2ταmin}

}

which proves the proposition.

Lemma 4.2.6. Let assumptions (Aapls1) and (Aapls2) hold, and suppose that‖ĝν‖2 > 0. Moreover
assume that (4.1.7) holds in the case of an overlapping domain decomposition or (4.1.8) for a non-
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overlapping domain decomposition. Then we obtain

Cν 6= ∅

whereCν = {k : uν
k,m 6= uν

k,0} is the set of computed subset corrections in Algorithm 7.

Proof. Similar to the proof of Lemma 4.1.5, we have to prove that in each iteration at leaston one
subset a correction is computed. This means, in the context of Linesearchmethods, that we have
to prove that oneDk satisfies (4.1.6). Due to the assumptions of this lemma, the argumentation
employed in (4.1.13) and (4.1.14) holds and therefore (4.1.6) is satisfied atleast on one domain.

In a similar fashion like Theorem 2.2.4, we will prove the convergence of thenonlinear additively
preconditioned Linesearch algorithm, Algorithm 7.

Theorem 4.2.7.Suppose that (Aapls1) and (Aapls2) hold. Assume furthermore that either the domain
is overlappingly or non-overlappingly decomposed with constants from (4.1.7) and (4.1.8) or that
mG > 0 global post-smoothing Linesearch steps are computed. Then the APLS algorithm, Algorithm
7, computes a sequence of iterates converging to a first–order critical point for problem (M), i.e.,

lim
ν→∞,i∈{0,...,m+1}

‖ĝν
G,i‖2 = 0

Proof. As in the proof of Theorem 2.2.4, we use that each global step–length parameterαi satisfies
the Armijo condition (4.2.3), i.e.,

J(uν
G,i) − J(uν

G,i+1) ≥ −αν
G,iρA〈sG,i, g

ν
G,i〉

Using, Lemma 4.2.4 and (2.2.2b), respectively, gives,

J(uν
G,i)−J(uν

G,i+1) ≥





αν

G,i

(
κ2

gρ
m
AP ηls min{α0, 2ταmin}‖ĝν

G,i‖2
2

)
if sG,i was comp. additively

αν
G,i

(
ηls‖ĝν

G,i‖2
2

)
otherwise

Now we employ Lemma 2.2.3 and Lemma 4.2.5 which gives

min{α0, 2ταmin, 2τcAPLSαmin} ≤ αν
G,i

Note that ifmG = 0 we have due to Lemma 4.2.6 thatCν 6= ∅ for all ν, as long as‖ĝν‖2 6= 0.
Together with the compactness ofL0

G and, thus,J(uν
G,i) − J(uν

G,i+1) → 0 we can conclude that
‖ĝν

G,i‖2 → 0 which proves the proposition.

4.3 A Remark on Parallel Communication

As we have seen in this chapter, the APTS and APLS methods basically split intothree phases:

1. asynchronous local solution phase

2. recombination phase

3. global post-smoothing phase
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As a matter of fact, in the first step communication does not take place. In particular, the only
communication is needed within the recombination operatorA which combines the interpolated
search-directions and computes the decrease ratio or Linesearch parameter, respectively. If one dis-
cretizes the PDEs employing Finite Elements with linear basis functions, the computation of the
decrease ratio or Linesearch parameter is extremely cheap, since quadrature can perfectly be paral-
lelized. Therefore, only within the global post–smoothing parallel communication must periodically
take place. In turn, the overall parallel communication of additively preconditioned globalization
strategies and the traditional ones is more or less the same.

4.4 A Remark on Second-Order Convergence

In the context of Trust-Region methods, T. Coleman and Y. Li have shownin [CL96], that second–
order convergence can generally only be ensured by computing the “right” corrections as was out-
lined in Section 2.1.5. In fact, if the Hessian is indefinite but the gradient is zero, one succeeded in
computing a saddle point. To compute a local minimizer, though, a correction mustsatisfy a stronger
decrease condition as, for instance,

ψν
G,0(s

ν) ≤ cψν
G,0(smin) such that‖sν‖∞ ≤ ∆ν anduν + sν ∈ B (4.4.1)

wherec > 0 and

ψν
G,0(s) = 〈gν , s〉 +

1

2
〈s,∇2J(uν)s〉

The solution of this quadratic minimization problem is given by

ψν
G,0(smin) = min{ψν

G,0(s) | uν + s ∈ B, ‖s‖∞ ≤ ∆ν}

As it turns out, the additively computed correction

sν =
∑

k∈Cν

Iks
ν
k =

∑

k∈Cν

Ik(u
ν
k,m − uν

k,0)

can hardly solve (4.4.1) without leaving the asynchronous setting. Suppose that the local objective
function are quadratic functions given by

Hν
k (uν

k,0 + sk) = ψν
k(sk) = 〈Rkg

ν , sk〉 +
1

2
〈sk, Rk∇2J(uν)Iksk〉

Furthermore, suppose that each local minimization problem is solved exactly,i.e.,

ψν
k(sk) = 〈Rkg

ν , sk〉 +
1

2
〈sk, Rk∇2J(uν)Iksk〉

= min{ψν
k(s) | Pku

ν + s ∈ Bk(u
ν), ‖s‖k ≤ ∆ν}

In this case, we obtain after interpolating and summing up

ψν
G,0(

∑

k

Iksk) =
∑

k

ψν
k(sk) +

∑

k 6=i

〈sk, Rk∇2J(uν)Iisi〉
︸ ︷︷ ︸

Coupling terms
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As it turns out, the coupling terms may now yield that the exact solution of the quadratic minimization
problem differs from the additively computed. Suppose that we have an non-overlapping domain
decomposition and that eachgk = 0 and thatRk∇2J(uν)Ik is positive definite. Moreover suppose
that eachRk∇2J(uν)Ii is negative definite. In this case, the complete Hessian∇2J(uν) might be
negative definite, as in the following example

∇2J(uν) =

(
2 −4
−4 2

)

Then, either way the solution of the local minimization problems issk = 0 yielding sν = 0. But, as
a matter of fact, the minimizer of (4.4.1) for such a Hessian may be2

smin = αxλmin

wherexλmin
with ‖xλmin

‖2 = 1 is the eigenvector related to the smallest (negative) eigenvalue of
∇2J(uν). The scaling parameterα > 0 is the maximal possible step–length such thatuν +smin ∈ B
and‖smin‖∞ ≤ ∆ν holds. Therefore we obtain

〈sν ,∇2J(uν)sν〉 = 0

but
〈αxλmin

,∇2J(uν)αxλmin
〉 = λminα < 0

In this case, the additive corrections will without further assumptions not be the solution of (4.4.1).
Note that this argumentation even holds for more complex subset objective functions since subspace
correction methods, like the presented, are generally not able to resolve all eigenvalues of the Hes-
sian.
As outlined in Section 2.2.5, in [CL94] it was shown that also Linesearch strategies are able to
resolve the second–order conditions. Then, similarly to Trust-Region strategies, the search direction
must then satisfy (4.4.1). But, as we have just proven, without further assumptions, the (4.4.1) can
generally not be satisfied by additively computed corrections.
Therefore, second–order convergence and, perhaps, quadratic convergence rates may just be provided
by the global Trust-Region or Linesearch algorithm. In turn, the additive preconditioning strategy
aims at adaptively determining step–lengths and is designed for massive parallel computing.

2Due to the Trust-Region constraint one may also linearly combine different eigenvectors.



5 Nonlinear Multiplicatively Preconditioned
Globalization Strategies

The solution of discretized elliptic PDEs is due to complexity considerations oftencarried out em-
ploying iterative solvers like, for instance, the cg method. In fact, the ratesof convergence of the
cg method depends on the condition number of the stiffness matrix, which is, in the case of a Finite
Element discretization, closely related to the number of unknowns. As a matter of fact, the better
the basis functions resolve high frequency contributions the worse become the rates of convergence
of the iterative solver. In other words, slower convergence is often connected to the resolution of
low-frequency contributions by single basis functions.
Thus, in order to improve the resolution of low-frequency contributions several (preconditioning-)
techniques were developed, such as Wavelets (for an introduction see [Dah97]) or multigrid methods
(for an introduction see [Bra07]). In Finite Element methods, multigrid strategies prevailed as a
preconditioner for the cg method. Here, on each grid, a smoother computesa solution for a local
linear system of equations, which yields a coarse level correction. This correction is then interpolated
and employed within the next cg iteration. As it turns out, this method has optimal complexity and
is an optimal preconditioner.
For the parallel solution of positive definite linear systems of equations oftenthe use of acoarse
grid is suggested (cf. the monograph [TW05]) to improve the rates of convergence. Here, on one
processor a coarse problem is solved. This particularly enables mathematicians to prove logarithmic
dependence between the condition number of the preconditioned stiffnessmatrix and the mesh size.
Also in the nonlinear case, the application of multilevel strategies seems to be reasonable. Intuitively,
in a first step one may employ a linear multigrid strategy to solve the occurring quadratic minimiza-
tion problems. But, depending on the Hessian or its approximation, respectively, the convergence of
the linear preconditioner can not be guaranteed. Moreover, limited step–sizes remain as a problem,
even if the search directions are computed faster.
In contrast to just applying a better solution strategy for the quadratic minimization problems,
S.Nash [Nas00] introduced MG/OPT, a nonlinear solution strategy, which

• attacks nonlinear low-frequency contributions of the problem

• is guaranteed to converge to first–order critical points

Since we consider a nonlinear multigrid strategy, the initial iterate is given based on the current fine
level iterate. Therefore, for instance, in [Nas00] it was proposed to employ the restriction operator to
transfer the fine level iterate to the coarse level. Though, as we have pointed out in Section 3.1.3, this
may cause numerical problems. Therefore, to speed up convergence of the RMTR strategy, Gratton
et al. propose to damp the computed corrections in the RMTR strategy.
An interesting feature of the RMTR method is that the algorithm is allowed to stay ona coarse level
until the coarse level problem is solved approximately. But, this has a particular draw-back: the algo-
rithm must leave the coarse level, if the first–order conditions become small and the algorithm must
not go into a recursion, if the gradient is too small. Both is needed to make the algorithmcomputable.
But, as the theory of linear multigrid methods shows, the (desired) asymptotic convergence behavior
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crucially depends on the recursions. On the other hand, the convergence of Gauß-Seidel-like mul-
tiplicative schemes (cf. Section 3.3.3) can not be guaranteed, if the subset problems are just solved
approximately.
In order to show convergence without constraints on the first–order conditions, in [GK08b] it was
shown that it suffices to ensure that a limited number of iterations takes place on the subsets. There-
fore, based on this RMTR variant, we will introduce a generalized nonlinear multiplicatively precon-
ditioned Trust-Region strategy for problems of the kind (M). This method implements the abstract
framework of Section 3.3 and can therefore be employed, for instance, as a multigrid or Gauß-Seidel-
like scheme. Moreover, the abstract multiplicative preconditioning framework allows for proving
convergence without assuming that eventually the recursions stop. Also anonlinear multiplicatively
preconditioned Linesearch method will be presented in this chapter. Here,we will follow Z. Wen’s
and D. Goldfarb’s point of view and regard the multiplicatively computed correction as a search–
direction for the fine–level problem. However, due to significant weakera priori assumptions, our
approach is applicable to the non–smooth context of problem (M).
As we will see, the analysis for multiplicative Trust-Region and Linesearch methods is similar to the
one presented in the additive context. This has the advantage, that one can easily deduce global con-
vergence properties for a combined, nonlinear additively and multiplicatively preconditioned strat-
egy, attacking both, nonlinear low–frequency contributions and local nonlinearities.

5.1 Nonlinear Multiplicatively Preconditioned Trust-Region Methods

As for the Trust-Region context in general, we are interested in controllingthe Trust-Region radius
by means of the local nonlinearity of the objective function. Since we consider the multiplicative
context where the local objective function may or must be chosen different from the original objective
function J , the Trust-Region radius on the current subset must depend on the nonlinearity of the
local objective function and on the nonlinearity of the preceding objectivefunctions. In turn, the
coupling of the objective functions and a “global” control of the Trust-Region radius allows for
proving convergence to critical points.

5.1.1 The MPTS Framework

Following the setting of the abstract formulation of Section 3.3, we decomposeRn into a sequence of
spaces(D0, . . . ,DN ) such that there exist projection, interpolation and restriction operators between
each of the respective spaces.
Similar to the assumptions on the previous Trust-Region algorithms, we will state once more as-
sumptions on the respective objective functions.

(Ampts1) For the given initial iterateu0 ∈ Rn, for all ν ≥ 0 and all subsetsk ∈ {1, . . . , N} with
Dk 6= Rn and all initial subset iteratesuν

k,0 = P k
k−1uk−1 ∈ Rnk , whereuk−1 ∈ Dk−1 is

admissible, it is assumed that the level sets

L0 = {u ∈ B | J(u) ≤ J(u0)}

and
Lν

k = {u ∈ Bk(uk−1) | Hν
k (u) ≤ Hν

k (uν
k,0)}

are nonempty and compact. HereHν
k is from (3.3.1) andBk(uk−1) is from (3.3.2).
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(Ampts2) We assume thatJ is continuously differentiable onL0 and that for allν ≥ 0 andk =
1, . . . , N , Dk 6= Rn the functionHν

k is continuously differentiable onLν
k. Moreover, there

exists a constantCg > 0 such that

‖∇J(u)‖2 ≤ Cg for all u ∈ L0

‖∇Hν
k (uk)‖2 ≤ Cg for all uk ∈ Lν

k

for all ν ≥ 0, k = 1, . . . , N , Dk 6= Rn.

(Ampts3) We assume that there exists a constantCB > 0 such that for allB(u) approximating
∇2J(u) andBk(u

ν
k) approximating∇2Hν

k (uν
k) in (2.1.1) the following holds

‖B(u)‖2 ≤ CB for all u ∈ L0

‖Bk(uk)‖2 ≤ CB for all uk ∈ Lν
k

for all ν ≥ 0, k = 1, . . . , N , Dk 6= Rn.

The multiplicatively preconditioned Trust-Region strategy, Algorithm 8, now implements the multi-
plicative framework of Section 3.3. Similar to Algorithm 4, this framework may remain on the cur-
rent subset, call a recursion or return the current iterate. In order toensure convergence, we assume
that in every computation on each subset,mk ≤ m Trust-Region smoothing steps are computed,
wherem = maxk=0,...,N mk.

Remark 5.1.1. As it turns out, the presented analysis, in particular the convergence results, hold if

• on oneDk = Rn at least eithermk = mG > 0 Trust-Region steps are computed or we have a
domain decomposition as in Section 3.1.6 withmk > 0 for Dk 6= Rn

• on each subset at mostm Trust-Region steps are computed

We will see that similarly to the additive context, the Trust-Region radius also depends on the de-
crease ratio induced by the subset correction. Thus, also in the present framework it might happen,
that the computations on one subset dominate the whole computation. This means inparticular that
the global Trust-Region radius is too large to ensure that global corrections are applied. But, as we
will see, the global Trust-Region radius also depends on the local corrections. If now, computations
onDk are always successful and applied, the global radius stays too large and convergence will not
be achieved. Thus, we introduce the following, slightly modified advance criterion

‖ĝν
k+1,0‖2 ≥ κg‖ĝν

k,mk
‖2 (5.1.1)

Here, mk is the index when calling the recursion,κg ∈ (0, 1) and ĝν
k,i = Dν

k,ig
ν
k,i =

Dν
k(uν

k,i)∇Hν
k (uν

k,i) with Dν
k as defined in Section 2.1.3.

The Multiplicative Update Operator

Similar to the additive context, we define the subset correction as the difference between initial and
final iterate on the succeeding subsetDk ⊃ Dk+1, i.e.,

sk,mk
= Ik

k+1s
ν
k = Ik

k+1(u
ν
k+1,mk+1,f

− uν
k+1,0) (5.1.2)
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Algorithm: MPTS – Multiplicatively Preconditioned Trust-Region Stra tegy

Input: k ∈ {0, . . . , N},Bk, u
ν
k,0, R

k
k−1g

ν
k−1,mk−1

∈ Dk−1,∆k−1 ∈ R+ ∪ {∞}

Output: new iterateuν
k,mk,f

∈ Dk

Smoothing
call Algorithm 1 withuν

k,0︸︷︷︸
=u0

, Hν
k︸︷︷︸

=J

, ∆ν
k,0︸︷︷︸

=∆0

, dimDk︸ ︷︷ ︸
=n

with modified constantmk, modified constraint (5.1.7) and Trust-Region update (5.1.6).
receive a new iterateuν

k,mk
and a new trust–region radius∆ν

k,mk

if (Ck+1 ) Ck)
return uν

k,mk,f
= uν

k,mk

else if(Ck+1 = Ck) {
uν

k+1,0 = uν
k,mk

, ∆ν
k+1,0 = ∆ν

k,mk

k = k + 1
gotoSmoothing

} else if(Ck+1 ( Ck) {
if ((5.1.1) holds onDk+1) {

call MPTSwith k + 1, Bk+1(u
ν
k,mk

)
︸ ︷︷ ︸
=Bk+1 cf. (3.3.2)

, P k+1
k u

ν
k,mk︸ ︷︷ ︸

=uν
k+1,0

,Rk+1
k gν

k,mk
, ∆ν

k,mk︸ ︷︷ ︸
=∆k

and receiveuν
k+1,mk+1,f

setsk,mk
= Ik

k+1(u
ν
k+1,mk+1,f

− P k+1
k uν

k,mk
)

uν
k,mk+1 = Aν

MPTS,k(sk,mk
, uν

k,mk
)

update∆ν
k,mk

according to (5.1.6)
}
if (k 6= 0)

uν
rk,0 = uν

k,mk+1, ∆ν
rk,0 = ∆ν

k,mk+1, k = rk

else
uν+1

0,0 = uν
k,mk+1, ∆ν+1

0,0 = ∆ν
k,mk+1, ν = ν + 1

gotoSmoothing
}

Algorithm 8: MPTS – Nonlinear Multiplicatively Preconditioned Trust-Region Strategy

wheremk+1,f denotes the index of the final iterate onDk+1. In particular, we defineuk+1,mk+1,f
=

uν
l,ml

with rk = l + 1.

Now, we follow [GST08] and define the decrease ratio for the subset corrections as

ρν
k,mk

=






Hν
k (uν

k,mk
) −Hν

k (uν
k,mk

+ sk,mk
)

Hν
k+1(u

ν
k+1,0) −Hν

k+1(u
ν
k+1,mk+1,f

)
if uν

k+1,0 6= uν
k+1,mk+1,f

0 otherwise
(5.1.3)

Hence,ρν
k,mk

compares the reduction of the preceding subset objective function valueto the one on
the current subset. Moreover, similarly to the additive context,ρν

k,mk
allows for proving a sufficient

decrease ofHν
k , if a sufficient decrease can be shown forHν

k+1. Therefore, this quantity is used to
accept or reject a subset correction and to adjust the Trust-Region radius. Thus, we may define the
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subset-dependent nonlinear multiplicative recombination operatorsAν
MPTS,k as

Aν
MPTS,k(sk,mk

, uν
k,mk

) =

{
uν

k,mk
+ sk,mk

if ρν
k,mk

≥ η

uν
k,mk

otherwise

Now, we can define the nonlinear multiplicative update operator as

F (j)
M (uν

j,mj
) = Aν

MPTS,j(sj,mj
, uν

j,mj
) (5.1.4)

for all j with Dj = Rn. Here, we have to distinguish between different update operators, since from
everyDj = Rn a (differently looking) recursion might be called, as for instance in the context of the
Gauß-Seidel method in Section 3.3.3.
We define the subset obstacles as in (3.3.2). Therefore, following Lemma 3.3.1, it suffices to ensure
that each subset iterate is admissible to obtain admissible multiplicatively computed corrections.
Since this is the case by construction of Algorithm 8, Lemma 3.3.1 holds which gives rise touν

k,i +

Ik
k+1s

ν
k+1 ∈ Bν

k .

The Local Trust-Region Update in the Multiplicative Context

To ensure that the multiplicatively computed corrections are scaled according to the nonlinearity of
the respective preceding objective functions, we modify the Trust-Region update (2.1.4) to fit into
the multiplicative context. Similar to the additive context, we compute an intermediate Trust-Region
radius as follows

∆̃ν
k,i ∈

{
(∆ν

k,i, γ2∆
ν
k,i] if ρν

k,i ≥ η

[γ1∆
ν
k,i,∆

ν
k,i) if ρν

k,i < η
(5.1.5)

In a second step, we either use the intermediate Trust-Region radius or the previous one to update
∆ν

k,i as given in the following equality

∆ν
k,i+1 =

{
min{∆̃ν

k,i,∆k−1 − ‖uν
k,i+1 − uν

k,0‖k} if Dk 6= Rn

∆̃ν
k,i otherwise

(5.1.6)

Here∆k−1 is the current Trust-Region radius on the preceding subset,Dk−1. Moreover, we em-
ployed the following – from the additive context known – multilevel norm

‖sk‖k = ‖Iksk‖∞

whereIk is as defined in (3.1.11). In Lemma 5.1.2, we will see that together with the modified
Trust-Region constraint

‖sk,i‖k ≤ ∆ν
k,i (5.1.7)

substituted in (2.1.2), this formulation ensures that each correction which is computed onDk stays
within the previous subset’s Trust–Region.

5.1.2 Convergence to First-Order Critical Points

We emphasize that the functionsJν
k are not required to be twice continuously differentiable to obtain

convergence to first–order critical points. However, the proof of Theorem 5.1.5 crucially depends on
the fact that only finitely many Trust-Region iterations are carried out at each subset. However, to
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prevent that the algorithm spends too much time for solving subset minimization problems, it seems
to be reasonable to limit the number of subset Trust-Region steps a priori.
Similar to Lemma 4.1 in [GST08], we show that the subset corrections will not violate the global
Trust-Region constraint.

Lemma 5.1.2. For all ν, k and i and eachsk,mk
= Ik

k+1(u
ν
k+1,mk+1,f

− uν
k+1,0) ∈ Dk computed

recursively in algorithm MPTS the following holds

‖sk,mk
‖k ≤ ∆ν

k,mk
(5.1.8)

Proof. We prove the proposition by induction.
Assume thatDk is a subset from where no recursion is called. Then we obtain for each iterate
uν

k,i 6= uν
k,i−1

‖uν
k,i − uν

k,0‖k ≤ ‖uν
k,i−1 − uν

k,0‖k + ‖sν
k,i‖k

≤ ‖uν
k,i−1 − uν

k,0‖k + ∆k−1 − ‖uν
k,i−1 − uν

k,0‖k = ∆k−1 = ∆ν
k−1,mk−1

Therefore, equation (5.1.8) is satisfied. Moreover, we have

‖sk−1,mk−1
‖k−1 = ‖Ik−1

k (uν
k,mk,f

− uν
k,0)‖k−1 = ‖uν

k,mk,f
− uν

k,0‖k ≤ ∆k−1 = ∆ν
k−1,mk−1

Now, assume thatDk is not the deepest subset. Due to the update formula of the Trust-Region
radius (5.1.6) we may now employ the just used argumentation and obtain that onsubsetDk each
recursively computed correction satisfies equation (5.1.8).

Lemma 5.1.3. Let assumptions (Ampts1), (Ampts2) and (Ampts3) hold and suppose that the correction
sk,i in iteration ν is computed recursively. Moreover assume that‖ĝν

k,i‖2 6= 0. Then there exists a
constantcrsd = c(γ1, η, κg, N) > 0 such that the following sufficient decrease condition holds

Hν
k (uν

k,i) −Hν
k (uν

k,i + sk,i) ≥ crsd‖ĝν
k,i‖2 min{∆ν

k,i, ‖ĝν
k,i‖2} (5.1.9)

Similar to the proof of Lemma 4.3 [GK08b], we follow the recursion to the deepest subset, where
the first Trust-Region correction was computed and propagated. Down to this subset, we derive
estimations for the first–order conditions and the Trust-Region radius. Bothwill relate the respective
local entities to the entities on subsetDk. Together with an estimation of the local decrease, this
yields the sought–after sufficient decrease estimation.

Proof. First, we analyze a successful recursion beginning at subsetDk. Successful means that

Hν
k (uν

k,mk
) −Hν

k (uν
k,mk

+ sk,mk
) ≥ η(Hν

k+1(u
ν
k+1,0) −Hν

k+1(u
ν
k+1,mk+1,f

)) (5.1.10)

holds. This implies that there must have been a subsetl > k and an iterationr such that there has a
first successful Trust-Region correctionsl,r been applied andpropagatedto subsetDk. Hence, this
implies that also the gradient did not change on subsetDr before applyingsl,r. This means

‖ĝν
l,0‖2 = ‖ĝν

l,r‖2

Using equation (5.1.1),1 > κg > 0, and that there exist at mostN subsets before returning to the
global context yields

‖ĝν
l,r‖2 ≥ (κg)

l−k‖ĝν
k,mk

‖2 ≥ (κg)
N‖ĝν

k,mk
‖2 (5.1.11)
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To derive a lower bound for the Trust-Region radius∆ν
l,r, we suppose that the Trust-Region radii

were only reduced on their propagation to subsetDl and to iterationr. Note that at mostm =
maxk=0,...,N mk Trust-Region steps are computed on each subset. Therefore, equation(5.1.6),γ1 <
1, r ≤ m+ 1 for all l provide

∆ν
l,r ≥ γr

1∆
ν
l,0 = γr

1∆
ν
l−1,ml−1

≥ γ
(2·(m+1))
1 ∆ν

l−2,ml−2

≥ γ
((N+1)·(m+1))
1 ∆ν

k,mk
> 0

Now, sinceuν
l,r+1 was computed in the Trust-Region algorithm, Algorithm 1, we may employρν

l,r ≥
η and the sufficient decrease condition (2.1.7) and obtain

Hν
l (uν

l,0) −Hν
l (uν

l,r+1) ≥ ηβ‖ĝν
l,r‖2 min{∆ν

l,r, ‖ĝν
l,r‖2} (5.1.12a)

≥ ηβ(κg)
N‖ĝν

k,mk
‖2 min{γ((N+1)·(m+1))

1 ∆ν
k,mk

, (κg)
N‖ĝν

k,mk
‖2}

(5.1.12b)

We still need to estimate the left hand side of this inequality byHν
k (uν

k,mk
) −Hν

k (uν
k,mk

+ sk,mk
).

We obtain that at all subsetsp with k > p ≥ l and iterationsi at subsetp the following inequality
holds

Hν
p (uν

p,mp
+ sp,mp) = Hν

p (uν
p,mp+1) ≥ Hν

p (uν
p,mp,f

) (5.1.13)

wheresp,mp is the recursively computed correction. The acceptance criterion for recursively com-
puted corrections (5.1.10) and (5.1.13) imply

Hν
p (uν

p,0) −Hν
p (uν

p,mp,f
) ≥ Hν

p (uν
p,mp

) −Hν
p (uν

pp,m+1)

≥ η(Hν
p+1(u

ν
p+1,0) −Hν

p+1(u
ν
p+1,mp+1,f

))

Using this inequality, (5.1.10), the choice ofη < 1, and the fact that maximalN recursions take
place yields

Hν
k (uν

k,mk
) −Hν

k (uν
k,mk

+ sk,mk
) ≥ ηN (Hν

l (uν
l,0) −Hν

l (uν
l,ml,f

))

≥ ηN (Hν
l (uν

l,0) −Hν
l (uν

l,r + sl,r))

= ηN (Hν
l (uν

l,0) −Hν
l (uν

l,r+1))

Combining this inequality with equation (5.1.12) yields

Hν
k (uν

k,mk
) −Hν

k (uν
k,mk

+ sk,mk
) ≥ crsd‖ĝν

k,mk
‖2 min{∆ν

k,mk
, ‖ĝν

k,mk
‖2} (5.1.14)

wherecrsd = βηN+1κ2N
g γ

((N+1)·(m+1))
1 > 0. This concludes the proof.

Lemma 5.1.4.Let assumptions (Ampts1), (Ampts2) and (Ampts3) hold and suppose that‖ĝk(u
ν
k,i)‖2 ≥

ε > 0. Then we obtain for the decrease ratio of each recursively computed correction (5.1.3) in
Algorithm 8

ρν
k,mk

≥ η

for ∆ν
k,mk

sufficiently small.

Proof. Due to the definition of the initial Trust-Region radius onDk+1 and the considerations in
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Lemma 2.1.2 we have that, for∆ν
k,mk

sufficiently small, each Trust-Region correction onDk+1 is
successful, i.e.,ρν

k+1,i ≥ η.

Now we consider the definition of the recursive decrease ratio (5.1.3), i.e.,

ρν
k,mk

=
Hν

k (uν
k,mk

) −Hν
k (uν

k,mk
+ sk,mk

)

Hν
k+1(u

ν
k+1,0) −Hν

k+1(u
ν
k+1,mk+1,f

)
(5.1.15)

Here,sk,mk
is the multiplicatively computed correction given by

sk,mk
= Ik

k+1s
ν
k+1 = Ik

k+1(u
ν
k+1,mk+1,f

− uν
k+1,0)

Employing the meanvalue theorem allows for rewriting the numerator in (5.1.15) as follows

Hν
k (uν

k,mk
) −Hν

k (uν
k,mk

+ Ik
k+1s

ν
k+1) = −〈∇Hν

k (ξν
k ), Ik

k+1s
ν
k+1〉

= −〈Rk+1
k ∇Hν

k (ξν
k ), sν

k+1〉
(5.1.16)

with ξν
k = uν

k,mk
+ τν

k I
k
k+1s

ν
k+1 andτν

k ∈ (0, 1). Now, we obtain

ρν
k,mk

=
−〈Rk+1

k ∇Hν
k (ξν

k ), sν
k+1〉

Hν
k+1(u

ν
k+1,0) −Hν

k+1(u
ν
k+1,mk+1,f

)
(5.1.17)

We will have a closer look at the denominator. The mean value theorem and thedefinition of the sub-
set objective functionsHν

k from (3.3.1) provide for sufficiently small∆ν
k,mk

the following inequality

0 < Hν
k+1(u

ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sν

k+1)

= Jν
k+1(u

ν
k+1,0) − Jν

k+1(u
ν
k+1,0 + sν

k+1) − 〈δgν
k+1, s

ν
k+1〉

= −〈∇Jν
k+1(ξ

ν
k+1), s

ν
k+1〉 − 〈Rk+1

k ∇Jν
k (uν

k,mk
) −∇Jν

k+1(u
ν
k+1,0), s

ν
k+1〉

(5.1.18)

where ξν
k+1 = uν

k+1,0 + τν
k+1s

ν
k+1 and τν

k+1 ∈ (0, 1). To reformulate (5.1.17), we add
±(Hν

k+1(u
ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sν

k+1)) and obtain

ρν
k,mk

=
−(Hν

k+1(u
ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sν

k+1)) − 〈Rk+1
k ∇Hν

k (ξν
k ), sν

k+1〉
Hν

k+1(u
ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sν

k+1)
+ 1

= − |κ1| + |κ2|
Hν

k+1(u
ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sν

k+1)
+ 1

Here, we used (5.1.16) and (5.1.18) to obtain the following abbreviations

κ1 = 〈∇Jν
k+1(ξ

ν
k+1) −∇Jν

k+1(u
ν
k+1,0), s

ν
k+1〉

κ2 = 〈Rk+1
k ∇Hν

k (uν
k,mk

) −Rk+1
k ∇Hν

k (ξν
k ), sν

k+1〉
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Next, we derive estimations for|κ1| and|κ2|. We employ Cauchy-Schwarz’s inequality and obtain

|κ1| = |〈∇Jν
k+1(ξ

ν
k+1) −∇Jν

k+1(u
ν
k+1,0), s

ν
k+1〉|

≤ ‖∇Jν
k+1(ξ

ν
k+1) −∇Jν

k+1(u
ν
k+1,0)‖2‖sν

k+1‖2

|κ2| = |〈Rk+1
k ∇Hν

k (uν
k,mk

) −Rk+1
k ∇Hν

k (ξν
k ), sν

k+1〉|
≤ ‖Rk+1

k ‖2‖∇Hν
k (uν

k,mk
) −∇Hν

k (ξν
k )‖2‖sν

k+1‖2

Since∇Jν
k and∇Jν

k+1 are continuous on a compact set, we obtain uniform continuity of both func-
tions. In particular, for allεC > 0 there exists an∆C > 0 such that for all∆ν

k,i ≤ ∆ν
k,mk

≤ ∆C , the
following holds

−|κ1| ≥ −‖∇Jν
k+1(ξ

ν
k+1) −∇Jν

k+1(u
ν
k+1,0)‖2‖sν

k+1‖2 ≥ −εC‖sν
k+1‖2

−|κ2| ≥ −‖Rk+1
k ‖2‖∇Hν

k (uν
k,mk

) −∇Hν
k (ξν

k )‖2‖sν
k+1‖2 ≥ −εCCR‖sν

k+1‖2

Here, we exploited (3.1.13a), i.e.,‖Rk+1
k ‖2 ≤ CR. Assume now, thatl denotes the first successful

correction at subsetDk+1. Hence, we employHν
k+1(u

ν
k+1,0+sk+1,l) ≥ Hν

k+1(u
ν
k+1,0+sν

k+1) which
gives rise to

ρν
k,mk

≥ −εC‖sν
k+1‖2 − εCCR‖sν

k+1‖2

Hν
k+1(u

ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sν

k+1)
+ 1

≥ −εC‖sν
k+1‖2 − εCCR‖sν

k+1‖2

Hν
k+1(u

ν
k+1,0) −Hν

k+1(u
ν
k+1,0 + sk+1,l)

+ 1
(5.1.19)

Using the result of Lemma 5.1.3 (the MPTS sufficient decrease condition) yields for sufficiently
small∆ν

k+1,l

ρν
k,mk

≥ −εC‖sν
k+1‖2 − εCCR‖sν

k+1‖2

crsd‖ĝν
k+1,l‖2 min{∆ν

k+1,l, ‖ĝν
k+1,l‖2}

+ 1 (5.1.20)

≥ −εC‖sν
k+1‖2 − εCCR‖sν

k+1‖2

crsdε∆
ν
k+1,l

+ 1 (5.1.21)

Wherel is the first successful correction atDk+1. Now, we can apply Lemma 5.1.2 and (3.1.13b)
which provides

∆ν
k+1,l ≥ γl

1∆
ν
k+1,0 ≥ γ

N(m+1)
1 ∆ν

k,mk
≥ γ

N(m+1)
1 ‖uν

k+1,mk+1,f
− uν

k+1,0‖k+1 (5.1.22a)

= γ
N(m+1)
1 ‖sν

k+1‖k+1 ≥ cIγ
N(m+1)
1 ‖sν

k+1‖2 (5.1.22b)

Moreover, we use (5.1.1),‖ĝν
k,mk

‖2 ≥ ε and obtain

‖ĝν
k+1,l‖2 = ‖ĝν

k+1,0‖2 ≥ κg‖ĝν
k,mk

‖2 ≥ κgε (5.1.23)

Combining equation (5.1.23), (5.1.22a) and (5.1.21) provides for sufficiently small∆ν
k,mk

ρν
k,mk

≥ −εC‖sν
k+1‖2 − εCCR‖sν

k+1‖2

crsdκgεγ
N(m+1)
1 cI‖sν

k+1‖2

+ 1

=
−(1 + CR)εC

crsdκgεγ
N(m+1)
1 cI

+ 1
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Thus, choosingεC and∆ν
k,mk

small enough yields

ρν
k,mk

≥ η

which proves the proposition.

Theorem 5.1.5.Let assumptions (Ampts1), (Ampts2) and (Ampts3) hold. Moreover assume that either
mj = mG > 0 Trust-Region steps are computed on at least one subsetDj = Rn or an overlapping
or nonoverlapping domain decomposition is employed. If a domain decomposition is employed,
we assume furthermore thatmk > 0 holds forDk 6= Rn and that the constants are given as in
(4.1.7) and (4.1.8), respectively. Then we obtain that the MPTS algorithm, Algorithm 8, computes a
sequence of iterates such that

lim inf
ν→∞,Dj=Rn,i∈{0,m+1}

‖ĝν
j,i‖2 = 0

Proof. We prove the assertion by contradiction.
Assume that there exists an indexν0 > 0 andε > 0 such that‖ĝν

j,i‖2 ≥ ε for all ν ≥ ν0, Dj = Rn

and alli = 0, . . . ,m+ 1. We will show, that this assumption implies that∆ν
j,i → 0 for ν → ∞ and,

in turn,ρν
j,i → 1 which contradicts∆ν

j,i → 0.
First, we will prove that∆ν

j,i → 0 for ν → ∞. If there is only a finite number of successfully
computed corrections we have due to the definition of∆ν

j,i that∆ν
j,i → 0.

On the other hand, if the sequence of successful corrections onDj = Rn is infinitely long, equation
(2.1.7) and (5.1.9) imply for successful corrections

J(uν
j,i) > J(uν

j,i+1)

for all l ≥ 0 and, therefore, we obtain due to (Ampts1) that

J(uν
j,i) − J(uν

j,i+1) → 0

The sufficient decrease condition in Lemma 5.1.3 and‖ĝν
j,i‖2 ≥ ε give rise to

∆ν
j,i → 0

Now, Lemma 5.1.4 and Lemma 2.1.2, respectively, provide that for sufficientlysmall ∆ν
j,i each

correction is successful. But,

• if mG > 0, this would yield that eventually all corrections are successful and therefore that
(∆ν

j,i)ν,i is bounded from below.

• if mG = 0, we have a domain decomposition and Lemma 4.1.5 applies. For sufficiently small
∆ν

j,i this yields that in each iterationν the setCν = {Dj = Rn | sν
j+1 6= 0, Cj+1 ( Cj} is

non-empty. In particular, we have that for sufficiently small∆ν
j,i each recursively computed

correction is successful. Therefore, due to the Trust-Region update,we obtain that(∆ν
j,i)ν,i is

bounded from below.

In turn, the assumption must be wrong.
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Theorem 5.1.6.Let the assumptions of the previous theorem hold. Then the MPTS algorithm, Algo-
rithm 8, computes a sequence of iterates converging to a first–order critical point of (M), i.e.,

lim
ν→∞,Dj=Rn,i∈{0,..,m+1}

‖ĝν
j,i‖2 = 0 (5.1.24)

Proof. This proof is the same like the one of Theorem 2.1.4, except that we must substitute the
sufficient decrease condition in inequality (2.1.15) by the weaker condition(5.1.9).

5.2 Combined Nonlinearly Preconditioned Trust-Region Methods

At least for quadratic and convex minimization problems, often one of the drawbacks of pure ad-
ditive preconditioning strategies, compared to multigrid strategies, are significantly slower rates of
convergence. In particular, depending on the domain decomposition, additive preconditioners suffer
from a delay of “information transfer” of the linear residual’s low frequency contributions. To deal
with this drawback, often a coarse space is employed to improve the rates of convergence (for an
introduction see [TW05]).
Since problem (M) is arbitrarily nonlinear, we propose to employ the MPTS method to resolve low
frequency contributions of the nonlinear residual. On each subset, the MPTS solver itself may em-
ploy, besides the Trust-Region smoother, the APTS strategy to solve the respective minimization
problems in parallel.
Thus, in this section, we assume that averticaldomain decomposition ofRn exists, as introduced in
Section 3.1.5. This means, that after decomposingRn hierarchically, each of the resulting subsets
Dk will also be decomposedhorizontally, i.e.,

⋃

l

Dk,l = Dk (5.2.1)

Moreover, we assume that on each subsetDk assumptions (Ampts1)–(Ampts3) hold, as well as as-
sumptions (Aapts1)-(Aapts3) on each subsetDk,l. In this case, the MPTS algorithm, Algorithm 8, may
now employ the APTS strategy, Algorithm 5, to solve the local minimization problems.Thus, the
APTS method substitutes the Trust-Region strategy yielding the combined, nonlinear additively and
multiplicatively preconditioned Trust-Region strategy, Algorithm 9.

Convergence to First–Order Critical Points

Similar to the additive and multiplicative contexts, we have to ensure that the APTSalgorithm is able
to compute the first-order conditions. To this end, either a domain decompositionas in Section 3.1.6
must be employed or at least one Trust-Region step onDk must in each iteration be computed. How-
ever, since the convergence of all, within the AMPTS algorithm employed, globalization strategies
has been proven, the proof of the following theorem is confined to proving that certain sufficient
decrease conditions hold.

Theorem 5.2.1.Assume thatRn is decomposed into a sequence of nested subspaces, as introduced in
Section 3.1.4 and that the respective subsetsDk are decomposed as in (5.2.1). Furthermore, suppose
that (Ampts1)–(Ampts3) hold on each “multiplicative” subsetDk and that (Aapts1), (Aapts2) and (Aapts3)
hold for the respective subspacesDk,l. Moreover suppose that either each subsetDj = Rn is
decomposed employing an overlapping or non-overlapping domain decomposition or thatmG > 0
global smoothing steps within the APTS algorithm are computed. If a domain decomposition is
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Algorithm: AMPTS – Nonlinear Additive and Multiplicative Precondition ed Trust-Region Strategy

Input: k ∈ {0, . . . , N},Bk, u
ν
k,0, g

ν
k−1 ∈ Dk−1,∆k−1 ∈ R+ ∪ {∞}

Output: new iterateuν
k,mk,f

∈ Dk

Smoothing
call theAPTSalgorithm withuν

k,0︸︷︷︸
=u0

, Hν
k︸︷︷︸

=J

, ∆ν
k,0︸︷︷︸

=∆0

, dimDk︸ ︷︷ ︸
=n

and receive a new iterateuν
k,mk

and a new Trust-Region radius∆ν
k,mk

if (Ck+1 ) Ck)
return uν

k,mk,f
= uν

k,mk

else if(Ck+1 = Ck) {
uν

k+1,0 = uν
k,mk

, ∆ν
k+1,0 = ∆ν

k,mk

k = k + 1
gotoSmoothing

} else if(Ck+1 ( Ck and (5.1.1) holds){
call AMPTSwith k + 1, Bk+1(u

ν
k,mk

)
︸ ︷︷ ︸
=Bk+1 cf. (3.3.2)

, P k+1
k u

ν
k,mk︸ ︷︷ ︸

=uν
k+1,0

,Rk+1
k g

ν
k,mk︸ ︷︷ ︸

gν
k

, ∆ν
k,mk︸ ︷︷ ︸

=∆k

and receiveuν
k+1,mk+1,f

setsk,mk
= Ik

k+1(u
ν
k+1,mk+1,f

− P k+1
k uν

k,mk
)

uν
k,mk+1 = Aν

MPTS,k(sk,mk
, uν

k,mk
), update∆ν

k,mk
according to (5.1.6)

if (k 6= 0)
uν

rk,0 = uν
k,mk+1, ∆ν

rk,0 = ∆ν
k,mk+1, k = rk

else
uν+1

0,0 = uν
k,mk+1, ∆ν+1

0,0 = ∆ν
k,mk+1, ν = ν + 1

gotoSmoothing
}

Algorithm 9: AMPTS – Nonlinear Additive and MultiplicativePreconditioned Trust-Region Strategy

employed, we assume furthermore thatmj,l > 0 holds for the subsetsDj,l of Dj = Rn and that the
constants are given as in (4.1.7) and (4.1.8), respectively.
Then the sequence of iterates(uν

j,i)i,Dj=Rn,ν , computed in Algorithm 9, satisfies

lim inf
ν→∞,Dj=Rn,i∈{0,...,m+1}

‖ĝ(uν
j,i)‖2 = 0 (5.2.2)

Proof. We start with gathering some important results. Under the assumptions of this theorem and
‖ĝν

k,i‖2 6= 0, Lemma 4.1.3 from Section 4.1.2 holds. Therefore, if the APTS strategy additively

computes corrections onDk, i.e.,F (k)
A (uν

k,0) 6= uν
k,0, we obtain the following decrease condition

Hν
k (uν

k,0) −Hν
k (Fk

A(uν
k,0)) ≥ η2β

∑

l∈Cν
k

(
κg‖ĝν

k,0‖2 min
{
κg‖ĝν

k,0‖2, γ
m
1 ∆ν

k,0

})

≥ η2βκg‖ĝν
k,0‖2 min

{
κg‖ĝν

k,0‖2, γ
m
1 ∆ν

k,0

}

Here,ĝν
k,0 denotes the gradient atuν

k,0, the iterate before calling the APTS method onDk. Moreover,

Cν
k is the set of eachDk,l where a correction was computed. Since this decrease condition is weaker1

1η andκg are smaller than one
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than the original decrease condition (2.1.8), we now obtain that for all correctionssk,i on Dk the
following decrease condition holds

Hν
k (uν

k,i) −Hν
k (uν

k,i + sk,i) ≥ η2βκg‖ĝν
k,i‖2 min

{
κg‖ĝν

k,i‖2, γ
m
1 ∆ν

k,i

}
(5.2.3)

Therefore, replacing (5.1.12b) in Lemma 5.1.3 by (5.2.3), yields for all recursively computed correc-
tions

Hν
k (uν

k,i) −Hν
k (uν

k,i + sk,i) ≥ campts‖ĝν
k,i‖2 min{∆ν

k,i, ‖ĝν
k,i‖2} (5.2.4)

Where we introduce the following constant,

campts= βηN+3κN+2
g γ

(N+1)·m
1 min{κ2

g, κgγ
m
1 } > 0

Since (5.2.4) is – once more – weaker than (5.2.3), this inequality is a valid sufficient decrease
condition for all computed corrections.
Now suppose that the assumption of this theorem does not hold, i.e., for allν > 0, i ∈ {0, . . . ,m+1}
and eachDj = Rn there exists anε > 0 such that‖ĝ(uν

j,i)‖2 > ε.
If we now employ the same argumentation like in Theorem 2.1.3, we obtain that dueto the suf-
ficient decrease condition (5.2.4) the Trust-Region radius∆ν

j,i tends to zero. Now, Lemma 2.1.2,
Lemma 4.1.4 and Lemma 5.1.4 directly imply that eventually all corrections – Trust-Region cor-
rections, additively and multiplicatively computed corrections – are successful on Dj = Rn, i.e.,
ρν

j,i ≥ η which contradicts∆ν
j,i → 0 and proves the proposition.

Theorem 5.2.2.Suppose that the assumptions of Theorem 5.2.1 hold. Then, we obtain that

lim
ν→∞,Dj=Rn,i∈{0,...,m+1}

‖ĝ(uν
j,i)‖2 = 0 (5.2.5)

Proof. The proof is similar to the one of Theorem 2.1.4, except that the sufficient decrease conditions
must be replaced by (5.2.4) on each subsetDj = Rn.

5.3 Nonlinear Multiplicatively Preconditioned Linesearch Methods

In contrast to Trust-Region algorithms in general, the Linesearch framework has the advantage that
each search–direction, as far as it satisfies a decrease condition, is scaled and applied. This means
that due to well–balanced a priori and a posteriori descent control strategies no computation time
is wasted for computing corrections which finally will not be applied. Thus, also in the context of
multiplicatively preconditioned globalization strategies, it would be desirable to rescale all computed
corrections, rather than disposing them which might lead to faster convergence.

5.3.1 The MPLS Framework

Similar to the APLS framework, we will state assumptions on the respective subset objective func-
tions. But, even if the following assumptions look equivalent to the ones in Section 4.2.1, the
employed objective functions are now the multiplicative objective functionsHν

k from (3.3.1), Sec-
tion 3.3.1. This gives rise to a recursive formulation of the traditional Linesearch assumptions.

(Ampls1) For the given initial global iterateu0 ∈ B, for all ν ≥ 0, all subsetsDk and all initial
iterates onDk 6= Rn, i.e.,uν

k,0 = P k
k−1uk−1 ∈ Bk(uk−1), anduk−1 ∈ Dk−1 is admissible, it
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is assumed that the level sets

L0 = {u ∈ B | J(u) ≤ J(u0)}

and
Lν

k = {u ∈ Bk(uk−1) | Hν
k (u) ≤ Hν

k (uν
k,0)}

are nonempty and compact. HereHν
k is from (3.3.1) andBk(uk−1) is from (3.3.2).

(Ampls2) We assume thatJ is continuously differentiable onL0, as well as, for allν ≥ 0 and all
subsetsDk 6= Rn thatHν

k is continuously differentiable onLν
k. Moreover, we assume that

for all u ∈ L0 anduk ∈ Lν
k the respective gradients are Lipschitz continuous with a constant

Lg > 0, i.e.,
‖∇J(u) −∇J(u+ s)‖2 ≤ Lg‖s‖2

and
‖∇Hν

k (uk) −∇Hν
k (uk + sk)‖2 ≤ Lg‖sk‖2

for u+ s ∈ B, uk + sk ∈ Bk(uk−1) respectively.

To allow for employing a Gauß-Seidel like iterative scheme, we will see thatFk is the result of
mk ≤ m Linesearch iterations onDk 6= Rn andmG ≥ 0 Linesearch iterations onRn. Here,
m = maxk=0,...,N mk, is the maximal number of Linesearch steps on each subset. Indeed, to derive
a convergent scheme, we will see that we must either computemG > 0 global smoothing steps or
have a domain decomposition withmk > 0 local smoothing steps.

5.3.2 A Modified Armijo Condition

Similar to the additive Linesearch approach, we extend the Armijo-Condition (2.2.5) to the multi-
plicative preconditioning context. Therefore, on each subsetDk, the step–length parameter must
satisfy the following Armijo condition

Hν
k (uν

k,i + αν
k,isk,i) ≤ Hν

k (uν
k,i) + ρAα

ν
k,i〈sk,i, g

ν
k,i〉 (5.3.1)

Moreover, on each subsetDk 6= Rn, we demand that beginning from the second subset iteration the
following inequality holds

〈uν
k,i − uν

k,∗ + αν
k,isk,i, g

ν
k,∗〉 ≤ ρR〈uν

k,1 − uν
k,∗, g

ν
k,∗〉 (5.3.2)

where0 < ρR ≤ ρA < 1. Here,uν
k,∗ denotes the first iterate onDk in the sense thatuν

k,∗ = uν
l,0

where the indexl is the smallest integer withCl = Ck andCl ( Cl−1 such that there does not exists
ani with l < i < k, Ci = Ck andCi ( Ci−1.
In contrast to [WG08], this condition is stated directly and is not a result of acondition to the objective
function, like, e.g.,

Hν
k (uν

k,i + αν
k,isk,i) > Hν

k (uν
k,∗) + ρMP2〈gν

k,∗, u
ν
k,i − uν

k,∗ + αν
k,isk,i〉 (5.3.3)

where1 − ρA ≤ ρMP2 < 1. This condition of Wolfe type can be illustrated as in Figure 5.1. In
fact, the formulation of such a condition has the drawback, that local minimizers are not generally
included in the region of feasible step–lengths (cf., [NW06] and Figure 5.1). Even worse, a step–
length parameter satisfying (5.3.3) may beα > 1 and, therefore, can in general not be computed
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Figure 5.1: Illustration of Z. Wen’s and D. Goldfarb’s step–length condition (5.3.3) in the first computation step
on domainDk. As one can see, the local minimizer is not included in the region of admissible step–lengths
(between the dotted lines). Moreover, in general there mustnot necessarily exist step–lengthsα which are
smaller than one, in contrast to the step–lengths which satisfy the Armijo condition. Thus, cheap backtracking
algorithms are generally not applicable. An illustration of the step–length criterion within the MPLS algorithm
is given in Figure 4.1.

with the traditional backtracking scheme, when starting fromα0 < α. To this end, one must employ
a (possibly expensive) bisection algorithm. As a sideeffect, this may yield that even for admissi-
ble search directions the resulting scaled search–direction may not be admissible in the sense of
Bk(uk−1). Though, as it turns out, only if the subset objective function has a uniformly positive
definite Hessian, (5.3.3) as a constraint vanishes, cf. Lemma 3.2 [WG08].In contrast, the following
lemma shows that (5.3.2) is always satisfied if the Hessians are just positive semi-definite.

Lemma 5.3.1. Assume that (Ampls1) and (Ampls2) hold and suppose thatHν
k is twice continuously

differentiable. Moreover assume that the Hessians ofHν
k are positive semidefinite, i.e.,

0 ≤ 〈s,∇2Hν
k (u)s〉 ∀u ∈ Dk, ∀s : u+ s ∈ Bk(uk−1)

Suppose furthermore that all search directions satisfy (2.2.2b) and (5.3.1). Then assumption (5.3.2)
is satisfied for every step–lengthαν

k,i ∈ (0, α0] satisfying (5.3.1).

Proof. The proof is the same as the one of Lemma 4.2.1 (Section 4.2.2).

A Practicable Descent Condition

As we have seen, in the additive case, the descent criterion (5.3.2) can,for instance, be satisfied by
employing the following descent criterion

〈uν
k,i − uν

k,∗ + αν
k,isk,i, g

ν
k,∗〉 ≤ ρMP 〈uν

k,i − uν
k,∗, g

ν
k,∗〉 (5.3.4)

whereρR ≤ ρm
MP andm = maxk=0,...,N mk. Since, as we will see, such a criterion ensures that

a backtracking algorithm is able to compute an admissible step–length, we will employ (5.3.1) and
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Modified Linesearch Algorithm

Input: uν
k,0 ∈ Dk, Bk, k ∈ N,m, nk ∈ N

Output: uν
k,mk

∈ Dk

i = 0
do until (i = m) {

if (Dk 6= Rn and uν
k,i 6= uν

k,∗) {
compute a search–directionsk,i satisfying (2.2.2a) and (5.3.5) anduk,i + sk,i ∈ Bk

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,i satisfying (5.3.1) and (5.3.4)

} else if(Dk 6= Rn) {
compute a search–directionsk,i satisfying (2.2.2a) and (5.3.5) anduk,i + sk,i ∈ Bk

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,i satisfying (5.3.1)

} else{
compute a search–directionsk,i satisfying (2.2.2a) and (2.2.2b) anduk,i + sk,i ∈ Bk

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,i satisfying (2.2.5)

}
setuν

k,i+1 = uν
k,i + αν

k,is
ν
k,i

i = i+ 1
}

return uν
k,mk

Algorithm 10: Modified Linesearch Algorithm

(5.3.4) within our MPLS algorithm, Algorithm 11. However, even if we employ thiscriterion, the
fact that each search–direction is a descent direction is still a direct consequence and not a result of a
condition of Wolfe type.

Lemma 5.3.2. Assume that (Ampls1) and (Ampls2) hold. Suppose that a givenuν
k,i ∈ Bk(uk−1) was

computed using (5.3.1) and (5.3.4), as well as that each search–direction sk,i ∈ Dk is a descent
direction, according to (2.2.2a) and thatuν

k,i + sk,i ∈ Bk(uk−1). Then there exists an0 < αν
k,i ≤

α0 ≤ 1 such that (5.3.1) holds and foruν
k,i 6= uν

k,∗ such that, both, (5.3.1) and (5.3.4) hold.

Proof. This proof is the same as the proof of Lemma 4.2.2.

Finally, like in the APLS setting, we have to ensure that the lengths of the subset search directions are
limited by the norm of the initial subset gradient. To this end, we formulate the following (recursive)
criterion

‖uν
k,i − uν

k,∗ + sk,i‖2
∞ ≤ βls∆k (5.3.5a)

‖sk,i‖2
∞ ≤ βls‖ĝν

k,i‖2
∞ (5.3.5b)

for all i = 0, . . . ,mk − 1 andk = 1, . . . , N , if Dk 6= Rn. Here,∆k is given as

∆k =






‖Ik−1
k ‖−2

∞ min{ ‖ĝν
k−1,mk−1

‖2
∞,

∆k−1 − β−1
ls ‖uν

k−1,mk−1
− uν

k−1,∗‖2
∞ }

if Dk 6= Rn

∞ if Dk = Rn

(5.3.6)

Here,βls > 0 is the constant from (2.2.2b). As it will turn out, this condition substitutes (4.2.10a)
within the modified Linesearch algorithm, Algorithm 10.
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Algorithm: MPLS – Nonlinear Multiplicatively Preconditioned Linesearc h Strategy

Input: k ∈ {0, . . . , N}, ∆k, Bk, uν
k,0 ∈ Dk, gν

k

Output: final iterateuν
k,mk,f

∈ Dk

Smoothing
call the Linesearch algorithm, Algorithm 10, withuν

k,0, Bk, m︸︷︷︸
=mk

, dimDk︸ ︷︷ ︸
=n

and receiveuν
k,mk

.

if (Ck+1 ) Ck)
return uν

k,mk,f
= uν

k,mk

else if(Ck+1 = Ck) {
uν

k+1,0 = uν
k,mk

k = k + 1
gotoSmoothing

} else if(Ck+1 ( Ck and (5.1.1) holds){
compute∆k+1 by means of (5.3.6)
call MPLSwith k + 1, ∆k+1, Bk+1(u

ν
k,mk

)
︸ ︷︷ ︸
=Bk+1 cf. (3.3.2)

, P k+1
k u

ν
k,mk︸ ︷︷ ︸

=uν
k+1,0

,Rk+1
k g

ν
k,mk︸ ︷︷ ︸

gν
k

and receiveuν
k+1,mk+1,f

setsk,mk
= Ik

k+1(u
ν
k+1,mk+1,f

− P k+1
k uν

k,mk
)

if (Dk 6= Rn anduν
k,mk

6= uν
k,∗) {

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,mk

satisfying (5.3.1) and (5.3.4)
} else{

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,mk

satisfying (5.3.1)

setuν
rk,0 = uν

k,mk
+ αν

k,mk
sν

k,mk

if (k 6= 0)
k = rk

else
uν+1

0,0 = uν
rk,mk+1, ν = ν + 1

}
}

Algorithm 11: MPLS – Nonlinear Multiplicatively Preconditioned Linesearch Strategy

Numerically both inequalities can be fulfilled by substituting (5.3.5) by

‖sν
k,i‖2

∞ ≤ min{βls∆k − ‖uν
k,i − uν

k,∗‖2
∞, βls‖ĝν

k,i‖2
∞}

On the other hand, the construction of the Linesearch algorithm, Algorithm 10,along with the defi-
nition ofBk+1(u

ν
k,mk

) in (3.3.2) satisfies the assumptions in Lemma 3.3.1 and shows that multiplica-
tively computed corrections are admissible inBk(uk−1).

The Nonlinear Update Operator

The nonlinear operatorFM is the result ofN possible recursions. In the particular framework of this
chapter, we define a recursively computed correction by

sk,mk
= Ik

k+1s
ν
k+1 = Ik

k+1(u
ν
k+1,mk+1,f

− uν
k+1,0)
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wheremk is the iteration when a recursion is called anduν
k+1,mk+1,f

is the final iterate onDk+1.
Note that we changed our point of view. Now the first iterate on the next subset is well-known, i.e.,
uν

k+1,0 = uν
k+1,∗ but the last one isuν

k+1,mk+1,f
= uν

l,ml
wherel = rk − 1.

Since we consider a Linesearch framework, the actual implementation of the multiplicative recom-
bination operator is

Aν
MPLS,k(sk,mk

, uν
k,mk

) = uν
k,mk

+ αν
k,mk

sk,mk

whereαν
k,mk

is chosen such that the Armijo condition (5.3.1) holds. Moreover, ifDk 6= Rn and the
initial iteration onDk already took place, i.e.,uν

k,i 6= uν
k,∗, we demand that also (5.3.4) is satisfied.

Thus, the nonlinear multiplicative update operator is given by

F (j)
M (uν

j,mj
) = Aν

MPLS,j(sj,mj
, uν

j,mj
) (5.3.7)

for all j with Dj = Rn.

5.3.3 Convergence to First–Order Critical Points

Like in Section 2.2, we will prove the convergence of the just presented MPLS Algorithm, Algo-
rithm 11 by showing that each multiplicatively computed correction is a descentdirection, each
correction satisfies a sufficient decrease condition and that the step–length parameters are bounded
from below.

Lemma 5.3.3. Suppose thatsk,i is a correction which was computed in Algorithm 11. Then we
obtain that the following estimation holds

‖sk,i‖2
∞ ≤ βls‖ĝν

k,i‖2
∞ (5.3.8)

for all k = 1, . . . , N and all i = 0, . . . ,m.

Proof. By (5.3.5b) inequality (5.3.8) holds for every correction computed within the Linesearch
algorithm.
Now we consider the casesk,i = sk,mk

, i.e., a recursively computed correction, and inductively
prove that (5.3.8) holds. First, assume thatsk,mk

= Ik
k+1s

ν
k+1 whereDk+1 is the lowermost subset.

Due to (5.3.5) we obtain

‖sk,mk
‖2
∞ = ‖Ik

k+1(u
ν
k+1,mk+1,f

− uν
k+1,0)‖2

∞
≤ ‖Ik

k+1‖2
∞‖uν

k+1,mk+1,f
− uν

k+1,0‖2
∞ ≤ ‖Ik

k+1‖2
∞βls∆k

≤ βls min{‖ĝν
k,mk

‖2
∞,∆k−1 − β−1

ls ‖uν
k,mk

− uν
k,∗‖2

∞}
(5.3.9)

Obviously, (5.3.8) holds.
Now, if k+ 1 is not the lowermost subset, we obtain due to the previous inequality,αν

k,mk
≤ α0 ≤ 1

and the definition of∆k+1 that

‖uν
k,mk

+ αν
k,mk

sk,mk
− uν

k,∗‖2
∞ ≤ ‖uν

k,mk
− uν

k,∗‖2
∞ + ‖αν

k,mk
sk,mk

‖2
∞

≤ ‖uν
k,mk

− uν
k,∗‖2

∞ + α0‖sk,mk
‖2
∞

≤ ‖uν
k,mk

− uν
k,∗‖2

∞ + βls∆k − ‖uν
k,mk

− uν
k,∗‖2

∞
= βls∆k

Following the argumentation in (5.3.9) gives rise to‖uν
k,mk

− uν
k,∗‖2

∞ ≤ βls∆k−1 and proves the
proposition.
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Next, we show that the Linesearch parameters which satisfy the Armijo condition are bounded from
below by a constant depending on the gradient and the search direction.As we will see, we will
prove this result only for initial subset corrections onDk 6= Rn. Here, we are just interested in the
initial corrections, since condition (5.3.4) enables us to relate subsequentcorrections to the initial
one.

Lemma 5.3.4. Suppose that (Ampls1) and (Ampls2) hold. Then for each Linesearch step onDj = Rn

and each initial Linesearch step onDk 6= Rn with uν
k,0 = uν

k,∗ in the MPLS algorithm the Armijo
condition (5.3.1) is satisfied for

α̂ν
k,i =

2(ρA − 1)〈sk,i, g
ν
k,i〉

Lg‖sk,i‖2
2

whereLg is the Lipschitz constant for∇Hν
k . Moreover, we obtain for the step–lengthαν

k,i of each
smoothing step onDk the estimation

min{α0, 2τα̂
ν
k,i} ≤ αν

k,i ≤ min{α0, 2α̂
ν
k,i}

Proof. Due to the assumption of this lemma, the proof is the same as the one for Lemma 2.2.2.

Lemma 5.3.5. Assume that (Ampls1) and (Ampls2) hold. Then there exists a constant such that for
each correctionsk,i with Dk = Rn, computed in the MPLS algorithm, Algorithm 11, the inequality
holds

−〈gν
k,i, sk,i〉 ≥ cMPLS‖ĝν

k,i‖2
2

wherecMPLS = cMPLS(βls, ηls, α0, ρMP ,m,N) > 0.

Proof. We prove the proposition inductively by definingcMPLS . By assumption (2.2.2a), we obtain
that each Linesearch correction onDk = Rn and each initial Linesearch correction satisfies

−〈gν
k,i, sk,i〉 ≥ c

(k)
MPLS‖ĝν

k,i‖2
2 = ηls‖ĝν

k,i‖2
2

In this case we definec(k)
MPLS = ηls > 0 which gives us the induction statement.

Now, we consider a recursively computed correction. Due to the definitionof the subset objective
function we havegν

k+1,0 = ∇Hν
k+1(u

ν
k+1,0) = Rk+1

k gν
k,mk

. Now we use the definition ofRk+1
k and

sk,mk
and obtain

−〈gν
k,mk

, sk,mk
〉 = −〈gν

k,mk
, Ik

k+1

(
uν

k+1,mk+1,f
− uν

k+1,0

)
〉

≥ −〈Rk+1
k gν

k,mk
, uν

k+1,mk+1,f
− uν

k+1,0〉
= −〈gν

k+1,0, u
ν
k+1,mk+1,f

− uν
k+1,0〉

Since each correction onDk+1 is a descent direction which satisfies the descent condition (5.3.4) we
obtain

−〈gν
k,mk

, sk,mk
〉 ≥ −ρm

MP 〈gν
k+1,0, α

ν
k+1,0sk+1,0〉

Now we may employ the induction statement and obtain

−〈gν
k,mk

, sk,mk
〉 ≥ ρm

MPα
ν
k+1,0c

(k+1)
MPLS‖ĝν

k+1,0‖2
2 (5.3.10)



92 5.3 Nonlinear Multiplicatively Preconditioned Linesearch Methods

Next, we will derive a lower bound forαν
k+1,0. To this end, we apply Lemma 5.3.4, i.e., the step–

length estimation by means of gradient and the correction, and obtain

αν
k+1,0 ≥

2τ(ρA − 1)〈sk+1,0, g
ν
k+1,0〉

Lg‖sk+1,0‖2
2

Now we estimate the correction’s size by employing Lemma 5.3.3 andn ≥ nk+1 = dimDk+1 which
yields

‖sk+1,0‖2
2 ≤ n‖sk+1,0‖2

∞ ≤ nβls‖ĝν
k+1,0‖2

∞ ≤ nβls‖ĝν
k+1,0‖2

2

Employing the induction statement, and the previous inequality yields

αν
k+1,0 ≥ min{α0,

2τ(1 − ρA)c
(k+1)
MPLS‖ĝν

k+1,0‖2
2

Lgnβls‖ĝν
k+1,0‖2

2

} = min{α0,
2τ(1 − ρA)c

(k+1)
MPLS

Lgnβls

}

Now, we combine the estimation for the step–length along with our subset gradient condition (5.1.1)
and (5.3.10) which yields

−〈gν
k,mk

, sk,mk
〉 ≥ ρm

MP min{α0,
2τ(1 − ρA)c

(k+1)
MPLS

Lgnβls
}c(k+1)

MPLS‖ĝν
k+1,0‖2

2

≥ ρm
MPκ

2
g min{α0,

2τ(1 − ρA)c
(k+1)
MPLS

Lgnβls

}c(k+1)
MPLS‖ĝν

k,mk
‖2
2

Next, we can define the sought-after constant recursively by employingc
(k+1)
MPLS and the traditional

Linesearch constants as follows

c
(k)
MPLS = ρm

MPκ
2
g min{α0,

2τ(1 − ρA)c
(k+1)
MPLS

Lgnβls

}c(k+1)
MPLS > 0 (5.3.11)

Together this provides
−〈gν

k,mk
, sk,mk

〉 ≥ c
(k)
MPLS‖ĝν

k,mk
‖2
2

Since the number of recursions is limited byN and each constantc(k)
MPLS > 0 we can choose

cMPLS = min
k=0,...,N

{c(k)
MPLS} (5.3.12)

This proves the proposition.

The following lemma considers the estimation ofcMPLS .

Lemma 5.3.6. Assume that all constants inc(k)
MPLS are given as defined in Algorithm 11. Then we

obtain
c
(k)
MPLS ≥ (τΘ)2

2(N−k)

min{1, η2(N−k+1)

ls } (5.3.13)

where

Θ = min{α0,
2(1 − ρA)

Lgn
}ρm

MPκ
2
g

with 1 > Θ > 0.
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Proof. If k is the deepest level in the recursion, we obtainc
(k)
MPLS = ηls ≥ min{1, η2

ls} which proves
the statement.
Now we considerk < N and employ the definition ofc(k)

MPLS , (5.3.13) and that

1 ≥ c
(k+1)
MPLS = (τΘ)2

(N−k−1)

min{1, η2(N−k)

ls } > 0

which yields

c
(k)
MPLS = ρm

MPκ
2
g min{α0,

2τ(1 − ρA)c
(k+1)
MPLS

Lgn
}c(k+1)

MPLS

≥ ρm
MPκ

2
gτ min{α0,

2(1 − ρA)

Lgn
}
(
(τΘ)2

2(N−k−1)

min{1, η2(N−k)

ls }
)2

≥ (τΘ)2 (τΘ)2
2(N−k−1)+1

min{1, η2(N−k+1)

ls }
= (τΘ)2

2(N−k)

min{1, η2(N−k+1)

ls }

This proves the proposition.

As we have seen in the proof of Lemma 5.3.5, one may also estimate each step–length parameter
independent from the gradients and corrections.

Lemma 5.3.7. Assume that (Ampls1) and (Ampls2) hold. Then there exists a constant such that each
step–length parameterαν

k,i for recursively computed corrections in the MPLS algorithm is bounded
from below, i.e.,

αν
k,i ≥ min

{
α0,

2τ(1 − ρA)cMPLS

Lgnβls

}

whereDk = Rn andcMPLS is as defined in (5.3.12).

Proof. First, we exploit Lemma 5.3.4 which gives

αν
k,i ≥ min

{
α0,

2τ(ρA − 1)〈sk,i, g
ν
k,i〉

Lg‖sk,i‖2
2

}

Now, we employ Lemma 5.3.3 and Lemma 5.3.5 and obtain

αν
k,i ≥ min

{
α0, cMPLS

2τ(1 − ρA)‖ĝν
k,i‖2

2

nLgβls‖ĝν
k,i‖2

2

}
≥ min

{
α0, cMPLS

2τ(1 − ρA)

Lgnβls

}

In a similar fashion like Theorem 2.2.4, we will now prove the convergence of the nonlinear multi-
plicatively preconditioned Linesearch algorithm, Algorithm 11.

Theorem 5.3.8.Suppose that (Ampls1) and (Ampls2) hold. Furthermore, assume that either on one
subsetDj = Rn at leastmj = mG > 0 Linesearch steps are computed or an overlapping or non-
overlapping domain decomposition is employed. If a domain decompositionis employed, we assume
furthermore thatmk > 0 holds for eachDk 6= Rn and that the constants are given as in (4.1.7) and
(4.1.8), respectively.
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Then the MPLS algorithm, Algorithm 11, computes a sequence of iterates converging to a first–order
critical point for problem (M), i.e.,

lim
ν→∞,Dj=Rn,i∈{0,...,m}

‖ĝν
j,i‖2 = 0 (5.3.14)

Proof. As in the proof of Theorem 2.2.4, we use that onDj = Rn the Armijo condition (5.3.1) gives
rise to

J(uν
j,i) − J(uν

j,i+1) ≥ −αν
j,iρA〈sj,i, g

ν
j,i〉

We employ Lemma 5.3.5 and (2.2.2b), respectively, and obtain

J(uν
j,i) − J(uν

j,i+1) ≥
{
αν

j,icMPLS‖ĝν
j,i‖2

2 if sj,i was computed recursively

αν
j,iηls‖ĝν

j,i‖2
2 otherwise

Now we employ Lemma 2.2.3 and Lemma 5.3.7, respectively which gives

αν
j,i ≥





min

{
α0,

2τ(1−ρA)cMPLS

Lgβlsn

}
if sj,i was computed recursively

min
{
α0,

2τ(1−ρA)
Lgnβls

}
otherwise

Note that if onDj = Rn no Linesearch steps are computed, we have a domain decomposition as
introduced in Section 3.1.6. In this case, Lemma 4.1.5 is valid and in each iterationν at least on
one subset a correction is computed. Together with the compactness ofL0 and, thus,J(uν

j,i) −
J(uν

j,i+1) → 0 we can conclude that‖ĝν
j,i‖2 → 0 which proves the proposition.

5.4 Combined Nonlinearly Preconditioned Linesearch Methods

To improve the rates of convergence of the traditional Linesearch method from Section 2.2, we
introduced the preconditioned Linesearch variants Algorithm 7 and Algorithm 11. In this section,
we will introduce an algorithm which combines both preconditioning strategies by substituting the
Linesearch solver within MPLS by the APLS solver. Hence, we obtain the AMPLS algorithm as
presented in Algorithm 12.

Convergence to First–Order Critical Points

Similar to the traditional Linesearch analysis, we will once more prove that each correction com-
puted within the AMPLS algorithm satisfies a sufficient decrease condition. In turn, we may use the
standard argumentation and obtain the sought–after convergence result.

Lemma 5.4.1.Assume thatRn is decomposed into a sequence of nested subspaces, as introduced in
Section 3.1.4, and that the respective subsetsDk are decomposed as in (5.2.1). Moreover, assume that
(Ampls1), (Ampls2) hold on each “multiplicative” subsetDk and that (Aapls1) and (Aapls2) hold on the
respective subspacesDk,l. Then for each correctionsk,mk

∈ Dk = Rn, computed multiplicatively
within the AMPLS algorithm, we obtain

−〈gν
k,mk

, sk,mk
〉 ≥ αν

k,mk
cMPLS2‖ĝν

k,mk
‖2
2

wherecMPLS2 > 0.



5 Nonlinear Multiplicatively Preconditioned Globalization Strategies 95

Algorithm: AMPLS – Nonlinear Additively and Multiplicatively Precondit ioned Linesearch Strategy

Input: k ∈ {0, . . . , N},∆kBk, u
ν
k,0, g

ν
k−1 ∈ Dk−1,∆k−1 ∈ R+ ∪ {∞}

Output: new iterateuν
k,mk,f

∈ Dk

Smoothing
call a modifiedAPLSalgorithm withuν

k,0︸︷︷︸
=u0

, Hν
k︸︷︷︸

=J

, dimDk︸ ︷︷ ︸
=n

which ensures that (5.3.1), (5.3.4) and (4.2.4) is satisfied
and receive a new iterateuν

k,mk
and a new Trust-Region radius∆ν

k,mk

if (Ck+1 ) Ck)
return uν

k,mk,f
= uν

k,mk

else if(Ck+1 = Ck) {
uν

k+1,0 = uν
k,mk

k = k + 1
gotoSmoothing

} else if(Ck+1 ( Ck and (5.1.1) holds){
computed∆k+1 by means of (5.3.6)
call MPLSwith k + 1, ∆k+1, Bk+1(u

ν
k,mk

)
︸ ︷︷ ︸
=Bk+1 cf. (3.3.2)

, P k+1
k u

ν
k,mk︸ ︷︷ ︸

=uν
k+1,0

,Rk+1
k g

ν
k,mk︸ ︷︷ ︸

gν
k

and receiveuν
k+1,mk+1,f

setsk,mk
= Ik

k+1(u
ν
k+1,mk+1,f

− P k+1
k uν

k,mk
)

if (Dk 6= Rn andmν
k,mk

6= uν
k,∗)

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,mk

satisfying (5.3.1) and (5.3.4)
else

call the Backtracking Algorithm 2 to compute a step–lengthαν
k,mk

satisfying (5.3.1)

setuν
rk,0 = uν

k,mk
+ αν

k,mk
sν

k,mk

if (k 6= 0)
k = rk

else
uν+1

0,0 = uν
rk,mk+1, ν = ν + 1

}

Algorithm 12: AMPLS – Nonlinear Additively and Multiplicatively Preconditioned Linesearch Strategy
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Proof. Similar to the proof of Lemma 5.3.5, we prove the proposition by induction. But since just
the induction statement changes, we can employ major parts of the proof of Lemma 5.3.5.

By assumption (2.2.2a) and the result of Lemma 4.2.4, we obtain that each initial Linesearch and
APLS correction satisfies

−〈gν
k,i, sk,i〉 ≥ min

{
ηls, κ

2
gρ

m
AP ηls min {α0, 2ταmin}

}
‖ĝν

k,i‖2
2

In this case, we definec(k)
MPLS2 = min{ηls, κ

2
gρ

m
AP ηls min{α0, 2ταmin}} > 0.

Now, we can exploit exactly the same argumentation as in the proof of Lemma 5.3.5and obtain that
for recursively computed corrections the proposition holds with

c
(k)
MPLS2 = ρm

MPκ
2
g min{α0,

2τ(1 − ρA)c
(k+1)
MPLS2

Lgnβls

}c(k+1)
MPLS2 > 0

Finally we choose
cMPLS2 = min

k=0,...,N
c
(k)
MPLS2

which concludes the proof.

Theorem 5.4.2.Assume thatRn is decomposed into a sequence of nested subspaces, as introduced
in Section 3.1.4 and that the respective subsetsDk are decomposed as in (5.2.1). Moreover, assume
that (Ampls1), (Ampls2) hold on each “multiplicative” subsetDk and that (Aapls1) and (Aapls2) hold for
the respective subspacesDk,l. Moreover suppose that either each subsetDj = Rn is decomposed
employing an overlapping or non-overlapping or that on oneDj = Rn at leastmj = mG > 0 global
smoothing steps are computed. If a domain decomposition is employed, weassume furthermore that
mj,l > 0 holds for the subsetsDj,l of Dj = Rn and that the constants are given as in (4.1.7) and
(4.1.8), respectively.

Then the sequence of iterates(uν
j,i)i,Dj=Rn,ν computed in Algorithm 9, satisfies

lim
ν→∞,Dj=Rn,i∈{0,...,m+1}

‖ĝν
j,i‖2 = 0 (5.4.1)

Proof. As in the proof of Theorem 2.2.4, we use that each global Linesearch parameterαν
j,i satisfies

the Armijo condition (5.3.1), i.e.,

J(uν
j,i) − Jν(uν

j,i+1) ≥ −αν
j,iρA〈sj,i, g

ν
j,i〉

Using, Lemma 4.2.4, Lemma 4.2.5 and equation (2.2.2b), respectively, gives,

J(uν
j,i) − J(uν

j,i+1) ≥






αν
j,iκ

2
gρ

m
AP ηls min {α0, 2ταmin} ‖ĝν

j,i‖2
2 if sj,i was computed additively

αν
j,icMPLS2‖ĝν

j,i‖2
2 if sj,i was computed recursively

αν
j,iηls‖ĝν

j,i‖2
2 otherwise

whereαmin > 0 was defined in Lemma 4.2.3. Now we employ Lemma 2.2.3, Lemma 4.2.5 and
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Lemma 5.3.7, and obtain for each Linesearch parameter

αν
j,i ≥






min {α0, 2τcAPLSαmin} if sj,i was computed additively

min
{
α0,

2τ(1−ρA)cMPLS2

Lgnβls

}
if sj,i was computed recursively

min
{
α0,

2τ(1−ρA)
Lgnβls

}
otherwise

Note that if, within the APLS algorithm,mG = 0, we have a domain decomposition as introduced in
Section 3.1.6. In this case, Lemma 4.1.5 applies and in each iteration at least onesubset correction
is computed.
Together with the compactness ofL0 and, thus,J(uν

j,i) − J(uν
j,i+1) → 0 we conclude that

‖ĝν
j,i‖2 → 0

which proves the proposition.

5.5 A Remark on Second-Order Convergence

In order to compute a second–order critical point, the iterative scheme mustbe able to “detect” and
handle negative eigenvalues of the Hessians. As a matter of fact, even if the gradient is zero, one
might have just found a saddle point. If a saddle point was computed, one must choose the right
search direction, to succeed in computing a local minimizer, as pointed out in Section 2.1.5 and
Section 2.2.5.
The presented preconditioning strategies can be considered as subspace correction methods, which
may only resolve the eigenvectors and eigenvalues of the Hessian on the respective subspaces. There-
fore, employing a multiplicative scheme to compute a search–direction which satisfies

ψν
j,mj

(sj,mj
) ≤ cψν

j,mj
(smin) (5.5.1)

with c > 0 and

ψν
j,mj

(s) = 〈gν
j,mj

, s〉 +
1

2
〈s,∇2J(uν

j,mj
)s〉

is generally impossible. Here,smin is the solution of

s : ψν
j,mj

(s) = min! w.r.t. ‖s‖∞ ≤ ∆ν
j,mj

anduν
j,mj

+ sj,mj
∈ B

We will briefly show that for some (realistic) examples multiplicative strategies are not able to satisfy
(5.5.1). Suppose thatRn is decomposed non-overlappingly and suppose that the local objective
function is a quadratic function like

Hν
k (uν

k,0 + sk) = ψν
k(sk) = 〈Rkg

ν
j,mj

, sk〉 +
1

2
〈sk, Rk∇2J(uν

j,mj
)Iksk〉

Similar to the argumentation in Section 4.4, we consider the following problem. Suppose thatgk = 0
and thatRk∇2J(uν

j,mj
)Ik is positive definite. Furthermore, letRk∇2J(uν

j,mj
)Ii for k 6= i be chosen

such that∇2J(uν
j,mj

) is negative definite. In this case, the local correctionsk is zero, but the solution
of (5.5.1) may be the following vector

smin = αxλmin
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wherexλmin
with ‖xλmin

‖2 = 1 is the eigenvector related to the smallest (negative) eigenvalue of
∇2J(uν

j,mj
). In a Trust-Region setting, the scaling parameterα > 0 is chosen such thatuν

j,mj
+

smin ∈ B and‖smin‖∞ ≤ ∆ holds. In this case, we obtain that

ψν
j,mj

(Iksk) = 0

but
ψν

j,mj
(smin) = λminα < 0

Which shows, that also multiplicative corrections generally cannot solve (5.5.1).
Similarly, in the context of multiplicatively preconditioned Linesearch methods, the search directions
must solve (5.5.1) in order to compute a second–order critical point [CL94]. But, the same reasoning
shows that this is generally impossible.
Therefore, also multiplicative schemes aim at just improving the convergence of the globalization
strategy. On the other hand, only the global smoothing strategy is able to ensure (quadratic) conver-
gence to second–order critical points.
Complex real life simulations in solid mechanics are challenging in two ways. To obtain results
which are close to reality, the geometry of the solid, in particular its boundariesmust be resolved suf-
ficiently accurate by the computational domain. But, the better the polyhedral mesh approximates the
real geometry, the larger becomes the minimization problem. In addition, realistic physical models
generally give rise to nonlinear, and in the case of contact, possibly nonsmooth objective functions.
From the engineer’s point of view, real life simulations must be computed employing efficient and
reliable strategies. As we have seen in Chapter 2, reliable solution strategiesfor large scale vari-
ants of our model problem (M) are the traditional Trust-Region and Linesearch strategies. However,
efficiency for both globalization strategies may only be achieved, if the search directions can be
computed in parallel. But, if large scale minimization problems with strong nonlinearities have to be
solved, these traditional globalization strategies tend to converge slowly. Onthe other hand, the pre-
sented preconditioned globalization strategies truly converge to critical points. Now, in this chapter
we will consider the convergence behavior of the presented traditional and nonlinearly precondi-
tioned globalization strategies. To this end, we compare in several examples the rates of convergence
of the respective Trust-Region strategies and Linesearch strategies witheach other and comment on
the convergence rates and computation times.
The presented examples in this chapter arise from the discretization of the PDEs as introduced in Sec-
tion 1.3. Numerically, the discretization is carried out within the OBSL IB++ framework [Kra07b].
On the other hand, the presented solution strategies are implemented in the NLSOLVERL IB which
extends OBSL IB++. A brief outline of technical aspects of the NLSOLVERL IB is given in Chap-
ter 6. OBSL IB++, itself, extends the Finite Element toolbox UG [BBJ+97] in order to assemble and
to solve nonsmooth minimization problems.
The computational domains of the presented examples are CAD based unstructured grids provided in
EXODUS-II format [SY94]. Moreover, the boundary conditions and necessary parameters are given
in EXODUS-II PARAMETER FORMAT [GK08a].

5.6 Non-Linear Elasto-Static PDEs

The convergence analyses for the presented globalization strategies ofthis thesis have in common,
that we assume that the minimization problem (M) has a solution. In the context ofthe static border
case in elasticity it is sufficient to assume that a stored energy function satisfies the assumptions of
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Figure 5.2: Left: the computational domain for the Dirichlet value problem of Section 5.6.3. Right: the
computational domain for the contact problem of Section 5.6.6.

Theorem 1.2.3. As it turns out, the well-known and most simple nonlinear stored energy function,
for St. Venant-Kirchhoff materials does not satisfy these assumptions [Rao86] and is, thus, not suited
for our numerical examples.
Therefore, we will focus on a class of objective functions, introducedby R.W. Ogden [Ogd97], which
satisfies the assumptions of Theorem 1.2.3:

Ŵ (C(u)) = 3(a+ b) + (2a+ 4b) · trE + 2b · (trE)2 − 2b · tr(E2) + Γ(det(∇ϕ)) (5.6.1)

whereC(u) = 1
2(I + ∇u)T (I + ∇u) is the Green-St.Venant strain tensor,E = 1

2(C − I) and
ϕ = Id + u is the deformation tensor andΓ(δ) = cδ2 − d log δ a logarithmic barrier function. The
constants are chosen as follows

a =
µ

2
− λ

8
, b =

µ

2
+
λ

4
, c =

λ

8
andd =

λ

2
+ µ (5.6.2)

The Laḿe constantsµ > 0 andλ > 0 will be chosen problem dependent.
This material law describes the behavior of a compressible Mooney-Rivlin material (cf. Section 4.10
[Cia88]). But, moreover, following Theorem 4.10-2 [Cia88], this materiallaw and its parameters
have the following properties

• for ‖E‖ → 0 this material law converges to the St. Venant-Kirchhoff material law

• this material law is polyconvex and satisfies the coercivity inequality from Section 1.2.2

Moreover, this stored energy function is twice continuously differentiablein u and satisfies the as-
sumption on the levelsets.

Lemma 5.6.1. Suppose that̂W : X → R is given like in (5.6.1), whereX is the Finite Element
space from Section 1.3.2. Suppose furthermore that the assumptions on theset of admissible solutions
Φh = X ∩Φ stated in Theorem 1.2.32 hold along withΓD 6= ∅ andJ(u0) <∞ with u0 ∈ Φh. Then
the levelset

L = {u ∈ Φh | J(u) ≤ J(u0)}
2The definition ofΦ and that it is non-empty
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where

J(u) =

∫

Ω

(
Ŵ (C(u)) − ρF · u

)
dx −

∫

ΓN

f · u dsx

is compact.

Proof. Due to Theorem 4.10-2 [Cia88] and the reasoning as in the proof of Theorem 7.7-1 [Cia88],
the following coercivity relation holds

J(u) ≥ c‖u + Id‖2
H1(Ω) + ‖Cof(∇u + I)‖2

L2(Ω) + (det(∇u + I))2) + d for all u ∈ Φh

wherec > 0 andd ∈ R.
Now assume thatL is not bounded. Then there exists a sequence(uk)k in L with ‖uk‖L2(Ω) → ∞.
Due to the coercivity this implies thatJ(uk) → ∞, which contradictsJ(u0) <∞.
Now suppose thatL is not closed. In this case, there exists a sequence of Finite Element functions
(uk)k in L such thatuk → ũ 6∈ L. which means thatJ(ũ) > J(u0). This implies that there must
exist for allε > 0 an indexν0 such that‖ũ − uk‖L2(Ω) ≤ ε for almost allk ≥ ν0. The continuity
of J and the finite dimension ofX now gives rise to the fact that for smallε alsoJ(uk) > J(u0)
holds, which contradictsuk ∈ L.

Remark 5.6.2. SinceRn is isomorphic toX , we obtain that also the discrete levelsets are compact.
Also for each subsetDk the compactness ofLk can be shown employing the same reasoning, ifPku

ν

andP k+1
k uk must satisfy the assumptions of this theorem. Though, as pointed out in [GK08b], re-

stricted iterates in a Finite Element multigrid context might not satisfy these assumptions. In contrast,
in the presented examples of this section, we obtain that projected iterates satisfy the assumptions
which yields that also for the multiplicative strategies the convergence results hold.
Moreover, as we have shown in Theorem 1.3.1, also in the dynamic case the coercivity condition
holds. Employing the same argumentation as in the previous lemma, one candeduce that each
levelsetL(ti) is compact.

Lemma 5.6.3. Suppose that̂W : X → R is given like in (5.6.1), whereX is the Finite Element
space with linear basis functions from Section 1.3.2. Suppose furthermore that the assumptions on
the set of admissible solutionsΦh = X ∩ Φ stated in Theorem 1.2.33 hold along withΓD 6= ∅ and
J(u0) <∞ with u0 ∈ Φh. Then there exists a constantC > 0 such that for allu ∈ L as defined in
the previous lemma,

‖∇2Ŵ (C(u))‖ ≤ C

Proof. Sinceu is an element from the Finite Element spaceX and sinceE is a polynomial in the
components of∇u, we obtain that there exists anc > 0 such that

‖ ∂2

∂u2

(
3(a+ b) + (2a+ 4b) · trE + 2b · (trE)2 − 2b · tr(E2)

)
‖ ≤ c

for all u ∈ L. On the other hand, we employ

∂2

∂u2
Γ(det(∇ϕ))(·)(·) = Γ′′(det(∇ϕ))det′(∇ϕ)∇(·)det′(∇ϕ)∇(·) +

Γ′(det(∇ϕ))det′′(∇ϕ)∇(·)∇(·)
3The definition ofΦ and that it is non-empty
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Since det(∇ϕ) is a polynomial of degree 3 in the components of∇u, which is in turn a piecewise
polynomial, we obtain that‖det′(∇ϕ)‖ and‖det′′(∇ϕ)‖ have a finite value onL. On the other
hand, sinceL is bounded, and the coercivity condition holds, we obtain thatdet(∇ϕ) ≥ ε > 0 for
all u ∈ L. This in fact, yields thatδ−1 andδ−2 in Γ′(δ) andΓ′′(δ) are bounded inL. Moreover,
also the derivatives ofδ2 are bounded inL yielding that the norms of the barrier termsΓ′ andΓ′′ are
bounded inL.

Alltogether this proves the proposition.

Remark 5.6.4. Employing the result of the previous Lemma shows that the gradients ofŴ are
bounded and Lipschitz continuous. Now we can employ, once more, thatRn andX are isomorphic
and obtain that the stated assumptions for the respective globalization strategies hold and conver-
gence can be guaranteed.

As we have seen, the presented globalization strategies aim at the solution ofdiscretized optimization
problems of the kind (M). In this section, we will, therefore, focus on the following minimization
problem

J(Xu) = min! in Ω (5.6.3a)

Xu · n ≤ φ onΓC ⊂ ∂Ω (5.6.3b)

Xu = g onΓD ⊂ ∂Ω (5.6.3c)

(cf., equation (1.3.7)) where

J(u) =

∫

Ω

(
Ŵ (C(u)) − ρF · u

)
dx −

∫

ΓN

f · u dsx

But, note that in all of our examples we will employρ = 1 andF = 0.

As a matter of fact, the resulting objective function realizes an interior point approach (for an intro-
duction see [NW06] and [FM90]) to enforce that element volumes will not be inverted. As it turns
out, the logarithmic barrier function is an approximation to the indicator function

χB+(u) =

{
0 if u ∈ B+

∞ otherwise

of
B+ = {u ∈ H1(Ω) | det(∇u + I) > 0}

But, the employed logarithmic barrier term yields that (5.6.1) becomes a highly nonlinear objective
function, whenever the material is compressed. Therefore, within the iterative solution of a mini-
mization problem which incorporates this barrier function, undamped iteratesmay violateB+. Since
the barrier function will depend on the discretization, this constraint is closely related to the mesh
size. In turn, for relative coarse meshes this constraint does often notyield a step-length limitation.
But the finer the mesh becomes, the more problems can be caused by long corrections. Therefore,
this argument along with the possible non-convexity of the objective function, stresses the fact that
convergence can only be guaranteed if a globalization strategy is employed.
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Figure 5.3: Here, we illustrate the von-Mises stress. In case of plane stress, the principal stress components
T̂ 11 andT̂ 22, i.e., the first two eigenvalues of the stress tensor, the von-Mises stress describes an ellipse within

theT̂ 11 − T̂ 22-plane. In particular, we have‖devT̂ ‖2 = T̂
2

11 − T̂ 11T̂ 22 + T̂
2

22, where

5.6.1 Visualization

To visualize the computed results, we employ the von-Mises stress distribution which is a well-
known tool in plasticity theory. In particular, the von-Mises stress distribution4 maps from the space
of second–order tensors toR given by

T̂ 7→ ‖devT̂ ‖2 = ‖T̂ − 1

3
(T̂ : I)I‖2

In fact, the stress of a material differs under different loading conditions since under our assumptions
the stress tensor itself possesses six degrees of freedom. Thus, to each other “equivalent” stresses
would normally yield different visualizations. The von-Mises stress, in contrast, maps equivalent
stresses to the same distribution.

Though, the von-Mises stress distribution is a fictitious stress distribution andis well-suited to make
predictions if a material is bended or skewed. In contrast, this criterion should not be applied, if the
stresses in all principal directions, i.e., in direction of the eigenvectors of the stress tensor, are equally
large. In this case, it may occur that‖devT̂ ‖2 ≈ 0 but‖T̂ ‖2 ≫ 0.

However, the visualization itself was carried out in two steps. We employ IOLIB from OBSL IB++
(cf., Section 6.3) to export the current mesh, displacements and the von-Mises stress distribution.
This enables us to visualize, in a secnod step, all data employing PARAV IEW [Tea09].

Computing Initial Iterates

Stored energy functions of Ogden-type, such as (5.6.1) often yield particular numerical challenges
if displacements are prescribed for the solution atΓD, which is the case when solving a so-called
Dirichlet value problem. In the case of linear elasticity, the solution of such minimization problems
can be carried out straight-forwardly, independent fromB+. The linear elastic material law is given
by

Ŵ (u) =
1

2
σ(u) : ε(u) (5.6.4)

4Sometimes also referred to as equivalent tensile stress or distortion strainenergy
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Figure 5.4: Left: the computational domain for the Dirichlet value problem of Section 5.6.4. Right: the
computational domain for the contact problem of Section 5.6.7.

whereε(u) = 1
2(∇uT + ∇u) denotes the linearized Green–St. Venant strain tensor and

σ(ε) =
E

1 + ν
ε(u) +

ν

1 − 2ν
tr(ε(u)) I

Hooke’s tensor [Cia88, Bra07].
However, in the case of nonlinear elasticity and the context of our examplesit is of paramount
importance thatu0 ∈ B+. But, even if the initial solution on a relatively coarse mesh does not
violate this constraint, for realistic resolutions of the computational domain, this isgenerally not the
case.
Therefore, two different strategies are often employed to compute admissible iterates for large–scale
optimization problems. On the one hand one might employ nested iteration. In this case, (5.6.3)
is solved based on a certain discretization. Then the underlying mesh is refined and the current
solution interpolated yielding a start iterate for the finer problem. On the other hand, one might
first solve an easier computable problem, e.g., with (5.6.4) as stored energyfunction, which usually
provides an admissible start iterate for the fine level solution process. In our examples, we, therefore,
solve the linear elastic model problem (employing the same Lame parameters) on the coarsest level
and interpolate the computed linear solution to the level, where the nonlinear minimization problem
(5.6.3) should be solved.

5.6.2 The Nonlinear Update Operator

In our examples, each local update operatorFk(u) is constituted by four, in the additive case asyn-
chronous, Trust-Region or Linesearch steps, respectively. On the other hand, we employ four Trust-
Region or Linesearch steps as postsmoother in order to computesν in (3.1.6).
The respective search directions are computed employing a parallelized projected cg method along
with a parallel symmetric non-linear Gauß-Seidel preconditioner [Kra07a].Basically this Gauß-
Seidel preconditioner works just like a sequential symmetric non-linear Gauß-Seidel method. On
each processor, the symmetric Gauß-Seidel iteration is performed but without parallel communi-
cation. After the local iteration, a parallel update takes place, enhancing the overall convergence
tremendously. In turn, during the iterative solution process for problems like (M) thousands of cg
iterations must be computed yielding as many parallel communication calls. Though, the overall
method behaves for a small number of processors similar to a cg-method employing the traditional
symmetric Gauß-Seidel method as smoother. The cg-method, itself, is parallelized just employing
parallelized linear algebra.
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In contrast, during the parallel solution process, we employ the cg method in combination with
a local sequential symmetric nonlinear Gauß-Seidel method, which does notemploy any parallel
communication. Both solvers are employed to compute Quasi-Newton corrections by means of
possibly outdated Hessians. In fact, we reassemble the exact Hessian whenever the current Hessians
become outdated. This, in turn, is measured by means of (6.1.1), a heuristic which will be introduced
in Section 6.1. Though, we will employF ′(u) = I within each globalBν

k,i as proposed in Section
3.1. In turn, we compute several Trust-Region or Linesearch steps in order to obtain a good global
correctionsν .
As a matter of fact, this linear solver is generally not suited for the solution of indefinite and negative
definite linear systems of equations. But, to guarantee convergence, we employ the Cauchy criterion
(2.1.9) and (2.2.3), respectively. This means, that if the correction or search direction does not satisfy
these conditions, we simply choose the Cauchy point as direction.
However, the symmetric Gauß-Seidel method cannot handle coupled constraints straight-forwardly.
As it turns out, even if the obstacle itself is a plane, the plane’s normal generally does not direct in the
direction of the employed basis functions which yields coupled constraints. To avoid this problem,
one might employ the approach from Section 1.3.2 to rotate the basis functions prior to the solution
process into the normal tangential system of the obstacle (cf., for instance[Kra01]).

The Additive Framework

In the additive framework, we decompose the computational domainΩ into N non–overlapping
subsetsΩk whereN is the employed number of processors. In fact, in all computed examples we
employedN = 8 processors. This yields a decomposition of the coefficient spaceRn as presented
in Section 3.1.6.
The local objective function is then given by

Jν
k (uk) = J(uk, u

ν
k
)

whereuν
k

= (uν){1,...,n}−Ck
are the coefficients ofuk which are not represented onDk. Note that,

from now on we consider the solution of the discretized system (1.3.7a).
This particular objective function is reasonable in the context of Ogden materials, since the barrier
term must be computed employing outdated unknowns at the processor interface. Setting these
unknowns to zero would generally cause that the barrier function is not defined atuk.
Moreover, since each basis function has a strictly local support, the assembling process can also be
carried out strictly local. Therefore, in order to asynchronously computeJν

k , the assembler just needs
the (outdated) information of the unknowns at neighboring elements.

Remarks on the Expected Numerical Behavior

In Chapter 4, we have seen that both globalization strategies, APTS and APLS, aim at a solution of
local minimization problems which are closely related to (M). In case of a domain decomposition, as
presented in Section 3.1.6, the additive preconditioning strategies quickly smooth the local nonlinear
residuals. As a consequence, within the interior of eachDk the error becomes small. But on the other
hand, at the domain interfaces, the residual might increase since on two different domains corrections
were computed without parallel communication.
As it will turn out, in our computations this might have different effects. In most cases the conver-
gence rates are significantly improved, even if step-length limitations at the domain interfaces might
occur. On the other hand, low frequency contributions of the solution, such as rigid body motions,
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Figure 5.5: Left: the computational domain for the Dirichlet value problem of Section 5.6.5. Right: the
computational domain for the contact problem of Section 5.6.8.

are poorly resolved by the additive framework which causes a disturbingeffect. Therefore, employ-
ing also a nonlinear multigrid strategy as a multiplicative preconditioning scheme to resolve these
motions improves the rates of convergence significantly.

The Multiplicative Framework

In the multiplicative framework, the Finite Element spaceX is hierarchically decomposed as follows

X = X0 ⊃ . . . ⊃ XN

The transfer operator for the primal variables is the approximation to the discretizedL2 projection
as presented in (3.1.18). The interpolation operator is given as in (3.1.12)and the local objective
function is given by

Jν
k (uk) = J(Xkuk)

As a matter of fact, the coarse level objective function can be evaluated directly on the current level
employing a quadrature rule on the current grid. Moreover, the coarselevel problems are solved
employing two iterations of the traditional Trust-Region or Linesearch schemes.

Remarks on the Expected Numerical Behavior

In our numerical examples, we observe that the application of a coarse level generally speeds up
the convergence with less computational overhead. In particular, if we combine additive and mul-
tiplicative schemes, in most examples we observe the fastest measured convergence. This results
from the well-balanced combination of an “exact” solution of local problems incombination with an
improved resolution of low frequency contributions, such as rigid body motions.

Parameter Choices

Within the sufficient decrease condition (2.1.9) of the Trust-Region algorithm we employβ = 0.5.
Together withη = 0.1 andγ1 = 0.1 andγ2 = 2, the constants of the Trust-Region method are given.
Within the Linesearch algorithm we employρA = 0.1, as well asρAP = ρMP = 0.9. Moreover,
we defineβls = 100 andηls = 0.1. In all algorithms, the additive and multiplicative schemes, we
employκg = 1

n
√

n
≤ 1√

n
in (5.1.1) to ensure a “uniform” convergence of the first-order conditions.



106 5.6 Non-Linear Elasto-Static PDEs

Figure 5.6:Unconstrained Minimization Problem: Compression of a Cube. The computed solution of
problem from Section 5.6.3 with135, 456 degrees of freedom. At the hole’s upper side we applied zero
Dirichlet values in all directions (as indicated by the dots), and at the cube’s lower side displacements of10%,
20%,30% respectively, of the cube’s size (as indicated by the arrows). Colors are the local von-Mises stresses.

Finally, we define a stop-criterion for the respective globalization strategies. This means, that we stop
our computation if the first–order conditions‖gν

j,mj
‖2 ≤ ε for problem-dependently chosenε > 0.

Comparing the Schemes

Due to the computational overhead of the preconditioned schemes, it becomes hard to compare the
traditional and the preconditioned globalization strategies with each other. Inorder to compare the
schemes we measure the employed outer iterations, the cg iterations and the normed, expected com-
putation time of the schemes. To derive the expected computation time we employ the worst-case
scenario: experiments show that the asynchronous strategies employing 4Trust-Region or Line-
search steps along with 25 cg iterations for the computation of search directions need 135% of the
time which traditional schemes with 100 cg iterations and 4 globalization steps consume. Therefore
the additive schemes need per cycle 1.35 times the computation time of the traditionalscheme. Sim-
ilarly the multiplicative strategies need generally 1.15 times longer per iteration thanthe traditional
schemes.
In fact, in our comparison each asynchronous cg iteration is weighted like asynchronous iteration.
As we have seen in our numerical experiments, this observation holds true for eight-core machines,
like the employed ones. Therefore, due to the massively employed parallel communication, we
expect that on faster machines with competitive implementations, the computation time for each
APTS/APLS cycle is considerably faster than the factor of 1.35.

5.6.3 Unconstrained Minimization Problem: Compression of aCube

As the first numerical example, we consider the solution of problem (5.6.3) employing a discretiza-
tion with 135, 456 unknowns. In this example, we apply displacements at the lower side of the
domain shown in the left image of Figure 5.2. On the other hand, at the upper side of the geometry’s
hole, we apply zero displacements. All other boundary conditions are chosen as natural conditions.
Therefore,∂Ω is divided intoΓD = {(x, y, z)| − 0.5 = x ∨ 0.15 = x} ∩ ∂Ω, ΓN = ∂Ω\ΓD with

g((x, y, z)T ) =

{
(d, 0, 0)T if x = 0.5

0 otherwise

where d = 0.2, 0.25, 0.3. Due to the absence of contact conditions, we chooseφ =

(−106, . . . ,−106)T andφ = (106, . . . , 106)T . The material parameters, i.e., the Lamé constants,
are chosen asE = 300[mPa] and ν = 0.3. To deriveλ andµ one can employ the following
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Example Outer it. cg it. (fine level) acg it. (fine level) Time
Trust-Region 20% 11 4,400 0 1.0
APTS 7 2,800 700 0.85
MPTS 7 2,800 0 0.73
AMPTS 7 2,800 700 0.98
Trust-Region 25% 30 12,000 0 1.0
APTS 22 8,800 2,200 0.99
MPTS 27 10,800 0 1.01
AMPTS 18 7,200 1,800 0.93
Trust-Region 30% 64 25,600 0 1.0
APTS 42 16,800 4,200 0.88
MPTS 62 24,800 0 1.11
AMPTS 38 15,200 3,800 0.92

Linesearch 20% 8 3,200 0 1.0
APLS 8 3,200 800 1.35
MPLS 7 2,800 0 1.0
AMPLS 6 2,400 600 1.16
Linesearch 25% 21 8,400 0 1.0
APLS 16 6,400 1,600 1.02
MPLS 19 7,600 0 1.09
AMPLS 11 4,400 1,100 0.81
Linesearch 30% 42 16,800 0 1.0
APLS 31 12,400 3,100 0.99
MPLS 34 13,600 0 0.93
AMPLS 20 8,000 2,000 0.73

Table 5.1:Unconstrained Minimization Problem: Compression of a Cube. Runtime comparisons of the
globalization strategies for the respective examples

formulas

λ =
νE

(1 + ν)(1 − 2ν)
andλ =

νE

(1 + ν)(1 − 2ν)

Figure 5.6 shows the numerical result of this simulation: the reaction of this cube-like geometry to
three different kinds of pressure.
This simulation is carried out employing the traditional Linesearch and Trust-Region strategies, as
well as the preconditioned strategies. The stop criterion isε = 1e− 4. In Figure 5.7 we compare the
numerical behavior of the Trust-Region and preconditioned Trust-Region strategies. In Figure 5.8
we compare the Linesearch schemes. Table 5.1 shows the runtime comparisons for the respective
schemes.
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Trust-Region Results

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  2  4  6  8  10  12

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 20% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 2.5

 3

 3.5

 4

 4.5

 5

 0  2  4  6  8  10  12

J(
uν )

ν - Outer Iterations

J-Value at uν - 20% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25  30

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 25% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0  5  10  15  20  25  30

J(
uν )

ν - Outer Iterations

J-Value at uν - 25% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0  10  20  30  40  50  60  70

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 30% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 4

 5

 6

 7

 8

 9

 10

 11

 12

 0  10  20  30  40  50  60  70

J(
uν )

ν - Outer Iterations

J-Value at uν - 30% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

Figure 5.7:Unconstrained Minimization Problem: Compression of a Cube. The left diagramsshow the
first order sufficient conditions vs. the number of iterations, ν, i.e., ‖ĝ(F(uν) + sν)‖2, for the solution of
the problem in Section 5.6.3 with aTrust-Region strategyand thepreconditioned Trust-Region strategies,
respectively. Theright diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,
J(F(uν) + sν) for both strategies.
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Linesearch Results
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Figure 5.8:Unconstrained Minimization Problem: Compression of a Cube. The left diagramsshow the
first order sufficient conditions vs. the number of iterations, ν, i.e., ‖ĝ(F(uν) + sν)‖2, for the solution of
the problem in Section 5.6.3 with aLinesearch strategyand thepreconditioned Linesearch strategies,
respectively. Theright diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,
J(F(uν) + sν) for both strategies.
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Figure 5.9: Unconstrained Minimization Problem: Simulation of a Can. The computed solution of the
problem from Section 5.6.4 with330, 999 degrees of freedom. At the visible end of the geometry, we apply
zero Dirichlet values (as indicated by the grey lines). Though, at the opposite side we apply displacements of
10%, 12, 5% and15% of the geometries length respectively, (as indicated by thearrows). In each computation
we obtain two different solution. In the first row, we see two computed solutions for10% displacements.
Similarly the second and third line show two possible solutions for12.5% and15% displacements. Colors are
the local von-Mises stresses.

5.6.4 Unconstrained Minimization Problem: Simulation of a Can

Within this example, we simulate a rectangular structure, as shown in the left imageof Figure 5.4.
Obviously, a mesh, which provides a good approximation to the depicted circular holes has thousands
of degrees of freedom. In our case, the coarse mesh provides approximately 10,000 unknowns. After
uniformly refining this mesh twice we obtain the final problem with 330,999 unknowns. Therefore,
our multilevel hierarchy consists of three levels and the domain decomposition of eight domains.

In our computations, we prescribe displacements at the left side of the geometry and zero displace-
ments at the opposite side. All other boundary values are left natural. As itturns out, the applied
boundary values cause a compression of the geometry of10%, 12.5% and15%. In particular the
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Example Outer it. cg it. (fine level) acg it. (fine level) Time
Trust-Region 10% 73 29,200 0 1.0
APTS 60 24,000 6,000 1.10
MPTS 62 24,800 0 0.97
AMPTS 56 22,400 5,600 1.19
Trust-Region 12.5% 156 62,400 0 1.0
APTS 109 43,600 10,900 0.94
MPTS 48 19,200 0 0.35
AMPTS 40 16,000 4,000 0.39
Trust-Region 15% 156 62,400 0 1.0
APTS 107 42,800 10,700 0.92
MPTS 105 42,000 0 0.77
AMPTS 84 33,600 8,400 0.83

Linesearch 10% 46 18,400 0 1.0
APLS 43 17,200 4,300 1.26
MPLS 39 15,600 0 0.97
AMPLS 35 14,000 3,500 1.18
Linesearch 12.5% 74 29,600 0 1.0
APLS 90 36,000 9,000 1.64
MPLS 36 14,400 0 0.55
AMPLS 38 15,200 3,800 0.79
Linesearch 15% 118 47,200 0 1.0
APLS 100 40,000 10,000 1.14
MPLS 72 28,800 0 0.70
AMPLS 58 23,200 5,800 0.76

Table 5.2: Unconstrained Minimization Problem: Simulation of a Can. Runtime comparisons of the
traditional and preconditioned strategies for the respective examples. Note that bifurcations take place, which
yield heavily varying runtimes.

boundary values are atΓD = {(x, y, z) | x ∈ {−1, 1}} given by

g((x, y, z)T ) =

{
(d, 0, 0)T if x = 1.0

0 if x = −1.0

where d = 0.20, 0.25, 0.3. In this example, similarly to the previous one, we employE =
300[mPa] andν = 0.1, i.e., material parameters for a very soft material. Here, we also choose
φ = (−106, . . . ,−106)T andφ = (106, . . . , 106)T .
This boundary value problem is sensitive for large strains. In fact, each computation led to two
different solutions of the minimization problems. In turn, this influences the convergence behavior
of the respective globalization strategy. In particular, the multiplicative schemes compute a different
solution than the additive and the traditional schemes. This fact, makes the respective strategies, in
particular the computation times, hard to compare. However, a survey of the convergence behavior
of the respective methods is given in Figure 5.10 and Figure 5.11. Here, the stop criterion was chosen
asε = 1e− 5. Computation times, cg iterations and outer iterations are shown in Table 5.2.
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Trust-Region Results
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Figure 5.10:Unconstrained Minimization Problem: Simulation of a Can. Theleft diagramsshow the first
order sufficient conditions vs. the number of iterations,ν, i.e., ‖ĝ(F(uν) + sν)‖2, for the solution of the
problem in Section 5.6.4 with a traditional and the preconditionedTrust-Region strategies, respectively. The
right diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,J(F(uν) + sν)
for both strategies.
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Linesearch Results
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Figure 5.11:Unconstrained Minimization Problem: Simulation of a Can. Theleft diagramsshow the first
order sufficient conditions vs. the number of iterations,ν, i.e., ‖ĝ(F(uν) + sν)‖2, for the solution of the
problem in Section 5.6.4 with a traditional and the preconditionedLinesearch strategies, respectively. The
right diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,J(F(uν) + sν)
for both strategies.
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Figure 5.12: Unconstrained Minimization Problem: Simulation of an Iron w heel. This boundary value
problem is solved employing 40,488 unknowns and eight processors. As indicated in this figure, we apply
forces (Neumann values) at the inner side of the wheel’s shaft. Moreover, in a small region on the lower
side of the wheel we have fixed displacements, approximatingcontact subject to friction. The colors are the
von-Mises stresses, as introduced at the beginning of this chapter.

5.6.5 Unconstrained Minimization Problem: Simulation of anIron wheel

The simulation of stresses within tires and wheels is of enormous relevance for material scientists. In
some applications it is of particular interest, how a tire or wheel reacts on strains, as in our example.
Here, we employ a wheel-shaped geometry [NZ01] and Ogden’s material law to compute strain-
induced stresses, as indicated in Figure 5.12. To simulate the contact between wheel and track, we
employ Dirichlet values at the lower side of the geometry, but apply forces at the interior of the
geometry.
The employed material parameters areE = 21[gPa], ν = 0.3. The forces are applied at the inner
surface of the axis shaft. Here, the force vector itself is given by

f((x, y, z)T ) = (−2, 0, 0)T

At all other boundaries, except for a small region next to the track, we applied zero boundary values.
Here, we also chooseφ = (−106, . . . ,−106)T andφ = (106, . . . , 106)T .
Figure 5.13 shows that due to the geometry itself and the stated problem, the multiplicative schemes
rapidly compute solutions for the local minimization problem. It seems that the coarse level problem
itself provides a good solution for the fine level problem. On the other hand,even if the APTS strategy
is five times slower than the multiplicative schemes, it succeeds in computing a localminimizer in
iteration 197, right before the limit of 200 outer iterations. Moreover, as it can be seen, the stop
criterion is ‖ĝν

j,i‖2 ≤ 0.1. This is due to the chosen large Young’s modulus which yields large
function values. In turn, we reach the regions of computational accuracy when the error gets into the
region of10−1.
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Outer it. cg it. (fine level) acg it. (fine level) Time
Trust-Region >200 > 80,000 1.0
APTS 197 78,800 19,700 < 1.32
MPTS 30 12,000 0 <0.17
AMPTS 28 11,200 2,800 <0.21

Linesearch 181 72,400 0 1.0
APLS 187 74,800 18,700 1.39
MPLS 32 12,800 0 0.2
AMPLS 31 12,400 3,100 0.26

Table 5.3:Unconstrained Minimization Problem: Simulation of an Iron w heel. Runtime comparisons of
the globalization strategies for the example of Section 5.6.5.

Trust-Region Results
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Figure 5.13:Unconstrained Minimization Problem: Simulation of an Iron w heel. Theleft diagramsshow
the first order sufficient conditions vs. the number of iterations,ν, i.e.,‖ĝ(F(uν) + sν)‖2, for the solution of
the problem in Section 5.6.5 with a Trust-Region and Linesearch strategy and the preconditioned strategies,
respectively. Theright diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,
J(F(uν) + sν) for both strategies.
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Figure 5.14:Contact with a Small Obstacle. Left image:Solution of the problem from Section 5.6.6 with
988, 392 degrees of freedom. As indicated, we apply displacements of10% of the cube’s length at the top of
the cube (indicated by the arrows). On the other hand, an obstacle is located at the middle of the cube’s bottom
(as indicated by the grey rectangle).Right image:Here, we double the applied displacements to20% yielding
the displayed result.

5.6.6 Constrained Minimization Problem: Contact with a Small Obstacle

This it the first example where we employed a linearized obstacle along with prescribed displace-
ments at the Dirichlet boundary. Both together yields a compression of the given cube-like geometry
of up to20% of the length of the geometry.
The problem description is as follows. In this example, we solved the minimization problem (5.6.3)
on the domain

Ω = {(x, y, z)| − 0.5 ≤ x, y, z ≤ 0.5 ∧ ((x = ±0.5) ∧ ¬(y2 + z2 ≤ 0.5))
∧ ((y = ±0.5) ∧ ¬(x2 + z2 ≤ 0.5))
∧ ((z = ±0.5) ∧ ¬(x2 + y2 ≤ 0.5))}

as shown in the right image of Figure 5.2. The Dirichlet boundary is the entireupper side of the
cube, i.e.,ΓD = {(x, y, z) | z = 0.5} ∩ ∂Ω. The boundary values areg(x, y, z) = (0, 0,−d) with
d = 0.1 andd = 0.2. All other boundaries have natural Neumann conditions. The contact boundary
is an unsymmetrical obstacle (visualized by the bar in Figure 5.14) at the bottomof the geometry.
The geometry and the obstacle stay initially in contact, i.e.,φ

k
= 0 andφk = 106. Here, we choose

φ
k

= −106 andφk = 106 at all unknownsk which are not related toΓC . Similar to other examples
of this chapter, the material parameters were given byE = 300[mPa] andν = 0.1, i.e., material
parameters for soft materials. Here, the stop criterion was chosenε = 1e− 4.
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Trust-Region Results

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  2  4  6  8  10  12  14

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 20% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  2  4  6  8  10  12  14

J(
uν )

ν - Outer Iterations

J-Value at uν - 20% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25  30

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 25% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  5  10  15  20  25  30

J(
uν )

ν - Outer Iterations

J-Value at uν - 25% deformation

Trust-Region Strategy
APTS
MPTS

AMPTS

Linesearch Results

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0  1  2  3  4  5  6  7  8  9

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 20% deformation

Linesearch Strategy
APLS
MPLS

AMPLS

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0  1  2  3  4  5  6  7  8  9

J(
uν )

ν - Outer Iterations

J-Value at uν - 20% deformation

Linesearch Strategy
APLS
MPLS

AMPLS

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0  5  10  15  20  25

||D
(u

ν )∇
 J

(u
ν )|

| 2

ν - Outer Iterations 

First-Order Sufficiency Condition - 25% deformation

Linesearch Strategy
APLS
MPLS

AMPLS

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0  5  10  15  20  25

J(
uν )

ν - Outer Iterations

J-Value at uν - 25% deformation

Linesearch Strategy
APLS
MPLS

AMPLS

Figure 5.15:Contact with a Small Obstacle. The left diagramsshow the first order sufficient conditions
vs. the number of iterations,ν, i.e.,‖ĝ(F(uν) + sν)‖2, for the solution of the problem in Section 5.6.6 with
a traditional and preconditioned strategies, respectively. The right diagramsshow the value of the objective
function vs. the number of iterations,ν, i.e.,J(F(uν) + sν) for both strategies.
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Example Outer it. cg it. (fine level) acg it. (fine level) Time
Trust-Region 10% 13 5,200 0 1.0
APTS 8 3,200 800 0.83
MPTS 12 4,800 0 1.06
AMPTS 7 2,800 700 0.83
Trust-Region 20% 29 11,600 0 1.0
APTS 22 8,800 2,200 1.02
MPTS 23 9,200 0 0.91
AMPTS 16 6,400 1,600 0.85

Linesearch 10% 9 3,600 0 1.0
APLS 8 3,200 800 1.2
MPLS 7 2,800 0 0.89
AMPLS 6 2,400 600 1.03
Linesearch 20% 15 6,000 0 1.0
APLS 21 8,400 2,100 1.89
MPLS 14 5,600 0 1.07
AMPLS 10 4,000 1,000 0.76

Table 5.4: Contact with a Small Obstacle. Runtime comparisons of the globalization strategies for the
respective examples.



5 Nonlinear Multiplicatively Preconditioned Globalization Strategies 119

Example Outer it. cg it. (fine level) acg it. (fine level) Time
Trust-Region 5% 151 60,400 0 1.0
APTS 58 23,200 5,800 0.51
MPTS 52 20,800 0 0.39
AMPTS 51 20,400 5,100 0.52
Trust-Region 10% 137 54,800 0 1.0
APTS 112 44,800 11,200 1.10
MPTS 73 29,200 0 0.61
AMPTS 45 18,000 4,500 0.50

Linesearch 5% > 148 (out of time) > 59,200 0 1.0
APLS 70 28,000 7,000 < 0.63
MPLS 35 14,000 0 < 0.27
AMPLS 75 30,000 7,500 < 0.78
Linesearch 10% 103 41,200 0 1.0
APLS 78 31,200 7,800 1.02
MPLS 80 32,000 0 0.89
AMPLS 44 17,600 4,400 0.66

Table 5.5:Obstacle Problem: Simulation of a Can. Runtime comparisons of the traditional and precon-
ditioned globalization strategies for different loads. Note that bifurcations take place, which yield heavily
varying necessary iterations.

5.6.7 Constrained Minimization Problem: Simulation of a Can

Within this example, we compute a constrained boundary value problem. Here,a can-like structure
is pressed against an obstacle, as shown in Figure 5.16. Due to the fact, that the employed material
parameters,E = 300[mPa] andν = 0.1, describe a soft material, the applied deformations yield
two possible minimizers as indicated in the same figure. In turn, the resulting computation times for
the respective minimization strategies vary tremendously.
In fact, we apply atΓD = {(x, y, z) | x = 0.50} the following displacements

g((x, y, z)T ) = (d, 0, 0)

whered = −0.1,−0.2. All other boundaries have natural boundary conditions. The contactbound-
ary is given byΓC = {(x, y, z) | x = −0.50}. Here, similarly to the previous example, the geometry
and the obstacle stay initially in contact , i.e.,φ

k
= 0 andφk = 106. At all unknowns which are not

related toΓC , we chooseφ
k

= −106 andφk = 106. In this example, the stop criterion was chosen
ε = 1e− 5.
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Figure 5.16:Constrained Minimization Problem: Simulation of a Can. In this figure different results for
the problem of Section 5.6.7 with 323,994 unknowns are presented. The upper images show two possible
energy optimal solutions for the obstacle problem with5% applied deformations. The lower images are the
results for10% displacements.
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Trust-Region Results
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Figure 5.17:Constrained Minimization Problem: Simulation of a Can. The left diagramsshow the first
order sufficient conditions vs. the number of iterations,ν, i.e., ‖ĝ(F(uν) + sν)‖2, for the solution of the
problem in Section 5.6.7 with the traditional and the preconditioned globalization strategies, respectively. The
right diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,J(F(uν) + sν)
for both strategies. Note that bifurcations take place, which yield heavily varying runtimes.
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Figure 5.18:Constrained Minimization Problem: Intervertebral Disk . This is the annotated result of the
computation employing an intervertebral disc geometry with 1,032,000 unknowns. Here, we apply forces at
the upper side of the geometry, standing for forces induced from the upper vertebra (as indicated by the upper
blue geometry). On the lower side, simple, linearized non-penetration conditions simulate the lower vertebra
(as indicated by the lower blue geometry). Note, that for a more correct simulation an elastic multi-body
contact must be taken into account, such as proposed in [DGK+08].

5.6.8 Constrained Minimization Problem: Simulation of an Intervertebral Disk

This is the second example with a more realistic context. Here, we employ Ogden’s material law
with parametersE = 1500[mPa] andν = 0.15 to compute stresses within an intervertebral disc. In
particular, the globalization strategies are employed to compute a traction problem, where we apply
forces at the upper side of the geometry, i.e., where the disc stays in contact with the upper vertebra
along with obstacle conditions at the lower side, where the lower vertebra would be in contact with
the disc. However, note that computing stresses within an intervertebral disc employing Ogden’s
material law is a poor approximation due to the fluids located within the disc. Often,different
material laws are employed to compute stresses within cartilage-like structures,for instance, poro-
viscoelastic material laws [WvDvR+04].
At ΓN we apply the following forces

f((x, y, z)T ) =

{
(0,−10, 0) if y ≈ 0.368

0 otherwise

The contact boundary is given byΓC ≈ {(x, y, z) | y = −0.773}. Also in this example, the
reference configuration touches the obstacle, which means thatφ

k
= 0 andφk = 106. All other

components are chosenφ
k

= −106 andφk = 106.
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Outer it. cg it. (fine level) acg it. (fine level) Time
Trust-Region 4 1,600 0 1.0
APTS 4 1,600 400 1.35
MPTS 1 400 0 0.28
AMPTS 1 400 100 0.38

Linesearch 5 2,000 0 1.0
APLS 5 2,000 500 1.35
MPLS 3 1,200 0 0.69
AMPLS 1 400 100 0.31

Table 5.6:Obstacle Problem: Constrained Minimization Problem: Intervertebral Disk. Runtime com-
parisons of the globalization strategies for the intervertebral disc examples.
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Figure 5.19:Constrained Minimization Problem: Intervertebral Disk . Theleft diagramsshow the first or-
der sufficient conditions vs. the number of iterations,ν, i.e.,‖ĝ(F(uν)+sν)‖2, for the solution of the problem
in Section 5.6.8 with a Trust-Region strategy and the preconditioned Trust-Region strategies, respectively. The
right diagramsshow the value of the objective function vs. the number of iterations,ν, i.e.,J(F(uν) + sν)
for both strategies.
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5.7 Non-Linear Elasto-Dynamic PDEs

In this section we will focus on large deformations in the case of elasto-dynamic contact problems.
As we have seen in Section 1.3.1 in each timestep a PDE of the kind (1.3.1b) has asolutionui, if the
assumptions of Theorem 1.3.1 are satisfied. Moreover, employing a storedenergy function of Ogden
type, in particular (5.6.1) yields the solvability of (1.3.1b). Furthermore, as far as in each time step
the spatial discretized minimization problem (1.3.4b) and the initial iterate satisfy theassumptions
of Lemma 5.6.1 and Lemma 5.6.3 we obtain that the assumptions on the globalization strategies are
satisfied and convergence can be ensured. Therefore, as in the previous sections, we will focus on the
solution of a fully discretized variant of (1.3.1a). In our case, we employ Finite Elements to derive
the minimization problem (1.3.4).

Parameter Choice

As we have pointed out in Section 1.3.1, Newmark’s scheme becomes unconditionally stable if
2β = γ = 1

2 . In this case, the time discretization is (partially) implicit and a nonlinear minimization
problem must be solved which is carried out employing the AMPLS algorithm, Algorithm 12. The
respective constants within this algorithm are chosen as in Section 5.6.2. Even if we employ Rothe’s
method to discretize the original system of PDEs, we will initially choose a Finite Element dis-
cretization, which stays fixed during the computation. The computation of the predictor step (1.3.4a)
was carried out employing the projected cg method along with a nonlinear symmetric Gauß-Seidel
smoother.

5.7.1 Example: Dynamic Simulation of a Can

In this example, we employ the geometry from Section 5.6.7 as shown in Figure 5.4. Here we are
interested in the deformations which occur if this geometry “crashes” against an rigid obstacle, as
shown in Figure 5.20. Here, we employedΓN = ∂Ω−ΓC whereΓC = {(x, y, z)|z = −0.5} with all
natural boundary conditions. On the other hand, the initial velocity is givenby (̇u0)k = (0, 0,−0.05)
for all k, yielding a movement in direction of the obstacle. Initially the displacements are given by
u0 = 0 and the gap between geometry and obstacle is slightly larger than zero. At allunknowns
which are not related toΓC , we chooseφ

k
= −106 andφk = 106.

Here, we computed 1,000 timesteps withτ = 0.01. The geometry itself is uniformly refined once
giving rise to a nonlinear programming problem, equation (1.3.4b), with approximately54, 000 un-
knowns. The employed material parameters areE = 1000[mPa] andν = 0.3.
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Figure 5.20:Dynamic Simulation of a Can. Here, the solution of the problem of Section 5.7.1 is shown.As
one can see, the can-like geometry moves in direction of the obstacle as indicated by the grey plane. Soon, the
geometry and the obstacle stay in contact and the geometriesmomentum yields the shown large deformations.
The last shown figure is the final configuration in this simulation.
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5.7.2 Example: Dynamic Simulation of a Hollow Geometry

In this example, we employ the geometry as shown in Figure 5.4. Similar to the previous example,
this geometry moves towards a planar, rigid obstacle. As one can see in Figure 5.20, the geometry is
a hollow cube with a circular structure on top. As can be seen in Figure 5.22,the momentum of this
circular structure yields that the whole geometry somehow collapses.

Figure 5.21: The initial geometry of the example from Section 5.7.2. Similar to the other examples of this
chapter, we decompose the initial geometry into eight domains.

Here, we employedΓN = ∂Ω − ΓC whereΓC = {(x, y, z)|z = −0.5}. Similar to the previous
example, we apply natural boundary conditions onΓN . The initial velocity is given by(u̇0)k =
(0, 0,−3) for all k, yielding a movement in direction of the obstacle. Initially the displacements are
given byu0 = 0 and the gap between geometry and obstacle is slightly larger than zero.
Here, we computed 200 timesteps withτ = 0.005. The geometry itself is twice uniformly refined
giving rise to a nonlinear programming problem, equation (1.3.4b), with60, 042 unknowns. The
material parameters areE = 10000[mPa] andν = 0.3.
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Figure 5.22:Dynamic Simulation of a Hollow Geometry. Here, the solution of the problem of Section 5.7.2
is shown. As one can see, a hollow geometry moves in directionof the obstacle as indicated by the grey plane.
Soon, the geometry and the obstacle stay in contact and the geometries momentum yields the shown large
deformations. The last shown figure is the final configurationin this simulation.
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6 Appendix: Implementational Aspects

The development of new algorithms within modern Finite Element software toolboxes, like e.g.,
DUNE (in combination with UG) [BBD+08] or OBSL IB++ (in combination with UG), has the major
advantage that necessary core functionalities are already provided. For instance, the OBSL IB++
toolbox provides

• a grid manager

• linear algebra

• numerical methods to assemble the objective functions, gradients and Hessians

• treatment of the set of admissible solutionsB, the obstacles respectively

• parallelization

In this chapter, we will consider implementational aspects of the NLSOLVERL IB toolbox, as well as
necessary changes in the OBSL IB++ and in the UG core.

6.1 NLSolverLib

All presented algorithms in this thesis, beginning from the Trust-Region and Linesearch framework
up to the combination of the additive and multiplicative frameworks are implemented within the
NLSOLVERL IB. This library is a set of numerical procedures callednum-procs which may be in-
stantiated during runtime and employed to solve arbitrary minimization problems.

The Respective C++ Classes

Object oriented programming allows for inheriting interfaces and functionalities from already im-
plemented classes in UG. In particular, each instantiated num-proc of a certain UG class can be
employed as a black-box. In our implementation, we mostly consider nonlinear solvers inheriting
from NP NL SOLVER. To allow for solving problems like (M), our solvers receive a so-calledObsta-
cleBasenum-proc, which is able to generate and handle an obstacle on an algebraiclevel. Moreover,
the nonlinear solvers must receive anNP NL ASSEMBLEnum-proc which allows for evaluatingJ
and its derivatives.
In particular, during this dissertation project, the following solver classes were implemented

1. trSolver

2. lineSearchSolver

3. APTS

4. APLS
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Figure 6.1: The class structure within NLSOLVERL IB. Each of the classes employs the linear algebra provided
by UG and OBSL IB++. Here, we highlight which class inherits from other classes, and the interface between
OBSL IB++/UG and the new NLSOLVERL IB.

5. MPTS (realizes MPLS/MPTS within a multigrid framework)

On the other hand, UG allows – independentend from inheritances – for encapsulating num-procs
into each other. Therefore, the MPTS solver receives anNP NL SOLVERnum-proc which is em-
ployed to solve the local minimization problems. As it turns out, depending on the solver, the MPTS
strategy employs the MPLS or the MPTS control routines.

The TrLsSolverBase-Class.
This class provides common methods and fields employed in both, the Trust-Region and Linesearch
solver. In particular, this class implements the solution of the quadratic model (2.1.2), and allows for
treating complex obstacles employing an SQP approach.
The solution of the quadratic model problem is currently carried out by employing a linear solver. As
pointed out before, we employ the projected cg method in combination with a symmetric nonlinear
Gauß-Seidel smoother. To guarantee convergence to a first-order critical point we have to ensure
that a sufficient decrease takes place. In our implementation, this is realizedby computing the
Cauchy-point (2.1.10) or (2.2.3) and checking (2.1.9) and (2.2.2b), respectively. If the iteratively
computed search direction does not satisfy the respective condition, it is discarded and the respective
Cauchy point is employed as search direction.

The TrustRegion-Class.This class realizes along with anTrObstaclenum-proc Algorithm 1. Some
special features, such as the treatment of numerical instabilities in the case of rounding errors have
also been added. For instance, if

|J(u) − J(u+ s)|
|J(u)| ≤ ε

holds forε = 10−12, we cannot trust the decrease ratio (2.1.3). In this case, we have to trust the
correction and simply add it. More information on this topic and different strategies can be found in
Chapter 10.6 of the monograph [CGT00].
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The LineSearch-Class. This class implements the Linesearch algorithm, Algorithm 3. In
contrast to just treating the Armijo condition (2.2.5), this algorithm is also able to treat the Armijo
conditions for subdomains, i.e., (4.2.4) and (5.3.4). Finally, also the Linesearch algorithm may suffer
from rounding errors, which is similarly treated as in the Trust-Region class.

The APTS/APLS-Classes. Here, we implemented certain variants of Algorithm 5 and Algo-
rithm 7. As a matter of fact, the APTS and APLS implementations themselves do not depend on the
particular implementation of the domain decomposition but as pointed out in Chapter5.5, we aim at
a real parallel speed-up by decomposing the domain in non–overlapping subdomains as introduced
in Section 3.1.6. Therefore, we slightly altered the UG load balancing command such that not
only all necessarymasterelements are transferred from one processor to another but also allghost
elements which have a node in common with a master element. Therefore, we havea theoretical
overlap of one element such that quadrature over all basis functions ofa master element is possible
without communicating in parallel.

In the preconditioning stepFA, the APTS/APLS solvers directly employ the respective inherited
Trust-Region or Linesearch solvers as a nonlinear solver. Since no parallel communication is allowed
to take place during the solution process, the nonlinear solver itself, the employed linear solver, the
assembler and the obstacle are not allowed to employ parallel communication. Inturn, we have an
asynchronous solution phase, as described in Algorithm 5 and in Algorithm 7.

After the asynchronous solution process, the APTS and APLS method employa given parallel
nonlinear solver num-proc to computesν from (3.1.6).

The MPTS-Class. This class implements the multiplicative frameworks from Chapter 5.
This num-proc switches from Trust-Region to Linesearch behavior depending on the class of the
given coarse level NPNL SOLVER.

The TrObstacle-Class.This class extends the functionality of the ObstacleContact class by adding
an additional constraint, the Trust-Region radius. Moreover, theTrObstacle-Class updates and han-
dles the Trust-Region and Linesearch step-length constraints.

The MPTSAssemble-Class.This assembler class aims at the computation and management of the
objective function, gradient and Hessian. Due to the formulation of the subset objective functions
(3.2.1) and (3.3.1), it receives an NPFE ASSEMBLE num-proc, which is able to computeJν

k and its
derivatives. Therefore, the MPTSAssembler just has to have the ability tocompute and add the linear
correction term to the objective function and gradient. Moreover it incorporates caching strategies to
prevent avoidable recomputations of gradients and Hessians. In fact, the Hessian is recomputed only
if a certain threshold is exceeded. Following Taylor’s theorem we may estimatethe quality of the
recently computed Hessian by the following expansion.

∇Hν
k (u) −∇Hν

k (u+ s) −∇2Hν
k (u)s = ∇2Hν

k (u+ τs)s−∇2Hν
k (u)s

whereu ∈ Dk is the iterate, when the Hessian was the last time reassembled,τ ∈ (0, 1) ands ∈ Dk

the difference between the most recent iterate andu. Therefore, we reassemble the Hessian if

1

‖s‖2
‖∇Hν

k (u) −∇Hν
k (u+ s) −∇2Hν

k (u)s‖2 ≥ ηR (6.1.1)
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with ηR > 0. In our examples, we employedηR = 0.1. Otherwise we return the more or less up to
date Hessian∇2Hν

k (u).
Unfortunately, the original UG implementation was not designed for the evaluation of the objective
function and by now only the Finite Element based assemblers allow for evaluating the respective
objective functionsJν

k .

6.2 Asynchronous Linear Solvers

In addition to the already existing (parallelized) linear solvers and preconditioners in OBSL IB++,
an asynchronous projected cg-method (acgpl), an asynchronous linear solver (als) and asynchronous
symmetric and classical nonlinear Gauß-Seidel variants were implemented. Incontrast to the original
solvers, the asynchronous versions als and acgpl do not employ parallel communication at all. There-
fore, acgpl and als are suitable as a linear solver within the APLS and APTSmethods to solve the
arising quadratic minimization problems – as far as these incorporate a symmetric positive definite
Hessian.

6.3 IOLib

To import CAD-based geometries, an OBSL IB++ plugin has been developed to import EXODUS-II
geometries. In combination with the EXODUS-II PARAMETER FORMAT [GK08a] this allows for
easily defining the computational domainΩ and the boundary values.
More important is the developed export library ANIMATION SUITE, which is designed for exporting
geometry data and numerical results in EXODUS-II format. Even if UG itself has a visualization
unit, since Revision 265 the ANIMATION SUITE allows to export computed results as CAD data. In
turn, one can visualize the computed results in professional toolkits like, e.g.,PARAV IEW [Tea09].
Besides the fact that EXODUS-II can be employed to store nodal and element values, it also enables
us to export time dependent nodal data frame-wise. Therefore, in the initialization process of ANI-
MATION SUITE, we just declare the respective vectors, whose values should be exported. Each time
the writeFrame command is called, the current values of all registered vectors are written into a tem-
porary file. With the call of writeMesh the geometry information and all data in thetemp file is then
written into an EXODUS-II file.
ANIMATION SUITE also enables us to handle geometries which have been exported at the end of
an parallel computation process. It turns out that each domainΩi on thei-th processor is exported
separately. Therefore, in order to obtain one result, the C++ - mergeMesh method was implemented.
Here, on one processor the exported meshes and data are merged yielding exactly one file.

6.4 InterpreterLib

The particular treatment of algebraic expression within UG-scripts was notimplemented in UG until
OBSL IB++ revision 143. This made the statement of simplest expressions like,A ·u−f complicated
and barely readable. Therefore, we started to implement a special parser called SYNTAX PARSER

which allows for creating a syntax tree whose recursive evaluation yieldsthe sought-after evaluation
of the algebraic expression. In particular, the evaluation of an expression splits into two steps:

1. Parsing and creating the syntax tree
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Figure 6.2:Application of INTERPRETL IB for Boundary Values. Here, we describe displacements by means
of the coordinates at the respective quadrature points, yielding a rotation of the upper plane of about45◦. The
left image shows the result for linear elasticity, the rightimage for an Ogden material, as employed in Chapter
5.5.

2. evaluating the syntax tree by successively evaluating intermediate results

Each of the respective nodes of the syntax tree may be a binary operatoror a variable of type in-
teger, double, string, vector and matrix. Today, all popular unary and binary operators, such as
multiplication, scalar product, modulo, comparison operators, pointwise multiplication for vectors,
string-concatenation, etc., are implemented within aweakly typedframework. Finally, also boundary
values can now be stated algebraically allowing for boundary value problems as shown in Figure 6.2.
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