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Summary 

An important issue facing global health today is the need for new, effective and 

affordable drugs against malaria and a veterinary parasitic disease named Theileriosis, 

particularly in resource-poor countries.  The parasite P. vivax which causes benign 

malaria and T. parva causing East Coast Fever (ECF) or Theileria annulata causing 

Tropical Theileriosis (MCF) belong to the group of Apicomplexa which have an 

apicoplast. The apicoplast is a relic of the chloroplast which is necessary for the 

parasite to invade its host. Genes of the apicoplast have shown to be very important 

drug targets since they do not exist in their human or animal counterpart. However 

nuclear encoded genes which show significant differences with respect to the structural 

domains of their proteins might also be attractive drug targets. Here we report about the 

cloning and characterization of the deoxyhypusine synthase gene (DHS) from both 

parasites. DHS catalyzes the first committed step in the biosynthesis of the unique 

amino acid hypusine in eukaryotic initiation factor 5A (eIF-5A). The enzyme transfers an 

aminobutyl moiety from the triamine spermidine to a specific lysine residue of the 

precursor protein. Deoxyhypusinylated eIF-5A is subsequently hydroxylated by 

deoxyhypusine hydoxylase (DOHH) which completes eIF-5A activation. Surprisingly we 

identified 4-saturated piperidone monoesters as putative DOHH inhibitors with 

antiplasmodial activity. 

Recent results have shown that DHS is a valuable drug target in P. falciparum for the 

therapy of cerebral malaria. The putative DHS protein from P. vivax displays a FASTA 

score of 74 relative to that from the human parasite P. falciparum. The ORF encoding 

456 amino acids was expressed under control of IPTG-inducible T7 promoter, and 

expressed as a protein of approximately 50 kDa (theoretically 52.7 kDa) in E. coli BL21 

DE3 cells. The N-terminal histidine-tagged protein was purified by Nickel-chelate affinity 

chromatography under denaturing conditions. DHS has a theoretical pI of 6.0 and its 

specific enzymatic activity was determined as 1268 U/mg protein The inhibitor, N-

guanyl-1, 7-diaminoheptane (GC7), suppressed specific activity by 36-fold. The 

Theileria parva gene encodes for an ORF of 371 amino acids with a theoretical pI of 5.4 

and a calculated molecular weight of 44,8 kDa.  Theileria parva dhs has a FASTA score 
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of 49 to its host Bos taurus. Expression of the histidine tagged protein in pET28a in E. 

coli BL21 DE3 cells failed. 
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1.0 INTRODUCTION 

1.0 The Apicomplexa 

Apicomplexa are a phylum in the kingdom Protista and single-celled parasites of 

animals [1, 2].This large group of protozoa includes such diverse organisms as 

Coccidia, Piroplasms, Plasmodium and others. Infection by these parasitic protozoa 

causes incalculable morbidity and mortality to humans and agricultural animals [3]. 

Apicomplexa of medical importance include Plasmodium spp the causative agents of 

malaria [4]; Toxoplasma gondii a source of congenital neurological birth defects; while 

Cryptosporidium and Cyclospora (along with Toxoplasma) have emerged as 

opportunistic infections associated with immunosuppressive conditions [5]. Theileria 

parva and T. annulata are some of the many apicomplexan parasites of veterinary 

importance, including Babesia, Eimeria, Neospora and Sarcocystis. Theileria parva and 

T. annulata are the causes of East Coast fever and Tropical Theileriosis respectively. 

These are two lymphoproliferative diseases imposing significant constraints on cattle 

farming in sub-Saharan Africa [6]. 

 

1.1 Apicomplexa and their morphological traits 

Apicomplexan parasites share a variety of morphological traits that are considered 

diagnostic for this phylum. These protists have an elongated shape and a conspicuous 

specialization of the apical region [7]. Many of the distinct characteristics constitute a 

collection of unique organelles termed the apical complex. These organelles include the 

rhoptries, the micronemes, the apical polar ring, and the conoid. Rhoptries and 

micronemes are unique secretory organelles that contain products required for motility, 

adhesion to host cells, invasion of host cells, and establishment of the parasitophorous 
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vacuole [7] The apical polar ring is a hallmark organelle of all members of the 

Apicomplexa [8,9].It serves as one of the three microtubule-organizing centers in these 

parasites as shown in Figure 1.1. This work focuses on parasites causing malaria and 

theileriosis with respect to medical and agricultural importance. 

 

 

Figure 1.1: Presentation of two apicomplexans T. gondii and P falciparum, a 
comparative morphology between a tachyzoite of Toxoplasma gondii and the 
blood-stage Plasmodium falciparum merozoite (not to scale; actual length is 10 
μm for the tachyzoite and 1.5 µm for the merozoite). Figure and legend are 
adapted from Nature Reviews Microbiology (2006)[ 116]. 
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1.1.1Plasmodium parasites 

The parasite Plasmodium vivax is the most frequent and widely distributed cause of 

Malaria tertiana which persists in the liver and recurs frequently. It is less virulent than 

Plasmodium falciparum, the most severe of the four human parasites and seldom fatal. 

P. vivax is passed on by the female Anopheles mosquito, since it is the only gender that 

bites [14, 15, 22, 23]. 

Microscopically, the parasitised red blood cell is up to twice as large as a normal cell 

and fine pink Schüffner's stippling are seen on the cell's surface. The parasite within is 

often wildly irregular in shape (described as "amoeboid"). Schizonts of P. vivax have up 

to twenty merozoites within them. It is rare to have cells infected with more than one 

parasite. Merozoites will only attach to immature red blood cells (reticulocytes) which 

causes a low infection rate of 3% [15]. The incubation period for the infection usually 

ranges from ten to seventeen days and sometimes up to a year. Persistent liver stages 

caused relapse of up to five years after elimination of red blood cell stages and clinical 

cure. The gametocytes of P. vivax are commonly found in the peripheral blood at about 

the end of the first week of parasitemia [22]. 

Plasmodium falciparum is a protozoan parasite, another of the species of Plasmodium 

which causes malaria in humans. P. falciparum causes Malaria tropica and is 

transmitted by Anopheles mosquitoes. P. falciparum has the highest rates of 

complications and mortality. In addition it accounts for 80% of all human malarial 

infections and 90% of the deaths. It is more prevalent in sub-Saharan Africa than in 

other regions of the world [12, 16, 24]. 
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The life cycle of this organism is complex as shown in figure 1.2 with the parasite 

alternating between sexual reproduction in an invertebrate vector and asexual 

reproduction in a vertebrate host. Infection in humans begins with the bite of an infected 

female Anopheline mosquito. Sporozoites are released from the salivary glands of the 

mosquito and enter the bloodstream during feeding and quickly invade liver cells 

(hepatocytes). Sporozoites are cleared from the circulation within 30 minutes. During 

the next 14 days in the case of P. falciparum, the liver-stage parasites differentiate and 

undergo asexual multiplication resulting in tens of thousands of merozoites which burst 

from the hepatoctye. Individual merozoites invade red blood cells and undergo an 

additional round of multiplication producing 12- 16 merozoites within a schizont[13].The 

length of this erythrocytic stage of the parasite life cycle depends on the parasite 

species: 48 hours for P. falciparum, P. vivax, and P. ovale and 72 hours for P. malariae. 

The clinical manifestations of malaria which are fever and chills, are associated with the 

synchronous rupture of the infected erythrocyte. The released merozoites continue to 

invade additional erythrocytes. Not all of the merozoites divide into schizonts, some 

differentiate into sexual forms, male and female gametocytes. These gametocytes are 

taken up by a female Anopheles mosquito during a blood meal. Within the mosquito 

midgut, the male gametocyte undergoes a rapid nuclear division, producing 8 flagellated 

microgametes which fertilize the female macrogamete. The resulting ookinete traverses 

the mosquito gut wall and encysts in the exterior of the gut wall to form oocyst. Soon the 

oocyst ruptures and releases hundreds of sporozoites into the mosquito body cavity 

where they eventually migrate to the mosquito salivary gland [13,14,16]. 
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Figure1.2.:The complex life cycle of the human malaria parasites, Plasmodium 
spp involves a vertebrate host, man, and an invertebrate host, the female 
Anopheles mosquito, adapted from http://www.cdc.gov/malaria/lifecycle.html. 

[117]. 

 

1.1.2 Malaria 

The name malaria comes from the Italian male aria, meaning bad air. It comes from the 

linkage suggested by Lancisi in 1717 of malaria with the poisonous vapours of swamps 

[10]. The organism itself was first seen by Laveran in 1880 at a military hospital in 

Constantine, Algeria, when he discovered a microgametocyte exflagellating [11]. 

Manson in 1894 hypothesised that mosquitoes could transmit malaria. This hypothesis 

was experimentally confirmed independently by Giovanni Battista Grassi and Ronald 

http://www.cdc.gov/malaria/lifecycle
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Ross in 1898. The complex nature of the Plasmodium life cycle was predicted when 

Grassi 1900 proposed an exo-erythrocytic stage which was later confirmed by Short, 

Garnham, Covell and Shute in 1948 who found Plasmodium vivax in the human liver 

[12,13]. They concluded what is known today about proliferation of the parasite. 

On a global scale, malaria remains a major public health concern. A third of the world‟s 

population is exposed to the risk of malaria. The greatest disease burden falls on Africa, 

where Plasmodium falciparum is estimated to cause at least a million deaths of children 

each year [17]. It has been estimated that malaria lowers the average “per capita” 

growth of the Gross Domestic Product (GDP) up to 1.3% per year in some of the most 

affected African countries [18]. Malaria causes various types of costs including costs of 

the health system and at the household level. The disease negatively affects the current 

and future potential for development through eroding human resources and the social 

capital. Currently around US$ 100 million per year is spent globally for malaria 

prevention and control [19]. The WHO calculates that this figure will increase to US$ 4 

billion per year as of 2015 for effective malaria prevention and treatment. Malaria has 

been a scourge throughout history and has killed more people than all wars and other 

plagues combined. Figure1.3 shows the world wide distribution of malaria with higher 

incidence in the tropics. Malaria claims the lives of more children worldwide than any 

other infectious disease [19,20].Since 1900 the area of the world exposed to malaria 

has been halved but in this time two billion more people are presently exposed. 

Infection rates in children in endemic areas are of the order of 50%. Chronic infection 

has been shown to reduce school scores by up to 15%. Reduction in the incidence of 

malaria coincides with increased economic output [20]. 
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Figure1.3: The world map with defined areas for malaria risk. Stable regions are 
shown by dark-red shading; Unstable regions (infrequent) are shaded pink.  
Regions of no risk (are shaded light grey). The borders of the 87 countries 
defined as P. falciparum endemic are shown. Highland areas where risk was 
excluded due to temperature are also shaded in light grey. Figure taken from 
Snow (2006)[118].  
 
 

 

1.1.3 Drug resistance 

Drugs have been employed for centuries for treatment but a vaccine is currently under 

evaluation in Africa, early results show protection is only for a limited period [94]. A 

successful vaccine would be a useful tool in the control and final eradication of the 

disease. For the past half-century, the malaria parasites of humans have been under 

tremendous selection pressure to evolve mechanisms of resistance to the prevailing 

anti-malarial drugs. Chloroquine (CQ) and sulphadoxine/pyrimethamine (SP) have 

become largely ineffective in therapy for the treatment of Plasmodium falciparum. The 
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world health organization (WHO) now recommends artemisinin-based combination 

therapy (ACT) as first-line treatment for all malaria infections in endemic areas [21]. 

1.2.1Theileria parva 

Theileria parva is a tick-borne parasite that causes a fatal disease in cattle known as 

East Coast Fever (ECF). This disease, which kills over 1 million cattle each year in sub-

Saharan Africa, results in economic losses exceeding $200 million annually [88].Unlike 

other apicomplexans, penetration of host cells by T. parva is not orientation-specific. 

Rhoptries and microspheres discharge after invasion, coincident with dissolution of the 

surrounding host cell membrane, leaving the parasite free in the host cell cytoplasm. 

Morbidity and mortality due to ECF are attributed to the ability of the schizont stage to 

malignantly transform its host cell, the bovine lymphocyte [26,27]. Parasitosis increases 

exponentially because the schizont divides in synchrony with the host cell and infected 

cells infiltrate all tissues. Cattle die because this lymphoproliferative disease 4 weeks 

after infection. The tick infective, red blood cell stage (piroplasm) causes less pathology 

compared to the schizonts stage in lymphocytes [25, 28]. 

T. parva is transmitted by the brown-ear tick Rhipicephalus appendiculatus [30]. 

Sporozoites are transferred into the host animal by the bite of an infected tick. 

Subsequently the parasites invade host lymphocytes (Figure1.4), where they further 

develop into intracytoplasmic multinucleated schizonts. The presence of the parasite 

within the lymphocyte induces the malignant transformation of the host cell. The host 

cell and the schizont divide synchronously, resulting in the clonal expansion of the 

infected lymphocytes. Infected animals develop a lymphoma-like disorder that is rapidly 

fatal. Some parasites form merozoites and are released into the bloodstream by rupture 
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of the host cell where they invade erythrocytes and develop into intra-erythrocytic forms 

called piroplasms. Ticks ingest the piroplasms during a blood meal. Following a sexual 

cycle in the gut, kinetes migrate to the salivary glands of the tick. Sporogony is initiated 

when the tick attaches to a host animal, resulting in the release of sporozoites into the 

salivary glands, ready for transmission to the host [25]. 

 

Figure1.4: Life cycle of Theileria parasites. Clockwise from upper right: kinete 
forms of the parasite, which move from the tick gut to the salivary gland; 
sporozoite forms (Sp), which are able to infect animal hosts, in a tick salivary 
gland; a sporozoite that in tick feeding has entered an animal host and invaded a 
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white blood cell (lymphocyte); schizont forms (Sc), which develop in the bovine 
lymphocyte from the sporozoite forms; a schizont producing merozoite forms, 
which invade the red blood cells to form a piroplasm. A piroplasm form of the 
parasite is able to infect ticks. Piroplasms will be ingested by a feeding tick, 
develop into kinete forms in the tick gut, and the life cycle will be repeated Image 

and legend from adapted from Norval &Young, The epidemiology of Theileriosis 
in Africa (Academic Press, 1992[6]. 

  

1.2.2 Theileriosis 

Theileriosis results from infection with obligate intracellular protozoa of the genus 

Theileria. The two most important species are T. parva, which causes East Coast fever 

and Corridor disease, and T. annulata, which causes Tropical Theileriosis 

(Mediterranean Theileriosis) [28]. The diseases East coast fever and Tropical 

Theileriosis are of the great economic impact. Theileria parasites are of considerable 

biological interest, since they are the only eukaryotic pathogens known to transform 

lymphocytes. Parasite sporozoites invade lymphocytes, escape from the invasion 

vacuole, interact with the host cell cytoskeleton and alter cellular signaling pathways 

[27]. 

A number of other Theileria species can infect ruminants. Many of them cause mild or 

asymptomatic infections. T. parva infects cattle, African buffalo, Indian water buffalo, 

and waterbucks. Symptomatic infections are common only in cattle and Indian water 

buffalo. African buffalo and waterbucks are reservoirs for this infection [35]. T. annulata 

infects cattle, yak, and buffalo, with milder infections usually seen in buffalo [35].  

The distinct clinical symptoms of East Coast Fever are swelling of the draining lymph 

node followed by generalized lymphadenopathy, fever, anorexia, and a rapid loss of 

condition. Other symptoms can include lacrimation, nasal discharge, corneal opacity, an 
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increased respiratory rate, and diarrhea. Death is common in fully susceptible cattle, but 

rare in Zebu cattle in endemic areas. Terminally, animals often develop pulmonary 

edema, severe dyspnea, and a frothy nasal discharge [32]. Cattle with East Coast fever 

may also develop a fatal condition called “turning sickness.” In this form of the disease, 

infected cells block capillaries in the central nervous system and cause neurologic 

symptoms. Some animals recover from East Coast fever and become asymptomatic 

carriers while others may have poor productivity and stunted growth [33,34,35]. 

Tropical Theileriosis resembles East Coast fever but jaundice and anemia may also 

occur. Common clinical signs in Tropical Theileriosis include fever, enlarged lymph 

nodes, pale mucous membranes, a rapid loss of condition, and sometimes 

hemoglobinuria [32]. 

1.2.3 Distribution of Theileriosis 

East Coast fever is found from southern Sudan to South Africa and eastern Congo to 

the east African coast as shown in figure 1.5. The tick vectors can be found from sea 

level to over 8,000 feet, in any area where the annual rainfall exceeds 20 inches [25]. 

Tropical Theileriosis is seen in North Africa, southern Europe, the southern republics of 

the former U.S.S.R., the Indian subcontinent, China, and the Middle East [32]. 

Infection by Theileria parasites limits the movement of cattle between countries and can 

result in production losses and high mortality in susceptible animals. 
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Figure 1.5: The distribution of cattle Theileria parasites in the world. Theileriosis 
disease affects sheep, goats and domestic buffalo, in Africa, the Middle East and 
Asia. (Image adapted from www.theileria.org/pictures/largemap.gif)[119]. 
 
T. parva and T. annulata are spread by ticks and are difficult to control where the T 

vectors (ticks) are readily available [25].The most important vector for transmitting T. 

parva is Rhipicephalus appendiculatus. In southern Africa R. zembeziensis is the 

transmitting tick, while R. duttoni resiponsible for transimission in in Angola. T annulata 

is transmitted by ticks in the genus Hyalomma. Morbidity and mortality vary with the 

host‟s susceptibility and the strain of the parasite. The mortality rate from East Coast 

fever can be up to 100% in naive cattle. The mortality rate for Tropical Theileriosis can 

also vary from 3% to nearly 90%, depending on the strain of parasite and the 

susceptibility of the animals [32,35, 25]. 

Only a few drugs are available for treatment of Theileriosis such as parvaquone and 

buparvaquone[92,93].These drugs work in early diagnosed infections but late diagnosis 

http://www.theileria.org/pictures/largemap.gif)%5b119
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is mostly fatal. Recovery from one strain of T. annulata confers cross–protection against 

other strains. Cross–protection does not occur with T. parva [35]. Cattle that recover 

from Theileria infections usually become carriers [29,31]. 

 

1.3 Plasmodium and Theileria Genomes 

The availability of two Theileria genomes [43, 44] together with numerous sequences for 

other apicomplexans such as Plasmodium has provided plenty of data for comparative 

analysis. The Theileria genome about 4000 genes in 8.4 Mb. It is reduced in both 

metabolic complexity and size in comparison to the genomes of other eukaryotes i.e 

Plasmodium. Metabolic deficiencies are noted in the synthesis of purines, polyamines, 

fatty acids, and porphyrin [45]. The parasites are able to carry out glycolysis and the 

tricarboxylic acid cycle. The parasite apicoplast and mitochondrial genomes have also 

been sequenced and moderate levels of synteny are observed between Theileria and 

Plasmodium genomes [45, 46]. 

Like P. falciparum, T. parva chromosomes contain one extremely A+T-rich region about 

3 kbp in length which might be the centromere region. The structure of the subtelomeric 

regions in T. parva is much less complex than that in P. falciparum, where arrays of 

repeats extend up to 30 kbp [44, 45]. 

The T. parva nuclear genome contains about 4035 protein-encoding genes, 20% fewer 

than P. falciparum. The T. parva genome exhibits higher gene density and shorter 

intergenic regions. The functional role of the T. parva apicoplast is reduced and there is 

parasite dependence on the host for many functions [44, 45]. 
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1.4 Hypusination 

Hypusination [46] is a posttranslational modification unique in the archaeal and 

eukaryotic initiation factor 5A (aIF5A and eIF-5A.) eIF-5A precursor is the only cellular 

protein known to contain a specific lysine residue (Lys50) which is converted into the 

unique amino acid hypusine, thereby activating eIF-5A. Hypusination occurs shortly 

after the synthesis of eIF-5A precursor and is the only known specific polyamine-

dependent posttranslational modification [46,47,48]. 

Two enzymes are involved in the formation of hypusine The first step is catalyzed by the 

enzyme deoxyhypusine synthase [EC 1.14 2249] (DHS), which results in the formation 

of deoxyhypusine by the transfer of 4-aminobutyl moiety from spermidine to a specific 

lysine residue in the eIF-5A precursor. The second step involves hydroxylation of the 

side chain of the deoxyhypusine intermediate by a second enzyme called 

deoxyhypusine hydroxylase [EC 1.14.99.29]. Hypusination converts eIF-5A to its active 

form [49, 50, 51]. 

1.4.1 Biological Function of eIF-5A 

Many attempts have been made to elucidate the biological function of eIF-5A but its 

exact function remains mysterious. Evidence suggests that eIF-5A facilitates protein 

synthesis by promoting nuclear export of specific mRNA and facilitates the translation of 

specific subsets of mRNA [52,53,54]. It has also been shown that eIF-5A may be 

involved in mRNA turnover, acting downstream of decapping. These results have 

suggested that hypusine-containing eIF-5A facilitates translation of the subset of 

mRNAs required for cell division and is necessary for cell proliferation. For example, 

yeast cells in which eIF-5A has been inactivated are incapable of dividing and simply 

enlarge [55,56]. 
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A series of results suggests that eIF-5A plays a key role in cell growth and 

differentiation [57]. Isoforms of eIF-5A have been isolated from plant tissue and from 

numerous organisms. These isoforms might fulfil a role in the translation of a subset of 

mRNAs required for specific physiological functions like photosynthesis, early 

development of seedlings and senescence induced programmed cell death [58,59]. 

Hypusinylated eIF-5A contributes to the life cycle of human immunodeficiency virus by 

interacting with the retroviral REV protein, thereby participating in the nuclear export of 

unspliced and incompletely-spliced viral mRNA [59,60]. 

The X-ray of the crystal structure of the eIF-5A [61,62] reveals that this protein consists 

of two well-defined domains: the N-terminal domain, which contains the hypusine 

modification site in an exposed loop, and the C-terminal domain, which is similar to the 

oligonucleotide-binding domain found in several RNA-binding proteins (see figure 1.6). 

RNA binding depends on both the presence of the hypusine residue in the eIF-5A  

protein and conserved core motifs of the target RNA [63]. 
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Figure 1.6: Crystal structure of eukaryotic translation initiation factor 5A from 
Methanococcus jannaschii at 1.8 Å resolution (A) Topology diagram of the M. 
janaschii eIF-5A structure. The arrows represent b-strands and the short cylinder 
represents a 310 helix. The lysine modification site is represented by a gray 
circle. (B) Ribbon diagram of M. janaschii eIF-5A structure in C2 crystal form. The 
arrows represent b-strands. Two domains are colored magenta and blue and 
connected by a green linker. The side chain of Lys-40 is shown as a ball-and-stick 
model. Adapted from Kim et al (1998) [115]. 
 

1.4.2 Deoxyhypusine synthase (DHS) 

Deoxyhypusine synthase catalyzes the first step in the posttranslational synthesis of 

hypusine (Nε-(4-amino-2-hydroxybutyl)lysine) in eIF-5A precursor protein. 

.Deoxyhypusine synthase requires NAD+ as a cofactor [65] and catalyzes the transfer of 

the 4-aminobutyl moiety from spermidine to its protein substrate, the eIF-5A precursor. 

The amino acid sequence of deoxyhypusine synthase is highly conserved among 
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various eukaryotic species [66]. Both eIF-5A and deoxyhypusine synthase are 

functionally conserved throughout eukaryotic evolution. Deoxyhypusine synthases from 

several species share similar physical and catalytic properties. Experimental evidence 

from gel filtration and ultracentrifugation studies suggests that the native enzyme from 

Saccharomyces cerevisiae exists as a homotetramer [67, 64] with a high affinity 

between the enzyme and eIF-5A precursor. Deoxyhypusine synthase does not modify 

free lysine or the lysine residue in a synthetic peptide with the sequence of 16 amino 

acids surrounding the lysine residue (Lys50) of the relevant precursor. Previous studies 

involving step wise truncation of the eIF-5A precursor protein from the N- or C terminus, 

or both, provided evidence that a large portion of the eIF5A precursor molecule (a 

minimum of 50 amino acids) is required for modification by the enzyme [66]. Recently 

the crystal structure of human deoxyhypusine synthase containing the competitive 

inhibitor N1-guanyl-1,7-diaminoheptae (GC7) which binds to the active site of 

enzyme[89]. was published. The crystal structure identified lys329 as the residue to which 

the butylamine moity of spermidine is transferred. At the active site within a tunnel at the 

dimer interface a number of charged amino acids can be found (figure1.7). In particular 

Asp 316 and Glu 232 have close contacts with the GC7 guanidine group.  

They presumably are in contact with the one of the to the primary amino acids groups of 

spermidine. Near the entrance of the tunnel is Asp243, which forms a salt bridge with the 

GC7 terminal amino group. A second hydrogen bond is formed to this amino group by 

the side chain of Asn 292 (figure 1.7). 
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Figure1.7:The crystal structure of DHS. The inhibitor GC7 (yellow bonds) is bound 
to the DHS active site. (A) The charge interactions between GC7 and DHS are 
denoted by black spheres. Figure (B) crystal structure of before inclusion ofGC7 
and legend from Umland et al 2004 [88]. 
 

 

1.4.2.2 Homospermidine synthase (HSS) 

Homospermidine synthase catalyzes an analogous reaction to DHS but uses putrescine 

instead of eIF-5A(lys) as substrate yielding the symmetric polyamine homospermidine 

as the product. Homospermidine is an essential precursor in the biosynthesis of 

pyrrolizidine alkaloids, an important class of plant defense compounds against 

herbivores [59]. Sequence comparisons of the two enzymes indicate an evolutionary 

origin of homospermidine synthase from deoxyhypusine synthase. Protein-protein 

binding and kinetic substrate competition studies confirmed that homospermidine 

synthase, in comparison to deoxyhypusine synthase, lost the ability to bind the eIF-

5A(lys) [59]. .Instead homospermidine synthase transfers an aminobutyl moiety to 

putrescine. Both enzymes share comparable specific enzymatic activities and exhibit 

similar Michaelis kinetics. In conclusion, homospermidine synthase behaves like a 

deoxyhypusine synthase that lost its major function (aminobutylation of eIF-5A 
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precursor protein) but retained unaltered first side activity (aminobutylation of 

putrescine). It is considered as a gene evolved from DHS by gene duplication that 

obtained a new function in the production of secondary metabolites [71]. 

1.4.3. Deoxyhypusine hydroxylase (DOHH) 

Deoxyhypusine hydroxylase (DOHH) is the second enzyme in the posttranslational 

modification of eIF-5A. DOHH completes the hypusine pathway by hydroxylation of 

deoxyhypusine. 

The gene encoding deoxyhypusine hydroxylase has been recently cloned and 

expressed from human, yeast and bovine [70,72,74]. DOHH is a HEAT-repeat protein 

with a symmetrical super helical structure consisting of 8 (HEAT motifs) organized in a 

symmetrical diad as shown in the figure 1.8. The metalloenzyme [36 37,38] contains 

tightly bound iron(Fe2+) at the active sites. Four strictly conserved His-Glu pairs were 

identified as iron coordination sites as shown in Figure1.8. 
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Figure 1.8: The proposed model for the binding of eIF-5A (Dhp) to DOHH. The 
active site His-Glu residues is important for binding of iron. Histidine residues 
which interact with deoxyhypusined eIF-5A are numbered. Side chain carboxyl 
groups of Glu57 and Glu208 are proposed to interact with the amino group(s) of 
the deoxyhypusine side chain of eIF-5A (Dhp). The γ- carboxyl groups ofGlu90 
and Glu241 may also contribute to the substrate binding by interaction with the 
deoxyhypusine residue or other basic residues surrounding it. The six residues, 
His56, His89, Glu90, His207, His240 and Glu241 implicated in iron binding are in 
blue. Iron atoms are not included in the diagram, since substrate protein binding 
does not depend on iron binding. This scheme represents a simplified 
hypothetical diagram of the DOHH/eIF-5A (Dhp) complex, indicating the key 
residues involved in the binding without specific indication of orientation of the 
two proteins. Figure and legend taken from   et al.2007[67]. 
 
 

In contrast to DHS, the structural and catalytic properties of DOHH are not well 

understood. This enzyme appears to share some properties with the non-heme Fe(II)- 

and 2-oxoacid-dependent dioxygenases, such as collagen prolyl 4-hydroxylase and 
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lysyl hydroxylases. In common with these enzymes, DOHH of mammalian cells or 

tissues is inhibited by various metal chelators, including 2,2'-dipyridyl, mimosine, 

deferoxamine, 1,10-phenanthroline, deferiprone, and ciclopiroxolamine [68,109].DOHH 

belongs to a family of HEAT-repeat like proteins, which includes human Huntingtin 

Elongation factor 3, a subunit of protein phosphatase 2A, and the Target of rapamycin. 

These HEAT-repeat like proteins also occur in importin proteins, -catenin, and clathrin-

associated adaptor proteins. In a variety of bacterial and eukaryotic proteins, termed 

HEAT-repeat-containing proteins, the HEAT motif, an α-helical hairpin (a pair of α -

helices) of 50 aa, is tandemly repeated to form super helical structures [36]. Many of 

these HEAT-repeat like proteins mediate protein–protein interactions and are involved 

in nucleocytoplasmic transport, vacuolar transport, and cytoskeletal organization [36, 

37]. 

1.4.4 Targeting the polyamine pathway for antiparasitic chemotherapy 

It has been shown for many organisms that growth and differentiation processes 

depend on adequate intracellular concentrations of the polyamines putrescine, 

spermidine, and spermine [38, 40]. 

Spermidine is an important precursor for the biosynthesis of hypusine and 

homospermidine in eukaryotes. Interference with polyamine biosynthesis by inhibition of 

ornithine decarboxylase (ODC) and S-adenosylmethionine decarboxylase (AdoMetDC) 

has been discussed as a potential chemotherapy of cancer and parasitic infection 

[39,41]. Blocking spermidine and spermine synthesis in P falciparum-infected 

erythrocytes with irreversible inhibitors of AdoMetDC prevents the growth of the parasite 

in vitro [42, 90].  
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Figure 1.9: Pathway of polyamine biosynthesis in P falciparum and hypusine 
modification of eIF-5A. Hypusine modification involves two sequential steps. DHS 
transfers the 4-aminobutyl moiety from spermidine to the ε-amino group of one 
specific lysine residue (Lys-50 in the human protein) in eIF-5A generating eIF-5A 
intermediate, which is then hydroxylated by deoxyhypusine hydroxylase to form 
the mature hypusinated eIF-5A. Figure adapted from Huang 2006[90]. 
 

Moreover, the addition of DFMO to human P falciparum-infected red blood cells in 

continuous culture decreased parasite growth and intracellular putrescine 

concentrations [41.] DFMO also blocked exoerythrocytic schizogony of Plasmodium 

berghei in mice and in cultured human hepatoma cells and these effects were also 

reversed by administration of exogenous spermidine [40].1,7-Diaminoheptane, an 

inhibitor of deoxyhypusine synthase, which could decrease the intracellular spermidine 

content, inhibits the proliferation of malaria parasites of P. falciparum NF54 strain in 
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vitro [90]. These results confirm previous observations that the polyamines, especially 

spermidine, are crucial for differentiation and proliferation of malarial parasites. 

Inconsequence, interference with polyamine biosynthesis may be an attractive for the 

chemotherapy of malaria [107, 108]. The numerous steps of this pathway are shown by 

Figure1.9 and could serve as drug targets for chemotherapy. 

1.4.5 The Potential of eIF-5A for Vaccine Development and 

Antichemotherapy 

There is an urgent need for novel drugs and vaccines which are safe, effective and 

affordable for therapy of malaria and theileriosis. 

The eIF-5A modification appears to have potential in vaccine and antichemotherapy 

development. Two different strategies exist for inhibition of eIF-5A modification: first the 

inactivation of DHS enzyme and second the inhibition of DOHH enzyme [105]. Recently, 

it has been shown that inhibition of hypusination suppressed the replication cycle of 

HIV. Moreover DHS is now a target in cancer, HIV (AIDS) and malaria therapy 

[40,54,60,77,79]. 

Homologs of eIF-5A and DHS from different Plasmodium species have been cloned but 

hitherto the cloning of dhs from P. vivax had not been done.  

The eIF-5A protein from T. parva has shown some potential as a vaccine candidate. 

Animals which have acquired immunity develop cytotoxic T lymphocytes that are 

specifically primed against the eIF-5A protein. EIF-5A is being used as an antigen in a 

T. parva vaccine which is currently under evaluation [78]. 
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Such a vaccine if successful would be important for control of the Theileriosis as it 

would be an improvement over the current life vaccines that sometimes results in 

protected animals becoming carriers of the parasite. The success of such a vaccine 

could be important in the development of a similar one against other apicomplexa 

diseases. 

1.5. Aims of this Study 

The increasing drug resistance of P. falciparum against conventional drugs enforces 

new strategies to combat malaria. Only a few drugs are effective against Theileria 

parasites. There is currently no drug available for the late stage of the disease. The 

novel drugs must meet the requirements of rapid efficacy, minimal toxicity and be of low 

cost. We have focused in particular on the DHS protein from the apicomplexans for 

target evaluation. 

The Thesis has two objectives: 

1. (a)The molecular cloning and expression of the dhs gene from P.vivax in order to 

compare it with the ortholog from P. falciparum with respect to its pathogenicity 

and phylogeny. 

(b)The molecular cloning and characterization of T. parva dhs gene, since the 

eIF-5A protein from the parasite is used for vaccination. 

2. The second objective was to investigate piperidones as potential inhibitors of 

DOHH  for their antiplasmodial activity in vitro. 
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2.0 MATERIALS AND METHODS 

2.1 Materials 

 

2.1.1 Chemicals 

Agarose:        Top Vision™ Le Gq Agarose  

Ammoniumchloride:      Roth, Germany  

Ampicilin:        Sigma-Aldrich, Germany  

Antibiotic-Antimycotic Solution :    Sigma-Aldrich, Germany  

1-Brom-3-Chloro-Propan:      Sigma-Aldrich, Germany 

Bicarbonate (NaHCO3):     Sigma-Aldrich, Germany 

Bromphenolblue:       Sigma-Aldrich, Germany  

BSA:        Roth, Karlsruhe, Germany  

Chloroquine Diphosphatesate:     Sigma-Aldrich, Germany  

DEPC-Water:        Ambon, Uk  

Dimethylsulfoxide (DMSO):      Sigma-Aldrich, Germany  

Ethanol:       Merck, Germany  

Ethidiumbromide:       Biomol, Germany  

FCS:        PAA,  Austria  

Ficoll®:       Sigma-Aldrich, Germany  

Free RNA&DNA Water:      Millipore  

Gentamycin:       Cambrex, Usa  

Giemsa Azur-Eosin:      Merck, Germany 

Glycerol:       Sigma-Aldrich, Germany  

Haematocrit Capillary Tube:     Brand, Wertheim, Germany  

Hepes Buffer:       MP Biomedicals, UK 

Hydrochloric Acid:      Sigma, Germany  

Hydrogen Peroxide 30%:     Sigma-Aldrich, Germany  
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Hypoxanthine:       Sigma-Aldrich, Germany  

Immersion Oil:       Fluka, Germany  

Incubator:       Binder, Germany  

IPTG:        Sigma-Aldrich, Germany  

Isopropanol:       Merck, Germany  

LB Agar:       Sigma-Aldrich, Germany  

MBI Markers       Fermentas, Germany  

Methanol:       Merck, Germany  

Methyleneblue-Solution:      Merck, Germany  

PBS Buffer Tablets        Merck, Germany  

Percoll®:       Sigma-Aldrich, Germany  

Potassium Dihydrogen Phosphate:     Merck, Germany  

Potassium Hydrogen Sulfate:     Merck, Germany  

RPMI-Medium:      Invitrogen, Germany  

Sodium Chloride:       Roth, Germany  

Sodium Dihydrogen Phosphate:     Merck, Germany  

Sodium Hydroxide:       Merck, Germany  

Sorbitol:       Sigma-Aldrich, Germany  

Tris-Hydrochloride:      Roth, Germany  

Trizol®:        Invitrogen, UK  

Tween®20:       Sigma-Aldrich, Germany  

X-Gal:         Roth, Germany  

Xylencyanol:        Merck, Germany  
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2.2.2 Laboratory supplies 

CELLSTAR®, 96-well flat culture plates:   Greiner bio-one,Germany  

Disposable pipettes:      Eppendorf, Germany  

Eppendorf-Reaction-test tube:     Eppendorf, Germany 

Filters (0.2 micron):      Satorious, Germany 

Glassware:       Schott AG, Mainz, Germany 

Nitrocelllulose membrane:     Satorious, Germany 

PCR tubes:       Eppendorf, Germany 

Pipette tips:       Eppendorf, Germany 

Syringes:       B/Braun, Germany  

Tissue Culture Dishes 60/15mm:     Greiner Bio-One, Germany 

2.2.3 Kits 

Ni-NTA Spin Kit:       Qiagen, Germany 

Seqlab Plasmid Miniprep Kit:     Sequence Lab, Germany 

Qiaex II Gel Extraction Kit:     Qiagen, Germany 

Qiaquick Gel Extraction Kit      Qiagen, Germany 

Qiaquick PCR Purification Kit:     Qiagen, Germany 

Original TA Cloning® Kit:     Invitrogen, Germany 

pSTBlue-1 AccepTor™ Vector Kit:     Novagen, Germany 

pETBlue-1 AccepTor™ Vector Kit:     Novagen, Germany 

pGEM easy Vector       Kit Promega, Germany 
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2.1.4 Deoxyhypusine Hydroxylase (dohh) Inhibitors 

mimosine:       Sigma-Aldrich,  

ciclopiroxolamine:      Spectrum, Chemicals, USA. 

DOHH Inhibitors:      Professor Dr. Holzgrabe, Institute 

2.1.5 Primers 

 

2.1.5.1 P. vivax dhs 

Forward primer1: 5>ATG ACG AAC CAA GGG GCT TTT3‟ 

Reverse 2 primer2: 5>‟TCA CCT GAG CTG CGC TTC ACC3‟ 

Expression forward primer 3: 5>-AAC CCC ATA TGA CGA ACC AAG GGGCTT TT-3' 

Expression reverse primer 4: 5>-AAAA GGA TCC TCA CCT GAG CTG CGC TTCp3‟ 

  

T. parva dhs 

Forward primer 5: 5>ATG ACA GAG AAT AAC CTA AAC  

Reverse primer 6: 5>TCA TTC GAA TTG ACG ATT AAC, 

Expression forward Primer7: 5>AAAAAA CAT ATG ACA GAG AAT AAC CTA3‟ 

Expression reverse Primer 8: 5 >AAAAAAGGATCC TCA TTCGAA TTGACG ATT‟ 

 

2.1.6 Media and Buffers 

 

2.1.6.1 RPMI-1640 media for P. falciparum strains in-vitro cultivation:  

Two liters of distilled water containing 20.8g RPMI-1640 media, 11.9 g Hepes buffer and 

100 mg Hypoxanthine, minimum 99%, were mixed by a magnetic stirrer for 30 min,and 

the pH was adjusted to 7 with 1M Sodium Hydroxide solution. The prepared media was 

sterilized by micro filters 0.20 μM GF (Sartorius), and then stored at 4°C. 

2.1.6.2 Bicarbonate Buffer (NaHCO3):  
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100 ml of distilled water containing 7.5 mg NaHCO3, were mixed by a magnetic stirrer 

for 1 hour and then sterilized by micro-filter 0.20 μM. Aliquots of 50ml were stored at 

40C in falcon test tubes. 

 

2.1.6.3 Solution for cryopreservation of Plasmodium:  

28% glycerol, 3% sorbitol and 0.65% NaCl  

72ml of 4.2% sorbitol were mixed in 0.9% NaCl with 28 ml glycerol and sterilized by 

filtration and then stored at 4º C. 

2.1.6.4 Thawing solution : 

A sterilized solution of 3.5% NaCl 

2.1.6.5 TBE-buffer 10x: each 1 Litre (pH 8) containing  

0.89 M TRIS  

0.89 M Boric acid  

50 mM EDTA  

2.1.6.5 Giemsa Stain:  

1 ml Giemsa Azure-Eosin-Methylene blue solution was dissolved in 19 ml buffer solution pH6.8. 

2.1.6.6 Luria-Bertani medium: 

LB medium: 10 g Peptone, 5 g NaCl, and 5 g yeast extract were dissolved in 1000ml H2O and 

sterilized.  

2.1.6.7 Luria-Bertani agar plates 

To 1000 ml of the above medium (Luria-Bertani medium) 15 g agar was added. 

2.1.6.8 SOB  

20 g tryptone, 5 g yeast extract, 0.5 g NaCl, and 10 ml 250 mM KCl were dissolved in 1000 ml 

H20. 

2.1.6.9 SOC medium 
The SOC medium consisted of 20 g/l bacto-tryptone,5 g/l bacto-yeast extract, 0.58 g/l NaCl, and 

0.19 g/l KCl. The  pH was adjusted to 7.0 with NaOH, and sterilized by autoclaving. Then 1 ml of 

2 M MgCl2was added. 
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stock and 1 ml of 2 M glucose was added to 98 ml of autoclaved medium. 

2.1.7 Plasmodium falciparum strains used for the in vitro assays  

Plasmodium falciparum/NF-54 (Pf/NF-54), Chloroquine sensitive strain (CQS), and 

Plasmodium falciparum/R-stamm), Chloroquine resistance strain (CQR), were 

maintained as cryo-preserved stocks in infected red blood cells. 

2.1.8 Instruments 

Centrifuge (Eppendorf 5415 R):   Eppendorf AG, Hamburg, Germany 

Centrifuge (Multifuge 4KR):   Heraeus Holding GmbH, Hanau, 

Germany 

Ceramic beads     Percellys, UK 

Cuvettes       Eppendorf, Germany  

Electrophoreses system    BioRad, Germany  

Freezer (-20°C):     Bosch GmbH:Stuttgart, Germany 

Freezer (-80°C):     Heraeus Holding GmbH, Hanau, 

Germny 

Fridge:      Bosch GmbH; Stuttgart, Germany 

Haematocrit Centrifuge    Becton-Dickinson, Germany  

Heating block      Eppendorf , Germany 

Ice machine (Scotsman AF 80):   Gastro Handel GmbH, Wien, Austria 

Incubator Hereaeus B5050:   Hereaeus, Germany 

Microscope :      Zeiss Axioscope 135, Germany  

PH meter:      Mettler Toldo GmbH, Giessen, Germany 

Photometer:      Eppendorf, Germany  

Pipetboy (pipetus®-akku) Hirschmann:  Laborgeräte, Eberstadt, Germany 

Rotorgene PCR machine:    Corbett research, Sydney, Australia 
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Thermo magnetic stirrer:    IKA® GmbH & Co.KG, Staufen, 

Germany 

Thermomixer comfort,     ROTH, Germany  

Vortex mixer (Minishaker):    IKA® GmbH & Co.KG, Staufen, 

Germany 

Water bath:       VWR Lab Shop, Batavia, USA 

Scales:      Sartorius AG, Goettingen, Germany 
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2.2 Methods 

2.2.1.0 In vitro cultures 

2.2.1.1 Preparation of blood and serum for P. falciparum  in vitro culture 

The in vitro culture was performed in an Isoflow safety hood to ensure sterile conditions.  

Purified erythrocytes (of human blood type A+) and human A+ serum were kindly 

provided by the blood bank Medical Care Unit, Bonn University. The serum was 

inactivated in a water bath at 56ºC for 60 min. Serum fractions were pooled into a 500ml 

glass bottle and aliquots of 50 ml were stored at -20ºC in 50ml falcon test tubes.  

Blood samples from the same source as above were collected in tubes containing 10 ml 

heparin. These samples were centrifuged for 5 min at 3000 RPM. The supernatant 

which contained the plasma was discarded and the cells were washed, 2-3 times, with 

RPMI-1640 by centrifugation for 5 min at 3000 RPM.  

2-3 ml of serum was added to the obtained red blood cells (RBCs) in each sample and 

stored at 8ºC until use. 

2.2.1.2 P. falciparum in vitro cultures 

P. falciparum strains, were retrieved from the liquid nitrogen storage tank and thawed by 

mixing with the thawing solution at a 1:1 ratio. The thawed parasites were centrifuged at 

3000 rpm for 5 min, the supernatant was discarded. The sediment containing the 

infected cells was mixed with 0.8 ml of RBCs in 5 cm Petri dishes. The cultures were 

maintained according to a protocol from Traeger and Jensen [95]. The incubation was 

done in a gaseous phase of 90 % N2, 5% CO2 and 5% O2. Parasites were cultured in 

human erythrocytes (blood group A+) suspended in RPM1640 medium and 

supplemented with 25 mM HEPES, 20 mM sodium hydrogen carbonate, and 10 % heat 
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inactivated human A+ serum at 10 % (v/v) hematocrit. The cultures were incubated at 

37OC in a closed jar under continuous gaseous phase as described above. 

2.2.1.3 Inhibition of Growth in cultured P. falciparum 

Cultures of P. falciparum were maintained in small Petri dishes (5 cm) according to a 

protocol briefly described above. Cultures were adjusted to a parasitemia of 1.5% with 

red blood cells suspended in RPMI-medium. Aliquots were dispensed into 12–well 

micro-culture trays and incubated at 37˚C in a jar with the favourable gas atmosphere. 

Growth medium was changed every day for four days. The inhibitors under evaluation 

were added to the media as indicated for each test.  

Inhibitor Concentrations in µM DMSO % 

DOHH1 10,20,30 0.0% 

DOHH 2 1,3,9 0.25% 

DOHH 3 10,20,20 0.40% 

DOHH 4 1,3,8 0.25% 

DOHH 5 9 0.25% 

DOHH 6 1,3,9 0.30% 

DOHH 7 10,20,30 0.25% 

 

Table 2.1: The table presents the various inhibitors and their concentrations as 

used in the inhibition study. The amount of DMSO used for dissolving the 

inhibitors in RPMI 1640 media is given as a percentage.  

2.2.1.4 Monitoring growth inhibition by microscopy 

A thin blood smear was prepared every 24 hours and parasites were observed 

microscopically in Giemsa-stained smears. Percentage parasitemia was calculated from 

the ratio of the number of infected RBCs to the total number of red blood cells counted. 

Red blood cells were counted in at least 10 independent fields each with approximately 
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200 cells. This was done using a light microscope employing a 100X–fold oil immersion 

objective to score visually. Parasitemia levels and stage distribution were estimated as 

triplicates each with 2000 erythrocytes counted. 

2.2 1.5 Calculation of the IC50 value 

IC50 values were determined by linear regression analysis of growth curves plotting the 

percentage of inhibition against the concentration of inhibitor in μM. The IC50 is defined 

as the concentration which is necessary to obtain 50% inhibition of the parasite [96,97].  
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2.2.2.0 Molecular Techniques 

Standard molecular biology techniques were applied according to Sambrook[98] and 

Asubel[99] . 

2.2.2.1 Polymerase Chain Reaction (PCR) 

DNA amplification for screening was carried out in 20 µl reactions. 50 ng of each primer 

and 0,5 U Taq DNA polymerase (5 units/µl) (Promega), 250 mM of each of the four 

dNTP's, 2.75 mM MgCl2, and 2 µL of template were used.  

Thermocycling was carried out on a Rotorgene PCR machine. After an initial 

denaturation step at 96 °C for 3 minutes, the DNA was amplified in three step cycles:  

1. denaturation      at 95 °C for 30 s  

2. annealing           at 60°C for 45 s  

3. extension           at 72°C for 60 s  

After 30 cycles, the DNA was given a final extension step at 72°C for 5 minutes.  

 

2.2.2.2 Agarose gel electrophoresis 

Conventional agarose gel electrophoresis was used to analyze DNA fragments. The 

electrophoretic mobility of DNA fragments mainly depends on the fragment size. 

Agarose gels can resolve DNA from 50 bp to 20 kbp in length. The gels prepared were 

1% agarose in TAE and contained 1 μg/ml ethidium bromide for visualization of the 

DNA bands. The electrophoresis was run in 1x TAE buffer. 

 

 

2.2.2.3. Purification of PCR Products 

A 100 µl PCR volume was set to produce a large amount of the DNA fragment for 

purification. After separation on an agarose gel, the gel extraction kit from Qiagen was 

applied according to the manufacturer‟s instructions for PCR product purification from 
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agarose gels. The purified PCR product was sent for sequencing to MWG Biotech, 

Munich. 

2.2.3.4 Transformation 

Chemocompetent bacteria of E. coli strain JM109 were thawed on ice for 5-10 min. For 

a single transformation 1 aliquot (50 μl) of the competent cells was mixed with 1-2 μl of 

ligation product in an Eppendorf tube. This equals approximately 1-10 ng of circular 

plasmid DNA. Immediately after heat-shock (42°C for 30s cells) the tube was placed on 

ice for 2 min. 950 μl of SOC-medium was added and phenotypic expression continued 

under shaking at 37°C for 1 h. The transformation (100 μl) was plated on an LB agar 

plate containing the appropriate antibiotic and selection supplements for the plasmid of 

interest and subsequent incubation at 37°C overnight. 

2.2.3.5 Plasmid Preparation 

3 ml LB media supplemented with appropriate selection antibiotics were inoculated with 

a single colony and grown overnight at 37°C on a shaker. Cells were centrifuged at 

3,000 rpm for 10 min. Plasmid DNA was isolated using the SeqLab Kit (Sequence Lab 

Germany). The DNA pellet was washed two times with 70% ethanol and dissolved in 30 

μl 1x TE buffer. 

2.2.3.6 Plasmid DNA Preparation for Sequencing and Restriction Digestion. 

Preparation of plasmid DNA for sequencing was performed according to the Qiagen 

Plasmid Midi Kit protocol (see very low-copy plasmid/cosmid purification protocol in 

Qiagen plasmid purification handbook). About 400 ng of plasmid DNA purified with the 

Qiagen kit was sequenced by MWG Biotech, Munich. 
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2.2.4.1 T. parva cultures 

A Theileria parva strain (Muguga stock) which was originally isolated from a cow in 

Kenya was used in this study [101]. The strains had been maintained in bovine 

lymphoblasts culture and cryopreserved to a stabilate [100,102,103]. 

The strain was retrieved from the liquid nitrogen tank and thawed at room temperature. 

The infected cells i.e. bovine lymphoblasts were cultured in RPMI 1640 with 10% fetal 

calf serum, 2 mM glutamine, penicillin and streptomycin, amycostatin (75 units/ml) in 

25-ml plastic screw-cap tissue-culture flasks. Medium was changed every 3–4 days. 

The presence of bright refractile cells which are present in the medium (on examination 

using a phase-contrast or inverted microscope) indicate an infection. Passage was 

achieved by decanting the medium, adding 0.025% EDTA for 15 minutes to monolayer 

cultures, dispersing the cells, then counting and dispensing according to flask size. 

Approximately 106 cells are transferred into a 25 cm2 flask. Serum was tested for toxicity 

through three passages in an established cell line before use. All cultures were 

incubated at 38.5°C in a humidified atmosphere of 5% CO2 in air [29 103 102]. 

 

2.2.4.2 Purification of schizonts from infected lymphoblasts 

The cultured lymphoblasts were harvested by centrifugation at 3000 rpm for 10 min. 

Sufficient growth was obtained within 10 days. The pellet was suspended in PBS buffer 

containing 20 mM nocodazole and incubated for 30 min. The preparation was treated 

further by addition of PBS containing 10 mg aerolysin and incubated for 4 °C for 10 min. 

Complete lysis was obtained after further 10 minutes at 37 °C. The released schizonts 
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were centrifuged onto a Ficoll cushion (to avoid pelleting). The interface between the 

lysate and the Ficoll was collected and contained the schizonts. 

2.2.4.3 Preparation of Genomic DNA 

Genomic DNA was isolated using a DNA purification kit from Promega (USA). The 

extraction was done using the procedure as described by the manufacturer. After 

digestion with Proteinase K (20 μg/ml) samples were applied to the columns for 

absorption and washing of DNA. Finally, DNA was eluted in 200 μl of buffer available 

from the kit and evaluated by agarose electrophoresis and spectrophometry. 

2.2.4.4 Preparation of Electro-competent bacteria 

JM109 E. coli cells were grown over night in 20 ml of LB-medium at 37°C. Further 200 

ml of LB-medium was added and the bacteria were grown to an OD600nm = 0.5–0.6. 

Cells were cooled on ice for 20 min. then centrifuged at 4000 x g for 15 min. The pellet 

was washed two times with 200 ml of ice-cold distilled water. After the final 

centrifugation the pellet was resuspended in 20 ml 10% glycerol. Cells were aliquoted 

on dry ice into 50 μl aliquots and stored at –80°C until use. 
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3.0 RESULTS. 

3.1.1. Chloroquine (CQ) inhibition of in vitro cultures of P. falciprum 

Inhibitor experiments were performed with chloroquine to establish a control for the 

compounds to be tested. The chloroquine susceptible (QS) P. falciparum strain NF54 

and the chloroquine resistant R strain (QRS) were used to test different concentrations 

of chloroquine. The IC50 values were 0.014 µM for Pf/NF-54 strain and 0.4 µM for the R-

strain respectively. The obtained data are comparable to previously published results by 

Smeijsters and colleagues [113]. 

 

Figure 3.1: Parasitemia of R-strain after chloroquine inhibition.  
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3.1 2. Control experiment with Dimethyl Sulfoxide (DMSO) on in vitro 

cultures 

 

Some of the inhibitors which were used in this study were dissolved in DMSO and it was 

therefore important to determine the effects of DMSO on the growth of the parasite. To 

evaluate these effects, cultures containing various concentrations ranging from 0.25% 

to 2% DMSO were applied. The results show that DMSO at low concentrations does not 

have any effect on the growth of P. falciparum parasites in vitro cultures. 

 

Figure 3 .2: parasitemia of P. falciparum PF/NF 54 strain after exposure to 

DMSO 
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3.1 3. Mimosine inhibition of in vitro cultures of P. falciprum 

L-Mimosine, β-[N-(3-Hydroxy-4-pyridone)]-aminopropionic acid is a naturally occurring 

rare amino acid derivative, isolated from Leucaena leucocephala seeds. It can 

reversibly block mammalian cells at late G1 phase and leads to a notable reduction in 

the steady-state level of mature eIF-5A by means of DOHH inhibition [104]. These 

results suggested testing the compound for a potential inhibitory effect on Plasmodium 

falciparum in vitro cultures. The substance was tested at concentrations of 3.12 μM, 

6.25 μM and 25 μM. 

 

Figure 3.3: The structure of mimosine a rare plant derived amino acid. 

L-Mimosine is an iron chelator. Iron chelators have been reported to inhibit cell growth 

by modulating gene expression and causing G1 phase arrest. This might be a possible 

mechanism of growth inhibition of mimosine in P. falciparum. In practice mimosine was 

not readily soluble in water and was first dissolved in 10% sodium hydrogen carbonate 

solution and then added to the culture media. 
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Figure 3.4: Parasitemia after P. falciparum NF 54 inhibition by mimosine  

L-mimosine concentrations higher than 25 mM resulted in a turbid appearance and 

affected the Giemsa staining procedure. The obtained IC50 value for mimosine was 32 

μM for the chloroquine susceptible (CQS) strain PF/NF-54. The parasitemia after 

inhibition is shown in figure 3.4. The chloroquine resistant (CQR) strain had an IC50 

value of 39 μM. The distribution of trophozoites and schizonts showed more schizonts 

than trophozoites as shown in figure 3.5. 
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Figure 3.5: Trophozoites and schizont populations in % after inhibition with 

mimosine. 
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3.14. Ciclopiroxolamine inhibition of in vitro cultures FROM P. falciprum 

Ciclopiroxolamine is a 6-Cyclohexyl-1-hydroxy-4-methyl-2[1H]-pyridone. It is a broad-

spectrum antifungal which has an activity spectrum similar to that of the imidazoles. 

Previous inhibitor experiments of DOHH performed with extracts from rat testis showed 

inhibition of the enzyme presumably because of chelate formation with the 

metalloenzyme which consists of ferrous iron [105]. We tested the compound in 

concentrations of 3 μM, 6 μM, 9 μM, and 12 μM. 

 

Figure 3.6: The structure of ciclopiroxolamine a hydroxpyridone  

. 

 

The CQR strain, R-Stamm was used in this study. Treatment with ciclopiroxolamine 

inhibits parasitemia growth in culture as shown in figure 3.7. The number of trophozoites 

and schizonts present were comparable at 96 hrs is shown in figure 3.8. The IC50 value 

for ciclopiroxolamine was 8.2 μM. 

http://www.drugbank.ca/drugBank/drugStructureFile/drug_files/structures/images/full/DB01188.png
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Figure 3.7: parasitemia of R-Strain after inhibition with ciclopiroxolamine 

 

Figure 3.8: R-Strain, trophozoites and schizont populations in % after 

inhibition with ciclopiroxolamine. 
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3.1 5. Inhibition by Piperidones 

Ciclopiroxolamine and mimosine showed promising results with respect to their ant- 

malarial activity. The lead structures with the enolizable β-ketoester moiety are able to 

complex the ferrous iron from a putative DOHH. This prompted us to test differently 

substituted piperidones from a compound library (Prof. Holzgrabe) in P. falciparum in 

vitro cultures. The seven series prospective DOHH inhibitors were used in various 

concentrations ranging between 1 and 40 µM being and dissolved in either 

dimethylsulfoxide (DSMO) or directly in RPMI medium. 

Table 3.1 summarizes the in vitro inhibition activity of the seven different saturated and 

non-saturated mono- and diesters tested in CQS P. falciparum strains NF54 and CQR 

R. The saturated 4-piperidone monoesters show the most prominent inhibitory effect 

(DOHH3, DOHH7) while a 4-piperidone diester (DOHH1) was less efficient in growth 

inhibition in vitro. The average IC50 values obtained for the 4-oxo-piperidine monoesters 

in P. falciparum strain NF54 were 1.7 μM for an N-p-chlorobenzyl substitution (DOHH3) 

and 1.4 μM for an N-allyl substituted derivative (DOHH7), suggesting that the N-

substitution is of insignificant value to the inhibition. The 4-oxopiperidine diester DOHH1 

shows a higher IC50 value of 10.2 μM (DOHH1). The oxidation products, the dihydro- 

and tetrahydropyridin- monoester (DOHH2, DOHH4, and DOHH5, DOHH6), though 

structurally similar to the lead compound mimosine, were less efficient in growth 

inhibition. Most notably, the highest average IC50 value was determined to be 18.0 μM 

for CQS NF54 strain with the DOHH4 inhibitor, a tetrahydropyridine. The 

dihydropyridine monoesters (DOHH5 and DOHH6) resulted in IC50 values of 9.4 and 9.1 

μM for the NF54 strain suggesting that dihydropyridine esters have a higher 

antiplasmodial effect than the tetrahydropyridine derivatives. Therefore, the non-

http://www.ias.ac.in/currsci/apr252001/917.pdf
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saturated compounds are superior to the lead compounds mimosine and 

ciclopiroxolamine in inhibition activity. 

 

DOHH Type R P. falciparum 

strain tested 

Average 

IC50 [μM] 

DOHH 1 I Benzyl NF54 10.2±5.9 

DOHH 2 III Benzyl NF54 4.7±2.7 

DOHH 3 II 4-Cl-benzyl NF54 1.7±0.9 

DOHH 4 III 4-Cl-benzyl R 18.0±10.4 

DOHH 5 IV 4-Cl-benzyl R 9.4±5.4 

DOHH 6 IV 4-CH3-benzyl R 9.1±5.2 

DOHH 7 II Allyl NF54 1.4±0.8 

 

    

Type I Type II Type III Type IV Py 

 

Table 3.1: Structural formulae of the compounds studied and their 

determined IC50 values in P. falciparum chloroquine susceptible (CQS) and 

chloroquine resistant (CQR) strains NF54 and R respectively 
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3.2. Molecular cloning of a putative dhs gene from P. vivax 

The dhs amino acid sequence of P. falciparum strain NF54 was used to screen a library 

of expressed sequence tags(EST)  from P. vivax strain PEST Salvador I. Referring to 

the 5' and 3' ends of the putative dhs gene two primers were constructed to amplify the 

gene from genomic DNA of Plasmodium vivax strain PEST Salvador I. 

 

Figure.3.9: A PCR product of 1369 base pairs was obtained from amplification of 

genomic DNA from P. vivax (PEST Salvador I strain) in lane 3. Lane 1 contains the 

Fermentas ladder mix markers in bp. 

 

The amplification reaction comprised 89 ng genomic DNA of P. vivax strain PEST 

Salvador I, 200 pmol forward primer 1# ATG ACG AAC CAA GGG GCT TTT and 

reverse primer 2# TCA CCT GAG CTG CGC TTC ACC, 10 mM dNTP, 75 mM MgCl2, 2 

μl 10 fold PCR buffer and 5unitsTaq polymerase (Qiagen) in a total volume of 20 μl.  
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Amplification was performed using a temperature profile of 94°C for 5', 94°C for 1', 60°C 

for 1', 72°C for 1' for 30 cycles, and an elongation step at 72°C for 10'. The amplified 

genomic DNA resulted the PCR product shown on figure 3.9. 

3.2.1 Sub cloning of the amplified P. vivax gene into pSTBlue Vector 

The PCR products were first cloned into pSTBlue-1 using the Acceptor™ kit (Novagen). 

They were subsequently transformed into E. coli Nova Blue™ cells following the 

manufacturer‟s protocol. Resulting transformants were selected by growth on LB 

containing carbenicillin and kanamycin .The transformants were subjected to blue/white 

screening. Insert positive clones were grown in 1ml LB media and screened by PCR. 

The positive clone was sequenced. The nucleic acid sequence coding for the dhs gene 

is shown in figure 3.10. The information from the sequencing data shows that the open 

reading frame has a size of 456 amino acids. The dhs gene has an AT content of 52%, 

and a comparable GC content of 48. 
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        1 atgacgaacc aaggggcttt taaggaggtt aacaaaatca gaagcgaaag cgacgatgga 

       61 gagagcagcg atgagaaaag cggaatcgag gacgccaagt cgtccgtgtt tgtcaagtcg 

      121 aacaaaattc ccgaaaacac agatgtggtg aaaggaatta atttcgaaga agaagtgaat 

      181 ttgcaccaat ttgtaaacca gtacaagtac atggggtttc aggccaccaa cttgggcata 

      241 ggaattgacg aggtgaacaa aatgattcat tttaagtatg ccgagggggg agaagggacg 

      301 caagatggcc atgacaatga ccatgaccag gacagcgatg acgagaggca agcgctgccc 

      361 aaaaaaaaaa aatgcctaat atggttatcc ttcacctcaa acatgatatc tagcgggtta 

      421 cgtgaaatat tcgtgtacct cgcgaagaag aagttcatag acgtggttgt gaccactgct 

      481 gggggagtag aggaagatat catcaagtgc ttctccaaaa cgtacttggg cgattttaac 

      541 ctcaacggga aaaaactaag gaagaagggg tggaacagaa taggcaactt gattgtcccc 

      601 aatgacaatt actgcaaatt tgaggactgg ctgcagcccc tgctgaataa gatgctgcac 

      661 gagcagaaca gaaaaaacga agagctcttt ttgaggaagc tggacaagcg caggagggga 

      721 ggagggcacg ggggggagag ggagccgcca tcgccaccgc cacatacgcc acatgcacca 

      781 tcgccgcctt caccttgcga cagctccgat gaagacgaat cggacatgtt ctacttgagc 

      841 ccctccgagt tcatagacaa actgggggag gaaataaacg acgaaagctc cctcatatac 

      901 tggtgccaca aaaatgacat ccccgtattc tgcccggggc taacagatgg gtccctgggg 

      961 gataacttat tttttcacaa ctatgggaag aaaataaaaa ataatttgat tttagacatt 

     1021 gtaaaggata ttaagaagat taactccttg gccctgaact gtaagaagtc tgggatcatc 

     1081 attttggggg ggggtctacc gaaacatcac gtctgtaacg ccaatttgat gagaaacgga 

     1141 gccgattttg cagtgtatgt gaacacggct aatgagtacg acggcagtga tagtggcgca 

     1201 aatactacgg aggctttatc gtggggcaaa attaaggcgg ggcacacgaa caaccatgtt 

     1261 aaagtttttg gcgacgccac gattttgttt cccctgatgg ttctcaacac gttttacttg 

     1321 cacgatcggg gggggaggca caactcgggt gaagcgcagc tcaggtga 

 

 

Figure 3.10: The DHS nucleic acid sequence from P. vivax has a length of 

1369 bp 

3.2.2 Cloning of the P. vivax dhs gene into pETblue-1 Vector 

The amplified and purified dhs gene was cloned into pETBlue-1 vector (Novagene), 

which enables expression but no affinity purification. The PCR products were purified 

using a Qiagen kit. The amplified PCR product was ligated into the pETBlue1 vector 

according to the manufacturer's protocol. The construct was used to transform Nova 

Blue cells (Novagen) and subjected to blue/white screening.  

PCR positive plasmids from positive (white) clones were isolated and subjected to a 

restriction digest to ascertain insert size and orientation and subsequently used to 

transform Tuner (DE3) cells for expression. The expressed product is shown in figure 3. 

11. 
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Figure 3.11: Protein expression of the dhs gene from P. vivax in pETBlue vector. 

lane 1. 10 kDa ladder (Roth), lane2 induced dhs gene; lane 3 uninduced dhs gene; 

lane 4 protein extract of non-transformed Tuner DE cells. The protein exhibited a 

molecular weight of approximately 50 kDa. 

 

 

3.2.3 Sub cloning of the dhs gene into pET15b expression vector 

For expression the dhs gene from P. vivax was cloned into pET15b vector which 

enables addition of a six-histidine tag at the N-terminus of the gene. Two primers 

containing the NdeI and BamHI restriction sites respectively were used to amplify the 

dhs gene with high fidelity Pfu DNA polymerase from genomic DNA of P. vivax Salvador 

PEST strain. The forward primer (primer 3) 5'-AAC CCC ATA TGA CGA ACC AAG 
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GGGCTT TT-3' contained the NdeI restriction site and the reverse primer (primer 4) 5'-

AAAA GGA TCC TCA CCT GAG CTG CGC TTC-3') the Bam HI restriction site 

respectively. Figure 3.12 shows that the amplified PCR product had the expected size 

of 1369 bp. Figure 3.13 shows the successful subcloning into pET15B vector by PCR. 

 

 

Figure 3.12: PCR (lanes 2 and 3) product made using expression primers and for 

cloning to pET15b for expression with a 6xhistag. lane 1 has Fermentas ladder 

mix markers.  
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Figure 3.13: PCR amplificate of the 1369bp dhs gene obtained with a set of 

primers for expression after successful cloning 

3.2.4 Expression of the dhs gene in E. coli cells and affinity purification 

Protein extracts prepared from E. coli cells harboring the recombinant dhs pET15b 

expression plasmid after 4 h of induction with IPTG exhibited a prominent band of 

approximately 50 kDa on an SDS-PAGE gel (Figure 3.14, lane 3). In contrast, no band 

was detectable in the uninduced control culture (Figure 3.14, lane 2.) The recombinant 

protein was expressed with a six-histidine tag at the N-terminus, allowing purification by 

Nickel-chelate affinity chromatography. Purified protein was analyzed by SDS-PAGE. 

The protein was detected in both eluate fractions (Figure 3.14), lanes 6 and 7. 
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Figure 3.14: Expression and purification of recombinant putative deoxyhypusine 

synthase from P. vivax by Nickel-chelate chromatography on a 12%SDS PAGE 

protein gel: lane 1) protein marker: 10 kDa ladder; lane 2) non induced bacterial 

cell lysate; lane 3) induced bacterial cell lysate with 100 mM IPTG after 4 hours of 

induction; lanes 4 and 5) wash fractions obtained after purification; lanes 5 and 6) 

eluate fractions of purified putative deoxyhypusine synthase. 

3.2.5 Modification eIF-5A Precursor Protein by P. vivax deoxyhypusine 

synthase 

The dhs activity assay was performed by Marwa Nassar (German University in Cairo). 

For the dhs activity assay, the purified eIF5A precursor protein and dhs enzyme from P. 

vivax were applied. The incorporation of radioactively labeled [
14

-C] spermidine into the 

substrate precursor protein was assayed using a filter paper assay as described earlier 

Purified samples were immediately used to determine specific enzymatic DHS activity. 

The average specific enzymatic activity from two experiments was 1268 U/mg protein.  
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Table 3.2: column A) complete enzymatic assay B) control: DHS enzyme was substituted 

by water C) inhibition of DHS by the inhibitor GC7 (50 μM). 

suggesting that dhs protein from P. vivax is able to modify the eIF-5A precursor protein 

(Table 3.2, column A). In a control experiment, no specific enzymatic activity was 

detected when water was used instead of dhs (Table 3.2, column B). The specific 

enzymatic activity of P. vivax dhs was suppressed 36-fold with the inhibitor N-guanyl-

1,7-diaminoheptane(GC7) (Table 3.2, column C). 

  

A B C 

eIF5A .lys water 50 µM GC7 
14[-C]-spermidine 14[-C]-spermidine 14[-C]-spermidine 

1268 U   n.d.  35 U  

P. vivax  DHS P. vivax  DHS P .vivax DHS   

Incubation at 37°C Incubation at 37°C Incubation at 37°C 
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3.3. Molecular cloning  of a putative gene dhs from Theileria Parva 

The dhs gene of T. parva was first identified in silico. The gene was amplified in a PCR 

amplification step from the genomic DNA isolated from Theileria parva with specifically 

designed primers, a forward primer : 5>ATG ACA GAG AAT AAC CTA AAC and a 

reverse primer 6  5>TCA TTC GAA TTG ACG ATT AAC. 

 

Figure 3.15. Amplified PCR product of T. parva (TpM D409) genomic DNA. Lane 1, Phi 

X 174/Hae III marker, Lanes 2 and 3, putative dhs gene amplificate from T. parva. 

 

 

The PCR reaction was composed of: 101 ng genomic DNA of T. parva Muguga strain 

200 pmol forward primer (primer 5) 5-ATG ACA GAG AAT AAC CTA AAC-3‟ and 

reverse primer (primer 6) 5>TCA TTC GAA TTG ACG ATT AAC-3‟, 10 mM dNTP, 75 

mM MgCl2, 2 μl 10 fold PCR buffer and 5 units Taq polymerase (Promega) in a total 

volume of 20 μl. Amplification was performed using a temperature profile of 94°C for 5', 

94°C for 1', 60°C for 1', 72°C for 1' for 30 cycles, and 72°C for 10'. Fig. 3.15 presents 
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the obtained amplificate with a size of 1113bp. Two clones were obtained which 

contained the fragment of 1113bp in the plasmid pGEM vector (see Figure.3.17). The 

nucleotide sequence of the putative dhs gene which was isolated from T. parva is 

shown in Figure 3.16. It encodes an ORF of 370 amino acids a theoretical pI of 5.20 / 

and a MW of 44.9. 

 

Figure 3.16: The nucleic acid sequence from T. parva dhs with a length of 1113 

base pairs.  
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3.3.1 Expression Theileria parva of dhs in E. coli cells and affinity 

purification 

Expression of the putative dhs gene from T. parva was performed in the expression 

vector pET28b. However, there was no expression of the protein after analysis of an 

SDS- PAGE gel (data not shown). Several attempts were made by changing the E. coli 

host cells BL21(DE3)pLysS to BL21-AI™, One Shot®,BL21 Star™ Cells, and BL21 

Gen-X, but expression of the protein was not achieved.  

 

Figure 3.17: Analysis of recombinant clones after restriction digestion of pGEM 

vector with Nde1 and Bam H1 (upper arrow) yielding a 1113 bp fragment(Lower 

arrow, for subcloning into the expression vector pET28b 
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3.3.2 Western blot analysis of the Theileria parva DHS protein with an anti-

His-tag antibody 

To check whether the T. parva dhs protein still contained the His-Tag an anti-Histidin 

tagged mouse antibody was used as a probe. This presence of his-tag was revealed by 

further development with a second antibody anti-mouse conjugated to horseradish 

peroxidase and under DAB substrate.  

 

Figure 3.18: Western blot of the expressed T. parva DHS probed with an anti-his 

tag antibody mouse antibody conjugated with horseradish peroxidase (HRP). 

Lane 1-7, protein extracts from E. coli BL21 (DE3) cells with expressed pET28b 

obtained after different time points of induction , lane3, not induced, lane 4, 1hr 

after induction, lane 5, 2 hrs, lane 6, 3hrs, lane7, 4 hrs, lane 8 5 hrs, lane 9, 20hrs. 
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3.3.3 Multiple alignments of DHS Homologs 

3.4.1 P vivax DHS gene 

The deduced amino acid sequence of the P. vivax protein was aligned with different 

putative dhs sequences from other Plasmodium species, i. E., P. falciparum Dd2 and 

3D7 strains (figure 3.19, lanes 1 and 2), rodent malaria parasite P. yoelii (figure 3.19 , 

lane 3), and Anopheles Gambiae (figure 3.19, lane 6). The P. vivax dhs amino acid 

sequence displayed FASTA scores of 74 and 73 relative to the  P. falciparum strains 

Dd2 and 3D7, respectively. Notably, P. vivax dhs exhibits 66% amino acid identity 

between positions 1–236 and 91% identity between positions 276–443 to the . P. 

falciparum Dd2 strain. There are several gaps in the amino acid stretches at positions 

103, 240, 257 and 442 in the P. vivax DHS protein, which are absent in the . P. 

falciparum homolog (numbering refers to the amino acid sequence from . P. 

falciparum. The P. vivax DHS protein has a FASTA score of 75 to its homolog from 

the rodent malaria parasite P. Yoelii,, while amino acid identity to the human DHS 

protein (Fig. 1, lane5) is only 44%. The lowest FASTA score of 49 was obtained 

between P. vivax and Anopheles Gambiae DHS proteins (Figure 1, lane 6) 

 

http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1654163&rendertype=figure&id=F1
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Figure 3.19: Amino acid alignment between a putative DHS protein from P. vivax 

and two different P. falciparum strains, the rodent malaria parasite P. yoelii, 

human and the mosquito Anopheles gambiae. Numbering refers to DHS in the 
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two P. falciparum species. Lane 1: P. falciparum strain Dd2 (accession number 

AF290977); lane 2: P. falciparum strain 3D7(accession number NC_004317); lane 

3: P. yoelii (XM-724232); lane 4: P. vivax (AJ549098) ; lane 5: Homo 

sapiens(U26266), lane 6:Anopheles gambiae (XM-316567). The spermidine 

binding site (243–329 referring to human DHS numbering) is marked by bold 

amino acids. The NAD binding site from serine105 to aspartic acid 342 is marked 

in bold letters. The active center of the DHS protein from glutamine 324 to lysine 

329 is bolded black. 

3.4.2 T. Parva DHS gene 

The deduced amino acid sequence of the T. parva protein was aligned with different 

putative dhs sequences from other species, i. e. P. falciparum Dd2 strain; P. vivax; P. 

berghei, a rodent malaria parasite, T. parva, T annulata, Homo sapiens and Bos taurus. 

The T. parva DHS amino acid sequence displayed FASTA scores of 50 to its host Bos 

Taurus and a comparative identity to T annulata (FASTA scores 94).The FASTA scores 

to P. falciparum and P. vivax are 52 and 54 respectively. There are several gaps in the 

sequence in comparison to the P. falciparum sequence at amino acid position e.g. 

between amino acids 96 to 116 (Numbering refers to the amino acid sequence from T. 

parva). The other gaps occur at similar positions as in P. falciparum DHS protein. The 

spermidine binding is highly conserved. 246–342 (T. parva DHS numbering). The active 

site includes a region of six amino acids from Glu 323 to Lys 329. The NAD-binding site 

(positions 122–349, T. parva. DHS numbering) is also highly conserved in relation to the 

other homologs. 

 



63 
 

P.falciparum      MVDHVSFKEVNKIRSDDECDADSHNEGDNIEDAKASVFVKSSLIPEKTDVVKGLNFDKEV 60 

P.berghei         -MDGV-FKEVNKIKNESETEDNDDNNG-GINDAKSSVFVKSTKIPEKTDVVKGINFEKNV 57 

P.vivax           MTNQGAFKEVNKIRSESDDGESSDEKS-GIEDAKSSVFVKSNKIPENTDVVKGINFEEEV 59 

T.parva           MTENNLNNSIPKV-------------------ALEAVLQTNAQVTENMLPVSGIEYDDVL 41 

T.annulata        MTENELNESIPKV-------------------ALEAVLQANAQVTENMLPVSGIEYDGAL 41 

H.sapien          -MEGSLEREAPAG-------------------ALAAVLKHSSTLPPESTQVRGYDFNRGV 40 

B.taurus          -MEGPQEREVPAP-------------------ALAAVLKHSSALPFETAQVRGYDFNRGV 40 

                    :    ..                       *  :*:  .  :. :   * * :::  : 

 

P.falciparum      DLHEFINNYKYMGFQATNLGISIDEINKMIYYKYKDENIKSEPNNENNLNCNNVSEDLNK 120 

P.berghei         NLHEFINQYKYMGFQATNLGIGIDEINKMIHYKFFDN-----------------KEDIKN 100 

P.vivax           NLHQFVNQYKYMGFQATNLGIGIDEVNKMIHFKYAEGGEGTQDG---------HDNDHDQ 110 

T.parva           AIDSLLEKFRVFGFQATNLGLAAEMVDRMYSWRLSDD----------------PLNESDE 85 

T.annulata        AIDSMLEKFRVFGFQATNLGLAAEMVDRMFSWRLSDD----------------PLQESDE 85 

H.sapien          NYRALLEAFGTTGFQATNFGRAVQQVNAMIEKKLEPL-------------------SQDE 81 

B.taurus          DYRALLEAFSTTGFQATNFGRAVQQVNAMIEKKLEPL-------------------SEDE 81 

                      ::: :   ******:* . : :: *   :                       . .: 

 

P.falciparum      DQENHLYHYEKKKKSCIIWLSFTSNMISSGLREIFVYLAKNKFIDVVVTTAGGIEEDIIK 180 

P.berghei         DS----ITYDNKKK-CMIWLSFTSNMISSGLREIFVYLAKNNYIDVVVTTAGGIEEDLIK 155 

P.vivax           DSDDERQALPKKKK-CLIWLSFTSNMISSGLREIFVYLAKKKFIDVVVTTAGGVEEDIIK 169 

T.parva           GTPFADPEVRRKTK-CTIWVSFTSNMISCGLREAFVFMAKHKLVDVFVTSGGGVEEDLIK 144 

T.annulata        GTPYADPEVRRKTK-CTIWVSFTSNMISCGLREAFVFMAKHRLVDVFVTSGGGVEEDLIK 144 

H.sapien          DQHADLTQSRRPLTSCTIFLGYTSNLISSGIRETIRYLVQHNMVDVLVTTAGGVEEDLIK 141 

B.taurus          DQHADLTQSRRPLTGCTIFLGYTSNLISSGIRETIRYLVQHNMVDVLVTTAGGVEEDFIK 141 

                  .         .  . * *::.:***:**.*:** : ::.::. :**.**:.**:***:** 

 

P.falciparum      CFSNTYIGDFNLNGKKLRKKGWNRIGNLIVPNDNYCKFEDWLQPILNKMLHEQNEKNEQM 240 

P.berghei         CFSKTYLGDFNLNGSKLRKKGWNRIGNLIVPNDNYCMFEDWVQPLLDKILREQNEKNEEL 215 

P.vivax           CFSKTYLGDFNLNGKKLRKKGWNRIGNLIVPNDNYCKFEDWLQPLLNKMLHEQNRKNEEL 229 

T.parva           CLGHTYIGKFNLDGADLRNKGWNRIGNLLLPNENYCAFEDWLQPILDEMHTEQVEKG--- 201 

T.annulata        CLGHTYIGKFNLDGADLRNKGWNRIGNLLLPNENYCAFEDWLQPILDEMHTEQIEKG--- 201 

H.sapien          CLAPTYLGEFSLRGKELRENGINRIGNLLVPNENYCKFEDWLMPILDQMVMEQNTEG--- 198 

B.taurus          CLAPTYLGEFSLRGKELRENGINRIGNLLVPNDNYCKFEDWLMPILDQMVLEQNTEG--- 198 

                  *:. **:*.*.* * .**::* ******::**:*** ****: *:*:::  **  :.    

 

P.falciparum      NKKNHINNYINNYDSDSDDQCDMYYLSPSEFINTLGKEINDESSLIYWCYKNDIPIFCPG 360 

P.berghei         ------------FDEEEDD---MFYLSPSELINRLGKEINDETSLLYWCYKNNIPIFCPG 290 

P.vivax           ----------SPCDSSDEDESDMFYLSPSEFIDKLGEEINDESSLIYWCHKNDIPVFCPG 313 

T.parva           -----------------------TIWTPSSLIDLLGSRINDETSLYYWCHKNKIPVFCPG 238 

T.annulata        -----------------------TIWTPSSFIDLLGSKINDESSLYYWCHKNKIPVFCPG 238 

H.sapien          -----------------------VKWTPSKMIARLGKEINNPESVYYWAQKNHIPVFSPA 235 

B.taurus          -----------------------VKWTPSKMIARLGKEINNPESVYYWAQKNHIPVLSPA 235 

                                            :**.:*  **..**:  *: **. **.**::.*. 

 

P.falciparum      LTDGSLGDNLFFHNYGKKIKNNLILDIVKDIKKINSLAMNCEKSGIIILGGGLPKHHVCN 420 

P.berghei         LTDGSLGDNLFFHNYGKKMKNNLILDIVKDIKKINSLALKCHKSGIIVLGGGLPKHHVCN 350 

P.vivax           LTDGSLGDNLFFHNYGKKIKNNLILDIVKDIKKINSLALNCKKSGIIILGGGLPKHHVCN 373 

T.parva           LTDGSLGDNLYFHTYRKSSPTTLYLDIVKDIRAINDLAVRCKKSGLIILGGGLPKHHVCN 298 

T.annulata        LTDGSIGDNLYFHTYRKSTPTTLYLDIVKDIRLINDFAVKCKKSGLIILGGGLPKHHVCN 298 

H.sapien          LTDGSLGDMIFFHSYKNP---GLVLDIVEDLRLINTQAIFAKCTGMIILGGGVVKHHIAN 292 

B.taurus          LTDGSLGDMIFFHSYKNP---GLVLDIVEDLKLINTQAIFAKRTGMIILGGGMVKHHIAN 292 

                  *****:** ::**.* :     * ****:*:: **  *: .. :*:*:****: ***:.* 

 

P.falciparum      ANLMRNGADFAVYVNTASEYDGSDSGANTTEALSWGKIKYGQTNNHVKVFGDATILFPLM 480 

P.berghei         ANLMRNGADFAVYVNTANEYDGSDSGANTTEALSWGKLKSGNNISHVKVFGDATILFP-M 409 

P.vivax           ANLMRNGADFAVYVNTANEYDGSDSGANTTEALSWGKIKAGHTNNHVKVFGDATILFPLM 433 

T.parva           SNLMRNGADFAIYISTAQEYDGSDSGANPDEAVSWGKIKP--NTDPVKVHADASIVFPLI 356 

T.annulata        SNLMRNGADFAIYVSTAQEYDGSDSGANPDEAVSWGKIKP--HTDPVKVHADASIVFPLI 356 

H.sapien          ANLMRNGADYAVYINTAQEFDGSDSGARPDEAVSWGKIRV--DAQPVKVYADASLVFPLL 350 

B.taurus          ANLMRNGADYAVYINTAQEFDGSDSGARPDEAVSWGKIRM--DAQPVKVYADASLVFPLL 350 

                  :********:*:*:.**.*:*******.. **:****::     . ***..**:::** : 

 

P.falciparum      VLNSFYLYDQKRKKDM------ 496 

P.berghei         VLNSFYLYNHGEKEKKSD---- 427 

P.vivax           VLNTFYLHDRGGRHNSGEAQLR 455 

T.parva           VAGVLKKHVNRQFE-------- 370 

T.annulata        VAGVLTKHVNRQFE-------- 370 

H.sapien          VAETFAQKMDAFMHEKNED--- 369 

B.taurus          VAETFAQKVDAFTPEKNED--- 369 

                  *   :                   
Figure 3.20: Amino acid alignment of a putative DHS protein from various 

species. lane1 P. falciparum Dd2 strain lane .2 P. vivax (PEST Salvador I) lane 3 P. 

berghei rodent malaria parasite lane 4 T. parva lane 5 T annulata lane 6. Homo 

sapiens lane 7. 

Gaps (-) were introduced to obtain maximum alignment. Arterisks label amino 

acid identities, colons (:) and dots (.) label amino acid similarities. The spermidine 

binding site (246–349 refering to T. parva DHS numbering) is marked by bold 

letters. The NAD binding site from serine122 to aspartic acid 349 is highlighted. 
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4.0 DISCUSSION 

The life cycles of apicomplexans such as plasmodium ssp. are complex. A life cycle 

consists of a succession of developmental stages in which cell proliferation oscillates 

between cell cycle arrest (as in e.g. the sporozoites in the salivary glands of the 

mosquito vector) and intense cell multiplication (as in the erythrocytic stages of the 

vertebrate human host) [120,121]. The completion of the parasitic life cycle requires 

rapid changes in its environment such as stimulation and inhibition of cell division.  

One of the most important issues facing global health today is the need for new, 

effective and affordable drugs against malaria, particularly in resource-poor countries 

[122,123]. Moreover, the currently available antimalarials are limited by factors ranging 

from parasite resistance to safety, compliance and cost [124]. Innovations in medicinal 

chemistry are presently lacking. Consistent with this view, there are only a few drugs 

available for the treatment of Theileriosis, a serious disease of Bovidae due to the 

infection by the protozoa Theileria parva causing East Coast Fever (ECF) or Theileria 

annulata causing Tropical Theileriosis or Mediterranean Coast Fever (MCF). Both 

parasites are transmitted by ticks and cause an enormous economical damage to 

African farmers. Currently hydroxyanthraquinones i.e. parvaquone and buparvaquone 

are used but are not effective in the late stage of infection [125]. Cattle can be 

immunized against T. parva by infecting the animals with the sporozoite form of the 

parasite while at the same time treating the cattle with a long-acting formulation of the 

antibiotic oxytetracycline. This infection-and-treatment method is the only practical and 

effective form of immunization against T. parva but carries the risk of converting some 
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animals into disease carriers [126]. With respect to both parasitic diseases, there is still 

a lack of drugs and therefore a necessity to develop new drugs.  

The triamine spermidine has been implicated as essential in the proliferation of malaria 

parasites [107] and Spermidine is an essential substrate in the biosynthesis of hypusine 

[N (epsilon)-(4-amino-2-hydroxybutyl) lysine], a novel amino acid present in eukaryotic 

initiation factor 5A (eIF-5A). Hypusine is formed in a post-translational modification that 

involves two sequential enzymatic steps catalyzed first by deoxyhypusine synthase [EC 

1.114.22499929] (DHS) and in a second step by deoxyhypusine hydroxylase (DOHH) 

[EC 1.14.9929] [68]. While DHS activity catalyzes the transfer of the aminobutyl moiety 

to a specific lysine residue in the eIF-5A precursor protein, the DOHH activity completes 

hypusine biosynthesis through hydroxylation and thereby the eIF-5A is activated. 

Enzymes of the hypusine pathway have shown to be valuable drug targets for treatment 

of different diseases. Inhibition of DHS has shown to be a powerful tool to suppress 

HIV-replication since eIF-5A is an important co-factor of the Rev protein [127]. Moreover 

it has recently been shown that the compound CNI-1493 [79] which is in clinical phase II 

for the treatment of Crohn‟s disease inhibits the DHS protein of the malaria parasite 

significantly. 

4.1 Inhibitor studies of DOHH 

In summary the data from the inhibition experiments indicate that saturated 4-piperidone 

monoesters show the most prominent inhibitory effect (DOHHI-3, DOHHI-7) while a 4-

piperidone diester was less efficient in growth inhibition in vitro .The average IC50 values 

which we obtained for the 4-oxo-piperidine mono esters in P. falciparum strain NF54 

were determined to be 1.7 µM for an N-p-chlorobenzyl substitution (Table 4.1, type II, 
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DOHHI-3) and 1.4 µM for an N-allyl substituted derivative (Table 4.1, type II, DOHHI-7), 

respectively, suggesting that the N-substitution is of minor importance.  

 

DOHH 

Inhibitors 

Type R H P. falciparum Average 

IC5O/[µM] 

1. I benzyl 24 NF54 10.2±5.9 

2. III benzyl 24 NF54 4.7±2.7 

3. II 4-Cl-benzyl 48 NF54 1.7±0.9 

4. III 4-Cl-benzyl 24 R 18±10.4 

5. IV 4-Cl-benzyl 36 R 9.4±5.4 

6. IV 4-Cl-benzyl 24 R 9.1±5.2 

7. II allyl 24 NF54 1.4±0.8 

 

Table 4.1. Structural formulae of the compounds studied and their determined 

IC50 values in P. falciparum Chloroquine susceptible (CQS) and Chloroquine 

resistant (CQR) strains NF54 and R respectively.  

The 4-oxo- piperidine diester DOHHI-1 shows a higher IC50 value of 10.2 M (DOHHI-1) 

in vitro in comparison to the mono- ester. The oxidation products, the 

tetrahydropyridinemono ester (DOHHI-2, DOHHI-4) and dihydropyridine monoesters 

(DOHHI-5, DOHHI-6) although both being structurally rather similar to the lead 

compound mimosine were less efficient in growth inhibition compared to saturated 4-

piperidone monoesters. Most notably the highest average IC50 value was determined to 

be 18.0 µM for CQS NF54 strain with the DOHHI-4 inhibitor, a tetrahydropyridine 

monoester. Due to the double bonds in DOHHI-2, 4, 5, and 6, the carbonyl function in 

position 4 cannot form an enol which is favourable to a metal chelation. Thus, the high 

IC50 values of the dihydro- and tetrahydropyridines points to the importance of the metal 
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ion complexation of the enzyme for an efficient inhibition. Obviously, the two pyridine 

rings cannot serve as complexation partner for the metal as the -hydroxycarbonyl 

function does. These inhibition studies show that DOHH can be a targeted in the 

development of drugs for malaria parasites and the substances studied here can lead to 

the design of substances with other more useful characteristics.  

4.2 Structural features of P. vivax and T. parva DHS in respect a 

prospective drug design 

Plasmodium vivax is the most widespread human malaria parasite. However, genetic 

information about its pathogenesis is limited at present, due to the lack of a reproducible 

in vitro cultivation method. Sequencing of the Plasmodium vivax genome suggested the 

presence of a gene homolog of deoxyhypusine synthase (DHS) from P. falciparum, the 

key regulatory enzyme in the first committed step of hypusine biosynthesis. DHS is 

involved in cell proliferation, and thus a valuable drug target for the human malaria 

parasite P. falciparum. A comparison of the enzymatic properties of the DHS enzymes 

between the benign and severe Plasmodium species should contribute to our 

understanding of the differences in pathogenicity and phylogeny of both malaria 

parasites. 

The cloning of a 1368 bp putative deoxyhypusine synthase gene (dhs) sequence from 

genomic DNA of P. vivax PEST strain Salvador I (Accession number AJ549098) was 

performed after touchdown PCR. The corresponding protein was expressed and 

functionally characterized as deoxyhypusine synthase by determination of its specific 

activity [128] (Nassar et al. 2006). 

. 
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Figure 4.1 A Phylogenic tree of the DHS protein from P. falciparum, P. vivax, P. 

berghei, T. parva, T. annulata and their respective hosts i.e. H. sapiens and B. 

Taurus generated using CLUSTAL W[129]. 

The putative dhs gene from T. parva sequence is encoded by an ORF of 370 amino 

acids with a FASTA score of 94 to T annulata, a phylogenetically closely related 

organism. The T. parva FASTA score to P. vivax is 54 and 52 to P. falciparum strain 

3D7. The FASTA score of T. parva and T. annulata to their bovine host is 50. The 

phylogenic relationship of DHS for apicomplexan P. vivax, T. parva, T. annulata. P. 

falciparum, P. berghei and that of the corresponding hosts H. sapiens, and B. taurus is 

shown in figure 4.1. Phylogram is a branching diagram (tree) is assumed to be an 

estimate of a phylogeny. Branch lengths are proportional to the amount of inferred 

evolutionary change .T. parva and T. annulata are evolutionary close as compared to P. 

falciparum and P. vivax while their hosts H. sapiens and B. Taurus are also evolutionary 

close. 
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T. parva gene was not expressed in the pET28 vector although the His-tag was present. 

It has a theoretical molecular weight of 41.3 KDa and a pI of 5.2. Previous studies have 

shown that expression of the dhs gene from P. falciparum was successfully performed 

after truncation of 22 amino acids from the N terminus [81]. The extreme A+T bias and 

the insolubility of proteins has been a recurrent problem in expression of Plasmodium 

genes [130]. Perhaps different expression systems such yeast could serve as an 

alternative [131]. DHS from Theileria parva and Plasmodium vivax have been shown in 

this study to be highly conserved as in other species. The T. parva DHS retains 

conserved amino acids at the spermidine- and NAD- binding sites [132]. 
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