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Abstract

In this thesis I present an experimental realization of controlled systems consisting of
trapped neutral atoms strongly coupled to a high-finesse optical resonator. These systems
enable the exploration of atom-light interaction at the most fundamental level, and have
a potential application in quantum information processing.

Experimental tools for preparation, detection and transport of individual Caesium
atoms into the cavity mode are presented. In addition, the setup and properties of the
resonator are discussed.

I investigate two different methods to detect the atom-cavity interaction. The first
approach relies on the observation of the cavity transmission, which allows us to contin-
uously monitor the interaction dynamics of a single atom coupled to the resonator mode
for several seconds. Using this approach I characterize the system and investigate the
dependence of the coupling strength on the number of atoms and their position inside the
cavity mode. An alternative method, providing information on the atom-field interaction,
is based on the detection of the atomic state. We use this method to record the spectrum
of the interacting single-atom-cavity system, which reveals the vacuum Rabi splitting - a
clear signature of coherent atom-field interaction in the strong coupling regime. Exploiting
the strong interaction in combination with the large energy separation between the spin
states of Caesium atoms, a projective quantum nondemolition measurement of the atomic
spin state is performed. Continuous monitoring of the atomic state reveals quantum jumps
between the states. By extending the experiment to the case of two atoms simultaneously
coupled to the cavity mode, conditional dynamics of the spin states is observed. By further
advancing this method, generation and detection of entangled states might be feasible.

Parts of this thesis have been published in the following journal articles:

1. M. Khudaverdyan, W. Alt, I. Dotsenko, T. Kampschulte, K. Lenhard, A. Rauschen-
beutel, S. Reick, K. Schörner, A. Widera and D. Meschede Controlled insertion and
retrieval of atoms coupled to a high-finesse optical resonator, New J. Phys. 10, 073023
(2008)

2. M. Khudaverdyan, W. Alt, T. Kampschulte, S. Reick, A. Thobe, A. Widera and
D. Meschede Quantum jumps and conditional spin dynamics in a strongly coupled
atom-cavity system, Phys. Rev. Lett. 103, 123006 (2009)
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Introduction

Technological advances in the 20th century have made possible the experimental study of
quantum-mechanical systems of improving purity and with ever tighter control. A theo-
retical proposal by David Deutsch in 1985 pointed to a promising application of quantum-
mechanical systems: He discovered that processing information according to the laws of
quantum mechanics is inherently faster for certain computational problems than classical
computing [1]. In 1994 P. Shor developed a quantum algorithm capable of factorizing inte-
ger numbers exponentially faster than the fastest known classical algorithm [2, 3]. Shortly
after, L. Grover showed that a significant speed-up in searching of a target data in an
unstructured database can be achieved using a quantum computer [4].

Seven physical systems aiming at the implementation of basic steps of quantum infor-
mation processing are being pursued [5]. Neutral atoms are promising candidates for the
purpose of quantum information processing. Their weak interaction with the environment
results in potentially long coherence times. The challenge which comes along with this
potential advantage is the difficulty to induce controlled interaction between individual
atoms. Nowadays, three different approaches to induce coupling between atoms are being
pursued: By means of controlled cold collisions individual atoms are placed into the same
potential well of an optical lattice, where they undergo short-range ground-state inter-
action [6]. A different approach, exploring the excited state dipole-dipole interaction of
closely spaced Rydberg atoms, has been recently employed to demonstrate a considerable
progress towards the generation of entangled states [7].

The third approach utilizes the interaction between an atom and a quantized field of an
optical resonator, treated in the framework of cavity quantum electrodynamics. There the
coupling between individual atoms is realized by placing them inside the mode of a high-
finesse resonator, tuned in or near resonance with the atomic transition. In this system
atoms interact through the exchange of photons, mediated by the mode of the cavity [8].
This approach has been successfully implemented in the microwave regime, where flying
Rydberg atoms interact with the mode of superconducting cavity. In this experiment,
multi-atom entangled states have been generated [9, 10].

In this thesis I will present the realization of physical systems composed of one or two
atoms strongly interacting with the mode of a high-finesse optical resonator.

A single or two cold caesium atoms are loaded from a magneto-optical trap into the
standing wave potential of a far-detuned dipole trap. Using this dipole trap as a conveyor
belt, the atoms are placed inside the cavity mode at a predetermined position along the
standing wave [11, 12].
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2 Introduction

The atom-cavity interaction is detected in two different ways: As a first possibility we
detect the final internal state of the atom after it has interacted with the cavity mode.
By performing an ensemble average, the atom-cavity interaction is detected. Using this
technique, spectroscopy of the bound system of a cavity and a single atom is performed,
which reveals the normal-mode splitting [13, 14] – a clear evidence of a strong atom-cavity
coupling.

As a consequence of the strong coupling, the transmission of a weak probe laser beam,
injected into the cavity, is suppressed under insertion of an atom into the mode. This
effect is used in an alternative method to continuously measure the atom-cavity coupling
via detection of the probe laser transmission. Moreover, the transmission signal reveals the
dynamics of external and internal atomic degrees of freedom: On the one hand a variation of
the atomic position inside the cavity influences the atom-cavity coupling strength, visible as
variations of the transmitted probe laser power. This position-transmission relation could
be used to track single-atom dynamics and find application in single-atom microscopy [15].
Moreover, this technique can assist in understanding of cavity-induced cooling processes.

On the other hand, at a stable position, the transmission reveals the atomic spin state:
Since the two hyperfine ground states of a Caesium atom are separated by 9.2 GHz, tuning
the cavity in resonance with the transition from one of these spin states to the electronically
excited state leaves the other spin state uncoupled from the cavity field. In this manner, the
observation of the cavity transmission reveals the atomic state almost without affecting it,
and therefore performs a so-called quantum nondemolition measurement of the spin state.
Applying this measurement technique enables the observation of an intriguing phenomenon
of quantum physics – quantum jumps, which are manifested as spontaneous and abrupt
changes of the cavity transmission level. Extension of this technique to two atoms, simul-
taneously coupled to the resonator field, enables the observations of conditional dynamics
of the spin states.

Apart from being interesting from the perspective of fundamental quantum physics
studies, such controlled and strongly interacting atom-cavity system can be used for the
purpose of quantum communication [16], which requires transferring the state of a flying
qubit, usually encoded on the polarization of a photon, on the state of a stationary qubit
and vice versa.

A quantum register of neutral atoms has been demonstrated in the thesis of D. Schrader
[17, 18]. With the achieved progress in controlling the atom-cavity systems, the entangle-
ment of two atoms appears to become possible, which will serve as a basis for two-qubit
quantum gates [19, 20, 21]. Thus, we are now approaching the fulfillment of all five DiVin-
cenzo requirements essential for the implementation of a quantum computer with neutral
atoms [22].



Chapter 1

Experimental setup

1.1 Introduction

In this chapter I will present the building blocks for our single atom – cavity QED exper-
iment. The experimental setup has evolved to its present state within the last nine years
and involves the contributions of a progression of doctoral theses. Therefore I will discuss
only the essential parts of the experimental setup, i.e. how we trap, image, and control the
position of a well-defined number of isolated cold caesium (Cs) atoms1, and focus on the
latest improvements. Moreover I will review the assembly and essential characteristics of
our resonator.

1.2 Cooling and trapping single atoms

1.2.1 Magneto-optical trap – a source of single neutral atoms

The idea of using laser radiation for cooling of neutral atoms has been proposed by Hänsch
and Schawlow in 1975 and has been experimentally realized by Steven Chu in 1985 with
three-dimensional optical molasses. Two years later, by superimposing an inhomogeneous
magnetic field with an optical molasses, trapping of neutral sodium atoms was demon-
strated in the group of D. Pritchard [26].

Since then the magneto-optical trap (MOT) became the standard and the most popular
tool to cool atoms from room temperature to sub-millikelvin, and subsequently keep atoms
trapped at this temperature for a long time. In our experiment we use a MOT as a source
of a few or a single atom only, which is enabled by applying a high magnetic field gradient
in the presence of a low Cs partial pressure. Since the operation of a MOT is based on
radiation pressure, atoms stored in this trap continuously scatter photons, which allows us
to monitor their number and determine their position.

1The details of are described in [23, 24, 18, 25].

3



4 CHAPTER 1. EXPERIMENTAL SETUP

Figure 1.1: Principle of Doppler cooling. (a) An atom, moving between two counter-
propagating red-detuned laser beams, preferentially absorbs a photon from the laser
beam opposing its motion and emits photons isotropically. (b) Velocity-dependence of
the radiation pressure force, imposed by the one-dimensional optical molasses. The
dashed lines indicate the forces, exerted by each of the laser beams separately. The solid
line indicates their sum.

Principle of operation

The operation of a MOT is based on the velocity and position-dependent radiation pressure
force exerted by the photons of the laser radiation [27, 28]. Cooling of atoms in all directions
is provided by three pairs of orthogonal red detuned laser beams, forming a so-called 3D
optical molasses. Trapping of atoms is provided by adding an inhomogeneous magnetic
field which induces position-dependence of the light-pressure force.

Cooling the atoms Figure 1.1 illustrates the principle of the Doppler cooling for the
one-dimensional case, easily extendable to three dimensions. Due to the Doppler effect, an
atom moving to the right sees the frequency of the laser beam opposing its motion shifted
to the blue, i.e. closer to the atomic transition frequency. Therefore, the atom absorbs more
photons from the opposing laser beam. Because of the isotropy of spontaneous emission,
the momentum transfer due to the emitted photons averages out to zero. Therefore, the
atom experiences a net force opposing its motion direction.

Due to the random and discrete nature of the momentum transfer from the scattered
photons, the atomic momentum will fluctuate around zero. This fluctuation heats the
atom to an equilibrium “Doppler temperature” of

TD =
~Γ
2kB

,

where kB is the Boltzmann constant and Γ is the exited state decay rate [29, 30, 31]. In
case of Cs atoms Γ = 2π×5.2MHz and the resulting Doppler temperature is TD = 125µK.

Trapping the atoms An atom cooled in the optical molasses undergoes diffusive motion
and will eventually escape from the molasses within some tens of milliseconds. For our
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Figure 1.2: Principle of the MOT. (a) Energy-level diagram of an atom with J = 0
ground state and J = 1 exited state, placed in a magnetic field gradient. The frequencies
and polarizations of the counter-propagating laser beams are designed such that they
impose cooling and restoring forces at the same time. (b) Schematic view of the MOT.
A pair of anti-Helmholtz coils produce a magnetic field gradient in all three dimensions
superimposed with the three-dimensional optical molasses.

applications we need to trap atoms, and hence the presence of a position-dependent force
localizing the atoms is required. It can be attained by the interplay of an inhomogeneous
magnetic field with molasses beams of appropriate polarization, such that whenever an
atom moves away from the trap center a restoring force will bring it back to the center.

In Figure 1.2 the principle of this restoring force is illustrated. A hypothetical atom
with J = 0 ground state and J = 1 exited state is placed between a pair of slightly red-
detuned counter-propagating laser beams of opposite circular polarizations. In addition, a
magnetic field gradient is applied along the direction of laser beams. Due to the Zeeman
effect an atom displaced to the left from the center is pushed back to the right since the light
coming from the left is tuned closer to the frequency of the allowed σ+ transition. Similarly,
if the atom is displaced to the right it is pushed again towards the trap center. One can
extend this arrangement to three dimensions by superimposing a quadrupole magnetic field
produced by a pair of coils in anti-Helmholtz configuration, to a three-dimensional optical
molasses, see Figure 1.2(b).

Experimental setup

Here I will describe the details of the MOT experimental setup relevant to experiments
described in this thesis.

Vacuum system The requirement to perform the experiments on the single atom level
posses certain constraints on our experimental setup.
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Our MOT resides inside a glass cell providing good optical access. It is attached to
a stainless steel cube, which is in turn connected to a Cesium reservoir and to vacuum
pumps. A continuously operating ion getter pump maintains an ultra-high vacuum on the
order of 10−10 mbar, providing a low collision rate with the background gas, which yields
a lifetime of atoms in the trap of about one minute.

Magnetic coils Since the purpose of our MOT is to prepare several or single atoms only,
it is essential to keep the spontaneous loading rate as low as possible. It has been shown,
that the capture cross section σ of a MOT decreases dramatically with the magnetic field
gradient [32].

Therefore, for a single atom MOT we use the high magnetic field gradient of ∂B/∂z =
300G/cm, which is produced by water-cooled magnetic coils in anti-Helmholtz configura-
tion.

In order to load a desired number of atoms into the MOT, we shortly decrease the
magnetic field gradient by a factor of 10. This increases the capture cross section of the
MOT by more than 4 orders of magnitude and allows us to load a desired average number
of atoms within several milliseconds [24, 23].

In order to compensate stray and earth magnetic fields, three pairs of additional coils
in Helmholtz configuration are installed outside the glass cell. Moreover, these coils are
utilized to produce a guiding magnetic field along a desired direction.

Laser system As sources of laser radiation for the optical molasses we use home-made
diode lasers in Littrow configuration. They are stabilized on Cs vapor cells using polariza-
tion spectroscopy [33, 23]. Atoms inside the MOT are cooled by laser radiation about one
Γ detuned to the red side of the F = 4 → F ′ = 5 transition, see Figure 1.3.

During the cooling process there is a finite probability to excite an atom to the state
F ′ = 4, from where the atom can then decay to the ground state F = 3. In order to bring
the atom back into the cooling cycle an additional repumping laser, which is stabilized
onto the F = 3 → F ′ = 4 transition, is continuously applied during the MOT operation.

1.2.2 Optical dipole trap – a conveyor belt for atoms

The MOT operates as an excellent tool for the preparation of a small number of cold atoms.
However, since it is based on dissipative light pressure force, it cannot be used to store
and manipulate the qubit states, which we encode on the hyperfine ground states of a Cs
atom [18]. Therefore, we implement a different type of trap, a so-called dipole trap, which
serves as a conservative potential for the atoms, preserving their internal states [34, 35].

The dipole force as a confining mechanism was first considered by Askaryan in 1962
[36], then in 1968 Letokhov proposed to use the dipole force to trap neutral atoms [37],
and finally in 1986 in the group of S. Chu the first dipole trap (DT) for neutral atoms was
realized [38].

In our experiment we employ a DT in the form of a one-dimensional optical lattice,
which we use as a conveyor belt for neutral atoms. Using this conveyor belt we transport
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Figure 1.3: Simplified level scheme of Cs atom with relevant transitions for the laser
cooling.

atoms over macroscopic distances to a predetermined position with submicrometer preci-
sion [12, 25]. Specifically, we use it to shuttle atoms from the MOT into the mode of the
resonator, see Chapter 2.

Dipole potential

The principle of dipole potential is widely covered in the literature and discussed in some
former theses of our group to a great extent, see References [34, 23] and references therein.
Here only the results of the simplest classical treatment of the dipole potential will be
presented. In the classical description the dipole potential and photon scattering rate can
be approximated by

U0 =
3πc2

2
I

ω3
0

(
Γ
∆

)
, (1.1a)

Rs =
3πc2I

2~ω3
0

(
Γ
∆

)2

, (1.1b)

where ω0 and ω are the angular frequencies of the atomic transition and laser radiation,
respectively, I is the light intensity, c is the speed of light, and the atom-laser detuning
∆ = ω0 − ω. This approximation agrees well with the quantum-mechanical results. For a
typical total optical power of few Watts and the 1/e2 radius of the DT laser beam in focus
of about w0 ≈ 34µm: The potential depth U0 ≈ kB × 1mK (here kB is the Boltzmann
constant), which is larger than the temperature of the atoms in the MOT enabling the
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close to loss-free transfer from the MOT into the DT, and the scattering rate is Rs is less
than 10 s−1, which is much smaller than our typical single qubit rotation time of 16 µs, see
References [17, 18].

Standing wave trap

The very first dipole trap for neutral atoms was simply a single focused laser beam, suf-
ficiently detuned from the atomic resonance [38]. Since then a variety of different trap
configurations have been proposed and implemented, which have been used for different
applications, see References [39, 40, 41].

Trap geometry Our DT is formed by two counter-propagating laser beams with a wave-
length of λDT = 1030 nm and a typical total power of about P ≈ 4W. The resulting
interference pattern is a chain of equidistant spatially-modulated potential wells with the
intensity and the potential shape, given below

I(y, ρ) = IP
w2(y)
w2

0

e
− 2ρ2

w2(y) cos2(k y) ,

U = U0
I(y, ρ)

IP
, (1.2a)

where w0 is the beam waist (1/e2 beam radius in the focal plane), w(y) is the 1/e2 beam
radius, k = 2π/λDT is a wave vector, IP is the peak intensity, and U0 is given in Equa-
tion 1.1a. Here cylindrical coordinates are used and ρ is the distance from the DT axis
(y-axis). The expressions for the beam radius, Rayleigh range and the peak intensity are

w2(y) = w2
0

(
1 + y2/y2

0

)
,

y0 = πw2
0/λDT ,

IP =
4P

πw2
0

,

respectively. Here P is the total optical power of the laser beams. An illustration of
the standing wave dipole potential is presented in Figure 1.4. Note that for illustrative
purposes the wavelength of the laser beam has been elongated by a factor of 5200.

Generation of aberration-free dipole trap laser beams

For the experiments which involve the manipulation of the internal and external states
of the atoms, it is preferential to trap atoms in a potential free of spatial distortions and
fluctuations.

So far, the standing wave potential of our dipole trap was formed by laser beams,
guided by free-beam optics from the Yb:YAG disk laser to the vacuum chamber. Each
beam was reflected by about a dozen mirrors, resulting in an optical path length of several
meters. The unavoidable drawback of such a configuration is that the acoustical vibrations
and temperature drifts in the laboratory induce significant fluctuations and drifts of the
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Figure 1.4: Visualization of a standing wave dipole trap potential. The wavelength of
the laser beam is stretched by a factor of 5200.

beam position. In our current experiments, we transport atoms into the microscopic cavity
mode with spatially varying strength of the coupling strength. Hence, any displacements
of the trapping potential result in a non-reproducible coupling strength and degrade the
experimental data, where typically ensemble averaging is required.

In order to improve the pointing stability of the DT, we have installed high-power
polarization-maintaining optical fibers close to the vacuum chamber. In this way, the ge-
ometry of the DT is decoupled from the fluctuations of the DT laser beams along the optical
path before the fiber. These fluctuations now only translate into a slightly varying coupling
efficiency of the beam into the fiber. In the following I will describe the investigation and
properties of our optical fibers.

An optical fiber for the DT stabilization For an appropriate shape of the DT the
following requirements for an optical fiber should be fulfilled:

1. High transmission at the level of several Watts of optical power, which we typically
use for the DT in the experiment.

2. Minimal distortion of the polarization purity of the laser beam by the fiber.

3. Gaussian beam profile at the fiber output.

We have investigated several types of optical fibers, including polarization-preserving
step refractive index fibers and photonic crystal fiber. The most suitable fiber for our
purposes appeared to be a step refractive index fiber (Passive-10/123-PM, LIEKKI). In
Figure 1.5, the microscope image of the cleaved facet of the fiber is presented.
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Figure 1.5: Microscope image of the step-index fiber facet. SAPs of PANDA-type
induce stress on the fiber core causing birefringence.

This single mode fiber has a numerical aperture of NA≈ 0.06. This relatively low NA
stamps from a large diameter of the fiber mode (10µm). This results in a reduced light
intensity and helps to avoid the nonlinear processes inside the fiber, e.g. the stimulated
Brillouin scattering which limits the amount of light delivered at the fiber output [42]. The
polarization preserving property of the fiber is induced by internally generated stress. It is
applied to the core of the fiber by “stress-applying parts” or SAPs, which are incorporated
into the fiber cladding.

The SAP in our case is a silica rod, which has a higher heat expansion coefficient than
the cladding. At the end of the fiber manufacture process, during the cooling phase, it
shrinks more than the cladding, generating mechanical pressure on the core [43]. Along
the direction parallel to the field of tension, the fiber core has a higher refractive index.
This axis is often referred to as the “slow axis”. Similarly, the axis perpendicular to the
slow axis is thus called “fast axis”. Using this induced birefringence of the fiber, it is then
possible to transmit light of linear polarization2 so that it ideally remains linear at the
fiber output.

Polishing the fiber In order to prevent backreflections into the light mode and
associated interference effects, the fiber is polished under 8° angle at both ends, which are
assembled to FC/APC connectors (Thorlabs), glued to the fiber with epoxy.

The polishing process is performed in four steps. In the first step the fiber end is
polished with a 5µm polishing film. The purpose of this step is to quickly remove excess
epoxy from the tip of the connector. When only a thin layer of epoxy remains on the tip,
the fiber is polished with a 3µm film until the edges of the epoxy bead begins to break up.
At the third step a 1µm polishing film with few drops of water was used. In the final step

2When the light polarization is parallel to either the slow or to the fast axis of the fiber.
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we use a wet 0.3µm film.

Measuring the polarization maintenance of the fiber As discussed in
Reference [18], the purity and stability of the polarization of the DT laser is an essen-
tial prerequisite for the position-dependent manipulation of the qubit states, encoded in
the hyperfine ground states of a Cs atom.

The polarization purity at the output of the optical fiber is defined by the amount
of crosstalk between its orthogonal modes. This crosstalk causes the light with the linear
polarization at the input of the fiber to leave the fiber with an alternating mixture of linear
and circular polarizations, resulting in the time-dependent light shift of atomic state. This
might disturb the position-dependent manipulation the atomic internal states and cause
their decoherence [17, 18].

Here I will present a method to determine the amount of the crosstalk in the
polarization-maintaining fiber [44]. This method is based on the very slight variation
of the fiber birefringence with respect to the change of the fiber temperature. In Figure 1.6
(a) the test setup for the fiber characterization is presented. For technical reasons the
tests were performed with a Nd:YAG laser supplying radiation at 1064 nm wavelength,
only 34 nm away from the wavelength of the Yb:YAG laser, used to generate DT in our
experiment. Since the cutoff wavelength of the fiber is 900 nm, the test results achieved
with the wavelength of 1064 nm should yield almost the same outcome as with 1030 nm.

In order to minimize the polarization crosstalk at the fiber input, we first carefully
match the beam polarization with one of the orthogonal polarization modes of the fiber.
A linear polarized beam from the Nd:YAG laser is coupled into a 1m long polarization-
maintaining fiber. We monitor the state of the polarization at the fiber output while heating
the fiber with a heat gun, see Figure 1.6 (a). The crosstalk between the polarization modes
of the fiber and not perfectly matched polarization at the fiber input causes the change in
the state of the output polarization, which is measured by observing the modulation of the
output beam power, transmitted through the polarizing beam splitter PBS2. In order to
achieve the best sensitivity of the transmission signal to the polarization crosstalk, using
HWP2 we set the transmitted power Pinit after PBS2 to the level of 50% of the total power
at the fiber output.

Figure 1.6(b) shows a typical transmission signal, measured for a HWP1 angle of α1 =
61.5°. After about one second the heat gun is turned on, inducing a phase difference
between light propagating in the two polarization modes of the fiber. Since the polarization
at the fiber output is given by the coherent superposition of light in the modes, the signal
at the photodiode exhibits a periodic variation between its maximum Pmax and minimum
Pmin during the phase changing process, see Figure 1.6 (b).

The amount of crosstalk between the fiber modes is determined by the the relative
modulation of the transmission signal. Knowing the contrast of the transmission signal
C = (Pmax − Pmin) / (2Pinit) = δP/ (2Pinit), it is straightforward to calculate the extinction
ratio of the fiber polarization P⊥/P‖, where P‖ and P⊥ are the optical powers propagating
inside the orthogonal modes parallel and perpendicular to the laser beam polarization at
the fiber input, respectively. This ratio equals to
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Figure 1.6: Measurement of the polarization properties of the fiber. (a) Schematic view
of the fiber characterization setup. HWP denotes the half-wave plate, PBS stands for the
polarization beam splitter. (b) A typical transmission signal after PBS2 while changing
the fiber temperature. (c) The contrast C of the transmission signal as a function of the
tilting angle α1 of the HWP1. At the angle of 63° the polarization of the incoming beam
has a best match with the polarization mode of the fiber and C = 0.01.

P⊥
P‖

=
(

δP

4Pinit

)2

=
C2

4
.

The minimal value of C in Figure 1.6(c) is equal to 0.01, which corresponds to an extinction
ratio of the polarization modes of 1:40000 (46 dB). In an independent measurement we
observe no variation of the total power at the fiber output while heating up the fiber,
implying that the observed modulation is caused by the crosstalk between the modes of
the fiber only.

The transmission of the fiber and the geometrical properties of the beam at the fiber
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output were analyzed: The measured transmission equals to 85% which includes about
4% losses at each of uncoated fiber ends. The light from the fiber output shows no visible
deviation from the Gaussian TEM00 mode, and an independent measurement with a shear-
plate interferometer shows no significant wavefront distortion.

Fiber collimator In order to generate a well-shaped DT, the laser light coupled out
of the optical fiber should be collimated and focused without introducing aberrations and
distortions to the beam. Moreover, we have to ensure that the geometry of the DT is
compatible with the high-finesse resonator (see Section 1.3). The radial extension of the
dipole trap laser beam should be smaller than the distance between the cavity mirrors,
essentially preventing clipping by the cavity mirrors. Unless this is ensured, heating of
the mirror’s edges would cause a substantial stress on the cavity resonance stabilization
loop. The waist of the DT also should not be too small, which would otherwise result in a
short Rayleigh length of the DT. Due to the separation between the MOT position and the
cavity mode of about 5mm, the DT trap depth at the MOT position would be reduced,
resulting in an inefficient MOT-to-DT transfer. Therefore, we chose a geometry of the DT
as a tradeoff between these two conflicting requirements.

Collimator performance In order to collimate the laser beam, delivered by the
optical fiber, we use a triplet objective (06GLC006, Melles Griot). This diffraction limited
objective consists of a combination of a doublet achromat and a meniscus lense, corrected
for astigmatism and spherical aberrations, and it has a numerical aperture of NA= 0.2,
more than factor 3 larger than the fiber NA. The collimated beam with a waist of about
w0 ≈ 3mm is then focused with a plano-convex lens (f = 300mm) to a waist of about
w0 ≈ 34 µm between the position of the MOT and the center of the cavity mode. I have
numerically simulated the performance of this optical system using “OSLO” – a software
for optical design.

In Figure 1.7 the intensity distribution of the dipole trap laser beam is presented for
the following cases:

(a) Intensity distribution in the focal plane lying in between the MOT and cavity mode
positions. The green dots stand for the measurement data. The measurement is
performed by placing the beam-profile CCD-camera (model L230, Spiricon) in the
attenuated laser beam of the DT, and subsequently binning the CCD-counts along
the the z-axis3. The solid line is calculated with “OSLO” using the parameters of
the lenses, assuming a Gaussian beam at the fiber output with θ ' 0.06. The open
triangles are calculated assuming ideal aberration-free lenses.

(b) The same as in case (a), but here the intensity distribution is evaluated at the position
of the MOT center, situated 2.3mm before the focal plane.

(c) In analogy to the cases (a) and (b), the data and calculations correspond to the
position of the cavity mode, 2.3mm behind the focal plane.

3Because the DT beam is cylindrically symmetric, the choice of the binning axis does not matter.
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Figure 1.7: Simulated and measured intensity distribution of the laser beam forming
the dipole trap. (a) Intensity distribution in the focal plane. The green circles are the
result of a measurement with a beam-profile CCD camera, the solid line is calculated
using “OSLO” for the parameters of our DT optics, and open triangles are calculated for
an ideal optical system. (b) and (c): The same as in (a), but for the positions of the
MOT and the cavity mode, respectively. All three cases show a very good agreement
between the measurement and the calculations.

Figure 1.7 implies that the measured intensity distributions in the focus as well at the
positions of the MOT and the cavity mode has no significant deviation from the intensity
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distributions calculated either assuming our optical elements or an ideal optical system4.
Therefore our imaging system design enables us to generate the standing wave DT with a
beam quality close to the diffraction limit. This is underlined by the measurement of the
oscillation frequencies of the atoms in the DT potential, see Section 1.2.2.

Pointing Stability In order to quantify the improvement of the spatial stability of the
DT laser beams, we compare the pointing stability of the DT before and after installing
the optical fibers. For this purpose the position fluctuations of the beam center in its focus
is recorded outside the vacuum chamber using the beam-profile CCD-camera at a frame
rate of about 50 fps.

Figure 1.8(a-d) shows the recorded relative position along two orthogonal axis, namely
the x-axis and y-axis, of the laser beam center on the CCD-chip as a function of time
for free-propagating and fiber-filtered laser beam, respectively. In case of the fiber-based
DT, the fluctuations are significantly smaller than for free-propagating laser beams. In
both cases the periodic broadening and shrinking of the fluctuations are caused by the
temperature-controlled air conditioner: During operation, it produces a strong air flow
causing turbulences which affect the refraction index of the air in the beam path of the
DT laser beam, and therefore destabilize the DT.

Using the recorded data I have calculated the standard Allan deviation, which quantifies
the beam fluctuations on different timescales [45]. For this purpose the recorded trace is
subdivided into intervals of a duration τ . On each of these intervals m the average xτ,m is
calculated. The resulting Allan deviation for the position x5 on the CCD-chip as a function
of τ is then given by

σA(τ) =

√√√√
N∑

m=1

(xτ,m+1 − xτ,m)2

2N
.

Figure 1.8(e) and (f) shows the Allan deviation for the free-running and fiber-based DT,
respectively. The spatial fluctuations of the fiber-based DT are suppressed by about a
factor of three at almost the full range of the measured timescales.

Oscillation frequencies in the dipole trap

For experiments involving the manipulation of the internal and external degrees of freedom,
precise knowledge of the DT parameters is essential. In principle, the knowledge about
the optical power and the beam shape should be sufficient to determine the depth and
the waist of the standing wave. However, due to imperfections of the Gaussian beam and
aberrations introduced by the optical components, the resulting parameters can deviate
significantly from the theoretical expectation.

In order to determine both the depth and the waist of the DT at the position of the
MOT we have performed a measurement of the oscillation frequencies of the atoms inside

4At the cavity position slightly higher deviations between the calculation and the experimental data
are observed. Since the focal plane is not known a priori, it might be caused by the offset of the position of
the CCD-camera with respect to the focal plane. We estimate the value of this offset to be about 0.5mm.

5In analogy the Allan deviation for y is calculated.
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Figure 1.8: Position fluctuations of the DT laser beam in the focal plane, recorded for:
(a) Free-propagating laser beam along x-axis, and (b) along the y-axis. (c) Fiber-based
laser beam for the x-axis, and (d) for the y-axis. (e) Allan deviation for the free-beam DT
(open circles corresponds to σA (x(τ)), squares to σA (y(τ))), and (f) for the fiber-based
DT.

the dipole trap, following the procedure in Reference [23]. The oscillation frequencies along
(Ωax) and transverse (Ωrad) to the axis of the DT are given by
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(a) (b)

Figure 1.9: Measurement of the atomic oscillation frequencies in the DT. (a) Radial
frequency: survival of the atoms after parametric heating as a function of excitation
frequency is fitted with the Gaussian (solid line) and yields the radial frequency of
Ωrad/2π ≈ 1.6 kHz. (b) Axial frequency: survival as a function of the mutual detun-
ing between the DT beams ∆ν is fitted with the Gaussian, implying Ωax/2π ≈ 260 kHz.

Ωax = 2π

√
2U0

mCs λ2
DT

,

Ωrad =

√
4U0

mCs w2
0

,

where mCs = 2.206 × 10−25 kg is the mass of a Cs atom, and U0 is the depth of the DT.
Therefore, by measuring both oscillation frequencies, the depth of the trap and its radial
extension can be extracted.

The measurement of the radial frequency is performed by modulating the depth of the
dipole trap and measuring the atomic survival probability. The oscillation of the atom is
excited parametrically if the excitation frequency is twice the oscillation frequency. Since
the harmonic approximation of the DT potential is valid only in the vicinity of its bottom,
atoms with a temperature significantly exceeding 10% of the potential depth would oscillate
with notably smaller frequencies. Therefore, we ensure the harmonic approximation by
heating the atoms such that after the heating they are still confined close to the potential
bottom. In order to measure the relative increase of atomic temperature, we lower the
trap depth to a level slightly exceeding the average atomic temperature in the case of no
heating. Under this condition, even a small increase of atomic temperature results in a
loss of a significant fraction of heated atoms. We then transfer the atoms back into the
MOT to measure the survival probability.

The measured survival probability as a function of excitation frequency is presented in
Figure 1.9(a). A clear dip of the survival probability is observed at an excitation frequency
of about 3.2 kHz, implying that the oscillation frequency in the radial direction is equal to
Ωrad/2π = νex/2 ≈ 1.6 kHz.
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In order to measure the frequency of the atoms in the axial direction of the dipole trap,
we used the procedure described in [23]. A partial reflection of one of the dipole trap laser
beams from the glass cell window interferes with the standing wave pattern. If we bring
the dipole trap into motion, this interference will result in a wobbling of the potential,
both in phase and the amplitude. It is easy to show that the frequency of this wobbling is
equal to the mutual detuning of the dipole trap laser beams ∆ν. Whereas the modulation
of trap depth, as we pointed out above, results in parametric excitation of the atoms, the
modulation of the phase induces resonant excitation, which in our case is the dominant
heating mechanism [23].

We chose a transportation distance of 0.5mm, much smaller than the Rayleigh length
of 4.6mm. The variation of the axial oscillation frequency at this transportation distance
is about 0.6%, and therefore can be neglected. The survival rate as a function of the laser
beam detuning is shown in Figure 1.9(b). The dip caused by resonant excitations implies
an oscillation frequency in axial direction of Ωax/2π ≈ 260 kHz.

The measured oscillation frequencies agree within 5% with our theoretical expectation,
yielding a significant improvement with respect to the free-beam setup of the DT6, and
implying a negligible amount of aberrations in the present laser beams of the DT.

1.2.3 Fluorescence detection and imaging of single atoms

Spatial detection of atoms in the DT using fluorescence imaging in combination with the
conveyor belt technique allows us to control the external degrees of freedom of the atoms
with submicrometer precision [12, 25]. Furthermore, using two crossed conveyor belts we
have generated strings of equidistant atoms and even merged two atoms into the same po-
tential well of the DT [46, 47]. Moreover, imaging of atoms enabled the position-dependent
manipulation of the internal atomic states and the realization of quantum register [17].

In our current experiments we need to couple atoms to a mode of high-finesse resonator,
located 4.6mm away from the MOT position. Knowing the initial position of the atom,
we can place atom precisely at a desired location of the cavity mode, see Section 1.2.4.

In order to image the atoms we collect the fluorescence light emitted by the atoms, and
collimate it by a home-made diffraction limited objective [48] (NA=0.29), covering 2.1% of
the total solid angle. The collected light is then split by a polarizing beam splitter (PBS),
see Figure 1.10(a). The transmitted part is spatially and spectrally filtered and is focused
onto an avalanche photodiode (APD).

Figure 1.10(b) shows a typical fluorescence signal. A high signal-to-noise ratio of the
signal and a relatively low background level allows us to determine exact number of atoms
stored inside the MOT within several milliseconds with a certainty above 95% for 1-3
atoms. Moreover, we use this fluorescence signal to prepare a desired number of atoms
into the DT for further experiments [49].

The fluorescence light from the atoms is partially imaged onto the photocathode of an
ICCD camera. A single photon detected by the camera generates on average 350 counts
at the CCD chip, distributed in a 3 × 3 pixel area with 50% of the counts concentrated

6In the free-running configuration of the DT the expectations for the oscillation frequencies are about
30% larger than the measured values.
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Figure 1.10: (a) Schematic view of the experimental setup. The laser beams of the
MOT and the DT are overlapped inside the glass cell. The fluorescence from the atoms is
collected by the imaging optics, split by the PBS and sent to the APD and the intensified
CCD camera (ICCD). Using piezoelectric actuators (PZTs), the laser beams of the DT
can be tilted in xy and yz planes. (b) The fluorescence signal of the atoms, trapped in
the MOT allows us to count the atoms.

in the central pixel [50]. The optical magnification factor is equal to 26.1(±0.1), yielding
that one pixel of ICCD camera with a size of 13 µm corresponds to 0.449(±0.02) µm at
the focal plane of the objective, i.e. at MOT position.

Figure 1.11 shows a CCD-image of a single atom trapped inside the potential well of
the fiber-based DT. During the exposure time of one second the three dimensional optical
molasses is switched on. The molasses is generated by the cooling and repumping laser
beams of the MOT. In order to ensure cooling of trapped atoms, an appropriate detuning
and power of the cooling beams are carefully adjusted.

The equilibrium temperature of the atoms, stored in the DT and illuminated with
the molasses, has been determined in the Reference [23]. However, since then a different
Yb:YAG disk laser has been employed for the DT generation. In contrast to the old laser
source (Nd:YAG), it lases at a single longitudinal mode, which forbids the anticipated three
and four-photon heating processes, see Reference [18].

In order to determine the atomic temperature, I follow the procedure described in
Reference [23]. There, the temperature is extracted from the radial oscillation frequency
known from the DT parameters, and the radial extension of the atom during the molasses
illumination which can be obtained from the fluorescence picture.

In the radial direction the extension of the potential well is determined by the waist
of the DT at the MOT position, and the atomic temperature. The resulting histogram,
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Figure 1.11: Fluorescence CCD image of a single atom inside the fiber-based DT.
The atom is illuminated with an optical molasses for 1 sec. (a) The image counts are
integrated along the horizontal direction and fitted with the line spread function of our
imaging system, yielding the FWHMx = 2.4 µm. The histogram in (b) is fitted with a
Gaussian resulting in a FWHMz = 9.8 µm.

obtained after integrating the CCD counts along the z-axis, is fitted with a Gaussian
yielding the 1/

√
e radius of σz = 4.2µm. Subtracting the broadening caused by the

diffraction and blurring of our imaging system the radial extension of the atomic wave
packet is extracted and equals to σ = 4 µm. Following Reference [23], the temperature of
the atoms is equal to

T =
mCsΩ2

radσ
2

kB
= (33± 6)µK .

Here Ωrad/2π = (1.8± 0.2) kHz is somewhat larger than the value in Equation 1.9 due to
slightly different DT parameters. This temperature is about factor of 2 lower than in the
former free-beam DT, generated by Nd:YAG laser [23]. This decrease is most probably
attributed to the single-frequency operation of Yb:YAG laser.

1.2.4 Transportation and position control

For the controlled manipulation of individual atoms the ability to control their position
in space is usually required. In some experiments this transportation is achieved in an
uncontrolled way, for instance, using the gravitational potential [51]. In the group of
S. Haroche in Paris flying Rydberg atoms interact with the mode of the microwave cavity,



1.3 A high-finesse optical resonator 21

restricting the precise knowledge of the position of interacting atoms [52]. Our experiments
is designed to induce deterministic coupling between individual atoms inside the resonator.

In order to bring the standing wave potential (with the form given in Equation 1.2a)
into motion, we slightly detune the frequency of the one beam ν1 with respect of that of
the counter-propagating beam ν2. The resulting time-dependent standing wave potential
then reads as follows

U(y, ρ) = U0
w2

0

w2(y)
e
− 2ρ2

w2(y) cos2(ky − π∆νt) ,

where ∆ν = ν1 − ν2 is the mutual detuning of both laser beams. Changing the frequency
∆ν sets the standing wave pattern in motion with velocity equal to v = λDT∆ν/2, and
atoms confined to the potential minima follow the motion of the interference pattern. In
this way we are able to transport a single atom over mm-scale distance with submicrometer
precision [12].

1.3 A high-finesse optical resonator

In this section I will discuss the mechanical setup, properties, and stabilization of our
high-finesse optical resonator.

1.3.1 Mechanical setup

The realization of a coherent atom-atom interaction via the cavity field is one of the major
goals of our experiment. As discussed in Chapter 2, the key requirement for this realization
is that the coherent energy exchange rate g should exceed the dissipative decay rates: The
photon leakage from the cavity and the spontaneous decay of the atomic state.

Figure 1.12: Schematic of the cavity mirror. The mirror has a coned shape with a
diameter of the front surface of 1mm. The front surface of the cavity is supplied with
dielectric coating, providing a reflectivity of better than 99.9997 %.

According to Equation 2.3 the coupling strength g ∼ 1/
√

V , where V is the volume
of the cavity mode. Therefore the maximal coupling is attained by reducing V . This
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requires a small distance and a small radius of curvature of the mirrors. In order to keep
the photon loss rate as low as possible, mirrors of the highest possible reflectivity at the
atomic wavelength are required.

Mirror design

Our high-finesse optical cavity is composed of two concave mirrors. Each mirror (Research
Electro-Optics) has a diameter of 3mm and is coned to 1mm at the mirror surface, see
Figure 1.12. This cavity geometry is necessary for two reasons: First, because of spatial
orientation of the cavity with respect to the laser beams of the MOT (see Figure 1.13),
the coned shape of the mirrors ensures a high clearance for the MOT beams and allows
us to place the cavity relatively close to the MOT position. Second, for a fixed distance
between the mirrors, a smaller mirror diameter provides a larger distance between edges
of the mirrors, reducing the clipping of the DT laser beam. Making the mirror diameter
too small would introduce additional losses of the Gaussian cavity mode due to diffraction
on the finite mirror aperture. The chosen diameter of 1mm is a tradeoff between these
criteria.

The front surface of each mirror is superpolished to a curved concave surface with a
radius of curvature of R = 5 cm. The surface is covered with a highly reflective coating
consisting of 45λ/4 thick dielectrical layers (Ta2O5 and SiO2) with alternating refractive
indexes of n1 = 2.041 and n2 = 1.455 respectively.

The reflectivity of each mirror is about 99.9997% at the Cs D2 line (852 nm), resulting
in a cavity finesse of F ≈ 1× 106, see Section 1.3.1.

Cavity setup and its properties

The schematic view of the cavity, integrated with both the MOT and the DT is illustrated in
Figure 1.13. The mirrors are glued onto shear piezoelectric actuators (PZTs) (PI Ceramic,
6×6×1mm) for tuning the cavity length and thereby the cavity resonance frequency over
1.5 free spectral ranges. The cavity is assembled on a specially designed cavity holder,
which allows us to adjust the position of the cavity inside the glass cell with respect to the
optical conveyor belt.

Cavity volume The cavity has a mirror separation of L = 156µm, supporting the
TEM00 Gaussian mode with the following distribution of the field amplitude

ψ(x, y, z) =
w(z)
w0

exp
(
−x2 + y2

w2
z

)
sin

(
2πz

λ

)
, (1.4)

where

w2(z) = w2
0

(
1 + z2/z2

0

)
,

z0 = πw2
0/λ .

Here, w0 is the waist of the field mode, x y and z are the spatial coordinates (see Fig-
ure 1.13), and λ is the wavelength of the cavity field. The volume of the cavity mode is ob-
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Figure 1.13: Geometrical configuration of cavity, MOT and DT. Atoms loaded into the
MOT are transferred to the DT and delivered into the mode of the resonator, placed
4.6mm away from the MOT centre. The coned form of the cavity mirrors insures better
clearance for the MOT laser beams. The cavity is glued to the shear PZT, controlling
the distance between mirrors.

tained by integrating |ψ(x, y, z)|2 over the spatial coordinates and equals to V = Lπw2
0/4.

Knowing the expression for the waist w0 in terms of L and R

w0 =

√√√√λ

π

√
L

2

(
R− L

2

)
,

the resulting mode volume is equal to

V =
λ

8

√
L3

(
2R− L

) ≈ 105 × λ3 ≈ 66× 103µm .

Cavity Finesse The cavity Finesse has been measured by the cavity ring down method
[25] and equals F = (1.2±0.1)×106 . The finesse characterizes the quality of the resonator
and indicates how many times a photon bounces on average between cavity mirrors until
it gets lost: The 1/e lifetime of a photon is given by τ = FL/ (πc) and corresponds to the
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Figure 1.14: Schematics of the cavity holder inside the glass cell (top view). The ad-
justable cavity holder enables the alignment of the cavity position in the glass cell relative
to the position of the MOT with the the micrometer-scale precision. The resonator is
placed about 4.6 mm away from the position of the MOT.

photon loss rate of 2κ, where 2κ/2π = 0.86MHz is the full width at half maximum of the
cavity resonance.

A photon leaks from the cavity mode either through absorption and scattering off the
mirror surface, or due to the finite mirror transmission. Our mirrors have a transmission of
T = (0.6±0.1) ppm, and the losses due to absorption and scattering are A = (2±0.2) ppm7,
which determine the value of the finesse (F = π/(A + T )). The information about the
atom-field interaction is carried by the transmitted photons only, constituting a fraction
T/A ≈ 0.3 of all photons leaving the cavity.

Cavity position The cavity is assembled on a specially designed cavity holder, placed
inside the glass cell on a short bellows, see Figure 1.14. It is connected via a cardan joint to
a 3D-positioner, consisting of a XY-manipulator (Thermionic Northwest, XY-B450/T275-
1.39) and a Z-feedthrough (Thermionics Northwest, FLMM133). This combination allows
us to adjust the cavity position with a precision of 5µm relative to the DT axis.

In order to locate the cavity mode, we transport around 40 atoms having a broad posi-
tion distribution along the DT axis towards the cavity mode by a distance corresponding
to an initial guess of the separation between MOT and cavity mode. In the cavity mode
we induce loss of atoms by heating them with the intra-cavity lock laser. Comparing CCD

7The method to measure T and A is described in [53, 54, 25].
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pictures taken initially and after transporting back the atoms, we determine the position
where atoms have been heated out. By tilting the DT horizontally, transverse to its axis,
and looking for maximum atom loss, we can also locate the centre of the cavity mode along
the x-axis [25].

1.3.2 Stabilizing the resonance frequency of the cavity

Cavity-QED experiments require precise control of the resonance frequency of the cavity
relative to the atomic transition frequency. In order to keep the cavity resonance frequency
stable within its linewidth, the cavity length must be controlled to better than δL ≤
λ/(2F) = 0.4 pm in our case. During the entire experimental procedure it is therefore
necessary to actively stabilize the cavity length against acoustic vibrations and thermal
drifts.

There are two major experimental issues to be considered: First, there is only marginal
vibration isolation provided by the bellows. Second, switching the laser beams of the DT
causes thermal expansion of the cavity mirror assembly due to residual absorption. As a
consequence, the unstabilized cavity resonance frequency drifts with an initial rate of about
2×105 linewidths per second within the first 300 ms after the DT has been switched on or
off. The corresponding servo loop therefore uses optimizations such as a double integrator,
cross-feedback, and a notch filter compensating a mechanical resonance of the PZTs, and
has a feedback bandwidth of about 10 kHz8.

Stabilizing laser

We use an auxiliary far blue-detuned laser (“lock laser”) at λl = 840 nm for frequency
stabilization of the resonator. The choice of this wavelength is determined by the interplay
of two contradictory criteria: On the one hand, the presence of the lock laser light inside
the cavity mode must not disturb the intended realization of the coherent interaction
between a single atom and the cavity field. Since an atom would scatter the lock laser
light with the rate proportional to 1/∆2, it is favorable to set ∆ as large as possible (here
∆ stands for the detuning of the lock laser frequency from the atomic transition). On the
other hand, in order to ensure the mutual stability between the frequency of the probe
laser and cavity resonance, the cavity finesse at the lock laser wavelength should not be
significantly smaller than at the wavelength of the probe laser. At 840 nm, the typical lock
laser power required for the cavity stabilization results in an intra-cavity scattering rate of
about 40 s−1 – comparable with the DT scattering rate, and the finesse at this wavelength
has been measured to be Fl ≈ 0.5× 106 [25] – only a factor of two smaller than at 852 nm.

Our locking scheme for the stabilization of the high-finesse cavity [55, 25] is similar
to the one presented in [56]. Its main elements are schematically depicted in Figure 1.15.
Because of the absence of easily accessible atomic frequency references at λl = 840 nm, the
lock laser itself is stabilized onto an auxiliary cavity, which transfers the frequency stability
of the probe laser to the lock laser. The error signals for all servo loops are based on the
Pound-Drever-Hall (PDH) method [57].

8Details will be described in the thesis of T. Kampschulte.
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Figure 1.15: Frequency stabilization of the high-finesse cavity. Using a transfer cavity and a lock
laser, the stability of the probe laser, which is stabilized to a caesium polarization spectroscopy,
is transferred to the high-finesse cavity. AOM: acousto-optic modulator, EOM: electro-optic mod-
ulator, PD: photodiode, APD: avalanche photodiode, LO: local oscillator, PS: RF power splitter,
and PBS: polarization beam splitter. The three servo loops are based on the PDH method.

The acousto-optic modulators (AOM 1-4 in Figure 1.15) allow independent control of
the probe-cavity detuning and probe-atom detuning. In the measurement of normal-mode
splitting, presented in Chapter 3, the probe laser is switched between the F = 4 −→ F ′ = 5
transition and the F = 4 −→ F ′ = 4 transition, which have a frequency separation of about
300MHz. In order to enable such frequency change we split the probe laser beam into two
parts, and send each beam through the AOM (AOM 2 and 3 in Figure 1.15) in a double
pass configuration with an appropriate central frequency.

Moreover, in the normal-mode splitting measurement we also sweep the cavity reso-
nance frequency continuously over about 300MHz. Since the typical bandwidth of the
AOM lies in the range of 40-80MHz, this sweep cannot be done with an AOM in a double
pass configuration. We therefore operate the AOM 4 in the quadruple pass configuration.

Although the cavity resonance at 840 nm is stabilized onto the lock laser, we still observe
drifts of the cavity resonance frequency at 852 nm with respect to the probe laser frequency
on a timescale of several seconds, see Reference [25]. This residual frequency deviation is
caused by different temperature dependencies of the effective penetration depths of the
two wavelengths into the mirror coatings. In order to compensate for this differential drift,
we scan the cavity resonance over the probe laser frequency using AOM 2 and record a
transmission spectrum of the cavity. Then, we determine the AOM control voltage which
corresponds to the maximum transmission of the probe laser, and use this value during
the following experimental cycle.

The optical path of the probe laser before it is injected into the cavity mode has
a length of several meters. Temperature drifts inside the laboratory therefore cause a
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Figure 1.16: Atomic survival probability as a function of the intra-cavity retention time when
the probe laser is switched off. The black circles indicate the measurement performed with the
current improved design of the stabilization servo loop, resulting in a 1/e lifetime of 134ms. The
red squares are obtained with an old setup, yielding a lifetime of about 18ms.

change of the coupling efficiency and the intra-cavity intensity of the probe laser light.
In order to compensate for this change, we scan the control voltage of EOM 2 (which
in combination with the consecutive PBS acts as as a Pockels cell, see Figure 1.15) and
record the corresponding transmission signal. We then determine the control voltage of
the EOM 2, which corresponds to the desired transmission level, and set this voltage for
the following experiment.

In order to compensate for large changes of the cavity length exceeding the tuning
range of the piezoelectric actuators, caused by long term temperature variations, we heat
the cavity using a multimode “heating laser” at 980 nm and a power of up to 400 mW.
Since we cannot directly measure the temperature of the cavity mirrors, we use the voltage
applied to the piezoelectric actuators as an error signal. This signal is fed back onto the
power of the heating laser in a slow servo loop, thus keeping the PZT offset voltage close
to zero.

A relevant test for the quality of the cavity frequency stabilization is the lifetime of the
atoms, held by the DT inside the cavity mode, and exposed to the intra-cavity standing
wave of the lock laser. The mutual fluctuations between the lock laser frequency and the
resonance frequency of the cavity translate into intensity variations of the intra-cavity lock
laser standing wave, which in turn causes parametric excitation and heats the atoms out
of the DT.

The dotes in Figure 1.16 show the measured survival probability as a function of re-
tention time inside the cavity mode for the current cavity stabilization setup. Each point
is the result of about 40 single-atom experiments. As a comparison, the squares show the
result of similar measurement, performed with an old stabilization setup, where double in-
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tegrator, cross-feedback, and the heating laser were note yet implemented. In the current
configuration of the cavity stabilization setup the lifetime of atoms is more than a factor of
7 larger than in our former setup, indicating the improved stability of the cavity resonance
with respect to the frequency of the lock laser.

1.3.3 Transmission detection

As discussed in Chapter 2 and 3, the transmission of the probe laser beam is an indicator of
the strength and the dynamics of the atom-cavity interaction, and is also used to detect the
atomic state. Since both the lock laser and the probe laser beams share the same TEM00

transverse cavity mode profile, we need to separate them at the output of the cavity.
The sketch of the detection setup is presented in Figure 1.17. Both the stabilization

and the lock laser beams are coupled out from the same optical fiber. They are in mutually
orthogonal polarization states. The back reflection of the lock laser beam from the cavity
is directed on a home-made APD, resonantly-amplified at the amplifier, tuned to the PDH
modulation frequency of the lock laser. The detected lock laser power of about 250 nW
results in an error signal with the signal-to-noise ratio of about 5.

A specially designed mode-matching telescope T allows us to couple both probe and
lock laser into the mode of the resonator with a geometrical mode matching of about 40 %.
At the output of the cavity we installed a removable beam splitter, which redirects one
half of the transmitted light onto a CCD camera, allowing the identification of the relative
occupation of different transversal modes of the resonator. The beams are then separated
on a diffraction grating, which is installed almost at the blaze angle of 37◦ with respect
to the beams. The measured dispersion of 1.5 mrad nm−1 allows us to separate the probe
and lock beams by standard mirrors after at a distance of 40 cm from the grating. The
reflection efficiency is equal to ηgrating = 45% for the probe laser beam.

The lock laser beam is detected by an APD and a CCD camera, as it is depicted
in Figure 1.17. From the transmission signal of the lock laser we deduce the relative
fluctuation of the cavity resonance frequency with respect to the lock laser frequency.

The beam of the probe laser is filtered with an interference filter (Dr. Hugo Anders),
which suppresses the light at 836 nm and 1030 nm wavelengths by a factor of 10−4, and
transmits ηfilter = 77% of the probe light. We subsequently filter off the remaining scattered
light by a pinhole.

For the detection of the probe beam transmission two different detectors are installed.
Depending on the situation we choose one of them using a mirror on a flip mount. In order
to tune the frequency of the lock laser to the probe frequency, we employ an avalanche
photodiode detector (PerkinElmer, C30902S), followed by a home-made transimpedance
amplifier (depicted as APD2 in Figure 1.17). For the very low probe power (∼ 10 fW)
we typically detect during the experiments, a fiber-coupled single photon counting module
(SPCM, PerkinElmer, SPCM-AQR-12-F) is employed. It has a total measured quantum
efficiency (including the transmission of the fiber) of about ηSPCM = 18 % and the dark
current rate of less than 500 Counts s−1. The total detection efficiency of the probe light,
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Figure 1.17: The sketch of the detection setup. The probe and the lock laser beams
are coupled to the mode of the cavity using the telescope T1. We separate the probe
and lock laser beams at the cavity output by the diffraction grating. With the APD and
SPCM we detect the transmission of the probe laser beam. The CCD cameras allows to
monitor and discriminate between different transversal modes of the cavity.

including the losses of the cavity mirrors, is equal to

ηtotal =
T

(T + A)
· ηoptic · ηgrating · ηfilter · ηSPCM ≈ 1.3% , (1.5)



30 CHAPTER 1. EXPERIMENTAL SETUP

where ηoptic = 90% is the estimated transmission efficiency of the all optical elements9 in
the beam path of the probe laser between the cavity output and the SPCM.

9Apart from interference filter and diffraction grating.



Chapter 2

Atom-cavity system in the strong
coupling regime

The most basic example of light-matter interaction is a single atom interacting with a
single photon. This single-atom-single-photon system permits the study of the effects of
quantum electrodynamics at the fundamental level. Moreover, by gaining full control over
such a system it might become conceivable to use them in the emerging fields of quantum
information and quantum communication.

The essential requirement for these applications is the availability of strong atom-
photon coupling. This can be achieved if a light field is confined inside the mode of a
high-quality resonator. In this case a single atom, placed inside the mode, can coherently
exchange energy with the mode field at a rate exceeding both the spontaneous decay rate
of the atomic excited state, and photon leakage rate from the resonator mode. In this case
the atom-cavity system is in the so-called strong coupling regime.

The first realization of strong coupling between a single atom and a resonator field was
reported for flying Rydberg atoms interacting with the microwave field of the resonator
cooled down to a cryogenic temperature [58]. Later, in the optical domain, strong atom-
cavity interaction was realized with a dilute beam of atoms [59]. Since the development of
single atom manipulation techniques [12, 60, 46], worldwide several groups have been able
to strongly couple a single or several trapped atoms to the resonator mode [61, 62, 63, 64].

The theoretical background of such systems has been a subject of thorough investigation
for the last six decades. In this chapter I will refer to the most relevant results, which are
elaborately described in [35, 65, 66], without providing detailed derivations. I will start
with the Jaynes-Cummings model, describing the basic physics of coherent atom-photon
interaction. Further, dissipation of energy by the environment will be incorporated by
expanding the dissipation-free situation to a so-called master equation model.

After providing the theoretical background, I will present experiments demonstrating
deterministic coupling of a single and two atoms to the mode of the cavity field by means
of an optical conveyor belt. The coupling strength between an atom and the cavity field
is inferred using two different methods: On the one hand, the atom-field coupling is de-
tected by observing the leakage of the light from the resonator. In an alternative method,

31
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Figure 2.1: Energy levels in the Jaynes-Cummings model. Energy levels of: A free
two-level atom (a), a quantized electromagnetic field (b), a non-interacting atom-field
system (c), a coupled atom-field system (d).

presented in Section 2.4, the interaction is deduced from the final state of an atom after
its interaction with the cavity field.

2.1 The Jaynes-Cummings model

The Jaynes-Cummings model provides a basic understanding of a system consisting of
a two-level atom interacting with a quantized electromagnetic field of a cavity [67, 66].
Originally this model was developed to describe the interaction of an atom with a single
mode of the electromagnetic field in free space, but without loss of generality it can be
extended to the case of an atom interacting with an electromagnetic field enhanced by a
resonator.

In this model the center-of-mass atomic motion is neglected and the atom, as well
as the electromagnetic field, are assumed to be dissipation-free. The Hamiltonian of the
interacting atom-cavity system can be decomposed into three parts

ĤJC = Ĥa + Ĥc + Ĥint ,

where Ĥa and Ĥc are the contributions from a free atom and quantized electromagnetic
field, respectively. Ĥint denotes the atom-cavity interaction part of the Hamiltonian. The
Hamiltonian of a two-level atom Ĥa has the form

Ĥa = ~ωa|e〉〈e| ,

where ωa is the angular frequency of the atomic transition, and |e〉 is the excited state of
the atom. The corresponding energy states of the atom are displayed in Figure 2.1 (a).
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The Hamiltonian of the electromagnetic field reads

Ĥc = ~ωc

(
â†â + 1/2

)
,

where ωc is the angular frequency of the electromagnetic field, â† and â are the photon
creation and annihilation operators, respectively. The corresponding energy states are
presented in Figure 2.1 (b).

In the electric dipole approximation the interaction Hamiltonian between an atom and
the field is given by the product of the atomic dipole operator D̂ and the field operator of
the intracavity photons Êc: Ĥint = −D̂ · Êc. The atomic dipole operator is equal to:

D̂ = ~d (σ̂+ + σ̂−) (2.1)

where ~d is the dipole matrix element of the atomic transition, σ̂+ = |e〉〈g| and σ̂− = |g〉〈e|
are the rising and the lowering operators, respectively. The operator of the electromagnetic
field is given by

Êc =
√
~ωc

2ε0V
~εc

(
â† + â

)
(2.2)

where ε0 is the vacuum permittivity, V is the effective cavity mode volume and ~εc is the po-
larization of the cavity field. Combining the expressions in Equation 2.1 and Equation 2.2,
the interaction part of the Hamiltonian then reads

Ĥint = ~g0

(
âσ̂+ + â†σ̂−

)
.

Here the rotating wave approximation has been applied, eliminating highly improbable
terms proportional to âσ̂− and â†σ̂−. These terms violate energy conservation and con-
tribute to the system dynamics by the virtual processes only, which have negligible contri-
bution if g0 ¿ ωc, ωa. The coupling strength g0 is defined as

g0 = d

√
ωc

2~ε0V
. (2.3)

So far, the spatial variation of the electromagnetic field was neglected. Taking this into
account, the coupling strength g of the Fabry-Perot resonator has the following form

g = g0 × ψ(x, y, z) , (2.4)

where ψ(x, y, z) is taken from Equation 1.4, and x, y and z are the spatial coordinates
inside the cavity mode. This equation considers the fundamental TEM00 mode of the
cavity, having a sin-like variation along the cavity axis (z axis), and a Gaussian transversal
profile.

The eigenstates of the Hamiltonian ĤJC have the following form

|+〉 = sin (θ) |g, 1〉+ cos (θ) |e, 0〉
|−〉 = cos (θ) |g, 1〉 − sin (θ) |e, 0〉 ,
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where |g, 1〉 and |e, 0〉 denote the states of non-interacting atom-cavity system, i.e. with
the atom in the ground state and one photon in the cavity field and an atom in the excited
state and no photon inside the cavity, respectively. The mixing angle θ is defined as

tan (2 θ) = − 2 · g
(ωc − ωa)

.

The energy spectrum of the eigenstates of the total Hamiltonian differs from that of
the bare states. Figure 2.1 (c) and (d) illustrates it for the resonant case, i.e. ωa = ωc. Due
to the interaction term of the Hamiltonian Ĥint the degeneracy of the bare states is lifted,
and the corresponding splitting between the resulting dressed states is equal to 2

√
n × g,

where n is the number of excitations inside the system.
Figure 2.2 shows calculated energies of the lowest doublet from Figure 2.1 (d) when

the frequency of electromagnetic radiation is varied around the atomic resonance. For this
example the coupling strength is equal to g/2π = 1 MHz.

Figure 2.2: Energies of lowest-lying pair of states from Figure 2.1 (d). The correspond-
ing uncoupled states are displayed by the dashed lines.

2.2 The master equation approach

The Jaynes-Cummings model gives a precise result for the energies of the emerged eigen-
states of the interacting atom-cavity system. This model, however, neglects the dissipative
interaction with the environment, i.e. the leakage of the cavity field due to imperfect mir-
rors and the spontaneous emission from the excited atomic state. In real physical systems,
these dissipation channels cannot be neglected.

An appropriate formalism, accounting for the coupling of the atom-cavity system to the
environment, is provided by the master equation. It predicts the dynamics of the system
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and gives a precise information about the probability amplitudes of the corresponding
dressed state of the coupled atom-cavity system.

Here we consider a single atom interacting with the cavity field and driven by the
external laser, coupled into the cavity mode. The Hamiltonian of the coupled atom-cavity
system interacting with the environment is given by

Ĥtot = Ĥs + Ĥenv + Ĥs+env,

where

Ĥs = ~ (ωa − ωp) σ̂+σ̂− + ~ (ωc − ωp) â†â + ~g
(
âσ̂+ + â†σ̂−

)
+ ~ε

(
â + â†

)
,

acts on the system only. Here ε is the amplitude of the driving probe laser field and ωp is
the angular frequency of the probe laser. Ĥenv governs the evolution of the environment
and Ĥs+env accounts for the interaction between the system and the environment. The
total Hamiltonian Ĥtot operates on the Hilbert space H = Hs ⊗ Henv, where Hs (Henv)
denotes the Hilbert space of the system (environment).

The Heisenberg equation of motion for the density operator χ̂ of the total system reads

d
dt

χ̂ =
1
i~

[
Ĥtot, χ̂

]
.

Assuming that the environment is a collection of harmonic oscillators, each coupled weakly
to the system, and applying the Born-Markoff approximation, which implies that the cor-
relation time of the environment is much shorter than the timescales associated with the
evolution of the system, the master equation can be derived which describes the evolution
of the system’s density operator ρ̂s. The system’s density operator is obtained by tracing
χ̂ over the states of the environment ρ̂s = tr[χ̂]env. The derivation of the master equation
is provided in Reference [65]. The result is given by

d
dt

ρ̂s =
1
i~

[
Ĥs, ρ̂s

]
+ R̂. (2.5)

The first term on the right side describes the dissipation-free evolution of the density
operator. The operator R̂ accounts for the interaction of atom-cavity system with the
environment through the dissipation channels:

R̂ = κ
(
2âρ̂sâ

† − â†âρ̂s − ρ̂sâ
†â

)
+

Γ
2

(2σ̂−ρ̂sσ̂+ − σ̂+σ̂−ρ̂s − ρ̂sσ̂+σ̂−) ,

where κ is the cavity field decay rate and Γ is the decay rate of the excited state of the
atom.

Figure 2.3 (b) shows the steady-state solution of Equation 2.5, i.e. d
dt ρ̂s ≡ 0, for a

two-level atom interacting with the cavity field. The number of intra-cavity photons np
is shown as a function of the cavity-atom detuning ∆c = ωc − ωa and the probe-atom
detuning ∆p = ωp − ωa when a single atom is coupled to the cavity field.

For this calculation, the parameters reflecting our experimental conditions were used

(g0, κ, Γ) = 2π × (12, 0.43, 5.2) MHz,
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Figure 2.3: The calculated intra-cavity photon number as a function of the cavity-atom
detuning ∆c and the probe-atom detuning ∆p for two different cases. (a) No atom is
present inside the cavity. The non-zero photon number is observed for ∆c = ∆p and has
a half width at half maximum of κ along the cut ∆c =const. (b) The coupling of a single
atom to the cavity mode causes two dressed states to occur. The splitting between the
states (along the cut ∆c =const) is equal to

√
(∆c)2 + (2g)2. In both cases the driving

probe laser is weak, implying that the system is in the weak excitation limit.

where g0 is the maximal expected coupling strength for the the π-transition
|F = 4,mF = 4〉 −→ |F ′ = 4,mF ′ = 4〉, Γ is the natural linewidth of the Cs D2-transition,
and κ is the measured cavity field decay rate. The strength of the probe laser field is such
that the system is in the weak excitation regime, i.e. the number of intra-cavity photons
is much smaller than the saturation photon number nst = Γ2/(8g2

0). In this regime the
response of the coupled atom-cavity system is linear with respect to the probe laser power,
and the atomic scattering rate is much smaller than Γ.

The signature of the dressed states is visible in the map of the intra-cavity pho-
ton number. The splitting between the states at the fixed cavity frequency is equal to√

(∆c)2 + (2g)2. In the resonant case where ∆c = 0, the peaks of equal height are split by
twice the coupling strength g and the full width at half maximum (FWHM) of each peak is
equal to κ+Γ/2. This splitting is referred to in literature as vacuum Rabi or normal-mode
splitting [13, 14]. In order to observe this splitting, the coupling strength g should exceed
the spontaneous emission rate Γ and the cavity linewidth κ, g > κ,Γ/2. This implies that
the system should be in the strong coupling regime, i.e. g2/κΓ > 1.

When the cavity is tuned out of resonance with the atomic transition, ∆c 6= 0, the
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situation is different: The width and the hight of the peaks of the photon number are
determined by the ratio between contributions from the atomic and photonic part to the
corresponding dressed state.

For comparison, Figure 2.3 (a) shows the calculated intra-cavity photon number when
no atom is coupled to the cavity. In this trivial case, a single peak with the FWHM equal
to 2κ is present for all cavity frequencies when the probe laser is tuned in resonance with
the cavity. Note that color scale in Figure 2.3 (a) is more than a factor of five larger than
that in Figure 2.3 (b) for the same intensity of the driving probe laser.

In order to detect the atom-cavity coupling in the experiment we typically measure the
transmission of a weak probe laser driving the system. As was pointed out in Reference [25],
in the case of a lossless cavity the photon count rate of the probe laser at the output of the
cavity is equal 2κ×np, i.e. the change of the probe transmission signal implies the change
of the intra-cavity photon number np.

2.3 Detection of atom-cavity coupling via cavity transmission

After introducing the theoretical background, here I will present the experimental charac-
terization of the interaction between a single and two atoms and the cavity field via the
cavity transmission.

2.3.1 Detection of a single atom inside the cavity

We first carry out the experiment with a single atom. The experiments start by prepar-
ing a single atom in the dipole trap using the number triggered loading technique, de-
scribed in Reference [49]. We then image the atom fluorescence by illuminating it with
three-dimensional optical molasses, tuned by several Γ to the red of the F = 4 −→ F ′ = 5
transition. The position of the atom along the dipole trap axis is then determined from
the fluorescence image with an uncertainty of 140 nm [12]. In the next step we transport
the atoms along the dipole trap axis over 5 mm within 4 ms into the cavity.

In order to detect the atom-cavity interaction, we monitor the transmission of the
probe laser while inserting the atom into the resonator. As it is outlined in Section 2.2, the
presence of an atom in the cavity mode results in the drop of initially high transmission of
the probe laser due to the interaction-induced normal mode splitting.

In all experiments, presented below, the cavity is tuned into resonance with the probe
laser, i.e. ∆c = ∆p. Here, ωa is the angular frequency of the AC-Stark shifted atomic
F = 4 −→ F ′ = 5 transition. The cavity and the probe laser are blue detuned from the
atomic transition by ∆c/2π ≈ 24MHz. There exists theoretical work which predicts cooling
in this regime, see Reference [68]. However, we found this particular value empirically by
observing an increased lifetime of the atoms inside the cavity.

Figure 2.4 presents an example of a single experimental cycle. At time t = 0 the single
photon counting module (SPCM), introduced in Chapter 1, is switched on. The background
signal of about 1 counts/ms corresponds to the dark counts and the stray light detected by
the SPCM. After 14 ms the probe laser beam is switched on, resulting in a photon count
rate of 26 counts/ms, corresponding to a mean intra-cavity photon number of about 0.1.
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Figure 2.4: (a) Transmission signal versus time obtained in a single experimental run
showing the case of continuous strong coupling. Upon placement of a single atom into
the cavity mode the transmission drops to 5 % of its value for the empty cavity. After
continuously observing the atom for 300 ms inside the cavity it is transported back to
the position of the MOT. (b) Relevant energy states of the Cs D2 line. (c) Schematic
illustration of the energies of the coupled atom-cavity states (solid lines) and empty cavity
state (dashed line). In this measurement the cavity resonance is blue detuned from the
F = 4 −→ F ′ = 5 transition by ∆c/2π ≈ 24MHz and ∆p = 0 which are shown as a red
circle. (d) Calculated cavity transmission for empty cavity (dashed line), and for a single
atom coupled to the cavity (solid line) as a function of probe-cavity detuning ωp−ωc for
our detuning ∆c and g/2π = 8MHz.

The saturation photon number for the maximal coupling strength g/2π = 13MHz (see
Section 2.3.2) is equal to ncr = 0.02. However, for an empty cavity with the intra-cavity
photon number of 0.1, the intra-cavity photon number and the scattering rate of an atom
coupled to the cavity are smaller than ncr and Γ, respectively, for any detuning ∆c and
any coupling strength g. This fact indicates that we are in the regime of weak excitation.
At t = 70 ms the atom is inserted into the centre of the cavity mode, which causes the
transmission of the probe laser to drop to 2 counts/ms. Subtracting the background count
rate, the transmission drops down to approximately 5 % of its initial level. For our values
of κ and Γ and the chosen value of ∆c, the observed drop in the probe transmission
indicates strong coupling of the atom to the field of the resonator mode. During the entire
experimental cycle a repumping laser resonant with the F = 3 −→ F ′ = 4 transition is
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applied along the dipole trap axis. It transfers the atom back into the F = 4 state if it is
off-resonantly pumped into the F = 3 state by the probe laser. The transmission remains
at this level of 5 % while the atom resides in the cavity until we transport the atom back
to the position of the MOT.

2.3.2 Simple model

In order to quantitatively analyze our measurements and to establish a relation between
g and the observed average transmission, the physical system including a variation of g
caused by internal and external dynamics of the atom is modelled. For this purpose the
master equation of the coupled atom-cavity system is solved numerically [65]. All processes
causing a variation of the coupling strength g are slow compared to the decay time 1/κ of
the cavity field. Therefore, the cavity transmission at any moment is determined by the
instantaneous coupling strength. Since g is time-dependent and the cavity transmission
is a non-linear function of g, I simulate the measured average transmission level by first
calculating the transmission levels corresponding to all possible values of g, and then
computing the weighted average over these levels.

Internal dynamics

The internal dynamics of the atom is caused by its continuous scattering of photons while
coupled to the cavity mode, which causes changes in the Zeeman sublevel occupation.
Since the atom is not optically pumped into a specific mF sublevel of the ground state
F = 4, I assume a homogeneous distribution over all these states and average over the
transmissions corresponding to the different mF states.

As was discussed in Reference [25], our cavity mirrors feature a slight birefringence.
Thus, the resonances show a polarization splitting of several linewidths and the cavity
supports linear polarization modes only. For π-transitions from F = 4 to F ′ = 5 and
for our parameters, the calculated coupling strength g/2π ranges from 8 to 13MHz for
different mF states. These values have to be compared to the dissipation rates of the
coupled atom-cavity system. The field of the cavity decays at a rate of κ/2π ≈ 0.4MHz,
and the excited state decay rate of a caesium atom is Γ/2π = 5.2MHz. Since the condition
g À (Γ, κ) is satisfied the system operates in the strong coupling regime. The single atom
cooperativity parameter C1 = g2/(κΓ), quantifying the coherent energy exchange versus
dissipation rates, is expected to be on the order of 50.

External dynamics

The external dynamics is given by the motion of the atom in the trapping potential. A
thermal Boltzmann energy distribution is assumed, which neglects modifications due to
cavity QED effects, the multi-level atomic structure and technical noise which could lead
to a non-thermal energy distribution [68]. Since our integration time is much longer than
the heating and cooling timescales, our model allows to assign an effective temperature T
corresponding to the time averaged energy 〈E〉 of the atom in the trap via 〈E〉 = 3kBT .
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We take into account the variation of g and the variation of the AC-Stark shift, due to
the dipole trap and the lock laser, caused by the oscillatory motion.

Figure 2.5: (a) Normalized probe (solid line) and lock laser (dashed line) intra-cavity intensities
along the cavity axis (z axis). Due to different periodicities of the probe and lock laser standing
waves, the coupling strength at the potential minima of the lock standing wave changes. (b) The
calculated relative coupling strength as function of the position along the cavity axis. For this
simple calculation the atom is assumed to have a zero temperature, residing at the nodes of the
lock laser standing wave.

The spatial variation of the coupling strength g is identical to the spatial distribution of
the probe laser field inside the cavity and is defined by the cavity mode profile, specified in
Equation 2.4. The depth of the dipole potential due to the intra-cavity photon number of
the probe laser in the case of the empty cavity (n = 0.1) is only about 30 µK at the centre
of the cavity mode [69]. An atom coupled to the mode strongly reduces the photon number
which further decreases this potential to values much lower than the atomic temperature
and all other trapping potentials. I therefore neglect the effect of this potential.

The lock laser at λl = 840 nm, introduced in Chapter 1, which is used for the frequency
stabilization of the cavity, forms a blue-detuned intra-cavity standing wave. Due to reso-
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nant enhancement, the injected lock laser power of 0.4 µW creates a blue-detuned standing
wave dipole potential with a height of about 0.3 mK, considerably higher than the atomic
temperature. This potential depth corresponds to a maximum scattering rate of 40 s−1.
Since the lock and the probe laser share the same cavity mode, the transversal profile of the
lock laser potential is almost the same as of the probe laser. In the longitudinal direction
(along the z-axis), due to the difference in the wavelengths, the lock laser standing wave
has different periodicity than the probe laser standing wave.

Figure 2.5 (a) shows the variation of normalized intra-cavity probe and lock laser in-
tensities along the z-axis. Depending on the atomic position along the cavity axis, the
coupling strength at potential minima of the lock laser standing wave changes from max-
imum to minimum over a length of dbeat/2 = 15 µm(≈ 18λp). Figure 2.5 (b) shows the
calculated relative coupling strength as a function of the lock laser potential well. For this
simple calculation the atom is assumed to have a zero-temperature, i.e. a fixed position
at the node of the lock laser standing wave. Note that the data presented in Figure 2.4
have been selected for strongest coupling and no hopping, i.e. the atom stays in the same
potential well of the lock laser standing wave. In the model we the assumption is made,
that the atom resides at a potential minimum coinciding with a maximum of g.

Along the x-axis, transverse to both dipole trap and cavity axis, the atom is weakly
confined by the Gaussian profile of the dipole trap. Due to oscillations along this direction
over several micrometers the atom experiences a variation of the AC-Stark shift and the
coupling strength g. Along the z-axis the atom is well localized to several hundred nanome-
ters by the lock laser standing wave with a potential height of U/kB ≈ 0.3 mK. Along the
dipole trap axis (y-axis) the variation of g is negligible and I consider the variation of the
AC-Stark shift only.

In the numerical simulations the model temperature is used as a fit parameter. A
temperature of about 0.17 mK reproduces our observed drop of the transmission to 5 %.
This result indicates a higher temperature than the typical 0.03 mK inside our dipole
trap after molasses cooling, see Section 1.2.3, possibly due to different cooling and heating
mechanisms inside the cavity.

2.3.3 Dynamics of the atom-cavity coupling strength

In the experiments we frequently observe strong variations of the transmission signal. A
typical example is shown in Figure 2.6(a). We assume these variations are caused by
hopping of atoms between different trapping sites along the cavity axis (z-axis): Due to
the dynamic equilibrium between cooling and heating processes in the cavity, the atom can
be heated out of one node of the blue-detuned lock laser standing wave and subsequently
be cooled into a different node. Since the lock and probe laser standing waves have different
periodicities, the coupling strength changes over a length of dbeat/2 = 15µm, as discussed
above and depicted in Figure 2.6(b). Therefore, the hopping of atoms along the z-axis can
result in sudden strong changes of the atom-cavity coupling strength, leading to jumps of
the transmission level.

We observe that the rate of these transmission variations seems to depend critically on a
complex interplay between lock and probe laser intensities, probe-cavity detuning, and the
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Figure 2.6: (a) Transmission signal of the probe laser beam through the cavity for the
case of time-dependent coupling. (b) Due to jumps between different nodes of the repul-
sive lock laser standing wave, the coupling strength of the atom to the cavity changes.

initial insertion conditions, i.e. the coupling strength directly after insertion. We could not
determine a systematic dependency on either of these parameters. Further examinations
are required to clarify this phenomenon.

For the experimental records, exhibiting the coupling dynamics, we also observe the
tendency to overall coupling reduction. In order to examine this behavior, we perform the
same experiment as in Figure 2.6, but we hold an atom inside the cavity for a considerably
longer timescale.

A single experimental record is presented in Figure 2.7 (a), where the transmission
signal is monitored for 10 seconds. Note, that a break is introduced in the time scale of the
figure, such that it displays the first and the last two 2 seconds of the transmission signal.
Figure 2.7 (b) shows the average over 4 experimental records, where the transmission signal
was subsequently binned over 4 ms, which is still shorter than the timescale of the dynamics
of the transmission signal. Within the first 40 ms the transmission signal drops to 18% of
the empty cavity transmission. Subsequently, for the next 1.5 seconds, the transmission
signal exhibits abrupt variations, indicating the corresponding modifications of the effective
coupling strength possibly caused by jumps of the atom along the cavity axis. Finally,
the transmission signal stabilizes at a steady value of around 55% of the empty cavity
transmission and stays constant for the remaining 8.5 seconds. The observation timescale
exceeds by far the lifetime of the atom inside the cavity when the probe laser is switched
off, see Figure 1.16, indicating a cooling action of the probe laser.

A possible explanation for the observed reduction of g is anticipated in [68]. There,
it is shown theoretically that for the simplified two-level atom strongly interacting with
cavity field and for the parameter regime used in our experiment, i.e. ∆c > 0 and ωp = ωc,
the atom experiences optimal cooling by the probe laser at the lower coupling strengths.
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Figure 2.7: (a) Transmission signal of the probe laser while a single atom resides inside
the cavity during 10 seconds. The signal shows the evolution from the time-dependent
coupling strength (the first 1.5 sec) to the its equilibrium level (the subsequent 8.5 sec).
(b) The average over four such traces.

Figure 2.8 shows the sketch of the anticipated Sisyphus-type mechanism of the cavity cool-
ing. Due to spatial modulation of the coupling strength along the cavity axis, the energies
of the dressed states are modulated correspondingly. The coupled atom-cavity system is
likely to absorb a photon at zero coupling strength. Emission of an energetically higher
photon reduces the kinetic energy of the atom and therefore provides cooling. Although
this model considers one-dimensional space, and does not take into account the effect of
the AC stark shift induced by the lock laser and by the dipole trap, it provides qualitative
explanation of our observations.

Since the temporal average of the coupling strength is determined by the atomic po-
sition and degree of its localization, the modification of the coupling strength is caused
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Figure 2.8: Sketch of the anticipated Sisyphus-type cavity cooling mechanism when
ωc > ωa and ωp = ωc. |+〉 and |−〉 are the dressed states of the coupled atom-cavity
system. The photon is absorbed at the node of the probe laser standing wave, where
g = 0, and energetically higher photon is emitted at a large coupling strength g, reducing
the kinetic energy of the atom and thus enabling cooling.

by varying atomic position. As discussed above, the initial dynamics of the transmission
signal is possibly caused by jumps of the atom along the z-axis. What remains in question
is where the atom locates when the coupling reaches its equilibrium value. Here three
possible scenarios are provided:

(a) The atom jumps along the cavity axis (z-axis) until it gets confined in one of the
potential minima of the lock laser, and at the same time, the corresponding coupling
strength is small, where cooling is optimal.

(b) Due to interplay of the cooling and heating processes, the atom is pushed in the radial
direction of both cavity mode and the dipole trap (x-axis) such that the confinement
by the lock laser is suspended, and the atom undergoes radial oscillations in the dipole
trap along the z-axis over a distance corresponding to several lock laser potentials.
During these oscillations the atom averages over the full range of coupling strengths,
leading to an effective reduction of the coupling strength compared to the case when
the atom is confined along the cavity axis by the lock laser potential. Since the
period of radial oscillations is smaller than the integration time of the SPCM, the
detected transmission signal is an average over the full range of transmission signals,
and therefore, aside from shot noise, has a nearly constant level.

(c) The atom jumps along the dipole trap axis (y-axis) over the distance comparable with
the cavity mode radius w0 and resides at a weaker coupling.

We exclude the scenario (c) by transporting the atom back to the position of the MOT
after observing the transmission signals. At the MOT position we take a second picture,
which confirms that the position in the standing wave dipole trap has not changed.
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As has been reported in [56, 15], the observation of temporal variation of the cavity
transmission can be used in order to track intra-cavity atomic trajectories. Although in
the current state of our experiment the exact trajectories cannot be extracted, it might
become feasible by gaining additional information about the atomic motion. For example,
this could be achieved by recording the transmission signal with a much higher temporal
resolution and analyzing the recorded data using autocorrelation functions. In this way it
should become possible to extract the oscillation frequency of the atom and discriminate
between above mentioned scenarios (a) and (b). Moreover, by coupling more than one
atom to the cavity mode, it might become possible to observe and examine the collective
effects, predicted in [70].

2.3.4 Controlling the coupling strength

Applications of cavity QED in quantum information experiments with a string of atoms
usually require control over the coupling strengths for different atoms. This can be achieved
e.g. by suitably positioning them inside the cavity mode profile. Here an experiment is
presented, where we map out the spatial distribution of the coupling strength transverse
to the cavity axis by continuously observing the cavity transmission while transporting a
single atom slowly through the mode. Similar observations are reported in [60, 63].

In the experimental procedure, we first shuttle the atom to the edge of the mode 50 µm
from the mode centre, where g is negligible. As it is depicted in Figure 2.9, by slowly
transporting the atom over 100 µm across the cavity mode within 150 ms, we observe a
continuous variation of the transmission caused by a variation of g. After a waiting time
the direction of the slow transport is reversed. For both transportation directions the
average transmission drops to about 20 % of its maximum level in the centre of the cavity
mode, and the shape of the transmission is almost identical.

The drop to about 20 % is less than the reduction in the previous single shot experiment.
This is a result of averaging over 19 shots, selected only for the presence of the atom
during the complete transportation in both directions, and of a larger blue detuning of
∆c/2π ≈ 44 MHz. Due to thermal oscillations along the z-axis inside the dipole trap, the
atom enters the cavity field in different nodes of the lock laser standing wave, thus causing
the coupling strength and the reduction of the transmission to have different values for
each transport through the cavity mode.

I have compared our observations with the prediction of the simple model by performing
a numerical simulation. With the temperature as a single fit parameter, the simulations are
in good agreement with the measured data by assuming a temperature of about 0.13 mK.

2.3.5 Atom-number dependent coupling strength

When coupling N atoms simultaneously to the cavity mode the effective collective coupling
strength gN ideally scales as g

√
N for the case of weak excitation, where g is the coupling

strength of a single atom.
In Figure 2.10 we compare the cavity transmission when sweeping either one or two

atoms slowly through the cavity mode. In the case of two atoms their separation is below



46 CHAPTER 2. ATOM-CAVITY SYSTEM IN THE STRONG COUPLING REGIME

Figure 2.9: (a) Transmission of the probe laser beam as an atom is slowly swept forth and back
across the cavity mode over a distance of 100 µm within 150 ms. The trace is an average over
19 experimental runs. The measured data are in a good agreement with the numerical simulation
(solid line in red). The probe laser is is blue-detuned with respect to the F = 4 −→ F ′ = 5 atomic
transition by ∆c/2π ≈ 44MHz. The dashed blue line indicates the cavity transmission assuming
no thermal motion and strongest coupling along the cavity axis. (b) Schematic illustration of the
energies of the coupled atom-cavity states (solid lines), our detunings ∆c and ∆p are shown as a
red circle.

1.5 µm, which is small compared to the waist of the cavity mode. We therefore assume
that the two atoms are interacting with the cavity mode simultaneously at the same posi-
tion. The data in Figure 2.10 are single experimental runs and are selected for strongest
coupling along the z-axis, as discussed in the previous section. In the central region of the
cavity already a single atom almost completely blocks the transmission of the probe laser.
However, at the outer regions of the cavity mode two atoms cause a significantly stronger
drop in transmission than a single atom.

In analogy to the previous paragraph, I have performed a numerical simulation, as-
suming that the intra-cavity temperature of the atoms is the same as in the experiment
presented in Figure 2.41. The case of two atoms is approximated here by a single atom
coupled to the cavity with a strength g ×√2. The numerical simulation agrees well with
the measured data for the central region of the cavity. In the outer regions, both measured
transmission levels are slightly higher than the calculated ones. This deviation is to be
expected, as the model assumes constant confinement of the atom by the blue-detuned
lock-laser standing wave independent of the position along the dipole trap axis. However,
this confining potential decreases towards the edge of the cavity mode, and at some point
the atom is no longer confined by the lock laser standing wave. As a result, the atom

1In this experiment the detuning ∆c is the same as in the observation presented in Figure 2.4.
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Figure 2.10: Transmission of the probe laser beam as a single atom (on the top) and two atoms
(below) are swept across the cavity mode. For the latter case the width of the transmission dip
is notably larger, indicating a stronger coupling strength. The probe laser is is blue-detuned with
respect to the F = 4 −→ F ′ = 5 atomic transition by ∆c/2π ≈ 24MHz. The measured data agrees
reasonably well with the numerical simulation (solid red lines) for one and two atoms in the upper
and lower graph, respectively.

oscillates freely along the z-axis and experiences on average a weaker coupling strength,
thus increasing the transmission level.
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Figure 2.11: (a) Measurement of the final state of the atom after it has interacted with the field
of the cavity mode. Each point is the result of about 40 experimental runs with a single atom.
Model for an atom in the state |F = 4,mF = 1〉: (c) intra-cavity photon number and (d) local
probe laser intensity as a function of the atomic position and (e) pumping efficiency as a function
of local probe laser intensity.
The solid red line in (a) is then obtained by taking the composition of (d) and (e), performing
these calculations for each state |F = 4,mF〉, and averaging subsequently. (b) The probe laser
is blue detuned from the F = 4 −→ F ′ = 3 transition by 40MHz and is red detuned from the
F = 4 −→ F ′ = 4 transition by 160MHz.

2.4 Detection of atom-cavity coupling via the atomic state

In this section I will present a different method to extract information about the coupled
atom-cavity coupling. It is based on the detection of the internal atomic state after an
atom has interacted with the field of the resonator. In the microwave domain this method
is already used in cavity QED experiments, which are performed in the group of S. Haroche
[71].

In this experiment we map out the spatial distribution of the cavity field via the detec-
tion of the atomic state. For this measurement, we prepare a single atom in the dipole trap
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in the hyperfine ground state F = 4 by illuminating it with the MOT repumping laser. We
then transport the atom to the cavity mode and subsequently inject the probe laser beam
into the cavity. In this experiment the cavity is blue detuned by about 40MHz from the
F = 4 −→ F ′ = 3 transition and is red detuned by 160MHz from the F = 4 −→ F ′ = 4
transition. During the interaction time of 1 ms the injected probe laser power corresponds
to about 0.04 photons inside the cavity, much less than what was used in the previous
experiments presented above. The atom is pumped into the uncoupled F = 3 ground state
with a probability proportional to the intra-cavity probe light intensity, after scattering a
few photons only. We retrieve the atom from the cavity and subsequently detect its final
state with an efficiency close to unity by applying a “push-out” laser [72]. This laser is
resonant with the F = 4 → F ′ = 5 transition and removes the atom from the trap if it is
in F = 4. Subsequent transfer of the atom back to the MOT reveals its presence if it is in
F = 3. In order to ensure the efficient operation of the push-out laser we reduce the depth
of the dipole trap after transporting the atom back to the MOT position, which limits the
overall survival probability of the atoms in F = 3 to 77+7

−9 %.
For each position of the atom inside the cavity mode we take an ensemble average of

about 40 repetitions. By varying the atomic position across the cavity mode, we map out
the optical pumping rate due to the probe laser beam inside the cavity, see Figure 2.11(a).
We observe a peak in population transfer corresponding to the transverse cavity mode
profile with a maximum transfer efficiency of about 60 %. In this experiment an atom
interacts dispersively with the cavity field and has only a small effect on the intra-cavity
photon number. Therefore this photon number still weakly depends on the distance of
the atom from the cavity mode centre and on the initial mF state of the atom. As an
example, Figure 2.11(c) shows the calculated normalized photon number as a function
of atomic distance from the cavity centre in the case of an atom occupying the state
|F = 4,mF = 1〉. The resulting probe laser intensity, shown in Figure 2.11(d), is slightly
broader than the Gaussian intensity profile in the absence of an atom. Compared to
Figure 2.11(d), the transfer efficiency curve is further broadened due to the nonlinear
dependence of the transfer efficiency on the probe light intensity. I have modelled this
dependence, shown in Figure 2.11(e), for each initial mF state by performing Monte-Carlo
simulations and taking thermal motion into account, as was described in section 2.3.2.
The holding time of an atom inside the cavity was divided into 10 µs-intervals, short
compared to the average scattering rate. In each of these intervals the atom is assumed
to be either excited with a probability determined by the local probe laser intensity and
the corresponding Clebsch-Gordan coefficient and then to decay to the hyperfine state
F = 4 or F = 3 with the corresponding branching ratios; or it remains in the state
F = 4. The result of this simulation for the initial state |F = 4,mF = 1〉 is shown
in Figure 2.11(e). It is used to compute the spatial variation of the population transfer
from the probe intensity distribution of Figure 2.11(d). I again assume a homogeneous
distribution over different mF states and average the population transfer over these states.
Since the simulation shows only a very slight dependence on temperature, the intra-cavity
photon number is used as a single fit parameter. The resulting photon number of 0.02 equals
60 % of the expected photon number estimated from the transmission. This deviation are
attributed to systematic uncertainties of our model and inaccuracies of our measurement.
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The theoretical curve in Figure 2.11(a) is obtained by normalizing the simulated averaged
population transfer to the survival probability of 77 % and fits well to the observed data.

2.5 Conclusion

In this chapter two different methods to detect the atom-field interaction have been pre-
sented. Both might have decisive applications in future experiments.

In the measurement method, based on the detection of a weak probe laser, the atom-
field coupling strength is monitored continuously. We observe a position-dependence and
atom-number dependence of the coupling strength by sweeping one and two atoms through
the cavity field. By improving the localization of a single atom, it should become possible
to gain a full control over the coupling strength. Moreover, this method could be used
to detect the intra-cavity motional dynamics of a single atom. By extending this method
to multiple atoms, it might become feasible to observe cavity-induced motional collective
effects [70].

A different method to observe the atom-field interaction, based on the measurement
of the final hyperfine atomic state, allows us to detect interaction with the cavity field,
and at the same time avoid the heating of atoms during the interaction. Moreover, the
measurement of the final atomic state is an essential ingredient of the detection of entangled
and multi-atom correlated states. Together with our ability to selectively initialize and
manipulate the internal state of individual atoms [17], we are approaching our ultimate
goal – the entanglement of two atoms.



Chapter 3

Quantum jumps and normal mode
splitting

3.1 Introduction

The ability to experiment with individual quantum-mechanical objects makes possible to
observe a number of interesting effects, which are completely hidden while experimenting
with a large ensemble of identical quantum-mechanical objects. In particular, the obser-
vation of quantum jumps – dynamic projection of a quantum-mechanical system on its
eigenstates, is enabled. Quantum jumps have been demonstrated on a variety of systems:
The fluorescence of single trapped ions or of single molecules ceases and reappears abruptly,
caused by quantum jumps to and from a “dark” metastable state [73, 74, 75, 76]. A single
electron has been shown to reveal quantum jumps between Fock states of oscillatory cy-
clotron motion [77]. Recently, the dynamics of the number of microwave photons trapped
in a superconducting cavity has been measured, using the Ramsey phase shift of Rydberg
atoms crossing the cavity field [71, 78].

Here, I will present the quantum nondemolition (QND) measurement of the internal
state of an individual neutral atom strongly coupled to the cavity field. As will be discussed
in Section 3, this QND measurement method facilitates the observation of quantum jumps
between the hyperfine ground states of single atoms, visible in the telegraph signal of the
cavity transmission. Analysis of the telegraph signal as well as quantum jump correlations
using second order correlation function discloses the dynamical and statistical properties
of quantum jumps, which will be discussed in Section 3.2.3.

In Section 3.3 the adoption of the QND detection method for measuring of the excita-
tion spectrum of a strongly interacting atom-cavity system will be presented. The latter
shows a signature which is known as vacuum Rabi splitting or normal-mode splitting [14].
Although the observation of normal-mode splitting for the case of single-atom-cavity sys-
tem has been reported from several groups [79, 51], so far it has been measured via the
state of the output light field. Here, I will present the first observation of the normal-mode
splitting detected via the atomic state.

51
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3.2 Quantum jumps

3.2.1 Intra-cavity quantum nondemolition (QND) detection of the
atomic state

Our atom-cavity system provides a unique opportunity to detect the hyperfine state of a
single atom without losing the atom, and ideally without changing its hyperfine state. In
principle, this method formally fulfills the requirement of a QND measurement [80, 81].

There exist two classes of QNDmeasurements - projective measurements and weak mea-
surements. Generally, a projective QND measurement of an observable A of a quantum-
mechanical system fulfills the following criterion [80, 82, 83]: The result of each measure-
ment of A yields a result identical to the first measurement, i. e. [Â(ti), Â(tj)] = 0 for
different times ti and tj . Moreover, if ti and tj are chosen arbitrarily, then the measure-
ment is called a continuous projective QND measurement. In contrast, a so-called discrete
QND measurement can only be performed at strictly defined moments of time [80].

The requirement that the observable Â must be preserved during the measurement and
the evolution between successive measurements imposes the following conditions:

1. The observable A must be a constant of motion, meaning that it’s operator should
commute with the Hamiltonian of a freely evolving system.

2. The probing meter measuring A must not depend on the conjugate operator of Â,
i. e. Â should commute with the interaction Hamiltonian.

Due to the Heisenberg uncertainty principle, which sets a lower bound on the prod-
uct of uncertainties of conjugate observables, a projective QND measurement completely
erases the information about the observable conjugate to A. For example, measuring the
momentum of free particle makes its position completely unpredictable after the measure-
ment.

In contrast, a weak QND measurement probes an observable A such that only partial
information about its state is obtained, each time imposing the minimal perturbation on the
conjugate variable allowed by the Heisenberg uncertainty principle. Consecutive repetition
of a weak QND measurement will eventually project the measurement observable onto one
of its eigenstates. Thus, repetitive application of a weak QND measurement is equivalent
to exertion of a single projective measurement. A weak QND measurement was applied on
atomic ensembles to nondestructively record Rabi oscillations between atomic hyperfine
states [84, 85]. In a different experiment the coherent state of the intra-cavity microwave
field was gradually collapsed to a well-defined photon number state by measuring the phase
of velocity-selected beam of Rydberg atoms traversing the cavity field [78].

Here I report on a continuous projective QND measurement of the spin state of a
single atom. It is directly inferred from the cavity transmission signal. As discussed
in Section 2.3.1, an atom in the F = 4 state strongly couples to the cavity field tuned
close to the F = 4 −→ F ′ = 5 transition, and therefore inhibits the transmission of the
resonant probe laser due to the induced normal mode splitting. In contrast, an atom in
the F = 3 state is detuned by 9GHz from the cavity resonance, which is much larger than
the atom-cavity coupling strength g. Therefore it does not couple to the cavity, leaving
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Figure 3.1: Detection of the atomic spin state using the cavity transmission. (a) Cavity
transmission as an atom in the F = 4 state at time t = 43ms is inserted into the centre
of the cavity mode, while the cavity mode is filled with probe laser light only. In order to
verify the presence of the atom after the state detection the repumping laser is switched
on after t = 113ms. (b) The cavity transmission averaged over 69 experimental runs.
The transmission is fitted with an exponential decay (solid red line) with an average
dwell time in the F = 4 state of τtr = (7± 0.3)ms. (c) Schematics of the relevant energy
states. The cavity resonance is blue detuned from the F = 4 −→ F ′ = 5 transition by
∆c/2π ≈ 44MHz.

it’s transmission unaffected. Thus, the intensity of the transmitted probe laser gives a
direct indication of the atomic state. This method has also been reported in the group of
H. Kimble for single measurements but has not been applied continuously [86].

Figure 3.1(a) shows a single experimental trace of the probe laser transmission as a
function of time while a single atom in the F = 4 state is coupled into the cavity field. The
cavity-atom detuning is ωc − ωa ≈ 44MHz and the probe-cavity detuning is ωp − ωc = 0.
As expected, the insertion of the atom at t = 43ms results in an abrupt drop of the
transmission, in this case to about 21% of its initial level. After 9ms the transmission
signal jumps to the initial transmission level, caused by the pumping of the atom into
the “dark” F = 3 state, which is a quantum jumps from F = 4 to F = 3 (see next
section). This transfer happens in the following way: The probe laser, tuned close to the
F = 4 −→ F ′ = 5 transition, can off-resonantly excite an atom into the F ′ = 4 state. This
happens after on average 102 scattering events. From the F ′ = 4 state the atom decays
with comparable probabilities to both of the ground states, and therefore will be eventually
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transferred to the dark F = 3 state.
As the high transmission of the probe laser can also indicate the absence of the atom,

we need to distinguish loss of the atom from transfer to the F = 3 state. This is done by
switching on the repumping laser at about 113ms. If the atom is still inside the cavity,
the repumping laser transfers the atom back in the F = 4 state, and the transmission
signal reveals the presence of the atom inside the cavity. Finally, at t = 143ms the atom
is transported out of the cavity and the transmission rises to the level of the empty cavity.

Figure 3.1(b) shows the result of averaging over 69 such experimental traces, selected
for survival of atom. The exponential form of the transmission signal is explained by simple
statistical argumentation: According to Poisson distribution, the probability for an atom
to remain in the F = 4 state is equal to PF=4 = exp(−t/τtr), where τtr is the average
transfer time from the F = 4 state to the F = 3 state. Consequently, the probability for
an atom to be transferred to the F = 3 state is equal to PF=3 = 1 − exp(−t/τtr), which
determines the form of the averaged transmission signal.

The exponential fit yields a transfer time of τtr = (7± 0.3)ms, which is determined
by the intra-cavity probe field intensity. Hence, the measured state is changed by the
measurement process. This sets a limitation on the detection efficiency: At a given trans-
mission count rate, the level of erroneous detection is determined by the the ratio between
the decay time and time which is used to determine the atomic state. For instance, at the
current value of τtr detecting the atomic state for 1ms would change its hyperfine state
in about 13% of the cases. The erroneous detection could be suppressed by improving
the photon detection efficiency, which for current experiments is equal to about 1.3%, see
Section 1.3.3. This will allow us to use a lower probe laser power at the same transmission
level, resulting in an increase of the transfer time τtr.

The presented method to detect the atomic state formally fulfills the requirement of
a projective QND measurement. Using our method we can detect the atomic spin state
almost without changing it. The imperfection of our atomic state measurement method
is that it induces transitions from the F = 4 state to the F = 3 state at the rate, which
is however significantly smaller than the inverse of our current detection time. It seems
feasible to suppress photon scattering by improving the photon detection efficiency and
operating in an even deeper dispersive regime, i. e. by tuning the cavity further away from
the atomic transition.

3.2.2 A random telegraph signal of quantum jumps

The QND measurement method, presented above, enables the observation of quantum
jumps between two spin states of an atom: Since the cavity transmission yields the state
of the atom, its changes can be monitored continuously by observing the transmission
signal.

Figure 3.2 shows a random telegraph signal revealing the dynamics of the spin state of
a single atom kept inside the cavity for about 400ms. The atom-cavity detuning and the
probe-atom detuning are the same as for the measurement in Section 3.2.1. As discussed
above in the previous section, the probe laser light induces transitions from the F = 4
state to the F = 3 state. In order to depopulate the F = 3 state, a weak repumping laser
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F=3

F=4

Figure 3.2: Quantum jumps of a single atom between the ground states F = 3 and
F = 4, revealed in a telegraph-like cavity transmission signal. A weak repumping laser
is applied along the dipole trap, bringing the atom at a low rate back to the F = 4 state.

is shined in along the dipole trap axis, tuned close to the F = 3 −→ F ′ = 4 transition, and
transfers the atom to the F = 4 state. The intensity of this laser is adjusted carefully to
ensure that the rate of F = 4 −→ F = 3 transitions is comparable to jumps from F = 3
to F = 4. The time resolution of the telegraph signal is determined by the photon counter
binning time of tbin = 2ms.

3.2.3 Characterization of quantum jumps

In order to identify quantum jumps, partially masked by the statistical and technical noise,
I have analyzed the acquired data with an algorithm, allowing to extract the temporal
evolution of atomic spin states from the random telegraph signal.

Statistics of atomic state detection

Figure 3.3 shows the histogram of the transmission levels extracted from 163 experimental
traces. It displays two peaks, corresponding to the cavity transmission for the atom in the
F = 4 and F = 3 states. For each peak a fit with a Gaussian function is shown. The dotted
line is the sum of both Gaussians. As a comparison the dashed line stands for the calculated
distribution, taking into account only the Poisson shot noise of the transmission signal
and adjusted to the height of the corresponding peaks of the histogram. The measured
distributions are noticeably broader than the Poisson distributions. This is essentially
caused by the variation of the atom-cavity coupling strength for the left peak and by the
imperfections of the cavity frequency stabilization servo loop for the right peak. On the
one hand, variation of g results in variation of the corresponding transmission levels. On
the other hand, cavity frequency variations result in the mismatch between its frequency
and the probe laser frequency, causing the broadening of the empty cavity transmission
signal. Notably, the peaks corresponding to the states F = 4 and F = 3 partially overlap,
so that the state of the atom cannot be inferred directly from the telegraph signals without
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Figure 3.3: Histogram of transmission counts within 2ms bins, evaluated from 163
quantum jumps records, each circa 400ms long. Peaks of the histogram, fitted with
Gaussian distributions, correspond to the F = 4 (red line) and F = 3 (blue line) states.
The black dotted line shows the sum of these Gaussians. The dashed line indicates the
ideal case of pure statistically limited Poisson distribution. The transmission counts in
the region (a) and (b) correspond to the state F = 4 and F = 3, respectively.

additional analysis.

Digitization of quantum jumps

From the distribution of the transmission histogram in Figure 3.3, the intervals are defined
which are used to assign the atomic spin state to each transmission level of the telegraph
signal.

The region of transmission values corresponding to the F = 4 state, see Figure 3.3 (a),
is defined such that only 1% of the values for an atom in F = 3 lies in this region. Vice
versa, the region (b) Figure 3.3 is chosen to contain only 1% of the transmission values
related to the F = 4 state and is therefore used to indicate F = 3. In the overlap region,
which contains about 4% of all time bins, the transmission level cannot be assigned to any
of the states. In this case the algorithm compares previous and subsequent transmission
values (see Figure 3.4). If they correspond to the same state (Figure 3.4 (a)), then the
current value is interpreted as noise, since the probability of two consecutive quantum
jumps is considerably smaller than the probability for the transmission signal to be in
the intermediate range1. If the previous and subsequent value correspond to different

1The probability of two consecutive quantum jumps is equal to t2bin/ (2τF=4τF=3) = 0.9%, where τF=4

(τF=3) is the dwell time in the F = 4 (F = 3) state, defined in Equation 3.2 (Equation 3.3)
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Figure 3.4: Schematic illustration of the algorithm. (a) If previous and subsequent
values (green dots) of the transmission correspond to the same atomic state then the
middle value, lying in the intermediate region, is interpreted as noise. (b) In the case
when the previous and the subsequent value are different, the middle value is interpreted
as a quantum jump. Note, that the resolution of the digitized signal is 1ms comparing
to 2ms binning time of the recorded traces. Therefore, as it is displayed in (c), when
consecutive transmission levels correspond to different spin states (at t = 3ms the state
is F = 4, and at t = 5ms the state is F = 3) the quantum jump is interpreted to happen
in between, i. e. at t = 4ms.

states (Figure 3.4 (c)) then the middle value is interpreted as a quantum jump. Note,
that the digitized signal has the 1ms time resolution, whereas the telegraph signals are
recorded with 2ms bin size. It allows to discriminate between the situations displayed in
Figure 3.4 (b) and Figure 3.4 (c), where in the latter case two consecutive transmission
values correspond to different spin states. This algorithm enables the reconstruction of the
evolution of the atomic state from the recorded transmission signal reasonably well.

Figure 3.5 illustrates typical examples of the algorithm operation. The connected dots
are the experimental traces and the red solid line is the output of the algorithm with two
discrete states: low (F = 4) and high (F = 3).

Second-order correlations of the random telegraph signals

A powerful tool to characterize the dynamics of quantum jumps is the second-order corre-
lation function g(2). It is defined as [87]

g(2)(τ) =
〈I(t) I(t + τ)〉

〈I(t)〉2 , (3.1)

where I(t) in our case is the intensity of the cavity transmission signal. Here angle brackets
stand for temporal averaging. The g(2)(τ) function evaluates the degree of correlation in
the telegraph signal for different times τ and allows to directly extract the average dwell
times in either of the spin states. Figure 3.6 shows the second order correlation, evaluated
from 163 digitized telegraph signals. The solid line is an exponential fit with a decay time
of τcor = (6.7± 0.1)ms.
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Figure 3.5: Typical examples of quantum jumps records and their digitization (red
line).

Dwell times

Using the second-order correlation function the average dwell times, i. e. the average dura-
tions an atom spends in the corresponding spin state can be extracted from the digitized
telegraph signals [88]. In principle, the dwell times can be directly extracted from the
recorded telegraph signal. However, the variation of the transmission levels due to statisti-
cal and technical noise, and varying coupling strength, can distort the correlation function
and hence falsify the resulting dwell times2.

For the digitized telegraph signal, jumping between zero and one, the expression for

2Statistical noise leads to overestimation of g(2)(0), whereas technical noise may lead to appearance of
the local maxima in the shape of g(2)(τ) which are not reflecting the dynamics of the atomic internal state.
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Figure 3.6: Second-order correlation function evaluated from 163 digitized traces of
quantum jumps. The solid line in red is an exponential fit with a time constant of
τcor = (6.7± 0.1)ms.

the average dwell times in the F = 4 state τF=4 and in the F = 3 state τF=3 is given by

τF=4 = g(2)(0) τcor = (9.4± 0.1) ms, (3.2)

τF=3 =
g(2)(0)

g(2)(0)− 1
τcor = (23.5± 0.4) ms . (3.3)

The average dwell time in the F = 4 state τF=4, extracted from the correlation function
through Equation 3.2, is notably larger than the τtr obtained from the exponential in
Figure 3.1. A qualitative explanation is provided by the following consideration: For data
in Figure 3.1 the observation of the atomic spin was limited to a single quantum jump
which took place on a timescale of several ms, immediately after inserting an atom into
the cavity mode. In contrast, for the telegraph signal the total observation time was as
long as 400ms. During this macroscopic time interval the atom is subjected to competitive
cooling and heating mechanisms, which, as argued in [68] can cause the atom to reside in
a region of a weaker coupling and, in addition, modify its temperature. Due to this fact
both intra-cavity photon number and the local probe laser intensity change at the position
of the atom, which in turn alters the scattering rate by the atom.

As comparison, the average dwell times in either of the states can be directly extracted
from the digitized telegraph signal. The histograms of dwell times are presented in Fig-
ure 3.7. The linear fit implies τ∗F=4 = (9.1± 0.3)ms and τ∗F=3 = (20.6± 0.8)ms. Both
dwell times agree reasonably well with the values extracted from g(2) in Equation 3.2 and
Equation 3.3.
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Figure 3.7: Histograms of the dwell times in the F = 4 and in the F = 3 states on loga-
rithmic scale. The average dwell times τ∗F=4 = (9.1± 0.3)ms and τ∗F=3 = (20.6± 0.8)ms
are extracted from a linear fit.

Antibunching of quantum jumps

A remarkable attribute of quantum jumps exhibited by a single atom is the antibunching
in their occurrence. Immediately after a single atom experienced a quantum jump the
probability to undergo the next such jump in the same direction vanishes, because the
atom should be pumped back to its original state in the first place. In contrast, this
phenomenon disappears when experimenting with an ensemble of atoms. Since each atom
undergoes quantum jumps at uncorrelated and random moments of time, the ensemble-
average atomic state would ideally exhibit a continuous variation.

In order to quantify this phenomenon, I have evaluated the second-order correlation
function of quantum jumps from F = 4 to F = 3 (from F = 3 to F = 4) g

(2)
4→3 (g(2)

3→4)
from the digitized telegraph signals. It is analogous to the intensity correlation, defined in
Equation 3.1, but here I(t) is the intensity of the corresponding quantum jumps: For the
quantum jumps from F = 4 to F = 3, I(t) = I4→3(t) is equal to one whenever the atom
undergoes a jump from F = 4 to F = 3, and zero otherwise. In analogy, the I3→4(t) is
defined.

The resulting correlation functions of I4→3(t) and I3→4(t) are presented in Figure 3.8.
As expected, both g

(2)
4→3 and g

(2)
3→4 are approaching zero when τ goes to zero, providing a

clear indication of antibunching. As τ increases the correlation function increases exponen-
tially towards the value of one. It is interesting to note that the timescale of the exponential
increase for both cases is defined by the same expression τF=4τF=3/(τF=4 + τF=3), derived
in [88]. The equality of both timescales can be understood by a simple symmetry argu-
ment: after an atom jumped from the F = 4 state to the F = 3 state it should be first
transferred back to the F = 4 state before the next F = 4 −→ F = 3 jump can take place,
and vice versa for the F = 3 −→ F = 4 jumps. Thus, the average duration between two
consecutive jumps is the same for both jump directions.

The solid lines are the exponential fits of the form 1 − exp(−τ/tanb), where the
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Figure 3.8: Second-order correlation g2(τ) for quantum jumps for (a) the F = 4 to the
F = 3 state, and vice versa from the F = 4 to the F = 3 state (b). The sold lines in
red are the results of the exponential fit of the from 1− exp(−τ/tanb). The exponential
decay time is tanb = (6± 1)ms in both cases.

outcome of the fit tanb = (6± 1)ms is in good agreement with directly calculated
(τF=4τF=3)/(τF=4+τF=3) = (6.7± 0.1)ms, where τF=3 and τF=4 are the values calculated
in Equation 3.2 and Equation 3.3.

3.2.4 Towards quantum jumps with more than one atom

The experiments described in this Chapter so far demonstrate the observation of quantum
jumps of a single atom in the cavity. In the following, I would like to present an experiment
where we simultaneously couple two atoms to the cavity field and observe conditional
dynamics of their spin states.

The implementation of quantum gate operations using neutral atoms requires the avail-
ability of strong coherent coupling. Unlike the case of ions, where long-range Coulomb-like
interaction is naturally available, neutral atoms interact only very weakly, and an addi-
tional effort has to be made in order to induce strong interaction in controlled manner. In
cavity-QED experiments, the interaction is realized by coupling the atoms to the field of
the resonator, which mediates the interaction between them. This can be described as an
effective atom-atom coherent collision with the size of the collision cross-section enlarged
to the size of the cavity mode.

In the case of two atoms simultaneously coupled to the resonator, each atom modifies
the light field intensity in the resonator, which in turn affects the interaction of the other
atom with the field. The dynamics of this conditional atom-cavity interaction can be
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a b

Two   (one  ) atoms in F=4
inserted into the cavity

Figure 3.9: Averaged cavity transmission for one (◦, averaged over 69 repetitions) and
two atoms (•, averaged over 23 repetitions) simultaneously coupled to the cavity. In the
region (a) atoms are inserted while the repumping laser is switched off. By comparing
the initial transmission levels the average dwell time τ2:F=4 for each atom in F = 4 in
the case of two inserted atoms can be calculated. In order to check the atom survival in
the region (b) the repumping laser is switched on.

visualized by observing the cavity transmission while coupling two atoms in the F = 4
state to the resonator: Since only atoms in the F = 4 state couple to the resonator, the
probability of a quantum jump to occur from F = 4 to F = 3 depends on the number
of atoms in F = 4. This process schematically visualized in Figure 3.10 (d), where two,
one, and no atoms in the F = 4 state correspond to different cavity transmission levels,
determining the atomic scattering rate from the intra-cavity probe light and the resulting
probability of a quantum jump. Thus, the rate of quantum jumps becomes conditional on
the state of both atoms.

In our experiment, we position two atoms in F = 4 at the edge of the cavity mode, about
15µm away from the cavity axis. We select only those events where the distance between
the atoms was below 8µm. At the edge of the mode the intra-cavity photon number
depends significantly on the state of each atom. We monitor the probe laser transmission
for about 80ms while the repumping laser is switched off. The dots in Figure 3.9 show
the result of an ensemble averaging over 23 of such traces. As a comparison, the open
circles are obtained by averaging over 69 traces where a single atom in the F = 4 state
was positioned at the edge of the resonator. The resulting average dwell time for a single
atom is τ1:F=4 = (15± 1)ms.

The dynamics of the transmission signal for the case of two atoms is well explained by
a simple model without free parameter, which assumes that the rate of quantum jumps
depends on the state of both atoms. When both atoms are in F = 4, the average dwell time
for each atom τ2:F=4 is extracted by comparing the initial transmission levels for one and
two coupled atoms (see Figure 3.9), which are inversely proportional to the dwell times.
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Figure 3.10: Simple model, describing the quantum jumps of two atoms with a three
different scenarios: After duration t (a) both atoms remain in F = 4; (b) one atom is
pumped into the state F = 3 or (c) both atoms are transferred in F = 3 state. As it is
sketched in (d), the intracavity probe intensity depends on the number of atoms in the
F = 4 state.

This yields τ2:F=4 = (24± 1)ms.
Based on the knowledge of the average dwell times for both the one and the two-atom

case, I have evaluated a simple stochastic process governing the temporal evolution of
the transmission. In Figure 3.10 three possible scenarios of the spin evolution during an
observation interval of duration tobs are presented, where two atoms have initially been
prepared in F = 4: (a) Both atoms remain in F = 4, (b) one of the atoms is transferred
to F = 3, or (c) both atoms are flipped to the F = 3 spin state. The probabilities of
these processes as a function of time are calculated in order to obtain the theoretical time
evolution of the cavity transmission.

(a) This is the simplest case, having the following probability evolution

P2(t) = exp
(
− 2t

τ2:F=4

)
.

(b) This scenario can be calculated in the following way: Both atoms stay in the state
F = 4 until time t′ < t, which has the probability of P2(t′). Then one of the atoms is
transferred to the F = 3 state within the infinitesimal interval dt′ with the probability
2dt′/τ2:F=4. For the remaining duration of t− t′ the other atom stays in F = 4 and
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Figure 3.11: Averaged transmission of the probe laser as two atoms in the F = 4 state
are coupled to the edge of the resonator mode (same data as in Figure 3.9). The solid
line is the expected theoretical dependence for conditional dynamics of two atoms. For
comparison, the dashed (dotted) line assumes an atom number independent average dwell
time τ , yielding a transmission signal of the form given in Equation 3.6, where τ = τ1:F=4

(τ = τ2:F=4). They form an upper (lower) bound for the rate of quantum jumps.

the average dwell time in F = 4 is reduced to τ1:F=4. The corresponding probability
is exp [−(t− t′)/τ1:F=4]. Thus, the probability that after duration t one atom has
been transferred (at time t′) to the F = 3 is

dP1(t) = exp
(
− 2t′

τ2:F=4

)
2 dt′

τ2:F=4
exp

(
− t− t′

τ1:F=4

)
. (3.4)

And the expression for the probability of the process in Figure 3.10 (b) is obtained
by integrating Expression 3.4 over all possible 0 < t′ < t

P1(t) =
2

τ2:F=4

∫ t

0
exp

(
− 2t′

τ2:F=4

)
exp

(
− t− t′

τ1:F=4

)
dt′

=
2τ1:F=4

τ2:F=4 − 2τ1:F=4

[
exp

(
− 2t

τ2:F=4

)
− exp

(
− t

τ1:F=4

)]

(c) In analogy to the case (b), the probability for both atoms being transferred to the
F = 3 state after the duration t is given by

P0(t) =
2

τ2:F=4

∫ t

0
exp

(
− 2t′

τ2:F=4

) [
1− exp

(
− t− t′

τ1:F=4

)]
dt′

= 1− τ2:F=4

τ2:F=4 − 2τ1:F=4
exp

(
− 2t

τ2:F=4

)
+

2τ1:F=4

τ2:F=4 − 2τ1:F=4
exp

(
− t

τ1:F=4

)
.
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Taking this into account, the theoretical transmission dependence is equal to

I(t) = P0(t)I0 + P1(t)I1 + P2(t)I2, (3.5)

where I0, I1, and I2 are the respective transmissions corresponding to the empty cavity
(both atoms in F = 3), one atom in F = 4 and two atoms in F = 4, which are extracted
from Figure 3.9. This dependence is depicted as red solid line in Figure 3.11. The ex-
perimental data in this figure are for the two atom case, the same as in Figure 3.9. For
comparison, the dotted and dashed lines assume an atom number independent average
dwell time throughout the observation. In this case, by setting τ2:F=4 = τ1:F=4 = τ in the
Equation 3.5, the transmission signal has the form

I(t) = I0

[
1− exp

(
− t

τ

)]2

− 2I1

[
exp

(
−2t

τ

)
− exp

(
− t

τ

)]
+ I2 exp

(
−2t

τ

)
. (3.6)

The dashed line is calculated using τ = τ1:F=4 and for the dotted line τ = τ2:F=4 is used.
In order to quantify the degree of consistency with experimental data, the χ2 for all three
cases is evaluated. The resulting value of χ2 is a factor of 2 smaller for the case of atom-
number dependent model than in the cases where the average dwell time is assumed to be
atom-number independent. The transmission calculated from our model fits better to the
measured data, providing the indication of conditional dynamics of the atomic spins.

3.3 Measuring the normal mode splitting via the atomic state

The most elementary example of interaction between matter and light is a single atom
interacting with a single photon. A consequence of strong, coherent atom-light interaction
is the occurrence of dressed states, appearing as a normal-mode splitting. It allows not only
to gain a sophisticated understanding of atom-field coupling and to control spontaneous
emission [89, 90, 91], but also forms the basis for many proposals, which could allow the
basic steps of quantum information processing to be realized.

The technological advances in the recent decade has allowed the observation of normal-
mode splitting in numerous systems, ranging from a quantum well coupled to a semicon-
ductor microcavity [92] to transmission line resonators interacting with a superconducting
qubit [93]. In systems involving the interaction of a single neutral atom with a high finesse
optical resonator, the normal-mode splitting so far has been observed by monitoring the
excitation spectrum of coupled atom-cavity system via photons leaking from the cavity
[51, 79]. Here, I will present a measurement of the normal-mode splitting for the first time
observed via the detection of atomic state.

3.3.1 Experimental sequence

The experimental procedure to measure the normal-mode splitting via the atomic state
involves two major parts: First, the mapping of the atomic excitation onto the atomic state
is induced. Secondly, the final state of the atom is detected by performing a nondestructive
measurement.
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Figure 3.12: Normal-mode splitting measurement sequence. (a) The cavity resonance
frequency and (b) the sequence of laser pulses as a function of time. (c) Flow diagram
shows the succession of the experimental steps.

In order to map the atomic excitation on the atomic state, the cavity is tuned in reso-
nance with the F = 4 −→ F ′ = 4 transition. The excitation of coupled atom-cavity system
is shared between the photonic excitation of the cavity field and the atomic excitation, i. e.
the population of the F ′ = 4 state at this cavity frequency. From this state atom decays
to either ground state with comparable probability. Therefore, the measurement of the
final atomic state gives a direct indication of the population in F ′ = 4, i. e. the atomic
excitation. In order to detect the atomic state we need to tune the cavity resonance close
to the F = 4 −→ F ′ = 5 transition, as discussed earlier in the Section 3.2.1. Therefore,
the experimental procedure for the measurement of the normal-mode splitting involves the
deterministic sweep of the cavity resonance.

The experiment starts by transporting a single atom into the center of the cavity mode.
The order of the subsequent experimental steps, see Figure 3.12, is given below:

1. The presence of the atom is detected and the atom-field coupling strength is mea-
sured by observing the cavity transmission with its resonance frequency tuned about
44MHz blue from the F = 4 −→ F ′ = 5 transition. The coupling strength is ex-
tracted by averaging over 9ms of the transmission signal.

2. In order to minimize the variation of the coupling strength during the map-
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ping of the normal-mode splitting, the atom is optically pumped into the out-
ermost Zeeman sublevel F = 4,mF = 4. For the corresponding π-transition
F = 4,mF = 4 −→ F ′ = 4,mF = 4 the expected maximum coupling strength equals
12MHz.

3. In order to map the atomic excitation onto the atomic hyperfine state we first tune the
cavity resonance about 10MHz blue with respect to the F = 4 −→ F ′ = 4 transition.
The fast sweep of the cavity resonance stresses the cavity stabilization loop and can
cause fluctuations of the cavity frequency, and thus fluctuations of the intra-cavity
lock laser intensity. We therefore introduce an additional waiting interval of 0.5ms
duration, sufficient for the cavity frequency fluctuations to decay. Second, the probe
laser pulse with a variable frequency around the cavity resonance is injected for
70µs3. It is linearly polarized along the quantization axis and therefore can induce
π-transitions and excite the atom to the F ′ = 4,mF = 4 state, from which it can
decay to either ground state.

4. In order to read out the final atomic spin state the cavity frequency is shifted back
to its initial value, 44MHz blue detuned from the F = 4 −→ F ′ = 5 transition. The
transmission of the resonant probe laser is monitored for 10ms while the repumping
laser is switched off. The atomic state is determined from the first 2ms of the probe
laser transmission.

In order to reduce the data acquisition time and suppress unwanted effects caused by the
drifts of experimental parameters, the procedure listed above is performed repeatedly with
each single atom. For a fixed number of repetitions the speed-up of the data acquisition is
determined by the ratio between the preparation duration of a single atom inside the cavity
field and the duration of subsequent experimental cycle. Whereas the total time required
to place a single atom inside the cavity is on the order of 4 s, a single cycle to measure
the normal-mode splitting as outlined above lasts only 35ms. Therefore, the speed-up
almost equals to the number of repetitions. The upper limit on this number, however,
is determined by the survival of the atom during the experimental sequence. Thus, the
number of repetitions is chosen as a tradeoff between achieving maximal speed-up and
avoiding repetitions where the atom has already been lost, and equals to 40 for the current
experiments.

3.3.2 Stability of the coupling strength

As discussed in Chapter 2, the atom-cavity coupling strength among other things depends
on the relative position of the dipole trap along the z-axis with respect to the cavity
mode, see Figure 2.5. We ensure maximum possible atom-cavity coupling by adjusting
the dipole trap position in a preparatory experiment. Moreover, since the mapping of the
normal-mode splitting and the read out of the atom-field coupling strength are performed

3To simplify the analysis of the data, the sequence duration has been kept constant. Since the duration
of the probe laser pulse had to be adjusted during the experiment, we reserved the interval of 2.5ms for
its variation.
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at different cavity frequencies, we have to verify the stability of the coupling strength with
respect to the shift of the cavity resonance.

Controlling the coupling strength along the cavity axis
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Figure 3.13: Scanning the atom cavity coupling strength along the cavity axis. The
dots show the normalized cavity transmission as a function of displacement of the vertical
dipole trap along the cavity axis. Each data point is averaged over 33 to 36 single atom
experiments. The solid blue line is the result of a simple numerical model, taking into
account the change in the transmission caused by the modulation of the difference in
wavelengths between the lock and the probe laser standing waves.

In order to maximize the atom-cavity coupling strength along the z-axis, we shift the
vertical position of the dipole trap by tilting its mirrors with PZTs, see Figure 1.10 in
Chapter 1, and for each position observe the transmission of the cavity while coupling a
single atom to the center of the cavity mode.

Figure 3.13 shows the transmission while atom resides inside the cavity, normalized to
the empty cavity transmission, as a function of the vertical position of the dipole trap.
Each point of the graph is averaged over 33 to 36 experiments with a single atom. As
expected, we observe a strong variation of the coupling strength over the beat length of
the lock and probe laser standing waves, as already anticipated in Figure 2.5. The solid
blue line is the result of simple model of the change in the transmission signal caused by
the modulation of g due to the spatial bitting between the lock and probe laser standing
waves.

In principle, by scanning the position over the range exceeding a single beat length,
it should be possible to observe a periodic oscillation of the transmission signal. Hoverer
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this observation was not possible due to the limited range of the PZTs of the dipole trap
mirrors.

Verification of the coupling strength stability

In our measurement of the normal-mode splitting the detection of the coupling strength
and the mapping of the splitting are separated by intermediate steps, such as the sweep
of the cavity resonance, optical pumping, and switching off the probe laser. Each of these
steps could cause heating and thus a reduction of the coupling strength.

We have investigated this phenomenon in preparatory experiments, where we have
monitored the transmission of the cavity after inserting an atom into the cavity center,
and again after performing all the intermediate steps. By comparing the transmission
levels the stability of the coupling strength is monitored.

Figure 3.14: Coupling strength stability after switching off the probe laser. (a) The final
normalized cavity transmission versus the initial transmission for the optimal vertical
position of the dipole trap. (b) The transmission of the probe laser averaged over the
traces, which are used for (a). The stripes represent the intervals over which the initial
and final transmission are averaged.

Stability in absence of probe laser cooling In the first experiment we monitor the
stability of the coupling strength in absence of the cooling action of the probe laser. As
was discussed in References [25, 94], in absence of the probe laser an atom is exposed to
the fluctuations of the intra-cavity lock laser standing-wave dipole trap, which may induce
a parametric heating and delocalize the atom. In turn, this results in a decline of the
effective coupling strength.

Although the measured lifetime of the atom inside the cavity in the absence of the
probe laser is about 130ms (see Figure 1.16 in Chapter 1), much larger than the interval
in the experiment sequence of normal-mode splitting where the probe laser is off, we had
to verify the stability of g in an independent experiment.

In this experiment we first place a single atom in the center of the cavity field and
observe the cavity transmission for 20ms (here denoted by initial transmission). Then
the probe laser is switched off for the next 10ms, as in the experimental sequence (see
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Figure 3.12), followed by the second transmission observation for another 20ms (final
transmission). Figure 3.14 (a) shows the normalized averaged final transmission versus
the normalized averaged initial transmission, each averaged over 10ms interval as shown
in Figure 3.14. The measurement is performed for the optimal position of the dipole
trap along the z-axis, providing the maximum coupling strength. The transmission drops
below 30% of the empty cavity transmission for the most of the cases and exhibits clear
correlations.

Figure 3.14 (b) shows the transmission signal averaged over 35 experimental records,
corresponding to the data in Figure 3.14 (a). The stripes represent the intervals over which
the final and initial transmission are averaged. The average initial normalized transmission
is 0.17, which is close the final normalized transmission of 0.19. Combining this with the
observed correlation of the transmission signals, we have verified that the coupling strength
changes only marginally in the absence of the probe laser cooling for 10ms.

Figure 3.15: Stability of the coupling strength during the cavity frequency chirp. (a)
The normalized cavity transmission after the frequency chirp of the cavity versus the
normalized cavity transmission before the chirp. (b) The transmission of the probe laser
averaged over the traces, which are used for (a). The stripes represent the intervals over
which the initial and final transmission are averaged.

Stability with respect to the cavity frequency sweep The sweep of the cavity
frequency from the F = 4 −→ F ′ = 5 transition to the F = 4 −→ F ′ = 4 transition within
3ms corresponds to the sweeping rate of about 105 linewidths per second. Although
this sweep is conducted adiabatically, i. e. by using a sin2–like sweep form, it induces
a significant strain on the cavity stabilization loop, which can cause fluctuations of the
cavity resonance with respect to the lock laser frequency. Since the intra-cavity intensity
of the lock laser depends on the match between its frequency and the cavity resonance, the
relative frequency fluctuations would cause the intra-cavity lock laser intensity fluctuations.
As discussed in the previous paragraph, this can cause the reduction of coupling strength
g.

Figure 3.15 (a) shows the final cavity transmission versus initial transmission be-
fore and after a frequency chirp from the F = 4 −→ F ′ = 5 transition frequency to the
F = 4 −→ F ′ = 4 transition and back. Remarkably, during this measurement we observe
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a good correlation of the cavity transmission levels, indicating no significant change of
the atomic position during the sweep of the cavity frequency. Figure 3.15 (b) shows the
average over the transmission traces used for Figure 3.15 (a).

Variation of the atom-cavity coupling during a single experimental sequence
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Figure 3.16: Dynamics of the coupling strength during the acquisition of a single data
point of the normal-mode splitting. The color bar stands for the relative transmission
(normalized to the empty cavity transmission) during the atom-field coupling strength
detection stage. Blue areas indicate a large transmission drop. Red areas indicate the loss
of the atom. Although for some experimental runs the atom survived all 40 repetitions,
in most sequences it was lost by the end of the experimental run.

After completing these preparatory steps, it is important to retrieve the dynamics
of the coupling strength during the execution of the entire experimental sequence of the
normal-mode splitting measurement. In particular, at a certain stage of the sequence the
probe laser is switched off and the detuning of the cavity frequency is performed at the
same time. An additional possible distortion of the coupling strength is due to acoustic
vibrations, caused by the shutters of the repumping lasers periodically switching on and
off during the experimental procedure. These vibrations may affect the frequency stability
of the probe laser, which is the first reference element of the cavity frequency stabilization
servo loop.

We conduct the experiment according to the procedure, sketched in Figure 3.12. Fig-
ure 3.16 shows a typical distribution of the transmission acquired during the detection
phase of the atom-cavity coupling, normalized to the empty cavity transmission. It shows
50 experimental sequences, each containing 40 repetitions of the experimental cycle. They
were used to record a single point of the normal-mode splitting spectrum (see Section 3.3.3).
For each data point of Figure 3.16 the transmission is averaged over 9ms. The color bar
goes from dark blue, denoting the transmission drop to zero, to red, where the transmis-
sion is the same as for the empty cavity. Whereas for some experimental runs the atom
survived all 40 repetitions, in most of the cases the atom was lost by the end of a sequence.
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Different transmission levels indicate the variation of the corresponding atom-cavity
coupling strengths. Since our measurement of the normal-mode splitting is based on en-
semble averaging, the splitting would be washed out when averaging over a broad range of
coupling strength.

In order to circumvent the effect of this variation, for the evaluation only events where
g exceeded certain value were post-selected. For this, we take into account only those
events where the transmission dropped to below 30% of the empty cavity transmission
before (initial transmission) and after (final transmission) performing the mapping of the
normal-mode splitting. As each experimental run involves multiple repetitions of identical
experimental cycles (see Section 4), the final transmission in each experimental cycle is the
initial transmission of the next cycle.

Figure 3.17 (a) shows the final versus initial transmission for the data, presented in
Figure 3.16. As in the preparatory experiments, a clear correlation of the transmission
signals is also observed here. The data points with the normalized transmission exceeding
0.7 indicate the transmission of the empty cavity, i. e. the events where an atom was lost.

In order to quantitatively characterize the magnitude and the spread of the coupling
strength during the entire measurement of the normal-mode splitting (see below), a his-
togram of the transmission signal during the coupling detection phase is constructed and
shown in Figure 3.17 (b). Similarly to Figure 3.3 one sees two slightly overlapping peaks.
However here, since the repumping laser is continuously switched on during the coupling
strength detection phase, the right peak stands for empty cavity transmission and the
left peak, as in Figure 3.3, is the distribution of the transmission during the atom-field
coupling detection stage. The dashed green line is the result of a calculation taking into
account the shot noise only and adjusted to the height of the corresponding peaks of the
histogram. Notably, the right peak is considerably broader than the shot noise limit4. This
is most probably caused by an imperfect setting of the cavity stabilization servo loop for
this measurement. The broadening of the left peak is mainly caused by the variation of
the coupling strength, originating from the variation of the insertion position along the
cavity axis and the possible intracavity position dynamics of atoms, which is described in
Chapter 2.

It is interesting to note that in contrast to the measurement, presented in Figure 3.14,
here we observe a significantly smaller atom-cavity coupling strength, although the relevant
experimental parameters were set the same. The possible explanation of this coupling
deterioration is the sensitivity of the intracavity atomic temperature to the setting of
the cavity servo loop. A higher atomic temperature leads to stronger delocalization, which
reduces the effective coupling strength and therefore results in a higher average transmission
signal.

3.3.3 Measurement of the normal-mode splitting via the atomic state

After showing all preparatory experimental procedures, here I will present the final result
of the realization of the normal-mode splitting via the atomic state.

4Note that for this histogram, in contrast to that presented in Figure 3.3, the cavity transmission is
averaged over 9ms, resulting in a lower shot noise level.



3.3 Measuring the normal mode splitting via the atomic state 73

Figure 3.17: (a) The final normalized cavity transmission versus the initial normalized
transmission for the data presented in Figure 3.16. Data points in the upper region
(above 0.7) originate from those events where an atom was lost during the observation.
(b) Histogram of the transmission signal during the coupling strength detection phase
for all data points of the normal-mode splitting measurement. The two peaks are fitted
with Gaussian functions (solid line): the left peak corresponds to the distribution of the
transmission signal while an atom resides inside the cavity, while the right peak indicates
the transmission distribution of the empty cavity. The dotted line shows the calculated
distribution of the transmission signal taking into account the shot noise only.

Normal-mode splitting

Figure 3.18(a) shows the recorded final atomic population in the F = 3 state as a function
of probe-cavity detuning during the experimental procedure described in Section 3.3.1. The
double-peak structure of the recorded spectrum clearly manifests the interaction-induced
normal-mode splitting. Each data point is obtained from 120 to 470 events. They are
post-selected from the acquired data, considering only the events where g was within a
definite range, see Section 3.3.2. The post-selected events correspond to 12% of the total
number of recorded events, including those where atoms were lost.

The spectrum shows an asymmetry with the peak at positive ωp−ωc being considerably
higher and closer to the ωp−ωc = 0 line. This is in agreement with a theoretical calculation:
Figure 3.18(b) shows the calculated atomic scattering rate5 as a function of ωc − ωa and
ωp − ωc.

The background of approximately 13% is caused by the erroneous detection of the
atomic state during the 2ms state detection time. This value is compatible with the prob-
ability of 18% of a quantum jump to occur during the detection interval, see Section 3.1.

Numerical Model

In order to analyze the process of this measurement, I have developed a simple model.
In a first step, the atomic photon scattering rate as a function of the cavity-probe laser

5The details of the calculations are provided below.
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detuning was estimated by numerically solving the master equation [65].
Using the obtained scattering rate a rate equation has been solved to model the non-

linear population transfer to the F = 3 state during the 70 µs mapping pulse. For a rate
equation a three-level system is assumed: the F = 3 and F = 4 ground states and the
F ′ = 4 excited state. The population redistribution over Zeeman sublevels is neglected.

Figure 3.18: Normal-mode splitting. (a) Relative population in the F = 3 state as a
function of probe-cavity detuning. Each data point (•) is obtained from 120 to 470 ex-
perimental cycles. (◦) Background, corresponding to the level of the erroneous detection
of the atom in F = 3. The solid line indicates the result of the numerical model (see
text). (b) The calculated atomic scattering rate for both dressed states.

Furthermore, the model assumes a homogeneous distribution of coupling strength of
g = 2π × (6 . . . 12)MHz, which corresponds to the selected range of transmissions men-
tioned above. Here g = 2π × 12MHz belongs to a maximally coupled atom for the π-
transition F = 4,mF = 4 −→ F ′ = 4,mF ′ = 4. The two fit parameters are the cavity-atom
detuning ωc − ω4,4′ and the intra-cavity photon number nph. Here ω4,4′ is the angular fre-
quency of the AC-Stark shifted F = 4 −→ F ′ = 4 transition. Fitting the model to the
measured data yields nph = 0.06 and ωc − ω4,4′ = 2π × 10MHz. An independent photon
number measurement agrees with the fitted value and implies that we are in the weak
excitation limit. The result of the calculation is presented as a solid line in Figure 3.18
and fits reasonably well to the measured data.

Figure 3.19 shows the calculated relative population in the F = 3 state as a function of
number of scattering events. It is interesting to note that after scattering of less than two
photons, on average 50% of the atomic population will be transferred to F = 3. This results
in a negligible atomic heating of a few recoil photon energies, unlike in the experiments
recording the normal-mode splitting by observing the leakage of photonic excitation from
the cavity. There, an advanced cooling scheme had to be applied to compensate for the
heating effects induced by the probe laser light at unfavorable probe-cavity detunings
[51]. In our current experiment, the atomic temperature is limited by the equilibrium
temperature during the detection phase of the coupling strength, i. e. given by probe laser
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cooling. This step can be eliminated by preliminary cooling the atoms to their motional
ground state. In this case, due to the much better localization of atoms, the spread of the
atom-cavity coupling strength will be negligible. Thus, atoms ideally will couple to the
cavity with maximal achievable coupling strength.

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

 

 

R
el

at
iv

e 
po

pu
la

tio
n 

in
 F

=3
 

Number of scattering events

Figure 3.19: Calculated relative population of an atom in the F = 3 state, initially
occupying the F = 4 state, as a function of number of scattering events from the probe
laser tuned in resonance with the F = 4 −→ F = 4′ transition. The solid line is the
solution of the rate equation.

3.4 Conclusion

In this Chapter I have demonstrated a method to measure nondestructively the hyper-
fine ground state of a single atom, strongly coupled to the resonator field, via the cavity
transmission. This measurement method formally fulfills the criteria of a projective QND
measurement for the hyperfine state of a single atom. The imperfection of this method is
that the measuring process changes the atomic state at a low rate. This could be suppressed
by improving the efficiency of the cavity transmission detection.

Continuous measurement of the transmitted probe laser light while a single atom is
inside the cavity field yields a random telegraph signal, originating from quantum jumps
between the internal states of the atom. By means of second-order correlation functions,
the dynamics of quantum jumps has been characterized from the recorded telegraph signals.

The excitation spectrum of a system consisting of a single atom, coherently and strongly
interacting with the field of the resonator, was recorded for the first time via observation
of the atomic state. The measurement was enabled by the nondestructive spin state mea-
surement method, allowing a recycling of each atom placed in the cavity several tens times.
This method constitutes an alternative to the commonly used approach, which is based
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on the detection of photonic excitations and allows the measurement of the normal-mode
splitting while inducing a negligible heating of atoms. Moreover, this method allows exten-
sive applications, including the detection of the entangled or multi-atom correlated states
in similar systems, where the detection of the final atomic state is an essential requirement.

To get one step closer to the ultimate goal of entanglement generation between two
atoms, we have extended our experiment to the case of two atoms simultaneously coupled to
the resonator field. Continuous observation of the cavity transmission yields the conditional
dynamics of the spin states. Although for the current observations the spontaneous photon
scattering was employed, the generation of entangled states requires the suppression of
photon scattering. This can be achieved by operating in a deep dispersive regime, i. e.
by detuning the cavity far from the atomic resonance. In this regime the outcome of the
interaction between an atom and the cavity field can still be measured from the phase shift
of the transmitted probe light [61, 85].



Summary and Outlook

In this thesis I have presented the realization and investigation of controlled and strongly
interacting systems of one and two atoms in a cavity. With the progress we made, our sys-
tems approache the fulfillment of all five DiVincenzo requirements for quantum information
processing.

Atom-cavity coupling

Since the dominance of the coherent atom-cavity coupling over the dissipation channels
is the essential condition for future experiments in quantum information processing by
cavity QED concepts, a part of this thesis has been dedicated to the characterization of
atom-cavity coupling. For this purpose two different approaches have been used:

Transmission detection The detection of cavity transmission is used as standard
method to quantify atom-cavity coupling in several groups worldwide [61, 62, 95]. Combin-
ing this method with our conveyor-belt technique we have controlled the coupling strength
by deterministically placing an atom at a desired position inside the cavity mode.

Moreover, we have investigated the dependence of the coupling strength on the number
of atoms, simultaneously placed inside the resonator mode. For this purpose we have
intentionally placed one or two atoms at the edge of resonator mode, where the transmission
signal is sensitive to the number of atoms. For two atoms placed inside the mode, we have
observed an increase of g which fits well the prediction of our model.

Atomic state A different approach to extract information about atom-cavity coupling
is based on the detection of the final atomic state. It is essential for the detection of atom-
atom entangled and multi-atom correlated states, where quantum-state tomography has
to be performed to infer the degree of correlation [96]. In the framework of this thesis, we
have mapped a spectrum of the coupled single-atom-cavity system on to the atomic state,
revealing the vacuum Rabi splitting and indicating that our system is in the strong coupling
regime. In atom-cavity systems, this signature of a strong atom-field interaction has been
observed in several other groups by recording the cavity transmission measurement, see
References [79, 51]. However, so far its realization through the detection of the atomic
state has been unexplored.

In the future, one could extend this experiment to two or more atoms, and measure the
atom-number dependent normal-mode splitting for a well-defined number of atoms. The

77
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limitation on the maximum number of atoms in our experiment originates from the finite
size of the cavity mode and the resulting variation of g. Assuming that each lattice site of
the DT is occupied by one atom each at a fixed position, and allowing 10% variation of g,
the estimated maximum number of atoms is about 30.

Similar experiments have been performed by either using an atomic beam traversing
the cavity mode [97], or atoms in a BEC coupled to the mode [98]. In these experiments,
however, only the average number of atoms could be controlled.

Quantum jumps, conditional spin dynamics and its perspective

The observation of quantum jumps has been reported with different particles, such as
single ions [73, 74, 75], electrons [77], molecules [76] and photons [71]. In this thesis,
the first observation of quantum jumps between hyperfine states of single neutral atoms,
strongly coupled to the cavity, has been observed by monitoring the cavity transmission.
It allows us to detect continuously the spin state of the atom. Moreover, this method
in principal fulfills the requirements of a projective quantum nondemolition measurement
[81]. By extending this experiment to the case of two atoms, simultaneously coupled to the
resonator field, we have observed conditional dynamics of their spin states, in agreement
with the prediction of a simple parameter-free model.

Improving this measurement technique by suppressing photon scattering and increas-
ing photon detection efficiency, it might become feasible to realize a weak quantum non-
demolition measurement [85, 84] of the number of atoms in a certain spin state, which
forms the basis of some probabilistic entanglement schemes [19].

In an alternative approach to generate entangled states, suggested in Reference [20],
the system is brought into the desired state by unitary evolution, stimulated by carefully
adjusted external fields. For ideal experimental conditions the estimated fidelity of such
deterministic scheme is only 85%. In most deterministic schemes, the fidelity F scales as
1−F ∼

√
1/C1. Therefore, the fidelity could be improved by increasing the cooperativity

parameter C1 = g2/(κΓ). This could be done either by designing a resonator with a
smaller mode volume or by suppressing κ.

Increasing the atom-cavity coupling

For all possible future applications, and in particular generation of entanglement states, it
is essential to keep g stable and large, at the same time the fluctuation of g small. Our
current observations have indicated a relatively high atomic temperature on the one hand,
leading to a significant reduction of the average coupling strength, and an uncontrollable
variation of g on the other hand.

The stability and the strength of the coupling could be improved by enforcing a bet-
ter atomic localization. This could be achieved either by performing three-dimensional
Raman side-band cooling to the motional ground state, in analogy to the experiment in
Reference [86], or by modifying the geometry of the trapping potential such that it would
provide a better confinement. In the latter case, for instance, one could superimpose our
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Figure 3.20: Simulated intensity distribution (in analogy to Figure 1.4) for the current
standing-wave DT, (a). (b): The current standing wave DT superimposed with an
additional running dipole trap DT, having a 1/e2 radius of w0 = 11 µm and a depth
comparable to that of the standing wave DT. For illustrative purposes, the wavelengths
of the standing wave DT and the running wave DT are stretched by a factor of 500.

current standing wave DT with an additional running wave DT with a smaller waist6. In
this way, the localization of atoms will be improved in the direction transverse to the axis
of DT, see Figure 3.20, reducing the variation range of g.

6The simulation with “OSLO” shows that the 1/e2 radius of w0 ≈ 11 µm is attainable with commercial
optical elements
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