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Abstract

Molecular fingerprints are bit string representations of molecular struc-
ture and properties. They are among the most popular descriptors and tools in
molecular similarity searching because of their conceptual simplicity and com-
putational efficiency. In order to calculate molecular similarity, fingerprints
are computed for reference and screening database compounds and their bit
settings are quantitatively compared using similarity metrics. One caveat of
this approach is the bias caused by complexity effects: complex molecules have
higher fingerprint bit density and produce artificially high similarity values.

The asymmetric behavior of Tversky similarity measurement has been
reported: comparing A to B is not equal to comparing B to A. This phe-
nomenon can be directly attributed to complexity effects. Hence, preference
of parametric settings for Tversky coefficient is determined with regard to the
relative difference of molecular complexity. One approach to avoid such effects
is using fingerprint representations having constant bit density. Alternatively,
emphasizing the absence of bit position features, which is not recorded using
conventional fingerprint similarity search methods, provides another approach
to address complexity effects. However, in order to optimize search perfor-
mance, elimination of complexity effects using this approach is not as effective
as modulation of complexity effects. In order to evaluate the outcome of vir-
tual screening, search performance is monitored for combinations of different
parameters. In general, in similarity searching using highly complex reference
compounds it is difficult to recover potential hits that are less complex.

To further investigate complexity effects, the random reduction of fin-
gerprint bit density is also explored. The ensuing loss of chemical information
can be compensated for by balancing complexity effects when the fingerprints
of reference compounds are modified to reduce their bit density.

When this random process is replaced with iterative bit silencing, the
significance of each bit position in similarity searching can be analyzed and
different weights can be assigned to each position. Such a weighting scheme
emphasizes critical bit positions specific to the reference activity class. Class-
specific similarity metrics can be derived by utilizing these weights in similarity
calculation. Using these similarity metrics similarity search performance can
be improved, especially when conventional methods fail to retrieve potential
active compounds.

Information of reference sets can also be directly utilized in the form of



Shannon entropy as a measure of similarity. This simple and efficient similarity
search strategy assesses the fingerprint entropy penalty induced by introducing
external molecules into the reference set. It has comparable or better per-
formance compared to nearest neighbor approaches but lower computational
costs.
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Chapter 1

Introduction

In the recent decade various computational techniques have become important
tools widely used in modern drug discovery.1–3 In silico approaches such as
virtual screening have become popular in handling increasingly large databases
because of their high efficiency and low cost.

Virtual screening (VS) is defined as the computational analog of biolog-
ical screening, which aims to score, rank, and/or filter a set of compounds using
one or more computational procedures.2 It originates from mainly two areas:
protein structure-based compound screening or docking,4,5 and chemical simi-
larity searching based on small molecules.1,6 Despite the increasing availability
of target protein structures as VS templates, small molecules such as biological
screening hit or lead compounds are still the dominant source of information
and thus commonly utilized.1

Small molecules can be represented using molecular descriptors, which
are defined as mathematical models of molecular structures and properties.2

They represent and describe the physicochemical or structural features of
molecules, vary in the procedure of computation, complexity of the encoded
information, and also the computational complexity. One of the most popular
descriptor types for similarity searching and chemical database mining is the
simple but effective molecular fingerprint.1,6–8

1.1 Molecular fingerprints

Molecular fingerprints are bit string representations of molecular structure
and properties. Structural and/or physico-chemical property information of
a molecule is usually encoded as a binary string where each bit detects the
presence or absence of a specific chemical feature or represents a value range
of a property descriptor.1,8 Alternatively, such binary indicators can be re-
placed with frequency counts of these features and then the molecules are rep-
resented as integer strings, also known as molecular holograms.9–13 In similarity

1



2 Chapter 1. Introduction

searching, compounds with known biological activity are utilized as reference
compounds and their fingerprint representations are calculated. Fingerprints
of database molecules are compared with reference fingerprints in a pair-wise
manner in order to identify novel active compounds.6 Hence, this type of simi-
larity searching is carried out in fingerprint space and the overlap between bit
string representations is used as a measure of molecular similarity.

= “1” = “0”

molecular fingerprint

C
17

H
19

NO
3

2D representation 3D representation

1D representation

morphine

descriptors: molecular weight, number of nitrogens

descriptors: 

number of aromatic rings, 

graph distances

descriptors: 

surface area, volume, 

Euclidean distances

Figure 1.1: Molecular representations and fingerprints. Examples of molecular de-
scriptors and fingerprint are shown for morphine. Molecular representations of different
dimensionality (1D, 2D or 3D) produce different descriptors.

Fingerprints are often distinguished based on the dimensionality of the
molecular representations from which they are calculated.9,10 Two-dimensional
fingerprints are derived from the chemical graph representation of a molecule
and take into consideration information extracted from atom and bond types
and graph distances, whereas the calculation of 3D fingerprints requires con-
formational information, i.e., atomic coordinates.9 In pioneering investigations,
Brown and Martin compared various 2D and 3D descriptors in molecular sim-
ilarity analysis and concluded that 3D representations were not generally su-
perior to 2D fingerprints,12,13 although they should in principle contain more
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relevant information, simply because molecules are active in three dimensions.
The 2D versus 3D descriptor and search method debate is continuing to this
date in the literature, but the early views of Brown and Martin have not been
fundamentally revised. Two-dimensional molecular representations and search
methods are often equally or more successful than 3D methods because they
are generally more robust and less error-prone.1 In particular, 2D fingerprints
have been surprisingly successful in many applications, despite their conceptual
simplicity.14,15

fragment key fingerprint

O=CNC

...

CCN=CC=CCl

logical OR

hashing

hashed fingerprint

pharmacophore key fingerprint

...

H4
H

D
D

5 3
4

A

O

O

N

O

O

N

H
N

O
S

O

H
N

N

Cl

N
+

O

O

O

Figure 1.2: Key-type and hashed fingerprints. Fragment key fingerprints, pharma-
cophore key fingerprints and hashed fingerprints are shown. Fragments, pharmacophore
features or paths highlighted in blue or green are projected to the hypothetical fingerprint bit
positions filled with the corresponding color. In pharmacophore-based fingerprints, “H”, “A”
and “D” in colored circles represent hydrophobic group, hydrogen acceptor and hydrogen
donor, respectively.

Two-dimensional fingerprints can be classified by considering how their
bit strings encode chemical information. In key-type fingerprints such as the
MACCS keys,16 each bit corresponds to a structural feature.17 The BCI fin-
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gerprint is also keyed and for its generation a dictionary of possible fragments
is constructed.18 In pharmacophore-type 2D fingerprints such as TGD (Typed
Graph Distance) and TGT (Typed Graph Triangle),19 atom types and binned
2D graph distances are combined as pharmacophore patterns and each bit rep-
resents a possible 2D pharmacophore arrangement. In contrast, hashed fin-
gerprints represent a different design. For example, the pioneering Daylight
fingerprint enumerates unique paths up to a specified maximum length in the
molecular graph and maps these connectivity pathways onto a bit string of
fixed length using a hash function.20 Following another design strategy, Ex-
tended Connectivity Fingerprints (ECFP) generate variable numbers of layered
circular atom environments in a molecule-specific manner and hash them into
integer representations.21 In order to compare and group fingerprint represen-
tations, Bender et al. have recently conducted a systematic principal compo-
nent analysis of similarity value distributions of test compounds calculated with
various fingerprints, which revealed correlations between different types of fin-
gerprint descriptors.22 There are in general four broad classes of fingerprints:
binary circular fingerprints, circular fingerprints considering counts, path-based
and keyed fingerprints, and pharmacophore-based fingerprints. Representative
examples of 2D molecular fingerprints and their composition are reported in
Table 1.1.

fingerprint designation descriptor encoding length

MACCS16
Molecular
ACCess
System

structural
fragments

one-to-one correspon-
dence of bit positions
and fragment keys

fixed,
166 bits

TGD /
TGT19

Typed Graph
Distance /
Typed Graph
Triangle

2D pharma-
cophore features
with atom types
and distances

one-to-one correspon-
dence of bit positions
and pharmacophore
keys

fixed,
420 /
1704 bits

BCI18 -
structural
fragments

one-to-one correspon-
dence of bit positions
and fragment keys
from constructed
dictionary

dependent on
dictionary

Daylight20 -
paths or
subgraphs

hash function mapping
to fixed length

user-
defined, e.g.
1024 or
2048 bits

ECFP21
Extended
Connectivity
FingerPrint

extended graph
connectivity

hash function mapping
to virtual feature space infinite

Table 1.1: Exemplary 2D fingerprint designs. For each fingerprint the designation of
abbreviation, descriptor origin, encoding method and length are reported.
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1.2 Similarity metrics

Fingerprint overlap as a measure of molecular similarity is quantitatively de-
termined using various similarity metrics. One of the most popular similarity
metrics is the Tanimoto coefficient (Tc).6 The binary form of the Tanimoto
coefficient is defined as

Tc =
c

a + b− c

with a being the number of bits set on in the first fingerprint, b the number
of bits set on in the second fingerprint, and c the number of bits common to
both. Other similarity coefficients have also been applied in the calculation of
pair-wise fingerprint similarity, either separately or in combination using data
fusion techniques.6,23–26 Going beyond Tc-like metrics, the Tversky coefficient
(Tv)27 makes it possible to weight the contributions of bit settings of reference
and database molecules by introducing the weight parameter α:

Tv =
c

α(a− c) + (1− α)(b− c) + c

Although many different similarity metrics and coefficients have been
reported, systematic comparisons have not revealed a general preference of one
method over others.6,7,24,25 Tanimoto similarity is predominantly calculated to
this date because of its simple formulation and stable results over various data
sets.28,29 However, as will be discussed in the following sections, the Tversky
formalism offers an opportunity to systematically modify similarity evaluation
and study the effects of differential weights on bit settings of reference and
database compounds and bits that are set on or off. Table 1.2 reports several
similarity metrics that are applied in fingerprint similarity calculation.

It is difficult to establish molecular similarity threshold values that cor-
relate with biological activity. However, this question is particularly relevant for
similarity searching because one generally aims at identifying different struc-
tures with similar activity, which essentially applies to all virtual screening
methods.1 In a database search, compounds with highest fingerprint similar-
ity are often close analogs of reference compounds and are typically not the
molecules one is interested in. Rather, one is mostly interested in structurally
increasingly diverse compounds that are typically “further down the list”, and
this explains why the exploration of activity-relevant similarity threshold values
is of high interest.

A traditional way of addressing the question of how calculated simi-
larity is related to activity is provided by cluster analysis.30,31 For example,
molecules can be clustered based on 2D fingerprint similarity and the com-
position of the computed clusters and the resulting distribution of active and
inactive compounds are analyzed. Other studies have been carried out using
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coefficient formula

Jaccard / Tanimoto6 c

a + b− c

Tversky27 c

α(a− c) + (1− α)(b− c) + c

Russell / Rao25 c

N

simple match25 c + d

N

Forbes25 Nc

ab

Dice6 2c

a + b

Table 1.2: Popular similarity metrics. Reported are five similarity coefficients commonly
used in fingerprint overlap calculations. a is the number of “1” bits in reference compound,
b the number of “1” bits in database molecule, c the number of “1” bits common to both,
d the number of “0” bits common to both, and N is the length of the fingerprint. α is the
weight on “1” bits in reference compound.

high-throughput screening data sets to analyze the relationship between active
and inactive compounds in light of their calculated similarity values.32,33

In their seminal publication establishing neighborhood behavior, Patter-
son et al. showed that for their Unity fingerprints, a Tc value of at least 0.85
corresponded to a high probability that two test compounds shared the same
activity.34 This value has been adopted in many studies to search for bioactive
molecules. However, for fingerprints and search conditions other than the orig-
inally applied ones, this value was often found to be only a weak indicator of
true similarity-activity relationships.31

These studies have illustrated that generally applicable similarity thresh-
old values are not available as bioactivity markers. Similarity threshold values
can not be generalized because different fingerprints and compound classes re-
quire a case-by-case determination of activity-relevant similarity levels.8

1.3 Complexity effects

Molecular complexity or size effects are known to bias fingerprint-based similar-
ity evaluation and negatively affect search performance.10,25,26,35 In a milestone
publication, Flower demonstrated that reference compounds of increasing size
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generate systematically higher Tc values in databases searching.10 This is the
case because fingerprint bit density, defined as the number of “1” bits divided
by the length of the fingerprint, typically increases with molecular complex-
ity. High bit density generally favors statistical chance matches in fingerprint
comparison and hence might artificially increase similarity values.

5.0
484

4
Tc =

−+

= 53.0
8158

8
Tc =

−+

=

reference

Figure 1.3: Complexity effects in fingerprint similarity calculation. Two candidate
fingerprints, one having less “1” bits and the other more, are compared to the same reference
fingerprint using Tc similarity metrics. The one having higher “1” bit density (upper-right)
yields also higher similarity value, regardless of its actual similarity to the reference. In all
fingerprints “1” bits are colored in blue and “0” bits in white.

Molecular size is often, but not always, related to fingerprint bit density.
Exceptions include, for example, polymers where fragment-based fingerprints
would only account for the presence of a monomer, but not the occurrence
of multiple copies. Furthermore, bit density is also influenced by chemical
complexity of molecules. When discussing aspects of molecular complexity in
the context of similarity evaluation, it should also be considered that alternative
molecular representations (for example, 2D versus 3D representations) mirror
complexity in different ways. Molecular complexity is determined by multiple
components. Depending on the chosen molecular representations, not all factors
that contribute to complexity might be taken into account. Table 1.3 provides
examples of complexity-relevant factors that can be accounted for at the level
of 2D representations and others that require the use of 3D representations.
However, regardless of which factors are ultimately considered, when using (2D
or 3D) fingerprints, differences in molecular complexity and size typically lead
to intrinsically different bit densities.

Figure 1.4 illustrates the principal influence of molecular complexity on
fingerprint search calculations on the basis of MACCS Tc distributions. The
larger and more complex test compounds are, the higher their bit densities
and similarity values in general become. Thus, using reference compounds
of moderate to high complexity generally favors the recognition of large and
complex database molecules, regardless of whether these molecules are active
or not.
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2D factors 3D factors

element distribution
H-bond acceptors/donors
hybridization states
rigidity
bond topology

conformational entropy
electrostatic potentials
interatomic distance distribution
intramolecular interactions
stereochemistry

Table 1.3: Factors related to molecular complexity. Examples of factors are listed
that contribute to molecular complexity together with the dimensionality of the molecular
representation that is required to capture or deduce them.

13%

HO

OH

N

N

S

HNOH
O O

31%

O

H2
+

N
18%

30%

N
H

S
N
H

O

O N
N

S

O

O

O
O

43%

N
N
H

H
N

N

OH

OHO

O

O

O

0.31 0.21

0.39 0.38

0.22 0.61

MACCS fingerprint

pair-wise Tc similarity

Figure 1.4: Molecular complexity and similarity. Three database molecules (in the
left panel) having increasing complexity levels are compared to two reference compounds (de-
picted in the top) with different complexity using Tanimoto coefficient. Due to the definition
of MACCS structural key fingerprint,16 molecules with higher levels of structural complexity
produce MACCS fingerprints with higher “1” bit densities and consequently higher pair-wise
Tc similarity values. The bit densities are shown next to the corresponding molecules in
percentage and the pair-wise Tc similarities are reported in different colors. Low Tc values
are color-coded green, medium values blue, and high values red.
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The complexity effects also affect the quality of benchmarking calcula-
tions, which are used to evaluate similarity search performance. In a typical
benchmarking calculation, a number of known active compounds are added
to the background database as targets for the similarity search method under
investigation. However, these “hidden” actives, and also the reference com-
pounds utilized to search for them, are usually optimized compounds taken
from literature or patent sources that are often more complex than average
database molecules. As a result, these complex compounds are easily recog-
nized by similarity searching because of their high similarity values. Thus, the
search performance of fingerprints is often artificially high in such benchmark
situations and does not accurately reflect a “real life” search scenario. In prac-
tical applications, newly identified hits are less complex than optimized lead
compounds and hence more difficult to detect.

1.4 Outline of this thesis

This study addresses three major questions:

1. How do complexity effects influence similarity searching?

2. How do they affect virtual screening applications?

3. Can novel computational methods be developed to avoid complexity ef-
fects and improve similarity search performance?

In Chapter 2 fingerprint-based similarity search strategies are introduced
together with a general workflow for benchmarking calculations. Concepts and
schemes that have been adopted in this thesis are presented. In addition, recent
advances in the area of similarity searching using fingerprint-based methods are
reported.

In Chapter 3 the asymmetric behavior of the Tversky coefficient is as-
sessed: given two molecular fingerprints, A and B, comparing A to B might yield
different Tversky similarity values than comparing B to A. This phenomenon
is shown to be directly related to complexity effects. Also discussed in this
chapter is the complexity-independency of a previously developed molecular
fingerprint, which can be adopted to avoid biased similarity calculation that
is caused by molecular complexity. Then a novel similarity metric, weighted
Tversky coefficient (wTv), is introduced as a tool to balance complexity effects.
wTv can either eliminate or modulate complexity effects. Calculations reported
in this chapter show that modulating complexity effects can improve the search
performance more than completely eliminating them.

In Chapter 4 another novel similarity search method is introduced to ad-
dress complexity effects from a different angle. This technique, called random
fingerprint bit silencing, can be applied to highly complex reference compounds
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used as templates to search against databases containing less complex struc-
tures. Its enhanced performance in systematic test calculations is demonstrated
in this chapter.

In Chapter 5 the bit position weighted Tanimoto coefficient (bwTc) is
introduced. The bit silencing technique described in Chapter 4 is employed
to derive this novel class-specific similarity metric. Benchmarking test results
compared to conventional search methods are presented. The incorporation of
class-specific information has been found to significantly improve the results.
By combining this metric with the wTv coefficient described in Chapter 3, a
class-specific similarity metric modulating complexity effects is introduced, the
weighted Tversky coefficient with class-specific bit weighting, or wbwTv. Sys-
tematic search calculations revealed better performance of wbwTv compared
to its parental methods and other fingerprint-based similarity search strategies.

In Chapter 6 the Shannon entropy concept is adopted for evaluating bit
settings in sets of fingerprints. Its application in similarity searching provides
an unconventional yet efficient strategy for molecular similarity calculations.



Chapter 2

Methods in Fingerprint-Based
Similarity Searching

Similarity search calculations are conceptually based on the similarity property
principle: similar molecules are thought to have similar biological activity.36

That is the case because the interaction of a small molecule and a target protein
is dependent on their structures. Small molecules with similar structures are
expected to interact similarly with the target. According to this principle,
the molecular similarity of screening database molecules to a set of known
active reference compounds or an individual reference compound is assessed in
similarity searching.6,37 In order to calculate molecular similarity, fingerprints
are computed for reference and screening database compounds and their bit
settings are quantitatively compared15,37 using similarity functions or metrics
such as the popular Tanimoto coefficient (Tc).6

In this chapter, benchmarking calculations used to evaluate the per-
formance of different computational methods are introduced. This method-
ology is applied in most of the calculations in this thesis, with minor vari-
ations for different approaches. Furthermore, recent discoveries and develop-
ments of fingerprint-based search techniques are revisited, including data fusion,
frequency-based operations, analysis of complexity effects, and novel fingerprint
design strategies.

2.1 Benchmarking of similarity searching

In the benchmarking, compounds that are confirmed to be active are used
as templates. A typical source for these compounds is annotated molecular
databases containing ligands with confirmed activity. For example, the Molec-
ular Drug Data Report (MDDR)38 contains structure and activity information
of over 150,000 biologically relevant compounds and derivatives38 and is usually
used here as a source of activity classes (i.e., sets of compounds that are active

11
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against the same target). In addition to the templates, a number of confirmed
active compounds are “hidden” in the background database to be recovered
by the search process. They are referred to as the active database compounds
(ADC) and are extracted from the same activity class of the reference/template
compounds.

filter rules

activity class

unique

scaffolds

reference compoundsADC

database

similarity value evaluation

...high similarity low similarity

top selection set

ranking

Figure 2.1: General calculation protocol. This flowchart illustrates the setup of the
benchmarking system: filtering of activity class, dividing it to reference set and ADC, and
carrying out similarity searching and ranking.

To ensure that pre-selected active compounds have molecular proper-
ties comparable to background database molecules, they are pre-filtered. For
example, the ZINC database that currently contains over eight million small
molecules is a public-domain database of compounds that are commercially
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available.39 In a drug-like subset of ZINC, all compounds are required to have
a molecular weight of less than 600 Da, a logP value (the logarithm of octanol-
water partition coefficient) in the range [-2, 6], between 1 - 10 hydrogen bond
donors and 1 - 10 acceptors, and less than 19 rotatable bonds.39 Similar rules
apply to the NCI anti-AIDS database40, which contains screening results for
42,687 compounds against HIV-related targets.40 Before similarity searching,
active compounds are filtered according to these rules. Furthermore, each pre-
selected active compound must have a unique core structure41 in order to avoid
the inclusion of analog series that could potentially bias similarity search results.

Next, the fingerprint of each database molecule is compared to the fin-
gerprints of reference compounds using similarity metrics. As described in
section 1.2, determination of an exact activity-relevant similarity threshold is
difficult. However, database molecules with the highest similarity values rel-
ative to reference compound(s), i.e., the top-scoring database molecules, are
assumed to have a high probability to be active.

To evaluate the performance of a similarity search strategy, a number
of top-scoring compounds are selected, e.g. 100 top-ranking compounds. Such
selected compounds are called the database selection set, and the number of
ADC that occur in this set is assessed. Two quantitative measures are the hit
rate (HR) and the recovery rate (RR).

Given the total number of ADC (M ), the size of the selection set (S ),
and the number of ADC in the selection set (i.e., the number of “hits”, K ),

HR =
K

S

and

RR =
K

M
In Figure 2.1, the workflow of the benchmarking protocol is illustrated.

2.2 Merging information of multiple reference

compounds

Similarity searching is applicable when only single reference compounds are
available, in contrast to other data mining approaches such as cluster analy-
sis or machine learning methods that require multiple active compounds.1,37

However, fingerprint searching usually becomes more effective when multiple
reference compounds (and hence more chemical information) are available.7,37

For fingerprint searching using multiple reference compounds, different methods
have been introduced.7,14,15,37,42

For example, fingerprint averaging – also known as the centroid method
– can be applied to compare a database molecule to a reference set.11 The
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average the similarity scores from k

(k = 5) neighbors

one score between the centroid     

and the candidate

k-NN centroid

Figure 2.2: Data fusion approaches with multiple reference compounds. Two tech-
niques, k -NN and centroid, are illustrated. k -NN requires k pair-wise similarity calculations
(represented as bidirectional arrows to the dark blue circles representing the nearest neigh-
bors) to determine the final average score of the candidate database molecule (blue circle),
whereas centroid approach requires only one similairy calculation with the average vector
(green circle).

centroid approach calculates an average vector from the fingerprints of the ref-
erence compounds. The average fingerprint is thought to represent the property
center of the reference set and is compared to fingerprints of individual database
molecules – often applying the general form of the Tanimoto coefficient6

Tc(A,B) =

∑N
i=1 aibi∑N

i=1(a
2
i + b2

i − aibi)

where A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bN) are two molecular finger-
print vectors of length N. They are not necessarily binary, as a result of the
averaging process.

By contrast, data fusion of multiple Tc values relies on pair-wise com-
parison of a database molecule with all reference compounds and averages the k
highest values to produce a final similarity score (nearest neighbor technique, or
k -NN). For k = 1, the average rule becomes the maximum rule and the highest
similarity value calculated against individual reference compounds is taken as
the final compound score.11 In comparative studies, 1-NN calculations often
produce highest compound recall rates among data fusion techniques and other
fingerprint search strategies.42,43

2.3 Frequency-based bit-wise techniques

From multiple reference compounds, statistics related to the occurence of bit
positions can also be derived to develop methods yielding higher recall. Fol-
lowing the Stigmata approach,44 fingerprint bit positions that are shared by



2.3 Frequency-based bit-wise techniques 15

a subset of reference compounds of pre-defined size (e.g., at least 50%, 75%
or 100% of the reference compounds) are set on as consensus features in a so-
called modal fingerprint that is then used for database searching. Consensus
bit positions have also been explored by fingerprint scaling, which weights dif-
ferent fingerprint bit positions according to their frequency of occurrence in the
reference set during similarity searching.45–47 Conserved bit positions are as-
signed high scaling factors, partly conserved positions are less emphasized, and
non-conserved bit positions are not scaled, thus providing a linear compound
class-specific weighting scheme.46

freqeuency in 

reference set 

frequency in 

database

75%    100%

1%    100%

relative importance

reference set 

relative 

frequency 4

3

4

1

4

4

4

0

75%

100%

modal fingerprint scaling factor

linearly amplify 

consensus bits

3.0 4.0

Figure 2.3: Frequency-based approaches. Three bit-wise techniques based on the rela-
tive frequency of bit positions are illustrated. Given a hypothetical reference set consisting
of four molecular fingerprints, the generation of 75% and 100% modal fingerprints, the ap-
plication of scaling factor based on the bits’ relative frequencies, and the determination of
relative bit importance are shown (with high-importance bit highlighted in green).

It should be noted that the derivation of modal or scaled fingerprints
exclusively focuses on bit positions that are set on (i.e., set to “1”), but does
not consider the absence of features. Nor do they include the occurences of fea-
tures in the background database. Williams went a step further and introduced
the concept of relative bit importance by taking not only the frequency of each
bit position within the reference set into account but also the relative bit fre-
quency in background database molecules,9 giving rise to the so-called reverse
fingerprinting approach that scores bit patterns in reference compounds that
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are most discriminatory for active versus database compounds.9 In Figure 2.3
the three frequency-based similarity search techniques are illustrated.

Feature distributions can also be taken into account in developing a
search strategy for extended connectivity fingerprints (ECFPs)21 that gener-
ates sets of layered circular atom environments (i.e., topological features) of
varying size in a molecule-specific manner. Thus, these feature ensemble fin-
gerprints depart from the classical fixed-format design of keyed fingerprints. For
ECFPs, Hu et al.48 have introduced the feature filtering method that removes
features from search calculations that only occur in active, but not in database
compounds. Thus, the search is focused on topological features occurring in
reference sets. In the context of feature filtering, a simple similarity function
that essentially counts reference set features present in database molecules and
ranks them accordingly has been shown to be more effective than Tanimoto
similarity calculations with increased structural diversity of hits.48

2.4 Molecular complexity effects in similarity

searching

The influence of fingerprint complexity effects on search calculations has been
explored in different ways. For example, in library design, Dixon and Koehler
discovered a systematic relationship between molecular size and similarity in Tc
calculations: sets of small molecules displayed a general tendency to be more
dissimilar than large molecules.35 Three distance metrics were applied to quan-
tify compound dissimilarity: 1-Tc – the complement of Tanimoto similarity (a
measure of distance or dissimilarity), XOR – exclusive OR (accounting for the
number of bit positions that differ in fingerprints of two molecules), and the
Euclidean distance. Within the same library, 1-Tc calculations preferentially
selected subsets of small compounds as being dissimilar, whereas the other
two metrics mostly selected subsets of larger compounds.35 This phenomenon
can be explained by the fact that complex compounds generally have more bit
positions set to “1” than an average database molecule and thus have an in-
creased probability to match “1” bits in other molecules.10,26 To study such
effects, Flower generated a probability density function for random bit string
matching to investigate the theoretical distribution of Tc value ranges.10 Fur-
thermore, Holliday and colleagues analyzed the relationship between similarity
values and relative bit density and found that comparison of low-density fin-
gerprints generally produces lower Tc values than comparison of high-density
fingerprints.26,35

For reference compounds of increasing complexity, Tc value distributions
of database molecules systematically shift towards higher values,10 as illustrated
in Figure 2.4. In this context, molecular complexity essentially refers to topo-
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Figure 2.4: Tc similarity value distribution under complexity effects. Shown are the
distributions of MACCS Tc similarity values produced by single template similarity searches
on three different ZINC39 subsets containing molecules of increasing bit density (18%, 30%,
and 42%). When a reference compound with 31% bit density is used, the higher the bit
density of database molecules becomes, the more the distributions are shifted towards higher
Tc values. Thus, ZINC molecules with 42% bit density would preferentially be selected,
followed by those with 30% bit density. By contrast, when a reference compound with 13%
bit density is used, the distributions are shifted towards lower Tc values. However, relative
to ZINC molecules with 42% bit density, molecules with 30% and 18% bit density now obtain
in part higher Tc values and are more likely to be detected in similarity searching.

logical complexity. The bit density of keyed or hashed fingerprints generally
increases with the topological complexity of test compounds. Bit density also
tends to increase with molecular weight (size) because larger molecules often
have more complex topology than smaller ones, although this is not always
the case. Figure 2.4 also shows that simple reference compounds produce nar-
rower Tc distributions in screening databases than more complex queries that
typically generate broader value distributions. These effects have different con-
sequences. On one hand, complex reference compounds can be more discrimina-
tory than low-complexity queries because Tc values for fingerprint comparisons
are more evenly spread over a wider range.10 However, on the other hand, the
ensuing shift towards higher Tc values also makes it more difficult to distin-
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guish active compounds from database decoys. Hence, the outcome of similarity
searching using reference compounds of different complexity is hard to predict.
As will be discussed in the next chapters, systematic test calculations have re-
vealed substantial complications of fingerprint searching that result from the
use of complex queries.

Different similarity coefficients have also been systematically evaluated
in fingerprint search calculations utilizing compound reference sets of varying
complexity and the best-performing coefficient for each complexity level has
been determined.29 When reference and database compounds had comparable
complexity, Tanimoto similarity calculations were found to be preferred over
a wide range of experiments. However, when reference compounds were more
complex than database molecules, the Forbes or simple match coefficient (see
Table 1.2) performed best.29

2.5 Property descriptor value range-derived

fingerprint

Different from the conventional fingerprint design reported in section 1.1, the so-
called property descriptor value range-derived fingerprint, PDR-FP, is a class-
directed 2D fingerprint that encodes database value ranges of molecular prop-
erty descriptors.49 Following this design strategy, value ranges of 93 property
descriptors are determined for a screening database and binned into differently
sized intervals so that the amount of screening database molecules falling into
each interval is exactly the same (equifrequent binning). For a test compound,
the matching descriptor intervals are determined and for each descriptor, the
corresponding bit is set to “1”.49 The format of this fingerprint is easily ad-
justable for different screening databases and exactly 93 bits are always set on
in this fingerprint, which consists of 500 bit positions in total.

Another unique feature of its design is the training potential for specific
compound activity classes. This is achieved by calculating a non-binary bit
vector for a compound reference set that emphasizes bit positions of individual
value ranges that are conserved in active compounds (Figure 2.5). Applying a
dot product similarity metric, this vector is then compared to individual PDR-
FP representations of database molecules. This fingerprint has been shown to
be particularly effective on compound classes of high structural diversity where
other types of fingerprints produce only low compound recall or fail.42,49

2.6 Summary

In this chapter, the similarity search benchmarking protocol and workflow are
introduced. Benchmarking calculations enable the evaluation of the similarity
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active compoundsdatabase molecules

conserved value range

non-conserved value range

Figure 2.5: Conserved descriptor value ranges. Illustrated is the equifrequent binning
of a hypothetical descriptor for hypothetical active and database molecules. The descriptor
value range is divided into three bins and molecules are assigned to different bins according
to their descriptor values. The number of database molecules assigned to each bin remains
constant (two out of six). If all five active compounds have the same value range for this
descriptor, then the value range is conserved and likely to be relevant for their activity.

search performance and are therefore applied to assess different methods pre-
sented in the following chapters. Similarity searching strategies such as data
fusion and frequency-based approaches can be utilized to incorporate informa-
tion from multiple reference fingerprints, which generally improves the search
performance. In addition, molecular complexity effects are discussed for conven-
tional similarity measures and the similarity value distributions are illustrated
for comparing molecules with different complexity. Finally a novel fingerprint
design, PDR-FP, is introduced, which depends on the value ranges of property
descriptors. Conserved descriptors whose value ranges are potentially criti-
cal for identifying active molecules can be selected. Similarity searching using
PDR-FP has been shown to be more powerful than other fingerprint types,
especially in recovering structurally diverse hits.





Chapter 3

Complexity Effects in Tversky
Similarity Searching

In similarity searching the evaluation of molecular similarity critically depends
on the application of similarity measures for quantitative bit string compari-
son.6 In Table 1.2 different similarity metrics are compared. A unique feature
of the Tversky coefficient is the ability to put variable weights on the bit set-
tings of molecules that are compared. By contrast, most similarity measures
put equal weight on template and database molecules. Thus, these measures
are symmetric in nature, which means that the results of pair-wise molecular
comparisons are order-independent. Principal and statistical limitations asso-
ciated with the use of similarity coefficients have been noted previously10,50 and
an elaborate analysis of different similarity measures and their strengths and
weaknesses has been presented.28

Chen & Brown investigated the behavior of Tversky coefficients in
large-scale similarity search calculations using three different 2D fingerprints
and found that putting increasingly high weight on the bit string representa-
tions of template compounds produced higher hit rates than calculations us-
ing a symmetric coefficient with equal weights on template and NCI database
molecules.40,51 Chen & Brown interpreted their findings as “the first evidence
of the presence of asymmetry in chemical similarity measures by an empiri-
cal study of two large databases”.51 The study by Chen & Brown represents
an important advance because it highlights possible complications of molec-
ular similarity assessment that are often not appreciated and enables further
analyses of the observed effects, which will be discussed in this chapter. Further-
more, approaches to overcome such limitations of fingerprint comparisons will
be discussed. For example, designing fingerprints that have constant bit density
regardless of the nature of test molecules could eliminate the relative differences
in bit densities and the induced complexity effects. Alternatively, introducing
similarity metrics that are independent of bit densities could in principle also

21



22 Chapter 3. Complexity Effects in Tversky Similarity Searching

avoid computational bias caused by complexity effects. For example, a modi-
fied version of the Tanimoto coefficient has been reported that can be applied
to balance discrepancies in bit settings.52 A bit density-independent variant of
the Tversky coefficient, weighted Tversky coefficient (wTv), will be introduced
that makes it possible to systematically change the relative contributions of
bits that are set on or off in similarity calculations. The behavior of this coef-
ficient in similarity searching will be thoroughly characterized for compounds
having different degrees of complexity and the relationship between complexity,
similarity values, and search performance will be analyzed.

3.1 Properties of the Tversky coefficient

For two molecules being compared and represented by fingerprint bit strings A
and B, Tversky coefficients (Tv) are defined as follows:27

Tv(A, B, α) =
c

α(a− c) + (1− α)(b− c) + c
(3.1)

with α in [0, 1]. Here, a represents the number of bits set on in A, b the number
of bits set on in B, and c the number of bits set to “1” in both bit strings. The
α parameter varies between zero and one and determines the relative weight on
uniquely set bits. For α = 0.5 equal weights are put on both molecules (and
the Tversky coefficient becomes the symmetric Dice coefficient,6 see Table 1.2),
whereas for α > 0.5 or α < 0.5 more weight is put on bits that are exclusively
set on in A or B, respectively. If A and B are compared and their bit string
representations have exactly the same number of bits set on, Tversky coefficients
are symmetric, which means that comparing A with B and B with A produces
the same value. If the bit densities of A and B differ, the comparison becomes
order-dependent for α 6= 0.5 and the corresponding Tversky coefficients are
asymmetric.

Tv can be transformed as follows:

Tv(A, B, α) =
c

α(a− c) + (1− α)(b− c) + c

=
c

α(a− b) + b
(3.2)

which has the format of a hyperbola function of variable α. Figure 3.1 illustrates
this hyperbola function under two situations: a − b > 0 (left) and a − b < 0
(right). In both cases only the part with positive Tv(α) values (colored in blue)
are considered. It can be seen that when a− b > 0, Tv(α) increases with α and
when a − b < 0, Tv(α) decreases with α. When a − b = 0, this function does
not depend on the value of α.
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Figure 3.1: Hyperbola function. The hyperbola function Tv(α) is illustrated for two
different cases: a − b > 0 (left) and a − b < 0 (right). The positive part of Tv(α) is colored
in blue in both cases. The curve is monotonously increasing when a− b > 0 and decreasing
when a− b < 0.

In the following example, Tversky similarities from relative differences
in fingerprint bit settings of hypothetical molecules A, B1, B2, and B3 are
determined under systematic variation of α. The corresponding bit numbers
are a, b1, b2, and b3, respectively. Characteristic features of Tversky similarity
can be best rationalized when studying examples that produce large variations
in similarity values. This is the case when comparing a test molecule with a
sub- and superstructure and, in addition, another molecule having the same
fingerprint bit density.

Figure 3.2 shows the similarity curves for comparisons of A with B1,
B2, and B3, respectively. For the A vs. B1 and A vs. B3 comparisons, convex
curves are obtained whose gradients strongly depend on the differences between
a and bi. Assuming c 6= 0, for a > b1 Tv values are monotonously decreasing
and for a < b3 they are monotonously increasing. Figure 3.2 also shows the
difference in similarity values for comparison of molecules A with B1 and B3,
respectively, when α is set to 0.5 and Tv becomes a symmetric coefficient. This
reflects a general bit density-dependence of the Tversky similarity measure.

In this example, molecule A sets 50 of 100 hypothetical fingerprint bits
to one. Molecule B1 is a substructure of A having 25 fewer bits set on, B2

is another molecule that – like A – has also 50 bits set on but only 37 in
common with it, and B3 is a superstructure of A having 25 more bits set to
one. Comparison of A and B1 leads to a Tv similarity value of 1.0 for α value
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of 0, comparison of A and B2 to 0.74 for all α values, and A and B3 to 1.0 for
α = 1. Thus, for extreme α values Tversky similarity calculations become akin
to substructure searching. For α values close to one, test molecules achieve
high Tv values if they contain the query compound as a substructure (blue
curve in Figure 3.2). By contrast, for α values approaching zero, molecules
obtain high Tv values if they themselves are substructures of the query (red
curve in Figure 3.2). In Figure 3.3 an example of superstructure searching is
shown. Given an arbitrary 4-bit fingerprint design, two molecules, A and B,
are compared. In this case A is a superstructure of B (a > b = c). As a result,
Tv decreases when α increases and its maximal value of 1.0 is achieved when
α = 0.
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Figure 3.2: Property of the Tversky coefficient. Reported are Tversky similarity
values for a template compound A compared to three different database molecules Bi (or
hypothetical fingerprints with a and bi bits set to one, respectively) as a function of the
weighting parameter α. Three cases are shown: a > b1 (fewer bits are set on in B1 than in
A), a = b2 (the same number of bits set on in both compounds), and a < b3 (more bits are
set on in B3). The differences, a − b1 and b3 − a, are set to be equal. The black bar marks
the difference in the two similarity values of B1 and B3 for α = 0.5 (symmetric Tversky
coefficient).

In addition to differences in specific bit settings, overall differences in
bit densities also lead to a separation of molecules depending on α parameter
values. For example, if active compounds have comparable bit densities but on
average a higher bit density than inactive molecules, the a > b1 case applies
for the comparison of active against inactive molecules. As a consequence, if
α increases, similarity values decrease for inactive database molecules but are
mostly unaffected for active compounds (case a = b2, as shown in Figure 3.2)
leading to a preferential de-selection of inactive molecules. By contrast, if bit
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Figure 3.3: Superstructure searching using the Tversky coefficient. Given an arbi-
trary 4-bit fingerprint design, two molecules, A and B, are compared. A is a superstructure
of B and has one more bit set on than B. Tv decreases with increasing α and is maximal
when α = 0.

strings of active compounds have similar bit densities but systematically lower
bit densities than inactive molecules, the a < b3 case applies and, according to
Figure 3.2, lowering α will lead to a de-selection of inactive molecules.

Figure 3.2 also reveals another general characteristic of the Tversky coef-
ficient. As discussed above, in its symmetric version (α = 0.5), it assigns higher
similarity values to molecules that have more bits set on than to molecules with
fewer bits, even if their distance to an active reference compound is the same
in “bit string space”, i.e., molecules B1 and B3 both deviate in exactly 25 bit
positions from A (a− b1 = b3−a). However, comparison of A and B3 results in
a significantly higher similarity value than the comparison of A and B1. That is
because the “1” bits dominate the Tversky similarity comparison: the increase
of “1” bits affects the similarity value more than the decrease of “1” bits (i.e.,
increase of “0” bits). These theoretical considerations apply to any molecular
fingerprint design that depends on structural complexity and systematically
affct calculations of Tversky similarity.



26 Chapter 3. Complexity Effects in Tversky Similarity Searching

3.2 Molecular complexity and fingerprint char-

acteristics

One measure of molecular complexity is the number of heavy atoms. In order to
investigate the behavior of molecular complexity effects, the number of heavy
atoms was assessed for both active compounds and database molecules. In
Table 3.1 characteristics of five activity classes extracted from MDDR38 as well
as the background NCI database40 used by Chen & Brown51 are shown. For five
activity classes and the NCI background database, the average number of non-
hydrogen atoms was calculated as a measure of molecular size. Also determined
for each compound set was the average number of bits set on in three different
fingerprints, MACCS, TGD, and PDR-FP. For the five activity classes, average
numbers of non-hydrogen atoms ranged from 14.0 to 32.3 and for the NCI
database, the average number was 25.2. Activity class NNI was assembled to
consist of on average much smaller molecules than the other classes and showed
significantly lower bit density for MACCS and TGD. For PDR-FP, bit densities
did not vary because this fingerprint was designed to have a constant number
of bits set on, independent of molecular size.49

class designation
number

of
compounds

number
of heavy
atoms

bit
density
MACCS

(%)

bit
density
TGD
(%)

bit
density

PDR-FP
(%)

BEN
benzodiaze-
pine agonists 57 25.6 30.8 13.4 18.6

CAT
cathepsin
inhibitors 90 32.3 30.2 20.8 18.6

HH2
histamin H2
antagonists 41 27.6 33.5 23.0 18.6

NNI
neuronal
injury
inhibitors

50 14.0 20.3 6.0 18.6

TNF
TNF-α
release
inhibitors

65 31.0 31.7 19.7 18.6

NCI
NCI anti-
AIDS
database

42687 25.2 25.7 13.2 18.6

Table 3.1: Characteristics of compound sets for Tv calculations. Reported are the
number of compounds, average number of non-hydrogen (or heavy) atoms, and average bit
densities for three different 2D fingerprints, MACCS, TGD and PDR-FP, for each of the five
activity classes and the background database.
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Compound class complexity and pair-wise Tversky simi-
larity

Pair-wise Tversky similarities were calculated for compounds within each activ-
ity class and also between activity classes and NCI compounds under system-
atic variation of α parameter values. The results are shown in Figure 3.4. For
MACCS and TGD, average similarity values within each activity class formed
symmetric curves with a minimum at α = 0.5. This is the case because for
each pair of active molecules A1 and A2, both values Tv(a1, a2) and Tv(a2, a1)
contribute to the overall average value.
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Figure 3.4: Pair-wise Tversky similarity. Shown are the average pair-wise Tv similarity
values with varying α (using a step-size of 0.1). Dots represent average similarity within each
activity class and the corresponding color-coded lines represent average similarity of NCI
database molecules when compared to the classes.

In comparison, average Tv values for activity classes against NCI com-
pounds did not follow symmetric curves but were monotonously decreasing for
classes BEN, CAT, HH2, and TNF, and monotonously increasing for NNI. Since
average complexity was lower for NCI than BEN, CAT, HH2, and TNF com-
pounds (Table 3.1), similarity values decreased for increasing α values and NCI
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molecules were preferentially de-selected, which corresponds to the a > b1 case
in Figure 3.2. By contrast, NNI had lower average complexity than NCI, lead-
ing to increasing similarity values when α increased and preferential selection of
NCI compounds, which corresponds to the a < b3 case in Figure 3.2. As can be
seen in Figure 3.4, by far the smallest differences between similarity values for
variation of α were observed for BEN relative to the NCI database when using
the TGD fingerprint. This was a consequence of the fact that BEN and NCI
compounds produced nearly the same average bit density (13.4% vs. 13.2%,
Table 3.1). These results were perfectly in accord with theoretical expectations.

For PDR-FP, average similarities formed no monotonously increasing or
decreasing curves, but horizontal lines. This was because PDR-FP has consis-
tently 93 bits set on for each molecule and therefore Tv becomes completely
independent of the α parameter. This is obvious if the Tversky formula in
Eq.(3.2) is transformed accordingly:

Tv(A, B, α) =
c

α(a− b) + b
a = b
=

c

b

=
c

93
(3.3)

The Tv value now only depends on the number of common “1” bits out
of the total number of “1” bits in the fingerprints.

Similarity distribution overlap

In similarity searching, hit rates depend on differences between the distribu-
tions of (a) pair-wise intra-class similarity values and (b) similarity values for
active vs. database molecules. As can be seen in Figure 3.4, when average sim-
ilarity values were calculated, maximal differences and lowest similarity values
between activity classes and NCI compounds for fingerprints MACCS and TGD
were achieved for α = 1 (BEN, CAT, HH2, TNF) or α = 0 (NNI). Yet it cannot
be assumed that performance is optimized at α = 1 and α = 0, respectively,
because until now, only average similarity values have been considered. How-
ever, individual molecules can deviate in Tv scores and thus affect hit rates.
Therefore, for the comparison of similarity value distributions, one also needs
to take standard deviations into account. There are two effects that minimize
the overlap of two distributions and hence increase hit rates. First, the larger
the difference between average similarity values is, the further the distributions
are apart. Second, the smaller the standard deviations are, the narrower the
distributions become and the smaller their intersection area is. As an example,
distributions for similarity values withing activity class HH2 and between HH2
and NCI are shown in Figure 3.5.
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Figure 3.5: Tversky similarity distributions. Value distributions for pair-wise Tversky
similarities (α = 0.5) within activity class HH2 (red) and between HH2 and the NCI database
(blue) are shown. The position of the average value (µHH2 or µNCI) for each distribution is
indicated by a dotted line. The intervals [µHH2 ± σHH2] and [µNCI ± σNCI ] are represented
by a red and blue box, respectively. The area “OV” represents the overlap of the intervals,
as discussed in the text.

In light of its relevance, a simple measure that approximates the overlap
of two similarity distributions has been defined (see Figure 3.5). Given two
distributions of intra-class similarities (AC) and similarities between active and
database molecules (DB), the overlap (OV) is defined as:

OV = (µDB + σDB)− (µAC − σAC) (3.4)

Here µAC and µDB are mean values and σAC and σDB standard deviations of
the two distributions. For similarity searching it is assumed that µAC > µDB.

By plotting OV as a function of the α parameter (Figure 3.6), α values
can be determined that minimize the overlap between the distributions and are
thus preferred for similarity searching. These α values (approximated using
a step-size of 0.1) are reported in Table 3.2. For MACCS and TGD, optimal
α values were greater than 0.5 for activity classes CAT, HH2, and TNF, and
smaller than 0.5 for NNI. For BEN, optimal α values were 0.6 for MACCS
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Figure 3.6: Tversky similarity overlap. The overlap OV between intra-class and inter-
class Tversky similarity value distributions is shown as a function of the α parameter.

class MACCS TGD PDR-FP

BEN 0.6 0.5 -
CAT 0.6 0.7 -
HH2 0.8 0.6 -
NNI 0.2 0.1 -
TNF 0.6 0.8 -

Table 3.2: Optimal Tv α values. α values producing minimal overlap between intra-class
and class-NCI Tversky similarity value distributions are shown as determined by graphical
analysis of Figure 3.6. PDR-FP calculations are independent of α values because of its
constant bit density. Therefore the overlap is also constant.
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and 0.5 for TGD, where average bit densities were nearly identical for BEN
and NCI. For PDR-FP, OV was constant because of its constant bit density
and the results of search calculations were independent of α values. Taken
together, these results confirmed that differences in fingerprint bit densities
determine parameter settings for optimal Tversky similarity calculations. With
the complexity-independent PDR-FP it is possible to circumvent complexity
effects. Yet another possibility is to modify the similarity metric in use so that
the fingerprint representation can remain unmodified.

3.3 Development of the weighted Tversky co-

efficient

When Tc calculations were used to guide the selection of diverse compound
subsets from libraries, selected molecules often displayed the tendency to be
smaller than average database molecules because larger molecules having higher
Tc were determined to be more similar.53 These observations have prompted
Fligner et al.52 to introduce a modified version of the Tanimoto coefficient
(MTc) that takes all bit position into account (i.e. set on or off):

MTc(p) =
2− p

3
Tc1 +

1 + p

3
Tc0 (3.5)

In this formulation, Tc1 and Tc0 are Tanimoto coefficients calculated for bits
set on and off, respectively. The parameter p was empirically determined to
adjust bit density effects. Using this modified coefficient, Fligner et al. were
able to avoid the prevalence of small compounds in diverse subsets taken from
the NCI database.52

The relationship between “1” bits in two fingerprints A and B also de-
termines the complexity dependence of Tversky similarity calculations. As
discussed above, if a reference compound has more bits set on than database
molecules, similarity values tend to decrease with increasing α. By contrast, if
a reference compound has fewer bits set on, similarity values tend to increase
with increasing α. Corresponding relationships between “0” bits in fingerprints
also systematically change similarity values when α increases but the directions
are reversed compared to “1” bits. Thus, for Tv calculations, it is immediately
apparent that taking both “1” and “0” bits into account provides a principal
possibility to eliminate the influence of complexity or size effects because com-
plexity effects caused by “1” bits and “0” bits can cancel out each other. A form
of the Tversky coefficient accounting for bits that are set off can be written as
follows:
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Tv′(A, B, α) =
c′

α(a′ − c′) + (1− α)(b′ − c′)

=
c′

α(a′ − b′) + b′
(3.6)

where a′ and b′ denote the number of “0” bits in A and B, respectively, and c′

the number of “0” bits common to both. Using a weighted combination of Tv
and Tv′ (weighted Tversky coefficient, or wTv) it is possible to balance different
densities of “1” and “0” bits in fingerprints such that neither “1” nor “0” bits
dominate similarity evaluation:

wTv(A, B, α, β) = β
c

α(a− b) + b
+ (1− β)

c′

α(a′ − b′) + b′
(3.7)

where β is defined as the weight on “1” bits, i.e., the larger β becomes, the
more weight is put on “1”s and the less on “0”s; for β = 1, wTv = Tv and for
β = 0, wTv = Tv′. The above equation can be further transformed:

wTv = β(
c

α(a− b) + b
− c′

α(a′ − b′) + b′
) +

c′

α(a′ − b′) + b′
(3.8)

In this formulation, the term

(
c

α(a− b) + b
− c′

α(a′ − b′) + b′
)

can be viewed as a coefficient of β. When it is greater than 0, the linear
function wTv(β) monotonously increases. By contrast, when the coefficient
is negative, the function monotonously decreases. The characteristics of this
coefficient are determined by the value of α and the intrinsic bit settings of the
fingerprints that are compared. The bivariate function wTv(α, β) is expected to
have a nontrivial value distribution surface for different (α, β) combinations and
systematic variation of the α and β parameters best describes this similarity
metric. However, some general characteristics can be deduced by comparing
cases where search templates and active database compounds (potential hits)
have significant differences in bit density and where bit densities are similar.

When all other parameters in Eq.(3.7) remain constant and the reference
compounds have fewer bits set on than potential hits, i.e. a < b, then the term

c

α(a− b) + b
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increases due to the decrease of the denominator. If a < b, it also follows that
a′ > b′ (because a′ and b′ are complementary to a and b). This reduces the term

c′

α(a′ − b′) + b′

and, as a result, the term

β(
c

α(a− b) + b
− c′

α(a′ − b′) + b′
)

increases relative to the situation where bit densities are similar. Increasing α
and β values will further amplify this trend, which also favors the detection of
hits.

By contrast, when reference compounds have more bits set on than po-
tential hits, i.e., a > b, the term

c

α(a− b) + b

decreases and the term
c′

α(a′ − b′) + b′

increases, thereby reducing

β(
c

α(a− b) + b
− c′

α(a′ − b′) + b′
)

and the resulting wTv values. The larger the difference between a and b is, the
more difficult it becomes to achieve high wTv values for comparisons between
reference compounds and active database compounds. In fact, the term

β(
c

α(a− b) + b
− c′

α(a′ − b′) + b′
)

could potentially become negative, which would significantly reduce wTv val-
ues for potential hits and make it very difficult to distinguish them from other
database molecules. Thus, differences in complexity between reference and ac-
tive database compounds might significantly complicate similarity evaluation
and present difficult fingerprint search situations. Modulating α and β pa-
rameters accordingly can reverse the trend, as further analyzed and discussed
below.
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Balancing complexity effects

To study the effects of fixed β values under systematic variation of α, calcu-
lations were carried out on five compound classes assembled from the MDDR
database.38 These classes included benzodiazepines (abbreviated BEN; 57 com-
pounds), cathepsin inhibitors (CAT; 90), vasopressin antagonists (VAS; 109),
neuronal injury inhibitors (NNI; 50), and tumer necrosis factor α release in-
hibitors (TNF; 65). With the exception of VAS, these activity classes were
previously used in calculations in section 3.2 (Table 3.1). They were designed
to produce fingerprints with different average bit densities. VAS was newly as-
sembled from the MDDR and had by far the highest average bit density among
the classes studied. The NCI database40 was adopted as background database
(see Table 3.1).

class
number of
compounds

bit density
(%)

BEN 20 26.0
CAT 20 30.8
CAT 40 31.0
CAT 60 30.8
CAT 80 31.0
TNF 20 40.8
VAS 20 46.0
NNI 20 15.2

Table 3.3: Reference sets for pair-wise wTv similarity calculation. Reported are
the number of compounds and average MACCS bit densities for eight reference sets extracted
from five activity classes. The background database, NCI, contains 42,687 compounds and
their average MACCS bit density is 25.7%.

For similarity calculations, subsets of 20 compounds were selected from
each activity class (except for CAT, where subsets of 20 to 80 compounds
were generated to assess the parametric dependence on reference set size). The
MACCS fingerprint16 bit densities of these activity classes significantly differed.
Table 3.3 summarized the reference sets and their bit densities. For these
compound classes, MACCS “1” bit densities range from 15% - 46%. Thus, “1”
bits are sparsely set and “0” bits dominate the fingerprint bit settings.

Each active compound was used as an individual template and searched
against the background database. For each reference set, average pair-wise wTv
similarity values were determined for α values ranging from 0 to 1 and constant
β values of 0, 0.5, and 1, respectively. The similarity profiles in Figure 3.7 and
Figure 3.8 report the average database similarity for given β and systematically
changing α values. For β = 0, all weight is put on the “0” bits and for β = 1
all weight on the “1” bits. For β = 0.5, “0” and “1” bits are equally weighted.
Thus, β settings of 0 or 1 emphasize complexity effects, whereas 0.5 eliminates
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Figure 3.7: Pair-wise wTv using reference sets with different complexity lev-
els. For four activity classes, average weighted Tversky similarity of background database
molecules was calculated using the MACCS fingerprint. For each class, three curves were
recorded for systematic variation of α and β values of 1 (i.e. complexity-dependent calcu-
lations over-weighting “1” bits), 0.5 (complexity-independent), and 0 (over-weighting “0”
bits).

them from similarity evaluation. For α values ranging from 0 to 1, increasing
weight is put on the bit settings of reference compounds; α = 0.5 equally weights
reference and database molecules. Thus, wTv values calculated with α = 0.5
and β = 1 are proportional to conventional Tanimoto similarity.

As can be seen from Figure 3.7, asymmetric similarity curves were ob-
tained for activity classes whose bit densities differed from the database average.
When bit densities of active molecules were higher than the database, the curves
were monotonously increasing for β = 0 and decreasing for β = 1. When bit
densities of active molecules were lower, these trends were reversed. Only BEN
produced similarity values that were essentially constant over the entire α range
because its bit density was very similar to the background database. When β
was set to 0.5 complexity effects were balanced and the similarity values were
largely constant over the α range. Although BEN matched the bit density of
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Figure 3.8: Pair-wise wTv using reference sets with different set sizes. For reference
sets of four different sizes of class CAT, average weighted Tversky similarity of background
database molecules was calculated using the MACCS fingerprint. For each class, three curves
were recorded for systematic variation of α and β values of 1 (i.e. complexity-dependent
calculations over-weighting “1” bits), 0.5 (complexity-independent), and 0 (over-weighting
“0” bits).

the database, curves for β settings of 1 and 0 illustrate the consequences of
sparsely set “1” bits in the MACCS fingerprint (bit density of 26%). At the
(α = 0.5, β = 1) reference point, the average similarity of 0.47 was artificially
low; when complexity effects were balanced, i.e. (α = 0.5, β = 0.5), the average
similarity was 0.64. Fingerprints of all activity classes and database molecules
contained more “0” than “1” bits and thus similarity values for β = 0 were gen-
erally higher than β = 1. Balanced average similarity relative to the database
was ∼0.65 for four activity classes and 0.6 for NNI. Thus, as one should expect,
the average similarity calculated for a large number of database molecules was
comparable for different activity classes when complexity no longer influenced
the calculations. The CAT profiles (Figure 3.8) show that the similarity curves
did not depend on the size of the reference set.

Taken together, these data illustrate the influence of complexity effects
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on similarity calculations and show that wTv calculations with β = 0.5 produce
essentially constant similarity values that are independent of relative weights
on reference and database molecules. Thus, in this case, database search cal-
culations on active molecules are no longer biased by artificially increasing or
decreasing similarity values.

Active compounds of different complexity

Retrieval of active compounds and determination of hit rates present challenges
that go beyond the similarity evaluation presented in Figure 3.7 because the
detection of molecules having similar activity requires successfully distinguish-
ing potential hits from average database molecules. Specific bit patterns must
be detected that are only shared by active molecules.

To investigate the role of varying bit densities in similarity search cal-
culations under systematic variation of α and β, a set of 1,214 tyrosine kinase
inhibitors (TKI) was assembled from the MDDR38 and divided into four sub-
sets with increasing average MACCS fingerprint “1” bit density (from TKI01 to
TKI04), as reported in Table 3.4. The lowest- (TKI01) and highest-complexity
(TKI04) subsets were used as reference sets in separate calculations where the
remaining three subsets were added to the background NCI database as po-
tential hits. For each reference compound, search calculations were carried out
under systematic variation of α and β, the top scoring 100 or 500 database
molecules were selected, and hit rates calculated and averaged for each sub-
set, thus producing set-specific HR(α, β) values. For example, HR(0.3, 0.6)
reports the hit rate calculated for wTv (α = 0.3, β = 0.6) used as the similarity
coefficient. HR(α, β) can be plotted as a 2D landscape map illustrating the
relationship between the two parameters and the search results.

subset
number of
compounds

bit density (%)

TKI01 300 18.8
TKI02 300 25.2
TKI03 300 31.0
TKI04 314 39.5

Table 3.4: Subsets of TKI for wTv similarity calculation. Reported are the number
of compounds, and average MACCS bit densities for four TKI subsets used in calculations of
Section 3.3. The background database, NCI, contains 42,687 compounds and their average
MACCS bit density is 25.7%.

For low-complexity reference set TKI01 (Figure 3.9), top hit rates be-
tween 25% and 45% were obtained with MACCS for selection sets of 100
database molecules. For high-complexity reference set TKI04(Figure 3.10), hit
rates were generally lower (10% to 20%). In both cases, it can be observed
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Figure 3.9: Hit rate landscapes using simple references. Reported are similarity
search results for reference set TKI01 and ADC sets TKI02 (top), TKI03 (middle) and TKI04
(bottom). Hit rates from top 100 (left) and top 500 (right) molecules are reported under
systematic variation of the α and β parameters in increments of 0.1.
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that multiple (α, β) combinations produced preferred hit rates. However, top
hit rates were generally not observed at the (α = 0.5, β = 1) reference point
for conventional similarity assessment. In fact, when bit densities of reference
compounds and hits were different, similarity calculations using these parameter
settings generally failed. However, top hit rates were typically also not produced
by the (α = 0.5, β = 0.5) parameter settings, i.e. when complexity effects were
balanced (β = 0.5) and equal weight was put on the bit settings of reference
and database molecules (α = 0.5). In calculations with reference compounds
and potential hits having similar bit density (top panel in Figure 3.9, bottom
in Figure 3.10), different (α, β) combinations produced top hit rates. When
bit densities of reference compounds, potential hits, and database molecules
were comparable, complexity effects only played a minor role. However, as
discussed above, “0” bits dominated all fingerprint settings and therefore, in-
creasing weight on shared “1” bits (i.e. increasing β) often improved hit rates
in these cases. The top panel in Figure 3.9 and bottom panel in Figure 3.10
also show an apparent approximate symmetry of hit rates along the (α = β)
diagonal because complementary combinations of (α, β) values produce equiv-
alent (high or low) hit rates. Importantly, when the complexity of reference
compounds and potential hits differed, clear preferences for (α, β) combina-
tions were observed. If the bit density of reference compounds was lower than
that of potential hits (reference set TKI01, Figure 3.9) combinations of high
α and high β values produced best hit rates. By contrast, if the bit density
of reference compounds was higher than that of potential hits (reference set
TKI04, Figure 3.10) combinations of high α and low β values were preferred.
In both cases, these parameter combinations increased wTv values for potential
hits, which can be deduced from the wTv formula. Thus, these results are gen-
erally expected for reference compounds and hits having different fingerprint
bit density. In these cases, modulating complexity effects, rather than eliminat-
ing them, and putting high weights on the bit settings of reference compounds
optimized retrieval of active compounds.

Virtual screening scenario

In the previous section, the complexity of potential hits was systematically
changed and the search results illustrated in Figure 3.9 and Figure 3.10 reveal
systematic trends of parametric preference. In this section, search calculations
are analyzed for potential hits that closely matched the bit density of the back-
ground database and reference compounds of different complexity. The two
instances where reference compounds have bit densities higher than or compa-
rable to the database typically apply to practical virtual screening situations.
This is the case because reference compounds for virtual screening are often
optimized leads or drug candidates (having high complexity) or, alternatively,
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hits taken from experimental screening campaigns (with complexity comparable
to the database).

The average MACCS “1” bit density of the background database (25.7%)
was taken as a reference point to search for molecules that closely matched this
density (i.e. hits with complexity comparable to an average database molecule).
For two activity classes (TKI and TNF), sets of compounds were assembled
from the MDDR having bit densities very similar to the background database
(TKI: 250 compounds, average bit density 25.2%; TNF: 250, 25.8%). These
sets were added to the background database as potential hits. Then other sets
of 50 compounds having average bit densities smaller than, comparable to, or
larger than the background database were used as search templates as reported
in Table 3.5. For all reference compounds, wTv similarity calculations were
carried out under systematic variation of α and β, as described above, and
set-specific HR(α, β) values were calculated for the top scoring 100 database
molecules, as shown in Figure 3.11. The calculations were repeated applying
Tanimoto similarity and the comparison of results is shown in Table 3.6.

reference set TKI TNF

low complexity 18.7 19.1
medium complexity 25.2 25.5
high complexity 39.2 34.4

Table 3.5: Bit densities of TKI and TNF subsets. Reported are the average MACCS
bit densities (in %) of reference sets of class TKI and TNF used in calculations of Section 3.3.

hit rate (%) bit density (%)
reference set Tc wTv Tc hits wTv hits

low 23 36 24.5 24.7
TKI medium 28 30 25.1 24.8

high 0 1 - 25.3
low 20 19 25.6 25.7

TNF medium 8 21 27.4 25.4
high 0 3 - 25.7

Table 3.6: Hit rates of wTv and Tc. Best hit rates for selection of the top 100 database
molecules are reported for TKI and TNF search calculations when potential hits closely match
the MACCS bit density of the background database (25.7%). For each activity class, three
sets of reference compounds with increasing bit density are used, as reported in Table 3.5.
“bit density Tc/wTv hits” stands for average bit density of hits identified on the basis of
Tanimoto or weighted Tversky similarity.

As shown in Table 3.6, wTv calculations produced overall better hit
rates than control calculations using standard Tanimoto similarity. Figure 3.11
reveals trends similar to those seen in Figure 3.9 and Figure 3.10. Best hit
rates were apparent after modulating complexity effects through variation of α
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Figure 3.11: Virtual screening using different reference sets. Reported are similarity
search results for low complexity (top), medium complexity (middle) and high complexity
(bottom) reference subsets of class TKI (left) and TNF (right). The potential hits had com-
parable average bit density to the database. Hit rates from top 100 molecules are illustrated
under systematic variation of the α and β parameters in increments of 0.1.



3.3 Development of the weighted Tversky coefficient 43

N

NO

O

HN Cl

O

20.5%
H
N

N
HO

O

O

O

O

NHN

25.3%

N

N

N

H2N

N

S
O

O

Cl

N

S

N

F

H

41.6%

25.3%

25.3%

25.3%

H
N

O

NH

N

O

N

N N
H

O

N

TKI

O

O OH

N

19.3%

24.7%

31.9%

O

O

HN

O

O

O

OH

O

O F

F
O

N

NH2

O

O

25.3%

25.3%

24.1%

O

O

N

NH2

O

O

O

N

O

O

O

O

HN

H2N

O

O

TNF

Figure 3.12: Structures of templates and hits. Examples of TKI (top) and TNF
(bottom) reference compounds of varying complexity (left) are shown together with hits
identified using these compounds (right) in the calculations summarized in Figure 3.11. Their
bit densities are reported and substructures shared by corresponding reference compounds
and hits are colored red.
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and β parameters. Furthermore, these results make it possible to distinguish
between three search situations. Calculations with reference compounds hav-
ing lower complexity than the database are less relevant for virtual screening
than the other two cases. Here combinations of high α and high β values were
preferred, as discussed above. By contrast, when the complexity of reference
compounds, database molecules, and hits were comparable many (α, β) com-
binations produced top hit rates. However, for reference compounds of higher
complexity than potential hits or the background database, which is highly rel-
evant for virtual screening, hit rates were much lower. Despite these very low
hit rates that made the evaluation of parameter combinations difficult, there
was also a preference for high α and low β values, at least in the case of TNF.
Clearly, the case where reference compounds had higher complexity than po-
tential hits presented the most challenging search scenario (where evaluation
of standard Tanimoto similarity failed). These findings are well in accord with
principal expectations derived from the formula of wTv. Thus, the trends ob-
served here should generally apply to wTv calculations and related similarity
metrics. Figure 3.12 shows examples of reference compounds of varying bit
density and corresponding hits. These figures also illustrates that the density
of “1” fingerprint bits provides a meaningful measure of molecular complexity.

3.4 Summary

Fingerprint search performance is determined by intrinsic features of finger-
print descriptors, chosen search strategies, and the way fingerprint similarity
is quantified. For conventional 2D fingerprints such as MACCS, bit density is
usually much influenced by molecular size. This chapter has uncovered a direct
relationship between fingerprint bit densities and asymmetry of Tversky simi-
larity calculations and demonstrated that differences in bit densities determine
preferred Tv parameter settings for similarity searching.

Application of the Tversky similarity measure makes it possible to cal-
culate molecular fingerprint similarity in a symmetric and asymmetric fashion.
For fingerprints having different complexity, mathematical analysis has been
conducted to describe the characteristics of Tversky coefficient with regard to
the weight put on reference compounds. Furthermore, similarity search results
have confirmed such characteristics and explained the asymmetric behavior of
Tv similarity calculations. Evaluation of Tv distributions has enabled the de-
termination of optimal α values in similarity searching, which is dependent on
different fingerprint bit densities of the reference classes.

In addition to the demonstration of complexity effects and their direct in-
fluence on Tv similarity searching, two possible approaches have been suggested
to avoid complexity effects. First, for a fingerprint design with constant bit den-
sity such as PDR-FP, Tv calculations are always symmetric and independent of
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α parameter settings. Therefore, development of complexity-independent fin-
gerprints can circumvent search difficulties that occur when complex optimized
lead structures are used to search for relatively simple non-optimized hits.

Second, the weighted Tversky coefficient (wTv) has been introduced,
which is a versatile similarity metric taking the weight on “0” into consider-
ation. With the wTv it is possible to study and balance complexity effects
and differently weight contributions of reference and database molecules. The
interplay between these parameters produces complex similarity value distribu-
tions that have been analyzed to study the influence of molecular complexity on
fingerprint searching in detail. Balancing complexity effects leads to constant
similarity values for reference and background database molecules, indepen-
dent of how compound contributions are weighted. Under these conditions, no
systematic errors occur in calculating the similarity of database molecules.

Moreover, taking differences in molecular complexity into account also
provides opportunities to optimize the retrieval of active compounds. Accord-
ingly, in fingerprint searching for active compounds having different complexity,
modulating complexity effects, rather than eliminating them, and putting high
weight on reference compounds led to best hit rates in the analysis. Hit rate
landscape maps have revealed preferred parameter combinations for similarity
searching and helped to better understand preferred characteristics of reference
compounds, which has implications for virtual screening. In wTv calculations,
highly complex molecules are, for principal reasons, much less suitable as ref-
erences than active compounds having complexity comparable to the screening
database. The findings reported herein provide the basis for further analyses of
similarity metrics and aid in the design of sound fingerprint search protocols.
For example, in Chapter 5 an activity class-specific similarity metric will be
discussed, which has been developed based on wTv to account for complexity
effects.





Chapter 4

Random Reduction of
Fingerprint Bit Density

In the previous chapter, apparent asymmetry in search calculations on large
databases using the Tversky coefficient51 was shown to be a direct consequence
of differences in molecular complexity. Similarity search calculations using con-
ventional fingerprints such as, for example, MACCS structural keys16,54 and
similarity metrics like the Tanimoto coefficient (Tc)6 are sensitive to differences
in complexity between reference compounds and database molecules, which cor-
relate to differences in fingerprint bit density.

There are two typical scenarios for practical fingerprint search applica-
tions. First, one uses hits from screening data sets as reference compounds for
additional virtual screening. These hits usually have complexity and size com-
parable to average database molecules (from which they were selected). Second,
one selects known active compounds from the scientific or patent literature as
references to search databases for novel hits, which is probably the most com-
mon search situation. Typically, these templates are chemically optimized and
potent compounds that are larger and more complex than average database
molecules and hits from which they originate. In the previous chapter, it has
been discussed that that the more complex reference compounds are, the lower
the search performance becomes.

In this chapter, complexity effects are further investigated with regard to
bit density of fingerprints, rather than similarity metrics. It is shown that when
the number of bits set on in the fingerprints of complex reference compounds
is randomly reduced, search performance notably increases, although random
bit density reduction – also termed random bit silencing – reduces the chemical
information content of fingerprints and biases similarity evaluation. This at
first glance unexpected finding is analyzed and a generally applicable strategy is
suggested to improve the performance of search calculations using conventional
fingerprints.

47
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4.1 Bit silencing experiment

For a binary fingerprint, bit silencing of a “1” bit is to set this bit from “1” to
“0”. It differs from modification of the fingerprint through removal of individ-
ual bit positions because in bit silencing, the length of the fingerprint is kept
constant. As a result, the bit density of the fingerprints is reduced. Yet the pres-
ence of the corrensponding feature in the molecule is no longer encoded and the
loss of information is expected to affect pair-wise similarity comparison. As can
be observed from previous studies (see for example, Figure 2.4 in Section 2.4),
the search difficulties induced by complexity effects are directly related to high
bit densities of reference compounds. Thus, experiments that reduce the bit
densities of reference sets through random bit silencing are designed to system-
atically evaluate the interplay of complexity effects and fingerprint information
on similarity search performance.

40%

20%

silence silence

bit density

Figure 4.1: Bit silencing. Example of silencing the third and last bit position out of a
hypothetical 10-bit fingerprint. As a result, the bit density reduces from 40% to 20%.

In order to generate sets of active compounds with systematically vary-
ing fingerprint bit density, five activity classes were initially assembled from the
MDDR38: cyclooxygenase inhibitors (COX), leukotriene antagonists (LKT),
phospholipase A2 inhibitors (PA2), reverse transcriptase inhibitors (RTI), and
protein tyrosine kinase inhibitors (TKI). It was critically important to obtain
subsets of each activity class with fingerprint bit densities similar to or larger
than background database molecules, which limited the initial choice of MDDR
activity classes. As background database (termed BGDB) for similarity search-
ing, 5,000 molecules were randomly selected from ZINC.39

First the average bit density of the MACCS fingerprint16 for BGDB
molecules was calculated to be 22.3% (of 166 MACCS bits). Then, from each ac-
tivity class, 100 compounds with comparable average bit density (22.3 - 22.7%,
depending on the class) were extracted as active database compounds (ADC),
to be added to BGDB as potential hits. In addition, as reference sets for sim-
ilarity searching, for each activity class four subsets were assembled (termed
reference sets RS1 - RS4) with 20 compounds each of systematically increasing
average MACCS bit density per set of approximately 22%, 29%, 33%, and 39%.
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class ADC RS1 RS2 RS3 RS4

COX 22.5 22.3 28.5 30.3 39.3
LKT 22.6 22.4 28.7 33.5 38.6
PA2 22.3 21.9 - 34.1 39.2
RTI 22.7 23.2 28.4 32.7 38.7
TKI 22.3 21.7 28.8 32.4 41.3

Table 4.1: Bit densities of active database compounds and reference sets. Reported
are average MACCS bit densities (in %) calculated for active database compounds (“ADC”)
and four different reference sets (“RS1” - “RS4”). ADC and RS1 were selected to have bit
densities comparable to BGDB (22.3%). Reference sets RS2, RS3, and RS4 were designed to
contain molecules of increasing bit densities. For activity class PA2, no reference set with an
average bit density of 29% could be identified and, therefore, RS2 was not available in this
case.

For RS1, these 20 compounds had to be extracted from the ADC sets, because
not sufficient additional active molecules were available at this bit density level.
Therefore, for similarity searching using RS1, only 80 instead of 100 ADC were
available. Table 4.1 summarizes the different ADC and reference sets and their
bit densities. The design of these compound sets has enabled the evaluation of
the influence of increasingly complex search templates on fingerprint similarity
searching and also provided a basis for set-directed modification of fingerprint
bit settings.

Three different types of fingerprint search calculations were carried out
using MACCS. First, for each activity class, reference sets RS1-RS4 were sep-
arately used to search for ADC and hit rates were calculated for the 100 top-
scoring database molecules.

Second, fingerprints of reduced bit density were generated for reference
compounds, while fingerprints of ADC and BGDB compounds remained un-
modified. To decrease the average bit densities of a reference set by 5%, 10%,
15%, etc., fingerprint bit positions were randomly selected and set to “0” in all
compounds of this reference set until the desired bit density level were achieved.
For some compounds in the set these positions were set to “0” before silencing
and they remained to be “0” in the process. For RS1, three reduction levels
were generated, for RS2 four, for RS3 five, and for RS4 six. At each reduction
level, similarity search calculations on all compound sets were performed with
ten different versions of randomly silenced fingerprints. In each case, hit rates
were determined for the top-scoring 100 database molecules and the results
were averaged.

Third, MACCS fingerprints with randomly reduced bit densities were
created for all compounds, i.e. reference, ADC, and BGDB molecules. Bit
positions were randomly chosen and set to “0” in all compounds until average
bit densities were reduced by 5% or 10%. Larger reductions (e.g., 15%) were
not meaningful because the BGDB average bit density was only 22.3%. Then
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search calculations were carried out for ten different random fingerprint versions
at each reduction level and hit rates were calculated and averaged as described
above.

All search trials using unmodified and bit density-reduced fingerprint
versions were conducted using a 20-nearest neighbor approach (20-NN)11 and
Tanimoto similarity was calculated. That is, the pair-wise Tc similarity of a
database molecule was determined against each of the 20 reference compounds
and the average of these individual Tc values was used as final similarity score.
The 20-NN strategy was chosen here in order to equally weight contributions
of the fingerprints of all reference compounds. For comparison, a number of
test calculations were also carried out using a 1-NN search technique, i.e. using
only the highest similarity value. Control calculations at different bit den-
sity reduction levels were carried out with TGD and TGT that are 2D two-
and three-point pharmacophore-type fingerprints, respectively (see Table 1.1).19

Like MACCS, these fingerprints are keyed, i.e. each bit is associated with a de-
fined feature, but they monitor atom pair (TGD) or three-point pharmacophore
patterns (TGT) and are larger than MACCS (with 420 and 1704 bit positions,
respectively).

4.2 Random bit silencing of reference sets

The results of standard MACCS calculations applying the 20-NN ranking
scheme are reported in Table 4.2. Given the set-up of the test calculations,
the probability of identifying an active compound by random selection was
¡2%. As can be seen, hit rates were strongly dependent on the bit density of
reference compounds, irrespective of the activity class. When searching with
reference set RS1 (having about 22% bit density), hit rates of 32–45% were
achieved for activity classes LKT, PA2, RTI and TKI. Only for COX, a hit rate
of ¡20% was obtained. For reference set RS2 (29% bit density), search perfor-
mance notably decreased and top hit rates were only 26% (for classes LKT and
TKI). For reference sets RS3 and RS4 (with 33% and 39% bit density), hit rates
were further reduced to between 0% and 12%. In the case of RS4, the most
complex reference compounds with bit densities ¿38%, similarity search calcu-
lations failed for all classes but PA2 (producing a low hit rate of 6%). No single
active molecule was recovered among the top 100 database molecules for classes
COX, LKT, RTI and TKI. These results clearly illustrate the consequences of
using complex reference compounds in fingerprint searching and the correlation
between bit densities and search performance. The more complex the reference
compounds are, the lower the compound recall becomes. Moreover, search cal-
culations that produce reasonable hit rates for reference compounds with bit
density comparable to database molecules (RS1) essentially fail when reference
compounds with high bit density are used (RS4). On the basis of these obser-
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vations, reducing the bit density in fingerprints of reference compounds can be
expected to balance complexity effects and increase search performance. How-
ever, setting “1” bits to “0” also reduces the chemical information content of
fingerprint representations, making the net effect of such modifications difficult
to predict. Thus, it is necessary to systematically study the consequences of
bit density reduction in fingerprints of reference compounds.

class RS1 RS2 RS3 RS4

COX 17 13 1 0
LKT 45 26 4 0
PA2 39 - 12 6
RTI 32 6 0 0
TKI 42 26 3 0
average 35 18 4 1

Table 4.2: Search performance using unmodified MACCS fingerprints. For ref-
erence sets of increasing bit densities (“RS1” to “RS4”), hit rates (in %) are reported for
selections sets of 100 compounds. In similarity searches using RS1 as templates, 80 potential
database hits were available and for RS2, RS3 and RS4, 100 potential hits.

Table 4.3 summarized the results of randomly silencing the reference set
only. For RS1-RS4, the bit density of their MACCS fingerprints was randomly
reduced in a step-wise manner down to a level of 7–8% and at each reduction
level, fingerprint modification was performed ten times to avoid chance effects.
Then systematic search calculations against unsilenced fingerprints of database
molecules were carried out.

When searching with reference set RS1, step-wise bit density reduction
led to consistently lower hit rates over the three reduction levels; starting from,
on average, 35% original hit rate to 30%, 19%, and 9%. This gradual decrease
in hit rates can be attributed to the loss in fingerprint information content con-
sidering that RS1 and database molecules have comparable bit density. Thus,
complexity effects are negligible in this case and silenced fingerprint represen-
tations lead to lower search performance, as one would expect. By contrast,
for reference sets RS2–RS4 having higher bit densities than ADC and BGDB
molecules, bit density reduction systematically improved search performance.
For RS2, optimal hit rates were reached at the 12–13% bit density level for
activity class COX (16%) and at the 17–18% bit density level for classes LKT
and RTI (30% and 11%). Here class TKI was an exception because bit density
reduction did not increase hit rates. For RS3, bit density reduction led to an
in part significant improvement in hit rates taking into account that the orig-
inal hit rates were overall low for these complex reference compounds. At the
12–13% bit density level, hit rates of 9% instead of 1% were observed for activ-
ity class COX, 6% instead of 0% for class RTI, and 13% instead of 3% for TKI.
Thus, in contrast to RS2, in this case, bit density reduction for the more com-
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reference bit density level
set 7-8% 12-13% 17-18% 22-23% 27-29% 30-34% 39-41%

COX 6 13 17 17
LKT 12 20 40 45

RS1 PA2 8 19 33 39
RTI 5 17 27 32
TKI 12 25 32 42
average 9 19 30 35
COX 13 16 15 16 13
LKT 14 19 30 29 26

RS2 PA2 -
RTI 5 8 11 11 6
TKI 5 14 23 26 26
average 9 14 20 20 18
COX 2 9 8 5 2 1
LKT 15 7 10 14 8 4

RS3 PA2 4 9 9 8 8 12
RTI 2 6 6 4 1 0
TKI 4 13 8 4 3 3
average 5 9 8 7 4 4
COX 4 4 5 3 4 2 0
LKT 7 5 8 5 7 1 0

RS4 PA2 4 6 7 7 9 6 6
RTI 2 2 1 1 0 0 0
TKI 9 9 4 2 1 0 0
average 5 5 5 4 4 2 1

Table 4.3: Search performance using randomly silenced reference sets. Hit rates (in
%) are listed for reference sets of increasing bit densities and selection sets of 100 compounds.
In each block (RS1, RS2, RS3 or RS4), hit rates in the rightmost column indicate that original
instead of silenced fingerprints of reference compounds are used as search templates; bold
hit rates indicate the best performance within each row. Numbers in column titles show
the actual bit density of template fingerprints. In all calculations, bit strings of database
compounds (and ADC hidden among them) remained unmodified.

plex TKI molecules also led to an increase in hit rates. Furthermore, for class
LKT, the hit rate increased from 4% to 14% at the 22–23% bit density level.
Finally, when searching with reference set RS4, random bit density reduction
led to the correct detection of several hits for each activity class, whereas the
original search calculations with unmodified MACCS fingerprints completely
failed in four of five cases (except PA2). For these classes, top hit rates under
silencing conditions ranged from 2% (RTI) to 9% (PA2 and TKI).

Comparison of the preferred bit density levels showed that highest hit
rates were obtained at different reduction levels, dependent on the class. How-
ever, a general trend was observed when average hit rates were monitored over
all activity classes, as shown in Figure 4.2. The preferred bit density reduction
level shifted towards lower bit densities with increasing original reference set
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Figure 4.2: Hit rates after bit silencing of reference sets. Hit rates averaged over the
ten independent trials of all five activity classes are reported using reference set RS1, RS2,
RS3 and RS4. For each reference set, MACCS bit density was randomly reduced to different
levels. Bars with bold borders are the hit rates for unmodified fingerprints used in similarity
searching, while bars colored in dark blue are the optimal hit rates.
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bit density, from RS1 to RS4. For reference set RS1 highest hit rates (on av-
erage 35%) were obtained for original bit densities because complexity effects
were negligible here, as discussed above. For reference set RS2, the bit density
levels 17–18% and 22–23% led to highest average hit rates (with an average
of about 20%); for RS3, preferred levels were 12–13% and 17–18% (with av-
erage hit rates of 8–9%), and for RS4, best hit rates were obtained at 7–8%
and 12–13% bit density levels. Thus, the higher the original bit density of a
reference set was, the more its bit density had to be reduced to optimize com-
pound recall. Furthermore, preferred bit density levels were often lower than
the average BGDB fingerprint bit density. Because of complexity effects, a
given reference compound does not preferentially recover database molecules of
comparable bit density, but rather molecules with higher bit density. By con-
trast, when the reference compound has a lower bit density than the database
molecules, bit density differences between database molecules no longer play a
significant role. However, the average BGDB bit density level of approximately
22–23% still provided an attractive search level, as shown in Figure 4.2.

reference bit density level
set 7-8% 12-13% 17-18% 22-23% 27-29% 30-34%

COX 20-NN 2 9 8 5 2 1
1-NN 12 25 23 24 25 20

LKT 20-NN 15 7 10 14 8 4
1-NN 23 20 30 40 30 19

PA2 20-NN 4 9 9 8 8 12
1-NN 18 26 17 15 13 11

RTI 20-NN 2 6 6 4 1 0
1-NN 6 19 16 26 18 10

TKI 20-NN 4 13 8 4 3 3
1-NN 5 28 16 12 20 13

Table 4.4: Comparison of 20-NN and 1-NN as rules of data fusion using randomly
silenced reference sets. Similarity calculations as reported in Table 4.3 were carried out
with 1-NN rules of data fusion. For each database molecule, the highest Tc value from
pair-wise comparison with the compounds in reference set RS3 were retained for ranking.
Then the highest hit rates over the multiple trials were recorded (labeled “1-NN”). They
were compared with the corresponding RS3 data in Table 4.3 (labeled “20-NN”), which was
calculated according to the 20-NN or averaging rule of data fusion.

In addition, using the 1-NN search strategy, which usually improves simi-
larity search performance11,42,43 instead of 20-NN, random silencing of reference
set yielded improved performance as well. As shown in Table 4.4, when ref-
erence set RS3, which was more complex than BGDB, was used as template,
bit density reduction produced in general higher hit rates with 1-NN similarity
calculations.

Further calculations were carried out on two activity classes using the
TGD and TGT fingerprints19 (see Table 1.1) instead of MACCS. Detailed data



4.3 Random bit silencing of all fingerprints 55

are shown in Table B.1 and B.2. TGD and TGT displayed trends similar to
MACCS when bit densities were reduced. Thus, the effects discussed above
were not MACCS-dependent, but generally applies to key-type fingerprints.

4.3 Random bit silencing of all fingerprints

In this section, the bit density in both reference and database molecules was ran-
domly reduced such that relative differences in bit densities remained approxi-
mately the same. These modifications generally reduce fingerprint information
content but maintain complexity relationships. The results of systematic sim-
ilarity search calculations using these reduced fingerprint representations are
summarized in Table 4.5.

reference
set

10%
bit density
reduction

5%
bit density
reduction

original

COX 15 18 17
LKT 40 46 45

RS1 PA2 33 37 39
RTI 23 28 32
TKI 32 41 42
average 29 34 35
COX 8 13 13
LKT 29 27 26

RS2 PA2 -
RTI 21 23 26
TKI 8 13 26
average 17 18 18
COX 2 1 1
LKT 3 4 4

RS3 PA2 9 11 12
RTI 0 0 0
TKI 3 2 3
average 3 4 4
COX 0 0 0
LKT 0 0 0

RS4 PA2 6 6 6
RTI 0 0 0
TKI 0 0 0
average 1 1 1

Table 4.5: Search performance after random bit silencing of all fingerprints. Hit
rates (in %) are listed for reference sets of increasing bit densities and selection sets of 100
compounds. At each reduction level (5% or 10%) bit densities of reference and database
compounds were simultaneously reduced. “original” refers to unsilenced fingerprints.

For reference set RS1, where average bit densities of reference and
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Figure 4.3: Hit rates after random bit silencing of all sets. Hit rates averaged over
the ten independent trials of all five activity classes are reported using reference set RS1 and
RS2. For each reference set, MACCS bit density of reference and database molecules was
randomly reduced at the same time to different levels. Bars with bold borders are the hit
rates for unmodified fingerprints used in similarity searching, while bars colored in dark blue
are the optimal hit rates. For RS3 and RS4 similar trend was observed (Figure B.1).

database molecules were comparable, bit density reduction led to a consistent
decrease in hit rates over the different reduction levels, on average from 35%
to 25%. These observations were consistent with the notion that fingerprints
with reduced information content lose predictive capacity. For reference set
RS2, a decrease in hit rates was only observed for two classes (COX and TKI),
whereas hit rates increased for RTI and remained essentially constant for LKT.
Thus, RS2 calculations showed that a loss in fingerprint information content
led to unpredictable results in the presence of complexity effects. For RS3 and
RS4, original hit rates were in part very low and no significant changes were
observed. Taken together, these results show that universal bit density reduc-
tion decreases fingerprint search performance. By contrast, bit silencing only
on reference compounds balances complexity effects and improves compound
recall, as discussed in the previous section.



4.4 Summary 57

4.4 Summary

In this chapter, an alternative approach to balance complexity effects through
random bit silencing has been introduced and tested. Systematic similarity
searching using compound reference sets of variable but controlled fingerprint
bit density show that the more complex reference compounds are, the lower the
recall of active compounds with average complexity becomes. Through random
reduction of fingerprint bit density of reference compounds complexity effects
can be balanced for standard fingerprints.

The fingerprint bit silencing causes two opposing effects: a general loss of
chemical information leading to a decrease in search performance and compen-
sation of complexity effects leading to higher hit rates. Similarity search results
show that balancing molecular complexity effects outweighs the information loss
associated with bit density reductions and leads to in part significant increases
in the recall of active compounds, especially when the reference compounds are
much more complex than the database molecules. Importantly, bit positions
can be randomly selected and silenced in order to achieve a net increase in hit
rates. Without computational analysis, it could not have been predicted that
random bit silencing leads to an increase in search performance when reference
compounds of above average complexity are used.

These findings suggest that random bit silencing can be applied as a
search strategy. Because it is straightforward to calculate and compare average
bit densities, one can easily detect whether available reference compounds have
higher bit density than database molecules. If so, it is possible to carry out
search calculations after random reduction of reference fingerprint bit density
to the level of database molecules or below, where complexity effects become
negligible. Under these conditions, search calculations using standard finger-
prints should have an increased probability of identifying novel hits.





Chapter 5

Bit Position-Weighted Similarity
Metrics

In the previous chapter it has been shown that random bit silencing of finger-
prints of complex reference compounds enhances search performance. However,
this unsupervised process does not depend on whether the silenced/remaining
bit positions are critical for the identification of active compounds or not. There
is no preference with regard to which bit position to silence. The contribution
of individual bit positions to similarity search performance has not yet been
systematically analyzed. One possible strategy to address this question is to
perform bit silencing in a controlled manner.

In this chapter, bit silencing is utilized as an approach to systematically
determine the contribution of each bit position to similarity search performance.
For a given fingerprint and compound activity class, bit silencing makes it
possible to derive a bit position-dependent weighting scheme that can then be
used to modify similarity metrics in a compound class-specific manner. As a
result, a bit position-dependent weighted variant of the Tanimoto coefficient,
bwTc, is designed, which is found to increase hit rates of conventional search
calculations.

Complexity differences between reference compounds and database
molecules often systematically affect the result of similarity searching. For
Tversky similarity calculations, such biasing effects could be corrected by in-
troducing the weighted Tversky coefficient (wTv, as discussed in Chapter 3),
which made it possible to set relative weights on “1” and “0” bits and thereby
balance complexity differences between reference and database molecules. How-
ever, fingerprint searching with chemically optimized reference compounds that
were more complex than average database molecules generally made it most dif-
ficult to identify novel hits.

Therefore, in this chapter another similarity metric will also be intro-
duced that simultaneously balances complexity effects and emphasizes com-
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pound class-specific bit settings during fingerprint searching. This class-
directed similarity coefficient is generated by combining the wTv and bwTc
functions. The resulting “weighted Tversky coefficient with class-specific bit
weighting”, or wbwTv, represents a parametric approach of modulating simi-
larity and complexity. In systematic search calculations utilizing compound ref-
erence sets of increasing complexity, wbwTv outperformed its parental methods
and other similarity metrics.

5.1 Systematic bit silencing and generation of

a bit weight vector

The derivation of bit position-weighted similarity metrics consists of two stages:
the training stage and the test stage. In the training stage, each individual bit
position in a keyed fingerprint is systematically set to “0” for all reference
compounds prior to similarity searching, as described in Chapter 4. For a
fingerprint with N bits, a total of N search calculations (training searches) are
carried out with variable settings on (N − 1) bits, except for the silenced bit
that is constantly set to “0” and does not contribute to the search.

In this study MACCS keys16 with 166 bits have been subjected to the bit
silencing procedure. Hit rates were calculated for 166 silencing calculations and
recorded in a bit position-dependent hit rate profile. From the hit rate profile, a
bit position-dependent weight vector is calculated on the basis of weights that are
assigned to each bit position according to the effects of silencing. If silencing
of a bit position leads to a reduction in search performance, the bit makes
a positive contribution and is emphasized. By contrast, if silencing of a bit
increases search performance, it negatively contributes and is de-emphasized.
If silencing has no effect, the bit makes no contribution and is not weighted.
Accordingly, the weight vector can be derived as follows: if hrO is the hit rate
obtained with the unmodified fingerprint and (hr1, hr2, . . . , hrN) are N hit rate
values that correnspond to the similarity search with each of the N bits in the
fingerprint silenced individually, the weight on the i-th bit, wi, is defined as

wi = (1 + (hrO − hri) · sf) · 100% (5.1)

where sf is a pre-defined scale factor reflecting the magnitude of change ob-
served in the hit rate profile. The higher sf is, the more sensitive the weight
vector becomes to fluctuation in hit rates as a consequence of silencing. For
example, if sf is set to 100 and silencing of the i-th bit reduces the hit rate
by 3%, then wi = (1 + (3%) · 100) · 100% = 400%, which means that the cor-
responding bit is scaled four-fold relative to the original 100% weight because
of its positive contribution. With sf = 200 and a 3% reduction in hit rate,
the value of wi becomes 700%. By contrast, if silencing of a bit leads to a 2%
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increase in hit rate and sf = 200, then the weight on this bit position becomes
-300%, which corresponds to three-fold negative scaling.

The bit position-dependent weight vector W consists of the weights
of all N bit positions (W = (w1, w2, . . . , wN)) and mirrors the significance
of each individual bit. The calculation of W is fingerprint- and compound
class-dependent and influenced by the composition of the reference set. For
example, for class COX (cyclooxygenase inhibitor) assembled from MDDR38

and a background database consisting of 5,000 molecules randomly extracted
from ZINC39, the hit rate profile and the derived weight vector are shown in
Figure 5.1. A subset of COX consisting of 102 compounds was taken as training
set and from this set, a reference subset of 20 compounds was randomly selected
and the remaining compounds were added to the background molecules for
deriving the bit silencing hit rate profile. 166 bit silencing calculations were
carried out in combination with 20-NN ranking (to equally take contributions
of all reference molecules into account) and hit rates were calculated for the
top-ranked 100 database molecules. In this example, MACCS Tc calculations
produced a hit rate of 23%. Individual silencing of 17 of 166 bits reduced
this hit rate by 1% to 4%, whereas silencing each of 55 other bits resulted in
higher hit rates between 24% and 35%. Thus, silencing of individual bits led to
increases in hit rate of up to 12%, which represents a significant improvement
of search performance. In this case, silencing of the remaining 94 bit positions
did not change the hit rate. Many of these were “0” bits. These findings
illustrate that individual “1” bits can significantly compromise the ability to
detect active compounds, and that only subsets of fingerprint bits determine
search performance. For COX, nearly one third of MACCS bit positions did
not detectably contribute to search performance.

To extensively test bit silencing and systematic similarity search calcula-
tions, 20 more activity classes were assembled from the MDDR (Table 5.1). The
same ZINC subset was used as background database. For each activity class,
a training set was assembled as reported in Table 5.1. The number of training
compounds ranged from 84-605 for different classes. From each training set,
a reference subset of 20 compounds was randomly selected and the remain-
ing compounds were added to the background molecules, as in the COX case
described above. Training of weight vector was repeated ten times with ten dif-
ferent reference subsets to avoid random bias and the activity class-dependent
weight vector was derived by averaging these ten vectors. Weight vectors of
all activity classes are compared in Figure 5.3. In this heat map it is shown
that these weight vectors significantly differ in bit position weights and are thus
class-specific. It is therefore not possible to select MACCS bit positions that
are generally associated with different biological activities. However, bit silenc-
ing allows to derive bit weight vectors specific to the corresponding class with
information relevant to the identification of active compounds.
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Figure 5.1: Bit silencing-derived hit rate profile. Shown is the hit rate profile of activ-
ity class COX derived from bit silencing (left) and bit position-dependent weight distribution
generated using a scale factor of 100 (right). Weights of bit positions that increase or decrease
the hit rate during silencing are displayed and bits whose silencing does not affect the hit
rate of 23% (and thus obtained weights of 100%, shown as blue lines) omitted for clarity. Bit
positions with maximum weight (positive scaling due to decrease in hit rate) and minimum
weight (negative scaling due to increase in hit rate) are shown in red and green, respectively.

5.2 Bit position-weighted Tanimoto similarity

The weight vector discussed in the previous section makes it possible to generate
a bit position-dependent weighted Tanimoto coefficient. Given two molecular
bit vectors of length N , A = (a1, a2, . . . , aN) and B = (b1, b2, . . . , bN), the
general form of Tc6 is

Tc(A,B) =

∑N
i=1 aibi∑N

i=1(a
2
i + b2

i − aibi)
(5.2)

In this formulation, ai and bi are binary variables representing the i-th bit
in fingerprint A and B , respectivly, and aibi their product. Variable weights
to each individual bit position can be added corresponding to the results of
silencing by calculating the product of the Tc and weight vector W . Thus,
given a vector of N elements, W = (w1, w2, . . . , wN), representing the weights
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Figure 5.2: Training of bit weight vector. For a given activity class (such as COX),
a training subset is assembled. From this subset a reference set is randomly extracted and
the remaining compounds are hidden in the background database. In this calculation the
reference set consists of 20 compounds. Systematic silencing is carried out on the reference
set and similarity searching with Tc is applied to derive the bit weight vector. The training
procedures described in Section 5.1 are summarized within the brackets.

on the N bits of the fingerprint, the bit position-dependent Tc, bwTc, is defined
as

bwTc(A,B ,W ) =

∑N
i=1 aibiwi∑N

i=1(a
2
i + b2

i − aibi)wi

(5.3)

The calculation of bwTc is illustrated in Figure 5.4. Two hypothetical
fingerprints with ten bits are compared using the conventional Tc and bwTc.
For the latter a hypothetical weight vector represented in percentage format is
used. Because negative values are permitted for the weight vector’s elements,
as discussed above, bwTc similarity values can also become negative. Thus,
compared to Tc-based ranking, larger value ranges and differences between
similarity values are possible in bwTc calculations.
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class designation
number of
training

compounds

number of
potential

hits

ACE angiotensin-converting enzyme inhibitor 215 30
ADR aldose reductase inhibitor 250 70
CAM cell adhesion molecule antagonist 133 10
CLG collagenase inhibitor 146 20
COX2 cyclooxygenase-2 inhibitor 122 40
COX cyclooxygenase inhibitor 102 140
ELA elastase inhibitor 112 10
FXA factor Xa inhibitor 605 40
HIV HIV-1 protease inhibitor 148 50
LKT leukotriene antagonist 181 120
LPO lipid peroxidation inhibitor 138 70
MM1 muscarinic M1 agonist 178 20
NEP neutral endopeptidase inhibitor 196 60
PA2 phospholipase A2 inhibitor 84 100
PAF platelet-activating factor antagonist 198 50
PDV phosphodiesterase V inhibitor 327 10
PKC protein kinase C inhibitor 129 70
RTI reverse transcriptase inhibitor 177 100
SST squalene synthetase inhibitor 99 40
TKI tyrosine-specific protein kinase inhibitor 253 250
TNF tumor necrosis factor inhibitor 185 50

Table 5.1: Activity classes for bwTc similarity calculation. For 21 activity classes,
“training compounds” were used in bit silencing calculations and the derivation of the class-
specific bit position-dependent weight vectors and “potential hits” for similarity searching
using MACCS Tc and bwTc calculations. Training and potential hit sets were distinct in
each case.

Because the different effects of bit silencing described above were con-
sistently observed for all 21 activity classes, the derivation of class-directed bit
position-dependent similarity metrics is expected to be a promising approach
of general relevance. Therefore, the derived class-specific weight vectors have
been used to systematically compare bwTc calculations with standard MACCS
Tc similarity searching and MACCS bit scaling calculations. A separate test
set of active database compounds (ADC) was extracted from MDDR for each of
the 21 activity classes. The number of these potential hits ranged from 10-250.
ADC sets for each activity class were added to the ZINC background database
and search calculations were carried out as described above (Section 5.1) for
bit silencing. The reference compounds for these search calculations were taken
from the training sets, as shown in Figure 5.5. In each case, hit and compound
recovery rates were determined for the top-ranked 100 database compounds.
Figure 5.6 shows a graphical comparison of hit rates for Tc and bwTc calcula-
tions using a scale factor of 100. In Figure 5.7, bwTc control calculations using
different scale factors (50, 100, 200) are reported. In comparison, fingerprint
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Figure 5.3: Heat map of bit weight vectors. Average bit weight vectors of the 21
activity classes are represented as a heat map. Bit positions with unmodified weight (100%,
or 1) are omitted for clarity. The different color distributions show that the weights on bit
positions are largely class-specific.

scaling45 with a scaling factor of 3.0 to consensus bits was carried out as control
calculation. Table 5.2 reports the hit and recovery rates for all test calculations.

The results in Table 5.2 and Figure 5.6 show that the application of
bwTc generally increased hit and recovery rates of conventional MACCS Tc
calculations. COX2 was the only of 21 classes for which Tc calculations pro-
duced higher rates. The average hit rate over all activity classes increased from
5% for Tc to 12% for bwTc calculations and the average recovery rate from
8% to 20%. For most classes, applying increasingly large scale factors for the
generation of weight vectors did not substantially affect bwTc search results,
as illustrated in Figure 5.7, i.e. a scale factor of 50 essentially produced results
comparable to those obtained with scale factors of 100 or 200. Test calculations
with scale factors of 400 and 800 were also carried out and generally reduced hit
and recovery rates. The average hit rates of the 21 activity classes for sf = 400
and 800 were 9% and 7%, respectively, whereas for sf = 100 or 200 the average
hit rates were 12%.

Depending on the activity class, the magnitude of hit rate improvements
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Figure 5.4: Calculation of the bit position-dependent weighted Tc. Two hypotheti-
cal fingerprints consisting of ten bits each are compared using Tc and bwTc. The latter value
is calculated on the basis of a hypothetical weight vector. In this calculation, the numerator
contains the sum of the weights over all “1” bits shared by A and B (colored in green) and the
denominator the sum of the weights on the “1” bits in either A or B (blue, red or green). In
this example, the two hypothetical molecules become more similar when bwTc is calculated
because they share a bit position that makes a significant contribution to search performance,
having a relative weight of 370%.

achieved in bwTc calculations differed. For eight classes, Tc calculations failed
to identify active compounds, but in all of these cases, bwTc calculations cor-
rectly recognized active molecules and achieved hit rates of up to 20% and
recovery rates of up to 40% (Table 5.2). For six of the classes where Tc calcu-
lations succeeded, bwTc hit rate improvements ranged from 5% and 10% and
for six other classes improvements of more than 10% were observed. In some
cases, these effects were very significant. For example, for LKT and TKI, Tc
calculations produced hit rates of 5% or 6% hit rate, but bwTc calculations
increased these rates to 40% or more (Figure 5.6). Because these compound
sets were assembled to contain only inhibitors with unique core structures (see
Section 2.1 for the general calculation protocol), increasing hit rates in bwTc
calculations also suggest an increase in the potential of recognizing structurally
diverse compounds. Taken together, these results indicate that compound class-
directed evaluation of fingerprint similarity provides a promising alternative to
conventional similarity search protocols.

Although scaling calculations were also found to increase recall of ac-
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result of ten independent random training experiments (shown in brackets, see Figure 5.2).
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Figure 5.6: Hit rate comparison. Hit rates for 21 activity classes and the overall average
(“avg”) are reported for Tc (blue) and bwTc (dark blue). In bwTc calculations, a scale factor
of 100 was applied.
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class Tc
bwTc

sf = 50
bwTc

sf = 100
bwTc

sf = 200
FP scaling
sf = 3.0

HR RR HR RR HR RR HR RR HR RR

ACE 7 23 6 20 8 27 9 30 7 23
ADR 6 9 10 14 11 16 6 9 7 10
CAM 0 0 4 40 4 40 4 40 0 0
CLG 6 30 8 40 8 40 9 45 6 30
COX2 5 13 4 10 3 8 3 8 5 13
COX 9 6 21 15 50 14 15 11 11 8
ELA 0 0 1 10 1 10 2 20 0 0
FXA 0 0 0 0 1 3 2 5 0 0
HIV 5 10 9 18 9 18 9 18 6 12
LKT 6 5 34 28 44 37 39 33 6 5
LPO 0 0 6 9 12 17 20 29 0 0
MM1 0 0 2 10 2 10 0 0 0 0
NEP 24 40 39 65 37 62 34 57 24 40
PA2 12 12 12 12 12 12 12 12 12 12
PAF 0 0 3 6 5 10 4 8 0 0
PDV 0 0 1 10 1 10 1 10 0 0
PKC 4 6 15 21 13 19 10 14 4 6
RTI 1 1 4 4 6 6 11 11 1 1
SST 8 20 10 25 11 28 4 10 8 20
TKI 5 2 25 10 40 16 53 21 5 2
TNF 0 0 11 22 8 16 1 2 0 0
average 5 8 11 19 12 20 12 19 5 9

Table 5.2: bwTc similarity search results. Hit rates (HR) and recovery rates (RR) are
reported (in %) for 21 activity classes using conventional Tc, bwTc, and fingerprint scaling
(“FP scaling”) calculations with different scale factors (sf ).
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Figure 5.7: Different scale factors. Hit rates of bwTc calculations with scale factors of
50, 100, and 200 are reported and colored in light blue, blue and dark blue, respectively.
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tive compounds using MACCS keys,45 MACCS consensus bit positions for the
activity classes studied here were not among the most significant bit positions
for MACCS search performance. Thus, scaling of these bit positions does not
emphasize the most critical bits for each activity class. The silencing method
should have the principal advantage over consensus bit scaling that the most
important bit positons are identified. This conclusion was confirmed by sys-
tematic bit scaling calculations using MACCS (Table 5.2).

Chemical interpretation of bit significance

With key-type fingerprints such as MACCS structural key, where bit positions
can be directly mapped to substructural features, analysis of substructures cor-
responding to bits obtaining high or low weights in bwTc calculations makes
it possible to interpret the results in a chemically intuitive manner. For ex-
ample, as illustrated in Figure 5.8, substructures might be identified that are
responsible for the detection of active compounds. COX inhibitors that were
correctly identified using bwTc but not conventional Tc calculations are com-
pared to ZINC compounds that were detected using Tc calculations but dese-
lected by bwTc. A benzene moiety shared by all compounds is assigned a low
bwTc weight. By contrast, two MACCS keys accounting for an “aliphatic six-
membered ring containing a heteroatom” and a “N-X-O” unit detect an oxane
substructure and an amide bond, respectively, that occur in the COX inhibitors
but not in the ZINC compounds. These substructures were assigned high
weights and help to distinguish the COX inhibitors from background database
compounds.

Furthermore, in Figure 5.9 two substructural features corresponding to
two top-weighted MACCS bit positions are highlighted on the structure of
lisinopril. The schematic view of the structure is derived from the X-ray struc-
ture of the human angiotensin-converting enzyme–lisinopril complex.55 This
example shows the correnspondence of fingerprint bit significance as identified
by bit silencing and the significance of substructures involved in interactions.
Thus potential pharmacophoric groups might be selected on the basis of bit si-
lencing and assigned high weights in similarity searching. These two examples
show that structural features important for biological activity are conserved
in the active compounds. In similarity searching, silencing of fingerprint bit
positions that account for these features reduces search performance. However,
through bit silencing they might be identified and weight vectors can be de-
rived to emphasize significant bit positions. As a result, search performance
may improve.
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Figure 5.8: Substructures of COX inhibitors with high and low weights. Shown on
the left are examples of COX inhibitors that were correctly identified using the bwTc metric
but not conventional Tc calculations. On the right, ZINC compounds are shown that were
found in COX compound selection sets obtained on the basis of Tc calculations but were
de-selected when the bwTc metric was applied. Substructures having high and low bwTc
weights are highlighted in red and green, respectively.
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Figure 5.9: Conserved substructures of ACE inhibitors with high weights. Based
on the work of Natesh et al.,55 two substructures that correspond to the two bits having
highest weights are highlighted in red (most significant feature, with bit weight 340%) and
orange (300%) in a schematic view of ACE-lisinopril crystallographic complex. Dashed lines
denote hydrogen bonds.55
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5.3 Class-specific weighted Tversky similarity

In the previous section a class-directed similarity metric, bwTc, has been in-
troduced. Emphasizing compound class-specific bit patterns in similarity cal-
culations has been shown to improve fingerprint search performance.9,44,45 By
systematic silencing of bit positions, the contribution of each fingerprint bit
to the search performance can be evaluated. A bit position is assigned a high
weight in the bwTc similarity comparison if its silencing causes a reduction
in the recall of active compounds; the larger the reduction, the higher the bit
significance and hence the weight.

Similarly, for two fingerprints A and B the bit position weight vector can
also be incorporated into Tversky coefficient in order to obtain a bit position-
weighted Tv, or bwTv:

Tv(A,B , α) =

∑N
i=1 aibi∑N

i=1[α(a2
i − b2

i ) + b2
i ]

(5.4)

incorporate weight vector−→

bwTv(A,B ,W , α) =

∑N
i=1 aibiwi∑N

i=1[(α(a2
i − b2

i ) + b2
i ]wi

(5.5)

where A, B and W are defined as in Eq.(5.3) and α is the weight on unique
bit settings in reference fingerprint. Analogously to Tc and bwTc, here only
“1” bit positions are taken into consideration.

In order to also account for “0” bit positions, in Chapter 3 an alternative
form of the Tversky coefficient has been defined that accounts for bit positions
that are set off (Eq.(3.6)):

Tv′(A, B, α) =
c′

α(a′ − c′) + (1− α)(b′ − c′)

=
c′

α(a′ − b′) + b′

where a′ and b′ denote the number of “0” bits in A and B, respectively, and c′

the number of “0” bits common to both. Alternatively, the general form of Tv’
is represented as

Tv′(A,B , α) =

∑N
i=1 a

′
ib

′
i∑N

i=1[α(a
′2
i − b

′2
i ) + b

′2
i ]

(5.6)

where a
′
i and b

′
i are the complements of the i-th bit element (i.e. 1 − ai and

1 − bi, respectively) in fingerprint A and B . Incorporating the weight vector
W into this representation then produces
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bwTv′(A,B ,W , α) =

∑N
i=1 a

′
ib

′
iwi∑N

i=1[(α(a
′2
i − b

′2
i ) + b2

′i]wi

(5.7)

By combining Tv and Tv’ and introducing a weighting parameter β, the
relative contributions of “1” and “0” bits can be balanced (Eq.(3.7)):

wTv(A, B, α, β) = β
c

α(a− b) + b
+ (1− β)

c′

α(a′ − b′) + b′

Accordingly, a weighted linear combination of Eq.(5.5) and Eq.(5.7) in-
corporating the β parameter then is

wbwTv(A,B ,W , α, β) = β

∑N
i=1 aibiwi∑N

i=1[(α(a2
i − b2

i ) + b2
i ]wi

+ (1− β)

∑N
i=1 a

′
ib

′
iwi∑N

i=1[(α(a
′2
i − b

′2
i ) + b

′2
i ]wi

(5.8)

It follows that this similarity metric integrates three weighting schemes:
(a) relative weights on “1” bit settings of reference and database compounds,
(b) relative weights on “1” and “0” bit positions, (c) compound class-specific
weights on “1” bits. Thus, it is designed to balance differences in complexity be-
tween reference and database molecules and emphasize compound class-specific
bit patterns in similarity calculations. In Figure 5.10, the design and calculation
scheme of wbwTv is illustrated.

Modulating complexity effects with wbwTv

Extended analysis were carried out to address the two questions: (a) how can
similarity metrics be combined so that molecular complexity effects are modu-
lated and compound class-specific fingerprint features are emphasized; and (b)
what are the advantages of using such similarity metrics in fingerprint-based
similarity searching. Multiple compound reference sets having different com-
plexity and screening databases of different composition were used to system-
atically investigate differences in search performance of alternative similarity
coefficients.

For training and similarity searching, three sets of database compounds
were used including a randomly collected set of 5000 ZINC39 compounds (previ-
ously utilized in bwTc calculations), the NCI database40 previously used in wTv
calculations, and another randomly selected set of 50000 ZINC compounds that
approximately matched the size of the NCI database. These screening databases
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Figure 5.10: Calculation of wbwTv. Two hypothetical fingerprints A and B consisting
of ten bits are compared with wbwTv using the bit position-dependent weight vector W
that assigns compound class-specific weights to “1” bits. The two parameters α and β
modulate the relative weights on reference vs. database compounds and on “1” vs. “0”
bits, respectively. The variables a, b, and c in Tv calculations are replaced with summation
of weighted terms as described in Eq.(5.5). In addition, in Tv′, a′, b′ and c′ are modified
according to Eq.(5.7). For example, the number of “1” bits shared by the two fingerprints is
3 (c = 3) in conventional calculations, whereas weighted calculations produce the value 2 +
3 + 4 = 9 (highlighted in green). The weighted linear combination of Eq.(5.5) and Eq.(5.7)
yields the final wbwTv similarity value.
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were named ZINC5K, NCI, and ZINC50K, respectively. The ZINC5K screen-
ing set was used to derive bit weight vectors, as described in Section 5.1, and
evaluate systematic parameter variations in wTv and wbwTv calculations.

For bit silencing and systematic similarity search calculations, ten activ-
ity classes out of the 21 classes used in bwTc calculations were utilized and fil-
tered as in Section 5.1. From each activity class, a subset of potential database
hits of varying size (ranging from 10-100, Table 5.1) was selected having a
MACCS bit density comparable to the screening database compounds, i.e. an
average bit density of 22.3% (ZINC) to 25.7% (NCI). These subsets of active
molecules having comparable complexity to screening set compounds served as
active database compounds (ADC) for similarity searching. The bit density
requirements limited the number of active compounds that could be selected as
ADC. The remaining active molecules were utilized as training compounds for
bit silencing and the derivation of the weight vectors.

To derive the weight vectors, the training process as previously described
was conducted. From each activity class training set, ten different subsets of 20
compounds each were randomly selected and the remaining compounds were
added to ZINC5K to derive the bit weight vector. Therefore, for each of the
ten reference sets, 166 bit silencing calculations were carried out (i.e. one for
each bit position) in combination with 20-NN ranking, which equally takes
contributions of all reference molecules into account. Hit rates were calculated
for the top-ranked 100 database molecules. From these hit rates, ten individual
weight vectors were calculated for each reference set with sf = 100 and the
activity class-specific weight vector for each class was derived by averaging
these reference set vectors. These ten class-specific weight vectors have been
incorporated in bit position-weighted similarity calculations as illustrated in
Figure 5.11.

Next, active reference compounds with different levels of complexity were
selected for each activity class training set, i.e. 20 compounds with lowest bit
density, 20 having average bit density, and 20 with highest bit density. These
different reference sets for similarity searching were named level L (low com-
plexity), M (moderate complexity), and H (high complexity). Level L reference
compounds were comparable in complexity (i.e. bit density) to screening set
compounds or slightly more complex. For these reference sets, MACCS bit
densities are reported in Table 5.3. These sets were used as the reference sets
to search for ADC of the corresponding activity class, as shown in Figure 5.11.
Exemplary structures of reference and screening set compounds and ADC are
shown in Figure 5.12.

Similarity search calculations using six similarity metrics (Tc, bwTc,
wTv, wbwTv, Forbes, simple match) were carried out combined with 20-NN
ranking in ZINC50K and NCI. Compound recovery rates (i.e. the percentage of
correctly identified ADC relative to the total number of ADC) were calculated
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Figure 5.11: Evaluation of wbwTv. The calculation protocol to systematically test
wbwTv is illustrated. For each activity class the set of potential hits is independent of the
training subset or the reference set L (consisting of low-complexity compounds), M (medium
complexity), or H (high complexity). The weight vector used in bwTc similarity searching is
the average result of ten independent random training experiments (shown in brackets, see
Figure 5.2).

for the top-ranked 100 database compounds (Table 5.4). In wTv and wbwTv
test calculations, the α and β parameters were systematically and independently
varied between 0 to 1 in increments of 0.1. For the resulting 121 combinations,
the top recovery rate of each calculation was determined. Hence, parameter
variation was not involved in the training process to derive the weight vector.
In addition, different data fusion techniques were compared to wbwTv calcu-
lations. Table 5.5 reports the results for 20-NN, 1-NN, and centroid strategies
and the Tc and Forbes similarity metrics on these compound test sets and the
NCI database as control calculations.

Complexity effects and conventional search strategies

The influence of varying molecular complexity on MACCS Tanimoto similarity
calculations is evident in Table 5.4. For all compound classes and screening
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Figure 5.12: Exemplary compounds. For activity class ACE, examples are shown of
(A) reference molecules of different complexity (level L, M and H) and (B) active database
compounds (ADC) and screening database molecules from ZINC and NCI having comparable
complexity.
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class
average reference
bit density (%)
L M H

ACE 27.7 32.3 37.2
ADR 27.6 33.5 41.1
CAM 29.2 36.0 41.8
CLG 28.3 35.4 40.2
FXA 27.7 38.2 49.7
MM1 27.0 33.2 38.4
PA2 31.4 36.1 37.0
PAF 27.8 35.1 43.3
PKC 30.4 35.4 40.5
SST 27.8 34.9 37.7

Table 5.3: Activity classes and complexity levels. The average MACCS bit densi-
ties for reference sets having different levels of complexity (L: low complexity, M: moderate
complexity, H: high complexity) are reported. The average bit density of reference molecules
having different levels of complexity (L, M, H) are reported.

databases, compound recall of Tc calculations systematically decreased with
increasing fingerprint bit density of reference compounds. For the least com-
plex reference molecules (complexity level L), active compounds were detected
in standard search calculations for seven of ten classes in the ZINC and all
ten classes in the NCI database. By contrast, for the most complex reference
compounds (level H), Tc calculations consistently failed in ZINC and for all
but one class in NCI. Thus, in the presence of significant complexity effects,
standard MACCS Tc calculations essentially failed to recover any active com-
pounds. Using complexity level M reference molecules, active compounds were
also only detected for two and three classes, respectively. These results are
consistent with the observation from Chapter 3 and Chapter 4.

Nearest neighbor calculations produced better results than centroid
searches, but were overall inferior to wbwTv calculations, as reported in Ta-
ble 5.4, especially when reference compounds of high complexity were used.
1-NN Tc calculations moderately increased the search performance of 20-NN
calculations by 1% to 9% for reference sets L-H, but recovery rates of wbwTv
were 10% to 14% higher. A similar trend was observed for the Forbes coefficient.
Overall, there were only two instances where 1-NN Tc performed better than
wbwTv or wTv (PAF set L and SST set L) and two where 1-NN Forbes per-
formed better (ADR set H and MM1 set H), but the differences were marginal.
It follows that data fusion techniques were not capable of effectively balancing
molecular complexity effects, as expected. By contrast, balancing complexity
effects through wbwTv led to overall highest search performance.
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refer- ZINC NCI
ence
set Tc bwTc

max
wTv

max
wbwTv

For-
bes

simple
match Tc bwTc

max
wTv

max
wbwTv

For-
bes

simple
match

L 57 60 77 83 33 77 57 60 83 83 47 83
ACE M 3 3 33 30 23 10 3 3 40 30 27 10

H 0 0 27 23 17 0 0 0 27 30 23 3
L 4 7 10 9 4 7 6 26 11 23 4 10

ADR M 0 0 9 1 3 6 0 0 10 9 1 7
H 0 0 6 0 3 0 0 0 6 3 3 0
L 0 30 20 30 0 20 20 30 40 40 20 40

CAM M 0 20 20 20 20 0 0 20 20 30 20 0
H 0 0 0 0 0 0 0 0 0 0 0 0
L 40 30 45 40 20 40 40 10 45 40 35 45

CLG M 0 15 30 40 25 0 0 10 40 40 30 0
H 0 5 15 25 0 0 0 5 15 25 5 0
L 0 3 8 25 0 8 5 5 15 28 0 8

FXA M 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 0 0 0 0 0
L 0 0 10 10 10 10 10 0 15 20 5 15

MM1 M 0 0 5 5 5 0 0 0 5 5 5 0
H 0 0 15 10 10 0 0 0 0 0 0 0
L 3 3 3 3 2 3 3 3 5 10 2 3

PA2 M 0 0 3 3 0 3 3 2 8 7 0 3
H 0 2 4 8 0 3 3 3 11 12 0 7
L 2 6 16 12 2 16 4 10 20 12 0 16

PAF M 0 0 0 2 0 0 0 0 0 2 0 0
H 0 0 0 0 0 0 0 0 0 0 0 0
L 4 10 20 26 11 10 4 10 16 21 6 13

PKC M 0 4 20 29 13 1 0 6 17 19 10 6
H 0 0 7 7 7 0 0 0 7 10 7 0
L 20 23 25 28 20 23 20 23 23 25 20 23

SST M 5 3 20 25 20 20 10 3 20 23 10 20
H 0 0 18 23 8 0 0 0 18 23 0 0
L 13 17 23 27 10 21 17 18 27 30 14 26

avg M 1 5 14 16 11 4 2 4 16 16 10 5
H 0 1 9 10 4 0 0 1 8 10 4 1

Table 5.4: Similarity searching using different similarity coefficients. Average
recovery rates (in %) are reported for MACCS search calculations using different similarity
coefficients and the ZINC50K (“ZINC”) and NCI screening databases. For each class and the
average (“avg”) over all classes, L, M, and H report the results for reference sets of varying
complexity, according to Table 5.3. In each row, the best-performing similarity coefficient is
highlighted in bold.
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reference Tc Forbes
set 20-NN 1-NN centroid 20-NN 1-NN centroid

L 57 60 73 47 40 47
ACE M 3 0 3 27 3 27

H 0 0 0 23 3 23
L 6 21 9 4 9 4

ADR M 0 1 4 1 4 1
H 0 0 0 3 7 3
L 20 30 20 20 20 20

CAM M 0 0 0 20 20 20
H 0 0 0 0 0 0
L 40 45 40 35 25 35

CLG M 0 0 0 30 10 25
H 0 0 0 5 0 5
L 5 10 5 0 23 0

FXA M 0 0 0 0 0 0
H 0 0 0 0 0 0
L 10 15 15 5 10 5

MM1 M 0 0 0 5 5 5
H 0 0 0 0 5 0
L 3 8 3 2 4 2

PA2 M 3 4 3 0 2 0
H 3 3 30 0 3 0
L 4 26 8 0 4 0

PAF M 0 0 0 0 0 0
H 0 0 0 0 0 0
L 4 14 7 6 7 6

PKC M 0 1 0 10 9 10
H 0 0 0 7 9 7
L 20 35 23 20 23 20

SST M 10 20 20 10 20 5
H 0 8 0 0 3 0
L 17 26 20 14 17 14

avg M 2 3 3 10 7 9
H 0 1 0 4 3 4

Table 5.5: Similarity searching using different data fusion strategies. Average
recovery rates (in %) are reported for MACCS search calculations using two similarity co-
efficients, Tc and Forbes, and three data fusion techniques, 20-NN, 1-NN and centroid, are
compared for the NCI database. For each class and the average (“avg”) over all classes, L,
M, and H report the results for reference sets of varying complexity, according to Table 5.3.
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Alternative similarity coefficients

Adding compound class-specific weights to bit positions (bwTc) only marginally
improved the search performance for levels H and M. For level of L (where com-
plexity effects were essentially absent), bwTc calculations produced moderate
increases in compound recall for seven of ten classes for ZINC and six for the
NCI database (i.e. 3%-10%, with one exception). Thus, complexity effects
severely limited the influence of compound class weight vectors and the search
performance of bwTc calculations.

For the most complex reference molecules, Forbes calculations detected
active compounds in five ZINC and three NCI cases where both Tc and bwTc
calculations failed, whereas simple match calculations did not produce notable
increases. However, Forbes calculations also frequently failed to detect active
compounds on the basis of complex reference molecules and showed lower per-
formance than Tc, bwTc, or simple match for level L reference molecules. For
low-complexity reference compounds, the performance of the simple match co-
efficient was comparable to Tc and bwTc in ZINC but was higher for seven of
ten classes in NCI.

wTv and wbwTv

Different from Tc, bwTc, Forbes, or simple match, the bit position-independent
weighted Tversky coefficient (wTv) balances complexity effects by modulating
relative contributions of “1” and “0” bit positions. In this case, a systematic
increase in compound recovery rates was found in both screening databases.
For level H and level M reference compounds, wTv calculations succeeded in
seven ZINC and eight NCI instances, respectively, to recover active compound
and recall rates of up to 27% (level H) and 40% (level M) were obtained. Here,
the general trend was also observed that recovery rates often increased from
level H to level L. For the least complex reference molecules, wTv calculations
produced average hit rates over 10 classes of ∼23% in ZINC and ∼27% in NCI.
Thus, directly addressing complexity effects at the level of similarity calcula-
tions clearly improved the search results.

When applying wbwTv, consistent improvements in recovery rates over
all complexity levels were observed. Top recovery rates were obtained in 18
of 30 cases (i.e. of three calculations per activity class) with ZINC and in 19
cases with NCI database. Thus, despite differences in compound compositions,
results obtained for the ZINC and NCI screening databases were overall similar.
In many instances, wbwTv calculations produced recall rates of ∼20% or more,
while other similarity coefficients (in particular, Tc) completely failed. How-
ever, wbwTv calculations were not always successful. For example, for classes
CAM, FXA, or PAF, level H reference molecules presented an intractable search
problem for any of the similarity coefficients. In one case, ADR level H, wTv
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calculations detected a few active compounds (recovery rate 6%), but wbwTv
essentially failed. In another case, PAF level M, the opposite occurred. With
these minor exceptions, a clear trend was observed: when wTv was not ca-
pable of detecting active compounds, wbwTv was not either. However, when
wTv calculations succeeded, an increase in recovery rates was often observed
when wbwTv was applied, although the relative search performance varied in
a compound class-dependent manner. For the total of 60 test calculations re-
ported in Table 5.4, wTv and wbwTv recovery rates were the same in 19 cases
and wTv and wbwTv performed best in 14 and 27 cases, respectively. Thus,
taken together, these findings indicated that simultaneous balancing of com-
plexity effects and emphasizing of class-specific bit settings yielded overall best
performance in these difficult similarity search test cases.

Recovery rate distributions have been compared for the overall preferred
wTv and wbwTv coefficients under systematic variation of the α and β parame-
ters. Representative examples are shown in Figure 5.13 and Figures B.2-B.4. In
these recovery rate landscapes, regions colored in red represent parameter com-
binations producing high recovery rates. For PKC screening in ZINC, shown in
Figure 5.13, areas of high recovery rates were larger for wbwTv than for wTv.
A similar trend was observed for PKC in the NCI, although recovery rates were
in this case lower for both coefficients (Figure B.2). Equivalent observations
were also made for MMI in ZINC (Figure B.3) and SST in NCI (Figure B.4).
The recovery rate landscapes also reveal trends for preferred α and β parame-
ter settings. For complexity level H, combinations of low α and high β or vice
versa generally produced highest recovery rates, although search performance
was low in these cases. Going from complexity level H to M and L combinations
of increasingly larger α and β value ranges produced highest rates, while search
performance was increasing.

In general, wbwTv calculations produced larger areas of high recovery
rates (red in Figure 5.13) than wTv calculations and smaller areas where cal-
culation produced only low recovery of active compounds (light blue in Fig-
ure 5.13). This means that wbwTv search calculations were less sensitive to
(α, β) parameter settings than wTv calculations (i.e. more wbwTv parameter
combinations produced high compound recall). Therefore, taking bit position-
specific information into account made wbwTv search calculations more stable
over all complexity levels, in addition to achieving net increases in recovery
rates.

5.4 Summary

In this chapter, the bit silencing technique was utilized to introduce two class-
specific similarity metrics, bwTc and wbwTv. Previous analyses of bit settings
in keyed fingerprints have largely focused on identifying bit positions that are
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Figure 5.13: Recovery rate landscapes. Shown are maps reporting search results for
wTv and wbwTv calculations under systematic parameter variation using reference sets of
different complexity for class PKC against ZINC5K database.
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set on with high frequency in compounds having similar activity and attempted
to emphasize such positions, for example, through fingerprint scaling or calcu-
lation of consensus fingerprints for activity classes. The bit silencing technique,
as introduced herein, makes it possible to systematically evaluate positive or
negative contributions of all bit positions in keyed fingerprints to similarity
searching.

Silencing calculations on a large number of activity classes consistently
revealed differential contributions of MACCS bit positions. In many instances,
individual bit settings were found to substantially increase or decrease search
performance. On the basis of these observations, bit position-dependent weight
vectors were derived that account for positive or negative contributions of bits
and used to modify the Tanimoto coefficient and weighted Tversky coefficient
described in Chapter 3 in a compound class-specific manner.

The notion of class-specific modulation of bit position weights might be
utilized as a search strategy to adjust to different similarity searching problems.
For compound reference sets with varying complexity, search situations where
conventional Tanimoto similarity calculations consistently failed were observed.
In the presence of complexity effects, neither standard Tanimoto similarity cal-
culations nor other conventional similarity metrics such as Forbes and simple
match could achieve a high recovery rate. Furthermore, bwTc calculations,
which emphasized compound class-specific bit patterns also failed to produce
significant compound recall. The results discussed above mirror the crucial role
of complexity effects that were only effectively balanced in wTv calculations.
With wbwTv, a similarity coefficient that combines the complexity-balancing
potential of wTv calculations with class-specific bit weight vectors has been de-
rived. It is a complex similarity metric that is based on the Tversky formalism
and simultaneously balances complexity effects and emphasizes class-specific
bit settings. In systematic similarity searching over different compound classes
and complexity levels, the wbwTv coefficient often produced significant recall
in cases where standard Tanimoto similarity calculations failed and further im-
proved the performance of the weighted Tversky coefficient that was previously
introduced. Moreover, compared to the Forbes and simple match coefficients,
which have been shown to be particularly suitable for searching with complex
reference molecules, wbwTv achieved consistently higher recovery rates over all
reference set complexity levels. In addition to practical similarity applications,
wbwTv calculations can be utilized to study the relationship between molecu-
lar complexity and compound class characteristic features and further explore
basic aspects of molecular similarity measures.



Chapter 6

Shannon Entropy-Based
Similarity Search Strategy

In the previous chapters, several fingerprint search methods have been dis-
cussed. In this chapter, another fingerprint search strategy is discussed that
also combines reference compound information prior to similarity assessment
and that is based on the Shannon entropy concept.56

Shannon entropy (SE) was introduced in 1948 in information theory and
was originally applied to assess the information content of messages transmitted
through different channels.56 In this context, messages with high information
content (high SE) display few or no recognizable patterns, whereas those having
low information content (low SE) exhibit regular patterns that correspond to
information redundancy.57

The SE concept is readily transferable to molecular fingerprints when
bit positions are considered to be individual channels that are capable of trans-
mitting binary signals, i.e. by setting bit positions on (to “1”) or off (“0”).
Accordingly, chemical compound sets whose fingerprints share similar bit pat-
terns produce low SE values. By contrast, if there is only little bit pattern
resemblance, high SE values are obtained. Moreover, if “0” and “1” bits are
randomly distributed, the SE value of the system is maximal. Accordingly,
given the premise that chemically and biologically similar molecules should
yield similar fingerprint bit patterns, ensembles of compounds having similar
activity should produce low fingerprint SE values. Then, by adding a compound
of unknown activity to the reference set and recalculating the SE for the ex-
panded fingerprint ensemble, the similarity of a test compound to the reference
set can be directly assessed. If there is only a small change in the resulting SE
value, the fingerprint of the test compound is similar to the reference set and
the compound is thought to have similar properties. In the following sections,
the fingerprint SE approach is illustrated and systematic test calculations re-
ported. It is shown that the performance of the fingerprint SE approach was in

85
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general comparable to or better than k-NN (nearest neighbor) searching.

6.1 Shannon entropy of binary fingerprints

Given a compound set R and an arbitrary binary fingerprint representation X
consisting of N bit positions, the SE value of a single bit position i ∈ 1, ..., N
in the set R is calculated as:56

SEi(R) = −pilog2(pi)− (1− pi)log2(1− pi) (6.1)

with

pi =
∑
A∈R

xiA

Here, pi represents the relative frequency of “1” bits at fingerprint position i
in R. In the case of pi = 0 or pi = 1, pilog2(pi) or (1 − pi)log2(1 − pi) become
0. The Shannon entropy of the complete fingerprint of R is the sum of the
individual SEi values obtained for each bit position i:

SE(R) =
∑
A∈R

SEi(R) (6.2)

Figure 6.1A shows an exemplary SE calculation using a hypothetical four-bit
fingerprint.

6.2 Database ranking using Shannon entropy

values

Given a set R of reference molecules and its calculated SE value, this value typ-
ically changes when adding another compound A to R. The magnitude (and
algebraic sign) of the change indicates whether or not A matches a potential
common bit pattern of R, as illustrated in Figure 6.1. Two compounds are sep-
arately added to the reference set R shown in Figure 6.1A and the SE values
are recalculated. The molecule introduced in Figure 6.1B slightly decreases or
increases SEi at bit positions 1 to 2, respectively, and matches the “1” and
“0” consensus bits of R at bit positions 3 to 4, respectively, so that SE3 and
SE4 remain 0. The overall SE value only slightly increases from SE = 1.81 to
SE ′ = 1.94. By contrast, the compound shown in Figure 6.1C does not match
this pattern (SE3 and SE4 become 0.72) so that the overall SE value signifi-
cantly increases to SE ′ = 3.38. Hence, departure from consensus bit positions
and patterns in R is associated with a significant entropy penalty. Monitoring
such changes in SE values when adding individual test compounds to reference
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Figure 6.1: Calculation of fingerprint Shannon entropy. A hypothetical four-bit
fingerprint is used to illustrate the calculation of Shannon entropy (SE) of individual bit
positions and complete fingerprints for a set of molecules. “1” and “0” bits are represented
using blue and white cells, respectively. In A), bit strings of a reference set R of four molecules
are shown. In B) and C), an additional molecule (bit string) is added to R. For the three
different compound sets, the probability pi for a “1” bit, the probability 1− pi for a “0” bit,
and the corresponding Shannon entropy (SEi) are reported for each bit position. Resulting
Shannon entropies for complete fingerprints (SE or SE′) are given on the right.

sets makes it possible to sort database compounds in the order of increasing
SE ′ values corresponding to decreasing molecular similarity and produces a
database ranking. Absolute SE values depend on the bit structure of different
fingerprints and the composition of the reference sets R and can thus not be
transferred or interpreted a priori. However, irrespective of the initial SE value
of a set of active compounds, similar candidate molecules generally produce less
SE changes than dissimilar ones and the relative order of these candidates is
only dependent on the level of similarity. Thus, for a given fingerprint and
reference set, an SE ′ ranking of database compounds is obtained.
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6.3 Fingerprint Shannon entropy of compound

sets

Two databases were used for simulated similarity search calculations, the
NCI anti-AIDS database,40 and a set of 500,000 randomly selected ZINC39

molecules. Eight compound activity classes were assembled from MDDR,38 as
reported in Table 6.1.

class designation
number of

potential hits
for MACCS

number of
potential hits

for TGD

ACE angiotensin-converting enzyme inhibitor 30 20
ADR aldose reductase inhibitor 70 200
CAM cell adhesion molecule antagonist 10 20
CLG collagenase inhibitor 20 20
FXA factor Xa inhibitor 40 10
PA2 phospholipase A2 inhibitor 100 100
PKC protein kinase C inhibitor 70 100
SST squalene synthetase inhibitor 40 100

Table 6.1: Activity classes and potential hits. For each activity class, the number of
molecules extracted from the MDDR as potential database hits (active database compounds)
is reported. Compound sets were specifically assembled to have MACCS or TGD fingerprint
bit densities comparable to compound averages in the two test databases. For each class, 20
unique reference compounds with corresponding bit densities were also selected.

To investigate whether the SE approach can distinguish between active
and inactive compounds using conventional fingerprint representations, small
compound sets consisting of four reference compounds and six test molecules
were analyzed. Figure 6.2 shows the molecular graphs of these compounds
and reports the SE values for the MACCS fingerprint consisting of 166 bit
positions.16 The four reference molecules shown in the center belong to class
ACE and produce an SE value of 41.6. Separately adding three other ACE
inhibitors as candidate molecules (depicted in red boxes) changes the SE value
of the expanded compound set only very little. Addition of the upper-left
molecule actually leads to a small SE reduction (SE ′ = 40.4), separate addition
of the compound in the middle results in SE ′ = 41.8 and of the upper-right
molecule in SE ′ = 42.1, although these compounds are structurally distinct.
By contrast, when separately adding three compounds randomly taken from
the NCI database (in blue boxes), SE values significantly increase to 56.5, 60.4,
and 62.8, respectively. Thus, in this case, the three active candidate compounds
were effectively separated from three inactive ones on the basis of fingerprint
SE calculations.
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Figure 6.2: Shannon entropy-based fingerprint similarity. The Shannon entropy
(SE) of a reference compound set of four ACE inhibitors (shown in the middle box) is re-
ported for the MACCS fingerprint. Three additional ACE inhibitors (shown in red boxes) are
separately added to the reference set and SE values are recalculated (SE′). For comparison,
three compounds randomly selected from the NCI database (shown in blue boxes) are also
separately added to the reference set and SE values are updated.



90 Chapter 6. Shannon Entropy-Based Similarity Search Strategy

Test calculations

Two molecular fingerprints were used to test the Shannon entropy-based ap-
proach. In addition to MACCS structural keys,16 the TGD fingerprint was
also used that codes for typed graph distances and consists of 420 bit positions
(Table 1.1).19 Bit density analysis and density-based compound selection were
carried out prior to similarity searching in order to balance fingerprint com-
plexity effects that can substantially bias similarity calculations, as described
in the previous chapters. From each activity class, two compound subsets were
selected having MACCS or TGD fingerprint bit densities comparable to the
screening databases (Table 6.1) and these compound subsets were used as po-
tential database hits. Furthermore, for each compound class and fingerprint,
reference sets of 20 active compounds were selected that also had fingerprint
bit densities comparable to the screening databases.

Systematic similarity search calculations were conducted for the combi-
nation of each activity class, screening database (NCI or ZINC), and fingerprint
(MACCS or TGD), resulting in a total of 32 test calculations. The recovery of
active database compounds was monitored for different selection set sizes. The
SE approach was compared to three standard similarity search strategies, 1-NN,
20-NN, and centroid calculations. In 20-NN calculations, the average of all 20
pairwise Tc values yielded the final similarity score and in 1-NN calculations,
the largest of the 20 individual values was taken. For the centroid method,
an average bit string was derived from the 20 active reference compounds and
compared to database molecules in Tc calculations.

Recovery rates for selection sets of 100 and 1000 compounds are reported
in Table 6.2. Results of the best-performing similarity search approach are
highlighted in bold for each trial and selection set size. The results in Table 6.2
reveal that SE performed consistently better than 20-NN and centroid calcula-
tions and that it was overall comparable to or better than 1-NN. Summarizing
over the 32 different trials and selection sets of 100 database compounds, SE
produced highest recovery rates in 20 cases, 1-NN in ten, centroid in seven, and
20-NN in three cases. Furthermore, for a selection set size of 1000 compounds,
SE performed best in 18 cases, 1-NN in 16, centroid in nine, and 20-NN in five.
Figure 6.3 shows cumulative recall curves for four test calculations using the
MACCS fingerprint and the NCI database. The cumulative recall curves for
the other four classes are shown in Figure B.5. These curves further illustrate
that SE was generally superior to centroid and 20-NN calculations and that it
frequently also performed better than the 1-NN strategy.

For fingerprint similarity searching, the SE approach is computationally
less complex than nearest neighbor methods. Nearest neighbor methods require
the determination of pair-wise similarity values between a database molecule
and each reference compound (e.g. 20 calculations per database molecule in this
case). By contrast, SE (and also centroid searching) utilizes the information of
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SE centroid 20-NN 1-NN
class 100 1000 100 1000 100 1000 100 1000

ACE 83 90 73 90 57 90 60 80
ADR 10 39 9 17 6 17 21 44
CAM 40 40 20 40 20 40 30 40

MACCS CLG 45 55 40 45 40 45 45 75
and FXA 20 65 5 40 5 25 10 35
NCI PA2 3 14 3 12 3 12 8 16

PKC 16 47 7 26 4 20 14 21
SST 23 43 23 30 20 28 35 43
average 30 49 23 38 19 35 28 44
ACE 47 83 40 73 27 57 30 57
ADR 3 6 3 6 0 4 13 26
CAM 20 30 0 20 0 0 20 30

MACCS CLG 35 40 35 40 20 40 25 40
and FXA 5 8 0 5 0 0 3 3

ZINC PA2 3 3 3 3 3 3 2 4
PKC 4 13 1 4 0 4 3 13
SST 20 20 20 20 20 20 28 40
average 17 25 13 21 9 16 15 26
ACE 50 65 45 65 20 55 5 45
ADR 4 8 3 7 2 5 4 8
CAM 10 15 0 15 0 15 0 5

TGD CLG 25 45 5 35 5 30 0 25
and FXA 10 10 0 10 0 10 0 20
NCI PA2 12 22 13 19 11 17 12 25

PKC 12 27 14 27 18 27 22 34
SST 8 38 10 40 9 28 7 12
average 16 30 12 28 9 24 9 25
ACE 25 45 5 45 0 20 0 5
ADR 1 3 1 3 1 2 0 1
CAM 0 0 0 0 0 0 0 0

TGD CLG 0 20 0 5 0 5 0 0
and FXA 0 0 0 0 0 0 0 0

ZINC PA2 7 8 7 11 7 11 1 6
PKC 4 6 5 7 7 12 10 17
SST 6 13 6 10 5 9 3 7
average 5 12 3 10 3 7 2 5

Table 6.2: Recovery rates for different similarity search strategies. Recovery rates
(in %) are reported for four different similarity search strategies (SE, centroid, 20-NN, 1-NN)
and different combinations of fingerprints and test databases (MACCS and NCI, MACCS and
ZINC, TGD and NCI, and TGD and ZINC). For each activity class, results are compared for
selection sets of 100 and 1000 molecules and the search strategies producing highest recovery
rates are highlighted in bold.
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Figure 6.3: Comparison of recovery rates. Recovery rates (in %) for the four different
similarity search strategies – 20-NN (black), 1-NN (blue), centroid (green) and SE (red) –
using the MACCS fingerprint and NCI database are compared for selection sets of increasing
size (shown on a logarithmic scale).

the whole reference set only once to generate a bit frequency profile (or centroid
vector). Then, during similarity searching, a database molecule is compared to
the frequency profile (or centroid vector) in a single calculation. Thus, while
SE leads to comparable or better search results than nearest neighbor methods,
it also accelerates similarity searching, especially when large numbers of active
reference compounds are available.

6.4 Summary

In this chapter an information entropy-based similarity search strategy has
been introduced for binary fingerprints that implicitly captures whether or not
a database molecule shares bit patterns characteristic of a reference set. The
approach conceptually differs from other search strategies and similarity metrics
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and has low computational complexity.
Fingerprint-based similarity searching using sets of active reference com-

pounds requires the application of multiple-template search strategies such as
nearest neighbor methods or the centroid technique. While nearest neighbor
methods rely on pair-wise compound comparisons and do not utilize the infor-
mation provided by a reference set as a whole, they have often performed best
in comparative benchmark studies. Both the centroid and nearest neighbor
methods depend on the calculation of similarity coefficients.

Compared to nearest neighbor methods, the fingerprint Shannon
entropy-based approach presented here has the computational advantage that
it extracts reference set information only once prior to similarity searching. No
pair-wise similarity comparison is required. Test calculations on different com-
pound data sets, fingerprints, and screening databases reveal that the ability
of this entropy-based method to detect active compounds is often superior to
data fusion techniques and Tanimoto similarity calculations.





Chapter 7

Summary and Conclusions

In this thesis, a number of fingerprint-based similarity search strategies have
been introduced that can be utilized to balance or eliminate complexity effects
and enhance search performance.

Fingerprint search performance is dependent on intrinsic features of fin-
gerprint descriptors, chosen search strategies, and the measurement of finger-
print similarity. Application of the Tversky similarity measure enables the cal-
culation of molecular fingerprint similarity in a symmetric or asymmetric fash-
ion. However, similarity calculations of molecular fingerprints have asymmetric
characteristics only when they have different bit density. For conventional 2D
fingerprints such as MACCS, bit density is usually correlated with molecular
size and relative differences in molecular complexity influence similarity values.
Yet it has been shown that for a fingerprint design with constant bit density such
as PDR-FP, Tversky calculations are not affected by differences in molecular
complexity. A direct relationship between fingerprint bit densities and asym-
metry of Tversky similarity calculations has been revealed in this thesis. In
addition, the weighted Tversky coefficient has been developed to balance such
asymmetry. Systematic analysis has shown that for virtual screening applica-
tions where reference compounds are often more complex than the screening
database, fingerprint-based similarity searching can be severely compromised
by complexity effects.

Appart from complexity-independent fingerprint design and complexity-
modulating similarity metrics, a third approach to compensate for complexity
effects has been introduced. By random bit density reduction (bit silencing) of
complex reference compounds, search performance can be improved despite the
loss of chemical information.

Bit silencing has then been utilized to derive a bit position-dependent
weight vector. Systematic bit silencing enables the assessment of the positive
and negative contribution of each bit position and different weights are assigned
accordingly: bits whose silencing has positive effects are assigned low weights,
whereas bits whose silencing has negative effects are critical and thus assigned
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Figure 7.1: Overcoming complexity effects. Complexity effects can be overcome in
three ways, A) complexity-independent fingerprint design such as PDR-FP, B) complexity-
modulating similarity metric (such as wTv), and C) random fingerprint bit silencing of com-
plex reference compounds.
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high weights. These bit weights are represented in vector form, which is the
a priori information derived from the reference set and specific to the corre-
sponding activity class. Combining this vector with the conventional Tanimoto
coefficient has yielded a novel class-specific similarity metric that showed bet-
ter performance; and combining it with the weighted Tversky coefficient has
produced a class-specific coefficient that modulated complexity effects.
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Figure 7.2: Derivation of a weight vector. A class-specific weight vector is derived from
iterative silencing of individual bit positions.
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Figure 7.3: Enhanced search performance using the weight vector. Combining
the class-specific weight vector with wTv calculations yields wbwTv, which shows further
improved performance in similarity searching.

The chemical information of the reference fingerprints can also be trans-
formed into Shannon entropy. In the development of a novel similarity search
strategy, the frequency of each bit is derived for the reference set and the total
fingerprint Shannon entropy of the set is calculated. Introduction of a database
molecule to this set produces less entropy increase if the molecule is similar to
the reference set compounds, and more if it is dissimilar.
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Figure 7.4: Shannon entropy-based similarity. Molecules that are similar to the refer-
ence set produce low SE′ values when added to the set, whereas dissimilar molecules produce
high SE′ values.

In summary, taking fingerprint complexity effects into consideration in-
creases the performance of virtual screening applications. The development of
novel similarity metrics makes it possible to tailor similarity search calculations
in a class-specific manner. These approaches utilize information derived from
the known active compounds and modulate parametric space based on activity
classes and/or relative differences in fingerprint complexity. As a result, these
methods improve the search performance compared to conventional search pro-
tocols. Furthermore, systematic analysis of fingerprint properties such as bit
density, bit significance, or entropy enables exploration of the chemical infor-
mation contained in fingerprint descriptors.



Appendix A

Software Tools and Databases

Listed are application software and databases that are used in this thesis.

MACCS by Symyx Software: San Ramon, CA (USA). MACCS (Molecular
ACCess System) structural keys represent a two-dimensional fingerprint
design, consisting of 166 structural features.16 http://www.symyx.com

MDDR by Symyx Software: San Ramon, CA (USA). MDDR (MDL
Drug Data Report) is a molecular database having over 150,000 en-
tries, which are biologically active compounds with annotations.38

http://www.symyx.com

MOE by Chemical Computing Group Inc.: Montreal, QC (Canada). The
MOE (Molecular Operating Environment) is an integrated software pro-
viding applications for fingerprint calculations such as MACCS, TGD
and TGT and property descriptor calculations utilized in PDR-FP.19,49

http://www.chemcomp.com

Perl by Larry Wall. Perl is a freely available programming language.
http://www.activestate.com/activeperl

NCI by National Cancer Institute. The publicly available NCI anti-AIDS
database contains structural and activity data for compounds screened
by the AIDS antiviral screening program of the National Cancer Insti-
tute.40 http://dtp.nci.nih.gov/docs/aids/aids data.html

ZINC by UCSF University of California: San Francisco, CA (USA). ZINC
(ZINC Is Not Commercial) is a public-domain database of compounds
that are commercially available.39 http://zinc.docking.org
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Appendix B

Additional Data

B.1 Random reduction of fingerprint bit den-

sity

Table B.1 reports the TGD and TGT bit density distribution for two activity
classes, COX and RTI, and Table B.2 the search results with random silenced
reference sets RS1-RS4.

class ADC RS1 RS2 RS3 RS4

TGD COX 9.9 10.1 13.5 17.3 21.6
RTI 9.9 10.0 13.1 17.4 21.5

TGT COX 4.1 4.0 6.3 8.1 10.9
RTI 3.8 3.8 5.7 7.4 11.7

Table B.1: TGD and TGT bit densities before silencing. Reported are average bit
densities (in %) calculated for 100 active database compounds (“ADC”) and four different
reference sets (“RS1” - “RS4”) each consisting of 20 compounds. ADC and RS1 were selected
to have bit densities comparable to the BGDB (average bit density of background database
is 9.9% for TGD and 3.7% for TGT). Reference sets RS2, RS3, and RS4 were designed to
contain molecules of increasing bit densities. The other three activity classes, which were
used for MACCS calculations were not included in this control calculation because their
bit densities were much higher than the background database and there were not sufficient
ADC compounds available. (Average bit densities of TGD fingerprints for those three classes
are: LKT–18.7%, PA2–16.6%, TKI–17.0%; and of TGT fingerprints: LKT–8.3%, PA2–6.9%,
TKI–8.7%).
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reference bit density level
set (TGD) 1-3% 5-7% 9-11% 13-15% 17-19% ¿21%

RS1 COX 4 13 19
RTI 4 24 41

RS2 COX 2 6 9 10
RTI 1 9 18 22

RS3 COX 4 5 2 3 1
RTI 2 2 2 2 1

RS4 COX 3 5 3 2 1 0
RTI 5 2 2 1 0 0

reference bit density level
set (TGT) ¡1% 1-3% 3-5% 5-7% 7-9% ¿10%

RS1 COX 4 20 28
RTI 3 31 40

RS2 COX 6 6 11 9
RTI 1 7 26 26

RS3 COX 3 3 2 1 0
RTI 1 1 1 0 0

RS4 COX 2 3 2 0 0 0
RTI 2 1 0 0 0 0

Table B.2: Search performance using randomly silenced TGD and TGT reference
sets. Hit rates (in %) are listed for reference sets of increasing bit densities and selection sets
of 100 compounds. In each block (RS1, RS2, RS3 or RS4), hit rates in the rightmost column
indicate that original instead of silenced fingerprints of reference compounds are used as search
templates; and bold hit rates indicate the best performance within each row. Numbers in
column titles show the actual bit density of template fingerprints. In all calculations, bit
strings of database compounds (and ADC hidden among them) remain unmodified.
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Figure B.1 reports the average search performance of random silencing of both
the template sets (RS3 and RS4) and the database.
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Figure B.1: Hit rates after random bit silencing of all sets. Hit rates averaged over
the ten independent trials of all five activity classes are reported using reference set RS3 and
RS4. For each reference set, MACCS bit density of reference and database molecules was
randomly reduced at the same time to different levels. Bars with bold borders are the hit
rates for unmodified fingerprints in similarity searching, while bars colored in dark blue are
the optimal hit rates.
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B.2 Bit position-weighted similarity metrics

Figure B.2, B.3 and B.4 report the wTv and wbwTv recovery rate landscapes
of reference sets of increasing complexity from different activity classes against
different databases.



B.2 Bit position-weighted similarity metrics 105

β

0
0                    0.5                    1

0.5

1

α

β

0
0                    0.5                    1

0.5

1

αL

wTv wbwTv

β

0
0                    0.5                    1

0.5

1

α

β

0
0                    0.5                    1

0.5

1

αL

wTv wbwTv

β

0
0                    0.5                    1

0.5

1

α

β

0
0                    0.5                    1

0.5

1

αM

β

0
0                    0.5                    1

0.5

1

α

β

0
0                    0.5                    1

0.5

1

α

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45

hit rate (%)

H

Figure B.2: Recovery rate landscapes (A). Shown are maps reporting search results
for wTv and wbwTv calculations under systematic parameter variation using reference sets
of different complexity for class PKC against NCI database.
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Figure B.3: Recovery rate landscapes (B). Shown are maps reporting search results
for wTv and wbwTv calculations under systematic parameter variation using reference sets
of different complexity for class MM1 against ZINC5K database.
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B.3 Shannon entropy-based similarity search

strategy

Figure B.5 compares the cumulative recovery curves of four classes using Shan-
non entropy-based similarity search strategy and three other methods.
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Figure B.5: Performance of Shannon entropy-based similarity searching. Recovery
rates (in %) for the four different similarity search strategies – 20-NN (black), 1-NN (blue),
centroid (green) and SE (red) – using the MACCS fingerprint and NCI database are compared
for selection sets of increasing size (shown on a logarithmic scale).
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