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Zusammenfassung

In der vorliegenden Arbeit wird ein Regularisierungsnetzwerk zur Rekonstruktion
von stetigen Funktionen f : [0, 1]n → R vorgestellt, welches direkt auf einer neuen
konstruktiven Version von Kolmogorovs Superpositionen Theorem basiert. Dabei
sind lediglich die Funktionswerte f(xj) an diskreten Datenpunkten xj, j = 1, . . . , P
bekannt.

Typischerweise leidet die numerische Lösung mathematischer Probleme unter
dem sogenannten Fluch der Dimension. Dieser Begriff beschreibt das exponentiel-
le Wachstum der Komplexität des verwendeten Verfahrens mit der Dimension n.
Um dies zumindest teilweise zu vermeiden, werden üblicherweise höhere Regula-
ritätsannahmen an die Lösung des Problems gemacht, was allerdings häufig unrea-
listisch ist. Daher wird in dieser Arbeit eine Darstellung der Funktion f als Su-
perposition eindimensionaler Funktionen verwendet, welche keiner höheren Regula-
ritätsannahmen als Stetigkeit bedarf. Zu diesem Zweck wird eine konstruktive Vari-
ante des Kolmogorov Superpositionen Theorems, welche auf D. Sprecher zurückgeht,
so angepasst, dass nur eine äußere Funktion Φ sowie eine universelle innere Funktion
ψ zur Darstellung von f notwendig ist. Die Funktion ψ ist nach einer Definition von
M. Köppen explizit und unabhängig von f als Fortsetzung einer Funktion, welche
auf einer Dichten Teilmenge der reellen Achse definiert ist, gegeben. Der fehlende
Beweis von Existenz, Stetigkeit und Monotonie von ψ wird in dieser Arbeit geführt.
Zur Berechnung der äußeren Funktion Φ wird ein iterativer Algorithmus von Spre-
cher so modifiziert, dass jeder Iterationsschritt, abhängig von f , ein Element einer
Folge univariater Funktionen {Φr}r liefert. Es wird gezeigt werden, dass die Folge
gegen einen stetigen Grenzwert Φ : R→ R konvergiert. Dies liefert einen konstruk-
tiven Beweis einer neuen Version des Kolmogorov Superpositionen Theorems mit
einer äußeren und einer inneren Funktion.

Da die numerische Komplexität des Algorithmus zur Berechnung von Φ exponen-
tiell mit der Dimension wächst, stellen wir alternativ ein Regularisierungsnetzwerk,
basierend auf dieser Darstellung, vor. Dabei wird die äußere Funktion aus gegebe-
nen Daten (xj, f(xj)), j = 1, . . . , P berechnet. Das Modell zur Rekonstruktion von
f wird in zwei Schritten eingeführt. Zunächst wird zur Definition eines vorläufigen
Modells die äußere Funktion, bzw. eine Approximation an Φ, in einer endlichen Ba-
sis mit unbekannten Koeffizienten dargestellt. Diese werden dann durch eine Varia-
tionsformulierung bestimmt, d.h. durch die Minimierung eines regularisierten em-
pirischen Fehlerfunktionals. Eine detaillierte numerische Analyse zeigt dann, dass
Kolmogorovs Darstellung die Dimensionalität von f in Oszillationen von Φ trans-
formiert. Somit ist die Verwendung von Basisfunktionen mit lokalem Träger nicht
geeignet, da die räumliche Auflösung der Approximation die starken Oszillationen
erfassen muss. Des Weiteren zeigt eine Analyse der Fouriertransformation von Φ,
dass die relevanten Frequenzen, unabhängig von f , a priori bestimmbar sind, und



dass die äußere Funktion Produktstruktur aufweist. Dies motiviert die Definition des
endgültigen Modells. Dazu wird Φ nun durch ein Produkt von Funktionen ersetzt
und jeder Faktor in einer Fourierbasis entwickelt. Die Koeffizienten werden ebenfalls
durch Minimierung eines regularisierten empirischen Fehlerfunktionals bestimmt.

Für beide Modelle wird ein theoretischer Rahmen in Form von Hilberträumen
mit reproduzierendem Kern entwickelt. Die zugehörigen Normen bilden dabei jeweils
den Regularisierungsterm der entsprechenden Fehlerfunktionale. Somit können beide
Ansätze als Regularisierungsnetzwerke interpretiert werden. Allerdings ist zu beach-
ten, dass das Fehlerfunktional für den Produktansatz nicht konvex ist und nichtlinea-
re Minimierungsverfahren zur Berechnung der Koeffizienten notwendig sind. Weitere
ausführliche numerische Tests zeigen, dass dieses Modell in der Lage ist Funktionen
zu rekonstruieren welche von bis zu zehn Variablen abhängen.
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Chapter 1

Introduction

The computation or reconstruction of unknown functions is a task that arises in
many mathematical problems of various kinds. Depending on the application, the
function has to be computed from different sources like e.g. large discrete data sets,
but also from the right hand side of a partial differential equation, the sampling of a
random process, or as the description of a hypersurface. Moreover, in many practical
applications the dimensionality of the problem is high, see below for examples. For
most problems the solution is not available in a closed form or its evaluation is
not feasible and one has to resort for approximations which are then computed by
adequate numerical methods. Here, the numerical costs to compute the solution
play an important role. This term describes the number of involved algorithmic
operations, the storage requirements of the method itself, i.e. its complexity, and
the storage requirements to represent the solution. Now, due to a limitation of
these quantities the numerical solution of most mathematical problems is practically
difficult to compute in more than three or four dimensions. The reason is the so-
called curse of dimensionality. This term, which was first coined by Bellman in [8],
meanwhile is well known and is used to express the exponential dependency of the
involved numerical costs on the dimensionality.

Now, while typically partial differential equations (PDE’s) describe a physical
process evolving in time in three space dimensions, an example in this context which
involves more variables is the solution of the Schrödinger equation, [83]. It describes
how the state of a physical system in quantum mechanics changes with time and
requires for each electron in the system at least three space variables. Thus the total
dimension of the system increases with the number of electrons. More examples for
PDE’s in higher dimensions stem from stochastic processes like the modelling of a
mechanical system with random oscillations or the pricing of financial derivatives.
Here, the statistics of the system can be described by the parabolic Fokker–Planck
equation, [32, 77, 98, 99, 103]. Clearly, the solution of a PDE requires both the
inversion of a partial differential operator and the representation of the solution.

1



2 Chapter 1. Introduction

It turns out that in higher dimensions even the latter task is a hard to implement.
To explain this, we follow the argumentation from [45]. Consider a higher–

dimensional function f : [0, 1]n → R which has to be approximated by a function fa
with a prescribed accuracy ε > 0. Then, the numerical costs to compute fa depend
exponentially on the dimensionality n of f . In fact, we encounter complexities of
the order O(ε−n/r). Here, the damping factor 1/r in the exponent results from some
isotropic smoothness parameter r > 0 which depends on the respective approach,
the smoothness of the function under consideration, the polynomial degree of the
ansatz functions and the details of the implementation. For example, let the approx-
imand fa be defined on a simple uniform grid as piecewise n-polynomial function
over a bounded domain, and let ε = N−r. In this case, one achieves accuracies of
the order O(N−r) with O(Nn) grid points or degrees of freedom for fa. Clearly,
the computational costs and storage requirements for the approximand grow expo-
nentially with the dimensionality n, and for this reason, the numerical treatment of
mathematical problems is often restricted to three or four dimensions, even on the
most powerful machines presently available.

To circumvent the curse of dimensionality, we could make the assumption that
r = c ·n for some c independent of n. In this case we directly see that the numerical
costs are of the order O(ε−n/(c·n)) = O(ε−1/c), and thus independent of n while the
accuracy is O(εc). This way, the curse of dimensionality could be broken easily.
However, this statement has to be handled with care since the order constants still
may (exponentially) depend on the dimension n. Furthermore, such a smoothness
assumption is somewhat unrealistic.

While for lower (two or three) dimensional physical applications the shape of the
underlying domain is important, the domains become simpler in higher dimensions.
Here, typically they have tensor product structure for which one may exemplarily
consider the n–dimensional unit cube [0, 1]n.

An important tool for the development of numerical methods in high dimension
is the analysis of variance (ANOVA) representation of a function, [127,135]. There,
the function f which depends on n variables is decomposed into a sum over 2n

terms such that each term depends only on a unique subset of variables. To explain
this, consider a splitting of one-dimensional spaces V (d), d = 1, . . . , n into the space
of constants 1(d) and the remainder subspace W (d), i.e. V (d) = 1(d) ⊕W (d). This
introduces a natural decomposition of their tensor product space V := V (1) ⊗ · · · ⊗
V (n) into 2n subspaces by

V =
⊕

u⊂{1,...,n}

 ⊗
d∈{1,..,n}\u

1(d)

⊗(⊗
d∈u

W (d)

)
=:

⊕
u⊂{1,...,n}

Wu ,

such that V 3 f =
∑

u⊂{1,..n} fu, and each function fu ∈ Wu depends only on the
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variables xd, d ∈ u. Depending on the initial splitting1, this leads to different types
of the ANOVA decomposition.

This representation of the function then reveals the relative importance of the
respective dimensions and their interactions. It turns out that there exist applica-
tions for which the terms fu are not of equal importance and decay for increasing
|u|. Here, see also [45], we mention simulations from molecular dynamics where only
potential functions up to the order four, i.e. restrict the sum to terms with |u| ≤ 4,
suffice to represent the potential energy hypersurface of a system. Another example
are statistical applications where usually only the covariance of variables is consid-
ered and higher order correlations are neglected. This corresponds to the case that
|u| ≤ 2. Furthermore, for data mining, see below, it is found in [35] that even for
really high–dimensional data the terms fu with |u| > 7 are not significant. Finally,
problems in mathematical finance like option pricing, bond valuation or the pricing
of collaterated mortgage backed securities can be formulated as high–dimensional
integrals. For these integrals it was shown in [128] that the importance of each
dimension is naturally weighted by certain hidden weights, and higher–order terms
tend to play a less significant role.

Further results on the curse of dimensionality in this context deal with the
tractability of general high–dimensional (and even infinite–dimensional) approx-
imation and integration problems. This was investigated in a series of papers
[24, 56, 57, 104–106, 129–131] where the notion of weighted spaces was introduced.
In these spaces the importance of successive coordinate directions is quantified by a
decaying, or even finite2, sequence of weights for the terms Wu.

This directly leads to the effective dimension of a function f , see [15]. Here,
based on the ANOVA decomposition of f , one differs between two different types
of effective dimension. A function f : [0, 1]n → R is said to have superposition
dimension ns if the sum of the partial variances of the ANOVA terms with |u| ≤
ns exceeds 99 percent of the total variance of f . Alternatively, it has truncation
dimension ns if the sum over the variances of the terms fu with u ⊂ {1, . . . , ns}
exceeds this bound. For high–dimensional financial problems it was argued in [128]
that they are often of low effective dimension.

A multilevel discretization of the one–dimensional remainder subspaces W (d),
d = 1, . . . , n in the tensor product construction of the ANOVA decomposition leads
to sparse grids, see [14], which require smoothness assumptions of bounded mixed
derivatives. Then, an involved cost–benefit approach, which is based on the energy–
norm to determine the degree of the anisotropic multilevel refinements, results in

1The splitting is defined by a mapping P : V (d) → 1(d) with Pf(x) =
∫ 1

0
f(x)dµ(x) and some

measure µ. For example, the Lebesgue measure dµ(x) = dx leads to the well known ANOVA
decomposition used in statistics, [26]. Another example is the Dirac measure dµ(x) = δ(x − a)
located at a point a. This leads to a representation which is considered in [97] as cut–HDMR.

2Here, by finite we mean that for some q < n, and |u| ≥ q the corresponding weights are zero.
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a sparse grid space, see [45]. Here, the number of involved degrees of freedom as
well as the order of the approximation error are independent of the dimension n.
The so–called dimension adaptive sparse grid method has been recently introduced
in [40] for integration of higher dimensional functions. There, the placement of
integration points for the underlying quadrature rule is automatically controlled
depending on the importance of the respective dimension. Recently, sparse grids
have also been applied in [31] for principal manifold learning. The task here is to
find lower dimensional structures that are embedded in higher dimensional spaces.

We now turn to the previously mentioned concept of data mining which denotes
the process of finding hidden patterns, relations and trends in large data sets, see [16].
One problem which arises in this rather comprehensive field is the parameterization
of a higher dimensional function which is only known on a discrete data set. Namely,
it results from questions in this context which can be interpreted as scattered data
approximation problems. It deals with the reconstruction of an unknown function
from given scattered data points. These applications arise from various fields such
as computer science, geology, biology, meteorology, engineering, stock analysis, or
business studies, [38,39,121,132].

In this thesis, we consider the general formulation of this problem, i.e. we assume
that data points

Z := {(xj, yj) : j = 1, . . . , P} ⊂ [0, 1]n × R

are given, where the values yj are the samples yj = f(xj) of an unknown function
f : [0, 1]n → R on the set {xj}Pj=1 ⊂ [0, 1]n. The problem is now, to reconstruct the
high dimensional function f from the discrete data Z.

There exist various algorithms to solve this problem like multivariate adaptive
regression splines (MARS) [35], additive models [48, 49], support vector machine
regression [102], projection pursuit algorithms [34, 117], neural networks [49, 84], or
radial basis functions [49,132]. In a series of papers [28,41,42,96] it was shown that
these methods can be unified in the general framework of Regularization Networks.
Here, the ill–posed problem of reconstructing f from discrete data is regularized by
assuming an appropriate prior on the class of approximating functions. Typically,
regularization techniques [118,119] impose additional smoothness constraints on the
approximand fa which then is the minimizer of an error functional of the form

E(fa) =
1

P

P∑
j=1

V (fa(xj), yj) + νR(fa) .

Here, the loss function V : R × R → R enforces closeness to the data while the
regularization term R(fa) enforces smoothness of fa. The regularization parameter
ν > 0 allows for a tradeoff between the two terms. In the Bayesian interpretation
of this formulation the stabilizer corresponds to a smoothness prior, and the error
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term to a model of the noise in the data which is usually assumed to be Gaussian
and additive, see [28,42,96,127].

Typically, smoothness is imposed by a regularization term which has the form
R(f) = ‖Sf‖L2(Ω) with some differential operator S. It is a well known fact that
this can be formalized by means of reproducing kernel Hilbert spaces H(K) with
reproducing kernel K, see Chapter 4 or [28,38,41,42,96,102,127] for details. In fact,
if K is the Green’s function of the operator (S∗S), then the norm ‖ · ‖2

H(K) in H(K)

coincides with ‖S · ‖L2(Ω). Conversely, it is the flexibility in the choice of the kernel
function K and the loss function V which allows the interpretation of many well
known approximation techniques as Regularization Networks, as mentioned above.

For this reason, we will employ the Regularization Network approach and the
reproducing kernel Hilbert setting in this thesis to reconstruct the function from its
samples. However, we aim at the use of an efficient representation of the approxi-
mand.

To explain this, note that under certain assumptions on K and V the minimizer
fa of E(·) has the form

fa(x) :=
P∑
j=1

cjK(x,xj)

where the coefficient vector c := (c1, . . . , cP )T is given as solution of the system of
linear equations (K + ν I) c = y, where K := (K(xi,xj))

P
i,j=1, y := (y1, . . . , yP )T ,

and I denotes the identity matrix. Clearly, the complexity to compute fa is of the
order O(P 3) which leads to high computational costs if the data set Z is large.
However note that it is independent of the dimension n.

Thus, to deal with large data sets Z, it would be advantageous if the minimizer
fa ∈ H(K) could be represented in a more efficient way, which does not depend
on P , whereas the computation of the norm ‖fa‖2

H(K) still has to be feasible. This
would enable us to directly benefit from a comprehensive information on f in form
of many function samples. The relation between the kernel approach and a sparse
grid representation of the approximand was investigated in [38].

However, we have already seen that the representation of a function in general
suffers from the curse of dimensionality and higher regularity has to be assumed for f
to circumvent it at least to some extend. In this thesis, instead of increasing the reg-
ularity assumptions on f or assuming a lower effective dimension, we will use a repre-
sentation of the higher–dimensional function as superposition of lower–dimensional
functions. In 1957 the Russian mathematician A. N. Kolmogorov showed in [69] the
following

Theorem. Let f : [0, 1]n → R be an arbitrary multivariate continuous function.
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Then it has the representation

f(x1, . . . , xn) =
2n+1∑
q=1

gq

(
n∑
p=1

ψq,p(xp)

)
, (1.1)

with continuous one–dimensional outer and inner functions gq and ψq,p. All these
functions gq, ψq,p are defined on the real line. The inner functions ψq,p are indepen-
dent of the function f .

Thus, with this result rather than directly approximating the n–dimensional func-
tion f we have to find 2n + 1 one–dimensional functions which approximate the
outer functions g1, . . . , g2n+1. We will see later that this can even be reduced to the
approximation of one single outer function Φ : R→ R.

Kolmogorov’s theorem is closely related to Hilbert’s 13th problem which involves
the study of solutions of algebraic equations. It is a well known fact that the solution
of an algebraic equation of degree≤ 4 can be computed by formulae that only contain
radicals and arithmetic operations and therefore by functions of one or two variables.
In his Paris lecture in 1900 Hilbert conjectured [58, 126] that “A solution of the
general equation of degree 7 cannot be represented as a superposition of continuous
functions of two variables.” The question was answered by Kolmogorov in 1957, [69].
He showed that any continuous function of several variables can be represented as a
superposition of continuous functions of one variable and the operation of addition.
Kolmogorov’s student Arnold showed even before in [1–3] that any f ∈ C([0, 1]3)
can be represented as a superposition of continuous functions in two variables, and
thus refuted Hilbert’s conjecture.

Several improvements of Kolmogorov’s original version were published in the
following years. Lorentz showed that the outer functions gq can be chosen to be the
same [81,82] while Sprecher proved that the inner functions ψq,p can be replaced by
λpψq with appropriate constants λp [107,109]. A proof of Lorentz’s version with one
outer function that is based on the Baire category theorem was given by Hedberg [55]
and Kahane [68]. A further improvement was made by Friedman [33], who showed
that the inner functions can be chosen to be Lipschitz continuous. A geometric
interpretation of the theorem is that the 2n+ 1 inner sums

∑n
p=1 ψq,p map the unit

cube [0, 1]n homeomorphically onto a compact set Γ ⊂ R2n+1. The fact that any
compact set K ⊂ Rn can be homeomorphically embedded into R2n+1 was already
known from the Menger–Nöbeling theorem [61]. Ostrand [92] and Tikhomirov [70]
extended Kolmogorov’s theorem to arbitrary n–dimensional metric compact sets.

More recently, Kolmogorov’s superposition theorem found attention in neural
network computation by Hecht–Nielsen’s interpretation as a feed-forward network
with an input layer, one hidden layer and an output layer [52, 53, 107]. However,
the inner functions in all these versions of Kolmogorov’s theorem are highly non-
smooth. Also, the outer functions depend on the specific function f and hence are
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not representable in a parameterized form. Moreover, all one–dimensional functions
are the limits or sums of some infinite series of functions, which cannot be computed
practically. Therefore Girosi and Poggio [43] made the criticism that such an ap-
proach is not applicable in neurocomputing. The reason for this is that the original
proof of Kolmogorov’s theorem is not constructive, i.e. one can show the existence
of a representation (1.1) but it cannot be used in an algorithm for numerical calcula-
tions. Kurkova [75,76] partly eliminated these difficulties by substituting the exact
representation in (1.1) with an approximation of the function f . She replaced the
one–variable functions with finite linear combinations of affine transformations of a
single arbitrary sigmoidal function ψ. Her direct approach also enabled an estima-
tion of the number of hidden units (neurons) as a function of the desired accuracy
and the modulus of continuity of f being approximated. In [84] a constructive al-
gorithm is proposed that approximates a function f to any desired accuracy with
one single design, which means that no additional neurons have to be added. There,
also a short overview of the history of Kolmogorov’s superposition theorem in neural
network computing is given. Other approximative, but constructive approaches to
function approximation by generalizations of Kolmogorov’s superposition theorem
can be found in [22,64,85].

Recently, Sprecher derived in [111,112] a numerical algorithm for the implemen-
tation of the external univariate functions, which promises to constructively prove
Kolmogorov’s superposition theorem. In these articles, the inner functions ψq are
defined as translations of a single function ψ that is explicitly defined as an ex-
tension of a function which is defined on a dense subset of the real line. Sprecher
proved convergence of this algorithm in [111,112]. Throughout this proof, he relied
on continuity and monotonicity of the resulting ψ. It can however be shown that
his ψ does not possess these important properties. This was already observed by
Köppen in [73] where a modified inner function ψ was suggested. Köppen claims,
but does not prove the continuity of his ψ and merely comments on the termination
of the recursion which defines his corrected function ψ. These gaps will be closed
here, see also [12], i.e. existence as well as the essential properties of continuity and
monotonicity of Köppen’s ψ are shown. Following the lines of [111,112], convergence
of Sprecher’s algorithm was proved in [12] which finally confirmed his constructive
result.

Our goal is now to develop an approach to function approximation that is ca-
pable to brake the curse of dimensionality at least to some extend without higher
regularity assumptions on the function f . To this end, we first modify the construc-
tive proof of Kolmogorov’s superposition theorem due to Sprecher [12, 73, 111, 112]
to a numerically preferable new version with only one outer function which has the
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following form:

f(x1, . . . , xn) =
m∑
q=0

Φ

(
n∑
p=1

αp ψ(xp + qa) + ∆q

)
.

Then, we alter the original algorithm such that the new version computes a sequence
of functions {Φr}r for which then convergence to the outer function Φ is shown when
r →∞. This constructively proofs the new version of Kolmogorov’s theorem.

We suggest a Regularization Network approach which is based on this represen-
tation to efficiently reconstruct an unknown n–dimensional continuous function f
from known sampled points. In a preliminary step, we replace the outer function in
the new representation by an expansion in a finite basis with unknown coefficients.
This results in a linear representation of the approximand. The coefficients are then
determined via a variational formulation, i.e. the minimization of the regularized
convex cost functional E(1)(·) which measures the empirical error on a random sam-
ple set. Further numerical investigations of this first model and its Fourier transform
will show that Sprecher’s inner function causes an unfolding of the dimensions into
a product of functions. Moreover, the relevant frequency numbers depend only on
model parameters which are independent of the function f and can be computed
a priori. This motivates our second model in which we replace the outer function
by a product of functions and expand each factor in a Fourier series with unknown
coefficients. The second model takes the form

fL(x) :=
m∑
q=0

n∏
d=0

(
Nd∑

j=−Nd
cdj exp

[
2π i kdj

( n∑
p=1

αp ψ(xp + qa) + ∆q

)])
,

for known frequency numbers kdj ∈ Z. The previously described procedure will
be formulated by means of reproducing kernel Hilbert spaces which then form the
basis of the respective models. This directly enables the definition of corresponding
feasible norms in the regularization term.

Altogether, we thus obtain an efficient algorithm for function reconstruction from
sample points in the spirit of a Regularization Network [22, 43, 52, 53, 62–64, 75, 76,
84, 85]. The number of degrees of freedom of our algorithm depends linearly on
the dimension of the function to be approximated. Also, and in contrast to the
general Regularization Networks, the complexity depends linearly on the number
P of learning points. However, the resulting cost functional E(n)(·) for the second
model will no longer be convex and has to be minimized with a nonlinear line search
method. Additionally, special care has to be taken in the implementation of the
algorithm. It turns out that the dimensionality of the function f is transformed by
Kolmogorov’s representation into an oscillation of the outer function Φ. Thus, to
resolve the strong oscillations and high frequency numbers the arithmetic precision
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has to be increased beyond machine precision in an implementation. This is where
the curse of dimensionality still might be present, even though we are approximating
only a one–dimensional function.

To sum up, the contributions of this thesis3 are the mathematical proofs of
existence, continuity and monotonicity of Köppen’s inner function ψ, as well as
the formulation of a new version of Kolmogorov’s superposition theorem with one
single outer function Φ which results from modifications of Sprecher’s constructive
theorem. Accordingly, Sprecher’s algorithm is adapted in a suitable way and its
convergence towards the outer function Φ is proved. Furthermore, two models for an
approximation of functions from discrete data samples are presented which directly
use the new version of Kolmogorov’s theorem. The corresponding Regularization
Network approaches are developed by means of reproducing kernel Hilbert spaces.
Finally, results of numerical experiments for the new models are presented.

The remainder of this thesis is organized as follows: In Chapter 2 we consider the
Kolmogorov superposition theorem and present its various improvements by differ-
ent authors. This includes Sprecher’s constructive version for which we show that his
inner function ψ is discontinuous while existence, continuity, and monotonicity can
be shown for Köppen’s corrected function ψ. A reformulation of Sprecher’s results
leads to a new version with only one single outer function. It requires a modification
of the algorithm for which then convergence is shown. Furthermore, we present a
geometric interpretation of Kolmogorov’s superposition theorem and comment on
the unfolding of dimensions that is caused by the inner functions. Chapter 3 gives
some examples of approximation schemes that are closely related to Kolmogorov’s
superposition theorem. Here, also our regression models will be briefly introduced.
In Chapter 4, the Regularization Network approach will be developed. To this end,
basic facts on reproducing kernel Hilbert spaces, Statistical learning theory, Struc-
tural risk minimization, and a Bayesian interpretation of Regualrization Networks
are presented. Finally, the underlying reproducing kernel Hilbert spaces with the
corresponding norms are derived for our approach. Chapter 5 deals with details on
the implementation of the method. Here, after a brief description of the iterative
nonlinear minimizers, the numerical complexities for each iteration step are derived.
Furthermore, we introduce a nested iteration scheme and explain the necessity of a
multiple precision arithmetic in more detail. Then, a transformation of the prob-
lem to a sub cube of [0, 1]n is introduced which is due to numerical problems at
the boundary of the unit cube. Finally, some remarks on a parallelization of the
algorithm are made. In Chapter 6 the results for various numerical experiments are
given. For the first model, the results will show that the use of locally supported ba-
sis functions like B–splines is disadvantageous. The numerical results for the Fourier
basis will then provide important insight into the structure of the outer function Φ.

3The mathematical proofs of existence, continuity and monotonicity of Köppen’s inner function
ψ have already been published in [12].
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In particular, they reveal its product structure and the dependency of the relevant
frequency numbers from several model parameters. The product structure of Φ in
combination with the fact that the locations of the important frequency numbers in
Fourier space are independent of the function f , i.e. they can be computed a priori,
then motivates the definition of the second model. A detailed numerical analysis
for this model will show that it is capable of approximating functions up to dimen-
sion ten and that the product ansatz for the outer function in our new version of
Kolmogorov’s superposition theorem is an appropriate choice.



Chapter 2

Kolmogorov’s
superposition theorem

This section introduces Kolmogorov’s superposition theorem and subsequent ver-
sions that were developed by different authors. Therefore, as a starting point we
will define what is meant by superpositions of functions in this context. We
say that a function f : Rn → R is a superposition of functions g : Rk → R and
hj : R`j → R, j = 1, . . . , k for some values k, `1, . . . , `k ∈ N, if it has the representa-
tion

f(x1, . . . , xn) = g(y1, . . . , yk) with yj = hj(xij1
, . . . , xij`j

) , j = 1, . . . , k ,

where for fixed j ∈ {1, . . . , k}, `j ≤ n, and the indices

ijk ∈ {1, . . . , n} , k = 1, . . . , `j ,

are pairwise distinct. Here, we explicitly allow the functions h1 . . . , hk to be super-
positions again. To make the reader familiar with this definition we give two simple
examples.

(a) The function f(x, y) = xy is a superposition of g(s, t) = exp(s · t) and h(s) =
ln(s). We have f(x, y) = g(h(x), y). Here in turn, g can be represented as
superposition of v(s) = exp(s) and w(s, t) = s · t which leads to f(x, y) =
v(w(h(x), y)).

(b) Clearly, the addition of three numbers f(x, y, z) = x+y+z can be represented as
a superposition of the addition of two numbers g(s, t) = s+t. By the associative
law we can write f(x, y, z) = g(x, g(y, z)) = g(g(x, y), z).

These simple examples already show that a representation by superpositions is not
unique. We remark that the understanding of a superposition of functions sometimes
differs in literature, e.g. when speaking about the superposition of plane waves.

Kolmogorov’s theorem deals with the representation of continuous functions of
n variables as superposition of functions that only depend on one variable and

11
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addition. This is closely related to Hilbert’s 13th problem. In his Paris lecture at
the International Conference of Mathematicians in 1900, David Hilbert formulated
23 problems which in his opinion were important for the further development of
mathematics, [58]. The 13th of these problems dealed with the solution of general
equations of higher degrees. It is known that for algebraic equations of degree ≤ 4
the solution can be computed by formulae that only contain radicals and arithmetic
operations. For linear equations this fact is known since ancient times while the
solution of quadratic equations was found by Babylonians. In the 16th century,
Tartaglia, Cardan, and Ferrari showed how to solve cubic and quartic equations.
For higher orders, Galois’ theory shows us that the solutions of algebraic equations
cannot be expressed in terms of basic algebraic operations.

The roots of polynomial equations can be interpreted as functions of their coeffi-
cients. In the following we mean by solution just a single valued branch of the general
solution. It should be noted that it is not clear that this is precisely what Hilbert
meant. Now, we already know that the solutions of algebraic equations up to degree
four are representable by functions of one or two variables. For higher degrees it fol-
lows from the so–called Tschirnhausen transform that the general algebraic equation
xn+a1x

n−1+. . .+an = 0 can be translated to the form yn+bn−4y
n−4+. . .+b1y+1 = 0.

The Tschirnhausen transform is given by a formula containing only radicals and
arithmetic operations and transforms. Therefore, the solution of an algebraic equa-
tion of degree n can be represented as a superposition of functions of two variables
if n < 7 and as a superposition of functions of n − 4 variables if n ≥ 7. For n = 7
the solution is a superposition of arithmetic operations, radicals, and the solution of
the equation z7 + c3z

3 + c2z
2 + c1z + 1 = 0. A further simplification with algebraic

transformations seems to be impossible which led to Hilbert’s conjecture [58, 126]
that “A solution of the general equation of degree 7 cannot be represented as a su-
perposition of continuous functions of two variables.” This explains the relation of
Hilbert’s 13th problem to the representation of a higher–dimensional function as su-
perposition of lower–dimensional functions. In this context, it has stimulated many
studies in the theory of functions and other related problems by different authors.
It was due to the fact that no one doubted the validity of Hilbert’s conjecture that
one studied superpositions of continuous functions at first. Hilbert himself studied
the superposition of algebraic functions [59] while Wiman and Chebotarev (see [126]
and the references therein) thought of possible developments in Galois theory. Kol-
mogorov first studied the theory of analytic functions and then focussed on smooth
functions. We refer to [126] for a more detailed description on relations of Hilbert’s
13th problem to other topics and more references.

Finally, Hilbert’s conjecture was proved wrong by Kolmogorov in 1957, [69]. He
showed that any continuous function of several variables can be represented as a
superposition of continuous functions of one variable and the operation of addition.
Kolmogorov’s student Arnold showed even before in [1–3] that any f ∈ C([0, 1]3)
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can be represented as a superposition of continuous functions in two variables. Kol-
mogorov proved in his paper [69] that for any arbitrary continuous n–dimensional
function f : [0, 1]n → R there exist one–dimensional functions gq, q = 1, . . . , 2n + 1
and increasing functions ψq,p : R→ R, q = 1, . . . , 2n+ 1, p = 1, . . . , n such that

f(x1, . . . , xn) =
2n+1∑
q=1

gq

(
n∑
p=1

ψq,p(xp)

)
. (2.1)

Here, the inner functions ψq,p are independent of f while the outer functions gq
depend on f . This result settled Hilbert’s 13th problem for continuous functions. In
the following years, various versions of Kolmogorov’s theorem were proved. We will
show these results in the next section but do not claim that this list is exhaustive.

2.1 Variants of Kolmogorov’s theorem

In Kolmogorov’s theorem and all subsequent versions that will follow, the representa-
tion of an n–dimensional function f by superpositions of one–dimensional functions
is similar to the form in (2.1). Therefore we will always denote by outer functions
the functions gq which take a sum over inner functions ψq,p as argument. Note
that in all versions of Kolmogorov’s theorem which will be presented in the following
the respective inner functions are independent of the n–dimensional function while
the outer functions depend on f .

We start with a variant of Kolmogorov’s theorem that reduces the number of
outer functions and is due to Lorentz. He showed in 1962 [80] that the outer functions
gq in (2.1) can be replaced by a single function g. More precisely, Lorentz proved
the existence of functions g and ψq,p, q = 1, . . . , 2n+ 1, p = 1, . . . , n such that

f(x1, . . . , xn) =
2n+1∑
q=1

g

(
n∑
p=1

ψq,p(xp)

)
. (2.2)

Additionally, Lorentz stated, as it was remarked in [108], that the q–dependence of
the outer functions can always be eliminated by a shift of their argument. Since
this insight will be crucial for one main result of this thesis we explain this in more
detail in Section 2.3.6.

In [107] Sprecher additionally replaced the inner functions ψq in (2.2) by one
single inner function with an appropriate shift in its argument. He proved that
there exist real values η, λ1, . . . , λn, λp,q, p = 1, . . . , n, q = 0, . . . , 2n, a function
g : R → R, and a real, monotonic increasing function ψ : [0, 1] → [0, 1] with
ψ ∈ Lip(ln 2/ ln(2N + 2), N ≥ n ≥ 2, such that

f(x1, . . . , xn) =
2n∑
q=0

g

(
n∑
p=1

λpψ(xp + η q) + q

)
, (2.3)
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and

f(x1, . . . , xn) =
2n∑
q=0

g

(
n∑
p=1

λp,qψ(xp + η q)

)
. (2.4)

Note that the values η, and the functions g, ψ can differ in the two representations.
In this paper, also a necessary condition on functions h0, . . . , hm is derived for a
general representation of the form

f(x) =
m∑
q=0

g(hq(x))

to hold for fixed hq which are independent of f . The property is called separation
of points and reads as follows: For any two points x 6= y the set (h0(x), . . . , hm(x))
is not a permutation of (h0(y), . . . , hm(y)). Clearly, if two points x1 and x2 were
not separated by h0, . . . , hm, then any function with f(x1) 6= f(x2) would not be
representable in this form. Note that this is not a sufficient condition and additional
properties are needed to guarantee the existence of a representation of any function
in the special form under consideration here.

The versions (2.2), (2.3) and (2.4) with one single outer function relate Kol-
mogorov’s theorem to Milutin’s theorem, see [133], which states that the space C(K)
is isomorphic to C([0, 1]) if K is a compact, metric, uncountable space. Clearly, if
K := [0, 1]n all representations map the single outer function g ∈ C([0, 1]) to an ele-
ment in C(K). However, they do not provide an inverse mapping since uniqueness
of the outer function is not guaranteed in any version of Kolmogorov’s theorem.

We have seen that the number of functions in Kolmogorov’s theorem is not
minimal and that there exist different variants of (2.1) where the number of inner and
outer functions is significantly reduced. Another question is, whether the number of
2n+1 outer terms in any of the representations can be reduced? This was answered
in the negative by Sternfeld in 1985, [116]. He showed that any basis family for
compact metric spaces contains at least 2n+ 1 elements.

A result concerning the smoothness of the one–dimensional functions in Kol-
mogorov’s superposition theorem is due to Fridman. In 1967 [33] he could show
that the inner functions ψq,p in the original version (2.1) can be chosen to be in the
class Lip(1). Then, in a further paper Sprecher could prove that ψ ∈ Lip(1) is also
admissible in his representations (2.3) and (2.4) with only one inner function, [109].
A negative result by Vitushkin from 1964 [125,126] dealed with the differentiability
of the functions gq and ψq,p in (2.1). He showed for r ≥ 2 and n ≥ 2 that there
exist r times continuously differentiable functions in n variables which cannot be
represented by r times continuously differentiable functions with less variables. A
consequence of this result is that the inner functions ψq, since they are independent
of f , cannot be continuously differentiable. This even holds if one wants to represent
an analytic function f only, see [125].
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A generalization of Kolmogorov’s superposition theorem to compact metric spaces
by Ostrand [92] from 1965 reads as follows: For p = 1, . . . ,m let Xp be compact
metric spaces of finite dimension np, and let n =

∑m
p=1 np. Then, there exist contin-

uous functions ψq,p : Xp → [0, 1], q = 1 . . . , 2n+ 1, p = 1, . . . , n and real continuous
functions gq : [0, 1] → R, q = 1, . . . , 2n + 1 such that any continuous function
f : X1 × . . .×Xm → R is representable in the form

f(x1, . . . ,xm) =
2n+1∑
q=1

gq

(
m∑
p=1

ψq,p(xp)

)
. (2.5)

A more general form for the n–dimensional unit cube is due to Hedberg and Kahane.
In [55,66] they gave a completely different proof of the representation

f(x1, . . . , xn) =
2n+1∑
q=1

g

(
n∑
p=1

λpψq(xp)

)
, (2.6)

that is based on the Baire category theorem, see also [68,82]. They showed that for
rationally independent1, positive numbers λ1, . . . , λn with

∑n
p=1 = 1 and quasi–all2

tuples (ψ1, . . . , ψ2n+1) with continuous, non–decreasing entries ψq : [0, 1] → [0, 1],
there exists a continuous function g : [0, 1] → [0, 1], such that for any continuous
function f : [0, 1]n → [0, 1] equation (2.6) holds. Employing Kahane’s ideas, Doss
proved in 1976 [25] that the inner sum can also be replaced by a product of functions.

Using duality arguments, Sternfeld presents in [115] relatively short and sim-
ple proofs of Kolmogorov’s original theorem (2.1) and its generalization (2.5) by
Ostrand.

In 1978 Sternfeld showed a result for compact metric spaces X and bounded
functions, [114]. He proved that if any continuous function f onX can be represented
as

f(x1, . . . , xn) =
2n+1∑
q=1

gq(Ψq(x1, . . . , xn)) (2.7)

with continuous functions gq, Ψq, q = 1, . . . , 2n+ 1, then also any bounded function
f on X can be represented in the form (2.7) with bounded outer functions gq,
depending on f .

As a generalization of this result Ismailov studied in [65] superpositions of func-
tions without involving any topology, like continuity or boundedness, on X. He
established a necessary and sufficient condition on a general set X which is equiva-
lent to the fact that any function f on X can be represented in the form (2.7). To be

1Real numbers λ1, . . . , λn are called rationally independent, if for any rational numbers
r1, . . . , rn it follows from r1λ1 + . . . rnλn = 0 that r1 = . . . = rn = 0.

2A property holds for quasi–all points in a complete metric space X, if it holds for all points of
a set U ⊂ X and X \ U is of the first Baire category.
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more precise, there have to exist no closed paths in X with respect to Ψ1, . . . ,Ψ2n+1.3

Ismailov showed that for smooth functions with simple structure, like e.g. Ridge
functions, the set X ⊂ Rn always has closed paths while for continuous functions
Ψq, q = 1, . . . , 2n + 1, many sets of Rn, like the unit cube, any compact subset, or
even Rn itself, may have no closed paths.

As we have seen, there exist many versions of Kolmogorov’s superposition theo-
rem that either improved its general complexity by reducing the number of involved
functions, improved the smoothness of the one–dimensional functions, or general-
ized the proposition to other spaces or sets. However, all previously shown results
have in common that they are not constructive: A concrete formula for any of
the inner or outer functions is unknown. This deficiency was first partly elimi-
nated by Sprecher in [110]. Here, he recursively defined a single inner function
ψ : [0, 1 + (1/5!)]→ [0, 1 + (1/5!)] that does not depend on n. Then, depending on
ψ, he showed the existence of 2n + 1 systems of disjoint n–dimensional sub cubes
with decreasing diameters covering [0, 1]n in a prescribed manner such that pre-
vious results from [107] guaranteed the existence of the outer functions. Finally,
in [111,112] Sprecher gave a completely constructive version of Kolmogorov’s theo-
rem by explicitly defining a function ψ : [0, 1] → [0, 1], different from that in [110].
Additionally he introduced a construction algorithm for the outer functions Φq in a
representation of the form

f(x1, . . . , xn) =
m∑
q=1

Φq

(
n∑
p=1

λpψ(xp + qa)

)
,

see (2.9) below. Sprecher’s proof relied, amongst other things, on the fact that this
ψ is continuous and monotone increasing. It was Köppen in 2002, [73], who first
remarked that this is actually not the case. Here, he corrected Sprecher’s inner
function ψ through a point wise, recursive definition on the dense set of terminating
rational numbers D ⊂ R and claimed that his function exists, and that it is continu-
ous and monotone increasing. However, Köppen did not prove these properties but
argued that Sprecher’s constructive representation holds with the new ψ. It is one
intention of this thesis to show that this is indeed the case and that Sprecher’s ideas
in general hold, see also [12]. We present a detailed mathematical investigation of
this fact in Section 2.3.

2.2 Geometric interpretation

At this point we rather continue with a geometric interpretation of (2.6). The
contents of this section are taken from [68], see also [66]. Let λp, p = 1, . . . , n and

3For a formal definition of closed paths in a set X with respect to a set of functions h1, . . . , hr
we refer to [65].
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ψq, q = 1, . . . , 2n + 1 be the same as in (2.6). We remind the reader that these
coefficients and the inner functions are independent from f . Now, we can define a
continuous embedding E : [0, 1]n → R2n+1 by the coordinate functions

Xq := Eq(x1, . . . , xn) :=
n∑
p=1

λpψq(xp) , q = 1, . . . , 2n+ 1 .

The image of [0, 1]n in R2n+1 is a compact set, denoted by Γ, and from (2.6) we see
that any f ∈ C([0, 1]n) has the representation

f(x1, . . . , xn) =
2n+1∑
q=1

g(Eq(x1, . . . , xn)) . (2.8)

By definition, the embedding E : [0, 1]n → Γ is surjective. We have already seen,
see Section 2.1 and [107], that a necessary condition for the representation (2.6) to
hold is that the coordinate functions E1, . . . , E2n+1 separate all points in [0, 1]n, i.e.
for x 6= y we can conclude that E(x) 6= E(y). Hence, E : [0, 1]n → Γ is injective
and therefore it is a homeomorphism.

Now, for any given function F ∈ C(Γ) we can define f := F ◦E : [0, 1]n → R and
see that f ∈ C([0, 1]n). This implies that f has a representation of the form (2.8)
what shows that F can be represented on Γ as

F (X1, . . . , X2n+1) =
2n+1∑
q=1

g(Xq) .

In other words, the subspace

Z :=

{
F ∈ C(R2n+1) : F (X1, . . . , X2n+1) =

2n+1∑
q=1

g(Xq), g ∈ C(R)

}

interpolates freely4 on Γ, i.e. the image of [0, 1]n under the homeomorphism E.
In a further result, Ostrand [92] and Tikhomirov [70] extended Kolmogorov’s

theorem to arbitrary n–dimensional metric compact sets K, see also [68]. Namely,
there exists a homeomorphic embedding ϕ : K → R2n+1 such that the subspace
Z ⊂ C(R2n+1) of functions interpolates freely on the compact set Γ = ϕ(K). A
theorem of Menger–Nöbeling, see [61], states that any n–dimensional compact set
K can be embedded homeomorphically into the 2n+1 dimensional Euclidean space.

4Let Y be a subset of the space C(K) of continuous functions on a compact set K and let
E ⊂ K be a closed subset. Then Y is said to interpolate freely on E with a constant c ≥ 1, if for
each H(x) ∈ C(E) there exists g(x) ∈ Y such that g(x) = H(x), x ∈ E and ‖g‖C(K) ≤ c‖H‖C(E).
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X2|`(γt1)− `(γt2)|

|X1 −X2|
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Figure 2.1. The Euclidean distance between the points X1 and X2 ∈ R2n+1

(blue line) is smaller than the arc length of their connection on the curve γ (red
line). Clearly, for the coordinates |X1

q −X2
q | ≤ |X1 −X2| holds.

Therefore, Kolmogorov’s theorem is a special case but this version gives more, since
the compact set Γ has additional properties.

Next, we will comment on the geometric structure of the set Γ. We can assume,
see [68], that the functions ψq, q = 1, . . . , 2n+1 in (2.6) are strictly increasing. Now,
let ζ : [0, 1]→ R2n+1 with

ζ(t) := (ψ1(t), . . . , ψ2n+1(t)), t ∈ [0, 1]

be the parametric representation of a continuous curve γ in R2n+1. Since the func-
tions ψq are increasing, they have bounded variation and the curve γ is rectifiable.
We will denote by γt the partial curve with parameterization ζ(τ), τ ∈ [0, t]. Let
s(t) = `(γt) be the arc length of γt. Then, (ζ ◦ s−1)(τ), τ ∈ [0, s(1)] is the re–
parameterization of γ with respect to the arc length parameter. With the rescaling
p(τ) = τ/s(1) we can define ϕq := (ψq ◦ s−1 ◦ p−1), q = 1, . . . , 2n+ 1 and get by

ϕ(σ) := (ϕ1(σ), . . . , ϕ2n+1(σ)), σ ∈ [0, 1]

a further parameterization of the curve γ. Now for i ∈ {1, 2}, let σi ∈ [0, 1] and
X i := ϕ(σi) ∈ R2n+1 be the corresponding points on the curve. Then, the partial
curve with endpoint X i is given by γti , where ti := (s−1 ◦p−1)(σi), and its arc length
is `(γti) = s(ti) = s(1)σi. Since we know that the Euclidean distance between the
points X1 and X2 in R2n+1 is smaller than the arc length of their connection on the
curve, see Figure 2.1, we can estimate

|ϕq(σ1)− ϕq(σ2)| = ∣∣X1
q −X2

q

∣∣ ≤ ∣∣X1 −X2
∣∣ ≤ |`(γt1)− `(γt1)| = s(1) |σ1 − σ2| .

This shows that the functions ϕq, q = 1, . . . , 2n + 1 satisfy the Lipschitz condition
of order one.
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Next, we will show that the functions ϕq are also admissible in Kolmogorov’s
representation. From (2.6) we see that the set Γ is a convex combination of n
copies γp, p = 1, . . . n of the curve γ, i.e. we have Γ = λ1γ

1 + . . . + λnγ
n. For

(X1, . . . , X2n+1) ∈ Γ, there exist unique points (x1, . . . , xn), (σ1, . . . , σn) ∈ [0, 1]n

such that

Xq =
n∑
p=1

λpψq(xp) =
n∑
p=1

λpϕq(σp), q = 1, . . . , 2n+ 1 .

Therefore, we have the maps

(x1, . . . , xn) //

((RRRRRRRRRRRRR
(σ1, . . . , σn)

vvlllllllllllll
oo

(X1, . . . , X2n+1)

hhRRRRRRRRRRRRR

66lllllllllllll

where the diagonal arrows are homeomorphisms of [0, 1]n onto Γ, while the horizontal
one is a homeomorphism of the n–dimensional unit cube onto itself. Now, let F :
[0, 1]n → R be an arbitrary continuous function. We can define f ∈ C([0, 1]n) by
setting

f(x1, . . . , xn) := F (σ1, . . . , σn), with σi = (p ◦ s)(xi), i = 1, . . . , n .

From (2.6) we know that

f(x1, . . . , xn) =
2n+1∑
q=1

g

(
n∑
p=1

λpψq(xp)

)

=
2n+1∑
q=1

g

(
n∑
p=1

λpψq

(
(s−1 ◦ p−1)(σp)

))

=
2n+1∑
q=1

g

(
n∑
p=1

λpϕq(σp)

)
.

This means that for any function F ∈ C([0, 1]n) we have the representation

F (σ1, . . . , σn) =
2n+1∑
q=1

g

(
n∑
p=1

λpϕq(σp)

)

and the functions ϕq belong to the class Lip(1). This insight was first established
by Fridman with different arguments and required a significant improvement of Kol-
mogorov’s construction, [33,68]. Anyhow, this possibility also follows automatically
from Kolmogorov’s original statement, [66].
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2.3 Sprecher’s constructive version

We now turn in detail to Sprecher’s constructive version of the Kolmogorov superpo-
sition theorem from [108,109] that has been briefly introduced in Section 2.1. Here,
Sprecher explicitly defined an inner function ψ : R→ R, and formulated a construc-
tion algorithm for the outer functions Φq : R → R. Then, he gave a convergence
proof for this algorithm to show the following result.

Theorem 2.1. Let n ≥ 2, m ≥ 2n and γ ≥ m+ 2 be given integers and ψ : R→ R
as in Definition 2.2 below. We set

a :=
1

γ(γ − 1)
, β(r) :=

nr − 1

n− 1
,

and

λp :=

{
1 , p = 1 ,∑∞

r=1 γ
−(p−1)β(r) , p > 1 .

Then, for any arbitrary continuous function f : [0, 1]n → R, there exist m + 1
continuous functions Φq : R→ R, q = 0, . . .m, such that

f(x) =
m∑
q=0

Φq ◦ Ψ̃q(x) , with Ψ̃q(x) =
n∑
p=1

λp ψ(xp + qa) . (2.9)

However, to make this proof work, two fundamental properties of ψ, namely
continuity and monotonicity, are needed. Unfortunately, the inner function ψ in
[111, 112] is neither continuous nor monotone. This observation is due to Köppen
who first remarked in 2002, [73] that Sprecher’s ψ actually has neither of these
properties. Therefore, he suggested a correction of the inner function ψ in terms
of a recursively defined function. His new ψ was defined point wise on the dense
set of terminating rational numbers D ⊂ R. Anyhow, Köppen only claimed that
his function exists, and that it is continuous and monotone increasing. He did not
prove these properties but argued, without proving it, that Sprecher’s construc-
tive representation holds with the new ψ. In this section we will show that this is
indeed the case. However, this will be done for a slightly changed version of Theo-
rem 2.1 that employs only one outer function. For the proof of Theorem 2.1 with
Köppen’s inner function we refer to [12]. The remainder of this section is organized
as follows. First, we will review Sprecher’s definition of the inner function ψ and
show in Section 2.3.1 that it is not continuous. Finally, in Section 2.3.2 we will
introduce Köppen’s correction of the function for which we will then show existence
(Section 2.3.3), continuity (Section 2.3.4), and monotonicity (Section 2.3.5). A new
version of Kolmogorov’s theorem, which is a modification of Sprecher’s result, will
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be introduced in Section 2.3.6. In Section 2.3.7 we adapt Sprecher’s algorithm to the
new version and show convergence. This will constructively prove our new version
of Kolmogorov’s superposition theorem.

2.3.1 Discontinuity of the inner function

We start with repeating Sprecher’s definition of ψ from [109]. Then, we show that
it indeed does not define a continuous and monotone increasing function.

First, we have to define for a fixed basis γ > 1 and k ∈ N the set of terminating
rational numbers

Dk = Dk(γ) :=

{
dk ∈ Q : dk =

k∑
r=1

irγ
−r, ir ∈ {0, . . . , γ − 1}

}
. (2.10)

Then the set
D :=

⋃
k∈N

Dk (2.11)

is dense in [0, 1].
In [111], the inner function ψ was defined point wise on the set D in the following

way.

Definition 2.2. Let 〈i1〉 := 0 and for r ≥ 2 let

〈ir〉 :=

{
0 , ir = 0, 1, . . . , γ − 2 ,

1 , ir = γ − 1 .

Furthermore, we define [i1] := 0 and, for r ≥ 2,

[ir] :=

{
0 , ir = 0, 1, . . . , γ − 3 ,

1 , ir = γ − 2, γ − 1 ,

ı̃r := ir − (γ − 2)〈ir〉 ,
and

mr := 〈ir〉
(
r−1∑
s=1

(
[is] · . . . · [ir−1]

))
.

The function ψ is then defined on Dk by

ψ(dk) :=
k∑
r=1

ı̃r 2−mr γ−β(r−mr) . (2.12)
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Figure 2.2. The top row shows the graph of Sprecher’s ψ from (2.12) on
the interval [0, 1] (left) and a zoom into a smaller interval (right), computed for the
values of the set D5, γ = 10 and n = 2. One can clearly see the non–monotonicity
and discontinuity near the value x = 0.59. The bottom row shows Köppen’s version
from (2.14) for the same parameters (left) and a zoom into the same region (right).
Here, the discontinuity is no longer present.

Note that the definition of ψ depends on the dimension n since β(·) depends
on n. For a simpler notation we dispense with an additional index. The graph of
the function ψ is depicted in Figure 2.2 for k = 5, γ = 10 and n = 2, i.e. it was
calculated with the Definition 2.2 on the set of rational decimal numbers Dk. Next,
we assume that for any convergent sequence {xk}k ⊂ D, with x = limk→∞ xk, the
limit

ψ(x) := lim
k→∞

ψ(dk)

exists. In other words, we assume that there exists an extension of ψ to the real line,
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which also will be denoted by ψ. Then, we show that this extension can neither be
continuous nor monotone increasing.

The following calculation shows directly that the function is not continuous in
contrast to the claim in [111]. With the choice γ = 10 and n = 2 one gets with
Definition 2.2 the function values

ψ(0.58999) = 0.55175 and ψ(0.59) = 0.55 .

This counter–example shows that the function ψ is not monotone increasing on D
and therefore its extension cannot be monotone increasing on the real line. We
furthermore can see from the additive structure of ψ in (2.12) that

ψ(0.58999) < ψ(xk) for all xk ∈
(
0.58999, 0.59

) ∩ D . (2.13)

This implies that

ψ(0.58999) ≤ ψ(x) for all x ∈ (0.58999, 0.59
)

.

Indeed, assuming for x ∈ (0.58999, 0.59) that ε := ψ(0.58999) − ψ(x) > 0, we can
find an integer k0 ∈ N, such that |ψ(xk)− ψ(x)| < ε and xk ∈ (0.58999, 0.59) for all
k > k0. However, from this property it follows that ψ(xk) < ψ(0.58999), which is
a conflict to (2.13). This shows that the function ψ, assumed that it exists, is also
not continuous.

Remark 2.3. For γ = 10, discontinuities of ψ arise for all values

x =
i

10
+

9

100
, i = 0, . . . , 9 .

2.3.2 Correction of the inner function

Among other things, the convergence proof in [111, 112] is based on continuity and
monotonicity of ψ. As the inner function defined by Sprecher does not provide these
properties the convergence proof also becomes invalid unless the definition of ψ is
properly modified. To this end, Köppen suggested in [73] a corrected version of the
inner function and stated its continuity.

Definition 2.4. Let γ > 1 be a fixed basis and D be the set of terminating rational
numbers as defined in (2.11). For k ∈ N and dk ∈ D the function ψ is defined by
ψ(dk) := ψk(dk), where the latter value is recursively given by

ψk(dk) =


dk , k = 1,

ψk−1(dk − ik
γk

) + ik
γβ(k) , k > 1 , ik < γ − 1,

1
2

(
ψk−1(dk − ik

γk
) + ψk−1(dk + 1

γk
) + ik

γβ(k)

)
, k > 1 , ik = γ − 1.

(2.14)
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Note that the index of ψk(·) indicates which value ik is considered and is not redun-
dant.

Köppen claimed that this recursion terminates. The following sections show that
the so–defined ψ indeed can be extended to a function ψ : [0, 1]→ R, and that this
extension is continuous and monotone increasing.

For the calculations in the following sections it is advantageous to have an explicit
representation of (2.14) as a sum. To this end, we need some further definitions.
For simplicity, the values of ψk−j at the points dk−j and dk−j + 1

γk−j
are denoted as

ψk−j := ψk−j(dk−j) and ψ+
k−j := ψk−j(dk−j +

1

γk−j
) .

Then, the recursion (2.14) takes for k − j > 1 the form

ψk−j =

{
ik−j

γβ(k−j) + ψk−j−1 , ik−j < γ − 1,
γ−2

2γβ(k−j) + 1
2
ψk−j−1 + 1

2
ψ+
k−j−1 , ik−j = γ − 1

(2.15)

and

ψ+
k−j =


ik−j

γβ(k−j) + 1
γβ(k−j) + ψk−j−1 , ik−j < γ − 2,

ik−j
2γβ(k−j) + 1

2
ψk−j−1 + 1

2
ψ+
k−j−1 , ik−j = γ − 2,

ψ+
k−j−1 , ik−j = γ − 1.

(2.16)

Using the values

sj :=


0 , ik−j+1 < γ − 2,
1
2

, ik−j+1 = γ − 2,

1 , ik−j+1 = γ − 1

(2.17)

and

s̃j :=

{
0 , ik−j+1 < γ − 1,
1
2

, ik−j+1 = γ − 1,
(2.18)

we can define the matrix

Mj :=

(
(1− s̃j+1) s̃j+1

(1− sj+1) sj+1

)

and the vector

bj :=

 (1− 2s̃j+1)
ik−j

γβ(k−j) + s̃j+1
γ−2

γβ(k−j)

(1− sj+1)
[

ik−j
γβ(k−j) + (1− 2sj+1) 1

γβ(k−j)

] .
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With their help, the recursions (2.15) and (2.16) can be brought into the more
compact form

(
ψk−j

ψ+
k−j

)
= Mj

(
ψk−j−1

ψ+
k−j−1

)
+ bj . (2.19)

The next definitions allow for a transformation of this recursive form into a direct
representation of (2.19). To this end, we set θ0 := 1, θ+

0 := 0, θ1 := 1− s̃1, θ+
1 := s̃1

and define for j = 1, . . . , k − 1

(
θj+1

θ+
j+1

)
= MT

j

(
θj

θ+
j

)
. (2.20)

By induction we can directly deduce from (2.20), (2.17), and (2.18) the useful prop-
erties

θj + θ+
j = 1 and θj, θ

+
j > 0 . (2.21)

Now, with these definitions we can show the following lemmas that give us a
direct point-wise representation of ψ.

Lemma 2.5. The ξ–th step of the recursion (2.14) can be written as the sum

ψk =

ξ−1∑
j=0

θj

[
(1− 2s̃j+1)

ik−j
γβ(k−j) + s̃j+1

γ − 2

γβ(k−j)

]
+ θ+

j

[
(1− sj+1)

( ik−j
γβ(k−j) + (1− 2sj+1)

1

γβ(k−j)

)]
+ θξ ψk−ξ + θ+

ξ ψ
+
k−ξ .

(2.22)

Proof. [Proof by induction] ξ = 1: From (2.19) for j = 0 we directly get

ψk =
[
(1− 2s̃1)

ik
γβ(k)

+ s̃1
γ − 2

γβ(k)

]
+ (1− s̃1)ψk−1 + s̃1ψ

+
k−1 .
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ξ → ξ + 1: We abbreviate 	(s) := (1− s). With (2.19) and (2.20) we have

ψk =

ξ−1∑
j=0

θj

[
	(2s̃j+1)

ik−j
γβ(k−j) + s̃j+1

γ − 2

γβ(k−j)

]
+ θ+

j

[
	(sj+1)

( ik−j
γβ(k−j) +	(2sj+1)

1

γβ(k−j)

)]
+ θξ

[
	(s̃ξ+1)ψk−(ξ+1) + s̃ξ+1ψ

+
k−(ξ+1) +	(2s̃ξ+1)

ik−ξ
γβ(k−ξ) + s̃ξ+1

γ − 2

γβ(k−ξ)

]
+ θ+

ξ

[
	(sξ+1)ψk−(ξ+1) + sξ+1ψ

+
k−(ξ+1) +	(sξ+1)

[ ik−ξ
γβ(k−ξ) +	(2sξ+1)

1

γβ(k−ξ)

]]
=

ξ∑
j=0

θj

[
	(2s̃j+1)

ik−j
γβ(k−j) + s̃j+1

γ − 2

γβ(k−j)

]
+ θ+

j

[
	(sj+1)

( ik−j
γβ(k−j) +	(2sj+1)

1

γβ(k−j)

)]
+ θξ+1 ψk−(ξ+1) + θ+

ξ+1ψ
+
k−(ξ+1) .

Lemma 2.6. The function ψ from Definition 2.4 has the representation

ψ(dk) =
k−2∑
j=0

θj

[
(1− 2s̃j+1)

ik−j
γβ(k−j) + s̃j+1

γ − 2

γβ(k−j)

]
+ θ+

j

[
(1− sj+1)

( ik−j
γβ(k−j) + (1− 2sj+1)

1

γβ(k−j)

)]
+ θk−1

i1
γ

+ θ+
k−1

i1 + 1

γ
.

(2.23)

Proof. Choose ξ = k − 1 in Lemma 2.5.

Köppen assumed that there exists an extension from the dense set D to the real
line as in Sprecher’s construction and that this extended ψ is monotone increasing
and continuous but did not give a proof for it. In the following, we provide such
a proof. The function ψk is depicted in Figure 2.2 for the same parameters k = 5,
γ = 10, and n = 2 as before. A zoom into a smaller interval containing the value
x = 0.59 shows that the discontinuity from Sprecher’s Definition 2.2 is no longer
present.
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2.3.3 Existence of Köppen’s function

We first consider the existence of an extension of ψ to the real line and begin with the
remark that for any basis γ > 1, every real number x ∈ [0, 1]\D has a representation

x =
∞∑
r=1

ir
γr

= lim
k→∞

k∑
r=1

ir
γr

= lim
k→∞

dk .

For such a value x, we define the inner function

ψ(x) := lim
k→∞

ψk(dk) = lim
k→∞

ψk

(
k∑
r=1

ir
γr

)
(2.24)

and show the existence of this limit. To this end, we consider the behavior of
the function values ψk and ψ+

k as k tends to infinity. In the following, we restrict
ourselves to the requirements n ≥ 2 and γ ≥ 2n + 2 from Theorem 2.1. For the
following calculations it is useful to remind the definition

β(j) :=
nj − 1

n− 1
.

Lemma 2.7. For growing values of k one has for ψk defined in (2.15) and ψ+
k from

(2.16)

ψ+
k = ψk + O(2−k) .
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Proof. With (2.19), the fact that γβ(j) = γβ(j−1)γn
j−1

> γn
j−2

and γn > 2, we have

|ψ+
k − ψk| ≤ |s1 − s̃1| |ψ+

k−1 − ψk−1|+ γ − 2

γβ(k)
|s̃1 − s1 + (1− s1)(1− 2s1)|

≤ 1

2
|ψ+
k−1 − ψk−1| +

γ − 2

γβ(k)

≤ 1

2

∣∣∣∣12 |ψ+
k−2 − ψk−2| +

γ − 2

γβ(k−1)

∣∣∣∣ +
γ − 2

γβ(k)
≤ . . .

≤
(

1

2

)k−1

|ψ+
1 − ψ1| +

[(
1

2

)k−2
1

γβ(2)
+ . . . +

(
1

2

)k−k
1

γβ(k)

]

=

(
1

2

)k−1

|ψ+
1 − ψ1| +

(
1

2

)k−2

(γ − 2)

(
k∑
j=2

2j−2

γβ(j)

)

≤
(

1

2

)k−1

|ψ+
1 − ψ1| +

(
1

2

)k−2

(γ − 2)

( ∞∑
j=0

(
2

γn

)j)

=

(
1

2

)k−1

|ψ+
1 − ψ1| +

(
1

2

)k−2

(γ − 2)
γn

γn − 2

=

(
1

2

)k−2 [
1

2γ
+

(γ − 2)γn

γn − 2

]
,

and the assertion is proved. Here, the second estimate holds since sj − s̃j ∈ {0, 1
2
}

and s̃j − sj + (1− sj)(1− 2sj) ∈ {1, 1
2
,−1

2
}.

Now, the fact that the values ψk and ψ+
k approach by the rate O(2−k) for in-

creasing values of k enables us to show the following lemma:

Lemma 2.8. Let x ∈ [0, 1] \ D be an arbitrary value and {dk}k ⊂ D a convergent
sequence with limit x = limk→∞ dk. Then, the sequence {ψk}k ⊂ R, with values
ψk := ψk(dk) defined by (2.14), is a Cauchy sequence.

Proof. For k, k′ ∈ N, where without loss of generality k > k′, we set ξ := k−k′ and
apply (2.22) to represent ψk. Then, since (1− 2s̃j+1)ik−j + s̃j+1(γ − 2) < 2(γ − 2),
and (1 − sj+1)(ik−j + (1 − 2sj+1)) < 2(γ − 2), we observe that each term in the
sum (2.22) can be bounded from above by 2(γ− 2)γ−β(j). Together with the fact that
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γβ(j) > γn
j−1

, Lemma 2.7, and (2.21) this leads to the following estimate:

|ψk − ψk′| ≤
∣∣θk−k′ψk′ + θ+

k−k′ψ
+
k′ − ψk′

∣∣ + 2(γ − 2)
k∑

j=k′+1

1

γβ(j)

≤ ∣∣θk−k′ψk′ + θ+
k−k′ψ

+
k′ − ψk′

∣∣ + 2(γ − 2)
k∑

j=k′+1

(
1

γn

)j−1

=
∣∣∣θk−k′ψk′ + θ+

k−k′
(
ψk′ +O(2−k

′
)
)
− ψk′

∣∣∣
+

2γn(γ − 2)

1− γn
((

1

γn

)k
−
(

1

γn

)k′)

= O(2−k
′
) +

2γn(γ − 2)

1− γn
((

1

γn

)k
−
(

1

γn

)k′)
.

The right hand side tends to 0 when k, k′ −→∞.

We have shown that {ψk}k is a Cauchy sequence in D. Since we know that the
real numbers are complete, we can infer the existence of a limit in R. Thus the
function ψ from (2.24) is well defined what provides us with a function value for all
x ∈ [0, 1]. It remains to show that this ψ is continuous and monotone increasing.
This will be the topic of the following subsections.

2.3.4 Continuity of ψ

We now show the continuity of the inner function ψ. To this end we first recall some
properties of the representations of real numbers. Let

x :=
∞∑
r=1

ir
γr

and x0 :=
∞∑
r=1

i0,r
γr

be the representation of the values x and x0 in the basis γ, respectively.

Remark 2.9. For simplicity, this notation also includes values x, x0 ∈ D with finite
representations: If x ∈ Dk ⊂ D for some finite k, we set ir = 0 for r > k. Finite
representations are always preferred over infinite ones. For example, with γ = 10
we take x = 0.1 instead of x = 0.09̄.

Now, let x0 ∈ (0, 1), k0 ∈ N be given and

δ(k0) := min

{ ∞∑
r=k0+1

i0,r
γr
,

1

γk0
−

∞∑
r=k0+1

i0,r
γr

}
. (2.25)
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Figure 2.3. The figure shows the interval [0, 1]. For any two values x1 and
x2 that both lie in one of the depicted small intervals it holds that i1,r = i2,r for
r = 1, . . . , k0. The three intervals represent the possible cases that occur in the proof
of Theorem 2.10.

For any x ∈ (x0 − δ(k0), x0 + δ(k0)
)

it follows that

ir = i0,r , r = 1, . . . , k0 . (2.26)

Special attention has to be paid to the values x0 = 0 and x0 = 1. In both cases, we
can choose δ(k0) = γ−k0 . Then (2.26) holds for all x ∈ [0, δ(k0)

)
if x0 = 0 and all

x ∈ (1 − δ(k0), 1
]

if x0 = 1. The three different cases are depicted in Figure 2.3.
Altogether we thus can find for any given arbitrary x0 ∈ [0, 1] and k0 ∈ N a δ–
neighborhood

U :=
(
x0 − δ(k0), x0 + δ(k0)

) ∩ [0, 1] (2.27)

in which (2.26) holds. With this observation we are able to prove the following
theorem:

Theorem 2.10. The function ψ : [0, 1] → R, whose values on D are given by
Definition 2.4 and which is extended to R by (2.24), is continuous on [0, 1].

Proof. We show that ψ is continuous in x0 ∈ [0, 1]. To this end, let ε > 0 be given
and k0 ∈ N such that (

1

γn

)k0

<
ε (1− γn)

4γn(γ − 2)
.

Furthermore, let δ(k0) > 0 be defined by (2.25) if x0 ∈ (0, 1), and δ(k0) := γ−k0 else.



2.3. Sprecher’s constructive version 31

With (2.23) and (2.27) we see for x, x0 ∈ U :

|ψ(x)− ψ(x0)| = lim
k→∞
|ψ(dk)− ψ(d0,k)|

= lim
k→∞

∣∣∣∣∣
k−k0−1∑
j=0

θj

[
(1− 2s̃j+1)

ik−j
γβ(k−j) + s̃j+1

γ − 2

γβ(k−j)

]
+ θ+

j

[
(1− sj+1)

( ik−j
γβ(k−j) + (1− 2sj+1)

1

γβ(k−j)

)]
−

k−k0−1∑
j=0

θ0,j

[
(1− 2s̃0,j+1)

i0,k−j
γβ(k−j) + s̃0,j+1

γ − 2

γβ(k−j)

]
+ θ+

0,j

[
(1− s0,j+1)

( i0,k−j
γβ(k−j) + (1− 2s0,j+1)

1

γβ(k−j)

)]∣∣∣∣
≤ lim

k→∞

k−k0−1∑
j=0

∣∣∣∣θj[(1− 2s̃j+1)
ik−j
γβ(k−j) + s̃j+1

γ − 2

γβ(k−j)

]∣∣∣∣
+

∣∣∣∣θ+
j

[
(1− sj+1)

( ik−j
γβ(k−j) + (1− 2sj+1)

1

γβ(k−j)

)]∣∣∣∣
+ lim

k→∞

k−k0−1∑
j=0

∣∣∣∣θ0,j

[
(1− 2s̃0,j+1)

i0,k−j
γβ(k−j) + s̃0,j+1

γ − 2

γβ(k−j)

]∣∣∣∣
+

∣∣∣∣θ+
0,j

[
(1− s0,j+1)

( i0,k−j
γβ(k−j) + (1− 2s0,j+1)

1

γβ(k−j)

)]∣∣∣∣
≤ lim

k→∞
4γn(γ − 2)

1− γn
∣∣∣∣∣
(

1

γn

)k
−
(

1

γn

)k0

∣∣∣∣∣ =
4γn(γ − 2)

1− γn
(

1

γn

)k0

< ε .

(2.28)

Note that the estimation of the last two sums was derived similar to that in the
proof of Lemma 2.8. In conclusion we found for given ε > 0 a δ(k0) > 0 such that
|ψ(x)−ψ(x0)| < ε whenever |x−x0| < δ(k0). This is just the definition of continuity
of ψ in x0 ∈ (0, 1). Since the interval U is only open to the right if x0 = 0 and open
to the left if x0 = 1, the inequality (2.28) also shows for these two cases continuity
from the right and from the left, respectively.

2.3.5 Monotonicity of ψ

A further crucial property of the function ψ is its monotonicity. We show this first
on the dense subset D ⊂ R of terminating rational numbers.

Lemma 2.11. For every k ∈ N, and values ψk defined by (2.15) and ψ+
k from
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(2.16) there holds

ψ+
k ≥ ψk +

1

γβ(k)
.

Proof. [Proof by induction] k = 1:

ψ+
1 − ψ1 = ψ1(d1 +

1

γ
)− ψ1(d1) = d1 +

1

γ
− d1 =

1

γ
=

1

γβ(1)

k → k + 1 :

ψ+
k+1 − ψk+1 = (s0 − s̃0)(ψ+

k − ψk)
+

1

γβ(k+1)

(
(2s̃0 − s0)ik+1 + (1− s0)(1− 2s0)− s̃0(γ − 2)

)
=


1

γβ(k+1) , ik+1 < γ − 2 (s0 = s̃0 = 0),
1
2
(ψ+

k − ψk)− 1
2

ik+1

γk+1 , ik+1 = γ − 2 (s0 = 1
2
, s̃0 = 0),

1
2
(ψ+

k − ψk)− 1
2

γ−2
γβ(k+1) , ik+1 = γ − 1 (s0 = 1, s̃0 = 1

2
).

For the first case ik+1 < γ − 2, the assertion is trivial. For the other two cases, we
have

1

2
(ψ+

k − ψk)−
1

2

ik+1

γk+1
≥ 1

2
(ψ+

k − ψk)−
1

2

γ − 2

γβ(k+1)

≥ 1

2

(
1

γβ(k)
− γ − 2

γβ(k+1)

)
≥ 1

γβ(k+1)
.

Here, the validity of the last estimate can be obtained from

1

2

(
1

γβ(k)
− γ − 2

γβ(k+1)

)
≥ 1

γβ(k+1)
⇔ 1

2

(
γn

k−1

γβ(k+1)
− γ − 2

γβ(k+1)

)
≥ 1

γβ(k+1)

⇔ γn
k−1 − γ + 2 ≥ 2 ⇔ γn

k−1 ≥ γ ⇔ nk−1 ≥ 1 .

This shows the assertion.

We can now easily prove the following theorem:

Theorem 2.12. The function ψ : [0, 1] → R, whose values on D are given by
Definition 2.4 and which is extended to R by (2.24), is monotone increasing on
[0, 1].

Proof. By Lemma 2.11 we know that ψ is strictly monotone increasing on a dense
subset of [0, 1]. Since the function is continuous, this holds for the whole interval
[0, 1].
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Figure 2.4. The top row shows the graph of ψ for n = 2, 3, 4 and constant
basis γ = 10. The top right picture is a zoom into its left neighbour to show the
slight difference of the functions. The bottom row shows plots for n = 2 and γ = 6
(left) and γ = 10 (right).

In summary, we have demonstrated that the inner function ψ defined by Sprecher
(c.f. [111,112]) is neither continuous nor monotone increasing, whereas the definition
(2.24) of ψ for Köppen’s recursion (2.14) from [73] possesses these properties.

We conclude these sections on the inner function with some remarks on ψ and
its dependency on the dimension n and the choice of the basis γ. In Figure 2.4
we show the graphs for different choices of these parameters. First, the function is
plotted for different values of n. For n = 2, 3, 4 and fixed γ = 10, the graphs of
ψ are very similar and can only be distinguished if we zoom into a detailed view.
This is shown in the top row of Figure 2.4. This changes for variable values of
γ as it is shown in the bottom row. For fixed n = 2, the non–smoothness of ψ
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becomes stronger for larger γ. Therefore, the smallest possible choice for γ seems to
be advantageous. However, the effect cannot be avoided for increasing dimension n
due to the restriction 2n+2 ≤ γ. Altogether we can say that the non–smoothness of
the inner function ψ becomes stronger for increasing dimension n. Now, comparing
Köppens’ definition with the result from [110], where a universal inner function was
defined independently from n, we observe that both functions were constructed in a
similar way. This leads to the conclusion that, loosely speaking, the n–independent
function ψ from [110] incorporates more non–smoothness than it is necessary to
represent n–dimensional functions f .

2.3.6 Definitions and reformulation with a single outer function

We are now equipped with a continuous, monotone increasing function ψ : [0, 1]→ R
for which Köppen claimed in [73], without proving it, that Sprecher’s constructive
Theorem 2.1 holds. Following the lines of Sprecher, the proof was finally given
in [12]. Here, we dispense with a demonstration of this result and rather introduce
a new constructive version of Kolmogorov’s theorem with only one outer function.
Using a remark by Lorentz, [108], who stated that the q–dependence of the outer
functions can always be eliminated by a shift of their argument, the new theorem
will be derived from Theorem 2.1 by slight changes in Sprecher’s definitions and
arguments. Accordingly, the algorithm from [112] will be adapted to prove the
result.

First, we repeat some definitions and introduce new parameters. As before,
n ∈ N always denotes the dimension while γ ∈ N is the basis in (2.10). We use
Köppen’s function ψ : [0, 1]→ R, given by Definition 2.4 and (2.24) and define the
function ψe : R→ R by

ψe(x) := i+ ψ(x− i), x ∈ [i, i+ 1), i ∈ Z . (2.29)

Due to the previous results and ψ(0) = 0, ψ(1) = 1, this function is continuous and
monotone increasing. Since ψ ≡ ψe on the interval [0, 1] we can drop the subscript
of ψe in the following.

We keep the values

a :=
1

γ(γ − 1)
, β(r) :=

nr − 1

n− 1
,

and

λp :=

{
1 , p = 1,∑∞

r=1 γ
−(p−1)β(r) , p > 1,

as in Theorem 2.1. Then for k ∈ N, the k–th remainder of λp is denoted by

εk,p :=
∞∑

r=k+1

γ−(p−1)β(r) . (2.30)
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From these values that stem from Sprecher’s constructions in [111, 112] we now
derive new parameters for our representation.

Definition 2.13. Let Γ̃k ∈ R be chosen such that

Γ̃k <
1

2

(
γ−nβ(k) − (γ − 2) εk,2

( n∑
p=1

λp

))
. (2.31)

For δ > 0, let the value Λδ ∈ R be given by

Λ−1
δ

[( n∑
p=1

λp

)
(1 + (γ − 2)εk,2) + 2Γ̃k

]
= 1− δ . (2.32)

Since
∑n

p=1 λp > 1 and 1 + (γ − 2)εk,2 > 1, this implies Λδ > 1. With these values
we now define for p = 1, . . . , n, the new coefficients

αp := Λ−1
δ λp , (2.33)

and for q = 0, . . . ,m, the shifts

∆q := −Λ−1
δ

[( n∑
p=1

λp

)
ψ
(
q

k∑
r=2

γ−r
)
− Γ̃k

]
+ q . (2.34)

For subsequent calculations we also define

bk := εk,2

( n∑
p=1

αp

)
and Γk := Λ−1

δ Γ̃k . (2.35)

Theorem 2.14. Let n ≥ 2, m ≥ 2n, and γ ≥ m+2 be given integers and ψ : R→ R
be given by (2.29). Additionally, define αp ∈ R, p = 1, . . . , n by (2.33) and ∆q ∈ R,
q = 0, . . . ,m by (2.34). Then, for any arbitrary continuous function f : [0, 1]n → R,
there exists a continuous functions Φ : R→ R, such that

f(x) =
m∑
q=0

Φ ◦Ψq(x) , with Ψq(x) =
n∑
p=1

αp ψ(xp + qa) + ∆q . (2.36)

Furthermore, Φ can be computed by Algorithm 2.1 which is defined below.

The relation between this theorem and Theorem 2.1 is very simple. Originally,
for each q = 0, . . . ,m the inner sum Ψ̃q in (2.9) maps the n–dimensional unit cube
into an interval on the real line on which f is approximated by an outer function Φq,
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[0, 1]n Ψ̃q1
Ψ̃q2 [0, 1]n Ψq1

Ψq2

Figure 2.5. For varying values q ∈ {0, . . . ,m} the images of the n–
dimensional unit cube under the mappings Ψ̃q from (2.9) overlap on the real line,
while the image–intervals of the functions Ψq, defined in (2.36), are disjoint. The
latter allows for the construction of a single outer function Φ to represent f .

see (2.36). Due to an overlap of the image–intervals for different q’s the functions
Φ0, . . . ,Φm have to be constructed separately. This can be avoided by the additional
shift ∆q in the inner sums Ψq. Practically, this shift places the image–intervals for
q = 0, . . . ,m next to each other which allows for the construction of a single outer
function Φ. Figure 2.5 illustrates this idea that is due to Lorentz, see [108].

The proof of Theorem 2.14 will be the topic of Section 2.3.7.

2.3.7 Modification of Sprecher’s algorithm

We will now present an adaption of Sprecher’s constructive algorithm from [112]
which computes the outer function Φ in (2.36) and show that it is convergent. This
will prove Theorem 2.14.

To this end, let σ : R → R be an arbitrary continuous monotone increasing
function with σ(x) ≡ 0 when x ≤ 0 and σ(x) ≡ 1 when x ≥ 1. For given k ∈ N,
q ∈ {0, . . . ,m} and dk := (dk,1, . . . , dk,n) ∈ Dnk , we define the values

ξqk,dk :=
n∑
p=1

αpψ

(
dk,p + q

k∑
r=2

γ−r
)

+ ∆q ∈ R . (2.37)

This gives (m + 1)(γk + 1)n real values ξqk,dk for which we next define functions
ωqk,dk : R→ R by

ωqk,dk(y) := σ
(

Γ−1
k

(
y − ξqk,dk

)
+ 1
)
− σ

(
Γ−1
k

(
y − ξqk,dk − (γ − 2) bk

))
. (2.38)

As depicted in Figure 2.6, the function ωqk,dk is constant on the interval [ξqk,dk , ξ
q
k,dk

+
(γ − 2)bk] and has compact support.

We are now in the position to present the algorithm which implements the rep-
resentation of an arbitrary multivariate function f as superposition of single vari-
able functions. Let ‖ · ‖ denote the usual maximum norm of functions and let
f : [0, 1]n → R be a given continuous function with known maximum norm ‖f‖.
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1

ξqk,dk
− Γk

ξqk,dk
ξqk,dk

+ (γ − 2)bk
ξqk,dk

+ (γ − 2)bk + Γk

Figure 2.6. The compactly supported function ωqk,dk : R→ R.

Furthermore, let ε > 0 be a fixed real number such that

0 <
m− n+ 1

m+ 1
ε+

2n

m+ 1
=: η < 1 (2.39)

which can always be achieved by choosing

0 < ε < 1− n

m− n+ 1
< 1 . (2.40)

The outer function in Theorem 2.14 can now be computed by the following algo-
rithm:

Algorithm 2.1 (to compute the outer function Φ). Starting with f0 ≡ f , for
r = 1, 2, 3, . . ., iterate the following steps:

I. Given the function fr−1(x), determine an integer kr such that for any two points
x,x′ ∈ [0, 1]n with ‖x−x′‖ ≤ γ−kr it holds that |fr−1(x)−fr−1(x′)| ≤ ε‖fr−1‖.
This determines rational coordinate points dkr = (dkr,1, . . . , dkr,n) ∈ Dnkr .

II. For all dkr ∈ Dnkr and q = 0, 1, . . . ,m:

II–1 Compute the values ξqk,dkr given by (2.37).

II–2 Compute the functions ωqk,dkr (y) given by (2.38).

III. III–1 Compute the function

φr(y) =
1

m+ 1

m∑
q=0

∑
dkr

fr−1(dkr)ω
q
k,dkr

(y) , (2.41)

where for each q the sum
∑

dkr
is taken over all values dkr ∈ Dnkr .
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III–2 Substitute the transfer functions Ψq(x) and compute

φr ◦Ψq(x) :=
1

m+ 1

m∑
q=0

∑
dkr

fr−1(dkr)ω
q
k,dkr

(Ψq(x)) .

Again, the second sum
∑

dkr
is built for each q over all values dkr ∈ Dnkr .

III–3 Compute the function

fr(x) := f(x)−
m∑
q=0

r∑
j=1

φj ◦Ψq(x) . (2.42)

This completes the r–th iteration loop and gives the r–th approximation to f . Now
replace r by r + 1 and go to step I.

The convergence of the series {fr}r for r →∞ to the limit limr→∞ fr =: g ≡ 0 is
equivalent to the validity of Theorem 2.14. To show this, the following convergence
proof adapts the arguments from [12] which proved Theorem 2.1. Both proofs
essentially follow [111,112] but differ in the arguments that refer to the inner function
ψ which is now replaced by Köppen’s definition.

The main argument for convergence is the validity of the following theorem:

Theorem 2.15. For the approximations fr, r = 1, 2, . . . defined in step III–3 of
Algorithm 2.1 there holds the estimate

‖fr‖ =

∥∥∥∥∥ fr−1(x)−
m∑
q=0

φr ◦Ψq(x)

∥∥∥∥∥ ≤ η‖fr−1‖ .

To prove this theorem, some preliminary work is necessary. To this end, the
following lemmas are taken from the proof of Theorem 2.1 in [12]. The arguments
to show Theorem 2.15 are then derived from these results. One key to the numerical
implementation of Algorithm 2.1 is the minimum distance of images of rational grid
points dk under the mapping Ψq from (2.9) for q = 0. This distance can be bounded
from below. The estimate can be derived from the following lemma.

Lemma 2.16. For each integer k ∈ N, set

µ(dk,d
′
k) :=

n∑
p=1

λp
[
ψ(dk,p)− ψ(d′k,p)

]
,

where dk,p, d
′
k,p ∈ Dk. Then

min |µ(dk,d
′
k)| ≥ γ−nβ(k) ,



2.3. Sprecher’s constructive version 39

where the minimum is taken over all pairs dk 6= d′k ∈ Dnk , i.e.

n∑
p=1

|dk,p − d′k,p| 6= 0 .

Proof. Since for each k the set Dk is finite, a unique minimum exists. For each
k ∈ N, let dk,p, d

′
k,p ∈ Dk and A(dk,p, d

′
k,p) := ψ(dk,p)−ψ(d′k,p) for p = 1, . . . , n. Since

ψ is monotone increasing, we know that A(dk,p, d
′
k,p) 6= 0 for all admissible values of

p. Now from Lemma 2.11 it follows directly that

min
Dk
|A(dk,p, d

′
k,p)| = γ−β(k) , (2.43)

where for each fixed p, k the minimum is taken over the decimals for which |dk,p −
d′k,p| 6= 0. The upper bound

min |µ(dk,d
′
k)| ≤ λn γ

−β(k) (2.44)

can be gained from the definition of the µ(dk,d
′
k) and the fact that 1 = λ1 > λ2 >

. . . > λn as follows: Since |µ(dk,d
′
k)| ≤

∑n
p=1 λp|A(dk,p, d

′
k,p)| we can see from (2.43)

and (2.44) that a minimum of |µ(dk,d
′
k)| can only occur if A(dk,T , d

′
k,T ) 6= 0 for some

T ∈ {2, . . . , n}.
We have with (2.30) that

λp − εk,p =
k∑
r=1

γ−(p−1)β(r) (2.45)

and consider the expression

A(dk,1, d
′
k,1) +

T∑
p=2

(λp − εk,p)A(dk,p, d
′
k,p) . (2.46)

We claim the following:

If A(dk,T , d
′
k,T ) 6= 0 then A(dk,1, d

′
k,1) +

T∑
p=2

(λp − εk,p)A(dk,p, d
′
k,p) 6= 0 ,

i.e. the term (λT − εk,T )A(dk,T , d
′
k,T ) cannot be annihilated by the preceding terms

in the sum. To show this, an application of (2.45) leads to

λT − εk,T = γ−(T−1) + γ−(T−1)β(2) + . . .+ γ−(T−1)β(k) .



40 Chapter 2. Kolmogorov’s superposition theorem

Also note that, for the choice k = 1 and i1,T = γ − 1 as well as i′1,T = 0 in (2.23),
the largest possible term in the expansion of |A(dk,T , d

′
k,T )| in powers of γ−1 is

γ − 1

γ
.

Therefore, (λT − εk,T )|A(dk,T , d
′
k,T )| contains at least one term τ such that

0 < τ ≤ γ−(T−1)β(k)γ − 1

γ
.

But according to (2.43) and (2.45) the smallest possible term of (λp−εk,p)|A(dk,p, d
′
k,p)|

for p < T is
γ−(T−2)β(k)γ−β(k) = γ−(T−1)β(k)

so that the assertion holds and (2.46) indeed does not vanish.
If |ik,T − i′k,T | = 1, we have without loss of generality in the representation (2.23)

the values

i′k ik s̃′1 s′1 θ′0 θ′+0 s̃1 s1 θ0 θ+
0

γ − 2 γ − 1 0 1
2

1 0 1
2

1 1 0

γ − 3 γ − 2 0 0 1 0 0 1
2

1 0

γ − 4 γ − 3 0 0 1 0 0 0 1 0

...
...

...
...

...
...

...
...

...
...

and we can directly infer that the expansion of (2.46) in powers of γ−1 contains the
term

γ−(T−1)β(k)γ−β(k) = γ−Tβ(k) . (2.47)

We now show that this is the smallest term in the sum (2.46). To this end, we use
the representation (2.23) for A(dk,p, d

′
k,p) and factor out γ−β(k−j) for each j. Since

θj and θ+
j become smaller than 2−j, we can bound each term in the sum (2.46) from

below by γ−β(k−j)2−j. The further estimation γ−β(k−j)2−j > γ−β(k) shows that (2.47)
is indeed the smallest term in the sum and hence cannot be annihilated by other
terms in (2.46). Therefore,∣∣∣∣∣A(dk,1, d

′
k,1) +

T∑
p=2

(λp − εk,p)A(dk,p, d
′
k,p)

∣∣∣∣∣ ≥ γ−Tβ(k) .

But this implies that also∣∣∣∣∣A(dk,1, d
′
k,1) +

T∑
p=2

λpA(dk,p, d
′
k,p)

∣∣∣∣∣ ≥ γ−Tβ(k)
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since all possible terms in the expansion of
∑T

p=2 εk,pA(dk,p, d
′
k,p) in powers of γ−1

are too small to annihilate γ−Tβ(k). Thus, choosing T = n the lemma is proven.

Note that this lemma, which is taken from [12], estimates the minimum distance
of grid points under the mapping Ψ̃q, q = 0. An estimate for Ψq, q = 0 directly
follows from (2.33).

The linear combinations Ψq(x) of the inner functions serve for each q = 0, . . . ,m
as a mapping from the hypercube [0, 1]n to R. Therefore, further knowledge on the
structure of these mappings is necessary. To this end, we need the following lemma
which is also taken from [12]:

Lemma 2.17. For each integer k ∈ N, let

δk :=
γ − 2

(γ − 1) γk
. (2.48)

Then for all dk ∈ Dk and εk,2 as given in (2.30) we have

ψ(dk + δk) = ψ(dk) + (γ − 2) εk,2 .

Proof. The proof relies mainly on the continuity of ψ and some direct calculations.
If we express δk as an infinite sum we have

dk + δk = lim
k0→∞

{
dk +

k0∑
r=1

γ − 2

γk+r

}
=: lim

k0→∞
dk0 .

Since ψ is continuous we get

ψ

(
lim
k0→∞

dk0

)
= lim

k0→∞
ψ(dk0)

and since ik+r = γ − 2 for r = 1, . . . k0, it follows directly that s̃r = 0 for j =
0, . . . , k0 − k. Therefore θ+

j = 0 and θj = 1 for j = 0, . . . , k0 − k. With the
representation (2.22) and the choice ξ = k0 − k, the assertion follows.

As a direct consequence of this lemma, we have the following corollary, see [12],
in which the one-dimensional case is treated.

Corollary 2.18. For each integer k ∈ N and dk ∈ Dk, the pairwise disjoint intervals

Ek(dk) := [dk, dk + δk] (2.49)
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are mapped by ψ into the pairwise disjoint image intervals

Hk(dk) := [ψ(dk), ψ(dk) + (γ − 2) εk,2] . (2.50)

Proof. From their definition it follows directly that the intervals Ek(dk) are pairwise
disjoint. The corollary then follows from Lemma 2.16 and Lemma 2.17.

We now generalize this result to the multidimensional case.

Lemma 2.19. For each fixed integer k ∈ N and dk ∈ Dnk , the pairwise disjoint
cubes

Sk(dk) :=
n∏
p=1

[dk,p, dk,p + δk] (2.51)

are mapped by Ψq(x) from (2.36) for q = 0 into the pairwise disjoint intervals

Tk(dk) :=

[
n∑
p=1

αp ψ(dk,p) ,
n∑
p=1

αp ψ(dk,p) +
( n∑
p=1

αp

)
(γ − 2) εk,2

]
. (2.52)

Proof. The fact that Sk(dk) is mapped into the interval Tk(dk) follows from Corol-
lary 2.18 and the monotonicity of ψ. To prove that the intervals are disjoint we have
to show that ( n∑

p=1

αp

)
(γ − 2) εk,2 ≤

∣∣∣∣∣
n∑
p=1

αq

(
ψ(dk,p)− ψ(d′k,p)

)∣∣∣∣∣
for any two values dk 6= d′k in Dnk . From the proof of Lemma 4 in [111] we know
that ( n∑

p=1

λp

)
(γ − 2) εk,2 ≤ γ−nβ(k) .

With (2.33) and Lemma 2.16 we can directly estimate( n∑
p=1

αp

)
(γ − 2) εk,2 < Λ−1

δ γ−nβ(k) <

∣∣∣∣∣
n∑
p=1

αq

(
ψ(dk,p)− ψ(d′k,p)

)∣∣∣∣∣ ,

what shows the assertion.

We now consider Algorithm 2.1 again. We need one more ingredient:

Lemma 2.20. For each r = 1, 2, . . ., the following estimate holds:

‖φr(y)‖ ≤ 1

m+ 1
‖fr−1‖ .
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Proof. The support of the functions ωqk,dk(y), q = 0, . . . ,m, dk ∈ Dk are the open
intervals

U q
k (dk) :=

(
ξqk,dk − Γk , ξ

q
k,dk

+ (γ − 2)bk + Γk
)

.

These intervals have empty intersections,

U q
k (d1

k) ∩ U q′

k (d2
k) = ∅ ,

if either d1
k 6= d2

k or q 6= q′. To show this, we first consider the case where q ∈
{0, . . . ,m} is fixed. Here, we have to show that for ξq

k,d2
k
> ξq

k,d1
k

it holds

ξq
k,d1

k
+ (γ − 2)bk + Γk < ξq

k,d2
k
− Γk

or equivalently

(γ − 2)bk + 2Γk < ξq
k,d2

k
− ξq

k,d1
k

.

With (2.35), (2.31) and Lemma 2.16 we can estimate

(γ − 2)bk + 2Γk < Λ−1
δ γ−nβ(k) < ξq

k,d2
k
− ξq

k,d1
k

what shows the assumption. Next, we define the values

aq := min
dk∈Dnk

{
ξqk,dk − Γk

}
(2.53)

and

bq := max
dk∈Dnk

{
ξqk,dk + (γ − 2)bk + Γk

}
. (2.54)

Now, let q1, q2 ∈ {0, . . . ,m}, such that without loss of generality q1 < q2. Simple
computations, monotonicity of ψ, and the definition of Λδ then show that

bq1 = q1 + 1− δ < q2 = aq2 . (2.55)

Finally, this shows the assertion that all intervals U q
k (dk), q = 0, . . . ,m, dk ∈ Dk,

have empty intersections. Now, to show Lemma 2.20 we see from (2.38) that 0 ≤
ωqk,dk(y) ≤ 1 and with (2.41) we derive:

‖φr(y)‖ =

∥∥∥∥∥∥ 1

m+ 1

m∑
q=0

∑
dkr

fr−1(dkr)ω
q
k,dkr

(y)

∥∥∥∥∥∥ =
1

m+ 1
max
dkr
|fr−1(dkr)| .

Here both, the sum and the maximum are built over all values dkr ∈ Dnkr . The lemma
then follows from the definition of the maximum norm.
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For the following computations we define for given k ∈ N, q ∈ {0, . . . ,m} and
dk := (dk,1, . . . , dk,n) ∈ Dnk the values

dqk,p := dk,p + q

k∑
r=2

γ−r .

Note that all statements that are valid for points dk ∈ Dnk also hold for dqk :=
(dqk,1, . . . , d

q
k,n) ∈ Dnk . We are now ready to prove Theorem 2.15.

Proof. [Proof of Theorem 2.15]For simplicity, we include the value dk = 1 in
the definition of the rational numbers Dk. Consider now for each integer q and
a = [γ(γ − 1)]−1 the family of closed intervals

Eq
k(d

q
k) := [ dqk − q a , dqk − q a+ δk ] . (2.56)

With δk = (γ − 2)(γ − 1)−1γ−k we can see that

Eq
k(d

q
k) =

[
dk − q

γ − 1
γ−k , dk − q

γ − 1
γ−k +

γ − 2

γ − 1
γ−k

]
and that these intervals are separated by gaps

Gq
k(d

q
k) :=

(
dqk − q a+ δk , d

q
k − q a+ γ−k

)
of width (γ− 1)−1γ−k. With the intervals Eq

k we obtain for each k and q = 0, . . . ,m
the closed (Cartesian product) cubes

Sqk(d
q
k) :=

n∏
p=1

[
dqk,p − q a , dqk,p + δk − q a

]
,

whose images under Ψq(x) =
∑n

p=1 αp ψ(xp+qa)+∆q are the disjoint closed intervals

T qk (dqk) :=

[
n∑
p=1

αp ψ(dqk,p) + ∆q ,
n∑
p=1

αp ψ(dqk,p) + ∆q +
( n∑
p=1

αp

)
(γ − 2) εk,2

]
=
[
ξqk,dk , ξ

q
k,dk

+ (γ − 2) bk

]
,

as derived in Lemma 2.19. For the two–dimensional case, the cubes Sqk(d
q
k) are

depicted in Figure 2.7.
Now let k be fixed. The mapping Ψq(x) associates to each cube Sqk(d

q
k) from the

coordinate space a unique image T qk (dqk) on the real line. For fixed q the images
of any two cubes from the set {Sqk(dqk) : dk ∈ Dnk} have empty intersections. This
allows a local approximation of the target function f(x) on these images T qk (dqk) for
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d̃k dk d̂kx

E0
k(d̂0

k)

E1
k(d̂1

k)

E2
k(d̂2

k)

E3
k(d̂3

k)

E4
k(d̂4

k)

S0
k(d0

k)

S1
k(d1

k)

S2
k(d2

k)

S3
k(d3

k)

S4
k(d4

k)

dk,1 d̂k,1

dk,2

d̂k,2

Figure 2.7. Let k be a fixed integer, m = 4, γ = 10 and d̃k,i := dk,i − γ−k,

d̂k,i := dk,i + γ−k, i ∈ {1, 2}. The left figure depicts the intervals Eq
k(d

q
k) for q =

1, . . . ,m. The subscript i indicating the coordinate direction is omitted for this one–
dimensional case. The point x is contained in the intervals E0

k(d̃
0
k), E1

k(d̃
1
k), E3

k(d
3
k),

E4
k(d

4
k) (shaded) and in the gap G2

k(d̃
2
k) (dark shaded). The figure on the right shows

the cubes Sqk(d
q
k) for n = 2, q = 1, . . . ,m and different values dk ∈ Dnk . For

q ∈ {2, 3}, the marked point is not contained in any of the cubes from the set
{Sqk(dqk) : dk ∈ Dnk}.

x ∈ Sqk(dqk). However, as the outer function φr has to be continuous, these images
have to be separated by gaps in which f(x) cannot be approximated. Thus an error is
introduced that cannot be made arbitrarily small. This deficiency is eliminated by the
affine translations of the cubes Sqk(d

q
k) through the variation of the q’s. To explain

this in more detail, let x ∈ [0, 1] be an arbitrary point. With (2.56) we see that the
gaps Gq

k(d
q
k) which separate the intervals do not intersect for variable q. Therefore,

there exists only one value q∗ such that x ∈ Gq∗
k (dq∗k ). This implies that for the

remaining m values of q there holds x ∈ Eq
k(d

q
k) for some dk. If we now consider an

arbitrary point x ∈ [0, 1]n, we see that there exist at least m− n+ 1 different values
qj, j = 1, . . . ,m − n + 1 for which x ∈ Sqjk (d

qj
k ) for some dk. Note that the points

dk can differ for different values qj. From (2.56) we see that dk ∈ Sqjk (d
qj
k ).

Now we consider step I of Algorithm 2.1. To this end, remember that ε is a
fixed number such that 0 < m−n+1

m+1
ε + 2n

m+1
= η < 1. Let kr be the integer given

in step I with the associated assumption that |fr−1(x) − fr−1(x′)| ≤ ε‖fr−1‖ when
|xp − x′p| ≤ γ−kr for p = 1, . . . , n. Let x ∈ [0, 1]n be an arbitrary point and let qj,
j = 1, . . . ,m − n + 1, denote the values of q such that x ∈ Sqjkr(d

qj
kr

). For the point
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dkr ∈ Sqjkr(d
qj
kr

) we have

|fr−1(x)− fr−1(dkr)| ≤ ε‖fr−1‖ (2.57)

and for x it holds that Ψqj(x) ∈ T
qj
kr

(d
qj
kr

). The support U
qj
kr

(dkr) of the function
ω
qj
k,dkr

(y) contains the interval T
qj
kr

(d
qj
kr

). Furthermore, from definition (2.38) we see

that it is constant on that interval. With (2.42) we then get

φr ◦Ψqj(x) =
1

m+ 1

m∑
q=0

∑
dqkr

fr−1(dkr)ω
q
k,dkr

(Ψqj(x))

=
1

m+ 1
fr−1(dkr) .

Together with (2.57) this shows∣∣∣∣ 1

m+ 1
fr−1(x)− φr ◦Ψqj(x)

∣∣∣∣ ≤ ε

m+ 1
‖fr−1‖

for all qj, j = 1, . . . ,m − n + 1. Note that this estimate does not hold for the
remaining values of q for which x is not contained in the cube Sqkr(d

qj
kr

). Let us now
denote these values by q̄j, j = 1, . . . , n. We can apply Lemma 2.20 and with the
special choice of the values ε and η we obtain the estimate

|fr(x)| =

∣∣∣∣∣fr−1(x)−
m∑
q=0

φr ◦Ψq(x)

∣∣∣∣∣
=

∣∣∣∣∣
m∑
q=0

1

m+ 1
fr−1(x)−

m−n+1∑
j=1

φr ◦Ψqj(x)−
n∑
j=1

φr ◦Ψq̄j(x)

∣∣∣∣∣
≤
∣∣∣∣∣ n

m+ 1
fr−1(x) +

m−n+1∑
j=1

1

m+ 1
fr−1(x)− φr ◦Ψqj(x)

∣∣∣∣∣+
n

m+ 1
‖fr−1‖

≤
[
m− n+ 1

m+ 1
ε+

2n

m+ 1

]
‖fr−1‖ = η ‖fr−1‖ .

This completes the proof of Theorem 2.15.

We now state a fact that follows directly from the previous results.

Corollary 2.21. For r = 1, 2, 3, . . . the following estimates hold:

‖φr(y)‖ ≤ 1

m+ 1
ηr−1‖f‖ (2.58)
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and

‖fr‖ =

∥∥∥∥∥ f(x)−
m∑
q=0

r∑
j=1

φj ◦Ψq(x)

∥∥∥∥∥ ≤ ηr ‖f‖ . (2.59)

Proof. Remember that f0 ≡ f . The first estimate follows from Lemma 2.20 and a
recursive application of Theorem 2.15. The second estimate can be derived from the
definition (2.42) of fr and again a recursive application of Theorem 2.15.

Since η < 1, the estimate (2.59) shows that the partial sum

Φr(y) :=
r∑
j=1

φj(y) (2.60)

gives an approximative representation of the function f . We finally are in the
position to prove Theorem 2.14.

Proof. [Proof of Theorem 2.14.]From Corollary 2.21 and the fact that η < 1 it
follows that we have∥∥∥∥∥

r∑
j=1

φj(y)

∥∥∥∥∥ ≤
r∑
j=1

∥∥φj(y)
∥∥ ≤ 1

m+ 1
‖f‖

r−1∑
j=0

ηj <
1

m+ 1
‖f‖

∞∑
j=0

ηj < ∞ .

The functions φj(y) are continuous and therefore the series
∑r

j=1 φ
j(y) converges

absolutely to a continuous function

Φ(y) = lim
r→∞

r∑
j=1

φj(y) . (2.61)

Since η < 1 we see from the second estimate in Corollary 2.21 that fr → 0 for
r →∞. This finally proves Theorem 2.14.

Next, we comment on the parameter

η :=
m− n+ 1

m+ 1
ε+

2n

m+ 1

defined in (2.39) which determines the convergence speed of Algorithm 2.1 as can
be seen from (2.59). For a fixed dimension n it depends on the parameters ε and m.
We first consider the case where ε > 0 is fixed. Let now m̃ > m ≥ 2n be positive
integers. Then, simple computations show that

η̃ :=
m̃− n+ 1

m̃+ 1
ε+

2n

m̃+ 1
≤ m− n+ 1

m+ 1
ε+

2n

m+ 1
= η . (2.62)
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Therefore, we can increase the speed of convergence if m is large.
Finally, we briefly point out the influence of the parameter ε on Algorithm 2.1.

To this end, remember that in step I the integers kr have to be determined such that
|fr−1(x)− fr−1(x′)| ≤ ε‖fr−1‖ for all values x,x′ ∈ [0, 1]n with |xp − x′p| ≤ γ−kr for
p = 1, . . . , n. Then, in the following steps the sums are built over all values dkr ∈ Dnkr
resulting in (γkr + 1)n terms. Therefore, the complexity of Algorithm 2.1 depends
on kr. Clearly, the complexity can be minimized by maximizing the parameter ε
since this allows for small values kr.

Now, let ε̃ > ε > 0 and m, m̃ ∈ N such that the equation

η =
m̃− n+ 1

m̃+ 1
ε̃+

2n

m̃+ 1
=

m− n+ 1

m+ 1
ε+

2n

m+ 1

holds. This implies m̃ > m. Thus, to achieve the same speed of convergence η and
reduce the complexity of Algorithm 2.1, the number of terms m in the outer sum
has to be increased.

2.4 Relation to Space Filling Curves

Let us finish this section with some further remarks on the inner function ψ. In [113]
it was first mentioned that there is a close relation of ψ to space-filling curves.
Loosely speaking, the inner sum Ψ := Ψ0, see (2.36), acts on the n–dimensional unit
cube like a Z–curve to the base γ. To illustrate this and the resulting consequences
in more detail we return to the proof of Theorem 2.14 again.

We have seen that the outer function Φ in (2.36) is the limit of the series
∑∞

j=1 φ
j

for which each term φr is constructed by the r–th iteration step of Algorithm 2.1 in
the following way.

The integer kr ∈ N is fixed to an appropriate value and the n–dimensional unit
cube [0, 1]n is divided into m + 1 families of cubes Sqkr :=

{
Sqkr(d

q
kr

) : dkr ∈ Dnkr
}

,
q = 0, . . . ,m with edge length δkr . For each cube q = 0, . . . ,m the point dkr is
contained in Sqkr(d

q
kr

). For fixed q ∈ {0, . . . ,m} the following holds. The elements of
Sqkr are mutually separated by gaps and the inner sum Ψq uniquely maps the cube
Sqkr(d

q
kr

) to the interval T qkr(d
q
kr

) on the real line. It can be shown that the image–
intervals are also separated by gaps which allows for the definition of a piecewise
constant, continuous function φr on the real line. Then, with (2.41) and (2.42) for
this function it holds that

φr|T qkr (dqkr ) =
1

m+ 1
fr−1(dkr) =

1

m+ 1

(
f(dkr)−

m∑
q=0

r−1∑
j=1

φj ◦Ψq(dkr)

)
.

Now, for j = 1, . . . , r − 1 it holds that Ψq(dkr) ∈ T qkr(dqkr) ⊂ T qkj(d
q
kj

) and therefore

φj ◦Ψq(dkr) =
1

m+ 1
fj−1(dkr) = φj|T qkj (dqkj

) = φj|T qkr (dqkr ) .
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Ψq

f(dkr)

Φr

1
m+1

f(dkr)

aq bq

Figure 2.8. Construction of the r–th approximation Φr on the interval
[aq, bq] from the original function f . In the left picture the family of cubes Sqkr
is dark shaded. The image–intervals T qkr(d

q
kr

) are marked gray in the right picture.

This shows that the restriction of the previous φj to the considered interval are also
constants and we finally get that

φr|T qkr (dqkr ) =
1

m+ 1
f(dkr)−

r−1∑
j=1

φj|T qkr (dqkr ) ,

or equivalently with (2.60)

Φr|T qkr (dqkr ) ≡
1

m+ 1
f(dkr) .

Thus, the r–th approximation Φr to the outer function Φ is a piecewise constant
function on the disjoint intervals T qkr(d

q
kr

) where it takes the scaled function values
of f . This is sketched in Figure 2.8. Now, to get an impression on the graph of Φr

it is necessary to investigate the ordering of these intervals on the real line.
To this end, we define an order of points in n–dimensional space by

dk < d′k :⇔ Ψq(dk) < Ψq(d
′
k) . (2.63)

Note that due to monotonicity of ψ this definition is independent of q. This ordering
gives insight into the shape of the functions Φr on the intervals [aq, bq], see (2.53)
and (2.54). This is due to the fact that it is, for fixed q, also the ordering of the
intervals T qkr(d

q
kr

) on the real line and

T qkr(d
q
kr

) ⊂ [aq, bq] for all dkr ∈ Dnkr .

To get the full graph of Φr remember that

a0 < b0 < · · · < am < bm .
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Therefore, we can fix q ∈ {0, . . . ,m} in the following investigations. The top row
in Figure 2.9 shows the general ordering of the points dk for k = 1, 2, 3. For k > 3
it is the same as for k = 3 and the pictures do not change. This is due to the
recursive definition of ψ which causes self similarities in its graph. In the first
iteration k = 1, the points are lexicographically ordered in a Z–curve shape. For
k > 1 this is not the case any more. At this point the separation of the cubes by gaps
comes into play. The function Φr is constructed in such a manner that

∑m
q=0 Φr ◦Ψq

approximates f only on the family of cubes Sqkr , q ∈ {0, . . . ,m}. Now, if we restrict
our investigation of the ordering of points dkr to the region of approximation we see
that the points are again lexicographically ordered. This is indicated in the middle
column of Figure 2.9. Here, we zoomed into the marked region of the left picture.
The top image shows the general ordering of the points dk for k = 2 while the
bottom picture shows the restriction to the cube Sqk(d

q
k), k = 1. The right column

is a zoom into its left neighbor. Again, the general ordering of points d3 is shown
in the top and the restriction to Sq2(dq2) in the bottom image. Since the ordering of
points does not change for k > 3 we conclude that on the union of all cubes Sqk(d

q
k),

dk ∈ Dk, k ≥ 1 the points are ordered lexicographically.
The relation of Sprecher’s function ψ to space filling curves was first investigated

in [113]. There, a space filling curve with Lebesgue measure 1 was constructed with
approximating curves Ck that were induced by (2.63) and γ = 10. See Figure 2.11 for
an illustration of the approximating curve Ck for k = 2. However, note that in [113]
the curve was constructed with Sprecher’s original non–continuous inner function
ψ and a final proof of the result would require an adjustment of the arguments to
Köppen’s function. Figure 2.11 uses the corrected function ψ.

From this knowledge we now can infer the general shape of the graph of the
r–th approximation Φr to the outer function Φ. Intuitively, following the Z–curve,
induced by (2.63), on the image of a function f gives us, with a scaling by 1/(m+1),
the outer function Φr on each interval [aq, bq], q = 0, . . . ,m. This can be interpreted
as an “unfolding of the dimensions”, see Figure 2.10.
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k = 1 k = 2 k ≥ 3

Figure 2.9. The top row shows the general ordering of the points dk for
k = 1, 2, 3. The cubes Sqk(d

q
k), q = 0 are marked blue and the lines follow the points

dk according to (2.63) in increasing order. The pictures are successive zooms into
the marked sub cube of their left neighbors. In the bottom row the ordering of the
points in the respective cubes S0

k(d
0
k) is indicated.

Figure 2.10. Unfolding of dimensions for the two–dimensional function
f(x) = sin(πx1) sin(πx2) on the interval [aq, bq], q ∈ {0, . . . ,m}.
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Figure 2.11. General ordering of all points dk, k = 2 in [0, 1]2 (γ = 10)
induced by (2.63).



Chapter 3

Approximative versions of
Kolmogorov’s
superposition theorem

In view of Kolmogorov’s result, it seems that there are no high-dimensional functions
and thus no high-dimensional problems at all. Furthermore, the criticism that the
representation is not constructive could also be rejected by the proofs of Theorem 2.1
and Theorem 2.14. Despite these results it turns out that the exact representation
of functions by means of superpositions of one–dimensional functions still is of no
use in several applications. First, it turned out that the representing functions
are quite bad [125, 126], i.e. they are at best only continuous and highly non-
smooth. In particular, the inner functions cannot be chosen to be differentiable.
For these reasons, their practical use for approximation and interpolation purposes
is limited, like e.g., for the discretization of partial differential equations within the
Galerkin approach. Additionally, (2.61) still involves in general an infinite number of
iterations for the determination of the outer function. This cannot be accomplished
by a computer program and a termination of the algorithm after a finite number of
steps always results in an approximation of the function f .

In this section we will discuss approximation schemes that are based on the
Kolmogorov superposition theorem. Note, that the constructive versions of Kol-
mogorov’s theorem, presented in Section 2.3, are very recent results. Therefore,
most of the approximation schemes that will be presented here, are based on previ-
ous versions of the theorem, see Chapter 2.

We have already seen that the inner functions in Kolmogorov’s theorem are
non–smooth. This is a necessary condition as long as we wish to exactly represent
continuous functions. An inverse question is now how broad is the class of func-
tions that can be approximated using superpositions of a single, arbitrary nonlinear
continuous function. Gorban showed in [44] that every continuous function can be
arbitrarily accurately approximated by the operations of addition, multiplication
by a number, superposition, and an arbitrary (one is sufficient) continuous nonlin-
ear function of one variable. For neural networks, see below, this means that the
activation function must be nonlinear.

53
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A promising strategy to construct an approximation scheme out of Kolmogorov’s
superposition theorem is to avoid non–constructive arguments in its proof, like infi-
nite limit processes.

A first first example for this is a result presented by de Figueiredo. Based on
constructions in the proof of (2.3) he computed in [22] a piecewise linear approxi-
mation ψ̃ of the inner function. Then, the outer function was determined from an
interpolation problem. Here, for data points (f(xj),xj)

P
j=1 the parameters ar of an

interpolant
∑`

r=1 arϕr(t) were obtained by demanding for j = 1, . . . , P that

f(xj) =
∑̀
r=1

2n∑
q=0

arϕr(tj,q) , where tj,q :=
n∑
p=1

λpψ̃(xp,j + η q) + q .

A slightly different idea was presented very briefly for a single two–dimensional
numerical example in [36]. Here, applying constructions from a proof of a repre-
sentation of the form (2.6) by Lorentz in [81], fixed approximations for the inner
functions were used while the outer function was computed iteratively. Unfortu-
nately, the authors do not give any further details on their implementation.

In [85] Nees approximated both, inner and outer functions, by sequences {gr}r,
{ψrq}r, q = 1, . . . , 2n+1 of continuous functions that were constructed explicitly. She
also gave an upper bound for the point wise approximation error at the rth iterate.
In a further paper [86], the algorithms were extended such that the approximating
function can be constructed from discrete data sets. Also, the number of terms was
increased from 2n + 1 to m to achieve faster decay of the approximation error. In
particular, m can be chosen such that one iteration suffices to attain every error
bound. Then, this result was applied to a feedforward neural network with two
hidden layers, see below, to give an upper bound on the number of neurons in
the respective layers to achieve a desired accuracy. Furthermore, the estimates
showed that for Nees’ algorithms the computational costs to compute the respective
functions in the sequences grow exponentially with the dimensionality n.

Note that the construction of a function sequence that approximates the outer
function in Kolmogorov’s representation is similar to Sprecher’s constructive proof
where the outer function is approximated by a function series that is computed by
an algorithm.

3.1 Relations to neural networks and other approximation
schemes

Beginning with the works by Hecht–Nielsen from 1987, [53,54] Kolmogorov’s super-
position theorem found much attention in the literature on neural networks. Before
this is explained in more detail, we briefly introduce what we mean by a feedforward
neural network.
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Figure 3.1. Sketch of the functionality of a neuron (left) and graphical
illustration of a multilayer feedforward neural network (right).

In [84], a neural network was described as a way to perform computations by
networks of interconnected neurons. In general, a neuron has n real inputs x1, . . . , xn
and produces its output by

y = σ(w1x1 + . . .+ wnxn − w0) .

Here, σ : R → R is called activation function and the parameters w0, . . . , wn are
called weights. See the left picture in Figure 3.1 for an illustration of the functionality
of a single neuron. A neural network sends the output of some neurons as inputs
to others, see Figure 3.1 (right) and [51]. A net is trained, i.e. its parameters are
determined, with input signals for which the output is known. The weights wj of
each neuron are changed in such a manner that the output of the net fits the training
data in a prescribed way.

Hecht-Nielsen observed in [53,54] the following interpretation of (2.3) as a feed-
forward neural network: Any continuous function f : [0, 1]n → R can be represented
exactly by a neural network with one hidden layer and activation function ψ, and a
single output layer with activation function g that produces the output f(x1, . . . , xn).

We remark that our terminology on feedforward neural network slightly differs
from [53], where Kolmogorov’s representation is identified to have three layers. Since
this disagreement is also present in the literature on neural networks that uses Hecht–
Nielsen’s interpretation, we adhere to our definitions and concretize the functionality
of the net in more detail here. The input layer sends the inputs x1, . . . , xn to the first
hidden layer with n(2n + 1) neurons and activation function ψ. Here, the outputs
yq,p = ψ(xp + q a), q = 0, . . . , 2n, p = 1, . . . , n are generated and sent to the second
hidden layer that consists of 2n + 1 neurons, activation function g, and produces
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Figure 3.2. Sketch of Hecht–Nielsen’s interpretation of the Kolmogorov su-
perposition theorem as neural network. The net is assembled by an input layer, two
hidden layers and the output layer.

the outputs Xq = g(yq,1 + . . . + yq,n). Finally, the output layer just sums up the
inputs, i.e. its activation function is the identity, to produce f(x1, . . . , xn) exactly.
See Figure 3.2 for an illustration of the net. Altogether this gives us a four–layered
feedforward network with two hidden layers.

Due to the lack of a constructive proof of Kolmogorov’s theorem at the time
when Hecht–Nielsen formulated this result, he also emphasized the limited practical
use of the results in [53]: The activation functions ψ and g are not known explicitly.
This still holds true for the function g, even if we take under consideration the recent
constructive proofs. Nonetheless, this interpretation was an important result and
allowed for many further investigations on the relation of the Kolmogorov superpo-
sition theorem and neural networks. We will give some examples that fit into our
context of function approximation.

The fact that the non–smoothness of inner and outer functions is problematic
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in neural networks was first mentioned by Girosi and Poggio. In [43], they argued
the following way: The intuition underlying Hilbert’s conjecture is that not all
functions with a given degree of complexity can be represented in simple way by
means of functions with a lower degree of complexity. In this sense, Kolmogorov’s
theorem shows that the number of variables is not sufficient to characterize the
complexity of a function.1 In approximation theory, the choice of representation
for the function is equivalent to the choice of a particular network architecture.
Therefore, Kolmogorov’s representation suggests that a network with two hidden
layers allows for exact representation. However, for an implementation of a network
that has good generalization properties and is robust against noise, the functions
corresponding to the units in the network have to be smooth. This is not the case
for the inner and outer functions in Kolmogorov’s theorem. Additionally, since the
inner functions are universal, the outer function has to be of the same complexity
as the approximated function itself. Therefore, an exact representation in terms
of two or more layers network is not possible and one has to ask for approximate
representations. This led Girosi and Poggio to the conclusion that Kolmogorov’s
theorem is irrelevant in this context.

Directly referring to this criticism Kurkova pointed out in [75,76] that the ques-
tion on the relevance of Kolmogorov’s theorem for approximation is different. She
argued that in this context one has to ask whether Kolmogorov’s construction can be
modified in such a way that the one–dimensional functions were limits of sequences
of smooth functions used in perceptron type networks. In a perceptron type net-
work all one–variable functions are finite linear combinations

∑
r arσ(brx + cr) of

affine transformations of a single arbitrary continuous sigmoidal2 activation function
σ : R → [0, 1]. Additionally, Kurkova increased the number of terms in the outer
sum from 2n+ 1 to a larger m what resulted in an approximation model of the form

fM,N(x1, . . . , xN) =
m∑
q=1

(
M∑
j=1

(
dj σ

( n∑
p=1

N∑
i=1

vjwpqaqi σ(bqi xq + cqi) + uj

)))
,

where the net parameters dj, vj, uj, and wpq, aqi, bqi, cqi are real numbers. Her di-
rect approach also enabled an estimation of the number of hidden units (neurons)
as a function of the desired accuracy ε and the modulus of continuity of f being
approximated. For general continuous functions one has to choose N = m + 1 and
M = m(m+1)n to achieve an error below ε. Note that m depends on ε and increases
when ε→ 0.

This dependency has been formally removed in [84]. Here, based on the proof of
(2.3) from [107], a constructive algorithm is proposed that approximates a function

1Vitushkin introduced a characteristic to measure the inverse complexity of a function. He
could show that not all functions of a given characteristic can be represented by superpositions of
functions with higher characteristic, [43].

2σ : R→ [0, 1] is called sigmoidal function if limt→−∞ σ(t) = 0 and limt→+∞ σ(t) = 1.
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f to any desired accuracy ε with one universal design. All numbers, operations
and functions in (2.3) were defined in terms of constructive mathematics which
means that they are implementable in a computer program. By universal design the
authors of [84] mean that the number of neurons, and the weights remain the same
for all ε > 0. In their algorithm, the accuracy of the approximation was completely
controlled via the exactness of the computations of the outer and the inner function.
This is closely related to [85,111,112]. However, we remark that [84] does not provide
an estimation of the total complexity of the algorithm while Kurkova’s result gives
us insight in the total number of degrees of freedom that are needed to compute the
approximation.

Based on Kurkova’s idea, Sprecher and Katsura constructed in [67] by means of
a fixed continuous mapping σ : R→ R a sequence {ψk}k that converged to the inner
functions from [110]. Using the same σ, they constructed 2n+ 1 series of functions
that converged uniformly to the outer functions.

Beside these constructive approaches, there are many theoretical results in the
neural networks literature that employ Kolmogorov’s theorem to generalize the
property that the neural net under consideration is a universal approximator for
one–dimensional functions to the n–dimensional case. Here, a neural network is
called an universal approximator if for any desired accuracy ε > 0, there exists a
finite number of neurons in a finite number of layers, and a network architecture
NN : [0, 1]n → R, such that |f(x) − NN(x)| < ε for all x ∈ [0, 1]n. To show
that this can be accomplished by the network, it is argued in the following way:
First, f is represented by Kolmogorov’s superpositions. Then, the fact that the
net under consideration is a universal approximator for one–dimensional functions,
see e.g. [20], is used to show that inner and outer functions can be approximated
to any desired accuracy what shows that the respective neural network is an uni-
versal approximator for n–dimensional continuous functions. Examples for this can
be found in [10, 11, 37, 71, 72, 74, 79, 134, 136]. We remark that these are theoretical
results that do not take into account the regularity of the functions in Kolmogorov’s
representation or includ any complexity considerations like in [67,75,76,84].

Another practical result is due to Igelnik. Starting from a representation of
the form (2.6), he introduced in [62, 64] so-called Kolmogorov spline networks to
approximate continuously differentiable functions. There, 2n + 1 was replaced by
a general larger m. The outer function g and the inner functions ψq were replaced
by cubic splines s(·, γq) and s(·, γq,p) where the parameters γq and γq,p of the splines
were adjusted to fit given function values of f properly. The approximation scheme
was defined as

fm(x1, . . . , xn) =
m∑
q=1

s

(
n∑
p=1

λp s(xp, γq,p), γq

)
. (3.1)

It was shown that, for any function f from the class of continuously differentiable
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functions on [0, 1]n with bounded gradient, there exists a function fm of the form
(3.1) such that ‖f − fm‖ = O(1/m). The number of degrees of freedom involved
in the network is of the order O(m3/2). This result compares favorably with the
approximation order O(1/

√
m) for general one-hidden layer feedforward networks

and this class of functions what requires O(m2) degrees of freedom to achieve the
same error, compare also [5,64] and the references cited therein. However, the class
of functions had to be restricted to achieve these rates and no experimental work
was shown for the suggested model.

Furthermore, an important property of the inner functions in Kolmogorov’s the-
orem was neglected in this approach. To be precise, they were not monotone increas-
ing. This deficiency was eliminated by Coppejans in [17] where a similar approach,
using cubic B–splines to approximate inner and outer functions, was presented.
Here, necessary and sufficient conditions to impose monotonicity on cubic B–splines
were formulated and included into the model. Again, to achieve convergence rates
that are independent of the dimension n, the class of functions f had to be restricted.
The approximated functions were assumed to be of the form

f(x1, . . . , xn) =
m∑
q=0

gq

(
n∑
p=1

λp,qψq(xp)

)
with gq, ψq ∈ C3([0, 1]) .

We have seen by Vitushkin’s results [125, 126] that this is a notable restriction and
that this class of functions is even smaller than C3([0, 1]n). Coppejans gave numerical
examples for this approximator and compared it to kernel regressors for moderately
large sample sizes of artificial data.

We presented approximation schemes for multi–dimensional functions that are
directly based on different versions of Kolmogorov’s superposition theorem, and that
the constructions in the respective proofs can be seen as approximative versions of
the Kolmogorov superposition theorem. Note that there exist further algorithms
and methods in other contexts, like e.g. boolean functions, that are based on Kol-
mogorov’s theorem or draw inspiration from it, see e.g. [6,7,9,94] which are not listed
here. We rather continue with a short note on well–known approximation schemes
that are closely related to Kolmogorov’s theorem. One example is the projection
pursuit algorithm [34,117] that approximates a function f by

f(x1, . . . , xn) ≈
m∑
q=1

gq(λq,1x1 + . . .+ λq,nxn) . (3.2)

This model directly results from (2.1) if we approximate the inner functions by
ψq,p(t) ≈ λq,p · t and increase the number of terms.

Popular approximation schemes in statistics are the so-called additive models,
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see [48, 49]. They resemble the approximation

f(x1, . . . , xn) ≈
n∑
q=1

fq(xq). (3.3)

This form can be derived from (2.1) by choosing n instead of 2n + 1 and replacing
the inner functions ψq,p trivially by the identity if q = p and zero otherwise.

For most of these approximation schemes the parameters are obtained by some
kind of (least-squares) minimization. Here, however the objective functional may
not be globally convex and can have many minima which results in non-unique
representations. Thus, the associated approximation rates for these schemes for
increasing m are not always fully understood and, moreover, it is not clear which
representation to prefer over another for a particular application. We refer to [45]
for more examples of related approximation schemes.

In summary, all approximation schemes presented in this section first use Kol-
mogorov’s theorem to represent an n–dimensional function f as superposition of
one–dimensional functions. Then, either both, inner and outer functions are ap-
proximated, or an approximation for the inner functions is fixed and approxima-
tions to the outer functions are computed. However, we have already seen that the
one–dimensional functions are non–smooth. Therefore, we have to expect high com-
plexities of the approximation schemes due to the non–smoothness of these functions.
Additionally, the inner function also depends on the dimension n in some versions
of the Kolmogorov superposition theorem. This brings up the question, how the
complexities of the algorithms depend on the dimension n. This is where the curse
of dimensionality still can be present.

3.2 Two models based on Sprecher’s theorem

The aim of this thesis is now to define a model to reconstruct n–dimensional func-
tions for moderate values of n that benefits from the constructive versions of the
Kolmogorov superposition theorem introduced in Section 2.3. Namely, the paramet-
ric knowledge of the inner function ψ in (2.36) will be exploited. To this end, we
keep its exact construction on the set of rational numbers, and introduce two ways
to compute an approximation to the outer function Φ. However, before doing so,
we will discuss an important aspect that has only been addressed briefly yet.

In [87–89] a numerical implementation of Sprecher’s algorithm from [111,112] to
compute the (m+ 1) outer functions Φq in the representation (2.9),

f(x) =
m∑
q=0

Φq

(
n∑
p=1

λp ψ(xp + qa)

)
,

was discussed. This included estimates on the numerical complexity, i.e. the number
of arithmetic operations, and run times. These investigations clearly revealed an
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exponential dependency of the numerical complexity on the dimension n in each
iteration step. Since our algorithm is an adaption of Sprecher’s version, this also
holds true for the present result with only a single outer function,

f(x) =
m∑
q=0

Φ

(
n∑
p=1

αp ψ(xp + qa) + ∆q

)
,

see (2.36). The crucial point in Algorithm 2.1 that increases the costs, is the compu-
tation of the approximations Φr to Φ. To compute these functions, the constructions
involve calculations for all points dkr ∈ Dnkr , which is equivalent to the construction
on a regular grid, see step II. It is a known fact that for regular grids the number
of grid points grows exponentially with their dimensionality and therefore the curse
of dimensionality is still present, even though only one–dimensional functions are
involved. Anyhow, we remark that the algorithm converges very fast in terms of the
iterations r, see [73,78,87].

Due to the previous considerations, another approach to compute an approxima-
tion of the outer function Φ will be introduced in this work. Note that the choice of
representation (2.36) with only one inner and outer function is motivated by com-
putational aspects. Here, we will only have to compute one function rather than
(m+ 1) functions for representation (2.9).

At this point, we will introduce our two models only briefly for motivation. A
further extension and a detailed investigation will then follow in Section 4.5.1 and
Section 4.5.2.

3.2.1 First model

The first approach is very simple but gives insight into the structure of the outer
function and is therefore presented here. Furthermore it motivates the more so-
phisticated and better second approach. To this end, we choose a countable basis
ϕr0, ϕ

r
1, . . . of C0([a0, bm]), see (2.53), (2.54) for a definition of a0, bm, and expand the

outer function in this basis:

Φ(t) =
∞∑
j=0

cj ϕ
r
j(t) . (3.4)

Expansion (3.4) still involves an infinite process and corresponds to the case of exact
representation. We now can use only a finite number `r of basis functions in (3.4).3

This corresponds to the choice of a subspace V`r ⊂ C0([a0, bm]) for the outer function

3The use of the superscript at `r and ϕrj indicates the use of real valued basis functions and is
used to avoid confusion between the numbers ` in Section 4.5, where complex valued basis functions
will be introduced.
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and results in an approximation. Note that the basis functions also depend on the
values a0, bm, and m, however we dispense with additional indices for simplification.

This leads, in view of (2.36), to the approximand

f`r(x) :=
m∑
q=0

`r∑
j=0

cj ϕ
r
j

(
n∑
p=1

αp ψ(xp + qa) + ∆q

)
, (3.5)

with the coefficient vector c
(1)
`r := (c0, . . . , c`r)

T ∈ R(`r+1).

3.2.2 Second model

In the second approach we presume that the outer function Φ(t) has a certain
product structure. We then expand each factor φd(t) in the given basis:

Φ(t) =
n∏
d=0

φd(t) =
n∏
d=0

( ∞∑
j=0

cdj ϕ
r
j(t)

)
. (3.6)

Then, for each d = 0 . . . , n, we replace the inner infinite sum by a finite one and
end up with an approximand of the form

fLr(x) :=
m∑
q=0

n∏
d=0

 `rd∑
j=0

cdj ϕ
r,d
j

(
n∑
p=1

αp ψ(xp + qa) + ∆q

) . (3.7)

Since the transfer from the infinite basis representation of each factor φd to a finite
one is explicitly allowed to differ for different values of d, the subscript for `rd and
the superscript for the respective basis functions ϕr,dj was added in the notation.
This corresponds to the fact that we allow for d = 0, . . . , n, different approximation
spaces V d

`rd
⊂ C0([a0, bm]) for the respective factor φd. Here, we collect the model

parameters in a coefficient vector c
(n)
Lr := (c0

0, . . . , c
0
`r0
, . . . , cn0 , . . . , c

n
`rn

)T ∈ RL, with

Lr :=
∑n

d=0(`rd + 1).
At this point, the choice of the second model is not obvious. Anyhow, an inves-

tigation of the first model will give substantial motivation. For further details and
examples see Section 6.1.3 and Section 6.2.



Chapter 4

Regularization networks

We now turn to the computation of approximands f`,r and fL,r, see Section 4.5
for a definition, for a given continuous function f : [0, 1]n → R. In many practical
applications the function f is in general not given in analytical form but is accessible
only in a point wise sampled fashion. Therefore we focus on reconstruction of f from
given data points, i.e. value

Z := {(xj, yj) : j = 1, . . . , P} ⊂ [0, 1]n × R . (4.1)

The values yj are assumed to be sample values yj = f(xj) on the set {xj}Pj=1. Z
will also be called training set or sample of the function f .

In this section, we will present a theoretical framework for the approximation
of multi–dimensional functions from samples that essentially follows [18, 28]. The
problem of learning (approximation of functions) from sparse data (samples) is an
ill–posed1 problem which is typically solved by regularization methods as developed
by Tikhonov and Arsenin, see [118,119]. There, the regression problem is restricted
to the domain H of a positive functional R(f), which is called the stabilizer. The
regularized problem is then formulated as the variational problem of minimizing the
functional

E(f) =
1

P

P∑
j=1

V (f(xj), yj) + νR(f) .

V is called loss function and enforces closeness to the data. The regularization
term R(f) enforces the solution to be in the set {f : R(f) ≤ C} with a small
constant C. The positive value ν ∈ R is called regularization parameter and
weights between the two terms.

The typical choice for the loss function is the squared error V (f(xi), yi) =
(f(xi) − yi)

2 which will also be used here. For the regularization term, a com-
mon strategy is to choose a regularization operator S : H → L2(Ω), and set

1See Definition A.1 in the appendix.
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R(f) = ‖Sf‖2
L2(Ω). As an example, S might be the gradient2 Sf := ∇f , which

enforces smoothness of the function f . Hence, R(f) is often called the smoothness
functional.

An important example is R(f) = ‖f‖2
H(K), which is the norm in a, so called,

reproducing kernel Hilbert space H(K), induced by a symmetric positive function
K : Ω×Ω→ C, see Section 4.1 or [18,28,41,42,102,124]. As we will see in more detail
later, these spaces play an important role in the mathematical theory of learning
from samples. For now, we only mention that a reproducing kernel Hilbert space
H(K) with reproducing kernel K is directly related to a regularization operator
S : H(K)→ L2(Ω), see [38,41,42,95,101]. In fact, if the reproducing kernel K is a
Green’s function of the operator (S∗S), K and S are interrelated by

K(x,y) = 〈(SK)(x, ·), (SK)(y, ·)〉L2(Ω) . (4.2)

Thus, the formulation R(f) = ‖f‖2
H(K) also includes the previously mentioned case

via the choice of an appropriate kernel K and we may also consider functionals of
the form

E(f) =
1

P

P∑
j=1

(f(xj)− yj)2 + ν ‖f‖2
H(K) . (4.3)

Now, under certain assumptions on K, it can be shown that a minimizer fK of
E(f) has the form

fK(x) :=
P∑
j=1

cjK(x,xj) . (4.4)

This fact is also called the representer theorem. Here, the coefficient vector
c := (c1, . . . , cP )T ∈ RP is the solution of the linear system

(K + ν I) c = y ,

with data vector y := (y1, . . . , yP )T ∈ RP , identity matrix I ∈ RP×P and the kernel
matrix

K :=
(
K(xi,xj)

)P
i,j=1
∈ RP×P .

For details, see [28, 41,42,127] and the references therein.
Girosi and Poggio [41,95] gave a simple interpretation of the approximand fK in

terms of a network with one hidden layer of units. Therefore, it is called Regular-
ization Network.

This data based approach provides us with a minimizer of (4.3) by the solution
of a linear system for which the size is determined by the number P of given data
points. This number can become very large. As we will see later, in Statistical

2To be more precise, one chooses in this case S : H → Ln2 (Ω) and R(f) = ‖Sf‖2Ln
2 (Ω).
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learning theory it is even assumed that P → ∞. Thus, the numerical costs for
the solution of the system grow and for large data sets Z, the computation of fK
becomes impractical. Note however, that the complexity of this data based approach
only depends on the dimension n by means of P evaluations of the function K.

Alternatively, one might compute a representation of the minimizer of (4.3) in
a given basis or frame for H(K). This is the point of view which is taken in this
thesis. The duality between these two approaches has been investigated in [38].

Remark 4.1. Since by the representer theorem a minimization of (4.3) is equivalent
to the use of a Regularization Network fK, see (4.4) and [28], we will always refer to
both strategies as Regularization Network approach and to both approximands,
i.e. to the minimizer of (4.3) and to fK, as Regularization Networks.

In the following, the previously mentioned reproducing kernel Hilbert spaces are
introduced in more detail.

4.1 Reproducing kernel Hilbert spaces

The theory that is presented in this section is standard theory on reproducing kernel
Hilbert spaces that can be found e.g. in [4, 93, 100, 102, 127, 132]. However, since
the results are a compilation of different definitions and theorems that is suited for
our needs, they cannot be found exactly in the form that is presented here in the
literature. Therefore, and for clarity, we briefly give the proofs for the respective
results.

In the following, we always assume that Ω is a general non–empty set. The
results in this section do not need any further assumption on Ω but note that in our
application, usually Ω ⊂ Rn. We start with the definition of the central object of
the theory.

Definition 4.2. Let H be a complex Hilbert space of functions f : Ω → C with
scalar product 〈·, ·〉H . A function K : Ω×Ω→ C is called the reproducing kernel
for H if

(i) K(·, y) ∈ H for all y ∈ Ω.

(ii) f(y) = 〈f,K(·, y)〉H for all f ∈ H and all y ∈ Ω.

The second property clearly motivates the notation and guarantees that a re-
producing kernel is uniquely defined. Suppose there are two reproducing kernels K1

and K2. Then, by this property we have that 〈f,K1(·, y) − K2(·, y)〉H = 0 for all
f ∈ H and all y ∈ Ω. Choosing f = K1(·, y)−K2(·, y) ∈ H for a fixed y ∈ Ω shows
uniqueness.
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Next, we will show that continuity of the evaluation functionals Ey : H → C,
which are defined for each y ∈ Ω by

Ey(f) := f(y) , f ∈ H , (4.5)

is a necessary and sufficient condition for a reproducing kernel K to exist.

Theorem 4.3. Suppose that H is a Hilbert space of functions f : Ω → C. Then
the following statements are equivalent:

(i) the point evaluation functionals Ey defined by (4.5) are continuous for all y ∈
Ω;

(ii) H has a reproducing kernel.

Proof. Assume (i) holds. Then, since Ey is bounded, we know from the Riesz
representation theorem that there exists for any y ∈ H an element ky ∈ H such that

Ey(f) = 〈f, ky〉H = f(y) , for all f ∈ H .

Thus, K(x, y) := ky(x) is the reproducing kernel of H. Now, suppose (ii) holds, i.e.
for H there exist a reproducing kernel K. This directly gives the estimate

|Ey(f)| = |f(y)| = |〈f,K(·, y)〉H |
≤ ‖ f ‖H ‖K(·, y) ‖H = ‖ f ‖H 〈K(·, y), K(·, y)〉1/2H = ‖ f ‖H K(y, y)1/2 ,

what shows continuity of Ey.

For the reproducing kernel K of a Hilbert space H it holds that

K(x, y) = 〈K(·, y), K(·, x)〉 = 〈K(·, x), K(·, y)〉 = K(y, x) .

In the following, it will be convenient to use the following terminology for such
functions.

Definition 4.4. A function K : Ω×Ω→ C with the property that K(x, y) = K(y, x)
is called a symmetric function. K is called d–dimensional if Ω ⊂ Rd.

These preliminary considerations now motivate the following definition.

Definition 4.5. Let H be the Hilbert space of complex valued functions f : Ω→ C
and let 〈·, ·〉H denote its scalar product with the associated norm ‖f‖2

H := 〈f, f〉H .
Then, H is called a reproducing kernel Hilbert space (RKHS) if for every y ∈ Ω
the linear evaluation functional Ey : H → C, defined by (4.5), is continuous.
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So far, we have seen that to any RKHS H there exists a unique reproducing
kernel K : Ω×Ω→ C. In the sequel we will do the converse, i.e. to a given function
K : Ω×Ω→ C with further properties that will be specified in the following, we will
associate a Hilbert space H, such that K is the reproducing kernel in that space.
To concretize the conditions on the function, we first give a further characterization
of a reproducing kernel K of a RKHS H.

Definition 4.6. Let K : Ω × Ω :→ C be a symmetric function of two variables.
Then K is said to be a positive definite function provided that for every choice of
distinct points {x1, . . . , xp} ⊂ Ω and complex coefficients c1, . . . , cp ∈ C

p∑
i,j=1

cicjK(xi, xj) ≥ 0 ,

holds. Note that this is the condition for the matrix {K(xi, xj)}p,pi,j=1 to be positive
definite. K is called strictly positive definite if in addition

∑p
i,j=1 cicjK(xi, xj) =

0 is equivalent to c1 = · · · = cp = 0.

Theorem 4.7. Suppose that H is a RKHS with reproducing kernel K : Ω×Ω→ C.
Then K is positive definite. Moreover, K is strictly positive definite if the functions
K(·, y), y ∈ Ω are linearly independent in H.

Proof. Let {x1, . . . , xp} ⊂ Ω, and c1, . . . , cp ∈ C be arbitrary. Then

p∑
i,j=1

cicjK(xi, xj) =

〈
p∑
j=1

cjK(·, xj),
p∑
i=1

ciK(·, xi)
〉
H

=

∥∥∥∥∥
p∑
i=1

ciK(·, xi)
∥∥∥∥∥

2

H

≥ 0 .

The last expression can become zero for nonzero coefficients c1, . . . , cp ∈ C if and
only if the functions K(·, y), y ∈ Ω are linearly dependent in H.

Thus, the reproducing kernel of a given RKHS H is a symmetric positive definite
function. Now, let a symmetric positive definite function K : Ω × Ω → C be
given. We turn to the construction of a Hilbert space for which this function is the
reproducing kernel. We start with the following

Theorem 4.8. Let a symmetric positive definite function K : Ω×Ω→ C be given.
We define a linear vector space of functions by

Ho := span {K(·, y) : y ∈ Ω}

=

{
p∑
i=1

aiK(·, yi) : p ∈ N, yi ∈ Ω, ai ∈ C

}
.

(4.6)
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Then 〈
p∑
i=1

aiK(·, xi),
p′∑
j=1

bjK(·, yj)
〉
H

:=

p∑
i=1

p′∑
j=1

ai bjK(yj, xi) (4.7)

defines an inner product on Ho and its completion with respect to this scalar product
H = Ho. Furthermore, H is the unique RKHS with kernel K.

Proof. From the fact that K is positive definite we can directly conclude that the
bilinear form 〈·, ·〉H is well–defined and defines an inner product on Ho. Now, we
complete the space Ho, by taking equivalence classes of Cauchy sequences in Ho and
denote the resulting space by H. We have to show that every element of H is actually
a function. To this end, let f ∈ H and {fn} ⊂ Ho be a Cauchy sequence with limit
f . Since

|fn(x)− fm(x)| = 〈fn − fm, K(·, x)〉H ≤ K(x, x)1/2 ‖ fn − fm ‖H ,

we know that the sequence converges point wise and we can uniquely define f(x) :=
limn→∞ fn(x). Finally, in slight abuse of notation, we denote by 〈·, ·〉H the scalar
product on H and compute

〈f,K(·, x)〉H = lim
n→∞

〈fn, K(·, x)〉H = lim
n→∞

fn(x) = f(x) ,

what shows that H is a RKHS with kernel K. Now, since the completion H of Ho

is unique this shows Theorem 4.8.

In conclusion, we have a one to one correspondence of a RKHS H over Ω and a
symmetric positive definite function K : Ω×Ω→ C which is the reproducing kernel
for H. In the following, this interrelation will be reflected in the notation H(K)
which will always denote the RKHS with reproducing kernel K.

We continue with summarizing some well known and useful results on reproduc-
ing kernels in a RKHS.

Theorem 4.9. Let H(K) be a RKHS with reproducing kernel K. If {ϕ1, . . . , ϕ`}
is an orthonormal basis for H(K), where ` is possibly infinite, then

K(x, y) =
∑̀
i=1

ϕi(x) ϕi(y) , (4.8)

and the series converges point wise.

Proof. For any y ∈ Ω we have that K(·, y) ∈ H(K) and thus

K(x, y) =
∑̀
i=1

〈K(·, y), ϕi〉H(K) ϕi(x) =
∑̀
i=1

ϕi(y) ϕi(x) ,
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where the series converges in the norm. We have already seen that this directly
implies point wise convergence.

We now give simple examples on how new reproducing kernels can be constructed
from existing ones. To this end, let first ϕ : Ω̃→ Ω be a function that maps the set
Ω̃ onto Ω. Then the following theorem holds:

Theorem 4.10. Let ϕ : Ω̃ → Ω and let K : Ω × Ω → C be a symmetric positive
definite function. Then (K ◦ ϕ)(x̃, ỹ) := K(ϕ(x̃), ϕ(ỹ)) is a symmetric positive
definite function K ◦ ϕ : Ω̃× Ω̃→ C.

Proof. Let {x̃1, . . . , x̃p} ⊂ Ω̃ and c1, . . . , cp ∈ C be arbitrary. We set {x1, . . . , xs} =
{ϕ(x̃1), . . . , ϕ(x̃s)}, Ak = {i : ϕ(x̃i) = xk}, k = 1, . . . , s, and ak =

∑
i∈Ak ci. Then

p∑
i,j=1

cicjK(ϕ(x̃i), ϕ(x̃j)) =
s∑

k,l=1

∑
i∈Ak

∑
j∈Al

cicjK(ϕ(x̃i), ϕ(x̃j))

=
s∑

k,l=1

akalK(xk, xl) ≥ 0 ,

what shows that K ◦ ϕ is positive definite. Symmetry can be seen directly from its
definition.

Note that the one to one correspondence of symmetric positive definite functions
and RKHS’s now uniquely defines the RKHS H(K ◦ ϕ). This space is also called
the pull–back of H(K). Another construction of reproducing kernels and thus of
RKHS’s is given by the following results.

Let Ki : Ω × Ω → C be reproducing kernels of H(Ki), i ∈ {1, 2}, respectively.
Then

(i) K(x, y) = K1(x, y) +K2(x, y) is the reproducing kernel of the completion of

H(K1 +K2)o = {f1 + f2 : fi ∈ H(Ki), i ∈ {1, 2}} . (4.9)

(ii) Furthermore, K(x, y) = K1(x, y) · K2(x, y) is the reproducing kernel of the
completion of

H(K1 ·K2)o =

{
p∑

k=1

fk1 f
k
2 : fki ∈ H(Ki), i ∈ {1, 2}, p ∈ N

}
. (4.10)
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(iii) The function K(x,y) = K1(x1, y1) ·K2(x2, y2) is the reproducing kernel of the
completion of

(H(K1)⊗H(K2))o =

{
p∑

k=1

fk1 (x1)fk2 (x2) : fki ∈ H(Ki), i ∈ {1, 2}, p ∈ N

}
.

(4.11)

In the first two cases, it is important to see that the elements of the spaces H(K1),
H(K2), H(K1 +K2)o, and especially H(K1 ·K2)o are always functions f : Ω→ C, in
contrast to (H(K1)⊗H(K2))o. The proofs for these facts can be found in [4,93,102].

In this section, we briefly introduced reproducing kernel Hilbert spaces and gave
their characteristic properties. Here, we restricted ourselves to the basic facts and
some results that will be needed in the remainder of this thesis. For a comprehen-
sive theory of RKHS’s and their applications, e.g. in machine learning or meshless
methods, we refer to [4, 93, 100,102,127,132].

Until now, the usage of the Regularization Network approach has been intro-
duced and motivated by regularization theory which even justified its name. How-
ever, the reconstruction from finite data is not considered in classical regularization
theory which is based on functional analysis arguments and relies on asymptotic
results, [28]. In other words, the fact that the regularized solution has good pre-
dictive capabilities needs a probabilistic treatment that is not studied in regular-
ization theory. This issue is considered in Statistical learning theory, and we will
see in the following that there our formulation (4.3) with the smoothness operator
R(f) = ‖f‖2

H(K) also plays a central role.

4.2 Statistical learning theory

In this section we present the mathematical theory of Statistical learning. Basically,
we follow the lines of [18].

For a finite set of training samples, the basic idea of Statistical learning theory is,
as in regularization theory, to restrict the search for an optimizer to an appropriately
small hypothesis space H: If H is large, one can find a model that fits the data well
but has poor predictive capabilities on new data. This effect is called overfitting
of the data. To avoid this, the size of H has to be controlled. This can be done in
terms of the capacity of a set of functions, using capacity control which also considers
the given samples. This leads to the technique of Structural risk minimization in
Section 4.3. See [28] for an overview.

Statistical learning theory can be formulated in a very general setting and we
will start with two sets X and Y whose elements are related by a probabilistic
relationship in the following way: An element x ∈ X does not uniquely determine
an element y ∈ Y , but rather a probability distribution on Y . This can be formalized
by a probability distribution ρ which is defined over the set Z = X×Y and governs
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the sampling. The unknown distribution ρ is the primary object to study, but note
that the goal is not to reveal ρ. We start with a formal definition of the objects that
are needed in the following.

Let X be a compact domain or a manifold in Eucledian space and Y := R. Let ρ
be a Borel probability measure on Z := X ×Y . For a random variable ξ, we denote
its expected value by E[ξ] and its variance by σ2(ξ). The values are given by

E[ξ] :=

∫
Z

ξ dρ and σ2(ξ) := E
[
(ξ − E(ξ))2

]
= E[ξ2]− E[ξ]2 .

Now, if f : X → Y is a model for the process that produces y ∈ Y from x ∈ X,
the (least squares) error of f is defined by

E(f) := Eρ(f) :=

∫
Z

(f(x)− y)2 dρ .

For x ∈ X, let ρ(y|x) be the conditional probability measure on Y and ρX be the
marginal probability measure on X. These probabilities are related to ρ by Fubini’s
theorem in the following way: For any integrable function ϕ : X × Y → R it holds∫

X×Y
ϕ(x, y) dρ =

∫
X

(∫
Y

ϕ(x, y) dρ(y|x)

)
dρX .

For ρX , we denote by L2
ρX

(X) the Hilbert space of square integrable functions f :
X → R with finite norm

‖f‖2
ρX

:=

∫
X

f 2(x) dρX .

Next, we define the regression function fρ : X → Y of ρ by

fρ(x) :=

∫
Y

y dρ(y|x) .

It gives for each x ∈ X the average of the y–coordinate on the fiber {x} × Y .
Note that this is the expected value of y for given x with respect to the conditional
probability measure ρ(y|x).

For fixed x ∈ X, consider the function fx(y) := (y − fρ(x)). Its expected value
is zero what implies that its variance is given by

σ2(fx) :=

∫
Y

(y − fρ(x))2 dρ(y|x) .

Averaging over X we set

σ2
ρ :=

∫
X

σ2(fx) dρX =

∫
X

(∫
Y

(y − fρ)2 dρ(y|x)

)
dρX = E(fρ) .
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Note that in general ρ and fρ are unknown, while in some situations ρX is known. An
example would be that ρX is the Lebesgue measure on X inherited from Eucledian
space.

As a consequence of the previous computations, the error E(f) can be split into
two parts:

E(f) =

∫
X

(f(x)− fρ(x))2 dρX + σ2
ρ . (4.12)

The first term in the right–hand side of (4.12) is the average of the error that will
be made when using f as a model for fρ. The second term σ2

ρ is independent of f ,
what implies that fρ has the smallest possible error among all functions f : X → Y .
Thus, σ2

ρ is a lower bound on the error E(f) which is completely determined by the
probability measure ρ.

The goal is now to learn (i.e. find a good approximation of) fρ from random
samples on Z. We assume that the approximand f belongs to a compact subset
H ⊂ (C0(X), ‖ · ‖∞), which will be called the hypothesis space. The choice of
compact subsets with respect to the norm ‖ · ‖∞ is important, e.g. to guarantee
existence of fH and fz (see below) but also for other assumptions and results. We
do not go into detail here, but refer to the literature [18] and the references therein.

Let fH be a minimizer of E(f), i.e.

fH := arg min
f∈H

∫
Z

(f(x)− y)2 dρ .

From (4.12) we see that for this function it also holds

fH = arg min
f∈H

∫
X

(f(x)− fρ)2 dρX .

Note that this minimizer is not necessarily unique unless H is convex.
Now, assume that we are provided with a sample

z := ((x1, y1), . . . , (xP , yP )) ⊂ X × Y , (4.13)

that is drawn according to ρ. Note that the data (4.1) fits into this setting since [0, 1]n

is a compact subset of Eucledian space and we could also take z = Z. However, we
stick to the new notation to be consistent with the general setting in this section.
The set z is called training data. We define the empirical error of f to be

Ez(f) :=
1

P

P∑
i=1

(f(xi)− yi)2 , (4.14)

and denote by fH,z the minimizer of (4.14) in H. The function

fz := fH,z := arg min
f∈H
Ez(f)
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is called the empirical target function. We remark that fz does not depend on ρ
and that E(fz) and Ez(f) are different objects. The same holds for E(fH) and EH(f)
(see below).

For a given hypothesis space H, and f ∈ H, the error in H is defined by the
normalized value

EH(f) := E(f)− E(fH) =

∫
Z

(f(x)− y)2 dρ−
∫
Z

(fH(x)− y)2 dρ ≥ 0 .

With this quantity we can split the error of fz into two parts:

E(fz) =

∫
X

(fz − fρ)2 dρX + σ2
ρ = EH(fz) + E(fH) . (4.15)

Next, we consider the right hand side of this equation.
Remember that our primary goal is to estimate the predictive capabilities of fz

which is given by E(fz), or equivalently by
∫
X

(fz − fρ)2 dρX . Equation (4.15) now
shows that this breaks down into two problems:

(i) Find an estimate for E(fH). This term is independent of the sample but
depends on the choice of the hypothesis space H. It will be called the ap-
proximation error.

(ii) Find an estimate for the term EH(fz). This problem is posed on H and depends
on the sample. EH(fz) is called the sampling error or estimation error.

In statistics, the following relation between (i) and (ii) is called the bias–
variance trade–off:

(bias) For a fixed sample size, typically, the approximation error in (i) will
decrease when enlarging H, but the sample error in (ii) will increase.

(variance) For fixed H, the sample error in (ii) decreases when the number P of
samples increases.

Next, we present results from [18] that give estimates for the approximation and
sampling error in probability.

Remark 4.11. We stick to statements from [18] that fit into the following general
setting: Let E be a subset of a Banach space of functions f : X → Y for which the
embedding JE : (E, ‖ · ‖E) ↪→ (C0(X), ‖ · ‖∞) is compact. We then define, for R > 0,
the hypothesis space

H = HE,R = JE(BR) , (4.16)

where BR denotes the closed ball of radius R in E,

BR := {f ∈ E : ‖f‖E ≤ R} .
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The first question is now the following: Let ε, δ > 0 be given. How many samples
have to be drawn to assert, with a confidence greater than 1−δ, that

∫
X

(fz−fH)2 dρX
is smaller than ε ? To give a quantitative answer to this question we need a further
definition.

Definition 4.12. Let S be a metric space and s > 0. We define the covering
number N (S, s) to be the minimal k ∈ N, such that there exist k discs in S with
radius s covering S.

Note that the discs are defined with respect to the maximum norm ‖ · ‖∞ and
that for compact sets S, the covering number is finite. In the following we will
always denote the size of the sample z in (4.13) by P ∈ N.

Theorem 4.13. Let H be a compact subset of C0(X). Assume that, for all f ∈ H,
|f(x)− y| ≤M almost everywhere. Let

σ2(H) = sup
f∈H

σ2(f 2
Y ) ,

where σ2(f 2
Y ) is the variance of f 2

Y (x, y) := (f(x)− y)2. Then for all ε > 0,

Probz∈ZP {EH(fz) ≤ ε} ≥ 1 − 2 N
(
H,

ε

16M

)
exp

(
− P ε2

8(4σ2(H) + 1
3
M2ε)

)
.

This theorem shows that for an increasing sample size, the sample error decreases.
It directly gives the following corollary which answers the question on the size of
the sample to ensure a desired accuracy.

Corollary 4.14. Let the assumptions of Theorem 4.13 hold and ε, δ > 0 be given.
If

P ≥ 8(4σ2(H) + 1
3
M2ε)

ε2

[
ln
(

2 N
(
H,

ε

16M

))
+ ln

(1

δ

)]
,

then it holds that

Probz∈ZP {EH(fz) ≤ ε} ≥ 1− δ .

The proofs of the previous results can be found in [18]. There, also estimates
on the covering numbers N (S, s) for Sobolev spaces or RKHS’s with reproducing
kernel K ∈ C∞ are given. We do not state these results here, since the reproducing
kernels for our approach do not fulfill this constraint.

However, for a result on the approximation error E(fH) the restriction K ∈ C∞
is not necessary. Therefore, we can give the following theorem from [18] directly in
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terms of a RKHS:

Theorem 4.15. Let K : X ×X → R be a continuous, symmetric, positive definite
function, R > 0, and H = JE(BR) as defined in Remark 4.11 with E = H(K).
Then, the approximation error satisfies, for 0 < r < 1,

E(fH) ≤
(

1

R

) 2r
1−r

‖L−r/2K fρ‖
2

1−r
ρX + σ2

ρ .

Here, the operator LK : L2
ρX

(X)→ C(X) is defined by

(LKf)(x) :=

∫
X

K(x, ·)f(·) dρX .

Now, consider the bias–variance problem. To this end, remember that to each
value R > 0 we associated the hypothesis space HE,R by (4.16). Furthermore, fix the
sample size P and choose a confidence 1− δ, 0 < δ < 1. The bias–variance problem
consists of finding an optimal value R∗ > 0 which minimizes the error bound for
E(fz) from (4.15) with confidence 1− δ. The following result can be found in [18].

Theorem 4.16. For all P ∈ N, δ ∈ R, 0 < δ < 1, and all 0 < r < 1, there exists a
unique solution R∗ of the bias–variance problem in the general setting, described in
Remark 4.11.

The minimizer R∗ determines a hypothesis space HE,R∗ in the family of all spaces
HE,R, R > 0. Of course, one may as well consider the variation of other parameters
like the kernel K for H(K). This is also called the kernel trick, see [102]. In learning
literature the choice of the hypothesis space is called the selection of a model.

Practically, the computation of R∗ is often not possible. Here, one reason might
be the lack of estimates for the covering numbersN (HE,R, ε) of the hypothesis spaces
HE,R, R > 0.

As an alternative approach to deal with the bias–variance trade–off, the method
of Structured risk minimization was introduced in [28,29].

4.3 Structural risk minimization

In this section, we briefly introduce the method of Structural risk minimization
[23,28,29,102,122–124] which then will be used as a motivation for our Regularization
Network approach.

To this end, let a training set be given by (4.13) that consists of P samples.
Furthermore, let h ∈ N be a measure for the complexity of a hypothesis space
H, which will be called the capacity of H. For instance, H could be the set of
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polynomials of degree h, or a set of splines with h nodes. Then, in the first step of
Structural risk minimization (SRM), a nested sequence of hypothesis spaces H1 ⊂
H2 ⊂ . . . ⊂ H`(P ) is defined, such that the capacities of the spaces form a non–
decreasing sequence h1 ≤ h2 ≤ . . . h`(P ) < ∞. Here, `(P ) is a non–decreasing
integer function of P .

In [28], two different types of capacity for SRM have been suggested: The VC–
dimension and the Vγ–dimension. In fact, the SRM–method uses the VC–dimension
as a measure of complexity, while the use of the Vγ–dimension gives rise to the,
so called, extended SRM–method, see [28, 29]. Since the SRM–method is only of
theoretical interest here, and will only be used as a motivation for Regularization
Networks, we dispense with a detailed definition of the quantities in this section and
refer to Appendix A.4. For further details see [23,28,29,102,122–124].

In the next step of SRM, compute for i = 1 . . . , `(P ) the minimizer of the
empirical error (4.14) in the space Hi, which is given by

fHi,z := arg min
f∈Hi

1

P

P∑
j=1

(f(xj)− yj)2 .

Now, if hi is the capacity of a hypothesis space Hi, estimates in probability of
the following type can be given [28]:

Prob

{
sup
f∈Hi
|E(f)− Ez(f)| > ε

}
≤ G(ε, P, hi) ,

where G(ε, P, hi) is an increasing function of hi. Note that G depends on the type
of capacity that is used. Thus, for the sequence of hypothesis spaces Hi, this bound
becomes weaker which allows for possibly worse predictive capabilies of the mini-
mizer fHi,z, while the data is better approximated. This is again the bias–variance
trade–off as introduced in Section 4.2.

Finally, the last step of the SRM–method consists of finding the structure Hopt

for which the trade–off between the empirical error Ez(fHopt,z) and G(ε, P, hopt) is
optimal. Note that opt = opt(ε, P ). To find the optimal structure, in [28] the follow-
ing strategy is suggested: For each i = 1, . . . , `(P ), find numerically the “effective”
εi so that G(εi, P, hi) is constant for all Hi, and then choose the function fHi,z for
which the sum of the empirical error and εi is minimized. Note that the strategy to
handle this trade–off also depends on the respective type of capacity that is used.
Under further assumptions it can then be shown that the error E(fHopt,z) of the
SRM–solution approaches for P →∞ and `(P )→∞ in probability to the optimal
error E(fH,z) in H =

⋃∞
j=1Hj.

In practice, the SRM–method is difficult to implement due to the requirement
of solving of a large, in principle infinite, number of optimization problems with
non–linear constraints. Additionally, it is difficult to decide the optimal trade–off
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strategy between empirical error and G. In the following, we rather use SRM as a
motivation for the Regularization Network approach (4.3).

To this end, consider a RKHS H(K), real numbers R1 ≤ R2 . . . ≤ R`(P ) < ∞,
and the hypothesis spaces

Hi :=
{
f ∈ H(K) : ‖f‖H(K) ≤ Ri

}
.

Remember that these are the hypothesis spaces in the Regularization Network ap-
proach, see Remark 4.1. Note also that Theorem 4.16 and (4.16) theoretically guar-
antee that for such spaces there exists an optimal R∗, solving the bias–variance
problem. But in general we cannot expect R∗ = Ri, for any i = 1, . . . , `(P ). It can
be shown [27,28] that the capacities3 hi of the spaces Hi form a non–decreasing se-
quence h1 ≤ h2 ≤ . . . ≤ h`(P ) <∞, and thus can be used as hypothesis spaces in the
SRM–method. Therewith, we have to solve for each i = 1, . . . , `(P ) the constrained
minimization problem

1

P

P∑
j=1

(f(xj)− yj)2 −→ min ! , subject to ‖f‖H(K) ≤ Ri .

This leads, for i = 1 . . . , `(P ), to a minimization of the functional

Ei(f) :=
1

P

P∑
j=1

(f(xj)− yj)2 + ν (‖f‖2
H(K) −R2

i )

with respect to f while maximizing Ei with respect to the Lagrange multiplier ν ≥ 0.
For i = 1 . . . , `(P ), let (fi, νi) denote the minimizer of the respective functional Ei.
From these solutions, the SRM–method picks the optimal function fopt ∈ Hopt,
opt ∈ {1, . . . , `(P )}, which is now associated with an optimal Lagrange multiplier
νopt. Clearly, a minimization of

1

P

P∑
j=1

(f(xj)− yj)2 + νopt ‖f‖2
H(K) ,

using the optimal Lagrange multiplier νopt, produces the same solution fopt as the
SRM–method. Thus, SRM leads to the error–functional (4.3) which is used in the
Regularization Network approach and additionally provides us with an estimate of
the optimal regularization parameter. Note again that a numerical implementation
of SRM is impractical.

In the next section, a probabilistic justification of Regularization Networks will
be given by a maximum a posteriori interpretation of the given learning problem.

3Here, essentially the Vγ–dimension has to be used. The VC–dimension is independent of
Ri, [27, 28].
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4.4 Maximum A Posteriori Interpretation

The variational principle of minimizing (4.3) can also be derived in a probabilistic
context, see [28] and the references therein. This will be the topic of this section
whereas we follow the lines of [28].

To this end, let z ∈ ZP be the given sample from (4.13). We denote by

• Prob(f |z) the conditional probability of the function f given the sample z.

• Prob(z|f) is the conditional probability that by a random sampling of the
underlying function f at the points {x1, . . . , xP} we get {y1, . . . , yP}. This is
a model of the noise.

• Prob(f) denotes some a priori knowledge of the function f which can be used
to impose constraints on the model. This can be done by assigning significant
probability only to those functions that satisfy those constraints.

If the probability distribution for the noise Prob(z|f) and the constraints Prob(f)
are known, we can compute the posterior distribution Prob(f |z) by the Bayes rule,
which is

Prob(f |z) ∝ Prob(z|f) Prob(f) .

Let us assume that Prob(f) is a multivariate Gaussian with zero mean4 in the
Hilbert space H(K). Then, see [28] and Appendix A.1 for details, the prior has the
form

Prob(f) ∝ exp
(−‖f‖2

H(K)

)
.

Furthermore, we assume that the noise is normally distributed with variance σ.
Then, its probability is

Prob(z|f) ∝ exp

(
− 1

2σ2

P∑
j=1

(f(xj)− yj)2

)
,

and using Bayes formula we get for the a posteriori probability of f with the given
sample z that

Prob(f |z) ∝ exp

(
− 1

2σ2

P∑
j=1

(f(xj)− yj)2 − ‖f‖2
H(K)

)
.

Now, amongst others, the Maximum A Posteriori (MAP) estimate provides an op-
portunity to estimate f from the given distribution. To maximize the a posteriori

4 Let X(t), t ∈ Ω be Gaussian random variables with zero mean and covariance E[X(s)X(t)] =
K(s, t). Then, there exists a one to one correspondence between the RKHS H(K) and the Hilbert
space X which is spanned the X(t), t ∈ Ω, see [28,127] and Appendix A.1.
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probability Prob(f |z), one can equivalently minimize

1

P

P∑
j=1

(f(xj)− yj)2 + ν∗ ‖f‖2
H(K) , where ν∗ = 2σ2/P ,

with respect to f . Thus, the MAP interpretation of learning from samples leads,
under certain assumptions, to a minimization of the error–functional (4.3) for a
given regularization parameter ν.

To sum up, we presented two different motivations, namely Structural risk min-
imization and the Maximum A Posteriori interpretation, for the use of the Regu-
larization Networks approach in the form of (4.3). They both provided us with an
estimate of the regularization parameter ν. However, for the SRM–method a com-
putation of νopt is inefficient and for ν∗ from the MAP interpretation it was argued
in [28] that it does not provide a good estimate for the optimal regularization param-
eter. To compute νopt and ν∗, further assumptions were made during SRM and the
MAP interpretation. Therefore it is important to note that they can only be seen
as estimates for the optimal regularization parameter in the Regularization Network
approach. In [19], further strategies for the choice of ν and estimates on the approx-
imation errors are given which are based on statistical computations. More practical
techniques to estimate ν are cross–validation, [50,127], or the L–curve, [46,47].

To summarize, we substantiated the Regularization Network approach, i.e. a
minimization of (4.3), in the RKHS setting, and observed that special care has to
be taken to the choice of the regularization parameter.

The next step is now to concretize the RKHS setting of the Regularization Net-
work approach for extensions of the models f`r and fLr which have been introduced
in (3.5) and (3.7), respectively. This will be the topic of Section 4.5.

4.5 Approximation spaces and norms

In Section 3.2.1 and Section 3.2.2 we briefly introduced two models f`r and fLr for
the approximation of an n–dimensional function f : [0, 1]→ R. We will now identify
the underlying approximation spaces for an extension of these models to the complex
valued case as reproducing kernel Hilbert spaces and compute the according norms
that are used for regularization in the Regularization Network approach. To do this,
we first define a reproducing kernel K : [0, 1]n×[0, 1]n → C and thus a RKHS H (K)
of n–dimensional functions which contains both extended models. In a second step
two subsets H (1)

L and KL of this space are identified which describe the extended
models f` and fL, respectively.

This finally enables us to formulate the Regularization Networks which are based
on the extended models in Section 4.5.1 and Section 4.5.2. To do this, the error
functionals E(1) and E(n) will be derived from (4.3) and necessary conditions for
their minimizers will be given.
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The following computations are based on the statements in Section 4.1. In this
notation, the general set Ω will now be the real interval Ω := [a0, bm] ⊂ R, where the
values a0 and bm are defined by (2.53), and (2.54) respectively. For any Hilbert space
with scalar product 〈·, ·〉 we can define a norm by ‖φ‖ := 〈φ, φ〉1/2. Furthermore, we
denote by C0(Ω,C) the set of continuous functions φ : Ω→ C, for which we will use
the usual definition of the maximum norm

‖φ‖∞ := sup
s∈Ω
|φ(s)| .

Note that in the remainder of this thesis it is important to distinguish between
one–dimensional and n–dimensional functions. To make this easier, we will denote
Hilbert spaces which contain functions φ : R → C with H, while Hilbert spaces
containing functions f : Rn → C are denoted with H . For the respective one–
dimensional and n–dimensional kernels we use lower and upper case letters.

Now, let a family of Hilbert spaces with associated scalar products and norms

Hd ⊂ C0(Ω,C) , 〈·, ·〉Hd , ‖ · ‖Hd , d = 0, . . . , n (4.17)

be given. Furthermore, let for d = 0, . . . , n,

Fd := {ϕd0, ϕd1, . . .} ⊂ Hd (4.18)

be a basis of Hd, and assume that for d = 0, . . . , n the following properties hold:

(P1) The embeddings (Hd, ‖ · ‖Hd) ↪→ (C0(Ω,C), ‖ · ‖∞) are continuous.

(P2) The elements of Fd are orthogonal with respect to the inner product 〈·, ·〉Hd ,
i.e. it holds

〈ϕdi , ϕdj 〉Hd = γdj δi,j , with γdj ∈ R . (4.19)

Furthermore, we assume that without loss of generality γd0 := 1. Here, δi,j
denotes Kronecker’s delta function, which is defined by δi,j := 1, if i = j, and
δi,j := 0 else. Note that we do not claim that the bases F0, . . . ,Fn are finite.

(P3) For any φ ∈ Hd it holds that φ ∈ Hd.

(P4) The constant function 1 : Ω → C, defined by 1(s) := 1, is included in the
space, i.e. 1 ∈ Hd.

To show that each Hd is a reproducing kernel Hilbert space (RKHS), we have to
establish continuity of the evaluation functionals Et : Hd → C with respect to the
norm ‖·‖Hd , see (4.5) and Definition 4.5. Indeed, since the embedding (Hd, ‖·‖Hd) ↪→
(C0(Ω,C), ‖ · ‖∞) is continuous we can estimate for 0 6= φ ∈ Hd ⊂ C0(Ω,C):

|Et(φ)|
‖φ ‖Hd

=
|φ(t)|
‖φ ‖Hd

.
|φ(t)|
‖φ ‖∞

=
|Et(φ)|
‖φ ‖∞

≤ sup
φ∈C0(Ω,C)

φ 6=0

|Et(φ)|
‖φ ‖∞

≤ C∞ .
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The last estimate is simply the fact that the operator norm of Et with respect to
the maximum norm is bounded on C0(Ω,C) by some constant C∞ <∞. This shows
that the point evaluation functional Et : Hd → C is also continuous with respect to
the norm ‖ · ‖Hd , and therefore that Hd is a RKHS. Let two elements φ1, φ2 ∈ Hd

be given by

φ1(s) :=
∞∑
i=0

ai ϕ
d
i (s) , and φ2(s) :=

∞∑
i=0

bi ϕ
d
i (s) , ai, bi ∈ C .

With (4.19), it is easy to see that the scalar product in Hd has the form

〈φ1, φ2〉Hd =
∞∑
i=0

γdi ai bi , (4.20)

and Theorem 4.9 then shows that the reproducing kernel kd : Ω × Ω → C for Hd

has the representation

kd(s, t) =
∞∑
i=0

1

γdi
ϕdi (s)ϕ

d
i (t) . (4.21)

Thus, H0(k0), . . . ,Hn(kn) are RKHS’s over the real interval [a0, bm], i.e. their ele-
ments are functions φ : [a0, bm]→ C, and the sets Fd form their bases.

Multiplying the reproducing kernels (4.21) for d = 0, . . . , n, now gives the prod-
uct function

k(n)(s, t) := k0(s, t) · · · kn(s, t) , (4.22)

which is known to be the reproducing kernel of some RKHS H(k(n)), see (4.10). It is
important to note that this is not a tensor product construction, but still a function
k(n) : Ω× Ω→ C. With (4.21) and (4.22) the product function has the expansion

k(n)(s, t) =
∞∑

i0,...,in=0

1

γ0
i0
· · ·γnin

(
n∏
d=0

ϕdid(s)

)(
n∏
d=0

ϕdid(t)

)
. (4.23)

To identify the RKHS for which k(n) is the reproducing kernel, we next show that
the linear space

H(k(n))o := span
{
k(n)(·, t) : t ∈ Ω

}
=

{
p∑
i=1

aik
(n)(s, ti) : p ∈ N, ti ∈ Ω, ai ∈ C

}
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is also spanned by the products
∏n

d=0 ϕ
d
id

(s), id ∈ N0. Indeed, for an element φ ∈
H(k(n)) it holds with (4.23) that

φ(s) =

p∑
i=1

ai k
(n)(s, ti)

=

p∑
i=1

ai

∞∑
i0,...,in=0

1

γ0
i0
· · ·γnin

(
n∏
d=0

ϕdid(s)

)(
n∏
d=0

ϕdid(ti)

)

=
∞∑

i0,...,in=0

ai0,...,in

(
n∏
d=0

ϕdid(s)

)
,

(4.24)

with the complex coefficients

ai0,...,in :=
1

γ0
i0
· · ·γnin

p∑
i=1

ai

(
n∏
d=0

ϕdid(ti)

)
, id ∈ N0 . (4.25)

Due to this fact, and with Theorem 4.8, the set{
f(s) =

∞∑
i0,...,in=0

ai0,...,in

(
n∏
d=0

ϕdid(s)

)
: ai0,...,in ∈ C, ‖f‖2

H(k(n)) <∞
}

(4.26)

contains H(k(n))o and thus it is also dense in H(k(n)). Furthermore, the assumption
that 1 ∈ Hd, for all d = 0, . . . , n, directly implies

H0(k0) ∪ . . . ∪Hn(kn) ⊂ H(k(n)) ⊂ C0([a0, bm],C) .

From this multiplicative extension to a RKHS of one–dimensional functions φ :
[a0, bm]→ C, we next construct a RKHS of n–dimensional functions. Typically, this
is done by a tensor product construction of one–dimensional reproducing kernels to
construct an n–dimensional reproducing kernel, see (4.11). Here, we pursue another
strategy and use Kolmogorov’s superposition theorem instead.

Returning to Kolmogorov’s representation (2.36) of n–dimensional continuous
functions by

f(x) =
m∑
q=0

φf ◦Ψq(x) , with fixed Ψq(x) =
n∑
p=1

αp ψ(xp + qa) + ∆q ,

we see that it provides us for any f : [0, 1]n → C with a function φf : [a0, bm]→ C,
which depends on f . Note that for a complex valued function, one can simply
apply Kolmogorov’s theorem separately to its real and imaginary part. Conversely,
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it directly gives us, for any continuous one–dimensional function φ : [a0, bm]→ C, a
continuous n–dimensional function fφ : [0, 1]n → C by

fφ(x) :=
m∑
q=0

φ ◦Ψq(x) ,

which now depends on φ. This fact will be used to construct an n–dimensional
function K : [0, 1]n×[0, 1]n → C and a RKHS H (K) for which K is the reproducing
kernel.

To this end, define for d = 0, . . . , n and id ∈ N0 the functions

Φi0,...,in(x) :=
m∑
q=0

ϕi0,...,in ◦Ψq(x) , where ϕi0,...,in(s) :=
n∏
d=0

ϕdid(s) (4.27)

are the products spanning the set (4.26), and the n–dimensional symmetric function

K(x,y) :=
∞∑

i0,...,in=0

1

γ0
i0
· · ·γnin

Φi0,...,in(x) Φi0,...,in(y) . (4.28)

Here, the values γdid ∈ R, d = 0, . . . , n, id ∈ N0, are still given by (4.19). The fact

that this series converges follows from the relation between K(x,y) and k(n)(s, t)
which is given by

K(x,y) =
∞∑

i0,...,in=0

1

γ0
i0
· · ·γnin

(
m∑
q=0

n∏
d=0

ϕdid

(
Ψq(x)

))( m∑
q=0

n∏
d=0

ϕdid

(
Ψq(y)

))

=
∞∑

i0,...,in=0

m∑
q1,q2=0

1

γ0
i0
· · ·γnin

(
n∏
d=0

ϕdid

(
Ψq1(x)

)) (
n∏
d=0

ϕdid

(
Ψq2(y)

))

=
m∑

q1,q2=0

∞∑
i0,...,in=0

n∏
d=0

1

γdid
ϕdid

(
Ψq1(x)

)
ϕdid

(
Ψq2(y)

)
=

m∑
q1,q2=0

n∏
d=0

( ∞∑
id=0

1

γdid
ϕdid

(
Ψq1(x)

)
ϕdid

(
Ψq2(y)

))

=
m∑

q1,q2=0

n∏
d=0

kd
(

Ψq1(x),Ψq2(y)
)

=
m∑

q1,q2=0

k(n)
(

Ψq1(x),Ψq2(y)
)

.

(4.29)

This representation will also enable us to show that K(x,y) is a symmetric positive
definite function, see Definition 4.6. To prove this, we have to show that for an ar-
bitrary set of points X := {x1, . . . ,xp} ⊂ [0, 1]n, the matrix KX := {K(xi,xj)}pi,j=1
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is positive definite. Let X be given as above. We define the points in a further set

Y := {y0,1, . . . , y0,p, . . . . . . , ym,1, . . . , ym,p} ⊂ R, by yq,i := Ψq(xi) .

With this set we define the block–matrix

KY :=
{

Kq1,q2

}m
q1,q2=0

with the blocks Kq1,q2 :=
{
k(n)(yq1,i , yq2,j)

}p
i,j=1

.

Now, let c ∈ Rp be an arbitrary vector. Since k(n) is the reproducing kernel of
H(k(n)), Theorem 4.7 guarantees that KY is positive definite. For this reason, it
holds for d := (cT , . . . , cT )T ∈ R(m+1)p that

cT KX c = cT

(
m∑

q1,q2=0

Kq1,q2

)
c = dT KY d ≥ 0 .

This shows that K is positive definite.
Furthermore, Theorem 4.8 gives the existence of a unique RKHS, denoted by

H (K), for which K is the reproducing kernel.
Note the similarity of this construction to the result from Theorem 4.10 and the

remark following it. This motivates an interpretation of H (K) as the generalized
pull–back of H(k(n)). However, due to the sums in (4.29), Theorem 4.10 cannot be
applied directly to K.

Starting from the linear space

H (K)o :=

{
p∑
i=1

aiK(·,yi) : p ∈ N, yi ∈ [0, 1]n, ai ∈ C

}
,

we now investigate the RKHS H (K) and its scalar product 〈·, ·〉H (K).
First, analogue computations to the one–dimensional case show that any f ∈

H (K)o can be expanded in terms of Φi0,...,in :

f(x) =

p∑
i=1

aiK(x,yi) =

p∑
i=1

ai

∞∑
i0,...,in=0

1

γ0
i0
· · ·γnin

Φi0,...,in(x) Φi0,...,in(yi)

=
∞∑

i0,...,in=0

ai0,...,inΦi0,...,in(x) ,

(4.30)

where

ai0,...,in :=
1

γ0
i0
· · ·γnin

p∑
i=1

aiΦi0,...,in(yi) ∈ C . (4.31)
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The similar argument as for (4.24) shows, together with Theorem 4.8, that H (K)
is the completion of{

f(x) =
∞∑

i0,...,in=0

ai0,...,inΦi0,...,in(x) : ai0,...,in ∈ C, ‖f‖2
H (K) <∞

}
. (4.32)

Now, let f from this set be given. We compute

f(x) =
∞∑

i0,...,in=0

ai0,...,inΦi0,...,in(x) =
∞∑

i0,...,in=0

ai0,...,in

m∑
q=0

ϕi0,...,in ◦Ψq(x)

=
m∑
q=0

( ∞∑
i0,...,in=0

ai0,...,in ϕi0,...,in

)
◦Ψq(x) =:

m∑
q=0

φf ◦Ψq(x) ,

(4.33)

and find that φf is contained in the set (4.26) which is dense in H(k(n)), see (4.27).
Clearly, the converse also holds true, i.e. for φ from (4.26) we have that fφ :=∑m

q=0 φ ◦Ψq lies in (4.32). Consequently, this also holds for the respective closures,

i.e. we can replace (4.26) withH(k(n)) and (4.32) with H (K) in this argumentation.
Now, let f, g ∈H (K)o be given by

f(x) :=

p∑
j=1

ajK(x,yj) and g(x) :=
s∑
j=1

bjK(x, ỹj) ,

where p, s ∈ N, and aj, bj ∈ C, yj, ỹj ∈ [0, 1]n. Then, the coefficients ai0,...,in ,
bi0,...,in ∈ C, d = 0, . . . , n, id ∈ N0, are given by (4.31) respectively, and φf , φg ∈
H(k(n)) can be derived from f, g as in (4.33). From (4.7) and (4.33), we get that
the scalar product of f and g is given by

〈f, g〉H (K) =

p∑
j1=1

s∑
j2=1

aj1 bj2 K(ỹj2 ,yj1)

=

p∑
j1=1

s∑
j2=1

aj1 bj2

∞∑
i0,...,in=0

1

γ0
i0
· · ·γnin

Φi0,...,in(ỹj2) Φi0,...,in(yj1)

=
∞∑

i0,...,in=0

1

γ0
i0
· · ·γnin

(
p∑

j1=1

aj1 Φi0,...,in(yj1)

)(
s∑

j2=1

bj2 Φi0,...,in(ỹj2)

)

=
∞∑

i0,...,in=0

γ0
i0
· · ·γnin ai0,...,in bi0,...,in = 〈φf , φg〉H(k(n)) .

(4.34)

Here, the last equation can be realized in analogue manner, using (4.7), (4.23),
and (4.25) for 〈·, ·〉H(k(n)). Now, since the scalar product is continuous, (4.34) also
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holds for functions in H (K). Thus, the scalar product of n–dimensional functions
f, g ∈H (K) is simply the scalar product of the one–dimensional functions φf , φg ∈
H(k(n)), resulting from (4.33). Note that ‖f‖2

H (K) < ∞ imposes a decay condition

on the values |ai0,...,in|2.
So far, we have defined a RKHS H (K) of n–dimensional functions by means of

a reproducing kernel K : [0, 1]n × [0, 1]n → C, and identified its associated scalar
product.

Next, we turn back to the models for approximation that have been introduced
in Section 3.2.1 and Section 3.2.2. Remember that there we used the superscript r
to indicate the use of real valued basis functions. In fact, we defined

f`(x) =
m∑
q=0

φ` ◦Ψq(x) , with φ` :=
∑̀
j=0

cj ϕj , (4.35)

` = `r <∞, ϕj = ϕrj , and cj ∈ R, for j = 0, . . . , `r, see (3.5). The second model was
given by

fL(x) =
m∑
q=0

(
n∏
d=0

φd`d

)
◦Ψq(x) , with φd`d =

`d∑
j=0

cdj ϕ
d
j , (4.36)

`d = `rd < ∞, L :=
∑n

d=0(`d + 1) = Lr, ϕdj = ϕr,dj , and cdj ∈ R, for d = 0, . . . , n,
j = 0, . . . , `rd, see (3.7).

Remark 4.17. Note that these models have been defined, using coefficients cj, c
d
j ∈

R, and basis functions ϕrj , ϕ
r,d
j ∈ C0([a0, bm]), which is the set of continuous real

valued functions, while the investigations in this section deal with complex valued
functions from C0([a0, bm],C). However, for our computations it is advantageous to
first extend the models f`r and fLr to the complex valued case. Then, from property
(P3) of the spaces H0, . . . ,Hn, we can conclude that for any f ∈ H (K), it holds
that its complex conjugate f ∈ H (K), and thus that the restriction of f to its real
part

fr(x) := Re(f(x)) :=
f(x) + f(x)

2
(4.37)

also belongs to the space H (K). The same holds for the imaginary part fi :=
Im(f) := (f − i f)/2 ∈H (K) of the function f. Note that fr and fi are real valued
functions and f = fr + i fi.

To extend the models (3.5), (3.7) and define finite dimensional approximation
spaces, we assume in the following that in (4.36) the basis functions are given by
finite subsets

Fd`d = {ϕd0, . . . , ϕd`d} ⊂ Fd , d = 0, . . . , n , (4.38)
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of (4.18), and in (4.35) we set ϕi := ϕ0
i , for i = 0, . . . , ` := `0. Furthermore, all

coefficients are now complex numbers cj, c
d
j ∈ C. This directly gives the subspaces

Hd
`d

:= span{ϕd0, . . . , ϕd`d} ⊂ Hd(kd) , d = 0, . . . , n . (4.39)

Additionally, we claim that the subsets F0
`d
, . . . ,Fn`n in (4.38) are chosen such that the

properties (P1)–(P4) still hold for the spaces H0
`0
, . . . ,Hn

`n
. Now, since all previous

calculations for the respective RKHS’s are also valid for finite sums5, this leads to
subspaces

H(n)
L := span

{
n∏
d=0

ϕdid : id ∈ {0, . . . , `d}
}
⊂ H(k(n)) , (4.40)

and

HL := span
{

Φi0,...,in : id ∈ {0, . . . , `d}
}
⊂H (K) . (4.41)

Obviously, for the outer functions in the extended models it holds

φ` ∈ H(n)
L ,

n∏
d=0

φd`d ∈ H
(n)
L , and thus f`, fL ∈HL ⊂H (K) .

However, the space HL is much richer in the sense that it contains functions that do
not coincide with our extended models. To be more concrete in our description of
the underlying approximation sets, we will next construct two subsets of HL which
only contain (complex valued) functions of the form f` or fL, respectively.

4.5.1 Regularization Network approach for the first model

For the first (extended) model f`, which is given by (4.36), this construction is
straightforward. We simply take `1 = . . . = `n = 0, and since we always claim
that 1 ∈ Hd

`d
, this implies for d = 1, . . . , n, that the subsets in (4.38) have to be

chosen as Fd = {ϕd0 := Cd}, where Cd ∈ C is a constant such that 〈ϕd0, ϕd0〉 = 1.
The subspace of H (K) which is defined by (4.41) for these sets will be denoted

by H (1)
` . It exactly describes the first model, i.e. f` ∈ H (1)

` , and conversely all

functions f ∈H (1)
` , given by

f(x) =
∑̀
i=0

ciΦi,0,...,0(x) =
m∑
q=0

(∑̀
i=0

ciϕi

)
◦Ψq(x) =:

m∑
q=0

φ` ◦Ψq(x) ,

5Replace in Section 4.5 all sums
∑∞
id=0 with

∑`d
id=0 and all

∑∞
i0,...,in=0 with

∑`0,...,`n
i0,...,in=0.
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have the same form as f`. Consequently, with 〈ϕd0, ϕd0〉Hd(kd) = γd0 = 1, d = 1, . . . , n,

the norm of f` ∈H (1)
` can be computed from

‖ f` ‖2
H (K) =

∑̀
i=0

γ0
i c

2
i =

∥∥∥∥∥∑̀
i=0

ciϕi

∥∥∥∥∥
2

H0(k0)

. (4.42)

Now, remember that the task is to approximate functions f : [0, 1]n → R from
their function values f(xj) = yj ∈ R, at locations xj ∈ [0, 1]n, j = 1, . . . , P . Finally,
following Remark 4.17, we replace f` with the real valued function f`,r, which is
defined by (4.37), and observe that the Regularization Network approach for the
first model consists of the following

Problem 4.18. For a given data set Z ⊂ [0, 1]n × R, see (4.1), and a given
regularization parameter 0 < ν ∈ R, find a minimum f`,r : [0, 1]n → R of

E(1)(f`,r) :=
1

P

P∑
j=1

(
f`,r(xj)− yj

)2
+ ν ‖f`,r‖2

H (K) , (4.43)

with f`,r = (f` + f
(1)

` )/2 and f` ∈H (1)
` , see (4.37).

Note that we are looking for a minimizer f`,r ∈ H (K), which is enforced by

the norm, and claim that f` ∈ H (1)
` , which defines our model. Next, we will

show that this complex valued formulation can be directly reinterpreted as a convex
minimization problem in R2(`+1). To this end, let c

(1)
`,C := (c0, . . . , c`)

T ∈ C(`+1)

denote the complex coefficient vector of f`. We split up all complex values cj and
basis functions ϕj, j = 0, . . . , `, into their real and imaginary parts by

cj = cj,r + i cj,i , and ϕj(s) = ϕj,r(s) + i ϕj,i(s) .

Furthermore, let

ϕ̃j,r(s) := ϕj,r(s) , ϕ̃j,i(s) := −ϕj,i(s) , j = 0, . . . , ` .

With these real valued basis functions, f`,r : [0, 1]n → R can be represented by

f`,r(x) =
m∑
q=0

φ`,r ◦Ψq(x) =
m∑
q=0

 ∑
e∈{r,i}

∑̀
j=0

cj,eϕ̃j,e

 ◦Ψq(x) . (4.44)

For more details on the calculations in this section we refer to Appendix A.2.
We remark that with `r := 2 `, the function f`,r has a similar structure as in

(3.5). This is due to the fact that H (1)
` is a linear space what implies f`,r ∈H (1)

` .
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Next, we define for j, k = 0, . . . , `, e1, e2 ∈ {r, i} the values

Se1,e2j,k :=
1

2


δj,kγk + Re

(
〈ϕj, ϕk〉H0(k0)

)
, e1 = e2 = r,

δj,kγk − Re
(
〈ϕj, ϕk〉H0(k0)

)
, e1 = e2 = i,

− Im
(
〈ϕj, ϕk〉H0(k0)

)
, e1 6= e2.

Note that Se1,e2j,k = Se2,e1k,j , and the regularization term is given by

‖f`,r‖2
H (K) =

∑
e1,e2∈{r,i}

∑̀
k,l=0

ck,e1cl,e2S
e1,e2
k,l .

Thus, minimizing (4.43) is equivalent to finding a minimum of

E(1)(f`,r) = E(1)(c
(1)
` )

=
1

P

P∑
j=1

 ∑
e∈{r,i}

∑̀
k=0

ck,e

m∑
q=0

ϕ̃k,e
(
Ψq(xj)

)− yj
2

+ ν
∑

e1,e2∈{r,i}

∑̀
k,l=0

ck,e1cl,e2S
e1,e2
k,l

(4.45)

over all real vectors c
(1)
` := (c0,r, c0,i, . . . , c`,r, c`,i)

T ∈ R2(`+1). This reinterpretation as
real valued problem shows that E(1) is also convex with respect to the real coefficient
vector c

(1)
` ∈ R2(`+1).

Therefore, a minimizer of E(1)(c
(1)
` ) is uniquely characterized by the necessary

and sufficient conditions

∂

∂cµ,θ
E(1)(c

(1)
` ) = 0 , for all µ = 0, . . . , ` , θ ∈ {r, i} .

Further computations then show that the minimizer is given by the solution of the
following system of linear equations:(

BTB + νP S
)
c

(1)
` = BTy . (4.46)

Here, the data matrix B ∈ RP×2(`+1) is given by an evaluation of
∑m

q=0 ϕ̃k,e ◦Ψq at
the given data points, i.e.

B :=
m∑
q=0

 ϕ̃0,r(Ψq(x1)) ϕ̃0,i(Ψq(x1)) . . . ϕ̃`,r(Ψq(x1)) ϕ̃`,i(Ψq(x1))
...

...
ϕ̃0,r(Ψq(xP )) ϕ̃0,i(Ψq(xP )) . . . ϕ̃`,r(Ψq(xP )) ϕ̃`,i(Ψq(xP ))

 , (4.47)
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while the symmetric regularization matrix is given by

S :=



Sr,r0,0 Sr,i0,0 . . . Sr,r0,` Sr,i0,`

S i,r0,0 S i,i0,0 . . . S i,r0,` S i,i0,`
...

...
Sr,r`,0 Sr,i`,0 . . . Sr,r`,` Sr,i`,`

S i,r`,0 S i,i`,0 . . . S i,r`,` S i,i`,`

 ∈ R2(`+1)×2(`+1) .

The data vector y = (y1, . . . , yP )T ∈ RP collects all known function values yj =
f(xj), j = 1, . . . , P .

Thus, the numerical costs to compute a minimizer of (4.45) are at most of the
order O(P 22(`+ 1)2) to compute BTB, and O(8(`+ 1)3) to solve (4.46), e.g. when
using a direct solver.

In this section, we could identify the underlying approximation space for the
extended model f` as defined in (4.35), to be the space H (1)

` . To be more precise,
to approximate a given function f ∈ C0([0, 1]n) we fixed the first model by claiming

f` ∈ H (1)
` and approximate f by f`,r = (f` + f

(1)

` )/2 ∈ H (1)
` . Additionally, the

corresponding norm has been computed in (4.42) such that we could formulate the
Regularization Network approach for the first model in Problem 4.18. Finally, the
necessary and sufficient conditions for an approximand were given by means of a
system of linear equations (4.46).

4.5.2 Regularization Network approach for the second model

To compute the set of functions that describes the (extended) second model fL from
(4.36), we take the finite sets F0

`0
, . . . ,Fn`n in their general form, as introduced in

(4.38). Thus, our starting point is the space HL ⊂H (K) from (4.41). We define a
subset of this space by

KL :=

{
`0,...,`n∑
i0,...,in=0

ci0,...,inΦi0,...,in(x) : ci0,...,in = c0
i0
· · · cnin , cdid ∈ C

}
⊂HL . (4.48)

One can easily compute that an element f ∈ KL is of the form

f(x) =

`0,...,`n∑
i0,...,in=0

ci0,...,inΦi0,...,in(x) =
m∑
q=0

(
`0,...,`n∑
i0,...,in=0

c0
i0
· · · cninϕ0

i0
· · ·ϕnin

)
◦Ψq(x)

=
m∑
q=0

n∏
d=0

(
`d∑
i=0

cdiϕ
d
i

)
◦Ψq(x) =:

m∑
q=0

(
n∏
d=0

φd`d

)
◦Ψq(x) .

This shows that fL ∈ KL, and conversely that KL only consists of elements that

have the same structure as the extended second model. Note that H (1)
` ⊂ KL, and
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that KL is not a linear space: For elements f1, f2 ∈ KL and α, β ∈ C, in general it
holds that αf1 + βf2 /∈ KL.

For the n–dimensional norm ‖ · ‖H (K) of elements in KL, in particular of fL, we
derive with (4.34)

‖ fL ‖2
H (K) =

`0,...,`n∑
i0,...,in=0

γ0
i0
· · ·γnin(c0

i0
· · · cnin)2 =

n∏
d=0

(
`d∑
i=0

γdi (c
d
i )

2

)

=
n∏
d=0

∥∥∥∥∥
`d∑
i=0

cdiϕ
d
i

∥∥∥∥∥
2

Hd(kd)

.

(4.49)

Thus, it can be computed by a product of one–dimensional norms in Hd(kd).
Now, for the second model the Regularization Network approach consists of the

following

Problem 4.19. Let the data set Z ⊂ [0, 1]n×R be given by (4.1) and let 0 < ν ∈ R.
Then, find a minimum fL,r : [0, 1]n → R of

E(n)(fL,r) :=
1

P

P∑
j=1

(
fL,r(xj)− yj

)2
+ ν

∥∥ fL,r ∥∥2

H (K)
, (4.50)

with fL ∈ KL ⊂HL. Again, fL,r and fL are interrelated by (4.37).

Analogue to the first model, we replaced fL with the real valued function fL.r in
the minimization. This means that we define the model by claiming fL ∈ KL and
search for a minimizer fL,r ∈H (K) which is enforced by the norm.

Let c
(n)
L,C := (c0

0, . . . , c
0
`0
, . . . , cn0 , . . . , c

0
`n

) ∈ CL, L :=
∑n

d=0(`d+1) denote the com-
plex coefficient vector of fL. In general, similar to the computations in Section 4.5.1,
the real valued formulation follows from the splitting of all complex coefficients cdj
and basis functions ϕdj , d = 0, . . . , n, j = 0, . . . , `d into their real and imaginary part:

cdj = cdj,r + i cdj,i , and ϕdj (s) = ϕdj,r(s) + i ϕdj,i(s) .

However, an expansion of fL,r and ‖fL,r‖2
H (K) in terms of (ϕdj,r ◦Ψq), and (ϕdj,i ◦Ψq)

similar to (4.44) becomes very tedious, see (A.6), and will be omitted here. We
rather give and expansion which results from a splitting of each factor φd`d = φd =
φdr + i φdi , d = 0, . . . , n, into its real and imaginary part. Note that they have the
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representations

φd(s) =

`d∑
j=0

(
cdj,r + i cdj,i

)(
ϕdj,r(s) + i ϕdj,i(s)

)

=

`d∑
j=0

(
cdj,rϕ

d
j,r(s)− cdj,iϕdj,i(s)

)
+ i

`d∑
j=0

(
cdj,iϕ

d
j,r(s) + cdj,rϕ

d
j,i(s)

)
=: φdr (s) + i φdi (s) , d = 0, . . . , n .

For more details on the computations in this section we always refer to Appendix A.3.
With these splittings, it can be shown that fL,r has the nonlinear expansion

fL,r(x) =
1∑

j0,...,jn=0

(
Pn
d=0

jd) even

(−1)
1
2

(j0+...+jn)

m∑
q=0

(
n∏
d=0

φde(jd)

(
Ψq(x)

))
, (4.51)

where we defined e(0) := r, and e(1) := i. Note that we always define 0 to be an
even number since a division by 2 produces no remainder. Furthermore, defining for
d = 0, . . . , n, j ∈ {0, 1} the real values

Sdj :=

{
〈φdr , φdr 〉Hd(kd) − 〈φdi , φdi 〉Hd(kd) , j = 0 ,

〈φdr , φdi 〉Hd(kd) + 〈φdi , φdr 〉Hd(kd) , j = 1 ,

the regularization term can be computed by

‖fL,r‖2
H (K) =

1

2

n∏
d=0

 ∑
e∈{r,i}

‖φde‖2
Hd(kd)

+
1

2

1∑
j0,...,jn=0

(
Pn
d=0

jd) even

(−1)
1
2

(j0+...+jn)

n∏
d=0

Sdjd .

Remark 4.20. Note that another possibility to derive a real valued model f̃
(n)
L :

[0, 1]n → R from fL is to define

f̃
(n)
L (x) :=

m∑
q=0

(
n∏
d=0

Re
(
φd
)) ◦Ψq(x) 6=

m∑
q=0

Re

(
n∏
d=0

(
φd
)) ◦Ψq(x) = fL,r(x) .

Since by property (P3) it holds that φd, φ
d ∈ Hd

`d
, d = 0, . . . , n this implies f̃

(n)
L ∈ KL,

while in general fL,r /∈ KL. Remember that KL is not a linear space. However, as
we will see in Section 6.2.1, this definition is more restrictive, and for this reason
we stick to (4.51).
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It is important to note that a direct implementation of (4.51) is impractical,
since it involves the computation of 2n−1 terms. Therefore, it is essential to use
complex arithmetic and first derive fL to get fL,r = Re(fL). The same holds for

‖fL,r‖2
H (K) = ‖fL + f

(n)

L ‖2
H (K)/4.

From the nonlinear expansion of fL,r in terms of the real functions (φdr ◦Ψq) and
(φdi ◦Ψq), we can conclude that their expansion in terms of (ϕdj,r ◦Ψq) and (ϕdj,i ◦Ψq)
is not linear, see also Appendix A.3. This implies that the error functional

E(n)(fL,r) = E(n)(c
(n)
L )

is not convex with respect to the real coefficient vector

c
(n)
L := (c0

0,r, c
0
0,i, . . . , c

0
`0,r
, c0
`0,i
, . . . . . . cn0,r, c

n
0,i, . . . , c

n
`n,r, c

n
`n,i)

T ∈ R2L .

Therefore, the conditions on a potential minimizer

∂

∂cδµ,θ
E(n)(c

(n)
L ) = 0 , for all δ = 0, . . . , n , µ = 0, . . . , ` , θ ∈ {r, i} ,

are necessary but not sufficient. For a computation of the derivatives we refer to
Appendix A.3.

Thus, the minimization Problem 4.19 now results in solving the system of non-
linear equations

∇E(n)(c
(n)
L ) = 0 ∈ R2L ,

for which we cannot guarantee a unique solution to exist. Standard techniques to
minimize nonlinear functions g : Rn → R will be briefly introduced in Section 5.1.

In this section, we defined the approximation set KL ⊂ HL ⊂ H (K) which is
the basis for the extended second model fL as defined in (4.36). Then, we defined our
model by claiming that fL ∈ KL and approximate a given function f ∈ C0([0, 1]n)

with fL,r = (fL + f
(n)

L )/2 ∈HL. With the norm ‖ · ‖H (K) that is induced by (4.34)
we formulated the Regularization Network approach in Problem 4.19. It turned out
that the corresponding error functional is not convex and that a potential minimizer
has to fulfill a system of nonlinear equations.

Remark 4.21. We finish with the remark that the constructions in this section
and Section 4.5.1 are also valid for a real valued construction, i.e. when starting
from (4.18) with basis functions ϕdj : Ω→ R in the sets F0, . . . ,Fn. Then, the space
H (K) consists of real valued functions and it trivially holds f`,r = f`, and fL,r = fL.
The main results remain the same: To compute the minimizer in Problem 4.18 a
system of linear equations has to be solved for a coefficient vector c

(1)
` ∈ R`+1, whereas

a minimizer c
(n)
L ∈ RL in Problem 4.19 is still characterized by a system of nonlinear

equations.
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Chapter 5

Implementational details

The primary goal that led us to the the Regularization Network approaches in form
of Problem 4.18 and Problem 4.19 was to benefit from the constructive version
of Kolmogorov’s superposition Theorem 2.14. A main point in our argumentation
to define this new approach was in Section 3.2 that Sprecher’s Algorithm 2.1 to
compute the outer function Φ requires exponential numerical costs with respect to
the dimensionality n of the function f that is approximated. To account for this
point in the new method, it is important to consider details on the implementation of
our Regularization Network approaches which influence their numerical complexity.

To this end, we first investigate nonlinear minimization techniques to minimize
E(n) in Section 5.1. The important point will be an estimation of the numerical costs
to evaluate the error functional and its gradient. Then, in Section 5.2, we deal with
the evaluation of the inner sums Ψq, and consider the influence of boundary values
of f in Section 5.3. Finally, we end with some remarks on a possible parallelization
of the algorithm in Section 5.4.

5.1 Nonlinear minimizers

In Section 4.5.1 we have seen that the error functional E(n)(c
(n)
L ) is not convex.

Therefore, nonlinear minimization procedures have to be used to compute a solution
of Problem 4.19. Here, different gradient based standard iteration schemes are tested
to compute a minimum of (4.50). Namely, we use

(a) the steepest descent method,

(b) the Fletcher–Reeves conjugate gradient method,

(c) the Polak–Ribière conjugate gradient method,

(d) and the Broyden–Fletcher–Goldfarb–Shanno algorithm.

95
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In the following we briefly introduce the methods to gain insight into their com-
putational complexities. A numerical analysis will be given in Section 6.2.1. For
more details on the theory we refer to [91]. In this section, we consider the general
problem of minimizing a function g : Rd → R.

All minimizers belong to the class of so–called line search methods. Here, for
a start value x0 ∈ Rd, in each iteration step k = 0, 1 . . ., a search direction pk is
computed and for some step length αk the next iterate is given by

xk+1 = xk + αk pk . (5.1)

Line search methods differ in the choice of pk and αk.
Methods (a)–(c) are gradient based minimization methods, and the simplest

choice for a search direction is to use the steepest descent at xk which is given
by the negative gradient pk = −∇g(xk). Anyhow, the steepest descent (SD)
method can lead to very inefficient convergence even for exact line search, i.e.
when αk minimizes the one–dimensional function `(α) := g(xk + αpk) with respect
to α exactly.

To introduce more efficient methods we first consider the minimization of a
quadratic function of the special form gQ,b(x) = xTQ x− bTx for some symmetric
positive definite matrix Q and some vector b. Then, to compute the k–th iterate
xk and the residual rk := Q xk − b = ∇gQ,b(xk), the conjugate gradient method
updates the last search direction by

pk =

{
−r0 if k = 0,

−rk + βk pk−1 else,
where βk =

(
rTk rk

rTk−1rk−1

)
. (5.2)

Then, the step size parameter αk is computed by an exact line search. For the
(temporarily) considered quadratic function this value is given by

αk = − rTk rk
pTkQ pk

.

It can be shown that for any x0, the value xn is the minimizer of gQ,b(x). The
basic property for this result is that the directions pk are mutually conjugate with
respect to Q, i.e. we have pTj Q pk = 0, if j 6= k. Note that the conjugate gradient
method is defined for a minimization of quadratic functions and cannot be applied
to solve Problem 4.19. For that purpose, it has to be generalized for non–quadratic
functions g : Rd → R.

This is done by the Fletcher–Reeves conjugate gradient (FRcg) method.
Here, the residual rk is replaced by the gradient ∇g(xk) in (5.2), and the step length
αk is now determined by an inexact line search. Namely it is chosen such that it
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satisfies for 0 < c1 < c2 < 1/2 the so called strong Wolfe conditions

`(αk) = g(xk + αkpk) ≤ g(xk) + c1αkp
T
k∇g(xk)

∂

∂αk
`(αk) = pTk∇g(xk + αkpk) ≤ c2

∣∣pTk∇g(xk)
∣∣ .

(5.3)

These conditions ensure that the next direction pk+1 is indeed a descent direction.
This even holds for any line search method that yields an αk satisfying (5.3).

There are many variants of the FRcg–method that differ mainly in the choice of
the parameter βk in (5.2). For the Polak–Ribière conjugate gradient (PRcg)
method the update parameter is defined by

βk :=
∇g(xk)

T [∇g(xk)−∇g(xk−1)]

‖∇g(xk)‖2
.

For strongly convex quadratic functions and exact line search the PRcg–method
coincides with the FRcg–method but numerical experience indicates that for general
nonlinear functions the PRcd–method tends to be more robust and efficient [91].

Method (d) belongs to the class of so–called Quasi–Newton methods. Solvers
from this class are derived from the Newton method, where the search directions
pk are computed from the gradient ∇g(xk) and the Hessian ∇2g(xk) by solving the
linear system

∇2g(xk) pk = −∇g(xk) .

Now, for Quasi–Newton methods the Hessian is approximated by a matrix Hk to
avoid a computation of ∇2g(xk). Practically, Hk is given by means of a low–rank
formula. Note that with Hk = I the steepest descent method belongs to this class.

In the Broyden–Fletcher–Goldfarb–Shanno (BFGS) method the matrix
Hk−1 is updated in each iteration step by informations gained from the update of
the gradients ∇g(xk) and ∇g(xk−1) to compute the current approximation Hk to
the Hessian. Practically, rather than updating Hk−1 and inverting it, the inverse
Gk−1 = H−1

k−1 is updated directly in each step by

Gk = (I− ρk−1 sk−1 yTk−1) Gk−1 (I− ρk−1 yk−1 sTk−1) + ρk−1 sk−1 sTk−1 ,

where

sk−1 := xk − xk−1 , yk−1 := ∇g(xk)−∇g(xk−1) , and ρk−1 := (yTk−1sk−1)−1 .

An initial approximation to the inverse Hessian G0 ≈ H−1
0 has to be given. The

search direction is given by

pk = −Gk∇g(xk) .
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method SD FRcg PRcg BFGS

complexity O(d) + Cg,∇g O(d) + Cg,∇g O(d) + Cg,∇g O(d2) + Cg,∇g

Table 5.1. Numerical complexities for one iteration step of the respective
nonlinear minimizers (a)–(d) to minimize a non–quadratic function g : Rd → R.
Cg,∇g denotes the complexity that is required to evaluate the function g and its gra-
dient ∇g.

For the derivation of these formulae and a detailed description of the BFGS–method
we refer to [91].

Practically, the GNU Scientific Library (GSL) provides efficient implementations
of methods (a)–(d). The GSL is freely published under the GNU public license,
see [138]. We remark that there, rather than using the strong Wolfe conditions
(5.3), the line search stepsize parameter αk is chosen such that for some tolerance
δ ≥ 0 it holds

∂`(αk)

∂α
= pTk∇g(xk + αkpk) ≤ δ |pk| |∇g(xk + αkpk)| . (5.4)

For δ = 0 this corresponds to an exact line search. We use the methods (a)–(d)
from the GSL in our implementations.

All nonlinear minimizers that are presented here only require an evaluation of the
function g and its gradient ∇g. However, the numerical complexities for these oper-
ations depend on the function that is considered. We denote the overall complexity
for one evaluation of g and ∇g by Cg,∇g. Table 5.1 shows the numerical complexities
for one iteration step of the minimizers (a)–(d). There, due to the lack of a detailed
information on the internal GSL–implementation of the line search minimization,
we assume that the stopping condition (5.4) can be used in combination with a
small δ > 0 such that O(1) steps are required to approximate the minimizer of `(α).
Numerical experiences showed that the latter assumption is reasonable.

Now, the function which has to be minimized in our context, is the error func-
tional E(n)(fL,r) = E(n)(c

(n)
L ) from (4.50) with respect to the vector c

(n)
L ∈ R2L.

This means that in our considerations we have g := E(n) and d := 2L. The en-
tries of the gradient ∇E(n)(c

(n)
L ) are given by (A.9). In Section 5.1.1 we investigate

the numerical complexities for an evaluation of these functions, i.e. we compute
Cg,∇g = CE(n),∇E(n) .

However, prior to this we introduce a Nested Iteration scheme which is ad-
ditionally applied for all iterative solvers. To explain this in more detail, consider
in (4.38) for each d = 0, . . . , n, and increasing integers `d,1 < . . . < `d,J = `d, the
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following sequence of nested sets of basis functions:

Fd`d,1 ⊂ Fd`d,2 ⊂ . . . ⊂ Fd`d,J = Fd`d ⊂ Fd .

With the constructions from Section 4.5 and (4.41) this defines the nested sequence
of subspaces

HL1 ⊂HL2 ⊂ . . . ⊂HLJ = HL ⊂ H (K) ,

where Lj =
∑n

d=0(`d,j + 1).
Now, to compute a minimizer of E(n) in HL, first select a method ITER(·) ∈

{(a), (b), (c), (d)} which performs one iteration step of the respective nonlinear min-
imizer. Furthermore, define for each j = 1, . . . , J a maximum number of iterations
kjmax ∈ N, and choose an accuracy ε > 0. Then, we use the following

Algorithm 5.1 (Nested Iteration scheme). Let the start value c1
0 ∈ R2L1 be given.

Set j ← 1 and compute

(1) for k = 0, . . . , kjmax, the next iterate

cjk+1 = ITER(cjk) .

If
|E(n)(cjk+1)−E(n)(cjk)|
|E(n)(cjk+1)| < ε, then set c

(n)
Lj

= cjk+1 and go to (2).

(2) Let fLj ,r ∈HLj be given by (A.6) with the coefficient vector c
(n)
Lj

.

If j = J , then stop the algorithm.

For j < J , set cj+1
0 ∈ R2Lj to be the vector of expansion coefficients of fLj ,r ∈HLj .

and increase j ← j + 1. Then go to (1).

This algorithm produces a function fL,r ∈ HL. It recursively precomputes the
start values for the respective iterative nonlinear minimizer on level j as the solution
fLj−1,r

of the same problem at the lower resolution j − 1.
Our motivation to use Algorithm 5.1 is simple: We have seen in Section 4.5.2

and Appendix A.3 that E(n) is highly non–convex. Therefore, we start with a simple
form of Problem 4.19 by choosing a low resolution to get a first approximation of
the desired solution. This approximation can be easily computed and might serve
as a good initial guess at a higher resolution. Thus, one advantage is to reduce
the dependency of the method from the choice of the start value c1

0. A numerical
analysis of Algorithm 5.1 will be given in Section 6.2.

5.1.1 Numerical complexities for evaluations of E(n), ∇E(n)

To get a final estimate on the numerical costs for one iteration step of the nonlinear
minimizers we have to substantiate the complexities for an evaluation of the error
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functional E(n) : R2L → R and the gradient ∇E(n) : R2L → R2L. We already noted
in Remark 4.20 that it is essential to use complex arithmetic for an evaluation of
these terms to avoid exponential costs. Remember that we have to compute

E(n)(c
(n)
L ) =

1

P

P∑
j=1

(
fL,r(xj)− yj

)2
+ ν ‖fL,r‖2

H (K) ,

and ∇E(n)(c
(n)
L ) which consists of the coordinate functions

∂

∂cδµ,θ
E(n)(c

(n)
L ) = ν

(
∂

∂cδµ,θ
‖fL,r‖2

H (K)

)
+

2

P

P∑
j=1

(
fL,r(xj)− yj

)( ∂

∂cδµ,θ
fL,r(xj)

)
,

δ = 0, . . . , n, µ = 0, . . . , `δ, θ ∈ {r, i}.
Now, before we consider the evaluation of these terms in more detail we further

concretize the finite sets of basis functions F0
`0
, . . . ,Fn`n from (4.38). Namely, we

assume for each d = 0, . . . , n that `d = 2Nd, Nd ∈ N and

ϕdNd−j = ϕdNd+j ∈ Fd`d , j = 0, . . . , Nd .

Shifting the index set {0, . . . , 2Nd} 7→ {−Nd, . . . , Nd} it holds

Fd`d = FdNd := {ϕd−Nd , . . . , ϕd0, . . . , ϕdNd} ,

and

ϕd−k = ϕdk , k ∈ {−Nd, . . . , Nd} .

Note that we are aiming at the choice ϕd±j(s) := exp(± 2π i kdj s/ωm), ωm ∈ R, kdj ∈ N
in Section 6.2. With this definition and (4.19) we obtain for j, k ∈ {−Nd, . . . , Nd}
that 〈

ϕdj , ϕ
d
k

〉
H (K)

=
〈
ϕdj , ϕ

d
−k
〉

H (K)
= γdk δ−k,j .

Next, for an evaluation of E(n)(c
(n)
L ) and ∇E(n)(c

(n)
L ) we observe that the costly

terms are the following: For given c
(n)
L ∈ R2L, remember that cdk = cdk,r + i cdk,i ∈ C.

Then, we have to compute the function values

fL,r(xj) =
m∑
q=0

Re

(
n∏
d=0

(
Nd∑

k=−Nd
cdkϕ

d
k

(
Ψq(xj)

)))
, (A)
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and the gradient, i.e. for all δ = 0, . . . , n, µ = −Nδ, . . . , Nδ, θ ∈ {r, i}, calculate

∂

∂cδµ,θ
fL,r(xj) =

m∑
q=0

{ ϕδµ,r
(
Ψq(xj)

)
, θ = r

−ϕδµ,i
(
Ψq(xj)

)
, θ = i

}
Re

 n∏
d=0
d 6=δ

(
Nd∑

k=−Nd
cdkϕ

d
k

(
Ψq(xj)

))
−
{
ϕδµ,i
(
Ψq(xj)

)
, θ = r

ϕδµ,r
(
Ψq(xj)

)
, θ = i

}
Im

 n∏
d=0
d 6=δ

(
Nd∑

k=−Nd
cdkϕ

d
k

(
Ψq(xj)

))
 (B)

at the positions xj ∈ [0, 1]n, j = 1, . . . , P . Furthermore, we have to compute the
norm

‖fL,r‖2
H (K) =

1

2

n∏
d=0

(
Nd∑

k=−Nd
(cdk)

2γdk

)
+

1

2
Re

(
n∏
d=0

(
Nd∑

k=−Nd
cdkc

d
−kγ

d
k

))
, (C)

and for all δ = 0, . . . , n, µ = −Nδ, . . . , Nδ, θ ∈ {r, i}, the partial derivatives

∂

∂cδµ,θ
‖fL,r‖2

H (K) = γδµc
δ
µ,θ

n∏
d=0
d6=δ

(
Nd∑

k=−Nd
(cdk)

2γdk

)

+

{ γδµc
δ
−µ,r, θ = r

−γδµc
δ
−µ,i, θ = i

}
Re

 n∏
d=0
d 6=δ

(
Nd∑

k=−Nd
cdkc

d
−kγ

d
k

)
−
{

γδµc
δ
−µ,i, θ = r

γδµc
δ
−µ,r, θ = i

}
Im

 n∏
d=0
d 6=δ

(
Nd∑

k=−Nd
cdkc

d
−kγ

d
k

)
 . (D)

Since (B) has to be computed for all δ = 0, . . . , n, (A) can be calculated simulta-
neously from partial results of (B). The same argument holds for (D) and (C). To
explain this in more detail, for j = 1, . . . , P , and q = 0, . . . ,m we proceed as follows:
First, compute for each d = 0, . . . , n the sums

Nd∑
k=−Nd

cdkϕ
d
k

(
Ψq(xj)

)
,

Nd∑
k=−Nd

(cdk)
2γdk , and

Nd∑
k=−Nd

cdkc
d
−kγ

d
k ,

storing the intermediate values ϕδµ,θ
(
Ψq(xj)

)
, γδµc

δ
µ,θ, and γδµc

δ
−µ,θ, θ ∈ {r, i} in vec-

tors. We remark that all sums are complex valued. From these sums, the respective
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complex valued products in (A)–(D) can be computed. Separating these products
into real and imaginary part allows for a calculation of the desired terms (A), (B),
(C), and (D). Note that to obtain (A) and (B) these terms have to be added up for
all q = 0, . . . ,m, and finally, to get E(n) and ∇E(n), an additional sum has to be
built over all j = 1, . . . , P .

Now, to estimate the total complexity of these operations we observe that a
complex valued addition is equivalent to two real valued additions, while a complex
valued multiplication requires four real multiplications and two real additions. For
a division of complex numbers we have to perform seven multiplications and three
additions of real numbers. Thus, the total complexity for a calculation of the data
terms

1

P

P∑
j=1

(
fL,r(xj)− yj

)2
, and

2

P

P∑
j=1

(
fL,r(xj)− yj

)( ∂

∂cδµ,θ
fL,r(xj)

)
(5.5)

for all δ = 0, . . . , n, µ = −Nδ, . . . , Nδ, θ ∈ {r, i}, is O
(
P
(
m(L+ n)

))
. To compute

‖fL,r‖2
H (K) , and

∂

∂cδµ,θ
‖fL,r‖2

H (K)

for all δ = 0, . . . , n, µ = −Nδ, . . . , Nδ, θ ∈ {r, i}, it takes O(L+ n
)

real operations.
Finally, assume for simplicity that N = N0 = · · · = Nn which implies L =

(n + 1)(2N + 1) = O(nN) and remember that in Theorem 2.14 it is assumed that
m ≥ 2n. Thus, we can presume m = O(n) what results in the total complexity

CE(n),∇E(n) = O
(
P n2N

)
+O

(
nN

)
= O

(
P n2N

)
for an evaluation of E(n)(c

(n)
L ) and ∇E(n)(c

(n)
L ) at a given point c

(n)
L ∈ R2(n+1)(2N+1).

From Table 5.1 one can directly see that this term dominates the complexities
O(nN) +O(P n2N) for an iteration of the methods (a)–(c). For the BFGS method
this depends on the number of points P . Here, the numerical complexity is given by
O(n2N2) + O(P n2N) where the second term becomes dominant if P � N which
is typically the case.

Thus, for all iterative solvers, the evaluation of the error functional and its gradi-
ent are the costly parts. A further necessity that amplifies this fact will be explained
in the next section.

5.2 Multiple precision arithmetic

We investigate a numerical aspect of the inner sums Ψq : [0, 1]n → R, q ∈ {0, . . . ,m},
see (2.36), which is important in an implementation of the Regularization Network
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approaches that were introduced in Section 4.5. Namely, this section will show that
it is essential to use a multiple precision arithmetic to compute Ψq(x). To explain
this, remember that in Definition 2.4 the function ψ : R → R was given on the set
D =

⋃
k∈NDk(γ), where

Dk(γ) =

{
dk ∈ Q : dk =

k∑
r=1

irγ
−r, ir ∈ {0, . . . , γ − 1}

}
denoted the set of terminating rational numbers at resolution k in the basis γ ∈ N,
γ > 1. It was extended to the real line by (2.24), but note that for a numerical
analysis we only need to consider the sets Dk(γ). Then, in Lemma 2.16, the minimal
distance of the images of any two points d1

k 6= d2
k ∈ Dk(γ) under the mapping Ψq

was estimated for any q ∈ {0, . . . ,m} by∣∣Ψq(d
1
k)−Ψq(d

2
k)
∣∣ > Λ−1

δ γ−nβ(k) with Λδ > 1 ,

see also the proof of Lemma 2.19.
Note that in the basis γ, and for a fixed resolution k, the minimal distance of

points d1
k,d

2
k ∈ Dk(γ) is |d1

k − d2
k| = γ−k. Now, the previous estimate shows that,

to distinguish the function values Ψq(d
1
k), Ψq(d

2
k), one has to numerically resolve

these one–dimensional points at least with resolution nβ(k) which is larger than k.
Otherwise we would not be able to differ the images of the n–dimensional points
d1
k, d2

k. However, this is essential for an approximation of f , see Section 2.3.7. In
conclusion, one can see that a higher numerical resolution nβ(k) is needed for the
one–dimensional values than for the coordinates of the n–dimensional points for
which the resolution is k. This discrepancy will be investigated in the following for
varying dimension n.

To this end, first remember from Theorem 2.1 and Theorem 2.14 that

β(k) =
nk − 1

n− 1
, and γ ≥ m+ 2 ≥ 2n+ 2 .

Thus, for a fixed resolution k ∈ N with respect to the basis γ, both values, namely
the minimal distance of points d1

k,d
2
k ∈ Dk(γ) which is given by γ−k, and the minimal

one–dimensional resolution γ−nβ(k) depend on the dimension n via the exponent and
the basis for which we choose in the following γ = 2n+ 2.

To investigate the dependency on n, we first have to transform both quantities
in terms of a fixed basis b ∈ N by

be = γk ⇔ k = e · (logγ b) ,

γnβ(k) = bβ̃e(n) ⇔ β̃e(n) = nβ(k) (logb γ) ,
(5.6)

and analyze for a fixed resolution e ∈ N the growth of β̃e(n), see also Figure 5.1.
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d

b−e −→ γ−k
7−→ Ψq(d)

γ−nβ(k) −→ b−β̃e(n)

Figure 5.1. The values d and Ψq(d) can be represented with respect to the
bases b and γ. The resolutions e, k, nβ(k), β̃e(n) depend on the respective bases.
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Figure 5.2. The graphs show estimates on the minimal number β̃e(n) of
bits that are required to resolve the function values Ψq(d) if the coordinates of the
n–dimensional point d are represented with e bits. β̃e(n) does not grow exponentially
with n, but for large values of e many bits are required.

For the basis b = 2 this has a very simple interpretation: We start with a
data type that provides e bits to represent the coordinates of d. Then, we have to
transform1 this value into the basis γ which determines the resolution k by (5.6).
Thus, to resolve the Ψq(d) we need at least resolution nβ(k). Finally, from (5.6) it
follows that at least β̃e(n) bits are needed to represent the function value Ψq(d).

In other words, β̃e(n) is a lower bound on the minimal number of bits that is
required for the function value Ψq(d), if the coordinates of the n–dimensional point
d are represented with e bits. It is given by

β̃e(n) = n · β
(

e

log2 γ(n)

)(
log2 γ(n)

)
, where β(k) =

nk − 1

n− 1
.

Note that we did not take into account any floating point arithmetic here. Figure 5.2
shows plots of β̃e(n) for different values of e.

The graphs show that the number of bits to resolve the inner sums Ψq, q ∈
1The function ψ(x) is defined on Dk(γ).
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{0, . . . ,m} become very large, even for moderate dimensions and values of e. How-
ever, β̃e(n) does not grow exponentially with the dimension n. Therefore, special
data types have to be used in an implementation that provide more memory than
standard data types, like, e.g., double or long double. In our implementations, we
used the GNU Multiple Precision arithmetic library [137] which is freely available
and published under the GNU public license. Clearly, this also has to be applied for
the evaluation of the basis functions ϕj(Ψq(x)), ϕdj (Ψq(x)).

5.3 Boundary values

In this section we introduce a transformation of the approximation problem from
the unit cube [0, 1]n to a sub cube Ω̃ ( [0, 1]n, see below. In fact, we will see in Sec-
tion 6.1.1 that an approximation of a function f : [0, 1]n → R which does not vanish
on the boundary ∂[0, 1]n of the unit cube leads to large residuals near the boundary,
see figures 6.4–6.7. The reason for this is the structure of the inner functions Ψq,
q = 0, . . . , n which transform the n–dimensional problem of approximating f to a
one–dimensional approximation of the outer function Φ. Therefore, our arguments
are based on the considerations from Section 2.4.

There, we investigated the structure of the outer function Φ by means of the
ordering of points x ∈ [0, 1]n which is defined by (2.63). Because of the Z–curve
structure of the inner sums Ψq there exist pairs of cubes Sqk,1(dqk,1), Sqk,2(dqk,2) for
which the corresponding image intervals T qk,1(dqk,1), T qk,2(dqk,2) are neighboured on
the real line, while the cubes themselves have large distance. From Figure 2.9 it
becomes clear that the respective cubes are located at different boundaries of the
hypercube [0, 1]n. Since the piecewise constant function Φr takes the function values
f(dk,e)/(m+1) on the intervals T qk,e(d

q
k,e), e ∈ {1, 2}, this induces large gradients for

Φr, and thus for Φ, between the intervals, if the difference |f(dk,1)−f(dk,2)| is large,
see Figure 2.8. It is important to note that in general a large gradient is numerically
disadvantageous since the variation has to be resolved by the discretization of the
outer function Φ. However, the difference |f(dk,1)− f(dk,2)| is small if the function
f : [0, 1]n → R is smooth near the boundary ∂[0, 1]n of the hypercube and vanishes
on the boundary.

Thus, one might restrict the class of functions that are approximated to those
functions which have zero boundary values. However, this assumption is very restric-
tive and we rather use the following strategy: Let f : [0, 1]n → R be a continuous
function with arbitrary boundary values. Then, we can avoid variations of the outer
function which are due to the boundary values of f by transforming the approxima-
tion problem onto a sub cube Ω̃ := [α, 1 − α]n ( [0, 1]n, 0 < α < 1, and enforcing
zero boundary conditions on ∂[0, 1]n on the transformed problem.

To explain this, let T : [0, 1]n → Ω̃ be a bijective mapping. We define f̃ :
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[0, 1]n → R to be a continuous function such that

f̃ |Ω̃ := f ◦ T−1 , f̃ |∂[0,1]n := 0 ,

and f̃ is smooth on [0, 1]n \ Ω̃. Practically, we use a linear continuation of f ◦ T−1

onto [0, 1]n.
Then we can approximate f̃ from the data set Z̃ :=

{(
Txj, yj

)
: (xj, yj) ∈ Z

}
with the Regularization Network approach. Let fk,r ≈ f̃ , k ∈ {`, L} denote the

solution of Problem 4.18 or Problem 4.19, respectively. Note that Tx ∈ Ω̃ for all
x ∈ [0, 1]n. Clearly, it holds:

fk,r ◦ T ≈ f̃ ◦ T = (f ◦ T−1) ◦ T = f , k ∈ {`, L} ,

and thus fk,r ◦ T , k ∈ {`, L} approximates f .

This transformation of the approximation problem to a sub cube Ω̃ ( [0, 1]n

will always be performed in our implementation unless it is a priori known that the
function f : [0, 1]n → R vanishes on the boundary of [0, 1]n.

5.4 Further remarks

We finish the section with a remark on the parallelization of Problem 4.18 and
Problem 4.19.

In Section 5.1 we pointed out that for the iterative nonlinear minimizers the eval-
uation of the error functional E(n) and its gradient ∇E(n) dominates the numerical
costs. This is amplified by the necessity to use multiple precision arithmetic for an
evaluation of the inner sums Ψq and the basis functions ϕj(Ψq(x)), ϕdj (Ψq(x)), see
Section 5.2. Thus, in both cases, i.e. in Problem 4.18 and Problem 4.19, a costly
part is the computation of the respective data term. To be more precise, this is
for the first problem the computation of BTB in (4.46), and the calculation of the
sums (5.5) in the second problem. All data terms require the evaluation of the basis
functions and the inner sums for all points in X := {x1, . . . ,xP}.

Now, it is important to note that the data terms are in both cases sums which
are built over all data points. This allows for a trivial parallelization of the problem:
First, we split the data set into disjoint parts X = X1∪. . .∪Xp, and then compute for
each subset Xj, j = 1, . . . , p, the respective data term on a separate slave processor.
Finally, the results are sent back to the master processor which adds them up.
Additionally, one could think of a subdivision of the sums over all q = 0, . . . ,m in a
similar manner. However, this is not done in our implementation.

Finally, we remark that we use a direct solver from the PETSc library, see [139],
to solve the system of linear equations (4.46) that arises in Problem 4.18. The
library also provides an interface to a parallel solver for this task.
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Numerical results

In this section we show the results of numerical experiments for the Regularization
Network approaches that have been introduced in Problem 4.18 and Problem 4.19.

To investigate the general properties of the respective model f`,r, fL,r like con-
vergence, dependency on model parameters, and regularization, it is advantageous
to setup a problem for which the exact solution is known explicitly. To this end, we
choose a continuous function f : [0, 1]n → R, generate the set of learning points

{x1, . . . ,xP}
by the quasi–random Halton sequence, see [90], and sample the known function f on
this set. This choice is motivated by a statement from [30] which says that for lower
space dimensions, this sequence quickly “fills up” the n–dimensional unit cube and
that for higher dimensions (e.g. n = 40) the point set has to be large. Note that in
our examples we either consider low dimensions or increase the number of learning
points if n becomes larger, and thus the Halton sequence is appropriate. Now, this
gives the associated values yj = f(xj), j = 1, . . . , P , and thus the training set

Z := {(xj, yj) : j = 1, . . . , P} ⊂ [0, 1]n × R ,

see (4.1). For the so defined data set, we will investigate our Regularization Network
approaches in the following sections. There, to evaluate the quality of the computed
approximation we both, either directly evaluate the respective error functional E(1),
(4.43), or E(n), (4.50), and then calculate the mean–square–error (MSE)

eZe

(
fk,r
)

:=
1

Pe

Pe∑
j=1

(
ỹj − fk,r(x̃j)

)2

, k ∈ {`, L} , (6.1)

on the test set

Ze := {(x̃j, ỹj) : j = 1, . . . , Pe} ⊂ [0, 1]n × R .

107
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Here, the set of new points {x̃1, . . . , x̃Pe} is also generated by the Halton sequence
and ỹj = f(x̃j), j = 1, . . . , Pe. See Table A.4 in the appendix for a list of the values
Pe depending on the dimension n. The choice of eZe is motivated by the loss function
V (f(xi), yi) = (f(xi) − yi)2 from Chapter 4 which is used to measure closeness to
the data in the Regularization Network approach. (6.1) is defined on a discrete data
set and thus, to compute the error of the reconstruction, an explicit knowledge of
the function f is not necessary if a test set Ze is given. Note that this is a random
quadratic error.

In some examples it will be more instructive to consider the maximal error on
the test set Ze which is defined for k ∈ {`, L} by

e∞Ze

(
fk,r
)

:= max
(x,y)∈Ze

∣∣y − fk,r(x)
∣∣ . (6.2)

In the following, we will investigate the respective model for different problem
parameters, i.e. we choose different functions f , dimensions n, and cardinalities
P of the data set. Additionally, we analyze the dependency on the regularization
parameters ν and further model parameters.

However, note that for all examples throughout this section we choose the min-
imal basis γ = m + 2 in Theorem 2.14 to define the inner function ψ if not stated
otherwise. See the remarks at the end of Section 2.3.5 for this choice.

6.1 First model

This section will show numerical results for the solution of Problem 4.18. They will
provide important insights into the structure of the outer function Φ in (2.36) which
will then serve as a motivation for the definition of the second model.

To analyze f`,r, we will first investigate the choice of the basis functions which
span the approximation space H0

` in (4.39) by means of two–dimensional functions
f : [0, 1]2 → R.

6.1.1 B-splines

For the first numerical calculations we will use B–splines of the order k to construct
the approximation space H0

` in (4.39). Note that this is closely related to the ideas
of Coppejans, Igelnik and Parikh, [17,62,64] who used splines to approximate both,
outer and inner functions in Kolmogorov’s representation.

We introduce the necessary definitions very briefly and refer to e.g. [21] for
details. A B–spline of order k ∈ N is a function

Sk(x) :=
∑̀
j=0

cj Bk,j(x) .
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Here, the elementary B–splines Bk,j, j = 0, . . . , ` of order k are defined for I + 1
given equidistant1 supporting points a0 = t0 < . . . . . . < tI = bm, I = `− k+ 2 on
the nodes

τj :=


t0 , j = 0, . . . , k − 1,

tj−k+1 , j = k, . . . , `,

tI , j = `+ 1, . . . , `+ k.

Namely, they are defined by the recursive formula

Bk,j(x) :=
x− τj

τj+k−1 − τjBk−1,j(x) +
τj+k − x
τj+k − τj+1

Bk−1,j+1(x) ,

where the initial elementary B–splines of order 1 are the piecewise constants

B1,j(x) :=

{
1 , x ∈ [τj, τj+1),

0 , else,
j = 0, . . . , ` .

The function Sk is a piecewise polynomial of degree k − 1, and for k ≥ 2 it holds
that Sk ∈ H1([a0, bm]). Thus, we can define the finite dimensional approximation
space H0

` in (4.39) to be given by

H0
`,k := span {Bk,j : j = 0, . . . , `} ,

for fixed k ≥ 2, and supporting points a0 = t0 < . . . . . . < tI = bm. To make this
a Hilbert space we endow it with the scalar product

〈φ1, φ2〉H0 :=

∫ bm

a0

φ1(t)φ2(t) dt +

∫ bm

a0

φ′1(t)φ′2(t) dt , (6.3)

which is simply the scalar product in the Sobolev space H1([a0, bm]). The space
(H0

`,k, ‖ · ‖H0) can be continuously embedded into (C0([a0, bm]), ‖ · ‖∞), which shows
that it is a RKHS and the constructions from Section 4.5 are applicable to construct
the n–dimensional approximation space H (1)

`,k = H (1)
` as defined in (4.41). Here, we

use the additional subscript k to indicate the dependency on the order of the splines.
Now, to guarantee a continuous embedding, it would suffice to take the Hs–norm
with some s > 1/2. But we also remark that, although the elementary B–splines

Bk,j are not orthogonal with respect to 〈·, ·〉H0 , the norm of a function f` ∈ H (1)
`,k

can be computed with (4.42) by

‖ f` ‖2
H (K) =

∥∥∥∥∥∑̀
j=0

cj Bk,j
∥∥∥∥∥

2

H0

.

1Note that for this definition the supporting points t0, . . . , tI in general do not have to be
equidistant.
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Thus, it is more practicable to use the H1–norm in combination with the B–splines
for computational reasons. Note that this is a real valued construction, see Re-
mark 4.21.

Now, a minimizer in Problem 4.18 is given by the solution c
(1)
` := (c0, . . . , c`)

T ∈
R`+1 of the system of linear equations (4.46) with data matrix

B :=
m∑
q=0

Bk,0(Ψq(x1)) . . . Bk,`(Ψq(x1))
...

...
Bk,0(Ψq(xP )) . . . Bk,`(Ψq(xP ))

 ∈ RP×(`+1) ,

regularization matrix

S :=

〈Bk,0,Bk,0〉H0 . . . 〈Bk,0,Bk,`〉H0

...
...

〈Bk,`,Bk,0〉H0 . . . 〈Bk,`,Bk,`〉H0

 ∈ R(`+1)×(`+1) ,

and data vector y = (y1, . . . , yP )T ∈ RP . We remark that, due to the fact that
supp(Bk,j) = [τj, τj+k), these matrices have limited bandwidth and O(`k) non–zero
entries.

Simple example

We start with a simple two–dimensional numerical example. Similar to the con-
structions in Section 4.5 we first choose an outer function φ in Kolmogorov’s repre-
sentation (2.36) to define the function fφ. To be precise, we select a polynomial p̃
of degree four2

p̃(t) :=
1337

60
t− 6481

60
t2 +

4891

30
t3 − 386

5
t4 ,

and consider for x ∈ [0, 1]2 the function

fp(x) :=
8∑
q=0

p
(

Ψq(x)
)

, with p(t) := p̃
(
a0 + t (bm − a0)

)
. (6.4)

This way we obtain a somewhat artificial, wiggly function fp that however has the
advantage of a smooth outer function p. The graph of fp is shown in Figure 6.1
(left).

We reconstructed fp from P = 500, 2000 and 8000 data points with B–splines
of order k = 2, i.e. piecewise linear functions, for increasing resolutions I =

2p̃ is the solution of the interpolation problem: p̃(0) = p̃(1) = 0, p̃(1/3) = 1/2, p̃(1/2) = −1/3,
and p̃(3/4) = 1/4.
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Figure 6.1. Graph of fp from (6.4) (left) and approximations to p from
(6.4) (right) for different values of I.
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Figure 6.2. Result for the reconstruction of fp from (6.4) with P =
500, 2000, and 8000 data points and the simple model (3.5). The plots show the value
of the energy functional E(1) with ν=10−9 and the MSE depending on ` = I + k− 2.

8, 16, . . . , 256. Clearly, we chose m = 8 in (4.35), while the regularization parameter
in (4.43) was ν = 10−9. The right plot in Figure 6.1 shows the outer functions that
were computed from P = 2000 points for the resolutions I = 8, 16, 32, 64, 128 (dot-
ted lines) and the outer function p from (6.4) (solid line). One can see convergence
towards the true function p, i.e. for an increasing value of I the deviation of the
approximation decreases. For resolutions larger than I = 128 no difference between
the reconstruction and p is visible.

Figure 6.2 shows the convergence plots for this example. The value of the error
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P = 500 P = 2000 P = 8000

`
8
16
32
64
128
256

eZe slope
8.99 · 10−3 –
8.23 · 10−5 −6.77
2.02 · 10−5 −2.03
3.66 · 10−6 −2.46
4.38 · 10−7 −3.07
3.53 · 10−8 −3.63

eZe slope
9.01 · 10−3 –
8.20 · 10−5 −6.78
2.00 · 10−5 −2.04
3.53 · 10−6 −2.50
3.62 · 10−7 −3.29
1.38 · 10−8 −4.71

eZe slope
9.01 · 10−3 –
8.22 · 10−5 −6.78
2.00 · 10−5 −2.04
3.54 · 10−6 −2.50
3.57 · 10−7 −3.31
1.26 · 10−8 −4.82

Table 6.1. Values of the MSE eZe from (6.1) for the reconstruction of
fp with B–splines of the order k = 2 from P = 500, 2000, 8000 data points and
regularization parameter ν=10−9. Here, the slope is computed between two successive
points in the right graph of Figure 6.2.

functional (4.43) (left) and the mean–square–error eZe from (6.1) (right) are plotted
against ` = I + k − 2. Additionally, in Table 6.1 the values of eZe , and the slopes
between two successive points in the MSE graph are given.

In all cases P = 500, 2000, 8000 we observe a rapid decay of E(1) and eZe for
increasing resolution with similar rates. This is due to the fact that the outer
function p is smooth. We remark that the poor approximation of p in Figure 6.1 for
I = 8 is also visible from the values of E(1) and eZe , which measure the error of fp.

General example

The next example deals with the original problem of reconstructing an unknown
function f : [0, 1]2 → R from discrete data points without knowledge of the outer
function Φ : [a0, bm]→ R. We choose

f(x) := sin(πx1) sin(πx2) , x ∈ [0, 1]2

in our setup to generate the data sets Z and Ze.
Again, we reconstructed the function from P = 500, 2000, 8000 data points with

B–splines of order k = 2. For each data set and j = 2, . . . , 13 we tested the spline
resolution I = 2j, and chose ν = 10−6 to weight the regularization term in E(1).
Similar to the previous examples we used m = 8 terms in (4.35). Table 6.2 shows
the values of the MSE of the reconstructions. In Figure 6.3, E(1) and eZe are plotted
against the value ` = I + k − 2 = I.

In this example the decay of E(1) and eZe substantially differs from the previous
artificial example where the errors considerably decreased with any increase of `.
Here, we observe a reduction in two steps for both, error functional and MSE: First,
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Figure 6.3. The error functional E(1) (left) and the MSE eZe (right) are
plotted against the value ` = I. The total number of DOF is `+ 1.

P = 500 P = 2000 P = 8000

`
4
8
16
32
64
128
256
512

1 024
2 048
4 096
8 192

eZe slope
6.03 · 10−2 –
6.06 · 10−2 +0.01
4.63 · 10−2 −0.39
4.62 · 10−2 +0.00
4.48 · 10−2 −0.04
2.60 · 10−2 −0.79
3.54 · 10−3 −2.87
1.33 · 10−3 −1.41
7.92 · 10−4 −0.75
7.52 · 10−4 −0.08
7.44 · 10−4 −0.01
7.42 · 10−4 +0.00

eZe slope
6.02 · 10−2 –
6.03 · 10−2 +0.00
4.62 · 10−2 −0.39
4.54 · 10−2 −0.02
4.36 · 10−2 −0.06
2.38 · 10−2 −0.87
2.52 · 10−3 −3.24
8.02 · 10−4 −1.65
5.04 · 10−4 −0.67
4.82 · 10−4 −0.06
4.69 · 10−4 −0.04
4.64 · 10−4 −0.02

eZe slope
6.02 · 10−2 –
6.02 · 10−2 +0.00
4.61 · 10−2 −0.39
4.53 · 10−2 −0.02
4.34 · 10−2 −0.06
2.36 · 10−2 −0.87
2.47 · 10−3 −3.26
7.30 · 10−4 −1.76
4.67 · 10−4 −0.65
4.41 · 10−4 −0.08
4.25 · 10−4 −0.05
4.18 · 10−4 −0.02

Table 6.2. MSE values depending on the value `. Note that ` = I is also
the resolution of the B–splines of order k = 2. Again, the slopes have been computed
for successive points in the right graph of Figure 6.3.

for the values I = 4, . . . , 64 the errors are diminished only by a small amount.
Then, they are reduced with increasing resolutions I = 128, . . . , 1024 until they
reach their minimal values. Finally, error functional and MSE cannot be further
improved by refinements of the spline resolutions. This saturation is due to the
limited information on f which is given in the form of the finite data set Z: For
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larger values of P the minimal errors decrease. Altogether, we conclude that a
minimal resolution I is needed to approximate the outer function Φ.

Boundary values

In the next tests we numerically discuss the treatment of the boundary values of the
function f as introduced in Section 5.3. To this end, we compare reconstructions
of several two–dimensional functions which do not vanish at the boundary of [0, 1]2

with and without a previous transformation of the problem to a sub cube. Here, the
sub cube Ω̃ is chosen individually for each function f that has to be approximated.
The test functions and their associated sub cubes are listed in Table 6.3. There, to
evaluate the results, the maximal error on the test set (6.2) is given. This choice is
more instructive since e∞Ze

detects point wise errors at the boundary.
For all reconstructions we used m = 8 terms in (4.35), while the regularization

parameter ν differs for each problem, see Table 6.3. The training sets Z were
generated from P = 8000 point samples of the respective function f . Additionally,
to ensure a sufficient resolution of the B–splines of order k = 2 in all computations
we only considered the case I = 8192. For each function, Table 6.3 lists the maximal
error without and with transformation, the sub cube Ω̃, and the regularization
parameter ν. Furthermore, for all cases the graphs of the reconstructions f` and the
residuals f − f` are plotted in figures 6.4–6.7. Figure 6.8 shows the corresponding
outer functions Φ.

In all tests, the error e∞Ze
could be reduced by the transformation of the problem

to a sub cube Ω̃. Furthermore, from figures 6.4–6.7 it becomes obvious that this
effect is indeed due to the values of f at the boundaries: Without transformation,
all residuals take their maximum or minimum near the boundary of [0, 1]2 while the
error is small inside the domain. With the transformation to Ω̃ this domination
could be eliminated what finally resulted in smaller errors e∞Ze

.
For the respective outer functions which are shown in Figure 6.8 we observe that

the range of maximum and minimum becomes smaller if the problem is transformed
to the sub cube (red graphs). Hence, the largest gradients of the functions Φ from
the non–transformed problems (blue graphs) could be diminished, see the first and
the last image in Figure 6.8.

However, an important property which becomes visible here is that all outer
functions strongly oscillate. Thus, to get an approximation of the outer function, the
basis has to resolve very high frequencies, and for this reason, a minimal resolution
of the B–splines is necessary to reduce the error as it was observed in a previous
example.

Now, for oscillating functions it is obvious to consider their Fourier transform. To
this end, we computed the discrete Fourier transforms3 Φ̂d(k) for all outer functions

3For equidistant nodes tk := kω/M , M ∈ N, ω ∈ R, and complex function values
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e∞Ze
without e∞Ze

with

f(x1, x2) transformation sub cube Ω̃ ν transformation

x2 4.97 · 10−1 [0.1, 0.9]2 10−7 1.53 · 10−1

exp(−x2
1 + x2) 8.17 · 10−1 [0.05, 0.95]2 10−8 2.2 · 10−1

tan
(

1− 1
0.2x1+0.3x2

)
1.77 · 10−1 [0.1, 0.9]2 10−7 8.32 · 10−2

2∏
d=1

(xd − 1
2
) log

(∣∣xd − 1
2

∣∣) 1.05 · 10−1 [0.1, 0.9]2 10−7 2.68 · 10−2

Table 6.3. The table shows the maximal errors e∞Ze
for the reconstructions

of the respective function f(x1, x2) that were obtained without and with a transfor-
mation of the problem to the sub cube Ω̃, see Section 5.3. For the values of the
further parameters see figures 6.4, 6.5, 6.6, and 6.7. All functions do not vanish at
the boundary.
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Figure 6.4. Reconstructions f` (left) of f(x1, x2) = x2 from P = 8000
data points with I = 8192, m = 8, and ν = 10−7 without (top) and with (bottom)
transformation to a sub cube Ω̃. The right column shows the respective residuals
f − f`.
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Figure 6.5. Here, f(x1, x2) = exp(−x2
1 + x2) was reconstructed with the

parameters P = 8000, I = 8192, m = 8, ν = 10−8. The plots show the respective
graphs of f` (left) and f − f` (right) as computed without (top) and with (bottom)
transformation.

Φ that resulted from the transformed problems. In Figure 6.9 the modulus |Φ̂d(k)|
of the respective outer functions are plotted. The underlying function f is given in
each picture.

For all functions f we observe that the vector of Fourier coefficients of the cor-
responding outer function Φ is sparse, i.e. many coefficients are nearly zero.

Obviously, the use of the Fourier basis is advantageous to represent and resolve
oscillating functions, while basis functions with local support like B–splines have the
problem that the mesh resolution has to be very fine to resolve the frequencies.

6.1.2 Trigonometric polynomials

We have seen in the previous section that the outer function Φ which is computed in
Problem 4.18 typically oscillates. Consequently, an approximation with basis func-
tions which have local support is inefficient. This is due to the fact that the spatial
resolution of an expansion in such a basis has to capture the highest oscillations.

φ(t0), . . . , φ(tM−1), the discrete Fourier transform of an ω-periodic function φ : R→ C is given by
φ̂d(k) =

∑M−1
j=0 φ(tj) exp

(− 2π
M i k j

)
, k = −M/2, . . . ,M/2− 1. Conversely, for j = 0, . . . ,M − 1 it

holds φ(tj) = 1
M

∑M/2−1
k=−M/2 φ̂d(k) exp

(
2π
ω i k tj

)
.
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Figure 6.6. Results for f(x1, x2) = tan (1− (0.2x1 + 0.3x2)−1) with P =
8000, I = 8192, m = 8, and ν = 10−7. The left column shows f` and the right
column f − f`. The top row is the reconstruction without transformation while the
bottom row shows the result from the transformed problem.
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Figure 6.7. Solution of the regular and the transformed problem for
f(x1, x1) =

∏2
d=1(xd − 1

2
) log

(∣∣xd − 1
2

∣∣) from P = 8000 data points and I = 8192,
m = 8, ν = 10−7. The pictures are arranged as previously.



118 Chapter 6. Numerical results

a0 bm
−0.5

0

0.5

t

Φ(t)

f(x1, x2) = x2

a0 bm

−1

0

1

t

Φ(t)

f(x1, x2) = exp(−x2
1 + x2)

a0 bm

−0.1

−0.05

0

0.05

t

Φ(t)

f(x1, x2) = tan
(

1− 1
0.2x1+0.3x2

)

a0 bm

−0.2

0

0.2

t

Φ(t)

f(x1, x1) =
2∏
d=1

(xd − 1
2
) log

(∣∣xd − 1
2

∣∣)
Figure 6.8. Outer functions Φ for a reconstruction of the respective function

f from P = 8000 data points and I = 8192. Here, there computations were made
without (blue) and with (red) a previous transformation of the problem to a sub cube
Ω̃ ( [0, 1]2.
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Figure 6.9. Absolute values of the Fourier coefficients |Φ̂d(k)| for the outer

functions Φ from Figure 6.8. The different pictures show the results for the trans-
formed problems and the respective functions f . Note that for real valued functions

it holds Φ̂d(−k) = Φ̂d(k).
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We will see in the following that the oscillations are even amplified if the dimension
increases.

However, the vector of discrete Fourier coefficients of Φ turned out to be sparse.
We remark that the discrete Fourier coefficients Φ̂d(k) are approximations to the
Fourier coefficients of Φ, see [13]. Thus, it is obvious to use trigonometric poly-
nomials as basis functions and directly calculate the Fourier coefficients within the
Regularization Network approach.

To explain this, we define ωm := bm − a0 and assume without loss of generality
that each outer function Φ is an ωm–periodic function Φ : R→ C. Then, Φ can be
represented by means of its Fourier series expansion which will be briefly recalled
in the following. For more details on Fourier analysis we refer to [13, 60]. At this
point the constructions in Section 5.3 are essential, since otherwise the assumption
of periodicity would not hold.

The Fourier series expansion of an ωm–periodic function φ : R→ C is given by

φ(t) =
∞∑

k=−∞
φ̂(k) exp

(
2π

ωm
i k t

)
, (6.5)

and the Fourier coefficients are defined for k ∈ N by

φ̂(k) :=

∫ ωm

0

φ(s) exp

(
− 2π

ωm
i k s

)
ds ∈ C . (6.6)

Moreover, for real valued functions φ : R→ R it holds

φ̂(−k) = φ̂(k) , which implies |φ̂(−k)| = |φ̂(k)| . (6.7)

Now, to compute the Fourier coefficients φ̂(k) directly within the Regularization
Network approach, let N ∈ N and ` = 2N . Then, with a shift of the index set
{0, . . . , 2N} 7→ {−N, . . . , N} in (4.38) we can define

F0
` := F0

N := {ϕ0
−N , . . . , ϕ

0
N}

with basis functions

ϕ0
k(t) := exp

(
2π

ωm
i k t

)
, ωm := bm − a0 , k = −N, . . . , N . (6.8)

Remember that in (4.39) we defined H0
` := spanF0

` and that a function φ∗ ∈ H0
`

has the representation

φ∗(t) =
N∑

k=−N
ck exp

(
2π

ωm
i k t

)
, ck ∈ C .



6.1. First model 121

The Fourier coefficients (6.6) of this function are given by

φ̂∗(k) =

{
ck, k = −N, . . . , N ,

0, else.

This shows that the choice of the basis F0
N allows for a direct computation of the

Fourier coefficients φ̂∗(k) for k = −N, . . . , N . Note that the index set is chosen such
that the index k of ck is simply its location in Fourier space. Next, we remember
that for real valued functions (6.7) holds, and we a priori assume for φ∗ that

c−k = ck , for k = 0, . . . , N . (6.9)

This defines the real valued function

φ∗(t) = φ(t) + φ(t) = 2φr(t) ,

with

φ(t) :=
c0

2
+

N∑
k=1

ck exp

(
2π

ωm
i k t

)
.

Conversely, we can compute φr by determining the coefficients c0, . . . , cN and then
derive the remaining coefficients c−N , . . . , c−1 by (6.9).

Note that the complex valued constructions in Section 4.5 allow for this choice
of basis, and that the functions (6.8) form an orthogonal basis with respect to the
scalar product from (6.3):∫ bm

a0

ϕ0
j(t)ϕ

0
k(t) dt+

∫ bm

a0

(
ϕ0
j(t)
)′ (

ϕ0
k(t)
)′
dt = δj,k (bm − a0)

(
1 +

(
2π

ωm

)2

|k|2
)

.

Furthermore, we remark that in this basis the computation of the Hs–norm for
arbitrary s ∈ R is easy and can be accomplished by changing the scalar product for
j, k = −N, . . . , N to

〈
ϕ0
j , ϕ

0
k

〉
H0 := δj,k γ0

k , with γ0
k := (bm − a0)

(
1 +

(
2π

ωm

)2

|k|2
)s

. (6.10)

Then, for s > 1/2 the Sobolev embedding theorem guarantees that the embedding
(H0

` , ‖ · ‖H0) ↪→ (C0([a0, bm]), ‖ · ‖∞) is continuous and the constructions from Sec-
tion 4.5 apply. Numerical experiments have shown that the choice s = 1/2 does not
lead to additional instabilities, although theoretically we have to assume s > 1/2.
For numerical simplicity, we will take s = 1/2 in our computations. The space H0

`

consists of ωm–periodic continuous functions.
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The data matrix which is given by (4.47) can be computed by applying Euler’s
formula

ϕ0
k(t) = exp

(
2π

ωm
i k t

)
= cos

(
2π

ωm
k t

)
+ i sin

(
2π

ωm
k t

)
= ϕ0

k,r(t) + i ϕ0
k,i(t) ,

which leads to

B :=
m∑
q=0


1 . . . cos

(
2π
ωm

N Ψq(x1)
)

sin
(

2π
ωm

N Ψq(x1)
)

...
...

1 . . . cos
(

2π
ωm

N Ψq(xP )
)

sin
(

2π
ωm

N Ψq(xP )
)
 .

Due to the global support of the functions ϕ0
k,r and ϕ0

k,i it is densely populated, but
the regularization matrix is the diagonal matrix S := diag(γ0

0, . . . ,γ
0
N ,γ

0
N).

Remark 6.1. By our choice of the basis (6.8) we have ϕ0
0 ≡ 1 ≡ ϕ0

0,r and the
matrix entries ϕ0

0,i(xj) = 0, j = 1, . . . , P could be omitted in B. The same holds

for the corresponding entry S i,i0,0 = 0 in S. Furthermore, we only have to com-
pute the coefficients c0, . . . , cN , and thus the total number of real valued degrees
of freedom (DOF ) for the first model f`,r with trigonometric polynomials as basis

functions is `r = 2N + 1. The matrices have the dimensions B ∈ R(2N+1)×P and
S ∈ R(2N+1)×(2N+1).

Simple example

We start our analysis of this model with the simple example (6.4) from Section 6.1.1.
Similar to the calculations there, we reconstructed fp from P = 500, 2000 and 8000
data points with the regularization parameter ν = 10−9 and chose m = 8. We con-
sidered increasing values N = 4, 8, 16, . . . , 256. The results are shown in Figure 6.10
and Table 6.4.

For all data sets we observe a rapid decay of E(1) and eZe , where the rates slightly
improve with increasing number of points P . However, for the highest resolution
N = 256 with P = 500 points, the error increases by a small amount. This is due
to an overfitting effect. Altogether, we achieve similar results as in Section 6.1.1 for
this artificial example with smooth outer function.

General example

Next, to analyze the model in a more realistic setting, we choose the tensorproduct
hatfunction

fh(x) :=
n∏
d=1

(
1− 2

∣∣xd − 1/2
∣∣) , x ∈ [0, 1]n (6.11)
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Figure 6.10. Reconstruction of fp from (6.4) with P = 500, 2000 and 8000
data points and the simple model (3.5) using trigonometric polynomials as basis
functions. The plots show the value of the energy functional E(1) with ν=10−9 and
the MSE depending on the total number of degrees of freedom 2N + 1.

P = 500 P = 2000 P = 8000

2N + 1
9
17
33
65
129
257
513

eZe slope
1.36 · 10−2 –
2.54 · 10−3 −1.98
2.36 · 10−4 −3.12
3.64 · 10−5 −2.58
5.30 · 10−6 −2.72
7.76 · 10−7 −2.74
1.32 · 10−6 +0.77

eZe slope
1.36 · 10−2 –
2.54 · 10−3 −1.98
2.35 · 10−4 −3.12
3.57 · 10−5 −2.59
2.99 · 10−6 −3.50
3.64 · 10−7 −3.00
5.69 · 10−8 −2.66

eZe slope
1.36 · 10−2 –
2.53 · 10−3 −1.98
2.34 · 10−4 −3.13
3.57 · 10−5 −2.59
2.81 · 10−6 −3.58
2.87 · 10−7 −3.26
3.78 · 10−8 −2.91

Table 6.4. Values of the MSE eZe from (6.1) for the reconstruction of fp
from P = 500, 2000, 8000 data points and regularization parameter ν=10−9. Here,
the basis functions from (6.8) have been used. Again, the slope is computed between
two successive points in the right graph of Figure 6.10.

as test function and fix n = 2. Note that we do not consider the sinus example from
the previous section due to the fact that our basis functions are now trigonometric
polynomials. Therefore, by this choice we prevent any correlations between the basis
and the test function. For the same reason we did not consider the piecewise linear
function fh in Section 6.1.1.

Figure 6.11 and Table 6.5 show the results for a reconstruction of fh from P =
500, 2000 and P = 8000 data points. We chose m = 8, ν = 10−6, and then tested
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Figure 6.11. Values of E(1) and eZe (m = 8, ν = 10−6) for the reconstruc-
tions of the two–dimensional hatfunction fh depending on the value 2N + 1. The
graphs show the results for different sizes P of the test set Z.

P = 500 P = 2000 P = 8000

2N + 1
5
9
17
33
65
129
257
513

1 025
2 049
4 097
8 193

eZe slope
5.16 · 10−2 –
4.94 · 10−2 −0.04
3.43 · 10−2 −0.43
2.86 · 10−2 −0.24
2.84 · 10−2 −0.01
2.95 · 10−2 +0.05
7.73 · 10−4 −5.19
8.81 · 10−4 +0.19
4.21 · 10−4 −1.06
4.24 · 10−4 +0.01
4.22 · 10−4 −0.01
4.24 · 10−4 +0.01

eZe slope
5.16 · 10−2 –
4.94 · 10−2 −0.04
3.42 · 10−2 −0.44
2.87 · 10−2 −0.23
2.85 · 10−2 −0.01
2.86 · 10−2 +0.00
6.21 · 10−4 −5.46
6.28 · 10−4 +0.02
2.79 · 10−4 −1.17
2.75 · 10−4 −0.02
2.62 · 10−4 −0.07
2.61 · 10−4 +0.00

eZe slope
5.16 · 10−2 –
4.94 · 10−2 −0.04
3.42 · 10−2 −0.44
2.87 · 10−2 −0.23
2.85 · 10−2 −0.01
2.85 · 10−2 +0.00
6.09 · 10−4 −5.49
6.13 · 10−4 +0.01
2.68 · 10−4 −1.19
2.66 · 10−4 −0.01
2.53 · 10−4 −0.07
2.52 · 10−4 +0.00

Table 6.5. Errors between the two–dimensional hatfunction fh and its nu-
merical reconstructions with different N and P . Further parameter choices were
m = 8 and ν = 10−6. The slopes are computed as in the tables from Section 6.1.1.

the cases N = 2j, for j = 1, 2, . . . , 12. Here, we turn back to the average error eZe

on the test set to evaluate the results.
Again, the values E(1) and eZe decay in two steps: First, for low resolutions they

are both diminished only by a small amount. Then, the errors are considerably
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reduced for the values 2N + 1 = 257, 513, 1025 until they finally reach a saturation,
see Figure 6.11. As before, we observe the necessity of a minimal resolution N which
captures the high frequencies of the outer function.

Until now, the results only showed that the choice of the Fourier basis produces
in general the same results as the B–spline basis, but we did not benefit from its
application in any form. To take advantage from the trigonometric basis, especially
the sparseness of the coefficient vector, we have to investigate the frequency structure
of Φ in more detail. For this reason, we consider its dependence on different model
parameters and the function f in the next section. Note that finally this will lead
to the definition of the second model, and the results from the previous sections will
serve as a reference for the quality of the second model.

6.1.3 Locations of the relevant frequencies

In Section 6.1.1 we concluded that the use of the Fourier basis is advantageous
to represent and resolve oscillating functions. This was motivated by an analysis
of the discrete Fourier transforms of several outer functions, see Figure 6.9, where
we observed that the vector of discrete Fourier coefficients is sparse, i.e. many
coefficients are nearly zero. Then, we defined the basis functions (6.8), such that

for each k = −N, . . . , N the coefficient ck is simply the Fourier coefficient Φ̂(k) of
the outer function Φ. However, to benefit from the fact that many coefficients are
nearly zero, further knowledge on the frequency structure is useful.

In this section, we will see that it is possible to determine a priori the locations
of the frequencies in Fourier space which correspond to large coefficient entries. In
particular, they only depend on the dimension n of the problem and the model
parameters m, γ.

To show this, we next present further numerical results for the first model and
trigonometric basis functions (6.8). Here, we do not consider the errors eZe or e∞Ze

,
but rather the magnitudes of the coefficients ck ∈ C from the extended version of
(4.35). This will give more insight since we are interested in the locations k of the
relevant frequencies in Fourier space. Note that in this section we do not assume
γ = m+ 2.

First, we reconstructed the two–dimensional test functions f from Table 6.3 for
fixed parameters m = 8, γ = 10, and N = 4096 from P = 8000 data points.
The regularization parameter ν was according to Table 6.3. Figure 6.12 shows the
magnitudes of the Fourier coefficients ck, k = 0, . . . , 512 for the respective functions.
Remember that by (6.9) we only have to consider the positive frequency domain.
Additionally, the k–values for the largest coefficients ck are marked by flags in each
plot. These values correspond to the dominating frequencies of the oscillating outer
function Φ.

A comparison of the results in Figure 6.12 with the discrete Fourier transforms
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∣∣)
Figure 6.12. Relevant (positive) frequencies for the reconstructions (m =

8, γ = 10) of the functions from Figure 6.8 using trigonometric basis functions, cf.
Figure 6.9. The flags indicate the k–values of the respective frequencies.

from Figure 6.9 shows, that the direct computation of the Fourier coefficients results
in the same frequency pattern as before. Note that by definition the magnitudes
of the values ck differ from the absolute values of the discrete Fourier coefficients
Φ̂d(k). We observe that in three out of four cases the main frequencies are located
at the same positions on the k–axis. This suggests that they are independent of the
function f which is considered.

In the next tests we investigate varying parameters m and γ. To this end, we
reconstructed the two–dimensional hatfunction (6.11) with N = 4096 from P = 8000
points samples. Figure 6.13 shows the magnitudes of the coefficients c0, . . . , c512 ∈
C for different combinations of m and γ. As before, the k–values of the largest
coefficients are marked with flags in each figure. We tested the combinations (m =
8, γ = 15), (m = 8, γ = 20), (m = 12, γ = 15), and (m = 16, γ = 20). Remember
that in Theorem 2.14 one has to respect the condition γ ≥ m + 2, and that all
previous examples used (m = 8, γ = 10). In our computations, the regularization
parameter in the first three cases was ν = 10−8 and ν = 10−7 in the last case.

From Figure 6.13 we see that the k–values differ between the different examples.
If we additionally take into account the previous tests, then we observe that the
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Figure 6.13. Magnitudes of the Fourier coefficients ck, k = 0, . . . , 512 in
reconstructions of the function h from (6.11) for different combinations of (m, γ).
The flags mark the k–values of the largest Fourier coefficients.

main frequencies are always located at

k = j · (m+ 1)(γ + 1) , j ∈ N ,

in Fourier space. Additionally, we find that there exist neighbouring peaks for these
values, and thus we get the more general locations

k = ± j1 · (m+ 1) ± j2 · (m+ 1)(γ + 1) , j1, j2 ∈ N .

Note that this includes the case k < 0 which is reasonable, since the negative k–axis
merely was omitted in our plots due to (6.9).

Until now, all computations dealt with the reconstruction of a two–dimensional
continuous function f . Next, to gain more insight into the dependency of the fre-
quency pattern on the dimension n, we present the result for a reconstruction of
the function h from (6.11) in dimensions n = 2, 3. Both functions have been re-
constructed from P = 8000 data points with N = 8192, m = 8, and γ = 10. The
regularization parameter in the two–dimensional reconstruction was ν = 10−7 and
in the three–dimensional case we used ν = 10−8.

Figure 6.14 (top) shows the outer function Φ for our sample function for n = 2, 3.
We observe that with rising n the one–dimensional function is overlayed with a
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Figure 6.14. The outer functions in (3.5) for fh(x) from (6.11) (top) and
the absolute values of the respective coefficients (bottom). The left column shows the
case n = 2 while the right column shows n = 3.

rescaled function of the same shape. The additional dimension thus causes increas-
ingly oscillations in the outer function. The magnitudes of the corresponding Fourier
coefficients ck, k = 0, . . . , 4095 are shown in the bottom row of Figure 6.14. To pro-
vide a more detailed insight into the structures of these patterns, Figure 6.15 shows
zooms into the pictures. There, flags mark the locations of the main frequencies on
the k–axis.

The left picture in Figure 6.15 shows the location of the main frequencies on the
k–axis for the two–dimensional test case. The absolute values of the complex Fourier
coefficients are shown on the ordinate. Anyhow, their values, which depend on f ,
have been rescaled for clarity as we are only interested in the location independent of
f . In the right picture we additionally show the three–dimensional case. We observe
that the frequencies associated to lower dimensions appear as translated and scaled
blocks in the higher dimensions: The main frequencies are now located at the values

k = ± j1 · (m+ 1) ± j2 · (m+ 1)(γ + 1) ± j3 · (m+ 1)(γ2 + γ + 1) ,

with j1, j2, j3 ∈ N.
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Figure 6.15. Locations of the main positive frequencies in Fourier space
for the two– and three–dimensional test function h. The respective values of k are
marked by the flags. The left image is a zoom into the marked region of the right
picture.

To generalize this result, we first define for d,m, γ ∈ N the values

Kd(m, γ) :=

{
1 , d = 0,

(m+ 1)
∑d−1

k=0 γ
k , d > 0.

(6.12)

Then, the occuring frequencies in each test case were of the form

k =
n∑
d=0

± jdKd(m, γ) , jd ∈ N .

Finally, we remark that the values |ck| decayed for increasing |k|. To account for
this fact, we choose for d = 0, . . . , n the numbers Nd ∈ N and assume that

jd ∈ {−Nd, . . . ,−1, 0, 1, . . . , Nd} .

In conclusion we can make the following conjecture which is based on the numeri-
cal observations in this section: For the reconstruction of an n–dimensional function
f with model parameters m, γ ∈ N, the relevant frequency numbers are given by
the set

Kn(m, γ) :=

{
k =

n∑
d=0

kd : kd = jdKd(m, γ), jd ∈ {−Nd, . . . , Nd}
}

. (6.13)

Truncating the Fourier basis to those frequencies in Kn substantially reduces
the complexity of the model (3.5). A careful analysis however shows that there is
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still an exponential dependence of the number of active Fourier coefficients on the
dimension n.

The tests in this section showed that the frequencies depend on the number of
terms m, the basis γ in (2.10), and the dimension n. These parameters are model
parameters and merely cause the general structure of the appearing frequencies,
while the specific function f affects the amplitudes of the frequencies. This can
be explained by the inner function which results to an unfolding of the dimensions
in the mentioned Z–curve manner as it was explained in Section 2.4. From these
observations we conclude that the dimensionality of the function f translates into
structured oscillation of the outer function Φ.

6.2 Second model

The definition of the second model is based on the observations from Section 6.1.3,
where we could identify the relevant frequencies in Fourier space in form of the set
(6.13). We start this section with a derivation of the product model (4.36) for the
special choice of the Fourier basis. Note that we could also fix the basis functions in
(4.38) instantaneously, but the following analysis will provide a motivation for the
definitions and constructions from Section 3.2.2 and Section 4.5.2. It will point out
the choice of a product ansatz to approximate the outer function.

6.2.1 Trigonometric polynomials

The unfolding of dimensions which is caused by the inner functions Ψq, q = 0, . . . ,m
was explained in Section 2.4. Here, we will see that this approximately results in a
separation of the dimensions into a product of functions with different frequencies.

We start with the definition of the basis functions in (4.38) for d = 0, . . . , n. To
this end, let the numbers N0, . . . , Nn ∈ N be given. For d = 0, . . . , n we set `d = 2Nd

and shift the index sets {0, . . . , 2Nd} 7→ {−Nd, . . . , Nd} in (4.38). Then, for each set

Fd`d := FdNd := {ϕd−Nd , . . . , ϕdNd} , d = 0, . . . , n ,

the basis functions are defined for j = −Nd, . . . , Nd by

ϕdj (t) := exp

(
2π

ωm
i kdj t

)
, with kdj := j ·Kd(m, γ) . (6.14)

Note that for d = 0, . . . , n the functions in Hd
`d

= spanFd`d are periodic with period
ωm/Kd(m, γ). They have the form

φd(t) :=

Nd∑
j=−Nd

cdj exp

(
2π

ωm
i kdj t

)
, cdj ∈ C , (6.15)
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and their Fourier coefficients (6.6) are given by

φ̂d(kdj ) =

{
cdj , j = −Nd, . . . , Nd ,

0, else.

In other words, for d = 0, . . . , n, jd = −Nd, . . . , Nd the coefficient cdjd ∈ C is simply
the Fourier coefficient of φd which is located at kdjd ∈ Z in Fourier space.

Next, we consider a function Φ ∈ H(n)
L , see (4.41), which has the special form

Φ(t) :=
n∏
d=0

(
Nd∑

j=−Nd
cdj exp

(
2π

ωm
i kdj t

))
, cdj ∈ C ,

and remark that the outer functions in the set KL from (4.48) are exactly of this
type, see Section 4.5.2.

Now, by the fact that multiplication of exponentials is actually an addition of
frequency–numbers

exp

(
2π

ωm
i k1t

)
exp

(
2π

ωm
i k2t

)
= exp

(
2π

ωm
i (k1 + k2)t

)
,

one can see that the frequency–pattern of Φ is precisely given by the set Kn(m, γ) in
(6.13). This property motivated the definition of the product model in Section 3.2.2
and Section 4.5.2. However, note that conversely not any function which is defined
on this frequency–pattern in Fourier space is necessarily a product of functions.
Therefore, our ansatz is merely an approximation of the outer function which is
made first by the choice of the frequency set Kn(m, γ), and second by the use of a
product of functions.

Finally, to compute the Fourier coefficients of the function Φ, we first define for
each k ∈ Kn(m, γ) the set of multiindices

J (k) :=

{
j := (j0, . . . , jn) : k =

n∑
d=0

kdjd , |jd| ≤ Nd, d = 0, . . . , n

}
,

and see that the k–th Fourier coefficient of Φ =
∏n

d=0 φ
d is given by

Φ̂(k) =

{∑
j∈J (k)

(
c0
j0
· · · cnjn

)
, k ∈ Kn(m, γ) ,

0, else.
(6.16)

Thus, each product
(
c0
j0
· · · cnjn

)
, j ∈ J (k), k ∈ Kn(m, γ) is a contribution to the

Fourier coefficient Φ̂(k0
j0

+ · · ·+ knjn). Clearly, for #J (k) = 1 it holds
(
c0
j0
· · · cnjn

)
=

Φ̂(k0
j0

+ · · ·+ knjn).
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Altogether we end up with a complex valued extended model fL ∈ KL which
has the form

fL(x) :=
m∑
q=0

n∏
d=0

(
Nd∑

j=−Nd
cdj exp

[
2π i kdj

( n∑
p=1

αp ψ(xp + qa) + ∆q

)])
. (6.17)

Now, to the get a real valued function from fL, in Section 4.5.2 we argued that

the definition of fL,r is less restrictive than the choice f̃
(n)
L , see Remark 4.20 for a

definition. To explain this, we exemplarily consider Φ as before, and therewith the
Fourier coefficients of the real valued functions

Φ̃(t) :=
n∏
d=0

Re
(
φd(t)

)
, and Φr(t) := Re

(
n∏
d=0

φd(t)

)
,

where for each d = 0, . . . , n, φd is defined by (6.15).
To point out the difference between Φ̃ and Φr, we first split up each index set

{−Nd, . . . , Nd}, d = 0, . . . , n into disjoint sets

Id0 := {−Nd, . . . ,−1} , and Id1 := {0, . . . , Nd} ,

which only contain positive or negative numbers4, respectively. Furthermore, let
j := (j0, . . . , jn) ∈ Z(n+1) and s := (s0, . . . , sn) ∈ {0, 1}(n+1) be multiindices, and
define the index set T := {0, 1}(n+1) \{(0, . . . , 0), (1, . . . , 1)}. Then, one can split up
Φ into three parts

Φ(t) =
n∏
d=0

φd(t) =

(
n∏
d=0

Σd
0(t)

)
+

(
n∏
d=0

Σd
1(t)

)
+
∑
s∈T

(
n∏
d=0

Σd
sd

(t)

)
, (6.18)

where we abbreviated for d = 0, . . . , n and s ∈ {0, 1}

Σd
s(t) :=

∑
j∈Ids

cdj exp

(
2π

ωm
i kdj t

)
.

Next, we define for s ∈ {0, 1}(n+1) the set Is = I0
s0
× . . .× I0

sn . Then, each term in
(6.18) can written as

n∏
d=0

Σd
sd

(t) =
∑
j∈Is

(
c0
j0
· · · cnjn

)
exp

(
2π

ωm
i
(
k0
j0

+ . . .+ knjn
)
t

)
. (6.19)

4Here, for simplicity and in abuse of the usual terminology, we make the convention that 0 is a
positive number.
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Note that the first term in (6.18) corresponds to s = (0, . . . , 0) and solely contains
negative indices jd < 0. The second term results from s = (1, . . . , 1) and only
contains positive jd ≥ 0, while for the third term the signs of the indices jd vary
depending on the multiindex s ∈ T .

Now, to compute Φ̃ =
∏n

d=0 Re(φd), remember that each factor Re(φd), d =
0, . . . , n is a real valued function and by (6.7) we can assume for d = 0, . . . , n that

cd−j = cdj , for j = 0, . . . , Nd , (6.20)

see also (6.9). This dependency is sketched in Figure 6.16 (a) and (b). There, for
d ∈ {0, 1} and j = −2, . . . , 2 the values |cdj | are marked blue for j ≥ 0 and red for
j < 0. From (6.20) we can see that the red coefficients are defined from the blue
ones. Next, Figure 6.16 (c) sketches the frequency pattern of the product

∏n
d=0 φ

d

for this case. Note that in our example #J (k) = 1. Here, the values |c0
j0
· · · cnjn| for

coefficients in the first term of (6.18), i.e. j ∈ Is, s = (0, . . . , 0) are marked red,
while the respective values for j ∈ Is, s = (1, . . . , 1) in the second term are colored
blue, see also (6.19). Again, the red values are fixed through their blue counterparts
by (6.20). Finally, the magnitudes of (c0

j0
· · · cnjn) from the third term in (6.18) are

marked brown, i.e. j ∈ Is, s ∈ T . Here, for at least one factor cdjd , d ∈ {0, . . . , n} it
holds jd < 0, and thus it is given by (6.20).

Altogether we see that only in the second term of (6.18) there is no restriction
on the corresponding coefficients cdj through (6.20). These values are marked blue
in Figure 6.16 (c). For all remaining coefficients (brown, red) there is at least some
restriction from the assumption (6.20) which comes along with the computation of
Φ̃ =

∏n
d=0 Re(φd).

In contrast to this, the dependencies of coefficients in Φr = Re
(∏n

d=0 φ
d
)

are
less restrictive. To see this, the splitting of the index sets {−Nd, . . . , Nd} is not
necessary: Since the factors φd are complex valued functions, there is no a priori
restriction on their coefficients cdj , cf. (6.20). This is depicted in Figure 6.17 (A)
and (B), where all coefficients are marked blue.

Next, to compute Φr we rather define the sets of multiindices

J− := {j ∈ J (k) : k ∈ Kn(m, γ), k < 0}
and

J+ := {j ∈ J (k) : k ∈ Kn(m, γ), k ≥ 0} ,

which allow for the splitting of

Φr(t) = Re

(
n∏
d=0

φd(t)

)
=

∑
s∈{−,+}

∑
j∈Js

(
c0
j0
· · · cnjn

)
exp

(
2π

ωm
i
(
k0
j0

+ . . .+ knjn

)
t

)
into two sums which run over the index sets J−, J+. Now, to account for the fact
that Φr = Re

(∏n
d=0 φ

d
)

is a real valued function and therefore (6.7) holds, we can
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Figure 6.16. In picture (a) and (b), the relation between the Fourier coeffi-
cients cdj of φd is shown for d = 0, 1, j = −2, . . . , 2: The red values are given by the

blue ones through (6.9). Part (c) shows the dependencies for Φ̃ =
∏n

d=0 Re(φd). The
brown values are partly determined by (6.9), while the red coefficients again depend
on their blue counterparts.

assume that

c0
−j0 · · · cn−jn = c0

j0
· · · cnjn , j = (j0, . . . , jn) ∈ I+ , (6.21)

which now replaces assumption (6.20). Finally, the fact that the second sum over all
indices j ∈ J+ contains the second term

∏n
d=0 Σd

1 from (6.18) plus additional terms
shows that Φr is less restrictive than Φ̃. This is also shown in Figure 6.17 (C), where
the magnitudes |c0

j0
· · · cnjn| are marked blue for j ∈ J+ and red for j ∈ J−. Again,

the red values depend on the blue ones. We conclude with the remark that the same
arguments apply to the functions f̃

(n)
L and fL,r. For this reason we chose the second

option in Section 4.5.2, cf. Remark 4.20.
After the foregoing remarks on the definition of the function fL,r, we next define

the norm for the regularization term in (4.50). To this end, remember that the
norm ‖ · ‖H (K) is defined by the values γdj in (4.19), see (4.34). For the first model,
i.e. d = 0, these values have been defined in (6.10) as the Hs–Norm of the basis
functions ϕ0

j . Next, we generalize this definition and set for s > 1/2, d = 0, . . . , n

γdj := (bm − a0)

(
1 +

(
2π

ωm

)2

Kd(m, γ)−2 |kdj |2
)s

, j = −Nd, . . . , Nd . (6.22)
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Figure 6.17. Dependencies of the Fourier coefficients of Φr = Re
(∏d

d=0 φ
d
)
.

(A), (B) sketch the coefficients of φ0, φ1 without restriction. In (C) the red values
can be computed from the blue coefficients through (6.21) to account for the fact that
Φr is real valued.

First, remember that K0(m, γ) = 1 which implies that (6.10) and (6.22) coincide if
d = 0. However, for d > 0, (6.22) defines norms ‖ · ‖Hd which are merely equivalent
to the Hs–norm, but account for the intrinsic oscillations of the basis functions.
To explain this, consider definition (6.14). There, the period of functions in Hd

`d
is scaled from ωm to the smaller value ωm/Kd(m, γ). Clearly, the norm ‖ · ‖Hd
compensates for the multiplication of the frequency numbers by the factor Kd(m, γ)
and the resulting additional oscillations. Next, remember from Section 2.4 that the
oscillations are due to the unfolding of dimensions which is caused by the inner
functions Ψq, q = 0, . . . ,m. However, the inner functions are independent of the
function f , and thus a definition of the norm through (6.22) does not penalize the
additional oscillations which have been introduced into the model to account for the
unfolding of dimension.

Simple example

For the so defined model fL,r we start the presentation of numerical results for the
solution of Problem 4.19 with the simple example from Section 6.1.1. Remember
that there, the outer function is a fixed polynomial p which defines fp through (6.4).
Again, we reconstructed the two–dimensional function fp from P = 500, 2000, 8000
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Figure 6.18. Value of the error functional (4.50) (left) and the MSE (6.1)
(right) in the reconstruction of fp from (6.4) for different values of DOF . The
reconstructions have been computed from P = 500, 2000, 8000 data points with m = 8
and ν = 10−12.

points with m = 8 terms in (6.17). Note that in the following we will again use
γ = m+ 2 in all calculations. For each factor (6.15) we chose the values N0 = . . . =
Nn = N to be equal. Consequently, the total number of complex degrees of freedom
is

L =
n∑
d=0

(`d + 1) =
n∑
d=0

(2Nd + 1) = (n+ 1)(2N + 1) , (6.23)

which implies for this example (n = 2) that the total number of real degrees of
freedom is

DOF := 2L = 2(n+ 1)(2N + 1) = 6(2N + 1) .

Figure 6.18 shows the results for for increasing values N = 8, . . . , 512 and the regu-
larization parameter ν = 10−12. In the left picture the value of the error functional
E(n)

(
fL,r
)

from (4.50) is plotted against DOF while the right picture shows the

mean–square–error (MSE) eZe

(
fL,r
)

depending on DOF . Table 6.6 gives the corre-
sponding numerical values of the MSE.

Similar to the reconstructions of fp with the first model, we observe a rapid decay
of the MSE. However, depending on the value of P , it saturates at some level, and the
error is not reduced any more, or even slightly increases. From Table 6.6 it becomes
clear that the turning point is when DOF exceeds the number of learning points P .
This shows that the amount of information which is contained in the learning data
set Z determines the quality of the reconstruction that can be achieved at best. In
conclusion, this simple example shows that the second model leads to similar results
as the first model although the outer function has no product structure. This is due
to the fact that f`,r ∈H (1)

` ⊂ KL 3 fL,r.
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P = 500 P = 2000 P = 8000

DOF
102
198
390
774

1 542
3 078
6 150

eZe slope
3.49 · 10−5 –
9.96 · 10−7 −5.25
2.35 · 10−7 −2.10
2.91 · 10−7 +0.31
2.91 · 10−7 +0.00
2.91 · 10−7 +0.00
2.91 · 10−7 +0.00

eZe slope
3.44 · 10−5 –
4.29 · 10−7 −6.47
5.58 · 10−8 −2.98
7.40 · 10−9 −2.93
1.12 · 10−9 −2.73
1.17 · 10−9 +0.06
1.16 · 10−9 +0.00

eZe slope
1.82 · 10−4 –
4.37 · 10−7 −8.90
4.22 · 10−8 −3.41
3.77 · 10−9 −3.50
4.29 · 10−10 −3.14
1.05 · 10−10 −2.03
3.73 · 10−11 −1.50

Table 6.6. For each P = 500, 200, 8000 the value of the MSE for the recon-
struction of fp is given. The functions fL,r have been computed with m = 8 terms
in (6.17) and regularization parameter ν = 10−12. The slopes have been computed
for successive points of the respective graph in Figure 6.18.

Numerical analysis of the nonlinear minimizers

For the previous simple example we used the BFGS–method to compute the minima
of the non–convex error functional E(n). To explain this choice, we next analyze the
iterative nonlinear minimizers from Section 5.1 numerically. For this purpose, we
define the test function

fd(x) :=

√√√√ n∑
d=1

(
xd − d(x)

)2
, with d(x) :=

1

n

n∑
d=1

xd , (6.24)

and consider in the following the case n = 2. The function value fd(x) is simply
the distance of the point x ∈ [0, 1]n to the diagonal of [0, 1]n. We remark that this
function has no product structure, and by that choice we prevent any correlations
between the test function, the product structure of the outer function, and the basis
for each factor. Furthermore, fd is continuous but not differentiable on the diagonal
of the n–dimensional unit cube.

To set up a test case which provides enough information to reconstruct (6.24),
the training set Z always contains P = 8000 samples of fd. Furthermore, we fix the
parameters m = 8 and ν = 10−6.

For this test problem, we next investigate the BFGS–method, the PRcg–method,
and the FRcg–method separately with respect to their dependency on the choice
of the start value for the iteration.5 To this end, we randomly sample an initial

5We do not analyze the steepest descent (SD) method here but remark that it reduces E(n)

independently from the start value. However, the reduction is very slow, see below.
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coefficient c0 ∈ [0, 0.5]2L which will then be used as start value for each method
ITER(·) = BFGS, PRcg, FPcg. Remember from Section 5.1 that ITER(·) performs
one iteration step of the respective nonlinear minimizer, i.e. we compute for k =
0, 1, 2 . . .

ck+1 = ITER(ck) .

The method stops, if either a previously defined maximum number of iterations
kmax ∈ N is reached, or ∣∣E(n)(ck+1)− E(n)(ck)

∣∣
|E(n)(ck+1)| < ε

holds for some given accuracy ε > 0. Numerical tests have shown that reasonable
choices for the stopping parameters are ε := 10−8, kmax := 1000, and δ := 10−2 for
the line search, see (5.4). In the following we will refer to this method as the direct
application of the respective nonlinear minimizer.

Our numerical tests showed that there exists a strong dependency of all methods
on the choice of the start value. In the left column of Figure 6.19 we give five
examples for which none of the minimizers led to a satisfactory result.

Figure 6.19 (left) shows the value of the error functional E(n)(ck) for each iter-
ation step of the BFGS–method, the FRcg–method, and the PRcg–method which
result from five different random start values cj,0 ∈ [0, 0.5]2L, j = 1, . . . , 5. Clearly,
the iteration histories reveal that a direct application of the minimizers is not possi-
ble. In fact, they either rapidly ran into a poor local minimum or the iteration even
stopped without success due to a failing line search (e.g. c4,0).

To remedy this, we introduced the nested iteration Algorithm 5.1 which recur-
sively precomputes the start values for the respective iterative nonlinear minimizer as
the solution of the same problem at a lower resolution, see Section 5.1. Now, in order
to generate a sequence of nested approximation spaces KL1 ⊂ KL2 ⊂ . . . ⊂ KLJ for
our test problem, let J = 7, and N (j) := 2j+1 which implies Lj = (n+ 1)(2N (j) + 1),
j = 1, 2, . . . , J , cf. (6.23). Furthermore, we choose for each lower resolution
k1

max := . . . := kJ−1
max := 10, and kJmax := kmax := 1000. All further stopping pa-

rameters ε := 10−8, and δ := 10−2 are as before. The start values c1
j,0 ∈ R2L1 for the

nested iteration scheme at the lowest resolution are derived for j = 1, . . . , 5 from the
corresponding cj,0 ∈ R2LJ in the following way: Let f jLJ ∈ KLJ be given by (6.17)
with the coefficient vector cj,0. Then, c1

j,0 is defined to be the coefficient vector of

the orthogonal projection of f jLJ onto KL1 with respect to the scalar product (4.34)
in H (K).

The right column of Figure 6.19 shows the results for the previous test cases and
the nonlinear minimizers ITER(·) = BFGS, PRcg, FPcg but with an application of
the nested iteration Algorithm 5.1. Clearly, this stabilized the iteration processes.
For all methods, and independent of the start values c1

j,0, j = 1, . . . , 5, the error
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0 5 10 15 20
10−4

10−1

102

105

iterations

E
(n

)

0 50 100 150
10−4

10−1

102

105

iterations

E
(n

)

c1,0
c2,0
c3,0
c4,0
c5,0
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Figure 6.19. The left pictures show the iteration histories of five test cases
for which a direct application of the respective nonlinear minimizer to reconstruct
(6.24) fails. The graphs in the right column result from the same test cases but with
an application of the nested iteration Algorithm 5.1.
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functional E(n) could be significantly reduced to an approximately similar value.
Thus, an application of the nested iteration scheme reduces the dependency of all
methods from the choice of the start value.

Next, we compare the performance of the SD–method, the FRcg–method, the
PRcg–method, and the BFGS–method. To this end, we first directly apply each
method to the previous test problem, i.e. we reconstruct fd with the parameters
P = 8000, m = 8, ν = 10−6, and N = 256. However, in the following we always use
the start vector

c0 := (c0
−N,r, c

0
−N,i, . . . , c

0
N,r, c

0
N,i, . . . . . . , c

n
−N,r, c

n
−N,i, . . . , c

n
N,r, c

n
N,i)

T ∈ R2L ,

where for d = 0, . . . , n the coordinates are given by

cdj,i := 0 , j = −N, . . . , N , and cdj,r :=

{
1 , j = 0 ,

0 , else.

Then, we additionally apply each method together with the nested iteration algo-
rithm using, as before, the orthogonal projection of this start value onto KL1 . Here,
we employ the same maximal iteration number k1

max := . . . := kJmax := 1000 for
each level, while all other parameters are as described previously. In a final test, we
reduce the values to kjmax := 10 for the lower levels j = 1, . . . , J − 1. In Figure 6.20
the iteration history of each solver in the respective test is given.

Figure 6.20 shows that the quality of the results for a direct application differs
for each solver with respect to the minimal value of E(n), which is marked by a
horizontal line, and the number of iterations that are required to achieve this mini-
mum. Here, the difference between PRcg–method and FRcg–method is rather small.
Both minimizers stop after a small number of iterations, however at a large value
of E(n). In contrast, the SD–method computes the lowest value E(n) but converges
very slowly. In fact, the value which is marked by the black line is attained after
kmax = 1000 iterations. The direct application of the BFGS–method led to the best
results. After a small number of iterations it attained a minimum which is close to
the SD minimum. With an additional application of the nested iteration scheme
and kjmax := 1000, j = 1, . . . , J , see the second picture of Figure 6.20, all minimizers
achieved this minimum. We remark that this also holds for the SD–method although
this is not visible from the plot due to its slow convergence. Finally, we observe that
the number of total iterations can be reduced if kjmax is small for the lower resolu-
tions j < J in the nested iteration algorithm. Figure 6.20 (bottom) shows that for
this test problem and any nonlinear minimizer, kjmax = 10, j = 1, . . . , J − 1 suffices
to achieve good results with few iterations. We conclude our numerical investiga-
tions of the nonlinear minimizer with the remark that an application of the nested
iteration Algorithm 5.1 is essential to solve Problem 4.19. For all numerical results
in this thesis it was used in combination with the BFGS–method.
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Figure 6.20. Iteration histories of SD–, FRcg–, PRcg–, and BFGS–method
for a direct application (top) to the test problem, and for the nested iteration algo-
rithm with kjmax := 1000, j = 1, . . . , J , (middle) and kjmax := 10, j = 1, . . . , J − 1,
kJmax := 1000 (bottom). The horizontal lines mark the minimal value of E(n) which
is achieved by the direct application, respectively.
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Numerical analysis of the model parameters

After the previous considerations on the nonlinear minimizers, next our emphasis
is on a more detailed numerical analysis of the second model (6.17). To this end,
we reconstructed fd for n = 2, see (6.24), and different parameter setups of fL
from P = 500, 2000, 8000 data points. To be more precise, the reconstructions were
computed for an increasing number of terms m = 8, 16, 32 and different regular-
ization parameters ν = 10−2, 10−4, 10−6, 10−8. With N (j) := 2j+1, we calculated
the solution of Problem 4.19 in each setup for increasing resolutions N = N (J),
J = 1, . . . , 9 for which (6.23) implies that the total number of real degrees of free-
dom is DOF = 6(2J+1 + 1). Here, to stabilize the nonlinear minimizer, we used
kjmax = 100, j = 1, . . . , J − 1 iterations at the lower resolutions in the nested itera-
tion scheme, and δ = 0.1 in (5.4).

Figures 6.21–6.23 show the results of these tests for m = 8, 16, 32, respectively.
There, the value of the error functional E(n) (4.50) is shown against DOF in the left
columns. The graphs in the right columns show the MSE (6.1) depending on DOF .
In each figure, the number of learning points is increased from P = 500 (top row) to
P = 2000 (middle row), and P = 8000 (bottom row). Finally in all graphs, for both
E(n), and MSE the results are marked with separate colors for each regularization
parameter ν which was used.

We clearly see that in general the value of the error functional decreases for
increasing resolution N and then saturates for fine resolutions. However, the decay
of E(n) is not monotone in all cases which shows that the minimizer still can run
into a poor local minimum although we increased the iteration numbers kjmax = 100,
j = 1, . . . , J − 1 for the lower resolutions in the nested iteration scheme. Thus
it might be preferable to also use e.g. kjmax = kJmax if j < J . Anyhow, since the
value of the error functional is an upper bound for the MSE on the training data
we can conclude that the model approaches the training set. In particular for small
training data sets this leads to an overfitting of the data. This can be seen in detail
in the cases m = 8, P = 500, 2000 where the MSE slightly increases for larger
values of DOF while the value of E(n) becomes small. This effect is postponed if
P is larger. Furthermore, we see that increasing the number of terms m leads to
better approximations of fd if the training set is large (P = 2000, 8000). This is
consistent with the theoretical argument (2.62) that a larger value m leads to a
faster convergence of Algorithm 2.1, see the remarks at the end of Section 2.3.7.
But for larger m the outer function, i.e. its oscillations, becomes more difficult to
approximate and more degrees of freedom and more learning points are needed. This
is indicated by the later onset of the decay, by the earlier onset of the saturation of
the error (m = 16, 32, P = 2000, 8000, ν = 10−6), and by the first row in Figure 6.23
(P = 500, m = 32) where, based on the small learning set, the error eZe could not
be reduced. This is also the case for large regularization parameters ν. While in
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Figure 6.21. Values of the error functional E(n) (left) and the MSE (6.1)
(right) for increasing resolutions in the reconstruction of fd from P = 500, 2000, 8000
data points with parameters m = 8, γ = 10 and different regularization parameters.
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Figure 6.22. Results for the reconstructions of fd with parameters m = 16,
γ = 18, and varying regularization parameter ν. Again, E(n) and eZe are plotted
against DOF for increasing resolutions. The rows show different sizes P of the
training set Z.



6.2. Second model 145

P = 500

102 103 104
10−7

10−5

10−3

10−1

DOF

E
(n

)

102 103 104
10−5

10−4

10−3

10−2

10−1

DOF

e Z
e

P = 2000

102 103 104
10−7

10−5

10−3

10−1

DOF

E
(n

)

102 103 104
10−5

10−4

10−3

10−2

10−1

DOF

e Z
e

P = 8000

102 103 104
10−7

10−5

10−3

10−1

DOF

E
(n

)

102 103 104
10−5

10−4

10−3

10−2

10−1

DOF

e Z
e

ν = 10−2 ν = 10−4 ν = 10−6 ν = 10−8

Figure 6.23. The graphs show the results for the same test cases as in
Figure 6.21 and Figure 6.22 but for the model parameters m = 32, γ = 34.
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general we observe that the overfitting effect can be reduced by a larger ν, the MSE
remains large for m = 16, 32 and ν = 10−2, 10−4. This is due to the fact that the
regularization term in (4.50) has more impact on the value of the error functional
which enforces higher regularity of the approximand fL. Here, it even dominates
E(n). In contrast, the use of a larger value of ν is preferable for smaller training data
sets and small values of m to avoid overfitting of the data (m = 8, P = 500, 2000).
Finally we remark that the saturation of the error for large resolutions is due to the
limited information that is contained in the finite number of learning points.

Altogether we conclude that the product model (6.17) produces good results and
behaves as expected from comparable regression methods, cf. [38]. Furthermore,
the product model (6.17) allows to also approximate functions that are not smooth
and have no tensor–product structure. This indicates numerically that the product
structure of the outer function Φ is indeed induced by the outer mappings Ψq and
not by the function f itself. However, to achieve good results, special care has to
be taken of the minimization of the non–convex error functional E(n).

Higher dimensional examples

Until now, our numerical analysis was based two–dimensional examples. In the
following we aim at the reconstruction of higher dimensional functions with the
product model (6.17). In particular, we consider the test function

fs(x) :=
n∏
d=1

sin(πxd) , x ∈ [0, 1]n

in dimensions n = 4, 6, 8, 10. To reconstruct these functions, the training data set
was enlarged for increasing dimension, while the resolution was constant N = 32.
Following the results from the previous section we chose a large number of terms
in (6.17) to get better approximations, i.e. we take m = 32. Remember also that
m ≥ 2n is necessary. Furthermore, we used the parameters from Table 6.7. There,
the size P of the training set, the number of real degrees of freedom DOF , and the
regularization parameter ν which led to the best results are listed. Furthermore, the
values of the error functional and the MSE are given for each test. However, when
comparing the results, note that that both the number of training points P , and
test points Pe which is used to calculate eZe depend on the dimension. See Table A.4
in the appendix for a list of the values Pe depending on the dimension n.

Figures 6.24–6.27 show the graphs of the reconstructions in the respective di-
mensions on different two–dimensional hyperplanes. Here, for a (xi, xj)–plane, the
remaining coordinates of x ∈ [0, 1]n are chosen to be xk = 0.5. This corresponds
to the maximum of fs with respect to this coordinate. For reasons of simplicity we
only present four different hyperplanes. Note however that the results do not differ
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n P DOF ν E(n) eZe

4 20 000 650 10−6 6.38 · 10−5 6.32 · 10−5

6 50 000 910 10−10 3.15 · 10−5 3.65 · 10−5

8 80 000 1170 10−10 1.28 · 10−5 1.55 · 10−5

10 100 000 1430 10−9 7.41 · 10−6 1.21 · 10−5

Table 6.7. Parameters for the reconstructions of fs in the respective dimen-
sions. Additionally, the values of the error functional and the MSE are given for
each test case.

considerably for the other cases. Additionally, the residual fs − fL,r is plotted for
the respective hyperplane.

The results demonstrate that we obtain a good approximation of fs with very
few degrees of freedom. The residuals are close to 0 in all hyperplanes. Note that
this includes the (xn−1, xn)–planes which correspond to the highest dimensions of
fs, i.e., where the highest frequencies of the outer function have to be resolved. We
roughly achieve the same order of magnitude for the value of the error functional and
the MSE in all dimensions while the number of degrees of freedom increases linearly
with n the Fourier expansion remains the same. However, we remark again that a
direct comparison of the error eZe for different dimensions has to be considered with
care. Furthermore, the examples show that our ansatz is suited for large data sets
Z.

Altogether, this shows that the second model fL,r resulting from (6.17) is capable
of approximating higher dimensional functions and that the product ansatz for the
outer function in Kolmogorov’s representation is an appropriate choice. This finally
allows to circumvent the exponential growth of the number of degrees of freedom
with the dimensionality of the function f that has to be approximated. Also, we
have seen in Section 5.1.1 that the numerical complexity for one iteration step of
the BFGS–method is of the order O(n2N2) + O(P n2N), i.e. it is linear in the
number of points and in particular not exponential in the dimension. However, note
that a multiple precision arithmetic is required to evaluate the model and that this
(second) term dominates the costs. Furthermore, the total number of iterations
which are needed to compute the solution at the desired resolution might increase
rapidly with n, although we did not observe this in our tests. We conclude with the
remark that these are potential reasons which might still cause an occurrence of the
curse of dimensionality.
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Figure 6.24. Reconstruction of fs in dimension n = 4 from P = 20000 data
points, and N = 32, m = 32. The regularization parameter was ν = 10−6. The
figures show two–dimensional hyperplanes of the graph (left) and the residual (right)
for which the remaining coordinates of x ∈ [0, 1]n are chosen to be xk = 0.5.
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Figure 6.25. Graphs of fL,r (left) and fs − fL,r (right) on different two–
dimensional hyperplanes for the reconstruction of fs, n = 6 with P = 50000, N = 32,
m = 32, and ν = 10−10. For a (xi, xj)–plane, the remaining coordinates of x ∈ [0, 1]n

are chosen to be xk = 0.5.
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Figure 6.26. The left column shows the graphs fL,r for the reconstruction of
fs on two–dimensional hyperplanes in dimension n = 8. All remaining coordinates
of x ∈ [0, 1]n are xk = 0.5. The corresponding residuals fs − fL,r are shown in the
right column. Here, fL,r was computed from P = 80000 data points with N = 32,
m = 32, and ν = 10−10.
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Figure 6.27. Reconstruction of fs, n = 10 from P = 100000 points, with
parameters N = 32, m = 32, and ν = 10−9. The pictures show the function fL,r
(left) and the residual fs− fL,r on different two–dimensional hyperplanes. Here, the
remaining coordinates of the points x ∈ [0, 1]n are fixed to xk = 0.5.
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Chapter 7

Conclusions

In this thesis we presented a Regularization Network approach to reconstruct a
continuous function f : [0, 1]n → R from its samples f(xj) at random points xj ∈
[0, 1]n, j = 1, . . . , P . The method is directly based on a new constructive version of
Kolmogorov’s superposition theorem which represents an n–dimensional continuous
function as superposition of one inner and one outer univariate function. No higher
regularity conditions on the function f had to be assumed.

To build the theoretical foundation of our model, we modified a recent result
by Sprecher who derived a numerical algorithm for the implementation of m + 1
external univariate functions in Kolmogorov’s representation where m ≥ 2n. This
algorithm was adapted in a suitable way such that its convergence towards one single
outer function Φ could be proved which replaces Sprecher’s m + 1 outer functions.
Moreover, the inner functions ψq are defined as translations of a single function ψ
that was recently defined by Köppen1 as an extension of a function which is defined
on a dense subset of the real line. For this ψ existence, as well as the essential
properties of continuity and monotonicity were shown.

Based on the resulting new version of Kolmogorov’s superposition theorem we
introduced our model to approximate f in two steps. To define the first model we
replaced the outer function Φ by an expansion in a finite basis with unknown coeffi-
cients which resulted in a linear representation of the approximand. The coefficients
were determined via a variational formulation, i.e. the minimization of a regular-
ized convex cost functional E(1)(·) which measures the empirical error on the random
sample set. A detailed numerical analysis of this first model then revealed that the
dimensionality of the function is transformed by Kolmogorov’s representation into a
structured oscillation of the outer function. As a consequence of this, the use of lo-
cally supported basis functions like B–splines was shown to be disadvantageous since
the one–dimensional mesh resolution had to resolve the strong oscillations. However,

1In fact, Köppen corrected the earlier definition of Sprecher, whose function ψ was neither
continuous nor monotone increasing.
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the vector of Fourier coefficients turned out to be sparse which suggested the use
of the Fourier basis and led to further insight into the structure of the outer func-
tion Φ. In particular, further numerical tests revealed a product structure of the
outer function. These observations complemented previous theoretical arguments
which already showed that the inner sums cause an unfolding of the dimensions into
a product of functions. Another important insight was the fact that the relevant
frequency numbers could be computed a priori. In fact, their locations in Fourier
space only depend on several model parameters, independent of the function f .

These findings motivated the definition of the second model. Here, we replaced
Φ by a product of functions

∏n
d=0 φ

d and expanded each factor φd in a Fourier basis
with appropriate frequency numbers to capture the structured oscillations of the
outer function. Since the number of basis functions was similar for each factor, the
total number of degrees of freedom for the model depends linearly on the dimension
n. Note that due to the strong oscillations a multiple precision arithmetic is required
to evaluate both models.

The constructions for the two models were formalized by means of reproduc-
ing kernel Hilbert spaces such that the corresponding Regularization Network ap-
proaches could be defined in this general setting. For the second model the product
ansatz then resulted in a cost functional E(n)(·) which was no longer convex and
required the use of a nonlinear iterative minimizer. An analysis of the nonlinear
minimizers showed that the numerical costs for one iteration step depends linearly
on the number of points P and is quadratic in the dimensionality n.

The numerical analysis for the second model then revealed that the minimization
of the non–convex error functional E(n)(·) requires a nested iteration scheme to pre-
compute sufficiently good start values for the iterative solvers. For the total number
of iterations we did not observe a rapid, or even exponential, increase with the di-
mension n in our experiments. However, we remark that this and the necessity of a
multiple precision arithmetic potentially still comprise the curse of dimensionality.
In conclusion, our numerical tests proved that the product model is an appropriate
choice for function reconstruction and that it is capable of approximating functions
up to dimension ten. Moreover, it can be used for reconstructions from large data
sets.

In addition to our own contributions, we presented a comprehensive overview
of the existing versions and improvements of Kolmogorov’s superposition theorem
which were made by different authors. This included Sprecher’s constructive ver-
sion, which was the basis for our considerations, and we proved that his original
inner function ψ indeed is discontinuous. Furthermore, we presented a geometric
interpretation of the theorem. Also, examples of approximation schemes that are
closely related to Kolmogorov’s superposition theorem were given. To provide the
theoretical background for the construction of our Regularization Network approach,
we repeated some basic facts on reproducing kernel Hilbert spaces. Then, we in-
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troduced the Regularization Network approach in general by means of Statistical
learning theory and Structural risk minimization. Moreover, we gave a Bayesian
interpretation of the method.

In conclusion, the scope of the present thesis was the development of a new
model for function reconstruction. This included the formulation and proof of a new
constructive version of Kolmogorov’s superposition theorem similar to Sprecher’s
result, i.e. with Köppen’s explicit definition of the inner function ψ but only one
single outer function. Furthermore, the underlying reproducing kernel Hilbert spaces
for our models were derived which then defined the corresponding Regularization
Network approaches. Finally, numerical results from an implementation of both
models were presented. Here, to analyze the new models, we set up artificial test
cases where we could ensure that the data set Z stemmed from an underlying
function f . By the choice of the function we could control the structure of the data
which was important for an analysis of the models. This way we could eliminate
any effects resulting from the data. In particular, these tests were important to
analyze the general behaviour of the product model and prove its general capability
to reconstruct functions in higher dimensions.

As an outline for further investigations, we mention the application of our Reg-
ularization Network approach to the analysis of real world data from data mining
problems. Here, the next step in this direction would be to test the product model
for the case when noise is added to the response variable, i.e. to consider values
yj = f(xj) + ξ, where ξ is some normally distributed random variable with expecta-
tion 0, see [127]. Then, a comparison with known methods from literature for well
defined (artificial) test cases is at hand, [35, 38]. However, these tests would have
significantly blown up the extend of this thesis and are the topic of future work.
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Appendix A

A.1 Duality between RKHS’s and stochastic processes

In Section 4.4 the Maximum A Posteriori interpretation of the Regularization Net-
work approach has been introduced. To explain the duality between reproducing
kernel Hilbert spaces (RKHS’s) and stochastic processes that was mentioned there
in more detail, we follow [127]. For details on RKHS’s see Section 4.1 and the
references therein.

Let Ω be a general index set. Now, let X(t), t ∈ Ω be real valued Gaussian
random variables with zero mean and covariance

E[X(s)X(t)] =: K(s, t) , (A.1)

where E[ξ] denotes the expected value of a random variable ξ, see Section 4.2 for a
definition. Furthermore, we define the linear vector space of random variables

X o := span {X(t) : t ∈ Ω} =

{
p∑
i=1

aiX(ti) : p ∈ N, t ∈ Ω, ai ∈ R

}
.

For random variables ξ1, ξ2 ∈ X o we define their inner product to be the value

〈ξ1, ξ2〉X := E[ξ1(t)ξ2(t)] .

The completion of X o with respect to the induced norm is a Hilbert space which
will be denoted by X .

Now, from its definition (A.1) and the properties of the covariance matrix we
can conclude that K : Ω× Ω→ R is a symmetric positive definite function. Then,
by Theorem 4.8, there exists a RKHS H(K) with reproducing kernel K which is the
completion of

Ho = span {K(·, t) : t ∈ Ω} =

{
p∑
i=1

aiK(s, ti) : p ∈ N, ti ∈ Ω, ai ∈ R

}
.
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For the scalar products in the spaces X and H(K) it holds

〈X(s), X(t)〉X = E[X(s)X(t)] = K(s, t) = 〈K(·, t), K(·, s)〉H(K) . (A.2)

We define a linear mapping L : H(K)→ X by

L

(
p∑
i=1

aiK(s, ti)

)
:=

p∑
i=1

aiX(ti) for p ∈ N , ai ∈ R , ti ∈ Ω ,

and for

ξ := lim
k→∞

p∑
i=1

akiK(s, tki ) with p ∈ N , aki ∈ R , tki ∈ Ω ,

we set

L(ξ) := lim
k→∞

p∑
i=1

akiX(tki ) .

We claim the following: The mapping L is an isometric isomorphism between H(K)
and X .

Clearly, L is surjective and isometric. To show that L is also injective, let
f(s) :=

∑p
i=1 aiK(s, ti) ∈ H(K) and L(f) = 0. Then, since 〈·, ·〉X is a scalar

product, we get by (A.2) and (A.1)

0 = 〈L(f), X(s)〉X =

p∑
i=1

ai 〈X(ti), X(s)〉X =

p∑
i=1

aiK(s, tj) = f(s) ,

which shows that L is injective. For the limit case the assertion holds due to the
continuity of the scalar product. Thus, the space H(K) is indeed isometrically
isomorphic to X .

Next, we comment on the prior P(f) as it is used in Section 4.4, following the
lines of [28]. To this end, let {ϕ1, . . . , ϕ`} be a, possibly infinite, orthogonal basis of
H(K) (with respect to the scalar product 〈·, ·〉H(K)), and norm

‖ϕi‖H(K) =
√

γi .

For a function f ∈ H(K) given by

f(s) :=
∑̀
i=0

ai ϕi(s) , ai ∈ R ,

the squared norm is simply

‖f‖2
H(K) =

∑̀
i=0

γi a
2
i = aTM a ,
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where a := (a1, . . . , a`)
T is the coefficient vector of f and M is the diagonal matrix

M := diag(γ1, . . . ,γ`). Clearly, the stabilizer can also be expressed in any other
reference system {ϕ̃1, . . . , ϕ̃`} by

‖f‖2
H(K) = bTM̃ b ,

which suggests that M̃ can be interpreted as the covariance matrix in the alternative
reference system. Thus, ‖f‖2

H(K) can be regarded as the Mahalanobis distance of f
from the mean of the functions. Therefore, the prior

P(f) ∝ exp
(−‖f‖2

H(K)

)
= exp

(
−bTM̃ b

)
is a multivariate Gaussian with zero mean in the RKHS H(K), and can be related
to a Gaussian prior on the function space. This captures the idea that the stabilizer
effectively constraints the desired function to be in H(K).

A.2 Real valued formulation of first model

In Section 4.5.1 we used a real valued formulation (4.45) of the complex valued error
functional E(1) from (4.43). Here, we will show more details on the derivation of
this formula.

To this end, we first compute the expansion of

2 f`,r(x) =
m∑
q=0

(∑̀
j=0

cjϕj

)
◦Ψq(x) +

m∑
q=0

(∑̀
j=0

cjϕj

)
◦Ψq(x)

=
m∑
q=0

(∑̀
j=0

(cjϕj + cjϕj)

)
◦Ψq(x) = 2

m∑
q=0

φ`,r ◦Ψq(x)

in terms of the real and imaginary parts of the coefficients cj and the basis functions
ϕj, given by

cj = cj,r + i cj,i , ϕj(s) = ϕj,r(s) + i ϕj,i(s) , j = 0, . . . , ` .

This computation is straightforward. It holds

(cj,r ± i cj,i)
(
ϕj,r(s)± i ϕj,i(s)

)
=
(
cj,rϕj,r(s)− cj,iϕj,i(s)

)± i (cj,iϕj,r(s) + cj,rϕj,i(s)
)

,

and thus
cjϕj(s) + cjϕj(s)

2
= cj,rϕj,r(s)− cj,iϕj,i(s) .

Changing the order of summation in f`,r directly results in the representation

f`,r(x) =
∑
e∈{r,i}

∑̀
j=0

cj,e

m∑
q=0

ϕ̃j,e
(
Ψq(x)

)
,
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where we defined the real valued functions

ϕ̃j,r(s) := ϕj,r(s) , ϕ̃j,i(s) := −ϕj,i(s) , j = 0, . . . , ` .

Next, we will derive an expansion of the regularization term ‖f`,r‖2
H (K) of E(1)

in terms of the real and imaginary parts of the coefficients. We first note that for
any complex scalar product 〈·, ·〉 and 0 6= a, b ∈ C the following equations hold:

〈a, b〉 =
〈
(a/a) a, (b/b) b

〉
= (a/a)(b/b)

〈
a, b
〉

, (A.3)

and

〈a, b〉 =
〈
(b/b) a, (a/a) b

〉
= (a/b)(b/a) 〈b, a〉 = 〈b, a〉 . (A.4)

If a = 0 or b = 0, then 0 = 〈a, b〉 =
〈
a, b
〉

= 〈a, b〉 = 〈b, a〉 trivially holds.
Now, with a = ϕj, b = ϕk, 〈ϕj, ϕk〉 = δj,kγk, and using (A.3) one can compute

for f`,r ∈H (1)
`

‖f`,r‖2
H (K) =

1

4

〈
f` + f

(1)

` , f` + f
(1)

`

〉
H (K)

=
1

4
〈f`, f`〉H (K) +

1

4

〈
f

(1)

` , f
(1)

`

〉
H (K)

+
1

2
Re
〈
f`, f

(1)

`

〉
H (K)

=
1

4

∑̀
k,l=0

ckcl〈ϕk, ϕl〉+
1

4

∑̀
k,l=0

ckcl〈ϕk, ϕl〉+
1

2
Re

(∑̀
k,l=0

ckcl〈ϕk, ϕl〉
)

=
1

2

∑̀
k,l=0

δk,lc
2
k,rγk + δk,lc

2
k,iγk + ck,rcl,rRe

(〈ϕk, ϕl〉)− ck,icl,iRe
(〈ϕk, ϕl〉)

− ck,icl,r Im
(〈ϕk, ϕl〉)− ck,rcl,i Im(〈ϕk, ϕl〉)

=
∑

e1,e2∈{r,i}

∑̀
k,l=0

ck,e1cl,e2S
e1,e2
k,l ,

where we abbreviated 〈·, ·〉 := 〈·, ·〉H0(k0) and defined for j, k = 0, . . . , `, e1, e2 ∈ {r, i}
the values

Se1,e2j,k :=
1

2


δj,kγk + Re

(
〈ϕj, ϕk〉H0(k0)

)
, e1 = e2 = r,

δj,kγk − Re
(
〈ϕj, ϕk〉H0(k0)

)
, e1 = e2 = i,

− Im
(
〈ϕj, ϕk〉H0(k0)

)
, e1 6= e2.

Note that (A.4) implies

Se1,e2j,k = Se2,e1k,j .
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We have shown that the error functional (4.43) is given by

E(1)(f`,r) = E(1)
(
(c0,r, c0,i, . . . , c`,r, c`,i)

)
=

1

P

P∑
j=1

 ∑
e∈{r,i}

∑̀
k=0

ck,e

m∑
q=0

ϕ̃k,e
(
Ψq(xj)

)− yj
2

+ ν
∑

e1,e2∈{r,i}

∑̀
k,l=0

ck,e1cl,e2S
e1,e2
k,l ,

which is a convex functional with respect to the vector c
(1)
` := (c0,r, c0,i, . . . , c`,r, c`,i)

T ∈
R2(`+1).

Now, a minimizer of E(1)(c
(1)
` ) has to fulfill for all µ = 0, . . . , `, θ ∈ {r, i} the

necessary and sufficient conditions

0 =
∂

∂cµ,θ
E(1)(c

(1)
` )

=
2

P

P∑
j=1

 ∑
e∈{r,i}

∑̀
k=0

ck,e

m∑
q=0

ϕ̃k,e
(
Ψq(xj)

)− yj
( m∑

q=0

ϕ̃µ,θ
(
Ψq(xj)

))

+ 2 ν
∑
e∈{r,i}

∑̀
k=0

ck,eS
e,θ
k,µ ,

or equivalently

∑
e∈{r,i}

∑̀
k=0

ck,e

[
P ν Se,θk,µ +

P∑
j=1

(
m∑
q=0

ϕ̃k,e
(
Ψq(xj)

))( m∑
q=0

ϕ̃µ,θ
(
Ψq(xj)

))]

=
P∑
j=1

yj

(
m∑
q=0

ϕ̃µ,θ
(
Ψq(xj)

))
.

Defining the data matrix B ∈ RP×2(`+1) by

B :=
m∑
q=0

 ϕ̃0,r(Ψq(x1)) ϕ̃0,i(Ψq(x1)) . . . ϕ̃`,r(Ψq(x1)) ϕ̃`,i(Ψq(x1))
...

...
ϕ̃0,r(Ψq(xP )) ϕ̃0,i(Ψq(xP )) . . . ϕ̃`,r(Ψq(xP )) ϕ̃`,i(Ψq(xP ))

 ,

the regularization matrix by

S :=



Sr,r0,0 Sr,i0,0 . . . Sr,r0,` Sr,i0,`

S i,r0,0 S i,i0,0 . . . S i,r0,` S i,i0,`
...

...
Sr,r`,0 Sr,i`,0 . . . Sr,r`,` Sr,i`,`

S i,r`,0 S i,i`,0 . . . S i,r`,` S i,i`,`

 ∈ R2(`+1)×2(`+1) ,
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and the data vector y = (y1, . . . , yP )T ∈ RP , these conditions are equivalent to the
following system of linear equations:

(
BTB + νP S

)
c

(1)
` = BTy .

Thus, the minimizer of E(1)(c
(1)
` ) is given by the solution of this system.

A.3 Real valued formulation of second model

Next, we will compute the expansion of fL,r = (fL + f
(n)

L )/2 that results from a
splitting of all complex coefficients cdj and basis functions ϕdj , d = 0, . . . , n, j =
0, . . . , `d into their real and imaginary part:

cdj = cdj,r + i cdj,i , and ϕdj (s) = ϕdj,r(s) + i ϕdj,i(s) .

Here, fL is given by (4.36).
We start with some useful formulas. Remember that for a product of general

sums it holds

n∏
d=0

(
N∑
j=0

Adj

)
=

N∑
j0,...,jn=0

A0
j0
· · ·Anjn .

Using this fact and defining e(0) := r, and e(1) := i, one can compute the product
of (n+ 1) complex numbers (C0

r + i C0
i ), . . . , (C

n
r + i Cn

i ) ∈ C by

n∏
d=0

(
Cd
r + i Cd

r

)
=

1∑
j0,...,jn=0

i(j0+...+jn)

n∏
d=0

Cd
e(jd)

=
1∑

j0,...,jn=0

(
Pn
d=0

jd) even

(−1)
1
2

(
Pn
d=0 jd)

n∏
d=0

Cd
e(jd) + i

1∑
j0,...,jn=0

(
Pn
d=0

jd) odd

(−1)
1
2

((
Pn
d=0 jd)−1)

n∏
d=0

Cd
e(jd) .

(A.5)

Note that we always define 0 to be an even number since a division by 2 produces
no remainder.
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Now, consider the functions from (4.27)

Φj0,...,jn(x) =
m∑
q=0

(
n∏
d=0

(
ϕdjd,r + i ϕdjd,i

)
◦Ψq(x)

)

=
1∑

k0,...,kn=0

(
Pn
d=0

kd) even

(−1)
1
2

(
Pn
d=0 kd)

m∑
q=0

(
n∏
d=0

ϕdjd,e(kd)

(
Ψq(x)

))

+ i

1∑
k0,...,kn=0

(
Pn
d=0

kd) odd

(−1)
1
2

((
Pn
d=0 kd)−1)

m∑
q=0

(
n∏
d=0

ϕdjd,e(kd)

(
Ψq(x)

))

= Re
(
Φj0,...,jn(x)

)
+ Im

(
Φj0,...,jn(x)

)
.

For an element fL ∈ KL, the coefficient of Φj0,...,jn in its expansion with respect
to the generating system {Φj0,...,jn : jd = 0, . . . , `d, d = 0, . . . , n} is the product
cj0,...,jn = c0

j0
· · · cnjn ∈ C, see (4.48). Thus, it holds with (A.5)

Re (cj0,...,jmΦj0,...,jn) =
(
Re
(
cj0,...,jm

)
Re
(
Φj0,...,jn

))− (Im(cj0,...,jm) Im
(
Φj0,...,jn

))
=

 1∑
l0,...,ln=0

(
Pn
d=0

ld) even

(−1)
1
2

(
Pn
d=0 ld)

n∏
d=0

cdjd,e(ld)


 1∑

k0,...,kn=0

(
Pn
d=0

kd) even

(−1)
1
2

(
Pn
d=0 kd)

m∑
q=0

(
n∏
d=0

ϕdjd,e(kd)

(
Ψq(x)

))

−

 1∑
l0,...,ln=0

(
Pn
d=0

ld) odd

(−1)
1
2

((
Pn
d=0 ld)−1)

n∏
d=0

cdjd,e(ld)


 1∑

k0,...,kn=0

(
Pn
d=0

kd) odd

(−1)
1
2

((
Pn
d=0 kd)−1)

m∑
q=0

(
n∏
d=0

ϕdjd,e(kd)

(
Ψq(x)

)) .

Next, we define the expression

δl0,...,lnk0,...,kn
:=


1 if (

∑n
d=0 ld) and (

∑n
d=0 kd) even,

−1 if (
∑n

d=0 ld) and (
∑n

d=0 kd) odd,

0 else,
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and finally get for the function fL,r = (fL + f
(n)

L )/2 with fL ∈ KL the following
expansion in terms of the real valued functions (ϕdj,r ◦Ψq) and (ϕdj,i ◦Ψq):

fL,r(x) = Re

(
`0,...,`n∑
j0,...,jn=0

cj0,...,jmΦj0,...,jn

)
=

m∑
q=0

Re

(
n∏
d=0

φd
(

Ψq(x)
))

=
1∑

l0,...,ln=0

(
Pn
d=0

ld) even

1∑
k0,...,kn=0

(
Pn
d=0

kd) even

(−1)
1
2

Pn
d=0(ld+kd)

m∑
q=0

`0,...,`n∑
j0,...,jn=0

n∏
d=0

cdjd,e(ld)ϕ
d
jd,e(kd)

(
Ψq(x)

)

−
1∑

l0,...,ln=0

(
Pn
d=0

ld) odd

1∑
k0,...,kn=0

(
Pn
d=0

kd) odd

(−1)
1
2

Pn
d=0(ld+kd)

m∑
q=0

`0,...,`n∑
j0,...,jn=0

n∏
d=0

cdjd,e(ld)ϕ
d
jd,e(kd)

(
Ψq(x)

)

=
1∑

l0,...,ln=0

1∑
k0,...,kn=0

(−1)
1
2

Pn
d=0(ld+kd)δl0,...,lnk0,...,kn

m∑
q=0

n∏
d=0

(
`d∑
jd=0

cdjd,e(ld)ϕ
d
jd,e(kd)

(
Ψq(x)

))
.

(A.6)

For the derivative of fL,r with respect to the real coefficients cδµ,θ, δ = 0, . . . , n,
θ ∈ {r, i}, µ = 0, . . . , `d, one can compute

∂

∂cδµ,θ
fL,r(x) =

∂

∂cδµ,θ
Re

 m∑
q=0

φδ
(
Ψq(x)

) n∏
d=0
d 6=δ

φd
(
Ψq(x)

)
=

1

2

∂

∂cδµ,θ

m∑
q=0

Re
(
φδ
(
Ψq(x)

))
Re

 n∏
d=0
d6=δ

φd
(
Ψq(x)

)
− Im

(
φδ
(
Ψq(x)

))
Im

 n∏
d=0
d 6=δ

φd
(
Ψq(x)

)


=
m∑
q=0

{ ϕδµ,r
(
Ψq(x)

)
, θ = r

−ϕδµ,i
(
Ψq(x)

)
, θ = i

}
Re

 n∏
d=0
d 6=δ

φd
(
Ψq(x)

)
−
{
ϕδµ,i
(
Ψq(x)

)
, θ = r

ϕδµ,r
(
Ψq(x)

)
, θ = i

}
Im

 n∏
d=0
d 6=δ

φd
(
Ψq(x)

)
 =:

m∑
q=0

Dδ,θ
q,µ(x) .

(A.7)
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Here, the terms

Re

 n∏
d=0
d6=δ

φd
(
Ψq(x)

) and Im

 n∏
d=0
d 6=δ

φd
(
Ψq(x)

)
can be computed analog to (A.6).

Next, we derive a representation of the regularization term ‖fL,r‖2
H (K) from

(4.50). To this end, remember (A.3), (4.49) and again (A.5). Furthermore, de-
fine for e1, e2 ∈ {r, i}, d = 0, . . . , n, and k, l = 0, . . . , `d the real numbers

Se1,e2,rd,k,l :=


Re
(
〈ϕdk, ϕdl 〉Hd(kd)

)
, e1 = e2 = r,

−Re
(
〈ϕdk, ϕdl 〉Hd(kd)

)
, e1 = e2 = i,

Im
(
〈ϕdk, ϕdl 〉Hd(kd)

)
, e1 6= e2,

and

Se1,e2,id,k,l :=


Im
(
〈ϕdk, ϕdl 〉Hd(kd)

)
, e1 = e2 = r,

− Im
(
〈ϕdk, ϕdl 〉Hd(kd)

)
, e1 = e2 = i,

Re
(
〈ϕdk, ϕdl 〉Hd(kd)

)
, e1 6= e2.

Note that (A.4) implies Se1,e2,rd,k,l = Se2,e1,rd,l,k and Se1,e2,id,k,l = Se2,e1,id,l,k . Then it holds

‖fL,r‖2
H (K) =

1

4

〈
fL + f

(n)

L , fL + f
(n)

L

〉
H (K)

=
1

2
〈fL, fL〉H (K) +

1

2
Re
〈
fL, f

(n)

L

〉
H (K)

=
1

2

n∏
d=0

(
`d∑
k=0

(cdk)
2γdk

)
+

1

2
Re

(
n∏
d=0

(
`d∑

k,l=0

cdkc
d
l 〈ϕdk, ϕdl 〉

))

=
1

2

n∏
d=0

(
`d∑
k=0

(
(cdk,r)

2 + (cdk,i)
2
)
γdk

)

+
1

2
Re

 n∏
d=0

 `d∑
k,l=0

 ∑
e1,e2∈{r,i}

cdk,e1c
d
l,e2
Se1,e2,rd,k,l

+ i

 ∑
e1,e2∈{r,i}

cdk,e1c
d
l,e2
Se1,e2,id,k,l


=

1

2

n∏
d=0

(
`d∑
k=0

(
(cdk,r)

2 + (cdk,i)
2
)
γdk

)

+
1

2

1∑
k0,...,kn=0

(
Pn
d=0

kd) even

(−1)
1
2

(
Pn
d=0 kd)

n∏
d=0

 `d∑
k,l=0

∑
e1,e2∈{r,i}

cdk,e1c
d
l,e2
S
e1,e2,e(kd)
d,k,l

 .
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Here, for the third equality we used the fact that f
(n)

L ∈ KL. The partial derivatives
with respect to the real coefficients cδµ,θ, δ = 0, . . . , n, θ ∈ {r, i}, and µ = 0, . . . , `δ
are given by

∂

∂cδµ,θ
‖fL,r‖2

H (K) = cδµ,θγ
δ
µ

n∏
d=0
d6=δ

(
`d∑
k=0

(
(cdk,r)

2 + (cdk,i)
2
)
γdk

)

+
1∑

k0,...,kn=0

(
Pn
d=0

kd) even

(−1)
1
2

P
kd

 `δ∑
k=0

∑
e∈{r,i}

cδk,eS
θ,e,e(kd)
δ,µ,k

 n∏
d=0
d 6=δ

 `d∑
k,l=0

∑
e1,e2∈{r,i}

cdk,e1c
d
l,e2
S
e1,e2,e(kd)
d,k,l

 ,

(A.8)

where, as in the previous cases, the sum
∑
kd in the exponent is built over all

d = 0, . . . , n. Thus, a minimizer of E(n)(c
(n)
L ) has to fulfill for all d = 0, . . . , n,

θ ∈ {r, i}, µ = 0, . . . , `δ the necessary condition

0 =
∂

∂cδµ,θ
E(n)(c

(n)
L ) = ν

(
∂

∂cδµ,θ
‖fL,r‖2

H (K)

)
+

2

P

P∑
j=1

(
fL,r(xj)− yj

)( m∑
q=0

Dδ,θ
q,µ(xj)

)
,

(A.9)
where fL,r, (∂‖fL,r‖2

H (K) / ∂c
δ
µ,θ) and

∑m
q=0D

δ,θ
q,µ(xj) are given by (A.6), (A.7), and

(A.8), respectively. Note that all terms depend nonlinearly on the real coefficient
vector

c
(n)
L := (c0

0,r, c
0
0,i, . . . , c

0
`0,r
, c0
`0,i
, . . . . . . cn0,r, c

n
0,i, . . . , c

n
`0,r
, cn`0,i)

T ∈ R2L ,

with L :=
∑n

d=0(`d + 1). Thus,

∇E(n)(c
(n)
L ) = 0 ∈ R2L

is a system of nonlinear equations for c
(n)
L ∈ R2L.

A.4 Further definitions

Ill–posed problems

We introduce a general classification of mathematical problems into well–posed and
ill–posed problems which is due to Hadamard. To give a formal definition of these
terms, in [120] the following problem is considered: Let A : X → Y be an operator
on the metric spaces X, Y , and let g ∈ Y be given. Then find a solution of the
operator equation

Au = g , u ∈ X , g ∈ Y . (P)

Definition A.1. According to Hadamard, problem (P) is said to be well–posed if
the following conditions hold:
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(i) For each f ∈ Y there exists a unique solution of (P),

(ii) and the solution is stable under perturbation of the righthand side of (P), i.e.
the operator A−1 is defined on all of Y and is continuous.

If any of these condition does not hold, the problem is called ill–posed.

In this thesis, the problem is to reconstruct a function f : [0, 1]n → R, or
the parameters which determine f , from discrete data samples Z, cf. Chapter 4.
Obviously, this problem is ill–posed, see [38] for details.

Definition of VC–dimension and Vγ–dimension

Next, we give the formal definitions of the VC–dimension and the Vγ–dimension
which have been introduced in Section 4.3 as measures for the complexitiy, or ca-
pacity, of a set of functions H. The following definitions can be found in [28].

First, let

θ(t) :=

{
0 , t ≤ 0 ,

1 , t > 0 ,

and let V : R×R→ R be a loss function, like e.g. V (f(x), y) := (f(x)− y)2. Then,
the VC–dimension was first defined for the case of indicator functions and then was
extended to real valued functions.

Definition A.2. The VC–dimension of a set {θ(f(x)) : f ∈ H} of indicator
functions is the maximum number d of vectors x1, . . . ,xd that can be separated into
two classes in all 2d ways using functions of the set.

If, for any number N , it is possible to find N points x1, . . . ,xN that can be
separated in all the 2N ways, we will say that the VC–dimension of the set is finite.

This allow for the definition of the VC–dimension of the loss function V in H:

Definition A.3. Let A ≤ V (y, f(x)) ≤ B, f ∈ H, with A and B < ∞. The
VC–dimension of the set {V (y, f(x)) : f ∈ H} (or of V in H) is defined as the
VC–dimension of the set of indicator functions {θ(V (y, f(x))− α) : α ∈ (A,B)}.

A further extension of this definition is given by

Definition A.4. Let A ≤ V (y, f(x)) ≤ B, f ∈ H, with A and B < ∞. The Vγ–
dimension of V in H (of the set {V (y, f(x)) : f ∈ H}) is defined as the maximum
number d of vectors (x1, y1), . . . , (xd, yd) that can be separated into two classes in all
2d possible ways using rules

class 1 if: V (yi, f(xi)) ≥ s+ γ
class 2 if: V (yi, f(xi)) ≤ s− γ
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n Pe

2 1 000
3 1 000
4 1 000
5 5 000
6 5 000
7 5 000
8 10 000
9 10 000
10 100 000
11 100 000
12 1 000 000

Table A.1. For each dimension n, the table lists the size Pe of the test set
Ze which is used to calculate the errors eZe and e∞Ze

, see Chapter 6. For increasing
dimensions the set becomes larger. The choices are based on numerical experiments,
i.e. for larger Pe and fixed n the values of eZe and e∞Ze

did not significantly change.

for f ∈ H and some s ≥ 0. If, for any number N , it is possible to find N points
(x1, y1), . . . , (xN , yN) that can be separated in all the 2N ways, we will say that the
Vγ–dimension of V in H is finite.

Note that for γ = 0 this definition becomes the VC–dimension from Defini-
tion A.3. Intuitively, for γ > 0 the “rule” for separating points is more restrictive
than the rule in the case γ = 0. It requires that there is a “margin” between the
points: points for which V (y, f(x)) is between s− γ and s+ γ are not classified. As
a consequence, the Vγ–definition is a decreasing function of γ and in particular it is
smaller that the VC–dimension.
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