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Chapter 1

Introduction

Photonic crystals [1], optical metamaterials [2,3], near-field microscopy [4],
and plasmonics [5, 6] are recent innovations in modern optics. These and
more ideas are subsumed by the term “nanophotonics”.

To compensate for the small interaction volume – and thus a small in-
teraction efficiency of each part of a nanostructure – a high contrast of
the dielectric constant is needed. Looking for materials with extreme val-
ues, metal appears on the top of the list. Only a few ten nanometers of
metal film can suffice to make it virtually opaque at optical wavelengths.
Furthermore, nowadays the technology to fabricate metal structures with
sizes far below the wavelength of visible light is readily available.

However, there is a tough side of nanophotonics: Light opposes the
idea of being squeezed into structures far below its wavelength. For ex-
ample: The thinner a plasmonic waveguide gets, the higher is the damp-
ing [6]. As the tip of a near-field microscope gets smaller and smaller, the
transmission through the sub-wavelength hole on its cone end is drasti-
cally reduced [7]. In practice, limitations like these obviate the widespread
use of nanophotonics in real-life applications. And the issue naturally
arises of how to address these structures most efficiently.

The scope of the work presented herein are two approaches to effi-
ciently address and enhance the throughput of the most simple nanos-
tructure: A sub-wavelength hole in a metal film. Recent interest in trans-
mission properties of sub-wavelength holes arises from a report that this
transmission can be drastically enhanced by regular hole patterns [8]. The
question of how this enhancement works has been subject to vivid dis-
cussion. Nowadays, the common interpretation is that nanostructures in
metal films generate surface waves, which may constructively interfere at
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CHAPTER 1. INTRODUCTION

the hole. By using circular concentric corrugations around a single hole, an
enhancement by one order of magnitude can be achieved [9]. In contrast,
the two approaches presented herein rely on the constructive interference
of the impinging waves for enhanced light transmission.

When light impinges on a metal film with a sub-wavelength hole, most
of it is reflected, only a small portion is absorbed and a very tiny fraction
is transmitted through the hole. One approach pursued in this work is to
place a partially transmitting mirror before the metal film. The metal film
and the mirror thus form a cavity, which can augment the transmittance
through the system. This is the so-called Fabry-Pérot effect. In practice,
the enhancement is limited by misalignment, surface imperfections and
absorption. These factors also reduce the finesse of the system. Thus, the
enhancement and the finesse of the resonator are measured for different
transmission coefficients of the input mirror. The questions under investi-
gation are, which enhancement can be reached in reality for an optimal
input transmission coefficient, and how this enhancement can be com-
pared with the previously mentioned method of structuring the surface
surrounding the hole.

The larger part of this work is devoted to a method of efficiently di-
recting light to sub-wavelength holes in a metal film: Holographic phase
conjugation. The light transmits through the hole, serves as a signal wave
S and interferes with a plane reference wave R. An iron-doped lithium
niobate crystal translates the interference pattern into a hologram. This
hologram is read-out with the phase-conjugated reference wave R∗, which
is the plane wave counter-propagating to the reference beam R. Accord-
ing to the holographic principle, the phase-conjugated signal wave S∗ is
reconstructed. Since S is essentially a spherical wave emerging from the
sub-wavelength hole, S∗ is a wave being focused onto the hole.

The aim of these investigations concerning holographic phase conjuga-
tion through a sub-wavelength hole is to understand which factors deter-
mine the power ratio of the light being deflected onto the sub-wavelength
hole versus the reference light impinging onto the crystal. This value is
the so-called diffraction efficiency. Beyond looking for an increase of the
transmission efficiency, we ask whether improvements can be achieved for
two possible applications: Addressing sub-wavelength structures, which
are distributed over a large area, and, after removing the metal film, an
easy-to-fabricate device for focusing light near the diffraction limit.
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Chapter 2

Sub-wavelength holes

Unlike its solution, stating the problem is simple: How much light is trans-
mitted through a hole with a diameter smaller than the wavelength and
how does the light diffract behind the hole? Consider the situation shown
in Fig. 2.1: Monochromatic light with the electric field vector Ain impinges
perpendicularly onto an optically opaque material. In the material there
is a small circular hole with a radius rh smaller than the wavelength λ of
the impinging light. A small amount of the impinging light is transmitted
through the hole and is diffracted behind it. One might ask, what fraction
of the power impinging onto the hole is transmitted through it. This is the
so-called transmission efficiency Th:

Th =
Pt

Iinπr2
h

, (2.1)

where Iin is the intensity of the impinging light, and Pt is the total transmit-
ted light power. Furthermore, we would like to know the field distribution
At of the light behind the hole.

Early answers to this question date back to the seventeenth century
with huge progress in the twentieth century [10]. But still today, there is no
satisfactory answer, which is generally agreed upon. While there is a huge
amount of literature on this question with recent review articles [10, 11],
it is not our aim to give a complete overview on this subject, but to brief
on it with the goal to identify the knowledge which is useful for the work
presented thereafter.
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2.1. THEORY CHAPTER 2. SUB-WAVELENGTH HOLES

Figure 2.1: A light wave Ain impinges onto an opaque screen
with a sub-wavelength hole. Part of the light is transmitted and
diffracted in the space behind the screen.

2.1 Theory

A first approach to solve the question of light transmittance through a tiny
hole is given by Kirchhoff’s scalar diffraction theory [12]. This theory as-
sumes the most simple boundary conditions for the problem: The light
field is set to zero at the opaque screen and is set to the incoming wave
Ain in the aperture. From this assumptions the scalar light field behind
the hole can be computed. For holes large compared to the wavelength λ,
the light is mainly propagating in the direction of the incident light and
the power rapidly decreases for deviating directions. Thus, the transmit-
ted light power is the power impinging on the hole and the transmission
coefficient is Th = 1.

Though Kirchhoff’s theory gives very good results for large holes, it
fails for very small ones. As the aperture gets smaller, the light diffracts
more and more until it bends towards the opaque screen. The transmission
efficiency is no longer one but decreases proportional to Th = (rh/λ)2.
Furthermore, the light wave becomes non-zero at the opaque screen in
contradiction to the assumed boundary conditions. A second shortcoming
of Kirchhoff’s theory is that it is scalar, but as the hole gets smaller, a real
vectorial description is needed.

In 1944 Bethe presented a solution for the problem [7]. He assumed
that the opaque screen is infinitely thin and a perfect electrical conductor
and that the diameter of the hole is much smaller than the wavelength of
the incoming light: rh ≪ λ. Thus, he could assume that the fields are
constant over the area of the hole. From this assumptions he derived a
vectorial description of the problem. The transmission efficiency is found
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to be:

Th =
64

27π2 k4r4
h, (2.2)

where k = 2π/λ is the length of the wave vector of the light. Thus, the
transmitted power falls off much more rapidly with the hole diameter than
predicted by Kirchhoff’s theory. Behind the hole, the diffracted light At is
described by a magnetic dipole radiation, where the magnetic dipole is
in the plane of the screen and perpendicular to the incident electric field
vector.

One attempt to generalize Bethe’s result is made by Roberts [13]. His
calculations allow a finite thickness of the screen and any hole radius.
The field in the hole is described by circular waveguide modes instead
of Bethe’s assumption of a constant field. This field is matched to the field
of the incoming and transmitted light. In the theory not only propagat-
ing, but also evanescent modes are considered. Though there is no prop-
agating mode for hole diameters smaller than the so-called cut-off radius
rh < 1.84/k, for thin films a finite transmission is found due to the non-
propagating modes. For thick films, the cut-off becomes more and more
relevant until virtually no light is transmitted for a radius below the cut-
off. For very large hole diameters, the transmission efficiency becomes
Th = 1 in accordance to Kirchhoff’s scalar theory. A calculation of the
transmission efficiency for an infinitely thin screen is shown in Fig. 2.2.
Roberts also compared the diffraction patterns to those calculated using
the Kirchhoff theory for krh = 5, krh = 10, krh = 15. Virtually no dif-
ferences are found for an infinitely thin screen. However, some widening
of the diffraction pattern in the direction parallel to the incident electrical
field occurs for a screen with a thickness comparable or larger than the
hole radius.

Up to now, a perfect electrical conductor with an infinite electric con-
ductivity and no penetration of the field into the metal is assumed. In real-
ity, especially at optical wavelengths, this assumption is not correct. Sev-
eral percent of the light impinging onto a metal surface can be absorbed,
and the electric fields might penetrate several tens of nanometers into the
material [12]. This is expected to profoundly change the transmission
characteristics of a sub-wavelength hole. First, since the light wave can
penetrate into the metal, the effective radius of the hole becomes larger.
Remembering the rapid decrease of the transmission efficiency with the
hole radius in Eq. 2.2, a drastic change of the transmission is expected.
Furthermore, the waveguide structure can be profoundly changed by the
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2.2. EXPERIMENTS CHAPTER 2. SUB-WAVELENGTH HOLES

Figure 2.2: Transmission coefficient Th for a circular hole with
radius rh in an infinitely thin perfect electrical conductor as
predicted by [13]. The cut-off at krh = 1.84 is marked with a
dashed line.

transfer from a perfect electrical conductor to a real metal [14–16]. Even
anomalous modes might come into play, which correspond to imaginary
solutions of the waveguide Eigenvalue problem and correspond to neither
propagating nor evanescent waves [17].

2.2 Experiments

The enormous interest in the transmission through sub-wavelength aper-
tures was triggered in 1998, by a report stating that the transmission ef-
ficiency is enhanced by three orders of magnitude for a regular pattern
of sub-wavelength holes compared to Bethe’s formula [8]. This report in-
terprets the effect as caused by a resonant excitation of surface plasmon
polaritons on the front and back side of the metal film [18]. These polari-
tons are surface waves originating from the coupling of an electromagnetic
wave and the electron gas at the metal surface [19]. On a plane metal sur-
face the surface plasmon and a freely propagating wave can not couple
because of a mismatch of the dispersion relations. But regular gratings,
like the structures in the experiments of Ebbesen et al., could provide the
coupling [8].

The order of magnitude of the enhancement stated in the paper by
Ebbesen et al. was called in question later [20]: If the transmitted power
is related to experimental values of a single hole and not to Bethe’s for-
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mula, an enhancement factor of about seven is found, two orders of mag-
nitudes less than claimed earlier. Furthermore, though the transmission is
enhanced at some wavelengths, suppression below the single hole trans-
mission is found at others, which is completely unexpected from the point
of view of surface plasmon polariton excitation. Hence, a new model was
proposed, called “composite diffracted evanescent wave model”, where
the role of surface plasmon polariton waves is neglected [20]. There, the
observed transmission pattern is attributed to the interference of evanes-
cent waves, originating from the sub-wavelength structures.

Further progress was made by studying arrays of sub-wavelength slits
in contrast to circular holes. Since the problem reduces to one dimension,
it simplifies. By numerical finite difference time domain simulations it is
found that the observed transmission spectra are due to two effects: A
Fabry-Pérot effect in the slit, since light is partially reflected at the en-
trance and exit of the slit, and interference of surface waves launched by
the slits [21]. The latter effect is illustrated in Fig. 2.3. The nature of the sur-
face waves still lacks of an adequate interpretation. Experimental [22, 23]
and theoretical analysis [24–26] suggest that both, long-ranging surface
plasmon polaritons and quickly fading evanescent waves, are launched
by the sub-wavelength slit. The interference of these waves accounts for
the observed enhancement and suppression of the transmission of the slit
arrays. However, the details of these interferences are still poorly under-
stood [11].

Figure 2.3: Interference of the impinging and transmitted light
with surface waves launched by sub-wavelength slits enhances
or suppresses light transmission through a regular array of
slits.
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Additionally, it was the interest in scanning near-field optical micro-
scopes, which led to experimental investigations on the transmission char-
acteristics of single circular holes in the optical range [27]. Latter reports
tend to interpret the results in terms of the excitation and coupling of sur-
face plasmons [28–30]. However, it is still unclear whether such an in-
terpretation is adequate. Though there is agreement upon the idea that
surface plasmon polaritons are probably launched at a sub-wavelength
hole, their role is yet unknown. And even more important, up to now, no
surface plasmon polariton interpretation seems to succeed in predicting
the transmission characteristics of sub-wavelength holes. Furthermore,
experiments to measure the transmission efficiency through a single hole
seem to be extremely challenging, even more so, as the fabrication of the
metal film and the hole have to be extremely well controlled for accurate
measurements. Therefore, the question of how much light is transmitted
through a tiny hole is still considered to be open [10, 11].

Although the transmission efficiency for a single sub-wavelength hole
is not accurately described by theory, it can be enhanced, i.e., the trans-
mission efficiency is increased by some means compared to the efficiency
without those means. One such method is to surround the sub-wavelength
hole with concentric periodic grooves [9, 31, 32]. Surface waves launched
by the grooves can constructively interfere at the hole, increasing the light
transmission. So, the light is effectively harvested from a much larger area
then the hole but finally is collected there. An increase of the transmission
efficiency by one order of magnitude is gained in this way.

2.3 Applications

Aside from their use in the tip of near-field scanning optical microscopes
[4], sub-wavelength holes were used and proposed for a variety of ap-
plications [10]. These include an ultrafast photodetector, where the ex-
tremely small area behind a sub-wavelength hole is used as a detector
area, but concentric grooves are employed to enhance the efficiency of the
device [33]. An optically thick aluminum layer with sub-wavelength holes
is applied as a cathode in an organic light emitting device, increasing the
light output [34]. Sub-wavelength apertures can also be used for lithogra-
phy below the diffraction limit [35–37].
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Chapter 3

Fabry-Pérot enhancement

Now, we study a straightforward arrangement to enhance the transmit-
ted power through a sub-wavelength hole: The metal film with a sub-
wavelength hole is used as one mirror of a Fabry-Pérot interferometer.
When light impinges on the metal film, the largest part of the light is re-
flected. Only a tiny fraction is transmitted through the hole. By placing a
second mirror before the metal film, the reflected light gets further chances
of being transmitted through the hole. This idea is illustrated in Fig. 3.1.
For coherent light, if no losses occurred, 100 % of the light impinging onto
the setup would be transmitted through the hole at resonance, despite the
fact that the transmittance through the hole is so small. This is the Fabry-
Pérot effect. In reality, the transmittance is limited by imperfections of the
mirrors, non-optimal alignment, absorption in the metal film, and by dif-
fraction. The question arises, whether in practice an enhancement can be
gained and if so, whether it can compete with other methods to enhance
the transmittance through sub-wavelength holes.

3.1 Background

We consider an ideal plane-parallel Fabry-Pérot interferometer: A mono-
chromatic plane wave impinges onto a partially transmitting input mir-
ror. Due to an output mirror, aligned parallel, the light wave bounces
forth and back between the two mirrors. Then, the transmission versus
the distance of the two mirrors can be described by a chain of Lorentz
curves [38]. When the mirror distance is an integer multiple of half the
wavelength, constructive interference occurs, and the transmitted fraction
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3.1. BACKGROUND CHAPTER 3. FABRY-PÉROT ENHANCEMENT

Figure 3.1: Scheme for Fabry-Pérot-enhanced transmission
through a sub-wavelength hole. (a) When light hits a metal sur-
face with a sub-wavelength hole, only a tiny amount is trans-
mitted through the hole. The biggest part of the light is re-
flected. (b) By placing a dielectric mirror in front of the metal
surface, the reflected light gets more chances of being trans-
mitted through the hole. The intensity in front of the hole is
enhanced and so is the transmitted light power.
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CHAPTER 3. FABRY-PÉROT ENHANCEMENT 3.1. BACKGROUND

of the incident power reaches a maximum:

Tmax =
T1T2

(1 −√
R)2

. (3.1)

Here R = R1R2 is the reflection per round trip, R1 and R2 are the reflection
coefficients of the input and output mirrors, and T1 and T2 are the trans-
mission coefficients of the two surfaces. If no losses occur, the transmission
can reach 100 %, even for extremely small transmission coefficients T1 and
T2. All R and T values refer to the intensity and not to the field amplitude.

The reflective finesse of the interferometer, which describes the quality
of the resonator without any imperfection and misalignment, is defined
by:

Fr =
πR

1
4

1 −√
R

, (3.2)

and for large F the finesse is approximately the free spectral range λF, i.e.,
the distance of two transmission peaks, divided by the full width at half
maximum of a transmission peak ∆λ.

Now we assume that the second mirror is a substrate with an optically
thick gold film with a sub-wavelength hole in it. Then, the transmission
coefficient T2 is determined by the transmission coefficient of the hole and
the size of the hole compared with the size of the impinging wave. Thus,
T2 is negligibly small. Furthermore, since the hole is much smaller than the
wavelength of the light, we do not expect that the mode structure of the
light in the resonator is disturbed. Hence, in deriving the peak transmis-
sion Tmax through the system with hole the same line of reasoning as for
Eq. (3.1) can be applied. Since we want to know how much the transmis-
sion through the hole is enhanced by the presence of the dielectric input
mirror, we define the enhancement E by:

E =
Tmax

T2
=

T1

(1 −√
R)2

. (3.3)

This corresponds to our experimental procedure, where we divide the
peak power of the transmitted light with input mirror by the power of
the transmitted light without input mirror.

Without any losses, for T1 ≪ 1 and T2 ≪ T1, thus if R ≈ 1 − T1, the
enhancement is E ≈ 4/T1. Hence, E could reach giant values. Yet, in
practice some losses occur. A dielectric mirror with negligible loss can be
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3.1. BACKGROUND CHAPTER 3. FABRY-PÉROT ENHANCEMENT

used as input mirror. However, some absorption might be unavoidable
for the thick metal film at the exit surface.

In practice, imperfections of the mirror surfaces, alignment errors, dif-
fraction, and absorption decrease the effective finesse Fe and therefore the
enhancement E. A way to account for these effects is to model the inter-
ferometer divided in several ideal interferometers with different mirror
distances and finally to sum up the intensities of all interferometers [39].
Thus, the transmission function is convolved with a function describing
the distribution of phase deviations.

Unfortunately, the function needed to account for the different mirror
distances is not known in most practical situations. A reasonable assump-
tion is that the phase deviation can be described by a Gauss curve. The
convolution of a Lorentz curve, i.e., a peak of the transmission function,
and the Gauss error curve results in a so-called Voigt profile. For the width
and the height of the Voigt profile approximate closed-form expressions
are available [40, 41]. We write these formula in terms of an effective fi-
nesse Fe corresponding to the combined profile, the original reflective fi-
nesse Fr, and a limiting finesse Fl, which is the maximal achievable finesse
in the system [40]:

1
Fe

=
1
2

[
1.0692

1
Fr

+

√
0.86639

1
F2

r
+ 4

1
F2

l

]
. (3.4)

The transmitted intensity changes by the factor [41]:

(π/2)(Fe/Fr)

1.065 + 0.447(Fe/Fr) + 0.058(Fe/Fr)2 . (3.5)

In the literature it is usually assumed that it suffices to convolve the
transmitted intensity with the function describing the phase deviations.
However, convolving the amplitude instead of the intensity is supposed
to serve as a better approximation. We numerically convolve the Fabry-
Pérot transmittance function for the amplitude with a Gaussian error dis-
tribution and find that the peak height of the intensity is very well approx-
imated by using the square of the factor in Eq. 3.5. Thus the enhancement
becomes:

E =
Tmax

T2
=

T1

(1 −√
R)2

(
(π/2)(Fe/Fr)

1.065 + 0.447(Fe/Fr) + 0.058(Fe/Fr)2

)2

. (3.6)
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In practice, the uncoated surface of the substrate is inside the resonator
and has a small non-zero reflectivity RG. This is illustrated in Fig. 3.2. Be-
cause of this, the Fabry-Pérot interferometer actually consists of two cou-
pled interferometers: The one formed by the first mirror and the uncoated
surface of the substrate and the one formed by the uncoated substrate and
the gold film. We approximate this model by considering the situation,
where the dielectric mirror and the uncoated surface form an effective mir-
ror. The enhancement is supposedly maximal for maximal reflectivity of
the effective mirror. Thus, we use an effective reflectivity of the combined
mirror:

Reff
1 = 1 − T1TG

1 +
√

R1RG
. (3.7)

The transmission is corrected correspondingly.

Figure 3.2: Scheme of the surfaces involved in a practical
setup for Fabry-Pérot-enhanced transmission through a sub-
wavelength hole. The transmission and reflection coefficients
of the input mirror (T1, R1), of the uncoated substrate surface
(TG, RG), and of the exit mirror (T2, R2) are assigned to their
respective surfaces.

3.2 Methods

Figure 3.3 shows the experimental setup. A tunable external cavity fiber
laser (1), with vacuum wavelengths λ0 = 1470–1583 nm is used as a light
source. The light is coupled out of the fiber (2). Two mirrors not shown in
the figure are used to align the beam and to sent the light onto the dielectric
mirror (3). The substrate (4) is coated on the output side with a gold film
with sub-wavelength holes in it. The light being transmitted through the
sub-wavelength holes is collected by a NA = 0.65 microscope objective
(5) and imaged together with a lens (7) onto an InGaAs diode (8). The
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aperture (6) which is used at the position of the objective’s image has a
diameter of 5 mm. This aperture ensures that neighboring pinholes in the
surface do not contribute to the measured transmitted light.

Figure 3.3: Experimental setup to measure the power transmit-
ted through a sub-wavelength hole in a gold film. Enhance-
ment by the Fabry-Pérot effect is used. The numbers are ex-
plained in the text.

Three different dielectric mirrors are used. They each are designed for
certain reflection coefficients at one wavelength. For wavelengths deviat-
ing from their design values the reflection coefficients differ such that a
wide range of reflection R1 and transmission coefficients T1 = 1 − R1 can
be used by exploiting the tuning capability of the infrared laser. The ac-
tual transmission coefficients are measured for each wavelength which is
used for the enhancement measurements. The back sides of the dielectric
mirrors are anti-reflection coated.

The fused-silica substrate (4) is specified for a flatness of λ/20 at λ =
633 nm and for a wedge angle smaller than 0.2 arcseconds. One surface of
the substrate is coated with a (300± 30)-nm-thick gold film. The thickness
is determined with an electron microscope. Experimentally, the reflectivity
of the gold surface is found to be R2 = 0.980± 0.005. A focused ion beam is
used to drill holes into the surface. Single holes as well as ensembles of ten
sub-wavelength holes positioned arbitrarily in a 10-µm-wide region are
made. The total light transmission through the ensembles is higher than
for a single hole and thus increases the signal-to-noise ratio. A periodic
arrangement is avoided, to circumvent interference effects as found by
Ebbesen et al. [8]. Such an ensemble is shown in Fig. 3.4. To make this
picture the focused ion beam is not only used for drilling the holes but
also used for imaging. For the transmission measurements an ensemble
with ten 600-nm holes is used.
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CHAPTER 3. FABRY-PÉROT ENHANCEMENT 3.2. METHODS

Figure 3.4: Focused-ion-beam picture of the gold surface with
ten sub-wavelength holes. (Photo: A. Sehrbrock, Forschungs-
zentrum caesar)

The distance between the first dielectric mirror (3) and the substrate
(4) is about 6 mm. The fused silica substrate (4) has an index of refrac-
tion of n = 1.45 at the wavelength λ0 = 1550 nm and a thickness of
5 mm. Thus, the optical path length of one round trip in the resonator
is do = 2 × (6 mm + 1.45 × 5 mm) = 26.5 mm and, hence, the free spectral
range, i.e., the distance of two transmission peaks, is νF = c/do = 11 GHz.
Since the line width of the laser is specified to be better than 150 kHz, the
spectra of the Fabry-Pérot interferometer are resolvable for any reason-
able finesse. The laser is used at a fixed output power of 3.5 mW for all
measurements. Its wavelength is tuned with an analog input to record
0.03-nm-wide spectra. Several of those spectra are measured with differ-
ent central wavelengths and put together. Since there is some inaccuracy
in the absolute position of the central wavelength, this method can lead to
some inaccuracy for the position of each part of the spectrum.

Before each measurement, the interferometer has to be aligned care-
fully. The output coupler (2) is adjusted to form a parallel beam. For this,
the beam diameter is determined with a knife-edge method at two posi-
tions and the divergence is calculated from these diameters. The diffrac-
tion angle of the beam behind the output coupler is smaller than 1 mrad.
For the refinement of the alignment of the setup, light from a HeNe-laser at
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a wavelength of 633 nm can be coupled into the fiber, and the photodiode
(6) can be replaced by a CCD camera. Since the substrate (4) is mounted
onto a three-dimensional translation stage, the CCD camera can be used
to ensure that the 600-nm-holes ensemble is imaged at the position of the
InGaAs-diode. The red laser beam is aligned such that it hits the sub-
strate perpendicularly. Afterwards, the dielectric mirror (2) is mounted. A
reflected interference pattern can be seen, arising from reflections by the
gold film and the dielectric mirror. This pattern is used to align the two
Fabry-Pérot mirrors parallely. Further refinement of the alignment is done
with the tunable infrared laser: A transmission resonance is found by tun-
ing the wavelength. Afterwards, the incoming beam and the substrate (4)
are moved until the light power measured with diode (6) is maximal. Note
that this is not necessarily the position where the surface of the substrate
is in the focus of the microscope objective (5). In the following, the paral-
lelism of the two mirrors is successively optimized for a maximal height
of the transmission peak.

3.3 Results

An ensemble of ten 600-nm holes is selected for the following measure-
ments. The setup is aligned and optimized as described in the previous
section. Then, a spectrum is recorded by tuning the wavelength of the
laser light. The spectrum is shown in Fig. 3.5. A sensitivity of 1 AW−1

of the photodiode is used to calculate the light power Pt impinging onto
the photodiode from the measured current. However, since only relative
intensities are used in our analysis, the sensitivity of the diode does not
play any role afterwards. The transmission coefficient of the input mirror
is T1 = 4 %, and the central wavelength λ0 = 1550.00 nm. The spectrum
shows nine peaks with a spacing of λF = (0.090 ± 0.008) nm.

One single peak from the center of the measurement in Fig. 3.5 is shown
in Fig. 3.6. The stability of such a peak is investigated by taking many
spectra in a row. A drift of the peak position of 0.008 nm is found in 7 min.
For comparison, to take a spectrum as in Fig. 3.5 approximately 3 min are
needed.

Each spectrum with the dielectric mirror in place is measured three
times. The height of the highest peak is taken from each spectrum. The
average of the maximal peak heights is used as the value for the maximal
transmission, the standard deviation as its error.
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Figure 3.5: Spectrum of light transmitted through ten sub-
wavelength holes with a Fabry-Pérot interferometer in the
front.

Figure 3.6: Spectrum of a single peak of light transmitted
through ten sub-wavelength holes with a Fabry-Pérot interfer-
ometer in front. Extract from Fig. 3.5. The gray area illustrates
the fit of a Voigt profile.
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After removing the dielectric input mirror, spectra at the wavelengths
of the previous Fabry-Pérot-transmission peaks are taken. Such a spec-
trum is shown in Fig. 3.7. This is the spectrum corresponding to the mea-
surement in Fig. 3.5. A small modulation of the transmitted power is
found. We take the average transmission of the spectrum as the trans-
mission without mirror. Each spectrum is measured twice. The average is
used as a value for the transmission coefficient and its standard deviation
as the error.

Figure 3.7: Spectrum of light transmitted through ten sub-
wavelength holes without a dielectric input mirror in place.
The gray area illustrates the fit of a shifted and scaled cosine
curve.

The maximal power with input mirror divided by the average power
without the mirror is the enhancement E. The enhancement versus the
transmission through the dielectric mirror T1 is shown in Fig. 3.8. The
power transmittance is enhanced by a factor of more than 20 for T1 = 7 %.
The enhancement is smaller for non-optimal input transmission coeffi-
cients T1.

From each spectrum with input mirror the finesse is determined by
dividing the mean distance between two adjacent peaks by the mean full
width at half maximum of the peaks. The error is determined from the
standard deviation given by the three spectra. Figure 3.9 shows the result.
A monotonic decrease is found for the dependence of the finesse F on the
transmission coefficients T1 of the dielectric mirror. The finesse F is bigger
than F = 80 for very small T1 and is smaller than F = 20 for T1 > 40 %.

18
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Figure 3.8: Enhancement E versus transmission coefficient of
the dielectric mirror T1, due to the Fabry-Pérot interferometer.
The three different symbols (♦,□,∘) indicate the three different
mirrors used. The solid line is a fit of Eq. (3.6) with Fl = 105.

Figure 3.9: Finesse F versus transmittance of the dielectric mir-
ror T1 of the Fabry-Pérot interferometer. The three different
symbols (♦,□,∘) indicate the three different mirrors used. The
solid line is a calculated curve based on Eq. (3.4) for Fl = 105.
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3.4 Discussion

3.4.1 Interpretation of experimental data

Looking at the spectra, we find that the basic assumptions of section 3.1
are fulfilled: The spectrum with input mirror in Fig. 3.5 can be described as
a chain of Voigt profiles, as can be seen from the fit in Fig. 3.6. If the mirror
is removed, a small modulation remains due to the reflecting surface of
the fused silica substrate. This can be seen in Fig. 3.7. The gray area is
a fit of y = P1(1 + m cos[P2(λ − λ0)]) to the experimental data, where P1
and P2 are fit parameters. There, m = 0.38 ± 0.01 is found. This is very
close to what is expected by the Fresnel formula for an index of refraction
of n = 1.45: m = 0.36.

The irregular distance of the peaks in Fig. 3.5 can be explained by in-
stabilities of the experimental setup. These instabilities are not expected
to have any significant influence on the finesse or the enhancement mea-
surements.

By placing a dielectric input mirror in front of a metal film with a sub-
wavelength hole, the transmission can be enhanced by a factor of more
than E = 20. This is shown by Fig. 3.8. The maximum of the enhancement
is found at a transmission coefficient of the input mirror of T1 ≈ 7 %. A fit
of the theoretical curve Eq. (3.6) is shown in the graph. For this curve, the
input transmission coefficient T1 is corrected according to Eq. (3.7). Thus
the reflectivity of the glass substrate is taken into account. For the gold film
a reflectivity of R2 = 0.98 is assumed, corresponding to the experimental
value. The only fit parameter is the limiting finesse Fl. The best fit is found
for Fl = 105 ± 5. A very good agreement between the experimental data
and the fit curve can be seen.

The theoretical considerations of the dependence of the finesse on the
input transmission coefficient T1 are tested by comparing the experimental
and the calculated finesse. This is shown in Fig. 3.9. The same limiting
finesse Fl = 105 as in Fig. 3.8 is used. Again, excellent agreement is found.

The error bars in Fig. 3.8 and Fig. 3.9 are determined from three dif-
ferent measurements and their standard deviation. Comparing the error
bars and the deviation of data points from the fit curve, the error estima-
tion seems reasonable. However, for large input transmission coefficients
the enhancement tends to be bigger than the theoretical predictions.

20



CHAPTER 3. FABRY-PÉROT ENHANCEMENT 3.4. DISCUSSION

3.4.2 Substantiating the theoretical considerations

For the calculations the input transmission coefficient T1 is corrected by
Eq. (3.7). Thus the reflectivity of the system is increased to account for the
surface of the glass substrate. The transmission coefficient decreases, and
the theoretical curves in Fig. 3.8 and Fig. 3.9 are stretched in the T1-axis by
30–40 %. To test this assumption, we numerically evaluate the transmis-
sion and the finesse of two coupled Fabry-Pérot interferometers. The first
interferometer is formed by the input mirror and the glass surface, and the
second interferometer is formed by the glass substrate and the gold film.
The whole transmission curve is convolved with a Gauss curve to simu-
late the effect of a real interferometer. It is found that Eq. (3.7) is a good
approximation for calculating the enhancement, but the correction factor
Eq. (3.4) seems to slightly overestimate the effect on the finesse.

The influence of surface imperfections, misalignment and other error
sources is simulated by convolving the amplitude transmission function
with a Gauss curve leading to a chain of Voigt profiles for the transmis-
sion. However, the source and the form of the remaining errors are not
known and might deviate form a Gauss curve. So some uncertainty re-
mains for substantiating the theoretical curves. But still, the theoretical
considerations describe the experimental finesse F and the enhancement
E very well.

3.4.3 Further improvements

The theoretical analysis seems to be founded well enough to analyze the
potential for further improvements: If, by further optimization, the lim-
iting finesse can be increased, the resulting maximal enhancement is de-
termined just by the absorption in the gold film, which is experimentally
found to be about 2 % for an optically thick film. Using this value we find
that the enhancement would reach values of E = 50 at T1 = 2 % and an
effective finesse of Fe = 155. An absorption of 2 % is, what is expected
from the Fresnel formula [12] and from literature values of the complex
index of refraction for gold at λ0 = 1550 nm [42]. Literature values for
silver [42] lead to an absorption coefficient below 1 %, though much more
care in preparing and handling the sample would be needed to prevent
degradation of the surface [43]. For R2 = 0.99 the enhancement could
reach values of E = 100 at T1 = 1 % and Fe = 313.

The Fabry-Pérot enhanced transmission through sub-wavelength holes
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can be applied to other wavelengths. E.g., literature values predict reflec-
tion coefficients for silver above R2 = 0.98 at a wavelength of λ0 = 500 nm.
Therefore, an enhancement of E = 50 should be reachable at wavelengths
in the visible part of the optical spectrum. Reflection coefficients above
R2 = 0.99 are achievable at Terahertz wavelengths [44]. However, fabri-
cation of a high-quality input mirror is a challenging task [45]. Thus, an
enhancement comparable to the value for infrared or optical wavelengths
might be expected.

The method described in this chapter can be used to enhance the trans-
mission through other sub-wavelength structures and can be combined
with other methods to enhance the transmission through such nano-aper-
tures. As already mentioned in the introduction, the transmission through
sub-wavelength holes can be enhanced by a factor of 10 by appropriate
structuring [9]. Combining this with the Fabry-Pérot enhanced transmis-
sion technique, three orders of magnitude of transmitted power can be
gained. The Fabry-Pérot enhanced transmission should be applicable to
optical wavelengths using silver instead of gold films. Furthermore, it can
be applied in more complicated situations, e.g., using a spherical dielec-
tric mirror instead of a plane-parallel mirror. Therewith, the wave, which
is going to be transmitted through the hole, could simultaneously be fo-
cused onto the hole.

3.5 Summary

We conclude that using a dielectric mirror in front of a metal surface with
a sub-wavelength hole in it, the power being transmitted through the hole
is enhanced by a factor of more than 20. Theoretically, a factor of 100 is
reachable by further optimization. The technique described herein is very
simple and flexible and thus may become a useful tool to reach the efficien-
cies needed for many real-life applications of sub-wavelength structures in
optics.
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Chapter 4

Holographic phase conjugation
through sub-wavelength holes

In the previous chapter 3 a method to enhance the transmission through
sub-wavelength holes is introduced: Increasing the intensity before the
hole with a Fabry-Pérot interferometer augments the transmission. An-
other possibility to obtain a better efficiency for transmitting light through
sub-wavelength structures is efficient addressing. The simplest method to
do so is focusing with a lens or a microscope objective. However, these
conventional focusing devices either have a small numerical aperture or
a small field of view. For a good combination of these values consider-
able efforts have to be made to compensate for imaging errors. Thus, in
this chapter we investigate a holographic lens as an alternative method to
focus light.

Holographic lenses are already tested for some applications, see, e.g.,
[46]. There, a hologram is recorded with a signal wave, which is coming
from a lens, and a plane reference wave. Read out is done by illumination
with the plane reference beam. The light wave of the original lens is then
reconstructed. Usually, the numerical aperture in these systems is not very
high.

Holography is not only able to reconstruct a recorded wavefront, but
also the back-propagating wave can be generated by phase-conjugated
read-out. In this case, the hologram is recorded by a plane reference wave
R and a more complicated signal wave S. For read-out, the phase-conju-
gated reference beam is used, i.e., a plane wave R∗ counter-propagating to
the original reference beam R. This leads to reconstruction of the phase-
conjugated signal beam S∗. Phase conjugation has already been used, e.g.,
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for advanced holographic data storage [47], for image correlation [48], and
imaging through scattering media [49].

It is straightforward to combine phase conjugation with holography of
focused waves in order to get holographic focusing. There is already solid
knowledge available from literature about holographic recording with fo-
cused waves. E.g., a method to multiplex many holograms in a photo-
sensitive medium, which uses spherical reference beams, is the so-called
shift multiplexing [50]: The interference pattern of a spherical reference
beam coming from a high-numerical-aperture microscope objective and a
plane signal wave is recorded. The signal wave is reconstructed by read-
out with the spherical reference beam. The efficiency of reconstruction
depends strongly on the position of the microscope objective. Thus, by
shifting the objective or the recording medium, many holograms can be
multiplexed conveniently.

Another example, which is the closest to the present study, are ex-
periments with a scanning near field optical microscope (SNOM) [51].
There, the interference pattern resulting from the light coming from a sub-
wavelength tip of a SNOM and a plane reference wave, is holographically
recorded. The focus of these SNOM experiments is on phase-conjugating
the evanescent waves being emitted from a sub-wavelength tip. In con-
trast, we use the propagating waves being emitted from a sub-wavelength
source to create a focusing apparatus as close as possible to the diffraction
limit.

In the microwave-regime phase-conjugation has been shown to be able
to reconstruct features on the sub-wavelength scale [52]. In this experi-
ment, random scatterers were placed in proximity to the microwave source.
Evanescent waves being emitted from the source are scattered into prop-
agating waves. The combined field is then phase-conjugated. The recon-
structed beams are scattered into evanescent waves which are now de-
tected by an antenna. By this method, sub-wavelength focusing has been
shown. However, this method is somehow analogous to a SNOM, i.e.,
by placing a probe close to an object, sub-wavelength information can be
extracted.

In this chapter, we study holographic recording of light in the visible
range through tiny holes drilled into a metal film, which is situated on
top of a photosensitive material. Phase-conjugated read out is supposed
to focus the light back on the holes. Open questions are, how well this
method works and what the limitations are.

Figure 4.1 shows how a high-numerical-aperture holographic lens func-
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Figure 4.1: Scheme of holographic focusing of light: (a) A holo-
gram is written with a plane reference wave R and a signal
wave S coming from a sub-wavelength hole acting as a point
source. The lines indicate one of many index-of-refraction grat-
ings present in the crystal after recording. (b) The hologram
is read-out with the phase-conjugated signal wave R∗. The
phase-conjugated signal wave S∗ is reconstructed.

tions: Light passing through a sub-wavelength hole in an optically thick,
i.e., intransparent, metal film acts as a signal wave S and interferes with
a plane reference beam R. In a photosensitive material this interference
pattern is recorded as a modulation of the index of refraction. When the
material is illuminated with the phase-conjugated reference beam R∗, the
phase-conjugated signal beam S∗ is reconstructed. Since the signal wave S
is strongly diffracted into the crystal, S∗ now propagates towards the sub-
wavelength hole. In principle, waves from all directions in the half sphere
behind the hole can contribute to the focus. Thus, a numerical aperture
very close to the index-of-refraction of the material can result.

4.1 Background

A hologram is an absorption or an index-of-refraction pattern, which stores
the interference of a signal wave S and a reference wave R. The well-
known photorefractive effect in iron-doped lithium niobate crystals can
be used to record the interference pattern [53]. These crystals are chosen,
because they are commercially available at good optical quality and offer
a strong photorefractive effect. Furthermore, material parameters and the
photorefractive process of lithium niobate crystals are well understood.

However, for holography through sub-wavelength holes certain pecu-
liarities arise: The signal wave is a wave being transmitted through a sub-
wavelength hole, and hence, due to diffraction, the intensity, the prop-
agation direction and the polarization are inhomogeneous in the crystal

25



4.1. BACKGROUND CHAPTER 4. HOLOGRAPHIC METHOD

volume. As consequences, the interference pattern exhibits several dif-
ferent grating vector directions, unusual elements of the material tensors
become relevant and the geometry of the diffraction problem differs from
the transmission and reflection geometry which are considered by Kogel-
nik [54].

In this section a general, tensorial treatment of the photorefractive ef-
fect is provided. Literature values for the material tensors are used to es-
timate the strength of diffraction at different positions in the crystal. Fur-
thermore, diffraction from these gratings is discussed.

4.1.1 Photorefractive effect in iron-doped lithium niobate
crystals

The photorefractive effect changes the refractive index according to an in-
homogeneous light distribution. At continuous-wave intensities photore-
fraction in iron-doped lithium niobate crystals is described by the one-
center model [55]: Iron atoms act as charge centers in lithium niobate crys-
tals, where they exist in two valence states: Fe2+ and Fe3+ [56]. Incoming
photons, which are absorbed, excite electrons from the Fe2+ states into the
conduction band. There, they are redistributed due to three major current
sources: The bulk photovoltaic current jphv, the drift current jdrift, and the
diffusion current jdiff. Thus the total current density in the crystal is:

j = jphv + jdrift + jdiff. (4.1)

The redistributed electrons are trapped by Fe3+ states. An electrical space-
charge field ESC builds up due to the charge redistribution, and the refrac-
tive index is changed according to the linear electro-optic effect.

Excitation and recombination of electrons to and from the conduction
band are described by rate equations [57]. For continuous wave laser light
an adiabatic approximation is made [53]. Additionally, it can be assumed
that the density of sources and traps is sufficiently high so that no space-
charge limiting effects arise. Then, the density of electrons in the conduc-
tion band is proportional to the light intensity I and the absorption α in the
crystal. The absorption can show a small dependence on the polarization
of the crystal. If A is an electric field vector of the impinging light wave,
normalized to the intensity I such that ∣A∣2 = I, the number of electrons
in the conduction band is [58]:

Ne = γlm Al Am. (4.2)
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Here and in the following the sum convention is used for repeating in-
dices. The tensor γlm depends on the wavelength of the impinging light
and the doping and oxidization state of the crystal.

Electrons excited to the conduction band increase the conductivity of
the material by several orders of magnitude. By applying an electric field
E an Ohmic drift current jdrift results. The direction of this current de-
pends on the mobility tensor µlm and might differ from the direction of
the electric field. Thus the drift current is [53]:

jdrift,l = qeNeµlmEm = qeγop Ao ApµlmEm = σlm IEm. (4.3)

Here σlm = qeγop Ao Apµlm/I is the tensor of the specific photoconductivity
and depends on the polarization and wavelength of the incoming light
wave and on crystal parameters. The anisotropy of σlm is known in BaTiO3
and in KNbO3 [59]. Unfortunately, the anisotropy is unknown in lithium
niobate. Thus, usually an isotropic specific photoconductivity with σ33 is
assumed.

For an inhomogeneous illumination a diffusion current jdiff due to the
gradient of mobile charge carriers in the conduction band arises:

jdiff,l = kBTµlm∂mNe =
kBT
qe

∂m (σml I) (4.4)

The bulk photovoltaic current relies on the lack of the inversion sym-
metry in lithium niobate crystals: Electrons excited to the conduction band
show a net redistribution approximately along the c-axis of the crystal [60].
This effect depends on the intensity and polarization of the incoming light
wave and can be described by a third rank tensor βlmo [61]. Then the com-
ponents of the bulk photovoltaic current density jphv are:

jphv,l = βlmo Am A∗
o , βlmo = β∗

lom, (4.5)

where ∗ denotes complex conjugation. The bulk photovoltaic tensor βlom
depends on the doping and oxidization state of the crystal. Though it has
complex entries, the current jphv is always real as βlmo = β∗

lom. However,
the complex phase of the entries becomes relevant for a periodic light pat-
tern, where the phase of the current pattern can be shifted with respect to
the interference pattern. Non-zero entries of βlmo for m ∕= o are β112 = β121
and β123 = β∗

132 = β113 = β∗
131. These off-diagonal entries make aniso-

tropic recording of holograms possible: Two perpendicularly polarized
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waves can write a hologram by their polarization grating though no in-
tensity pattern occurs [62].

If the light wave imping onto the crystal is known, the resulting space-
charge distribution ρ can be calculated using the continuity equation

∂l jl = −∂tρ, (4.6)

where ρ is the charge density and t is the time since beginning of the
recording. Furthermore, Gauss’ law relates the electric displacement field
D and the charge density ρ:

∂lDl = ρ. (4.7)

The displacement field D and the corresponding electric field E are related
in a non-trivial way as the electric field distorts the crystal structure, which
changes the effective dielectric tensor εeff,lm [63].

In the general case, these equations have to be solved numerically. An
analytical solutions exists for a grating recorded by two plane waves: a
plane reference wave described by AR exp(ikR,mrm) and a plane signal
wave described by AS exp(ikS,mrm). In this case the interference pattern
is sinusoidal and the problem can be reduced to one dimension, where
the space-charge field ESC, the charge density ρ, and the current j vary
periodically along the grating vector Kg = kS − kR. The space charge
field can be described by a scalar ESC. For a small degree of modulation
mg = 2 (IS IR)

0.5 (IS + IR)
−1, with IS = ∣AS∣2, IR = ∣AR∣2, the Fourier ex-

pansion of ESC and ρ can be truncated after the first Fourier order and an
analytical solution is found [57].

Assuming a plane-wave grating is not as limiting as it might seem at
first sight: For many applications, the reference and the signal wave vary
their amplitude and wave vector on scales which are much larger than a
wavelength. In this case a plane-wave grating is a local approximation of
the resulting pattern.

For a plane-wave grating the relation between the displacement field D
and the electric field E simplifies [64]. Then, the space-charge field ESC is
parallel to the grating vector Kg. We split the intensity I = I(0) + I(1) into a
constant part I(0) and a modulated part I(1). Accordingly, we proceed for
ESC and ρ. Then the amplitude of the periodic space-charge distribution
∆ρ is related to the amplitude of the space-charge field ∆ESC by

∆ρ = i∣Kg∣ε0εstatic
eff ∆ESC. (4.8)

Here ε0 is the electric vacuum permittivity and the effective dielectric con-
stant is εstatic

eff = εstatic
S,lm K̂lK̂m + Bo A−1

op Bp/ε0 with Alm = CE
lqmpK̂qK̂p and Bl =
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emloK̂mK̂o. There, εstatic
S,lm is the clamped dielectric tensor, K̂l = Kg,l/∣Kg∣ is

the normalized grating vector, CE
lmop is the tensor of the elastic constants at

constant electric field, and elmo is the piezoelectric stress tensor.
Furthermore, we assume that the electric field is short cut and thus

E(0) = 0. Now, solving the system of equations (4.1), (4.6), and (4.8), we
get up to the first Fourier order of the resulting electric field grating E [57]:

E(1)(r, t) =
1
2

(
∆ESCeiKg,mrm + c.c.

) (
1 − e−t/τ

)
, (4.9)

with

∆E = mg
Kg,l βlop ÂR,o Â∗

S,p + i(kBT/qe)Kg,lKg,mσlm ÂR,o Â∗
S,o

Kg,lKg,mσlm/Kg
, (4.10)

and

τ =
σlmKg,lKg,m I(0)

K2
gε0εstatic

eff
. (4.11)

Here, ÂR,p = AR,p/∣AR∣ and ÂS,p = AS,p/∣Ap∣. According to Eq. (4.9–
4.11), the electric field builds up exponentially and saturates at a sinu-
soidal field which, due to its complex phase, may be phase-shifted with
respect to the interference pattern.

The most prominent situation in holography is a plane-wave grating
with a grating vector Kg parallel to the z-axis of the crystal, and a beam
linearly polarized along the x-axis. In this case the formula simplify to:

E(1)(r) =
[

mg
β311

σ33
cos

(
Kg,mrm

)
+ mg(kBT/qe)∣Kg∣ sin

(
Kg,mrm

)] [
1 − e−t/τ

]
,

(4.12)
with

τ =
σ33 I(0)

ε0εstatic
eff

. (4.13)

The first term in Eq. (4.12) describes a grating recorded due to the bulk
photovoltaic effect, whereas the second term is recorded by diffusion and
is phase-shifted by π/2 with respect to the interference pattern. The dif-
fusion grating can be neglected in most practical applications due to the
strong photovoltaic effect in lithium niobate crystals.

The modulation of the electric space-charge field ∆ESC increases with
the degree of modulation of the interference pattern mg. Thus, in reality
one often tries to record holograms near mg = 1, to increase the hologram
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strength. But for high modulations the resulting electric field pattern is
no longer sinusoidal and higher harmonics begin to play a role. Numeri-
cal simulations indicate that the first harmonic of the electric field pattern
is approximately twice as high for mg = 1 compared with the linear the-
ory [65]. The difference quickly drops for smaller mg. Additionally, the
recording time τ is supposed to slightly increase with mg [66]. In practice
a degree of modulation larger than mg = 0.8 is unreachable because of
some background illumination so that the linear approximation probably
is a quite good one.

4.1.2 Change of the dielectric constant

Due to the modulated electric field which builds up because of the pho-
torefractive effect, the dielectric tensor εkl changes according to [63]:

∆ε−1
eff,lm = reff,lm∆ESC. (4.14)

From this, we can calculate [67]:

∆εeff,lm = εlo
(
reff,op∆ESC

)
εpm. (4.15)

In the above equations the following identity is used:

reff,lm = rS,lmoK̂o + pE,lmopK̂p A−1
o,q Bq. (4.16)

The tensors are: pE, the elasto-optic Pockels tensor and rS, the electro-optic
Pockels tensor.

The effective opto-electric tensor reff,lm incorporates crystal deforma-
tions due to the electric fields. The difference is small for gratings parallel
to the c-axis but becomes more pronounced for other directions.

4.1.3 Diffraction from volume holograms

The previous sections describe how periodic space-charge fields are re-
corded locally due to the photorefractive effect leading to a periodic mod-
ulation of the dielectric tensor. That way, the index of refraction of the
iron-doped lithium niobate crystal is modulated according to the inter-
ference pattern of the signal and the reference wave. When the index-of-
refraction pattern is illuminated with the reference wave, the signal wave
is reconstructed, due to the holographic principle [68].
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Gratings recorded by two plane waves can be classified according to
their geometry. Three types are usually discussed: First, the transmission
geometry, where both, the reference and the signal wave, enter the crystal
from the same surface. Second, the reflection geometry, where R and S
enter from opposite surfaces. And third, the 90∘-geometry, where two
beams enter perpendicularly from different surfaces. The three geometries
are explained in Fig. 4.2.

Figure 4.2: Holography in transmission, reflection, and 90∘-
geometry.

The holographic principle does not only apply to the case where the
hologram is read-out by the reference beam R, but also to phase-conju-
gated read-out. If the hologram is illuminated with the phase-conjugated
reference beam R∗, instead, the phase-conjugated signal wave is recon-
structed. For a plane wave, the phase-conjugated wave is simply the
counter-propagating plane wave. More generally, phase conjugation re-
constructs a back-propagating wave. Fig. 4.3 compares direct and phase-
conjugated read-out of a hologram.

For efficient diffraction the Bragg-condition for the read-out wave vec-
tor kp and the diffracted wave kd has to be fulfilled:

∆k = Kg + kp − kd = 0. (4.17)

Or for phase-conjugated read-out:

∆k = −Kg + kp − kd = 0. (4.18)

The maximal diffraction efficiency is determined by the coupling con-
stant κ

κ =
1
4

2π

λ

∆ε

ε
, (4.19)
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Figure 4.3: Direct and phase-conjugated read-out.

where λ is the wavelength in the crystal. It is assumed that no absorption
occurs. When the Bragg condition is fulfilled, the theoretical diffraction
efficiency for transmission, reflection [54], and 90∘-geometries [69], are:

η = sin2 (κd/cos(ν)) ,

η = tanh2 (κd/cos(ν)) , and

η = 1 − J2
0 (2κd)− J2

1 (2κd) ,

(4.20)

respectively. In the 90∘-geometry with a width of the reference beam WR
and of the signal beam WS it is d = (WRWS)

0.5. For the transmission and
the reflection geometry d is the thickness of the material. In the crystal, ν

is half the angle between the propagation direction of the signal and the
reference wave. The different curves for Eq. (4.20) are plotted in Fig. 4.4.
There ν = 0 is set for the 90∘ geometry. As can be seen, the diffraction
efficiency is very well described by a quadratic increase for diffraction effi-
ciencies below 20 %. For larger normalized lengths κd/ cos(ν) the diffrac-
tion efficiency becomes sub-quadratic as the read-out wave is depleted.
For the transmission geometry the light power periodically oscillates be-
tween the signal and the reference wave, leading to a sin2 behavior. This
cannot happen in the reflection geometry. The 90∘-geometry shows an in-
termediate behavior, which, like the reflection geometry, is monotonically
increasing.

The quadratic approximation is applicable when pump depletion can
be neglected. In this case, the amount of light diffracted from each part of
the crystal is constant, and interferes constructively at the exit face of the
crystal. Thus, the electric field of the diffracted light depends linearly on
the crystal thickness. And the diffracted light intensity depends quadrati-
cally on the thickness.

When the Bragg-condition is slightly violated, for example because of
an angular detuning ∆ν of the read-out wave, the diffraction efficiency
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Figure 4.4: The diffraction efficiency η for the first-order ap-
proximation (solid line), transmission (dashed line), reflection
(dots) and 90∘-geometry (dot-dashed line) versus the normal-
ized length κd/ cos(ν).

drops. In the limit of small diffraction efficiencies, where pump depletion
can be neglected, the angular selectivity shows a sinc2(const. ∆ν) behavior,
with the first zero at [54]

∆ν =
λ

d
(4.21)

for transmission geometry. For the 90∘-geometry the first zero is found
at [69]:

∆ν =
λ

WR
. (4.22)

First-order approximation

The coupled wave equations can be solved analytically for gratings writ-
ten by two plane waves. For more sophisticated holograms, where the
diffraction efficiency fulfills η ≪ 1, the first-order Born approximation,
a linear approximation, can be used: The inhomogeneities of the dielec-
tric constant act as point sources for the scattered wave. The superposi-
tion of all spherical waves emitted from the point sources is the scattered
wave [12]:

Ad(r) =
(

2π

λ0

)2 ∫
d3r′

eik∣r−r′∣e−(α/2)∣r−r′∣

4π∣r − r′∣ ε(1)(r′)Ap(r′). (4.23)
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Here, Ad(r) is the diffracted wave, Ap(r′) the read-out wave, λ0 is the vac-
uum wavelength, and k = 2π(ε(0))0.5/λ0. Several approximations have to
be made for the above formula to be valid: First an isotropic material is
assumed and vectorial effects are neglected. Vectorial and anisotropic ver-
sions of the Born approximation exist [70], and these effects are discussed
in the next section. The second assumption is that the amount of diffracted
light is so small that diffraction of the diffracted light can be neglected.
This is the same assumption as for the quadratic increase of the diffrac-
tion efficiency in Fig. 4.4. Within this approximation Eq. (4.23) allows the
calculation for more complicated holograms.

Direct integration of Eq. (4.23) demands high amounts of calculation
time and memory capacity, as, generally, a grid spacing smaller than the
wavelength of the light has to be chosen. Equation (4.23) can be inter-
preted as the convolution of the Green’s function and the product of the
incoming field and the modulation of the dielectric constant. A convo-
lution can be efficiently evaluated using the Fast Fourier Transformation
(FFT) [71]. Using the peculiarities of volume holograms the calculation
speed can be further drastically enhanced [72]. For plane-wave gratings
the integral can be evaluated analytically [73]. And with further assump-
tions the integral can be analytically evaluated in many more cases. As
we see in a later section, an analytical evaluation is also possible for holo-
graphic phase-conjugation of a point source.

Vectorial effects

Diffraction from a volume grating becomes a complicated problem for
the general anisotropic, vectorial case. Different polarization states may
couple and the coupled wave equations become a system of four or more
equations [74]. The polarization of the diffracted wave may be completely
different from that of the original signal wave. Additionally, the polariza-
tion of waves may change as they propagate because of the birefringence
of the medium. Although theories exist for those cases, they are compli-
cated and elaborate. The same is true for anisotropic, vectorial versions of
the first-order Born approximation [70].

However, in the case of a volume hologram the situation simplifies due
to the phase-matching condition Eq. (4.17,4.18). The propagation vectors
of the read-out wave kp, the diffracted wave kd, and the grating vector Kg

have to fulfill the Bragg condition ∆k = 0, for efficient diffraction. This
phase-matching condition imposes restrictions on the polarization state of
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the diffracted wave. For the case of a hologram, the condition is always
fulfilled, if the read-out wave is close to the phase-conjugated reference
wave: kp = −kR and the polarization of the diffracted wave is the same as
the one of the phase-conjugated signal wave. The diffracted wave might
change the polarization as it propagates through the crystal. However,
since S∗ is exactly the back-propagating signal wave, the phase-conjugated
signal wave is reconstructed at the hole.

Thus, when calculating the diffracted wave, we assume that at each
point the polarization state of the diffracted wave is the phase-conjugated
one of the signal wave, also at the exit surface of the crystal. The coupling
constant for known polarization states can be found in the literature [58].
There it is derived for the coupled wave equations. But, as we have seen
before, by analogy the coupling constant can be applied to the Born ap-
proximation as well:

∆εeff = −ÂS,l∆εeff,lm ÂR,m (4.24)

with ∆εeff,lm from Eq. (4.15). Thus, if vectorial effects at the reconstruc-
tion site are neglected, Eq. (4.23) can be applied directly. We call this the
pseudo-vectorial calculation. Alternatively a vector valued ∆εeff can be
assumed where the direction of polarization depends on the polarization
of the emitted signal wave S.

The approximation made herein assumes that the crystal and the bire-
fringence are large enough so that the Bragg-condition has to be strictly
fulfilled. If a wave is propagating along the c-axis, the index of refraction
for both polarization directions is the same, and phase-matching is auto-
matically fulfilled. If the coefficients of the dielectric tensor allow coupling
of the two polarization states, the original polarization might not be main-
tained. However, in the geometry we choose we do not expect this effect
to be relevant.

4.1.4 Holographic scattering

Holographic scattering describes the photorefractive amplification of light
being scattered by surface defects or defects in the bulk of the crystal [75].
In a photorefractive crystal a pump wave and scattered light can interfere
and record gratings which are shifted with respect to the interference pat-
tern and which are self-amplified and diffract more and more of the pump
light into scattered waves [76]. In our experimental configuration, where
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the crystal is illuminated with ordinarily polarized light, anisotropic scat-
tering is dominating [77]. This means that the scattered light is extraordi-
narily polarized. In lithium niobate the β132 and β123 elements of the bulk
photovoltaic tensor are responsible for anisotropic scattering due to their
large imaginary values [78]. The imaginary value leads to a grating shifted
by π/2 with respect to the interference pattern ensuring efficient coupling
of the pump wave and the scattered wave.

4.2 Methods

In this section we discuss the iron-doped lithium niobate samples, the op-
tical setup, and the measurement procedure for holographic phase-conju-
gation through a sub-wavelength hole.

4.2.1 Sample crystal

Iron-doped lithium niobate crystals are used as the photosensitive mate-
rial. The doping level is 0.05 weight % Fe2O3 in the melt. The crystals are
cut into Wx × Wy × Wz = 1 × 8 × 4 mm3 sized pieces, and the surfaces
are polished. To check the quality of the surface polishing, the topogra-
phy of the x-surface of one crystal is measured with an interferometer.
Figure 4.5 shows the results: The surfaces have a planarity of about 3λ.
There might be a small wedge angle between the two surfaces, which is
not seen by the interferometer. Absorption measurements with a Varian
Cary 500 spectrometer reveal absorption coefficients for ordinarily polar-
ized light of α = (560 ± 10)m−1 at a vacuum wavelength λ0 = 532 nm
and α = (625 ± 10)m−1 at λ0 = 514 nm. Using the absorption coefficient
at λ0 = 477 nm the oxidization state is found to be: cFe2+/cFe3+ = 0.09 [56].

A (280 ± 30) nm thick gold film is evaporated onto the z-face of the
crystal. Gold is used because it has a reasonable optical thickness at 532 nm
and is not as sensitive to degradation as silver [43]. A cross section as seen
with a scanning electron microscope of a gold film on lithium niobate is
shown in Fig. 4.6. The cross-section is made with a focused ion beam.

A focused-ion beam is also used to fabricate holes with diameters of
50 –1000 nm into the gold film. See Fig. 4.7 for the positions of the different
holes on the crystal surface. Figure 4.8 shows a top view of a hole and
Fig. 4.9 a cross section. The holes have a circular shape and are slightly
conic over the depth of the gold film due to the fabrication.
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Figure 4.5: Topography of the +x and −x-surface of the crystal.

Figure 4.6: Cross section through a 297-nm-thick gold film on a
lithium niobate crystal. (Photo: A. Sehrbrock, Forschungszen-
trum caesar)
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Figure 4.7: Layout of the sub-wavelength holes on the z-surface
of the lithium niobate crystal.

Figure 4.8: Top view of a 200-nm hole in a gold film on top of a
lithium niobate crystal. The picture is made with a focused ion
beam. (Photo: A. Sehrbrock, Forschungszentrum caesar)
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Figure 4.9: Electron microscopy picture of the metal surface
with a hole in it. With a focused ion beam, a cross section is
made to study the shape of the hole. (Photo: A. Sehrbrock,
Forschungszentrum caesar)

4.2.2 Optical setup

The 90∘-geometry is used to record the holograms. Figure 4.10 shows
the orientation of the crystal and the involved light beams. The c-axis (z-
direction) of the lithium niobate crystal is oriented parallel to the incoming
signal beam S. The reference beam R and the phase-conjugated reference
beam R∗ are oriented anti-parallel and parallel to the x-axis. The electric
field vector of the incoming light is aligned along the y-axis. The surfaces
which are not exposed to light are covered with silver to short-circuit the
z-surfaces and y-surfaces of the crystal.

Figure 4.11 shows the experimental setup. Light from a frequency-
doubled Nd:YAG laser with a wavelength of 532 nm is split into three
beams: The signal beam S, the plane-wave reference beam R and the
phase-conjugated reference beam R∗. Using a λ/2-wave plate (1) the elec-
tric field vector is polarized perpendicularly to the optical table. Beam
blockers (2) are used to switch between recording and read-out mode.
During recording, the signal beam passes through a spatial frequency fil-
ter (3) to obtain a beam diameter adapted to the microscope objective (4).
This objective focuses the light onto the sub-wavelength hole in the metal
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Figure 4.10: Crystal orientation. The light is polarized parallel
to the y-axis.

film on the lithium niobate crystal (5). The back-reflections of the ref-
erence and signal beams interfere at the photodiode (6). This signal is
used to stabilize the relative phase between the two beams via a mirror (7)
mounted on a piezo-mechanical translator. During read-out, the phase-
conjugated light is periodically modulated with a mechanical chopper (8).
The phase-conjugated signal beam is detected with a photodiode (9), and
a lock-in technique is employed to increase the sensitivity. Furthermore,
two computer-controlled motors are used to rotate the read-out beam in
the plane of the table (10) and perpendicularly to it (11) to check the angu-
lar selectivity of the holograms.

A special mount is designed to fix the crystal. Fig. 4.12 shows a pic-
ture of the device. The crystal holder is placed on a fiber mount which
is alignable in six-degrees of freedom. This helps to bring the crystal to
the right position with the surfaces perpendicular to the incoming beams.
Because the crystal is held by two clamps partially covering the crystal,
Wy = 7.4 mm is used as the crystal height in the following.

Different laser output powers are employed during the measurements.
The intensities of the reference beam IR, the phase-conjugated reference
beam IR∗ , and the signal beam IS right before the spatial frequency filter,
component (3) in Fig. 4.11, are summarized for different nominal laser out-
put powers PL in Table 4.1. From this and specifications of the microscope
objective we calculate for the peak intensity in the focus of the microscope
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Figure 4.11: The experimental setup (a) during recording and
(b) during read-out of a hologram. The numbers and details
are explained in the text.
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Figure 4.12: Photo of the crystal mount. The crystal is clamped
between the two aluminum brackets in the center. The in-
volved light beams S, R, R∗, and S∗ are shown. (Photo: Tobias
Beckmann)

objective IS,in = 2.4 × 108 mW cm−2.

PL [W] IR [mW cm−2] IR∗ [mW cm−2] IS [mW cm−2]
1.0 107 61 96
0.5 52.1 29.9 48.9
0.1 8.7 5.0 8.1
0.01 0.61 0.35 0.55

Table 4.1: Laser light intensities in the experimental setup for
different nominal laser output powers PL.

Active stabilization

The recording times in iron-doped lithium niobate crystals can be one hour
or more because of the small intensity of the signal wave behind the hole.
During this time span, the relative phase between the signal beam S and
the reference beam R has to be stable. Thus, the position of all components
involved should be stable to a small fraction of the wavelength.

To eliminate vibrations caused by air movement, the whole setup is
placed in a large box. But due to thermal drift, the required stability can
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hardly be reached by passive means only. Thus, the relative phase is ac-
tively stabilized: S and R hit the crystal surface and the metal surface, and
part of this light is reflected and guided back to the first beam splitter in
the setup where the back-reflected beams are combined. The intensity at
one point of the created stabilization interference pattern is recorded with
a photodiode. If the pathlength of one of the two beams changes, the in-
terference patterns changes, too. One mirror in the reference arm is placed
on a piezo-mechanical translator. The mirror position is changed with a
small periodic modulation. The corresponding change in the interference
pattern is detected with a lock in-amplifier. This error signal is now fed
to an integrator which controls the piezo-mechanical translator. Taken to-
gether, this stabilizes the holographic setup [79].

The reference and the signal wave propagate along their way twice:
forward and backward. Thus, the relative phase change due to a distor-
tion is twice as high as the distortion itself. Therefore, a distortion of λ0/2
can not be detected by the stabilization system. Seldom, meaning once
in several hours, sudden changes of the relative phase occur, which are
faster than the stabilization system. In these cases, the system might stabi-
lize to a relative phase shifted by π to the previous one and the previously
recorded hologram is destroyed. Fortunately, these incidents are easy to
detect because the integrated error signal, which is recorded, shows a sud-
den change in those cases. The stabilization system ensures that the sig-
nal fed to the piezomechanical translator stays in a previously determined
window. When the signal reaches the upper boundary of the window, it
is set to the lower boundary. Thus to minimize the number of sudden
phase changes of π, the window size is chosen so that the relative phase
of the reference and the signal beam changes as a multiple of 2π when the
integrated error reaches the boundary.

4.2.3 Measurement procedure

First, the correct hole has to be found. The crystal can be moved and ro-
tated with its mount. When the signal beam is switched on, the back-
reflected light can be imaged on a CCD camera. With the microscope ob-
jective the double-structure in Fig. 4.7 is identifiable. After moving the
crystal approximately to the next smaller hole we try to record a hologram.
Usually the hole is not in the field of view of the microscope objective and
several attempts to record a hologram have to be made. The smallest hole
found by this method has a diameter of 150 nm.
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After the crystal is aligned such that the stabilization system works
and the microscope objective focuses on the correct sub-wavelength hole,
a hologram is recorded for some minutes. For read-out the motorized ro-
tation stages are used to align the read-out beam so that the diffracted light
power is maximized. Afterwards all holograms are erased by illuminat-
ing the crystal for 15 min with incoherent light. A recording curve is taken
by periodically reading out the hologram every 30 s. For this, the refer-
ence beam R is blocked for 3 s. At the same time, the phase-conjugated
reference beam R∗ illuminates the crystal. During read-out, the phase-
conjugated signal light S∗ is recorded with photodiode (9) in Fig. 4.11. A
lock-in amplifier locked to the frequency of the mechanical chopper (8) is
used to determine the diffracted light power Pd.

We use the diffracted light power Pd to calculate the diffraction effi-
ciency η, which we define in our special situation to be

η = Pd/(IR∗WyWz). (4.25)

The detected power Pd might be smaller than the power right behind the
hole, as the microscope objective might not collect all the light. In the
literature, the diffraction efficiency is often determined by dividing the
diffracted light by the sum of the transmitted and diffracted light power.
The latter definition ensures that reflection at the crystal surfaces and ab-
sorption do not play a role, whereas with our definition these effects di-
minish the diffraction efficiency. However, the diffraction efficiency, as we
define it, is useful for comparison with results from computer simulations.
Furthermore, we do not have to measure simultaneously the transmitted
light power.

After a hologram is generated, angular selectivity curves can be record-
ed. This is done by detuning the read-out beam either in the plane of the
table or perpendicularly to it. During detuning the diffraction efficiency is
measured. Angular selectivity curves are taken at a laser output power of
PL = 0.01 W to minimize erasure of the hologram by the read-out light.

In order to scan the diffraction efficiency for light being diffracted at
different positions in the lithium niobate crystal, a circular diaphragm
with 500 µm diameter is put into the read-out beam, approximately 2 cm
before the crystal. The diaphragm is mounted on a motorized transla-
tion stage movable in the two-directions perpendicular to the read-out
beam. In this case, the area of the diaphragm π(250 µm)2 is used instead
of the crystal surface area WyWz to calculate the diffraction efficiency by
Eq. (4.25).
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4.3 Results

Now, the experimental results for holographic phase conjugation through
a sub-wavelength hole are presented. First, as a reference for the diffrac-
tion efficiency, plane-wave gratings are recorded in iron-doped lithium
niobate crystals without gold film. Second, tight focusing by phase-con-
jugation through a sub-wavelength hole is tested by imaging the recon-
structed spot after removing the gold film. Third, the evolution of the
diffraction efficiency for holography through a hole in a gold film is inves-
tigated and angular selectivity curves as well as two-dimensional scans of
the diffraction efficiency are presented.

4.3.1 Plane-wave holography

A grating is recorded with two plane waves. For this, the microscope ob-
jective (4) and the spatial frequency filter (3) are removed from the signal
beam in the setup in Fig. 4.11, and an iron-doped lithium niobate crys-
tal without gold film is mounted in the crystal holder. First, the holo-
gram is read out with the reference wave. The signal wave S is blocked,
and the diffracted light power is measured. After starting the recording,
the diffraction efficiency increases and saturates at 16 % after about half
an hour. For phase-conjugated read-out the phase-conjugated reference
beam is used as read-out beam, and the phase-conjugated signal beam is
detected with photodiode (9) in Fig. 4.11. The evolution of the diffraction
efficiency can be seen in Fig. 4.13. The evolution is similar to the evolution
for direct read-out and saturates at about 3 %.

When turning the crystal around the x-, y- and z-axis for 180∘, the sat-
uration value of the diffraction efficiency differs by a factor of up to 6 for
the different crystal orientations.

When the crystal is illuminated only with the plane reference wave, the
transmitted light intensity drops and saturates at about 25 % of the orig-
inal transmission after about half an hour. The saturation value depends
on which surface faces the reference wave. As the transmitted intensity
drops, stray light appears behind the crystal. This stray light is polarized
along the z-axis. The original transmission can be restored by illumination
with incoherent light.
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Figure 4.13: Evolution of the diffraction efficiency for a plane-
wave grating. The hologram is read out with the phase-
conjugated reference beam R∗. The laser output power is
PL = 0.5 W. The solid line is a fit to a theoretical curve.

4.3.2 Tight focusing

Now we turn our attention to holographic phase-conjugation through a
sub-wavelength hole. A crystal coated with a gold film with sub-wave-
length holes is mounted in the crystal holder. The hologram is read-out
with the phase-conjugated reference wave R∗. To image the reconstructed
wave, we replace diode (9) in Fig. 4.11 by a CCD camera. The distance
between the microscope objective and the crystal is changed until a sharp
image is obtained on the camera. Figure 4.14 (a) shows the crystal sur-
face when the phase-conjugated read-out beam is switched on, after a
hologram is recorded through a hole with a diameter of 200 nm. The
phase-conjugated light emerging from the sub-wavelength hole appears
as a bright spot. Fitting a Gauss curve to the cross section in Fig. 4.14 (a),
we find for the 1/e2-focus diameter wS∗ = 1.2 µm.

To find out how good the focusing in the crystal works, we remove the
metal film after recording a hologram. The crystal surface is depicted in
Fig. 4.14 (b). The small, bright spot shows that the light is indeed focused.
Fitting again a Gauss curve to the cross section, we find wS∗ = 1.1 µm.
The difference to the case with metal film is taken as the experimental
error. The artifacts in both pictures are attributed to imperfections of the
imaging system.
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Figure 4.14: Phase-conjugated light (a) when the metal film is
in place and (b) after the film is removed. Cross sections are
added to measure the spot size. The hole diameter for this mea-
surement is 200 nm.

4.3.3 Evolution of the diffraction efficiency

Now, we turn our attention towards quantitative measurements of the
diffracted light power for holography through a sub-wavelength hole. This
power is measured with photodiode (9) in Fig. 4.11, and the diffraction
efficiency is calculated by Eq. (4.25). Figure 4.15 shows how the diffrac-
tion efficiency increases as we start recording, reaches a maximum and
drops to a value close to zero afterwards. This is a completely different
behavior compared with the evolution of the diffraction efficiency in the
plane-wave case as seen in Fig. 4.13. Furthermore, for the 400-nm hole
the diffraction efficiency is three orders of magnitudes smaller than for a
plane wave grating. In all cases the recorded holograms can be erased with
incoherent light. The phase-conjugated light S∗ being back-transmitted
through the hole, is polarized parallel to the y-axis. Thus, S and S∗ have
the same light polarization.

The evolution of the diffraction efficiency for three different hole sizes
is shown in Fig. 4.16. The general behavior is very similar for all three
curves. The diffraction efficiency increases, reaches a maximum, and drops
to a value near zero. The smaller the hole size, the smaller gets the max-
imal diffraction efficiency. It is ten times smaller for the 500-nm hole and
about thirty times smaller for the 400-nm hole compared to the 1000-nm
hole. The time constants are identical for the three curves.

The measurements shown in Fig. 4.15 and Fig. 4.16 require active sta-
bilization. If the stabilization system is turned off, the evolution of the
diffraction efficiency becomes random and is not reproducible. Good re-
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Figure 4.15: Evolution of the diffraction efficiency for a 400-nm
hole. The laser output power is PL = 0.5 W. The solid line is a
fit to a theoretical curve.

Figure 4.16: Evolution of the diffraction efficiency for hologra-
phy with a 1000-nm hole (♦), a 500-nm hole (∘), and a 400-nm
hole (□). The laser output power is PL = 1 W.
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producibility is found, when two measurements are taken without chang-
ing the setup in between: The error in the maximal diffraction efficiency
is then smaller than 20 %. However, the reproducibility gets worse for
longer recording times. For example, in Fig. 4.15 the diffraction efficiency
increases a little bit between t = 2 h and t = 4 h before approaching the
long-term saturation value. This is seen in some but not in all record-
ing curves, and is therefore considered to be below the error. The repro-
ducibility gets worse, if the setup is changed between two measurements.
However, by optimizing all parameters an error smaller than 50 % can be
reached.

4.3.4 Angular selectivity

The mirrors (10) and (11) in the experimental setup in Fig. 4.11 can be
rotated so that the read-out beam is detuned in the x-z-plane (11), and in
the y-z-plane (10). These mirrors are used to find the optimal diffraction
efficiency during read-out. A hologram is recorded until the diffraction
efficiency reaches its maximal value. Then, the read-out beam is detuned
from the optimal value to obtain angular selectivity curves in the plane of
the optical table and perpendicularly to it. Figure 4.17 (a) and (b) show
the angular selectivity of two holograms: (a) For a 400-nm hole and (b)
for a 1000-nm hole. Whereas the angular selectivity in the x-z-plane gets
sharper for a bigger hole size, it decreases in the x-y-plane.

The angular selectivity in the x-y-plane for holography through a sub-
wavelength hole is compared to those of a plane-wave grating and of a
hologram written by a signal wave focused by a NA = 0.65 microscope
objective. For plane waves the diffraction efficiency is constant in the x-
y-plane. For the case with the microscope objective the full width at half
maximum of the selectivity curve is 0.24 ∘. For a 400-nm hole it is 0.024 ∘.
The different curves are shown in Fig. 4.18. The diffraction efficiency is
normalized to the maximal diffraction efficiency for each curve. The max-
imal diffraction efficiency for the plane wave is 2.7 × 10−2, for the focused
wave it is 2.1 × 10−3, and for the hole it is 3.3 × 10−5.

4.3.5 Razor-blade method

For the next measurements a two-dimensional translation stage is used to
place either a razor blade or a circular diaphragm in the read-out beam.
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Figure 4.17: Angular selectivity curves for (a) a 400-nm and
(b) a 1000-nm hole. Angular detuning is measured inside the
crystal. □/∘: rotations in the x-z/x-y-plane.
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Figure 4.18: Angular selectivity in the x-y-plane for hologra-
phy with a plane signal wave (♦), a signal wave focused with
a NA = 0.65 microscope objective (∘), and a signal wave trans-
mitted through a 400-nm hole (□). The diffraction efficiency for
each curve is normalized to the maximum. Angular detuning
is measured inside the crystal.

Thus, the crystal is only partially illuminated, and the selected area of il-
lumination is changeable via the translation stage. When calculating the
diffraction efficiency, only the illuminated area of the crystal is taken into
account. For a 500-µm diaphragm it is, for example, PR∗ = π(250 µm)2 Iin.
Because of the smaller area, the impinging light power decreases and the
diffraction efficiency according to Eq. (4.25) can even be bigger than in the
case of a completely illuminated crystal.

In a first step, a hologram is recorded through a 1000-nm hole until
the maximal value is reached. During readout the razor blade is moved
along the y-axis and afterwards along the z-axis. For movement in the z-
direction, the crystal surfaces are approximately located at z = 0 mm and
z = 4 mm. For measurement in the y-direction the upper crystal border
is approximately at y = 4 mm. The accuracy of these positions is sev-
eral hundred µm. The sub-wavelength hole is found on the z-surface at
z = 0 mm, y = 1.5 mm. Figure 4.19 shows the diffraction efficiency as
the crystal is revealed to the read-out light. In both directions the diffrac-
tion efficiency increases as more and more light impinges on the surface,
reaches a maximum and drops afterwards. In the y-direction the diffrac-
tion efficiency changes very abruptly.

A circular 500-µm diaphragm is used in Fig. 4.20, where a two-dimen-
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Figure 4.19: Diffraction efficiency versus the position of a razor
blade for holography through a 400-nm hole. (a) The blade is
moved along the z-axis. The sub-wavelength hole is approx-
imately at the z = 0 position. (b) The blade is moved along
the y-axis. The sub-wavelength hole is approximately at the
y = 1.5 mm position.
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sional scan of the diffraction efficiency is shown. A maximum of the dif-
fraction efficiency is found at the center of the picture. The peak has a
full width at half maximum of about 400 µm in z-direction and of about
600 µm in the y-direction.

Figure 4.20: Two-dimensional scan of the diffraction efficiency
of a hologram recorded with a signal wave through a 1000-nm
hole.

Now, we study the position dependent evolution of the diffraction
efficiency. After recording a hologram, the circular 500-µm diaphragm
is placed in the read-out beam at the position, where the diffraction ef-
ficiency becomes maximal. Now, curves of η versus time are recorded
with a laser power of PL = 1 W. Additionally, before each measure-
ment, the crystal is illuminated with the reference beam R for different
pre-illumination times tp. Figure 4.21 (a) shows the resulting curves. A
similar measurement is made after the diaphragm is moved 1.5 mm along
the z-axis. The results can be found in Fig. 4.21 (b).

All curves in Fig. 4.21 increase, reach a maximum and saturate at a
lower value. The time constant is approximately the same for all curves.
The maximal diffraction efficiency for zero pre-illumination time drops by
two orders of magnitude as the read-out position is moved. In Fig. 4.21 (a)
the long-term saturation value is higher compared to that in Fig. 4.21 (b),
where the saturation value is zero within the experimental error. With
increasing pre-illumination time tp, the maximal diffraction efficiency de-
creases. Different pre-exposure times for the signal beam S reveal no in-
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fluence on the subsequent recording.

Figure 4.21: Evolution of the diffraction efficiency for a 1000-
nm hole. A 500-µm diaphragm is placed in the read-out beam.
The laser output power is PL = 1.0 W. The diaphragm is
centered (a) at the position of maximal diffraction efficiency
and (b) 1.5 mm along the z-direction away from the hole. Be-
fore recording, the crystal is pre-illuminated with the refer-
ence beam. Pre-illumination times – from top to bottom: (a)
tp = 5.25, 30, 45, 150 min and (b) tp = 0, 3.25, 5, 15 min.

Angular selectivity curves are made at different positions of the di-
aphragm. It is found that the angle of maximal diffraction efficiency dif-
fers by up to 0.02∘.

4.3.6 Summary of the experimental results

Looking at the experiments about holographic phase-conjugation through
a sub-wavelength hole, we find that it works and light is nicely focused
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by this method (Fig. 4.14). Reproducible curves of the diffraction effi-
ciency versus time are recorded. The evolution is peculiar for hologra-
phy through holes as the diffraction efficiency has a maximum after about
half an hour (Fig. 4.15). The maximal diffraction efficiency decreases with
the hole size (Fig. 4.16). For a 400-nm hole the efficiency is three orders
of magnitudes smaller than for plane-wave gratings (compare Fig. 4.15
and Fig. 4.13). For holography through holes very sharp angular selec-
tivity in two directions is found. The selectivity in the x-y-plane is more
pronounced for smaller hole sizes (Fig. 4.17). For plane waves and for a
focused signal wave without a hole the selectivity in the x-y-plane is far
less pronounced (Fig. 4.18). Additional information is gained by using
a translation stage to move a razor blade or a circular diaphragm in the
read-out beam. It is found that most of the diffraction comes from areas
close to the hole (Fig. 4.19 and Fig. 4.20). The temporal evolution of the
diffraction efficiency is different for different places in the crystal. Closer
to the hole the long term saturation value is much higher than far away
from it (Fig. 4.21). If the crystal is illuminated with the reference beam
prior to recording a hologram the maximal diffraction efficiency decreases
(Fig. 4.21).

4.4 Discussion

The experimental data shows that holography through a sub-wavelength
hole works and shows a very peculiar behavior compared to plane-wave
gratings. In this section we want to understand these peculiarities. Fur-
thermore, we discuss how the parameters can be further optimized. To
understand the temporal evolution an analogy to the case of holograms
written with two focused beams is drawn. The basic idea behind the fur-
ther discussion is that a hologram is recorded by a spherical wave and
a plane wave. To obtain the strength of the gratings inside the crystal,
the formula in the sections 4.1.1 and 4.1.2 are evaluated. Then, the ex-
periments are simulated using the scalar first-order Born approximation
Eq. (4.23).

4.4.1 Diffraction efficiency in the plane-wave case

A diffraction efficiency of up to 16 % is measured for plane-wave recording
and read-out with the original reference wave. Neglecting absorption and
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reflection at the crystal surfaces, we can estimate the expected diffraction
efficiency for the plane-wave case from [69]: η = 1 − J2

0(2κ
√

WxWz) −
J2
1(2κ

√
WxWz), where J0 and J1 are Bessel functions of the first kind, κ =

(1/4)(2πn/λ0)(∆ε/ε(0)), and n is the refractive index. The grating vector
is tilted by 45∘ to the z-axis. Thus neglecting diffusion, and using literature
values from [80] and [63], the electric space-charge field can be found from
Eq. (4.12) ∆ESC = cos(45∘)β322/σ22 = 7.0 MV m−1. The effective ∆ε can be
calculated as ∆ε = cos(45∘)(ε(0))2r322∆ESC = 1.2 × 10−3. The crystal size
is Wx ×Wz = 1 mm × 4 mm. Thus, we get η = 90 %. Taking an absorption
coefficient α = 560 m−1 into account, we get η = 37 %. At each crystal
surface we loose about 15 % by reflection. Due to this reflected light the
degree of modulation is at best mg = 0.8. Thus we expect a diffraction
efficiency of 26 %. The measured diffraction efficiency is 16 %.

We have seen that the transmitted light drops significantly, which is
probably originating from holographic scattering. Since this scattering is
caused by surface imperfections and since the experimentally observed
drop of the transmitted light depends strongly on the surface through
which the light enters the crystal, this is very plausible. Holographically
scattered light decreases the degree of modulation of the interference pat-
tern, therefore, this effect can contribute to the reduced diffraction effi-
ciency.

Only η = 3 % are measured when the crystal is read-out with the
phase-conjugated reference beam. This is probably due to non-planar
crystal surfaces. Thus, directing a plane wave onto the crystal with the
direction opposite to the original reference wave does not generate the per-
fect R∗ inside the crystal, and hence the diffraction efficiency gets smaller.
The topographies of the crystal surfaces are shown in Fig. 4.5. Wedge-
shaped deformations of the crystal surface can be compensated by tilting
the phase-conjugated reference beam. But, since the crystal surface has a
more complex shape, imperfections of the surface profile can not be com-
pensated completely. Indeed, we see that slopes of 10−3 can be found. By
refraction at the crystal surfaces a light beam thus can be distorted by 0.03∘
which is even more than the angular selectivity of 0.01∘. Thus, it is under-
standable that due to non-perfect crystal surfaces the diffraction efficiency
drops significantly.

In conclusion, by a better polishing of the surfaces, anti-reflection coat-
ings and oxidized crystals, which absorb less, it should be possible to reach
a diffraction efficiency close to 100 %.
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4.4.2 Dynamics of the recording

As we have seen in section 4.1.1, for plane waves the amplitude of the
dielectric constant modulation is expected to increase exponentially and
then to saturate at ∆εeff with a time constant τ = εε0/(σI(0)). The diffrac-
tion efficiency η, for η ≪ 1, is expected to be η ∝ (∆εeff)

2. This behavior
is experimentally verified for a plane wave in Fig. 4.13. A fit of the the-
oretical curve is plotted as a solid line. The evolution of η for a 400-nm
hole in Fig. 4.15 is different: In the beginning, the diffraction efficiency in-
creases, but after about 0.5 h a maximum is reached and η decreases until
it becomes close to zero after 1.5 h. In Fig. 4.21 (a) and Fig. 4.21 (b) the
time constant is approximately half as high, which is expected, as the laser
power used is twice as high.

Comparing the time constants in Fig. 4.21 (a) and Fig. 4.21 (b) we see
that at both crystal positions the time constant is approximately the same.
Thus the average light intensity has to be approximately the same. Since
the intensity of the signal beam is strongly inhomogeneous, we conclude
that the reference beam has a much bigger light intensity and thus is re-
sponsible for the speed of recording.

A possible explanation of the recording curve for the sub-wavelength
hole is a field compensating the bulk photovoltaic driving force if the crys-
tal is not illuminated completely [81]. If, for example, shadowing occurs at
the crystal edges, the crystal would not be short-circuited and such a field
would build up. Since after a long time the compensation field exactly
counterbalances the bulk photovoltaic driving force, the remaining dif-
fraction efficiency should originate only from the uncompensated parts of
the driving force and be much smaller than the maximal value. The solid
line in Fig. 4.15 indicates a fit of P1{t exp(−t/τ) + P2[1 − exp(−t/τ)]}2,
with P1, P2, τ being fit parameters. This curve describes the expected evo-
lution if the compensation effect occurs [81].

The interpretation that a compensation effect is responsible for the de-
creasing diffraction efficiency, is also supported by the pre-illumination
data in Fig. 4.21 (a) and Figs. 4.21 (b): With increasing pre-illumination
time tp, the maximum of the diffraction efficiency decreases, because al-
ready part of the compensating field has built-up. The fact that pre-illumi-
nation with the signal beam has no effect, can be understood: The refer-
ence beam R is brighter than the signal wave S in most parts of the crystal
and, furthermore, it is the reference beam which is partially shadowed.

Shadowing at the borders might be responsible for the incomplete il-

57



4.4. DISCUSSION CHAPTER 4. HOLOGRAPHIC METHOD

lumination: all four surfaces not exposed to the reference beam are coated
with an optically thick material. If the crystal is not aligned completely
parallel to the reference beam or if the surface is shaped slightly convex,
shadowing can occur at the crystal border. This is shown in Fig. 4.22.

Figure 4.22: Illustration of inhomogeneous illumination of the
lithium niobate crystal: Due to shadowing a compensation
field may build up, which counterbalances the bulk photo-
voltaic effect.

Another issue concerning the dynamics is that the time constant of
holographic recording depends on the light intensity, but in our geometry
the intensity varies through the crystal. If the crystal width is Wx = 1 mm,
the factor between the light intensity of the reference beam R in the front
of the crystal and at the back-side will be exp(−αWx) = 0.57. The time
constant τ is different by this factor. Close to the hole very small time con-
stants might occur, as the signal beam is brighter there and can increase
the average light intensity. Furthermore, the speed of the local grating
build-up does not only depend on the local light intensity I(0), but also on
the grating orientation. According to [63], the effective dielectric constant
is εstatic

eff ≈ 90, if the grating vector Kg is parallel to the x- or the y-axis, and
εstatic

eff ≈ 30, if it is parallel to the z-axis. This implies that even for the same
light intensity time constants being different by a factor of three can occur
in the lithium niobate crystal.
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4.4.3 Holography of a point source

The model

In the following, we model the hologram in the crystal to interpret our ex-
perimental data. The situation is shown in Fig. 4.23. The spherical signal
wave S and the plane reference wave R record a hologram. The holo-
gram can be described by local grating vectors Kg(r). When the hologram
is read-out with the plane read-out wave, which is close to the phase-
conjugated reference wave R∗, the phase-conjugated signal wave S∗ is re-
constructed. The focus of the spherical wave is located at r = 0, the crystal
is found in the rz > 0 space. The reference wave is aligned anti-parallel to
the x-direction. For the cause of simplicity we assume that the crystal has
an isotropic index of refraction of n = [ε(0)]0.5 = 2.3.

Figure 4.23: Scheme of holographic phase conjugation of a
point source. The propagation vectors of the signal wave kS,
the reference wave kR, the read-out wave kp, and the diffracted
wave kd are shown. Furthermore, the grating with vector Kg is
shown at one position.

As it is pointed out in Chapter 2, neither theoretical nor experimental
data is available to accurately describe transmission characteristics of sub-
wavelength holes in real metals. According to [7], we approximate the
signal wave by a magnetic dipole field, where the magnetic dipole M is
perpendicular to the incoming electric field vector Ain. The electric field
is then AS ∝ (kS × M) exp(ik∣r∣)/∣r∣, where ∣r∣ is the distance to the hole,
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and k = 2πn/λ0.
In the experiments, the hole diameters 2rh are comparable to the wave-

length. Thus, the signal wave is expected to diffract less, and a dipole ap-
proximation is no longer appropriate. To model this, we use Kirchhoff’s
scalar diffraction theory, which is applicable for hole diameters larger than
the wavelength [12]. We use the fact that the hole is illuminated with a
plane wave with field amplitude Ain. As an approximation, exp(ik∣r −
r′∣)/∣r − r′∣ ≈ exp(ik∣r∣)/∣r∣ exp(ikr′lrl/∣r∣) holds for points r′ in the area
of the hole Sh with ∣r′∣ < ∣r∣ [12]. We get for the signal wave amplitude
AS [12]:

AS(r) = − i
2λ

Ain

∫
Sh

dSh(r
′)

eik∣r−r′∣

∣r − r′∣ [1 + cos(φ)]

= − i
2λ

Ain
eik∣r∣

∣r∣ [1 + cos(φ)]
∫

Sh

dSh(r
′)eikr′l rl/∣r∣,

(4.26)

where φ is the angle between r and the z-axis. The integral is the same
which occurs in calculating the Fraunhofer diffraction of a circular open-
ing and we obtain for the diffracted signal wave:

AS(r) = − i
λ

Ain
eik∣r∣

∣r∣
1
2
[1 + cos(φ)] πr2

h 2
J1[krh sin(φ)]

krh sin(φ)
. (4.27)

Additionally, we use the magnetic dipole polarizations as predicted by
Bethe. Hence, the signal wave is a spherical wave, where the angular dis-
tribution is modulated according to an Airy disc and a 0.5[1 + cos(φ)] fac-
tor. But we still use a scalar calculation and even for a vectorial calculation
we would have incorrect boundary conditions as Bethe pointed out [7].
Thus, for very small hole diameters our approximation is expected to fail.
Nevertheless, we use Eq. (4.27) to model the signal wave for holes with
rh ≥ 200 nm.

As we have seen, the saturation space-charge field depends on the de-
gree of modulation mg of the interference pattern and thus only on the
relative intensity of the reference wave R and the signal wave S. At some
point along the z-axis rx = ry = 0 and rz = re the intensities of the sig-
nal wave and the reference wave are equal. We incorporate absorption,
assume for the reference wave ∣AR(r)∣2 = exp(αrx) and rewrite the ampli-
tude of the signal wave in terms of the radius of equal intensity re:

∣AS(r)∣ = ∣Ain∣ ree−(α/2)∣r∣

∣r∣e−(α/2)re

1
2
[1 + cos(φ)] 2

J1[krh sin(φ)]
krh sin(φ)

. (4.28)
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The strength of the recorded index-of-refraction grating strongly de-
pends on the grating vector direction and the involved light polarizations.
We soon use our model signal wave AS and reference waves AR to eval-
uate the formula provided in sections 4.1.1 and 4.1.2. Therefore, we have
then a complete description of the hologram recorded by a plane wave and
a wave transmitted through a sub-wavelength hole. And this description
depends on just one free parameter: The radius of equal intensity re.

The light intensity of the signal beam just before the sub-wavelength
hole is supposed to be Iin = 2.4 × 109 W m−2. Using Eq. (4.27) and taking
absorption into account, the radius of equal intensity for different hole
diameters can be calculated. We find re = 0.76 mm for a 400-nm hole, re =
1.1 mm for a 500-nm hole, and re = 2.7 mm for a 1000-nm hole. However,
we find much better agreement between theoretical and experimental data
for smaller re. This could be due to a transmission efficiency Th of the hole
being smaller than one. Thus, we take re as a fit parameter, and in the
following we use re = 0.2 mm for a 400-nm hole and calculate for the
other holes, assuming that the input intensity is the same: re = 0.3 mm for
a 500-nm hole, and re = 1.0 mm for a 1000-nm hole.

Now, since we have a complete description of the hologram, we calcu-
late diffraction by this hologram. For this, we assume that a scalar approx-
imation can be used and the diffraction efficiency is small. Hence, we sim-
plify the Born approximation Eq. (4.23). We are only interested in points r
around r = 0. Thus we can assume ∣r∣ ≪ ∣r′∣ for most points r′ in the crys-
tal, and we can again use the approximation [12]: exp(ik∣r − r′∣)/∣r − r′∣ ≈
[exp(ik∣r′∣)/∣r′∣] exp(−ikrlr′l/∣r′∣). If the dielectric constant changes pro-
portional to the interference pattern of the plane reference wave and a
spherical signal wave, we can write:

ε(1)(r′) = c(r′)e−ik∣r′∣eikR,l r′l , (4.29)

where c(r′) is a function which varies on much larger scales than the wave-
length of light.

We assume that the the hologram is illuminated with a plane read-out
wave Ap(r′) = Ãp(r′) exp(ikp,lr′l). Inserting this in the Born approxima-
tion Eq. (4.23), we get:

Ad(r) =
(

2π

λ0

)2 ∫
d3r′

c(r′)Ãp(r′)e−(α/2)∣r∣

r′
e−ikrlr′ l/∣r′∣eir′ l(kR,l+kp,l) (4.30)

for the diffracted wave. For known c(r′) and Ãp(r′) this integral can be
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numerically evaluated as the arguments of the exponential functions vary
slowly for small ∣r∣ and for small detuning ∣kR + kp∣.

In this model, the diffraction efficiency is calculated by determining the
diffracted field Ad(0) at r = 0. Thus the diffraction efficiency is:

η =
πr2

h∣Ad(0)∣2
(∣Ap(rx = −Wx/2)∣2WyWz

. (4.31)

This definition of the diffraction efficiency is consistent with the experi-
mentally defined value as long as the intensity of the diffracted light does
not vary considerably over the area of the hole. Thus, it is consistent for
small holes. Otherwise, an integration over the area of the hole would be
necessary.

Focus width

Now, we study the size of the reconstructed focus, depending on the form
of the coupling constant inside the crystal. For this, we assume that we
can neglect absorption and that we can write:

c(r′)Âp(r′) = cr(r′)cS(φ). (4.32)

Furthermore, we assume that cS(φ) = 1 for π/2 − ω < φ < π/2 and
cS(φ) = 0 for φ < π/2 − ω. Thus ω is an opening angle of the hologram,
and consequently we can define a numerical aperture of the hologram by
NAh = n sin ω. In analogy to the Airy-criterium for the resolution of a mi-
croscope objective, we can relate the focus size to the angle ω. We define:

s(θ, φ) =

⎛
⎝ sin θ sin φ

cos θ sin φ

cos φ

⎞
⎠ . (4.33)

We calculate the diffracted light for Bragg-read-out. Thus we get:

Ad(r) =
(

2π

λ0

)2 ∫ R

0
dr′r′Cr(r′)

×
∫ π

−π
dθ

∫ pi/2

0
dφ cos(φ)CS(φ)e−ikrl sl(θ,φ).

(4.34)

Since the spot size is isotropic in the x-y-plane, we can assume: ry = ∣r∣
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and rx = rz = 0. Then we get:

Ad(r) =
(

2π

λ0

)2 ∫ R

0
dr′r′Cr(r′)

×
∫ π

−π
dθ

∫ pi/2

0
dφ cos(φ)CS(φ)e−ik∣r∣ sin(θ) cos(φ)

= − (2π)3

λ2
0

∫ R

0
dr′r′Cr(r′)

∫ ω

0
dφ′ sin(φ′)J0(k∣r∣ sin(φ′))

(4.35)

For ω ≪ 1 we can approximate sin(φ′) = φ′ and we retain the integral
leading to an Airy-disk [12]. Thus, the position of the first zero of the
diffracted field is

r0 = 0.61
λ0

n sin(ω)
. (4.36)

For larger ω we numerically evaluate the integral and get for ω → π/2:

r0 = 0.50
λ0

n sin(ω)
. (4.37)

Intermediate values of the factor in the front are found for ω between these
extremes.

Now we analyze the experimental measurements of the focus size. The
small spot in Fig. 4.14 (b) is the focused light, when the metal film is re-
moved. Within the experimental errors, the focus width is not bigger than
in the case, where the metal film is still in place and all the light emerges
from the sub-wavelength hole (Fig. 4.14 (a)). The diameter of the 1/e2-
focus in both cases is about (1.1 ± 0.1) µm. We approximate the image
of a point source by a Gauss curve with width wps and the spot of the
reconstructed beam by a Gauss curves with width wfocu. Then, the com-
bined width wcomb is the width of the convolution of the two Gauss curves.
Hence: wcomb =

√
w2

ps + w2
focu. We find that a focus size of wfocu = 0.5 µm

is the largest compatible with the error margin. This corresponds to a full
width at half maximum of the focused spot size of 0.3 µm. And by using
Eq. (4.37) this corresponds to a numerical aperture of at least NAh = 0.9.

Grating strength

Due to the low symmetry of lithium niobate crystals, many material pa-
rameters show a strong orientation dependence. As we have seen in sec-
tion 4.1.1 and in section 4.1.2 this is especially true for the photorefractive
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effect. Therefore, the question arises, in which directions the crystal allows
efficient recording of gratings. To investigate this question, the formula in
the sections 4.1.1 and 4.1.2 are evaluated. For the material parameters lit-
erature values are used. The effective change of the dielectric tensor and
the material parameters are found in [63]. The elements for the bulk pho-
tovoltaic tensor and the specific photoconductivity are taken from [82] and
are scaled to the appropriate oxidization state cFe2+/cFe3+ = 0.09 according
to [80].

Fig. 4.24 shows the saturation space-charge field ∆ESC, the effective
electro-optic coefficient reff, and the effective change of the dielectric con-
stant ∆εeff. The situation shown in Fig. 4.23 is assumed, and the data is
plotted versus the direction of the signal wave vector kS. To project the
directions onto the screen, a Lambert azimuthal equal-area projection is
used, and the z-axis is in the center of the figures. The colatitude φ is the
angle to the z-axis and the longitude θ is measured to the y-axis.

First, we discuss the saturation space-charge field ∆ESC shown in Fig.
4.24 (a). This field is mainly due to three contributions: The coefficient
β322 of the bulk photovoltaic tensor, and, less important, the coefficients
β223 and β232 and diffusion currents. The β322 coefficient is the only rel-
evant contribution of the photovoltaic tensor in the x-z-plane, as all in-
volved waves are polarized along y there. The resulting space-charge field
becomes maximal, ∆Ephv = β322/σ22 = 9.9 MV m−1, in the negative x-
direction as the grating vector is oriented closely along the z-direction, and
it vanishes in the positive x-direction as the grating vector is close to the
x-axis here. However, the magnitude of the grating vector is largest in the
positive x-direction. This is why the diffusion field, which is proportional
to the grating vector length, becomes maximal in this direction, reaching
values of ∆Ediff = i kBT

qe
∣Kg∣ ≈ i 1.4 MV m−1. The phase of the diffusion

grating is shifted by 90∘ to the interference pattern. A shift also occurs
for the third contribution, which comes from the β223 and β232 coefficients,
thus, the signal and the reference waves have different polarization. This
is the case for signal wave vectors close to the equator.

Figure 4.24 (b) shows the effective electro-optic coefficient. Again the
situation is easier for signal wave vectors in the x-z-plane. In this plane,
the tensor element is close to reff = cos(ξ) 9.1 × 10−12 mV−1 [63], with
ξ being the angle between Kg and the z-axis. A very large reff can be
found close to the equator. This is due to the strong coefficient reff,23,
which reaches reff,23 > 30 × 10−12 mV−1 for grating vectors in the x-y-
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Figure 4.24: (a) The saturation space-charge field, (b) the ef-
fective electro-optic coefficient and (c) the effective dielectric
constant change for different directions of the signal wave.
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plane [63]. When the contributions from reff,22 and from reff,23 cancel each
other, the effective electro-optic coefficient vanishes. This is why the pat-
tern in Fig. 4.24 (b) is so narrow in the ±y-direction.

When the space-charge field, the effective electro-optic tensor, and the
factor [ε(0)]2 are multiplied, the effective change of the dielectric constant
∆εeff is found. This is shown in Fig. 4.24 (c). In the ±y-direction the zero
of the dielectric constant change is approximately at φ = 25∘. The central
area with high diffraction efficiency is wider in the ±x-direction, with a
maximum close to the −x-direction.

Together with the model for the signal wave S in Eq. (4.28) for diffrac-
tion by holes with different diameters, we have a complete description of
the degree of modulation in the crystal and can model the grating strength
everywhere. In Fig. 4.25 amplitude and phase of the corresponding grat-
ings mg∆εeff in the y-z-plane are shown for a 400-nm hole and for a 1000-
nm hole. Two distinct regions are found: First, a central region with con-
stant phase, which corresponds to gratings recorded mainly by the β322
component of the bulk photovoltaic tensor. And a second region, where
side-lobes occur. Because these side lobes are close to the x-y-plane, they
are anisotropically recorded and, thus, the gratings are phase-shifted to
the interference pattern.

According to the simulations in Fig. 4.25 a rather exotic effect can sig-
nificantly contribute to holography through a sub-wavelength hole: An-
isotropic recording from the side lobes of the signal wave. For comparison,
we introduce an alternative model, where exotic recording does not occur:
we assume a direction independent change of the dielectric constant ∆εeff,
which shows a constant phase, and is geometrically truncated to the area
which is illuminated by the zero-order light cone of the signal wave. This
corresponds to the assumptions made for Eq. (4.32). We call this the sim-
plified model. When used in the following, it is specially noted.

However, a first indication that exotic recording is relevant can be found
in Fig. 4.21. In Fig. 4.21 (a) the measurements are made close to the hole.
According to Fig. 4.25 areas with exotic recording are read out. Thus, even
after the β322 component is counterbalanced by a compensation field the
exotic parts of the hologram can diffract light and thus the long term satu-
ration value of the diffraction efficiency is not zero. In Fig. 4.21 (b), where
the hologram is read-out far away from the hole, only gratings recorded
by the β322 element of the bulk photovoltaic tensor contribute. Due to the
compensation of β322 the diffraction efficiency should go to zero, exactly
what is measured.
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Figure 4.25: Amplitude and phase of the grating strength
mg∆εeff in the y-z-plane for a 400-nm hole and a 1000-nm hole.
The amplitude is clipped at 4 × 10−4 to accentuate the side
lobes. The maximal value in the plane shown is ∣mg ∆εeff∣ =
1.4 × 10−3.
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Angular selectivity

If the read-out beam impinging on a plane-wave grating in the x-z-plane
is angularly detuned in the x-z-plane, the diffracted light shows a strong
selectivity. But the diffraction efficiency shows nearly no selectivity if the
read-out beam is detuned perpendicular to this plane. Figure 4.17 shows
strong selectivity for detuning in both directions. This proves that a large
fraction of the light has to be diffracted by gratings with grating vectors
Kg which do not lie in the x-z-plane. The effect becomes more pronounced
for smaller hole sizes as the signal light is diffracted stronger.

In Fig. 4.26 simulated angular selectivity curves for a 400-nm and a
1000-nm hole are shown. The width of the curves are slightly narrower
compared to those of the measured data in Fig. 4.17. In both, in the ex-
perimental data and in the simulation, the selectivity in the x-z-plane is
asymmetric. The effect is stronger for the 400-nm hole than for the 1000-
nm hole. The direction of enlarged selectivity depends on the orientation
of the crystal. By modifying the model we try to find the cause of this
asymmetry. First, the angular selectivity curves are strictly symmetric if
the simplified model is used. Second, no asymmetry is found if a con-
stant complex phase for ∆εeff is assumed. And third, no asymmetry is
found if the signal wave is geometrically truncated outside a NAh = 2.0
cone. Thus, whenever we exclude the exotic gratings, the asymmetry dis-
appears. This is a second evidence that exotic gratings significantly con-
tribute to the overall diffraction. If the radius of equal intensity re is further
reduced, the amplitude but not the shape of the curves change. Whereas
for an increase in re the asymmetry increases.

In Fig. 4.18 the angular selectivity in the vertical direction is compared
for holography with a plane signal wave, a signal wave focused with a
NA = 0.65 microscope objective, and a signal wave transmitted through a
400-nm hole. The nearly constant diffraction efficiency of the plane wave
is understandable, and we already discussed the angular selectivity curves
for the sub-wavelength hole. Surprising is the wide selectivity for the mi-
croscope objective. To simulate the case of the microscope objective, the
simplified model for holography through a hole with four different nu-
merical apertures is used: NAh = 0.25, 0.50, 0.75, 1.00. The angular selec-
tivity curves are shown in Fig. 4.27. The experimentally measured selec-
tivity for the microscope objective is by far less pronounced than the sim-
ulated data even for NAh = 0.25. Thus a low NAh can hardly be the cause
for the wide selectivity. A huge difference between the cases of hologra-
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Figure 4.26: Simulated angular selectivity for (a) a 400-nm and
(b) a 1000-nm hole. □/∘: rotations in the x-z/x-y-plane.
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phy through a hole in a metal film and holograph with a wave focused
by a microscope objective is that in the case with the sub-wavelength hole
only the light being focused onto the hole is measured. In the contrary, in
the case with the microscope objective all the diffracted light can be mea-
sured even if the light is being focused on a different position. Indeed,
simulations using the method in [72] indicate that if the read-out beam is
detuned, the position of the reconstructed focus moves. Thus, the model,
which calculates the diffracted intensity only at r = 0, is not applicable.
The sharp selectivity in the case with the sub-wavelength hole is due to
the fact that the light is no longer being focused onto the hole. In fact, if we
look upon Eq. (4.30), we see that the phase term for r ∕= 0 might partially
compensate the phase term from detuning. Thus the focus might move for
a detuned read-out wave, though the total amount of the diffracted light
does not decrease as drastically.

Razor-blade measurements and two-dimensional scan

We use the model to calculate the diffraction efficiency η for a 400-nm hole
when only parts of the crystal are illuminated with the read-out beam.
Figure 4.28 shows the computed diffraction efficiency for a razor blade
moved in the horizontal and in the vertical direction. Experimentally,
the absolute position of the razor blade has an error of several hundred
micrometer. This error strongly influences the amount of the impinging
light and thus the diffraction efficiency. To simulate the influence of this
uncertainty, curves with shifted razor blade positions are plotted for the
horizontal movement simulations. Comparing the simulations with the
experimental data in Fig. 4.19 we see the same behavior: In the horizontal
direction the diffraction efficiency increases, reaches a maximum at ap-
proximately z = 1.5 mm and drops to a lower value. In the vertical di-
rection the diffraction efficiency begins to rise shortly before the hole is
exposed and reaches a maximum after the razor blade is moved less than
a millimeter further.

Using the simplified model, where the signal beam is truncated outside
a certain cone, very similar curves as in Fig. 4.28 result, depending on the
simulation parameters re and the numerical aperture NAh.

Furthermore, the model is used to simulate the two-dimensional scan
of the diffraction efficiency for a 1000-nm hole with a 500-µm diaphragm.
The result is shown in Fig. 4.29. Compared to the experimental data in
Fig. 4.20 the simulated data is broader in the z-direction and narrower in
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Figure 4.27: Simulated angular selectivity curves calculated
with the simplified model for different numerical apertures of
the hologram NAh = 0.25, 0.50, 0.75, 1.00. □/∘: rotations in the
x-z/x-y-plane.
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Figure 4.28: Simulated diffraction efficiency η versus the posi-
tion of a razor blade (a) in the horizontal direction and (b) in the
vertical direction. For the horizontal movement in (a) the zero-
position of the blade is assumed to be shifted by 0 µm (solid
line), 200 µm (dashed line), 400 µm (circles).
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Figure 4.29: Computed two-dimensional scan of the diffraction
efficiency with a 500-µm diaphragm.

the y-direction. However, the experimental two-dimensional scan might
be strongly influenced by the shape of the crystal surfaces as the Bragg-
condition is only fulfilled at the position of maximal diffraction efficiency.
Furthermore, if the radius of equal intensity re is reduced in the simula-
tions, the diffraction efficiency drops much faster along the z-axis.

Maximal diffraction efficiency

Only one free parameter is used to conduct the simulations shown in
Fig. 4.26, Fig. 4.28, and Fig. 4.29: The radius of equal intensity re for the
400-nm hole. The radius for the 1000-nm hole is derived from this value.
Besides this, literature values have been used for the material parameters.
Even though the absolute values of the diffraction efficiency differ consid-
erably between simulation and experiment, we expect that the model is
able to predict the relative height of the different measurements.

Figure 4.16 shows that the maximal diffraction efficiency is η = 5.5 ×
10−4 for a 1000-nm hole, η = 5.7 × 10−5 for a 500-nm hole, η = 2.0 × 10−5

for a 400-nm hole. Simulated diffraction efficiencies are found in Fig. 4.26
and a numerical simulation not shown here for a 500-nm hole: η = 1.8 ×
10−2 for a 1000-nm hole, η = 2.3 × 10−3 for a 500-nm hole, η = 1.5 × 10−3

for a 400-nm hole. Thus, within the relatively large error, the dependence
on the hole size of the simulated data is the same as in the experiment.

Figure 4.15 and Fig. 4.13 show that the diffraction efficiency is three
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orders of magnitudes smaller for a 400-nm hole compared with that of the
plane-wave case. The question arises which effects decrease the diffraction
efficiency by such a large amount.

The first issue to discuss is the size of the readout-beam. The diffrac-
tion efficiency is calculated by dividing the diffracted light power by the
power imping on the crystal. If light enters the crystal in regions which
do not contribute significantly to the diffracted light, the diffraction effi-
ciency is lowered, because this light contributes to the power impinging
onto the crystal, but not to the light being diffracted. As we see in the two-
dimensional scan in Fig. 4.20, the area of significant diffraction is much
smaller than the crystal volume.

The amplitude of the signal wave decreases rapidly in the crystal, ac-
cording to ∣AS∣ ∝ exp(−rα/2)/r. When this inhomogeneous light wave
interferes with the relatively homogeneous plane wave the contrast of the
interference pattern, i.e., the degree of modulation mg, becomes inhomo-
geneous. Full contrast can only be reached in a small fraction of the crystal.
We use Eq. (4.30) to calculate how this effect influences the overall diffrac-
tion efficiency. In Fig. 4.30 the diffraction efficiency is plotted versus the
radius of equal intensity. For the bottom curve the hologram is truncated
outside a NAh = 2.0 cone, thus exotic gratings are not considered. This
curve shows a maximum at re = 2 mm, i.e., the degree of modulation is
maximal in the center of the crystal. This is in accordance to the analysis
in [83]. No maximum is found if the hologram is not truncated. This is,
because the side lobes of the signal wave are much weaker than the cen-
tral peak and for high re the side lobes contribute more to the diffraction
than the central diffraction cone. Thus, the region of maximal contrast is
far away enough from the hole for the exotic gratings for very high re only.
This is the reason, why no maximum is found in the considered interval
of re, if exotic gratings are taken into account.

The inhomogeneous degree of modulation and the crystal size are taken
into account by our model. Thus, now we compare the maximal diffrac-
tion efficiency as it is predicted from the model with the experimental data,
e.g., Fig. 4.17 and Fig. 4.26. We find a factor of 50 between the maximal
diffraction efficiencies for the 400-nm hole. Several effects might explain
these differences between simulation and experiment. Besides an incorrect
radius of equal intensity re, reflection at the crystal surfaces, holographic
scattering, and off-Bragg read-out because of non-planar crystal surfaces
diminish the diffraction efficiency. These effects are the same as for the
plane-wave case, where these effects account for a factor of about twelve.
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Figure 4.30: Calculated diffraction efficiency for different val-
ues of the radius of equal intensity re. For the bottom curve the
hologram is truncated outside a NAh = 2.0 cone.

Some other aspects might play a role for holography through a hole
and do not for plane-wave holography: First, not all the phase-conjugated
light emerging from the sub-wavelength hole might be collected by the
microscope objective so that the measured η is just a fraction of the real
diffraction efficiency. However, considering the diffraction patterns of cir-
cular apertures, for a NA = 0.65 microscope objective we do not expect
this to play a significant role for hole diameters above 2rh = 400 nm. Sec-
ond, the transmission coefficient Th of the hole in the gold film might be
smaller than one. And third, by the compensation effect described be-
fore, the maximal space-charge amplitude would be diminished by a fac-
tor of max[t exp(−t)] ≈ 37 % and, accordingly, the maximal diffraction
efficiency would be decreased, too [81].

In the center of our discussion in the previous sections is the diffraction
efficiency η: The amount of diffracted power divided by the light power
impinging onto the crystal. Thus, this value answers the question of how
efficient the impinging light is used and thus might be an application rele-
vant value. Furthermore, it is this magnitude which is at the heart of most
discussions about volume holograms in the literature. However, there are
certain aspects, which are to be kept in mind for an adequate interpreta-
tion of the diffraction efficiency: First, light is focused and the intensity
is enhanced at the hole, even for very small η. A diffraction efficiency of
η = 3 × 10−5 is measured for a 400-nm hole. Normalized to the area of the
hole this corresponds to an intensity enhancement of more than 7000 in re-
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spect to the reference intensity. Second, even if 100 % of the read-out light
is diffracted, only a small fraction is focused onto the area of the hole, and
the remaining light is reflected, because the focus is bigger than the hole.
This fraction is an upper bound to the diffraction efficiency. A comparison
with plane-wave values becomes meaningless.

The reconstructed spot

Figure 4.31 shows an image of the calculated phase-conjugated signal wave
S∗. The 400-nm hole is supposed to be at the center of the image. To cal-
culate the spot size, the model including the exotic gratings is used and
Eq. 4.30 is evaluated. The reconstructed spot roughly fits to the original
400-nm hole. But the spot is not a smooth disc, but has a more complicated
structure, which is due to the complicated grating pattern in the crystal.

Figure 4.31: Simulated profile of the phase-conjugated signal
wave, for a 400-nm hole. The intensity is normalized to the
impinging read-out wave intensity.

4.4.4 Optimizing holography through a hole

Optimizing the diffraction efficiency

Assume that all experimental issues are solved: Perfectly planar crystal
surfaces, which have an anti-reflection coating. Furthermore, holographic
scattering shall be negligible, the compensation effect should not occur,
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and all the diffracted light should be transmitted through the hole and
shall be measured by the photodiode. This is the situation, where theoret-
ical considerations should coincide with experimental data. Furthermore,
we assume that the size of the read-out beam and the radius of equal in-
tensity should be freely adjustable. We ask, what the performance of such
an idealized system is.

The model presented in the last section is appropriate to explain the
experimental data, as long as the diffraction efficiency is very small. But, if
we optimize for far higher maximal diffraction efficiency, the assumption
of the first-order Born approximation is violated: Depletion of the read-out
light is no longer negligible and determines the optimal parameters. This
is why we skip finding parameters for a maximal diffraction efficiency as
given by our model. However, up to now, most model parameters are
chosen based on the values used in the experiments. Many parameters,
e.g., the crystal size and the hole diameter, are determined by practical
reasons rather than optimal conditions. Therefore, we start with a Wx =
Wy = Wz = 1 mm sized crystal and a radius of equal intensity of re =
0.5 mm and calculate the diffraction efficiency for a sub-wavelength hole
with a diameter of 40 nm. Even if the small wavelength of the light inside
of the crystal is considered, this absolutely fulfills rh ≪ λ. Hence, the
modeled signal wave becomes an isotropic spherical wave.

Figure 4.32 shows the reconstructed spot for a 40-nm hole. The central
region has a radius of the first dark ring of 120 nm in the x-direction and
90 nm in the y-direction. According to Eq. (4.37) this corresponds to a nu-
merical aperture of NAh = 2.2 in the x-direction and NAh = 3.0 in the
y-direction. For the y-direction, the numerical aperture is higher than the
index-of-refraction of n = 2.3, but strong secondary maxima occur in the
±y-direction. A similar effect happens in a telescope, where by blocking
the central part of the circular aperture the focus size is reduced [12].

Varying the radius of equal intensity, a maximal diffraction efficiency
of η = 7.2 × 10−3 is found at re = 0.6 mm. By decreasing the crystal
size to Wz = 230 µm the diffraction efficiency increases up to 1.6 %. We
can compare this to a diffraction limited spot with a numerical aperture
of NA = 1 for a wavelength of λ0 = 532 nm: According to Fraunhofer
diffraction about 1.4 % of the light power of a diffraction limited spot is
within a radius of 20 nm. Thus, due to a higher numerical aperture, the
transmitted light power already is slightly enhanced in our simulation.
Further improvements can be made by scaling the hologram to a larger
size. However, only 2.7 % of the light seen in Fig. 4.32 fall within the circle
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Figure 4.32: Simulated profile of the phase-conjugated signal
wave, for a 40-nm hole. The intensity is normalized to the im-
pinging read-out wave intensity.

of the hole. Thus even if 100 % of the incoming light would be diffracted
by the hologram, we would measure a diffraction efficiency of just 2.7 %.
Due to pump depletion of the read-out beam, this value is therefore an
upper bound of the diffraction efficiency for a 40-nm hole.

Some optimizations are possible for iron-doped lithium niobate crys-
tals. By oxidizing the crystal, the amplitude of the electric space-charge
field ∆ESC is enhanced and absorption is reduced [80]. As a drawback, the
recording time is prolonged by oxidization, making stability issues even
more important. Rotating the c-axis by 45∘ the average space-charge field
∆ESC can be enhanced, as the grating vector becomes parallel to the c-axis
of the crystal for signal wave vectors along the z-axis and thus in the center
of the crystal.

Alternative recording materials

Alternative recording materials like photosensitive glasses [84–86] or pho-
to-addressable polymers [87, 88] could improve the performance of the
system. However, these materials have other drawbacks: Recording in
photosensitve glasses is irreversible and requires a high-temperature de-
velopment process and photo-adressable polymers are only available as
films and not as thick bulk material, and these polymers show strong
absorption. In isotropic materials no compensation effect and no depen-
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dence on the grating orientation occurs. Materials with a smaller response
time do not need an active stabilization, and all practical complications
due to the stabilization system could be circumvented. Nevertheless, an
optimal size and an optimization of the degree of modulation would still
be needed.

Improvements of the model

The model proposed herein could be improved for more accurate predic-
tions of the performance of a high-numerical-aperture system by holo-
graphic phase conjugation. First, a refined expression for the diffracted
light transmitted through holes with diameters comparable to the wave-
length would be useful. This expression could be extracted from transmis-
sion experiments or finite differences time domain numerical calculations.
A further improvement would be a full vectorial instead of our pseudo-
vectorial calculation. Further considerations could include the compli-
cated time dependence of the grating build-up. Finally improvements,
e.g., coupled wave equations, to go beyond the first-order approximation,
would allow better determination of optimal parameters.

4.5 Summary

Phase-conjugation through a sub-wavelength hole in a metal film on top
of iron-doped lithium niobate crystal is possible and leads to a nicely fo-
cused spot. The holograms recorded through a hole show some unique
differences compared to those of the plane-wave case, especially a more
complex temporal evolution of the diffraction efficiency and a more pecu-
liar distribution of grating vectors.

The temporal evolution of the diffraction efficiency can be understood,
if the crystal is not completely illuminated. Then, charges accumulate at
the border of the illuminated area and a field compensating the bulk pho-
tovoltaic current builds up. Since this current is the major driving force
for grating build up, the gratings are erased and the diffraction efficiency
drops to lower values.

A model of a hologram recorded by a wave transmitted through a sub-
wavelength hole and a plane wave is introduced. Besides material param-
eters which are taken from literature, there is mainly one free parameter:
The relative intensity of the reference wave R and the signal wave S, ex-
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pressed as a radius of equal intensity re. Diffraction from this hologram is
described by a scalar first-order Born approximation. For a relatively small
value of re = 0.2 mm for a 400-nm hole, the radius re is calculated for other
hole sizes, and the experimental data can be qualitatively well described:
The angular selectivity curves, including the unexpected asymmetry, the
razor-blade measurements and the two-dimensional scan, and the long
term saturation value, when the hologram is read-out close to the hole.
Additionally, within the error, the relative height of the maximal diffrac-
tion efficiency for three different hole sizes is predicted correctly by the
simulation.

Rather unexpectedly, the experiments confirm that exotic gratings con-
tribute significantly to the diffracted light: gratings recorded by beams
having different polarizations, found close to the x-y-plane, and being
phase-shifted to the interference pattern. Thus diffracted waves from a
wide range of directions contribute to the reconstructed spot, resulting in
a very high effective numerical aperture.

For phase conjugation through a 400-nm hole, the diffraction efficiency
is experimentally found to be only η ≈ 3 × 10−5. This is three orders of
magnitudes smaller than that for the plane-wave case. The overall diffrac-
tion efficiency very sensitively depends on the radius of equal intensity
re. We do not know these parameters very exactly. However, the order of
magnitude of the diffraction efficiency is understandable, mainly due to
two effects: The small average degree of modulation, because re is very
small, and the size of the crystal is chosen non-optimal.

Several approaches to optimize for higher diffraction efficiencies can
be found as the holograms are analyzed more closely. From simulations
of holography through a 40-nm hole on a 1× 1× 0.23 mm3-sized crystal, a
diffraction efficiency of 1.6 % is calculated. This is slightly larger than the
fraction of light falling onto the hole by focusing with a NA = 1 micro-
scope objective.

Compared to conventional focusing systems, holographic phase con-
jugation through a sub-wavelength hole on an iron-doped lithium nio-
bate crystal has two potential advantages: first, an extremely high numer-
ical aperture NA due to the high index-of-refraction and the possibility to
record exotic, anisotropic gratings. And second, the method is not limited
to single holes, but sophisticated patterns of sub-wavelength openings can
be addressed with a very high NA. In contrast to conventional focusing,
this capability is potentially available in a very high field of view.
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Summary

Though huge efforts have been made, only poor knowledge, whether the-
oretical or experimental, is available on the transmission characteristics
of optical nanophotonic structures, in particular a single sub-wavelength
hole in a real metal. However, it is known that the transmitted power be-
comes a tiny fraction of the impinging light, when the hole is very small
compared with the wavelength. For many real-life applications far higher
efficiencies of the light transmitted through a nano-aperture are needed.
Ways to enhance the transmission are highly desirable. Thus, we are look-
ing for methods, with which the transmission is higher than through the
pure sub-wavelength hole. For comparison: by structuring the area sur-
rounding the hole, an one-order-of-magnitude enhancement of the trans-
mission efficiency has been reported. The scope of this work are two
novel methods to enhance the transmission through a sub-wavelength
hole. Both methods rely on the constructive interference of light waves
impinging onto the hole right before transmitting it.

The first method is the external Fabry-Pérot-enhanced transmission.
There, a partially transmitting mirror and the metal film with the sub-
wavelength hole form a cavity. The resulting transmittance is enhanced by
a factor of more than 20 by the additional mirror. Thus, the transmission
is augmented more than what has been achieved by structures surround-
ing the sub-wavelength hole. The dependence of the enhancement and
the finesse on the transmission coefficient of the input mirror can be excel-
lently modeled by adapting the well-known formula for the Fabry-Pérot
interferometer. The limiting finesse, which is achievable with the available
system and mirrors, is about 105. From this analysis it is concluded, that
with further optimization an enhancement of 100 is achievable.
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The second method under investigation is holographic phase conjuga-
tion through a sub-wavelength hole in a gold film directly on top of an
iron-doped lithium niobate crystal. Light being transmitted through the
hole and a plane reference wave record a hologram. This hologram is read-
out by the phase-conjugated reference wave. According to the holographic
principle, the phase-conjugated signal wave, which is a back-propagating
spherical wave, is reconstructed. Thus, light is focused onto the hole.

Experimentally, focusing is shown to work by recording a hologram
through a 200-nm hole and subsequent removal of the gold film. The dif-
fraction efficiency for a 400-nm hole is three orders of magnitudes smaller
compared with that of a hologram recorded by two plane waves. A model
is introduced to explain these experimental results: The signal wave is
modeled by Kirchhoff diffraction. The position depending grating strength
is calculated from material parameters from the literature. And diffraction
from the hologram is simulated with the first-order Born approximation.
Qualitatively the measured data are explained by this model. The small
diffraction efficiency is mainly attributed to a non-optimal crystal size, a
small degree of modulation of the interference pattern and other experi-
mental issues. Unexpectedly, evidence is found that gratings anisotropi-
cally recorded close to the metal film contribute significantly to the diffrac-
tion. As simulations show, this results in a very high effective numerical
aperture. Furthermore, the calculations indicate that due to the high nu-
merical aperture an optimized holographic focusing system could indeed
result in an intensity comparable or better than for a NA = 1 microscope
objective. Especially for applications requiring a very high field of view,
holographic phase-conjugation through a sub-wavelength hole might be
superior to conventional focusing. However, considerable efforts would
have to be undertaken to reach the theoretically predicted diffraction effi-
ciencies.

Which of the methods to enhance the transmission of light through
sub-wavelength structures, proposed in this work or in the literature, is
preferable, depends on the application. However, in any case, external
enhancement, which is the focus of this work, should be taken into ac-
count, when judging whether a nanophotonic application has the efficien-
cies needed for a real-life use.
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